1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 /* Poison object */ 195 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 196 /* Use cmpxchg_double */ 197 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 198 199 /* 200 * Tracking user of a slab. 201 */ 202 #define TRACK_ADDRS_COUNT 16 203 struct track { 204 unsigned long addr; /* Called from address */ 205 #ifdef CONFIG_STACKTRACE 206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 207 #endif 208 int cpu; /* Was running on cpu */ 209 int pid; /* Pid context */ 210 unsigned long when; /* When did the operation occur */ 211 }; 212 213 enum track_item { TRACK_ALLOC, TRACK_FREE }; 214 215 #ifdef CONFIG_SYSFS 216 static int sysfs_slab_add(struct kmem_cache *); 217 static int sysfs_slab_alias(struct kmem_cache *, const char *); 218 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 219 static void sysfs_slab_remove(struct kmem_cache *s); 220 #else 221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 223 { return 0; } 224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 225 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /******************************************************************** 240 * Core slab cache functions 241 *******************************************************************/ 242 243 /* 244 * Returns freelist pointer (ptr). With hardening, this is obfuscated 245 * with an XOR of the address where the pointer is held and a per-cache 246 * random number. 247 */ 248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 249 unsigned long ptr_addr) 250 { 251 #ifdef CONFIG_SLAB_FREELIST_HARDENED 252 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); 253 #else 254 return ptr; 255 #endif 256 } 257 258 /* Returns the freelist pointer recorded at location ptr_addr. */ 259 static inline void *freelist_dereference(const struct kmem_cache *s, 260 void *ptr_addr) 261 { 262 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 263 (unsigned long)ptr_addr); 264 } 265 266 static inline void *get_freepointer(struct kmem_cache *s, void *object) 267 { 268 return freelist_dereference(s, object + s->offset); 269 } 270 271 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 272 { 273 prefetch(object + s->offset); 274 } 275 276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 277 { 278 unsigned long freepointer_addr; 279 void *p; 280 281 if (!debug_pagealloc_enabled()) 282 return get_freepointer(s, object); 283 284 freepointer_addr = (unsigned long)object + s->offset; 285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 286 return freelist_ptr(s, p, freepointer_addr); 287 } 288 289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 290 { 291 unsigned long freeptr_addr = (unsigned long)object + s->offset; 292 293 #ifdef CONFIG_SLAB_FREELIST_HARDENED 294 BUG_ON(object == fp); /* naive detection of double free or corruption */ 295 #endif 296 297 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 298 } 299 300 /* Loop over all objects in a slab */ 301 #define for_each_object(__p, __s, __addr, __objects) \ 302 for (__p = fixup_red_left(__s, __addr); \ 303 __p < (__addr) + (__objects) * (__s)->size; \ 304 __p += (__s)->size) 305 306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 308 __idx <= __objects; \ 309 __p += (__s)->size, __idx++) 310 311 /* Determine object index from a given position */ 312 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 313 { 314 return (p - addr) / s->size; 315 } 316 317 static inline unsigned int order_objects(unsigned int order, unsigned int size) 318 { 319 return ((unsigned int)PAGE_SIZE << order) / size; 320 } 321 322 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 323 unsigned int size) 324 { 325 struct kmem_cache_order_objects x = { 326 (order << OO_SHIFT) + order_objects(order, size) 327 }; 328 329 return x; 330 } 331 332 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 333 { 334 return x.x >> OO_SHIFT; 335 } 336 337 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 338 { 339 return x.x & OO_MASK; 340 } 341 342 /* 343 * Per slab locking using the pagelock 344 */ 345 static __always_inline void slab_lock(struct page *page) 346 { 347 VM_BUG_ON_PAGE(PageTail(page), page); 348 bit_spin_lock(PG_locked, &page->flags); 349 } 350 351 static __always_inline void slab_unlock(struct page *page) 352 { 353 VM_BUG_ON_PAGE(PageTail(page), page); 354 __bit_spin_unlock(PG_locked, &page->flags); 355 } 356 357 /* Interrupts must be disabled (for the fallback code to work right) */ 358 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 359 void *freelist_old, unsigned long counters_old, 360 void *freelist_new, unsigned long counters_new, 361 const char *n) 362 { 363 VM_BUG_ON(!irqs_disabled()); 364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 365 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 366 if (s->flags & __CMPXCHG_DOUBLE) { 367 if (cmpxchg_double(&page->freelist, &page->counters, 368 freelist_old, counters_old, 369 freelist_new, counters_new)) 370 return true; 371 } else 372 #endif 373 { 374 slab_lock(page); 375 if (page->freelist == freelist_old && 376 page->counters == counters_old) { 377 page->freelist = freelist_new; 378 page->counters = counters_new; 379 slab_unlock(page); 380 return true; 381 } 382 slab_unlock(page); 383 } 384 385 cpu_relax(); 386 stat(s, CMPXCHG_DOUBLE_FAIL); 387 388 #ifdef SLUB_DEBUG_CMPXCHG 389 pr_info("%s %s: cmpxchg double redo ", n, s->name); 390 #endif 391 392 return false; 393 } 394 395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 396 void *freelist_old, unsigned long counters_old, 397 void *freelist_new, unsigned long counters_new, 398 const char *n) 399 { 400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 402 if (s->flags & __CMPXCHG_DOUBLE) { 403 if (cmpxchg_double(&page->freelist, &page->counters, 404 freelist_old, counters_old, 405 freelist_new, counters_new)) 406 return true; 407 } else 408 #endif 409 { 410 unsigned long flags; 411 412 local_irq_save(flags); 413 slab_lock(page); 414 if (page->freelist == freelist_old && 415 page->counters == counters_old) { 416 page->freelist = freelist_new; 417 page->counters = counters_new; 418 slab_unlock(page); 419 local_irq_restore(flags); 420 return true; 421 } 422 slab_unlock(page); 423 local_irq_restore(flags); 424 } 425 426 cpu_relax(); 427 stat(s, CMPXCHG_DOUBLE_FAIL); 428 429 #ifdef SLUB_DEBUG_CMPXCHG 430 pr_info("%s %s: cmpxchg double redo ", n, s->name); 431 #endif 432 433 return false; 434 } 435 436 #ifdef CONFIG_SLUB_DEBUG 437 /* 438 * Determine a map of object in use on a page. 439 * 440 * Node listlock must be held to guarantee that the page does 441 * not vanish from under us. 442 */ 443 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 444 { 445 void *p; 446 void *addr = page_address(page); 447 448 for (p = page->freelist; p; p = get_freepointer(s, p)) 449 set_bit(slab_index(p, s, addr), map); 450 } 451 452 static inline unsigned int size_from_object(struct kmem_cache *s) 453 { 454 if (s->flags & SLAB_RED_ZONE) 455 return s->size - s->red_left_pad; 456 457 return s->size; 458 } 459 460 static inline void *restore_red_left(struct kmem_cache *s, void *p) 461 { 462 if (s->flags & SLAB_RED_ZONE) 463 p -= s->red_left_pad; 464 465 return p; 466 } 467 468 /* 469 * Debug settings: 470 */ 471 #if defined(CONFIG_SLUB_DEBUG_ON) 472 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 473 #else 474 static slab_flags_t slub_debug; 475 #endif 476 477 static char *slub_debug_slabs; 478 static int disable_higher_order_debug; 479 480 /* 481 * slub is about to manipulate internal object metadata. This memory lies 482 * outside the range of the allocated object, so accessing it would normally 483 * be reported by kasan as a bounds error. metadata_access_enable() is used 484 * to tell kasan that these accesses are OK. 485 */ 486 static inline void metadata_access_enable(void) 487 { 488 kasan_disable_current(); 489 } 490 491 static inline void metadata_access_disable(void) 492 { 493 kasan_enable_current(); 494 } 495 496 /* 497 * Object debugging 498 */ 499 500 /* Verify that a pointer has an address that is valid within a slab page */ 501 static inline int check_valid_pointer(struct kmem_cache *s, 502 struct page *page, void *object) 503 { 504 void *base; 505 506 if (!object) 507 return 1; 508 509 base = page_address(page); 510 object = restore_red_left(s, object); 511 if (object < base || object >= base + page->objects * s->size || 512 (object - base) % s->size) { 513 return 0; 514 } 515 516 return 1; 517 } 518 519 static void print_section(char *level, char *text, u8 *addr, 520 unsigned int length) 521 { 522 metadata_access_enable(); 523 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 524 length, 1); 525 metadata_access_disable(); 526 } 527 528 static struct track *get_track(struct kmem_cache *s, void *object, 529 enum track_item alloc) 530 { 531 struct track *p; 532 533 if (s->offset) 534 p = object + s->offset + sizeof(void *); 535 else 536 p = object + s->inuse; 537 538 return p + alloc; 539 } 540 541 static void set_track(struct kmem_cache *s, void *object, 542 enum track_item alloc, unsigned long addr) 543 { 544 struct track *p = get_track(s, object, alloc); 545 546 if (addr) { 547 #ifdef CONFIG_STACKTRACE 548 struct stack_trace trace; 549 int i; 550 551 trace.nr_entries = 0; 552 trace.max_entries = TRACK_ADDRS_COUNT; 553 trace.entries = p->addrs; 554 trace.skip = 3; 555 metadata_access_enable(); 556 save_stack_trace(&trace); 557 metadata_access_disable(); 558 559 /* See rant in lockdep.c */ 560 if (trace.nr_entries != 0 && 561 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 562 trace.nr_entries--; 563 564 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 565 p->addrs[i] = 0; 566 #endif 567 p->addr = addr; 568 p->cpu = smp_processor_id(); 569 p->pid = current->pid; 570 p->when = jiffies; 571 } else 572 memset(p, 0, sizeof(struct track)); 573 } 574 575 static void init_tracking(struct kmem_cache *s, void *object) 576 { 577 if (!(s->flags & SLAB_STORE_USER)) 578 return; 579 580 set_track(s, object, TRACK_FREE, 0UL); 581 set_track(s, object, TRACK_ALLOC, 0UL); 582 } 583 584 static void print_track(const char *s, struct track *t, unsigned long pr_time) 585 { 586 if (!t->addr) 587 return; 588 589 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 590 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 591 #ifdef CONFIG_STACKTRACE 592 { 593 int i; 594 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 595 if (t->addrs[i]) 596 pr_err("\t%pS\n", (void *)t->addrs[i]); 597 else 598 break; 599 } 600 #endif 601 } 602 603 static void print_tracking(struct kmem_cache *s, void *object) 604 { 605 unsigned long pr_time = jiffies; 606 if (!(s->flags & SLAB_STORE_USER)) 607 return; 608 609 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 610 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 611 } 612 613 static void print_page_info(struct page *page) 614 { 615 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 616 page, page->objects, page->inuse, page->freelist, page->flags); 617 618 } 619 620 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 621 { 622 struct va_format vaf; 623 va_list args; 624 625 va_start(args, fmt); 626 vaf.fmt = fmt; 627 vaf.va = &args; 628 pr_err("=============================================================================\n"); 629 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 630 pr_err("-----------------------------------------------------------------------------\n\n"); 631 632 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 633 va_end(args); 634 } 635 636 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 637 { 638 struct va_format vaf; 639 va_list args; 640 641 va_start(args, fmt); 642 vaf.fmt = fmt; 643 vaf.va = &args; 644 pr_err("FIX %s: %pV\n", s->name, &vaf); 645 va_end(args); 646 } 647 648 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 649 { 650 unsigned int off; /* Offset of last byte */ 651 u8 *addr = page_address(page); 652 653 print_tracking(s, p); 654 655 print_page_info(page); 656 657 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 658 p, p - addr, get_freepointer(s, p)); 659 660 if (s->flags & SLAB_RED_ZONE) 661 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 662 s->red_left_pad); 663 else if (p > addr + 16) 664 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 665 666 print_section(KERN_ERR, "Object ", p, 667 min_t(unsigned int, s->object_size, PAGE_SIZE)); 668 if (s->flags & SLAB_RED_ZONE) 669 print_section(KERN_ERR, "Redzone ", p + s->object_size, 670 s->inuse - s->object_size); 671 672 if (s->offset) 673 off = s->offset + sizeof(void *); 674 else 675 off = s->inuse; 676 677 if (s->flags & SLAB_STORE_USER) 678 off += 2 * sizeof(struct track); 679 680 off += kasan_metadata_size(s); 681 682 if (off != size_from_object(s)) 683 /* Beginning of the filler is the free pointer */ 684 print_section(KERN_ERR, "Padding ", p + off, 685 size_from_object(s) - off); 686 687 dump_stack(); 688 } 689 690 void object_err(struct kmem_cache *s, struct page *page, 691 u8 *object, char *reason) 692 { 693 slab_bug(s, "%s", reason); 694 print_trailer(s, page, object); 695 } 696 697 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 698 const char *fmt, ...) 699 { 700 va_list args; 701 char buf[100]; 702 703 va_start(args, fmt); 704 vsnprintf(buf, sizeof(buf), fmt, args); 705 va_end(args); 706 slab_bug(s, "%s", buf); 707 print_page_info(page); 708 dump_stack(); 709 } 710 711 static void init_object(struct kmem_cache *s, void *object, u8 val) 712 { 713 u8 *p = object; 714 715 if (s->flags & SLAB_RED_ZONE) 716 memset(p - s->red_left_pad, val, s->red_left_pad); 717 718 if (s->flags & __OBJECT_POISON) { 719 memset(p, POISON_FREE, s->object_size - 1); 720 p[s->object_size - 1] = POISON_END; 721 } 722 723 if (s->flags & SLAB_RED_ZONE) 724 memset(p + s->object_size, val, s->inuse - s->object_size); 725 } 726 727 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 728 void *from, void *to) 729 { 730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 731 memset(from, data, to - from); 732 } 733 734 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 735 u8 *object, char *what, 736 u8 *start, unsigned int value, unsigned int bytes) 737 { 738 u8 *fault; 739 u8 *end; 740 741 metadata_access_enable(); 742 fault = memchr_inv(start, value, bytes); 743 metadata_access_disable(); 744 if (!fault) 745 return 1; 746 747 end = start + bytes; 748 while (end > fault && end[-1] == value) 749 end--; 750 751 slab_bug(s, "%s overwritten", what); 752 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 753 fault, end - 1, fault[0], value); 754 print_trailer(s, page, object); 755 756 restore_bytes(s, what, value, fault, end); 757 return 0; 758 } 759 760 /* 761 * Object layout: 762 * 763 * object address 764 * Bytes of the object to be managed. 765 * If the freepointer may overlay the object then the free 766 * pointer is the first word of the object. 767 * 768 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 769 * 0xa5 (POISON_END) 770 * 771 * object + s->object_size 772 * Padding to reach word boundary. This is also used for Redzoning. 773 * Padding is extended by another word if Redzoning is enabled and 774 * object_size == inuse. 775 * 776 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 777 * 0xcc (RED_ACTIVE) for objects in use. 778 * 779 * object + s->inuse 780 * Meta data starts here. 781 * 782 * A. Free pointer (if we cannot overwrite object on free) 783 * B. Tracking data for SLAB_STORE_USER 784 * C. Padding to reach required alignment boundary or at mininum 785 * one word if debugging is on to be able to detect writes 786 * before the word boundary. 787 * 788 * Padding is done using 0x5a (POISON_INUSE) 789 * 790 * object + s->size 791 * Nothing is used beyond s->size. 792 * 793 * If slabcaches are merged then the object_size and inuse boundaries are mostly 794 * ignored. And therefore no slab options that rely on these boundaries 795 * may be used with merged slabcaches. 796 */ 797 798 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 799 { 800 unsigned long off = s->inuse; /* The end of info */ 801 802 if (s->offset) 803 /* Freepointer is placed after the object. */ 804 off += sizeof(void *); 805 806 if (s->flags & SLAB_STORE_USER) 807 /* We also have user information there */ 808 off += 2 * sizeof(struct track); 809 810 off += kasan_metadata_size(s); 811 812 if (size_from_object(s) == off) 813 return 1; 814 815 return check_bytes_and_report(s, page, p, "Object padding", 816 p + off, POISON_INUSE, size_from_object(s) - off); 817 } 818 819 /* Check the pad bytes at the end of a slab page */ 820 static int slab_pad_check(struct kmem_cache *s, struct page *page) 821 { 822 u8 *start; 823 u8 *fault; 824 u8 *end; 825 u8 *pad; 826 int length; 827 int remainder; 828 829 if (!(s->flags & SLAB_POISON)) 830 return 1; 831 832 start = page_address(page); 833 length = PAGE_SIZE << compound_order(page); 834 end = start + length; 835 remainder = length % s->size; 836 if (!remainder) 837 return 1; 838 839 pad = end - remainder; 840 metadata_access_enable(); 841 fault = memchr_inv(pad, POISON_INUSE, remainder); 842 metadata_access_disable(); 843 if (!fault) 844 return 1; 845 while (end > fault && end[-1] == POISON_INUSE) 846 end--; 847 848 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 849 print_section(KERN_ERR, "Padding ", pad, remainder); 850 851 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 852 return 0; 853 } 854 855 static int check_object(struct kmem_cache *s, struct page *page, 856 void *object, u8 val) 857 { 858 u8 *p = object; 859 u8 *endobject = object + s->object_size; 860 861 if (s->flags & SLAB_RED_ZONE) { 862 if (!check_bytes_and_report(s, page, object, "Redzone", 863 object - s->red_left_pad, val, s->red_left_pad)) 864 return 0; 865 866 if (!check_bytes_and_report(s, page, object, "Redzone", 867 endobject, val, s->inuse - s->object_size)) 868 return 0; 869 } else { 870 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 871 check_bytes_and_report(s, page, p, "Alignment padding", 872 endobject, POISON_INUSE, 873 s->inuse - s->object_size); 874 } 875 } 876 877 if (s->flags & SLAB_POISON) { 878 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 879 (!check_bytes_and_report(s, page, p, "Poison", p, 880 POISON_FREE, s->object_size - 1) || 881 !check_bytes_and_report(s, page, p, "Poison", 882 p + s->object_size - 1, POISON_END, 1))) 883 return 0; 884 /* 885 * check_pad_bytes cleans up on its own. 886 */ 887 check_pad_bytes(s, page, p); 888 } 889 890 if (!s->offset && val == SLUB_RED_ACTIVE) 891 /* 892 * Object and freepointer overlap. Cannot check 893 * freepointer while object is allocated. 894 */ 895 return 1; 896 897 /* Check free pointer validity */ 898 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 899 object_err(s, page, p, "Freepointer corrupt"); 900 /* 901 * No choice but to zap it and thus lose the remainder 902 * of the free objects in this slab. May cause 903 * another error because the object count is now wrong. 