xref: /linux/mm/slub.c (revision c0b2826aa02a0747c3016457b9c1917ba14d0655)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 		p += s->red_left_pad;
131 
132 	return p;
133 }
134 
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 	return !kmem_cache_debug(s);
139 #else
140 	return false;
141 #endif
142 }
143 
144 /*
145  * Issues still to be resolved:
146  *
147  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148  *
149  * - Variable sizing of the per node arrays
150  */
151 
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154 
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157 
158 /*
159  * Mininum number of partial slabs. These will be left on the partial
160  * lists even if they are empty. kmem_cache_shrink may reclaim them.
161  */
162 #define MIN_PARTIAL 5
163 
164 /*
165  * Maximum number of desirable partial slabs.
166  * The existence of more partial slabs makes kmem_cache_shrink
167  * sort the partial list by the number of objects in use.
168  */
169 #define MAX_PARTIAL 10
170 
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 				SLAB_POISON | SLAB_STORE_USER)
173 
174 /*
175  * These debug flags cannot use CMPXCHG because there might be consistency
176  * issues when checking or reading debug information
177  */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 				SLAB_TRACE)
180 
181 
182 /*
183  * Debugging flags that require metadata to be stored in the slab.  These get
184  * disabled when slub_debug=O is used and a cache's min order increases with
185  * metadata.
186  */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188 
189 #define OO_SHIFT	16
190 #define OO_MASK		((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192 
193 /* Internal SLUB flags */
194 /* Poison object */
195 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
196 /* Use cmpxchg_double */
197 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
198 
199 /*
200  * Tracking user of a slab.
201  */
202 #define TRACK_ADDRS_COUNT 16
203 struct track {
204 	unsigned long addr;	/* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
207 #endif
208 	int cpu;		/* Was running on cpu */
209 	int pid;		/* Pid context */
210 	unsigned long when;	/* When did the operation occur */
211 };
212 
213 enum track_item { TRACK_ALLOC, TRACK_FREE };
214 
215 #ifdef CONFIG_SYSFS
216 static int sysfs_slab_add(struct kmem_cache *);
217 static int sysfs_slab_alias(struct kmem_cache *, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219 static void sysfs_slab_remove(struct kmem_cache *s);
220 #else
221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 							{ return 0; }
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /********************************************************************
240  * 			Core slab cache functions
241  *******************************************************************/
242 
243 /*
244  * Returns freelist pointer (ptr). With hardening, this is obfuscated
245  * with an XOR of the address where the pointer is held and a per-cache
246  * random number.
247  */
248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 				 unsigned long ptr_addr)
250 {
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
253 #else
254 	return ptr;
255 #endif
256 }
257 
258 /* Returns the freelist pointer recorded at location ptr_addr. */
259 static inline void *freelist_dereference(const struct kmem_cache *s,
260 					 void *ptr_addr)
261 {
262 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
263 			    (unsigned long)ptr_addr);
264 }
265 
266 static inline void *get_freepointer(struct kmem_cache *s, void *object)
267 {
268 	return freelist_dereference(s, object + s->offset);
269 }
270 
271 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
272 {
273 	prefetch(object + s->offset);
274 }
275 
276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
277 {
278 	unsigned long freepointer_addr;
279 	void *p;
280 
281 	if (!debug_pagealloc_enabled())
282 		return get_freepointer(s, object);
283 
284 	freepointer_addr = (unsigned long)object + s->offset;
285 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
286 	return freelist_ptr(s, p, freepointer_addr);
287 }
288 
289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290 {
291 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
292 
293 #ifdef CONFIG_SLAB_FREELIST_HARDENED
294 	BUG_ON(object == fp); /* naive detection of double free or corruption */
295 #endif
296 
297 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
298 }
299 
300 /* Loop over all objects in a slab */
301 #define for_each_object(__p, __s, __addr, __objects) \
302 	for (__p = fixup_red_left(__s, __addr); \
303 		__p < (__addr) + (__objects) * (__s)->size; \
304 		__p += (__s)->size)
305 
306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
307 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 		__idx <= __objects; \
309 		__p += (__s)->size, __idx++)
310 
311 /* Determine object index from a given position */
312 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
313 {
314 	return (p - addr) / s->size;
315 }
316 
317 static inline unsigned int order_objects(unsigned int order, unsigned int size)
318 {
319 	return ((unsigned int)PAGE_SIZE << order) / size;
320 }
321 
322 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
323 		unsigned int size)
324 {
325 	struct kmem_cache_order_objects x = {
326 		(order << OO_SHIFT) + order_objects(order, size)
327 	};
328 
329 	return x;
330 }
331 
332 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
333 {
334 	return x.x >> OO_SHIFT;
335 }
336 
337 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
338 {
339 	return x.x & OO_MASK;
340 }
341 
342 /*
343  * Per slab locking using the pagelock
344  */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 	VM_BUG_ON_PAGE(PageTail(page), page);
348 	bit_spin_lock(PG_locked, &page->flags);
349 }
350 
351 static __always_inline void slab_unlock(struct page *page)
352 {
353 	VM_BUG_ON_PAGE(PageTail(page), page);
354 	__bit_spin_unlock(PG_locked, &page->flags);
355 }
356 
357 /* Interrupts must be disabled (for the fallback code to work right) */
358 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
359 		void *freelist_old, unsigned long counters_old,
360 		void *freelist_new, unsigned long counters_new,
361 		const char *n)
362 {
363 	VM_BUG_ON(!irqs_disabled());
364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
365     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
366 	if (s->flags & __CMPXCHG_DOUBLE) {
367 		if (cmpxchg_double(&page->freelist, &page->counters,
368 				   freelist_old, counters_old,
369 				   freelist_new, counters_new))
370 			return true;
371 	} else
372 #endif
373 	{
374 		slab_lock(page);
375 		if (page->freelist == freelist_old &&
376 					page->counters == counters_old) {
377 			page->freelist = freelist_new;
378 			page->counters = counters_new;
379 			slab_unlock(page);
380 			return true;
381 		}
382 		slab_unlock(page);
383 	}
384 
385 	cpu_relax();
386 	stat(s, CMPXCHG_DOUBLE_FAIL);
387 
388 #ifdef SLUB_DEBUG_CMPXCHG
389 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
390 #endif
391 
392 	return false;
393 }
394 
395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
396 		void *freelist_old, unsigned long counters_old,
397 		void *freelist_new, unsigned long counters_new,
398 		const char *n)
399 {
400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402 	if (s->flags & __CMPXCHG_DOUBLE) {
403 		if (cmpxchg_double(&page->freelist, &page->counters,
404 				   freelist_old, counters_old,
405 				   freelist_new, counters_new))
406 			return true;
407 	} else
408 #endif
409 	{
410 		unsigned long flags;
411 
412 		local_irq_save(flags);
413 		slab_lock(page);
414 		if (page->freelist == freelist_old &&
415 					page->counters == counters_old) {
416 			page->freelist = freelist_new;
417 			page->counters = counters_new;
418 			slab_unlock(page);
419 			local_irq_restore(flags);
420 			return true;
421 		}
422 		slab_unlock(page);
423 		local_irq_restore(flags);
424 	}
425 
426 	cpu_relax();
427 	stat(s, CMPXCHG_DOUBLE_FAIL);
428 
429 #ifdef SLUB_DEBUG_CMPXCHG
430 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
431 #endif
432 
433 	return false;
434 }
435 
436 #ifdef CONFIG_SLUB_DEBUG
437 /*
438  * Determine a map of object in use on a page.
439  *
440  * Node listlock must be held to guarantee that the page does
441  * not vanish from under us.
442  */
443 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
444 {
445 	void *p;
446 	void *addr = page_address(page);
447 
448 	for (p = page->freelist; p; p = get_freepointer(s, p))
449 		set_bit(slab_index(p, s, addr), map);
450 }
451 
452 static inline unsigned int size_from_object(struct kmem_cache *s)
453 {
454 	if (s->flags & SLAB_RED_ZONE)
455 		return s->size - s->red_left_pad;
456 
457 	return s->size;
458 }
459 
460 static inline void *restore_red_left(struct kmem_cache *s, void *p)
461 {
462 	if (s->flags & SLAB_RED_ZONE)
463 		p -= s->red_left_pad;
464 
465 	return p;
466 }
467 
468 /*
469  * Debug settings:
470  */
471 #if defined(CONFIG_SLUB_DEBUG_ON)
472 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static slab_flags_t slub_debug;
475 #endif
476 
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479 
480 /*
481  * slub is about to manipulate internal object metadata.  This memory lies
482  * outside the range of the allocated object, so accessing it would normally
483  * be reported by kasan as a bounds error.  metadata_access_enable() is used
484  * to tell kasan that these accesses are OK.
485  */
486 static inline void metadata_access_enable(void)
487 {
488 	kasan_disable_current();
489 }
490 
491 static inline void metadata_access_disable(void)
492 {
493 	kasan_enable_current();
494 }
495 
496 /*
497  * Object debugging
498  */
499 
500 /* Verify that a pointer has an address that is valid within a slab page */
501 static inline int check_valid_pointer(struct kmem_cache *s,
502 				struct page *page, void *object)
503 {
504 	void *base;
505 
506 	if (!object)
507 		return 1;
508 
509 	base = page_address(page);
510 	object = restore_red_left(s, object);
511 	if (object < base || object >= base + page->objects * s->size ||
512 		(object - base) % s->size) {
513 		return 0;
514 	}
515 
516 	return 1;
517 }
518 
519 static void print_section(char *level, char *text, u8 *addr,
520 			  unsigned int length)
521 {
522 	metadata_access_enable();
523 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
524 			length, 1);
525 	metadata_access_disable();
526 }
527 
528 static struct track *get_track(struct kmem_cache *s, void *object,
529 	enum track_item alloc)
530 {
531 	struct track *p;
532 
533 	if (s->offset)
534 		p = object + s->offset + sizeof(void *);
535 	else
536 		p = object + s->inuse;
537 
538 	return p + alloc;
539 }
540 
541 static void set_track(struct kmem_cache *s, void *object,
542 			enum track_item alloc, unsigned long addr)
543 {
544 	struct track *p = get_track(s, object, alloc);
545 
546 	if (addr) {
547 #ifdef CONFIG_STACKTRACE
548 		struct stack_trace trace;
549 		int i;
550 
551 		trace.nr_entries = 0;
552 		trace.max_entries = TRACK_ADDRS_COUNT;
553 		trace.entries = p->addrs;
554 		trace.skip = 3;
555 		metadata_access_enable();
556 		save_stack_trace(&trace);
557 		metadata_access_disable();
558 
559 		/* See rant in lockdep.c */
560 		if (trace.nr_entries != 0 &&
561 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
562 			trace.nr_entries--;
563 
564 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
565 			p->addrs[i] = 0;
566 #endif
567 		p->addr = addr;
568 		p->cpu = smp_processor_id();
569 		p->pid = current->pid;
570 		p->when = jiffies;
571 	} else
572 		memset(p, 0, sizeof(struct track));
573 }
574 
575 static void init_tracking(struct kmem_cache *s, void *object)
576 {
577 	if (!(s->flags & SLAB_STORE_USER))
578 		return;
579 
580 	set_track(s, object, TRACK_FREE, 0UL);
581 	set_track(s, object, TRACK_ALLOC, 0UL);
582 }
583 
584 static void print_track(const char *s, struct track *t, unsigned long pr_time)
585 {
586 	if (!t->addr)
587 		return;
588 
589 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
590 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
591 #ifdef CONFIG_STACKTRACE
592 	{
593 		int i;
594 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
595 			if (t->addrs[i])
596 				pr_err("\t%pS\n", (void *)t->addrs[i]);
597 			else
598 				break;
599 	}
600 #endif
601 }
602 
603 static void print_tracking(struct kmem_cache *s, void *object)
604 {
605 	unsigned long pr_time = jiffies;
606 	if (!(s->flags & SLAB_STORE_USER))
607 		return;
608 
609 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
610 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
611 }
612 
613 static void print_page_info(struct page *page)
614 {
615 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
616 	       page, page->objects, page->inuse, page->freelist, page->flags);
617 
618 }
619 
620 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
621 {
622 	struct va_format vaf;
623 	va_list args;
624 
625 	va_start(args, fmt);
626 	vaf.fmt = fmt;
627 	vaf.va = &args;
628 	pr_err("=============================================================================\n");
629 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
630 	pr_err("-----------------------------------------------------------------------------\n\n");
631 
632 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
633 	va_end(args);
634 }
635 
636 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
637 {
638 	struct va_format vaf;
639 	va_list args;
640 
641 	va_start(args, fmt);
642 	vaf.fmt = fmt;
643 	vaf.va = &args;
644 	pr_err("FIX %s: %pV\n", s->name, &vaf);
645 	va_end(args);
646 }
647 
648 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
649 {
650 	unsigned int off;	/* Offset of last byte */
651 	u8 *addr = page_address(page);
652 
653 	print_tracking(s, p);
654 
655 	print_page_info(page);
656 
657 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
658 	       p, p - addr, get_freepointer(s, p));
659 
660 	if (s->flags & SLAB_RED_ZONE)
661 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
662 			      s->red_left_pad);
663 	else if (p > addr + 16)
664 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
665 
666 	print_section(KERN_ERR, "Object ", p,
667 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
668 	if (s->flags & SLAB_RED_ZONE)
669 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
670 			s->inuse - s->object_size);
671 
672 	if (s->offset)
673 		off = s->offset + sizeof(void *);
674 	else
675 		off = s->inuse;
676 
677 	if (s->flags & SLAB_STORE_USER)
678 		off += 2 * sizeof(struct track);
679 
680 	off += kasan_metadata_size(s);
681 
682 	if (off != size_from_object(s))
683 		/* Beginning of the filler is the free pointer */
684 		print_section(KERN_ERR, "Padding ", p + off,
685 			      size_from_object(s) - off);
686 
687 	dump_stack();
688 }
689 
690 void object_err(struct kmem_cache *s, struct page *page,
691 			u8 *object, char *reason)
692 {
693 	slab_bug(s, "%s", reason);
694 	print_trailer(s, page, object);
695 }
696 
697 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
698 			const char *fmt, ...)
699 {
700 	va_list args;
701 	char buf[100];
702 
703 	va_start(args, fmt);
704 	vsnprintf(buf, sizeof(buf), fmt, args);
705 	va_end(args);
706 	slab_bug(s, "%s", buf);
707 	print_page_info(page);
708 	dump_stack();
709 }
710 
711 static void init_object(struct kmem_cache *s, void *object, u8 val)
712 {
713 	u8 *p = object;
714 
715 	if (s->flags & SLAB_RED_ZONE)
716 		memset(p - s->red_left_pad, val, s->red_left_pad);
717 
718 	if (s->flags & __OBJECT_POISON) {
719 		memset(p, POISON_FREE, s->object_size - 1);
720 		p[s->object_size - 1] = POISON_END;
721 	}
722 
723 	if (s->flags & SLAB_RED_ZONE)
724 		memset(p + s->object_size, val, s->inuse - s->object_size);
725 }
726 
727 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 						void *from, void *to)
729 {
730 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 	memset(from, data, to - from);
732 }
733 
734 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 			u8 *object, char *what,
736 			u8 *start, unsigned int value, unsigned int bytes)
737 {
738 	u8 *fault;
739 	u8 *end;
740 
741 	metadata_access_enable();
742 	fault = memchr_inv(start, value, bytes);
743 	metadata_access_disable();
744 	if (!fault)
745 		return 1;
746 
747 	end = start + bytes;
748 	while (end > fault && end[-1] == value)
749 		end--;
750 
751 	slab_bug(s, "%s overwritten", what);
752 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
753 					fault, end - 1, fault[0], value);
754 	print_trailer(s, page, object);
755 
756 	restore_bytes(s, what, value, fault, end);
757 	return 0;
758 }
759 
760 /*
761  * Object layout:
762  *
763  * object address
764  * 	Bytes of the object to be managed.
765  * 	If the freepointer may overlay the object then the free
766  * 	pointer is the first word of the object.
767  *
768  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
769  * 	0xa5 (POISON_END)
770  *
771  * object + s->object_size
772  * 	Padding to reach word boundary. This is also used for Redzoning.
773  * 	Padding is extended by another word if Redzoning is enabled and
774  * 	object_size == inuse.
775  *
776  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
777  * 	0xcc (RED_ACTIVE) for objects in use.
778  *
779  * object + s->inuse
780  * 	Meta data starts here.
781  *
782  * 	A. Free pointer (if we cannot overwrite object on free)
783  * 	B. Tracking data for SLAB_STORE_USER
784  * 	C. Padding to reach required alignment boundary or at mininum
785  * 		one word if debugging is on to be able to detect writes
786  * 		before the word boundary.
787  *
788  *	Padding is done using 0x5a (POISON_INUSE)
789  *
790  * object + s->size
791  * 	Nothing is used beyond s->size.
792  *
793  * If slabcaches are merged then the object_size and inuse boundaries are mostly
794  * ignored. And therefore no slab options that rely on these boundaries
795  * may be used with merged slabcaches.
796  */
797 
798 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
799 {
800 	unsigned long off = s->inuse;	/* The end of info */
801 
802 	if (s->offset)
803 		/* Freepointer is placed after the object. */
804 		off += sizeof(void *);
805 
806 	if (s->flags & SLAB_STORE_USER)
807 		/* We also have user information there */
808 		off += 2 * sizeof(struct track);
809 
810 	off += kasan_metadata_size(s);
811 
812 	if (size_from_object(s) == off)
813 		return 1;
814 
815 	return check_bytes_and_report(s, page, p, "Object padding",
816 			p + off, POISON_INUSE, size_from_object(s) - off);
817 }
818 
819 /* Check the pad bytes at the end of a slab page */
820 static int slab_pad_check(struct kmem_cache *s, struct page *page)
821 {
822 	u8 *start;
823 	u8 *fault;
824 	u8 *end;
825 	u8 *pad;
826 	int length;
827 	int remainder;
828 
829 	if (!(s->flags & SLAB_POISON))
830 		return 1;
831 
832 	start = page_address(page);
833 	length = PAGE_SIZE << compound_order(page);
834 	end = start + length;
835 	remainder = length % s->size;
836 	if (!remainder)
837 		return 1;
838 
839 	pad = end - remainder;
840 	metadata_access_enable();
841 	fault = memchr_inv(pad, POISON_INUSE, remainder);
842 	metadata_access_disable();
843 	if (!fault)
844 		return 1;
845 	while (end > fault && end[-1] == POISON_INUSE)
846 		end--;
847 
848 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
849 	print_section(KERN_ERR, "Padding ", pad, remainder);
850 
851 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
852 	return 0;
853 }
854 
855 static int check_object(struct kmem_cache *s, struct page *page,
856 					void *object, u8 val)
857 {
858 	u8 *p = object;
859 	u8 *endobject = object + s->object_size;
860 
861 	if (s->flags & SLAB_RED_ZONE) {
862 		if (!check_bytes_and_report(s, page, object, "Redzone",
863 			object - s->red_left_pad, val, s->red_left_pad))
864 			return 0;
865 
866 		if (!check_bytes_and_report(s, page, object, "Redzone",
867 			endobject, val, s->inuse - s->object_size))
868 			return 0;
869 	} else {
870 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
871 			check_bytes_and_report(s, page, p, "Alignment padding",
872 				endobject, POISON_INUSE,
873 				s->inuse - s->object_size);
874 		}
875 	}
876 
877 	if (s->flags & SLAB_POISON) {
878 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
879 			(!check_bytes_and_report(s, page, p, "Poison", p,
880 					POISON_FREE, s->object_size - 1) ||
881 			 !check_bytes_and_report(s, page, p, "Poison",
882 				p + s->object_size - 1, POISON_END, 1)))
883 			return 0;
884 		/*
885 		 * check_pad_bytes cleans up on its own.
886 		 */
887 		check_pad_bytes(s, page, p);
888 	}
889 
890 	if (!s->offset && val == SLUB_RED_ACTIVE)
891 		/*
892 		 * Object and freepointer overlap. Cannot check
893 		 * freepointer while object is allocated.
894 		 */
895 		return 1;
896 
897 	/* Check free pointer validity */
898 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
899 		object_err(s, page, p, "Freepointer corrupt");
900 		/*
901 		 * No choice but to zap it and thus lose the remainder
902 		 * of the free objects in this slab. May cause
903 		 * another error because the object count is now wrong.
904 		 */
905 		set_freepointer(s, p, NULL);
906 		return 0;
907 	}
908 	return 1;
909 }
910 
911 static int check_slab(struct kmem_cache *s, struct page *page)
912 {
913 	int maxobj;
914 
915 	VM_BUG_ON(!irqs_disabled());
916 
917 	if (!PageSlab(page)) {
918 		slab_err(s, page, "Not a valid slab page");
919 		return 0;
920 	}
921 
922 	maxobj = order_objects(compound_order(page), s->size);
923 	if (page->objects > maxobj) {
924 		slab_err(s, page, "objects %u > max %u",
925 			page->objects, maxobj);
926 		return 0;
927 	}
928 	if (page->inuse > page->objects) {
929 		slab_err(s, page, "inuse %u > max %u",
930 			page->inuse, page->objects);
931 		return 0;
932 	}
933 	/* Slab_pad_check fixes things up after itself */
934 	slab_pad_check(s, page);
935 	return 1;
936 }
937 
938 /*
939  * Determine if a certain object on a page is on the freelist. Must hold the
940  * slab lock to guarantee that the chains are in a consistent state.
