xref: /linux/mm/slub.c (revision bbaf1ff06af49e856501024abbe161d96c1f0d66)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 
48 #include "internal.h"
49 
50 /*
51  * Lock order:
52  *   1. slab_mutex (Global Mutex)
53  *   2. node->list_lock (Spinlock)
54  *   3. kmem_cache->cpu_slab->lock (Local lock)
55  *   4. slab_lock(slab) (Only on some arches)
56  *   5. object_map_lock (Only for debugging)
57  *
58  *   slab_mutex
59  *
60  *   The role of the slab_mutex is to protect the list of all the slabs
61  *   and to synchronize major metadata changes to slab cache structures.
62  *   Also synchronizes memory hotplug callbacks.
63  *
64  *   slab_lock
65  *
66  *   The slab_lock is a wrapper around the page lock, thus it is a bit
67  *   spinlock.
68  *
69  *   The slab_lock is only used on arches that do not have the ability
70  *   to do a cmpxchg_double. It only protects:
71  *
72  *	A. slab->freelist	-> List of free objects in a slab
73  *	B. slab->inuse		-> Number of objects in use
74  *	C. slab->objects	-> Number of objects in slab
75  *	D. slab->frozen		-> frozen state
76  *
77  *   Frozen slabs
78  *
79  *   If a slab is frozen then it is exempt from list management. It is not
80  *   on any list except per cpu partial list. The processor that froze the
81  *   slab is the one who can perform list operations on the slab. Other
82  *   processors may put objects onto the freelist but the processor that
83  *   froze the slab is the only one that can retrieve the objects from the
84  *   slab's freelist.
85  *
86  *   list_lock
87  *
88  *   The list_lock protects the partial and full list on each node and
89  *   the partial slab counter. If taken then no new slabs may be added or
90  *   removed from the lists nor make the number of partial slabs be modified.
91  *   (Note that the total number of slabs is an atomic value that may be
92  *   modified without taking the list lock).
93  *
94  *   The list_lock is a centralized lock and thus we avoid taking it as
95  *   much as possible. As long as SLUB does not have to handle partial
96  *   slabs, operations can continue without any centralized lock. F.e.
97  *   allocating a long series of objects that fill up slabs does not require
98  *   the list lock.
99  *
100  *   For debug caches, all allocations are forced to go through a list_lock
101  *   protected region to serialize against concurrent validation.
102  *
103  *   cpu_slab->lock local lock
104  *
105  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
106  *   except the stat counters. This is a percpu structure manipulated only by
107  *   the local cpu, so the lock protects against being preempted or interrupted
108  *   by an irq. Fast path operations rely on lockless operations instead.
109  *
110  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111  *   which means the lockless fastpath cannot be used as it might interfere with
112  *   an in-progress slow path operations. In this case the local lock is always
113  *   taken but it still utilizes the freelist for the common operations.
114  *
115  *   lockless fastpaths
116  *
117  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118  *   are fully lockless when satisfied from the percpu slab (and when
119  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
120  *   They also don't disable preemption or migration or irqs. They rely on
121  *   the transaction id (tid) field to detect being preempted or moved to
122  *   another cpu.
123  *
124  *   irq, preemption, migration considerations
125  *
126  *   Interrupts are disabled as part of list_lock or local_lock operations, or
127  *   around the slab_lock operation, in order to make the slab allocator safe
128  *   to use in the context of an irq.
129  *
130  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133  *   doesn't have to be revalidated in each section protected by the local lock.
134  *
135  * SLUB assigns one slab for allocation to each processor.
136  * Allocations only occur from these slabs called cpu slabs.
137  *
138  * Slabs with free elements are kept on a partial list and during regular
139  * operations no list for full slabs is used. If an object in a full slab is
140  * freed then the slab will show up again on the partial lists.
141  * We track full slabs for debugging purposes though because otherwise we
142  * cannot scan all objects.
143  *
144  * Slabs are freed when they become empty. Teardown and setup is
145  * minimal so we rely on the page allocators per cpu caches for
146  * fast frees and allocs.
147  *
148  * slab->frozen		The slab is frozen and exempt from list processing.
149  * 			This means that the slab is dedicated to a purpose
150  * 			such as satisfying allocations for a specific
151  * 			processor. Objects may be freed in the slab while
152  * 			it is frozen but slab_free will then skip the usual
153  * 			list operations. It is up to the processor holding
154  * 			the slab to integrate the slab into the slab lists
155  * 			when the slab is no longer needed.
156  *
157  * 			One use of this flag is to mark slabs that are
158  * 			used for allocations. Then such a slab becomes a cpu
159  * 			slab. The cpu slab may be equipped with an additional
160  * 			freelist that allows lockless access to
161  * 			free objects in addition to the regular freelist
162  * 			that requires the slab lock.
163  *
164  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
165  * 			options set. This moves	slab handling out of
166  * 			the fast path and disables lockless freelists.
167  */
168 
169 /*
170  * We could simply use migrate_disable()/enable() but as long as it's a
171  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172  */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH()	(true)
177 #else
178 #define slub_get_cpu_ptr(var)		\
179 ({					\
180 	migrate_disable();		\
181 	this_cpu_ptr(var);		\
182 })
183 #define slub_put_cpu_ptr(var)		\
184 do {					\
185 	(void)(var);			\
186 	migrate_enable();		\
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH()	(false)
189 #endif
190 
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196 
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif		/* CONFIG_SLUB_DEBUG */
204 
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 	struct slab **slab;
208 	gfp_t flags;
209 	unsigned int orig_size;
210 };
211 
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216 
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 			(s->flags & SLAB_KMALLOC));
221 }
222 
223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 		p += s->red_left_pad;
227 
228 	return p;
229 }
230 
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 	return !kmem_cache_debug(s);
235 #else
236 	return false;
237 #endif
238 }
239 
240 /*
241  * Issues still to be resolved:
242  *
243  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244  *
245  * - Variable sizing of the per node arrays
246  */
247 
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250 
251 #ifndef CONFIG_SLUB_TINY
252 /*
253  * Minimum number of partial slabs. These will be left on the partial
254  * lists even if they are empty. kmem_cache_shrink may reclaim them.
255  */
256 #define MIN_PARTIAL 5
257 
258 /*
259  * Maximum number of desirable partial slabs.
260  * The existence of more partial slabs makes kmem_cache_shrink
261  * sort the partial list by the number of objects in use.
262  */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268 
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 				SLAB_POISON | SLAB_STORE_USER)
271 
272 /*
273  * These debug flags cannot use CMPXCHG because there might be consistency
274  * issues when checking or reading debug information
275  */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 				SLAB_TRACE)
278 
279 
280 /*
281  * Debugging flags that require metadata to be stored in the slab.  These get
282  * disabled when slub_debug=O is used and a cache's min order increases with
283  * metadata.
284  */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286 
287 #define OO_SHIFT	16
288 #define OO_MASK		((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
290 
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295 
296 #ifdef system_has_freelist_aba
297 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
298 #else
299 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0U)
300 #endif
301 
302 /*
303  * Tracking user of a slab.
304  */
305 #define TRACK_ADDRS_COUNT 16
306 struct track {
307 	unsigned long addr;	/* Called from address */
308 #ifdef CONFIG_STACKDEPOT
309 	depot_stack_handle_t handle;
310 #endif
311 	int cpu;		/* Was running on cpu */
312 	int pid;		/* Pid context */
313 	unsigned long when;	/* When did the operation occur */
314 };
315 
316 enum track_item { TRACK_ALLOC, TRACK_FREE };
317 
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
321 #else
322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 							{ return 0; }
325 #endif
326 
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
329 #else
330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
331 #endif
332 
333 static inline void stat(const struct kmem_cache *s, enum stat_item si)
334 {
335 #ifdef CONFIG_SLUB_STATS
336 	/*
337 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 	 * avoid this_cpu_add()'s irq-disable overhead.
339 	 */
340 	raw_cpu_inc(s->cpu_slab->stat[si]);
341 #endif
342 }
343 
344 /*
345  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347  * differ during memory hotplug/hotremove operations.
348  * Protected by slab_mutex.
349  */
350 static nodemask_t slab_nodes;
351 
352 #ifndef CONFIG_SLUB_TINY
353 /*
354  * Workqueue used for flush_cpu_slab().
355  */
356 static struct workqueue_struct *flushwq;
357 #endif
358 
359 /********************************************************************
360  * 			Core slab cache functions
361  *******************************************************************/
362 
363 /*
364  * Returns freelist pointer (ptr). With hardening, this is obfuscated
365  * with an XOR of the address where the pointer is held and a per-cache
366  * random number.
367  */
368 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
369 				 unsigned long ptr_addr)
370 {
371 #ifdef CONFIG_SLAB_FREELIST_HARDENED
372 	/*
373 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
374 	 * Normally, this doesn't cause any issues, as both set_freepointer()
375 	 * and get_freepointer() are called with a pointer with the same tag.
376 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
377 	 * example, when __free_slub() iterates over objects in a cache, it
378 	 * passes untagged pointers to check_object(). check_object() in turns
379 	 * calls get_freepointer() with an untagged pointer, which causes the
380 	 * freepointer to be restored incorrectly.
381 	 */
382 	return (void *)((unsigned long)ptr ^ s->random ^
383 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
384 #else
385 	return ptr;
386 #endif
387 }
388 
389 /* Returns the freelist pointer recorded at location ptr_addr. */
390 static inline void *freelist_dereference(const struct kmem_cache *s,
391 					 void *ptr_addr)
392 {
393 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
394 			    (unsigned long)ptr_addr);
395 }
396 
397 static inline void *get_freepointer(struct kmem_cache *s, void *object)
398 {
399 	object = kasan_reset_tag(object);
400 	return freelist_dereference(s, object + s->offset);
401 }
402 
403 #ifndef CONFIG_SLUB_TINY
404 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
405 {
406 	prefetchw(object + s->offset);
407 }
408 #endif
409 
410 /*
411  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
412  * pointer value in the case the current thread loses the race for the next
413  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
414  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
415  * KMSAN will still check all arguments of cmpxchg because of imperfect
416  * handling of inline assembly.
417  * To work around this problem, we apply __no_kmsan_checks to ensure that
418  * get_freepointer_safe() returns initialized memory.
419  */
420 __no_kmsan_checks
421 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
422 {
423 	unsigned long freepointer_addr;
424 	void *p;
425 
426 	if (!debug_pagealloc_enabled_static())
427 		return get_freepointer(s, object);
428 
429 	object = kasan_reset_tag(object);
430 	freepointer_addr = (unsigned long)object + s->offset;
431 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
432 	return freelist_ptr(s, p, freepointer_addr);
433 }
434 
435 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
436 {
437 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
438 
439 #ifdef CONFIG_SLAB_FREELIST_HARDENED
440 	BUG_ON(object == fp); /* naive detection of double free or corruption */
441 #endif
442 
443 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
444 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
445 }
446 
447 /* Loop over all objects in a slab */
448 #define for_each_object(__p, __s, __addr, __objects) \
449 	for (__p = fixup_red_left(__s, __addr); \
450 		__p < (__addr) + (__objects) * (__s)->size; \
451 		__p += (__s)->size)
452 
453 static inline unsigned int order_objects(unsigned int order, unsigned int size)
454 {
455 	return ((unsigned int)PAGE_SIZE << order) / size;
456 }
457 
458 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
459 		unsigned int size)
460 {
461 	struct kmem_cache_order_objects x = {
462 		(order << OO_SHIFT) + order_objects(order, size)
463 	};
464 
465 	return x;
466 }
467 
468 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
469 {
470 	return x.x >> OO_SHIFT;
471 }
472 
473 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
474 {
475 	return x.x & OO_MASK;
476 }
477 
478 #ifdef CONFIG_SLUB_CPU_PARTIAL
479 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
480 {
481 	unsigned int nr_slabs;
482 
483 	s->cpu_partial = nr_objects;
484 
485 	/*
486 	 * We take the number of objects but actually limit the number of
487 	 * slabs on the per cpu partial list, in order to limit excessive
488 	 * growth of the list. For simplicity we assume that the slabs will
489 	 * be half-full.
490 	 */
491 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
492 	s->cpu_partial_slabs = nr_slabs;
493 }
494 #else
495 static inline void
496 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
497 {
498 }
499 #endif /* CONFIG_SLUB_CPU_PARTIAL */
500 
501 /*
502  * Per slab locking using the pagelock
503  */
504 static __always_inline void slab_lock(struct slab *slab)
505 {
506 	struct page *page = slab_page(slab);
507 
508 	VM_BUG_ON_PAGE(PageTail(page), page);
509 	bit_spin_lock(PG_locked, &page->flags);
510 }
511 
512 static __always_inline void slab_unlock(struct slab *slab)
513 {
514 	struct page *page = slab_page(slab);
515 
516 	VM_BUG_ON_PAGE(PageTail(page), page);
517 	__bit_spin_unlock(PG_locked, &page->flags);
518 }
519 
520 static inline bool
521 __update_freelist_fast(struct slab *slab,
522 		      void *freelist_old, unsigned long counters_old,
523 		      void *freelist_new, unsigned long counters_new)
524 {
525 #ifdef system_has_freelist_aba
526 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
527 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
528 
529 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
530 #else
531 	return false;
532 #endif
533 }
534 
535 static inline bool
536 __update_freelist_slow(struct slab *slab,
537 		      void *freelist_old, unsigned long counters_old,
538 		      void *freelist_new, unsigned long counters_new)
539 {
540 	bool ret = false;
541 
542 	slab_lock(slab);
543 	if (slab->freelist == freelist_old &&
544 	    slab->counters == counters_old) {
545 		slab->freelist = freelist_new;
546 		slab->counters = counters_new;
547 		ret = true;
548 	}
549 	slab_unlock(slab);
550 
551 	return ret;
552 }
553 
554 /*
555  * Interrupts must be disabled (for the fallback code to work right), typically
556  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
557  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
558  * allocation/ free operation in hardirq context. Therefore nothing can
559  * interrupt the operation.
560  */
561 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
562 		void *freelist_old, unsigned long counters_old,
563 		void *freelist_new, unsigned long counters_new,
564 		const char *n)
565 {
566 	bool ret;
567 
568 	if (USE_LOCKLESS_FAST_PATH())
569 		lockdep_assert_irqs_disabled();
570 
571 	if (s->flags & __CMPXCHG_DOUBLE) {
572 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
573 				            freelist_new, counters_new);
574 	} else {
575 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
576 				            freelist_new, counters_new);
577 	}
578 	if (likely(ret))
579 		return true;
580 
581 	cpu_relax();
582 	stat(s, CMPXCHG_DOUBLE_FAIL);
583 
584 #ifdef SLUB_DEBUG_CMPXCHG
585 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
586 #endif
587 
588 	return false;
589 }
590 
591 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
592 		void *freelist_old, unsigned long counters_old,
593 		void *freelist_new, unsigned long counters_new,
594 		const char *n)
595 {
596 	bool ret;
597 
598 	if (s->flags & __CMPXCHG_DOUBLE) {
599 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
600 				            freelist_new, counters_new);
601 	} else {
602 		unsigned long flags;
603 
604 		local_irq_save(flags);
605 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
606 				            freelist_new, counters_new);
607 		local_irq_restore(flags);
608 	}
609 	if (likely(ret))
610 		return true;
611 
612 	cpu_relax();
613 	stat(s, CMPXCHG_DOUBLE_FAIL);
614 
615 #ifdef SLUB_DEBUG_CMPXCHG
616 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
617 #endif
618 
619 	return false;
620 }
621 
622 #ifdef CONFIG_SLUB_DEBUG
623 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
624 static DEFINE_SPINLOCK(object_map_lock);
625 
626 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
627 		       struct slab *slab)
628 {
629 	void *addr = slab_address(slab);
630 	void *p;
631 
632 	bitmap_zero(obj_map, slab->objects);
633 
634 	for (p = slab->freelist; p; p = get_freepointer(s, p))
635 		set_bit(__obj_to_index(s, addr, p), obj_map);
636 }
637 
638 #if IS_ENABLED(CONFIG_KUNIT)
639 static bool slab_add_kunit_errors(void)
640 {
641 	struct kunit_resource *resource;
642 
643 	if (!kunit_get_current_test())
644 		return false;
645 
646 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
647 	if (!resource)
648 		return false;
649 
650 	(*(int *)resource->data)++;
651 	kunit_put_resource(resource);
652 	return true;
653 }
654 #else
655 static inline bool slab_add_kunit_errors(void) { return false; }
656 #endif
657 
658 static inline unsigned int size_from_object(struct kmem_cache *s)
659 {
660 	if (s->flags & SLAB_RED_ZONE)
661 		return s->size - s->red_left_pad;
662 
663 	return s->size;
664 }
665 
666 static inline void *restore_red_left(struct kmem_cache *s, void *p)
667 {
668 	if (s->flags & SLAB_RED_ZONE)
669 		p -= s->red_left_pad;
670 
671 	return p;
672 }
673 
674 /*
675  * Debug settings:
676  */
677 #if defined(CONFIG_SLUB_DEBUG_ON)
678 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
679 #else
680 static slab_flags_t slub_debug;
681 #endif
682 
683 static char *slub_debug_string;
684 static int disable_higher_order_debug;
685 
686 /*
687  * slub is about to manipulate internal object metadata.  This memory lies
688  * outside the range of the allocated object, so accessing it would normally
689  * be reported by kasan as a bounds error.  metadata_access_enable() is used
690  * to tell kasan that these accesses are OK.
691  */
692 static inline void metadata_access_enable(void)
693 {
694 	kasan_disable_current();
695 }
696 
697 static inline void metadata_access_disable(void)
698 {
699 	kasan_enable_current();
700 }
701 
702 /*
703  * Object debugging
704  */
705 
706 /* Verify that a pointer has an address that is valid within a slab page */
707 static inline int check_valid_pointer(struct kmem_cache *s,
708 				struct slab *slab, void *object)
709 {
710 	void *base;
711 
712 	if (!object)
713 		return 1;
714 
715 	base = slab_address(slab);
716 	object = kasan_reset_tag(object);
717 	object = restore_red_left(s, object);
718 	if (object < base || object >= base + slab->objects * s->size ||
719 		(object - base) % s->size) {
720 		return 0;
721 	}
722 
723 	return 1;
724 }
725 
726 static void print_section(char *level, char *text, u8 *addr,
727 			  unsigned int length)
728 {
729 	metadata_access_enable();
730 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
731 			16, 1, kasan_reset_tag((void *)addr), length, 1);
732 	metadata_access_disable();
733 }
734 
735 /*
736  * See comment in calculate_sizes().
737  */
738 static inline bool freeptr_outside_object(struct kmem_cache *s)
739 {
740 	return s->offset >= s->inuse;
741 }
742 
743 /*
744  * Return offset of the end of info block which is inuse + free pointer if
745  * not overlapping with object.
746  */
747 static inline unsigned int get_info_end(struct kmem_cache *s)
748 {
749 	if (freeptr_outside_object(s))
750 		return s->inuse + sizeof(void *);
751 	else
752 		return s->inuse;
753 }
754 
755 static struct track *get_track(struct kmem_cache *s, void *object,
756 	enum track_item alloc)
757 {
758 	struct track *p;
759 
760 	p = object + get_info_end(s);
761 
762 	return kasan_reset_tag(p + alloc);
763 }
764 
765 #ifdef CONFIG_STACKDEPOT
766 static noinline depot_stack_handle_t set_track_prepare(void)
767 {
768 	depot_stack_handle_t handle;
769 	unsigned long entries[TRACK_ADDRS_COUNT];
770 	unsigned int nr_entries;
771 
772 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
773 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
774 
775 	return handle;
776 }
777 #else
778 static inline depot_stack_handle_t set_track_prepare(void)
779 {
780 	return 0;
781 }
782 #endif
783 
784 static void set_track_update(struct kmem_cache *s, void *object,
785 			     enum track_item alloc, unsigned long addr,
786 			     depot_stack_handle_t handle)
787 {
788 	struct track *p = get_track(s, object, alloc);
789 
790 #ifdef CONFIG_STACKDEPOT
791 	p->handle = handle;
792 #endif
793 	p->addr = addr;
794 	p->cpu = smp_processor_id();
795 	p->pid = current->pid;
796 	p->when = jiffies;
797 }
798 
799 static __always_inline void set_track(struct kmem_cache *s, void *object,
800 				      enum track_item alloc, unsigned long addr)
801 {
802 	depot_stack_handle_t handle = set_track_prepare();
803 
804 	set_track_update(s, object, alloc, addr, handle);
805 }
806 
807 static void init_tracking(struct kmem_cache *s, void *object)
808 {
809 	struct track *p;
810 
811 	if (!(s->flags & SLAB_STORE_USER))
812 		return;
813 
814 	p = get_track(s, object, TRACK_ALLOC);
815 	memset(p, 0, 2*sizeof(struct track));
816 }
817 
818 static void print_track(const char *s, struct track *t, unsigned long pr_time)
819 {
820 	depot_stack_handle_t handle __maybe_unused;
821 
822 	if (!t->addr)
823 		return;
824 
825 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
826 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
827 #ifdef CONFIG_STACKDEPOT
828 	handle = READ_ONCE(t->handle);
829 	if (handle)
830 		stack_depot_print(handle);
831 	else
832 		pr_err("object allocation/free stack trace missing\n");
833 #endif
834 }
835 
836 void print_tracking(struct kmem_cache *s, void *object)
837 {
838 	unsigned long pr_time = jiffies;
839 	if (!(s->flags & SLAB_STORE_USER))
840 		return;
841 
842 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
843 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
844 }
845 
846 static void print_slab_info(const struct slab *slab)
847 {
848 	struct folio *folio = (struct folio *)slab_folio(slab);
849 
850 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
851 	       slab, slab->objects, slab->inuse, slab->freelist,
852 	       folio_flags(folio, 0));
853 }
854 
855 /*
856  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
857  * family will round up the real request size to these fixed ones, so
858  * there could be an extra area than what is requested. Save the original
859  * request size in the meta data area, for better debug and sanity check.
860  */
861 static inline void set_orig_size(struct kmem_cache *s,
862 				void *object, unsigned int orig_size)
863 {
864 	void *p = kasan_reset_tag(object);
865 
866 	if (!slub_debug_orig_size(s))
867 		return;
868 
869 #ifdef CONFIG_KASAN_GENERIC
870 	/*
871 	 * KASAN could save its free meta data in object's data area at
872 	 * offset 0, if the size is larger than 'orig_size', it will
873 	 * overlap the data redzone in [orig_size+1, object_size], and
874 	 * the check should be skipped.