904 */ 905 set_freepointer(s, p, NULL); 906 return 0; 907 } 908 return 1; 909 } 910 911 static int check_slab(struct kmem_cache *s, struct page *page) 912 { 913 int maxobj; 914 915 VM_BUG_ON(!irqs_disabled()); 916 917 if (!PageSlab(page)) { 918 slab_err(s, page, "Not a valid slab page"); 919 return 0; 920 } 921 922 maxobj = order_objects(compound_order(page), s->size); 923 if (page->objects > maxobj) { 924 slab_err(s, page, "objects %u > max %u", 925 page->objects, maxobj); 926 return 0; 927 } 928 if (page->inuse > page->objects) { 929 slab_err(s, page, "inuse %u > max %u", 930 page->inuse, page->objects); 931 return 0; 932 } 933 /* Slab_pad_check fixes things up after itself */ 934 slab_pad_check(s, page); 935 return 1; 936 } 937 938 /* 939 * Determine if a certain object on a page is on the freelist. Must hold the 940 * slab lock to guarantee that the chains are in a consistent state. 941 */ 942 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 943 { 944 int nr = 0; 945 void *fp; 946 void *object = NULL; 947 int max_objects; 948 949 fp = page->freelist; 950 while (fp && nr <= page->objects) { 951 if (fp == search) 952 return 1; 953 if (!check_valid_pointer(s, page, fp)) { 954 if (object) { 955 object_err(s, page, object, 956 "Freechain corrupt"); 957 set_freepointer(s, object, NULL); 958 } else { 959 slab_err(s, page, "Freepointer corrupt"); 960 page->freelist = NULL; 961 page->inuse = page->objects; 962 slab_fix(s, "Freelist cleared"); 963 return 0; 964 } 965 break; 966 } 967 object = fp; 968 fp = get_freepointer(s, object); 969 nr++; 970 } 971 972 max_objects = order_objects(compound_order(page), s->size); 973 if (max_objects > MAX_OBJS_PER_PAGE) 974 max_objects = MAX_OBJS_PER_PAGE; 975 976 if (page->objects != max_objects) { 977 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 978 page->objects, max_objects); 979 page->objects = max_objects; 980 slab_fix(s, "Number of objects adjusted."); 981 } 982 if (page->inuse != page->objects - nr) { 983 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 984 page->inuse, page->objects - nr); 985 page->inuse = page->objects - nr; 986 slab_fix(s, "Object count adjusted."); 987 } 988 return search == NULL; 989 } 990 991 static void trace(struct kmem_cache *s, struct page *page, void *object, 992 int alloc) 993 { 994 if (s->flags & SLAB_TRACE) { 995 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 996 s->name, 997 alloc ? "alloc" : "free", 998 object, page->inuse, 999 page->freelist); 1000 1001 if (!alloc) 1002 print_section(KERN_INFO, "Object ", (void *)object, 1003 s->object_size); 1004 1005 dump_stack(); 1006 } 1007 } 1008 1009 /* 1010 * Tracking of fully allocated slabs for debugging purposes. 1011 */ 1012 static void add_full(struct kmem_cache *s, 1013 struct kmem_cache_node *n, struct page *page) 1014 { 1015 if (!(s->flags & SLAB_STORE_USER)) 1016 return; 1017 1018 lockdep_assert_held(&n->list_lock); 1019 list_add(&page->lru, &n->full); 1020 } 1021 1022 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1023 { 1024 if (!(s->flags & SLAB_STORE_USER)) 1025 return; 1026 1027 lockdep_assert_held(&n->list_lock); 1028 list_del(&page->lru); 1029 } 1030 1031 /* Tracking of the number of slabs for debugging purposes */ 1032 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1033 { 1034 struct kmem_cache_node *n = get_node(s, node); 1035 1036 return atomic_long_read(&n->nr_slabs); 1037 } 1038 1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1040 { 1041 return atomic_long_read(&n->nr_slabs); 1042 } 1043 1044 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1045 { 1046 struct kmem_cache_node *n = get_node(s, node); 1047 1048 /* 1049 * May be called early in order to allocate a slab for the 1050 * kmem_cache_node structure. Solve the chicken-egg 1051 * dilemma by deferring the increment of the count during 1052 * bootstrap (see early_kmem_cache_node_alloc). 1053 */ 1054 if (likely(n)) { 1055 atomic_long_inc(&n->nr_slabs); 1056 atomic_long_add(objects, &n->total_objects); 1057 } 1058 } 1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1060 { 1061 struct kmem_cache_node *n = get_node(s, node); 1062 1063 atomic_long_dec(&n->nr_slabs); 1064 atomic_long_sub(objects, &n->total_objects); 1065 } 1066 1067 /* Object debug checks for alloc/free paths */ 1068 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1069 void *object) 1070 { 1071 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1072 return; 1073 1074 init_object(s, object, SLUB_RED_INACTIVE); 1075 init_tracking(s, object); 1076 } 1077 1078 static inline int alloc_consistency_checks(struct kmem_cache *s, 1079 struct page *page, 1080 void *object, unsigned long addr) 1081 { 1082 if (!check_slab(s, page)) 1083 return 0; 1084 1085 if (!check_valid_pointer(s, page, object)) { 1086 object_err(s, page, object, "Freelist Pointer check fails"); 1087 return 0; 1088 } 1089 1090 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1091 return 0; 1092 1093 return 1; 1094 } 1095 1096 static noinline int alloc_debug_processing(struct kmem_cache *s, 1097 struct page *page, 1098 void *object, unsigned long addr) 1099 { 1100 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1101 if (!alloc_consistency_checks(s, page, object, addr)) 1102 goto bad; 1103 } 1104 1105 /* Success perform special debug activities for allocs */ 1106 if (s->flags & SLAB_STORE_USER) 1107 set_track(s, object, TRACK_ALLOC, addr); 1108 trace(s, page, object, 1); 1109 init_object(s, object, SLUB_RED_ACTIVE); 1110 return 1; 1111 1112 bad: 1113 if (PageSlab(page)) { 1114 /* 1115 * If this is a slab page then lets do the best we can 1116 * to avoid issues in the future. Marking all objects 1117 * as used avoids touching the remaining objects. 1118 */ 1119 slab_fix(s, "Marking all objects used"); 1120 page->inuse = page->objects; 1121 page->freelist = NULL; 1122 } 1123 return 0; 1124 } 1125 1126 static inline int free_consistency_checks(struct kmem_cache *s, 1127 struct page *page, void *object, unsigned long addr) 1128 { 1129 if (!check_valid_pointer(s, page, object)) { 1130 slab_err(s, page, "Invalid object pointer 0x%p", object); 1131 return 0; 1132 } 1133 1134 if (on_freelist(s, page, object)) { 1135 object_err(s, page, object, "Object already free"); 1136 return 0; 1137 } 1138 1139 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1140 return 0; 1141 1142 if (unlikely(s != page->slab_cache)) { 1143 if (!PageSlab(page)) { 1144 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1145 object); 1146 } else if (!page->slab_cache) { 1147 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1148 object); 1149 dump_stack(); 1150 } else 1151 object_err(s, page, object, 1152 "page slab pointer corrupt."); 1153 return 0; 1154 } 1155 return 1; 1156 } 1157 1158 /* Supports checking bulk free of a constructed freelist */ 1159 static noinline int free_debug_processing( 1160 struct kmem_cache *s, struct page *page, 1161 void *head, void *tail, int bulk_cnt, 1162 unsigned long addr) 1163 { 1164 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1165 void *object = head; 1166 int cnt = 0; 1167 unsigned long uninitialized_var(flags); 1168 int ret = 0; 1169 1170 spin_lock_irqsave(&n->list_lock, flags); 1171 slab_lock(page); 1172 1173 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1174 if (!check_slab(s, page)) 1175 goto out; 1176 } 1177 1178 next_object: 1179 cnt++; 1180 1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1182 if (!free_consistency_checks(s, page, object, addr)) 1183 goto out; 1184 } 1185 1186 if (s->flags & SLAB_STORE_USER) 1187 set_track(s, object, TRACK_FREE, addr); 1188 trace(s, page, object, 0); 1189 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1190 init_object(s, object, SLUB_RED_INACTIVE); 1191 1192 /* Reached end of constructed freelist yet? */ 1193 if (object != tail) { 1194 object = get_freepointer(s, object); 1195 goto next_object; 1196 } 1197 ret = 1; 1198 1199 out: 1200 if (cnt != bulk_cnt) 1201 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1202 bulk_cnt, cnt); 1203 1204 slab_unlock(page); 1205 spin_unlock_irqrestore(&n->list_lock, flags); 1206 if (!ret) 1207 slab_fix(s, "Object at 0x%p not freed", object); 1208 return ret; 1209 } 1210 1211 static int __init setup_slub_debug(char *str) 1212 { 1213 slub_debug = DEBUG_DEFAULT_FLAGS; 1214 if (*str++ != '=' || !*str) 1215 /* 1216 * No options specified. Switch on full debugging. 1217 */ 1218 goto out; 1219 1220 if (*str == ',') 1221 /* 1222 * No options but restriction on slabs. This means full 1223 * debugging for slabs matching a pattern. 1224 */ 1225 goto check_slabs; 1226 1227 slub_debug = 0; 1228 if (*str == '-') 1229 /* 1230 * Switch off all debugging measures. 1231 */ 1232 goto out; 1233 1234 /* 1235 * Determine which debug features should be switched on 1236 */ 1237 for (; *str && *str != ','; str++) { 1238 switch (tolower(*str)) { 1239 case 'f': 1240 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1241 break; 1242 case 'z': 1243 slub_debug |= SLAB_RED_ZONE; 1244 break; 1245 case 'p': 1246 slub_debug |= SLAB_POISON; 1247 break; 1248 case 'u': 1249 slub_debug |= SLAB_STORE_USER; 1250 break; 1251 case 't': 1252 slub_debug |= SLAB_TRACE; 1253 break; 1254 case 'a': 1255 slub_debug |= SLAB_FAILSLAB; 1256 break; 1257 case 'o': 1258 /* 1259 * Avoid enabling debugging on caches if its minimum 1260 * order would increase as a result. 1261 */ 1262 disable_higher_order_debug = 1; 1263 break; 1264 default: 1265 pr_err("slub_debug option '%c' unknown. skipped\n", 1266 *str); 1267 } 1268 } 1269 1270 check_slabs: 1271 if (*str == ',') 1272 slub_debug_slabs = str + 1; 1273 out: 1274 return 1; 1275 } 1276 1277 __setup("slub_debug", setup_slub_debug); 1278 1279 /* 1280 * kmem_cache_flags - apply debugging options to the cache 1281 * @object_size: the size of an object without meta data 1282 * @flags: flags to set 1283 * @name: name of the cache 1284 * @ctor: constructor function 1285 * 1286 * Debug option(s) are applied to @flags. In addition to the debug 1287 * option(s), if a slab name (or multiple) is specified i.e. 1288 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1289 * then only the select slabs will receive the debug option(s). 1290 */ 1291 slab_flags_t kmem_cache_flags(unsigned int object_size, 1292 slab_flags_t flags, const char *name, 1293 void (*ctor)(void *)) 1294 { 1295 char *iter; 1296 size_t len; 1297 1298 /* If slub_debug = 0, it folds into the if conditional. */ 1299 if (!slub_debug_slabs) 1300 return flags | slub_debug; 1301 1302 len = strlen(name); 1303 iter = slub_debug_slabs; 1304 while (*iter) { 1305 char *end, *glob; 1306 size_t cmplen; 1307 1308 end = strchr(iter, ','); 1309 if (!end) 1310 end = iter + strlen(iter); 1311 1312 glob = strnchr(iter, end - iter, '*'); 1313 if (glob) 1314 cmplen = glob - iter; 1315 else 1316 cmplen = max_t(size_t, len, (end - iter)); 1317 1318 if (!strncmp(name, iter, cmplen)) { 1319 flags |= slub_debug; 1320 break; 1321 } 1322 1323 if (!*end) 1324 break; 1325 iter = end + 1; 1326 } 1327 1328 return flags; 1329 } 1330 #else /* !CONFIG_SLUB_DEBUG */ 1331 static inline void setup_object_debug(struct kmem_cache *s, 1332 struct page *page, void *object) {} 1333 1334 static inline int alloc_debug_processing(struct kmem_cache *s, 1335 struct page *page, void *object, unsigned long addr) { return 0; } 1336 1337 static inline int free_debug_processing( 1338 struct kmem_cache *s, struct page *page, 1339 void *head, void *tail, int bulk_cnt, 1340 unsigned long addr) { return 0; } 1341 1342 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1343 { return 1; } 1344 static inline int check_object(struct kmem_cache *s, struct page *page, 1345 void *object, u8 val) { return 1; } 1346 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1347 struct page *page) {} 1348 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1349 struct page *page) {} 1350 slab_flags_t kmem_cache_flags(unsigned int object_size, 1351 slab_flags_t flags, const char *name, 1352 void (*ctor)(void *)) 1353 { 1354 return flags; 1355 } 1356 #define slub_debug 0 1357 1358 #define disable_higher_order_debug 0 1359 1360 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1361 { return 0; } 1362 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1363 { return 0; } 1364 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1365 int objects) {} 1366 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1367 int objects) {} 1368 1369 #endif /* CONFIG_SLUB_DEBUG */ 1370 1371 /* 1372 * Hooks for other subsystems that check memory allocations. In a typical 1373 * production configuration these hooks all should produce no code at all. 1374 */ 1375 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1376 { 1377 kmemleak_alloc(ptr, size, 1, flags); 1378 kasan_kmalloc_large(ptr, size, flags); 1379 } 1380 1381 static __always_inline void kfree_hook(void *x) 1382 { 1383 kmemleak_free(x); 1384 kasan_kfree_large(x, _RET_IP_); 1385 } 1386 1387 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1388 { 1389 kmemleak_free_recursive(x, s->flags); 1390 1391 /* 1392 * Trouble is that we may no longer disable interrupts in the fast path 1393 * So in order to make the debug calls that expect irqs to be 1394 * disabled we need to disable interrupts temporarily. 1395 */ 1396 #ifdef CONFIG_LOCKDEP 1397 { 1398 unsigned long flags; 1399 1400 local_irq_save(flags); 1401 debug_check_no_locks_freed(x, s->object_size); 1402 local_irq_restore(flags); 1403 } 1404 #endif 1405 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1406 debug_check_no_obj_freed(x, s->object_size); 1407 1408 /* KASAN might put x into memory quarantine, delaying its reuse */ 1409 return kasan_slab_free(s, x, _RET_IP_); 1410 } 1411 1412 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1413 void **head, void **tail) 1414 { 1415 /* 1416 * Compiler cannot detect this function can be removed if slab_free_hook() 1417 * evaluates to nothing. Thus, catch all relevant config debug options here. 1418 */ 1419 #if defined(CONFIG_LOCKDEP) || \ 1420 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1421 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1422 defined(CONFIG_KASAN) 1423 1424 void *object; 1425 void *next = *head; 1426 void *old_tail = *tail ? *tail : *head; 1427 1428 /* Head and tail of the reconstructed freelist */ 1429 *head = NULL; 1430 *tail = NULL; 1431 1432 do { 1433 object = next; 1434 next = get_freepointer(s, object); 1435 /* If object's reuse doesn't have to be delayed */ 1436 if (!slab_free_hook(s, object)) { 1437 /* Move object to the new freelist */ 1438 set_freepointer(s, object, *head); 1439 *head = object; 1440 if (!*tail) 1441 *tail = object; 1442 } 1443 } while (object != old_tail); 1444 1445 if (*head == *tail) 1446 *tail = NULL; 1447 1448 return *head != NULL; 1449 #else 1450 return true; 1451 #endif 1452 } 1453 1454 static void setup_object(struct kmem_cache *s, struct page *page, 1455 void *object) 1456 { 1457 setup_object_debug(s, page, object); 1458 kasan_init_slab_obj(s, object); 1459 if (unlikely(s->ctor)) { 1460 kasan_unpoison_object_data(s, object); 1461 s->ctor(object); 1462 kasan_poison_object_data(s, object); 1463 } 1464 } 1465 1466 /* 1467 * Slab allocation and freeing 1468 */ 1469 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1470 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1471 { 1472 struct page *page; 1473 unsigned int order = oo_order(oo); 1474 1475 if (node == NUMA_NO_NODE) 1476 page = alloc_pages(flags, order); 1477 else 1478 page = __alloc_pages_node(node, flags, order); 1479 1480 if (page && memcg_charge_slab(page, flags, order, s)) { 1481 __free_pages(page, order); 1482 page = NULL; 1483 } 1484 1485 return page; 1486 } 1487 1488 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1489 /* Pre-initialize the random sequence cache */ 1490 static int init_cache_random_seq(struct kmem_cache *s) 1491 { 1492 unsigned int count = oo_objects(s->oo); 1493 int err; 1494 1495 /* Bailout if already initialised */ 1496 if (s->random_seq) 1497 return 0; 1498 1499 err = cache_random_seq_create(s, count, GFP_KERNEL); 1500 if (err) { 1501 pr_err("SLUB: Unable to initialize free list for %s\n", 1502 s->name); 1503 return err; 1504 } 1505 1506 /* Transform to an offset on the set of pages */ 1507 if (s->random_seq) { 1508 unsigned int i; 1509 1510 for (i = 0; i < count; i++) 1511 s->random_seq[i] *= s->size; 1512 } 1513 return 0; 1514 } 1515 1516 /* Initialize each random sequence freelist per cache */ 1517 static void __init init_freelist_randomization(void) 1518 { 1519 struct kmem_cache *s; 1520 1521 mutex_lock(&slab_mutex); 1522 1523 list_for_each_entry(s, &slab_caches, list) 1524 init_cache_random_seq(s); 1525 1526 mutex_unlock(&slab_mutex); 1527 } 1528 1529 /* Get the next entry on the pre-computed freelist randomized */ 1530 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1531 unsigned long *pos, void *start, 1532 unsigned long page_limit, 1533 unsigned long freelist_count) 1534 { 1535 unsigned int idx; 1536 1537 /* 1538 * If the target page allocation failed, the number of objects on the 1539 * page might be smaller than the usual size defined by the cache. 1540 */ 1541 do { 1542 idx = s->random_seq[*pos]; 1543 *pos += 1; 1544 if (*pos >= freelist_count) 1545 *pos = 0; 1546 } while (unlikely(idx >= page_limit)); 1547 1548 return (char *)start + idx; 1549 } 1550 1551 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1552 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1553 { 1554 void *start; 1555 void *cur; 1556 void *next; 1557 unsigned long idx, pos, page_limit, freelist_count; 1558 1559 if (page->objects < 2 || !s->random_seq) 1560 return false; 1561 1562 freelist_count = oo_objects(s->oo); 1563 pos = get_random_int() % freelist_count; 1564 1565 page_limit = page->objects * s->size; 1566 start = fixup_red_left(s, page_address(page)); 1567 1568 /* First entry is used as the base of the freelist */ 1569 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1570 freelist_count); 1571 page->freelist = cur; 1572 1573 for (idx = 1; idx < page->objects; idx++) { 1574 setup_object(s, page, cur); 1575 next = next_freelist_entry(s, page, &pos, start, page_limit, 1576 freelist_count); 1577 set_freepointer(s, cur, next); 1578 cur = next; 1579 } 1580 setup_object(s, page, cur); 1581 set_freepointer(s, cur, NULL); 1582 1583 return true; 1584 } 1585 #else 1586 static inline int init_cache_random_seq(struct kmem_cache *s) 1587 { 1588 return 0; 1589 } 1590 static inline void init_freelist_randomization(void) { } 1591 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1592 { 1593 return false; 1594 } 1595 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1596 1597 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1598 { 1599 struct page *page; 1600 struct kmem_cache_order_objects oo = s->oo; 1601 gfp_t alloc_gfp; 1602 void *start, *p; 1603 int idx, order; 1604 bool shuffle; 1605 1606 flags &= gfp_allowed_mask; 1607 1608 if (gfpflags_allow_blocking(flags)) 1609 local_irq_enable(); 1610 1611 flags |= s->allocflags; 1612 1613 /* 1614 * Let the initial higher-order allocation fail under memory pressure 1615 * so we fall-back to the minimum order allocation. 1616 */ 1617 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1618 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1619 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1620 1621 page = alloc_slab_page(s, alloc_gfp, node, oo); 1622 if (unlikely(!page)) { 1623 oo = s->min; 1624 alloc_gfp = flags; 1625 /* 1626 * Allocation may have failed due to fragmentation. 