941  */
942 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
943 {
944 	int nr = 0;
945 	void *fp;
946 	void *object = NULL;
947 	int max_objects;
948 
949 	fp = page->freelist;
950 	while (fp && nr <= page->objects) {
951 		if (fp == search)
952 			return 1;
953 		if (!check_valid_pointer(s, page, fp)) {
954 			if (object) {
955 				object_err(s, page, object,
956 					"Freechain corrupt");
957 				set_freepointer(s, object, NULL);
958 			} else {
959 				slab_err(s, page, "Freepointer corrupt");
960 				page->freelist = NULL;
961 				page->inuse = page->objects;
962 				slab_fix(s, "Freelist cleared");
963 				return 0;
964 			}
965 			break;
966 		}
967 		object = fp;
968 		fp = get_freepointer(s, object);
969 		nr++;
970 	}
971 
972 	max_objects = order_objects(compound_order(page), s->size);
973 	if (max_objects > MAX_OBJS_PER_PAGE)
974 		max_objects = MAX_OBJS_PER_PAGE;
975 
976 	if (page->objects != max_objects) {
977 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
978 			 page->objects, max_objects);
979 		page->objects = max_objects;
980 		slab_fix(s, "Number of objects adjusted.");
981 	}
982 	if (page->inuse != page->objects - nr) {
983 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
984 			 page->inuse, page->objects - nr);
985 		page->inuse = page->objects - nr;
986 		slab_fix(s, "Object count adjusted.");
987 	}
988 	return search == NULL;
989 }
990 
991 static void trace(struct kmem_cache *s, struct page *page, void *object,
992 								int alloc)
993 {
994 	if (s->flags & SLAB_TRACE) {
995 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
996 			s->name,
997 			alloc ? "alloc" : "free",
998 			object, page->inuse,
999 			page->freelist);
1000 
1001 		if (!alloc)
1002 			print_section(KERN_INFO, "Object ", (void *)object,
1003 					s->object_size);
1004 
1005 		dump_stack();
1006 	}
1007 }
1008 
1009 /*
1010  * Tracking of fully allocated slabs for debugging purposes.
1011  */
1012 static void add_full(struct kmem_cache *s,
1013 	struct kmem_cache_node *n, struct page *page)
1014 {
1015 	if (!(s->flags & SLAB_STORE_USER))
1016 		return;
1017 
1018 	lockdep_assert_held(&n->list_lock);
1019 	list_add(&page->lru, &n->full);
1020 }
1021 
1022 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1023 {
1024 	if (!(s->flags & SLAB_STORE_USER))
1025 		return;
1026 
1027 	lockdep_assert_held(&n->list_lock);
1028 	list_del(&page->lru);
1029 }
1030 
1031 /* Tracking of the number of slabs for debugging purposes */
1032 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1033 {
1034 	struct kmem_cache_node *n = get_node(s, node);
1035 
1036 	return atomic_long_read(&n->nr_slabs);
1037 }
1038 
1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1040 {
1041 	return atomic_long_read(&n->nr_slabs);
1042 }
1043 
1044 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1045 {
1046 	struct kmem_cache_node *n = get_node(s, node);
1047 
1048 	/*
1049 	 * May be called early in order to allocate a slab for the
1050 	 * kmem_cache_node structure. Solve the chicken-egg
1051 	 * dilemma by deferring the increment of the count during
1052 	 * bootstrap (see early_kmem_cache_node_alloc).
1053 	 */
1054 	if (likely(n)) {
1055 		atomic_long_inc(&n->nr_slabs);
1056 		atomic_long_add(objects, &n->total_objects);
1057 	}
1058 }
1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1060 {
1061 	struct kmem_cache_node *n = get_node(s, node);
1062 
1063 	atomic_long_dec(&n->nr_slabs);
1064 	atomic_long_sub(objects, &n->total_objects);
1065 }
1066 
1067 /* Object debug checks for alloc/free paths */
1068 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1069 								void *object)
1070 {
1071 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1072 		return;
1073 
1074 	init_object(s, object, SLUB_RED_INACTIVE);
1075 	init_tracking(s, object);
1076 }
1077 
1078 static inline int alloc_consistency_checks(struct kmem_cache *s,
1079 					struct page *page,
1080 					void *object, unsigned long addr)
1081 {
1082 	if (!check_slab(s, page))
1083 		return 0;
1084 
1085 	if (!check_valid_pointer(s, page, object)) {
1086 		object_err(s, page, object, "Freelist Pointer check fails");
1087 		return 0;
1088 	}
1089 
1090 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1091 		return 0;
1092 
1093 	return 1;
1094 }
1095 
1096 static noinline int alloc_debug_processing(struct kmem_cache *s,
1097 					struct page *page,
1098 					void *object, unsigned long addr)
1099 {
1100 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1101 		if (!alloc_consistency_checks(s, page, object, addr))
1102 			goto bad;
1103 	}
1104 
1105 	/* Success perform special debug activities for allocs */
1106 	if (s->flags & SLAB_STORE_USER)
1107 		set_track(s, object, TRACK_ALLOC, addr);
1108 	trace(s, page, object, 1);
1109 	init_object(s, object, SLUB_RED_ACTIVE);
1110 	return 1;
1111 
1112 bad:
1113 	if (PageSlab(page)) {
1114 		/*
1115 		 * If this is a slab page then lets do the best we can
1116 		 * to avoid issues in the future. Marking all objects
1117 		 * as used avoids touching the remaining objects.
1118 		 */
1119 		slab_fix(s, "Marking all objects used");
1120 		page->inuse = page->objects;
1121 		page->freelist = NULL;
1122 	}
1123 	return 0;
1124 }
1125 
1126 static inline int free_consistency_checks(struct kmem_cache *s,
1127 		struct page *page, void *object, unsigned long addr)
1128 {
1129 	if (!check_valid_pointer(s, page, object)) {
1130 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1131 		return 0;
1132 	}
1133 
1134 	if (on_freelist(s, page, object)) {
1135 		object_err(s, page, object, "Object already free");
1136 		return 0;
1137 	}
1138 
1139 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1140 		return 0;
1141 
1142 	if (unlikely(s != page->slab_cache)) {
1143 		if (!PageSlab(page)) {
1144 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1145 				 object);
1146 		} else if (!page->slab_cache) {
1147 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1148 			       object);
1149 			dump_stack();
1150 		} else
1151 			object_err(s, page, object,
1152 					"page slab pointer corrupt.");
1153 		return 0;
1154 	}
1155 	return 1;
1156 }
1157 
1158 /* Supports checking bulk free of a constructed freelist */
1159 static noinline int free_debug_processing(
1160 	struct kmem_cache *s, struct page *page,
1161 	void *head, void *tail, int bulk_cnt,
1162 	unsigned long addr)
1163 {
1164 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1165 	void *object = head;
1166 	int cnt = 0;
1167 	unsigned long uninitialized_var(flags);
1168 	int ret = 0;
1169 
1170 	spin_lock_irqsave(&n->list_lock, flags);
1171 	slab_lock(page);
1172 
1173 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1174 		if (!check_slab(s, page))
1175 			goto out;
1176 	}
1177 
1178 next_object:
1179 	cnt++;
1180 
1181 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 		if (!free_consistency_checks(s, page, object, addr))
1183 			goto out;
1184 	}
1185 
1186 	if (s->flags & SLAB_STORE_USER)
1187 		set_track(s, object, TRACK_FREE, addr);
1188 	trace(s, page, object, 0);
1189 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1190 	init_object(s, object, SLUB_RED_INACTIVE);
1191 
1192 	/* Reached end of constructed freelist yet? */
1193 	if (object != tail) {
1194 		object = get_freepointer(s, object);
1195 		goto next_object;
1196 	}
1197 	ret = 1;
1198 
1199 out:
1200 	if (cnt != bulk_cnt)
1201 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1202 			 bulk_cnt, cnt);
1203 
1204 	slab_unlock(page);
1205 	spin_unlock_irqrestore(&n->list_lock, flags);
1206 	if (!ret)
1207 		slab_fix(s, "Object at 0x%p not freed", object);
1208 	return ret;
1209 }
1210 
1211 static int __init setup_slub_debug(char *str)
1212 {
1213 	slub_debug = DEBUG_DEFAULT_FLAGS;
1214 	if (*str++ != '=' || !*str)
1215 		/*
1216 		 * No options specified. Switch on full debugging.
1217 		 */
1218 		goto out;
1219 
1220 	if (*str == ',')
1221 		/*
1222 		 * No options but restriction on slabs. This means full
1223 		 * debugging for slabs matching a pattern.
1224 		 */
1225 		goto check_slabs;
1226 
1227 	slub_debug = 0;
1228 	if (*str == '-')
1229 		/*
1230 		 * Switch off all debugging measures.
1231 		 */
1232 		goto out;
1233 
1234 	/*
1235 	 * Determine which debug features should be switched on
1236 	 */
1237 	for (; *str && *str != ','; str++) {
1238 		switch (tolower(*str)) {
1239 		case 'f':
1240 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1241 			break;
1242 		case 'z':
1243 			slub_debug |= SLAB_RED_ZONE;
1244 			break;
1245 		case 'p':
1246 			slub_debug |= SLAB_POISON;
1247 			break;
1248 		case 'u':
1249 			slub_debug |= SLAB_STORE_USER;
1250 			break;
1251 		case 't':
1252 			slub_debug |= SLAB_TRACE;
1253 			break;
1254 		case 'a':
1255 			slub_debug |= SLAB_FAILSLAB;
1256 			break;
1257 		case 'o':
1258 			/*
1259 			 * Avoid enabling debugging on caches if its minimum
1260 			 * order would increase as a result.
1261 			 */
1262 			disable_higher_order_debug = 1;
1263 			break;
1264 		default:
1265 			pr_err("slub_debug option '%c' unknown. skipped\n",
1266 			       *str);
1267 		}
1268 	}
1269 
1270 check_slabs:
1271 	if (*str == ',')
1272 		slub_debug_slabs = str + 1;
1273 out:
1274 	return 1;
1275 }
1276 
1277 __setup("slub_debug", setup_slub_debug);
1278 
1279 /*
1280  * kmem_cache_flags - apply debugging options to the cache
1281  * @object_size:	the size of an object without meta data
1282  * @flags:		flags to set
1283  * @name:		name of the cache
1284  * @ctor:		constructor function
1285  *
1286  * Debug option(s) are applied to @flags. In addition to the debug
1287  * option(s), if a slab name (or multiple) is specified i.e.
1288  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1289  * then only the select slabs will receive the debug option(s).
1290  */
1291 slab_flags_t kmem_cache_flags(unsigned int object_size,
1292 	slab_flags_t flags, const char *name,
1293 	void (*ctor)(void *))
1294 {
1295 	char *iter;
1296 	size_t len;
1297 
1298 	/* If slub_debug = 0, it folds into the if conditional. */
1299 	if (!slub_debug_slabs)
1300 		return flags | slub_debug;
1301 
1302 	len = strlen(name);
1303 	iter = slub_debug_slabs;
1304 	while (*iter) {
1305 		char *end, *glob;
1306 		size_t cmplen;
1307 
1308 		end = strchr(iter, ',');
1309 		if (!end)
1310 			end = iter + strlen(iter);
1311 
1312 		glob = strnchr(iter, end - iter, '*');
1313 		if (glob)
1314 			cmplen = glob - iter;
1315 		else
1316 			cmplen = max_t(size_t, len, (end - iter));
1317 
1318 		if (!strncmp(name, iter, cmplen)) {
1319 			flags |= slub_debug;
1320 			break;
1321 		}
1322 
1323 		if (!*end)
1324 			break;
1325 		iter = end + 1;
1326 	}
1327 
1328 	return flags;
1329 }
1330 #else /* !CONFIG_SLUB_DEBUG */
1331 static inline void setup_object_debug(struct kmem_cache *s,
1332 			struct page *page, void *object) {}
1333 
1334 static inline int alloc_debug_processing(struct kmem_cache *s,
1335 	struct page *page, void *object, unsigned long addr) { return 0; }
1336 
1337 static inline int free_debug_processing(
1338 	struct kmem_cache *s, struct page *page,
1339 	void *head, void *tail, int bulk_cnt,
1340 	unsigned long addr) { return 0; }
1341 
1342 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1343 			{ return 1; }
1344 static inline int check_object(struct kmem_cache *s, struct page *page,
1345 			void *object, u8 val) { return 1; }
1346 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1347 					struct page *page) {}
1348 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1349 					struct page *page) {}
1350 slab_flags_t kmem_cache_flags(unsigned int object_size,
1351 	slab_flags_t flags, const char *name,
1352 	void (*ctor)(void *))
1353 {
1354 	return flags;
1355 }
1356 #define slub_debug 0
1357 
1358 #define disable_higher_order_debug 0
1359 
1360 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1361 							{ return 0; }
1362 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1363 							{ return 0; }
1364 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1365 							int objects) {}
1366 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1367 							int objects) {}
1368 
1369 #endif /* CONFIG_SLUB_DEBUG */
1370 
1371 /*
1372  * Hooks for other subsystems that check memory allocations. In a typical
1373  * production configuration these hooks all should produce no code at all.
1374  */
1375 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1376 {
1377 	kmemleak_alloc(ptr, size, 1, flags);
1378 	kasan_kmalloc_large(ptr, size, flags);
1379 }
1380 
1381 static __always_inline void kfree_hook(void *x)
1382 {
1383 	kmemleak_free(x);
1384 	kasan_kfree_large(x, _RET_IP_);
1385 }
1386 
1387 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1388 {
1389 	kmemleak_free_recursive(x, s->flags);
1390 
1391 	/*
1392 	 * Trouble is that we may no longer disable interrupts in the fast path
1393 	 * So in order to make the debug calls that expect irqs to be
1394 	 * disabled we need to disable interrupts temporarily.
1395 	 */
1396 #ifdef CONFIG_LOCKDEP
1397 	{
1398 		unsigned long flags;
1399 
1400 		local_irq_save(flags);
1401 		debug_check_no_locks_freed(x, s->object_size);
1402 		local_irq_restore(flags);
1403 	}
1404 #endif
1405 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1406 		debug_check_no_obj_freed(x, s->object_size);
1407 
1408 	/* KASAN might put x into memory quarantine, delaying its reuse */
1409 	return kasan_slab_free(s, x, _RET_IP_);
1410 }
1411 
1412 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1413 					   void **head, void **tail)
1414 {
1415 /*
1416  * Compiler cannot detect this function can be removed if slab_free_hook()
1417  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1418  */
1419 #if defined(CONFIG_LOCKDEP)	||		\
1420 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1421 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1422 	defined(CONFIG_KASAN)
1423 
1424 	void *object;
1425 	void *next = *head;
1426 	void *old_tail = *tail ? *tail : *head;
1427 
1428 	/* Head and tail of the reconstructed freelist */
1429 	*head = NULL;
1430 	*tail = NULL;
1431 
1432 	do {
1433 		object = next;
1434 		next = get_freepointer(s, object);
1435 		/* If object's reuse doesn't have to be delayed */
1436 		if (!slab_free_hook(s, object)) {
1437 			/* Move object to the new freelist */
1438 			set_freepointer(s, object, *head);
1439 			*head = object;
1440 			if (!*tail)
1441 				*tail = object;
1442 		}
1443 	} while (object != old_tail);
1444 
1445 	if (*head == *tail)
1446 		*tail = NULL;
1447 
1448 	return *head != NULL;
1449 #else
1450 	return true;
1451 #endif
1452 }
1453 
1454 static void setup_object(struct kmem_cache *s, struct page *page,
1455 				void *object)
1456 {
1457 	setup_object_debug(s, page, object);
1458 	kasan_init_slab_obj(s, object);
1459 	if (unlikely(s->ctor)) {
1460 		kasan_unpoison_object_data(s, object);
1461 		s->ctor(object);
1462 		kasan_poison_object_data(s, object);
1463 	}
1464 }
1465 
1466 /*
1467  * Slab allocation and freeing
1468  */
1469 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1470 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1471 {
1472 	struct page *page;
1473 	unsigned int order = oo_order(oo);
1474 
1475 	if (node == NUMA_NO_NODE)
1476 		page = alloc_pages(flags, order);
1477 	else
1478 		page = __alloc_pages_node(node, flags, order);
1479 
1480 	if (page && memcg_charge_slab(page, flags, order, s)) {
1481 		__free_pages(page, order);
1482 		page = NULL;
1483 	}
1484 
1485 	return page;
1486 }
1487 
1488 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1489 /* Pre-initialize the random sequence cache */
1490 static int init_cache_random_seq(struct kmem_cache *s)
1491 {
1492 	unsigned int count = oo_objects(s->oo);
1493 	int err;
1494 
1495 	/* Bailout if already initialised */
1496 	if (s->random_seq)
1497 		return 0;
1498 
1499 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1500 	if (err) {
1501 		pr_err("SLUB: Unable to initialize free list for %s\n",
1502 			s->name);
1503 		return err;
1504 	}
1505 
1506 	/* Transform to an offset on the set of pages */
1507 	if (s->random_seq) {
1508 		unsigned int i;
1509 
1510 		for (i = 0; i < count; i++)
1511 			s->random_seq[i] *= s->size;
1512 	}
1513 	return 0;
1514 }
1515 
1516 /* Initialize each random sequence freelist per cache */
1517 static void __init init_freelist_randomization(void)
1518 {
1519 	struct kmem_cache *s;
1520 
1521 	mutex_lock(&slab_mutex);
1522 
1523 	list_for_each_entry(s, &slab_caches, list)
1524 		init_cache_random_seq(s);
1525 
1526 	mutex_unlock(&slab_mutex);
1527 }
1528 
1529 /* Get the next entry on the pre-computed freelist randomized */
1530 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1531 				unsigned long *pos, void *start,
1532 				unsigned long page_limit,
1533 				unsigned long freelist_count)
1534 {
1535 	unsigned int idx;
1536 
1537 	/*
1538 	 * If the target page allocation failed, the number of objects on the
1539 	 * page might be smaller than the usual size defined by the cache.
1540 	 */
1541 	do {
1542 		idx = s->random_seq[*pos];
1543 		*pos += 1;
1544 		if (*pos >= freelist_count)
1545 			*pos = 0;
1546 	} while (unlikely(idx >= page_limit));
1547 
1548 	return (char *)start + idx;
1549 }
1550 
1551 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1552 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1553 {
1554 	void *start;
1555 	void *cur;
1556 	void *next;
1557 	unsigned long idx, pos, page_limit, freelist_count;
1558 
1559 	if (page->objects < 2 || !s->random_seq)
1560 		return false;
1561 
1562 	freelist_count = oo_objects(s->oo);
1563 	pos = get_random_int() % freelist_count;
1564 
1565 	page_limit = page->objects * s->size;
1566 	start = fixup_red_left(s, page_address(page));
1567 
1568 	/* First entry is used as the base of the freelist */
1569 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1570 				freelist_count);
1571 	page->freelist = cur;
1572 
1573 	for (idx = 1; idx < page->objects; idx++) {
1574 		setup_object(s, page, cur);
1575 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1576 			freelist_count);
1577 		set_freepointer(s, cur, next);
1578 		cur = next;
1579 	}
1580 	setup_object(s, page, cur);
1581 	set_freepointer(s, cur, NULL);
1582 
1583 	return true;
1584 }
1585 #else
1586 static inline int init_cache_random_seq(struct kmem_cache *s)
1587 {
1588 	return 0;
1589 }
1590 static inline void init_freelist_randomization(void) { }
1591 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1592 {
1593 	return false;
1594 }
1595 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1596 
1597 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1598 {
1599 	struct page *page;
1600 	struct kmem_cache_order_objects oo = s->oo;
1601 	gfp_t alloc_gfp;
1602 	void *start, *p;
1603 	int idx, order;
1604 	bool shuffle;
1605 
1606 	flags &= gfp_allowed_mask;
1607 
1608 	if (gfpflags_allow_blocking(flags))
1609 		local_irq_enable();
1610 
1611 	flags |= s->allocflags;
1612 
1613 	/*
1614 	 * Let the initial higher-order allocation fail under memory pressure
1615 	 * so we fall-back to the minimum order allocation.
1616 	 */
1617 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1618 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1619 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1620 
1621 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1622 	if (unlikely(!page)) {
1623 		oo = s->min;
1624 		alloc_gfp = flags;
1625 		/*
1626 		 * Allocation may have failed due to fragmentation.
