xref: /linux/mm/slub.c (revision b1cce98493a095925fb51be045ccf6e08edb4aa0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/mempolicy.h>
30 #include <linux/ctype.h>
31 #include <linux/stackdepot.h>
32 #include <linux/debugobjects.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kfence.h>
35 #include <linux/memory.h>
36 #include <linux/math64.h>
37 #include <linux/fault-inject.h>
38 #include <linux/kmemleak.h>
39 #include <linux/stacktrace.h>
40 #include <linux/prefetch.h>
41 #include <linux/memcontrol.h>
42 #include <linux/random.h>
43 #include <kunit/test.h>
44 #include <kunit/test-bug.h>
45 #include <linux/sort.h>
46 
47 #include <linux/debugfs.h>
48 #include <trace/events/kmem.h>
49 
50 #include "internal.h"
51 
52 /*
53  * Lock order:
54  *   1. slab_mutex (Global Mutex)
55  *   2. node->list_lock (Spinlock)
56  *   3. kmem_cache->cpu_slab->lock (Local lock)
57  *   4. slab_lock(slab) (Only on some arches)
58  *   5. object_map_lock (Only for debugging)
59  *
60  *   slab_mutex
61  *
62  *   The role of the slab_mutex is to protect the list of all the slabs
63  *   and to synchronize major metadata changes to slab cache structures.
64  *   Also synchronizes memory hotplug callbacks.
65  *
66  *   slab_lock
67  *
68  *   The slab_lock is a wrapper around the page lock, thus it is a bit
69  *   spinlock.
70  *
71  *   The slab_lock is only used on arches that do not have the ability
72  *   to do a cmpxchg_double. It only protects:
73  *
74  *	A. slab->freelist	-> List of free objects in a slab
75  *	B. slab->inuse		-> Number of objects in use
76  *	C. slab->objects	-> Number of objects in slab
77  *	D. slab->frozen		-> frozen state
78  *
79  *   Frozen slabs
80  *
81  *   If a slab is frozen then it is exempt from list management. It is
82  *   the cpu slab which is actively allocated from by the processor that
83  *   froze it and it is not on any list. The processor that froze the
84  *   slab is the one who can perform list operations on the slab. Other
85  *   processors may put objects onto the freelist but the processor that
86  *   froze the slab is the only one that can retrieve the objects from the
87  *   slab's freelist.
88  *
89  *   CPU partial slabs
90  *
91  *   The partially empty slabs cached on the CPU partial list are used
92  *   for performance reasons, which speeds up the allocation process.
93  *   These slabs are not frozen, but are also exempt from list management,
94  *   by clearing the SL_partial flag when moving out of the node
95  *   partial list. Please see __slab_free() for more details.
96  *
97  *   To sum up, the current scheme is:
98  *   - node partial slab: SL_partial && !frozen
99  *   - cpu partial slab: !SL_partial && !frozen
100  *   - cpu slab: !SL_partial && frozen
101  *   - full slab: !SL_partial && !frozen
102  *
103  *   list_lock
104  *
105  *   The list_lock protects the partial and full list on each node and
106  *   the partial slab counter. If taken then no new slabs may be added or
107  *   removed from the lists nor make the number of partial slabs be modified.
108  *   (Note that the total number of slabs is an atomic value that may be
109  *   modified without taking the list lock).
110  *
111  *   The list_lock is a centralized lock and thus we avoid taking it as
112  *   much as possible. As long as SLUB does not have to handle partial
113  *   slabs, operations can continue without any centralized lock. F.e.
114  *   allocating a long series of objects that fill up slabs does not require
115  *   the list lock.
116  *
117  *   For debug caches, all allocations are forced to go through a list_lock
118  *   protected region to serialize against concurrent validation.
119  *
120  *   cpu_slab->lock local lock
121  *
122  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
123  *   except the stat counters. This is a percpu structure manipulated only by
124  *   the local cpu, so the lock protects against being preempted or interrupted
125  *   by an irq. Fast path operations rely on lockless operations instead.
126  *
127  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
128  *   which means the lockless fastpath cannot be used as it might interfere with
129  *   an in-progress slow path operations. In this case the local lock is always
130  *   taken but it still utilizes the freelist for the common operations.
131  *
132  *   lockless fastpaths
133  *
134  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
135  *   are fully lockless when satisfied from the percpu slab (and when
136  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
137  *   They also don't disable preemption or migration or irqs. They rely on
138  *   the transaction id (tid) field to detect being preempted or moved to
139  *   another cpu.
140  *
141  *   irq, preemption, migration considerations
142  *
143  *   Interrupts are disabled as part of list_lock or local_lock operations, or
144  *   around the slab_lock operation, in order to make the slab allocator safe
145  *   to use in the context of an irq.
146  *
147  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
148  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
149  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
150  *   doesn't have to be revalidated in each section protected by the local lock.
151  *
152  * SLUB assigns one slab for allocation to each processor.
153  * Allocations only occur from these slabs called cpu slabs.
154  *
155  * Slabs with free elements are kept on a partial list and during regular
156  * operations no list for full slabs is used. If an object in a full slab is
157  * freed then the slab will show up again on the partial lists.
158  * We track full slabs for debugging purposes though because otherwise we
159  * cannot scan all objects.
160  *
161  * Slabs are freed when they become empty. Teardown and setup is
162  * minimal so we rely on the page allocators per cpu caches for
163  * fast frees and allocs.
164  *
165  * slab->frozen		The slab is frozen and exempt from list processing.
166  * 			This means that the slab is dedicated to a purpose
167  * 			such as satisfying allocations for a specific
168  * 			processor. Objects may be freed in the slab while
169  * 			it is frozen but slab_free will then skip the usual
170  * 			list operations. It is up to the processor holding
171  * 			the slab to integrate the slab into the slab lists
172  * 			when the slab is no longer needed.
173  *
174  * 			One use of this flag is to mark slabs that are
175  * 			used for allocations. Then such a slab becomes a cpu
176  * 			slab. The cpu slab may be equipped with an additional
177  * 			freelist that allows lockless access to
178  * 			free objects in addition to the regular freelist
179  * 			that requires the slab lock.
180  *
181  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
182  * 			options set. This moves	slab handling out of
183  * 			the fast path and disables lockless freelists.
184  */
185 
186 /**
187  * enum slab_flags - How the slab flags bits are used.
188  * @SL_locked: Is locked with slab_lock()
189  * @SL_partial: On the per-node partial list
190  * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
191  *
192  * The slab flags share space with the page flags but some bits have
193  * different interpretations.  The high bits are used for information
194  * like zone/node/section.
195  */
196 enum slab_flags {
197 	SL_locked = PG_locked,
198 	SL_partial = PG_workingset,	/* Historical reasons for this bit */
199 	SL_pfmemalloc = PG_active,	/* Historical reasons for this bit */
200 };
201 
202 /*
203  * We could simply use migrate_disable()/enable() but as long as it's a
204  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
205  */
206 #ifndef CONFIG_PREEMPT_RT
207 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
208 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
209 #define USE_LOCKLESS_FAST_PATH()	(true)
210 #else
211 #define slub_get_cpu_ptr(var)		\
212 ({					\
213 	migrate_disable();		\
214 	this_cpu_ptr(var);		\
215 })
216 #define slub_put_cpu_ptr(var)		\
217 do {					\
218 	(void)(var);			\
219 	migrate_enable();		\
220 } while (0)
221 #define USE_LOCKLESS_FAST_PATH()	(false)
222 #endif
223 
224 #ifndef CONFIG_SLUB_TINY
225 #define __fastpath_inline __always_inline
226 #else
227 #define __fastpath_inline
228 #endif
229 
230 #ifdef CONFIG_SLUB_DEBUG
231 #ifdef CONFIG_SLUB_DEBUG_ON
232 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
233 #else
234 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
235 #endif
236 #endif		/* CONFIG_SLUB_DEBUG */
237 
238 #ifdef CONFIG_NUMA
239 static DEFINE_STATIC_KEY_FALSE(strict_numa);
240 #endif
241 
242 /* Structure holding parameters for get_partial() call chain */
243 struct partial_context {
244 	gfp_t flags;
245 	unsigned int orig_size;
246 	void *object;
247 };
248 
249 static inline bool kmem_cache_debug(struct kmem_cache *s)
250 {
251 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
252 }
253 
254 void *fixup_red_left(struct kmem_cache *s, void *p)
255 {
256 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
257 		p += s->red_left_pad;
258 
259 	return p;
260 }
261 
262 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
263 {
264 #ifdef CONFIG_SLUB_CPU_PARTIAL
265 	return !kmem_cache_debug(s);
266 #else
267 	return false;
268 #endif
269 }
270 
271 /*
272  * Issues still to be resolved:
273  *
274  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
275  *
276  * - Variable sizing of the per node arrays
277  */
278 
279 /* Enable to log cmpxchg failures */
280 #undef SLUB_DEBUG_CMPXCHG
281 
282 #ifndef CONFIG_SLUB_TINY
283 /*
284  * Minimum number of partial slabs. These will be left on the partial
285  * lists even if they are empty. kmem_cache_shrink may reclaim them.
286  */
287 #define MIN_PARTIAL 5
288 
289 /*
290  * Maximum number of desirable partial slabs.
291  * The existence of more partial slabs makes kmem_cache_shrink
292  * sort the partial list by the number of objects in use.
293  */
294 #define MAX_PARTIAL 10
295 #else
296 #define MIN_PARTIAL 0
297 #define MAX_PARTIAL 0
298 #endif
299 
300 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
301 				SLAB_POISON | SLAB_STORE_USER)
302 
303 /*
304  * These debug flags cannot use CMPXCHG because there might be consistency
305  * issues when checking or reading debug information
306  */
307 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
308 				SLAB_TRACE)
309 
310 
311 /*
312  * Debugging flags that require metadata to be stored in the slab.  These get
313  * disabled when slab_debug=O is used and a cache's min order increases with
314  * metadata.
315  */
316 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
317 
318 #define OO_SHIFT	16
319 #define OO_MASK		((1 << OO_SHIFT) - 1)
320 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
321 
322 /* Internal SLUB flags */
323 /* Poison object */
324 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
325 /* Use cmpxchg_double */
326 
327 #ifdef system_has_freelist_aba
328 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
329 #else
330 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
331 #endif
332 
333 /*
334  * Tracking user of a slab.
335  */
336 #define TRACK_ADDRS_COUNT 16
337 struct track {
338 	unsigned long addr;	/* Called from address */
339 #ifdef CONFIG_STACKDEPOT
340 	depot_stack_handle_t handle;
341 #endif
342 	int cpu;		/* Was running on cpu */
343 	int pid;		/* Pid context */
344 	unsigned long when;	/* When did the operation occur */
345 };
346 
347 enum track_item { TRACK_ALLOC, TRACK_FREE };
348 
349 #ifdef SLAB_SUPPORTS_SYSFS
350 static int sysfs_slab_add(struct kmem_cache *);
351 static int sysfs_slab_alias(struct kmem_cache *, const char *);
352 #else
353 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
354 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
355 							{ return 0; }
356 #endif
357 
358 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
359 static void debugfs_slab_add(struct kmem_cache *);
360 #else
361 static inline void debugfs_slab_add(struct kmem_cache *s) { }
362 #endif
363 
364 enum stat_item {
365 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
366 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
367 	FREE_FASTPATH,		/* Free to cpu slab */
368 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
369 	FREE_FROZEN,		/* Freeing to frozen slab */
370 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
371 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
372 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
373 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
374 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
375 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
376 	FREE_SLAB,		/* Slab freed to the page allocator */
377 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
378 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
379 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
380 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
381 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
382 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
383 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
384 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
385 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
386 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
387 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
388 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
389 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
390 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
391 	NR_SLUB_STAT_ITEMS
392 };
393 
394 #ifndef CONFIG_SLUB_TINY
395 /*
396  * When changing the layout, make sure freelist and tid are still compatible
397  * with this_cpu_cmpxchg_double() alignment requirements.
398  */
399 struct kmem_cache_cpu {
400 	union {
401 		struct {
402 			void **freelist;	/* Pointer to next available object */
403 			unsigned long tid;	/* Globally unique transaction id */
404 		};
405 		freelist_aba_t freelist_tid;
406 	};
407 	struct slab *slab;	/* The slab from which we are allocating */
408 #ifdef CONFIG_SLUB_CPU_PARTIAL
409 	struct slab *partial;	/* Partially allocated slabs */
410 #endif
411 	local_lock_t lock;	/* Protects the fields above */
412 #ifdef CONFIG_SLUB_STATS
413 	unsigned int stat[NR_SLUB_STAT_ITEMS];
414 #endif
415 };
416 #endif /* CONFIG_SLUB_TINY */
417 
418 static inline void stat(const struct kmem_cache *s, enum stat_item si)
419 {
420 #ifdef CONFIG_SLUB_STATS
421 	/*
422 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
423 	 * avoid this_cpu_add()'s irq-disable overhead.
424 	 */
425 	raw_cpu_inc(s->cpu_slab->stat[si]);
426 #endif
427 }
428 
429 static inline
430 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
431 {
432 #ifdef CONFIG_SLUB_STATS
433 	raw_cpu_add(s->cpu_slab->stat[si], v);
434 #endif
435 }
436 
437 /*
438  * The slab lists for all objects.
439  */
440 struct kmem_cache_node {
441 	spinlock_t list_lock;
442 	unsigned long nr_partial;
443 	struct list_head partial;
444 #ifdef CONFIG_SLUB_DEBUG
445 	atomic_long_t nr_slabs;
446 	atomic_long_t total_objects;
447 	struct list_head full;
448 #endif
449 };
450 
451 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
452 {
453 	return s->node[node];
454 }
455 
456 /*
457  * Iterator over all nodes. The body will be executed for each node that has
458  * a kmem_cache_node structure allocated (which is true for all online nodes)
459  */
460 #define for_each_kmem_cache_node(__s, __node, __n) \
461 	for (__node = 0; __node < nr_node_ids; __node++) \
462 		 if ((__n = get_node(__s, __node)))
463 
464 /*
465  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
466  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
467  * differ during memory hotplug/hotremove operations.
468  * Protected by slab_mutex.
469  */
470 static nodemask_t slab_nodes;
471 
472 #ifndef CONFIG_SLUB_TINY
473 /*
474  * Workqueue used for flush_cpu_slab().
475  */
476 static struct workqueue_struct *flushwq;
477 #endif
478 
479 /********************************************************************
480  * 			Core slab cache functions
481  *******************************************************************/
482 
483 /*
484  * Returns freelist pointer (ptr). With hardening, this is obfuscated
485  * with an XOR of the address where the pointer is held and a per-cache
486  * random number.
487  */
488 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
489 					    void *ptr, unsigned long ptr_addr)
490 {
491 	unsigned long encoded;
492 
493 #ifdef CONFIG_SLAB_FREELIST_HARDENED
494 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
495 #else
496 	encoded = (unsigned long)ptr;
497 #endif
498 	return (freeptr_t){.v = encoded};
499 }
500 
501 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
502 					freeptr_t ptr, unsigned long ptr_addr)
503 {
504 	void *decoded;
505 
506 #ifdef CONFIG_SLAB_FREELIST_HARDENED
507 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
508 #else
509 	decoded = (void *)ptr.v;
510 #endif
511 	return decoded;
512 }
513 
514 static inline void *get_freepointer(struct kmem_cache *s, void *object)
515 {
516 	unsigned long ptr_addr;
517 	freeptr_t p;
518 
519 	object = kasan_reset_tag(object);
520 	ptr_addr = (unsigned long)object + s->offset;
521 	p = *(freeptr_t *)(ptr_addr);
522 	return freelist_ptr_decode(s, p, ptr_addr);
523 }
524 
525 #ifndef CONFIG_SLUB_TINY
526 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
527 {
528 	prefetchw(object + s->offset);
529 }
530 #endif
531 
532 /*
533  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
534  * pointer value in the case the current thread loses the race for the next
535  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
536  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
537  * KMSAN will still check all arguments of cmpxchg because of imperfect
538  * handling of inline assembly.
539  * To work around this problem, we apply __no_kmsan_checks to ensure that
540  * get_freepointer_safe() returns initialized memory.
541  */
542 __no_kmsan_checks
543 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
544 {
545 	unsigned long freepointer_addr;
546 	freeptr_t p;
547 
548 	if (!debug_pagealloc_enabled_static())
549 		return get_freepointer(s, object);
550 
551 	object = kasan_reset_tag(object);
552 	freepointer_addr = (unsigned long)object + s->offset;
553 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
554 	return freelist_ptr_decode(s, p, freepointer_addr);
555 }
556 
557 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
558 {
559 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
560 
561 #ifdef CONFIG_SLAB_FREELIST_HARDENED
562 	BUG_ON(object == fp); /* naive detection of double free or corruption */
563 #endif
564 
565 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
566 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
567 }
568 
569 /*
570  * See comment in calculate_sizes().
571  */
572 static inline bool freeptr_outside_object(struct kmem_cache *s)
573 {
574 	return s->offset >= s->inuse;
575 }
576 
577 /*
578  * Return offset of the end of info block which is inuse + free pointer if
579  * not overlapping with object.
580  */
581 static inline unsigned int get_info_end(struct kmem_cache *s)
582 {
583 	if (freeptr_outside_object(s))
584 		return s->inuse + sizeof(void *);
585 	else
586 		return s->inuse;
587 }
588 
589 /* Loop over all objects in a slab */
590 #define for_each_object(__p, __s, __addr, __objects) \
591 	for (__p = fixup_red_left(__s, __addr); \
592 		__p < (__addr) + (__objects) * (__s)->size; \
593 		__p += (__s)->size)
594 
595 static inline unsigned int order_objects(unsigned int order, unsigned int size)
596 {
597 	return ((unsigned int)PAGE_SIZE << order) / size;
598 }
599 
600 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
601 		unsigned int size)
602 {
603 	struct kmem_cache_order_objects x = {
604 		(order << OO_SHIFT) + order_objects(order, size)
605 	};
606 
607 	return x;
608 }
609 
610 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
611 {
612 	return x.x >> OO_SHIFT;
613 }
614 
615 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
616 {
617 	return x.x & OO_MASK;
618 }
619 
620 #ifdef CONFIG_SLUB_CPU_PARTIAL
621 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
622 {
623 	unsigned int nr_slabs;
624 
625 	s->cpu_partial = nr_objects;
626 
627 	/*
628 	 * We take the number of objects but actually limit the number of
629 	 * slabs on the per cpu partial list, in order to limit excessive
630 	 * growth of the list. For simplicity we assume that the slabs will
631 	 * be half-full.
632 	 */
633 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
634 	s->cpu_partial_slabs = nr_slabs;
635 }
636 
637 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
638 {
639 	return s->cpu_partial_slabs;
640 }
641 #else
642 static inline void
643 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
644 {
645 }
646 
647 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
648 {
649 	return 0;
650 }
651 #endif /* CONFIG_SLUB_CPU_PARTIAL */
652 
653 /*
654  * If network-based swap is enabled, slub must keep track of whether memory
655  * were allocated from pfmemalloc reserves.
656  */
657 static inline bool slab_test_pfmemalloc(const struct slab *slab)
658 {
659 	return test_bit(SL_pfmemalloc, &slab->flags);
660 }
661 
662 static inline void slab_set_pfmemalloc(struct slab *slab)
663 {
664 	set_bit(SL_pfmemalloc, &slab->flags);
665 }
666 
667 static inline void __slab_clear_pfmemalloc(struct slab *slab)
668 {
669 	__clear_bit(SL_pfmemalloc, &slab->flags);
670 }
671 
672 /*
673  * Per slab locking using the pagelock
674  */
675 static __always_inline void slab_lock(struct slab *slab)
676 {
677 	bit_spin_lock(SL_locked, &slab->flags);
678 }
679 
680 static __always_inline void slab_unlock(struct slab *slab)
681 {
682 	bit_spin_unlock(SL_locked, &slab->flags);
683 }
684 
685 static inline bool
686 __update_freelist_fast(struct slab *slab,
687 		      void *freelist_old, unsigned long counters_old,
688 		      void *freelist_new, unsigned long counters_new)
689 {
690 #ifdef system_has_freelist_aba
691 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
692 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
693 
694 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
695 #else
696 	return false;
697 #endif
698 }
699 
700 static inline bool
701 __update_freelist_slow(struct slab *slab,
702 		      void *freelist_old, unsigned long counters_old,
703 		      void *freelist_new, unsigned long counters_new)
704 {
705 	bool ret = false;
706 
707 	slab_lock(slab);
708 	if (slab->freelist == freelist_old &&
709 	    slab->counters == counters_old) {
710 		slab->freelist = freelist_new;
711 		slab->counters = counters_new;
712 		ret = true;
713 	}
714 	slab_unlock(slab);
715 
716 	return ret;
717 }
718 
719 /*
720  * Interrupts must be disabled (for the fallback code to work right), typically
721  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
722  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
723  * allocation/ free operation in hardirq context. Therefore nothing can
724  * interrupt the operation.
725  */
726 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
727 		void *freelist_old, unsigned long counters_old,
728 		void *freelist_new, unsigned long counters_new,
729 		const char *n)
730 {
731 	bool ret;
732 
733 	if (USE_LOCKLESS_FAST_PATH())
734 		lockdep_assert_irqs_disabled();
735 
736 	if (s->flags & __CMPXCHG_DOUBLE) {
737 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
738 				            freelist_new, counters_new);
739 	} else {
740 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
741 				            freelist_new, counters_new);
742 	}
743 	if (likely(ret))
744 		return true;
745 
746 	cpu_relax();
747 	stat(s, CMPXCHG_DOUBLE_FAIL);
748 
749 #ifdef SLUB_DEBUG_CMPXCHG
750 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
751 #endif
752 
753 	return false;
754 }
755 
756 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
757 		void *freelist_old, unsigned long counters_old,
758 		void *freelist_new, unsigned long counters_new,
759 		const char *n)
760 {
761 	bool ret;
762 
763 	if (s->flags & __CMPXCHG_DOUBLE) {
764 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
765 				            freelist_new, counters_new);
766 	} else {
767 		unsigned long flags;
768 
769 		local_irq_save(flags);
770 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
771 				            freelist_new, counters_new);
772 		local_irq_restore(flags);
773 	}
774 	if (likely(ret))
775 		return true;
776 
777 	cpu_relax();
778 	stat(s, CMPXCHG_DOUBLE_FAIL);
779 
780 #ifdef SLUB_DEBUG_CMPXCHG
781 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
782 #endif
783 
784 	return false;
785 }
786 
787 /*
788  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
789  * family will round up the real request size to these fixed ones, so
790  * there could be an extra area than what is requested. Save the original
791  * request size in the meta data area, for better debug and sanity check.
792  */
793 static inline void set_orig_size(struct kmem_cache *s,
794 				void *object, unsigned int orig_size)
795 {
796 	void *p = kasan_reset_tag(object);
797 
798 	if (!slub_debug_orig_size(s))
799 		return;
800 
801 	p += get_info_end(s);
802 	p += sizeof(struct track) * 2;
803 
804 	*(unsigned int *)p = orig_size;
805 }
806 
807 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
808 {
809 	void *p = kasan_reset_tag(object);
810 
811 	if (is_kfence_address(object))
812 		return kfence_ksize(object);
813 
814 	if (!slub_debug_orig_size(s))
815 		return s->object_size;
816 
817 	p += get_info_end(s);
818 	p += sizeof(struct track) * 2;
819 
820 	return *(unsigned int *)p;
821 }
822 
823 #ifdef CONFIG_SLUB_DEBUG
824 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
825 static DEFINE_SPINLOCK(object_map_lock);
826 
827 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
828 		       struct slab *slab)
829 {
830 	void *addr = slab_address(slab);
831 	void *p;
832 
833 	bitmap_zero(obj_map, slab->objects);
834 
835 	for (p = slab->freelist; p; p = get_freepointer(s, p))
836 		set_bit(__obj_to_index(s, addr, p), obj_map);
837 }
838 
839 #if IS_ENABLED(CONFIG_KUNIT)
840 static bool slab_add_kunit_errors(void)
841 {
842 	struct kunit_resource *resource;
843 
844 	if (!kunit_get_current_test())
845 		return false;
846 
847 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
848 	if (!resource)
849 		return false;
850 
851 	(*(int *)resource->data)++;
852 	kunit_put_resource(resource);
853 	return true;
854 }
855 
856 bool slab_in_kunit_test(void)
857 {
858 	struct kunit_resource *resource;
859 
860 	if (!kunit_get_current_test())
861 		return false;
862 
863 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
864 	if (!resource)
865 		return false;
866 
867 	kunit_put_resource(resource);
868 	return true;
869 }
870 #else
871 static inline bool slab_add_kunit_errors(void) { return false; }
872 #endif
873 
874 static inline unsigned int size_from_object(struct kmem_cache *s)
875 {
876 	if (s->flags & SLAB_RED_ZONE)
877 		return s->size - s->red_left_pad;
878 
879 	return s->size;
880 }
881 
882 static inline void *restore_red_left(struct kmem_cache *s, void *p)
883 {
884 	if (s->flags & SLAB_RED_ZONE)
885 		p -= s->red_left_pad;
886 
887 	return p;
888 }
889 
890 /*
891  * Debug settings:
892  */
893 #if defined(CONFIG_SLUB_DEBUG_ON)
894 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
895 #else
896 static slab_flags_t slub_debug;
897 #endif
898 
899 static char *slub_debug_string;
900 static int disable_higher_order_debug;
901 
902 /*
903  * slub is about to manipulate internal object metadata.  This memory lies
904  * outside the range of the allocated object, so accessing it would normally
905  * be reported by kasan as a bounds error.  metadata_access_enable() is used
906  * to tell kasan that these accesses are OK.
907  */
908 static inline void metadata_access_enable(void)
909 {
910 	kasan_disable_current();
911 	kmsan_disable_current();
912 }
913 
914 static inline void metadata_access_disable(void)
915 {
916 	kmsan_enable_current();
917 	kasan_enable_current();
918 }
919 
920 /*
921  * Object debugging
922  */
923 
924 /* Verify that a pointer has an address that is valid within a slab page */
925 static inline int check_valid_pointer(struct kmem_cache *s,
926 				struct slab *slab, void *object)
927 {
928 	void *base;
929 
930 	if (!object)
931 		return 1;
932 
933 	base = slab_address(slab);
934 	object = kasan_reset_tag(object);
935 	object = restore_red_left(s, object);
936 	if (object < base || object >= base + slab->objects * s->size ||
937 		(object - base) % s->size) {
938 		return 0;
939 	}
940 
941 	return 1;
942 }
943 
944 static void print_section(char *level, char *text, u8 *addr,
945 			  unsigned int length)
946 {
947 	metadata_access_enable();
948 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
949 			16, 1, kasan_reset_tag((void *)addr), length, 1);
950 	metadata_access_disable();
951 }
952 
953 static struct track *get_track(struct kmem_cache *s, void *object,
954 	enum track_item alloc)
955 {
956 	struct track *p;
957 
958 	p = object + get_info_end(s);
959 
960 	return kasan_reset_tag(p + alloc);
961 }
962 
963 #ifdef CONFIG_STACKDEPOT
964 static noinline depot_stack_handle_t set_track_prepare(void)
965 {
966 	depot_stack_handle_t handle;
967 	unsigned long entries[TRACK_ADDRS_COUNT];
968 	unsigned int nr_entries;
969 
970 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
971 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
972 
973 	return handle;
974 }
975 #else
976 static inline depot_stack_handle_t set_track_prepare(void)
977 {
978 	return 0;
979 }
980 #endif
981 
982 static void set_track_update(struct kmem_cache *s, void *object,
983 			     enum track_item alloc, unsigned long addr,
984 			     depot_stack_handle_t handle)
985 {
986 	struct track *p = get_track(s, object, alloc);
987 
988 #ifdef CONFIG_STACKDEPOT
989 	p->handle = handle;
990 #endif
991 	p->addr = addr;
992 	p->cpu = smp_processor_id();
993 	p->pid = current->pid;
994 	p->when = jiffies;
995 }
996 
997 static __always_inline void set_track(struct kmem_cache *s, void *object,
998 				      enum track_item alloc, unsigned long addr)
999 {
1000 	depot_stack_handle_t handle = set_track_prepare();
1001 
1002 	set_track_update(s, object, alloc, addr, handle);
1003 }
1004 
1005 static void init_tracking(struct kmem_cache *s, void *object)
1006 {
1007 	struct track *p;
1008 
1009 	if (!(s->flags & SLAB_STORE_USER))
1010 		return;
1011 
1012 	p = get_track(s, object, TRACK_ALLOC);
1013 	memset(p, 0, 2*sizeof(struct track));
1014 }
1015 
1016 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1017 {
1018 	depot_stack_handle_t handle __maybe_unused;
1019 
1020 	if (!t->addr)
1021 		return;
1022 
1023 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1024 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1025 #ifdef CONFIG_STACKDEPOT
1026 	handle = READ_ONCE(t->handle);
1027 	if (handle)
1028 		stack_depot_print(handle);
1029 	else
1030 		pr_err("object allocation/free stack trace missing\n");
1031 #endif
1032 }
1033 
1034 void print_tracking(struct kmem_cache *s, void *object)
1035 {
1036 	unsigned long pr_time = jiffies;
1037 	if (!(s->flags & SLAB_STORE_USER))
1038 		return;
1039 
1040 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1041 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1042 }
1043 
1044 static void print_slab_info(const struct slab *slab)
1045 {
1046 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1047 	       slab, slab->objects, slab->inuse, slab->freelist,
1048 	       &slab->flags);
1049 }
1050 
1051 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1052 {
1053 	set_orig_size(s, (void *)object, s->object_size);
1054 }
1055 
1056 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1057 {
1058 	struct va_format vaf;
1059 	va_list args;
1060 
1061 	va_copy(args, argsp);
1062 	vaf.fmt = fmt;
1063 	vaf.va = &args;
1064 	pr_err("=============================================================================\n");
1065 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1066 	pr_err("-----------------------------------------------------------------------------\n\n");
1067 	va_end(args);
1068 }
1069 
1070 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1071 {
1072 	va_list args;
1073 
1074 	va_start(args, fmt);
1075 	__slab_bug(s, fmt, args);
1076 	va_end(args);
1077 }
1078 
1079 __printf(2, 3)
1080 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1081 {
1082 	struct va_format vaf;
1083 	va_list args;
1084 
1085 	if (slab_add_kunit_errors())
1086 		return;
1087 
1088 	va_start(args, fmt);
1089 	vaf.fmt = fmt;
1090 	vaf.va = &args;
1091 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1092 	va_end(args);
1093 }
1094 
1095 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1096 {
1097 	unsigned int off;	/* Offset of last byte */
1098 	u8 *addr = slab_address(slab);
1099 
1100 	print_tracking(s, p);
1101 
1102 	print_slab_info(slab);
1103 
1104 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1105 	       p, p - addr, get_freepointer(s, p));
1106 
1107 	if (s->flags & SLAB_RED_ZONE)
1108 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1109 			      s->red_left_pad);
1110 	else if (p > addr + 16)
1111 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1112 
1113 	print_section(KERN_ERR,         "Object   ", p,
1114 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1115 	if (s->flags & SLAB_RED_ZONE)
1116 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1117 			s->inuse - s->object_size);
1118 
1119 	off = get_info_end(s);
1120 
1121 	if (s->flags & SLAB_STORE_USER)
1122 		off += 2 * sizeof(struct track);
1123 
1124 	if (slub_debug_orig_size(s))
1125 		off += sizeof(unsigned int);
1126 
1127 	off += kasan_metadata_size(s, false);
1128 
1129 	if (off != size_from_object(s))
1130 		/* Beginning of the filler is the free pointer */
1131 		print_section(KERN_ERR, "Padding  ", p + off,
1132 			      size_from_object(s) - off);
1133 }
1134 
1135 static void object_err(struct kmem_cache *s, struct slab *slab,
1136 			u8 *object, const char *reason)
1137 {
1138 	if (slab_add_kunit_errors())
1139 		return;
1140 
1141 	slab_bug(s, reason);
1142 	print_trailer(s, slab, object);
1143 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1144 
1145 	WARN_ON(1);
1146 }
1147 
1148 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1149 			       void **freelist, void *nextfree)
1150 {
1151 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1152 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1153 		object_err(s, slab, *freelist, "Freechain corrupt");
1154 		*freelist = NULL;
1155 		slab_fix(s, "Isolate corrupted freechain");
1156 		return true;
1157 	}
1158 
1159 	return false;
1160 }
1161 
1162 static void __slab_err(struct slab *slab)
1163 {
1164 	if (slab_in_kunit_test())
1165 		return;
1166 
1167 	print_slab_info(slab);
1168 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1169 
1170 	WARN_ON(1);
1171 }
1172 
1173 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1174 			const char *fmt, ...)
