xref: /linux/mm/slub.c (revision a9fc2304972b1db28b88af8203dffef23e1e92ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/mempolicy.h>
30 #include <linux/ctype.h>
31 #include <linux/stackdepot.h>
32 #include <linux/debugobjects.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kfence.h>
35 #include <linux/memory.h>
36 #include <linux/math64.h>
37 #include <linux/fault-inject.h>
38 #include <linux/kmemleak.h>
39 #include <linux/stacktrace.h>
40 #include <linux/prefetch.h>
41 #include <linux/memcontrol.h>
42 #include <linux/random.h>
43 #include <kunit/test.h>
44 #include <kunit/test-bug.h>
45 #include <linux/sort.h>
46 
47 #include <linux/debugfs.h>
48 #include <trace/events/kmem.h>
49 
50 #include "internal.h"
51 
52 /*
53  * Lock order:
54  *   1. slab_mutex (Global Mutex)
55  *   2. node->list_lock (Spinlock)
56  *   3. kmem_cache->cpu_slab->lock (Local lock)
57  *   4. slab_lock(slab) (Only on some arches)
58  *   5. object_map_lock (Only for debugging)
59  *
60  *   slab_mutex
61  *
62  *   The role of the slab_mutex is to protect the list of all the slabs
63  *   and to synchronize major metadata changes to slab cache structures.
64  *   Also synchronizes memory hotplug callbacks.
65  *
66  *   slab_lock
67  *
68  *   The slab_lock is a wrapper around the page lock, thus it is a bit
69  *   spinlock.
70  *
71  *   The slab_lock is only used on arches that do not have the ability
72  *   to do a cmpxchg_double. It only protects:
73  *
74  *	A. slab->freelist	-> List of free objects in a slab
75  *	B. slab->inuse		-> Number of objects in use
76  *	C. slab->objects	-> Number of objects in slab
77  *	D. slab->frozen		-> frozen state
78  *
79  *   Frozen slabs
80  *
81  *   If a slab is frozen then it is exempt from list management. It is
82  *   the cpu slab which is actively allocated from by the processor that
83  *   froze it and it is not on any list. The processor that froze the
84  *   slab is the one who can perform list operations on the slab. Other
85  *   processors may put objects onto the freelist but the processor that
86  *   froze the slab is the only one that can retrieve the objects from the
87  *   slab's freelist.
88  *
89  *   CPU partial slabs
90  *
91  *   The partially empty slabs cached on the CPU partial list are used
92  *   for performance reasons, which speeds up the allocation process.
93  *   These slabs are not frozen, but are also exempt from list management,
94  *   by clearing the PG_workingset flag when moving out of the node
95  *   partial list. Please see __slab_free() for more details.
96  *
97  *   To sum up, the current scheme is:
98  *   - node partial slab: PG_Workingset && !frozen
99  *   - cpu partial slab: !PG_Workingset && !frozen
100  *   - cpu slab: !PG_Workingset && frozen
101  *   - full slab: !PG_Workingset && !frozen
102  *
103  *   list_lock
104  *
105  *   The list_lock protects the partial and full list on each node and
106  *   the partial slab counter. If taken then no new slabs may be added or
107  *   removed from the lists nor make the number of partial slabs be modified.
108  *   (Note that the total number of slabs is an atomic value that may be
109  *   modified without taking the list lock).
110  *
111  *   The list_lock is a centralized lock and thus we avoid taking it as
112  *   much as possible. As long as SLUB does not have to handle partial
113  *   slabs, operations can continue without any centralized lock. F.e.
114  *   allocating a long series of objects that fill up slabs does not require
115  *   the list lock.
116  *
117  *   For debug caches, all allocations are forced to go through a list_lock
118  *   protected region to serialize against concurrent validation.
119  *
120  *   cpu_slab->lock local lock
121  *
122  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
123  *   except the stat counters. This is a percpu structure manipulated only by
124  *   the local cpu, so the lock protects against being preempted or interrupted
125  *   by an irq. Fast path operations rely on lockless operations instead.
126  *
127  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
128  *   which means the lockless fastpath cannot be used as it might interfere with
129  *   an in-progress slow path operations. In this case the local lock is always
130  *   taken but it still utilizes the freelist for the common operations.
131  *
132  *   lockless fastpaths
133  *
134  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
135  *   are fully lockless when satisfied from the percpu slab (and when
136  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
137  *   They also don't disable preemption or migration or irqs. They rely on
138  *   the transaction id (tid) field to detect being preempted or moved to
139  *   another cpu.
140  *
141  *   irq, preemption, migration considerations
142  *
143  *   Interrupts are disabled as part of list_lock or local_lock operations, or
144  *   around the slab_lock operation, in order to make the slab allocator safe
145  *   to use in the context of an irq.
