xref: /linux/mm/slub.c (revision bd476c1306ea989d6d9eb65295572e98d93edeb6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 #include <linux/sort.h>
42 
43 #include <linux/debugfs.h>
44 #include <trace/events/kmem.h>
45 
46 #include "internal.h"
47 
48 /*
49  * Lock order:
50  *   1. slab_mutex (Global Mutex)
51  *   2. node->list_lock (Spinlock)
52  *   3. kmem_cache->cpu_slab->lock (Local lock)
53  *   4. slab_lock(slab) (Only on some arches or for debugging)
54  *   5. object_map_lock (Only for debugging)
55  *
56  *   slab_mutex
57  *
58  *   The role of the slab_mutex is to protect the list of all the slabs
59  *   and to synchronize major metadata changes to slab cache structures.
60  *   Also synchronizes memory hotplug callbacks.
61  *
62  *   slab_lock
63  *
64  *   The slab_lock is a wrapper around the page lock, thus it is a bit
65  *   spinlock.
66  *
67  *   The slab_lock is only used for debugging and on arches that do not
68  *   have the ability to do a cmpxchg_double. It only protects:
69  *	A. slab->freelist	-> List of free objects in a slab
70  *	B. slab->inuse		-> Number of objects in use
71  *	C. slab->objects	-> Number of objects in slab
72  *	D. slab->frozen		-> frozen state
73  *
74  *   Frozen slabs
75  *
76  *   If a slab is frozen then it is exempt from list management. It is not
77  *   on any list except per cpu partial list. The processor that froze the
78  *   slab is the one who can perform list operations on the slab. Other
79  *   processors may put objects onto the freelist but the processor that
80  *   froze the slab is the only one that can retrieve the objects from the
81  *   slab's freelist.
82  *
83  *   list_lock
84  *
85  *   The list_lock protects the partial and full list on each node and
86  *   the partial slab counter. If taken then no new slabs may be added or
87  *   removed from the lists nor make the number of partial slabs be modified.
88  *   (Note that the total number of slabs is an atomic value that may be
89  *   modified without taking the list lock).
90  *
91  *   The list_lock is a centralized lock and thus we avoid taking it as
92  *   much as possible. As long as SLUB does not have to handle partial
93  *   slabs, operations can continue without any centralized lock. F.e.
94  *   allocating a long series of objects that fill up slabs does not require
95  *   the list lock.
96  *
97  *   cpu_slab->lock local lock
98  *
99  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
100  *   except the stat counters. This is a percpu structure manipulated only by
101  *   the local cpu, so the lock protects against being preempted or interrupted
102  *   by an irq. Fast path operations rely on lockless operations instead.
103  *   On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104  *   prevent the lockless operations), so fastpath operations also need to take
105  *   the lock and are no longer lockless.
106  *
107  *   lockless fastpaths
108  *
109  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110  *   are fully lockless when satisfied from the percpu slab (and when
111  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
112  *   They also don't disable preemption or migration or irqs. They rely on
113  *   the transaction id (tid) field to detect being preempted or moved to
114  *   another cpu.
115  *
116  *   irq, preemption, migration considerations
117  *
118  *   Interrupts are disabled as part of list_lock or local_lock operations, or
119  *   around the slab_lock operation, in order to make the slab allocator safe
120  *   to use in the context of an irq.
121  *
122  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125  *   doesn't have to be revalidated in each section protected by the local lock.
126  *
127  * SLUB assigns one slab for allocation to each processor.
128  * Allocations only occur from these slabs called cpu slabs.
129  *
130  * Slabs with free elements are kept on a partial list and during regular
131  * operations no list for full slabs is used. If an object in a full slab is
132  * freed then the slab will show up again on the partial lists.
133  * We track full slabs for debugging purposes though because otherwise we
134  * cannot scan all objects.
135  *
136  * Slabs are freed when they become empty. Teardown and setup is
137  * minimal so we rely on the page allocators per cpu caches for
138  * fast frees and allocs.
139  *
140  * slab->frozen		The slab is frozen and exempt from list processing.
141  * 			This means that the slab is dedicated to a purpose
142  * 			such as satisfying allocations for a specific
143  * 			processor. Objects may be freed in the slab while
144  * 			it is frozen but slab_free will then skip the usual
145  * 			list operations. It is up to the processor holding
146  * 			the slab to integrate the slab into the slab lists
147  * 			when the slab is no longer needed.
148  *
149  * 			One use of this flag is to mark slabs that are
150  * 			used for allocations. Then such a slab becomes a cpu
151  * 			slab. The cpu slab may be equipped with an additional
152  * 			freelist that allows lockless access to
153  * 			free objects in addition to the regular freelist
154  * 			that requires the slab lock.
155  *
156  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
157  * 			options set. This moves	slab handling out of
158  * 			the fast path and disables lockless freelists.
159  */
160 
161 /*
162  * We could simply use migrate_disable()/enable() but as long as it's a
163  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
164  */
165 #ifndef CONFIG_PREEMPT_RT
166 #define slub_get_cpu_ptr(var)	get_cpu_ptr(var)
167 #define slub_put_cpu_ptr(var)	put_cpu_ptr(var)
168 #else
169 #define slub_get_cpu_ptr(var)		\
170 ({					\
171 	migrate_disable();		\
172 	this_cpu_ptr(var);		\
173 })
174 #define slub_put_cpu_ptr(var)		\
175 do {					\
176 	(void)(var);			\
177 	migrate_enable();		\
178 } while (0)
179 #endif
180 
181 #ifdef CONFIG_SLUB_DEBUG
182 #ifdef CONFIG_SLUB_DEBUG_ON
183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
184 #else
185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
186 #endif
187 #endif		/* CONFIG_SLUB_DEBUG */
188 
189 static inline bool kmem_cache_debug(struct kmem_cache *s)
190 {
191 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
192 }
193 
194 void *fixup_red_left(struct kmem_cache *s, void *p)
195 {
196 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
197 		p += s->red_left_pad;
198 
199 	return p;
200 }
201 
202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
203 {
204 #ifdef CONFIG_SLUB_CPU_PARTIAL
205 	return !kmem_cache_debug(s);
206 #else
207 	return false;
208 #endif
209 }
210 
211 /*
212  * Issues still to be resolved:
213  *
214  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
215  *
216  * - Variable sizing of the per node arrays
217  */
218 
219 /* Enable to log cmpxchg failures */
220 #undef SLUB_DEBUG_CMPXCHG
221 
222 /*
223  * Minimum number of partial slabs. These will be left on the partial
224  * lists even if they are empty. kmem_cache_shrink may reclaim them.
225  */
226 #define MIN_PARTIAL 5
227 
228 /*
229  * Maximum number of desirable partial slabs.
230  * The existence of more partial slabs makes kmem_cache_shrink
231  * sort the partial list by the number of objects in use.
232  */
233 #define MAX_PARTIAL 10
234 
235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
236 				SLAB_POISON | SLAB_STORE_USER)
237 
238 /*
239  * These debug flags cannot use CMPXCHG because there might be consistency
240  * issues when checking or reading debug information
241  */
242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
243 				SLAB_TRACE)
244 
245 
246 /*
247  * Debugging flags that require metadata to be stored in the slab.  These get
248  * disabled when slub_debug=O is used and a cache's min order increases with
249  * metadata.
250  */
251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
252 
253 #define OO_SHIFT	16
254 #define OO_MASK		((1 << OO_SHIFT) - 1)
255 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
256 
257 /* Internal SLUB flags */
258 /* Poison object */
259 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
260 /* Use cmpxchg_double */
261 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
262 
263 /*
264  * Tracking user of a slab.
265  */
266 #define TRACK_ADDRS_COUNT 16
267 struct track {
268 	unsigned long addr;	/* Called from address */
269 #ifdef CONFIG_STACKDEPOT
270 	depot_stack_handle_t handle;
271 #endif
272 	int cpu;		/* Was running on cpu */
273 	int pid;		/* Pid context */
274 	unsigned long when;	/* When did the operation occur */
275 };
276 
277 enum track_item { TRACK_ALLOC, TRACK_FREE };
278 
279 #ifdef CONFIG_SYSFS
280 static int sysfs_slab_add(struct kmem_cache *);
281 static int sysfs_slab_alias(struct kmem_cache *, const char *);
282 #else
283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
285 							{ return 0; }
286 #endif
287 
288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289 static void debugfs_slab_add(struct kmem_cache *);
290 #else
291 static inline void debugfs_slab_add(struct kmem_cache *s) { }
292 #endif
293 
294 static inline void stat(const struct kmem_cache *s, enum stat_item si)
295 {
296 #ifdef CONFIG_SLUB_STATS
297 	/*
298 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 	 * avoid this_cpu_add()'s irq-disable overhead.
300 	 */
301 	raw_cpu_inc(s->cpu_slab->stat[si]);
302 #endif
303 }
304 
305 /*
306  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308  * differ during memory hotplug/hotremove operations.
309  * Protected by slab_mutex.
310  */
311 static nodemask_t slab_nodes;
312 
313 /********************************************************************
314  * 			Core slab cache functions
315  *******************************************************************/
316 
317 /*
318  * Returns freelist pointer (ptr). With hardening, this is obfuscated
319  * with an XOR of the address where the pointer is held and a per-cache
320  * random number.
321  */
322 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
323 				 unsigned long ptr_addr)
324 {
325 #ifdef CONFIG_SLAB_FREELIST_HARDENED
326 	/*
327 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
328 	 * Normally, this doesn't cause any issues, as both set_freepointer()
329 	 * and get_freepointer() are called with a pointer with the same tag.
330 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
331 	 * example, when __free_slub() iterates over objects in a cache, it
332 	 * passes untagged pointers to check_object(). check_object() in turns
333 	 * calls get_freepointer() with an untagged pointer, which causes the
334 	 * freepointer to be restored incorrectly.
335 	 */
336 	return (void *)((unsigned long)ptr ^ s->random ^
337 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
338 #else
339 	return ptr;
340 #endif
341 }
342 
343 /* Returns the freelist pointer recorded at location ptr_addr. */
344 static inline void *freelist_dereference(const struct kmem_cache *s,
345 					 void *ptr_addr)
346 {
347 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
348 			    (unsigned long)ptr_addr);
349 }
350 
351 static inline void *get_freepointer(struct kmem_cache *s, void *object)
352 {
353 	object = kasan_reset_tag(object);
354 	return freelist_dereference(s, object + s->offset);
355 }
356 
357 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
358 {
359 	prefetchw(object + s->offset);
360 }
361 
362 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
363 {
364 	unsigned long freepointer_addr;
365 	void *p;
366 
367 	if (!debug_pagealloc_enabled_static())
368 		return get_freepointer(s, object);
369 
370 	object = kasan_reset_tag(object);
371 	freepointer_addr = (unsigned long)object + s->offset;
372 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
373 	return freelist_ptr(s, p, freepointer_addr);
374 }
375 
376 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
377 {
378 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
379 
380 #ifdef CONFIG_SLAB_FREELIST_HARDENED
381 	BUG_ON(object == fp); /* naive detection of double free or corruption */
382 #endif
383 
384 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
385 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
386 }
387 
388 /* Loop over all objects in a slab */
389 #define for_each_object(__p, __s, __addr, __objects) \
390 	for (__p = fixup_red_left(__s, __addr); \
391 		__p < (__addr) + (__objects) * (__s)->size; \
392 		__p += (__s)->size)
393 
394 static inline unsigned int order_objects(unsigned int order, unsigned int size)
395 {
396 	return ((unsigned int)PAGE_SIZE << order) / size;
397 }
398 
399 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
400 		unsigned int size)
401 {
402 	struct kmem_cache_order_objects x = {
403 		(order << OO_SHIFT) + order_objects(order, size)
404 	};
405 
406 	return x;
407 }
408 
409 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
410 {
411 	return x.x >> OO_SHIFT;
412 }
413 
414 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
415 {
416 	return x.x & OO_MASK;
417 }
418 
419 #ifdef CONFIG_SLUB_CPU_PARTIAL
420 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
421 {
422 	unsigned int nr_slabs;
423 
424 	s->cpu_partial = nr_objects;
425 
426 	/*
427 	 * We take the number of objects but actually limit the number of
428 	 * slabs on the per cpu partial list, in order to limit excessive
429 	 * growth of the list. For simplicity we assume that the slabs will
430 	 * be half-full.
431 	 */
432 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
433 	s->cpu_partial_slabs = nr_slabs;
434 }
435 #else
436 static inline void
437 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
438 {
439 }
440 #endif /* CONFIG_SLUB_CPU_PARTIAL */
441 
442 /*
443  * Per slab locking using the pagelock
444  */
445 static __always_inline void __slab_lock(struct slab *slab)
446 {
447 	struct page *page = slab_page(slab);
448 
449 	VM_BUG_ON_PAGE(PageTail(page), page);
450 	bit_spin_lock(PG_locked, &page->flags);
451 }
452 
453 static __always_inline void __slab_unlock(struct slab *slab)
454 {
455 	struct page *page = slab_page(slab);
456 
457 	VM_BUG_ON_PAGE(PageTail(page), page);
458 	__bit_spin_unlock(PG_locked, &page->flags);
459 }
460 
461 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
462 {
463 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
464 		local_irq_save(*flags);
465 	__slab_lock(slab);
466 }
467 
468 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
469 {
470 	__slab_unlock(slab);
471 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
472 		local_irq_restore(*flags);
473 }
474 
475 /*
476  * Interrupts must be disabled (for the fallback code to work right), typically
477  * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
478  * so we disable interrupts as part of slab_[un]lock().
479  */
480 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
481 		void *freelist_old, unsigned long counters_old,
482 		void *freelist_new, unsigned long counters_new,
483 		const char *n)
484 {
485 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
486 		lockdep_assert_irqs_disabled();
487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
488     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
489 	if (s->flags & __CMPXCHG_DOUBLE) {
490 		if (cmpxchg_double(&slab->freelist, &slab->counters,
491 				   freelist_old, counters_old,
492 				   freelist_new, counters_new))
493 			return true;
494 	} else
495 #endif
496 	{
497 		/* init to 0 to prevent spurious warnings */
498 		unsigned long flags = 0;
499 
500 		slab_lock(slab, &flags);
501 		if (slab->freelist == freelist_old &&
502 					slab->counters == counters_old) {
503 			slab->freelist = freelist_new;
504 			slab->counters = counters_new;
505 			slab_unlock(slab, &flags);
506 			return true;
507 		}
508 		slab_unlock(slab, &flags);
509 	}
510 
511 	cpu_relax();
512 	stat(s, CMPXCHG_DOUBLE_FAIL);
513 
514 #ifdef SLUB_DEBUG_CMPXCHG
515 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
516 #endif
517 
518 	return false;
519 }
520 
521 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
522 		void *freelist_old, unsigned long counters_old,
523 		void *freelist_new, unsigned long counters_new,
524 		const char *n)
525 {
526 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
527     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
528 	if (s->flags & __CMPXCHG_DOUBLE) {
529 		if (cmpxchg_double(&slab->freelist, &slab->counters,
530 				   freelist_old, counters_old,
531 				   freelist_new, counters_new))
532 			return true;
533 	} else
534 #endif
535 	{
536 		unsigned long flags;
537 
538 		local_irq_save(flags);
539 		__slab_lock(slab);
540 		if (slab->freelist == freelist_old &&
541 					slab->counters == counters_old) {
542 			slab->freelist = freelist_new;
543 			slab->counters = counters_new;
544 			__slab_unlock(slab);
545 			local_irq_restore(flags);
546 			return true;
547 		}
548 		__slab_unlock(slab);
549 		local_irq_restore(flags);
550 	}
551 
552 	cpu_relax();
553 	stat(s, CMPXCHG_DOUBLE_FAIL);
554 
555 #ifdef SLUB_DEBUG_CMPXCHG
556 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
557 #endif
558 
559 	return false;
560 }
561 
562 #ifdef CONFIG_SLUB_DEBUG
563 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
564 static DEFINE_RAW_SPINLOCK(object_map_lock);
565 
566 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
567 		       struct slab *slab)
568 {
569 	void *addr = slab_address(slab);
570 	void *p;
571 
572 	bitmap_zero(obj_map, slab->objects);
573 
574 	for (p = slab->freelist; p; p = get_freepointer(s, p))
575 		set_bit(__obj_to_index(s, addr, p), obj_map);
576 }
577 
578 #if IS_ENABLED(CONFIG_KUNIT)
579 static bool slab_add_kunit_errors(void)
580 {
581 	struct kunit_resource *resource;
582 
583 	if (likely(!current->kunit_test))
584 		return false;
585 
586 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
587 	if (!resource)
588 		return false;
589 
590 	(*(int *)resource->data)++;
591 	kunit_put_resource(resource);
592 	return true;
593 }
594 #else
595 static inline bool slab_add_kunit_errors(void) { return false; }
596 #endif
597 
598 /*
599  * Determine a map of objects in use in a slab.
600  *
601  * Node listlock must be held to guarantee that the slab does
602  * not vanish from under us.
603  */
604 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
605 	__acquires(&object_map_lock)
606 {
607 	VM_BUG_ON(!irqs_disabled());
608 
609 	raw_spin_lock(&object_map_lock);
610 
611 	__fill_map(object_map, s, slab);
612 
613 	return object_map;
614 }
615 
616 static void put_map(unsigned long *map) __releases(&object_map_lock)
617 {
618 	VM_BUG_ON(map != object_map);
619 	raw_spin_unlock(&object_map_lock);
620 }
621 
622 static inline unsigned int size_from_object(struct kmem_cache *s)
623 {
624 	if (s->flags & SLAB_RED_ZONE)
625 		return s->size - s->red_left_pad;
626 
627 	return s->size;
628 }
629 
630 static inline void *restore_red_left(struct kmem_cache *s, void *p)
631 {
632 	if (s->flags & SLAB_RED_ZONE)
633 		p -= s->red_left_pad;
634 
635 	return p;
636 }
637 
638 /*
639  * Debug settings:
640  */
641 #if defined(CONFIG_SLUB_DEBUG_ON)
642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
643 #else
644 static slab_flags_t slub_debug;
645 #endif
646 
647 static char *slub_debug_string;
648 static int disable_higher_order_debug;
649 
650 /*
651  * slub is about to manipulate internal object metadata.  This memory lies
652  * outside the range of the allocated object, so accessing it would normally
653  * be reported by kasan as a bounds error.  metadata_access_enable() is used
654  * to tell kasan that these accesses are OK.
655  */
656 static inline void metadata_access_enable(void)
657 {
658 	kasan_disable_current();
659 }
660 
661 static inline void metadata_access_disable(void)
662 {
663 	kasan_enable_current();
664 }
665 
666 /*
667  * Object debugging
668  */
669 
670 /* Verify that a pointer has an address that is valid within a slab page */
671 static inline int check_valid_pointer(struct kmem_cache *s,
672 				struct slab *slab, void *object)
673 {
674 	void *base;
675 
676 	if (!object)
677 		return 1;
678 
679 	base = slab_address(slab);
680 	object = kasan_reset_tag(object);
681 	object = restore_red_left(s, object);
682 	if (object < base || object >= base + slab->objects * s->size ||
683 		(object - base) % s->size) {
684 		return 0;
685 	}
686 
687 	return 1;
688 }
689 
690 static void print_section(char *level, char *text, u8 *addr,
691 			  unsigned int length)
692 {
693 	metadata_access_enable();
694 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
695 			16, 1, kasan_reset_tag((void *)addr), length, 1);
696 	metadata_access_disable();
697 }
698 
699 /*
700  * See comment in calculate_sizes().
701  */
702 static inline bool freeptr_outside_object(struct kmem_cache *s)
703 {
704 	return s->offset >= s->inuse;
705 }
706 
707 /*
708  * Return offset of the end of info block which is inuse + free pointer if
709  * not overlapping with object.
710  */
711 static inline unsigned int get_info_end(struct kmem_cache *s)
712 {
713 	if (freeptr_outside_object(s))
714 		return s->inuse + sizeof(void *);
715 	else
716 		return s->inuse;
717 }
718 
719 static struct track *get_track(struct kmem_cache *s, void *object,
720 	enum track_item alloc)
721 {
722 	struct track *p;
723 
724 	p = object + get_info_end(s);
725 
726 	return kasan_reset_tag(p + alloc);
727 }
728 
729 static void noinline set_track(struct kmem_cache *s, void *object,
730 			enum track_item alloc, unsigned long addr)
731 {
732 	struct track *p = get_track(s, object, alloc);
733 
734 #ifdef CONFIG_STACKDEPOT
735 	unsigned long entries[TRACK_ADDRS_COUNT];
736 	unsigned int nr_entries;
737 
738 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
739 	p->handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
740 #endif
741 
742 	p->addr = addr;
743 	p->cpu = smp_processor_id();
744 	p->pid = current->pid;
745 	p->when = jiffies;
746 }
747 
748 static void init_tracking(struct kmem_cache *s, void *object)
749 {
750 	struct track *p;
751 
752 	if (!(s->flags & SLAB_STORE_USER))
753 		return;
754 
755 	p = get_track(s, object, TRACK_ALLOC);
756 	memset(p, 0, 2*sizeof(struct track));
757 }
758 
759 static void print_track(const char *s, struct track *t, unsigned long pr_time)
760 {
761 	depot_stack_handle_t handle __maybe_unused;
762 
763 	if (!t->addr)
764 		return;
765 
766 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
767 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
768 #ifdef CONFIG_STACKDEPOT
769 	handle = READ_ONCE(t->handle);
770 	if (handle)
771 		stack_depot_print(handle);
772 	else
773 		pr_err("object allocation/free stack trace missing\n");
774 #endif
775 }
776 
777 void print_tracking(struct kmem_cache *s, void *object)
778 {
779 	unsigned long pr_time = jiffies;
780 	if (!(s->flags & SLAB_STORE_USER))
781 		return;
782 
783 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
784 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
785 }
786 
787 static void print_slab_info(const struct slab *slab)
788 {
789 	struct folio *folio = (struct folio *)slab_folio(slab);
790 
791 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
792 	       slab, slab->objects, slab->inuse, slab->freelist,
793 	       folio_flags(folio, 0));
794 }
795 
796 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
797 {
798 	struct va_format vaf;
799 	va_list args;
800 
801 	va_start(args, fmt);
802 	vaf.fmt = fmt;
803 	vaf.va = &args;
804 	pr_err("=============================================================================\n");
805 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
806 	pr_err("-----------------------------------------------------------------------------\n\n");
807 	va_end(args);
808 }
809 
810 __printf(2, 3)
811 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
812 {
813 	struct va_format vaf;
814 	va_list args;
815 
816 	if (slab_add_kunit_errors())
817 		return;
818 
819 	va_start(args, fmt);
820 	vaf.fmt = fmt;
821 	vaf.va = &args;
822 	pr_err("FIX %s: %pV\n", s->name, &vaf);
823 	va_end(args);
824 }
825 
826 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
827 {
828 	unsigned int off;	/* Offset of last byte */
829 	u8 *addr = slab_address(slab);
830 
831 	print_tracking(s, p);
832 
833 	print_slab_info(slab);
834 
835 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
836 	       p, p - addr, get_freepointer(s, p));
837 
838 	if (s->flags & SLAB_RED_ZONE)
839 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
840 			      s->red_left_pad);
841 	else if (p > addr + 16)
842 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
843 
844 	print_section(KERN_ERR,         "Object   ", p,
845 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
846 	if (s->flags & SLAB_RED_ZONE)
847 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
848 			s->inuse - s->object_size);
849 
850 	off = get_info_end(s);
851 
852 	if (s->flags & SLAB_STORE_USER)
853 		off += 2 * sizeof(struct track);
854 
855 	off += kasan_metadata_size(s);
856 
857 	if (off != size_from_object(s))
858 		/* Beginning of the filler is the free pointer */
859 		print_section(KERN_ERR, "Padding  ", p + off,
860 			      size_from_object(s) - off);
861 
862 	dump_stack();
863 }
864 
865 static void object_err(struct kmem_cache *s, struct slab *slab,
866 			u8 *object, char *reason)
867 {
868 	if (slab_add_kunit_errors())
869 		return;
870 
871 	slab_bug(s, "%s", reason);
872 	print_trailer(s, slab, object);
873 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
874 }
875 
876 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
877 			       void **freelist, void *nextfree)
878 {
879 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
880 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
881 		object_err(s, slab, *freelist, "Freechain corrupt");
882 		*freelist = NULL;
883 		slab_fix(s, "Isolate corrupted freechain");
884 		return true;
885 	}
886 
887 	return false;
888 }
889 
890 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
891 			const char *fmt, ...)