1175 {
1176 	va_list args;
1177 
1178 	if (slab_add_kunit_errors())
1179 		return;
1180 
1181 	va_start(args, fmt);
1182 	__slab_bug(s, fmt, args);
1183 	va_end(args);
1184 
1185 	__slab_err(slab);
1186 }
1187 
1188 static void init_object(struct kmem_cache *s, void *object, u8 val)
1189 {
1190 	u8 *p = kasan_reset_tag(object);
1191 	unsigned int poison_size = s->object_size;
1192 
1193 	if (s->flags & SLAB_RED_ZONE) {
1194 		/*
1195 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1196 		 * the shadow makes it possible to distinguish uninit-value
1197 		 * from use-after-free.
1198 		 */
1199 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1200 					  s->red_left_pad);
1201 
1202 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1203 			/*
1204 			 * Redzone the extra allocated space by kmalloc than
1205 			 * requested, and the poison size will be limited to
1206 			 * the original request size accordingly.
1207 			 */
1208 			poison_size = get_orig_size(s, object);
1209 		}
1210 	}
1211 
1212 	if (s->flags & __OBJECT_POISON) {
1213 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1214 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1215 	}
1216 
1217 	if (s->flags & SLAB_RED_ZONE)
1218 		memset_no_sanitize_memory(p + poison_size, val,
1219 					  s->inuse - poison_size);
1220 }
1221 
1222 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1223 						void *from, void *to)
1224 {
1225 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1226 	memset(from, data, to - from);
1227 }
1228 
1229 #ifdef CONFIG_KMSAN
1230 #define pad_check_attributes noinline __no_kmsan_checks
1231 #else
1232 #define pad_check_attributes
1233 #endif
1234 
1235 static pad_check_attributes int
1236 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1237 		       u8 *object, const char *what, u8 *start, unsigned int value,
1238 		       unsigned int bytes, bool slab_obj_print)
1239 {
1240 	u8 *fault;
1241 	u8 *end;
1242 	u8 *addr = slab_address(slab);
1243 
1244 	metadata_access_enable();
1245 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1246 	metadata_access_disable();
1247 	if (!fault)
1248 		return 1;
1249 
1250 	end = start + bytes;
1251 	while (end > fault && end[-1] == value)
1252 		end--;
1253 
1254 	if (slab_add_kunit_errors())
1255 		goto skip_bug_print;
1256 
1257 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1258 	       what, fault, end - 1, fault - addr, fault[0], value);
1259 
1260 	if (slab_obj_print)
1261 		object_err(s, slab, object, "Object corrupt");
1262 
1263 skip_bug_print:
1264 	restore_bytes(s, what, value, fault, end);
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Object layout:
1270  *
1271  * object address
1272  * 	Bytes of the object to be managed.
1273  * 	If the freepointer may overlay the object then the free
1274  *	pointer is at the middle of the object.
1275  *
1276  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1277  * 	0xa5 (POISON_END)
1278  *
1279  * object + s->object_size
1280  * 	Padding to reach word boundary. This is also used for Redzoning.
1281  * 	Padding is extended by another word if Redzoning is enabled and
1282  * 	object_size == inuse.
1283  *
1284  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1285  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1286  *
1287  * object + s->inuse
1288  * 	Meta data starts here.
1289  *
1290  * 	A. Free pointer (if we cannot overwrite object on free)
1291  * 	B. Tracking data for SLAB_STORE_USER
1292  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1293  *	D. Padding to reach required alignment boundary or at minimum
1294  * 		one word if debugging is on to be able to detect writes
1295  * 		before the word boundary.
1296  *
1297  *	Padding is done using 0x5a (POISON_INUSE)
1298  *
1299  * object + s->size
1300  * 	Nothing is used beyond s->size.
1301  *
1302  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1303  * ignored. And therefore no slab options that rely on these boundaries
1304  * may be used with merged slabcaches.
1305  */
1306 
1307 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1308 {
1309 	unsigned long off = get_info_end(s);	/* The end of info */
1310 
1311 	if (s->flags & SLAB_STORE_USER) {
1312 		/* We also have user information there */
1313 		off += 2 * sizeof(struct track);
1314 
1315 		if (s->flags & SLAB_KMALLOC)
1316 			off += sizeof(unsigned int);
1317 	}
1318 
1319 	off += kasan_metadata_size(s, false);
1320 
1321 	if (size_from_object(s) == off)
1322 		return 1;
1323 
1324 	return check_bytes_and_report(s, slab, p, "Object padding",
1325 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1326 }
1327 
1328 /* Check the pad bytes at the end of a slab page */
1329 static pad_check_attributes void
1330 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1331 {
1332 	u8 *start;
1333 	u8 *fault;
1334 	u8 *end;
1335 	u8 *pad;
1336 	int length;
1337 	int remainder;
1338 
1339 	if (!(s->flags & SLAB_POISON))
1340 		return;
1341 
1342 	start = slab_address(slab);
1343 	length = slab_size(slab);
1344 	end = start + length;
1345 	remainder = length % s->size;
1346 	if (!remainder)
1347 		return;
1348 
1349 	pad = end - remainder;
1350 	metadata_access_enable();
1351 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1352 	metadata_access_disable();
1353 	if (!fault)
1354 		return;
1355 	while (end > fault && end[-1] == POISON_INUSE)
1356 		end--;
1357 
1358 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1359 		 fault, end - 1, fault - start);
1360 	print_section(KERN_ERR, "Padding ", pad, remainder);
1361 	__slab_err(slab);
1362 
1363 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1364 }
1365 
1366 static int check_object(struct kmem_cache *s, struct slab *slab,
1367 					void *object, u8 val)
1368 {
1369 	u8 *p = object;
1370 	u8 *endobject = object + s->object_size;
1371 	unsigned int orig_size, kasan_meta_size;
1372 	int ret = 1;
1373 
1374 	if (s->flags & SLAB_RED_ZONE) {
1375 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1376 			object - s->red_left_pad, val, s->red_left_pad, ret))
1377 			ret = 0;
1378 
1379 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1380 			endobject, val, s->inuse - s->object_size, ret))
1381 			ret = 0;
1382 
1383 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1384 			orig_size = get_orig_size(s, object);
1385 
1386 			if (s->object_size > orig_size  &&
1387 				!check_bytes_and_report(s, slab, object,
1388 					"kmalloc Redzone", p + orig_size,
1389 					val, s->object_size - orig_size, ret)) {
1390 				ret = 0;
1391 			}
1392 		}
1393 	} else {
1394 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1395 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1396 				endobject, POISON_INUSE,
1397 				s->inuse - s->object_size, ret))
1398 				ret = 0;
1399 		}
1400 	}
1401 
1402 	if (s->flags & SLAB_POISON) {
1403 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1404 			/*
1405 			 * KASAN can save its free meta data inside of the
1406 			 * object at offset 0. Thus, skip checking the part of
1407 			 * the redzone that overlaps with the meta data.
1408 			 */
1409 			kasan_meta_size = kasan_metadata_size(s, true);
1410 			if (kasan_meta_size < s->object_size - 1 &&
1411 			    !check_bytes_and_report(s, slab, p, "Poison",
1412 					p + kasan_meta_size, POISON_FREE,
1413 					s->object_size - kasan_meta_size - 1, ret))
1414 				ret = 0;
1415 			if (kasan_meta_size < s->object_size &&
1416 			    !check_bytes_and_report(s, slab, p, "End Poison",
1417 					p + s->object_size - 1, POISON_END, 1, ret))
1418 				ret = 0;
1419 		}
1420 		/*
1421 		 * check_pad_bytes cleans up on its own.
1422 		 */
1423 		if (!check_pad_bytes(s, slab, p))
1424 			ret = 0;
1425 	}
1426 
1427 	/*
1428 	 * Cannot check freepointer while object is allocated if
1429 	 * object and freepointer overlap.
1430 	 */
1431 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1432 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1433 		object_err(s, slab, p, "Freepointer corrupt");
1434 		/*
1435 		 * No choice but to zap it and thus lose the remainder
1436 		 * of the free objects in this slab. May cause
1437 		 * another error because the object count is now wrong.
1438 		 */
1439 		set_freepointer(s, p, NULL);
1440 		ret = 0;
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 static int check_slab(struct kmem_cache *s, struct slab *slab)
1447 {
1448 	int maxobj;
1449 
1450 	if (!folio_test_slab(slab_folio(slab))) {
1451 		slab_err(s, slab, "Not a valid slab page");
1452 		return 0;
1453 	}
1454 
1455 	maxobj = order_objects(slab_order(slab), s->size);
1456 	if (slab->objects > maxobj) {
1457 		slab_err(s, slab, "objects %u > max %u",
1458 			slab->objects, maxobj);
1459 		return 0;
1460 	}
1461 	if (slab->inuse > slab->objects) {
1462 		slab_err(s, slab, "inuse %u > max %u",
1463 			slab->inuse, slab->objects);
1464 		return 0;
1465 	}
1466 	if (slab->frozen) {
1467 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1468 		return 0;
1469 	}
1470 
1471 	/* Slab_pad_check fixes things up after itself */
1472 	slab_pad_check(s, slab);
1473 	return 1;
1474 }
1475 
1476 /*
1477  * Determine if a certain object in a slab is on the freelist. Must hold the
1478  * slab lock to guarantee that the chains are in a consistent state.
1479  */
1480 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1481 {
1482 	int nr = 0;
1483 	void *fp;
1484 	void *object = NULL;
1485 	int max_objects;
1486 
1487 	fp = slab->freelist;
1488 	while (fp && nr <= slab->objects) {
1489 		if (fp == search)
1490 			return true;
1491 		if (!check_valid_pointer(s, slab, fp)) {
1492 			if (object) {
1493 				object_err(s, slab, object,
1494 					"Freechain corrupt");
1495 				set_freepointer(s, object, NULL);
1496 				break;
1497 			} else {
1498 				slab_err(s, slab, "Freepointer corrupt");
1499 				slab->freelist = NULL;
1500 				slab->inuse = slab->objects;
1501 				slab_fix(s, "Freelist cleared");
1502 				return false;
1503 			}
1504 		}
1505 		object = fp;
1506 		fp = get_freepointer(s, object);
1507 		nr++;
1508 	}
1509 
1510 	if (nr > slab->objects) {
1511 		slab_err(s, slab, "Freelist cycle detected");
1512 		slab->freelist = NULL;
1513 		slab->inuse = slab->objects;
1514 		slab_fix(s, "Freelist cleared");
1515 		return false;
1516 	}
1517 
1518 	max_objects = order_objects(slab_order(slab), s->size);
1519 	if (max_objects > MAX_OBJS_PER_PAGE)
1520 		max_objects = MAX_OBJS_PER_PAGE;
1521 
1522 	if (slab->objects != max_objects) {
1523 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1524 			 slab->objects, max_objects);
1525 		slab->objects = max_objects;
1526 		slab_fix(s, "Number of objects adjusted");
1527 	}
1528 	if (slab->inuse != slab->objects - nr) {
1529 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1530 			 slab->inuse, slab->objects - nr);
1531 		slab->inuse = slab->objects - nr;
1532 		slab_fix(s, "Object count adjusted");
1533 	}
1534 	return search == NULL;
1535 }
1536 
1537 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1538 								int alloc)
1539 {
1540 	if (s->flags & SLAB_TRACE) {
1541 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1542 			s->name,
1543 			alloc ? "alloc" : "free",
1544 			object, slab->inuse,
1545 			slab->freelist);
1546 
1547 		if (!alloc)
1548 			print_section(KERN_INFO, "Object ", (void *)object,
1549 					s->object_size);
1550 
1551 		dump_stack();
1552 	}
1553 }
1554 
1555 /*
1556  * Tracking of fully allocated slabs for debugging purposes.
1557  */
1558 static void add_full(struct kmem_cache *s,
1559 	struct kmem_cache_node *n, struct slab *slab)
1560 {
1561 	if (!(s->flags & SLAB_STORE_USER))
1562 		return;
1563 
1564 	lockdep_assert_held(&n->list_lock);
1565 	list_add(&slab->slab_list, &n->full);
1566 }
1567 
1568 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1569 {
1570 	if (!(s->flags & SLAB_STORE_USER))
1571 		return;
1572 
1573 	lockdep_assert_held(&n->list_lock);
1574 	list_del(&slab->slab_list);
1575 }
1576 
1577 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1578 {
1579 	return atomic_long_read(&n->nr_slabs);
1580 }
1581 
1582 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1583 {
1584 	struct kmem_cache_node *n = get_node(s, node);
1585 
1586 	atomic_long_inc(&n->nr_slabs);
1587 	atomic_long_add(objects, &n->total_objects);
1588 }
1589 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1590 {
1591 	struct kmem_cache_node *n = get_node(s, node);
1592 
1593 	atomic_long_dec(&n->nr_slabs);
1594 	atomic_long_sub(objects, &n->total_objects);
1595 }
1596 
1597 /* Object debug checks for alloc/free paths */
1598 static void setup_object_debug(struct kmem_cache *s, void *object)
1599 {
1600 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1601 		return;
1602 
1603 	init_object(s, object, SLUB_RED_INACTIVE);
1604 	init_tracking(s, object);
1605 }
1606 
1607 static
1608 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1609 {
1610 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1611 		return;
1612 
1613 	metadata_access_enable();
1614 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1615 	metadata_access_disable();
1616 }
1617 
1618 static inline int alloc_consistency_checks(struct kmem_cache *s,
1619 					struct slab *slab, void *object)
1620 {
1621 	if (!check_slab(s, slab))
1622 		return 0;
1623 
1624 	if (!check_valid_pointer(s, slab, object)) {
1625 		object_err(s, slab, object, "Freelist Pointer check fails");
1626 		return 0;
1627 	}
1628 
1629 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1630 		return 0;
1631 
1632 	return 1;
1633 }
1634 
1635 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1636 			struct slab *slab, void *object, int orig_size)
1637 {
1638 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1639 		if (!alloc_consistency_checks(s, slab, object))
1640 			goto bad;
1641 	}
1642 
1643 	/* Success. Perform special debug activities for allocs */
1644 	trace(s, slab, object, 1);
1645 	set_orig_size(s, object, orig_size);
1646 	init_object(s, object, SLUB_RED_ACTIVE);
1647 	return true;
1648 
1649 bad:
1650 	if (folio_test_slab(slab_folio(slab))) {
1651 		/*
1652 		 * If this is a slab page then lets do the best we can
1653 		 * to avoid issues in the future. Marking all objects
1654 		 * as used avoids touching the remaining objects.
1655 		 */
1656 		slab_fix(s, "Marking all objects used");
1657 		slab->inuse = slab->objects;
1658 		slab->freelist = NULL;
1659 		slab->frozen = 1; /* mark consistency-failed slab as frozen */
1660 	}
1661 	return false;
1662 }
1663 
1664 static inline int free_consistency_checks(struct kmem_cache *s,
1665 		struct slab *slab, void *object, unsigned long addr)
1666 {
1667 	if (!check_valid_pointer(s, slab, object)) {
1668 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1669 		return 0;
1670 	}
1671 
1672 	if (on_freelist(s, slab, object)) {
1673 		object_err(s, slab, object, "Object already free");
1674 		return 0;
1675 	}
1676 
1677 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1678 		return 0;
1679 
1680 	if (unlikely(s != slab->slab_cache)) {
1681 		if (!folio_test_slab(slab_folio(slab))) {
1682 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1683 				 object);
1684 		} else if (!slab->slab_cache) {
1685 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1686 				 object);
1687 		} else {
1688 			object_err(s, slab, object,
1689 				   "page slab pointer corrupt.");
1690 		}
1691 		return 0;
1692 	}
1693 	return 1;
1694 }
1695 
1696 /*
1697  * Parse a block of slab_debug options. Blocks are delimited by ';'
1698  *
1699  * @str:    start of block
1700  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1701  * @slabs:  return start of list of slabs, or NULL when there's no list
1702  * @init:   assume this is initial parsing and not per-kmem-create parsing
1703  *
1704  * returns the start of next block if there's any, or NULL
1705  */
1706 static char *
1707 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1708 {
1709 	bool higher_order_disable = false;
1710 
1711 	/* Skip any completely empty blocks */
1712 	while (*str && *str == ';')
1713 		str++;
1714 
1715 	if (*str == ',') {
1716 		/*
1717 		 * No options but restriction on slabs. This means full
1718 		 * debugging for slabs matching a pattern.
1719 		 */
1720 		*flags = DEBUG_DEFAULT_FLAGS;
1721 		goto check_slabs;
1722 	}
1723 	*flags = 0;
1724 
1725 	/* Determine which debug features should be switched on */
1726 	for (; *str && *str != ',' && *str != ';'; str++) {
1727 		switch (tolower(*str)) {
1728 		case '-':
1729 			*flags = 0;
1730 			break;
1731 		case 'f':
1732 			*flags |= SLAB_CONSISTENCY_CHECKS;
1733 			break;
1734 		case 'z':
1735 			*flags |= SLAB_RED_ZONE;
1736 			break;
1737 		case 'p':
1738 			*flags |= SLAB_POISON;
1739 			break;
1740 		case 'u':
1741 			*flags |= SLAB_STORE_USER;
1742 			break;
1743 		case 't':
1744 			*flags |= SLAB_TRACE;
1745 			break;
1746 		case 'a':
1747 			*flags |= SLAB_FAILSLAB;
1748 			break;
1749 		case 'o':
1750 			/*
1751 			 * Avoid enabling debugging on caches if its minimum
1752 			 * order would increase as a result.
1753 			 */
1754 			higher_order_disable = true;
1755 			break;
1756 		default:
1757 			if (init)
1758 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1759 		}
1760 	}
1761 check_slabs:
1762 	if (*str == ',')
1763 		*slabs = ++str;
1764 	else
1765 		*slabs = NULL;
1766 
1767 	/* Skip over the slab list */
1768 	while (*str && *str != ';')
1769 		str++;
1770 
1771 	/* Skip any completely empty blocks */
1772 	while (*str && *str == ';')
1773 		str++;
1774 
1775 	if (init && higher_order_disable)
1776 		disable_higher_order_debug = 1;
1777 
1778 	if (*str)
1779 		return str;
1780 	else
1781 		return NULL;
1782 }
1783 
1784 static int __init setup_slub_debug(char *str)
1785 {
1786 	slab_flags_t flags;
1787 	slab_flags_t global_flags;
1788 	char *saved_str;
1789 	char *slab_list;
1790 	bool global_slub_debug_changed = false;
1791 	bool slab_list_specified = false;
1792 
1793 	global_flags = DEBUG_DEFAULT_FLAGS;
1794 	if (*str++ != '=' || !*str)
1795 		/*
1796 		 * No options specified. Switch on full debugging.
1797 		 */
1798 		goto out;
1799 
1800 	saved_str = str;
1801 	while (str) {
1802 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1803 
1804 		if (!slab_list) {
1805 			global_flags = flags;
1806 			global_slub_debug_changed = true;
1807 		} else {
1808 			slab_list_specified = true;
1809 			if (flags & SLAB_STORE_USER)
1810 				stack_depot_request_early_init();
1811 		}
1812 	}
1813 
1814 	/*
1815 	 * For backwards compatibility, a single list of flags with list of
1816 	 * slabs means debugging is only changed for those slabs, so the global
1817 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1818 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1819 	 * long as there is no option specifying flags without a slab list.
1820 	 */
1821 	if (slab_list_specified) {
1822 		if (!global_slub_debug_changed)
1823 			global_flags = slub_debug;
1824 		slub_debug_string = saved_str;
1825 	}
1826 out:
1827 	slub_debug = global_flags;
1828 	if (slub_debug & SLAB_STORE_USER)
1829 		stack_depot_request_early_init();
1830 	if (slub_debug != 0 || slub_debug_string)
1831 		static_branch_enable(&slub_debug_enabled);
1832 	else
1833 		static_branch_disable(&slub_debug_enabled);
1834 	if ((static_branch_unlikely(&init_on_alloc) ||
1835 	     static_branch_unlikely(&init_on_free)) &&
1836 	    (slub_debug & SLAB_POISON))
1837 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1838 	return 1;
1839 }
1840 
1841 __setup("slab_debug", setup_slub_debug);
1842 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1843 
1844 /*
1845  * kmem_cache_flags - apply debugging options to the cache
1846  * @flags:		flags to set
1847  * @name:		name of the cache
1848  *
1849  * Debug option(s) are applied to @flags. In addition to the debug
1850  * option(s), if a slab name (or multiple) is specified i.e.
1851  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1852  * then only the select slabs will receive the debug option(s).
1853  */
1854 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1855 {
1856 	char *iter;
1857 	size_t len;
1858 	char *next_block;
1859 	slab_flags_t block_flags;
1860 	slab_flags_t slub_debug_local = slub_debug;
1861 
1862 	if (flags & SLAB_NO_USER_FLAGS)
1863 		return flags;
1864 
1865 	/*
1866 	 * If the slab cache is for debugging (e.g. kmemleak) then
1867 	 * don't store user (stack trace) information by default,
1868 	 * but let the user enable it via the command line below.
1869 	 */
1870 	if (flags & SLAB_NOLEAKTRACE)
1871 		slub_debug_local &= ~SLAB_STORE_USER;
1872 
1873 	len = strlen(name);
1874 	next_block = slub_debug_string;
1875 	/* Go through all blocks of debug options, see if any matches our slab's name */
1876 	while (next_block) {
1877 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1878 		if (!iter)
1879 			continue;
1880 		/* Found a block that has a slab list, search it */
1881 		while (*iter) {
1882 			char *end, *glob;
1883 			size_t cmplen;
1884 
1885 			end = strchrnul(iter, ',');
1886 			if (next_block && next_block < end)
1887 				end = next_block - 1;
1888 
1889 			glob = strnchr(iter, end - iter, '*');
1890 			if (glob)
1891 				cmplen = glob - iter;
1892 			else
1893 				cmplen = max_t(size_t, len, (end - iter));
1894 
1895 			if (!strncmp(name, iter, cmplen)) {
1896 				flags |= block_flags;
1897 				return flags;
1898 			}
1899 
1900 			if (!*end || *end == ';')
1901 				break;
1902 			iter = end + 1;
1903 		}
1904 	}
1905 
1906 	return flags | slub_debug_local;
1907 }
1908 #else /* !CONFIG_SLUB_DEBUG */
1909 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1910 static inline
1911 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1912 
1913 static inline bool alloc_debug_processing(struct kmem_cache *s,
1914 	struct slab *slab, void *object, int orig_size) { return true; }
1915 
1916 static inline bool free_debug_processing(struct kmem_cache *s,
1917 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1918 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1919 
1920 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1921 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1922 			void *object, u8 val) { return 1; }
1923 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1924 static inline void set_track(struct kmem_cache *s, void *object,
1925 			     enum track_item alloc, unsigned long addr) {}
1926 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1927 					struct slab *slab) {}
1928 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1929 					struct slab *slab) {}
1930 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1931 {
1932 	return flags;
1933 }
1934 #define slub_debug 0
1935 
1936 #define disable_higher_order_debug 0
1937 
1938 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1939 							{ return 0; }
1940 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1941 							int objects) {}
1942 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1943 							int objects) {}
1944 #ifndef CONFIG_SLUB_TINY
1945 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1946 			       void **freelist, void *nextfree)
1947 {
1948 	return false;
1949 }
1950 #endif
1951 #endif /* CONFIG_SLUB_DEBUG */
1952 
1953 #ifdef CONFIG_SLAB_OBJ_EXT
1954 
1955 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1956 
1957 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1958 {
1959 	struct slabobj_ext *slab_exts;
1960 	struct slab *obj_exts_slab;
1961 
1962 	obj_exts_slab = virt_to_slab(obj_exts);
1963 	slab_exts = slab_obj_exts(obj_exts_slab);
1964 	if (slab_exts) {
1965 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1966 						 obj_exts_slab, obj_exts);
1967 		/* codetag should be NULL */
1968 		WARN_ON(slab_exts[offs].ref.ct);
1969 		set_codetag_empty(&slab_exts[offs].ref);
1970 	}
1971 }
1972 
1973 static inline void mark_failed_objexts_alloc(struct slab *slab)
1974 {
1975 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1976 }
1977 
1978 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1979 			struct slabobj_ext *vec, unsigned int objects)
1980 {
1981 	/*
1982 	 * If vector previously failed to allocate then we have live
1983 	 * objects with no tag reference. Mark all references in this
1984 	 * vector as empty to avoid warnings later on.
1985 	 */
1986 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1987 		unsigned int i;
1988 
1989 		for (i = 0; i < objects; i++)
1990 			set_codetag_empty(&vec[i].ref);
1991 	}
1992 }
1993 
1994 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1995 
1996 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1997 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1998 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1999 			struct slabobj_ext *vec, unsigned int objects) {}
2000 
2001 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2002 
2003 /*
2004  * The allocated objcg pointers array is not accounted directly.
2005  * Moreover, it should not come from DMA buffer and is not readily
2006  * reclaimable. So those GFP bits should be masked off.
2007  */
2008 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2009 				__GFP_ACCOUNT | __GFP_NOFAIL)
2010 
2011 static inline void init_slab_obj_exts(struct slab *slab)
2012 {
2013 	slab->obj_exts = 0;
2014 }
2015 
2016 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2017 		        gfp_t gfp, bool new_slab)
2018 {
2019 	unsigned int objects = objs_per_slab(s, slab);
2020 	unsigned long new_exts;
2021 	unsigned long old_exts;
2022 	struct slabobj_ext *vec;
2023 
2024 	gfp &= ~OBJCGS_CLEAR_MASK;
2025 	/* Prevent recursive extension vector allocation */
2026 	gfp |= __GFP_NO_OBJ_EXT;
2027 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2028 			   slab_nid(slab));
2029 	if (!vec) {
2030 		/* Mark vectors which failed to allocate */
2031 		if (new_slab)
2032 			mark_failed_objexts_alloc(slab);
2033 
2034 		return -ENOMEM;
2035 	}
2036 
2037 	new_exts = (unsigned long)vec;
2038 #ifdef CONFIG_MEMCG
2039 	new_exts |= MEMCG_DATA_OBJEXTS;
2040 #endif
2041 	old_exts = READ_ONCE(slab->obj_exts);
2042 	handle_failed_objexts_alloc(old_exts, vec, objects);
2043 	if (new_slab) {
2044 		/*
2045 		 * If the slab is brand new and nobody can yet access its
2046 		 * obj_exts, no synchronization is required and obj_exts can
2047 		 * be simply assigned.
