xref: /linux/mm/slub.c (revision c2a96b7f187fb6a455836d4a6e113947ff11de97)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * freeptr_t represents a SLUB freelist pointer, which might be encoded
470  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471  */
472 typedef struct { unsigned long v; } freeptr_t;
473 
474 /*
475  * Returns freelist pointer (ptr). With hardening, this is obfuscated
476  * with an XOR of the address where the pointer is held and a per-cache
477  * random number.
478  */
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 					    void *ptr, unsigned long ptr_addr)
481 {
482 	unsigned long encoded;
483 
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486 #else
487 	encoded = (unsigned long)ptr;
488 #endif
489 	return (freeptr_t){.v = encoded};
490 }
491 
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 					freeptr_t ptr, unsigned long ptr_addr)
494 {
495 	void *decoded;
496 
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499 #else
500 	decoded = (void *)ptr.v;
501 #endif
502 	return decoded;
503 }
504 
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
506 {
507 	unsigned long ptr_addr;
508 	freeptr_t p;
509 
510 	object = kasan_reset_tag(object);
511 	ptr_addr = (unsigned long)object + s->offset;
512 	p = *(freeptr_t *)(ptr_addr);
513 	return freelist_ptr_decode(s, p, ptr_addr);
514 }
515 
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518 {
519 	prefetchw(object + s->offset);
520 }
521 #endif
522 
523 /*
524  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525  * pointer value in the case the current thread loses the race for the next
526  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528  * KMSAN will still check all arguments of cmpxchg because of imperfect
529  * handling of inline assembly.
530  * To work around this problem, we apply __no_kmsan_checks to ensure that
531  * get_freepointer_safe() returns initialized memory.
532  */
533 __no_kmsan_checks
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535 {
536 	unsigned long freepointer_addr;
537 	freeptr_t p;
538 
539 	if (!debug_pagealloc_enabled_static())
540 		return get_freepointer(s, object);
541 
542 	object = kasan_reset_tag(object);
543 	freepointer_addr = (unsigned long)object + s->offset;
544 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 	return freelist_ptr_decode(s, p, freepointer_addr);
546 }
547 
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549 {
550 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
551 
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 	BUG_ON(object == fp); /* naive detection of double free or corruption */
554 #endif
555 
556 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558 }
559 
560 /*
561  * See comment in calculate_sizes().
562  */
563 static inline bool freeptr_outside_object(struct kmem_cache *s)
564 {
565 	return s->offset >= s->inuse;
566 }
567 
568 /*
569  * Return offset of the end of info block which is inuse + free pointer if
570  * not overlapping with object.
571  */
572 static inline unsigned int get_info_end(struct kmem_cache *s)
573 {
574 	if (freeptr_outside_object(s))
575 		return s->inuse + sizeof(void *);
576 	else
577 		return s->inuse;
578 }
579 
580 /* Loop over all objects in a slab */
581 #define for_each_object(__p, __s, __addr, __objects) \
582 	for (__p = fixup_red_left(__s, __addr); \
583 		__p < (__addr) + (__objects) * (__s)->size; \
584 		__p += (__s)->size)
585 
586 static inline unsigned int order_objects(unsigned int order, unsigned int size)
587 {
588 	return ((unsigned int)PAGE_SIZE << order) / size;
589 }
590 
591 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
592 		unsigned int size)
593 {
594 	struct kmem_cache_order_objects x = {
595 		(order << OO_SHIFT) + order_objects(order, size)
596 	};
597 
598 	return x;
599 }
600 
601 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
602 {
603 	return x.x >> OO_SHIFT;
604 }
605 
606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
607 {
608 	return x.x & OO_MASK;
609 }
610 
611 #ifdef CONFIG_SLUB_CPU_PARTIAL
612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613 {
614 	unsigned int nr_slabs;
615 
616 	s->cpu_partial = nr_objects;
617 
618 	/*
619 	 * We take the number of objects but actually limit the number of
620 	 * slabs on the per cpu partial list, in order to limit excessive
621 	 * growth of the list. For simplicity we assume that the slabs will
622 	 * be half-full.
623 	 */
624 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 	s->cpu_partial_slabs = nr_slabs;
626 }
627 
628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629 {
630 	return s->cpu_partial_slabs;
631 }
632 #else
633 static inline void
634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635 {
636 }
637 
638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639 {
640 	return 0;
641 }
642 #endif /* CONFIG_SLUB_CPU_PARTIAL */
643 
644 /*
645  * Per slab locking using the pagelock
646  */
647 static __always_inline void slab_lock(struct slab *slab)
648 {
649 	bit_spin_lock(PG_locked, &slab->__page_flags);
650 }
651 
652 static __always_inline void slab_unlock(struct slab *slab)
653 {
654 	bit_spin_unlock(PG_locked, &slab->__page_flags);
655 }
656 
657 static inline bool
658 __update_freelist_fast(struct slab *slab,
659 		      void *freelist_old, unsigned long counters_old,
660 		      void *freelist_new, unsigned long counters_new)
661 {
662 #ifdef system_has_freelist_aba
663 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
665 
666 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667 #else
668 	return false;
669 #endif
670 }
671 
672 static inline bool
673 __update_freelist_slow(struct slab *slab,
674 		      void *freelist_old, unsigned long counters_old,
675 		      void *freelist_new, unsigned long counters_new)
676 {
677 	bool ret = false;
678 
679 	slab_lock(slab);
680 	if (slab->freelist == freelist_old &&
681 	    slab->counters == counters_old) {
682 		slab->freelist = freelist_new;
683 		slab->counters = counters_new;
684 		ret = true;
685 	}
686 	slab_unlock(slab);
687 
688 	return ret;
689 }
690 
691 /*
692  * Interrupts must be disabled (for the fallback code to work right), typically
693  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695  * allocation/ free operation in hardirq context. Therefore nothing can
696  * interrupt the operation.
697  */
698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
699 		void *freelist_old, unsigned long counters_old,
700 		void *freelist_new, unsigned long counters_new,
701 		const char *n)
702 {
703 	bool ret;
704 
705 	if (USE_LOCKLESS_FAST_PATH())
706 		lockdep_assert_irqs_disabled();
707 
708 	if (s->flags & __CMPXCHG_DOUBLE) {
709 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 				            freelist_new, counters_new);
711 	} else {
712 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 				            freelist_new, counters_new);
714 	}
715 	if (likely(ret))
716 		return true;
717 
718 	cpu_relax();
719 	stat(s, CMPXCHG_DOUBLE_FAIL);
720 
721 #ifdef SLUB_DEBUG_CMPXCHG
722 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
723 #endif
724 
725 	return false;
726 }
727 
728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
729 		void *freelist_old, unsigned long counters_old,
730 		void *freelist_new, unsigned long counters_new,
731 		const char *n)
732 {
733 	bool ret;
734 
735 	if (s->flags & __CMPXCHG_DOUBLE) {
736 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 				            freelist_new, counters_new);
738 	} else {
739 		unsigned long flags;
740 
741 		local_irq_save(flags);
742 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 				            freelist_new, counters_new);
744 		local_irq_restore(flags);
745 	}
746 	if (likely(ret))
747 		return true;
748 
749 	cpu_relax();
750 	stat(s, CMPXCHG_DOUBLE_FAIL);
751 
752 #ifdef SLUB_DEBUG_CMPXCHG
753 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
754 #endif
755 
756 	return false;
757 }
758 
759 #ifdef CONFIG_SLUB_DEBUG
760 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
761 static DEFINE_SPINLOCK(object_map_lock);
762 
763 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
764 		       struct slab *slab)
765 {
766 	void *addr = slab_address(slab);
767 	void *p;
768 
769 	bitmap_zero(obj_map, slab->objects);
770 
771 	for (p = slab->freelist; p; p = get_freepointer(s, p))
772 		set_bit(__obj_to_index(s, addr, p), obj_map);
773 }
774 
775 #if IS_ENABLED(CONFIG_KUNIT)
776 static bool slab_add_kunit_errors(void)
777 {
778 	struct kunit_resource *resource;
779 
780 	if (!kunit_get_current_test())
781 		return false;
782 
783 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
784 	if (!resource)
785 		return false;
786 
787 	(*(int *)resource->data)++;
788 	kunit_put_resource(resource);
789 	return true;
790 }
791 
792 static bool slab_in_kunit_test(void)
793 {
794 	struct kunit_resource *resource;
795 
796 	if (!kunit_get_current_test())
797 		return false;
798 
799 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
800 	if (!resource)
801 		return false;
802 
803 	kunit_put_resource(resource);
804 	return true;
805 }
806 #else
807 static inline bool slab_add_kunit_errors(void) { return false; }
808 static inline bool slab_in_kunit_test(void) { return false; }
809 #endif
810 
811 static inline unsigned int size_from_object(struct kmem_cache *s)
812 {
813 	if (s->flags & SLAB_RED_ZONE)
814 		return s->size - s->red_left_pad;
815 
816 	return s->size;
817 }
818 
819 static inline void *restore_red_left(struct kmem_cache *s, void *p)
820 {
821 	if (s->flags & SLAB_RED_ZONE)
822 		p -= s->red_left_pad;
823 
824 	return p;
825 }
826 
827 /*
828  * Debug settings:
829  */
830 #if defined(CONFIG_SLUB_DEBUG_ON)
831 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
832 #else
833 static slab_flags_t slub_debug;
834 #endif
835 
836 static char *slub_debug_string;
837 static int disable_higher_order_debug;
838 
839 /*
840  * slub is about to manipulate internal object metadata.  This memory lies
841  * outside the range of the allocated object, so accessing it would normally
842  * be reported by kasan as a bounds error.  metadata_access_enable() is used
843  * to tell kasan that these accesses are OK.
844  */
845 static inline void metadata_access_enable(void)
846 {
847 	kasan_disable_current();
848 	kmsan_disable_current();
849 }
850 
851 static inline void metadata_access_disable(void)
852 {
853 	kmsan_enable_current();
854 	kasan_enable_current();
855 }
856 
857 /*
858  * Object debugging
859  */
860 
861 /* Verify that a pointer has an address that is valid within a slab page */
862 static inline int check_valid_pointer(struct kmem_cache *s,
863 				struct slab *slab, void *object)
864 {
865 	void *base;
866 
867 	if (!object)
868 		return 1;
869 
870 	base = slab_address(slab);
871 	object = kasan_reset_tag(object);
872 	object = restore_red_left(s, object);
873 	if (object < base || object >= base + slab->objects * s->size ||
874 		(object - base) % s->size) {
875 		return 0;
876 	}
877 
878 	return 1;
879 }
880 
881 static void print_section(char *level, char *text, u8 *addr,
882 			  unsigned int length)
883 {
884 	metadata_access_enable();
885 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
886 			16, 1, kasan_reset_tag((void *)addr), length, 1);
887 	metadata_access_disable();
888 }
889 
890 static struct track *get_track(struct kmem_cache *s, void *object,
891 	enum track_item alloc)
892 {
893 	struct track *p;
894 
895 	p = object + get_info_end(s);
896 
897 	return kasan_reset_tag(p + alloc);
898 }
899 
900 #ifdef CONFIG_STACKDEPOT
901 static noinline depot_stack_handle_t set_track_prepare(void)
902 {
903 	depot_stack_handle_t handle;
904 	unsigned long entries[TRACK_ADDRS_COUNT];
905 	unsigned int nr_entries;
906 
907 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
908 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
909 
910 	return handle;
911 }
912 #else
913 static inline depot_stack_handle_t set_track_prepare(void)
914 {
915 	return 0;
916 }
917 #endif
918 
919 static void set_track_update(struct kmem_cache *s, void *object,
920 			     enum track_item alloc, unsigned long addr,
921 			     depot_stack_handle_t handle)
922 {
923 	struct track *p = get_track(s, object, alloc);
924 
925 #ifdef CONFIG_STACKDEPOT
926 	p->handle = handle;
927 #endif
928 	p->addr = addr;
929 	p->cpu = smp_processor_id();
930 	p->pid = current->pid;
931 	p->when = jiffies;
932 }
933 
934 static __always_inline void set_track(struct kmem_cache *s, void *object,
935 				      enum track_item alloc, unsigned long addr)
936 {
937 	depot_stack_handle_t handle = set_track_prepare();
938 
939 	set_track_update(s, object, alloc, addr, handle);
940 }
941 
942 static void init_tracking(struct kmem_cache *s, void *object)
943 {
944 	struct track *p;
945 
946 	if (!(s->flags & SLAB_STORE_USER))
947 		return;
948 
949 	p = get_track(s, object, TRACK_ALLOC);
950 	memset(p, 0, 2*sizeof(struct track));
951 }
952 
953 static void print_track(const char *s, struct track *t, unsigned long pr_time)
954 {
955 	depot_stack_handle_t handle __maybe_unused;
956 
957 	if (!t->addr)
958 		return;
959 
960 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
961 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
962 #ifdef CONFIG_STACKDEPOT
963 	handle = READ_ONCE(t->handle);
964 	if (handle)
965 		stack_depot_print(handle);
966 	else
967 		pr_err("object allocation/free stack trace missing\n");
968 #endif
969 }
970 
971 void print_tracking(struct kmem_cache *s, void *object)
972 {
973 	unsigned long pr_time = jiffies;
974 	if (!(s->flags & SLAB_STORE_USER))
975 		return;
976 
977 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
978 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
979 }
980 
981 static void print_slab_info(const struct slab *slab)
982 {
983 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
984 	       slab, slab->objects, slab->inuse, slab->freelist,
985 	       &slab->__page_flags);
986 }
987 
988 /*
989  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
990  * family will round up the real request size to these fixed ones, so
991  * there could be an extra area than what is requested. Save the original
992  * request size in the meta data area, for better debug and sanity check.
993  */
994 static inline void set_orig_size(struct kmem_cache *s,
995 				void *object, unsigned int orig_size)
996 {
997 	void *p = kasan_reset_tag(object);
998 	unsigned int kasan_meta_size;
999 
1000 	if (!slub_debug_orig_size(s))
1001 		return;
1002 
1003 	/*
1004 	 * KASAN can save its free meta data inside of the object at offset 0.
1005 	 * If this meta data size is larger than 'orig_size', it will overlap
1006 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
1007 	 * 'orig_size' to be as at least as big as KASAN's meta data.
1008 	 */
1009 	kasan_meta_size = kasan_metadata_size(s, true);
1010 	if (kasan_meta_size > orig_size)
1011 		orig_size = kasan_meta_size;
1012 
1013 	p += get_info_end(s);
1014 	p += sizeof(struct track) * 2;
1015 
1016 	*(unsigned int *)p = orig_size;
1017 }
1018 
1019 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1020 {
1021 	void *p = kasan_reset_tag(object);
1022 
1023 	if (!slub_debug_orig_size(s))
1024 		return s->object_size;
1025 
1026 	p += get_info_end(s);
1027 	p += sizeof(struct track) * 2;
1028 
1029 	return *(unsigned int *)p;
1030 }
1031 
1032 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1033 {
1034 	set_orig_size(s, (void *)object, s->object_size);
1035 }
1036 
1037 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1038 {
1039 	struct va_format vaf;
1040 	va_list args;
1041 
1042 	va_start(args, fmt);
1043 	vaf.fmt = fmt;
1044 	vaf.va = &args;
1045 	pr_err("=============================================================================\n");
1046 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1047 	pr_err("-----------------------------------------------------------------------------\n\n");
1048 	va_end(args);
1049 }
1050 
1051 __printf(2, 3)
1052 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1053 {
1054 	struct va_format vaf;
1055 	va_list args;
1056 
1057 	if (slab_add_kunit_errors())
1058 		return;
1059 
1060 	va_start(args, fmt);
1061 	vaf.fmt = fmt;
1062 	vaf.va = &args;
1063 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1064 	va_end(args);
1065 }
1066 
1067 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1068 {
1069 	unsigned int off;	/* Offset of last byte */
1070 	u8 *addr = slab_address(slab);
1071 
1072 	print_tracking(s, p);
1073 
1074 	print_slab_info(slab);
1075 
1076 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1077 	       p, p - addr, get_freepointer(s, p));
1078 
1079 	if (s->flags & SLAB_RED_ZONE)
1080 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1081 			      s->red_left_pad);
1082 	else if (p > addr + 16)
1083 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1084 
1085 	print_section(KERN_ERR,         "Object   ", p,
1086 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1087 	if (s->flags & SLAB_RED_ZONE)
1088 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1089 			s->inuse - s->object_size);
1090 
1091 	off = get_info_end(s);
1092 
1093 	if (s->flags & SLAB_STORE_USER)
1094 		off += 2 * sizeof(struct track);
1095 
1096 	if (slub_debug_orig_size(s))
1097 		off += sizeof(unsigned int);
1098 
1099 	off += kasan_metadata_size(s, false);
1100 
1101 	if (off != size_from_object(s))
1102 		/* Beginning of the filler is the free pointer */
1103 		print_section(KERN_ERR, "Padding  ", p + off,
1104 			      size_from_object(s) - off);
1105 
1106 	dump_stack();
1107 }
1108 
1109 static void object_err(struct kmem_cache *s, struct slab *slab,
1110 			u8 *object, char *reason)
1111 {
1112 	if (slab_add_kunit_errors())
1113 		return;
1114 
1115 	slab_bug(s, "%s", reason);
1116 	print_trailer(s, slab, object);
1117 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1118 }
1119 
1120 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1121 			       void **freelist, void *nextfree)
1122 {
1123 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1124 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1125 		object_err(s, slab, *freelist, "Freechain corrupt");
1126 		*freelist = NULL;
1127 		slab_fix(s, "Isolate corrupted freechain");
1128 		return true;
1129 	}
1130 
1131 	return false;
1132 }
1133 
1134 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1135 			const char *fmt, ...)
1136 {
1137 	va_list args;
1138 	char buf[100];
1139 
1140 	if (slab_add_kunit_errors())
1141 		return;
1142 
1143 	va_start(args, fmt);
1144 	vsnprintf(buf, sizeof(buf), fmt, args);
1145 	va_end(args);
1146 	slab_bug(s, "%s", buf);
1147 	print_slab_info(slab);
1148 	dump_stack();
1149 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1150 }
1151 
1152 static void init_object(struct kmem_cache *s, void *object, u8 val)
1153 {
1154 	u8 *p = kasan_reset_tag(object);
1155 	unsigned int poison_size = s->object_size;
1156 
1157 	if (s->flags & SLAB_RED_ZONE) {
1158 		/*
1159 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1160 		 * the shadow makes it possible to distinguish uninit-value
1161 		 * from use-after-free.
1162 		 */
1163 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1164 					  s->red_left_pad);
1165 
1166 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1167 			/*
1168 			 * Redzone the extra allocated space by kmalloc than
1169 			 * requested, and the poison size will be limited to
1170 			 * the original request size accordingly.
1171 			 */
1172 			poison_size = get_orig_size(s, object);
1173 		}
1174 	}
1175 
1176 	if (s->flags & __OBJECT_POISON) {
1177 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1178 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1179 	}
1180 
1181 	if (s->flags & SLAB_RED_ZONE)
1182 		memset_no_sanitize_memory(p + poison_size, val,
1183 					  s->inuse - poison_size);
1184 }
1185 
1186 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1187 						void *from, void *to)
1188 {
1189 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1190 	memset(from, data, to - from);
1191 }
1192 
1193 #ifdef CONFIG_KMSAN
1194 #define pad_check_attributes noinline __no_kmsan_checks
1195 #else
1196 #define pad_check_attributes
1197 #endif
1198 
1199 static pad_check_attributes int
1200 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1201 		       u8 *object, char *what,
1202 		       u8 *start, unsigned int value, unsigned int bytes)
1203 {
1204 	u8 *fault;
1205 	u8 *end;
1206 	u8 *addr = slab_address(slab);
1207 
1208 	metadata_access_enable();
1209 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1210 	metadata_access_disable();
1211 	if (!fault)
1212 		return 1;
1213 
1214 	end = start + bytes;
1215 	while (end > fault && end[-1] == value)
1216 		end--;
1217 
1218 	if (slab_add_kunit_errors())
1219 		goto skip_bug_print;
1220 
1221 	slab_bug(s, "%s overwritten", what);
1222 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 					fault, end - 1, fault - addr,
1224 					fault[0], value);
1225 
1226 skip_bug_print:
1227 	restore_bytes(s, what, value, fault, end);
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Object layout:
1233  *
1234  * object address
1235  * 	Bytes of the object to be managed.
1236  * 	If the freepointer may overlay the object then the free
1237  *	pointer is at the middle of the object.
1238  *
1239  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1240  * 	0xa5 (POISON_END)
1241  *
1242  * object + s->object_size
1243  * 	Padding to reach word boundary. This is also used for Redzoning.
1244  * 	Padding is extended by another word if Redzoning is enabled and
1245  * 	object_size == inuse.
1246  *
1247  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1248  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1249  *
1250  * object + s->inuse
1251  * 	Meta data starts here.
1252  *
1253  * 	A. Free pointer (if we cannot overwrite object on free)
1254  * 	B. Tracking data for SLAB_STORE_USER
1255  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1256  *	D. Padding to reach required alignment boundary or at minimum
1257  * 		one word if debugging is on to be able to detect writes
1258  * 		before the word boundary.
1259  *
1260  *	Padding is done using 0x5a (POISON_INUSE)
1261  *
1262  * object + s->size
1263  * 	Nothing is used beyond s->size.
1264  *
1265  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1266  * ignored. And therefore no slab options that rely on these boundaries
1267  * may be used with merged slabcaches.
1268  */
1269 
1270 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1271 {
1272 	unsigned long off = get_info_end(s);	/* The end of info */
1273 
1274 	if (s->flags & SLAB_STORE_USER) {
1275 		/* We also have user information there */
1276 		off += 2 * sizeof(struct track);
1277 
1278 		if (s->flags & SLAB_KMALLOC)
1279 			off += sizeof(unsigned int);
1280 	}
1281 
1282 	off += kasan_metadata_size(s, false);
1283 
1284 	if (size_from_object(s) == off)
1285 		return 1;
1286 
1287 	return check_bytes_and_report(s, slab, p, "Object padding",
1288 			p + off, POISON_INUSE, size_from_object(s) - off);
1289 }
1290 
1291 /* Check the pad bytes at the end of a slab page */
1292 static pad_check_attributes void
1293 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1294 {
1295 	u8 *start;
1296 	u8 *fault;
1297 	u8 *end;
1298 	u8 *pad;
1299 	int length;
1300 	int remainder;
1301 
1302 	if (!(s->flags & SLAB_POISON))
1303 		return;
1304 
1305 	start = slab_address(slab);
1306 	length = slab_size(slab);
1307 	end = start + length;
1308 	remainder = length % s->size;
1309 	if (!remainder)
1310 		return;
1311 
1312 	pad = end - remainder;
1313 	metadata_access_enable();
1314 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1315 	metadata_access_disable();
1316 	if (!fault)
1317 		return;
1318 	while (end > fault && end[-1] == POISON_INUSE)
1319 		end--;
1320 
1321 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1322 			fault, end - 1, fault - start);
1323 	print_section(KERN_ERR, "Padding ", pad, remainder);
1324 
1325 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1326 }
1327 
1328 static int check_object(struct kmem_cache *s, struct slab *slab,
1329 					void *object, u8 val)
1330 {
1331 	u8 *p = object;
1332 	u8 *endobject = object + s->object_size;
1333 	unsigned int orig_size, kasan_meta_size;
1334 	int ret = 1;
1335 
1336 	if (s->flags & SLAB_RED_ZONE) {
1337 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1338 			object - s->red_left_pad, val, s->red_left_pad))
1339 			ret = 0;
1340 
1341 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1342 			endobject, val, s->inuse - s->object_size))
1343 			ret = 0;
1344 
1345 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1346 			orig_size = get_orig_size(s, object);
1347 
1348 			if (s->object_size > orig_size  &&
1349 				!check_bytes_and_report(s, slab, object,
1350 					"kmalloc Redzone", p + orig_size,
1351 					val, s->object_size - orig_size)) {
1352 				ret = 0;
1353 			}
1354 		}
1355 	} else {
1356 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1357 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1358 				endobject, POISON_INUSE,
1359 				s->inuse - s->object_size))
1360 				ret = 0;
1361 		}
1362 	}
1363 
1364 	if (s->flags & SLAB_POISON) {
1365 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1366 			/*
1367 			 * KASAN can save its free meta data inside of the
1368 			 * object at offset 0. Thus, skip checking the part of
1369 			 * the redzone that overlaps with the meta data.
1370 			 */
1371 			kasan_meta_size = kasan_metadata_size(s, true);
1372 			if (kasan_meta_size < s->object_size - 1 &&
1373 			    !check_bytes_and_report(s, slab, p, "Poison",
1374 					p + kasan_meta_size, POISON_FREE,
1375 					s->object_size - kasan_meta_size - 1))
1376 				ret = 0;
1377 			if (kasan_meta_size < s->object_size &&
1378 			    !check_bytes_and_report(s, slab, p, "End Poison",
1379 					p + s->object_size - 1, POISON_END, 1))
1380 				ret = 0;
1381 		}
1382 		/*
1383 		 * check_pad_bytes cleans up on its own.
1384 		 */
1385 		if (!check_pad_bytes(s, slab, p))
1386 			ret = 0;
1387 	}
1388 
1389 	/*
1390 	 * Cannot check freepointer while object is allocated if
1391 	 * object and freepointer overlap.