1627 		 * Try a lower order alloc if possible
1628 		 */
1629 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1630 		if (unlikely(!page))
1631 			goto out;
1632 		stat(s, ORDER_FALLBACK);
1633 	}
1634 
1635 	page->objects = oo_objects(oo);
1636 
1637 	order = compound_order(page);
1638 	page->slab_cache = s;
1639 	__SetPageSlab(page);
1640 	if (page_is_pfmemalloc(page))
1641 		SetPageSlabPfmemalloc(page);
1642 
1643 	start = page_address(page);
1644 
1645 	if (unlikely(s->flags & SLAB_POISON))
1646 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1647 
1648 	kasan_poison_slab(page);
1649 
1650 	shuffle = shuffle_freelist(s, page);
1651 
1652 	if (!shuffle) {
1653 		for_each_object_idx(p, idx, s, start, page->objects) {
1654 			setup_object(s, page, p);
1655 			if (likely(idx < page->objects))
1656 				set_freepointer(s, p, p + s->size);
1657 			else
1658 				set_freepointer(s, p, NULL);
1659 		}
1660 		page->freelist = fixup_red_left(s, start);
1661 	}
1662 
1663 	page->inuse = page->objects;
1664 	page->frozen = 1;
1665 
1666 out:
1667 	if (gfpflags_allow_blocking(flags))
1668 		local_irq_disable();
1669 	if (!page)
1670 		return NULL;
1671 
1672 	mod_lruvec_page_state(page,
1673 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1674 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1675 		1 << oo_order(oo));
1676 
1677 	inc_slabs_node(s, page_to_nid(page), page->objects);
1678 
1679 	return page;
1680 }
1681 
1682 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1683 {
1684 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1685 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1686 		flags &= ~GFP_SLAB_BUG_MASK;
1687 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1688 				invalid_mask, &invalid_mask, flags, &flags);
1689 		dump_stack();
1690 	}
1691 
1692 	return allocate_slab(s,
1693 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1694 }
1695 
1696 static void __free_slab(struct kmem_cache *s, struct page *page)
1697 {
1698 	int order = compound_order(page);
1699 	int pages = 1 << order;
1700 
1701 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1702 		void *p;
1703 
1704 		slab_pad_check(s, page);
1705 		for_each_object(p, s, page_address(page),
1706 						page->objects)
1707 			check_object(s, page, p, SLUB_RED_INACTIVE);
1708 	}
1709 
1710 	mod_lruvec_page_state(page,
1711 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1712 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1713 		-pages);
1714 
1715 	__ClearPageSlabPfmemalloc(page);
1716 	__ClearPageSlab(page);
1717 
1718 	page->mapping = NULL;
1719 	if (current->reclaim_state)
1720 		current->reclaim_state->reclaimed_slab += pages;
1721 	memcg_uncharge_slab(page, order, s);
1722 	__free_pages(page, order);
1723 }
1724 
1725 static void rcu_free_slab(struct rcu_head *h)
1726 {
1727 	struct page *page = container_of(h, struct page, rcu_head);
1728 
1729 	__free_slab(page->slab_cache, page);
1730 }
1731 
1732 static void free_slab(struct kmem_cache *s, struct page *page)
1733 {
1734 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1735 		call_rcu(&page->rcu_head, rcu_free_slab);
1736 	} else
1737 		__free_slab(s, page);
1738 }
1739 
1740 static void discard_slab(struct kmem_cache *s, struct page *page)
1741 {
1742 	dec_slabs_node(s, page_to_nid(page), page->objects);
1743 	free_slab(s, page);
1744 }
1745 
1746 /*
1747  * Management of partially allocated slabs.
1748  */
1749 static inline void
1750 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1751 {
1752 	n->nr_partial++;
1753 	if (tail == DEACTIVATE_TO_TAIL)
1754 		list_add_tail(&page->lru, &n->partial);
1755 	else
1756 		list_add(&page->lru, &n->partial);
1757 }
1758 
1759 static inline void add_partial(struct kmem_cache_node *n,
1760 				struct page *page, int tail)
1761 {
1762 	lockdep_assert_held(&n->list_lock);
1763 	__add_partial(n, page, tail);
1764 }
1765 
1766 static inline void remove_partial(struct kmem_cache_node *n,
1767 					struct page *page)
1768 {
1769 	lockdep_assert_held(&n->list_lock);
1770 	list_del(&page->lru);
1771 	n->nr_partial--;
1772 }
1773 
1774 /*
1775  * Remove slab from the partial list, freeze it and
1776  * return the pointer to the freelist.
1777  *
1778  * Returns a list of objects or NULL if it fails.
1779  */
1780 static inline void *acquire_slab(struct kmem_cache *s,
1781 		struct kmem_cache_node *n, struct page *page,
1782 		int mode, int *objects)
1783 {
1784 	void *freelist;
1785 	unsigned long counters;
1786 	struct page new;
1787 
1788 	lockdep_assert_held(&n->list_lock);
1789 
1790 	/*
1791 	 * Zap the freelist and set the frozen bit.
1792 	 * The old freelist is the list of objects for the
1793 	 * per cpu allocation list.
1794 	 */
1795 	freelist = page->freelist;
1796 	counters = page->counters;
1797 	new.counters = counters;
1798 	*objects = new.objects - new.inuse;
1799 	if (mode) {
1800 		new.inuse = page->objects;
1801 		new.freelist = NULL;
1802 	} else {
1803 		new.freelist = freelist;
1804 	}
1805 
1806 	VM_BUG_ON(new.frozen);
1807 	new.frozen = 1;
1808 
1809 	if (!__cmpxchg_double_slab(s, page,
1810 			freelist, counters,
1811 			new.freelist, new.counters,
1812 			"acquire_slab"))
1813 		return NULL;
1814 
1815 	remove_partial(n, page);
1816 	WARN_ON(!freelist);
1817 	return freelist;
1818 }
1819 
1820 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1821 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1822 
1823 /*
1824  * Try to allocate a partial slab from a specific node.
1825  */
1826 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1827 				struct kmem_cache_cpu *c, gfp_t flags)
1828 {
1829 	struct page *page, *page2;
1830 	void *object = NULL;
1831 	unsigned int available = 0;
1832 	int objects;
1833 
1834 	/*
1835 	 * Racy check. If we mistakenly see no partial slabs then we
1836 	 * just allocate an empty slab. If we mistakenly try to get a
1837 	 * partial slab and there is none available then get_partials()
1838 	 * will return NULL.
1839 	 */
1840 	if (!n || !n->nr_partial)
1841 		return NULL;
1842 
1843 	spin_lock(&n->list_lock);
1844 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1845 		void *t;
1846 
1847 		if (!pfmemalloc_match(page, flags))
1848 			continue;
1849 
1850 		t = acquire_slab(s, n, page, object == NULL, &objects);
1851 		if (!t)
1852 			break;
1853 
1854 		available += objects;
1855 		if (!object) {
1856 			c->page = page;
1857 			stat(s, ALLOC_FROM_PARTIAL);
1858 			object = t;
1859 		} else {
1860 			put_cpu_partial(s, page, 0);
1861 			stat(s, CPU_PARTIAL_NODE);
1862 		}
1863 		if (!kmem_cache_has_cpu_partial(s)
1864 			|| available > slub_cpu_partial(s) / 2)
1865 			break;
1866 
1867 	}
1868 	spin_unlock(&n->list_lock);
1869 	return object;
1870 }
1871 
1872 /*
1873  * Get a page from somewhere. Search in increasing NUMA distances.
1874  */
1875 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1876 		struct kmem_cache_cpu *c)
1877 {
1878 #ifdef CONFIG_NUMA
1879 	struct zonelist *zonelist;
1880 	struct zoneref *z;
1881 	struct zone *zone;
1882 	enum zone_type high_zoneidx = gfp_zone(flags);
1883 	void *object;
1884 	unsigned int cpuset_mems_cookie;
1885 
1886 	/*
1887 	 * The defrag ratio allows a configuration of the tradeoffs between
1888 	 * inter node defragmentation and node local allocations. A lower
1889 	 * defrag_ratio increases the tendency to do local allocations
1890 	 * instead of attempting to obtain partial slabs from other nodes.
1891 	 *
1892 	 * If the defrag_ratio is set to 0 then kmalloc() always
1893 	 * returns node local objects. If the ratio is higher then kmalloc()
1894 	 * may return off node objects because partial slabs are obtained
1895 	 * from other nodes and filled up.
1896 	 *
1897 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1898 	 * (which makes defrag_ratio = 1000) then every (well almost)
1899 	 * allocation will first attempt to defrag slab caches on other nodes.
1900 	 * This means scanning over all nodes to look for partial slabs which
1901 	 * may be expensive if we do it every time we are trying to find a slab
1902 	 * with available objects.
1903 	 */
1904 	if (!s->remote_node_defrag_ratio ||
1905 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1906 		return NULL;
1907 
1908 	do {
1909 		cpuset_mems_cookie = read_mems_allowed_begin();
1910 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1911 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1912 			struct kmem_cache_node *n;
1913 
1914 			n = get_node(s, zone_to_nid(zone));
1915 
1916 			if (n && cpuset_zone_allowed(zone, flags) &&
1917 					n->nr_partial > s->min_partial) {
1918 				object = get_partial_node(s, n, c, flags);
1919 				if (object) {
1920 					/*
1921 					 * Don't check read_mems_allowed_retry()
1922 					 * here - if mems_allowed was updated in
1923 					 * parallel, that was a harmless race
1924 					 * between allocation and the cpuset
1925 					 * update
1926 					 */
1927 					return object;
1928 				}
1929 			}
1930 		}
1931 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1932 #endif
1933 	return NULL;
1934 }
1935 
1936 /*
1937  * Get a partial page, lock it and return it.
1938  */
1939 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1940 		struct kmem_cache_cpu *c)
1941 {
1942 	void *object;
1943 	int searchnode = node;
1944 
1945 	if (node == NUMA_NO_NODE)
1946 		searchnode = numa_mem_id();
1947 	else if (!node_present_pages(node))
1948 		searchnode = node_to_mem_node(node);
1949 
1950 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1951 	if (object || node != NUMA_NO_NODE)
1952 		return object;
1953 
1954 	return get_any_partial(s, flags, c);
1955 }
1956 
1957 #ifdef CONFIG_PREEMPT
1958 /*
1959  * Calculate the next globally unique transaction for disambiguiation
1960  * during cmpxchg. The transactions start with the cpu number and are then
1961  * incremented by CONFIG_NR_CPUS.
1962  */
1963 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1964 #else
1965 /*
1966  * No preemption supported therefore also no need to check for
1967  * different cpus.
1968  */
1969 #define TID_STEP 1
1970 #endif
1971 
1972 static inline unsigned long next_tid(unsigned long tid)
1973 {
1974 	return tid + TID_STEP;
1975 }
1976 
1977 static inline unsigned int tid_to_cpu(unsigned long tid)
1978 {
1979 	return tid % TID_STEP;
1980 }
1981 
1982 static inline unsigned long tid_to_event(unsigned long tid)
1983 {
1984 	return tid / TID_STEP;
1985 }
1986 
1987 static inline unsigned int init_tid(int cpu)
1988 {
1989 	return cpu;
1990 }
1991 
1992 static inline void note_cmpxchg_failure(const char *n,
1993 		const struct kmem_cache *s, unsigned long tid)
1994 {
1995 #ifdef SLUB_DEBUG_CMPXCHG
1996 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1997 
1998 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1999 
2000 #ifdef CONFIG_PREEMPT
2001 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2002 		pr_warn("due to cpu change %d -> %d\n",
2003 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2004 	else
2005 #endif
2006 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2007 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2008 			tid_to_event(tid), tid_to_event(actual_tid));
2009 	else
2010 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2011 			actual_tid, tid, next_tid(tid));
2012 #endif
2013 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2014 }
2015 
2016 static void init_kmem_cache_cpus(struct kmem_cache *s)
2017 {
2018 	int cpu;
2019 
2020 	for_each_possible_cpu(cpu)
2021 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2022 }
2023 
2024 /*
2025  * Remove the cpu slab
2026  */
2027 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2028 				void *freelist, struct kmem_cache_cpu *c)
2029 {
2030 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2031 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2032 	int lock = 0;
2033 	enum slab_modes l = M_NONE, m = M_NONE;
2034 	void *nextfree;
2035 	int tail = DEACTIVATE_TO_HEAD;
2036 	struct page new;
2037 	struct page old;
2038 
2039 	if (page->freelist) {
2040 		stat(s, DEACTIVATE_REMOTE_FREES);
2041 		tail = DEACTIVATE_TO_TAIL;
2042 	}
2043 
2044 	/*
2045 	 * Stage one: Free all available per cpu objects back
2046 	 * to the page freelist while it is still frozen. Leave the
2047 	 * last one.
2048 	 *
2049 	 * There is no need to take the list->lock because the page
2050 	 * is still frozen.
2051 	 */
2052 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2053 		void *prior;
2054 		unsigned long counters;
2055 
2056 		do {
2057 			prior = page->freelist;
2058 			counters = page->counters;
2059 			set_freepointer(s, freelist, prior);
2060 			new.counters = counters;
2061 			new.inuse--;
2062 			VM_BUG_ON(!new.frozen);
2063 
2064 		} while (!__cmpxchg_double_slab(s, page,
2065 			prior, counters,
2066 			freelist, new.counters,
2067 			"drain percpu freelist"));
2068 
2069 		freelist = nextfree;
2070 	}
2071 
2072 	/*
2073 	 * Stage two: Ensure that the page is unfrozen while the
2074 	 * list presence reflects the actual number of objects
2075 	 * during unfreeze.
2076 	 *
2077 	 * We setup the list membership and then perform a cmpxchg
2078 	 * with the count. If there is a mismatch then the page
2079 	 * is not unfrozen but the page is on the wrong list.
2080 	 *
2081 	 * Then we restart the process which may have to remove
2082 	 * the page from the list that we just put it on again
2083 	 * because the number of objects in the slab may have
2084 	 * changed.
2085 	 */
2086 redo:
2087 
2088 	old.freelist = page->freelist;
2089 	old.counters = page->counters;
2090 	VM_BUG_ON(!old.frozen);
2091 
2092 	/* Determine target state of the slab */
2093 	new.counters = old.counters;
2094 	if (freelist) {
2095 		new.inuse--;
2096 		set_freepointer(s, freelist, old.freelist);
2097 		new.freelist = freelist;
2098 	} else
2099 		new.freelist = old.freelist;
2100 
2101 	new.frozen = 0;
2102 
2103 	if (!new.inuse && n->nr_partial >= s->min_partial)
2104 		m = M_FREE;
2105 	else if (new.freelist) {
2106 		m = M_PARTIAL;
2107 		if (!lock) {
2108 			lock = 1;
2109 			/*
2110 			 * Taking the spinlock removes the possiblity
2111 			 * that acquire_slab() will see a slab page that
2112 			 * is frozen
2113 			 */
2114 			spin_lock(&n->list_lock);
2115 		}
2116 	} else {
2117 		m = M_FULL;
2118 		if (kmem_cache_debug(s) && !lock) {
2119 			lock = 1;
2120 			/*
2121 			 * This also ensures that the scanning of full
2122 			 * slabs from diagnostic functions will not see
2123 			 * any frozen slabs.
2124 			 */
2125 			spin_lock(&n->list_lock);
2126 		}
2127 	}
2128 
2129 	if (l != m) {
2130 
2131 		if (l == M_PARTIAL)
2132 
2133 			remove_partial(n, page);
2134 
2135 		else if (l == M_FULL)
2136 
2137 			remove_full(s, n, page);
2138 
2139 		if (m == M_PARTIAL) {
2140 
2141 			add_partial(n, page, tail);
2142 			stat(s, tail);
2143 
2144 		} else if (m == M_FULL) {
2145 
2146 			stat(s, DEACTIVATE_FULL);
2147 			add_full(s, n, page);
2148 
2149 		}
2150 	}
2151 
2152 	l = m;
2153 	if (!__cmpxchg_double_slab(s, page,
2154 				old.freelist, old.counters,
2155 				new.freelist, new.counters,
2156 				"unfreezing slab"))
2157 		goto redo;
2158 
2159 	if (lock)
2160 		spin_unlock(&n->list_lock);
2161 
2162 	if (m == M_FREE) {
2163 		stat(s, DEACTIVATE_EMPTY);
2164 		discard_slab(s, page);
2165 		stat(s, FREE_SLAB);
2166 	}
2167 
2168 	c->page = NULL;
2169 	c->freelist = NULL;
2170 }
2171 
2172 /*
2173  * Unfreeze all the cpu partial slabs.
2174  *
2175  * This function must be called with interrupts disabled
2176  * for the cpu using c (or some other guarantee must be there
2177  * to guarantee no concurrent accesses).
2178  */
2179 static void unfreeze_partials(struct kmem_cache *s,
2180 		struct kmem_cache_cpu *c)
2181 {
2182 #ifdef CONFIG_SLUB_CPU_PARTIAL
2183 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2184 	struct page *page, *discard_page = NULL;
2185 
2186 	while ((page = c->partial)) {
2187 		struct page new;
2188 		struct page old;
2189 
2190 		c->partial = page->next;
2191 
2192 		n2 = get_node(s, page_to_nid(page));
2193 		if (n != n2) {
2194 			if (n)
2195 				spin_unlock(&n->list_lock);
2196 
2197 			n = n2;
2198 			spin_lock(&n->list_lock);
2199 		}
2200 
2201 		do {
2202 
2203 			old.freelist = page->freelist;
2204 			old.counters = page->counters;
2205 			VM_BUG_ON(!old.frozen);
2206 
2207 			new.counters = old.counters;
2208 			new.freelist = old.freelist;
2209 
2210 			new.frozen = 0;
2211 
2212 		} while (!__cmpxchg_double_slab(s, page,
2213 				old.freelist, old.counters,
2214 				new.freelist, new.counters,
2215 				"unfreezing slab"));
2216 
2217 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2218 			page->next = discard_page;
2219 			discard_page = page;
2220 		} else {
2221 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2222 			stat(s, FREE_ADD_PARTIAL);
2223 		}
2224 	}
2225 
2226 	if (n)
2227 		spin_unlock(&n->list_lock);
2228 
2229 	while (discard_page) {
2230 		page = discard_page;
2231 		discard_page = discard_page->next;
2232 
2233 		stat(s, DEACTIVATE_EMPTY);
2234 		discard_slab(s, page);
2235 		stat(s, FREE_SLAB);
2236 	}
2237 #endif
2238 }
2239 
2240 /*
2241  * Put a page that was just frozen (in __slab_free) into a partial page
2242  * slot if available.
2243  *
2244  * If we did not find a slot then simply move all the partials to the
2245  * per node partial list.
2246  */
2247 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2248 {
2249 #ifdef CONFIG_SLUB_CPU_PARTIAL
2250 	struct page *oldpage;
2251 	int pages;
2252 	int pobjects;
2253 
2254 	preempt_disable();
2255 	do {
2256 		pages = 0;
2257 		pobjects = 0;
2258 		oldpage = this_cpu_read(s->cpu_slab->partial);
2259 
2260 		if (oldpage) {
2261 			pobjects = oldpage->pobjects;
2262 			pages = oldpage->pages;
2263 			if (drain && pobjects > s->cpu_partial) {
2264 				unsigned long flags;
2265 				/*
2266 				 * partial array is full. Move the existing
2267 				 * set to the per node partial list.
2268 				 */
2269 				local_irq_save(flags);
2270 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2271 				local_irq_restore(flags);
2272 				oldpage = NULL;
2273 				pobjects = 0;
2274 				pages = 0;
2275 				stat(s, CPU_PARTIAL_DRAIN);
2276 			}
2277 		}
2278 
2279 		pages++;
2280 		pobjects += page->objects - page->inuse;
2281 
2282 		page->pages = pages;
2283 		page->pobjects = pobjects;
2284 		page->next = oldpage;
2285 
2286 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2287 								!= oldpage);
2288 	if (unlikely(!s->cpu_partial)) {
2289 		unsigned long flags;
2290 
2291 		local_irq_save(flags);
2292 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2293 		local_irq_restore(flags);
2294 	}
2295 	preempt_enable();
2296 #endif
2297 }
2298 
2299 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2300 {
2301 	stat(s, CPUSLAB_FLUSH);
2302 	deactivate_slab(s, c->page, c->freelist, c);
2303 
2304 	c->tid = next_tid(c->tid);
2305 }
2306 
2307 /*
2308  * Flush cpu slab.
2309  *
2310  * Called from IPI handler with interrupts disabled.
2311  */
2312 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2313 {
2314 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2315 
2316 	if (likely(c)) {
2317 		if (c->page)
2318 			flush_slab(s, c);
2319 
2320 		unfreeze_partials(s, c);
2321 	}
2322 }
2323 
2324 static void flush_cpu_slab(void *d)
2325 {
2326 	struct kmem_cache *s = d;
2327 
2328 	__flush_cpu_slab(s, smp_processor_id());
2329 }
2330 
2331 static bool has_cpu_slab(int cpu, void *info)
2332 {
2333 	struct kmem_cache *s = info;
2334 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2335 
2336 	return c->page || slub_percpu_partial(c);
2337 }
2338 
2339 static void flush_all(struct kmem_cache *s)
2340 {
2341 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2342 }
2343 
2344 /*
2345  * Use the cpu notifier to insure that the cpu slabs are flushed when
2346  * necessary.
2347  */
2348 static int slub_cpu_dead(unsigned int cpu)
2349 {
2350 	struct kmem_cache *s;
2351 	unsigned long flags;
2352 
2353 	mutex_lock(&slab_mutex);
2354 	list_for_each_entry(s, &slab_caches, list) {
2355 		local_irq_save(flags);
2356 		__flush_cpu_slab(s, cpu);
2357 		local_irq_restore(flags);
2358 	}
2359 	mutex_unlock(&slab_mutex);
2360 	return 0;
2361 }
2362 
2363 /*
2364  * Check if the objects in a per cpu structure fit numa
2365  * locality expectations.
