1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/stackdepot.h> 30 #include <linux/debugobjects.h> 31 #include <linux/kallsyms.h> 32 #include <linux/kfence.h> 33 #include <linux/memory.h> 34 #include <linux/math64.h> 35 #include <linux/fault-inject.h> 36 #include <linux/stacktrace.h> 37 #include <linux/prefetch.h> 38 #include <linux/memcontrol.h> 39 #include <linux/random.h> 40 #include <kunit/test.h> 41 #include <linux/sort.h> 42 43 #include <linux/debugfs.h> 44 #include <trace/events/kmem.h> 45 46 #include "internal.h" 47 48 /* 49 * Lock order: 50 * 1. slab_mutex (Global Mutex) 51 * 2. node->list_lock (Spinlock) 52 * 3. kmem_cache->cpu_slab->lock (Local lock) 53 * 4. slab_lock(slab) (Only on some arches or for debugging) 54 * 5. object_map_lock (Only for debugging) 55 * 56 * slab_mutex 57 * 58 * The role of the slab_mutex is to protect the list of all the slabs 59 * and to synchronize major metadata changes to slab cache structures. 60 * Also synchronizes memory hotplug callbacks. 61 * 62 * slab_lock 63 * 64 * The slab_lock is a wrapper around the page lock, thus it is a bit 65 * spinlock. 66 * 67 * The slab_lock is only used for debugging and on arches that do not 68 * have the ability to do a cmpxchg_double. It only protects: 69 * A. slab->freelist -> List of free objects in a slab 70 * B. slab->inuse -> Number of objects in use 71 * C. slab->objects -> Number of objects in slab 72 * D. slab->frozen -> frozen state 73 * 74 * Frozen slabs 75 * 76 * If a slab is frozen then it is exempt from list management. It is not 77 * on any list except per cpu partial list. The processor that froze the 78 * slab is the one who can perform list operations on the slab. Other 79 * processors may put objects onto the freelist but the processor that 80 * froze the slab is the only one that can retrieve the objects from the 81 * slab's freelist. 82 * 83 * list_lock 84 * 85 * The list_lock protects the partial and full list on each node and 86 * the partial slab counter. If taken then no new slabs may be added or 87 * removed from the lists nor make the number of partial slabs be modified. 88 * (Note that the total number of slabs is an atomic value that may be 89 * modified without taking the list lock). 90 * 91 * The list_lock is a centralized lock and thus we avoid taking it as 92 * much as possible. As long as SLUB does not have to handle partial 93 * slabs, operations can continue without any centralized lock. F.e. 94 * allocating a long series of objects that fill up slabs does not require 95 * the list lock. 96 * 97 * cpu_slab->lock local lock 98 * 99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 100 * except the stat counters. This is a percpu structure manipulated only by 101 * the local cpu, so the lock protects against being preempted or interrupted 102 * by an irq. Fast path operations rely on lockless operations instead. 103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus 104 * prevent the lockless operations), so fastpath operations also need to take 105 * the lock and are no longer lockless. 106 * 107 * lockless fastpaths 108 * 109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 110 * are fully lockless when satisfied from the percpu slab (and when 111 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 112 * They also don't disable preemption or migration or irqs. They rely on 113 * the transaction id (tid) field to detect being preempted or moved to 114 * another cpu. 115 * 116 * irq, preemption, migration considerations 117 * 118 * Interrupts are disabled as part of list_lock or local_lock operations, or 119 * around the slab_lock operation, in order to make the slab allocator safe 120 * to use in the context of an irq. 121 * 122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 125 * doesn't have to be revalidated in each section protected by the local lock. 126 * 127 * SLUB assigns one slab for allocation to each processor. 128 * Allocations only occur from these slabs called cpu slabs. 129 * 130 * Slabs with free elements are kept on a partial list and during regular 131 * operations no list for full slabs is used. If an object in a full slab is 132 * freed then the slab will show up again on the partial lists. 133 * We track full slabs for debugging purposes though because otherwise we 134 * cannot scan all objects. 135 * 136 * Slabs are freed when they become empty. Teardown and setup is 137 * minimal so we rely on the page allocators per cpu caches for 138 * fast frees and allocs. 139 * 140 * slab->frozen The slab is frozen and exempt from list processing. 141 * This means that the slab is dedicated to a purpose 142 * such as satisfying allocations for a specific 143 * processor. Objects may be freed in the slab while 144 * it is frozen but slab_free will then skip the usual 145 * list operations. It is up to the processor holding 146 * the slab to integrate the slab into the slab lists 147 * when the slab is no longer needed. 148 * 149 * One use of this flag is to mark slabs that are 150 * used for allocations. Then such a slab becomes a cpu 151 * slab. The cpu slab may be equipped with an additional 152 * freelist that allows lockless access to 153 * free objects in addition to the regular freelist 154 * that requires the slab lock. 155 * 156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 157 * options set. This moves slab handling out of 158 * the fast path and disables lockless freelists. 159 */ 160 161 /* 162 * We could simply use migrate_disable()/enable() but as long as it's a 163 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 164 */ 165 #ifndef CONFIG_PREEMPT_RT 166 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 167 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 168 #else 169 #define slub_get_cpu_ptr(var) \ 170 ({ \ 171 migrate_disable(); \ 172 this_cpu_ptr(var); \ 173 }) 174 #define slub_put_cpu_ptr(var) \ 175 do { \ 176 (void)(var); \ 177 migrate_enable(); \ 178 } while (0) 179 #endif 180 181 #ifdef CONFIG_SLUB_DEBUG 182 #ifdef CONFIG_SLUB_DEBUG_ON 183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 184 #else 185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 186 #endif 187 #endif /* CONFIG_SLUB_DEBUG */ 188 189 static inline bool kmem_cache_debug(struct kmem_cache *s) 190 { 191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 192 } 193 194 void *fixup_red_left(struct kmem_cache *s, void *p) 195 { 196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 197 p += s->red_left_pad; 198 199 return p; 200 } 201 202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 203 { 204 #ifdef CONFIG_SLUB_CPU_PARTIAL 205 return !kmem_cache_debug(s); 206 #else 207 return false; 208 #endif 209 } 210 211 /* 212 * Issues still to be resolved: 213 * 214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 215 * 216 * - Variable sizing of the per node arrays 217 */ 218 219 /* Enable to log cmpxchg failures */ 220 #undef SLUB_DEBUG_CMPXCHG 221 222 /* 223 * Minimum number of partial slabs. These will be left on the partial 224 * lists even if they are empty. kmem_cache_shrink may reclaim them. 225 */ 226 #define MIN_PARTIAL 5 227 228 /* 229 * Maximum number of desirable partial slabs. 230 * The existence of more partial slabs makes kmem_cache_shrink 231 * sort the partial list by the number of objects in use. 232 */ 233 #define MAX_PARTIAL 10 234 235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 236 SLAB_POISON | SLAB_STORE_USER) 237 238 /* 239 * These debug flags cannot use CMPXCHG because there might be consistency 240 * issues when checking or reading debug information 241 */ 242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 243 SLAB_TRACE) 244 245 246 /* 247 * Debugging flags that require metadata to be stored in the slab. These get 248 * disabled when slub_debug=O is used and a cache's min order increases with 249 * metadata. 250 */ 251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 252 253 #define OO_SHIFT 16 254 #define OO_MASK ((1 << OO_SHIFT) - 1) 255 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 256 257 /* Internal SLUB flags */ 258 /* Poison object */ 259 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 260 /* Use cmpxchg_double */ 261 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 262 263 /* 264 * Tracking user of a slab. 265 */ 266 #define TRACK_ADDRS_COUNT 16 267 struct track { 268 unsigned long addr; /* Called from address */ 269 #ifdef CONFIG_STACKDEPOT 270 depot_stack_handle_t handle; 271 #endif 272 int cpu; /* Was running on cpu */ 273 int pid; /* Pid context */ 274 unsigned long when; /* When did the operation occur */ 275 }; 276 277 enum track_item { TRACK_ALLOC, TRACK_FREE }; 278 279 #ifdef CONFIG_SYSFS 280 static int sysfs_slab_add(struct kmem_cache *); 281 static int sysfs_slab_alias(struct kmem_cache *, const char *); 282 #else 283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 285 { return 0; } 286 #endif 287 288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 289 static void debugfs_slab_add(struct kmem_cache *); 290 #else 291 static inline void debugfs_slab_add(struct kmem_cache *s) { } 292 #endif 293 294 static inline void stat(const struct kmem_cache *s, enum stat_item si) 295 { 296 #ifdef CONFIG_SLUB_STATS 297 /* 298 * The rmw is racy on a preemptible kernel but this is acceptable, so 299 * avoid this_cpu_add()'s irq-disable overhead. 300 */ 301 raw_cpu_inc(s->cpu_slab->stat[si]); 302 #endif 303 } 304 305 /* 306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 308 * differ during memory hotplug/hotremove operations. 309 * Protected by slab_mutex. 310 */ 311 static nodemask_t slab_nodes; 312 313 /******************************************************************** 314 * Core slab cache functions 315 *******************************************************************/ 316 317 /* 318 * Returns freelist pointer (ptr). With hardening, this is obfuscated 319 * with an XOR of the address where the pointer is held and a per-cache 320 * random number. 321 */ 322 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 323 unsigned long ptr_addr) 324 { 325 #ifdef CONFIG_SLAB_FREELIST_HARDENED 326 /* 327 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 328 * Normally, this doesn't cause any issues, as both set_freepointer() 329 * and get_freepointer() are called with a pointer with the same tag. 330 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 331 * example, when __free_slub() iterates over objects in a cache, it 332 * passes untagged pointers to check_object(). check_object() in turns 333 * calls get_freepointer() with an untagged pointer, which causes the 334 * freepointer to be restored incorrectly. 335 */ 336 return (void *)((unsigned long)ptr ^ s->random ^ 337 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 338 #else 339 return ptr; 340 #endif 341 } 342 343 /* Returns the freelist pointer recorded at location ptr_addr. */ 344 static inline void *freelist_dereference(const struct kmem_cache *s, 345 void *ptr_addr) 346 { 347 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 348 (unsigned long)ptr_addr); 349 } 350 351 static inline void *get_freepointer(struct kmem_cache *s, void *object) 352 { 353 object = kasan_reset_tag(object); 354 return freelist_dereference(s, object + s->offset); 355 } 356 357 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 358 { 359 prefetchw(object + s->offset); 360 } 361 362 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 363 { 364 unsigned long freepointer_addr; 365 void *p; 366 367 if (!debug_pagealloc_enabled_static()) 368 return get_freepointer(s, object); 369 370 object = kasan_reset_tag(object); 371 freepointer_addr = (unsigned long)object + s->offset; 372 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 373 return freelist_ptr(s, p, freepointer_addr); 374 } 375 376 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 377 { 378 unsigned long freeptr_addr = (unsigned long)object + s->offset; 379 380 #ifdef CONFIG_SLAB_FREELIST_HARDENED 381 BUG_ON(object == fp); /* naive detection of double free or corruption */ 382 #endif 383 384 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 385 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 386 } 387 388 /* Loop over all objects in a slab */ 389 #define for_each_object(__p, __s, __addr, __objects) \ 390 for (__p = fixup_red_left(__s, __addr); \ 391 __p < (__addr) + (__objects) * (__s)->size; \ 392 __p += (__s)->size) 393 394 static inline unsigned int order_objects(unsigned int order, unsigned int size) 395 { 396 return ((unsigned int)PAGE_SIZE << order) / size; 397 } 398 399 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 400 unsigned int size) 401 { 402 struct kmem_cache_order_objects x = { 403 (order << OO_SHIFT) + order_objects(order, size) 404 }; 405 406 return x; 407 } 408 409 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 410 { 411 return x.x >> OO_SHIFT; 412 } 413 414 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 415 { 416 return x.x & OO_MASK; 417 } 418 419 #ifdef CONFIG_SLUB_CPU_PARTIAL 420 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 421 { 422 unsigned int nr_slabs; 423 424 s->cpu_partial = nr_objects; 425 426 /* 427 * We take the number of objects but actually limit the number of 428 * slabs on the per cpu partial list, in order to limit excessive 429 * growth of the list. For simplicity we assume that the slabs will 430 * be half-full. 431 */ 432 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 433 s->cpu_partial_slabs = nr_slabs; 434 } 435 #else 436 static inline void 437 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 438 { 439 } 440 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 441 442 /* 443 * Per slab locking using the pagelock 444 */ 445 static __always_inline void __slab_lock(struct slab *slab) 446 { 447 struct page *page = slab_page(slab); 448 449 VM_BUG_ON_PAGE(PageTail(page), page); 450 bit_spin_lock(PG_locked, &page->flags); 451 } 452 453 static __always_inline void __slab_unlock(struct slab *slab) 454 { 455 struct page *page = slab_page(slab); 456 457 VM_BUG_ON_PAGE(PageTail(page), page); 458 __bit_spin_unlock(PG_locked, &page->flags); 459 } 460 461 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags) 462 { 463 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 464 local_irq_save(*flags); 465 __slab_lock(slab); 466 } 467 468 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags) 469 { 470 __slab_unlock(slab); 471 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 472 local_irq_restore(*flags); 473 } 474 475 /* 476 * Interrupts must be disabled (for the fallback code to work right), typically 477 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different 478 * so we disable interrupts as part of slab_[un]lock(). 479 */ 480 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 481 void *freelist_old, unsigned long counters_old, 482 void *freelist_new, unsigned long counters_new, 483 const char *n) 484 { 485 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 486 lockdep_assert_irqs_disabled(); 487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 488 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 489 if (s->flags & __CMPXCHG_DOUBLE) { 490 if (cmpxchg_double(&slab->freelist, &slab->counters, 491 freelist_old, counters_old, 492 freelist_new, counters_new)) 493 return true; 494 } else 495 #endif 496 { 497 /* init to 0 to prevent spurious warnings */ 498 unsigned long flags = 0; 499 500 slab_lock(slab, &flags); 501 if (slab->freelist == freelist_old && 502 slab->counters == counters_old) { 503 slab->freelist = freelist_new; 504 slab->counters = counters_new; 505 slab_unlock(slab, &flags); 506 return true; 507 } 508 slab_unlock(slab, &flags); 509 } 510 511 cpu_relax(); 512 stat(s, CMPXCHG_DOUBLE_FAIL); 513 514 #ifdef SLUB_DEBUG_CMPXCHG 515 pr_info("%s %s: cmpxchg double redo ", n, s->name); 516 #endif 517 518 return false; 519 } 520 521 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 522 void *freelist_old, unsigned long counters_old, 523 void *freelist_new, unsigned long counters_new, 524 const char *n) 525 { 526 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 527 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 528 if (s->flags & __CMPXCHG_DOUBLE) { 529 if (cmpxchg_double(&slab->freelist, &slab->counters, 530 freelist_old, counters_old, 531 freelist_new, counters_new)) 532 return true; 533 } else 534 #endif 535 { 536 unsigned long flags; 537 538 local_irq_save(flags); 539 __slab_lock(slab); 540 if (slab->freelist == freelist_old && 541 slab->counters == counters_old) { 542 slab->freelist = freelist_new; 543 slab->counters = counters_new; 544 __slab_unlock(slab); 545 local_irq_restore(flags); 546 return true; 547 } 548 __slab_unlock(slab); 549 local_irq_restore(flags); 550 } 551 552 cpu_relax(); 553 stat(s, CMPXCHG_DOUBLE_FAIL); 554 555 #ifdef SLUB_DEBUG_CMPXCHG 556 pr_info("%s %s: cmpxchg double redo ", n, s->name); 557 #endif 558 559 return false; 560 } 561 562 #ifdef CONFIG_SLUB_DEBUG 563 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 564 static DEFINE_RAW_SPINLOCK(object_map_lock); 565 566 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 567 struct slab *slab) 568 { 569 void *addr = slab_address(slab); 570 void *p; 571 572 bitmap_zero(obj_map, slab->objects); 573 574 for (p = slab->freelist; p; p = get_freepointer(s, p)) 575 set_bit(__obj_to_index(s, addr, p), obj_map); 576 } 577 578 #if IS_ENABLED(CONFIG_KUNIT) 579 static bool slab_add_kunit_errors(void) 580 { 581 struct kunit_resource *resource; 582 583 if (likely(!current->kunit_test)) 584 return false; 585 586 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 587 if (!resource) 588 return false; 589 590 (*(int *)resource->data)++; 591 kunit_put_resource(resource); 592 return true; 593 } 594 #else 595 static inline bool slab_add_kunit_errors(void) { return false; } 596 #endif 597 598 /* 599 * Determine a map of objects in use in a slab. 600 * 601 * Node listlock must be held to guarantee that the slab does 602 * not vanish from under us. 603 */ 604 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) 605 __acquires(&object_map_lock) 606 { 607 VM_BUG_ON(!irqs_disabled()); 608 609 raw_spin_lock(&object_map_lock); 610 611 __fill_map(object_map, s, slab); 612 613 return object_map; 614 } 615 616 static void put_map(unsigned long *map) __releases(&object_map_lock) 617 { 618 VM_BUG_ON(map != object_map); 619 raw_spin_unlock(&object_map_lock); 620 } 621 622 static inline unsigned int size_from_object(struct kmem_cache *s) 623 { 624 if (s->flags & SLAB_RED_ZONE) 625 return s->size - s->red_left_pad; 626 627 return s->size; 628 } 629 630 static inline void *restore_red_left(struct kmem_cache *s, void *p) 631 { 632 if (s->flags & SLAB_RED_ZONE) 633 p -= s->red_left_pad; 634 635 return p; 636 } 637 638 /* 639 * Debug settings: 640 */ 641 #if defined(CONFIG_SLUB_DEBUG_ON) 642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 643 #else 644 static slab_flags_t slub_debug; 645 #endif 646 647 static char *slub_debug_string; 648 static int disable_higher_order_debug; 649 650 /* 651 * slub is about to manipulate internal object metadata. This memory lies 652 * outside the range of the allocated object, so accessing it would normally 653 * be reported by kasan as a bounds error. metadata_access_enable() is used 654 * to tell kasan that these accesses are OK. 655 */ 656 static inline void metadata_access_enable(void) 657 { 658 kasan_disable_current(); 659 } 660 661 static inline void metadata_access_disable(void) 662 { 663 kasan_enable_current(); 664 } 665 666 /* 667 * Object debugging 668 */ 669 670 /* Verify that a pointer has an address that is valid within a slab page */ 671 static inline int check_valid_pointer(struct kmem_cache *s, 672 struct slab *slab, void *object) 673 { 674 void *base; 675 676 if (!object) 677 return 1; 678 679 base = slab_address(slab); 680 object = kasan_reset_tag(object); 681 object = restore_red_left(s, object); 682 if (object < base || object >= base + slab->objects * s->size || 683 (object - base) % s->size) { 684 return 0; 685 } 686 687 return 1; 688 } 689 690 static void print_section(char *level, char *text, u8 *addr, 691 unsigned int length) 692 { 693 metadata_access_enable(); 694 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 695 16, 1, kasan_reset_tag((void *)addr), length, 1); 696 metadata_access_disable(); 697 } 698 699 /* 700 * See comment in calculate_sizes(). 701 */ 702 static inline bool freeptr_outside_object(struct kmem_cache *s) 703 { 704 return s->offset >= s->inuse; 705 } 706 707 /* 708 * Return offset of the end of info block which is inuse + free pointer if 709 * not overlapping with object. 710 */ 711 static inline unsigned int get_info_end(struct kmem_cache *s) 712 { 713 if (freeptr_outside_object(s)) 714 return s->inuse + sizeof(void *); 715 else 716 return s->inuse; 717 } 718 719 static struct track *get_track(struct kmem_cache *s, void *object, 720 enum track_item alloc) 721 { 722 struct track *p; 723 724 p = object + get_info_end(s); 725 726 return kasan_reset_tag(p + alloc); 727 } 728 729 #ifdef CONFIG_STACKDEPOT 730 static noinline depot_stack_handle_t set_track_prepare(void) 731 { 732 depot_stack_handle_t handle; 733 unsigned long entries[TRACK_ADDRS_COUNT]; 734 unsigned int nr_entries; 735 736 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 737 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 738 739 return handle; 740 } 741 #else 742 static inline depot_stack_handle_t set_track_prepare(void) 743 { 744 return 0; 745 } 746 #endif 747 748 static void set_track_update(struct kmem_cache *s, void *object, 749 enum track_item alloc, unsigned long addr, 750 depot_stack_handle_t handle) 751 { 752 struct track *p = get_track(s, object, alloc); 753 754 #ifdef CONFIG_STACKDEPOT 755 p->handle = handle; 756 #endif 757 p->addr = addr; 758 p->cpu = smp_processor_id(); 759 p->pid = current->pid; 760 p->when = jiffies; 761 } 762 763 static __always_inline void set_track(struct kmem_cache *s, void *object, 764 enum track_item alloc, unsigned long addr) 765 { 766 depot_stack_handle_t handle = set_track_prepare(); 767 768 set_track_update(s, object, alloc, addr, handle); 769 } 770 771 static void init_tracking(struct kmem_cache *s, void *object) 772 { 773 struct track *p; 774 775 if (!