1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kmemtrace.h> 21 #include <linux/kmemcheck.h> 22 #include <linux/cpu.h> 23 #include <linux/cpuset.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 32 /* 33 * Lock order: 34 * 1. slab_lock(page) 35 * 2. slab->list_lock 36 * 37 * The slab_lock protects operations on the object of a particular 38 * slab and its metadata in the page struct. If the slab lock 39 * has been taken then no allocations nor frees can be performed 40 * on the objects in the slab nor can the slab be added or removed 41 * from the partial or full lists since this would mean modifying 42 * the page_struct of the slab. 43 * 44 * The list_lock protects the partial and full list on each node and 45 * the partial slab counter. If taken then no new slabs may be added or 46 * removed from the lists nor make the number of partial slabs be modified. 47 * (Note that the total number of slabs is an atomic value that may be 48 * modified without taking the list lock). 49 * 50 * The list_lock is a centralized lock and thus we avoid taking it as 51 * much as possible. As long as SLUB does not have to handle partial 52 * slabs, operations can continue without any centralized lock. F.e. 53 * allocating a long series of objects that fill up slabs does not require 54 * the list lock. 55 * 56 * The lock order is sometimes inverted when we are trying to get a slab 57 * off a list. We take the list_lock and then look for a page on the list 58 * to use. While we do that objects in the slabs may be freed. We can 59 * only operate on the slab if we have also taken the slab_lock. So we use 60 * a slab_trylock() on the slab. If trylock was successful then no frees 61 * can occur anymore and we can use the slab for allocations etc. If the 62 * slab_trylock() does not succeed then frees are in progress in the slab and 63 * we must stay away from it for a while since we may cause a bouncing 64 * cacheline if we try to acquire the lock. So go onto the next slab. 65 * If all pages are busy then we may allocate a new slab instead of reusing 66 * a partial slab. A new slab has noone operating on it and thus there is 67 * no danger of cacheline contention. 68 * 69 * Interrupts are disabled during allocation and deallocation in order to 70 * make the slab allocator safe to use in the context of an irq. In addition 71 * interrupts are disabled to ensure that the processor does not change 72 * while handling per_cpu slabs, due to kernel preemption. 73 * 74 * SLUB assigns one slab for allocation to each processor. 75 * Allocations only occur from these slabs called cpu slabs. 76 * 77 * Slabs with free elements are kept on a partial list and during regular 78 * operations no list for full slabs is used. If an object in a full slab is 79 * freed then the slab will show up again on the partial lists. 80 * We track full slabs for debugging purposes though because otherwise we 81 * cannot scan all objects. 82 * 83 * Slabs are freed when they become empty. Teardown and setup is 84 * minimal so we rely on the page allocators per cpu caches for 85 * fast frees and allocs. 86 * 87 * Overloading of page flags that are otherwise used for LRU management. 88 * 89 * PageActive The slab is frozen and exempt from list processing. 90 * This means that the slab is dedicated to a purpose 91 * such as satisfying allocations for a specific 92 * processor. Objects may be freed in the slab while 93 * it is frozen but slab_free will then skip the usual 94 * list operations. It is up to the processor holding 95 * the slab to integrate the slab into the slab lists 96 * when the slab is no longer needed. 97 * 98 * One use of this flag is to mark slabs that are 99 * used for allocations. Then such a slab becomes a cpu 100 * slab. The cpu slab may be equipped with an additional 101 * freelist that allows lockless access to 102 * free objects in addition to the regular freelist 103 * that requires the slab lock. 104 * 105 * PageError Slab requires special handling due to debug 106 * options set. This moves slab handling out of 107 * the fast path and disables lockless freelists. 108 */ 109 110 #ifdef CONFIG_SLUB_DEBUG 111 #define SLABDEBUG 1 112 #else 113 #define SLABDEBUG 0 114 #endif 115 116 /* 117 * Issues still to be resolved: 118 * 119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 120 * 121 * - Variable sizing of the per node arrays 122 */ 123 124 /* Enable to test recovery from slab corruption on boot */ 125 #undef SLUB_RESILIENCY_TEST 126 127 /* 128 * Mininum number of partial slabs. These will be left on the partial 129 * lists even if they are empty. kmem_cache_shrink may reclaim them. 130 */ 131 #define MIN_PARTIAL 5 132 133 /* 134 * Maximum number of desirable partial slabs. 135 * The existence of more partial slabs makes kmem_cache_shrink 136 * sort the partial list by the number of objects in the. 137 */ 138 #define MAX_PARTIAL 10 139 140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 141 SLAB_POISON | SLAB_STORE_USER) 142 143 /* 144 * Debugging flags that require metadata to be stored in the slab. These get 145 * disabled when slub_debug=O is used and a cache's min order increases with 146 * metadata. 147 */ 148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 149 150 /* 151 * Set of flags that will prevent slab merging 152 */ 153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 155 SLAB_FAILSLAB) 156 157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 158 SLAB_CACHE_DMA | SLAB_NOTRACK) 159 160 #define OO_SHIFT 16 161 #define OO_MASK ((1 << OO_SHIFT) - 1) 162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 163 164 /* Internal SLUB flags */ 165 #define __OBJECT_POISON 0x80000000 /* Poison object */ 166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 167 168 static int kmem_size = sizeof(struct kmem_cache); 169 170 #ifdef CONFIG_SMP 171 static struct notifier_block slab_notifier; 172 #endif 173 174 static enum { 175 DOWN, /* No slab functionality available */ 176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 177 UP, /* Everything works but does not show up in sysfs */ 178 SYSFS /* Sysfs up */ 179 } slab_state = DOWN; 180 181 /* A list of all slab caches on the system */ 182 static DECLARE_RWSEM(slub_lock); 183 static LIST_HEAD(slab_caches); 184 185 /* 186 * Tracking user of a slab. 187 */ 188 struct track { 189 unsigned long addr; /* Called from address */ 190 int cpu; /* Was running on cpu */ 191 int pid; /* Pid context */ 192 unsigned long when; /* When did the operation occur */ 193 }; 194 195 enum track_item { TRACK_ALLOC, TRACK_FREE }; 196 197 #ifdef CONFIG_SLUB_DEBUG 198 static int sysfs_slab_add(struct kmem_cache *); 199 static int sysfs_slab_alias(struct kmem_cache *, const char *); 200 static void sysfs_slab_remove(struct kmem_cache *); 201 202 #else 203 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 204 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 205 { return 0; } 206 static inline void sysfs_slab_remove(struct kmem_cache *s) 207 { 208 kfree(s); 209 } 210 211 #endif 212 213 static inline void stat(struct kmem_cache *s, enum stat_item si) 214 { 215 #ifdef CONFIG_SLUB_STATS 216 __this_cpu_inc(s->cpu_slab->stat[si]); 217 #endif 218 } 219 220 /******************************************************************** 221 * Core slab cache functions 222 *******************************************************************/ 223 224 int slab_is_available(void) 225 { 226 return slab_state >= UP; 227 } 228 229 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 230 { 231 #ifdef CONFIG_NUMA 232 return s->node[node]; 233 #else 234 return &s->local_node; 235 #endif 236 } 237 238 /* Verify that a pointer has an address that is valid within a slab page */ 239 static inline int check_valid_pointer(struct kmem_cache *s, 240 struct page *page, const void *object) 241 { 242 void *base; 243 244 if (!object) 245 return 1; 246 247 base = page_address(page); 248 if (object < base || object >= base + page->objects * s->size || 249 (object - base) % s->size) { 250 return 0; 251 } 252 253 return 1; 254 } 255 256 static inline void *get_freepointer(struct kmem_cache *s, void *object) 257 { 258 return *(void **)(object + s->offset); 259 } 260 261 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 262 { 263 *(void **)(object + s->offset) = fp; 264 } 265 266 /* Loop over all objects in a slab */ 267 #define for_each_object(__p, __s, __addr, __objects) \ 268 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 269 __p += (__s)->size) 270 271 /* Scan freelist */ 272 #define for_each_free_object(__p, __s, __free) \ 273 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 274 275 /* Determine object index from a given position */ 276 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 277 { 278 return (p - addr) / s->size; 279 } 280 281 static inline struct kmem_cache_order_objects oo_make(int order, 282 unsigned long size) 283 { 284 struct kmem_cache_order_objects x = { 285 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 286 }; 287 288 return x; 289 } 290 291 static inline int oo_order(struct kmem_cache_order_objects x) 292 { 293 return x.x >> OO_SHIFT; 294 } 295 296 static inline int oo_objects(struct kmem_cache_order_objects x) 297 { 298 return x.x & OO_MASK; 299 } 300 301 #ifdef CONFIG_SLUB_DEBUG 302 /* 303 * Debug settings: 304 */ 305 #ifdef CONFIG_SLUB_DEBUG_ON 306 static int slub_debug = DEBUG_DEFAULT_FLAGS; 307 #else 308 static int slub_debug; 309 #endif 310 311 static char *slub_debug_slabs; 312 static int disable_higher_order_debug; 313 314 /* 315 * Object debugging 316 */ 317 static void print_section(char *text, u8 *addr, unsigned int length) 318 { 319 int i, offset; 320 int newline = 1; 321 char ascii[17]; 322 323 ascii[16] = 0; 324 325 for (i = 0; i < length; i++) { 326 if (newline) { 327 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 328 newline = 0; 329 } 330 printk(KERN_CONT " %02x", addr[i]); 331 offset = i % 16; 332 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 333 if (offset == 15) { 334 printk(KERN_CONT " %s\n", ascii); 335 newline = 1; 336 } 337 } 338 if (!newline) { 339 i %= 16; 340 while (i < 16) { 341 printk(KERN_CONT " "); 342 ascii[i] = ' '; 343 i++; 344 } 345 printk(KERN_CONT " %s\n", ascii); 346 } 347 } 348 349 static struct track *get_track(struct kmem_cache *s, void *object, 350 enum track_item alloc) 351 { 352 struct track *p; 353 354 if (s->offset) 355 p = object + s->offset + sizeof(void *); 356 else 357 p = object + s->inuse; 358 359 return p + alloc; 360 } 361 362 static void set_track(struct kmem_cache *s, void *object, 363 enum track_item alloc, unsigned long addr) 364 { 365 struct track *p = get_track(s, object, alloc); 366 367 if (addr) { 368 p->addr = addr; 369 p->cpu = smp_processor_id(); 370 p->pid = current->pid; 371 p->when = jiffies; 372 } else 373 memset(p, 0, sizeof(struct track)); 374 } 375 376 static void init_tracking(struct kmem_cache *s, void *object) 377 { 378 if (!(s->flags & SLAB_STORE_USER)) 379 return; 380 381 set_track(s, object, TRACK_FREE, 0UL); 382 set_track(s, object, TRACK_ALLOC, 0UL); 383 } 384 385 static void print_track(const char *s, struct track *t) 386 { 387 if (!t->addr) 388 return; 389 390 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 391 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 392 } 393 394 static void print_tracking(struct kmem_cache *s, void *object) 395 { 396 if (!(s->flags & SLAB_STORE_USER)) 397 return; 398 399 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 400 print_track("Freed", get_track(s, object, TRACK_FREE)); 401 } 402 403 static void print_page_info(struct page *page) 404 { 405 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 406 page, page->objects, page->inuse, page->freelist, page->flags); 407 408 } 409 410 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 411 { 412 va_list args; 413 char buf[100]; 414 415 va_start(args, fmt); 416 vsnprintf(buf, sizeof(buf), fmt, args); 417 va_end(args); 418 printk(KERN_ERR "========================================" 419 "=====================================\n"); 420 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 421 printk(KERN_ERR "----------------------------------------" 422 "-------------------------------------\n\n"); 423 } 424 425 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 426 { 427 va_list args; 428 char buf[100]; 429 430 va_start(args, fmt); 431 vsnprintf(buf, sizeof(buf), fmt, args); 432 va_end(args); 433 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 434 } 435 436 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 437 { 438 unsigned int off; /* Offset of last byte */ 439 u8 *addr = page_address(page); 440 441 print_tracking(s, p); 442 443 print_page_info(page); 444 445 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 446 p, p - addr, get_freepointer(s, p)); 447 448 if (p > addr + 16) 449 print_section("Bytes b4", p - 16, 16); 450 451 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 452 453 if (s->flags & SLAB_RED_ZONE) 454 print_section("Redzone", p + s->objsize, 455 s->inuse - s->objsize); 456 457 if (s->offset) 458 off = s->offset + sizeof(void *); 459 else 460 off = s->inuse; 461 462 if (s->flags & SLAB_STORE_USER) 463 off += 2 * sizeof(struct track); 464 465 if (off != s->size) 466 /* Beginning of the filler is the free pointer */ 467 print_section("Padding", p + off, s->size - off); 468 469 dump_stack(); 470 } 471 472 static void object_err(struct kmem_cache *s, struct page *page, 473 u8 *object, char *reason) 474 { 475 slab_bug(s, "%s", reason); 476 print_trailer(s, page, object); 477 } 478 479 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 480 { 481 va_list args; 482 char buf[100]; 483 484 va_start(args, fmt); 485 vsnprintf(buf, sizeof(buf), fmt, args); 486 va_end(args); 487 slab_bug(s, "%s", buf); 488 print_page_info(page); 489 dump_stack(); 490 } 491 492 static void init_object(struct kmem_cache *s, void *object, int active) 493 { 494 u8 *p = object; 495 496 if (s->flags & __OBJECT_POISON) { 497 memset(p, POISON_FREE, s->objsize - 1); 498 p[s->objsize - 1] = POISON_END; 499 } 500 501 if (s->flags & SLAB_RED_ZONE) 502 memset(p + s->objsize, 503 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 504 s->inuse - s->objsize); 505 } 506 507 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 508 { 509 while (bytes) { 510 if (*start != (u8)value) 511 return start; 512 start++; 513 bytes--; 514 } 515 return NULL; 516 } 517 518 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 519 void *from, void *to) 520 { 521 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 522 memset(from, data, to - from); 523 } 524 525 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 526 u8 *object, char *what, 527 u8 *start, unsigned int value, unsigned int bytes) 528 { 529 u8 *fault; 530 u8 *end; 531 532 fault = check_bytes(start, value, bytes); 533 if (!fault) 534 return 1; 535 536 end = start + bytes; 537 while (end > fault && end[-1] == value) 538 end--; 539 540 slab_bug(s, "%s overwritten", what); 541 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 542 fault, end - 1, fault[0], value); 543 print_trailer(s, page, object); 544 545 restore_bytes(s, what, value, fault, end); 546 return 0; 547 } 548 549 /* 550 * Object layout: 551 * 552 * object address 553 * Bytes of the object to be managed. 554 * If the freepointer may overlay the object then the free 555 * pointer is the first word of the object. 556 * 557 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 558 * 0xa5 (POISON_END) 559 * 560 * object + s->objsize 561 * Padding to reach word boundary. This is also used for Redzoning. 562 * Padding is extended by another word if Redzoning is enabled and 563 * objsize == inuse. 