1392 	 */
1393 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1394 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1395 		object_err(s, slab, p, "Freepointer corrupt");
1396 		/*
1397 		 * No choice but to zap it and thus lose the remainder
1398 		 * of the free objects in this slab. May cause
1399 		 * another error because the object count is now wrong.
1400 		 */
1401 		set_freepointer(s, p, NULL);
1402 		ret = 0;
1403 	}
1404 
1405 	if (!ret && !slab_in_kunit_test()) {
1406 		print_trailer(s, slab, object);
1407 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1408 	}
1409 
1410 	return ret;
1411 }
1412 
1413 static int check_slab(struct kmem_cache *s, struct slab *slab)
1414 {
1415 	int maxobj;
1416 
1417 	if (!folio_test_slab(slab_folio(slab))) {
1418 		slab_err(s, slab, "Not a valid slab page");
1419 		return 0;
1420 	}
1421 
1422 	maxobj = order_objects(slab_order(slab), s->size);
1423 	if (slab->objects > maxobj) {
1424 		slab_err(s, slab, "objects %u > max %u",
1425 			slab->objects, maxobj);
1426 		return 0;
1427 	}
1428 	if (slab->inuse > slab->objects) {
1429 		slab_err(s, slab, "inuse %u > max %u",
1430 			slab->inuse, slab->objects);
1431 		return 0;
1432 	}
1433 	/* Slab_pad_check fixes things up after itself */
1434 	slab_pad_check(s, slab);
1435 	return 1;
1436 }
1437 
1438 /*
1439  * Determine if a certain object in a slab is on the freelist. Must hold the
1440  * slab lock to guarantee that the chains are in a consistent state.
1441  */
1442 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1443 {
1444 	int nr = 0;
1445 	void *fp;
1446 	void *object = NULL;
1447 	int max_objects;
1448 
1449 	fp = slab->freelist;
1450 	while (fp && nr <= slab->objects) {
1451 		if (fp == search)
1452 			return 1;
1453 		if (!check_valid_pointer(s, slab, fp)) {
1454 			if (object) {
1455 				object_err(s, slab, object,
1456 					"Freechain corrupt");
1457 				set_freepointer(s, object, NULL);
1458 			} else {
1459 				slab_err(s, slab, "Freepointer corrupt");
1460 				slab->freelist = NULL;
1461 				slab->inuse = slab->objects;
1462 				slab_fix(s, "Freelist cleared");
1463 				return 0;
1464 			}
1465 			break;
1466 		}
1467 		object = fp;
1468 		fp = get_freepointer(s, object);
1469 		nr++;
1470 	}
1471 
1472 	max_objects = order_objects(slab_order(slab), s->size);
1473 	if (max_objects > MAX_OBJS_PER_PAGE)
1474 		max_objects = MAX_OBJS_PER_PAGE;
1475 
1476 	if (slab->objects != max_objects) {
1477 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1478 			 slab->objects, max_objects);
1479 		slab->objects = max_objects;
1480 		slab_fix(s, "Number of objects adjusted");
1481 	}
1482 	if (slab->inuse != slab->objects - nr) {
1483 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1484 			 slab->inuse, slab->objects - nr);
1485 		slab->inuse = slab->objects - nr;
1486 		slab_fix(s, "Object count adjusted");
1487 	}
1488 	return search == NULL;
1489 }
1490 
1491 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1492 								int alloc)
1493 {
1494 	if (s->flags & SLAB_TRACE) {
1495 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1496 			s->name,
1497 			alloc ? "alloc" : "free",
1498 			object, slab->inuse,
1499 			slab->freelist);
1500 
1501 		if (!alloc)
1502 			print_section(KERN_INFO, "Object ", (void *)object,
1503 					s->object_size);
1504 
1505 		dump_stack();
1506 	}
1507 }
1508 
1509 /*
1510  * Tracking of fully allocated slabs for debugging purposes.
1511  */
1512 static void add_full(struct kmem_cache *s,
1513 	struct kmem_cache_node *n, struct slab *slab)
1514 {
1515 	if (!(s->flags & SLAB_STORE_USER))
1516 		return;
1517 
1518 	lockdep_assert_held(&n->list_lock);
1519 	list_add(&slab->slab_list, &n->full);
1520 }
1521 
1522 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1523 {
1524 	if (!(s->flags & SLAB_STORE_USER))
1525 		return;
1526 
1527 	lockdep_assert_held(&n->list_lock);
1528 	list_del(&slab->slab_list);
1529 }
1530 
1531 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1532 {
1533 	return atomic_long_read(&n->nr_slabs);
1534 }
1535 
1536 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1537 {
1538 	struct kmem_cache_node *n = get_node(s, node);
1539 
1540 	atomic_long_inc(&n->nr_slabs);
1541 	atomic_long_add(objects, &n->total_objects);
1542 }
1543 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1544 {
1545 	struct kmem_cache_node *n = get_node(s, node);
1546 
1547 	atomic_long_dec(&n->nr_slabs);
1548 	atomic_long_sub(objects, &n->total_objects);
1549 }
1550 
1551 /* Object debug checks for alloc/free paths */
1552 static void setup_object_debug(struct kmem_cache *s, void *object)
1553 {
1554 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1555 		return;
1556 
1557 	init_object(s, object, SLUB_RED_INACTIVE);
1558 	init_tracking(s, object);
1559 }
1560 
1561 static
1562 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1563 {
1564 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1565 		return;
1566 
1567 	metadata_access_enable();
1568 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1569 	metadata_access_disable();
1570 }
1571 
1572 static inline int alloc_consistency_checks(struct kmem_cache *s,
1573 					struct slab *slab, void *object)
1574 {
1575 	if (!check_slab(s, slab))
1576 		return 0;
1577 
1578 	if (!check_valid_pointer(s, slab, object)) {
1579 		object_err(s, slab, object, "Freelist Pointer check fails");
1580 		return 0;
1581 	}
1582 
1583 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1584 		return 0;
1585 
1586 	return 1;
1587 }
1588 
1589 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1590 			struct slab *slab, void *object, int orig_size)
1591 {
1592 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1593 		if (!alloc_consistency_checks(s, slab, object))
1594 			goto bad;
1595 	}
1596 
1597 	/* Success. Perform special debug activities for allocs */
1598 	trace(s, slab, object, 1);
1599 	set_orig_size(s, object, orig_size);
1600 	init_object(s, object, SLUB_RED_ACTIVE);
1601 	return true;
1602 
1603 bad:
1604 	if (folio_test_slab(slab_folio(slab))) {
1605 		/*
1606 		 * If this is a slab page then lets do the best we can
1607 		 * to avoid issues in the future. Marking all objects
1608 		 * as used avoids touching the remaining objects.
1609 		 */
1610 		slab_fix(s, "Marking all objects used");
1611 		slab->inuse = slab->objects;
1612 		slab->freelist = NULL;
1613 	}
1614 	return false;
1615 }
1616 
1617 static inline int free_consistency_checks(struct kmem_cache *s,
1618 		struct slab *slab, void *object, unsigned long addr)
1619 {
1620 	if (!check_valid_pointer(s, slab, object)) {
1621 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1622 		return 0;
1623 	}
1624 
1625 	if (on_freelist(s, slab, object)) {
1626 		object_err(s, slab, object, "Object already free");
1627 		return 0;
1628 	}
1629 
1630 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1631 		return 0;
1632 
1633 	if (unlikely(s != slab->slab_cache)) {
1634 		if (!folio_test_slab(slab_folio(slab))) {
1635 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1636 				 object);
1637 		} else if (!slab->slab_cache) {
1638 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1639 			       object);
1640 			dump_stack();
1641 		} else
1642 			object_err(s, slab, object,
1643 					"page slab pointer corrupt.");
1644 		return 0;
1645 	}
1646 	return 1;
1647 }
1648 
1649 /*
1650  * Parse a block of slab_debug options. Blocks are delimited by ';'
1651  *
1652  * @str:    start of block
1653  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1654  * @slabs:  return start of list of slabs, or NULL when there's no list
1655  * @init:   assume this is initial parsing and not per-kmem-create parsing
1656  *
1657  * returns the start of next block if there's any, or NULL
1658  */
1659 static char *
1660 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1661 {
1662 	bool higher_order_disable = false;
1663 
1664 	/* Skip any completely empty blocks */
1665 	while (*str && *str == ';')
1666 		str++;
1667 
1668 	if (*str == ',') {
1669 		/*
1670 		 * No options but restriction on slabs. This means full
1671 		 * debugging for slabs matching a pattern.
1672 		 */
1673 		*flags = DEBUG_DEFAULT_FLAGS;
1674 		goto check_slabs;
1675 	}
1676 	*flags = 0;
1677 
1678 	/* Determine which debug features should be switched on */
1679 	for (; *str && *str != ',' && *str != ';'; str++) {
1680 		switch (tolower(*str)) {
1681 		case '-':
1682 			*flags = 0;
1683 			break;
1684 		case 'f':
1685 			*flags |= SLAB_CONSISTENCY_CHECKS;
1686 			break;
1687 		case 'z':
1688 			*flags |= SLAB_RED_ZONE;
1689 			break;
1690 		case 'p':
1691 			*flags |= SLAB_POISON;
1692 			break;
1693 		case 'u':
1694 			*flags |= SLAB_STORE_USER;
1695 			break;
1696 		case 't':
1697 			*flags |= SLAB_TRACE;
1698 			break;
1699 		case 'a':
1700 			*flags |= SLAB_FAILSLAB;
1701 			break;
1702 		case 'o':
1703 			/*
1704 			 * Avoid enabling debugging on caches if its minimum
1705 			 * order would increase as a result.
1706 			 */
1707 			higher_order_disable = true;
1708 			break;
1709 		default:
1710 			if (init)
1711 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1712 		}
1713 	}
1714 check_slabs:
1715 	if (*str == ',')
1716 		*slabs = ++str;
1717 	else
1718 		*slabs = NULL;
1719 
1720 	/* Skip over the slab list */
1721 	while (*str && *str != ';')
1722 		str++;
1723 
1724 	/* Skip any completely empty blocks */
1725 	while (*str && *str == ';')
1726 		str++;
1727 
1728 	if (init && higher_order_disable)
1729 		disable_higher_order_debug = 1;
1730 
1731 	if (*str)
1732 		return str;
1733 	else
1734 		return NULL;
1735 }
1736 
1737 static int __init setup_slub_debug(char *str)
1738 {
1739 	slab_flags_t flags;
1740 	slab_flags_t global_flags;
1741 	char *saved_str;
1742 	char *slab_list;
1743 	bool global_slub_debug_changed = false;
1744 	bool slab_list_specified = false;
1745 
1746 	global_flags = DEBUG_DEFAULT_FLAGS;
1747 	if (*str++ != '=' || !*str)
1748 		/*
1749 		 * No options specified. Switch on full debugging.
1750 		 */
1751 		goto out;
1752 
1753 	saved_str = str;
1754 	while (str) {
1755 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1756 
1757 		if (!slab_list) {
1758 			global_flags = flags;
1759 			global_slub_debug_changed = true;
1760 		} else {
1761 			slab_list_specified = true;
1762 			if (flags & SLAB_STORE_USER)
1763 				stack_depot_request_early_init();
1764 		}
1765 	}
1766 
1767 	/*
1768 	 * For backwards compatibility, a single list of flags with list of
1769 	 * slabs means debugging is only changed for those slabs, so the global
1770 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1771 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1772 	 * long as there is no option specifying flags without a slab list.
1773 	 */
1774 	if (slab_list_specified) {
1775 		if (!global_slub_debug_changed)
1776 			global_flags = slub_debug;
1777 		slub_debug_string = saved_str;
1778 	}
1779 out:
1780 	slub_debug = global_flags;
1781 	if (slub_debug & SLAB_STORE_USER)
1782 		stack_depot_request_early_init();
1783 	if (slub_debug != 0 || slub_debug_string)
1784 		static_branch_enable(&slub_debug_enabled);
1785 	else
1786 		static_branch_disable(&slub_debug_enabled);
1787 	if ((static_branch_unlikely(&init_on_alloc) ||
1788 	     static_branch_unlikely(&init_on_free)) &&
1789 	    (slub_debug & SLAB_POISON))
1790 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1791 	return 1;
1792 }
1793 
1794 __setup("slab_debug", setup_slub_debug);
1795 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1796 
1797 /*
1798  * kmem_cache_flags - apply debugging options to the cache
1799  * @flags:		flags to set
1800  * @name:		name of the cache
1801  *
1802  * Debug option(s) are applied to @flags. In addition to the debug
1803  * option(s), if a slab name (or multiple) is specified i.e.
1804  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1805  * then only the select slabs will receive the debug option(s).
1806  */
1807 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1808 {
1809 	char *iter;
1810 	size_t len;
1811 	char *next_block;
1812 	slab_flags_t block_flags;
1813 	slab_flags_t slub_debug_local = slub_debug;
1814 
1815 	if (flags & SLAB_NO_USER_FLAGS)
1816 		return flags;
1817 
1818 	/*
1819 	 * If the slab cache is for debugging (e.g. kmemleak) then
1820 	 * don't store user (stack trace) information by default,
1821 	 * but let the user enable it via the command line below.
1822 	 */
1823 	if (flags & SLAB_NOLEAKTRACE)
1824 		slub_debug_local &= ~SLAB_STORE_USER;
1825 
1826 	len = strlen(name);
1827 	next_block = slub_debug_string;
1828 	/* Go through all blocks of debug options, see if any matches our slab's name */
1829 	while (next_block) {
1830 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1831 		if (!iter)
1832 			continue;
1833 		/* Found a block that has a slab list, search it */
1834 		while (*iter) {
1835 			char *end, *glob;
1836 			size_t cmplen;
1837 
1838 			end = strchrnul(iter, ',');
1839 			if (next_block && next_block < end)
1840 				end = next_block - 1;
1841 
1842 			glob = strnchr(iter, end - iter, '*');
1843 			if (glob)
1844 				cmplen = glob - iter;
1845 			else
1846 				cmplen = max_t(size_t, len, (end - iter));
1847 
1848 			if (!strncmp(name, iter, cmplen)) {
1849 				flags |= block_flags;
1850 				return flags;
1851 			}
1852 
1853 			if (!*end || *end == ';')
1854 				break;
1855 			iter = end + 1;
1856 		}
1857 	}
1858 
1859 	return flags | slub_debug_local;
1860 }
1861 #else /* !CONFIG_SLUB_DEBUG */
1862 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1863 static inline
1864 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1865 
1866 static inline bool alloc_debug_processing(struct kmem_cache *s,
1867 	struct slab *slab, void *object, int orig_size) { return true; }
1868 
1869 static inline bool free_debug_processing(struct kmem_cache *s,
1870 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1871 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1872 
1873 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1874 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1875 			void *object, u8 val) { return 1; }
1876 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1877 static inline void set_track(struct kmem_cache *s, void *object,
1878 			     enum track_item alloc, unsigned long addr) {}
1879 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1880 					struct slab *slab) {}
1881 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1882 					struct slab *slab) {}
1883 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1884 {
1885 	return flags;
1886 }
1887 #define slub_debug 0
1888 
1889 #define disable_higher_order_debug 0
1890 
1891 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1892 							{ return 0; }
1893 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1894 							int objects) {}
1895 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1896 							int objects) {}
1897 
1898 #ifndef CONFIG_SLUB_TINY
1899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1900 			       void **freelist, void *nextfree)
1901 {
1902 	return false;
1903 }
1904 #endif
1905 #endif /* CONFIG_SLUB_DEBUG */
1906 
1907 #ifdef CONFIG_SLAB_OBJ_EXT
1908 
1909 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1910 
1911 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1912 {
1913 	struct slabobj_ext *slab_exts;
1914 	struct slab *obj_exts_slab;
1915 
1916 	obj_exts_slab = virt_to_slab(obj_exts);
1917 	slab_exts = slab_obj_exts(obj_exts_slab);
1918 	if (slab_exts) {
1919 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1920 						 obj_exts_slab, obj_exts);
1921 		/* codetag should be NULL */
1922 		WARN_ON(slab_exts[offs].ref.ct);
1923 		set_codetag_empty(&slab_exts[offs].ref);
1924 	}
1925 }
1926 
1927 static inline void mark_failed_objexts_alloc(struct slab *slab)
1928 {
1929 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1930 }
1931 
1932 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1933 			struct slabobj_ext *vec, unsigned int objects)
1934 {
1935 	/*
1936 	 * If vector previously failed to allocate then we have live
1937 	 * objects with no tag reference. Mark all references in this
1938 	 * vector as empty to avoid warnings later on.
1939 	 */
1940 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1941 		unsigned int i;
1942 
1943 		for (i = 0; i < objects; i++)
1944 			set_codetag_empty(&vec[i].ref);
1945 	}
1946 }
1947 
1948 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1949 
1950 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1951 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1952 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1953 			struct slabobj_ext *vec, unsigned int objects) {}
1954 
1955 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1956 
1957 /*
1958  * The allocated objcg pointers array is not accounted directly.
1959  * Moreover, it should not come from DMA buffer and is not readily
1960  * reclaimable. So those GFP bits should be masked off.
1961  */
1962 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1963 				__GFP_ACCOUNT | __GFP_NOFAIL)
1964 
1965 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1966 		        gfp_t gfp, bool new_slab)
1967 {
1968 	unsigned int objects = objs_per_slab(s, slab);
1969 	unsigned long new_exts;
1970 	unsigned long old_exts;
1971 	struct slabobj_ext *vec;
1972 
1973 	gfp &= ~OBJCGS_CLEAR_MASK;
1974 	/* Prevent recursive extension vector allocation */
1975 	gfp |= __GFP_NO_OBJ_EXT;
1976 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1977 			   slab_nid(slab));
1978 	if (!vec) {
1979 		/* Mark vectors which failed to allocate */
1980 		if (new_slab)
1981 			mark_failed_objexts_alloc(slab);
1982 
1983 		return -ENOMEM;
1984 	}
1985 
1986 	new_exts = (unsigned long)vec;
1987 #ifdef CONFIG_MEMCG
1988 	new_exts |= MEMCG_DATA_OBJEXTS;
1989 #endif
1990 	old_exts = READ_ONCE(slab->obj_exts);
1991 	handle_failed_objexts_alloc(old_exts, vec, objects);
1992 	if (new_slab) {
1993 		/*
1994 		 * If the slab is brand new and nobody can yet access its
1995 		 * obj_exts, no synchronization is required and obj_exts can
1996 		 * be simply assigned.
1997 		 */
1998 		slab->obj_exts = new_exts;
1999 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2000 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2001 		/*
2002 		 * If the slab is already in use, somebody can allocate and
2003 		 * assign slabobj_exts in parallel. In this case the existing
2004 		 * objcg vector should be reused.
2005 		 */
2006 		mark_objexts_empty(vec);
2007 		kfree(vec);
2008 		return 0;
2009 	}
2010 
2011 	kmemleak_not_leak(vec);
2012 	return 0;
2013 }
2014 
2015 static inline void free_slab_obj_exts(struct slab *slab)
2016 {
2017 	struct slabobj_ext *obj_exts;
2018 
2019 	obj_exts = slab_obj_exts(slab);
2020 	if (!obj_exts)
2021 		return;
2022 
2023 	/*
2024 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2025 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2026 	 * warning if slab has extensions but the extension of an object is
2027 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2028 	 * the extension for obj_exts is expected to be NULL.
2029 	 */
2030 	mark_objexts_empty(obj_exts);
2031 	kfree(obj_exts);
2032 	slab->obj_exts = 0;
2033 }
2034 
2035 static inline bool need_slab_obj_ext(void)
2036 {
2037 	if (mem_alloc_profiling_enabled())
2038 		return true;
2039 
2040 	/*
2041 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2042 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2043 	 */
2044 	return false;
2045 }
2046 
2047 #else /* CONFIG_SLAB_OBJ_EXT */
2048 
2049 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2050 			       gfp_t gfp, bool new_slab)
2051 {
2052 	return 0;
2053 }
2054 
2055 static inline void free_slab_obj_exts(struct slab *slab)
2056 {
2057 }
2058 
2059 static inline bool need_slab_obj_ext(void)
2060 {
2061 	return false;
2062 }
2063 
2064 #endif /* CONFIG_SLAB_OBJ_EXT */
2065 
2066 #ifdef CONFIG_MEM_ALLOC_PROFILING
2067 
2068 static inline struct slabobj_ext *
2069 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2070 {
2071 	struct slab *slab;
2072 
2073 	if (!p)
2074 		return NULL;
2075 
2076 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2077 		return NULL;
2078 
2079 	if (flags & __GFP_NO_OBJ_EXT)
2080 		return NULL;
2081 
2082 	slab = virt_to_slab(p);
2083 	if (!slab_obj_exts(slab) &&
2084 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2085 		 "%s, %s: Failed to create slab extension vector!\n",
2086 		 __func__, s->name))
2087 		return NULL;
2088 
2089 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2090 }
2091 
2092 static inline void
2093 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2094 {
2095 	if (need_slab_obj_ext()) {
2096 		struct slabobj_ext *obj_exts;
2097 
2098 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2099 		/*
2100 		 * Currently obj_exts is used only for allocation profiling.
2101 		 * If other users appear then mem_alloc_profiling_enabled()
2102 		 * check should be added before alloc_tag_add().
2103 		 */
2104 		if (likely(obj_exts))
2105 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2106 	}
2107 }
2108 
2109 static inline void
2110 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2111 			     int objects)
2112 {
2113 	struct slabobj_ext *obj_exts;
2114 	int i;
2115 
2116 	if (!mem_alloc_profiling_enabled())
2117 		return;
2118 
2119 	obj_exts = slab_obj_exts(slab);
2120 	if (!obj_exts)
2121 		return;
2122 
2123 	for (i = 0; i < objects; i++) {
2124 		unsigned int off = obj_to_index(s, slab, p[i]);
2125 
2126 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2127 	}
2128 }
2129 
2130 #else /* CONFIG_MEM_ALLOC_PROFILING */
2131 
2132 static inline void
2133 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2134 {
2135 }
2136 
2137 static inline void
2138 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2139 			     int objects)
2140 {
2141 }
2142 
2143 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2144 
2145 
2146 #ifdef CONFIG_MEMCG
2147 
2148 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2149 
2150 static __fastpath_inline
2151 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2152 				gfp_t flags, size_t size, void **p)
2153 {
2154 	if (likely(!memcg_kmem_online()))
2155 		return true;
2156 
2157 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2158 		return true;
2159 
2160 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2161 		return true;
2162 
2163 	if (likely(size == 1)) {
2164 		memcg_alloc_abort_single(s, *p);
2165 		*p = NULL;
2166 	} else {
2167 		kmem_cache_free_bulk(s, size, p);
2168 	}
2169 
2170 	return false;
2171 }
2172 
2173 static __fastpath_inline
2174 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2175 			  int objects)
2176 {
2177 	struct slabobj_ext *obj_exts;
2178 
2179 	if (!memcg_kmem_online())
2180 		return;
2181 
2182 	obj_exts = slab_obj_exts(slab);
2183 	if (likely(!obj_exts))
2184 		return;
2185 
2186 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2187 }
2188 #else /* CONFIG_MEMCG */
2189 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2190 					      struct list_lru *lru,
2191 					      gfp_t flags, size_t size,
2192 					      void **p)
2193 {
2194 	return true;
2195 }
2196 
2197 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2198 					void **p, int objects)
2199 {
2200 }
2201 #endif /* CONFIG_MEMCG */
2202 
2203 /*
2204  * Hooks for other subsystems that check memory allocations. In a typical
2205  * production configuration these hooks all should produce no code at all.
2206  *
2207  * Returns true if freeing of the object can proceed, false if its reuse
2208  * was delayed by KASAN quarantine, or it was returned to KFENCE.
2209  */
2210 static __always_inline
2211 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2212 {
2213 	kmemleak_free_recursive(x, s->flags);
2214 	kmsan_slab_free(s, x);
2215 
2216 	debug_check_no_locks_freed(x, s->object_size);
2217 
2218 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2219 		debug_check_no_obj_freed(x, s->object_size);
2220 
2221 	/* Use KCSAN to help debug racy use-after-free. */
2222 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2223 		__kcsan_check_access(x, s->object_size,
2224 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2225 
2226 	if (kfence_free(x))
2227 		return false;
2228 
2229 	/*
2230 	 * As memory initialization might be integrated into KASAN,
2231 	 * kasan_slab_free and initialization memset's must be
2232 	 * kept together to avoid discrepancies in behavior.
2233 	 *
2234 	 * The initialization memset's clear the object and the metadata,
2235 	 * but don't touch the SLAB redzone.
2236 	 *
2237 	 * The object's freepointer is also avoided if stored outside the
2238 	 * object.