(s->flags & SLAB_STORE_USER)) 776 return; 777 778 p = get_track(s, object, TRACK_ALLOC); 779 memset(p, 0, 2*sizeof(struct track)); 780 } 781 782 static void print_track(const char *s, struct track *t, unsigned long pr_time) 783 { 784 depot_stack_handle_t handle __maybe_unused; 785 786 if (!t->addr) 787 return; 788 789 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 790 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 791 #ifdef CONFIG_STACKDEPOT 792 handle = READ_ONCE(t->handle); 793 if (handle) 794 stack_depot_print(handle); 795 else 796 pr_err("object allocation/free stack trace missing\n"); 797 #endif 798 } 799 800 void print_tracking(struct kmem_cache *s, void *object) 801 { 802 unsigned long pr_time = jiffies; 803 if (!(s->flags & SLAB_STORE_USER)) 804 return; 805 806 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 807 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 808 } 809 810 static void print_slab_info(const struct slab *slab) 811 { 812 struct folio *folio = (struct folio *)slab_folio(slab); 813 814 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 815 slab, slab->objects, slab->inuse, slab->freelist, 816 folio_flags(folio, 0)); 817 } 818 819 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 820 { 821 struct va_format vaf; 822 va_list args; 823 824 va_start(args, fmt); 825 vaf.fmt = fmt; 826 vaf.va = &args; 827 pr_err("=============================================================================\n"); 828 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 829 pr_err("-----------------------------------------------------------------------------\n\n"); 830 va_end(args); 831 } 832 833 __printf(2, 3) 834 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 835 { 836 struct va_format vaf; 837 va_list args; 838 839 if (slab_add_kunit_errors()) 840 return; 841 842 va_start(args, fmt); 843 vaf.fmt = fmt; 844 vaf.va = &args; 845 pr_err("FIX %s: %pV\n", s->name, &vaf); 846 va_end(args); 847 } 848 849 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 850 { 851 unsigned int off; /* Offset of last byte */ 852 u8 *addr = slab_address(slab); 853 854 print_tracking(s, p); 855 856 print_slab_info(slab); 857 858 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 859 p, p - addr, get_freepointer(s, p)); 860 861 if (s->flags & SLAB_RED_ZONE) 862 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 863 s->red_left_pad); 864 else if (p > addr + 16) 865 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 866 867 print_section(KERN_ERR, "Object ", p, 868 min_t(unsigned int, s->object_size, PAGE_SIZE)); 869 if (s->flags & SLAB_RED_ZONE) 870 print_section(KERN_ERR, "Redzone ", p + s->object_size, 871 s->inuse - s->object_size); 872 873 off = get_info_end(s); 874 875 if (s->flags & SLAB_STORE_USER) 876 off += 2 * sizeof(struct track); 877 878 off += kasan_metadata_size(s); 879 880 if (off != size_from_object(s)) 881 /* Beginning of the filler is the free pointer */ 882 print_section(KERN_ERR, "Padding ", p + off, 883 size_from_object(s) - off); 884 885 dump_stack(); 886 } 887 888 static void object_err(struct kmem_cache *s, struct slab *slab, 889 u8 *object, char *reason) 890 { 891 if (slab_add_kunit_errors()) 892 return; 893 894 slab_bug(s, "%s", reason); 895 print_trailer(s, slab, object); 896 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 897 } 898 899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 900 void **freelist, void *nextfree) 901 { 902 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 903 !check_valid_pointer(s, slab, nextfree) && freelist) { 904 object_err(s, slab, *freelist, "Freechain corrupt"); 905 *freelist = NULL; 906 slab_fix(s, "Isolate corrupted freechain"); 907 return true; 908 } 909 910 return false; 911 } 912 913 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 914 const char *fmt, ...) 915 { 916 va_list args; 917 char buf[100]; 918 919 if (slab_add_kunit_errors()) 920 return; 921 922 va_start(args, fmt); 923 vsnprintf(buf, sizeof(buf), fmt, args); 924 va_end(args); 925 slab_bug(s, "%s", buf); 926 print_slab_info(slab); 927 dump_stack(); 928 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 929 } 930 931 static void init_object(struct kmem_cache *s, void *object, u8 val) 932 { 933 u8 *p = kasan_reset_tag(object); 934 935 if (s->flags & SLAB_RED_ZONE) 936 memset(p - s->red_left_pad, val, s->red_left_pad); 937 938 if (s->flags & __OBJECT_POISON) { 939 memset(p, POISON_FREE, s->object_size - 1); 940 p[s->object_size - 1] = POISON_END; 941 } 942 943 if (s->flags & SLAB_RED_ZONE) 944 memset(p + s->object_size, val, s->inuse - s->object_size); 945 } 946 947 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 948 void *from, void *to) 949 { 950 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 951 memset(from, data, to - from); 952 } 953 954 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 955 u8 *object, char *what, 956 u8 *start, unsigned int value, unsigned int bytes) 957 { 958 u8 *fault; 959 u8 *end; 960 u8 *addr = slab_address(slab); 961 962 metadata_access_enable(); 963 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 964 metadata_access_disable(); 965 if (!fault) 966 return 1; 967 968 end = start + bytes; 969 while (end > fault && end[-1] == value) 970 end--; 971 972 if (slab_add_kunit_errors()) 973 goto skip_bug_print; 974 975 slab_bug(s, "%s overwritten", what); 976 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 977 fault, end - 1, fault - addr, 978 fault[0], value); 979 print_trailer(s, slab, object); 980 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 981 982 skip_bug_print: 983 restore_bytes(s, what, value, fault, end); 984 return 0; 985 } 986 987 /* 988 * Object layout: 989 * 990 * object address 991 * Bytes of the object to be managed. 992 * If the freepointer may overlay the object then the free 993 * pointer is at the middle of the object. 994 * 995 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 996 * 0xa5 (POISON_END) 997 * 998 * object + s->object_size 999 * Padding to reach word boundary. This is also used for Redzoning. 1000 * Padding is extended by another word if Redzoning is enabled and 1001 * object_size == inuse. 1002 * 1003 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1004 * 0xcc (RED_ACTIVE) for objects in use. 1005 * 1006 * object + s->inuse 1007 * Meta data starts here. 1008 * 1009 * A. Free pointer (if we cannot overwrite object on free) 1010 * B. Tracking data for SLAB_STORE_USER 1011 * C. Padding to reach required alignment boundary or at minimum 1012 * one word if debugging is on to be able to detect writes 1013 * before the word boundary. 1014 * 1015 * Padding is done using 0x5a (POISON_INUSE) 1016 * 1017 * object + s->size 1018 * Nothing is used beyond s->size. 1019 * 1020 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1021 * ignored. And therefore no slab options that rely on these boundaries 1022 * may be used with merged slabcaches. 1023 */ 1024 1025 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1026 { 1027 unsigned long off = get_info_end(s); /* The end of info */ 1028 1029 if (s->flags & SLAB_STORE_USER) 1030 /* We also have user information there */ 1031 off += 2 * sizeof(struct track); 1032 1033 off += kasan_metadata_size(s); 1034 1035 if (size_from_object(s) == off) 1036 return 1; 1037 1038 return check_bytes_and_report(s, slab, p, "Object padding", 1039 p + off, POISON_INUSE, size_from_object(s) - off); 1040 } 1041 1042 /* Check the pad bytes at the end of a slab page */ 1043 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1044 { 1045 u8 *start; 1046 u8 *fault; 1047 u8 *end; 1048 u8 *pad; 1049 int length; 1050 int remainder; 1051 1052 if (!(s->flags & SLAB_POISON)) 1053 return; 1054 1055 start = slab_address(slab); 1056 length = slab_size(slab); 1057 end = start + length; 1058 remainder = length % s->size; 1059 if (!remainder) 1060 return; 1061 1062 pad = end - remainder; 1063 metadata_access_enable(); 1064 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1065 metadata_access_disable(); 1066 if (!fault) 1067 return; 1068 while (end > fault && end[-1] == POISON_INUSE) 1069 end--; 1070 1071 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1072 fault, end - 1, fault - start); 1073 print_section(KERN_ERR, "Padding ", pad, remainder); 1074 1075 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1076 } 1077 1078 static int check_object(struct kmem_cache *s, struct slab *slab, 1079 void *object, u8 val) 1080 { 1081 u8 *p = object; 1082 u8 *endobject = object + s->object_size; 1083 1084 if (s->flags & SLAB_RED_ZONE) { 1085 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1086 object - s->red_left_pad, val, s->red_left_pad)) 1087 return 0; 1088 1089 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1090 endobject, val, s->inuse - s->object_size)) 1091 return 0; 1092 } else { 1093 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1094 check_bytes_and_report(s, slab, p, "Alignment padding", 1095 endobject, POISON_INUSE, 1096 s->inuse - s->object_size); 1097 } 1098 } 1099 1100 if (s->flags & SLAB_POISON) { 1101 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1102 (!check_bytes_and_report(s, slab, p, "Poison", p, 1103 POISON_FREE, s->object_size - 1) || 1104 !check_bytes_and_report(s, slab, p, "End Poison", 1105 p + s->object_size - 1, POISON_END, 1))) 1106 return 0; 1107 /* 1108 * check_pad_bytes cleans up on its own. 1109 */ 1110 check_pad_bytes(s, slab, p); 1111 } 1112 1113 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1114 /* 1115 * Object and freepointer overlap. Cannot check 1116 * freepointer while object is allocated. 1117 */ 1118 return 1; 1119 1120 /* Check free pointer validity */ 1121 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1122 object_err(s, slab, p, "Freepointer corrupt"); 1123 /* 1124 * No choice but to zap it and thus lose the remainder 1125 * of the free objects in this slab. May cause 1126 * another error because the object count is now wrong. 1127 */ 1128 set_freepointer(s, p, NULL); 1129 return 0; 1130 } 1131 return 1; 1132 } 1133 1134 static int check_slab(struct kmem_cache *s, struct slab *slab) 1135 { 1136 int maxobj; 1137 1138 if (!folio_test_slab(slab_folio(slab))) { 1139 slab_err(s, slab, "Not a valid slab page"); 1140 return 0; 1141 } 1142 1143 maxobj = order_objects(slab_order(slab), s->size); 1144 if (slab->objects > maxobj) { 1145 slab_err(s, slab, "objects %u > max %u", 1146 slab->objects, maxobj); 1147 return 0; 1148 } 1149 if (slab->inuse > slab->objects) { 1150 slab_err(s, slab, "inuse %u > max %u", 1151 slab->inuse, slab->objects); 1152 return 0; 1153 } 1154 /* Slab_pad_check fixes things up after itself */ 1155 slab_pad_check(s, slab); 1156 return 1; 1157 } 1158 1159 /* 1160 * Determine if a certain object in a slab is on the freelist. Must hold the 1161 * slab lock to guarantee that the chains are in a consistent state. 1162 */ 1163 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1164 { 1165 int nr = 0; 1166 void *fp; 1167 void *object = NULL; 1168 int max_objects; 1169 1170 fp = slab->freelist; 1171 while (fp && nr <= slab->objects) { 1172 if (fp == search) 1173 return 1; 1174 if (!check_valid_pointer(s, slab, fp)) { 1175 if (object) { 1176 object_err(s, slab, object, 1177 "Freechain corrupt"); 1178 set_freepointer(s, object, NULL); 1179 } else { 1180 slab_err(s, slab, "Freepointer corrupt"); 1181 slab->freelist = NULL; 1182 slab->inuse = slab->objects; 1183 slab_fix(s, "Freelist cleared"); 1184 return 0; 1185 } 1186 break; 1187 } 1188 object = fp; 1189 fp = get_freepointer(s, object); 1190 nr++; 1191 } 1192 1193 max_objects = order_objects(slab_order(slab), s->size); 1194 if (max_objects > MAX_OBJS_PER_PAGE) 1195 max_objects = MAX_OBJS_PER_PAGE; 1196 1197 if (slab->objects != max_objects) { 1198 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1199 slab->objects, max_objects); 1200 slab->objects = max_objects; 1201 slab_fix(s, "Number of objects adjusted"); 1202 } 1203 if (slab->inuse != slab->objects - nr) { 1204 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1205 slab->inuse, slab->objects - nr); 1206 slab->inuse = slab->objects - nr; 1207 slab_fix(s, "Object count adjusted"); 1208 } 1209 return search == NULL; 1210 } 1211 1212 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1213 int alloc) 1214 { 1215 if (s->flags & SLAB_TRACE) { 1216 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1217 s->name, 1218 alloc ? "alloc" : "free", 1219 object, slab->inuse, 1220 slab->freelist); 1221 1222 if (!alloc) 1223 print_section(KERN_INFO, "Object ", (void *)object, 1224 s->object_size); 1225 1226 dump_stack(); 1227 } 1228 } 1229 1230 /* 1231 * Tracking of fully allocated slabs for debugging purposes. 1232 */ 1233 static void add_full(struct kmem_cache *s, 1234 struct kmem_cache_node *n, struct slab *slab) 1235 { 1236 if (!(s->flags & SLAB_STORE_USER)) 1237 return; 1238 1239 lockdep_assert_held(&n->list_lock); 1240 list_add(&slab->slab_list, &n->full); 1241 } 1242 1243 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1244 { 1245 if (!(s->flags & SLAB_STORE_USER)) 1246 return; 1247 1248 lockdep_assert_held(&n->list_lock); 1249 list_del(&slab->slab_list); 1250 } 1251 1252 /* Tracking of the number of slabs for debugging purposes */ 1253 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1254 { 1255 struct kmem_cache_node *n = get_node(s, node); 1256 1257 return atomic_long_read(&n->nr_slabs); 1258 } 1259 1260 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1261 { 1262 return atomic_long_read(&n->nr_slabs); 1263 } 1264 1265 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1266 { 1267 struct kmem_cache_node *n = get_node(s, node); 1268 1269 /* 1270 * May be called early in order to allocate a slab for the 1271 * kmem_cache_node structure. Solve the chicken-egg 1272 * dilemma by deferring the increment of the count during 1273 * bootstrap (see early_kmem_cache_node_alloc). 1274 */ 1275 if (likely(n)) { 1276 atomic_long_inc(&n->nr_slabs); 1277 atomic_long_add(objects, &n->total_objects); 1278 } 1279 } 1280 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1281 { 1282 struct kmem_cache_node *n = get_node(s, node); 1283 1284 atomic_long_dec(&n->nr_slabs); 1285 atomic_long_sub(objects, &n->total_objects); 1286 } 1287 1288 /* Object debug checks for alloc/free paths */ 1289 static void setup_object_debug(struct kmem_cache *s, void *object) 1290 { 1291 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1292 return; 1293 1294 init_object(s, object, SLUB_RED_INACTIVE); 1295 init_tracking(s, object); 1296 } 1297 1298 static 1299 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1300 { 1301 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1302 return; 1303 1304 metadata_access_enable(); 1305 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1306 metadata_access_disable(); 1307 } 1308 1309 static inline int alloc_consistency_checks(struct kmem_cache *s, 1310 struct slab *slab, void *object) 1311 { 1312 if (!check_slab(s, slab)) 1313 return 0; 1314 1315 if (!check_valid_pointer(s, slab, object)) { 1316 object_err(s, slab, object, "Freelist Pointer check fails"); 1317 return 0; 1318 } 1319 1320 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1321 return 0; 1322 1323 return 1; 1324 } 1325 1326 static noinline int alloc_debug_processing(struct kmem_cache *s, 1327 struct slab *slab, 1328 void *object, unsigned long addr) 1329 { 1330 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1331 if (!alloc_consistency_checks(s, slab, object)) 1332 goto bad; 1333 } 1334 1335 /* Success perform special debug activities for allocs */ 1336 if (s->flags & SLAB_STORE_USER) 1337 set_track(s, object, TRACK_ALLOC, addr); 1338 trace(s, slab, object, 1); 1339 init_object(s, object, SLUB_RED_ACTIVE); 1340 return 1; 1341 1342 bad: 1343 if (folio_test_slab(slab_folio(slab))) { 1344 /* 1345 * If this is a slab page then lets do the best we can 1346 * to avoid issues in the future. Marking all objects 1347 * as used avoids touching the remaining objects. 1348 */ 1349 slab_fix(s, "Marking all objects used"); 1350 slab->inuse = slab->objects; 1351 slab->freelist = NULL; 1352 } 1353 return 0; 1354 } 1355 1356 static inline int free_consistency_checks(struct kmem_cache *s, 1357 struct slab *slab, void *object, unsigned long addr) 1358 { 1359 if (!check_valid_pointer(s, slab, object)) { 1360 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1361 return 0; 1362 } 1363 1364 if (on_freelist(s, slab, object)) { 1365 object_err(s, slab, object, "Object already free"); 1366 return 0; 1367 } 1368 1369 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1370 return 0; 1371 1372 if (unlikely(s != slab->slab_cache)) { 1373 if (!folio_test_slab(slab_folio(slab))) { 1374 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1375 object); 1376 } else if (!slab->slab_cache) { 1377 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1378 object); 1379 dump_stack(); 1380 } else 1381 object_err(s, slab, object, 1382 "page slab pointer corrupt."); 1383 return 0; 1384 } 1385 return 1; 1386 } 1387 1388 /* Supports checking bulk free of a constructed freelist */ 1389 static noinline int free_debug_processing( 1390 struct kmem_cache *s, struct slab *slab, 1391 void *head, void *tail, int bulk_cnt, 1392 unsigned long addr) 1393 { 1394 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 1395 void *object = head; 1396 int cnt = 0; 1397 unsigned long flags, flags2; 1398 int ret = 0; 1399 depot_stack_handle_t handle = 0; 1400 1401 if (s->flags & SLAB_STORE_USER) 1402 handle = set_track_prepare(); 1403 1404 spin_lock_irqsave(&n->list_lock, flags); 1405 slab_lock(slab, &flags2); 1406 1407 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1408 if (!check_slab(s, slab)) 1409 goto out; 1410 } 1411 1412 next_object: 1413 cnt++; 1414 1415 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1416 if (!free_consistency_checks(s, slab, object, addr)) 1417 goto out; 1418 } 1419 1420 if (s->flags & SLAB_STORE_USER) 1421 set_track_update(s, object, TRACK_FREE, addr, handle); 1422 trace(s, slab, object, 0); 1423 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1424 init_object(s, object, SLUB_RED_INACTIVE); 1425 1426 /* Reached end of constructed freelist yet? */ 1427 if (object != tail) { 1428 object = get_freepointer(s, object); 1429 goto next_object; 1430 } 1431 ret = 1; 1432 1433 out: 1434 if (cnt != bulk_cnt) 1435 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n", 1436 bulk_cnt, cnt); 1437 1438 slab_unlock(slab, &flags2); 1439 spin_unlock_irqrestore(&n->list_lock, flags); 1440 if (!ret) 1441 slab_fix(s, "Object at 0x%p not freed", object); 1442 return ret; 1443 } 1444 1445 /* 1446 * Parse a block of slub_debug options. Blocks are delimited by ';' 1447 * 1448 * @str: start of block 1449 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1450 * @slabs: return start of list of slabs, or NULL when there's no list 1451 * @init: assume this is initial parsing and not per-kmem-create parsing 1452 * 1453 * returns the start of next block if there's any, or NULL 1454 */ 1455 static char * 1456 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1457 { 1458 bool higher_order_disable = false; 1459 1460 /* Skip any completely empty blocks */ 1461 while (*str && *str == ';') 1462 str++; 1463 1464 if (*str == ',') { 1465 /* 1466 * No options but restriction on slabs. This means full 1467 * debugging for slabs matching a pattern. 1468 */ 1469 *flags = DEBUG_DEFAULT_FLAGS; 1470 goto check_slabs; 1471 } 1472 *flags = 0; 1473 1474 /* Determine which debug features should be switched on */ 1475 for (; *str && *str != ',' && *str != ';'; str++) { 1476 switch (tolower(*str)) { 1477 case '-': 1478 *flags = 0; 1479 break; 1480 case 'f': 1481 *flags |= SLAB_CONSISTENCY_CHECKS; 1482 break; 1483 case 'z': 1484 *flags |= SLAB_RED_ZONE; 1485 break; 1486 case 'p': 1487 *flags |= SLAB_POISON; 1488 break; 1489 case 'u': 1490 *flags |= SLAB_STORE_USER; 1491 break; 1492 case 't': 1493 *flags |= SLAB_TRACE; 1494 break; 1495 case 'a': 1496 *flags |= SLAB_FAILSLAB; 1497 break; 1498 case 'o': 1499 /* 1500 * Avoid enabling debugging on caches if its minimum 1501 * order would increase as a result. 1502 */ 1503 higher_order_disable = true; 1504 break; 1505 default: 1506 if (init) 1507 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1508 } 1509 } 1510 check_slabs: 1511 if (*str == ',') 1512 *slabs = ++str; 1513 else 1514 *slabs = NULL; 1515 1516 /* Skip over the slab list */ 1517 while (*str && *str != ';') 1518 str++; 1519 1520 /* Skip any completely empty blocks */ 1521 while (*str && *str == ';') 1522 str++; 1523 1524 if (init && higher_order_disable) 1525 disable_higher_order_debug = 1; 1526 1527 if (*str) 1528 return str; 1529 else 1530 return NULL; 1531 } 1532 1533 static int __init setup_slub_debug(char *str) 1534 { 1535 slab_flags_t flags; 1536 slab_flags_t global_flags; 1537 char *saved_str; 1538 char *slab_list; 1539 bool global_slub_debug_changed = false; 1540 bool slab_list_specified = false; 1541 1542 global_flags = DEBUG_DEFAULT_FLAGS; 1543 if (*str++ != '=' || !*str) 1544 /* 1545 * No options specified. Switch on full debugging. 