146  *
147  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
148  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
149  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
150  *   doesn't have to be revalidated in each section protected by the local lock.
151  *
152  * SLUB assigns one slab for allocation to each processor.
153  * Allocations only occur from these slabs called cpu slabs.
154  *
155  * Slabs with free elements are kept on a partial list and during regular
156  * operations no list for full slabs is used. If an object in a full slab is
157  * freed then the slab will show up again on the partial lists.
158  * We track full slabs for debugging purposes though because otherwise we
159  * cannot scan all objects.
160  *
161  * Slabs are freed when they become empty. Teardown and setup is
162  * minimal so we rely on the page allocators per cpu caches for
163  * fast frees and allocs.
164  *
165  * slab->frozen		The slab is frozen and exempt from list processing.
166  * 			This means that the slab is dedicated to a purpose
167  * 			such as satisfying allocations for a specific
168  * 			processor. Objects may be freed in the slab while
169  * 			it is frozen but slab_free will then skip the usual
170  * 			list operations. It is up to the processor holding
171  * 			the slab to integrate the slab into the slab lists
172  * 			when the slab is no longer needed.
173  *
174  * 			One use of this flag is to mark slabs that are
175  * 			used for allocations. Then such a slab becomes a cpu
176  * 			slab. The cpu slab may be equipped with an additional
177  * 			freelist that allows lockless access to
178  * 			free objects in addition to the regular freelist
179  * 			that requires the slab lock.
180  *
181  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
182  * 			options set. This moves	slab handling out of
183  * 			the fast path and disables lockless freelists.
184  */
185 
186 /*
187  * We could simply use migrate_disable()/enable() but as long as it's a
188  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189  */
190 #ifndef CONFIG_PREEMPT_RT
191 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
192 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
193 #define USE_LOCKLESS_FAST_PATH()	(true)
194 #else
195 #define slub_get_cpu_ptr(var)		\
196 ({					\
197 	migrate_disable();		\
198 	this_cpu_ptr(var);		\
199 })
200 #define slub_put_cpu_ptr(var)		\
201 do {					\
202 	(void)(var);			\
203 	migrate_enable();		\
204 } while (0)
205 #define USE_LOCKLESS_FAST_PATH()	(false)
206 #endif
207 
208 #ifndef CONFIG_SLUB_TINY
209 #define __fastpath_inline __always_inline
210 #else
211 #define __fastpath_inline
212 #endif
213 
214 #ifdef CONFIG_SLUB_DEBUG
215 #ifdef CONFIG_SLUB_DEBUG_ON
216 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 #else
218 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif
220 #endif		/* CONFIG_SLUB_DEBUG */
221 
222 #ifdef CONFIG_NUMA
223 static DEFINE_STATIC_KEY_FALSE(strict_numa);
224 #endif
225 
226 /* Structure holding parameters for get_partial() call chain */
227 struct partial_context {
228 	gfp_t flags;
229 	unsigned int orig_size;
230 	void *object;
231 };
232 
233 static inline bool kmem_cache_debug(struct kmem_cache *s)
234 {
235 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
236 }
237 
238 void *fixup_red_left(struct kmem_cache *s, void *p)
239 {
240 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
241 		p += s->red_left_pad;
242 
243 	return p;
244 }
245 
246 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
247 {
248 #ifdef CONFIG_SLUB_CPU_PARTIAL
249 	return !kmem_cache_debug(s);
250 #else
251 	return false;
252 #endif
253 }
254 
255 /*
256  * Issues still to be resolved:
257  *
258  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
259  *
260  * - Variable sizing of the per node arrays
261  */
262 
263 /* Enable to log cmpxchg failures */
264 #undef SLUB_DEBUG_CMPXCHG
265 
266 #ifndef CONFIG_SLUB_TINY
267 /*
268  * Minimum number of partial slabs. These will be left on the partial
269  * lists even if they are empty. kmem_cache_shrink may reclaim them.
270  */
271 #define MIN_PARTIAL 5
272 
273 /*
274  * Maximum number of desirable partial slabs.
275  * The existence of more partial slabs makes kmem_cache_shrink
276  * sort the partial list by the number of objects in use.
277  */
278 #define MAX_PARTIAL 10
279 #else
280 #define MIN_PARTIAL 0
281 #define MAX_PARTIAL 0
282 #endif
283 
284 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
285 				SLAB_POISON | SLAB_STORE_USER)
286 
287 /*
288  * These debug flags cannot use CMPXCHG because there might be consistency
289  * issues when checking or reading debug information
290  */
291 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
292 				SLAB_TRACE)
293 
294 
295 /*
296  * Debugging flags that require metadata to be stored in the slab.  These get
297  * disabled when slab_debug=O is used and a cache's min order increases with
298  * metadata.