875 	 */
876 	if (kasan_metadata_size(s, true) > orig_size)
877 		orig_size = s->object_size;
878 #endif
879 
880 	p += get_info_end(s);
881 	p += sizeof(struct track) * 2;
882 
883 	*(unsigned int *)p = orig_size;
884 }
885 
886 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
887 {
888 	void *p = kasan_reset_tag(object);
889 
890 	if (!slub_debug_orig_size(s))
891 		return s->object_size;
892 
893 	p += get_info_end(s);
894 	p += sizeof(struct track) * 2;
895 
896 	return *(unsigned int *)p;
897 }
898 
899 void skip_orig_size_check(struct kmem_cache *s, const void *object)
900 {
901 	set_orig_size(s, (void *)object, s->object_size);
902 }
903 
904 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
905 {
906 	struct va_format vaf;
907 	va_list args;
908 
909 	va_start(args, fmt);
910 	vaf.fmt = fmt;
911 	vaf.va = &args;
912 	pr_err("=============================================================================\n");
913 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
914 	pr_err("-----------------------------------------------------------------------------\n\n");
915 	va_end(args);
916 }
917 
918 __printf(2, 3)
919 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
920 {
921 	struct va_format vaf;
922 	va_list args;
923 
924 	if (slab_add_kunit_errors())
925 		return;
926 
927 	va_start(args, fmt);
928 	vaf.fmt = fmt;
929 	vaf.va = &args;
930 	pr_err("FIX %s: %pV\n", s->name, &vaf);
931 	va_end(args);
932 }
933 
934 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
935 {
936 	unsigned int off;	/* Offset of last byte */
937 	u8 *addr = slab_address(slab);
938 
939 	print_tracking(s, p);
940 
941 	print_slab_info(slab);
942 
943 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
944 	       p, p - addr, get_freepointer(s, p));
945 
946 	if (s->flags & SLAB_RED_ZONE)
947 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
948 			      s->red_left_pad);
949 	else if (p > addr + 16)
950 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
951 
952 	print_section(KERN_ERR,         "Object   ", p,
953 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
954 	if (s->flags & SLAB_RED_ZONE)
955 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
956 			s->inuse - s->object_size);
957 
958 	off = get_info_end(s);
959 
960 	if (s->flags & SLAB_STORE_USER)
961 		off += 2 * sizeof(struct track);
962 
963 	if (slub_debug_orig_size(s))
964 		off += sizeof(unsigned int);
965 
966 	off += kasan_metadata_size(s, false);
967 
968 	if (off != size_from_object(s))
969 		/* Beginning of the filler is the free pointer */
970 		print_section(KERN_ERR, "Padding  ", p + off,
971 			      size_from_object(s) - off);
972 
973 	dump_stack();
974 }
975 
976 static void object_err(struct kmem_cache *s, struct slab *slab,
977 			u8 *object, char *reason)
978 {
979 	if (slab_add_kunit_errors())
980 		return;
981 
982 	slab_bug(s, "%s", reason);
983 	print_trailer(s, slab, object);
984 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
985 }
986 
987 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
988 			       void **freelist, void *nextfree)
989 {
990 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
991 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
992 		object_err(s, slab, *freelist, "Freechain corrupt");
993 		*freelist = NULL;
994 		slab_fix(s, "Isolate corrupted freechain");
995 		return true;
996 	}
997 
998 	return false;
999 }
1000 
1001 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1002 			const char *fmt, ...)
1003 {
1004 	va_list args;
1005 	char buf[100];
1006 
1007 	if (slab_add_kunit_errors())
1008 		return;
1009 
1010 	va_start(args, fmt);
1011 	vsnprintf(buf, sizeof(buf), fmt, args);
1012 	va_end(args);
1013 	slab_bug(s, "%s", buf);
1014 	print_slab_info(slab);
1015 	dump_stack();
1016 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1017 }
1018 
1019 static void init_object(struct kmem_cache *s, void *object, u8 val)
1020 {
1021 	u8 *p = kasan_reset_tag(object);
1022 	unsigned int poison_size = s->object_size;
1023 
1024 	if (s->flags & SLAB_RED_ZONE) {
1025 		memset(p - s->red_left_pad, val, s->red_left_pad);
1026 
1027 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1028 			/*
1029 			 * Redzone the extra allocated space by kmalloc than
1030 			 * requested, and the poison size will be limited to
1031 			 * the original request size accordingly.
1032 			 */
1033 			poison_size = get_orig_size(s, object);
1034 		}
1035 	}
1036 
1037 	if (s->flags & __OBJECT_POISON) {
1038 		memset(p, POISON_FREE, poison_size - 1);
1039 		p[poison_size - 1] = POISON_END;
1040 	}
1041 
1042 	if (s->flags & SLAB_RED_ZONE)
1043 		memset(p + poison_size, val, s->inuse - poison_size);
1044 }
1045 
1046 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1047 						void *from, void *to)
1048 {
1049 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1050 	memset(from, data, to - from);
1051 }
1052 
1053 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1054 			u8 *object, char *what,
1055 			u8 *start, unsigned int value, unsigned int bytes)
1056 {
1057 	u8 *fault;
1058 	u8 *end;
1059 	u8 *addr = slab_address(slab);
1060 
1061 	metadata_access_enable();
1062 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1063 	metadata_access_disable();
1064 	if (!fault)
1065 		return 1;
1066 
1067 	end = start + bytes;
1068 	while (end > fault && end[-1] == value)
1069 		end--;
1070 
1071 	if (slab_add_kunit_errors())
1072 		goto skip_bug_print;
1073 
1074 	slab_bug(s, "%s overwritten", what);
1075 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1076 					fault, end - 1, fault - addr,
1077 					fault[0], value);
1078 	print_trailer(s, slab, object);
1079 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1080 
1081 skip_bug_print:
1082 	restore_bytes(s, what, value, fault, end);
1083 	return 0;
1084 }
1085 
1086 /*
1087  * Object layout:
1088  *
1089  * object address
1090  * 	Bytes of the object to be managed.
1091  * 	If the freepointer may overlay the object then the free
1092  *	pointer is at the middle of the object.
1093  *
1094  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1095  * 	0xa5 (POISON_END)
1096  *
1097  * object + s->object_size
1098  * 	Padding to reach word boundary. This is also used for Redzoning.
1099  * 	Padding is extended by another word if Redzoning is enabled and
1100  * 	object_size == inuse.
1101  *
1102  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1103  * 	0xcc (RED_ACTIVE) for objects in use.
1104  *
1105  * object + s->inuse
1106  * 	Meta data starts here.
1107  *
1108  * 	A. Free pointer (if we cannot overwrite object on free)
1109  * 	B. Tracking data for SLAB_STORE_USER
1110  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1111  *	D. Padding to reach required alignment boundary or at minimum
1112  * 		one word if debugging is on to be able to detect writes
1113  * 		before the word boundary.
1114  *
1115  *	Padding is done using 0x5a (POISON_INUSE)
1116  *
1117  * object + s->size
1118  * 	Nothing is used beyond s->size.
1119  *
1120  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1121  * ignored. And therefore no slab options that rely on these boundaries
1122  * may be used with merged slabcaches.
1123  */
1124 
1125 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1126 {
1127 	unsigned long off = get_info_end(s);	/* The end of info */
1128 
1129 	if (s->flags & SLAB_STORE_USER) {
1130 		/* We also have user information there */
1131 		off += 2 * sizeof(struct track);
1132 
1133 		if (s->flags & SLAB_KMALLOC)
1134 			off += sizeof(unsigned int);
1135 	}
1136 
1137 	off += kasan_metadata_size(s, false);
1138 
1139 	if (size_from_object(s) == off)
1140 		return 1;
1141 
1142 	return check_bytes_and_report(s, slab, p, "Object padding",
1143 			p + off, POISON_INUSE, size_from_object(s) - off);
1144 }
1145 
1146 /* Check the pad bytes at the end of a slab page */
1147 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1148 {
1149 	u8 *start;
1150 	u8 *fault;
1151 	u8 *end;
1152 	u8 *pad;
1153 	int length;
1154 	int remainder;
1155 
1156 	if (!(s->flags & SLAB_POISON))
1157 		return;
1158 
1159 	start = slab_address(slab);
1160 	length = slab_size(slab);
1161 	end = start + length;
1162 	remainder = length % s->size;
1163 	if (!remainder)
1164 		return;
1165 
1166 	pad = end - remainder;
1167 	metadata_access_enable();
1168 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1169 	metadata_access_disable();
1170 	if (!fault)
1171 		return;
1172 	while (end > fault && end[-1] == POISON_INUSE)
1173 		end--;
1174 
1175 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1176 			fault, end - 1, fault - start);
1177 	print_section(KERN_ERR, "Padding ", pad, remainder);
1178 
1179 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1180 }
1181 
1182 static int check_object(struct kmem_cache *s, struct slab *slab,
1183 					void *object, u8 val)
1184 {
1185 	u8 *p = object;
1186 	u8 *endobject = object + s->object_size;
1187 	unsigned int orig_size;
1188 
1189 	if (s->flags & SLAB_RED_ZONE) {
1190 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1191 			object - s->red_left_pad, val, s->red_left_pad))
1192 			return 0;
1193 
1194 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1195 			endobject, val, s->inuse - s->object_size))
1196 			return 0;
1197 
1198 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1199 			orig_size = get_orig_size(s, object);
1200 
1201 			if (s->object_size > orig_size  &&
1202 				!check_bytes_and_report(s, slab, object,
1203 					"kmalloc Redzone", p + orig_size,
1204 					val, s->object_size - orig_size)) {
1205 				return 0;
1206 			}
1207 		}
1208 	} else {
1209 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1210 			check_bytes_and_report(s, slab, p, "Alignment padding",
1211 				endobject, POISON_INUSE,
1212 				s->inuse - s->object_size);
1213 		}
1214 	}
1215 
1216 	if (s->flags & SLAB_POISON) {
1217 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1218 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1219 					POISON_FREE, s->object_size - 1) ||
1220 			 !check_bytes_and_report(s, slab, p, "End Poison",
1221 				p + s->object_size - 1, POISON_END, 1)))
1222 			return 0;
1223 		/*
1224 		 * check_pad_bytes cleans up on its own.
1225 		 */
1226 		check_pad_bytes(s, slab, p);
1227 	}
1228 
1229 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1230 		/*
1231 		 * Object and freepointer overlap. Cannot check
1232 		 * freepointer while object is allocated.
1233 		 */
1234 		return 1;
1235 
1236 	/* Check free pointer validity */
1237 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1238 		object_err(s, slab, p, "Freepointer corrupt");
1239 		/*
1240 		 * No choice but to zap it and thus lose the remainder
1241 		 * of the free objects in this slab. May cause
1242 		 * another error because the object count is now wrong.
1243 		 */
1244 		set_freepointer(s, p, NULL);
1245 		return 0;
1246 	}
1247 	return 1;
1248 }
1249 
1250 static int check_slab(struct kmem_cache *s, struct slab *slab)
1251 {
1252 	int maxobj;
1253 
1254 	if (!folio_test_slab(slab_folio(slab))) {
1255 		slab_err(s, slab, "Not a valid slab page");
1256 		return 0;
1257 	}
1258 
1259 	maxobj = order_objects(slab_order(slab), s->size);
1260 	if (slab->objects > maxobj) {
1261 		slab_err(s, slab, "objects %u > max %u",
1262 			slab->objects, maxobj);
1263 		return 0;
1264 	}
1265 	if (slab->inuse > slab->objects) {
1266 		slab_err(s, slab, "inuse %u > max %u",
1267 			slab->inuse, slab->objects);
1268 		return 0;
1269 	}
1270 	/* Slab_pad_check fixes things up after itself */
1271 	slab_pad_check(s, slab);
1272 	return 1;
1273 }
1274 
1275 /*
1276  * Determine if a certain object in a slab is on the freelist. Must hold the
1277  * slab lock to guarantee that the chains are in a consistent state.
1278  */
1279 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1280 {
1281 	int nr = 0;
1282 	void *fp;
1283 	void *object = NULL;
1284 	int max_objects;
1285 
1286 	fp = slab->freelist;
1287 	while (fp && nr <= slab->objects) {
1288 		if (fp == search)
1289 			return 1;
1290 		if (!check_valid_pointer(s, slab, fp)) {
1291 			if (object) {
1292 				object_err(s, slab, object,
1293 					"Freechain corrupt");
1294 				set_freepointer(s, object, NULL);
1295 			} else {
1296 				slab_err(s, slab, "Freepointer corrupt");
1297 				slab->freelist = NULL;
1298 				slab->inuse = slab->objects;
1299 				slab_fix(s, "Freelist cleared");
1300 				return 0;
1301 			}
1302 			break;
1303 		}
1304 		object = fp;
1305 		fp = get_freepointer(s, object);
1306 		nr++;
1307 	}
1308 
1309 	max_objects = order_objects(slab_order(slab), s->size);
1310 	if (max_objects > MAX_OBJS_PER_PAGE)
1311 		max_objects = MAX_OBJS_PER_PAGE;
1312 
1313 	if (slab->objects != max_objects) {
1314 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1315 			 slab->objects, max_objects);
1316 		slab->objects = max_objects;
1317 		slab_fix(s, "Number of objects adjusted");
1318 	}
1319 	if (slab->inuse != slab->objects - nr) {
1320 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1321 			 slab->inuse, slab->objects - nr);
1322 		slab->inuse = slab->objects - nr;
1323 		slab_fix(s, "Object count adjusted");
1324 	}
1325 	return search == NULL;
1326 }
1327 
1328 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1329 								int alloc)
1330 {
1331 	if (s->flags & SLAB_TRACE) {
1332 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1333 			s->name,
1334 			alloc ? "alloc" : "free",
1335 			object, slab->inuse,
1336 			slab->freelist);
1337 
1338 		if (!alloc)
1339 			print_section(KERN_INFO, "Object ", (void *)object,
1340 					s->object_size);
1341 
1342 		dump_stack();
1343 	}
1344 }
1345 
1346 /*
1347  * Tracking of fully allocated slabs for debugging purposes.
1348  */
1349 static void add_full(struct kmem_cache *s,
1350 	struct kmem_cache_node *n, struct slab *slab)
1351 {
1352 	if (!(s->flags & SLAB_STORE_USER))
1353 		return;
1354 
1355 	lockdep_assert_held(&n->list_lock);
1356 	list_add(&slab->slab_list, &n->full);
1357 }
1358 
1359 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1360 {
1361 	if (!(s->flags & SLAB_STORE_USER))
1362 		return;
1363 
1364 	lockdep_assert_held(&n->list_lock);
1365 	list_del(&slab->slab_list);
1366 }
1367 
1368 /* Tracking of the number of slabs for debugging purposes */
1369 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1370 {
1371 	struct kmem_cache_node *n = get_node(s, node);
1372 
1373 	return atomic_long_read(&n->nr_slabs);
1374 }
1375 
1376 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1377 {
1378 	return atomic_long_read(&n->nr_slabs);
1379 }
1380 
1381 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1382 {
1383 	struct kmem_cache_node *n = get_node(s, node);
1384 
1385 	/*
1386 	 * May be called early in order to allocate a slab for the
1387 	 * kmem_cache_node structure. Solve the chicken-egg
1388 	 * dilemma by deferring the increment of the count during
1389 	 * bootstrap (see early_kmem_cache_node_alloc).
1390 	 */
1391 	if (likely(n)) {
1392 		atomic_long_inc(&n->nr_slabs);
1393 		atomic_long_add(objects, &n->total_objects);
1394 	}
1395 }
1396 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1397 {
1398 	struct kmem_cache_node *n = get_node(s, node);
1399 
1400 	atomic_long_dec(&n->nr_slabs);
1401 	atomic_long_sub(objects, &n->total_objects);
1402 }
1403 
1404 /* Object debug checks for alloc/free paths */
1405 static void setup_object_debug(struct kmem_cache *s, void *object)
1406 {
1407 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1408 		return;
1409 
1410 	init_object(s, object, SLUB_RED_INACTIVE);
1411 	init_tracking(s, object);
1412 }
1413 
1414 static
1415 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1416 {
1417 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1418 		return;
1419 
1420 	metadata_access_enable();
1421 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1422 	metadata_access_disable();
1423 }
1424 
1425 static inline int alloc_consistency_checks(struct kmem_cache *s,
1426 					struct slab *slab, void *object)
1427 {
1428 	if (!check_slab(s, slab))
1429 		return 0;
1430 
1431 	if (!check_valid_pointer(s, slab, object)) {
1432 		object_err(s, slab, object, "Freelist Pointer check fails");
1433 		return 0;
1434 	}
1435 
1436 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1437 		return 0;
1438 
1439 	return 1;
1440 }
1441 
1442 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1443 			struct slab *slab, void *object, int orig_size)
1444 {
1445 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1446 		if (!alloc_consistency_checks(s, slab, object))
1447 			goto bad;
1448 	}
1449 
1450 	/* Success. Perform special debug activities for allocs */
1451 	trace(s, slab, object, 1);
1452 	set_orig_size(s, object, orig_size);
1453 	init_object(s, object, SLUB_RED_ACTIVE);
1454 	return true;
1455 
1456 bad:
1457 	if (folio_test_slab(slab_folio(slab))) {
1458 		/*
1459 		 * If this is a slab page then lets do the best we can
1460 		 * to avoid issues in the future. Marking all objects
1461 		 * as used avoids touching the remaining objects.
1462 		 */
1463 		slab_fix(s, "Marking all objects used");
1464 		slab->inuse = slab->objects;
1465 		slab->freelist = NULL;
1466 	}
1467 	return false;
1468 }
1469 
1470 static inline int free_consistency_checks(struct kmem_cache *s,
1471 		struct slab *slab, void *object, unsigned long addr)
1472 {
1473 	if (!check_valid_pointer(s, slab, object)) {
1474 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1475 		return 0;
1476 	}
1477 
1478 	if (on_freelist(s, slab, object)) {
1479 		object_err(s, slab, object, "Object already free");
1480 		return 0;
1481 	}
1482 
1483 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1484 		return 0;
1485 
1486 	if (unlikely(s != slab->slab_cache)) {
1487 		if (!folio_test_slab(slab_folio(slab))) {
1488 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1489 				 object);
1490 		} else if (!slab->slab_cache) {
1491 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1492 			       object);
1493 			dump_stack();
1494 		} else
1495 			object_err(s, slab, object,
1496 					"page slab pointer corrupt.");
1497 		return 0;
1498 	}
1499 	return 1;
1500 }
1501 
1502 /*
1503  * Parse a block of slub_debug options. Blocks are delimited by ';'
1504  *
1505  * @str:    start of block
1506  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1507  * @slabs:  return start of list of slabs, or NULL when there's no list
1508  * @init:   assume this is initial parsing and not per-kmem-create parsing
1509  *
1510  * returns the start of next block if there's any, or NULL
1511  */
1512 static char *
1513 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1514 {
1515 	bool higher_order_disable = false;
1516 
1517 	/* Skip any completely empty blocks */
1518 	while (*str && *str == ';')
1519 		str++;
1520 
1521 	if (*str == ',') {
1522 		/*
1523 		 * No options but restriction on slabs. This means full
1524 		 * debugging for slabs matching a pattern.
1525 		 */
1526 		*flags = DEBUG_DEFAULT_FLAGS;
1527 		goto check_slabs;
1528 	}
1529 	*flags = 0;
1530 
1531 	/* Determine which debug features should be switched on */
1532 	for (; *str && *str != ',' && *str != ';'; str++) {
1533 		switch (tolower(*str)) {
1534 		case '-':
1535 			*flags = 0;
1536 			break;
1537 		case 'f':
1538 			*flags |= SLAB_CONSISTENCY_CHECKS;
1539 			break;
1540 		case 'z':
1541 			*flags |= SLAB_RED_ZONE;
1542 			break;
1543 		case 'p':
1544 			*flags |= SLAB_POISON;
1545 			break;
1546 		case 'u':
1547 			*flags |= SLAB_STORE_USER;
1548 			break;
1549 		case 't':
1550 			*flags |= SLAB_TRACE;
1551 			break;
1552 		case 'a':
1553 			*flags |= SLAB_FAILSLAB;
1554 			break;
1555 		case 'o':
1556 			/*
1557 			 * Avoid enabling debugging on caches if its minimum
1558 			 * order would increase as a result.
1559 			 */
1560 			higher_order_disable = true;
1561 			break;
1562 		default:
1563 			if (init)
1564 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1565 		}
1566 	}
1567 check_slabs:
1568 	if (*str == ',')
1569 		*slabs = ++str;
1570 	else
1571 		*slabs = NULL;
1572 
1573 	/* Skip over the slab list */
1574 	while (*str && *str != ';')
1575 		str++;
1576 
1577 	/* Skip any completely empty blocks */
1578 	while (*str && *str == ';')
1579 		str++;
1580 
1581 	if (init && higher_order_disable)
1582 		disable_higher_order_debug = 1;
1583 
1584 	if (*str)
1585 		return str;
1586 	else
1587 		return NULL;
1588 }
1589 
1590 static int __init setup_slub_debug(char *str)
1591 {
1592 	slab_flags_t flags;
1593 	slab_flags_t global_flags;
1594 	char *saved_str;
1595 	char *slab_list;
1596 	bool global_slub_debug_changed = false;
1597 	bool slab_list_specified = false;
1598 
1599 	global_flags = DEBUG_DEFAULT_FLAGS;
1600 	if (*str++ != '=' || !*str)
1601 		/*
1602 		 * No options specified. Switch on full debugging.
1603 		 */
1604 		goto out;
1605 
1606 	saved_str = str;
1607 	while (str) {
1608 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1609 
1610 		if (!slab_list) {
1611 			global_flags = flags;
1612 			global_slub_debug_changed = true;
1613 		} else {
1614 			slab_list_specified = true;
1615 			if (flags & SLAB_STORE_USER)
1616 				stack_depot_request_early_init();
1617 		}
1618 	}
1619 
1620 	/*
1621 	 * For backwards compatibility, a single list of flags with list of
1622 	 * slabs means debugging is only changed for those slabs, so the global
1623 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1624 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1625 	 * long as there is no option specifying flags without a slab list.
1626 	 */
1627 	if (slab_list_specified) {
1628 		if (!global_slub_debug_changed)
1629 			global_flags = slub_debug;
1630 		slub_debug_string = saved_str;
1631 	}
1632 out:
1633 	slub_debug = global_flags;
1634 	if (slub_debug & SLAB_STORE_USER)
1635 		stack_depot_request_early_init();
1636 	if (slub_debug != 0 || slub_debug_string)
1637 		static_branch_enable(&slub_debug_enabled);
1638 	else
1639 		static_branch_disable(&slub_debug_enabled);
1640 	if ((static_branch_unlikely(&init_on_alloc) ||
1641 	     static_branch_unlikely(&init_on_free)) &&
1642 	    (slub_debug & SLAB_POISON))
1643 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1644 	return 1;
1645 }
1646 
1647 __setup("slub_debug", setup_slub_debug);
1648 
1649 /*
1650  * kmem_cache_flags - apply debugging options to the cache
1651  * @object_size:	the size of an object without meta data
1652  * @flags:		flags to set
1653  * @name:		name of the cache
1654  *
1655  * Debug option(s) are applied to @flags. In addition to the debug
1656  * option(s), if a slab name (or multiple) is specified i.e.
1657  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1658  * then only the select slabs will receive the debug option(s).
1659  */
1660 slab_flags_t kmem_cache_flags(unsigned int object_size,
1661 	slab_flags_t flags, const char *name)
1662 {
1663 	char *iter;
1664 	size_t len;
1665 	char *next_block;
1666 	slab_flags_t block_flags;
1667 	slab_flags_t slub_debug_local = slub_debug;
1668 
1669 	if (flags & SLAB_NO_USER_FLAGS)
1670 		return flags;
1671 
1672 	/*
1673 	 * If the slab cache is for debugging (e.g. kmemleak) then
1674 	 * don't store user (stack trace) information by default,
1675 	 * but let the user enable it via the command line below.
1676 	 */
1677 	if (flags & SLAB_NOLEAKTRACE)
1678 		slub_debug_local &= ~SLAB_STORE_USER;
1679 
1680 	len = strlen(name);
1681 	next_block = slub_debug_string;
1682 	/* Go through all blocks of debug options, see if any matches our slab's name */
1683 	while (next_block) {
1684 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1685 		if (!iter)
1686 			continue;
1687 		/* Found a block that has a slab list, search it */
1688 		while (*iter) {
1689 			char *end, *glob;
1690 			size_t cmplen;
1691 
1692 			end = strchrnul(iter, ',');
1693 			if (next_block && next_block < end)
1694 				end = next_block - 1;
1695 
1696 			glob = strnchr(iter, end - iter, '*');
1697 			if (glob)
1698 				cmplen = glob - iter;
1699 			else
1700 				cmplen = max_t(size_t, len, (end - iter));
1701 
1702 			if (!strncmp(name, iter, cmplen)) {
1703 				flags |= block_flags;
1704 				return flags;
1705 			}
1706 
1707 			if (!*end || *end == ';')
1708 				break;
1709 			iter = end + 1;
1710 		}
1711 	}
1712 
1713 	return flags | slub_debug_local;
1714 }
1715 #else /* !CONFIG_SLUB_DEBUG */
1716 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1717 static inline
1718 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1719 
1720 static inline bool alloc_debug_processing(struct kmem_cache *s,
1721 	struct slab *slab, void *object, int orig_size) { return true; }
1722 
1723 static inline bool free_debug_processing(struct kmem_cache *s,
1724 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1725 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1726 
1727 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1728 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1729 			void *object, u8 val) { return 1; }
1730 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1731 static inline void set_track(struct kmem_cache *s, void *object,
1732 			     enum track_item alloc, unsigned long addr) {}
1733 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1734 					struct slab *slab) {}
1735 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1736 					struct slab *slab) {}
1737 slab_flags_t kmem_cache_flags(unsigned int object_size,
1738 	slab_flags_t flags, const char *name)
1739 {
1740 	return flags;
1741 }
1742 #define slub_debug 0
1743 
1744 #define disable_higher_order_debug 0
1745 
1746 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1747 							{ return 0; }
1748 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1749 							{ return 0; }
1750 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1751 							int objects) {}
1752 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1753 							int objects) {}
1754 
1755 #ifndef CONFIG_SLUB_TINY
1756 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1757 			       void **freelist, void *nextfree)
1758 {
1759 	return false;
1760 }
1761 #endif
1762 #endif /* CONFIG_SLUB_DEBUG */
1763 
1764 /*
1765  * Hooks for other subsystems that check memory allocations. In a typical
1766  * production configuration these hooks all should produce no code at all.