1546 */ 1547 goto out; 1548 1549 saved_str = str; 1550 while (str) { 1551 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1552 1553 if (!slab_list) { 1554 global_flags = flags; 1555 global_slub_debug_changed = true; 1556 } else { 1557 slab_list_specified = true; 1558 if (flags & SLAB_STORE_USER) 1559 stack_depot_want_early_init(); 1560 } 1561 } 1562 1563 /* 1564 * For backwards compatibility, a single list of flags with list of 1565 * slabs means debugging is only changed for those slabs, so the global 1566 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1567 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1568 * long as there is no option specifying flags without a slab list. 1569 */ 1570 if (slab_list_specified) { 1571 if (!global_slub_debug_changed) 1572 global_flags = slub_debug; 1573 slub_debug_string = saved_str; 1574 } 1575 out: 1576 slub_debug = global_flags; 1577 if (slub_debug & SLAB_STORE_USER) 1578 stack_depot_want_early_init(); 1579 if (slub_debug != 0 || slub_debug_string) 1580 static_branch_enable(&slub_debug_enabled); 1581 else 1582 static_branch_disable(&slub_debug_enabled); 1583 if ((static_branch_unlikely(&init_on_alloc) || 1584 static_branch_unlikely(&init_on_free)) && 1585 (slub_debug & SLAB_POISON)) 1586 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1587 return 1; 1588 } 1589 1590 __setup("slub_debug", setup_slub_debug); 1591 1592 /* 1593 * kmem_cache_flags - apply debugging options to the cache 1594 * @object_size: the size of an object without meta data 1595 * @flags: flags to set 1596 * @name: name of the cache 1597 * 1598 * Debug option(s) are applied to @flags. In addition to the debug 1599 * option(s), if a slab name (or multiple) is specified i.e. 1600 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1601 * then only the select slabs will receive the debug option(s). 1602 */ 1603 slab_flags_t kmem_cache_flags(unsigned int object_size, 1604 slab_flags_t flags, const char *name) 1605 { 1606 char *iter; 1607 size_t len; 1608 char *next_block; 1609 slab_flags_t block_flags; 1610 slab_flags_t slub_debug_local = slub_debug; 1611 1612 if (flags & SLAB_NO_USER_FLAGS) 1613 return flags; 1614 1615 /* 1616 * If the slab cache is for debugging (e.g. kmemleak) then 1617 * don't store user (stack trace) information by default, 1618 * but let the user enable it via the command line below. 1619 */ 1620 if (flags & SLAB_NOLEAKTRACE) 1621 slub_debug_local &= ~SLAB_STORE_USER; 1622 1623 len = strlen(name); 1624 next_block = slub_debug_string; 1625 /* Go through all blocks of debug options, see if any matches our slab's name */ 1626 while (next_block) { 1627 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1628 if (!iter) 1629 continue; 1630 /* Found a block that has a slab list, search it */ 1631 while (*iter) { 1632 char *end, *glob; 1633 size_t cmplen; 1634 1635 end = strchrnul(iter, ','); 1636 if (next_block && next_block < end) 1637 end = next_block - 1; 1638 1639 glob = strnchr(iter, end - iter, '*'); 1640 if (glob) 1641 cmplen = glob - iter; 1642 else 1643 cmplen = max_t(size_t, len, (end - iter)); 1644 1645 if (!strncmp(name, iter, cmplen)) { 1646 flags |= block_flags; 1647 return flags; 1648 } 1649 1650 if (!*end || *end == ';') 1651 break; 1652 iter = end + 1; 1653 } 1654 } 1655 1656 return flags | slub_debug_local; 1657 } 1658 #else /* !CONFIG_SLUB_DEBUG */ 1659 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1660 static inline 1661 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1662 1663 static inline int alloc_debug_processing(struct kmem_cache *s, 1664 struct slab *slab, void *object, unsigned long addr) { return 0; } 1665 1666 static inline int free_debug_processing( 1667 struct kmem_cache *s, struct slab *slab, 1668 void *head, void *tail, int bulk_cnt, 1669 unsigned long addr) { return 0; } 1670 1671 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1672 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1673 void *object, u8 val) { return 1; } 1674 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1675 struct slab *slab) {} 1676 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1677 struct slab *slab) {} 1678 slab_flags_t kmem_cache_flags(unsigned int object_size, 1679 slab_flags_t flags, const char *name) 1680 { 1681 return flags; 1682 } 1683 #define slub_debug 0 1684 1685 #define disable_higher_order_debug 0 1686 1687 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1688 { return 0; } 1689 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1690 { return 0; } 1691 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1692 int objects) {} 1693 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1694 int objects) {} 1695 1696 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1697 void **freelist, void *nextfree) 1698 { 1699 return false; 1700 } 1701 #endif /* CONFIG_SLUB_DEBUG */ 1702 1703 /* 1704 * Hooks for other subsystems that check memory allocations. In a typical 1705 * production configuration these hooks all should produce no code at all. 1706 */ 1707 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1708 { 1709 ptr = kasan_kmalloc_large(ptr, size, flags); 1710 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1711 kmemleak_alloc(ptr, size, 1, flags); 1712 return ptr; 1713 } 1714 1715 static __always_inline void kfree_hook(void *x) 1716 { 1717 kmemleak_free(x); 1718 kasan_kfree_large(x); 1719 } 1720 1721 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1722 void *x, bool init) 1723 { 1724 kmemleak_free_recursive(x, s->flags); 1725 1726 debug_check_no_locks_freed(x, s->object_size); 1727 1728 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1729 debug_check_no_obj_freed(x, s->object_size); 1730 1731 /* Use KCSAN to help debug racy use-after-free. */ 1732 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1733 __kcsan_check_access(x, s->object_size, 1734 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1735 1736 /* 1737 * As memory initialization might be integrated into KASAN, 1738 * kasan_slab_free and initialization memset's must be 1739 * kept together to avoid discrepancies in behavior. 1740 * 1741 * The initialization memset's clear the object and the metadata, 1742 * but don't touch the SLAB redzone. 1743 */ 1744 if (init) { 1745 int rsize; 1746 1747 if (!kasan_has_integrated_init()) 1748 memset(kasan_reset_tag(x), 0, s->object_size); 1749 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1750 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1751 s->size - s->inuse - rsize); 1752 } 1753 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1754 return kasan_slab_free(s, x, init); 1755 } 1756 1757 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1758 void **head, void **tail, 1759 int *cnt) 1760 { 1761 1762 void *object; 1763 void *next = *head; 1764 void *old_tail = *tail ? *tail : *head; 1765 1766 if (is_kfence_address(next)) { 1767 slab_free_hook(s, next, false); 1768 return true; 1769 } 1770 1771 /* Head and tail of the reconstructed freelist */ 1772 *head = NULL; 1773 *tail = NULL; 1774 1775 do { 1776 object = next; 1777 next = get_freepointer(s, object); 1778 1779 /* If object's reuse doesn't have to be delayed */ 1780 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1781 /* Move object to the new freelist */ 1782 set_freepointer(s, object, *head); 1783 *head = object; 1784 if (!*tail) 1785 *tail = object; 1786 } else { 1787 /* 1788 * Adjust the reconstructed freelist depth 1789 * accordingly if object's reuse is delayed. 1790 */ 1791 --(*cnt); 1792 } 1793 } while (object != old_tail); 1794 1795 if (*head == *tail) 1796 *tail = NULL; 1797 1798 return *head != NULL; 1799 } 1800 1801 static void *setup_object(struct kmem_cache *s, void *object) 1802 { 1803 setup_object_debug(s, object); 1804 object = kasan_init_slab_obj(s, object); 1805 if (unlikely(s->ctor)) { 1806 kasan_unpoison_object_data(s, object); 1807 s->ctor(object); 1808 kasan_poison_object_data(s, object); 1809 } 1810 return object; 1811 } 1812 1813 /* 1814 * Slab allocation and freeing 1815 */ 1816 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1817 struct kmem_cache_order_objects oo) 1818 { 1819 struct folio *folio; 1820 struct slab *slab; 1821 unsigned int order = oo_order(oo); 1822 1823 if (node == NUMA_NO_NODE) 1824 folio = (struct folio *)alloc_pages(flags, order); 1825 else 1826 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1827 1828 if (!folio) 1829 return NULL; 1830 1831 slab = folio_slab(folio); 1832 __folio_set_slab(folio); 1833 if (page_is_pfmemalloc(folio_page(folio, 0))) 1834 slab_set_pfmemalloc(slab); 1835 1836 return slab; 1837 } 1838 1839 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1840 /* Pre-initialize the random sequence cache */ 1841 static int init_cache_random_seq(struct kmem_cache *s) 1842 { 1843 unsigned int count = oo_objects(s->oo); 1844 int err; 1845 1846 /* Bailout if already initialised */ 1847 if (s->random_seq) 1848 return 0; 1849 1850 err = cache_random_seq_create(s, count, GFP_KERNEL); 1851 if (err) { 1852 pr_err("SLUB: Unable to initialize free list for %s\n", 1853 s->name); 1854 return err; 1855 } 1856 1857 /* Transform to an offset on the set of pages */ 1858 if (s->random_seq) { 1859 unsigned int i; 1860 1861 for (i = 0; i < count; i++) 1862 s->random_seq[i] *= s->size; 1863 } 1864 return 0; 1865 } 1866 1867 /* Initialize each random sequence freelist per cache */ 1868 static void __init init_freelist_randomization(void) 1869 { 1870 struct kmem_cache *s; 1871 1872 mutex_lock(&slab_mutex); 1873 1874 list_for_each_entry(s, &slab_caches, list) 1875 init_cache_random_seq(s); 1876 1877 mutex_unlock(&slab_mutex); 1878 } 1879 1880 /* Get the next entry on the pre-computed freelist randomized */ 1881 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1882 unsigned long *pos, void *start, 1883 unsigned long page_limit, 1884 unsigned long freelist_count) 1885 { 1886 unsigned int idx; 1887 1888 /* 1889 * If the target page allocation failed, the number of objects on the 1890 * page might be smaller than the usual size defined by the cache. 1891 */ 1892 do { 1893 idx = s->random_seq[*pos]; 1894 *pos += 1; 1895 if (*pos >= freelist_count) 1896 *pos = 0; 1897 } while (unlikely(idx >= page_limit)); 1898 1899 return (char *)start + idx; 1900 } 1901 1902 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1903 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1904 { 1905 void *start; 1906 void *cur; 1907 void *next; 1908 unsigned long idx, pos, page_limit, freelist_count; 1909 1910 if (slab->objects < 2 || !s->random_seq) 1911 return false; 1912 1913 freelist_count = oo_objects(s->oo); 1914 pos = get_random_int() % freelist_count; 1915 1916 page_limit = slab->objects * s->size; 1917 start = fixup_red_left(s, slab_address(slab)); 1918 1919 /* First entry is used as the base of the freelist */ 1920 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1921 freelist_count); 1922 cur = setup_object(s, cur); 1923 slab->freelist = cur; 1924 1925 for (idx = 1; idx < slab->objects; idx++) { 1926 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1927 freelist_count); 1928 next = setup_object(s, next); 1929 set_freepointer(s, cur, next); 1930 cur = next; 1931 } 1932 set_freepointer(s, cur, NULL); 1933 1934 return true; 1935 } 1936 #else 1937 static inline int init_cache_random_seq(struct kmem_cache *s) 1938 { 1939 return 0; 1940 } 1941 static inline void init_freelist_randomization(void) { } 1942 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1943 { 1944 return false; 1945 } 1946 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1947 1948 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1949 { 1950 struct slab *slab; 1951 struct kmem_cache_order_objects oo = s->oo; 1952 gfp_t alloc_gfp; 1953 void *start, *p, *next; 1954 int idx; 1955 bool shuffle; 1956 1957 flags &= gfp_allowed_mask; 1958 1959 flags |= s->allocflags; 1960 1961 /* 1962 * Let the initial higher-order allocation fail under memory pressure 1963 * so we fall-back to the minimum order allocation. 1964 */ 1965 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1966 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1967 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 1968 1969 slab = alloc_slab_page(alloc_gfp, node, oo); 1970 if (unlikely(!slab)) { 1971 oo = s->min; 1972 alloc_gfp = flags; 1973 /* 1974 * Allocation may have failed due to fragmentation. 1975 * Try a lower order alloc if possible 1976 */ 1977 slab = alloc_slab_page(alloc_gfp, node, oo); 1978 if (unlikely(!slab)) 1979 goto out; 1980 stat(s, ORDER_FALLBACK); 1981 } 1982 1983 slab->objects = oo_objects(oo); 1984 1985 account_slab(slab, oo_order(oo), s, flags); 1986 1987 slab->slab_cache = s; 1988 1989 kasan_poison_slab(slab); 1990 1991 start = slab_address(slab); 1992 1993 setup_slab_debug(s, slab, start); 1994 1995 shuffle = shuffle_freelist(s, slab); 1996 1997 if (!shuffle) { 1998 start = fixup_red_left(s, start); 1999 start = setup_object(s, start); 2000 slab->freelist = start; 2001 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2002 next = p + s->size; 2003 next = setup_object(s, next); 2004 set_freepointer(s, p, next); 2005 p = next; 2006 } 2007 set_freepointer(s, p, NULL); 2008 } 2009 2010 slab->inuse = slab->objects; 2011 slab->frozen = 1; 2012 2013 out: 2014 if (!slab) 2015 return NULL; 2016 2017 inc_slabs_node(s, slab_nid(slab), slab->objects); 2018 2019 return slab; 2020 } 2021 2022 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2023 { 2024 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2025 flags = kmalloc_fix_flags(flags); 2026 2027 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2028 2029 return allocate_slab(s, 2030 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2031 } 2032 2033 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2034 { 2035 struct folio *folio = slab_folio(slab); 2036 int order = folio_order(folio); 2037 int pages = 1 << order; 2038 2039 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2040 void *p; 2041 2042 slab_pad_check(s, slab); 2043 for_each_object(p, s, slab_address(slab), slab->objects) 2044 check_object(s, slab, p, SLUB_RED_INACTIVE); 2045 } 2046 2047 __slab_clear_pfmemalloc(slab); 2048 __folio_clear_slab(folio); 2049 folio->mapping = NULL; 2050 if (current->reclaim_state) 2051 current->reclaim_state->reclaimed_slab += pages; 2052 unaccount_slab(slab, order, s); 2053 __free_pages(folio_page(folio, 0), order); 2054 } 2055 2056 static void rcu_free_slab(struct rcu_head *h) 2057 { 2058 struct slab *slab = container_of(h, struct slab, rcu_head); 2059 2060 __free_slab(slab->slab_cache, slab); 2061 } 2062 2063 static void free_slab(struct kmem_cache *s, struct slab *slab) 2064 { 2065 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 2066 call_rcu(&slab->rcu_head, rcu_free_slab); 2067 } else 2068 __free_slab(s, slab); 2069 } 2070 2071 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2072 { 2073 dec_slabs_node(s, slab_nid(slab), slab->objects); 2074 free_slab(s, slab); 2075 } 2076 2077 /* 2078 * Management of partially allocated slabs. 2079 */ 2080 static inline void 2081 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2082 { 2083 n->nr_partial++; 2084 if (tail == DEACTIVATE_TO_TAIL) 2085 list_add_tail(&slab->slab_list, &n->partial); 2086 else 2087 list_add(&slab->slab_list, &n->partial); 2088 } 2089 2090 static inline void add_partial(struct kmem_cache_node *n, 2091 struct slab *slab, int tail) 2092 { 2093 lockdep_assert_held(&n->list_lock); 2094 __add_partial(n, slab, tail); 2095 } 2096 2097 static inline void remove_partial(struct kmem_cache_node *n, 2098 struct slab *slab) 2099 { 2100 lockdep_assert_held(&n->list_lock); 2101 list_del(&slab->slab_list); 2102 n->nr_partial--; 2103 } 2104 2105 /* 2106 * Remove slab from the partial list, freeze it and 2107 * return the pointer to the freelist. 2108 * 2109 * Returns a list of objects or NULL if it fails. 2110 */ 2111 static inline void *acquire_slab(struct kmem_cache *s, 2112 struct kmem_cache_node *n, struct slab *slab, 2113 int mode) 2114 { 2115 void *freelist; 2116 unsigned long counters; 2117 struct slab new; 2118 2119 lockdep_assert_held(&n->list_lock); 2120 2121 /* 2122 * Zap the freelist and set the frozen bit. 2123 * The old freelist is the list of objects for the 2124 * per cpu allocation list. 2125 */ 2126 freelist = slab->freelist; 2127 counters = slab->counters; 2128 new.counters = counters; 2129 if (mode) { 2130 new.inuse = slab->objects; 2131 new.freelist = NULL; 2132 } else { 2133 new.freelist = freelist; 2134 } 2135 2136 VM_BUG_ON(new.frozen); 2137 new.frozen = 1; 2138 2139 if (!__cmpxchg_double_slab(s, slab, 2140 freelist, counters, 2141 new.freelist, new.counters, 2142 "acquire_slab")) 2143 return NULL; 2144 2145 remove_partial(n, slab); 2146 WARN_ON(!freelist); 2147 return freelist; 2148 } 2149 2150 #ifdef CONFIG_SLUB_CPU_PARTIAL 2151 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2152 #else 2153 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2154 int drain) { } 2155 #endif 2156 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2157 2158 /* 2159 * Try to allocate a partial slab from a specific node. 2160 */ 2161 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2162 struct slab **ret_slab, gfp_t gfpflags) 2163 { 2164 struct slab *slab, *slab2; 2165 void *object = NULL; 2166 unsigned long flags; 2167 unsigned int partial_slabs = 0; 2168 2169 /* 2170 * Racy check. If we mistakenly see no partial slabs then we 2171 * just allocate an empty slab. If we mistakenly try to get a 2172 * partial slab and there is none available then get_partial() 2173 * will return NULL. 2174 */ 2175 if (!n || !n->nr_partial) 2176 return NULL; 2177 2178 spin_lock_irqsave(&n->list_lock, flags); 2179 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2180 void *t; 2181 2182 if (!pfmemalloc_match(slab, gfpflags)) 2183 continue; 2184 2185 t = acquire_slab(s, n, slab, object == NULL); 2186 if (!t) 2187 break; 2188 2189 if (!object) { 2190 *ret_slab = slab; 2191 stat(s, ALLOC_FROM_PARTIAL); 2192 object = t; 2193 } else { 2194 put_cpu_partial(s, slab, 0); 2195 stat(s, CPU_PARTIAL_NODE); 2196 partial_slabs++; 2197 } 2198 #ifdef CONFIG_SLUB_CPU_PARTIAL 2199 if (!kmem_cache_has_cpu_partial(s) 2200 || partial_slabs > s->cpu_partial_slabs / 2) 2201 break; 2202 #else 2203 break; 2204 #endif 2205 2206 } 2207 spin_unlock_irqrestore(&n->list_lock, flags); 2208 return object; 2209 } 2210 2211 /* 2212 * Get a slab from somewhere. Search in increasing NUMA distances. 2213 */ 2214 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2215 struct slab **ret_slab) 2216 { 2217 #ifdef CONFIG_NUMA 2218 struct zonelist *zonelist; 2219 struct zoneref *z; 2220 struct zone *zone; 2221 enum zone_type highest_zoneidx = gfp_zone(flags); 2222 void *object; 2223 unsigned int cpuset_mems_cookie; 2224 2225 /* 2226 * The defrag ratio allows a configuration of the tradeoffs between 2227 * inter node defragmentation and node local allocations. A lower 2228 * defrag_ratio increases the tendency to do local allocations 2229 * instead of attempting to obtain partial slabs from other nodes. 2230 * 2231 * If the defrag_ratio is set to 0 then kmalloc() always 2232 * returns node local objects. If the ratio is higher then kmalloc() 2233 * may return off node objects because partial slabs are obtained 2234 * from other nodes and filled up. 2235 * 2236 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2237 * (which makes defrag_ratio = 1000) then every (well almost) 2238 * allocation will first attempt to defrag slab caches on other nodes. 2239 * This means scanning over all nodes to look for partial slabs which 2240 * may be expensive if we do it every time we are trying to find a slab 2241 * with available objects. 2242 */ 2243 if (!s->remote_node_defrag_ratio || 2244 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2245 return NULL; 2246 2247 do { 2248 cpuset_mems_cookie = read_mems_allowed_begin(); 2249 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2250 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2251 struct kmem_cache_node *n; 2252 2253 n = get_node(s, zone_to_nid(zone)); 2254 2255 if (n && cpuset_zone_allowed(zone, flags) && 2256 n->nr_partial > s->min_partial) { 2257 object = get_partial_node(s, n, ret_slab, flags); 2258 if (object) { 2259 /* 2260 * Don't check read_mems_allowed_retry() 2261 * here - if mems_allowed was updated in 2262 * parallel, that was a harmless race 2263 * between allocation and the cpuset 2264 * update 2265 */ 2266 return object; 2267 } 2268 } 2269 } 2270 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2271 #endif /* CONFIG_NUMA */ 2272 return NULL; 2273 } 2274 2275 /* 2276 * Get a partial slab, lock it and return it. 2277 */ 2278 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2279 struct slab **ret_slab) 2280 { 2281 void *object; 2282 int searchnode = node; 2283 2284 if (node == NUMA_NO_NODE) 2285 searchnode = numa_mem_id(); 2286 2287 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags); 2288 if (object || node != NUMA_NO_NODE) 2289 return object; 2290 2291 return get_any_partial(s, flags, ret_slab); 2292 } 2293 2294 #ifdef CONFIG_PREEMPTION 2295 /* 2296 * Calculate the next globally unique transaction for disambiguation 2297 * during cmpxchg. The transactions start with the cpu number and are then 2298 * incremented by CONFIG_NR_CPUS. 2299 */ 2300 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2301 #else 2302 /* 2303 * No preemption supported therefore also no need to check for 2304 * different cpus. 2305 */ 2306 #define TID_STEP 1 2307 #endif 2308 2309 static inline unsigned long next_tid(unsigned long tid) 2310 { 2311 return tid + TID_STEP; 2312 } 2313 2314 #ifdef SLUB_DEBUG_CMPXCHG 2315 static inline unsigned int tid_to_cpu(unsigned long tid) 2316 { 2317 return tid % TID_STEP; 2318 } 2319 2320 static inline unsigned long tid_to_event(unsigned long tid) 2321 { 2322 return tid / TID_STEP; 2323 } 2324 #endif 2325 2326 static inline unsigned int init_tid(int cpu) 2327 { 2328 return cpu; 2329 } 2330 2331 static inline void note_cmpxchg_failure(const char *n, 2332 const struct kmem_cache *s, unsigned long tid) 2333 { 2334 #ifdef SLUB_DEBUG_CMPXCHG 2335 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2336 2337 pr_info("%s %s: cmpxchg redo ", n, s->name); 2338 2339 #ifdef CONFIG_PREEMPTION 2340 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2341 pr_warn("due to cpu change %d -> %d\n", 2342 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2343 else 2344 #endif 2345 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2346 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2347 tid_to_event(tid), tid_to_event(actual_tid)); 2348 else 2349 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2350 actual_tid, tid, next_tid(tid)); 2351 #endif 2352 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2353 } 2354 2355 static void init_kmem_cache_cpus(struct kmem_cache *s) 2356 { 2357 int cpu; 2358 struct kmem_cache_cpu *c; 2359 2360 for_each_possible_cpu(cpu) { 2361 c = per_cpu_ptr(s->cpu_slab, cpu); 2362 local_lock_init(&c->lock); 2363 c->tid = init_tid(cpu); 2364 } 2365 } 2366 2367 /* 2368 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2369 * unfreezes the slabs and puts it on the proper list. 2370 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2371 * by the caller. 