2048 		 */
2049 		slab->obj_exts = new_exts;
2050 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2051 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2052 		/*
2053 		 * If the slab is already in use, somebody can allocate and
2054 		 * assign slabobj_exts in parallel. In this case the existing
2055 		 * objcg vector should be reused.
2056 		 */
2057 		mark_objexts_empty(vec);
2058 		kfree(vec);
2059 		return 0;
2060 	}
2061 
2062 	kmemleak_not_leak(vec);
2063 	return 0;
2064 }
2065 
2066 static inline void free_slab_obj_exts(struct slab *slab)
2067 {
2068 	struct slabobj_ext *obj_exts;
2069 
2070 	obj_exts = slab_obj_exts(slab);
2071 	if (!obj_exts)
2072 		return;
2073 
2074 	/*
2075 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2076 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2077 	 * warning if slab has extensions but the extension of an object is
2078 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2079 	 * the extension for obj_exts is expected to be NULL.
2080 	 */
2081 	mark_objexts_empty(obj_exts);
2082 	kfree(obj_exts);
2083 	slab->obj_exts = 0;
2084 }
2085 
2086 #else /* CONFIG_SLAB_OBJ_EXT */
2087 
2088 static inline void init_slab_obj_exts(struct slab *slab)
2089 {
2090 }
2091 
2092 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2093 			       gfp_t gfp, bool new_slab)
2094 {
2095 	return 0;
2096 }
2097 
2098 static inline void free_slab_obj_exts(struct slab *slab)
2099 {
2100 }
2101 
2102 #endif /* CONFIG_SLAB_OBJ_EXT */
2103 
2104 #ifdef CONFIG_MEM_ALLOC_PROFILING
2105 
2106 static inline struct slabobj_ext *
2107 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2108 {
2109 	struct slab *slab;
2110 
2111 	if (!p)
2112 		return NULL;
2113 
2114 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2115 		return NULL;
2116 
2117 	if (flags & __GFP_NO_OBJ_EXT)
2118 		return NULL;
2119 
2120 	slab = virt_to_slab(p);
2121 	if (!slab_obj_exts(slab) &&
2122 	    alloc_slab_obj_exts(slab, s, flags, false)) {
2123 		pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2124 			     __func__, s->name);
2125 		return NULL;
2126 	}
2127 
2128 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2129 }
2130 
2131 /* Should be called only if mem_alloc_profiling_enabled() */
2132 static noinline void
2133 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2134 {
2135 	struct slabobj_ext *obj_exts;
2136 
2137 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2138 	/*
2139 	 * Currently obj_exts is used only for allocation profiling.
2140 	 * If other users appear then mem_alloc_profiling_enabled()
2141 	 * check should be added before alloc_tag_add().
2142 	 */
2143 	if (likely(obj_exts))
2144 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2145 }
2146 
2147 static inline void
2148 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2149 {
2150 	if (mem_alloc_profiling_enabled())
2151 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2152 }
2153 
2154 /* Should be called only if mem_alloc_profiling_enabled() */
2155 static noinline void
2156 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2157 			       int objects)
2158 {
2159 	struct slabobj_ext *obj_exts;
2160 	int i;
2161 
2162 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2163 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2164 		return;
2165 
2166 	obj_exts = slab_obj_exts(slab);
2167 	if (!obj_exts)
2168 		return;
2169 
2170 	for (i = 0; i < objects; i++) {
2171 		unsigned int off = obj_to_index(s, slab, p[i]);
2172 
2173 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2174 	}
2175 }
2176 
2177 static inline void
2178 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2179 			     int objects)
2180 {
2181 	if (mem_alloc_profiling_enabled())
2182 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2183 }
2184 
2185 #else /* CONFIG_MEM_ALLOC_PROFILING */
2186 
2187 static inline void
2188 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2189 {
2190 }
2191 
2192 static inline void
2193 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2194 			     int objects)
2195 {
2196 }
2197 
2198 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2199 
2200 
2201 #ifdef CONFIG_MEMCG
2202 
2203 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2204 
2205 static __fastpath_inline
2206 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2207 				gfp_t flags, size_t size, void **p)
2208 {
2209 	if (likely(!memcg_kmem_online()))
2210 		return true;
2211 
2212 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2213 		return true;
2214 
2215 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2216 		return true;
2217 
2218 	if (likely(size == 1)) {
2219 		memcg_alloc_abort_single(s, *p);
2220 		*p = NULL;
2221 	} else {
2222 		kmem_cache_free_bulk(s, size, p);
2223 	}
2224 
2225 	return false;
2226 }
2227 
2228 static __fastpath_inline
2229 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2230 			  int objects)
2231 {
2232 	struct slabobj_ext *obj_exts;
2233 
2234 	if (!memcg_kmem_online())
2235 		return;
2236 
2237 	obj_exts = slab_obj_exts(slab);
2238 	if (likely(!obj_exts))
2239 		return;
2240 
2241 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2242 }
2243 
2244 static __fastpath_inline
2245 bool memcg_slab_post_charge(void *p, gfp_t flags)
2246 {
2247 	struct slabobj_ext *slab_exts;
2248 	struct kmem_cache *s;
2249 	struct folio *folio;
2250 	struct slab *slab;
2251 	unsigned long off;
2252 
2253 	folio = virt_to_folio(p);
2254 	if (!folio_test_slab(folio)) {
2255 		int size;
2256 
2257 		if (folio_memcg_kmem(folio))
2258 			return true;
2259 
2260 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2261 					     folio_order(folio)))
2262 			return false;
2263 
2264 		/*
2265 		 * This folio has already been accounted in the global stats but
2266 		 * not in the memcg stats. So, subtract from the global and use
2267 		 * the interface which adds to both global and memcg stats.
2268 		 */
2269 		size = folio_size(folio);
2270 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2271 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2272 		return true;
2273 	}
2274 
2275 	slab = folio_slab(folio);
2276 	s = slab->slab_cache;
2277 
2278 	/*
2279 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2280 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2281 	 * becoming effectively unfreeable.
2282 	 */
2283 	if (is_kmalloc_normal(s))
2284 		return true;
2285 
2286 	/* Ignore already charged objects. */
2287 	slab_exts = slab_obj_exts(slab);
2288 	if (slab_exts) {
2289 		off = obj_to_index(s, slab, p);
2290 		if (unlikely(slab_exts[off].objcg))
2291 			return true;
2292 	}
2293 
2294 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2295 }
2296 
2297 #else /* CONFIG_MEMCG */
2298 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2299 					      struct list_lru *lru,
2300 					      gfp_t flags, size_t size,
2301 					      void **p)
2302 {
2303 	return true;
2304 }
2305 
2306 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2307 					void **p, int objects)
2308 {
2309 }
2310 
2311 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2312 {
2313 	return true;
2314 }
2315 #endif /* CONFIG_MEMCG */
2316 
2317 #ifdef CONFIG_SLUB_RCU_DEBUG
2318 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2319 
2320 struct rcu_delayed_free {
2321 	struct rcu_head head;
2322 	void *object;
2323 };
2324 #endif
2325 
2326 /*
2327  * Hooks for other subsystems that check memory allocations. In a typical
2328  * production configuration these hooks all should produce no code at all.
2329  *
2330  * Returns true if freeing of the object can proceed, false if its reuse
2331  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2332  * to KFENCE.
2333  */
2334 static __always_inline
2335 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2336 		    bool after_rcu_delay)
2337 {
2338 	/* Are the object contents still accessible? */
2339 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2340 
2341 	kmemleak_free_recursive(x, s->flags);
2342 	kmsan_slab_free(s, x);
2343 
2344 	debug_check_no_locks_freed(x, s->object_size);
2345 
2346 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2347 		debug_check_no_obj_freed(x, s->object_size);
2348 
2349 	/* Use KCSAN to help debug racy use-after-free. */
2350 	if (!still_accessible)
2351 		__kcsan_check_access(x, s->object_size,
2352 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2353 
2354 	if (kfence_free(x))
2355 		return false;
2356 
2357 	/*
2358 	 * Give KASAN a chance to notice an invalid free operation before we
2359 	 * modify the object.
2360 	 */
2361 	if (kasan_slab_pre_free(s, x))
2362 		return false;
2363 
2364 #ifdef CONFIG_SLUB_RCU_DEBUG
2365 	if (still_accessible) {
2366 		struct rcu_delayed_free *delayed_free;
2367 
2368 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2369 		if (delayed_free) {
2370 			/*
2371 			 * Let KASAN track our call stack as a "related work
2372 			 * creation", just like if the object had been freed
2373 			 * normally via kfree_rcu().
2374 			 * We have to do this manually because the rcu_head is
2375 			 * not located inside the object.
2376 			 */
2377 			kasan_record_aux_stack(x);
2378 
2379 			delayed_free->object = x;
2380 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2381 			return false;
2382 		}
2383 	}
2384 #endif /* CONFIG_SLUB_RCU_DEBUG */
2385 
2386 	/*
2387 	 * As memory initialization might be integrated into KASAN,
2388 	 * kasan_slab_free and initialization memset's must be
2389 	 * kept together to avoid discrepancies in behavior.
2390 	 *
2391 	 * The initialization memset's clear the object and the metadata,
2392 	 * but don't touch the SLAB redzone.
2393 	 *
2394 	 * The object's freepointer is also avoided if stored outside the
2395 	 * object.
2396 	 */
2397 	if (unlikely(init)) {
2398 		int rsize;
2399 		unsigned int inuse, orig_size;
2400 
2401 		inuse = get_info_end(s);
2402 		orig_size = get_orig_size(s, x);
2403 		if (!kasan_has_integrated_init())
2404 			memset(kasan_reset_tag(x), 0, orig_size);
2405 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2406 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2407 		       s->size - inuse - rsize);
2408 		/*
2409 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2410 		 * would be reported
2411 		 */
2412 		set_orig_size(s, x, orig_size);
2413 
2414 	}
2415 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2416 	return !kasan_slab_free(s, x, init, still_accessible);
2417 }
2418 
2419 static __fastpath_inline
2420 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2421 			     int *cnt)
2422 {
2423 
2424 	void *object;
2425 	void *next = *head;
2426 	void *old_tail = *tail;
2427 	bool init;
2428 
2429 	if (is_kfence_address(next)) {
2430 		slab_free_hook(s, next, false, false);
2431 		return false;
2432 	}
2433 
2434 	/* Head and tail of the reconstructed freelist */
2435 	*head = NULL;
2436 	*tail = NULL;
2437 
2438 	init = slab_want_init_on_free(s);
2439 
2440 	do {
2441 		object = next;
2442 		next = get_freepointer(s, object);
2443 
2444 		/* If object's reuse doesn't have to be delayed */
2445 		if (likely(slab_free_hook(s, object, init, false))) {
2446 			/* Move object to the new freelist */
2447 			set_freepointer(s, object, *head);
2448 			*head = object;
2449 			if (!*tail)
2450 				*tail = object;
2451 		} else {
2452 			/*
2453 			 * Adjust the reconstructed freelist depth
2454 			 * accordingly if object's reuse is delayed.
2455 			 */
2456 			--(*cnt);
2457 		}
2458 	} while (object != old_tail);
2459 
2460 	return *head != NULL;
2461 }
2462 
2463 static void *setup_object(struct kmem_cache *s, void *object)
2464 {
2465 	setup_object_debug(s, object);
2466 	object = kasan_init_slab_obj(s, object);
2467 	if (unlikely(s->ctor)) {
2468 		kasan_unpoison_new_object(s, object);
2469 		s->ctor(object);
2470 		kasan_poison_new_object(s, object);
2471 	}
2472 	return object;
2473 }
2474 
2475 /*
2476  * Slab allocation and freeing
2477  */
2478 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2479 		struct kmem_cache_order_objects oo)
2480 {
2481 	struct folio *folio;
2482 	struct slab *slab;
2483 	unsigned int order = oo_order(oo);
2484 
2485 	if (node == NUMA_NO_NODE)
2486 		folio = (struct folio *)alloc_frozen_pages(flags, order);
2487 	else
2488 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2489 
2490 	if (!folio)
2491 		return NULL;
2492 
2493 	slab = folio_slab(folio);
2494 	__folio_set_slab(folio);
2495 	if (folio_is_pfmemalloc(folio))
2496 		slab_set_pfmemalloc(slab);
2497 
2498 	return slab;
2499 }
2500 
2501 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2502 /* Pre-initialize the random sequence cache */
2503 static int init_cache_random_seq(struct kmem_cache *s)
2504 {
2505 	unsigned int count = oo_objects(s->oo);
2506 	int err;
2507 
2508 	/* Bailout if already initialised */
2509 	if (s->random_seq)
2510 		return 0;
2511 
2512 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2513 	if (err) {
2514 		pr_err("SLUB: Unable to initialize free list for %s\n",
2515 			s->name);
2516 		return err;
2517 	}
2518 
2519 	/* Transform to an offset on the set of pages */
2520 	if (s->random_seq) {
2521 		unsigned int i;
2522 
2523 		for (i = 0; i < count; i++)
2524 			s->random_seq[i] *= s->size;
2525 	}
2526 	return 0;
2527 }
2528 
2529 /* Initialize each random sequence freelist per cache */
2530 static void __init init_freelist_randomization(void)
2531 {
2532 	struct kmem_cache *s;
2533 
2534 	mutex_lock(&slab_mutex);
2535 
2536 	list_for_each_entry(s, &slab_caches, list)
2537 		init_cache_random_seq(s);
2538 
2539 	mutex_unlock(&slab_mutex);
2540 }
2541 
2542 /* Get the next entry on the pre-computed freelist randomized */
2543 static void *next_freelist_entry(struct kmem_cache *s,
2544 				unsigned long *pos, void *start,
2545 				unsigned long page_limit,
2546 				unsigned long freelist_count)
2547 {
2548 	unsigned int idx;
2549 
2550 	/*
2551 	 * If the target page allocation failed, the number of objects on the
2552 	 * page might be smaller than the usual size defined by the cache.
2553 	 */
2554 	do {
2555 		idx = s->random_seq[*pos];
2556 		*pos += 1;
2557 		if (*pos >= freelist_count)
2558 			*pos = 0;
2559 	} while (unlikely(idx >= page_limit));
2560 
2561 	return (char *)start + idx;
2562 }
2563 
2564 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2565 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2566 {
2567 	void *start;
2568 	void *cur;
2569 	void *next;
2570 	unsigned long idx, pos, page_limit, freelist_count;
2571 
2572 	if (slab->objects < 2 || !s->random_seq)
2573 		return false;
2574 
2575 	freelist_count = oo_objects(s->oo);
2576 	pos = get_random_u32_below(freelist_count);
2577 
2578 	page_limit = slab->objects * s->size;
2579 	start = fixup_red_left(s, slab_address(slab));
2580 
2581 	/* First entry is used as the base of the freelist */
2582 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2583 	cur = setup_object(s, cur);
2584 	slab->freelist = cur;
2585 
2586 	for (idx = 1; idx < slab->objects; idx++) {
2587 		next = next_freelist_entry(s, &pos, start, page_limit,
2588 			freelist_count);
2589 		next = setup_object(s, next);
2590 		set_freepointer(s, cur, next);
2591 		cur = next;
2592 	}
2593 	set_freepointer(s, cur, NULL);
2594 
2595 	return true;
2596 }
2597 #else
2598 static inline int init_cache_random_seq(struct kmem_cache *s)
2599 {
2600 	return 0;
2601 }
2602 static inline void init_freelist_randomization(void) { }
2603 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2604 {
2605 	return false;
2606 }
2607 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2608 
2609 static __always_inline void account_slab(struct slab *slab, int order,
2610 					 struct kmem_cache *s, gfp_t gfp)
2611 {
2612 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2613 		alloc_slab_obj_exts(slab, s, gfp, true);
2614 
2615 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2616 			    PAGE_SIZE << order);
2617 }
2618 
2619 static __always_inline void unaccount_slab(struct slab *slab, int order,
2620 					   struct kmem_cache *s)
2621 {
2622 	/*
2623 	 * The slab object extensions should now be freed regardless of
2624 	 * whether mem_alloc_profiling_enabled() or not because profiling
2625 	 * might have been disabled after slab->obj_exts got allocated.
2626 	 */
2627 	free_slab_obj_exts(slab);
2628 
2629 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2630 			    -(PAGE_SIZE << order));
2631 }
2632 
2633 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2634 {
2635 	struct slab *slab;
2636 	struct kmem_cache_order_objects oo = s->oo;
2637 	gfp_t alloc_gfp;
2638 	void *start, *p, *next;
2639 	int idx;
2640 	bool shuffle;
2641 
2642 	flags &= gfp_allowed_mask;
2643 
2644 	flags |= s->allocflags;
2645 
2646 	/*
2647 	 * Let the initial higher-order allocation fail under memory pressure
2648 	 * so we fall-back to the minimum order allocation.
2649 	 */
2650 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2651 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2652 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2653 
2654 	slab = alloc_slab_page(alloc_gfp, node, oo);
2655 	if (unlikely(!slab)) {
2656 		oo = s->min;
2657 		alloc_gfp = flags;
2658 		/*
2659 		 * Allocation may have failed due to fragmentation.
2660 		 * Try a lower order alloc if possible
2661 		 */
2662 		slab = alloc_slab_page(alloc_gfp, node, oo);
2663 		if (unlikely(!slab))
2664 			return NULL;
2665 		stat(s, ORDER_FALLBACK);
2666 	}
2667 
2668 	slab->objects = oo_objects(oo);
2669 	slab->inuse = 0;
2670 	slab->frozen = 0;
2671 	init_slab_obj_exts(slab);
2672 
2673 	account_slab(slab, oo_order(oo), s, flags);
2674 
2675 	slab->slab_cache = s;
2676 
2677 	kasan_poison_slab(slab);
2678 
2679 	start = slab_address(slab);
2680 
2681 	setup_slab_debug(s, slab, start);
2682 
2683 	shuffle = shuffle_freelist(s, slab);
2684 
2685 	if (!shuffle) {
2686 		start = fixup_red_left(s, start);
2687 		start = setup_object(s, start);
2688 		slab->freelist = start;
2689 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2690 			next = p + s->size;
2691 			next = setup_object(s, next);
2692 			set_freepointer(s, p, next);
2693 			p = next;
2694 		}
2695 		set_freepointer(s, p, NULL);
2696 	}
2697 
2698 	return slab;
2699 }
2700 
2701 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2702 {
2703 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2704 		flags = kmalloc_fix_flags(flags);
2705 
2706 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2707 
2708 	return allocate_slab(s,
2709 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2710 }
2711 
2712 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2713 {
2714 	struct folio *folio = slab_folio(slab);
2715 	int order = folio_order(folio);
2716 	int pages = 1 << order;
2717 
2718 	__slab_clear_pfmemalloc(slab);
2719 	folio->mapping = NULL;
2720 	__folio_clear_slab(folio);
2721 	mm_account_reclaimed_pages(pages);
2722 	unaccount_slab(slab, order, s);
2723 	free_frozen_pages(&folio->page, order);
2724 }
2725 
2726 static void rcu_free_slab(struct rcu_head *h)
2727 {
2728 	struct slab *slab = container_of(h, struct slab, rcu_head);
2729 
2730 	__free_slab(slab->slab_cache, slab);
2731 }
2732 
2733 static void free_slab(struct kmem_cache *s, struct slab *slab)
2734 {
2735 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2736 		void *p;
2737 
2738 		slab_pad_check(s, slab);
2739 		for_each_object(p, s, slab_address(slab), slab->objects)
2740 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2741 	}
2742 
2743 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2744 		call_rcu(&slab->rcu_head, rcu_free_slab);
2745 	else
2746 		__free_slab(s, slab);
2747 }
2748 
2749 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2750 {
2751 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2752 	free_slab(s, slab);
2753 }
2754 
2755 static inline bool slab_test_node_partial(const struct slab *slab)
2756 {
2757 	return test_bit(SL_partial, &slab->flags);
2758 }
2759 
2760 static inline void slab_set_node_partial(struct slab *slab)
2761 {
2762 	set_bit(SL_partial, &slab->flags);
2763 }
2764 
2765 static inline void slab_clear_node_partial(struct slab *slab)
2766 {
2767 	clear_bit(SL_partial, &slab->flags);
2768 }
2769 
2770 /*
2771  * Management of partially allocated slabs.
2772  */
2773 static inline void
2774 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2775 {
2776 	n->nr_partial++;
2777 	if (tail == DEACTIVATE_TO_TAIL)
2778 		list_add_tail(&slab->slab_list, &n->partial);
2779 	else
2780 		list_add(&slab->slab_list, &n->partial);
2781 	slab_set_node_partial(slab);
2782 }
2783 
2784 static inline void add_partial(struct kmem_cache_node *n,
2785 				struct slab *slab, int tail)
2786 {
2787 	lockdep_assert_held(&n->list_lock);
2788 	__add_partial(n, slab, tail);
2789 }
2790 
2791 static inline void remove_partial(struct kmem_cache_node *n,
2792 					struct slab *slab)
2793 {
2794 	lockdep_assert_held(&n->list_lock);
2795 	list_del(&slab->slab_list);
2796 	slab_clear_node_partial(slab);
2797 	n->nr_partial--;
2798 }
2799 
2800 /*
2801  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2802  * slab from the n->partial list. Remove only a single object from the slab, do
2803  * the alloc_debug_processing() checks and leave the slab on the list, or move
2804  * it to full list if it was the last free object.
2805  */
2806 static void *alloc_single_from_partial(struct kmem_cache *s,
2807 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2808 {
2809 	void *object;
2810 
2811 	lockdep_assert_held(&n->list_lock);
2812 
2813 	object = slab->freelist;
2814 	slab->freelist = get_freepointer(s, object);
2815 	slab->inuse++;
2816 
2817 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2818 		if (folio_test_slab(slab_folio(slab)))
2819 			remove_partial(n, slab);
2820 		return NULL;
2821 	}
2822 
2823 	if (slab->inuse == slab->objects) {
2824 		remove_partial(n, slab);
2825 		add_full(s, n, slab);
2826 	}
2827 
2828 	return object;
2829 }
2830 
2831 /*
2832  * Called only for kmem_cache_debug() caches to allocate from a freshly
2833  * allocated slab. Allocate a single object instead of whole freelist
2834  * and put the slab to the partial (or full) list.
2835  */
2836 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2837 					struct slab *slab, int orig_size)
2838 {
2839 	int nid = slab_nid(slab);
2840 	struct kmem_cache_node *n = get_node(s, nid);
2841 	unsigned long flags;
2842 	void *object;
2843 
2844 
2845 	object = slab->freelist;
2846 	slab->freelist = get_freepointer(s, object);
2847 	slab->inuse = 1;
2848 
2849 	if (!alloc_debug_processing(s, slab, object, orig_size))
2850 		/*
2851 		 * It's not really expected that this would fail on a
2852 		 * freshly allocated slab, but a concurrent memory
2853 		 * corruption in theory could cause that.
2854 		 */
2855 		return NULL;
2856 
2857 	spin_lock_irqsave(&n->list_lock, flags);
2858 
2859 	if (slab->inuse == slab->objects)
2860 		add_full(s, n, slab);
2861 	else
2862 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2863 
2864 	inc_slabs_node(s, nid, slab->objects);
2865 	spin_unlock_irqrestore(&n->list_lock, flags);
2866 
2867 	return object;
2868 }
2869 
2870 #ifdef CONFIG_SLUB_CPU_PARTIAL
2871 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2872 #else
2873 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2874 				   int drain) { }
2875 #endif
2876 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2877 
2878 /*
2879  * Try to allocate a partial slab from a specific node.
2880  */
2881 static struct slab *get_partial_node(struct kmem_cache *s,
2882 				     struct kmem_cache_node *n,
2883 				     struct partial_context *pc)
2884 {
2885 	struct slab *slab, *slab2, *partial = NULL;
2886 	unsigned long flags;
2887 	unsigned int partial_slabs = 0;
2888 
2889 	/*
2890 	 * Racy check. If we mistakenly see no partial slabs then we
2891 	 * just allocate an empty slab. If we mistakenly try to get a
2892 	 * partial slab and there is none available then get_partial()
2893 	 * will return NULL.
2894 	 */
2895 	if (!n || !n->nr_partial)
2896 		return NULL;
2897 
2898 	spin_lock_irqsave(&n->list_lock, flags);
2899 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2900 		if (!pfmemalloc_match(slab, pc->flags))
2901 			continue;
2902 
2903 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2904 			void *object = alloc_single_from_partial(s, n, slab,
2905 							pc->orig_size);
2906 			if (object) {
2907 				partial = slab;
2908 				pc->object = object;
2909 				break;
2910 			}
2911 			continue;
2912 		}
2913 
2914 		remove_partial(n, slab);
2915 
2916 		if (!partial) {
2917 			partial = slab;
2918 			stat(s, ALLOC_FROM_PARTIAL);
2919 
2920 			if ((slub_get_cpu_partial(s) == 0)) {
2921 				break;
2922 			}
2923 		} else {
2924 			put_cpu_partial(s, slab, 0);
2925 			stat(s, CPU_PARTIAL_NODE);
2926 
2927 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2928 				break;
2929 			}
2930 		}
2931 	}
2932 	spin_unlock_irqrestore(&n->list_lock, flags);
2933 	return partial;
2934 }
2935 
2936 /*
2937  * Get a slab from somewhere. Search in increasing NUMA distances.
2938  */
2939 static struct slab *get_any_partial(struct kmem_cache *s,
2940 				    struct partial_context *pc)
2941 {
2942 #ifdef CONFIG_NUMA
2943 	struct zonelist *zonelist;
2944 	struct zoneref *z;
2945 	struct zone *zone;
2946 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2947 	struct slab *slab;
2948 	unsigned int cpuset_mems_cookie;
2949 
2950 	/*
2951 	 * The defrag ratio allows a configuration of the tradeoffs between
2952 	 * inter node defragmentation and node local allocations. A lower
2953 	 * defrag_ratio increases the tendency to do local allocations
2954 	 * instead of attempting to obtain partial slabs from other nodes.
2955 	 *
2956 	 * If the defrag_ratio is set to 0 then kmalloc() always
2957 	 * returns node local objects. If the ratio is higher then kmalloc()
2958 	 * may return off node objects because partial slabs are obtained
2959 	 * from other nodes and filled up.
2960 	 *
2961 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2962 	 * (which makes defrag_ratio = 1000) then every (well almost)
2963 	 * allocation will first attempt to defrag slab caches on other nodes.
2964 	 * This means scanning over all nodes to look for partial slabs which
2965 	 * may be expensive if we do it every time we are trying to find a slab
2966 	 * with available objects.
2967 	 */
2968 	if (!s->remote_node_defrag_ratio ||
2969 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2970 		return NULL;
2971 
2972 	do {
2973 		cpuset_mems_cookie = read_mems_allowed_begin();
2974 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2975 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2976 			struct kmem_cache_node *n;
2977 
2978 			n = get_node(s, zone_to_nid(zone));
2979 
2980 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2981 					n->nr_partial > s->min_partial) {
2982 				slab = get_partial_node(s, n, pc);
2983 				if (slab) {
2984 					/*
2985 					 * Don't check read_mems_allowed_retry()
2986 					 * here - if mems_allowed was updated in
2987 					 * parallel, that was a harmless race
2988 					 * between allocation and the cpuset
2989 					 * update
2990 					 */
2991 					return slab;
2992 				}
2993 			}
2994 		}
2995 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2996 #endif	/* CONFIG_NUMA */
2997 	return NULL;
2998 }
2999 
3000 /*
3001  * Get a partial slab, lock it and return it.
3002  */
3003 static struct slab *get_partial(struct kmem_cache *s, int node,
3004 				struct partial_context *pc)
3005 {
3006 	struct slab *slab;
3007 	int searchnode = node;
3008 
3009 	if (node == NUMA_NO_NODE)
3010 		searchnode = numa_mem_id();
3011 
3012 	slab = get_partial_node(s, get_node(s, searchnode), pc);
3013 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3014 		return slab;
3015 
3016 	return get_any_partial(s, pc);
3017 }
3018 
3019 #ifndef CONFIG_SLUB_TINY
3020 
3021 #ifdef CONFIG_PREEMPTION
3022 /*
3023  * Calculate the next globally unique transaction for disambiguation
3024  * during cmpxchg. The transactions start with the cpu number and are then
3025  * incremented by CONFIG_NR_CPUS.
3026  */
3027 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
3028 #else
3029 /*
3030  * No preemption supported therefore also no need to check for
3031  * different cpus.