299  */
300 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
301 
302 #define OO_SHIFT	16
303 #define OO_MASK		((1 << OO_SHIFT) - 1)
304 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
305 
306 /* Internal SLUB flags */
307 /* Poison object */
308 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
309 /* Use cmpxchg_double */
310 
311 #ifdef system_has_freelist_aba
312 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
313 #else
314 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
315 #endif
316 
317 /*
318  * Tracking user of a slab.
319  */
320 #define TRACK_ADDRS_COUNT 16
321 struct track {
322 	unsigned long addr;	/* Called from address */
323 #ifdef CONFIG_STACKDEPOT
324 	depot_stack_handle_t handle;
325 #endif
326 	int cpu;		/* Was running on cpu */
327 	int pid;		/* Pid context */
328 	unsigned long when;	/* When did the operation occur */
329 };
330 
331 enum track_item { TRACK_ALLOC, TRACK_FREE };
332 
333 #ifdef SLAB_SUPPORTS_SYSFS
334 static int sysfs_slab_add(struct kmem_cache *);
335 static int sysfs_slab_alias(struct kmem_cache *, const char *);
336 #else
337 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
338 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
339 							{ return 0; }
340 #endif
341 
342 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
343 static void debugfs_slab_add(struct kmem_cache *);
344 #else
345 static inline void debugfs_slab_add(struct kmem_cache *s) { }
346 #endif
347 
348 enum stat_item {
349 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
350 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
351 	FREE_FASTPATH,		/* Free to cpu slab */
352 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
353 	FREE_FROZEN,		/* Freeing to frozen slab */
354 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
355 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
356 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
357 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
358 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
359 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
360 	FREE_SLAB,		/* Slab freed to the page allocator */
361 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
362 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
363 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
364 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
365 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
366 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
367 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
368 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
369 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
370 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
371 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
372 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
373 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
374 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
375 	NR_SLUB_STAT_ITEMS
376 };
377 
378 #ifndef CONFIG_SLUB_TINY
379 /*
380  * When changing the layout, make sure freelist and tid are still compatible
381  * with this_cpu_cmpxchg_double() alignment requirements.
382  */
383 struct kmem_cache_cpu {
384 	union {
385 		struct {
386 			void **freelist;	/* Pointer to next available object */
387 			unsigned long tid;	/* Globally unique transaction id */
388 		};
389 		freelist_aba_t freelist_tid;
390 	};
391 	struct slab *slab;	/* The slab from which we are allocating */
392 #ifdef CONFIG_SLUB_CPU_PARTIAL
393 	struct slab *partial;	/* Partially allocated slabs */
394 #endif
395 	local_lock_t lock;	/* Protects the fields above */
396 #ifdef CONFIG_SLUB_STATS
397 	unsigned int stat[NR_SLUB_STAT_ITEMS];
398 #endif
399 };
400 #endif /* CONFIG_SLUB_TINY */
401 
402 static inline void stat(const struct kmem_cache *s, enum stat_item si)
403 {
404 #ifdef CONFIG_SLUB_STATS
405 	/*
406 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
407 	 * avoid this_cpu_add()'s irq-disable overhead.
408 	 */
409 	raw_cpu_inc(s->cpu_slab->stat[si]);
410 #endif
411 }
412 
413 static inline
414 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
415 {
416 #ifdef CONFIG_SLUB_STATS
417 	raw_cpu_add(s->cpu_slab->stat[si], v);
418 #endif
419 }
420 
421 /*
422  * The slab lists for all objects.
423  */
424 struct kmem_cache_node {
425 	spinlock_t list_lock;
426 	unsigned long nr_partial;
427 	struct list_head partial;
428 #ifdef CONFIG_SLUB_DEBUG
429 	atomic_long_t nr_slabs;
430 	atomic_long_t total_objects;
431 	struct list_head full;
432 #endif
433 };
434 
435 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
436 {
437 	return s->node[node];
438 }
439 
440 /*
441  * Iterator over all nodes. The body will be executed for each node that has
442  * a kmem_cache_node structure allocated (which is true for all online nodes)
443  */
444 #define for_each_kmem_cache_node(__s, __node, __n) \
445 	for (__node = 0; __node < nr_node_ids; __node++) \
446 		 if ((__n = get_node(__s, __node)))
447 
448 /*
449  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
450  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
451  * differ during memory hotplug/hotremove operations.
452  * Protected by slab_mutex.
453  */
454 static nodemask_t slab_nodes;
455 
456 #ifndef CONFIG_SLUB_TINY
457 /*
458  * Workqueue used for flush_cpu_slab().