2372 */ 2373 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2374 void *freelist) 2375 { 2376 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST }; 2377 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2378 int free_delta = 0; 2379 enum slab_modes mode = M_NONE; 2380 void *nextfree, *freelist_iter, *freelist_tail; 2381 int tail = DEACTIVATE_TO_HEAD; 2382 unsigned long flags = 0; 2383 struct slab new; 2384 struct slab old; 2385 2386 if (slab->freelist) { 2387 stat(s, DEACTIVATE_REMOTE_FREES); 2388 tail = DEACTIVATE_TO_TAIL; 2389 } 2390 2391 /* 2392 * Stage one: Count the objects on cpu's freelist as free_delta and 2393 * remember the last object in freelist_tail for later splicing. 2394 */ 2395 freelist_tail = NULL; 2396 freelist_iter = freelist; 2397 while (freelist_iter) { 2398 nextfree = get_freepointer(s, freelist_iter); 2399 2400 /* 2401 * If 'nextfree' is invalid, it is possible that the object at 2402 * 'freelist_iter' is already corrupted. So isolate all objects 2403 * starting at 'freelist_iter' by skipping them. 2404 */ 2405 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2406 break; 2407 2408 freelist_tail = freelist_iter; 2409 free_delta++; 2410 2411 freelist_iter = nextfree; 2412 } 2413 2414 /* 2415 * Stage two: Unfreeze the slab while splicing the per-cpu 2416 * freelist to the head of slab's freelist. 2417 * 2418 * Ensure that the slab is unfrozen while the list presence 2419 * reflects the actual number of objects during unfreeze. 2420 * 2421 * We first perform cmpxchg holding lock and insert to list 2422 * when it succeed. If there is mismatch then the slab is not 2423 * unfrozen and number of objects in the slab may have changed. 2424 * Then release lock and retry cmpxchg again. 2425 */ 2426 redo: 2427 2428 old.freelist = READ_ONCE(slab->freelist); 2429 old.counters = READ_ONCE(slab->counters); 2430 VM_BUG_ON(!old.frozen); 2431 2432 /* Determine target state of the slab */ 2433 new.counters = old.counters; 2434 if (freelist_tail) { 2435 new.inuse -= free_delta; 2436 set_freepointer(s, freelist_tail, old.freelist); 2437 new.freelist = freelist; 2438 } else 2439 new.freelist = old.freelist; 2440 2441 new.frozen = 0; 2442 2443 if (!new.inuse && n->nr_partial >= s->min_partial) { 2444 mode = M_FREE; 2445 } else if (new.freelist) { 2446 mode = M_PARTIAL; 2447 /* 2448 * Taking the spinlock removes the possibility that 2449 * acquire_slab() will see a slab that is frozen 2450 */ 2451 spin_lock_irqsave(&n->list_lock, flags); 2452 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) { 2453 mode = M_FULL; 2454 /* 2455 * This also ensures that the scanning of full 2456 * slabs from diagnostic functions will not see 2457 * any frozen slabs. 2458 */ 2459 spin_lock_irqsave(&n->list_lock, flags); 2460 } else { 2461 mode = M_FULL_NOLIST; 2462 } 2463 2464 2465 if (!cmpxchg_double_slab(s, slab, 2466 old.freelist, old.counters, 2467 new.freelist, new.counters, 2468 "unfreezing slab")) { 2469 if (mode == M_PARTIAL || mode == M_FULL) 2470 spin_unlock_irqrestore(&n->list_lock, flags); 2471 goto redo; 2472 } 2473 2474 2475 if (mode == M_PARTIAL) { 2476 add_partial(n, slab, tail); 2477 spin_unlock_irqrestore(&n->list_lock, flags); 2478 stat(s, tail); 2479 } else if (mode == M_FREE) { 2480 stat(s, DEACTIVATE_EMPTY); 2481 discard_slab(s, slab); 2482 stat(s, FREE_SLAB); 2483 } else if (mode == M_FULL) { 2484 add_full(s, n, slab); 2485 spin_unlock_irqrestore(&n->list_lock, flags); 2486 stat(s, DEACTIVATE_FULL); 2487 } else if (mode == M_FULL_NOLIST) { 2488 stat(s, DEACTIVATE_FULL); 2489 } 2490 } 2491 2492 #ifdef CONFIG_SLUB_CPU_PARTIAL 2493 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2494 { 2495 struct kmem_cache_node *n = NULL, *n2 = NULL; 2496 struct slab *slab, *slab_to_discard = NULL; 2497 unsigned long flags = 0; 2498 2499 while (partial_slab) { 2500 struct slab new; 2501 struct slab old; 2502 2503 slab = partial_slab; 2504 partial_slab = slab->next; 2505 2506 n2 = get_node(s, slab_nid(slab)); 2507 if (n != n2) { 2508 if (n) 2509 spin_unlock_irqrestore(&n->list_lock, flags); 2510 2511 n = n2; 2512 spin_lock_irqsave(&n->list_lock, flags); 2513 } 2514 2515 do { 2516 2517 old.freelist = slab->freelist; 2518 old.counters = slab->counters; 2519 VM_BUG_ON(!old.frozen); 2520 2521 new.counters = old.counters; 2522 new.freelist = old.freelist; 2523 2524 new.frozen = 0; 2525 2526 } while (!__cmpxchg_double_slab(s, slab, 2527 old.freelist, old.counters, 2528 new.freelist, new.counters, 2529 "unfreezing slab")); 2530 2531 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2532 slab->next = slab_to_discard; 2533 slab_to_discard = slab; 2534 } else { 2535 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2536 stat(s, FREE_ADD_PARTIAL); 2537 } 2538 } 2539 2540 if (n) 2541 spin_unlock_irqrestore(&n->list_lock, flags); 2542 2543 while (slab_to_discard) { 2544 slab = slab_to_discard; 2545 slab_to_discard = slab_to_discard->next; 2546 2547 stat(s, DEACTIVATE_EMPTY); 2548 discard_slab(s, slab); 2549 stat(s, FREE_SLAB); 2550 } 2551 } 2552 2553 /* 2554 * Unfreeze all the cpu partial slabs. 2555 */ 2556 static void unfreeze_partials(struct kmem_cache *s) 2557 { 2558 struct slab *partial_slab; 2559 unsigned long flags; 2560 2561 local_lock_irqsave(&s->cpu_slab->lock, flags); 2562 partial_slab = this_cpu_read(s->cpu_slab->partial); 2563 this_cpu_write(s->cpu_slab->partial, NULL); 2564 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2565 2566 if (partial_slab) 2567 __unfreeze_partials(s, partial_slab); 2568 } 2569 2570 static void unfreeze_partials_cpu(struct kmem_cache *s, 2571 struct kmem_cache_cpu *c) 2572 { 2573 struct slab *partial_slab; 2574 2575 partial_slab = slub_percpu_partial(c); 2576 c->partial = NULL; 2577 2578 if (partial_slab) 2579 __unfreeze_partials(s, partial_slab); 2580 } 2581 2582 /* 2583 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2584 * partial slab slot if available. 2585 * 2586 * If we did not find a slot then simply move all the partials to the 2587 * per node partial list. 2588 */ 2589 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2590 { 2591 struct slab *oldslab; 2592 struct slab *slab_to_unfreeze = NULL; 2593 unsigned long flags; 2594 int slabs = 0; 2595 2596 local_lock_irqsave(&s->cpu_slab->lock, flags); 2597 2598 oldslab = this_cpu_read(s->cpu_slab->partial); 2599 2600 if (oldslab) { 2601 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2602 /* 2603 * Partial array is full. Move the existing set to the 2604 * per node partial list. Postpone the actual unfreezing 2605 * outside of the critical section. 2606 */ 2607 slab_to_unfreeze = oldslab; 2608 oldslab = NULL; 2609 } else { 2610 slabs = oldslab->slabs; 2611 } 2612 } 2613 2614 slabs++; 2615 2616 slab->slabs = slabs; 2617 slab->next = oldslab; 2618 2619 this_cpu_write(s->cpu_slab->partial, slab); 2620 2621 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2622 2623 if (slab_to_unfreeze) { 2624 __unfreeze_partials(s, slab_to_unfreeze); 2625 stat(s, CPU_PARTIAL_DRAIN); 2626 } 2627 } 2628 2629 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2630 2631 static inline void unfreeze_partials(struct kmem_cache *s) { } 2632 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2633 struct kmem_cache_cpu *c) { } 2634 2635 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2636 2637 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2638 { 2639 unsigned long flags; 2640 struct slab *slab; 2641 void *freelist; 2642 2643 local_lock_irqsave(&s->cpu_slab->lock, flags); 2644 2645 slab = c->slab; 2646 freelist = c->freelist; 2647 2648 c->slab = NULL; 2649 c->freelist = NULL; 2650 c->tid = next_tid(c->tid); 2651 2652 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2653 2654 if (slab) { 2655 deactivate_slab(s, slab, freelist); 2656 stat(s, CPUSLAB_FLUSH); 2657 } 2658 } 2659 2660 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2661 { 2662 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2663 void *freelist = c->freelist; 2664 struct slab *slab = c->slab; 2665 2666 c->slab = NULL; 2667 c->freelist = NULL; 2668 c->tid = next_tid(c->tid); 2669 2670 if (slab) { 2671 deactivate_slab(s, slab, freelist); 2672 stat(s, CPUSLAB_FLUSH); 2673 } 2674 2675 unfreeze_partials_cpu(s, c); 2676 } 2677 2678 struct slub_flush_work { 2679 struct work_struct work; 2680 struct kmem_cache *s; 2681 bool skip; 2682 }; 2683 2684 /* 2685 * Flush cpu slab. 2686 * 2687 * Called from CPU work handler with migration disabled. 2688 */ 2689 static void flush_cpu_slab(struct work_struct *w) 2690 { 2691 struct kmem_cache *s; 2692 struct kmem_cache_cpu *c; 2693 struct slub_flush_work *sfw; 2694 2695 sfw = container_of(w, struct slub_flush_work, work); 2696 2697 s = sfw->s; 2698 c = this_cpu_ptr(s->cpu_slab); 2699 2700 if (c->slab) 2701 flush_slab(s, c); 2702 2703 unfreeze_partials(s); 2704 } 2705 2706 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2707 { 2708 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2709 2710 return c->slab || slub_percpu_partial(c); 2711 } 2712 2713 static DEFINE_MUTEX(flush_lock); 2714 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2715 2716 static void flush_all_cpus_locked(struct kmem_cache *s) 2717 { 2718 struct slub_flush_work *sfw; 2719 unsigned int cpu; 2720 2721 lockdep_assert_cpus_held(); 2722 mutex_lock(&flush_lock); 2723 2724 for_each_online_cpu(cpu) { 2725 sfw = &per_cpu(slub_flush, cpu); 2726 if (!has_cpu_slab(cpu, s)) { 2727 sfw->skip = true; 2728 continue; 2729 } 2730 INIT_WORK(&sfw->work, flush_cpu_slab); 2731 sfw->skip = false; 2732 sfw->s = s; 2733 schedule_work_on(cpu, &sfw->work); 2734 } 2735 2736 for_each_online_cpu(cpu) { 2737 sfw = &per_cpu(slub_flush, cpu); 2738 if (sfw->skip) 2739 continue; 2740 flush_work(&sfw->work); 2741 } 2742 2743 mutex_unlock(&flush_lock); 2744 } 2745 2746 static void flush_all(struct kmem_cache *s) 2747 { 2748 cpus_read_lock(); 2749 flush_all_cpus_locked(s); 2750 cpus_read_unlock(); 2751 } 2752 2753 /* 2754 * Use the cpu notifier to insure that the cpu slabs are flushed when 2755 * necessary. 2756 */ 2757 static int slub_cpu_dead(unsigned int cpu) 2758 { 2759 struct kmem_cache *s; 2760 2761 mutex_lock(&slab_mutex); 2762 list_for_each_entry(s, &slab_caches, list) 2763 __flush_cpu_slab(s, cpu); 2764 mutex_unlock(&slab_mutex); 2765 return 0; 2766 } 2767 2768 /* 2769 * Check if the objects in a per cpu structure fit numa 2770 * locality expectations. 2771 */ 2772 static inline int node_match(struct slab *slab, int node) 2773 { 2774 #ifdef CONFIG_NUMA 2775 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2776 return 0; 2777 #endif 2778 return 1; 2779 } 2780 2781 #ifdef CONFIG_SLUB_DEBUG 2782 static int count_free(struct slab *slab) 2783 { 2784 return slab->objects - slab->inuse; 2785 } 2786 2787 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2788 { 2789 return atomic_long_read(&n->total_objects); 2790 } 2791 #endif /* CONFIG_SLUB_DEBUG */ 2792 2793 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2794 static unsigned long count_partial(struct kmem_cache_node *n, 2795 int (*get_count)(struct slab *)) 2796 { 2797 unsigned long flags; 2798 unsigned long x = 0; 2799 struct slab *slab; 2800 2801 spin_lock_irqsave(&n->list_lock, flags); 2802 list_for_each_entry(slab, &n->partial, slab_list) 2803 x += get_count(slab); 2804 spin_unlock_irqrestore(&n->list_lock, flags); 2805 return x; 2806 } 2807 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2808 2809 static noinline void 2810 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2811 { 2812 #ifdef CONFIG_SLUB_DEBUG 2813 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2814 DEFAULT_RATELIMIT_BURST); 2815 int node; 2816 struct kmem_cache_node *n; 2817 2818 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2819 return; 2820 2821 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2822 nid, gfpflags, &gfpflags); 2823 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2824 s->name, s->object_size, s->size, oo_order(s->oo), 2825 oo_order(s->min)); 2826 2827 if (oo_order(s->min) > get_order(s->object_size)) 2828 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2829 s->name); 2830 2831 for_each_kmem_cache_node(s, node, n) { 2832 unsigned long nr_slabs; 2833 unsigned long nr_objs; 2834 unsigned long nr_free; 2835 2836 nr_free = count_partial(n, count_free); 2837 nr_slabs = node_nr_slabs(n); 2838 nr_objs = node_nr_objs(n); 2839 2840 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2841 node, nr_slabs, nr_objs, nr_free); 2842 } 2843 #endif 2844 } 2845 2846 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 2847 { 2848 if (unlikely(slab_test_pfmemalloc(slab))) 2849 return gfp_pfmemalloc_allowed(gfpflags); 2850 2851 return true; 2852 } 2853 2854 /* 2855 * Check the slab->freelist and either transfer the freelist to the 2856 * per cpu freelist or deactivate the slab. 2857 * 2858 * The slab is still frozen if the return value is not NULL. 2859 * 2860 * If this function returns NULL then the slab has been unfrozen. 2861 */ 2862 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 2863 { 2864 struct slab new; 2865 unsigned long counters; 2866 void *freelist; 2867 2868 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2869 2870 do { 2871 freelist = slab->freelist; 2872 counters = slab->counters; 2873 2874 new.counters = counters; 2875 VM_BUG_ON(!new.frozen); 2876 2877 new.inuse = slab->objects; 2878 new.frozen = freelist != NULL; 2879 2880 } while (!__cmpxchg_double_slab(s, slab, 2881 freelist, counters, 2882 NULL, new.counters, 2883 "get_freelist")); 2884 2885 return freelist; 2886 } 2887 2888 /* 2889 * Slow path. The lockless freelist is empty or we need to perform 2890 * debugging duties. 2891 * 2892 * Processing is still very fast if new objects have been freed to the 2893 * regular freelist. In that case we simply take over the regular freelist 2894 * as the lockless freelist and zap the regular freelist. 2895 * 2896 * If that is not working then we fall back to the partial lists. We take the 2897 * first element of the freelist as the object to allocate now and move the 2898 * rest of the freelist to the lockless freelist. 2899 * 2900 * And if we were unable to get a new slab from the partial slab lists then 2901 * we need to allocate a new slab. This is the slowest path since it involves 2902 * a call to the page allocator and the setup of a new slab. 2903 * 2904 * Version of __slab_alloc to use when we know that preemption is 2905 * already disabled (which is the case for bulk allocation). 2906 */ 2907 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2908 unsigned long addr, struct kmem_cache_cpu *c) 2909 { 2910 void *freelist; 2911 struct slab *slab; 2912 unsigned long flags; 2913 2914 stat(s, ALLOC_SLOWPATH); 2915 2916 reread_slab: 2917 2918 slab = READ_ONCE(c->slab); 2919 if (!slab) { 2920 /* 2921 * if the node is not online or has no normal memory, just 2922 * ignore the node constraint 2923 */ 2924 if (unlikely(node != NUMA_NO_NODE && 2925 !node_isset(node, slab_nodes))) 2926 node = NUMA_NO_NODE; 2927 goto new_slab; 2928 } 2929 redo: 2930 2931 if (unlikely(!node_match(slab, node))) { 2932 /* 2933 * same as above but node_match() being false already 2934 * implies node != NUMA_NO_NODE 2935 */ 2936 if (!node_isset(node, slab_nodes)) { 2937 node = NUMA_NO_NODE; 2938 } else { 2939 stat(s, ALLOC_NODE_MISMATCH); 2940 goto deactivate_slab; 2941 } 2942 } 2943 2944 /* 2945 * By rights, we should be searching for a slab page that was 2946 * PFMEMALLOC but right now, we are losing the pfmemalloc 2947 * information when the page leaves the per-cpu allocator 2948 */ 2949 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 2950 goto deactivate_slab; 2951 2952 /* must check again c->slab in case we got preempted and it changed */ 2953 local_lock_irqsave(&s->cpu_slab->lock, flags); 2954 if (unlikely(slab != c->slab)) { 2955 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2956 goto reread_slab; 2957 } 2958 freelist = c->freelist; 2959 if (freelist) 2960 goto load_freelist; 2961 2962 freelist = get_freelist(s, slab); 2963 2964 if (!freelist) { 2965 c->slab = NULL; 2966 c->tid = next_tid(c->tid); 2967 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2968 stat(s, DEACTIVATE_BYPASS); 2969 goto new_slab; 2970 } 2971 2972 stat(s, ALLOC_REFILL); 2973 2974 load_freelist: 2975 2976 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2977 2978 /* 2979 * freelist is pointing to the list of objects to be used. 2980 * slab is pointing to the slab from which the objects are obtained. 2981 * That slab must be frozen for per cpu allocations to work. 2982 */ 2983 VM_BUG_ON(!c->slab->frozen); 2984 c->freelist = get_freepointer(s, freelist); 2985 c->tid = next_tid(c->tid); 2986 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2987 return freelist; 2988 2989 deactivate_slab: 2990 2991 local_lock_irqsave(&s->cpu_slab->lock, flags); 2992 if (slab != c->slab) { 2993 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2994 goto reread_slab; 2995 } 2996 freelist = c->freelist; 2997 c->slab = NULL; 2998 c->freelist = NULL; 2999 c->tid = next_tid(c->tid); 3000 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3001 deactivate_slab(s, slab, freelist); 3002 3003 new_slab: 3004 3005 if (slub_percpu_partial(c)) { 3006 local_lock_irqsave(&s->cpu_slab->lock, flags); 3007 if (unlikely(c->slab)) { 3008 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3009 goto reread_slab; 3010 } 3011 if (unlikely(!slub_percpu_partial(c))) { 3012 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3013 /* we were preempted and partial list got empty */ 3014 goto new_objects; 3015 } 3016 3017 slab = c->slab = slub_percpu_partial(c); 3018 slub_set_percpu_partial(c, slab); 3019 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3020 stat(s, CPU_PARTIAL_ALLOC); 3021 goto redo; 3022 } 3023 3024 new_objects: 3025 3026 freelist = get_partial(s, gfpflags, node, &slab); 3027 if (freelist) 3028 goto check_new_slab; 3029 3030 slub_put_cpu_ptr(s->cpu_slab); 3031 slab = new_slab(s, gfpflags, node); 3032 c = slub_get_cpu_ptr(s->cpu_slab); 3033 3034 if (unlikely(!slab)) { 3035 slab_out_of_memory(s, gfpflags, node); 3036 return NULL; 3037 } 3038 3039 /* 3040 * No other reference to the slab yet so we can 3041 * muck around with it freely without cmpxchg 3042 */ 3043 freelist = slab->freelist; 3044 slab->freelist = NULL; 3045 3046 stat(s, ALLOC_SLAB); 3047 3048 check_new_slab: 3049 3050 if (kmem_cache_debug(s)) { 3051 if (!alloc_debug_processing(s, slab, freelist, addr)) { 3052 /* Slab failed checks. Next slab needed */ 3053 goto new_slab; 3054 } else { 3055 /* 3056 * For debug case, we don't load freelist so that all 3057 * allocations go through alloc_debug_processing() 3058 */ 3059 goto return_single; 3060 } 3061 } 3062 3063 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3064 /* 3065 * For !pfmemalloc_match() case we don't load freelist so that 3066 * we don't make further mismatched allocations easier. 3067 */ 3068 goto return_single; 3069 3070 retry_load_slab: 3071 3072 local_lock_irqsave(&s->cpu_slab->lock, flags); 3073 if (unlikely(c->slab)) { 3074 void *flush_freelist = c->freelist; 3075 struct slab *flush_slab = c->slab; 3076 3077 c->slab = NULL; 3078 c->freelist = NULL; 3079 c->tid = next_tid(c->tid); 3080 3081 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3082 3083 deactivate_slab(s, flush_slab, flush_freelist); 3084 3085 stat(s, CPUSLAB_FLUSH); 3086 3087 goto retry_load_slab; 3088 } 3089 c->slab = slab; 3090 3091 goto load_freelist; 3092 3093 return_single: 3094 3095 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3096 return freelist; 3097 } 3098 3099 /* 3100 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3101 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3102 * pointer. 3103 */ 3104 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3105 unsigned long addr, struct kmem_cache_cpu *c) 3106 { 3107 void *p; 3108 3109 #ifdef CONFIG_PREEMPT_COUNT 3110 /* 3111 * We may have been preempted and rescheduled on a different 3112 * cpu before disabling preemption. Need to reload cpu area 3113 * pointer. 3114 */ 3115 c = slub_get_cpu_ptr(s->cpu_slab); 3116 #endif 3117 3118 p = ___slab_alloc(s, gfpflags, node, addr, c); 3119 #ifdef CONFIG_PREEMPT_COUNT 3120 slub_put_cpu_ptr(s->cpu_slab); 3121 #endif 3122 return p; 3123 } 3124 3125 /* 3126 * If the object has been wiped upon free, make sure it's fully initialized by 3127 * zeroing out freelist pointer. 3128 */ 3129 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3130 void *obj) 3131 { 3132 if (unlikely(slab_want_init_on_free(s)) && obj) 3133 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3134 0, sizeof(void *)); 3135 } 3136 3137 /* 3138 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3139 * have the fastpath folded into their functions. So no function call 3140 * overhead for requests that can be satisfied on the fastpath. 3141 * 3142 * The fastpath works by first checking if the lockless freelist can be used. 3143 * If not then __slab_alloc is called for slow processing. 