1767  */
1768 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1769 						void *x, bool init)
1770 {
1771 	kmemleak_free_recursive(x, s->flags);
1772 	kmsan_slab_free(s, x);
1773 
1774 	debug_check_no_locks_freed(x, s->object_size);
1775 
1776 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1777 		debug_check_no_obj_freed(x, s->object_size);
1778 
1779 	/* Use KCSAN to help debug racy use-after-free. */
1780 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1781 		__kcsan_check_access(x, s->object_size,
1782 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1783 
1784 	/*
1785 	 * As memory initialization might be integrated into KASAN,
1786 	 * kasan_slab_free and initialization memset's must be
1787 	 * kept together to avoid discrepancies in behavior.
1788 	 *
1789 	 * The initialization memset's clear the object and the metadata,
1790 	 * but don't touch the SLAB redzone.
1791 	 */
1792 	if (init) {
1793 		int rsize;
1794 
1795 		if (!kasan_has_integrated_init())
1796 			memset(kasan_reset_tag(x), 0, s->object_size);
1797 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1798 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1799 		       s->size - s->inuse - rsize);
1800 	}
1801 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1802 	return kasan_slab_free(s, x, init);
1803 }
1804 
1805 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1806 					   void **head, void **tail,
1807 					   int *cnt)
1808 {
1809 
1810 	void *object;
1811 	void *next = *head;
1812 	void *old_tail = *tail ? *tail : *head;
1813 
1814 	if (is_kfence_address(next)) {
1815 		slab_free_hook(s, next, false);
1816 		return true;
1817 	}
1818 
1819 	/* Head and tail of the reconstructed freelist */
1820 	*head = NULL;
1821 	*tail = NULL;
1822 
1823 	do {
1824 		object = next;
1825 		next = get_freepointer(s, object);
1826 
1827 		/* If object's reuse doesn't have to be delayed */
1828 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1829 			/* Move object to the new freelist */
1830 			set_freepointer(s, object, *head);
1831 			*head = object;
1832 			if (!*tail)
1833 				*tail = object;
1834 		} else {
1835 			/*
1836 			 * Adjust the reconstructed freelist depth
1837 			 * accordingly if object's reuse is delayed.
1838 			 */
1839 			--(*cnt);
1840 		}
1841 	} while (object != old_tail);
1842 
1843 	if (*head == *tail)
1844 		*tail = NULL;
1845 
1846 	return *head != NULL;
1847 }
1848 
1849 static void *setup_object(struct kmem_cache *s, void *object)
1850 {
1851 	setup_object_debug(s, object);
1852 	object = kasan_init_slab_obj(s, object);
1853 	if (unlikely(s->ctor)) {
1854 		kasan_unpoison_object_data(s, object);
1855 		s->ctor(object);
1856 		kasan_poison_object_data(s, object);
1857 	}
1858 	return object;
1859 }
1860 
1861 /*
1862  * Slab allocation and freeing
1863  */
1864 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1865 		struct kmem_cache_order_objects oo)
1866 {
1867 	struct folio *folio;
1868 	struct slab *slab;
1869 	unsigned int order = oo_order(oo);
1870 
1871 	if (node == NUMA_NO_NODE)
1872 		folio = (struct folio *)alloc_pages(flags, order);
1873 	else
1874 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1875 
1876 	if (!folio)
1877 		return NULL;
1878 
1879 	slab = folio_slab(folio);
1880 	__folio_set_slab(folio);
1881 	/* Make the flag visible before any changes to folio->mapping */
1882 	smp_wmb();
1883 	if (folio_is_pfmemalloc(folio))
1884 		slab_set_pfmemalloc(slab);
1885 
1886 	return slab;
1887 }
1888 
1889 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1890 /* Pre-initialize the random sequence cache */
1891 static int init_cache_random_seq(struct kmem_cache *s)
1892 {
1893 	unsigned int count = oo_objects(s->oo);
1894 	int err;
1895 
1896 	/* Bailout if already initialised */
1897 	if (s->random_seq)
1898 		return 0;
1899 
1900 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1901 	if (err) {
1902 		pr_err("SLUB: Unable to initialize free list for %s\n",
1903 			s->name);
1904 		return err;
1905 	}
1906 
1907 	/* Transform to an offset on the set of pages */
1908 	if (s->random_seq) {
1909 		unsigned int i;
1910 
1911 		for (i = 0; i < count; i++)
1912 			s->random_seq[i] *= s->size;
1913 	}
1914 	return 0;
1915 }
1916 
1917 /* Initialize each random sequence freelist per cache */
1918 static void __init init_freelist_randomization(void)
1919 {
1920 	struct kmem_cache *s;
1921 
1922 	mutex_lock(&slab_mutex);
1923 
1924 	list_for_each_entry(s, &slab_caches, list)
1925 		init_cache_random_seq(s);
1926 
1927 	mutex_unlock(&slab_mutex);
1928 }
1929 
1930 /* Get the next entry on the pre-computed freelist randomized */
1931 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1932 				unsigned long *pos, void *start,
1933 				unsigned long page_limit,
1934 				unsigned long freelist_count)
1935 {
1936 	unsigned int idx;
1937 
1938 	/*
1939 	 * If the target page allocation failed, the number of objects on the
1940 	 * page might be smaller than the usual size defined by the cache.
1941 	 */
1942 	do {
1943 		idx = s->random_seq[*pos];
1944 		*pos += 1;
1945 		if (*pos >= freelist_count)
1946 			*pos = 0;
1947 	} while (unlikely(idx >= page_limit));
1948 
1949 	return (char *)start + idx;
1950 }
1951 
1952 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1953 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1954 {
1955 	void *start;
1956 	void *cur;
1957 	void *next;
1958 	unsigned long idx, pos, page_limit, freelist_count;
1959 
1960 	if (slab->objects < 2 || !s->random_seq)
1961 		return false;
1962 
1963 	freelist_count = oo_objects(s->oo);
1964 	pos = get_random_u32_below(freelist_count);
1965 
1966 	page_limit = slab->objects * s->size;
1967 	start = fixup_red_left(s, slab_address(slab));
1968 
1969 	/* First entry is used as the base of the freelist */
1970 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1971 				freelist_count);
1972 	cur = setup_object(s, cur);
1973 	slab->freelist = cur;
1974 
1975 	for (idx = 1; idx < slab->objects; idx++) {
1976 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1977 			freelist_count);
1978 		next = setup_object(s, next);
1979 		set_freepointer(s, cur, next);
1980 		cur = next;
1981 	}
1982 	set_freepointer(s, cur, NULL);
1983 
1984 	return true;
1985 }
1986 #else
1987 static inline int init_cache_random_seq(struct kmem_cache *s)
1988 {
1989 	return 0;
1990 }
1991 static inline void init_freelist_randomization(void) { }
1992 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1993 {
1994 	return false;
1995 }
1996 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1997 
1998 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1999 {
2000 	struct slab *slab;
2001 	struct kmem_cache_order_objects oo = s->oo;
2002 	gfp_t alloc_gfp;
2003 	void *start, *p, *next;
2004 	int idx;
2005 	bool shuffle;
2006 
2007 	flags &= gfp_allowed_mask;
2008 
2009 	flags |= s->allocflags;
2010 
2011 	/*
2012 	 * Let the initial higher-order allocation fail under memory pressure
2013 	 * so we fall-back to the minimum order allocation.
2014 	 */
2015 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2016 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2017 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2018 
2019 	slab = alloc_slab_page(alloc_gfp, node, oo);
2020 	if (unlikely(!slab)) {
2021 		oo = s->min;
2022 		alloc_gfp = flags;
2023 		/*
2024 		 * Allocation may have failed due to fragmentation.
2025 		 * Try a lower order alloc if possible
2026 		 */
2027 		slab = alloc_slab_page(alloc_gfp, node, oo);
2028 		if (unlikely(!slab))
2029 			return NULL;
2030 		stat(s, ORDER_FALLBACK);
2031 	}
2032 
2033 	slab->objects = oo_objects(oo);
2034 	slab->inuse = 0;
2035 	slab->frozen = 0;
2036 
2037 	account_slab(slab, oo_order(oo), s, flags);
2038 
2039 	slab->slab_cache = s;
2040 
2041 	kasan_poison_slab(slab);
2042 
2043 	start = slab_address(slab);
2044 
2045 	setup_slab_debug(s, slab, start);
2046 
2047 	shuffle = shuffle_freelist(s, slab);
2048 
2049 	if (!shuffle) {
2050 		start = fixup_red_left(s, start);
2051 		start = setup_object(s, start);
2052 		slab->freelist = start;
2053 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2054 			next = p + s->size;
2055 			next = setup_object(s, next);
2056 			set_freepointer(s, p, next);
2057 			p = next;
2058 		}
2059 		set_freepointer(s, p, NULL);
2060 	}
2061 
2062 	return slab;
2063 }
2064 
2065 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2066 {
2067 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2068 		flags = kmalloc_fix_flags(flags);
2069 
2070 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2071 
2072 	return allocate_slab(s,
2073 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2074 }
2075 
2076 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2077 {
2078 	struct folio *folio = slab_folio(slab);
2079 	int order = folio_order(folio);
2080 	int pages = 1 << order;
2081 
2082 	__slab_clear_pfmemalloc(slab);
2083 	folio->mapping = NULL;
2084 	/* Make the mapping reset visible before clearing the flag */
2085 	smp_wmb();
2086 	__folio_clear_slab(folio);
2087 	mm_account_reclaimed_pages(pages);
2088 	unaccount_slab(slab, order, s);
2089 	__free_pages(&folio->page, order);
2090 }
2091 
2092 static void rcu_free_slab(struct rcu_head *h)
2093 {
2094 	struct slab *slab = container_of(h, struct slab, rcu_head);
2095 
2096 	__free_slab(slab->slab_cache, slab);
2097 }
2098 
2099 static void free_slab(struct kmem_cache *s, struct slab *slab)
2100 {
2101 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2102 		void *p;
2103 
2104 		slab_pad_check(s, slab);
2105 		for_each_object(p, s, slab_address(slab), slab->objects)
2106 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2107 	}
2108 
2109 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2110 		call_rcu(&slab->rcu_head, rcu_free_slab);
2111 	else
2112 		__free_slab(s, slab);
2113 }
2114 
2115 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2116 {
2117 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2118 	free_slab(s, slab);
2119 }
2120 
2121 /*
2122  * Management of partially allocated slabs.
2123  */
2124 static inline void
2125 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2126 {
2127 	n->nr_partial++;
2128 	if (tail == DEACTIVATE_TO_TAIL)
2129 		list_add_tail(&slab->slab_list, &n->partial);
2130 	else
2131 		list_add(&slab->slab_list, &n->partial);
2132 }
2133 
2134 static inline void add_partial(struct kmem_cache_node *n,
2135 				struct slab *slab, int tail)
2136 {
2137 	lockdep_assert_held(&n->list_lock);
2138 	__add_partial(n, slab, tail);
2139 }
2140 
2141 static inline void remove_partial(struct kmem_cache_node *n,
2142 					struct slab *slab)
2143 {
2144 	lockdep_assert_held(&n->list_lock);
2145 	list_del(&slab->slab_list);
2146 	n->nr_partial--;
2147 }
2148 
2149 /*
2150  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2151  * slab from the n->partial list. Remove only a single object from the slab, do
2152  * the alloc_debug_processing() checks and leave the slab on the list, or move
2153  * it to full list if it was the last free object.
2154  */
2155 static void *alloc_single_from_partial(struct kmem_cache *s,
2156 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2157 {
2158 	void *object;
2159 
2160 	lockdep_assert_held(&n->list_lock);
2161 
2162 	object = slab->freelist;
2163 	slab->freelist = get_freepointer(s, object);
2164 	slab->inuse++;
2165 
2166 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2167 		remove_partial(n, slab);
2168 		return NULL;
2169 	}
2170 
2171 	if (slab->inuse == slab->objects) {
2172 		remove_partial(n, slab);
2173 		add_full(s, n, slab);
2174 	}
2175 
2176 	return object;
2177 }
2178 
2179 /*
2180  * Called only for kmem_cache_debug() caches to allocate from a freshly
2181  * allocated slab. Allocate a single object instead of whole freelist
2182  * and put the slab to the partial (or full) list.
2183  */
2184 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2185 					struct slab *slab, int orig_size)
2186 {
2187 	int nid = slab_nid(slab);
2188 	struct kmem_cache_node *n = get_node(s, nid);
2189 	unsigned long flags;
2190 	void *object;
2191 
2192 
2193 	object = slab->freelist;
2194 	slab->freelist = get_freepointer(s, object);
2195 	slab->inuse = 1;
2196 
2197 	if (!alloc_debug_processing(s, slab, object, orig_size))
2198 		/*
2199 		 * It's not really expected that this would fail on a
2200 		 * freshly allocated slab, but a concurrent memory
2201 		 * corruption in theory could cause that.
2202 		 */
2203 		return NULL;
2204 
2205 	spin_lock_irqsave(&n->list_lock, flags);
2206 
2207 	if (slab->inuse == slab->objects)
2208 		add_full(s, n, slab);
2209 	else
2210 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2211 
2212 	inc_slabs_node(s, nid, slab->objects);
2213 	spin_unlock_irqrestore(&n->list_lock, flags);
2214 
2215 	return object;
2216 }
2217 
2218 /*
2219  * Remove slab from the partial list, freeze it and
2220  * return the pointer to the freelist.
2221  *
2222  * Returns a list of objects or NULL if it fails.
2223  */
2224 static inline void *acquire_slab(struct kmem_cache *s,
2225 		struct kmem_cache_node *n, struct slab *slab,
2226 		int mode)
2227 {
2228 	void *freelist;
2229 	unsigned long counters;
2230 	struct slab new;
2231 
2232 	lockdep_assert_held(&n->list_lock);
2233 
2234 	/*
2235 	 * Zap the freelist and set the frozen bit.
2236 	 * The old freelist is the list of objects for the
2237 	 * per cpu allocation list.
2238 	 */
2239 	freelist = slab->freelist;
2240 	counters = slab->counters;
2241 	new.counters = counters;
2242 	if (mode) {
2243 		new.inuse = slab->objects;
2244 		new.freelist = NULL;
2245 	} else {
2246 		new.freelist = freelist;
2247 	}
2248 
2249 	VM_BUG_ON(new.frozen);
2250 	new.frozen = 1;
2251 
2252 	if (!__slab_update_freelist(s, slab,
2253 			freelist, counters,
2254 			new.freelist, new.counters,
2255 			"acquire_slab"))
2256 		return NULL;
2257 
2258 	remove_partial(n, slab);
2259 	WARN_ON(!freelist);
2260 	return freelist;
2261 }
2262 
2263 #ifdef CONFIG_SLUB_CPU_PARTIAL
2264 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2265 #else
2266 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2267 				   int drain) { }
2268 #endif
2269 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2270 
2271 /*
2272  * Try to allocate a partial slab from a specific node.
2273  */
2274 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2275 			      struct partial_context *pc)
2276 {
2277 	struct slab *slab, *slab2;
2278 	void *object = NULL;
2279 	unsigned long flags;
2280 	unsigned int partial_slabs = 0;
2281 
2282 	/*
2283 	 * Racy check. If we mistakenly see no partial slabs then we
2284 	 * just allocate an empty slab. If we mistakenly try to get a
2285 	 * partial slab and there is none available then get_partial()
2286 	 * will return NULL.
2287 	 */
2288 	if (!n || !n->nr_partial)
2289 		return NULL;
2290 
2291 	spin_lock_irqsave(&n->list_lock, flags);
2292 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2293 		void *t;
2294 
2295 		if (!pfmemalloc_match(slab, pc->flags))
2296 			continue;
2297 
2298 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2299 			object = alloc_single_from_partial(s, n, slab,
2300 							pc->orig_size);
2301 			if (object)
2302 				break;
2303 			continue;
2304 		}
2305 
2306 		t = acquire_slab(s, n, slab, object == NULL);
2307 		if (!t)
2308 			break;
2309 
2310 		if (!object) {
2311 			*pc->slab = slab;
2312 			stat(s, ALLOC_FROM_PARTIAL);
2313 			object = t;
2314 		} else {
2315 			put_cpu_partial(s, slab, 0);
2316 			stat(s, CPU_PARTIAL_NODE);
2317 			partial_slabs++;
2318 		}
2319 #ifdef CONFIG_SLUB_CPU_PARTIAL
2320 		if (!kmem_cache_has_cpu_partial(s)
2321 			|| partial_slabs > s->cpu_partial_slabs / 2)
2322 			break;
2323 #else
2324 		break;
2325 #endif
2326 
2327 	}
2328 	spin_unlock_irqrestore(&n->list_lock, flags);
2329 	return object;
2330 }
2331 
2332 /*
2333  * Get a slab from somewhere. Search in increasing NUMA distances.
2334  */
2335 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2336 {
2337 #ifdef CONFIG_NUMA
2338 	struct zonelist *zonelist;
2339 	struct zoneref *z;
2340 	struct zone *zone;
2341 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2342 	void *object;
2343 	unsigned int cpuset_mems_cookie;
2344 
2345 	/*
2346 	 * The defrag ratio allows a configuration of the tradeoffs between
2347 	 * inter node defragmentation and node local allocations. A lower
2348 	 * defrag_ratio increases the tendency to do local allocations
2349 	 * instead of attempting to obtain partial slabs from other nodes.
2350 	 *
2351 	 * If the defrag_ratio is set to 0 then kmalloc() always
2352 	 * returns node local objects. If the ratio is higher then kmalloc()
2353 	 * may return off node objects because partial slabs are obtained
2354 	 * from other nodes and filled up.
2355 	 *
2356 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2357 	 * (which makes defrag_ratio = 1000) then every (well almost)
2358 	 * allocation will first attempt to defrag slab caches on other nodes.
2359 	 * This means scanning over all nodes to look for partial slabs which
2360 	 * may be expensive if we do it every time we are trying to find a slab
2361 	 * with available objects.
2362 	 */
2363 	if (!s->remote_node_defrag_ratio ||
2364 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2365 		return NULL;
2366 
2367 	do {
2368 		cpuset_mems_cookie = read_mems_allowed_begin();
2369 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2370 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2371 			struct kmem_cache_node *n;
2372 
2373 			n = get_node(s, zone_to_nid(zone));
2374 
2375 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2376 					n->nr_partial > s->min_partial) {
2377 				object = get_partial_node(s, n, pc);
2378 				if (object) {
2379 					/*
2380 					 * Don't check read_mems_allowed_retry()
2381 					 * here - if mems_allowed was updated in
2382 					 * parallel, that was a harmless race
2383 					 * between allocation and the cpuset
2384 					 * update
2385 					 */
2386 					return object;
2387 				}
2388 			}
2389 		}
2390 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2391 #endif	/* CONFIG_NUMA */
2392 	return NULL;
2393 }
2394 
2395 /*
2396  * Get a partial slab, lock it and return it.
2397  */
2398 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2399 {
2400 	void *object;
2401 	int searchnode = node;
2402 
2403 	if (node == NUMA_NO_NODE)
2404 		searchnode = numa_mem_id();
2405 
2406 	object = get_partial_node(s, get_node(s, searchnode), pc);
2407 	if (object || node != NUMA_NO_NODE)
2408 		return object;
2409 
2410 	return get_any_partial(s, pc);
2411 }
2412 
2413 #ifndef CONFIG_SLUB_TINY
2414 
2415 #ifdef CONFIG_PREEMPTION
2416 /*
2417  * Calculate the next globally unique transaction for disambiguation
2418  * during cmpxchg. The transactions start with the cpu number and are then
2419  * incremented by CONFIG_NR_CPUS.
2420  */
2421 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2422 #else
2423 /*
2424  * No preemption supported therefore also no need to check for
2425  * different cpus.
2426  */
2427 #define TID_STEP 1
2428 #endif /* CONFIG_PREEMPTION */
2429 
2430 static inline unsigned long next_tid(unsigned long tid)
2431 {
2432 	return tid + TID_STEP;
2433 }
2434 
2435 #ifdef SLUB_DEBUG_CMPXCHG
2436 static inline unsigned int tid_to_cpu(unsigned long tid)
2437 {
2438 	return tid % TID_STEP;
2439 }
2440 
2441 static inline unsigned long tid_to_event(unsigned long tid)
2442 {
2443 	return tid / TID_STEP;
2444 }
2445 #endif
2446 
2447 static inline unsigned int init_tid(int cpu)
2448 {
2449 	return cpu;
2450 }
2451 
2452 static inline void note_cmpxchg_failure(const char *n,
2453 		const struct kmem_cache *s, unsigned long tid)
2454 {
2455 #ifdef SLUB_DEBUG_CMPXCHG
2456 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2457 
2458 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2459 
2460 #ifdef CONFIG_PREEMPTION
2461 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2462 		pr_warn("due to cpu change %d -> %d\n",
2463 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2464 	else
2465 #endif
2466 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2467 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2468 			tid_to_event(tid), tid_to_event(actual_tid));
2469 	else
2470 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2471 			actual_tid, tid, next_tid(tid));
2472 #endif
2473 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2474 }
2475 
2476 static void init_kmem_cache_cpus(struct kmem_cache *s)
2477 {
2478 	int cpu;
2479 	struct kmem_cache_cpu *c;
2480 
2481 	for_each_possible_cpu(cpu) {
2482 		c = per_cpu_ptr(s->cpu_slab, cpu);
2483 		local_lock_init(&c->lock);
2484 		c->tid = init_tid(cpu);
2485 	}
2486 }
2487 
2488 /*
2489  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2490  * unfreezes the slabs and puts it on the proper list.
2491  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2492  * by the caller.
2493  */
2494 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2495 			    void *freelist)
2496 {
2497 	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2498 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2499 	int free_delta = 0;
2500 	enum slab_modes mode = M_NONE;
2501 	void *nextfree, *freelist_iter, *freelist_tail;
2502 	int tail = DEACTIVATE_TO_HEAD;
2503 	unsigned long flags = 0;
2504 	struct slab new;
2505 	struct slab old;
2506 
2507 	if (slab->freelist) {
2508 		stat(s, DEACTIVATE_REMOTE_FREES);
2509 		tail = DEACTIVATE_TO_TAIL;
2510 	}
2511 
2512 	/*
2513 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2514 	 * remember the last object in freelist_tail for later splicing.
2515 	 */
2516 	freelist_tail = NULL;
2517 	freelist_iter = freelist;
2518 	while (freelist_iter) {
2519 		nextfree = get_freepointer(s, freelist_iter);
2520 
2521 		/*
2522 		 * If 'nextfree' is invalid, it is possible that the object at
2523 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2524 		 * starting at 'freelist_iter' by skipping them.
2525 		 */
2526 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2527 			break;
2528 
2529 		freelist_tail = freelist_iter;
2530 		free_delta++;
2531 
2532 		freelist_iter = nextfree;
2533 	}
2534 
2535 	/*
2536 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2537 	 * freelist to the head of slab's freelist.
2538 	 *
2539 	 * Ensure that the slab is unfrozen while the list presence
2540 	 * reflects the actual number of objects during unfreeze.
2541 	 *
2542 	 * We first perform cmpxchg holding lock and insert to list
2543 	 * when it succeed. If there is mismatch then the slab is not
2544 	 * unfrozen and number of objects in the slab may have changed.