459  */
460 static struct workqueue_struct *flushwq;
461 #endif
462 
463 /********************************************************************
464  * 			Core slab cache functions
465  *******************************************************************/
466 
467 /*
468  * Returns freelist pointer (ptr). With hardening, this is obfuscated
469  * with an XOR of the address where the pointer is held and a per-cache
470  * random number.
471  */
472 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
473 					    void *ptr, unsigned long ptr_addr)
474 {
475 	unsigned long encoded;
476 
477 #ifdef CONFIG_SLAB_FREELIST_HARDENED
478 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
479 #else
480 	encoded = (unsigned long)ptr;
481 #endif
482 	return (freeptr_t){.v = encoded};
483 }
484 
485 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
486 					freeptr_t ptr, unsigned long ptr_addr)
487 {
488 	void *decoded;
489 
490 #ifdef CONFIG_SLAB_FREELIST_HARDENED
491 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
492 #else
493 	decoded = (void *)ptr.v;
494 #endif
495 	return decoded;
496 }
497 
498 static inline void *get_freepointer(struct kmem_cache *s, void *object)
499 {
500 	unsigned long ptr_addr;
501 	freeptr_t p;
502 
503 	object = kasan_reset_tag(object);
504 	ptr_addr = (unsigned long)object + s->offset;
505 	p = *(freeptr_t *)(ptr_addr);
506 	return freelist_ptr_decode(s, p, ptr_addr);
507 }
508 
509 #ifndef CONFIG_SLUB_TINY
510 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
511 {
512 	prefetchw(object + s->offset);
513 }
514 #endif
515 
516 /*
517  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
518  * pointer value in the case the current thread loses the race for the next
519  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
520  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
521  * KMSAN will still check all arguments of cmpxchg because of imperfect
522  * handling of inline assembly.
523  * To work around this problem, we apply __no_kmsan_checks to ensure that
524  * get_freepointer_safe() returns initialized memory.
525  */
526 __no_kmsan_checks
527 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
528 {
529 	unsigned long freepointer_addr;
530 	freeptr_t p;
531 
532 	if (!debug_pagealloc_enabled_static())
533 		return get_freepointer(s, object);
534 
535 	object = kasan_reset_tag(object);
536 	freepointer_addr = (unsigned long)object + s->offset;
537 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
538 	return freelist_ptr_decode(s, p, freepointer_addr);
539 }
540 
541 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
542 {
543 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
544 
545 #ifdef CONFIG_SLAB_FREELIST_HARDENED
546 	BUG_ON(object == fp); /* naive detection of double free or corruption */
547 #endif
548 
549 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
550 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
551 }
552 
553 /*
554  * See comment in calculate_sizes().
555  */
556 static inline bool freeptr_outside_object(struct kmem_cache *s)
557 {
558 	return s->offset >= s->inuse;
559 }
560 
561 /*
562  * Return offset of the end of info block which is inuse + free pointer if
563  * not overlapping with object.
564  */
565 static inline unsigned int get_info_end(struct kmem_cache *s)
566 {
567 	if (freeptr_outside_object(s))
568 		return s->inuse + sizeof(void *);
569 	else
570 		return s->inuse;
571 }
572 
573 /* Loop over all objects in a slab */
574 #define for_each_object(__p, __s, __addr, __objects) \
575 	for (__p = fixup_red_left(__s, __addr); \
576 		__p < (__addr) + (__objects) * (__s)->size; \
577 		__p += (__s)->size)
578 
579 static inline unsigned int order_objects(unsigned int order, unsigned int size)
580 {
581 	return ((unsigned int)PAGE_SIZE << order) / size;
582 }
583 
584 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
585 		unsigned int size)
586 {
587 	struct kmem_cache_order_objects x = {
588 		(order << OO_SHIFT) + order_objects(order, size)
589 	};
590 
591 	return x;
592 }
593 
594 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
595 {
596 	return x.x >> OO_SHIFT;
597 }
598 
599 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
600 {
601 	return x.x & OO_MASK;
602 }
603 
604 #ifdef CONFIG_SLUB_CPU_PARTIAL
605 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
606 {
607 	unsigned int nr_slabs;
608 
609 	s->cpu_partial = nr_objects;
610 
611 	/*
612 	 * We take the number of objects but actually limit the number of
613 	 * slabs on the per cpu partial list, in order to limit excessive
614 	 * growth of the list. For simplicity we assume that the slabs will
615 	 * be half-full.