1627 * Try a lower order alloc if possible 1628 */ 1629 page = alloc_slab_page(s, alloc_gfp, node, oo); 1630 if (unlikely(!page)) 1631 goto out; 1632 stat(s, ORDER_FALLBACK); 1633 } 1634 1635 page->objects = oo_objects(oo); 1636 1637 order = compound_order(page); 1638 page->slab_cache = s; 1639 __SetPageSlab(page); 1640 if (page_is_pfmemalloc(page)) 1641 SetPageSlabPfmemalloc(page); 1642 1643 start = page_address(page); 1644 1645 if (unlikely(s->flags & SLAB_POISON)) 1646 memset(start, POISON_INUSE, PAGE_SIZE << order); 1647 1648 kasan_poison_slab(page); 1649 1650 shuffle = shuffle_freelist(s, page); 1651 1652 if (!shuffle) { 1653 for_each_object_idx(p, idx, s, start, page->objects) { 1654 setup_object(s, page, p); 1655 if (likely(idx < page->objects)) 1656 set_freepointer(s, p, p + s->size); 1657 else 1658 set_freepointer(s, p, NULL); 1659 } 1660 page->freelist = fixup_red_left(s, start); 1661 } 1662 1663 page->inuse = page->objects; 1664 page->frozen = 1; 1665 1666 out: 1667 if (gfpflags_allow_blocking(flags)) 1668 local_irq_disable(); 1669 if (!page) 1670 return NULL; 1671 1672 mod_lruvec_page_state(page, 1673 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1674 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1675 1 << oo_order(oo)); 1676 1677 inc_slabs_node(s, page_to_nid(page), page->objects); 1678 1679 return page; 1680 } 1681 1682 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1683 { 1684 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1685 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1686 flags &= ~GFP_SLAB_BUG_MASK; 1687 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1688 invalid_mask, &invalid_mask, flags, &flags); 1689 dump_stack(); 1690 } 1691 1692 return allocate_slab(s, 1693 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1694 } 1695 1696 static void __free_slab(struct kmem_cache *s, struct page *page) 1697 { 1698 int order = compound_order(page); 1699 int pages = 1 << order; 1700 1701 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1702 void *p; 1703 1704 slab_pad_check(s, page); 1705 for_each_object(p, s, page_address(page), 1706 page->objects) 1707 check_object(s, page, p, SLUB_RED_INACTIVE); 1708 } 1709 1710 mod_lruvec_page_state(page, 1711 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1712 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1713 -pages); 1714 1715 __ClearPageSlabPfmemalloc(page); 1716 __ClearPageSlab(page); 1717 1718 page->mapping = NULL; 1719 if (current->reclaim_state) 1720 current->reclaim_state->reclaimed_slab += pages; 1721 memcg_uncharge_slab(page, order, s); 1722 __free_pages(page, order); 1723 } 1724 1725 static void rcu_free_slab(struct rcu_head *h) 1726 { 1727 struct page *page = container_of(h, struct page, rcu_head); 1728 1729 __free_slab(page->slab_cache, page); 1730 } 1731 1732 static void free_slab(struct kmem_cache *s, struct page *page) 1733 { 1734 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1735 call_rcu(&page->rcu_head, rcu_free_slab); 1736 } else 1737 __free_slab(s, page); 1738 } 1739 1740 static void discard_slab(struct kmem_cache *s, struct page *page) 1741 { 1742 dec_slabs_node(s, page_to_nid(page), page->objects); 1743 free_slab(s, page); 1744 } 1745 1746 /* 1747 * Management of partially allocated slabs. 1748 */ 1749 static inline void 1750 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1751 { 1752 n->nr_partial++; 1753 if (tail == DEACTIVATE_TO_TAIL) 1754 list_add_tail(&page->lru, &n->partial); 1755 else 1756 list_add(&page->lru, &n->partial); 1757 } 1758 1759 static inline void add_partial(struct kmem_cache_node *n, 1760 struct page *page, int tail) 1761 { 1762 lockdep_assert_held(&n->list_lock); 1763 __add_partial(n, page, tail); 1764 } 1765 1766 static inline void remove_partial(struct kmem_cache_node *n, 1767 struct page *page) 1768 { 1769 lockdep_assert_held(&n->list_lock); 1770 list_del(&page->lru); 1771 n->nr_partial--; 1772 } 1773 1774 /* 1775 * Remove slab from the partial list, freeze it and 1776 * return the pointer to the freelist. 1777 * 1778 * Returns a list of objects or NULL if it fails. 1779 */ 1780 static inline void *acquire_slab(struct kmem_cache *s, 1781 struct kmem_cache_node *n, struct page *page, 1782 int mode, int *objects) 1783 { 1784 void *freelist; 1785 unsigned long counters; 1786 struct page new; 1787 1788 lockdep_assert_held(&n->list_lock); 1789 1790 /* 1791 * Zap the freelist and set the frozen bit. 1792 * The old freelist is the list of objects for the 1793 * per cpu allocation list. 1794 */ 1795 freelist = page->freelist; 1796 counters = page->counters; 1797 new.counters = counters; 1798 *objects = new.objects - new.inuse; 1799 if (mode) { 1800 new.inuse = page->objects; 1801 new.freelist = NULL; 1802 } else { 1803 new.freelist = freelist; 1804 } 1805 1806 VM_BUG_ON(new.frozen); 1807 new.frozen = 1; 1808 1809 if (!__cmpxchg_double_slab(s, page, 1810 freelist, counters, 1811 new.freelist, new.counters, 1812 "acquire_slab")) 1813 return NULL; 1814 1815 remove_partial(n, page); 1816 WARN_ON(!freelist); 1817 return freelist; 1818 } 1819 1820 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1821 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1822 1823 /* 1824 * Try to allocate a partial slab from a specific node. 1825 */ 1826 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1827 struct kmem_cache_cpu *c, gfp_t flags) 1828 { 1829 struct page *page, *page2; 1830 void *object = NULL; 1831 unsigned int available = 0; 1832 int objects; 1833 1834 /* 1835 * Racy check. If we mistakenly see no partial slabs then we 1836 * just allocate an empty slab. If we mistakenly try to get a 1837 * partial slab and there is none available then get_partials() 1838 * will return NULL. 1839 */ 1840 if (!n || !n->nr_partial) 1841 return NULL; 1842 1843 spin_lock(&n->list_lock); 1844 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1845 void *t; 1846 1847 if (!pfmemalloc_match(page, flags)) 1848 continue; 1849 1850 t = acquire_slab(s, n, page, object == NULL, &objects); 1851 if (!t) 1852 break; 1853 1854 available += objects; 1855 if (!object) { 1856 c->page = page; 1857 stat(s, ALLOC_FROM_PARTIAL); 1858 object = t; 1859 } else { 1860 put_cpu_partial(s, page, 0); 1861 stat(s, CPU_PARTIAL_NODE); 1862 } 1863 if (!kmem_cache_has_cpu_partial(s) 1864 || available > slub_cpu_partial(s) / 2) 1865 break; 1866 1867 } 1868 spin_unlock(&n->list_lock); 1869 return object; 1870 } 1871 1872 /* 1873 * Get a page from somewhere. Search in increasing NUMA distances. 1874 */ 1875 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1876 struct kmem_cache_cpu *c) 1877 { 1878 #ifdef CONFIG_NUMA 1879 struct zonelist *zonelist; 1880 struct zoneref *z; 1881 struct zone *zone; 1882 enum zone_type high_zoneidx = gfp_zone(flags); 1883 void *object; 1884 unsigned int cpuset_mems_cookie; 1885 1886 /* 1887 * The defrag ratio allows a configuration of the tradeoffs between 1888 * inter node defragmentation and node local allocations. A lower 1889 * defrag_ratio increases the tendency to do local allocations 1890 * instead of attempting to obtain partial slabs from other nodes. 1891 * 1892 * If the defrag_ratio is set to 0 then kmalloc() always 1893 * returns node local objects. If the ratio is higher then kmalloc() 1894 * may return off node objects because partial slabs are obtained 1895 * from other nodes and filled up. 1896 * 1897 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1898 * (which makes defrag_ratio = 1000) then every (well almost) 1899 * allocation will first attempt to defrag slab caches on other nodes. 1900 * This means scanning over all nodes to look for partial slabs which 1901 * may be expensive if we do it every time we are trying to find a slab 1902 * with available objects. 1903 */ 1904 if (!s->remote_node_defrag_ratio || 1905 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1906 return NULL; 1907 1908 do { 1909 cpuset_mems_cookie = read_mems_allowed_begin(); 1910 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1911 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1912 struct kmem_cache_node *n; 1913 1914 n = get_node(s, zone_to_nid(zone)); 1915 1916 if (n && cpuset_zone_allowed(zone, flags) && 1917 n->nr_partial > s->min_partial) { 1918 object = get_partial_node(s, n, c, flags); 1919 if (object) { 1920 /* 1921 * Don't check read_mems_allowed_retry() 1922 * here - if mems_allowed was updated in 1923 * parallel, that was a harmless race 1924 * between allocation and the cpuset 1925 * update 1926 */ 1927 return object; 1928 } 1929 } 1930 } 1931 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1932 #endif 1933 return NULL; 1934 } 1935 1936 /* 1937 * Get a partial page, lock it and return it. 1938 */ 1939 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1940 struct kmem_cache_cpu *c) 1941 { 1942 void *object; 1943 int searchnode = node; 1944 1945 if (node == NUMA_NO_NODE) 1946 searchnode = numa_mem_id(); 1947 else if (!node_present_pages(node)) 1948 searchnode = node_to_mem_node(node); 1949 1950 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1951 if (object || node != NUMA_NO_NODE) 1952 return object; 1953 1954 return get_any_partial(s, flags, c); 1955 } 1956 1957 #ifdef CONFIG_PREEMPT 1958 /* 1959 * Calculate the next globally unique transaction for disambiguiation 1960 * during cmpxchg. The transactions start with the cpu number and are then 1961 * incremented by CONFIG_NR_CPUS. 1962 */ 1963 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1964 #else 1965 /* 1966 * No preemption supported therefore also no need to check for 1967 * different cpus. 1968 */ 1969 #define TID_STEP 1 1970 #endif 1971 1972 static inline unsigned long next_tid(unsigned long tid) 1973 { 1974 return tid + TID_STEP; 1975 } 1976 1977 static inline unsigned int tid_to_cpu(unsigned long tid) 1978 { 1979 return tid % TID_STEP; 1980 } 1981 1982 static inline unsigned long tid_to_event(unsigned long tid) 1983 { 1984 return tid / TID_STEP; 1985 } 1986 1987 static inline unsigned int init_tid(int cpu) 1988 { 1989 return cpu; 1990 } 1991 1992 static inline void note_cmpxchg_failure(const char *n, 1993 const struct kmem_cache *s, unsigned long tid) 1994 { 1995 #ifdef SLUB_DEBUG_CMPXCHG 1996 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1997 1998 pr_info("%s %s: cmpxchg redo ", n, s->name); 1999 2000 #ifdef CONFIG_PREEMPT 2001 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2002 pr_warn("due to cpu change %d -> %d\n", 2003 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2004 else 2005 #endif 2006 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2007 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2008 tid_to_event(tid), tid_to_event(actual_tid)); 2009 else 2010 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2011 actual_tid, tid, next_tid(tid)); 2012 #endif 2013 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2014 } 2015 2016 static void init_kmem_cache_cpus(struct kmem_cache *s) 2017 { 2018 int cpu; 2019 2020 for_each_possible_cpu(cpu) 2021 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2022 } 2023 2024 /* 2025 * Remove the cpu slab 2026 */ 2027 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2028 void *freelist, struct kmem_cache_cpu *c) 2029 { 2030 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2031 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2032 int lock = 0; 2033 enum slab_modes l = M_NONE, m = M_NONE; 2034 void *nextfree; 2035 int tail = DEACTIVATE_TO_HEAD; 2036 struct page new; 2037 struct page old; 2038 2039 if (page->freelist) { 2040 stat(s, DEACTIVATE_REMOTE_FREES); 2041 tail = DEACTIVATE_TO_TAIL; 2042 } 2043 2044 /* 2045 * Stage one: Free all available per cpu objects back 2046 * to the page freelist while it is still frozen. Leave the 2047 * last one. 2048 * 2049 * There is no need to take the list->lock because the page 2050 * is still frozen. 2051 */ 2052 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2053 void *prior; 2054 unsigned long counters; 2055 2056 do { 2057 prior = page->freelist; 2058 counters = page->counters; 2059 set_freepointer(s, freelist, prior); 2060 new.counters = counters; 2061 new.inuse--; 2062 VM_BUG_ON(!new.frozen); 2063 2064 } while (!__cmpxchg_double_slab(s, page, 2065 prior, counters, 2066 freelist, new.counters, 2067 "drain percpu freelist")); 2068 2069 freelist = nextfree; 2070 } 2071 2072 /* 2073 * Stage two: Ensure that the page is unfrozen while the 2074 * list presence reflects the actual number of objects 2075 * during unfreeze. 2076 * 2077 * We setup the list membership and then perform a cmpxchg 2078 * with the count. If there is a mismatch then the page 2079 * is not unfrozen but the page is on the wrong list. 2080 * 2081 * Then we restart the process which may have to remove 2082 * the page from the list that we just put it on again 2083 * because the number of objects in the slab may have 2084 * changed. 2085 */ 2086 redo: 2087 2088 old.freelist = page->freelist; 2089 old.counters = page->counters; 2090 VM_BUG_ON(!old.frozen); 2091 2092 /* Determine target state of the slab */ 2093 new.counters = old.counters; 2094 if (freelist) { 2095 new.inuse--; 2096 set_freepointer(s, freelist, old.freelist); 2097 new.freelist = freelist; 2098 } else 2099 new.freelist = old.freelist; 2100 2101 new.frozen = 0; 2102 2103 if (!new.inuse && n->nr_partial >= s->min_partial) 2104 m = M_FREE; 2105 else if (new.freelist) { 2106 m = M_PARTIAL; 2107 if (!lock) { 2108 lock = 1; 2109 /* 2110 * Taking the spinlock removes the possiblity 2111 * that acquire_slab() will see a slab page that 2112 * is frozen 2113 */ 2114 spin_lock(&n->list_lock); 2115 } 2116 } else { 2117 m = M_FULL; 2118 if (kmem_cache_debug(s) && !lock) { 2119 lock = 1; 2120 /* 2121 * This also ensures that the scanning of full 2122 * slabs from diagnostic functions will not see 2123 * any frozen slabs. 2124 */ 2125 spin_lock(&n->list_lock); 2126 } 2127 } 2128 2129 if (l != m) { 2130 2131 if (l == M_PARTIAL) 2132 2133 remove_partial(n, page); 2134 2135 else if (l == M_FULL) 2136 2137 remove_full(s, n, page); 2138 2139 if (m == M_PARTIAL) { 2140 2141 add_partial(n, page, tail); 2142 stat(s, tail); 2143 2144 } else if (m == M_FULL) { 2145 2146 stat(s, DEACTIVATE_FULL); 2147 add_full(s, n, page); 2148 2149 } 2150 } 2151 2152 l = m; 2153 if (!__cmpxchg_double_slab(s, page, 2154 old.freelist, old.counters, 2155 new.freelist, new.counters, 2156 "unfreezing slab")) 2157 goto redo; 2158 2159 if (lock) 2160 spin_unlock(&n->list_lock); 2161 2162 if (m == M_FREE) { 2163 stat(s, DEACTIVATE_EMPTY); 2164 discard_slab(s, page); 2165 stat(s, FREE_SLAB); 2166 } 2167 2168 c->page = NULL; 2169 c->freelist = NULL; 2170 } 2171 2172 /* 2173 * Unfreeze all the cpu partial slabs. 2174 * 2175 * This function must be called with interrupts disabled 2176 * for the cpu using c (or some other guarantee must be there 2177 * to guarantee no concurrent accesses). 2178 */ 2179 static void unfreeze_partials(struct kmem_cache *s, 2180 struct kmem_cache_cpu *c) 2181 { 2182 #ifdef CONFIG_SLUB_CPU_PARTIAL 2183 struct kmem_cache_node *n = NULL, *n2 = NULL; 2184 struct page *page, *discard_page = NULL; 2185 2186 while ((page = c->partial)) { 2187 struct page new; 2188 struct page old; 2189 2190 c->partial = page->next; 2191 2192 n2 = get_node(s, page_to_nid(page)); 2193 if (n != n2) { 2194 if (n) 2195 spin_unlock(&n->list_lock); 2196 2197 n = n2; 2198 spin_lock(&n->list_lock); 2199 } 2200 2201 do { 2202 2203 old.freelist = page->freelist; 2204 old.counters = page->counters; 2205 VM_BUG_ON(!old.frozen); 2206 2207 new.counters = old.counters; 2208 new.freelist = old.freelist; 2209 2210 new.frozen = 0; 2211 2212 } while (!__cmpxchg_double_slab(s, page, 2213 old.freelist, old.counters, 2214 new.freelist, new.counters, 2215 "unfreezing slab")); 2216 2217 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2218 page->next = discard_page; 2219 discard_page = page; 2220 } else { 2221 add_partial(n, page, DEACTIVATE_TO_TAIL); 2222 stat(s, FREE_ADD_PARTIAL); 2223 } 2224 } 2225 2226 if (n) 2227 spin_unlock(&n->list_lock); 2228 2229 while (discard_page) { 2230 page = discard_page; 2231 discard_page = discard_page->next; 2232 2233 stat(s, DEACTIVATE_EMPTY); 2234 discard_slab(s, page); 2235 stat(s, FREE_SLAB); 2236 } 2237 #endif 2238 } 2239 2240 /* 2241 * Put a page that was just frozen (in __slab_free) into a partial page 2242 * slot if available. 2243 * 2244 * If we did not find a slot then simply move all the partials to the 2245 * per node partial list. 2246 */ 2247 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2248 { 2249 #ifdef CONFIG_SLUB_CPU_PARTIAL 2250 struct page *oldpage; 2251 int pages; 2252 int pobjects; 2253 2254 preempt_disable(); 2255 do { 2256 pages = 0; 2257 pobjects = 0; 2258 oldpage = this_cpu_read(s->cpu_slab->partial); 2259 2260 if (oldpage) { 2261 pobjects = oldpage->pobjects; 2262 pages = oldpage->pages; 2263 if (drain && pobjects > s->cpu_partial) { 2264 unsigned long flags; 2265 /* 2266 * partial array is full. Move the existing 2267 * set to the per node partial list. 2268 */ 2269 local_irq_save(flags); 2270 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2271 local_irq_restore(flags); 2272 oldpage = NULL; 2273 pobjects = 0; 2274 pages = 0; 2275 stat(s, CPU_PARTIAL_DRAIN); 2276 } 2277 } 2278 2279 pages++; 2280 pobjects += page->objects - page->inuse; 2281 2282 page->pages = pages; 2283 page->pobjects = pobjects; 2284 page->next = oldpage; 2285 2286 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2287 != oldpage); 2288 if (unlikely(!s->cpu_partial)) { 2289 unsigned long flags; 2290 2291 local_irq_save(flags); 2292 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2293 local_irq_restore(flags); 2294 } 2295 preempt_enable(); 2296 #endif 2297 } 2298 2299 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2300 { 2301 stat(s, CPUSLAB_FLUSH); 2302 deactivate_slab(s, c->page, c->freelist, c); 2303 2304 c->tid = next_tid(c->tid); 2305 } 2306 2307 /* 2308 * Flush cpu slab. 2309 * 2310 * Called from IPI handler with interrupts disabled. 2311 */ 2312 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2313 { 2314 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2315 2316 if (likely(c)) { 2317 if (c->page) 2318 flush_slab(s, c); 2319 2320 unfreeze_partials(s, c); 2321 } 2322 } 2323 2324 static void flush_cpu_slab(void *d) 2325 { 2326 struct kmem_cache *s = d; 2327 2328 __flush_cpu_slab(s, smp_processor_id()); 2329 } 2330 2331 static bool has_cpu_slab(int cpu, void *info) 2332 { 2333 struct kmem_cache *s = info; 2334 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2335 2336 return c->page || slub_percpu_partial(c); 2337 } 2338 2339 static void flush_all(struct kmem_cache *s) 2340 { 2341 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2342 } 2343 2344 /* 2345 * Use the cpu notifier to insure that the cpu slabs are flushed when 2346 * necessary. 2347 */ 2348 static int slub_cpu_dead(unsigned int cpu) 2349 { 2350 struct kmem_cache *s; 2351 unsigned long flags; 2352 2353 mutex_lock(&slab_mutex); 2354 list_for_each_entry(s, &slab_caches, list) { 2355 local_irq_save(flags); 2356 __flush_cpu_slab(s, cpu); 2357 local_irq_restore(flags); 2358 } 2359 mutex_unlock(&slab_mutex); 2360 return 0; 2361 } 2362 2363 /* 2364 * Check if the objects in a per cpu structure fit numa 2365 * locality expectations. 