564 * 565 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 566 * 0xcc (RED_ACTIVE) for objects in use. 567 * 568 * object + s->inuse 569 * Meta data starts here. 570 * 571 * A. Free pointer (if we cannot overwrite object on free) 572 * B. Tracking data for SLAB_STORE_USER 573 * C. Padding to reach required alignment boundary or at mininum 574 * one word if debugging is on to be able to detect writes 575 * before the word boundary. 576 * 577 * Padding is done using 0x5a (POISON_INUSE) 578 * 579 * object + s->size 580 * Nothing is used beyond s->size. 581 * 582 * If slabcaches are merged then the objsize and inuse boundaries are mostly 583 * ignored. And therefore no slab options that rely on these boundaries 584 * may be used with merged slabcaches. 585 */ 586 587 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 588 { 589 unsigned long off = s->inuse; /* The end of info */ 590 591 if (s->offset) 592 /* Freepointer is placed after the object. */ 593 off += sizeof(void *); 594 595 if (s->flags & SLAB_STORE_USER) 596 /* We also have user information there */ 597 off += 2 * sizeof(struct track); 598 599 if (s->size == off) 600 return 1; 601 602 return check_bytes_and_report(s, page, p, "Object padding", 603 p + off, POISON_INUSE, s->size - off); 604 } 605 606 /* Check the pad bytes at the end of a slab page */ 607 static int slab_pad_check(struct kmem_cache *s, struct page *page) 608 { 609 u8 *start; 610 u8 *fault; 611 u8 *end; 612 int length; 613 int remainder; 614 615 if (!(s->flags & SLAB_POISON)) 616 return 1; 617 618 start = page_address(page); 619 length = (PAGE_SIZE << compound_order(page)); 620 end = start + length; 621 remainder = length % s->size; 622 if (!remainder) 623 return 1; 624 625 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 626 if (!fault) 627 return 1; 628 while (end > fault && end[-1] == POISON_INUSE) 629 end--; 630 631 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 632 print_section("Padding", end - remainder, remainder); 633 634 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 635 return 0; 636 } 637 638 static int check_object(struct kmem_cache *s, struct page *page, 639 void *object, int active) 640 { 641 u8 *p = object; 642 u8 *endobject = object + s->objsize; 643 644 if (s->flags & SLAB_RED_ZONE) { 645 unsigned int red = 646 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 647 648 if (!check_bytes_and_report(s, page, object, "Redzone", 649 endobject, red, s->inuse - s->objsize)) 650 return 0; 651 } else { 652 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 653 check_bytes_and_report(s, page, p, "Alignment padding", 654 endobject, POISON_INUSE, s->inuse - s->objsize); 655 } 656 } 657 658 if (s->flags & SLAB_POISON) { 659 if (!active && (s->flags & __OBJECT_POISON) && 660 (!check_bytes_and_report(s, page, p, "Poison", p, 661 POISON_FREE, s->objsize - 1) || 662 !check_bytes_and_report(s, page, p, "Poison", 663 p + s->objsize - 1, POISON_END, 1))) 664 return 0; 665 /* 666 * check_pad_bytes cleans up on its own. 667 */ 668 check_pad_bytes(s, page, p); 669 } 670 671 if (!s->offset && active) 672 /* 673 * Object and freepointer overlap. Cannot check 674 * freepointer while object is allocated. 675 */ 676 return 1; 677 678 /* Check free pointer validity */ 679 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 680 object_err(s, page, p, "Freepointer corrupt"); 681 /* 682 * No choice but to zap it and thus lose the remainder 683 * of the free objects in this slab. May cause 684 * another error because the object count is now wrong. 685 */ 686 set_freepointer(s, p, NULL); 687 return 0; 688 } 689 return 1; 690 } 691 692 static int check_slab(struct kmem_cache *s, struct page *page) 693 { 694 int maxobj; 695 696 VM_BUG_ON(!irqs_disabled()); 697 698 if (!PageSlab(page)) { 699 slab_err(s, page, "Not a valid slab page"); 700 return 0; 701 } 702 703 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 704 if (page->objects > maxobj) { 705 slab_err(s, page, "objects %u > max %u", 706 s->name, page->objects, maxobj); 707 return 0; 708 } 709 if (page->inuse > page->objects) { 710 slab_err(s, page, "inuse %u > max %u", 711 s->name, page->inuse, page->objects); 712 return 0; 713 } 714 /* Slab_pad_check fixes things up after itself */ 715 slab_pad_check(s, page); 716 return 1; 717 } 718 719 /* 720 * Determine if a certain object on a page is on the freelist. Must hold the 721 * slab lock to guarantee that the chains are in a consistent state. 722 */ 723 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 724 { 725 int nr = 0; 726 void *fp = page->freelist; 727 void *object = NULL; 728 unsigned long max_objects; 729 730 while (fp && nr <= page->objects) { 731 if (fp == search) 732 return 1; 733 if (!check_valid_pointer(s, page, fp)) { 734 if (object) { 735 object_err(s, page, object, 736 "Freechain corrupt"); 737 set_freepointer(s, object, NULL); 738 break; 739 } else { 740 slab_err(s, page, "Freepointer corrupt"); 741 page->freelist = NULL; 742 page->inuse = page->objects; 743 slab_fix(s, "Freelist cleared"); 744 return 0; 745 } 746 break; 747 } 748 object = fp; 749 fp = get_freepointer(s, object); 750 nr++; 751 } 752 753 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 754 if (max_objects > MAX_OBJS_PER_PAGE) 755 max_objects = MAX_OBJS_PER_PAGE; 756 757 if (page->objects != max_objects) { 758 slab_err(s, page, "Wrong number of objects. Found %d but " 759 "should be %d", page->objects, max_objects); 760 page->objects = max_objects; 761 slab_fix(s, "Number of objects adjusted."); 762 } 763 if (page->inuse != page->objects - nr) { 764 slab_err(s, page, "Wrong object count. Counter is %d but " 765 "counted were %d", page->inuse, page->objects - nr); 766 page->inuse = page->objects - nr; 767 slab_fix(s, "Object count adjusted."); 768 } 769 return search == NULL; 770 } 771 772 static void trace(struct kmem_cache *s, struct page *page, void *object, 773 int alloc) 774 { 775 if (s->flags & SLAB_TRACE) { 776 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 777 s->name, 778 alloc ? "alloc" : "free", 779 object, page->inuse, 780 page->freelist); 781 782 if (!alloc) 783 print_section("Object", (void *)object, s->objsize); 784 785 dump_stack(); 786 } 787 } 788 789 /* 790 * Tracking of fully allocated slabs for debugging purposes. 791 */ 792 static void add_full(struct kmem_cache_node *n, struct page *page) 793 { 794 spin_lock(&n->list_lock); 795 list_add(&page->lru, &n->full); 796 spin_unlock(&n->list_lock); 797 } 798 799 static void remove_full(struct kmem_cache *s, struct page *page) 800 { 801 struct kmem_cache_node *n; 802 803 if (!(s->flags & SLAB_STORE_USER)) 804 return; 805 806 n = get_node(s, page_to_nid(page)); 807 808 spin_lock(&n->list_lock); 809 list_del(&page->lru); 810 spin_unlock(&n->list_lock); 811 } 812 813 /* Tracking of the number of slabs for debugging purposes */ 814 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 815 { 816 struct kmem_cache_node *n = get_node(s, node); 817 818 return atomic_long_read(&n->nr_slabs); 819 } 820 821 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 822 { 823 return atomic_long_read(&n->nr_slabs); 824 } 825 826 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 827 { 828 struct kmem_cache_node *n = get_node(s, node); 829 830 /* 831 * May be called early in order to allocate a slab for the 832 * kmem_cache_node structure. Solve the chicken-egg 833 * dilemma by deferring the increment of the count during 834 * bootstrap (see early_kmem_cache_node_alloc). 835 */ 836 if (!NUMA_BUILD || n) { 837 atomic_long_inc(&n->nr_slabs); 838 atomic_long_add(objects, &n->total_objects); 839 } 840 } 841 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 842 { 843 struct kmem_cache_node *n = get_node(s, node); 844 845 atomic_long_dec(&n->nr_slabs); 846 atomic_long_sub(objects, &n->total_objects); 847 } 848 849 /* Object debug checks for alloc/free paths */ 850 static void setup_object_debug(struct kmem_cache *s, struct page *page, 851 void *object) 852 { 853 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 854 return; 855 856 init_object(s, object, 0); 857 init_tracking(s, object); 858 } 859 860 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 861 void *object, unsigned long addr) 862 { 863 if (!check_slab(s, page)) 864 goto bad; 865 866 if (!on_freelist(s, page, object)) { 867 object_err(s, page, object, "Object already allocated"); 868 goto bad; 869 } 870 871 if (!check_valid_pointer(s, page, object)) { 872 object_err(s, page, object, "Freelist Pointer check fails"); 873 goto bad; 874 } 875 876 if (!check_object(s, page, object, 0)) 877 goto bad; 878 879 /* Success perform special debug activities for allocs */ 880 if (s->flags & SLAB_STORE_USER) 881 set_track(s, object, TRACK_ALLOC, addr); 882 trace(s, page, object, 1); 883 init_object(s, object, 1); 884 return 1; 885 886 bad: 887 if (PageSlab(page)) { 888 /* 889 * If this is a slab page then lets do the best we can 890 * to avoid issues in the future. Marking all objects 891 * as used avoids touching the remaining objects. 892 */ 893 slab_fix(s, "Marking all objects used"); 894 page->inuse = page->objects; 895 page->freelist = NULL; 896 } 897 return 0; 898 } 899 900 static int free_debug_processing(struct kmem_cache *s, struct page *page, 901 void *object, unsigned long addr) 902 { 903 if (!check_slab(s, page)) 904 goto fail; 905 906 if (!check_valid_pointer(s, page, object)) { 907 slab_err(s, page, "Invalid object pointer 0x%p", object); 908 goto fail; 909 } 910 911 if (on_freelist(s, page, object)) { 912 object_err(s, page, object, "Object already free"); 913 goto fail; 914 } 915 916 if (!check_object(s, page, object, 1)) 917 return 0; 918 919 if (unlikely(s != page->slab)) { 920 if (!PageSlab(page)) { 921 slab_err(s, page, "Attempt to free object(0x%p) " 922 "outside of slab", object); 923 } else if (!page->slab) { 924 printk(KERN_ERR 925 "SLUB <none>: no slab for object 0x%p.\n", 926 object); 927 dump_stack(); 928 } else 929 object_err(s, page, object, 930 "page slab pointer corrupt."); 931 goto fail; 932 } 933 934 /* Special debug activities for freeing objects */ 935 if (!PageSlubFrozen(page) && !page->freelist) 936 remove_full(s, page); 937 if (s->flags & SLAB_STORE_USER) 938 set_track(s, object, TRACK_FREE, addr); 939 trace(s, page, object, 0); 940 init_object(s, object, 0); 941 return 1; 942 943 fail: 944 slab_fix(s, "Object at 0x%p not freed", object); 945 return 0; 946 } 947 948 static int __init setup_slub_debug(char *str) 949 { 950 slub_debug = DEBUG_DEFAULT_FLAGS; 951 if (*str++ != '=' || !*str) 952 /* 953 * No options specified. Switch on full debugging. 954 */ 955 goto out; 956 957 if (*str == ',') 958 /* 959 * No options but restriction on slabs. This means full 960 * debugging for slabs matching a pattern. 961 */ 962 goto check_slabs; 963 964 if (tolower(*str) == 'o') { 965 /* 966 * Avoid enabling debugging on caches if its minimum order 967 * would increase as a result. 968 */ 969 disable_higher_order_debug = 1; 970 goto out; 971 } 972 973 slub_debug = 0; 974 if (*str == '-') 975 /* 976 * Switch off all debugging measures. 977 */ 978 goto out; 979 980 /* 981 * Determine which debug features should be switched on 982 */ 983 for (; *str && *str != ','; str++) { 984 switch (tolower(*str)) { 985 case 'f': 986 slub_debug |= SLAB_DEBUG_FREE; 987 break; 988 case 'z': 989 slub_debug |= SLAB_RED_ZONE; 990 break; 991 case 'p': 992 slub_debug |= SLAB_POISON; 993 break; 994 case 'u': 995 slub_debug |= SLAB_STORE_USER; 996 break; 997 case 't': 998 slub_debug |= SLAB_TRACE; 999 break; 1000 case 'a': 1001 slub_debug |= SLAB_FAILSLAB; 1002 break; 1003 default: 1004 printk(KERN_ERR "slub_debug option '%c' " 1005 "unknown. skipped\n", *str); 1006 } 1007 } 1008 1009 check_slabs: 1010 if (*str == ',') 1011 slub_debug_slabs = str + 1; 1012 out: 1013 return 1; 1014 } 1015 1016 __setup("slub_debug", setup_slub_debug); 1017 1018 static unsigned long kmem_cache_flags(unsigned long objsize, 1019 unsigned long flags, const char *name, 1020 void (*ctor)(void *)) 1021 { 1022 /* 1023 * Enable debugging if selected on the kernel commandline. 1024 */ 1025 if (slub_debug && (!slub_debug_slabs || 1026 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1027 flags |= slub_debug; 1028 1029 return flags; 1030 } 1031 #else 1032 static inline void setup_object_debug(struct kmem_cache *s, 1033 struct page *page, void *object) {} 1034 1035 static inline int alloc_debug_processing(struct kmem_cache *s, 1036 struct page *page, void *object, unsigned long addr) { return 0; } 1037 1038 static inline int free_debug_processing(struct kmem_cache *s, 1039 struct page *page, void *object, unsigned long addr) { return 0; } 1040 1041 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1042 { return 1; } 1043 static inline int check_object(struct kmem_cache *s, struct page *page, 1044 void *object, int active) { return 1; } 1045 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1046 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1047 unsigned long flags, const char *name, 1048 void (*ctor)(void *)) 1049 { 1050 return flags; 1051 } 1052 #define slub_debug 0 1053 1054 #define disable_higher_order_debug 0 1055 1056 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1057 { return 0; } 1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1059 { return 0; } 1060 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1061 int objects) {} 1062 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1063 int objects) {} 1064 #endif 1065 1066 /* 1067 * Slab allocation and freeing 1068 */ 1069 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1070 struct kmem_cache_order_objects oo) 1071 { 1072 int order = oo_order(oo); 1073 1074 flags |= __GFP_NOTRACK; 1075 1076 if (node == -1) 1077 return alloc_pages(flags, order); 1078 else 1079 return alloc_pages_exact_node(node, flags, order); 1080 } 1081 1082 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1083 { 1084 struct page *page; 1085 struct kmem_cache_order_objects oo = s->oo; 1086 gfp_t alloc_gfp; 1087 1088 flags |= s->allocflags; 1089 1090 /* 1091 * Let the initial higher-order allocation fail under memory pressure 1092 * so we fall-back to the minimum order allocation. 1093 */ 1094 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1095 1096 page = alloc_slab_page(alloc_gfp, node, oo); 1097 if (unlikely(!page)) { 1098 oo = s->min; 1099 /* 1100 * Allocation may have failed due to fragmentation. 