xref: /linux/mm/slub.c (revision bb1c928df78ee6e3665a0d013e74108cc9abf34b)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 		p += s->red_left_pad;
131 
132 	return p;
133 }
134 
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 	return !kmem_cache_debug(s);
139 #else
140 	return false;
141 #endif
142 }
143 
144 /*
145  * Issues still to be resolved:
146  *
147  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148  *
149  * - Variable sizing of the per node arrays
150  */
151 
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154 
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157 
158 /*
159  * Mininum number of partial slabs. These will be left on the partial
160  * lists even if they are empty. kmem_cache_shrink may reclaim them.
161  */
162 #define MIN_PARTIAL 5
163 
164 /*
165  * Maximum number of desirable partial slabs.
166  * The existence of more partial slabs makes kmem_cache_shrink
167  * sort the partial list by the number of objects in use.
168  */
169 #define MAX_PARTIAL 10
170 
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 				SLAB_POISON | SLAB_STORE_USER)
173 
174 /*
175  * These debug flags cannot use CMPXCHG because there might be consistency
176  * issues when checking or reading debug information
177  */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 				SLAB_TRACE)
180 
181 
182 /*
183  * Debugging flags that require metadata to be stored in the slab.  These get
184  * disabled when slub_debug=O is used and a cache's min order increases with
185  * metadata.
186  */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188 
189 #define OO_SHIFT	16
190 #define OO_MASK		((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192 
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON		0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
196 
197 /*
198  * Tracking user of a slab.
199  */
200 #define TRACK_ADDRS_COUNT 16
201 struct track {
202 	unsigned long addr;	/* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
205 #endif
206 	int cpu;		/* Was running on cpu */
207 	int pid;		/* Pid context */
208 	unsigned long when;	/* When did the operation occur */
209 };
210 
211 enum track_item { TRACK_ALLOC, TRACK_FREE };
212 
213 #ifdef CONFIG_SYSFS
214 static int sysfs_slab_add(struct kmem_cache *);
215 static int sysfs_slab_alias(struct kmem_cache *, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
217 static void sysfs_slab_remove(struct kmem_cache *s);
218 #else
219 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
220 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
221 							{ return 0; }
222 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
223 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
224 #endif
225 
226 static inline void stat(const struct kmem_cache *s, enum stat_item si)
227 {
228 #ifdef CONFIG_SLUB_STATS
229 	/*
230 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
231 	 * avoid this_cpu_add()'s irq-disable overhead.
232 	 */
233 	raw_cpu_inc(s->cpu_slab->stat[si]);
234 #endif
235 }
236 
237 /********************************************************************
238  * 			Core slab cache functions
239  *******************************************************************/
240 
241 static inline void *get_freepointer(struct kmem_cache *s, void *object)
242 {
243 	return *(void **)(object + s->offset);
244 }
245 
246 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
247 {
248 	prefetch(object + s->offset);
249 }
250 
251 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
252 {
253 	void *p;
254 
255 	if (!debug_pagealloc_enabled())
256 		return get_freepointer(s, object);
257 
258 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
259 	return p;
260 }
261 
262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263 {
264 	*(void **)(object + s->offset) = fp;
265 }
266 
267 /* Loop over all objects in a slab */
268 #define for_each_object(__p, __s, __addr, __objects) \
269 	for (__p = fixup_red_left(__s, __addr); \
270 		__p < (__addr) + (__objects) * (__s)->size; \
271 		__p += (__s)->size)
272 
273 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
274 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
275 		__idx <= __objects; \
276 		__p += (__s)->size, __idx++)
277 
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280 {
281 	return (p - addr) / s->size;
282 }
283 
284 static inline int order_objects(int order, unsigned long size, int reserved)
285 {
286 	return ((PAGE_SIZE << order) - reserved) / size;
287 }
288 
289 static inline struct kmem_cache_order_objects oo_make(int order,
290 		unsigned long size, int reserved)
291 {
292 	struct kmem_cache_order_objects x = {
293 		(order << OO_SHIFT) + order_objects(order, size, reserved)
294 	};
295 
296 	return x;
297 }
298 
299 static inline int oo_order(struct kmem_cache_order_objects x)
300 {
301 	return x.x >> OO_SHIFT;
302 }
303 
304 static inline int oo_objects(struct kmem_cache_order_objects x)
305 {
306 	return x.x & OO_MASK;
307 }
308 
309 /*
310  * Per slab locking using the pagelock
311  */
312 static __always_inline void slab_lock(struct page *page)
313 {
314 	VM_BUG_ON_PAGE(PageTail(page), page);
315 	bit_spin_lock(PG_locked, &page->flags);
316 }
317 
318 static __always_inline void slab_unlock(struct page *page)
319 {
320 	VM_BUG_ON_PAGE(PageTail(page), page);
321 	__bit_spin_unlock(PG_locked, &page->flags);
322 }
323 
324 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
325 {
326 	struct page tmp;
327 	tmp.counters = counters_new;
328 	/*
329 	 * page->counters can cover frozen/inuse/objects as well
330 	 * as page->_refcount.  If we assign to ->counters directly
331 	 * we run the risk of losing updates to page->_refcount, so
332 	 * be careful and only assign to the fields we need.
333 	 */
334 	page->frozen  = tmp.frozen;
335 	page->inuse   = tmp.inuse;
336 	page->objects = tmp.objects;
337 }
338 
339 /* Interrupts must be disabled (for the fallback code to work right) */
340 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
341 		void *freelist_old, unsigned long counters_old,
342 		void *freelist_new, unsigned long counters_new,
343 		const char *n)
344 {
345 	VM_BUG_ON(!irqs_disabled());
346 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
347     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
348 	if (s->flags & __CMPXCHG_DOUBLE) {
349 		if (cmpxchg_double(&page->freelist, &page->counters,
350 				   freelist_old, counters_old,
351 				   freelist_new, counters_new))
352 			return true;
353 	} else
354 #endif
355 	{
356 		slab_lock(page);
357 		if (page->freelist == freelist_old &&
358 					page->counters == counters_old) {
359 			page->freelist = freelist_new;
360 			set_page_slub_counters(page, counters_new);
361 			slab_unlock(page);
362 			return true;
363 		}
364 		slab_unlock(page);
365 	}
366 
367 	cpu_relax();
368 	stat(s, CMPXCHG_DOUBLE_FAIL);
369 
370 #ifdef SLUB_DEBUG_CMPXCHG
371 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
372 #endif
373 
374 	return false;
375 }
376 
377 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
378 		void *freelist_old, unsigned long counters_old,
379 		void *freelist_new, unsigned long counters_new,
380 		const char *n)
381 {
382 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
384 	if (s->flags & __CMPXCHG_DOUBLE) {
385 		if (cmpxchg_double(&page->freelist, &page->counters,
386 				   freelist_old, counters_old,
387 				   freelist_new, counters_new))
388 			return true;
389 	} else
390 #endif
391 	{
392 		unsigned long flags;
393 
394 		local_irq_save(flags);
395 		slab_lock(page);
396 		if (page->freelist == freelist_old &&
397 					page->counters == counters_old) {
398 			page->freelist = freelist_new;
399 			set_page_slub_counters(page, counters_new);
400 			slab_unlock(page);
401 			local_irq_restore(flags);
402 			return true;
403 		}
404 		slab_unlock(page);
405 		local_irq_restore(flags);
406 	}
407 
408 	cpu_relax();
409 	stat(s, CMPXCHG_DOUBLE_FAIL);
410 
411 #ifdef SLUB_DEBUG_CMPXCHG
412 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
413 #endif
414 
415 	return false;
416 }
417 
418 #ifdef CONFIG_SLUB_DEBUG
419 /*
420  * Determine a map of object in use on a page.
421  *
422  * Node listlock must be held to guarantee that the page does
423  * not vanish from under us.
424  */
425 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
426 {
427 	void *p;
428 	void *addr = page_address(page);
429 
430 	for (p = page->freelist; p; p = get_freepointer(s, p))
431 		set_bit(slab_index(p, s, addr), map);
432 }
433 
434 static inline int size_from_object(struct kmem_cache *s)
435 {
436 	if (s->flags & SLAB_RED_ZONE)
437 		return s->size - s->red_left_pad;
438 
439 	return s->size;
440 }
441 
442 static inline void *restore_red_left(struct kmem_cache *s, void *p)
443 {
444 	if (s->flags & SLAB_RED_ZONE)
445 		p -= s->red_left_pad;
446 
447 	return p;
448 }
449 
450 /*
451  * Debug settings:
452  */
453 #if defined(CONFIG_SLUB_DEBUG_ON)
454 static int slub_debug = DEBUG_DEFAULT_FLAGS;
455 #else
456 static int slub_debug;
457 #endif
458 
459 static char *slub_debug_slabs;
460 static int disable_higher_order_debug;
461 
462 /*
463  * slub is about to manipulate internal object metadata.  This memory lies
464  * outside the range of the allocated object, so accessing it would normally
465  * be reported by kasan as a bounds error.  metadata_access_enable() is used
466  * to tell kasan that these accesses are OK.
467  */
468 static inline void metadata_access_enable(void)
469 {
470 	kasan_disable_current();
471 }
472 
473 static inline void metadata_access_disable(void)
474 {
475 	kasan_enable_current();
476 }
477 
478 /*
479  * Object debugging
480  */
481 
482 /* Verify that a pointer has an address that is valid within a slab page */
483 static inline int check_valid_pointer(struct kmem_cache *s,
484 				struct page *page, void *object)
485 {
486 	void *base;
487 
488 	if (!object)
489 		return 1;
490 
491 	base = page_address(page);
492 	object = restore_red_left(s, object);
493 	if (object < base || object >= base + page->objects * s->size ||
494 		(object - base) % s->size) {
495 		return 0;
496 	}
497 
498 	return 1;
499 }
500 
501 static void print_section(char *level, char *text, u8 *addr,
502 			  unsigned int length)
503 {
504 	metadata_access_enable();
505 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
506 			length, 1);
507 	metadata_access_disable();
508 }
509 
510 static struct track *get_track(struct kmem_cache *s, void *object,
511 	enum track_item alloc)
512 {
513 	struct track *p;
514 
515 	if (s->offset)
516 		p = object + s->offset + sizeof(void *);
517 	else
518 		p = object + s->inuse;
519 
520 	return p + alloc;
521 }
522 
523 static void set_track(struct kmem_cache *s, void *object,
524 			enum track_item alloc, unsigned long addr)
525 {
526 	struct track *p = get_track(s, object, alloc);
527 
528 	if (addr) {
529 #ifdef CONFIG_STACKTRACE
530 		struct stack_trace trace;
531 		int i;
532 
533 		trace.nr_entries = 0;
534 		trace.max_entries = TRACK_ADDRS_COUNT;
535 		trace.entries = p->addrs;
536 		trace.skip = 3;
537 		metadata_access_enable();
538 		save_stack_trace(&trace);
539 		metadata_access_disable();
540 
541 		/* See rant in lockdep.c */
542 		if (trace.nr_entries != 0 &&
543 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
544 			trace.nr_entries--;
545 
546 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
547 			p->addrs[i] = 0;
548 #endif
549 		p->addr = addr;
550 		p->cpu = smp_processor_id();
551 		p->pid = current->pid;
552 		p->when = jiffies;
553 	} else
554 		memset(p, 0, sizeof(struct track));
555 }
556 
557 static void init_tracking(struct kmem_cache *s, void *object)
558 {
559 	if (!(s->flags & SLAB_STORE_USER))
560 		return;
561 
562 	set_track(s, object, TRACK_FREE, 0UL);
563 	set_track(s, object, TRACK_ALLOC, 0UL);
564 }
565 
566 static void print_track(const char *s, struct track *t)
567 {
568 	if (!t->addr)
569 		return;
570 
571 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
572 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
573 #ifdef CONFIG_STACKTRACE
574 	{
575 		int i;
576 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
577 			if (t->addrs[i])
578 				pr_err("\t%pS\n", (void *)t->addrs[i]);
579 			else
580 				break;
581 	}
582 #endif
583 }
584 
585 static void print_tracking(struct kmem_cache *s, void *object)
586 {
587 	if (!(s->flags & SLAB_STORE_USER))
588 		return;
589 
590 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
591 	print_track("Freed", get_track(s, object, TRACK_FREE));
592 }
593 
594 static void print_page_info(struct page *page)
595 {
596 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
597 	       page, page->objects, page->inuse, page->freelist, page->flags);
598 
599 }
600 
601 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
602 {
603 	struct va_format vaf;
604 	va_list args;
605 
606 	va_start(args, fmt);
607 	vaf.fmt = fmt;
608 	vaf.va = &args;
609 	pr_err("=============================================================================\n");
610 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
611 	pr_err("-----------------------------------------------------------------------------\n\n");
612 
613 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
614 	va_end(args);
615 }
616 
617 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
618 {
619 	struct va_format vaf;
620 	va_list args;
621 
622 	va_start(args, fmt);
623 	vaf.fmt = fmt;
624 	vaf.va = &args;
625 	pr_err("FIX %s: %pV\n", s->name, &vaf);
626 	va_end(args);
627 }
628 
629 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
630 {
631 	unsigned int off;	/* Offset of last byte */
632 	u8 *addr = page_address(page);
633 
634 	print_tracking(s, p);
635 
636 	print_page_info(page);
637 
638 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
639 	       p, p - addr, get_freepointer(s, p));
640 
641 	if (s->flags & SLAB_RED_ZONE)
642 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
643 			      s->red_left_pad);
644 	else if (p > addr + 16)
645 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
646 
647 	print_section(KERN_ERR, "Object ", p,
648 		      min_t(unsigned long, s->object_size, PAGE_SIZE));
649 	if (s->flags & SLAB_RED_ZONE)
650 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
651 			s->inuse - s->object_size);
652 
653 	if (s->offset)
654 		off = s->offset + sizeof(void *);
655 	else
656 		off = s->inuse;
657 
658 	if (s->flags & SLAB_STORE_USER)
659 		off += 2 * sizeof(struct track);
660 
661 	off += kasan_metadata_size(s);
662 
663 	if (off != size_from_object(s))
664 		/* Beginning of the filler is the free pointer */
665 		print_section(KERN_ERR, "Padding ", p + off,
666 			      size_from_object(s) - off);
667 
668 	dump_stack();
669 }
670 
671 void object_err(struct kmem_cache *s, struct page *page,
672 			u8 *object, char *reason)
673 {
674 	slab_bug(s, "%s", reason);
675 	print_trailer(s, page, object);
676 }
677 
678 static void slab_err(struct kmem_cache *s, struct page *page,
679 			const char *fmt, ...)
680 {
681 	va_list args;
682 	char buf[100];
683 
684 	va_start(args, fmt);
685 	vsnprintf(buf, sizeof(buf), fmt, args);
686 	va_end(args);
687 	slab_bug(s, "%s", buf);
688 	print_page_info(page);
689 	dump_stack();
690 }
691 
692 static void init_object(struct kmem_cache *s, void *object, u8 val)
693 {
694 	u8 *p = object;
695 
696 	if (s->flags & SLAB_RED_ZONE)
697 		memset(p - s->red_left_pad, val, s->red_left_pad);
698 
699 	if (s->flags & __OBJECT_POISON) {
700 		memset(p, POISON_FREE, s->object_size - 1);
701 		p[s->object_size - 1] = POISON_END;
702 	}
703 
704 	if (s->flags & SLAB_RED_ZONE)
705 		memset(p + s->object_size, val, s->inuse - s->object_size);
706 }
707 
708 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
709 						void *from, void *to)
710 {
711 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
712 	memset(from, data, to - from);
713 }
714 
715 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
716 			u8 *object, char *what,
717 			u8 *start, unsigned int value, unsigned int bytes)
718 {
719 	u8 *fault;
720 	u8 *end;
721 
722 	metadata_access_enable();
723 	fault = memchr_inv(start, value, bytes);
724 	metadata_access_disable();
725 	if (!fault)
726 		return 1;
727 
728 	end = start + bytes;
729 	while (end > fault && end[-1] == value)
730 		end--;
731 
732 	slab_bug(s, "%s overwritten", what);
733 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
734 					fault, end - 1, fault[0], value);
735 	print_trailer(s, page, object);
736 
737 	restore_bytes(s, what, value, fault, end);
738 	return 0;
739 }
740 
741 /*
742  * Object layout:
743  *
744  * object address
745  * 	Bytes of the object to be managed.
746  * 	If the freepointer may overlay the object then the free
747  * 	pointer is the first word of the object.
748  *
749  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
750  * 	0xa5 (POISON_END)
751  *
752  * object + s->object_size
753  * 	Padding to reach word boundary. This is also used for Redzoning.
754  * 	Padding is extended by another word if Redzoning is enabled and
755  * 	object_size == inuse.
756  *
757  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
758  * 	0xcc (RED_ACTIVE) for objects in use.
759  *
760  * object + s->inuse
761  * 	Meta data starts here.
762  *
763  * 	A. Free pointer (if we cannot overwrite object on free)
764  * 	B. Tracking data for SLAB_STORE_USER
765  * 	C. Padding to reach required alignment boundary or at mininum
766  * 		one word if debugging is on to be able to detect writes
767  * 		before the word boundary.
768  *
769  *	Padding is done using 0x5a (POISON_INUSE)
770  *
771  * object + s->size
772  * 	Nothing is used beyond s->size.
773  *
774  * If slabcaches are merged then the object_size and inuse boundaries are mostly
775  * ignored. And therefore no slab options that rely on these boundaries
776  * may be used with merged slabcaches.
777  */
778 
779 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
780 {
781 	unsigned long off = s->inuse;	/* The end of info */
782 
783 	if (s->offset)
784 		/* Freepointer is placed after the object. */
785 		off += sizeof(void *);
786 
787 	if (s->flags & SLAB_STORE_USER)
788 		/* We also have user information there */
789 		off += 2 * sizeof(struct track);
790 
791 	off += kasan_metadata_size(s);
792 
793 	if (size_from_object(s) == off)
794 		return 1;
795 
796 	return check_bytes_and_report(s, page, p, "Object padding",
797 			p + off, POISON_INUSE, size_from_object(s) - off);
798 }
799 
800 /* Check the pad bytes at the end of a slab page */
801 static int slab_pad_check(struct kmem_cache *s, struct page *page)
802 {
803 	u8 *start;
804 	u8 *fault;
805 	u8 *end;
806 	int length;
807 	int remainder;
808 
809 	if (!(s->flags & SLAB_POISON))
810 		return 1;
811 
812 	start = page_address(page);
813 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
814 	end = start + length;
815 	remainder = length % s->size;
816 	if (!remainder)
817 		return 1;
818 
819 	metadata_access_enable();
820 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
821 	metadata_access_disable();
822 	if (!fault)
823 		return 1;
824 	while (end > fault && end[-1] == POISON_INUSE)
825 		end--;
826 
827 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
828 	print_section(KERN_ERR, "Padding ", end - remainder, remainder);
829 
830 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
831 	return 0;
832 }
833 
834 static int check_object(struct kmem_cache *s, struct page *page,
835 					void *object, u8 val)
836 {
837 	u8 *p = object;
838 	u8 *endobject = object + s->object_size;
839 
840 	if (s->flags & SLAB_RED_ZONE) {
841 		if (!check_bytes_and_report(s, page, object, "Redzone",
842 			object - s->red_left_pad, val, s->red_left_pad))
843 			return 0;
844 
845 		if (!check_bytes_and_report(s, page, object, "Redzone",
846 			endobject, val, s->inuse - s->object_size))
847 			return 0;
848 	} else {
849 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
850 			check_bytes_and_report(s, page, p, "Alignment padding",
851 				endobject, POISON_INUSE,
852 				s->inuse - s->object_size);
853 		}
854 	}
855 
856 	if (s->flags & SLAB_POISON) {
857 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
858 			(!check_bytes_and_report(s, page, p, "Poison", p,
859 					POISON_FREE, s->object_size - 1) ||
860 			 !check_bytes_and_report(s, page, p, "Poison",
861 				p + s->object_size - 1, POISON_END, 1)))
862 			return 0;
863 		/*
864 		 * check_pad_bytes cleans up on its own.
865 		 */
866 		check_pad_bytes(s, page, p);
867 	}
868 
869 	if (!s->offset && val == SLUB_RED_ACTIVE)
870 		/*
871 		 * Object and freepointer overlap. Cannot check
872 		 * freepointer while object is allocated.
873 		 */
874 		return 1;
875 
876 	/* Check free pointer validity */
877 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
878 		object_err(s, page, p, "Freepointer corrupt");
879 		/*
880 		 * No choice but to zap it and thus lose the remainder
881 		 * of the free objects in this slab. May cause
882 		 * another error because the object count is now wrong.
883 		 */
884 		set_freepointer(s, p, NULL);
885 		return 0;
886 	}
887 	return 1;
888 }
889 
890 static int check_slab(struct kmem_cache *s, struct page *page)
891 {
892 	int maxobj;
893 
894 	VM_BUG_ON(!irqs_disabled());
895 
896 	if (!PageSlab(page)) {
897 		slab_err(s, page, "Not a valid slab page");
898 		return 0;
899 	}
900 
901 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
902 	if (page->objects > maxobj) {
903 		slab_err(s, page, "objects %u > max %u",
904 			page->objects, maxobj);
905 		return 0;
906 	}
907 	if (page->inuse > page->objects) {
908 		slab_err(s, page, "inuse %u > max %u",
909 			page->inuse, page->objects);
910 		return 0;
911 	}
912 	/* Slab_pad_check fixes things up after itself */
913 	slab_pad_check(s, page);
914 	return 1;
915 }
916 
917 /*
918  * Determine if a certain object on a page is on the freelist. Must hold the
919  * slab lock to guarantee that the chains are in a consistent state.