2366 */ 2367 static inline int node_match(struct page *page, int node) 2368 { 2369 #ifdef CONFIG_NUMA 2370 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2371 return 0; 2372 #endif 2373 return 1; 2374 } 2375 2376 #ifdef CONFIG_SLUB_DEBUG 2377 static int count_free(struct page *page) 2378 { 2379 return page->objects - page->inuse; 2380 } 2381 2382 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2383 { 2384 return atomic_long_read(&n->total_objects); 2385 } 2386 #endif /* CONFIG_SLUB_DEBUG */ 2387 2388 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2389 static unsigned long count_partial(struct kmem_cache_node *n, 2390 int (*get_count)(struct page *)) 2391 { 2392 unsigned long flags; 2393 unsigned long x = 0; 2394 struct page *page; 2395 2396 spin_lock_irqsave(&n->list_lock, flags); 2397 list_for_each_entry(page, &n->partial, lru) 2398 x += get_count(page); 2399 spin_unlock_irqrestore(&n->list_lock, flags); 2400 return x; 2401 } 2402 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2403 2404 static noinline void 2405 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2406 { 2407 #ifdef CONFIG_SLUB_DEBUG 2408 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2409 DEFAULT_RATELIMIT_BURST); 2410 int node; 2411 struct kmem_cache_node *n; 2412 2413 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2414 return; 2415 2416 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2417 nid, gfpflags, &gfpflags); 2418 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2419 s->name, s->object_size, s->size, oo_order(s->oo), 2420 oo_order(s->min)); 2421 2422 if (oo_order(s->min) > get_order(s->object_size)) 2423 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2424 s->name); 2425 2426 for_each_kmem_cache_node(s, node, n) { 2427 unsigned long nr_slabs; 2428 unsigned long nr_objs; 2429 unsigned long nr_free; 2430 2431 nr_free = count_partial(n, count_free); 2432 nr_slabs = node_nr_slabs(n); 2433 nr_objs = node_nr_objs(n); 2434 2435 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2436 node, nr_slabs, nr_objs, nr_free); 2437 } 2438 #endif 2439 } 2440 2441 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2442 int node, struct kmem_cache_cpu **pc) 2443 { 2444 void *freelist; 2445 struct kmem_cache_cpu *c = *pc; 2446 struct page *page; 2447 2448 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2449 2450 freelist = get_partial(s, flags, node, c); 2451 2452 if (freelist) 2453 return freelist; 2454 2455 page = new_slab(s, flags, node); 2456 if (page) { 2457 c = raw_cpu_ptr(s->cpu_slab); 2458 if (c->page) 2459 flush_slab(s, c); 2460 2461 /* 2462 * No other reference to the page yet so we can 2463 * muck around with it freely without cmpxchg 2464 */ 2465 freelist = page->freelist; 2466 page->freelist = NULL; 2467 2468 stat(s, ALLOC_SLAB); 2469 c->page = page; 2470 *pc = c; 2471 } else 2472 freelist = NULL; 2473 2474 return freelist; 2475 } 2476 2477 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2478 { 2479 if (unlikely(PageSlabPfmemalloc(page))) 2480 return gfp_pfmemalloc_allowed(gfpflags); 2481 2482 return true; 2483 } 2484 2485 /* 2486 * Check the page->freelist of a page and either transfer the freelist to the 2487 * per cpu freelist or deactivate the page. 2488 * 2489 * The page is still frozen if the return value is not NULL. 2490 * 2491 * If this function returns NULL then the page has been unfrozen. 2492 * 2493 * This function must be called with interrupt disabled. 2494 */ 2495 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2496 { 2497 struct page new; 2498 unsigned long counters; 2499 void *freelist; 2500 2501 do { 2502 freelist = page->freelist; 2503 counters = page->counters; 2504 2505 new.counters = counters; 2506 VM_BUG_ON(!new.frozen); 2507 2508 new.inuse = page->objects; 2509 new.frozen = freelist != NULL; 2510 2511 } while (!__cmpxchg_double_slab(s, page, 2512 freelist, counters, 2513 NULL, new.counters, 2514 "get_freelist")); 2515 2516 return freelist; 2517 } 2518 2519 /* 2520 * Slow path. The lockless freelist is empty or we need to perform 2521 * debugging duties. 2522 * 2523 * Processing is still very fast if new objects have been freed to the 2524 * regular freelist. In that case we simply take over the regular freelist 2525 * as the lockless freelist and zap the regular freelist. 2526 * 2527 * If that is not working then we fall back to the partial lists. We take the 2528 * first element of the freelist as the object to allocate now and move the 2529 * rest of the freelist to the lockless freelist. 2530 * 2531 * And if we were unable to get a new slab from the partial slab lists then 2532 * we need to allocate a new slab. This is the slowest path since it involves 2533 * a call to the page allocator and the setup of a new slab. 2534 * 2535 * Version of __slab_alloc to use when we know that interrupts are 2536 * already disabled (which is the case for bulk allocation). 2537 */ 2538 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2539 unsigned long addr, struct kmem_cache_cpu *c) 2540 { 2541 void *freelist; 2542 struct page *page; 2543 2544 page = c->page; 2545 if (!page) 2546 goto new_slab; 2547 redo: 2548 2549 if (unlikely(!node_match(page, node))) { 2550 int searchnode = node; 2551 2552 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2553 searchnode = node_to_mem_node(node); 2554 2555 if (unlikely(!node_match(page, searchnode))) { 2556 stat(s, ALLOC_NODE_MISMATCH); 2557 deactivate_slab(s, page, c->freelist, c); 2558 goto new_slab; 2559 } 2560 } 2561 2562 /* 2563 * By rights, we should be searching for a slab page that was 2564 * PFMEMALLOC but right now, we are losing the pfmemalloc 2565 * information when the page leaves the per-cpu allocator 2566 */ 2567 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2568 deactivate_slab(s, page, c->freelist, c); 2569 goto new_slab; 2570 } 2571 2572 /* must check again c->freelist in case of cpu migration or IRQ */ 2573 freelist = c->freelist; 2574 if (freelist) 2575 goto load_freelist; 2576 2577 freelist = get_freelist(s, page); 2578 2579 if (!freelist) { 2580 c->page = NULL; 2581 stat(s, DEACTIVATE_BYPASS); 2582 goto new_slab; 2583 } 2584 2585 stat(s, ALLOC_REFILL); 2586 2587 load_freelist: 2588 /* 2589 * freelist is pointing to the list of objects to be used. 2590 * page is pointing to the page from which the objects are obtained. 2591 * That page must be frozen for per cpu allocations to work. 2592 */ 2593 VM_BUG_ON(!c->page->frozen); 2594 c->freelist = get_freepointer(s, freelist); 2595 c->tid = next_tid(c->tid); 2596 return freelist; 2597 2598 new_slab: 2599 2600 if (slub_percpu_partial(c)) { 2601 page = c->page = slub_percpu_partial(c); 2602 slub_set_percpu_partial(c, page); 2603 stat(s, CPU_PARTIAL_ALLOC); 2604 goto redo; 2605 } 2606 2607 freelist = new_slab_objects(s, gfpflags, node, &c); 2608 2609 if (unlikely(!freelist)) { 2610 slab_out_of_memory(s, gfpflags, node); 2611 return NULL; 2612 } 2613 2614 page = c->page; 2615 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2616 goto load_freelist; 2617 2618 /* Only entered in the debug case */ 2619 if (kmem_cache_debug(s) && 2620 !alloc_debug_processing(s, page, freelist, addr)) 2621 goto new_slab; /* Slab failed checks. Next slab needed */ 2622 2623 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2624 return freelist; 2625 } 2626 2627 /* 2628 * Another one that disabled interrupt and compensates for possible 2629 * cpu changes by refetching the per cpu area pointer. 2630 */ 2631 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2632 unsigned long addr, struct kmem_cache_cpu *c) 2633 { 2634 void *p; 2635 unsigned long flags; 2636 2637 local_irq_save(flags); 2638 #ifdef CONFIG_PREEMPT 2639 /* 2640 * We may have been preempted and rescheduled on a different 2641 * cpu before disabling interrupts. Need to reload cpu area 2642 * pointer. 2643 */ 2644 c = this_cpu_ptr(s->cpu_slab); 2645 #endif 2646 2647 p = ___slab_alloc(s, gfpflags, node, addr, c); 2648 local_irq_restore(flags); 2649 return p; 2650 } 2651 2652 /* 2653 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2654 * have the fastpath folded into their functions. So no function call 2655 * overhead for requests that can be satisfied on the fastpath. 2656 * 2657 * The fastpath works by first checking if the lockless freelist can be used. 2658 * If not then __slab_alloc is called for slow processing. 2659 * 2660 * Otherwise we can simply pick the next object from the lockless free list. 2661 */ 2662 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2663 gfp_t gfpflags, int node, unsigned long addr) 2664 { 2665 void *object; 2666 struct kmem_cache_cpu *c; 2667 struct page *page; 2668 unsigned long tid; 2669 2670 s = slab_pre_alloc_hook(s, gfpflags); 2671 if (!s) 2672 return NULL; 2673 redo: 2674 /* 2675 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2676 * enabled. We may switch back and forth between cpus while 2677 * reading from one cpu area. That does not matter as long 2678 * as we end up on the original cpu again when doing the cmpxchg. 2679 * 2680 * We should guarantee that tid and kmem_cache are retrieved on 2681 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2682 * to check if it is matched or not. 2683 */ 2684 do { 2685 tid = this_cpu_read(s->cpu_slab->tid); 2686 c = raw_cpu_ptr(s->cpu_slab); 2687 } while (IS_ENABLED(CONFIG_PREEMPT) && 2688 unlikely(tid != READ_ONCE(c->tid))); 2689 2690 /* 2691 * Irqless object alloc/free algorithm used here depends on sequence 2692 * of fetching cpu_slab's data. tid should be fetched before anything 2693 * on c to guarantee that object and page associated with previous tid 2694 * won't be used with current tid. If we fetch tid first, object and 2695 * page could be one associated with next tid and our alloc/free 2696 * request will be failed. In this case, we will retry. So, no problem. 2697 */ 2698 barrier(); 2699 2700 /* 2701 * The transaction ids are globally unique per cpu and per operation on 2702 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2703 * occurs on the right processor and that there was no operation on the 2704 * linked list in between. 2705 */ 2706 2707 object = c->freelist; 2708 page = c->page; 2709 if (unlikely(!object || !node_match(page, node))) { 2710 object = __slab_alloc(s, gfpflags, node, addr, c); 2711 stat(s, ALLOC_SLOWPATH); 2712 } else { 2713 void *next_object = get_freepointer_safe(s, object); 2714 2715 /* 2716 * The cmpxchg will only match if there was no additional 2717 * operation and if we are on the right processor. 2718 * 2719 * The cmpxchg does the following atomically (without lock 2720 * semantics!) 2721 * 1. Relocate first pointer to the current per cpu area. 2722 * 2. Verify that tid and freelist have not been changed 2723 * 3. If they were not changed replace tid and freelist 2724 * 2725 * Since this is without lock semantics the protection is only 2726 * against code executing on this cpu *not* from access by 2727 * other cpus. 2728 */ 2729 if (unlikely(!this_cpu_cmpxchg_double( 2730 s->cpu_slab->freelist, s->cpu_slab->tid, 2731 object, tid, 2732 next_object, next_tid(tid)))) { 2733 2734 note_cmpxchg_failure("slab_alloc", s, tid); 2735 goto redo; 2736 } 2737 prefetch_freepointer(s, next_object); 2738 stat(s, ALLOC_FASTPATH); 2739 } 2740 2741 if (unlikely(gfpflags & __GFP_ZERO) && object) 2742 memset(object, 0, s->object_size); 2743 2744 slab_post_alloc_hook(s, gfpflags, 1, &object); 2745 2746 return object; 2747 } 2748 2749 static __always_inline void *slab_alloc(struct kmem_cache *s, 2750 gfp_t gfpflags, unsigned long addr) 2751 { 2752 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2753 } 2754 2755 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2756 { 2757 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2758 2759 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2760 s->size, gfpflags); 2761 2762 return ret; 2763 } 2764 EXPORT_SYMBOL(kmem_cache_alloc); 2765 2766 #ifdef CONFIG_TRACING 2767 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2768 { 2769 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2770 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2771 kasan_kmalloc(s, ret, size, gfpflags); 2772 return ret; 2773 } 2774 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2775 #endif 2776 2777 #ifdef CONFIG_NUMA 2778 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2779 { 2780 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2781 2782 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2783 s->object_size, s->size, gfpflags, node); 2784 2785 return ret; 2786 } 2787 EXPORT_SYMBOL(kmem_cache_alloc_node); 2788 2789 #ifdef CONFIG_TRACING 2790 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2791 gfp_t gfpflags, 2792 int node, size_t size) 2793 { 2794 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2795 2796 trace_kmalloc_node(_RET_IP_, ret, 2797 size, s->size, gfpflags, node); 2798 2799 kasan_kmalloc(s, ret, size, gfpflags); 2800 return ret; 2801 } 2802 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2803 #endif 2804 #endif 2805 2806 /* 2807 * Slow path handling. This may still be called frequently since objects 2808 * have a longer lifetime than the cpu slabs in most processing loads. 2809 * 2810 * So we still attempt to reduce cache line usage. Just take the slab 2811 * lock and free the item. If there is no additional partial page 2812 * handling required then we can return immediately. 2813 */ 2814 static void __slab_free(struct kmem_cache *s, struct page *page, 2815 void *head, void *tail, int cnt, 2816 unsigned long addr) 2817 2818 { 2819 void *prior; 2820 int was_frozen; 2821 struct page new; 2822 unsigned long counters; 2823 struct kmem_cache_node *n = NULL; 2824 unsigned long uninitialized_var(flags); 2825 2826 stat(s, FREE_SLOWPATH); 2827 2828 if (kmem_cache_debug(s) && 2829 !free_debug_processing(s, page, head, tail, cnt, addr)) 2830 return; 2831 2832 do { 2833 if (unlikely(n)) { 2834 spin_unlock_irqrestore(&n->list_lock, flags); 2835 n = NULL; 2836 } 2837 prior = page->freelist; 2838 counters = page->counters; 2839 set_freepointer(s, tail, prior); 2840 new.counters = counters; 2841 was_frozen = new.frozen; 2842 new.inuse -= cnt; 2843 if ((!new.inuse || !prior) && !was_frozen) { 2844 2845 if (kmem_cache_has_cpu_partial(s) && !prior) { 2846 2847 /* 2848 * Slab was on no list before and will be 2849 * partially empty 2850 * We can defer the list move and instead 2851 * freeze it. 2852 */ 2853 new.frozen = 1; 2854 2855 } else { /* Needs to be taken off a list */ 2856 2857 n = get_node(s, page_to_nid(page)); 2858 /* 2859 * Speculatively acquire the list_lock. 2860 * If the cmpxchg does not succeed then we may 2861 * drop the list_lock without any processing. 2862 * 2863 * Otherwise the list_lock will synchronize with 2864 * other processors updating the list of slabs. 2865 */ 2866 spin_lock_irqsave(&n->list_lock, flags); 2867 2868 } 2869 } 2870 2871 } while (!cmpxchg_double_slab(s, page, 2872 prior, counters, 2873 head, new.counters, 2874 "__slab_free")); 2875 2876 if (likely(!n)) { 2877 2878 /* 2879 * If we just froze the page then put it onto the 2880 * per cpu partial list. 2881 */ 2882 if (new.frozen && !was_frozen) { 2883 put_cpu_partial(s, page, 1); 2884 stat(s, CPU_PARTIAL_FREE); 2885 } 2886 /* 2887 * The list lock was not taken therefore no list 2888 * activity can be necessary. 2889 */ 2890 if (was_frozen) 2891 stat(s, FREE_FROZEN); 2892 return; 2893 } 2894 2895 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2896 goto slab_empty; 2897 2898 /* 2899 * Objects left in the slab. If it was not on the partial list before 2900 * then add it. 2901 */ 2902 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2903 if (kmem_cache_debug(s)) 2904 remove_full(s, n, page); 2905 add_partial(n, page, DEACTIVATE_TO_TAIL); 2906 stat(s, FREE_ADD_PARTIAL); 2907 } 2908 spin_unlock_irqrestore(&n->list_lock, flags); 2909 return; 2910 2911 slab_empty: 2912 if (prior) { 2913 /* 2914 * Slab on the partial list. 2915 */ 2916 remove_partial(n, page); 2917 stat(s, FREE_REMOVE_PARTIAL); 2918 } else { 2919 /* Slab must be on the full list */ 2920 remove_full(s, n, page); 2921 } 2922 2923 spin_unlock_irqrestore(&n->list_lock, flags); 2924 stat(s, FREE_SLAB); 2925 discard_slab(s, page); 2926 } 2927 2928 /* 2929 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2930 * can perform fastpath freeing without additional function calls. 2931 * 2932 * The fastpath is only possible if we are freeing to the current cpu slab 2933 * of this processor. This typically the case if we have just allocated 2934 * the item before. 2935 * 2936 * If fastpath is not possible then fall back to __slab_free where we deal 2937 * with all sorts of special processing. 2938 * 2939 * Bulk free of a freelist with several objects (all pointing to the 2940 * same page) possible by specifying head and tail ptr, plus objects 2941 * count (cnt). Bulk free indicated by tail pointer being set. 2942 */ 2943 static __always_inline void do_slab_free(struct kmem_cache *s, 2944 struct page *page, void *head, void *tail, 2945 int cnt, unsigned long addr) 2946 { 2947 void *tail_obj = tail ? : head; 2948 struct kmem_cache_cpu *c; 2949 unsigned long tid; 2950 redo: 2951 /* 2952 * Determine the currently cpus per cpu slab. 2953 * The cpu may change afterward. However that does not matter since 2954 * data is retrieved via this pointer. If we are on the same cpu 2955 * during the cmpxchg then the free will succeed. 2956 */ 2957 do { 2958 tid = this_cpu_read(s->cpu_slab->tid); 2959 c = raw_cpu_ptr(s->cpu_slab); 2960 } while (IS_ENABLED(CONFIG_PREEMPT) && 2961 unlikely(tid != READ_ONCE(c->tid))); 2962 2963 /* Same with comment on barrier() in slab_alloc_node() */ 2964 barrier(); 2965 2966 if (likely(page == c->page)) { 2967 set_freepointer(s, tail_obj, c->freelist); 2968 2969 if (unlikely(!this_cpu_cmpxchg_double( 2970 s->cpu_slab->freelist, s->cpu_slab->tid, 2971 c->freelist, tid, 2972 head, next_tid(tid)))) { 2973 2974 note_cmpxchg_failure("slab_free", s, tid); 2975 goto redo; 2976 } 2977 stat(s, FREE_FASTPATH); 2978 } else 2979 __slab_free(s, page, head, tail_obj, cnt, addr); 2980 2981 } 2982 2983 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2984 void *head, void *tail, int cnt, 2985 unsigned long addr) 2986 { 2987 /* 2988 * With KASAN enabled slab_free_freelist_hook modifies the freelist 2989 * to remove objects, whose reuse must be delayed. 2990 */ 2991 if (slab_free_freelist_hook(s, &head, &tail)) 2992 do_slab_free(s, page, head, tail, cnt, addr); 2993 } 2994 2995 #ifdef CONFIG_KASAN 2996 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2997 { 2998 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2999 } 3000 #endif 3001 3002 void kmem_cache_free(struct kmem_cache *s, void *x) 3003 { 3004 s = cache_from_obj(s, x); 3005 if (!s) 3006 return; 3007 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3008 trace_kmem_cache_free(_RET_IP_, x); 3009 } 3010 EXPORT_SYMBOL(kmem_cache_free); 3011 3012 struct detached_freelist { 3013 struct page *page; 3014 void *tail; 3015 void *freelist; 3016 int cnt; 3017 struct kmem_cache *s; 3018 }; 3019 3020 /* 3021 * This function progressively scans the array with free objects (with 3022 * a limited look ahead) and extract objects belonging to the same 3023 * page. It builds a detached freelist directly within the given 3024 * page/objects. This can happen without any need for 3025 * synchronization, because the objects are owned by running process. 3026 * The freelist is build up as a single linked list in the objects. 3027 * The idea is, that this detached freelist can then be bulk 3028 * transferred to the real freelist(s), but only requiring a single 3029 * synchronization primitive. Look ahead in the array is limited due 3030 * to performance reasons. 