xref: /linux/mm/slub.c (revision ae99fb8baafc881b35aa0b79d7ac0178a7c40c89)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 void *fixup_red_left(struct kmem_cache *s, void *p)
127 {
128 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 		p += s->red_left_pad;
130 
131 	return p;
132 }
133 
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135 {
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 	return !kmem_cache_debug(s);
138 #else
139 	return false;
140 #endif
141 }
142 
143 /*
144  * Issues still to be resolved:
145  *
146  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147  *
148  * - Variable sizing of the per node arrays
149  */
150 
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153 
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
156 
157 /*
158  * Mininum number of partial slabs. These will be left on the partial
159  * lists even if they are empty. kmem_cache_shrink may reclaim them.
160  */
161 #define MIN_PARTIAL 5
162 
163 /*
164  * Maximum number of desirable partial slabs.
165  * The existence of more partial slabs makes kmem_cache_shrink
166  * sort the partial list by the number of objects in use.
167  */
168 #define MAX_PARTIAL 10
169 
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 				SLAB_POISON | SLAB_STORE_USER)
172 
173 /*
174  * These debug flags cannot use CMPXCHG because there might be consistency
175  * issues when checking or reading debug information
176  */
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 				SLAB_TRACE)
179 
180 
181 /*
182  * Debugging flags that require metadata to be stored in the slab.  These get
183  * disabled when slub_debug=O is used and a cache's min order increases with
184  * metadata.
185  */
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187 
188 #define OO_SHIFT	16
189 #define OO_MASK		((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
191 
192 /* Internal SLUB flags */
193 /* Poison object */
194 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
197 
198 /*
199  * Tracking user of a slab.
200  */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 	unsigned long addr;	/* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
206 #endif
207 	int cpu;		/* Was running on cpu */
208 	int pid;		/* Pid context */
209 	unsigned long when;	/* When did the operation occur */
210 };
211 
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213 
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 							{ return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	return freelist_dereference(s, object + s->offset);
279 }
280 
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 	prefetch(object + s->offset);
284 }
285 
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 	unsigned long freepointer_addr;
289 	void *p;
290 
291 	if (!debug_pagealloc_enabled_static())
292 		return get_freepointer(s, object);
293 
294 	freepointer_addr = (unsigned long)object + s->offset;
295 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 	return freelist_ptr(s, p, freepointer_addr);
297 }
298 
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
302 
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 	BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306 
307 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309 
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 	for (__p = fixup_red_left(__s, __addr); \
313 		__p < (__addr) + (__objects) * (__s)->size; \
314 		__p += (__s)->size)
315 
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318 {
319 	return (kasan_reset_tag(p) - addr) / s->size;
320 }
321 
322 static inline unsigned int order_objects(unsigned int order, unsigned int size)
323 {
324 	return ((unsigned int)PAGE_SIZE << order) / size;
325 }
326 
327 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328 		unsigned int size)
329 {
330 	struct kmem_cache_order_objects x = {
331 		(order << OO_SHIFT) + order_objects(order, size)
332 	};
333 
334 	return x;
335 }
336 
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338 {
339 	return x.x >> OO_SHIFT;
340 }
341 
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343 {
344 	return x.x & OO_MASK;
345 }
346 
347 /*
348  * Per slab locking using the pagelock
349  */
350 static __always_inline void slab_lock(struct page *page)
351 {
352 	VM_BUG_ON_PAGE(PageTail(page), page);
353 	bit_spin_lock(PG_locked, &page->flags);
354 }
355 
356 static __always_inline void slab_unlock(struct page *page)
357 {
358 	VM_BUG_ON_PAGE(PageTail(page), page);
359 	__bit_spin_unlock(PG_locked, &page->flags);
360 }
361 
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 		void *freelist_old, unsigned long counters_old,
365 		void *freelist_new, unsigned long counters_new,
366 		const char *n)
367 {
368 	VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 	if (s->flags & __CMPXCHG_DOUBLE) {
372 		if (cmpxchg_double(&page->freelist, &page->counters,
373 				   freelist_old, counters_old,
374 				   freelist_new, counters_new))
375 			return true;
376 	} else
377 #endif
378 	{
379 		slab_lock(page);
380 		if (page->freelist == freelist_old &&
381 					page->counters == counters_old) {
382 			page->freelist = freelist_new;
383 			page->counters = counters_new;
384 			slab_unlock(page);
385 			return true;
386 		}
387 		slab_unlock(page);
388 	}
389 
390 	cpu_relax();
391 	stat(s, CMPXCHG_DOUBLE_FAIL);
392 
393 #ifdef SLUB_DEBUG_CMPXCHG
394 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 #endif
396 
397 	return false;
398 }
399 
400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 		void *freelist_old, unsigned long counters_old,
402 		void *freelist_new, unsigned long counters_new,
403 		const char *n)
404 {
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 	if (s->flags & __CMPXCHG_DOUBLE) {
408 		if (cmpxchg_double(&page->freelist, &page->counters,
409 				   freelist_old, counters_old,
410 				   freelist_new, counters_new))
411 			return true;
412 	} else
413 #endif
414 	{
415 		unsigned long flags;
416 
417 		local_irq_save(flags);
418 		slab_lock(page);
419 		if (page->freelist == freelist_old &&
420 					page->counters == counters_old) {
421 			page->freelist = freelist_new;
422 			page->counters = counters_new;
423 			slab_unlock(page);
424 			local_irq_restore(flags);
425 			return true;
426 		}
427 		slab_unlock(page);
428 		local_irq_restore(flags);
429 	}
430 
431 	cpu_relax();
432 	stat(s, CMPXCHG_DOUBLE_FAIL);
433 
434 #ifdef SLUB_DEBUG_CMPXCHG
435 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 #endif
437 
438 	return false;
439 }
440 
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443 static DEFINE_SPINLOCK(object_map_lock);
444 
445 /*
446  * Determine a map of object in use on a page.
447  *
448  * Node listlock must be held to guarantee that the page does
449  * not vanish from under us.
450  */
451 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
452 {
453 	void *p;
454 	void *addr = page_address(page);
455 
456 	VM_BUG_ON(!irqs_disabled());
457 
458 	spin_lock(&object_map_lock);
459 
460 	bitmap_zero(object_map, page->objects);
461 
462 	for (p = page->freelist; p; p = get_freepointer(s, p))
463 		set_bit(slab_index(p, s, addr), object_map);
464 
465 	return object_map;
466 }
467 
468 static void put_map(unsigned long *map)
469 {
470 	VM_BUG_ON(map != object_map);
471 	lockdep_assert_held(&object_map_lock);
472 
473 	spin_unlock(&object_map_lock);
474 }
475 
476 static inline unsigned int size_from_object(struct kmem_cache *s)
477 {
478 	if (s->flags & SLAB_RED_ZONE)
479 		return s->size - s->red_left_pad;
480 
481 	return s->size;
482 }
483 
484 static inline void *restore_red_left(struct kmem_cache *s, void *p)
485 {
486 	if (s->flags & SLAB_RED_ZONE)
487 		p -= s->red_left_pad;
488 
489 	return p;
490 }
491 
492 /*
493  * Debug settings:
494  */
495 #if defined(CONFIG_SLUB_DEBUG_ON)
496 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
497 #else
498 static slab_flags_t slub_debug;
499 #endif
500 
501 static char *slub_debug_slabs;
502 static int disable_higher_order_debug;
503 
504 /*
505  * slub is about to manipulate internal object metadata.  This memory lies
506  * outside the range of the allocated object, so accessing it would normally
507  * be reported by kasan as a bounds error.  metadata_access_enable() is used
508  * to tell kasan that these accesses are OK.
509  */
510 static inline void metadata_access_enable(void)
511 {
512 	kasan_disable_current();
513 }
514 
515 static inline void metadata_access_disable(void)
516 {
517 	kasan_enable_current();
518 }
519 
520 /*
521  * Object debugging
522  */
523 
524 /* Verify that a pointer has an address that is valid within a slab page */
525 static inline int check_valid_pointer(struct kmem_cache *s,
526 				struct page *page, void *object)
527 {
528 	void *base;
529 
530 	if (!object)
531 		return 1;
532 
533 	base = page_address(page);
534 	object = kasan_reset_tag(object);
535 	object = restore_red_left(s, object);
536 	if (object < base || object >= base + page->objects * s->size ||
537 		(object - base) % s->size) {
538 		return 0;
539 	}
540 
541 	return 1;
542 }
543 
544 static void print_section(char *level, char *text, u8 *addr,
545 			  unsigned int length)
546 {
547 	metadata_access_enable();
548 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
549 			length, 1);
550 	metadata_access_disable();
551 }
552 
553 static struct track *get_track(struct kmem_cache *s, void *object,
554 	enum track_item alloc)
555 {
556 	struct track *p;
557 
558 	if (s->offset)
559 		p = object + s->offset + sizeof(void *);
560 	else
561 		p = object + s->inuse;
562 
563 	return p + alloc;
564 }
565 
566 static void set_track(struct kmem_cache *s, void *object,
567 			enum track_item alloc, unsigned long addr)
568 {
569 	struct track *p = get_track(s, object, alloc);
570 
571 	if (addr) {
572 #ifdef CONFIG_STACKTRACE
573 		unsigned int nr_entries;
574 
575 		metadata_access_enable();
576 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
577 		metadata_access_disable();
578 
579 		if (nr_entries < TRACK_ADDRS_COUNT)
580 			p->addrs[nr_entries] = 0;
581 #endif
582 		p->addr = addr;
583 		p->cpu = smp_processor_id();
584 		p->pid = current->pid;
585 		p->when = jiffies;
586 	} else {
587 		memset(p, 0, sizeof(struct track));
588 	}
589 }
590 
591 static void init_tracking(struct kmem_cache *s, void *object)
592 {
593 	if (!(s->flags & SLAB_STORE_USER))
594 		return;
595 
596 	set_track(s, object, TRACK_FREE, 0UL);
597 	set_track(s, object, TRACK_ALLOC, 0UL);
598 }
599 
600 static void print_track(const char *s, struct track *t, unsigned long pr_time)
601 {
602 	if (!t->addr)
603 		return;
604 
605 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
606 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
607 #ifdef CONFIG_STACKTRACE
608 	{
609 		int i;
610 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
611 			if (t->addrs[i])
612 				pr_err("\t%pS\n", (void *)t->addrs[i]);
613 			else
614 				break;
615 	}
616 #endif
617 }
618 
619 static void print_tracking(struct kmem_cache *s, void *object)
620 {
621 	unsigned long pr_time = jiffies;
622 	if (!(s->flags & SLAB_STORE_USER))
623 		return;
624 
625 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
626 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
627 }
628 
629 static void print_page_info(struct page *page)
630 {
631 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 	       page, page->objects, page->inuse, page->freelist, page->flags);
633 
634 }
635 
636 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637 {
638 	struct va_format vaf;
639 	va_list args;
640 
641 	va_start(args, fmt);
642 	vaf.fmt = fmt;
643 	vaf.va = &args;
644 	pr_err("=============================================================================\n");
645 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646 	pr_err("-----------------------------------------------------------------------------\n\n");
647 
648 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649 	va_end(args);
650 }
651 
652 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653 {
654 	struct va_format vaf;
655 	va_list args;
656 
657 	va_start(args, fmt);
658 	vaf.fmt = fmt;
659 	vaf.va = &args;
660 	pr_err("FIX %s: %pV\n", s->name, &vaf);
661 	va_end(args);
662 }
663 
664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
665 {
666 	unsigned int off;	/* Offset of last byte */
667 	u8 *addr = page_address(page);
668 
669 	print_tracking(s, p);
670 
671 	print_page_info(page);
672 
673 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 	       p, p - addr, get_freepointer(s, p));
675 
676 	if (s->flags & SLAB_RED_ZONE)
677 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 			      s->red_left_pad);
679 	else if (p > addr + 16)
680 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
681 
682 	print_section(KERN_ERR, "Object ", p,
683 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
684 	if (s->flags & SLAB_RED_ZONE)
685 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
686 			s->inuse - s->object_size);
687 
688 	if (s->offset)
689 		off = s->offset + sizeof(void *);
690 	else
691 		off = s->inuse;
692 
693 	if (s->flags & SLAB_STORE_USER)
694 		off += 2 * sizeof(struct track);
695 
696 	off += kasan_metadata_size(s);
697 
698 	if (off != size_from_object(s))
699 		/* Beginning of the filler is the free pointer */
700 		print_section(KERN_ERR, "Padding ", p + off,
701 			      size_from_object(s) - off);
702 
703 	dump_stack();
704 }
705 
706 void object_err(struct kmem_cache *s, struct page *page,
707 			u8 *object, char *reason)
708 {
709 	slab_bug(s, "%s", reason);
710 	print_trailer(s, page, object);
711 }
712 
713 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
714 			const char *fmt, ...)
715 {
716 	va_list args;
717 	char buf[100];
718 
719 	va_start(args, fmt);
720 	vsnprintf(buf, sizeof(buf), fmt, args);
721 	va_end(args);
722 	slab_bug(s, "%s", buf);
723 	print_page_info(page);
724 	dump_stack();
725 }
726 
727 static void init_object(struct kmem_cache *s, void *object, u8 val)
728 {
729 	u8 *p = object;
730 
731 	if (s->flags & SLAB_RED_ZONE)
732 		memset(p - s->red_left_pad, val, s->red_left_pad);
733 
734 	if (s->flags & __OBJECT_POISON) {
735 		memset(p, POISON_FREE, s->object_size - 1);
736 		p[s->object_size - 1] = POISON_END;
737 	}
738 
739 	if (s->flags & SLAB_RED_ZONE)
740 		memset(p + s->object_size, val, s->inuse - s->object_size);
741 }
742 
743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 						void *from, void *to)
745 {
746 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 	memset(from, data, to - from);
748 }
749 
750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 			u8 *object, char *what,
752 			u8 *start, unsigned int value, unsigned int bytes)
753 {
754 	u8 *fault;
755 	u8 *end;
756 	u8 *addr = page_address(page);
757 
758 	metadata_access_enable();
759 	fault = memchr_inv(start, value, bytes);
760 	metadata_access_disable();
761 	if (!fault)
762 		return 1;
763 
764 	end = start + bytes;
765 	while (end > fault && end[-1] == value)
766 		end--;
767 
768 	slab_bug(s, "%s overwritten", what);
769 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
770 					fault, end - 1, fault - addr,
771 					fault[0], value);
772 	print_trailer(s, page, object);
773 
774 	restore_bytes(s, what, value, fault, end);
775 	return 0;
776 }
777 
778 /*
779  * Object layout:
780  *
781  * object address
782  * 	Bytes of the object to be managed.
783  * 	If the freepointer may overlay the object then the free
784  * 	pointer is the first word of the object.
785  *
786  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
787  * 	0xa5 (POISON_END)
788  *
789  * object + s->object_size
790  * 	Padding to reach word boundary. This is also used for Redzoning.
791  * 	Padding is extended by another word if Redzoning is enabled and
792  * 	object_size == inuse.
793  *
794  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
795  * 	0xcc (RED_ACTIVE) for objects in use.
796  *
797  * object + s->inuse
798  * 	Meta data starts here.
799  *
800  * 	A. Free pointer (if we cannot overwrite object on free)
801  * 	B. Tracking data for SLAB_STORE_USER
802  * 	C. Padding to reach required alignment boundary or at mininum
803  * 		one word if debugging is on to be able to detect writes
804  * 		before the word boundary.
805  *
806  *	Padding is done using 0x5a (POISON_INUSE)
807  *
808  * object + s->size
809  * 	Nothing is used beyond s->size.
810  *
811  * If slabcaches are merged then the object_size and inuse boundaries are mostly
812  * ignored. And therefore no slab options that rely on these boundaries
813  * may be used with merged slabcaches.
814  */
815 
816 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
817 {
818 	unsigned long off = s->inuse;	/* The end of info */
819 
820 	if (s->offset)
821 		/* Freepointer is placed after the object. */
822 		off += sizeof(void *);
823 
824 	if (s->flags & SLAB_STORE_USER)
825 		/* We also have user information there */
826 		off += 2 * sizeof(struct track);
827 
828 	off += kasan_metadata_size(s);
829 
830 	if (size_from_object(s) == off)
831 		return 1;
832 
833 	return check_bytes_and_report(s, page, p, "Object padding",
834 			p + off, POISON_INUSE, size_from_object(s) - off);
835 }
836 
837 /* Check the pad bytes at the end of a slab page */
838 static int slab_pad_check(struct kmem_cache *s, struct page *page)
839 {
840 	u8 *start;
841 	u8 *fault;
842 	u8 *end;
843 	u8 *pad;
844 	int length;
845 	int remainder;
846 
847 	if (!(s->flags & SLAB_POISON))
848 		return 1;
849 
850 	start = page_address(page);
851 	length = page_size(page);
852 	end = start + length;
853 	remainder = length % s->size;
854 	if (!remainder)
855 		return 1;
856 
857 	pad = end - remainder;
858 	metadata_access_enable();
859 	fault = memchr_inv(pad, POISON_INUSE, remainder);
860 	metadata_access_disable();
861 	if (!fault)
862 		return 1;
863 	while (end > fault && end[-1] == POISON_INUSE)
864 		end--;
865 
866 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
867 			fault, end - 1, fault - start);
868 	print_section(KERN_ERR, "Padding ", pad, remainder);
869 
870 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
871 	return 0;
872 }
873 
874 static int check_object(struct kmem_cache *s, struct page *page,
875 					void *object, u8 val)
876 {
877 	u8 *p = object;
878 	u8 *endobject = object + s->object_size;
879 
880 	if (s->flags & SLAB_RED_ZONE) {
881 		if (!check_bytes_and_report(s, page, object, "Redzone",
882 			object - s->red_left_pad, val, s->red_left_pad))
883 			return 0;
884 
885 		if (!check_bytes_and_report(s, page, object, "Redzone",
886 			endobject, val, s->inuse - s->object_size))
887 			return 0;
888 	} else {
889 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
890 			check_bytes_and_report(s, page, p, "Alignment padding",
891 				endobject, POISON_INUSE,
892 				s->inuse - s->object_size);
893 		}
894 	}
895 
896 	if (s->flags & SLAB_POISON) {
897 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
898 			(!check_bytes_and_report(s, page, p, "Poison", p,
899 					POISON_FREE, s->object_size - 1) ||
900 			 !check_bytes_and_report(s, page, p, "Poison",
901 				p + s->object_size - 1, POISON_END, 1)))
902 			return 0;
903 		/*
904 		 * check_pad_bytes cleans up on its own.
905 		 */
906 		check_pad_bytes(s, page, p);
907 	}
908 
909 	if (!s->offset && val == SLUB_RED_ACTIVE)
910 		/*
911 		 * Object and freepointer overlap. Cannot check
912 		 * freepointer while object is allocated.
913 		 */
914 		return 1;
915 
916 	/* Check free pointer validity */
917 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
918 		object_err(s, page, p, "Freepointer corrupt");
919 		/*
920 		 * No choice but to zap it and thus lose the remainder
921 		 * of the free objects in this slab. May cause
922 		 * another error because the object count is now wrong.
923 		 */
924 		set_freepointer(s, p, NULL);
925 		return 0;
926 	}
927 	return 1;
928 }
929 
930 static int check_slab(struct kmem_cache *s, struct page *page)
931 {
932 	int maxobj;
933 
934 	VM_BUG_ON(!irqs_disabled());
935 
936 	if (!PageSlab(page)) {
937 		slab_err(s, page, "Not a valid slab page");
938 		return 0;
939 	}
940 
941 	maxobj = order_objects(compound_order(page), s->size);
942 	if (page->objects > maxobj) {
943 		slab_err(s, page, "objects %u > max %u",
944 			page->objects, maxobj);
945 		return 0;
946 	}
947 	if (page->inuse > page->objects) {
948 		slab_err(s, page, "inuse %u > max %u",
949 			page->inuse, page->objects);
950 		return 0;
951 	}
952 	/* Slab_pad_check fixes things up after itself */
953 	slab_pad_check(s, page);
954 	return 1;
955 }
956 
957 /*
958  * Determine if a certain object on a page is on the freelist. Must hold the
959  * slab lock to guarantee that the chains are in a consistent state.
960  */
961 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
962 {
963 	int nr = 0;
964 	void *fp;
965 	void *object = NULL;
966 	int max_objects;
967 
968 	fp = page->freelist;
969 	while (fp && nr <= page->objects) {
970 		if (fp == search)
971 			return 1;
972 		if (!check_valid_pointer(s, page, fp)) {
973 			if (object) {
974 				object_err(s, page, object,
975 					"Freechain corrupt");
976 				set_freepointer(s, object, NULL);
977 			} else {
978 				slab_err(s, page, "Freepointer corrupt");
979 				page->freelist = NULL;
980 				page->inuse = page->objects;
981 				slab_fix(s, "Freelist cleared");
982 				return 0;
983 			}
984 			break;
985 		}
986 		object = fp;
987 		fp = get_freepointer(s, object);
988 		nr++;
989 	}
990 
991 	max_objects = order_objects(compound_order(page), s->size);
992 	if (max_objects > MAX_OBJS_PER_PAGE)
993 		max_objects = MAX_OBJS_PER_PAGE;
994 
995 	if (page->objects != max_objects) {
996 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
997 			 page->objects, max_objects);
998 		page->objects = max_objects;
999 		slab_fix(s, "Number of objects adjusted.");
1000 	}
1001 	if (page->inuse != page->objects - nr) {
1002 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1003 			 page->inuse, page->objects - nr);
1004 		page->inuse = page->objects - nr;
1005 		slab_fix(s, "Object count adjusted.");
1006 	}
1007 	return search == NULL;
1008 }
1009 
1010 static void trace(struct kmem_cache *s, struct page *page, void *object,
1011 								int alloc)
1012 {
1013 	if (s->flags & SLAB_TRACE) {
1014 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1015 			s->name,
1016 			alloc ? "alloc" : "free",
1017 			object, page->inuse,
1018 			page->freelist);
1019 
1020 		if (!alloc)
1021 			print_section(KERN_INFO, "Object ", (void *)object,
1022 					s->object_size);
1023 
1024 		dump_stack();
1025 	}
1026 }
1027 
1028 /*
1029  * Tracking of fully allocated slabs for debugging purposes.