920  */
921 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
922 {
923 	int nr = 0;
924 	void *fp;
925 	void *object = NULL;
926 	int max_objects;
927 
928 	fp = page->freelist;
929 	while (fp && nr <= page->objects) {
930 		if (fp == search)
931 			return 1;
932 		if (!check_valid_pointer(s, page, fp)) {
933 			if (object) {
934 				object_err(s, page, object,
935 					"Freechain corrupt");
936 				set_freepointer(s, object, NULL);
937 			} else {
938 				slab_err(s, page, "Freepointer corrupt");
939 				page->freelist = NULL;
940 				page->inuse = page->objects;
941 				slab_fix(s, "Freelist cleared");
942 				return 0;
943 			}
944 			break;
945 		}
946 		object = fp;
947 		fp = get_freepointer(s, object);
948 		nr++;
949 	}
950 
951 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
952 	if (max_objects > MAX_OBJS_PER_PAGE)
953 		max_objects = MAX_OBJS_PER_PAGE;
954 
955 	if (page->objects != max_objects) {
956 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
957 			 page->objects, max_objects);
958 		page->objects = max_objects;
959 		slab_fix(s, "Number of objects adjusted.");
960 	}
961 	if (page->inuse != page->objects - nr) {
962 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
963 			 page->inuse, page->objects - nr);
964 		page->inuse = page->objects - nr;
965 		slab_fix(s, "Object count adjusted.");
966 	}
967 	return search == NULL;
968 }
969 
970 static void trace(struct kmem_cache *s, struct page *page, void *object,
971 								int alloc)
972 {
973 	if (s->flags & SLAB_TRACE) {
974 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
975 			s->name,
976 			alloc ? "alloc" : "free",
977 			object, page->inuse,
978 			page->freelist);
979 
980 		if (!alloc)
981 			print_section(KERN_INFO, "Object ", (void *)object,
982 					s->object_size);
983 
984 		dump_stack();
985 	}
986 }
987 
988 /*
989  * Tracking of fully allocated slabs for debugging purposes.
990  */
991 static void add_full(struct kmem_cache *s,
992 	struct kmem_cache_node *n, struct page *page)
993 {
994 	if (!(s->flags & SLAB_STORE_USER))
995 		return;
996 
997 	lockdep_assert_held(&n->list_lock);
998 	list_add(&page->lru, &n->full);
999 }
1000 
1001 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1002 {
1003 	if (!(s->flags & SLAB_STORE_USER))
1004 		return;
1005 
1006 	lockdep_assert_held(&n->list_lock);
1007 	list_del(&page->lru);
1008 }
1009 
1010 /* Tracking of the number of slabs for debugging purposes */
1011 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1012 {
1013 	struct kmem_cache_node *n = get_node(s, node);
1014 
1015 	return atomic_long_read(&n->nr_slabs);
1016 }
1017 
1018 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1019 {
1020 	return atomic_long_read(&n->nr_slabs);
1021 }
1022 
1023 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 	struct kmem_cache_node *n = get_node(s, node);
1026 
1027 	/*
1028 	 * May be called early in order to allocate a slab for the
1029 	 * kmem_cache_node structure. Solve the chicken-egg
1030 	 * dilemma by deferring the increment of the count during
1031 	 * bootstrap (see early_kmem_cache_node_alloc).
1032 	 */
1033 	if (likely(n)) {
1034 		atomic_long_inc(&n->nr_slabs);
1035 		atomic_long_add(objects, &n->total_objects);
1036 	}
1037 }
1038 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1039 {
1040 	struct kmem_cache_node *n = get_node(s, node);
1041 
1042 	atomic_long_dec(&n->nr_slabs);
1043 	atomic_long_sub(objects, &n->total_objects);
1044 }
1045 
1046 /* Object debug checks for alloc/free paths */
1047 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 								void *object)
1049 {
1050 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 		return;
1052 
1053 	init_object(s, object, SLUB_RED_INACTIVE);
1054 	init_tracking(s, object);
1055 }
1056 
1057 static inline int alloc_consistency_checks(struct kmem_cache *s,
1058 					struct page *page,
1059 					void *object, unsigned long addr)
1060 {
1061 	if (!check_slab(s, page))
1062 		return 0;
1063 
1064 	if (!check_valid_pointer(s, page, object)) {
1065 		object_err(s, page, object, "Freelist Pointer check fails");
1066 		return 0;
1067 	}
1068 
1069 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1070 		return 0;
1071 
1072 	return 1;
1073 }
1074 
1075 static noinline int alloc_debug_processing(struct kmem_cache *s,
1076 					struct page *page,
1077 					void *object, unsigned long addr)
1078 {
1079 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1080 		if (!alloc_consistency_checks(s, page, object, addr))
1081 			goto bad;
1082 	}
1083 
1084 	/* Success perform special debug activities for allocs */
1085 	if (s->flags & SLAB_STORE_USER)
1086 		set_track(s, object, TRACK_ALLOC, addr);
1087 	trace(s, page, object, 1);
1088 	init_object(s, object, SLUB_RED_ACTIVE);
1089 	return 1;
1090 
1091 bad:
1092 	if (PageSlab(page)) {
1093 		/*
1094 		 * If this is a slab page then lets do the best we can
1095 		 * to avoid issues in the future. Marking all objects
1096 		 * as used avoids touching the remaining objects.
1097 		 */
1098 		slab_fix(s, "Marking all objects used");
1099 		page->inuse = page->objects;
1100 		page->freelist = NULL;
1101 	}
1102 	return 0;
1103 }
1104 
1105 static inline int free_consistency_checks(struct kmem_cache *s,
1106 		struct page *page, void *object, unsigned long addr)
1107 {
1108 	if (!check_valid_pointer(s, page, object)) {
1109 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1110 		return 0;
1111 	}
1112 
1113 	if (on_freelist(s, page, object)) {
1114 		object_err(s, page, object, "Object already free");
1115 		return 0;
1116 	}
1117 
1118 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1119 		return 0;
1120 
1121 	if (unlikely(s != page->slab_cache)) {
1122 		if (!PageSlab(page)) {
1123 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1124 				 object);
1125 		} else if (!page->slab_cache) {
1126 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1127 			       object);
1128 			dump_stack();
1129 		} else
1130 			object_err(s, page, object,
1131 					"page slab pointer corrupt.");
1132 		return 0;
1133 	}
1134 	return 1;
1135 }
1136 
1137 /* Supports checking bulk free of a constructed freelist */
1138 static noinline int free_debug_processing(
1139 	struct kmem_cache *s, struct page *page,
1140 	void *head, void *tail, int bulk_cnt,
1141 	unsigned long addr)
1142 {
1143 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1144 	void *object = head;
1145 	int cnt = 0;
1146 	unsigned long uninitialized_var(flags);
1147 	int ret = 0;
1148 
1149 	spin_lock_irqsave(&n->list_lock, flags);
1150 	slab_lock(page);
1151 
1152 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1153 		if (!check_slab(s, page))
1154 			goto out;
1155 	}
1156 
1157 next_object:
1158 	cnt++;
1159 
1160 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161 		if (!free_consistency_checks(s, page, object, addr))
1162 			goto out;
1163 	}
1164 
1165 	if (s->flags & SLAB_STORE_USER)
1166 		set_track(s, object, TRACK_FREE, addr);
1167 	trace(s, page, object, 0);
1168 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1169 	init_object(s, object, SLUB_RED_INACTIVE);
1170 
1171 	/* Reached end of constructed freelist yet? */
1172 	if (object != tail) {
1173 		object = get_freepointer(s, object);
1174 		goto next_object;
1175 	}
1176 	ret = 1;
1177 
1178 out:
1179 	if (cnt != bulk_cnt)
1180 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1181 			 bulk_cnt, cnt);
1182 
1183 	slab_unlock(page);
1184 	spin_unlock_irqrestore(&n->list_lock, flags);
1185 	if (!ret)
1186 		slab_fix(s, "Object at 0x%p not freed", object);
1187 	return ret;
1188 }
1189 
1190 static int __init setup_slub_debug(char *str)
1191 {
1192 	slub_debug = DEBUG_DEFAULT_FLAGS;
1193 	if (*str++ != '=' || !*str)
1194 		/*
1195 		 * No options specified. Switch on full debugging.
1196 		 */
1197 		goto out;
1198 
1199 	if (*str == ',')
1200 		/*
1201 		 * No options but restriction on slabs. This means full
1202 		 * debugging for slabs matching a pattern.
1203 		 */
1204 		goto check_slabs;
1205 
1206 	slub_debug = 0;
1207 	if (*str == '-')
1208 		/*
1209 		 * Switch off all debugging measures.
1210 		 */
1211 		goto out;
1212 
1213 	/*
1214 	 * Determine which debug features should be switched on
1215 	 */
1216 	for (; *str && *str != ','; str++) {
1217 		switch (tolower(*str)) {
1218 		case 'f':
1219 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1220 			break;
1221 		case 'z':
1222 			slub_debug |= SLAB_RED_ZONE;
1223 			break;
1224 		case 'p':
1225 			slub_debug |= SLAB_POISON;
1226 			break;
1227 		case 'u':
1228 			slub_debug |= SLAB_STORE_USER;
1229 			break;
1230 		case 't':
1231 			slub_debug |= SLAB_TRACE;
1232 			break;
1233 		case 'a':
1234 			slub_debug |= SLAB_FAILSLAB;
1235 			break;
1236 		case 'o':
1237 			/*
1238 			 * Avoid enabling debugging on caches if its minimum
1239 			 * order would increase as a result.
1240 			 */
1241 			disable_higher_order_debug = 1;
1242 			break;
1243 		default:
1244 			pr_err("slub_debug option '%c' unknown. skipped\n",
1245 			       *str);
1246 		}
1247 	}
1248 
1249 check_slabs:
1250 	if (*str == ',')
1251 		slub_debug_slabs = str + 1;
1252 out:
1253 	return 1;
1254 }
1255 
1256 __setup("slub_debug", setup_slub_debug);
1257 
1258 unsigned long kmem_cache_flags(unsigned long object_size,
1259 	unsigned long flags, const char *name,
1260 	void (*ctor)(void *))
1261 {
1262 	/*
1263 	 * Enable debugging if selected on the kernel commandline.
1264 	 */
1265 	if (slub_debug && (!slub_debug_slabs || (name &&
1266 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1267 		flags |= slub_debug;
1268 
1269 	return flags;
1270 }
1271 #else /* !CONFIG_SLUB_DEBUG */
1272 static inline void setup_object_debug(struct kmem_cache *s,
1273 			struct page *page, void *object) {}
1274 
1275 static inline int alloc_debug_processing(struct kmem_cache *s,
1276 	struct page *page, void *object, unsigned long addr) { return 0; }
1277 
1278 static inline int free_debug_processing(
1279 	struct kmem_cache *s, struct page *page,
1280 	void *head, void *tail, int bulk_cnt,
1281 	unsigned long addr) { return 0; }
1282 
1283 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1284 			{ return 1; }
1285 static inline int check_object(struct kmem_cache *s, struct page *page,
1286 			void *object, u8 val) { return 1; }
1287 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 					struct page *page) {}
1289 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1290 					struct page *page) {}
1291 unsigned long kmem_cache_flags(unsigned long object_size,
1292 	unsigned long flags, const char *name,
1293 	void (*ctor)(void *))
1294 {
1295 	return flags;
1296 }
1297 #define slub_debug 0
1298 
1299 #define disable_higher_order_debug 0
1300 
1301 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1302 							{ return 0; }
1303 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1304 							{ return 0; }
1305 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1306 							int objects) {}
1307 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308 							int objects) {}
1309 
1310 #endif /* CONFIG_SLUB_DEBUG */
1311 
1312 /*
1313  * Hooks for other subsystems that check memory allocations. In a typical
1314  * production configuration these hooks all should produce no code at all.
1315  */
1316 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1317 {
1318 	kmemleak_alloc(ptr, size, 1, flags);
1319 	kasan_kmalloc_large(ptr, size, flags);
1320 }
1321 
1322 static inline void kfree_hook(const void *x)
1323 {
1324 	kmemleak_free(x);
1325 	kasan_kfree_large(x);
1326 }
1327 
1328 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1329 {
1330 	void *freeptr;
1331 
1332 	kmemleak_free_recursive(x, s->flags);
1333 
1334 	/*
1335 	 * Trouble is that we may no longer disable interrupts in the fast path
1336 	 * So in order to make the debug calls that expect irqs to be
1337 	 * disabled we need to disable interrupts temporarily.
1338 	 */
1339 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1340 	{
1341 		unsigned long flags;
1342 
1343 		local_irq_save(flags);
1344 		kmemcheck_slab_free(s, x, s->object_size);
1345 		debug_check_no_locks_freed(x, s->object_size);
1346 		local_irq_restore(flags);
1347 	}
1348 #endif
1349 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1350 		debug_check_no_obj_freed(x, s->object_size);
1351 
1352 	freeptr = get_freepointer(s, x);
1353 	/*
1354 	 * kasan_slab_free() may put x into memory quarantine, delaying its
1355 	 * reuse. In this case the object's freelist pointer is changed.
1356 	 */
1357 	kasan_slab_free(s, x);
1358 	return freeptr;
1359 }
1360 
1361 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1362 					   void *head, void *tail)
1363 {
1364 /*
1365  * Compiler cannot detect this function can be removed if slab_free_hook()
1366  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1367  */
1368 #if defined(CONFIG_KMEMCHECK) ||		\
1369 	defined(CONFIG_LOCKDEP)	||		\
1370 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1371 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1372 	defined(CONFIG_KASAN)
1373 
1374 	void *object = head;
1375 	void *tail_obj = tail ? : head;
1376 	void *freeptr;
1377 
1378 	do {
1379 		freeptr = slab_free_hook(s, object);
1380 	} while ((object != tail_obj) && (object = freeptr));
1381 #endif
1382 }
1383 
1384 static void setup_object(struct kmem_cache *s, struct page *page,
1385 				void *object)
1386 {
1387 	setup_object_debug(s, page, object);
1388 	kasan_init_slab_obj(s, object);
1389 	if (unlikely(s->ctor)) {
1390 		kasan_unpoison_object_data(s, object);
1391 		s->ctor(object);
1392 		kasan_poison_object_data(s, object);
1393 	}
1394 }
1395 
1396 /*
1397  * Slab allocation and freeing
1398  */
1399 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1400 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1401 {
1402 	struct page *page;
1403 	int order = oo_order(oo);
1404 
1405 	flags |= __GFP_NOTRACK;
1406 
1407 	if (node == NUMA_NO_NODE)
1408 		page = alloc_pages(flags, order);
1409 	else
1410 		page = __alloc_pages_node(node, flags, order);
1411 
1412 	if (page && memcg_charge_slab(page, flags, order, s)) {
1413 		__free_pages(page, order);
1414 		page = NULL;
1415 	}
1416 
1417 	return page;
1418 }
1419 
1420 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1421 /* Pre-initialize the random sequence cache */
1422 static int init_cache_random_seq(struct kmem_cache *s)
1423 {
1424 	int err;
1425 	unsigned long i, count = oo_objects(s->oo);
1426 
1427 	/* Bailout if already initialised */
1428 	if (s->random_seq)
1429 		return 0;
1430 
1431 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1432 	if (err) {
1433 		pr_err("SLUB: Unable to initialize free list for %s\n",
1434 			s->name);
1435 		return err;
1436 	}
1437 
1438 	/* Transform to an offset on the set of pages */
1439 	if (s->random_seq) {
1440 		for (i = 0; i < count; i++)
1441 			s->random_seq[i] *= s->size;
1442 	}
1443 	return 0;
1444 }
1445 
1446 /* Initialize each random sequence freelist per cache */
1447 static void __init init_freelist_randomization(void)
1448 {
1449 	struct kmem_cache *s;
1450 
1451 	mutex_lock(&slab_mutex);
1452 
1453 	list_for_each_entry(s, &slab_caches, list)
1454 		init_cache_random_seq(s);
1455 
1456 	mutex_unlock(&slab_mutex);
1457 }
1458 
1459 /* Get the next entry on the pre-computed freelist randomized */
1460 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1461 				unsigned long *pos, void *start,
1462 				unsigned long page_limit,
1463 				unsigned long freelist_count)
1464 {
1465 	unsigned int idx;
1466 
1467 	/*
1468 	 * If the target page allocation failed, the number of objects on the
1469 	 * page might be smaller than the usual size defined by the cache.
1470 	 */
1471 	do {
1472 		idx = s->random_seq[*pos];
1473 		*pos += 1;
1474 		if (*pos >= freelist_count)
1475 			*pos = 0;
1476 	} while (unlikely(idx >= page_limit));
1477 
1478 	return (char *)start + idx;
1479 }
1480 
1481 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1482 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1483 {
1484 	void *start;
1485 	void *cur;
1486 	void *next;
1487 	unsigned long idx, pos, page_limit, freelist_count;
1488 
1489 	if (page->objects < 2 || !s->random_seq)
1490 		return false;
1491 
1492 	freelist_count = oo_objects(s->oo);
1493 	pos = get_random_int() % freelist_count;
1494 
1495 	page_limit = page->objects * s->size;
1496 	start = fixup_red_left(s, page_address(page));
1497 
1498 	/* First entry is used as the base of the freelist */
1499 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1500 				freelist_count);
1501 	page->freelist = cur;
1502 
1503 	for (idx = 1; idx < page->objects; idx++) {
1504 		setup_object(s, page, cur);
1505 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1506 			freelist_count);
1507 		set_freepointer(s, cur, next);
1508 		cur = next;
1509 	}
1510 	setup_object(s, page, cur);
1511 	set_freepointer(s, cur, NULL);
1512 
1513 	return true;
1514 }
1515 #else
1516 static inline int init_cache_random_seq(struct kmem_cache *s)
1517 {
1518 	return 0;
1519 }
1520 static inline void init_freelist_randomization(void) { }
1521 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1522 {
1523 	return false;
1524 }
1525 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1526 
1527 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528 {
1529 	struct page *page;
1530 	struct kmem_cache_order_objects oo = s->oo;
1531 	gfp_t alloc_gfp;
1532 	void *start, *p;
1533 	int idx, order;
1534 	bool shuffle;
1535 
1536 	flags &= gfp_allowed_mask;
1537 
1538 	if (gfpflags_allow_blocking(flags))
1539 		local_irq_enable();
1540 
1541 	flags |= s->allocflags;
1542 
1543 	/*
1544 	 * Let the initial higher-order allocation fail under memory pressure
1545 	 * so we fall-back to the minimum order allocation.
1546 	 */
1547 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1548 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1549 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1550 
1551 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1552 	if (unlikely(!page)) {
1553 		oo = s->min;
1554 		alloc_gfp = flags;
1555 		/*
1556 		 * Allocation may have failed due to fragmentation.
1557 		 * Try a lower order alloc if possible
1558 		 */
1559 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1560 		if (unlikely(!page))
1561 			goto out;
1562 		stat(s, ORDER_FALLBACK);
1563 	}
1564 
1565 	if (kmemcheck_enabled &&
1566 	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1567 		int pages = 1 << oo_order(oo);
1568 
1569 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1570 
1571 		/*
1572 		 * Objects from caches that have a constructor don't get
1573 		 * cleared when they're allocated, so we need to do it here.