2239 	 */
2240 	if (unlikely(init)) {
2241 		int rsize;
2242 		unsigned int inuse;
2243 
2244 		inuse = get_info_end(s);
2245 		if (!kasan_has_integrated_init())
2246 			memset(kasan_reset_tag(x), 0, s->object_size);
2247 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2248 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2249 		       s->size - inuse - rsize);
2250 	}
2251 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2252 	return !kasan_slab_free(s, x, init);
2253 }
2254 
2255 static __fastpath_inline
2256 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2257 			     int *cnt)
2258 {
2259 
2260 	void *object;
2261 	void *next = *head;
2262 	void *old_tail = *tail;
2263 	bool init;
2264 
2265 	if (is_kfence_address(next)) {
2266 		slab_free_hook(s, next, false);
2267 		return false;
2268 	}
2269 
2270 	/* Head and tail of the reconstructed freelist */
2271 	*head = NULL;
2272 	*tail = NULL;
2273 
2274 	init = slab_want_init_on_free(s);
2275 
2276 	do {
2277 		object = next;
2278 		next = get_freepointer(s, object);
2279 
2280 		/* If object's reuse doesn't have to be delayed */
2281 		if (likely(slab_free_hook(s, object, init))) {
2282 			/* Move object to the new freelist */
2283 			set_freepointer(s, object, *head);
2284 			*head = object;
2285 			if (!*tail)
2286 				*tail = object;
2287 		} else {
2288 			/*
2289 			 * Adjust the reconstructed freelist depth
2290 			 * accordingly if object's reuse is delayed.
2291 			 */
2292 			--(*cnt);
2293 		}
2294 	} while (object != old_tail);
2295 
2296 	return *head != NULL;
2297 }
2298 
2299 static void *setup_object(struct kmem_cache *s, void *object)
2300 {
2301 	setup_object_debug(s, object);
2302 	object = kasan_init_slab_obj(s, object);
2303 	if (unlikely(s->ctor)) {
2304 		kasan_unpoison_new_object(s, object);
2305 		s->ctor(object);
2306 		kasan_poison_new_object(s, object);
2307 	}
2308 	return object;
2309 }
2310 
2311 /*
2312  * Slab allocation and freeing
2313  */
2314 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2315 		struct kmem_cache_order_objects oo)
2316 {
2317 	struct folio *folio;
2318 	struct slab *slab;
2319 	unsigned int order = oo_order(oo);
2320 
2321 	folio = (struct folio *)alloc_pages_node(node, flags, order);
2322 	if (!folio)
2323 		return NULL;
2324 
2325 	slab = folio_slab(folio);
2326 	__folio_set_slab(folio);
2327 	/* Make the flag visible before any changes to folio->mapping */
2328 	smp_wmb();
2329 	if (folio_is_pfmemalloc(folio))
2330 		slab_set_pfmemalloc(slab);
2331 
2332 	return slab;
2333 }
2334 
2335 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2336 /* Pre-initialize the random sequence cache */
2337 static int init_cache_random_seq(struct kmem_cache *s)
2338 {
2339 	unsigned int count = oo_objects(s->oo);
2340 	int err;
2341 
2342 	/* Bailout if already initialised */
2343 	if (s->random_seq)
2344 		return 0;
2345 
2346 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2347 	if (err) {
2348 		pr_err("SLUB: Unable to initialize free list for %s\n",
2349 			s->name);
2350 		return err;
2351 	}
2352 
2353 	/* Transform to an offset on the set of pages */
2354 	if (s->random_seq) {
2355 		unsigned int i;
2356 
2357 		for (i = 0; i < count; i++)
2358 			s->random_seq[i] *= s->size;
2359 	}
2360 	return 0;
2361 }
2362 
2363 /* Initialize each random sequence freelist per cache */
2364 static void __init init_freelist_randomization(void)
2365 {
2366 	struct kmem_cache *s;
2367 
2368 	mutex_lock(&slab_mutex);
2369 
2370 	list_for_each_entry(s, &slab_caches, list)
2371 		init_cache_random_seq(s);
2372 
2373 	mutex_unlock(&slab_mutex);
2374 }
2375 
2376 /* Get the next entry on the pre-computed freelist randomized */
2377 static void *next_freelist_entry(struct kmem_cache *s,
2378 				unsigned long *pos, void *start,
2379 				unsigned long page_limit,
2380 				unsigned long freelist_count)
2381 {
2382 	unsigned int idx;
2383 
2384 	/*
2385 	 * If the target page allocation failed, the number of objects on the
2386 	 * page might be smaller than the usual size defined by the cache.
2387 	 */
2388 	do {
2389 		idx = s->random_seq[*pos];
2390 		*pos += 1;
2391 		if (*pos >= freelist_count)
2392 			*pos = 0;
2393 	} while (unlikely(idx >= page_limit));
2394 
2395 	return (char *)start + idx;
2396 }
2397 
2398 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2399 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2400 {
2401 	void *start;
2402 	void *cur;
2403 	void *next;
2404 	unsigned long idx, pos, page_limit, freelist_count;
2405 
2406 	if (slab->objects < 2 || !s->random_seq)
2407 		return false;
2408 
2409 	freelist_count = oo_objects(s->oo);
2410 	pos = get_random_u32_below(freelist_count);
2411 
2412 	page_limit = slab->objects * s->size;
2413 	start = fixup_red_left(s, slab_address(slab));
2414 
2415 	/* First entry is used as the base of the freelist */
2416 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2417 	cur = setup_object(s, cur);
2418 	slab->freelist = cur;
2419 
2420 	for (idx = 1; idx < slab->objects; idx++) {
2421 		next = next_freelist_entry(s, &pos, start, page_limit,
2422 			freelist_count);
2423 		next = setup_object(s, next);
2424 		set_freepointer(s, cur, next);
2425 		cur = next;
2426 	}
2427 	set_freepointer(s, cur, NULL);
2428 
2429 	return true;
2430 }
2431 #else
2432 static inline int init_cache_random_seq(struct kmem_cache *s)
2433 {
2434 	return 0;
2435 }
2436 static inline void init_freelist_randomization(void) { }
2437 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2438 {
2439 	return false;
2440 }
2441 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2442 
2443 static __always_inline void account_slab(struct slab *slab, int order,
2444 					 struct kmem_cache *s, gfp_t gfp)
2445 {
2446 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2447 		alloc_slab_obj_exts(slab, s, gfp, true);
2448 
2449 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2450 			    PAGE_SIZE << order);
2451 }
2452 
2453 static __always_inline void unaccount_slab(struct slab *slab, int order,
2454 					   struct kmem_cache *s)
2455 {
2456 	if (memcg_kmem_online() || need_slab_obj_ext())
2457 		free_slab_obj_exts(slab);
2458 
2459 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2460 			    -(PAGE_SIZE << order));
2461 }
2462 
2463 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2464 {
2465 	struct slab *slab;
2466 	struct kmem_cache_order_objects oo = s->oo;
2467 	gfp_t alloc_gfp;
2468 	void *start, *p, *next;
2469 	int idx;
2470 	bool shuffle;
2471 
2472 	flags &= gfp_allowed_mask;
2473 
2474 	flags |= s->allocflags;
2475 
2476 	/*
2477 	 * Let the initial higher-order allocation fail under memory pressure
2478 	 * so we fall-back to the minimum order allocation.
2479 	 */
2480 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2481 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2482 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2483 
2484 	slab = alloc_slab_page(alloc_gfp, node, oo);
2485 	if (unlikely(!slab)) {
2486 		oo = s->min;
2487 		alloc_gfp = flags;
2488 		/*
2489 		 * Allocation may have failed due to fragmentation.
2490 		 * Try a lower order alloc if possible
2491 		 */
2492 		slab = alloc_slab_page(alloc_gfp, node, oo);
2493 		if (unlikely(!slab))
2494 			return NULL;
2495 		stat(s, ORDER_FALLBACK);
2496 	}
2497 
2498 	slab->objects = oo_objects(oo);
2499 	slab->inuse = 0;
2500 	slab->frozen = 0;
2501 
2502 	account_slab(slab, oo_order(oo), s, flags);
2503 
2504 	slab->slab_cache = s;
2505 
2506 	kasan_poison_slab(slab);
2507 
2508 	start = slab_address(slab);
2509 
2510 	setup_slab_debug(s, slab, start);
2511 
2512 	shuffle = shuffle_freelist(s, slab);
2513 
2514 	if (!shuffle) {
2515 		start = fixup_red_left(s, start);
2516 		start = setup_object(s, start);
2517 		slab->freelist = start;
2518 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2519 			next = p + s->size;
2520 			next = setup_object(s, next);
2521 			set_freepointer(s, p, next);
2522 			p = next;
2523 		}
2524 		set_freepointer(s, p, NULL);
2525 	}
2526 
2527 	return slab;
2528 }
2529 
2530 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2531 {
2532 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2533 		flags = kmalloc_fix_flags(flags);
2534 
2535 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2536 
2537 	return allocate_slab(s,
2538 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2539 }
2540 
2541 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2542 {
2543 	struct folio *folio = slab_folio(slab);
2544 	int order = folio_order(folio);
2545 	int pages = 1 << order;
2546 
2547 	__slab_clear_pfmemalloc(slab);
2548 	folio->mapping = NULL;
2549 	/* Make the mapping reset visible before clearing the flag */
2550 	smp_wmb();
2551 	__folio_clear_slab(folio);
2552 	mm_account_reclaimed_pages(pages);
2553 	unaccount_slab(slab, order, s);
2554 	__free_pages(&folio->page, order);
2555 }
2556 
2557 static void rcu_free_slab(struct rcu_head *h)
2558 {
2559 	struct slab *slab = container_of(h, struct slab, rcu_head);
2560 
2561 	__free_slab(slab->slab_cache, slab);
2562 }
2563 
2564 static void free_slab(struct kmem_cache *s, struct slab *slab)
2565 {
2566 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2567 		void *p;
2568 
2569 		slab_pad_check(s, slab);
2570 		for_each_object(p, s, slab_address(slab), slab->objects)
2571 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2572 	}
2573 
2574 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2575 		call_rcu(&slab->rcu_head, rcu_free_slab);
2576 	else
2577 		__free_slab(s, slab);
2578 }
2579 
2580 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2581 {
2582 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2583 	free_slab(s, slab);
2584 }
2585 
2586 /*
2587  * SLUB reuses PG_workingset bit to keep track of whether it's on
2588  * the per-node partial list.
2589  */
2590 static inline bool slab_test_node_partial(const struct slab *slab)
2591 {
2592 	return folio_test_workingset(slab_folio(slab));
2593 }
2594 
2595 static inline void slab_set_node_partial(struct slab *slab)
2596 {
2597 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2598 }
2599 
2600 static inline void slab_clear_node_partial(struct slab *slab)
2601 {
2602 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2603 }
2604 
2605 /*
2606  * Management of partially allocated slabs.
2607  */
2608 static inline void
2609 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2610 {
2611 	n->nr_partial++;
2612 	if (tail == DEACTIVATE_TO_TAIL)
2613 		list_add_tail(&slab->slab_list, &n->partial);
2614 	else
2615 		list_add(&slab->slab_list, &n->partial);
2616 	slab_set_node_partial(slab);
2617 }
2618 
2619 static inline void add_partial(struct kmem_cache_node *n,
2620 				struct slab *slab, int tail)
2621 {
2622 	lockdep_assert_held(&n->list_lock);
2623 	__add_partial(n, slab, tail);
2624 }
2625 
2626 static inline void remove_partial(struct kmem_cache_node *n,
2627 					struct slab *slab)
2628 {
2629 	lockdep_assert_held(&n->list_lock);
2630 	list_del(&slab->slab_list);
2631 	slab_clear_node_partial(slab);
2632 	n->nr_partial--;
2633 }
2634 
2635 /*
2636  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2637  * slab from the n->partial list. Remove only a single object from the slab, do
2638  * the alloc_debug_processing() checks and leave the slab on the list, or move
2639  * it to full list if it was the last free object.
2640  */
2641 static void *alloc_single_from_partial(struct kmem_cache *s,
2642 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2643 {
2644 	void *object;
2645 
2646 	lockdep_assert_held(&n->list_lock);
2647 
2648 	object = slab->freelist;
2649 	slab->freelist = get_freepointer(s, object);
2650 	slab->inuse++;
2651 
2652 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2653 		remove_partial(n, slab);
2654 		return NULL;
2655 	}
2656 
2657 	if (slab->inuse == slab->objects) {
2658 		remove_partial(n, slab);
2659 		add_full(s, n, slab);
2660 	}
2661 
2662 	return object;
2663 }
2664 
2665 /*
2666  * Called only for kmem_cache_debug() caches to allocate from a freshly
2667  * allocated slab. Allocate a single object instead of whole freelist
2668  * and put the slab to the partial (or full) list.
2669  */
2670 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2671 					struct slab *slab, int orig_size)
2672 {
2673 	int nid = slab_nid(slab);
2674 	struct kmem_cache_node *n = get_node(s, nid);
2675 	unsigned long flags;
2676 	void *object;
2677 
2678 
2679 	object = slab->freelist;
2680 	slab->freelist = get_freepointer(s, object);
2681 	slab->inuse = 1;
2682 
2683 	if (!alloc_debug_processing(s, slab, object, orig_size))
2684 		/*
2685 		 * It's not really expected that this would fail on a
2686 		 * freshly allocated slab, but a concurrent memory
2687 		 * corruption in theory could cause that.
2688 		 */
2689 		return NULL;
2690 
2691 	spin_lock_irqsave(&n->list_lock, flags);
2692 
2693 	if (slab->inuse == slab->objects)
2694 		add_full(s, n, slab);
2695 	else
2696 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2697 
2698 	inc_slabs_node(s, nid, slab->objects);
2699 	spin_unlock_irqrestore(&n->list_lock, flags);
2700 
2701 	return object;
2702 }
2703 
2704 #ifdef CONFIG_SLUB_CPU_PARTIAL
2705 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2706 #else
2707 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2708 				   int drain) { }
2709 #endif
2710 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2711 
2712 /*
2713  * Try to allocate a partial slab from a specific node.
2714  */
2715 static struct slab *get_partial_node(struct kmem_cache *s,
2716 				     struct kmem_cache_node *n,
2717 				     struct partial_context *pc)
2718 {
2719 	struct slab *slab, *slab2, *partial = NULL;
2720 	unsigned long flags;
2721 	unsigned int partial_slabs = 0;
2722 
2723 	/*
2724 	 * Racy check. If we mistakenly see no partial slabs then we
2725 	 * just allocate an empty slab. If we mistakenly try to get a
2726 	 * partial slab and there is none available then get_partial()
2727 	 * will return NULL.
2728 	 */
2729 	if (!n || !n->nr_partial)
2730 		return NULL;
2731 
2732 	spin_lock_irqsave(&n->list_lock, flags);
2733 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2734 		if (!pfmemalloc_match(slab, pc->flags))
2735 			continue;
2736 
2737 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2738 			void *object = alloc_single_from_partial(s, n, slab,
2739 							pc->orig_size);
2740 			if (object) {
2741 				partial = slab;
2742 				pc->object = object;
2743 				break;
2744 			}
2745 			continue;
2746 		}
2747 
2748 		remove_partial(n, slab);
2749 
2750 		if (!partial) {
2751 			partial = slab;
2752 			stat(s, ALLOC_FROM_PARTIAL);
2753 
2754 			if ((slub_get_cpu_partial(s) == 0)) {
2755 				break;
2756 			}
2757 		} else {
2758 			put_cpu_partial(s, slab, 0);
2759 			stat(s, CPU_PARTIAL_NODE);
2760 
2761 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2762 				break;
2763 			}
2764 		}
2765 	}
2766 	spin_unlock_irqrestore(&n->list_lock, flags);
2767 	return partial;
2768 }
2769 
2770 /*
2771  * Get a slab from somewhere. Search in increasing NUMA distances.
2772  */
2773 static struct slab *get_any_partial(struct kmem_cache *s,
2774 				    struct partial_context *pc)
2775 {
2776 #ifdef CONFIG_NUMA
2777 	struct zonelist *zonelist;
2778 	struct zoneref *z;
2779 	struct zone *zone;
2780 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2781 	struct slab *slab;
2782 	unsigned int cpuset_mems_cookie;
2783 
2784 	/*
2785 	 * The defrag ratio allows a configuration of the tradeoffs between
2786 	 * inter node defragmentation and node local allocations. A lower
2787 	 * defrag_ratio increases the tendency to do local allocations
2788 	 * instead of attempting to obtain partial slabs from other nodes.
2789 	 *
2790 	 * If the defrag_ratio is set to 0 then kmalloc() always
2791 	 * returns node local objects. If the ratio is higher then kmalloc()
2792 	 * may return off node objects because partial slabs are obtained
2793 	 * from other nodes and filled up.
2794 	 *
2795 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2796 	 * (which makes defrag_ratio = 1000) then every (well almost)
2797 	 * allocation will first attempt to defrag slab caches on other nodes.
2798 	 * This means scanning over all nodes to look for partial slabs which
2799 	 * may be expensive if we do it every time we are trying to find a slab
2800 	 * with available objects.
2801 	 */
2802 	if (!s->remote_node_defrag_ratio ||
2803 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2804 		return NULL;
2805 
2806 	do {
2807 		cpuset_mems_cookie = read_mems_allowed_begin();
2808 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2809 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2810 			struct kmem_cache_node *n;
2811 
2812 			n = get_node(s, zone_to_nid(zone));
2813 
2814 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2815 					n->nr_partial > s->min_partial) {
2816 				slab = get_partial_node(s, n, pc);
2817 				if (slab) {
2818 					/*
2819 					 * Don't check read_mems_allowed_retry()
2820 					 * here - if mems_allowed was updated in
2821 					 * parallel, that was a harmless race
2822 					 * between allocation and the cpuset
2823 					 * update
2824 					 */
2825 					return slab;
2826 				}
2827 			}
2828 		}
2829 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2830 #endif	/* CONFIG_NUMA */
2831 	return NULL;
2832 }
2833 
2834 /*
2835  * Get a partial slab, lock it and return it.
2836  */
2837 static struct slab *get_partial(struct kmem_cache *s, int node,
2838 				struct partial_context *pc)
2839 {
2840 	struct slab *slab;
2841 	int searchnode = node;
2842 
2843 	if (node == NUMA_NO_NODE)
2844 		searchnode = numa_mem_id();
2845 
2846 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2847 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2848 		return slab;
2849 
2850 	return get_any_partial(s, pc);
2851 }
2852 
2853 #ifndef CONFIG_SLUB_TINY
2854 
2855 #ifdef CONFIG_PREEMPTION
2856 /*
2857  * Calculate the next globally unique transaction for disambiguation
2858  * during cmpxchg. The transactions start with the cpu number and are then
2859  * incremented by CONFIG_NR_CPUS.
2860  */
2861 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2862 #else
2863 /*
2864  * No preemption supported therefore also no need to check for
2865  * different cpus.
2866  */
2867 #define TID_STEP 1
2868 #endif /* CONFIG_PREEMPTION */
2869 
2870 static inline unsigned long next_tid(unsigned long tid)
2871 {
2872 	return tid + TID_STEP;
2873 }
2874 
2875 #ifdef SLUB_DEBUG_CMPXCHG
2876 static inline unsigned int tid_to_cpu(unsigned long tid)
2877 {
2878 	return tid % TID_STEP;
2879 }
2880 
2881 static inline unsigned long tid_to_event(unsigned long tid)
2882 {
2883 	return tid / TID_STEP;
2884 }
2885 #endif
2886 
2887 static inline unsigned int init_tid(int cpu)
2888 {
2889 	return cpu;
2890 }
2891 
2892 static inline void note_cmpxchg_failure(const char *n,
2893 		const struct kmem_cache *s, unsigned long tid)
2894 {
2895 #ifdef SLUB_DEBUG_CMPXCHG
2896 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2897 
2898 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2899 
2900 #ifdef CONFIG_PREEMPTION
2901 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2902 		pr_warn("due to cpu change %d -> %d\n",
2903 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2904 	else
2905 #endif
2906 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2907 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2908 			tid_to_event(tid), tid_to_event(actual_tid));
2909 	else
2910 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2911 			actual_tid, tid, next_tid(tid));
2912 #endif
2913 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2914 }
2915 
2916 static void init_kmem_cache_cpus(struct kmem_cache *s)
2917 {
2918 	int cpu;
2919 	struct kmem_cache_cpu *c;
2920 
2921 	for_each_possible_cpu(cpu) {
2922 		c = per_cpu_ptr(s->cpu_slab, cpu);
2923 		local_lock_init(&c->lock);
2924 		c->tid = init_tid(cpu);
2925 	}
2926 }
2927 
2928 /*
2929  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2930  * unfreezes the slabs and puts it on the proper list.
2931  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2932  * by the caller.
2933  */
2934 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2935 			    void *freelist)
2936 {
2937 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2938 	int free_delta = 0;
2939 	void *nextfree, *freelist_iter, *freelist_tail;
2940 	int tail = DEACTIVATE_TO_HEAD;
2941 	unsigned long flags = 0;
2942 	struct slab new;
2943 	struct slab old;
2944 
2945 	if (READ_ONCE(slab->freelist)) {
2946 		stat(s, DEACTIVATE_REMOTE_FREES);
2947 		tail = DEACTIVATE_TO_TAIL;
2948 	}
2949 
2950 	/*
2951 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2952 	 * remember the last object in freelist_tail for later splicing.
2953 	 */
2954 	freelist_tail = NULL;
2955 	freelist_iter = freelist;
2956 	while (freelist_iter) {
2957 		nextfree = get_freepointer(s, freelist_iter);
2958 
2959 		/*
2960 		 * If 'nextfree' is invalid, it is possible that the object at
2961 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2962 		 * starting at 'freelist_iter' by skipping them.
2963 		 */
2964 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2965 			break;
2966 
2967 		freelist_tail = freelist_iter;
2968 		free_delta++;
2969 
2970 		freelist_iter = nextfree;
2971 	}
2972 
2973 	/*
2974 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2975 	 * freelist to the head of slab's freelist.
2976 	 */
2977 	do {
2978 		old.freelist = READ_ONCE(slab->freelist);
2979 		old.counters = READ_ONCE(slab->counters);
2980 		VM_BUG_ON(!old.frozen);
2981 
2982 		/* Determine target state of the slab */
2983 		new.counters = old.counters;
2984 		new.frozen = 0;
2985 		if (freelist_tail) {
2986 			new.inuse -= free_delta;
2987 			set_freepointer(s, freelist_tail, old.freelist);
2988 			new.freelist = freelist;
2989 		} else {
2990 			new.freelist = old.freelist;
2991 		}
2992 	} while (!slab_update_freelist(s, slab,
2993 		old.freelist, old.counters,
2994 		new.freelist, new.counters,
2995 		"unfreezing slab"));
2996 
2997 	/*
2998 	 * Stage three: Manipulate the slab list based on the updated state.
2999 	 */
3000 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3001 		stat(s, DEACTIVATE_EMPTY);
3002 		discard_slab(s, slab);
3003 		stat(s, FREE_SLAB);
3004 	} else if (new.freelist) {
3005 		spin_lock_irqsave(&n->list_lock, flags);
3006 		add_partial(n, slab, tail);
3007 		spin_unlock_irqrestore(&n->list_lock, flags);
3008 		stat(s, tail);
3009 	} else {
3010 		stat(s, DEACTIVATE_FULL);
3011 	}
3012 }
3013 
3014 #ifdef CONFIG_SLUB_CPU_PARTIAL
3015 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3016 {
3017 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3018 	struct slab *slab, *slab_to_discard = NULL;
3019 	unsigned long flags = 0;
3020 
3021 	while (partial_slab) {
3022 		slab = partial_slab;
3023 		partial_slab = slab->next;
3024 
3025 		n2 = get_node(s, slab_nid(slab));
3026 		if (n != n2) {
3027 			if (n)
3028 				spin_unlock_irqrestore(&n->list_lock, flags);
3029 
3030 			n = n2;
3031 			spin_lock_irqsave(&n->list_lock, flags);
3032 		}
3033 
3034 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3035 			slab->next = slab_to_discard;
3036 			slab_to_discard = slab;
3037 		} else {
3038 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3039 			stat(s, FREE_ADD_PARTIAL);
3040 		}
3041 	}
3042 
3043 	if (n)
3044 		spin_unlock_irqrestore(&n->list_lock, flags);
3045 
3046 	while (slab_to_discard) {
3047 		slab = slab_to_discard;
3048 		slab_to_discard = slab_to_discard->next;
3049 
3050 		stat(s, DEACTIVATE_EMPTY);
3051 		discard_slab(s, slab);
3052 		stat(s, FREE_SLAB);
3053 	}
3054 }
3055 
3056 /*
3057  * Put all the cpu partial slabs to the node partial list.
3058  */
3059 static void put_partials(struct kmem_cache *s)
3060 {
3061 	struct slab *partial_slab;
3062 	unsigned long flags;
3063 
3064 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3065 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3066 	this_cpu_write(s->cpu_slab->partial, NULL);
3067 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3068 
3069 	if (partial_slab)
3070 		__put_partials(s, partial_slab);
3071 }
3072 
3073 static void put_partials_cpu(struct kmem_cache *s,
3074 			     struct kmem_cache_cpu *c)
3075 {
3076 	struct slab *partial_slab;
3077 
3078 	partial_slab = slub_percpu_partial(c);
3079 	c->partial = NULL;
3080 
3081 	if (partial_slab)
3082 		__put_partials(s, partial_slab);
3083 }
3084 
3085 /*
3086  * Put a slab into a partial slab slot if available.
3087  *
3088  * If we did not find a slot then simply move all the partials to the
3089  * per node partial list.
3090  */
3091 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3092 {
3093 	struct slab *oldslab;
3094 	struct slab *slab_to_put = NULL;
3095 	unsigned long flags;
3096 	int slabs = 0;
3097 
3098 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3099 
3100 	oldslab = this_cpu_read(s->cpu_slab->partial);
3101 
3102 	if (oldslab) {
3103 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3104 			/*
3105 			 * Partial array is full. Move the existing set to the
3106 			 * per node partial list. Postpone the actual unfreezing
3107 			 * outside of the critical section.
