xref: /linux/mm/slub.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 
33 #include <trace/events/kmem.h>
34 
35 /*
36  * Lock order:
37  *   1. slub_lock (Global Semaphore)
38  *   2. node->list_lock
39  *   3. slab_lock(page) (Only on some arches and for debugging)
40  *
41  *   slub_lock
42  *
43  *   The role of the slub_lock is to protect the list of all the slabs
44  *   and to synchronize major metadata changes to slab cache structures.
45  *
46  *   The slab_lock is only used for debugging and on arches that do not
47  *   have the ability to do a cmpxchg_double. It only protects the second
48  *   double word in the page struct. Meaning
49  *	A. page->freelist	-> List of object free in a page
50  *	B. page->counters	-> Counters of objects
51  *	C. page->frozen		-> frozen state
52  *
53  *   If a slab is frozen then it is exempt from list management. It is not
54  *   on any list. The processor that froze the slab is the one who can
55  *   perform list operations on the page. Other processors may put objects
56  *   onto the freelist but the processor that froze the slab is the only
57  *   one that can retrieve the objects from the page's freelist.
58  *
59  *   The list_lock protects the partial and full list on each node and
60  *   the partial slab counter. If taken then no new slabs may be added or
61  *   removed from the lists nor make the number of partial slabs be modified.
62  *   (Note that the total number of slabs is an atomic value that may be
63  *   modified without taking the list lock).
64  *
65  *   The list_lock is a centralized lock and thus we avoid taking it as
66  *   much as possible. As long as SLUB does not have to handle partial
67  *   slabs, operations can continue without any centralized lock. F.e.
68  *   allocating a long series of objects that fill up slabs does not require
69  *   the list lock.
70  *   Interrupts are disabled during allocation and deallocation in order to
71  *   make the slab allocator safe to use in the context of an irq. In addition
72  *   interrupts are disabled to ensure that the processor does not change
73  *   while handling per_cpu slabs, due to kernel preemption.
74  *
75  * SLUB assigns one slab for allocation to each processor.
76  * Allocations only occur from these slabs called cpu slabs.
77  *
78  * Slabs with free elements are kept on a partial list and during regular
79  * operations no list for full slabs is used. If an object in a full slab is
80  * freed then the slab will show up again on the partial lists.
81  * We track full slabs for debugging purposes though because otherwise we
82  * cannot scan all objects.
83  *
84  * Slabs are freed when they become empty. Teardown and setup is
85  * minimal so we rely on the page allocators per cpu caches for
86  * fast frees and allocs.
87  *
88  * Overloading of page flags that are otherwise used for LRU management.
89  *
90  * PageActive 		The slab is frozen and exempt from list processing.
91  * 			This means that the slab is dedicated to a purpose
92  * 			such as satisfying allocations for a specific
93  * 			processor. Objects may be freed in the slab while
94  * 			it is frozen but slab_free will then skip the usual
95  * 			list operations. It is up to the processor holding
96  * 			the slab to integrate the slab into the slab lists
97  * 			when the slab is no longer needed.
98  *
99  * 			One use of this flag is to mark slabs that are
100  * 			used for allocations. Then such a slab becomes a cpu
101  * 			slab. The cpu slab may be equipped with an additional
102  * 			freelist that allows lockless access to
103  * 			free objects in addition to the regular freelist
104  * 			that requires the slab lock.
105  *
106  * PageError		Slab requires special handling due to debug
107  * 			options set. This moves	slab handling out of
108  * 			the fast path and disables lockless freelists.
109  */
110 
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 		SLAB_TRACE | SLAB_DEBUG_FREE)
113 
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 	return 0;
120 #endif
121 }
122 
123 /*
124  * Issues still to be resolved:
125  *
126  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127  *
128  * - Variable sizing of the per node arrays
129  */
130 
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133 
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
136 
137 /*
138  * Mininum number of partial slabs. These will be left on the partial
139  * lists even if they are empty. kmem_cache_shrink may reclaim them.
140  */
141 #define MIN_PARTIAL 5
142 
143 /*
144  * Maximum number of desirable partial slabs.
145  * The existence of more partial slabs makes kmem_cache_shrink
146  * sort the partial list by the number of objects in the.
147  */
148 #define MAX_PARTIAL 10
149 
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 				SLAB_POISON | SLAB_STORE_USER)
152 
153 /*
154  * Debugging flags that require metadata to be stored in the slab.  These get
155  * disabled when slub_debug=O is used and a cache's min order increases with
156  * metadata.
157  */
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159 
160 /*
161  * Set of flags that will prevent slab merging
162  */
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 		SLAB_FAILSLAB)
166 
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 		SLAB_CACHE_DMA | SLAB_NOTRACK)
169 
170 #define OO_SHIFT	16
171 #define OO_MASK		((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
173 
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON		0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
177 
178 static int kmem_size = sizeof(struct kmem_cache);
179 
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183 
184 static enum {
185 	DOWN,		/* No slab functionality available */
186 	PARTIAL,	/* Kmem_cache_node works */
187 	UP,		/* Everything works but does not show up in sysfs */
188 	SYSFS		/* Sysfs up */
189 } slab_state = DOWN;
190 
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
194 
195 /*
196  * Tracking user of a slab.
197  */
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 	unsigned long addr;	/* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
203 #endif
204 	int cpu;		/* Was running on cpu */
205 	int pid;		/* Pid context */
206 	unsigned long when;	/* When did the operation occur */
207 };
208 
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
210 
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
215 
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 							{ return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
221 {
222 	kfree(s->name);
223 	kfree(s);
224 }
225 
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	__this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234 
235 /********************************************************************
236  * 			Core slab cache functions
237  *******************************************************************/
238 
239 int slab_is_available(void)
240 {
241 	return slab_state >= UP;
242 }
243 
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245 {
246 	return s->node[node];
247 }
248 
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 				struct page *page, const void *object)
252 {
253 	void *base;
254 
255 	if (!object)
256 		return 1;
257 
258 	base = page_address(page);
259 	if (object < base || object >= base + page->objects * s->size ||
260 		(object - base) % s->size) {
261 		return 0;
262 	}
263 
264 	return 1;
265 }
266 
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 	return *(void **)(object + s->offset);
270 }
271 
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273 {
274 	void *p;
275 
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 	p = get_freepointer(s, object);
280 #endif
281 	return p;
282 }
283 
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 	*(void **)(object + s->offset) = fp;
287 }
288 
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 			__p += (__s)->size)
293 
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296 {
297 	return (p - addr) / s->size;
298 }
299 
300 static inline size_t slab_ksize(const struct kmem_cache *s)
301 {
302 #ifdef CONFIG_SLUB_DEBUG
303 	/*
304 	 * Debugging requires use of the padding between object
305 	 * and whatever may come after it.
306 	 */
307 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 		return s->objsize;
309 
310 #endif
311 	/*
312 	 * If we have the need to store the freelist pointer
313 	 * back there or track user information then we can
314 	 * only use the space before that information.
315 	 */
316 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 		return s->inuse;
318 	/*
319 	 * Else we can use all the padding etc for the allocation
320 	 */
321 	return s->size;
322 }
323 
324 static inline int order_objects(int order, unsigned long size, int reserved)
325 {
326 	return ((PAGE_SIZE << order) - reserved) / size;
327 }
328 
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 		unsigned long size, int reserved)
331 {
332 	struct kmem_cache_order_objects x = {
333 		(order << OO_SHIFT) + order_objects(order, size, reserved)
334 	};
335 
336 	return x;
337 }
338 
339 static inline int oo_order(struct kmem_cache_order_objects x)
340 {
341 	return x.x >> OO_SHIFT;
342 }
343 
344 static inline int oo_objects(struct kmem_cache_order_objects x)
345 {
346 	return x.x & OO_MASK;
347 }
348 
349 /*
350  * Per slab locking using the pagelock
351  */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 	bit_spin_lock(PG_locked, &page->flags);
355 }
356 
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 	__bit_spin_unlock(PG_locked, &page->flags);
360 }
361 
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 		void *freelist_old, unsigned long counters_old,
365 		void *freelist_new, unsigned long counters_new,
366 		const char *n)
367 {
368 	VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 	if (s->flags & __CMPXCHG_DOUBLE) {
372 		if (cmpxchg_double(&page->freelist, &page->counters,
373 			freelist_old, counters_old,
374 			freelist_new, counters_new))
375 		return 1;
376 	} else
377 #endif
378 	{
379 		slab_lock(page);
380 		if (page->freelist == freelist_old && page->counters == counters_old) {
381 			page->freelist = freelist_new;
382 			page->counters = counters_new;
383 			slab_unlock(page);
384 			return 1;
385 		}
386 		slab_unlock(page);
387 	}
388 
389 	cpu_relax();
390 	stat(s, CMPXCHG_DOUBLE_FAIL);
391 
392 #ifdef SLUB_DEBUG_CMPXCHG
393 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
394 #endif
395 
396 	return 0;
397 }
398 
399 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
400 		void *freelist_old, unsigned long counters_old,
401 		void *freelist_new, unsigned long counters_new,
402 		const char *n)
403 {
404 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
405     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
406 	if (s->flags & __CMPXCHG_DOUBLE) {
407 		if (cmpxchg_double(&page->freelist, &page->counters,
408 			freelist_old, counters_old,
409 			freelist_new, counters_new))
410 		return 1;
411 	} else
412 #endif
413 	{
414 		unsigned long flags;
415 
416 		local_irq_save(flags);
417 		slab_lock(page);
418 		if (page->freelist == freelist_old && page->counters == counters_old) {
419 			page->freelist = freelist_new;
420 			page->counters = counters_new;
421 			slab_unlock(page);
422 			local_irq_restore(flags);
423 			return 1;
424 		}
425 		slab_unlock(page);
426 		local_irq_restore(flags);
427 	}
428 
429 	cpu_relax();
430 	stat(s, CMPXCHG_DOUBLE_FAIL);
431 
432 #ifdef SLUB_DEBUG_CMPXCHG
433 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
434 #endif
435 
436 	return 0;
437 }
438 
439 #ifdef CONFIG_SLUB_DEBUG
440 /*
441  * Determine a map of object in use on a page.
442  *
443  * Node listlock must be held to guarantee that the page does
444  * not vanish from under us.
445  */
446 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
447 {
448 	void *p;
449 	void *addr = page_address(page);
450 
451 	for (p = page->freelist; p; p = get_freepointer(s, p))
452 		set_bit(slab_index(p, s, addr), map);
453 }
454 
455 /*
456  * Debug settings:
457  */
458 #ifdef CONFIG_SLUB_DEBUG_ON
459 static int slub_debug = DEBUG_DEFAULT_FLAGS;
460 #else
461 static int slub_debug;
462 #endif
463 
464 static char *slub_debug_slabs;
465 static int disable_higher_order_debug;
466 
467 /*
468  * Object debugging
469  */
470 static void print_section(char *text, u8 *addr, unsigned int length)
471 {
472 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
473 			length, 1);
474 }
475 
476 static struct track *get_track(struct kmem_cache *s, void *object,
477 	enum track_item alloc)
478 {
479 	struct track *p;
480 
481 	if (s->offset)
482 		p = object + s->offset + sizeof(void *);
483 	else
484 		p = object + s->inuse;
485 
486 	return p + alloc;
487 }
488 
489 static void set_track(struct kmem_cache *s, void *object,
490 			enum track_item alloc, unsigned long addr)
491 {
492 	struct track *p = get_track(s, object, alloc);
493 
494 	if (addr) {
495 #ifdef CONFIG_STACKTRACE
496 		struct stack_trace trace;
497 		int i;
498 
499 		trace.nr_entries = 0;
500 		trace.max_entries = TRACK_ADDRS_COUNT;
501 		trace.entries = p->addrs;
502 		trace.skip = 3;
503 		save_stack_trace(&trace);
504 
505 		/* See rant in lockdep.c */
506 		if (trace.nr_entries != 0 &&
507 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
508 			trace.nr_entries--;
509 
510 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
511 			p->addrs[i] = 0;
512 #endif
513 		p->addr = addr;
514 		p->cpu = smp_processor_id();
515 		p->pid = current->pid;
516 		p->when = jiffies;
517 	} else
518 		memset(p, 0, sizeof(struct track));
519 }
520 
521 static void init_tracking(struct kmem_cache *s, void *object)
522 {
523 	if (!(s->flags & SLAB_STORE_USER))
524 		return;
525 
526 	set_track(s, object, TRACK_FREE, 0UL);
527 	set_track(s, object, TRACK_ALLOC, 0UL);
528 }
529 
530 static void print_track(const char *s, struct track *t)
531 {
532 	if (!t->addr)
533 		return;
534 
535 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
536 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
537 #ifdef CONFIG_STACKTRACE
538 	{
539 		int i;
540 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
541 			if (t->addrs[i])
542 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
543 			else
544 				break;
545 	}
546 #endif
547 }
548 
549 static void print_tracking(struct kmem_cache *s, void *object)
550 {
551 	if (!(s->flags & SLAB_STORE_USER))
552 		return;
553 
554 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
555 	print_track("Freed", get_track(s, object, TRACK_FREE));
556 }
557 
558 static void print_page_info(struct page *page)
559 {
560 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
561 		page, page->objects, page->inuse, page->freelist, page->flags);
562 
563 }
564 
565 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
566 {
567 	va_list args;
568 	char buf[100];
569 
570 	va_start(args, fmt);
571 	vsnprintf(buf, sizeof(buf), fmt, args);
572 	va_end(args);
573 	printk(KERN_ERR "========================================"
574 			"=====================================\n");
575 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
576 	printk(KERN_ERR "----------------------------------------"
577 			"-------------------------------------\n\n");
578 }
579 
580 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
581 {
582 	va_list args;
583 	char buf[100];
584 
585 	va_start(args, fmt);
586 	vsnprintf(buf, sizeof(buf), fmt, args);
587 	va_end(args);
588 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
589 }
590 
591 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
592 {
593 	unsigned int off;	/* Offset of last byte */
594 	u8 *addr = page_address(page);
595 
596 	print_tracking(s, p);
597 
598 	print_page_info(page);
599 
600 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
601 			p, p - addr, get_freepointer(s, p));
602 
603 	if (p > addr + 16)
604 		print_section("Bytes b4 ", p - 16, 16);
605 
606 	print_section("Object ", p, min_t(unsigned long, s->objsize,
607 				PAGE_SIZE));
608 	if (s->flags & SLAB_RED_ZONE)
609 		print_section("Redzone ", p + s->objsize,
610 			s->inuse - s->objsize);
611 
612 	if (s->offset)
613 		off = s->offset + sizeof(void *);
614 	else
615 		off = s->inuse;
616 
617 	if (s->flags & SLAB_STORE_USER)
618 		off += 2 * sizeof(struct track);
619 
620 	if (off != s->size)
621 		/* Beginning of the filler is the free pointer */
622 		print_section("Padding ", p + off, s->size - off);
623 
624 	dump_stack();
625 }
626 
627 static void object_err(struct kmem_cache *s, struct page *page,
628 			u8 *object, char *reason)
629 {
630 	slab_bug(s, "%s", reason);
631 	print_trailer(s, page, object);
632 }
633 
634 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
635 {
636 	va_list args;
637 	char buf[100];
638 
639 	va_start(args, fmt);
640 	vsnprintf(buf, sizeof(buf), fmt, args);
641 	va_end(args);
642 	slab_bug(s, "%s", buf);
643 	print_page_info(page);
644 	dump_stack();
645 }
646 
647 static void init_object(struct kmem_cache *s, void *object, u8 val)
648 {
649 	u8 *p = object;
650 
651 	if (s->flags & __OBJECT_POISON) {
652 		memset(p, POISON_FREE, s->objsize - 1);
653 		p[s->objsize - 1] = POISON_END;
654 	}
655 
656 	if (s->flags & SLAB_RED_ZONE)
657 		memset(p + s->objsize, val, s->inuse - s->objsize);
658 }
659 
660 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
661 						void *from, void *to)
662 {
663 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
664 	memset(from, data, to - from);
665 }
666 
667 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
668 			u8 *object, char *what,
669 			u8 *start, unsigned int value, unsigned int bytes)
670 {
671 	u8 *fault;
672 	u8 *end;
673 
674 	fault = memchr_inv(start, value, bytes);
675 	if (!fault)
676 		return 1;
677 
678 	end = start + bytes;
679 	while (end > fault && end[-1] == value)
680 		end--;
681 
682 	slab_bug(s, "%s overwritten", what);
683 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
684 					fault, end - 1, fault[0], value);
685 	print_trailer(s, page, object);
686 
687 	restore_bytes(s, what, value, fault, end);
688 	return 0;
689 }
690 
691 /*
692  * Object layout:
693  *
694  * object address
695  * 	Bytes of the object to be managed.
696  * 	If the freepointer may overlay the object then the free
697  * 	pointer is the first word of the object.
698  *
699  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
700  * 	0xa5 (POISON_END)
701  *
702  * object + s->objsize
703  * 	Padding to reach word boundary. This is also used for Redzoning.
704  * 	Padding is extended by another word if Redzoning is enabled and
705  * 	objsize == inuse.
706  *
707  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
708  * 	0xcc (RED_ACTIVE) for objects in use.
709  *
710  * object + s->inuse
711  * 	Meta data starts here.
712  *
713  * 	A. Free pointer (if we cannot overwrite object on free)
714  * 	B. Tracking data for SLAB_STORE_USER
715  * 	C. Padding to reach required alignment boundary or at mininum
716  * 		one word if debugging is on to be able to detect writes
717  * 		before the word boundary.
718  *
719  *	Padding is done using 0x5a (POISON_INUSE)
720  *
721  * object + s->size
722  * 	Nothing is used beyond s->size.
723  *
724  * If slabcaches are merged then the objsize and inuse boundaries are mostly
725  * ignored. And therefore no slab options that rely on these boundaries
726  * may be used with merged slabcaches.
727  */
728 
729 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
730 {
731 	unsigned long off = s->inuse;	/* The end of info */
732 
733 	if (s->offset)
734 		/* Freepointer is placed after the object. */
735 		off += sizeof(void *);
736 
737 	if (s->flags & SLAB_STORE_USER)
738 		/* We also have user information there */
739 		off += 2 * sizeof(struct track);
740 
741 	if (s->size == off)
742 		return 1;
743 
744 	return check_bytes_and_report(s, page, p, "Object padding",
745 				p + off, POISON_INUSE, s->size - off);
746 }
747 
748 /* Check the pad bytes at the end of a slab page */
749 static int slab_pad_check(struct kmem_cache *s, struct page *page)
750 {
751 	u8 *start;
752 	u8 *fault;
753 	u8 *end;
754 	int length;
755 	int remainder;
756 
757 	if (!(s->flags & SLAB_POISON))
758 		return 1;
759 
760 	start = page_address(page);
761 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
762 	end = start + length;
763 	remainder = length % s->size;
764 	if (!remainder)
765 		return 1;
766 
767 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
768 	if (!fault)
769 		return 1;
770 	while (end > fault && end[-1] == POISON_INUSE)
771 		end--;
772 
773 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
774 	print_section("Padding ", end - remainder, remainder);
775 
776 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
777 	return 0;
778 }
779 
780 static int check_object(struct kmem_cache *s, struct page *page,
781 					void *object, u8 val)
782 {
783 	u8 *p = object;
784 	u8 *endobject = object + s->objsize;
785 
786 	if (s->flags & SLAB_RED_ZONE) {
787 		if (!check_bytes_and_report(s, page, object, "Redzone",
788 			endobject, val, s->inuse - s->objsize))
789 			return 0;
790 	} else {
791 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
792 			check_bytes_and_report(s, page, p, "Alignment padding",
793 				endobject, POISON_INUSE, s->inuse - s->objsize);
794 		}
795 	}
796 
797 	if (s->flags & SLAB_POISON) {
798 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
799 			(!check_bytes_and_report(s, page, p, "Poison", p,
800 					POISON_FREE, s->objsize - 1) ||
801 			 !check_bytes_and_report(s, page, p, "Poison",
802 				p + s->objsize - 1, POISON_END, 1)))
803 			return 0;
804 		/*
805 		 * check_pad_bytes cleans up on its own.