1101 * Try a lower order alloc if possible 1102 */ 1103 page = alloc_slab_page(flags, node, oo); 1104 if (!page) 1105 return NULL; 1106 1107 stat(s, ORDER_FALLBACK); 1108 } 1109 1110 if (kmemcheck_enabled 1111 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1112 int pages = 1 << oo_order(oo); 1113 1114 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1115 1116 /* 1117 * Objects from caches that have a constructor don't get 1118 * cleared when they're allocated, so we need to do it here. 1119 */ 1120 if (s->ctor) 1121 kmemcheck_mark_uninitialized_pages(page, pages); 1122 else 1123 kmemcheck_mark_unallocated_pages(page, pages); 1124 } 1125 1126 page->objects = oo_objects(oo); 1127 mod_zone_page_state(page_zone(page), 1128 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1129 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1130 1 << oo_order(oo)); 1131 1132 return page; 1133 } 1134 1135 static void setup_object(struct kmem_cache *s, struct page *page, 1136 void *object) 1137 { 1138 setup_object_debug(s, page, object); 1139 if (unlikely(s->ctor)) 1140 s->ctor(object); 1141 } 1142 1143 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1144 { 1145 struct page *page; 1146 void *start; 1147 void *last; 1148 void *p; 1149 1150 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1151 1152 page = allocate_slab(s, 1153 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1154 if (!page) 1155 goto out; 1156 1157 inc_slabs_node(s, page_to_nid(page), page->objects); 1158 page->slab = s; 1159 page->flags |= 1 << PG_slab; 1160 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1161 SLAB_STORE_USER | SLAB_TRACE)) 1162 __SetPageSlubDebug(page); 1163 1164 start = page_address(page); 1165 1166 if (unlikely(s->flags & SLAB_POISON)) 1167 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1168 1169 last = start; 1170 for_each_object(p, s, start, page->objects) { 1171 setup_object(s, page, last); 1172 set_freepointer(s, last, p); 1173 last = p; 1174 } 1175 setup_object(s, page, last); 1176 set_freepointer(s, last, NULL); 1177 1178 page->freelist = start; 1179 page->inuse = 0; 1180 out: 1181 return page; 1182 } 1183 1184 static void __free_slab(struct kmem_cache *s, struct page *page) 1185 { 1186 int order = compound_order(page); 1187 int pages = 1 << order; 1188 1189 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1190 void *p; 1191 1192 slab_pad_check(s, page); 1193 for_each_object(p, s, page_address(page), 1194 page->objects) 1195 check_object(s, page, p, 0); 1196 __ClearPageSlubDebug(page); 1197 } 1198 1199 kmemcheck_free_shadow(page, compound_order(page)); 1200 1201 mod_zone_page_state(page_zone(page), 1202 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1203 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1204 -pages); 1205 1206 __ClearPageSlab(page); 1207 reset_page_mapcount(page); 1208 if (current->reclaim_state) 1209 current->reclaim_state->reclaimed_slab += pages; 1210 __free_pages(page, order); 1211 } 1212 1213 static void rcu_free_slab(struct rcu_head *h) 1214 { 1215 struct page *page; 1216 1217 page = container_of((struct list_head *)h, struct page, lru); 1218 __free_slab(page->slab, page); 1219 } 1220 1221 static void free_slab(struct kmem_cache *s, struct page *page) 1222 { 1223 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1224 /* 1225 * RCU free overloads the RCU head over the LRU 1226 */ 1227 struct rcu_head *head = (void *)&page->lru; 1228 1229 call_rcu(head, rcu_free_slab); 1230 } else 1231 __free_slab(s, page); 1232 } 1233 1234 static void discard_slab(struct kmem_cache *s, struct page *page) 1235 { 1236 dec_slabs_node(s, page_to_nid(page), page->objects); 1237 free_slab(s, page); 1238 } 1239 1240 /* 1241 * Per slab locking using the pagelock 1242 */ 1243 static __always_inline void slab_lock(struct page *page) 1244 { 1245 bit_spin_lock(PG_locked, &page->flags); 1246 } 1247 1248 static __always_inline void slab_unlock(struct page *page) 1249 { 1250 __bit_spin_unlock(PG_locked, &page->flags); 1251 } 1252 1253 static __always_inline int slab_trylock(struct page *page) 1254 { 1255 int rc = 1; 1256 1257 rc = bit_spin_trylock(PG_locked, &page->flags); 1258 return rc; 1259 } 1260 1261 /* 1262 * Management of partially allocated slabs 1263 */ 1264 static void add_partial(struct kmem_cache_node *n, 1265 struct page *page, int tail) 1266 { 1267 spin_lock(&n->list_lock); 1268 n->nr_partial++; 1269 if (tail) 1270 list_add_tail(&page->lru, &n->partial); 1271 else 1272 list_add(&page->lru, &n->partial); 1273 spin_unlock(&n->list_lock); 1274 } 1275 1276 static void remove_partial(struct kmem_cache *s, struct page *page) 1277 { 1278 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1279 1280 spin_lock(&n->list_lock); 1281 list_del(&page->lru); 1282 n->nr_partial--; 1283 spin_unlock(&n->list_lock); 1284 } 1285 1286 /* 1287 * Lock slab and remove from the partial list. 1288 * 1289 * Must hold list_lock. 1290 */ 1291 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1292 struct page *page) 1293 { 1294 if (slab_trylock(page)) { 1295 list_del(&page->lru); 1296 n->nr_partial--; 1297 __SetPageSlubFrozen(page); 1298 return 1; 1299 } 1300 return 0; 1301 } 1302 1303 /* 1304 * Try to allocate a partial slab from a specific node. 1305 */ 1306 static struct page *get_partial_node(struct kmem_cache_node *n) 1307 { 1308 struct page *page; 1309 1310 /* 1311 * Racy check. If we mistakenly see no partial slabs then we 1312 * just allocate an empty slab. If we mistakenly try to get a 1313 * partial slab and there is none available then get_partials() 1314 * will return NULL. 1315 */ 1316 if (!n || !n->nr_partial) 1317 return NULL; 1318 1319 spin_lock(&n->list_lock); 1320 list_for_each_entry(page, &n->partial, lru) 1321 if (lock_and_freeze_slab(n, page)) 1322 goto out; 1323 page = NULL; 1324 out: 1325 spin_unlock(&n->list_lock); 1326 return page; 1327 } 1328 1329 /* 1330 * Get a page from somewhere. Search in increasing NUMA distances. 1331 */ 1332 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1333 { 1334 #ifdef CONFIG_NUMA 1335 struct zonelist *zonelist; 1336 struct zoneref *z; 1337 struct zone *zone; 1338 enum zone_type high_zoneidx = gfp_zone(flags); 1339 struct page *page; 1340 1341 /* 1342 * The defrag ratio allows a configuration of the tradeoffs between 1343 * inter node defragmentation and node local allocations. A lower 1344 * defrag_ratio increases the tendency to do local allocations 1345 * instead of attempting to obtain partial slabs from other nodes. 1346 * 1347 * If the defrag_ratio is set to 0 then kmalloc() always 1348 * returns node local objects. If the ratio is higher then kmalloc() 1349 * may return off node objects because partial slabs are obtained 1350 * from other nodes and filled up. 1351 * 1352 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1353 * defrag_ratio = 1000) then every (well almost) allocation will 1354 * first attempt to defrag slab caches on other nodes. This means 1355 * scanning over all nodes to look for partial slabs which may be 1356 * expensive if we do it every time we are trying to find a slab 1357 * with available objects. 1358 */ 1359 if (!s->remote_node_defrag_ratio || 1360 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1361 return NULL; 1362 1363 get_mems_allowed(); 1364 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1365 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1366 struct kmem_cache_node *n; 1367 1368 n = get_node(s, zone_to_nid(zone)); 1369 1370 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1371 n->nr_partial > s->min_partial) { 1372 page = get_partial_node(n); 1373 if (page) { 1374 put_mems_allowed(); 1375 return page; 1376 } 1377 } 1378 } 1379 put_mems_allowed(); 1380 #endif 1381 return NULL; 1382 } 1383 1384 /* 1385 * Get a partial page, lock it and return it. 1386 */ 1387 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1388 { 1389 struct page *page; 1390 int searchnode = (node == -1) ? numa_node_id() : node; 1391 1392 page = get_partial_node(get_node(s, searchnode)); 1393 if (page || (flags & __GFP_THISNODE)) 1394 return page; 1395 1396 return get_any_partial(s, flags); 1397 } 1398 1399 /* 1400 * Move a page back to the lists. 1401 * 1402 * Must be called with the slab lock held. 1403 * 1404 * On exit the slab lock will have been dropped. 1405 */ 1406 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1407 { 1408 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1409 1410 __ClearPageSlubFrozen(page); 1411 if (page->inuse) { 1412 1413 if (page->freelist) { 1414 add_partial(n, page, tail); 1415 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1416 } else { 1417 stat(s, DEACTIVATE_FULL); 1418 if (SLABDEBUG && PageSlubDebug(page) && 1419 (s->flags & SLAB_STORE_USER)) 1420 add_full(n, page); 1421 } 1422 slab_unlock(page); 1423 } else { 1424 stat(s, DEACTIVATE_EMPTY); 1425 if (n->nr_partial < s->min_partial) { 1426 /* 1427 * Adding an empty slab to the partial slabs in order 1428 * to avoid page allocator overhead. This slab needs 1429 * to come after the other slabs with objects in 1430 * so that the others get filled first. That way the 1431 * size of the partial list stays small. 1432 * 1433 * kmem_cache_shrink can reclaim any empty slabs from 1434 * the partial list. 1435 */ 1436 add_partial(n, page, 1); 1437 slab_unlock(page); 1438 } else { 1439 slab_unlock(page); 1440 stat(s, FREE_SLAB); 1441 discard_slab(s, page); 1442 } 1443 } 1444 } 1445 1446 /* 1447 * Remove the cpu slab 1448 */ 1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1450 { 1451 struct page *page = c->page; 1452 int tail = 1; 1453 1454 if (page->freelist) 1455 stat(s, DEACTIVATE_REMOTE_FREES); 1456 /* 1457 * Merge cpu freelist into slab freelist. Typically we get here 1458 * because both freelists are empty. So this is unlikely 1459 * to occur. 1460 */ 1461 while (unlikely(c->freelist)) { 1462 void **object; 1463 1464 tail = 0; /* Hot objects. Put the slab first */ 1465 1466 /* Retrieve object from cpu_freelist */ 1467 object = c->freelist; 1468 c->freelist = get_freepointer(s, c->freelist); 1469 1470 /* And put onto the regular freelist */ 1471 set_freepointer(s, object, page->freelist); 1472 page->freelist = object; 1473 page->inuse--; 1474 } 1475 c->page = NULL; 1476 unfreeze_slab(s, page, tail); 1477 } 1478 1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1480 { 1481 stat(s, CPUSLAB_FLUSH); 1482 slab_lock(c->page); 1483 deactivate_slab(s, c); 1484 } 1485 1486 /* 1487 * Flush cpu slab. 1488 * 1489 * Called from IPI handler with interrupts disabled. 1490 */ 1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1492 { 1493 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 1494 1495 if (likely(c && c->page)) 1496 flush_slab(s, c); 1497 } 1498 1499 static void flush_cpu_slab(void *d) 1500 { 1501 struct kmem_cache *s = d; 1502 1503 __flush_cpu_slab(s, smp_processor_id()); 1504 } 1505 1506 static void flush_all(struct kmem_cache *s) 1507 { 1508 on_each_cpu(flush_cpu_slab, s, 1); 1509 } 1510 1511 /* 1512 * Check if the objects in a per cpu structure fit numa 1513 * locality expectations. 1514 */ 1515 static inline int node_match(struct kmem_cache_cpu *c, int node) 1516 { 1517 #ifdef CONFIG_NUMA 1518 if (node != -1 && c->node != node) 1519 return 0; 1520 #endif 1521 return 1; 1522 } 1523 1524 static int count_free(struct page *page) 1525 { 1526 return page->objects - page->inuse; 1527 } 1528 1529 static unsigned long count_partial(struct kmem_cache_node *n, 1530 int (*get_count)(struct page *)) 1531 { 1532 unsigned long flags; 1533 unsigned long x = 0; 1534 struct page *page; 1535 1536 spin_lock_irqsave(&n->list_lock, flags); 1537 list_for_each_entry(page, &n->partial, lru) 1538 x += get_count(page); 1539 spin_unlock_irqrestore(&n->list_lock, flags); 1540 return x; 1541 } 1542 1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 1544 { 1545 #ifdef CONFIG_SLUB_DEBUG 1546 return atomic_long_read(&n->total_objects); 1547 #else 1548 return 0; 1549 #endif 1550 } 1551 1552 static noinline void 1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 1554 { 1555 int node; 1556 1557 printk(KERN_WARNING 1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1559 nid, gfpflags); 1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 1561 "default order: %d, min order: %d\n", s->name, s->objsize, 1562 s->size, oo_order(s->oo), oo_order(s->min)); 1563 1564 if (oo_order(s->min) > get_order(s->objsize)) 1565 printk(KERN_WARNING " %s debugging increased min order, use " 1566 "slub_debug=O to disable.\n", s->name); 1567 1568 for_each_online_node(node) { 1569 struct kmem_cache_node *n = get_node(s, node); 1570 unsigned long nr_slabs; 1571 unsigned long nr_objs; 1572 unsigned long nr_free; 1573 1574 if (!n) 1575 continue; 1576 1577 nr_free = count_partial(n, count_free); 1578 nr_slabs = node_nr_slabs(n); 1579 nr_objs = node_nr_objs(n); 1580 1581 printk(KERN_WARNING 1582 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 1583 node, nr_slabs, nr_objs, nr_free); 1584 } 1585 } 1586 1587 /* 1588 * Slow path. The lockless freelist is empty or we need to perform 1589 * debugging duties. 1590 * 1591 * Interrupts are disabled. 1592 * 1593 * Processing is still very fast if new objects have been freed to the 1594 * regular freelist. In that case we simply take over the regular freelist 1595 * as the lockless freelist and zap the regular freelist. 1596 * 1597 * If that is not working then we fall back to the partial lists. We take the 1598 * first element of the freelist as the object to allocate now and move the 1599 * rest of the freelist to the lockless freelist. 1600 * 1601 * And if we were unable to get a new slab from the partial slab lists then 1602 * we need to allocate a new slab. This is the slowest path since it involves 1603 * a call to the page allocator and the setup of a new slab. 1604 */ 1605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1606 unsigned long addr, struct kmem_cache_cpu *c) 1607 { 1608 void **object; 1609 struct page *new; 1610 1611 /* We handle __GFP_ZERO in the caller */ 1612 gfpflags &= ~__GFP_ZERO; 1613 1614 if (!c->page) 1615 goto new_slab; 1616 1617 slab_lock(c->page); 1618 if (unlikely(!node_match(c, node))) 1619 goto another_slab; 1620 1621 stat(s, ALLOC_REFILL); 1622 1623 load_freelist: 1624 object = c->page->freelist; 1625 if (unlikely(!object)) 1626 goto another_slab; 1627 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1628 goto debug; 1629 1630 c->freelist = get_freepointer(s, object); 1631 c->page->inuse = c->page->objects; 1632 c->page->freelist = NULL; 1633 c->node = page_to_nid(c->page); 1634 unlock_out: 1635 slab_unlock(c->page); 1636 stat(s, ALLOC_SLOWPATH); 1637 return object; 1638 1639 another_slab: 1640 deactivate_slab(s, c); 1641 1642 new_slab: 1643 new = get_partial(s, gfpflags, node); 1644 if (new) { 1645 c->page = new; 1646 stat(s, ALLOC_FROM_PARTIAL); 1647 goto load_freelist; 1648 } 1649 1650 if (gfpflags & __GFP_WAIT) 1651 local_irq_enable(); 1652 1653 new = new_slab(s, gfpflags, node); 1654 1655 if (gfpflags & __GFP_WAIT) 1656 local_irq_disable(); 1657 1658 if (new) { 1659 c = __this_cpu_ptr(s->cpu_slab); 1660 stat(s, ALLOC_SLAB); 1661 if (c->page) 1662 flush_slab(s, c); 1663 slab_lock(new); 1664 __SetPageSlubFrozen(new); 1665 c->page = new; 1666 goto load_freelist; 1667 } 1668 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 1669 slab_out_of_memory(s, gfpflags, node); 1670 return NULL; 1671 debug: 1672 if (!alloc_debug_processing(s, c->page, object, addr)) 1673 goto another_slab; 1674 1675 c->page->inuse++; 1676 c->page->freelist = get_freepointer(s, object); 1677 c->node = -1; 1678 goto unlock_out; 1679 } 1680 1681 /* 1682 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1683 * have the fastpath folded into their functions. So no function call 1684 * overhead for requests that can be satisfied on the fastpath. 1685 * 1686 * The fastpath works by first checking if the lockless freelist can be used. 1687 * If not then __slab_alloc is called for slow processing. 