1030  */
1031 static void add_full(struct kmem_cache *s,
1032 	struct kmem_cache_node *n, struct page *page)
1033 {
1034 	if (!(s->flags & SLAB_STORE_USER))
1035 		return;
1036 
1037 	lockdep_assert_held(&n->list_lock);
1038 	list_add(&page->slab_list, &n->full);
1039 }
1040 
1041 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1042 {
1043 	if (!(s->flags & SLAB_STORE_USER))
1044 		return;
1045 
1046 	lockdep_assert_held(&n->list_lock);
1047 	list_del(&page->slab_list);
1048 }
1049 
1050 /* Tracking of the number of slabs for debugging purposes */
1051 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1052 {
1053 	struct kmem_cache_node *n = get_node(s, node);
1054 
1055 	return atomic_long_read(&n->nr_slabs);
1056 }
1057 
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059 {
1060 	return atomic_long_read(&n->nr_slabs);
1061 }
1062 
1063 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1064 {
1065 	struct kmem_cache_node *n = get_node(s, node);
1066 
1067 	/*
1068 	 * May be called early in order to allocate a slab for the
1069 	 * kmem_cache_node structure. Solve the chicken-egg
1070 	 * dilemma by deferring the increment of the count during
1071 	 * bootstrap (see early_kmem_cache_node_alloc).
1072 	 */
1073 	if (likely(n)) {
1074 		atomic_long_inc(&n->nr_slabs);
1075 		atomic_long_add(objects, &n->total_objects);
1076 	}
1077 }
1078 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1079 {
1080 	struct kmem_cache_node *n = get_node(s, node);
1081 
1082 	atomic_long_dec(&n->nr_slabs);
1083 	atomic_long_sub(objects, &n->total_objects);
1084 }
1085 
1086 /* Object debug checks for alloc/free paths */
1087 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1088 								void *object)
1089 {
1090 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1091 		return;
1092 
1093 	init_object(s, object, SLUB_RED_INACTIVE);
1094 	init_tracking(s, object);
1095 }
1096 
1097 static
1098 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1099 {
1100 	if (!(s->flags & SLAB_POISON))
1101 		return;
1102 
1103 	metadata_access_enable();
1104 	memset(addr, POISON_INUSE, page_size(page));
1105 	metadata_access_disable();
1106 }
1107 
1108 static inline int alloc_consistency_checks(struct kmem_cache *s,
1109 					struct page *page, void *object)
1110 {
1111 	if (!check_slab(s, page))
1112 		return 0;
1113 
1114 	if (!check_valid_pointer(s, page, object)) {
1115 		object_err(s, page, object, "Freelist Pointer check fails");
1116 		return 0;
1117 	}
1118 
1119 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1120 		return 0;
1121 
1122 	return 1;
1123 }
1124 
1125 static noinline int alloc_debug_processing(struct kmem_cache *s,
1126 					struct page *page,
1127 					void *object, unsigned long addr)
1128 {
1129 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1130 		if (!alloc_consistency_checks(s, page, object))
1131 			goto bad;
1132 	}
1133 
1134 	/* Success perform special debug activities for allocs */
1135 	if (s->flags & SLAB_STORE_USER)
1136 		set_track(s, object, TRACK_ALLOC, addr);
1137 	trace(s, page, object, 1);
1138 	init_object(s, object, SLUB_RED_ACTIVE);
1139 	return 1;
1140 
1141 bad:
1142 	if (PageSlab(page)) {
1143 		/*
1144 		 * If this is a slab page then lets do the best we can
1145 		 * to avoid issues in the future. Marking all objects
1146 		 * as used avoids touching the remaining objects.
1147 		 */
1148 		slab_fix(s, "Marking all objects used");
1149 		page->inuse = page->objects;
1150 		page->freelist = NULL;
1151 	}
1152 	return 0;
1153 }
1154 
1155 static inline int free_consistency_checks(struct kmem_cache *s,
1156 		struct page *page, void *object, unsigned long addr)
1157 {
1158 	if (!check_valid_pointer(s, page, object)) {
1159 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1160 		return 0;
1161 	}
1162 
1163 	if (on_freelist(s, page, object)) {
1164 		object_err(s, page, object, "Object already free");
1165 		return 0;
1166 	}
1167 
1168 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169 		return 0;
1170 
1171 	if (unlikely(s != page->slab_cache)) {
1172 		if (!PageSlab(page)) {
1173 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1174 				 object);
1175 		} else if (!page->slab_cache) {
1176 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1177 			       object);
1178 			dump_stack();
1179 		} else
1180 			object_err(s, page, object,
1181 					"page slab pointer corrupt.");
1182 		return 0;
1183 	}
1184 	return 1;
1185 }
1186 
1187 /* Supports checking bulk free of a constructed freelist */
1188 static noinline int free_debug_processing(
1189 	struct kmem_cache *s, struct page *page,
1190 	void *head, void *tail, int bulk_cnt,
1191 	unsigned long addr)
1192 {
1193 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1194 	void *object = head;
1195 	int cnt = 0;
1196 	unsigned long uninitialized_var(flags);
1197 	int ret = 0;
1198 
1199 	spin_lock_irqsave(&n->list_lock, flags);
1200 	slab_lock(page);
1201 
1202 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1203 		if (!check_slab(s, page))
1204 			goto out;
1205 	}
1206 
1207 next_object:
1208 	cnt++;
1209 
1210 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1211 		if (!free_consistency_checks(s, page, object, addr))
1212 			goto out;
1213 	}
1214 
1215 	if (s->flags & SLAB_STORE_USER)
1216 		set_track(s, object, TRACK_FREE, addr);
1217 	trace(s, page, object, 0);
1218 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1219 	init_object(s, object, SLUB_RED_INACTIVE);
1220 
1221 	/* Reached end of constructed freelist yet? */
1222 	if (object != tail) {
1223 		object = get_freepointer(s, object);
1224 		goto next_object;
1225 	}
1226 	ret = 1;
1227 
1228 out:
1229 	if (cnt != bulk_cnt)
1230 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1231 			 bulk_cnt, cnt);
1232 
1233 	slab_unlock(page);
1234 	spin_unlock_irqrestore(&n->list_lock, flags);
1235 	if (!ret)
1236 		slab_fix(s, "Object at 0x%p not freed", object);
1237 	return ret;
1238 }
1239 
1240 static int __init setup_slub_debug(char *str)
1241 {
1242 	slub_debug = DEBUG_DEFAULT_FLAGS;
1243 	if (*str++ != '=' || !*str)
1244 		/*
1245 		 * No options specified. Switch on full debugging.
1246 		 */
1247 		goto out;
1248 
1249 	if (*str == ',')
1250 		/*
1251 		 * No options but restriction on slabs. This means full
1252 		 * debugging for slabs matching a pattern.
1253 		 */
1254 		goto check_slabs;
1255 
1256 	slub_debug = 0;
1257 	if (*str == '-')
1258 		/*
1259 		 * Switch off all debugging measures.
1260 		 */
1261 		goto out;
1262 
1263 	/*
1264 	 * Determine which debug features should be switched on
1265 	 */
1266 	for (; *str && *str != ','; str++) {
1267 		switch (tolower(*str)) {
1268 		case 'f':
1269 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1270 			break;
1271 		case 'z':
1272 			slub_debug |= SLAB_RED_ZONE;
1273 			break;
1274 		case 'p':
1275 			slub_debug |= SLAB_POISON;
1276 			break;
1277 		case 'u':
1278 			slub_debug |= SLAB_STORE_USER;
1279 			break;
1280 		case 't':
1281 			slub_debug |= SLAB_TRACE;
1282 			break;
1283 		case 'a':
1284 			slub_debug |= SLAB_FAILSLAB;
1285 			break;
1286 		case 'o':
1287 			/*
1288 			 * Avoid enabling debugging on caches if its minimum
1289 			 * order would increase as a result.
1290 			 */
1291 			disable_higher_order_debug = 1;
1292 			break;
1293 		default:
1294 			pr_err("slub_debug option '%c' unknown. skipped\n",
1295 			       *str);
1296 		}
1297 	}
1298 
1299 check_slabs:
1300 	if (*str == ',')
1301 		slub_debug_slabs = str + 1;
1302 out:
1303 	if ((static_branch_unlikely(&init_on_alloc) ||
1304 	     static_branch_unlikely(&init_on_free)) &&
1305 	    (slub_debug & SLAB_POISON))
1306 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1307 	return 1;
1308 }
1309 
1310 __setup("slub_debug", setup_slub_debug);
1311 
1312 /*
1313  * kmem_cache_flags - apply debugging options to the cache
1314  * @object_size:	the size of an object without meta data
1315  * @flags:		flags to set
1316  * @name:		name of the cache
1317  * @ctor:		constructor function
1318  *
1319  * Debug option(s) are applied to @flags. In addition to the debug
1320  * option(s), if a slab name (or multiple) is specified i.e.
1321  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1322  * then only the select slabs will receive the debug option(s).
1323  */
1324 slab_flags_t kmem_cache_flags(unsigned int object_size,
1325 	slab_flags_t flags, const char *name,
1326 	void (*ctor)(void *))
1327 {
1328 	char *iter;
1329 	size_t len;
1330 
1331 	/* If slub_debug = 0, it folds into the if conditional. */
1332 	if (!slub_debug_slabs)
1333 		return flags | slub_debug;
1334 
1335 	len = strlen(name);
1336 	iter = slub_debug_slabs;
1337 	while (*iter) {
1338 		char *end, *glob;
1339 		size_t cmplen;
1340 
1341 		end = strchrnul(iter, ',');
1342 
1343 		glob = strnchr(iter, end - iter, '*');
1344 		if (glob)
1345 			cmplen = glob - iter;
1346 		else
1347 			cmplen = max_t(size_t, len, (end - iter));
1348 
1349 		if (!strncmp(name, iter, cmplen)) {
1350 			flags |= slub_debug;
1351 			break;
1352 		}
1353 
1354 		if (!*end)
1355 			break;
1356 		iter = end + 1;
1357 	}
1358 
1359 	return flags;
1360 }
1361 #else /* !CONFIG_SLUB_DEBUG */
1362 static inline void setup_object_debug(struct kmem_cache *s,
1363 			struct page *page, void *object) {}
1364 static inline
1365 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1366 
1367 static inline int alloc_debug_processing(struct kmem_cache *s,
1368 	struct page *page, void *object, unsigned long addr) { return 0; }
1369 
1370 static inline int free_debug_processing(
1371 	struct kmem_cache *s, struct page *page,
1372 	void *head, void *tail, int bulk_cnt,
1373 	unsigned long addr) { return 0; }
1374 
1375 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1376 			{ return 1; }
1377 static inline int check_object(struct kmem_cache *s, struct page *page,
1378 			void *object, u8 val) { return 1; }
1379 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1380 					struct page *page) {}
1381 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1382 					struct page *page) {}
1383 slab_flags_t kmem_cache_flags(unsigned int object_size,
1384 	slab_flags_t flags, const char *name,
1385 	void (*ctor)(void *))
1386 {
1387 	return flags;
1388 }
1389 #define slub_debug 0
1390 
1391 #define disable_higher_order_debug 0
1392 
1393 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1394 							{ return 0; }
1395 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1396 							{ return 0; }
1397 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1398 							int objects) {}
1399 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1400 							int objects) {}
1401 
1402 #endif /* CONFIG_SLUB_DEBUG */
1403 
1404 /*
1405  * Hooks for other subsystems that check memory allocations. In a typical
1406  * production configuration these hooks all should produce no code at all.
1407  */
1408 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1409 {
1410 	ptr = kasan_kmalloc_large(ptr, size, flags);
1411 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1412 	kmemleak_alloc(ptr, size, 1, flags);
1413 	return ptr;
1414 }
1415 
1416 static __always_inline void kfree_hook(void *x)
1417 {
1418 	kmemleak_free(x);
1419 	kasan_kfree_large(x, _RET_IP_);
1420 }
1421 
1422 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1423 {
1424 	kmemleak_free_recursive(x, s->flags);
1425 
1426 	/*
1427 	 * Trouble is that we may no longer disable interrupts in the fast path
1428 	 * So in order to make the debug calls that expect irqs to be
1429 	 * disabled we need to disable interrupts temporarily.
1430 	 */
1431 #ifdef CONFIG_LOCKDEP
1432 	{
1433 		unsigned long flags;
1434 
1435 		local_irq_save(flags);
1436 		debug_check_no_locks_freed(x, s->object_size);
1437 		local_irq_restore(flags);
1438 	}
1439 #endif
1440 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1441 		debug_check_no_obj_freed(x, s->object_size);
1442 
1443 	/* KASAN might put x into memory quarantine, delaying its reuse */
1444 	return kasan_slab_free(s, x, _RET_IP_);
1445 }
1446 
1447 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1448 					   void **head, void **tail)
1449 {
1450 
1451 	void *object;
1452 	void *next = *head;
1453 	void *old_tail = *tail ? *tail : *head;
1454 	int rsize;
1455 
1456 	/* Head and tail of the reconstructed freelist */
1457 	*head = NULL;
1458 	*tail = NULL;
1459 
1460 	do {
1461 		object = next;
1462 		next = get_freepointer(s, object);
1463 
1464 		if (slab_want_init_on_free(s)) {
1465 			/*
1466 			 * Clear the object and the metadata, but don't touch
1467 			 * the redzone.
1468 			 */
1469 			memset(object, 0, s->object_size);
1470 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1471 							   : 0;
1472 			memset((char *)object + s->inuse, 0,
1473 			       s->size - s->inuse - rsize);
1474 
1475 		}
1476 		/* If object's reuse doesn't have to be delayed */
1477 		if (!slab_free_hook(s, object)) {
1478 			/* Move object to the new freelist */
1479 			set_freepointer(s, object, *head);
1480 			*head = object;
1481 			if (!*tail)
1482 				*tail = object;
1483 		}
1484 	} while (object != old_tail);
1485 
1486 	if (*head == *tail)
1487 		*tail = NULL;
1488 
1489 	return *head != NULL;
1490 }
1491 
1492 static void *setup_object(struct kmem_cache *s, struct page *page,
1493 				void *object)
1494 {
1495 	setup_object_debug(s, page, object);
1496 	object = kasan_init_slab_obj(s, object);
1497 	if (unlikely(s->ctor)) {
1498 		kasan_unpoison_object_data(s, object);
1499 		s->ctor(object);
1500 		kasan_poison_object_data(s, object);
1501 	}
1502 	return object;
1503 }
1504 
1505 /*
1506  * Slab allocation and freeing
1507  */
1508 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1509 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1510 {
1511 	struct page *page;
1512 	unsigned int order = oo_order(oo);
1513 
1514 	if (node == NUMA_NO_NODE)
1515 		page = alloc_pages(flags, order);
1516 	else
1517 		page = __alloc_pages_node(node, flags, order);
1518 
1519 	if (page && charge_slab_page(page, flags, order, s)) {
1520 		__free_pages(page, order);
1521 		page = NULL;
1522 	}
1523 
1524 	return page;
1525 }
1526 
1527 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1528 /* Pre-initialize the random sequence cache */
1529 static int init_cache_random_seq(struct kmem_cache *s)
1530 {
1531 	unsigned int count = oo_objects(s->oo);
1532 	int err;
1533 
1534 	/* Bailout if already initialised */
1535 	if (s->random_seq)
1536 		return 0;
1537 
1538 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1539 	if (err) {
1540 		pr_err("SLUB: Unable to initialize free list for %s\n",
1541 			s->name);
1542 		return err;
1543 	}
1544 
1545 	/* Transform to an offset on the set of pages */
1546 	if (s->random_seq) {
1547 		unsigned int i;
1548 
1549 		for (i = 0; i < count; i++)
1550 			s->random_seq[i] *= s->size;
1551 	}
1552 	return 0;
1553 }
1554 
1555 /* Initialize each random sequence freelist per cache */
1556 static void __init init_freelist_randomization(void)
1557 {
1558 	struct kmem_cache *s;
1559 
1560 	mutex_lock(&slab_mutex);
1561 
1562 	list_for_each_entry(s, &slab_caches, list)
1563 		init_cache_random_seq(s);
1564 
1565 	mutex_unlock(&slab_mutex);
1566 }
1567 
1568 /* Get the next entry on the pre-computed freelist randomized */
1569 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1570 				unsigned long *pos, void *start,
1571 				unsigned long page_limit,
1572 				unsigned long freelist_count)
1573 {
1574 	unsigned int idx;
1575 
1576 	/*
1577 	 * If the target page allocation failed, the number of objects on the
1578 	 * page might be smaller than the usual size defined by the cache.
1579 	 */
1580 	do {
1581 		idx = s->random_seq[*pos];
1582 		*pos += 1;
1583 		if (*pos >= freelist_count)
1584 			*pos = 0;
1585 	} while (unlikely(idx >= page_limit));
1586 
1587 	return (char *)start + idx;
1588 }
1589 
1590 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1591 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1592 {
1593 	void *start;
1594 	void *cur;
1595 	void *next;
1596 	unsigned long idx, pos, page_limit, freelist_count;
1597 
1598 	if (page->objects < 2 || !s->random_seq)
1599 		return false;
1600 
1601 	freelist_count = oo_objects(s->oo);
1602 	pos = get_random_int() % freelist_count;
1603 
1604 	page_limit = page->objects * s->size;
1605 	start = fixup_red_left(s, page_address(page));
1606 
1607 	/* First entry is used as the base of the freelist */
1608 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1609 				freelist_count);
1610 	cur = setup_object(s, page, cur);
1611 	page->freelist = cur;
1612 
1613 	for (idx = 1; idx < page->objects; idx++) {
1614 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1615 			freelist_count);
1616 		next = setup_object(s, page, next);
1617 		set_freepointer(s, cur, next);
1618 		cur = next;
1619 	}
1620 	set_freepointer(s, cur, NULL);
1621 
1622 	return true;
1623 }
1624 #else
1625 static inline int init_cache_random_seq(struct kmem_cache *s)
1626 {
1627 	return 0;
1628 }
1629 static inline void init_freelist_randomization(void) { }
1630 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1631 {
1632 	return false;
1633 }
1634 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1635 
1636 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1637 {
1638 	struct page *page;
1639 	struct kmem_cache_order_objects oo = s->oo;
1640 	gfp_t alloc_gfp;
1641 	void *start, *p, *next;
1642 	int idx;
1643 	bool shuffle;
1644 
1645 	flags &= gfp_allowed_mask;
1646 
1647 	if (gfpflags_allow_blocking(flags))
1648 		local_irq_enable();
1649 
1650 	flags |= s->allocflags;
1651 
1652 	/*
1653 	 * Let the initial higher-order allocation fail under memory pressure
1654 	 * so we fall-back to the minimum order allocation.
1655 	 */
1656 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1657 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1658 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1659 
1660 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1661 	if (unlikely(!page)) {
1662 		oo = s->min;
1663 		alloc_gfp = flags;
1664 		/*
1665 		 * Allocation may have failed due to fragmentation.