3032  */
3033 #define TID_STEP 1
3034 #endif /* CONFIG_PREEMPTION */
3035 
3036 static inline unsigned long next_tid(unsigned long tid)
3037 {
3038 	return tid + TID_STEP;
3039 }
3040 
3041 #ifdef SLUB_DEBUG_CMPXCHG
3042 static inline unsigned int tid_to_cpu(unsigned long tid)
3043 {
3044 	return tid % TID_STEP;
3045 }
3046 
3047 static inline unsigned long tid_to_event(unsigned long tid)
3048 {
3049 	return tid / TID_STEP;
3050 }
3051 #endif
3052 
3053 static inline unsigned int init_tid(int cpu)
3054 {
3055 	return cpu;
3056 }
3057 
3058 static inline void note_cmpxchg_failure(const char *n,
3059 		const struct kmem_cache *s, unsigned long tid)
3060 {
3061 #ifdef SLUB_DEBUG_CMPXCHG
3062 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3063 
3064 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3065 
3066 #ifdef CONFIG_PREEMPTION
3067 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3068 		pr_warn("due to cpu change %d -> %d\n",
3069 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3070 	else
3071 #endif
3072 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3073 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3074 			tid_to_event(tid), tid_to_event(actual_tid));
3075 	else
3076 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3077 			actual_tid, tid, next_tid(tid));
3078 #endif
3079 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3080 }
3081 
3082 static void init_kmem_cache_cpus(struct kmem_cache *s)
3083 {
3084 	int cpu;
3085 	struct kmem_cache_cpu *c;
3086 
3087 	for_each_possible_cpu(cpu) {
3088 		c = per_cpu_ptr(s->cpu_slab, cpu);
3089 		local_lock_init(&c->lock);
3090 		c->tid = init_tid(cpu);
3091 	}
3092 }
3093 
3094 /*
3095  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3096  * unfreezes the slabs and puts it on the proper list.
3097  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3098  * by the caller.
3099  */
3100 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3101 			    void *freelist)
3102 {
3103 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3104 	int free_delta = 0;
3105 	void *nextfree, *freelist_iter, *freelist_tail;
3106 	int tail = DEACTIVATE_TO_HEAD;
3107 	unsigned long flags = 0;
3108 	struct slab new;
3109 	struct slab old;
3110 
3111 	if (READ_ONCE(slab->freelist)) {
3112 		stat(s, DEACTIVATE_REMOTE_FREES);
3113 		tail = DEACTIVATE_TO_TAIL;
3114 	}
3115 
3116 	/*
3117 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3118 	 * remember the last object in freelist_tail for later splicing.
3119 	 */
3120 	freelist_tail = NULL;
3121 	freelist_iter = freelist;
3122 	while (freelist_iter) {
3123 		nextfree = get_freepointer(s, freelist_iter);
3124 
3125 		/*
3126 		 * If 'nextfree' is invalid, it is possible that the object at
3127 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3128 		 * starting at 'freelist_iter' by skipping them.
3129 		 */
3130 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3131 			break;
3132 
3133 		freelist_tail = freelist_iter;
3134 		free_delta++;
3135 
3136 		freelist_iter = nextfree;
3137 	}
3138 
3139 	/*
3140 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3141 	 * freelist to the head of slab's freelist.
3142 	 */
3143 	do {
3144 		old.freelist = READ_ONCE(slab->freelist);
3145 		old.counters = READ_ONCE(slab->counters);
3146 		VM_BUG_ON(!old.frozen);
3147 
3148 		/* Determine target state of the slab */
3149 		new.counters = old.counters;
3150 		new.frozen = 0;
3151 		if (freelist_tail) {
3152 			new.inuse -= free_delta;
3153 			set_freepointer(s, freelist_tail, old.freelist);
3154 			new.freelist = freelist;
3155 		} else {
3156 			new.freelist = old.freelist;
3157 		}
3158 	} while (!slab_update_freelist(s, slab,
3159 		old.freelist, old.counters,
3160 		new.freelist, new.counters,
3161 		"unfreezing slab"));
3162 
3163 	/*
3164 	 * Stage three: Manipulate the slab list based on the updated state.
3165 	 */
3166 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3167 		stat(s, DEACTIVATE_EMPTY);
3168 		discard_slab(s, slab);
3169 		stat(s, FREE_SLAB);
3170 	} else if (new.freelist) {
3171 		spin_lock_irqsave(&n->list_lock, flags);
3172 		add_partial(n, slab, tail);
3173 		spin_unlock_irqrestore(&n->list_lock, flags);
3174 		stat(s, tail);
3175 	} else {
3176 		stat(s, DEACTIVATE_FULL);
3177 	}
3178 }
3179 
3180 #ifdef CONFIG_SLUB_CPU_PARTIAL
3181 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3182 {
3183 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3184 	struct slab *slab, *slab_to_discard = NULL;
3185 	unsigned long flags = 0;
3186 
3187 	while (partial_slab) {
3188 		slab = partial_slab;
3189 		partial_slab = slab->next;
3190 
3191 		n2 = get_node(s, slab_nid(slab));
3192 		if (n != n2) {
3193 			if (n)
3194 				spin_unlock_irqrestore(&n->list_lock, flags);
3195 
3196 			n = n2;
3197 			spin_lock_irqsave(&n->list_lock, flags);
3198 		}
3199 
3200 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3201 			slab->next = slab_to_discard;
3202 			slab_to_discard = slab;
3203 		} else {
3204 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3205 			stat(s, FREE_ADD_PARTIAL);
3206 		}
3207 	}
3208 
3209 	if (n)
3210 		spin_unlock_irqrestore(&n->list_lock, flags);
3211 
3212 	while (slab_to_discard) {
3213 		slab = slab_to_discard;
3214 		slab_to_discard = slab_to_discard->next;
3215 
3216 		stat(s, DEACTIVATE_EMPTY);
3217 		discard_slab(s, slab);
3218 		stat(s, FREE_SLAB);
3219 	}
3220 }
3221 
3222 /*
3223  * Put all the cpu partial slabs to the node partial list.
3224  */
3225 static void put_partials(struct kmem_cache *s)
3226 {
3227 	struct slab *partial_slab;
3228 	unsigned long flags;
3229 
3230 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3231 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3232 	this_cpu_write(s->cpu_slab->partial, NULL);
3233 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3234 
3235 	if (partial_slab)
3236 		__put_partials(s, partial_slab);
3237 }
3238 
3239 static void put_partials_cpu(struct kmem_cache *s,
3240 			     struct kmem_cache_cpu *c)
3241 {
3242 	struct slab *partial_slab;
3243 
3244 	partial_slab = slub_percpu_partial(c);
3245 	c->partial = NULL;
3246 
3247 	if (partial_slab)
3248 		__put_partials(s, partial_slab);
3249 }
3250 
3251 /*
3252  * Put a slab into a partial slab slot if available.
3253  *
3254  * If we did not find a slot then simply move all the partials to the
3255  * per node partial list.
3256  */
3257 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3258 {
3259 	struct slab *oldslab;
3260 	struct slab *slab_to_put = NULL;
3261 	unsigned long flags;
3262 	int slabs = 0;
3263 
3264 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3265 
3266 	oldslab = this_cpu_read(s->cpu_slab->partial);
3267 
3268 	if (oldslab) {
3269 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3270 			/*
3271 			 * Partial array is full. Move the existing set to the
3272 			 * per node partial list. Postpone the actual unfreezing
3273 			 * outside of the critical section.
3274 			 */
3275 			slab_to_put = oldslab;
3276 			oldslab = NULL;
3277 		} else {
3278 			slabs = oldslab->slabs;
3279 		}
3280 	}
3281 
3282 	slabs++;
3283 
3284 	slab->slabs = slabs;
3285 	slab->next = oldslab;
3286 
3287 	this_cpu_write(s->cpu_slab->partial, slab);
3288 
3289 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3290 
3291 	if (slab_to_put) {
3292 		__put_partials(s, slab_to_put);
3293 		stat(s, CPU_PARTIAL_DRAIN);
3294 	}
3295 }
3296 
3297 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3298 
3299 static inline void put_partials(struct kmem_cache *s) { }
3300 static inline void put_partials_cpu(struct kmem_cache *s,
3301 				    struct kmem_cache_cpu *c) { }
3302 
3303 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3304 
3305 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3306 {
3307 	unsigned long flags;
3308 	struct slab *slab;
3309 	void *freelist;
3310 
3311 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3312 
3313 	slab = c->slab;
3314 	freelist = c->freelist;
3315 
3316 	c->slab = NULL;
3317 	c->freelist = NULL;
3318 	c->tid = next_tid(c->tid);
3319 
3320 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3321 
3322 	if (slab) {
3323 		deactivate_slab(s, slab, freelist);
3324 		stat(s, CPUSLAB_FLUSH);
3325 	}
3326 }
3327 
3328 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3329 {
3330 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3331 	void *freelist = c->freelist;
3332 	struct slab *slab = c->slab;
3333 
3334 	c->slab = NULL;
3335 	c->freelist = NULL;
3336 	c->tid = next_tid(c->tid);
3337 
3338 	if (slab) {
3339 		deactivate_slab(s, slab, freelist);
3340 		stat(s, CPUSLAB_FLUSH);
3341 	}
3342 
3343 	put_partials_cpu(s, c);
3344 }
3345 
3346 struct slub_flush_work {
3347 	struct work_struct work;
3348 	struct kmem_cache *s;
3349 	bool skip;
3350 };
3351 
3352 /*
3353  * Flush cpu slab.
3354  *
3355  * Called from CPU work handler with migration disabled.
3356  */
3357 static void flush_cpu_slab(struct work_struct *w)
3358 {
3359 	struct kmem_cache *s;
3360 	struct kmem_cache_cpu *c;
3361 	struct slub_flush_work *sfw;
3362 
3363 	sfw = container_of(w, struct slub_flush_work, work);
3364 
3365 	s = sfw->s;
3366 	c = this_cpu_ptr(s->cpu_slab);
3367 
3368 	if (c->slab)
3369 		flush_slab(s, c);
3370 
3371 	put_partials(s);
3372 }
3373 
3374 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3375 {
3376 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3377 
3378 	return c->slab || slub_percpu_partial(c);
3379 }
3380 
3381 static DEFINE_MUTEX(flush_lock);
3382 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3383 
3384 static void flush_all_cpus_locked(struct kmem_cache *s)
3385 {
3386 	struct slub_flush_work *sfw;
3387 	unsigned int cpu;
3388 
3389 	lockdep_assert_cpus_held();
3390 	mutex_lock(&flush_lock);
3391 
3392 	for_each_online_cpu(cpu) {
3393 		sfw = &per_cpu(slub_flush, cpu);
3394 		if (!has_cpu_slab(cpu, s)) {
3395 			sfw->skip = true;
3396 			continue;
3397 		}
3398 		INIT_WORK(&sfw->work, flush_cpu_slab);
3399 		sfw->skip = false;
3400 		sfw->s = s;
3401 		queue_work_on(cpu, flushwq, &sfw->work);
3402 	}
3403 
3404 	for_each_online_cpu(cpu) {
3405 		sfw = &per_cpu(slub_flush, cpu);
3406 		if (sfw->skip)
3407 			continue;
3408 		flush_work(&sfw->work);
3409 	}
3410 
3411 	mutex_unlock(&flush_lock);
3412 }
3413 
3414 static void flush_all(struct kmem_cache *s)
3415 {
3416 	cpus_read_lock();
3417 	flush_all_cpus_locked(s);
3418 	cpus_read_unlock();
3419 }
3420 
3421 /*
3422  * Use the cpu notifier to insure that the cpu slabs are flushed when
3423  * necessary.
3424  */
3425 static int slub_cpu_dead(unsigned int cpu)
3426 {
3427 	struct kmem_cache *s;
3428 
3429 	mutex_lock(&slab_mutex);
3430 	list_for_each_entry(s, &slab_caches, list)
3431 		__flush_cpu_slab(s, cpu);
3432 	mutex_unlock(&slab_mutex);
3433 	return 0;
3434 }
3435 
3436 #else /* CONFIG_SLUB_TINY */
3437 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3438 static inline void flush_all(struct kmem_cache *s) { }
3439 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3440 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3441 #endif /* CONFIG_SLUB_TINY */
3442 
3443 /*
3444  * Check if the objects in a per cpu structure fit numa
3445  * locality expectations.
3446  */
3447 static inline int node_match(struct slab *slab, int node)
3448 {
3449 #ifdef CONFIG_NUMA
3450 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3451 		return 0;
3452 #endif
3453 	return 1;
3454 }
3455 
3456 #ifdef CONFIG_SLUB_DEBUG
3457 static int count_free(struct slab *slab)
3458 {
3459 	return slab->objects - slab->inuse;
3460 }
3461 
3462 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3463 {
3464 	return atomic_long_read(&n->total_objects);
3465 }
3466 
3467 /* Supports checking bulk free of a constructed freelist */
3468 static inline bool free_debug_processing(struct kmem_cache *s,
3469 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3470 	unsigned long addr, depot_stack_handle_t handle)
3471 {
3472 	bool checks_ok = false;
3473 	void *object = head;
3474 	int cnt = 0;
3475 
3476 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3477 		if (!check_slab(s, slab))
3478 			goto out;
3479 	}
3480 
3481 	if (slab->inuse < *bulk_cnt) {
3482 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3483 			 slab->inuse, *bulk_cnt);
3484 		goto out;
3485 	}
3486 
3487 next_object:
3488 
3489 	if (++cnt > *bulk_cnt)
3490 		goto out_cnt;
3491 
3492 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3493 		if (!free_consistency_checks(s, slab, object, addr))
3494 			goto out;
3495 	}
3496 
3497 	if (s->flags & SLAB_STORE_USER)
3498 		set_track_update(s, object, TRACK_FREE, addr, handle);
3499 	trace(s, slab, object, 0);
3500 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3501 	init_object(s, object, SLUB_RED_INACTIVE);
3502 
3503 	/* Reached end of constructed freelist yet? */
3504 	if (object != tail) {
3505 		object = get_freepointer(s, object);
3506 		goto next_object;
3507 	}
3508 	checks_ok = true;
3509 
3510 out_cnt:
3511 	if (cnt != *bulk_cnt) {
3512 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3513 			 *bulk_cnt, cnt);
3514 		*bulk_cnt = cnt;
3515 	}
3516 
3517 out:
3518 
3519 	if (!checks_ok)
3520 		slab_fix(s, "Object at 0x%p not freed", object);
3521 
3522 	return checks_ok;
3523 }
3524 #endif /* CONFIG_SLUB_DEBUG */
3525 
3526 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3527 static unsigned long count_partial(struct kmem_cache_node *n,
3528 					int (*get_count)(struct slab *))
3529 {
3530 	unsigned long flags;
3531 	unsigned long x = 0;
3532 	struct slab *slab;
3533 
3534 	spin_lock_irqsave(&n->list_lock, flags);
3535 	list_for_each_entry(slab, &n->partial, slab_list)
3536 		x += get_count(slab);
3537 	spin_unlock_irqrestore(&n->list_lock, flags);
3538 	return x;
3539 }
3540 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3541 
3542 #ifdef CONFIG_SLUB_DEBUG
3543 #define MAX_PARTIAL_TO_SCAN 10000
3544 
3545 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3546 {
3547 	unsigned long flags;
3548 	unsigned long x = 0;
3549 	struct slab *slab;
3550 
3551 	spin_lock_irqsave(&n->list_lock, flags);
3552 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3553 		list_for_each_entry(slab, &n->partial, slab_list)
3554 			x += slab->objects - slab->inuse;
3555 	} else {
3556 		/*
3557 		 * For a long list, approximate the total count of objects in
3558 		 * it to meet the limit on the number of slabs to scan.
3559 		 * Scan from both the list's head and tail for better accuracy.
3560 		 */
3561 		unsigned long scanned = 0;
3562 
3563 		list_for_each_entry(slab, &n->partial, slab_list) {
3564 			x += slab->objects - slab->inuse;
3565 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3566 				break;
3567 		}
3568 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3569 			x += slab->objects - slab->inuse;
3570 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3571 				break;
3572 		}
3573 		x = mult_frac(x, n->nr_partial, scanned);
3574 		x = min(x, node_nr_objs(n));
3575 	}
3576 	spin_unlock_irqrestore(&n->list_lock, flags);
3577 	return x;
3578 }
3579 
3580 static noinline void
3581 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3582 {
3583 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3584 				      DEFAULT_RATELIMIT_BURST);
3585 	int cpu = raw_smp_processor_id();
3586 	int node;
3587 	struct kmem_cache_node *n;
3588 
3589 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3590 		return;
3591 
3592 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3593 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3594 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3595 		s->name, s->object_size, s->size, oo_order(s->oo),
3596 		oo_order(s->min));
3597 
3598 	if (oo_order(s->min) > get_order(s->object_size))
3599 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3600 			s->name);
3601 
3602 	for_each_kmem_cache_node(s, node, n) {
3603 		unsigned long nr_slabs;
3604 		unsigned long nr_objs;
3605 		unsigned long nr_free;
3606 
3607 		nr_free  = count_partial_free_approx(n);
3608 		nr_slabs = node_nr_slabs(n);
3609 		nr_objs  = node_nr_objs(n);
3610 
3611 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3612 			node, nr_slabs, nr_objs, nr_free);
3613 	}
3614 }
3615 #else /* CONFIG_SLUB_DEBUG */
3616 static inline void
3617 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3618 #endif
3619 
3620 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3621 {
3622 	if (unlikely(slab_test_pfmemalloc(slab)))
3623 		return gfp_pfmemalloc_allowed(gfpflags);
3624 
3625 	return true;
3626 }
3627 
3628 #ifndef CONFIG_SLUB_TINY
3629 static inline bool
3630 __update_cpu_freelist_fast(struct kmem_cache *s,
3631 			   void *freelist_old, void *freelist_new,
3632 			   unsigned long tid)
3633 {
3634 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3635 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3636 
3637 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3638 					     &old.full, new.full);
3639 }
3640 
3641 /*
3642  * Check the slab->freelist and either transfer the freelist to the
3643  * per cpu freelist or deactivate the slab.
3644  *
3645  * The slab is still frozen if the return value is not NULL.
3646  *
3647  * If this function returns NULL then the slab has been unfrozen.
3648  */
3649 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3650 {
3651 	struct slab new;
3652 	unsigned long counters;
3653 	void *freelist;
3654 
3655 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3656 
3657 	do {
3658 		freelist = slab->freelist;
3659 		counters = slab->counters;
3660 
3661 		new.counters = counters;
3662 
3663 		new.inuse = slab->objects;
3664 		new.frozen = freelist != NULL;
3665 
3666 	} while (!__slab_update_freelist(s, slab,
3667 		freelist, counters,
3668 		NULL, new.counters,
3669 		"get_freelist"));
3670 
3671 	return freelist;
3672 }
3673 
3674 /*
3675  * Freeze the partial slab and return the pointer to the freelist.
3676  */
3677 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3678 {
3679 	struct slab new;
3680 	unsigned long counters;
3681 	void *freelist;
3682 
3683 	do {
3684 		freelist = slab->freelist;
3685 		counters = slab->counters;
3686 
3687 		new.counters = counters;
3688 		VM_BUG_ON(new.frozen);
3689 
3690 		new.inuse = slab->objects;
3691 		new.frozen = 1;
3692 
3693 	} while (!slab_update_freelist(s, slab,
3694 		freelist, counters,
3695 		NULL, new.counters,
3696 		"freeze_slab"));
3697 
3698 	return freelist;
3699 }
3700 
3701 /*
3702  * Slow path. The lockless freelist is empty or we need to perform
3703  * debugging duties.
3704  *
3705  * Processing is still very fast if new objects have been freed to the
3706  * regular freelist. In that case we simply take over the regular freelist
3707  * as the lockless freelist and zap the regular freelist.
3708  *
3709  * If that is not working then we fall back to the partial lists. We take the
3710  * first element of the freelist as the object to allocate now and move the
3711  * rest of the freelist to the lockless freelist.
3712  *
3713  * And if we were unable to get a new slab from the partial slab lists then
3714  * we need to allocate a new slab. This is the slowest path since it involves
3715  * a call to the page allocator and the setup of a new slab.
3716  *
3717  * Version of __slab_alloc to use when we know that preemption is
3718  * already disabled (which is the case for bulk allocation).
3719  */
3720 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3721 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3722 {
3723 	void *freelist;
3724 	struct slab *slab;
3725 	unsigned long flags;
3726 	struct partial_context pc;
3727 	bool try_thisnode = true;
3728 
3729 	stat(s, ALLOC_SLOWPATH);
3730 
3731 reread_slab:
3732 
3733 	slab = READ_ONCE(c->slab);
3734 	if (!slab) {
3735 		/*
3736 		 * if the node is not online or has no normal memory, just
3737 		 * ignore the node constraint
3738 		 */
3739 		if (unlikely(node != NUMA_NO_NODE &&
3740 			     !node_isset(node, slab_nodes)))
3741 			node = NUMA_NO_NODE;
3742 		goto new_slab;
3743 	}
3744 
3745 	if (unlikely(!node_match(slab, node))) {
3746 		/*
3747 		 * same as above but node_match() being false already
3748 		 * implies node != NUMA_NO_NODE
3749 		 */
3750 		if (!node_isset(node, slab_nodes)) {
3751 			node = NUMA_NO_NODE;
3752 		} else {
3753 			stat(s, ALLOC_NODE_MISMATCH);
3754 			goto deactivate_slab;
3755 		}
3756 	}
3757 
3758 	/*
3759 	 * By rights, we should be searching for a slab page that was
3760 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3761 	 * information when the page leaves the per-cpu allocator
3762 	 */
3763 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3764 		goto deactivate_slab;
3765 
3766 	/* must check again c->slab in case we got preempted and it changed */
3767 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3768 	if (unlikely(slab != c->slab)) {
3769 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3770 		goto reread_slab;
3771 	}
3772 	freelist = c->freelist;
3773 	if (freelist)
3774 		goto load_freelist;
3775 
3776 	freelist = get_freelist(s, slab);
3777 
3778 	if (!freelist) {
3779 		c->slab = NULL;
3780 		c->tid = next_tid(c->tid);
3781 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3782 		stat(s, DEACTIVATE_BYPASS);
3783 		goto new_slab;
3784 	}
3785 
3786 	stat(s, ALLOC_REFILL);
3787 
3788 load_freelist:
3789 
3790 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3791 
3792 	/*
3793 	 * freelist is pointing to the list of objects to be used.
3794 	 * slab is pointing to the slab from which the objects are obtained.
3795 	 * That slab must be frozen for per cpu allocations to work.
3796 	 */
3797 	VM_BUG_ON(!c->slab->frozen);
3798 	c->freelist = get_freepointer(s, freelist);
3799 	c->tid = next_tid(c->tid);
3800 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3801 	return freelist;
3802 
3803 deactivate_slab:
3804 
3805 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3806 	if (slab != c->slab) {
3807 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3808 		goto reread_slab;
3809 	}
3810 	freelist = c->freelist;
3811 	c->slab = NULL;
3812 	c->freelist = NULL;
3813 	c->tid = next_tid(c->tid);
3814 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3815 	deactivate_slab(s, slab, freelist);
3816 
3817 new_slab:
3818 
3819 #ifdef CONFIG_SLUB_CPU_PARTIAL
3820 	while (slub_percpu_partial(c)) {
3821 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3822 		if (unlikely(c->slab)) {
3823 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3824 			goto reread_slab;
3825 		}
3826 		if (unlikely(!slub_percpu_partial(c))) {
3827 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3828 			/* we were preempted and partial list got empty */
3829 			goto new_objects;
3830 		}
3831 
3832 		slab = slub_percpu_partial(c);
3833 		slub_set_percpu_partial(c, slab);
3834 
3835 		if (likely(node_match(slab, node) &&
3836 			   pfmemalloc_match(slab, gfpflags))) {
3837 			c->slab = slab;
3838 			freelist = get_freelist(s, slab);
3839 			VM_BUG_ON(!freelist);
3840 			stat(s, CPU_PARTIAL_ALLOC);
3841 			goto load_freelist;
3842 		}
3843 
3844 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3845 
3846 		slab->next = NULL;
3847 		__put_partials(s, slab);
3848 	}
3849 #endif
3850 
3851 new_objects:
3852 
3853 	pc.flags = gfpflags;
3854 	/*
3855 	 * When a preferred node is indicated but no __GFP_THISNODE
3856 	 *
3857 	 * 1) try to get a partial slab from target node only by having
3858 	 *    __GFP_THISNODE in pc.flags for get_partial()
3859 	 * 2) if 1) failed, try to allocate a new slab from target node with
3860 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3861 	 * 3) if 2) failed, retry with original gfpflags which will allow
3862 	 *    get_partial() try partial lists of other nodes before potentially
3863 	 *    allocating new page from other nodes
3864 	 */
3865 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3866 		     && try_thisnode))
3867 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3868 
3869 	pc.orig_size = orig_size;
3870 	slab = get_partial(s, node, &pc);
3871 	if (slab) {
3872 		if (kmem_cache_debug(s)) {
3873 			freelist = pc.object;
3874 			/*
3875 			 * For debug caches here we had to go through
3876 			 * alloc_single_from_partial() so just store the
3877 			 * tracking info and return the object.
3878 			 */
3879 			if (s->flags & SLAB_STORE_USER)
3880 				set_track(s, freelist, TRACK_ALLOC, addr);
3881 
3882 			return freelist;
3883 		}
3884 
3885 		freelist = freeze_slab(s, slab);
3886 		goto retry_load_slab;
3887 	}
3888 
3889 	slub_put_cpu_ptr(s->cpu_slab);
3890 	slab = new_slab(s, pc.flags, node);
3891 	c = slub_get_cpu_ptr(s->cpu_slab);
3892 
3893 	if (unlikely(!slab)) {
3894 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3895 		    && try_thisnode) {
3896 			try_thisnode = false;
3897 			goto new_objects;
3898 		}
3899 		slab_out_of_memory(s, gfpflags, node);
3900 		return NULL;
3901 	}
3902 
3903 	stat(s, ALLOC_SLAB);
3904 
3905 	if (kmem_cache_debug(s)) {
3906 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3907 
3908 		if (unlikely(!freelist))
3909 			goto new_objects;
3910 
3911 		if (s->flags & SLAB_STORE_USER)
3912 			set_track(s, freelist, TRACK_ALLOC, addr);
3913 
3914 		return freelist;
3915 	}
3916 
3917 	/*
3918 	 * No other reference to the slab yet so we can
3919 	 * muck around with it freely without cmpxchg
3920 	 */
3921 	freelist = slab->freelist;
3922 	slab->freelist = NULL;
3923 	slab->inuse = slab->objects;
3924 	slab->frozen = 1;
3925 
3926 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3927 
3928 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3929 		/*
3930 		 * For !pfmemalloc_match() case we don't load freelist so that
3931 		 * we don't make further mismatched allocations easier.
3932 		 */
3933 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3934 		return freelist;
3935 	}
3936 
3937 retry_load_slab:
3938 
3939 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3940 	if (unlikely(c->slab)) {
3941 		void *flush_freelist = c->freelist;
3942 		struct slab *flush_slab = c->slab;
3943 
3944 		c->slab = NULL;
3945 		c->freelist = NULL;
3946 		c->tid = next_tid(c->tid);
3947 
3948 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3949 
3950 		deactivate_slab(s, flush_slab, flush_freelist);
3951 
3952 		stat(s, CPUSLAB_FLUSH);
3953 
3954 		goto retry_load_slab;
3955 	}
3956 	c->slab = slab;
3957 
3958 	goto load_freelist;
3959 }
3960 
3961 /*
3962  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3963  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3964  * pointer.
3965  */
3966 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3967 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3968 {
3969 	void *p;
3970 
3971 #ifdef CONFIG_PREEMPT_COUNT
3972 	/*
3973 	 * We may have been preempted and rescheduled on a different
3974 	 * cpu before disabling preemption. Need to reload cpu area
3975 	 * pointer.
3976 	 */
3977 	c = slub_get_cpu_ptr(s->cpu_slab);
3978 #endif
3979 
3980 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3981 #ifdef CONFIG_PREEMPT_COUNT
3982 	slub_put_cpu_ptr(s->cpu_slab);
3983 #endif
3984 	return p;
3985 }
3986 
3987 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3988 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3989 {
3990 	struct kmem_cache_cpu *c;
3991 	struct slab *slab;
3992 	unsigned long tid;
3993 	void *object;
3994 
3995 redo:
3996 	/*
3997 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3998 	 * enabled. We may switch back and forth between cpus while
3999 	 * reading from one cpu area. That does not matter as long
4000 	 * as we end up on the original cpu again when doing the cmpxchg.
4001 	 *
4002 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4003 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4004 	 * the tid. If we are preempted and switched to another cpu between the
4005 	 * two reads, it's OK as the two are still associated with the same cpu
4006 	 * and cmpxchg later will validate the cpu.
4007 	 */
4008 	c = raw_cpu_ptr(s->cpu_slab);
4009 	tid = READ_ONCE(c->tid);
4010 
4011 	/*
4012 	 * Irqless object alloc/free algorithm used here depends on sequence
4013 	 * of fetching cpu_slab's data. tid should be fetched before anything
4014 	 * on c to guarantee that object and slab associated with previous tid
4015 	 * won't be used with current tid. If we fetch tid first, object and
4016 	 * slab could be one associated with next tid and our alloc/free
4017 	 * request will be failed. In this case, we will retry. So, no problem.
4018 	 */
4019 	barrier();
4020 
4021 	/*
4022 	 * The transaction ids are globally unique per cpu and per operation on
4023 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4024 	 * occurs on the right processor and that there was no operation on the
4025 	 * linked list in between.
4026 	 */
4027 
4028 	object = c->freelist;
4029 	slab = c->slab;
4030 
4031 #ifdef CONFIG_NUMA
4032 	if (static_branch_unlikely(&strict_numa) &&
4033 			node == NUMA_NO_NODE) {
4034 
4035 		struct mempolicy *mpol = current->mempolicy;
4036 
4037 		if (mpol) {
4038 			/*
4039 			 * Special BIND rule support. If existing slab
4040 			 * is in permitted set then do not redirect
4041 			 * to a particular node.