806 		 */
807 		check_pad_bytes(s, page, p);
808 	}
809 
810 	if (!s->offset && val == SLUB_RED_ACTIVE)
811 		/*
812 		 * Object and freepointer overlap. Cannot check
813 		 * freepointer while object is allocated.
814 		 */
815 		return 1;
816 
817 	/* Check free pointer validity */
818 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
819 		object_err(s, page, p, "Freepointer corrupt");
820 		/*
821 		 * No choice but to zap it and thus lose the remainder
822 		 * of the free objects in this slab. May cause
823 		 * another error because the object count is now wrong.
824 		 */
825 		set_freepointer(s, p, NULL);
826 		return 0;
827 	}
828 	return 1;
829 }
830 
831 static int check_slab(struct kmem_cache *s, struct page *page)
832 {
833 	int maxobj;
834 
835 	VM_BUG_ON(!irqs_disabled());
836 
837 	if (!PageSlab(page)) {
838 		slab_err(s, page, "Not a valid slab page");
839 		return 0;
840 	}
841 
842 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
843 	if (page->objects > maxobj) {
844 		slab_err(s, page, "objects %u > max %u",
845 			s->name, page->objects, maxobj);
846 		return 0;
847 	}
848 	if (page->inuse > page->objects) {
849 		slab_err(s, page, "inuse %u > max %u",
850 			s->name, page->inuse, page->objects);
851 		return 0;
852 	}
853 	/* Slab_pad_check fixes things up after itself */
854 	slab_pad_check(s, page);
855 	return 1;
856 }
857 
858 /*
859  * Determine if a certain object on a page is on the freelist. Must hold the
860  * slab lock to guarantee that the chains are in a consistent state.
861  */
862 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
863 {
864 	int nr = 0;
865 	void *fp;
866 	void *object = NULL;
867 	unsigned long max_objects;
868 
869 	fp = page->freelist;
870 	while (fp && nr <= page->objects) {
871 		if (fp == search)
872 			return 1;
873 		if (!check_valid_pointer(s, page, fp)) {
874 			if (object) {
875 				object_err(s, page, object,
876 					"Freechain corrupt");
877 				set_freepointer(s, object, NULL);
878 				break;
879 			} else {
880 				slab_err(s, page, "Freepointer corrupt");
881 				page->freelist = NULL;
882 				page->inuse = page->objects;
883 				slab_fix(s, "Freelist cleared");
884 				return 0;
885 			}
886 			break;
887 		}
888 		object = fp;
889 		fp = get_freepointer(s, object);
890 		nr++;
891 	}
892 
893 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
894 	if (max_objects > MAX_OBJS_PER_PAGE)
895 		max_objects = MAX_OBJS_PER_PAGE;
896 
897 	if (page->objects != max_objects) {
898 		slab_err(s, page, "Wrong number of objects. Found %d but "
899 			"should be %d", page->objects, max_objects);
900 		page->objects = max_objects;
901 		slab_fix(s, "Number of objects adjusted.");
902 	}
903 	if (page->inuse != page->objects - nr) {
904 		slab_err(s, page, "Wrong object count. Counter is %d but "
905 			"counted were %d", page->inuse, page->objects - nr);
906 		page->inuse = page->objects - nr;
907 		slab_fix(s, "Object count adjusted.");
908 	}
909 	return search == NULL;
910 }
911 
912 static void trace(struct kmem_cache *s, struct page *page, void *object,
913 								int alloc)
914 {
915 	if (s->flags & SLAB_TRACE) {
916 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
917 			s->name,
918 			alloc ? "alloc" : "free",
919 			object, page->inuse,
920 			page->freelist);
921 
922 		if (!alloc)
923 			print_section("Object ", (void *)object, s->objsize);
924 
925 		dump_stack();
926 	}
927 }
928 
929 /*
930  * Hooks for other subsystems that check memory allocations. In a typical
931  * production configuration these hooks all should produce no code at all.
932  */
933 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
934 {
935 	flags &= gfp_allowed_mask;
936 	lockdep_trace_alloc(flags);
937 	might_sleep_if(flags & __GFP_WAIT);
938 
939 	return should_failslab(s->objsize, flags, s->flags);
940 }
941 
942 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
943 {
944 	flags &= gfp_allowed_mask;
945 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
946 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
947 }
948 
949 static inline void slab_free_hook(struct kmem_cache *s, void *x)
950 {
951 	kmemleak_free_recursive(x, s->flags);
952 
953 	/*
954 	 * Trouble is that we may no longer disable interupts in the fast path
955 	 * So in order to make the debug calls that expect irqs to be
956 	 * disabled we need to disable interrupts temporarily.
957 	 */
958 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
959 	{
960 		unsigned long flags;
961 
962 		local_irq_save(flags);
963 		kmemcheck_slab_free(s, x, s->objsize);
964 		debug_check_no_locks_freed(x, s->objsize);
965 		local_irq_restore(flags);
966 	}
967 #endif
968 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
969 		debug_check_no_obj_freed(x, s->objsize);
970 }
971 
972 /*
973  * Tracking of fully allocated slabs for debugging purposes.
974  *
975  * list_lock must be held.
976  */
977 static void add_full(struct kmem_cache *s,
978 	struct kmem_cache_node *n, struct page *page)
979 {
980 	if (!(s->flags & SLAB_STORE_USER))
981 		return;
982 
983 	list_add(&page->lru, &n->full);
984 }
985 
986 /*
987  * list_lock must be held.
988  */
989 static void remove_full(struct kmem_cache *s, struct page *page)
990 {
991 	if (!(s->flags & SLAB_STORE_USER))
992 		return;
993 
994 	list_del(&page->lru);
995 }
996 
997 /* Tracking of the number of slabs for debugging purposes */
998 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
999 {
1000 	struct kmem_cache_node *n = get_node(s, node);
1001 
1002 	return atomic_long_read(&n->nr_slabs);
1003 }
1004 
1005 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1006 {
1007 	return atomic_long_read(&n->nr_slabs);
1008 }
1009 
1010 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1011 {
1012 	struct kmem_cache_node *n = get_node(s, node);
1013 
1014 	/*
1015 	 * May be called early in order to allocate a slab for the
1016 	 * kmem_cache_node structure. Solve the chicken-egg
1017 	 * dilemma by deferring the increment of the count during
1018 	 * bootstrap (see early_kmem_cache_node_alloc).
1019 	 */
1020 	if (n) {
1021 		atomic_long_inc(&n->nr_slabs);
1022 		atomic_long_add(objects, &n->total_objects);
1023 	}
1024 }
1025 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1026 {
1027 	struct kmem_cache_node *n = get_node(s, node);
1028 
1029 	atomic_long_dec(&n->nr_slabs);
1030 	atomic_long_sub(objects, &n->total_objects);
1031 }
1032 
1033 /* Object debug checks for alloc/free paths */
1034 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1035 								void *object)
1036 {
1037 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1038 		return;
1039 
1040 	init_object(s, object, SLUB_RED_INACTIVE);
1041 	init_tracking(s, object);
1042 }
1043 
1044 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1045 					void *object, unsigned long addr)
1046 {
1047 	if (!check_slab(s, page))
1048 		goto bad;
1049 
1050 	if (!check_valid_pointer(s, page, object)) {
1051 		object_err(s, page, object, "Freelist Pointer check fails");
1052 		goto bad;
1053 	}
1054 
1055 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1056 		goto bad;
1057 
1058 	/* Success perform special debug activities for allocs */
1059 	if (s->flags & SLAB_STORE_USER)
1060 		set_track(s, object, TRACK_ALLOC, addr);
1061 	trace(s, page, object, 1);
1062 	init_object(s, object, SLUB_RED_ACTIVE);
1063 	return 1;
1064 
1065 bad:
1066 	if (PageSlab(page)) {
1067 		/*
1068 		 * If this is a slab page then lets do the best we can
1069 		 * to avoid issues in the future. Marking all objects
1070 		 * as used avoids touching the remaining objects.
1071 		 */
1072 		slab_fix(s, "Marking all objects used");
1073 		page->inuse = page->objects;
1074 		page->freelist = NULL;
1075 	}
1076 	return 0;
1077 }
1078 
1079 static noinline int free_debug_processing(struct kmem_cache *s,
1080 		 struct page *page, void *object, unsigned long addr)
1081 {
1082 	unsigned long flags;
1083 	int rc = 0;
1084 
1085 	local_irq_save(flags);
1086 	slab_lock(page);
1087 
1088 	if (!check_slab(s, page))
1089 		goto fail;
1090 
1091 	if (!check_valid_pointer(s, page, object)) {
1092 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1093 		goto fail;
1094 	}
1095 
1096 	if (on_freelist(s, page, object)) {
1097 		object_err(s, page, object, "Object already free");
1098 		goto fail;
1099 	}
1100 
1101 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1102 		goto out;
1103 
1104 	if (unlikely(s != page->slab)) {
1105 		if (!PageSlab(page)) {
1106 			slab_err(s, page, "Attempt to free object(0x%p) "
1107 				"outside of slab", object);
1108 		} else if (!page->slab) {
1109 			printk(KERN_ERR
1110 				"SLUB <none>: no slab for object 0x%p.\n",
1111 						object);
1112 			dump_stack();
1113 		} else
1114 			object_err(s, page, object,
1115 					"page slab pointer corrupt.");
1116 		goto fail;
1117 	}
1118 
1119 	if (s->flags & SLAB_STORE_USER)
1120 		set_track(s, object, TRACK_FREE, addr);
1121 	trace(s, page, object, 0);
1122 	init_object(s, object, SLUB_RED_INACTIVE);
1123 	rc = 1;
1124 out:
1125 	slab_unlock(page);
1126 	local_irq_restore(flags);
1127 	return rc;
1128 
1129 fail:
1130 	slab_fix(s, "Object at 0x%p not freed", object);
1131 	goto out;
1132 }
1133 
1134 static int __init setup_slub_debug(char *str)
1135 {
1136 	slub_debug = DEBUG_DEFAULT_FLAGS;
1137 	if (*str++ != '=' || !*str)
1138 		/*
1139 		 * No options specified. Switch on full debugging.
1140 		 */
1141 		goto out;
1142 
1143 	if (*str == ',')
1144 		/*
1145 		 * No options but restriction on slabs. This means full
1146 		 * debugging for slabs matching a pattern.
1147 		 */
1148 		goto check_slabs;
1149 
1150 	if (tolower(*str) == 'o') {
1151 		/*
1152 		 * Avoid enabling debugging on caches if its minimum order
1153 		 * would increase as a result.
1154 		 */
1155 		disable_higher_order_debug = 1;
1156 		goto out;
1157 	}
1158 
1159 	slub_debug = 0;
1160 	if (*str == '-')
1161 		/*
1162 		 * Switch off all debugging measures.
1163 		 */
1164 		goto out;
1165 
1166 	/*
1167 	 * Determine which debug features should be switched on
1168 	 */
1169 	for (; *str && *str != ','; str++) {
1170 		switch (tolower(*str)) {
1171 		case 'f':
1172 			slub_debug |= SLAB_DEBUG_FREE;
1173 			break;
1174 		case 'z':
1175 			slub_debug |= SLAB_RED_ZONE;
1176 			break;
1177 		case 'p':
1178 			slub_debug |= SLAB_POISON;
1179 			break;
1180 		case 'u':
1181 			slub_debug |= SLAB_STORE_USER;
1182 			break;
1183 		case 't':
1184 			slub_debug |= SLAB_TRACE;
1185 			break;
1186 		case 'a':
1187 			slub_debug |= SLAB_FAILSLAB;
1188 			break;
1189 		default:
1190 			printk(KERN_ERR "slub_debug option '%c' "
1191 				"unknown. skipped\n", *str);
1192 		}
1193 	}
1194 
1195 check_slabs:
1196 	if (*str == ',')
1197 		slub_debug_slabs = str + 1;
1198 out:
1199 	return 1;
1200 }
1201 
1202 __setup("slub_debug", setup_slub_debug);
1203 
1204 static unsigned long kmem_cache_flags(unsigned long objsize,
1205 	unsigned long flags, const char *name,
1206 	void (*ctor)(void *))
1207 {
1208 	/*
1209 	 * Enable debugging if selected on the kernel commandline.
1210 	 */
1211 	if (slub_debug && (!slub_debug_slabs ||
1212 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1213 		flags |= slub_debug;
1214 
1215 	return flags;
1216 }
1217 #else
1218 static inline void setup_object_debug(struct kmem_cache *s,
1219 			struct page *page, void *object) {}
1220 
1221 static inline int alloc_debug_processing(struct kmem_cache *s,
1222 	struct page *page, void *object, unsigned long addr) { return 0; }
1223 
1224 static inline int free_debug_processing(struct kmem_cache *s,
1225 	struct page *page, void *object, unsigned long addr) { return 0; }
1226 
1227 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1228 			{ return 1; }
1229 static inline int check_object(struct kmem_cache *s, struct page *page,
1230 			void *object, u8 val) { return 1; }
1231 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1232 					struct page *page) {}
1233 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1234 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1235 	unsigned long flags, const char *name,
1236 	void (*ctor)(void *))
1237 {
1238 	return flags;
1239 }
1240 #define slub_debug 0
1241 
1242 #define disable_higher_order_debug 0
1243 
1244 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1245 							{ return 0; }
1246 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1247 							{ return 0; }
1248 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1249 							int objects) {}
1250 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1251 							int objects) {}
1252 
1253 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1254 							{ return 0; }
1255 
1256 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1257 		void *object) {}
1258 
1259 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1260 
1261 #endif /* CONFIG_SLUB_DEBUG */
1262 
1263 /*
1264  * Slab allocation and freeing
1265  */
1266 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1267 					struct kmem_cache_order_objects oo)
1268 {
1269 	int order = oo_order(oo);
1270 
1271 	flags |= __GFP_NOTRACK;
1272 
1273 	if (node == NUMA_NO_NODE)
1274 		return alloc_pages(flags, order);
1275 	else
1276 		return alloc_pages_exact_node(node, flags, order);
1277 }
1278 
1279 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1280 {
1281 	struct page *page;
1282 	struct kmem_cache_order_objects oo = s->oo;
1283 	gfp_t alloc_gfp;
1284 
1285 	flags &= gfp_allowed_mask;
1286 
1287 	if (flags & __GFP_WAIT)
1288 		local_irq_enable();
1289 
1290 	flags |= s->allocflags;
1291 
1292 	/*
1293 	 * Let the initial higher-order allocation fail under memory pressure
1294 	 * so we fall-back to the minimum order allocation.
1295 	 */
1296 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1297 
1298 	page = alloc_slab_page(alloc_gfp, node, oo);
1299 	if (unlikely(!page)) {
1300 		oo = s->min;
1301 		/*
1302 		 * Allocation may have failed due to fragmentation.
1303 		 * Try a lower order alloc if possible
1304 		 */
1305 		page = alloc_slab_page(flags, node, oo);
1306 
1307 		if (page)
1308 			stat(s, ORDER_FALLBACK);
1309 	}
1310 
1311 	if (flags & __GFP_WAIT)
1312 		local_irq_disable();
1313 
1314 	if (!page)
1315 		return NULL;
1316 
1317 	if (kmemcheck_enabled
1318 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1319 		int pages = 1 << oo_order(oo);
1320 
1321 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1322 
1323 		/*
1324 		 * Objects from caches that have a constructor don't get
1325 		 * cleared when they're allocated, so we need to do it here.
1326 		 */
1327 		if (s->ctor)
1328 			kmemcheck_mark_uninitialized_pages(page, pages);
1329 		else
1330 			kmemcheck_mark_unallocated_pages(page, pages);
1331 	}
1332 
1333 	page->objects = oo_objects(oo);
1334 	mod_zone_page_state(page_zone(page),
1335 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1336 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1337 		1 << oo_order(oo));
1338 
1339 	return page;
1340 }
1341 
1342 static void setup_object(struct kmem_cache *s, struct page *page,
1343 				void *object)
1344 {
1345 	setup_object_debug(s, page, object);
1346 	if (unlikely(s->ctor))
1347 		s->ctor(object);
1348 }
1349 
1350 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1351 {
1352 	struct page *page;
1353 	void *start;
1354 	void *last;
1355 	void *p;
1356 
1357 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1358 
1359 	page = allocate_slab(s,
1360 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1361 	if (!page)
1362 		goto out;
1363 
1364 	inc_slabs_node(s, page_to_nid(page), page->objects);
1365 	page->slab = s;
1366 	page->flags |= 1 << PG_slab;
1367 
1368 	start = page_address(page);
1369 
1370 	if (unlikely(s->flags & SLAB_POISON))
1371 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1372 
1373 	last = start;
1374 	for_each_object(p, s, start, page->objects) {
1375 		setup_object(s, page, last);
1376 		set_freepointer(s, last, p);
1377 		last = p;
1378 	}
1379 	setup_object(s, page, last);
1380 	set_freepointer(s, last, NULL);
1381 
1382 	page->freelist = start;
1383 	page->inuse = page->objects;
1384 	page->frozen = 1;
1385 out:
1386 	return page;
1387 }
1388 
1389 static void __free_slab(struct kmem_cache *s, struct page *page)
1390 {
1391 	int order = compound_order(page);
1392 	int pages = 1 << order;
1393 
1394 	if (kmem_cache_debug(s)) {
1395 		void *p;
1396 
1397 		slab_pad_check(s, page);
1398 		for_each_object(p, s, page_address(page),
1399 						page->objects)
1400 			check_object(s, page, p, SLUB_RED_INACTIVE);
1401 	}
1402 
1403 	kmemcheck_free_shadow(page, compound_order(page));
1404 
1405 	mod_zone_page_state(page_zone(page),
1406 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1407 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1408 		-pages);
1409 
1410 	__ClearPageSlab(page);
1411 	reset_page_mapcount(page);
1412 	if (current->reclaim_state)
1413 		current->reclaim_state->reclaimed_slab += pages;
1414 	__free_pages(page, order);
1415 }
1416 
1417 #define need_reserve_slab_rcu						\
1418 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419 
1420 static void rcu_free_slab(struct rcu_head *h)
1421 {
1422 	struct page *page;
1423 
1424 	if (need_reserve_slab_rcu)
1425 		page = virt_to_head_page(h);
1426 	else
1427 		page = container_of((struct list_head *)h, struct page, lru);
1428 
1429 	__free_slab(page->slab, page);
1430 }
1431 
1432 static void free_slab(struct kmem_cache *s, struct page *page)
1433 {
1434 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1435 		struct rcu_head *head;
1436 
1437 		if (need_reserve_slab_rcu) {
1438 			int order = compound_order(page);
1439 			int offset = (PAGE_SIZE << order) - s->reserved;
1440 
1441 			VM_BUG_ON(s->reserved != sizeof(*head));
1442 			head = page_address(page) + offset;
1443 		} else {
1444 			/*
1445 			 * RCU free overloads the RCU head over the LRU
1446 			 */
1447 			head = (void *)&page->lru;
1448 		}
1449 
1450 		call_rcu(head, rcu_free_slab);
1451 	} else
1452 		__free_slab(s, page);
1453 }
1454 
1455 static void discard_slab(struct kmem_cache *s, struct page *page)
1456 {
1457 	dec_slabs_node(s, page_to_nid(page), page->objects);
1458 	free_slab(s, page);
1459 }
1460 
1461 /*
1462  * Management of partially allocated slabs.
1463  *
1464  * list_lock must be held.
1465  */
1466 static inline void add_partial(struct kmem_cache_node *n,
1467 				struct page *page, int tail)
1468 {
1469 	n->nr_partial++;
1470 	if (tail == DEACTIVATE_TO_TAIL)
1471 		list_add_tail(&page->lru, &n->partial);
1472 	else
1473 		list_add(&page->lru, &n->partial);
1474 }
1475 
1476 /*
1477  * list_lock must be held.
1478  */
1479 static inline void remove_partial(struct kmem_cache_node *n,
1480 					struct page *page)
1481 {
1482 	list_del(&page->lru);
1483 	n->nr_partial--;
1484 }
1485 
1486 /*
1487  * Lock slab, remove from the partial list and put the object into the
1488  * per cpu freelist.