1666 		 * Try a lower order alloc if possible
1667 		 */
1668 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1669 		if (unlikely(!page))
1670 			goto out;
1671 		stat(s, ORDER_FALLBACK);
1672 	}
1673 
1674 	page->objects = oo_objects(oo);
1675 
1676 	page->slab_cache = s;
1677 	__SetPageSlab(page);
1678 	if (page_is_pfmemalloc(page))
1679 		SetPageSlabPfmemalloc(page);
1680 
1681 	kasan_poison_slab(page);
1682 
1683 	start = page_address(page);
1684 
1685 	setup_page_debug(s, page, start);
1686 
1687 	shuffle = shuffle_freelist(s, page);
1688 
1689 	if (!shuffle) {
1690 		start = fixup_red_left(s, start);
1691 		start = setup_object(s, page, start);
1692 		page->freelist = start;
1693 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1694 			next = p + s->size;
1695 			next = setup_object(s, page, next);
1696 			set_freepointer(s, p, next);
1697 			p = next;
1698 		}
1699 		set_freepointer(s, p, NULL);
1700 	}
1701 
1702 	page->inuse = page->objects;
1703 	page->frozen = 1;
1704 
1705 out:
1706 	if (gfpflags_allow_blocking(flags))
1707 		local_irq_disable();
1708 	if (!page)
1709 		return NULL;
1710 
1711 	inc_slabs_node(s, page_to_nid(page), page->objects);
1712 
1713 	return page;
1714 }
1715 
1716 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1717 {
1718 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1719 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1720 		flags &= ~GFP_SLAB_BUG_MASK;
1721 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1722 				invalid_mask, &invalid_mask, flags, &flags);
1723 		dump_stack();
1724 	}
1725 
1726 	return allocate_slab(s,
1727 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1728 }
1729 
1730 static void __free_slab(struct kmem_cache *s, struct page *page)
1731 {
1732 	int order = compound_order(page);
1733 	int pages = 1 << order;
1734 
1735 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1736 		void *p;
1737 
1738 		slab_pad_check(s, page);
1739 		for_each_object(p, s, page_address(page),
1740 						page->objects)
1741 			check_object(s, page, p, SLUB_RED_INACTIVE);
1742 	}
1743 
1744 	__ClearPageSlabPfmemalloc(page);
1745 	__ClearPageSlab(page);
1746 
1747 	page->mapping = NULL;
1748 	if (current->reclaim_state)
1749 		current->reclaim_state->reclaimed_slab += pages;
1750 	uncharge_slab_page(page, order, s);
1751 	__free_pages(page, order);
1752 }
1753 
1754 static void rcu_free_slab(struct rcu_head *h)
1755 {
1756 	struct page *page = container_of(h, struct page, rcu_head);
1757 
1758 	__free_slab(page->slab_cache, page);
1759 }
1760 
1761 static void free_slab(struct kmem_cache *s, struct page *page)
1762 {
1763 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1764 		call_rcu(&page->rcu_head, rcu_free_slab);
1765 	} else
1766 		__free_slab(s, page);
1767 }
1768 
1769 static void discard_slab(struct kmem_cache *s, struct page *page)
1770 {
1771 	dec_slabs_node(s, page_to_nid(page), page->objects);
1772 	free_slab(s, page);
1773 }
1774 
1775 /*
1776  * Management of partially allocated slabs.
1777  */
1778 static inline void
1779 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1780 {
1781 	n->nr_partial++;
1782 	if (tail == DEACTIVATE_TO_TAIL)
1783 		list_add_tail(&page->slab_list, &n->partial);
1784 	else
1785 		list_add(&page->slab_list, &n->partial);
1786 }
1787 
1788 static inline void add_partial(struct kmem_cache_node *n,
1789 				struct page *page, int tail)
1790 {
1791 	lockdep_assert_held(&n->list_lock);
1792 	__add_partial(n, page, tail);
1793 }
1794 
1795 static inline void remove_partial(struct kmem_cache_node *n,
1796 					struct page *page)
1797 {
1798 	lockdep_assert_held(&n->list_lock);
1799 	list_del(&page->slab_list);
1800 	n->nr_partial--;
1801 }
1802 
1803 /*
1804  * Remove slab from the partial list, freeze it and
1805  * return the pointer to the freelist.
1806  *
1807  * Returns a list of objects or NULL if it fails.
1808  */
1809 static inline void *acquire_slab(struct kmem_cache *s,
1810 		struct kmem_cache_node *n, struct page *page,
1811 		int mode, int *objects)
1812 {
1813 	void *freelist;
1814 	unsigned long counters;
1815 	struct page new;
1816 
1817 	lockdep_assert_held(&n->list_lock);
1818 
1819 	/*
1820 	 * Zap the freelist and set the frozen bit.
1821 	 * The old freelist is the list of objects for the
1822 	 * per cpu allocation list.
1823 	 */
1824 	freelist = page->freelist;
1825 	counters = page->counters;
1826 	new.counters = counters;
1827 	*objects = new.objects - new.inuse;
1828 	if (mode) {
1829 		new.inuse = page->objects;
1830 		new.freelist = NULL;
1831 	} else {
1832 		new.freelist = freelist;
1833 	}
1834 
1835 	VM_BUG_ON(new.frozen);
1836 	new.frozen = 1;
1837 
1838 	if (!__cmpxchg_double_slab(s, page,
1839 			freelist, counters,
1840 			new.freelist, new.counters,
1841 			"acquire_slab"))
1842 		return NULL;
1843 
1844 	remove_partial(n, page);
1845 	WARN_ON(!freelist);
1846 	return freelist;
1847 }
1848 
1849 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1850 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1851 
1852 /*
1853  * Try to allocate a partial slab from a specific node.
1854  */
1855 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1856 				struct kmem_cache_cpu *c, gfp_t flags)
1857 {
1858 	struct page *page, *page2;
1859 	void *object = NULL;
1860 	unsigned int available = 0;
1861 	int objects;
1862 
1863 	/*
1864 	 * Racy check. If we mistakenly see no partial slabs then we
1865 	 * just allocate an empty slab. If we mistakenly try to get a
1866 	 * partial slab and there is none available then get_partials()
1867 	 * will return NULL.
1868 	 */
1869 	if (!n || !n->nr_partial)
1870 		return NULL;
1871 
1872 	spin_lock(&n->list_lock);
1873 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1874 		void *t;
1875 
1876 		if (!pfmemalloc_match(page, flags))
1877 			continue;
1878 
1879 		t = acquire_slab(s, n, page, object == NULL, &objects);
1880 		if (!t)
1881 			break;
1882 
1883 		available += objects;
1884 		if (!object) {
1885 			c->page = page;
1886 			stat(s, ALLOC_FROM_PARTIAL);
1887 			object = t;
1888 		} else {
1889 			put_cpu_partial(s, page, 0);
1890 			stat(s, CPU_PARTIAL_NODE);
1891 		}
1892 		if (!kmem_cache_has_cpu_partial(s)
1893 			|| available > slub_cpu_partial(s) / 2)
1894 			break;
1895 
1896 	}
1897 	spin_unlock(&n->list_lock);
1898 	return object;
1899 }
1900 
1901 /*
1902  * Get a page from somewhere. Search in increasing NUMA distances.
1903  */
1904 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1905 		struct kmem_cache_cpu *c)
1906 {
1907 #ifdef CONFIG_NUMA
1908 	struct zonelist *zonelist;
1909 	struct zoneref *z;
1910 	struct zone *zone;
1911 	enum zone_type high_zoneidx = gfp_zone(flags);
1912 	void *object;
1913 	unsigned int cpuset_mems_cookie;
1914 
1915 	/*
1916 	 * The defrag ratio allows a configuration of the tradeoffs between
1917 	 * inter node defragmentation and node local allocations. A lower
1918 	 * defrag_ratio increases the tendency to do local allocations
1919 	 * instead of attempting to obtain partial slabs from other nodes.
1920 	 *
1921 	 * If the defrag_ratio is set to 0 then kmalloc() always
1922 	 * returns node local objects. If the ratio is higher then kmalloc()
1923 	 * may return off node objects because partial slabs are obtained
1924 	 * from other nodes and filled up.
1925 	 *
1926 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1927 	 * (which makes defrag_ratio = 1000) then every (well almost)
1928 	 * allocation will first attempt to defrag slab caches on other nodes.
1929 	 * This means scanning over all nodes to look for partial slabs which
1930 	 * may be expensive if we do it every time we are trying to find a slab
1931 	 * with available objects.
1932 	 */
1933 	if (!s->remote_node_defrag_ratio ||
1934 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1935 		return NULL;
1936 
1937 	do {
1938 		cpuset_mems_cookie = read_mems_allowed_begin();
1939 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1940 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1941 			struct kmem_cache_node *n;
1942 
1943 			n = get_node(s, zone_to_nid(zone));
1944 
1945 			if (n && cpuset_zone_allowed(zone, flags) &&
1946 					n->nr_partial > s->min_partial) {
1947 				object = get_partial_node(s, n, c, flags);
1948 				if (object) {
1949 					/*
1950 					 * Don't check read_mems_allowed_retry()
1951 					 * here - if mems_allowed was updated in
1952 					 * parallel, that was a harmless race
1953 					 * between allocation and the cpuset
1954 					 * update
1955 					 */
1956 					return object;
1957 				}
1958 			}
1959 		}
1960 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1961 #endif	/* CONFIG_NUMA */
1962 	return NULL;
1963 }
1964 
1965 /*
1966  * Get a partial page, lock it and return it.
1967  */
1968 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1969 		struct kmem_cache_cpu *c)
1970 {
1971 	void *object;
1972 	int searchnode = node;
1973 
1974 	if (node == NUMA_NO_NODE)
1975 		searchnode = numa_mem_id();
1976 	else if (!node_present_pages(node))
1977 		searchnode = node_to_mem_node(node);
1978 
1979 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1980 	if (object || node != NUMA_NO_NODE)
1981 		return object;
1982 
1983 	return get_any_partial(s, flags, c);
1984 }
1985 
1986 #ifdef CONFIG_PREEMPTION
1987 /*
1988  * Calculate the next globally unique transaction for disambiguiation
1989  * during cmpxchg. The transactions start with the cpu number and are then
1990  * incremented by CONFIG_NR_CPUS.
1991  */
1992 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1993 #else
1994 /*
1995  * No preemption supported therefore also no need to check for
1996  * different cpus.
1997  */
1998 #define TID_STEP 1
1999 #endif
2000 
2001 static inline unsigned long next_tid(unsigned long tid)
2002 {
2003 	return tid + TID_STEP;
2004 }
2005 
2006 #ifdef SLUB_DEBUG_CMPXCHG
2007 static inline unsigned int tid_to_cpu(unsigned long tid)
2008 {
2009 	return tid % TID_STEP;
2010 }
2011 
2012 static inline unsigned long tid_to_event(unsigned long tid)
2013 {
2014 	return tid / TID_STEP;
2015 }
2016 #endif
2017 
2018 static inline unsigned int init_tid(int cpu)
2019 {
2020 	return cpu;
2021 }
2022 
2023 static inline void note_cmpxchg_failure(const char *n,
2024 		const struct kmem_cache *s, unsigned long tid)
2025 {
2026 #ifdef SLUB_DEBUG_CMPXCHG
2027 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2028 
2029 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2030 
2031 #ifdef CONFIG_PREEMPTION
2032 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2033 		pr_warn("due to cpu change %d -> %d\n",
2034 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2035 	else
2036 #endif
2037 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2038 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2039 			tid_to_event(tid), tid_to_event(actual_tid));
2040 	else
2041 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2042 			actual_tid, tid, next_tid(tid));
2043 #endif
2044 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2045 }
2046 
2047 static void init_kmem_cache_cpus(struct kmem_cache *s)
2048 {
2049 	int cpu;
2050 
2051 	for_each_possible_cpu(cpu)
2052 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2053 }
2054 
2055 /*
2056  * Remove the cpu slab
2057  */
2058 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2059 				void *freelist, struct kmem_cache_cpu *c)
2060 {
2061 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2062 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2063 	int lock = 0;
2064 	enum slab_modes l = M_NONE, m = M_NONE;
2065 	void *nextfree;
2066 	int tail = DEACTIVATE_TO_HEAD;
2067 	struct page new;
2068 	struct page old;
2069 
2070 	if (page->freelist) {
2071 		stat(s, DEACTIVATE_REMOTE_FREES);
2072 		tail = DEACTIVATE_TO_TAIL;
2073 	}
2074 
2075 	/*
2076 	 * Stage one: Free all available per cpu objects back
2077 	 * to the page freelist while it is still frozen. Leave the
2078 	 * last one.
2079 	 *
2080 	 * There is no need to take the list->lock because the page
2081 	 * is still frozen.
2082 	 */
2083 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2084 		void *prior;
2085 		unsigned long counters;
2086 
2087 		do {
2088 			prior = page->freelist;
2089 			counters = page->counters;
2090 			set_freepointer(s, freelist, prior);
2091 			new.counters = counters;
2092 			new.inuse--;
2093 			VM_BUG_ON(!new.frozen);
2094 
2095 		} while (!__cmpxchg_double_slab(s, page,
2096 			prior, counters,
2097 			freelist, new.counters,
2098 			"drain percpu freelist"));
2099 
2100 		freelist = nextfree;
2101 	}
2102 
2103 	/*
2104 	 * Stage two: Ensure that the page is unfrozen while the
2105 	 * list presence reflects the actual number of objects
2106 	 * during unfreeze.
2107 	 *
2108 	 * We setup the list membership and then perform a cmpxchg
2109 	 * with the count. If there is a mismatch then the page
2110 	 * is not unfrozen but the page is on the wrong list.
2111 	 *
2112 	 * Then we restart the process which may have to remove
2113 	 * the page from the list that we just put it on again
2114 	 * because the number of objects in the slab may have
2115 	 * changed.
2116 	 */
2117 redo:
2118 
2119 	old.freelist = page->freelist;
2120 	old.counters = page->counters;
2121 	VM_BUG_ON(!old.frozen);
2122 
2123 	/* Determine target state of the slab */
2124 	new.counters = old.counters;
2125 	if (freelist) {
2126 		new.inuse--;
2127 		set_freepointer(s, freelist, old.freelist);
2128 		new.freelist = freelist;
2129 	} else
2130 		new.freelist = old.freelist;
2131 
2132 	new.frozen = 0;
2133 
2134 	if (!new.inuse && n->nr_partial >= s->min_partial)
2135 		m = M_FREE;
2136 	else if (new.freelist) {
2137 		m = M_PARTIAL;
2138 		if (!lock) {
2139 			lock = 1;
2140 			/*
2141 			 * Taking the spinlock removes the possibility
2142 			 * that acquire_slab() will see a slab page that
2143 			 * is frozen
2144 			 */
2145 			spin_lock(&n->list_lock);
2146 		}
2147 	} else {
2148 		m = M_FULL;
2149 		if (kmem_cache_debug(s) && !lock) {
2150 			lock = 1;
2151 			/*
2152 			 * This also ensures that the scanning of full
2153 			 * slabs from diagnostic functions will not see
2154 			 * any frozen slabs.
2155 			 */
2156 			spin_lock(&n->list_lock);
2157 		}
2158 	}
2159 
2160 	if (l != m) {
2161 		if (l == M_PARTIAL)
2162 			remove_partial(n, page);
2163 		else if (l == M_FULL)
2164 			remove_full(s, n, page);
2165 
2166 		if (m == M_PARTIAL)
2167 			add_partial(n, page, tail);
2168 		else if (m == M_FULL)
2169 			add_full(s, n, page);
2170 	}
2171 
2172 	l = m;
2173 	if (!__cmpxchg_double_slab(s, page,
2174 				old.freelist, old.counters,
2175 				new.freelist, new.counters,
2176 				"unfreezing slab"))
2177 		goto redo;
2178 
2179 	if (lock)
2180 		spin_unlock(&n->list_lock);
2181 
2182 	if (m == M_PARTIAL)
2183 		stat(s, tail);
2184 	else if (m == M_FULL)
2185 		stat(s, DEACTIVATE_FULL);
2186 	else if (m == M_FREE) {
2187 		stat(s, DEACTIVATE_EMPTY);
2188 		discard_slab(s, page);
2189 		stat(s, FREE_SLAB);
2190 	}
2191 
2192 	c->page = NULL;
2193 	c->freelist = NULL;
2194 }
2195 
2196 /*
2197  * Unfreeze all the cpu partial slabs.
2198  *
2199  * This function must be called with interrupts disabled
2200  * for the cpu using c (or some other guarantee must be there
2201  * to guarantee no concurrent accesses).
2202  */
2203 static void unfreeze_partials(struct kmem_cache *s,
2204 		struct kmem_cache_cpu *c)
2205 {
2206 #ifdef CONFIG_SLUB_CPU_PARTIAL
2207 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2208 	struct page *page, *discard_page = NULL;
2209 
2210 	while ((page = c->partial)) {
2211 		struct page new;
2212 		struct page old;
2213 
2214 		c->partial = page->next;
2215 
2216 		n2 = get_node(s, page_to_nid(page));
2217 		if (n != n2) {
2218 			if (n)
2219 				spin_unlock(&n->list_lock);
2220 
2221 			n = n2;
2222 			spin_lock(&n->list_lock);
2223 		}
2224 
2225 		do {
2226 
2227 			old.freelist = page->freelist;
2228 			old.counters = page->counters;
2229 			VM_BUG_ON(!old.frozen);
2230 
2231 			new.counters = old.counters;
2232 			new.freelist = old.freelist;
2233 
2234 			new.frozen = 0;
2235 
2236 		} while (!__cmpxchg_double_slab(s, page,
2237 				old.freelist, old.counters,
2238 				new.freelist, new.counters,
2239 				"unfreezing slab"));
2240 
2241 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2242 			page->next = discard_page;
2243 			discard_page = page;
2244 		} else {
2245 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2246 			stat(s, FREE_ADD_PARTIAL);
2247 		}
2248 	}
2249 
2250 	if (n)
2251 		spin_unlock(&n->list_lock);
2252 
2253 	while (discard_page) {
2254 		page = discard_page;
2255 		discard_page = discard_page->next;
2256 
2257 		stat(s, DEACTIVATE_EMPTY);
2258 		discard_slab(s, page);
2259 		stat(s, FREE_SLAB);
2260 	}
2261 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2262 }
2263 
2264 /*
2265  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2266  * partial page slot if available.
2267  *
2268  * If we did not find a slot then simply move all the partials to the
2269  * per node partial list.
2270  */
2271 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2272 {
2273 #ifdef CONFIG_SLUB_CPU_PARTIAL
2274 	struct page *oldpage;
2275 	int pages;
2276 	int pobjects;
2277 
2278 	preempt_disable();
2279 	do {
2280 		pages = 0;
2281 		pobjects = 0;
2282 		oldpage = this_cpu_read(s->cpu_slab->partial);
2283 
2284 		if (oldpage) {
2285 			pobjects = oldpage->pobjects;
2286 			pages = oldpage->pages;
2287 			if (drain && pobjects > s->cpu_partial) {
2288 				unsigned long flags;
2289 				/*
2290 				 * partial array is full. Move the existing
2291 				 * set to the per node partial list.
2292 				 */
2293 				local_irq_save(flags);
2294 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2295 				local_irq_restore(flags);
2296 				oldpage = NULL;
2297 				pobjects = 0;
2298 				pages = 0;
2299 				stat(s, CPU_PARTIAL_DRAIN);
2300 			}
2301 		}
2302 
2303 		pages++;
2304 		pobjects += page->objects - page->inuse;
2305 
2306 		page->pages = pages;
2307 		page->pobjects = pobjects;
2308 		page->next = oldpage;
2309 
2310 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2311 								!= oldpage);
2312 	if (unlikely(!s->cpu_partial)) {
2313 		unsigned long flags;
2314 
2315 		local_irq_save(flags);
2316 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2317 		local_irq_restore(flags);
2318 	}
2319 	preempt_enable();
2320 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2321 }
2322 
2323 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2324 {
2325 	stat(s, CPUSLAB_FLUSH);
2326 	deactivate_slab(s, c->page, c->freelist, c);
2327 
2328 	c->tid = next_tid(c->tid);
2329 }
2330 
2331 /*
2332  * Flush cpu slab.
2333  *
2334  * Called from IPI handler with interrupts disabled.
2335  */
2336 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2337 {
2338 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2339 
2340 	if (c->page)
2341 		flush_slab(s, c);
2342 
2343 	unfreeze_partials(s, c);
2344 }
2345 
2346 static void flush_cpu_slab(void *d)
2347 {
2348 	struct kmem_cache *s = d;
2349 
2350 	__flush_cpu_slab(s, smp_processor_id());
2351 }
2352 
2353 static bool has_cpu_slab(int cpu, void *info)
2354 {
2355 	struct kmem_cache *s = info;
2356 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2357 
2358 	return c->page || slub_percpu_partial(c);
2359 }
2360 
2361 static void flush_all(struct kmem_cache *s)
2362 {
2363 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2364 }
2365 
2366 /*
2367  * Use the cpu notifier to insure that the cpu slabs are flushed when
2368  * necessary.
2369  */
2370 static int slub_cpu_dead(unsigned int cpu)
2371 {
2372 	struct kmem_cache *s;
2373 	unsigned long flags;
2374 
2375 	mutex_lock(&slab_mutex);
2376 	list_for_each_entry(s, &slab_caches, list) {
2377 		local_irq_save(flags);
2378 		__flush_cpu_slab(s, cpu);
2379 		local_irq_restore(flags);
2380 	}
2381 	mutex_unlock(&slab_mutex);
2382 	return 0;
2383 }
2384 
2385 /*
2386  * Check if the objects in a per cpu structure fit numa
2387  * locality expectations.