616 	 */
617 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
618 	s->cpu_partial_slabs = nr_slabs;
619 }
620 
621 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
622 {
623 	return s->cpu_partial_slabs;
624 }
625 #else
626 static inline void
627 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
628 {
629 }
630 
631 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
632 {
633 	return 0;
634 }
635 #endif /* CONFIG_SLUB_CPU_PARTIAL */
636 
637 /*
638  * Per slab locking using the pagelock
639  */
640 static __always_inline void slab_lock(struct slab *slab)
641 {
642 	bit_spin_lock(PG_locked, &slab->__page_flags);
643 }
644 
645 static __always_inline void slab_unlock(struct slab *slab)
646 {
647 	bit_spin_unlock(PG_locked, &slab->__page_flags);
648 }
649 
650 static inline bool
651 __update_freelist_fast(struct slab *slab,
652 		      void *freelist_old, unsigned long counters_old,
653 		      void *freelist_new, unsigned long counters_new)
654 {
655 #ifdef system_has_freelist_aba
656 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
657 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
658 
659 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
660 #else
661 	return false;
662 #endif
663 }
664 
665 static inline bool
666 __update_freelist_slow(struct slab *slab,
667 		      void *freelist_old, unsigned long counters_old,
668 		      void *freelist_new, unsigned long counters_new)
669 {
670 	bool ret = false;
671 
672 	slab_lock(slab);
673 	if (slab->freelist == freelist_old &&
674 	    slab->counters == counters_old) {
675 		slab->freelist = freelist_new;
676 		slab->counters = counters_new;
677 		ret = true;
678 	}
679 	slab_unlock(slab);
680 
681 	return ret;
682 }
683 
684 /*
685  * Interrupts must be disabled (for the fallback code to work right), typically
686  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
687  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
688  * allocation/ free operation in hardirq context. Therefore nothing can
689  * interrupt the operation.
690  */
691 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
692 		void *freelist_old, unsigned long counters_old,
693 		void *freelist_new, unsigned long counters_new,
694 		const char *n)
695 {
696 	bool ret;
697 
698 	if (USE_LOCKLESS_FAST_PATH())
699 		lockdep_assert_irqs_disabled();
700 
701 	if (s->flags & __CMPXCHG_DOUBLE) {
702 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
703 				            freelist_new, counters_new);
704 	} else {
705 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
706 				            freelist_new, counters_new);
707 	}
708 	if (likely(ret))
709 		return true;
710 
711 	cpu_relax();
712 	stat(s, CMPXCHG_DOUBLE_FAIL);
713 
714 #ifdef SLUB_DEBUG_CMPXCHG
715 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
716 #endif
717 
718 	return false;
719 }
720 
721 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
722 		void *freelist_old, unsigned long counters_old,
723 		void *freelist_new, unsigned long counters_new,
724 		const char *n)
725 {
726 	bool ret;
727 
728 	if (s->flags & __CMPXCHG_DOUBLE) {
729 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
730 				            freelist_new, counters_new);
731 	} else {
732 		unsigned long flags;
733 
734 		local_irq_save(flags);
735 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
736 				            freelist_new, counters_new);
737 		local_irq_restore(flags);
738 	}
739 	if (likely(ret))
740 		return true;
741 
742 	cpu_relax();
743 	stat(s, CMPXCHG_DOUBLE_FAIL);
744 
745 #ifdef SLUB_DEBUG_CMPXCHG
746 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
747 #endif
748 
749 	return false;
750 }
751 
752 /*
753  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
754  * family will round up the real request size to these fixed ones, so
755  * there could be an extra area than what is requested. Save the original
756  * request size in the meta data area, for better debug and sanity check.