3031 */ 3032 static inline 3033 int build_detached_freelist(struct kmem_cache *s, size_t size, 3034 void **p, struct detached_freelist *df) 3035 { 3036 size_t first_skipped_index = 0; 3037 int lookahead = 3; 3038 void *object; 3039 struct page *page; 3040 3041 /* Always re-init detached_freelist */ 3042 df->page = NULL; 3043 3044 do { 3045 object = p[--size]; 3046 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3047 } while (!object && size); 3048 3049 if (!object) 3050 return 0; 3051 3052 page = virt_to_head_page(object); 3053 if (!s) { 3054 /* Handle kalloc'ed objects */ 3055 if (unlikely(!PageSlab(page))) { 3056 BUG_ON(!PageCompound(page)); 3057 kfree_hook(object); 3058 __free_pages(page, compound_order(page)); 3059 p[size] = NULL; /* mark object processed */ 3060 return size; 3061 } 3062 /* Derive kmem_cache from object */ 3063 df->s = page->slab_cache; 3064 } else { 3065 df->s = cache_from_obj(s, object); /* Support for memcg */ 3066 } 3067 3068 /* Start new detached freelist */ 3069 df->page = page; 3070 set_freepointer(df->s, object, NULL); 3071 df->tail = object; 3072 df->freelist = object; 3073 p[size] = NULL; /* mark object processed */ 3074 df->cnt = 1; 3075 3076 while (size) { 3077 object = p[--size]; 3078 if (!object) 3079 continue; /* Skip processed objects */ 3080 3081 /* df->page is always set at this point */ 3082 if (df->page == virt_to_head_page(object)) { 3083 /* Opportunity build freelist */ 3084 set_freepointer(df->s, object, df->freelist); 3085 df->freelist = object; 3086 df->cnt++; 3087 p[size] = NULL; /* mark object processed */ 3088 3089 continue; 3090 } 3091 3092 /* Limit look ahead search */ 3093 if (!--lookahead) 3094 break; 3095 3096 if (!first_skipped_index) 3097 first_skipped_index = size + 1; 3098 } 3099 3100 return first_skipped_index; 3101 } 3102 3103 /* Note that interrupts must be enabled when calling this function. */ 3104 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3105 { 3106 if (WARN_ON(!size)) 3107 return; 3108 3109 do { 3110 struct detached_freelist df; 3111 3112 size = build_detached_freelist(s, size, p, &df); 3113 if (!df.page) 3114 continue; 3115 3116 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3117 } while (likely(size)); 3118 } 3119 EXPORT_SYMBOL(kmem_cache_free_bulk); 3120 3121 /* Note that interrupts must be enabled when calling this function. */ 3122 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3123 void **p) 3124 { 3125 struct kmem_cache_cpu *c; 3126 int i; 3127 3128 /* memcg and kmem_cache debug support */ 3129 s = slab_pre_alloc_hook(s, flags); 3130 if (unlikely(!s)) 3131 return false; 3132 /* 3133 * Drain objects in the per cpu slab, while disabling local 3134 * IRQs, which protects against PREEMPT and interrupts 3135 * handlers invoking normal fastpath. 3136 */ 3137 local_irq_disable(); 3138 c = this_cpu_ptr(s->cpu_slab); 3139 3140 for (i = 0; i < size; i++) { 3141 void *object = c->freelist; 3142 3143 if (unlikely(!object)) { 3144 /* 3145 * Invoking slow path likely have side-effect 3146 * of re-populating per CPU c->freelist 3147 */ 3148 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3149 _RET_IP_, c); 3150 if (unlikely(!p[i])) 3151 goto error; 3152 3153 c = this_cpu_ptr(s->cpu_slab); 3154 continue; /* goto for-loop */ 3155 } 3156 c->freelist = get_freepointer(s, object); 3157 p[i] = object; 3158 } 3159 c->tid = next_tid(c->tid); 3160 local_irq_enable(); 3161 3162 /* Clear memory outside IRQ disabled fastpath loop */ 3163 if (unlikely(flags & __GFP_ZERO)) { 3164 int j; 3165 3166 for (j = 0; j < i; j++) 3167 memset(p[j], 0, s->object_size); 3168 } 3169 3170 /* memcg and kmem_cache debug support */ 3171 slab_post_alloc_hook(s, flags, size, p); 3172 return i; 3173 error: 3174 local_irq_enable(); 3175 slab_post_alloc_hook(s, flags, i, p); 3176 __kmem_cache_free_bulk(s, i, p); 3177 return 0; 3178 } 3179 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3180 3181 3182 /* 3183 * Object placement in a slab is made very easy because we always start at 3184 * offset 0. If we tune the size of the object to the alignment then we can 3185 * get the required alignment by putting one properly sized object after 3186 * another. 3187 * 3188 * Notice that the allocation order determines the sizes of the per cpu 3189 * caches. Each processor has always one slab available for allocations. 3190 * Increasing the allocation order reduces the number of times that slabs 3191 * must be moved on and off the partial lists and is therefore a factor in 3192 * locking overhead. 3193 */ 3194 3195 /* 3196 * Mininum / Maximum order of slab pages. This influences locking overhead 3197 * and slab fragmentation. A higher order reduces the number of partial slabs 3198 * and increases the number of allocations possible without having to 3199 * take the list_lock. 3200 */ 3201 static unsigned int slub_min_order; 3202 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3203 static unsigned int slub_min_objects; 3204 3205 /* 3206 * Calculate the order of allocation given an slab object size. 3207 * 3208 * The order of allocation has significant impact on performance and other 3209 * system components. Generally order 0 allocations should be preferred since 3210 * order 0 does not cause fragmentation in the page allocator. Larger objects 3211 * be problematic to put into order 0 slabs because there may be too much 3212 * unused space left. We go to a higher order if more than 1/16th of the slab 3213 * would be wasted. 3214 * 3215 * In order to reach satisfactory performance we must ensure that a minimum 3216 * number of objects is in one slab. Otherwise we may generate too much 3217 * activity on the partial lists which requires taking the list_lock. This is 3218 * less a concern for large slabs though which are rarely used. 3219 * 3220 * slub_max_order specifies the order where we begin to stop considering the 3221 * number of objects in a slab as critical. If we reach slub_max_order then 3222 * we try to keep the page order as low as possible. So we accept more waste 3223 * of space in favor of a small page order. 3224 * 3225 * Higher order allocations also allow the placement of more objects in a 3226 * slab and thereby reduce object handling overhead. If the user has 3227 * requested a higher mininum order then we start with that one instead of 3228 * the smallest order which will fit the object. 3229 */ 3230 static inline unsigned int slab_order(unsigned int size, 3231 unsigned int min_objects, unsigned int max_order, 3232 unsigned int fract_leftover) 3233 { 3234 unsigned int min_order = slub_min_order; 3235 unsigned int order; 3236 3237 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3238 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3239 3240 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3241 order <= max_order; order++) { 3242 3243 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3244 unsigned int rem; 3245 3246 rem = slab_size % size; 3247 3248 if (rem <= slab_size / fract_leftover) 3249 break; 3250 } 3251 3252 return order; 3253 } 3254 3255 static inline int calculate_order(unsigned int size) 3256 { 3257 unsigned int order; 3258 unsigned int min_objects; 3259 unsigned int max_objects; 3260 3261 /* 3262 * Attempt to find best configuration for a slab. This 3263 * works by first attempting to generate a layout with 3264 * the best configuration and backing off gradually. 3265 * 3266 * First we increase the acceptable waste in a slab. Then 3267 * we reduce the minimum objects required in a slab. 3268 */ 3269 min_objects = slub_min_objects; 3270 if (!min_objects) 3271 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3272 max_objects = order_objects(slub_max_order, size); 3273 min_objects = min(min_objects, max_objects); 3274 3275 while (min_objects > 1) { 3276 unsigned int fraction; 3277 3278 fraction = 16; 3279 while (fraction >= 4) { 3280 order = slab_order(size, min_objects, 3281 slub_max_order, fraction); 3282 if (order <= slub_max_order) 3283 return order; 3284 fraction /= 2; 3285 } 3286 min_objects--; 3287 } 3288 3289 /* 3290 * We were unable to place multiple objects in a slab. Now 3291 * lets see if we can place a single object there. 3292 */ 3293 order = slab_order(size, 1, slub_max_order, 1); 3294 if (order <= slub_max_order) 3295 return order; 3296 3297 /* 3298 * Doh this slab cannot be placed using slub_max_order. 3299 */ 3300 order = slab_order(size, 1, MAX_ORDER, 1); 3301 if (order < MAX_ORDER) 3302 return order; 3303 return -ENOSYS; 3304 } 3305 3306 static void 3307 init_kmem_cache_node(struct kmem_cache_node *n) 3308 { 3309 n->nr_partial = 0; 3310 spin_lock_init(&n->list_lock); 3311 INIT_LIST_HEAD(&n->partial); 3312 #ifdef CONFIG_SLUB_DEBUG 3313 atomic_long_set(&n->nr_slabs, 0); 3314 atomic_long_set(&n->total_objects, 0); 3315 INIT_LIST_HEAD(&n->full); 3316 #endif 3317 } 3318 3319 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3320 { 3321 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3322 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3323 3324 /* 3325 * Must align to double word boundary for the double cmpxchg 3326 * instructions to work; see __pcpu_double_call_return_bool(). 3327 */ 3328 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3329 2 * sizeof(void *)); 3330 3331 if (!s->cpu_slab) 3332 return 0; 3333 3334 init_kmem_cache_cpus(s); 3335 3336 return 1; 3337 } 3338 3339 static struct kmem_cache *kmem_cache_node; 3340 3341 /* 3342 * No kmalloc_node yet so do it by hand. We know that this is the first 3343 * slab on the node for this slabcache. There are no concurrent accesses 3344 * possible. 3345 * 3346 * Note that this function only works on the kmem_cache_node 3347 * when allocating for the kmem_cache_node. This is used for bootstrapping 3348 * memory on a fresh node that has no slab structures yet. 3349 */ 3350 static void early_kmem_cache_node_alloc(int node) 3351 { 3352 struct page *page; 3353 struct kmem_cache_node *n; 3354 3355 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3356 3357 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3358 3359 BUG_ON(!page); 3360 if (page_to_nid(page) != node) { 3361 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3362 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3363 } 3364 3365 n = page->freelist; 3366 BUG_ON(!n); 3367 page->freelist = get_freepointer(kmem_cache_node, n); 3368 page->inuse = 1; 3369 page->frozen = 0; 3370 kmem_cache_node->node[node] = n; 3371 #ifdef CONFIG_SLUB_DEBUG 3372 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3373 init_tracking(kmem_cache_node, n); 3374 #endif 3375 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3376 GFP_KERNEL); 3377 init_kmem_cache_node(n); 3378 inc_slabs_node(kmem_cache_node, node, page->objects); 3379 3380 /* 3381 * No locks need to be taken here as it has just been 3382 * initialized and there is no concurrent access. 3383 */ 3384 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3385 } 3386 3387 static void free_kmem_cache_nodes(struct kmem_cache *s) 3388 { 3389 int node; 3390 struct kmem_cache_node *n; 3391 3392 for_each_kmem_cache_node(s, node, n) { 3393 s->node[node] = NULL; 3394 kmem_cache_free(kmem_cache_node, n); 3395 } 3396 } 3397 3398 void __kmem_cache_release(struct kmem_cache *s) 3399 { 3400 cache_random_seq_destroy(s); 3401 free_percpu(s->cpu_slab); 3402 free_kmem_cache_nodes(s); 3403 } 3404 3405 static int init_kmem_cache_nodes(struct kmem_cache *s) 3406 { 3407 int node; 3408 3409 for_each_node_state(node, N_NORMAL_MEMORY) { 3410 struct kmem_cache_node *n; 3411 3412 if (slab_state == DOWN) { 3413 early_kmem_cache_node_alloc(node); 3414 continue; 3415 } 3416 n = kmem_cache_alloc_node(kmem_cache_node, 3417 GFP_KERNEL, node); 3418 3419 if (!n) { 3420 free_kmem_cache_nodes(s); 3421 return 0; 3422 } 3423 3424 init_kmem_cache_node(n); 3425 s->node[node] = n; 3426 } 3427 return 1; 3428 } 3429 3430 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3431 { 3432 if (min < MIN_PARTIAL) 3433 min = MIN_PARTIAL; 3434 else if (min > MAX_PARTIAL) 3435 min = MAX_PARTIAL; 3436 s->min_partial = min; 3437 } 3438 3439 static void set_cpu_partial(struct kmem_cache *s) 3440 { 3441 #ifdef CONFIG_SLUB_CPU_PARTIAL 3442 /* 3443 * cpu_partial determined the maximum number of objects kept in the 3444 * per cpu partial lists of a processor. 3445 * 3446 * Per cpu partial lists mainly contain slabs that just have one 3447 * object freed. If they are used for allocation then they can be 3448 * filled up again with minimal effort. The slab will never hit the 3449 * per node partial lists and therefore no locking will be required. 3450 * 3451 * This setting also determines 3452 * 3453 * A) The number of objects from per cpu partial slabs dumped to the 3454 * per node list when we reach the limit. 3455 * B) The number of objects in cpu partial slabs to extract from the 3456 * per node list when we run out of per cpu objects. We only fetch 3457 * 50% to keep some capacity around for frees. 3458 */ 3459 if (!kmem_cache_has_cpu_partial(s)) 3460 s->cpu_partial = 0; 3461 else if (s->size >= PAGE_SIZE) 3462 s->cpu_partial = 2; 3463 else if (s->size >= 1024) 3464 s->cpu_partial = 6; 3465 else if (s->size >= 256) 3466 s->cpu_partial = 13; 3467 else 3468 s->cpu_partial = 30; 3469 #endif 3470 } 3471 3472 /* 3473 * calculate_sizes() determines the order and the distribution of data within 3474 * a slab object. 3475 */ 3476 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3477 { 3478 slab_flags_t flags = s->flags; 3479 unsigned int size = s->object_size; 3480 unsigned int order; 3481 3482 /* 3483 * Round up object size to the next word boundary. We can only 3484 * place the free pointer at word boundaries and this determines 3485 * the possible location of the free pointer. 3486 */ 3487 size = ALIGN(size, sizeof(void *)); 3488 3489 #ifdef CONFIG_SLUB_DEBUG 3490 /* 3491 * Determine if we can poison the object itself. If the user of 3492 * the slab may touch the object after free or before allocation 3493 * then we should never poison the object itself. 3494 */ 3495 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3496 !s->ctor) 3497 s->flags |= __OBJECT_POISON; 3498 else 3499 s->flags &= ~__OBJECT_POISON; 3500 3501 3502 /* 3503 * If we are Redzoning then check if there is some space between the 3504 * end of the object and the free pointer. If not then add an 3505 * additional word to have some bytes to store Redzone information. 3506 */ 3507 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3508 size += sizeof(void *); 3509 #endif 3510 3511 /* 3512 * With that we have determined the number of bytes in actual use 3513 * by the object. This is the potential offset to the free pointer. 3514 */ 3515 s->inuse = size; 3516 3517 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3518 s->ctor)) { 3519 /* 3520 * Relocate free pointer after the object if it is not 3521 * permitted to overwrite the first word of the object on 3522 * kmem_cache_free. 3523 * 3524 * This is the case if we do RCU, have a constructor or 3525 * destructor or are poisoning the objects. 3526 */ 3527 s->offset = size; 3528 size += sizeof(void *); 3529 } 3530 3531 #ifdef CONFIG_SLUB_DEBUG 3532 if (flags & SLAB_STORE_USER) 3533 /* 3534 * Need to store information about allocs and frees after 3535 * the object. 3536 */ 3537 size += 2 * sizeof(struct track); 3538 #endif 3539 3540 kasan_cache_create(s, &size, &s->flags); 3541 #ifdef CONFIG_SLUB_DEBUG 3542 if (flags & SLAB_RED_ZONE) { 3543 /* 3544 * Add some empty padding so that we can catch 3545 * overwrites from earlier objects rather than let 3546 * tracking information or the free pointer be 3547 * corrupted if a user writes before the start 3548 * of the object. 3549 */ 3550 size += sizeof(void *); 3551 3552 s->red_left_pad = sizeof(void *); 3553 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3554 size += s->red_left_pad; 3555 } 3556 #endif 3557 3558 /* 3559 * SLUB stores one object immediately after another beginning from 3560 * offset 0. In order to align the objects we have to simply size 3561 * each object to conform to the alignment. 3562 */ 3563 size = ALIGN(size, s->align); 3564 s->size = size; 3565 if (forced_order >= 0) 3566 order = forced_order; 3567 else 3568 order = calculate_order(size); 3569 3570 if ((int)order < 0) 3571 return 0; 3572 3573 s->allocflags = 0; 3574 if (order) 3575 s->allocflags |= __GFP_COMP; 3576 3577 if (s->flags & SLAB_CACHE_DMA) 3578 s->allocflags |= GFP_DMA; 3579 3580 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3581 s->allocflags |= __GFP_RECLAIMABLE; 3582 3583 /* 3584 * Determine the number of objects per slab 3585 */ 3586 s->oo = oo_make(order, size); 3587 s->min = oo_make(get_order(size), size); 3588 if (oo_objects(s->oo) > oo_objects(s->max)) 3589 s->max = s->oo; 3590 3591 return !!oo_objects(s->oo); 3592 } 3593 3594 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3595 { 3596 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3597 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3598 s->random = get_random_long(); 3599 #endif 3600 3601 if (!calculate_sizes(s, -1)) 3602 goto error; 3603 if (disable_higher_order_debug) { 3604 /* 3605 * Disable debugging flags that store metadata if the min slab 3606 * order increased. 3607 */ 3608 if (get_order(s->size) > get_order(s->object_size)) { 3609 s->flags &= ~DEBUG_METADATA_FLAGS; 3610 s->offset = 0; 3611 if (!calculate_sizes(s, -1)) 3612 goto error; 3613 } 3614 } 3615 3616 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3617 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3618 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3619 /* Enable fast mode */ 3620 s->flags |= __CMPXCHG_DOUBLE; 3621 #endif 3622 3623 /* 3624 * The larger the object size is, the more pages we want on the partial 3625 * list to avoid pounding the page allocator excessively. 3626 */ 3627 set_min_partial(s, ilog2(s->size) / 2); 3628 3629 set_cpu_partial(s); 3630 3631 #ifdef CONFIG_NUMA 3632 s->remote_node_defrag_ratio = 1000; 3633 #endif 3634 3635 /* Initialize the pre-computed randomized freelist if slab is up */ 3636 if (slab_state >= UP) { 3637 if (init_cache_random_seq(s)) 3638 goto error; 3639 } 3640 3641 if (!init_kmem_cache_nodes(s)) 3642 goto error; 3643 3644 if (alloc_kmem_cache_cpus(s)) 3645 return 0; 3646 3647 free_kmem_cache_nodes(s); 3648 error: 3649 if (flags & SLAB_PANIC) 3650 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", 3651 s->name, s->size, s->size, 3652 oo_order(s->oo), s->offset, (unsigned long)flags); 3653 return -EINVAL; 3654 } 3655 3656 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3657 const char *text) 3658 { 3659 #ifdef CONFIG_SLUB_DEBUG 3660 void *addr = page_address(page); 3661 void *p; 3662 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3663 if (!map) 3664 return; 3665 slab_err(s, page, text, s->name); 3666 slab_lock(page); 3667 3668 get_map(s, page, map); 3669 for_each_object(p, s, addr, page->objects) { 3670 3671 if (!test_bit(slab_index(p, s, addr), map)) { 3672 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3673 print_tracking(s, p); 3674 } 3675 } 3676 slab_unlock(page); 3677 bitmap_free(map); 3678 #endif 3679 } 3680 3681 /* 3682 * Attempt to free all partial slabs on a node. 3683 * This is called from __kmem_cache_shutdown(). We must take list_lock 3684 * because sysfs file might still access partial list after the shutdowning. 