2388  */
2389 static inline int node_match(struct page *page, int node)
2390 {
2391 #ifdef CONFIG_NUMA
2392 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2393 		return 0;
2394 #endif
2395 	return 1;
2396 }
2397 
2398 #ifdef CONFIG_SLUB_DEBUG
2399 static int count_free(struct page *page)
2400 {
2401 	return page->objects - page->inuse;
2402 }
2403 
2404 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2405 {
2406 	return atomic_long_read(&n->total_objects);
2407 }
2408 #endif /* CONFIG_SLUB_DEBUG */
2409 
2410 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2411 static unsigned long count_partial(struct kmem_cache_node *n,
2412 					int (*get_count)(struct page *))
2413 {
2414 	unsigned long flags;
2415 	unsigned long x = 0;
2416 	struct page *page;
2417 
2418 	spin_lock_irqsave(&n->list_lock, flags);
2419 	list_for_each_entry(page, &n->partial, slab_list)
2420 		x += get_count(page);
2421 	spin_unlock_irqrestore(&n->list_lock, flags);
2422 	return x;
2423 }
2424 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2425 
2426 static noinline void
2427 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2428 {
2429 #ifdef CONFIG_SLUB_DEBUG
2430 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2431 				      DEFAULT_RATELIMIT_BURST);
2432 	int node;
2433 	struct kmem_cache_node *n;
2434 
2435 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2436 		return;
2437 
2438 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2439 		nid, gfpflags, &gfpflags);
2440 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2441 		s->name, s->object_size, s->size, oo_order(s->oo),
2442 		oo_order(s->min));
2443 
2444 	if (oo_order(s->min) > get_order(s->object_size))
2445 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2446 			s->name);
2447 
2448 	for_each_kmem_cache_node(s, node, n) {
2449 		unsigned long nr_slabs;
2450 		unsigned long nr_objs;
2451 		unsigned long nr_free;
2452 
2453 		nr_free  = count_partial(n, count_free);
2454 		nr_slabs = node_nr_slabs(n);
2455 		nr_objs  = node_nr_objs(n);
2456 
2457 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2458 			node, nr_slabs, nr_objs, nr_free);
2459 	}
2460 #endif
2461 }
2462 
2463 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2464 			int node, struct kmem_cache_cpu **pc)
2465 {
2466 	void *freelist;
2467 	struct kmem_cache_cpu *c = *pc;
2468 	struct page *page;
2469 
2470 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2471 
2472 	freelist = get_partial(s, flags, node, c);
2473 
2474 	if (freelist)
2475 		return freelist;
2476 
2477 	page = new_slab(s, flags, node);
2478 	if (page) {
2479 		c = raw_cpu_ptr(s->cpu_slab);
2480 		if (c->page)
2481 			flush_slab(s, c);
2482 
2483 		/*
2484 		 * No other reference to the page yet so we can
2485 		 * muck around with it freely without cmpxchg
2486 		 */
2487 		freelist = page->freelist;
2488 		page->freelist = NULL;
2489 
2490 		stat(s, ALLOC_SLAB);
2491 		c->page = page;
2492 		*pc = c;
2493 	}
2494 
2495 	return freelist;
2496 }
2497 
2498 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2499 {
2500 	if (unlikely(PageSlabPfmemalloc(page)))
2501 		return gfp_pfmemalloc_allowed(gfpflags);
2502 
2503 	return true;
2504 }
2505 
2506 /*
2507  * Check the page->freelist of a page and either transfer the freelist to the
2508  * per cpu freelist or deactivate the page.
2509  *
2510  * The page is still frozen if the return value is not NULL.
2511  *
2512  * If this function returns NULL then the page has been unfrozen.
2513  *
2514  * This function must be called with interrupt disabled.
2515  */
2516 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2517 {
2518 	struct page new;
2519 	unsigned long counters;
2520 	void *freelist;
2521 
2522 	do {
2523 		freelist = page->freelist;
2524 		counters = page->counters;
2525 
2526 		new.counters = counters;
2527 		VM_BUG_ON(!new.frozen);
2528 
2529 		new.inuse = page->objects;
2530 		new.frozen = freelist != NULL;
2531 
2532 	} while (!__cmpxchg_double_slab(s, page,
2533 		freelist, counters,
2534 		NULL, new.counters,
2535 		"get_freelist"));
2536 
2537 	return freelist;
2538 }
2539 
2540 /*
2541  * Slow path. The lockless freelist is empty or we need to perform
2542  * debugging duties.
2543  *
2544  * Processing is still very fast if new objects have been freed to the
2545  * regular freelist. In that case we simply take over the regular freelist
2546  * as the lockless freelist and zap the regular freelist.
2547  *
2548  * If that is not working then we fall back to the partial lists. We take the
2549  * first element of the freelist as the object to allocate now and move the
2550  * rest of the freelist to the lockless freelist.
2551  *
2552  * And if we were unable to get a new slab from the partial slab lists then
2553  * we need to allocate a new slab. This is the slowest path since it involves
2554  * a call to the page allocator and the setup of a new slab.
2555  *
2556  * Version of __slab_alloc to use when we know that interrupts are
2557  * already disabled (which is the case for bulk allocation).
2558  */
2559 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2560 			  unsigned long addr, struct kmem_cache_cpu *c)
2561 {
2562 	void *freelist;
2563 	struct page *page;
2564 
2565 	page = c->page;
2566 	if (!page)
2567 		goto new_slab;
2568 redo:
2569 
2570 	if (unlikely(!node_match(page, node))) {
2571 		int searchnode = node;
2572 
2573 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2574 			searchnode = node_to_mem_node(node);
2575 
2576 		if (unlikely(!node_match(page, searchnode))) {
2577 			stat(s, ALLOC_NODE_MISMATCH);
2578 			deactivate_slab(s, page, c->freelist, c);
2579 			goto new_slab;
2580 		}
2581 	}
2582 
2583 	/*
2584 	 * By rights, we should be searching for a slab page that was
2585 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2586 	 * information when the page leaves the per-cpu allocator
2587 	 */
2588 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2589 		deactivate_slab(s, page, c->freelist, c);
2590 		goto new_slab;
2591 	}
2592 
2593 	/* must check again c->freelist in case of cpu migration or IRQ */
2594 	freelist = c->freelist;
2595 	if (freelist)
2596 		goto load_freelist;
2597 
2598 	freelist = get_freelist(s, page);
2599 
2600 	if (!freelist) {
2601 		c->page = NULL;
2602 		stat(s, DEACTIVATE_BYPASS);
2603 		goto new_slab;
2604 	}
2605 
2606 	stat(s, ALLOC_REFILL);
2607 
2608 load_freelist:
2609 	/*
2610 	 * freelist is pointing to the list of objects to be used.
2611 	 * page is pointing to the page from which the objects are obtained.
2612 	 * That page must be frozen for per cpu allocations to work.
2613 	 */
2614 	VM_BUG_ON(!c->page->frozen);
2615 	c->freelist = get_freepointer(s, freelist);
2616 	c->tid = next_tid(c->tid);
2617 	return freelist;
2618 
2619 new_slab:
2620 
2621 	if (slub_percpu_partial(c)) {
2622 		page = c->page = slub_percpu_partial(c);
2623 		slub_set_percpu_partial(c, page);
2624 		stat(s, CPU_PARTIAL_ALLOC);
2625 		goto redo;
2626 	}
2627 
2628 	freelist = new_slab_objects(s, gfpflags, node, &c);
2629 
2630 	if (unlikely(!freelist)) {
2631 		slab_out_of_memory(s, gfpflags, node);
2632 		return NULL;
2633 	}
2634 
2635 	page = c->page;
2636 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2637 		goto load_freelist;
2638 
2639 	/* Only entered in the debug case */
2640 	if (kmem_cache_debug(s) &&
2641 			!alloc_debug_processing(s, page, freelist, addr))
2642 		goto new_slab;	/* Slab failed checks. Next slab needed */
2643 
2644 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2645 	return freelist;
2646 }
2647 
2648 /*
2649  * Another one that disabled interrupt and compensates for possible
2650  * cpu changes by refetching the per cpu area pointer.
2651  */
2652 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2653 			  unsigned long addr, struct kmem_cache_cpu *c)
2654 {
2655 	void *p;
2656 	unsigned long flags;
2657 
2658 	local_irq_save(flags);
2659 #ifdef CONFIG_PREEMPTION
2660 	/*
2661 	 * We may have been preempted and rescheduled on a different
2662 	 * cpu before disabling interrupts. Need to reload cpu area
2663 	 * pointer.
2664 	 */
2665 	c = this_cpu_ptr(s->cpu_slab);
2666 #endif
2667 
2668 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2669 	local_irq_restore(flags);
2670 	return p;
2671 }
2672 
2673 /*
2674  * If the object has been wiped upon free, make sure it's fully initialized by
2675  * zeroing out freelist pointer.
2676  */
2677 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2678 						   void *obj)
2679 {
2680 	if (unlikely(slab_want_init_on_free(s)) && obj)
2681 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2682 }
2683 
2684 /*
2685  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2686  * have the fastpath folded into their functions. So no function call
2687  * overhead for requests that can be satisfied on the fastpath.
2688  *
2689  * The fastpath works by first checking if the lockless freelist can be used.
2690  * If not then __slab_alloc is called for slow processing.
2691  *
2692  * Otherwise we can simply pick the next object from the lockless free list.
2693  */
2694 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2695 		gfp_t gfpflags, int node, unsigned long addr)
2696 {
2697 	void *object;
2698 	struct kmem_cache_cpu *c;
2699 	struct page *page;
2700 	unsigned long tid;
2701 
2702 	s = slab_pre_alloc_hook(s, gfpflags);
2703 	if (!s)
2704 		return NULL;
2705 redo:
2706 	/*
2707 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2708 	 * enabled. We may switch back and forth between cpus while
2709 	 * reading from one cpu area. That does not matter as long
2710 	 * as we end up on the original cpu again when doing the cmpxchg.
2711 	 *
2712 	 * We should guarantee that tid and kmem_cache are retrieved on
2713 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2714 	 * to check if it is matched or not.
2715 	 */
2716 	do {
2717 		tid = this_cpu_read(s->cpu_slab->tid);
2718 		c = raw_cpu_ptr(s->cpu_slab);
2719 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2720 		 unlikely(tid != READ_ONCE(c->tid)));
2721 
2722 	/*
2723 	 * Irqless object alloc/free algorithm used here depends on sequence
2724 	 * of fetching cpu_slab's data. tid should be fetched before anything
2725 	 * on c to guarantee that object and page associated with previous tid
2726 	 * won't be used with current tid. If we fetch tid first, object and
2727 	 * page could be one associated with next tid and our alloc/free
2728 	 * request will be failed. In this case, we will retry. So, no problem.
2729 	 */
2730 	barrier();
2731 
2732 	/*
2733 	 * The transaction ids are globally unique per cpu and per operation on
2734 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2735 	 * occurs on the right processor and that there was no operation on the
2736 	 * linked list in between.
2737 	 */
2738 
2739 	object = c->freelist;
2740 	page = c->page;
2741 	if (unlikely(!object || !node_match(page, node))) {
2742 		object = __slab_alloc(s, gfpflags, node, addr, c);
2743 		stat(s, ALLOC_SLOWPATH);
2744 	} else {
2745 		void *next_object = get_freepointer_safe(s, object);
2746 
2747 		/*
2748 		 * The cmpxchg will only match if there was no additional
2749 		 * operation and if we are on the right processor.
2750 		 *
2751 		 * The cmpxchg does the following atomically (without lock
2752 		 * semantics!)
2753 		 * 1. Relocate first pointer to the current per cpu area.
2754 		 * 2. Verify that tid and freelist have not been changed
2755 		 * 3. If they were not changed replace tid and freelist
2756 		 *
2757 		 * Since this is without lock semantics the protection is only
2758 		 * against code executing on this cpu *not* from access by
2759 		 * other cpus.
2760 		 */
2761 		if (unlikely(!this_cpu_cmpxchg_double(
2762 				s->cpu_slab->freelist, s->cpu_slab->tid,
2763 				object, tid,
2764 				next_object, next_tid(tid)))) {
2765 
2766 			note_cmpxchg_failure("slab_alloc", s, tid);
2767 			goto redo;
2768 		}
2769 		prefetch_freepointer(s, next_object);
2770 		stat(s, ALLOC_FASTPATH);
2771 	}
2772 
2773 	maybe_wipe_obj_freeptr(s, object);
2774 
2775 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2776 		memset(object, 0, s->object_size);
2777 
2778 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2779 
2780 	return object;
2781 }
2782 
2783 static __always_inline void *slab_alloc(struct kmem_cache *s,
2784 		gfp_t gfpflags, unsigned long addr)
2785 {
2786 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2787 }
2788 
2789 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2790 {
2791 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2792 
2793 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2794 				s->size, gfpflags);
2795 
2796 	return ret;
2797 }
2798 EXPORT_SYMBOL(kmem_cache_alloc);
2799 
2800 #ifdef CONFIG_TRACING
2801 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2802 {
2803 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2804 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2805 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2806 	return ret;
2807 }
2808 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2809 #endif
2810 
2811 #ifdef CONFIG_NUMA
2812 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2813 {
2814 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2815 
2816 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2817 				    s->object_size, s->size, gfpflags, node);
2818 
2819 	return ret;
2820 }
2821 EXPORT_SYMBOL(kmem_cache_alloc_node);
2822 
2823 #ifdef CONFIG_TRACING
2824 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2825 				    gfp_t gfpflags,
2826 				    int node, size_t size)
2827 {
2828 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2829 
2830 	trace_kmalloc_node(_RET_IP_, ret,
2831 			   size, s->size, gfpflags, node);
2832 
2833 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2834 	return ret;
2835 }
2836 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2837 #endif
2838 #endif	/* CONFIG_NUMA */
2839 
2840 /*
2841  * Slow path handling. This may still be called frequently since objects
2842  * have a longer lifetime than the cpu slabs in most processing loads.
2843  *
2844  * So we still attempt to reduce cache line usage. Just take the slab
2845  * lock and free the item. If there is no additional partial page
2846  * handling required then we can return immediately.
2847  */
2848 static void __slab_free(struct kmem_cache *s, struct page *page,
2849 			void *head, void *tail, int cnt,
2850 			unsigned long addr)
2851 
2852 {
2853 	void *prior;
2854 	int was_frozen;
2855 	struct page new;
2856 	unsigned long counters;
2857 	struct kmem_cache_node *n = NULL;
2858 	unsigned long uninitialized_var(flags);
2859 
2860 	stat(s, FREE_SLOWPATH);
2861 
2862 	if (kmem_cache_debug(s) &&
2863 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2864 		return;
2865 
2866 	do {
2867 		if (unlikely(n)) {
2868 			spin_unlock_irqrestore(&n->list_lock, flags);
2869 			n = NULL;
2870 		}
2871 		prior = page->freelist;
2872 		counters = page->counters;
2873 		set_freepointer(s, tail, prior);
2874 		new.counters = counters;
2875 		was_frozen = new.frozen;
2876 		new.inuse -= cnt;
2877 		if ((!new.inuse || !prior) && !was_frozen) {
2878 
2879 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2880 
2881 				/*
2882 				 * Slab was on no list before and will be
2883 				 * partially empty
2884 				 * We can defer the list move and instead
2885 				 * freeze it.
2886 				 */
2887 				new.frozen = 1;
2888 
2889 			} else { /* Needs to be taken off a list */
2890 
2891 				n = get_node(s, page_to_nid(page));
2892 				/*
2893 				 * Speculatively acquire the list_lock.
2894 				 * If the cmpxchg does not succeed then we may
2895 				 * drop the list_lock without any processing.
2896 				 *
2897 				 * Otherwise the list_lock will synchronize with
2898 				 * other processors updating the list of slabs.
2899 				 */
2900 				spin_lock_irqsave(&n->list_lock, flags);
2901 
2902 			}
2903 		}
2904 
2905 	} while (!cmpxchg_double_slab(s, page,
2906 		prior, counters,
2907 		head, new.counters,
2908 		"__slab_free"));
2909 
2910 	if (likely(!n)) {
2911 
2912 		/*
2913 		 * If we just froze the page then put it onto the
2914 		 * per cpu partial list.
2915 		 */
2916 		if (new.frozen && !was_frozen) {
2917 			put_cpu_partial(s, page, 1);
2918 			stat(s, CPU_PARTIAL_FREE);
2919 		}
2920 		/*
2921 		 * The list lock was not taken therefore no list
2922 		 * activity can be necessary.
2923 		 */
2924 		if (was_frozen)
2925 			stat(s, FREE_FROZEN);
2926 		return;
2927 	}
2928 
2929 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2930 		goto slab_empty;
2931 
2932 	/*
2933 	 * Objects left in the slab. If it was not on the partial list before
2934 	 * then add it.
2935 	 */
2936 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2937 		remove_full(s, n, page);
2938 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2939 		stat(s, FREE_ADD_PARTIAL);
2940 	}
2941 	spin_unlock_irqrestore(&n->list_lock, flags);
2942 	return;
2943 
2944 slab_empty:
2945 	if (prior) {
2946 		/*
2947 		 * Slab on the partial list.
2948 		 */
2949 		remove_partial(n, page);
2950 		stat(s, FREE_REMOVE_PARTIAL);
2951 	} else {
2952 		/* Slab must be on the full list */
2953 		remove_full(s, n, page);
2954 	}
2955 
2956 	spin_unlock_irqrestore(&n->list_lock, flags);
2957 	stat(s, FREE_SLAB);
2958 	discard_slab(s, page);
2959 }
2960 
2961 /*
2962  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2963  * can perform fastpath freeing without additional function calls.
2964  *
2965  * The fastpath is only possible if we are freeing to the current cpu slab
2966  * of this processor. This typically the case if we have just allocated
2967  * the item before.
2968  *
2969  * If fastpath is not possible then fall back to __slab_free where we deal
2970  * with all sorts of special processing.
2971  *
2972  * Bulk free of a freelist with several objects (all pointing to the
2973  * same page) possible by specifying head and tail ptr, plus objects
2974  * count (cnt). Bulk free indicated by tail pointer being set.
2975  */
2976 static __always_inline void do_slab_free(struct kmem_cache *s,
2977 				struct page *page, void *head, void *tail,
2978 				int cnt, unsigned long addr)
2979 {
2980 	void *tail_obj = tail ? : head;
2981 	struct kmem_cache_cpu *c;
2982 	unsigned long tid;
2983 redo:
2984 	/*
2985 	 * Determine the currently cpus per cpu slab.
2986 	 * The cpu may change afterward. However that does not matter since
2987 	 * data is retrieved via this pointer. If we are on the same cpu
2988 	 * during the cmpxchg then the free will succeed.
2989 	 */
2990 	do {
2991 		tid = this_cpu_read(s->cpu_slab->tid);
2992 		c = raw_cpu_ptr(s->cpu_slab);
2993 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2994 		 unlikely(tid != READ_ONCE(c->tid)));
2995 
2996 	/* Same with comment on barrier() in slab_alloc_node() */
2997 	barrier();
2998 
2999 	if (likely(page == c->page)) {
3000 		set_freepointer(s, tail_obj, c->freelist);
3001 
3002 		if (unlikely(!this_cpu_cmpxchg_double(
3003 				s->cpu_slab->freelist, s->cpu_slab->tid,
3004 				c->freelist, tid,
3005 				head, next_tid(tid)))) {
3006 
3007 			note_cmpxchg_failure("slab_free", s, tid);
3008 			goto redo;
3009 		}
3010 		stat(s, FREE_FASTPATH);
3011 	} else
3012 		__slab_free(s, page, head, tail_obj, cnt, addr);
3013 
3014 }
3015 
3016 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3017 				      void *head, void *tail, int cnt,
3018 				      unsigned long addr)
3019 {
3020 	/*
3021 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3022 	 * to remove objects, whose reuse must be delayed.
3023 	 */
3024 	if (slab_free_freelist_hook(s, &head, &tail))
3025 		do_slab_free(s, page, head, tail, cnt, addr);
3026 }
3027 
3028 #ifdef CONFIG_KASAN_GENERIC
3029 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3030 {
3031 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3032 }
3033 #endif
3034 
3035 void kmem_cache_free(struct kmem_cache *s, void *x)
3036 {
3037 	s = cache_from_obj(s, x);
3038 	if (!s)
3039 		return;
3040 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3041 	trace_kmem_cache_free(_RET_IP_, x);
3042 }
3043 EXPORT_SYMBOL(kmem_cache_free);
3044 
3045 struct detached_freelist {
3046 	struct page *page;
3047 	void *tail;
3048 	void *freelist;
3049 	int cnt;
3050 	struct kmem_cache *s;
3051 };
3052 
3053 /*
3054  * This function progressively scans the array with free objects (with
3055  * a limited look ahead) and extract objects belonging to the same
3056  * page.  It builds a detached freelist directly within the given
3057  * page/objects.  This can happen without any need for
3058  * synchronization, because the objects are owned by running process.
3059  * The freelist is build up as a single linked list in the objects.
3060  * The idea is, that this detached freelist can then be bulk
3061  * transferred to the real freelist(s), but only requiring a single
3062  * synchronization primitive.  Look ahead in the array is limited due
3063  * to performance reasons.