892 {
893 	va_list args;
894 	char buf[100];
895 
896 	if (slab_add_kunit_errors())
897 		return;
898 
899 	va_start(args, fmt);
900 	vsnprintf(buf, sizeof(buf), fmt, args);
901 	va_end(args);
902 	slab_bug(s, "%s", buf);
903 	print_slab_info(slab);
904 	dump_stack();
905 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
906 }
907 
908 static void init_object(struct kmem_cache *s, void *object, u8 val)
909 {
910 	u8 *p = kasan_reset_tag(object);
911 
912 	if (s->flags & SLAB_RED_ZONE)
913 		memset(p - s->red_left_pad, val, s->red_left_pad);
914 
915 	if (s->flags & __OBJECT_POISON) {
916 		memset(p, POISON_FREE, s->object_size - 1);
917 		p[s->object_size - 1] = POISON_END;
918 	}
919 
920 	if (s->flags & SLAB_RED_ZONE)
921 		memset(p + s->object_size, val, s->inuse - s->object_size);
922 }
923 
924 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
925 						void *from, void *to)
926 {
927 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
928 	memset(from, data, to - from);
929 }
930 
931 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
932 			u8 *object, char *what,
933 			u8 *start, unsigned int value, unsigned int bytes)
934 {
935 	u8 *fault;
936 	u8 *end;
937 	u8 *addr = slab_address(slab);
938 
939 	metadata_access_enable();
940 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
941 	metadata_access_disable();
942 	if (!fault)
943 		return 1;
944 
945 	end = start + bytes;
946 	while (end > fault && end[-1] == value)
947 		end--;
948 
949 	if (slab_add_kunit_errors())
950 		goto skip_bug_print;
951 
952 	slab_bug(s, "%s overwritten", what);
953 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
954 					fault, end - 1, fault - addr,
955 					fault[0], value);
956 	print_trailer(s, slab, object);
957 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
958 
959 skip_bug_print:
960 	restore_bytes(s, what, value, fault, end);
961 	return 0;
962 }
963 
964 /*
965  * Object layout:
966  *
967  * object address
968  * 	Bytes of the object to be managed.
969  * 	If the freepointer may overlay the object then the free
970  *	pointer is at the middle of the object.
971  *
972  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
973  * 	0xa5 (POISON_END)
974  *
975  * object + s->object_size
976  * 	Padding to reach word boundary. This is also used for Redzoning.
977  * 	Padding is extended by another word if Redzoning is enabled and
978  * 	object_size == inuse.
979  *
980  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
981  * 	0xcc (RED_ACTIVE) for objects in use.
982  *
983  * object + s->inuse
984  * 	Meta data starts here.
985  *
986  * 	A. Free pointer (if we cannot overwrite object on free)
987  * 	B. Tracking data for SLAB_STORE_USER
988  *	C. Padding to reach required alignment boundary or at minimum
989  * 		one word if debugging is on to be able to detect writes
990  * 		before the word boundary.
991  *
992  *	Padding is done using 0x5a (POISON_INUSE)
993  *
994  * object + s->size
995  * 	Nothing is used beyond s->size.
996  *
997  * If slabcaches are merged then the object_size and inuse boundaries are mostly
998  * ignored. And therefore no slab options that rely on these boundaries
999  * may be used with merged slabcaches.
1000  */
1001 
1002 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1003 {
1004 	unsigned long off = get_info_end(s);	/* The end of info */
1005 
1006 	if (s->flags & SLAB_STORE_USER)
1007 		/* We also have user information there */
1008 		off += 2 * sizeof(struct track);
1009 
1010 	off += kasan_metadata_size(s);
1011 
1012 	if (size_from_object(s) == off)
1013 		return 1;
1014 
1015 	return check_bytes_and_report(s, slab, p, "Object padding",
1016 			p + off, POISON_INUSE, size_from_object(s) - off);
1017 }
1018 
1019 /* Check the pad bytes at the end of a slab page */
1020 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1021 {
1022 	u8 *start;
1023 	u8 *fault;
1024 	u8 *end;
1025 	u8 *pad;
1026 	int length;
1027 	int remainder;
1028 
1029 	if (!(s->flags & SLAB_POISON))
1030 		return;
1031 
1032 	start = slab_address(slab);
1033 	length = slab_size(slab);
1034 	end = start + length;
1035 	remainder = length % s->size;
1036 	if (!remainder)
1037 		return;
1038 
1039 	pad = end - remainder;
1040 	metadata_access_enable();
1041 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1042 	metadata_access_disable();
1043 	if (!fault)
1044 		return;
1045 	while (end > fault && end[-1] == POISON_INUSE)
1046 		end--;
1047 
1048 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1049 			fault, end - 1, fault - start);
1050 	print_section(KERN_ERR, "Padding ", pad, remainder);
1051 
1052 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1053 }
1054 
1055 static int check_object(struct kmem_cache *s, struct slab *slab,
1056 					void *object, u8 val)
1057 {
1058 	u8 *p = object;
1059 	u8 *endobject = object + s->object_size;
1060 
1061 	if (s->flags & SLAB_RED_ZONE) {
1062 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1063 			object - s->red_left_pad, val, s->red_left_pad))
1064 			return 0;
1065 
1066 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1067 			endobject, val, s->inuse - s->object_size))
1068 			return 0;
1069 	} else {
1070 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1071 			check_bytes_and_report(s, slab, p, "Alignment padding",
1072 				endobject, POISON_INUSE,
1073 				s->inuse - s->object_size);
1074 		}
1075 	}
1076 
1077 	if (s->flags & SLAB_POISON) {
1078 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1079 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1080 					POISON_FREE, s->object_size - 1) ||
1081 			 !check_bytes_and_report(s, slab, p, "End Poison",
1082 				p + s->object_size - 1, POISON_END, 1)))
1083 			return 0;
1084 		/*
1085 		 * check_pad_bytes cleans up on its own.
1086 		 */
1087 		check_pad_bytes(s, slab, p);
1088 	}
1089 
1090 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1091 		/*
1092 		 * Object and freepointer overlap. Cannot check
1093 		 * freepointer while object is allocated.
1094 		 */
1095 		return 1;
1096 
1097 	/* Check free pointer validity */
1098 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1099 		object_err(s, slab, p, "Freepointer corrupt");
1100 		/*
1101 		 * No choice but to zap it and thus lose the remainder
1102 		 * of the free objects in this slab. May cause
1103 		 * another error because the object count is now wrong.
1104 		 */
1105 		set_freepointer(s, p, NULL);
1106 		return 0;
1107 	}
1108 	return 1;
1109 }
1110 
1111 static int check_slab(struct kmem_cache *s, struct slab *slab)
1112 {
1113 	int maxobj;
1114 
1115 	if (!folio_test_slab(slab_folio(slab))) {
1116 		slab_err(s, slab, "Not a valid slab page");
1117 		return 0;
1118 	}
1119 
1120 	maxobj = order_objects(slab_order(slab), s->size);
1121 	if (slab->objects > maxobj) {
1122 		slab_err(s, slab, "objects %u > max %u",
1123 			slab->objects, maxobj);
1124 		return 0;
1125 	}
1126 	if (slab->inuse > slab->objects) {
1127 		slab_err(s, slab, "inuse %u > max %u",
1128 			slab->inuse, slab->objects);
1129 		return 0;
1130 	}
1131 	/* Slab_pad_check fixes things up after itself */
1132 	slab_pad_check(s, slab);
1133 	return 1;
1134 }
1135 
1136 /*
1137  * Determine if a certain object in a slab is on the freelist. Must hold the
1138  * slab lock to guarantee that the chains are in a consistent state.
1139  */
1140 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1141 {
1142 	int nr = 0;
1143 	void *fp;
1144 	void *object = NULL;
1145 	int max_objects;
1146 
1147 	fp = slab->freelist;
1148 	while (fp && nr <= slab->objects) {
1149 		if (fp == search)
1150 			return 1;
1151 		if (!check_valid_pointer(s, slab, fp)) {
1152 			if (object) {
1153 				object_err(s, slab, object,
1154 					"Freechain corrupt");
1155 				set_freepointer(s, object, NULL);
1156 			} else {
1157 				slab_err(s, slab, "Freepointer corrupt");
1158 				slab->freelist = NULL;
1159 				slab->inuse = slab->objects;
1160 				slab_fix(s, "Freelist cleared");
1161 				return 0;
1162 			}
1163 			break;
1164 		}
1165 		object = fp;
1166 		fp = get_freepointer(s, object);
1167 		nr++;
1168 	}
1169 
1170 	max_objects = order_objects(slab_order(slab), s->size);
1171 	if (max_objects > MAX_OBJS_PER_PAGE)
1172 		max_objects = MAX_OBJS_PER_PAGE;
1173 
1174 	if (slab->objects != max_objects) {
1175 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1176 			 slab->objects, max_objects);
1177 		slab->objects = max_objects;
1178 		slab_fix(s, "Number of objects adjusted");
1179 	}
1180 	if (slab->inuse != slab->objects - nr) {
1181 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1182 			 slab->inuse, slab->objects - nr);
1183 		slab->inuse = slab->objects - nr;
1184 		slab_fix(s, "Object count adjusted");
1185 	}
1186 	return search == NULL;
1187 }
1188 
1189 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1190 								int alloc)
1191 {
1192 	if (s->flags & SLAB_TRACE) {
1193 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1194 			s->name,
1195 			alloc ? "alloc" : "free",
1196 			object, slab->inuse,
1197 			slab->freelist);
1198 
1199 		if (!alloc)
1200 			print_section(KERN_INFO, "Object ", (void *)object,
1201 					s->object_size);
1202 
1203 		dump_stack();
1204 	}
1205 }
1206 
1207 /*
1208  * Tracking of fully allocated slabs for debugging purposes.
1209  */
1210 static void add_full(struct kmem_cache *s,
1211 	struct kmem_cache_node *n, struct slab *slab)
1212 {
1213 	if (!(s->flags & SLAB_STORE_USER))
1214 		return;
1215 
1216 	lockdep_assert_held(&n->list_lock);
1217 	list_add(&slab->slab_list, &n->full);
1218 }
1219 
1220 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1221 {
1222 	if (!(s->flags & SLAB_STORE_USER))
1223 		return;
1224 
1225 	lockdep_assert_held(&n->list_lock);
1226 	list_del(&slab->slab_list);
1227 }
1228 
1229 /* Tracking of the number of slabs for debugging purposes */
1230 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1231 {
1232 	struct kmem_cache_node *n = get_node(s, node);
1233 
1234 	return atomic_long_read(&n->nr_slabs);
1235 }
1236 
1237 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1238 {
1239 	return atomic_long_read(&n->nr_slabs);
1240 }
1241 
1242 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1243 {
1244 	struct kmem_cache_node *n = get_node(s, node);
1245 
1246 	/*
1247 	 * May be called early in order to allocate a slab for the
1248 	 * kmem_cache_node structure. Solve the chicken-egg
1249 	 * dilemma by deferring the increment of the count during
1250 	 * bootstrap (see early_kmem_cache_node_alloc).
1251 	 */
1252 	if (likely(n)) {
1253 		atomic_long_inc(&n->nr_slabs);
1254 		atomic_long_add(objects, &n->total_objects);
1255 	}
1256 }
1257 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1258 {
1259 	struct kmem_cache_node *n = get_node(s, node);
1260 
1261 	atomic_long_dec(&n->nr_slabs);
1262 	atomic_long_sub(objects, &n->total_objects);
1263 }
1264 
1265 /* Object debug checks for alloc/free paths */
1266 static void setup_object_debug(struct kmem_cache *s, void *object)
1267 {
1268 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1269 		return;
1270 
1271 	init_object(s, object, SLUB_RED_INACTIVE);
1272 	init_tracking(s, object);
1273 }
1274 
1275 static
1276 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1277 {
1278 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1279 		return;
1280 
1281 	metadata_access_enable();
1282 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1283 	metadata_access_disable();
1284 }
1285 
1286 static inline int alloc_consistency_checks(struct kmem_cache *s,
1287 					struct slab *slab, void *object)
1288 {
1289 	if (!check_slab(s, slab))
1290 		return 0;
1291 
1292 	if (!check_valid_pointer(s, slab, object)) {
1293 		object_err(s, slab, object, "Freelist Pointer check fails");
1294 		return 0;
1295 	}
1296 
1297 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1298 		return 0;
1299 
1300 	return 1;
1301 }
1302 
1303 static noinline int alloc_debug_processing(struct kmem_cache *s,
1304 					struct slab *slab,
1305 					void *object, unsigned long addr)
1306 {
1307 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1308 		if (!alloc_consistency_checks(s, slab, object))
1309 			goto bad;
1310 	}
1311 
1312 	/* Success perform special debug activities for allocs */
1313 	if (s->flags & SLAB_STORE_USER)
1314 		set_track(s, object, TRACK_ALLOC, addr);
1315 	trace(s, slab, object, 1);
1316 	init_object(s, object, SLUB_RED_ACTIVE);
1317 	return 1;
1318 
1319 bad:
1320 	if (folio_test_slab(slab_folio(slab))) {
1321 		/*
1322 		 * If this is a slab page then lets do the best we can
1323 		 * to avoid issues in the future. Marking all objects
1324 		 * as used avoids touching the remaining objects.
1325 		 */
1326 		slab_fix(s, "Marking all objects used");
1327 		slab->inuse = slab->objects;
1328 		slab->freelist = NULL;
1329 	}
1330 	return 0;
1331 }
1332 
1333 static inline int free_consistency_checks(struct kmem_cache *s,
1334 		struct slab *slab, void *object, unsigned long addr)
1335 {
1336 	if (!check_valid_pointer(s, slab, object)) {
1337 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1338 		return 0;
1339 	}
1340 
1341 	if (on_freelist(s, slab, object)) {
1342 		object_err(s, slab, object, "Object already free");
1343 		return 0;
1344 	}
1345 
1346 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1347 		return 0;
1348 
1349 	if (unlikely(s != slab->slab_cache)) {
1350 		if (!folio_test_slab(slab_folio(slab))) {
1351 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1352 				 object);
1353 		} else if (!slab->slab_cache) {
1354 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1355 			       object);
1356 			dump_stack();
1357 		} else
1358 			object_err(s, slab, object,
1359 					"page slab pointer corrupt.");
1360 		return 0;
1361 	}
1362 	return 1;
1363 }
1364 
1365 /* Supports checking bulk free of a constructed freelist */
1366 static noinline int free_debug_processing(
1367 	struct kmem_cache *s, struct slab *slab,
1368 	void *head, void *tail, int bulk_cnt,
1369 	unsigned long addr)
1370 {
1371 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
1372 	void *object = head;
1373 	int cnt = 0;
1374 	unsigned long flags, flags2;
1375 	int ret = 0;
1376 
1377 	spin_lock_irqsave(&n->list_lock, flags);
1378 	slab_lock(slab, &flags2);
1379 
1380 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1381 		if (!check_slab(s, slab))
1382 			goto out;
1383 	}
1384 
1385 next_object:
1386 	cnt++;
1387 
1388 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1389 		if (!free_consistency_checks(s, slab, object, addr))
1390 			goto out;
1391 	}
1392 
1393 	if (s->flags & SLAB_STORE_USER)
1394 		set_track(s, object, TRACK_FREE, addr);
1395 	trace(s, slab, object, 0);
1396 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1397 	init_object(s, object, SLUB_RED_INACTIVE);
1398 
1399 	/* Reached end of constructed freelist yet? */
1400 	if (object != tail) {
1401 		object = get_freepointer(s, object);
1402 		goto next_object;
1403 	}
1404 	ret = 1;
1405 
1406 out:
1407 	if (cnt != bulk_cnt)
1408 		slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
1409 			 bulk_cnt, cnt);
1410 
1411 	slab_unlock(slab, &flags2);
1412 	spin_unlock_irqrestore(&n->list_lock, flags);
1413 	if (!ret)
1414 		slab_fix(s, "Object at 0x%p not freed", object);
1415 	return ret;
1416 }
1417 
1418 /*
1419  * Parse a block of slub_debug options. Blocks are delimited by ';'
1420  *
1421  * @str:    start of block
1422  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1423  * @slabs:  return start of list of slabs, or NULL when there's no list
1424  * @init:   assume this is initial parsing and not per-kmem-create parsing
1425  *
1426  * returns the start of next block if there's any, or NULL
1427  */
1428 static char *
1429 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1430 {
1431 	bool higher_order_disable = false;
1432 
1433 	/* Skip any completely empty blocks */
1434 	while (*str && *str == ';')
1435 		str++;
1436 
1437 	if (*str == ',') {
1438 		/*
1439 		 * No options but restriction on slabs. This means full
1440 		 * debugging for slabs matching a pattern.
1441 		 */
1442 		*flags = DEBUG_DEFAULT_FLAGS;
1443 		goto check_slabs;
1444 	}
1445 	*flags = 0;
1446 
1447 	/* Determine which debug features should be switched on */
1448 	for (; *str && *str != ',' && *str != ';'; str++) {
1449 		switch (tolower(*str)) {
1450 		case '-':
1451 			*flags = 0;
1452 			break;
1453 		case 'f':
1454 			*flags |= SLAB_CONSISTENCY_CHECKS;
1455 			break;
1456 		case 'z':
1457 			*flags |= SLAB_RED_ZONE;
1458 			break;
1459 		case 'p':
1460 			*flags |= SLAB_POISON;
1461 			break;
1462 		case 'u':
1463 			*flags |= SLAB_STORE_USER;
1464 			break;
1465 		case 't':
1466 			*flags |= SLAB_TRACE;
1467 			break;
1468 		case 'a':
1469 			*flags |= SLAB_FAILSLAB;
1470 			break;
1471 		case 'o':
1472 			/*
1473 			 * Avoid enabling debugging on caches if its minimum
1474 			 * order would increase as a result.
1475 			 */
1476 			higher_order_disable = true;
1477 			break;
1478 		default:
1479 			if (init)
1480 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1481 		}
1482 	}
1483 check_slabs:
1484 	if (*str == ',')
1485 		*slabs = ++str;
1486 	else
1487 		*slabs = NULL;
1488 
1489 	/* Skip over the slab list */
1490 	while (*str && *str != ';')
1491 		str++;
1492 
1493 	/* Skip any completely empty blocks */
1494 	while (*str && *str == ';')
1495 		str++;
1496 
1497 	if (init && higher_order_disable)
1498 		disable_higher_order_debug = 1;
1499 
1500 	if (*str)
1501 		return str;
1502 	else
1503 		return NULL;
1504 }
1505 
1506 static int __init setup_slub_debug(char *str)
1507 {
1508 	slab_flags_t flags;
1509 	slab_flags_t global_flags;
1510 	char *saved_str;
1511 	char *slab_list;
1512 	bool global_slub_debug_changed = false;
1513 	bool slab_list_specified = false;
1514 
1515 	global_flags = DEBUG_DEFAULT_FLAGS;
1516 	if (*str++ != '=' || !*str)
1517 		/*
1518 		 * No options specified. Switch on full debugging.
1519 		 */
1520 		goto out;
1521 
1522 	saved_str = str;
1523 	while (str) {
1524 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1525 
1526 		if (!slab_list) {
1527 			global_flags = flags;
1528 			global_slub_debug_changed = true;
1529 		} else {
1530 			slab_list_specified = true;
1531 			if (flags & SLAB_STORE_USER)
1532 				stack_depot_want_early_init();
1533 		}
1534 	}
1535 
1536 	/*
1537 	 * For backwards compatibility, a single list of flags with list of
1538 	 * slabs means debugging is only changed for those slabs, so the global
1539 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1540 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1541 	 * long as there is no option specifying flags without a slab list.
1542 	 */
1543 	if (slab_list_specified) {
1544 		if (!global_slub_debug_changed)
1545 			global_flags = slub_debug;
1546 		slub_debug_string = saved_str;
1547 	}
1548 out:
1549 	slub_debug = global_flags;
1550 	if (slub_debug & SLAB_STORE_USER)
1551 		stack_depot_want_early_init();
1552 	if (slub_debug != 0 || slub_debug_string)
1553 		static_branch_enable(&slub_debug_enabled);
1554 	else
1555 		static_branch_disable(&slub_debug_enabled);
1556 	if ((static_branch_unlikely(&init_on_alloc) ||
1557 	     static_branch_unlikely(&init_on_free)) &&
1558 	    (slub_debug & SLAB_POISON))
1559 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1560 	return 1;
1561 }
1562 
1563 __setup("slub_debug", setup_slub_debug);
1564 
1565 /*
1566  * kmem_cache_flags - apply debugging options to the cache
1567  * @object_size:	the size of an object without meta data
1568  * @flags:		flags to set
1569  * @name:		name of the cache
1570  *
1571  * Debug option(s) are applied to @flags. In addition to the debug
1572  * option(s), if a slab name (or multiple) is specified i.e.
1573  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1574  * then only the select slabs will receive the debug option(s).
1575  */
1576 slab_flags_t kmem_cache_flags(unsigned int object_size,
1577 	slab_flags_t flags, const char *name)
1578 {
1579 	char *iter;
1580 	size_t len;
1581 	char *next_block;
1582 	slab_flags_t block_flags;
1583 	slab_flags_t slub_debug_local = slub_debug;
1584 
1585 	if (flags & SLAB_NO_USER_FLAGS)
1586 		return flags;
1587 
1588 	/*
1589 	 * If the slab cache is for debugging (e.g. kmemleak) then
1590 	 * don't store user (stack trace) information by default,
1591 	 * but let the user enable it via the command line below.