757  */
758 static inline void set_orig_size(struct kmem_cache *s,
759 				void *object, unsigned int orig_size)
760 {
761 	void *p = kasan_reset_tag(object);
762 
763 	if (!slub_debug_orig_size(s))
764 		return;
765 
766 	p += get_info_end(s);
767 	p += sizeof(struct track) * 2;
768 
769 	*(unsigned int *)p = orig_size;
770 }
771 
772 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
773 {
774 	void *p = kasan_reset_tag(object);
775 
776 	if (is_kfence_address(object))
777 		return kfence_ksize(object);
778 
779 	if (!slub_debug_orig_size(s))
780 		return s->object_size;
781 
782 	p += get_info_end(s);
783 	p += sizeof(struct track) * 2;
784 
785 	return *(unsigned int *)p;
786 }
787 
788 #ifdef CONFIG_SLUB_DEBUG
789 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
790 static DEFINE_SPINLOCK(object_map_lock);
791 
792 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
793 		       struct slab *slab)
794 {
795 	void *addr = slab_address(slab);
796 	void *p;
797 
798 	bitmap_zero(obj_map, slab->objects);
799 
800 	for (p = slab->freelist; p; p = get_freepointer(s, p))
801 		set_bit(__obj_to_index(s, addr, p), obj_map);
802 }
803 
804 #if IS_ENABLED(CONFIG_KUNIT)
805 static bool slab_add_kunit_errors(void)
806 {
807 	struct kunit_resource *resource;
808 
809 	if (!kunit_get_current_test())
810 		return false;
811 
812 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
813 	if (!resource)
814 		return false;
815 
816 	(*(int *)resource->data)++;
817 	kunit_put_resource(resource);
818 	return true;
819 }
820 
821 bool slab_in_kunit_test(void)
822 {
823 	struct kunit_resource *resource;
824 
825 	if (!kunit_get_current_test())
826 		return false;
827 
828 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
829 	if (!resource)
830 		return false;
831 
832 	kunit_put_resource(resource);
833 	return true;
834 }
835 #else
836 static inline bool slab_add_kunit_errors(void) { return false; }
837 #endif
838 
839 static inline unsigned int size_from_object(struct kmem_cache *s)
840 {
841 	if (s->flags & SLAB_RED_ZONE)
842 		return s->size - s->red_left_pad;
843 
844 	return s->size;
845 }
846 
847 static inline void *restore_red_left(struct kmem_cache *s, void *p)
848 {
849 	if (s->flags & SLAB_RED_ZONE)
850 		p -= s->red_left_pad;
851 
852 	return p;
853 }
854 
855 /*
856  * Debug settings:
857  */
858 #if defined(CONFIG_SLUB_DEBUG_ON)
859 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
860 #else
861 static slab_flags_t slub_debug;
862 #endif
863 
864 static char *slub_debug_string;
865 static int disable_higher_order_debug;
866 
867 /*
868  * slub is about to manipulate internal object metadata.  This memory lies
869  * outside the range of the allocated object, so accessing it would normally
870  * be reported by kasan as a bounds error.  metadata_access_enable() is used
871  * to tell kasan that these accesses are OK.
872  */
873 static inline void metadata_access_enable(void)
874 {
875 	kasan_disable_current();
876 	kmsan_disable_current();
877 }
878 
879 static inline void metadata_access_disable(void)
880 {
881 	kmsan_enable_current();
882 	kasan_enable_current();
883 }
884 
885 /*
886  * Object debugging
887  */
888 
889 /* Verify that a pointer has an address that is valid within a slab page */
890 static inline int check_valid_pointer(struct kmem_cache *s,
891 				struct slab *slab, void *object)
892 {
893 	void *base;
894 
895 	if (!object)
896 		return 1;
897 
898 	base = slab_address(slab);
899 	object = kasan_reset_tag(object);
900 	object = restore_red_left(s, object);
901 	if (object < base || object >= base + slab->objects * s->size ||
902 		(object - base) % s->size) {
903 		return 0;
904 	}
905 
906 	return 1;
907 }
908 
909 static void print_section(char *level, char *text, u8 *addr,
910 			  unsigned int length)
911 {
912 	metadata_access_enable();
913 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
914 			16, 1, kasan_reset_tag((void *)addr), length, 1);
915 	metadata_access_disable();
916 }
917 
918 static struct track *get_track(struct kmem_cache *s, void *object,
919 	enum track_item alloc)
920 {
921 	struct track *p;
922 
923 	p = object + get_info_end(s);
924 
925 	return kasan_reset_tag(p + alloc);
926 }
927 
928 #ifdef CONFIG_STACKDEPOT
929 static noinline depot_stack_handle_t set_track_prepare(void)
930 {
931 	depot_stack_handle_t handle;
932 	unsigned long entries[TRACK_ADDRS_COUNT];
933 	unsigned int nr_entries;
934 
935 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
936 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
937 
938 	return handle;
939 }
940 #else
941 static inline depot_stack_handle_t set_track_prepare(void)
942 {
943 	return 0;
944 }
945 #endif
946 
947 static void set_track_update(struct kmem_cache *s, void *object,
948 			     enum track_item alloc, unsigned long addr,
949 			     depot_stack_handle_t handle)
950 {
951 	struct track *p = get_track(s, object, alloc);
952 
953 #ifdef CONFIG_STACKDEPOT
954 	p->handle = handle;
955 #endif
956 	p->addr = addr;
957 	p->cpu = smp_processor_id();
958 	p->pid = current->pid;