1688 * 1689 * Otherwise we can simply pick the next object from the lockless free list. 1690 */ 1691 static __always_inline void *slab_alloc(struct kmem_cache *s, 1692 gfp_t gfpflags, int node, unsigned long addr) 1693 { 1694 void **object; 1695 struct kmem_cache_cpu *c; 1696 unsigned long flags; 1697 1698 gfpflags &= gfp_allowed_mask; 1699 1700 lockdep_trace_alloc(gfpflags); 1701 might_sleep_if(gfpflags & __GFP_WAIT); 1702 1703 if (should_failslab(s->objsize, gfpflags, s->flags)) 1704 return NULL; 1705 1706 local_irq_save(flags); 1707 c = __this_cpu_ptr(s->cpu_slab); 1708 object = c->freelist; 1709 if (unlikely(!object || !node_match(c, node))) 1710 1711 object = __slab_alloc(s, gfpflags, node, addr, c); 1712 1713 else { 1714 c->freelist = get_freepointer(s, object); 1715 stat(s, ALLOC_FASTPATH); 1716 } 1717 local_irq_restore(flags); 1718 1719 if (unlikely(gfpflags & __GFP_ZERO) && object) 1720 memset(object, 0, s->objsize); 1721 1722 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize); 1723 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags); 1724 1725 return object; 1726 } 1727 1728 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1729 { 1730 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); 1731 1732 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1733 1734 return ret; 1735 } 1736 EXPORT_SYMBOL(kmem_cache_alloc); 1737 1738 #ifdef CONFIG_TRACING 1739 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1740 { 1741 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1742 } 1743 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1744 #endif 1745 1746 #ifdef CONFIG_NUMA 1747 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1748 { 1749 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1750 1751 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1752 s->objsize, s->size, gfpflags, node); 1753 1754 return ret; 1755 } 1756 EXPORT_SYMBOL(kmem_cache_alloc_node); 1757 #endif 1758 1759 #ifdef CONFIG_TRACING 1760 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1761 gfp_t gfpflags, 1762 int node) 1763 { 1764 return slab_alloc(s, gfpflags, node, _RET_IP_); 1765 } 1766 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1767 #endif 1768 1769 /* 1770 * Slow patch handling. This may still be called frequently since objects 1771 * have a longer lifetime than the cpu slabs in most processing loads. 1772 * 1773 * So we still attempt to reduce cache line usage. Just take the slab 1774 * lock and free the item. If there is no additional partial page 1775 * handling required then we can return immediately. 1776 */ 1777 static void __slab_free(struct kmem_cache *s, struct page *page, 1778 void *x, unsigned long addr) 1779 { 1780 void *prior; 1781 void **object = (void *)x; 1782 1783 stat(s, FREE_SLOWPATH); 1784 slab_lock(page); 1785 1786 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1787 goto debug; 1788 1789 checks_ok: 1790 prior = page->freelist; 1791 set_freepointer(s, object, prior); 1792 page->freelist = object; 1793 page->inuse--; 1794 1795 if (unlikely(PageSlubFrozen(page))) { 1796 stat(s, FREE_FROZEN); 1797 goto out_unlock; 1798 } 1799 1800 if (unlikely(!page->inuse)) 1801 goto slab_empty; 1802 1803 /* 1804 * Objects left in the slab. If it was not on the partial list before 1805 * then add it. 1806 */ 1807 if (unlikely(!prior)) { 1808 add_partial(get_node(s, page_to_nid(page)), page, 1); 1809 stat(s, FREE_ADD_PARTIAL); 1810 } 1811 1812 out_unlock: 1813 slab_unlock(page); 1814 return; 1815 1816 slab_empty: 1817 if (prior) { 1818 /* 1819 * Slab still on the partial list. 1820 */ 1821 remove_partial(s, page); 1822 stat(s, FREE_REMOVE_PARTIAL); 1823 } 1824 slab_unlock(page); 1825 stat(s, FREE_SLAB); 1826 discard_slab(s, page); 1827 return; 1828 1829 debug: 1830 if (!free_debug_processing(s, page, x, addr)) 1831 goto out_unlock; 1832 goto checks_ok; 1833 } 1834 1835 /* 1836 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1837 * can perform fastpath freeing without additional function calls. 1838 * 1839 * The fastpath is only possible if we are freeing to the current cpu slab 1840 * of this processor. This typically the case if we have just allocated 1841 * the item before. 1842 * 1843 * If fastpath is not possible then fall back to __slab_free where we deal 1844 * with all sorts of special processing. 1845 */ 1846 static __always_inline void slab_free(struct kmem_cache *s, 1847 struct page *page, void *x, unsigned long addr) 1848 { 1849 void **object = (void *)x; 1850 struct kmem_cache_cpu *c; 1851 unsigned long flags; 1852 1853 kmemleak_free_recursive(x, s->flags); 1854 local_irq_save(flags); 1855 c = __this_cpu_ptr(s->cpu_slab); 1856 kmemcheck_slab_free(s, object, s->objsize); 1857 debug_check_no_locks_freed(object, s->objsize); 1858 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1859 debug_check_no_obj_freed(object, s->objsize); 1860 if (likely(page == c->page && c->node >= 0)) { 1861 set_freepointer(s, object, c->freelist); 1862 c->freelist = object; 1863 stat(s, FREE_FASTPATH); 1864 } else 1865 __slab_free(s, page, x, addr); 1866 1867 local_irq_restore(flags); 1868 } 1869 1870 void kmem_cache_free(struct kmem_cache *s, void *x) 1871 { 1872 struct page *page; 1873 1874 page = virt_to_head_page(x); 1875 1876 slab_free(s, page, x, _RET_IP_); 1877 1878 trace_kmem_cache_free(_RET_IP_, x); 1879 } 1880 EXPORT_SYMBOL(kmem_cache_free); 1881 1882 /* Figure out on which slab page the object resides */ 1883 static struct page *get_object_page(const void *x) 1884 { 1885 struct page *page = virt_to_head_page(x); 1886 1887 if (!PageSlab(page)) 1888 return NULL; 1889 1890 return page; 1891 } 1892 1893 /* 1894 * Object placement in a slab is made very easy because we always start at 1895 * offset 0. If we tune the size of the object to the alignment then we can 1896 * get the required alignment by putting one properly sized object after 1897 * another. 1898 * 1899 * Notice that the allocation order determines the sizes of the per cpu 1900 * caches. Each processor has always one slab available for allocations. 1901 * Increasing the allocation order reduces the number of times that slabs 1902 * must be moved on and off the partial lists and is therefore a factor in 1903 * locking overhead. 1904 */ 1905 1906 /* 1907 * Mininum / Maximum order of slab pages. This influences locking overhead 1908 * and slab fragmentation. A higher order reduces the number of partial slabs 1909 * and increases the number of allocations possible without having to 1910 * take the list_lock. 1911 */ 1912 static int slub_min_order; 1913 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1914 static int slub_min_objects; 1915 1916 /* 1917 * Merge control. If this is set then no merging of slab caches will occur. 1918 * (Could be removed. This was introduced to pacify the merge skeptics.) 1919 */ 1920 static int slub_nomerge; 1921 1922 /* 1923 * Calculate the order of allocation given an slab object size. 1924 * 1925 * The order of allocation has significant impact on performance and other 1926 * system components. Generally order 0 allocations should be preferred since 1927 * order 0 does not cause fragmentation in the page allocator. Larger objects 1928 * be problematic to put into order 0 slabs because there may be too much 1929 * unused space left. We go to a higher order if more than 1/16th of the slab 1930 * would be wasted. 1931 * 1932 * In order to reach satisfactory performance we must ensure that a minimum 1933 * number of objects is in one slab. Otherwise we may generate too much 1934 * activity on the partial lists which requires taking the list_lock. This is 1935 * less a concern for large slabs though which are rarely used. 1936 * 1937 * slub_max_order specifies the order where we begin to stop considering the 1938 * number of objects in a slab as critical. If we reach slub_max_order then 1939 * we try to keep the page order as low as possible. So we accept more waste 1940 * of space in favor of a small page order. 1941 * 1942 * Higher order allocations also allow the placement of more objects in a 1943 * slab and thereby reduce object handling overhead. If the user has 1944 * requested a higher mininum order then we start with that one instead of 1945 * the smallest order which will fit the object. 1946 */ 1947 static inline int slab_order(int size, int min_objects, 1948 int max_order, int fract_leftover) 1949 { 1950 int order; 1951 int rem; 1952 int min_order = slub_min_order; 1953 1954 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1955 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1956 1957 for (order = max(min_order, 1958 fls(min_objects * size - 1) - PAGE_SHIFT); 1959 order <= max_order; order++) { 1960 1961 unsigned long slab_size = PAGE_SIZE << order; 1962 1963 if (slab_size < min_objects * size) 1964 continue; 1965 1966 rem = slab_size % size; 1967 1968 if (rem <= slab_size / fract_leftover) 1969 break; 1970 1971 } 1972 1973 return order; 1974 } 1975 1976 static inline int calculate_order(int size) 1977 { 1978 int order; 1979 int min_objects; 1980 int fraction; 1981 int max_objects; 1982 1983 /* 1984 * Attempt to find best configuration for a slab. This 1985 * works by first attempting to generate a layout with 1986 * the best configuration and backing off gradually. 1987 * 1988 * First we reduce the acceptable waste in a slab. Then 1989 * we reduce the minimum objects required in a slab. 1990 */ 1991 min_objects = slub_min_objects; 1992 if (!min_objects) 1993 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1994 max_objects = (PAGE_SIZE << slub_max_order)/size; 1995 min_objects = min(min_objects, max_objects); 1996 1997 while (min_objects > 1) { 1998 fraction = 16; 1999 while (fraction >= 4) { 2000 order = slab_order(size, min_objects, 2001 slub_max_order, fraction); 2002 if (order <= slub_max_order) 2003 return order; 2004 fraction /= 2; 2005 } 2006 min_objects--; 2007 } 2008 2009 /* 2010 * We were unable to place multiple objects in a slab. Now 2011 * lets see if we can place a single object there. 2012 */ 2013 order = slab_order(size, 1, slub_max_order, 1); 2014 if (order <= slub_max_order) 2015 return order; 2016 2017 /* 2018 * Doh this slab cannot be placed using slub_max_order. 2019 */ 2020 order = slab_order(size, 1, MAX_ORDER, 1); 2021 if (order < MAX_ORDER) 2022 return order; 2023 return -ENOSYS; 2024 } 2025 2026 /* 2027 * Figure out what the alignment of the objects will be. 2028 */ 2029 static unsigned long calculate_alignment(unsigned long flags, 2030 unsigned long align, unsigned long size) 2031 { 2032 /* 2033 * If the user wants hardware cache aligned objects then follow that 2034 * suggestion if the object is sufficiently large. 2035 * 2036 * The hardware cache alignment cannot override the specified 2037 * alignment though. If that is greater then use it. 2038 */ 2039 if (flags & SLAB_HWCACHE_ALIGN) { 2040 unsigned long ralign = cache_line_size(); 2041 while (size <= ralign / 2) 2042 ralign /= 2; 2043 align = max(align, ralign); 2044 } 2045 2046 if (align < ARCH_SLAB_MINALIGN) 2047 align = ARCH_SLAB_MINALIGN; 2048 2049 return ALIGN(align, sizeof(void *)); 2050 } 2051 2052 static void 2053 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2054 { 2055 n->nr_partial = 0; 2056 spin_lock_init(&n->list_lock); 2057 INIT_LIST_HEAD(&n->partial); 2058 #ifdef CONFIG_SLUB_DEBUG 2059 atomic_long_set(&n->nr_slabs, 0); 2060 atomic_long_set(&n->total_objects, 0); 2061 INIT_LIST_HEAD(&n->full); 2062 #endif 2063 } 2064 2065 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]); 2066 2067 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2068 { 2069 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches) 2070 /* 2071 * Boot time creation of the kmalloc array. Use static per cpu data 2072 * since the per cpu allocator is not available yet. 2073 */ 2074 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches); 2075 else 2076 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu); 2077 2078 if (!s->cpu_slab) 2079 return 0; 2080 2081 return 1; 2082 } 2083 2084 #ifdef CONFIG_NUMA 2085 /* 2086 * No kmalloc_node yet so do it by hand. We know that this is the first 2087 * slab on the node for this slabcache. There are no concurrent accesses 2088 * possible. 2089 * 2090 * Note that this function only works on the kmalloc_node_cache 2091 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2092 * memory on a fresh node that has no slab structures yet. 2093 */ 2094 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2095 { 2096 struct page *page; 2097 struct kmem_cache_node *n; 2098 unsigned long flags; 2099 2100 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2101 2102 page = new_slab(kmalloc_caches, gfpflags, node); 2103 2104 BUG_ON(!page); 2105 if (page_to_nid(page) != node) { 2106 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2107 "node %d\n", node); 2108 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2109 "in order to be able to continue\n"); 2110 } 2111 2112 n = page->freelist; 2113 BUG_ON(!n); 2114 page->freelist = get_freepointer(kmalloc_caches, n); 2115 page->inuse++; 2116 kmalloc_caches->node[node] = n; 2117 #ifdef CONFIG_SLUB_DEBUG 2118 init_object(kmalloc_caches, n, 1); 2119 init_tracking(kmalloc_caches, n); 2120 #endif 2121 init_kmem_cache_node(n, kmalloc_caches); 2122 inc_slabs_node(kmalloc_caches, node, page->objects); 2123 2124 /* 2125 * lockdep requires consistent irq usage for each lock 2126 * so even though there cannot be a race this early in 2127 * the boot sequence, we still disable irqs. 2128 */ 2129 local_irq_save(flags); 2130 add_partial(n, page, 0); 2131 local_irq_restore(flags); 2132 } 2133 2134 static void free_kmem_cache_nodes(struct kmem_cache *s) 2135 { 2136 int node; 2137 2138 for_each_node_state(node, N_NORMAL_MEMORY) { 2139 struct kmem_cache_node *n = s->node[node]; 2140 if (n && n != &s->local_node) 2141 kmem_cache_free(kmalloc_caches, n); 2142 s->node[node] = NULL; 2143 } 2144 } 2145 2146 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2147 { 2148 int node; 2149 int local_node; 2150 2151 if (slab_state >= UP && (s < kmalloc_caches || 2152 s >= kmalloc_caches + KMALLOC_CACHES)) 2153 local_node = page_to_nid(virt_to_page(s)); 2154 else 2155 local_node = 0; 2156 2157 for_each_node_state(node, N_NORMAL_MEMORY) { 2158 struct kmem_cache_node *n; 2159 2160 if (local_node == node) 2161 n = &s->local_node; 2162 else { 2163 if (slab_state == DOWN) { 2164 early_kmem_cache_node_alloc(gfpflags, node); 2165 continue; 2166 } 2167 n = kmem_cache_alloc_node(kmalloc_caches, 2168 gfpflags, node); 2169 2170 if (!n) { 2171 free_kmem_cache_nodes(s); 2172 return 0; 2173 } 2174 2175 } 2176 s->node[node] = n; 2177 init_kmem_cache_node(n, s); 2178 } 2179 return 1; 2180 } 2181 #else 2182 static void free_kmem_cache_nodes(struct kmem_cache *s) 2183 { 2184 } 2185 2186 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2187 { 2188 init_kmem_cache_node(&s->local_node, s); 2189 return 1; 2190 } 2191 #endif 2192 2193 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2194 { 2195 if (min < MIN_PARTIAL) 2196 min = MIN_PARTIAL; 2197 else if (min > MAX_PARTIAL) 2198 min = MAX_PARTIAL; 2199 s->min_partial = min; 2200 } 2201 2202 /* 2203 * calculate_sizes() determines the order and the distribution of data within 2204 * a slab object. 2205 */ 2206 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2207 { 2208 unsigned long flags = s->flags; 2209 unsigned long size = s->objsize; 2210 unsigned long align = s->align; 2211 int order; 2212 2213 /* 2214 * Round up object size to the next word boundary. We can only 2215 * place the free pointer at word boundaries and this determines 2216 * the possible location of the free pointer. 2217 */ 2218 size = ALIGN(size, sizeof(void *)); 2219 2220 #ifdef CONFIG_SLUB_DEBUG 2221 /* 2222 * Determine if we can poison the object itself. If the user of 2223 * the slab may touch the object after free or before allocation 2224 * then we should never poison the object itself. 2225 */ 2226 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2227 !s->ctor) 2228 s->flags |= __OBJECT_POISON; 2229 else 2230 s->flags &= ~__OBJECT_POISON; 2231 2232 2233 /* 2234 * If we are Redzoning then check if there is some space between the 2235 * end of the object and the free pointer. If not then add an 2236 * additional word to have some bytes to store Redzone information. 2237 */ 2238 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2239 size += sizeof(void *); 2240 #endif 2241 2242 /* 2243 * With that we have determined the number of bytes in actual use 2244 * by the object. This is the potential offset to the free pointer. 