3108 			 */
3109 			slab_to_put = oldslab;
3110 			oldslab = NULL;
3111 		} else {
3112 			slabs = oldslab->slabs;
3113 		}
3114 	}
3115 
3116 	slabs++;
3117 
3118 	slab->slabs = slabs;
3119 	slab->next = oldslab;
3120 
3121 	this_cpu_write(s->cpu_slab->partial, slab);
3122 
3123 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3124 
3125 	if (slab_to_put) {
3126 		__put_partials(s, slab_to_put);
3127 		stat(s, CPU_PARTIAL_DRAIN);
3128 	}
3129 }
3130 
3131 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3132 
3133 static inline void put_partials(struct kmem_cache *s) { }
3134 static inline void put_partials_cpu(struct kmem_cache *s,
3135 				    struct kmem_cache_cpu *c) { }
3136 
3137 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3138 
3139 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3140 {
3141 	unsigned long flags;
3142 	struct slab *slab;
3143 	void *freelist;
3144 
3145 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3146 
3147 	slab = c->slab;
3148 	freelist = c->freelist;
3149 
3150 	c->slab = NULL;
3151 	c->freelist = NULL;
3152 	c->tid = next_tid(c->tid);
3153 
3154 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3155 
3156 	if (slab) {
3157 		deactivate_slab(s, slab, freelist);
3158 		stat(s, CPUSLAB_FLUSH);
3159 	}
3160 }
3161 
3162 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3163 {
3164 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3165 	void *freelist = c->freelist;
3166 	struct slab *slab = c->slab;
3167 
3168 	c->slab = NULL;
3169 	c->freelist = NULL;
3170 	c->tid = next_tid(c->tid);
3171 
3172 	if (slab) {
3173 		deactivate_slab(s, slab, freelist);
3174 		stat(s, CPUSLAB_FLUSH);
3175 	}
3176 
3177 	put_partials_cpu(s, c);
3178 }
3179 
3180 struct slub_flush_work {
3181 	struct work_struct work;
3182 	struct kmem_cache *s;
3183 	bool skip;
3184 };
3185 
3186 /*
3187  * Flush cpu slab.
3188  *
3189  * Called from CPU work handler with migration disabled.
3190  */
3191 static void flush_cpu_slab(struct work_struct *w)
3192 {
3193 	struct kmem_cache *s;
3194 	struct kmem_cache_cpu *c;
3195 	struct slub_flush_work *sfw;
3196 
3197 	sfw = container_of(w, struct slub_flush_work, work);
3198 
3199 	s = sfw->s;
3200 	c = this_cpu_ptr(s->cpu_slab);
3201 
3202 	if (c->slab)
3203 		flush_slab(s, c);
3204 
3205 	put_partials(s);
3206 }
3207 
3208 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3209 {
3210 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3211 
3212 	return c->slab || slub_percpu_partial(c);
3213 }
3214 
3215 static DEFINE_MUTEX(flush_lock);
3216 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3217 
3218 static void flush_all_cpus_locked(struct kmem_cache *s)
3219 {
3220 	struct slub_flush_work *sfw;
3221 	unsigned int cpu;
3222 
3223 	lockdep_assert_cpus_held();
3224 	mutex_lock(&flush_lock);
3225 
3226 	for_each_online_cpu(cpu) {
3227 		sfw = &per_cpu(slub_flush, cpu);
3228 		if (!has_cpu_slab(cpu, s)) {
3229 			sfw->skip = true;
3230 			continue;
3231 		}
3232 		INIT_WORK(&sfw->work, flush_cpu_slab);
3233 		sfw->skip = false;
3234 		sfw->s = s;
3235 		queue_work_on(cpu, flushwq, &sfw->work);
3236 	}
3237 
3238 	for_each_online_cpu(cpu) {
3239 		sfw = &per_cpu(slub_flush, cpu);
3240 		if (sfw->skip)
3241 			continue;
3242 		flush_work(&sfw->work);
3243 	}
3244 
3245 	mutex_unlock(&flush_lock);
3246 }
3247 
3248 static void flush_all(struct kmem_cache *s)
3249 {
3250 	cpus_read_lock();
3251 	flush_all_cpus_locked(s);
3252 	cpus_read_unlock();
3253 }
3254 
3255 /*
3256  * Use the cpu notifier to insure that the cpu slabs are flushed when
3257  * necessary.
3258  */
3259 static int slub_cpu_dead(unsigned int cpu)
3260 {
3261 	struct kmem_cache *s;
3262 
3263 	mutex_lock(&slab_mutex);
3264 	list_for_each_entry(s, &slab_caches, list)
3265 		__flush_cpu_slab(s, cpu);
3266 	mutex_unlock(&slab_mutex);
3267 	return 0;
3268 }
3269 
3270 #else /* CONFIG_SLUB_TINY */
3271 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3272 static inline void flush_all(struct kmem_cache *s) { }
3273 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3274 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3275 #endif /* CONFIG_SLUB_TINY */
3276 
3277 /*
3278  * Check if the objects in a per cpu structure fit numa
3279  * locality expectations.
3280  */
3281 static inline int node_match(struct slab *slab, int node)
3282 {
3283 #ifdef CONFIG_NUMA
3284 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3285 		return 0;
3286 #endif
3287 	return 1;
3288 }
3289 
3290 #ifdef CONFIG_SLUB_DEBUG
3291 static int count_free(struct slab *slab)
3292 {
3293 	return slab->objects - slab->inuse;
3294 }
3295 
3296 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3297 {
3298 	return atomic_long_read(&n->total_objects);
3299 }
3300 
3301 /* Supports checking bulk free of a constructed freelist */
3302 static inline bool free_debug_processing(struct kmem_cache *s,
3303 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3304 	unsigned long addr, depot_stack_handle_t handle)
3305 {
3306 	bool checks_ok = false;
3307 	void *object = head;
3308 	int cnt = 0;
3309 
3310 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3311 		if (!check_slab(s, slab))
3312 			goto out;
3313 	}
3314 
3315 	if (slab->inuse < *bulk_cnt) {
3316 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3317 			 slab->inuse, *bulk_cnt);
3318 		goto out;
3319 	}
3320 
3321 next_object:
3322 
3323 	if (++cnt > *bulk_cnt)
3324 		goto out_cnt;
3325 
3326 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3327 		if (!free_consistency_checks(s, slab, object, addr))
3328 			goto out;
3329 	}
3330 
3331 	if (s->flags & SLAB_STORE_USER)
3332 		set_track_update(s, object, TRACK_FREE, addr, handle);
3333 	trace(s, slab, object, 0);
3334 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3335 	init_object(s, object, SLUB_RED_INACTIVE);
3336 
3337 	/* Reached end of constructed freelist yet? */
3338 	if (object != tail) {
3339 		object = get_freepointer(s, object);
3340 		goto next_object;
3341 	}
3342 	checks_ok = true;
3343 
3344 out_cnt:
3345 	if (cnt != *bulk_cnt) {
3346 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3347 			 *bulk_cnt, cnt);
3348 		*bulk_cnt = cnt;
3349 	}
3350 
3351 out:
3352 
3353 	if (!checks_ok)
3354 		slab_fix(s, "Object at 0x%p not freed", object);
3355 
3356 	return checks_ok;
3357 }
3358 #endif /* CONFIG_SLUB_DEBUG */
3359 
3360 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3361 static unsigned long count_partial(struct kmem_cache_node *n,
3362 					int (*get_count)(struct slab *))
3363 {
3364 	unsigned long flags;
3365 	unsigned long x = 0;
3366 	struct slab *slab;
3367 
3368 	spin_lock_irqsave(&n->list_lock, flags);
3369 	list_for_each_entry(slab, &n->partial, slab_list)
3370 		x += get_count(slab);
3371 	spin_unlock_irqrestore(&n->list_lock, flags);
3372 	return x;
3373 }
3374 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3375 
3376 #ifdef CONFIG_SLUB_DEBUG
3377 #define MAX_PARTIAL_TO_SCAN 10000
3378 
3379 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3380 {
3381 	unsigned long flags;
3382 	unsigned long x = 0;
3383 	struct slab *slab;
3384 
3385 	spin_lock_irqsave(&n->list_lock, flags);
3386 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3387 		list_for_each_entry(slab, &n->partial, slab_list)
3388 			x += slab->objects - slab->inuse;
3389 	} else {
3390 		/*
3391 		 * For a long list, approximate the total count of objects in
3392 		 * it to meet the limit on the number of slabs to scan.
3393 		 * Scan from both the list's head and tail for better accuracy.
3394 		 */
3395 		unsigned long scanned = 0;
3396 
3397 		list_for_each_entry(slab, &n->partial, slab_list) {
3398 			x += slab->objects - slab->inuse;
3399 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3400 				break;
3401 		}
3402 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3403 			x += slab->objects - slab->inuse;
3404 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3405 				break;
3406 		}
3407 		x = mult_frac(x, n->nr_partial, scanned);
3408 		x = min(x, node_nr_objs(n));
3409 	}
3410 	spin_unlock_irqrestore(&n->list_lock, flags);
3411 	return x;
3412 }
3413 
3414 static noinline void
3415 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3416 {
3417 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3418 				      DEFAULT_RATELIMIT_BURST);
3419 	int node;
3420 	struct kmem_cache_node *n;
3421 
3422 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3423 		return;
3424 
3425 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3426 		nid, gfpflags, &gfpflags);
3427 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3428 		s->name, s->object_size, s->size, oo_order(s->oo),
3429 		oo_order(s->min));
3430 
3431 	if (oo_order(s->min) > get_order(s->object_size))
3432 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3433 			s->name);
3434 
3435 	for_each_kmem_cache_node(s, node, n) {
3436 		unsigned long nr_slabs;
3437 		unsigned long nr_objs;
3438 		unsigned long nr_free;
3439 
3440 		nr_free  = count_partial_free_approx(n);
3441 		nr_slabs = node_nr_slabs(n);
3442 		nr_objs  = node_nr_objs(n);
3443 
3444 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3445 			node, nr_slabs, nr_objs, nr_free);
3446 	}
3447 }
3448 #else /* CONFIG_SLUB_DEBUG */
3449 static inline void
3450 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3451 #endif
3452 
3453 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3454 {
3455 	if (unlikely(slab_test_pfmemalloc(slab)))
3456 		return gfp_pfmemalloc_allowed(gfpflags);
3457 
3458 	return true;
3459 }
3460 
3461 #ifndef CONFIG_SLUB_TINY
3462 static inline bool
3463 __update_cpu_freelist_fast(struct kmem_cache *s,
3464 			   void *freelist_old, void *freelist_new,
3465 			   unsigned long tid)
3466 {
3467 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3468 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3469 
3470 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3471 					     &old.full, new.full);
3472 }
3473 
3474 /*
3475  * Check the slab->freelist and either transfer the freelist to the
3476  * per cpu freelist or deactivate the slab.
3477  *
3478  * The slab is still frozen if the return value is not NULL.
3479  *
3480  * If this function returns NULL then the slab has been unfrozen.
3481  */
3482 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3483 {
3484 	struct slab new;
3485 	unsigned long counters;
3486 	void *freelist;
3487 
3488 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3489 
3490 	do {
3491 		freelist = slab->freelist;
3492 		counters = slab->counters;
3493 
3494 		new.counters = counters;
3495 
3496 		new.inuse = slab->objects;
3497 		new.frozen = freelist != NULL;
3498 
3499 	} while (!__slab_update_freelist(s, slab,
3500 		freelist, counters,
3501 		NULL, new.counters,
3502 		"get_freelist"));
3503 
3504 	return freelist;
3505 }
3506 
3507 /*
3508  * Freeze the partial slab and return the pointer to the freelist.
3509  */
3510 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3511 {
3512 	struct slab new;
3513 	unsigned long counters;
3514 	void *freelist;
3515 
3516 	do {
3517 		freelist = slab->freelist;
3518 		counters = slab->counters;
3519 
3520 		new.counters = counters;
3521 		VM_BUG_ON(new.frozen);
3522 
3523 		new.inuse = slab->objects;
3524 		new.frozen = 1;
3525 
3526 	} while (!slab_update_freelist(s, slab,
3527 		freelist, counters,
3528 		NULL, new.counters,
3529 		"freeze_slab"));
3530 
3531 	return freelist;
3532 }
3533 
3534 /*
3535  * Slow path. The lockless freelist is empty or we need to perform
3536  * debugging duties.
3537  *
3538  * Processing is still very fast if new objects have been freed to the
3539  * regular freelist. In that case we simply take over the regular freelist
3540  * as the lockless freelist and zap the regular freelist.
3541  *
3542  * If that is not working then we fall back to the partial lists. We take the
3543  * first element of the freelist as the object to allocate now and move the
3544  * rest of the freelist to the lockless freelist.
3545  *
3546  * And if we were unable to get a new slab from the partial slab lists then
3547  * we need to allocate a new slab. This is the slowest path since it involves
3548  * a call to the page allocator and the setup of a new slab.
3549  *
3550  * Version of __slab_alloc to use when we know that preemption is
3551  * already disabled (which is the case for bulk allocation).
3552  */
3553 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3554 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3555 {
3556 	void *freelist;
3557 	struct slab *slab;
3558 	unsigned long flags;
3559 	struct partial_context pc;
3560 	bool try_thisnode = true;
3561 
3562 	stat(s, ALLOC_SLOWPATH);
3563 
3564 reread_slab:
3565 
3566 	slab = READ_ONCE(c->slab);
3567 	if (!slab) {
3568 		/*
3569 		 * if the node is not online or has no normal memory, just
3570 		 * ignore the node constraint
3571 		 */
3572 		if (unlikely(node != NUMA_NO_NODE &&
3573 			     !node_isset(node, slab_nodes)))
3574 			node = NUMA_NO_NODE;
3575 		goto new_slab;
3576 	}
3577 
3578 	if (unlikely(!node_match(slab, node))) {
3579 		/*
3580 		 * same as above but node_match() being false already
3581 		 * implies node != NUMA_NO_NODE
3582 		 */
3583 		if (!node_isset(node, slab_nodes)) {
3584 			node = NUMA_NO_NODE;
3585 		} else {
3586 			stat(s, ALLOC_NODE_MISMATCH);
3587 			goto deactivate_slab;
3588 		}
3589 	}
3590 
3591 	/*
3592 	 * By rights, we should be searching for a slab page that was
3593 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3594 	 * information when the page leaves the per-cpu allocator
3595 	 */
3596 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3597 		goto deactivate_slab;
3598 
3599 	/* must check again c->slab in case we got preempted and it changed */
3600 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3601 	if (unlikely(slab != c->slab)) {
3602 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3603 		goto reread_slab;
3604 	}
3605 	freelist = c->freelist;
3606 	if (freelist)
3607 		goto load_freelist;
3608 
3609 	freelist = get_freelist(s, slab);
3610 
3611 	if (!freelist) {
3612 		c->slab = NULL;
3613 		c->tid = next_tid(c->tid);
3614 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3615 		stat(s, DEACTIVATE_BYPASS);
3616 		goto new_slab;
3617 	}
3618 
3619 	stat(s, ALLOC_REFILL);
3620 
3621 load_freelist:
3622 
3623 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3624 
3625 	/*
3626 	 * freelist is pointing to the list of objects to be used.
3627 	 * slab is pointing to the slab from which the objects are obtained.
3628 	 * That slab must be frozen for per cpu allocations to work.
3629 	 */
3630 	VM_BUG_ON(!c->slab->frozen);
3631 	c->freelist = get_freepointer(s, freelist);
3632 	c->tid = next_tid(c->tid);
3633 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3634 	return freelist;
3635 
3636 deactivate_slab:
3637 
3638 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3639 	if (slab != c->slab) {
3640 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3641 		goto reread_slab;
3642 	}
3643 	freelist = c->freelist;
3644 	c->slab = NULL;
3645 	c->freelist = NULL;
3646 	c->tid = next_tid(c->tid);
3647 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3648 	deactivate_slab(s, slab, freelist);
3649 
3650 new_slab:
3651 
3652 #ifdef CONFIG_SLUB_CPU_PARTIAL
3653 	while (slub_percpu_partial(c)) {
3654 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3655 		if (unlikely(c->slab)) {
3656 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3657 			goto reread_slab;
3658 		}
3659 		if (unlikely(!slub_percpu_partial(c))) {
3660 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3661 			/* we were preempted and partial list got empty */
3662 			goto new_objects;
3663 		}
3664 
3665 		slab = slub_percpu_partial(c);
3666 		slub_set_percpu_partial(c, slab);
3667 
3668 		if (likely(node_match(slab, node) &&
3669 			   pfmemalloc_match(slab, gfpflags))) {
3670 			c->slab = slab;
3671 			freelist = get_freelist(s, slab);
3672 			VM_BUG_ON(!freelist);
3673 			stat(s, CPU_PARTIAL_ALLOC);
3674 			goto load_freelist;
3675 		}
3676 
3677 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3678 
3679 		slab->next = NULL;
3680 		__put_partials(s, slab);
3681 	}
3682 #endif
3683 
3684 new_objects:
3685 
3686 	pc.flags = gfpflags;
3687 	/*
3688 	 * When a preferred node is indicated but no __GFP_THISNODE
3689 	 *
3690 	 * 1) try to get a partial slab from target node only by having
3691 	 *    __GFP_THISNODE in pc.flags for get_partial()
3692 	 * 2) if 1) failed, try to allocate a new slab from target node with
3693 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3694 	 * 3) if 2) failed, retry with original gfpflags which will allow
3695 	 *    get_partial() try partial lists of other nodes before potentially
3696 	 *    allocating new page from other nodes
3697 	 */
3698 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3699 		     && try_thisnode))
3700 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3701 
3702 	pc.orig_size = orig_size;
3703 	slab = get_partial(s, node, &pc);
3704 	if (slab) {
3705 		if (kmem_cache_debug(s)) {
3706 			freelist = pc.object;
3707 			/*
3708 			 * For debug caches here we had to go through
3709 			 * alloc_single_from_partial() so just store the
3710 			 * tracking info and return the object.
3711 			 */
3712 			if (s->flags & SLAB_STORE_USER)
3713 				set_track(s, freelist, TRACK_ALLOC, addr);
3714 
3715 			return freelist;
3716 		}
3717 
3718 		freelist = freeze_slab(s, slab);
3719 		goto retry_load_slab;
3720 	}
3721 
3722 	slub_put_cpu_ptr(s->cpu_slab);
3723 	slab = new_slab(s, pc.flags, node);
3724 	c = slub_get_cpu_ptr(s->cpu_slab);
3725 
3726 	if (unlikely(!slab)) {
3727 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3728 		    && try_thisnode) {
3729 			try_thisnode = false;
3730 			goto new_objects;
3731 		}
3732 		slab_out_of_memory(s, gfpflags, node);
3733 		return NULL;
3734 	}
3735 
3736 	stat(s, ALLOC_SLAB);
3737 
3738 	if (kmem_cache_debug(s)) {
3739 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3740 
3741 		if (unlikely(!freelist))
3742 			goto new_objects;
3743 
3744 		if (s->flags & SLAB_STORE_USER)
3745 			set_track(s, freelist, TRACK_ALLOC, addr);
3746 
3747 		return freelist;
3748 	}
3749 
3750 	/*
3751 	 * No other reference to the slab yet so we can
3752 	 * muck around with it freely without cmpxchg
3753 	 */
3754 	freelist = slab->freelist;
3755 	slab->freelist = NULL;
3756 	slab->inuse = slab->objects;
3757 	slab->frozen = 1;
3758 
3759 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3760 
3761 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3762 		/*
3763 		 * For !pfmemalloc_match() case we don't load freelist so that
3764 		 * we don't make further mismatched allocations easier.
3765 		 */
3766 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3767 		return freelist;
3768 	}
3769 
3770 retry_load_slab:
3771 
3772 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3773 	if (unlikely(c->slab)) {
3774 		void *flush_freelist = c->freelist;
3775 		struct slab *flush_slab = c->slab;
3776 
3777 		c->slab = NULL;
3778 		c->freelist = NULL;
3779 		c->tid = next_tid(c->tid);
3780 
3781 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3782 
3783 		deactivate_slab(s, flush_slab, flush_freelist);
3784 
3785 		stat(s, CPUSLAB_FLUSH);
3786 
3787 		goto retry_load_slab;
3788 	}
3789 	c->slab = slab;
3790 
3791 	goto load_freelist;
3792 }
3793 
3794 /*
3795  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3796  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3797  * pointer.
3798  */
3799 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3800 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3801 {
3802 	void *p;
3803 
3804 #ifdef CONFIG_PREEMPT_COUNT
3805 	/*
3806 	 * We may have been preempted and rescheduled on a different
3807 	 * cpu before disabling preemption. Need to reload cpu area
3808 	 * pointer.
3809 	 */
3810 	c = slub_get_cpu_ptr(s->cpu_slab);
3811 #endif
3812 
3813 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3814 #ifdef CONFIG_PREEMPT_COUNT
3815 	slub_put_cpu_ptr(s->cpu_slab);
3816 #endif
3817 	return p;
3818 }
3819 
3820 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3821 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3822 {
3823 	struct kmem_cache_cpu *c;
3824 	struct slab *slab;
3825 	unsigned long tid;
3826 	void *object;
3827 
3828 redo:
3829 	/*
3830 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3831 	 * enabled. We may switch back and forth between cpus while
3832 	 * reading from one cpu area. That does not matter as long
3833 	 * as we end up on the original cpu again when doing the cmpxchg.
3834 	 *
3835 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3836 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3837 	 * the tid. If we are preempted and switched to another cpu between the
3838 	 * two reads, it's OK as the two are still associated with the same cpu
3839 	 * and cmpxchg later will validate the cpu.
3840 	 */
3841 	c = raw_cpu_ptr(s->cpu_slab);
3842 	tid = READ_ONCE(c->tid);
3843 
3844 	/*
3845 	 * Irqless object alloc/free algorithm used here depends on sequence
3846 	 * of fetching cpu_slab's data. tid should be fetched before anything
3847 	 * on c to guarantee that object and slab associated with previous tid
3848 	 * won't be used with current tid. If we fetch tid first, object and
3849 	 * slab could be one associated with next tid and our alloc/free
3850 	 * request will be failed. In this case, we will retry. So, no problem.
3851 	 */
3852 	barrier();
3853 
3854 	/*
3855 	 * The transaction ids are globally unique per cpu and per operation on
3856 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3857 	 * occurs on the right processor and that there was no operation on the
3858 	 * linked list in between.
3859 	 */
3860 
3861 	object = c->freelist;
3862 	slab = c->slab;
3863 
3864 	if (!USE_LOCKLESS_FAST_PATH() ||
3865 	    unlikely(!object || !slab || !node_match(slab, node))) {
3866 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3867 	} else {
3868 		void *next_object = get_freepointer_safe(s, object);
3869 
3870 		/*
3871 		 * The cmpxchg will only match if there was no additional
3872 		 * operation and if we are on the right processor.
3873 		 *
3874 		 * The cmpxchg does the following atomically (without lock
3875 		 * semantics!)
3876 		 * 1. Relocate first pointer to the current per cpu area.
3877 		 * 2. Verify that tid and freelist have not been changed
3878 		 * 3. If they were not changed replace tid and freelist
3879 		 *
3880 		 * Since this is without lock semantics the protection is only
3881 		 * against code executing on this cpu *not* from access by
3882 		 * other cpus.
3883 		 */
3884 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3885 			note_cmpxchg_failure("slab_alloc", s, tid);
3886 			goto redo;
3887 		}
3888 		prefetch_freepointer(s, next_object);
3889 		stat(s, ALLOC_FASTPATH);
3890 	}
3891 
3892 	return object;
3893 }
3894 #else /* CONFIG_SLUB_TINY */
3895 static void *__slab_alloc_node(struct kmem_cache *s,
3896 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3897 {
3898 	struct partial_context pc;
3899 	struct slab *slab;
3900 	void *object;
3901 
3902 	pc.flags = gfpflags;
3903 	pc.orig_size = orig_size;
3904 	slab = get_partial(s, node, &pc);
3905 
3906 	if (slab)
3907 		return pc.object;
3908 
3909 	slab = new_slab(s, gfpflags, node);
3910 	if (unlikely(!slab)) {
3911 		slab_out_of_memory(s, gfpflags, node);
3912 		return NULL;
3913 	}
3914 
3915 	object = alloc_single_from_new_slab(s, slab, orig_size);
3916 
3917 	return object;
3918 }
3919 #endif /* CONFIG_SLUB_TINY */
3920 
3921 /*
3922  * If the object has been wiped upon free, make sure it's fully initialized by
3923  * zeroing out freelist pointer.