3144 * 3145 * Otherwise we can simply pick the next object from the lockless free list. 3146 */ 3147 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3148 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3149 { 3150 void *object; 3151 struct kmem_cache_cpu *c; 3152 struct slab *slab; 3153 unsigned long tid; 3154 struct obj_cgroup *objcg = NULL; 3155 bool init = false; 3156 3157 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3158 if (!s) 3159 return NULL; 3160 3161 object = kfence_alloc(s, orig_size, gfpflags); 3162 if (unlikely(object)) 3163 goto out; 3164 3165 redo: 3166 /* 3167 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3168 * enabled. We may switch back and forth between cpus while 3169 * reading from one cpu area. That does not matter as long 3170 * as we end up on the original cpu again when doing the cmpxchg. 3171 * 3172 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3173 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3174 * the tid. If we are preempted and switched to another cpu between the 3175 * two reads, it's OK as the two are still associated with the same cpu 3176 * and cmpxchg later will validate the cpu. 3177 */ 3178 c = raw_cpu_ptr(s->cpu_slab); 3179 tid = READ_ONCE(c->tid); 3180 3181 /* 3182 * Irqless object alloc/free algorithm used here depends on sequence 3183 * of fetching cpu_slab's data. tid should be fetched before anything 3184 * on c to guarantee that object and slab associated with previous tid 3185 * won't be used with current tid. If we fetch tid first, object and 3186 * slab could be one associated with next tid and our alloc/free 3187 * request will be failed. In this case, we will retry. So, no problem. 3188 */ 3189 barrier(); 3190 3191 /* 3192 * The transaction ids are globally unique per cpu and per operation on 3193 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3194 * occurs on the right processor and that there was no operation on the 3195 * linked list in between. 3196 */ 3197 3198 object = c->freelist; 3199 slab = c->slab; 3200 /* 3201 * We cannot use the lockless fastpath on PREEMPT_RT because if a 3202 * slowpath has taken the local_lock_irqsave(), it is not protected 3203 * against a fast path operation in an irq handler. So we need to take 3204 * the slow path which uses local_lock. It is still relatively fast if 3205 * there is a suitable cpu freelist. 3206 */ 3207 if (IS_ENABLED(CONFIG_PREEMPT_RT) || 3208 unlikely(!object || !slab || !node_match(slab, node))) { 3209 object = __slab_alloc(s, gfpflags, node, addr, c); 3210 } else { 3211 void *next_object = get_freepointer_safe(s, object); 3212 3213 /* 3214 * The cmpxchg will only match if there was no additional 3215 * operation and if we are on the right processor. 3216 * 3217 * The cmpxchg does the following atomically (without lock 3218 * semantics!) 3219 * 1. Relocate first pointer to the current per cpu area. 3220 * 2. Verify that tid and freelist have not been changed 3221 * 3. If they were not changed replace tid and freelist 3222 * 3223 * Since this is without lock semantics the protection is only 3224 * against code executing on this cpu *not* from access by 3225 * other cpus. 3226 */ 3227 if (unlikely(!this_cpu_cmpxchg_double( 3228 s->cpu_slab->freelist, s->cpu_slab->tid, 3229 object, tid, 3230 next_object, next_tid(tid)))) { 3231 3232 note_cmpxchg_failure("slab_alloc", s, tid); 3233 goto redo; 3234 } 3235 prefetch_freepointer(s, next_object); 3236 stat(s, ALLOC_FASTPATH); 3237 } 3238 3239 maybe_wipe_obj_freeptr(s, object); 3240 init = slab_want_init_on_alloc(gfpflags, s); 3241 3242 out: 3243 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 3244 3245 return object; 3246 } 3247 3248 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3249 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3250 { 3251 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3252 } 3253 3254 static __always_inline 3255 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3256 gfp_t gfpflags) 3257 { 3258 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3259 3260 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 3261 s->size, gfpflags); 3262 3263 return ret; 3264 } 3265 3266 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3267 { 3268 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3269 } 3270 EXPORT_SYMBOL(kmem_cache_alloc); 3271 3272 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3273 gfp_t gfpflags) 3274 { 3275 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3276 } 3277 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3278 3279 #ifdef CONFIG_TRACING 3280 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3281 { 3282 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size); 3283 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 3284 ret = kasan_kmalloc(s, ret, size, gfpflags); 3285 return ret; 3286 } 3287 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3288 #endif 3289 3290 #ifdef CONFIG_NUMA 3291 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3292 { 3293 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3294 3295 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3296 s->object_size, s->size, gfpflags, node); 3297 3298 return ret; 3299 } 3300 EXPORT_SYMBOL(kmem_cache_alloc_node); 3301 3302 #ifdef CONFIG_TRACING 3303 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 3304 gfp_t gfpflags, 3305 int node, size_t size) 3306 { 3307 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 3308 3309 trace_kmalloc_node(_RET_IP_, ret, 3310 size, s->size, gfpflags, node); 3311 3312 ret = kasan_kmalloc(s, ret, size, gfpflags); 3313 return ret; 3314 } 3315 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3316 #endif 3317 #endif /* CONFIG_NUMA */ 3318 3319 /* 3320 * Slow path handling. This may still be called frequently since objects 3321 * have a longer lifetime than the cpu slabs in most processing loads. 3322 * 3323 * So we still attempt to reduce cache line usage. Just take the slab 3324 * lock and free the item. If there is no additional partial slab 3325 * handling required then we can return immediately. 3326 */ 3327 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3328 void *head, void *tail, int cnt, 3329 unsigned long addr) 3330 3331 { 3332 void *prior; 3333 int was_frozen; 3334 struct slab new; 3335 unsigned long counters; 3336 struct kmem_cache_node *n = NULL; 3337 unsigned long flags; 3338 3339 stat(s, FREE_SLOWPATH); 3340 3341 if (kfence_free(head)) 3342 return; 3343 3344 if (kmem_cache_debug(s) && 3345 !free_debug_processing(s, slab, head, tail, cnt, addr)) 3346 return; 3347 3348 do { 3349 if (unlikely(n)) { 3350 spin_unlock_irqrestore(&n->list_lock, flags); 3351 n = NULL; 3352 } 3353 prior = slab->freelist; 3354 counters = slab->counters; 3355 set_freepointer(s, tail, prior); 3356 new.counters = counters; 3357 was_frozen = new.frozen; 3358 new.inuse -= cnt; 3359 if ((!new.inuse || !prior) && !was_frozen) { 3360 3361 if (kmem_cache_has_cpu_partial(s) && !prior) { 3362 3363 /* 3364 * Slab was on no list before and will be 3365 * partially empty 3366 * We can defer the list move and instead 3367 * freeze it. 3368 */ 3369 new.frozen = 1; 3370 3371 } else { /* Needs to be taken off a list */ 3372 3373 n = get_node(s, slab_nid(slab)); 3374 /* 3375 * Speculatively acquire the list_lock. 3376 * If the cmpxchg does not succeed then we may 3377 * drop the list_lock without any processing. 3378 * 3379 * Otherwise the list_lock will synchronize with 3380 * other processors updating the list of slabs. 3381 */ 3382 spin_lock_irqsave(&n->list_lock, flags); 3383 3384 } 3385 } 3386 3387 } while (!cmpxchg_double_slab(s, slab, 3388 prior, counters, 3389 head, new.counters, 3390 "__slab_free")); 3391 3392 if (likely(!n)) { 3393 3394 if (likely(was_frozen)) { 3395 /* 3396 * The list lock was not taken therefore no list 3397 * activity can be necessary. 3398 */ 3399 stat(s, FREE_FROZEN); 3400 } else if (new.frozen) { 3401 /* 3402 * If we just froze the slab then put it onto the 3403 * per cpu partial list. 3404 */ 3405 put_cpu_partial(s, slab, 1); 3406 stat(s, CPU_PARTIAL_FREE); 3407 } 3408 3409 return; 3410 } 3411 3412 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3413 goto slab_empty; 3414 3415 /* 3416 * Objects left in the slab. If it was not on the partial list before 3417 * then add it. 3418 */ 3419 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3420 remove_full(s, n, slab); 3421 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3422 stat(s, FREE_ADD_PARTIAL); 3423 } 3424 spin_unlock_irqrestore(&n->list_lock, flags); 3425 return; 3426 3427 slab_empty: 3428 if (prior) { 3429 /* 3430 * Slab on the partial list. 3431 */ 3432 remove_partial(n, slab); 3433 stat(s, FREE_REMOVE_PARTIAL); 3434 } else { 3435 /* Slab must be on the full list */ 3436 remove_full(s, n, slab); 3437 } 3438 3439 spin_unlock_irqrestore(&n->list_lock, flags); 3440 stat(s, FREE_SLAB); 3441 discard_slab(s, slab); 3442 } 3443 3444 /* 3445 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3446 * can perform fastpath freeing without additional function calls. 3447 * 3448 * The fastpath is only possible if we are freeing to the current cpu slab 3449 * of this processor. This typically the case if we have just allocated 3450 * the item before. 3451 * 3452 * If fastpath is not possible then fall back to __slab_free where we deal 3453 * with all sorts of special processing. 3454 * 3455 * Bulk free of a freelist with several objects (all pointing to the 3456 * same slab) possible by specifying head and tail ptr, plus objects 3457 * count (cnt). Bulk free indicated by tail pointer being set. 3458 */ 3459 static __always_inline void do_slab_free(struct kmem_cache *s, 3460 struct slab *slab, void *head, void *tail, 3461 int cnt, unsigned long addr) 3462 { 3463 void *tail_obj = tail ? : head; 3464 struct kmem_cache_cpu *c; 3465 unsigned long tid; 3466 3467 /* memcg_slab_free_hook() is already called for bulk free. */ 3468 if (!tail) 3469 memcg_slab_free_hook(s, &head, 1); 3470 redo: 3471 /* 3472 * Determine the currently cpus per cpu slab. 3473 * The cpu may change afterward. However that does not matter since 3474 * data is retrieved via this pointer. If we are on the same cpu 3475 * during the cmpxchg then the free will succeed. 3476 */ 3477 c = raw_cpu_ptr(s->cpu_slab); 3478 tid = READ_ONCE(c->tid); 3479 3480 /* Same with comment on barrier() in slab_alloc_node() */ 3481 barrier(); 3482 3483 if (likely(slab == c->slab)) { 3484 #ifndef CONFIG_PREEMPT_RT 3485 void **freelist = READ_ONCE(c->freelist); 3486 3487 set_freepointer(s, tail_obj, freelist); 3488 3489 if (unlikely(!this_cpu_cmpxchg_double( 3490 s->cpu_slab->freelist, s->cpu_slab->tid, 3491 freelist, tid, 3492 head, next_tid(tid)))) { 3493 3494 note_cmpxchg_failure("slab_free", s, tid); 3495 goto redo; 3496 } 3497 #else /* CONFIG_PREEMPT_RT */ 3498 /* 3499 * We cannot use the lockless fastpath on PREEMPT_RT because if 3500 * a slowpath has taken the local_lock_irqsave(), it is not 3501 * protected against a fast path operation in an irq handler. So 3502 * we need to take the local_lock. We shouldn't simply defer to 3503 * __slab_free() as that wouldn't use the cpu freelist at all. 3504 */ 3505 void **freelist; 3506 3507 local_lock(&s->cpu_slab->lock); 3508 c = this_cpu_ptr(s->cpu_slab); 3509 if (unlikely(slab != c->slab)) { 3510 local_unlock(&s->cpu_slab->lock); 3511 goto redo; 3512 } 3513 tid = c->tid; 3514 freelist = c->freelist; 3515 3516 set_freepointer(s, tail_obj, freelist); 3517 c->freelist = head; 3518 c->tid = next_tid(tid); 3519 3520 local_unlock(&s->cpu_slab->lock); 3521 #endif 3522 stat(s, FREE_FASTPATH); 3523 } else 3524 __slab_free(s, slab, head, tail_obj, cnt, addr); 3525 3526 } 3527 3528 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3529 void *head, void *tail, int cnt, 3530 unsigned long addr) 3531 { 3532 /* 3533 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3534 * to remove objects, whose reuse must be delayed. 3535 */ 3536 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3537 do_slab_free(s, slab, head, tail, cnt, addr); 3538 } 3539 3540 #ifdef CONFIG_KASAN_GENERIC 3541 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3542 { 3543 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3544 } 3545 #endif 3546 3547 void kmem_cache_free(struct kmem_cache *s, void *x) 3548 { 3549 s = cache_from_obj(s, x); 3550 if (!s) 3551 return; 3552 trace_kmem_cache_free(_RET_IP_, x, s->name); 3553 slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_); 3554 } 3555 EXPORT_SYMBOL(kmem_cache_free); 3556 3557 struct detached_freelist { 3558 struct slab *slab; 3559 void *tail; 3560 void *freelist; 3561 int cnt; 3562 struct kmem_cache *s; 3563 }; 3564 3565 static inline void free_large_kmalloc(struct folio *folio, void *object) 3566 { 3567 unsigned int order = folio_order(folio); 3568 3569 if (WARN_ON_ONCE(order == 0)) 3570 pr_warn_once("object pointer: 0x%p\n", object); 3571 3572 kfree_hook(object); 3573 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B, 3574 -(PAGE_SIZE << order)); 3575 __free_pages(folio_page(folio, 0), order); 3576 } 3577 3578 /* 3579 * This function progressively scans the array with free objects (with 3580 * a limited look ahead) and extract objects belonging to the same 3581 * slab. It builds a detached freelist directly within the given 3582 * slab/objects. This can happen without any need for 3583 * synchronization, because the objects are owned by running process. 3584 * The freelist is build up as a single linked list in the objects. 3585 * The idea is, that this detached freelist can then be bulk 3586 * transferred to the real freelist(s), but only requiring a single 3587 * synchronization primitive. Look ahead in the array is limited due 3588 * to performance reasons. 3589 */ 3590 static inline 3591 int build_detached_freelist(struct kmem_cache *s, size_t size, 3592 void **p, struct detached_freelist *df) 3593 { 3594 size_t first_skipped_index = 0; 3595 int lookahead = 3; 3596 void *object; 3597 struct folio *folio; 3598 struct slab *slab; 3599 3600 /* Always re-init detached_freelist */ 3601 df->slab = NULL; 3602 3603 do { 3604 object = p[--size]; 3605 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3606 } while (!object && size); 3607 3608 if (!object) 3609 return 0; 3610 3611 folio = virt_to_folio(object); 3612 if (!s) { 3613 /* Handle kalloc'ed objects */ 3614 if (unlikely(!folio_test_slab(folio))) { 3615 free_large_kmalloc(folio, object); 3616 p[size] = NULL; /* mark object processed */ 3617 return size; 3618 } 3619 /* Derive kmem_cache from object */ 3620 slab = folio_slab(folio); 3621 df->s = slab->slab_cache; 3622 } else { 3623 slab = folio_slab(folio); 3624 df->s = cache_from_obj(s, object); /* Support for memcg */ 3625 } 3626 3627 if (is_kfence_address(object)) { 3628 slab_free_hook(df->s, object, false); 3629 __kfence_free(object); 3630 p[size] = NULL; /* mark object processed */ 3631 return size; 3632 } 3633 3634 /* Start new detached freelist */ 3635 df->slab = slab; 3636 set_freepointer(df->s, object, NULL); 3637 df->tail = object; 3638 df->freelist = object; 3639 p[size] = NULL; /* mark object processed */ 3640 df->cnt = 1; 3641 3642 while (size) { 3643 object = p[--size]; 3644 if (!object) 3645 continue; /* Skip processed objects */ 3646 3647 /* df->slab is always set at this point */ 3648 if (df->slab == virt_to_slab(object)) { 3649 /* Opportunity build freelist */ 3650 set_freepointer(df->s, object, df->freelist); 3651 df->freelist = object; 3652 df->cnt++; 3653 p[size] = NULL; /* mark object processed */ 3654 3655 continue; 3656 } 3657 3658 /* Limit look ahead search */ 3659 if (!--lookahead) 3660 break; 3661 3662 if (!first_skipped_index) 3663 first_skipped_index = size + 1; 3664 } 3665 3666 return first_skipped_index; 3667 } 3668 3669 /* Note that interrupts must be enabled when calling this function. */ 3670 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3671 { 3672 if (WARN_ON(!size)) 3673 return; 3674 3675 memcg_slab_free_hook(s, p, size); 3676 do { 3677 struct detached_freelist df; 3678 3679 size = build_detached_freelist(s, size, p, &df); 3680 if (!df.slab) 3681 continue; 3682 3683 slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_); 3684 } while (likely(size)); 3685 } 3686 EXPORT_SYMBOL(kmem_cache_free_bulk); 3687 3688 /* Note that interrupts must be enabled when calling this function. */ 3689 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3690 void **p) 3691 { 3692 struct kmem_cache_cpu *c; 3693 int i; 3694 struct obj_cgroup *objcg = NULL; 3695 3696 /* memcg and kmem_cache debug support */ 3697 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3698 if (unlikely(!s)) 3699 return false; 3700 /* 3701 * Drain objects in the per cpu slab, while disabling local 3702 * IRQs, which protects against PREEMPT and interrupts 3703 * handlers invoking normal fastpath. 3704 */ 3705 c = slub_get_cpu_ptr(s->cpu_slab); 3706 local_lock_irq(&s->cpu_slab->lock); 3707 3708 for (i = 0; i < size; i++) { 3709 void *object = kfence_alloc(s, s->object_size, flags); 3710 3711 if (unlikely(object)) { 3712 p[i] = object; 3713 continue; 3714 } 3715 3716 object = c->freelist; 3717 if (unlikely(!object)) { 3718 /* 3719 * We may have removed an object from c->freelist using 3720 * the fastpath in the previous iteration; in that case, 3721 * c->tid has not been bumped yet. 3722 * Since ___slab_alloc() may reenable interrupts while 3723 * allocating memory, we should bump c->tid now. 3724 */ 3725 c->tid = next_tid(c->tid); 3726 3727 local_unlock_irq(&s->cpu_slab->lock); 3728 3729 /* 3730 * Invoking slow path likely have side-effect 3731 * of re-populating per CPU c->freelist 3732 */ 3733 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3734 _RET_IP_, c); 3735 if (unlikely(!p[i])) 3736 goto error; 3737 3738 c = this_cpu_ptr(s->cpu_slab); 3739 maybe_wipe_obj_freeptr(s, p[i]); 3740 3741 local_lock_irq(&s->cpu_slab->lock); 3742 3743 continue; /* goto for-loop */ 3744 } 3745 c->freelist = get_freepointer(s, object); 3746 p[i] = object; 3747 maybe_wipe_obj_freeptr(s, p[i]); 3748 } 3749 c->tid = next_tid(c->tid); 3750 local_unlock_irq(&s->cpu_slab->lock); 3751 slub_put_cpu_ptr(s->cpu_slab); 3752 3753 /* 3754 * memcg and kmem_cache debug support and memory initialization. 3755 * Done outside of the IRQ disabled fastpath loop. 3756 */ 3757 slab_post_alloc_hook(s, objcg, flags, size, p, 3758 slab_want_init_on_alloc(flags, s)); 3759 return i; 3760 error: 3761 slub_put_cpu_ptr(s->cpu_slab); 3762 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3763 __kmem_cache_free_bulk(s, i, p); 3764 return 0; 3765 } 3766 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3767 3768 3769 /* 3770 * Object placement in a slab is made very easy because we always start at 3771 * offset 0. If we tune the size of the object to the alignment then we can 3772 * get the required alignment by putting one properly sized object after 3773 * another. 3774 * 3775 * Notice that the allocation order determines the sizes of the per cpu 3776 * caches. Each processor has always one slab available for allocations. 3777 * Increasing the allocation order reduces the number of times that slabs 3778 * must be moved on and off the partial lists and is therefore a factor in 3779 * locking overhead. 3780 */ 3781 3782 /* 3783 * Minimum / Maximum order of slab pages. This influences locking overhead 3784 * and slab fragmentation. A higher order reduces the number of partial slabs 3785 * and increases the number of allocations possible without having to 3786 * take the list_lock. 3787 */ 3788 static unsigned int slub_min_order; 3789 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3790 static unsigned int slub_min_objects; 3791 3792 /* 3793 * Calculate the order of allocation given an slab object size. 3794 * 3795 * The order of allocation has significant impact on performance and other 3796 * system components. Generally order 0 allocations should be preferred since 3797 * order 0 does not cause fragmentation in the page allocator. Larger objects 3798 * be problematic to put into order 0 slabs because there may be too much 3799 * unused space left. We go to a higher order if more than 1/16th of the slab 3800 * would be wasted. 3801 * 3802 * In order to reach satisfactory performance we must ensure that a minimum 3803 * number of objects is in one slab. Otherwise we may generate too much 3804 * activity on the partial lists which requires taking the list_lock. This is 3805 * less a concern for large slabs though which are rarely used. 3806 * 3807 * slub_max_order specifies the order where we begin to stop considering the 3808 * number of objects in a slab as critical. If we reach slub_max_order then 3809 * we try to keep the page order as low as possible. So we accept more waste 3810 * of space in favor of a small page order. 3811 * 3812 * Higher order allocations also allow the placement of more objects in a 3813 * slab and thereby reduce object handling overhead. If the user has 3814 * requested a higher minimum order then we start with that one instead of 3815 * the smallest order which will fit the object. 3816 */ 3817 static inline unsigned int calc_slab_order(unsigned int size, 3818 unsigned int min_objects, unsigned int max_order, 3819 unsigned int fract_leftover) 3820 { 3821 unsigned int min_order = slub_min_order; 3822 unsigned int order; 3823 3824 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3825 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3826 3827 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3828 order <= max_order; order++) { 3829 3830 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3831 unsigned int rem; 3832 3833 rem = slab_size % size; 3834 3835 if (rem <= slab_size / fract_leftover) 3836 break; 3837 } 3838 3839 return order; 3840 } 3841 3842 static inline int calculate_order(unsigned int size) 3843 { 3844 unsigned int order; 3845 unsigned int min_objects; 3846 unsigned int max_objects; 3847 unsigned int nr_cpus; 3848 3849 /* 3850 * Attempt to find best configuration for a slab. This 3851 * works by first attempting to generate a layout with 3852 * the best configuration and backing off gradually. 