1574 		 */
1575 		if (s->ctor)
1576 			kmemcheck_mark_uninitialized_pages(page, pages);
1577 		else
1578 			kmemcheck_mark_unallocated_pages(page, pages);
1579 	}
1580 
1581 	page->objects = oo_objects(oo);
1582 
1583 	order = compound_order(page);
1584 	page->slab_cache = s;
1585 	__SetPageSlab(page);
1586 	if (page_is_pfmemalloc(page))
1587 		SetPageSlabPfmemalloc(page);
1588 
1589 	start = page_address(page);
1590 
1591 	if (unlikely(s->flags & SLAB_POISON))
1592 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1593 
1594 	kasan_poison_slab(page);
1595 
1596 	shuffle = shuffle_freelist(s, page);
1597 
1598 	if (!shuffle) {
1599 		for_each_object_idx(p, idx, s, start, page->objects) {
1600 			setup_object(s, page, p);
1601 			if (likely(idx < page->objects))
1602 				set_freepointer(s, p, p + s->size);
1603 			else
1604 				set_freepointer(s, p, NULL);
1605 		}
1606 		page->freelist = fixup_red_left(s, start);
1607 	}
1608 
1609 	page->inuse = page->objects;
1610 	page->frozen = 1;
1611 
1612 out:
1613 	if (gfpflags_allow_blocking(flags))
1614 		local_irq_disable();
1615 	if (!page)
1616 		return NULL;
1617 
1618 	mod_lruvec_page_state(page,
1619 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1620 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621 		1 << oo_order(oo));
1622 
1623 	inc_slabs_node(s, page_to_nid(page), page->objects);
1624 
1625 	return page;
1626 }
1627 
1628 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1629 {
1630 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1631 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1632 		flags &= ~GFP_SLAB_BUG_MASK;
1633 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1634 				invalid_mask, &invalid_mask, flags, &flags);
1635 		dump_stack();
1636 	}
1637 
1638 	return allocate_slab(s,
1639 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1640 }
1641 
1642 static void __free_slab(struct kmem_cache *s, struct page *page)
1643 {
1644 	int order = compound_order(page);
1645 	int pages = 1 << order;
1646 
1647 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1648 		void *p;
1649 
1650 		slab_pad_check(s, page);
1651 		for_each_object(p, s, page_address(page),
1652 						page->objects)
1653 			check_object(s, page, p, SLUB_RED_INACTIVE);
1654 	}
1655 
1656 	kmemcheck_free_shadow(page, compound_order(page));
1657 
1658 	mod_lruvec_page_state(page,
1659 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1660 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1661 		-pages);
1662 
1663 	__ClearPageSlabPfmemalloc(page);
1664 	__ClearPageSlab(page);
1665 
1666 	page_mapcount_reset(page);
1667 	if (current->reclaim_state)
1668 		current->reclaim_state->reclaimed_slab += pages;
1669 	memcg_uncharge_slab(page, order, s);
1670 	__free_pages(page, order);
1671 }
1672 
1673 #define need_reserve_slab_rcu						\
1674 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1675 
1676 static void rcu_free_slab(struct rcu_head *h)
1677 {
1678 	struct page *page;
1679 
1680 	if (need_reserve_slab_rcu)
1681 		page = virt_to_head_page(h);
1682 	else
1683 		page = container_of((struct list_head *)h, struct page, lru);
1684 
1685 	__free_slab(page->slab_cache, page);
1686 }
1687 
1688 static void free_slab(struct kmem_cache *s, struct page *page)
1689 {
1690 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1691 		struct rcu_head *head;
1692 
1693 		if (need_reserve_slab_rcu) {
1694 			int order = compound_order(page);
1695 			int offset = (PAGE_SIZE << order) - s->reserved;
1696 
1697 			VM_BUG_ON(s->reserved != sizeof(*head));
1698 			head = page_address(page) + offset;
1699 		} else {
1700 			head = &page->rcu_head;
1701 		}
1702 
1703 		call_rcu(head, rcu_free_slab);
1704 	} else
1705 		__free_slab(s, page);
1706 }
1707 
1708 static void discard_slab(struct kmem_cache *s, struct page *page)
1709 {
1710 	dec_slabs_node(s, page_to_nid(page), page->objects);
1711 	free_slab(s, page);
1712 }
1713 
1714 /*
1715  * Management of partially allocated slabs.
1716  */
1717 static inline void
1718 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1719 {
1720 	n->nr_partial++;
1721 	if (tail == DEACTIVATE_TO_TAIL)
1722 		list_add_tail(&page->lru, &n->partial);
1723 	else
1724 		list_add(&page->lru, &n->partial);
1725 }
1726 
1727 static inline void add_partial(struct kmem_cache_node *n,
1728 				struct page *page, int tail)
1729 {
1730 	lockdep_assert_held(&n->list_lock);
1731 	__add_partial(n, page, tail);
1732 }
1733 
1734 static inline void remove_partial(struct kmem_cache_node *n,
1735 					struct page *page)
1736 {
1737 	lockdep_assert_held(&n->list_lock);
1738 	list_del(&page->lru);
1739 	n->nr_partial--;
1740 }
1741 
1742 /*
1743  * Remove slab from the partial list, freeze it and
1744  * return the pointer to the freelist.
1745  *
1746  * Returns a list of objects or NULL if it fails.
1747  */
1748 static inline void *acquire_slab(struct kmem_cache *s,
1749 		struct kmem_cache_node *n, struct page *page,
1750 		int mode, int *objects)
1751 {
1752 	void *freelist;
1753 	unsigned long counters;
1754 	struct page new;
1755 
1756 	lockdep_assert_held(&n->list_lock);
1757 
1758 	/*
1759 	 * Zap the freelist and set the frozen bit.
1760 	 * The old freelist is the list of objects for the
1761 	 * per cpu allocation list.
1762 	 */
1763 	freelist = page->freelist;
1764 	counters = page->counters;
1765 	new.counters = counters;
1766 	*objects = new.objects - new.inuse;
1767 	if (mode) {
1768 		new.inuse = page->objects;
1769 		new.freelist = NULL;
1770 	} else {
1771 		new.freelist = freelist;
1772 	}
1773 
1774 	VM_BUG_ON(new.frozen);
1775 	new.frozen = 1;
1776 
1777 	if (!__cmpxchg_double_slab(s, page,
1778 			freelist, counters,
1779 			new.freelist, new.counters,
1780 			"acquire_slab"))
1781 		return NULL;
1782 
1783 	remove_partial(n, page);
1784 	WARN_ON(!freelist);
1785 	return freelist;
1786 }
1787 
1788 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1789 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1790 
1791 /*
1792  * Try to allocate a partial slab from a specific node.
1793  */
1794 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1795 				struct kmem_cache_cpu *c, gfp_t flags)
1796 {
1797 	struct page *page, *page2;
1798 	void *object = NULL;
1799 	int available = 0;
1800 	int objects;
1801 
1802 	/*
1803 	 * Racy check. If we mistakenly see no partial slabs then we
1804 	 * just allocate an empty slab. If we mistakenly try to get a
1805 	 * partial slab and there is none available then get_partials()
1806 	 * will return NULL.
1807 	 */
1808 	if (!n || !n->nr_partial)
1809 		return NULL;
1810 
1811 	spin_lock(&n->list_lock);
1812 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1813 		void *t;
1814 
1815 		if (!pfmemalloc_match(page, flags))
1816 			continue;
1817 
1818 		t = acquire_slab(s, n, page, object == NULL, &objects);
1819 		if (!t)
1820 			break;
1821 
1822 		available += objects;
1823 		if (!object) {
1824 			c->page = page;
1825 			stat(s, ALLOC_FROM_PARTIAL);
1826 			object = t;
1827 		} else {
1828 			put_cpu_partial(s, page, 0);
1829 			stat(s, CPU_PARTIAL_NODE);
1830 		}
1831 		if (!kmem_cache_has_cpu_partial(s)
1832 			|| available > slub_cpu_partial(s) / 2)
1833 			break;
1834 
1835 	}
1836 	spin_unlock(&n->list_lock);
1837 	return object;
1838 }
1839 
1840 /*
1841  * Get a page from somewhere. Search in increasing NUMA distances.
1842  */
1843 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1844 		struct kmem_cache_cpu *c)
1845 {
1846 #ifdef CONFIG_NUMA
1847 	struct zonelist *zonelist;
1848 	struct zoneref *z;
1849 	struct zone *zone;
1850 	enum zone_type high_zoneidx = gfp_zone(flags);
1851 	void *object;
1852 	unsigned int cpuset_mems_cookie;
1853 
1854 	/*
1855 	 * The defrag ratio allows a configuration of the tradeoffs between
1856 	 * inter node defragmentation and node local allocations. A lower
1857 	 * defrag_ratio increases the tendency to do local allocations
1858 	 * instead of attempting to obtain partial slabs from other nodes.
1859 	 *
1860 	 * If the defrag_ratio is set to 0 then kmalloc() always
1861 	 * returns node local objects. If the ratio is higher then kmalloc()
1862 	 * may return off node objects because partial slabs are obtained
1863 	 * from other nodes and filled up.
1864 	 *
1865 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1866 	 * (which makes defrag_ratio = 1000) then every (well almost)
1867 	 * allocation will first attempt to defrag slab caches on other nodes.
1868 	 * This means scanning over all nodes to look for partial slabs which
1869 	 * may be expensive if we do it every time we are trying to find a slab
1870 	 * with available objects.
1871 	 */
1872 	if (!s->remote_node_defrag_ratio ||
1873 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1874 		return NULL;
1875 
1876 	do {
1877 		cpuset_mems_cookie = read_mems_allowed_begin();
1878 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1879 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1880 			struct kmem_cache_node *n;
1881 
1882 			n = get_node(s, zone_to_nid(zone));
1883 
1884 			if (n && cpuset_zone_allowed(zone, flags) &&
1885 					n->nr_partial > s->min_partial) {
1886 				object = get_partial_node(s, n, c, flags);
1887 				if (object) {
1888 					/*
1889 					 * Don't check read_mems_allowed_retry()
1890 					 * here - if mems_allowed was updated in
1891 					 * parallel, that was a harmless race
1892 					 * between allocation and the cpuset
1893 					 * update
1894 					 */
1895 					return object;
1896 				}
1897 			}
1898 		}
1899 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1900 #endif
1901 	return NULL;
1902 }
1903 
1904 /*
1905  * Get a partial page, lock it and return it.
1906  */
1907 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1908 		struct kmem_cache_cpu *c)
1909 {
1910 	void *object;
1911 	int searchnode = node;
1912 
1913 	if (node == NUMA_NO_NODE)
1914 		searchnode = numa_mem_id();
1915 	else if (!node_present_pages(node))
1916 		searchnode = node_to_mem_node(node);
1917 
1918 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1919 	if (object || node != NUMA_NO_NODE)
1920 		return object;
1921 
1922 	return get_any_partial(s, flags, c);
1923 }
1924 
1925 #ifdef CONFIG_PREEMPT
1926 /*
1927  * Calculate the next globally unique transaction for disambiguiation
1928  * during cmpxchg. The transactions start with the cpu number and are then
1929  * incremented by CONFIG_NR_CPUS.
1930  */
1931 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1932 #else
1933 /*
1934  * No preemption supported therefore also no need to check for
1935  * different cpus.
1936  */
1937 #define TID_STEP 1
1938 #endif
1939 
1940 static inline unsigned long next_tid(unsigned long tid)
1941 {
1942 	return tid + TID_STEP;
1943 }
1944 
1945 static inline unsigned int tid_to_cpu(unsigned long tid)
1946 {
1947 	return tid % TID_STEP;
1948 }
1949 
1950 static inline unsigned long tid_to_event(unsigned long tid)
1951 {
1952 	return tid / TID_STEP;
1953 }
1954 
1955 static inline unsigned int init_tid(int cpu)
1956 {
1957 	return cpu;
1958 }
1959 
1960 static inline void note_cmpxchg_failure(const char *n,
1961 		const struct kmem_cache *s, unsigned long tid)
1962 {
1963 #ifdef SLUB_DEBUG_CMPXCHG
1964 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1965 
1966 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1967 
1968 #ifdef CONFIG_PREEMPT
1969 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1970 		pr_warn("due to cpu change %d -> %d\n",
1971 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1972 	else
1973 #endif
1974 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1975 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1976 			tid_to_event(tid), tid_to_event(actual_tid));
1977 	else
1978 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1979 			actual_tid, tid, next_tid(tid));
1980 #endif
1981 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1982 }
1983 
1984 static void init_kmem_cache_cpus(struct kmem_cache *s)
1985 {
1986 	int cpu;
1987 
1988 	for_each_possible_cpu(cpu)
1989 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1990 }
1991 
1992 /*
1993  * Remove the cpu slab
1994  */
1995 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1996 				void *freelist, struct kmem_cache_cpu *c)
1997 {
1998 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1999 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2000 	int lock = 0;
2001 	enum slab_modes l = M_NONE, m = M_NONE;
2002 	void *nextfree;
2003 	int tail = DEACTIVATE_TO_HEAD;
2004 	struct page new;
2005 	struct page old;
2006 
2007 	if (page->freelist) {
2008 		stat(s, DEACTIVATE_REMOTE_FREES);
2009 		tail = DEACTIVATE_TO_TAIL;
2010 	}
2011 
2012 	/*
2013 	 * Stage one: Free all available per cpu objects back
2014 	 * to the page freelist while it is still frozen. Leave the
2015 	 * last one.
2016 	 *
2017 	 * There is no need to take the list->lock because the page
2018 	 * is still frozen.
2019 	 */
2020 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2021 		void *prior;
2022 		unsigned long counters;
2023 
2024 		do {
2025 			prior = page->freelist;
2026 			counters = page->counters;
2027 			set_freepointer(s, freelist, prior);
2028 			new.counters = counters;
2029 			new.inuse--;
2030 			VM_BUG_ON(!new.frozen);
2031 
2032 		} while (!__cmpxchg_double_slab(s, page,
2033 			prior, counters,
2034 			freelist, new.counters,
2035 			"drain percpu freelist"));
2036 
2037 		freelist = nextfree;
2038 	}
2039 
2040 	/*
2041 	 * Stage two: Ensure that the page is unfrozen while the
2042 	 * list presence reflects the actual number of objects
2043 	 * during unfreeze.
2044 	 *
2045 	 * We setup the list membership and then perform a cmpxchg
2046 	 * with the count. If there is a mismatch then the page
2047 	 * is not unfrozen but the page is on the wrong list.
2048 	 *
2049 	 * Then we restart the process which may have to remove
2050 	 * the page from the list that we just put it on again
2051 	 * because the number of objects in the slab may have
2052 	 * changed.
2053 	 */
2054 redo:
2055 
2056 	old.freelist = page->freelist;
2057 	old.counters = page->counters;
2058 	VM_BUG_ON(!old.frozen);
2059 
2060 	/* Determine target state of the slab */
2061 	new.counters = old.counters;
2062 	if (freelist) {
2063 		new.inuse--;
2064 		set_freepointer(s, freelist, old.freelist);
2065 		new.freelist = freelist;
2066 	} else
2067 		new.freelist = old.freelist;
2068 
2069 	new.frozen = 0;
2070 
2071 	if (!new.inuse && n->nr_partial >= s->min_partial)
2072 		m = M_FREE;
2073 	else if (new.freelist) {
2074 		m = M_PARTIAL;
2075 		if (!lock) {
2076 			lock = 1;
2077 			/*
2078 			 * Taking the spinlock removes the possiblity
2079 			 * that acquire_slab() will see a slab page that
2080 			 * is frozen
2081 			 */
2082 			spin_lock(&n->list_lock);
2083 		}
2084 	} else {
2085 		m = M_FULL;
2086 		if (kmem_cache_debug(s) && !lock) {
2087 			lock = 1;
2088 			/*
2089 			 * This also ensures that the scanning of full
2090 			 * slabs from diagnostic functions will not see
2091 			 * any frozen slabs.
2092 			 */
2093 			spin_lock(&n->list_lock);
2094 		}
2095 	}
2096 
2097 	if (l != m) {
2098 
2099 		if (l == M_PARTIAL)
2100 
2101 			remove_partial(n, page);
2102 
2103 		else if (l == M_FULL)
2104 
2105 			remove_full(s, n, page);
2106 
2107 		if (m == M_PARTIAL) {
2108 
2109 			add_partial(n, page, tail);
2110 			stat(s, tail);
2111 
2112 		} else if (m == M_FULL) {
2113 
2114 			stat(s, DEACTIVATE_FULL);
2115 			add_full(s, n, page);
2116 
2117 		}
2118 	}
2119 
2120 	l = m;
2121 	if (!__cmpxchg_double_slab(s, page,
2122 				old.freelist, old.counters,
2123 				new.freelist, new.counters,
2124 				"unfreezing slab"))
2125 		goto redo;
2126 
2127 	if (lock)
2128 		spin_unlock(&n->list_lock);
2129 
2130 	if (m == M_FREE) {
2131 		stat(s, DEACTIVATE_EMPTY);
2132 		discard_slab(s, page);
2133 		stat(s, FREE_SLAB);
2134 	}
2135 
2136 	c->page = NULL;
2137 	c->freelist = NULL;
2138 }
2139 
2140 /*
2141  * Unfreeze all the cpu partial slabs.
2142  *
2143  * This function must be called with interrupts disabled
2144  * for the cpu using c (or some other guarantee must be there
2145  * to guarantee no concurrent accesses).
2146  */
2147 static void unfreeze_partials(struct kmem_cache *s,
2148 		struct kmem_cache_cpu *c)
2149 {
2150 #ifdef CONFIG_SLUB_CPU_PARTIAL
2151 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2152 	struct page *page, *discard_page = NULL;
2153 
2154 	while ((page = c->partial)) {
2155 		struct page new;
2156 		struct page old;
2157 
2158 		c->partial = page->next;
2159 
2160 		n2 = get_node(s, page_to_nid(page));
2161 		if (n != n2) {
2162 			if (n)
2163 				spin_unlock(&n->list_lock);
2164 
2165 			n = n2;
2166 			spin_lock(&n->list_lock);
2167 		}
2168 
2169 		do {
2170 
2171 			old.freelist = page->freelist;
2172 			old.counters = page->counters;
2173 			VM_BUG_ON(!old.frozen);
2174 
2175 			new.counters = old.counters;
2176 			new.freelist = old.freelist;
2177 
2178 			new.frozen = 0;
2179 
2180 		} while (!__cmpxchg_double_slab(s, page,
2181 				old.freelist, old.counters,
2182 				new.freelist, new.counters,
2183 				"unfreezing slab"));
2184 
2185 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2186 			page->next = discard_page;
2187 			discard_page = page;
2188 		} else {
2189 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2190 			stat(s, FREE_ADD_PARTIAL);
2191 		}
2192 	}
2193 
2194 	if (n)
2195 		spin_unlock(&n->list_lock);
2196 
2197 	while (discard_page) {
2198 		page = discard_page;
2199 		discard_page = discard_page->next;
2200 
2201 		stat(s, DEACTIVATE_EMPTY);
2202 		discard_slab(s, page);
2203 		stat(s, FREE_SLAB);
2204 	}
2205 #endif
2206 }
2207 
2208 /*
2209  * Put a page that was just frozen (in __slab_free) into a partial page
2210  * slot if available. This is done without interrupts disabled and without
2211  * preemption disabled. The cmpxchg is racy and may put the partial page
2212  * onto a random cpus partial slot.
2213  *
2214  * If we did not find a slot then simply move all the partials to the
2215  * per node partial list.
2216  */
2217 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2218 {
2219 #ifdef CONFIG_SLUB_CPU_PARTIAL
2220 	struct page *oldpage;
2221 	int pages;
2222 	int pobjects;
2223 
2224 	preempt_disable();
2225 	do {
2226 		pages = 0;
2227 		pobjects = 0;
2228 		oldpage = this_cpu_read(s->cpu_slab->partial);
2229 
2230 		if (oldpage) {
2231 			pobjects = oldpage->pobjects;
2232 			pages = oldpage->pages;
2233 			if (drain && pobjects > s->cpu_partial) {
2234 				unsigned long flags;
2235 				/*
2236 				 * partial array is full. Move the existing
2237 				 * set to the per node partial list.
2238 				 */
2239 				local_irq_save(flags);
2240 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2241 				local_irq_restore(flags);
2242 				oldpage = NULL;
2243 				pobjects = 0;
2244 				pages = 0;
2245 				stat(s, CPU_PARTIAL_DRAIN);
2246 			}
2247 		}
2248 
2249 		pages++;
2250 		pobjects += page->objects - page->inuse;
2251 
2252 		page->pages = pages;
2253 		page->pobjects = pobjects;
2254 		page->next = oldpage;
2255 
2256 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2257 								!= oldpage);
2258 	if (unlikely(!s->cpu_partial)) {
2259 		unsigned long flags;
2260 
2261 		local_irq_save(flags);
2262 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2263 		local_irq_restore(flags);
2264 	}
2265 	preempt_enable();
2266 #endif
2267 }
2268 
2269 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2270 {
2271 	stat(s, CPUSLAB_FLUSH);
2272 	deactivate_slab(s, c->page, c->freelist, c);
2273 
2274 	c->tid = next_tid(c->tid);
2275 }
2276 
2277 /*
2278  * Flush cpu slab.
2279  *
2280  * Called from IPI handler with interrupts disabled.
2281  */
2282 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2283 {
2284 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2285 
2286 	if (likely(c)) {
2287 		if (c->page)
2288 			flush_slab(s, c);
2289 
2290 		unfreeze_partials(s, c);
2291 	}
2292 }
2293 
2294 static void flush_cpu_slab(void *d)
2295 {
2296 	struct kmem_cache *s = d;
2297 
2298 	__flush_cpu_slab(s, smp_processor_id());
2299 }
2300 
2301 static bool has_cpu_slab(int cpu, void *info)
2302 {
2303 	struct kmem_cache *s = info;
2304 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2305 
2306 	return c->page || slub_percpu_partial(c);
2307 }
2308 
2309 static void flush_all(struct kmem_cache *s)
2310 {
2311 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2312 }
2313 
2314 /*
2315  * Use the cpu notifier to insure that the cpu slabs are flushed when
2316  * necessary.
2317  */
2318 static int slub_cpu_dead(unsigned int cpu)
2319 {
2320 	struct kmem_cache *s;
2321 	unsigned long flags;
2322 
2323 	mutex_lock(&slab_mutex);
2324 	list_for_each_entry(s, &slab_caches, list) {
2325 		local_irq_save(flags);
2326 		__flush_cpu_slab(s, cpu);
2327 		local_irq_restore(flags);
2328 	}
2329 	mutex_unlock(&slab_mutex);
2330 	return 0;
2331 }
2332 
2333 /*
2334  * Check if the objects in a per cpu structure fit numa
2335  * locality expectations.