3924  */
3925 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3926 						   void *obj)
3927 {
3928 	if (unlikely(slab_want_init_on_free(s)) && obj &&
3929 	    !freeptr_outside_object(s))
3930 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3931 			0, sizeof(void *));
3932 }
3933 
3934 static __fastpath_inline
3935 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
3936 {
3937 	flags &= gfp_allowed_mask;
3938 
3939 	might_alloc(flags);
3940 
3941 	if (unlikely(should_failslab(s, flags)))
3942 		return NULL;
3943 
3944 	return s;
3945 }
3946 
3947 static __fastpath_inline
3948 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3949 			  gfp_t flags, size_t size, void **p, bool init,
3950 			  unsigned int orig_size)
3951 {
3952 	unsigned int zero_size = s->object_size;
3953 	bool kasan_init = init;
3954 	size_t i;
3955 	gfp_t init_flags = flags & gfp_allowed_mask;
3956 
3957 	/*
3958 	 * For kmalloc object, the allocated memory size(object_size) is likely
3959 	 * larger than the requested size(orig_size). If redzone check is
3960 	 * enabled for the extra space, don't zero it, as it will be redzoned
3961 	 * soon. The redzone operation for this extra space could be seen as a
3962 	 * replacement of current poisoning under certain debug option, and
3963 	 * won't break other sanity checks.
3964 	 */
3965 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3966 	    (s->flags & SLAB_KMALLOC))
3967 		zero_size = orig_size;
3968 
3969 	/*
3970 	 * When slab_debug is enabled, avoid memory initialization integrated
3971 	 * into KASAN and instead zero out the memory via the memset below with
3972 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3973 	 * cause false-positive reports. This does not lead to a performance
3974 	 * penalty on production builds, as slab_debug is not intended to be
3975 	 * enabled there.
3976 	 */
3977 	if (__slub_debug_enabled())
3978 		kasan_init = false;
3979 
3980 	/*
3981 	 * As memory initialization might be integrated into KASAN,
3982 	 * kasan_slab_alloc and initialization memset must be
3983 	 * kept together to avoid discrepancies in behavior.
3984 	 *
3985 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3986 	 */
3987 	for (i = 0; i < size; i++) {
3988 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3989 		if (p[i] && init && (!kasan_init ||
3990 				     !kasan_has_integrated_init()))
3991 			memset(p[i], 0, zero_size);
3992 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3993 					 s->flags, init_flags);
3994 		kmsan_slab_alloc(s, p[i], init_flags);
3995 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
3996 	}
3997 
3998 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
3999 }
4000 
4001 /*
4002  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4003  * have the fastpath folded into their functions. So no function call
4004  * overhead for requests that can be satisfied on the fastpath.
4005  *
4006  * The fastpath works by first checking if the lockless freelist can be used.
4007  * If not then __slab_alloc is called for slow processing.
4008  *
4009  * Otherwise we can simply pick the next object from the lockless free list.
4010  */
4011 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4012 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4013 {
4014 	void *object;
4015 	bool init = false;
4016 
4017 	s = slab_pre_alloc_hook(s, gfpflags);
4018 	if (unlikely(!s))
4019 		return NULL;
4020 
4021 	object = kfence_alloc(s, orig_size, gfpflags);
4022 	if (unlikely(object))
4023 		goto out;
4024 
4025 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4026 
4027 	maybe_wipe_obj_freeptr(s, object);
4028 	init = slab_want_init_on_alloc(gfpflags, s);
4029 
4030 out:
4031 	/*
4032 	 * When init equals 'true', like for kzalloc() family, only
4033 	 * @orig_size bytes might be zeroed instead of s->object_size
4034 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4035 	 * object is set to NULL
4036 	 */
4037 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4038 
4039 	return object;
4040 }
4041 
4042 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4043 {
4044 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4045 				    s->object_size);
4046 
4047 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4048 
4049 	return ret;
4050 }
4051 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4052 
4053 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4054 			   gfp_t gfpflags)
4055 {
4056 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4057 				    s->object_size);
4058 
4059 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4060 
4061 	return ret;
4062 }
4063 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4064 
4065 /**
4066  * kmem_cache_alloc_node - Allocate an object on the specified node
4067  * @s: The cache to allocate from.
4068  * @gfpflags: See kmalloc().
4069  * @node: node number of the target node.
4070  *
4071  * Identical to kmem_cache_alloc but it will allocate memory on the given
4072  * node, which can improve the performance for cpu bound structures.
4073  *
4074  * Fallback to other node is possible if __GFP_THISNODE is not set.
4075  *
4076  * Return: pointer to the new object or %NULL in case of error
4077  */
4078 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4079 {
4080 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4081 
4082 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4083 
4084 	return ret;
4085 }
4086 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4087 
4088 /*
4089  * To avoid unnecessary overhead, we pass through large allocation requests
4090  * directly to the page allocator. We use __GFP_COMP, because we will need to
4091  * know the allocation order to free the pages properly in kfree.
4092  */
4093 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4094 {
4095 	struct folio *folio;
4096 	void *ptr = NULL;
4097 	unsigned int order = get_order(size);
4098 
4099 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4100 		flags = kmalloc_fix_flags(flags);
4101 
4102 	flags |= __GFP_COMP;
4103 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4104 	if (folio) {
4105 		ptr = folio_address(folio);
4106 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4107 				      PAGE_SIZE << order);
4108 	}
4109 
4110 	ptr = kasan_kmalloc_large(ptr, size, flags);
4111 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4112 	kmemleak_alloc(ptr, size, 1, flags);
4113 	kmsan_kmalloc_large(ptr, size, flags);
4114 
4115 	return ptr;
4116 }
4117 
4118 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4119 {
4120 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4121 
4122 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4123 		      flags, NUMA_NO_NODE);
4124 	return ret;
4125 }
4126 EXPORT_SYMBOL(__kmalloc_large_noprof);
4127 
4128 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4129 {
4130 	void *ret = ___kmalloc_large_node(size, flags, node);
4131 
4132 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4133 		      flags, node);
4134 	return ret;
4135 }
4136 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4137 
4138 static __always_inline
4139 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4140 			unsigned long caller)
4141 {
4142 	struct kmem_cache *s;
4143 	void *ret;
4144 
4145 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4146 		ret = __kmalloc_large_node_noprof(size, flags, node);
4147 		trace_kmalloc(caller, ret, size,
4148 			      PAGE_SIZE << get_order(size), flags, node);
4149 		return ret;
4150 	}
4151 
4152 	if (unlikely(!size))
4153 		return ZERO_SIZE_PTR;
4154 
4155 	s = kmalloc_slab(size, b, flags, caller);
4156 
4157 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4158 	ret = kasan_kmalloc(s, ret, size, flags);
4159 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4160 	return ret;
4161 }
4162 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4163 {
4164 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4165 }
4166 EXPORT_SYMBOL(__kmalloc_node_noprof);
4167 
4168 void *__kmalloc_noprof(size_t size, gfp_t flags)
4169 {
4170 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4171 }
4172 EXPORT_SYMBOL(__kmalloc_noprof);
4173 
4174 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4175 					 int node, unsigned long caller)
4176 {
4177 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4178 
4179 }
4180 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4181 
4182 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4183 {
4184 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4185 					    _RET_IP_, size);
4186 
4187 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4188 
4189 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4190 	return ret;
4191 }
4192 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4193 
4194 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4195 				  int node, size_t size)
4196 {
4197 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4198 
4199 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4200 
4201 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4202 	return ret;
4203 }
4204 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4205 
4206 static noinline void free_to_partial_list(
4207 	struct kmem_cache *s, struct slab *slab,
4208 	void *head, void *tail, int bulk_cnt,
4209 	unsigned long addr)
4210 {
4211 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4212 	struct slab *slab_free = NULL;
4213 	int cnt = bulk_cnt;
4214 	unsigned long flags;
4215 	depot_stack_handle_t handle = 0;
4216 
4217 	if (s->flags & SLAB_STORE_USER)
4218 		handle = set_track_prepare();
4219 
4220 	spin_lock_irqsave(&n->list_lock, flags);
4221 
4222 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4223 		void *prior = slab->freelist;
4224 
4225 		/* Perform the actual freeing while we still hold the locks */
4226 		slab->inuse -= cnt;
4227 		set_freepointer(s, tail, prior);
4228 		slab->freelist = head;
4229 
4230 		/*
4231 		 * If the slab is empty, and node's partial list is full,
4232 		 * it should be discarded anyway no matter it's on full or
4233 		 * partial list.
4234 		 */
4235 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4236 			slab_free = slab;
4237 
4238 		if (!prior) {
4239 			/* was on full list */
4240 			remove_full(s, n, slab);
4241 			if (!slab_free) {
4242 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4243 				stat(s, FREE_ADD_PARTIAL);
4244 			}
4245 		} else if (slab_free) {
4246 			remove_partial(n, slab);
4247 			stat(s, FREE_REMOVE_PARTIAL);
4248 		}
4249 	}
4250 
4251 	if (slab_free) {
4252 		/*
4253 		 * Update the counters while still holding n->list_lock to
4254 		 * prevent spurious validation warnings
4255 		 */
4256 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4257 	}
4258 
4259 	spin_unlock_irqrestore(&n->list_lock, flags);
4260 
4261 	if (slab_free) {
4262 		stat(s, FREE_SLAB);
4263 		free_slab(s, slab_free);
4264 	}
4265 }
4266 
4267 /*
4268  * Slow path handling. This may still be called frequently since objects
4269  * have a longer lifetime than the cpu slabs in most processing loads.
4270  *
4271  * So we still attempt to reduce cache line usage. Just take the slab
4272  * lock and free the item. If there is no additional partial slab
4273  * handling required then we can return immediately.
4274  */
4275 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4276 			void *head, void *tail, int cnt,
4277 			unsigned long addr)
4278 
4279 {
4280 	void *prior;
4281 	int was_frozen;
4282 	struct slab new;
4283 	unsigned long counters;
4284 	struct kmem_cache_node *n = NULL;
4285 	unsigned long flags;
4286 	bool on_node_partial;
4287 
4288 	stat(s, FREE_SLOWPATH);
4289 
4290 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4291 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4292 		return;
4293 	}
4294 
4295 	do {
4296 		if (unlikely(n)) {
4297 			spin_unlock_irqrestore(&n->list_lock, flags);
4298 			n = NULL;
4299 		}
4300 		prior = slab->freelist;
4301 		counters = slab->counters;
4302 		set_freepointer(s, tail, prior);
4303 		new.counters = counters;
4304 		was_frozen = new.frozen;
4305 		new.inuse -= cnt;
4306 		if ((!new.inuse || !prior) && !was_frozen) {
4307 			/* Needs to be taken off a list */
4308 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4309 
4310 				n = get_node(s, slab_nid(slab));
4311 				/*
4312 				 * Speculatively acquire the list_lock.
4313 				 * If the cmpxchg does not succeed then we may
4314 				 * drop the list_lock without any processing.
4315 				 *
4316 				 * Otherwise the list_lock will synchronize with
4317 				 * other processors updating the list of slabs.
4318 				 */
4319 				spin_lock_irqsave(&n->list_lock, flags);
4320 
4321 				on_node_partial = slab_test_node_partial(slab);
4322 			}
4323 		}
4324 
4325 	} while (!slab_update_freelist(s, slab,
4326 		prior, counters,
4327 		head, new.counters,
4328 		"__slab_free"));
4329 
4330 	if (likely(!n)) {
4331 
4332 		if (likely(was_frozen)) {
4333 			/*
4334 			 * The list lock was not taken therefore no list
4335 			 * activity can be necessary.
4336 			 */
4337 			stat(s, FREE_FROZEN);
4338 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4339 			/*
4340 			 * If we started with a full slab then put it onto the
4341 			 * per cpu partial list.
4342 			 */
4343 			put_cpu_partial(s, slab, 1);
4344 			stat(s, CPU_PARTIAL_FREE);
4345 		}
4346 
4347 		return;
4348 	}
4349 
4350 	/*
4351 	 * This slab was partially empty but not on the per-node partial list,
4352 	 * in which case we shouldn't manipulate its list, just return.
4353 	 */
4354 	if (prior && !on_node_partial) {
4355 		spin_unlock_irqrestore(&n->list_lock, flags);
4356 		return;
4357 	}
4358 
4359 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4360 		goto slab_empty;
4361 
4362 	/*
4363 	 * Objects left in the slab. If it was not on the partial list before
4364 	 * then add it.
4365 	 */
4366 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4367 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4368 		stat(s, FREE_ADD_PARTIAL);
4369 	}
4370 	spin_unlock_irqrestore(&n->list_lock, flags);
4371 	return;
4372 
4373 slab_empty:
4374 	if (prior) {
4375 		/*
4376 		 * Slab on the partial list.
4377 		 */
4378 		remove_partial(n, slab);
4379 		stat(s, FREE_REMOVE_PARTIAL);
4380 	}
4381 
4382 	spin_unlock_irqrestore(&n->list_lock, flags);
4383 	stat(s, FREE_SLAB);
4384 	discard_slab(s, slab);
4385 }
4386 
4387 #ifndef CONFIG_SLUB_TINY
4388 /*
4389  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4390  * can perform fastpath freeing without additional function calls.
4391  *
4392  * The fastpath is only possible if we are freeing to the current cpu slab
4393  * of this processor. This typically the case if we have just allocated
4394  * the item before.
4395  *
4396  * If fastpath is not possible then fall back to __slab_free where we deal
4397  * with all sorts of special processing.
4398  *
4399  * Bulk free of a freelist with several objects (all pointing to the
4400  * same slab) possible by specifying head and tail ptr, plus objects
4401  * count (cnt). Bulk free indicated by tail pointer being set.
4402  */
4403 static __always_inline void do_slab_free(struct kmem_cache *s,
4404 				struct slab *slab, void *head, void *tail,
4405 				int cnt, unsigned long addr)
4406 {
4407 	struct kmem_cache_cpu *c;
4408 	unsigned long tid;
4409 	void **freelist;
4410 
4411 redo:
4412 	/*
4413 	 * Determine the currently cpus per cpu slab.
4414 	 * The cpu may change afterward. However that does not matter since
4415 	 * data is retrieved via this pointer. If we are on the same cpu
4416 	 * during the cmpxchg then the free will succeed.
4417 	 */
4418 	c = raw_cpu_ptr(s->cpu_slab);
4419 	tid = READ_ONCE(c->tid);
4420 
4421 	/* Same with comment on barrier() in __slab_alloc_node() */
4422 	barrier();
4423 
4424 	if (unlikely(slab != c->slab)) {
4425 		__slab_free(s, slab, head, tail, cnt, addr);
4426 		return;
4427 	}
4428 
4429 	if (USE_LOCKLESS_FAST_PATH()) {
4430 		freelist = READ_ONCE(c->freelist);
4431 
4432 		set_freepointer(s, tail, freelist);
4433 
4434 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4435 			note_cmpxchg_failure("slab_free", s, tid);
4436 			goto redo;
4437 		}
4438 	} else {
4439 		/* Update the free list under the local lock */
4440 		local_lock(&s->cpu_slab->lock);
4441 		c = this_cpu_ptr(s->cpu_slab);
4442 		if (unlikely(slab != c->slab)) {
4443 			local_unlock(&s->cpu_slab->lock);
4444 			goto redo;
4445 		}
4446 		tid = c->tid;
4447 		freelist = c->freelist;
4448 
4449 		set_freepointer(s, tail, freelist);
4450 		c->freelist = head;
4451 		c->tid = next_tid(tid);
4452 
4453 		local_unlock(&s->cpu_slab->lock);
4454 	}
4455 	stat_add(s, FREE_FASTPATH, cnt);
4456 }
4457 #else /* CONFIG_SLUB_TINY */
4458 static void do_slab_free(struct kmem_cache *s,
4459 				struct slab *slab, void *head, void *tail,
4460 				int cnt, unsigned long addr)
4461 {
4462 	__slab_free(s, slab, head, tail, cnt, addr);
4463 }
4464 #endif /* CONFIG_SLUB_TINY */
4465 
4466 static __fastpath_inline
4467 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4468 	       unsigned long addr)
4469 {
4470 	memcg_slab_free_hook(s, slab, &object, 1);
4471 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4472 
4473 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4474 		do_slab_free(s, slab, object, object, 1, addr);
4475 }
4476 
4477 #ifdef CONFIG_MEMCG
4478 /* Do not inline the rare memcg charging failed path into the allocation path */
4479 static noinline
4480 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4481 {
4482 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4483 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4484 }
4485 #endif
4486 
4487 static __fastpath_inline
4488 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4489 		    void *tail, void **p, int cnt, unsigned long addr)
4490 {
4491 	memcg_slab_free_hook(s, slab, p, cnt);
4492 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4493 	/*
4494 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4495 	 * to remove objects, whose reuse must be delayed.
4496 	 */
4497 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4498 		do_slab_free(s, slab, head, tail, cnt, addr);
4499 }
4500 
4501 #ifdef CONFIG_KASAN_GENERIC
4502 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4503 {
4504 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4505 }
4506 #endif
4507 
4508 static inline struct kmem_cache *virt_to_cache(const void *obj)
4509 {
4510 	struct slab *slab;
4511 
4512 	slab = virt_to_slab(obj);
4513 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4514 		return NULL;
4515 	return slab->slab_cache;
4516 }
4517 
4518 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4519 {
4520 	struct kmem_cache *cachep;
4521 
4522 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4523 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4524 		return s;
4525 
4526 	cachep = virt_to_cache(x);
4527 	if (WARN(cachep && cachep != s,
4528 		 "%s: Wrong slab cache. %s but object is from %s\n",
4529 		 __func__, s->name, cachep->name))
4530 		print_tracking(cachep, x);
4531 	return cachep;
4532 }
4533 
4534 /**
4535  * kmem_cache_free - Deallocate an object
4536  * @s: The cache the allocation was from.
4537  * @x: The previously allocated object.
4538  *
4539  * Free an object which was previously allocated from this
4540  * cache.
4541  */
4542 void kmem_cache_free(struct kmem_cache *s, void *x)
4543 {
4544 	s = cache_from_obj(s, x);
4545 	if (!s)
4546 		return;
4547 	trace_kmem_cache_free(_RET_IP_, x, s);
4548 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4549 }
4550 EXPORT_SYMBOL(kmem_cache_free);
4551 
4552 static void free_large_kmalloc(struct folio *folio, void *object)
4553 {
4554 	unsigned int order = folio_order(folio);
4555 
4556 	if (WARN_ON_ONCE(order == 0))
4557 		pr_warn_once("object pointer: 0x%p\n", object);
4558 
4559 	kmemleak_free(object);
4560 	kasan_kfree_large(object);
4561 	kmsan_kfree_large(object);
4562 
4563 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4564 			      -(PAGE_SIZE << order));
4565 	folio_put(folio);
4566 }
4567 
4568 /**
4569  * kfree - free previously allocated memory
4570  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4571  *
4572  * If @object is NULL, no operation is performed.
4573  */
4574 void kfree(const void *object)
4575 {
4576 	struct folio *folio;
4577 	struct slab *slab;
4578 	struct kmem_cache *s;
4579 	void *x = (void *)object;
4580 
4581 	trace_kfree(_RET_IP_, object);
4582 
4583 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4584 		return;
4585 
4586 	folio = virt_to_folio(object);
4587 	if (unlikely(!folio_test_slab(folio))) {
4588 		free_large_kmalloc(folio, (void *)object);
4589 		return;
4590 	}
4591 
4592 	slab = folio_slab(folio);
4593 	s = slab->slab_cache;
4594 	slab_free(s, slab, x, _RET_IP_);
4595 }
4596 EXPORT_SYMBOL(kfree);
4597 
4598 struct detached_freelist {
4599 	struct slab *slab;
4600 	void *tail;
4601 	void *freelist;
4602 	int cnt;
4603 	struct kmem_cache *s;
4604 };
4605 
4606 /*
4607  * This function progressively scans the array with free objects (with
4608  * a limited look ahead) and extract objects belonging to the same
4609  * slab.  It builds a detached freelist directly within the given
4610  * slab/objects.  This can happen without any need for
4611  * synchronization, because the objects are owned by running process.
4612  * The freelist is build up as a single linked list in the objects.
4613  * The idea is, that this detached freelist can then be bulk
4614  * transferred to the real freelist(s), but only requiring a single
4615  * synchronization primitive.  Look ahead in the array is limited due
4616  * to performance reasons.
4617  */
4618 static inline
4619 int build_detached_freelist(struct kmem_cache *s, size_t size,
4620 			    void **p, struct detached_freelist *df)
4621 {
4622 	int lookahead = 3;
4623 	void *object;
4624 	struct folio *folio;
4625 	size_t same;
4626 
4627 	object = p[--size];
4628 	folio = virt_to_folio(object);
4629 	if (!s) {
4630 		/* Handle kalloc'ed objects */
4631 		if (unlikely(!folio_test_slab(folio))) {
4632 			free_large_kmalloc(folio, object);
4633 			df->slab = NULL;
4634 			return size;
4635 		}
4636 		/* Derive kmem_cache from object */
4637 		df->slab = folio_slab(folio);
4638 		df->s = df->slab->slab_cache;
4639 	} else {
4640 		df->slab = folio_slab(folio);
4641 		df->s = cache_from_obj(s, object); /* Support for memcg */
4642 	}
4643 
4644 	/* Start new detached freelist */
4645 	df->tail = object;
4646 	df->freelist = object;
4647 	df->cnt = 1;
4648 
4649 	if (is_kfence_address(object))
4650 		return size;
4651 
4652 	set_freepointer(df->s, object, NULL);
4653 
4654 	same = size;
4655 	while (size) {
4656 		object = p[--size];
4657 		/* df->slab is always set at this point */
4658 		if (df->slab == virt_to_slab(object)) {
4659 			/* Opportunity build freelist */
4660 			set_freepointer(df->s, object, df->freelist);
4661 			df->freelist = object;
4662 			df->cnt++;
4663 			same--;
4664 			if (size != same)
4665 				swap(p[size], p[same]);
4666 			continue;
4667 		}
4668 
4669 		/* Limit look ahead search */
4670 		if (!--lookahead)
4671 			break;
4672 	}
4673 
4674 	return same;
4675 }
4676 
4677 /*
4678  * Internal bulk free of objects that were not initialised by the post alloc
4679  * hooks and thus should not be processed by the free hooks
4680  */
4681 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4682 {
4683 	if (!size)
4684 		return;
4685 
4686 	do {
4687 		struct detached_freelist df;
4688 
4689 		size = build_detached_freelist(s, size, p, &df);
4690 		if (!df.slab)
4691 			continue;
4692 
4693 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4694 			     _RET_IP_);
4695 	} while (likely(size));
4696 }
4697 
4698 /* Note that interrupts must be enabled when calling this function. */
4699 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4700 {
4701 	if (!size)
4702 		return;
4703 
4704 	do {
4705 		struct detached_freelist df;
4706 
4707 		size = build_detached_freelist(s, size, p, &df);
4708 		if (!df.slab)
4709 			continue;
4710 
4711 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4712 			       df.cnt, _RET_IP_);
4713 	} while (likely(size));
4714 }
4715 EXPORT_SYMBOL(kmem_cache_free_bulk);
4716 
4717 #ifndef CONFIG_SLUB_TINY
4718 static inline
4719 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4720 			    void **p)
4721 {
4722 	struct kmem_cache_cpu *c;
4723 	unsigned long irqflags;
4724 	int i;
4725 
4726 	/*
4727 	 * Drain objects in the per cpu slab, while disabling local
4728 	 * IRQs, which protects against PREEMPT and interrupts
4729 	 * handlers invoking normal fastpath.
4730 	 */
4731 	c = slub_get_cpu_ptr(s->cpu_slab);
4732 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4733 
4734 	for (i = 0; i < size; i++) {
4735 		void *object = kfence_alloc(s, s->object_size, flags);
4736 
4737 		if (unlikely(object)) {
4738 			p[i] = object;
4739 			continue;
4740 		}
4741 
4742 		object = c->freelist;
4743 		if (unlikely(!object)) {
4744 			/*
4745 			 * We may have removed an object from c->freelist using
4746 			 * the fastpath in the previous iteration; in that case,
4747 			 * c->tid has not been bumped yet.
4748 			 * Since ___slab_alloc() may reenable interrupts while
4749 			 * allocating memory, we should bump c->tid now.
4750 			 */
4751 			c->tid = next_tid(c->tid);
4752 
4753 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4754 
4755 			/*
4756 			 * Invoking slow path likely have side-effect
4757 			 * of re-populating per CPU c->freelist
4758 			 */
4759 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4760 					    _RET_IP_, c, s->object_size);
4761 			if (unlikely(!p[i]))
4762 				goto error;
4763 
4764 			c = this_cpu_ptr(s->cpu_slab);
4765 			maybe_wipe_obj_freeptr(s, p[i]);
4766 
4767 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4768 
4769 			continue; /* goto for-loop */
4770 		}
4771 		c->freelist = get_freepointer(s, object);
4772 		p[i] = object;
4773 		maybe_wipe_obj_freeptr(s, p[i]);
4774 		stat(s, ALLOC_FASTPATH);
4775 	}
4776 	c->tid = next_tid(c->tid);
4777 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4778 	slub_put_cpu_ptr(s->cpu_slab);
4779 
4780 	return i;
4781 
4782 error:
4783 	slub_put_cpu_ptr(s->cpu_slab);
4784 	__kmem_cache_free_bulk(s, i, p);
4785 	return 0;
4786 
4787 }
4788 #else /* CONFIG_SLUB_TINY */
4789 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4790 				   size_t size, void **p)
4791 {
4792 	int i;
4793 
4794 	for (i = 0; i < size; i++) {
4795 		void *object = kfence_alloc(s, s->object_size, flags);
4796 
4797 		if (unlikely(object)) {
4798 			p[i] = object;
4799 			continue;
4800 		}
4801 
4802 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4803 					 _RET_IP_, s->object_size);
4804 		if (unlikely(!p[i]))
4805 			goto error;
4806 
4807 		maybe_wipe_obj_freeptr(s, p[i]);
4808 	}
4809 
4810 	return i;
4811 
4812 error:
4813 	__kmem_cache_free_bulk(s, i, p);
4814 	return 0;
4815 }
4816 #endif /* CONFIG_SLUB_TINY */
4817 
4818 /* Note that interrupts must be enabled when calling this function. */
4819 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4820 				 void **p)
4821 {
4822 	int i;
4823 
4824 	if (!size)
4825 		return 0;
4826 
4827 	s = slab_pre_alloc_hook(s, flags);
4828 	if (unlikely(!s))
4829 		return 0;
4830 
4831 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4832 	if (unlikely(i == 0))
4833 		return 0;
4834 
4835 	/*
4836 	 * memcg and kmem_cache debug support and memory initialization.