1489  *
1490  * Returns a list of objects or NULL if it fails.
1491  *
1492  * Must hold list_lock.
1493  */
1494 static inline void *acquire_slab(struct kmem_cache *s,
1495 		struct kmem_cache_node *n, struct page *page,
1496 		int mode)
1497 {
1498 	void *freelist;
1499 	unsigned long counters;
1500 	struct page new;
1501 
1502 	/*
1503 	 * Zap the freelist and set the frozen bit.
1504 	 * The old freelist is the list of objects for the
1505 	 * per cpu allocation list.
1506 	 */
1507 	do {
1508 		freelist = page->freelist;
1509 		counters = page->counters;
1510 		new.counters = counters;
1511 		if (mode)
1512 			new.inuse = page->objects;
1513 
1514 		VM_BUG_ON(new.frozen);
1515 		new.frozen = 1;
1516 
1517 	} while (!__cmpxchg_double_slab(s, page,
1518 			freelist, counters,
1519 			NULL, new.counters,
1520 			"lock and freeze"));
1521 
1522 	remove_partial(n, page);
1523 	return freelist;
1524 }
1525 
1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527 
1528 /*
1529  * Try to allocate a partial slab from a specific node.
1530  */
1531 static void *get_partial_node(struct kmem_cache *s,
1532 		struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1533 {
1534 	struct page *page, *page2;
1535 	void *object = NULL;
1536 
1537 	/*
1538 	 * Racy check. If we mistakenly see no partial slabs then we
1539 	 * just allocate an empty slab. If we mistakenly try to get a
1540 	 * partial slab and there is none available then get_partials()
1541 	 * will return NULL.
1542 	 */
1543 	if (!n || !n->nr_partial)
1544 		return NULL;
1545 
1546 	spin_lock(&n->list_lock);
1547 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1548 		void *t = acquire_slab(s, n, page, object == NULL);
1549 		int available;
1550 
1551 		if (!t)
1552 			break;
1553 
1554 		if (!object) {
1555 			c->page = page;
1556 			c->node = page_to_nid(page);
1557 			stat(s, ALLOC_FROM_PARTIAL);
1558 			object = t;
1559 			available =  page->objects - page->inuse;
1560 		} else {
1561 			page->freelist = t;
1562 			available = put_cpu_partial(s, page, 0);
1563 		}
1564 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1565 			break;
1566 
1567 	}
1568 	spin_unlock(&n->list_lock);
1569 	return object;
1570 }
1571 
1572 /*
1573  * Get a page from somewhere. Search in increasing NUMA distances.
1574  */
1575 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1576 		struct kmem_cache_cpu *c)
1577 {
1578 #ifdef CONFIG_NUMA
1579 	struct zonelist *zonelist;
1580 	struct zoneref *z;
1581 	struct zone *zone;
1582 	enum zone_type high_zoneidx = gfp_zone(flags);
1583 	void *object;
1584 
1585 	/*
1586 	 * The defrag ratio allows a configuration of the tradeoffs between
1587 	 * inter node defragmentation and node local allocations. A lower
1588 	 * defrag_ratio increases the tendency to do local allocations
1589 	 * instead of attempting to obtain partial slabs from other nodes.
1590 	 *
1591 	 * If the defrag_ratio is set to 0 then kmalloc() always
1592 	 * returns node local objects. If the ratio is higher then kmalloc()
1593 	 * may return off node objects because partial slabs are obtained
1594 	 * from other nodes and filled up.
1595 	 *
1596 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1597 	 * defrag_ratio = 1000) then every (well almost) allocation will
1598 	 * first attempt to defrag slab caches on other nodes. This means
1599 	 * scanning over all nodes to look for partial slabs which may be
1600 	 * expensive if we do it every time we are trying to find a slab
1601 	 * with available objects.
1602 	 */
1603 	if (!s->remote_node_defrag_ratio ||
1604 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1605 		return NULL;
1606 
1607 	get_mems_allowed();
1608 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1609 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1610 		struct kmem_cache_node *n;
1611 
1612 		n = get_node(s, zone_to_nid(zone));
1613 
1614 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1615 				n->nr_partial > s->min_partial) {
1616 			object = get_partial_node(s, n, c);
1617 			if (object) {
1618 				put_mems_allowed();
1619 				return object;
1620 			}
1621 		}
1622 	}
1623 	put_mems_allowed();
1624 #endif
1625 	return NULL;
1626 }
1627 
1628 /*
1629  * Get a partial page, lock it and return it.
1630  */
1631 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1632 		struct kmem_cache_cpu *c)
1633 {
1634 	void *object;
1635 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1636 
1637 	object = get_partial_node(s, get_node(s, searchnode), c);
1638 	if (object || node != NUMA_NO_NODE)
1639 		return object;
1640 
1641 	return get_any_partial(s, flags, c);
1642 }
1643 
1644 #ifdef CONFIG_PREEMPT
1645 /*
1646  * Calculate the next globally unique transaction for disambiguiation
1647  * during cmpxchg. The transactions start with the cpu number and are then
1648  * incremented by CONFIG_NR_CPUS.
1649  */
1650 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1651 #else
1652 /*
1653  * No preemption supported therefore also no need to check for
1654  * different cpus.
1655  */
1656 #define TID_STEP 1
1657 #endif
1658 
1659 static inline unsigned long next_tid(unsigned long tid)
1660 {
1661 	return tid + TID_STEP;
1662 }
1663 
1664 static inline unsigned int tid_to_cpu(unsigned long tid)
1665 {
1666 	return tid % TID_STEP;
1667 }
1668 
1669 static inline unsigned long tid_to_event(unsigned long tid)
1670 {
1671 	return tid / TID_STEP;
1672 }
1673 
1674 static inline unsigned int init_tid(int cpu)
1675 {
1676 	return cpu;
1677 }
1678 
1679 static inline void note_cmpxchg_failure(const char *n,
1680 		const struct kmem_cache *s, unsigned long tid)
1681 {
1682 #ifdef SLUB_DEBUG_CMPXCHG
1683 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1684 
1685 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1686 
1687 #ifdef CONFIG_PREEMPT
1688 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1689 		printk("due to cpu change %d -> %d\n",
1690 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1691 	else
1692 #endif
1693 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1694 		printk("due to cpu running other code. Event %ld->%ld\n",
1695 			tid_to_event(tid), tid_to_event(actual_tid));
1696 	else
1697 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1698 			actual_tid, tid, next_tid(tid));
1699 #endif
1700 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1701 }
1702 
1703 void init_kmem_cache_cpus(struct kmem_cache *s)
1704 {
1705 	int cpu;
1706 
1707 	for_each_possible_cpu(cpu)
1708 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1709 }
1710 
1711 /*
1712  * Remove the cpu slab
1713  */
1714 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1715 {
1716 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1717 	struct page *page = c->page;
1718 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1719 	int lock = 0;
1720 	enum slab_modes l = M_NONE, m = M_NONE;
1721 	void *freelist;
1722 	void *nextfree;
1723 	int tail = DEACTIVATE_TO_HEAD;
1724 	struct page new;
1725 	struct page old;
1726 
1727 	if (page->freelist) {
1728 		stat(s, DEACTIVATE_REMOTE_FREES);
1729 		tail = DEACTIVATE_TO_TAIL;
1730 	}
1731 
1732 	c->tid = next_tid(c->tid);
1733 	c->page = NULL;
1734 	freelist = c->freelist;
1735 	c->freelist = NULL;
1736 
1737 	/*
1738 	 * Stage one: Free all available per cpu objects back
1739 	 * to the page freelist while it is still frozen. Leave the
1740 	 * last one.
1741 	 *
1742 	 * There is no need to take the list->lock because the page
1743 	 * is still frozen.
1744 	 */
1745 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1746 		void *prior;
1747 		unsigned long counters;
1748 
1749 		do {
1750 			prior = page->freelist;
1751 			counters = page->counters;
1752 			set_freepointer(s, freelist, prior);
1753 			new.counters = counters;
1754 			new.inuse--;
1755 			VM_BUG_ON(!new.frozen);
1756 
1757 		} while (!__cmpxchg_double_slab(s, page,
1758 			prior, counters,
1759 			freelist, new.counters,
1760 			"drain percpu freelist"));
1761 
1762 		freelist = nextfree;
1763 	}
1764 
1765 	/*
1766 	 * Stage two: Ensure that the page is unfrozen while the
1767 	 * list presence reflects the actual number of objects
1768 	 * during unfreeze.
1769 	 *
1770 	 * We setup the list membership and then perform a cmpxchg
1771 	 * with the count. If there is a mismatch then the page
1772 	 * is not unfrozen but the page is on the wrong list.
1773 	 *
1774 	 * Then we restart the process which may have to remove
1775 	 * the page from the list that we just put it on again
1776 	 * because the number of objects in the slab may have
1777 	 * changed.
1778 	 */
1779 redo:
1780 
1781 	old.freelist = page->freelist;
1782 	old.counters = page->counters;
1783 	VM_BUG_ON(!old.frozen);
1784 
1785 	/* Determine target state of the slab */
1786 	new.counters = old.counters;
1787 	if (freelist) {
1788 		new.inuse--;
1789 		set_freepointer(s, freelist, old.freelist);
1790 		new.freelist = freelist;
1791 	} else
1792 		new.freelist = old.freelist;
1793 
1794 	new.frozen = 0;
1795 
1796 	if (!new.inuse && n->nr_partial > s->min_partial)
1797 		m = M_FREE;
1798 	else if (new.freelist) {
1799 		m = M_PARTIAL;
1800 		if (!lock) {
1801 			lock = 1;
1802 			/*
1803 			 * Taking the spinlock removes the possiblity
1804 			 * that acquire_slab() will see a slab page that
1805 			 * is frozen
1806 			 */
1807 			spin_lock(&n->list_lock);
1808 		}
1809 	} else {
1810 		m = M_FULL;
1811 		if (kmem_cache_debug(s) && !lock) {
1812 			lock = 1;
1813 			/*
1814 			 * This also ensures that the scanning of full
1815 			 * slabs from diagnostic functions will not see
1816 			 * any frozen slabs.
1817 			 */
1818 			spin_lock(&n->list_lock);
1819 		}
1820 	}
1821 
1822 	if (l != m) {
1823 
1824 		if (l == M_PARTIAL)
1825 
1826 			remove_partial(n, page);
1827 
1828 		else if (l == M_FULL)
1829 
1830 			remove_full(s, page);
1831 
1832 		if (m == M_PARTIAL) {
1833 
1834 			add_partial(n, page, tail);
1835 			stat(s, tail);
1836 
1837 		} else if (m == M_FULL) {
1838 
1839 			stat(s, DEACTIVATE_FULL);
1840 			add_full(s, n, page);
1841 
1842 		}
1843 	}
1844 
1845 	l = m;
1846 	if (!__cmpxchg_double_slab(s, page,
1847 				old.freelist, old.counters,
1848 				new.freelist, new.counters,
1849 				"unfreezing slab"))
1850 		goto redo;
1851 
1852 	if (lock)
1853 		spin_unlock(&n->list_lock);
1854 
1855 	if (m == M_FREE) {
1856 		stat(s, DEACTIVATE_EMPTY);
1857 		discard_slab(s, page);
1858 		stat(s, FREE_SLAB);
1859 	}
1860 }
1861 
1862 /* Unfreeze all the cpu partial slabs */
1863 static void unfreeze_partials(struct kmem_cache *s)
1864 {
1865 	struct kmem_cache_node *n = NULL;
1866 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1867 	struct page *page, *discard_page = NULL;
1868 
1869 	while ((page = c->partial)) {
1870 		enum slab_modes { M_PARTIAL, M_FREE };
1871 		enum slab_modes l, m;
1872 		struct page new;
1873 		struct page old;
1874 
1875 		c->partial = page->next;
1876 		l = M_FREE;
1877 
1878 		do {
1879 
1880 			old.freelist = page->freelist;
1881 			old.counters = page->counters;
1882 			VM_BUG_ON(!old.frozen);
1883 
1884 			new.counters = old.counters;
1885 			new.freelist = old.freelist;
1886 
1887 			new.frozen = 0;
1888 
1889 			if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1890 				m = M_FREE;
1891 			else {
1892 				struct kmem_cache_node *n2 = get_node(s,
1893 							page_to_nid(page));
1894 
1895 				m = M_PARTIAL;
1896 				if (n != n2) {
1897 					if (n)
1898 						spin_unlock(&n->list_lock);
1899 
1900 					n = n2;
1901 					spin_lock(&n->list_lock);
1902 				}
1903 			}
1904 
1905 			if (l != m) {
1906 				if (l == M_PARTIAL) {
1907 					remove_partial(n, page);
1908 					stat(s, FREE_REMOVE_PARTIAL);
1909 				} else {
1910 					add_partial(n, page,
1911 						DEACTIVATE_TO_TAIL);
1912 					stat(s, FREE_ADD_PARTIAL);
1913 				}
1914 
1915 				l = m;
1916 			}
1917 
1918 		} while (!cmpxchg_double_slab(s, page,
1919 				old.freelist, old.counters,
1920 				new.freelist, new.counters,
1921 				"unfreezing slab"));
1922 
1923 		if (m == M_FREE) {
1924 			page->next = discard_page;
1925 			discard_page = page;
1926 		}
1927 	}
1928 
1929 	if (n)
1930 		spin_unlock(&n->list_lock);
1931 
1932 	while (discard_page) {
1933 		page = discard_page;
1934 		discard_page = discard_page->next;
1935 
1936 		stat(s, DEACTIVATE_EMPTY);
1937 		discard_slab(s, page);
1938 		stat(s, FREE_SLAB);
1939 	}
1940 }
1941 
1942 /*
1943  * Put a page that was just frozen (in __slab_free) into a partial page
1944  * slot if available. This is done without interrupts disabled and without
1945  * preemption disabled. The cmpxchg is racy and may put the partial page
1946  * onto a random cpus partial slot.
1947  *
1948  * If we did not find a slot then simply move all the partials to the
1949  * per node partial list.
1950  */
1951 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1952 {
1953 	struct page *oldpage;
1954 	int pages;
1955 	int pobjects;
1956 
1957 	do {
1958 		pages = 0;
1959 		pobjects = 0;
1960 		oldpage = this_cpu_read(s->cpu_slab->partial);
1961 
1962 		if (oldpage) {
1963 			pobjects = oldpage->pobjects;
1964 			pages = oldpage->pages;
1965 			if (drain && pobjects > s->cpu_partial) {
1966 				unsigned long flags;
1967 				/*
1968 				 * partial array is full. Move the existing
1969 				 * set to the per node partial list.
1970 				 */
1971 				local_irq_save(flags);
1972 				unfreeze_partials(s);
1973 				local_irq_restore(flags);
1974 				pobjects = 0;
1975 				pages = 0;
1976 			}
1977 		}
1978 
1979 		pages++;
1980 		pobjects += page->objects - page->inuse;
1981 
1982 		page->pages = pages;
1983 		page->pobjects = pobjects;
1984 		page->next = oldpage;
1985 
1986 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1987 	stat(s, CPU_PARTIAL_FREE);
1988 	return pobjects;
1989 }
1990 
1991 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1992 {
1993 	stat(s, CPUSLAB_FLUSH);
1994 	deactivate_slab(s, c);
1995 }
1996 
1997 /*
1998  * Flush cpu slab.
1999  *
2000  * Called from IPI handler with interrupts disabled.
2001  */
2002 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2003 {
2004 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2005 
2006 	if (likely(c)) {
2007 		if (c->page)
2008 			flush_slab(s, c);
2009 
2010 		unfreeze_partials(s);
2011 	}
2012 }
2013 
2014 static void flush_cpu_slab(void *d)
2015 {
2016 	struct kmem_cache *s = d;
2017 
2018 	__flush_cpu_slab(s, smp_processor_id());
2019 }
2020 
2021 static void flush_all(struct kmem_cache *s)
2022 {
2023 	on_each_cpu(flush_cpu_slab, s, 1);
2024 }
2025 
2026 /*
2027  * Check if the objects in a per cpu structure fit numa
2028  * locality expectations.
2029  */
2030 static inline int node_match(struct kmem_cache_cpu *c, int node)
2031 {
2032 #ifdef CONFIG_NUMA
2033 	if (node != NUMA_NO_NODE && c->node != node)
2034 		return 0;
2035 #endif
2036 	return 1;
2037 }
2038 
2039 static int count_free(struct page *page)
2040 {
2041 	return page->objects - page->inuse;
2042 }
2043 
2044 static unsigned long count_partial(struct kmem_cache_node *n,
2045 					int (*get_count)(struct page *))
2046 {
2047 	unsigned long flags;
2048 	unsigned long x = 0;
2049 	struct page *page;
2050 
2051 	spin_lock_irqsave(&n->list_lock, flags);
2052 	list_for_each_entry(page, &n->partial, lru)
2053 		x += get_count(page);
2054 	spin_unlock_irqrestore(&n->list_lock, flags);
2055 	return x;
2056 }
2057 
2058 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2059 {
2060 #ifdef CONFIG_SLUB_DEBUG
2061 	return atomic_long_read(&n->total_objects);
2062 #else
2063 	return 0;
2064 #endif
2065 }
2066 
2067 static noinline void
2068 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2069 {
2070 	int node;
2071 
2072 	printk(KERN_WARNING
2073 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2074 		nid, gfpflags);
2075 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2076 		"default order: %d, min order: %d\n", s->name, s->objsize,
2077 		s->size, oo_order(s->oo), oo_order(s->min));
2078 
2079 	if (oo_order(s->min) > get_order(s->objsize))
2080 		printk(KERN_WARNING "  %s debugging increased min order, use "
2081 		       "slub_debug=O to disable.\n", s->name);
2082 
2083 	for_each_online_node(node) {
2084 		struct kmem_cache_node *n = get_node(s, node);
2085 		unsigned long nr_slabs;
2086 		unsigned long nr_objs;
2087 		unsigned long nr_free;
2088 
2089 		if (!n)
2090 			continue;
2091 
2092 		nr_free  = count_partial(n, count_free);
2093 		nr_slabs = node_nr_slabs(n);
2094 		nr_objs  = node_nr_objs(n);
2095 
2096 		printk(KERN_WARNING
2097 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2098 			node, nr_slabs, nr_objs, nr_free);
2099 	}
2100 }
2101 
2102 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2103 			int node, struct kmem_cache_cpu **pc)
2104 {
2105 	void *object;
2106 	struct kmem_cache_cpu *c;
2107 	struct page *page = new_slab(s, flags, node);
2108 
2109 	if (page) {
2110 		c = __this_cpu_ptr(s->cpu_slab);
2111 		if (c->page)
2112 			flush_slab(s, c);
2113 
2114 		/*
2115 		 * No other reference to the page yet so we can
2116 		 * muck around with it freely without cmpxchg
2117 		 */
2118 		object = page->freelist;
2119 		page->freelist = NULL;
2120 
2121 		stat(s, ALLOC_SLAB);
2122 		c->node = page_to_nid(page);
2123 		c->page = page;
2124 		*pc = c;
2125 	} else
2126 		object = NULL;
2127 
2128 	return object;
2129 }
2130 
2131 /*
2132  * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2133  * or deactivate the page.
2134  *
2135  * The page is still frozen if the return value is not NULL.
2136  *
2137  * If this function returns NULL then the page has been unfrozen.
2138  */
2139 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2140 {
2141 	struct page new;
2142 	unsigned long counters;
2143 	void *freelist;
2144 
2145 	do {
2146 		freelist = page->freelist;
2147 		counters = page->counters;
2148 		new.counters = counters;
2149 		VM_BUG_ON(!new.frozen);
2150 
2151 		new.inuse = page->objects;
2152 		new.frozen = freelist != NULL;
2153 
2154 	} while (!cmpxchg_double_slab(s, page,
2155 		freelist, counters,
2156 		NULL, new.counters,
2157 		"get_freelist"));
2158 
2159 	return freelist;
2160 }
2161 
2162 /*
2163  * Slow path. The lockless freelist is empty or we need to perform
2164  * debugging duties.
2165  *
2166  * Processing is still very fast if new objects have been freed to the
2167  * regular freelist. In that case we simply take over the regular freelist
2168  * as the lockless freelist and zap the regular freelist.