2545 	 * Then release lock and retry cmpxchg again.
2546 	 */
2547 redo:
2548 
2549 	old.freelist = READ_ONCE(slab->freelist);
2550 	old.counters = READ_ONCE(slab->counters);
2551 	VM_BUG_ON(!old.frozen);
2552 
2553 	/* Determine target state of the slab */
2554 	new.counters = old.counters;
2555 	if (freelist_tail) {
2556 		new.inuse -= free_delta;
2557 		set_freepointer(s, freelist_tail, old.freelist);
2558 		new.freelist = freelist;
2559 	} else
2560 		new.freelist = old.freelist;
2561 
2562 	new.frozen = 0;
2563 
2564 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2565 		mode = M_FREE;
2566 	} else if (new.freelist) {
2567 		mode = M_PARTIAL;
2568 		/*
2569 		 * Taking the spinlock removes the possibility that
2570 		 * acquire_slab() will see a slab that is frozen
2571 		 */
2572 		spin_lock_irqsave(&n->list_lock, flags);
2573 	} else {
2574 		mode = M_FULL_NOLIST;
2575 	}
2576 
2577 
2578 	if (!slab_update_freelist(s, slab,
2579 				old.freelist, old.counters,
2580 				new.freelist, new.counters,
2581 				"unfreezing slab")) {
2582 		if (mode == M_PARTIAL)
2583 			spin_unlock_irqrestore(&n->list_lock, flags);
2584 		goto redo;
2585 	}
2586 
2587 
2588 	if (mode == M_PARTIAL) {
2589 		add_partial(n, slab, tail);
2590 		spin_unlock_irqrestore(&n->list_lock, flags);
2591 		stat(s, tail);
2592 	} else if (mode == M_FREE) {
2593 		stat(s, DEACTIVATE_EMPTY);
2594 		discard_slab(s, slab);
2595 		stat(s, FREE_SLAB);
2596 	} else if (mode == M_FULL_NOLIST) {
2597 		stat(s, DEACTIVATE_FULL);
2598 	}
2599 }
2600 
2601 #ifdef CONFIG_SLUB_CPU_PARTIAL
2602 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2603 {
2604 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2605 	struct slab *slab, *slab_to_discard = NULL;
2606 	unsigned long flags = 0;
2607 
2608 	while (partial_slab) {
2609 		struct slab new;
2610 		struct slab old;
2611 
2612 		slab = partial_slab;
2613 		partial_slab = slab->next;
2614 
2615 		n2 = get_node(s, slab_nid(slab));
2616 		if (n != n2) {
2617 			if (n)
2618 				spin_unlock_irqrestore(&n->list_lock, flags);
2619 
2620 			n = n2;
2621 			spin_lock_irqsave(&n->list_lock, flags);
2622 		}
2623 
2624 		do {
2625 
2626 			old.freelist = slab->freelist;
2627 			old.counters = slab->counters;
2628 			VM_BUG_ON(!old.frozen);
2629 
2630 			new.counters = old.counters;
2631 			new.freelist = old.freelist;
2632 
2633 			new.frozen = 0;
2634 
2635 		} while (!__slab_update_freelist(s, slab,
2636 				old.freelist, old.counters,
2637 				new.freelist, new.counters,
2638 				"unfreezing slab"));
2639 
2640 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2641 			slab->next = slab_to_discard;
2642 			slab_to_discard = slab;
2643 		} else {
2644 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2645 			stat(s, FREE_ADD_PARTIAL);
2646 		}
2647 	}
2648 
2649 	if (n)
2650 		spin_unlock_irqrestore(&n->list_lock, flags);
2651 
2652 	while (slab_to_discard) {
2653 		slab = slab_to_discard;
2654 		slab_to_discard = slab_to_discard->next;
2655 
2656 		stat(s, DEACTIVATE_EMPTY);
2657 		discard_slab(s, slab);
2658 		stat(s, FREE_SLAB);
2659 	}
2660 }
2661 
2662 /*
2663  * Unfreeze all the cpu partial slabs.
2664  */
2665 static void unfreeze_partials(struct kmem_cache *s)
2666 {
2667 	struct slab *partial_slab;
2668 	unsigned long flags;
2669 
2670 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2671 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2672 	this_cpu_write(s->cpu_slab->partial, NULL);
2673 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2674 
2675 	if (partial_slab)
2676 		__unfreeze_partials(s, partial_slab);
2677 }
2678 
2679 static void unfreeze_partials_cpu(struct kmem_cache *s,
2680 				  struct kmem_cache_cpu *c)
2681 {
2682 	struct slab *partial_slab;
2683 
2684 	partial_slab = slub_percpu_partial(c);
2685 	c->partial = NULL;
2686 
2687 	if (partial_slab)
2688 		__unfreeze_partials(s, partial_slab);
2689 }
2690 
2691 /*
2692  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2693  * partial slab slot if available.
2694  *
2695  * If we did not find a slot then simply move all the partials to the
2696  * per node partial list.
2697  */
2698 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2699 {
2700 	struct slab *oldslab;
2701 	struct slab *slab_to_unfreeze = NULL;
2702 	unsigned long flags;
2703 	int slabs = 0;
2704 
2705 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2706 
2707 	oldslab = this_cpu_read(s->cpu_slab->partial);
2708 
2709 	if (oldslab) {
2710 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2711 			/*
2712 			 * Partial array is full. Move the existing set to the
2713 			 * per node partial list. Postpone the actual unfreezing
2714 			 * outside of the critical section.
2715 			 */
2716 			slab_to_unfreeze = oldslab;
2717 			oldslab = NULL;
2718 		} else {
2719 			slabs = oldslab->slabs;
2720 		}
2721 	}
2722 
2723 	slabs++;
2724 
2725 	slab->slabs = slabs;
2726 	slab->next = oldslab;
2727 
2728 	this_cpu_write(s->cpu_slab->partial, slab);
2729 
2730 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2731 
2732 	if (slab_to_unfreeze) {
2733 		__unfreeze_partials(s, slab_to_unfreeze);
2734 		stat(s, CPU_PARTIAL_DRAIN);
2735 	}
2736 }
2737 
2738 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2739 
2740 static inline void unfreeze_partials(struct kmem_cache *s) { }
2741 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2742 				  struct kmem_cache_cpu *c) { }
2743 
2744 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2745 
2746 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2747 {
2748 	unsigned long flags;
2749 	struct slab *slab;
2750 	void *freelist;
2751 
2752 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2753 
2754 	slab = c->slab;
2755 	freelist = c->freelist;
2756 
2757 	c->slab = NULL;
2758 	c->freelist = NULL;
2759 	c->tid = next_tid(c->tid);
2760 
2761 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2762 
2763 	if (slab) {
2764 		deactivate_slab(s, slab, freelist);
2765 		stat(s, CPUSLAB_FLUSH);
2766 	}
2767 }
2768 
2769 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2770 {
2771 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2772 	void *freelist = c->freelist;
2773 	struct slab *slab = c->slab;
2774 
2775 	c->slab = NULL;
2776 	c->freelist = NULL;
2777 	c->tid = next_tid(c->tid);
2778 
2779 	if (slab) {
2780 		deactivate_slab(s, slab, freelist);
2781 		stat(s, CPUSLAB_FLUSH);
2782 	}
2783 
2784 	unfreeze_partials_cpu(s, c);
2785 }
2786 
2787 struct slub_flush_work {
2788 	struct work_struct work;
2789 	struct kmem_cache *s;
2790 	bool skip;
2791 };
2792 
2793 /*
2794  * Flush cpu slab.
2795  *
2796  * Called from CPU work handler with migration disabled.
2797  */
2798 static void flush_cpu_slab(struct work_struct *w)
2799 {
2800 	struct kmem_cache *s;
2801 	struct kmem_cache_cpu *c;
2802 	struct slub_flush_work *sfw;
2803 
2804 	sfw = container_of(w, struct slub_flush_work, work);
2805 
2806 	s = sfw->s;
2807 	c = this_cpu_ptr(s->cpu_slab);
2808 
2809 	if (c->slab)
2810 		flush_slab(s, c);
2811 
2812 	unfreeze_partials(s);
2813 }
2814 
2815 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2816 {
2817 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2818 
2819 	return c->slab || slub_percpu_partial(c);
2820 }
2821 
2822 static DEFINE_MUTEX(flush_lock);
2823 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2824 
2825 static void flush_all_cpus_locked(struct kmem_cache *s)
2826 {
2827 	struct slub_flush_work *sfw;
2828 	unsigned int cpu;
2829 
2830 	lockdep_assert_cpus_held();
2831 	mutex_lock(&flush_lock);
2832 
2833 	for_each_online_cpu(cpu) {
2834 		sfw = &per_cpu(slub_flush, cpu);
2835 		if (!has_cpu_slab(cpu, s)) {
2836 			sfw->skip = true;
2837 			continue;
2838 		}
2839 		INIT_WORK(&sfw->work, flush_cpu_slab);
2840 		sfw->skip = false;
2841 		sfw->s = s;
2842 		queue_work_on(cpu, flushwq, &sfw->work);
2843 	}
2844 
2845 	for_each_online_cpu(cpu) {
2846 		sfw = &per_cpu(slub_flush, cpu);
2847 		if (sfw->skip)
2848 			continue;
2849 		flush_work(&sfw->work);
2850 	}
2851 
2852 	mutex_unlock(&flush_lock);
2853 }
2854 
2855 static void flush_all(struct kmem_cache *s)
2856 {
2857 	cpus_read_lock();
2858 	flush_all_cpus_locked(s);
2859 	cpus_read_unlock();
2860 }
2861 
2862 /*
2863  * Use the cpu notifier to insure that the cpu slabs are flushed when
2864  * necessary.
2865  */
2866 static int slub_cpu_dead(unsigned int cpu)
2867 {
2868 	struct kmem_cache *s;
2869 
2870 	mutex_lock(&slab_mutex);
2871 	list_for_each_entry(s, &slab_caches, list)
2872 		__flush_cpu_slab(s, cpu);
2873 	mutex_unlock(&slab_mutex);
2874 	return 0;
2875 }
2876 
2877 #else /* CONFIG_SLUB_TINY */
2878 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2879 static inline void flush_all(struct kmem_cache *s) { }
2880 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2881 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2882 #endif /* CONFIG_SLUB_TINY */
2883 
2884 /*
2885  * Check if the objects in a per cpu structure fit numa
2886  * locality expectations.
2887  */
2888 static inline int node_match(struct slab *slab, int node)
2889 {
2890 #ifdef CONFIG_NUMA
2891 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2892 		return 0;
2893 #endif
2894 	return 1;
2895 }
2896 
2897 #ifdef CONFIG_SLUB_DEBUG
2898 static int count_free(struct slab *slab)
2899 {
2900 	return slab->objects - slab->inuse;
2901 }
2902 
2903 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2904 {
2905 	return atomic_long_read(&n->total_objects);
2906 }
2907 
2908 /* Supports checking bulk free of a constructed freelist */
2909 static inline bool free_debug_processing(struct kmem_cache *s,
2910 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2911 	unsigned long addr, depot_stack_handle_t handle)
2912 {
2913 	bool checks_ok = false;
2914 	void *object = head;
2915 	int cnt = 0;
2916 
2917 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2918 		if (!check_slab(s, slab))
2919 			goto out;
2920 	}
2921 
2922 	if (slab->inuse < *bulk_cnt) {
2923 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2924 			 slab->inuse, *bulk_cnt);
2925 		goto out;
2926 	}
2927 
2928 next_object:
2929 
2930 	if (++cnt > *bulk_cnt)
2931 		goto out_cnt;
2932 
2933 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2934 		if (!free_consistency_checks(s, slab, object, addr))
2935 			goto out;
2936 	}
2937 
2938 	if (s->flags & SLAB_STORE_USER)
2939 		set_track_update(s, object, TRACK_FREE, addr, handle);
2940 	trace(s, slab, object, 0);
2941 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2942 	init_object(s, object, SLUB_RED_INACTIVE);
2943 
2944 	/* Reached end of constructed freelist yet? */
2945 	if (object != tail) {
2946 		object = get_freepointer(s, object);
2947 		goto next_object;
2948 	}
2949 	checks_ok = true;
2950 
2951 out_cnt:
2952 	if (cnt != *bulk_cnt) {
2953 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2954 			 *bulk_cnt, cnt);
2955 		*bulk_cnt = cnt;
2956 	}
2957 
2958 out:
2959 
2960 	if (!checks_ok)
2961 		slab_fix(s, "Object at 0x%p not freed", object);
2962 
2963 	return checks_ok;
2964 }
2965 #endif /* CONFIG_SLUB_DEBUG */
2966 
2967 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2968 static unsigned long count_partial(struct kmem_cache_node *n,
2969 					int (*get_count)(struct slab *))
2970 {
2971 	unsigned long flags;
2972 	unsigned long x = 0;
2973 	struct slab *slab;
2974 
2975 	spin_lock_irqsave(&n->list_lock, flags);
2976 	list_for_each_entry(slab, &n->partial, slab_list)
2977 		x += get_count(slab);
2978 	spin_unlock_irqrestore(&n->list_lock, flags);
2979 	return x;
2980 }
2981 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2982 
2983 #ifdef CONFIG_SLUB_DEBUG
2984 static noinline void
2985 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2986 {
2987 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2988 				      DEFAULT_RATELIMIT_BURST);
2989 	int node;
2990 	struct kmem_cache_node *n;
2991 
2992 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2993 		return;
2994 
2995 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2996 		nid, gfpflags, &gfpflags);
2997 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2998 		s->name, s->object_size, s->size, oo_order(s->oo),
2999 		oo_order(s->min));
3000 
3001 	if (oo_order(s->min) > get_order(s->object_size))
3002 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
3003 			s->name);
3004 
3005 	for_each_kmem_cache_node(s, node, n) {
3006 		unsigned long nr_slabs;
3007 		unsigned long nr_objs;
3008 		unsigned long nr_free;
3009 
3010 		nr_free  = count_partial(n, count_free);
3011 		nr_slabs = node_nr_slabs(n);
3012 		nr_objs  = node_nr_objs(n);
3013 
3014 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3015 			node, nr_slabs, nr_objs, nr_free);
3016 	}
3017 }
3018 #else /* CONFIG_SLUB_DEBUG */
3019 static inline void
3020 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3021 #endif
3022 
3023 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3024 {
3025 	if (unlikely(slab_test_pfmemalloc(slab)))
3026 		return gfp_pfmemalloc_allowed(gfpflags);
3027 
3028 	return true;
3029 }
3030 
3031 #ifndef CONFIG_SLUB_TINY
3032 static inline bool
3033 __update_cpu_freelist_fast(struct kmem_cache *s,
3034 			   void *freelist_old, void *freelist_new,
3035 			   unsigned long tid)
3036 {
3037 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3038 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3039 
3040 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3041 					     &old.full, new.full);
3042 }
3043 
3044 /*
3045  * Check the slab->freelist and either transfer the freelist to the
3046  * per cpu freelist or deactivate the slab.
3047  *
3048  * The slab is still frozen if the return value is not NULL.
3049  *
3050  * If this function returns NULL then the slab has been unfrozen.
3051  */
3052 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3053 {
3054 	struct slab new;
3055 	unsigned long counters;
3056 	void *freelist;
3057 
3058 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3059 
3060 	do {
3061 		freelist = slab->freelist;
3062 		counters = slab->counters;
3063 
3064 		new.counters = counters;
3065 		VM_BUG_ON(!new.frozen);
3066 
3067 		new.inuse = slab->objects;
3068 		new.frozen = freelist != NULL;
3069 
3070 	} while (!__slab_update_freelist(s, slab,
3071 		freelist, counters,
3072 		NULL, new.counters,
3073 		"get_freelist"));
3074 
3075 	return freelist;
3076 }
3077 
3078 /*
3079  * Slow path. The lockless freelist is empty or we need to perform
3080  * debugging duties.
3081  *
3082  * Processing is still very fast if new objects have been freed to the
3083  * regular freelist. In that case we simply take over the regular freelist
3084  * as the lockless freelist and zap the regular freelist.
3085  *
3086  * If that is not working then we fall back to the partial lists. We take the
3087  * first element of the freelist as the object to allocate now and move the
3088  * rest of the freelist to the lockless freelist.
3089  *
3090  * And if we were unable to get a new slab from the partial slab lists then
3091  * we need to allocate a new slab. This is the slowest path since it involves
3092  * a call to the page allocator and the setup of a new slab.
3093  *
3094  * Version of __slab_alloc to use when we know that preemption is
3095  * already disabled (which is the case for bulk allocation).
3096  */
3097 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3098 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3099 {
3100 	void *freelist;
3101 	struct slab *slab;
3102 	unsigned long flags;
3103 	struct partial_context pc;
3104 
3105 	stat(s, ALLOC_SLOWPATH);
3106 
3107 reread_slab:
3108 
3109 	slab = READ_ONCE(c->slab);
3110 	if (!slab) {
3111 		/*
3112 		 * if the node is not online or has no normal memory, just
3113 		 * ignore the node constraint
3114 		 */
3115 		if (unlikely(node != NUMA_NO_NODE &&
3116 			     !node_isset(node, slab_nodes)))
3117 			node = NUMA_NO_NODE;
3118 		goto new_slab;
3119 	}
3120 redo:
3121 
3122 	if (unlikely(!node_match(slab, node))) {
3123 		/*
3124 		 * same as above but node_match() being false already
3125 		 * implies node != NUMA_NO_NODE
3126 		 */
3127 		if (!node_isset(node, slab_nodes)) {
3128 			node = NUMA_NO_NODE;
3129 		} else {
3130 			stat(s, ALLOC_NODE_MISMATCH);
3131 			goto deactivate_slab;
3132 		}
3133 	}
3134 
3135 	/*
3136 	 * By rights, we should be searching for a slab page that was
3137 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3138 	 * information when the page leaves the per-cpu allocator
3139 	 */
3140 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3141 		goto deactivate_slab;
3142 
3143 	/* must check again c->slab in case we got preempted and it changed */
3144 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3145 	if (unlikely(slab != c->slab)) {
3146 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3147 		goto reread_slab;
3148 	}
3149 	freelist = c->freelist;
3150 	if (freelist)
3151 		goto load_freelist;
3152 
3153 	freelist = get_freelist(s, slab);
3154 
3155 	if (!freelist) {
3156 		c->slab = NULL;
3157 		c->tid = next_tid(c->tid);
3158 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3159 		stat(s, DEACTIVATE_BYPASS);
3160 		goto new_slab;
3161 	}
3162 
3163 	stat(s, ALLOC_REFILL);
3164 
3165 load_freelist:
3166 
3167 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3168 
3169 	/*
3170 	 * freelist is pointing to the list of objects to be used.
3171 	 * slab is pointing to the slab from which the objects are obtained.
3172 	 * That slab must be frozen for per cpu allocations to work.
3173 	 */
3174 	VM_BUG_ON(!c->slab->frozen);
3175 	c->freelist = get_freepointer(s, freelist);
3176 	c->tid = next_tid(c->tid);
3177 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3178 	return freelist;
3179 
3180 deactivate_slab:
3181 
3182 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3183 	if (slab != c->slab) {
3184 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3185 		goto reread_slab;
3186 	}
3187 	freelist = c->freelist;
3188 	c->slab = NULL;
3189 	c->freelist = NULL;
3190 	c->tid = next_tid(c->tid);
3191 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3192 	deactivate_slab(s, slab, freelist);
3193 
3194 new_slab:
3195 
3196 	if (slub_percpu_partial(c)) {
3197 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3198 		if (unlikely(c->slab)) {
3199 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3200 			goto reread_slab;
3201 		}
3202 		if (unlikely(!slub_percpu_partial(c))) {
3203 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3204 			/* we were preempted and partial list got empty */
3205 			goto new_objects;
3206 		}
3207 
3208 		slab = c->slab = slub_percpu_partial(c);
3209 		slub_set_percpu_partial(c, slab);
3210 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3211 		stat(s, CPU_PARTIAL_ALLOC);
3212 		goto redo;
3213 	}
3214 
3215 new_objects:
3216 
3217 	pc.flags = gfpflags;
3218 	pc.slab = &slab;
3219 	pc.orig_size = orig_size;
3220 	freelist = get_partial(s, node, &pc);
3221 	if (freelist)
3222 		goto check_new_slab;
3223 
3224 	slub_put_cpu_ptr(s->cpu_slab);
3225 	slab = new_slab(s, gfpflags, node);
3226 	c = slub_get_cpu_ptr(s->cpu_slab);
3227 
3228 	if (unlikely(!slab)) {
3229 		slab_out_of_memory(s, gfpflags, node);
3230 		return NULL;
3231 	}
3232 
3233 	stat(s, ALLOC_SLAB);
3234 
3235 	if (kmem_cache_debug(s)) {
3236 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3237 
3238 		if (unlikely(!freelist))
3239 			goto new_objects;
3240 
3241 		if (s->flags & SLAB_STORE_USER)
3242 			set_track(s, freelist, TRACK_ALLOC, addr);
3243 
3244 		return freelist;
3245 	}
3246 
3247 	/*
3248 	 * No other reference to the slab yet so we can
3249 	 * muck around with it freely without cmpxchg
3250 	 */
3251 	freelist = slab->freelist;
3252 	slab->freelist = NULL;
3253 	slab->inuse = slab->objects;
3254 	slab->frozen = 1;
3255 
3256 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3257 
3258 check_new_slab:
3259 
3260 	if (kmem_cache_debug(s)) {
3261 		/*
3262 		 * For debug caches here we had to go through
3263 		 * alloc_single_from_partial() so just store the tracking info
3264 		 * and return the object
3265 		 */
3266 		if (s->flags & SLAB_STORE_USER)
3267 			set_track(s, freelist, TRACK_ALLOC, addr);
3268 
3269 		return freelist;
3270 	}
3271 
3272 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3273 		/*
3274 		 * For !pfmemalloc_match() case we don't load freelist so that
3275 		 * we don't make further mismatched allocations easier.
3276 		 */
3277 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3278 		return freelist;
3279 	}
3280 
3281 retry_load_slab:
3282 
3283 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3284 	if (unlikely(c->slab)) {
3285 		void *flush_freelist = c->freelist;
3286 		struct slab *flush_slab = c->slab;
3287 
3288 		c->slab = NULL;
3289 		c->freelist = NULL;
3290 		c->tid = next_tid(c->tid);
3291 
3292 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3293 
3294 		deactivate_slab(s, flush_slab, flush_freelist);
3295 
3296 		stat(s, CPUSLAB_FLUSH);
3297 
3298 		goto retry_load_slab;
3299 	}
3300 	c->slab = slab;
3301 
3302 	goto load_freelist;
3303 }
3304 
3305 /*
3306  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3307  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3308  * pointer.
3309  */
3310 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3311 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3312 {
3313 	void *p;
3314 
3315 #ifdef CONFIG_PREEMPT_COUNT
3316 	/*
3317 	 * We may have been preempted and rescheduled on a different
3318 	 * cpu before disabling preemption. Need to reload cpu area
3319 	 * pointer.
3320 	 */
3321 	c = slub_get_cpu_ptr(s->cpu_slab);
3322 #endif
3323 
3324 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3325 #ifdef CONFIG_PREEMPT_COUNT
3326 	slub_put_cpu_ptr(s->cpu_slab);
3327 #endif
3328 	return p;
3329 }
3330 
3331 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3332 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3333 {
3334 	struct kmem_cache_cpu *c;
3335 	struct slab *slab;
3336 	unsigned long tid;
3337 	void *object;
3338 
3339 redo:
3340 	/*
3341 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3342 	 * enabled. We may switch back and forth between cpus while
3343 	 * reading from one cpu area. That does not matter as long
3344 	 * as we end up on the original cpu again when doing the cmpxchg.
3345 	 *
3346 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3347 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3348 	 * the tid. If we are preempted and switched to another cpu between the
3349 	 * two reads, it's OK as the two are still associated with the same cpu
3350 	 * and cmpxchg later will validate the cpu.