4837 	 * Done outside of the IRQ disabled fastpath loop.
4838 	 */
4839 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4840 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
4841 		return 0;
4842 	}
4843 	return i;
4844 }
4845 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4846 
4847 
4848 /*
4849  * Object placement in a slab is made very easy because we always start at
4850  * offset 0. If we tune the size of the object to the alignment then we can
4851  * get the required alignment by putting one properly sized object after
4852  * another.
4853  *
4854  * Notice that the allocation order determines the sizes of the per cpu
4855  * caches. Each processor has always one slab available for allocations.
4856  * Increasing the allocation order reduces the number of times that slabs
4857  * must be moved on and off the partial lists and is therefore a factor in
4858  * locking overhead.
4859  */
4860 
4861 /*
4862  * Minimum / Maximum order of slab pages. This influences locking overhead
4863  * and slab fragmentation. A higher order reduces the number of partial slabs
4864  * and increases the number of allocations possible without having to
4865  * take the list_lock.
4866  */
4867 static unsigned int slub_min_order;
4868 static unsigned int slub_max_order =
4869 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4870 static unsigned int slub_min_objects;
4871 
4872 /*
4873  * Calculate the order of allocation given an slab object size.
4874  *
4875  * The order of allocation has significant impact on performance and other
4876  * system components. Generally order 0 allocations should be preferred since
4877  * order 0 does not cause fragmentation in the page allocator. Larger objects
4878  * be problematic to put into order 0 slabs because there may be too much
4879  * unused space left. We go to a higher order if more than 1/16th of the slab
4880  * would be wasted.
4881  *
4882  * In order to reach satisfactory performance we must ensure that a minimum
4883  * number of objects is in one slab. Otherwise we may generate too much
4884  * activity on the partial lists which requires taking the list_lock. This is
4885  * less a concern for large slabs though which are rarely used.
4886  *
4887  * slab_max_order specifies the order where we begin to stop considering the
4888  * number of objects in a slab as critical. If we reach slab_max_order then
4889  * we try to keep the page order as low as possible. So we accept more waste
4890  * of space in favor of a small page order.
4891  *
4892  * Higher order allocations also allow the placement of more objects in a
4893  * slab and thereby reduce object handling overhead. If the user has
4894  * requested a higher minimum order then we start with that one instead of
4895  * the smallest order which will fit the object.
4896  */
4897 static inline unsigned int calc_slab_order(unsigned int size,
4898 		unsigned int min_order, unsigned int max_order,
4899 		unsigned int fract_leftover)
4900 {
4901 	unsigned int order;
4902 
4903 	for (order = min_order; order <= max_order; order++) {
4904 
4905 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4906 		unsigned int rem;
4907 
4908 		rem = slab_size % size;
4909 
4910 		if (rem <= slab_size / fract_leftover)
4911 			break;
4912 	}
4913 
4914 	return order;
4915 }
4916 
4917 static inline int calculate_order(unsigned int size)
4918 {
4919 	unsigned int order;
4920 	unsigned int min_objects;
4921 	unsigned int max_objects;
4922 	unsigned int min_order;
4923 
4924 	min_objects = slub_min_objects;
4925 	if (!min_objects) {
4926 		/*
4927 		 * Some architectures will only update present cpus when
4928 		 * onlining them, so don't trust the number if it's just 1. But
4929 		 * we also don't want to use nr_cpu_ids always, as on some other
4930 		 * architectures, there can be many possible cpus, but never
4931 		 * onlined. Here we compromise between trying to avoid too high
4932 		 * order on systems that appear larger than they are, and too
4933 		 * low order on systems that appear smaller than they are.
4934 		 */
4935 		unsigned int nr_cpus = num_present_cpus();
4936 		if (nr_cpus <= 1)
4937 			nr_cpus = nr_cpu_ids;
4938 		min_objects = 4 * (fls(nr_cpus) + 1);
4939 	}
4940 	/* min_objects can't be 0 because get_order(0) is undefined */
4941 	max_objects = max(order_objects(slub_max_order, size), 1U);
4942 	min_objects = min(min_objects, max_objects);
4943 
4944 	min_order = max_t(unsigned int, slub_min_order,
4945 			  get_order(min_objects * size));
4946 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4947 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4948 
4949 	/*
4950 	 * Attempt to find best configuration for a slab. This works by first
4951 	 * attempting to generate a layout with the best possible configuration
4952 	 * and backing off gradually.
4953 	 *
4954 	 * We start with accepting at most 1/16 waste and try to find the
4955 	 * smallest order from min_objects-derived/slab_min_order up to
4956 	 * slab_max_order that will satisfy the constraint. Note that increasing
4957 	 * the order can only result in same or less fractional waste, not more.
4958 	 *
4959 	 * If that fails, we increase the acceptable fraction of waste and try
4960 	 * again. The last iteration with fraction of 1/2 would effectively
4961 	 * accept any waste and give us the order determined by min_objects, as
4962 	 * long as at least single object fits within slab_max_order.
4963 	 */
4964 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4965 		order = calc_slab_order(size, min_order, slub_max_order,
4966 					fraction);
4967 		if (order <= slub_max_order)
4968 			return order;
4969 	}
4970 
4971 	/*
4972 	 * Doh this slab cannot be placed using slab_max_order.
4973 	 */
4974 	order = get_order(size);
4975 	if (order <= MAX_PAGE_ORDER)
4976 		return order;
4977 	return -ENOSYS;
4978 }
4979 
4980 static void
4981 init_kmem_cache_node(struct kmem_cache_node *n)
4982 {
4983 	n->nr_partial = 0;
4984 	spin_lock_init(&n->list_lock);
4985 	INIT_LIST_HEAD(&n->partial);
4986 #ifdef CONFIG_SLUB_DEBUG
4987 	atomic_long_set(&n->nr_slabs, 0);
4988 	atomic_long_set(&n->total_objects, 0);
4989 	INIT_LIST_HEAD(&n->full);
4990 #endif
4991 }
4992 
4993 #ifndef CONFIG_SLUB_TINY
4994 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4995 {
4996 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4997 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4998 			sizeof(struct kmem_cache_cpu));
4999 
5000 	/*
5001 	 * Must align to double word boundary for the double cmpxchg
5002 	 * instructions to work; see __pcpu_double_call_return_bool().
5003 	 */
5004 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5005 				     2 * sizeof(void *));
5006 
5007 	if (!s->cpu_slab)
5008 		return 0;
5009 
5010 	init_kmem_cache_cpus(s);
5011 
5012 	return 1;
5013 }
5014 #else
5015 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5016 {
5017 	return 1;
5018 }
5019 #endif /* CONFIG_SLUB_TINY */
5020 
5021 static struct kmem_cache *kmem_cache_node;
5022 
5023 /*
5024  * No kmalloc_node yet so do it by hand. We know that this is the first
5025  * slab on the node for this slabcache. There are no concurrent accesses
5026  * possible.
5027  *
5028  * Note that this function only works on the kmem_cache_node
5029  * when allocating for the kmem_cache_node. This is used for bootstrapping
5030  * memory on a fresh node that has no slab structures yet.
5031  */
5032 static void early_kmem_cache_node_alloc(int node)
5033 {
5034 	struct slab *slab;
5035 	struct kmem_cache_node *n;
5036 
5037 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5038 
5039 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5040 
5041 	BUG_ON(!slab);
5042 	if (slab_nid(slab) != node) {
5043 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5044 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5045 	}
5046 
5047 	n = slab->freelist;
5048 	BUG_ON(!n);
5049 #ifdef CONFIG_SLUB_DEBUG
5050 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5051 #endif
5052 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5053 	slab->freelist = get_freepointer(kmem_cache_node, n);
5054 	slab->inuse = 1;
5055 	kmem_cache_node->node[node] = n;
5056 	init_kmem_cache_node(n);
5057 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5058 
5059 	/*
5060 	 * No locks need to be taken here as it has just been
5061 	 * initialized and there is no concurrent access.
5062 	 */
5063 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5064 }
5065 
5066 static void free_kmem_cache_nodes(struct kmem_cache *s)
5067 {
5068 	int node;
5069 	struct kmem_cache_node *n;
5070 
5071 	for_each_kmem_cache_node(s, node, n) {
5072 		s->node[node] = NULL;
5073 		kmem_cache_free(kmem_cache_node, n);
5074 	}
5075 }
5076 
5077 void __kmem_cache_release(struct kmem_cache *s)
5078 {
5079 	cache_random_seq_destroy(s);
5080 #ifndef CONFIG_SLUB_TINY
5081 	free_percpu(s->cpu_slab);
5082 #endif
5083 	free_kmem_cache_nodes(s);
5084 }
5085 
5086 static int init_kmem_cache_nodes(struct kmem_cache *s)
5087 {
5088 	int node;
5089 
5090 	for_each_node_mask(node, slab_nodes) {
5091 		struct kmem_cache_node *n;
5092 
5093 		if (slab_state == DOWN) {
5094 			early_kmem_cache_node_alloc(node);
5095 			continue;
5096 		}
5097 		n = kmem_cache_alloc_node(kmem_cache_node,
5098 						GFP_KERNEL, node);
5099 
5100 		if (!n) {
5101 			free_kmem_cache_nodes(s);
5102 			return 0;
5103 		}
5104 
5105 		init_kmem_cache_node(n);
5106 		s->node[node] = n;
5107 	}
5108 	return 1;
5109 }
5110 
5111 static void set_cpu_partial(struct kmem_cache *s)
5112 {
5113 #ifdef CONFIG_SLUB_CPU_PARTIAL
5114 	unsigned int nr_objects;
5115 
5116 	/*
5117 	 * cpu_partial determined the maximum number of objects kept in the
5118 	 * per cpu partial lists of a processor.
5119 	 *
5120 	 * Per cpu partial lists mainly contain slabs that just have one
5121 	 * object freed. If they are used for allocation then they can be
5122 	 * filled up again with minimal effort. The slab will never hit the
5123 	 * per node partial lists and therefore no locking will be required.
5124 	 *
5125 	 * For backwards compatibility reasons, this is determined as number
5126 	 * of objects, even though we now limit maximum number of pages, see
5127 	 * slub_set_cpu_partial()
5128 	 */
5129 	if (!kmem_cache_has_cpu_partial(s))
5130 		nr_objects = 0;
5131 	else if (s->size >= PAGE_SIZE)
5132 		nr_objects = 6;
5133 	else if (s->size >= 1024)
5134 		nr_objects = 24;
5135 	else if (s->size >= 256)
5136 		nr_objects = 52;
5137 	else
5138 		nr_objects = 120;
5139 
5140 	slub_set_cpu_partial(s, nr_objects);
5141 #endif
5142 }
5143 
5144 /*
5145  * calculate_sizes() determines the order and the distribution of data within
5146  * a slab object.
5147  */
5148 static int calculate_sizes(struct kmem_cache *s)
5149 {
5150 	slab_flags_t flags = s->flags;
5151 	unsigned int size = s->object_size;
5152 	unsigned int order;
5153 
5154 	/*
5155 	 * Round up object size to the next word boundary. We can only
5156 	 * place the free pointer at word boundaries and this determines
5157 	 * the possible location of the free pointer.
5158 	 */
5159 	size = ALIGN(size, sizeof(void *));
5160 
5161 #ifdef CONFIG_SLUB_DEBUG
5162 	/*
5163 	 * Determine if we can poison the object itself. If the user of
5164 	 * the slab may touch the object after free or before allocation
5165 	 * then we should never poison the object itself.
5166 	 */
5167 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5168 			!s->ctor)
5169 		s->flags |= __OBJECT_POISON;
5170 	else
5171 		s->flags &= ~__OBJECT_POISON;
5172 
5173 
5174 	/*
5175 	 * If we are Redzoning then check if there is some space between the
5176 	 * end of the object and the free pointer. If not then add an
5177 	 * additional word to have some bytes to store Redzone information.
5178 	 */
5179 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5180 		size += sizeof(void *);
5181 #endif
5182 
5183 	/*
5184 	 * With that we have determined the number of bytes in actual use
5185 	 * by the object and redzoning.
5186 	 */
5187 	s->inuse = size;
5188 
5189 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
5190 	    ((flags & SLAB_RED_ZONE) &&
5191 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5192 		/*
5193 		 * Relocate free pointer after the object if it is not
5194 		 * permitted to overwrite the first word of the object on
5195 		 * kmem_cache_free.
5196 		 *
5197 		 * This is the case if we do RCU, have a constructor or
5198 		 * destructor, are poisoning the objects, or are
5199 		 * redzoning an object smaller than sizeof(void *) or are
5200 		 * redzoning an object with slub_debug_orig_size() enabled,
5201 		 * in which case the right redzone may be extended.
5202 		 *
5203 		 * The assumption that s->offset >= s->inuse means free
5204 		 * pointer is outside of the object is used in the
5205 		 * freeptr_outside_object() function. If that is no
5206 		 * longer true, the function needs to be modified.
5207 		 */
5208 		s->offset = size;
5209 		size += sizeof(void *);
5210 	} else {
5211 		/*
5212 		 * Store freelist pointer near middle of object to keep
5213 		 * it away from the edges of the object to avoid small
5214 		 * sized over/underflows from neighboring allocations.
5215 		 */
5216 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5217 	}
5218 
5219 #ifdef CONFIG_SLUB_DEBUG
5220 	if (flags & SLAB_STORE_USER) {
5221 		/*
5222 		 * Need to store information about allocs and frees after
5223 		 * the object.
5224 		 */
5225 		size += 2 * sizeof(struct track);
5226 
5227 		/* Save the original kmalloc request size */
5228 		if (flags & SLAB_KMALLOC)
5229 			size += sizeof(unsigned int);
5230 	}
5231 #endif
5232 
5233 	kasan_cache_create(s, &size, &s->flags);
5234 #ifdef CONFIG_SLUB_DEBUG
5235 	if (flags & SLAB_RED_ZONE) {
5236 		/*
5237 		 * Add some empty padding so that we can catch
5238 		 * overwrites from earlier objects rather than let
5239 		 * tracking information or the free pointer be
5240 		 * corrupted if a user writes before the start
5241 		 * of the object.
5242 		 */
5243 		size += sizeof(void *);
5244 
5245 		s->red_left_pad = sizeof(void *);
5246 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5247 		size += s->red_left_pad;
5248 	}
5249 #endif
5250 
5251 	/*
5252 	 * SLUB stores one object immediately after another beginning from
5253 	 * offset 0. In order to align the objects we have to simply size
5254 	 * each object to conform to the alignment.
5255 	 */
5256 	size = ALIGN(size, s->align);
5257 	s->size = size;
5258 	s->reciprocal_size = reciprocal_value(size);
5259 	order = calculate_order(size);
5260 
5261 	if ((int)order < 0)
5262 		return 0;
5263 
5264 	s->allocflags = __GFP_COMP;
5265 
5266 	if (s->flags & SLAB_CACHE_DMA)
5267 		s->allocflags |= GFP_DMA;
5268 
5269 	if (s->flags & SLAB_CACHE_DMA32)
5270 		s->allocflags |= GFP_DMA32;
5271 
5272 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5273 		s->allocflags |= __GFP_RECLAIMABLE;
5274 
5275 	/*
5276 	 * Determine the number of objects per slab
5277 	 */
5278 	s->oo = oo_make(order, size);
5279 	s->min = oo_make(get_order(size), size);
5280 
5281 	return !!oo_objects(s->oo);
5282 }
5283 
5284 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5285 {
5286 	s->flags = kmem_cache_flags(flags, s->name);
5287 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5288 	s->random = get_random_long();
5289 #endif
5290 
5291 	if (!calculate_sizes(s))
5292 		goto error;
5293 	if (disable_higher_order_debug) {
5294 		/*
5295 		 * Disable debugging flags that store metadata if the min slab
5296 		 * order increased.
5297 		 */
5298 		if (get_order(s->size) > get_order(s->object_size)) {
5299 			s->flags &= ~DEBUG_METADATA_FLAGS;
5300 			s->offset = 0;
5301 			if (!calculate_sizes(s))
5302 				goto error;
5303 		}
5304 	}
5305 
5306 #ifdef system_has_freelist_aba
5307 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5308 		/* Enable fast mode */
5309 		s->flags |= __CMPXCHG_DOUBLE;
5310 	}
5311 #endif
5312 
5313 	/*
5314 	 * The larger the object size is, the more slabs we want on the partial
5315 	 * list to avoid pounding the page allocator excessively.
5316 	 */
5317 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5318 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5319 
5320 	set_cpu_partial(s);
5321 
5322 #ifdef CONFIG_NUMA
5323 	s->remote_node_defrag_ratio = 1000;
5324 #endif
5325 
5326 	/* Initialize the pre-computed randomized freelist if slab is up */
5327 	if (slab_state >= UP) {
5328 		if (init_cache_random_seq(s))
5329 			goto error;
5330 	}
5331 
5332 	if (!init_kmem_cache_nodes(s))
5333 		goto error;
5334 
5335 	if (alloc_kmem_cache_cpus(s))
5336 		return 0;
5337 
5338 error:
5339 	__kmem_cache_release(s);
5340 	return -EINVAL;
5341 }
5342 
5343 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5344 			      const char *text)
5345 {
5346 #ifdef CONFIG_SLUB_DEBUG
5347 	void *addr = slab_address(slab);
5348 	void *p;
5349 
5350 	slab_err(s, slab, text, s->name);
5351 
5352 	spin_lock(&object_map_lock);
5353 	__fill_map(object_map, s, slab);
5354 
5355 	for_each_object(p, s, addr, slab->objects) {
5356 
5357 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5358 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5359 			print_tracking(s, p);
5360 		}
5361 	}
5362 	spin_unlock(&object_map_lock);
5363 #endif
5364 }
5365 
5366 /*
5367  * Attempt to free all partial slabs on a node.
5368  * This is called from __kmem_cache_shutdown(). We must take list_lock
5369  * because sysfs file might still access partial list after the shutdowning.
5370  */
5371 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5372 {
5373 	LIST_HEAD(discard);
5374 	struct slab *slab, *h;
5375 
5376 	BUG_ON(irqs_disabled());
5377 	spin_lock_irq(&n->list_lock);
5378 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5379 		if (!slab->inuse) {
5380 			remove_partial(n, slab);
5381 			list_add(&slab->slab_list, &discard);
5382 		} else {
5383 			list_slab_objects(s, slab,
5384 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5385 		}
5386 	}
5387 	spin_unlock_irq(&n->list_lock);
5388 
5389 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5390 		discard_slab(s, slab);
5391 }
5392 
5393 bool __kmem_cache_empty(struct kmem_cache *s)
5394 {
5395 	int node;
5396 	struct kmem_cache_node *n;
5397 
5398 	for_each_kmem_cache_node(s, node, n)
5399 		if (n->nr_partial || node_nr_slabs(n))
5400 			return false;
5401 	return true;
5402 }
5403 
5404 /*
5405  * Release all resources used by a slab cache.
5406  */
5407 int __kmem_cache_shutdown(struct kmem_cache *s)
5408 {
5409 	int node;
5410 	struct kmem_cache_node *n;
5411 
5412 	flush_all_cpus_locked(s);
5413 	/* Attempt to free all objects */
5414 	for_each_kmem_cache_node(s, node, n) {
5415 		free_partial(s, n);
5416 		if (n->nr_partial || node_nr_slabs(n))
5417 			return 1;
5418 	}
5419 	return 0;
5420 }
5421 
5422 #ifdef CONFIG_PRINTK
5423 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5424 {
5425 	void *base;
5426 	int __maybe_unused i;
5427 	unsigned int objnr;
5428 	void *objp;
5429 	void *objp0;
5430 	struct kmem_cache *s = slab->slab_cache;
5431 	struct track __maybe_unused *trackp;
5432 
5433 	kpp->kp_ptr = object;
5434 	kpp->kp_slab = slab;
5435 	kpp->kp_slab_cache = s;
5436 	base = slab_address(slab);
5437 	objp0 = kasan_reset_tag(object);
5438 #ifdef CONFIG_SLUB_DEBUG
5439 	objp = restore_red_left(s, objp0);
5440 #else
5441 	objp = objp0;
5442 #endif
5443 	objnr = obj_to_index(s, slab, objp);
5444 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5445 	objp = base + s->size * objnr;
5446 	kpp->kp_objp = objp;
5447 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5448 			 || (objp - base) % s->size) ||
5449 	    !(s->flags & SLAB_STORE_USER))
5450 		return;
5451 #ifdef CONFIG_SLUB_DEBUG
5452 	objp = fixup_red_left(s, objp);
5453 	trackp = get_track(s, objp, TRACK_ALLOC);
5454 	kpp->kp_ret = (void *)trackp->addr;
5455 #ifdef CONFIG_STACKDEPOT
5456 	{
5457 		depot_stack_handle_t handle;
5458 		unsigned long *entries;
5459 		unsigned int nr_entries;
5460 
5461 		handle = READ_ONCE(trackp->handle);
5462 		if (handle) {
5463 			nr_entries = stack_depot_fetch(handle, &entries);
5464 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5465 				kpp->kp_stack[i] = (void *)entries[i];
5466 		}
5467 
5468 		trackp = get_track(s, objp, TRACK_FREE);
5469 		handle = READ_ONCE(trackp->handle);
5470 		if (handle) {
5471 			nr_entries = stack_depot_fetch(handle, &entries);
5472 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5473 				kpp->kp_free_stack[i] = (void *)entries[i];
5474 		}
5475 	}
5476 #endif
5477 #endif
5478 }
5479 #endif
5480 
5481 /********************************************************************
5482  *		Kmalloc subsystem
5483  *******************************************************************/
5484 
5485 static int __init setup_slub_min_order(char *str)
5486 {
5487 	get_option(&str, (int *)&slub_min_order);
5488 
5489 	if (slub_min_order > slub_max_order)
5490 		slub_max_order = slub_min_order;
5491 
5492 	return 1;
5493 }
5494 
5495 __setup("slab_min_order=", setup_slub_min_order);
5496 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5497 
5498 
5499 static int __init setup_slub_max_order(char *str)
5500 {
5501 	get_option(&str, (int *)&slub_max_order);
5502 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5503 
5504 	if (slub_min_order > slub_max_order)
5505 		slub_min_order = slub_max_order;
5506 
5507 	return 1;
5508 }
5509 
5510 __setup("slab_max_order=", setup_slub_max_order);
5511 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5512 
5513 static int __init setup_slub_min_objects(char *str)
5514 {
5515 	get_option(&str, (int *)&slub_min_objects);
5516 
5517 	return 1;
5518 }
5519 
5520 __setup("slab_min_objects=", setup_slub_min_objects);
5521 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5522 
5523 #ifdef CONFIG_HARDENED_USERCOPY
5524 /*
5525  * Rejects incorrectly sized objects and objects that are to be copied
5526  * to/from userspace but do not fall entirely within the containing slab
5527  * cache's usercopy region.
5528  *
5529  * Returns NULL if check passes, otherwise const char * to name of cache
5530  * to indicate an error.
5531  */
5532 void __check_heap_object(const void *ptr, unsigned long n,
5533 			 const struct slab *slab, bool to_user)
5534 {
5535 	struct kmem_cache *s;
5536 	unsigned int offset;
5537 	bool is_kfence = is_kfence_address(ptr);
5538 
5539 	ptr = kasan_reset_tag(ptr);
5540 
5541 	/* Find object and usable object size. */
5542 	s = slab->slab_cache;
5543 
5544 	/* Reject impossible pointers. */
5545 	if (ptr < slab_address(slab))
5546 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5547 			       to_user, 0, n);
5548 
5549 	/* Find offset within object. */
5550 	if (is_kfence)
5551 		offset = ptr - kfence_object_start(ptr);
5552 	else
5553 		offset = (ptr - slab_address(slab)) % s->size;
5554 
5555 	/* Adjust for redzone and reject if within the redzone. */
5556 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5557 		if (offset < s->red_left_pad)
5558 			usercopy_abort("SLUB object in left red zone",
5559 				       s->name, to_user, offset, n);
5560 		offset -= s->red_left_pad;
5561 	}
5562 
5563 	/* Allow address range falling entirely within usercopy region. */
5564 	if (offset >= s->useroffset &&
5565 	    offset - s->useroffset <= s->usersize &&
5566 	    n <= s->useroffset - offset + s->usersize)
5567 		return;
5568 
5569 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5570 }
5571 #endif /* CONFIG_HARDENED_USERCOPY */
5572 
5573 #define SHRINK_PROMOTE_MAX 32
5574 
5575 /*
5576  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5577  * up most to the head of the partial lists. New allocations will then
5578  * fill those up and thus they can be removed from the partial lists.