4042 			 * Otherwise we apply the memory policy to get
4043 			 * the node we need to allocate on.
4044 			 */
4045 			if (mpol->mode != MPOL_BIND || !slab ||
4046 					!node_isset(slab_nid(slab), mpol->nodes))
4047 
4048 				node = mempolicy_slab_node();
4049 		}
4050 	}
4051 #endif
4052 
4053 	if (!USE_LOCKLESS_FAST_PATH() ||
4054 	    unlikely(!object || !slab || !node_match(slab, node))) {
4055 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4056 	} else {
4057 		void *next_object = get_freepointer_safe(s, object);
4058 
4059 		/*
4060 		 * The cmpxchg will only match if there was no additional
4061 		 * operation and if we are on the right processor.
4062 		 *
4063 		 * The cmpxchg does the following atomically (without lock
4064 		 * semantics!)
4065 		 * 1. Relocate first pointer to the current per cpu area.
4066 		 * 2. Verify that tid and freelist have not been changed
4067 		 * 3. If they were not changed replace tid and freelist
4068 		 *
4069 		 * Since this is without lock semantics the protection is only
4070 		 * against code executing on this cpu *not* from access by
4071 		 * other cpus.
4072 		 */
4073 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4074 			note_cmpxchg_failure("slab_alloc", s, tid);
4075 			goto redo;
4076 		}
4077 		prefetch_freepointer(s, next_object);
4078 		stat(s, ALLOC_FASTPATH);
4079 	}
4080 
4081 	return object;
4082 }
4083 #else /* CONFIG_SLUB_TINY */
4084 static void *__slab_alloc_node(struct kmem_cache *s,
4085 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4086 {
4087 	struct partial_context pc;
4088 	struct slab *slab;
4089 	void *object;
4090 
4091 	pc.flags = gfpflags;
4092 	pc.orig_size = orig_size;
4093 	slab = get_partial(s, node, &pc);
4094 
4095 	if (slab)
4096 		return pc.object;
4097 
4098 	slab = new_slab(s, gfpflags, node);
4099 	if (unlikely(!slab)) {
4100 		slab_out_of_memory(s, gfpflags, node);
4101 		return NULL;
4102 	}
4103 
4104 	object = alloc_single_from_new_slab(s, slab, orig_size);
4105 
4106 	return object;
4107 }
4108 #endif /* CONFIG_SLUB_TINY */
4109 
4110 /*
4111  * If the object has been wiped upon free, make sure it's fully initialized by
4112  * zeroing out freelist pointer.
4113  *
4114  * Note that we also wipe custom freelist pointers.
4115  */
4116 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4117 						   void *obj)
4118 {
4119 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4120 	    !freeptr_outside_object(s))
4121 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4122 			0, sizeof(void *));
4123 }
4124 
4125 static __fastpath_inline
4126 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4127 {
4128 	flags &= gfp_allowed_mask;
4129 
4130 	might_alloc(flags);
4131 
4132 	if (unlikely(should_failslab(s, flags)))
4133 		return NULL;
4134 
4135 	return s;
4136 }
4137 
4138 static __fastpath_inline
4139 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4140 			  gfp_t flags, size_t size, void **p, bool init,
4141 			  unsigned int orig_size)
4142 {
4143 	unsigned int zero_size = s->object_size;
4144 	bool kasan_init = init;
4145 	size_t i;
4146 	gfp_t init_flags = flags & gfp_allowed_mask;
4147 
4148 	/*
4149 	 * For kmalloc object, the allocated memory size(object_size) is likely
4150 	 * larger than the requested size(orig_size). If redzone check is
4151 	 * enabled for the extra space, don't zero it, as it will be redzoned
4152 	 * soon. The redzone operation for this extra space could be seen as a
4153 	 * replacement of current poisoning under certain debug option, and
4154 	 * won't break other sanity checks.
4155 	 */
4156 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4157 	    (s->flags & SLAB_KMALLOC))
4158 		zero_size = orig_size;
4159 
4160 	/*
4161 	 * When slab_debug is enabled, avoid memory initialization integrated
4162 	 * into KASAN and instead zero out the memory via the memset below with
4163 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4164 	 * cause false-positive reports. This does not lead to a performance
4165 	 * penalty on production builds, as slab_debug is not intended to be
4166 	 * enabled there.
4167 	 */
4168 	if (__slub_debug_enabled())
4169 		kasan_init = false;
4170 
4171 	/*
4172 	 * As memory initialization might be integrated into KASAN,
4173 	 * kasan_slab_alloc and initialization memset must be
4174 	 * kept together to avoid discrepancies in behavior.
4175 	 *
4176 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4177 	 */
4178 	for (i = 0; i < size; i++) {
4179 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4180 		if (p[i] && init && (!kasan_init ||
4181 				     !kasan_has_integrated_init()))
4182 			memset(p[i], 0, zero_size);
4183 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4184 					 s->flags, init_flags);
4185 		kmsan_slab_alloc(s, p[i], init_flags);
4186 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4187 	}
4188 
4189 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4190 }
4191 
4192 /*
4193  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4194  * have the fastpath folded into their functions. So no function call
4195  * overhead for requests that can be satisfied on the fastpath.
4196  *
4197  * The fastpath works by first checking if the lockless freelist can be used.
4198  * If not then __slab_alloc is called for slow processing.
4199  *
4200  * Otherwise we can simply pick the next object from the lockless free list.
4201  */
4202 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4203 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4204 {
4205 	void *object;
4206 	bool init = false;
4207 
4208 	s = slab_pre_alloc_hook(s, gfpflags);
4209 	if (unlikely(!s))
4210 		return NULL;
4211 
4212 	object = kfence_alloc(s, orig_size, gfpflags);
4213 	if (unlikely(object))
4214 		goto out;
4215 
4216 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4217 
4218 	maybe_wipe_obj_freeptr(s, object);
4219 	init = slab_want_init_on_alloc(gfpflags, s);
4220 
4221 out:
4222 	/*
4223 	 * When init equals 'true', like for kzalloc() family, only
4224 	 * @orig_size bytes might be zeroed instead of s->object_size
4225 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4226 	 * object is set to NULL
4227 	 */
4228 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4229 
4230 	return object;
4231 }
4232 
4233 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4234 {
4235 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4236 				    s->object_size);
4237 
4238 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4239 
4240 	return ret;
4241 }
4242 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4243 
4244 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4245 			   gfp_t gfpflags)
4246 {
4247 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4248 				    s->object_size);
4249 
4250 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4251 
4252 	return ret;
4253 }
4254 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4255 
4256 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4257 {
4258 	if (!memcg_kmem_online())
4259 		return true;
4260 
4261 	return memcg_slab_post_charge(objp, gfpflags);
4262 }
4263 EXPORT_SYMBOL(kmem_cache_charge);
4264 
4265 /**
4266  * kmem_cache_alloc_node - Allocate an object on the specified node
4267  * @s: The cache to allocate from.
4268  * @gfpflags: See kmalloc().
4269  * @node: node number of the target node.
4270  *
4271  * Identical to kmem_cache_alloc but it will allocate memory on the given
4272  * node, which can improve the performance for cpu bound structures.
4273  *
4274  * Fallback to other node is possible if __GFP_THISNODE is not set.
4275  *
4276  * Return: pointer to the new object or %NULL in case of error
4277  */
4278 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4279 {
4280 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4281 
4282 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4283 
4284 	return ret;
4285 }
4286 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4287 
4288 /*
4289  * To avoid unnecessary overhead, we pass through large allocation requests
4290  * directly to the page allocator. We use __GFP_COMP, because we will need to
4291  * know the allocation order to free the pages properly in kfree.
4292  */
4293 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4294 {
4295 	struct folio *folio;
4296 	void *ptr = NULL;
4297 	unsigned int order = get_order(size);
4298 
4299 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4300 		flags = kmalloc_fix_flags(flags);
4301 
4302 	flags |= __GFP_COMP;
4303 
4304 	if (node == NUMA_NO_NODE)
4305 		folio = (struct folio *)alloc_frozen_pages_noprof(flags, order);
4306 	else
4307 		folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL);
4308 
4309 	if (folio) {
4310 		ptr = folio_address(folio);
4311 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4312 				      PAGE_SIZE << order);
4313 		__folio_set_large_kmalloc(folio);
4314 	}
4315 
4316 	ptr = kasan_kmalloc_large(ptr, size, flags);
4317 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4318 	kmemleak_alloc(ptr, size, 1, flags);
4319 	kmsan_kmalloc_large(ptr, size, flags);
4320 
4321 	return ptr;
4322 }
4323 
4324 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4325 {
4326 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4327 
4328 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4329 		      flags, NUMA_NO_NODE);
4330 	return ret;
4331 }
4332 EXPORT_SYMBOL(__kmalloc_large_noprof);
4333 
4334 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4335 {
4336 	void *ret = ___kmalloc_large_node(size, flags, node);
4337 
4338 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4339 		      flags, node);
4340 	return ret;
4341 }
4342 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4343 
4344 static __always_inline
4345 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4346 			unsigned long caller)
4347 {
4348 	struct kmem_cache *s;
4349 	void *ret;
4350 
4351 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4352 		ret = __kmalloc_large_node_noprof(size, flags, node);
4353 		trace_kmalloc(caller, ret, size,
4354 			      PAGE_SIZE << get_order(size), flags, node);
4355 		return ret;
4356 	}
4357 
4358 	if (unlikely(!size))
4359 		return ZERO_SIZE_PTR;
4360 
4361 	s = kmalloc_slab(size, b, flags, caller);
4362 
4363 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4364 	ret = kasan_kmalloc(s, ret, size, flags);
4365 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4366 	return ret;
4367 }
4368 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4369 {
4370 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4371 }
4372 EXPORT_SYMBOL(__kmalloc_node_noprof);
4373 
4374 void *__kmalloc_noprof(size_t size, gfp_t flags)
4375 {
4376 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4377 }
4378 EXPORT_SYMBOL(__kmalloc_noprof);
4379 
4380 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4381 					 int node, unsigned long caller)
4382 {
4383 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4384 
4385 }
4386 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4387 
4388 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4389 {
4390 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4391 					    _RET_IP_, size);
4392 
4393 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4394 
4395 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4396 	return ret;
4397 }
4398 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4399 
4400 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4401 				  int node, size_t size)
4402 {
4403 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4404 
4405 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4406 
4407 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4408 	return ret;
4409 }
4410 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4411 
4412 static noinline void free_to_partial_list(
4413 	struct kmem_cache *s, struct slab *slab,
4414 	void *head, void *tail, int bulk_cnt,
4415 	unsigned long addr)
4416 {
4417 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4418 	struct slab *slab_free = NULL;
4419 	int cnt = bulk_cnt;
4420 	unsigned long flags;
4421 	depot_stack_handle_t handle = 0;
4422 
4423 	if (s->flags & SLAB_STORE_USER)
4424 		handle = set_track_prepare();
4425 
4426 	spin_lock_irqsave(&n->list_lock, flags);
4427 
4428 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4429 		void *prior = slab->freelist;
4430 
4431 		/* Perform the actual freeing while we still hold the locks */
4432 		slab->inuse -= cnt;
4433 		set_freepointer(s, tail, prior);
4434 		slab->freelist = head;
4435 
4436 		/*
4437 		 * If the slab is empty, and node's partial list is full,
4438 		 * it should be discarded anyway no matter it's on full or
4439 		 * partial list.
4440 		 */
4441 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4442 			slab_free = slab;
4443 
4444 		if (!prior) {
4445 			/* was on full list */
4446 			remove_full(s, n, slab);
4447 			if (!slab_free) {
4448 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4449 				stat(s, FREE_ADD_PARTIAL);
4450 			}
4451 		} else if (slab_free) {
4452 			remove_partial(n, slab);
4453 			stat(s, FREE_REMOVE_PARTIAL);
4454 		}
4455 	}
4456 
4457 	if (slab_free) {
4458 		/*
4459 		 * Update the counters while still holding n->list_lock to
4460 		 * prevent spurious validation warnings
4461 		 */
4462 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4463 	}
4464 
4465 	spin_unlock_irqrestore(&n->list_lock, flags);
4466 
4467 	if (slab_free) {
4468 		stat(s, FREE_SLAB);
4469 		free_slab(s, slab_free);
4470 	}
4471 }
4472 
4473 /*
4474  * Slow path handling. This may still be called frequently since objects
4475  * have a longer lifetime than the cpu slabs in most processing loads.
4476  *
4477  * So we still attempt to reduce cache line usage. Just take the slab
4478  * lock and free the item. If there is no additional partial slab
4479  * handling required then we can return immediately.
4480  */
4481 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4482 			void *head, void *tail, int cnt,
4483 			unsigned long addr)
4484 
4485 {
4486 	void *prior;
4487 	int was_frozen;
4488 	struct slab new;
4489 	unsigned long counters;
4490 	struct kmem_cache_node *n = NULL;
4491 	unsigned long flags;
4492 	bool on_node_partial;
4493 
4494 	stat(s, FREE_SLOWPATH);
4495 
4496 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4497 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4498 		return;
4499 	}
4500 
4501 	do {
4502 		if (unlikely(n)) {
4503 			spin_unlock_irqrestore(&n->list_lock, flags);
4504 			n = NULL;
4505 		}
4506 		prior = slab->freelist;
4507 		counters = slab->counters;
4508 		set_freepointer(s, tail, prior);
4509 		new.counters = counters;
4510 		was_frozen = new.frozen;
4511 		new.inuse -= cnt;
4512 		if ((!new.inuse || !prior) && !was_frozen) {
4513 			/* Needs to be taken off a list */
4514 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4515 
4516 				n = get_node(s, slab_nid(slab));
4517 				/*
4518 				 * Speculatively acquire the list_lock.
4519 				 * If the cmpxchg does not succeed then we may
4520 				 * drop the list_lock without any processing.
4521 				 *
4522 				 * Otherwise the list_lock will synchronize with
4523 				 * other processors updating the list of slabs.
4524 				 */
4525 				spin_lock_irqsave(&n->list_lock, flags);
4526 
4527 				on_node_partial = slab_test_node_partial(slab);
4528 			}
4529 		}
4530 
4531 	} while (!slab_update_freelist(s, slab,
4532 		prior, counters,
4533 		head, new.counters,
4534 		"__slab_free"));
4535 
4536 	if (likely(!n)) {
4537 
4538 		if (likely(was_frozen)) {
4539 			/*
4540 			 * The list lock was not taken therefore no list
4541 			 * activity can be necessary.
4542 			 */
4543 			stat(s, FREE_FROZEN);
4544 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4545 			/*
4546 			 * If we started with a full slab then put it onto the
4547 			 * per cpu partial list.
4548 			 */
4549 			put_cpu_partial(s, slab, 1);
4550 			stat(s, CPU_PARTIAL_FREE);
4551 		}
4552 
4553 		return;
4554 	}
4555 
4556 	/*
4557 	 * This slab was partially empty but not on the per-node partial list,
4558 	 * in which case we shouldn't manipulate its list, just return.
4559 	 */
4560 	if (prior && !on_node_partial) {
4561 		spin_unlock_irqrestore(&n->list_lock, flags);
4562 		return;
4563 	}
4564 
4565 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4566 		goto slab_empty;
4567 
4568 	/*
4569 	 * Objects left in the slab. If it was not on the partial list before
4570 	 * then add it.
4571 	 */
4572 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4573 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4574 		stat(s, FREE_ADD_PARTIAL);
4575 	}
4576 	spin_unlock_irqrestore(&n->list_lock, flags);
4577 	return;
4578 
4579 slab_empty:
4580 	if (prior) {
4581 		/*
4582 		 * Slab on the partial list.
4583 		 */
4584 		remove_partial(n, slab);
4585 		stat(s, FREE_REMOVE_PARTIAL);
4586 	}
4587 
4588 	spin_unlock_irqrestore(&n->list_lock, flags);
4589 	stat(s, FREE_SLAB);
4590 	discard_slab(s, slab);
4591 }
4592 
4593 #ifndef CONFIG_SLUB_TINY
4594 /*
4595  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4596  * can perform fastpath freeing without additional function calls.
4597  *
4598  * The fastpath is only possible if we are freeing to the current cpu slab
4599  * of this processor. This typically the case if we have just allocated
4600  * the item before.
4601  *
4602  * If fastpath is not possible then fall back to __slab_free where we deal
4603  * with all sorts of special processing.
4604  *
4605  * Bulk free of a freelist with several objects (all pointing to the
4606  * same slab) possible by specifying head and tail ptr, plus objects
4607  * count (cnt). Bulk free indicated by tail pointer being set.
4608  */
4609 static __always_inline void do_slab_free(struct kmem_cache *s,
4610 				struct slab *slab, void *head, void *tail,
4611 				int cnt, unsigned long addr)
4612 {
4613 	struct kmem_cache_cpu *c;
4614 	unsigned long tid;
4615 	void **freelist;
4616 
4617 redo:
4618 	/*
4619 	 * Determine the currently cpus per cpu slab.
4620 	 * The cpu may change afterward. However that does not matter since
4621 	 * data is retrieved via this pointer. If we are on the same cpu
4622 	 * during the cmpxchg then the free will succeed.
4623 	 */
4624 	c = raw_cpu_ptr(s->cpu_slab);
4625 	tid = READ_ONCE(c->tid);
4626 
4627 	/* Same with comment on barrier() in __slab_alloc_node() */
4628 	barrier();
4629 
4630 	if (unlikely(slab != c->slab)) {
4631 		__slab_free(s, slab, head, tail, cnt, addr);
4632 		return;
4633 	}
4634 
4635 	if (USE_LOCKLESS_FAST_PATH()) {
4636 		freelist = READ_ONCE(c->freelist);
4637 
4638 		set_freepointer(s, tail, freelist);
4639 
4640 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4641 			note_cmpxchg_failure("slab_free", s, tid);
4642 			goto redo;
4643 		}
4644 	} else {
4645 		/* Update the free list under the local lock */
4646 		local_lock(&s->cpu_slab->lock);
4647 		c = this_cpu_ptr(s->cpu_slab);
4648 		if (unlikely(slab != c->slab)) {
4649 			local_unlock(&s->cpu_slab->lock);
4650 			goto redo;
4651 		}
4652 		tid = c->tid;
4653 		freelist = c->freelist;
4654 
4655 		set_freepointer(s, tail, freelist);
4656 		c->freelist = head;
4657 		c->tid = next_tid(tid);
4658 
4659 		local_unlock(&s->cpu_slab->lock);
4660 	}
4661 	stat_add(s, FREE_FASTPATH, cnt);
4662 }
4663 #else /* CONFIG_SLUB_TINY */
4664 static void do_slab_free(struct kmem_cache *s,
4665 				struct slab *slab, void *head, void *tail,
4666 				int cnt, unsigned long addr)
4667 {
4668 	__slab_free(s, slab, head, tail, cnt, addr);
4669 }
4670 #endif /* CONFIG_SLUB_TINY */
4671 
4672 static __fastpath_inline
4673 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4674 	       unsigned long addr)
4675 {
4676 	memcg_slab_free_hook(s, slab, &object, 1);
4677 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4678 
4679 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4680 		do_slab_free(s, slab, object, object, 1, addr);
4681 }
4682 
4683 #ifdef CONFIG_MEMCG
4684 /* Do not inline the rare memcg charging failed path into the allocation path */
4685 static noinline
4686 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4687 {
4688 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4689 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4690 }
4691 #endif
4692 
4693 static __fastpath_inline
4694 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4695 		    void *tail, void **p, int cnt, unsigned long addr)
4696 {
4697 	memcg_slab_free_hook(s, slab, p, cnt);
4698 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4699 	/*
4700 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4701 	 * to remove objects, whose reuse must be delayed.
4702 	 */
4703 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4704 		do_slab_free(s, slab, head, tail, cnt, addr);
4705 }
4706 
4707 #ifdef CONFIG_SLUB_RCU_DEBUG
4708 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4709 {
4710 	struct rcu_delayed_free *delayed_free =
4711 			container_of(rcu_head, struct rcu_delayed_free, head);
4712 	void *object = delayed_free->object;
4713 	struct slab *slab = virt_to_slab(object);
4714 	struct kmem_cache *s;
4715 
4716 	kfree(delayed_free);
4717 
4718 	if (WARN_ON(is_kfence_address(object)))
4719 		return;
4720 
4721 	/* find the object and the cache again */
4722 	if (WARN_ON(!slab))
4723 		return;
4724 	s = slab->slab_cache;
4725 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4726 		return;
4727 
4728 	/* resume freeing */
4729 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4730 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4731 }
4732 #endif /* CONFIG_SLUB_RCU_DEBUG */
4733 
4734 #ifdef CONFIG_KASAN_GENERIC
4735 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4736 {
4737 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4738 }
4739 #endif
4740 
4741 static inline struct kmem_cache *virt_to_cache(const void *obj)
4742 {
4743 	struct slab *slab;
4744 
4745 	slab = virt_to_slab(obj);
4746 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4747 		return NULL;
4748 	return slab->slab_cache;
4749 }
4750 
4751 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4752 {
4753 	struct kmem_cache *cachep;
4754 
4755 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4756 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4757 		return s;
4758 
4759 	cachep = virt_to_cache(x);
4760 	if (WARN(cachep && cachep != s,
4761 		 "%s: Wrong slab cache. %s but object is from %s\n",
4762 		 __func__, s->name, cachep->name))
4763 		print_tracking(cachep, x);
4764 	return cachep;
4765 }
4766 
4767 /**
4768  * kmem_cache_free - Deallocate an object
4769  * @s: The cache the allocation was from.
4770  * @x: The previously allocated object.
4771  *
4772  * Free an object which was previously allocated from this
4773  * cache.
4774  */
4775 void kmem_cache_free(struct kmem_cache *s, void *x)
4776 {
4777 	s = cache_from_obj(s, x);
4778 	if (!s)
4779 		return;
4780 	trace_kmem_cache_free(_RET_IP_, x, s);
4781 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4782 }
4783 EXPORT_SYMBOL(kmem_cache_free);
4784 
4785 static void free_large_kmalloc(struct folio *folio, void *object)
4786 {
4787 	unsigned int order = folio_order(folio);
4788 
4789 	if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
4790 		dump_page(&folio->page, "Not a kmalloc allocation");
4791 		return;
4792 	}
4793 
4794 	if (WARN_ON_ONCE(order == 0))
4795 		pr_warn_once("object pointer: 0x%p\n", object);
4796 
4797 	kmemleak_free(object);
4798 	kasan_kfree_large(object);
4799 	kmsan_kfree_large(object);
4800 
4801 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4802 			      -(PAGE_SIZE << order));
4803 	__folio_clear_large_kmalloc(folio);
4804 	free_frozen_pages(&folio->page, order);
4805 }
4806 
4807 /*
4808  * Given an rcu_head embedded within an object obtained from kvmalloc at an
4809  * offset < 4k, free the object in question.
4810  */
4811 void kvfree_rcu_cb(struct rcu_head *head)
4812 {
4813 	void *obj = head;
4814 	struct folio *folio;
4815 	struct slab *slab;
4816 	struct kmem_cache *s;
4817 	void *slab_addr;
4818 
4819 	if (is_vmalloc_addr(obj)) {
4820 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4821 		vfree(obj);
4822 		return;
4823 	}
4824 
4825 	folio = virt_to_folio(obj);
4826 	if (!folio_test_slab(folio)) {
4827 		/*
4828 		 * rcu_head offset can be only less than page size so no need to
4829 		 * consider folio order
4830 		 */
4831 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4832 		free_large_kmalloc(folio, obj);
4833 		return;
4834 	}
4835 
4836 	slab = folio_slab(folio);
4837 	s = slab->slab_cache;
4838 	slab_addr = folio_address(folio);
4839 
4840 	if (is_kfence_address(obj)) {
4841 		obj = kfence_object_start(obj);
4842 	} else {
4843 		unsigned int idx = __obj_to_index(s, slab_addr, obj);
4844 
4845 		obj = slab_addr + s->size * idx;
4846 		obj = fixup_red_left(s, obj);
4847 	}
4848 
4849 	slab_free(s, slab, obj, _RET_IP_);
4850 }
4851 
4852 /**
4853  * kfree - free previously allocated memory
4854  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4855  *
4856  * If @object is NULL, no operation is performed.
4857  */
4858 void kfree(const void *object)
4859 {
4860 	struct folio *folio;
4861 	struct slab *slab;
4862 	struct kmem_cache *s;
4863 	void *x = (void *)object;
4864 
4865 	trace_kfree(_RET_IP_, object);
4866 
4867 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4868 		return;
4869 
4870 	folio = virt_to_folio(object);
4871 	if (unlikely(!folio_test_slab(folio))) {
4872 		free_large_kmalloc(folio, (void *)object);
4873 		return;
4874 	}
4875 
4876 	slab = folio_slab(folio);
4877 	s = slab->slab_cache;
4878 	slab_free(s, slab, x, _RET_IP_);
4879 }
4880 EXPORT_SYMBOL(kfree);
4881 
4882 static __always_inline __realloc_size(2) void *
4883 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4884 {
4885 	void *ret;
4886 	size_t ks = 0;
4887 	int orig_size = 0;
4888 	struct kmem_cache *s = NULL;
4889 
4890 	if (unlikely(ZERO_OR_NULL_PTR(p)))
4891 		goto alloc_new;
4892 
4893 	/* Check for double-free. */
4894 	if (!kasan_check_byte(p))
4895 		return NULL;
4896 
4897 	if (is_kfence_address(p)) {
4898 		ks = orig_size = kfence_ksize(p);
4899 	} else {
4900 		struct folio *folio;
4901 
4902 		folio = virt_to_folio(p);
4903 		if (unlikely(!folio_test_slab(folio))) {
4904 			/* Big kmalloc object */
4905 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4906 			WARN_ON(p != folio_address(folio));
4907 			ks = folio_size(folio);
4908 		} else {
4909 			s = folio_slab(folio)->slab_cache;
4910 			orig_size = get_orig_size(s, (void *)p);
4911 			ks = s->object_size;
4912 		}
4913 	}
4914 
4915 	/* If the old object doesn't fit, allocate a bigger one */
4916 	if (new_size > ks)
4917 		goto alloc_new;
4918 
4919 	/* Zero out spare memory. */
4920 	if (want_init_on_alloc(flags)) {
4921 		kasan_disable_current();
4922 		if (orig_size && orig_size < new_size)
4923 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4924 		else
4925 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4926 		kasan_enable_current();
4927 	}
4928 
4929 	/* Setup kmalloc redzone when needed */
4930 	if (s && slub_debug_orig_size(s)) {
4931 		set_orig_size(s, (void *)p, new_size);
4932 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
4933 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4934 						SLUB_RED_ACTIVE, ks - new_size);
4935 	}
4936 
4937 	p = kasan_krealloc(p, new_size, flags);
4938 	return (void *)p;
4939 
4940 alloc_new:
4941 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4942 	if (ret && p) {
4943 		/* Disable KASAN checks as the object's redzone is accessed. */
4944 		kasan_disable_current();
4945 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4946 		kasan_enable_current();
4947 	}
4948 
4949 	return ret;
4950 }
4951 
4952 /**
4953  * krealloc - reallocate memory. The contents will remain unchanged.
4954  * @p: object to reallocate memory for.
4955  * @new_size: how many bytes of memory are required.
4956  * @flags: the type of memory to allocate.
4957  *
4958  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
4959  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4960  *
4961  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4962  * initial memory allocation, every subsequent call to this API for the same
4963  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4964  * __GFP_ZERO is not fully honored by this API.
4965  *
4966  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4967  * size of an allocation (but not the exact size it was allocated with) and
4968  * hence implements the following semantics for shrinking and growing buffers
4969  * with __GFP_ZERO::
4970  *
4971  *           new             bucket
4972  *   0       size             size
4973  *   |--------|----------------|
4974  *   |  keep  |      zero      |
4975  *
4976  * Otherwise, the original allocation size 'orig_size' could be used to
4977  * precisely clear the requested size, and the new size will also be stored
4978  * as the new 'orig_size'.
4979  *
4980  * In any case, the contents of the object pointed to are preserved up to the
4981  * lesser of the new and old sizes.
4982  *
4983  * Return: pointer to the allocated memory or %NULL in case of error
4984  */
4985 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4986 {
4987 	void *ret;
4988 
4989 	if (unlikely(!new_size)) {
4990 		kfree(p);
4991 		return ZERO_SIZE_PTR;
4992 	}
4993 
4994 	ret = __do_krealloc(p, new_size, flags);
4995 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4996 		kfree(p);
4997 
4998 	return ret;
4999 }
5000 EXPORT_SYMBOL(krealloc_noprof);
5001 
5002 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
5003 {
5004 	/*
5005 	 * We want to attempt a large physically contiguous block first because
5006 	 * it is less likely to fragment multiple larger blocks and therefore
5007 	 * contribute to a long term fragmentation less than vmalloc fallback.
5008 	 * However make sure that larger requests are not too disruptive - i.e.
5009 	 * do not direct reclaim unless physically continuous memory is preferred
5010 	 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
5011 	 * start working in the background
5012 	 */
5013 	if (size > PAGE_SIZE) {
5014 		flags |= __GFP_NOWARN;
5015 
5016 		if (!(flags & __GFP_RETRY_MAYFAIL))
5017 			flags &= ~__GFP_DIRECT_RECLAIM;
5018 
5019 		/* nofail semantic is implemented by the vmalloc fallback */
5020 		flags &= ~__GFP_NOFAIL;
5021 	}
5022 
5023 	return flags;
5024 }
5025 
5026 /**
5027  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
5028  * failure, fall back to non-contiguous (vmalloc) allocation.