2169  *
2170  * If that is not working then we fall back to the partial lists. We take the
2171  * first element of the freelist as the object to allocate now and move the
2172  * rest of the freelist to the lockless freelist.
2173  *
2174  * And if we were unable to get a new slab from the partial slab lists then
2175  * we need to allocate a new slab. This is the slowest path since it involves
2176  * a call to the page allocator and the setup of a new slab.
2177  */
2178 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2179 			  unsigned long addr, struct kmem_cache_cpu *c)
2180 {
2181 	void **object;
2182 	unsigned long flags;
2183 
2184 	local_irq_save(flags);
2185 #ifdef CONFIG_PREEMPT
2186 	/*
2187 	 * We may have been preempted and rescheduled on a different
2188 	 * cpu before disabling interrupts. Need to reload cpu area
2189 	 * pointer.
2190 	 */
2191 	c = this_cpu_ptr(s->cpu_slab);
2192 #endif
2193 
2194 	if (!c->page)
2195 		goto new_slab;
2196 redo:
2197 	if (unlikely(!node_match(c, node))) {
2198 		stat(s, ALLOC_NODE_MISMATCH);
2199 		deactivate_slab(s, c);
2200 		goto new_slab;
2201 	}
2202 
2203 	/* must check again c->freelist in case of cpu migration or IRQ */
2204 	object = c->freelist;
2205 	if (object)
2206 		goto load_freelist;
2207 
2208 	stat(s, ALLOC_SLOWPATH);
2209 
2210 	object = get_freelist(s, c->page);
2211 
2212 	if (!object) {
2213 		c->page = NULL;
2214 		stat(s, DEACTIVATE_BYPASS);
2215 		goto new_slab;
2216 	}
2217 
2218 	stat(s, ALLOC_REFILL);
2219 
2220 load_freelist:
2221 	c->freelist = get_freepointer(s, object);
2222 	c->tid = next_tid(c->tid);
2223 	local_irq_restore(flags);
2224 	return object;
2225 
2226 new_slab:
2227 
2228 	if (c->partial) {
2229 		c->page = c->partial;
2230 		c->partial = c->page->next;
2231 		c->node = page_to_nid(c->page);
2232 		stat(s, CPU_PARTIAL_ALLOC);
2233 		c->freelist = NULL;
2234 		goto redo;
2235 	}
2236 
2237 	/* Then do expensive stuff like retrieving pages from the partial lists */
2238 	object = get_partial(s, gfpflags, node, c);
2239 
2240 	if (unlikely(!object)) {
2241 
2242 		object = new_slab_objects(s, gfpflags, node, &c);
2243 
2244 		if (unlikely(!object)) {
2245 			if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2246 				slab_out_of_memory(s, gfpflags, node);
2247 
2248 			local_irq_restore(flags);
2249 			return NULL;
2250 		}
2251 	}
2252 
2253 	if (likely(!kmem_cache_debug(s)))
2254 		goto load_freelist;
2255 
2256 	/* Only entered in the debug case */
2257 	if (!alloc_debug_processing(s, c->page, object, addr))
2258 		goto new_slab;	/* Slab failed checks. Next slab needed */
2259 
2260 	c->freelist = get_freepointer(s, object);
2261 	deactivate_slab(s, c);
2262 	c->node = NUMA_NO_NODE;
2263 	local_irq_restore(flags);
2264 	return object;
2265 }
2266 
2267 /*
2268  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2269  * have the fastpath folded into their functions. So no function call
2270  * overhead for requests that can be satisfied on the fastpath.
2271  *
2272  * The fastpath works by first checking if the lockless freelist can be used.
2273  * If not then __slab_alloc is called for slow processing.
2274  *
2275  * Otherwise we can simply pick the next object from the lockless free list.
2276  */
2277 static __always_inline void *slab_alloc(struct kmem_cache *s,
2278 		gfp_t gfpflags, int node, unsigned long addr)
2279 {
2280 	void **object;
2281 	struct kmem_cache_cpu *c;
2282 	unsigned long tid;
2283 
2284 	if (slab_pre_alloc_hook(s, gfpflags))
2285 		return NULL;
2286 
2287 redo:
2288 
2289 	/*
2290 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2291 	 * enabled. We may switch back and forth between cpus while
2292 	 * reading from one cpu area. That does not matter as long
2293 	 * as we end up on the original cpu again when doing the cmpxchg.
2294 	 */
2295 	c = __this_cpu_ptr(s->cpu_slab);
2296 
2297 	/*
2298 	 * The transaction ids are globally unique per cpu and per operation on
2299 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2300 	 * occurs on the right processor and that there was no operation on the
2301 	 * linked list in between.
2302 	 */
2303 	tid = c->tid;
2304 	barrier();
2305 
2306 	object = c->freelist;
2307 	if (unlikely(!object || !node_match(c, node)))
2308 
2309 		object = __slab_alloc(s, gfpflags, node, addr, c);
2310 
2311 	else {
2312 		/*
2313 		 * The cmpxchg will only match if there was no additional
2314 		 * operation and if we are on the right processor.
2315 		 *
2316 		 * The cmpxchg does the following atomically (without lock semantics!)
2317 		 * 1. Relocate first pointer to the current per cpu area.
2318 		 * 2. Verify that tid and freelist have not been changed
2319 		 * 3. If they were not changed replace tid and freelist
2320 		 *
2321 		 * Since this is without lock semantics the protection is only against
2322 		 * code executing on this cpu *not* from access by other cpus.
2323 		 */
2324 		if (unlikely(!this_cpu_cmpxchg_double(
2325 				s->cpu_slab->freelist, s->cpu_slab->tid,
2326 				object, tid,
2327 				get_freepointer_safe(s, object), next_tid(tid)))) {
2328 
2329 			note_cmpxchg_failure("slab_alloc", s, tid);
2330 			goto redo;
2331 		}
2332 		stat(s, ALLOC_FASTPATH);
2333 	}
2334 
2335 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2336 		memset(object, 0, s->objsize);
2337 
2338 	slab_post_alloc_hook(s, gfpflags, object);
2339 
2340 	return object;
2341 }
2342 
2343 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2344 {
2345 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2346 
2347 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2348 
2349 	return ret;
2350 }
2351 EXPORT_SYMBOL(kmem_cache_alloc);
2352 
2353 #ifdef CONFIG_TRACING
2354 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2355 {
2356 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2357 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2358 	return ret;
2359 }
2360 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2361 
2362 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2363 {
2364 	void *ret = kmalloc_order(size, flags, order);
2365 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2366 	return ret;
2367 }
2368 EXPORT_SYMBOL(kmalloc_order_trace);
2369 #endif
2370 
2371 #ifdef CONFIG_NUMA
2372 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2373 {
2374 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2375 
2376 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2377 				    s->objsize, s->size, gfpflags, node);
2378 
2379 	return ret;
2380 }
2381 EXPORT_SYMBOL(kmem_cache_alloc_node);
2382 
2383 #ifdef CONFIG_TRACING
2384 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2385 				    gfp_t gfpflags,
2386 				    int node, size_t size)
2387 {
2388 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2389 
2390 	trace_kmalloc_node(_RET_IP_, ret,
2391 			   size, s->size, gfpflags, node);
2392 	return ret;
2393 }
2394 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2395 #endif
2396 #endif
2397 
2398 /*
2399  * Slow patch handling. This may still be called frequently since objects
2400  * have a longer lifetime than the cpu slabs in most processing loads.
2401  *
2402  * So we still attempt to reduce cache line usage. Just take the slab
2403  * lock and free the item. If there is no additional partial page
2404  * handling required then we can return immediately.
2405  */
2406 static void __slab_free(struct kmem_cache *s, struct page *page,
2407 			void *x, unsigned long addr)
2408 {
2409 	void *prior;
2410 	void **object = (void *)x;
2411 	int was_frozen;
2412 	int inuse;
2413 	struct page new;
2414 	unsigned long counters;
2415 	struct kmem_cache_node *n = NULL;
2416 	unsigned long uninitialized_var(flags);
2417 
2418 	stat(s, FREE_SLOWPATH);
2419 
2420 	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2421 		return;
2422 
2423 	do {
2424 		prior = page->freelist;
2425 		counters = page->counters;
2426 		set_freepointer(s, object, prior);
2427 		new.counters = counters;
2428 		was_frozen = new.frozen;
2429 		new.inuse--;
2430 		if ((!new.inuse || !prior) && !was_frozen && !n) {
2431 
2432 			if (!kmem_cache_debug(s) && !prior)
2433 
2434 				/*
2435 				 * Slab was on no list before and will be partially empty
2436 				 * We can defer the list move and instead freeze it.
2437 				 */
2438 				new.frozen = 1;
2439 
2440 			else { /* Needs to be taken off a list */
2441 
2442 	                        n = get_node(s, page_to_nid(page));
2443 				/*
2444 				 * Speculatively acquire the list_lock.
2445 				 * If the cmpxchg does not succeed then we may
2446 				 * drop the list_lock without any processing.
2447 				 *
2448 				 * Otherwise the list_lock will synchronize with
2449 				 * other processors updating the list of slabs.
2450 				 */
2451 				spin_lock_irqsave(&n->list_lock, flags);
2452 
2453 			}
2454 		}
2455 		inuse = new.inuse;
2456 
2457 	} while (!cmpxchg_double_slab(s, page,
2458 		prior, counters,
2459 		object, new.counters,
2460 		"__slab_free"));
2461 
2462 	if (likely(!n)) {
2463 
2464 		/*
2465 		 * If we just froze the page then put it onto the
2466 		 * per cpu partial list.
2467 		 */
2468 		if (new.frozen && !was_frozen)
2469 			put_cpu_partial(s, page, 1);
2470 
2471 		/*
2472 		 * The list lock was not taken therefore no list
2473 		 * activity can be necessary.
2474 		 */
2475                 if (was_frozen)
2476                         stat(s, FREE_FROZEN);
2477                 return;
2478         }
2479 
2480 	/*
2481 	 * was_frozen may have been set after we acquired the list_lock in
2482 	 * an earlier loop. So we need to check it here again.
2483 	 */
2484 	if (was_frozen)
2485 		stat(s, FREE_FROZEN);
2486 	else {
2487 		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2488                         goto slab_empty;
2489 
2490 		/*
2491 		 * Objects left in the slab. If it was not on the partial list before
2492 		 * then add it.
2493 		 */
2494 		if (unlikely(!prior)) {
2495 			remove_full(s, page);
2496 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2497 			stat(s, FREE_ADD_PARTIAL);
2498 		}
2499 	}
2500 	spin_unlock_irqrestore(&n->list_lock, flags);
2501 	return;
2502 
2503 slab_empty:
2504 	if (prior) {
2505 		/*
2506 		 * Slab on the partial list.
2507 		 */
2508 		remove_partial(n, page);
2509 		stat(s, FREE_REMOVE_PARTIAL);
2510 	} else
2511 		/* Slab must be on the full list */
2512 		remove_full(s, page);
2513 
2514 	spin_unlock_irqrestore(&n->list_lock, flags);
2515 	stat(s, FREE_SLAB);
2516 	discard_slab(s, page);
2517 }
2518 
2519 /*
2520  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2521  * can perform fastpath freeing without additional function calls.
2522  *
2523  * The fastpath is only possible if we are freeing to the current cpu slab
2524  * of this processor. This typically the case if we have just allocated
2525  * the item before.
2526  *
2527  * If fastpath is not possible then fall back to __slab_free where we deal
2528  * with all sorts of special processing.
2529  */
2530 static __always_inline void slab_free(struct kmem_cache *s,
2531 			struct page *page, void *x, unsigned long addr)
2532 {
2533 	void **object = (void *)x;
2534 	struct kmem_cache_cpu *c;
2535 	unsigned long tid;
2536 
2537 	slab_free_hook(s, x);
2538 
2539 redo:
2540 	/*
2541 	 * Determine the currently cpus per cpu slab.
2542 	 * The cpu may change afterward. However that does not matter since
2543 	 * data is retrieved via this pointer. If we are on the same cpu
2544 	 * during the cmpxchg then the free will succedd.
2545 	 */
2546 	c = __this_cpu_ptr(s->cpu_slab);
2547 
2548 	tid = c->tid;
2549 	barrier();
2550 
2551 	if (likely(page == c->page)) {
2552 		set_freepointer(s, object, c->freelist);
2553 
2554 		if (unlikely(!this_cpu_cmpxchg_double(
2555 				s->cpu_slab->freelist, s->cpu_slab->tid,
2556 				c->freelist, tid,
2557 				object, next_tid(tid)))) {
2558 
2559 			note_cmpxchg_failure("slab_free", s, tid);
2560 			goto redo;
2561 		}
2562 		stat(s, FREE_FASTPATH);
2563 	} else
2564 		__slab_free(s, page, x, addr);
2565 
2566 }
2567 
2568 void kmem_cache_free(struct kmem_cache *s, void *x)
2569 {
2570 	struct page *page;
2571 
2572 	page = virt_to_head_page(x);
2573 
2574 	slab_free(s, page, x, _RET_IP_);
2575 
2576 	trace_kmem_cache_free(_RET_IP_, x);
2577 }
2578 EXPORT_SYMBOL(kmem_cache_free);
2579 
2580 /*
2581  * Object placement in a slab is made very easy because we always start at
2582  * offset 0. If we tune the size of the object to the alignment then we can
2583  * get the required alignment by putting one properly sized object after
2584  * another.
2585  *
2586  * Notice that the allocation order determines the sizes of the per cpu
2587  * caches. Each processor has always one slab available for allocations.
2588  * Increasing the allocation order reduces the number of times that slabs
2589  * must be moved on and off the partial lists and is therefore a factor in
2590  * locking overhead.
2591  */
2592 
2593 /*
2594  * Mininum / Maximum order of slab pages. This influences locking overhead
2595  * and slab fragmentation. A higher order reduces the number of partial slabs
2596  * and increases the number of allocations possible without having to
2597  * take the list_lock.
2598  */
2599 static int slub_min_order;
2600 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2601 static int slub_min_objects;
2602 
2603 /*
2604  * Merge control. If this is set then no merging of slab caches will occur.
2605  * (Could be removed. This was introduced to pacify the merge skeptics.)
2606  */
2607 static int slub_nomerge;
2608 
2609 /*
2610  * Calculate the order of allocation given an slab object size.
2611  *
2612  * The order of allocation has significant impact on performance and other
2613  * system components. Generally order 0 allocations should be preferred since
2614  * order 0 does not cause fragmentation in the page allocator. Larger objects
2615  * be problematic to put into order 0 slabs because there may be too much
2616  * unused space left. We go to a higher order if more than 1/16th of the slab
2617  * would be wasted.
2618  *
2619  * In order to reach satisfactory performance we must ensure that a minimum
2620  * number of objects is in one slab. Otherwise we may generate too much
2621  * activity on the partial lists which requires taking the list_lock. This is
2622  * less a concern for large slabs though which are rarely used.
2623  *
2624  * slub_max_order specifies the order where we begin to stop considering the
2625  * number of objects in a slab as critical. If we reach slub_max_order then
2626  * we try to keep the page order as low as possible. So we accept more waste
2627  * of space in favor of a small page order.
2628  *
2629  * Higher order allocations also allow the placement of more objects in a
2630  * slab and thereby reduce object handling overhead. If the user has
2631  * requested a higher mininum order then we start with that one instead of
2632  * the smallest order which will fit the object.
2633  */
2634 static inline int slab_order(int size, int min_objects,
2635 				int max_order, int fract_leftover, int reserved)
2636 {
2637 	int order;
2638 	int rem;
2639 	int min_order = slub_min_order;
2640 
2641 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2642 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2643 
2644 	for (order = max(min_order,
2645 				fls(min_objects * size - 1) - PAGE_SHIFT);
2646 			order <= max_order; order++) {
2647 
2648 		unsigned long slab_size = PAGE_SIZE << order;
2649 
2650 		if (slab_size < min_objects * size + reserved)
2651 			continue;
2652 
2653 		rem = (slab_size - reserved) % size;
2654 
2655 		if (rem <= slab_size / fract_leftover)
2656 			break;
2657 
2658 	}
2659 
2660 	return order;
2661 }
2662 
2663 static inline int calculate_order(int size, int reserved)
2664 {
2665 	int order;
2666 	int min_objects;
2667 	int fraction;
2668 	int max_objects;
2669 
2670 	/*
2671 	 * Attempt to find best configuration for a slab. This
2672 	 * works by first attempting to generate a layout with
2673 	 * the best configuration and backing off gradually.
2674 	 *
2675 	 * First we reduce the acceptable waste in a slab. Then
2676 	 * we reduce the minimum objects required in a slab.
2677 	 */
2678 	min_objects = slub_min_objects;
2679 	if (!min_objects)
2680 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2681 	max_objects = order_objects(slub_max_order, size, reserved);
2682 	min_objects = min(min_objects, max_objects);
2683 
2684 	while (min_objects > 1) {
2685 		fraction = 16;
2686 		while (fraction >= 4) {
2687 			order = slab_order(size, min_objects,
2688 					slub_max_order, fraction, reserved);
2689 			if (order <= slub_max_order)
2690 				return order;
2691 			fraction /= 2;
2692 		}
2693 		min_objects--;
2694 	}
2695 
2696 	/*
2697 	 * We were unable to place multiple objects in a slab. Now
2698 	 * lets see if we can place a single object there.
2699 	 */
2700 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2701 	if (order <= slub_max_order)
2702 		return order;
2703 
2704 	/*
2705 	 * Doh this slab cannot be placed using slub_max_order.
2706 	 */
2707 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2708 	if (order < MAX_ORDER)
2709 		return order;
2710 	return -ENOSYS;
2711 }
2712 
2713 /*
2714  * Figure out what the alignment of the objects will be.
2715  */
2716 static unsigned long calculate_alignment(unsigned long flags,
2717 		unsigned long align, unsigned long size)
2718 {
2719 	/*
2720 	 * If the user wants hardware cache aligned objects then follow that
2721 	 * suggestion if the object is sufficiently large.
2722 	 *
2723 	 * The hardware cache alignment cannot override the specified
2724 	 * alignment though. If that is greater then use it.
2725 	 */
2726 	if (flags & SLAB_HWCACHE_ALIGN) {
2727 		unsigned long ralign = cache_line_size();
2728 		while (size <= ralign / 2)
2729 			ralign /= 2;
2730 		align = max(align, ralign);
2731 	}
2732 
2733 	if (align < ARCH_SLAB_MINALIGN)
2734 		align = ARCH_SLAB_MINALIGN;
2735 
2736 	return ALIGN(align, sizeof(void *));
2737 }
2738 
2739 static void
2740 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2741 {
2742 	n->nr_partial = 0;
2743 	spin_lock_init(&n->list_lock);
2744 	INIT_LIST_HEAD(&n->partial);
2745 #ifdef CONFIG_SLUB_DEBUG
2746 	atomic_long_set(&n->nr_slabs, 0);
2747 	atomic_long_set(&n->total_objects, 0);
2748 	INIT_LIST_HEAD(&n->full);
2749 #endif
2750 }
2751 
2752 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2753 {
2754 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2755 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2756 
2757 	/*
2758 	 * Must align to double word boundary for the double cmpxchg
2759 	 * instructions to work; see __pcpu_double_call_return_bool().
2760 	 */
2761 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2762 				     2 * sizeof(void *));
2763 
2764 	if (!s->cpu_slab)
2765 		return 0;
2766 
2767 	init_kmem_cache_cpus(s);
2768 
2769 	return 1;
2770 }
2771 
2772 static struct kmem_cache *kmem_cache_node;
2773 
2774 /*
2775  * No kmalloc_node yet so do it by hand. We know that this is the first
2776  * slab on the node for this slabcache. There are no concurrent accesses
2777  * possible.
2778  *
2779  * Note that this function only works on the kmalloc_node_cache
2780  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2781  * memory on a fresh node that has no slab structures yet.