3351 	 */
3352 	c = raw_cpu_ptr(s->cpu_slab);
3353 	tid = READ_ONCE(c->tid);
3354 
3355 	/*
3356 	 * Irqless object alloc/free algorithm used here depends on sequence
3357 	 * of fetching cpu_slab's data. tid should be fetched before anything
3358 	 * on c to guarantee that object and slab associated with previous tid
3359 	 * won't be used with current tid. If we fetch tid first, object and
3360 	 * slab could be one associated with next tid and our alloc/free
3361 	 * request will be failed. In this case, we will retry. So, no problem.
3362 	 */
3363 	barrier();
3364 
3365 	/*
3366 	 * The transaction ids are globally unique per cpu and per operation on
3367 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3368 	 * occurs on the right processor and that there was no operation on the
3369 	 * linked list in between.
3370 	 */
3371 
3372 	object = c->freelist;
3373 	slab = c->slab;
3374 
3375 	if (!USE_LOCKLESS_FAST_PATH() ||
3376 	    unlikely(!object || !slab || !node_match(slab, node))) {
3377 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3378 	} else {
3379 		void *next_object = get_freepointer_safe(s, object);
3380 
3381 		/*
3382 		 * The cmpxchg will only match if there was no additional
3383 		 * operation and if we are on the right processor.
3384 		 *
3385 		 * The cmpxchg does the following atomically (without lock
3386 		 * semantics!)
3387 		 * 1. Relocate first pointer to the current per cpu area.
3388 		 * 2. Verify that tid and freelist have not been changed
3389 		 * 3. If they were not changed replace tid and freelist
3390 		 *
3391 		 * Since this is without lock semantics the protection is only
3392 		 * against code executing on this cpu *not* from access by
3393 		 * other cpus.
3394 		 */
3395 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3396 			note_cmpxchg_failure("slab_alloc", s, tid);
3397 			goto redo;
3398 		}
3399 		prefetch_freepointer(s, next_object);
3400 		stat(s, ALLOC_FASTPATH);
3401 	}
3402 
3403 	return object;
3404 }
3405 #else /* CONFIG_SLUB_TINY */
3406 static void *__slab_alloc_node(struct kmem_cache *s,
3407 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3408 {
3409 	struct partial_context pc;
3410 	struct slab *slab;
3411 	void *object;
3412 
3413 	pc.flags = gfpflags;
3414 	pc.slab = &slab;
3415 	pc.orig_size = orig_size;
3416 	object = get_partial(s, node, &pc);
3417 
3418 	if (object)
3419 		return object;
3420 
3421 	slab = new_slab(s, gfpflags, node);
3422 	if (unlikely(!slab)) {
3423 		slab_out_of_memory(s, gfpflags, node);
3424 		return NULL;
3425 	}
3426 
3427 	object = alloc_single_from_new_slab(s, slab, orig_size);
3428 
3429 	return object;
3430 }
3431 #endif /* CONFIG_SLUB_TINY */
3432 
3433 /*
3434  * If the object has been wiped upon free, make sure it's fully initialized by
3435  * zeroing out freelist pointer.
3436  */
3437 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3438 						   void *obj)
3439 {
3440 	if (unlikely(slab_want_init_on_free(s)) && obj)
3441 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3442 			0, sizeof(void *));
3443 }
3444 
3445 /*
3446  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3447  * have the fastpath folded into their functions. So no function call
3448  * overhead for requests that can be satisfied on the fastpath.
3449  *
3450  * The fastpath works by first checking if the lockless freelist can be used.
3451  * If not then __slab_alloc is called for slow processing.
3452  *
3453  * Otherwise we can simply pick the next object from the lockless free list.
3454  */
3455 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3456 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3457 {
3458 	void *object;
3459 	struct obj_cgroup *objcg = NULL;
3460 	bool init = false;
3461 
3462 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3463 	if (!s)
3464 		return NULL;
3465 
3466 	object = kfence_alloc(s, orig_size, gfpflags);
3467 	if (unlikely(object))
3468 		goto out;
3469 
3470 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3471 
3472 	maybe_wipe_obj_freeptr(s, object);
3473 	init = slab_want_init_on_alloc(gfpflags, s);
3474 
3475 out:
3476 	/*
3477 	 * When init equals 'true', like for kzalloc() family, only
3478 	 * @orig_size bytes might be zeroed instead of s->object_size
3479 	 */
3480 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3481 
3482 	return object;
3483 }
3484 
3485 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3486 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3487 {
3488 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3489 }
3490 
3491 static __fastpath_inline
3492 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3493 			     gfp_t gfpflags)
3494 {
3495 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3496 
3497 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3498 
3499 	return ret;
3500 }
3501 
3502 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3503 {
3504 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3505 }
3506 EXPORT_SYMBOL(kmem_cache_alloc);
3507 
3508 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3509 			   gfp_t gfpflags)
3510 {
3511 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3512 }
3513 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3514 
3515 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3516 			      int node, size_t orig_size,
3517 			      unsigned long caller)
3518 {
3519 	return slab_alloc_node(s, NULL, gfpflags, node,
3520 			       caller, orig_size);
3521 }
3522 
3523 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3524 {
3525 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3526 
3527 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3528 
3529 	return ret;
3530 }
3531 EXPORT_SYMBOL(kmem_cache_alloc_node);
3532 
3533 static noinline void free_to_partial_list(
3534 	struct kmem_cache *s, struct slab *slab,
3535 	void *head, void *tail, int bulk_cnt,
3536 	unsigned long addr)
3537 {
3538 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3539 	struct slab *slab_free = NULL;
3540 	int cnt = bulk_cnt;
3541 	unsigned long flags;
3542 	depot_stack_handle_t handle = 0;
3543 
3544 	if (s->flags & SLAB_STORE_USER)
3545 		handle = set_track_prepare();
3546 
3547 	spin_lock_irqsave(&n->list_lock, flags);
3548 
3549 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3550 		void *prior = slab->freelist;
3551 
3552 		/* Perform the actual freeing while we still hold the locks */
3553 		slab->inuse -= cnt;
3554 		set_freepointer(s, tail, prior);
3555 		slab->freelist = head;
3556 
3557 		/*
3558 		 * If the slab is empty, and node's partial list is full,
3559 		 * it should be discarded anyway no matter it's on full or
3560 		 * partial list.
3561 		 */
3562 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3563 			slab_free = slab;
3564 
3565 		if (!prior) {
3566 			/* was on full list */
3567 			remove_full(s, n, slab);
3568 			if (!slab_free) {
3569 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3570 				stat(s, FREE_ADD_PARTIAL);
3571 			}
3572 		} else if (slab_free) {
3573 			remove_partial(n, slab);
3574 			stat(s, FREE_REMOVE_PARTIAL);
3575 		}
3576 	}
3577 
3578 	if (slab_free) {
3579 		/*
3580 		 * Update the counters while still holding n->list_lock to
3581 		 * prevent spurious validation warnings
3582 		 */
3583 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3584 	}
3585 
3586 	spin_unlock_irqrestore(&n->list_lock, flags);
3587 
3588 	if (slab_free) {
3589 		stat(s, FREE_SLAB);
3590 		free_slab(s, slab_free);
3591 	}
3592 }
3593 
3594 /*
3595  * Slow path handling. This may still be called frequently since objects
3596  * have a longer lifetime than the cpu slabs in most processing loads.
3597  *
3598  * So we still attempt to reduce cache line usage. Just take the slab
3599  * lock and free the item. If there is no additional partial slab
3600  * handling required then we can return immediately.
3601  */
3602 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3603 			void *head, void *tail, int cnt,
3604 			unsigned long addr)
3605 
3606 {
3607 	void *prior;
3608 	int was_frozen;
3609 	struct slab new;
3610 	unsigned long counters;
3611 	struct kmem_cache_node *n = NULL;
3612 	unsigned long flags;
3613 
3614 	stat(s, FREE_SLOWPATH);
3615 
3616 	if (kfence_free(head))
3617 		return;
3618 
3619 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3620 		free_to_partial_list(s, slab, head, tail, cnt, addr);
3621 		return;
3622 	}
3623 
3624 	do {
3625 		if (unlikely(n)) {
3626 			spin_unlock_irqrestore(&n->list_lock, flags);
3627 			n = NULL;
3628 		}
3629 		prior = slab->freelist;
3630 		counters = slab->counters;
3631 		set_freepointer(s, tail, prior);
3632 		new.counters = counters;
3633 		was_frozen = new.frozen;
3634 		new.inuse -= cnt;
3635 		if ((!new.inuse || !prior) && !was_frozen) {
3636 
3637 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3638 
3639 				/*
3640 				 * Slab was on no list before and will be
3641 				 * partially empty
3642 				 * We can defer the list move and instead
3643 				 * freeze it.
3644 				 */
3645 				new.frozen = 1;
3646 
3647 			} else { /* Needs to be taken off a list */
3648 
3649 				n = get_node(s, slab_nid(slab));
3650 				/*
3651 				 * Speculatively acquire the list_lock.
3652 				 * If the cmpxchg does not succeed then we may
3653 				 * drop the list_lock without any processing.
3654 				 *
3655 				 * Otherwise the list_lock will synchronize with
3656 				 * other processors updating the list of slabs.
3657 				 */
3658 				spin_lock_irqsave(&n->list_lock, flags);
3659 
3660 			}
3661 		}
3662 
3663 	} while (!slab_update_freelist(s, slab,
3664 		prior, counters,
3665 		head, new.counters,
3666 		"__slab_free"));
3667 
3668 	if (likely(!n)) {
3669 
3670 		if (likely(was_frozen)) {
3671 			/*
3672 			 * The list lock was not taken therefore no list
3673 			 * activity can be necessary.
3674 			 */
3675 			stat(s, FREE_FROZEN);
3676 		} else if (new.frozen) {
3677 			/*
3678 			 * If we just froze the slab then put it onto the
3679 			 * per cpu partial list.
3680 			 */
3681 			put_cpu_partial(s, slab, 1);
3682 			stat(s, CPU_PARTIAL_FREE);
3683 		}
3684 
3685 		return;
3686 	}
3687 
3688 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3689 		goto slab_empty;
3690 
3691 	/*
3692 	 * Objects left in the slab. If it was not on the partial list before
3693 	 * then add it.
3694 	 */
3695 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3696 		remove_full(s, n, slab);
3697 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3698 		stat(s, FREE_ADD_PARTIAL);
3699 	}
3700 	spin_unlock_irqrestore(&n->list_lock, flags);
3701 	return;
3702 
3703 slab_empty:
3704 	if (prior) {
3705 		/*
3706 		 * Slab on the partial list.
3707 		 */
3708 		remove_partial(n, slab);
3709 		stat(s, FREE_REMOVE_PARTIAL);
3710 	} else {
3711 		/* Slab must be on the full list */
3712 		remove_full(s, n, slab);
3713 	}
3714 
3715 	spin_unlock_irqrestore(&n->list_lock, flags);
3716 	stat(s, FREE_SLAB);
3717 	discard_slab(s, slab);
3718 }
3719 
3720 #ifndef CONFIG_SLUB_TINY
3721 /*
3722  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3723  * can perform fastpath freeing without additional function calls.
3724  *
3725  * The fastpath is only possible if we are freeing to the current cpu slab
3726  * of this processor. This typically the case if we have just allocated
3727  * the item before.
3728  *
3729  * If fastpath is not possible then fall back to __slab_free where we deal
3730  * with all sorts of special processing.
3731  *
3732  * Bulk free of a freelist with several objects (all pointing to the
3733  * same slab) possible by specifying head and tail ptr, plus objects
3734  * count (cnt). Bulk free indicated by tail pointer being set.
3735  */
3736 static __always_inline void do_slab_free(struct kmem_cache *s,
3737 				struct slab *slab, void *head, void *tail,
3738 				int cnt, unsigned long addr)
3739 {
3740 	void *tail_obj = tail ? : head;
3741 	struct kmem_cache_cpu *c;
3742 	unsigned long tid;
3743 	void **freelist;
3744 
3745 redo:
3746 	/*
3747 	 * Determine the currently cpus per cpu slab.
3748 	 * The cpu may change afterward. However that does not matter since
3749 	 * data is retrieved via this pointer. If we are on the same cpu
3750 	 * during the cmpxchg then the free will succeed.
3751 	 */
3752 	c = raw_cpu_ptr(s->cpu_slab);
3753 	tid = READ_ONCE(c->tid);
3754 
3755 	/* Same with comment on barrier() in slab_alloc_node() */
3756 	barrier();
3757 
3758 	if (unlikely(slab != c->slab)) {
3759 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3760 		return;
3761 	}
3762 
3763 	if (USE_LOCKLESS_FAST_PATH()) {
3764 		freelist = READ_ONCE(c->freelist);
3765 
3766 		set_freepointer(s, tail_obj, freelist);
3767 
3768 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3769 			note_cmpxchg_failure("slab_free", s, tid);
3770 			goto redo;
3771 		}
3772 	} else {
3773 		/* Update the free list under the local lock */
3774 		local_lock(&s->cpu_slab->lock);
3775 		c = this_cpu_ptr(s->cpu_slab);
3776 		if (unlikely(slab != c->slab)) {
3777 			local_unlock(&s->cpu_slab->lock);
3778 			goto redo;
3779 		}
3780 		tid = c->tid;
3781 		freelist = c->freelist;
3782 
3783 		set_freepointer(s, tail_obj, freelist);
3784 		c->freelist = head;
3785 		c->tid = next_tid(tid);
3786 
3787 		local_unlock(&s->cpu_slab->lock);
3788 	}
3789 	stat(s, FREE_FASTPATH);
3790 }
3791 #else /* CONFIG_SLUB_TINY */
3792 static void do_slab_free(struct kmem_cache *s,
3793 				struct slab *slab, void *head, void *tail,
3794 				int cnt, unsigned long addr)
3795 {
3796 	void *tail_obj = tail ? : head;
3797 
3798 	__slab_free(s, slab, head, tail_obj, cnt, addr);
3799 }
3800 #endif /* CONFIG_SLUB_TINY */
3801 
3802 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3803 				      void *head, void *tail, void **p, int cnt,
3804 				      unsigned long addr)
3805 {
3806 	memcg_slab_free_hook(s, slab, p, cnt);
3807 	/*
3808 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3809 	 * to remove objects, whose reuse must be delayed.
3810 	 */
3811 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3812 		do_slab_free(s, slab, head, tail, cnt, addr);
3813 }
3814 
3815 #ifdef CONFIG_KASAN_GENERIC
3816 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3817 {
3818 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3819 }
3820 #endif
3821 
3822 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3823 {
3824 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3825 }
3826 
3827 void kmem_cache_free(struct kmem_cache *s, void *x)
3828 {
3829 	s = cache_from_obj(s, x);
3830 	if (!s)
3831 		return;
3832 	trace_kmem_cache_free(_RET_IP_, x, s);
3833 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3834 }
3835 EXPORT_SYMBOL(kmem_cache_free);
3836 
3837 struct detached_freelist {
3838 	struct slab *slab;
3839 	void *tail;
3840 	void *freelist;
3841 	int cnt;
3842 	struct kmem_cache *s;
3843 };
3844 
3845 /*
3846  * This function progressively scans the array with free objects (with
3847  * a limited look ahead) and extract objects belonging to the same
3848  * slab.  It builds a detached freelist directly within the given
3849  * slab/objects.  This can happen without any need for
3850  * synchronization, because the objects are owned by running process.
3851  * The freelist is build up as a single linked list in the objects.
3852  * The idea is, that this detached freelist can then be bulk
3853  * transferred to the real freelist(s), but only requiring a single
3854  * synchronization primitive.  Look ahead in the array is limited due
3855  * to performance reasons.
3856  */
3857 static inline
3858 int build_detached_freelist(struct kmem_cache *s, size_t size,
3859 			    void **p, struct detached_freelist *df)
3860 {
3861 	int lookahead = 3;
3862 	void *object;
3863 	struct folio *folio;
3864 	size_t same;
3865 
3866 	object = p[--size];
3867 	folio = virt_to_folio(object);
3868 	if (!s) {
3869 		/* Handle kalloc'ed objects */
3870 		if (unlikely(!folio_test_slab(folio))) {
3871 			free_large_kmalloc(folio, object);
3872 			df->slab = NULL;
3873 			return size;
3874 		}
3875 		/* Derive kmem_cache from object */
3876 		df->slab = folio_slab(folio);
3877 		df->s = df->slab->slab_cache;
3878 	} else {
3879 		df->slab = folio_slab(folio);
3880 		df->s = cache_from_obj(s, object); /* Support for memcg */
3881 	}
3882 
3883 	/* Start new detached freelist */
3884 	df->tail = object;
3885 	df->freelist = object;
3886 	df->cnt = 1;
3887 
3888 	if (is_kfence_address(object))
3889 		return size;
3890 
3891 	set_freepointer(df->s, object, NULL);
3892 
3893 	same = size;
3894 	while (size) {
3895 		object = p[--size];
3896 		/* df->slab is always set at this point */
3897 		if (df->slab == virt_to_slab(object)) {
3898 			/* Opportunity build freelist */
3899 			set_freepointer(df->s, object, df->freelist);
3900 			df->freelist = object;
3901 			df->cnt++;
3902 			same--;
3903 			if (size != same)
3904 				swap(p[size], p[same]);
3905 			continue;
3906 		}
3907 
3908 		/* Limit look ahead search */
3909 		if (!--lookahead)
3910 			break;
3911 	}
3912 
3913 	return same;
3914 }
3915 
3916 /* Note that interrupts must be enabled when calling this function. */
3917 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3918 {
3919 	if (!size)
3920 		return;
3921 
3922 	do {
3923 		struct detached_freelist df;
3924 
3925 		size = build_detached_freelist(s, size, p, &df);
3926 		if (!df.slab)
3927 			continue;
3928 
3929 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3930 			  _RET_IP_);
3931 	} while (likely(size));
3932 }
3933 EXPORT_SYMBOL(kmem_cache_free_bulk);
3934 
3935 #ifndef CONFIG_SLUB_TINY
3936 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3937 			size_t size, void **p, struct obj_cgroup *objcg)
3938 {
3939 	struct kmem_cache_cpu *c;
3940 	unsigned long irqflags;
3941 	int i;
3942 
3943 	/*
3944 	 * Drain objects in the per cpu slab, while disabling local
3945 	 * IRQs, which protects against PREEMPT and interrupts
3946 	 * handlers invoking normal fastpath.
3947 	 */
3948 	c = slub_get_cpu_ptr(s->cpu_slab);
3949 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3950 
3951 	for (i = 0; i < size; i++) {
3952 		void *object = kfence_alloc(s, s->object_size, flags);
3953 
3954 		if (unlikely(object)) {
3955 			p[i] = object;
3956 			continue;
3957 		}
3958 
3959 		object = c->freelist;
3960 		if (unlikely(!object)) {
3961 			/*
3962 			 * We may have removed an object from c->freelist using
3963 			 * the fastpath in the previous iteration; in that case,
3964 			 * c->tid has not been bumped yet.
3965 			 * Since ___slab_alloc() may reenable interrupts while
3966 			 * allocating memory, we should bump c->tid now.
3967 			 */
3968 			c->tid = next_tid(c->tid);
3969 
3970 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3971 
3972 			/*
3973 			 * Invoking slow path likely have side-effect
3974 			 * of re-populating per CPU c->freelist
3975 			 */
3976 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3977 					    _RET_IP_, c, s->object_size);
3978 			if (unlikely(!p[i]))
3979 				goto error;
3980 
3981 			c = this_cpu_ptr(s->cpu_slab);
3982 			maybe_wipe_obj_freeptr(s, p[i]);
3983 
3984 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3985 
3986 			continue; /* goto for-loop */
3987 		}
3988 		c->freelist = get_freepointer(s, object);
3989 		p[i] = object;
3990 		maybe_wipe_obj_freeptr(s, p[i]);
3991 	}
3992 	c->tid = next_tid(c->tid);
3993 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3994 	slub_put_cpu_ptr(s->cpu_slab);
3995 
3996 	return i;
3997 
3998 error:
3999 	slub_put_cpu_ptr(s->cpu_slab);
4000 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4001 	kmem_cache_free_bulk(s, i, p);
4002 	return 0;
4003 
4004 }
4005 #else /* CONFIG_SLUB_TINY */
4006 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4007 			size_t size, void **p, struct obj_cgroup *objcg)
4008 {
4009 	int i;
4010 
4011 	for (i = 0; i < size; i++) {
4012 		void *object = kfence_alloc(s, s->object_size, flags);
4013 
4014 		if (unlikely(object)) {
4015 			p[i] = object;
4016 			continue;
4017 		}
4018 
4019 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4020 					 _RET_IP_, s->object_size);
4021 		if (unlikely(!p[i]))
4022 			goto error;
4023 
4024 		maybe_wipe_obj_freeptr(s, p[i]);
4025 	}
4026 
4027 	return i;
4028 
4029 error:
4030 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4031 	kmem_cache_free_bulk(s, i, p);
4032 	return 0;
4033 }
4034 #endif /* CONFIG_SLUB_TINY */
4035 
4036 /* Note that interrupts must be enabled when calling this function. */
4037 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4038 			  void **p)
4039 {
4040 	int i;
4041 	struct obj_cgroup *objcg = NULL;
4042 
4043 	if (!size)
4044 		return 0;
4045 
4046 	/* memcg and kmem_cache debug support */
4047 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4048 	if (unlikely(!s))
4049 		return 0;
4050 
4051 	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4052 
4053 	/*
4054 	 * memcg and kmem_cache debug support and memory initialization.
4055 	 * Done outside of the IRQ disabled fastpath loop.
4056 	 */
4057 	if (i != 0)
4058 		slab_post_alloc_hook(s, objcg, flags, size, p,
4059 			slab_want_init_on_alloc(flags, s), s->object_size);
4060 	return i;
4061 }
4062 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4063 
4064 
4065 /*
4066  * Object placement in a slab is made very easy because we always start at
4067  * offset 0. If we tune the size of the object to the alignment then we can
4068  * get the required alignment by putting one properly sized object after
4069  * another.
4070  *
4071  * Notice that the allocation order determines the sizes of the per cpu
4072  * caches. Each processor has always one slab available for allocations.
4073  * Increasing the allocation order reduces the number of times that slabs
4074  * must be moved on and off the partial lists and is therefore a factor in
4075  * locking overhead.
4076  */
4077 
4078 /*
4079  * Minimum / Maximum order of slab pages. This influences locking overhead
4080  * and slab fragmentation. A higher order reduces the number of partial slabs
4081  * and increases the number of allocations possible without having to
4082  * take the list_lock.
4083  */
4084 static unsigned int slub_min_order;
4085 static unsigned int slub_max_order =
4086 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4087 static unsigned int slub_min_objects;
4088 
4089 /*
4090  * Calculate the order of allocation given an slab object size.
4091  *
4092  * The order of allocation has significant impact on performance and other
4093  * system components. Generally order 0 allocations should be preferred since
4094  * order 0 does not cause fragmentation in the page allocator. Larger objects
4095  * be problematic to put into order 0 slabs because there may be too much
4096  * unused space left. We go to a higher order if more than 1/16th of the slab
4097  * would be wasted.
4098  *
4099  * In order to reach satisfactory performance we must ensure that a minimum
4100  * number of objects is in one slab. Otherwise we may generate too much
4101  * activity on the partial lists which requires taking the list_lock. This is
4102  * less a concern for large slabs though which are rarely used.
4103  *
4104  * slub_max_order specifies the order where we begin to stop considering the
4105  * number of objects in a slab as critical. If we reach slub_max_order then
4106  * we try to keep the page order as low as possible. So we accept more waste
4107  * of space in favor of a small page order.
4108  *
4109  * Higher order allocations also allow the placement of more objects in a
4110  * slab and thereby reduce object handling overhead. If the user has
4111  * requested a higher minimum order then we start with that one instead of
4112  * the smallest order which will fit the object.