5579  *
5580  * The slabs with the least items are placed last. This results in them
5581  * being allocated from last increasing the chance that the last objects
5582  * are freed in them.
5583  */
5584 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5585 {
5586 	int node;
5587 	int i;
5588 	struct kmem_cache_node *n;
5589 	struct slab *slab;
5590 	struct slab *t;
5591 	struct list_head discard;
5592 	struct list_head promote[SHRINK_PROMOTE_MAX];
5593 	unsigned long flags;
5594 	int ret = 0;
5595 
5596 	for_each_kmem_cache_node(s, node, n) {
5597 		INIT_LIST_HEAD(&discard);
5598 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5599 			INIT_LIST_HEAD(promote + i);
5600 
5601 		spin_lock_irqsave(&n->list_lock, flags);
5602 
5603 		/*
5604 		 * Build lists of slabs to discard or promote.
5605 		 *
5606 		 * Note that concurrent frees may occur while we hold the
5607 		 * list_lock. slab->inuse here is the upper limit.
5608 		 */
5609 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5610 			int free = slab->objects - slab->inuse;
5611 
5612 			/* Do not reread slab->inuse */
5613 			barrier();
5614 
5615 			/* We do not keep full slabs on the list */
5616 			BUG_ON(free <= 0);
5617 
5618 			if (free == slab->objects) {
5619 				list_move(&slab->slab_list, &discard);
5620 				slab_clear_node_partial(slab);
5621 				n->nr_partial--;
5622 				dec_slabs_node(s, node, slab->objects);
5623 			} else if (free <= SHRINK_PROMOTE_MAX)
5624 				list_move(&slab->slab_list, promote + free - 1);
5625 		}
5626 
5627 		/*
5628 		 * Promote the slabs filled up most to the head of the
5629 		 * partial list.
5630 		 */
5631 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5632 			list_splice(promote + i, &n->partial);
5633 
5634 		spin_unlock_irqrestore(&n->list_lock, flags);
5635 
5636 		/* Release empty slabs */
5637 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5638 			free_slab(s, slab);
5639 
5640 		if (node_nr_slabs(n))
5641 			ret = 1;
5642 	}
5643 
5644 	return ret;
5645 }
5646 
5647 int __kmem_cache_shrink(struct kmem_cache *s)
5648 {
5649 	flush_all(s);
5650 	return __kmem_cache_do_shrink(s);
5651 }
5652 
5653 static int slab_mem_going_offline_callback(void *arg)
5654 {
5655 	struct kmem_cache *s;
5656 
5657 	mutex_lock(&slab_mutex);
5658 	list_for_each_entry(s, &slab_caches, list) {
5659 		flush_all_cpus_locked(s);
5660 		__kmem_cache_do_shrink(s);
5661 	}
5662 	mutex_unlock(&slab_mutex);
5663 
5664 	return 0;
5665 }
5666 
5667 static void slab_mem_offline_callback(void *arg)
5668 {
5669 	struct memory_notify *marg = arg;
5670 	int offline_node;
5671 
5672 	offline_node = marg->status_change_nid_normal;
5673 
5674 	/*
5675 	 * If the node still has available memory. we need kmem_cache_node
5676 	 * for it yet.
5677 	 */
5678 	if (offline_node < 0)
5679 		return;
5680 
5681 	mutex_lock(&slab_mutex);
5682 	node_clear(offline_node, slab_nodes);
5683 	/*
5684 	 * We no longer free kmem_cache_node structures here, as it would be
5685 	 * racy with all get_node() users, and infeasible to protect them with
5686 	 * slab_mutex.
5687 	 */
5688 	mutex_unlock(&slab_mutex);
5689 }
5690 
5691 static int slab_mem_going_online_callback(void *arg)
5692 {
5693 	struct kmem_cache_node *n;
5694 	struct kmem_cache *s;
5695 	struct memory_notify *marg = arg;
5696 	int nid = marg->status_change_nid_normal;
5697 	int ret = 0;
5698 
5699 	/*
5700 	 * If the node's memory is already available, then kmem_cache_node is
5701 	 * already created. Nothing to do.
5702 	 */
5703 	if (nid < 0)
5704 		return 0;
5705 
5706 	/*
5707 	 * We are bringing a node online. No memory is available yet. We must
5708 	 * allocate a kmem_cache_node structure in order to bring the node
5709 	 * online.
5710 	 */
5711 	mutex_lock(&slab_mutex);
5712 	list_for_each_entry(s, &slab_caches, list) {
5713 		/*
5714 		 * The structure may already exist if the node was previously
5715 		 * onlined and offlined.
5716 		 */
5717 		if (get_node(s, nid))
5718 			continue;
5719 		/*
5720 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5721 		 *      since memory is not yet available from the node that
5722 		 *      is brought up.
5723 		 */
5724 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5725 		if (!n) {
5726 			ret = -ENOMEM;
5727 			goto out;
5728 		}
5729 		init_kmem_cache_node(n);
5730 		s->node[nid] = n;
5731 	}
5732 	/*
5733 	 * Any cache created after this point will also have kmem_cache_node
5734 	 * initialized for the new node.
5735 	 */
5736 	node_set(nid, slab_nodes);
5737 out:
5738 	mutex_unlock(&slab_mutex);
5739 	return ret;
5740 }
5741 
5742 static int slab_memory_callback(struct notifier_block *self,
5743 				unsigned long action, void *arg)
5744 {
5745 	int ret = 0;
5746 
5747 	switch (action) {
5748 	case MEM_GOING_ONLINE:
5749 		ret = slab_mem_going_online_callback(arg);
5750 		break;
5751 	case MEM_GOING_OFFLINE:
5752 		ret = slab_mem_going_offline_callback(arg);
5753 		break;
5754 	case MEM_OFFLINE:
5755 	case MEM_CANCEL_ONLINE:
5756 		slab_mem_offline_callback(arg);
5757 		break;
5758 	case MEM_ONLINE:
5759 	case MEM_CANCEL_OFFLINE:
5760 		break;
5761 	}
5762 	if (ret)
5763 		ret = notifier_from_errno(ret);
5764 	else
5765 		ret = NOTIFY_OK;
5766 	return ret;
5767 }
5768 
5769 /********************************************************************
5770  *			Basic setup of slabs
5771  *******************************************************************/
5772 
5773 /*
5774  * Used for early kmem_cache structures that were allocated using
5775  * the page allocator. Allocate them properly then fix up the pointers
5776  * that may be pointing to the wrong kmem_cache structure.
5777  */
5778 
5779 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5780 {
5781 	int node;
5782 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5783 	struct kmem_cache_node *n;
5784 
5785 	memcpy(s, static_cache, kmem_cache->object_size);
5786 
5787 	/*
5788 	 * This runs very early, and only the boot processor is supposed to be
5789 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5790 	 * IPIs around.
5791 	 */
5792 	__flush_cpu_slab(s, smp_processor_id());
5793 	for_each_kmem_cache_node(s, node, n) {
5794 		struct slab *p;
5795 
5796 		list_for_each_entry(p, &n->partial, slab_list)
5797 			p->slab_cache = s;
5798 
5799 #ifdef CONFIG_SLUB_DEBUG
5800 		list_for_each_entry(p, &n->full, slab_list)
5801 			p->slab_cache = s;
5802 #endif
5803 	}
5804 	list_add(&s->list, &slab_caches);
5805 	return s;
5806 }
5807 
5808 void __init kmem_cache_init(void)
5809 {
5810 	static __initdata struct kmem_cache boot_kmem_cache,
5811 		boot_kmem_cache_node;
5812 	int node;
5813 
5814 	if (debug_guardpage_minorder())
5815 		slub_max_order = 0;
5816 
5817 	/* Print slub debugging pointers without hashing */
5818 	if (__slub_debug_enabled())
5819 		no_hash_pointers_enable(NULL);
5820 
5821 	kmem_cache_node = &boot_kmem_cache_node;
5822 	kmem_cache = &boot_kmem_cache;
5823 
5824 	/*
5825 	 * Initialize the nodemask for which we will allocate per node
5826 	 * structures. Here we don't need taking slab_mutex yet.
5827 	 */
5828 	for_each_node_state(node, N_NORMAL_MEMORY)
5829 		node_set(node, slab_nodes);
5830 
5831 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5832 			sizeof(struct kmem_cache_node),
5833 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5834 
5835 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5836 
5837 	/* Able to allocate the per node structures */
5838 	slab_state = PARTIAL;
5839 
5840 	create_boot_cache(kmem_cache, "kmem_cache",
5841 			offsetof(struct kmem_cache, node) +
5842 				nr_node_ids * sizeof(struct kmem_cache_node *),
5843 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5844 
5845 	kmem_cache = bootstrap(&boot_kmem_cache);
5846 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5847 
5848 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5849 	setup_kmalloc_cache_index_table();
5850 	create_kmalloc_caches();
5851 
5852 	/* Setup random freelists for each cache */
5853 	init_freelist_randomization();
5854 
5855 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5856 				  slub_cpu_dead);
5857 
5858 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5859 		cache_line_size(),
5860 		slub_min_order, slub_max_order, slub_min_objects,
5861 		nr_cpu_ids, nr_node_ids);
5862 }
5863 
5864 void __init kmem_cache_init_late(void)
5865 {
5866 #ifndef CONFIG_SLUB_TINY
5867 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5868 	WARN_ON(!flushwq);
5869 #endif
5870 }
5871 
5872 struct kmem_cache *
5873 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5874 		   slab_flags_t flags, void (*ctor)(void *))
5875 {
5876 	struct kmem_cache *s;
5877 
5878 	s = find_mergeable(size, align, flags, name, ctor);
5879 	if (s) {
5880 		if (sysfs_slab_alias(s, name))
5881 			return NULL;
5882 
5883 		s->refcount++;
5884 
5885 		/*
5886 		 * Adjust the object sizes so that we clear
5887 		 * the complete object on kzalloc.
5888 		 */
5889 		s->object_size = max(s->object_size, size);
5890 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5891 	}
5892 
5893 	return s;
5894 }
5895 
5896 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5897 {
5898 	int err;
5899 
5900 	err = kmem_cache_open(s, flags);
5901 	if (err)
5902 		return err;
5903 
5904 	/* Mutex is not taken during early boot */
5905 	if (slab_state <= UP)
5906 		return 0;
5907 
5908 	err = sysfs_slab_add(s);
5909 	if (err) {
5910 		__kmem_cache_release(s);
5911 		return err;
5912 	}
5913 
5914 	if (s->flags & SLAB_STORE_USER)
5915 		debugfs_slab_add(s);
5916 
5917 	return 0;
5918 }
5919 
5920 #ifdef SLAB_SUPPORTS_SYSFS
5921 static int count_inuse(struct slab *slab)
5922 {
5923 	return slab->inuse;
5924 }
5925 
5926 static int count_total(struct slab *slab)
5927 {
5928 	return slab->objects;
5929 }
5930 #endif
5931 
5932 #ifdef CONFIG_SLUB_DEBUG
5933 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5934 			  unsigned long *obj_map)
5935 {
5936 	void *p;
5937 	void *addr = slab_address(slab);
5938 
5939 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5940 		return;
5941 
5942 	/* Now we know that a valid freelist exists */
5943 	__fill_map(obj_map, s, slab);
5944 	for_each_object(p, s, addr, slab->objects) {
5945 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5946 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5947 
5948 		if (!check_object(s, slab, p, val))
5949 			break;
5950 	}
5951 }
5952 
5953 static int validate_slab_node(struct kmem_cache *s,
5954 		struct kmem_cache_node *n, unsigned long *obj_map)
5955 {
5956 	unsigned long count = 0;
5957 	struct slab *slab;
5958 	unsigned long flags;
5959 
5960 	spin_lock_irqsave(&n->list_lock, flags);
5961 
5962 	list_for_each_entry(slab, &n->partial, slab_list) {
5963 		validate_slab(s, slab, obj_map);
5964 		count++;
5965 	}
5966 	if (count != n->nr_partial) {
5967 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5968 		       s->name, count, n->nr_partial);
5969 		slab_add_kunit_errors();
5970 	}
5971 
5972 	if (!(s->flags & SLAB_STORE_USER))
5973 		goto out;
5974 
5975 	list_for_each_entry(slab, &n->full, slab_list) {
5976 		validate_slab(s, slab, obj_map);
5977 		count++;
5978 	}
5979 	if (count != node_nr_slabs(n)) {
5980 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5981 		       s->name, count, node_nr_slabs(n));
5982 		slab_add_kunit_errors();
5983 	}
5984 
5985 out:
5986 	spin_unlock_irqrestore(&n->list_lock, flags);
5987 	return count;
5988 }
5989 
5990 long validate_slab_cache(struct kmem_cache *s)
5991 {
5992 	int node;
5993 	unsigned long count = 0;
5994 	struct kmem_cache_node *n;
5995 	unsigned long *obj_map;
5996 
5997 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5998 	if (!obj_map)
5999 		return -ENOMEM;
6000 
6001 	flush_all(s);
6002 	for_each_kmem_cache_node(s, node, n)
6003 		count += validate_slab_node(s, n, obj_map);
6004 
6005 	bitmap_free(obj_map);
6006 
6007 	return count;
6008 }
6009 EXPORT_SYMBOL(validate_slab_cache);
6010 
6011 #ifdef CONFIG_DEBUG_FS
6012 /*
6013  * Generate lists of code addresses where slabcache objects are allocated
6014  * and freed.
6015  */
6016 
6017 struct location {
6018 	depot_stack_handle_t handle;
6019 	unsigned long count;
6020 	unsigned long addr;
6021 	unsigned long waste;
6022 	long long sum_time;
6023 	long min_time;
6024 	long max_time;
6025 	long min_pid;
6026 	long max_pid;
6027 	DECLARE_BITMAP(cpus, NR_CPUS);
6028 	nodemask_t nodes;
6029 };
6030 
6031 struct loc_track {
6032 	unsigned long max;
6033 	unsigned long count;
6034 	struct location *loc;
6035 	loff_t idx;
6036 };
6037 
6038 static struct dentry *slab_debugfs_root;
6039 
6040 static void free_loc_track(struct loc_track *t)
6041 {
6042 	if (t->max)
6043 		free_pages((unsigned long)t->loc,
6044 			get_order(sizeof(struct location) * t->max));
6045 }
6046 
6047 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6048 {
6049 	struct location *l;
6050 	int order;
6051 
6052 	order = get_order(sizeof(struct location) * max);
6053 
6054 	l = (void *)__get_free_pages(flags, order);
6055 	if (!l)
6056 		return 0;
6057 
6058 	if (t->count) {
6059 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6060 		free_loc_track(t);
6061 	}
6062 	t->max = max;
6063 	t->loc = l;
6064 	return 1;
6065 }
6066 
6067 static int add_location(struct loc_track *t, struct kmem_cache *s,
6068 				const struct track *track,
6069 				unsigned int orig_size)
6070 {
6071 	long start, end, pos;
6072 	struct location *l;
6073 	unsigned long caddr, chandle, cwaste;
6074 	unsigned long age = jiffies - track->when;
6075 	depot_stack_handle_t handle = 0;
6076 	unsigned int waste = s->object_size - orig_size;
6077 
6078 #ifdef CONFIG_STACKDEPOT
6079 	handle = READ_ONCE(track->handle);
6080 #endif
6081 	start = -1;
6082 	end = t->count;
6083 
6084 	for ( ; ; ) {
6085 		pos = start + (end - start + 1) / 2;
6086 
6087 		/*
6088 		 * There is nothing at "end". If we end up there
6089 		 * we need to add something to before end.
6090 		 */
6091 		if (pos == end)
6092 			break;
6093 
6094 		l = &t->loc[pos];
6095 		caddr = l->addr;
6096 		chandle = l->handle;
6097 		cwaste = l->waste;
6098 		if ((track->addr == caddr) && (handle == chandle) &&
6099 			(waste == cwaste)) {
6100 
6101 			l->count++;
6102 			if (track->when) {
6103 				l->sum_time += age;
6104 				if (age < l->min_time)
6105 					l->min_time = age;
6106 				if (age > l->max_time)
6107 					l->max_time = age;
6108 
6109 				if (track->pid < l->min_pid)
6110 					l->min_pid = track->pid;
6111 				if (track->pid > l->max_pid)
6112 					l->max_pid = track->pid;
6113 
6114 				cpumask_set_cpu(track->cpu,
6115 						to_cpumask(l->cpus));
6116 			}
6117 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6118 			return 1;
6119 		}
6120 
6121 		if (track->addr < caddr)
6122 			end = pos;
6123 		else if (track->addr == caddr && handle < chandle)
6124 			end = pos;
6125 		else if (track->addr == caddr && handle == chandle &&
6126 				waste < cwaste)
6127 			end = pos;
6128 		else
6129 			start = pos;
6130 	}
6131 
6132 	/*
6133 	 * Not found. Insert new tracking element.
6134 	 */
6135 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6136 		return 0;
6137 
6138 	l = t->loc + pos;
6139 	if (pos < t->count)
6140 		memmove(l + 1, l,
6141 			(t->count - pos) * sizeof(struct location));
6142 	t->count++;
6143 	l->count = 1;
6144 	l->addr = track->addr;
6145 	l->sum_time = age;
6146 	l->min_time = age;
6147 	l->max_time = age;
6148 	l->min_pid = track->pid;
6149 	l->max_pid = track->pid;
6150 	l->handle = handle;
6151 	l->waste = waste;
6152 	cpumask_clear(to_cpumask(l->cpus));
6153 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6154 	nodes_clear(l->nodes);
6155 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6156 	return 1;
6157 }
6158 
6159 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6160 		struct slab *slab, enum track_item alloc,
6161 		unsigned long *obj_map)
6162 {
6163 	void *addr = slab_address(slab);
6164 	bool is_alloc = (alloc == TRACK_ALLOC);
6165 	void *p;
6166 
6167 	__fill_map(obj_map, s, slab);
6168 
6169 	for_each_object(p, s, addr, slab->objects)
6170 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6171 			add_location(t, s, get_track(s, p, alloc),
6172 				     is_alloc ? get_orig_size(s, p) :
6173 						s->object_size);
6174 }
6175 #endif  /* CONFIG_DEBUG_FS   */
6176 #endif	/* CONFIG_SLUB_DEBUG */
6177 
6178 #ifdef SLAB_SUPPORTS_SYSFS
6179 enum slab_stat_type {
6180 	SL_ALL,			/* All slabs */
6181 	SL_PARTIAL,		/* Only partially allocated slabs */
6182 	SL_CPU,			/* Only slabs used for cpu caches */
6183 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6184 	SL_TOTAL		/* Determine object capacity not slabs */
6185 };
6186 
6187 #define SO_ALL		(1 << SL_ALL)
6188 #define SO_PARTIAL	(1 << SL_PARTIAL)
6189 #define SO_CPU		(1 << SL_CPU)
6190 #define SO_OBJECTS	(1 << SL_OBJECTS)
6191 #define SO_TOTAL	(1 << SL_TOTAL)
6192 
6193 static ssize_t show_slab_objects(struct kmem_cache *s,
6194 				 char *buf, unsigned long flags)
6195 {
6196 	unsigned long total = 0;
6197 	int node;
6198 	int x;
6199 	unsigned long *nodes;
6200 	int len = 0;
6201 
6202 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6203 	if (!nodes)
6204 		return -ENOMEM;
6205 
6206 	if (flags & SO_CPU) {
6207 		int cpu;
6208 
6209 		for_each_possible_cpu(cpu) {
6210 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6211 							       cpu);
6212 			int node;
6213 			struct slab *slab;
6214 
6215 			slab = READ_ONCE(c->slab);
6216 			if (!slab)
6217 				continue;
6218 
6219 			node = slab_nid(slab);
6220 			if (flags & SO_TOTAL)
6221 				x = slab->objects;
6222 			else if (flags & SO_OBJECTS)
6223 				x = slab->inuse;
6224 			else
6225 				x = 1;
6226 
6227 			total += x;
6228 			nodes[node] += x;
6229 
6230 #ifdef CONFIG_SLUB_CPU_PARTIAL
6231 			slab = slub_percpu_partial_read_once(c);
6232 			if (slab) {
6233 				node = slab_nid(slab);
6234 				if (flags & SO_TOTAL)
6235 					WARN_ON_ONCE(1);
6236 				else if (flags & SO_OBJECTS)
6237 					WARN_ON_ONCE(1);
6238 				else
6239 					x = data_race(slab->slabs);
6240 				total += x;
6241 				nodes[node] += x;
6242 			}
6243 #endif
6244 		}
6245 	}
6246 
6247 	/*
6248 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6249 	 * already held which will conflict with an existing lock order:
6250 	 *
6251 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6252 	 *
6253 	 * We don't really need mem_hotplug_lock (to hold off
6254 	 * slab_mem_going_offline_callback) here because slab's memory hot
6255 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6256 	 */
6257 
6258 #ifdef CONFIG_SLUB_DEBUG
6259 	if (flags & SO_ALL) {
6260 		struct kmem_cache_node *n;
6261 
6262 		for_each_kmem_cache_node(s, node, n) {
6263 
6264 			if (flags & SO_TOTAL)
6265 				x = node_nr_objs(n);
6266 			else if (flags & SO_OBJECTS)
6267 				x = node_nr_objs(n) - count_partial(n, count_free);
6268 			else
6269 				x = node_nr_slabs(n);
6270 			total += x;
6271 			nodes[node] += x;
6272 		}
6273 
6274 	} else
6275 #endif
6276 	if (flags & SO_PARTIAL) {
6277 		struct kmem_cache_node *n;
6278 
6279 		for_each_kmem_cache_node(s, node, n) {
6280 			if (flags & SO_TOTAL)
6281 				x = count_partial(n, count_total);
6282 			else if (flags & SO_OBJECTS)
6283 				x = count_partial(n, count_inuse);
6284 			else
6285 				x = n->nr_partial;
6286 			total += x;
6287 			nodes[node] += x;
6288 		}
6289 	}
6290 
6291 	len += sysfs_emit_at(buf, len, "%lu", total);
6292 #ifdef CONFIG_NUMA
6293 	for (node = 0; node < nr_node_ids; node++) {
6294 		if (nodes[node])
6295 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6296 					     node, nodes[node]);
6297 	}
6298 #endif
6299 	len += sysfs_emit_at(buf, len, "\n");
6300 	kfree(nodes);
6301 
6302 	return len;
6303 }
6304 
6305 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6306 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6307 
6308 struct slab_attribute {
6309 	struct attribute attr;
6310 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6311 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6312 };
6313 
6314 #define SLAB_ATTR_RO(_name) \
6315 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6316 
6317 #define SLAB_ATTR(_name) \
6318 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6319 
6320 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6321 {
6322 	return sysfs_emit(buf, "%u\n", s->size);
6323 }
6324 SLAB_ATTR_RO(slab_size);
6325 
6326 static ssize_t align_show(struct kmem_cache *s, char *buf)
6327 {
6328 	return sysfs_emit(buf, "%u\n", s->align);
6329 }
6330 SLAB_ATTR_RO(align);
6331 
6332 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6333 {
6334 	return sysfs_emit(buf, "%u\n", s->object_size);
6335 }
6336 SLAB_ATTR_RO(object_size);
6337 
6338 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6339 {
6340 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6341 }
6342 SLAB_ATTR_RO(objs_per_slab);
6343 
6344 static ssize_t order_show(struct kmem_cache *s, char *buf)
6345 {
6346 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6347 }
6348 SLAB_ATTR_RO(order);
6349 
6350 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6351 {
6352 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6353 }
6354 
6355 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6356 				 size_t length)
6357 {
6358 	unsigned long min;
6359 	int err;
6360 
6361 	err = kstrtoul(buf, 10, &min);
6362 	if (err)
6363 		return err;
6364 
6365 	s->min_partial = min;
6366 	return length;
6367 }
6368 SLAB_ATTR(min_partial);
6369 
6370 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6371 {
6372 	unsigned int nr_partial = 0;
6373 #ifdef CONFIG_SLUB_CPU_PARTIAL
6374 	nr_partial = s->cpu_partial;
6375 #endif
6376 
6377 	return sysfs_emit(buf, "%u\n", nr_partial);
6378 }
6379 
6380 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6381 				 size_t length)
6382 {
6383 	unsigned int objects;
6384 	int err;
6385 
6386 	err = kstrtouint(buf, 10, &objects);
6387 	if (err)
6388 		return err;
6389 	if (objects && !kmem_cache_has_cpu_partial(s))
6390 		return -EINVAL;
6391 
6392 	slub_set_cpu_partial(s, objects);
6393 	flush_all(s);
6394 	return length;
6395 }
6396 SLAB_ATTR(cpu_partial);
6397 
6398 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6399 {
6400 	if (!s->ctor)
6401 		return 0;
6402 	return sysfs_emit(buf, "%pS\n", s->ctor);
6403 }
6404 SLAB_ATTR_RO(ctor);
6405 
6406 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6407 {
6408 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6409 }
6410 SLAB_ATTR_RO(aliases);
6411 
6412 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6413 {
6414 	return show_slab_objects(s, buf, SO_PARTIAL);
6415 }
6416 SLAB_ATTR_RO(partial);
6417 
6418 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6419 {
6420 	return show_slab_objects(s, buf, SO_CPU);
6421 }
6422 SLAB_ATTR_RO(cpu_slabs);
6423 
6424 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6425 {
6426 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6427 }
6428 SLAB_ATTR_RO(objects_partial);
6429 
6430 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6431 {
6432 	int objects = 0;
6433 	int slabs = 0;
6434 	int cpu __maybe_unused;
6435 	int len = 0;
6436 
6437 #ifdef CONFIG_SLUB_CPU_PARTIAL
6438 	for_each_online_cpu(cpu) {