5029  * @size: size of the request.
5030  * @b: which set of kmalloc buckets to allocate from.
5031  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
5032  * @node: numa node to allocate from
5033  *
5034  * Uses kmalloc to get the memory but if the allocation fails then falls back
5035  * to the vmalloc allocator. Use kvfree for freeing the memory.
5036  *
5037  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
5038  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
5039  * preferable to the vmalloc fallback, due to visible performance drawbacks.
5040  *
5041  * Return: pointer to the allocated memory of %NULL in case of failure
5042  */
5043 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5044 {
5045 	void *ret;
5046 
5047 	/*
5048 	 * It doesn't really make sense to fallback to vmalloc for sub page
5049 	 * requests
5050 	 */
5051 	ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
5052 				kmalloc_gfp_adjust(flags, size),
5053 				node, _RET_IP_);
5054 	if (ret || size <= PAGE_SIZE)
5055 		return ret;
5056 
5057 	/* non-sleeping allocations are not supported by vmalloc */
5058 	if (!gfpflags_allow_blocking(flags))
5059 		return NULL;
5060 
5061 	/* Don't even allow crazy sizes */
5062 	if (unlikely(size > INT_MAX)) {
5063 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
5064 		return NULL;
5065 	}
5066 
5067 	/*
5068 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
5069 	 * since the callers already cannot assume anything
5070 	 * about the resulting pointer, and cannot play
5071 	 * protection games.
5072 	 */
5073 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
5074 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
5075 			node, __builtin_return_address(0));
5076 }
5077 EXPORT_SYMBOL(__kvmalloc_node_noprof);
5078 
5079 /**
5080  * kvfree() - Free memory.
5081  * @addr: Pointer to allocated memory.
5082  *
5083  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
5084  * It is slightly more efficient to use kfree() or vfree() if you are certain
5085  * that you know which one to use.
5086  *
5087  * Context: Either preemptible task context or not-NMI interrupt.
5088  */
5089 void kvfree(const void *addr)
5090 {
5091 	if (is_vmalloc_addr(addr))
5092 		vfree(addr);
5093 	else
5094 		kfree(addr);
5095 }
5096 EXPORT_SYMBOL(kvfree);
5097 
5098 /**
5099  * kvfree_sensitive - Free a data object containing sensitive information.
5100  * @addr: address of the data object to be freed.
5101  * @len: length of the data object.
5102  *
5103  * Use the special memzero_explicit() function to clear the content of a
5104  * kvmalloc'ed object containing sensitive data to make sure that the
5105  * compiler won't optimize out the data clearing.
5106  */
5107 void kvfree_sensitive(const void *addr, size_t len)
5108 {
5109 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
5110 		memzero_explicit((void *)addr, len);
5111 		kvfree(addr);
5112 	}
5113 }
5114 EXPORT_SYMBOL(kvfree_sensitive);
5115 
5116 /**
5117  * kvrealloc - reallocate memory; contents remain unchanged
5118  * @p: object to reallocate memory for
5119  * @size: the size to reallocate
5120  * @flags: the flags for the page level allocator
5121  *
5122  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
5123  * and @p is not a %NULL pointer, the object pointed to is freed.
5124  *
5125  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
5126  * initial memory allocation, every subsequent call to this API for the same
5127  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
5128  * __GFP_ZERO is not fully honored by this API.
5129  *
5130  * In any case, the contents of the object pointed to are preserved up to the
5131  * lesser of the new and old sizes.
5132  *
5133  * This function must not be called concurrently with itself or kvfree() for the
5134  * same memory allocation.
5135  *
5136  * Return: pointer to the allocated memory or %NULL in case of error
5137  */
5138 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
5139 {
5140 	void *n;
5141 
5142 	if (is_vmalloc_addr(p))
5143 		return vrealloc_noprof(p, size, flags);
5144 
5145 	n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
5146 	if (!n) {
5147 		/* We failed to krealloc(), fall back to kvmalloc(). */
5148 		n = kvmalloc_noprof(size, flags);
5149 		if (!n)
5150 			return NULL;
5151 
5152 		if (p) {
5153 			/* We already know that `p` is not a vmalloc address. */
5154 			kasan_disable_current();
5155 			memcpy(n, kasan_reset_tag(p), ksize(p));
5156 			kasan_enable_current();
5157 
5158 			kfree(p);
5159 		}
5160 	}
5161 
5162 	return n;
5163 }
5164 EXPORT_SYMBOL(kvrealloc_noprof);
5165 
5166 struct detached_freelist {
5167 	struct slab *slab;
5168 	void *tail;
5169 	void *freelist;
5170 	int cnt;
5171 	struct kmem_cache *s;
5172 };
5173 
5174 /*
5175  * This function progressively scans the array with free objects (with
5176  * a limited look ahead) and extract objects belonging to the same
5177  * slab.  It builds a detached freelist directly within the given
5178  * slab/objects.  This can happen without any need for
5179  * synchronization, because the objects are owned by running process.
5180  * The freelist is build up as a single linked list in the objects.
5181  * The idea is, that this detached freelist can then be bulk
5182  * transferred to the real freelist(s), but only requiring a single
5183  * synchronization primitive.  Look ahead in the array is limited due
5184  * to performance reasons.
5185  */
5186 static inline
5187 int build_detached_freelist(struct kmem_cache *s, size_t size,
5188 			    void **p, struct detached_freelist *df)
5189 {
5190 	int lookahead = 3;
5191 	void *object;
5192 	struct folio *folio;
5193 	size_t same;
5194 
5195 	object = p[--size];
5196 	folio = virt_to_folio(object);
5197 	if (!s) {
5198 		/* Handle kalloc'ed objects */
5199 		if (unlikely(!folio_test_slab(folio))) {
5200 			free_large_kmalloc(folio, object);
5201 			df->slab = NULL;
5202 			return size;
5203 		}
5204 		/* Derive kmem_cache from object */
5205 		df->slab = folio_slab(folio);
5206 		df->s = df->slab->slab_cache;
5207 	} else {
5208 		df->slab = folio_slab(folio);
5209 		df->s = cache_from_obj(s, object); /* Support for memcg */
5210 	}
5211 
5212 	/* Start new detached freelist */
5213 	df->tail = object;
5214 	df->freelist = object;
5215 	df->cnt = 1;
5216 
5217 	if (is_kfence_address(object))
5218 		return size;
5219 
5220 	set_freepointer(df->s, object, NULL);
5221 
5222 	same = size;
5223 	while (size) {
5224 		object = p[--size];
5225 		/* df->slab is always set at this point */
5226 		if (df->slab == virt_to_slab(object)) {
5227 			/* Opportunity build freelist */
5228 			set_freepointer(df->s, object, df->freelist);
5229 			df->freelist = object;
5230 			df->cnt++;
5231 			same--;
5232 			if (size != same)
5233 				swap(p[size], p[same]);
5234 			continue;
5235 		}
5236 
5237 		/* Limit look ahead search */
5238 		if (!--lookahead)
5239 			break;
5240 	}
5241 
5242 	return same;
5243 }
5244 
5245 /*
5246  * Internal bulk free of objects that were not initialised by the post alloc
5247  * hooks and thus should not be processed by the free hooks
5248  */
5249 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5250 {
5251 	if (!size)
5252 		return;
5253 
5254 	do {
5255 		struct detached_freelist df;
5256 
5257 		size = build_detached_freelist(s, size, p, &df);
5258 		if (!df.slab)
5259 			continue;
5260 
5261 		if (kfence_free(df.freelist))
5262 			continue;
5263 
5264 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
5265 			     _RET_IP_);
5266 	} while (likely(size));
5267 }
5268 
5269 /* Note that interrupts must be enabled when calling this function. */
5270 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5271 {
5272 	if (!size)
5273 		return;
5274 
5275 	do {
5276 		struct detached_freelist df;
5277 
5278 		size = build_detached_freelist(s, size, p, &df);
5279 		if (!df.slab)
5280 			continue;
5281 
5282 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5283 			       df.cnt, _RET_IP_);
5284 	} while (likely(size));
5285 }
5286 EXPORT_SYMBOL(kmem_cache_free_bulk);
5287 
5288 #ifndef CONFIG_SLUB_TINY
5289 static inline
5290 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5291 			    void **p)
5292 {
5293 	struct kmem_cache_cpu *c;
5294 	unsigned long irqflags;
5295 	int i;
5296 
5297 	/*
5298 	 * Drain objects in the per cpu slab, while disabling local
5299 	 * IRQs, which protects against PREEMPT and interrupts
5300 	 * handlers invoking normal fastpath.
5301 	 */
5302 	c = slub_get_cpu_ptr(s->cpu_slab);
5303 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5304 
5305 	for (i = 0; i < size; i++) {
5306 		void *object = kfence_alloc(s, s->object_size, flags);
5307 
5308 		if (unlikely(object)) {
5309 			p[i] = object;
5310 			continue;
5311 		}
5312 
5313 		object = c->freelist;
5314 		if (unlikely(!object)) {
5315 			/*
5316 			 * We may have removed an object from c->freelist using
5317 			 * the fastpath in the previous iteration; in that case,
5318 			 * c->tid has not been bumped yet.
5319 			 * Since ___slab_alloc() may reenable interrupts while
5320 			 * allocating memory, we should bump c->tid now.
5321 			 */
5322 			c->tid = next_tid(c->tid);
5323 
5324 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5325 
5326 			/*
5327 			 * Invoking slow path likely have side-effect
5328 			 * of re-populating per CPU c->freelist
5329 			 */
5330 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5331 					    _RET_IP_, c, s->object_size);
5332 			if (unlikely(!p[i]))
5333 				goto error;
5334 
5335 			c = this_cpu_ptr(s->cpu_slab);
5336 			maybe_wipe_obj_freeptr(s, p[i]);
5337 
5338 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5339 
5340 			continue; /* goto for-loop */
5341 		}
5342 		c->freelist = get_freepointer(s, object);
5343 		p[i] = object;
5344 		maybe_wipe_obj_freeptr(s, p[i]);
5345 		stat(s, ALLOC_FASTPATH);
5346 	}
5347 	c->tid = next_tid(c->tid);
5348 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5349 	slub_put_cpu_ptr(s->cpu_slab);
5350 
5351 	return i;
5352 
5353 error:
5354 	slub_put_cpu_ptr(s->cpu_slab);
5355 	__kmem_cache_free_bulk(s, i, p);
5356 	return 0;
5357 
5358 }
5359 #else /* CONFIG_SLUB_TINY */
5360 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5361 				   size_t size, void **p)
5362 {
5363 	int i;
5364 
5365 	for (i = 0; i < size; i++) {
5366 		void *object = kfence_alloc(s, s->object_size, flags);
5367 
5368 		if (unlikely(object)) {
5369 			p[i] = object;
5370 			continue;
5371 		}
5372 
5373 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5374 					 _RET_IP_, s->object_size);
5375 		if (unlikely(!p[i]))
5376 			goto error;
5377 
5378 		maybe_wipe_obj_freeptr(s, p[i]);
5379 	}
5380 
5381 	return i;
5382 
5383 error:
5384 	__kmem_cache_free_bulk(s, i, p);
5385 	return 0;
5386 }
5387 #endif /* CONFIG_SLUB_TINY */
5388 
5389 /* Note that interrupts must be enabled when calling this function. */
5390 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5391 				 void **p)
5392 {
5393 	int i;
5394 
5395 	if (!size)
5396 		return 0;
5397 
5398 	s = slab_pre_alloc_hook(s, flags);
5399 	if (unlikely(!s))
5400 		return 0;
5401 
5402 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
5403 	if (unlikely(i == 0))
5404 		return 0;
5405 
5406 	/*
5407 	 * memcg and kmem_cache debug support and memory initialization.
5408 	 * Done outside of the IRQ disabled fastpath loop.
5409 	 */
5410 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5411 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
5412 		return 0;
5413 	}
5414 	return i;
5415 }
5416 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5417 
5418 
5419 /*
5420  * Object placement in a slab is made very easy because we always start at
5421  * offset 0. If we tune the size of the object to the alignment then we can
5422  * get the required alignment by putting one properly sized object after
5423  * another.
5424  *
5425  * Notice that the allocation order determines the sizes of the per cpu
5426  * caches. Each processor has always one slab available for allocations.
5427  * Increasing the allocation order reduces the number of times that slabs
5428  * must be moved on and off the partial lists and is therefore a factor in
5429  * locking overhead.
5430  */
5431 
5432 /*
5433  * Minimum / Maximum order of slab pages. This influences locking overhead
5434  * and slab fragmentation. A higher order reduces the number of partial slabs
5435  * and increases the number of allocations possible without having to
5436  * take the list_lock.
5437  */
5438 static unsigned int slub_min_order;
5439 static unsigned int slub_max_order =
5440 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5441 static unsigned int slub_min_objects;
5442 
5443 /*
5444  * Calculate the order of allocation given an slab object size.
5445  *
5446  * The order of allocation has significant impact on performance and other
5447  * system components. Generally order 0 allocations should be preferred since
5448  * order 0 does not cause fragmentation in the page allocator. Larger objects
5449  * be problematic to put into order 0 slabs because there may be too much
5450  * unused space left. We go to a higher order if more than 1/16th of the slab
5451  * would be wasted.
5452  *
5453  * In order to reach satisfactory performance we must ensure that a minimum
5454  * number of objects is in one slab. Otherwise we may generate too much
5455  * activity on the partial lists which requires taking the list_lock. This is
5456  * less a concern for large slabs though which are rarely used.
5457  *
5458  * slab_max_order specifies the order where we begin to stop considering the
5459  * number of objects in a slab as critical. If we reach slab_max_order then
5460  * we try to keep the page order as low as possible. So we accept more waste
5461  * of space in favor of a small page order.
5462  *
5463  * Higher order allocations also allow the placement of more objects in a
5464  * slab and thereby reduce object handling overhead. If the user has
5465  * requested a higher minimum order then we start with that one instead of
5466  * the smallest order which will fit the object.
5467  */
5468 static inline unsigned int calc_slab_order(unsigned int size,
5469 		unsigned int min_order, unsigned int max_order,
5470 		unsigned int fract_leftover)
5471 {
5472 	unsigned int order;
5473 
5474 	for (order = min_order; order <= max_order; order++) {
5475 
5476 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5477 		unsigned int rem;
5478 
5479 		rem = slab_size % size;
5480 
5481 		if (rem <= slab_size / fract_leftover)
5482 			break;
5483 	}
5484 
5485 	return order;
5486 }
5487 
5488 static inline int calculate_order(unsigned int size)
5489 {
5490 	unsigned int order;
5491 	unsigned int min_objects;
5492 	unsigned int max_objects;
5493 	unsigned int min_order;
5494 
5495 	min_objects = slub_min_objects;
5496 	if (!min_objects) {
5497 		/*
5498 		 * Some architectures will only update present cpus when
5499 		 * onlining them, so don't trust the number if it's just 1. But
5500 		 * we also don't want to use nr_cpu_ids always, as on some other
5501 		 * architectures, there can be many possible cpus, but never
5502 		 * onlined. Here we compromise between trying to avoid too high
5503 		 * order on systems that appear larger than they are, and too
5504 		 * low order on systems that appear smaller than they are.
5505 		 */
5506 		unsigned int nr_cpus = num_present_cpus();
5507 		if (nr_cpus <= 1)
5508 			nr_cpus = nr_cpu_ids;
5509 		min_objects = 4 * (fls(nr_cpus) + 1);
5510 	}
5511 	/* min_objects can't be 0 because get_order(0) is undefined */
5512 	max_objects = max(order_objects(slub_max_order, size), 1U);
5513 	min_objects = min(min_objects, max_objects);
5514 
5515 	min_order = max_t(unsigned int, slub_min_order,
5516 			  get_order(min_objects * size));
5517 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5518 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5519 
5520 	/*
5521 	 * Attempt to find best configuration for a slab. This works by first
5522 	 * attempting to generate a layout with the best possible configuration
5523 	 * and backing off gradually.
5524 	 *
5525 	 * We start with accepting at most 1/16 waste and try to find the
5526 	 * smallest order from min_objects-derived/slab_min_order up to
5527 	 * slab_max_order that will satisfy the constraint. Note that increasing
5528 	 * the order can only result in same or less fractional waste, not more.
5529 	 *
5530 	 * If that fails, we increase the acceptable fraction of waste and try
5531 	 * again. The last iteration with fraction of 1/2 would effectively
5532 	 * accept any waste and give us the order determined by min_objects, as
5533 	 * long as at least single object fits within slab_max_order.
5534 	 */
5535 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5536 		order = calc_slab_order(size, min_order, slub_max_order,
5537 					fraction);
5538 		if (order <= slub_max_order)
5539 			return order;
5540 	}
5541 
5542 	/*
5543 	 * Doh this slab cannot be placed using slab_max_order.
5544 	 */
5545 	order = get_order(size);
5546 	if (order <= MAX_PAGE_ORDER)
5547 		return order;
5548 	return -ENOSYS;
5549 }
5550 
5551 static void
5552 init_kmem_cache_node(struct kmem_cache_node *n)
5553 {
5554 	n->nr_partial = 0;
5555 	spin_lock_init(&n->list_lock);
5556 	INIT_LIST_HEAD(&n->partial);
5557 #ifdef CONFIG_SLUB_DEBUG
5558 	atomic_long_set(&n->nr_slabs, 0);
5559 	atomic_long_set(&n->total_objects, 0);
5560 	INIT_LIST_HEAD(&n->full);
5561 #endif
5562 }
5563 
5564 #ifndef CONFIG_SLUB_TINY
5565 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5566 {
5567 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5568 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5569 			sizeof(struct kmem_cache_cpu));
5570 
5571 	/*
5572 	 * Must align to double word boundary for the double cmpxchg
5573 	 * instructions to work; see __pcpu_double_call_return_bool().
5574 	 */
5575 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5576 				     2 * sizeof(void *));
5577 
5578 	if (!s->cpu_slab)
5579 		return 0;
5580 
5581 	init_kmem_cache_cpus(s);
5582 
5583 	return 1;
5584 }
5585 #else
5586 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5587 {
5588 	return 1;
5589 }
5590 #endif /* CONFIG_SLUB_TINY */
5591 
5592 static struct kmem_cache *kmem_cache_node;
5593 
5594 /*
5595  * No kmalloc_node yet so do it by hand. We know that this is the first
5596  * slab on the node for this slabcache. There are no concurrent accesses
5597  * possible.
5598  *
5599  * Note that this function only works on the kmem_cache_node
5600  * when allocating for the kmem_cache_node. This is used for bootstrapping
5601  * memory on a fresh node that has no slab structures yet.
5602  */
5603 static void early_kmem_cache_node_alloc(int node)
5604 {
5605 	struct slab *slab;
5606 	struct kmem_cache_node *n;
5607 
5608 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5609 
5610 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5611 
5612 	BUG_ON(!slab);
5613 	if (slab_nid(slab) != node) {
5614 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5615 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5616 	}
5617 
5618 	n = slab->freelist;
5619 	BUG_ON(!n);
5620 #ifdef CONFIG_SLUB_DEBUG
5621 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5622 #endif
5623 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5624 	slab->freelist = get_freepointer(kmem_cache_node, n);
5625 	slab->inuse = 1;
5626 	kmem_cache_node->node[node] = n;
5627 	init_kmem_cache_node(n);
5628 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5629 
5630 	/*
5631 	 * No locks need to be taken here as it has just been
5632 	 * initialized and there is no concurrent access.
5633 	 */
5634 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5635 }
5636 
5637 static void free_kmem_cache_nodes(struct kmem_cache *s)
5638 {
5639 	int node;
5640 	struct kmem_cache_node *n;
5641 
5642 	for_each_kmem_cache_node(s, node, n) {
5643 		s->node[node] = NULL;
5644 		kmem_cache_free(kmem_cache_node, n);
5645 	}
5646 }
5647 
5648 void __kmem_cache_release(struct kmem_cache *s)
5649 {
5650 	cache_random_seq_destroy(s);
5651 #ifndef CONFIG_SLUB_TINY
5652 	free_percpu(s->cpu_slab);
5653 #endif
5654 	free_kmem_cache_nodes(s);
5655 }
5656 
5657 static int init_kmem_cache_nodes(struct kmem_cache *s)
5658 {
5659 	int node;
5660 
5661 	for_each_node_mask(node, slab_nodes) {
5662 		struct kmem_cache_node *n;
5663 
5664 		if (slab_state == DOWN) {
5665 			early_kmem_cache_node_alloc(node);
5666 			continue;
5667 		}
5668 		n = kmem_cache_alloc_node(kmem_cache_node,
5669 						GFP_KERNEL, node);
5670 
5671 		if (!n) {
5672 			free_kmem_cache_nodes(s);
5673 			return 0;
5674 		}
5675 
5676 		init_kmem_cache_node(n);
5677 		s->node[node] = n;
5678 	}
5679 	return 1;
5680 }
5681 
5682 static void set_cpu_partial(struct kmem_cache *s)
5683 {
5684 #ifdef CONFIG_SLUB_CPU_PARTIAL
5685 	unsigned int nr_objects;
5686 
5687 	/*
5688 	 * cpu_partial determined the maximum number of objects kept in the
5689 	 * per cpu partial lists of a processor.
5690 	 *
5691 	 * Per cpu partial lists mainly contain slabs that just have one
5692 	 * object freed. If they are used for allocation then they can be
5693 	 * filled up again with minimal effort. The slab will never hit the
5694 	 * per node partial lists and therefore no locking will be required.
5695 	 *
5696 	 * For backwards compatibility reasons, this is determined as number
5697 	 * of objects, even though we now limit maximum number of pages, see
5698 	 * slub_set_cpu_partial()
5699 	 */
5700 	if (!kmem_cache_has_cpu_partial(s))
5701 		nr_objects = 0;
5702 	else if (s->size >= PAGE_SIZE)
5703 		nr_objects = 6;
5704 	else if (s->size >= 1024)
5705 		nr_objects = 24;
5706 	else if (s->size >= 256)
5707 		nr_objects = 52;
5708 	else
5709 		nr_objects = 120;
5710 
5711 	slub_set_cpu_partial(s, nr_objects);
5712 #endif
5713 }
5714 
5715 /*
5716  * calculate_sizes() determines the order and the distribution of data within
5717  * a slab object.
5718  */
5719 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5720 {
5721 	slab_flags_t flags = s->flags;
5722 	unsigned int size = s->object_size;
5723 	unsigned int order;
5724 
5725 	/*
5726 	 * Round up object size to the next word boundary. We can only
5727 	 * place the free pointer at word boundaries and this determines
5728 	 * the possible location of the free pointer.
5729 	 */
5730 	size = ALIGN(size, sizeof(void *));
5731 
5732 #ifdef CONFIG_SLUB_DEBUG
5733 	/*
5734 	 * Determine if we can poison the object itself. If the user of
5735 	 * the slab may touch the object after free or before allocation
5736 	 * then we should never poison the object itself.
5737 	 */
5738 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5739 			!s->ctor)
5740 		s->flags |= __OBJECT_POISON;
5741 	else
5742 		s->flags &= ~__OBJECT_POISON;
5743 
5744 
5745 	/*
5746 	 * If we are Redzoning then check if there is some space between the
5747 	 * end of the object and the free pointer. If not then add an
5748 	 * additional word to have some bytes to store Redzone information.
5749 	 */
5750 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5751 		size += sizeof(void *);
5752 #endif
5753 
5754 	/*
5755 	 * With that we have determined the number of bytes in actual use
5756 	 * by the object and redzoning.
5757 	 */
5758 	s->inuse = size;
5759 
5760 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5761 	    (flags & SLAB_POISON) || s->ctor ||
5762 	    ((flags & SLAB_RED_ZONE) &&
5763 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5764 		/*
5765 		 * Relocate free pointer after the object if it is not
5766 		 * permitted to overwrite the first word of the object on
5767 		 * kmem_cache_free.
5768 		 *
5769 		 * This is the case if we do RCU, have a constructor or
5770 		 * destructor, are poisoning the objects, or are
5771 		 * redzoning an object smaller than sizeof(void *) or are
5772 		 * redzoning an object with slub_debug_orig_size() enabled,
5773 		 * in which case the right redzone may be extended.
5774 		 *
5775 		 * The assumption that s->offset >= s->inuse means free
5776 		 * pointer is outside of the object is used in the
5777 		 * freeptr_outside_object() function. If that is no
5778 		 * longer true, the function needs to be modified.
5779 		 */
5780 		s->offset = size;
5781 		size += sizeof(void *);
5782 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5783 		s->offset = args->freeptr_offset;
5784 	} else {
5785 		/*
5786 		 * Store freelist pointer near middle of object to keep
5787 		 * it away from the edges of the object to avoid small
5788 		 * sized over/underflows from neighboring allocations.
5789 		 */
5790 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5791 	}
5792 
5793 #ifdef CONFIG_SLUB_DEBUG
5794 	if (flags & SLAB_STORE_USER) {
5795 		/*
5796 		 * Need to store information about allocs and frees after
5797 		 * the object.
5798 		 */
5799 		size += 2 * sizeof(struct track);
5800 
5801 		/* Save the original kmalloc request size */
5802 		if (flags & SLAB_KMALLOC)
5803 			size += sizeof(unsigned int);
5804 	}
5805 #endif
5806 
5807 	kasan_cache_create(s, &size, &s->flags);
5808 #ifdef CONFIG_SLUB_DEBUG
5809 	if (flags & SLAB_RED_ZONE) {
5810 		/*
5811 		 * Add some empty padding so that we can catch
5812 		 * overwrites from earlier objects rather than let
5813 		 * tracking information or the free pointer be
5814 		 * corrupted if a user writes before the start
5815 		 * of the object.
5816 		 */
5817 		size += sizeof(void *);
5818 
5819 		s->red_left_pad = sizeof(void *);
5820 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5821 		size += s->red_left_pad;
5822 	}
5823 #endif
5824 
5825 	/*
5826 	 * SLUB stores one object immediately after another beginning from
5827 	 * offset 0. In order to align the objects we have to simply size
5828 	 * each object to conform to the alignment.
5829 	 */
5830 	size = ALIGN(size, s->align);
5831 	s->size = size;
5832 	s->reciprocal_size = reciprocal_value(size);
5833 	order = calculate_order(size);
5834 
5835 	if ((int)order < 0)
5836 		return 0;
5837 
5838 	s->allocflags = __GFP_COMP;
5839 
5840 	if (s->flags & SLAB_CACHE_DMA)
5841 		s->allocflags |= GFP_DMA;
5842 
5843 	if (s->flags & SLAB_CACHE_DMA32)
5844 		s->allocflags |= GFP_DMA32;
5845 
5846 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5847 		s->allocflags |= __GFP_RECLAIMABLE;
5848 
5849 	/*
5850 	 * Determine the number of objects per slab
5851 	 */
5852 	s->oo = oo_make(order, size);
5853 	s->min = oo_make(get_order(size), size);
5854 
5855 	return !!oo_objects(s->oo);
5856 }
5857 
5858 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
5859 {
5860 #ifdef CONFIG_SLUB_DEBUG
5861 	void *addr = slab_address(slab);
5862 	void *p;
5863 
5864 	if (!slab_add_kunit_errors())
5865 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
5866 
5867 	spin_lock(&object_map_lock);
5868 	__fill_map(object_map, s, slab);
5869 
5870 	for_each_object(p, s, addr, slab->objects) {
5871 
5872 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5873 			if (slab_add_kunit_errors())
5874 				continue;
5875 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5876 			print_tracking(s, p);
5877 		}
5878 	}
5879 	spin_unlock(&object_map_lock);
5880 
5881 	__slab_err(slab);
5882 #endif
5883 }
5884 
5885 /*
5886  * Attempt to free all partial slabs on a node.
5887  * This is called from __kmem_cache_shutdown(). We must take list_lock
5888  * because sysfs file might still access partial list after the shutdowning.
5889  */
5890 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5891 {
5892 	LIST_HEAD(discard);
5893 	struct slab *slab, *h;
5894 
5895 	BUG_ON(irqs_disabled());
5896 	spin_lock_irq(&n->list_lock);
5897 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5898 		if (!slab->inuse) {
5899 			remove_partial(n, slab);
5900 			list_add(&slab->slab_list, &discard);
5901 		} else {
5902 			list_slab_objects(s, slab);
5903 		}
5904 	}
5905 	spin_unlock_irq(&n->list_lock);
5906 
5907 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5908 		discard_slab(s, slab);
5909 }
5910 
5911 bool __kmem_cache_empty(struct kmem_cache *s)
5912 {
5913 	int node;
5914 	struct kmem_cache_node *n;
5915 
5916 	for_each_kmem_cache_node(s, node, n)
5917 		if (n->nr_partial || node_nr_slabs(n))
5918 			return false;
5919 	return true;
5920 }
5921 
5922 /*
5923  * Release all resources used by a slab cache.