4113  */
4114 static inline unsigned int calc_slab_order(unsigned int size,
4115 		unsigned int min_objects, unsigned int max_order,
4116 		unsigned int fract_leftover)
4117 {
4118 	unsigned int min_order = slub_min_order;
4119 	unsigned int order;
4120 
4121 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4122 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4123 
4124 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4125 			order <= max_order; order++) {
4126 
4127 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4128 		unsigned int rem;
4129 
4130 		rem = slab_size % size;
4131 
4132 		if (rem <= slab_size / fract_leftover)
4133 			break;
4134 	}
4135 
4136 	return order;
4137 }
4138 
4139 static inline int calculate_order(unsigned int size)
4140 {
4141 	unsigned int order;
4142 	unsigned int min_objects;
4143 	unsigned int max_objects;
4144 	unsigned int nr_cpus;
4145 
4146 	/*
4147 	 * Attempt to find best configuration for a slab. This
4148 	 * works by first attempting to generate a layout with
4149 	 * the best configuration and backing off gradually.
4150 	 *
4151 	 * First we increase the acceptable waste in a slab. Then
4152 	 * we reduce the minimum objects required in a slab.
4153 	 */
4154 	min_objects = slub_min_objects;
4155 	if (!min_objects) {
4156 		/*
4157 		 * Some architectures will only update present cpus when
4158 		 * onlining them, so don't trust the number if it's just 1. But
4159 		 * we also don't want to use nr_cpu_ids always, as on some other
4160 		 * architectures, there can be many possible cpus, but never
4161 		 * onlined. Here we compromise between trying to avoid too high
4162 		 * order on systems that appear larger than they are, and too
4163 		 * low order on systems that appear smaller than they are.
4164 		 */
4165 		nr_cpus = num_present_cpus();
4166 		if (nr_cpus <= 1)
4167 			nr_cpus = nr_cpu_ids;
4168 		min_objects = 4 * (fls(nr_cpus) + 1);
4169 	}
4170 	max_objects = order_objects(slub_max_order, size);
4171 	min_objects = min(min_objects, max_objects);
4172 
4173 	while (min_objects > 1) {
4174 		unsigned int fraction;
4175 
4176 		fraction = 16;
4177 		while (fraction >= 4) {
4178 			order = calc_slab_order(size, min_objects,
4179 					slub_max_order, fraction);
4180 			if (order <= slub_max_order)
4181 				return order;
4182 			fraction /= 2;
4183 		}
4184 		min_objects--;
4185 	}
4186 
4187 	/*
4188 	 * We were unable to place multiple objects in a slab. Now
4189 	 * lets see if we can place a single object there.
4190 	 */
4191 	order = calc_slab_order(size, 1, slub_max_order, 1);
4192 	if (order <= slub_max_order)
4193 		return order;
4194 
4195 	/*
4196 	 * Doh this slab cannot be placed using slub_max_order.
4197 	 */
4198 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4199 	if (order <= MAX_ORDER)
4200 		return order;
4201 	return -ENOSYS;
4202 }
4203 
4204 static void
4205 init_kmem_cache_node(struct kmem_cache_node *n)
4206 {
4207 	n->nr_partial = 0;
4208 	spin_lock_init(&n->list_lock);
4209 	INIT_LIST_HEAD(&n->partial);
4210 #ifdef CONFIG_SLUB_DEBUG
4211 	atomic_long_set(&n->nr_slabs, 0);
4212 	atomic_long_set(&n->total_objects, 0);
4213 	INIT_LIST_HEAD(&n->full);
4214 #endif
4215 }
4216 
4217 #ifndef CONFIG_SLUB_TINY
4218 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4219 {
4220 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4221 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4222 			sizeof(struct kmem_cache_cpu));
4223 
4224 	/*
4225 	 * Must align to double word boundary for the double cmpxchg
4226 	 * instructions to work; see __pcpu_double_call_return_bool().
4227 	 */
4228 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4229 				     2 * sizeof(void *));
4230 
4231 	if (!s->cpu_slab)
4232 		return 0;
4233 
4234 	init_kmem_cache_cpus(s);
4235 
4236 	return 1;
4237 }
4238 #else
4239 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4240 {
4241 	return 1;
4242 }
4243 #endif /* CONFIG_SLUB_TINY */
4244 
4245 static struct kmem_cache *kmem_cache_node;
4246 
4247 /*
4248  * No kmalloc_node yet so do it by hand. We know that this is the first
4249  * slab on the node for this slabcache. There are no concurrent accesses
4250  * possible.
4251  *
4252  * Note that this function only works on the kmem_cache_node
4253  * when allocating for the kmem_cache_node. This is used for bootstrapping
4254  * memory on a fresh node that has no slab structures yet.
4255  */
4256 static void early_kmem_cache_node_alloc(int node)
4257 {
4258 	struct slab *slab;
4259 	struct kmem_cache_node *n;
4260 
4261 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4262 
4263 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4264 
4265 	BUG_ON(!slab);
4266 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4267 	if (slab_nid(slab) != node) {
4268 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4269 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4270 	}
4271 
4272 	n = slab->freelist;
4273 	BUG_ON(!n);
4274 #ifdef CONFIG_SLUB_DEBUG
4275 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4276 	init_tracking(kmem_cache_node, n);
4277 #endif
4278 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4279 	slab->freelist = get_freepointer(kmem_cache_node, n);
4280 	slab->inuse = 1;
4281 	kmem_cache_node->node[node] = n;
4282 	init_kmem_cache_node(n);
4283 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4284 
4285 	/*
4286 	 * No locks need to be taken here as it has just been
4287 	 * initialized and there is no concurrent access.
4288 	 */
4289 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4290 }
4291 
4292 static void free_kmem_cache_nodes(struct kmem_cache *s)
4293 {
4294 	int node;
4295 	struct kmem_cache_node *n;
4296 
4297 	for_each_kmem_cache_node(s, node, n) {
4298 		s->node[node] = NULL;
4299 		kmem_cache_free(kmem_cache_node, n);
4300 	}
4301 }
4302 
4303 void __kmem_cache_release(struct kmem_cache *s)
4304 {
4305 	cache_random_seq_destroy(s);
4306 #ifndef CONFIG_SLUB_TINY
4307 	free_percpu(s->cpu_slab);
4308 #endif
4309 	free_kmem_cache_nodes(s);
4310 }
4311 
4312 static int init_kmem_cache_nodes(struct kmem_cache *s)
4313 {
4314 	int node;
4315 
4316 	for_each_node_mask(node, slab_nodes) {
4317 		struct kmem_cache_node *n;
4318 
4319 		if (slab_state == DOWN) {
4320 			early_kmem_cache_node_alloc(node);
4321 			continue;
4322 		}
4323 		n = kmem_cache_alloc_node(kmem_cache_node,
4324 						GFP_KERNEL, node);
4325 
4326 		if (!n) {
4327 			free_kmem_cache_nodes(s);
4328 			return 0;
4329 		}
4330 
4331 		init_kmem_cache_node(n);
4332 		s->node[node] = n;
4333 	}
4334 	return 1;
4335 }
4336 
4337 static void set_cpu_partial(struct kmem_cache *s)
4338 {
4339 #ifdef CONFIG_SLUB_CPU_PARTIAL
4340 	unsigned int nr_objects;
4341 
4342 	/*
4343 	 * cpu_partial determined the maximum number of objects kept in the
4344 	 * per cpu partial lists of a processor.
4345 	 *
4346 	 * Per cpu partial lists mainly contain slabs that just have one
4347 	 * object freed. If they are used for allocation then they can be
4348 	 * filled up again with minimal effort. The slab will never hit the
4349 	 * per node partial lists and therefore no locking will be required.
4350 	 *
4351 	 * For backwards compatibility reasons, this is determined as number
4352 	 * of objects, even though we now limit maximum number of pages, see
4353 	 * slub_set_cpu_partial()
4354 	 */
4355 	if (!kmem_cache_has_cpu_partial(s))
4356 		nr_objects = 0;
4357 	else if (s->size >= PAGE_SIZE)
4358 		nr_objects = 6;
4359 	else if (s->size >= 1024)
4360 		nr_objects = 24;
4361 	else if (s->size >= 256)
4362 		nr_objects = 52;
4363 	else
4364 		nr_objects = 120;
4365 
4366 	slub_set_cpu_partial(s, nr_objects);
4367 #endif
4368 }
4369 
4370 /*
4371  * calculate_sizes() determines the order and the distribution of data within
4372  * a slab object.
4373  */
4374 static int calculate_sizes(struct kmem_cache *s)
4375 {
4376 	slab_flags_t flags = s->flags;
4377 	unsigned int size = s->object_size;
4378 	unsigned int order;
4379 
4380 	/*
4381 	 * Round up object size to the next word boundary. We can only
4382 	 * place the free pointer at word boundaries and this determines
4383 	 * the possible location of the free pointer.
4384 	 */
4385 	size = ALIGN(size, sizeof(void *));
4386 
4387 #ifdef CONFIG_SLUB_DEBUG
4388 	/*
4389 	 * Determine if we can poison the object itself. If the user of
4390 	 * the slab may touch the object after free or before allocation
4391 	 * then we should never poison the object itself.
4392 	 */
4393 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4394 			!s->ctor)
4395 		s->flags |= __OBJECT_POISON;
4396 	else
4397 		s->flags &= ~__OBJECT_POISON;
4398 
4399 
4400 	/*
4401 	 * If we are Redzoning then check if there is some space between the
4402 	 * end of the object and the free pointer. If not then add an
4403 	 * additional word to have some bytes to store Redzone information.
4404 	 */
4405 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4406 		size += sizeof(void *);
4407 #endif
4408 
4409 	/*
4410 	 * With that we have determined the number of bytes in actual use
4411 	 * by the object and redzoning.
4412 	 */
4413 	s->inuse = size;
4414 
4415 	if (slub_debug_orig_size(s) ||
4416 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4417 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4418 	    s->ctor) {
4419 		/*
4420 		 * Relocate free pointer after the object if it is not
4421 		 * permitted to overwrite the first word of the object on
4422 		 * kmem_cache_free.
4423 		 *
4424 		 * This is the case if we do RCU, have a constructor or
4425 		 * destructor, are poisoning the objects, or are
4426 		 * redzoning an object smaller than sizeof(void *).
4427 		 *
4428 		 * The assumption that s->offset >= s->inuse means free
4429 		 * pointer is outside of the object is used in the
4430 		 * freeptr_outside_object() function. If that is no
4431 		 * longer true, the function needs to be modified.
4432 		 */
4433 		s->offset = size;
4434 		size += sizeof(void *);
4435 	} else {
4436 		/*
4437 		 * Store freelist pointer near middle of object to keep
4438 		 * it away from the edges of the object to avoid small
4439 		 * sized over/underflows from neighboring allocations.
4440 		 */
4441 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4442 	}
4443 
4444 #ifdef CONFIG_SLUB_DEBUG
4445 	if (flags & SLAB_STORE_USER) {
4446 		/*
4447 		 * Need to store information about allocs and frees after
4448 		 * the object.
4449 		 */
4450 		size += 2 * sizeof(struct track);
4451 
4452 		/* Save the original kmalloc request size */
4453 		if (flags & SLAB_KMALLOC)
4454 			size += sizeof(unsigned int);
4455 	}
4456 #endif
4457 
4458 	kasan_cache_create(s, &size, &s->flags);
4459 #ifdef CONFIG_SLUB_DEBUG
4460 	if (flags & SLAB_RED_ZONE) {
4461 		/*
4462 		 * Add some empty padding so that we can catch
4463 		 * overwrites from earlier objects rather than let
4464 		 * tracking information or the free pointer be
4465 		 * corrupted if a user writes before the start
4466 		 * of the object.
4467 		 */
4468 		size += sizeof(void *);
4469 
4470 		s->red_left_pad = sizeof(void *);
4471 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4472 		size += s->red_left_pad;
4473 	}
4474 #endif
4475 
4476 	/*
4477 	 * SLUB stores one object immediately after another beginning from
4478 	 * offset 0. In order to align the objects we have to simply size
4479 	 * each object to conform to the alignment.
4480 	 */
4481 	size = ALIGN(size, s->align);
4482 	s->size = size;
4483 	s->reciprocal_size = reciprocal_value(size);
4484 	order = calculate_order(size);
4485 
4486 	if ((int)order < 0)
4487 		return 0;
4488 
4489 	s->allocflags = 0;
4490 	if (order)
4491 		s->allocflags |= __GFP_COMP;
4492 
4493 	if (s->flags & SLAB_CACHE_DMA)
4494 		s->allocflags |= GFP_DMA;
4495 
4496 	if (s->flags & SLAB_CACHE_DMA32)
4497 		s->allocflags |= GFP_DMA32;
4498 
4499 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4500 		s->allocflags |= __GFP_RECLAIMABLE;
4501 
4502 	/*
4503 	 * Determine the number of objects per slab
4504 	 */
4505 	s->oo = oo_make(order, size);
4506 	s->min = oo_make(get_order(size), size);
4507 
4508 	return !!oo_objects(s->oo);
4509 }
4510 
4511 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4512 {
4513 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4514 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4515 	s->random = get_random_long();
4516 #endif
4517 
4518 	if (!calculate_sizes(s))
4519 		goto error;
4520 	if (disable_higher_order_debug) {
4521 		/*
4522 		 * Disable debugging flags that store metadata if the min slab
4523 		 * order increased.
4524 		 */
4525 		if (get_order(s->size) > get_order(s->object_size)) {
4526 			s->flags &= ~DEBUG_METADATA_FLAGS;
4527 			s->offset = 0;
4528 			if (!calculate_sizes(s))
4529 				goto error;
4530 		}
4531 	}
4532 
4533 #ifdef system_has_freelist_aba
4534 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4535 		/* Enable fast mode */
4536 		s->flags |= __CMPXCHG_DOUBLE;
4537 	}
4538 #endif
4539 
4540 	/*
4541 	 * The larger the object size is, the more slabs we want on the partial
4542 	 * list to avoid pounding the page allocator excessively.
4543 	 */
4544 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4545 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4546 
4547 	set_cpu_partial(s);
4548 
4549 #ifdef CONFIG_NUMA
4550 	s->remote_node_defrag_ratio = 1000;
4551 #endif
4552 
4553 	/* Initialize the pre-computed randomized freelist if slab is up */
4554 	if (slab_state >= UP) {
4555 		if (init_cache_random_seq(s))
4556 			goto error;
4557 	}
4558 
4559 	if (!init_kmem_cache_nodes(s))
4560 		goto error;
4561 
4562 	if (alloc_kmem_cache_cpus(s))
4563 		return 0;
4564 
4565 error:
4566 	__kmem_cache_release(s);
4567 	return -EINVAL;
4568 }
4569 
4570 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4571 			      const char *text)
4572 {
4573 #ifdef CONFIG_SLUB_DEBUG
4574 	void *addr = slab_address(slab);
4575 	void *p;
4576 
4577 	slab_err(s, slab, text, s->name);
4578 
4579 	spin_lock(&object_map_lock);
4580 	__fill_map(object_map, s, slab);
4581 
4582 	for_each_object(p, s, addr, slab->objects) {
4583 
4584 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4585 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4586 			print_tracking(s, p);
4587 		}
4588 	}
4589 	spin_unlock(&object_map_lock);
4590 #endif
4591 }
4592 
4593 /*
4594  * Attempt to free all partial slabs on a node.
4595  * This is called from __kmem_cache_shutdown(). We must take list_lock
4596  * because sysfs file might still access partial list after the shutdowning.
4597  */
4598 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4599 {
4600 	LIST_HEAD(discard);
4601 	struct slab *slab, *h;
4602 
4603 	BUG_ON(irqs_disabled());
4604 	spin_lock_irq(&n->list_lock);
4605 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4606 		if (!slab->inuse) {
4607 			remove_partial(n, slab);
4608 			list_add(&slab->slab_list, &discard);
4609 		} else {
4610 			list_slab_objects(s, slab,
4611 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4612 		}
4613 	}
4614 	spin_unlock_irq(&n->list_lock);
4615 
4616 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4617 		discard_slab(s, slab);
4618 }
4619 
4620 bool __kmem_cache_empty(struct kmem_cache *s)
4621 {
4622 	int node;
4623 	struct kmem_cache_node *n;
4624 
4625 	for_each_kmem_cache_node(s, node, n)
4626 		if (n->nr_partial || slabs_node(s, node))
4627 			return false;
4628 	return true;
4629 }
4630 
4631 /*
4632  * Release all resources used by a slab cache.
4633  */
4634 int __kmem_cache_shutdown(struct kmem_cache *s)
4635 {
4636 	int node;
4637 	struct kmem_cache_node *n;
4638 
4639 	flush_all_cpus_locked(s);
4640 	/* Attempt to free all objects */
4641 	for_each_kmem_cache_node(s, node, n) {
4642 		free_partial(s, n);
4643 		if (n->nr_partial || slabs_node(s, node))
4644 			return 1;
4645 	}
4646 	return 0;
4647 }
4648 
4649 #ifdef CONFIG_PRINTK
4650 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4651 {
4652 	void *base;
4653 	int __maybe_unused i;
4654 	unsigned int objnr;
4655 	void *objp;
4656 	void *objp0;
4657 	struct kmem_cache *s = slab->slab_cache;
4658 	struct track __maybe_unused *trackp;
4659 
4660 	kpp->kp_ptr = object;
4661 	kpp->kp_slab = slab;
4662 	kpp->kp_slab_cache = s;
4663 	base = slab_address(slab);
4664 	objp0 = kasan_reset_tag(object);
4665 #ifdef CONFIG_SLUB_DEBUG
4666 	objp = restore_red_left(s, objp0);
4667 #else
4668 	objp = objp0;
4669 #endif
4670 	objnr = obj_to_index(s, slab, objp);
4671 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4672 	objp = base + s->size * objnr;
4673 	kpp->kp_objp = objp;
4674 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4675 			 || (objp - base) % s->size) ||
4676 	    !(s->flags & SLAB_STORE_USER))
4677 		return;
4678 #ifdef CONFIG_SLUB_DEBUG
4679 	objp = fixup_red_left(s, objp);
4680 	trackp = get_track(s, objp, TRACK_ALLOC);
4681 	kpp->kp_ret = (void *)trackp->addr;
4682 #ifdef CONFIG_STACKDEPOT
4683 	{
4684 		depot_stack_handle_t handle;
4685 		unsigned long *entries;
4686 		unsigned int nr_entries;
4687 
4688 		handle = READ_ONCE(trackp->handle);
4689 		if (handle) {
4690 			nr_entries = stack_depot_fetch(handle, &entries);
4691 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4692 				kpp->kp_stack[i] = (void *)entries[i];
4693 		}
4694 
4695 		trackp = get_track(s, objp, TRACK_FREE);
4696 		handle = READ_ONCE(trackp->handle);
4697 		if (handle) {
4698 			nr_entries = stack_depot_fetch(handle, &entries);
4699 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4700 				kpp->kp_free_stack[i] = (void *)entries[i];
4701 		}
4702 	}
4703 #endif
4704 #endif
4705 }
4706 #endif
4707 
4708 /********************************************************************
4709  *		Kmalloc subsystem
4710  *******************************************************************/
4711 
4712 static int __init setup_slub_min_order(char *str)
4713 {
4714 	get_option(&str, (int *)&slub_min_order);
4715 
4716 	return 1;
4717 }
4718 
4719 __setup("slub_min_order=", setup_slub_min_order);
4720 
4721 static int __init setup_slub_max_order(char *str)
4722 {
4723 	get_option(&str, (int *)&slub_max_order);
4724 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4725 
4726 	return 1;
4727 }
4728 
4729 __setup("slub_max_order=", setup_slub_max_order);
4730 
4731 static int __init setup_slub_min_objects(char *str)
4732 {
4733 	get_option(&str, (int *)&slub_min_objects);
4734 
4735 	return 1;
4736 }
4737 
4738 __setup("slub_min_objects=", setup_slub_min_objects);
4739 
4740 #ifdef CONFIG_HARDENED_USERCOPY
4741 /*
4742  * Rejects incorrectly sized objects and objects that are to be copied
4743  * to/from userspace but do not fall entirely within the containing slab
4744  * cache's usercopy region.
4745  *
4746  * Returns NULL if check passes, otherwise const char * to name of cache
4747  * to indicate an error.
4748  */
4749 void __check_heap_object(const void *ptr, unsigned long n,
4750 			 const struct slab *slab, bool to_user)
4751 {
4752 	struct kmem_cache *s;
4753 	unsigned int offset;
4754 	bool is_kfence = is_kfence_address(ptr);
4755 
4756 	ptr = kasan_reset_tag(ptr);
4757 
4758 	/* Find object and usable object size. */
4759 	s = slab->slab_cache;
4760 
4761 	/* Reject impossible pointers. */
4762 	if (ptr < slab_address(slab))
4763 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4764 			       to_user, 0, n);
4765 
4766 	/* Find offset within object. */
4767 	if (is_kfence)
4768 		offset = ptr - kfence_object_start(ptr);
4769 	else
4770 		offset = (ptr - slab_address(slab)) % s->size;
4771 
4772 	/* Adjust for redzone and reject if within the redzone. */
4773 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4774 		if (offset < s->red_left_pad)
4775 			usercopy_abort("SLUB object in left red zone",
4776 				       s->name, to_user, offset, n);
4777 		offset -= s->red_left_pad;
4778 	}
4779 
4780 	/* Allow address range falling entirely within usercopy region. */
4781 	if (offset >= s->useroffset &&
4782 	    offset - s->useroffset <= s->usersize &&
4783 	    n <= s->useroffset - offset + s->usersize)
4784 		return;
4785 
4786 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4787 }
4788 #endif /* CONFIG_HARDENED_USERCOPY */
4789 
4790 #define SHRINK_PROMOTE_MAX 32
4791 
4792 /*
4793  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4794  * up most to the head of the partial lists. New allocations will then
4795  * fill those up and thus they can be removed from the partial lists.
4796  *
4797  * The slabs with the least items are placed last. This results in them
4798  * being allocated from last increasing the chance that the last objects
4799  * are freed in them.
4800  */
4801 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4802 {
4803 	int node;
4804 	int i;
4805 	struct kmem_cache_node *n;
4806 	struct slab *slab;
4807 	struct slab *t;
4808 	struct list_head discard;
4809 	struct list_head promote[SHRINK_PROMOTE_MAX];
4810 	unsigned long flags;
4811 	int ret = 0;
4812 
4813 	for_each_kmem_cache_node(s, node, n) {
4814 		INIT_LIST_HEAD(&discard);
4815 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4816 			INIT_LIST_HEAD(promote + i);
4817 
4818 		spin_lock_irqsave(&n->list_lock, flags);
4819 
4820 		/*
4821 		 * Build lists of slabs to discard or promote.
4822 		 *
4823 		 * Note that concurrent frees may occur while we hold the
4824 		 * list_lock. slab->inuse here is the upper limit.
4825 		 */
4826 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4827 			int free = slab->objects - slab->inuse;
4828 
4829 			/* Do not reread slab->inuse */
4830 			barrier();
4831 
4832 			/* We do not keep full slabs on the list */
4833 			BUG_ON(free <= 0);
4834 
4835 			if (free == slab->objects) {
4836 				list_move(&slab->slab_list, &discard);
4837 				n->nr_partial--;
4838 				dec_slabs_node(s, node, slab->objects);
4839 			} else if (free <= SHRINK_PROMOTE_MAX)
4840 				list_move(&slab->slab_list, promote + free - 1);
4841 		}
4842 
4843 		/*
4844 		 * Promote the slabs filled up most to the head of the
4845 		 * partial list.
4846 		 */
4847 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4848 			list_splice(promote + i, &n->partial);
4849 
4850 		spin_unlock_irqrestore(&n->list_lock, flags);
4851 
4852 		/* Release empty slabs */
4853 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4854 			free_slab(s, slab);
4855 
4856 		if (slabs_node(s, node))
4857 			ret = 1;
4858 	}
4859 
4860 	return ret;
4861 }
4862 
4863 int __kmem_cache_shrink(struct kmem_cache *s)
4864 {
4865 	flush_all(s);
4866 	return __kmem_cache_do_shrink(s);
4867 }
4868 
4869 static int slab_mem_going_offline_callback(void *arg)
4870 {
4871 	struct kmem_cache *s;
4872 
4873 	mutex_lock(&slab_mutex);
4874 	list_for_each_entry(s, &slab_caches, list) {
4875 		flush_all_cpus_locked(s);
4876 		__kmem_cache_do_shrink(s);
4877 	}
4878 	mutex_unlock(&slab_mutex);
4879 
4880 	return 0;
4881 }
4882 
4883 static void slab_mem_offline_callback(void *arg)
4884 {
4885 	struct memory_notify *marg = arg;
4886 	int offline_node;
4887 
4888 	offline_node = marg->status_change_nid_normal;
4889 
4890 	/*
4891 	 * If the node still has available memory. we need kmem_cache_node
4892 	 * for it yet.