2245 */ 2246 s->inuse = size; 2247 2248 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2249 s->ctor)) { 2250 /* 2251 * Relocate free pointer after the object if it is not 2252 * permitted to overwrite the first word of the object on 2253 * kmem_cache_free. 2254 * 2255 * This is the case if we do RCU, have a constructor or 2256 * destructor or are poisoning the objects. 2257 */ 2258 s->offset = size; 2259 size += sizeof(void *); 2260 } 2261 2262 #ifdef CONFIG_SLUB_DEBUG 2263 if (flags & SLAB_STORE_USER) 2264 /* 2265 * Need to store information about allocs and frees after 2266 * the object. 2267 */ 2268 size += 2 * sizeof(struct track); 2269 2270 if (flags & SLAB_RED_ZONE) 2271 /* 2272 * Add some empty padding so that we can catch 2273 * overwrites from earlier objects rather than let 2274 * tracking information or the free pointer be 2275 * corrupted if a user writes before the start 2276 * of the object. 2277 */ 2278 size += sizeof(void *); 2279 #endif 2280 2281 /* 2282 * Determine the alignment based on various parameters that the 2283 * user specified and the dynamic determination of cache line size 2284 * on bootup. 2285 */ 2286 align = calculate_alignment(flags, align, s->objsize); 2287 s->align = align; 2288 2289 /* 2290 * SLUB stores one object immediately after another beginning from 2291 * offset 0. In order to align the objects we have to simply size 2292 * each object to conform to the alignment. 2293 */ 2294 size = ALIGN(size, align); 2295 s->size = size; 2296 if (forced_order >= 0) 2297 order = forced_order; 2298 else 2299 order = calculate_order(size); 2300 2301 if (order < 0) 2302 return 0; 2303 2304 s->allocflags = 0; 2305 if (order) 2306 s->allocflags |= __GFP_COMP; 2307 2308 if (s->flags & SLAB_CACHE_DMA) 2309 s->allocflags |= SLUB_DMA; 2310 2311 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2312 s->allocflags |= __GFP_RECLAIMABLE; 2313 2314 /* 2315 * Determine the number of objects per slab 2316 */ 2317 s->oo = oo_make(order, size); 2318 s->min = oo_make(get_order(size), size); 2319 if (oo_objects(s->oo) > oo_objects(s->max)) 2320 s->max = s->oo; 2321 2322 return !!oo_objects(s->oo); 2323 2324 } 2325 2326 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2327 const char *name, size_t size, 2328 size_t align, unsigned long flags, 2329 void (*ctor)(void *)) 2330 { 2331 memset(s, 0, kmem_size); 2332 s->name = name; 2333 s->ctor = ctor; 2334 s->objsize = size; 2335 s->align = align; 2336 s->flags = kmem_cache_flags(size, flags, name, ctor); 2337 2338 if (!calculate_sizes(s, -1)) 2339 goto error; 2340 if (disable_higher_order_debug) { 2341 /* 2342 * Disable debugging flags that store metadata if the min slab 2343 * order increased. 2344 */ 2345 if (get_order(s->size) > get_order(s->objsize)) { 2346 s->flags &= ~DEBUG_METADATA_FLAGS; 2347 s->offset = 0; 2348 if (!calculate_sizes(s, -1)) 2349 goto error; 2350 } 2351 } 2352 2353 /* 2354 * The larger the object size is, the more pages we want on the partial 2355 * list to avoid pounding the page allocator excessively. 2356 */ 2357 set_min_partial(s, ilog2(s->size)); 2358 s->refcount = 1; 2359 #ifdef CONFIG_NUMA 2360 s->remote_node_defrag_ratio = 1000; 2361 #endif 2362 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2363 goto error; 2364 2365 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2366 return 1; 2367 2368 free_kmem_cache_nodes(s); 2369 error: 2370 if (flags & SLAB_PANIC) 2371 panic("Cannot create slab %s size=%lu realsize=%u " 2372 "order=%u offset=%u flags=%lx\n", 2373 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2374 s->offset, flags); 2375 return 0; 2376 } 2377 2378 /* 2379 * Check if a given pointer is valid 2380 */ 2381 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2382 { 2383 struct page *page; 2384 2385 if (!kern_ptr_validate(object, s->size)) 2386 return 0; 2387 2388 page = get_object_page(object); 2389 2390 if (!page || s != page->slab) 2391 /* No slab or wrong slab */ 2392 return 0; 2393 2394 if (!check_valid_pointer(s, page, object)) 2395 return 0; 2396 2397 /* 2398 * We could also check if the object is on the slabs freelist. 2399 * But this would be too expensive and it seems that the main 2400 * purpose of kmem_ptr_valid() is to check if the object belongs 2401 * to a certain slab. 2402 */ 2403 return 1; 2404 } 2405 EXPORT_SYMBOL(kmem_ptr_validate); 2406 2407 /* 2408 * Determine the size of a slab object 2409 */ 2410 unsigned int kmem_cache_size(struct kmem_cache *s) 2411 { 2412 return s->objsize; 2413 } 2414 EXPORT_SYMBOL(kmem_cache_size); 2415 2416 const char *kmem_cache_name(struct kmem_cache *s) 2417 { 2418 return s->name; 2419 } 2420 EXPORT_SYMBOL(kmem_cache_name); 2421 2422 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2423 const char *text) 2424 { 2425 #ifdef CONFIG_SLUB_DEBUG 2426 void *addr = page_address(page); 2427 void *p; 2428 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long), 2429 GFP_ATOMIC); 2430 2431 if (!map) 2432 return; 2433 slab_err(s, page, "%s", text); 2434 slab_lock(page); 2435 for_each_free_object(p, s, page->freelist) 2436 set_bit(slab_index(p, s, addr), map); 2437 2438 for_each_object(p, s, addr, page->objects) { 2439 2440 if (!test_bit(slab_index(p, s, addr), map)) { 2441 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2442 p, p - addr); 2443 print_tracking(s, p); 2444 } 2445 } 2446 slab_unlock(page); 2447 kfree(map); 2448 #endif 2449 } 2450 2451 /* 2452 * Attempt to free all partial slabs on a node. 2453 */ 2454 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2455 { 2456 unsigned long flags; 2457 struct page *page, *h; 2458 2459 spin_lock_irqsave(&n->list_lock, flags); 2460 list_for_each_entry_safe(page, h, &n->partial, lru) { 2461 if (!page->inuse) { 2462 list_del(&page->lru); 2463 discard_slab(s, page); 2464 n->nr_partial--; 2465 } else { 2466 list_slab_objects(s, page, 2467 "Objects remaining on kmem_cache_close()"); 2468 } 2469 } 2470 spin_unlock_irqrestore(&n->list_lock, flags); 2471 } 2472 2473 /* 2474 * Release all resources used by a slab cache. 2475 */ 2476 static inline int kmem_cache_close(struct kmem_cache *s) 2477 { 2478 int node; 2479 2480 flush_all(s); 2481 free_percpu(s->cpu_slab); 2482 /* Attempt to free all objects */ 2483 for_each_node_state(node, N_NORMAL_MEMORY) { 2484 struct kmem_cache_node *n = get_node(s, node); 2485 2486 free_partial(s, n); 2487 if (n->nr_partial || slabs_node(s, node)) 2488 return 1; 2489 } 2490 free_kmem_cache_nodes(s); 2491 return 0; 2492 } 2493 2494 /* 2495 * Close a cache and release the kmem_cache structure 2496 * (must be used for caches created using kmem_cache_create) 2497 */ 2498 void kmem_cache_destroy(struct kmem_cache *s) 2499 { 2500 down_write(&slub_lock); 2501 s->refcount--; 2502 if (!s->refcount) { 2503 list_del(&s->list); 2504 up_write(&slub_lock); 2505 if (kmem_cache_close(s)) { 2506 printk(KERN_ERR "SLUB %s: %s called for cache that " 2507 "still has objects.\n", s->name, __func__); 2508 dump_stack(); 2509 } 2510 if (s->flags & SLAB_DESTROY_BY_RCU) 2511 rcu_barrier(); 2512 sysfs_slab_remove(s); 2513 } else 2514 up_write(&slub_lock); 2515 } 2516 EXPORT_SYMBOL(kmem_cache_destroy); 2517 2518 /******************************************************************** 2519 * Kmalloc subsystem 2520 *******************************************************************/ 2521 2522 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned; 2523 EXPORT_SYMBOL(kmalloc_caches); 2524 2525 static int __init setup_slub_min_order(char *str) 2526 { 2527 get_option(&str, &slub_min_order); 2528 2529 return 1; 2530 } 2531 2532 __setup("slub_min_order=", setup_slub_min_order); 2533 2534 static int __init setup_slub_max_order(char *str) 2535 { 2536 get_option(&str, &slub_max_order); 2537 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2538 2539 return 1; 2540 } 2541 2542 __setup("slub_max_order=", setup_slub_max_order); 2543 2544 static int __init setup_slub_min_objects(char *str) 2545 { 2546 get_option(&str, &slub_min_objects); 2547 2548 return 1; 2549 } 2550 2551 __setup("slub_min_objects=", setup_slub_min_objects); 2552 2553 static int __init setup_slub_nomerge(char *str) 2554 { 2555 slub_nomerge = 1; 2556 return 1; 2557 } 2558 2559 __setup("slub_nomerge", setup_slub_nomerge); 2560 2561 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2562 const char *name, int size, gfp_t gfp_flags) 2563 { 2564 unsigned int flags = 0; 2565 2566 if (gfp_flags & SLUB_DMA) 2567 flags = SLAB_CACHE_DMA; 2568 2569 /* 2570 * This function is called with IRQs disabled during early-boot on 2571 * single CPU so there's no need to take slub_lock here. 2572 */ 2573 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2574 flags, NULL)) 2575 goto panic; 2576 2577 list_add(&s->list, &slab_caches); 2578 2579 if (sysfs_slab_add(s)) 2580 goto panic; 2581 return s; 2582 2583 panic: 2584 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2585 } 2586 2587 #ifdef CONFIG_ZONE_DMA 2588 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2589 2590 static void sysfs_add_func(struct work_struct *w) 2591 { 2592 struct kmem_cache *s; 2593 2594 down_write(&slub_lock); 2595 list_for_each_entry(s, &slab_caches, list) { 2596 if (s->flags & __SYSFS_ADD_DEFERRED) { 2597 s->flags &= ~__SYSFS_ADD_DEFERRED; 2598 sysfs_slab_add(s); 2599 } 2600 } 2601 up_write(&slub_lock); 2602 } 2603 2604 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2605 2606 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2607 { 2608 struct kmem_cache *s; 2609 char *text; 2610 size_t realsize; 2611 unsigned long slabflags; 2612 int i; 2613 2614 s = kmalloc_caches_dma[index]; 2615 if (s) 2616 return s; 2617 2618 /* Dynamically create dma cache */ 2619 if (flags & __GFP_WAIT) 2620 down_write(&slub_lock); 2621 else { 2622 if (!down_write_trylock(&slub_lock)) 2623 goto out; 2624 } 2625 2626 if (kmalloc_caches_dma[index]) 2627 goto unlock_out; 2628 2629 realsize = kmalloc_caches[index].objsize; 2630 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2631 (unsigned int)realsize); 2632 2633 s = NULL; 2634 for (i = 0; i < KMALLOC_CACHES; i++) 2635 if (!kmalloc_caches[i].size) 2636 break; 2637 2638 BUG_ON(i >= KMALLOC_CACHES); 2639 s = kmalloc_caches + i; 2640 2641 /* 2642 * Must defer sysfs creation to a workqueue because we don't know 2643 * what context we are called from. Before sysfs comes up, we don't 2644 * need to do anything because our sysfs initcall will start by 2645 * adding all existing slabs to sysfs. 2646 */ 2647 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK; 2648 if (slab_state >= SYSFS) 2649 slabflags |= __SYSFS_ADD_DEFERRED; 2650 2651 if (!text || !kmem_cache_open(s, flags, text, 2652 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) { 2653 s->size = 0; 2654 kfree(text); 2655 goto unlock_out; 2656 } 2657 2658 list_add(&s->list, &slab_caches); 2659 kmalloc_caches_dma[index] = s; 2660 2661 if (slab_state >= SYSFS) 2662 schedule_work(&sysfs_add_work); 2663 2664 unlock_out: 2665 up_write(&slub_lock); 2666 out: 2667 return kmalloc_caches_dma[index]; 2668 } 2669 #endif 2670 2671 /* 2672 * Conversion table for small slabs sizes / 8 to the index in the 2673 * kmalloc array. This is necessary for slabs < 192 since we have non power 2674 * of two cache sizes there. The size of larger slabs can be determined using 2675 * fls. 2676 */ 2677 static s8 size_index[24] = { 2678 3, /* 8 */ 2679 4, /* 16 */ 2680 5, /* 24 */ 2681 5, /* 32 */ 2682 6, /* 40 */ 2683 6, /* 48 */ 2684 6, /* 56 */ 2685 6, /* 64 */ 2686 1, /* 72 */ 2687 1, /* 80 */ 2688 1, /* 88 */ 2689 1, /* 96 */ 2690 7, /* 104 */ 2691 7, /* 112 */ 2692 7, /* 120 */ 2693 7, /* 128 */ 2694 2, /* 136 */ 2695 2, /* 144 */ 2696 2, /* 152 */ 2697 2, /* 160 */ 2698 2, /* 168 */ 2699 2, /* 176 */ 2700 2, /* 184 */ 2701 2 /* 192 */ 2702 }; 2703 2704 static inline int size_index_elem(size_t bytes) 2705 { 2706 return (bytes - 1) / 8; 2707 } 2708 2709 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2710 { 2711 int index; 2712 2713 if (size <= 192) { 2714 if (!size) 2715 return ZERO_SIZE_PTR; 2716 2717 index = size_index[size_index_elem(size)]; 2718 } else 2719 index = fls(size - 1); 2720 2721 #ifdef CONFIG_ZONE_DMA 2722 if (unlikely((flags & SLUB_DMA))) 2723 return dma_kmalloc_cache(index, flags); 2724 2725 #endif 2726 return &kmalloc_caches[index]; 2727 } 2728 2729 void *__kmalloc(size_t size, gfp_t flags) 2730 { 2731 struct kmem_cache *s; 2732 void *ret; 2733 2734 if (unlikely(size > SLUB_MAX_SIZE)) 2735 return kmalloc_large(size, flags); 2736 2737 s = get_slab(size, flags); 2738 2739 if (unlikely(ZERO_OR_NULL_PTR(s))) 2740 return s; 2741 2742 ret = slab_alloc(s, flags, -1, _RET_IP_); 2743 2744 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2745 2746 return ret; 2747 } 2748 EXPORT_SYMBOL(__kmalloc); 2749 2750 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2751 { 2752 struct page *page; 2753 void *ptr = NULL; 2754 2755 flags |= __GFP_COMP | __GFP_NOTRACK; 2756 page = alloc_pages_node(node, flags, get_order(size)); 2757 if (page) 2758 ptr = page_address(page); 2759 2760 kmemleak_alloc(ptr, size, 1, flags); 2761 return ptr; 2762 } 2763 2764 #ifdef CONFIG_NUMA 2765 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2766 { 2767 struct kmem_cache *s; 2768 void *ret; 2769 2770 if (unlikely(size > SLUB_MAX_SIZE)) { 2771 ret = kmalloc_large_node(size, flags, node); 2772 2773 trace_kmalloc_node(_RET_IP_, ret, 2774 size, PAGE_SIZE << get_order(size), 2775 flags, node); 2776 2777 return ret; 2778 } 2779 2780 s = get_slab(size, flags); 2781 2782 if (unlikely(ZERO_OR_NULL_PTR(s))) 2783 return s; 2784 2785 ret = slab_alloc(s, flags, node, _RET_IP_); 2786 2787 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2788 2789 return ret; 2790 } 2791 EXPORT_SYMBOL(__kmalloc_node); 2792 #endif 2793 2794 size_t ksize(const void *object) 2795 { 2796 struct page *page; 2797 struct kmem_cache *s; 2798 2799 if (unlikely(object == ZERO_SIZE_PTR)) 2800 return 0; 2801 2802 page = virt_to_head_page(object); 2803 2804 if (unlikely(!PageSlab(page))) { 2805 WARN_ON(!PageCompound(page)); 2806 return PAGE_SIZE << compound_order(page); 2807 } 2808 s = page->slab; 2809 2810 #ifdef CONFIG_SLUB_DEBUG 2811 /* 2812 * Debugging requires use of the padding between object 2813 * and whatever may come after it. 2814 */ 2815 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2816 return s->objsize; 2817 2818 #endif 2819 /* 2820 * If we have the need to store the freelist pointer 2821 * back there or track user information then we can 2822 * only use the space before that information. 2823 */ 2824 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2825 return s->inuse; 2826 /* 2827 * Else we can use all the padding etc for the allocation 2828 */ 2829 return s->size; 2830 } 2831 EXPORT_SYMBOL(ksize); 2832 2833 void kfree(const void *x) 2834 { 2835 struct page *page; 2836 void *object = (void *)x; 2837 2838 trace_kfree(_RET_IP_, x); 2839 2840 if (unlikely(ZERO_OR_NULL_PTR(x))) 2841 return; 2842 2843 page = virt_to_head_page(x); 2844 if (unlikely(!PageSlab(page))) { 2845 BUG_ON(!PageCompound(page)); 2846 kmemleak_free(x); 2847 put_page(page); 2848 return; 2849 } 2850 slab_free(page->slab, page, object, _RET_IP_); 2851 } 2852 EXPORT_SYMBOL(kfree); 2853 2854 /* 2855 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2856 * the remaining slabs by the number of items in use. The slabs with the 2857 * most items in use come first. New allocations will then fill those up 2858 * and thus they can be removed from the partial lists. 