2336  */
2337 static inline int node_match(struct page *page, int node)
2338 {
2339 #ifdef CONFIG_NUMA
2340 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2341 		return 0;
2342 #endif
2343 	return 1;
2344 }
2345 
2346 #ifdef CONFIG_SLUB_DEBUG
2347 static int count_free(struct page *page)
2348 {
2349 	return page->objects - page->inuse;
2350 }
2351 
2352 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2353 {
2354 	return atomic_long_read(&n->total_objects);
2355 }
2356 #endif /* CONFIG_SLUB_DEBUG */
2357 
2358 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2359 static unsigned long count_partial(struct kmem_cache_node *n,
2360 					int (*get_count)(struct page *))
2361 {
2362 	unsigned long flags;
2363 	unsigned long x = 0;
2364 	struct page *page;
2365 
2366 	spin_lock_irqsave(&n->list_lock, flags);
2367 	list_for_each_entry(page, &n->partial, lru)
2368 		x += get_count(page);
2369 	spin_unlock_irqrestore(&n->list_lock, flags);
2370 	return x;
2371 }
2372 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2373 
2374 static noinline void
2375 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2376 {
2377 #ifdef CONFIG_SLUB_DEBUG
2378 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2379 				      DEFAULT_RATELIMIT_BURST);
2380 	int node;
2381 	struct kmem_cache_node *n;
2382 
2383 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2384 		return;
2385 
2386 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2387 		nid, gfpflags, &gfpflags);
2388 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2389 		s->name, s->object_size, s->size, oo_order(s->oo),
2390 		oo_order(s->min));
2391 
2392 	if (oo_order(s->min) > get_order(s->object_size))
2393 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2394 			s->name);
2395 
2396 	for_each_kmem_cache_node(s, node, n) {
2397 		unsigned long nr_slabs;
2398 		unsigned long nr_objs;
2399 		unsigned long nr_free;
2400 
2401 		nr_free  = count_partial(n, count_free);
2402 		nr_slabs = node_nr_slabs(n);
2403 		nr_objs  = node_nr_objs(n);
2404 
2405 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2406 			node, nr_slabs, nr_objs, nr_free);
2407 	}
2408 #endif
2409 }
2410 
2411 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2412 			int node, struct kmem_cache_cpu **pc)
2413 {
2414 	void *freelist;
2415 	struct kmem_cache_cpu *c = *pc;
2416 	struct page *page;
2417 
2418 	freelist = get_partial(s, flags, node, c);
2419 
2420 	if (freelist)
2421 		return freelist;
2422 
2423 	page = new_slab(s, flags, node);
2424 	if (page) {
2425 		c = raw_cpu_ptr(s->cpu_slab);
2426 		if (c->page)
2427 			flush_slab(s, c);
2428 
2429 		/*
2430 		 * No other reference to the page yet so we can
2431 		 * muck around with it freely without cmpxchg
2432 		 */
2433 		freelist = page->freelist;
2434 		page->freelist = NULL;
2435 
2436 		stat(s, ALLOC_SLAB);
2437 		c->page = page;
2438 		*pc = c;
2439 	} else
2440 		freelist = NULL;
2441 
2442 	return freelist;
2443 }
2444 
2445 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2446 {
2447 	if (unlikely(PageSlabPfmemalloc(page)))
2448 		return gfp_pfmemalloc_allowed(gfpflags);
2449 
2450 	return true;
2451 }
2452 
2453 /*
2454  * Check the page->freelist of a page and either transfer the freelist to the
2455  * per cpu freelist or deactivate the page.
2456  *
2457  * The page is still frozen if the return value is not NULL.
2458  *
2459  * If this function returns NULL then the page has been unfrozen.
2460  *
2461  * This function must be called with interrupt disabled.
2462  */
2463 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2464 {
2465 	struct page new;
2466 	unsigned long counters;
2467 	void *freelist;
2468 
2469 	do {
2470 		freelist = page->freelist;
2471 		counters = page->counters;
2472 
2473 		new.counters = counters;
2474 		VM_BUG_ON(!new.frozen);
2475 
2476 		new.inuse = page->objects;
2477 		new.frozen = freelist != NULL;
2478 
2479 	} while (!__cmpxchg_double_slab(s, page,
2480 		freelist, counters,
2481 		NULL, new.counters,
2482 		"get_freelist"));
2483 
2484 	return freelist;
2485 }
2486 
2487 /*
2488  * Slow path. The lockless freelist is empty or we need to perform
2489  * debugging duties.
2490  *
2491  * Processing is still very fast if new objects have been freed to the
2492  * regular freelist. In that case we simply take over the regular freelist
2493  * as the lockless freelist and zap the regular freelist.
2494  *
2495  * If that is not working then we fall back to the partial lists. We take the
2496  * first element of the freelist as the object to allocate now and move the
2497  * rest of the freelist to the lockless freelist.
2498  *
2499  * And if we were unable to get a new slab from the partial slab lists then
2500  * we need to allocate a new slab. This is the slowest path since it involves
2501  * a call to the page allocator and the setup of a new slab.
2502  *
2503  * Version of __slab_alloc to use when we know that interrupts are
2504  * already disabled (which is the case for bulk allocation).
2505  */
2506 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2507 			  unsigned long addr, struct kmem_cache_cpu *c)
2508 {
2509 	void *freelist;
2510 	struct page *page;
2511 
2512 	page = c->page;
2513 	if (!page)
2514 		goto new_slab;
2515 redo:
2516 
2517 	if (unlikely(!node_match(page, node))) {
2518 		int searchnode = node;
2519 
2520 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2521 			searchnode = node_to_mem_node(node);
2522 
2523 		if (unlikely(!node_match(page, searchnode))) {
2524 			stat(s, ALLOC_NODE_MISMATCH);
2525 			deactivate_slab(s, page, c->freelist, c);
2526 			goto new_slab;
2527 		}
2528 	}
2529 
2530 	/*
2531 	 * By rights, we should be searching for a slab page that was
2532 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2533 	 * information when the page leaves the per-cpu allocator
2534 	 */
2535 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2536 		deactivate_slab(s, page, c->freelist, c);
2537 		goto new_slab;
2538 	}
2539 
2540 	/* must check again c->freelist in case of cpu migration or IRQ */
2541 	freelist = c->freelist;
2542 	if (freelist)
2543 		goto load_freelist;
2544 
2545 	freelist = get_freelist(s, page);
2546 
2547 	if (!freelist) {
2548 		c->page = NULL;
2549 		stat(s, DEACTIVATE_BYPASS);
2550 		goto new_slab;
2551 	}
2552 
2553 	stat(s, ALLOC_REFILL);
2554 
2555 load_freelist:
2556 	/*
2557 	 * freelist is pointing to the list of objects to be used.
2558 	 * page is pointing to the page from which the objects are obtained.
2559 	 * That page must be frozen for per cpu allocations to work.
2560 	 */
2561 	VM_BUG_ON(!c->page->frozen);
2562 	c->freelist = get_freepointer(s, freelist);
2563 	c->tid = next_tid(c->tid);
2564 	return freelist;
2565 
2566 new_slab:
2567 
2568 	if (slub_percpu_partial(c)) {
2569 		page = c->page = slub_percpu_partial(c);
2570 		slub_set_percpu_partial(c, page);
2571 		stat(s, CPU_PARTIAL_ALLOC);
2572 		goto redo;
2573 	}
2574 
2575 	freelist = new_slab_objects(s, gfpflags, node, &c);
2576 
2577 	if (unlikely(!freelist)) {
2578 		slab_out_of_memory(s, gfpflags, node);
2579 		return NULL;
2580 	}
2581 
2582 	page = c->page;
2583 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2584 		goto load_freelist;
2585 
2586 	/* Only entered in the debug case */
2587 	if (kmem_cache_debug(s) &&
2588 			!alloc_debug_processing(s, page, freelist, addr))
2589 		goto new_slab;	/* Slab failed checks. Next slab needed */
2590 
2591 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2592 	return freelist;
2593 }
2594 
2595 /*
2596  * Another one that disabled interrupt and compensates for possible
2597  * cpu changes by refetching the per cpu area pointer.
2598  */
2599 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2600 			  unsigned long addr, struct kmem_cache_cpu *c)
2601 {
2602 	void *p;
2603 	unsigned long flags;
2604 
2605 	local_irq_save(flags);
2606 #ifdef CONFIG_PREEMPT
2607 	/*
2608 	 * We may have been preempted and rescheduled on a different
2609 	 * cpu before disabling interrupts. Need to reload cpu area
2610 	 * pointer.
2611 	 */
2612 	c = this_cpu_ptr(s->cpu_slab);
2613 #endif
2614 
2615 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2616 	local_irq_restore(flags);
2617 	return p;
2618 }
2619 
2620 /*
2621  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2622  * have the fastpath folded into their functions. So no function call
2623  * overhead for requests that can be satisfied on the fastpath.
2624  *
2625  * The fastpath works by first checking if the lockless freelist can be used.
2626  * If not then __slab_alloc is called for slow processing.
2627  *
2628  * Otherwise we can simply pick the next object from the lockless free list.
2629  */
2630 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2631 		gfp_t gfpflags, int node, unsigned long addr)
2632 {
2633 	void *object;
2634 	struct kmem_cache_cpu *c;
2635 	struct page *page;
2636 	unsigned long tid;
2637 
2638 	s = slab_pre_alloc_hook(s, gfpflags);
2639 	if (!s)
2640 		return NULL;
2641 redo:
2642 	/*
2643 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2644 	 * enabled. We may switch back and forth between cpus while
2645 	 * reading from one cpu area. That does not matter as long
2646 	 * as we end up on the original cpu again when doing the cmpxchg.
2647 	 *
2648 	 * We should guarantee that tid and kmem_cache are retrieved on
2649 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2650 	 * to check if it is matched or not.
2651 	 */
2652 	do {
2653 		tid = this_cpu_read(s->cpu_slab->tid);
2654 		c = raw_cpu_ptr(s->cpu_slab);
2655 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2656 		 unlikely(tid != READ_ONCE(c->tid)));
2657 
2658 	/*
2659 	 * Irqless object alloc/free algorithm used here depends on sequence
2660 	 * of fetching cpu_slab's data. tid should be fetched before anything
2661 	 * on c to guarantee that object and page associated with previous tid
2662 	 * won't be used with current tid. If we fetch tid first, object and
2663 	 * page could be one associated with next tid and our alloc/free
2664 	 * request will be failed. In this case, we will retry. So, no problem.
2665 	 */
2666 	barrier();
2667 
2668 	/*
2669 	 * The transaction ids are globally unique per cpu and per operation on
2670 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2671 	 * occurs on the right processor and that there was no operation on the
2672 	 * linked list in between.
2673 	 */
2674 
2675 	object = c->freelist;
2676 	page = c->page;
2677 	if (unlikely(!object || !node_match(page, node))) {
2678 		object = __slab_alloc(s, gfpflags, node, addr, c);
2679 		stat(s, ALLOC_SLOWPATH);
2680 	} else {
2681 		void *next_object = get_freepointer_safe(s, object);
2682 
2683 		/*
2684 		 * The cmpxchg will only match if there was no additional
2685 		 * operation and if we are on the right processor.
2686 		 *
2687 		 * The cmpxchg does the following atomically (without lock
2688 		 * semantics!)
2689 		 * 1. Relocate first pointer to the current per cpu area.
2690 		 * 2. Verify that tid and freelist have not been changed
2691 		 * 3. If they were not changed replace tid and freelist
2692 		 *
2693 		 * Since this is without lock semantics the protection is only
2694 		 * against code executing on this cpu *not* from access by
2695 		 * other cpus.
2696 		 */
2697 		if (unlikely(!this_cpu_cmpxchg_double(
2698 				s->cpu_slab->freelist, s->cpu_slab->tid,
2699 				object, tid,
2700 				next_object, next_tid(tid)))) {
2701 
2702 			note_cmpxchg_failure("slab_alloc", s, tid);
2703 			goto redo;
2704 		}
2705 		prefetch_freepointer(s, next_object);
2706 		stat(s, ALLOC_FASTPATH);
2707 	}
2708 
2709 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2710 		memset(object, 0, s->object_size);
2711 
2712 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2713 
2714 	return object;
2715 }
2716 
2717 static __always_inline void *slab_alloc(struct kmem_cache *s,
2718 		gfp_t gfpflags, unsigned long addr)
2719 {
2720 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2721 }
2722 
2723 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2724 {
2725 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2726 
2727 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2728 				s->size, gfpflags);
2729 
2730 	return ret;
2731 }
2732 EXPORT_SYMBOL(kmem_cache_alloc);
2733 
2734 #ifdef CONFIG_TRACING
2735 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2736 {
2737 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2738 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2739 	kasan_kmalloc(s, ret, size, gfpflags);
2740 	return ret;
2741 }
2742 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2743 #endif
2744 
2745 #ifdef CONFIG_NUMA
2746 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2747 {
2748 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2749 
2750 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2751 				    s->object_size, s->size, gfpflags, node);
2752 
2753 	return ret;
2754 }
2755 EXPORT_SYMBOL(kmem_cache_alloc_node);
2756 
2757 #ifdef CONFIG_TRACING
2758 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2759 				    gfp_t gfpflags,
2760 				    int node, size_t size)
2761 {
2762 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2763 
2764 	trace_kmalloc_node(_RET_IP_, ret,
2765 			   size, s->size, gfpflags, node);
2766 
2767 	kasan_kmalloc(s, ret, size, gfpflags);
2768 	return ret;
2769 }
2770 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2771 #endif
2772 #endif
2773 
2774 /*
2775  * Slow path handling. This may still be called frequently since objects
2776  * have a longer lifetime than the cpu slabs in most processing loads.
2777  *
2778  * So we still attempt to reduce cache line usage. Just take the slab
2779  * lock and free the item. If there is no additional partial page
2780  * handling required then we can return immediately.
2781  */
2782 static void __slab_free(struct kmem_cache *s, struct page *page,
2783 			void *head, void *tail, int cnt,
2784 			unsigned long addr)
2785 
2786 {
2787 	void *prior;
2788 	int was_frozen;
2789 	struct page new;
2790 	unsigned long counters;
2791 	struct kmem_cache_node *n = NULL;
2792 	unsigned long uninitialized_var(flags);
2793 
2794 	stat(s, FREE_SLOWPATH);
2795 
2796 	if (kmem_cache_debug(s) &&
2797 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2798 		return;
2799 
2800 	do {
2801 		if (unlikely(n)) {
2802 			spin_unlock_irqrestore(&n->list_lock, flags);
2803 			n = NULL;
2804 		}
2805 		prior = page->freelist;
2806 		counters = page->counters;
2807 		set_freepointer(s, tail, prior);
2808 		new.counters = counters;
2809 		was_frozen = new.frozen;
2810 		new.inuse -= cnt;
2811 		if ((!new.inuse || !prior) && !was_frozen) {
2812 
2813 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2814 
2815 				/*
2816 				 * Slab was on no list before and will be
2817 				 * partially empty
2818 				 * We can defer the list move and instead
2819 				 * freeze it.
2820 				 */
2821 				new.frozen = 1;
2822 
2823 			} else { /* Needs to be taken off a list */
2824 
2825 				n = get_node(s, page_to_nid(page));
2826 				/*
2827 				 * Speculatively acquire the list_lock.
2828 				 * If the cmpxchg does not succeed then we may
2829 				 * drop the list_lock without any processing.
2830 				 *
2831 				 * Otherwise the list_lock will synchronize with
2832 				 * other processors updating the list of slabs.
2833 				 */
2834 				spin_lock_irqsave(&n->list_lock, flags);
2835 
2836 			}
2837 		}
2838 
2839 	} while (!cmpxchg_double_slab(s, page,
2840 		prior, counters,
2841 		head, new.counters,
2842 		"__slab_free"));
2843 
2844 	if (likely(!n)) {
2845 
2846 		/*
2847 		 * If we just froze the page then put it onto the
2848 		 * per cpu partial list.
2849 		 */
2850 		if (new.frozen && !was_frozen) {
2851 			put_cpu_partial(s, page, 1);
2852 			stat(s, CPU_PARTIAL_FREE);
2853 		}
2854 		/*
2855 		 * The list lock was not taken therefore no list
2856 		 * activity can be necessary.
2857 		 */
2858 		if (was_frozen)
2859 			stat(s, FREE_FROZEN);
2860 		return;
2861 	}
2862 
2863 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2864 		goto slab_empty;
2865 
2866 	/*
2867 	 * Objects left in the slab. If it was not on the partial list before
2868 	 * then add it.
2869 	 */
2870 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2871 		if (kmem_cache_debug(s))
2872 			remove_full(s, n, page);
2873 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2874 		stat(s, FREE_ADD_PARTIAL);
2875 	}
2876 	spin_unlock_irqrestore(&n->list_lock, flags);
2877 	return;
2878 
2879 slab_empty:
2880 	if (prior) {
2881 		/*
2882 		 * Slab on the partial list.
2883 		 */
2884 		remove_partial(n, page);
2885 		stat(s, FREE_REMOVE_PARTIAL);
2886 	} else {
2887 		/* Slab must be on the full list */
2888 		remove_full(s, n, page);
2889 	}
2890 
2891 	spin_unlock_irqrestore(&n->list_lock, flags);
2892 	stat(s, FREE_SLAB);
2893 	discard_slab(s, page);
2894 }
2895 
2896 /*
2897  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2898  * can perform fastpath freeing without additional function calls.
2899  *
2900  * The fastpath is only possible if we are freeing to the current cpu slab
2901  * of this processor. This typically the case if we have just allocated
2902  * the item before.
2903  *
2904  * If fastpath is not possible then fall back to __slab_free where we deal
2905  * with all sorts of special processing.
2906  *
2907  * Bulk free of a freelist with several objects (all pointing to the
2908  * same page) possible by specifying head and tail ptr, plus objects
2909  * count (cnt). Bulk free indicated by tail pointer being set.
2910  */
2911 static __always_inline void do_slab_free(struct kmem_cache *s,
2912 				struct page *page, void *head, void *tail,
2913 				int cnt, unsigned long addr)
2914 {
2915 	void *tail_obj = tail ? : head;
2916 	struct kmem_cache_cpu *c;
2917 	unsigned long tid;
2918 redo:
2919 	/*
2920 	 * Determine the currently cpus per cpu slab.
2921 	 * The cpu may change afterward. However that does not matter since
2922 	 * data is retrieved via this pointer. If we are on the same cpu
2923 	 * during the cmpxchg then the free will succeed.
2924 	 */
2925 	do {
2926 		tid = this_cpu_read(s->cpu_slab->tid);
2927 		c = raw_cpu_ptr(s->cpu_slab);
2928 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2929 		 unlikely(tid != READ_ONCE(c->tid)));
2930 
2931 	/* Same with comment on barrier() in slab_alloc_node() */
2932 	barrier();
2933 
2934 	if (likely(page == c->page)) {
2935 		set_freepointer(s, tail_obj, c->freelist);
2936 
2937 		if (unlikely(!this_cpu_cmpxchg_double(
2938 				s->cpu_slab->freelist, s->cpu_slab->tid,
2939 				c->freelist, tid,
2940 				head, next_tid(tid)))) {
2941 
2942 			note_cmpxchg_failure("slab_free", s, tid);
2943 			goto redo;
2944 		}
2945 		stat(s, FREE_FASTPATH);
2946 	} else
2947 		__slab_free(s, page, head, tail_obj, cnt, addr);
2948 
2949 }
2950 
2951 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2952 				      void *head, void *tail, int cnt,
2953 				      unsigned long addr)
2954 {
2955 	slab_free_freelist_hook(s, head, tail);
2956 	/*
2957 	 * slab_free_freelist_hook() could have put the items into quarantine.
2958 	 * If so, no need to free them.
2959 	 */
2960 	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2961 		return;
2962 	do_slab_free(s, page, head, tail, cnt, addr);
2963 }
2964 
2965 #ifdef CONFIG_KASAN
2966 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2967 {
2968 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2969 }
2970 #endif
2971 
2972 void kmem_cache_free(struct kmem_cache *s, void *x)
2973 {
2974 	s = cache_from_obj(s, x);
2975 	if (!s)
2976 		return;
2977 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2978 	trace_kmem_cache_free(_RET_IP_, x);
2979 }
2980 EXPORT_SYMBOL(kmem_cache_free);
2981 
2982 struct detached_freelist {
2983 	struct page *page;
2984 	void *tail;
2985 	void *freelist;
2986 	int cnt;
2987 	struct kmem_cache *s;
2988 };
2989 
2990 /*
2991  * This function progressively scans the array with free objects (with
2992  * a limited look ahead) and extract objects belonging to the same
2993  * page.  It builds a detached freelist directly within the given
2994  * page/objects.  This can happen without any need for
2995  * synchronization, because the objects are owned by running process.
2996  * The freelist is build up as a single linked list in the objects.
2997  * The idea is, that this detached freelist can then be bulk
2998  * transferred to the real freelist(s), but only requiring a single
2999  * synchronization primitive.  Look ahead in the array is limited due
3000  * to performance reasons.