1592 	 */
1593 	if (flags & SLAB_NOLEAKTRACE)
1594 		slub_debug_local &= ~SLAB_STORE_USER;
1595 
1596 	len = strlen(name);
1597 	next_block = slub_debug_string;
1598 	/* Go through all blocks of debug options, see if any matches our slab's name */
1599 	while (next_block) {
1600 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1601 		if (!iter)
1602 			continue;
1603 		/* Found a block that has a slab list, search it */
1604 		while (*iter) {
1605 			char *end, *glob;
1606 			size_t cmplen;
1607 
1608 			end = strchrnul(iter, ',');
1609 			if (next_block && next_block < end)
1610 				end = next_block - 1;
1611 
1612 			glob = strnchr(iter, end - iter, '*');
1613 			if (glob)
1614 				cmplen = glob - iter;
1615 			else
1616 				cmplen = max_t(size_t, len, (end - iter));
1617 
1618 			if (!strncmp(name, iter, cmplen)) {
1619 				flags |= block_flags;
1620 				return flags;
1621 			}
1622 
1623 			if (!*end || *end == ';')
1624 				break;
1625 			iter = end + 1;
1626 		}
1627 	}
1628 
1629 	return flags | slub_debug_local;
1630 }
1631 #else /* !CONFIG_SLUB_DEBUG */
1632 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1633 static inline
1634 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1635 
1636 static inline int alloc_debug_processing(struct kmem_cache *s,
1637 	struct slab *slab, void *object, unsigned long addr) { return 0; }
1638 
1639 static inline int free_debug_processing(
1640 	struct kmem_cache *s, struct slab *slab,
1641 	void *head, void *tail, int bulk_cnt,
1642 	unsigned long addr) { return 0; }
1643 
1644 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1645 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1646 			void *object, u8 val) { return 1; }
1647 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1648 					struct slab *slab) {}
1649 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1650 					struct slab *slab) {}
1651 slab_flags_t kmem_cache_flags(unsigned int object_size,
1652 	slab_flags_t flags, const char *name)
1653 {
1654 	return flags;
1655 }
1656 #define slub_debug 0
1657 
1658 #define disable_higher_order_debug 0
1659 
1660 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1661 							{ return 0; }
1662 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1663 							{ return 0; }
1664 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1665 							int objects) {}
1666 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1667 							int objects) {}
1668 
1669 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1670 			       void **freelist, void *nextfree)
1671 {
1672 	return false;
1673 }
1674 #endif /* CONFIG_SLUB_DEBUG */
1675 
1676 /*
1677  * Hooks for other subsystems that check memory allocations. In a typical
1678  * production configuration these hooks all should produce no code at all.
1679  */
1680 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1681 {
1682 	ptr = kasan_kmalloc_large(ptr, size, flags);
1683 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1684 	kmemleak_alloc(ptr, size, 1, flags);
1685 	return ptr;
1686 }
1687 
1688 static __always_inline void kfree_hook(void *x)
1689 {
1690 	kmemleak_free(x);
1691 	kasan_kfree_large(x);
1692 }
1693 
1694 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1695 						void *x, bool init)
1696 {
1697 	kmemleak_free_recursive(x, s->flags);
1698 
1699 	debug_check_no_locks_freed(x, s->object_size);
1700 
1701 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1702 		debug_check_no_obj_freed(x, s->object_size);
1703 
1704 	/* Use KCSAN to help debug racy use-after-free. */
1705 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1706 		__kcsan_check_access(x, s->object_size,
1707 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1708 
1709 	/*
1710 	 * As memory initialization might be integrated into KASAN,
1711 	 * kasan_slab_free and initialization memset's must be
1712 	 * kept together to avoid discrepancies in behavior.
1713 	 *
1714 	 * The initialization memset's clear the object and the metadata,
1715 	 * but don't touch the SLAB redzone.
1716 	 */
1717 	if (init) {
1718 		int rsize;
1719 
1720 		if (!kasan_has_integrated_init())
1721 			memset(kasan_reset_tag(x), 0, s->object_size);
1722 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1723 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1724 		       s->size - s->inuse - rsize);
1725 	}
1726 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1727 	return kasan_slab_free(s, x, init);
1728 }
1729 
1730 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1731 					   void **head, void **tail,
1732 					   int *cnt)
1733 {
1734 
1735 	void *object;
1736 	void *next = *head;
1737 	void *old_tail = *tail ? *tail : *head;
1738 
1739 	if (is_kfence_address(next)) {
1740 		slab_free_hook(s, next, false);
1741 		return true;
1742 	}
1743 
1744 	/* Head and tail of the reconstructed freelist */
1745 	*head = NULL;
1746 	*tail = NULL;
1747 
1748 	do {
1749 		object = next;
1750 		next = get_freepointer(s, object);
1751 
1752 		/* If object's reuse doesn't have to be delayed */
1753 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1754 			/* Move object to the new freelist */
1755 			set_freepointer(s, object, *head);
1756 			*head = object;
1757 			if (!*tail)
1758 				*tail = object;
1759 		} else {
1760 			/*
1761 			 * Adjust the reconstructed freelist depth
1762 			 * accordingly if object's reuse is delayed.
1763 			 */
1764 			--(*cnt);
1765 		}
1766 	} while (object != old_tail);
1767 
1768 	if (*head == *tail)
1769 		*tail = NULL;
1770 
1771 	return *head != NULL;
1772 }
1773 
1774 static void *setup_object(struct kmem_cache *s, void *object)
1775 {
1776 	setup_object_debug(s, object);
1777 	object = kasan_init_slab_obj(s, object);
1778 	if (unlikely(s->ctor)) {
1779 		kasan_unpoison_object_data(s, object);
1780 		s->ctor(object);
1781 		kasan_poison_object_data(s, object);
1782 	}
1783 	return object;
1784 }
1785 
1786 /*
1787  * Slab allocation and freeing
1788  */
1789 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1790 		struct kmem_cache_order_objects oo)
1791 {
1792 	struct folio *folio;
1793 	struct slab *slab;
1794 	unsigned int order = oo_order(oo);
1795 
1796 	if (node == NUMA_NO_NODE)
1797 		folio = (struct folio *)alloc_pages(flags, order);
1798 	else
1799 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1800 
1801 	if (!folio)
1802 		return NULL;
1803 
1804 	slab = folio_slab(folio);
1805 	__folio_set_slab(folio);
1806 	if (page_is_pfmemalloc(folio_page(folio, 0)))
1807 		slab_set_pfmemalloc(slab);
1808 
1809 	return slab;
1810 }
1811 
1812 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1813 /* Pre-initialize the random sequence cache */
1814 static int init_cache_random_seq(struct kmem_cache *s)
1815 {
1816 	unsigned int count = oo_objects(s->oo);
1817 	int err;
1818 
1819 	/* Bailout if already initialised */
1820 	if (s->random_seq)
1821 		return 0;
1822 
1823 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1824 	if (err) {
1825 		pr_err("SLUB: Unable to initialize free list for %s\n",
1826 			s->name);
1827 		return err;
1828 	}
1829 
1830 	/* Transform to an offset on the set of pages */
1831 	if (s->random_seq) {
1832 		unsigned int i;
1833 
1834 		for (i = 0; i < count; i++)
1835 			s->random_seq[i] *= s->size;
1836 	}
1837 	return 0;
1838 }
1839 
1840 /* Initialize each random sequence freelist per cache */
1841 static void __init init_freelist_randomization(void)
1842 {
1843 	struct kmem_cache *s;
1844 
1845 	mutex_lock(&slab_mutex);
1846 
1847 	list_for_each_entry(s, &slab_caches, list)
1848 		init_cache_random_seq(s);
1849 
1850 	mutex_unlock(&slab_mutex);
1851 }
1852 
1853 /* Get the next entry on the pre-computed freelist randomized */
1854 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1855 				unsigned long *pos, void *start,
1856 				unsigned long page_limit,
1857 				unsigned long freelist_count)
1858 {
1859 	unsigned int idx;
1860 
1861 	/*
1862 	 * If the target page allocation failed, the number of objects on the
1863 	 * page might be smaller than the usual size defined by the cache.
1864 	 */
1865 	do {
1866 		idx = s->random_seq[*pos];
1867 		*pos += 1;
1868 		if (*pos >= freelist_count)
1869 			*pos = 0;
1870 	} while (unlikely(idx >= page_limit));
1871 
1872 	return (char *)start + idx;
1873 }
1874 
1875 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1876 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1877 {
1878 	void *start;
1879 	void *cur;
1880 	void *next;
1881 	unsigned long idx, pos, page_limit, freelist_count;
1882 
1883 	if (slab->objects < 2 || !s->random_seq)
1884 		return false;
1885 
1886 	freelist_count = oo_objects(s->oo);
1887 	pos = get_random_int() % freelist_count;
1888 
1889 	page_limit = slab->objects * s->size;
1890 	start = fixup_red_left(s, slab_address(slab));
1891 
1892 	/* First entry is used as the base of the freelist */
1893 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1894 				freelist_count);
1895 	cur = setup_object(s, cur);
1896 	slab->freelist = cur;
1897 
1898 	for (idx = 1; idx < slab->objects; idx++) {
1899 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1900 			freelist_count);
1901 		next = setup_object(s, next);
1902 		set_freepointer(s, cur, next);
1903 		cur = next;
1904 	}
1905 	set_freepointer(s, cur, NULL);
1906 
1907 	return true;
1908 }
1909 #else
1910 static inline int init_cache_random_seq(struct kmem_cache *s)
1911 {
1912 	return 0;
1913 }
1914 static inline void init_freelist_randomization(void) { }
1915 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1916 {
1917 	return false;
1918 }
1919 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1920 
1921 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1922 {
1923 	struct slab *slab;
1924 	struct kmem_cache_order_objects oo = s->oo;
1925 	gfp_t alloc_gfp;
1926 	void *start, *p, *next;
1927 	int idx;
1928 	bool shuffle;
1929 
1930 	flags &= gfp_allowed_mask;
1931 
1932 	flags |= s->allocflags;
1933 
1934 	/*
1935 	 * Let the initial higher-order allocation fail under memory pressure
1936 	 * so we fall-back to the minimum order allocation.
1937 	 */
1938 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1939 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1940 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1941 
1942 	slab = alloc_slab_page(alloc_gfp, node, oo);
1943 	if (unlikely(!slab)) {
1944 		oo = s->min;
1945 		alloc_gfp = flags;
1946 		/*
1947 		 * Allocation may have failed due to fragmentation.
1948 		 * Try a lower order alloc if possible
1949 		 */
1950 		slab = alloc_slab_page(alloc_gfp, node, oo);
1951 		if (unlikely(!slab))
1952 			goto out;
1953 		stat(s, ORDER_FALLBACK);
1954 	}
1955 
1956 	slab->objects = oo_objects(oo);
1957 
1958 	account_slab(slab, oo_order(oo), s, flags);
1959 
1960 	slab->slab_cache = s;
1961 
1962 	kasan_poison_slab(slab);
1963 
1964 	start = slab_address(slab);
1965 
1966 	setup_slab_debug(s, slab, start);
1967 
1968 	shuffle = shuffle_freelist(s, slab);
1969 
1970 	if (!shuffle) {
1971 		start = fixup_red_left(s, start);
1972 		start = setup_object(s, start);
1973 		slab->freelist = start;
1974 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
1975 			next = p + s->size;
1976 			next = setup_object(s, next);
1977 			set_freepointer(s, p, next);
1978 			p = next;
1979 		}
1980 		set_freepointer(s, p, NULL);
1981 	}
1982 
1983 	slab->inuse = slab->objects;
1984 	slab->frozen = 1;
1985 
1986 out:
1987 	if (!slab)
1988 		return NULL;
1989 
1990 	inc_slabs_node(s, slab_nid(slab), slab->objects);
1991 
1992 	return slab;
1993 }
1994 
1995 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1996 {
1997 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1998 		flags = kmalloc_fix_flags(flags);
1999 
2000 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2001 
2002 	return allocate_slab(s,
2003 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2004 }
2005 
2006 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2007 {
2008 	struct folio *folio = slab_folio(slab);
2009 	int order = folio_order(folio);
2010 	int pages = 1 << order;
2011 
2012 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2013 		void *p;
2014 
2015 		slab_pad_check(s, slab);
2016 		for_each_object(p, s, slab_address(slab), slab->objects)
2017 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2018 	}
2019 
2020 	__slab_clear_pfmemalloc(slab);
2021 	__folio_clear_slab(folio);
2022 	folio->mapping = NULL;
2023 	if (current->reclaim_state)
2024 		current->reclaim_state->reclaimed_slab += pages;
2025 	unaccount_slab(slab, order, s);
2026 	__free_pages(folio_page(folio, 0), order);
2027 }
2028 
2029 static void rcu_free_slab(struct rcu_head *h)
2030 {
2031 	struct slab *slab = container_of(h, struct slab, rcu_head);
2032 
2033 	__free_slab(slab->slab_cache, slab);
2034 }
2035 
2036 static void free_slab(struct kmem_cache *s, struct slab *slab)
2037 {
2038 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2039 		call_rcu(&slab->rcu_head, rcu_free_slab);
2040 	} else
2041 		__free_slab(s, slab);
2042 }
2043 
2044 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2045 {
2046 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2047 	free_slab(s, slab);
2048 }
2049 
2050 /*
2051  * Management of partially allocated slabs.
2052  */
2053 static inline void
2054 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2055 {
2056 	n->nr_partial++;
2057 	if (tail == DEACTIVATE_TO_TAIL)
2058 		list_add_tail(&slab->slab_list, &n->partial);
2059 	else
2060 		list_add(&slab->slab_list, &n->partial);
2061 }
2062 
2063 static inline void add_partial(struct kmem_cache_node *n,
2064 				struct slab *slab, int tail)
2065 {
2066 	lockdep_assert_held(&n->list_lock);
2067 	__add_partial(n, slab, tail);
2068 }
2069 
2070 static inline void remove_partial(struct kmem_cache_node *n,
2071 					struct slab *slab)
2072 {
2073 	lockdep_assert_held(&n->list_lock);
2074 	list_del(&slab->slab_list);
2075 	n->nr_partial--;
2076 }
2077 
2078 /*
2079  * Remove slab from the partial list, freeze it and
2080  * return the pointer to the freelist.
2081  *
2082  * Returns a list of objects or NULL if it fails.
2083  */
2084 static inline void *acquire_slab(struct kmem_cache *s,
2085 		struct kmem_cache_node *n, struct slab *slab,
2086 		int mode)
2087 {
2088 	void *freelist;
2089 	unsigned long counters;
2090 	struct slab new;
2091 
2092 	lockdep_assert_held(&n->list_lock);
2093 
2094 	/*
2095 	 * Zap the freelist and set the frozen bit.
2096 	 * The old freelist is the list of objects for the
2097 	 * per cpu allocation list.
2098 	 */
2099 	freelist = slab->freelist;
2100 	counters = slab->counters;
2101 	new.counters = counters;
2102 	if (mode) {
2103 		new.inuse = slab->objects;
2104 		new.freelist = NULL;
2105 	} else {
2106 		new.freelist = freelist;
2107 	}
2108 
2109 	VM_BUG_ON(new.frozen);
2110 	new.frozen = 1;
2111 
2112 	if (!__cmpxchg_double_slab(s, slab,
2113 			freelist, counters,
2114 			new.freelist, new.counters,
2115 			"acquire_slab"))
2116 		return NULL;
2117 
2118 	remove_partial(n, slab);
2119 	WARN_ON(!freelist);
2120 	return freelist;
2121 }
2122 
2123 #ifdef CONFIG_SLUB_CPU_PARTIAL
2124 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2125 #else
2126 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2127 				   int drain) { }
2128 #endif
2129 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2130 
2131 /*
2132  * Try to allocate a partial slab from a specific node.
2133  */
2134 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2135 			      struct slab **ret_slab, gfp_t gfpflags)
2136 {
2137 	struct slab *slab, *slab2;
2138 	void *object = NULL;
2139 	unsigned long flags;
2140 	unsigned int partial_slabs = 0;
2141 
2142 	/*
2143 	 * Racy check. If we mistakenly see no partial slabs then we
2144 	 * just allocate an empty slab. If we mistakenly try to get a
2145 	 * partial slab and there is none available then get_partial()
2146 	 * will return NULL.
2147 	 */
2148 	if (!n || !n->nr_partial)
2149 		return NULL;
2150 
2151 	spin_lock_irqsave(&n->list_lock, flags);
2152 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2153 		void *t;
2154 
2155 		if (!pfmemalloc_match(slab, gfpflags))
2156 			continue;
2157 
2158 		t = acquire_slab(s, n, slab, object == NULL);
2159 		if (!t)
2160 			break;
2161 
2162 		if (!object) {
2163 			*ret_slab = slab;
2164 			stat(s, ALLOC_FROM_PARTIAL);
2165 			object = t;
2166 		} else {
2167 			put_cpu_partial(s, slab, 0);
2168 			stat(s, CPU_PARTIAL_NODE);
2169 			partial_slabs++;
2170 		}
2171 #ifdef CONFIG_SLUB_CPU_PARTIAL
2172 		if (!kmem_cache_has_cpu_partial(s)
2173 			|| partial_slabs > s->cpu_partial_slabs / 2)
2174 			break;
2175 #else
2176 		break;
2177 #endif
2178 
2179 	}
2180 	spin_unlock_irqrestore(&n->list_lock, flags);
2181 	return object;
2182 }
2183 
2184 /*
2185  * Get a slab from somewhere. Search in increasing NUMA distances.
2186  */
2187 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2188 			     struct slab **ret_slab)
2189 {
2190 #ifdef CONFIG_NUMA
2191 	struct zonelist *zonelist;
2192 	struct zoneref *z;
2193 	struct zone *zone;
2194 	enum zone_type highest_zoneidx = gfp_zone(flags);
2195 	void *object;
2196 	unsigned int cpuset_mems_cookie;
2197 
2198 	/*
2199 	 * The defrag ratio allows a configuration of the tradeoffs between
2200 	 * inter node defragmentation and node local allocations. A lower
2201 	 * defrag_ratio increases the tendency to do local allocations
2202 	 * instead of attempting to obtain partial slabs from other nodes.
2203 	 *
2204 	 * If the defrag_ratio is set to 0 then kmalloc() always
2205 	 * returns node local objects. If the ratio is higher then kmalloc()
2206 	 * may return off node objects because partial slabs are obtained
2207 	 * from other nodes and filled up.
2208 	 *
2209 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2210 	 * (which makes defrag_ratio = 1000) then every (well almost)
2211 	 * allocation will first attempt to defrag slab caches on other nodes.
2212 	 * This means scanning over all nodes to look for partial slabs which
2213 	 * may be expensive if we do it every time we are trying to find a slab
2214 	 * with available objects.
2215 	 */
2216 	if (!s->remote_node_defrag_ratio ||
2217 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2218 		return NULL;
2219 
2220 	do {
2221 		cpuset_mems_cookie = read_mems_allowed_begin();
2222 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2223 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2224 			struct kmem_cache_node *n;
2225 
2226 			n = get_node(s, zone_to_nid(zone));
2227 
2228 			if (n && cpuset_zone_allowed(zone, flags) &&
2229 					n->nr_partial > s->min_partial) {
2230 				object = get_partial_node(s, n, ret_slab, flags);
2231 				if (object) {
2232 					/*
2233 					 * Don't check read_mems_allowed_retry()
2234 					 * here - if mems_allowed was updated in
2235 					 * parallel, that was a harmless race
2236 					 * between allocation and the cpuset
2237 					 * update
2238 					 */
2239 					return object;
2240 				}
2241 			}
2242 		}
2243 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2244 #endif	/* CONFIG_NUMA */
2245 	return NULL;
2246 }
2247 
2248 /*
2249  * Get a partial slab, lock it and return it.
2250  */
2251 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2252 			 struct slab **ret_slab)
2253 {
2254 	void *object;
2255 	int searchnode = node;
2256 
2257 	if (node == NUMA_NO_NODE)
2258 		searchnode = numa_mem_id();
2259 
2260 	object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
2261 	if (object || node != NUMA_NO_NODE)
2262 		return object;
2263 
2264 	return get_any_partial(s, flags, ret_slab);
2265 }
2266 
2267 #ifdef CONFIG_PREEMPTION
2268 /*
2269  * Calculate the next globally unique transaction for disambiguation
2270  * during cmpxchg. The transactions start with the cpu number and are then
2271  * incremented by CONFIG_NR_CPUS.
2272  */
2273 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2274 #else
2275 /*
2276  * No preemption supported therefore also no need to check for
2277  * different cpus.
2278  */
2279 #define TID_STEP 1
2280 #endif
2281 
2282 static inline unsigned long next_tid(unsigned long tid)
2283 {
2284 	return tid + TID_STEP;
2285 }
2286 
2287 #ifdef SLUB_DEBUG_CMPXCHG
2288 static inline unsigned int tid_to_cpu(unsigned long tid)
2289 {
2290 	return tid % TID_STEP;
2291 }
2292 
2293 static inline unsigned long tid_to_event(unsigned long tid)
2294 {
2295 	return tid / TID_STEP;
2296 }
2297 #endif
2298 
2299 static inline unsigned int init_tid(int cpu)
2300 {
2301 	return cpu;
2302 }
2303 
2304 static inline void note_cmpxchg_failure(const char *n,
2305 		const struct kmem_cache *s, unsigned long tid)
2306 {
2307 #ifdef SLUB_DEBUG_CMPXCHG
2308 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2309 
2310 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2311 
2312 #ifdef CONFIG_PREEMPTION
2313 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2314 		pr_warn("due to cpu change %d -> %d\n",
2315 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2316 	else
2317 #endif
2318 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2319 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2320 			tid_to_event(tid), tid_to_event(actual_tid));
2321 	else
2322 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2323 			actual_tid, tid, next_tid(tid));
2324 #endif
2325 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2326 }
2327 
2328 static void init_kmem_cache_cpus(struct kmem_cache *s)
2329 {
2330 	int cpu;
2331 	struct kmem_cache_cpu *c;
2332 
2333 	for_each_possible_cpu(cpu) {
2334 		c = per_cpu_ptr(s->cpu_slab, cpu);
2335 		local_lock_init(&c->lock);
2336 		c->tid = init_tid(cpu);
2337 	}
2338 }
2339 
2340 /*
2341  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2342  * unfreezes the slabs and puts it on the proper list.
2343  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2344  * by the caller.
2345  */
2346 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2347 			    void *freelist)
2348 {
2349 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2350 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2351 	int free_delta = 0;
2352 	enum slab_modes mode = M_NONE;
2353 	void *nextfree, *freelist_iter, *freelist_tail;
2354 	int tail = DEACTIVATE_TO_HEAD;
2355 	unsigned long flags = 0;
2356 	struct slab new;
2357 	struct slab old;
2358 
2359 	if (slab->freelist) {
2360 		stat(s, DEACTIVATE_REMOTE_FREES);
2361 		tail = DEACTIVATE_TO_TAIL;
2362 	}
2363 
2364 	/*
2365 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2366 	 * remember the last object in freelist_tail for later splicing.
2367 	 */
2368 	freelist_tail = NULL;
2369 	freelist_iter = freelist;
2370 	while (freelist_iter) {
2371 		nextfree = get_freepointer(s, freelist_iter);
2372 
2373 		/*
2374 		 * If 'nextfree' is invalid, it is possible that the object at
2375 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2376 		 * starting at 'freelist_iter' by skipping them.
2377 		 */
2378 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2379 			break;
2380 
2381 		freelist_tail = freelist_iter;
2382 		free_delta++;
2383 
2384 		freelist_iter = nextfree;
2385 	}
2386 
2387 	/*
2388 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2389 	 * freelist to the head of slab's freelist.
2390 	 *
2391 	 * Ensure that the slab is unfrozen while the list presence
2392 	 * reflects the actual number of objects during unfreeze.
2393 	 *
2394 	 * We first perform cmpxchg holding lock and insert to list
2395 	 * when it succeed. If there is mismatch then the slab is not
2396 	 * unfrozen and number of objects in the slab may have changed.
2397 	 * Then release lock and retry cmpxchg again.
2398 	 */
2399 redo:
2400 
2401 	old.freelist = READ_ONCE(slab->freelist);
2402 	old.counters = READ_ONCE(slab->counters);
2403 	VM_BUG_ON(!old.frozen);
2404 
2405 	/* Determine target state of the slab */
2406 	new.counters = old.counters;
2407 	if (freelist_tail) {
2408 		new.inuse -= free_delta;
2409 		set_freepointer(s, freelist_tail, old.freelist);
2410 		new.freelist = freelist;
2411 	} else
2412 		new.freelist = old.freelist;
2413 
2414 	new.frozen = 0;
2415 
2416 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2417 		mode = M_FREE;
2418 	} else if (new.freelist) {
2419 		mode = M_PARTIAL;
2420 		/*
2421 		 * Taking the spinlock removes the possibility that
2422 		 * acquire_slab() will see a slab that is frozen
2423 		 */
2424 		spin_lock_irqsave(&n->list_lock, flags);
2425 	} else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2426 		mode = M_FULL;
2427 		/*
2428 		 * This also ensures that the scanning of full
2429 		 * slabs from diagnostic functions will not see
2430 		 * any frozen slabs.