2782  */
2783 static void early_kmem_cache_node_alloc(int node)
2784 {
2785 	struct page *page;
2786 	struct kmem_cache_node *n;
2787 
2788 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2789 
2790 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2791 
2792 	BUG_ON(!page);
2793 	if (page_to_nid(page) != node) {
2794 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2795 				"node %d\n", node);
2796 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2797 				"in order to be able to continue\n");
2798 	}
2799 
2800 	n = page->freelist;
2801 	BUG_ON(!n);
2802 	page->freelist = get_freepointer(kmem_cache_node, n);
2803 	page->inuse = 1;
2804 	page->frozen = 0;
2805 	kmem_cache_node->node[node] = n;
2806 #ifdef CONFIG_SLUB_DEBUG
2807 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2808 	init_tracking(kmem_cache_node, n);
2809 #endif
2810 	init_kmem_cache_node(n, kmem_cache_node);
2811 	inc_slabs_node(kmem_cache_node, node, page->objects);
2812 
2813 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2814 }
2815 
2816 static void free_kmem_cache_nodes(struct kmem_cache *s)
2817 {
2818 	int node;
2819 
2820 	for_each_node_state(node, N_NORMAL_MEMORY) {
2821 		struct kmem_cache_node *n = s->node[node];
2822 
2823 		if (n)
2824 			kmem_cache_free(kmem_cache_node, n);
2825 
2826 		s->node[node] = NULL;
2827 	}
2828 }
2829 
2830 static int init_kmem_cache_nodes(struct kmem_cache *s)
2831 {
2832 	int node;
2833 
2834 	for_each_node_state(node, N_NORMAL_MEMORY) {
2835 		struct kmem_cache_node *n;
2836 
2837 		if (slab_state == DOWN) {
2838 			early_kmem_cache_node_alloc(node);
2839 			continue;
2840 		}
2841 		n = kmem_cache_alloc_node(kmem_cache_node,
2842 						GFP_KERNEL, node);
2843 
2844 		if (!n) {
2845 			free_kmem_cache_nodes(s);
2846 			return 0;
2847 		}
2848 
2849 		s->node[node] = n;
2850 		init_kmem_cache_node(n, s);
2851 	}
2852 	return 1;
2853 }
2854 
2855 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2856 {
2857 	if (min < MIN_PARTIAL)
2858 		min = MIN_PARTIAL;
2859 	else if (min > MAX_PARTIAL)
2860 		min = MAX_PARTIAL;
2861 	s->min_partial = min;
2862 }
2863 
2864 /*
2865  * calculate_sizes() determines the order and the distribution of data within
2866  * a slab object.
2867  */
2868 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2869 {
2870 	unsigned long flags = s->flags;
2871 	unsigned long size = s->objsize;
2872 	unsigned long align = s->align;
2873 	int order;
2874 
2875 	/*
2876 	 * Round up object size to the next word boundary. We can only
2877 	 * place the free pointer at word boundaries and this determines
2878 	 * the possible location of the free pointer.
2879 	 */
2880 	size = ALIGN(size, sizeof(void *));
2881 
2882 #ifdef CONFIG_SLUB_DEBUG
2883 	/*
2884 	 * Determine if we can poison the object itself. If the user of
2885 	 * the slab may touch the object after free or before allocation
2886 	 * then we should never poison the object itself.
2887 	 */
2888 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2889 			!s->ctor)
2890 		s->flags |= __OBJECT_POISON;
2891 	else
2892 		s->flags &= ~__OBJECT_POISON;
2893 
2894 
2895 	/*
2896 	 * If we are Redzoning then check if there is some space between the
2897 	 * end of the object and the free pointer. If not then add an
2898 	 * additional word to have some bytes to store Redzone information.
2899 	 */
2900 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2901 		size += sizeof(void *);
2902 #endif
2903 
2904 	/*
2905 	 * With that we have determined the number of bytes in actual use
2906 	 * by the object. This is the potential offset to the free pointer.
2907 	 */
2908 	s->inuse = size;
2909 
2910 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2911 		s->ctor)) {
2912 		/*
2913 		 * Relocate free pointer after the object if it is not
2914 		 * permitted to overwrite the first word of the object on
2915 		 * kmem_cache_free.
2916 		 *
2917 		 * This is the case if we do RCU, have a constructor or
2918 		 * destructor or are poisoning the objects.
2919 		 */
2920 		s->offset = size;
2921 		size += sizeof(void *);
2922 	}
2923 
2924 #ifdef CONFIG_SLUB_DEBUG
2925 	if (flags & SLAB_STORE_USER)
2926 		/*
2927 		 * Need to store information about allocs and frees after
2928 		 * the object.
2929 		 */
2930 		size += 2 * sizeof(struct track);
2931 
2932 	if (flags & SLAB_RED_ZONE)
2933 		/*
2934 		 * Add some empty padding so that we can catch
2935 		 * overwrites from earlier objects rather than let
2936 		 * tracking information or the free pointer be
2937 		 * corrupted if a user writes before the start
2938 		 * of the object.
2939 		 */
2940 		size += sizeof(void *);
2941 #endif
2942 
2943 	/*
2944 	 * Determine the alignment based on various parameters that the
2945 	 * user specified and the dynamic determination of cache line size
2946 	 * on bootup.
2947 	 */
2948 	align = calculate_alignment(flags, align, s->objsize);
2949 	s->align = align;
2950 
2951 	/*
2952 	 * SLUB stores one object immediately after another beginning from
2953 	 * offset 0. In order to align the objects we have to simply size
2954 	 * each object to conform to the alignment.
2955 	 */
2956 	size = ALIGN(size, align);
2957 	s->size = size;
2958 	if (forced_order >= 0)
2959 		order = forced_order;
2960 	else
2961 		order = calculate_order(size, s->reserved);
2962 
2963 	if (order < 0)
2964 		return 0;
2965 
2966 	s->allocflags = 0;
2967 	if (order)
2968 		s->allocflags |= __GFP_COMP;
2969 
2970 	if (s->flags & SLAB_CACHE_DMA)
2971 		s->allocflags |= SLUB_DMA;
2972 
2973 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2974 		s->allocflags |= __GFP_RECLAIMABLE;
2975 
2976 	/*
2977 	 * Determine the number of objects per slab
2978 	 */
2979 	s->oo = oo_make(order, size, s->reserved);
2980 	s->min = oo_make(get_order(size), size, s->reserved);
2981 	if (oo_objects(s->oo) > oo_objects(s->max))
2982 		s->max = s->oo;
2983 
2984 	return !!oo_objects(s->oo);
2985 
2986 }
2987 
2988 static int kmem_cache_open(struct kmem_cache *s,
2989 		const char *name, size_t size,
2990 		size_t align, unsigned long flags,
2991 		void (*ctor)(void *))
2992 {
2993 	memset(s, 0, kmem_size);
2994 	s->name = name;
2995 	s->ctor = ctor;
2996 	s->objsize = size;
2997 	s->align = align;
2998 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2999 	s->reserved = 0;
3000 
3001 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3002 		s->reserved = sizeof(struct rcu_head);
3003 
3004 	if (!calculate_sizes(s, -1))
3005 		goto error;
3006 	if (disable_higher_order_debug) {
3007 		/*
3008 		 * Disable debugging flags that store metadata if the min slab
3009 		 * order increased.
3010 		 */
3011 		if (get_order(s->size) > get_order(s->objsize)) {
3012 			s->flags &= ~DEBUG_METADATA_FLAGS;
3013 			s->offset = 0;
3014 			if (!calculate_sizes(s, -1))
3015 				goto error;
3016 		}
3017 	}
3018 
3019 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3020     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3021 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3022 		/* Enable fast mode */
3023 		s->flags |= __CMPXCHG_DOUBLE;
3024 #endif
3025 
3026 	/*
3027 	 * The larger the object size is, the more pages we want on the partial
3028 	 * list to avoid pounding the page allocator excessively.
3029 	 */
3030 	set_min_partial(s, ilog2(s->size) / 2);
3031 
3032 	/*
3033 	 * cpu_partial determined the maximum number of objects kept in the
3034 	 * per cpu partial lists of a processor.
3035 	 *
3036 	 * Per cpu partial lists mainly contain slabs that just have one
3037 	 * object freed. If they are used for allocation then they can be
3038 	 * filled up again with minimal effort. The slab will never hit the
3039 	 * per node partial lists and therefore no locking will be required.
3040 	 *
3041 	 * This setting also determines
3042 	 *
3043 	 * A) The number of objects from per cpu partial slabs dumped to the
3044 	 *    per node list when we reach the limit.
3045 	 * B) The number of objects in cpu partial slabs to extract from the
3046 	 *    per node list when we run out of per cpu objects. We only fetch 50%
3047 	 *    to keep some capacity around for frees.
3048 	 */
3049 	if (kmem_cache_debug(s))
3050 		s->cpu_partial = 0;
3051 	else if (s->size >= PAGE_SIZE)
3052 		s->cpu_partial = 2;
3053 	else if (s->size >= 1024)
3054 		s->cpu_partial = 6;
3055 	else if (s->size >= 256)
3056 		s->cpu_partial = 13;
3057 	else
3058 		s->cpu_partial = 30;
3059 
3060 	s->refcount = 1;
3061 #ifdef CONFIG_NUMA
3062 	s->remote_node_defrag_ratio = 1000;
3063 #endif
3064 	if (!init_kmem_cache_nodes(s))
3065 		goto error;
3066 
3067 	if (alloc_kmem_cache_cpus(s))
3068 		return 1;
3069 
3070 	free_kmem_cache_nodes(s);
3071 error:
3072 	if (flags & SLAB_PANIC)
3073 		panic("Cannot create slab %s size=%lu realsize=%u "
3074 			"order=%u offset=%u flags=%lx\n",
3075 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
3076 			s->offset, flags);
3077 	return 0;
3078 }
3079 
3080 /*
3081  * Determine the size of a slab object
3082  */
3083 unsigned int kmem_cache_size(struct kmem_cache *s)
3084 {
3085 	return s->objsize;
3086 }
3087 EXPORT_SYMBOL(kmem_cache_size);
3088 
3089 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3090 							const char *text)
3091 {
3092 #ifdef CONFIG_SLUB_DEBUG
3093 	void *addr = page_address(page);
3094 	void *p;
3095 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3096 				     sizeof(long), GFP_ATOMIC);
3097 	if (!map)
3098 		return;
3099 	slab_err(s, page, "%s", text);
3100 	slab_lock(page);
3101 
3102 	get_map(s, page, map);
3103 	for_each_object(p, s, addr, page->objects) {
3104 
3105 		if (!test_bit(slab_index(p, s, addr), map)) {
3106 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3107 							p, p - addr);
3108 			print_tracking(s, p);
3109 		}
3110 	}
3111 	slab_unlock(page);
3112 	kfree(map);
3113 #endif
3114 }
3115 
3116 /*
3117  * Attempt to free all partial slabs on a node.
3118  * This is called from kmem_cache_close(). We must be the last thread
3119  * using the cache and therefore we do not need to lock anymore.
3120  */
3121 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3122 {
3123 	struct page *page, *h;
3124 
3125 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3126 		if (!page->inuse) {
3127 			remove_partial(n, page);
3128 			discard_slab(s, page);
3129 		} else {
3130 			list_slab_objects(s, page,
3131 				"Objects remaining on kmem_cache_close()");
3132 		}
3133 	}
3134 }
3135 
3136 /*
3137  * Release all resources used by a slab cache.
3138  */
3139 static inline int kmem_cache_close(struct kmem_cache *s)
3140 {
3141 	int node;
3142 
3143 	flush_all(s);
3144 	free_percpu(s->cpu_slab);
3145 	/* Attempt to free all objects */
3146 	for_each_node_state(node, N_NORMAL_MEMORY) {
3147 		struct kmem_cache_node *n = get_node(s, node);
3148 
3149 		free_partial(s, n);
3150 		if (n->nr_partial || slabs_node(s, node))
3151 			return 1;
3152 	}
3153 	free_kmem_cache_nodes(s);
3154 	return 0;
3155 }
3156 
3157 /*
3158  * Close a cache and release the kmem_cache structure
3159  * (must be used for caches created using kmem_cache_create)
3160  */
3161 void kmem_cache_destroy(struct kmem_cache *s)
3162 {
3163 	down_write(&slub_lock);
3164 	s->refcount--;
3165 	if (!s->refcount) {
3166 		list_del(&s->list);
3167 		up_write(&slub_lock);
3168 		if (kmem_cache_close(s)) {
3169 			printk(KERN_ERR "SLUB %s: %s called for cache that "
3170 				"still has objects.\n", s->name, __func__);
3171 			dump_stack();
3172 		}
3173 		if (s->flags & SLAB_DESTROY_BY_RCU)
3174 			rcu_barrier();
3175 		sysfs_slab_remove(s);
3176 	} else
3177 		up_write(&slub_lock);
3178 }
3179 EXPORT_SYMBOL(kmem_cache_destroy);
3180 
3181 /********************************************************************
3182  *		Kmalloc subsystem
3183  *******************************************************************/
3184 
3185 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3186 EXPORT_SYMBOL(kmalloc_caches);
3187 
3188 static struct kmem_cache *kmem_cache;
3189 
3190 #ifdef CONFIG_ZONE_DMA
3191 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3192 #endif
3193 
3194 static int __init setup_slub_min_order(char *str)
3195 {
3196 	get_option(&str, &slub_min_order);
3197 
3198 	return 1;
3199 }
3200 
3201 __setup("slub_min_order=", setup_slub_min_order);
3202 
3203 static int __init setup_slub_max_order(char *str)
3204 {
3205 	get_option(&str, &slub_max_order);
3206 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3207 
3208 	return 1;
3209 }
3210 
3211 __setup("slub_max_order=", setup_slub_max_order);
3212 
3213 static int __init setup_slub_min_objects(char *str)
3214 {
3215 	get_option(&str, &slub_min_objects);
3216 
3217 	return 1;
3218 }
3219 
3220 __setup("slub_min_objects=", setup_slub_min_objects);
3221 
3222 static int __init setup_slub_nomerge(char *str)
3223 {
3224 	slub_nomerge = 1;
3225 	return 1;
3226 }
3227 
3228 __setup("slub_nomerge", setup_slub_nomerge);
3229 
3230 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3231 						int size, unsigned int flags)
3232 {
3233 	struct kmem_cache *s;
3234 
3235 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3236 
3237 	/*
3238 	 * This function is called with IRQs disabled during early-boot on
3239 	 * single CPU so there's no need to take slub_lock here.
3240 	 */
3241 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3242 								flags, NULL))
3243 		goto panic;
3244 
3245 	list_add(&s->list, &slab_caches);
3246 	return s;
3247 
3248 panic:
3249 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3250 	return NULL;
3251 }
3252 
3253 /*
3254  * Conversion table for small slabs sizes / 8 to the index in the
3255  * kmalloc array. This is necessary for slabs < 192 since we have non power
3256  * of two cache sizes there. The size of larger slabs can be determined using
3257  * fls.
3258  */
3259 static s8 size_index[24] = {
3260 	3,	/* 8 */
3261 	4,	/* 16 */
3262 	5,	/* 24 */
3263 	5,	/* 32 */
3264 	6,	/* 40 */
3265 	6,	/* 48 */
3266 	6,	/* 56 */
3267 	6,	/* 64 */
3268 	1,	/* 72 */
3269 	1,	/* 80 */
3270 	1,	/* 88 */
3271 	1,	/* 96 */
3272 	7,	/* 104 */
3273 	7,	/* 112 */
3274 	7,	/* 120 */
3275 	7,	/* 128 */
3276 	2,	/* 136 */
3277 	2,	/* 144 */
3278 	2,	/* 152 */
3279 	2,	/* 160 */
3280 	2,	/* 168 */
3281 	2,	/* 176 */
3282 	2,	/* 184 */
3283 	2	/* 192 */
3284 };
3285 
3286 static inline int size_index_elem(size_t bytes)
3287 {
3288 	return (bytes - 1) / 8;
3289 }
3290 
3291 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3292 {
3293 	int index;
3294 
3295 	if (size <= 192) {
3296 		if (!size)
3297 			return ZERO_SIZE_PTR;
3298 
3299 		index = size_index[size_index_elem(size)];
3300 	} else
3301 		index = fls(size - 1);
3302 
3303 #ifdef CONFIG_ZONE_DMA
3304 	if (unlikely((flags & SLUB_DMA)))
3305 		return kmalloc_dma_caches[index];
3306 
3307 #endif
3308 	return kmalloc_caches[index];
3309 }
3310 
3311 void *__kmalloc(size_t size, gfp_t flags)
3312 {
3313 	struct kmem_cache *s;
3314 	void *ret;
3315 
3316 	if (unlikely(size > SLUB_MAX_SIZE))
3317 		return kmalloc_large(size, flags);
3318 
3319 	s = get_slab(size, flags);
3320 
3321 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3322 		return s;
3323 
3324 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3325 
3326 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3327 
3328 	return ret;
3329 }
3330 EXPORT_SYMBOL(__kmalloc);
3331 
3332 #ifdef CONFIG_NUMA
3333 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3334 {
3335 	struct page *page;
3336 	void *ptr = NULL;
3337 
3338 	flags |= __GFP_COMP | __GFP_NOTRACK;
3339 	page = alloc_pages_node(node, flags, get_order(size));
3340 	if (page)
3341 		ptr = page_address(page);
3342 
3343 	kmemleak_alloc(ptr, size, 1, flags);
3344 	return ptr;
3345 }
3346 
3347 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3348 {
3349 	struct kmem_cache *s;
3350 	void *ret;
3351 
3352 	if (unlikely(size > SLUB_MAX_SIZE)) {
3353 		ret = kmalloc_large_node(size, flags, node);
3354 
3355 		trace_kmalloc_node(_RET_IP_, ret,
3356 				   size, PAGE_SIZE << get_order(size),
3357 				   flags, node);
3358 
3359 		return ret;
3360 	}
3361 
3362 	s = get_slab(size, flags);
3363 
3364 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3365 		return s;
3366 
3367 	ret = slab_alloc(s, flags, node, _RET_IP_);
3368 
3369 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3370 
3371 	return ret;
3372 }
3373 EXPORT_SYMBOL(__kmalloc_node);
3374 #endif
3375 
3376 size_t ksize(const void *object)
3377 {
3378 	struct page *page;
3379 
3380 	if (unlikely(object == ZERO_SIZE_PTR))
3381 		return 0;
3382 
3383 	page = virt_to_head_page(object);
3384 
3385 	if (unlikely(!PageSlab(page))) {
3386 		WARN_ON(!PageCompound(page));
3387 		return PAGE_SIZE << compound_order(page);
3388 	}
3389 
3390 	return slab_ksize(page->slab);
3391 }
3392 EXPORT_SYMBOL(ksize);
3393 
3394 #ifdef CONFIG_SLUB_DEBUG
3395 bool verify_mem_not_deleted(const void *x)
3396 {
3397 	struct page *page;
3398 	void *object = (void *)x;
3399 	unsigned long flags;
3400 	bool rv;
3401 
3402 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3403 		return false;
3404 
3405 	local_irq_save(flags);
3406 
3407 	page = virt_to_head_page(x);
3408 	if (unlikely(!PageSlab(page))) {
3409 		/* maybe it was from stack? */
3410 		rv = true;
3411 		goto out_unlock;
3412 	}
3413 
3414 	slab_lock(page);
3415 	if (on_freelist(page->slab, page, object)) {
3416 		object_err(page->slab, page, object, "Object is on free-list");
3417 		rv = false;
3418 	} else {
3419 		rv = true;
3420 	}
3421 	slab_unlock(page);
3422 
3423 out_unlock:
3424 	local_irq_restore(flags);
3425 	return rv;
3426 }
3427 EXPORT_SYMBOL(verify_mem_not_deleted);
3428 #endif
3429 
3430 void kfree(const void *x)
3431 {
3432 	struct page *page;
3433 	void *object = (void *)x;
3434 
3435 	trace_kfree(_RET_IP_, x);
3436 
3437 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3438 		return;
3439 
3440 	page = virt_to_head_page(x);
3441 	if (unlikely(!PageSlab(page))) {
3442 		BUG_ON(!PageCompound(page));
3443 		kmemleak_free(x);
3444 		put_page(page);
3445 		return;
3446 	}
3447 	slab_free(page->slab, page, object, _RET_IP_);
3448 }
3449 EXPORT_SYMBOL(kfree);
3450 
3451 /*
3452  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3453  * the remaining slabs by the number of items in use. The slabs with the
3454  * most items in use come first. New allocations will then fill those up
3455  * and thus they can be removed from the partial lists.