3064  */
3065 static inline
3066 int build_detached_freelist(struct kmem_cache *s, size_t size,
3067 			    void **p, struct detached_freelist *df)
3068 {
3069 	size_t first_skipped_index = 0;
3070 	int lookahead = 3;
3071 	void *object;
3072 	struct page *page;
3073 
3074 	/* Always re-init detached_freelist */
3075 	df->page = NULL;
3076 
3077 	do {
3078 		object = p[--size];
3079 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3080 	} while (!object && size);
3081 
3082 	if (!object)
3083 		return 0;
3084 
3085 	page = virt_to_head_page(object);
3086 	if (!s) {
3087 		/* Handle kalloc'ed objects */
3088 		if (unlikely(!PageSlab(page))) {
3089 			BUG_ON(!PageCompound(page));
3090 			kfree_hook(object);
3091 			__free_pages(page, compound_order(page));
3092 			p[size] = NULL; /* mark object processed */
3093 			return size;
3094 		}
3095 		/* Derive kmem_cache from object */
3096 		df->s = page->slab_cache;
3097 	} else {
3098 		df->s = cache_from_obj(s, object); /* Support for memcg */
3099 	}
3100 
3101 	/* Start new detached freelist */
3102 	df->page = page;
3103 	set_freepointer(df->s, object, NULL);
3104 	df->tail = object;
3105 	df->freelist = object;
3106 	p[size] = NULL; /* mark object processed */
3107 	df->cnt = 1;
3108 
3109 	while (size) {
3110 		object = p[--size];
3111 		if (!object)
3112 			continue; /* Skip processed objects */
3113 
3114 		/* df->page is always set at this point */
3115 		if (df->page == virt_to_head_page(object)) {
3116 			/* Opportunity build freelist */
3117 			set_freepointer(df->s, object, df->freelist);
3118 			df->freelist = object;
3119 			df->cnt++;
3120 			p[size] = NULL; /* mark object processed */
3121 
3122 			continue;
3123 		}
3124 
3125 		/* Limit look ahead search */
3126 		if (!--lookahead)
3127 			break;
3128 
3129 		if (!first_skipped_index)
3130 			first_skipped_index = size + 1;
3131 	}
3132 
3133 	return first_skipped_index;
3134 }
3135 
3136 /* Note that interrupts must be enabled when calling this function. */
3137 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3138 {
3139 	if (WARN_ON(!size))
3140 		return;
3141 
3142 	do {
3143 		struct detached_freelist df;
3144 
3145 		size = build_detached_freelist(s, size, p, &df);
3146 		if (!df.page)
3147 			continue;
3148 
3149 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3150 	} while (likely(size));
3151 }
3152 EXPORT_SYMBOL(kmem_cache_free_bulk);
3153 
3154 /* Note that interrupts must be enabled when calling this function. */
3155 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3156 			  void **p)
3157 {
3158 	struct kmem_cache_cpu *c;
3159 	int i;
3160 
3161 	/* memcg and kmem_cache debug support */
3162 	s = slab_pre_alloc_hook(s, flags);
3163 	if (unlikely(!s))
3164 		return false;
3165 	/*
3166 	 * Drain objects in the per cpu slab, while disabling local
3167 	 * IRQs, which protects against PREEMPT and interrupts
3168 	 * handlers invoking normal fastpath.
3169 	 */
3170 	local_irq_disable();
3171 	c = this_cpu_ptr(s->cpu_slab);
3172 
3173 	for (i = 0; i < size; i++) {
3174 		void *object = c->freelist;
3175 
3176 		if (unlikely(!object)) {
3177 			/*
3178 			 * Invoking slow path likely have side-effect
3179 			 * of re-populating per CPU c->freelist
3180 			 */
3181 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3182 					    _RET_IP_, c);
3183 			if (unlikely(!p[i]))
3184 				goto error;
3185 
3186 			c = this_cpu_ptr(s->cpu_slab);
3187 			maybe_wipe_obj_freeptr(s, p[i]);
3188 
3189 			continue; /* goto for-loop */
3190 		}
3191 		c->freelist = get_freepointer(s, object);
3192 		p[i] = object;
3193 		maybe_wipe_obj_freeptr(s, p[i]);
3194 	}
3195 	c->tid = next_tid(c->tid);
3196 	local_irq_enable();
3197 
3198 	/* Clear memory outside IRQ disabled fastpath loop */
3199 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3200 		int j;
3201 
3202 		for (j = 0; j < i; j++)
3203 			memset(p[j], 0, s->object_size);
3204 	}
3205 
3206 	/* memcg and kmem_cache debug support */
3207 	slab_post_alloc_hook(s, flags, size, p);
3208 	return i;
3209 error:
3210 	local_irq_enable();
3211 	slab_post_alloc_hook(s, flags, i, p);
3212 	__kmem_cache_free_bulk(s, i, p);
3213 	return 0;
3214 }
3215 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3216 
3217 
3218 /*
3219  * Object placement in a slab is made very easy because we always start at
3220  * offset 0. If we tune the size of the object to the alignment then we can
3221  * get the required alignment by putting one properly sized object after
3222  * another.
3223  *
3224  * Notice that the allocation order determines the sizes of the per cpu
3225  * caches. Each processor has always one slab available for allocations.
3226  * Increasing the allocation order reduces the number of times that slabs
3227  * must be moved on and off the partial lists and is therefore a factor in
3228  * locking overhead.
3229  */
3230 
3231 /*
3232  * Mininum / Maximum order of slab pages. This influences locking overhead
3233  * and slab fragmentation. A higher order reduces the number of partial slabs
3234  * and increases the number of allocations possible without having to
3235  * take the list_lock.
3236  */
3237 static unsigned int slub_min_order;
3238 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3239 static unsigned int slub_min_objects;
3240 
3241 /*
3242  * Calculate the order of allocation given an slab object size.
3243  *
3244  * The order of allocation has significant impact on performance and other
3245  * system components. Generally order 0 allocations should be preferred since
3246  * order 0 does not cause fragmentation in the page allocator. Larger objects
3247  * be problematic to put into order 0 slabs because there may be too much
3248  * unused space left. We go to a higher order if more than 1/16th of the slab
3249  * would be wasted.
3250  *
3251  * In order to reach satisfactory performance we must ensure that a minimum
3252  * number of objects is in one slab. Otherwise we may generate too much
3253  * activity on the partial lists which requires taking the list_lock. This is
3254  * less a concern for large slabs though which are rarely used.
3255  *
3256  * slub_max_order specifies the order where we begin to stop considering the
3257  * number of objects in a slab as critical. If we reach slub_max_order then
3258  * we try to keep the page order as low as possible. So we accept more waste
3259  * of space in favor of a small page order.
3260  *
3261  * Higher order allocations also allow the placement of more objects in a
3262  * slab and thereby reduce object handling overhead. If the user has
3263  * requested a higher mininum order then we start with that one instead of
3264  * the smallest order which will fit the object.
3265  */
3266 static inline unsigned int slab_order(unsigned int size,
3267 		unsigned int min_objects, unsigned int max_order,
3268 		unsigned int fract_leftover)
3269 {
3270 	unsigned int min_order = slub_min_order;
3271 	unsigned int order;
3272 
3273 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3274 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3275 
3276 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3277 			order <= max_order; order++) {
3278 
3279 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3280 		unsigned int rem;
3281 
3282 		rem = slab_size % size;
3283 
3284 		if (rem <= slab_size / fract_leftover)
3285 			break;
3286 	}
3287 
3288 	return order;
3289 }
3290 
3291 static inline int calculate_order(unsigned int size)
3292 {
3293 	unsigned int order;
3294 	unsigned int min_objects;
3295 	unsigned int max_objects;
3296 
3297 	/*
3298 	 * Attempt to find best configuration for a slab. This
3299 	 * works by first attempting to generate a layout with
3300 	 * the best configuration and backing off gradually.
3301 	 *
3302 	 * First we increase the acceptable waste in a slab. Then
3303 	 * we reduce the minimum objects required in a slab.
3304 	 */
3305 	min_objects = slub_min_objects;
3306 	if (!min_objects)
3307 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3308 	max_objects = order_objects(slub_max_order, size);
3309 	min_objects = min(min_objects, max_objects);
3310 
3311 	while (min_objects > 1) {
3312 		unsigned int fraction;
3313 
3314 		fraction = 16;
3315 		while (fraction >= 4) {
3316 			order = slab_order(size, min_objects,
3317 					slub_max_order, fraction);
3318 			if (order <= slub_max_order)
3319 				return order;
3320 			fraction /= 2;
3321 		}
3322 		min_objects--;
3323 	}
3324 
3325 	/*
3326 	 * We were unable to place multiple objects in a slab. Now
3327 	 * lets see if we can place a single object there.
3328 	 */
3329 	order = slab_order(size, 1, slub_max_order, 1);
3330 	if (order <= slub_max_order)
3331 		return order;
3332 
3333 	/*
3334 	 * Doh this slab cannot be placed using slub_max_order.
3335 	 */
3336 	order = slab_order(size, 1, MAX_ORDER, 1);
3337 	if (order < MAX_ORDER)
3338 		return order;
3339 	return -ENOSYS;
3340 }
3341 
3342 static void
3343 init_kmem_cache_node(struct kmem_cache_node *n)
3344 {
3345 	n->nr_partial = 0;
3346 	spin_lock_init(&n->list_lock);
3347 	INIT_LIST_HEAD(&n->partial);
3348 #ifdef CONFIG_SLUB_DEBUG
3349 	atomic_long_set(&n->nr_slabs, 0);
3350 	atomic_long_set(&n->total_objects, 0);
3351 	INIT_LIST_HEAD(&n->full);
3352 #endif
3353 }
3354 
3355 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3356 {
3357 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3358 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3359 
3360 	/*
3361 	 * Must align to double word boundary for the double cmpxchg
3362 	 * instructions to work; see __pcpu_double_call_return_bool().
3363 	 */
3364 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3365 				     2 * sizeof(void *));
3366 
3367 	if (!s->cpu_slab)
3368 		return 0;
3369 
3370 	init_kmem_cache_cpus(s);
3371 
3372 	return 1;
3373 }
3374 
3375 static struct kmem_cache *kmem_cache_node;
3376 
3377 /*
3378  * No kmalloc_node yet so do it by hand. We know that this is the first
3379  * slab on the node for this slabcache. There are no concurrent accesses
3380  * possible.
3381  *
3382  * Note that this function only works on the kmem_cache_node
3383  * when allocating for the kmem_cache_node. This is used for bootstrapping
3384  * memory on a fresh node that has no slab structures yet.
3385  */
3386 static void early_kmem_cache_node_alloc(int node)
3387 {
3388 	struct page *page;
3389 	struct kmem_cache_node *n;
3390 
3391 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3392 
3393 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3394 
3395 	BUG_ON(!page);
3396 	if (page_to_nid(page) != node) {
3397 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3398 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3399 	}
3400 
3401 	n = page->freelist;
3402 	BUG_ON(!n);
3403 #ifdef CONFIG_SLUB_DEBUG
3404 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3405 	init_tracking(kmem_cache_node, n);
3406 #endif
3407 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3408 		      GFP_KERNEL);
3409 	page->freelist = get_freepointer(kmem_cache_node, n);
3410 	page->inuse = 1;
3411 	page->frozen = 0;
3412 	kmem_cache_node->node[node] = n;
3413 	init_kmem_cache_node(n);
3414 	inc_slabs_node(kmem_cache_node, node, page->objects);
3415 
3416 	/*
3417 	 * No locks need to be taken here as it has just been
3418 	 * initialized and there is no concurrent access.
3419 	 */
3420 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3421 }
3422 
3423 static void free_kmem_cache_nodes(struct kmem_cache *s)
3424 {
3425 	int node;
3426 	struct kmem_cache_node *n;
3427 
3428 	for_each_kmem_cache_node(s, node, n) {
3429 		s->node[node] = NULL;
3430 		kmem_cache_free(kmem_cache_node, n);
3431 	}
3432 }
3433 
3434 void __kmem_cache_release(struct kmem_cache *s)
3435 {
3436 	cache_random_seq_destroy(s);
3437 	free_percpu(s->cpu_slab);
3438 	free_kmem_cache_nodes(s);
3439 }
3440 
3441 static int init_kmem_cache_nodes(struct kmem_cache *s)
3442 {
3443 	int node;
3444 
3445 	for_each_node_state(node, N_NORMAL_MEMORY) {
3446 		struct kmem_cache_node *n;
3447 
3448 		if (slab_state == DOWN) {
3449 			early_kmem_cache_node_alloc(node);
3450 			continue;
3451 		}
3452 		n = kmem_cache_alloc_node(kmem_cache_node,
3453 						GFP_KERNEL, node);
3454 
3455 		if (!n) {
3456 			free_kmem_cache_nodes(s);
3457 			return 0;
3458 		}
3459 
3460 		init_kmem_cache_node(n);
3461 		s->node[node] = n;
3462 	}
3463 	return 1;
3464 }
3465 
3466 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3467 {
3468 	if (min < MIN_PARTIAL)
3469 		min = MIN_PARTIAL;
3470 	else if (min > MAX_PARTIAL)
3471 		min = MAX_PARTIAL;
3472 	s->min_partial = min;
3473 }
3474 
3475 static void set_cpu_partial(struct kmem_cache *s)
3476 {
3477 #ifdef CONFIG_SLUB_CPU_PARTIAL
3478 	/*
3479 	 * cpu_partial determined the maximum number of objects kept in the
3480 	 * per cpu partial lists of a processor.
3481 	 *
3482 	 * Per cpu partial lists mainly contain slabs that just have one
3483 	 * object freed. If they are used for allocation then they can be
3484 	 * filled up again with minimal effort. The slab will never hit the
3485 	 * per node partial lists and therefore no locking will be required.
3486 	 *
3487 	 * This setting also determines
3488 	 *
3489 	 * A) The number of objects from per cpu partial slabs dumped to the
3490 	 *    per node list when we reach the limit.
3491 	 * B) The number of objects in cpu partial slabs to extract from the
3492 	 *    per node list when we run out of per cpu objects. We only fetch
3493 	 *    50% to keep some capacity around for frees.
3494 	 */
3495 	if (!kmem_cache_has_cpu_partial(s))
3496 		s->cpu_partial = 0;
3497 	else if (s->size >= PAGE_SIZE)
3498 		s->cpu_partial = 2;
3499 	else if (s->size >= 1024)
3500 		s->cpu_partial = 6;
3501 	else if (s->size >= 256)
3502 		s->cpu_partial = 13;
3503 	else
3504 		s->cpu_partial = 30;
3505 #endif
3506 }
3507 
3508 /*
3509  * calculate_sizes() determines the order and the distribution of data within
3510  * a slab object.
3511  */
3512 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3513 {
3514 	slab_flags_t flags = s->flags;
3515 	unsigned int size = s->object_size;
3516 	unsigned int order;
3517 
3518 	/*
3519 	 * Round up object size to the next word boundary. We can only
3520 	 * place the free pointer at word boundaries and this determines
3521 	 * the possible location of the free pointer.
3522 	 */
3523 	size = ALIGN(size, sizeof(void *));
3524 
3525 #ifdef CONFIG_SLUB_DEBUG
3526 	/*
3527 	 * Determine if we can poison the object itself. If the user of
3528 	 * the slab may touch the object after free or before allocation
3529 	 * then we should never poison the object itself.
3530 	 */
3531 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3532 			!s->ctor)
3533 		s->flags |= __OBJECT_POISON;
3534 	else
3535 		s->flags &= ~__OBJECT_POISON;
3536 
3537 
3538 	/*
3539 	 * If we are Redzoning then check if there is some space between the
3540 	 * end of the object and the free pointer. If not then add an
3541 	 * additional word to have some bytes to store Redzone information.
3542 	 */
3543 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3544 		size += sizeof(void *);
3545 #endif
3546 
3547 	/*
3548 	 * With that we have determined the number of bytes in actual use
3549 	 * by the object. This is the potential offset to the free pointer.
3550 	 */
3551 	s->inuse = size;
3552 
3553 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3554 		s->ctor)) {
3555 		/*
3556 		 * Relocate free pointer after the object if it is not
3557 		 * permitted to overwrite the first word of the object on
3558 		 * kmem_cache_free.
3559 		 *
3560 		 * This is the case if we do RCU, have a constructor or
3561 		 * destructor or are poisoning the objects.
3562 		 */
3563 		s->offset = size;
3564 		size += sizeof(void *);
3565 	}
3566 
3567 #ifdef CONFIG_SLUB_DEBUG
3568 	if (flags & SLAB_STORE_USER)
3569 		/*
3570 		 * Need to store information about allocs and frees after
3571 		 * the object.
3572 		 */
3573 		size += 2 * sizeof(struct track);
3574 #endif
3575 
3576 	kasan_cache_create(s, &size, &s->flags);
3577 #ifdef CONFIG_SLUB_DEBUG
3578 	if (flags & SLAB_RED_ZONE) {
3579 		/*
3580 		 * Add some empty padding so that we can catch
3581 		 * overwrites from earlier objects rather than let
3582 		 * tracking information or the free pointer be
3583 		 * corrupted if a user writes before the start
3584 		 * of the object.
3585 		 */
3586 		size += sizeof(void *);
3587 
3588 		s->red_left_pad = sizeof(void *);
3589 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3590 		size += s->red_left_pad;
3591 	}
3592 #endif
3593 
3594 	/*
3595 	 * SLUB stores one object immediately after another beginning from
3596 	 * offset 0. In order to align the objects we have to simply size
3597 	 * each object to conform to the alignment.
3598 	 */
3599 	size = ALIGN(size, s->align);
3600 	s->size = size;
3601 	if (forced_order >= 0)
3602 		order = forced_order;
3603 	else
3604 		order = calculate_order(size);
3605 
3606 	if ((int)order < 0)
3607 		return 0;
3608 
3609 	s->allocflags = 0;
3610 	if (order)
3611 		s->allocflags |= __GFP_COMP;
3612 
3613 	if (s->flags & SLAB_CACHE_DMA)
3614 		s->allocflags |= GFP_DMA;
3615 
3616 	if (s->flags & SLAB_CACHE_DMA32)
3617 		s->allocflags |= GFP_DMA32;
3618 
3619 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3620 		s->allocflags |= __GFP_RECLAIMABLE;
3621 
3622 	/*
3623 	 * Determine the number of objects per slab
3624 	 */
3625 	s->oo = oo_make(order, size);
3626 	s->min = oo_make(get_order(size), size);
3627 	if (oo_objects(s->oo) > oo_objects(s->max))
3628 		s->max = s->oo;
3629 
3630 	return !!oo_objects(s->oo);
3631 }
3632 
3633 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3634 {
3635 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3636 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3637 	s->random = get_random_long();
3638 #endif
3639 
3640 	if (!calculate_sizes(s, -1))
3641 		goto error;
3642 	if (disable_higher_order_debug) {
3643 		/*
3644 		 * Disable debugging flags that store metadata if the min slab
3645 		 * order increased.
3646 		 */
3647 		if (get_order(s->size) > get_order(s->object_size)) {
3648 			s->flags &= ~DEBUG_METADATA_FLAGS;
3649 			s->offset = 0;
3650 			if (!calculate_sizes(s, -1))
3651 				goto error;
3652 		}
3653 	}
3654 
3655 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3656     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3657 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3658 		/* Enable fast mode */
3659 		s->flags |= __CMPXCHG_DOUBLE;
3660 #endif
3661 
3662 	/*
3663 	 * The larger the object size is, the more pages we want on the partial
3664 	 * list to avoid pounding the page allocator excessively.
3665 	 */
3666 	set_min_partial(s, ilog2(s->size) / 2);
3667 
3668 	set_cpu_partial(s);
3669 
3670 #ifdef CONFIG_NUMA
3671 	s->remote_node_defrag_ratio = 1000;
3672 #endif
3673 
3674 	/* Initialize the pre-computed randomized freelist if slab is up */
3675 	if (slab_state >= UP) {
3676 		if (init_cache_random_seq(s))
3677 			goto error;
3678 	}
3679 
3680 	if (!init_kmem_cache_nodes(s))
3681 		goto error;
3682 
3683 	if (alloc_kmem_cache_cpus(s))
3684 		return 0;
3685 
3686 	free_kmem_cache_nodes(s);
3687 error:
3688 	return -EINVAL;
3689 }
3690 
3691 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3692 							const char *text)
3693 {
3694 #ifdef CONFIG_SLUB_DEBUG
3695 	void *addr = page_address(page);
3696 	void *p;
3697 	unsigned long *map;
3698 
3699 	slab_err(s, page, text, s->name);
3700 	slab_lock(page);
3701 
3702 	map = get_map(s, page);
3703 	for_each_object(p, s, addr, page->objects) {
3704 
3705 		if (!test_bit(slab_index(p, s, addr), map)) {
3706 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3707 			print_tracking(s, p);
3708 		}
3709 	}
3710 	put_map(map);
3711 
3712 	slab_unlock(page);
3713 #endif
3714 }
3715 
3716 /*
3717  * Attempt to free all partial slabs on a node.
3718  * This is called from __kmem_cache_shutdown(). We must take list_lock
3719  * because sysfs file might still access partial list after the shutdowning.
3720  */
3721 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3722 {
3723 	LIST_HEAD(discard);
3724 	struct page *page, *h;
3725 
3726 	BUG_ON(irqs_disabled());
3727 	spin_lock_irq(&n->list_lock);
3728 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3729 		if (!page->inuse) {
3730 			remove_partial(n, page);
3731 			list_add(&page->slab_list, &discard);
3732 		} else {
3733 			list_slab_objects(s, page,
3734 			"Objects remaining in %s on __kmem_cache_shutdown()");
3735 		}
3736 	}
3737 	spin_unlock_irq(&n->list_lock);
3738 
3739 	list_for_each_entry_safe(page, h, &discard, slab_list)
3740 		discard_slab(s, page);
3741 }
3742 
3743 bool __kmem_cache_empty(struct kmem_cache *s)
3744 {
3745 	int node;
3746 	struct kmem_cache_node *n;
3747 
3748 	for_each_kmem_cache_node(s, node, n)
3749 		if (n->nr_partial || slabs_node(s, node))
3750 			return false;
3751 	return true;
3752 }
3753 
3754 /*
3755  * Release all resources used by a slab cache.