2431 		 */
2432 		spin_lock_irqsave(&n->list_lock, flags);
2433 	} else {
2434 		mode = M_FULL_NOLIST;
2435 	}
2436 
2437 
2438 	if (!cmpxchg_double_slab(s, slab,
2439 				old.freelist, old.counters,
2440 				new.freelist, new.counters,
2441 				"unfreezing slab")) {
2442 		if (mode == M_PARTIAL || mode == M_FULL)
2443 			spin_unlock_irqrestore(&n->list_lock, flags);
2444 		goto redo;
2445 	}
2446 
2447 
2448 	if (mode == M_PARTIAL) {
2449 		add_partial(n, slab, tail);
2450 		spin_unlock_irqrestore(&n->list_lock, flags);
2451 		stat(s, tail);
2452 	} else if (mode == M_FREE) {
2453 		stat(s, DEACTIVATE_EMPTY);
2454 		discard_slab(s, slab);
2455 		stat(s, FREE_SLAB);
2456 	} else if (mode == M_FULL) {
2457 		add_full(s, n, slab);
2458 		spin_unlock_irqrestore(&n->list_lock, flags);
2459 		stat(s, DEACTIVATE_FULL);
2460 	} else if (mode == M_FULL_NOLIST) {
2461 		stat(s, DEACTIVATE_FULL);
2462 	}
2463 }
2464 
2465 #ifdef CONFIG_SLUB_CPU_PARTIAL
2466 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2467 {
2468 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2469 	struct slab *slab, *slab_to_discard = NULL;
2470 	unsigned long flags = 0;
2471 
2472 	while (partial_slab) {
2473 		struct slab new;
2474 		struct slab old;
2475 
2476 		slab = partial_slab;
2477 		partial_slab = slab->next;
2478 
2479 		n2 = get_node(s, slab_nid(slab));
2480 		if (n != n2) {
2481 			if (n)
2482 				spin_unlock_irqrestore(&n->list_lock, flags);
2483 
2484 			n = n2;
2485 			spin_lock_irqsave(&n->list_lock, flags);
2486 		}
2487 
2488 		do {
2489 
2490 			old.freelist = slab->freelist;
2491 			old.counters = slab->counters;
2492 			VM_BUG_ON(!old.frozen);
2493 
2494 			new.counters = old.counters;
2495 			new.freelist = old.freelist;
2496 
2497 			new.frozen = 0;
2498 
2499 		} while (!__cmpxchg_double_slab(s, slab,
2500 				old.freelist, old.counters,
2501 				new.freelist, new.counters,
2502 				"unfreezing slab"));
2503 
2504 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2505 			slab->next = slab_to_discard;
2506 			slab_to_discard = slab;
2507 		} else {
2508 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2509 			stat(s, FREE_ADD_PARTIAL);
2510 		}
2511 	}
2512 
2513 	if (n)
2514 		spin_unlock_irqrestore(&n->list_lock, flags);
2515 
2516 	while (slab_to_discard) {
2517 		slab = slab_to_discard;
2518 		slab_to_discard = slab_to_discard->next;
2519 
2520 		stat(s, DEACTIVATE_EMPTY);
2521 		discard_slab(s, slab);
2522 		stat(s, FREE_SLAB);
2523 	}
2524 }
2525 
2526 /*
2527  * Unfreeze all the cpu partial slabs.
2528  */
2529 static void unfreeze_partials(struct kmem_cache *s)
2530 {
2531 	struct slab *partial_slab;
2532 	unsigned long flags;
2533 
2534 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2535 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2536 	this_cpu_write(s->cpu_slab->partial, NULL);
2537 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2538 
2539 	if (partial_slab)
2540 		__unfreeze_partials(s, partial_slab);
2541 }
2542 
2543 static void unfreeze_partials_cpu(struct kmem_cache *s,
2544 				  struct kmem_cache_cpu *c)
2545 {
2546 	struct slab *partial_slab;
2547 
2548 	partial_slab = slub_percpu_partial(c);
2549 	c->partial = NULL;
2550 
2551 	if (partial_slab)
2552 		__unfreeze_partials(s, partial_slab);
2553 }
2554 
2555 /*
2556  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2557  * partial slab slot if available.
2558  *
2559  * If we did not find a slot then simply move all the partials to the
2560  * per node partial list.
2561  */
2562 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2563 {
2564 	struct slab *oldslab;
2565 	struct slab *slab_to_unfreeze = NULL;
2566 	unsigned long flags;
2567 	int slabs = 0;
2568 
2569 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2570 
2571 	oldslab = this_cpu_read(s->cpu_slab->partial);
2572 
2573 	if (oldslab) {
2574 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2575 			/*
2576 			 * Partial array is full. Move the existing set to the
2577 			 * per node partial list. Postpone the actual unfreezing
2578 			 * outside of the critical section.
2579 			 */
2580 			slab_to_unfreeze = oldslab;
2581 			oldslab = NULL;
2582 		} else {
2583 			slabs = oldslab->slabs;
2584 		}
2585 	}
2586 
2587 	slabs++;
2588 
2589 	slab->slabs = slabs;
2590 	slab->next = oldslab;
2591 
2592 	this_cpu_write(s->cpu_slab->partial, slab);
2593 
2594 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2595 
2596 	if (slab_to_unfreeze) {
2597 		__unfreeze_partials(s, slab_to_unfreeze);
2598 		stat(s, CPU_PARTIAL_DRAIN);
2599 	}
2600 }
2601 
2602 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2603 
2604 static inline void unfreeze_partials(struct kmem_cache *s) { }
2605 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2606 				  struct kmem_cache_cpu *c) { }
2607 
2608 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2609 
2610 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2611 {
2612 	unsigned long flags;
2613 	struct slab *slab;
2614 	void *freelist;
2615 
2616 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2617 
2618 	slab = c->slab;
2619 	freelist = c->freelist;
2620 
2621 	c->slab = NULL;
2622 	c->freelist = NULL;
2623 	c->tid = next_tid(c->tid);
2624 
2625 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2626 
2627 	if (slab) {
2628 		deactivate_slab(s, slab, freelist);
2629 		stat(s, CPUSLAB_FLUSH);
2630 	}
2631 }
2632 
2633 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2634 {
2635 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2636 	void *freelist = c->freelist;
2637 	struct slab *slab = c->slab;
2638 
2639 	c->slab = NULL;
2640 	c->freelist = NULL;
2641 	c->tid = next_tid(c->tid);
2642 
2643 	if (slab) {
2644 		deactivate_slab(s, slab, freelist);
2645 		stat(s, CPUSLAB_FLUSH);
2646 	}
2647 
2648 	unfreeze_partials_cpu(s, c);
2649 }
2650 
2651 struct slub_flush_work {
2652 	struct work_struct work;
2653 	struct kmem_cache *s;
2654 	bool skip;
2655 };
2656 
2657 /*
2658  * Flush cpu slab.
2659  *
2660  * Called from CPU work handler with migration disabled.
2661  */
2662 static void flush_cpu_slab(struct work_struct *w)
2663 {
2664 	struct kmem_cache *s;
2665 	struct kmem_cache_cpu *c;
2666 	struct slub_flush_work *sfw;
2667 
2668 	sfw = container_of(w, struct slub_flush_work, work);
2669 
2670 	s = sfw->s;
2671 	c = this_cpu_ptr(s->cpu_slab);
2672 
2673 	if (c->slab)
2674 		flush_slab(s, c);
2675 
2676 	unfreeze_partials(s);
2677 }
2678 
2679 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2680 {
2681 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2682 
2683 	return c->slab || slub_percpu_partial(c);
2684 }
2685 
2686 static DEFINE_MUTEX(flush_lock);
2687 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2688 
2689 static void flush_all_cpus_locked(struct kmem_cache *s)
2690 {
2691 	struct slub_flush_work *sfw;
2692 	unsigned int cpu;
2693 
2694 	lockdep_assert_cpus_held();
2695 	mutex_lock(&flush_lock);
2696 
2697 	for_each_online_cpu(cpu) {
2698 		sfw = &per_cpu(slub_flush, cpu);
2699 		if (!has_cpu_slab(cpu, s)) {
2700 			sfw->skip = true;
2701 			continue;
2702 		}
2703 		INIT_WORK(&sfw->work, flush_cpu_slab);
2704 		sfw->skip = false;
2705 		sfw->s = s;
2706 		schedule_work_on(cpu, &sfw->work);
2707 	}
2708 
2709 	for_each_online_cpu(cpu) {
2710 		sfw = &per_cpu(slub_flush, cpu);
2711 		if (sfw->skip)
2712 			continue;
2713 		flush_work(&sfw->work);
2714 	}
2715 
2716 	mutex_unlock(&flush_lock);
2717 }
2718 
2719 static void flush_all(struct kmem_cache *s)
2720 {
2721 	cpus_read_lock();
2722 	flush_all_cpus_locked(s);
2723 	cpus_read_unlock();
2724 }
2725 
2726 /*
2727  * Use the cpu notifier to insure that the cpu slabs are flushed when
2728  * necessary.
2729  */
2730 static int slub_cpu_dead(unsigned int cpu)
2731 {
2732 	struct kmem_cache *s;
2733 
2734 	mutex_lock(&slab_mutex);
2735 	list_for_each_entry(s, &slab_caches, list)
2736 		__flush_cpu_slab(s, cpu);
2737 	mutex_unlock(&slab_mutex);
2738 	return 0;
2739 }
2740 
2741 /*
2742  * Check if the objects in a per cpu structure fit numa
2743  * locality expectations.
2744  */
2745 static inline int node_match(struct slab *slab, int node)
2746 {
2747 #ifdef CONFIG_NUMA
2748 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2749 		return 0;
2750 #endif
2751 	return 1;
2752 }
2753 
2754 #ifdef CONFIG_SLUB_DEBUG
2755 static int count_free(struct slab *slab)
2756 {
2757 	return slab->objects - slab->inuse;
2758 }
2759 
2760 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2761 {
2762 	return atomic_long_read(&n->total_objects);
2763 }
2764 #endif /* CONFIG_SLUB_DEBUG */
2765 
2766 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2767 static unsigned long count_partial(struct kmem_cache_node *n,
2768 					int (*get_count)(struct slab *))
2769 {
2770 	unsigned long flags;
2771 	unsigned long x = 0;
2772 	struct slab *slab;
2773 
2774 	spin_lock_irqsave(&n->list_lock, flags);
2775 	list_for_each_entry(slab, &n->partial, slab_list)
2776 		x += get_count(slab);
2777 	spin_unlock_irqrestore(&n->list_lock, flags);
2778 	return x;
2779 }
2780 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2781 
2782 static noinline void
2783 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2784 {
2785 #ifdef CONFIG_SLUB_DEBUG
2786 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2787 				      DEFAULT_RATELIMIT_BURST);
2788 	int node;
2789 	struct kmem_cache_node *n;
2790 
2791 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2792 		return;
2793 
2794 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2795 		nid, gfpflags, &gfpflags);
2796 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2797 		s->name, s->object_size, s->size, oo_order(s->oo),
2798 		oo_order(s->min));
2799 
2800 	if (oo_order(s->min) > get_order(s->object_size))
2801 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2802 			s->name);
2803 
2804 	for_each_kmem_cache_node(s, node, n) {
2805 		unsigned long nr_slabs;
2806 		unsigned long nr_objs;
2807 		unsigned long nr_free;
2808 
2809 		nr_free  = count_partial(n, count_free);
2810 		nr_slabs = node_nr_slabs(n);
2811 		nr_objs  = node_nr_objs(n);
2812 
2813 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2814 			node, nr_slabs, nr_objs, nr_free);
2815 	}
2816 #endif
2817 }
2818 
2819 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2820 {
2821 	if (unlikely(slab_test_pfmemalloc(slab)))
2822 		return gfp_pfmemalloc_allowed(gfpflags);
2823 
2824 	return true;
2825 }
2826 
2827 /*
2828  * Check the slab->freelist and either transfer the freelist to the
2829  * per cpu freelist or deactivate the slab.
2830  *
2831  * The slab is still frozen if the return value is not NULL.
2832  *
2833  * If this function returns NULL then the slab has been unfrozen.
2834  */
2835 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2836 {
2837 	struct slab new;
2838 	unsigned long counters;
2839 	void *freelist;
2840 
2841 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2842 
2843 	do {
2844 		freelist = slab->freelist;
2845 		counters = slab->counters;
2846 
2847 		new.counters = counters;
2848 		VM_BUG_ON(!new.frozen);
2849 
2850 		new.inuse = slab->objects;
2851 		new.frozen = freelist != NULL;
2852 
2853 	} while (!__cmpxchg_double_slab(s, slab,
2854 		freelist, counters,
2855 		NULL, new.counters,
2856 		"get_freelist"));
2857 
2858 	return freelist;
2859 }
2860 
2861 /*
2862  * Slow path. The lockless freelist is empty or we need to perform
2863  * debugging duties.
2864  *
2865  * Processing is still very fast if new objects have been freed to the
2866  * regular freelist. In that case we simply take over the regular freelist
2867  * as the lockless freelist and zap the regular freelist.
2868  *
2869  * If that is not working then we fall back to the partial lists. We take the
2870  * first element of the freelist as the object to allocate now and move the
2871  * rest of the freelist to the lockless freelist.
2872  *
2873  * And if we were unable to get a new slab from the partial slab lists then
2874  * we need to allocate a new slab. This is the slowest path since it involves
2875  * a call to the page allocator and the setup of a new slab.
2876  *
2877  * Version of __slab_alloc to use when we know that preemption is
2878  * already disabled (which is the case for bulk allocation).
2879  */
2880 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2881 			  unsigned long addr, struct kmem_cache_cpu *c)
2882 {
2883 	void *freelist;
2884 	struct slab *slab;
2885 	unsigned long flags;
2886 
2887 	stat(s, ALLOC_SLOWPATH);
2888 
2889 reread_slab:
2890 
2891 	slab = READ_ONCE(c->slab);
2892 	if (!slab) {
2893 		/*
2894 		 * if the node is not online or has no normal memory, just
2895 		 * ignore the node constraint
2896 		 */
2897 		if (unlikely(node != NUMA_NO_NODE &&
2898 			     !node_isset(node, slab_nodes)))
2899 			node = NUMA_NO_NODE;
2900 		goto new_slab;
2901 	}
2902 redo:
2903 
2904 	if (unlikely(!node_match(slab, node))) {
2905 		/*
2906 		 * same as above but node_match() being false already
2907 		 * implies node != NUMA_NO_NODE
2908 		 */
2909 		if (!node_isset(node, slab_nodes)) {
2910 			node = NUMA_NO_NODE;
2911 		} else {
2912 			stat(s, ALLOC_NODE_MISMATCH);
2913 			goto deactivate_slab;
2914 		}
2915 	}
2916 
2917 	/*
2918 	 * By rights, we should be searching for a slab page that was
2919 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2920 	 * information when the page leaves the per-cpu allocator
2921 	 */
2922 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
2923 		goto deactivate_slab;
2924 
2925 	/* must check again c->slab in case we got preempted and it changed */
2926 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2927 	if (unlikely(slab != c->slab)) {
2928 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2929 		goto reread_slab;
2930 	}
2931 	freelist = c->freelist;
2932 	if (freelist)
2933 		goto load_freelist;
2934 
2935 	freelist = get_freelist(s, slab);
2936 
2937 	if (!freelist) {
2938 		c->slab = NULL;
2939 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2940 		stat(s, DEACTIVATE_BYPASS);
2941 		goto new_slab;
2942 	}
2943 
2944 	stat(s, ALLOC_REFILL);
2945 
2946 load_freelist:
2947 
2948 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2949 
2950 	/*
2951 	 * freelist is pointing to the list of objects to be used.
2952 	 * slab is pointing to the slab from which the objects are obtained.
2953 	 * That slab must be frozen for per cpu allocations to work.
2954 	 */
2955 	VM_BUG_ON(!c->slab->frozen);
2956 	c->freelist = get_freepointer(s, freelist);
2957 	c->tid = next_tid(c->tid);
2958 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2959 	return freelist;
2960 
2961 deactivate_slab:
2962 
2963 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2964 	if (slab != c->slab) {
2965 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2966 		goto reread_slab;
2967 	}
2968 	freelist = c->freelist;
2969 	c->slab = NULL;
2970 	c->freelist = NULL;
2971 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2972 	deactivate_slab(s, slab, freelist);
2973 
2974 new_slab:
2975 
2976 	if (slub_percpu_partial(c)) {
2977 		local_lock_irqsave(&s->cpu_slab->lock, flags);
2978 		if (unlikely(c->slab)) {
2979 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2980 			goto reread_slab;
2981 		}
2982 		if (unlikely(!slub_percpu_partial(c))) {
2983 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2984 			/* we were preempted and partial list got empty */
2985 			goto new_objects;
2986 		}
2987 
2988 		slab = c->slab = slub_percpu_partial(c);
2989 		slub_set_percpu_partial(c, slab);
2990 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2991 		stat(s, CPU_PARTIAL_ALLOC);
2992 		goto redo;
2993 	}
2994 
2995 new_objects:
2996 
2997 	freelist = get_partial(s, gfpflags, node, &slab);
2998 	if (freelist)
2999 		goto check_new_slab;
3000 
3001 	slub_put_cpu_ptr(s->cpu_slab);
3002 	slab = new_slab(s, gfpflags, node);
3003 	c = slub_get_cpu_ptr(s->cpu_slab);
3004 
3005 	if (unlikely(!slab)) {
3006 		slab_out_of_memory(s, gfpflags, node);
3007 		return NULL;
3008 	}
3009 
3010 	/*
3011 	 * No other reference to the slab yet so we can
3012 	 * muck around with it freely without cmpxchg
3013 	 */
3014 	freelist = slab->freelist;
3015 	slab->freelist = NULL;
3016 
3017 	stat(s, ALLOC_SLAB);
3018 
3019 check_new_slab:
3020 
3021 	if (kmem_cache_debug(s)) {
3022 		if (!alloc_debug_processing(s, slab, freelist, addr)) {
3023 			/* Slab failed checks. Next slab needed */
3024 			goto new_slab;
3025 		} else {
3026 			/*
3027 			 * For debug case, we don't load freelist so that all
3028 			 * allocations go through alloc_debug_processing()
3029 			 */
3030 			goto return_single;
3031 		}
3032 	}
3033 
3034 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3035 		/*
3036 		 * For !pfmemalloc_match() case we don't load freelist so that
3037 		 * we don't make further mismatched allocations easier.
3038 		 */
3039 		goto return_single;
3040 
3041 retry_load_slab:
3042 
3043 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3044 	if (unlikely(c->slab)) {
3045 		void *flush_freelist = c->freelist;
3046 		struct slab *flush_slab = c->slab;
3047 
3048 		c->slab = NULL;
3049 		c->freelist = NULL;
3050 		c->tid = next_tid(c->tid);
3051 
3052 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3053 
3054 		deactivate_slab(s, flush_slab, flush_freelist);
3055 
3056 		stat(s, CPUSLAB_FLUSH);
3057 
3058 		goto retry_load_slab;
3059 	}
3060 	c->slab = slab;
3061 
3062 	goto load_freelist;
3063 
3064 return_single:
3065 
3066 	deactivate_slab(s, slab, get_freepointer(s, freelist));
3067 	return freelist;
3068 }
3069 
3070 /*
3071  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3072  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3073  * pointer.
3074  */
3075 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3076 			  unsigned long addr, struct kmem_cache_cpu *c)
3077 {
3078 	void *p;
3079 
3080 #ifdef CONFIG_PREEMPT_COUNT
3081 	/*
3082 	 * We may have been preempted and rescheduled on a different
3083 	 * cpu before disabling preemption. Need to reload cpu area
3084 	 * pointer.
3085 	 */
3086 	c = slub_get_cpu_ptr(s->cpu_slab);
3087 #endif
3088 
3089 	p = ___slab_alloc(s, gfpflags, node, addr, c);
3090 #ifdef CONFIG_PREEMPT_COUNT
3091 	slub_put_cpu_ptr(s->cpu_slab);
3092 #endif
3093 	return p;
3094 }
3095 
3096 /*
3097  * If the object has been wiped upon free, make sure it's fully initialized by
3098  * zeroing out freelist pointer.
3099  */
3100 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3101 						   void *obj)
3102 {
3103 	if (unlikely(slab_want_init_on_free(s)) && obj)
3104 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3105 			0, sizeof(void *));
3106 }
3107 
3108 /*
3109  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3110  * have the fastpath folded into their functions. So no function call
3111  * overhead for requests that can be satisfied on the fastpath.
3112  *
3113  * The fastpath works by first checking if the lockless freelist can be used.
3114  * If not then __slab_alloc is called for slow processing.
3115  *
3116  * Otherwise we can simply pick the next object from the lockless free list.
3117  */
3118 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3119 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3120 {
3121 	void *object;
3122 	struct kmem_cache_cpu *c;
3123 	struct slab *slab;
3124 	unsigned long tid;
3125 	struct obj_cgroup *objcg = NULL;
3126 	bool init = false;
3127 
3128 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3129 	if (!s)
3130 		return NULL;
3131 
3132 	object = kfence_alloc(s, orig_size, gfpflags);
3133 	if (unlikely(object))
3134 		goto out;
3135 
3136 redo:
3137 	/*
3138 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3139 	 * enabled. We may switch back and forth between cpus while
3140 	 * reading from one cpu area. That does not matter as long
3141 	 * as we end up on the original cpu again when doing the cmpxchg.
3142 	 *
3143 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3144 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3145 	 * the tid. If we are preempted and switched to another cpu between the
3146 	 * two reads, it's OK as the two are still associated with the same cpu
3147 	 * and cmpxchg later will validate the cpu.
3148 	 */
3149 	c = raw_cpu_ptr(s->cpu_slab);
3150 	tid = READ_ONCE(c->tid);
3151 
3152 	/*
3153 	 * Irqless object alloc/free algorithm used here depends on sequence
3154 	 * of fetching cpu_slab's data. tid should be fetched before anything
3155 	 * on c to guarantee that object and slab associated with previous tid
3156 	 * won't be used with current tid. If we fetch tid first, object and
3157 	 * slab could be one associated with next tid and our alloc/free
3158 	 * request will be failed. In this case, we will retry. So, no problem.
3159 	 */
3160 	barrier();
3161 
3162 	/*
3163 	 * The transaction ids are globally unique per cpu and per operation on
3164 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3165 	 * occurs on the right processor and that there was no operation on the
3166 	 * linked list in between.
3167 	 */
3168 
3169 	object = c->freelist;
3170 	slab = c->slab;
3171 	/*
3172 	 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3173 	 * slowpath has taken the local_lock_irqsave(), it is not protected
3174 	 * against a fast path operation in an irq handler. So we need to take
3175 	 * the slow path which uses local_lock. It is still relatively fast if
3176 	 * there is a suitable cpu freelist.
3177 	 */
3178 	if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3179 	    unlikely(!object || !slab || !node_match(slab, node))) {
3180 		object = __slab_alloc(s, gfpflags, node, addr, c);
3181 	} else {
3182 		void *next_object = get_freepointer_safe(s, object);
3183 
3184 		/*
3185 		 * The cmpxchg will only match if there was no additional
3186 		 * operation and if we are on the right processor.