5924  */
5925 int __kmem_cache_shutdown(struct kmem_cache *s)
5926 {
5927 	int node;
5928 	struct kmem_cache_node *n;
5929 
5930 	flush_all_cpus_locked(s);
5931 	/* Attempt to free all objects */
5932 	for_each_kmem_cache_node(s, node, n) {
5933 		free_partial(s, n);
5934 		if (n->nr_partial || node_nr_slabs(n))
5935 			return 1;
5936 	}
5937 	return 0;
5938 }
5939 
5940 #ifdef CONFIG_PRINTK
5941 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5942 {
5943 	void *base;
5944 	int __maybe_unused i;
5945 	unsigned int objnr;
5946 	void *objp;
5947 	void *objp0;
5948 	struct kmem_cache *s = slab->slab_cache;
5949 	struct track __maybe_unused *trackp;
5950 
5951 	kpp->kp_ptr = object;
5952 	kpp->kp_slab = slab;
5953 	kpp->kp_slab_cache = s;
5954 	base = slab_address(slab);
5955 	objp0 = kasan_reset_tag(object);
5956 #ifdef CONFIG_SLUB_DEBUG
5957 	objp = restore_red_left(s, objp0);
5958 #else
5959 	objp = objp0;
5960 #endif
5961 	objnr = obj_to_index(s, slab, objp);
5962 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5963 	objp = base + s->size * objnr;
5964 	kpp->kp_objp = objp;
5965 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5966 			 || (objp - base) % s->size) ||
5967 	    !(s->flags & SLAB_STORE_USER))
5968 		return;
5969 #ifdef CONFIG_SLUB_DEBUG
5970 	objp = fixup_red_left(s, objp);
5971 	trackp = get_track(s, objp, TRACK_ALLOC);
5972 	kpp->kp_ret = (void *)trackp->addr;
5973 #ifdef CONFIG_STACKDEPOT
5974 	{
5975 		depot_stack_handle_t handle;
5976 		unsigned long *entries;
5977 		unsigned int nr_entries;
5978 
5979 		handle = READ_ONCE(trackp->handle);
5980 		if (handle) {
5981 			nr_entries = stack_depot_fetch(handle, &entries);
5982 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5983 				kpp->kp_stack[i] = (void *)entries[i];
5984 		}
5985 
5986 		trackp = get_track(s, objp, TRACK_FREE);
5987 		handle = READ_ONCE(trackp->handle);
5988 		if (handle) {
5989 			nr_entries = stack_depot_fetch(handle, &entries);
5990 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5991 				kpp->kp_free_stack[i] = (void *)entries[i];
5992 		}
5993 	}
5994 #endif
5995 #endif
5996 }
5997 #endif
5998 
5999 /********************************************************************
6000  *		Kmalloc subsystem
6001  *******************************************************************/
6002 
6003 static int __init setup_slub_min_order(char *str)
6004 {
6005 	get_option(&str, (int *)&slub_min_order);
6006 
6007 	if (slub_min_order > slub_max_order)
6008 		slub_max_order = slub_min_order;
6009 
6010 	return 1;
6011 }
6012 
6013 __setup("slab_min_order=", setup_slub_min_order);
6014 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
6015 
6016 
6017 static int __init setup_slub_max_order(char *str)
6018 {
6019 	get_option(&str, (int *)&slub_max_order);
6020 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
6021 
6022 	if (slub_min_order > slub_max_order)
6023 		slub_min_order = slub_max_order;
6024 
6025 	return 1;
6026 }
6027 
6028 __setup("slab_max_order=", setup_slub_max_order);
6029 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
6030 
6031 static int __init setup_slub_min_objects(char *str)
6032 {
6033 	get_option(&str, (int *)&slub_min_objects);
6034 
6035 	return 1;
6036 }
6037 
6038 __setup("slab_min_objects=", setup_slub_min_objects);
6039 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
6040 
6041 #ifdef CONFIG_NUMA
6042 static int __init setup_slab_strict_numa(char *str)
6043 {
6044 	if (nr_node_ids > 1) {
6045 		static_branch_enable(&strict_numa);
6046 		pr_info("SLUB: Strict NUMA enabled.\n");
6047 	} else {
6048 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
6049 	}
6050 
6051 	return 1;
6052 }
6053 
6054 __setup("slab_strict_numa", setup_slab_strict_numa);
6055 #endif
6056 
6057 
6058 #ifdef CONFIG_HARDENED_USERCOPY
6059 /*
6060  * Rejects incorrectly sized objects and objects that are to be copied
6061  * to/from userspace but do not fall entirely within the containing slab
6062  * cache's usercopy region.
6063  *
6064  * Returns NULL if check passes, otherwise const char * to name of cache
6065  * to indicate an error.
6066  */
6067 void __check_heap_object(const void *ptr, unsigned long n,
6068 			 const struct slab *slab, bool to_user)
6069 {
6070 	struct kmem_cache *s;
6071 	unsigned int offset;
6072 	bool is_kfence = is_kfence_address(ptr);
6073 
6074 	ptr = kasan_reset_tag(ptr);
6075 
6076 	/* Find object and usable object size. */
6077 	s = slab->slab_cache;
6078 
6079 	/* Reject impossible pointers. */
6080 	if (ptr < slab_address(slab))
6081 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
6082 			       to_user, 0, n);
6083 
6084 	/* Find offset within object. */
6085 	if (is_kfence)
6086 		offset = ptr - kfence_object_start(ptr);
6087 	else
6088 		offset = (ptr - slab_address(slab)) % s->size;
6089 
6090 	/* Adjust for redzone and reject if within the redzone. */
6091 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
6092 		if (offset < s->red_left_pad)
6093 			usercopy_abort("SLUB object in left red zone",
6094 				       s->name, to_user, offset, n);
6095 		offset -= s->red_left_pad;
6096 	}
6097 
6098 	/* Allow address range falling entirely within usercopy region. */
6099 	if (offset >= s->useroffset &&
6100 	    offset - s->useroffset <= s->usersize &&
6101 	    n <= s->useroffset - offset + s->usersize)
6102 		return;
6103 
6104 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
6105 }
6106 #endif /* CONFIG_HARDENED_USERCOPY */
6107 
6108 #define SHRINK_PROMOTE_MAX 32
6109 
6110 /*
6111  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
6112  * up most to the head of the partial lists. New allocations will then
6113  * fill those up and thus they can be removed from the partial lists.
6114  *
6115  * The slabs with the least items are placed last. This results in them
6116  * being allocated from last increasing the chance that the last objects
6117  * are freed in them.
6118  */
6119 static int __kmem_cache_do_shrink(struct kmem_cache *s)
6120 {
6121 	int node;
6122 	int i;
6123 	struct kmem_cache_node *n;
6124 	struct slab *slab;
6125 	struct slab *t;
6126 	struct list_head discard;
6127 	struct list_head promote[SHRINK_PROMOTE_MAX];
6128 	unsigned long flags;
6129 	int ret = 0;
6130 
6131 	for_each_kmem_cache_node(s, node, n) {
6132 		INIT_LIST_HEAD(&discard);
6133 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
6134 			INIT_LIST_HEAD(promote + i);
6135 
6136 		spin_lock_irqsave(&n->list_lock, flags);
6137 
6138 		/*
6139 		 * Build lists of slabs to discard or promote.
6140 		 *
6141 		 * Note that concurrent frees may occur while we hold the
6142 		 * list_lock. slab->inuse here is the upper limit.
6143 		 */
6144 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
6145 			int free = slab->objects - slab->inuse;
6146 
6147 			/* Do not reread slab->inuse */
6148 			barrier();
6149 
6150 			/* We do not keep full slabs on the list */
6151 			BUG_ON(free <= 0);
6152 
6153 			if (free == slab->objects) {
6154 				list_move(&slab->slab_list, &discard);
6155 				slab_clear_node_partial(slab);
6156 				n->nr_partial--;
6157 				dec_slabs_node(s, node, slab->objects);
6158 			} else if (free <= SHRINK_PROMOTE_MAX)
6159 				list_move(&slab->slab_list, promote + free - 1);
6160 		}
6161 
6162 		/*
6163 		 * Promote the slabs filled up most to the head of the
6164 		 * partial list.
6165 		 */
6166 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
6167 			list_splice(promote + i, &n->partial);
6168 
6169 		spin_unlock_irqrestore(&n->list_lock, flags);
6170 
6171 		/* Release empty slabs */
6172 		list_for_each_entry_safe(slab, t, &discard, slab_list)
6173 			free_slab(s, slab);
6174 
6175 		if (node_nr_slabs(n))
6176 			ret = 1;
6177 	}
6178 
6179 	return ret;
6180 }
6181 
6182 int __kmem_cache_shrink(struct kmem_cache *s)
6183 {
6184 	flush_all(s);
6185 	return __kmem_cache_do_shrink(s);
6186 }
6187 
6188 static int slab_mem_going_offline_callback(void *arg)
6189 {
6190 	struct kmem_cache *s;
6191 
6192 	mutex_lock(&slab_mutex);
6193 	list_for_each_entry(s, &slab_caches, list) {
6194 		flush_all_cpus_locked(s);
6195 		__kmem_cache_do_shrink(s);
6196 	}
6197 	mutex_unlock(&slab_mutex);
6198 
6199 	return 0;
6200 }
6201 
6202 static void slab_mem_offline_callback(void *arg)
6203 {
6204 	struct memory_notify *marg = arg;
6205 	int offline_node;
6206 
6207 	offline_node = marg->status_change_nid_normal;
6208 
6209 	/*
6210 	 * If the node still has available memory. we need kmem_cache_node
6211 	 * for it yet.
6212 	 */
6213 	if (offline_node < 0)
6214 		return;
6215 
6216 	mutex_lock(&slab_mutex);
6217 	node_clear(offline_node, slab_nodes);
6218 	/*
6219 	 * We no longer free kmem_cache_node structures here, as it would be
6220 	 * racy with all get_node() users, and infeasible to protect them with
6221 	 * slab_mutex.
6222 	 */
6223 	mutex_unlock(&slab_mutex);
6224 }
6225 
6226 static int slab_mem_going_online_callback(void *arg)
6227 {
6228 	struct kmem_cache_node *n;
6229 	struct kmem_cache *s;
6230 	struct memory_notify *marg = arg;
6231 	int nid = marg->status_change_nid_normal;
6232 	int ret = 0;
6233 
6234 	/*
6235 	 * If the node's memory is already available, then kmem_cache_node is
6236 	 * already created. Nothing to do.
6237 	 */
6238 	if (nid < 0)
6239 		return 0;
6240 
6241 	/*
6242 	 * We are bringing a node online. No memory is available yet. We must
6243 	 * allocate a kmem_cache_node structure in order to bring the node
6244 	 * online.
6245 	 */
6246 	mutex_lock(&slab_mutex);
6247 	list_for_each_entry(s, &slab_caches, list) {
6248 		/*
6249 		 * The structure may already exist if the node was previously
6250 		 * onlined and offlined.
6251 		 */
6252 		if (get_node(s, nid))
6253 			continue;
6254 		/*
6255 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
6256 		 *      since memory is not yet available from the node that
6257 		 *      is brought up.
6258 		 */
6259 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
6260 		if (!n) {
6261 			ret = -ENOMEM;
6262 			goto out;
6263 		}
6264 		init_kmem_cache_node(n);
6265 		s->node[nid] = n;
6266 	}
6267 	/*
6268 	 * Any cache created after this point will also have kmem_cache_node
6269 	 * initialized for the new node.
6270 	 */
6271 	node_set(nid, slab_nodes);
6272 out:
6273 	mutex_unlock(&slab_mutex);
6274 	return ret;
6275 }
6276 
6277 static int slab_memory_callback(struct notifier_block *self,
6278 				unsigned long action, void *arg)
6279 {
6280 	int ret = 0;
6281 
6282 	switch (action) {
6283 	case MEM_GOING_ONLINE:
6284 		ret = slab_mem_going_online_callback(arg);
6285 		break;
6286 	case MEM_GOING_OFFLINE:
6287 		ret = slab_mem_going_offline_callback(arg);
6288 		break;
6289 	case MEM_OFFLINE:
6290 	case MEM_CANCEL_ONLINE:
6291 		slab_mem_offline_callback(arg);
6292 		break;
6293 	case MEM_ONLINE:
6294 	case MEM_CANCEL_OFFLINE:
6295 		break;
6296 	}
6297 	if (ret)
6298 		ret = notifier_from_errno(ret);
6299 	else
6300 		ret = NOTIFY_OK;
6301 	return ret;
6302 }
6303 
6304 /********************************************************************
6305  *			Basic setup of slabs
6306  *******************************************************************/
6307 
6308 /*
6309  * Used for early kmem_cache structures that were allocated using
6310  * the page allocator. Allocate them properly then fix up the pointers
6311  * that may be pointing to the wrong kmem_cache structure.
6312  */
6313 
6314 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6315 {
6316 	int node;
6317 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6318 	struct kmem_cache_node *n;
6319 
6320 	memcpy(s, static_cache, kmem_cache->object_size);
6321 
6322 	/*
6323 	 * This runs very early, and only the boot processor is supposed to be
6324 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
6325 	 * IPIs around.
6326 	 */
6327 	__flush_cpu_slab(s, smp_processor_id());
6328 	for_each_kmem_cache_node(s, node, n) {
6329 		struct slab *p;
6330 
6331 		list_for_each_entry(p, &n->partial, slab_list)
6332 			p->slab_cache = s;
6333 
6334 #ifdef CONFIG_SLUB_DEBUG
6335 		list_for_each_entry(p, &n->full, slab_list)
6336 			p->slab_cache = s;
6337 #endif
6338 	}
6339 	list_add(&s->list, &slab_caches);
6340 	return s;
6341 }
6342 
6343 void __init kmem_cache_init(void)
6344 {
6345 	static __initdata struct kmem_cache boot_kmem_cache,
6346 		boot_kmem_cache_node;
6347 	int node;
6348 
6349 	if (debug_guardpage_minorder())
6350 		slub_max_order = 0;
6351 
6352 	/* Print slub debugging pointers without hashing */
6353 	if (__slub_debug_enabled())
6354 		no_hash_pointers_enable(NULL);
6355 
6356 	kmem_cache_node = &boot_kmem_cache_node;
6357 	kmem_cache = &boot_kmem_cache;
6358 
6359 	/*
6360 	 * Initialize the nodemask for which we will allocate per node
6361 	 * structures. Here we don't need taking slab_mutex yet.
6362 	 */
6363 	for_each_node_state(node, N_NORMAL_MEMORY)
6364 		node_set(node, slab_nodes);
6365 
6366 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
6367 			sizeof(struct kmem_cache_node),
6368 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6369 
6370 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6371 
6372 	/* Able to allocate the per node structures */
6373 	slab_state = PARTIAL;
6374 
6375 	create_boot_cache(kmem_cache, "kmem_cache",
6376 			offsetof(struct kmem_cache, node) +
6377 				nr_node_ids * sizeof(struct kmem_cache_node *),
6378 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6379 
6380 	kmem_cache = bootstrap(&boot_kmem_cache);
6381 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6382 
6383 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
6384 	setup_kmalloc_cache_index_table();
6385 	create_kmalloc_caches();
6386 
6387 	/* Setup random freelists for each cache */
6388 	init_freelist_randomization();
6389 
6390 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6391 				  slub_cpu_dead);
6392 
6393 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6394 		cache_line_size(),
6395 		slub_min_order, slub_max_order, slub_min_objects,
6396 		nr_cpu_ids, nr_node_ids);
6397 }
6398 
6399 void __init kmem_cache_init_late(void)
6400 {
6401 #ifndef CONFIG_SLUB_TINY
6402 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6403 	WARN_ON(!flushwq);
6404 #endif
6405 }
6406 
6407 struct kmem_cache *
6408 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6409 		   slab_flags_t flags, void (*ctor)(void *))
6410 {
6411 	struct kmem_cache *s;
6412 
6413 	s = find_mergeable(size, align, flags, name, ctor);
6414 	if (s) {
6415 		if (sysfs_slab_alias(s, name))
6416 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6417 			       name);
6418 
6419 		s->refcount++;
6420 
6421 		/*
6422 		 * Adjust the object sizes so that we clear
6423 		 * the complete object on kzalloc.
6424 		 */
6425 		s->object_size = max(s->object_size, size);
6426 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6427 	}
6428 
6429 	return s;
6430 }
6431 
6432 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6433 			 unsigned int size, struct kmem_cache_args *args,
6434 			 slab_flags_t flags)
6435 {
6436 	int err = -EINVAL;
6437 
6438 	s->name = name;
6439 	s->size = s->object_size = size;
6440 
6441 	s->flags = kmem_cache_flags(flags, s->name);
6442 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6443 	s->random = get_random_long();
6444 #endif
6445 	s->align = args->align;
6446 	s->ctor = args->ctor;
6447 #ifdef CONFIG_HARDENED_USERCOPY
6448 	s->useroffset = args->useroffset;
6449 	s->usersize = args->usersize;
6450 #endif
6451 
6452 	if (!calculate_sizes(args, s))
6453 		goto out;
6454 	if (disable_higher_order_debug) {
6455 		/*
6456 		 * Disable debugging flags that store metadata if the min slab
6457 		 * order increased.
6458 		 */
6459 		if (get_order(s->size) > get_order(s->object_size)) {
6460 			s->flags &= ~DEBUG_METADATA_FLAGS;
6461 			s->offset = 0;
6462 			if (!calculate_sizes(args, s))
6463 				goto out;
6464 		}
6465 	}
6466 
6467 #ifdef system_has_freelist_aba
6468 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6469 		/* Enable fast mode */
6470 		s->flags |= __CMPXCHG_DOUBLE;
6471 	}
6472 #endif
6473 
6474 	/*
6475 	 * The larger the object size is, the more slabs we want on the partial
6476 	 * list to avoid pounding the page allocator excessively.
6477 	 */
6478 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6479 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6480 
6481 	set_cpu_partial(s);
6482 
6483 #ifdef CONFIG_NUMA
6484 	s->remote_node_defrag_ratio = 1000;
6485 #endif
6486 
6487 	/* Initialize the pre-computed randomized freelist if slab is up */
6488 	if (slab_state >= UP) {
6489 		if (init_cache_random_seq(s))
6490 			goto out;
6491 	}
6492 
6493 	if (!init_kmem_cache_nodes(s))
6494 		goto out;
6495 
6496 	if (!alloc_kmem_cache_cpus(s))
6497 		goto out;
6498 
6499 	err = 0;
6500 
6501 	/* Mutex is not taken during early boot */
6502 	if (slab_state <= UP)
6503 		goto out;
6504 
6505 	/*
6506 	 * Failing to create sysfs files is not critical to SLUB functionality.
6507 	 * If it fails, proceed with cache creation without these files.
6508 	 */
6509 	if (sysfs_slab_add(s))
6510 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6511 
6512 	if (s->flags & SLAB_STORE_USER)
6513 		debugfs_slab_add(s);
6514 
6515 out:
6516 	if (err)
6517 		__kmem_cache_release(s);
6518 	return err;
6519 }
6520 
6521 #ifdef SLAB_SUPPORTS_SYSFS
6522 static int count_inuse(struct slab *slab)
6523 {
6524 	return slab->inuse;
6525 }
6526 
6527 static int count_total(struct slab *slab)
6528 {
6529 	return slab->objects;
6530 }
6531 #endif
6532 
6533 #ifdef CONFIG_SLUB_DEBUG
6534 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6535 			  unsigned long *obj_map)
6536 {
6537 	void *p;
6538 	void *addr = slab_address(slab);
6539 
6540 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6541 		return;
6542 
6543 	/* Now we know that a valid freelist exists */
6544 	__fill_map(obj_map, s, slab);
6545 	for_each_object(p, s, addr, slab->objects) {
6546 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6547 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6548 
6549 		if (!check_object(s, slab, p, val))
6550 			break;
6551 	}
6552 }
6553 
6554 static int validate_slab_node(struct kmem_cache *s,
6555 		struct kmem_cache_node *n, unsigned long *obj_map)
6556 {
6557 	unsigned long count = 0;
6558 	struct slab *slab;
6559 	unsigned long flags;
6560 
6561 	spin_lock_irqsave(&n->list_lock, flags);
6562 
6563 	list_for_each_entry(slab, &n->partial, slab_list) {
6564 		validate_slab(s, slab, obj_map);
6565 		count++;
6566 	}
6567 	if (count != n->nr_partial) {
6568 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6569 		       s->name, count, n->nr_partial);
6570 		slab_add_kunit_errors();
6571 	}
6572 
6573 	if (!(s->flags & SLAB_STORE_USER))
6574 		goto out;
6575 
6576 	list_for_each_entry(slab, &n->full, slab_list) {
6577 		validate_slab(s, slab, obj_map);
6578 		count++;
6579 	}
6580 	if (count != node_nr_slabs(n)) {
6581 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6582 		       s->name, count, node_nr_slabs(n));
6583 		slab_add_kunit_errors();
6584 	}
6585 
6586 out:
6587 	spin_unlock_irqrestore(&n->list_lock, flags);
6588 	return count;
6589 }
6590 
6591 long validate_slab_cache(struct kmem_cache *s)
6592 {
6593 	int node;
6594 	unsigned long count = 0;
6595 	struct kmem_cache_node *n;
6596 	unsigned long *obj_map;
6597 
6598 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6599 	if (!obj_map)
6600 		return -ENOMEM;
6601 
6602 	flush_all(s);
6603 	for_each_kmem_cache_node(s, node, n)
6604 		count += validate_slab_node(s, n, obj_map);
6605 
6606 	bitmap_free(obj_map);
6607 
6608 	return count;
6609 }
6610 EXPORT_SYMBOL(validate_slab_cache);
6611 
6612 #ifdef CONFIG_DEBUG_FS
6613 /*
6614  * Generate lists of code addresses where slabcache objects are allocated
6615  * and freed.
6616  */
6617 
6618 struct location {
6619 	depot_stack_handle_t handle;
6620 	unsigned long count;
6621 	unsigned long addr;
6622 	unsigned long waste;
6623 	long long sum_time;
6624 	long min_time;
6625 	long max_time;
6626 	long min_pid;
6627 	long max_pid;
6628 	DECLARE_BITMAP(cpus, NR_CPUS);
6629 	nodemask_t nodes;
6630 };
6631 
6632 struct loc_track {
6633 	unsigned long max;
6634 	unsigned long count;
6635 	struct location *loc;
6636 	loff_t idx;
6637 };
6638 
6639 static struct dentry *slab_debugfs_root;
6640 
6641 static void free_loc_track(struct loc_track *t)
6642 {
6643 	if (t->max)
6644 		free_pages((unsigned long)t->loc,
6645 			get_order(sizeof(struct location) * t->max));
6646 }
6647 
6648 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6649 {
6650 	struct location *l;
6651 	int order;
6652 
6653 	order = get_order(sizeof(struct location) * max);
6654 
6655 	l = (void *)__get_free_pages(flags, order);
6656 	if (!l)
6657 		return 0;
6658 
6659 	if (t->count) {
6660 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6661 		free_loc_track(t);
6662 	}
6663 	t->max = max;
6664 	t->loc = l;
6665 	return 1;
6666 }
6667 
6668 static int add_location(struct loc_track *t, struct kmem_cache *s,
6669 				const struct track *track,
6670 				unsigned int orig_size)
6671 {
6672 	long start, end, pos;
6673 	struct location *l;
6674 	unsigned long caddr, chandle, cwaste;
6675 	unsigned long age = jiffies - track->when;
6676 	depot_stack_handle_t handle = 0;
6677 	unsigned int waste = s->object_size - orig_size;
6678 
6679 #ifdef CONFIG_STACKDEPOT
6680 	handle = READ_ONCE(track->handle);
6681 #endif
6682 	start = -1;
6683 	end = t->count;
6684 
6685 	for ( ; ; ) {
6686 		pos = start + (end - start + 1) / 2;
6687 
6688 		/*
6689 		 * There is nothing at "end". If we end up there
6690 		 * we need to add something to before end.
6691 		 */
6692 		if (pos == end)
6693 			break;
6694 
6695 		l = &t->loc[pos];
6696 		caddr = l->addr;
6697 		chandle = l->handle;
6698 		cwaste = l->waste;
6699 		if ((track->addr == caddr) && (handle == chandle) &&
6700 			(waste == cwaste)) {
6701 
6702 			l->count++;
6703 			if (track->when) {
6704 				l->sum_time += age;
6705 				if (age < l->min_time)
6706 					l->min_time = age;
6707 				if (age > l->max_time)
6708 					l->max_time = age;
6709 
6710 				if (track->pid < l->min_pid)
6711 					l->min_pid = track->pid;
6712 				if (track->pid > l->max_pid)
6713 					l->max_pid = track->pid;
6714 
6715 				cpumask_set_cpu(track->cpu,
6716 						to_cpumask(l->cpus));
6717 			}
6718 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6719 			return 1;
6720 		}
6721 
6722 		if (track->addr < caddr)
6723 			end = pos;
6724 		else if (track->addr == caddr && handle < chandle)
6725 			end = pos;
6726 		else if (track->addr == caddr && handle == chandle &&
6727 				waste < cwaste)
6728 			end = pos;
6729 		else
6730 			start = pos;
6731 	}
6732 
6733 	/*
6734 	 * Not found. Insert new tracking element.