959 	p->when = jiffies;
960 }
961 
962 static __always_inline void set_track(struct kmem_cache *s, void *object,
963 				      enum track_item alloc, unsigned long addr)
964 {
965 	depot_stack_handle_t handle = set_track_prepare();
966 
967 	set_track_update(s, object, alloc, addr, handle);
968 }
969 
970 static void init_tracking(struct kmem_cache *s, void *object)
971 {
972 	struct track *p;
973 
974 	if (!(s->flags & SLAB_STORE_USER))
975 		return;
976 
977 	p = get_track(s, object, TRACK_ALLOC);
978 	memset(p, 0, 2*sizeof(struct track));
979 }
980 
981 static void print_track(const char *s, struct track *t, unsigned long pr_time)
982 {
983 	depot_stack_handle_t handle __maybe_unused;
984 
985 	if (!t->addr)
986 		return;
987 
988 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
989 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
990 #ifdef CONFIG_STACKDEPOT
991 	handle = READ_ONCE(t->handle);
992 	if (handle)
993 		stack_depot_print(handle);
994 	else
995 		pr_err("object allocation/free stack trace missing\n");
996 #endif
997 }
998 
999 void print_tracking(struct kmem_cache *s, void *object)
1000 {
1001 	unsigned long pr_time = jiffies;
1002 	if (!(s->flags & SLAB_STORE_USER))
1003 		return;
1004 
1005 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1006 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1007 }
1008 
1009 static void print_slab_info(const struct slab *slab)
1010 {
1011 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1012 	       slab, slab->objects, slab->inuse, slab->freelist,
1013 	       &slab->__page_flags);
1014 }
1015 
1016 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017 {
1018 	set_orig_size(s, (void *)object, s->object_size);
1019 }
1020 
1021 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1022 {
1023 	struct va_format vaf;
1024 	va_list args;
1025 
1026 	va_copy(args, argsp);
1027 	vaf.fmt = fmt;
1028 	vaf.va = &args;
1029 	pr_err("=============================================================================\n");
1030 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1031 	pr_err("-----------------------------------------------------------------------------\n\n");
1032 	va_end(args);
1033 }
1034 
1035 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1036 {
1037 	va_list args;
1038 
1039 	va_start(args, fmt);
1040 	__slab_bug(s, fmt, args);
1041 	va_end(args);
1042 }
1043 
1044 __printf(2, 3)
1045 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1046 {
1047 	struct va_format vaf;
1048 	va_list args;
1049 
1050 	if (slab_add_kunit_errors())
1051 		return;
1052 
1053 	va_start(args, fmt);
1054 	vaf.fmt = fmt;
1055 	vaf.va = &args;
1056 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1057 	va_end(args);
1058 }
1059 
1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1061 {
1062 	unsigned int off;	/* Offset of last byte */
1063 	u8 *addr = slab_address(slab);
1064 
1065 	print_tracking(s, p);
1066 
1067 	print_slab_info(slab);
1068 
1069 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1070 	       p, p - addr, get_freepointer(s, p));
1071 
1072 	if (s->flags & SLAB_RED_ZONE)
1073 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1074 			      s->red_left_pad);
1075 	else if (p > addr + 16)
1076 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1077 
1078 	print_section(KERN_ERR,         "Object   ", p,
1079 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1080 	if (s->flags & SLAB_RED_ZONE)
1081 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1082 			s->inuse - s->object_size);
1083 
1084 	off = get_info_end(s);
1085 
1086 	if (s->flags & SLAB_STORE_USER)
1087 		off += 2 * sizeof(struct track);
1088 
1089 	if (slub_debug_orig_size(s))
1090 		off += sizeof(unsigned int);
1091 
1092 	off += kasan_metadata_size(s, false);
1093 
1094 	if (off != size_from_object(s))
1095 		/* Beginning of the filler is the free pointer */
1096 		print_section(KERN_ERR, "Padding  ", p + off,
1097 			      size_from_object(s) - off);
1098 }
1099 
1100 static void object_err(struct kmem_cache *s, struct slab *slab,
1101 			u8 *object, const char *reason)
1102 {
1103 	if (slab_add_kunit_errors())
1104 		return;
1105 
1106 	slab_bug(s, reason);
1107 	print_trailer(s, slab, object);
1108 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1109 
1110 	WARN_ON(1);
1111 }
1112 
1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1114 			       void **freelist, void *nextfree)
1115 {
1116 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1117 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1118 		object_err(s, slab, *freelist, "Freechain corrupt");
1119 		*freelist = NULL;
1120 		slab_fix(s, "Isolate corrupted freechain");
1121 		return true;
1122 	}
1123 
1124 	return false;
1125 }
1126 
1127 static void __slab_err(struct slab *slab)
1128 {
1129 	if (slab_in_kunit_test())
1130 		return;
1131 
1132 	print_slab_info(slab);
1133 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1134 
1135 	WARN_ON(1);
1136 }
1137 
1138 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1139 			const char *fmt, ...)