3187 		 *
3188 		 * The cmpxchg does the following atomically (without lock
3189 		 * semantics!)
3190 		 * 1. Relocate first pointer to the current per cpu area.
3191 		 * 2. Verify that tid and freelist have not been changed
3192 		 * 3. If they were not changed replace tid and freelist
3193 		 *
3194 		 * Since this is without lock semantics the protection is only
3195 		 * against code executing on this cpu *not* from access by
3196 		 * other cpus.
3197 		 */
3198 		if (unlikely(!this_cpu_cmpxchg_double(
3199 				s->cpu_slab->freelist, s->cpu_slab->tid,
3200 				object, tid,
3201 				next_object, next_tid(tid)))) {
3202 
3203 			note_cmpxchg_failure("slab_alloc", s, tid);
3204 			goto redo;
3205 		}
3206 		prefetch_freepointer(s, next_object);
3207 		stat(s, ALLOC_FASTPATH);
3208 	}
3209 
3210 	maybe_wipe_obj_freeptr(s, object);
3211 	init = slab_want_init_on_alloc(gfpflags, s);
3212 
3213 out:
3214 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3215 
3216 	return object;
3217 }
3218 
3219 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3220 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3221 {
3222 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3223 }
3224 
3225 static __always_inline
3226 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3227 			     gfp_t gfpflags)
3228 {
3229 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3230 
3231 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3232 				s->size, gfpflags);
3233 
3234 	return ret;
3235 }
3236 
3237 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3238 {
3239 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3240 }
3241 EXPORT_SYMBOL(kmem_cache_alloc);
3242 
3243 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3244 			   gfp_t gfpflags)
3245 {
3246 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3247 }
3248 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3249 
3250 #ifdef CONFIG_TRACING
3251 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3252 {
3253 	void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
3254 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3255 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3256 	return ret;
3257 }
3258 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3259 #endif
3260 
3261 #ifdef CONFIG_NUMA
3262 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3263 {
3264 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3265 
3266 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3267 				    s->object_size, s->size, gfpflags, node);
3268 
3269 	return ret;
3270 }
3271 EXPORT_SYMBOL(kmem_cache_alloc_node);
3272 
3273 #ifdef CONFIG_TRACING
3274 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3275 				    gfp_t gfpflags,
3276 				    int node, size_t size)
3277 {
3278 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
3279 
3280 	trace_kmalloc_node(_RET_IP_, ret,
3281 			   size, s->size, gfpflags, node);
3282 
3283 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3284 	return ret;
3285 }
3286 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3287 #endif
3288 #endif	/* CONFIG_NUMA */
3289 
3290 /*
3291  * Slow path handling. This may still be called frequently since objects
3292  * have a longer lifetime than the cpu slabs in most processing loads.
3293  *
3294  * So we still attempt to reduce cache line usage. Just take the slab
3295  * lock and free the item. If there is no additional partial slab
3296  * handling required then we can return immediately.
3297  */
3298 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3299 			void *head, void *tail, int cnt,
3300 			unsigned long addr)
3301 
3302 {
3303 	void *prior;
3304 	int was_frozen;
3305 	struct slab new;
3306 	unsigned long counters;
3307 	struct kmem_cache_node *n = NULL;
3308 	unsigned long flags;
3309 
3310 	stat(s, FREE_SLOWPATH);
3311 
3312 	if (kfence_free(head))
3313 		return;
3314 
3315 	if (kmem_cache_debug(s) &&
3316 	    !free_debug_processing(s, slab, head, tail, cnt, addr))
3317 		return;
3318 
3319 	do {
3320 		if (unlikely(n)) {
3321 			spin_unlock_irqrestore(&n->list_lock, flags);
3322 			n = NULL;
3323 		}
3324 		prior = slab->freelist;
3325 		counters = slab->counters;
3326 		set_freepointer(s, tail, prior);
3327 		new.counters = counters;
3328 		was_frozen = new.frozen;
3329 		new.inuse -= cnt;
3330 		if ((!new.inuse || !prior) && !was_frozen) {
3331 
3332 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3333 
3334 				/*
3335 				 * Slab was on no list before and will be
3336 				 * partially empty
3337 				 * We can defer the list move and instead
3338 				 * freeze it.
3339 				 */
3340 				new.frozen = 1;
3341 
3342 			} else { /* Needs to be taken off a list */
3343 
3344 				n = get_node(s, slab_nid(slab));
3345 				/*
3346 				 * Speculatively acquire the list_lock.
3347 				 * If the cmpxchg does not succeed then we may
3348 				 * drop the list_lock without any processing.
3349 				 *
3350 				 * Otherwise the list_lock will synchronize with
3351 				 * other processors updating the list of slabs.
3352 				 */
3353 				spin_lock_irqsave(&n->list_lock, flags);
3354 
3355 			}
3356 		}
3357 
3358 	} while (!cmpxchg_double_slab(s, slab,
3359 		prior, counters,
3360 		head, new.counters,
3361 		"__slab_free"));
3362 
3363 	if (likely(!n)) {
3364 
3365 		if (likely(was_frozen)) {
3366 			/*
3367 			 * The list lock was not taken therefore no list
3368 			 * activity can be necessary.
3369 			 */
3370 			stat(s, FREE_FROZEN);
3371 		} else if (new.frozen) {
3372 			/*
3373 			 * If we just froze the slab then put it onto the
3374 			 * per cpu partial list.
3375 			 */
3376 			put_cpu_partial(s, slab, 1);
3377 			stat(s, CPU_PARTIAL_FREE);
3378 		}
3379 
3380 		return;
3381 	}
3382 
3383 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3384 		goto slab_empty;
3385 
3386 	/*
3387 	 * Objects left in the slab. If it was not on the partial list before
3388 	 * then add it.
3389 	 */
3390 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3391 		remove_full(s, n, slab);
3392 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3393 		stat(s, FREE_ADD_PARTIAL);
3394 	}
3395 	spin_unlock_irqrestore(&n->list_lock, flags);
3396 	return;
3397 
3398 slab_empty:
3399 	if (prior) {
3400 		/*
3401 		 * Slab on the partial list.
3402 		 */
3403 		remove_partial(n, slab);
3404 		stat(s, FREE_REMOVE_PARTIAL);
3405 	} else {
3406 		/* Slab must be on the full list */
3407 		remove_full(s, n, slab);
3408 	}
3409 
3410 	spin_unlock_irqrestore(&n->list_lock, flags);
3411 	stat(s, FREE_SLAB);
3412 	discard_slab(s, slab);
3413 }
3414 
3415 /*
3416  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3417  * can perform fastpath freeing without additional function calls.
3418  *
3419  * The fastpath is only possible if we are freeing to the current cpu slab
3420  * of this processor. This typically the case if we have just allocated
3421  * the item before.
3422  *
3423  * If fastpath is not possible then fall back to __slab_free where we deal
3424  * with all sorts of special processing.
3425  *
3426  * Bulk free of a freelist with several objects (all pointing to the
3427  * same slab) possible by specifying head and tail ptr, plus objects
3428  * count (cnt). Bulk free indicated by tail pointer being set.
3429  */
3430 static __always_inline void do_slab_free(struct kmem_cache *s,
3431 				struct slab *slab, void *head, void *tail,
3432 				int cnt, unsigned long addr)
3433 {
3434 	void *tail_obj = tail ? : head;
3435 	struct kmem_cache_cpu *c;
3436 	unsigned long tid;
3437 
3438 	/* memcg_slab_free_hook() is already called for bulk free. */
3439 	if (!tail)
3440 		memcg_slab_free_hook(s, &head, 1);
3441 redo:
3442 	/*
3443 	 * Determine the currently cpus per cpu slab.
3444 	 * The cpu may change afterward. However that does not matter since
3445 	 * data is retrieved via this pointer. If we are on the same cpu
3446 	 * during the cmpxchg then the free will succeed.
3447 	 */
3448 	c = raw_cpu_ptr(s->cpu_slab);
3449 	tid = READ_ONCE(c->tid);
3450 
3451 	/* Same with comment on barrier() in slab_alloc_node() */
3452 	barrier();
3453 
3454 	if (likely(slab == c->slab)) {
3455 #ifndef CONFIG_PREEMPT_RT
3456 		void **freelist = READ_ONCE(c->freelist);
3457 
3458 		set_freepointer(s, tail_obj, freelist);
3459 
3460 		if (unlikely(!this_cpu_cmpxchg_double(
3461 				s->cpu_slab->freelist, s->cpu_slab->tid,
3462 				freelist, tid,
3463 				head, next_tid(tid)))) {
3464 
3465 			note_cmpxchg_failure("slab_free", s, tid);
3466 			goto redo;
3467 		}
3468 #else /* CONFIG_PREEMPT_RT */
3469 		/*
3470 		 * We cannot use the lockless fastpath on PREEMPT_RT because if
3471 		 * a slowpath has taken the local_lock_irqsave(), it is not
3472 		 * protected against a fast path operation in an irq handler. So
3473 		 * we need to take the local_lock. We shouldn't simply defer to
3474 		 * __slab_free() as that wouldn't use the cpu freelist at all.
3475 		 */
3476 		void **freelist;
3477 
3478 		local_lock(&s->cpu_slab->lock);
3479 		c = this_cpu_ptr(s->cpu_slab);
3480 		if (unlikely(slab != c->slab)) {
3481 			local_unlock(&s->cpu_slab->lock);
3482 			goto redo;
3483 		}
3484 		tid = c->tid;
3485 		freelist = c->freelist;
3486 
3487 		set_freepointer(s, tail_obj, freelist);
3488 		c->freelist = head;
3489 		c->tid = next_tid(tid);
3490 
3491 		local_unlock(&s->cpu_slab->lock);
3492 #endif
3493 		stat(s, FREE_FASTPATH);
3494 	} else
3495 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3496 
3497 }
3498 
3499 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3500 				      void *head, void *tail, int cnt,
3501 				      unsigned long addr)
3502 {
3503 	/*
3504 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3505 	 * to remove objects, whose reuse must be delayed.
3506 	 */
3507 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3508 		do_slab_free(s, slab, head, tail, cnt, addr);
3509 }
3510 
3511 #ifdef CONFIG_KASAN_GENERIC
3512 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3513 {
3514 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3515 }
3516 #endif
3517 
3518 void kmem_cache_free(struct kmem_cache *s, void *x)
3519 {
3520 	s = cache_from_obj(s, x);
3521 	if (!s)
3522 		return;
3523 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3524 	slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_);
3525 }
3526 EXPORT_SYMBOL(kmem_cache_free);
3527 
3528 struct detached_freelist {
3529 	struct slab *slab;
3530 	void *tail;
3531 	void *freelist;
3532 	int cnt;
3533 	struct kmem_cache *s;
3534 };
3535 
3536 static inline void free_large_kmalloc(struct folio *folio, void *object)
3537 {
3538 	unsigned int order = folio_order(folio);
3539 
3540 	if (WARN_ON_ONCE(order == 0))
3541 		pr_warn_once("object pointer: 0x%p\n", object);
3542 
3543 	kfree_hook(object);
3544 	mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3545 			      -(PAGE_SIZE << order));
3546 	__free_pages(folio_page(folio, 0), order);
3547 }
3548 
3549 /*
3550  * This function progressively scans the array with free objects (with
3551  * a limited look ahead) and extract objects belonging to the same
3552  * slab.  It builds a detached freelist directly within the given
3553  * slab/objects.  This can happen without any need for
3554  * synchronization, because the objects are owned by running process.
3555  * The freelist is build up as a single linked list in the objects.
3556  * The idea is, that this detached freelist can then be bulk
3557  * transferred to the real freelist(s), but only requiring a single
3558  * synchronization primitive.  Look ahead in the array is limited due
3559  * to performance reasons.
3560  */
3561 static inline
3562 int build_detached_freelist(struct kmem_cache *s, size_t size,
3563 			    void **p, struct detached_freelist *df)
3564 {
3565 	size_t first_skipped_index = 0;
3566 	int lookahead = 3;
3567 	void *object;
3568 	struct folio *folio;
3569 	struct slab *slab;
3570 
3571 	/* Always re-init detached_freelist */
3572 	df->slab = NULL;
3573 
3574 	do {
3575 		object = p[--size];
3576 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3577 	} while (!object && size);
3578 
3579 	if (!object)
3580 		return 0;
3581 
3582 	folio = virt_to_folio(object);
3583 	if (!s) {
3584 		/* Handle kalloc'ed objects */
3585 		if (unlikely(!folio_test_slab(folio))) {
3586 			free_large_kmalloc(folio, object);
3587 			p[size] = NULL; /* mark object processed */
3588 			return size;
3589 		}
3590 		/* Derive kmem_cache from object */
3591 		slab = folio_slab(folio);
3592 		df->s = slab->slab_cache;
3593 	} else {
3594 		slab = folio_slab(folio);
3595 		df->s = cache_from_obj(s, object); /* Support for memcg */
3596 	}
3597 
3598 	if (is_kfence_address(object)) {
3599 		slab_free_hook(df->s, object, false);
3600 		__kfence_free(object);
3601 		p[size] = NULL; /* mark object processed */
3602 		return size;
3603 	}
3604 
3605 	/* Start new detached freelist */
3606 	df->slab = slab;
3607 	set_freepointer(df->s, object, NULL);
3608 	df->tail = object;
3609 	df->freelist = object;
3610 	p[size] = NULL; /* mark object processed */
3611 	df->cnt = 1;
3612 
3613 	while (size) {
3614 		object = p[--size];
3615 		if (!object)
3616 			continue; /* Skip processed objects */
3617 
3618 		/* df->slab is always set at this point */
3619 		if (df->slab == virt_to_slab(object)) {
3620 			/* Opportunity build freelist */
3621 			set_freepointer(df->s, object, df->freelist);
3622 			df->freelist = object;
3623 			df->cnt++;
3624 			p[size] = NULL; /* mark object processed */
3625 
3626 			continue;
3627 		}
3628 
3629 		/* Limit look ahead search */
3630 		if (!--lookahead)
3631 			break;
3632 
3633 		if (!first_skipped_index)
3634 			first_skipped_index = size + 1;
3635 	}
3636 
3637 	return first_skipped_index;
3638 }
3639 
3640 /* Note that interrupts must be enabled when calling this function. */
3641 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3642 {
3643 	if (WARN_ON(!size))
3644 		return;
3645 
3646 	memcg_slab_free_hook(s, p, size);
3647 	do {
3648 		struct detached_freelist df;
3649 
3650 		size = build_detached_freelist(s, size, p, &df);
3651 		if (!df.slab)
3652 			continue;
3653 
3654 		slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_);
3655 	} while (likely(size));
3656 }
3657 EXPORT_SYMBOL(kmem_cache_free_bulk);
3658 
3659 /* Note that interrupts must be enabled when calling this function. */
3660 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3661 			  void **p)
3662 {
3663 	struct kmem_cache_cpu *c;
3664 	int i;
3665 	struct obj_cgroup *objcg = NULL;
3666 
3667 	/* memcg and kmem_cache debug support */
3668 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3669 	if (unlikely(!s))
3670 		return false;
3671 	/*
3672 	 * Drain objects in the per cpu slab, while disabling local
3673 	 * IRQs, which protects against PREEMPT and interrupts
3674 	 * handlers invoking normal fastpath.
3675 	 */
3676 	c = slub_get_cpu_ptr(s->cpu_slab);
3677 	local_lock_irq(&s->cpu_slab->lock);
3678 
3679 	for (i = 0; i < size; i++) {
3680 		void *object = kfence_alloc(s, s->object_size, flags);
3681 
3682 		if (unlikely(object)) {
3683 			p[i] = object;
3684 			continue;
3685 		}
3686 
3687 		object = c->freelist;
3688 		if (unlikely(!object)) {
3689 			/*
3690 			 * We may have removed an object from c->freelist using
3691 			 * the fastpath in the previous iteration; in that case,
3692 			 * c->tid has not been bumped yet.
3693 			 * Since ___slab_alloc() may reenable interrupts while
3694 			 * allocating memory, we should bump c->tid now.
3695 			 */
3696 			c->tid = next_tid(c->tid);
3697 
3698 			local_unlock_irq(&s->cpu_slab->lock);
3699 
3700 			/*
3701 			 * Invoking slow path likely have side-effect
3702 			 * of re-populating per CPU c->freelist
3703 			 */
3704 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3705 					    _RET_IP_, c);
3706 			if (unlikely(!p[i]))
3707 				goto error;
3708 
3709 			c = this_cpu_ptr(s->cpu_slab);
3710 			maybe_wipe_obj_freeptr(s, p[i]);
3711 
3712 			local_lock_irq(&s->cpu_slab->lock);
3713 
3714 			continue; /* goto for-loop */
3715 		}
3716 		c->freelist = get_freepointer(s, object);
3717 		p[i] = object;
3718 		maybe_wipe_obj_freeptr(s, p[i]);
3719 	}
3720 	c->tid = next_tid(c->tid);
3721 	local_unlock_irq(&s->cpu_slab->lock);
3722 	slub_put_cpu_ptr(s->cpu_slab);
3723 
3724 	/*
3725 	 * memcg and kmem_cache debug support and memory initialization.
3726 	 * Done outside of the IRQ disabled fastpath loop.
3727 	 */
3728 	slab_post_alloc_hook(s, objcg, flags, size, p,
3729 				slab_want_init_on_alloc(flags, s));
3730 	return i;
3731 error:
3732 	slub_put_cpu_ptr(s->cpu_slab);
3733 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3734 	__kmem_cache_free_bulk(s, i, p);
3735 	return 0;
3736 }
3737 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3738 
3739 
3740 /*
3741  * Object placement in a slab is made very easy because we always start at
3742  * offset 0. If we tune the size of the object to the alignment then we can
3743  * get the required alignment by putting one properly sized object after
3744  * another.
3745  *
3746  * Notice that the allocation order determines the sizes of the per cpu
3747  * caches. Each processor has always one slab available for allocations.
3748  * Increasing the allocation order reduces the number of times that slabs
3749  * must be moved on and off the partial lists and is therefore a factor in
3750  * locking overhead.
3751  */
3752 
3753 /*
3754  * Minimum / Maximum order of slab pages. This influences locking overhead
3755  * and slab fragmentation. A higher order reduces the number of partial slabs
3756  * and increases the number of allocations possible without having to
3757  * take the list_lock.
3758  */
3759 static unsigned int slub_min_order;
3760 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3761 static unsigned int slub_min_objects;
3762 
3763 /*
3764  * Calculate the order of allocation given an slab object size.
3765  *
3766  * The order of allocation has significant impact on performance and other
3767  * system components. Generally order 0 allocations should be preferred since
3768  * order 0 does not cause fragmentation in the page allocator. Larger objects
3769  * be problematic to put into order 0 slabs because there may be too much
3770  * unused space left. We go to a higher order if more than 1/16th of the slab
3771  * would be wasted.
3772  *
3773  * In order to reach satisfactory performance we must ensure that a minimum
3774  * number of objects is in one slab. Otherwise we may generate too much
3775  * activity on the partial lists which requires taking the list_lock. This is
3776  * less a concern for large slabs though which are rarely used.
3777  *
3778  * slub_max_order specifies the order where we begin to stop considering the
3779  * number of objects in a slab as critical. If we reach slub_max_order then
3780  * we try to keep the page order as low as possible. So we accept more waste
3781  * of space in favor of a small page order.
3782  *
3783  * Higher order allocations also allow the placement of more objects in a
3784  * slab and thereby reduce object handling overhead. If the user has
3785  * requested a higher minimum order then we start with that one instead of
3786  * the smallest order which will fit the object.
3787  */
3788 static inline unsigned int calc_slab_order(unsigned int size,
3789 		unsigned int min_objects, unsigned int max_order,
3790 		unsigned int fract_leftover)
3791 {
3792 	unsigned int min_order = slub_min_order;
3793 	unsigned int order;
3794 
3795 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3796 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3797 
3798 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3799 			order <= max_order; order++) {
3800 
3801 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3802 		unsigned int rem;
3803 
3804 		rem = slab_size % size;
3805 
3806 		if (rem <= slab_size / fract_leftover)
3807 			break;
3808 	}
3809 
3810 	return order;
3811 }
3812 
3813 static inline int calculate_order(unsigned int size)
3814 {
3815 	unsigned int order;
3816 	unsigned int min_objects;
3817 	unsigned int max_objects;
3818 	unsigned int nr_cpus;
3819 
3820 	/*
3821 	 * Attempt to find best configuration for a slab. This
3822 	 * works by first attempting to generate a layout with
3823 	 * the best configuration and backing off gradually.
3824 	 *
3825 	 * First we increase the acceptable waste in a slab. Then
3826 	 * we reduce the minimum objects required in a slab.
3827 	 */
3828 	min_objects = slub_min_objects;
3829 	if (!min_objects) {
3830 		/*
3831 		 * Some architectures will only update present cpus when
3832 		 * onlining them, so don't trust the number if it's just 1. But
3833 		 * we also don't want to use nr_cpu_ids always, as on some other
3834 		 * architectures, there can be many possible cpus, but never
3835 		 * onlined. Here we compromise between trying to avoid too high
3836 		 * order on systems that appear larger than they are, and too
3837 		 * low order on systems that appear smaller than they are.
3838 		 */
3839 		nr_cpus = num_present_cpus();
3840 		if (nr_cpus <= 1)
3841 			nr_cpus = nr_cpu_ids;
3842 		min_objects = 4 * (fls(nr_cpus) + 1);
3843 	}
3844 	max_objects = order_objects(slub_max_order, size);
3845 	min_objects = min(min_objects, max_objects);
3846 
3847 	while (min_objects > 1) {
3848 		unsigned int fraction;
3849 
3850 		fraction = 16;
3851 		while (fraction >= 4) {
3852 			order = calc_slab_order(size, min_objects,
3853 					slub_max_order, fraction);
3854 			if (order <= slub_max_order)
3855 				return order;
3856 			fraction /= 2;
3857 		}
3858 		min_objects--;
3859 	}
3860 
3861 	/*
3862 	 * We were unable to place multiple objects in a slab. Now
3863 	 * lets see if we can place a single object there.
3864 	 */
3865 	order = calc_slab_order(size, 1, slub_max_order, 1);
3866 	if (order <= slub_max_order)
3867 		return order;
3868 
3869 	/*
3870 	 * Doh this slab cannot be placed using slub_max_order.
3871 	 */
3872 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
3873 	if (order < MAX_ORDER)
3874 		return order;
3875 	return -ENOSYS;
3876 }
3877 
3878 static void
3879 init_kmem_cache_node(struct kmem_cache_node *n)
3880 {
3881 	n->nr_partial = 0;
3882 	spin_lock_init(&n->list_lock);
3883 	INIT_LIST_HEAD(&n->partial);
3884 #ifdef CONFIG_SLUB_DEBUG
3885 	atomic_long_set(&n->nr_slabs, 0);
3886 	atomic_long_set(&n->total_objects, 0);
3887 	INIT_LIST_HEAD(&n->full);
3888 #endif
3889 }
3890 
3891 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3892 {
3893 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3894 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3895 
3896 	/*
3897 	 * Must align to double word boundary for the double cmpxchg
3898 	 * instructions to work; see __pcpu_double_call_return_bool().
3899 	 */
3900 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3901 				     2 * sizeof(void *));
3902 
3903 	if (!s->cpu_slab)
3904 		return 0;
3905 
3906 	init_kmem_cache_cpus(s);
3907 
3908 	return 1;
3909 }
3910 
3911 static struct kmem_cache *kmem_cache_node;
3912 
3913 /*
3914  * No kmalloc_node yet so do it by hand. We know that this is the first
3915  * slab on the node for this slabcache. There are no concurrent accesses
3916  * possible.