3001  */
3002 static inline
3003 int build_detached_freelist(struct kmem_cache *s, size_t size,
3004 			    void **p, struct detached_freelist *df)
3005 {
3006 	size_t first_skipped_index = 0;
3007 	int lookahead = 3;
3008 	void *object;
3009 	struct page *page;
3010 
3011 	/* Always re-init detached_freelist */
3012 	df->page = NULL;
3013 
3014 	do {
3015 		object = p[--size];
3016 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3017 	} while (!object && size);
3018 
3019 	if (!object)
3020 		return 0;
3021 
3022 	page = virt_to_head_page(object);
3023 	if (!s) {
3024 		/* Handle kalloc'ed objects */
3025 		if (unlikely(!PageSlab(page))) {
3026 			BUG_ON(!PageCompound(page));
3027 			kfree_hook(object);
3028 			__free_pages(page, compound_order(page));
3029 			p[size] = NULL; /* mark object processed */
3030 			return size;
3031 		}
3032 		/* Derive kmem_cache from object */
3033 		df->s = page->slab_cache;
3034 	} else {
3035 		df->s = cache_from_obj(s, object); /* Support for memcg */
3036 	}
3037 
3038 	/* Start new detached freelist */
3039 	df->page = page;
3040 	set_freepointer(df->s, object, NULL);
3041 	df->tail = object;
3042 	df->freelist = object;
3043 	p[size] = NULL; /* mark object processed */
3044 	df->cnt = 1;
3045 
3046 	while (size) {
3047 		object = p[--size];
3048 		if (!object)
3049 			continue; /* Skip processed objects */
3050 
3051 		/* df->page is always set at this point */
3052 		if (df->page == virt_to_head_page(object)) {
3053 			/* Opportunity build freelist */
3054 			set_freepointer(df->s, object, df->freelist);
3055 			df->freelist = object;
3056 			df->cnt++;
3057 			p[size] = NULL; /* mark object processed */
3058 
3059 			continue;
3060 		}
3061 
3062 		/* Limit look ahead search */
3063 		if (!--lookahead)
3064 			break;
3065 
3066 		if (!first_skipped_index)
3067 			first_skipped_index = size + 1;
3068 	}
3069 
3070 	return first_skipped_index;
3071 }
3072 
3073 /* Note that interrupts must be enabled when calling this function. */
3074 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3075 {
3076 	if (WARN_ON(!size))
3077 		return;
3078 
3079 	do {
3080 		struct detached_freelist df;
3081 
3082 		size = build_detached_freelist(s, size, p, &df);
3083 		if (!df.page)
3084 			continue;
3085 
3086 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3087 	} while (likely(size));
3088 }
3089 EXPORT_SYMBOL(kmem_cache_free_bulk);
3090 
3091 /* Note that interrupts must be enabled when calling this function. */
3092 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3093 			  void **p)
3094 {
3095 	struct kmem_cache_cpu *c;
3096 	int i;
3097 
3098 	/* memcg and kmem_cache debug support */
3099 	s = slab_pre_alloc_hook(s, flags);
3100 	if (unlikely(!s))
3101 		return false;
3102 	/*
3103 	 * Drain objects in the per cpu slab, while disabling local
3104 	 * IRQs, which protects against PREEMPT and interrupts
3105 	 * handlers invoking normal fastpath.
3106 	 */
3107 	local_irq_disable();
3108 	c = this_cpu_ptr(s->cpu_slab);
3109 
3110 	for (i = 0; i < size; i++) {
3111 		void *object = c->freelist;
3112 
3113 		if (unlikely(!object)) {
3114 			/*
3115 			 * Invoking slow path likely have side-effect
3116 			 * of re-populating per CPU c->freelist
3117 			 */
3118 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3119 					    _RET_IP_, c);
3120 			if (unlikely(!p[i]))
3121 				goto error;
3122 
3123 			c = this_cpu_ptr(s->cpu_slab);
3124 			continue; /* goto for-loop */
3125 		}
3126 		c->freelist = get_freepointer(s, object);
3127 		p[i] = object;
3128 	}
3129 	c->tid = next_tid(c->tid);
3130 	local_irq_enable();
3131 
3132 	/* Clear memory outside IRQ disabled fastpath loop */
3133 	if (unlikely(flags & __GFP_ZERO)) {
3134 		int j;
3135 
3136 		for (j = 0; j < i; j++)
3137 			memset(p[j], 0, s->object_size);
3138 	}
3139 
3140 	/* memcg and kmem_cache debug support */
3141 	slab_post_alloc_hook(s, flags, size, p);
3142 	return i;
3143 error:
3144 	local_irq_enable();
3145 	slab_post_alloc_hook(s, flags, i, p);
3146 	__kmem_cache_free_bulk(s, i, p);
3147 	return 0;
3148 }
3149 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3150 
3151 
3152 /*
3153  * Object placement in a slab is made very easy because we always start at
3154  * offset 0. If we tune the size of the object to the alignment then we can
3155  * get the required alignment by putting one properly sized object after
3156  * another.
3157  *
3158  * Notice that the allocation order determines the sizes of the per cpu
3159  * caches. Each processor has always one slab available for allocations.
3160  * Increasing the allocation order reduces the number of times that slabs
3161  * must be moved on and off the partial lists and is therefore a factor in
3162  * locking overhead.
3163  */
3164 
3165 /*
3166  * Mininum / Maximum order of slab pages. This influences locking overhead
3167  * and slab fragmentation. A higher order reduces the number of partial slabs
3168  * and increases the number of allocations possible without having to
3169  * take the list_lock.
3170  */
3171 static int slub_min_order;
3172 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3173 static int slub_min_objects;
3174 
3175 /*
3176  * Calculate the order of allocation given an slab object size.
3177  *
3178  * The order of allocation has significant impact on performance and other
3179  * system components. Generally order 0 allocations should be preferred since
3180  * order 0 does not cause fragmentation in the page allocator. Larger objects
3181  * be problematic to put into order 0 slabs because there may be too much
3182  * unused space left. We go to a higher order if more than 1/16th of the slab
3183  * would be wasted.
3184  *
3185  * In order to reach satisfactory performance we must ensure that a minimum
3186  * number of objects is in one slab. Otherwise we may generate too much
3187  * activity on the partial lists which requires taking the list_lock. This is
3188  * less a concern for large slabs though which are rarely used.
3189  *
3190  * slub_max_order specifies the order where we begin to stop considering the
3191  * number of objects in a slab as critical. If we reach slub_max_order then
3192  * we try to keep the page order as low as possible. So we accept more waste
3193  * of space in favor of a small page order.
3194  *
3195  * Higher order allocations also allow the placement of more objects in a
3196  * slab and thereby reduce object handling overhead. If the user has
3197  * requested a higher mininum order then we start with that one instead of
3198  * the smallest order which will fit the object.
3199  */
3200 static inline int slab_order(int size, int min_objects,
3201 				int max_order, int fract_leftover, int reserved)
3202 {
3203 	int order;
3204 	int rem;
3205 	int min_order = slub_min_order;
3206 
3207 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3208 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3209 
3210 	for (order = max(min_order, get_order(min_objects * size + reserved));
3211 			order <= max_order; order++) {
3212 
3213 		unsigned long slab_size = PAGE_SIZE << order;
3214 
3215 		rem = (slab_size - reserved) % size;
3216 
3217 		if (rem <= slab_size / fract_leftover)
3218 			break;
3219 	}
3220 
3221 	return order;
3222 }
3223 
3224 static inline int calculate_order(int size, int reserved)
3225 {
3226 	int order;
3227 	int min_objects;
3228 	int fraction;
3229 	int max_objects;
3230 
3231 	/*
3232 	 * Attempt to find best configuration for a slab. This
3233 	 * works by first attempting to generate a layout with
3234 	 * the best configuration and backing off gradually.
3235 	 *
3236 	 * First we increase the acceptable waste in a slab. Then
3237 	 * we reduce the minimum objects required in a slab.
3238 	 */
3239 	min_objects = slub_min_objects;
3240 	if (!min_objects)
3241 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3242 	max_objects = order_objects(slub_max_order, size, reserved);
3243 	min_objects = min(min_objects, max_objects);
3244 
3245 	while (min_objects > 1) {
3246 		fraction = 16;
3247 		while (fraction >= 4) {
3248 			order = slab_order(size, min_objects,
3249 					slub_max_order, fraction, reserved);
3250 			if (order <= slub_max_order)
3251 				return order;
3252 			fraction /= 2;
3253 		}
3254 		min_objects--;
3255 	}
3256 
3257 	/*
3258 	 * We were unable to place multiple objects in a slab. Now
3259 	 * lets see if we can place a single object there.
3260 	 */
3261 	order = slab_order(size, 1, slub_max_order, 1, reserved);
3262 	if (order <= slub_max_order)
3263 		return order;
3264 
3265 	/*
3266 	 * Doh this slab cannot be placed using slub_max_order.
3267 	 */
3268 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3269 	if (order < MAX_ORDER)
3270 		return order;
3271 	return -ENOSYS;
3272 }
3273 
3274 static void
3275 init_kmem_cache_node(struct kmem_cache_node *n)
3276 {
3277 	n->nr_partial = 0;
3278 	spin_lock_init(&n->list_lock);
3279 	INIT_LIST_HEAD(&n->partial);
3280 #ifdef CONFIG_SLUB_DEBUG
3281 	atomic_long_set(&n->nr_slabs, 0);
3282 	atomic_long_set(&n->total_objects, 0);
3283 	INIT_LIST_HEAD(&n->full);
3284 #endif
3285 }
3286 
3287 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3288 {
3289 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3290 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3291 
3292 	/*
3293 	 * Must align to double word boundary for the double cmpxchg
3294 	 * instructions to work; see __pcpu_double_call_return_bool().
3295 	 */
3296 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3297 				     2 * sizeof(void *));
3298 
3299 	if (!s->cpu_slab)
3300 		return 0;
3301 
3302 	init_kmem_cache_cpus(s);
3303 
3304 	return 1;
3305 }
3306 
3307 static struct kmem_cache *kmem_cache_node;
3308 
3309 /*
3310  * No kmalloc_node yet so do it by hand. We know that this is the first
3311  * slab on the node for this slabcache. There are no concurrent accesses
3312  * possible.
3313  *
3314  * Note that this function only works on the kmem_cache_node
3315  * when allocating for the kmem_cache_node. This is used for bootstrapping
3316  * memory on a fresh node that has no slab structures yet.
3317  */
3318 static void early_kmem_cache_node_alloc(int node)
3319 {
3320 	struct page *page;
3321 	struct kmem_cache_node *n;
3322 
3323 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3324 
3325 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3326 
3327 	BUG_ON(!page);
3328 	if (page_to_nid(page) != node) {
3329 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3330 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3331 	}
3332 
3333 	n = page->freelist;
3334 	BUG_ON(!n);
3335 	page->freelist = get_freepointer(kmem_cache_node, n);
3336 	page->inuse = 1;
3337 	page->frozen = 0;
3338 	kmem_cache_node->node[node] = n;
3339 #ifdef CONFIG_SLUB_DEBUG
3340 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3341 	init_tracking(kmem_cache_node, n);
3342 #endif
3343 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3344 		      GFP_KERNEL);
3345 	init_kmem_cache_node(n);
3346 	inc_slabs_node(kmem_cache_node, node, page->objects);
3347 
3348 	/*
3349 	 * No locks need to be taken here as it has just been
3350 	 * initialized and there is no concurrent access.
3351 	 */
3352 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3353 }
3354 
3355 static void free_kmem_cache_nodes(struct kmem_cache *s)
3356 {
3357 	int node;
3358 	struct kmem_cache_node *n;
3359 
3360 	for_each_kmem_cache_node(s, node, n) {
3361 		kmem_cache_free(kmem_cache_node, n);
3362 		s->node[node] = NULL;
3363 	}
3364 }
3365 
3366 void __kmem_cache_release(struct kmem_cache *s)
3367 {
3368 	cache_random_seq_destroy(s);
3369 	free_percpu(s->cpu_slab);
3370 	free_kmem_cache_nodes(s);
3371 }
3372 
3373 static int init_kmem_cache_nodes(struct kmem_cache *s)
3374 {
3375 	int node;
3376 
3377 	for_each_node_state(node, N_NORMAL_MEMORY) {
3378 		struct kmem_cache_node *n;
3379 
3380 		if (slab_state == DOWN) {
3381 			early_kmem_cache_node_alloc(node);
3382 			continue;
3383 		}
3384 		n = kmem_cache_alloc_node(kmem_cache_node,
3385 						GFP_KERNEL, node);
3386 
3387 		if (!n) {
3388 			free_kmem_cache_nodes(s);
3389 			return 0;
3390 		}
3391 
3392 		s->node[node] = n;
3393 		init_kmem_cache_node(n);
3394 	}
3395 	return 1;
3396 }
3397 
3398 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3399 {
3400 	if (min < MIN_PARTIAL)
3401 		min = MIN_PARTIAL;
3402 	else if (min > MAX_PARTIAL)
3403 		min = MAX_PARTIAL;
3404 	s->min_partial = min;
3405 }
3406 
3407 static void set_cpu_partial(struct kmem_cache *s)
3408 {
3409 #ifdef CONFIG_SLUB_CPU_PARTIAL
3410 	/*
3411 	 * cpu_partial determined the maximum number of objects kept in the
3412 	 * per cpu partial lists of a processor.
3413 	 *
3414 	 * Per cpu partial lists mainly contain slabs that just have one
3415 	 * object freed. If they are used for allocation then they can be
3416 	 * filled up again with minimal effort. The slab will never hit the
3417 	 * per node partial lists and therefore no locking will be required.
3418 	 *
3419 	 * This setting also determines
3420 	 *
3421 	 * A) The number of objects from per cpu partial slabs dumped to the
3422 	 *    per node list when we reach the limit.
3423 	 * B) The number of objects in cpu partial slabs to extract from the
3424 	 *    per node list when we run out of per cpu objects. We only fetch
3425 	 *    50% to keep some capacity around for frees.
3426 	 */
3427 	if (!kmem_cache_has_cpu_partial(s))
3428 		s->cpu_partial = 0;
3429 	else if (s->size >= PAGE_SIZE)
3430 		s->cpu_partial = 2;
3431 	else if (s->size >= 1024)
3432 		s->cpu_partial = 6;
3433 	else if (s->size >= 256)
3434 		s->cpu_partial = 13;
3435 	else
3436 		s->cpu_partial = 30;
3437 #endif
3438 }
3439 
3440 /*
3441  * calculate_sizes() determines the order and the distribution of data within
3442  * a slab object.
3443  */
3444 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3445 {
3446 	unsigned long flags = s->flags;
3447 	size_t size = s->object_size;
3448 	int order;
3449 
3450 	/*
3451 	 * Round up object size to the next word boundary. We can only
3452 	 * place the free pointer at word boundaries and this determines
3453 	 * the possible location of the free pointer.
3454 	 */
3455 	size = ALIGN(size, sizeof(void *));
3456 
3457 #ifdef CONFIG_SLUB_DEBUG
3458 	/*
3459 	 * Determine if we can poison the object itself. If the user of
3460 	 * the slab may touch the object after free or before allocation
3461 	 * then we should never poison the object itself.
3462 	 */
3463 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3464 			!s->ctor)
3465 		s->flags |= __OBJECT_POISON;
3466 	else
3467 		s->flags &= ~__OBJECT_POISON;
3468 
3469 
3470 	/*
3471 	 * If we are Redzoning then check if there is some space between the
3472 	 * end of the object and the free pointer. If not then add an
3473 	 * additional word to have some bytes to store Redzone information.
3474 	 */
3475 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3476 		size += sizeof(void *);
3477 #endif
3478 
3479 	/*
3480 	 * With that we have determined the number of bytes in actual use
3481 	 * by the object. This is the potential offset to the free pointer.
3482 	 */
3483 	s->inuse = size;
3484 
3485 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3486 		s->ctor)) {
3487 		/*
3488 		 * Relocate free pointer after the object if it is not
3489 		 * permitted to overwrite the first word of the object on
3490 		 * kmem_cache_free.
3491 		 *
3492 		 * This is the case if we do RCU, have a constructor or
3493 		 * destructor or are poisoning the objects.
3494 		 */
3495 		s->offset = size;
3496 		size += sizeof(void *);
3497 	}
3498 
3499 #ifdef CONFIG_SLUB_DEBUG
3500 	if (flags & SLAB_STORE_USER)
3501 		/*
3502 		 * Need to store information about allocs and frees after
3503 		 * the object.
3504 		 */
3505 		size += 2 * sizeof(struct track);
3506 #endif
3507 
3508 	kasan_cache_create(s, &size, &s->flags);
3509 #ifdef CONFIG_SLUB_DEBUG
3510 	if (flags & SLAB_RED_ZONE) {
3511 		/*
3512 		 * Add some empty padding so that we can catch
3513 		 * overwrites from earlier objects rather than let
3514 		 * tracking information or the free pointer be
3515 		 * corrupted if a user writes before the start
3516 		 * of the object.
3517 		 */
3518 		size += sizeof(void *);
3519 
3520 		s->red_left_pad = sizeof(void *);
3521 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3522 		size += s->red_left_pad;
3523 	}
3524 #endif
3525 
3526 	/*
3527 	 * SLUB stores one object immediately after another beginning from
3528 	 * offset 0. In order to align the objects we have to simply size
3529 	 * each object to conform to the alignment.
3530 	 */
3531 	size = ALIGN(size, s->align);
3532 	s->size = size;
3533 	if (forced_order >= 0)
3534 		order = forced_order;
3535 	else
3536 		order = calculate_order(size, s->reserved);
3537 
3538 	if (order < 0)
3539 		return 0;
3540 
3541 	s->allocflags = 0;
3542 	if (order)
3543 		s->allocflags |= __GFP_COMP;
3544 
3545 	if (s->flags & SLAB_CACHE_DMA)
3546 		s->allocflags |= GFP_DMA;
3547 
3548 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3549 		s->allocflags |= __GFP_RECLAIMABLE;
3550 
3551 	/*
3552 	 * Determine the number of objects per slab
3553 	 */
3554 	s->oo = oo_make(order, size, s->reserved);
3555 	s->min = oo_make(get_order(size), size, s->reserved);
3556 	if (oo_objects(s->oo) > oo_objects(s->max))
3557 		s->max = s->oo;
3558 
3559 	return !!oo_objects(s->oo);
3560 }
3561 
3562 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3563 {
3564 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3565 	s->reserved = 0;
3566 
3567 	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3568 		s->reserved = sizeof(struct rcu_head);
3569 
3570 	if (!calculate_sizes(s, -1))
3571 		goto error;
3572 	if (disable_higher_order_debug) {
3573 		/*
3574 		 * Disable debugging flags that store metadata if the min slab
3575 		 * order increased.
3576 		 */
3577 		if (get_order(s->size) > get_order(s->object_size)) {
3578 			s->flags &= ~DEBUG_METADATA_FLAGS;
3579 			s->offset = 0;
3580 			if (!calculate_sizes(s, -1))
3581 				goto error;
3582 		}
3583 	}
3584 
3585 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3586     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3587 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3588 		/* Enable fast mode */
3589 		s->flags |= __CMPXCHG_DOUBLE;
3590 #endif
3591 
3592 	/*
3593 	 * The larger the object size is, the more pages we want on the partial
3594 	 * list to avoid pounding the page allocator excessively.
3595 	 */
3596 	set_min_partial(s, ilog2(s->size) / 2);
3597 
3598 	set_cpu_partial(s);
3599 
3600 #ifdef CONFIG_NUMA
3601 	s->remote_node_defrag_ratio = 1000;
3602 #endif
3603 
3604 	/* Initialize the pre-computed randomized freelist if slab is up */
3605 	if (slab_state >= UP) {
3606 		if (init_cache_random_seq(s))
3607 			goto error;
3608 	}
3609 
3610 	if (!init_kmem_cache_nodes(s))
3611 		goto error;
3612 
3613 	if (alloc_kmem_cache_cpus(s))
3614 		return 0;
3615 
3616 	free_kmem_cache_nodes(s);
3617 error:
3618 	if (flags & SLAB_PANIC)
3619 		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3620 		      s->name, (unsigned long)s->size, s->size,
3621 		      oo_order(s->oo), s->offset, flags);
3622 	return -EINVAL;
3623 }
3624 
3625 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3626 							const char *text)
3627 {
3628 #ifdef CONFIG_SLUB_DEBUG
3629 	void *addr = page_address(page);
3630 	void *p;
3631 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3632 				     sizeof(long), GFP_ATOMIC);
3633 	if (!map)
3634 		return;
3635 	slab_err(s, page, text, s->name);
3636 	slab_lock(page);
3637 
3638 	get_map(s, page, map);
3639 	for_each_object(p, s, addr, page->objects) {
3640 
3641 		if (!test_bit(slab_index(p, s, addr), map)) {
3642 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3643 			print_tracking(s, p);
3644 		}
3645 	}
3646 	slab_unlock(page);
3647 	kfree(map);
3648 #endif
3649 }
3650 
3651 /*
3652  * Attempt to free all partial slabs on a node.
3653  * This is called from __kmem_cache_shutdown(). We must take list_lock
3654  * because sysfs file might still access partial list after the shutdowning.
3655  */
3656 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3657 {
3658 	LIST_HEAD(discard);
3659 	struct page *page, *h;
3660 
3661 	BUG_ON(irqs_disabled());
3662 	spin_lock_irq(&n->list_lock);
3663 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3664 		if (!page->inuse) {
3665 			remove_partial(n, page);
3666 			list_add(&page->lru, &discard);
3667 		} else {
3668 			list_slab_objects(s, page,
3669 			"Objects remaining in %s on __kmem_cache_shutdown()");
3670 		}
3671 	}
3672 	spin_unlock_irq(&n->list_lock);
3673 
3674 	list_for_each_entry_safe(page, h, &discard, lru)
3675 		discard_slab(s, page);
3676 }
3677 
3678 /*
3679  * Release all resources used by a slab cache.