3456  *
3457  * The slabs with the least items are placed last. This results in them
3458  * being allocated from last increasing the chance that the last objects
3459  * are freed in them.
3460  */
3461 int kmem_cache_shrink(struct kmem_cache *s)
3462 {
3463 	int node;
3464 	int i;
3465 	struct kmem_cache_node *n;
3466 	struct page *page;
3467 	struct page *t;
3468 	int objects = oo_objects(s->max);
3469 	struct list_head *slabs_by_inuse =
3470 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3471 	unsigned long flags;
3472 
3473 	if (!slabs_by_inuse)
3474 		return -ENOMEM;
3475 
3476 	flush_all(s);
3477 	for_each_node_state(node, N_NORMAL_MEMORY) {
3478 		n = get_node(s, node);
3479 
3480 		if (!n->nr_partial)
3481 			continue;
3482 
3483 		for (i = 0; i < objects; i++)
3484 			INIT_LIST_HEAD(slabs_by_inuse + i);
3485 
3486 		spin_lock_irqsave(&n->list_lock, flags);
3487 
3488 		/*
3489 		 * Build lists indexed by the items in use in each slab.
3490 		 *
3491 		 * Note that concurrent frees may occur while we hold the
3492 		 * list_lock. page->inuse here is the upper limit.
3493 		 */
3494 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3495 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3496 			if (!page->inuse)
3497 				n->nr_partial--;
3498 		}
3499 
3500 		/*
3501 		 * Rebuild the partial list with the slabs filled up most
3502 		 * first and the least used slabs at the end.
3503 		 */
3504 		for (i = objects - 1; i > 0; i--)
3505 			list_splice(slabs_by_inuse + i, n->partial.prev);
3506 
3507 		spin_unlock_irqrestore(&n->list_lock, flags);
3508 
3509 		/* Release empty slabs */
3510 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3511 			discard_slab(s, page);
3512 	}
3513 
3514 	kfree(slabs_by_inuse);
3515 	return 0;
3516 }
3517 EXPORT_SYMBOL(kmem_cache_shrink);
3518 
3519 #if defined(CONFIG_MEMORY_HOTPLUG)
3520 static int slab_mem_going_offline_callback(void *arg)
3521 {
3522 	struct kmem_cache *s;
3523 
3524 	down_read(&slub_lock);
3525 	list_for_each_entry(s, &slab_caches, list)
3526 		kmem_cache_shrink(s);
3527 	up_read(&slub_lock);
3528 
3529 	return 0;
3530 }
3531 
3532 static void slab_mem_offline_callback(void *arg)
3533 {
3534 	struct kmem_cache_node *n;
3535 	struct kmem_cache *s;
3536 	struct memory_notify *marg = arg;
3537 	int offline_node;
3538 
3539 	offline_node = marg->status_change_nid;
3540 
3541 	/*
3542 	 * If the node still has available memory. we need kmem_cache_node
3543 	 * for it yet.
3544 	 */
3545 	if (offline_node < 0)
3546 		return;
3547 
3548 	down_read(&slub_lock);
3549 	list_for_each_entry(s, &slab_caches, list) {
3550 		n = get_node(s, offline_node);
3551 		if (n) {
3552 			/*
3553 			 * if n->nr_slabs > 0, slabs still exist on the node
3554 			 * that is going down. We were unable to free them,
3555 			 * and offline_pages() function shouldn't call this
3556 			 * callback. So, we must fail.
3557 			 */
3558 			BUG_ON(slabs_node(s, offline_node));
3559 
3560 			s->node[offline_node] = NULL;
3561 			kmem_cache_free(kmem_cache_node, n);
3562 		}
3563 	}
3564 	up_read(&slub_lock);
3565 }
3566 
3567 static int slab_mem_going_online_callback(void *arg)
3568 {
3569 	struct kmem_cache_node *n;
3570 	struct kmem_cache *s;
3571 	struct memory_notify *marg = arg;
3572 	int nid = marg->status_change_nid;
3573 	int ret = 0;
3574 
3575 	/*
3576 	 * If the node's memory is already available, then kmem_cache_node is
3577 	 * already created. Nothing to do.
3578 	 */
3579 	if (nid < 0)
3580 		return 0;
3581 
3582 	/*
3583 	 * We are bringing a node online. No memory is available yet. We must
3584 	 * allocate a kmem_cache_node structure in order to bring the node
3585 	 * online.
3586 	 */
3587 	down_read(&slub_lock);
3588 	list_for_each_entry(s, &slab_caches, list) {
3589 		/*
3590 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3591 		 *      since memory is not yet available from the node that
3592 		 *      is brought up.
3593 		 */
3594 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3595 		if (!n) {
3596 			ret = -ENOMEM;
3597 			goto out;
3598 		}
3599 		init_kmem_cache_node(n, s);
3600 		s->node[nid] = n;
3601 	}
3602 out:
3603 	up_read(&slub_lock);
3604 	return ret;
3605 }
3606 
3607 static int slab_memory_callback(struct notifier_block *self,
3608 				unsigned long action, void *arg)
3609 {
3610 	int ret = 0;
3611 
3612 	switch (action) {
3613 	case MEM_GOING_ONLINE:
3614 		ret = slab_mem_going_online_callback(arg);
3615 		break;
3616 	case MEM_GOING_OFFLINE:
3617 		ret = slab_mem_going_offline_callback(arg);
3618 		break;
3619 	case MEM_OFFLINE:
3620 	case MEM_CANCEL_ONLINE:
3621 		slab_mem_offline_callback(arg);
3622 		break;
3623 	case MEM_ONLINE:
3624 	case MEM_CANCEL_OFFLINE:
3625 		break;
3626 	}
3627 	if (ret)
3628 		ret = notifier_from_errno(ret);
3629 	else
3630 		ret = NOTIFY_OK;
3631 	return ret;
3632 }
3633 
3634 #endif /* CONFIG_MEMORY_HOTPLUG */
3635 
3636 /********************************************************************
3637  *			Basic setup of slabs
3638  *******************************************************************/
3639 
3640 /*
3641  * Used for early kmem_cache structures that were allocated using
3642  * the page allocator
3643  */
3644 
3645 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3646 {
3647 	int node;
3648 
3649 	list_add(&s->list, &slab_caches);
3650 	s->refcount = -1;
3651 
3652 	for_each_node_state(node, N_NORMAL_MEMORY) {
3653 		struct kmem_cache_node *n = get_node(s, node);
3654 		struct page *p;
3655 
3656 		if (n) {
3657 			list_for_each_entry(p, &n->partial, lru)
3658 				p->slab = s;
3659 
3660 #ifdef CONFIG_SLUB_DEBUG
3661 			list_for_each_entry(p, &n->full, lru)
3662 				p->slab = s;
3663 #endif
3664 		}
3665 	}
3666 }
3667 
3668 void __init kmem_cache_init(void)
3669 {
3670 	int i;
3671 	int caches = 0;
3672 	struct kmem_cache *temp_kmem_cache;
3673 	int order;
3674 	struct kmem_cache *temp_kmem_cache_node;
3675 	unsigned long kmalloc_size;
3676 
3677 	if (debug_guardpage_minorder())
3678 		slub_max_order = 0;
3679 
3680 	kmem_size = offsetof(struct kmem_cache, node) +
3681 				nr_node_ids * sizeof(struct kmem_cache_node *);
3682 
3683 	/* Allocate two kmem_caches from the page allocator */
3684 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3685 	order = get_order(2 * kmalloc_size);
3686 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3687 
3688 	/*
3689 	 * Must first have the slab cache available for the allocations of the
3690 	 * struct kmem_cache_node's. There is special bootstrap code in
3691 	 * kmem_cache_open for slab_state == DOWN.
3692 	 */
3693 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3694 
3695 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3696 		sizeof(struct kmem_cache_node),
3697 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3698 
3699 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3700 
3701 	/* Able to allocate the per node structures */
3702 	slab_state = PARTIAL;
3703 
3704 	temp_kmem_cache = kmem_cache;
3705 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3706 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3707 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3708 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3709 
3710 	/*
3711 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3712 	 * kmem_cache_node is separately allocated so no need to
3713 	 * update any list pointers.
3714 	 */
3715 	temp_kmem_cache_node = kmem_cache_node;
3716 
3717 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3718 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3719 
3720 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3721 
3722 	caches++;
3723 	kmem_cache_bootstrap_fixup(kmem_cache);
3724 	caches++;
3725 	/* Free temporary boot structure */
3726 	free_pages((unsigned long)temp_kmem_cache, order);
3727 
3728 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3729 
3730 	/*
3731 	 * Patch up the size_index table if we have strange large alignment
3732 	 * requirements for the kmalloc array. This is only the case for
3733 	 * MIPS it seems. The standard arches will not generate any code here.
3734 	 *
3735 	 * Largest permitted alignment is 256 bytes due to the way we
3736 	 * handle the index determination for the smaller caches.
3737 	 *
3738 	 * Make sure that nothing crazy happens if someone starts tinkering
3739 	 * around with ARCH_KMALLOC_MINALIGN
3740 	 */
3741 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3742 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3743 
3744 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3745 		int elem = size_index_elem(i);
3746 		if (elem >= ARRAY_SIZE(size_index))
3747 			break;
3748 		size_index[elem] = KMALLOC_SHIFT_LOW;
3749 	}
3750 
3751 	if (KMALLOC_MIN_SIZE == 64) {
3752 		/*
3753 		 * The 96 byte size cache is not used if the alignment
3754 		 * is 64 byte.
3755 		 */
3756 		for (i = 64 + 8; i <= 96; i += 8)
3757 			size_index[size_index_elem(i)] = 7;
3758 	} else if (KMALLOC_MIN_SIZE == 128) {
3759 		/*
3760 		 * The 192 byte sized cache is not used if the alignment
3761 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3762 		 * instead.
3763 		 */
3764 		for (i = 128 + 8; i <= 192; i += 8)
3765 			size_index[size_index_elem(i)] = 8;
3766 	}
3767 
3768 	/* Caches that are not of the two-to-the-power-of size */
3769 	if (KMALLOC_MIN_SIZE <= 32) {
3770 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3771 		caches++;
3772 	}
3773 
3774 	if (KMALLOC_MIN_SIZE <= 64) {
3775 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3776 		caches++;
3777 	}
3778 
3779 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3780 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3781 		caches++;
3782 	}
3783 
3784 	slab_state = UP;
3785 
3786 	/* Provide the correct kmalloc names now that the caches are up */
3787 	if (KMALLOC_MIN_SIZE <= 32) {
3788 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3789 		BUG_ON(!kmalloc_caches[1]->name);
3790 	}
3791 
3792 	if (KMALLOC_MIN_SIZE <= 64) {
3793 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3794 		BUG_ON(!kmalloc_caches[2]->name);
3795 	}
3796 
3797 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3798 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3799 
3800 		BUG_ON(!s);
3801 		kmalloc_caches[i]->name = s;
3802 	}
3803 
3804 #ifdef CONFIG_SMP
3805 	register_cpu_notifier(&slab_notifier);
3806 #endif
3807 
3808 #ifdef CONFIG_ZONE_DMA
3809 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3810 		struct kmem_cache *s = kmalloc_caches[i];
3811 
3812 		if (s && s->size) {
3813 			char *name = kasprintf(GFP_NOWAIT,
3814 				 "dma-kmalloc-%d", s->objsize);
3815 
3816 			BUG_ON(!name);
3817 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3818 				s->objsize, SLAB_CACHE_DMA);
3819 		}
3820 	}
3821 #endif
3822 	printk(KERN_INFO
3823 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3824 		" CPUs=%d, Nodes=%d\n",
3825 		caches, cache_line_size(),
3826 		slub_min_order, slub_max_order, slub_min_objects,
3827 		nr_cpu_ids, nr_node_ids);
3828 }
3829 
3830 void __init kmem_cache_init_late(void)
3831 {
3832 }
3833 
3834 /*
3835  * Find a mergeable slab cache
3836  */
3837 static int slab_unmergeable(struct kmem_cache *s)
3838 {
3839 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3840 		return 1;
3841 
3842 	if (s->ctor)
3843 		return 1;
3844 
3845 	/*
3846 	 * We may have set a slab to be unmergeable during bootstrap.
3847 	 */
3848 	if (s->refcount < 0)
3849 		return 1;
3850 
3851 	return 0;
3852 }
3853 
3854 static struct kmem_cache *find_mergeable(size_t size,
3855 		size_t align, unsigned long flags, const char *name,
3856 		void (*ctor)(void *))
3857 {
3858 	struct kmem_cache *s;
3859 
3860 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3861 		return NULL;
3862 
3863 	if (ctor)
3864 		return NULL;
3865 
3866 	size = ALIGN(size, sizeof(void *));
3867 	align = calculate_alignment(flags, align, size);
3868 	size = ALIGN(size, align);
3869 	flags = kmem_cache_flags(size, flags, name, NULL);
3870 
3871 	list_for_each_entry(s, &slab_caches, list) {
3872 		if (slab_unmergeable(s))
3873 			continue;
3874 
3875 		if (size > s->size)
3876 			continue;
3877 
3878 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3879 				continue;
3880 		/*
3881 		 * Check if alignment is compatible.
3882 		 * Courtesy of Adrian Drzewiecki
3883 		 */
3884 		if ((s->size & ~(align - 1)) != s->size)
3885 			continue;
3886 
3887 		if (s->size - size >= sizeof(void *))
3888 			continue;
3889 
3890 		return s;
3891 	}
3892 	return NULL;
3893 }
3894 
3895 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3896 		size_t align, unsigned long flags, void (*ctor)(void *))
3897 {
3898 	struct kmem_cache *s;
3899 	char *n;
3900 
3901 	if (WARN_ON(!name))
3902 		return NULL;
3903 
3904 	down_write(&slub_lock);
3905 	s = find_mergeable(size, align, flags, name, ctor);
3906 	if (s) {
3907 		s->refcount++;
3908 		/*
3909 		 * Adjust the object sizes so that we clear
3910 		 * the complete object on kzalloc.
3911 		 */
3912 		s->objsize = max(s->objsize, (int)size);
3913 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3914 
3915 		if (sysfs_slab_alias(s, name)) {
3916 			s->refcount--;
3917 			goto err;
3918 		}
3919 		up_write(&slub_lock);
3920 		return s;
3921 	}
3922 
3923 	n = kstrdup(name, GFP_KERNEL);
3924 	if (!n)
3925 		goto err;
3926 
3927 	s = kmalloc(kmem_size, GFP_KERNEL);
3928 	if (s) {
3929 		if (kmem_cache_open(s, n,
3930 				size, align, flags, ctor)) {
3931 			list_add(&s->list, &slab_caches);
3932 			if (sysfs_slab_add(s)) {
3933 				list_del(&s->list);
3934 				kfree(n);
3935 				kfree(s);
3936 				goto err;
3937 			}
3938 			up_write(&slub_lock);
3939 			return s;
3940 		}
3941 		kfree(n);
3942 		kfree(s);
3943 	}
3944 err:
3945 	up_write(&slub_lock);
3946 
3947 	if (flags & SLAB_PANIC)
3948 		panic("Cannot create slabcache %s\n", name);
3949 	else
3950 		s = NULL;
3951 	return s;
3952 }
3953 EXPORT_SYMBOL(kmem_cache_create);
3954 
3955 #ifdef CONFIG_SMP
3956 /*
3957  * Use the cpu notifier to insure that the cpu slabs are flushed when
3958  * necessary.
3959  */
3960 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3961 		unsigned long action, void *hcpu)
3962 {
3963 	long cpu = (long)hcpu;
3964 	struct kmem_cache *s;
3965 	unsigned long flags;
3966 
3967 	switch (action) {
3968 	case CPU_UP_CANCELED:
3969 	case CPU_UP_CANCELED_FROZEN:
3970 	case CPU_DEAD:
3971 	case CPU_DEAD_FROZEN:
3972 		down_read(&slub_lock);
3973 		list_for_each_entry(s, &slab_caches, list) {
3974 			local_irq_save(flags);
3975 			__flush_cpu_slab(s, cpu);
3976 			local_irq_restore(flags);
3977 		}
3978 		up_read(&slub_lock);
3979 		break;
3980 	default:
3981 		break;
3982 	}
3983 	return NOTIFY_OK;
3984 }
3985 
3986 static struct notifier_block __cpuinitdata slab_notifier = {
3987 	.notifier_call = slab_cpuup_callback
3988 };
3989 
3990 #endif
3991 
3992 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3993 {
3994 	struct kmem_cache *s;
3995 	void *ret;
3996 
3997 	if (unlikely(size > SLUB_MAX_SIZE))
3998 		return kmalloc_large(size, gfpflags);
3999 
4000 	s = get_slab(size, gfpflags);
4001 
4002 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4003 		return s;
4004 
4005 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4006 
4007 	/* Honor the call site pointer we received. */
4008 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4009 
4010 	return ret;
4011 }
4012 
4013 #ifdef CONFIG_NUMA
4014 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4015 					int node, unsigned long caller)
4016 {
4017 	struct kmem_cache *s;
4018 	void *ret;
4019 
4020 	if (unlikely(size > SLUB_MAX_SIZE)) {
4021 		ret = kmalloc_large_node(size, gfpflags, node);
4022 
4023 		trace_kmalloc_node(caller, ret,
4024 				   size, PAGE_SIZE << get_order(size),
4025 				   gfpflags, node);
4026 
4027 		return ret;
4028 	}
4029 
4030 	s = get_slab(size, gfpflags);
4031 
4032 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4033 		return s;
4034 
4035 	ret = slab_alloc(s, gfpflags, node, caller);
4036 
4037 	/* Honor the call site pointer we received. */
4038 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4039 
4040 	return ret;
4041 }
4042 #endif
4043 
4044 #ifdef CONFIG_SYSFS
4045 static int count_inuse(struct page *page)
4046 {
4047 	return page->inuse;
4048 }
4049 
4050 static int count_total(struct page *page)
4051 {
4052 	return page->objects;
4053 }
4054 #endif
4055 
4056 #ifdef CONFIG_SLUB_DEBUG
4057 static int validate_slab(struct kmem_cache *s, struct page *page,
4058 						unsigned long *map)
4059 {
4060 	void *p;
4061 	void *addr = page_address(page);
4062 
4063 	if (!check_slab(s, page) ||
4064 			!on_freelist(s, page, NULL))
4065 		return 0;
4066 
4067 	/* Now we know that a valid freelist exists */
4068 	bitmap_zero(map, page->objects);
4069 
4070 	get_map(s, page, map);
4071 	for_each_object(p, s, addr, page->objects) {
4072 		if (test_bit(slab_index(p, s, addr), map))
4073 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4074 				return 0;
4075 	}
4076 
4077 	for_each_object(p, s, addr, page->objects)
4078 		if (!test_bit(slab_index(p, s, addr), map))
4079 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4080 				return 0;
4081 	return 1;
4082 }
4083 
4084 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4085 						unsigned long *map)
4086 {
4087 	slab_lock(page);
4088 	validate_slab(s, page, map);
4089 	slab_unlock(page);
4090 }
4091 
4092 static int validate_slab_node(struct kmem_cache *s,
4093 		struct kmem_cache_node *n, unsigned long *map)
4094 {
4095 	unsigned long count = 0;
4096 	struct page *page;
4097 	unsigned long flags;
4098 
4099 	spin_lock_irqsave(&n->list_lock, flags);
4100 
4101 	list_for_each_entry(page, &n->partial, lru) {
4102 		validate_slab_slab(s, page, map);
4103 		count++;
4104 	}
4105 	if (count != n->nr_partial)
4106 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4107 			"counter=%ld\n", s->name, count, n->nr_partial);
4108 
4109 	if (!(s->flags & SLAB_STORE_USER))
4110 		goto out;
4111 
4112 	list_for_each_entry(page, &n->full, lru) {
4113 		validate_slab_slab(s, page, map);
4114 		count++;
4115 	}
4116 	if (count != atomic_long_read(&n->nr_slabs))
4117 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4118 			"counter=%ld\n", s->name, count,
4119 			atomic_long_read(&n->nr_slabs));
4120 
4121 out:
4122 	spin_unlock_irqrestore(&n->list_lock, flags);
4123 	return count;
4124 }
4125 
4126 static long validate_slab_cache(struct kmem_cache *s)
4127 {
4128 	int node;
4129 	unsigned long count = 0;
4130 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4131 				sizeof(unsigned long), GFP_KERNEL);
4132 
4133 	if (!map)
4134 		return -ENOMEM;
4135 
4136 	flush_all(s);
4137 	for_each_node_state(node, N_NORMAL_MEMORY) {
4138 		struct kmem_cache_node *n = get_node(s, node);
4139 
4140 		count += validate_slab_node(s, n, map);
4141 	}
4142 	kfree(map);
4143 	return count;
4144 }
4145 /*
4146  * Generate lists of code addresses where slabcache objects are allocated
4147  * and freed.