3917  *
3918  * Note that this function only works on the kmem_cache_node
3919  * when allocating for the kmem_cache_node. This is used for bootstrapping
3920  * memory on a fresh node that has no slab structures yet.
3921  */
3922 static void early_kmem_cache_node_alloc(int node)
3923 {
3924 	struct slab *slab;
3925 	struct kmem_cache_node *n;
3926 
3927 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3928 
3929 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3930 
3931 	BUG_ON(!slab);
3932 	if (slab_nid(slab) != node) {
3933 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3934 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3935 	}
3936 
3937 	n = slab->freelist;
3938 	BUG_ON(!n);
3939 #ifdef CONFIG_SLUB_DEBUG
3940 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3941 	init_tracking(kmem_cache_node, n);
3942 #endif
3943 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3944 	slab->freelist = get_freepointer(kmem_cache_node, n);
3945 	slab->inuse = 1;
3946 	slab->frozen = 0;
3947 	kmem_cache_node->node[node] = n;
3948 	init_kmem_cache_node(n);
3949 	inc_slabs_node(kmem_cache_node, node, slab->objects);
3950 
3951 	/*
3952 	 * No locks need to be taken here as it has just been
3953 	 * initialized and there is no concurrent access.
3954 	 */
3955 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
3956 }
3957 
3958 static void free_kmem_cache_nodes(struct kmem_cache *s)
3959 {
3960 	int node;
3961 	struct kmem_cache_node *n;
3962 
3963 	for_each_kmem_cache_node(s, node, n) {
3964 		s->node[node] = NULL;
3965 		kmem_cache_free(kmem_cache_node, n);
3966 	}
3967 }
3968 
3969 void __kmem_cache_release(struct kmem_cache *s)
3970 {
3971 	cache_random_seq_destroy(s);
3972 	free_percpu(s->cpu_slab);
3973 	free_kmem_cache_nodes(s);
3974 }
3975 
3976 static int init_kmem_cache_nodes(struct kmem_cache *s)
3977 {
3978 	int node;
3979 
3980 	for_each_node_mask(node, slab_nodes) {
3981 		struct kmem_cache_node *n;
3982 
3983 		if (slab_state == DOWN) {
3984 			early_kmem_cache_node_alloc(node);
3985 			continue;
3986 		}
3987 		n = kmem_cache_alloc_node(kmem_cache_node,
3988 						GFP_KERNEL, node);
3989 
3990 		if (!n) {
3991 			free_kmem_cache_nodes(s);
3992 			return 0;
3993 		}
3994 
3995 		init_kmem_cache_node(n);
3996 		s->node[node] = n;
3997 	}
3998 	return 1;
3999 }
4000 
4001 static void set_cpu_partial(struct kmem_cache *s)
4002 {
4003 #ifdef CONFIG_SLUB_CPU_PARTIAL
4004 	unsigned int nr_objects;
4005 
4006 	/*
4007 	 * cpu_partial determined the maximum number of objects kept in the
4008 	 * per cpu partial lists of a processor.
4009 	 *
4010 	 * Per cpu partial lists mainly contain slabs that just have one
4011 	 * object freed. If they are used for allocation then they can be
4012 	 * filled up again with minimal effort. The slab will never hit the
4013 	 * per node partial lists and therefore no locking will be required.
4014 	 *
4015 	 * For backwards compatibility reasons, this is determined as number
4016 	 * of objects, even though we now limit maximum number of pages, see
4017 	 * slub_set_cpu_partial()
4018 	 */
4019 	if (!kmem_cache_has_cpu_partial(s))
4020 		nr_objects = 0;
4021 	else if (s->size >= PAGE_SIZE)
4022 		nr_objects = 6;
4023 	else if (s->size >= 1024)
4024 		nr_objects = 24;
4025 	else if (s->size >= 256)
4026 		nr_objects = 52;
4027 	else
4028 		nr_objects = 120;
4029 
4030 	slub_set_cpu_partial(s, nr_objects);
4031 #endif
4032 }
4033 
4034 /*
4035  * calculate_sizes() determines the order and the distribution of data within
4036  * a slab object.
4037  */
4038 static int calculate_sizes(struct kmem_cache *s)
4039 {
4040 	slab_flags_t flags = s->flags;
4041 	unsigned int size = s->object_size;
4042 	unsigned int order;
4043 
4044 	/*
4045 	 * Round up object size to the next word boundary. We can only
4046 	 * place the free pointer at word boundaries and this determines
4047 	 * the possible location of the free pointer.
4048 	 */
4049 	size = ALIGN(size, sizeof(void *));
4050 
4051 #ifdef CONFIG_SLUB_DEBUG
4052 	/*
4053 	 * Determine if we can poison the object itself. If the user of
4054 	 * the slab may touch the object after free or before allocation
4055 	 * then we should never poison the object itself.
4056 	 */
4057 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4058 			!s->ctor)
4059 		s->flags |= __OBJECT_POISON;
4060 	else
4061 		s->flags &= ~__OBJECT_POISON;
4062 
4063 
4064 	/*
4065 	 * If we are Redzoning then check if there is some space between the
4066 	 * end of the object and the free pointer. If not then add an
4067 	 * additional word to have some bytes to store Redzone information.
4068 	 */
4069 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4070 		size += sizeof(void *);
4071 #endif
4072 
4073 	/*
4074 	 * With that we have determined the number of bytes in actual use
4075 	 * by the object and redzoning.
4076 	 */
4077 	s->inuse = size;
4078 
4079 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4080 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4081 	    s->ctor) {
4082 		/*
4083 		 * Relocate free pointer after the object if it is not
4084 		 * permitted to overwrite the first word of the object on
4085 		 * kmem_cache_free.
4086 		 *
4087 		 * This is the case if we do RCU, have a constructor or
4088 		 * destructor, are poisoning the objects, or are
4089 		 * redzoning an object smaller than sizeof(void *).
4090 		 *
4091 		 * The assumption that s->offset >= s->inuse means free
4092 		 * pointer is outside of the object is used in the
4093 		 * freeptr_outside_object() function. If that is no
4094 		 * longer true, the function needs to be modified.
4095 		 */
4096 		s->offset = size;
4097 		size += sizeof(void *);
4098 	} else {
4099 		/*
4100 		 * Store freelist pointer near middle of object to keep
4101 		 * it away from the edges of the object to avoid small
4102 		 * sized over/underflows from neighboring allocations.
4103 		 */
4104 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4105 	}
4106 
4107 #ifdef CONFIG_SLUB_DEBUG
4108 	if (flags & SLAB_STORE_USER)
4109 		/*
4110 		 * Need to store information about allocs and frees after
4111 		 * the object.
4112 		 */
4113 		size += 2 * sizeof(struct track);
4114 #endif
4115 
4116 	kasan_cache_create(s, &size, &s->flags);
4117 #ifdef CONFIG_SLUB_DEBUG
4118 	if (flags & SLAB_RED_ZONE) {
4119 		/*
4120 		 * Add some empty padding so that we can catch
4121 		 * overwrites from earlier objects rather than let
4122 		 * tracking information or the free pointer be
4123 		 * corrupted if a user writes before the start
4124 		 * of the object.
4125 		 */
4126 		size += sizeof(void *);
4127 
4128 		s->red_left_pad = sizeof(void *);
4129 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4130 		size += s->red_left_pad;
4131 	}
4132 #endif
4133 
4134 	/*
4135 	 * SLUB stores one object immediately after another beginning from
4136 	 * offset 0. In order to align the objects we have to simply size
4137 	 * each object to conform to the alignment.
4138 	 */
4139 	size = ALIGN(size, s->align);
4140 	s->size = size;
4141 	s->reciprocal_size = reciprocal_value(size);
4142 	order = calculate_order(size);
4143 
4144 	if ((int)order < 0)
4145 		return 0;
4146 
4147 	s->allocflags = 0;
4148 	if (order)
4149 		s->allocflags |= __GFP_COMP;
4150 
4151 	if (s->flags & SLAB_CACHE_DMA)
4152 		s->allocflags |= GFP_DMA;
4153 
4154 	if (s->flags & SLAB_CACHE_DMA32)
4155 		s->allocflags |= GFP_DMA32;
4156 
4157 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4158 		s->allocflags |= __GFP_RECLAIMABLE;
4159 
4160 	/*
4161 	 * Determine the number of objects per slab
4162 	 */
4163 	s->oo = oo_make(order, size);
4164 	s->min = oo_make(get_order(size), size);
4165 
4166 	return !!oo_objects(s->oo);
4167 }
4168 
4169 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4170 {
4171 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4172 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4173 	s->random = get_random_long();
4174 #endif
4175 
4176 	if (!calculate_sizes(s))
4177 		goto error;
4178 	if (disable_higher_order_debug) {
4179 		/*
4180 		 * Disable debugging flags that store metadata if the min slab
4181 		 * order increased.
4182 		 */
4183 		if (get_order(s->size) > get_order(s->object_size)) {
4184 			s->flags &= ~DEBUG_METADATA_FLAGS;
4185 			s->offset = 0;
4186 			if (!calculate_sizes(s))
4187 				goto error;
4188 		}
4189 	}
4190 
4191 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4192     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4193 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4194 		/* Enable fast mode */
4195 		s->flags |= __CMPXCHG_DOUBLE;
4196 #endif
4197 
4198 	/*
4199 	 * The larger the object size is, the more slabs we want on the partial
4200 	 * list to avoid pounding the page allocator excessively.
4201 	 */
4202 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4203 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4204 
4205 	set_cpu_partial(s);
4206 
4207 #ifdef CONFIG_NUMA
4208 	s->remote_node_defrag_ratio = 1000;
4209 #endif
4210 
4211 	/* Initialize the pre-computed randomized freelist if slab is up */
4212 	if (slab_state >= UP) {
4213 		if (init_cache_random_seq(s))
4214 			goto error;
4215 	}
4216 
4217 	if (!init_kmem_cache_nodes(s))
4218 		goto error;
4219 
4220 	if (alloc_kmem_cache_cpus(s))
4221 		return 0;
4222 
4223 error:
4224 	__kmem_cache_release(s);
4225 	return -EINVAL;
4226 }
4227 
4228 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4229 			      const char *text)
4230 {
4231 #ifdef CONFIG_SLUB_DEBUG
4232 	void *addr = slab_address(slab);
4233 	unsigned long flags;
4234 	unsigned long *map;
4235 	void *p;
4236 
4237 	slab_err(s, slab, text, s->name);
4238 	slab_lock(slab, &flags);
4239 
4240 	map = get_map(s, slab);
4241 	for_each_object(p, s, addr, slab->objects) {
4242 
4243 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
4244 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4245 			print_tracking(s, p);
4246 		}
4247 	}
4248 	put_map(map);
4249 	slab_unlock(slab, &flags);
4250 #endif
4251 }
4252 
4253 /*
4254  * Attempt to free all partial slabs on a node.
4255  * This is called from __kmem_cache_shutdown(). We must take list_lock
4256  * because sysfs file might still access partial list after the shutdowning.
4257  */
4258 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4259 {
4260 	LIST_HEAD(discard);
4261 	struct slab *slab, *h;
4262 
4263 	BUG_ON(irqs_disabled());
4264 	spin_lock_irq(&n->list_lock);
4265 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4266 		if (!slab->inuse) {
4267 			remove_partial(n, slab);
4268 			list_add(&slab->slab_list, &discard);
4269 		} else {
4270 			list_slab_objects(s, slab,
4271 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4272 		}
4273 	}
4274 	spin_unlock_irq(&n->list_lock);
4275 
4276 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4277 		discard_slab(s, slab);
4278 }
4279 
4280 bool __kmem_cache_empty(struct kmem_cache *s)
4281 {
4282 	int node;
4283 	struct kmem_cache_node *n;
4284 
4285 	for_each_kmem_cache_node(s, node, n)
4286 		if (n->nr_partial || slabs_node(s, node))
4287 			return false;
4288 	return true;
4289 }
4290 
4291 /*
4292  * Release all resources used by a slab cache.
4293  */
4294 int __kmem_cache_shutdown(struct kmem_cache *s)
4295 {
4296 	int node;
4297 	struct kmem_cache_node *n;
4298 
4299 	flush_all_cpus_locked(s);
4300 	/* Attempt to free all objects */
4301 	for_each_kmem_cache_node(s, node, n) {
4302 		free_partial(s, n);
4303 		if (n->nr_partial || slabs_node(s, node))
4304 			return 1;
4305 	}
4306 	return 0;
4307 }
4308 
4309 #ifdef CONFIG_PRINTK
4310 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4311 {
4312 	void *base;
4313 	int __maybe_unused i;
4314 	unsigned int objnr;
4315 	void *objp;
4316 	void *objp0;
4317 	struct kmem_cache *s = slab->slab_cache;
4318 	struct track __maybe_unused *trackp;
4319 
4320 	kpp->kp_ptr = object;
4321 	kpp->kp_slab = slab;
4322 	kpp->kp_slab_cache = s;
4323 	base = slab_address(slab);
4324 	objp0 = kasan_reset_tag(object);
4325 #ifdef CONFIG_SLUB_DEBUG
4326 	objp = restore_red_left(s, objp0);
4327 #else
4328 	objp = objp0;
4329 #endif
4330 	objnr = obj_to_index(s, slab, objp);
4331 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4332 	objp = base + s->size * objnr;
4333 	kpp->kp_objp = objp;
4334 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4335 			 || (objp - base) % s->size) ||
4336 	    !(s->flags & SLAB_STORE_USER))
4337 		return;
4338 #ifdef CONFIG_SLUB_DEBUG
4339 	objp = fixup_red_left(s, objp);
4340 	trackp = get_track(s, objp, TRACK_ALLOC);
4341 	kpp->kp_ret = (void *)trackp->addr;
4342 #ifdef CONFIG_STACKDEPOT
4343 	{
4344 		depot_stack_handle_t handle;
4345 		unsigned long *entries;
4346 		unsigned int nr_entries;
4347 
4348 		handle = READ_ONCE(trackp->handle);
4349 		if (handle) {
4350 			nr_entries = stack_depot_fetch(handle, &entries);
4351 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4352 				kpp->kp_stack[i] = (void *)entries[i];
4353 		}
4354 
4355 		trackp = get_track(s, objp, TRACK_FREE);
4356 		handle = READ_ONCE(trackp->handle);
4357 		if (handle) {
4358 			nr_entries = stack_depot_fetch(handle, &entries);
4359 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4360 				kpp->kp_free_stack[i] = (void *)entries[i];
4361 		}
4362 	}
4363 #endif
4364 #endif
4365 }
4366 #endif
4367 
4368 /********************************************************************
4369  *		Kmalloc subsystem
4370  *******************************************************************/
4371 
4372 static int __init setup_slub_min_order(char *str)
4373 {
4374 	get_option(&str, (int *)&slub_min_order);
4375 
4376 	return 1;
4377 }
4378 
4379 __setup("slub_min_order=", setup_slub_min_order);
4380 
4381 static int __init setup_slub_max_order(char *str)
4382 {
4383 	get_option(&str, (int *)&slub_max_order);
4384 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4385 
4386 	return 1;
4387 }
4388 
4389 __setup("slub_max_order=", setup_slub_max_order);
4390 
4391 static int __init setup_slub_min_objects(char *str)
4392 {
4393 	get_option(&str, (int *)&slub_min_objects);
4394 
4395 	return 1;
4396 }
4397 
4398 __setup("slub_min_objects=", setup_slub_min_objects);
4399 
4400 void *__kmalloc(size_t size, gfp_t flags)
4401 {
4402 	struct kmem_cache *s;
4403 	void *ret;
4404 
4405 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4406 		return kmalloc_large(size, flags);
4407 
4408 	s = kmalloc_slab(size, flags);
4409 
4410 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4411 		return s;
4412 
4413 	ret = slab_alloc(s, NULL, flags, _RET_IP_, size);
4414 
4415 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4416 
4417 	ret = kasan_kmalloc(s, ret, size, flags);
4418 
4419 	return ret;
4420 }
4421 EXPORT_SYMBOL(__kmalloc);
4422 
4423 #ifdef CONFIG_NUMA
4424 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4425 {
4426 	struct page *page;
4427 	void *ptr = NULL;
4428 	unsigned int order = get_order(size);
4429 
4430 	flags |= __GFP_COMP;
4431 	page = alloc_pages_node(node, flags, order);
4432 	if (page) {
4433 		ptr = page_address(page);
4434 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4435 				      PAGE_SIZE << order);
4436 	}
4437 
4438 	return kmalloc_large_node_hook(ptr, size, flags);
4439 }
4440 
4441 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4442 {
4443 	struct kmem_cache *s;
4444 	void *ret;
4445 
4446 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4447 		ret = kmalloc_large_node(size, flags, node);
4448 
4449 		trace_kmalloc_node(_RET_IP_, ret,
4450 				   size, PAGE_SIZE << get_order(size),
4451 				   flags, node);
4452 
4453 		return ret;
4454 	}
4455 
4456 	s = kmalloc_slab(size, flags);
4457 
4458 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4459 		return s;
4460 
4461 	ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size);
4462 
4463 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4464 
4465 	ret = kasan_kmalloc(s, ret, size, flags);
4466 
4467 	return ret;
4468 }
4469 EXPORT_SYMBOL(__kmalloc_node);
4470 #endif	/* CONFIG_NUMA */
4471 
4472 #ifdef CONFIG_HARDENED_USERCOPY
4473 /*
4474  * Rejects incorrectly sized objects and objects that are to be copied
4475  * to/from userspace but do not fall entirely within the containing slab
4476  * cache's usercopy region.
4477  *
4478  * Returns NULL if check passes, otherwise const char * to name of cache
4479  * to indicate an error.
4480  */
4481 void __check_heap_object(const void *ptr, unsigned long n,
4482 			 const struct slab *slab, bool to_user)
4483 {
4484 	struct kmem_cache *s;
4485 	unsigned int offset;
4486 	bool is_kfence = is_kfence_address(ptr);
4487 
4488 	ptr = kasan_reset_tag(ptr);
4489 
4490 	/* Find object and usable object size. */
4491 	s = slab->slab_cache;
4492 
4493 	/* Reject impossible pointers. */
4494 	if (ptr < slab_address(slab))
4495 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4496 			       to_user, 0, n);
4497 
4498 	/* Find offset within object. */
4499 	if (is_kfence)
4500 		offset = ptr - kfence_object_start(ptr);
4501 	else
4502 		offset = (ptr - slab_address(slab)) % s->size;
4503 
4504 	/* Adjust for redzone and reject if within the redzone. */
4505 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4506 		if (offset < s->red_left_pad)
4507 			usercopy_abort("SLUB object in left red zone",
4508 				       s->name, to_user, offset, n);
4509 		offset -= s->red_left_pad;
4510 	}
4511 
4512 	/* Allow address range falling entirely within usercopy region. */
4513 	if (offset >= s->useroffset &&
4514 	    offset - s->useroffset <= s->usersize &&
4515 	    n <= s->useroffset - offset + s->usersize)
4516 		return;
4517 
4518 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4519 }
4520 #endif /* CONFIG_HARDENED_USERCOPY */
4521 
4522 size_t __ksize(const void *object)
4523 {
4524 	struct folio *folio;
4525 
4526 	if (unlikely(object == ZERO_SIZE_PTR))
4527 		return 0;
4528 
4529 	folio = virt_to_folio(object);
4530 
4531 	if (unlikely(!folio_test_slab(folio)))
4532 		return folio_size(folio);
4533 
4534 	return slab_ksize(folio_slab(folio)->slab_cache);
4535 }
4536 EXPORT_SYMBOL(__ksize);
4537 
4538 void kfree(const void *x)
4539 {
4540 	struct folio *folio;
4541 	struct slab *slab;
4542 	void *object = (void *)x;
4543 
4544 	trace_kfree(_RET_IP_, x);
4545 
4546 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4547 		return;
4548 
4549 	folio = virt_to_folio(x);
4550 	if (unlikely(!folio_test_slab(folio))) {
4551 		free_large_kmalloc(folio, object);
4552 		return;
4553 	}
4554 	slab = folio_slab(folio);
4555 	slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_);
4556 }
4557 EXPORT_SYMBOL(kfree);
4558 
4559 #define SHRINK_PROMOTE_MAX 32
4560 
4561 /*
4562  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4563  * up most to the head of the partial lists. New allocations will then
4564  * fill those up and thus they can be removed from the partial lists.
4565  *
4566  * The slabs with the least items are placed last. This results in them
4567  * being allocated from last increasing the chance that the last objects
4568  * are freed in them.
4569  */
4570 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4571 {
4572 	int node;
4573 	int i;
4574 	struct kmem_cache_node *n;
4575 	struct slab *slab;
4576 	struct slab *t;
4577 	struct list_head discard;
4578 	struct list_head promote[SHRINK_PROMOTE_MAX];
4579 	unsigned long flags;
4580 	int ret = 0;
4581 
4582 	for_each_kmem_cache_node(s, node, n) {
4583 		INIT_LIST_HEAD(&discard);
4584 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4585 			INIT_LIST_HEAD(promote + i);
4586 
4587 		spin_lock_irqsave(&n->list_lock, flags);
4588 
4589 		/*
4590 		 * Build lists of slabs to discard or promote.
4591 		 *
4592 		 * Note that concurrent frees may occur while we hold the
4593 		 * list_lock. slab->inuse here is the upper limit.
4594 		 */
4595 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4596 			int free = slab->objects - slab->inuse;
4597 
4598 			/* Do not reread slab->inuse */
4599 			barrier();
4600 
4601 			/* We do not keep full slabs on the list */
4602 			BUG_ON(free <= 0);
4603 
4604 			if (free == slab->objects) {
4605 				list_move(&slab->slab_list, &discard);
4606 				n->nr_partial--;
4607 			} else if (free <= SHRINK_PROMOTE_MAX)
4608 				list_move(&slab->slab_list, promote + free - 1);
4609 		}
4610 
4611 		/*
4612 		 * Promote the slabs filled up most to the head of the
4613 		 * partial list.
4614 		 */
4615 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4616 			list_splice(promote + i, &n->partial);
4617 
4618 		spin_unlock_irqrestore(&n->list_lock, flags);
4619 
4620 		/* Release empty slabs */
4621 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4622 			discard_slab(s, slab);
4623 
4624 		if (slabs_node(s, node))
4625 			ret = 1;
4626 	}
4627 
4628 	return ret;
4629 }
4630 
4631 int __kmem_cache_shrink(struct kmem_cache *s)
4632 {
4633 	flush_all(s);
4634 	return __kmem_cache_do_shrink(s);
4635 }
4636 
4637 static int slab_mem_going_offline_callback(void *arg)
4638 {
4639 	struct kmem_cache *s;
4640 
4641 	mutex_lock(&slab_mutex);
4642 	list_for_each_entry(s, &slab_caches, list) {
4643 		flush_all_cpus_locked(s);
4644 		__kmem_cache_do_shrink(s);
4645 	}
4646 	mutex_unlock(&slab_mutex);
4647 
4648 	return 0;
4649 }
4650 
4651 static void slab_mem_offline_callback(void *arg)
4652 {
4653 	struct memory_notify *marg = arg;
4654 	int offline_node;
4655 
4656 	offline_node = marg->status_change_nid_normal;
4657 
4658 	/*
4659 	 * If the node still has available memory. we need kmem_cache_node
4660 	 * for it yet.
4661 	 */
4662 	if (offline_node < 0)
4663 		return;
4664 
4665 	mutex_lock(&slab_mutex);
4666 	node_clear(offline_node, slab_nodes);
4667 	/*
4668 	 * We no longer free kmem_cache_node structures here, as it would be
4669 	 * racy with all get_node() users, and infeasible to protect them with
4670 	 * slab_mutex.