3680  */
3681 int __kmem_cache_shutdown(struct kmem_cache *s)
3682 {
3683 	int node;
3684 	struct kmem_cache_node *n;
3685 
3686 	flush_all(s);
3687 	/* Attempt to free all objects */
3688 	for_each_kmem_cache_node(s, node, n) {
3689 		free_partial(s, n);
3690 		if (n->nr_partial || slabs_node(s, node))
3691 			return 1;
3692 	}
3693 	sysfs_slab_remove(s);
3694 	return 0;
3695 }
3696 
3697 /********************************************************************
3698  *		Kmalloc subsystem
3699  *******************************************************************/
3700 
3701 static int __init setup_slub_min_order(char *str)
3702 {
3703 	get_option(&str, &slub_min_order);
3704 
3705 	return 1;
3706 }
3707 
3708 __setup("slub_min_order=", setup_slub_min_order);
3709 
3710 static int __init setup_slub_max_order(char *str)
3711 {
3712 	get_option(&str, &slub_max_order);
3713 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3714 
3715 	return 1;
3716 }
3717 
3718 __setup("slub_max_order=", setup_slub_max_order);
3719 
3720 static int __init setup_slub_min_objects(char *str)
3721 {
3722 	get_option(&str, &slub_min_objects);
3723 
3724 	return 1;
3725 }
3726 
3727 __setup("slub_min_objects=", setup_slub_min_objects);
3728 
3729 void *__kmalloc(size_t size, gfp_t flags)
3730 {
3731 	struct kmem_cache *s;
3732 	void *ret;
3733 
3734 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3735 		return kmalloc_large(size, flags);
3736 
3737 	s = kmalloc_slab(size, flags);
3738 
3739 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3740 		return s;
3741 
3742 	ret = slab_alloc(s, flags, _RET_IP_);
3743 
3744 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3745 
3746 	kasan_kmalloc(s, ret, size, flags);
3747 
3748 	return ret;
3749 }
3750 EXPORT_SYMBOL(__kmalloc);
3751 
3752 #ifdef CONFIG_NUMA
3753 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3754 {
3755 	struct page *page;
3756 	void *ptr = NULL;
3757 
3758 	flags |= __GFP_COMP | __GFP_NOTRACK;
3759 	page = alloc_pages_node(node, flags, get_order(size));
3760 	if (page)
3761 		ptr = page_address(page);
3762 
3763 	kmalloc_large_node_hook(ptr, size, flags);
3764 	return ptr;
3765 }
3766 
3767 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3768 {
3769 	struct kmem_cache *s;
3770 	void *ret;
3771 
3772 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3773 		ret = kmalloc_large_node(size, flags, node);
3774 
3775 		trace_kmalloc_node(_RET_IP_, ret,
3776 				   size, PAGE_SIZE << get_order(size),
3777 				   flags, node);
3778 
3779 		return ret;
3780 	}
3781 
3782 	s = kmalloc_slab(size, flags);
3783 
3784 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3785 		return s;
3786 
3787 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3788 
3789 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3790 
3791 	kasan_kmalloc(s, ret, size, flags);
3792 
3793 	return ret;
3794 }
3795 EXPORT_SYMBOL(__kmalloc_node);
3796 #endif
3797 
3798 #ifdef CONFIG_HARDENED_USERCOPY
3799 /*
3800  * Rejects objects that are incorrectly sized.
3801  *
3802  * Returns NULL if check passes, otherwise const char * to name of cache
3803  * to indicate an error.
3804  */
3805 const char *__check_heap_object(const void *ptr, unsigned long n,
3806 				struct page *page)
3807 {
3808 	struct kmem_cache *s;
3809 	unsigned long offset;
3810 	size_t object_size;
3811 
3812 	/* Find object and usable object size. */
3813 	s = page->slab_cache;
3814 	object_size = slab_ksize(s);
3815 
3816 	/* Reject impossible pointers. */
3817 	if (ptr < page_address(page))
3818 		return s->name;
3819 
3820 	/* Find offset within object. */
3821 	offset = (ptr - page_address(page)) % s->size;
3822 
3823 	/* Adjust for redzone and reject if within the redzone. */
3824 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3825 		if (offset < s->red_left_pad)
3826 			return s->name;
3827 		offset -= s->red_left_pad;
3828 	}
3829 
3830 	/* Allow address range falling entirely within object size. */
3831 	if (offset <= object_size && n <= object_size - offset)
3832 		return NULL;
3833 
3834 	return s->name;
3835 }
3836 #endif /* CONFIG_HARDENED_USERCOPY */
3837 
3838 static size_t __ksize(const void *object)
3839 {
3840 	struct page *page;
3841 
3842 	if (unlikely(object == ZERO_SIZE_PTR))
3843 		return 0;
3844 
3845 	page = virt_to_head_page(object);
3846 
3847 	if (unlikely(!PageSlab(page))) {
3848 		WARN_ON(!PageCompound(page));
3849 		return PAGE_SIZE << compound_order(page);
3850 	}
3851 
3852 	return slab_ksize(page->slab_cache);
3853 }
3854 
3855 size_t ksize(const void *object)
3856 {
3857 	size_t size = __ksize(object);
3858 	/* We assume that ksize callers could use whole allocated area,
3859 	 * so we need to unpoison this area.
3860 	 */
3861 	kasan_unpoison_shadow(object, size);
3862 	return size;
3863 }
3864 EXPORT_SYMBOL(ksize);
3865 
3866 void kfree(const void *x)
3867 {
3868 	struct page *page;
3869 	void *object = (void *)x;
3870 
3871 	trace_kfree(_RET_IP_, x);
3872 
3873 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3874 		return;
3875 
3876 	page = virt_to_head_page(x);
3877 	if (unlikely(!PageSlab(page))) {
3878 		BUG_ON(!PageCompound(page));
3879 		kfree_hook(x);
3880 		__free_pages(page, compound_order(page));
3881 		return;
3882 	}
3883 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3884 }
3885 EXPORT_SYMBOL(kfree);
3886 
3887 #define SHRINK_PROMOTE_MAX 32
3888 
3889 /*
3890  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3891  * up most to the head of the partial lists. New allocations will then
3892  * fill those up and thus they can be removed from the partial lists.
3893  *
3894  * The slabs with the least items are placed last. This results in them
3895  * being allocated from last increasing the chance that the last objects
3896  * are freed in them.
3897  */
3898 int __kmem_cache_shrink(struct kmem_cache *s)
3899 {
3900 	int node;
3901 	int i;
3902 	struct kmem_cache_node *n;
3903 	struct page *page;
3904 	struct page *t;
3905 	struct list_head discard;
3906 	struct list_head promote[SHRINK_PROMOTE_MAX];
3907 	unsigned long flags;
3908 	int ret = 0;
3909 
3910 	flush_all(s);
3911 	for_each_kmem_cache_node(s, node, n) {
3912 		INIT_LIST_HEAD(&discard);
3913 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3914 			INIT_LIST_HEAD(promote + i);
3915 
3916 		spin_lock_irqsave(&n->list_lock, flags);
3917 
3918 		/*
3919 		 * Build lists of slabs to discard or promote.
3920 		 *
3921 		 * Note that concurrent frees may occur while we hold the
3922 		 * list_lock. page->inuse here is the upper limit.
3923 		 */
3924 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3925 			int free = page->objects - page->inuse;
3926 
3927 			/* Do not reread page->inuse */
3928 			barrier();
3929 
3930 			/* We do not keep full slabs on the list */
3931 			BUG_ON(free <= 0);
3932 
3933 			if (free == page->objects) {
3934 				list_move(&page->lru, &discard);
3935 				n->nr_partial--;
3936 			} else if (free <= SHRINK_PROMOTE_MAX)
3937 				list_move(&page->lru, promote + free - 1);
3938 		}
3939 
3940 		/*
3941 		 * Promote the slabs filled up most to the head of the
3942 		 * partial list.
3943 		 */
3944 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3945 			list_splice(promote + i, &n->partial);
3946 
3947 		spin_unlock_irqrestore(&n->list_lock, flags);
3948 
3949 		/* Release empty slabs */
3950 		list_for_each_entry_safe(page, t, &discard, lru)
3951 			discard_slab(s, page);
3952 
3953 		if (slabs_node(s, node))
3954 			ret = 1;
3955 	}
3956 
3957 	return ret;
3958 }
3959 
3960 #ifdef CONFIG_MEMCG
3961 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3962 {
3963 	/*
3964 	 * Called with all the locks held after a sched RCU grace period.
3965 	 * Even if @s becomes empty after shrinking, we can't know that @s
3966 	 * doesn't have allocations already in-flight and thus can't
3967 	 * destroy @s until the associated memcg is released.
3968 	 *
3969 	 * However, let's remove the sysfs files for empty caches here.
3970 	 * Each cache has a lot of interface files which aren't
3971 	 * particularly useful for empty draining caches; otherwise, we can
3972 	 * easily end up with millions of unnecessary sysfs files on
3973 	 * systems which have a lot of memory and transient cgroups.
3974 	 */
3975 	if (!__kmem_cache_shrink(s))
3976 		sysfs_slab_remove(s);
3977 }
3978 
3979 void __kmemcg_cache_deactivate(struct kmem_cache *s)
3980 {
3981 	/*
3982 	 * Disable empty slabs caching. Used to avoid pinning offline
3983 	 * memory cgroups by kmem pages that can be freed.
3984 	 */
3985 	slub_set_cpu_partial(s, 0);
3986 	s->min_partial = 0;
3987 
3988 	/*
3989 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
3990 	 * we have to make sure the change is visible before shrinking.
3991 	 */
3992 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
3993 }
3994 #endif
3995 
3996 static int slab_mem_going_offline_callback(void *arg)
3997 {
3998 	struct kmem_cache *s;
3999 
4000 	mutex_lock(&slab_mutex);
4001 	list_for_each_entry(s, &slab_caches, list)
4002 		__kmem_cache_shrink(s);
4003 	mutex_unlock(&slab_mutex);
4004 
4005 	return 0;
4006 }
4007 
4008 static void slab_mem_offline_callback(void *arg)
4009 {
4010 	struct kmem_cache_node *n;
4011 	struct kmem_cache *s;
4012 	struct memory_notify *marg = arg;
4013 	int offline_node;
4014 
4015 	offline_node = marg->status_change_nid_normal;
4016 
4017 	/*
4018 	 * If the node still has available memory. we need kmem_cache_node
4019 	 * for it yet.
4020 	 */
4021 	if (offline_node < 0)
4022 		return;
4023 
4024 	mutex_lock(&slab_mutex);
4025 	list_for_each_entry(s, &slab_caches, list) {
4026 		n = get_node(s, offline_node);
4027 		if (n) {
4028 			/*
4029 			 * if n->nr_slabs > 0, slabs still exist on the node
4030 			 * that is going down. We were unable to free them,
4031 			 * and offline_pages() function shouldn't call this
4032 			 * callback. So, we must fail.
4033 			 */
4034 			BUG_ON(slabs_node(s, offline_node));
4035 
4036 			s->node[offline_node] = NULL;
4037 			kmem_cache_free(kmem_cache_node, n);
4038 		}
4039 	}
4040 	mutex_unlock(&slab_mutex);
4041 }
4042 
4043 static int slab_mem_going_online_callback(void *arg)
4044 {
4045 	struct kmem_cache_node *n;
4046 	struct kmem_cache *s;
4047 	struct memory_notify *marg = arg;
4048 	int nid = marg->status_change_nid_normal;
4049 	int ret = 0;
4050 
4051 	/*
4052 	 * If the node's memory is already available, then kmem_cache_node is
4053 	 * already created. Nothing to do.
4054 	 */
4055 	if (nid < 0)
4056 		return 0;
4057 
4058 	/*
4059 	 * We are bringing a node online. No memory is available yet. We must
4060 	 * allocate a kmem_cache_node structure in order to bring the node
4061 	 * online.
4062 	 */
4063 	mutex_lock(&slab_mutex);
4064 	list_for_each_entry(s, &slab_caches, list) {
4065 		/*
4066 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4067 		 *      since memory is not yet available from the node that
4068 		 *      is brought up.
4069 		 */
4070 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4071 		if (!n) {
4072 			ret = -ENOMEM;
4073 			goto out;
4074 		}
4075 		init_kmem_cache_node(n);
4076 		s->node[nid] = n;
4077 	}
4078 out:
4079 	mutex_unlock(&slab_mutex);
4080 	return ret;
4081 }
4082 
4083 static int slab_memory_callback(struct notifier_block *self,
4084 				unsigned long action, void *arg)
4085 {
4086 	int ret = 0;
4087 
4088 	switch (action) {
4089 	case MEM_GOING_ONLINE:
4090 		ret = slab_mem_going_online_callback(arg);
4091 		break;
4092 	case MEM_GOING_OFFLINE:
4093 		ret = slab_mem_going_offline_callback(arg);
4094 		break;
4095 	case MEM_OFFLINE:
4096 	case MEM_CANCEL_ONLINE:
4097 		slab_mem_offline_callback(arg);
4098 		break;
4099 	case MEM_ONLINE:
4100 	case MEM_CANCEL_OFFLINE:
4101 		break;
4102 	}
4103 	if (ret)
4104 		ret = notifier_from_errno(ret);
4105 	else
4106 		ret = NOTIFY_OK;
4107 	return ret;
4108 }
4109 
4110 static struct notifier_block slab_memory_callback_nb = {
4111 	.notifier_call = slab_memory_callback,
4112 	.priority = SLAB_CALLBACK_PRI,
4113 };
4114 
4115 /********************************************************************
4116  *			Basic setup of slabs
4117  *******************************************************************/
4118 
4119 /*
4120  * Used for early kmem_cache structures that were allocated using
4121  * the page allocator. Allocate them properly then fix up the pointers
4122  * that may be pointing to the wrong kmem_cache structure.
4123  */
4124 
4125 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4126 {
4127 	int node;
4128 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4129 	struct kmem_cache_node *n;
4130 
4131 	memcpy(s, static_cache, kmem_cache->object_size);
4132 
4133 	/*
4134 	 * This runs very early, and only the boot processor is supposed to be
4135 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4136 	 * IPIs around.
4137 	 */
4138 	__flush_cpu_slab(s, smp_processor_id());
4139 	for_each_kmem_cache_node(s, node, n) {
4140 		struct page *p;
4141 
4142 		list_for_each_entry(p, &n->partial, lru)
4143 			p->slab_cache = s;
4144 
4145 #ifdef CONFIG_SLUB_DEBUG
4146 		list_for_each_entry(p, &n->full, lru)
4147 			p->slab_cache = s;
4148 #endif
4149 	}
4150 	slab_init_memcg_params(s);
4151 	list_add(&s->list, &slab_caches);
4152 	memcg_link_cache(s);
4153 	return s;
4154 }
4155 
4156 void __init kmem_cache_init(void)
4157 {
4158 	static __initdata struct kmem_cache boot_kmem_cache,
4159 		boot_kmem_cache_node;
4160 
4161 	if (debug_guardpage_minorder())
4162 		slub_max_order = 0;
4163 
4164 	kmem_cache_node = &boot_kmem_cache_node;
4165 	kmem_cache = &boot_kmem_cache;
4166 
4167 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4168 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4169 
4170 	register_hotmemory_notifier(&slab_memory_callback_nb);
4171 
4172 	/* Able to allocate the per node structures */
4173 	slab_state = PARTIAL;
4174 
4175 	create_boot_cache(kmem_cache, "kmem_cache",
4176 			offsetof(struct kmem_cache, node) +
4177 				nr_node_ids * sizeof(struct kmem_cache_node *),
4178 		       SLAB_HWCACHE_ALIGN);
4179 
4180 	kmem_cache = bootstrap(&boot_kmem_cache);
4181 
4182 	/*
4183 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
4184 	 * kmem_cache_node is separately allocated so no need to
4185 	 * update any list pointers.
4186 	 */
4187 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4188 
4189 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4190 	setup_kmalloc_cache_index_table();
4191 	create_kmalloc_caches(0);
4192 
4193 	/* Setup random freelists for each cache */
4194 	init_freelist_randomization();
4195 
4196 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4197 				  slub_cpu_dead);
4198 
4199 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4200 		cache_line_size(),
4201 		slub_min_order, slub_max_order, slub_min_objects,
4202 		nr_cpu_ids, nr_node_ids);
4203 }
4204 
4205 void __init kmem_cache_init_late(void)
4206 {
4207 }
4208 
4209 struct kmem_cache *
4210 __kmem_cache_alias(const char *name, size_t size, size_t align,
4211 		   unsigned long flags, void (*ctor)(void *))
4212 {
4213 	struct kmem_cache *s, *c;
4214 
4215 	s = find_mergeable(size, align, flags, name, ctor);
4216 	if (s) {
4217 		s->refcount++;
4218 
4219 		/*
4220 		 * Adjust the object sizes so that we clear
4221 		 * the complete object on kzalloc.
4222 		 */
4223 		s->object_size = max(s->object_size, (int)size);
4224 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4225 
4226 		for_each_memcg_cache(c, s) {
4227 			c->object_size = s->object_size;
4228 			c->inuse = max_t(int, c->inuse,
4229 					 ALIGN(size, sizeof(void *)));
4230 		}
4231 
4232 		if (sysfs_slab_alias(s, name)) {
4233 			s->refcount--;
4234 			s = NULL;
4235 		}
4236 	}
4237 
4238 	return s;
4239 }
4240 
4241 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4242 {
4243 	int err;
4244 
4245 	err = kmem_cache_open(s, flags);
4246 	if (err)
4247 		return err;
4248 
4249 	/* Mutex is not taken during early boot */
4250 	if (slab_state <= UP)
4251 		return 0;
4252 
4253 	memcg_propagate_slab_attrs(s);
4254 	err = sysfs_slab_add(s);
4255 	if (err)
4256 		__kmem_cache_release(s);
4257 
4258 	return err;
4259 }
4260 
4261 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4262 {
4263 	struct kmem_cache *s;
4264 	void *ret;
4265 
4266 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4267 		return kmalloc_large(size, gfpflags);
4268 
4269 	s = kmalloc_slab(size, gfpflags);
4270 
4271 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4272 		return s;
4273 
4274 	ret = slab_alloc(s, gfpflags, caller);
4275 
4276 	/* Honor the call site pointer we received. */
4277 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4278 
4279 	return ret;
4280 }
4281 
4282 #ifdef CONFIG_NUMA
4283 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4284 					int node, unsigned long caller)
4285 {
4286 	struct kmem_cache *s;
4287 	void *ret;
4288 
4289 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4290 		ret = kmalloc_large_node(size, gfpflags, node);
4291 
4292 		trace_kmalloc_node(caller, ret,
4293 				   size, PAGE_SIZE << get_order(size),
4294 				   gfpflags, node);
4295 
4296 		return ret;
4297 	}
4298 
4299 	s = kmalloc_slab(size, gfpflags);
4300 
4301 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4302 		return s;
4303 
4304 	ret = slab_alloc_node(s, gfpflags, node, caller);
4305 
4306 	/* Honor the call site pointer we received. */
4307 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4308 
4309 	return ret;
4310 }
4311 #endif
4312 
4313 #ifdef CONFIG_SYSFS
4314 static int count_inuse(struct page *page)
4315 {
4316 	return page->inuse;
4317 }
4318 
4319 static int count_total(struct page *page)
4320 {
4321 	return page->objects;
4322 }
4323 #endif
4324 
4325 #ifdef CONFIG_SLUB_DEBUG
4326 static int validate_slab(struct kmem_cache *s, struct page *page,
4327 						unsigned long *map)
4328 {
4329 	void *p;
4330 	void *addr = page_address(page);
4331 
4332 	if (!check_slab(s, page) ||
4333 			!on_freelist(s, page, NULL))
4334 		return 0;
4335 
4336 	/* Now we know that a valid freelist exists */
4337 	bitmap_zero(map, page->objects);
4338 
4339 	get_map(s, page, map);
4340 	for_each_object(p, s, addr, page->objects) {
4341 		if (test_bit(slab_index(p, s, addr), map))
4342 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4343 				return 0;
4344 	}
4345 
4346 	for_each_object(p, s, addr, page->objects)
4347 		if (!test_bit(slab_index(p, s, addr), map))
4348 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4349 				return 0;
4350 	return 1;
4351 }
4352 
4353 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4354 						unsigned long *map)
4355 {
4356 	slab_lock(page);
4357 	validate_slab(s, page, map);
4358 	slab_unlock(page);
4359 }
4360 
4361 static int validate_slab_node(struct kmem_cache *s,
4362 		struct kmem_cache_node *n, unsigned long *map)
4363 {
4364 	unsigned long count = 0;
4365 	struct page *page;
4366 	unsigned long flags;
4367 
4368 	spin_lock_irqsave(&n->list_lock, flags);
4369 
4370 	list_for_each_entry(page, &n->partial, lru) {
4371 		validate_slab_slab(s, page, map);
4372 		count++;
4373 	}
4374 	if (count != n->nr_partial)
4375 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4376 		       s->name, count, n->nr_partial);
4377 
4378 	if (!(s->flags & SLAB_STORE_USER))
4379 		goto out;
4380 
4381 	list_for_each_entry(page, &n->full, lru) {
4382 		validate_slab_slab(s, page, map);
4383 		count++;
4384 	}
4385 	if (count != atomic_long_read(&n->nr_slabs))
4386 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4387 		       s->name, count, atomic_long_read(&n->nr_slabs));
4388 
4389 out:
4390 	spin_unlock_irqrestore(&n->list_lock, flags);
4391 	return count;
4392 }
4393 
4394 static long validate_slab_cache(struct kmem_cache *s)
4395 {
4396 	int node;
4397 	unsigned long count = 0;
4398 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4399 				sizeof(unsigned long), GFP_KERNEL);
4400 	struct kmem_cache_node *n;
4401 
4402 	if (!map)
4403 		return -ENOMEM;
4404 
4405 	flush_all(s);
4406 	for_each_kmem_cache_node(s, node, n)
4407 		count += validate_slab_node(s, n, map);
4408 	kfree(map);
4409 	return count;
4410 }
4411 /*
4412  * Generate lists of code addresses where slabcache objects are allocated
4413  * and freed.