3756  */
3757 int __kmem_cache_shutdown(struct kmem_cache *s)
3758 {
3759 	int node;
3760 	struct kmem_cache_node *n;
3761 
3762 	flush_all(s);
3763 	/* Attempt to free all objects */
3764 	for_each_kmem_cache_node(s, node, n) {
3765 		free_partial(s, n);
3766 		if (n->nr_partial || slabs_node(s, node))
3767 			return 1;
3768 	}
3769 	sysfs_slab_remove(s);
3770 	return 0;
3771 }
3772 
3773 /********************************************************************
3774  *		Kmalloc subsystem
3775  *******************************************************************/
3776 
3777 static int __init setup_slub_min_order(char *str)
3778 {
3779 	get_option(&str, (int *)&slub_min_order);
3780 
3781 	return 1;
3782 }
3783 
3784 __setup("slub_min_order=", setup_slub_min_order);
3785 
3786 static int __init setup_slub_max_order(char *str)
3787 {
3788 	get_option(&str, (int *)&slub_max_order);
3789 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3790 
3791 	return 1;
3792 }
3793 
3794 __setup("slub_max_order=", setup_slub_max_order);
3795 
3796 static int __init setup_slub_min_objects(char *str)
3797 {
3798 	get_option(&str, (int *)&slub_min_objects);
3799 
3800 	return 1;
3801 }
3802 
3803 __setup("slub_min_objects=", setup_slub_min_objects);
3804 
3805 void *__kmalloc(size_t size, gfp_t flags)
3806 {
3807 	struct kmem_cache *s;
3808 	void *ret;
3809 
3810 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3811 		return kmalloc_large(size, flags);
3812 
3813 	s = kmalloc_slab(size, flags);
3814 
3815 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3816 		return s;
3817 
3818 	ret = slab_alloc(s, flags, _RET_IP_);
3819 
3820 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3821 
3822 	ret = kasan_kmalloc(s, ret, size, flags);
3823 
3824 	return ret;
3825 }
3826 EXPORT_SYMBOL(__kmalloc);
3827 
3828 #ifdef CONFIG_NUMA
3829 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3830 {
3831 	struct page *page;
3832 	void *ptr = NULL;
3833 	unsigned int order = get_order(size);
3834 
3835 	flags |= __GFP_COMP;
3836 	page = alloc_pages_node(node, flags, order);
3837 	if (page) {
3838 		ptr = page_address(page);
3839 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3840 				    1 << order);
3841 	}
3842 
3843 	return kmalloc_large_node_hook(ptr, size, flags);
3844 }
3845 
3846 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3847 {
3848 	struct kmem_cache *s;
3849 	void *ret;
3850 
3851 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3852 		ret = kmalloc_large_node(size, flags, node);
3853 
3854 		trace_kmalloc_node(_RET_IP_, ret,
3855 				   size, PAGE_SIZE << get_order(size),
3856 				   flags, node);
3857 
3858 		return ret;
3859 	}
3860 
3861 	s = kmalloc_slab(size, flags);
3862 
3863 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3864 		return s;
3865 
3866 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3867 
3868 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3869 
3870 	ret = kasan_kmalloc(s, ret, size, flags);
3871 
3872 	return ret;
3873 }
3874 EXPORT_SYMBOL(__kmalloc_node);
3875 #endif	/* CONFIG_NUMA */
3876 
3877 #ifdef CONFIG_HARDENED_USERCOPY
3878 /*
3879  * Rejects incorrectly sized objects and objects that are to be copied
3880  * to/from userspace but do not fall entirely within the containing slab
3881  * cache's usercopy region.
3882  *
3883  * Returns NULL if check passes, otherwise const char * to name of cache
3884  * to indicate an error.
3885  */
3886 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3887 			 bool to_user)
3888 {
3889 	struct kmem_cache *s;
3890 	unsigned int offset;
3891 	size_t object_size;
3892 
3893 	ptr = kasan_reset_tag(ptr);
3894 
3895 	/* Find object and usable object size. */
3896 	s = page->slab_cache;
3897 
3898 	/* Reject impossible pointers. */
3899 	if (ptr < page_address(page))
3900 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3901 			       to_user, 0, n);
3902 
3903 	/* Find offset within object. */
3904 	offset = (ptr - page_address(page)) % s->size;
3905 
3906 	/* Adjust for redzone and reject if within the redzone. */
3907 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3908 		if (offset < s->red_left_pad)
3909 			usercopy_abort("SLUB object in left red zone",
3910 				       s->name, to_user, offset, n);
3911 		offset -= s->red_left_pad;
3912 	}
3913 
3914 	/* Allow address range falling entirely within usercopy region. */
3915 	if (offset >= s->useroffset &&
3916 	    offset - s->useroffset <= s->usersize &&
3917 	    n <= s->useroffset - offset + s->usersize)
3918 		return;
3919 
3920 	/*
3921 	 * If the copy is still within the allocated object, produce
3922 	 * a warning instead of rejecting the copy. This is intended
3923 	 * to be a temporary method to find any missing usercopy
3924 	 * whitelists.
3925 	 */
3926 	object_size = slab_ksize(s);
3927 	if (usercopy_fallback &&
3928 	    offset <= object_size && n <= object_size - offset) {
3929 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3930 		return;
3931 	}
3932 
3933 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3934 }
3935 #endif /* CONFIG_HARDENED_USERCOPY */
3936 
3937 size_t __ksize(const void *object)
3938 {
3939 	struct page *page;
3940 
3941 	if (unlikely(object == ZERO_SIZE_PTR))
3942 		return 0;
3943 
3944 	page = virt_to_head_page(object);
3945 
3946 	if (unlikely(!PageSlab(page))) {
3947 		WARN_ON(!PageCompound(page));
3948 		return page_size(page);
3949 	}
3950 
3951 	return slab_ksize(page->slab_cache);
3952 }
3953 EXPORT_SYMBOL(__ksize);
3954 
3955 void kfree(const void *x)
3956 {
3957 	struct page *page;
3958 	void *object = (void *)x;
3959 
3960 	trace_kfree(_RET_IP_, x);
3961 
3962 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3963 		return;
3964 
3965 	page = virt_to_head_page(x);
3966 	if (unlikely(!PageSlab(page))) {
3967 		unsigned int order = compound_order(page);
3968 
3969 		BUG_ON(!PageCompound(page));
3970 		kfree_hook(object);
3971 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3972 				    -(1 << order));
3973 		__free_pages(page, order);
3974 		return;
3975 	}
3976 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3977 }
3978 EXPORT_SYMBOL(kfree);
3979 
3980 #define SHRINK_PROMOTE_MAX 32
3981 
3982 /*
3983  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3984  * up most to the head of the partial lists. New allocations will then
3985  * fill those up and thus they can be removed from the partial lists.
3986  *
3987  * The slabs with the least items are placed last. This results in them
3988  * being allocated from last increasing the chance that the last objects
3989  * are freed in them.
3990  */
3991 int __kmem_cache_shrink(struct kmem_cache *s)
3992 {
3993 	int node;
3994 	int i;
3995 	struct kmem_cache_node *n;
3996 	struct page *page;
3997 	struct page *t;
3998 	struct list_head discard;
3999 	struct list_head promote[SHRINK_PROMOTE_MAX];
4000 	unsigned long flags;
4001 	int ret = 0;
4002 
4003 	flush_all(s);
4004 	for_each_kmem_cache_node(s, node, n) {
4005 		INIT_LIST_HEAD(&discard);
4006 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4007 			INIT_LIST_HEAD(promote + i);
4008 
4009 		spin_lock_irqsave(&n->list_lock, flags);
4010 
4011 		/*
4012 		 * Build lists of slabs to discard or promote.
4013 		 *
4014 		 * Note that concurrent frees may occur while we hold the
4015 		 * list_lock. page->inuse here is the upper limit.
4016 		 */
4017 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4018 			int free = page->objects - page->inuse;
4019 
4020 			/* Do not reread page->inuse */
4021 			barrier();
4022 
4023 			/* We do not keep full slabs on the list */
4024 			BUG_ON(free <= 0);
4025 
4026 			if (free == page->objects) {
4027 				list_move(&page->slab_list, &discard);
4028 				n->nr_partial--;
4029 			} else if (free <= SHRINK_PROMOTE_MAX)
4030 				list_move(&page->slab_list, promote + free - 1);
4031 		}
4032 
4033 		/*
4034 		 * Promote the slabs filled up most to the head of the
4035 		 * partial list.
4036 		 */
4037 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4038 			list_splice(promote + i, &n->partial);
4039 
4040 		spin_unlock_irqrestore(&n->list_lock, flags);
4041 
4042 		/* Release empty slabs */
4043 		list_for_each_entry_safe(page, t, &discard, slab_list)
4044 			discard_slab(s, page);
4045 
4046 		if (slabs_node(s, node))
4047 			ret = 1;
4048 	}
4049 
4050 	return ret;
4051 }
4052 
4053 #ifdef CONFIG_MEMCG
4054 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4055 {
4056 	/*
4057 	 * Called with all the locks held after a sched RCU grace period.
4058 	 * Even if @s becomes empty after shrinking, we can't know that @s
4059 	 * doesn't have allocations already in-flight and thus can't
4060 	 * destroy @s until the associated memcg is released.
4061 	 *
4062 	 * However, let's remove the sysfs files for empty caches here.
4063 	 * Each cache has a lot of interface files which aren't
4064 	 * particularly useful for empty draining caches; otherwise, we can
4065 	 * easily end up with millions of unnecessary sysfs files on
4066 	 * systems which have a lot of memory and transient cgroups.
4067 	 */
4068 	if (!__kmem_cache_shrink(s))
4069 		sysfs_slab_remove(s);
4070 }
4071 
4072 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4073 {
4074 	/*
4075 	 * Disable empty slabs caching. Used to avoid pinning offline
4076 	 * memory cgroups by kmem pages that can be freed.
4077 	 */
4078 	slub_set_cpu_partial(s, 0);
4079 	s->min_partial = 0;
4080 }
4081 #endif	/* CONFIG_MEMCG */
4082 
4083 static int slab_mem_going_offline_callback(void *arg)
4084 {
4085 	struct kmem_cache *s;
4086 
4087 	mutex_lock(&slab_mutex);
4088 	list_for_each_entry(s, &slab_caches, list)
4089 		__kmem_cache_shrink(s);
4090 	mutex_unlock(&slab_mutex);
4091 
4092 	return 0;
4093 }
4094 
4095 static void slab_mem_offline_callback(void *arg)
4096 {
4097 	struct kmem_cache_node *n;
4098 	struct kmem_cache *s;
4099 	struct memory_notify *marg = arg;
4100 	int offline_node;
4101 
4102 	offline_node = marg->status_change_nid_normal;
4103 
4104 	/*
4105 	 * If the node still has available memory. we need kmem_cache_node
4106 	 * for it yet.
4107 	 */
4108 	if (offline_node < 0)
4109 		return;
4110 
4111 	mutex_lock(&slab_mutex);
4112 	list_for_each_entry(s, &slab_caches, list) {
4113 		n = get_node(s, offline_node);
4114 		if (n) {
4115 			/*
4116 			 * if n->nr_slabs > 0, slabs still exist on the node
4117 			 * that is going down. We were unable to free them,
4118 			 * and offline_pages() function shouldn't call this
4119 			 * callback. So, we must fail.
4120 			 */
4121 			BUG_ON(slabs_node(s, offline_node));
4122 
4123 			s->node[offline_node] = NULL;
4124 			kmem_cache_free(kmem_cache_node, n);
4125 		}
4126 	}
4127 	mutex_unlock(&slab_mutex);
4128 }
4129 
4130 static int slab_mem_going_online_callback(void *arg)
4131 {
4132 	struct kmem_cache_node *n;
4133 	struct kmem_cache *s;
4134 	struct memory_notify *marg = arg;
4135 	int nid = marg->status_change_nid_normal;
4136 	int ret = 0;
4137 
4138 	/*
4139 	 * If the node's memory is already available, then kmem_cache_node is
4140 	 * already created. Nothing to do.
4141 	 */
4142 	if (nid < 0)
4143 		return 0;
4144 
4145 	/*
4146 	 * We are bringing a node online. No memory is available yet. We must
4147 	 * allocate a kmem_cache_node structure in order to bring the node
4148 	 * online.
4149 	 */
4150 	mutex_lock(&slab_mutex);
4151 	list_for_each_entry(s, &slab_caches, list) {
4152 		/*
4153 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4154 		 *      since memory is not yet available from the node that
4155 		 *      is brought up.
4156 		 */
4157 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4158 		if (!n) {
4159 			ret = -ENOMEM;
4160 			goto out;
4161 		}
4162 		init_kmem_cache_node(n);
4163 		s->node[nid] = n;
4164 	}
4165 out:
4166 	mutex_unlock(&slab_mutex);
4167 	return ret;
4168 }
4169 
4170 static int slab_memory_callback(struct notifier_block *self,
4171 				unsigned long action, void *arg)
4172 {
4173 	int ret = 0;
4174 
4175 	switch (action) {
4176 	case MEM_GOING_ONLINE:
4177 		ret = slab_mem_going_online_callback(arg);
4178 		break;
4179 	case MEM_GOING_OFFLINE:
4180 		ret = slab_mem_going_offline_callback(arg);
4181 		break;
4182 	case MEM_OFFLINE:
4183 	case MEM_CANCEL_ONLINE:
4184 		slab_mem_offline_callback(arg);
4185 		break;
4186 	case MEM_ONLINE:
4187 	case MEM_CANCEL_OFFLINE:
4188 		break;
4189 	}
4190 	if (ret)
4191 		ret = notifier_from_errno(ret);
4192 	else
4193 		ret = NOTIFY_OK;
4194 	return ret;
4195 }
4196 
4197 static struct notifier_block slab_memory_callback_nb = {
4198 	.notifier_call = slab_memory_callback,
4199 	.priority = SLAB_CALLBACK_PRI,
4200 };
4201 
4202 /********************************************************************
4203  *			Basic setup of slabs
4204  *******************************************************************/
4205 
4206 /*
4207  * Used for early kmem_cache structures that were allocated using
4208  * the page allocator. Allocate them properly then fix up the pointers
4209  * that may be pointing to the wrong kmem_cache structure.
4210  */
4211 
4212 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4213 {
4214 	int node;
4215 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4216 	struct kmem_cache_node *n;
4217 
4218 	memcpy(s, static_cache, kmem_cache->object_size);
4219 
4220 	/*
4221 	 * This runs very early, and only the boot processor is supposed to be
4222 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4223 	 * IPIs around.
4224 	 */
4225 	__flush_cpu_slab(s, smp_processor_id());
4226 	for_each_kmem_cache_node(s, node, n) {
4227 		struct page *p;
4228 
4229 		list_for_each_entry(p, &n->partial, slab_list)
4230 			p->slab_cache = s;
4231 
4232 #ifdef CONFIG_SLUB_DEBUG
4233 		list_for_each_entry(p, &n->full, slab_list)
4234 			p->slab_cache = s;
4235 #endif
4236 	}
4237 	slab_init_memcg_params(s);
4238 	list_add(&s->list, &slab_caches);
4239 	memcg_link_cache(s, NULL);
4240 	return s;
4241 }
4242 
4243 void __init kmem_cache_init(void)
4244 {
4245 	static __initdata struct kmem_cache boot_kmem_cache,
4246 		boot_kmem_cache_node;
4247 
4248 	if (debug_guardpage_minorder())
4249 		slub_max_order = 0;
4250 
4251 	kmem_cache_node = &boot_kmem_cache_node;
4252 	kmem_cache = &boot_kmem_cache;
4253 
4254 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4255 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4256 
4257 	register_hotmemory_notifier(&slab_memory_callback_nb);
4258 
4259 	/* Able to allocate the per node structures */
4260 	slab_state = PARTIAL;
4261 
4262 	create_boot_cache(kmem_cache, "kmem_cache",
4263 			offsetof(struct kmem_cache, node) +
4264 				nr_node_ids * sizeof(struct kmem_cache_node *),
4265 		       SLAB_HWCACHE_ALIGN, 0, 0);
4266 
4267 	kmem_cache = bootstrap(&boot_kmem_cache);
4268 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4269 
4270 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4271 	setup_kmalloc_cache_index_table();
4272 	create_kmalloc_caches(0);
4273 
4274 	/* Setup random freelists for each cache */
4275 	init_freelist_randomization();
4276 
4277 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4278 				  slub_cpu_dead);
4279 
4280 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4281 		cache_line_size(),
4282 		slub_min_order, slub_max_order, slub_min_objects,
4283 		nr_cpu_ids, nr_node_ids);
4284 }
4285 
4286 void __init kmem_cache_init_late(void)
4287 {
4288 }
4289 
4290 struct kmem_cache *
4291 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4292 		   slab_flags_t flags, void (*ctor)(void *))
4293 {
4294 	struct kmem_cache *s, *c;
4295 
4296 	s = find_mergeable(size, align, flags, name, ctor);
4297 	if (s) {
4298 		s->refcount++;
4299 
4300 		/*
4301 		 * Adjust the object sizes so that we clear
4302 		 * the complete object on kzalloc.
4303 		 */
4304 		s->object_size = max(s->object_size, size);
4305 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4306 
4307 		for_each_memcg_cache(c, s) {
4308 			c->object_size = s->object_size;
4309 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4310 		}
4311 
4312 		if (sysfs_slab_alias(s, name)) {
4313 			s->refcount--;
4314 			s = NULL;
4315 		}
4316 	}
4317 
4318 	return s;
4319 }
4320 
4321 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4322 {
4323 	int err;
4324 
4325 	err = kmem_cache_open(s, flags);
4326 	if (err)
4327 		return err;
4328 
4329 	/* Mutex is not taken during early boot */
4330 	if (slab_state <= UP)
4331 		return 0;
4332 
4333 	memcg_propagate_slab_attrs(s);
4334 	err = sysfs_slab_add(s);
4335 	if (err)
4336 		__kmem_cache_release(s);
4337 
4338 	return err;
4339 }
4340 
4341 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4342 {
4343 	struct kmem_cache *s;
4344 	void *ret;
4345 
4346 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4347 		return kmalloc_large(size, gfpflags);
4348 
4349 	s = kmalloc_slab(size, gfpflags);
4350 
4351 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4352 		return s;
4353 
4354 	ret = slab_alloc(s, gfpflags, caller);
4355 
4356 	/* Honor the call site pointer we received. */
4357 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4358 
4359 	return ret;
4360 }
4361 
4362 #ifdef CONFIG_NUMA
4363 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4364 					int node, unsigned long caller)
4365 {
4366 	struct kmem_cache *s;
4367 	void *ret;
4368 
4369 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4370 		ret = kmalloc_large_node(size, gfpflags, node);
4371 
4372 		trace_kmalloc_node(caller, ret,
4373 				   size, PAGE_SIZE << get_order(size),
4374 				   gfpflags, node);
4375 
4376 		return ret;
4377 	}
4378 
4379 	s = kmalloc_slab(size, gfpflags);
4380 
4381 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4382 		return s;
4383 
4384 	ret = slab_alloc_node(s, gfpflags, node, caller);
4385 
4386 	/* Honor the call site pointer we received. */
4387 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4388 
4389 	return ret;
4390 }
4391 #endif
4392 
4393 #ifdef CONFIG_SYSFS
4394 static int count_inuse(struct page *page)
4395 {
4396 	return page->inuse;
4397 }
4398 
4399 static int count_total(struct page *page)
4400 {
4401 	return page->objects;
4402 }
4403 #endif
4404 
4405 #ifdef CONFIG_SLUB_DEBUG
4406 static void validate_slab(struct kmem_cache *s, struct page *page)
4407 {
4408 	void *p;
4409 	void *addr = page_address(page);
4410 	unsigned long *map;
4411 
4412 	slab_lock(page);
4413 
4414 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4415 		goto unlock;
4416 
4417 	/* Now we know that a valid freelist exists */
4418 	map = get_map(s, page);
4419 	for_each_object(p, s, addr, page->objects) {
4420 		u8 val = test_bit(slab_index(p, s, addr), map) ?
4421 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4422 
4423 		if (!check_object(s, page, p, val))
4424 			break;
4425 	}
4426 	put_map(map);
4427 unlock:
4428 	slab_unlock(page);
4429 }
4430 
4431 static int validate_slab_node(struct kmem_cache *s,
4432 		struct kmem_cache_node *n)
4433 {
4434 	unsigned long count = 0;
4435 	struct page *page;
4436 	unsigned long flags;
4437 
4438 	spin_lock_irqsave(&n->list_lock, flags);
4439 
4440 	list_for_each_entry(page, &n->partial, slab_list) {
4441 		validate_slab(s, page);
4442 		count++;
4443 	}
4444 	if (count != n->nr_partial)
4445 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4446 		       s->name, count, n->nr_partial);
4447 
4448 	if (!(s->flags & SLAB_STORE_USER))
4449 		goto out;
4450 
4451 	list_for_each_entry(page, &n->full, slab_list) {
4452 		validate_slab(s, page);
4453 		count++;
4454 	}
4455 	if (count != atomic_long_read(&n->nr_slabs))
4456 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4457 		       s->name, count, atomic_long_read(&n->nr_slabs));
4458 
4459 out:
4460 	spin_unlock_irqrestore(&n->list_lock, flags);
4461 	return count;
4462 }
4463 
4464 static long validate_slab_cache(struct kmem_cache *s)
4465 {
4466 	int node;
4467 	unsigned long count = 0;
4468 	struct kmem_cache_node *n;
4469 
4470 	flush_all(s);
4471 	for_each_kmem_cache_node(s, node, n)
4472 		count += validate_slab_node(s, n);
4473 
4474 	return count;
4475 }
4476 /*
4477  * Generate lists of code addresses where slabcache objects are allocated
4478  * and freed.