2859 * 2860 * The slabs with the least items are placed last. This results in them 2861 * being allocated from last increasing the chance that the last objects 2862 * are freed in them. 2863 */ 2864 int kmem_cache_shrink(struct kmem_cache *s) 2865 { 2866 int node; 2867 int i; 2868 struct kmem_cache_node *n; 2869 struct page *page; 2870 struct page *t; 2871 int objects = oo_objects(s->max); 2872 struct list_head *slabs_by_inuse = 2873 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2874 unsigned long flags; 2875 2876 if (!slabs_by_inuse) 2877 return -ENOMEM; 2878 2879 flush_all(s); 2880 for_each_node_state(node, N_NORMAL_MEMORY) { 2881 n = get_node(s, node); 2882 2883 if (!n->nr_partial) 2884 continue; 2885 2886 for (i = 0; i < objects; i++) 2887 INIT_LIST_HEAD(slabs_by_inuse + i); 2888 2889 spin_lock_irqsave(&n->list_lock, flags); 2890 2891 /* 2892 * Build lists indexed by the items in use in each slab. 2893 * 2894 * Note that concurrent frees may occur while we hold the 2895 * list_lock. page->inuse here is the upper limit. 2896 */ 2897 list_for_each_entry_safe(page, t, &n->partial, lru) { 2898 if (!page->inuse && slab_trylock(page)) { 2899 /* 2900 * Must hold slab lock here because slab_free 2901 * may have freed the last object and be 2902 * waiting to release the slab. 2903 */ 2904 list_del(&page->lru); 2905 n->nr_partial--; 2906 slab_unlock(page); 2907 discard_slab(s, page); 2908 } else { 2909 list_move(&page->lru, 2910 slabs_by_inuse + page->inuse); 2911 } 2912 } 2913 2914 /* 2915 * Rebuild the partial list with the slabs filled up most 2916 * first and the least used slabs at the end. 2917 */ 2918 for (i = objects - 1; i >= 0; i--) 2919 list_splice(slabs_by_inuse + i, n->partial.prev); 2920 2921 spin_unlock_irqrestore(&n->list_lock, flags); 2922 } 2923 2924 kfree(slabs_by_inuse); 2925 return 0; 2926 } 2927 EXPORT_SYMBOL(kmem_cache_shrink); 2928 2929 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2930 static int slab_mem_going_offline_callback(void *arg) 2931 { 2932 struct kmem_cache *s; 2933 2934 down_read(&slub_lock); 2935 list_for_each_entry(s, &slab_caches, list) 2936 kmem_cache_shrink(s); 2937 up_read(&slub_lock); 2938 2939 return 0; 2940 } 2941 2942 static void slab_mem_offline_callback(void *arg) 2943 { 2944 struct kmem_cache_node *n; 2945 struct kmem_cache *s; 2946 struct memory_notify *marg = arg; 2947 int offline_node; 2948 2949 offline_node = marg->status_change_nid; 2950 2951 /* 2952 * If the node still has available memory. we need kmem_cache_node 2953 * for it yet. 2954 */ 2955 if (offline_node < 0) 2956 return; 2957 2958 down_read(&slub_lock); 2959 list_for_each_entry(s, &slab_caches, list) { 2960 n = get_node(s, offline_node); 2961 if (n) { 2962 /* 2963 * if n->nr_slabs > 0, slabs still exist on the node 2964 * that is going down. We were unable to free them, 2965 * and offline_pages() function shouldn't call this 2966 * callback. So, we must fail. 2967 */ 2968 BUG_ON(slabs_node(s, offline_node)); 2969 2970 s->node[offline_node] = NULL; 2971 kmem_cache_free(kmalloc_caches, n); 2972 } 2973 } 2974 up_read(&slub_lock); 2975 } 2976 2977 static int slab_mem_going_online_callback(void *arg) 2978 { 2979 struct kmem_cache_node *n; 2980 struct kmem_cache *s; 2981 struct memory_notify *marg = arg; 2982 int nid = marg->status_change_nid; 2983 int ret = 0; 2984 2985 /* 2986 * If the node's memory is already available, then kmem_cache_node is 2987 * already created. Nothing to do. 2988 */ 2989 if (nid < 0) 2990 return 0; 2991 2992 /* 2993 * We are bringing a node online. No memory is available yet. We must 2994 * allocate a kmem_cache_node structure in order to bring the node 2995 * online. 2996 */ 2997 down_read(&slub_lock); 2998 list_for_each_entry(s, &slab_caches, list) { 2999 /* 3000 * XXX: kmem_cache_alloc_node will fallback to other nodes 3001 * since memory is not yet available from the node that 3002 * is brought up. 3003 */ 3004 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 3005 if (!n) { 3006 ret = -ENOMEM; 3007 goto out; 3008 } 3009 init_kmem_cache_node(n, s); 3010 s->node[nid] = n; 3011 } 3012 out: 3013 up_read(&slub_lock); 3014 return ret; 3015 } 3016 3017 static int slab_memory_callback(struct notifier_block *self, 3018 unsigned long action, void *arg) 3019 { 3020 int ret = 0; 3021 3022 switch (action) { 3023 case MEM_GOING_ONLINE: 3024 ret = slab_mem_going_online_callback(arg); 3025 break; 3026 case MEM_GOING_OFFLINE: 3027 ret = slab_mem_going_offline_callback(arg); 3028 break; 3029 case MEM_OFFLINE: 3030 case MEM_CANCEL_ONLINE: 3031 slab_mem_offline_callback(arg); 3032 break; 3033 case MEM_ONLINE: 3034 case MEM_CANCEL_OFFLINE: 3035 break; 3036 } 3037 if (ret) 3038 ret = notifier_from_errno(ret); 3039 else 3040 ret = NOTIFY_OK; 3041 return ret; 3042 } 3043 3044 #endif /* CONFIG_MEMORY_HOTPLUG */ 3045 3046 /******************************************************************** 3047 * Basic setup of slabs 3048 *******************************************************************/ 3049 3050 void __init kmem_cache_init(void) 3051 { 3052 int i; 3053 int caches = 0; 3054 3055 #ifdef CONFIG_NUMA 3056 /* 3057 * Must first have the slab cache available for the allocations of the 3058 * struct kmem_cache_node's. There is special bootstrap code in 3059 * kmem_cache_open for slab_state == DOWN. 3060 */ 3061 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3062 sizeof(struct kmem_cache_node), GFP_NOWAIT); 3063 kmalloc_caches[0].refcount = -1; 3064 caches++; 3065 3066 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3067 #endif 3068 3069 /* Able to allocate the per node structures */ 3070 slab_state = PARTIAL; 3071 3072 /* Caches that are not of the two-to-the-power-of size */ 3073 if (KMALLOC_MIN_SIZE <= 32) { 3074 create_kmalloc_cache(&kmalloc_caches[1], 3075 "kmalloc-96", 96, GFP_NOWAIT); 3076 caches++; 3077 } 3078 if (KMALLOC_MIN_SIZE <= 64) { 3079 create_kmalloc_cache(&kmalloc_caches[2], 3080 "kmalloc-192", 192, GFP_NOWAIT); 3081 caches++; 3082 } 3083 3084 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3085 create_kmalloc_cache(&kmalloc_caches[i], 3086 "kmalloc", 1 << i, GFP_NOWAIT); 3087 caches++; 3088 } 3089 3090 3091 /* 3092 * Patch up the size_index table if we have strange large alignment 3093 * requirements for the kmalloc array. This is only the case for 3094 * MIPS it seems. The standard arches will not generate any code here. 3095 * 3096 * Largest permitted alignment is 256 bytes due to the way we 3097 * handle the index determination for the smaller caches. 3098 * 3099 * Make sure that nothing crazy happens if someone starts tinkering 3100 * around with ARCH_KMALLOC_MINALIGN 3101 */ 3102 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3103 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3104 3105 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3106 int elem = size_index_elem(i); 3107 if (elem >= ARRAY_SIZE(size_index)) 3108 break; 3109 size_index[elem] = KMALLOC_SHIFT_LOW; 3110 } 3111 3112 if (KMALLOC_MIN_SIZE == 64) { 3113 /* 3114 * The 96 byte size cache is not used if the alignment 3115 * is 64 byte. 3116 */ 3117 for (i = 64 + 8; i <= 96; i += 8) 3118 size_index[size_index_elem(i)] = 7; 3119 } else if (KMALLOC_MIN_SIZE == 128) { 3120 /* 3121 * The 192 byte sized cache is not used if the alignment 3122 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3123 * instead. 3124 */ 3125 for (i = 128 + 8; i <= 192; i += 8) 3126 size_index[size_index_elem(i)] = 8; 3127 } 3128 3129 slab_state = UP; 3130 3131 /* Provide the correct kmalloc names now that the caches are up */ 3132 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) 3133 kmalloc_caches[i]. name = 3134 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3135 3136 #ifdef CONFIG_SMP 3137 register_cpu_notifier(&slab_notifier); 3138 #endif 3139 #ifdef CONFIG_NUMA 3140 kmem_size = offsetof(struct kmem_cache, node) + 3141 nr_node_ids * sizeof(struct kmem_cache_node *); 3142 #else 3143 kmem_size = sizeof(struct kmem_cache); 3144 #endif 3145 3146 printk(KERN_INFO 3147 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3148 " CPUs=%d, Nodes=%d\n", 3149 caches, cache_line_size(), 3150 slub_min_order, slub_max_order, slub_min_objects, 3151 nr_cpu_ids, nr_node_ids); 3152 } 3153 3154 void __init kmem_cache_init_late(void) 3155 { 3156 } 3157 3158 /* 3159 * Find a mergeable slab cache 3160 */ 3161 static int slab_unmergeable(struct kmem_cache *s) 3162 { 3163 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3164 return 1; 3165 3166 if (s->ctor) 3167 return 1; 3168 3169 /* 3170 * We may have set a slab to be unmergeable during bootstrap. 3171 */ 3172 if (s->refcount < 0) 3173 return 1; 3174 3175 return 0; 3176 } 3177 3178 static struct kmem_cache *find_mergeable(size_t size, 3179 size_t align, unsigned long flags, const char *name, 3180 void (*ctor)(void *)) 3181 { 3182 struct kmem_cache *s; 3183 3184 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3185 return NULL; 3186 3187 if (ctor) 3188 return NULL; 3189 3190 size = ALIGN(size, sizeof(void *)); 3191 align = calculate_alignment(flags, align, size); 3192 size = ALIGN(size, align); 3193 flags = kmem_cache_flags(size, flags, name, NULL); 3194 3195 list_for_each_entry(s, &slab_caches, list) { 3196 if (slab_unmergeable(s)) 3197 continue; 3198 3199 if (size > s->size) 3200 continue; 3201 3202 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3203 continue; 3204 /* 3205 * Check if alignment is compatible. 3206 * Courtesy of Adrian Drzewiecki 3207 */ 3208 if ((s->size & ~(align - 1)) != s->size) 3209 continue; 3210 3211 if (s->size - size >= sizeof(void *)) 3212 continue; 3213 3214 return s; 3215 } 3216 return NULL; 3217 } 3218 3219 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3220 size_t align, unsigned long flags, void (*ctor)(void *)) 3221 { 3222 struct kmem_cache *s; 3223 3224 if (WARN_ON(!name)) 3225 return NULL; 3226 3227 down_write(&slub_lock); 3228 s = find_mergeable(size, align, flags, name, ctor); 3229 if (s) { 3230 s->refcount++; 3231 /* 3232 * Adjust the object sizes so that we clear 3233 * the complete object on kzalloc. 3234 */ 3235 s->objsize = max(s->objsize, (int)size); 3236 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3237 up_write(&slub_lock); 3238 3239 if (sysfs_slab_alias(s, name)) { 3240 down_write(&slub_lock); 3241 s->refcount--; 3242 up_write(&slub_lock); 3243 goto err; 3244 } 3245 return s; 3246 } 3247 3248 s = kmalloc(kmem_size, GFP_KERNEL); 3249 if (s) { 3250 if (kmem_cache_open(s, GFP_KERNEL, name, 3251 size, align, flags, ctor)) { 3252 list_add(&s->list, &slab_caches); 3253 up_write(&slub_lock); 3254 if (sysfs_slab_add(s)) { 3255 down_write(&slub_lock); 3256 list_del(&s->list); 3257 up_write(&slub_lock); 3258 kfree(s); 3259 goto err; 3260 } 3261 return s; 3262 } 3263 kfree(s); 3264 } 3265 up_write(&slub_lock); 3266 3267 err: 3268 if (flags & SLAB_PANIC) 3269 panic("Cannot create slabcache %s\n", name); 3270 else 3271 s = NULL; 3272 return s; 3273 } 3274 EXPORT_SYMBOL(kmem_cache_create); 3275 3276 #ifdef CONFIG_SMP 3277 /* 3278 * Use the cpu notifier to insure that the cpu slabs are flushed when 3279 * necessary. 3280 */ 3281 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3282 unsigned long action, void *hcpu) 3283 { 3284 long cpu = (long)hcpu; 3285 struct kmem_cache *s; 3286 unsigned long flags; 3287 3288 switch (action) { 3289 case CPU_UP_CANCELED: 3290 case CPU_UP_CANCELED_FROZEN: 3291 case CPU_DEAD: 3292 case CPU_DEAD_FROZEN: 3293 down_read(&slub_lock); 3294 list_for_each_entry(s, &slab_caches, list) { 3295 local_irq_save(flags); 3296 __flush_cpu_slab(s, cpu); 3297 local_irq_restore(flags); 3298 } 3299 up_read(&slub_lock); 3300 break; 3301 default: 3302 break; 3303 } 3304 return NOTIFY_OK; 3305 } 3306 3307 static struct notifier_block __cpuinitdata slab_notifier = { 3308 .notifier_call = slab_cpuup_callback 3309 }; 3310 3311 #endif 3312 3313 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3314 { 3315 struct kmem_cache *s; 3316 void *ret; 3317 3318 if (unlikely(size > SLUB_MAX_SIZE)) 3319 return kmalloc_large(size, gfpflags); 3320 3321 s = get_slab(size, gfpflags); 3322 3323 if (unlikely(ZERO_OR_NULL_PTR(s))) 3324 return s; 3325 3326 ret = slab_alloc(s, gfpflags, -1, caller); 3327 3328 /* Honor the call site pointer we recieved. */ 3329 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3330 3331 return ret; 3332 } 3333 3334 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3335 int node, unsigned long caller) 3336 { 3337 struct kmem_cache *s; 3338 void *ret; 3339 3340 if (unlikely(size > SLUB_MAX_SIZE)) { 3341 ret = kmalloc_large_node(size, gfpflags, node); 3342 3343 trace_kmalloc_node(caller, ret, 3344 size, PAGE_SIZE << get_order(size), 3345 gfpflags, node); 3346 3347 return ret; 3348 } 3349 3350 s = get_slab(size, gfpflags); 3351 3352 if (unlikely(ZERO_OR_NULL_PTR(s))) 3353 return s; 3354 3355 ret = slab_alloc(s, gfpflags, node, caller); 3356 3357 /* Honor the call site pointer we recieved. */ 3358 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3359 3360 return ret; 3361 } 3362 3363 #ifdef CONFIG_SLUB_DEBUG 3364 static int count_inuse(struct page *page) 3365 { 3366 return page->inuse; 3367 } 3368 3369 static int count_total(struct page *page) 3370 { 3371 return page->objects; 3372 } 3373 3374 static int validate_slab(struct kmem_cache *s, struct page *page, 3375 unsigned long *map) 3376 { 3377 void *p; 3378 void *addr = page_address(page); 3379 3380 if (!check_slab(s, page) || 3381 !on_freelist(s, page, NULL)) 3382 return 0; 3383 3384 /* Now we know that a valid freelist exists */ 3385 bitmap_zero(map, page->objects); 3386 3387 for_each_free_object(p, s, page->freelist) { 3388 set_bit(slab_index(p, s, addr), map); 3389 if (!check_object(s, page, p, 0)) 3390 return 0; 3391 } 3392 3393 for_each_object(p, s, addr, page->objects) 3394 if (!test_bit(slab_index(p, s, addr), map)) 3395 if (!check_object(s, page, p, 1)) 3396 return 0; 3397 return 1; 3398 } 3399 3400 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3401 unsigned long *map) 3402 { 3403 if (slab_trylock(page)) { 3404 validate_slab(s, page, map); 3405 slab_unlock(page); 3406 } else 3407 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3408 s->name, page); 3409 3410 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3411 if (!PageSlubDebug(page)) 3412 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3413 "on slab 0x%p\n", s->name, page); 3414 } else { 3415 if (PageSlubDebug(page)) 3416 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3417 "slab 0x%p\n", s->name, page); 3418 } 3419 } 3420 3421 static int validate_slab_node(struct kmem_cache *s, 3422 struct kmem_cache_node *n, unsigned long *map) 3423 { 3424 unsigned long count = 0; 3425 struct page *page; 3426 unsigned long flags; 3427 3428 spin_lock_irqsave(&n->list_lock, flags); 3429 3430 list_for_each_entry(page, &n->partial, lru) { 3431 validate_slab_slab(s, page, map); 3432 count++; 3433 } 3434 if (count != n->nr_partial) 3435 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3436 "counter=%ld\n", s->name, count, n->nr_partial); 3437 3438 if (!