4414  */
4415 
4416 struct location {
4417 	unsigned long count;
4418 	unsigned long addr;
4419 	long long sum_time;
4420 	long min_time;
4421 	long max_time;
4422 	long min_pid;
4423 	long max_pid;
4424 	DECLARE_BITMAP(cpus, NR_CPUS);
4425 	nodemask_t nodes;
4426 };
4427 
4428 struct loc_track {
4429 	unsigned long max;
4430 	unsigned long count;
4431 	struct location *loc;
4432 };
4433 
4434 static void free_loc_track(struct loc_track *t)
4435 {
4436 	if (t->max)
4437 		free_pages((unsigned long)t->loc,
4438 			get_order(sizeof(struct location) * t->max));
4439 }
4440 
4441 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4442 {
4443 	struct location *l;
4444 	int order;
4445 
4446 	order = get_order(sizeof(struct location) * max);
4447 
4448 	l = (void *)__get_free_pages(flags, order);
4449 	if (!l)
4450 		return 0;
4451 
4452 	if (t->count) {
4453 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4454 		free_loc_track(t);
4455 	}
4456 	t->max = max;
4457 	t->loc = l;
4458 	return 1;
4459 }
4460 
4461 static int add_location(struct loc_track *t, struct kmem_cache *s,
4462 				const struct track *track)
4463 {
4464 	long start, end, pos;
4465 	struct location *l;
4466 	unsigned long caddr;
4467 	unsigned long age = jiffies - track->when;
4468 
4469 	start = -1;
4470 	end = t->count;
4471 
4472 	for ( ; ; ) {
4473 		pos = start + (end - start + 1) / 2;
4474 
4475 		/*
4476 		 * There is nothing at "end". If we end up there
4477 		 * we need to add something to before end.
4478 		 */
4479 		if (pos == end)
4480 			break;
4481 
4482 		caddr = t->loc[pos].addr;
4483 		if (track->addr == caddr) {
4484 
4485 			l = &t->loc[pos];
4486 			l->count++;
4487 			if (track->when) {
4488 				l->sum_time += age;
4489 				if (age < l->min_time)
4490 					l->min_time = age;
4491 				if (age > l->max_time)
4492 					l->max_time = age;
4493 
4494 				if (track->pid < l->min_pid)
4495 					l->min_pid = track->pid;
4496 				if (track->pid > l->max_pid)
4497 					l->max_pid = track->pid;
4498 
4499 				cpumask_set_cpu(track->cpu,
4500 						to_cpumask(l->cpus));
4501 			}
4502 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4503 			return 1;
4504 		}
4505 
4506 		if (track->addr < caddr)
4507 			end = pos;
4508 		else
4509 			start = pos;
4510 	}
4511 
4512 	/*
4513 	 * Not found. Insert new tracking element.
4514 	 */
4515 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4516 		return 0;
4517 
4518 	l = t->loc + pos;
4519 	if (pos < t->count)
4520 		memmove(l + 1, l,
4521 			(t->count - pos) * sizeof(struct location));
4522 	t->count++;
4523 	l->count = 1;
4524 	l->addr = track->addr;
4525 	l->sum_time = age;
4526 	l->min_time = age;
4527 	l->max_time = age;
4528 	l->min_pid = track->pid;
4529 	l->max_pid = track->pid;
4530 	cpumask_clear(to_cpumask(l->cpus));
4531 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4532 	nodes_clear(l->nodes);
4533 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4534 	return 1;
4535 }
4536 
4537 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4538 		struct page *page, enum track_item alloc,
4539 		unsigned long *map)
4540 {
4541 	void *addr = page_address(page);
4542 	void *p;
4543 
4544 	bitmap_zero(map, page->objects);
4545 	get_map(s, page, map);
4546 
4547 	for_each_object(p, s, addr, page->objects)
4548 		if (!test_bit(slab_index(p, s, addr), map))
4549 			add_location(t, s, get_track(s, p, alloc));
4550 }
4551 
4552 static int list_locations(struct kmem_cache *s, char *buf,
4553 					enum track_item alloc)
4554 {
4555 	int len = 0;
4556 	unsigned long i;
4557 	struct loc_track t = { 0, 0, NULL };
4558 	int node;
4559 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4560 				     sizeof(unsigned long), GFP_KERNEL);
4561 	struct kmem_cache_node *n;
4562 
4563 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4564 				     GFP_TEMPORARY)) {
4565 		kfree(map);
4566 		return sprintf(buf, "Out of memory\n");
4567 	}
4568 	/* Push back cpu slabs */
4569 	flush_all(s);
4570 
4571 	for_each_kmem_cache_node(s, node, n) {
4572 		unsigned long flags;
4573 		struct page *page;
4574 
4575 		if (!atomic_long_read(&n->nr_slabs))
4576 			continue;
4577 
4578 		spin_lock_irqsave(&n->list_lock, flags);
4579 		list_for_each_entry(page, &n->partial, lru)
4580 			process_slab(&t, s, page, alloc, map);
4581 		list_for_each_entry(page, &n->full, lru)
4582 			process_slab(&t, s, page, alloc, map);
4583 		spin_unlock_irqrestore(&n->list_lock, flags);
4584 	}
4585 
4586 	for (i = 0; i < t.count; i++) {
4587 		struct location *l = &t.loc[i];
4588 
4589 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4590 			break;
4591 		len += sprintf(buf + len, "%7ld ", l->count);
4592 
4593 		if (l->addr)
4594 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4595 		else
4596 			len += sprintf(buf + len, "<not-available>");
4597 
4598 		if (l->sum_time != l->min_time) {
4599 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4600 				l->min_time,
4601 				(long)div_u64(l->sum_time, l->count),
4602 				l->max_time);
4603 		} else
4604 			len += sprintf(buf + len, " age=%ld",
4605 				l->min_time);
4606 
4607 		if (l->min_pid != l->max_pid)
4608 			len += sprintf(buf + len, " pid=%ld-%ld",
4609 				l->min_pid, l->max_pid);
4610 		else
4611 			len += sprintf(buf + len, " pid=%ld",
4612 				l->min_pid);
4613 
4614 		if (num_online_cpus() > 1 &&
4615 				!cpumask_empty(to_cpumask(l->cpus)) &&
4616 				len < PAGE_SIZE - 60)
4617 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4618 					 " cpus=%*pbl",
4619 					 cpumask_pr_args(to_cpumask(l->cpus)));
4620 
4621 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4622 				len < PAGE_SIZE - 60)
4623 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4624 					 " nodes=%*pbl",
4625 					 nodemask_pr_args(&l->nodes));
4626 
4627 		len += sprintf(buf + len, "\n");
4628 	}
4629 
4630 	free_loc_track(&t);
4631 	kfree(map);
4632 	if (!t.count)
4633 		len += sprintf(buf, "No data\n");
4634 	return len;
4635 }
4636 #endif
4637 
4638 #ifdef SLUB_RESILIENCY_TEST
4639 static void __init resiliency_test(void)
4640 {
4641 	u8 *p;
4642 
4643 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4644 
4645 	pr_err("SLUB resiliency testing\n");
4646 	pr_err("-----------------------\n");
4647 	pr_err("A. Corruption after allocation\n");
4648 
4649 	p = kzalloc(16, GFP_KERNEL);
4650 	p[16] = 0x12;
4651 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4652 	       p + 16);
4653 
4654 	validate_slab_cache(kmalloc_caches[4]);
4655 
4656 	/* Hmmm... The next two are dangerous */
4657 	p = kzalloc(32, GFP_KERNEL);
4658 	p[32 + sizeof(void *)] = 0x34;
4659 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4660 	       p);
4661 	pr_err("If allocated object is overwritten then not detectable\n\n");
4662 
4663 	validate_slab_cache(kmalloc_caches[5]);
4664 	p = kzalloc(64, GFP_KERNEL);
4665 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4666 	*p = 0x56;
4667 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4668 	       p);
4669 	pr_err("If allocated object is overwritten then not detectable\n\n");
4670 	validate_slab_cache(kmalloc_caches[6]);
4671 
4672 	pr_err("\nB. Corruption after free\n");
4673 	p = kzalloc(128, GFP_KERNEL);
4674 	kfree(p);
4675 	*p = 0x78;
4676 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4677 	validate_slab_cache(kmalloc_caches[7]);
4678 
4679 	p = kzalloc(256, GFP_KERNEL);
4680 	kfree(p);
4681 	p[50] = 0x9a;
4682 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4683 	validate_slab_cache(kmalloc_caches[8]);
4684 
4685 	p = kzalloc(512, GFP_KERNEL);
4686 	kfree(p);
4687 	p[512] = 0xab;
4688 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4689 	validate_slab_cache(kmalloc_caches[9]);
4690 }
4691 #else
4692 #ifdef CONFIG_SYSFS
4693 static void resiliency_test(void) {};
4694 #endif
4695 #endif
4696 
4697 #ifdef CONFIG_SYSFS
4698 enum slab_stat_type {
4699 	SL_ALL,			/* All slabs */
4700 	SL_PARTIAL,		/* Only partially allocated slabs */
4701 	SL_CPU,			/* Only slabs used for cpu caches */
4702 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4703 	SL_TOTAL		/* Determine object capacity not slabs */
4704 };
4705 
4706 #define SO_ALL		(1 << SL_ALL)
4707 #define SO_PARTIAL	(1 << SL_PARTIAL)
4708 #define SO_CPU		(1 << SL_CPU)
4709 #define SO_OBJECTS	(1 << SL_OBJECTS)
4710 #define SO_TOTAL	(1 << SL_TOTAL)
4711 
4712 #ifdef CONFIG_MEMCG
4713 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4714 
4715 static int __init setup_slub_memcg_sysfs(char *str)
4716 {
4717 	int v;
4718 
4719 	if (get_option(&str, &v) > 0)
4720 		memcg_sysfs_enabled = v;
4721 
4722 	return 1;
4723 }
4724 
4725 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4726 #endif
4727 
4728 static ssize_t show_slab_objects(struct kmem_cache *s,
4729 			    char *buf, unsigned long flags)
4730 {
4731 	unsigned long total = 0;
4732 	int node;
4733 	int x;
4734 	unsigned long *nodes;
4735 
4736 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4737 	if (!nodes)
4738 		return -ENOMEM;
4739 
4740 	if (flags & SO_CPU) {
4741 		int cpu;
4742 
4743 		for_each_possible_cpu(cpu) {
4744 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4745 							       cpu);
4746 			int node;
4747 			struct page *page;
4748 
4749 			page = READ_ONCE(c->page);
4750 			if (!page)
4751 				continue;
4752 
4753 			node = page_to_nid(page);
4754 			if (flags & SO_TOTAL)
4755 				x = page->objects;
4756 			else if (flags & SO_OBJECTS)
4757 				x = page->inuse;
4758 			else
4759 				x = 1;
4760 
4761 			total += x;
4762 			nodes[node] += x;
4763 
4764 			page = slub_percpu_partial_read_once(c);
4765 			if (page) {
4766 				node = page_to_nid(page);
4767 				if (flags & SO_TOTAL)
4768 					WARN_ON_ONCE(1);
4769 				else if (flags & SO_OBJECTS)
4770 					WARN_ON_ONCE(1);
4771 				else
4772 					x = page->pages;
4773 				total += x;
4774 				nodes[node] += x;
4775 			}
4776 		}
4777 	}
4778 
4779 	get_online_mems();
4780 #ifdef CONFIG_SLUB_DEBUG
4781 	if (flags & SO_ALL) {
4782 		struct kmem_cache_node *n;
4783 
4784 		for_each_kmem_cache_node(s, node, n) {
4785 
4786 			if (flags & SO_TOTAL)
4787 				x = atomic_long_read(&n->total_objects);
4788 			else if (flags & SO_OBJECTS)
4789 				x = atomic_long_read(&n->total_objects) -
4790 					count_partial(n, count_free);
4791 			else
4792 				x = atomic_long_read(&n->nr_slabs);
4793 			total += x;
4794 			nodes[node] += x;
4795 		}
4796 
4797 	} else
4798 #endif
4799 	if (flags & SO_PARTIAL) {
4800 		struct kmem_cache_node *n;
4801 
4802 		for_each_kmem_cache_node(s, node, n) {
4803 			if (flags & SO_TOTAL)
4804 				x = count_partial(n, count_total);
4805 			else if (flags & SO_OBJECTS)
4806 				x = count_partial(n, count_inuse);
4807 			else
4808 				x = n->nr_partial;
4809 			total += x;
4810 			nodes[node] += x;
4811 		}
4812 	}
4813 	x = sprintf(buf, "%lu", total);
4814 #ifdef CONFIG_NUMA
4815 	for (node = 0; node < nr_node_ids; node++)
4816 		if (nodes[node])
4817 			x += sprintf(buf + x, " N%d=%lu",
4818 					node, nodes[node]);
4819 #endif
4820 	put_online_mems();
4821 	kfree(nodes);
4822 	return x + sprintf(buf + x, "\n");
4823 }
4824 
4825 #ifdef CONFIG_SLUB_DEBUG
4826 static int any_slab_objects(struct kmem_cache *s)
4827 {
4828 	int node;
4829 	struct kmem_cache_node *n;
4830 
4831 	for_each_kmem_cache_node(s, node, n)
4832 		if (atomic_long_read(&n->total_objects))
4833 			return 1;
4834 
4835 	return 0;
4836 }
4837 #endif
4838 
4839 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4840 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4841 
4842 struct slab_attribute {
4843 	struct attribute attr;
4844 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4845 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4846 };
4847 
4848 #define SLAB_ATTR_RO(_name) \
4849 	static struct slab_attribute _name##_attr = \
4850 	__ATTR(_name, 0400, _name##_show, NULL)
4851 
4852 #define SLAB_ATTR(_name) \
4853 	static struct slab_attribute _name##_attr =  \
4854 	__ATTR(_name, 0600, _name##_show, _name##_store)
4855 
4856 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4857 {
4858 	return sprintf(buf, "%d\n", s->size);
4859 }
4860 SLAB_ATTR_RO(slab_size);
4861 
4862 static ssize_t align_show(struct kmem_cache *s, char *buf)
4863 {
4864 	return sprintf(buf, "%d\n", s->align);
4865 }
4866 SLAB_ATTR_RO(align);
4867 
4868 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4869 {
4870 	return sprintf(buf, "%d\n", s->object_size);
4871 }
4872 SLAB_ATTR_RO(object_size);
4873 
4874 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4875 {
4876 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4877 }
4878 SLAB_ATTR_RO(objs_per_slab);
4879 
4880 static ssize_t order_store(struct kmem_cache *s,
4881 				const char *buf, size_t length)
4882 {
4883 	unsigned long order;
4884 	int err;
4885 
4886 	err = kstrtoul(buf, 10, &order);
4887 	if (err)
4888 		return err;
4889 
4890 	if (order > slub_max_order || order < slub_min_order)
4891 		return -EINVAL;
4892 
4893 	calculate_sizes(s, order);
4894 	return length;
4895 }
4896 
4897 static ssize_t order_show(struct kmem_cache *s, char *buf)
4898 {
4899 	return sprintf(buf, "%d\n", oo_order(s->oo));
4900 }
4901 SLAB_ATTR(order);
4902 
4903 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4904 {
4905 	return sprintf(buf, "%lu\n", s->min_partial);
4906 }
4907 
4908 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4909 				 size_t length)
4910 {
4911 	unsigned long min;
4912 	int err;
4913 
4914 	err = kstrtoul(buf, 10, &min);
4915 	if (err)
4916 		return err;
4917 
4918 	set_min_partial(s, min);
4919 	return length;
4920 }
4921 SLAB_ATTR(min_partial);
4922 
4923 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4924 {
4925 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4926 }
4927 
4928 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4929 				 size_t length)
4930 {
4931 	unsigned long objects;
4932 	int err;
4933 
4934 	err = kstrtoul(buf, 10, &objects);
4935 	if (err)
4936 		return err;
4937 	if (objects && !kmem_cache_has_cpu_partial(s))
4938 		return -EINVAL;
4939 
4940 	slub_set_cpu_partial(s, objects);
4941 	flush_all(s);
4942 	return length;
4943 }
4944 SLAB_ATTR(cpu_partial);
4945 
4946 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4947 {
4948 	if (!s->ctor)
4949 		return 0;
4950 	return sprintf(buf, "%pS\n", s->ctor);
4951 }
4952 SLAB_ATTR_RO(ctor);
4953 
4954 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4955 {
4956 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4957 }
4958 SLAB_ATTR_RO(aliases);
4959 
4960 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4961 {
4962 	return show_slab_objects(s, buf, SO_PARTIAL);
4963 }
4964 SLAB_ATTR_RO(partial);
4965 
4966 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4967 {
4968 	return show_slab_objects(s, buf, SO_CPU);
4969 }
4970 SLAB_ATTR_RO(cpu_slabs);
4971 
4972 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4973 {
4974 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4975 }
4976 SLAB_ATTR_RO(objects);
4977 
4978 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4979 {
4980 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4981 }
4982 SLAB_ATTR_RO(objects_partial);
4983 
4984 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4985 {
4986 	int objects = 0;
4987 	int pages = 0;
4988 	int cpu;
4989 	int len;
4990 
4991 	for_each_online_cpu(cpu) {
4992 		struct page *page;
4993 
4994 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
4995 
4996 		if (page) {
4997 			pages += page->pages;
4998 			objects += page->pobjects;
4999 		}
5000 	}
5001 
5002 	len = sprintf(buf, "%d(%d)", objects, pages);
5003 
5004 #ifdef CONFIG_SMP
5005 	for_each_online_cpu(cpu) {
5006 		struct page *page;
5007 
5008 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5009 
5010 		if (page && len < PAGE_SIZE - 20)
5011 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5012 				page->pobjects, page->pages);
5013 	}
5014 #endif
5015 	return len + sprintf(buf + len, "\n");
5016 }
5017 SLAB_ATTR_RO(slabs_cpu_partial);
5018 
5019 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5020 {
5021 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5022 }
5023 
5024 static ssize_t reclaim_account_store(struct kmem_cache *s,
5025 				const char *buf, size_t length)
5026 {
5027 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5028 	if (buf[0] == '1')
5029 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5030 	return length;
5031 }
5032 SLAB_ATTR(reclaim_account);
5033 
5034 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5035 {
5036 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5037 }
5038 SLAB_ATTR_RO(hwcache_align);
5039 
5040 #ifdef CONFIG_ZONE_DMA
5041 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5042 {
5043 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5044 }
5045 SLAB_ATTR_RO(cache_dma);
5046 #endif
5047 
5048 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5049 {
5050 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5051 }
5052 SLAB_ATTR_RO(destroy_by_rcu);
5053 
5054 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5055 {
5056 	return sprintf(buf, "%d\n", s->reserved);
5057 }
5058 SLAB_ATTR_RO(reserved);
5059 
5060 #ifdef CONFIG_SLUB_DEBUG
5061 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5062 {
5063 	return show_slab_objects(s, buf, SO_ALL);
5064 }
5065 SLAB_ATTR_RO(slabs);
5066 
5067 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5068 {
5069 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5070 }
5071 SLAB_ATTR_RO(total_objects);
5072 
5073 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5074 {
5075 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5076 }
5077 
5078 static ssize_t sanity_checks_store(struct kmem_cache *s,
5079 				const char *buf, size_t length)
5080 {
5081 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5082 	if (buf[0] == '1') {
5083 		s->flags &= ~__CMPXCHG_DOUBLE;
5084 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5085 	}
5086 	return length;
5087 }
5088 SLAB_ATTR(sanity_checks);
5089 
5090 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5091 {
5092 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5093 }
5094 
5095 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5096 							size_t length)
5097 {
5098 	/*
5099 	 * Tracing a merged cache is going to give confusing results
5100 	 * as well as cause other issues like converting a mergeable
5101 	 * cache into an umergeable one.