4893 	 */
4894 	if (offline_node < 0)
4895 		return;
4896 
4897 	mutex_lock(&slab_mutex);
4898 	node_clear(offline_node, slab_nodes);
4899 	/*
4900 	 * We no longer free kmem_cache_node structures here, as it would be
4901 	 * racy with all get_node() users, and infeasible to protect them with
4902 	 * slab_mutex.
4903 	 */
4904 	mutex_unlock(&slab_mutex);
4905 }
4906 
4907 static int slab_mem_going_online_callback(void *arg)
4908 {
4909 	struct kmem_cache_node *n;
4910 	struct kmem_cache *s;
4911 	struct memory_notify *marg = arg;
4912 	int nid = marg->status_change_nid_normal;
4913 	int ret = 0;
4914 
4915 	/*
4916 	 * If the node's memory is already available, then kmem_cache_node is
4917 	 * already created. Nothing to do.
4918 	 */
4919 	if (nid < 0)
4920 		return 0;
4921 
4922 	/*
4923 	 * We are bringing a node online. No memory is available yet. We must
4924 	 * allocate a kmem_cache_node structure in order to bring the node
4925 	 * online.
4926 	 */
4927 	mutex_lock(&slab_mutex);
4928 	list_for_each_entry(s, &slab_caches, list) {
4929 		/*
4930 		 * The structure may already exist if the node was previously
4931 		 * onlined and offlined.
4932 		 */
4933 		if (get_node(s, nid))
4934 			continue;
4935 		/*
4936 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4937 		 *      since memory is not yet available from the node that
4938 		 *      is brought up.
4939 		 */
4940 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4941 		if (!n) {
4942 			ret = -ENOMEM;
4943 			goto out;
4944 		}
4945 		init_kmem_cache_node(n);
4946 		s->node[nid] = n;
4947 	}
4948 	/*
4949 	 * Any cache created after this point will also have kmem_cache_node
4950 	 * initialized for the new node.
4951 	 */
4952 	node_set(nid, slab_nodes);
4953 out:
4954 	mutex_unlock(&slab_mutex);
4955 	return ret;
4956 }
4957 
4958 static int slab_memory_callback(struct notifier_block *self,
4959 				unsigned long action, void *arg)
4960 {
4961 	int ret = 0;
4962 
4963 	switch (action) {
4964 	case MEM_GOING_ONLINE:
4965 		ret = slab_mem_going_online_callback(arg);
4966 		break;
4967 	case MEM_GOING_OFFLINE:
4968 		ret = slab_mem_going_offline_callback(arg);
4969 		break;
4970 	case MEM_OFFLINE:
4971 	case MEM_CANCEL_ONLINE:
4972 		slab_mem_offline_callback(arg);
4973 		break;
4974 	case MEM_ONLINE:
4975 	case MEM_CANCEL_OFFLINE:
4976 		break;
4977 	}
4978 	if (ret)
4979 		ret = notifier_from_errno(ret);
4980 	else
4981 		ret = NOTIFY_OK;
4982 	return ret;
4983 }
4984 
4985 /********************************************************************
4986  *			Basic setup of slabs
4987  *******************************************************************/
4988 
4989 /*
4990  * Used for early kmem_cache structures that were allocated using
4991  * the page allocator. Allocate them properly then fix up the pointers
4992  * that may be pointing to the wrong kmem_cache structure.
4993  */
4994 
4995 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4996 {
4997 	int node;
4998 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4999 	struct kmem_cache_node *n;
5000 
5001 	memcpy(s, static_cache, kmem_cache->object_size);
5002 
5003 	/*
5004 	 * This runs very early, and only the boot processor is supposed to be
5005 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5006 	 * IPIs around.
5007 	 */
5008 	__flush_cpu_slab(s, smp_processor_id());
5009 	for_each_kmem_cache_node(s, node, n) {
5010 		struct slab *p;
5011 
5012 		list_for_each_entry(p, &n->partial, slab_list)
5013 			p->slab_cache = s;
5014 
5015 #ifdef CONFIG_SLUB_DEBUG
5016 		list_for_each_entry(p, &n->full, slab_list)
5017 			p->slab_cache = s;
5018 #endif
5019 	}
5020 	list_add(&s->list, &slab_caches);
5021 	return s;
5022 }
5023 
5024 void __init kmem_cache_init(void)
5025 {
5026 	static __initdata struct kmem_cache boot_kmem_cache,
5027 		boot_kmem_cache_node;
5028 	int node;
5029 
5030 	if (debug_guardpage_minorder())
5031 		slub_max_order = 0;
5032 
5033 	/* Print slub debugging pointers without hashing */
5034 	if (__slub_debug_enabled())
5035 		no_hash_pointers_enable(NULL);
5036 
5037 	kmem_cache_node = &boot_kmem_cache_node;
5038 	kmem_cache = &boot_kmem_cache;
5039 
5040 	/*
5041 	 * Initialize the nodemask for which we will allocate per node
5042 	 * structures. Here we don't need taking slab_mutex yet.
5043 	 */
5044 	for_each_node_state(node, N_NORMAL_MEMORY)
5045 		node_set(node, slab_nodes);
5046 
5047 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5048 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5049 
5050 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5051 
5052 	/* Able to allocate the per node structures */
5053 	slab_state = PARTIAL;
5054 
5055 	create_boot_cache(kmem_cache, "kmem_cache",
5056 			offsetof(struct kmem_cache, node) +
5057 				nr_node_ids * sizeof(struct kmem_cache_node *),
5058 		       SLAB_HWCACHE_ALIGN, 0, 0);
5059 
5060 	kmem_cache = bootstrap(&boot_kmem_cache);
5061 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5062 
5063 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5064 	setup_kmalloc_cache_index_table();
5065 	create_kmalloc_caches(0);
5066 
5067 	/* Setup random freelists for each cache */
5068 	init_freelist_randomization();
5069 
5070 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5071 				  slub_cpu_dead);
5072 
5073 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5074 		cache_line_size(),
5075 		slub_min_order, slub_max_order, slub_min_objects,
5076 		nr_cpu_ids, nr_node_ids);
5077 }
5078 
5079 void __init kmem_cache_init_late(void)
5080 {
5081 #ifndef CONFIG_SLUB_TINY
5082 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5083 	WARN_ON(!flushwq);
5084 #endif
5085 }
5086 
5087 struct kmem_cache *
5088 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5089 		   slab_flags_t flags, void (*ctor)(void *))
5090 {
5091 	struct kmem_cache *s;
5092 
5093 	s = find_mergeable(size, align, flags, name, ctor);
5094 	if (s) {
5095 		if (sysfs_slab_alias(s, name))
5096 			return NULL;
5097 
5098 		s->refcount++;
5099 
5100 		/*
5101 		 * Adjust the object sizes so that we clear
5102 		 * the complete object on kzalloc.
5103 		 */
5104 		s->object_size = max(s->object_size, size);
5105 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5106 	}
5107 
5108 	return s;
5109 }
5110 
5111 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5112 {
5113 	int err;
5114 
5115 	err = kmem_cache_open(s, flags);
5116 	if (err)
5117 		return err;
5118 
5119 	/* Mutex is not taken during early boot */
5120 	if (slab_state <= UP)
5121 		return 0;
5122 
5123 	err = sysfs_slab_add(s);
5124 	if (err) {
5125 		__kmem_cache_release(s);
5126 		return err;
5127 	}
5128 
5129 	if (s->flags & SLAB_STORE_USER)
5130 		debugfs_slab_add(s);
5131 
5132 	return 0;
5133 }
5134 
5135 #ifdef SLAB_SUPPORTS_SYSFS
5136 static int count_inuse(struct slab *slab)
5137 {
5138 	return slab->inuse;
5139 }
5140 
5141 static int count_total(struct slab *slab)
5142 {
5143 	return slab->objects;
5144 }
5145 #endif
5146 
5147 #ifdef CONFIG_SLUB_DEBUG
5148 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5149 			  unsigned long *obj_map)
5150 {
5151 	void *p;
5152 	void *addr = slab_address(slab);
5153 
5154 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5155 		return;
5156 
5157 	/* Now we know that a valid freelist exists */
5158 	__fill_map(obj_map, s, slab);
5159 	for_each_object(p, s, addr, slab->objects) {
5160 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5161 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5162 
5163 		if (!check_object(s, slab, p, val))
5164 			break;
5165 	}
5166 }
5167 
5168 static int validate_slab_node(struct kmem_cache *s,
5169 		struct kmem_cache_node *n, unsigned long *obj_map)
5170 {
5171 	unsigned long count = 0;
5172 	struct slab *slab;
5173 	unsigned long flags;
5174 
5175 	spin_lock_irqsave(&n->list_lock, flags);
5176 
5177 	list_for_each_entry(slab, &n->partial, slab_list) {
5178 		validate_slab(s, slab, obj_map);
5179 		count++;
5180 	}
5181 	if (count != n->nr_partial) {
5182 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5183 		       s->name, count, n->nr_partial);
5184 		slab_add_kunit_errors();
5185 	}
5186 
5187 	if (!(s->flags & SLAB_STORE_USER))
5188 		goto out;
5189 
5190 	list_for_each_entry(slab, &n->full, slab_list) {
5191 		validate_slab(s, slab, obj_map);
5192 		count++;
5193 	}
5194 	if (count != atomic_long_read(&n->nr_slabs)) {
5195 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5196 		       s->name, count, atomic_long_read(&n->nr_slabs));
5197 		slab_add_kunit_errors();
5198 	}
5199 
5200 out:
5201 	spin_unlock_irqrestore(&n->list_lock, flags);
5202 	return count;
5203 }
5204 
5205 long validate_slab_cache(struct kmem_cache *s)
5206 {
5207 	int node;
5208 	unsigned long count = 0;
5209 	struct kmem_cache_node *n;
5210 	unsigned long *obj_map;
5211 
5212 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5213 	if (!obj_map)
5214 		return -ENOMEM;
5215 
5216 	flush_all(s);
5217 	for_each_kmem_cache_node(s, node, n)
5218 		count += validate_slab_node(s, n, obj_map);
5219 
5220 	bitmap_free(obj_map);
5221 
5222 	return count;
5223 }
5224 EXPORT_SYMBOL(validate_slab_cache);
5225 
5226 #ifdef CONFIG_DEBUG_FS
5227 /*
5228  * Generate lists of code addresses where slabcache objects are allocated
5229  * and freed.
5230  */
5231 
5232 struct location {
5233 	depot_stack_handle_t handle;
5234 	unsigned long count;
5235 	unsigned long addr;
5236 	unsigned long waste;
5237 	long long sum_time;
5238 	long min_time;
5239 	long max_time;
5240 	long min_pid;
5241 	long max_pid;
5242 	DECLARE_BITMAP(cpus, NR_CPUS);
5243 	nodemask_t nodes;
5244 };
5245 
5246 struct loc_track {
5247 	unsigned long max;
5248 	unsigned long count;
5249 	struct location *loc;
5250 	loff_t idx;
5251 };
5252 
5253 static struct dentry *slab_debugfs_root;
5254 
5255 static void free_loc_track(struct loc_track *t)
5256 {
5257 	if (t->max)
5258 		free_pages((unsigned long)t->loc,
5259 			get_order(sizeof(struct location) * t->max));
5260 }
5261 
5262 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5263 {
5264 	struct location *l;
5265 	int order;
5266 
5267 	order = get_order(sizeof(struct location) * max);
5268 
5269 	l = (void *)__get_free_pages(flags, order);
5270 	if (!l)
5271 		return 0;
5272 
5273 	if (t->count) {
5274 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5275 		free_loc_track(t);
5276 	}
5277 	t->max = max;
5278 	t->loc = l;
5279 	return 1;
5280 }
5281 
5282 static int add_location(struct loc_track *t, struct kmem_cache *s,
5283 				const struct track *track,
5284 				unsigned int orig_size)
5285 {
5286 	long start, end, pos;
5287 	struct location *l;
5288 	unsigned long caddr, chandle, cwaste;
5289 	unsigned long age = jiffies - track->when;
5290 	depot_stack_handle_t handle = 0;
5291 	unsigned int waste = s->object_size - orig_size;
5292 
5293 #ifdef CONFIG_STACKDEPOT
5294 	handle = READ_ONCE(track->handle);
5295 #endif
5296 	start = -1;
5297 	end = t->count;
5298 
5299 	for ( ; ; ) {
5300 		pos = start + (end - start + 1) / 2;
5301 
5302 		/*
5303 		 * There is nothing at "end". If we end up there
5304 		 * we need to add something to before end.
5305 		 */
5306 		if (pos == end)
5307 			break;
5308 
5309 		l = &t->loc[pos];
5310 		caddr = l->addr;
5311 		chandle = l->handle;
5312 		cwaste = l->waste;
5313 		if ((track->addr == caddr) && (handle == chandle) &&
5314 			(waste == cwaste)) {
5315 
5316 			l->count++;
5317 			if (track->when) {
5318 				l->sum_time += age;
5319 				if (age < l->min_time)
5320 					l->min_time = age;
5321 				if (age > l->max_time)
5322 					l->max_time = age;
5323 
5324 				if (track->pid < l->min_pid)
5325 					l->min_pid = track->pid;
5326 				if (track->pid > l->max_pid)
5327 					l->max_pid = track->pid;
5328 
5329 				cpumask_set_cpu(track->cpu,
5330 						to_cpumask(l->cpus));
5331 			}
5332 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5333 			return 1;
5334 		}
5335 
5336 		if (track->addr < caddr)
5337 			end = pos;
5338 		else if (track->addr == caddr && handle < chandle)
5339 			end = pos;
5340 		else if (track->addr == caddr && handle == chandle &&
5341 				waste < cwaste)
5342 			end = pos;
5343 		else
5344 			start = pos;
5345 	}
5346 
5347 	/*
5348 	 * Not found. Insert new tracking element.
5349 	 */
5350 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5351 		return 0;
5352 
5353 	l = t->loc + pos;
5354 	if (pos < t->count)
5355 		memmove(l + 1, l,
5356 			(t->count - pos) * sizeof(struct location));
5357 	t->count++;
5358 	l->count = 1;
5359 	l->addr = track->addr;
5360 	l->sum_time = age;
5361 	l->min_time = age;
5362 	l->max_time = age;
5363 	l->min_pid = track->pid;
5364 	l->max_pid = track->pid;
5365 	l->handle = handle;
5366 	l->waste = waste;
5367 	cpumask_clear(to_cpumask(l->cpus));
5368 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5369 	nodes_clear(l->nodes);
5370 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5371 	return 1;
5372 }
5373 
5374 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5375 		struct slab *slab, enum track_item alloc,
5376 		unsigned long *obj_map)
5377 {
5378 	void *addr = slab_address(slab);
5379 	bool is_alloc = (alloc == TRACK_ALLOC);
5380 	void *p;
5381 
5382 	__fill_map(obj_map, s, slab);
5383 
5384 	for_each_object(p, s, addr, slab->objects)
5385 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5386 			add_location(t, s, get_track(s, p, alloc),
5387 				     is_alloc ? get_orig_size(s, p) :
5388 						s->object_size);
5389 }
5390 #endif  /* CONFIG_DEBUG_FS   */
5391 #endif	/* CONFIG_SLUB_DEBUG */
5392 
5393 #ifdef SLAB_SUPPORTS_SYSFS
5394 enum slab_stat_type {
5395 	SL_ALL,			/* All slabs */
5396 	SL_PARTIAL,		/* Only partially allocated slabs */
5397 	SL_CPU,			/* Only slabs used for cpu caches */
5398 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5399 	SL_TOTAL		/* Determine object capacity not slabs */
5400 };
5401 
5402 #define SO_ALL		(1 << SL_ALL)
5403 #define SO_PARTIAL	(1 << SL_PARTIAL)
5404 #define SO_CPU		(1 << SL_CPU)
5405 #define SO_OBJECTS	(1 << SL_OBJECTS)
5406 #define SO_TOTAL	(1 << SL_TOTAL)
5407 
5408 static ssize_t show_slab_objects(struct kmem_cache *s,
5409 				 char *buf, unsigned long flags)
5410 {
5411 	unsigned long total = 0;
5412 	int node;
5413 	int x;
5414 	unsigned long *nodes;
5415 	int len = 0;
5416 
5417 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5418 	if (!nodes)
5419 		return -ENOMEM;
5420 
5421 	if (flags & SO_CPU) {
5422 		int cpu;
5423 
5424 		for_each_possible_cpu(cpu) {
5425 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5426 							       cpu);
5427 			int node;
5428 			struct slab *slab;
5429 
5430 			slab = READ_ONCE(c->slab);
5431 			if (!slab)
5432 				continue;
5433 
5434 			node = slab_nid(slab);
5435 			if (flags & SO_TOTAL)
5436 				x = slab->objects;
5437 			else if (flags & SO_OBJECTS)
5438 				x = slab->inuse;
5439 			else
5440 				x = 1;
5441 
5442 			total += x;
5443 			nodes[node] += x;
5444 
5445 #ifdef CONFIG_SLUB_CPU_PARTIAL
5446 			slab = slub_percpu_partial_read_once(c);
5447 			if (slab) {
5448 				node = slab_nid(slab);
5449 				if (flags & SO_TOTAL)
5450 					WARN_ON_ONCE(1);
5451 				else if (flags & SO_OBJECTS)
5452 					WARN_ON_ONCE(1);
5453 				else
5454 					x = slab->slabs;
5455 				total += x;
5456 				nodes[node] += x;
5457 			}
5458 #endif
5459 		}
5460 	}
5461 
5462 	/*
5463 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5464 	 * already held which will conflict with an existing lock order:
5465 	 *
5466 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5467 	 *
5468 	 * We don't really need mem_hotplug_lock (to hold off
5469 	 * slab_mem_going_offline_callback) here because slab's memory hot
5470 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5471 	 */
5472 
5473 #ifdef CONFIG_SLUB_DEBUG
5474 	if (flags & SO_ALL) {
5475 		struct kmem_cache_node *n;
5476 
5477 		for_each_kmem_cache_node(s, node, n) {
5478 
5479 			if (flags & SO_TOTAL)
5480 				x = atomic_long_read(&n->total_objects);
5481 			else if (flags & SO_OBJECTS)
5482 				x = atomic_long_read(&n->total_objects) -
5483 					count_partial(n, count_free);
5484 			else
5485 				x = atomic_long_read(&n->nr_slabs);
5486 			total += x;
5487 			nodes[node] += x;
5488 		}
5489 
5490 	} else
5491 #endif
5492 	if (flags & SO_PARTIAL) {
5493 		struct kmem_cache_node *n;
5494 
5495 		for_each_kmem_cache_node(s, node, n) {
5496 			if (flags & SO_TOTAL)
5497 				x = count_partial(n, count_total);
5498 			else if (flags & SO_OBJECTS)
5499 				x = count_partial(n, count_inuse);
5500 			else
5501 				x = n->nr_partial;
5502 			total += x;
5503 			nodes[node] += x;
5504 		}
5505 	}
5506 
5507 	len += sysfs_emit_at(buf, len, "%lu", total);
5508 #ifdef CONFIG_NUMA
5509 	for (node = 0; node < nr_node_ids; node++) {
5510 		if (nodes[node])
5511 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5512 					     node, nodes[node]);
5513 	}
5514 #endif
5515 	len += sysfs_emit_at(buf, len, "\n");
5516 	kfree(nodes);
5517 
5518 	return len;
5519 }
5520 
5521 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5522 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5523 
5524 struct slab_attribute {
5525 	struct attribute attr;
5526 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5527 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5528 };
5529 
5530 #define SLAB_ATTR_RO(_name) \
5531 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5532 
5533 #define SLAB_ATTR(_name) \
5534 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5535 
5536 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5537 {
5538 	return sysfs_emit(buf, "%u\n", s->size);
5539 }
5540 SLAB_ATTR_RO(slab_size);
5541 
5542 static ssize_t align_show(struct kmem_cache *s, char *buf)
5543 {
5544 	return sysfs_emit(buf, "%u\n", s->align);
5545 }
5546 SLAB_ATTR_RO(align);
5547 
5548 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5549 {
5550 	return sysfs_emit(buf, "%u\n", s->object_size);
5551 }
5552 SLAB_ATTR_RO(object_size);
5553 
5554 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5555 {
5556 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5557 }
5558 SLAB_ATTR_RO(objs_per_slab);
5559 
5560 static ssize_t order_show(struct kmem_cache *s, char *buf)
5561 {
5562 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5563 }
5564 SLAB_ATTR_RO(order);
5565 
5566 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5567 {
5568 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5569 }
5570 
5571 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5572 				 size_t length)
5573 {
5574 	unsigned long min;
5575 	int err;
5576 
5577 	err = kstrtoul(buf, 10, &min);
5578 	if (err)
5579 		return err;
5580 
5581 	s->min_partial = min;
5582 	return length;
5583 }
5584 SLAB_ATTR(min_partial);
5585 
5586 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5587 {
5588 	unsigned int nr_partial = 0;
5589 #ifdef CONFIG_SLUB_CPU_PARTIAL
5590 	nr_partial = s->cpu_partial;
5591 #endif
5592 
5593 	return sysfs_emit(buf, "%u\n", nr_partial);
5594 }
5595 
5596 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5597 				 size_t length)
5598 {
5599 	unsigned int objects;
5600 	int err;
5601 
5602 	err = kstrtouint(buf, 10, &objects);
5603 	if (err)
5604 		return err;
5605 	if (objects && !kmem_cache_has_cpu_partial(s))
5606 		return -EINVAL;
5607 
5608 	slub_set_cpu_partial(s, objects);
5609 	flush_all(s);
5610 	return length;
5611 }
5612 SLAB_ATTR(cpu_partial);
5613 
5614 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5615 {
5616 	if (!s->ctor)
5617 		return 0;
5618 	return sysfs_emit(buf, "%pS\n", s->ctor);
5619 }
5620 SLAB_ATTR_RO(ctor);
5621 
5622 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5623 {
5624 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5625 }
5626 SLAB_ATTR_RO(aliases);
5627 
5628 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5629 {
5630 	return show_slab_objects(s, buf, SO_PARTIAL);
5631 }
5632 SLAB_ATTR_RO(partial);
5633 
5634 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5635 {
5636 	return show_slab_objects(s, buf, SO_CPU);
5637 }
5638 SLAB_ATTR_RO(cpu_slabs);
5639 
5640 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5641 {
5642 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5643 }
5644 SLAB_ATTR_RO(objects);
5645 
5646 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5647 {
5648 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5649 }
5650 SLAB_ATTR_RO(objects_partial);
5651 
5652 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5653 {
5654 	int objects = 0;
5655 	int slabs = 0;
5656 	int cpu __maybe_unused;
5657 	int len = 0;
5658 
5659 #ifdef CONFIG_SLUB_CPU_PARTIAL
5660 	for_each_online_cpu(cpu) {
5661 		struct slab *slab;
5662 
5663 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5664 
5665 		if (slab)
5666 			slabs += slab->slabs;
5667 	}
5668 #endif
5669 
5670 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5671 	objects = (slabs * oo_objects(s->oo)) / 2;
5672 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5673 
5674 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5675 	for_each_online_cpu(cpu) {
5676 		struct slab *slab;
5677 
5678 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5679 		if (slab) {
5680 			slabs = READ_ONCE(slab->slabs);
5681 			objects = (slabs * oo_objects(s->oo)) / 2;
5682 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5683 					     cpu, objects, slabs);
5684 		}
5685 	}
5686 #endif
5687 	len += sysfs_emit_at(buf, len, "\n");
5688 
5689 	return len;
5690 }
5691 SLAB_ATTR_RO(slabs_cpu_partial);
5692 
5693 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5694 {
5695 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5696 }
5697 SLAB_ATTR_RO(reclaim_account);
5698 
5699 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5700 {
5701 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5702 }
5703 SLAB_ATTR_RO(hwcache_align);
5704 
5705 #ifdef CONFIG_ZONE_DMA
5706 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5707 {
5708 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5709 }