3685 */ 3686 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3687 { 3688 LIST_HEAD(discard); 3689 struct page *page, *h; 3690 3691 BUG_ON(irqs_disabled()); 3692 spin_lock_irq(&n->list_lock); 3693 list_for_each_entry_safe(page, h, &n->partial, lru) { 3694 if (!page->inuse) { 3695 remove_partial(n, page); 3696 list_add(&page->lru, &discard); 3697 } else { 3698 list_slab_objects(s, page, 3699 "Objects remaining in %s on __kmem_cache_shutdown()"); 3700 } 3701 } 3702 spin_unlock_irq(&n->list_lock); 3703 3704 list_for_each_entry_safe(page, h, &discard, lru) 3705 discard_slab(s, page); 3706 } 3707 3708 bool __kmem_cache_empty(struct kmem_cache *s) 3709 { 3710 int node; 3711 struct kmem_cache_node *n; 3712 3713 for_each_kmem_cache_node(s, node, n) 3714 if (n->nr_partial || slabs_node(s, node)) 3715 return false; 3716 return true; 3717 } 3718 3719 /* 3720 * Release all resources used by a slab cache. 3721 */ 3722 int __kmem_cache_shutdown(struct kmem_cache *s) 3723 { 3724 int node; 3725 struct kmem_cache_node *n; 3726 3727 flush_all(s); 3728 /* Attempt to free all objects */ 3729 for_each_kmem_cache_node(s, node, n) { 3730 free_partial(s, n); 3731 if (n->nr_partial || slabs_node(s, node)) 3732 return 1; 3733 } 3734 sysfs_slab_remove(s); 3735 return 0; 3736 } 3737 3738 /******************************************************************** 3739 * Kmalloc subsystem 3740 *******************************************************************/ 3741 3742 static int __init setup_slub_min_order(char *str) 3743 { 3744 get_option(&str, (int *)&slub_min_order); 3745 3746 return 1; 3747 } 3748 3749 __setup("slub_min_order=", setup_slub_min_order); 3750 3751 static int __init setup_slub_max_order(char *str) 3752 { 3753 get_option(&str, (int *)&slub_max_order); 3754 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3755 3756 return 1; 3757 } 3758 3759 __setup("slub_max_order=", setup_slub_max_order); 3760 3761 static int __init setup_slub_min_objects(char *str) 3762 { 3763 get_option(&str, (int *)&slub_min_objects); 3764 3765 return 1; 3766 } 3767 3768 __setup("slub_min_objects=", setup_slub_min_objects); 3769 3770 void *__kmalloc(size_t size, gfp_t flags) 3771 { 3772 struct kmem_cache *s; 3773 void *ret; 3774 3775 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3776 return kmalloc_large(size, flags); 3777 3778 s = kmalloc_slab(size, flags); 3779 3780 if (unlikely(ZERO_OR_NULL_PTR(s))) 3781 return s; 3782 3783 ret = slab_alloc(s, flags, _RET_IP_); 3784 3785 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3786 3787 kasan_kmalloc(s, ret, size, flags); 3788 3789 return ret; 3790 } 3791 EXPORT_SYMBOL(__kmalloc); 3792 3793 #ifdef CONFIG_NUMA 3794 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3795 { 3796 struct page *page; 3797 void *ptr = NULL; 3798 3799 flags |= __GFP_COMP; 3800 page = alloc_pages_node(node, flags, get_order(size)); 3801 if (page) 3802 ptr = page_address(page); 3803 3804 kmalloc_large_node_hook(ptr, size, flags); 3805 return ptr; 3806 } 3807 3808 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3809 { 3810 struct kmem_cache *s; 3811 void *ret; 3812 3813 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3814 ret = kmalloc_large_node(size, flags, node); 3815 3816 trace_kmalloc_node(_RET_IP_, ret, 3817 size, PAGE_SIZE << get_order(size), 3818 flags, node); 3819 3820 return ret; 3821 } 3822 3823 s = kmalloc_slab(size, flags); 3824 3825 if (unlikely(ZERO_OR_NULL_PTR(s))) 3826 return s; 3827 3828 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3829 3830 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3831 3832 kasan_kmalloc(s, ret, size, flags); 3833 3834 return ret; 3835 } 3836 EXPORT_SYMBOL(__kmalloc_node); 3837 #endif 3838 3839 #ifdef CONFIG_HARDENED_USERCOPY 3840 /* 3841 * Rejects incorrectly sized objects and objects that are to be copied 3842 * to/from userspace but do not fall entirely within the containing slab 3843 * cache's usercopy region. 3844 * 3845 * Returns NULL if check passes, otherwise const char * to name of cache 3846 * to indicate an error. 3847 */ 3848 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3849 bool to_user) 3850 { 3851 struct kmem_cache *s; 3852 unsigned int offset; 3853 size_t object_size; 3854 3855 /* Find object and usable object size. */ 3856 s = page->slab_cache; 3857 3858 /* Reject impossible pointers. */ 3859 if (ptr < page_address(page)) 3860 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3861 to_user, 0, n); 3862 3863 /* Find offset within object. */ 3864 offset = (ptr - page_address(page)) % s->size; 3865 3866 /* Adjust for redzone and reject if within the redzone. */ 3867 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3868 if (offset < s->red_left_pad) 3869 usercopy_abort("SLUB object in left red zone", 3870 s->name, to_user, offset, n); 3871 offset -= s->red_left_pad; 3872 } 3873 3874 /* Allow address range falling entirely within usercopy region. */ 3875 if (offset >= s->useroffset && 3876 offset - s->useroffset <= s->usersize && 3877 n <= s->useroffset - offset + s->usersize) 3878 return; 3879 3880 /* 3881 * If the copy is still within the allocated object, produce 3882 * a warning instead of rejecting the copy. This is intended 3883 * to be a temporary method to find any missing usercopy 3884 * whitelists. 3885 */ 3886 object_size = slab_ksize(s); 3887 if (usercopy_fallback && 3888 offset <= object_size && n <= object_size - offset) { 3889 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3890 return; 3891 } 3892 3893 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3894 } 3895 #endif /* CONFIG_HARDENED_USERCOPY */ 3896 3897 static size_t __ksize(const void *object) 3898 { 3899 struct page *page; 3900 3901 if (unlikely(object == ZERO_SIZE_PTR)) 3902 return 0; 3903 3904 page = virt_to_head_page(object); 3905 3906 if (unlikely(!PageSlab(page))) { 3907 WARN_ON(!PageCompound(page)); 3908 return PAGE_SIZE << compound_order(page); 3909 } 3910 3911 return slab_ksize(page->slab_cache); 3912 } 3913 3914 size_t ksize(const void *object) 3915 { 3916 size_t size = __ksize(object); 3917 /* We assume that ksize callers could use whole allocated area, 3918 * so we need to unpoison this area. 3919 */ 3920 kasan_unpoison_shadow(object, size); 3921 return size; 3922 } 3923 EXPORT_SYMBOL(ksize); 3924 3925 void kfree(const void *x) 3926 { 3927 struct page *page; 3928 void *object = (void *)x; 3929 3930 trace_kfree(_RET_IP_, x); 3931 3932 if (unlikely(ZERO_OR_NULL_PTR(x))) 3933 return; 3934 3935 page = virt_to_head_page(x); 3936 if (unlikely(!PageSlab(page))) { 3937 BUG_ON(!PageCompound(page)); 3938 kfree_hook(object); 3939 __free_pages(page, compound_order(page)); 3940 return; 3941 } 3942 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3943 } 3944 EXPORT_SYMBOL(kfree); 3945 3946 #define SHRINK_PROMOTE_MAX 32 3947 3948 /* 3949 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3950 * up most to the head of the partial lists. New allocations will then 3951 * fill those up and thus they can be removed from the partial lists. 3952 * 3953 * The slabs with the least items are placed last. This results in them 3954 * being allocated from last increasing the chance that the last objects 3955 * are freed in them. 3956 */ 3957 int __kmem_cache_shrink(struct kmem_cache *s) 3958 { 3959 int node; 3960 int i; 3961 struct kmem_cache_node *n; 3962 struct page *page; 3963 struct page *t; 3964 struct list_head discard; 3965 struct list_head promote[SHRINK_PROMOTE_MAX]; 3966 unsigned long flags; 3967 int ret = 0; 3968 3969 flush_all(s); 3970 for_each_kmem_cache_node(s, node, n) { 3971 INIT_LIST_HEAD(&discard); 3972 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3973 INIT_LIST_HEAD(promote + i); 3974 3975 spin_lock_irqsave(&n->list_lock, flags); 3976 3977 /* 3978 * Build lists of slabs to discard or promote. 3979 * 3980 * Note that concurrent frees may occur while we hold the 3981 * list_lock. page->inuse here is the upper limit. 3982 */ 3983 list_for_each_entry_safe(page, t, &n->partial, lru) { 3984 int free = page->objects - page->inuse; 3985 3986 /* Do not reread page->inuse */ 3987 barrier(); 3988 3989 /* We do not keep full slabs on the list */ 3990 BUG_ON(free <= 0); 3991 3992 if (free == page->objects) { 3993 list_move(&page->lru, &discard); 3994 n->nr_partial--; 3995 } else if (free <= SHRINK_PROMOTE_MAX) 3996 list_move(&page->lru, promote + free - 1); 3997 } 3998 3999 /* 4000 * Promote the slabs filled up most to the head of the 4001 * partial list. 4002 */ 4003 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4004 list_splice(promote + i, &n->partial); 4005 4006 spin_unlock_irqrestore(&n->list_lock, flags); 4007 4008 /* Release empty slabs */ 4009 list_for_each_entry_safe(page, t, &discard, lru) 4010 discard_slab(s, page); 4011 4012 if (slabs_node(s, node)) 4013 ret = 1; 4014 } 4015 4016 return ret; 4017 } 4018 4019 #ifdef CONFIG_MEMCG 4020 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 4021 { 4022 /* 4023 * Called with all the locks held after a sched RCU grace period. 4024 * Even if @s becomes empty after shrinking, we can't know that @s 4025 * doesn't have allocations already in-flight and thus can't 4026 * destroy @s until the associated memcg is released. 4027 * 4028 * However, let's remove the sysfs files for empty caches here. 4029 * Each cache has a lot of interface files which aren't 4030 * particularly useful for empty draining caches; otherwise, we can 4031 * easily end up with millions of unnecessary sysfs files on 4032 * systems which have a lot of memory and transient cgroups. 4033 */ 4034 if (!__kmem_cache_shrink(s)) 4035 sysfs_slab_remove(s); 4036 } 4037 4038 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4039 { 4040 /* 4041 * Disable empty slabs caching. Used to avoid pinning offline 4042 * memory cgroups by kmem pages that can be freed. 4043 */ 4044 slub_set_cpu_partial(s, 0); 4045 s->min_partial = 0; 4046 4047 /* 4048 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4049 * we have to make sure the change is visible before shrinking. 4050 */ 4051 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4052 } 4053 #endif 4054 4055 static int slab_mem_going_offline_callback(void *arg) 4056 { 4057 struct kmem_cache *s; 4058 4059 mutex_lock(&slab_mutex); 4060 list_for_each_entry(s, &slab_caches, list) 4061 __kmem_cache_shrink(s); 4062 mutex_unlock(&slab_mutex); 4063 4064 return 0; 4065 } 4066 4067 static void slab_mem_offline_callback(void *arg) 4068 { 4069 struct kmem_cache_node *n; 4070 struct kmem_cache *s; 4071 struct memory_notify *marg = arg; 4072 int offline_node; 4073 4074 offline_node = marg->status_change_nid_normal; 4075 4076 /* 4077 * If the node still has available memory. we need kmem_cache_node 4078 * for it yet. 4079 */ 4080 if (offline_node < 0) 4081 return; 4082 4083 mutex_lock(&slab_mutex); 4084 list_for_each_entry(s, &slab_caches, list) { 4085 n = get_node(s, offline_node); 4086 if (n) { 4087 /* 4088 * if n->nr_slabs > 0, slabs still exist on the node 4089 * that is going down. We were unable to free them, 4090 * and offline_pages() function shouldn't call this 4091 * callback. So, we must fail. 4092 */ 4093 BUG_ON(slabs_node(s, offline_node)); 4094 4095 s->node[offline_node] = NULL; 4096 kmem_cache_free(kmem_cache_node, n); 4097 } 4098 } 4099 mutex_unlock(&slab_mutex); 4100 } 4101 4102 static int slab_mem_going_online_callback(void *arg) 4103 { 4104 struct kmem_cache_node *n; 4105 struct kmem_cache *s; 4106 struct memory_notify *marg = arg; 4107 int nid = marg->status_change_nid_normal; 4108 int ret = 0; 4109 4110 /* 4111 * If the node's memory is already available, then kmem_cache_node is 4112 * already created. Nothing to do. 4113 */ 4114 if (nid < 0) 4115 return 0; 4116 4117 /* 4118 * We are bringing a node online. No memory is available yet. We must 4119 * allocate a kmem_cache_node structure in order to bring the node 4120 * online. 4121 */ 4122 mutex_lock(&slab_mutex); 4123 list_for_each_entry(s, &slab_caches, list) { 4124 /* 4125 * XXX: kmem_cache_alloc_node will fallback to other nodes 4126 * since memory is not yet available from the node that 4127 * is brought up. 4128 */ 4129 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4130 if (!n) { 4131 ret = -ENOMEM; 4132 goto out; 4133 } 4134 init_kmem_cache_node(n); 4135 s->node[nid] = n; 4136 } 4137 out: 4138 mutex_unlock(&slab_mutex); 4139 return ret; 4140 } 4141 4142 static int slab_memory_callback(struct notifier_block *self, 4143 unsigned long action, void *arg) 4144 { 4145 int ret = 0; 4146 4147 switch (action) { 4148 case MEM_GOING_ONLINE: 4149 ret = slab_mem_going_online_callback(arg); 4150 break; 4151 case MEM_GOING_OFFLINE: 4152 ret = slab_mem_going_offline_callback(arg); 4153 break; 4154 case MEM_OFFLINE: 4155 case MEM_CANCEL_ONLINE: 4156 slab_mem_offline_callback(arg); 4157 break; 4158 case MEM_ONLINE: 4159 case MEM_CANCEL_OFFLINE: 4160 break; 4161 } 4162 if (ret) 4163 ret = notifier_from_errno(ret); 4164 else 4165 ret = NOTIFY_OK; 4166 return ret; 4167 } 4168 4169 static struct notifier_block slab_memory_callback_nb = { 4170 .notifier_call = slab_memory_callback, 4171 .priority = SLAB_CALLBACK_PRI, 4172 }; 4173 4174 /******************************************************************** 4175 * Basic setup of slabs 4176 *******************************************************************/ 4177 4178 /* 4179 * Used for early kmem_cache structures that were allocated using 4180 * the page allocator. Allocate them properly then fix up the pointers 4181 * that may be pointing to the wrong kmem_cache structure. 4182 */ 4183 4184 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4185 { 4186 int node; 4187 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4188 struct kmem_cache_node *n; 4189 4190 memcpy(s, static_cache, kmem_cache->object_size); 4191 4192 /* 4193 * This runs very early, and only the boot processor is supposed to be 4194 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4195 * IPIs around. 4196 */ 4197 __flush_cpu_slab(s, smp_processor_id()); 4198 for_each_kmem_cache_node(s, node, n) { 4199 struct page *p; 4200 4201 list_for_each_entry(p, &n->partial, lru) 4202 p->slab_cache = s; 4203 4204 #ifdef CONFIG_SLUB_DEBUG 4205 list_for_each_entry(p, &n->full, lru) 4206 p->slab_cache = s; 4207 #endif 4208 } 4209 slab_init_memcg_params(s); 4210 list_add(&s->list, &slab_caches); 4211 memcg_link_cache(s); 4212 return s; 4213 } 4214 4215 void __init kmem_cache_init(void) 4216 { 4217 static __initdata struct kmem_cache boot_kmem_cache, 4218 boot_kmem_cache_node; 4219 4220 if (debug_guardpage_minorder()) 4221 slub_max_order = 0; 4222 4223 kmem_cache_node = &boot_kmem_cache_node; 4224 kmem_cache = &boot_kmem_cache; 4225 4226 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4227 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4228 4229 register_hotmemory_notifier(&slab_memory_callback_nb); 4230 4231 /* Able to allocate the per node structures */ 4232 slab_state = PARTIAL; 4233 4234 create_boot_cache(kmem_cache, "kmem_cache", 4235 offsetof(struct kmem_cache, node) + 4236 nr_node_ids * sizeof(struct kmem_cache_node *), 4237 SLAB_HWCACHE_ALIGN, 0, 0); 4238 4239 kmem_cache = bootstrap(&boot_kmem_cache); 4240 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4241 4242 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4243 setup_kmalloc_cache_index_table(); 4244 create_kmalloc_caches(0); 4245 4246 /* Setup random freelists for each cache */ 4247 init_freelist_randomization(); 4248 4249 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4250 slub_cpu_dead); 4251 4252 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", 4253 cache_line_size(), 4254 slub_min_order, slub_max_order, slub_min_objects, 4255 nr_cpu_ids, nr_node_ids); 4256 } 4257 4258 void __init kmem_cache_init_late(void) 4259 { 4260 } 4261 4262 struct kmem_cache * 4263 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4264 slab_flags_t flags, void (*ctor)(void *)) 4265 { 4266 struct kmem_cache *s, *c; 4267 4268 s = find_mergeable(size, align, flags, name, ctor); 4269 if (s) { 4270 s->refcount++; 4271 4272 /* 4273 * Adjust the object sizes so that we clear 4274 * the complete object on kzalloc. 4275 */ 4276 s->object_size = max(s->object_size, size); 4277 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4278 4279 for_each_memcg_cache(c, s) { 4280 c->object_size = s->object_size; 4281 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4282 } 4283 4284 if (sysfs_slab_alias(s, name)) { 4285 s->refcount--; 4286 s = NULL; 4287 } 4288 } 4289 4290 return s; 4291 } 4292 4293 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4294 { 4295 int err; 4296 4297 err = kmem_cache_open(s, flags); 4298 if (err) 4299 return err; 4300 4301 /* Mutex is not taken during early boot */ 4302 if (slab_state <= UP) 4303 return 0; 4304 4305 memcg_propagate_slab_attrs(s); 4306 err = sysfs_slab_add(s); 4307 if (err) 4308 __kmem_cache_release(s); 4309 4310 return err; 4311 } 4312 4313 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4314 { 4315 struct kmem_cache *s; 4316 void *ret; 4317 4318 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4319 return kmalloc_large(size, gfpflags); 4320 4321 s = kmalloc_slab(size, gfpflags); 4322 4323 if (unlikely(ZERO_OR_NULL_PTR(s))) 4324 return s; 4325 4326 ret = slab_alloc(s, gfpflags, caller); 4327 4328 /* Honor the call site pointer we received. */ 4329 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4330 4331 return ret; 4332 } 4333 4334 #ifdef CONFIG_NUMA 4335 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4336 int node, unsigned long caller) 4337 { 4338 struct kmem_cache *s; 4339 void *ret; 4340 4341 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4342 ret = kmalloc_large_node(size, gfpflags, node); 4343 4344 trace_kmalloc_node(caller, ret, 4345 size, PAGE_SIZE << get_order(size), 4346 gfpflags, node); 4347 4348 return ret; 4349 } 4350 4351 s = kmalloc_slab(size, gfpflags); 4352 4353 if (unlikely(ZERO_OR_NULL_PTR(s))) 4354 return s; 4355 4356 ret = slab_alloc_node(s, gfpflags, node, caller); 4357 4358 /* Honor the call site pointer we received. */ 4359 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4360 4361 return ret; 4362 } 4363 #endif 4364 4365 #ifdef CONFIG_SYSFS 4366 static int count_inuse(struct page *page) 4367 { 4368 return page->inuse; 4369 } 4370 4371 static int count_total(struct page *page) 4372 { 4373 return page->objects; 4374 } 4375 #endif 4376 4377 #ifdef CONFIG_SLUB_DEBUG 4378 static int validate_slab(struct kmem_cache *s, struct page *page, 4379 unsigned long *map) 4380 { 4381 void *p; 4382 void *addr = page_address(page); 4383 4384 if (!check_slab(s, page) || 4385 !on_freelist(s, page, NULL)) 4386 return 0; 4387 4388 /* Now we know that a valid freelist exists */ 4389 bitmap_zero(map, page->objects); 4390 4391 get_map(s, page, map); 4392 for_each_object(p, s, addr, page->objects) { 4393 if (test_bit(slab_index(p, s, addr), map)) 4394 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4395 return 0; 4396 } 4397 4398 for_each_object(p, s, addr, page->objects) 4399 if (!test_bit(slab_index(p, s, addr), map)) 4400 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4401 return 0; 4402 return 1; 4403 } 4404 4405 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4406 unsigned long *map) 4407 { 4408 slab_lock(page); 4409 validate_slab(s, page, map); 4410 slab_unlock(page); 4411 } 4412 4413 static int validate_slab_node(struct kmem_cache *s, 4414 struct kmem_cache_node *n, unsigned long *map) 4415 { 4416 unsigned long count = 0; 4417 struct page *page; 4418 unsigned long flags; 4419 4420 spin_lock_irqsave(&n->list_lock, flags); 4421 4422 list_for_each_entry(page, &n->partial, lru) { 4423 validate_slab_slab(s, page, map); 4424 count++; 4425 } 4426 if (count != n->nr_partial) 4427 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4428 s->name, count, n->nr_partial); 4429 4430 if (!