(s->flags & SLAB_STORE_USER)) 3439 goto out; 3440 3441 list_for_each_entry(page, &n->full, lru) { 3442 validate_slab_slab(s, page, map); 3443 count++; 3444 } 3445 if (count != atomic_long_read(&n->nr_slabs)) 3446 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3447 "counter=%ld\n", s->name, count, 3448 atomic_long_read(&n->nr_slabs)); 3449 3450 out: 3451 spin_unlock_irqrestore(&n->list_lock, flags); 3452 return count; 3453 } 3454 3455 static long validate_slab_cache(struct kmem_cache *s) 3456 { 3457 int node; 3458 unsigned long count = 0; 3459 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3460 sizeof(unsigned long), GFP_KERNEL); 3461 3462 if (!map) 3463 return -ENOMEM; 3464 3465 flush_all(s); 3466 for_each_node_state(node, N_NORMAL_MEMORY) { 3467 struct kmem_cache_node *n = get_node(s, node); 3468 3469 count += validate_slab_node(s, n, map); 3470 } 3471 kfree(map); 3472 return count; 3473 } 3474 3475 #ifdef SLUB_RESILIENCY_TEST 3476 static void resiliency_test(void) 3477 { 3478 u8 *p; 3479 3480 printk(KERN_ERR "SLUB resiliency testing\n"); 3481 printk(KERN_ERR "-----------------------\n"); 3482 printk(KERN_ERR "A. Corruption after allocation\n"); 3483 3484 p = kzalloc(16, GFP_KERNEL); 3485 p[16] = 0x12; 3486 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3487 " 0x12->0x%p\n\n", p + 16); 3488 3489 validate_slab_cache(kmalloc_caches + 4); 3490 3491 /* Hmmm... The next two are dangerous */ 3492 p = kzalloc(32, GFP_KERNEL); 3493 p[32 + sizeof(void *)] = 0x34; 3494 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3495 " 0x34 -> -0x%p\n", p); 3496 printk(KERN_ERR 3497 "If allocated object is overwritten then not detectable\n\n"); 3498 3499 validate_slab_cache(kmalloc_caches + 5); 3500 p = kzalloc(64, GFP_KERNEL); 3501 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3502 *p = 0x56; 3503 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3504 p); 3505 printk(KERN_ERR 3506 "If allocated object is overwritten then not detectable\n\n"); 3507 validate_slab_cache(kmalloc_caches + 6); 3508 3509 printk(KERN_ERR "\nB. Corruption after free\n"); 3510 p = kzalloc(128, GFP_KERNEL); 3511 kfree(p); 3512 *p = 0x78; 3513 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3514 validate_slab_cache(kmalloc_caches + 7); 3515 3516 p = kzalloc(256, GFP_KERNEL); 3517 kfree(p); 3518 p[50] = 0x9a; 3519 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3520 p); 3521 validate_slab_cache(kmalloc_caches + 8); 3522 3523 p = kzalloc(512, GFP_KERNEL); 3524 kfree(p); 3525 p[512] = 0xab; 3526 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3527 validate_slab_cache(kmalloc_caches + 9); 3528 } 3529 #else 3530 static void resiliency_test(void) {}; 3531 #endif 3532 3533 /* 3534 * Generate lists of code addresses where slabcache objects are allocated 3535 * and freed. 3536 */ 3537 3538 struct location { 3539 unsigned long count; 3540 unsigned long addr; 3541 long long sum_time; 3542 long min_time; 3543 long max_time; 3544 long min_pid; 3545 long max_pid; 3546 DECLARE_BITMAP(cpus, NR_CPUS); 3547 nodemask_t nodes; 3548 }; 3549 3550 struct loc_track { 3551 unsigned long max; 3552 unsigned long count; 3553 struct location *loc; 3554 }; 3555 3556 static void free_loc_track(struct loc_track *t) 3557 { 3558 if (t->max) 3559 free_pages((unsigned long)t->loc, 3560 get_order(sizeof(struct location) * t->max)); 3561 } 3562 3563 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3564 { 3565 struct location *l; 3566 int order; 3567 3568 order = get_order(sizeof(struct location) * max); 3569 3570 l = (void *)__get_free_pages(flags, order); 3571 if (!l) 3572 return 0; 3573 3574 if (t->count) { 3575 memcpy(l, t->loc, sizeof(struct location) * t->count); 3576 free_loc_track(t); 3577 } 3578 t->max = max; 3579 t->loc = l; 3580 return 1; 3581 } 3582 3583 static int add_location(struct loc_track *t, struct kmem_cache *s, 3584 const struct track *track) 3585 { 3586 long start, end, pos; 3587 struct location *l; 3588 unsigned long caddr; 3589 unsigned long age = jiffies - track->when; 3590 3591 start = -1; 3592 end = t->count; 3593 3594 for ( ; ; ) { 3595 pos = start + (end - start + 1) / 2; 3596 3597 /* 3598 * There is nothing at "end". If we end up there 3599 * we need to add something to before end. 3600 */ 3601 if (pos == end) 3602 break; 3603 3604 caddr = t->loc[pos].addr; 3605 if (track->addr == caddr) { 3606 3607 l = &t->loc[pos]; 3608 l->count++; 3609 if (track->when) { 3610 l->sum_time += age; 3611 if (age < l->min_time) 3612 l->min_time = age; 3613 if (age > l->max_time) 3614 l->max_time = age; 3615 3616 if (track->pid < l->min_pid) 3617 l->min_pid = track->pid; 3618 if (track->pid > l->max_pid) 3619 l->max_pid = track->pid; 3620 3621 cpumask_set_cpu(track->cpu, 3622 to_cpumask(l->cpus)); 3623 } 3624 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3625 return 1; 3626 } 3627 3628 if (track->addr < caddr) 3629 end = pos; 3630 else 3631 start = pos; 3632 } 3633 3634 /* 3635 * Not found. Insert new tracking element. 3636 */ 3637 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3638 return 0; 3639 3640 l = t->loc + pos; 3641 if (pos < t->count) 3642 memmove(l + 1, l, 3643 (t->count - pos) * sizeof(struct location)); 3644 t->count++; 3645 l->count = 1; 3646 l->addr = track->addr; 3647 l->sum_time = age; 3648 l->min_time = age; 3649 l->max_time = age; 3650 l->min_pid = track->pid; 3651 l->max_pid = track->pid; 3652 cpumask_clear(to_cpumask(l->cpus)); 3653 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3654 nodes_clear(l->nodes); 3655 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3656 return 1; 3657 } 3658 3659 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3660 struct page *page, enum track_item alloc, 3661 long *map) 3662 { 3663 void *addr = page_address(page); 3664 void *p; 3665 3666 bitmap_zero(map, page->objects); 3667 for_each_free_object(p, s, page->freelist) 3668 set_bit(slab_index(p, s, addr), map); 3669 3670 for_each_object(p, s, addr, page->objects) 3671 if (!test_bit(slab_index(p, s, addr), map)) 3672 add_location(t, s, get_track(s, p, alloc)); 3673 } 3674 3675 static int list_locations(struct kmem_cache *s, char *buf, 3676 enum track_item alloc) 3677 { 3678 int len = 0; 3679 unsigned long i; 3680 struct loc_track t = { 0, 0, NULL }; 3681 int node; 3682 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3683 sizeof(unsigned long), GFP_KERNEL); 3684 3685 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3686 GFP_TEMPORARY)) { 3687 kfree(map); 3688 return sprintf(buf, "Out of memory\n"); 3689 } 3690 /* Push back cpu slabs */ 3691 flush_all(s); 3692 3693 for_each_node_state(node, N_NORMAL_MEMORY) { 3694 struct kmem_cache_node *n = get_node(s, node); 3695 unsigned long flags; 3696 struct page *page; 3697 3698 if (!atomic_long_read(&n->nr_slabs)) 3699 continue; 3700 3701 spin_lock_irqsave(&n->list_lock, flags); 3702 list_for_each_entry(page, &n->partial, lru) 3703 process_slab(&t, s, page, alloc, map); 3704 list_for_each_entry(page, &n->full, lru) 3705 process_slab(&t, s, page, alloc, map); 3706 spin_unlock_irqrestore(&n->list_lock, flags); 3707 } 3708 3709 for (i = 0; i < t.count; i++) { 3710 struct location *l = &t.loc[i]; 3711 3712 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3713 break; 3714 len += sprintf(buf + len, "%7ld ", l->count); 3715 3716 if (l->addr) 3717 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3718 else 3719 len += sprintf(buf + len, "<not-available>"); 3720 3721 if (l->sum_time != l->min_time) { 3722 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3723 l->min_time, 3724 (long)div_u64(l->sum_time, l->count), 3725 l->max_time); 3726 } else 3727 len += sprintf(buf + len, " age=%ld", 3728 l->min_time); 3729 3730 if (l->min_pid != l->max_pid) 3731 len += sprintf(buf + len, " pid=%ld-%ld", 3732 l->min_pid, l->max_pid); 3733 else 3734 len += sprintf(buf + len, " pid=%ld", 3735 l->min_pid); 3736 3737 if (num_online_cpus() > 1 && 3738 !cpumask_empty(to_cpumask(l->cpus)) && 3739 len < PAGE_SIZE - 60) { 3740 len += sprintf(buf + len, " cpus="); 3741 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3742 to_cpumask(l->cpus)); 3743 } 3744 3745 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 3746 len < PAGE_SIZE - 60) { 3747 len += sprintf(buf + len, " nodes="); 3748 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3749 l->nodes); 3750 } 3751 3752 len += sprintf(buf + len, "\n"); 3753 } 3754 3755 free_loc_track(&t); 3756 kfree(map); 3757 if (!t.count) 3758 len += sprintf(buf, "No data\n"); 3759 return len; 3760 } 3761 3762 enum slab_stat_type { 3763 SL_ALL, /* All slabs */ 3764 SL_PARTIAL, /* Only partially allocated slabs */ 3765 SL_CPU, /* Only slabs used for cpu caches */ 3766 SL_OBJECTS, /* Determine allocated objects not slabs */ 3767 SL_TOTAL /* Determine object capacity not slabs */ 3768 }; 3769 3770 #define SO_ALL (1 << SL_ALL) 3771 #define SO_PARTIAL (1 << SL_PARTIAL) 3772 #define SO_CPU (1 << SL_CPU) 3773 #define SO_OBJECTS (1 << SL_OBJECTS) 3774 #define SO_TOTAL (1 << SL_TOTAL) 3775 3776 static ssize_t show_slab_objects(struct kmem_cache *s, 3777 char *buf, unsigned long flags) 3778 { 3779 unsigned long total = 0; 3780 int node; 3781 int x; 3782 unsigned long *nodes; 3783 unsigned long *per_cpu; 3784 3785 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3786 if (!nodes) 3787 return -ENOMEM; 3788 per_cpu = nodes + nr_node_ids; 3789 3790 if (flags & SO_CPU) { 3791 int cpu; 3792 3793 for_each_possible_cpu(cpu) { 3794 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3795 3796 if (!c || c->node < 0) 3797 continue; 3798 3799 if (c->page) { 3800 if (flags & SO_TOTAL) 3801 x = c->page->objects; 3802 else if (flags & SO_OBJECTS) 3803 x = c->page->inuse; 3804 else 3805 x = 1; 3806 3807 total += x; 3808 nodes[c->node] += x; 3809 } 3810 per_cpu[c->node]++; 3811 } 3812 } 3813 3814 if (flags & SO_ALL) { 3815 for_each_node_state(node, N_NORMAL_MEMORY) { 3816 struct kmem_cache_node *n = get_node(s, node); 3817 3818 if (flags & SO_TOTAL) 3819 x = atomic_long_read(&n->total_objects); 3820 else if (flags & SO_OBJECTS) 3821 x = atomic_long_read(&n->total_objects) - 3822 count_partial(n, count_free); 3823 3824 else 3825 x = atomic_long_read(&n->nr_slabs); 3826 total += x; 3827 nodes[node] += x; 3828 } 3829 3830 } else if (flags & SO_PARTIAL) { 3831 for_each_node_state(node, N_NORMAL_MEMORY) { 3832 struct kmem_cache_node *n = get_node(s, node); 3833 3834 if (flags & SO_TOTAL) 3835 x = count_partial(n, count_total); 3836 else if (flags & SO_OBJECTS) 3837 x = count_partial(n, count_inuse); 3838 else 3839 x = n->nr_partial; 3840 total += x; 3841 nodes[node] += x; 3842 } 3843 } 3844 x = sprintf(buf, "%lu", total); 3845 #ifdef CONFIG_NUMA 3846 for_each_node_state(node, N_NORMAL_MEMORY) 3847 if (nodes[node]) 3848 x += sprintf(buf + x, " N%d=%lu", 3849 node, nodes[node]); 3850 #endif 3851 kfree(nodes); 3852 return x + sprintf(buf + x, "\n"); 3853 } 3854 3855 static int any_slab_objects(struct kmem_cache *s) 3856 { 3857 int node; 3858 3859 for_each_online_node(node) { 3860 struct kmem_cache_node *n = get_node(s, node); 3861 3862 if (!n) 3863 continue; 3864 3865 if (atomic_long_read(&n->total_objects)) 3866 return 1; 3867 } 3868 return 0; 3869 } 3870 3871 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3872 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3873 3874 struct slab_attribute { 3875 struct attribute attr; 3876 ssize_t (*show)(struct kmem_cache *s, char *buf); 3877 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3878 }; 3879 3880 #define SLAB_ATTR_RO(_name) \ 3881 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3882 3883 #define SLAB_ATTR(_name) \ 3884 static struct slab_attribute _name##_attr = \ 3885 __ATTR(_name, 0644, _name##_show, _name##_store) 3886 3887 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3888 { 3889 return sprintf(buf, "%d\n", s->size); 3890 } 3891 SLAB_ATTR_RO(slab_size); 3892 3893 static ssize_t align_show(struct kmem_cache *s, char *buf) 3894 { 3895 return sprintf(buf, "%d\n", s->align); 3896 } 3897 SLAB_ATTR_RO(align); 3898 3899 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3900 { 3901 return sprintf(buf, "%d\n", s->objsize); 3902 } 3903 SLAB_ATTR_RO(object_size); 3904 3905 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3906 { 3907 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3908 } 3909 SLAB_ATTR_RO(objs_per_slab); 3910 3911 static ssize_t order_store(struct kmem_cache *s, 3912 const char *buf, size_t length) 3913 { 3914 unsigned long order; 3915 int err; 3916 3917 err = strict_strtoul(buf, 10, &order); 3918 if (err) 3919 return err; 3920 3921 if (order > slub_max_order || order < slub_min_order) 3922 return -EINVAL; 3923 3924 calculate_sizes(s, order); 3925 return length; 3926 } 3927 3928 static ssize_t order_show(struct kmem_cache *s, char *buf) 3929 { 3930 return sprintf(buf, "%d\n", oo_order(s->oo)); 3931 } 3932 SLAB_ATTR(order); 3933 3934 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 3935 { 3936 return sprintf(buf, "%lu\n", s->min_partial); 3937 } 3938 3939 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 3940 size_t length) 3941 { 3942 unsigned long min; 3943 int err; 3944 3945 err = strict_strtoul(buf, 10, &min); 3946 if (err) 3947 return err; 3948 3949 set_min_partial(s, min); 3950 return length; 3951 } 3952 SLAB_ATTR(min_partial); 3953 3954 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3955 { 3956 if (s->ctor) { 3957 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3958 3959 return n + sprintf(buf + n, "\n"); 3960 } 3961 return 0; 3962 } 3963 SLAB_ATTR_RO(ctor); 3964 3965 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3966 { 3967 return sprintf(buf, "%d\n", s->refcount - 1); 3968 } 3969 SLAB_ATTR_RO(aliases); 3970 3971 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3972 { 3973 return show_slab_objects(s, buf, SO_ALL); 3974 } 3975 SLAB_ATTR_RO(slabs); 3976 3977 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3978 { 3979 return show_slab_objects(s, buf, SO_PARTIAL); 3980 } 3981 SLAB_ATTR_RO(partial); 3982 3983 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3984 { 3985 return show_slab_objects(s, buf, SO_CPU); 3986 } 3987 SLAB_ATTR_RO(cpu_slabs); 3988 3989 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3990 { 3991 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3992 } 3993 SLAB_ATTR_RO(objects); 3994 3995 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3996 { 3997 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3998 } 3999 SLAB_ATTR_RO(objects_partial); 4000 4001 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4002 { 4003 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4004 } 4005 SLAB_ATTR_RO(total_objects); 4006 4007 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4008 { 4009 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4010 } 4011 4012 static ssize_t sanity_checks_store(struct kmem_cache *s, 4013 const char *buf, size_t length) 4014 { 4015 s->flags &= ~SLAB_DEBUG_FREE; 4016 if (buf[0] == '1') 4017 s->flags |= SLAB_DEBUG_FREE; 4018 return length; 4019 } 4020 SLAB_ATTR(sanity_checks); 4021 4022 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4023 { 4024 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4025 } 4026 4027 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4028 size_t length) 4029 { 4030 s->flags &= ~SLAB_TRACE; 4031 if (buf[0] == '1') 4032 s->flags |= SLAB_TRACE; 4033 return length; 4034 } 4035 SLAB_ATTR(trace); 4036 4037 #ifdef CONFIG_FAILSLAB 4038 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4039 { 4040 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4041 } 4042 4043 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4044 size_t length) 4045 { 4046 s->flags &= ~SLAB_FAILSLAB; 4047 if (buf[0] == '1') 4048 s->flags |= SLAB_FAILSLAB; 4049 return length; 4050 } 4051 SLAB_ATTR(failslab); 4052 #endif 4053 4054 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4055 { 4056 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4057 } 4058 4059 static ssize_t reclaim_account_store(struct kmem_cache *s, 4060 const char *buf, size_t length) 4061 { 4062 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4063 if (buf[0] == '1') 4064 s->flags |= SLAB_RECLAIM_ACCOUNT; 4065 return length; 4066 } 4067 SLAB_ATTR(reclaim_account); 4068 4069 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4070 { 4071 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4072 } 4073 SLAB_ATTR_RO(hwcache_align); 