2366  */
2367 static inline int node_match(struct page *page, int node)
2368 {
2369 #ifdef CONFIG_NUMA
2370 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2371 		return 0;
2372 #endif
2373 	return 1;
2374 }
2375 
2376 #ifdef CONFIG_SLUB_DEBUG
2377 static int count_free(struct page *page)
2378 {
2379 	return page->objects - page->inuse;
2380 }
2381 
2382 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2383 {
2384 	return atomic_long_read(&n->total_objects);
2385 }
2386 #endif /* CONFIG_SLUB_DEBUG */
2387 
2388 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2389 static unsigned long count_partial(struct kmem_cache_node *n,
2390 					int (*get_count)(struct page *))
2391 {
2392 	unsigned long flags;
2393 	unsigned long x = 0;
2394 	struct page *page;
2395 
2396 	spin_lock_irqsave(&n->list_lock, flags);
2397 	list_for_each_entry(page, &n->partial, lru)
2398 		x += get_count(page);
2399 	spin_unlock_irqrestore(&n->list_lock, flags);
2400 	return x;
2401 }
2402 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2403 
2404 static noinline void
2405 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2406 {
2407 #ifdef CONFIG_SLUB_DEBUG
2408 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2409 				      DEFAULT_RATELIMIT_BURST);
2410 	int node;
2411 	struct kmem_cache_node *n;
2412 
2413 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2414 		return;
2415 
2416 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2417 		nid, gfpflags, &gfpflags);
2418 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2419 		s->name, s->object_size, s->size, oo_order(s->oo),
2420 		oo_order(s->min));
2421 
2422 	if (oo_order(s->min) > get_order(s->object_size))
2423 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2424 			s->name);
2425 
2426 	for_each_kmem_cache_node(s, node, n) {
2427 		unsigned long nr_slabs;
2428 		unsigned long nr_objs;
2429 		unsigned long nr_free;
2430 
2431 		nr_free  = count_partial(n, count_free);
2432 		nr_slabs = node_nr_slabs(n);
2433 		nr_objs  = node_nr_objs(n);
2434 
2435 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2436 			node, nr_slabs, nr_objs, nr_free);
2437 	}
2438 #endif
2439 }
2440 
2441 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2442 			int node, struct kmem_cache_cpu **pc)
2443 {
2444 	void *freelist;
2445 	struct kmem_cache_cpu *c = *pc;
2446 	struct page *page;
2447 
2448 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2449 
2450 	freelist = get_partial(s, flags, node, c);
2451 
2452 	if (freelist)
2453 		return freelist;
2454 
2455 	page = new_slab(s, flags, node);
2456 	if (page) {
2457 		c = raw_cpu_ptr(s->cpu_slab);
2458 		if (c->page)
2459 			flush_slab(s, c);
2460 
2461 		/*
2462 		 * No other reference to the page yet so we can
2463 		 * muck around with it freely without cmpxchg
2464 		 */
2465 		freelist = page->freelist;
2466 		page->freelist = NULL;
2467 
2468 		stat(s, ALLOC_SLAB);
2469 		c->page = page;
2470 		*pc = c;
2471 	} else
2472 		freelist = NULL;
2473 
2474 	return freelist;
2475 }
2476 
2477 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2478 {
2479 	if (unlikely(PageSlabPfmemalloc(page)))
2480 		return gfp_pfmemalloc_allowed(gfpflags);
2481 
2482 	return true;
2483 }
2484 
2485 /*
2486  * Check the page->freelist of a page and either transfer the freelist to the
2487  * per cpu freelist or deactivate the page.
2488  *
2489  * The page is still frozen if the return value is not NULL.
2490  *
2491  * If this function returns NULL then the page has been unfrozen.
2492  *
2493  * This function must be called with interrupt disabled.
2494  */
2495 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2496 {
2497 	struct page new;
2498 	unsigned long counters;
2499 	void *freelist;
2500 
2501 	do {
2502 		freelist = page->freelist;
2503 		counters = page->counters;
2504 
2505 		new.counters = counters;
2506 		VM_BUG_ON(!new.frozen);
2507 
2508 		new.inuse = page->objects;
2509 		new.frozen = freelist != NULL;
2510 
2511 	} while (!__cmpxchg_double_slab(s, page,
2512 		freelist, counters,
2513 		NULL, new.counters,
2514 		"get_freelist"));
2515 
2516 	return freelist;
2517 }
2518 
2519 /*
2520  * Slow path. The lockless freelist is empty or we need to perform
2521  * debugging duties.
2522  *
2523  * Processing is still very fast if new objects have been freed to the
2524  * regular freelist. In that case we simply take over the regular freelist
2525  * as the lockless freelist and zap the regular freelist.
2526  *
2527  * If that is not working then we fall back to the partial lists. We take the
2528  * first element of the freelist as the object to allocate now and move the
2529  * rest of the freelist to the lockless freelist.
2530  *
2531  * And if we were unable to get a new slab from the partial slab lists then
2532  * we need to allocate a new slab. This is the slowest path since it involves
2533  * a call to the page allocator and the setup of a new slab.
2534  *
2535  * Version of __slab_alloc to use when we know that interrupts are
2536  * already disabled (which is the case for bulk allocation).
2537  */
2538 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2539 			  unsigned long addr, struct kmem_cache_cpu *c)
2540 {
2541 	void *freelist;
2542 	struct page *page;
2543 
2544 	page = c->page;
2545 	if (!page)
2546 		goto new_slab;
2547 redo:
2548 
2549 	if (unlikely(!node_match(page, node))) {
2550 		int searchnode = node;
2551 
2552 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2553 			searchnode = node_to_mem_node(node);
2554 
2555 		if (unlikely(!node_match(page, searchnode))) {
2556 			stat(s, ALLOC_NODE_MISMATCH);
2557 			deactivate_slab(s, page, c->freelist, c);
2558 			goto new_slab;
2559 		}
2560 	}
2561 
2562 	/*
2563 	 * By rights, we should be searching for a slab page that was
2564 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2565 	 * information when the page leaves the per-cpu allocator
2566 	 */
2567 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2568 		deactivate_slab(s, page, c->freelist, c);
2569 		goto new_slab;
2570 	}
2571 
2572 	/* must check again c->freelist in case of cpu migration or IRQ */
2573 	freelist = c->freelist;
2574 	if (freelist)
2575 		goto load_freelist;
2576 
2577 	freelist = get_freelist(s, page);
2578 
2579 	if (!freelist) {
2580 		c->page = NULL;
2581 		stat(s, DEACTIVATE_BYPASS);
2582 		goto new_slab;
2583 	}
2584 
2585 	stat(s, ALLOC_REFILL);
2586 
2587 load_freelist:
2588 	/*
2589 	 * freelist is pointing to the list of objects to be used.
2590 	 * page is pointing to the page from which the objects are obtained.
2591 	 * That page must be frozen for per cpu allocations to work.
2592 	 */
2593 	VM_BUG_ON(!c->page->frozen);
2594 	c->freelist = get_freepointer(s, freelist);
2595 	c->tid = next_tid(c->tid);
2596 	return freelist;
2597 
2598 new_slab:
2599 
2600 	if (slub_percpu_partial(c)) {
2601 		page = c->page = slub_percpu_partial(c);
2602 		slub_set_percpu_partial(c, page);
2603 		stat(s, CPU_PARTIAL_ALLOC);
2604 		goto redo;
2605 	}
2606 
2607 	freelist = new_slab_objects(s, gfpflags, node, &c);
2608 
2609 	if (unlikely(!freelist)) {
2610 		slab_out_of_memory(s, gfpflags, node);
2611 		return NULL;
2612 	}
2613 
2614 	page = c->page;
2615 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2616 		goto load_freelist;
2617 
2618 	/* Only entered in the debug case */
2619 	if (kmem_cache_debug(s) &&
2620 			!alloc_debug_processing(s, page, freelist, addr))
2621 		goto new_slab;	/* Slab failed checks. Next slab needed */
2622 
2623 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2624 	return freelist;
2625 }
2626 
2627 /*
2628  * Another one that disabled interrupt and compensates for possible
2629  * cpu changes by refetching the per cpu area pointer.
2630  */
2631 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2632 			  unsigned long addr, struct kmem_cache_cpu *c)
2633 {
2634 	void *p;
2635 	unsigned long flags;
2636 
2637 	local_irq_save(flags);
2638 #ifdef CONFIG_PREEMPT
2639 	/*
2640 	 * We may have been preempted and rescheduled on a different
2641 	 * cpu before disabling interrupts. Need to reload cpu area
2642 	 * pointer.
2643 	 */
2644 	c = this_cpu_ptr(s->cpu_slab);
2645 #endif
2646 
2647 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2648 	local_irq_restore(flags);
2649 	return p;
2650 }
2651 
2652 /*
2653  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2654  * have the fastpath folded into their functions. So no function call
2655  * overhead for requests that can be satisfied on the fastpath.
2656  *
2657  * The fastpath works by first checking if the lockless freelist can be used.
2658  * If not then __slab_alloc is called for slow processing.
2659  *
2660  * Otherwise we can simply pick the next object from the lockless free list.
2661  */
2662 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2663 		gfp_t gfpflags, int node, unsigned long addr)
2664 {
2665 	void *object;
2666 	struct kmem_cache_cpu *c;
2667 	struct page *page;
2668 	unsigned long tid;
2669 
2670 	s = slab_pre_alloc_hook(s, gfpflags);
2671 	if (!s)
2672 		return NULL;
2673 redo:
2674 	/*
2675 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2676 	 * enabled. We may switch back and forth between cpus while
2677 	 * reading from one cpu area. That does not matter as long
2678 	 * as we end up on the original cpu again when doing the cmpxchg.
2679 	 *
2680 	 * We should guarantee that tid and kmem_cache are retrieved on
2681 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2682 	 * to check if it is matched or not.
2683 	 */
2684 	do {
2685 		tid = this_cpu_read(s->cpu_slab->tid);
2686 		c = raw_cpu_ptr(s->cpu_slab);
2687 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2688 		 unlikely(tid != READ_ONCE(c->tid)));
2689 
2690 	/*
2691 	 * Irqless object alloc/free algorithm used here depends on sequence
2692 	 * of fetching cpu_slab's data. tid should be fetched before anything
2693 	 * on c to guarantee that object and page associated with previous tid
2694 	 * won't be used with current tid. If we fetch tid first, object and
2695 	 * page could be one associated with next tid and our alloc/free
2696 	 * request will be failed. In this case, we will retry. So, no problem.
2697 	 */
2698 	barrier();
2699 
2700 	/*
2701 	 * The transaction ids are globally unique per cpu and per operation on
2702 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2703 	 * occurs on the right processor and that there was no operation on the
2704 	 * linked list in between.
2705 	 */
2706 
2707 	object = c->freelist;
2708 	page = c->page;
2709 	if (unlikely(!object || !node_match(page, node))) {
2710 		object = __slab_alloc(s, gfpflags, node, addr, c);
2711 		stat(s, ALLOC_SLOWPATH);
2712 	} else {
2713 		void *next_object = get_freepointer_safe(s, object);
2714 
2715 		/*
2716 		 * The cmpxchg will only match if there was no additional
2717 		 * operation and if we are on the right processor.
2718 		 *
2719 		 * The cmpxchg does the following atomically (without lock
2720 		 * semantics!)
2721 		 * 1. Relocate first pointer to the current per cpu area.
2722 		 * 2. Verify that tid and freelist have not been changed
2723 		 * 3. If they were not changed replace tid and freelist
2724 		 *
2725 		 * Since this is without lock semantics the protection is only
2726 		 * against code executing on this cpu *not* from access by
2727 		 * other cpus.
2728 		 */
2729 		if (unlikely(!this_cpu_cmpxchg_double(
2730 				s->cpu_slab->freelist, s->cpu_slab->tid,
2731 				object, tid,
2732 				next_object, next_tid(tid)))) {
2733 
2734 			note_cmpxchg_failure("slab_alloc", s, tid);
2735 			goto redo;
2736 		}
2737 		prefetch_freepointer(s, next_object);
2738 		stat(s, ALLOC_FASTPATH);
2739 	}
2740 
2741 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2742 		memset(object, 0, s->object_size);
2743 
2744 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2745 
2746 	return object;
2747 }
2748 
2749 static __always_inline void *slab_alloc(struct kmem_cache *s,
2750 		gfp_t gfpflags, unsigned long addr)
2751 {
2752 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2753 }
2754 
2755 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2756 {
2757 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2758 
2759 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2760 				s->size, gfpflags);
2761 
2762 	return ret;
2763 }
2764 EXPORT_SYMBOL(kmem_cache_alloc);
2765 
2766 #ifdef CONFIG_TRACING
2767 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2768 {
2769 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2770 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2771 	kasan_kmalloc(s, ret, size, gfpflags);
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2775 #endif
2776 
2777 #ifdef CONFIG_NUMA
2778 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2779 {
2780 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2781 
2782 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2783 				    s->object_size, s->size, gfpflags, node);
2784 
2785 	return ret;
2786 }
2787 EXPORT_SYMBOL(kmem_cache_alloc_node);
2788 
2789 #ifdef CONFIG_TRACING
2790 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2791 				    gfp_t gfpflags,
2792 				    int node, size_t size)
2793 {
2794 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2795 
2796 	trace_kmalloc_node(_RET_IP_, ret,
2797 			   size, s->size, gfpflags, node);
2798 
2799 	kasan_kmalloc(s, ret, size, gfpflags);
2800 	return ret;
2801 }
2802 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2803 #endif
2804 #endif
2805 
2806 /*
2807  * Slow path handling. This may still be called frequently since objects
2808  * have a longer lifetime than the cpu slabs in most processing loads.
2809  *
2810  * So we still attempt to reduce cache line usage. Just take the slab
2811  * lock and free the item. If there is no additional partial page
2812  * handling required then we can return immediately.
2813  */
2814 static void __slab_free(struct kmem_cache *s, struct page *page,
2815 			void *head, void *tail, int cnt,
2816 			unsigned long addr)
2817 
2818 {
2819 	void *prior;
2820 	int was_frozen;
2821 	struct page new;
2822 	unsigned long counters;
2823 	struct kmem_cache_node *n = NULL;
2824 	unsigned long uninitialized_var(flags);
2825 
2826 	stat(s, FREE_SLOWPATH);
2827 
2828 	if (kmem_cache_debug(s) &&
2829 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2830 		return;
2831 
2832 	do {
2833 		if (unlikely(n)) {
2834 			spin_unlock_irqrestore(&n->list_lock, flags);
2835 			n = NULL;
2836 		}
2837 		prior = page->freelist;
2838 		counters = page->counters;
2839 		set_freepointer(s, tail, prior);
2840 		new.counters = counters;
2841 		was_frozen = new.frozen;
2842 		new.inuse -= cnt;
2843 		if ((!new.inuse || !prior) && !was_frozen) {
2844 
2845 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2846 
2847 				/*
2848 				 * Slab was on no list before and will be
2849 				 * partially empty
2850 				 * We can defer the list move and instead
2851 				 * freeze it.
2852 				 */
2853 				new.frozen = 1;
2854 
2855 			} else { /* Needs to be taken off a list */
2856 
2857 				n = get_node(s, page_to_nid(page));
2858 				/*
2859 				 * Speculatively acquire the list_lock.
2860 				 * If the cmpxchg does not succeed then we may
2861 				 * drop the list_lock without any processing.
2862 				 *
2863 				 * Otherwise the list_lock will synchronize with
2864 				 * other processors updating the list of slabs.
2865 				 */
2866 				spin_lock_irqsave(&n->list_lock, flags);
2867 
2868 			}
2869 		}
2870 
2871 	} while (!cmpxchg_double_slab(s, page,
2872 		prior, counters,
2873 		head, new.counters,
2874 		"__slab_free"));
2875 
2876 	if (likely(!n)) {
2877 
2878 		/*
2879 		 * If we just froze the page then put it onto the
2880 		 * per cpu partial list.
2881 		 */
2882 		if (new.frozen && !was_frozen) {
2883 			put_cpu_partial(s, page, 1);
2884 			stat(s, CPU_PARTIAL_FREE);
2885 		}
2886 		/*
2887 		 * The list lock was not taken therefore no list
2888 		 * activity can be necessary.
2889 		 */
2890 		if (was_frozen)
2891 			stat(s, FREE_FROZEN);
2892 		return;
2893 	}
2894 
2895 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2896 		goto slab_empty;
2897 
2898 	/*
2899 	 * Objects left in the slab. If it was not on the partial list before
2900 	 * then add it.
2901 	 */
2902 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2903 		if (kmem_cache_debug(s))
2904 			remove_full(s, n, page);
2905 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2906 		stat(s, FREE_ADD_PARTIAL);
2907 	}
2908 	spin_unlock_irqrestore(&n->list_lock, flags);
2909 	return;
2910 
2911 slab_empty:
2912 	if (prior) {
2913 		/*
2914 		 * Slab on the partial list.
2915 		 */
2916 		remove_partial(n, page);
2917 		stat(s, FREE_REMOVE_PARTIAL);
2918 	} else {
2919 		/* Slab must be on the full list */
2920 		remove_full(s, n, page);
2921 	}
2922 
2923 	spin_unlock_irqrestore(&n->list_lock, flags);
2924 	stat(s, FREE_SLAB);
2925 	discard_slab(s, page);
2926 }
2927 
2928 /*
2929  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2930  * can perform fastpath freeing without additional function calls.
2931  *
2932  * The fastpath is only possible if we are freeing to the current cpu slab
2933  * of this processor. This typically the case if we have just allocated
2934  * the item before.
2935  *
2936  * If fastpath is not possible then fall back to __slab_free where we deal
2937  * with all sorts of special processing.
2938  *
2939  * Bulk free of a freelist with several objects (all pointing to the
2940  * same page) possible by specifying head and tail ptr, plus objects
2941  * count (cnt). Bulk free indicated by tail pointer being set.
2942  */
2943 static __always_inline void do_slab_free(struct kmem_cache *s,
2944 				struct page *page, void *head, void *tail,
2945 				int cnt, unsigned long addr)
2946 {
2947 	void *tail_obj = tail ? : head;
2948 	struct kmem_cache_cpu *c;
2949 	unsigned long tid;
2950 redo:
2951 	/*
2952 	 * Determine the currently cpus per cpu slab.
2953 	 * The cpu may change afterward. However that does not matter since
2954 	 * data is retrieved via this pointer. If we are on the same cpu
2955 	 * during the cmpxchg then the free will succeed.
2956 	 */
2957 	do {
2958 		tid = this_cpu_read(s->cpu_slab->tid);
2959 		c = raw_cpu_ptr(s->cpu_slab);
2960 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2961 		 unlikely(tid != READ_ONCE(c->tid)));
2962 
2963 	/* Same with comment on barrier() in slab_alloc_node() */
2964 	barrier();
2965 
2966 	if (likely(page == c->page)) {
2967 		set_freepointer(s, tail_obj, c->freelist);
2968 
2969 		if (unlikely(!this_cpu_cmpxchg_double(
2970 				s->cpu_slab->freelist, s->cpu_slab->tid,
2971 				c->freelist, tid,
2972 				head, next_tid(tid)))) {
2973 
2974 			note_cmpxchg_failure("slab_free", s, tid);
2975 			goto redo;
2976 		}
2977 		stat(s, FREE_FASTPATH);
2978 	} else
2979 		__slab_free(s, page, head, tail_obj, cnt, addr);
2980 
2981 }
2982 
2983 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2984 				      void *head, void *tail, int cnt,
2985 				      unsigned long addr)
2986 {
2987 	/*
2988 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2989 	 * to remove objects, whose reuse must be delayed.
2990 	 */
2991 	if (slab_free_freelist_hook(s, &head, &tail))
2992 		do_slab_free(s, page, head, tail, cnt, addr);
2993 }
2994 
2995 #ifdef CONFIG_KASAN
2996 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2997 {
2998 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2999 }
3000 #endif
3001 
3002 void kmem_cache_free(struct kmem_cache *s, void *x)
3003 {
3004 	s = cache_from_obj(s, x);
3005 	if (!s)
3006 		return;
3007 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3008 	trace_kmem_cache_free(_RET_IP_, x);
3009 }
3010 EXPORT_SYMBOL(kmem_cache_free);
3011 
3012 struct detached_freelist {
3013 	struct page *page;
3014 	void *tail;
3015 	void *freelist;
3016 	int cnt;
3017 	struct kmem_cache *s;
3018 };
3019 
3020 /*
3021  * This function progressively scans the array with free objects (with
3022  * a limited look ahead) and extract objects belonging to the same
3023  * page.  It builds a detached freelist directly within the given
3024  * page/objects.  This can happen without any need for
3025  * synchronization, because the objects are owned by running process.
3026  * The freelist is build up as a single linked list in the objects.
3027  * The idea is, that this detached freelist can then be bulk
3028  * transferred to the real freelist(s), but only requiring a single
3029  * synchronization primitive.  Look ahead in the array is limited due
3030  * to performance reasons.