4148  */
4149 
4150 struct location {
4151 	unsigned long count;
4152 	unsigned long addr;
4153 	long long sum_time;
4154 	long min_time;
4155 	long max_time;
4156 	long min_pid;
4157 	long max_pid;
4158 	DECLARE_BITMAP(cpus, NR_CPUS);
4159 	nodemask_t nodes;
4160 };
4161 
4162 struct loc_track {
4163 	unsigned long max;
4164 	unsigned long count;
4165 	struct location *loc;
4166 };
4167 
4168 static void free_loc_track(struct loc_track *t)
4169 {
4170 	if (t->max)
4171 		free_pages((unsigned long)t->loc,
4172 			get_order(sizeof(struct location) * t->max));
4173 }
4174 
4175 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4176 {
4177 	struct location *l;
4178 	int order;
4179 
4180 	order = get_order(sizeof(struct location) * max);
4181 
4182 	l = (void *)__get_free_pages(flags, order);
4183 	if (!l)
4184 		return 0;
4185 
4186 	if (t->count) {
4187 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4188 		free_loc_track(t);
4189 	}
4190 	t->max = max;
4191 	t->loc = l;
4192 	return 1;
4193 }
4194 
4195 static int add_location(struct loc_track *t, struct kmem_cache *s,
4196 				const struct track *track)
4197 {
4198 	long start, end, pos;
4199 	struct location *l;
4200 	unsigned long caddr;
4201 	unsigned long age = jiffies - track->when;
4202 
4203 	start = -1;
4204 	end = t->count;
4205 
4206 	for ( ; ; ) {
4207 		pos = start + (end - start + 1) / 2;
4208 
4209 		/*
4210 		 * There is nothing at "end". If we end up there
4211 		 * we need to add something to before end.
4212 		 */
4213 		if (pos == end)
4214 			break;
4215 
4216 		caddr = t->loc[pos].addr;
4217 		if (track->addr == caddr) {
4218 
4219 			l = &t->loc[pos];
4220 			l->count++;
4221 			if (track->when) {
4222 				l->sum_time += age;
4223 				if (age < l->min_time)
4224 					l->min_time = age;
4225 				if (age > l->max_time)
4226 					l->max_time = age;
4227 
4228 				if (track->pid < l->min_pid)
4229 					l->min_pid = track->pid;
4230 				if (track->pid > l->max_pid)
4231 					l->max_pid = track->pid;
4232 
4233 				cpumask_set_cpu(track->cpu,
4234 						to_cpumask(l->cpus));
4235 			}
4236 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4237 			return 1;
4238 		}
4239 
4240 		if (track->addr < caddr)
4241 			end = pos;
4242 		else
4243 			start = pos;
4244 	}
4245 
4246 	/*
4247 	 * Not found. Insert new tracking element.
4248 	 */
4249 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4250 		return 0;
4251 
4252 	l = t->loc + pos;
4253 	if (pos < t->count)
4254 		memmove(l + 1, l,
4255 			(t->count - pos) * sizeof(struct location));
4256 	t->count++;
4257 	l->count = 1;
4258 	l->addr = track->addr;
4259 	l->sum_time = age;
4260 	l->min_time = age;
4261 	l->max_time = age;
4262 	l->min_pid = track->pid;
4263 	l->max_pid = track->pid;
4264 	cpumask_clear(to_cpumask(l->cpus));
4265 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4266 	nodes_clear(l->nodes);
4267 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4268 	return 1;
4269 }
4270 
4271 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4272 		struct page *page, enum track_item alloc,
4273 		unsigned long *map)
4274 {
4275 	void *addr = page_address(page);
4276 	void *p;
4277 
4278 	bitmap_zero(map, page->objects);
4279 	get_map(s, page, map);
4280 
4281 	for_each_object(p, s, addr, page->objects)
4282 		if (!test_bit(slab_index(p, s, addr), map))
4283 			add_location(t, s, get_track(s, p, alloc));
4284 }
4285 
4286 static int list_locations(struct kmem_cache *s, char *buf,
4287 					enum track_item alloc)
4288 {
4289 	int len = 0;
4290 	unsigned long i;
4291 	struct loc_track t = { 0, 0, NULL };
4292 	int node;
4293 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4294 				     sizeof(unsigned long), GFP_KERNEL);
4295 
4296 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4297 				     GFP_TEMPORARY)) {
4298 		kfree(map);
4299 		return sprintf(buf, "Out of memory\n");
4300 	}
4301 	/* Push back cpu slabs */
4302 	flush_all(s);
4303 
4304 	for_each_node_state(node, N_NORMAL_MEMORY) {
4305 		struct kmem_cache_node *n = get_node(s, node);
4306 		unsigned long flags;
4307 		struct page *page;
4308 
4309 		if (!atomic_long_read(&n->nr_slabs))
4310 			continue;
4311 
4312 		spin_lock_irqsave(&n->list_lock, flags);
4313 		list_for_each_entry(page, &n->partial, lru)
4314 			process_slab(&t, s, page, alloc, map);
4315 		list_for_each_entry(page, &n->full, lru)
4316 			process_slab(&t, s, page, alloc, map);
4317 		spin_unlock_irqrestore(&n->list_lock, flags);
4318 	}
4319 
4320 	for (i = 0; i < t.count; i++) {
4321 		struct location *l = &t.loc[i];
4322 
4323 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4324 			break;
4325 		len += sprintf(buf + len, "%7ld ", l->count);
4326 
4327 		if (l->addr)
4328 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4329 		else
4330 			len += sprintf(buf + len, "<not-available>");
4331 
4332 		if (l->sum_time != l->min_time) {
4333 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4334 				l->min_time,
4335 				(long)div_u64(l->sum_time, l->count),
4336 				l->max_time);
4337 		} else
4338 			len += sprintf(buf + len, " age=%ld",
4339 				l->min_time);
4340 
4341 		if (l->min_pid != l->max_pid)
4342 			len += sprintf(buf + len, " pid=%ld-%ld",
4343 				l->min_pid, l->max_pid);
4344 		else
4345 			len += sprintf(buf + len, " pid=%ld",
4346 				l->min_pid);
4347 
4348 		if (num_online_cpus() > 1 &&
4349 				!cpumask_empty(to_cpumask(l->cpus)) &&
4350 				len < PAGE_SIZE - 60) {
4351 			len += sprintf(buf + len, " cpus=");
4352 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4353 						 to_cpumask(l->cpus));
4354 		}
4355 
4356 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4357 				len < PAGE_SIZE - 60) {
4358 			len += sprintf(buf + len, " nodes=");
4359 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4360 					l->nodes);
4361 		}
4362 
4363 		len += sprintf(buf + len, "\n");
4364 	}
4365 
4366 	free_loc_track(&t);
4367 	kfree(map);
4368 	if (!t.count)
4369 		len += sprintf(buf, "No data\n");
4370 	return len;
4371 }
4372 #endif
4373 
4374 #ifdef SLUB_RESILIENCY_TEST
4375 static void resiliency_test(void)
4376 {
4377 	u8 *p;
4378 
4379 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4380 
4381 	printk(KERN_ERR "SLUB resiliency testing\n");
4382 	printk(KERN_ERR "-----------------------\n");
4383 	printk(KERN_ERR "A. Corruption after allocation\n");
4384 
4385 	p = kzalloc(16, GFP_KERNEL);
4386 	p[16] = 0x12;
4387 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4388 			" 0x12->0x%p\n\n", p + 16);
4389 
4390 	validate_slab_cache(kmalloc_caches[4]);
4391 
4392 	/* Hmmm... The next two are dangerous */
4393 	p = kzalloc(32, GFP_KERNEL);
4394 	p[32 + sizeof(void *)] = 0x34;
4395 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4396 			" 0x34 -> -0x%p\n", p);
4397 	printk(KERN_ERR
4398 		"If allocated object is overwritten then not detectable\n\n");
4399 
4400 	validate_slab_cache(kmalloc_caches[5]);
4401 	p = kzalloc(64, GFP_KERNEL);
4402 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4403 	*p = 0x56;
4404 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4405 									p);
4406 	printk(KERN_ERR
4407 		"If allocated object is overwritten then not detectable\n\n");
4408 	validate_slab_cache(kmalloc_caches[6]);
4409 
4410 	printk(KERN_ERR "\nB. Corruption after free\n");
4411 	p = kzalloc(128, GFP_KERNEL);
4412 	kfree(p);
4413 	*p = 0x78;
4414 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4415 	validate_slab_cache(kmalloc_caches[7]);
4416 
4417 	p = kzalloc(256, GFP_KERNEL);
4418 	kfree(p);
4419 	p[50] = 0x9a;
4420 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4421 			p);
4422 	validate_slab_cache(kmalloc_caches[8]);
4423 
4424 	p = kzalloc(512, GFP_KERNEL);
4425 	kfree(p);
4426 	p[512] = 0xab;
4427 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4428 	validate_slab_cache(kmalloc_caches[9]);
4429 }
4430 #else
4431 #ifdef CONFIG_SYSFS
4432 static void resiliency_test(void) {};
4433 #endif
4434 #endif
4435 
4436 #ifdef CONFIG_SYSFS
4437 enum slab_stat_type {
4438 	SL_ALL,			/* All slabs */
4439 	SL_PARTIAL,		/* Only partially allocated slabs */
4440 	SL_CPU,			/* Only slabs used for cpu caches */
4441 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4442 	SL_TOTAL		/* Determine object capacity not slabs */
4443 };
4444 
4445 #define SO_ALL		(1 << SL_ALL)
4446 #define SO_PARTIAL	(1 << SL_PARTIAL)
4447 #define SO_CPU		(1 << SL_CPU)
4448 #define SO_OBJECTS	(1 << SL_OBJECTS)
4449 #define SO_TOTAL	(1 << SL_TOTAL)
4450 
4451 static ssize_t show_slab_objects(struct kmem_cache *s,
4452 			    char *buf, unsigned long flags)
4453 {
4454 	unsigned long total = 0;
4455 	int node;
4456 	int x;
4457 	unsigned long *nodes;
4458 	unsigned long *per_cpu;
4459 
4460 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4461 	if (!nodes)
4462 		return -ENOMEM;
4463 	per_cpu = nodes + nr_node_ids;
4464 
4465 	if (flags & SO_CPU) {
4466 		int cpu;
4467 
4468 		for_each_possible_cpu(cpu) {
4469 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4470 			int node = ACCESS_ONCE(c->node);
4471 			struct page *page;
4472 
4473 			if (node < 0)
4474 				continue;
4475 			page = ACCESS_ONCE(c->page);
4476 			if (page) {
4477 				if (flags & SO_TOTAL)
4478 					x = page->objects;
4479 				else if (flags & SO_OBJECTS)
4480 					x = page->inuse;
4481 				else
4482 					x = 1;
4483 
4484 				total += x;
4485 				nodes[node] += x;
4486 			}
4487 			page = c->partial;
4488 
4489 			if (page) {
4490 				x = page->pobjects;
4491 				total += x;
4492 				nodes[node] += x;
4493 			}
4494 			per_cpu[node]++;
4495 		}
4496 	}
4497 
4498 	lock_memory_hotplug();
4499 #ifdef CONFIG_SLUB_DEBUG
4500 	if (flags & SO_ALL) {
4501 		for_each_node_state(node, N_NORMAL_MEMORY) {
4502 			struct kmem_cache_node *n = get_node(s, node);
4503 
4504 		if (flags & SO_TOTAL)
4505 			x = atomic_long_read(&n->total_objects);
4506 		else if (flags & SO_OBJECTS)
4507 			x = atomic_long_read(&n->total_objects) -
4508 				count_partial(n, count_free);
4509 
4510 			else
4511 				x = atomic_long_read(&n->nr_slabs);
4512 			total += x;
4513 			nodes[node] += x;
4514 		}
4515 
4516 	} else
4517 #endif
4518 	if (flags & SO_PARTIAL) {
4519 		for_each_node_state(node, N_NORMAL_MEMORY) {
4520 			struct kmem_cache_node *n = get_node(s, node);
4521 
4522 			if (flags & SO_TOTAL)
4523 				x = count_partial(n, count_total);
4524 			else if (flags & SO_OBJECTS)
4525 				x = count_partial(n, count_inuse);
4526 			else
4527 				x = n->nr_partial;
4528 			total += x;
4529 			nodes[node] += x;
4530 		}
4531 	}
4532 	x = sprintf(buf, "%lu", total);
4533 #ifdef CONFIG_NUMA
4534 	for_each_node_state(node, N_NORMAL_MEMORY)
4535 		if (nodes[node])
4536 			x += sprintf(buf + x, " N%d=%lu",
4537 					node, nodes[node]);
4538 #endif
4539 	unlock_memory_hotplug();
4540 	kfree(nodes);
4541 	return x + sprintf(buf + x, "\n");
4542 }
4543 
4544 #ifdef CONFIG_SLUB_DEBUG
4545 static int any_slab_objects(struct kmem_cache *s)
4546 {
4547 	int node;
4548 
4549 	for_each_online_node(node) {
4550 		struct kmem_cache_node *n = get_node(s, node);
4551 
4552 		if (!n)
4553 			continue;
4554 
4555 		if (atomic_long_read(&n->total_objects))
4556 			return 1;
4557 	}
4558 	return 0;
4559 }
4560 #endif
4561 
4562 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4563 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4564 
4565 struct slab_attribute {
4566 	struct attribute attr;
4567 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4568 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4569 };
4570 
4571 #define SLAB_ATTR_RO(_name) \
4572 	static struct slab_attribute _name##_attr = \
4573 	__ATTR(_name, 0400, _name##_show, NULL)
4574 
4575 #define SLAB_ATTR(_name) \
4576 	static struct slab_attribute _name##_attr =  \
4577 	__ATTR(_name, 0600, _name##_show, _name##_store)
4578 
4579 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4580 {
4581 	return sprintf(buf, "%d\n", s->size);
4582 }
4583 SLAB_ATTR_RO(slab_size);
4584 
4585 static ssize_t align_show(struct kmem_cache *s, char *buf)
4586 {
4587 	return sprintf(buf, "%d\n", s->align);
4588 }
4589 SLAB_ATTR_RO(align);
4590 
4591 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4592 {
4593 	return sprintf(buf, "%d\n", s->objsize);
4594 }
4595 SLAB_ATTR_RO(object_size);
4596 
4597 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4598 {
4599 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4600 }
4601 SLAB_ATTR_RO(objs_per_slab);
4602 
4603 static ssize_t order_store(struct kmem_cache *s,
4604 				const char *buf, size_t length)
4605 {
4606 	unsigned long order;
4607 	int err;
4608 
4609 	err = strict_strtoul(buf, 10, &order);
4610 	if (err)
4611 		return err;
4612 
4613 	if (order > slub_max_order || order < slub_min_order)
4614 		return -EINVAL;
4615 
4616 	calculate_sizes(s, order);
4617 	return length;
4618 }
4619 
4620 static ssize_t order_show(struct kmem_cache *s, char *buf)
4621 {
4622 	return sprintf(buf, "%d\n", oo_order(s->oo));
4623 }
4624 SLAB_ATTR(order);
4625 
4626 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4627 {
4628 	return sprintf(buf, "%lu\n", s->min_partial);
4629 }
4630 
4631 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4632 				 size_t length)
4633 {
4634 	unsigned long min;
4635 	int err;
4636 
4637 	err = strict_strtoul(buf, 10, &min);
4638 	if (err)
4639 		return err;
4640 
4641 	set_min_partial(s, min);
4642 	return length;
4643 }
4644 SLAB_ATTR(min_partial);
4645 
4646 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4647 {
4648 	return sprintf(buf, "%u\n", s->cpu_partial);
4649 }
4650 
4651 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4652 				 size_t length)
4653 {
4654 	unsigned long objects;
4655 	int err;
4656 
4657 	err = strict_strtoul(buf, 10, &objects);
4658 	if (err)
4659 		return err;
4660 	if (objects && kmem_cache_debug(s))
4661 		return -EINVAL;
4662 
4663 	s->cpu_partial = objects;
4664 	flush_all(s);
4665 	return length;
4666 }
4667 SLAB_ATTR(cpu_partial);
4668 
4669 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4670 {
4671 	if (!s->ctor)
4672 		return 0;
4673 	return sprintf(buf, "%pS\n", s->ctor);
4674 }
4675 SLAB_ATTR_RO(ctor);
4676 
4677 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4678 {
4679 	return sprintf(buf, "%d\n", s->refcount - 1);
4680 }
4681 SLAB_ATTR_RO(aliases);
4682 
4683 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4684 {
4685 	return show_slab_objects(s, buf, SO_PARTIAL);
4686 }
4687 SLAB_ATTR_RO(partial);
4688 
4689 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4690 {
4691 	return show_slab_objects(s, buf, SO_CPU);
4692 }
4693 SLAB_ATTR_RO(cpu_slabs);
4694 
4695 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4696 {
4697 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4698 }
4699 SLAB_ATTR_RO(objects);
4700 
4701 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4702 {
4703 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4704 }
4705 SLAB_ATTR_RO(objects_partial);
4706 
4707 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4708 {
4709 	int objects = 0;
4710 	int pages = 0;
4711 	int cpu;
4712 	int len;
4713 
4714 	for_each_online_cpu(cpu) {
4715 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4716 
4717 		if (page) {
4718 			pages += page->pages;
4719 			objects += page->pobjects;
4720 		}
4721 	}
4722 
4723 	len = sprintf(buf, "%d(%d)", objects, pages);
4724 
4725 #ifdef CONFIG_SMP
4726 	for_each_online_cpu(cpu) {
4727 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4728 
4729 		if (page && len < PAGE_SIZE - 20)
4730 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4731 				page->pobjects, page->pages);
4732 	}
4733 #endif
4734 	return len + sprintf(buf + len, "\n");
4735 }
4736 SLAB_ATTR_RO(slabs_cpu_partial);
4737 
4738 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4739 {
4740 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4741 }
4742 
4743 static ssize_t reclaim_account_store(struct kmem_cache *s,
4744 				const char *buf, size_t length)
4745 {
4746 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4747 	if (buf[0] == '1')
4748 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4749 	return length;
4750 }
4751 SLAB_ATTR(reclaim_account);
4752 
4753 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4754 {
4755 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4756 }
4757 SLAB_ATTR_RO(hwcache_align);
4758 
4759 #ifdef CONFIG_ZONE_DMA
4760 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4761 {
4762 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4763 }
4764 SLAB_ATTR_RO(cache_dma);
4765 #endif
4766 
4767 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4768 {
4769 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4770 }
4771 SLAB_ATTR_RO(destroy_by_rcu);
4772 
4773 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4774 {
4775 	return sprintf(buf, "%d\n", s->reserved);
4776 }
4777 SLAB_ATTR_RO(reserved);
4778 
4779 #ifdef CONFIG_SLUB_DEBUG
4780 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4781 {
4782 	return show_slab_objects(s, buf, SO_ALL);
4783 }
4784 SLAB_ATTR_RO(slabs);
4785 
4786 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4787 {
4788 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4789 }
4790 SLAB_ATTR_RO(total_objects);
4791 
4792 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4793 {
4794 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4795 }
4796 
4797 static ssize_t sanity_checks_store(struct kmem_cache *s,
4798 				const char *buf, size_t length)
4799 {
4800 	s->flags &= ~SLAB_DEBUG_FREE;
4801 	if (buf[0] == '1') {
4802 		s->flags &= ~__CMPXCHG_DOUBLE;
4803 		s->flags |= SLAB_DEBUG_FREE;
4804 	}
4805 	return length;
4806 }
4807 SLAB_ATTR(sanity_checks);
4808 
4809 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4810 {
4811 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4812 }