(s->flags & SLAB_STORE_USER)) 4431 goto out; 4432 4433 list_for_each_entry(page, &n->full, lru) { 4434 validate_slab_slab(s, page, map); 4435 count++; 4436 } 4437 if (count != atomic_long_read(&n->nr_slabs)) 4438 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4439 s->name, count, atomic_long_read(&n->nr_slabs)); 4440 4441 out: 4442 spin_unlock_irqrestore(&n->list_lock, flags); 4443 return count; 4444 } 4445 4446 static long validate_slab_cache(struct kmem_cache *s) 4447 { 4448 int node; 4449 unsigned long count = 0; 4450 struct kmem_cache_node *n; 4451 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4452 4453 if (!map) 4454 return -ENOMEM; 4455 4456 flush_all(s); 4457 for_each_kmem_cache_node(s, node, n) 4458 count += validate_slab_node(s, n, map); 4459 bitmap_free(map); 4460 return count; 4461 } 4462 /* 4463 * Generate lists of code addresses where slabcache objects are allocated 4464 * and freed. 4465 */ 4466 4467 struct location { 4468 unsigned long count; 4469 unsigned long addr; 4470 long long sum_time; 4471 long min_time; 4472 long max_time; 4473 long min_pid; 4474 long max_pid; 4475 DECLARE_BITMAP(cpus, NR_CPUS); 4476 nodemask_t nodes; 4477 }; 4478 4479 struct loc_track { 4480 unsigned long max; 4481 unsigned long count; 4482 struct location *loc; 4483 }; 4484 4485 static void free_loc_track(struct loc_track *t) 4486 { 4487 if (t->max) 4488 free_pages((unsigned long)t->loc, 4489 get_order(sizeof(struct location) * t->max)); 4490 } 4491 4492 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4493 { 4494 struct location *l; 4495 int order; 4496 4497 order = get_order(sizeof(struct location) * max); 4498 4499 l = (void *)__get_free_pages(flags, order); 4500 if (!l) 4501 return 0; 4502 4503 if (t->count) { 4504 memcpy(l, t->loc, sizeof(struct location) * t->count); 4505 free_loc_track(t); 4506 } 4507 t->max = max; 4508 t->loc = l; 4509 return 1; 4510 } 4511 4512 static int add_location(struct loc_track *t, struct kmem_cache *s, 4513 const struct track *track) 4514 { 4515 long start, end, pos; 4516 struct location *l; 4517 unsigned long caddr; 4518 unsigned long age = jiffies - track->when; 4519 4520 start = -1; 4521 end = t->count; 4522 4523 for ( ; ; ) { 4524 pos = start + (end - start + 1) / 2; 4525 4526 /* 4527 * There is nothing at "end". If we end up there 4528 * we need to add something to before end. 4529 */ 4530 if (pos == end) 4531 break; 4532 4533 caddr = t->loc[pos].addr; 4534 if (track->addr == caddr) { 4535 4536 l = &t->loc[pos]; 4537 l->count++; 4538 if (track->when) { 4539 l->sum_time += age; 4540 if (age < l->min_time) 4541 l->min_time = age; 4542 if (age > l->max_time) 4543 l->max_time = age; 4544 4545 if (track->pid < l->min_pid) 4546 l->min_pid = track->pid; 4547 if (track->pid > l->max_pid) 4548 l->max_pid = track->pid; 4549 4550 cpumask_set_cpu(track->cpu, 4551 to_cpumask(l->cpus)); 4552 } 4553 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4554 return 1; 4555 } 4556 4557 if (track->addr < caddr) 4558 end = pos; 4559 else 4560 start = pos; 4561 } 4562 4563 /* 4564 * Not found. Insert new tracking element. 4565 */ 4566 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4567 return 0; 4568 4569 l = t->loc + pos; 4570 if (pos < t->count) 4571 memmove(l + 1, l, 4572 (t->count - pos) * sizeof(struct location)); 4573 t->count++; 4574 l->count = 1; 4575 l->addr = track->addr; 4576 l->sum_time = age; 4577 l->min_time = age; 4578 l->max_time = age; 4579 l->min_pid = track->pid; 4580 l->max_pid = track->pid; 4581 cpumask_clear(to_cpumask(l->cpus)); 4582 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4583 nodes_clear(l->nodes); 4584 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4585 return 1; 4586 } 4587 4588 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4589 struct page *page, enum track_item alloc, 4590 unsigned long *map) 4591 { 4592 void *addr = page_address(page); 4593 void *p; 4594 4595 bitmap_zero(map, page->objects); 4596 get_map(s, page, map); 4597 4598 for_each_object(p, s, addr, page->objects) 4599 if (!test_bit(slab_index(p, s, addr), map)) 4600 add_location(t, s, get_track(s, p, alloc)); 4601 } 4602 4603 static int list_locations(struct kmem_cache *s, char *buf, 4604 enum track_item alloc) 4605 { 4606 int len = 0; 4607 unsigned long i; 4608 struct loc_track t = { 0, 0, NULL }; 4609 int node; 4610 struct kmem_cache_node *n; 4611 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4612 4613 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4614 GFP_KERNEL)) { 4615 bitmap_free(map); 4616 return sprintf(buf, "Out of memory\n"); 4617 } 4618 /* Push back cpu slabs */ 4619 flush_all(s); 4620 4621 for_each_kmem_cache_node(s, node, n) { 4622 unsigned long flags; 4623 struct page *page; 4624 4625 if (!atomic_long_read(&n->nr_slabs)) 4626 continue; 4627 4628 spin_lock_irqsave(&n->list_lock, flags); 4629 list_for_each_entry(page, &n->partial, lru) 4630 process_slab(&t, s, page, alloc, map); 4631 list_for_each_entry(page, &n->full, lru) 4632 process_slab(&t, s, page, alloc, map); 4633 spin_unlock_irqrestore(&n->list_lock, flags); 4634 } 4635 4636 for (i = 0; i < t.count; i++) { 4637 struct location *l = &t.loc[i]; 4638 4639 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4640 break; 4641 len += sprintf(buf + len, "%7ld ", l->count); 4642 4643 if (l->addr) 4644 len += sprintf(buf + len, "%pS", (void *)l->addr); 4645 else 4646 len += sprintf(buf + len, "<not-available>"); 4647 4648 if (l->sum_time != l->min_time) { 4649 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4650 l->min_time, 4651 (long)div_u64(l->sum_time, l->count), 4652 l->max_time); 4653 } else 4654 len += sprintf(buf + len, " age=%ld", 4655 l->min_time); 4656 4657 if (l->min_pid != l->max_pid) 4658 len += sprintf(buf + len, " pid=%ld-%ld", 4659 l->min_pid, l->max_pid); 4660 else 4661 len += sprintf(buf + len, " pid=%ld", 4662 l->min_pid); 4663 4664 if (num_online_cpus() > 1 && 4665 !cpumask_empty(to_cpumask(l->cpus)) && 4666 len < PAGE_SIZE - 60) 4667 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4668 " cpus=%*pbl", 4669 cpumask_pr_args(to_cpumask(l->cpus))); 4670 4671 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4672 len < PAGE_SIZE - 60) 4673 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4674 " nodes=%*pbl", 4675 nodemask_pr_args(&l->nodes)); 4676 4677 len += sprintf(buf + len, "\n"); 4678 } 4679 4680 free_loc_track(&t); 4681 bitmap_free(map); 4682 if (!t.count) 4683 len += sprintf(buf, "No data\n"); 4684 return len; 4685 } 4686 #endif 4687 4688 #ifdef SLUB_RESILIENCY_TEST 4689 static void __init resiliency_test(void) 4690 { 4691 u8 *p; 4692 int type = KMALLOC_NORMAL; 4693 4694 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4695 4696 pr_err("SLUB resiliency testing\n"); 4697 pr_err("-----------------------\n"); 4698 pr_err("A. Corruption after allocation\n"); 4699 4700 p = kzalloc(16, GFP_KERNEL); 4701 p[16] = 0x12; 4702 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4703 p + 16); 4704 4705 validate_slab_cache(kmalloc_caches[type][4]); 4706 4707 /* Hmmm... The next two are dangerous */ 4708 p = kzalloc(32, GFP_KERNEL); 4709 p[32 + sizeof(void *)] = 0x34; 4710 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4711 p); 4712 pr_err("If allocated object is overwritten then not detectable\n\n"); 4713 4714 validate_slab_cache(kmalloc_caches[type][5]); 4715 p = kzalloc(64, GFP_KERNEL); 4716 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4717 *p = 0x56; 4718 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4719 p); 4720 pr_err("If allocated object is overwritten then not detectable\n\n"); 4721 validate_slab_cache(kmalloc_caches[type][6]); 4722 4723 pr_err("\nB. Corruption after free\n"); 4724 p = kzalloc(128, GFP_KERNEL); 4725 kfree(p); 4726 *p = 0x78; 4727 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4728 validate_slab_cache(kmalloc_caches[type][7]); 4729 4730 p = kzalloc(256, GFP_KERNEL); 4731 kfree(p); 4732 p[50] = 0x9a; 4733 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4734 validate_slab_cache(kmalloc_caches[type][8]); 4735 4736 p = kzalloc(512, GFP_KERNEL); 4737 kfree(p); 4738 p[512] = 0xab; 4739 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4740 validate_slab_cache(kmalloc_caches[type][9]); 4741 } 4742 #else 4743 #ifdef CONFIG_SYSFS 4744 static void resiliency_test(void) {}; 4745 #endif 4746 #endif 4747 4748 #ifdef CONFIG_SYSFS 4749 enum slab_stat_type { 4750 SL_ALL, /* All slabs */ 4751 SL_PARTIAL, /* Only partially allocated slabs */ 4752 SL_CPU, /* Only slabs used for cpu caches */ 4753 SL_OBJECTS, /* Determine allocated objects not slabs */ 4754 SL_TOTAL /* Determine object capacity not slabs */ 4755 }; 4756 4757 #define SO_ALL (1 << SL_ALL) 4758 #define SO_PARTIAL (1 << SL_PARTIAL) 4759 #define SO_CPU (1 << SL_CPU) 4760 #define SO_OBJECTS (1 << SL_OBJECTS) 4761 #define SO_TOTAL (1 << SL_TOTAL) 4762 4763 #ifdef CONFIG_MEMCG 4764 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4765 4766 static int __init setup_slub_memcg_sysfs(char *str) 4767 { 4768 int v; 4769 4770 if (get_option(&str, &v) > 0) 4771 memcg_sysfs_enabled = v; 4772 4773 return 1; 4774 } 4775 4776 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4777 #endif 4778 4779 static ssize_t show_slab_objects(struct kmem_cache *s, 4780 char *buf, unsigned long flags) 4781 { 4782 unsigned long total = 0; 4783 int node; 4784 int x; 4785 unsigned long *nodes; 4786 4787 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4788 if (!nodes) 4789 return -ENOMEM; 4790 4791 if (flags & SO_CPU) { 4792 int cpu; 4793 4794 for_each_possible_cpu(cpu) { 4795 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4796 cpu); 4797 int node; 4798 struct page *page; 4799 4800 page = READ_ONCE(c->page); 4801 if (!page) 4802 continue; 4803 4804 node = page_to_nid(page); 4805 if (flags & SO_TOTAL) 4806 x = page->objects; 4807 else if (flags & SO_OBJECTS) 4808 x = page->inuse; 4809 else 4810 x = 1; 4811 4812 total += x; 4813 nodes[node] += x; 4814 4815 page = slub_percpu_partial_read_once(c); 4816 if (page) { 4817 node = page_to_nid(page); 4818 if (flags & SO_TOTAL) 4819 WARN_ON_ONCE(1); 4820 else if (flags & SO_OBJECTS) 4821 WARN_ON_ONCE(1); 4822 else 4823 x = page->pages; 4824 total += x; 4825 nodes[node] += x; 4826 } 4827 } 4828 } 4829 4830 get_online_mems(); 4831 #ifdef CONFIG_SLUB_DEBUG 4832 if (flags & SO_ALL) { 4833 struct kmem_cache_node *n; 4834 4835 for_each_kmem_cache_node(s, node, n) { 4836 4837 if (flags & SO_TOTAL) 4838 x = atomic_long_read(&n->total_objects); 4839 else if (flags & SO_OBJECTS) 4840 x = atomic_long_read(&n->total_objects) - 4841 count_partial(n, count_free); 4842 else 4843 x = atomic_long_read(&n->nr_slabs); 4844 total += x; 4845 nodes[node] += x; 4846 } 4847 4848 } else 4849 #endif 4850 if (flags & SO_PARTIAL) { 4851 struct kmem_cache_node *n; 4852 4853 for_each_kmem_cache_node(s, node, n) { 4854 if (flags & SO_TOTAL) 4855 x = count_partial(n, count_total); 4856 else if (flags & SO_OBJECTS) 4857 x = count_partial(n, count_inuse); 4858 else 4859 x = n->nr_partial; 4860 total += x; 4861 nodes[node] += x; 4862 } 4863 } 4864 x = sprintf(buf, "%lu", total); 4865 #ifdef CONFIG_NUMA 4866 for (node = 0; node < nr_node_ids; node++) 4867 if (nodes[node]) 4868 x += sprintf(buf + x, " N%d=%lu", 4869 node, nodes[node]); 4870 #endif 4871 put_online_mems(); 4872 kfree(nodes); 4873 return x + sprintf(buf + x, "\n"); 4874 } 4875 4876 #ifdef CONFIG_SLUB_DEBUG 4877 static int any_slab_objects(struct kmem_cache *s) 4878 { 4879 int node; 4880 struct kmem_cache_node *n; 4881 4882 for_each_kmem_cache_node(s, node, n) 4883 if (atomic_long_read(&n->total_objects)) 4884 return 1; 4885 4886 return 0; 4887 } 4888 #endif 4889 4890 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4891 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4892 4893 struct slab_attribute { 4894 struct attribute attr; 4895 ssize_t (*show)(struct kmem_cache *s, char *buf); 4896 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4897 }; 4898 4899 #define SLAB_ATTR_RO(_name) \ 4900 static struct slab_attribute _name##_attr = \ 4901 __ATTR(_name, 0400, _name##_show, NULL) 4902 4903 #define SLAB_ATTR(_name) \ 4904 static struct slab_attribute _name##_attr = \ 4905 __ATTR(_name, 0600, _name##_show, _name##_store) 4906 4907 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4908 { 4909 return sprintf(buf, "%u\n", s->size); 4910 } 4911 SLAB_ATTR_RO(slab_size); 4912 4913 static ssize_t align_show(struct kmem_cache *s, char *buf) 4914 { 4915 return sprintf(buf, "%u\n", s->align); 4916 } 4917 SLAB_ATTR_RO(align); 4918 4919 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4920 { 4921 return sprintf(buf, "%u\n", s->object_size); 4922 } 4923 SLAB_ATTR_RO(object_size); 4924 4925 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4926 { 4927 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4928 } 4929 SLAB_ATTR_RO(objs_per_slab); 4930 4931 static ssize_t order_store(struct kmem_cache *s, 4932 const char *buf, size_t length) 4933 { 4934 unsigned int order; 4935 int err; 4936 4937 err = kstrtouint(buf, 10, &order); 4938 if (err) 4939 return err; 4940 4941 if (order > slub_max_order || order < slub_min_order) 4942 return -EINVAL; 4943 4944 calculate_sizes(s, order); 4945 return length; 4946 } 4947 4948 static ssize_t order_show(struct kmem_cache *s, char *buf) 4949 { 4950 return sprintf(buf, "%u\n", oo_order(s->oo)); 4951 } 4952 SLAB_ATTR(order); 4953 4954 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4955 { 4956 return sprintf(buf, "%lu\n", s->min_partial); 4957 } 4958 4959 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4960 size_t length) 4961 { 4962 unsigned long min; 4963 int err; 4964 4965 err = kstrtoul(buf, 10, &min); 4966 if (err) 4967 return err; 4968 4969 set_min_partial(s, min); 4970 return length; 4971 } 4972 SLAB_ATTR(min_partial); 4973 4974 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4975 { 4976 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4977 } 4978 4979 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4980 size_t length) 4981 { 4982 unsigned int objects; 4983 int err; 4984 4985 err = kstrtouint(buf, 10, &objects); 4986 if (err) 4987 return err; 4988 if (objects && !kmem_cache_has_cpu_partial(s)) 4989 return -EINVAL; 4990 4991 slub_set_cpu_partial(s, objects); 4992 flush_all(s); 4993 return length; 4994 } 4995 SLAB_ATTR(cpu_partial); 4996 4997 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4998 { 4999 if (!s->ctor) 5000 return 0; 5001 return sprintf(buf, "%pS\n", s->ctor); 5002 } 5003 SLAB_ATTR_RO(ctor); 5004 5005 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5006 { 5007 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5008 } 5009 SLAB_ATTR_RO(aliases); 5010 5011 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5012 { 5013 return show_slab_objects(s, buf, SO_PARTIAL); 5014 } 5015 SLAB_ATTR_RO(partial); 5016 5017 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5018 { 5019 return show_slab_objects(s, buf, SO_CPU); 5020 } 5021 SLAB_ATTR_RO(cpu_slabs); 5022 5023 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5024 { 5025 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5026 } 5027 SLAB_ATTR_RO(objects); 5028 5029 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5030 { 5031 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5032 } 5033 SLAB_ATTR_RO(objects_partial); 5034 5035 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5036 { 5037 int objects = 0; 5038 int pages = 0; 5039 int cpu; 5040 int len; 5041 5042 for_each_online_cpu(cpu) { 5043 struct page *page; 5044 5045 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5046 5047 if (page) { 5048 pages += page->pages; 5049 objects += page->pobjects; 5050 } 5051 } 5052 5053 len = sprintf(buf, "%d(%d)", objects, pages); 5054 5055 #ifdef CONFIG_SMP 5056 for_each_online_cpu(cpu) { 5057 struct page *page; 5058 5059 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5060 5061 if (page && len < PAGE_SIZE - 20) 5062 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5063 page->pobjects, page->pages); 5064 } 5065 #endif 5066 return len + sprintf(buf + len, "\n"); 5067 } 5068 SLAB_ATTR_RO(slabs_cpu_partial); 5069 5070 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5071 { 5072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5073 } 5074 5075 static ssize_t reclaim_account_store(struct kmem_cache *s, 5076 const char *buf, size_t length) 5077 { 5078 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5079 if (buf[0] == '1') 5080 s->flags |= SLAB_RECLAIM_ACCOUNT; 5081 return length; 5082 } 5083 SLAB_ATTR(reclaim_account); 5084 5085 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5086 { 5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5088 } 5089 SLAB_ATTR_RO(hwcache_align); 5090 5091 #ifdef CONFIG_ZONE_DMA 5092 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5093 { 5094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5095 } 5096 SLAB_ATTR_RO(cache_dma); 5097 #endif 5098 5099 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5100 { 5101 return sprintf(buf, "%u\n", s->usersize); 5102 } 5103 SLAB_ATTR_RO(usersize); 5104 5105 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5106 { 5107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5108 } 5109 SLAB_ATTR_RO(destroy_by_rcu); 5110 5111 #ifdef CONFIG_SLUB_DEBUG 5112 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5113 { 5114 return show_slab_objects(s, buf, SO_ALL); 5115 } 5116 SLAB_ATTR_RO(slabs); 5117 5118 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5119 { 5120 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5121 } 5122 SLAB_ATTR_RO(total_objects); 5123 5124 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5125 { 5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5127 } 5128 5129 static ssize_t sanity_checks_store(struct kmem_cache *s, 5130 const char *buf, size_t length) 5131 { 5132 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5133 if (buf[0] == '1') { 5134 s->flags &= ~__CMPXCHG_DOUBLE; 5135 s->flags |= SLAB_CONSISTENCY_CHECKS; 5136 } 5137 return length; 5138 } 5139 SLAB_ATTR(sanity_checks); 5140 5141 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5142 { 5143 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5144 } 5145 5146 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5147 size_t length) 5148 { 5149 /* 5150 * Tracing a merged cache is going to give confusing results 5151 * as well as cause other issues like converting a mergeable 5152 * cache into an umergeable one. 5153 */ 5154 if (s->refcount > 1) 5155 return -EINVAL; 5156 5157 s->flags &= ~SLAB_TRACE; 5158 if (buf[0] == '1') { 5159 s->flags &= ~__CMPXCHG_DOUBLE; 5160 s->flags |= SLAB_TRACE; 5161 } 5162 return length; 5163 } 5164 SLAB_ATTR(trace); 5165 5166 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5167 { 5168 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5169 } 5170 5171 static ssize_t red_zone_store(struct kmem_cache *s, 5172 const char *buf, size_t length) 5173 { 5174 if (any_slab_objects(s)) 5175 return -EBUSY; 5176 5177 s->flags &= ~SLAB_RED_ZONE; 5178 if (buf[0] == '1') { 5179 s->flags |= SLAB_RED_ZONE; 5180 } 5181 calculate_sizes(s, -1); 5182 return length; 5183 } 5184 SLAB_ATTR(red_zone); 5185 5186 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5187 { 5188 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5189 } 5190 5191 static ssize_t poison_store(struct kmem_cache *s, 5192 const char *buf, size_t length) 5193 { 5194 if (any_slab_objects(s)) 5195 return -EBUSY; 5196 5197 s->flags &= ~SLAB_POISON; 5198 if (buf[0] == '1') { 5199 s->flags |= SLAB_POISON; 5200 } 5201 calculate_sizes(s, -1); 5202 return length; 5203 } 5204 SLAB_ATTR(poison); 5205 5206 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5207 { 5208 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5209 } 5210 5211 static ssize_t store_user_store(struct kmem_cache *s, 5212 const char *buf, size_t length) 5213 { 5214 if (any_slab_objects(s)) 5215 return -EBUSY; 5216 5217 s->flags &= ~SLAB_STORE_USER; 5218 if (buf[0] == '1') { 5219 s->flags &= ~__CMPXCHG_DOUBLE; 5220 s->flags |= SLAB_STORE_USER; 5221 } 5222 calculate_sizes(s, -1); 5223 return length; 5224 } 5225 SLAB_ATTR(store_user); 5226 5227 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5228 { 5229 return 0; 5230 } 5231 5232 static ssize_t validate_store(struct kmem_cache *s, 5233 const char *buf, size_t length) 5234 { 5235 int ret = -EINVAL; 5236 5237 if (buf[0] == '1') { 5238 ret = validate_slab_cache(s); 5239 if (ret >= 0) 5240 ret = length; 5241 } 5242 return ret; 5243 } 5244 SLAB_ATTR(validate); 5245 5246 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5247 { 5248 if (!