4671 	 */
4672 	mutex_unlock(&slab_mutex);
4673 }
4674 
4675 static int slab_mem_going_online_callback(void *arg)
4676 {
4677 	struct kmem_cache_node *n;
4678 	struct kmem_cache *s;
4679 	struct memory_notify *marg = arg;
4680 	int nid = marg->status_change_nid_normal;
4681 	int ret = 0;
4682 
4683 	/*
4684 	 * If the node's memory is already available, then kmem_cache_node is
4685 	 * already created. Nothing to do.
4686 	 */
4687 	if (nid < 0)
4688 		return 0;
4689 
4690 	/*
4691 	 * We are bringing a node online. No memory is available yet. We must
4692 	 * allocate a kmem_cache_node structure in order to bring the node
4693 	 * online.
4694 	 */
4695 	mutex_lock(&slab_mutex);
4696 	list_for_each_entry(s, &slab_caches, list) {
4697 		/*
4698 		 * The structure may already exist if the node was previously
4699 		 * onlined and offlined.
4700 		 */
4701 		if (get_node(s, nid))
4702 			continue;
4703 		/*
4704 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4705 		 *      since memory is not yet available from the node that
4706 		 *      is brought up.
4707 		 */
4708 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4709 		if (!n) {
4710 			ret = -ENOMEM;
4711 			goto out;
4712 		}
4713 		init_kmem_cache_node(n);
4714 		s->node[nid] = n;
4715 	}
4716 	/*
4717 	 * Any cache created after this point will also have kmem_cache_node
4718 	 * initialized for the new node.
4719 	 */
4720 	node_set(nid, slab_nodes);
4721 out:
4722 	mutex_unlock(&slab_mutex);
4723 	return ret;
4724 }
4725 
4726 static int slab_memory_callback(struct notifier_block *self,
4727 				unsigned long action, void *arg)
4728 {
4729 	int ret = 0;
4730 
4731 	switch (action) {
4732 	case MEM_GOING_ONLINE:
4733 		ret = slab_mem_going_online_callback(arg);
4734 		break;
4735 	case MEM_GOING_OFFLINE:
4736 		ret = slab_mem_going_offline_callback(arg);
4737 		break;
4738 	case MEM_OFFLINE:
4739 	case MEM_CANCEL_ONLINE:
4740 		slab_mem_offline_callback(arg);
4741 		break;
4742 	case MEM_ONLINE:
4743 	case MEM_CANCEL_OFFLINE:
4744 		break;
4745 	}
4746 	if (ret)
4747 		ret = notifier_from_errno(ret);
4748 	else
4749 		ret = NOTIFY_OK;
4750 	return ret;
4751 }
4752 
4753 static struct notifier_block slab_memory_callback_nb = {
4754 	.notifier_call = slab_memory_callback,
4755 	.priority = SLAB_CALLBACK_PRI,
4756 };
4757 
4758 /********************************************************************
4759  *			Basic setup of slabs
4760  *******************************************************************/
4761 
4762 /*
4763  * Used for early kmem_cache structures that were allocated using
4764  * the page allocator. Allocate them properly then fix up the pointers
4765  * that may be pointing to the wrong kmem_cache structure.
4766  */
4767 
4768 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4769 {
4770 	int node;
4771 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4772 	struct kmem_cache_node *n;
4773 
4774 	memcpy(s, static_cache, kmem_cache->object_size);
4775 
4776 	/*
4777 	 * This runs very early, and only the boot processor is supposed to be
4778 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4779 	 * IPIs around.
4780 	 */
4781 	__flush_cpu_slab(s, smp_processor_id());
4782 	for_each_kmem_cache_node(s, node, n) {
4783 		struct slab *p;
4784 
4785 		list_for_each_entry(p, &n->partial, slab_list)
4786 			p->slab_cache = s;
4787 
4788 #ifdef CONFIG_SLUB_DEBUG
4789 		list_for_each_entry(p, &n->full, slab_list)
4790 			p->slab_cache = s;
4791 #endif
4792 	}
4793 	list_add(&s->list, &slab_caches);
4794 	return s;
4795 }
4796 
4797 void __init kmem_cache_init(void)
4798 {
4799 	static __initdata struct kmem_cache boot_kmem_cache,
4800 		boot_kmem_cache_node;
4801 	int node;
4802 
4803 	if (debug_guardpage_minorder())
4804 		slub_max_order = 0;
4805 
4806 	/* Print slub debugging pointers without hashing */
4807 	if (__slub_debug_enabled())
4808 		no_hash_pointers_enable(NULL);
4809 
4810 	kmem_cache_node = &boot_kmem_cache_node;
4811 	kmem_cache = &boot_kmem_cache;
4812 
4813 	/*
4814 	 * Initialize the nodemask for which we will allocate per node
4815 	 * structures. Here we don't need taking slab_mutex yet.
4816 	 */
4817 	for_each_node_state(node, N_NORMAL_MEMORY)
4818 		node_set(node, slab_nodes);
4819 
4820 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4821 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4822 
4823 	register_hotmemory_notifier(&slab_memory_callback_nb);
4824 
4825 	/* Able to allocate the per node structures */
4826 	slab_state = PARTIAL;
4827 
4828 	create_boot_cache(kmem_cache, "kmem_cache",
4829 			offsetof(struct kmem_cache, node) +
4830 				nr_node_ids * sizeof(struct kmem_cache_node *),
4831 		       SLAB_HWCACHE_ALIGN, 0, 0);
4832 
4833 	kmem_cache = bootstrap(&boot_kmem_cache);
4834 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4835 
4836 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4837 	setup_kmalloc_cache_index_table();
4838 	create_kmalloc_caches(0);
4839 
4840 	/* Setup random freelists for each cache */
4841 	init_freelist_randomization();
4842 
4843 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4844 				  slub_cpu_dead);
4845 
4846 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4847 		cache_line_size(),
4848 		slub_min_order, slub_max_order, slub_min_objects,
4849 		nr_cpu_ids, nr_node_ids);
4850 }
4851 
4852 void __init kmem_cache_init_late(void)
4853 {
4854 }
4855 
4856 struct kmem_cache *
4857 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4858 		   slab_flags_t flags, void (*ctor)(void *))
4859 {
4860 	struct kmem_cache *s;
4861 
4862 	s = find_mergeable(size, align, flags, name, ctor);
4863 	if (s) {
4864 		s->refcount++;
4865 
4866 		/*
4867 		 * Adjust the object sizes so that we clear
4868 		 * the complete object on kzalloc.
4869 		 */
4870 		s->object_size = max(s->object_size, size);
4871 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4872 
4873 		if (sysfs_slab_alias(s, name)) {
4874 			s->refcount--;
4875 			s = NULL;
4876 		}
4877 	}
4878 
4879 	return s;
4880 }
4881 
4882 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4883 {
4884 	int err;
4885 
4886 	err = kmem_cache_open(s, flags);
4887 	if (err)
4888 		return err;
4889 
4890 	/* Mutex is not taken during early boot */
4891 	if (slab_state <= UP)
4892 		return 0;
4893 
4894 	err = sysfs_slab_add(s);
4895 	if (err) {
4896 		__kmem_cache_release(s);
4897 		return err;
4898 	}
4899 
4900 	if (s->flags & SLAB_STORE_USER)
4901 		debugfs_slab_add(s);
4902 
4903 	return 0;
4904 }
4905 
4906 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4907 {
4908 	struct kmem_cache *s;
4909 	void *ret;
4910 
4911 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4912 		return kmalloc_large(size, gfpflags);
4913 
4914 	s = kmalloc_slab(size, gfpflags);
4915 
4916 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4917 		return s;
4918 
4919 	ret = slab_alloc(s, NULL, gfpflags, caller, size);
4920 
4921 	/* Honor the call site pointer we received. */
4922 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4923 
4924 	return ret;
4925 }
4926 EXPORT_SYMBOL(__kmalloc_track_caller);
4927 
4928 #ifdef CONFIG_NUMA
4929 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4930 					int node, unsigned long caller)
4931 {
4932 	struct kmem_cache *s;
4933 	void *ret;
4934 
4935 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4936 		ret = kmalloc_large_node(size, gfpflags, node);
4937 
4938 		trace_kmalloc_node(caller, ret,
4939 				   size, PAGE_SIZE << get_order(size),
4940 				   gfpflags, node);
4941 
4942 		return ret;
4943 	}
4944 
4945 	s = kmalloc_slab(size, gfpflags);
4946 
4947 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4948 		return s;
4949 
4950 	ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size);
4951 
4952 	/* Honor the call site pointer we received. */
4953 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4954 
4955 	return ret;
4956 }
4957 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4958 #endif
4959 
4960 #ifdef CONFIG_SYSFS
4961 static int count_inuse(struct slab *slab)
4962 {
4963 	return slab->inuse;
4964 }
4965 
4966 static int count_total(struct slab *slab)
4967 {
4968 	return slab->objects;
4969 }
4970 #endif
4971 
4972 #ifdef CONFIG_SLUB_DEBUG
4973 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4974 			  unsigned long *obj_map)
4975 {
4976 	void *p;
4977 	void *addr = slab_address(slab);
4978 	unsigned long flags;
4979 
4980 	slab_lock(slab, &flags);
4981 
4982 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
4983 		goto unlock;
4984 
4985 	/* Now we know that a valid freelist exists */
4986 	__fill_map(obj_map, s, slab);
4987 	for_each_object(p, s, addr, slab->objects) {
4988 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4989 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4990 
4991 		if (!check_object(s, slab, p, val))
4992 			break;
4993 	}
4994 unlock:
4995 	slab_unlock(slab, &flags);
4996 }
4997 
4998 static int validate_slab_node(struct kmem_cache *s,
4999 		struct kmem_cache_node *n, unsigned long *obj_map)
5000 {
5001 	unsigned long count = 0;
5002 	struct slab *slab;
5003 	unsigned long flags;
5004 
5005 	spin_lock_irqsave(&n->list_lock, flags);
5006 
5007 	list_for_each_entry(slab, &n->partial, slab_list) {
5008 		validate_slab(s, slab, obj_map);
5009 		count++;
5010 	}
5011 	if (count != n->nr_partial) {
5012 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5013 		       s->name, count, n->nr_partial);
5014 		slab_add_kunit_errors();
5015 	}
5016 
5017 	if (!(s->flags & SLAB_STORE_USER))
5018 		goto out;
5019 
5020 	list_for_each_entry(slab, &n->full, slab_list) {
5021 		validate_slab(s, slab, obj_map);
5022 		count++;
5023 	}
5024 	if (count != atomic_long_read(&n->nr_slabs)) {
5025 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5026 		       s->name, count, atomic_long_read(&n->nr_slabs));
5027 		slab_add_kunit_errors();
5028 	}
5029 
5030 out:
5031 	spin_unlock_irqrestore(&n->list_lock, flags);
5032 	return count;
5033 }
5034 
5035 long validate_slab_cache(struct kmem_cache *s)
5036 {
5037 	int node;
5038 	unsigned long count = 0;
5039 	struct kmem_cache_node *n;
5040 	unsigned long *obj_map;
5041 
5042 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5043 	if (!obj_map)
5044 		return -ENOMEM;
5045 
5046 	flush_all(s);
5047 	for_each_kmem_cache_node(s, node, n)
5048 		count += validate_slab_node(s, n, obj_map);
5049 
5050 	bitmap_free(obj_map);
5051 
5052 	return count;
5053 }
5054 EXPORT_SYMBOL(validate_slab_cache);
5055 
5056 #ifdef CONFIG_DEBUG_FS
5057 /*
5058  * Generate lists of code addresses where slabcache objects are allocated
5059  * and freed.
5060  */
5061 
5062 struct location {
5063 	depot_stack_handle_t handle;
5064 	unsigned long count;
5065 	unsigned long addr;
5066 	long long sum_time;
5067 	long min_time;
5068 	long max_time;
5069 	long min_pid;
5070 	long max_pid;
5071 	DECLARE_BITMAP(cpus, NR_CPUS);
5072 	nodemask_t nodes;
5073 };
5074 
5075 struct loc_track {
5076 	unsigned long max;
5077 	unsigned long count;
5078 	struct location *loc;
5079 	loff_t idx;
5080 };
5081 
5082 static struct dentry *slab_debugfs_root;
5083 
5084 static void free_loc_track(struct loc_track *t)
5085 {
5086 	if (t->max)
5087 		free_pages((unsigned long)t->loc,
5088 			get_order(sizeof(struct location) * t->max));
5089 }
5090 
5091 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5092 {
5093 	struct location *l;
5094 	int order;
5095 
5096 	order = get_order(sizeof(struct location) * max);
5097 
5098 	l = (void *)__get_free_pages(flags, order);
5099 	if (!l)
5100 		return 0;
5101 
5102 	if (t->count) {
5103 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5104 		free_loc_track(t);
5105 	}
5106 	t->max = max;
5107 	t->loc = l;
5108 	return 1;
5109 }
5110 
5111 static int add_location(struct loc_track *t, struct kmem_cache *s,
5112 				const struct track *track)
5113 {
5114 	long start, end, pos;
5115 	struct location *l;
5116 	unsigned long caddr, chandle;
5117 	unsigned long age = jiffies - track->when;
5118 	depot_stack_handle_t handle = 0;
5119 
5120 #ifdef CONFIG_STACKDEPOT
5121 	handle = READ_ONCE(track->handle);
5122 #endif
5123 	start = -1;
5124 	end = t->count;
5125 
5126 	for ( ; ; ) {
5127 		pos = start + (end - start + 1) / 2;
5128 
5129 		/*
5130 		 * There is nothing at "end". If we end up there
5131 		 * we need to add something to before end.
5132 		 */
5133 		if (pos == end)
5134 			break;
5135 
5136 		caddr = t->loc[pos].addr;
5137 		chandle = t->loc[pos].handle;
5138 		if ((track->addr == caddr) && (handle == chandle)) {
5139 
5140 			l = &t->loc[pos];
5141 			l->count++;
5142 			if (track->when) {
5143 				l->sum_time += age;
5144 				if (age < l->min_time)
5145 					l->min_time = age;
5146 				if (age > l->max_time)
5147 					l->max_time = age;
5148 
5149 				if (track->pid < l->min_pid)
5150 					l->min_pid = track->pid;
5151 				if (track->pid > l->max_pid)
5152 					l->max_pid = track->pid;
5153 
5154 				cpumask_set_cpu(track->cpu,
5155 						to_cpumask(l->cpus));
5156 			}
5157 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5158 			return 1;
5159 		}
5160 
5161 		if (track->addr < caddr)
5162 			end = pos;
5163 		else if (track->addr == caddr && handle < chandle)
5164 			end = pos;
5165 		else
5166 			start = pos;
5167 	}
5168 
5169 	/*
5170 	 * Not found. Insert new tracking element.
5171 	 */
5172 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5173 		return 0;
5174 
5175 	l = t->loc + pos;
5176 	if (pos < t->count)
5177 		memmove(l + 1, l,
5178 			(t->count - pos) * sizeof(struct location));
5179 	t->count++;
5180 	l->count = 1;
5181 	l->addr = track->addr;
5182 	l->sum_time = age;
5183 	l->min_time = age;
5184 	l->max_time = age;
5185 	l->min_pid = track->pid;
5186 	l->max_pid = track->pid;
5187 	l->handle = handle;
5188 	cpumask_clear(to_cpumask(l->cpus));
5189 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5190 	nodes_clear(l->nodes);
5191 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5192 	return 1;
5193 }
5194 
5195 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5196 		struct slab *slab, enum track_item alloc,
5197 		unsigned long *obj_map)
5198 {
5199 	void *addr = slab_address(slab);
5200 	void *p;
5201 
5202 	__fill_map(obj_map, s, slab);
5203 
5204 	for_each_object(p, s, addr, slab->objects)
5205 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5206 			add_location(t, s, get_track(s, p, alloc));
5207 }
5208 #endif  /* CONFIG_DEBUG_FS   */
5209 #endif	/* CONFIG_SLUB_DEBUG */
5210 
5211 #ifdef CONFIG_SYSFS
5212 enum slab_stat_type {
5213 	SL_ALL,			/* All slabs */
5214 	SL_PARTIAL,		/* Only partially allocated slabs */
5215 	SL_CPU,			/* Only slabs used for cpu caches */
5216 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5217 	SL_TOTAL		/* Determine object capacity not slabs */
5218 };
5219 
5220 #define SO_ALL		(1 << SL_ALL)
5221 #define SO_PARTIAL	(1 << SL_PARTIAL)
5222 #define SO_CPU		(1 << SL_CPU)
5223 #define SO_OBJECTS	(1 << SL_OBJECTS)
5224 #define SO_TOTAL	(1 << SL_TOTAL)
5225 
5226 static ssize_t show_slab_objects(struct kmem_cache *s,
5227 				 char *buf, unsigned long flags)
5228 {
5229 	unsigned long total = 0;
5230 	int node;
5231 	int x;
5232 	unsigned long *nodes;
5233 	int len = 0;
5234 
5235 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5236 	if (!nodes)
5237 		return -ENOMEM;
5238 
5239 	if (flags & SO_CPU) {
5240 		int cpu;
5241 
5242 		for_each_possible_cpu(cpu) {
5243 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5244 							       cpu);
5245 			int node;
5246 			struct slab *slab;
5247 
5248 			slab = READ_ONCE(c->slab);
5249 			if (!slab)
5250 				continue;
5251 
5252 			node = slab_nid(slab);
5253 			if (flags & SO_TOTAL)
5254 				x = slab->objects;
5255 			else if (flags & SO_OBJECTS)
5256 				x = slab->inuse;
5257 			else
5258 				x = 1;
5259 
5260 			total += x;
5261 			nodes[node] += x;
5262 
5263 #ifdef CONFIG_SLUB_CPU_PARTIAL
5264 			slab = slub_percpu_partial_read_once(c);
5265 			if (slab) {
5266 				node = slab_nid(slab);
5267 				if (flags & SO_TOTAL)
5268 					WARN_ON_ONCE(1);
5269 				else if (flags & SO_OBJECTS)
5270 					WARN_ON_ONCE(1);
5271 				else
5272 					x = slab->slabs;
5273 				total += x;
5274 				nodes[node] += x;
5275 			}
5276 #endif
5277 		}
5278 	}
5279 
5280 	/*
5281 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5282 	 * already held which will conflict with an existing lock order:
5283 	 *
5284 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5285 	 *
5286 	 * We don't really need mem_hotplug_lock (to hold off
5287 	 * slab_mem_going_offline_callback) here because slab's memory hot
5288 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5289 	 */
5290 
5291 #ifdef CONFIG_SLUB_DEBUG
5292 	if (flags & SO_ALL) {
5293 		struct kmem_cache_node *n;
5294 
5295 		for_each_kmem_cache_node(s, node, n) {
5296 
5297 			if (flags & SO_TOTAL)
5298 				x = atomic_long_read(&n->total_objects);
5299 			else if (flags & SO_OBJECTS)
5300 				x = atomic_long_read(&n->total_objects) -
5301 					count_partial(n, count_free);
5302 			else
5303 				x = atomic_long_read(&n->nr_slabs);
5304 			total += x;
5305 			nodes[node] += x;
5306 		}
5307 
5308 	} else
5309 #endif
5310 	if (flags & SO_PARTIAL) {
5311 		struct kmem_cache_node *n;
5312 
5313 		for_each_kmem_cache_node(s, node, n) {
5314 			if (flags & SO_TOTAL)
5315 				x = count_partial(n, count_total);
5316 			else if (flags & SO_OBJECTS)
5317 				x = count_partial(n, count_inuse);
5318 			else
5319 				x = n->nr_partial;
5320 			total += x;
5321 			nodes[node] += x;
5322 		}
5323 	}
5324 
5325 	len += sysfs_emit_at(buf, len, "%lu", total);
5326 #ifdef CONFIG_NUMA
5327 	for (node = 0; node < nr_node_ids; node++) {
5328 		if (nodes[node])
5329 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5330 					     node, nodes[node]);
5331 	}
5332 #endif
5333 	len += sysfs_emit_at(buf, len, "\n");
5334 	kfree(nodes);
5335 
5336 	return len;
5337 }
5338 
5339 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5340 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5341 
5342 struct slab_attribute {
5343 	struct attribute attr;
5344 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5345 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5346 };
5347 
5348 #define SLAB_ATTR_RO(_name) \
5349 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5350 
5351 #define SLAB_ATTR(_name) \
5352 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5353 
5354 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5355 {
5356 	return sysfs_emit(buf, "%u\n", s->size);
5357 }
5358 SLAB_ATTR_RO(slab_size);
5359 
5360 static ssize_t align_show(struct kmem_cache *s, char *buf)
5361 {
5362 	return sysfs_emit(buf, "%u\n", s->align);
5363 }
5364 SLAB_ATTR_RO(align);
5365 
5366 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5367 {
5368 	return sysfs_emit(buf, "%u\n", s->object_size);
5369 }
5370 SLAB_ATTR_RO(object_size);
5371 
5372 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5373 {
5374 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5375 }
5376 SLAB_ATTR_RO(objs_per_slab);
5377 
5378 static ssize_t order_show(struct kmem_cache *s, char *buf)
5379 {
5380 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5381 }
5382 SLAB_ATTR_RO(order);
5383 
5384 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5385 {
5386 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5387 }
5388 
5389 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5390 				 size_t length)
5391 {
5392 	unsigned long min;
5393 	int err;
5394 
5395 	err = kstrtoul(buf, 10, &min);
5396 	if (err)
5397 		return err;
5398 
5399 	s->min_partial = min;
5400 	return length;
5401 }
5402 SLAB_ATTR(min_partial);
5403 
5404 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5405 {
5406 	unsigned int nr_partial = 0;
5407 #ifdef CONFIG_SLUB_CPU_PARTIAL
5408 	nr_partial = s->cpu_partial;
5409 #endif
5410 
5411 	return sysfs_emit(buf, "%u\n", nr_partial);
5412 }
5413 
5414 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5415 				 size_t length)
5416 {
5417 	unsigned int objects;
5418 	int err;
5419 
5420 	err = kstrtouint(buf, 10, &objects);
5421 	if (err)
5422 		return err;
5423 	if (objects && !kmem_cache_has_cpu_partial(s))
5424 		return -EINVAL;
5425 
5426 	slub_set_cpu_partial(s, objects);
5427 	flush_all(s);
5428 	return length;
5429 }
5430 SLAB_ATTR(cpu_partial);
5431 
5432 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5433 {
5434 	if (!s->ctor)
5435 		return 0;
5436 	return sysfs_emit(buf, "%pS\n", s->ctor);
5437 }
5438 SLAB_ATTR_RO(ctor);
5439 
5440 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5441 {
5442 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5443 }
5444 SLAB_ATTR_RO(aliases);
5445 
5446 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5447 {
5448 	return show_slab_objects(s, buf, SO_PARTIAL);
5449 }
5450 SLAB_ATTR_RO(partial);
5451 
5452 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5453 {
5454 	return show_slab_objects(s, buf, SO_CPU);
5455 }
5456 SLAB_ATTR_RO(cpu_slabs);
5457 
5458 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5459 {
5460 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5461 }
5462 SLAB_ATTR_RO(objects);
5463 
5464 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5465 {
5466 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5467 }
5468 SLAB_ATTR_RO(objects_partial);
5469 
5470 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5471 {
5472 	int objects = 0;
5473 	int slabs = 0;
5474 	int cpu __maybe_unused;
5475 	int len = 0;
5476 
5477 #ifdef CONFIG_SLUB_CPU_PARTIAL
5478 	for_each_online_cpu(cpu) {
5479 		struct slab *slab;
5480 
5481 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5482 
5483 		if (slab)
5484 			slabs += slab->slabs;
5485 	}
5486 #endif
5487 
5488 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5489 	objects = (slabs * oo_objects(s->oo)) / 2;