5710 SLAB_ATTR_RO(cache_dma);
5711 #endif
5712 
5713 #ifdef CONFIG_HARDENED_USERCOPY
5714 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5715 {
5716 	return sysfs_emit(buf, "%u\n", s->usersize);
5717 }
5718 SLAB_ATTR_RO(usersize);
5719 #endif
5720 
5721 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5722 {
5723 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5724 }
5725 SLAB_ATTR_RO(destroy_by_rcu);
5726 
5727 #ifdef CONFIG_SLUB_DEBUG
5728 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5729 {
5730 	return show_slab_objects(s, buf, SO_ALL);
5731 }
5732 SLAB_ATTR_RO(slabs);
5733 
5734 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5735 {
5736 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5737 }
5738 SLAB_ATTR_RO(total_objects);
5739 
5740 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5741 {
5742 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5743 }
5744 SLAB_ATTR_RO(sanity_checks);
5745 
5746 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5747 {
5748 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5749 }
5750 SLAB_ATTR_RO(trace);
5751 
5752 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5753 {
5754 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5755 }
5756 
5757 SLAB_ATTR_RO(red_zone);
5758 
5759 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5760 {
5761 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5762 }
5763 
5764 SLAB_ATTR_RO(poison);
5765 
5766 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5767 {
5768 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5769 }
5770 
5771 SLAB_ATTR_RO(store_user);
5772 
5773 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5774 {
5775 	return 0;
5776 }
5777 
5778 static ssize_t validate_store(struct kmem_cache *s,
5779 			const char *buf, size_t length)
5780 {
5781 	int ret = -EINVAL;
5782 
5783 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5784 		ret = validate_slab_cache(s);
5785 		if (ret >= 0)
5786 			ret = length;
5787 	}
5788 	return ret;
5789 }
5790 SLAB_ATTR(validate);
5791 
5792 #endif /* CONFIG_SLUB_DEBUG */
5793 
5794 #ifdef CONFIG_FAILSLAB
5795 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5796 {
5797 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5798 }
5799 
5800 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5801 				size_t length)
5802 {
5803 	if (s->refcount > 1)
5804 		return -EINVAL;
5805 
5806 	if (buf[0] == '1')
5807 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5808 	else
5809 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5810 
5811 	return length;
5812 }
5813 SLAB_ATTR(failslab);
5814 #endif
5815 
5816 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5817 {
5818 	return 0;
5819 }
5820 
5821 static ssize_t shrink_store(struct kmem_cache *s,
5822 			const char *buf, size_t length)
5823 {
5824 	if (buf[0] == '1')
5825 		kmem_cache_shrink(s);
5826 	else
5827 		return -EINVAL;
5828 	return length;
5829 }
5830 SLAB_ATTR(shrink);
5831 
5832 #ifdef CONFIG_NUMA
5833 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5834 {
5835 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5836 }
5837 
5838 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5839 				const char *buf, size_t length)
5840 {
5841 	unsigned int ratio;
5842 	int err;
5843 
5844 	err = kstrtouint(buf, 10, &ratio);
5845 	if (err)
5846 		return err;
5847 	if (ratio > 100)
5848 		return -ERANGE;
5849 
5850 	s->remote_node_defrag_ratio = ratio * 10;
5851 
5852 	return length;
5853 }
5854 SLAB_ATTR(remote_node_defrag_ratio);
5855 #endif
5856 
5857 #ifdef CONFIG_SLUB_STATS
5858 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5859 {
5860 	unsigned long sum  = 0;
5861 	int cpu;
5862 	int len = 0;
5863 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5864 
5865 	if (!data)
5866 		return -ENOMEM;
5867 
5868 	for_each_online_cpu(cpu) {
5869 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5870 
5871 		data[cpu] = x;
5872 		sum += x;
5873 	}
5874 
5875 	len += sysfs_emit_at(buf, len, "%lu", sum);
5876 
5877 #ifdef CONFIG_SMP
5878 	for_each_online_cpu(cpu) {
5879 		if (data[cpu])
5880 			len += sysfs_emit_at(buf, len, " C%d=%u",
5881 					     cpu, data[cpu]);
5882 	}
5883 #endif
5884 	kfree(data);
5885 	len += sysfs_emit_at(buf, len, "\n");
5886 
5887 	return len;
5888 }
5889 
5890 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5891 {
5892 	int cpu;
5893 
5894 	for_each_online_cpu(cpu)
5895 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5896 }
5897 
5898 #define STAT_ATTR(si, text) 					\
5899 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5900 {								\
5901 	return show_stat(s, buf, si);				\
5902 }								\
5903 static ssize_t text##_store(struct kmem_cache *s,		\
5904 				const char *buf, size_t length)	\
5905 {								\
5906 	if (buf[0] != '0')					\
5907 		return -EINVAL;					\
5908 	clear_stat(s, si);					\
5909 	return length;						\
5910 }								\
5911 SLAB_ATTR(text);						\
5912 
5913 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5914 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5915 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5916 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5917 STAT_ATTR(FREE_FROZEN, free_frozen);
5918 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5919 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5920 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5921 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5922 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5923 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5924 STAT_ATTR(FREE_SLAB, free_slab);
5925 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5926 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5927 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5928 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5929 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5930 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5931 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5932 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5933 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5934 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5935 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5936 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5937 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5938 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5939 #endif	/* CONFIG_SLUB_STATS */
5940 
5941 #ifdef CONFIG_KFENCE
5942 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5943 {
5944 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5945 }
5946 
5947 static ssize_t skip_kfence_store(struct kmem_cache *s,
5948 			const char *buf, size_t length)
5949 {
5950 	int ret = length;
5951 
5952 	if (buf[0] == '0')
5953 		s->flags &= ~SLAB_SKIP_KFENCE;
5954 	else if (buf[0] == '1')
5955 		s->flags |= SLAB_SKIP_KFENCE;
5956 	else
5957 		ret = -EINVAL;
5958 
5959 	return ret;
5960 }
5961 SLAB_ATTR(skip_kfence);
5962 #endif
5963 
5964 static struct attribute *slab_attrs[] = {
5965 	&slab_size_attr.attr,
5966 	&object_size_attr.attr,
5967 	&objs_per_slab_attr.attr,
5968 	&order_attr.attr,
5969 	&min_partial_attr.attr,
5970 	&cpu_partial_attr.attr,
5971 	&objects_attr.attr,
5972 	&objects_partial_attr.attr,
5973 	&partial_attr.attr,
5974 	&cpu_slabs_attr.attr,
5975 	&ctor_attr.attr,
5976 	&aliases_attr.attr,
5977 	&align_attr.attr,
5978 	&hwcache_align_attr.attr,
5979 	&reclaim_account_attr.attr,
5980 	&destroy_by_rcu_attr.attr,
5981 	&shrink_attr.attr,
5982 	&slabs_cpu_partial_attr.attr,
5983 #ifdef CONFIG_SLUB_DEBUG
5984 	&total_objects_attr.attr,
5985 	&slabs_attr.attr,
5986 	&sanity_checks_attr.attr,
5987 	&trace_attr.attr,
5988 	&red_zone_attr.attr,
5989 	&poison_attr.attr,
5990 	&store_user_attr.attr,
5991 	&validate_attr.attr,
5992 #endif
5993 #ifdef CONFIG_ZONE_DMA
5994 	&cache_dma_attr.attr,
5995 #endif
5996 #ifdef CONFIG_NUMA
5997 	&remote_node_defrag_ratio_attr.attr,
5998 #endif
5999 #ifdef CONFIG_SLUB_STATS
6000 	&alloc_fastpath_attr.attr,
6001 	&alloc_slowpath_attr.attr,
6002 	&free_fastpath_attr.attr,
6003 	&free_slowpath_attr.attr,
6004 	&free_frozen_attr.attr,
6005 	&free_add_partial_attr.attr,
6006 	&free_remove_partial_attr.attr,
6007 	&alloc_from_partial_attr.attr,
6008 	&alloc_slab_attr.attr,
6009 	&alloc_refill_attr.attr,
6010 	&alloc_node_mismatch_attr.attr,
6011 	&free_slab_attr.attr,
6012 	&cpuslab_flush_attr.attr,
6013 	&deactivate_full_attr.attr,
6014 	&deactivate_empty_attr.attr,
6015 	&deactivate_to_head_attr.attr,
6016 	&deactivate_to_tail_attr.attr,
6017 	&deactivate_remote_frees_attr.attr,
6018 	&deactivate_bypass_attr.attr,
6019 	&order_fallback_attr.attr,
6020 	&cmpxchg_double_fail_attr.attr,
6021 	&cmpxchg_double_cpu_fail_attr.attr,
6022 	&cpu_partial_alloc_attr.attr,
6023 	&cpu_partial_free_attr.attr,
6024 	&cpu_partial_node_attr.attr,
6025 	&cpu_partial_drain_attr.attr,
6026 #endif
6027 #ifdef CONFIG_FAILSLAB
6028 	&failslab_attr.attr,
6029 #endif
6030 #ifdef CONFIG_HARDENED_USERCOPY
6031 	&usersize_attr.attr,
6032 #endif
6033 #ifdef CONFIG_KFENCE
6034 	&skip_kfence_attr.attr,
6035 #endif
6036 
6037 	NULL
6038 };
6039 
6040 static const struct attribute_group slab_attr_group = {
6041 	.attrs = slab_attrs,
6042 };
6043 
6044 static ssize_t slab_attr_show(struct kobject *kobj,
6045 				struct attribute *attr,
6046 				char *buf)
6047 {
6048 	struct slab_attribute *attribute;
6049 	struct kmem_cache *s;
6050 
6051 	attribute = to_slab_attr(attr);
6052 	s = to_slab(kobj);
6053 
6054 	if (!attribute->show)
6055 		return -EIO;
6056 
6057 	return attribute->show(s, buf);
6058 }
6059 
6060 static ssize_t slab_attr_store(struct kobject *kobj,
6061 				struct attribute *attr,
6062 				const char *buf, size_t len)
6063 {
6064 	struct slab_attribute *attribute;
6065 	struct kmem_cache *s;
6066 
6067 	attribute = to_slab_attr(attr);
6068 	s = to_slab(kobj);
6069 
6070 	if (!attribute->store)
6071 		return -EIO;
6072 
6073 	return attribute->store(s, buf, len);
6074 }
6075 
6076 static void kmem_cache_release(struct kobject *k)
6077 {
6078 	slab_kmem_cache_release(to_slab(k));
6079 }
6080 
6081 static const struct sysfs_ops slab_sysfs_ops = {
6082 	.show = slab_attr_show,
6083 	.store = slab_attr_store,
6084 };
6085 
6086 static const struct kobj_type slab_ktype = {
6087 	.sysfs_ops = &slab_sysfs_ops,
6088 	.release = kmem_cache_release,
6089 };
6090 
6091 static struct kset *slab_kset;
6092 
6093 static inline struct kset *cache_kset(struct kmem_cache *s)
6094 {
6095 	return slab_kset;
6096 }
6097 
6098 #define ID_STR_LENGTH 32
6099 
6100 /* Create a unique string id for a slab cache:
6101  *
6102  * Format	:[flags-]size
6103  */
6104 static char *create_unique_id(struct kmem_cache *s)
6105 {
6106 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6107 	char *p = name;
6108 
6109 	if (!name)
6110 		return ERR_PTR(-ENOMEM);
6111 
6112 	*p++ = ':';
6113 	/*
6114 	 * First flags affecting slabcache operations. We will only
6115 	 * get here for aliasable slabs so we do not need to support
6116 	 * too many flags. The flags here must cover all flags that
6117 	 * are matched during merging to guarantee that the id is
6118 	 * unique.
6119 	 */
6120 	if (s->flags & SLAB_CACHE_DMA)
6121 		*p++ = 'd';
6122 	if (s->flags & SLAB_CACHE_DMA32)
6123 		*p++ = 'D';
6124 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6125 		*p++ = 'a';
6126 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6127 		*p++ = 'F';
6128 	if (s->flags & SLAB_ACCOUNT)
6129 		*p++ = 'A';
6130 	if (p != name + 1)
6131 		*p++ = '-';
6132 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6133 
6134 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6135 		kfree(name);
6136 		return ERR_PTR(-EINVAL);
6137 	}
6138 	kmsan_unpoison_memory(name, p - name);
6139 	return name;
6140 }
6141 
6142 static int sysfs_slab_add(struct kmem_cache *s)
6143 {
6144 	int err;
6145 	const char *name;
6146 	struct kset *kset = cache_kset(s);
6147 	int unmergeable = slab_unmergeable(s);
6148 
6149 	if (!unmergeable && disable_higher_order_debug &&
6150 			(slub_debug & DEBUG_METADATA_FLAGS))
6151 		unmergeable = 1;
6152 
6153 	if (unmergeable) {
6154 		/*
6155 		 * Slabcache can never be merged so we can use the name proper.
6156 		 * This is typically the case for debug situations. In that
6157 		 * case we can catch duplicate names easily.
6158 		 */
6159 		sysfs_remove_link(&slab_kset->kobj, s->name);
6160 		name = s->name;
6161 	} else {
6162 		/*
6163 		 * Create a unique name for the slab as a target
6164 		 * for the symlinks.
6165 		 */
6166 		name = create_unique_id(s);
6167 		if (IS_ERR(name))
6168 			return PTR_ERR(name);
6169 	}
6170 
6171 	s->kobj.kset = kset;
6172 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6173 	if (err)
6174 		goto out;
6175 
6176 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6177 	if (err)
6178 		goto out_del_kobj;
6179 
6180 	if (!unmergeable) {
6181 		/* Setup first alias */
6182 		sysfs_slab_alias(s, s->name);
6183 	}
6184 out:
6185 	if (!unmergeable)
6186 		kfree(name);
6187 	return err;
6188 out_del_kobj:
6189 	kobject_del(&s->kobj);
6190 	goto out;
6191 }
6192 
6193 void sysfs_slab_unlink(struct kmem_cache *s)
6194 {
6195 	if (slab_state >= FULL)
6196 		kobject_del(&s->kobj);
6197 }
6198 
6199 void sysfs_slab_release(struct kmem_cache *s)
6200 {
6201 	if (slab_state >= FULL)
6202 		kobject_put(&s->kobj);
6203 }
6204 
6205 /*
6206  * Need to buffer aliases during bootup until sysfs becomes
6207  * available lest we lose that information.
6208  */
6209 struct saved_alias {
6210 	struct kmem_cache *s;
6211 	const char *name;
6212 	struct saved_alias *next;
6213 };
6214 
6215 static struct saved_alias *alias_list;
6216 
6217 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6218 {
6219 	struct saved_alias *al;
6220 
6221 	if (slab_state == FULL) {
6222 		/*
6223 		 * If we have a leftover link then remove it.
6224 		 */
6225 		sysfs_remove_link(&slab_kset->kobj, name);
6226 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6227 	}
6228 
6229 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6230 	if (!al)
6231 		return -ENOMEM;
6232 
6233 	al->s = s;
6234 	al->name = name;
6235 	al->next = alias_list;
6236 	alias_list = al;
6237 	kmsan_unpoison_memory(al, sizeof(*al));
6238 	return 0;
6239 }
6240 
6241 static int __init slab_sysfs_init(void)
6242 {
6243 	struct kmem_cache *s;
6244 	int err;
6245 
6246 	mutex_lock(&slab_mutex);
6247 
6248 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6249 	if (!slab_kset) {
6250 		mutex_unlock(&slab_mutex);
6251 		pr_err("Cannot register slab subsystem.\n");
6252 		return -ENOSYS;
6253 	}
6254 
6255 	slab_state = FULL;
6256 
6257 	list_for_each_entry(s, &slab_caches, list) {
6258 		err = sysfs_slab_add(s);
6259 		if (err)
6260 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6261 			       s->name);
6262 	}
6263 
6264 	while (alias_list) {
6265 		struct saved_alias *al = alias_list;
6266 
6267 		alias_list = alias_list->next;
6268 		err = sysfs_slab_alias(al->s, al->name);
6269 		if (err)
6270 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6271 			       al->name);
6272 		kfree(al);
6273 	}
6274 
6275 	mutex_unlock(&slab_mutex);
6276 	return 0;
6277 }
6278 late_initcall(slab_sysfs_init);
6279 #endif /* SLAB_SUPPORTS_SYSFS */
6280 
6281 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6282 static int slab_debugfs_show(struct seq_file *seq, void *v)
6283 {
6284 	struct loc_track *t = seq->private;
6285 	struct location *l;
6286 	unsigned long idx;
6287 
6288 	idx = (unsigned long) t->idx;
6289 	if (idx < t->count) {
6290 		l = &t->loc[idx];
6291 
6292 		seq_printf(seq, "%7ld ", l->count);
6293 
6294 		if (l->addr)
6295 			seq_printf(seq, "%pS", (void *)l->addr);
6296 		else
6297 			seq_puts(seq, "<not-available>");
6298 
6299 		if (l->waste)
6300 			seq_printf(seq, " waste=%lu/%lu",
6301 				l->count * l->waste, l->waste);
6302 
6303 		if (l->sum_time != l->min_time) {
6304 			seq_printf(seq, " age=%ld/%llu/%ld",
6305 				l->min_time, div_u64(l->sum_time, l->count),
6306 				l->max_time);
6307 		} else
6308 			seq_printf(seq, " age=%ld", l->min_time);
6309 
6310 		if (l->min_pid != l->max_pid)
6311 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6312 		else
6313 			seq_printf(seq, " pid=%ld",
6314 				l->min_pid);
6315 
6316 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6317 			seq_printf(seq, " cpus=%*pbl",
6318 				 cpumask_pr_args(to_cpumask(l->cpus)));
6319 
6320 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6321 			seq_printf(seq, " nodes=%*pbl",
6322 				 nodemask_pr_args(&l->nodes));
6323 
6324 #ifdef CONFIG_STACKDEPOT
6325 		{
6326 			depot_stack_handle_t handle;
6327 			unsigned long *entries;
6328 			unsigned int nr_entries, j;
6329 
6330 			handle = READ_ONCE(l->handle);
6331 			if (handle) {
6332 				nr_entries = stack_depot_fetch(handle, &entries);
6333 				seq_puts(seq, "\n");
6334 				for (j = 0; j < nr_entries; j++)
6335 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6336 			}
6337 		}
6338 #endif
6339 		seq_puts(seq, "\n");
6340 	}
6341 
6342 	if (!idx && !t->count)
6343 		seq_puts(seq, "No data\n");
6344 
6345 	return 0;
6346 }
6347 
6348 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6349 {
6350 }
6351 
6352 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6353 {
6354 	struct loc_track *t = seq->private;
6355 
6356 	t->idx = ++(*ppos);
6357 	if (*ppos <= t->count)
6358 		return ppos;
6359 
6360 	return NULL;
6361 }
6362 
6363 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6364 {
6365 	struct location *loc1 = (struct location *)a;
6366 	struct location *loc2 = (struct location *)b;
6367 
6368 	if (loc1->count > loc2->count)
6369 		return -1;
6370 	else
6371 		return 1;
6372 }
6373 
6374 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6375 {
6376 	struct loc_track *t = seq->private;
6377 
6378 	t->idx = *ppos;
6379 	return ppos;
6380 }
6381 
6382 static const struct seq_operations slab_debugfs_sops = {
6383 	.start  = slab_debugfs_start,
6384 	.next   = slab_debugfs_next,
6385 	.stop   = slab_debugfs_stop,
6386 	.show   = slab_debugfs_show,
6387 };
6388 
6389 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6390 {
6391 
6392 	struct kmem_cache_node *n;
6393 	enum track_item alloc;
6394 	int node;
6395 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6396 						sizeof(struct loc_track));
6397 	struct kmem_cache *s = file_inode(filep)->i_private;
6398 	unsigned long *obj_map;
6399 
6400 	if (!t)
6401 		return -ENOMEM;
6402 
6403 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6404 	if (!obj_map) {
6405 		seq_release_private(inode, filep);
6406 		return -ENOMEM;
6407 	}
6408 
6409 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6410 		alloc = TRACK_ALLOC;
6411 	else
6412 		alloc = TRACK_FREE;
6413 
6414 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6415 		bitmap_free(obj_map);
6416 		seq_release_private(inode, filep);
6417 		return -ENOMEM;
6418 	}
6419 
6420 	for_each_kmem_cache_node(s, node, n) {
6421 		unsigned long flags;
6422 		struct slab *slab;
6423 
6424 		if (!atomic_long_read(&n->nr_slabs))
6425 			continue;
6426 
6427 		spin_lock_irqsave(&n->list_lock, flags);
6428 		list_for_each_entry(slab, &n->partial, slab_list)
6429 			process_slab(t, s, slab, alloc, obj_map);
6430 		list_for_each_entry(slab, &n->full, slab_list)
6431 			process_slab(t, s, slab, alloc, obj_map);
6432 		spin_unlock_irqrestore(&n->list_lock, flags);
6433 	}
6434 
6435 	/* Sort locations by count */
6436 	sort_r(t->loc, t->count, sizeof(struct location),
6437 		cmp_loc_by_count, NULL, NULL);
6438 
6439 	bitmap_free(obj_map);
6440 	return 0;
6441 }
6442 
6443 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6444 {
6445 	struct seq_file *seq = file->private_data;
6446 	struct loc_track *t = seq->private;
6447 
6448 	free_loc_track(t);
6449 	return seq_release_private(inode, file);
6450 }
6451 
6452 static const struct file_operations slab_debugfs_fops = {
6453 	.open    = slab_debug_trace_open,
6454 	.read    = seq_read,
6455 	.llseek  = seq_lseek,
6456 	.release = slab_debug_trace_release,
6457 };
6458 
6459 static void debugfs_slab_add(struct kmem_cache *s)
6460 {
6461 	struct dentry *slab_cache_dir;
6462 
6463 	if (unlikely(!slab_debugfs_root))
6464 		return;
6465 
6466 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6467 
6468 	debugfs_create_file("alloc_traces", 0400,
6469 		slab_cache_dir, s, &slab_debugfs_fops);
6470 
6471 	debugfs_create_file("free_traces", 0400,
6472 		slab_cache_dir, s, &slab_debugfs_fops);
6473 }
6474 
6475 void debugfs_slab_release(struct kmem_cache *s)
6476 {
6477 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6478 }
6479 
6480 static int __init slab_debugfs_init(void)
6481 {
6482 	struct kmem_cache *s;
6483 
6484 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6485 
6486 	list_for_each_entry(s, &slab_caches, list)
6487 		if (s->flags & SLAB_STORE_USER)
6488 			debugfs_slab_add(s);
6489 
6490 	return 0;
6491 
6492 }
6493 __initcall(slab_debugfs_init);
6494 #endif
6495 /*
6496  * The /proc/slabinfo ABI
6497  */
6498 #ifdef CONFIG_SLUB_DEBUG
6499 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6500 {
6501 	unsigned long nr_slabs = 0;
6502 	unsigned long nr_objs = 0;
6503 	unsigned long nr_free = 0;
6504 	int node;
6505 	struct kmem_cache_node *n;
6506 
6507 	for_each_kmem_cache_node(s, node, n) {
6508 		nr_slabs += node_nr_slabs(n);
6509 		nr_objs += node_nr_objs(n);
6510 		nr_free += count_partial(n, count_free);
6511 	}
6512 
6513 	sinfo->active_objs = nr_objs - nr_free;
6514 	sinfo->num_objs = nr_objs;
6515 	sinfo->active_slabs = nr_slabs;
6516 	sinfo->num_slabs = nr_slabs;
6517 	sinfo->objects_per_slab = oo_objects(s->oo);
6518 	sinfo->cache_order = oo_order(s->oo);
6519 }
6520 
6521 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6522 {
6523 }
6524 
6525 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6526 		       size_t count, loff_t *ppos)
6527 {
6528 	return -EIO;
6529 }
6530 #endif /* CONFIG_SLUB_DEBUG */
6531