3853 * 3854 * First we increase the acceptable waste in a slab. Then 3855 * we reduce the minimum objects required in a slab. 3856 */ 3857 min_objects = slub_min_objects; 3858 if (!min_objects) { 3859 /* 3860 * Some architectures will only update present cpus when 3861 * onlining them, so don't trust the number if it's just 1. But 3862 * we also don't want to use nr_cpu_ids always, as on some other 3863 * architectures, there can be many possible cpus, but never 3864 * onlined. Here we compromise between trying to avoid too high 3865 * order on systems that appear larger than they are, and too 3866 * low order on systems that appear smaller than they are. 3867 */ 3868 nr_cpus = num_present_cpus(); 3869 if (nr_cpus <= 1) 3870 nr_cpus = nr_cpu_ids; 3871 min_objects = 4 * (fls(nr_cpus) + 1); 3872 } 3873 max_objects = order_objects(slub_max_order, size); 3874 min_objects = min(min_objects, max_objects); 3875 3876 while (min_objects > 1) { 3877 unsigned int fraction; 3878 3879 fraction = 16; 3880 while (fraction >= 4) { 3881 order = calc_slab_order(size, min_objects, 3882 slub_max_order, fraction); 3883 if (order <= slub_max_order) 3884 return order; 3885 fraction /= 2; 3886 } 3887 min_objects--; 3888 } 3889 3890 /* 3891 * We were unable to place multiple objects in a slab. Now 3892 * lets see if we can place a single object there. 3893 */ 3894 order = calc_slab_order(size, 1, slub_max_order, 1); 3895 if (order <= slub_max_order) 3896 return order; 3897 3898 /* 3899 * Doh this slab cannot be placed using slub_max_order. 3900 */ 3901 order = calc_slab_order(size, 1, MAX_ORDER, 1); 3902 if (order < MAX_ORDER) 3903 return order; 3904 return -ENOSYS; 3905 } 3906 3907 static void 3908 init_kmem_cache_node(struct kmem_cache_node *n) 3909 { 3910 n->nr_partial = 0; 3911 spin_lock_init(&n->list_lock); 3912 INIT_LIST_HEAD(&n->partial); 3913 #ifdef CONFIG_SLUB_DEBUG 3914 atomic_long_set(&n->nr_slabs, 0); 3915 atomic_long_set(&n->total_objects, 0); 3916 INIT_LIST_HEAD(&n->full); 3917 #endif 3918 } 3919 3920 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3921 { 3922 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3923 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3924 3925 /* 3926 * Must align to double word boundary for the double cmpxchg 3927 * instructions to work; see __pcpu_double_call_return_bool(). 3928 */ 3929 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3930 2 * sizeof(void *)); 3931 3932 if (!s->cpu_slab) 3933 return 0; 3934 3935 init_kmem_cache_cpus(s); 3936 3937 return 1; 3938 } 3939 3940 static struct kmem_cache *kmem_cache_node; 3941 3942 /* 3943 * No kmalloc_node yet so do it by hand. We know that this is the first 3944 * slab on the node for this slabcache. There are no concurrent accesses 3945 * possible. 3946 * 3947 * Note that this function only works on the kmem_cache_node 3948 * when allocating for the kmem_cache_node. This is used for bootstrapping 3949 * memory on a fresh node that has no slab structures yet. 3950 */ 3951 static void early_kmem_cache_node_alloc(int node) 3952 { 3953 struct slab *slab; 3954 struct kmem_cache_node *n; 3955 3956 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3957 3958 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3959 3960 BUG_ON(!slab); 3961 if (slab_nid(slab) != node) { 3962 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3963 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3964 } 3965 3966 n = slab->freelist; 3967 BUG_ON(!n); 3968 #ifdef CONFIG_SLUB_DEBUG 3969 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3970 init_tracking(kmem_cache_node, n); 3971 #endif 3972 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3973 slab->freelist = get_freepointer(kmem_cache_node, n); 3974 slab->inuse = 1; 3975 slab->frozen = 0; 3976 kmem_cache_node->node[node] = n; 3977 init_kmem_cache_node(n); 3978 inc_slabs_node(kmem_cache_node, node, slab->objects); 3979 3980 /* 3981 * No locks need to be taken here as it has just been 3982 * initialized and there is no concurrent access. 3983 */ 3984 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 3985 } 3986 3987 static void free_kmem_cache_nodes(struct kmem_cache *s) 3988 { 3989 int node; 3990 struct kmem_cache_node *n; 3991 3992 for_each_kmem_cache_node(s, node, n) { 3993 s->node[node] = NULL; 3994 kmem_cache_free(kmem_cache_node, n); 3995 } 3996 } 3997 3998 void __kmem_cache_release(struct kmem_cache *s) 3999 { 4000 cache_random_seq_destroy(s); 4001 free_percpu(s->cpu_slab); 4002 free_kmem_cache_nodes(s); 4003 } 4004 4005 static int init_kmem_cache_nodes(struct kmem_cache *s) 4006 { 4007 int node; 4008 4009 for_each_node_mask(node, slab_nodes) { 4010 struct kmem_cache_node *n; 4011 4012 if (slab_state == DOWN) { 4013 early_kmem_cache_node_alloc(node); 4014 continue; 4015 } 4016 n = kmem_cache_alloc_node(kmem_cache_node, 4017 GFP_KERNEL, node); 4018 4019 if (!n) { 4020 free_kmem_cache_nodes(s); 4021 return 0; 4022 } 4023 4024 init_kmem_cache_node(n); 4025 s->node[node] = n; 4026 } 4027 return 1; 4028 } 4029 4030 static void set_cpu_partial(struct kmem_cache *s) 4031 { 4032 #ifdef CONFIG_SLUB_CPU_PARTIAL 4033 unsigned int nr_objects; 4034 4035 /* 4036 * cpu_partial determined the maximum number of objects kept in the 4037 * per cpu partial lists of a processor. 4038 * 4039 * Per cpu partial lists mainly contain slabs that just have one 4040 * object freed. If they are used for allocation then they can be 4041 * filled up again with minimal effort. The slab will never hit the 4042 * per node partial lists and therefore no locking will be required. 4043 * 4044 * For backwards compatibility reasons, this is determined as number 4045 * of objects, even though we now limit maximum number of pages, see 4046 * slub_set_cpu_partial() 4047 */ 4048 if (!kmem_cache_has_cpu_partial(s)) 4049 nr_objects = 0; 4050 else if (s->size >= PAGE_SIZE) 4051 nr_objects = 6; 4052 else if (s->size >= 1024) 4053 nr_objects = 24; 4054 else if (s->size >= 256) 4055 nr_objects = 52; 4056 else 4057 nr_objects = 120; 4058 4059 slub_set_cpu_partial(s, nr_objects); 4060 #endif 4061 } 4062 4063 /* 4064 * calculate_sizes() determines the order and the distribution of data within 4065 * a slab object. 4066 */ 4067 static int calculate_sizes(struct kmem_cache *s) 4068 { 4069 slab_flags_t flags = s->flags; 4070 unsigned int size = s->object_size; 4071 unsigned int order; 4072 4073 /* 4074 * Round up object size to the next word boundary. We can only 4075 * place the free pointer at word boundaries and this determines 4076 * the possible location of the free pointer. 4077 */ 4078 size = ALIGN(size, sizeof(void *)); 4079 4080 #ifdef CONFIG_SLUB_DEBUG 4081 /* 4082 * Determine if we can poison the object itself. If the user of 4083 * the slab may touch the object after free or before allocation 4084 * then we should never poison the object itself. 4085 */ 4086 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4087 !s->ctor) 4088 s->flags |= __OBJECT_POISON; 4089 else 4090 s->flags &= ~__OBJECT_POISON; 4091 4092 4093 /* 4094 * If we are Redzoning then check if there is some space between the 4095 * end of the object and the free pointer. If not then add an 4096 * additional word to have some bytes to store Redzone information. 4097 */ 4098 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4099 size += sizeof(void *); 4100 #endif 4101 4102 /* 4103 * With that we have determined the number of bytes in actual use 4104 * by the object and redzoning. 4105 */ 4106 s->inuse = size; 4107 4108 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4109 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4110 s->ctor) { 4111 /* 4112 * Relocate free pointer after the object if it is not 4113 * permitted to overwrite the first word of the object on 4114 * kmem_cache_free. 4115 * 4116 * This is the case if we do RCU, have a constructor or 4117 * destructor, are poisoning the objects, or are 4118 * redzoning an object smaller than sizeof(void *). 4119 * 4120 * The assumption that s->offset >= s->inuse means free 4121 * pointer is outside of the object is used in the 4122 * freeptr_outside_object() function. If that is no 4123 * longer true, the function needs to be modified. 4124 */ 4125 s->offset = size; 4126 size += sizeof(void *); 4127 } else { 4128 /* 4129 * Store freelist pointer near middle of object to keep 4130 * it away from the edges of the object to avoid small 4131 * sized over/underflows from neighboring allocations. 4132 */ 4133 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4134 } 4135 4136 #ifdef CONFIG_SLUB_DEBUG 4137 if (flags & SLAB_STORE_USER) 4138 /* 4139 * Need to store information about allocs and frees after 4140 * the object. 4141 */ 4142 size += 2 * sizeof(struct track); 4143 #endif 4144 4145 kasan_cache_create(s, &size, &s->flags); 4146 #ifdef CONFIG_SLUB_DEBUG 4147 if (flags & SLAB_RED_ZONE) { 4148 /* 4149 * Add some empty padding so that we can catch 4150 * overwrites from earlier objects rather than let 4151 * tracking information or the free pointer be 4152 * corrupted if a user writes before the start 4153 * of the object. 4154 */ 4155 size += sizeof(void *); 4156 4157 s->red_left_pad = sizeof(void *); 4158 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4159 size += s->red_left_pad; 4160 } 4161 #endif 4162 4163 /* 4164 * SLUB stores one object immediately after another beginning from 4165 * offset 0. In order to align the objects we have to simply size 4166 * each object to conform to the alignment. 4167 */ 4168 size = ALIGN(size, s->align); 4169 s->size = size; 4170 s->reciprocal_size = reciprocal_value(size); 4171 order = calculate_order(size); 4172 4173 if ((int)order < 0) 4174 return 0; 4175 4176 s->allocflags = 0; 4177 if (order) 4178 s->allocflags |= __GFP_COMP; 4179 4180 if (s->flags & SLAB_CACHE_DMA) 4181 s->allocflags |= GFP_DMA; 4182 4183 if (s->flags & SLAB_CACHE_DMA32) 4184 s->allocflags |= GFP_DMA32; 4185 4186 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4187 s->allocflags |= __GFP_RECLAIMABLE; 4188 4189 /* 4190 * Determine the number of objects per slab 4191 */ 4192 s->oo = oo_make(order, size); 4193 s->min = oo_make(get_order(size), size); 4194 4195 return !!oo_objects(s->oo); 4196 } 4197 4198 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4199 { 4200 s->flags = kmem_cache_flags(s->size, flags, s->name); 4201 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4202 s->random = get_random_long(); 4203 #endif 4204 4205 if (!calculate_sizes(s)) 4206 goto error; 4207 if (disable_higher_order_debug) { 4208 /* 4209 * Disable debugging flags that store metadata if the min slab 4210 * order increased. 4211 */ 4212 if (get_order(s->size) > get_order(s->object_size)) { 4213 s->flags &= ~DEBUG_METADATA_FLAGS; 4214 s->offset = 0; 4215 if (!calculate_sizes(s)) 4216 goto error; 4217 } 4218 } 4219 4220 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4221 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4222 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4223 /* Enable fast mode */ 4224 s->flags |= __CMPXCHG_DOUBLE; 4225 #endif 4226 4227 /* 4228 * The larger the object size is, the more slabs we want on the partial 4229 * list to avoid pounding the page allocator excessively. 4230 */ 4231 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4232 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4233 4234 set_cpu_partial(s); 4235 4236 #ifdef CONFIG_NUMA 4237 s->remote_node_defrag_ratio = 1000; 4238 #endif 4239 4240 /* Initialize the pre-computed randomized freelist if slab is up */ 4241 if (slab_state >= UP) { 4242 if (init_cache_random_seq(s)) 4243 goto error; 4244 } 4245 4246 if (!init_kmem_cache_nodes(s)) 4247 goto error; 4248 4249 if (alloc_kmem_cache_cpus(s)) 4250 return 0; 4251 4252 error: 4253 __kmem_cache_release(s); 4254 return -EINVAL; 4255 } 4256 4257 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4258 const char *text) 4259 { 4260 #ifdef CONFIG_SLUB_DEBUG 4261 void *addr = slab_address(slab); 4262 unsigned long flags; 4263 unsigned long *map; 4264 void *p; 4265 4266 slab_err(s, slab, text, s->name); 4267 slab_lock(slab, &flags); 4268 4269 map = get_map(s, slab); 4270 for_each_object(p, s, addr, slab->objects) { 4271 4272 if (!test_bit(__obj_to_index(s, addr, p), map)) { 4273 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4274 print_tracking(s, p); 4275 } 4276 } 4277 put_map(map); 4278 slab_unlock(slab, &flags); 4279 #endif 4280 } 4281 4282 /* 4283 * Attempt to free all partial slabs on a node. 4284 * This is called from __kmem_cache_shutdown(). We must take list_lock 4285 * because sysfs file might still access partial list after the shutdowning. 4286 */ 4287 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4288 { 4289 LIST_HEAD(discard); 4290 struct slab *slab, *h; 4291 4292 BUG_ON(irqs_disabled()); 4293 spin_lock_irq(&n->list_lock); 4294 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4295 if (!slab->inuse) { 4296 remove_partial(n, slab); 4297 list_add(&slab->slab_list, &discard); 4298 } else { 4299 list_slab_objects(s, slab, 4300 "Objects remaining in %s on __kmem_cache_shutdown()"); 4301 } 4302 } 4303 spin_unlock_irq(&n->list_lock); 4304 4305 list_for_each_entry_safe(slab, h, &discard, slab_list) 4306 discard_slab(s, slab); 4307 } 4308 4309 bool __kmem_cache_empty(struct kmem_cache *s) 4310 { 4311 int node; 4312 struct kmem_cache_node *n; 4313 4314 for_each_kmem_cache_node(s, node, n) 4315 if (n->nr_partial || slabs_node(s, node)) 4316 return false; 4317 return true; 4318 } 4319 4320 /* 4321 * Release all resources used by a slab cache. 4322 */ 4323 int __kmem_cache_shutdown(struct kmem_cache *s) 4324 { 4325 int node; 4326 struct kmem_cache_node *n; 4327 4328 flush_all_cpus_locked(s); 4329 /* Attempt to free all objects */ 4330 for_each_kmem_cache_node(s, node, n) { 4331 free_partial(s, n); 4332 if (n->nr_partial || slabs_node(s, node)) 4333 return 1; 4334 } 4335 return 0; 4336 } 4337 4338 #ifdef CONFIG_PRINTK 4339 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4340 { 4341 void *base; 4342 int __maybe_unused i; 4343 unsigned int objnr; 4344 void *objp; 4345 void *objp0; 4346 struct kmem_cache *s = slab->slab_cache; 4347 struct track __maybe_unused *trackp; 4348 4349 kpp->kp_ptr = object; 4350 kpp->kp_slab = slab; 4351 kpp->kp_slab_cache = s; 4352 base = slab_address(slab); 4353 objp0 = kasan_reset_tag(object); 4354 #ifdef CONFIG_SLUB_DEBUG 4355 objp = restore_red_left(s, objp0); 4356 #else 4357 objp = objp0; 4358 #endif 4359 objnr = obj_to_index(s, slab, objp); 4360 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4361 objp = base + s->size * objnr; 4362 kpp->kp_objp = objp; 4363 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4364 || (objp - base) % s->size) || 4365 !(s->flags & SLAB_STORE_USER)) 4366 return; 4367 #ifdef CONFIG_SLUB_DEBUG 4368 objp = fixup_red_left(s, objp); 4369 trackp = get_track(s, objp, TRACK_ALLOC); 4370 kpp->kp_ret = (void *)trackp->addr; 4371 #ifdef CONFIG_STACKDEPOT 4372 { 4373 depot_stack_handle_t handle; 4374 unsigned long *entries; 4375 unsigned int nr_entries; 4376 4377 handle = READ_ONCE(trackp->handle); 4378 if (handle) { 4379 nr_entries = stack_depot_fetch(handle, &entries); 4380 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4381 kpp->kp_stack[i] = (void *)entries[i]; 4382 } 4383 4384 trackp = get_track(s, objp, TRACK_FREE); 4385 handle = READ_ONCE(trackp->handle); 4386 if (handle) { 4387 nr_entries = stack_depot_fetch(handle, &entries); 4388 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4389 kpp->kp_free_stack[i] = (void *)entries[i]; 4390 } 4391 } 4392 #endif 4393 #endif 4394 } 4395 #endif 4396 4397 /******************************************************************** 4398 * Kmalloc subsystem 4399 *******************************************************************/ 4400 4401 static int __init setup_slub_min_order(char *str) 4402 { 4403 get_option(&str, (int *)&slub_min_order); 4404 4405 return 1; 4406 } 4407 4408 __setup("slub_min_order=", setup_slub_min_order); 4409 4410 static int __init setup_slub_max_order(char *str) 4411 { 4412 get_option(&str, (int *)&slub_max_order); 4413 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4414 4415 return 1; 4416 } 4417 4418 __setup("slub_max_order=", setup_slub_max_order); 4419 4420 static int __init setup_slub_min_objects(char *str) 4421 { 4422 get_option(&str, (int *)&slub_min_objects); 4423 4424 return 1; 4425 } 4426 4427 __setup("slub_min_objects=", setup_slub_min_objects); 4428 4429 void *__kmalloc(size_t size, gfp_t flags) 4430 { 4431 struct kmem_cache *s; 4432 void *ret; 4433 4434 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4435 return kmalloc_large(size, flags); 4436 4437 s = kmalloc_slab(size, flags); 4438 4439 if (unlikely(ZERO_OR_NULL_PTR(s))) 4440 return s; 4441 4442 ret = slab_alloc(s, NULL, flags, _RET_IP_, size); 4443 4444 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 4445 4446 ret = kasan_kmalloc(s, ret, size, flags); 4447 4448 return ret; 4449 } 4450 EXPORT_SYMBOL(__kmalloc); 4451 4452 #ifdef CONFIG_NUMA 4453 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4454 { 4455 struct page *page; 4456 void *ptr = NULL; 4457 unsigned int order = get_order(size); 4458 4459 flags |= __GFP_COMP; 4460 page = alloc_pages_node(node, flags, order); 4461 if (page) { 4462 ptr = page_address(page); 4463 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4464 PAGE_SIZE << order); 4465 } 4466 4467 return kmalloc_large_node_hook(ptr, size, flags); 4468 } 4469 4470 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4471 { 4472 struct kmem_cache *s; 4473 void *ret; 4474 4475 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4476 ret = kmalloc_large_node(size, flags, node); 4477 4478 trace_kmalloc_node(_RET_IP_, ret, 4479 size, PAGE_SIZE << get_order(size), 4480 flags, node); 4481 4482 return ret; 4483 } 4484 4485 s = kmalloc_slab(size, flags); 4486 4487 if (unlikely(ZERO_OR_NULL_PTR(s))) 4488 return s; 4489 4490 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size); 4491 4492 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4493 4494 ret = kasan_kmalloc(s, ret, size, flags); 4495 4496 return ret; 4497 } 4498 EXPORT_SYMBOL(__kmalloc_node); 4499 #endif /* CONFIG_NUMA */ 4500 4501 #ifdef CONFIG_HARDENED_USERCOPY 4502 /* 4503 * Rejects incorrectly sized objects and objects that are to be copied 4504 * to/from userspace but do not fall entirely within the containing slab 4505 * cache's usercopy region. 4506 * 4507 * Returns NULL if check passes, otherwise const char * to name of cache 4508 * to indicate an error. 4509 */ 4510 void __check_heap_object(const void *ptr, unsigned long n, 4511 const struct slab *slab, bool to_user) 4512 { 4513 struct kmem_cache *s; 4514 unsigned int offset; 4515 bool is_kfence = is_kfence_address(ptr); 4516 4517 ptr = kasan_reset_tag(ptr); 4518 4519 /* Find object and usable object size. */ 4520 s = slab->slab_cache; 4521 4522 /* Reject impossible pointers. */ 4523 if (ptr < slab_address(slab)) 4524 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4525 to_user, 0, n); 4526 4527 /* Find offset within object. */ 4528 if (is_kfence) 4529 offset = ptr - kfence_object_start(ptr); 4530 else 4531 offset = (ptr - slab_address(slab)) % s->size; 4532 4533 /* Adjust for redzone and reject if within the redzone. */ 4534 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4535 if (offset < s->red_left_pad) 4536 usercopy_abort("SLUB object in left red zone", 4537 s->name, to_user, offset, n); 4538 offset -= s->red_left_pad; 4539 } 4540 4541 /* Allow address range falling entirely within usercopy region. */ 4542 if (offset >= s->useroffset && 4543 offset - s->useroffset <= s->usersize && 4544 n <= s->useroffset - offset + s->usersize) 4545 return; 4546 4547 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4548 } 4549 #endif /* CONFIG_HARDENED_USERCOPY */ 4550 4551 size_t __ksize(const void *object) 4552 { 4553 struct folio *folio; 4554 4555 if (unlikely(object == ZERO_SIZE_PTR)) 4556 return 0; 4557 4558 folio = virt_to_folio(object); 4559 4560 if (unlikely(!folio_test_slab(folio))) 4561 return folio_size(folio); 4562 4563 return slab_ksize(folio_slab(folio)->slab_cache); 4564 } 4565 EXPORT_SYMBOL(__ksize); 4566 4567 void kfree(const void *x) 4568 { 4569 struct folio *folio; 4570 struct slab *slab; 4571 void *object = (void *)x; 4572 4573 trace_kfree(_RET_IP_, x); 4574 4575 if (unlikely(ZERO_OR_NULL_PTR(x))) 4576 return; 4577 4578 folio = virt_to_folio(x); 4579 if (unlikely(!folio_test_slab(folio))) { 4580 free_large_kmalloc(folio, object); 4581 return; 4582 } 4583 slab = folio_slab(folio); 4584 slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_); 4585 } 4586 EXPORT_SYMBOL(kfree); 4587 4588 #define SHRINK_PROMOTE_MAX 32 4589 4590 /* 4591 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4592 * up most to the head of the partial lists. New allocations will then 4593 * fill those up and thus they can be removed from the partial lists. 4594 * 4595 * The slabs with the least items are placed last. This results in them 4596 * being allocated from last increasing the chance that the last objects 4597 * are freed in them. 4598 */ 4599 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4600 { 4601 int node; 4602 int i; 4603 struct kmem_cache_node *n; 4604 struct slab *slab; 4605 struct slab *t; 4606 struct list_head discard; 4607 struct list_head promote[SHRINK_PROMOTE_MAX]; 4608 unsigned long flags; 4609 int ret = 0; 4610 4611 for_each_kmem_cache_node(s, node, n) { 4612 INIT_LIST_HEAD(&discard); 4613 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4614 INIT_LIST_HEAD(promote + i); 4615 4616 spin_lock_irqsave(&n->list_lock, flags); 4617 4618 /* 4619 * Build lists of slabs to discard or promote. 