4074 4075 #ifdef CONFIG_ZONE_DMA 4076 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4077 { 4078 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4079 } 4080 SLAB_ATTR_RO(cache_dma); 4081 #endif 4082 4083 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4084 { 4085 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4086 } 4087 SLAB_ATTR_RO(destroy_by_rcu); 4088 4089 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4090 { 4091 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4092 } 4093 4094 static ssize_t red_zone_store(struct kmem_cache *s, 4095 const char *buf, size_t length) 4096 { 4097 if (any_slab_objects(s)) 4098 return -EBUSY; 4099 4100 s->flags &= ~SLAB_RED_ZONE; 4101 if (buf[0] == '1') 4102 s->flags |= SLAB_RED_ZONE; 4103 calculate_sizes(s, -1); 4104 return length; 4105 } 4106 SLAB_ATTR(red_zone); 4107 4108 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4109 { 4110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4111 } 4112 4113 static ssize_t poison_store(struct kmem_cache *s, 4114 const char *buf, size_t length) 4115 { 4116 if (any_slab_objects(s)) 4117 return -EBUSY; 4118 4119 s->flags &= ~SLAB_POISON; 4120 if (buf[0] == '1') 4121 s->flags |= SLAB_POISON; 4122 calculate_sizes(s, -1); 4123 return length; 4124 } 4125 SLAB_ATTR(poison); 4126 4127 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4128 { 4129 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4130 } 4131 4132 static ssize_t store_user_store(struct kmem_cache *s, 4133 const char *buf, size_t length) 4134 { 4135 if (any_slab_objects(s)) 4136 return -EBUSY; 4137 4138 s->flags &= ~SLAB_STORE_USER; 4139 if (buf[0] == '1') 4140 s->flags |= SLAB_STORE_USER; 4141 calculate_sizes(s, -1); 4142 return length; 4143 } 4144 SLAB_ATTR(store_user); 4145 4146 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4147 { 4148 return 0; 4149 } 4150 4151 static ssize_t validate_store(struct kmem_cache *s, 4152 const char *buf, size_t length) 4153 { 4154 int ret = -EINVAL; 4155 4156 if (buf[0] == '1') { 4157 ret = validate_slab_cache(s); 4158 if (ret >= 0) 4159 ret = length; 4160 } 4161 return ret; 4162 } 4163 SLAB_ATTR(validate); 4164 4165 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4166 { 4167 return 0; 4168 } 4169 4170 static ssize_t shrink_store(struct kmem_cache *s, 4171 const char *buf, size_t length) 4172 { 4173 if (buf[0] == '1') { 4174 int rc = kmem_cache_shrink(s); 4175 4176 if (rc) 4177 return rc; 4178 } else 4179 return -EINVAL; 4180 return length; 4181 } 4182 SLAB_ATTR(shrink); 4183 4184 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4185 { 4186 if (!(s->flags & SLAB_STORE_USER)) 4187 return -ENOSYS; 4188 return list_locations(s, buf, TRACK_ALLOC); 4189 } 4190 SLAB_ATTR_RO(alloc_calls); 4191 4192 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4193 { 4194 if (!(s->flags & SLAB_STORE_USER)) 4195 return -ENOSYS; 4196 return list_locations(s, buf, TRACK_FREE); 4197 } 4198 SLAB_ATTR_RO(free_calls); 4199 4200 #ifdef CONFIG_NUMA 4201 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4202 { 4203 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4204 } 4205 4206 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4207 const char *buf, size_t length) 4208 { 4209 unsigned long ratio; 4210 int err; 4211 4212 err = strict_strtoul(buf, 10, &ratio); 4213 if (err) 4214 return err; 4215 4216 if (ratio <= 100) 4217 s->remote_node_defrag_ratio = ratio * 10; 4218 4219 return length; 4220 } 4221 SLAB_ATTR(remote_node_defrag_ratio); 4222 #endif 4223 4224 #ifdef CONFIG_SLUB_STATS 4225 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4226 { 4227 unsigned long sum = 0; 4228 int cpu; 4229 int len; 4230 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4231 4232 if (!data) 4233 return -ENOMEM; 4234 4235 for_each_online_cpu(cpu) { 4236 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4237 4238 data[cpu] = x; 4239 sum += x; 4240 } 4241 4242 len = sprintf(buf, "%lu", sum); 4243 4244 #ifdef CONFIG_SMP 4245 for_each_online_cpu(cpu) { 4246 if (data[cpu] && len < PAGE_SIZE - 20) 4247 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4248 } 4249 #endif 4250 kfree(data); 4251 return len + sprintf(buf + len, "\n"); 4252 } 4253 4254 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4255 { 4256 int cpu; 4257 4258 for_each_online_cpu(cpu) 4259 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4260 } 4261 4262 #define STAT_ATTR(si, text) \ 4263 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4264 { \ 4265 return show_stat(s, buf, si); \ 4266 } \ 4267 static ssize_t text##_store(struct kmem_cache *s, \ 4268 const char *buf, size_t length) \ 4269 { \ 4270 if (buf[0] != '0') \ 4271 return -EINVAL; \ 4272 clear_stat(s, si); \ 4273 return length; \ 4274 } \ 4275 SLAB_ATTR(text); \ 4276 4277 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4278 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4279 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4280 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4281 STAT_ATTR(FREE_FROZEN, free_frozen); 4282 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4283 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4284 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4285 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4286 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4287 STAT_ATTR(FREE_SLAB, free_slab); 4288 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4289 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4290 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4291 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4292 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4293 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4294 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4295 #endif 4296 4297 static struct attribute *slab_attrs[] = { 4298 &slab_size_attr.attr, 4299 &object_size_attr.attr, 4300 &objs_per_slab_attr.attr, 4301 &order_attr.attr, 4302 &min_partial_attr.attr, 4303 &objects_attr.attr, 4304 &objects_partial_attr.attr, 4305 &total_objects_attr.attr, 4306 &slabs_attr.attr, 4307 &partial_attr.attr, 4308 &cpu_slabs_attr.attr, 4309 &ctor_attr.attr, 4310 &aliases_attr.attr, 4311 &align_attr.attr, 4312 &sanity_checks_attr.attr, 4313 &trace_attr.attr, 4314 &hwcache_align_attr.attr, 4315 &reclaim_account_attr.attr, 4316 &destroy_by_rcu_attr.attr, 4317 &red_zone_attr.attr, 4318 &poison_attr.attr, 4319 &store_user_attr.attr, 4320 &validate_attr.attr, 4321 &shrink_attr.attr, 4322 &alloc_calls_attr.attr, 4323 &free_calls_attr.attr, 4324 #ifdef CONFIG_ZONE_DMA 4325 &cache_dma_attr.attr, 4326 #endif 4327 #ifdef CONFIG_NUMA 4328 &remote_node_defrag_ratio_attr.attr, 4329 #endif 4330 #ifdef CONFIG_SLUB_STATS 4331 &alloc_fastpath_attr.attr, 4332 &alloc_slowpath_attr.attr, 4333 &free_fastpath_attr.attr, 4334 &free_slowpath_attr.attr, 4335 &free_frozen_attr.attr, 4336 &free_add_partial_attr.attr, 4337 &free_remove_partial_attr.attr, 4338 &alloc_from_partial_attr.attr, 4339 &alloc_slab_attr.attr, 4340 &alloc_refill_attr.attr, 4341 &free_slab_attr.attr, 4342 &cpuslab_flush_attr.attr, 4343 &deactivate_full_attr.attr, 4344 &deactivate_empty_attr.attr, 4345 &deactivate_to_head_attr.attr, 4346 &deactivate_to_tail_attr.attr, 4347 &deactivate_remote_frees_attr.attr, 4348 &order_fallback_attr.attr, 4349 #endif 4350 #ifdef CONFIG_FAILSLAB 4351 &failslab_attr.attr, 4352 #endif 4353 4354 NULL 4355 }; 4356 4357 static struct attribute_group slab_attr_group = { 4358 .attrs = slab_attrs, 4359 }; 4360 4361 static ssize_t slab_attr_show(struct kobject *kobj, 4362 struct attribute *attr, 4363 char *buf) 4364 { 4365 struct slab_attribute *attribute; 4366 struct kmem_cache *s; 4367 int err; 4368 4369 attribute = to_slab_attr(attr); 4370 s = to_slab(kobj); 4371 4372 if (!attribute->show) 4373 return -EIO; 4374 4375 err = attribute->show(s, buf); 4376 4377 return err; 4378 } 4379 4380 static ssize_t slab_attr_store(struct kobject *kobj, 4381 struct attribute *attr, 4382 const char *buf, size_t len) 4383 { 4384 struct slab_attribute *attribute; 4385 struct kmem_cache *s; 4386 int err; 4387 4388 attribute = to_slab_attr(attr); 4389 s = to_slab(kobj); 4390 4391 if (!attribute->store) 4392 return -EIO; 4393 4394 err = attribute->store(s, buf, len); 4395 4396 return err; 4397 } 4398 4399 static void kmem_cache_release(struct kobject *kobj) 4400 { 4401 struct kmem_cache *s = to_slab(kobj); 4402 4403 kfree(s); 4404 } 4405 4406 static const struct sysfs_ops slab_sysfs_ops = { 4407 .show = slab_attr_show, 4408 .store = slab_attr_store, 4409 }; 4410 4411 static struct kobj_type slab_ktype = { 4412 .sysfs_ops = &slab_sysfs_ops, 4413 .release = kmem_cache_release 4414 }; 4415 4416 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4417 { 4418 struct kobj_type *ktype = get_ktype(kobj); 4419 4420 if (ktype == &slab_ktype) 4421 return 1; 4422 return 0; 4423 } 4424 4425 static const struct kset_uevent_ops slab_uevent_ops = { 4426 .filter = uevent_filter, 4427 }; 4428 4429 static struct kset *slab_kset; 4430 4431 #define ID_STR_LENGTH 64 4432 4433 /* Create a unique string id for a slab cache: 4434 * 4435 * Format :[flags-]size 4436 */ 4437 static char *create_unique_id(struct kmem_cache *s) 4438 { 4439 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4440 char *p = name; 4441 4442 BUG_ON(!name); 4443 4444 *p++ = ':'; 4445 /* 4446 * First flags affecting slabcache operations. We will only 4447 * get here for aliasable slabs so we do not need to support 4448 * too many flags. The flags here must cover all flags that 4449 * are matched during merging to guarantee that the id is 4450 * unique. 4451 */ 4452 if (s->flags & SLAB_CACHE_DMA) 4453 *p++ = 'd'; 4454 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4455 *p++ = 'a'; 4456 if (s->flags & SLAB_DEBUG_FREE) 4457 *p++ = 'F'; 4458 if (!(s->flags & SLAB_NOTRACK)) 4459 *p++ = 't'; 4460 if (p != name + 1) 4461 *p++ = '-'; 4462 p += sprintf(p, "%07d", s->size); 4463 BUG_ON(p > name + ID_STR_LENGTH - 1); 4464 return name; 4465 } 4466 4467 static int sysfs_slab_add(struct kmem_cache *s) 4468 { 4469 int err; 4470 const char *name; 4471 int unmergeable; 4472 4473 if (slab_state < SYSFS) 4474 /* Defer until later */ 4475 return 0; 4476 4477 unmergeable = slab_unmergeable(s); 4478 if (unmergeable) { 4479 /* 4480 * Slabcache can never be merged so we can use the name proper. 4481 * This is typically the case for debug situations. In that 4482 * case we can catch duplicate names easily. 4483 */ 4484 sysfs_remove_link(&slab_kset->kobj, s->name); 4485 name = s->name; 4486 } else { 4487 /* 4488 * Create a unique name for the slab as a target 4489 * for the symlinks. 4490 */ 4491 name = create_unique_id(s); 4492 } 4493 4494 s->kobj.kset = slab_kset; 4495 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4496 if (err) { 4497 kobject_put(&s->kobj); 4498 return err; 4499 } 4500 4501 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4502 if (err) { 4503 kobject_del(&s->kobj); 4504 kobject_put(&s->kobj); 4505 return err; 4506 } 4507 kobject_uevent(&s->kobj, KOBJ_ADD); 4508 if (!unmergeable) { 4509 /* Setup first alias */ 4510 sysfs_slab_alias(s, s->name); 4511 kfree(name); 4512 } 4513 return 0; 4514 } 4515 4516 static void sysfs_slab_remove(struct kmem_cache *s) 4517 { 4518 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4519 kobject_del(&s->kobj); 4520 kobject_put(&s->kobj); 4521 } 4522 4523 /* 4524 * Need to buffer aliases during bootup until sysfs becomes 4525 * available lest we lose that information. 4526 */ 4527 struct saved_alias { 4528 struct kmem_cache *s; 4529 const char *name; 4530 struct saved_alias *next; 4531 }; 4532 4533 static struct saved_alias *alias_list; 4534 4535 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4536 { 4537 struct saved_alias *al; 4538 4539 if (slab_state == SYSFS) { 4540 /* 4541 * If we have a leftover link then remove it. 4542 */ 4543 sysfs_remove_link(&slab_kset->kobj, name); 4544 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4545 } 4546 4547 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4548 if (!al) 4549 return -ENOMEM; 4550 4551 al->s = s; 4552 al->name = name; 4553 al->next = alias_list; 4554 alias_list = al; 4555 return 0; 4556 } 4557 4558 static int __init slab_sysfs_init(void) 4559 { 4560 struct kmem_cache *s; 4561 int err; 4562 4563 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4564 if (!slab_kset) { 4565 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4566 return -ENOSYS; 4567 } 4568 4569 slab_state = SYSFS; 4570 4571 list_for_each_entry(s, &slab_caches, list) { 4572 err = sysfs_slab_add(s); 4573 if (err) 4574 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4575 " to sysfs\n", s->name); 4576 } 4577 4578 while (alias_list) { 4579 struct saved_alias *al = alias_list; 4580 4581 alias_list = alias_list->next; 4582 err = sysfs_slab_alias(al->s, al->name); 4583 if (err) 4584 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4585 " %s to sysfs\n", s->name); 4586 kfree(al); 4587 } 4588 4589 resiliency_test(); 4590 return 0; 4591 } 4592 4593 __initcall(slab_sysfs_init); 4594 #endif 4595 4596 /* 4597 * The /proc/slabinfo ABI 4598 */ 4599 #ifdef CONFIG_SLABINFO 4600 static void print_slabinfo_header(struct seq_file *m) 4601 { 4602 seq_puts(m, "slabinfo - version: 2.1\n"); 4603 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4604 "<objperslab> <pagesperslab>"); 4605 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4606 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4607 seq_putc(m, '\n'); 4608 } 4609 4610 static void *s_start(struct seq_file *m, loff_t *pos) 4611 { 4612 loff_t n = *pos; 4613 4614 down_read(&slub_lock); 4615 if (!n) 4616 print_slabinfo_header(m); 4617 4618 return seq_list_start(&slab_caches, *pos); 4619 } 4620 4621 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4622 { 4623 return seq_list_next(p, &slab_caches, pos); 4624 } 4625 4626 static void s_stop(struct seq_file *m, void *p) 4627 { 4628 up_read(&slub_lock); 4629 } 4630 4631 static int s_show(struct seq_file *m, void *p) 4632 { 4633 unsigned long nr_partials = 0; 4634 unsigned long nr_slabs = 0; 4635 unsigned long nr_inuse = 0; 4636 unsigned long nr_objs = 0; 4637 unsigned long nr_free = 0; 4638 struct kmem_cache *s; 4639 int node; 4640 4641 s = list_entry(p, struct kmem_cache, list); 4642 4643 for_each_online_node(node) { 4644 struct kmem_cache_node *n = get_node(s, node); 4645 4646 if (!n) 4647 continue; 4648 4649 nr_partials += n->nr_partial; 4650 nr_slabs += atomic_long_read(&n->nr_slabs); 4651 nr_objs += atomic_long_read(&n->total_objects); 4652 nr_free += count_partial(n, count_free); 4653 } 4654 4655 nr_inuse = nr_objs - nr_free; 4656 4657 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4658 nr_objs, s->size, oo_objects(s->oo), 4659 (1 << oo_order(s->oo))); 4660 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4661 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4662 0UL); 4663 seq_putc(m, '\n'); 4664 return 0; 4665 } 4666 4667 static const struct seq_operations slabinfo_op = { 4668 .start = s_start, 4669 .next = s_next, 4670 .stop = s_stop, 4671 .show = s_show, 4672 }; 4673 4674 static int slabinfo_open(struct inode *inode, struct file *file) 4675 { 4676 return seq_open(file, &slabinfo_op); 4677 } 4678 4679 static const struct file_operations proc_slabinfo_operations = { 4680 .open = slabinfo_open, 4681 .read = seq_read, 4682 .llseek = seq_lseek, 4683 .release = seq_release, 4684 }; 4685 4686 static int __init slab_proc_init(void) 4687 { 4688 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); 4689 return 0; 4690 } 4691 module_init(slab_proc_init); 4692 #endif /* CONFIG_SLABINFO */ 4693