4479  */
4480 
4481 struct location {
4482 	unsigned long count;
4483 	unsigned long addr;
4484 	long long sum_time;
4485 	long min_time;
4486 	long max_time;
4487 	long min_pid;
4488 	long max_pid;
4489 	DECLARE_BITMAP(cpus, NR_CPUS);
4490 	nodemask_t nodes;
4491 };
4492 
4493 struct loc_track {
4494 	unsigned long max;
4495 	unsigned long count;
4496 	struct location *loc;
4497 };
4498 
4499 static void free_loc_track(struct loc_track *t)
4500 {
4501 	if (t->max)
4502 		free_pages((unsigned long)t->loc,
4503 			get_order(sizeof(struct location) * t->max));
4504 }
4505 
4506 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4507 {
4508 	struct location *l;
4509 	int order;
4510 
4511 	order = get_order(sizeof(struct location) * max);
4512 
4513 	l = (void *)__get_free_pages(flags, order);
4514 	if (!l)
4515 		return 0;
4516 
4517 	if (t->count) {
4518 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4519 		free_loc_track(t);
4520 	}
4521 	t->max = max;
4522 	t->loc = l;
4523 	return 1;
4524 }
4525 
4526 static int add_location(struct loc_track *t, struct kmem_cache *s,
4527 				const struct track *track)
4528 {
4529 	long start, end, pos;
4530 	struct location *l;
4531 	unsigned long caddr;
4532 	unsigned long age = jiffies - track->when;
4533 
4534 	start = -1;
4535 	end = t->count;
4536 
4537 	for ( ; ; ) {
4538 		pos = start + (end - start + 1) / 2;
4539 
4540 		/*
4541 		 * There is nothing at "end". If we end up there
4542 		 * we need to add something to before end.
4543 		 */
4544 		if (pos == end)
4545 			break;
4546 
4547 		caddr = t->loc[pos].addr;
4548 		if (track->addr == caddr) {
4549 
4550 			l = &t->loc[pos];
4551 			l->count++;
4552 			if (track->when) {
4553 				l->sum_time += age;
4554 				if (age < l->min_time)
4555 					l->min_time = age;
4556 				if (age > l->max_time)
4557 					l->max_time = age;
4558 
4559 				if (track->pid < l->min_pid)
4560 					l->min_pid = track->pid;
4561 				if (track->pid > l->max_pid)
4562 					l->max_pid = track->pid;
4563 
4564 				cpumask_set_cpu(track->cpu,
4565 						to_cpumask(l->cpus));
4566 			}
4567 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4568 			return 1;
4569 		}
4570 
4571 		if (track->addr < caddr)
4572 			end = pos;
4573 		else
4574 			start = pos;
4575 	}
4576 
4577 	/*
4578 	 * Not found. Insert new tracking element.
4579 	 */
4580 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4581 		return 0;
4582 
4583 	l = t->loc + pos;
4584 	if (pos < t->count)
4585 		memmove(l + 1, l,
4586 			(t->count - pos) * sizeof(struct location));
4587 	t->count++;
4588 	l->count = 1;
4589 	l->addr = track->addr;
4590 	l->sum_time = age;
4591 	l->min_time = age;
4592 	l->max_time = age;
4593 	l->min_pid = track->pid;
4594 	l->max_pid = track->pid;
4595 	cpumask_clear(to_cpumask(l->cpus));
4596 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4597 	nodes_clear(l->nodes);
4598 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4599 	return 1;
4600 }
4601 
4602 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4603 		struct page *page, enum track_item alloc)
4604 {
4605 	void *addr = page_address(page);
4606 	void *p;
4607 	unsigned long *map;
4608 
4609 	map = get_map(s, page);
4610 	for_each_object(p, s, addr, page->objects)
4611 		if (!test_bit(slab_index(p, s, addr), map))
4612 			add_location(t, s, get_track(s, p, alloc));
4613 	put_map(map);
4614 }
4615 
4616 static int list_locations(struct kmem_cache *s, char *buf,
4617 					enum track_item alloc)
4618 {
4619 	int len = 0;
4620 	unsigned long i;
4621 	struct loc_track t = { 0, 0, NULL };
4622 	int node;
4623 	struct kmem_cache_node *n;
4624 
4625 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4626 			     GFP_KERNEL)) {
4627 		return sprintf(buf, "Out of memory\n");
4628 	}
4629 	/* Push back cpu slabs */
4630 	flush_all(s);
4631 
4632 	for_each_kmem_cache_node(s, node, n) {
4633 		unsigned long flags;
4634 		struct page *page;
4635 
4636 		if (!atomic_long_read(&n->nr_slabs))
4637 			continue;
4638 
4639 		spin_lock_irqsave(&n->list_lock, flags);
4640 		list_for_each_entry(page, &n->partial, slab_list)
4641 			process_slab(&t, s, page, alloc);
4642 		list_for_each_entry(page, &n->full, slab_list)
4643 			process_slab(&t, s, page, alloc);
4644 		spin_unlock_irqrestore(&n->list_lock, flags);
4645 	}
4646 
4647 	for (i = 0; i < t.count; i++) {
4648 		struct location *l = &t.loc[i];
4649 
4650 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4651 			break;
4652 		len += sprintf(buf + len, "%7ld ", l->count);
4653 
4654 		if (l->addr)
4655 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4656 		else
4657 			len += sprintf(buf + len, "<not-available>");
4658 
4659 		if (l->sum_time != l->min_time) {
4660 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4661 				l->min_time,
4662 				(long)div_u64(l->sum_time, l->count),
4663 				l->max_time);
4664 		} else
4665 			len += sprintf(buf + len, " age=%ld",
4666 				l->min_time);
4667 
4668 		if (l->min_pid != l->max_pid)
4669 			len += sprintf(buf + len, " pid=%ld-%ld",
4670 				l->min_pid, l->max_pid);
4671 		else
4672 			len += sprintf(buf + len, " pid=%ld",
4673 				l->min_pid);
4674 
4675 		if (num_online_cpus() > 1 &&
4676 				!cpumask_empty(to_cpumask(l->cpus)) &&
4677 				len < PAGE_SIZE - 60)
4678 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4679 					 " cpus=%*pbl",
4680 					 cpumask_pr_args(to_cpumask(l->cpus)));
4681 
4682 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4683 				len < PAGE_SIZE - 60)
4684 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4685 					 " nodes=%*pbl",
4686 					 nodemask_pr_args(&l->nodes));
4687 
4688 		len += sprintf(buf + len, "\n");
4689 	}
4690 
4691 	free_loc_track(&t);
4692 	if (!t.count)
4693 		len += sprintf(buf, "No data\n");
4694 	return len;
4695 }
4696 #endif	/* CONFIG_SLUB_DEBUG */
4697 
4698 #ifdef SLUB_RESILIENCY_TEST
4699 static void __init resiliency_test(void)
4700 {
4701 	u8 *p;
4702 	int type = KMALLOC_NORMAL;
4703 
4704 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4705 
4706 	pr_err("SLUB resiliency testing\n");
4707 	pr_err("-----------------------\n");
4708 	pr_err("A. Corruption after allocation\n");
4709 
4710 	p = kzalloc(16, GFP_KERNEL);
4711 	p[16] = 0x12;
4712 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4713 	       p + 16);
4714 
4715 	validate_slab_cache(kmalloc_caches[type][4]);
4716 
4717 	/* Hmmm... The next two are dangerous */
4718 	p = kzalloc(32, GFP_KERNEL);
4719 	p[32 + sizeof(void *)] = 0x34;
4720 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4721 	       p);
4722 	pr_err("If allocated object is overwritten then not detectable\n\n");
4723 
4724 	validate_slab_cache(kmalloc_caches[type][5]);
4725 	p = kzalloc(64, GFP_KERNEL);
4726 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4727 	*p = 0x56;
4728 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4729 	       p);
4730 	pr_err("If allocated object is overwritten then not detectable\n\n");
4731 	validate_slab_cache(kmalloc_caches[type][6]);
4732 
4733 	pr_err("\nB. Corruption after free\n");
4734 	p = kzalloc(128, GFP_KERNEL);
4735 	kfree(p);
4736 	*p = 0x78;
4737 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4738 	validate_slab_cache(kmalloc_caches[type][7]);
4739 
4740 	p = kzalloc(256, GFP_KERNEL);
4741 	kfree(p);
4742 	p[50] = 0x9a;
4743 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4744 	validate_slab_cache(kmalloc_caches[type][8]);
4745 
4746 	p = kzalloc(512, GFP_KERNEL);
4747 	kfree(p);
4748 	p[512] = 0xab;
4749 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4750 	validate_slab_cache(kmalloc_caches[type][9]);
4751 }
4752 #else
4753 #ifdef CONFIG_SYSFS
4754 static void resiliency_test(void) {};
4755 #endif
4756 #endif	/* SLUB_RESILIENCY_TEST */
4757 
4758 #ifdef CONFIG_SYSFS
4759 enum slab_stat_type {
4760 	SL_ALL,			/* All slabs */
4761 	SL_PARTIAL,		/* Only partially allocated slabs */
4762 	SL_CPU,			/* Only slabs used for cpu caches */
4763 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4764 	SL_TOTAL		/* Determine object capacity not slabs */
4765 };
4766 
4767 #define SO_ALL		(1 << SL_ALL)
4768 #define SO_PARTIAL	(1 << SL_PARTIAL)
4769 #define SO_CPU		(1 << SL_CPU)
4770 #define SO_OBJECTS	(1 << SL_OBJECTS)
4771 #define SO_TOTAL	(1 << SL_TOTAL)
4772 
4773 #ifdef CONFIG_MEMCG
4774 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4775 
4776 static int __init setup_slub_memcg_sysfs(char *str)
4777 {
4778 	int v;
4779 
4780 	if (get_option(&str, &v) > 0)
4781 		memcg_sysfs_enabled = v;
4782 
4783 	return 1;
4784 }
4785 
4786 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4787 #endif
4788 
4789 static ssize_t show_slab_objects(struct kmem_cache *s,
4790 			    char *buf, unsigned long flags)
4791 {
4792 	unsigned long total = 0;
4793 	int node;
4794 	int x;
4795 	unsigned long *nodes;
4796 
4797 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4798 	if (!nodes)
4799 		return -ENOMEM;
4800 
4801 	if (flags & SO_CPU) {
4802 		int cpu;
4803 
4804 		for_each_possible_cpu(cpu) {
4805 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4806 							       cpu);
4807 			int node;
4808 			struct page *page;
4809 
4810 			page = READ_ONCE(c->page);
4811 			if (!page)
4812 				continue;
4813 
4814 			node = page_to_nid(page);
4815 			if (flags & SO_TOTAL)
4816 				x = page->objects;
4817 			else if (flags & SO_OBJECTS)
4818 				x = page->inuse;
4819 			else
4820 				x = 1;
4821 
4822 			total += x;
4823 			nodes[node] += x;
4824 
4825 			page = slub_percpu_partial_read_once(c);
4826 			if (page) {
4827 				node = page_to_nid(page);
4828 				if (flags & SO_TOTAL)
4829 					WARN_ON_ONCE(1);
4830 				else if (flags & SO_OBJECTS)
4831 					WARN_ON_ONCE(1);
4832 				else
4833 					x = page->pages;
4834 				total += x;
4835 				nodes[node] += x;
4836 			}
4837 		}
4838 	}
4839 
4840 	/*
4841 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4842 	 * already held which will conflict with an existing lock order:
4843 	 *
4844 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4845 	 *
4846 	 * We don't really need mem_hotplug_lock (to hold off
4847 	 * slab_mem_going_offline_callback) here because slab's memory hot
4848 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4849 	 */
4850 
4851 #ifdef CONFIG_SLUB_DEBUG
4852 	if (flags & SO_ALL) {
4853 		struct kmem_cache_node *n;
4854 
4855 		for_each_kmem_cache_node(s, node, n) {
4856 
4857 			if (flags & SO_TOTAL)
4858 				x = atomic_long_read(&n->total_objects);
4859 			else if (flags & SO_OBJECTS)
4860 				x = atomic_long_read(&n->total_objects) -
4861 					count_partial(n, count_free);
4862 			else
4863 				x = atomic_long_read(&n->nr_slabs);
4864 			total += x;
4865 			nodes[node] += x;
4866 		}
4867 
4868 	} else
4869 #endif
4870 	if (flags & SO_PARTIAL) {
4871 		struct kmem_cache_node *n;
4872 
4873 		for_each_kmem_cache_node(s, node, n) {
4874 			if (flags & SO_TOTAL)
4875 				x = count_partial(n, count_total);
4876 			else if (flags & SO_OBJECTS)
4877 				x = count_partial(n, count_inuse);
4878 			else
4879 				x = n->nr_partial;
4880 			total += x;
4881 			nodes[node] += x;
4882 		}
4883 	}
4884 	x = sprintf(buf, "%lu", total);
4885 #ifdef CONFIG_NUMA
4886 	for (node = 0; node < nr_node_ids; node++)
4887 		if (nodes[node])
4888 			x += sprintf(buf + x, " N%d=%lu",
4889 					node, nodes[node]);
4890 #endif
4891 	kfree(nodes);
4892 	return x + sprintf(buf + x, "\n");
4893 }
4894 
4895 #ifdef CONFIG_SLUB_DEBUG
4896 static int any_slab_objects(struct kmem_cache *s)
4897 {
4898 	int node;
4899 	struct kmem_cache_node *n;
4900 
4901 	for_each_kmem_cache_node(s, node, n)
4902 		if (atomic_long_read(&n->total_objects))
4903 			return 1;
4904 
4905 	return 0;
4906 }
4907 #endif
4908 
4909 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4910 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4911 
4912 struct slab_attribute {
4913 	struct attribute attr;
4914 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4915 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4916 };
4917 
4918 #define SLAB_ATTR_RO(_name) \
4919 	static struct slab_attribute _name##_attr = \
4920 	__ATTR(_name, 0400, _name##_show, NULL)
4921 
4922 #define SLAB_ATTR(_name) \
4923 	static struct slab_attribute _name##_attr =  \
4924 	__ATTR(_name, 0600, _name##_show, _name##_store)
4925 
4926 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4927 {
4928 	return sprintf(buf, "%u\n", s->size);
4929 }
4930 SLAB_ATTR_RO(slab_size);
4931 
4932 static ssize_t align_show(struct kmem_cache *s, char *buf)
4933 {
4934 	return sprintf(buf, "%u\n", s->align);
4935 }
4936 SLAB_ATTR_RO(align);
4937 
4938 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4939 {
4940 	return sprintf(buf, "%u\n", s->object_size);
4941 }
4942 SLAB_ATTR_RO(object_size);
4943 
4944 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4945 {
4946 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4947 }
4948 SLAB_ATTR_RO(objs_per_slab);
4949 
4950 static ssize_t order_store(struct kmem_cache *s,
4951 				const char *buf, size_t length)
4952 {
4953 	unsigned int order;
4954 	int err;
4955 
4956 	err = kstrtouint(buf, 10, &order);
4957 	if (err)
4958 		return err;
4959 
4960 	if (order > slub_max_order || order < slub_min_order)
4961 		return -EINVAL;
4962 
4963 	calculate_sizes(s, order);
4964 	return length;
4965 }
4966 
4967 static ssize_t order_show(struct kmem_cache *s, char *buf)
4968 {
4969 	return sprintf(buf, "%u\n", oo_order(s->oo));
4970 }
4971 SLAB_ATTR(order);
4972 
4973 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4974 {
4975 	return sprintf(buf, "%lu\n", s->min_partial);
4976 }
4977 
4978 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4979 				 size_t length)
4980 {
4981 	unsigned long min;
4982 	int err;
4983 
4984 	err = kstrtoul(buf, 10, &min);
4985 	if (err)
4986 		return err;
4987 
4988 	set_min_partial(s, min);
4989 	return length;
4990 }
4991 SLAB_ATTR(min_partial);
4992 
4993 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4994 {
4995 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4996 }
4997 
4998 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4999 				 size_t length)
5000 {
5001 	unsigned int objects;
5002 	int err;
5003 
5004 	err = kstrtouint(buf, 10, &objects);
5005 	if (err)
5006 		return err;
5007 	if (objects && !kmem_cache_has_cpu_partial(s))
5008 		return -EINVAL;
5009 
5010 	slub_set_cpu_partial(s, objects);
5011 	flush_all(s);
5012 	return length;
5013 }
5014 SLAB_ATTR(cpu_partial);
5015 
5016 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5017 {
5018 	if (!s->ctor)
5019 		return 0;
5020 	return sprintf(buf, "%pS\n", s->ctor);
5021 }
5022 SLAB_ATTR_RO(ctor);
5023 
5024 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5025 {
5026 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5027 }
5028 SLAB_ATTR_RO(aliases);
5029 
5030 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5031 {
5032 	return show_slab_objects(s, buf, SO_PARTIAL);
5033 }
5034 SLAB_ATTR_RO(partial);
5035 
5036 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5037 {
5038 	return show_slab_objects(s, buf, SO_CPU);
5039 }
5040 SLAB_ATTR_RO(cpu_slabs);
5041 
5042 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5043 {
5044 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5045 }
5046 SLAB_ATTR_RO(objects);
5047 
5048 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5049 {
5050 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5051 }
5052 SLAB_ATTR_RO(objects_partial);
5053 
5054 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5055 {
5056 	int objects = 0;
5057 	int pages = 0;
5058 	int cpu;
5059 	int len;
5060 
5061 	for_each_online_cpu(cpu) {
5062 		struct page *page;
5063 
5064 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5065 
5066 		if (page) {
5067 			pages += page->pages;
5068 			objects += page->pobjects;
5069 		}
5070 	}
5071 
5072 	len = sprintf(buf, "%d(%d)", objects, pages);
5073 
5074 #ifdef CONFIG_SMP
5075 	for_each_online_cpu(cpu) {
5076 		struct page *page;
5077 
5078 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5079 
5080 		if (page && len < PAGE_SIZE - 20)
5081 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5082 				page->pobjects, page->pages);
5083 	}
5084 #endif
5085 	return len + sprintf(buf + len, "\n");
5086 }
5087 SLAB_ATTR_RO(slabs_cpu_partial);
5088 
5089 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5090 {
5091 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5092 }
5093 
5094 static ssize_t reclaim_account_store(struct kmem_cache *s,
5095 				const char *buf, size_t length)
5096 {
5097 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5098 	if (buf[0] == '1')
5099 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5100 	return length;
5101 }
5102 SLAB_ATTR(reclaim_account);
5103 
5104 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5105 {
5106 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5107 }
5108 SLAB_ATTR_RO(hwcache_align);
5109 
5110 #ifdef CONFIG_ZONE_DMA
5111 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5112 {
5113 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5114 }
5115 SLAB_ATTR_RO(cache_dma);
5116 #endif
5117 
5118 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5119 {
5120 	return sprintf(buf, "%u\n", s->usersize);
5121 }
5122 SLAB_ATTR_RO(usersize);
5123 
5124 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5125 {
5126 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5127 }
5128 SLAB_ATTR_RO(destroy_by_rcu);
5129 
5130 #ifdef CONFIG_SLUB_DEBUG
5131 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5132 {
5133 	return show_slab_objects(s, buf, SO_ALL);
5134 }
5135 SLAB_ATTR_RO(slabs);
5136 
5137 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5138 {
5139 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5140 }
5141 SLAB_ATTR_RO(total_objects);
5142 
5143 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5144 {
5145 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5146 }
5147 
5148 static ssize_t sanity_checks_store(struct kmem_cache *s,
5149 				const char *buf, size_t length)
5150 {
5151 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5152 	if (buf[0] == '1') {
5153 		s->flags &= ~__CMPXCHG_DOUBLE;
5154 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5155 	}
5156 	return length;
5157 }
5158 SLAB_ATTR(sanity_checks);
5159 
5160 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5161 {
5162 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5163 }
5164 
5165 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5166 							size_t length)
5167 {
5168 	/*
5169 	 * Tracing a merged cache is going to give confusing results
5170 	 * as well as cause other issues like converting a mergeable
5171 	 * cache into an umergeable one.