6735 	 */
6736 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6737 		return 0;
6738 
6739 	l = t->loc + pos;
6740 	if (pos < t->count)
6741 		memmove(l + 1, l,
6742 			(t->count - pos) * sizeof(struct location));
6743 	t->count++;
6744 	l->count = 1;
6745 	l->addr = track->addr;
6746 	l->sum_time = age;
6747 	l->min_time = age;
6748 	l->max_time = age;
6749 	l->min_pid = track->pid;
6750 	l->max_pid = track->pid;
6751 	l->handle = handle;
6752 	l->waste = waste;
6753 	cpumask_clear(to_cpumask(l->cpus));
6754 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6755 	nodes_clear(l->nodes);
6756 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6757 	return 1;
6758 }
6759 
6760 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6761 		struct slab *slab, enum track_item alloc,
6762 		unsigned long *obj_map)
6763 {
6764 	void *addr = slab_address(slab);
6765 	bool is_alloc = (alloc == TRACK_ALLOC);
6766 	void *p;
6767 
6768 	__fill_map(obj_map, s, slab);
6769 
6770 	for_each_object(p, s, addr, slab->objects)
6771 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6772 			add_location(t, s, get_track(s, p, alloc),
6773 				     is_alloc ? get_orig_size(s, p) :
6774 						s->object_size);
6775 }
6776 #endif  /* CONFIG_DEBUG_FS   */
6777 #endif	/* CONFIG_SLUB_DEBUG */
6778 
6779 #ifdef SLAB_SUPPORTS_SYSFS
6780 enum slab_stat_type {
6781 	SL_ALL,			/* All slabs */
6782 	SL_PARTIAL,		/* Only partially allocated slabs */
6783 	SL_CPU,			/* Only slabs used for cpu caches */
6784 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6785 	SL_TOTAL		/* Determine object capacity not slabs */
6786 };
6787 
6788 #define SO_ALL		(1 << SL_ALL)
6789 #define SO_PARTIAL	(1 << SL_PARTIAL)
6790 #define SO_CPU		(1 << SL_CPU)
6791 #define SO_OBJECTS	(1 << SL_OBJECTS)
6792 #define SO_TOTAL	(1 << SL_TOTAL)
6793 
6794 static ssize_t show_slab_objects(struct kmem_cache *s,
6795 				 char *buf, unsigned long flags)
6796 {
6797 	unsigned long total = 0;
6798 	int node;
6799 	int x;
6800 	unsigned long *nodes;
6801 	int len = 0;
6802 
6803 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6804 	if (!nodes)
6805 		return -ENOMEM;
6806 
6807 	if (flags & SO_CPU) {
6808 		int cpu;
6809 
6810 		for_each_possible_cpu(cpu) {
6811 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6812 							       cpu);
6813 			int node;
6814 			struct slab *slab;
6815 
6816 			slab = READ_ONCE(c->slab);
6817 			if (!slab)
6818 				continue;
6819 
6820 			node = slab_nid(slab);
6821 			if (flags & SO_TOTAL)
6822 				x = slab->objects;
6823 			else if (flags & SO_OBJECTS)
6824 				x = slab->inuse;
6825 			else
6826 				x = 1;
6827 
6828 			total += x;
6829 			nodes[node] += x;
6830 
6831 #ifdef CONFIG_SLUB_CPU_PARTIAL
6832 			slab = slub_percpu_partial_read_once(c);
6833 			if (slab) {
6834 				node = slab_nid(slab);
6835 				if (flags & SO_TOTAL)
6836 					WARN_ON_ONCE(1);
6837 				else if (flags & SO_OBJECTS)
6838 					WARN_ON_ONCE(1);
6839 				else
6840 					x = data_race(slab->slabs);
6841 				total += x;
6842 				nodes[node] += x;
6843 			}
6844 #endif
6845 		}
6846 	}
6847 
6848 	/*
6849 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6850 	 * already held which will conflict with an existing lock order:
6851 	 *
6852 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6853 	 *
6854 	 * We don't really need mem_hotplug_lock (to hold off
6855 	 * slab_mem_going_offline_callback) here because slab's memory hot
6856 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6857 	 */
6858 
6859 #ifdef CONFIG_SLUB_DEBUG
6860 	if (flags & SO_ALL) {
6861 		struct kmem_cache_node *n;
6862 
6863 		for_each_kmem_cache_node(s, node, n) {
6864 
6865 			if (flags & SO_TOTAL)
6866 				x = node_nr_objs(n);
6867 			else if (flags & SO_OBJECTS)
6868 				x = node_nr_objs(n) - count_partial(n, count_free);
6869 			else
6870 				x = node_nr_slabs(n);
6871 			total += x;
6872 			nodes[node] += x;
6873 		}
6874 
6875 	} else
6876 #endif
6877 	if (flags & SO_PARTIAL) {
6878 		struct kmem_cache_node *n;
6879 
6880 		for_each_kmem_cache_node(s, node, n) {
6881 			if (flags & SO_TOTAL)
6882 				x = count_partial(n, count_total);
6883 			else if (flags & SO_OBJECTS)
6884 				x = count_partial(n, count_inuse);
6885 			else
6886 				x = n->nr_partial;
6887 			total += x;
6888 			nodes[node] += x;
6889 		}
6890 	}
6891 
6892 	len += sysfs_emit_at(buf, len, "%lu", total);
6893 #ifdef CONFIG_NUMA
6894 	for (node = 0; node < nr_node_ids; node++) {
6895 		if (nodes[node])
6896 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6897 					     node, nodes[node]);
6898 	}
6899 #endif
6900 	len += sysfs_emit_at(buf, len, "\n");
6901 	kfree(nodes);
6902 
6903 	return len;
6904 }
6905 
6906 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6907 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6908 
6909 struct slab_attribute {
6910 	struct attribute attr;
6911 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6912 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6913 };
6914 
6915 #define SLAB_ATTR_RO(_name) \
6916 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6917 
6918 #define SLAB_ATTR(_name) \
6919 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6920 
6921 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6922 {
6923 	return sysfs_emit(buf, "%u\n", s->size);
6924 }
6925 SLAB_ATTR_RO(slab_size);
6926 
6927 static ssize_t align_show(struct kmem_cache *s, char *buf)
6928 {
6929 	return sysfs_emit(buf, "%u\n", s->align);
6930 }
6931 SLAB_ATTR_RO(align);
6932 
6933 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6934 {
6935 	return sysfs_emit(buf, "%u\n", s->object_size);
6936 }
6937 SLAB_ATTR_RO(object_size);
6938 
6939 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6940 {
6941 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6942 }
6943 SLAB_ATTR_RO(objs_per_slab);
6944 
6945 static ssize_t order_show(struct kmem_cache *s, char *buf)
6946 {
6947 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6948 }
6949 SLAB_ATTR_RO(order);
6950 
6951 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6952 {
6953 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6954 }
6955 
6956 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6957 				 size_t length)
6958 {
6959 	unsigned long min;
6960 	int err;
6961 
6962 	err = kstrtoul(buf, 10, &min);
6963 	if (err)
6964 		return err;
6965 
6966 	s->min_partial = min;
6967 	return length;
6968 }
6969 SLAB_ATTR(min_partial);
6970 
6971 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6972 {
6973 	unsigned int nr_partial = 0;
6974 #ifdef CONFIG_SLUB_CPU_PARTIAL
6975 	nr_partial = s->cpu_partial;
6976 #endif
6977 
6978 	return sysfs_emit(buf, "%u\n", nr_partial);
6979 }
6980 
6981 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6982 				 size_t length)
6983 {
6984 	unsigned int objects;
6985 	int err;
6986 
6987 	err = kstrtouint(buf, 10, &objects);
6988 	if (err)
6989 		return err;
6990 	if (objects && !kmem_cache_has_cpu_partial(s))
6991 		return -EINVAL;
6992 
6993 	slub_set_cpu_partial(s, objects);
6994 	flush_all(s);
6995 	return length;
6996 }
6997 SLAB_ATTR(cpu_partial);
6998 
6999 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
7000 {
7001 	if (!s->ctor)
7002 		return 0;
7003 	return sysfs_emit(buf, "%pS\n", s->ctor);
7004 }
7005 SLAB_ATTR_RO(ctor);
7006 
7007 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
7008 {
7009 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
7010 }
7011 SLAB_ATTR_RO(aliases);
7012 
7013 static ssize_t partial_show(struct kmem_cache *s, char *buf)
7014 {
7015 	return show_slab_objects(s, buf, SO_PARTIAL);
7016 }
7017 SLAB_ATTR_RO(partial);
7018 
7019 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
7020 {
7021 	return show_slab_objects(s, buf, SO_CPU);
7022 }
7023 SLAB_ATTR_RO(cpu_slabs);
7024 
7025 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
7026 {
7027 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
7028 }
7029 SLAB_ATTR_RO(objects_partial);
7030 
7031 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
7032 {
7033 	int objects = 0;
7034 	int slabs = 0;
7035 	int cpu __maybe_unused;
7036 	int len = 0;
7037 
7038 #ifdef CONFIG_SLUB_CPU_PARTIAL
7039 	for_each_online_cpu(cpu) {
7040 		struct slab *slab;
7041 
7042 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7043 
7044 		if (slab)
7045 			slabs += data_race(slab->slabs);
7046 	}
7047 #endif
7048 
7049 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
7050 	objects = (slabs * oo_objects(s->oo)) / 2;
7051 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
7052 
7053 #ifdef CONFIG_SLUB_CPU_PARTIAL
7054 	for_each_online_cpu(cpu) {
7055 		struct slab *slab;
7056 
7057 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7058 		if (slab) {
7059 			slabs = data_race(slab->slabs);
7060 			objects = (slabs * oo_objects(s->oo)) / 2;
7061 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
7062 					     cpu, objects, slabs);
7063 		}
7064 	}
7065 #endif
7066 	len += sysfs_emit_at(buf, len, "\n");
7067 
7068 	return len;
7069 }
7070 SLAB_ATTR_RO(slabs_cpu_partial);
7071 
7072 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
7073 {
7074 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
7075 }
7076 SLAB_ATTR_RO(reclaim_account);
7077 
7078 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
7079 {
7080 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
7081 }
7082 SLAB_ATTR_RO(hwcache_align);
7083 
7084 #ifdef CONFIG_ZONE_DMA
7085 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
7086 {
7087 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
7088 }
7089 SLAB_ATTR_RO(cache_dma);
7090 #endif
7091 
7092 #ifdef CONFIG_HARDENED_USERCOPY
7093 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
7094 {
7095 	return sysfs_emit(buf, "%u\n", s->usersize);
7096 }
7097 SLAB_ATTR_RO(usersize);
7098 #endif
7099 
7100 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
7101 {
7102 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
7103 }
7104 SLAB_ATTR_RO(destroy_by_rcu);
7105 
7106 #ifdef CONFIG_SLUB_DEBUG
7107 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
7108 {
7109 	return show_slab_objects(s, buf, SO_ALL);
7110 }
7111 SLAB_ATTR_RO(slabs);
7112 
7113 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
7114 {
7115 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
7116 }
7117 SLAB_ATTR_RO(total_objects);
7118 
7119 static ssize_t objects_show(struct kmem_cache *s, char *buf)
7120 {
7121 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
7122 }
7123 SLAB_ATTR_RO(objects);
7124 
7125 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
7126 {
7127 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
7128 }
7129 SLAB_ATTR_RO(sanity_checks);
7130 
7131 static ssize_t trace_show(struct kmem_cache *s, char *buf)
7132 {
7133 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
7134 }
7135 SLAB_ATTR_RO(trace);
7136 
7137 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
7138 {
7139 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
7140 }
7141 
7142 SLAB_ATTR_RO(red_zone);
7143 
7144 static ssize_t poison_show(struct kmem_cache *s, char *buf)
7145 {
7146 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
7147 }
7148 
7149 SLAB_ATTR_RO(poison);
7150 
7151 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
7152 {
7153 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
7154 }
7155 
7156 SLAB_ATTR_RO(store_user);
7157 
7158 static ssize_t validate_show(struct kmem_cache *s, char *buf)
7159 {
7160 	return 0;
7161 }
7162 
7163 static ssize_t validate_store(struct kmem_cache *s,
7164 			const char *buf, size_t length)
7165 {
7166 	int ret = -EINVAL;
7167 
7168 	if (buf[0] == '1' && kmem_cache_debug(s)) {
7169 		ret = validate_slab_cache(s);
7170 		if (ret >= 0)
7171 			ret = length;
7172 	}
7173 	return ret;
7174 }
7175 SLAB_ATTR(validate);
7176 
7177 #endif /* CONFIG_SLUB_DEBUG */
7178 
7179 #ifdef CONFIG_FAILSLAB
7180 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
7181 {
7182 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
7183 }
7184 
7185 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
7186 				size_t length)
7187 {
7188 	if (s->refcount > 1)
7189 		return -EINVAL;
7190 
7191 	if (buf[0] == '1')
7192 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
7193 	else
7194 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
7195 
7196 	return length;
7197 }
7198 SLAB_ATTR(failslab);
7199 #endif
7200 
7201 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
7202 {
7203 	return 0;
7204 }
7205 
7206 static ssize_t shrink_store(struct kmem_cache *s,
7207 			const char *buf, size_t length)
7208 {
7209 	if (buf[0] == '1')
7210 		kmem_cache_shrink(s);
7211 	else
7212 		return -EINVAL;
7213 	return length;
7214 }
7215 SLAB_ATTR(shrink);
7216 
7217 #ifdef CONFIG_NUMA
7218 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
7219 {
7220 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
7221 }
7222 
7223 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
7224 				const char *buf, size_t length)
7225 {
7226 	unsigned int ratio;
7227 	int err;
7228 
7229 	err = kstrtouint(buf, 10, &ratio);
7230 	if (err)
7231 		return err;
7232 	if (ratio > 100)
7233 		return -ERANGE;
7234 
7235 	s->remote_node_defrag_ratio = ratio * 10;
7236 
7237 	return length;
7238 }
7239 SLAB_ATTR(remote_node_defrag_ratio);
7240 #endif
7241 
7242 #ifdef CONFIG_SLUB_STATS
7243 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
7244 {
7245 	unsigned long sum  = 0;
7246 	int cpu;
7247 	int len = 0;
7248 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
7249 
7250 	if (!data)
7251 		return -ENOMEM;
7252 
7253 	for_each_online_cpu(cpu) {
7254 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
7255 
7256 		data[cpu] = x;
7257 		sum += x;
7258 	}
7259 
7260 	len += sysfs_emit_at(buf, len, "%lu", sum);
7261 
7262 #ifdef CONFIG_SMP
7263 	for_each_online_cpu(cpu) {
7264 		if (data[cpu])
7265 			len += sysfs_emit_at(buf, len, " C%d=%u",
7266 					     cpu, data[cpu]);
7267 	}
7268 #endif
7269 	kfree(data);
7270 	len += sysfs_emit_at(buf, len, "\n");
7271 
7272 	return len;
7273 }
7274 
7275 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7276 {
7277 	int cpu;
7278 
7279 	for_each_online_cpu(cpu)
7280 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7281 }
7282 
7283 #define STAT_ATTR(si, text) 					\
7284 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
7285 {								\
7286 	return show_stat(s, buf, si);				\
7287 }								\
7288 static ssize_t text##_store(struct kmem_cache *s,		\
7289 				const char *buf, size_t length)	\
7290 {								\
7291 	if (buf[0] != '0')					\
7292 		return -EINVAL;					\
7293 	clear_stat(s, si);					\
7294 	return length;						\
7295 }								\
7296 SLAB_ATTR(text);						\
7297 
7298 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7299 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7300 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7301 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7302 STAT_ATTR(FREE_FROZEN, free_frozen);
7303 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7304 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7305 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7306 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7307 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7308 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7309 STAT_ATTR(FREE_SLAB, free_slab);
7310 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7311 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7312 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7313 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7314 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7315 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7316 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7317 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7318 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7319 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7320 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7321 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7322 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7323 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7324 #endif	/* CONFIG_SLUB_STATS */
7325 
7326 #ifdef CONFIG_KFENCE
7327 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7328 {
7329 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7330 }
7331 
7332 static ssize_t skip_kfence_store(struct kmem_cache *s,
7333 			const char *buf, size_t length)
7334 {
7335 	int ret = length;
7336 
7337 	if (buf[0] == '0')
7338 		s->flags &= ~SLAB_SKIP_KFENCE;
7339 	else if (buf[0] == '1')
7340 		s->flags |= SLAB_SKIP_KFENCE;
7341 	else
7342 		ret = -EINVAL;
7343 
7344 	return ret;
7345 }
7346 SLAB_ATTR(skip_kfence);
7347 #endif
7348 
7349 static struct attribute *slab_attrs[] = {
7350 	&slab_size_attr.attr,
7351 	&object_size_attr.attr,
7352 	&objs_per_slab_attr.attr,
7353 	&order_attr.attr,
7354 	&min_partial_attr.attr,
7355 	&cpu_partial_attr.attr,
7356 	&objects_partial_attr.attr,
7357 	&partial_attr.attr,
7358 	&cpu_slabs_attr.attr,
7359 	&ctor_attr.attr,
7360 	&aliases_attr.attr,
7361 	&align_attr.attr,
7362 	&hwcache_align_attr.attr,
7363 	&reclaim_account_attr.attr,
7364 	&destroy_by_rcu_attr.attr,
7365 	&shrink_attr.attr,
7366 	&slabs_cpu_partial_attr.attr,
7367 #ifdef CONFIG_SLUB_DEBUG
7368 	&total_objects_attr.attr,
7369 	&objects_attr.attr,
7370 	&slabs_attr.attr,
7371 	&sanity_checks_attr.attr,
7372 	&trace_attr.attr,
7373 	&red_zone_attr.attr,
7374 	&poison_attr.attr,
7375 	&store_user_attr.attr,
7376 	&validate_attr.attr,
7377 #endif
7378 #ifdef CONFIG_ZONE_DMA
7379 	&cache_dma_attr.attr,
7380 #endif
7381 #ifdef CONFIG_NUMA
7382 	&remote_node_defrag_ratio_attr.attr,
7383 #endif
7384 #ifdef CONFIG_SLUB_STATS
7385 	&alloc_fastpath_attr.attr,
7386 	&alloc_slowpath_attr.attr,
7387 	&free_fastpath_attr.attr,
7388 	&free_slowpath_attr.attr,
7389 	&free_frozen_attr.attr,
7390 	&free_add_partial_attr.attr,
7391 	&free_remove_partial_attr.attr,
7392 	&alloc_from_partial_attr.attr,
7393 	&alloc_slab_attr.attr,
7394 	&alloc_refill_attr.attr,
7395 	&alloc_node_mismatch_attr.attr,
7396 	&free_slab_attr.attr,
7397 	&cpuslab_flush_attr.attr,
7398 	&deactivate_full_attr.attr,
7399 	&deactivate_empty_attr.attr,
7400 	&deactivate_to_head_attr.attr,
7401 	&deactivate_to_tail_attr.attr,
7402 	&deactivate_remote_frees_attr.attr,
7403 	&deactivate_bypass_attr.attr,
7404 	&order_fallback_attr.attr,
7405 	&cmpxchg_double_fail_attr.attr,
7406 	&cmpxchg_double_cpu_fail_attr.attr,
7407 	&cpu_partial_alloc_attr.attr,
7408 	&cpu_partial_free_attr.attr,
7409 	&cpu_partial_node_attr.attr,
7410 	&cpu_partial_drain_attr.attr,
7411 #endif
7412 #ifdef CONFIG_FAILSLAB
7413 	&failslab_attr.attr,
7414 #endif
7415 #ifdef CONFIG_HARDENED_USERCOPY
7416 	&usersize_attr.attr,
7417 #endif
7418 #ifdef CONFIG_KFENCE
7419 	&skip_kfence_attr.attr,
7420 #endif
7421 
7422 	NULL
7423 };
7424 
7425 static const struct attribute_group slab_attr_group = {
7426 	.attrs = slab_attrs,
7427 };
7428 
7429 static ssize_t slab_attr_show(struct kobject *kobj,
7430 				struct attribute *attr,
7431 				char *buf)
7432 {
7433 	struct slab_attribute *attribute;
7434 	struct kmem_cache *s;
7435 
7436 	attribute = to_slab_attr(attr);
7437 	s = to_slab(kobj);
7438 
7439 	if (!attribute->show)
7440 		return -EIO;
7441 
7442 	return attribute->show(s, buf);
7443 }
7444 
7445 static ssize_t slab_attr_store(struct kobject *kobj,
7446 				struct attribute *attr,
7447 				const char *buf, size_t len)
7448 {
7449 	struct slab_attribute *attribute;
7450 	struct kmem_cache *s;
7451 
7452 	attribute = to_slab_attr(attr);
7453 	s = to_slab(kobj);
7454 
7455 	if (!attribute->store)
7456 		return -EIO;
7457 
7458 	return attribute->store(s, buf, len);
7459 }
7460 
7461 static void kmem_cache_release(struct kobject *k)
7462 {
7463 	slab_kmem_cache_release(to_slab(k));
7464 }
7465 
7466 static const struct sysfs_ops slab_sysfs_ops = {
7467 	.show = slab_attr_show,
7468 	.store = slab_attr_store,
7469 };
7470 
7471 static const struct kobj_type slab_ktype = {
7472 	.sysfs_ops = &slab_sysfs_ops,
7473 	.release = kmem_cache_release,
7474 };
7475 
7476 static struct kset *slab_kset;
7477 
7478 static inline struct kset *cache_kset(struct kmem_cache *s)
7479 {
7480 	return slab_kset;
7481 }
7482 
7483 #define ID_STR_LENGTH 32
7484 
7485 /* Create a unique string id for a slab cache:
7486  *
7487  * Format	:[flags-]size
7488  */
7489 static char *create_unique_id(struct kmem_cache *s)
7490 {
7491 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7492 	char *p = name;
7493 
7494 	if (!name)
7495 		return ERR_PTR(-ENOMEM);
7496 
7497 	*p++ = ':';
7498 	/*
7499 	 * First flags affecting slabcache operations. We will only
7500 	 * get here for aliasable slabs so we do not need to support
7501 	 * too many flags. The flags here must cover all flags that
7502 	 * are matched during merging to guarantee that the id is
7503 	 * unique.
7504 	 */
7505 	if (s->flags & SLAB_CACHE_DMA)
7506 		*p++ = 'd';
7507 	if (s->flags & SLAB_CACHE_DMA32)
7508 		*p++ = 'D';
7509 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7510 		*p++ = 'a';
7511 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7512 		*p++ = 'F';
7513 	if (s->flags & SLAB_ACCOUNT)
7514 		*p++ = 'A';
7515 	if (p != name + 1)
7516 		*p++ = '-';
7517 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7518 
7519 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7520 		kfree(name);
7521 		return ERR_PTR(-EINVAL);
7522 	}
7523 	kmsan_unpoison_memory(name, p - name);
7524 	return name;
7525 }
7526 
7527 static int sysfs_slab_add(struct kmem_cache *s)
7528 {
7529 	int err;
7530 	const char *name;
7531 	struct kset *kset = cache_kset(s);
7532 	int unmergeable = slab_unmergeable(s);
7533 
7534 	if (!unmergeable && disable_higher_order_debug &&
7535 			(slub_debug & DEBUG_METADATA_FLAGS))
7536 		unmergeable = 1;
7537 
7538 	if (unmergeable) {
7539 		/*
7540 		 * Slabcache can never be merged so we can use the name proper.
7541 		 * This is typically the case for debug situations. In that
7542 		 * case we can catch duplicate names easily.
7543 		 */
7544 		sysfs_remove_link(&slab_kset->kobj, s->name);
7545 		name = s->name;
7546 	} else {
7547 		/*
7548 		 * Create a unique name for the slab as a target
7549 		 * for the symlinks.
7550 		 */
7551 		name = create_unique_id(s);
7552 		if (IS_ERR(name))
7553 			return PTR_ERR(name);
7554 	}
7555 
7556 	s->kobj.kset = kset;
7557 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7558 	if (err)
7559 		goto out;
7560 
7561 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7562 	if (err)
7563 		goto out_del_kobj;
7564 
7565 	if (!unmergeable) {
7566 		/* Setup first alias */
7567 		sysfs_slab_alias(s, s->name);
7568 	}
7569 out:
7570 	if (!unmergeable)
7571 		kfree(name);
7572 	return err;
7573 out_del_kobj:
7574 	kobject_del(&s->kobj);
7575 	goto out;
7576 }
7577 
7578 void sysfs_slab_unlink(struct kmem_cache *s)
7579 {
7580 	if (s->kobj.state_in_sysfs)
7581 		kobject_del(&s->kobj);
7582 }
7583 
7584 void sysfs_slab_release(struct kmem_cache *s)
7585 {
7586 	kobject_put(&s->kobj);
7587 }
7588 
7589 /*
7590  * Need to buffer aliases during bootup until sysfs becomes
7591  * available lest we lose that information.
7592  */
7593 struct saved_alias {
7594 	struct kmem_cache *s;
7595 	const char *name;
7596 	struct saved_alias *next;
7597 };
7598 
7599 static struct saved_alias *alias_list;
7600 
7601 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7602 {
7603 	struct saved_alias *al;
7604 
7605 	if (slab_state == FULL) {
7606 		/*
7607 		 * If we have a leftover link then remove it.
7608 		 */
7609 		sysfs_remove_link(&slab_kset->kobj, name);
7610 		/*
7611 		 * The original cache may have failed to generate sysfs file.
7612 		 * In that case, sysfs_create_link() returns -ENOENT and
7613 		 * symbolic link creation is skipped.
7614 		 */
7615 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7616 	}
7617 
7618 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7619 	if (!al)
7620 		return -ENOMEM;
7621 
7622 	al->s = s;
7623 	al->name = name;
7624 	al->next = alias_list;
7625 	alias_list = al;
7626 	kmsan_unpoison_memory(al, sizeof(*al));
7627 	return 0;
7628 }
7629 
7630 static int __init slab_sysfs_init(void)
7631 {
7632 	struct kmem_cache *s;
7633 	int err;
7634 
7635 	mutex_lock(&slab_mutex);
7636 
7637 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7638 	if (!slab_kset) {
7639 		mutex_unlock(&slab_mutex);
7640 		pr_err("Cannot register slab subsystem.\n");
7641 		return -ENOMEM;
7642 	}
7643 
7644 	slab_state = FULL;
7645 
7646 	list_for_each_entry(s, &slab_caches, list) {
7647 		err = sysfs_slab_add(s);
7648 		if (err)
7649 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7650 			       s->name);
7651 	}
7652 
7653 	while (alias_list) {
7654 		struct saved_alias *al = alias_list;
7655 
7656 		alias_list = alias_list->next;
7657 		err = sysfs_slab_alias(al->s, al->name);
7658 		if (err)
7659 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7660 			       al->name);
7661 		kfree(al);
7662 	}
7663 
7664 	mutex_unlock(&slab_mutex);
7665 	return 0;
7666 }
7667 late_initcall(slab_sysfs_init);
7668 #endif /* SLAB_SUPPORTS_SYSFS */
7669 
7670 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7671 static int slab_debugfs_show(struct seq_file *seq, void *v)
7672 {
7673 	struct loc_track *t = seq->private;
7674 	struct location *l;
7675 	unsigned long idx;
7676 
7677 	idx = (unsigned long) t->idx;
7678 	if (idx < t->count) {
7679 		l = &t->loc[idx];
7680 
7681 		seq_printf(seq, "%7ld ", l->count);
7682 
7683 		if (l->addr)
7684 			seq_printf(seq, "%pS", (void *)l->addr);
7685 		else
7686 			seq_puts(seq, "<not-available>");
7687 
7688 		if (l->waste)
7689 			seq_printf(seq, " waste=%lu/%lu",
7690 				l->count * l->waste, l->waste);
7691 
7692 		if (l->sum_time != l->min_time) {
7693 			seq_printf(seq, " age=%ld/%llu/%ld",
7694 				l->min_time, div_u64(l->sum_time, l->count),
7695 				l->max_time);
7696 		} else
7697 			seq_printf(seq, " age=%ld", l->min_time);
7698 
7699 		if (l->min_pid != l->max_pid)
7700 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7701 		else
7702 			seq_printf(seq, " pid=%ld",
7703 				l->min_pid);
7704 
7705 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7706 			seq_printf(seq, " cpus=%*pbl",
7707 				 cpumask_pr_args(to_cpumask(l->cpus)));
7708 
7709 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7710 			seq_printf(seq, " nodes=%*pbl",
7711 				 nodemask_pr_args(&l->nodes));
7712 
7713 #ifdef CONFIG_STACKDEPOT
7714 		{
7715 			depot_stack_handle_t handle;
7716 			unsigned long *entries;
7717 			unsigned int nr_entries, j;
7718 
7719 			handle = READ_ONCE(l->handle);
7720 			if (handle) {
7721 				nr_entries = stack_depot_fetch(handle, &entries);
7722 				seq_puts(seq, "\n");
7723 				for (j = 0; j < nr_entries; j++)
7724 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7725 			}
7726 		}
7727 #endif
7728 		seq_puts(seq, "\n");
7729 	}
7730 
7731 	if (!idx && !t->count)
7732 		seq_puts(seq, "No data\n");
7733 
7734 	return 0;
7735 }
7736 
7737 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7738 {
7739 }
7740 
7741 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7742 {
7743 	struct loc_track *t = seq->private;
7744 
7745 	t->idx = ++(*ppos);
7746 	if (*ppos <= t->count)
7747 		return ppos;
7748 
7749 	return NULL;
7750 }
7751 
7752 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7753 {
7754 	struct location *loc1 = (struct location *)a;
7755 	struct location *loc2 = (struct location *)b;
7756 
7757 	if (loc1->count > loc2->count)
7758 		return -1;
7759 	else
7760 		return 1;
7761 }
7762 
7763 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7764 {
7765 	struct loc_track *t = seq->private;
7766 
7767 	t->idx = *ppos;
7768 	return ppos;
7769 }
7770 
7771 static const struct seq_operations slab_debugfs_sops = {
7772 	.start  = slab_debugfs_start,
7773 	.next   = slab_debugfs_next,
7774 	.stop   = slab_debugfs_stop,
7775 	.show   = slab_debugfs_show,
7776 };
7777 
7778 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7779 {
7780 
7781 	struct kmem_cache_node *n;
7782 	enum track_item alloc;
7783 	int node;
7784 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7785 						sizeof(struct loc_track));
7786 	struct kmem_cache *s = file_inode(filep)->i_private;
7787 	unsigned long *obj_map;
7788 
7789 	if (!t)
7790 		return -ENOMEM;
7791 
7792 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7793 	if (!obj_map) {
7794 		seq_release_private(inode, filep);
7795 		return -ENOMEM;
7796 	}
7797 
7798 	alloc = debugfs_get_aux_num(filep);
7799 
7800 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7801 		bitmap_free(obj_map);
7802 		seq_release_private(inode, filep);
7803 		return -ENOMEM;
7804 	}
7805 
7806 	for_each_kmem_cache_node(s, node, n) {
7807 		unsigned long flags;
7808 		struct slab *slab;
7809 
7810 		if (!node_nr_slabs(n))
7811 			continue;
7812 
7813 		spin_lock_irqsave(&n->list_lock, flags);
7814 		list_for_each_entry(slab, &n->partial, slab_list)
7815 			process_slab(t, s, slab, alloc, obj_map);
7816 		list_for_each_entry(slab, &n->full, slab_list)
7817 			process_slab(t, s, slab, alloc, obj_map);
7818 		spin_unlock_irqrestore(&n->list_lock, flags);
7819 	}
7820 
7821 	/* Sort locations by count */
7822 	sort_r(t->loc, t->count, sizeof(struct location),
7823 		cmp_loc_by_count, NULL, NULL);
7824 
7825 	bitmap_free(obj_map);
7826 	return 0;
7827 }
7828 
7829 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7830 {
7831 	struct seq_file *seq = file->private_data;
7832 	struct loc_track *t = seq->private;
7833 
7834 	free_loc_track(t);
7835 	return seq_release_private(inode, file);
7836 }
7837 
7838 static const struct file_operations slab_debugfs_fops = {
7839 	.open    = slab_debug_trace_open,
7840 	.read    = seq_read,
7841 	.llseek  = seq_lseek,
7842 	.release = slab_debug_trace_release,
7843 };
7844 
7845 static void debugfs_slab_add(struct kmem_cache *s)
7846 {
7847 	struct dentry *slab_cache_dir;
7848 
7849 	if (unlikely(!slab_debugfs_root))
7850 		return;
7851 
7852 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7853 
7854 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7855 					TRACK_ALLOC, &slab_debugfs_fops);
7856 
7857 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7858 					TRACK_FREE, &slab_debugfs_fops);
7859 }
7860 
7861 void debugfs_slab_release(struct kmem_cache *s)
7862 {
7863 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7864 }
7865 
7866 static int __init slab_debugfs_init(void)
7867 {
7868 	struct kmem_cache *s;
7869 
7870 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7871 
7872 	list_for_each_entry(s, &slab_caches, list)
7873 		if (s->flags & SLAB_STORE_USER)
7874 			debugfs_slab_add(s);
7875 
7876 	return 0;
7877 
7878 }
7879 __initcall(slab_debugfs_init);
7880 #endif
7881 /*
7882  * The /proc/slabinfo ABI
7883  */
7884 #ifdef CONFIG_SLUB_DEBUG
7885 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7886 {
7887 	unsigned long nr_slabs = 0;
7888 	unsigned long nr_objs = 0;
7889 	unsigned long nr_free = 0;
7890 	int node;
7891 	struct kmem_cache_node *n;
7892 
7893 	for_each_kmem_cache_node(s, node, n) {
7894 		nr_slabs += node_nr_slabs(n);
7895 		nr_objs += node_nr_objs(n);
7896 		nr_free += count_partial_free_approx(n);
7897 	}
7898 
7899 	sinfo->active_objs = nr_objs - nr_free;
7900 	sinfo->num_objs = nr_objs;
7901 	sinfo->active_slabs = nr_slabs;
7902 	sinfo->num_slabs = nr_slabs;
7903 	sinfo->objects_per_slab = oo_objects(s->oo);
7904 	sinfo->cache_order = oo_order(s->oo);
7905 }
7906 #endif /* CONFIG_SLUB_DEBUG */
7907