4620 * 4621 * Note that concurrent frees may occur while we hold the 4622 * list_lock. slab->inuse here is the upper limit. 4623 */ 4624 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4625 int free = slab->objects - slab->inuse; 4626 4627 /* Do not reread slab->inuse */ 4628 barrier(); 4629 4630 /* We do not keep full slabs on the list */ 4631 BUG_ON(free <= 0); 4632 4633 if (free == slab->objects) { 4634 list_move(&slab->slab_list, &discard); 4635 n->nr_partial--; 4636 } else if (free <= SHRINK_PROMOTE_MAX) 4637 list_move(&slab->slab_list, promote + free - 1); 4638 } 4639 4640 /* 4641 * Promote the slabs filled up most to the head of the 4642 * partial list. 4643 */ 4644 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4645 list_splice(promote + i, &n->partial); 4646 4647 spin_unlock_irqrestore(&n->list_lock, flags); 4648 4649 /* Release empty slabs */ 4650 list_for_each_entry_safe(slab, t, &discard, slab_list) 4651 discard_slab(s, slab); 4652 4653 if (slabs_node(s, node)) 4654 ret = 1; 4655 } 4656 4657 return ret; 4658 } 4659 4660 int __kmem_cache_shrink(struct kmem_cache *s) 4661 { 4662 flush_all(s); 4663 return __kmem_cache_do_shrink(s); 4664 } 4665 4666 static int slab_mem_going_offline_callback(void *arg) 4667 { 4668 struct kmem_cache *s; 4669 4670 mutex_lock(&slab_mutex); 4671 list_for_each_entry(s, &slab_caches, list) { 4672 flush_all_cpus_locked(s); 4673 __kmem_cache_do_shrink(s); 4674 } 4675 mutex_unlock(&slab_mutex); 4676 4677 return 0; 4678 } 4679 4680 static void slab_mem_offline_callback(void *arg) 4681 { 4682 struct memory_notify *marg = arg; 4683 int offline_node; 4684 4685 offline_node = marg->status_change_nid_normal; 4686 4687 /* 4688 * If the node still has available memory. we need kmem_cache_node 4689 * for it yet. 4690 */ 4691 if (offline_node < 0) 4692 return; 4693 4694 mutex_lock(&slab_mutex); 4695 node_clear(offline_node, slab_nodes); 4696 /* 4697 * We no longer free kmem_cache_node structures here, as it would be 4698 * racy with all get_node() users, and infeasible to protect them with 4699 * slab_mutex. 4700 */ 4701 mutex_unlock(&slab_mutex); 4702 } 4703 4704 static int slab_mem_going_online_callback(void *arg) 4705 { 4706 struct kmem_cache_node *n; 4707 struct kmem_cache *s; 4708 struct memory_notify *marg = arg; 4709 int nid = marg->status_change_nid_normal; 4710 int ret = 0; 4711 4712 /* 4713 * If the node's memory is already available, then kmem_cache_node is 4714 * already created. Nothing to do. 4715 */ 4716 if (nid < 0) 4717 return 0; 4718 4719 /* 4720 * We are bringing a node online. No memory is available yet. We must 4721 * allocate a kmem_cache_node structure in order to bring the node 4722 * online. 4723 */ 4724 mutex_lock(&slab_mutex); 4725 list_for_each_entry(s, &slab_caches, list) { 4726 /* 4727 * The structure may already exist if the node was previously 4728 * onlined and offlined. 4729 */ 4730 if (get_node(s, nid)) 4731 continue; 4732 /* 4733 * XXX: kmem_cache_alloc_node will fallback to other nodes 4734 * since memory is not yet available from the node that 4735 * is brought up. 4736 */ 4737 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4738 if (!n) { 4739 ret = -ENOMEM; 4740 goto out; 4741 } 4742 init_kmem_cache_node(n); 4743 s->node[nid] = n; 4744 } 4745 /* 4746 * Any cache created after this point will also have kmem_cache_node 4747 * initialized for the new node. 4748 */ 4749 node_set(nid, slab_nodes); 4750 out: 4751 mutex_unlock(&slab_mutex); 4752 return ret; 4753 } 4754 4755 static int slab_memory_callback(struct notifier_block *self, 4756 unsigned long action, void *arg) 4757 { 4758 int ret = 0; 4759 4760 switch (action) { 4761 case MEM_GOING_ONLINE: 4762 ret = slab_mem_going_online_callback(arg); 4763 break; 4764 case MEM_GOING_OFFLINE: 4765 ret = slab_mem_going_offline_callback(arg); 4766 break; 4767 case MEM_OFFLINE: 4768 case MEM_CANCEL_ONLINE: 4769 slab_mem_offline_callback(arg); 4770 break; 4771 case MEM_ONLINE: 4772 case MEM_CANCEL_OFFLINE: 4773 break; 4774 } 4775 if (ret) 4776 ret = notifier_from_errno(ret); 4777 else 4778 ret = NOTIFY_OK; 4779 return ret; 4780 } 4781 4782 static struct notifier_block slab_memory_callback_nb = { 4783 .notifier_call = slab_memory_callback, 4784 .priority = SLAB_CALLBACK_PRI, 4785 }; 4786 4787 /******************************************************************** 4788 * Basic setup of slabs 4789 *******************************************************************/ 4790 4791 /* 4792 * Used for early kmem_cache structures that were allocated using 4793 * the page allocator. Allocate them properly then fix up the pointers 4794 * that may be pointing to the wrong kmem_cache structure. 4795 */ 4796 4797 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4798 { 4799 int node; 4800 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4801 struct kmem_cache_node *n; 4802 4803 memcpy(s, static_cache, kmem_cache->object_size); 4804 4805 /* 4806 * This runs very early, and only the boot processor is supposed to be 4807 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4808 * IPIs around. 4809 */ 4810 __flush_cpu_slab(s, smp_processor_id()); 4811 for_each_kmem_cache_node(s, node, n) { 4812 struct slab *p; 4813 4814 list_for_each_entry(p, &n->partial, slab_list) 4815 p->slab_cache = s; 4816 4817 #ifdef CONFIG_SLUB_DEBUG 4818 list_for_each_entry(p, &n->full, slab_list) 4819 p->slab_cache = s; 4820 #endif 4821 } 4822 list_add(&s->list, &slab_caches); 4823 return s; 4824 } 4825 4826 void __init kmem_cache_init(void) 4827 { 4828 static __initdata struct kmem_cache boot_kmem_cache, 4829 boot_kmem_cache_node; 4830 int node; 4831 4832 if (debug_guardpage_minorder()) 4833 slub_max_order = 0; 4834 4835 /* Print slub debugging pointers without hashing */ 4836 if (__slub_debug_enabled()) 4837 no_hash_pointers_enable(NULL); 4838 4839 kmem_cache_node = &boot_kmem_cache_node; 4840 kmem_cache = &boot_kmem_cache; 4841 4842 /* 4843 * Initialize the nodemask for which we will allocate per node 4844 * structures. Here we don't need taking slab_mutex yet. 4845 */ 4846 for_each_node_state(node, N_NORMAL_MEMORY) 4847 node_set(node, slab_nodes); 4848 4849 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4850 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4851 4852 register_hotmemory_notifier(&slab_memory_callback_nb); 4853 4854 /* Able to allocate the per node structures */ 4855 slab_state = PARTIAL; 4856 4857 create_boot_cache(kmem_cache, "kmem_cache", 4858 offsetof(struct kmem_cache, node) + 4859 nr_node_ids * sizeof(struct kmem_cache_node *), 4860 SLAB_HWCACHE_ALIGN, 0, 0); 4861 4862 kmem_cache = bootstrap(&boot_kmem_cache); 4863 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4864 4865 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4866 setup_kmalloc_cache_index_table(); 4867 create_kmalloc_caches(0); 4868 4869 /* Setup random freelists for each cache */ 4870 init_freelist_randomization(); 4871 4872 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4873 slub_cpu_dead); 4874 4875 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4876 cache_line_size(), 4877 slub_min_order, slub_max_order, slub_min_objects, 4878 nr_cpu_ids, nr_node_ids); 4879 } 4880 4881 void __init kmem_cache_init_late(void) 4882 { 4883 } 4884 4885 struct kmem_cache * 4886 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4887 slab_flags_t flags, void (*ctor)(void *)) 4888 { 4889 struct kmem_cache *s; 4890 4891 s = find_mergeable(size, align, flags, name, ctor); 4892 if (s) { 4893 s->refcount++; 4894 4895 /* 4896 * Adjust the object sizes so that we clear 4897 * the complete object on kzalloc. 4898 */ 4899 s->object_size = max(s->object_size, size); 4900 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4901 4902 if (sysfs_slab_alias(s, name)) { 4903 s->refcount--; 4904 s = NULL; 4905 } 4906 } 4907 4908 return s; 4909 } 4910 4911 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4912 { 4913 int err; 4914 4915 err = kmem_cache_open(s, flags); 4916 if (err) 4917 return err; 4918 4919 /* Mutex is not taken during early boot */ 4920 if (slab_state <= UP) 4921 return 0; 4922 4923 err = sysfs_slab_add(s); 4924 if (err) { 4925 __kmem_cache_release(s); 4926 return err; 4927 } 4928 4929 if (s->flags & SLAB_STORE_USER) 4930 debugfs_slab_add(s); 4931 4932 return 0; 4933 } 4934 4935 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4936 { 4937 struct kmem_cache *s; 4938 void *ret; 4939 4940 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4941 return kmalloc_large(size, gfpflags); 4942 4943 s = kmalloc_slab(size, gfpflags); 4944 4945 if (unlikely(ZERO_OR_NULL_PTR(s))) 4946 return s; 4947 4948 ret = slab_alloc(s, NULL, gfpflags, caller, size); 4949 4950 /* Honor the call site pointer we received. */ 4951 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4952 4953 return ret; 4954 } 4955 EXPORT_SYMBOL(__kmalloc_track_caller); 4956 4957 #ifdef CONFIG_NUMA 4958 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4959 int node, unsigned long caller) 4960 { 4961 struct kmem_cache *s; 4962 void *ret; 4963 4964 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4965 ret = kmalloc_large_node(size, gfpflags, node); 4966 4967 trace_kmalloc_node(caller, ret, 4968 size, PAGE_SIZE << get_order(size), 4969 gfpflags, node); 4970 4971 return ret; 4972 } 4973 4974 s = kmalloc_slab(size, gfpflags); 4975 4976 if (unlikely(ZERO_OR_NULL_PTR(s))) 4977 return s; 4978 4979 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size); 4980 4981 /* Honor the call site pointer we received. */ 4982 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4983 4984 return ret; 4985 } 4986 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4987 #endif 4988 4989 #ifdef CONFIG_SYSFS 4990 static int count_inuse(struct slab *slab) 4991 { 4992 return slab->inuse; 4993 } 4994 4995 static int count_total(struct slab *slab) 4996 { 4997 return slab->objects; 4998 } 4999 #endif 5000 5001 #ifdef CONFIG_SLUB_DEBUG 5002 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5003 unsigned long *obj_map) 5004 { 5005 void *p; 5006 void *addr = slab_address(slab); 5007 unsigned long flags; 5008 5009 slab_lock(slab, &flags); 5010 5011 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5012 goto unlock; 5013 5014 /* Now we know that a valid freelist exists */ 5015 __fill_map(obj_map, s, slab); 5016 for_each_object(p, s, addr, slab->objects) { 5017 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5018 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5019 5020 if (!check_object(s, slab, p, val)) 5021 break; 5022 } 5023 unlock: 5024 slab_unlock(slab, &flags); 5025 } 5026 5027 static int validate_slab_node(struct kmem_cache *s, 5028 struct kmem_cache_node *n, unsigned long *obj_map) 5029 { 5030 unsigned long count = 0; 5031 struct slab *slab; 5032 unsigned long flags; 5033 5034 spin_lock_irqsave(&n->list_lock, flags); 5035 5036 list_for_each_entry(slab, &n->partial, slab_list) { 5037 validate_slab(s, slab, obj_map); 5038 count++; 5039 } 5040 if (count != n->nr_partial) { 5041 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5042 s->name, count, n->nr_partial); 5043 slab_add_kunit_errors(); 5044 } 5045 5046 if (!(s->flags & SLAB_STORE_USER)) 5047 goto out; 5048 5049 list_for_each_entry(slab, &n->full, slab_list) { 5050 validate_slab(s, slab, obj_map); 5051 count++; 5052 } 5053 if (count != atomic_long_read(&n->nr_slabs)) { 5054 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5055 s->name, count, atomic_long_read(&n->nr_slabs)); 5056 slab_add_kunit_errors(); 5057 } 5058 5059 out: 5060 spin_unlock_irqrestore(&n->list_lock, flags); 5061 return count; 5062 } 5063 5064 long validate_slab_cache(struct kmem_cache *s) 5065 { 5066 int node; 5067 unsigned long count = 0; 5068 struct kmem_cache_node *n; 5069 unsigned long *obj_map; 5070 5071 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5072 if (!obj_map) 5073 return -ENOMEM; 5074 5075 flush_all(s); 5076 for_each_kmem_cache_node(s, node, n) 5077 count += validate_slab_node(s, n, obj_map); 5078 5079 bitmap_free(obj_map); 5080 5081 return count; 5082 } 5083 EXPORT_SYMBOL(validate_slab_cache); 5084 5085 #ifdef CONFIG_DEBUG_FS 5086 /* 5087 * Generate lists of code addresses where slabcache objects are allocated 5088 * and freed. 5089 */ 5090 5091 struct location { 5092 depot_stack_handle_t handle; 5093 unsigned long count; 5094 unsigned long addr; 5095 long long sum_time; 5096 long min_time; 5097 long max_time; 5098 long min_pid; 5099 long max_pid; 5100 DECLARE_BITMAP(cpus, NR_CPUS); 5101 nodemask_t nodes; 5102 }; 5103 5104 struct loc_track { 5105 unsigned long max; 5106 unsigned long count; 5107 struct location *loc; 5108 loff_t idx; 5109 }; 5110 5111 static struct dentry *slab_debugfs_root; 5112 5113 static void free_loc_track(struct loc_track *t) 5114 { 5115 if (t->max) 5116 free_pages((unsigned long)t->loc, 5117 get_order(sizeof(struct location) * t->max)); 5118 } 5119 5120 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5121 { 5122 struct location *l; 5123 int order; 5124 5125 order = get_order(sizeof(struct location) * max); 5126 5127 l = (void *)__get_free_pages(flags, order); 5128 if (!l) 5129 return 0; 5130 5131 if (t->count) { 5132 memcpy(l, t->loc, sizeof(struct location) * t->count); 5133 free_loc_track(t); 5134 } 5135 t->max = max; 5136 t->loc = l; 5137 return 1; 5138 } 5139 5140 static int add_location(struct loc_track *t, struct kmem_cache *s, 5141 const struct track *track) 5142 { 5143 long start, end, pos; 5144 struct location *l; 5145 unsigned long caddr, chandle; 5146 unsigned long age = jiffies - track->when; 5147 depot_stack_handle_t handle = 0; 5148 5149 #ifdef CONFIG_STACKDEPOT 5150 handle = READ_ONCE(track->handle); 5151 #endif 5152 start = -1; 5153 end = t->count; 5154 5155 for ( ; ; ) { 5156 pos = start + (end - start + 1) / 2; 5157 5158 /* 5159 * There is nothing at "end". If we end up there 5160 * we need to add something to before end. 5161 */ 5162 if (pos == end) 5163 break; 5164 5165 caddr = t->loc[pos].addr; 5166 chandle = t->loc[pos].handle; 5167 if ((track->addr == caddr) && (handle == chandle)) { 5168 5169 l = &t->loc[pos]; 5170 l->count++; 5171 if (track->when) { 5172 l->sum_time += age; 5173 if (age < l->min_time) 5174 l->min_time = age; 5175 if (age > l->max_time) 5176 l->max_time = age; 5177 5178 if (track->pid < l->min_pid) 5179 l->min_pid = track->pid; 5180 if (track->pid > l->max_pid) 5181 l->max_pid = track->pid; 5182 5183 cpumask_set_cpu(track->cpu, 5184 to_cpumask(l->cpus)); 5185 } 5186 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5187 return 1; 5188 } 5189 5190 if (track->addr < caddr) 5191 end = pos; 5192 else if (track->addr == caddr && handle < chandle) 5193 end = pos; 5194 else 5195 start = pos; 5196 } 5197 5198 /* 5199 * Not found. Insert new tracking element. 5200 */ 5201 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5202 return 0; 5203 5204 l = t->loc + pos; 5205 if (pos < t->count) 5206 memmove(l + 1, l, 5207 (t->count - pos) * sizeof(struct location)); 5208 t->count++; 5209 l->count = 1; 5210 l->addr = track->addr; 5211 l->sum_time = age; 5212 l->min_time = age; 5213 l->max_time = age; 5214 l->min_pid = track->pid; 5215 l->max_pid = track->pid; 5216 l->handle = handle; 5217 cpumask_clear(to_cpumask(l->cpus)); 5218 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5219 nodes_clear(l->nodes); 5220 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5221 return 1; 5222 } 5223 5224 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5225 struct slab *slab, enum track_item alloc, 5226 unsigned long *obj_map) 5227 { 5228 void *addr = slab_address(slab); 5229 void *p; 5230 5231 __fill_map(obj_map, s, slab); 5232 5233 for_each_object(p, s, addr, slab->objects) 5234 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5235 add_location(t, s, get_track(s, p, alloc)); 5236 } 5237 #endif /* CONFIG_DEBUG_FS */ 5238 #endif /* CONFIG_SLUB_DEBUG */ 5239 5240 #ifdef CONFIG_SYSFS 5241 enum slab_stat_type { 5242 SL_ALL, /* All slabs */ 5243 SL_PARTIAL, /* Only partially allocated slabs */ 5244 SL_CPU, /* Only slabs used for cpu caches */ 5245 SL_OBJECTS, /* Determine allocated objects not slabs */ 5246 SL_TOTAL /* Determine object capacity not slabs */ 5247 }; 5248 5249 #define SO_ALL (1 << SL_ALL) 5250 #define SO_PARTIAL (1 << SL_PARTIAL) 5251 #define SO_CPU (1 << SL_CPU) 5252 #define SO_OBJECTS (1 << SL_OBJECTS) 5253 #define SO_TOTAL (1 << SL_TOTAL) 5254 5255 static ssize_t show_slab_objects(struct kmem_cache *s, 5256 char *buf, unsigned long flags) 5257 { 5258 unsigned long total = 0; 5259 int node; 5260 int x; 5261 unsigned long *nodes; 5262 int len = 0; 5263 5264 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5265 if (!nodes) 5266 return -ENOMEM; 5267 5268 if (flags & SO_CPU) { 5269 int cpu; 5270 5271 for_each_possible_cpu(cpu) { 5272 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5273 cpu); 5274 int node; 5275 struct slab *slab; 5276 5277 slab = READ_ONCE(c->slab); 5278 if (!slab) 5279 continue; 5280 5281 node = slab_nid(slab); 5282 if (flags & SO_TOTAL) 5283 x = slab->objects; 5284 else if (flags & SO_OBJECTS) 5285 x = slab->inuse; 5286 else 5287 x = 1; 5288 5289 total += x; 5290 nodes[node] += x; 5291 5292 #ifdef CONFIG_SLUB_CPU_PARTIAL 5293 slab = slub_percpu_partial_read_once(c); 5294 if (slab) { 5295 node = slab_nid(slab); 5296 if (flags & SO_TOTAL) 5297 WARN_ON_ONCE(1); 5298 else if (flags & SO_OBJECTS) 5299 WARN_ON_ONCE(1); 5300 else 5301 x = slab->slabs; 5302 total += x; 5303 nodes[node] += x; 5304 } 5305 #endif 5306 } 5307 } 5308 5309 /* 5310 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5311 * already held which will conflict with an existing lock order: 5312 * 5313 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5314 * 5315 * We don't really need mem_hotplug_lock (to hold off 5316 * slab_mem_going_offline_callback) here because slab's memory hot 5317 * unplug code doesn't destroy the kmem_cache->node[] data. 5318 */ 5319 5320 #ifdef CONFIG_SLUB_DEBUG 5321 if (flags & SO_ALL) { 5322 struct kmem_cache_node *n; 5323 5324 for_each_kmem_cache_node(s, node, n) { 5325 5326 if (flags & SO_TOTAL) 5327 x = atomic_long_read(&n->total_objects); 5328 else if (flags & SO_OBJECTS) 5329 x = atomic_long_read(&n->total_objects) - 5330 count_partial(n, count_free); 5331 else 5332 x = atomic_long_read(&n->nr_slabs); 5333 total += x; 5334 nodes[node] += x; 5335 } 5336 5337 } else 5338 #endif 5339 if (flags & SO_PARTIAL) { 5340 struct kmem_cache_node *n; 5341 5342 for_each_kmem_cache_node(s, node, n) { 5343 if (flags & SO_TOTAL) 5344 x = count_partial(n, count_total); 5345 else if (flags & SO_OBJECTS) 5346 x = count_partial(n, count_inuse); 5347 else 5348 x = n->nr_partial; 5349 total += x; 5350 nodes[node] += x; 5351 } 5352 } 5353 5354 len += sysfs_emit_at(buf, len, "%lu", total); 5355 #ifdef CONFIG_NUMA 5356 for (node = 0; node < nr_node_ids; node++) { 5357 if (nodes[node]) 5358 len += sysfs_emit_at(buf, len, " N%d=%lu", 5359 node, nodes[node]); 5360 } 5361 #endif 5362 len += sysfs_emit_at(buf, len, "\n"); 5363 kfree(nodes); 5364 5365 return len; 5366 } 5367 5368 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5369 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5370 5371 struct slab_attribute { 5372 struct attribute attr; 5373 ssize_t (*show)(struct kmem_cache *s, char *buf); 5374 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5375 }; 5376 5377 #define SLAB_ATTR_RO(_name) \ 5378 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5379 5380 #define SLAB_ATTR(_name) \ 5381 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5382 5383 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5384 { 5385 return sysfs_emit(buf, "%u\n", s->size); 5386 } 5387 SLAB_ATTR_RO(slab_size); 5388 5389 static ssize_t align_show(struct kmem_cache *s, char *buf) 5390 { 5391 return sysfs_emit(buf, "%u\n", s->align); 5392 } 5393 SLAB_ATTR_RO(align); 5394 5395 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5396 { 5397 return sysfs_emit(buf, "%u\n", s->object_size); 5398 } 5399 SLAB_ATTR_RO(object_size); 5400 5401 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5402 { 5403 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5404 } 5405 SLAB_ATTR_RO(objs_per_slab); 5406 5407 static ssize_t order_show(struct kmem_cache *s, char *buf) 5408 { 5409 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5410 } 5411 SLAB_ATTR_RO(order); 5412 5413 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5414 { 5415 return sysfs_emit(buf, "%lu\n", s->min_partial); 5416 } 5417 5418 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5419 size_t length) 5420 { 5421 unsigned long min; 5422 int err; 5423 5424 err = kstrtoul(buf, 10, &min); 5425 if (err) 5426 return err; 5427 5428 s->min_partial = min; 5429 return length; 5430 } 5431 SLAB_ATTR(min_partial); 5432 5433 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5434 { 5435 unsigned int nr_partial = 0; 5436 #ifdef CONFIG_SLUB_CPU_PARTIAL 5437 nr_partial = s->cpu_partial; 5438 #endif 5439 5440 return sysfs_emit(buf, "%u\n", nr_partial); 5441 } 5442 5443 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5444 size_t length) 5445 { 5446 unsigned int objects; 5447 int err; 5448 5449 err = kstrtouint(buf, 10, &objects); 5450 if (err) 5451 return err; 5452 if (objects && !kmem_cache_has_cpu_partial(s)) 5453 return -EINVAL; 5454 5455 slub_set_cpu_partial(s, objects); 5456 flush_all(s); 5457 return length; 5458 } 5459 SLAB_ATTR(cpu_partial); 5460 5461 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5462 { 5463 if (!s->ctor) 5464 return 0; 5465 return sysfs_emit(buf, "%pS\n", s->ctor); 5466 } 5467 SLAB_ATTR_RO(ctor); 5468 5469 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5470 { 5471 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5472 } 5473 SLAB_ATTR_RO(aliases); 5474 5475 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5476 { 5477 return show_slab_objects(s, buf, SO_PARTIAL); 5478 } 5479 SLAB_ATTR_RO(partial); 5480 5481 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5482 { 5483 return show_slab_objects(s, buf, SO_CPU); 5484 } 5485 SLAB_ATTR_RO(cpu_slabs); 5486 5487 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5488 { 5489 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5490 } 5491 SLAB_ATTR_RO(objects); 5492 5493 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5494 { 5495 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5496 } 5497 SLAB_ATTR_RO(objects_partial); 5498 5499 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5500 { 5501 int objects = 0; 5502 int slabs = 0; 5503 int cpu __maybe_unused; 5504 int len = 0; 5505 5506 #ifdef CONFIG_SLUB_CPU_PARTIAL 5507 for_each_online_cpu(cpu) { 5508 struct slab *slab; 5509 5510 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5511 5512 if (slab) 5513 slabs += slab->slabs; 5514 } 5515 #endif 5516 5517 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5518 objects = (slabs * oo_objects(s->oo)) / 2; 5519 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5520 5521 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) 5522 for_each_online_cpu(cpu) { 5523 struct slab *slab; 5524 5525 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5526 if (slab) { 5527 slabs = READ_ONCE(slab->slabs); 5528 objects = (slabs * oo_objects(s->oo)) / 2; 5529 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5530 cpu, objects, slabs); 5531 } 5532 } 5533 #endif 5534 len += sysfs_emit_at(buf, len, "\n"); 5535 5536 return len; 5537 } 5538 SLAB_ATTR_RO(slabs_cpu_partial); 5539 5540 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5541 { 5542 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5543 } 5544 SLAB_ATTR_RO(reclaim_account); 5545 5546 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5547 { 5548 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5549 } 5550 SLAB_ATTR_RO(hwcache_align); 5551 5552 #ifdef CONFIG_ZONE_DMA 5553 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5554 { 5555 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5556 } 5557 SLAB_ATTR_RO(cache_dma); 5558 #endif 5559 5560 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5561 { 5562 return sysfs_emit(buf, "%u\n", s->usersize); 5563 } 5564 SLAB_ATTR_RO(usersize); 5565 5566 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5567 { 5568 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5569 } 5570 SLAB_ATTR_RO(destroy_by_rcu); 5571 5572 #ifdef CONFIG_SLUB_DEBUG 5573 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5574 { 5575 return show_slab_objects(s, buf, SO_ALL); 5576 } 5577 SLAB_ATTR_RO(slabs); 5578 5579 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5580 { 5581 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5582 } 5583 SLAB_ATTR_RO(total_objects); 5584 5585 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5586 { 5587 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5588 } 5589 SLAB_ATTR_RO(sanity_checks); 5590 5591 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5592 { 5593 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5594 } 5595 SLAB_ATTR_RO(trace); 5596 5597 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5598 { 5599 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5600 } 5601 5602 SLAB_ATTR_RO(red_zone); 5603 5604 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5605 { 5606 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5607 } 5608 5609 SLAB_ATTR_RO(poison); 5610 5611 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5612 { 5613 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5614 } 5615 5616 SLAB_ATTR_RO(store_user); 5617 5618 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5619 { 5620 return 0; 5621 } 5622 5623 static ssize_t validate_store(struct kmem_cache *s, 5624 const char *buf, size_t length) 5625 { 5626 int ret = -EINVAL; 5627 5628 if (buf[0] == '1') { 5629 ret = validate_slab_cache(s); 5630 if (ret >= 0) 5631 ret = length; 5632 } 5633 return ret; 5634 } 5635 SLAB_ATTR(validate); 5636 5637 #endif /* CONFIG_SLUB_DEBUG */ 5638 5639 #ifdef CONFIG_FAILSLAB 5640 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5641 { 5642 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5643 } 5644 SLAB_ATTR_RO(failslab); 5645 #endif 5646 5647 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5648 { 5649 return 0; 5650 } 5651 5652 static ssize_t shrink_store(struct kmem_cache *s, 5653 const char *buf, size_t length) 5654 { 5655 if (buf[0] == '1') 5656 kmem_cache_shrink(s); 5657 else 5658 return -EINVAL; 5659 return length; 5660 } 5661 SLAB_ATTR(shrink); 5662 5663 #ifdef CONFIG_NUMA 5664 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5665 { 5666 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5667 } 5668 5669 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5670 const char *buf, size_t length) 5671 { 5672 unsigned int ratio; 5673 int err; 5674 5675 err = kstrtouint(buf, 10, &ratio); 5676 if (err) 5677 return err; 5678 if (ratio > 100) 5679 return -ERANGE; 5680 5681 s->remote_node_defrag_ratio = ratio * 10; 5682 5683 return length; 5684 } 5685 SLAB_ATTR(remote_node_defrag_ratio); 5686 #endif 5687 5688 #ifdef CONFIG_SLUB_STATS 5689 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5690 { 5691 unsigned long sum = 0; 5692 int cpu; 5693 int len = 0; 5694 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5695 5696 if (!data) 5697 return -ENOMEM; 5698 5699 for_each_online_cpu(cpu) { 5700 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5701 5702 data[cpu] = x; 5703 sum += x; 5704 } 5705 5706 len += sysfs_emit_at(buf, len, "%lu", sum); 5707 5708 #ifdef CONFIG_SMP 5709 for_each_online_cpu(cpu) { 5710 if (data[cpu]) 5711 len += sysfs_emit_at(buf, len, " C%d=%u", 5712 cpu, data[cpu]); 5713 } 5714 #endif 5715 kfree(data); 5716 len += sysfs_emit_at(buf, len, "\n"); 5717 5718 return len; 5719 } 5720 5721 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5722 { 5723 int cpu; 5724 5725 for_each_online_cpu(cpu) 5726 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5727 } 5728 5729 #define STAT_ATTR(si, text) \ 5730 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5731 { \ 5732 return show_stat(s, buf, si); \ 5733 } \ 5734 static ssize_t text##_store(struct kmem_cache *s, \ 5735 const char *buf, size_t length) \ 5736 { \ 5737 if (buf[0] != '0') \ 5738 return -EINVAL; \ 5739 clear_stat(s, si); \ 5740 return length; \ 5741 } \ 5742 SLAB_ATTR(text); \ 5743 5744 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5745 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5746 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5747 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5748 STAT_ATTR(FREE_FROZEN, free_frozen); 5749 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5750 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5751 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5752 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5753 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5754 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5755 STAT_ATTR(FREE_SLAB, free_slab); 5756 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5757 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5758 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5759 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5760 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5761 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5762 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5763 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5764 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5765 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5766 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5767 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5768 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5769 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5770 #endif /* CONFIG_SLUB_STATS */ 5771 5772 static struct attribute *slab_attrs[] = { 5773 &slab_size_attr.attr, 5774 &object_size_attr.attr, 5775 &objs_per_slab_attr.attr, 5776 &order_attr.attr, 5777 &min_partial_attr.attr, 5778 &cpu_partial_attr.attr, 5779 &objects_attr.attr, 5780 &objects_partial_attr.attr, 5781 &partial_attr.attr, 5782 &cpu_slabs_attr.attr, 5783 &ctor_attr.attr, 5784 &aliases_attr.attr, 5785 &align_attr.attr, 5786 &hwcache_align_attr.attr, 5787 &reclaim_account_attr.attr, 5788 &destroy_by_rcu_attr.attr, 5789 &shrink_attr.attr, 5790 &slabs_cpu_partial_attr.attr, 5791 #ifdef CONFIG_SLUB_DEBUG 5792 &total_objects_attr.attr, 5793 &slabs_attr.attr, 5794 &sanity_checks_attr.attr, 5795 &trace_attr.attr, 5796 &red_zone_attr.attr, 5797 &poison_attr.attr, 5798 &store_user_attr.attr, 5799 &validate_attr.attr, 5800 #endif 5801 #ifdef CONFIG_ZONE_DMA 5802 &cache_dma_attr.attr, 5803 #endif 5804 #ifdef CONFIG_NUMA 5805 &remote_node_defrag_ratio_attr.attr, 5806 #endif 5807 #ifdef CONFIG_SLUB_STATS 5808 &alloc_fastpath_attr.attr, 5809 &alloc_slowpath_attr.attr, 5810 &free_fastpath_attr.attr, 5811 &free_slowpath_attr.attr, 5812 &free_frozen_attr.attr, 5813 &free_add_partial_attr.attr, 5814 &free_remove_partial_attr.attr, 5815 &alloc_from_partial_attr.attr, 5816 &alloc_slab_attr.attr, 5817 &alloc_refill_attr.attr, 5818 &alloc_node_mismatch_attr.attr, 5819 &free_slab_attr.attr, 5820 &cpuslab_flush_attr.attr, 5821 &deactivate_full_attr.attr, 5822 &deactivate_empty_attr.attr, 5823 &deactivate_to_head_attr.attr, 5824 &deactivate_to_tail_attr.attr, 5825 &deactivate_remote_frees_attr.attr, 5826 &deactivate_bypass_attr.attr, 5827 &order_fallback_attr.attr, 5828 &cmpxchg_double_fail_attr.attr, 5829 &cmpxchg_double_cpu_fail_attr.attr, 5830 &cpu_partial_alloc_attr.attr, 5831 &cpu_partial_free_attr.attr, 5832 &cpu_partial_node_attr.attr, 5833 &cpu_partial_drain_attr.attr, 5834 #endif 5835 #ifdef CONFIG_FAILSLAB 5836 &failslab_attr.attr, 5837 #endif 5838 &usersize_attr.attr, 5839 5840 NULL 5841 }; 5842 5843 static const struct attribute_group slab_attr_group = { 5844 .attrs = slab_attrs, 5845 }; 5846 5847 static ssize_t slab_attr_show(struct kobject *kobj, 5848 struct attribute *attr, 5849 char *buf) 5850 { 5851 struct slab_attribute *attribute; 5852 struct kmem_cache *s; 5853 int err; 5854 5855 attribute = to_slab_attr(attr); 5856 s = to_slab(kobj); 5857 5858 if (!attribute->show) 5859 return -EIO; 5860 5861 err = attribute->show(s, buf); 5862 5863 return err; 5864 } 5865 5866 static ssize_t slab_attr_store(struct kobject *kobj, 5867 struct attribute *attr, 5868 const char *buf, size_t len) 5869 { 5870 struct slab_attribute *attribute; 5871 struct kmem_cache *s; 5872 int err; 5873 5874 attribute = to_slab_attr(attr); 5875 s = to_slab(kobj); 5876 5877 if (!attribute->store) 5878 return -EIO; 5879 5880 err = attribute->store(s, buf, len); 5881 return err; 5882 } 5883 5884 static void kmem_cache_release(struct kobject *k) 5885 { 5886 slab_kmem_cache_release(to_slab(k)); 5887 } 5888 5889 static const struct sysfs_ops slab_sysfs_ops = { 5890 .show = slab_attr_show, 5891 .store = slab_attr_store, 5892 }; 5893 5894 static struct kobj_type slab_ktype = { 5895 .sysfs_ops = &slab_sysfs_ops, 5896 .release = kmem_cache_release, 5897 }; 5898 5899 static struct kset *slab_kset; 5900 5901 static inline struct kset *cache_kset(struct kmem_cache *s) 5902 { 5903 return slab_kset; 5904 } 5905 5906 #define ID_STR_LENGTH 64 5907 5908 /* Create a unique string id for a slab cache: 5909 * 5910 * Format :[flags-]size 5911 */ 5912 static char *create_unique_id(struct kmem_cache *s) 5913 { 5914 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5915 char *p = name; 5916 5917 BUG_ON(!name); 5918 5919 *p++ = ':'; 5920 /* 5921 * First flags affecting slabcache operations. We will only 5922 * get here for aliasable slabs so we do not need to support 5923 * too many flags. The flags here must cover all flags that 5924 * are matched during merging to guarantee that the id is 5925 * unique. 5926 */ 5927 if (s->flags & SLAB_CACHE_DMA) 5928 *p++ = 'd'; 5929 if (s->flags & SLAB_CACHE_DMA32) 5930 *p++ = 'D'; 5931 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5932 *p++ = 'a'; 5933 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5934 *p++ = 'F'; 5935 if (s->flags & SLAB_ACCOUNT) 5936 *p++ = 'A'; 5937 if (p != name + 1) 5938 *p++ = '-'; 5939 p += sprintf(p, "%07u", s->size); 5940 5941 BUG_ON(p > name + ID_STR_LENGTH - 1); 5942 return name; 5943 } 5944 5945 static int sysfs_slab_add(struct kmem_cache *s) 5946 { 5947 int err; 5948 const char *name; 5949 struct kset *kset = cache_kset(s); 5950 int unmergeable = slab_unmergeable(s); 5951 5952 if (!kset) { 5953 kobject_init(&s->kobj, &slab_ktype); 5954 return 0; 5955 } 5956 5957 if (!unmergeable && disable_higher_order_debug && 5958 (slub_debug & DEBUG_METADATA_FLAGS)) 5959 unmergeable = 1; 5960 5961 if (unmergeable) { 5962 /* 5963 * Slabcache can never be merged so we can use the name proper. 5964 * This is typically the case for debug situations. In that 5965 * case we can catch duplicate names easily. 5966 */ 5967 sysfs_remove_link(&slab_kset->kobj, s->name); 5968 name = s->name; 5969 } else { 5970 /* 5971 * Create a unique name for the slab as a target 5972 * for the symlinks. 5973 */ 5974 name = create_unique_id(s); 5975 } 5976 5977 s->kobj.kset = kset; 5978 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5979 if (err) 5980 goto out; 5981 5982 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5983 if (err) 5984 goto out_del_kobj; 5985 5986 if (!unmergeable) { 5987 /* Setup first alias */ 5988 sysfs_slab_alias(s, s->name); 5989 } 5990 out: 5991 if (!unmergeable) 5992 kfree(name); 5993 return err; 5994 out_del_kobj: 5995 kobject_del(&s->kobj); 5996 goto out; 5997 } 5998 5999 void sysfs_slab_unlink(struct kmem_cache *s) 6000 { 6001 if (slab_state >= FULL) 6002 kobject_del(&s->kobj); 6003 } 6004 6005 void sysfs_slab_release(struct kmem_cache *s) 6006 { 6007 if (slab_state >= FULL) 6008 kobject_put(&s->kobj); 6009 } 6010 6011 /* 6012 * Need to buffer aliases during bootup until sysfs becomes 6013 * available lest we lose that information. 6014 */ 6015 struct saved_alias { 6016 struct kmem_cache *s; 6017 const char *name; 6018 struct saved_alias *next; 6019 }; 6020 6021 static struct saved_alias *alias_list; 6022 6023 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6024 { 6025 struct saved_alias *al; 6026 6027 if (slab_state == FULL) { 6028 /* 6029 * If we have a leftover link then remove it. 6030 */ 6031 sysfs_remove_link(&slab_kset->kobj, name); 6032 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6033 } 6034 6035 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6036 if (!al) 6037 return -ENOMEM; 6038 6039 al->s = s; 6040 al->name = name; 6041 al->next = alias_list; 6042 alias_list = al; 6043 return 0; 6044 } 6045 6046 static int __init slab_sysfs_init(void) 6047 { 6048 struct kmem_cache *s; 6049 int err; 6050 6051 mutex_lock(&slab_mutex); 6052 6053 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6054 if (!slab_kset) { 6055 mutex_unlock(&slab_mutex); 6056 pr_err("Cannot register slab subsystem.\n"); 6057 return -ENOSYS; 6058 } 6059 6060 slab_state = FULL; 6061 6062 list_for_each_entry(s, &slab_caches, list) { 6063 err = sysfs_slab_add(s); 6064 if (err) 6065 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6066 s->name); 6067 } 6068 6069 while (alias_list) { 6070 struct saved_alias *al = alias_list; 6071 6072 alias_list = alias_list->next; 6073 err = sysfs_slab_alias(al->s, al->name); 6074 if (err) 6075 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6076 al->name); 6077 kfree(al); 6078 } 6079 6080 mutex_unlock(&slab_mutex); 6081 return 0; 6082 } 6083 6084 __initcall(slab_sysfs_init); 6085 #endif /* CONFIG_SYSFS */ 6086 6087 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6088 static int slab_debugfs_show(struct seq_file *seq, void *v) 6089 { 6090 struct loc_track *t = seq->private; 6091 struct location *l; 6092 unsigned long idx; 6093 6094 idx = (unsigned long) t->idx; 6095 if (idx < t->count) { 6096 l = &t->loc[idx]; 6097 6098 seq_printf(seq, "%7ld ", l->count); 6099 6100 if (l->addr) 6101 seq_printf(seq, "%pS", (void *)l->addr); 6102 else 6103 seq_puts(seq, "<not-available>"); 6104 6105 if (l->sum_time != l->min_time) { 6106 seq_printf(seq, " age=%ld/%llu/%ld", 6107 l->min_time, div_u64(l->sum_time, l->count), 6108 l->max_time); 6109 } else 6110 seq_printf(seq, " age=%ld", l->min_time); 6111 6112 if (l->min_pid != l->max_pid) 6113 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6114 else 6115 seq_printf(seq, " pid=%ld", 6116 l->min_pid); 6117 6118 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6119 seq_printf(seq, " cpus=%*pbl", 6120 cpumask_pr_args(to_cpumask(l->cpus))); 6121 6122 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6123 seq_printf(seq, " nodes=%*pbl", 6124 nodemask_pr_args(&l->nodes)); 6125 6126 #ifdef CONFIG_STACKDEPOT 6127 { 6128 depot_stack_handle_t handle; 6129 unsigned long *entries; 6130 unsigned int nr_entries, j; 6131 6132 handle = READ_ONCE(l->handle); 6133 if (handle) { 6134 nr_entries = stack_depot_fetch(handle, &entries); 6135 seq_puts(seq, "\n"); 6136 for (j = 0; j < nr_entries; j++) 6137 seq_printf(seq, " %pS\n", (void *)entries[j]); 6138 } 6139 } 6140 #endif 6141 seq_puts(seq, "\n"); 6142 } 6143 6144 if (!idx && !t->count) 6145 seq_puts(seq, "No data\n"); 6146 6147 return 0; 6148 } 6149 6150 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6151 { 6152 } 6153 6154 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6155 { 6156 struct loc_track *t = seq->private; 6157 6158 t->idx = ++(*ppos); 6159 if (*ppos <= t->count) 6160 return ppos; 6161 6162 return NULL; 6163 } 6164 6165 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6166 { 6167 struct location *loc1 = (struct location *)a; 6168 struct location *loc2 = (struct location *)b; 6169 6170 if (loc1->count > loc2->count) 6171 return -1; 6172 else 6173 return 1; 6174 } 6175 6176 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6177 { 6178 struct loc_track *t = seq->private; 6179 6180 t->idx = *ppos; 6181 return ppos; 6182 } 6183 6184 static const struct seq_operations slab_debugfs_sops = { 6185 .start = slab_debugfs_start, 6186 .next = slab_debugfs_next, 6187 .stop = slab_debugfs_stop, 6188 .show = slab_debugfs_show, 6189 }; 6190 6191 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6192 { 6193 6194 struct kmem_cache_node *n; 6195 enum track_item alloc; 6196 int node; 6197 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6198 sizeof(struct loc_track)); 6199 struct kmem_cache *s = file_inode(filep)->i_private; 6200 unsigned long *obj_map; 6201 6202 if (!t) 6203 return -ENOMEM; 6204 6205 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6206 if (!obj_map) { 6207 seq_release_private(inode, filep); 6208 return -ENOMEM; 6209 } 6210 6211 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6212 alloc = TRACK_ALLOC; 6213 else 6214 alloc = TRACK_FREE; 6215 6216 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6217 bitmap_free(obj_map); 6218 seq_release_private(inode, filep); 6219 return -ENOMEM; 6220 } 6221 6222 for_each_kmem_cache_node(s, node, n) { 6223 unsigned long flags; 6224 struct slab *slab; 6225 6226 if (!atomic_long_read(&n->nr_slabs)) 6227 continue; 6228 6229 spin_lock_irqsave(&n->list_lock, flags); 6230 list_for_each_entry(slab, &n->partial, slab_list) 6231 process_slab(t, s, slab, alloc, obj_map); 6232 list_for_each_entry(slab, &n->full, slab_list) 6233 process_slab(t, s, slab, alloc, obj_map); 6234 spin_unlock_irqrestore(&n->list_lock, flags); 6235 } 6236 6237 /* Sort locations by count */ 6238 sort_r(t->loc, t->count, sizeof(struct location), 6239 cmp_loc_by_count, NULL, NULL); 6240 6241 bitmap_free(obj_map); 6242 return 0; 6243 } 6244 6245 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6246 { 6247 struct seq_file *seq = file->private_data; 6248 struct loc_track *t = seq->private; 6249 6250 free_loc_track(t); 6251 return seq_release_private(inode, file); 6252 } 6253 6254 static const struct file_operations slab_debugfs_fops = { 6255 .open = slab_debug_trace_open, 6256 .read = seq_read, 6257 .llseek = seq_lseek, 6258 .release = slab_debug_trace_release, 6259 }; 6260 6261 static void debugfs_slab_add(struct kmem_cache *s) 6262 { 6263 struct dentry *slab_cache_dir; 6264 6265 if (unlikely(!slab_debugfs_root)) 6266 return; 6267 6268 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6269 6270 debugfs_create_file("alloc_traces", 0400, 6271 slab_cache_dir, s, &slab_debugfs_fops); 6272 6273 debugfs_create_file("free_traces", 0400, 6274 slab_cache_dir, s, &slab_debugfs_fops); 6275 } 6276 6277 void debugfs_slab_release(struct kmem_cache *s) 6278 { 6279 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 6280 } 6281 6282 static int __init slab_debugfs_init(void) 6283 { 6284 struct kmem_cache *s; 6285 6286 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6287 6288 list_for_each_entry(s, &slab_caches, list) 6289 if (s->flags & SLAB_STORE_USER) 6290 debugfs_slab_add(s); 6291 6292 return 0; 6293 6294 } 6295 __initcall(slab_debugfs_init); 6296 #endif 6297 /* 6298 * The /proc/slabinfo ABI 6299 */ 6300 #ifdef CONFIG_SLUB_DEBUG 6301 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6302 { 6303 unsigned long nr_slabs = 0; 6304 unsigned long nr_objs = 0; 6305 unsigned long nr_free = 0; 6306 int node; 6307 struct kmem_cache_node *n; 6308 6309 for_each_kmem_cache_node(s, node, n) { 6310 nr_slabs += node_nr_slabs(n); 6311 nr_objs += node_nr_objs(n); 6312 nr_free += count_partial(n, count_free); 6313 } 6314 6315 sinfo->active_objs = nr_objs - nr_free; 6316 sinfo->num_objs = nr_objs; 6317 sinfo->active_slabs = nr_slabs; 6318 sinfo->num_slabs = nr_slabs; 6319 sinfo->objects_per_slab = oo_objects(s->oo); 6320 sinfo->cache_order = oo_order(s->oo); 6321 } 6322 6323 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6324 { 6325 } 6326 6327 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6328 size_t count, loff_t *ppos) 6329 { 6330 return -EIO; 6331 } 6332 #endif /* CONFIG_SLUB_DEBUG */ 6333