3031  */
3032 static inline
3033 int build_detached_freelist(struct kmem_cache *s, size_t size,
3034 			    void **p, struct detached_freelist *df)
3035 {
3036 	size_t first_skipped_index = 0;
3037 	int lookahead = 3;
3038 	void *object;
3039 	struct page *page;
3040 
3041 	/* Always re-init detached_freelist */
3042 	df->page = NULL;
3043 
3044 	do {
3045 		object = p[--size];
3046 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3047 	} while (!object && size);
3048 
3049 	if (!object)
3050 		return 0;
3051 
3052 	page = virt_to_head_page(object);
3053 	if (!s) {
3054 		/* Handle kalloc'ed objects */
3055 		if (unlikely(!PageSlab(page))) {
3056 			BUG_ON(!PageCompound(page));
3057 			kfree_hook(object);
3058 			__free_pages(page, compound_order(page));
3059 			p[size] = NULL; /* mark object processed */
3060 			return size;
3061 		}
3062 		/* Derive kmem_cache from object */
3063 		df->s = page->slab_cache;
3064 	} else {
3065 		df->s = cache_from_obj(s, object); /* Support for memcg */
3066 	}
3067 
3068 	/* Start new detached freelist */
3069 	df->page = page;
3070 	set_freepointer(df->s, object, NULL);
3071 	df->tail = object;
3072 	df->freelist = object;
3073 	p[size] = NULL; /* mark object processed */
3074 	df->cnt = 1;
3075 
3076 	while (size) {
3077 		object = p[--size];
3078 		if (!object)
3079 			continue; /* Skip processed objects */
3080 
3081 		/* df->page is always set at this point */
3082 		if (df->page == virt_to_head_page(object)) {
3083 			/* Opportunity build freelist */
3084 			set_freepointer(df->s, object, df->freelist);
3085 			df->freelist = object;
3086 			df->cnt++;
3087 			p[size] = NULL; /* mark object processed */
3088 
3089 			continue;
3090 		}
3091 
3092 		/* Limit look ahead search */
3093 		if (!--lookahead)
3094 			break;
3095 
3096 		if (!first_skipped_index)
3097 			first_skipped_index = size + 1;
3098 	}
3099 
3100 	return first_skipped_index;
3101 }
3102 
3103 /* Note that interrupts must be enabled when calling this function. */
3104 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3105 {
3106 	if (WARN_ON(!size))
3107 		return;
3108 
3109 	do {
3110 		struct detached_freelist df;
3111 
3112 		size = build_detached_freelist(s, size, p, &df);
3113 		if (!df.page)
3114 			continue;
3115 
3116 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3117 	} while (likely(size));
3118 }
3119 EXPORT_SYMBOL(kmem_cache_free_bulk);
3120 
3121 /* Note that interrupts must be enabled when calling this function. */
3122 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3123 			  void **p)
3124 {
3125 	struct kmem_cache_cpu *c;
3126 	int i;
3127 
3128 	/* memcg and kmem_cache debug support */
3129 	s = slab_pre_alloc_hook(s, flags);
3130 	if (unlikely(!s))
3131 		return false;
3132 	/*
3133 	 * Drain objects in the per cpu slab, while disabling local
3134 	 * IRQs, which protects against PREEMPT and interrupts
3135 	 * handlers invoking normal fastpath.
3136 	 */
3137 	local_irq_disable();
3138 	c = this_cpu_ptr(s->cpu_slab);
3139 
3140 	for (i = 0; i < size; i++) {
3141 		void *object = c->freelist;
3142 
3143 		if (unlikely(!object)) {
3144 			/*
3145 			 * Invoking slow path likely have side-effect
3146 			 * of re-populating per CPU c->freelist
3147 			 */
3148 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3149 					    _RET_IP_, c);
3150 			if (unlikely(!p[i]))
3151 				goto error;
3152 
3153 			c = this_cpu_ptr(s->cpu_slab);
3154 			continue; /* goto for-loop */
3155 		}
3156 		c->freelist = get_freepointer(s, object);
3157 		p[i] = object;
3158 	}
3159 	c->tid = next_tid(c->tid);
3160 	local_irq_enable();
3161 
3162 	/* Clear memory outside IRQ disabled fastpath loop */
3163 	if (unlikely(flags & __GFP_ZERO)) {
3164 		int j;
3165 
3166 		for (j = 0; j < i; j++)
3167 			memset(p[j], 0, s->object_size);
3168 	}
3169 
3170 	/* memcg and kmem_cache debug support */
3171 	slab_post_alloc_hook(s, flags, size, p);
3172 	return i;
3173 error:
3174 	local_irq_enable();
3175 	slab_post_alloc_hook(s, flags, i, p);
3176 	__kmem_cache_free_bulk(s, i, p);
3177 	return 0;
3178 }
3179 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3180 
3181 
3182 /*
3183  * Object placement in a slab is made very easy because we always start at
3184  * offset 0. If we tune the size of the object to the alignment then we can
3185  * get the required alignment by putting one properly sized object after
3186  * another.
3187  *
3188  * Notice that the allocation order determines the sizes of the per cpu
3189  * caches. Each processor has always one slab available for allocations.
3190  * Increasing the allocation order reduces the number of times that slabs
3191  * must be moved on and off the partial lists and is therefore a factor in
3192  * locking overhead.
3193  */
3194 
3195 /*
3196  * Mininum / Maximum order of slab pages. This influences locking overhead
3197  * and slab fragmentation. A higher order reduces the number of partial slabs
3198  * and increases the number of allocations possible without having to
3199  * take the list_lock.
3200  */
3201 static unsigned int slub_min_order;
3202 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3203 static unsigned int slub_min_objects;
3204 
3205 /*
3206  * Calculate the order of allocation given an slab object size.
3207  *
3208  * The order of allocation has significant impact on performance and other
3209  * system components. Generally order 0 allocations should be preferred since
3210  * order 0 does not cause fragmentation in the page allocator. Larger objects
3211  * be problematic to put into order 0 slabs because there may be too much
3212  * unused space left. We go to a higher order if more than 1/16th of the slab
3213  * would be wasted.
3214  *
3215  * In order to reach satisfactory performance we must ensure that a minimum
3216  * number of objects is in one slab. Otherwise we may generate too much
3217  * activity on the partial lists which requires taking the list_lock. This is
3218  * less a concern for large slabs though which are rarely used.
3219  *
3220  * slub_max_order specifies the order where we begin to stop considering the
3221  * number of objects in a slab as critical. If we reach slub_max_order then
3222  * we try to keep the page order as low as possible. So we accept more waste
3223  * of space in favor of a small page order.
3224  *
3225  * Higher order allocations also allow the placement of more objects in a
3226  * slab and thereby reduce object handling overhead. If the user has
3227  * requested a higher mininum order then we start with that one instead of
3228  * the smallest order which will fit the object.
3229  */
3230 static inline unsigned int slab_order(unsigned int size,
3231 		unsigned int min_objects, unsigned int max_order,
3232 		unsigned int fract_leftover)
3233 {
3234 	unsigned int min_order = slub_min_order;
3235 	unsigned int order;
3236 
3237 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3238 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3239 
3240 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3241 			order <= max_order; order++) {
3242 
3243 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3244 		unsigned int rem;
3245 
3246 		rem = slab_size % size;
3247 
3248 		if (rem <= slab_size / fract_leftover)
3249 			break;
3250 	}
3251 
3252 	return order;
3253 }
3254 
3255 static inline int calculate_order(unsigned int size)
3256 {
3257 	unsigned int order;
3258 	unsigned int min_objects;
3259 	unsigned int max_objects;
3260 
3261 	/*
3262 	 * Attempt to find best configuration for a slab. This
3263 	 * works by first attempting to generate a layout with
3264 	 * the best configuration and backing off gradually.
3265 	 *
3266 	 * First we increase the acceptable waste in a slab. Then
3267 	 * we reduce the minimum objects required in a slab.
3268 	 */
3269 	min_objects = slub_min_objects;
3270 	if (!min_objects)
3271 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3272 	max_objects = order_objects(slub_max_order, size);
3273 	min_objects = min(min_objects, max_objects);
3274 
3275 	while (min_objects > 1) {
3276 		unsigned int fraction;
3277 
3278 		fraction = 16;
3279 		while (fraction >= 4) {
3280 			order = slab_order(size, min_objects,
3281 					slub_max_order, fraction);
3282 			if (order <= slub_max_order)
3283 				return order;
3284 			fraction /= 2;
3285 		}
3286 		min_objects--;
3287 	}
3288 
3289 	/*
3290 	 * We were unable to place multiple objects in a slab. Now
3291 	 * lets see if we can place a single object there.
3292 	 */
3293 	order = slab_order(size, 1, slub_max_order, 1);
3294 	if (order <= slub_max_order)
3295 		return order;
3296 
3297 	/*
3298 	 * Doh this slab cannot be placed using slub_max_order.
3299 	 */
3300 	order = slab_order(size, 1, MAX_ORDER, 1);
3301 	if (order < MAX_ORDER)
3302 		return order;
3303 	return -ENOSYS;
3304 }
3305 
3306 static void
3307 init_kmem_cache_node(struct kmem_cache_node *n)
3308 {
3309 	n->nr_partial = 0;
3310 	spin_lock_init(&n->list_lock);
3311 	INIT_LIST_HEAD(&n->partial);
3312 #ifdef CONFIG_SLUB_DEBUG
3313 	atomic_long_set(&n->nr_slabs, 0);
3314 	atomic_long_set(&n->total_objects, 0);
3315 	INIT_LIST_HEAD(&n->full);
3316 #endif
3317 }
3318 
3319 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3320 {
3321 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3322 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3323 
3324 	/*
3325 	 * Must align to double word boundary for the double cmpxchg
3326 	 * instructions to work; see __pcpu_double_call_return_bool().
3327 	 */
3328 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3329 				     2 * sizeof(void *));
3330 
3331 	if (!s->cpu_slab)
3332 		return 0;
3333 
3334 	init_kmem_cache_cpus(s);
3335 
3336 	return 1;
3337 }
3338 
3339 static struct kmem_cache *kmem_cache_node;
3340 
3341 /*
3342  * No kmalloc_node yet so do it by hand. We know that this is the first
3343  * slab on the node for this slabcache. There are no concurrent accesses
3344  * possible.
3345  *
3346  * Note that this function only works on the kmem_cache_node
3347  * when allocating for the kmem_cache_node. This is used for bootstrapping
3348  * memory on a fresh node that has no slab structures yet.
3349  */
3350 static void early_kmem_cache_node_alloc(int node)
3351 {
3352 	struct page *page;
3353 	struct kmem_cache_node *n;
3354 
3355 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3356 
3357 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3358 
3359 	BUG_ON(!page);
3360 	if (page_to_nid(page) != node) {
3361 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3362 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3363 	}
3364 
3365 	n = page->freelist;
3366 	BUG_ON(!n);
3367 	page->freelist = get_freepointer(kmem_cache_node, n);
3368 	page->inuse = 1;
3369 	page->frozen = 0;
3370 	kmem_cache_node->node[node] = n;
3371 #ifdef CONFIG_SLUB_DEBUG
3372 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3373 	init_tracking(kmem_cache_node, n);
3374 #endif
3375 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3376 		      GFP_KERNEL);
3377 	init_kmem_cache_node(n);
3378 	inc_slabs_node(kmem_cache_node, node, page->objects);
3379 
3380 	/*
3381 	 * No locks need to be taken here as it has just been
3382 	 * initialized and there is no concurrent access.
3383 	 */
3384 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3385 }
3386 
3387 static void free_kmem_cache_nodes(struct kmem_cache *s)
3388 {
3389 	int node;
3390 	struct kmem_cache_node *n;
3391 
3392 	for_each_kmem_cache_node(s, node, n) {
3393 		s->node[node] = NULL;
3394 		kmem_cache_free(kmem_cache_node, n);
3395 	}
3396 }
3397 
3398 void __kmem_cache_release(struct kmem_cache *s)
3399 {
3400 	cache_random_seq_destroy(s);
3401 	free_percpu(s->cpu_slab);
3402 	free_kmem_cache_nodes(s);
3403 }
3404 
3405 static int init_kmem_cache_nodes(struct kmem_cache *s)
3406 {
3407 	int node;
3408 
3409 	for_each_node_state(node, N_NORMAL_MEMORY) {
3410 		struct kmem_cache_node *n;
3411 
3412 		if (slab_state == DOWN) {
3413 			early_kmem_cache_node_alloc(node);
3414 			continue;
3415 		}
3416 		n = kmem_cache_alloc_node(kmem_cache_node,
3417 						GFP_KERNEL, node);
3418 
3419 		if (!n) {
3420 			free_kmem_cache_nodes(s);
3421 			return 0;
3422 		}
3423 
3424 		init_kmem_cache_node(n);
3425 		s->node[node] = n;
3426 	}
3427 	return 1;
3428 }
3429 
3430 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3431 {
3432 	if (min < MIN_PARTIAL)
3433 		min = MIN_PARTIAL;
3434 	else if (min > MAX_PARTIAL)
3435 		min = MAX_PARTIAL;
3436 	s->min_partial = min;
3437 }
3438 
3439 static void set_cpu_partial(struct kmem_cache *s)
3440 {
3441 #ifdef CONFIG_SLUB_CPU_PARTIAL
3442 	/*
3443 	 * cpu_partial determined the maximum number of objects kept in the
3444 	 * per cpu partial lists of a processor.
3445 	 *
3446 	 * Per cpu partial lists mainly contain slabs that just have one
3447 	 * object freed. If they are used for allocation then they can be
3448 	 * filled up again with minimal effort. The slab will never hit the
3449 	 * per node partial lists and therefore no locking will be required.
3450 	 *
3451 	 * This setting also determines
3452 	 *
3453 	 * A) The number of objects from per cpu partial slabs dumped to the
3454 	 *    per node list when we reach the limit.
3455 	 * B) The number of objects in cpu partial slabs to extract from the
3456 	 *    per node list when we run out of per cpu objects. We only fetch
3457 	 *    50% to keep some capacity around for frees.
3458 	 */
3459 	if (!kmem_cache_has_cpu_partial(s))
3460 		s->cpu_partial = 0;
3461 	else if (s->size >= PAGE_SIZE)
3462 		s->cpu_partial = 2;
3463 	else if (s->size >= 1024)
3464 		s->cpu_partial = 6;
3465 	else if (s->size >= 256)
3466 		s->cpu_partial = 13;
3467 	else
3468 		s->cpu_partial = 30;
3469 #endif
3470 }
3471 
3472 /*
3473  * calculate_sizes() determines the order and the distribution of data within
3474  * a slab object.
3475  */
3476 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3477 {
3478 	slab_flags_t flags = s->flags;
3479 	unsigned int size = s->object_size;
3480 	unsigned int order;
3481 
3482 	/*
3483 	 * Round up object size to the next word boundary. We can only
3484 	 * place the free pointer at word boundaries and this determines
3485 	 * the possible location of the free pointer.
3486 	 */
3487 	size = ALIGN(size, sizeof(void *));
3488 
3489 #ifdef CONFIG_SLUB_DEBUG
3490 	/*
3491 	 * Determine if we can poison the object itself. If the user of
3492 	 * the slab may touch the object after free or before allocation
3493 	 * then we should never poison the object itself.
3494 	 */
3495 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3496 			!s->ctor)
3497 		s->flags |= __OBJECT_POISON;
3498 	else
3499 		s->flags &= ~__OBJECT_POISON;
3500 
3501 
3502 	/*
3503 	 * If we are Redzoning then check if there is some space between the
3504 	 * end of the object and the free pointer. If not then add an
3505 	 * additional word to have some bytes to store Redzone information.
3506 	 */
3507 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3508 		size += sizeof(void *);
3509 #endif
3510 
3511 	/*
3512 	 * With that we have determined the number of bytes in actual use
3513 	 * by the object. This is the potential offset to the free pointer.
3514 	 */
3515 	s->inuse = size;
3516 
3517 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3518 		s->ctor)) {
3519 		/*
3520 		 * Relocate free pointer after the object if it is not
3521 		 * permitted to overwrite the first word of the object on
3522 		 * kmem_cache_free.
3523 		 *
3524 		 * This is the case if we do RCU, have a constructor or
3525 		 * destructor or are poisoning the objects.
3526 		 */
3527 		s->offset = size;
3528 		size += sizeof(void *);
3529 	}
3530 
3531 #ifdef CONFIG_SLUB_DEBUG
3532 	if (flags & SLAB_STORE_USER)
3533 		/*
3534 		 * Need to store information about allocs and frees after
3535 		 * the object.
3536 		 */
3537 		size += 2 * sizeof(struct track);
3538 #endif
3539 
3540 	kasan_cache_create(s, &size, &s->flags);
3541 #ifdef CONFIG_SLUB_DEBUG
3542 	if (flags & SLAB_RED_ZONE) {
3543 		/*
3544 		 * Add some empty padding so that we can catch
3545 		 * overwrites from earlier objects rather than let
3546 		 * tracking information or the free pointer be
3547 		 * corrupted if a user writes before the start
3548 		 * of the object.
3549 		 */
3550 		size += sizeof(void *);
3551 
3552 		s->red_left_pad = sizeof(void *);
3553 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3554 		size += s->red_left_pad;
3555 	}
3556 #endif
3557 
3558 	/*
3559 	 * SLUB stores one object immediately after another beginning from
3560 	 * offset 0. In order to align the objects we have to simply size
3561 	 * each object to conform to the alignment.
3562 	 */
3563 	size = ALIGN(size, s->align);
3564 	s->size = size;
3565 	if (forced_order >= 0)
3566 		order = forced_order;
3567 	else
3568 		order = calculate_order(size);
3569 
3570 	if ((int)order < 0)
3571 		return 0;
3572 
3573 	s->allocflags = 0;
3574 	if (order)
3575 		s->allocflags |= __GFP_COMP;
3576 
3577 	if (s->flags & SLAB_CACHE_DMA)
3578 		s->allocflags |= GFP_DMA;
3579 
3580 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3581 		s->allocflags |= __GFP_RECLAIMABLE;
3582 
3583 	/*
3584 	 * Determine the number of objects per slab
3585 	 */
3586 	s->oo = oo_make(order, size);
3587 	s->min = oo_make(get_order(size), size);
3588 	if (oo_objects(s->oo) > oo_objects(s->max))
3589 		s->max = s->oo;
3590 
3591 	return !!oo_objects(s->oo);
3592 }
3593 
3594 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3595 {
3596 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3597 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3598 	s->random = get_random_long();
3599 #endif
3600 
3601 	if (!calculate_sizes(s, -1))
3602 		goto error;
3603 	if (disable_higher_order_debug) {
3604 		/*
3605 		 * Disable debugging flags that store metadata if the min slab
3606 		 * order increased.
3607 		 */
3608 		if (get_order(s->size) > get_order(s->object_size)) {
3609 			s->flags &= ~DEBUG_METADATA_FLAGS;
3610 			s->offset = 0;
3611 			if (!calculate_sizes(s, -1))
3612 				goto error;
3613 		}
3614 	}
3615 
3616 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3617     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3618 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3619 		/* Enable fast mode */
3620 		s->flags |= __CMPXCHG_DOUBLE;
3621 #endif
3622 
3623 	/*
3624 	 * The larger the object size is, the more pages we want on the partial
3625 	 * list to avoid pounding the page allocator excessively.
3626 	 */
3627 	set_min_partial(s, ilog2(s->size) / 2);
3628 
3629 	set_cpu_partial(s);
3630 
3631 #ifdef CONFIG_NUMA
3632 	s->remote_node_defrag_ratio = 1000;
3633 #endif
3634 
3635 	/* Initialize the pre-computed randomized freelist if slab is up */
3636 	if (slab_state >= UP) {
3637 		if (init_cache_random_seq(s))
3638 			goto error;
3639 	}
3640 
3641 	if (!init_kmem_cache_nodes(s))
3642 		goto error;
3643 
3644 	if (alloc_kmem_cache_cpus(s))
3645 		return 0;
3646 
3647 	free_kmem_cache_nodes(s);
3648 error:
3649 	if (flags & SLAB_PANIC)
3650 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3651 		      s->name, s->size, s->size,
3652 		      oo_order(s->oo), s->offset, (unsigned long)flags);
3653 	return -EINVAL;
3654 }
3655 
3656 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3657 							const char *text)
3658 {
3659 #ifdef CONFIG_SLUB_DEBUG
3660 	void *addr = page_address(page);
3661 	void *p;
3662 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3663 	if (!map)
3664 		return;
3665 	slab_err(s, page, text, s->name);
3666 	slab_lock(page);
3667 
3668 	get_map(s, page, map);
3669 	for_each_object(p, s, addr, page->objects) {
3670 
3671 		if (!test_bit(slab_index(p, s, addr), map)) {
3672 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3673 			print_tracking(s, p);
3674 		}
3675 	}
3676 	slab_unlock(page);
3677 	bitmap_free(map);
3678 #endif
3679 }
3680 
3681 /*
3682  * Attempt to free all partial slabs on a node.
3683  * This is called from __kmem_cache_shutdown(). We must take list_lock
3684  * because sysfs file might still access partial list after the shutdowning.
3685  */
3686 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3687 {
3688 	LIST_HEAD(discard);
3689 	struct page *page, *h;
3690 
3691 	BUG_ON(irqs_disabled());
3692 	spin_lock_irq(&n->list_lock);
3693 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3694 		if (!page->inuse) {
3695 			remove_partial(n, page);
3696 			list_add(&page->lru, &discard);
3697 		} else {
3698 			list_slab_objects(s, page,
3699 			"Objects remaining in %s on __kmem_cache_shutdown()");
3700 		}
3701 	}
3702 	spin_unlock_irq(&n->list_lock);
3703 
3704 	list_for_each_entry_safe(page, h, &discard, lru)
3705 		discard_slab(s, page);
3706 }
3707 
3708 bool __kmem_cache_empty(struct kmem_cache *s)
3709 {
3710 	int node;
3711 	struct kmem_cache_node *n;
3712 
3713 	for_each_kmem_cache_node(s, node, n)
3714 		if (n->nr_partial || slabs_node(s, node))
3715 			return false;
3716 	return true;
3717 }
3718 
3719 /*
3720  * Release all resources used by a slab cache.