5102 	 */
5103 	if (s->refcount > 1)
5104 		return -EINVAL;
5105 
5106 	s->flags &= ~SLAB_TRACE;
5107 	if (buf[0] == '1') {
5108 		s->flags &= ~__CMPXCHG_DOUBLE;
5109 		s->flags |= SLAB_TRACE;
5110 	}
5111 	return length;
5112 }
5113 SLAB_ATTR(trace);
5114 
5115 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5116 {
5117 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5118 }
5119 
5120 static ssize_t red_zone_store(struct kmem_cache *s,
5121 				const char *buf, size_t length)
5122 {
5123 	if (any_slab_objects(s))
5124 		return -EBUSY;
5125 
5126 	s->flags &= ~SLAB_RED_ZONE;
5127 	if (buf[0] == '1') {
5128 		s->flags |= SLAB_RED_ZONE;
5129 	}
5130 	calculate_sizes(s, -1);
5131 	return length;
5132 }
5133 SLAB_ATTR(red_zone);
5134 
5135 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5136 {
5137 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5138 }
5139 
5140 static ssize_t poison_store(struct kmem_cache *s,
5141 				const char *buf, size_t length)
5142 {
5143 	if (any_slab_objects(s))
5144 		return -EBUSY;
5145 
5146 	s->flags &= ~SLAB_POISON;
5147 	if (buf[0] == '1') {
5148 		s->flags |= SLAB_POISON;
5149 	}
5150 	calculate_sizes(s, -1);
5151 	return length;
5152 }
5153 SLAB_ATTR(poison);
5154 
5155 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5156 {
5157 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5158 }
5159 
5160 static ssize_t store_user_store(struct kmem_cache *s,
5161 				const char *buf, size_t length)
5162 {
5163 	if (any_slab_objects(s))
5164 		return -EBUSY;
5165 
5166 	s->flags &= ~SLAB_STORE_USER;
5167 	if (buf[0] == '1') {
5168 		s->flags &= ~__CMPXCHG_DOUBLE;
5169 		s->flags |= SLAB_STORE_USER;
5170 	}
5171 	calculate_sizes(s, -1);
5172 	return length;
5173 }
5174 SLAB_ATTR(store_user);
5175 
5176 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5177 {
5178 	return 0;
5179 }
5180 
5181 static ssize_t validate_store(struct kmem_cache *s,
5182 			const char *buf, size_t length)
5183 {
5184 	int ret = -EINVAL;
5185 
5186 	if (buf[0] == '1') {
5187 		ret = validate_slab_cache(s);
5188 		if (ret >= 0)
5189 			ret = length;
5190 	}
5191 	return ret;
5192 }
5193 SLAB_ATTR(validate);
5194 
5195 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5196 {
5197 	if (!(s->flags & SLAB_STORE_USER))
5198 		return -ENOSYS;
5199 	return list_locations(s, buf, TRACK_ALLOC);
5200 }
5201 SLAB_ATTR_RO(alloc_calls);
5202 
5203 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5204 {
5205 	if (!(s->flags & SLAB_STORE_USER))
5206 		return -ENOSYS;
5207 	return list_locations(s, buf, TRACK_FREE);
5208 }
5209 SLAB_ATTR_RO(free_calls);
5210 #endif /* CONFIG_SLUB_DEBUG */
5211 
5212 #ifdef CONFIG_FAILSLAB
5213 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5214 {
5215 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5216 }
5217 
5218 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5219 							size_t length)
5220 {
5221 	if (s->refcount > 1)
5222 		return -EINVAL;
5223 
5224 	s->flags &= ~SLAB_FAILSLAB;
5225 	if (buf[0] == '1')
5226 		s->flags |= SLAB_FAILSLAB;
5227 	return length;
5228 }
5229 SLAB_ATTR(failslab);
5230 #endif
5231 
5232 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5233 {
5234 	return 0;
5235 }
5236 
5237 static ssize_t shrink_store(struct kmem_cache *s,
5238 			const char *buf, size_t length)
5239 {
5240 	if (buf[0] == '1')
5241 		kmem_cache_shrink(s);
5242 	else
5243 		return -EINVAL;
5244 	return length;
5245 }
5246 SLAB_ATTR(shrink);
5247 
5248 #ifdef CONFIG_NUMA
5249 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5250 {
5251 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5252 }
5253 
5254 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5255 				const char *buf, size_t length)
5256 {
5257 	unsigned long ratio;
5258 	int err;
5259 
5260 	err = kstrtoul(buf, 10, &ratio);
5261 	if (err)
5262 		return err;
5263 
5264 	if (ratio <= 100)
5265 		s->remote_node_defrag_ratio = ratio * 10;
5266 
5267 	return length;
5268 }
5269 SLAB_ATTR(remote_node_defrag_ratio);
5270 #endif
5271 
5272 #ifdef CONFIG_SLUB_STATS
5273 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5274 {
5275 	unsigned long sum  = 0;
5276 	int cpu;
5277 	int len;
5278 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5279 
5280 	if (!data)
5281 		return -ENOMEM;
5282 
5283 	for_each_online_cpu(cpu) {
5284 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5285 
5286 		data[cpu] = x;
5287 		sum += x;
5288 	}
5289 
5290 	len = sprintf(buf, "%lu", sum);
5291 
5292 #ifdef CONFIG_SMP
5293 	for_each_online_cpu(cpu) {
5294 		if (data[cpu] && len < PAGE_SIZE - 20)
5295 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5296 	}
5297 #endif
5298 	kfree(data);
5299 	return len + sprintf(buf + len, "\n");
5300 }
5301 
5302 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5303 {
5304 	int cpu;
5305 
5306 	for_each_online_cpu(cpu)
5307 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5308 }
5309 
5310 #define STAT_ATTR(si, text) 					\
5311 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5312 {								\
5313 	return show_stat(s, buf, si);				\
5314 }								\
5315 static ssize_t text##_store(struct kmem_cache *s,		\
5316 				const char *buf, size_t length)	\
5317 {								\
5318 	if (buf[0] != '0')					\
5319 		return -EINVAL;					\
5320 	clear_stat(s, si);					\
5321 	return length;						\
5322 }								\
5323 SLAB_ATTR(text);						\
5324 
5325 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5326 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5327 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5328 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5329 STAT_ATTR(FREE_FROZEN, free_frozen);
5330 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5331 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5332 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5333 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5334 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5335 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5336 STAT_ATTR(FREE_SLAB, free_slab);
5337 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5338 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5339 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5340 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5341 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5342 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5343 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5344 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5345 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5346 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5347 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5348 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5349 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5350 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5351 #endif
5352 
5353 static struct attribute *slab_attrs[] = {
5354 	&slab_size_attr.attr,
5355 	&object_size_attr.attr,
5356 	&objs_per_slab_attr.attr,
5357 	&order_attr.attr,
5358 	&min_partial_attr.attr,
5359 	&cpu_partial_attr.attr,
5360 	&objects_attr.attr,
5361 	&objects_partial_attr.attr,
5362 	&partial_attr.attr,
5363 	&cpu_slabs_attr.attr,
5364 	&ctor_attr.attr,
5365 	&aliases_attr.attr,
5366 	&align_attr.attr,
5367 	&hwcache_align_attr.attr,
5368 	&reclaim_account_attr.attr,
5369 	&destroy_by_rcu_attr.attr,
5370 	&shrink_attr.attr,
5371 	&reserved_attr.attr,
5372 	&slabs_cpu_partial_attr.attr,
5373 #ifdef CONFIG_SLUB_DEBUG
5374 	&total_objects_attr.attr,
5375 	&slabs_attr.attr,
5376 	&sanity_checks_attr.attr,
5377 	&trace_attr.attr,
5378 	&red_zone_attr.attr,
5379 	&poison_attr.attr,
5380 	&store_user_attr.attr,
5381 	&validate_attr.attr,
5382 	&alloc_calls_attr.attr,
5383 	&free_calls_attr.attr,
5384 #endif
5385 #ifdef CONFIG_ZONE_DMA
5386 	&cache_dma_attr.attr,
5387 #endif
5388 #ifdef CONFIG_NUMA
5389 	&remote_node_defrag_ratio_attr.attr,
5390 #endif
5391 #ifdef CONFIG_SLUB_STATS
5392 	&alloc_fastpath_attr.attr,
5393 	&alloc_slowpath_attr.attr,
5394 	&free_fastpath_attr.attr,
5395 	&free_slowpath_attr.attr,
5396 	&free_frozen_attr.attr,
5397 	&free_add_partial_attr.attr,
5398 	&free_remove_partial_attr.attr,
5399 	&alloc_from_partial_attr.attr,
5400 	&alloc_slab_attr.attr,
5401 	&alloc_refill_attr.attr,
5402 	&alloc_node_mismatch_attr.attr,
5403 	&free_slab_attr.attr,
5404 	&cpuslab_flush_attr.attr,
5405 	&deactivate_full_attr.attr,
5406 	&deactivate_empty_attr.attr,
5407 	&deactivate_to_head_attr.attr,
5408 	&deactivate_to_tail_attr.attr,
5409 	&deactivate_remote_frees_attr.attr,
5410 	&deactivate_bypass_attr.attr,
5411 	&order_fallback_attr.attr,
5412 	&cmpxchg_double_fail_attr.attr,
5413 	&cmpxchg_double_cpu_fail_attr.attr,
5414 	&cpu_partial_alloc_attr.attr,
5415 	&cpu_partial_free_attr.attr,
5416 	&cpu_partial_node_attr.attr,
5417 	&cpu_partial_drain_attr.attr,
5418 #endif
5419 #ifdef CONFIG_FAILSLAB
5420 	&failslab_attr.attr,
5421 #endif
5422 
5423 	NULL
5424 };
5425 
5426 static struct attribute_group slab_attr_group = {
5427 	.attrs = slab_attrs,
5428 };
5429 
5430 static ssize_t slab_attr_show(struct kobject *kobj,
5431 				struct attribute *attr,
5432 				char *buf)
5433 {
5434 	struct slab_attribute *attribute;
5435 	struct kmem_cache *s;
5436 	int err;
5437 
5438 	attribute = to_slab_attr(attr);
5439 	s = to_slab(kobj);
5440 
5441 	if (!attribute->show)
5442 		return -EIO;
5443 
5444 	err = attribute->show(s, buf);
5445 
5446 	return err;
5447 }
5448 
5449 static ssize_t slab_attr_store(struct kobject *kobj,
5450 				struct attribute *attr,
5451 				const char *buf, size_t len)
5452 {
5453 	struct slab_attribute *attribute;
5454 	struct kmem_cache *s;
5455 	int err;
5456 
5457 	attribute = to_slab_attr(attr);
5458 	s = to_slab(kobj);
5459 
5460 	if (!attribute->store)
5461 		return -EIO;
5462 
5463 	err = attribute->store(s, buf, len);
5464 #ifdef CONFIG_MEMCG
5465 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5466 		struct kmem_cache *c;
5467 
5468 		mutex_lock(&slab_mutex);
5469 		if (s->max_attr_size < len)
5470 			s->max_attr_size = len;
5471 
5472 		/*
5473 		 * This is a best effort propagation, so this function's return
5474 		 * value will be determined by the parent cache only. This is
5475 		 * basically because not all attributes will have a well
5476 		 * defined semantics for rollbacks - most of the actions will
5477 		 * have permanent effects.
5478 		 *
5479 		 * Returning the error value of any of the children that fail
5480 		 * is not 100 % defined, in the sense that users seeing the
5481 		 * error code won't be able to know anything about the state of
5482 		 * the cache.
5483 		 *
5484 		 * Only returning the error code for the parent cache at least
5485 		 * has well defined semantics. The cache being written to
5486 		 * directly either failed or succeeded, in which case we loop
5487 		 * through the descendants with best-effort propagation.
5488 		 */
5489 		for_each_memcg_cache(c, s)
5490 			attribute->store(c, buf, len);
5491 		mutex_unlock(&slab_mutex);
5492 	}
5493 #endif
5494 	return err;
5495 }
5496 
5497 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5498 {
5499 #ifdef CONFIG_MEMCG
5500 	int i;
5501 	char *buffer = NULL;
5502 	struct kmem_cache *root_cache;
5503 
5504 	if (is_root_cache(s))
5505 		return;
5506 
5507 	root_cache = s->memcg_params.root_cache;
5508 
5509 	/*
5510 	 * This mean this cache had no attribute written. Therefore, no point
5511 	 * in copying default values around
5512 	 */
5513 	if (!root_cache->max_attr_size)
5514 		return;
5515 
5516 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5517 		char mbuf[64];
5518 		char *buf;
5519 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5520 		ssize_t len;
5521 
5522 		if (!attr || !attr->store || !attr->show)
5523 			continue;
5524 
5525 		/*
5526 		 * It is really bad that we have to allocate here, so we will
5527 		 * do it only as a fallback. If we actually allocate, though,
5528 		 * we can just use the allocated buffer until the end.
5529 		 *
5530 		 * Most of the slub attributes will tend to be very small in
5531 		 * size, but sysfs allows buffers up to a page, so they can
5532 		 * theoretically happen.
5533 		 */
5534 		if (buffer)
5535 			buf = buffer;
5536 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5537 			buf = mbuf;
5538 		else {
5539 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5540 			if (WARN_ON(!buffer))
5541 				continue;
5542 			buf = buffer;
5543 		}
5544 
5545 		len = attr->show(root_cache, buf);
5546 		if (len > 0)
5547 			attr->store(s, buf, len);
5548 	}
5549 
5550 	if (buffer)
5551 		free_page((unsigned long)buffer);
5552 #endif
5553 }
5554 
5555 static void kmem_cache_release(struct kobject *k)
5556 {
5557 	slab_kmem_cache_release(to_slab(k));
5558 }
5559 
5560 static const struct sysfs_ops slab_sysfs_ops = {
5561 	.show = slab_attr_show,
5562 	.store = slab_attr_store,
5563 };
5564 
5565 static struct kobj_type slab_ktype = {
5566 	.sysfs_ops = &slab_sysfs_ops,
5567 	.release = kmem_cache_release,
5568 };
5569 
5570 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5571 {
5572 	struct kobj_type *ktype = get_ktype(kobj);
5573 
5574 	if (ktype == &slab_ktype)
5575 		return 1;
5576 	return 0;
5577 }
5578 
5579 static const struct kset_uevent_ops slab_uevent_ops = {
5580 	.filter = uevent_filter,
5581 };
5582 
5583 static struct kset *slab_kset;
5584 
5585 static inline struct kset *cache_kset(struct kmem_cache *s)
5586 {
5587 #ifdef CONFIG_MEMCG
5588 	if (!is_root_cache(s))
5589 		return s->memcg_params.root_cache->memcg_kset;
5590 #endif
5591 	return slab_kset;
5592 }
5593 
5594 #define ID_STR_LENGTH 64
5595 
5596 /* Create a unique string id for a slab cache:
5597  *
5598  * Format	:[flags-]size
5599  */
5600 static char *create_unique_id(struct kmem_cache *s)
5601 {
5602 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5603 	char *p = name;
5604 
5605 	BUG_ON(!name);
5606 
5607 	*p++ = ':';
5608 	/*
5609 	 * First flags affecting slabcache operations. We will only
5610 	 * get here for aliasable slabs so we do not need to support
5611 	 * too many flags. The flags here must cover all flags that
5612 	 * are matched during merging to guarantee that the id is
5613 	 * unique.
5614 	 */
5615 	if (s->flags & SLAB_CACHE_DMA)
5616 		*p++ = 'd';
5617 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5618 		*p++ = 'a';
5619 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5620 		*p++ = 'F';
5621 	if (!(s->flags & SLAB_NOTRACK))
5622 		*p++ = 't';
5623 	if (s->flags & SLAB_ACCOUNT)
5624 		*p++ = 'A';
5625 	if (p != name + 1)
5626 		*p++ = '-';
5627 	p += sprintf(p, "%07d", s->size);
5628 
5629 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5630 	return name;
5631 }
5632 
5633 static void sysfs_slab_remove_workfn(struct work_struct *work)
5634 {
5635 	struct kmem_cache *s =
5636 		container_of(work, struct kmem_cache, kobj_remove_work);
5637 
5638 	if (!s->kobj.state_in_sysfs)
5639 		/*
5640 		 * For a memcg cache, this may be called during
5641 		 * deactivation and again on shutdown.  Remove only once.
5642 		 * A cache is never shut down before deactivation is
5643 		 * complete, so no need to worry about synchronization.
5644 		 */
5645 		return;
5646 
5647 #ifdef CONFIG_MEMCG
5648 	kset_unregister(s->memcg_kset);
5649 #endif
5650 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5651 	kobject_del(&s->kobj);
5652 	kobject_put(&s->kobj);
5653 }
5654 
5655 static int sysfs_slab_add(struct kmem_cache *s)
5656 {
5657 	int err;
5658 	const char *name;
5659 	struct kset *kset = cache_kset(s);
5660 	int unmergeable = slab_unmergeable(s);
5661 
5662 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5663 
5664 	if (!kset) {
5665 		kobject_init(&s->kobj, &slab_ktype);
5666 		return 0;
5667 	}
5668 
5669 	if (unmergeable) {
5670 		/*
5671 		 * Slabcache can never be merged so we can use the name proper.
5672 		 * This is typically the case for debug situations. In that
5673 		 * case we can catch duplicate names easily.
5674 		 */
5675 		sysfs_remove_link(&slab_kset->kobj, s->name);
5676 		name = s->name;
5677 	} else {
5678 		/*
5679 		 * Create a unique name for the slab as a target
5680 		 * for the symlinks.
5681 		 */
5682 		name = create_unique_id(s);
5683 	}
5684 
5685 	s->kobj.kset = kset;
5686 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5687 	if (err)
5688 		goto out;
5689 
5690 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5691 	if (err)
5692 		goto out_del_kobj;
5693 
5694 #ifdef CONFIG_MEMCG
5695 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5696 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5697 		if (!s->memcg_kset) {
5698 			err = -ENOMEM;
5699 			goto out_del_kobj;
5700 		}
5701 	}
5702 #endif
5703 
5704 	kobject_uevent(&s->kobj, KOBJ_ADD);
5705 	if (!unmergeable) {
5706 		/* Setup first alias */
5707 		sysfs_slab_alias(s, s->name);
5708 	}
5709 out:
5710 	if (!unmergeable)
5711 		kfree(name);
5712 	return err;
5713 out_del_kobj:
5714 	kobject_del(&s->kobj);
5715 	goto out;
5716 }
5717 
5718 static void sysfs_slab_remove(struct kmem_cache *s)
5719 {
5720 	if (slab_state < FULL)
5721 		/*
5722 		 * Sysfs has not been setup yet so no need to remove the
5723 		 * cache from sysfs.
5724 		 */
5725 		return;
5726 
5727 	kobject_get(&s->kobj);
5728 	schedule_work(&s->kobj_remove_work);
5729 }
5730 
5731 void sysfs_slab_release(struct kmem_cache *s)
5732 {
5733 	if (slab_state >= FULL)
5734 		kobject_put(&s->kobj);
5735 }
5736 
5737 /*
5738  * Need to buffer aliases during bootup until sysfs becomes
5739  * available lest we lose that information.
5740  */
5741 struct saved_alias {
5742 	struct kmem_cache *s;
5743 	const char *name;
5744 	struct saved_alias *next;
5745 };
5746 
5747 static struct saved_alias *alias_list;
5748 
5749 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5750 {
5751 	struct saved_alias *al;
5752 
5753 	if (slab_state == FULL) {
5754 		/*
5755 		 * If we have a leftover link then remove it.
5756 		 */
5757 		sysfs_remove_link(&slab_kset->kobj, name);
5758 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5759 	}
5760 
5761 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5762 	if (!al)
5763 		return -ENOMEM;
5764 
5765 	al->s = s;
5766 	al->name = name;
5767 	al->next = alias_list;
5768 	alias_list = al;
5769 	return 0;
5770 }
5771 
5772 static int __init slab_sysfs_init(void)
5773 {
5774 	struct kmem_cache *s;
5775 	int err;
5776 
5777 	mutex_lock(&slab_mutex);
5778 
5779 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5780 	if (!slab_kset) {
5781 		mutex_unlock(&slab_mutex);
5782 		pr_err("Cannot register slab subsystem.\n");
5783 		return -ENOSYS;
5784 	}
5785 
5786 	slab_state = FULL;
5787 
5788 	list_for_each_entry(s, &slab_caches, list) {
5789 		err = sysfs_slab_add(s);
5790 		if (err)
5791 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5792 			       s->name);
5793 	}
5794 
5795 	while (alias_list) {
5796 		struct saved_alias *al = alias_list;
5797 
5798 		alias_list = alias_list->next;
5799 		err = sysfs_slab_alias(al->s, al->name);
5800 		if (err)
5801 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5802 			       al->name);
5803 		kfree(al);
5804 	}
5805 
5806 	mutex_unlock(&slab_mutex);
5807 	resiliency_test();
5808 	return 0;
5809 }
5810 
5811 __initcall(slab_sysfs_init);
5812 #endif /* CONFIG_SYSFS */
5813 
5814 /*
5815  * The /proc/slabinfo ABI
5816  */
5817 #ifdef CONFIG_SLABINFO
5818 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5819 {
5820 	unsigned long nr_slabs = 0;
5821 	unsigned long nr_objs = 0;
5822 	unsigned long nr_free = 0;
5823 	int node;
5824 	struct kmem_cache_node *n;
5825 
5826 	for_each_kmem_cache_node(s, node, n) {
5827 		nr_slabs += node_nr_slabs(n);
5828 		nr_objs += node_nr_objs(n);
5829 		nr_free += count_partial(n, count_free);
5830 	}
5831 
5832 	sinfo->active_objs = nr_objs - nr_free;
5833 	sinfo->num_objs = nr_objs;
5834 	sinfo->active_slabs = nr_slabs;
5835 	sinfo->num_slabs = nr_slabs;
5836 	sinfo->objects_per_slab = oo_objects(s->oo);
5837 	sinfo->cache_order = oo_order(s->oo);
5838 }
5839 
5840 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5841 {
5842 }
5843 
5844 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5845 		       size_t count, loff_t *ppos)
5846 {
5847 	return -EIO;
5848 }
5849 #endif /* CONFIG_SLABINFO */
5850