5172 	 */
5173 	if (s->refcount > 1)
5174 		return -EINVAL;
5175 
5176 	s->flags &= ~SLAB_TRACE;
5177 	if (buf[0] == '1') {
5178 		s->flags &= ~__CMPXCHG_DOUBLE;
5179 		s->flags |= SLAB_TRACE;
5180 	}
5181 	return length;
5182 }
5183 SLAB_ATTR(trace);
5184 
5185 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5186 {
5187 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5188 }
5189 
5190 static ssize_t red_zone_store(struct kmem_cache *s,
5191 				const char *buf, size_t length)
5192 {
5193 	if (any_slab_objects(s))
5194 		return -EBUSY;
5195 
5196 	s->flags &= ~SLAB_RED_ZONE;
5197 	if (buf[0] == '1') {
5198 		s->flags |= SLAB_RED_ZONE;
5199 	}
5200 	calculate_sizes(s, -1);
5201 	return length;
5202 }
5203 SLAB_ATTR(red_zone);
5204 
5205 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5206 {
5207 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5208 }
5209 
5210 static ssize_t poison_store(struct kmem_cache *s,
5211 				const char *buf, size_t length)
5212 {
5213 	if (any_slab_objects(s))
5214 		return -EBUSY;
5215 
5216 	s->flags &= ~SLAB_POISON;
5217 	if (buf[0] == '1') {
5218 		s->flags |= SLAB_POISON;
5219 	}
5220 	calculate_sizes(s, -1);
5221 	return length;
5222 }
5223 SLAB_ATTR(poison);
5224 
5225 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5226 {
5227 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5228 }
5229 
5230 static ssize_t store_user_store(struct kmem_cache *s,
5231 				const char *buf, size_t length)
5232 {
5233 	if (any_slab_objects(s))
5234 		return -EBUSY;
5235 
5236 	s->flags &= ~SLAB_STORE_USER;
5237 	if (buf[0] == '1') {
5238 		s->flags &= ~__CMPXCHG_DOUBLE;
5239 		s->flags |= SLAB_STORE_USER;
5240 	}
5241 	calculate_sizes(s, -1);
5242 	return length;
5243 }
5244 SLAB_ATTR(store_user);
5245 
5246 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5247 {
5248 	return 0;
5249 }
5250 
5251 static ssize_t validate_store(struct kmem_cache *s,
5252 			const char *buf, size_t length)
5253 {
5254 	int ret = -EINVAL;
5255 
5256 	if (buf[0] == '1') {
5257 		ret = validate_slab_cache(s);
5258 		if (ret >= 0)
5259 			ret = length;
5260 	}
5261 	return ret;
5262 }
5263 SLAB_ATTR(validate);
5264 
5265 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5266 {
5267 	if (!(s->flags & SLAB_STORE_USER))
5268 		return -ENOSYS;
5269 	return list_locations(s, buf, TRACK_ALLOC);
5270 }
5271 SLAB_ATTR_RO(alloc_calls);
5272 
5273 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5274 {
5275 	if (!(s->flags & SLAB_STORE_USER))
5276 		return -ENOSYS;
5277 	return list_locations(s, buf, TRACK_FREE);
5278 }
5279 SLAB_ATTR_RO(free_calls);
5280 #endif /* CONFIG_SLUB_DEBUG */
5281 
5282 #ifdef CONFIG_FAILSLAB
5283 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5284 {
5285 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5286 }
5287 
5288 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5289 							size_t length)
5290 {
5291 	if (s->refcount > 1)
5292 		return -EINVAL;
5293 
5294 	s->flags &= ~SLAB_FAILSLAB;
5295 	if (buf[0] == '1')
5296 		s->flags |= SLAB_FAILSLAB;
5297 	return length;
5298 }
5299 SLAB_ATTR(failslab);
5300 #endif
5301 
5302 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5303 {
5304 	return 0;
5305 }
5306 
5307 static ssize_t shrink_store(struct kmem_cache *s,
5308 			const char *buf, size_t length)
5309 {
5310 	if (buf[0] == '1')
5311 		kmem_cache_shrink_all(s);
5312 	else
5313 		return -EINVAL;
5314 	return length;
5315 }
5316 SLAB_ATTR(shrink);
5317 
5318 #ifdef CONFIG_NUMA
5319 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5320 {
5321 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5322 }
5323 
5324 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5325 				const char *buf, size_t length)
5326 {
5327 	unsigned int ratio;
5328 	int err;
5329 
5330 	err = kstrtouint(buf, 10, &ratio);
5331 	if (err)
5332 		return err;
5333 	if (ratio > 100)
5334 		return -ERANGE;
5335 
5336 	s->remote_node_defrag_ratio = ratio * 10;
5337 
5338 	return length;
5339 }
5340 SLAB_ATTR(remote_node_defrag_ratio);
5341 #endif
5342 
5343 #ifdef CONFIG_SLUB_STATS
5344 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5345 {
5346 	unsigned long sum  = 0;
5347 	int cpu;
5348 	int len;
5349 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5350 
5351 	if (!data)
5352 		return -ENOMEM;
5353 
5354 	for_each_online_cpu(cpu) {
5355 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5356 
5357 		data[cpu] = x;
5358 		sum += x;
5359 	}
5360 
5361 	len = sprintf(buf, "%lu", sum);
5362 
5363 #ifdef CONFIG_SMP
5364 	for_each_online_cpu(cpu) {
5365 		if (data[cpu] && len < PAGE_SIZE - 20)
5366 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5367 	}
5368 #endif
5369 	kfree(data);
5370 	return len + sprintf(buf + len, "\n");
5371 }
5372 
5373 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5374 {
5375 	int cpu;
5376 
5377 	for_each_online_cpu(cpu)
5378 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5379 }
5380 
5381 #define STAT_ATTR(si, text) 					\
5382 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5383 {								\
5384 	return show_stat(s, buf, si);				\
5385 }								\
5386 static ssize_t text##_store(struct kmem_cache *s,		\
5387 				const char *buf, size_t length)	\
5388 {								\
5389 	if (buf[0] != '0')					\
5390 		return -EINVAL;					\
5391 	clear_stat(s, si);					\
5392 	return length;						\
5393 }								\
5394 SLAB_ATTR(text);						\
5395 
5396 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5397 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5398 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5399 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5400 STAT_ATTR(FREE_FROZEN, free_frozen);
5401 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5402 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5403 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5404 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5405 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5406 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5407 STAT_ATTR(FREE_SLAB, free_slab);
5408 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5409 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5410 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5411 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5412 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5413 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5414 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5415 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5416 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5417 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5418 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5419 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5420 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5421 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5422 #endif	/* CONFIG_SLUB_STATS */
5423 
5424 static struct attribute *slab_attrs[] = {
5425 	&slab_size_attr.attr,
5426 	&object_size_attr.attr,
5427 	&objs_per_slab_attr.attr,
5428 	&order_attr.attr,
5429 	&min_partial_attr.attr,
5430 	&cpu_partial_attr.attr,
5431 	&objects_attr.attr,
5432 	&objects_partial_attr.attr,
5433 	&partial_attr.attr,
5434 	&cpu_slabs_attr.attr,
5435 	&ctor_attr.attr,
5436 	&aliases_attr.attr,
5437 	&align_attr.attr,
5438 	&hwcache_align_attr.attr,
5439 	&reclaim_account_attr.attr,
5440 	&destroy_by_rcu_attr.attr,
5441 	&shrink_attr.attr,
5442 	&slabs_cpu_partial_attr.attr,
5443 #ifdef CONFIG_SLUB_DEBUG
5444 	&total_objects_attr.attr,
5445 	&slabs_attr.attr,
5446 	&sanity_checks_attr.attr,
5447 	&trace_attr.attr,
5448 	&red_zone_attr.attr,
5449 	&poison_attr.attr,
5450 	&store_user_attr.attr,
5451 	&validate_attr.attr,
5452 	&alloc_calls_attr.attr,
5453 	&free_calls_attr.attr,
5454 #endif
5455 #ifdef CONFIG_ZONE_DMA
5456 	&cache_dma_attr.attr,
5457 #endif
5458 #ifdef CONFIG_NUMA
5459 	&remote_node_defrag_ratio_attr.attr,
5460 #endif
5461 #ifdef CONFIG_SLUB_STATS
5462 	&alloc_fastpath_attr.attr,
5463 	&alloc_slowpath_attr.attr,
5464 	&free_fastpath_attr.attr,
5465 	&free_slowpath_attr.attr,
5466 	&free_frozen_attr.attr,
5467 	&free_add_partial_attr.attr,
5468 	&free_remove_partial_attr.attr,
5469 	&alloc_from_partial_attr.attr,
5470 	&alloc_slab_attr.attr,
5471 	&alloc_refill_attr.attr,
5472 	&alloc_node_mismatch_attr.attr,
5473 	&free_slab_attr.attr,
5474 	&cpuslab_flush_attr.attr,
5475 	&deactivate_full_attr.attr,
5476 	&deactivate_empty_attr.attr,
5477 	&deactivate_to_head_attr.attr,
5478 	&deactivate_to_tail_attr.attr,
5479 	&deactivate_remote_frees_attr.attr,
5480 	&deactivate_bypass_attr.attr,
5481 	&order_fallback_attr.attr,
5482 	&cmpxchg_double_fail_attr.attr,
5483 	&cmpxchg_double_cpu_fail_attr.attr,
5484 	&cpu_partial_alloc_attr.attr,
5485 	&cpu_partial_free_attr.attr,
5486 	&cpu_partial_node_attr.attr,
5487 	&cpu_partial_drain_attr.attr,
5488 #endif
5489 #ifdef CONFIG_FAILSLAB
5490 	&failslab_attr.attr,
5491 #endif
5492 	&usersize_attr.attr,
5493 
5494 	NULL
5495 };
5496 
5497 static const struct attribute_group slab_attr_group = {
5498 	.attrs = slab_attrs,
5499 };
5500 
5501 static ssize_t slab_attr_show(struct kobject *kobj,
5502 				struct attribute *attr,
5503 				char *buf)
5504 {
5505 	struct slab_attribute *attribute;
5506 	struct kmem_cache *s;
5507 	int err;
5508 
5509 	attribute = to_slab_attr(attr);
5510 	s = to_slab(kobj);
5511 
5512 	if (!attribute->show)
5513 		return -EIO;
5514 
5515 	err = attribute->show(s, buf);
5516 
5517 	return err;
5518 }
5519 
5520 static ssize_t slab_attr_store(struct kobject *kobj,
5521 				struct attribute *attr,
5522 				const char *buf, size_t len)
5523 {
5524 	struct slab_attribute *attribute;
5525 	struct kmem_cache *s;
5526 	int err;
5527 
5528 	attribute = to_slab_attr(attr);
5529 	s = to_slab(kobj);
5530 
5531 	if (!attribute->store)
5532 		return -EIO;
5533 
5534 	err = attribute->store(s, buf, len);
5535 #ifdef CONFIG_MEMCG
5536 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5537 		struct kmem_cache *c;
5538 
5539 		mutex_lock(&slab_mutex);
5540 		if (s->max_attr_size < len)
5541 			s->max_attr_size = len;
5542 
5543 		/*
5544 		 * This is a best effort propagation, so this function's return
5545 		 * value will be determined by the parent cache only. This is
5546 		 * basically because not all attributes will have a well
5547 		 * defined semantics for rollbacks - most of the actions will
5548 		 * have permanent effects.
5549 		 *
5550 		 * Returning the error value of any of the children that fail
5551 		 * is not 100 % defined, in the sense that users seeing the
5552 		 * error code won't be able to know anything about the state of
5553 		 * the cache.
5554 		 *
5555 		 * Only returning the error code for the parent cache at least
5556 		 * has well defined semantics. The cache being written to
5557 		 * directly either failed or succeeded, in which case we loop
5558 		 * through the descendants with best-effort propagation.
5559 		 */
5560 		for_each_memcg_cache(c, s)
5561 			attribute->store(c, buf, len);
5562 		mutex_unlock(&slab_mutex);
5563 	}
5564 #endif
5565 	return err;
5566 }
5567 
5568 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5569 {
5570 #ifdef CONFIG_MEMCG
5571 	int i;
5572 	char *buffer = NULL;
5573 	struct kmem_cache *root_cache;
5574 
5575 	if (is_root_cache(s))
5576 		return;
5577 
5578 	root_cache = s->memcg_params.root_cache;
5579 
5580 	/*
5581 	 * This mean this cache had no attribute written. Therefore, no point
5582 	 * in copying default values around
5583 	 */
5584 	if (!root_cache->max_attr_size)
5585 		return;
5586 
5587 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5588 		char mbuf[64];
5589 		char *buf;
5590 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5591 		ssize_t len;
5592 
5593 		if (!attr || !attr->store || !attr->show)
5594 			continue;
5595 
5596 		/*
5597 		 * It is really bad that we have to allocate here, so we will
5598 		 * do it only as a fallback. If we actually allocate, though,
5599 		 * we can just use the allocated buffer until the end.
5600 		 *
5601 		 * Most of the slub attributes will tend to be very small in
5602 		 * size, but sysfs allows buffers up to a page, so they can
5603 		 * theoretically happen.
5604 		 */
5605 		if (buffer)
5606 			buf = buffer;
5607 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5608 			buf = mbuf;
5609 		else {
5610 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5611 			if (WARN_ON(!buffer))
5612 				continue;
5613 			buf = buffer;
5614 		}
5615 
5616 		len = attr->show(root_cache, buf);
5617 		if (len > 0)
5618 			attr->store(s, buf, len);
5619 	}
5620 
5621 	if (buffer)
5622 		free_page((unsigned long)buffer);
5623 #endif	/* CONFIG_MEMCG */
5624 }
5625 
5626 static void kmem_cache_release(struct kobject *k)
5627 {
5628 	slab_kmem_cache_release(to_slab(k));
5629 }
5630 
5631 static const struct sysfs_ops slab_sysfs_ops = {
5632 	.show = slab_attr_show,
5633 	.store = slab_attr_store,
5634 };
5635 
5636 static struct kobj_type slab_ktype = {
5637 	.sysfs_ops = &slab_sysfs_ops,
5638 	.release = kmem_cache_release,
5639 };
5640 
5641 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5642 {
5643 	struct kobj_type *ktype = get_ktype(kobj);
5644 
5645 	if (ktype == &slab_ktype)
5646 		return 1;
5647 	return 0;
5648 }
5649 
5650 static const struct kset_uevent_ops slab_uevent_ops = {
5651 	.filter = uevent_filter,
5652 };
5653 
5654 static struct kset *slab_kset;
5655 
5656 static inline struct kset *cache_kset(struct kmem_cache *s)
5657 {
5658 #ifdef CONFIG_MEMCG
5659 	if (!is_root_cache(s))
5660 		return s->memcg_params.root_cache->memcg_kset;
5661 #endif
5662 	return slab_kset;
5663 }
5664 
5665 #define ID_STR_LENGTH 64
5666 
5667 /* Create a unique string id for a slab cache:
5668  *
5669  * Format	:[flags-]size
5670  */
5671 static char *create_unique_id(struct kmem_cache *s)
5672 {
5673 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5674 	char *p = name;
5675 
5676 	BUG_ON(!name);
5677 
5678 	*p++ = ':';
5679 	/*
5680 	 * First flags affecting slabcache operations. We will only
5681 	 * get here for aliasable slabs so we do not need to support
5682 	 * too many flags. The flags here must cover all flags that
5683 	 * are matched during merging to guarantee that the id is
5684 	 * unique.
5685 	 */
5686 	if (s->flags & SLAB_CACHE_DMA)
5687 		*p++ = 'd';
5688 	if (s->flags & SLAB_CACHE_DMA32)
5689 		*p++ = 'D';
5690 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5691 		*p++ = 'a';
5692 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5693 		*p++ = 'F';
5694 	if (s->flags & SLAB_ACCOUNT)
5695 		*p++ = 'A';
5696 	if (p != name + 1)
5697 		*p++ = '-';
5698 	p += sprintf(p, "%07u", s->size);
5699 
5700 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5701 	return name;
5702 }
5703 
5704 static void sysfs_slab_remove_workfn(struct work_struct *work)
5705 {
5706 	struct kmem_cache *s =
5707 		container_of(work, struct kmem_cache, kobj_remove_work);
5708 
5709 	if (!s->kobj.state_in_sysfs)
5710 		/*
5711 		 * For a memcg cache, this may be called during
5712 		 * deactivation and again on shutdown.  Remove only once.
5713 		 * A cache is never shut down before deactivation is
5714 		 * complete, so no need to worry about synchronization.
5715 		 */
5716 		goto out;
5717 
5718 #ifdef CONFIG_MEMCG
5719 	kset_unregister(s->memcg_kset);
5720 #endif
5721 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5722 out:
5723 	kobject_put(&s->kobj);
5724 }
5725 
5726 static int sysfs_slab_add(struct kmem_cache *s)
5727 {
5728 	int err;
5729 	const char *name;
5730 	struct kset *kset = cache_kset(s);
5731 	int unmergeable = slab_unmergeable(s);
5732 
5733 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5734 
5735 	if (!kset) {
5736 		kobject_init(&s->kobj, &slab_ktype);
5737 		return 0;
5738 	}
5739 
5740 	if (!unmergeable && disable_higher_order_debug &&
5741 			(slub_debug & DEBUG_METADATA_FLAGS))
5742 		unmergeable = 1;
5743 
5744 	if (unmergeable) {
5745 		/*
5746 		 * Slabcache can never be merged so we can use the name proper.
5747 		 * This is typically the case for debug situations. In that
5748 		 * case we can catch duplicate names easily.
5749 		 */
5750 		sysfs_remove_link(&slab_kset->kobj, s->name);
5751 		name = s->name;
5752 	} else {
5753 		/*
5754 		 * Create a unique name for the slab as a target
5755 		 * for the symlinks.
5756 		 */
5757 		name = create_unique_id(s);
5758 	}
5759 
5760 	s->kobj.kset = kset;
5761 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5762 	if (err)
5763 		goto out;
5764 
5765 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5766 	if (err)
5767 		goto out_del_kobj;
5768 
5769 #ifdef CONFIG_MEMCG
5770 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5771 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5772 		if (!s->memcg_kset) {
5773 			err = -ENOMEM;
5774 			goto out_del_kobj;
5775 		}
5776 	}
5777 #endif
5778 
5779 	kobject_uevent(&s->kobj, KOBJ_ADD);
5780 	if (!unmergeable) {
5781 		/* Setup first alias */
5782 		sysfs_slab_alias(s, s->name);
5783 	}
5784 out:
5785 	if (!unmergeable)
5786 		kfree(name);
5787 	return err;
5788 out_del_kobj:
5789 	kobject_del(&s->kobj);
5790 	goto out;
5791 }
5792 
5793 static void sysfs_slab_remove(struct kmem_cache *s)
5794 {
5795 	if (slab_state < FULL)
5796 		/*
5797 		 * Sysfs has not been setup yet so no need to remove the
5798 		 * cache from sysfs.
5799 		 */
5800 		return;
5801 
5802 	kobject_get(&s->kobj);
5803 	schedule_work(&s->kobj_remove_work);
5804 }
5805 
5806 void sysfs_slab_unlink(struct kmem_cache *s)
5807 {
5808 	if (slab_state >= FULL)
5809 		kobject_del(&s->kobj);
5810 }
5811 
5812 void sysfs_slab_release(struct kmem_cache *s)
5813 {
5814 	if (slab_state >= FULL)
5815 		kobject_put(&s->kobj);
5816 }
5817 
5818 /*
5819  * Need to buffer aliases during bootup until sysfs becomes
5820  * available lest we lose that information.
5821  */
5822 struct saved_alias {
5823 	struct kmem_cache *s;
5824 	const char *name;
5825 	struct saved_alias *next;
5826 };
5827 
5828 static struct saved_alias *alias_list;
5829 
5830 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5831 {
5832 	struct saved_alias *al;
5833 
5834 	if (slab_state == FULL) {
5835 		/*
5836 		 * If we have a leftover link then remove it.
5837 		 */
5838 		sysfs_remove_link(&slab_kset->kobj, name);
5839 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5840 	}
5841 
5842 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5843 	if (!al)
5844 		return -ENOMEM;
5845 
5846 	al->s = s;
5847 	al->name = name;
5848 	al->next = alias_list;
5849 	alias_list = al;
5850 	return 0;
5851 }
5852 
5853 static int __init slab_sysfs_init(void)
5854 {
5855 	struct kmem_cache *s;
5856 	int err;
5857 
5858 	mutex_lock(&slab_mutex);
5859 
5860 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5861 	if (!slab_kset) {
5862 		mutex_unlock(&slab_mutex);
5863 		pr_err("Cannot register slab subsystem.\n");
5864 		return -ENOSYS;
5865 	}
5866 
5867 	slab_state = FULL;
5868 
5869 	list_for_each_entry(s, &slab_caches, list) {
5870 		err = sysfs_slab_add(s);
5871 		if (err)
5872 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5873 			       s->name);
5874 	}
5875 
5876 	while (alias_list) {
5877 		struct saved_alias *al = alias_list;
5878 
5879 		alias_list = alias_list->next;
5880 		err = sysfs_slab_alias(al->s, al->name);
5881 		if (err)
5882 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5883 			       al->name);
5884 		kfree(al);
5885 	}
5886 
5887 	mutex_unlock(&slab_mutex);
5888 	resiliency_test();
5889 	return 0;
5890 }
5891 
5892 __initcall(slab_sysfs_init);
5893 #endif /* CONFIG_SYSFS */
5894 
5895 /*
5896  * The /proc/slabinfo ABI
5897  */
5898 #ifdef CONFIG_SLUB_DEBUG
5899 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5900 {
5901 	unsigned long nr_slabs = 0;
5902 	unsigned long nr_objs = 0;
5903 	unsigned long nr_free = 0;
5904 	int node;
5905 	struct kmem_cache_node *n;
5906 
5907 	for_each_kmem_cache_node(s, node, n) {
5908 		nr_slabs += node_nr_slabs(n);
5909 		nr_objs += node_nr_objs(n);
5910 		nr_free += count_partial(n, count_free);
5911 	}
5912 
5913 	sinfo->active_objs = nr_objs - nr_free;
5914 	sinfo->num_objs = nr_objs;
5915 	sinfo->active_slabs = nr_slabs;
5916 	sinfo->num_slabs = nr_slabs;
5917 	sinfo->objects_per_slab = oo_objects(s->oo);
5918 	sinfo->cache_order = oo_order(s->oo);
5919 }
5920 
5921 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5922 {
5923 }
5924 
5925 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5926 		       size_t count, loff_t *ppos)
5927 {
5928 	return -EIO;
5929 }
5930 #endif /* CONFIG_SLUB_DEBUG */
5931