3721  */
3722 int __kmem_cache_shutdown(struct kmem_cache *s)
3723 {
3724 	int node;
3725 	struct kmem_cache_node *n;
3726 
3727 	flush_all(s);
3728 	/* Attempt to free all objects */
3729 	for_each_kmem_cache_node(s, node, n) {
3730 		free_partial(s, n);
3731 		if (n->nr_partial || slabs_node(s, node))
3732 			return 1;
3733 	}
3734 	sysfs_slab_remove(s);
3735 	return 0;
3736 }
3737 
3738 /********************************************************************
3739  *		Kmalloc subsystem
3740  *******************************************************************/
3741 
3742 static int __init setup_slub_min_order(char *str)
3743 {
3744 	get_option(&str, (int *)&slub_min_order);
3745 
3746 	return 1;
3747 }
3748 
3749 __setup("slub_min_order=", setup_slub_min_order);
3750 
3751 static int __init setup_slub_max_order(char *str)
3752 {
3753 	get_option(&str, (int *)&slub_max_order);
3754 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3755 
3756 	return 1;
3757 }
3758 
3759 __setup("slub_max_order=", setup_slub_max_order);
3760 
3761 static int __init setup_slub_min_objects(char *str)
3762 {
3763 	get_option(&str, (int *)&slub_min_objects);
3764 
3765 	return 1;
3766 }
3767 
3768 __setup("slub_min_objects=", setup_slub_min_objects);
3769 
3770 void *__kmalloc(size_t size, gfp_t flags)
3771 {
3772 	struct kmem_cache *s;
3773 	void *ret;
3774 
3775 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3776 		return kmalloc_large(size, flags);
3777 
3778 	s = kmalloc_slab(size, flags);
3779 
3780 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3781 		return s;
3782 
3783 	ret = slab_alloc(s, flags, _RET_IP_);
3784 
3785 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3786 
3787 	kasan_kmalloc(s, ret, size, flags);
3788 
3789 	return ret;
3790 }
3791 EXPORT_SYMBOL(__kmalloc);
3792 
3793 #ifdef CONFIG_NUMA
3794 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3795 {
3796 	struct page *page;
3797 	void *ptr = NULL;
3798 
3799 	flags |= __GFP_COMP;
3800 	page = alloc_pages_node(node, flags, get_order(size));
3801 	if (page)
3802 		ptr = page_address(page);
3803 
3804 	kmalloc_large_node_hook(ptr, size, flags);
3805 	return ptr;
3806 }
3807 
3808 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3809 {
3810 	struct kmem_cache *s;
3811 	void *ret;
3812 
3813 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3814 		ret = kmalloc_large_node(size, flags, node);
3815 
3816 		trace_kmalloc_node(_RET_IP_, ret,
3817 				   size, PAGE_SIZE << get_order(size),
3818 				   flags, node);
3819 
3820 		return ret;
3821 	}
3822 
3823 	s = kmalloc_slab(size, flags);
3824 
3825 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3826 		return s;
3827 
3828 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3829 
3830 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3831 
3832 	kasan_kmalloc(s, ret, size, flags);
3833 
3834 	return ret;
3835 }
3836 EXPORT_SYMBOL(__kmalloc_node);
3837 #endif
3838 
3839 #ifdef CONFIG_HARDENED_USERCOPY
3840 /*
3841  * Rejects incorrectly sized objects and objects that are to be copied
3842  * to/from userspace but do not fall entirely within the containing slab
3843  * cache's usercopy region.
3844  *
3845  * Returns NULL if check passes, otherwise const char * to name of cache
3846  * to indicate an error.
3847  */
3848 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3849 			 bool to_user)
3850 {
3851 	struct kmem_cache *s;
3852 	unsigned int offset;
3853 	size_t object_size;
3854 
3855 	/* Find object and usable object size. */
3856 	s = page->slab_cache;
3857 
3858 	/* Reject impossible pointers. */
3859 	if (ptr < page_address(page))
3860 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3861 			       to_user, 0, n);
3862 
3863 	/* Find offset within object. */
3864 	offset = (ptr - page_address(page)) % s->size;
3865 
3866 	/* Adjust for redzone and reject if within the redzone. */
3867 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3868 		if (offset < s->red_left_pad)
3869 			usercopy_abort("SLUB object in left red zone",
3870 				       s->name, to_user, offset, n);
3871 		offset -= s->red_left_pad;
3872 	}
3873 
3874 	/* Allow address range falling entirely within usercopy region. */
3875 	if (offset >= s->useroffset &&
3876 	    offset - s->useroffset <= s->usersize &&
3877 	    n <= s->useroffset - offset + s->usersize)
3878 		return;
3879 
3880 	/*
3881 	 * If the copy is still within the allocated object, produce
3882 	 * a warning instead of rejecting the copy. This is intended
3883 	 * to be a temporary method to find any missing usercopy
3884 	 * whitelists.
3885 	 */
3886 	object_size = slab_ksize(s);
3887 	if (usercopy_fallback &&
3888 	    offset <= object_size && n <= object_size - offset) {
3889 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3890 		return;
3891 	}
3892 
3893 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3894 }
3895 #endif /* CONFIG_HARDENED_USERCOPY */
3896 
3897 static size_t __ksize(const void *object)
3898 {
3899 	struct page *page;
3900 
3901 	if (unlikely(object == ZERO_SIZE_PTR))
3902 		return 0;
3903 
3904 	page = virt_to_head_page(object);
3905 
3906 	if (unlikely(!PageSlab(page))) {
3907 		WARN_ON(!PageCompound(page));
3908 		return PAGE_SIZE << compound_order(page);
3909 	}
3910 
3911 	return slab_ksize(page->slab_cache);
3912 }
3913 
3914 size_t ksize(const void *object)
3915 {
3916 	size_t size = __ksize(object);
3917 	/* We assume that ksize callers could use whole allocated area,
3918 	 * so we need to unpoison this area.
3919 	 */
3920 	kasan_unpoison_shadow(object, size);
3921 	return size;
3922 }
3923 EXPORT_SYMBOL(ksize);
3924 
3925 void kfree(const void *x)
3926 {
3927 	struct page *page;
3928 	void *object = (void *)x;
3929 
3930 	trace_kfree(_RET_IP_, x);
3931 
3932 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3933 		return;
3934 
3935 	page = virt_to_head_page(x);
3936 	if (unlikely(!PageSlab(page))) {
3937 		BUG_ON(!PageCompound(page));
3938 		kfree_hook(object);
3939 		__free_pages(page, compound_order(page));
3940 		return;
3941 	}
3942 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3943 }
3944 EXPORT_SYMBOL(kfree);
3945 
3946 #define SHRINK_PROMOTE_MAX 32
3947 
3948 /*
3949  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3950  * up most to the head of the partial lists. New allocations will then
3951  * fill those up and thus they can be removed from the partial lists.
3952  *
3953  * The slabs with the least items are placed last. This results in them
3954  * being allocated from last increasing the chance that the last objects
3955  * are freed in them.
3956  */
3957 int __kmem_cache_shrink(struct kmem_cache *s)
3958 {
3959 	int node;
3960 	int i;
3961 	struct kmem_cache_node *n;
3962 	struct page *page;
3963 	struct page *t;
3964 	struct list_head discard;
3965 	struct list_head promote[SHRINK_PROMOTE_MAX];
3966 	unsigned long flags;
3967 	int ret = 0;
3968 
3969 	flush_all(s);
3970 	for_each_kmem_cache_node(s, node, n) {
3971 		INIT_LIST_HEAD(&discard);
3972 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3973 			INIT_LIST_HEAD(promote + i);
3974 
3975 		spin_lock_irqsave(&n->list_lock, flags);
3976 
3977 		/*
3978 		 * Build lists of slabs to discard or promote.
3979 		 *
3980 		 * Note that concurrent frees may occur while we hold the
3981 		 * list_lock. page->inuse here is the upper limit.
3982 		 */
3983 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3984 			int free = page->objects - page->inuse;
3985 
3986 			/* Do not reread page->inuse */
3987 			barrier();
3988 
3989 			/* We do not keep full slabs on the list */
3990 			BUG_ON(free <= 0);
3991 
3992 			if (free == page->objects) {
3993 				list_move(&page->lru, &discard);
3994 				n->nr_partial--;
3995 			} else if (free <= SHRINK_PROMOTE_MAX)
3996 				list_move(&page->lru, promote + free - 1);
3997 		}
3998 
3999 		/*
4000 		 * Promote the slabs filled up most to the head of the
4001 		 * partial list.
4002 		 */
4003 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4004 			list_splice(promote + i, &n->partial);
4005 
4006 		spin_unlock_irqrestore(&n->list_lock, flags);
4007 
4008 		/* Release empty slabs */
4009 		list_for_each_entry_safe(page, t, &discard, lru)
4010 			discard_slab(s, page);
4011 
4012 		if (slabs_node(s, node))
4013 			ret = 1;
4014 	}
4015 
4016 	return ret;
4017 }
4018 
4019 #ifdef CONFIG_MEMCG
4020 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4021 {
4022 	/*
4023 	 * Called with all the locks held after a sched RCU grace period.
4024 	 * Even if @s becomes empty after shrinking, we can't know that @s
4025 	 * doesn't have allocations already in-flight and thus can't
4026 	 * destroy @s until the associated memcg is released.
4027 	 *
4028 	 * However, let's remove the sysfs files for empty caches here.
4029 	 * Each cache has a lot of interface files which aren't
4030 	 * particularly useful for empty draining caches; otherwise, we can
4031 	 * easily end up with millions of unnecessary sysfs files on
4032 	 * systems which have a lot of memory and transient cgroups.
4033 	 */
4034 	if (!__kmem_cache_shrink(s))
4035 		sysfs_slab_remove(s);
4036 }
4037 
4038 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4039 {
4040 	/*
4041 	 * Disable empty slabs caching. Used to avoid pinning offline
4042 	 * memory cgroups by kmem pages that can be freed.
4043 	 */
4044 	slub_set_cpu_partial(s, 0);
4045 	s->min_partial = 0;
4046 
4047 	/*
4048 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4049 	 * we have to make sure the change is visible before shrinking.
4050 	 */
4051 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4052 }
4053 #endif
4054 
4055 static int slab_mem_going_offline_callback(void *arg)
4056 {
4057 	struct kmem_cache *s;
4058 
4059 	mutex_lock(&slab_mutex);
4060 	list_for_each_entry(s, &slab_caches, list)
4061 		__kmem_cache_shrink(s);
4062 	mutex_unlock(&slab_mutex);
4063 
4064 	return 0;
4065 }
4066 
4067 static void slab_mem_offline_callback(void *arg)
4068 {
4069 	struct kmem_cache_node *n;
4070 	struct kmem_cache *s;
4071 	struct memory_notify *marg = arg;
4072 	int offline_node;
4073 
4074 	offline_node = marg->status_change_nid_normal;
4075 
4076 	/*
4077 	 * If the node still has available memory. we need kmem_cache_node
4078 	 * for it yet.
4079 	 */
4080 	if (offline_node < 0)
4081 		return;
4082 
4083 	mutex_lock(&slab_mutex);
4084 	list_for_each_entry(s, &slab_caches, list) {
4085 		n = get_node(s, offline_node);
4086 		if (n) {
4087 			/*
4088 			 * if n->nr_slabs > 0, slabs still exist on the node
4089 			 * that is going down. We were unable to free them,
4090 			 * and offline_pages() function shouldn't call this
4091 			 * callback. So, we must fail.
4092 			 */
4093 			BUG_ON(slabs_node(s, offline_node));
4094 
4095 			s->node[offline_node] = NULL;
4096 			kmem_cache_free(kmem_cache_node, n);
4097 		}
4098 	}
4099 	mutex_unlock(&slab_mutex);
4100 }
4101 
4102 static int slab_mem_going_online_callback(void *arg)
4103 {
4104 	struct kmem_cache_node *n;
4105 	struct kmem_cache *s;
4106 	struct memory_notify *marg = arg;
4107 	int nid = marg->status_change_nid_normal;
4108 	int ret = 0;
4109 
4110 	/*
4111 	 * If the node's memory is already available, then kmem_cache_node is
4112 	 * already created. Nothing to do.
4113 	 */
4114 	if (nid < 0)
4115 		return 0;
4116 
4117 	/*
4118 	 * We are bringing a node online. No memory is available yet. We must
4119 	 * allocate a kmem_cache_node structure in order to bring the node
4120 	 * online.
4121 	 */
4122 	mutex_lock(&slab_mutex);
4123 	list_for_each_entry(s, &slab_caches, list) {
4124 		/*
4125 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4126 		 *      since memory is not yet available from the node that
4127 		 *      is brought up.
4128 		 */
4129 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4130 		if (!n) {
4131 			ret = -ENOMEM;
4132 			goto out;
4133 		}
4134 		init_kmem_cache_node(n);
4135 		s->node[nid] = n;
4136 	}
4137 out:
4138 	mutex_unlock(&slab_mutex);
4139 	return ret;
4140 }
4141 
4142 static int slab_memory_callback(struct notifier_block *self,
4143 				unsigned long action, void *arg)
4144 {
4145 	int ret = 0;
4146 
4147 	switch (action) {
4148 	case MEM_GOING_ONLINE:
4149 		ret = slab_mem_going_online_callback(arg);
4150 		break;
4151 	case MEM_GOING_OFFLINE:
4152 		ret = slab_mem_going_offline_callback(arg);
4153 		break;
4154 	case MEM_OFFLINE:
4155 	case MEM_CANCEL_ONLINE:
4156 		slab_mem_offline_callback(arg);
4157 		break;
4158 	case MEM_ONLINE:
4159 	case MEM_CANCEL_OFFLINE:
4160 		break;
4161 	}
4162 	if (ret)
4163 		ret = notifier_from_errno(ret);
4164 	else
4165 		ret = NOTIFY_OK;
4166 	return ret;
4167 }
4168 
4169 static struct notifier_block slab_memory_callback_nb = {
4170 	.notifier_call = slab_memory_callback,
4171 	.priority = SLAB_CALLBACK_PRI,
4172 };
4173 
4174 /********************************************************************
4175  *			Basic setup of slabs
4176  *******************************************************************/
4177 
4178 /*
4179  * Used for early kmem_cache structures that were allocated using
4180  * the page allocator. Allocate them properly then fix up the pointers
4181  * that may be pointing to the wrong kmem_cache structure.
4182  */
4183 
4184 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4185 {
4186 	int node;
4187 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4188 	struct kmem_cache_node *n;
4189 
4190 	memcpy(s, static_cache, kmem_cache->object_size);
4191 
4192 	/*
4193 	 * This runs very early, and only the boot processor is supposed to be
4194 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4195 	 * IPIs around.
4196 	 */
4197 	__flush_cpu_slab(s, smp_processor_id());
4198 	for_each_kmem_cache_node(s, node, n) {
4199 		struct page *p;
4200 
4201 		list_for_each_entry(p, &n->partial, lru)
4202 			p->slab_cache = s;
4203 
4204 #ifdef CONFIG_SLUB_DEBUG
4205 		list_for_each_entry(p, &n->full, lru)
4206 			p->slab_cache = s;
4207 #endif
4208 	}
4209 	slab_init_memcg_params(s);
4210 	list_add(&s->list, &slab_caches);
4211 	memcg_link_cache(s);
4212 	return s;
4213 }
4214 
4215 void __init kmem_cache_init(void)
4216 {
4217 	static __initdata struct kmem_cache boot_kmem_cache,
4218 		boot_kmem_cache_node;
4219 
4220 	if (debug_guardpage_minorder())
4221 		slub_max_order = 0;
4222 
4223 	kmem_cache_node = &boot_kmem_cache_node;
4224 	kmem_cache = &boot_kmem_cache;
4225 
4226 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4227 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4228 
4229 	register_hotmemory_notifier(&slab_memory_callback_nb);
4230 
4231 	/* Able to allocate the per node structures */
4232 	slab_state = PARTIAL;
4233 
4234 	create_boot_cache(kmem_cache, "kmem_cache",
4235 			offsetof(struct kmem_cache, node) +
4236 				nr_node_ids * sizeof(struct kmem_cache_node *),
4237 		       SLAB_HWCACHE_ALIGN, 0, 0);
4238 
4239 	kmem_cache = bootstrap(&boot_kmem_cache);
4240 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4241 
4242 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4243 	setup_kmalloc_cache_index_table();
4244 	create_kmalloc_caches(0);
4245 
4246 	/* Setup random freelists for each cache */
4247 	init_freelist_randomization();
4248 
4249 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4250 				  slub_cpu_dead);
4251 
4252 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4253 		cache_line_size(),
4254 		slub_min_order, slub_max_order, slub_min_objects,
4255 		nr_cpu_ids, nr_node_ids);
4256 }
4257 
4258 void __init kmem_cache_init_late(void)
4259 {
4260 }
4261 
4262 struct kmem_cache *
4263 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4264 		   slab_flags_t flags, void (*ctor)(void *))
4265 {
4266 	struct kmem_cache *s, *c;
4267 
4268 	s = find_mergeable(size, align, flags, name, ctor);
4269 	if (s) {
4270 		s->refcount++;
4271 
4272 		/*
4273 		 * Adjust the object sizes so that we clear
4274 		 * the complete object on kzalloc.
4275 		 */
4276 		s->object_size = max(s->object_size, size);
4277 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4278 
4279 		for_each_memcg_cache(c, s) {
4280 			c->object_size = s->object_size;
4281 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4282 		}
4283 
4284 		if (sysfs_slab_alias(s, name)) {
4285 			s->refcount--;
4286 			s = NULL;
4287 		}
4288 	}
4289 
4290 	return s;
4291 }
4292 
4293 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4294 {
4295 	int err;
4296 
4297 	err = kmem_cache_open(s, flags);
4298 	if (err)
4299 		return err;
4300 
4301 	/* Mutex is not taken during early boot */
4302 	if (slab_state <= UP)
4303 		return 0;
4304 
4305 	memcg_propagate_slab_attrs(s);
4306 	err = sysfs_slab_add(s);
4307 	if (err)
4308 		__kmem_cache_release(s);
4309 
4310 	return err;
4311 }
4312 
4313 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4314 {
4315 	struct kmem_cache *s;
4316 	void *ret;
4317 
4318 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4319 		return kmalloc_large(size, gfpflags);
4320 
4321 	s = kmalloc_slab(size, gfpflags);
4322 
4323 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4324 		return s;
4325 
4326 	ret = slab_alloc(s, gfpflags, caller);
4327 
4328 	/* Honor the call site pointer we received. */
4329 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4330 
4331 	return ret;
4332 }
4333 
4334 #ifdef CONFIG_NUMA
4335 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4336 					int node, unsigned long caller)
4337 {
4338 	struct kmem_cache *s;
4339 	void *ret;
4340 
4341 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4342 		ret = kmalloc_large_node(size, gfpflags, node);
4343 
4344 		trace_kmalloc_node(caller, ret,
4345 				   size, PAGE_SIZE << get_order(size),
4346 				   gfpflags, node);
4347 
4348 		return ret;
4349 	}
4350 
4351 	s = kmalloc_slab(size, gfpflags);
4352 
4353 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4354 		return s;
4355 
4356 	ret = slab_alloc_node(s, gfpflags, node, caller);
4357 
4358 	/* Honor the call site pointer we received. */
4359 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4360 
4361 	return ret;
4362 }
4363 #endif
4364 
4365 #ifdef CONFIG_SYSFS
4366 static int count_inuse(struct page *page)
4367 {
4368 	return page->inuse;
4369 }
4370 
4371 static int count_total(struct page *page)
4372 {
4373 	return page->objects;
4374 }
4375 #endif
4376 
4377 #ifdef CONFIG_SLUB_DEBUG
4378 static int validate_slab(struct kmem_cache *s, struct page *page,
4379 						unsigned long *map)
4380 {
4381 	void *p;
4382 	void *addr = page_address(page);
4383 
4384 	if (!check_slab(s, page) ||
4385 			!on_freelist(s, page, NULL))
4386 		return 0;
4387 
4388 	/* Now we know that a valid freelist exists */
4389 	bitmap_zero(map, page->objects);
4390 
4391 	get_map(s, page, map);
4392 	for_each_object(p, s, addr, page->objects) {
4393 		if (test_bit(slab_index(p, s, addr), map))
4394 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4395 				return 0;
4396 	}
4397 
4398 	for_each_object(p, s, addr, page->objects)
4399 		if (!test_bit(slab_index(p, s, addr), map))
4400 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4401 				return 0;
4402 	return 1;
4403 }
4404 
4405 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4406 						unsigned long *map)
4407 {
4408 	slab_lock(page);
4409 	validate_slab(s, page, map);
4410 	slab_unlock(page);
4411 }
4412 
4413 static int validate_slab_node(struct kmem_cache *s,
4414 		struct kmem_cache_node *n, unsigned long *map)
4415 {
4416 	unsigned long count = 0;
4417 	struct page *page;
4418 	unsigned long flags;
4419 
4420 	spin_lock_irqsave(&n->list_lock, flags);
4421 
4422 	list_for_each_entry(page, &n->partial, lru) {
4423 		validate_slab_slab(s, page, map);
4424 		count++;
4425 	}
4426 	if (count != n->nr_partial)
4427 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4428 		       s->name, count, n->nr_partial);
4429 
4430 	if (!(s->flags & SLAB_STORE_USER))
4431 		goto out;
4432 
4433 	list_for_each_entry(page, &n->full, lru) {
4434 		validate_slab_slab(s, page, map);
4435 		count++;
4436 	}
4437 	if (count != atomic_long_read(&n->nr_slabs))
4438 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4439 		       s->name, count, atomic_long_read(&n->nr_slabs));
4440 
4441 out:
4442 	spin_unlock_irqrestore(&n->list_lock, flags);
4443 	return count;
4444 }
4445 
4446 static long validate_slab_cache(struct kmem_cache *s)
4447 {
4448 	int node;
4449 	unsigned long count = 0;
4450 	struct kmem_cache_node *n;
4451 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4452 
4453 	if (!map)
4454 		return -ENOMEM;
4455 
4456 	flush_all(s);
4457 	for_each_kmem_cache_node(s, node, n)
4458 		count += validate_slab_node(s, n, map);
4459 	bitmap_free(map);
4460 	return count;
4461 }
4462 /*
4463  * Generate lists of code addresses where slabcache objects are allocated
4464  * and freed.