6439 		struct slab *slab;
6440 
6441 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6442 
6443 		if (slab)
6444 			slabs += data_race(slab->slabs);
6445 	}
6446 #endif
6447 
6448 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6449 	objects = (slabs * oo_objects(s->oo)) / 2;
6450 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6451 
6452 #ifdef CONFIG_SLUB_CPU_PARTIAL
6453 	for_each_online_cpu(cpu) {
6454 		struct slab *slab;
6455 
6456 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6457 		if (slab) {
6458 			slabs = data_race(slab->slabs);
6459 			objects = (slabs * oo_objects(s->oo)) / 2;
6460 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6461 					     cpu, objects, slabs);
6462 		}
6463 	}
6464 #endif
6465 	len += sysfs_emit_at(buf, len, "\n");
6466 
6467 	return len;
6468 }
6469 SLAB_ATTR_RO(slabs_cpu_partial);
6470 
6471 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6472 {
6473 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6474 }
6475 SLAB_ATTR_RO(reclaim_account);
6476 
6477 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6478 {
6479 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6480 }
6481 SLAB_ATTR_RO(hwcache_align);
6482 
6483 #ifdef CONFIG_ZONE_DMA
6484 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6485 {
6486 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6487 }
6488 SLAB_ATTR_RO(cache_dma);
6489 #endif
6490 
6491 #ifdef CONFIG_HARDENED_USERCOPY
6492 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6493 {
6494 	return sysfs_emit(buf, "%u\n", s->usersize);
6495 }
6496 SLAB_ATTR_RO(usersize);
6497 #endif
6498 
6499 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6500 {
6501 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6502 }
6503 SLAB_ATTR_RO(destroy_by_rcu);
6504 
6505 #ifdef CONFIG_SLUB_DEBUG
6506 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6507 {
6508 	return show_slab_objects(s, buf, SO_ALL);
6509 }
6510 SLAB_ATTR_RO(slabs);
6511 
6512 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6513 {
6514 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6515 }
6516 SLAB_ATTR_RO(total_objects);
6517 
6518 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6519 {
6520 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6521 }
6522 SLAB_ATTR_RO(objects);
6523 
6524 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6525 {
6526 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6527 }
6528 SLAB_ATTR_RO(sanity_checks);
6529 
6530 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6531 {
6532 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6533 }
6534 SLAB_ATTR_RO(trace);
6535 
6536 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6537 {
6538 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6539 }
6540 
6541 SLAB_ATTR_RO(red_zone);
6542 
6543 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6544 {
6545 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6546 }
6547 
6548 SLAB_ATTR_RO(poison);
6549 
6550 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6551 {
6552 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6553 }
6554 
6555 SLAB_ATTR_RO(store_user);
6556 
6557 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6558 {
6559 	return 0;
6560 }
6561 
6562 static ssize_t validate_store(struct kmem_cache *s,
6563 			const char *buf, size_t length)
6564 {
6565 	int ret = -EINVAL;
6566 
6567 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6568 		ret = validate_slab_cache(s);
6569 		if (ret >= 0)
6570 			ret = length;
6571 	}
6572 	return ret;
6573 }
6574 SLAB_ATTR(validate);
6575 
6576 #endif /* CONFIG_SLUB_DEBUG */
6577 
6578 #ifdef CONFIG_FAILSLAB
6579 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6580 {
6581 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6582 }
6583 
6584 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6585 				size_t length)
6586 {
6587 	if (s->refcount > 1)
6588 		return -EINVAL;
6589 
6590 	if (buf[0] == '1')
6591 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6592 	else
6593 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6594 
6595 	return length;
6596 }
6597 SLAB_ATTR(failslab);
6598 #endif
6599 
6600 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6601 {
6602 	return 0;
6603 }
6604 
6605 static ssize_t shrink_store(struct kmem_cache *s,
6606 			const char *buf, size_t length)
6607 {
6608 	if (buf[0] == '1')
6609 		kmem_cache_shrink(s);
6610 	else
6611 		return -EINVAL;
6612 	return length;
6613 }
6614 SLAB_ATTR(shrink);
6615 
6616 #ifdef CONFIG_NUMA
6617 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6618 {
6619 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6620 }
6621 
6622 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6623 				const char *buf, size_t length)
6624 {
6625 	unsigned int ratio;
6626 	int err;
6627 
6628 	err = kstrtouint(buf, 10, &ratio);
6629 	if (err)
6630 		return err;
6631 	if (ratio > 100)
6632 		return -ERANGE;
6633 
6634 	s->remote_node_defrag_ratio = ratio * 10;
6635 
6636 	return length;
6637 }
6638 SLAB_ATTR(remote_node_defrag_ratio);
6639 #endif
6640 
6641 #ifdef CONFIG_SLUB_STATS
6642 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6643 {
6644 	unsigned long sum  = 0;
6645 	int cpu;
6646 	int len = 0;
6647 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6648 
6649 	if (!data)
6650 		return -ENOMEM;
6651 
6652 	for_each_online_cpu(cpu) {
6653 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6654 
6655 		data[cpu] = x;
6656 		sum += x;
6657 	}
6658 
6659 	len += sysfs_emit_at(buf, len, "%lu", sum);
6660 
6661 #ifdef CONFIG_SMP
6662 	for_each_online_cpu(cpu) {
6663 		if (data[cpu])
6664 			len += sysfs_emit_at(buf, len, " C%d=%u",
6665 					     cpu, data[cpu]);
6666 	}
6667 #endif
6668 	kfree(data);
6669 	len += sysfs_emit_at(buf, len, "\n");
6670 
6671 	return len;
6672 }
6673 
6674 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6675 {
6676 	int cpu;
6677 
6678 	for_each_online_cpu(cpu)
6679 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6680 }
6681 
6682 #define STAT_ATTR(si, text) 					\
6683 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6684 {								\
6685 	return show_stat(s, buf, si);				\
6686 }								\
6687 static ssize_t text##_store(struct kmem_cache *s,		\
6688 				const char *buf, size_t length)	\
6689 {								\
6690 	if (buf[0] != '0')					\
6691 		return -EINVAL;					\
6692 	clear_stat(s, si);					\
6693 	return length;						\
6694 }								\
6695 SLAB_ATTR(text);						\
6696 
6697 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6698 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6699 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6700 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6701 STAT_ATTR(FREE_FROZEN, free_frozen);
6702 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6703 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6704 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6705 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6706 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6707 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6708 STAT_ATTR(FREE_SLAB, free_slab);
6709 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6710 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6711 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6712 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6713 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6714 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6715 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6716 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6717 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6718 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6719 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6720 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6721 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6722 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6723 #endif	/* CONFIG_SLUB_STATS */
6724 
6725 #ifdef CONFIG_KFENCE
6726 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6727 {
6728 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6729 }
6730 
6731 static ssize_t skip_kfence_store(struct kmem_cache *s,
6732 			const char *buf, size_t length)
6733 {
6734 	int ret = length;
6735 
6736 	if (buf[0] == '0')
6737 		s->flags &= ~SLAB_SKIP_KFENCE;
6738 	else if (buf[0] == '1')
6739 		s->flags |= SLAB_SKIP_KFENCE;
6740 	else
6741 		ret = -EINVAL;
6742 
6743 	return ret;
6744 }
6745 SLAB_ATTR(skip_kfence);
6746 #endif
6747 
6748 static struct attribute *slab_attrs[] = {
6749 	&slab_size_attr.attr,
6750 	&object_size_attr.attr,
6751 	&objs_per_slab_attr.attr,
6752 	&order_attr.attr,
6753 	&min_partial_attr.attr,
6754 	&cpu_partial_attr.attr,
6755 	&objects_partial_attr.attr,
6756 	&partial_attr.attr,
6757 	&cpu_slabs_attr.attr,
6758 	&ctor_attr.attr,
6759 	&aliases_attr.attr,
6760 	&align_attr.attr,
6761 	&hwcache_align_attr.attr,
6762 	&reclaim_account_attr.attr,
6763 	&destroy_by_rcu_attr.attr,
6764 	&shrink_attr.attr,
6765 	&slabs_cpu_partial_attr.attr,
6766 #ifdef CONFIG_SLUB_DEBUG
6767 	&total_objects_attr.attr,
6768 	&objects_attr.attr,
6769 	&slabs_attr.attr,
6770 	&sanity_checks_attr.attr,
6771 	&trace_attr.attr,
6772 	&red_zone_attr.attr,
6773 	&poison_attr.attr,
6774 	&store_user_attr.attr,
6775 	&validate_attr.attr,
6776 #endif
6777 #ifdef CONFIG_ZONE_DMA
6778 	&cache_dma_attr.attr,
6779 #endif
6780 #ifdef CONFIG_NUMA
6781 	&remote_node_defrag_ratio_attr.attr,
6782 #endif
6783 #ifdef CONFIG_SLUB_STATS
6784 	&alloc_fastpath_attr.attr,
6785 	&alloc_slowpath_attr.attr,
6786 	&free_fastpath_attr.attr,
6787 	&free_slowpath_attr.attr,
6788 	&free_frozen_attr.attr,
6789 	&free_add_partial_attr.attr,
6790 	&free_remove_partial_attr.attr,
6791 	&alloc_from_partial_attr.attr,
6792 	&alloc_slab_attr.attr,
6793 	&alloc_refill_attr.attr,
6794 	&alloc_node_mismatch_attr.attr,
6795 	&free_slab_attr.attr,
6796 	&cpuslab_flush_attr.attr,
6797 	&deactivate_full_attr.attr,
6798 	&deactivate_empty_attr.attr,
6799 	&deactivate_to_head_attr.attr,
6800 	&deactivate_to_tail_attr.attr,
6801 	&deactivate_remote_frees_attr.attr,
6802 	&deactivate_bypass_attr.attr,
6803 	&order_fallback_attr.attr,
6804 	&cmpxchg_double_fail_attr.attr,
6805 	&cmpxchg_double_cpu_fail_attr.attr,
6806 	&cpu_partial_alloc_attr.attr,
6807 	&cpu_partial_free_attr.attr,
6808 	&cpu_partial_node_attr.attr,
6809 	&cpu_partial_drain_attr.attr,
6810 #endif
6811 #ifdef CONFIG_FAILSLAB
6812 	&failslab_attr.attr,
6813 #endif
6814 #ifdef CONFIG_HARDENED_USERCOPY
6815 	&usersize_attr.attr,
6816 #endif
6817 #ifdef CONFIG_KFENCE
6818 	&skip_kfence_attr.attr,
6819 #endif
6820 
6821 	NULL
6822 };
6823 
6824 static const struct attribute_group slab_attr_group = {
6825 	.attrs = slab_attrs,
6826 };
6827 
6828 static ssize_t slab_attr_show(struct kobject *kobj,
6829 				struct attribute *attr,
6830 				char *buf)
6831 {
6832 	struct slab_attribute *attribute;
6833 	struct kmem_cache *s;
6834 
6835 	attribute = to_slab_attr(attr);
6836 	s = to_slab(kobj);
6837 
6838 	if (!attribute->show)
6839 		return -EIO;
6840 
6841 	return attribute->show(s, buf);
6842 }
6843 
6844 static ssize_t slab_attr_store(struct kobject *kobj,
6845 				struct attribute *attr,
6846 				const char *buf, size_t len)
6847 {
6848 	struct slab_attribute *attribute;
6849 	struct kmem_cache *s;
6850 
6851 	attribute = to_slab_attr(attr);
6852 	s = to_slab(kobj);
6853 
6854 	if (!attribute->store)
6855 		return -EIO;
6856 
6857 	return attribute->store(s, buf, len);
6858 }
6859 
6860 static void kmem_cache_release(struct kobject *k)
6861 {
6862 	slab_kmem_cache_release(to_slab(k));
6863 }
6864 
6865 static const struct sysfs_ops slab_sysfs_ops = {
6866 	.show = slab_attr_show,
6867 	.store = slab_attr_store,
6868 };
6869 
6870 static const struct kobj_type slab_ktype = {
6871 	.sysfs_ops = &slab_sysfs_ops,
6872 	.release = kmem_cache_release,
6873 };
6874 
6875 static struct kset *slab_kset;
6876 
6877 static inline struct kset *cache_kset(struct kmem_cache *s)
6878 {
6879 	return slab_kset;
6880 }
6881 
6882 #define ID_STR_LENGTH 32
6883 
6884 /* Create a unique string id for a slab cache:
6885  *
6886  * Format	:[flags-]size
6887  */
6888 static char *create_unique_id(struct kmem_cache *s)
6889 {
6890 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6891 	char *p = name;
6892 
6893 	if (!name)
6894 		return ERR_PTR(-ENOMEM);
6895 
6896 	*p++ = ':';
6897 	/*
6898 	 * First flags affecting slabcache operations. We will only
6899 	 * get here for aliasable slabs so we do not need to support
6900 	 * too many flags. The flags here must cover all flags that
6901 	 * are matched during merging to guarantee that the id is
6902 	 * unique.
6903 	 */
6904 	if (s->flags & SLAB_CACHE_DMA)
6905 		*p++ = 'd';
6906 	if (s->flags & SLAB_CACHE_DMA32)
6907 		*p++ = 'D';
6908 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6909 		*p++ = 'a';
6910 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6911 		*p++ = 'F';
6912 	if (s->flags & SLAB_ACCOUNT)
6913 		*p++ = 'A';
6914 	if (p != name + 1)
6915 		*p++ = '-';
6916 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6917 
6918 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6919 		kfree(name);
6920 		return ERR_PTR(-EINVAL);
6921 	}
6922 	kmsan_unpoison_memory(name, p - name);
6923 	return name;
6924 }
6925 
6926 static int sysfs_slab_add(struct kmem_cache *s)
6927 {
6928 	int err;
6929 	const char *name;
6930 	struct kset *kset = cache_kset(s);
6931 	int unmergeable = slab_unmergeable(s);
6932 
6933 	if (!unmergeable && disable_higher_order_debug &&
6934 			(slub_debug & DEBUG_METADATA_FLAGS))
6935 		unmergeable = 1;
6936 
6937 	if (unmergeable) {
6938 		/*
6939 		 * Slabcache can never be merged so we can use the name proper.
6940 		 * This is typically the case for debug situations. In that
6941 		 * case we can catch duplicate names easily.
6942 		 */
6943 		sysfs_remove_link(&slab_kset->kobj, s->name);
6944 		name = s->name;
6945 	} else {
6946 		/*
6947 		 * Create a unique name for the slab as a target
6948 		 * for the symlinks.
6949 		 */
6950 		name = create_unique_id(s);
6951 		if (IS_ERR(name))
6952 			return PTR_ERR(name);
6953 	}
6954 
6955 	s->kobj.kset = kset;
6956 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6957 	if (err)
6958 		goto out;
6959 
6960 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6961 	if (err)
6962 		goto out_del_kobj;
6963 
6964 	if (!unmergeable) {
6965 		/* Setup first alias */
6966 		sysfs_slab_alias(s, s->name);
6967 	}
6968 out:
6969 	if (!unmergeable)
6970 		kfree(name);
6971 	return err;
6972 out_del_kobj:
6973 	kobject_del(&s->kobj);
6974 	goto out;
6975 }
6976 
6977 void sysfs_slab_unlink(struct kmem_cache *s)
6978 {
6979 	kobject_del(&s->kobj);
6980 }
6981 
6982 void sysfs_slab_release(struct kmem_cache *s)
6983 {
6984 	kobject_put(&s->kobj);
6985 }
6986 
6987 /*
6988  * Need to buffer aliases during bootup until sysfs becomes
6989  * available lest we lose that information.
6990  */
6991 struct saved_alias {
6992 	struct kmem_cache *s;
6993 	const char *name;
6994 	struct saved_alias *next;
6995 };
6996 
6997 static struct saved_alias *alias_list;
6998 
6999 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7000 {
7001 	struct saved_alias *al;
7002 
7003 	if (slab_state == FULL) {
7004 		/*
7005 		 * If we have a leftover link then remove it.
7006 		 */
7007 		sysfs_remove_link(&slab_kset->kobj, name);
7008 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7009 	}
7010 
7011 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7012 	if (!al)
7013 		return -ENOMEM;
7014 
7015 	al->s = s;
7016 	al->name = name;
7017 	al->next = alias_list;
7018 	alias_list = al;
7019 	kmsan_unpoison_memory(al, sizeof(*al));
7020 	return 0;
7021 }
7022 
7023 static int __init slab_sysfs_init(void)
7024 {
7025 	struct kmem_cache *s;
7026 	int err;
7027 
7028 	mutex_lock(&slab_mutex);
7029 
7030 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7031 	if (!slab_kset) {
7032 		mutex_unlock(&slab_mutex);
7033 		pr_err("Cannot register slab subsystem.\n");
7034 		return -ENOMEM;
7035 	}
7036 
7037 	slab_state = FULL;
7038 
7039 	list_for_each_entry(s, &slab_caches, list) {
7040 		err = sysfs_slab_add(s);
7041 		if (err)
7042 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7043 			       s->name);
7044 	}
7045 
7046 	while (alias_list) {
7047 		struct saved_alias *al = alias_list;
7048 
7049 		alias_list = alias_list->next;
7050 		err = sysfs_slab_alias(al->s, al->name);
7051 		if (err)
7052 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7053 			       al->name);
7054 		kfree(al);
7055 	}
7056 
7057 	mutex_unlock(&slab_mutex);
7058 	return 0;
7059 }
7060 late_initcall(slab_sysfs_init);
7061 #endif /* SLAB_SUPPORTS_SYSFS */
7062 
7063 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7064 static int slab_debugfs_show(struct seq_file *seq, void *v)
7065 {
7066 	struct loc_track *t = seq->private;
7067 	struct location *l;
7068 	unsigned long idx;
7069 
7070 	idx = (unsigned long) t->idx;
7071 	if (idx < t->count) {
7072 		l = &t->loc[idx];
7073 
7074 		seq_printf(seq, "%7ld ", l->count);
7075 
7076 		if (l->addr)
7077 			seq_printf(seq, "%pS", (void *)l->addr);
7078 		else
7079 			seq_puts(seq, "<not-available>");
7080 
7081 		if (l->waste)
7082 			seq_printf(seq, " waste=%lu/%lu",
7083 				l->count * l->waste, l->waste);
7084 
7085 		if (l->sum_time != l->min_time) {
7086 			seq_printf(seq, " age=%ld/%llu/%ld",
7087 				l->min_time, div_u64(l->sum_time, l->count),
7088 				l->max_time);
7089 		} else
7090 			seq_printf(seq, " age=%ld", l->min_time);
7091 
7092 		if (l->min_pid != l->max_pid)
7093 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7094 		else
7095 			seq_printf(seq, " pid=%ld",
7096 				l->min_pid);
7097 
7098 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7099 			seq_printf(seq, " cpus=%*pbl",
7100 				 cpumask_pr_args(to_cpumask(l->cpus)));
7101 
7102 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7103 			seq_printf(seq, " nodes=%*pbl",
7104 				 nodemask_pr_args(&l->nodes));
7105 
7106 #ifdef CONFIG_STACKDEPOT
7107 		{
7108 			depot_stack_handle_t handle;
7109 			unsigned long *entries;
7110 			unsigned int nr_entries, j;
7111 
7112 			handle = READ_ONCE(l->handle);
7113 			if (handle) {
7114 				nr_entries = stack_depot_fetch(handle, &entries);
7115 				seq_puts(seq, "\n");
7116 				for (j = 0; j < nr_entries; j++)
7117 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7118 			}
7119 		}
7120 #endif
7121 		seq_puts(seq, "\n");
7122 	}
7123 
7124 	if (!idx && !t->count)
7125 		seq_puts(seq, "No data\n");
7126 
7127 	return 0;
7128 }
7129 
7130 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7131 {
7132 }
7133 
7134 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7135 {
7136 	struct loc_track *t = seq->private;
7137 
7138 	t->idx = ++(*ppos);
7139 	if (*ppos <= t->count)
7140 		return ppos;
7141 
7142 	return NULL;
7143 }
7144 
7145 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7146 {
7147 	struct location *loc1 = (struct location *)a;
7148 	struct location *loc2 = (struct location *)b;
7149 
7150 	if (loc1->count > loc2->count)
7151 		return -1;
7152 	else
7153 		return 1;
7154 }
7155 
7156 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7157 {
7158 	struct loc_track *t = seq->private;
7159 
7160 	t->idx = *ppos;
7161 	return ppos;
7162 }
7163 
7164 static const struct seq_operations slab_debugfs_sops = {
7165 	.start  = slab_debugfs_start,
7166 	.next   = slab_debugfs_next,
7167 	.stop   = slab_debugfs_stop,
7168 	.show   = slab_debugfs_show,
7169 };
7170 
7171 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7172 {
7173 
7174 	struct kmem_cache_node *n;
7175 	enum track_item alloc;
7176 	int node;
7177 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7178 						sizeof(struct loc_track));
7179 	struct kmem_cache *s = file_inode(filep)->i_private;
7180 	unsigned long *obj_map;
7181 
7182 	if (!t)
7183 		return -ENOMEM;
7184 
7185 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7186 	if (!obj_map) {
7187 		seq_release_private(inode, filep);
7188 		return -ENOMEM;
7189 	}
7190 
7191 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7192 		alloc = TRACK_ALLOC;
7193 	else
7194 		alloc = TRACK_FREE;
7195 
7196 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7197 		bitmap_free(obj_map);
7198 		seq_release_private(inode, filep);
7199 		return -ENOMEM;
7200 	}
7201 
7202 	for_each_kmem_cache_node(s, node, n) {
7203 		unsigned long flags;
7204 		struct slab *slab;
7205 
7206 		if (!node_nr_slabs(n))
7207 			continue;
7208 
7209 		spin_lock_irqsave(&n->list_lock, flags);
7210 		list_for_each_entry(slab, &n->partial, slab_list)
7211 			process_slab(t, s, slab, alloc, obj_map);
7212 		list_for_each_entry(slab, &n->full, slab_list)
7213 			process_slab(t, s, slab, alloc, obj_map);
7214 		spin_unlock_irqrestore(&n->list_lock, flags);
7215 	}
7216 
7217 	/* Sort locations by count */
7218 	sort_r(t->loc, t->count, sizeof(struct location),
7219 		cmp_loc_by_count, NULL, NULL);
7220 
7221 	bitmap_free(obj_map);
7222 	return 0;
7223 }
7224 
7225 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7226 {
7227 	struct seq_file *seq = file->private_data;
7228 	struct loc_track *t = seq->private;
7229 
7230 	free_loc_track(t);
7231 	return seq_release_private(inode, file);
7232 }
7233 
7234 static const struct file_operations slab_debugfs_fops = {
7235 	.open    = slab_debug_trace_open,
7236 	.read    = seq_read,
7237 	.llseek  = seq_lseek,
7238 	.release = slab_debug_trace_release,
7239 };
7240 
7241 static void debugfs_slab_add(struct kmem_cache *s)
7242 {
7243 	struct dentry *slab_cache_dir;
7244 
7245 	if (unlikely(!slab_debugfs_root))
7246 		return;
7247 
7248 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7249 
7250 	debugfs_create_file("alloc_traces", 0400,
7251 		slab_cache_dir, s, &slab_debugfs_fops);
7252 
7253 	debugfs_create_file("free_traces", 0400,
7254 		slab_cache_dir, s, &slab_debugfs_fops);
7255 }
7256 
7257 void debugfs_slab_release(struct kmem_cache *s)
7258 {
7259 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7260 }
7261 
7262 static int __init slab_debugfs_init(void)
7263 {
7264 	struct kmem_cache *s;
7265 
7266 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7267 
7268 	list_for_each_entry(s, &slab_caches, list)
7269 		if (s->flags & SLAB_STORE_USER)
7270 			debugfs_slab_add(s);
7271 
7272 	return 0;
7273 
7274 }
7275 __initcall(slab_debugfs_init);
7276 #endif
7277 /*
7278  * The /proc/slabinfo ABI
7279  */
7280 #ifdef CONFIG_SLUB_DEBUG
7281 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7282 {
7283 	unsigned long nr_slabs = 0;
7284 	unsigned long nr_objs = 0;
7285 	unsigned long nr_free = 0;
7286 	int node;
7287 	struct kmem_cache_node *n;
7288 
7289 	for_each_kmem_cache_node(s, node, n) {
7290 		nr_slabs += node_nr_slabs(n);
7291 		nr_objs += node_nr_objs(n);
7292 		nr_free += count_partial_free_approx(n);
7293 	}
7294 
7295 	sinfo->active_objs = nr_objs - nr_free;
7296 	sinfo->num_objs = nr_objs;
7297 	sinfo->active_slabs = nr_slabs;
7298 	sinfo->num_slabs = nr_slabs;
7299 	sinfo->objects_per_slab = oo_objects(s->oo);
7300 	sinfo->cache_order = oo_order(s->oo);
7301 }
7302 #endif /* CONFIG_SLUB_DEBUG */
7303