4813 
4814 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4815 							size_t length)
4816 {
4817 	s->flags &= ~SLAB_TRACE;
4818 	if (buf[0] == '1') {
4819 		s->flags &= ~__CMPXCHG_DOUBLE;
4820 		s->flags |= SLAB_TRACE;
4821 	}
4822 	return length;
4823 }
4824 SLAB_ATTR(trace);
4825 
4826 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4827 {
4828 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4829 }
4830 
4831 static ssize_t red_zone_store(struct kmem_cache *s,
4832 				const char *buf, size_t length)
4833 {
4834 	if (any_slab_objects(s))
4835 		return -EBUSY;
4836 
4837 	s->flags &= ~SLAB_RED_ZONE;
4838 	if (buf[0] == '1') {
4839 		s->flags &= ~__CMPXCHG_DOUBLE;
4840 		s->flags |= SLAB_RED_ZONE;
4841 	}
4842 	calculate_sizes(s, -1);
4843 	return length;
4844 }
4845 SLAB_ATTR(red_zone);
4846 
4847 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4848 {
4849 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4850 }
4851 
4852 static ssize_t poison_store(struct kmem_cache *s,
4853 				const char *buf, size_t length)
4854 {
4855 	if (any_slab_objects(s))
4856 		return -EBUSY;
4857 
4858 	s->flags &= ~SLAB_POISON;
4859 	if (buf[0] == '1') {
4860 		s->flags &= ~__CMPXCHG_DOUBLE;
4861 		s->flags |= SLAB_POISON;
4862 	}
4863 	calculate_sizes(s, -1);
4864 	return length;
4865 }
4866 SLAB_ATTR(poison);
4867 
4868 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4869 {
4870 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4871 }
4872 
4873 static ssize_t store_user_store(struct kmem_cache *s,
4874 				const char *buf, size_t length)
4875 {
4876 	if (any_slab_objects(s))
4877 		return -EBUSY;
4878 
4879 	s->flags &= ~SLAB_STORE_USER;
4880 	if (buf[0] == '1') {
4881 		s->flags &= ~__CMPXCHG_DOUBLE;
4882 		s->flags |= SLAB_STORE_USER;
4883 	}
4884 	calculate_sizes(s, -1);
4885 	return length;
4886 }
4887 SLAB_ATTR(store_user);
4888 
4889 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4890 {
4891 	return 0;
4892 }
4893 
4894 static ssize_t validate_store(struct kmem_cache *s,
4895 			const char *buf, size_t length)
4896 {
4897 	int ret = -EINVAL;
4898 
4899 	if (buf[0] == '1') {
4900 		ret = validate_slab_cache(s);
4901 		if (ret >= 0)
4902 			ret = length;
4903 	}
4904 	return ret;
4905 }
4906 SLAB_ATTR(validate);
4907 
4908 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4909 {
4910 	if (!(s->flags & SLAB_STORE_USER))
4911 		return -ENOSYS;
4912 	return list_locations(s, buf, TRACK_ALLOC);
4913 }
4914 SLAB_ATTR_RO(alloc_calls);
4915 
4916 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4917 {
4918 	if (!(s->flags & SLAB_STORE_USER))
4919 		return -ENOSYS;
4920 	return list_locations(s, buf, TRACK_FREE);
4921 }
4922 SLAB_ATTR_RO(free_calls);
4923 #endif /* CONFIG_SLUB_DEBUG */
4924 
4925 #ifdef CONFIG_FAILSLAB
4926 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4927 {
4928 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4929 }
4930 
4931 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4932 							size_t length)
4933 {
4934 	s->flags &= ~SLAB_FAILSLAB;
4935 	if (buf[0] == '1')
4936 		s->flags |= SLAB_FAILSLAB;
4937 	return length;
4938 }
4939 SLAB_ATTR(failslab);
4940 #endif
4941 
4942 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4943 {
4944 	return 0;
4945 }
4946 
4947 static ssize_t shrink_store(struct kmem_cache *s,
4948 			const char *buf, size_t length)
4949 {
4950 	if (buf[0] == '1') {
4951 		int rc = kmem_cache_shrink(s);
4952 
4953 		if (rc)
4954 			return rc;
4955 	} else
4956 		return -EINVAL;
4957 	return length;
4958 }
4959 SLAB_ATTR(shrink);
4960 
4961 #ifdef CONFIG_NUMA
4962 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4963 {
4964 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4965 }
4966 
4967 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4968 				const char *buf, size_t length)
4969 {
4970 	unsigned long ratio;
4971 	int err;
4972 
4973 	err = strict_strtoul(buf, 10, &ratio);
4974 	if (err)
4975 		return err;
4976 
4977 	if (ratio <= 100)
4978 		s->remote_node_defrag_ratio = ratio * 10;
4979 
4980 	return length;
4981 }
4982 SLAB_ATTR(remote_node_defrag_ratio);
4983 #endif
4984 
4985 #ifdef CONFIG_SLUB_STATS
4986 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4987 {
4988 	unsigned long sum  = 0;
4989 	int cpu;
4990 	int len;
4991 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4992 
4993 	if (!data)
4994 		return -ENOMEM;
4995 
4996 	for_each_online_cpu(cpu) {
4997 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4998 
4999 		data[cpu] = x;
5000 		sum += x;
5001 	}
5002 
5003 	len = sprintf(buf, "%lu", sum);
5004 
5005 #ifdef CONFIG_SMP
5006 	for_each_online_cpu(cpu) {
5007 		if (data[cpu] && len < PAGE_SIZE - 20)
5008 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5009 	}
5010 #endif
5011 	kfree(data);
5012 	return len + sprintf(buf + len, "\n");
5013 }
5014 
5015 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5016 {
5017 	int cpu;
5018 
5019 	for_each_online_cpu(cpu)
5020 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5021 }
5022 
5023 #define STAT_ATTR(si, text) 					\
5024 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5025 {								\
5026 	return show_stat(s, buf, si);				\
5027 }								\
5028 static ssize_t text##_store(struct kmem_cache *s,		\
5029 				const char *buf, size_t length)	\
5030 {								\
5031 	if (buf[0] != '0')					\
5032 		return -EINVAL;					\
5033 	clear_stat(s, si);					\
5034 	return length;						\
5035 }								\
5036 SLAB_ATTR(text);						\
5037 
5038 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5039 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5040 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5041 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5042 STAT_ATTR(FREE_FROZEN, free_frozen);
5043 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5044 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5045 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5046 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5047 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5048 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5049 STAT_ATTR(FREE_SLAB, free_slab);
5050 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5051 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5052 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5053 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5054 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5055 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5056 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5057 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5058 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5059 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5060 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5061 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5062 #endif
5063 
5064 static struct attribute *slab_attrs[] = {
5065 	&slab_size_attr.attr,
5066 	&object_size_attr.attr,
5067 	&objs_per_slab_attr.attr,
5068 	&order_attr.attr,
5069 	&min_partial_attr.attr,
5070 	&cpu_partial_attr.attr,
5071 	&objects_attr.attr,
5072 	&objects_partial_attr.attr,
5073 	&partial_attr.attr,
5074 	&cpu_slabs_attr.attr,
5075 	&ctor_attr.attr,
5076 	&aliases_attr.attr,
5077 	&align_attr.attr,
5078 	&hwcache_align_attr.attr,
5079 	&reclaim_account_attr.attr,
5080 	&destroy_by_rcu_attr.attr,
5081 	&shrink_attr.attr,
5082 	&reserved_attr.attr,
5083 	&slabs_cpu_partial_attr.attr,
5084 #ifdef CONFIG_SLUB_DEBUG
5085 	&total_objects_attr.attr,
5086 	&slabs_attr.attr,
5087 	&sanity_checks_attr.attr,
5088 	&trace_attr.attr,
5089 	&red_zone_attr.attr,
5090 	&poison_attr.attr,
5091 	&store_user_attr.attr,
5092 	&validate_attr.attr,
5093 	&alloc_calls_attr.attr,
5094 	&free_calls_attr.attr,
5095 #endif
5096 #ifdef CONFIG_ZONE_DMA
5097 	&cache_dma_attr.attr,
5098 #endif
5099 #ifdef CONFIG_NUMA
5100 	&remote_node_defrag_ratio_attr.attr,
5101 #endif
5102 #ifdef CONFIG_SLUB_STATS
5103 	&alloc_fastpath_attr.attr,
5104 	&alloc_slowpath_attr.attr,
5105 	&free_fastpath_attr.attr,
5106 	&free_slowpath_attr.attr,
5107 	&free_frozen_attr.attr,
5108 	&free_add_partial_attr.attr,
5109 	&free_remove_partial_attr.attr,
5110 	&alloc_from_partial_attr.attr,
5111 	&alloc_slab_attr.attr,
5112 	&alloc_refill_attr.attr,
5113 	&alloc_node_mismatch_attr.attr,
5114 	&free_slab_attr.attr,
5115 	&cpuslab_flush_attr.attr,
5116 	&deactivate_full_attr.attr,
5117 	&deactivate_empty_attr.attr,
5118 	&deactivate_to_head_attr.attr,
5119 	&deactivate_to_tail_attr.attr,
5120 	&deactivate_remote_frees_attr.attr,
5121 	&deactivate_bypass_attr.attr,
5122 	&order_fallback_attr.attr,
5123 	&cmpxchg_double_fail_attr.attr,
5124 	&cmpxchg_double_cpu_fail_attr.attr,
5125 	&cpu_partial_alloc_attr.attr,
5126 	&cpu_partial_free_attr.attr,
5127 #endif
5128 #ifdef CONFIG_FAILSLAB
5129 	&failslab_attr.attr,
5130 #endif
5131 
5132 	NULL
5133 };
5134 
5135 static struct attribute_group slab_attr_group = {
5136 	.attrs = slab_attrs,
5137 };
5138 
5139 static ssize_t slab_attr_show(struct kobject *kobj,
5140 				struct attribute *attr,
5141 				char *buf)
5142 {
5143 	struct slab_attribute *attribute;
5144 	struct kmem_cache *s;
5145 	int err;
5146 
5147 	attribute = to_slab_attr(attr);
5148 	s = to_slab(kobj);
5149 
5150 	if (!attribute->show)
5151 		return -EIO;
5152 
5153 	err = attribute->show(s, buf);
5154 
5155 	return err;
5156 }
5157 
5158 static ssize_t slab_attr_store(struct kobject *kobj,
5159 				struct attribute *attr,
5160 				const char *buf, size_t len)
5161 {
5162 	struct slab_attribute *attribute;
5163 	struct kmem_cache *s;
5164 	int err;
5165 
5166 	attribute = to_slab_attr(attr);
5167 	s = to_slab(kobj);
5168 
5169 	if (!attribute->store)
5170 		return -EIO;
5171 
5172 	err = attribute->store(s, buf, len);
5173 
5174 	return err;
5175 }
5176 
5177 static void kmem_cache_release(struct kobject *kobj)
5178 {
5179 	struct kmem_cache *s = to_slab(kobj);
5180 
5181 	kfree(s->name);
5182 	kfree(s);
5183 }
5184 
5185 static const struct sysfs_ops slab_sysfs_ops = {
5186 	.show = slab_attr_show,
5187 	.store = slab_attr_store,
5188 };
5189 
5190 static struct kobj_type slab_ktype = {
5191 	.sysfs_ops = &slab_sysfs_ops,
5192 	.release = kmem_cache_release
5193 };
5194 
5195 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5196 {
5197 	struct kobj_type *ktype = get_ktype(kobj);
5198 
5199 	if (ktype == &slab_ktype)
5200 		return 1;
5201 	return 0;
5202 }
5203 
5204 static const struct kset_uevent_ops slab_uevent_ops = {
5205 	.filter = uevent_filter,
5206 };
5207 
5208 static struct kset *slab_kset;
5209 
5210 #define ID_STR_LENGTH 64
5211 
5212 /* Create a unique string id for a slab cache:
5213  *
5214  * Format	:[flags-]size
5215  */
5216 static char *create_unique_id(struct kmem_cache *s)
5217 {
5218 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5219 	char *p = name;
5220 
5221 	BUG_ON(!name);
5222 
5223 	*p++ = ':';
5224 	/*
5225 	 * First flags affecting slabcache operations. We will only
5226 	 * get here for aliasable slabs so we do not need to support
5227 	 * too many flags. The flags here must cover all flags that
5228 	 * are matched during merging to guarantee that the id is
5229 	 * unique.
5230 	 */
5231 	if (s->flags & SLAB_CACHE_DMA)
5232 		*p++ = 'd';
5233 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5234 		*p++ = 'a';
5235 	if (s->flags & SLAB_DEBUG_FREE)
5236 		*p++ = 'F';
5237 	if (!(s->flags & SLAB_NOTRACK))
5238 		*p++ = 't';
5239 	if (p != name + 1)
5240 		*p++ = '-';
5241 	p += sprintf(p, "%07d", s->size);
5242 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5243 	return name;
5244 }
5245 
5246 static int sysfs_slab_add(struct kmem_cache *s)
5247 {
5248 	int err;
5249 	const char *name;
5250 	int unmergeable;
5251 
5252 	if (slab_state < SYSFS)
5253 		/* Defer until later */
5254 		return 0;
5255 
5256 	unmergeable = slab_unmergeable(s);
5257 	if (unmergeable) {
5258 		/*
5259 		 * Slabcache can never be merged so we can use the name proper.
5260 		 * This is typically the case for debug situations. In that
5261 		 * case we can catch duplicate names easily.
5262 		 */
5263 		sysfs_remove_link(&slab_kset->kobj, s->name);
5264 		name = s->name;
5265 	} else {
5266 		/*
5267 		 * Create a unique name for the slab as a target
5268 		 * for the symlinks.
5269 		 */
5270 		name = create_unique_id(s);
5271 	}
5272 
5273 	s->kobj.kset = slab_kset;
5274 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5275 	if (err) {
5276 		kobject_put(&s->kobj);
5277 		return err;
5278 	}
5279 
5280 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5281 	if (err) {
5282 		kobject_del(&s->kobj);
5283 		kobject_put(&s->kobj);
5284 		return err;
5285 	}
5286 	kobject_uevent(&s->kobj, KOBJ_ADD);
5287 	if (!unmergeable) {
5288 		/* Setup first alias */
5289 		sysfs_slab_alias(s, s->name);
5290 		kfree(name);
5291 	}
5292 	return 0;
5293 }
5294 
5295 static void sysfs_slab_remove(struct kmem_cache *s)
5296 {
5297 	if (slab_state < SYSFS)
5298 		/*
5299 		 * Sysfs has not been setup yet so no need to remove the
5300 		 * cache from sysfs.
5301 		 */
5302 		return;
5303 
5304 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5305 	kobject_del(&s->kobj);
5306 	kobject_put(&s->kobj);
5307 }
5308 
5309 /*
5310  * Need to buffer aliases during bootup until sysfs becomes
5311  * available lest we lose that information.
5312  */
5313 struct saved_alias {
5314 	struct kmem_cache *s;
5315 	const char *name;
5316 	struct saved_alias *next;
5317 };
5318 
5319 static struct saved_alias *alias_list;
5320 
5321 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5322 {
5323 	struct saved_alias *al;
5324 
5325 	if (slab_state == SYSFS) {
5326 		/*
5327 		 * If we have a leftover link then remove it.
5328 		 */
5329 		sysfs_remove_link(&slab_kset->kobj, name);
5330 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5331 	}
5332 
5333 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5334 	if (!al)
5335 		return -ENOMEM;
5336 
5337 	al->s = s;
5338 	al->name = name;
5339 	al->next = alias_list;
5340 	alias_list = al;
5341 	return 0;
5342 }
5343 
5344 static int __init slab_sysfs_init(void)
5345 {
5346 	struct kmem_cache *s;
5347 	int err;
5348 
5349 	down_write(&slub_lock);
5350 
5351 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5352 	if (!slab_kset) {
5353 		up_write(&slub_lock);
5354 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5355 		return -ENOSYS;
5356 	}
5357 
5358 	slab_state = SYSFS;
5359 
5360 	list_for_each_entry(s, &slab_caches, list) {
5361 		err = sysfs_slab_add(s);
5362 		if (err)
5363 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5364 						" to sysfs\n", s->name);
5365 	}
5366 
5367 	while (alias_list) {
5368 		struct saved_alias *al = alias_list;
5369 
5370 		alias_list = alias_list->next;
5371 		err = sysfs_slab_alias(al->s, al->name);
5372 		if (err)
5373 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5374 					" %s to sysfs\n", s->name);
5375 		kfree(al);
5376 	}
5377 
5378 	up_write(&slub_lock);
5379 	resiliency_test();
5380 	return 0;
5381 }
5382 
5383 __initcall(slab_sysfs_init);
5384 #endif /* CONFIG_SYSFS */
5385 
5386 /*
5387  * The /proc/slabinfo ABI
5388  */
5389 #ifdef CONFIG_SLABINFO
5390 static void print_slabinfo_header(struct seq_file *m)
5391 {
5392 	seq_puts(m, "slabinfo - version: 2.1\n");
5393 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5394 		 "<objperslab> <pagesperslab>");
5395 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5396 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5397 	seq_putc(m, '\n');
5398 }
5399 
5400 static void *s_start(struct seq_file *m, loff_t *pos)
5401 {
5402 	loff_t n = *pos;
5403 
5404 	down_read(&slub_lock);
5405 	if (!n)
5406 		print_slabinfo_header(m);
5407 
5408 	return seq_list_start(&slab_caches, *pos);
5409 }
5410 
5411 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5412 {
5413 	return seq_list_next(p, &slab_caches, pos);
5414 }
5415 
5416 static void s_stop(struct seq_file *m, void *p)
5417 {
5418 	up_read(&slub_lock);
5419 }
5420 
5421 static int s_show(struct seq_file *m, void *p)
5422 {
5423 	unsigned long nr_partials = 0;
5424 	unsigned long nr_slabs = 0;
5425 	unsigned long nr_inuse = 0;
5426 	unsigned long nr_objs = 0;
5427 	unsigned long nr_free = 0;
5428 	struct kmem_cache *s;
5429 	int node;
5430 
5431 	s = list_entry(p, struct kmem_cache, list);
5432 
5433 	for_each_online_node(node) {
5434 		struct kmem_cache_node *n = get_node(s, node);
5435 
5436 		if (!n)
5437 			continue;
5438 
5439 		nr_partials += n->nr_partial;
5440 		nr_slabs += atomic_long_read(&n->nr_slabs);
5441 		nr_objs += atomic_long_read(&n->total_objects);
5442 		nr_free += count_partial(n, count_free);
5443 	}
5444 
5445 	nr_inuse = nr_objs - nr_free;
5446 
5447 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5448 		   nr_objs, s->size, oo_objects(s->oo),
5449 		   (1 << oo_order(s->oo)));
5450 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5451 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5452 		   0UL);
5453 	seq_putc(m, '\n');
5454 	return 0;
5455 }
5456 
5457 static const struct seq_operations slabinfo_op = {
5458 	.start = s_start,
5459 	.next = s_next,
5460 	.stop = s_stop,
5461 	.show = s_show,
5462 };
5463 
5464 static int slabinfo_open(struct inode *inode, struct file *file)
5465 {
5466 	return seq_open(file, &slabinfo_op);
5467 }
5468 
5469 static const struct file_operations proc_slabinfo_operations = {
5470 	.open		= slabinfo_open,
5471 	.read		= seq_read,
5472 	.llseek		= seq_lseek,
5473 	.release	= seq_release,
5474 };
5475 
5476 static int __init slab_proc_init(void)
5477 {
5478 	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5479 	return 0;
5480 }
5481 module_init(slab_proc_init);
5482 #endif /* CONFIG_SLABINFO */
5483