4465  */
4466 
4467 struct location {
4468 	unsigned long count;
4469 	unsigned long addr;
4470 	long long sum_time;
4471 	long min_time;
4472 	long max_time;
4473 	long min_pid;
4474 	long max_pid;
4475 	DECLARE_BITMAP(cpus, NR_CPUS);
4476 	nodemask_t nodes;
4477 };
4478 
4479 struct loc_track {
4480 	unsigned long max;
4481 	unsigned long count;
4482 	struct location *loc;
4483 };
4484 
4485 static void free_loc_track(struct loc_track *t)
4486 {
4487 	if (t->max)
4488 		free_pages((unsigned long)t->loc,
4489 			get_order(sizeof(struct location) * t->max));
4490 }
4491 
4492 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4493 {
4494 	struct location *l;
4495 	int order;
4496 
4497 	order = get_order(sizeof(struct location) * max);
4498 
4499 	l = (void *)__get_free_pages(flags, order);
4500 	if (!l)
4501 		return 0;
4502 
4503 	if (t->count) {
4504 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4505 		free_loc_track(t);
4506 	}
4507 	t->max = max;
4508 	t->loc = l;
4509 	return 1;
4510 }
4511 
4512 static int add_location(struct loc_track *t, struct kmem_cache *s,
4513 				const struct track *track)
4514 {
4515 	long start, end, pos;
4516 	struct location *l;
4517 	unsigned long caddr;
4518 	unsigned long age = jiffies - track->when;
4519 
4520 	start = -1;
4521 	end = t->count;
4522 
4523 	for ( ; ; ) {
4524 		pos = start + (end - start + 1) / 2;
4525 
4526 		/*
4527 		 * There is nothing at "end". If we end up there
4528 		 * we need to add something to before end.
4529 		 */
4530 		if (pos == end)
4531 			break;
4532 
4533 		caddr = t->loc[pos].addr;
4534 		if (track->addr == caddr) {
4535 
4536 			l = &t->loc[pos];
4537 			l->count++;
4538 			if (track->when) {
4539 				l->sum_time += age;
4540 				if (age < l->min_time)
4541 					l->min_time = age;
4542 				if (age > l->max_time)
4543 					l->max_time = age;
4544 
4545 				if (track->pid < l->min_pid)
4546 					l->min_pid = track->pid;
4547 				if (track->pid > l->max_pid)
4548 					l->max_pid = track->pid;
4549 
4550 				cpumask_set_cpu(track->cpu,
4551 						to_cpumask(l->cpus));
4552 			}
4553 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4554 			return 1;
4555 		}
4556 
4557 		if (track->addr < caddr)
4558 			end = pos;
4559 		else
4560 			start = pos;
4561 	}
4562 
4563 	/*
4564 	 * Not found. Insert new tracking element.
4565 	 */
4566 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4567 		return 0;
4568 
4569 	l = t->loc + pos;
4570 	if (pos < t->count)
4571 		memmove(l + 1, l,
4572 			(t->count - pos) * sizeof(struct location));
4573 	t->count++;
4574 	l->count = 1;
4575 	l->addr = track->addr;
4576 	l->sum_time = age;
4577 	l->min_time = age;
4578 	l->max_time = age;
4579 	l->min_pid = track->pid;
4580 	l->max_pid = track->pid;
4581 	cpumask_clear(to_cpumask(l->cpus));
4582 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4583 	nodes_clear(l->nodes);
4584 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4585 	return 1;
4586 }
4587 
4588 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4589 		struct page *page, enum track_item alloc,
4590 		unsigned long *map)
4591 {
4592 	void *addr = page_address(page);
4593 	void *p;
4594 
4595 	bitmap_zero(map, page->objects);
4596 	get_map(s, page, map);
4597 
4598 	for_each_object(p, s, addr, page->objects)
4599 		if (!test_bit(slab_index(p, s, addr), map))
4600 			add_location(t, s, get_track(s, p, alloc));
4601 }
4602 
4603 static int list_locations(struct kmem_cache *s, char *buf,
4604 					enum track_item alloc)
4605 {
4606 	int len = 0;
4607 	unsigned long i;
4608 	struct loc_track t = { 0, 0, NULL };
4609 	int node;
4610 	struct kmem_cache_node *n;
4611 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4612 
4613 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4614 				     GFP_KERNEL)) {
4615 		bitmap_free(map);
4616 		return sprintf(buf, "Out of memory\n");
4617 	}
4618 	/* Push back cpu slabs */
4619 	flush_all(s);
4620 
4621 	for_each_kmem_cache_node(s, node, n) {
4622 		unsigned long flags;
4623 		struct page *page;
4624 
4625 		if (!atomic_long_read(&n->nr_slabs))
4626 			continue;
4627 
4628 		spin_lock_irqsave(&n->list_lock, flags);
4629 		list_for_each_entry(page, &n->partial, lru)
4630 			process_slab(&t, s, page, alloc, map);
4631 		list_for_each_entry(page, &n->full, lru)
4632 			process_slab(&t, s, page, alloc, map);
4633 		spin_unlock_irqrestore(&n->list_lock, flags);
4634 	}
4635 
4636 	for (i = 0; i < t.count; i++) {
4637 		struct location *l = &t.loc[i];
4638 
4639 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4640 			break;
4641 		len += sprintf(buf + len, "%7ld ", l->count);
4642 
4643 		if (l->addr)
4644 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4645 		else
4646 			len += sprintf(buf + len, "<not-available>");
4647 
4648 		if (l->sum_time != l->min_time) {
4649 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4650 				l->min_time,
4651 				(long)div_u64(l->sum_time, l->count),
4652 				l->max_time);
4653 		} else
4654 			len += sprintf(buf + len, " age=%ld",
4655 				l->min_time);
4656 
4657 		if (l->min_pid != l->max_pid)
4658 			len += sprintf(buf + len, " pid=%ld-%ld",
4659 				l->min_pid, l->max_pid);
4660 		else
4661 			len += sprintf(buf + len, " pid=%ld",
4662 				l->min_pid);
4663 
4664 		if (num_online_cpus() > 1 &&
4665 				!cpumask_empty(to_cpumask(l->cpus)) &&
4666 				len < PAGE_SIZE - 60)
4667 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4668 					 " cpus=%*pbl",
4669 					 cpumask_pr_args(to_cpumask(l->cpus)));
4670 
4671 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4672 				len < PAGE_SIZE - 60)
4673 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4674 					 " nodes=%*pbl",
4675 					 nodemask_pr_args(&l->nodes));
4676 
4677 		len += sprintf(buf + len, "\n");
4678 	}
4679 
4680 	free_loc_track(&t);
4681 	bitmap_free(map);
4682 	if (!t.count)
4683 		len += sprintf(buf, "No data\n");
4684 	return len;
4685 }
4686 #endif
4687 
4688 #ifdef SLUB_RESILIENCY_TEST
4689 static void __init resiliency_test(void)
4690 {
4691 	u8 *p;
4692 	int type = KMALLOC_NORMAL;
4693 
4694 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4695 
4696 	pr_err("SLUB resiliency testing\n");
4697 	pr_err("-----------------------\n");
4698 	pr_err("A. Corruption after allocation\n");
4699 
4700 	p = kzalloc(16, GFP_KERNEL);
4701 	p[16] = 0x12;
4702 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4703 	       p + 16);
4704 
4705 	validate_slab_cache(kmalloc_caches[type][4]);
4706 
4707 	/* Hmmm... The next two are dangerous */
4708 	p = kzalloc(32, GFP_KERNEL);
4709 	p[32 + sizeof(void *)] = 0x34;
4710 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4711 	       p);
4712 	pr_err("If allocated object is overwritten then not detectable\n\n");
4713 
4714 	validate_slab_cache(kmalloc_caches[type][5]);
4715 	p = kzalloc(64, GFP_KERNEL);
4716 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4717 	*p = 0x56;
4718 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4719 	       p);
4720 	pr_err("If allocated object is overwritten then not detectable\n\n");
4721 	validate_slab_cache(kmalloc_caches[type][6]);
4722 
4723 	pr_err("\nB. Corruption after free\n");
4724 	p = kzalloc(128, GFP_KERNEL);
4725 	kfree(p);
4726 	*p = 0x78;
4727 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4728 	validate_slab_cache(kmalloc_caches[type][7]);
4729 
4730 	p = kzalloc(256, GFP_KERNEL);
4731 	kfree(p);
4732 	p[50] = 0x9a;
4733 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4734 	validate_slab_cache(kmalloc_caches[type][8]);
4735 
4736 	p = kzalloc(512, GFP_KERNEL);
4737 	kfree(p);
4738 	p[512] = 0xab;
4739 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4740 	validate_slab_cache(kmalloc_caches[type][9]);
4741 }
4742 #else
4743 #ifdef CONFIG_SYSFS
4744 static void resiliency_test(void) {};
4745 #endif
4746 #endif
4747 
4748 #ifdef CONFIG_SYSFS
4749 enum slab_stat_type {
4750 	SL_ALL,			/* All slabs */
4751 	SL_PARTIAL,		/* Only partially allocated slabs */
4752 	SL_CPU,			/* Only slabs used for cpu caches */
4753 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4754 	SL_TOTAL		/* Determine object capacity not slabs */
4755 };
4756 
4757 #define SO_ALL		(1 << SL_ALL)
4758 #define SO_PARTIAL	(1 << SL_PARTIAL)
4759 #define SO_CPU		(1 << SL_CPU)
4760 #define SO_OBJECTS	(1 << SL_OBJECTS)
4761 #define SO_TOTAL	(1 << SL_TOTAL)
4762 
4763 #ifdef CONFIG_MEMCG
4764 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4765 
4766 static int __init setup_slub_memcg_sysfs(char *str)
4767 {
4768 	int v;
4769 
4770 	if (get_option(&str, &v) > 0)
4771 		memcg_sysfs_enabled = v;
4772 
4773 	return 1;
4774 }
4775 
4776 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4777 #endif
4778 
4779 static ssize_t show_slab_objects(struct kmem_cache *s,
4780 			    char *buf, unsigned long flags)
4781 {
4782 	unsigned long total = 0;
4783 	int node;
4784 	int x;
4785 	unsigned long *nodes;
4786 
4787 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4788 	if (!nodes)
4789 		return -ENOMEM;
4790 
4791 	if (flags & SO_CPU) {
4792 		int cpu;
4793 
4794 		for_each_possible_cpu(cpu) {
4795 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4796 							       cpu);
4797 			int node;
4798 			struct page *page;
4799 
4800 			page = READ_ONCE(c->page);
4801 			if (!page)
4802 				continue;
4803 
4804 			node = page_to_nid(page);
4805 			if (flags & SO_TOTAL)
4806 				x = page->objects;
4807 			else if (flags & SO_OBJECTS)
4808 				x = page->inuse;
4809 			else
4810 				x = 1;
4811 
4812 			total += x;
4813 			nodes[node] += x;
4814 
4815 			page = slub_percpu_partial_read_once(c);
4816 			if (page) {
4817 				node = page_to_nid(page);
4818 				if (flags & SO_TOTAL)
4819 					WARN_ON_ONCE(1);
4820 				else if (flags & SO_OBJECTS)
4821 					WARN_ON_ONCE(1);
4822 				else
4823 					x = page->pages;
4824 				total += x;
4825 				nodes[node] += x;
4826 			}
4827 		}
4828 	}
4829 
4830 	get_online_mems();
4831 #ifdef CONFIG_SLUB_DEBUG
4832 	if (flags & SO_ALL) {
4833 		struct kmem_cache_node *n;
4834 
4835 		for_each_kmem_cache_node(s, node, n) {
4836 
4837 			if (flags & SO_TOTAL)
4838 				x = atomic_long_read(&n->total_objects);
4839 			else if (flags & SO_OBJECTS)
4840 				x = atomic_long_read(&n->total_objects) -
4841 					count_partial(n, count_free);
4842 			else
4843 				x = atomic_long_read(&n->nr_slabs);
4844 			total += x;
4845 			nodes[node] += x;
4846 		}
4847 
4848 	} else
4849 #endif
4850 	if (flags & SO_PARTIAL) {
4851 		struct kmem_cache_node *n;
4852 
4853 		for_each_kmem_cache_node(s, node, n) {
4854 			if (flags & SO_TOTAL)
4855 				x = count_partial(n, count_total);
4856 			else if (flags & SO_OBJECTS)
4857 				x = count_partial(n, count_inuse);
4858 			else
4859 				x = n->nr_partial;
4860 			total += x;
4861 			nodes[node] += x;
4862 		}
4863 	}
4864 	x = sprintf(buf, "%lu", total);
4865 #ifdef CONFIG_NUMA
4866 	for (node = 0; node < nr_node_ids; node++)
4867 		if (nodes[node])
4868 			x += sprintf(buf + x, " N%d=%lu",
4869 					node, nodes[node]);
4870 #endif
4871 	put_online_mems();
4872 	kfree(nodes);
4873 	return x + sprintf(buf + x, "\n");
4874 }
4875 
4876 #ifdef CONFIG_SLUB_DEBUG
4877 static int any_slab_objects(struct kmem_cache *s)
4878 {
4879 	int node;
4880 	struct kmem_cache_node *n;
4881 
4882 	for_each_kmem_cache_node(s, node, n)
4883 		if (atomic_long_read(&n->total_objects))
4884 			return 1;
4885 
4886 	return 0;
4887 }
4888 #endif
4889 
4890 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4891 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4892 
4893 struct slab_attribute {
4894 	struct attribute attr;
4895 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4896 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4897 };
4898 
4899 #define SLAB_ATTR_RO(_name) \
4900 	static struct slab_attribute _name##_attr = \
4901 	__ATTR(_name, 0400, _name##_show, NULL)
4902 
4903 #define SLAB_ATTR(_name) \
4904 	static struct slab_attribute _name##_attr =  \
4905 	__ATTR(_name, 0600, _name##_show, _name##_store)
4906 
4907 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4908 {
4909 	return sprintf(buf, "%u\n", s->size);
4910 }
4911 SLAB_ATTR_RO(slab_size);
4912 
4913 static ssize_t align_show(struct kmem_cache *s, char *buf)
4914 {
4915 	return sprintf(buf, "%u\n", s->align);
4916 }
4917 SLAB_ATTR_RO(align);
4918 
4919 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4920 {
4921 	return sprintf(buf, "%u\n", s->object_size);
4922 }
4923 SLAB_ATTR_RO(object_size);
4924 
4925 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4926 {
4927 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4928 }
4929 SLAB_ATTR_RO(objs_per_slab);
4930 
4931 static ssize_t order_store(struct kmem_cache *s,
4932 				const char *buf, size_t length)
4933 {
4934 	unsigned int order;
4935 	int err;
4936 
4937 	err = kstrtouint(buf, 10, &order);
4938 	if (err)
4939 		return err;
4940 
4941 	if (order > slub_max_order || order < slub_min_order)
4942 		return -EINVAL;
4943 
4944 	calculate_sizes(s, order);
4945 	return length;
4946 }
4947 
4948 static ssize_t order_show(struct kmem_cache *s, char *buf)
4949 {
4950 	return sprintf(buf, "%u\n", oo_order(s->oo));
4951 }
4952 SLAB_ATTR(order);
4953 
4954 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4955 {
4956 	return sprintf(buf, "%lu\n", s->min_partial);
4957 }
4958 
4959 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4960 				 size_t length)
4961 {
4962 	unsigned long min;
4963 	int err;
4964 
4965 	err = kstrtoul(buf, 10, &min);
4966 	if (err)
4967 		return err;
4968 
4969 	set_min_partial(s, min);
4970 	return length;
4971 }
4972 SLAB_ATTR(min_partial);
4973 
4974 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4975 {
4976 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4977 }
4978 
4979 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4980 				 size_t length)
4981 {
4982 	unsigned int objects;
4983 	int err;
4984 
4985 	err = kstrtouint(buf, 10, &objects);
4986 	if (err)
4987 		return err;
4988 	if (objects && !kmem_cache_has_cpu_partial(s))
4989 		return -EINVAL;
4990 
4991 	slub_set_cpu_partial(s, objects);
4992 	flush_all(s);
4993 	return length;
4994 }
4995 SLAB_ATTR(cpu_partial);
4996 
4997 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4998 {
4999 	if (!s->ctor)
5000 		return 0;
5001 	return sprintf(buf, "%pS\n", s->ctor);
5002 }
5003 SLAB_ATTR_RO(ctor);
5004 
5005 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5006 {
5007 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5008 }
5009 SLAB_ATTR_RO(aliases);
5010 
5011 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5012 {
5013 	return show_slab_objects(s, buf, SO_PARTIAL);
5014 }
5015 SLAB_ATTR_RO(partial);
5016 
5017 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5018 {
5019 	return show_slab_objects(s, buf, SO_CPU);
5020 }
5021 SLAB_ATTR_RO(cpu_slabs);
5022 
5023 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5024 {
5025 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5026 }
5027 SLAB_ATTR_RO(objects);
5028 
5029 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5030 {
5031 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5032 }
5033 SLAB_ATTR_RO(objects_partial);
5034 
5035 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5036 {
5037 	int objects = 0;
5038 	int pages = 0;
5039 	int cpu;
5040 	int len;
5041 
5042 	for_each_online_cpu(cpu) {
5043 		struct page *page;
5044 
5045 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5046 
5047 		if (page) {
5048 			pages += page->pages;
5049 			objects += page->pobjects;
5050 		}
5051 	}
5052 
5053 	len = sprintf(buf, "%d(%d)", objects, pages);
5054 
5055 #ifdef CONFIG_SMP
5056 	for_each_online_cpu(cpu) {
5057 		struct page *page;
5058 
5059 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5060 
5061 		if (page && len < PAGE_SIZE - 20)
5062 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5063 				page->pobjects, page->pages);
5064 	}
5065 #endif
5066 	return len + sprintf(buf + len, "\n");
5067 }
5068 SLAB_ATTR_RO(slabs_cpu_partial);
5069 
5070 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5071 {
5072 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5073 }
5074 
5075 static ssize_t reclaim_account_store(struct kmem_cache *s,
5076 				const char *buf, size_t length)
5077 {
5078 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5079 	if (buf[0] == '1')
5080 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5081 	return length;
5082 }
5083 SLAB_ATTR(reclaim_account);
5084 
5085 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5086 {
5087 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5088 }
5089 SLAB_ATTR_RO(hwcache_align);
5090 
5091 #ifdef CONFIG_ZONE_DMA
5092 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5093 {
5094 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5095 }
5096 SLAB_ATTR_RO(cache_dma);
5097 #endif
5098 
5099 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5100 {
5101 	return sprintf(buf, "%u\n", s->usersize);
5102 }
5103 SLAB_ATTR_RO(usersize);
5104 
5105 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5106 {
5107 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5108 }
5109 SLAB_ATTR_RO(destroy_by_rcu);
5110 
5111 #ifdef CONFIG_SLUB_DEBUG
5112 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5113 {
5114 	return show_slab_objects(s, buf, SO_ALL);
5115 }
5116 SLAB_ATTR_RO(slabs);
5117 
5118 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5119 {
5120 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5121 }
5122 SLAB_ATTR_RO(total_objects);
5123 
5124 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5125 {
5126 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5127 }
5128 
5129 static ssize_t sanity_checks_store(struct kmem_cache *s,
5130 				const char *buf, size_t length)
5131 {
5132 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5133 	if (buf[0] == '1') {
5134 		s->flags &= ~__CMPXCHG_DOUBLE;
5135 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5136 	}
5137 	return length;
5138 }
5139 SLAB_ATTR(sanity_checks);
5140 
5141 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5142 {
5143 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5144 }
5145 
5146 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5147 							size_t length)
5148 {
5149 	/*
5150 	 * Tracing a merged cache is going to give confusing results
5151 	 * as well as cause other issues like converting a mergeable
5152 	 * cache into an umergeable one.