(s->flags & SLAB_STORE_USER)) 5249 return -ENOSYS; 5250 return list_locations(s, buf, TRACK_ALLOC); 5251 } 5252 SLAB_ATTR_RO(alloc_calls); 5253 5254 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5255 { 5256 if (!(s->flags & SLAB_STORE_USER)) 5257 return -ENOSYS; 5258 return list_locations(s, buf, TRACK_FREE); 5259 } 5260 SLAB_ATTR_RO(free_calls); 5261 #endif /* CONFIG_SLUB_DEBUG */ 5262 5263 #ifdef CONFIG_FAILSLAB 5264 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5265 { 5266 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5267 } 5268 5269 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5270 size_t length) 5271 { 5272 if (s->refcount > 1) 5273 return -EINVAL; 5274 5275 s->flags &= ~SLAB_FAILSLAB; 5276 if (buf[0] == '1') 5277 s->flags |= SLAB_FAILSLAB; 5278 return length; 5279 } 5280 SLAB_ATTR(failslab); 5281 #endif 5282 5283 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5284 { 5285 return 0; 5286 } 5287 5288 static ssize_t shrink_store(struct kmem_cache *s, 5289 const char *buf, size_t length) 5290 { 5291 if (buf[0] == '1') 5292 kmem_cache_shrink(s); 5293 else 5294 return -EINVAL; 5295 return length; 5296 } 5297 SLAB_ATTR(shrink); 5298 5299 #ifdef CONFIG_NUMA 5300 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5301 { 5302 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5303 } 5304 5305 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5306 const char *buf, size_t length) 5307 { 5308 unsigned int ratio; 5309 int err; 5310 5311 err = kstrtouint(buf, 10, &ratio); 5312 if (err) 5313 return err; 5314 if (ratio > 100) 5315 return -ERANGE; 5316 5317 s->remote_node_defrag_ratio = ratio * 10; 5318 5319 return length; 5320 } 5321 SLAB_ATTR(remote_node_defrag_ratio); 5322 #endif 5323 5324 #ifdef CONFIG_SLUB_STATS 5325 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5326 { 5327 unsigned long sum = 0; 5328 int cpu; 5329 int len; 5330 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5331 5332 if (!data) 5333 return -ENOMEM; 5334 5335 for_each_online_cpu(cpu) { 5336 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5337 5338 data[cpu] = x; 5339 sum += x; 5340 } 5341 5342 len = sprintf(buf, "%lu", sum); 5343 5344 #ifdef CONFIG_SMP 5345 for_each_online_cpu(cpu) { 5346 if (data[cpu] && len < PAGE_SIZE - 20) 5347 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5348 } 5349 #endif 5350 kfree(data); 5351 return len + sprintf(buf + len, "\n"); 5352 } 5353 5354 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5355 { 5356 int cpu; 5357 5358 for_each_online_cpu(cpu) 5359 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5360 } 5361 5362 #define STAT_ATTR(si, text) \ 5363 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5364 { \ 5365 return show_stat(s, buf, si); \ 5366 } \ 5367 static ssize_t text##_store(struct kmem_cache *s, \ 5368 const char *buf, size_t length) \ 5369 { \ 5370 if (buf[0] != '0') \ 5371 return -EINVAL; \ 5372 clear_stat(s, si); \ 5373 return length; \ 5374 } \ 5375 SLAB_ATTR(text); \ 5376 5377 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5378 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5379 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5380 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5381 STAT_ATTR(FREE_FROZEN, free_frozen); 5382 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5383 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5384 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5385 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5386 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5387 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5388 STAT_ATTR(FREE_SLAB, free_slab); 5389 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5390 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5391 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5392 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5393 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5394 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5395 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5396 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5397 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5398 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5399 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5400 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5401 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5402 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5403 #endif 5404 5405 static struct attribute *slab_attrs[] = { 5406 &slab_size_attr.attr, 5407 &object_size_attr.attr, 5408 &objs_per_slab_attr.attr, 5409 &order_attr.attr, 5410 &min_partial_attr.attr, 5411 &cpu_partial_attr.attr, 5412 &objects_attr.attr, 5413 &objects_partial_attr.attr, 5414 &partial_attr.attr, 5415 &cpu_slabs_attr.attr, 5416 &ctor_attr.attr, 5417 &aliases_attr.attr, 5418 &align_attr.attr, 5419 &hwcache_align_attr.attr, 5420 &reclaim_account_attr.attr, 5421 &destroy_by_rcu_attr.attr, 5422 &shrink_attr.attr, 5423 &slabs_cpu_partial_attr.attr, 5424 #ifdef CONFIG_SLUB_DEBUG 5425 &total_objects_attr.attr, 5426 &slabs_attr.attr, 5427 &sanity_checks_attr.attr, 5428 &trace_attr.attr, 5429 &red_zone_attr.attr, 5430 &poison_attr.attr, 5431 &store_user_attr.attr, 5432 &validate_attr.attr, 5433 &alloc_calls_attr.attr, 5434 &free_calls_attr.attr, 5435 #endif 5436 #ifdef CONFIG_ZONE_DMA 5437 &cache_dma_attr.attr, 5438 #endif 5439 #ifdef CONFIG_NUMA 5440 &remote_node_defrag_ratio_attr.attr, 5441 #endif 5442 #ifdef CONFIG_SLUB_STATS 5443 &alloc_fastpath_attr.attr, 5444 &alloc_slowpath_attr.attr, 5445 &free_fastpath_attr.attr, 5446 &free_slowpath_attr.attr, 5447 &free_frozen_attr.attr, 5448 &free_add_partial_attr.attr, 5449 &free_remove_partial_attr.attr, 5450 &alloc_from_partial_attr.attr, 5451 &alloc_slab_attr.attr, 5452 &alloc_refill_attr.attr, 5453 &alloc_node_mismatch_attr.attr, 5454 &free_slab_attr.attr, 5455 &cpuslab_flush_attr.attr, 5456 &deactivate_full_attr.attr, 5457 &deactivate_empty_attr.attr, 5458 &deactivate_to_head_attr.attr, 5459 &deactivate_to_tail_attr.attr, 5460 &deactivate_remote_frees_attr.attr, 5461 &deactivate_bypass_attr.attr, 5462 &order_fallback_attr.attr, 5463 &cmpxchg_double_fail_attr.attr, 5464 &cmpxchg_double_cpu_fail_attr.attr, 5465 &cpu_partial_alloc_attr.attr, 5466 &cpu_partial_free_attr.attr, 5467 &cpu_partial_node_attr.attr, 5468 &cpu_partial_drain_attr.attr, 5469 #endif 5470 #ifdef CONFIG_FAILSLAB 5471 &failslab_attr.attr, 5472 #endif 5473 &usersize_attr.attr, 5474 5475 NULL 5476 }; 5477 5478 static const struct attribute_group slab_attr_group = { 5479 .attrs = slab_attrs, 5480 }; 5481 5482 static ssize_t slab_attr_show(struct kobject *kobj, 5483 struct attribute *attr, 5484 char *buf) 5485 { 5486 struct slab_attribute *attribute; 5487 struct kmem_cache *s; 5488 int err; 5489 5490 attribute = to_slab_attr(attr); 5491 s = to_slab(kobj); 5492 5493 if (!attribute->show) 5494 return -EIO; 5495 5496 err = attribute->show(s, buf); 5497 5498 return err; 5499 } 5500 5501 static ssize_t slab_attr_store(struct kobject *kobj, 5502 struct attribute *attr, 5503 const char *buf, size_t len) 5504 { 5505 struct slab_attribute *attribute; 5506 struct kmem_cache *s; 5507 int err; 5508 5509 attribute = to_slab_attr(attr); 5510 s = to_slab(kobj); 5511 5512 if (!attribute->store) 5513 return -EIO; 5514 5515 err = attribute->store(s, buf, len); 5516 #ifdef CONFIG_MEMCG 5517 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5518 struct kmem_cache *c; 5519 5520 mutex_lock(&slab_mutex); 5521 if (s->max_attr_size < len) 5522 s->max_attr_size = len; 5523 5524 /* 5525 * This is a best effort propagation, so this function's return 5526 * value will be determined by the parent cache only. This is 5527 * basically because not all attributes will have a well 5528 * defined semantics for rollbacks - most of the actions will 5529 * have permanent effects. 5530 * 5531 * Returning the error value of any of the children that fail 5532 * is not 100 % defined, in the sense that users seeing the 5533 * error code won't be able to know anything about the state of 5534 * the cache. 5535 * 5536 * Only returning the error code for the parent cache at least 5537 * has well defined semantics. The cache being written to 5538 * directly either failed or succeeded, in which case we loop 5539 * through the descendants with best-effort propagation. 5540 */ 5541 for_each_memcg_cache(c, s) 5542 attribute->store(c, buf, len); 5543 mutex_unlock(&slab_mutex); 5544 } 5545 #endif 5546 return err; 5547 } 5548 5549 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5550 { 5551 #ifdef CONFIG_MEMCG 5552 int i; 5553 char *buffer = NULL; 5554 struct kmem_cache *root_cache; 5555 5556 if (is_root_cache(s)) 5557 return; 5558 5559 root_cache = s->memcg_params.root_cache; 5560 5561 /* 5562 * This mean this cache had no attribute written. Therefore, no point 5563 * in copying default values around 5564 */ 5565 if (!root_cache->max_attr_size) 5566 return; 5567 5568 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5569 char mbuf[64]; 5570 char *buf; 5571 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5572 ssize_t len; 5573 5574 if (!attr || !attr->store || !attr->show) 5575 continue; 5576 5577 /* 5578 * It is really bad that we have to allocate here, so we will 5579 * do it only as a fallback. If we actually allocate, though, 5580 * we can just use the allocated buffer until the end. 5581 * 5582 * Most of the slub attributes will tend to be very small in 5583 * size, but sysfs allows buffers up to a page, so they can 5584 * theoretically happen. 5585 */ 5586 if (buffer) 5587 buf = buffer; 5588 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5589 buf = mbuf; 5590 else { 5591 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5592 if (WARN_ON(!buffer)) 5593 continue; 5594 buf = buffer; 5595 } 5596 5597 len = attr->show(root_cache, buf); 5598 if (len > 0) 5599 attr->store(s, buf, len); 5600 } 5601 5602 if (buffer) 5603 free_page((unsigned long)buffer); 5604 #endif 5605 } 5606 5607 static void kmem_cache_release(struct kobject *k) 5608 { 5609 slab_kmem_cache_release(to_slab(k)); 5610 } 5611 5612 static const struct sysfs_ops slab_sysfs_ops = { 5613 .show = slab_attr_show, 5614 .store = slab_attr_store, 5615 }; 5616 5617 static struct kobj_type slab_ktype = { 5618 .sysfs_ops = &slab_sysfs_ops, 5619 .release = kmem_cache_release, 5620 }; 5621 5622 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5623 { 5624 struct kobj_type *ktype = get_ktype(kobj); 5625 5626 if (ktype == &slab_ktype) 5627 return 1; 5628 return 0; 5629 } 5630 5631 static const struct kset_uevent_ops slab_uevent_ops = { 5632 .filter = uevent_filter, 5633 }; 5634 5635 static struct kset *slab_kset; 5636 5637 static inline struct kset *cache_kset(struct kmem_cache *s) 5638 { 5639 #ifdef CONFIG_MEMCG 5640 if (!is_root_cache(s)) 5641 return s->memcg_params.root_cache->memcg_kset; 5642 #endif 5643 return slab_kset; 5644 } 5645 5646 #define ID_STR_LENGTH 64 5647 5648 /* Create a unique string id for a slab cache: 5649 * 5650 * Format :[flags-]size 5651 */ 5652 static char *create_unique_id(struct kmem_cache *s) 5653 { 5654 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5655 char *p = name; 5656 5657 BUG_ON(!name); 5658 5659 *p++ = ':'; 5660 /* 5661 * First flags affecting slabcache operations. We will only 5662 * get here for aliasable slabs so we do not need to support 5663 * too many flags. The flags here must cover all flags that 5664 * are matched during merging to guarantee that the id is 5665 * unique. 5666 */ 5667 if (s->flags & SLAB_CACHE_DMA) 5668 *p++ = 'd'; 5669 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5670 *p++ = 'a'; 5671 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5672 *p++ = 'F'; 5673 if (s->flags & SLAB_ACCOUNT) 5674 *p++ = 'A'; 5675 if (p != name + 1) 5676 *p++ = '-'; 5677 p += sprintf(p, "%07u", s->size); 5678 5679 BUG_ON(p > name + ID_STR_LENGTH - 1); 5680 return name; 5681 } 5682 5683 static void sysfs_slab_remove_workfn(struct work_struct *work) 5684 { 5685 struct kmem_cache *s = 5686 container_of(work, struct kmem_cache, kobj_remove_work); 5687 5688 if (!s->kobj.state_in_sysfs) 5689 /* 5690 * For a memcg cache, this may be called during 5691 * deactivation and again on shutdown. Remove only once. 5692 * A cache is never shut down before deactivation is 5693 * complete, so no need to worry about synchronization. 5694 */ 5695 goto out; 5696 5697 #ifdef CONFIG_MEMCG 5698 kset_unregister(s->memcg_kset); 5699 #endif 5700 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5701 out: 5702 kobject_put(&s->kobj); 5703 } 5704 5705 static int sysfs_slab_add(struct kmem_cache *s) 5706 { 5707 int err; 5708 const char *name; 5709 struct kset *kset = cache_kset(s); 5710 int unmergeable = slab_unmergeable(s); 5711 5712 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5713 5714 if (!kset) { 5715 kobject_init(&s->kobj, &slab_ktype); 5716 return 0; 5717 } 5718 5719 if (!unmergeable && disable_higher_order_debug && 5720 (slub_debug & DEBUG_METADATA_FLAGS)) 5721 unmergeable = 1; 5722 5723 if (unmergeable) { 5724 /* 5725 * Slabcache can never be merged so we can use the name proper. 5726 * This is typically the case for debug situations. In that 5727 * case we can catch duplicate names easily. 5728 */ 5729 sysfs_remove_link(&slab_kset->kobj, s->name); 5730 name = s->name; 5731 } else { 5732 /* 5733 * Create a unique name for the slab as a target 5734 * for the symlinks. 5735 */ 5736 name = create_unique_id(s); 5737 } 5738 5739 s->kobj.kset = kset; 5740 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5741 if (err) 5742 goto out; 5743 5744 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5745 if (err) 5746 goto out_del_kobj; 5747 5748 #ifdef CONFIG_MEMCG 5749 if (is_root_cache(s) && memcg_sysfs_enabled) { 5750 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5751 if (!s->memcg_kset) { 5752 err = -ENOMEM; 5753 goto out_del_kobj; 5754 } 5755 } 5756 #endif 5757 5758 kobject_uevent(&s->kobj, KOBJ_ADD); 5759 if (!unmergeable) { 5760 /* Setup first alias */ 5761 sysfs_slab_alias(s, s->name); 5762 } 5763 out: 5764 if (!unmergeable) 5765 kfree(name); 5766 return err; 5767 out_del_kobj: 5768 kobject_del(&s->kobj); 5769 goto out; 5770 } 5771 5772 static void sysfs_slab_remove(struct kmem_cache *s) 5773 { 5774 if (slab_state < FULL) 5775 /* 5776 * Sysfs has not been setup yet so no need to remove the 5777 * cache from sysfs. 5778 */ 5779 return; 5780 5781 kobject_get(&s->kobj); 5782 schedule_work(&s->kobj_remove_work); 5783 } 5784 5785 void sysfs_slab_unlink(struct kmem_cache *s) 5786 { 5787 if (slab_state >= FULL) 5788 kobject_del(&s->kobj); 5789 } 5790 5791 void sysfs_slab_release(struct kmem_cache *s) 5792 { 5793 if (slab_state >= FULL) 5794 kobject_put(&s->kobj); 5795 } 5796 5797 /* 5798 * Need to buffer aliases during bootup until sysfs becomes 5799 * available lest we lose that information. 5800 */ 5801 struct saved_alias { 5802 struct kmem_cache *s; 5803 const char *name; 5804 struct saved_alias *next; 5805 }; 5806 5807 static struct saved_alias *alias_list; 5808 5809 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5810 { 5811 struct saved_alias *al; 5812 5813 if (slab_state == FULL) { 5814 /* 5815 * If we have a leftover link then remove it. 5816 */ 5817 sysfs_remove_link(&slab_kset->kobj, name); 5818 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5819 } 5820 5821 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5822 if (!al) 5823 return -ENOMEM; 5824 5825 al->s = s; 5826 al->name = name; 5827 al->next = alias_list; 5828 alias_list = al; 5829 return 0; 5830 } 5831 5832 static int __init slab_sysfs_init(void) 5833 { 5834 struct kmem_cache *s; 5835 int err; 5836 5837 mutex_lock(&slab_mutex); 5838 5839 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5840 if (!slab_kset) { 5841 mutex_unlock(&slab_mutex); 5842 pr_err("Cannot register slab subsystem.\n"); 5843 return -ENOSYS; 5844 } 5845 5846 slab_state = FULL; 5847 5848 list_for_each_entry(s, &slab_caches, list) { 5849 err = sysfs_slab_add(s); 5850 if (err) 5851 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5852 s->name); 5853 } 5854 5855 while (alias_list) { 5856 struct saved_alias *al = alias_list; 5857 5858 alias_list = alias_list->next; 5859 err = sysfs_slab_alias(al->s, al->name); 5860 if (err) 5861 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5862 al->name); 5863 kfree(al); 5864 } 5865 5866 mutex_unlock(&slab_mutex); 5867 resiliency_test(); 5868 return 0; 5869 } 5870 5871 __initcall(slab_sysfs_init); 5872 #endif /* CONFIG_SYSFS */ 5873 5874 /* 5875 * The /proc/slabinfo ABI 5876 */ 5877 #ifdef CONFIG_SLUB_DEBUG 5878 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5879 { 5880 unsigned long nr_slabs = 0; 5881 unsigned long nr_objs = 0; 5882 unsigned long nr_free = 0; 5883 int node; 5884 struct kmem_cache_node *n; 5885 5886 for_each_kmem_cache_node(s, node, n) { 5887 nr_slabs += node_nr_slabs(n); 5888 nr_objs += node_nr_objs(n); 5889 nr_free += count_partial(n, count_free); 5890 } 5891 5892 sinfo->active_objs = nr_objs - nr_free; 5893 sinfo->num_objs = nr_objs; 5894 sinfo->active_slabs = nr_slabs; 5895 sinfo->num_slabs = nr_slabs; 5896 sinfo->objects_per_slab = oo_objects(s->oo); 5897 sinfo->cache_order = oo_order(s->oo); 5898 } 5899 5900 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5901 { 5902 } 5903 5904 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5905 size_t count, loff_t *ppos) 5906 { 5907 return -EIO; 5908 } 5909 #endif /* CONFIG_SLUB_DEBUG */ 5910