5490 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5491 
5492 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5493 	for_each_online_cpu(cpu) {
5494 		struct slab *slab;
5495 
5496 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5497 		if (slab) {
5498 			slabs = READ_ONCE(slab->slabs);
5499 			objects = (slabs * oo_objects(s->oo)) / 2;
5500 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5501 					     cpu, objects, slabs);
5502 		}
5503 	}
5504 #endif
5505 	len += sysfs_emit_at(buf, len, "\n");
5506 
5507 	return len;
5508 }
5509 SLAB_ATTR_RO(slabs_cpu_partial);
5510 
5511 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5512 {
5513 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5514 }
5515 SLAB_ATTR_RO(reclaim_account);
5516 
5517 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5518 {
5519 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5520 }
5521 SLAB_ATTR_RO(hwcache_align);
5522 
5523 #ifdef CONFIG_ZONE_DMA
5524 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5525 {
5526 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5527 }
5528 SLAB_ATTR_RO(cache_dma);
5529 #endif
5530 
5531 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5532 {
5533 	return sysfs_emit(buf, "%u\n", s->usersize);
5534 }
5535 SLAB_ATTR_RO(usersize);
5536 
5537 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5538 {
5539 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5540 }
5541 SLAB_ATTR_RO(destroy_by_rcu);
5542 
5543 #ifdef CONFIG_SLUB_DEBUG
5544 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5545 {
5546 	return show_slab_objects(s, buf, SO_ALL);
5547 }
5548 SLAB_ATTR_RO(slabs);
5549 
5550 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5551 {
5552 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5553 }
5554 SLAB_ATTR_RO(total_objects);
5555 
5556 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5557 {
5558 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5559 }
5560 SLAB_ATTR_RO(sanity_checks);
5561 
5562 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5563 {
5564 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5565 }
5566 SLAB_ATTR_RO(trace);
5567 
5568 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5569 {
5570 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5571 }
5572 
5573 SLAB_ATTR_RO(red_zone);
5574 
5575 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5576 {
5577 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5578 }
5579 
5580 SLAB_ATTR_RO(poison);
5581 
5582 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5583 {
5584 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5585 }
5586 
5587 SLAB_ATTR_RO(store_user);
5588 
5589 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5590 {
5591 	return 0;
5592 }
5593 
5594 static ssize_t validate_store(struct kmem_cache *s,
5595 			const char *buf, size_t length)
5596 {
5597 	int ret = -EINVAL;
5598 
5599 	if (buf[0] == '1') {
5600 		ret = validate_slab_cache(s);
5601 		if (ret >= 0)
5602 			ret = length;
5603 	}
5604 	return ret;
5605 }
5606 SLAB_ATTR(validate);
5607 
5608 #endif /* CONFIG_SLUB_DEBUG */
5609 
5610 #ifdef CONFIG_FAILSLAB
5611 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5612 {
5613 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5614 }
5615 SLAB_ATTR_RO(failslab);
5616 #endif
5617 
5618 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5619 {
5620 	return 0;
5621 }
5622 
5623 static ssize_t shrink_store(struct kmem_cache *s,
5624 			const char *buf, size_t length)
5625 {
5626 	if (buf[0] == '1')
5627 		kmem_cache_shrink(s);
5628 	else
5629 		return -EINVAL;
5630 	return length;
5631 }
5632 SLAB_ATTR(shrink);
5633 
5634 #ifdef CONFIG_NUMA
5635 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5636 {
5637 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5638 }
5639 
5640 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5641 				const char *buf, size_t length)
5642 {
5643 	unsigned int ratio;
5644 	int err;
5645 
5646 	err = kstrtouint(buf, 10, &ratio);
5647 	if (err)
5648 		return err;
5649 	if (ratio > 100)
5650 		return -ERANGE;
5651 
5652 	s->remote_node_defrag_ratio = ratio * 10;
5653 
5654 	return length;
5655 }
5656 SLAB_ATTR(remote_node_defrag_ratio);
5657 #endif
5658 
5659 #ifdef CONFIG_SLUB_STATS
5660 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5661 {
5662 	unsigned long sum  = 0;
5663 	int cpu;
5664 	int len = 0;
5665 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5666 
5667 	if (!data)
5668 		return -ENOMEM;
5669 
5670 	for_each_online_cpu(cpu) {
5671 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5672 
5673 		data[cpu] = x;
5674 		sum += x;
5675 	}
5676 
5677 	len += sysfs_emit_at(buf, len, "%lu", sum);
5678 
5679 #ifdef CONFIG_SMP
5680 	for_each_online_cpu(cpu) {
5681 		if (data[cpu])
5682 			len += sysfs_emit_at(buf, len, " C%d=%u",
5683 					     cpu, data[cpu]);
5684 	}
5685 #endif
5686 	kfree(data);
5687 	len += sysfs_emit_at(buf, len, "\n");
5688 
5689 	return len;
5690 }
5691 
5692 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5693 {
5694 	int cpu;
5695 
5696 	for_each_online_cpu(cpu)
5697 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5698 }
5699 
5700 #define STAT_ATTR(si, text) 					\
5701 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5702 {								\
5703 	return show_stat(s, buf, si);				\
5704 }								\
5705 static ssize_t text##_store(struct kmem_cache *s,		\
5706 				const char *buf, size_t length)	\
5707 {								\
5708 	if (buf[0] != '0')					\
5709 		return -EINVAL;					\
5710 	clear_stat(s, si);					\
5711 	return length;						\
5712 }								\
5713 SLAB_ATTR(text);						\
5714 
5715 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5716 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5717 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5718 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5719 STAT_ATTR(FREE_FROZEN, free_frozen);
5720 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5721 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5722 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5723 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5724 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5725 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5726 STAT_ATTR(FREE_SLAB, free_slab);
5727 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5728 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5729 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5730 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5731 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5732 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5733 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5734 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5735 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5736 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5737 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5738 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5739 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5740 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5741 #endif	/* CONFIG_SLUB_STATS */
5742 
5743 static struct attribute *slab_attrs[] = {
5744 	&slab_size_attr.attr,
5745 	&object_size_attr.attr,
5746 	&objs_per_slab_attr.attr,
5747 	&order_attr.attr,
5748 	&min_partial_attr.attr,
5749 	&cpu_partial_attr.attr,
5750 	&objects_attr.attr,
5751 	&objects_partial_attr.attr,
5752 	&partial_attr.attr,
5753 	&cpu_slabs_attr.attr,
5754 	&ctor_attr.attr,
5755 	&aliases_attr.attr,
5756 	&align_attr.attr,
5757 	&hwcache_align_attr.attr,
5758 	&reclaim_account_attr.attr,
5759 	&destroy_by_rcu_attr.attr,
5760 	&shrink_attr.attr,
5761 	&slabs_cpu_partial_attr.attr,
5762 #ifdef CONFIG_SLUB_DEBUG
5763 	&total_objects_attr.attr,
5764 	&slabs_attr.attr,
5765 	&sanity_checks_attr.attr,
5766 	&trace_attr.attr,
5767 	&red_zone_attr.attr,
5768 	&poison_attr.attr,
5769 	&store_user_attr.attr,
5770 	&validate_attr.attr,
5771 #endif
5772 #ifdef CONFIG_ZONE_DMA
5773 	&cache_dma_attr.attr,
5774 #endif
5775 #ifdef CONFIG_NUMA
5776 	&remote_node_defrag_ratio_attr.attr,
5777 #endif
5778 #ifdef CONFIG_SLUB_STATS
5779 	&alloc_fastpath_attr.attr,
5780 	&alloc_slowpath_attr.attr,
5781 	&free_fastpath_attr.attr,
5782 	&free_slowpath_attr.attr,
5783 	&free_frozen_attr.attr,
5784 	&free_add_partial_attr.attr,
5785 	&free_remove_partial_attr.attr,
5786 	&alloc_from_partial_attr.attr,
5787 	&alloc_slab_attr.attr,
5788 	&alloc_refill_attr.attr,
5789 	&alloc_node_mismatch_attr.attr,
5790 	&free_slab_attr.attr,
5791 	&cpuslab_flush_attr.attr,
5792 	&deactivate_full_attr.attr,
5793 	&deactivate_empty_attr.attr,
5794 	&deactivate_to_head_attr.attr,
5795 	&deactivate_to_tail_attr.attr,
5796 	&deactivate_remote_frees_attr.attr,
5797 	&deactivate_bypass_attr.attr,
5798 	&order_fallback_attr.attr,
5799 	&cmpxchg_double_fail_attr.attr,
5800 	&cmpxchg_double_cpu_fail_attr.attr,
5801 	&cpu_partial_alloc_attr.attr,
5802 	&cpu_partial_free_attr.attr,
5803 	&cpu_partial_node_attr.attr,
5804 	&cpu_partial_drain_attr.attr,
5805 #endif
5806 #ifdef CONFIG_FAILSLAB
5807 	&failslab_attr.attr,
5808 #endif
5809 	&usersize_attr.attr,
5810 
5811 	NULL
5812 };
5813 
5814 static const struct attribute_group slab_attr_group = {
5815 	.attrs = slab_attrs,
5816 };
5817 
5818 static ssize_t slab_attr_show(struct kobject *kobj,
5819 				struct attribute *attr,
5820 				char *buf)
5821 {
5822 	struct slab_attribute *attribute;
5823 	struct kmem_cache *s;
5824 	int err;
5825 
5826 	attribute = to_slab_attr(attr);
5827 	s = to_slab(kobj);
5828 
5829 	if (!attribute->show)
5830 		return -EIO;
5831 
5832 	err = attribute->show(s, buf);
5833 
5834 	return err;
5835 }
5836 
5837 static ssize_t slab_attr_store(struct kobject *kobj,
5838 				struct attribute *attr,
5839 				const char *buf, size_t len)
5840 {
5841 	struct slab_attribute *attribute;
5842 	struct kmem_cache *s;
5843 	int err;
5844 
5845 	attribute = to_slab_attr(attr);
5846 	s = to_slab(kobj);
5847 
5848 	if (!attribute->store)
5849 		return -EIO;
5850 
5851 	err = attribute->store(s, buf, len);
5852 	return err;
5853 }
5854 
5855 static void kmem_cache_release(struct kobject *k)
5856 {
5857 	slab_kmem_cache_release(to_slab(k));
5858 }
5859 
5860 static const struct sysfs_ops slab_sysfs_ops = {
5861 	.show = slab_attr_show,
5862 	.store = slab_attr_store,
5863 };
5864 
5865 static struct kobj_type slab_ktype = {
5866 	.sysfs_ops = &slab_sysfs_ops,
5867 	.release = kmem_cache_release,
5868 };
5869 
5870 static struct kset *slab_kset;
5871 
5872 static inline struct kset *cache_kset(struct kmem_cache *s)
5873 {
5874 	return slab_kset;
5875 }
5876 
5877 #define ID_STR_LENGTH 64
5878 
5879 /* Create a unique string id for a slab cache:
5880  *
5881  * Format	:[flags-]size
5882  */
5883 static char *create_unique_id(struct kmem_cache *s)
5884 {
5885 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5886 	char *p = name;
5887 
5888 	BUG_ON(!name);
5889 
5890 	*p++ = ':';
5891 	/*
5892 	 * First flags affecting slabcache operations. We will only
5893 	 * get here for aliasable slabs so we do not need to support
5894 	 * too many flags. The flags here must cover all flags that
5895 	 * are matched during merging to guarantee that the id is
5896 	 * unique.
5897 	 */
5898 	if (s->flags & SLAB_CACHE_DMA)
5899 		*p++ = 'd';
5900 	if (s->flags & SLAB_CACHE_DMA32)
5901 		*p++ = 'D';
5902 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5903 		*p++ = 'a';
5904 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5905 		*p++ = 'F';
5906 	if (s->flags & SLAB_ACCOUNT)
5907 		*p++ = 'A';
5908 	if (p != name + 1)
5909 		*p++ = '-';
5910 	p += sprintf(p, "%07u", s->size);
5911 
5912 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5913 	return name;
5914 }
5915 
5916 static int sysfs_slab_add(struct kmem_cache *s)
5917 {
5918 	int err;
5919 	const char *name;
5920 	struct kset *kset = cache_kset(s);
5921 	int unmergeable = slab_unmergeable(s);
5922 
5923 	if (!kset) {
5924 		kobject_init(&s->kobj, &slab_ktype);
5925 		return 0;
5926 	}
5927 
5928 	if (!unmergeable && disable_higher_order_debug &&
5929 			(slub_debug & DEBUG_METADATA_FLAGS))
5930 		unmergeable = 1;
5931 
5932 	if (unmergeable) {
5933 		/*
5934 		 * Slabcache can never be merged so we can use the name proper.
5935 		 * This is typically the case for debug situations. In that
5936 		 * case we can catch duplicate names easily.
5937 		 */
5938 		sysfs_remove_link(&slab_kset->kobj, s->name);
5939 		name = s->name;
5940 	} else {
5941 		/*
5942 		 * Create a unique name for the slab as a target
5943 		 * for the symlinks.
5944 		 */
5945 		name = create_unique_id(s);
5946 	}
5947 
5948 	s->kobj.kset = kset;
5949 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5950 	if (err)
5951 		goto out;
5952 
5953 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5954 	if (err)
5955 		goto out_del_kobj;
5956 
5957 	if (!unmergeable) {
5958 		/* Setup first alias */
5959 		sysfs_slab_alias(s, s->name);
5960 	}
5961 out:
5962 	if (!unmergeable)
5963 		kfree(name);
5964 	return err;
5965 out_del_kobj:
5966 	kobject_del(&s->kobj);
5967 	goto out;
5968 }
5969 
5970 void sysfs_slab_unlink(struct kmem_cache *s)
5971 {
5972 	if (slab_state >= FULL)
5973 		kobject_del(&s->kobj);
5974 }
5975 
5976 void sysfs_slab_release(struct kmem_cache *s)
5977 {
5978 	if (slab_state >= FULL)
5979 		kobject_put(&s->kobj);
5980 }
5981 
5982 /*
5983  * Need to buffer aliases during bootup until sysfs becomes
5984  * available lest we lose that information.
5985  */
5986 struct saved_alias {
5987 	struct kmem_cache *s;
5988 	const char *name;
5989 	struct saved_alias *next;
5990 };
5991 
5992 static struct saved_alias *alias_list;
5993 
5994 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5995 {
5996 	struct saved_alias *al;
5997 
5998 	if (slab_state == FULL) {
5999 		/*
6000 		 * If we have a leftover link then remove it.
6001 		 */
6002 		sysfs_remove_link(&slab_kset->kobj, name);
6003 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6004 	}
6005 
6006 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6007 	if (!al)
6008 		return -ENOMEM;
6009 
6010 	al->s = s;
6011 	al->name = name;
6012 	al->next = alias_list;
6013 	alias_list = al;
6014 	return 0;
6015 }
6016 
6017 static int __init slab_sysfs_init(void)
6018 {
6019 	struct kmem_cache *s;
6020 	int err;
6021 
6022 	mutex_lock(&slab_mutex);
6023 
6024 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6025 	if (!slab_kset) {
6026 		mutex_unlock(&slab_mutex);
6027 		pr_err("Cannot register slab subsystem.\n");
6028 		return -ENOSYS;
6029 	}
6030 
6031 	slab_state = FULL;
6032 
6033 	list_for_each_entry(s, &slab_caches, list) {
6034 		err = sysfs_slab_add(s);
6035 		if (err)
6036 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6037 			       s->name);
6038 	}
6039 
6040 	while (alias_list) {
6041 		struct saved_alias *al = alias_list;
6042 
6043 		alias_list = alias_list->next;
6044 		err = sysfs_slab_alias(al->s, al->name);
6045 		if (err)
6046 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6047 			       al->name);
6048 		kfree(al);
6049 	}
6050 
6051 	mutex_unlock(&slab_mutex);
6052 	return 0;
6053 }
6054 
6055 __initcall(slab_sysfs_init);
6056 #endif /* CONFIG_SYSFS */
6057 
6058 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6059 static int slab_debugfs_show(struct seq_file *seq, void *v)
6060 {
6061 	struct loc_track *t = seq->private;
6062 	struct location *l;
6063 	unsigned long idx;
6064 
6065 	idx = (unsigned long) t->idx;
6066 	if (idx < t->count) {
6067 		l = &t->loc[idx];
6068 
6069 		seq_printf(seq, "%7ld ", l->count);
6070 
6071 		if (l->addr)
6072 			seq_printf(seq, "%pS", (void *)l->addr);
6073 		else
6074 			seq_puts(seq, "<not-available>");
6075 
6076 		if (l->sum_time != l->min_time) {
6077 			seq_printf(seq, " age=%ld/%llu/%ld",
6078 				l->min_time, div_u64(l->sum_time, l->count),
6079 				l->max_time);
6080 		} else
6081 			seq_printf(seq, " age=%ld", l->min_time);
6082 
6083 		if (l->min_pid != l->max_pid)
6084 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6085 		else
6086 			seq_printf(seq, " pid=%ld",
6087 				l->min_pid);
6088 
6089 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6090 			seq_printf(seq, " cpus=%*pbl",
6091 				 cpumask_pr_args(to_cpumask(l->cpus)));
6092 
6093 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6094 			seq_printf(seq, " nodes=%*pbl",
6095 				 nodemask_pr_args(&l->nodes));
6096 
6097 #ifdef CONFIG_STACKDEPOT
6098 		{
6099 			depot_stack_handle_t handle;
6100 			unsigned long *entries;
6101 			unsigned int nr_entries, j;
6102 
6103 			handle = READ_ONCE(l->handle);
6104 			if (handle) {
6105 				nr_entries = stack_depot_fetch(handle, &entries);
6106 				seq_puts(seq, "\n");
6107 				for (j = 0; j < nr_entries; j++)
6108 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6109 			}
6110 		}
6111 #endif
6112 		seq_puts(seq, "\n");
6113 	}
6114 
6115 	if (!idx && !t->count)
6116 		seq_puts(seq, "No data\n");
6117 
6118 	return 0;
6119 }
6120 
6121 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6122 {
6123 }
6124 
6125 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6126 {
6127 	struct loc_track *t = seq->private;
6128 
6129 	t->idx = ++(*ppos);
6130 	if (*ppos <= t->count)
6131 		return ppos;
6132 
6133 	return NULL;
6134 }
6135 
6136 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6137 {
6138 	struct location *loc1 = (struct location *)a;
6139 	struct location *loc2 = (struct location *)b;
6140 
6141 	if (loc1->count > loc2->count)
6142 		return -1;
6143 	else
6144 		return 1;
6145 }
6146 
6147 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6148 {
6149 	struct loc_track *t = seq->private;
6150 
6151 	t->idx = *ppos;
6152 	return ppos;
6153 }
6154 
6155 static const struct seq_operations slab_debugfs_sops = {
6156 	.start  = slab_debugfs_start,
6157 	.next   = slab_debugfs_next,
6158 	.stop   = slab_debugfs_stop,
6159 	.show   = slab_debugfs_show,
6160 };
6161 
6162 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6163 {
6164 
6165 	struct kmem_cache_node *n;
6166 	enum track_item alloc;
6167 	int node;
6168 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6169 						sizeof(struct loc_track));
6170 	struct kmem_cache *s = file_inode(filep)->i_private;
6171 	unsigned long *obj_map;
6172 
6173 	if (!t)
6174 		return -ENOMEM;
6175 
6176 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6177 	if (!obj_map) {
6178 		seq_release_private(inode, filep);
6179 		return -ENOMEM;
6180 	}
6181 
6182 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6183 		alloc = TRACK_ALLOC;
6184 	else
6185 		alloc = TRACK_FREE;
6186 
6187 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6188 		bitmap_free(obj_map);
6189 		seq_release_private(inode, filep);
6190 		return -ENOMEM;
6191 	}
6192 
6193 	for_each_kmem_cache_node(s, node, n) {
6194 		unsigned long flags;
6195 		struct slab *slab;
6196 
6197 		if (!atomic_long_read(&n->nr_slabs))
6198 			continue;
6199 
6200 		spin_lock_irqsave(&n->list_lock, flags);
6201 		list_for_each_entry(slab, &n->partial, slab_list)
6202 			process_slab(t, s, slab, alloc, obj_map);
6203 		list_for_each_entry(slab, &n->full, slab_list)
6204 			process_slab(t, s, slab, alloc, obj_map);
6205 		spin_unlock_irqrestore(&n->list_lock, flags);
6206 	}
6207 
6208 	/* Sort locations by count */
6209 	sort_r(t->loc, t->count, sizeof(struct location),
6210 		cmp_loc_by_count, NULL, NULL);
6211 
6212 	bitmap_free(obj_map);
6213 	return 0;
6214 }
6215 
6216 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6217 {
6218 	struct seq_file *seq = file->private_data;
6219 	struct loc_track *t = seq->private;
6220 
6221 	free_loc_track(t);
6222 	return seq_release_private(inode, file);
6223 }
6224 
6225 static const struct file_operations slab_debugfs_fops = {
6226 	.open    = slab_debug_trace_open,
6227 	.read    = seq_read,
6228 	.llseek  = seq_lseek,
6229 	.release = slab_debug_trace_release,
6230 };
6231 
6232 static void debugfs_slab_add(struct kmem_cache *s)
6233 {
6234 	struct dentry *slab_cache_dir;
6235 
6236 	if (unlikely(!slab_debugfs_root))
6237 		return;
6238 
6239 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6240 
6241 	debugfs_create_file("alloc_traces", 0400,
6242 		slab_cache_dir, s, &slab_debugfs_fops);
6243 
6244 	debugfs_create_file("free_traces", 0400,
6245 		slab_cache_dir, s, &slab_debugfs_fops);
6246 }
6247 
6248 void debugfs_slab_release(struct kmem_cache *s)
6249 {
6250 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6251 }
6252 
6253 static int __init slab_debugfs_init(void)
6254 {
6255 	struct kmem_cache *s;
6256 
6257 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6258 
6259 	list_for_each_entry(s, &slab_caches, list)
6260 		if (s->flags & SLAB_STORE_USER)
6261 			debugfs_slab_add(s);
6262 
6263 	return 0;
6264 
6265 }
6266 __initcall(slab_debugfs_init);
6267 #endif
6268 /*
6269  * The /proc/slabinfo ABI
6270  */
6271 #ifdef CONFIG_SLUB_DEBUG
6272 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6273 {
6274 	unsigned long nr_slabs = 0;
6275 	unsigned long nr_objs = 0;
6276 	unsigned long nr_free = 0;
6277 	int node;
6278 	struct kmem_cache_node *n;
6279 
6280 	for_each_kmem_cache_node(s, node, n) {
6281 		nr_slabs += node_nr_slabs(n);
6282 		nr_objs += node_nr_objs(n);
6283 		nr_free += count_partial(n, count_free);
6284 	}
6285 
6286 	sinfo->active_objs = nr_objs - nr_free;
6287 	sinfo->num_objs = nr_objs;
6288 	sinfo->active_slabs = nr_slabs;
6289 	sinfo->num_slabs = nr_slabs;
6290 	sinfo->objects_per_slab = oo_objects(s->oo);
6291 	sinfo->cache_order = oo_order(s->oo);
6292 }
6293 
6294 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6295 {
6296 }
6297 
6298 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6299 		       size_t count, loff_t *ppos)
6300 {
6301 	return -EIO;
6302 }
6303 #endif /* CONFIG_SLUB_DEBUG */
6304