5153 	 */
5154 	if (s->refcount > 1)
5155 		return -EINVAL;
5156 
5157 	s->flags &= ~SLAB_TRACE;
5158 	if (buf[0] == '1') {
5159 		s->flags &= ~__CMPXCHG_DOUBLE;
5160 		s->flags |= SLAB_TRACE;
5161 	}
5162 	return length;
5163 }
5164 SLAB_ATTR(trace);
5165 
5166 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5167 {
5168 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5169 }
5170 
5171 static ssize_t red_zone_store(struct kmem_cache *s,
5172 				const char *buf, size_t length)
5173 {
5174 	if (any_slab_objects(s))
5175 		return -EBUSY;
5176 
5177 	s->flags &= ~SLAB_RED_ZONE;
5178 	if (buf[0] == '1') {
5179 		s->flags |= SLAB_RED_ZONE;
5180 	}
5181 	calculate_sizes(s, -1);
5182 	return length;
5183 }
5184 SLAB_ATTR(red_zone);
5185 
5186 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5187 {
5188 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5189 }
5190 
5191 static ssize_t poison_store(struct kmem_cache *s,
5192 				const char *buf, size_t length)
5193 {
5194 	if (any_slab_objects(s))
5195 		return -EBUSY;
5196 
5197 	s->flags &= ~SLAB_POISON;
5198 	if (buf[0] == '1') {
5199 		s->flags |= SLAB_POISON;
5200 	}
5201 	calculate_sizes(s, -1);
5202 	return length;
5203 }
5204 SLAB_ATTR(poison);
5205 
5206 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5207 {
5208 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5209 }
5210 
5211 static ssize_t store_user_store(struct kmem_cache *s,
5212 				const char *buf, size_t length)
5213 {
5214 	if (any_slab_objects(s))
5215 		return -EBUSY;
5216 
5217 	s->flags &= ~SLAB_STORE_USER;
5218 	if (buf[0] == '1') {
5219 		s->flags &= ~__CMPXCHG_DOUBLE;
5220 		s->flags |= SLAB_STORE_USER;
5221 	}
5222 	calculate_sizes(s, -1);
5223 	return length;
5224 }
5225 SLAB_ATTR(store_user);
5226 
5227 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5228 {
5229 	return 0;
5230 }
5231 
5232 static ssize_t validate_store(struct kmem_cache *s,
5233 			const char *buf, size_t length)
5234 {
5235 	int ret = -EINVAL;
5236 
5237 	if (buf[0] == '1') {
5238 		ret = validate_slab_cache(s);
5239 		if (ret >= 0)
5240 			ret = length;
5241 	}
5242 	return ret;
5243 }
5244 SLAB_ATTR(validate);
5245 
5246 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5247 {
5248 	if (!(s->flags & SLAB_STORE_USER))
5249 		return -ENOSYS;
5250 	return list_locations(s, buf, TRACK_ALLOC);
5251 }
5252 SLAB_ATTR_RO(alloc_calls);
5253 
5254 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5255 {
5256 	if (!(s->flags & SLAB_STORE_USER))
5257 		return -ENOSYS;
5258 	return list_locations(s, buf, TRACK_FREE);
5259 }
5260 SLAB_ATTR_RO(free_calls);
5261 #endif /* CONFIG_SLUB_DEBUG */
5262 
5263 #ifdef CONFIG_FAILSLAB
5264 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5265 {
5266 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5267 }
5268 
5269 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5270 							size_t length)
5271 {
5272 	if (s->refcount > 1)
5273 		return -EINVAL;
5274 
5275 	s->flags &= ~SLAB_FAILSLAB;
5276 	if (buf[0] == '1')
5277 		s->flags |= SLAB_FAILSLAB;
5278 	return length;
5279 }
5280 SLAB_ATTR(failslab);
5281 #endif
5282 
5283 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5284 {
5285 	return 0;
5286 }
5287 
5288 static ssize_t shrink_store(struct kmem_cache *s,
5289 			const char *buf, size_t length)
5290 {
5291 	if (buf[0] == '1')
5292 		kmem_cache_shrink(s);
5293 	else
5294 		return -EINVAL;
5295 	return length;
5296 }
5297 SLAB_ATTR(shrink);
5298 
5299 #ifdef CONFIG_NUMA
5300 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5301 {
5302 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5303 }
5304 
5305 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5306 				const char *buf, size_t length)
5307 {
5308 	unsigned int ratio;
5309 	int err;
5310 
5311 	err = kstrtouint(buf, 10, &ratio);
5312 	if (err)
5313 		return err;
5314 	if (ratio > 100)
5315 		return -ERANGE;
5316 
5317 	s->remote_node_defrag_ratio = ratio * 10;
5318 
5319 	return length;
5320 }
5321 SLAB_ATTR(remote_node_defrag_ratio);
5322 #endif
5323 
5324 #ifdef CONFIG_SLUB_STATS
5325 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5326 {
5327 	unsigned long sum  = 0;
5328 	int cpu;
5329 	int len;
5330 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5331 
5332 	if (!data)
5333 		return -ENOMEM;
5334 
5335 	for_each_online_cpu(cpu) {
5336 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5337 
5338 		data[cpu] = x;
5339 		sum += x;
5340 	}
5341 
5342 	len = sprintf(buf, "%lu", sum);
5343 
5344 #ifdef CONFIG_SMP
5345 	for_each_online_cpu(cpu) {
5346 		if (data[cpu] && len < PAGE_SIZE - 20)
5347 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5348 	}
5349 #endif
5350 	kfree(data);
5351 	return len + sprintf(buf + len, "\n");
5352 }
5353 
5354 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5355 {
5356 	int cpu;
5357 
5358 	for_each_online_cpu(cpu)
5359 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5360 }
5361 
5362 #define STAT_ATTR(si, text) 					\
5363 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5364 {								\
5365 	return show_stat(s, buf, si);				\
5366 }								\
5367 static ssize_t text##_store(struct kmem_cache *s,		\
5368 				const char *buf, size_t length)	\
5369 {								\
5370 	if (buf[0] != '0')					\
5371 		return -EINVAL;					\
5372 	clear_stat(s, si);					\
5373 	return length;						\
5374 }								\
5375 SLAB_ATTR(text);						\
5376 
5377 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5378 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5379 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5380 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5381 STAT_ATTR(FREE_FROZEN, free_frozen);
5382 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5383 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5384 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5385 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5386 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5387 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5388 STAT_ATTR(FREE_SLAB, free_slab);
5389 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5390 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5391 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5392 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5393 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5394 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5395 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5396 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5397 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5398 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5399 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5400 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5401 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5402 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5403 #endif
5404 
5405 static struct attribute *slab_attrs[] = {
5406 	&slab_size_attr.attr,
5407 	&object_size_attr.attr,
5408 	&objs_per_slab_attr.attr,
5409 	&order_attr.attr,
5410 	&min_partial_attr.attr,
5411 	&cpu_partial_attr.attr,
5412 	&objects_attr.attr,
5413 	&objects_partial_attr.attr,
5414 	&partial_attr.attr,
5415 	&cpu_slabs_attr.attr,
5416 	&ctor_attr.attr,
5417 	&aliases_attr.attr,
5418 	&align_attr.attr,
5419 	&hwcache_align_attr.attr,
5420 	&reclaim_account_attr.attr,
5421 	&destroy_by_rcu_attr.attr,
5422 	&shrink_attr.attr,
5423 	&slabs_cpu_partial_attr.attr,
5424 #ifdef CONFIG_SLUB_DEBUG
5425 	&total_objects_attr.attr,
5426 	&slabs_attr.attr,
5427 	&sanity_checks_attr.attr,
5428 	&trace_attr.attr,
5429 	&red_zone_attr.attr,
5430 	&poison_attr.attr,
5431 	&store_user_attr.attr,
5432 	&validate_attr.attr,
5433 	&alloc_calls_attr.attr,
5434 	&free_calls_attr.attr,
5435 #endif
5436 #ifdef CONFIG_ZONE_DMA
5437 	&cache_dma_attr.attr,
5438 #endif
5439 #ifdef CONFIG_NUMA
5440 	&remote_node_defrag_ratio_attr.attr,
5441 #endif
5442 #ifdef CONFIG_SLUB_STATS
5443 	&alloc_fastpath_attr.attr,
5444 	&alloc_slowpath_attr.attr,
5445 	&free_fastpath_attr.attr,
5446 	&free_slowpath_attr.attr,
5447 	&free_frozen_attr.attr,
5448 	&free_add_partial_attr.attr,
5449 	&free_remove_partial_attr.attr,
5450 	&alloc_from_partial_attr.attr,
5451 	&alloc_slab_attr.attr,
5452 	&alloc_refill_attr.attr,
5453 	&alloc_node_mismatch_attr.attr,
5454 	&free_slab_attr.attr,
5455 	&cpuslab_flush_attr.attr,
5456 	&deactivate_full_attr.attr,
5457 	&deactivate_empty_attr.attr,
5458 	&deactivate_to_head_attr.attr,
5459 	&deactivate_to_tail_attr.attr,
5460 	&deactivate_remote_frees_attr.attr,
5461 	&deactivate_bypass_attr.attr,
5462 	&order_fallback_attr.attr,
5463 	&cmpxchg_double_fail_attr.attr,
5464 	&cmpxchg_double_cpu_fail_attr.attr,
5465 	&cpu_partial_alloc_attr.attr,
5466 	&cpu_partial_free_attr.attr,
5467 	&cpu_partial_node_attr.attr,
5468 	&cpu_partial_drain_attr.attr,
5469 #endif
5470 #ifdef CONFIG_FAILSLAB
5471 	&failslab_attr.attr,
5472 #endif
5473 	&usersize_attr.attr,
5474 
5475 	NULL
5476 };
5477 
5478 static const struct attribute_group slab_attr_group = {
5479 	.attrs = slab_attrs,
5480 };
5481 
5482 static ssize_t slab_attr_show(struct kobject *kobj,
5483 				struct attribute *attr,
5484 				char *buf)
5485 {
5486 	struct slab_attribute *attribute;
5487 	struct kmem_cache *s;
5488 	int err;
5489 
5490 	attribute = to_slab_attr(attr);
5491 	s = to_slab(kobj);
5492 
5493 	if (!attribute->show)
5494 		return -EIO;
5495 
5496 	err = attribute->show(s, buf);
5497 
5498 	return err;
5499 }
5500 
5501 static ssize_t slab_attr_store(struct kobject *kobj,
5502 				struct attribute *attr,
5503 				const char *buf, size_t len)
5504 {
5505 	struct slab_attribute *attribute;
5506 	struct kmem_cache *s;
5507 	int err;
5508 
5509 	attribute = to_slab_attr(attr);
5510 	s = to_slab(kobj);
5511 
5512 	if (!attribute->store)
5513 		return -EIO;
5514 
5515 	err = attribute->store(s, buf, len);
5516 #ifdef CONFIG_MEMCG
5517 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5518 		struct kmem_cache *c;
5519 
5520 		mutex_lock(&slab_mutex);
5521 		if (s->max_attr_size < len)
5522 			s->max_attr_size = len;
5523 
5524 		/*
5525 		 * This is a best effort propagation, so this function's return
5526 		 * value will be determined by the parent cache only. This is
5527 		 * basically because not all attributes will have a well
5528 		 * defined semantics for rollbacks - most of the actions will
5529 		 * have permanent effects.
5530 		 *
5531 		 * Returning the error value of any of the children that fail
5532 		 * is not 100 % defined, in the sense that users seeing the
5533 		 * error code won't be able to know anything about the state of
5534 		 * the cache.
5535 		 *
5536 		 * Only returning the error code for the parent cache at least
5537 		 * has well defined semantics. The cache being written to
5538 		 * directly either failed or succeeded, in which case we loop
5539 		 * through the descendants with best-effort propagation.
5540 		 */
5541 		for_each_memcg_cache(c, s)
5542 			attribute->store(c, buf, len);
5543 		mutex_unlock(&slab_mutex);
5544 	}
5545 #endif
5546 	return err;
5547 }
5548 
5549 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5550 {
5551 #ifdef CONFIG_MEMCG
5552 	int i;
5553 	char *buffer = NULL;
5554 	struct kmem_cache *root_cache;
5555 
5556 	if (is_root_cache(s))
5557 		return;
5558 
5559 	root_cache = s->memcg_params.root_cache;
5560 
5561 	/*
5562 	 * This mean this cache had no attribute written. Therefore, no point
5563 	 * in copying default values around
5564 	 */
5565 	if (!root_cache->max_attr_size)
5566 		return;
5567 
5568 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5569 		char mbuf[64];
5570 		char *buf;
5571 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5572 		ssize_t len;
5573 
5574 		if (!attr || !attr->store || !attr->show)
5575 			continue;
5576 
5577 		/*
5578 		 * It is really bad that we have to allocate here, so we will
5579 		 * do it only as a fallback. If we actually allocate, though,
5580 		 * we can just use the allocated buffer until the end.
5581 		 *
5582 		 * Most of the slub attributes will tend to be very small in
5583 		 * size, but sysfs allows buffers up to a page, so they can
5584 		 * theoretically happen.
5585 		 */
5586 		if (buffer)
5587 			buf = buffer;
5588 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5589 			buf = mbuf;
5590 		else {
5591 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5592 			if (WARN_ON(!buffer))
5593 				continue;
5594 			buf = buffer;
5595 		}
5596 
5597 		len = attr->show(root_cache, buf);
5598 		if (len > 0)
5599 			attr->store(s, buf, len);
5600 	}
5601 
5602 	if (buffer)
5603 		free_page((unsigned long)buffer);
5604 #endif
5605 }
5606 
5607 static void kmem_cache_release(struct kobject *k)
5608 {
5609 	slab_kmem_cache_release(to_slab(k));
5610 }
5611 
5612 static const struct sysfs_ops slab_sysfs_ops = {
5613 	.show = slab_attr_show,
5614 	.store = slab_attr_store,
5615 };
5616 
5617 static struct kobj_type slab_ktype = {
5618 	.sysfs_ops = &slab_sysfs_ops,
5619 	.release = kmem_cache_release,
5620 };
5621 
5622 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5623 {
5624 	struct kobj_type *ktype = get_ktype(kobj);
5625 
5626 	if (ktype == &slab_ktype)
5627 		return 1;
5628 	return 0;
5629 }
5630 
5631 static const struct kset_uevent_ops slab_uevent_ops = {
5632 	.filter = uevent_filter,
5633 };
5634 
5635 static struct kset *slab_kset;
5636 
5637 static inline struct kset *cache_kset(struct kmem_cache *s)
5638 {
5639 #ifdef CONFIG_MEMCG
5640 	if (!is_root_cache(s))
5641 		return s->memcg_params.root_cache->memcg_kset;
5642 #endif
5643 	return slab_kset;
5644 }
5645 
5646 #define ID_STR_LENGTH 64
5647 
5648 /* Create a unique string id for a slab cache:
5649  *
5650  * Format	:[flags-]size
5651  */
5652 static char *create_unique_id(struct kmem_cache *s)
5653 {
5654 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5655 	char *p = name;
5656 
5657 	BUG_ON(!name);
5658 
5659 	*p++ = ':';
5660 	/*
5661 	 * First flags affecting slabcache operations. We will only
5662 	 * get here for aliasable slabs so we do not need to support
5663 	 * too many flags. The flags here must cover all flags that
5664 	 * are matched during merging to guarantee that the id is
5665 	 * unique.
5666 	 */
5667 	if (s->flags & SLAB_CACHE_DMA)
5668 		*p++ = 'd';
5669 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5670 		*p++ = 'a';
5671 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5672 		*p++ = 'F';
5673 	if (s->flags & SLAB_ACCOUNT)
5674 		*p++ = 'A';
5675 	if (p != name + 1)
5676 		*p++ = '-';
5677 	p += sprintf(p, "%07u", s->size);
5678 
5679 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5680 	return name;
5681 }
5682 
5683 static void sysfs_slab_remove_workfn(struct work_struct *work)
5684 {
5685 	struct kmem_cache *s =
5686 		container_of(work, struct kmem_cache, kobj_remove_work);
5687 
5688 	if (!s->kobj.state_in_sysfs)
5689 		/*
5690 		 * For a memcg cache, this may be called during
5691 		 * deactivation and again on shutdown.  Remove only once.
5692 		 * A cache is never shut down before deactivation is
5693 		 * complete, so no need to worry about synchronization.
5694 		 */
5695 		goto out;
5696 
5697 #ifdef CONFIG_MEMCG
5698 	kset_unregister(s->memcg_kset);
5699 #endif
5700 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5701 out:
5702 	kobject_put(&s->kobj);
5703 }
5704 
5705 static int sysfs_slab_add(struct kmem_cache *s)
5706 {
5707 	int err;
5708 	const char *name;
5709 	struct kset *kset = cache_kset(s);
5710 	int unmergeable = slab_unmergeable(s);
5711 
5712 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5713 
5714 	if (!kset) {
5715 		kobject_init(&s->kobj, &slab_ktype);
5716 		return 0;
5717 	}
5718 
5719 	if (!unmergeable && disable_higher_order_debug &&
5720 			(slub_debug & DEBUG_METADATA_FLAGS))
5721 		unmergeable = 1;
5722 
5723 	if (unmergeable) {
5724 		/*
5725 		 * Slabcache can never be merged so we can use the name proper.
5726 		 * This is typically the case for debug situations. In that
5727 		 * case we can catch duplicate names easily.
5728 		 */
5729 		sysfs_remove_link(&slab_kset->kobj, s->name);
5730 		name = s->name;
5731 	} else {
5732 		/*
5733 		 * Create a unique name for the slab as a target
5734 		 * for the symlinks.
5735 		 */
5736 		name = create_unique_id(s);
5737 	}
5738 
5739 	s->kobj.kset = kset;
5740 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5741 	if (err)
5742 		goto out;
5743 
5744 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5745 	if (err)
5746 		goto out_del_kobj;
5747 
5748 #ifdef CONFIG_MEMCG
5749 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5750 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5751 		if (!s->memcg_kset) {
5752 			err = -ENOMEM;
5753 			goto out_del_kobj;
5754 		}
5755 	}
5756 #endif
5757 
5758 	kobject_uevent(&s->kobj, KOBJ_ADD);
5759 	if (!unmergeable) {
5760 		/* Setup first alias */
5761 		sysfs_slab_alias(s, s->name);
5762 	}
5763 out:
5764 	if (!unmergeable)
5765 		kfree(name);
5766 	return err;
5767 out_del_kobj:
5768 	kobject_del(&s->kobj);
5769 	goto out;
5770 }
5771 
5772 static void sysfs_slab_remove(struct kmem_cache *s)
5773 {
5774 	if (slab_state < FULL)
5775 		/*
5776 		 * Sysfs has not been setup yet so no need to remove the
5777 		 * cache from sysfs.
5778 		 */
5779 		return;
5780 
5781 	kobject_get(&s->kobj);
5782 	schedule_work(&s->kobj_remove_work);
5783 }
5784 
5785 void sysfs_slab_unlink(struct kmem_cache *s)
5786 {
5787 	if (slab_state >= FULL)
5788 		kobject_del(&s->kobj);
5789 }
5790 
5791 void sysfs_slab_release(struct kmem_cache *s)
5792 {
5793 	if (slab_state >= FULL)
5794 		kobject_put(&s->kobj);
5795 }
5796 
5797 /*
5798  * Need to buffer aliases during bootup until sysfs becomes
5799  * available lest we lose that information.
5800  */
5801 struct saved_alias {
5802 	struct kmem_cache *s;
5803 	const char *name;
5804 	struct saved_alias *next;
5805 };
5806 
5807 static struct saved_alias *alias_list;
5808 
5809 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5810 {
5811 	struct saved_alias *al;
5812 
5813 	if (slab_state == FULL) {
5814 		/*
5815 		 * If we have a leftover link then remove it.
5816 		 */
5817 		sysfs_remove_link(&slab_kset->kobj, name);
5818 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5819 	}
5820 
5821 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5822 	if (!al)
5823 		return -ENOMEM;
5824 
5825 	al->s = s;
5826 	al->name = name;
5827 	al->next = alias_list;
5828 	alias_list = al;
5829 	return 0;
5830 }
5831 
5832 static int __init slab_sysfs_init(void)
5833 {
5834 	struct kmem_cache *s;
5835 	int err;
5836 
5837 	mutex_lock(&slab_mutex);
5838 
5839 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5840 	if (!slab_kset) {
5841 		mutex_unlock(&slab_mutex);
5842 		pr_err("Cannot register slab subsystem.\n");
5843 		return -ENOSYS;
5844 	}
5845 
5846 	slab_state = FULL;
5847 
5848 	list_for_each_entry(s, &slab_caches, list) {
5849 		err = sysfs_slab_add(s);
5850 		if (err)
5851 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5852 			       s->name);
5853 	}
5854 
5855 	while (alias_list) {
5856 		struct saved_alias *al = alias_list;
5857 
5858 		alias_list = alias_list->next;
5859 		err = sysfs_slab_alias(al->s, al->name);
5860 		if (err)
5861 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5862 			       al->name);
5863 		kfree(al);
5864 	}
5865 
5866 	mutex_unlock(&slab_mutex);
5867 	resiliency_test();
5868 	return 0;
5869 }
5870 
5871 __initcall(slab_sysfs_init);
5872 #endif /* CONFIG_SYSFS */
5873 
5874 /*
5875  * The /proc/slabinfo ABI
5876  */
5877 #ifdef CONFIG_SLUB_DEBUG
5878 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5879 {
5880 	unsigned long nr_slabs = 0;
5881 	unsigned long nr_objs = 0;
5882 	unsigned long nr_free = 0;
5883 	int node;
5884 	struct kmem_cache_node *n;
5885 
5886 	for_each_kmem_cache_node(s, node, n) {
5887 		nr_slabs += node_nr_slabs(n);
5888 		nr_objs += node_nr_objs(n);
5889 		nr_free += count_partial(n, count_free);
5890 	}
5891 
5892 	sinfo->active_objs = nr_objs - nr_free;
5893 	sinfo->num_objs = nr_objs;
5894 	sinfo->active_slabs = nr_slabs;
5895 	sinfo->num_slabs = nr_slabs;
5896 	sinfo->objects_per_slab = oo_objects(s->oo);
5897 	sinfo->cache_order = oo_order(s->oo);
5898 }
5899 
5900 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5901 {
5902 }
5903 
5904 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5905 		       size_t count, loff_t *ppos)
5906 {
5907 	return -EIO;
5908 }
5909 #endif /* CONFIG_SLUB_DEBUG */
5910