1140 {
1141 	va_list args;
1142 
1143 	if (slab_add_kunit_errors())
1144 		return;
1145 
1146 	va_start(args, fmt);
1147 	__slab_bug(s, fmt, args);
1148 	va_end(args);
1149 
1150 	__slab_err(slab);
1151 }
1152 
1153 static void init_object(struct kmem_cache *s, void *object, u8 val)
1154 {
1155 	u8 *p = kasan_reset_tag(object);
1156 	unsigned int poison_size = s->object_size;
1157 
1158 	if (s->flags & SLAB_RED_ZONE) {
1159 		/*
1160 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1161 		 * the shadow makes it possible to distinguish uninit-value
1162 		 * from use-after-free.
1163 		 */
1164 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1165 					  s->red_left_pad);
1166 
1167 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1168 			/*
1169 			 * Redzone the extra allocated space by kmalloc than
1170 			 * requested, and the poison size will be limited to
1171 			 * the original request size accordingly.
1172 			 */
1173 			poison_size = get_orig_size(s, object);
1174 		}
1175 	}
1176 
1177 	if (s->flags & __OBJECT_POISON) {
1178 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1179 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1180 	}
1181 
1182 	if (s->flags & SLAB_RED_ZONE)
1183 		memset_no_sanitize_memory(p + poison_size, val,
1184 					  s->inuse - poison_size);
1185 }
1186 
1187 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1188 						void *from, void *to)
1189 {
1190 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1191 	memset(from, data, to - from);
1192 }
1193 
1194 #ifdef CONFIG_KMSAN
1195 #define pad_check_attributes noinline __no_kmsan_checks
1196 #else
1197 #define pad_check_attributes
1198 #endif
1199 
1200 static pad_check_attributes int
1201 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1202 		       u8 *object, const char *what, u8 *start, unsigned int value,
1203 		       unsigned int bytes, bool slab_obj_print)
1204 {
1205 	u8 *fault;
1206 	u8 *end;
1207 	u8 *addr = slab_address(slab);
1208 
1209 	metadata_access_enable();
1210 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1211 	metadata_access_disable();
1212 	if (!fault)
1213 		return 1;
1214 
1215 	end = start + bytes;
1216 	while (end > fault && end[-1] == value)
1217 		end--;
1218 
1219 	if (slab_add_kunit_errors())
1220 		goto skip_bug_print;
1221 
1222 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 	       what, fault, end - 1, fault - addr, fault[0], value);
1224 
1225 	if (slab_obj_print)
1226 		object_err(s, slab, object, "Object corrupt");
1227 
1228 skip_bug_print:
1229 	restore_bytes(s, what, value, fault, end);
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Object layout:
1235  *
1236  * object address
1237  * 	Bytes of the object to be managed.
1238  * 	If the freepointer may overlay the object then the free
1239  *	pointer is at the middle of the object.
1240  *
1241  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1242  * 	0xa5 (POISON_END)
1243  *
1244  * object + s->object_size
1245  * 	Padding to reach word boundary. This is also used for Redzoning.
1246  * 	Padding is extended by another word if Redzoning is enabled and
1247  * 	object_size == inuse.
1248  *
1249  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1250  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1251  *
1252  * object + s->inuse
1253  * 	Meta data starts here.
1254  *
1255  * 	A. Free pointer (if we cannot overwrite object on free)
1256  * 	B. Tracking data for SLAB_STORE_USER
1257  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1258  *	D. Padding to reach required alignment boundary or at minimum
1259  * 		one word if debugging is on to be able to detect writes
1260  * 		before the word boundary.
1261  *
1262  *	Padding is done using 0x5a (POISON_INUSE)
1263  *
1264  * object + s->size
1265  * 	Nothing is used beyond s->size.
1266  *
1267  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1268  * ignored. And therefore no slab options that rely on these boundaries
1269  * may be used with merged slabcaches.
1270  */
1271 
1272 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1273 {
1274 	unsigned long off = get_info_end(s);	/* The end of info */
1275 
1276 	if (s->flags & SLAB_STORE_USER) {
1277 		/* We also have user information there */
1278 		off += 2 * sizeof(struct track);
1279 
1280 		if (s->flags & SLAB_KMALLOC)
1281 			off += sizeof(unsigned int);
1282 	}
1283 
1284 	off += kasan_metadata_size(s, false);
1285 
1286 	if (size_from_object(s) == off)
1287 		return 1;
1288 
1289 	return check_bytes_and_report(s, slab, p, "Object padding",
1290 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1291 }
1292 
1293 /* Check the pad bytes at the end of a slab page */
1294 static pad_check_attributes void
1295 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1296 {
1297 	u8 *start;
1298 	u8 *fault;
1299 	u8 *end;
1300 	u8 *pad;
1301 	int length;
1302 	int remainder;
1303 
1304 	if (!(s->flags & SLAB_POISON))
1305 		return;
1306 
1307 	start = slab_address(slab);
1308 	length = slab_size(slab);
1309 	end = start + length;
1310 	remainder = length % s->size;
1311 	if (!remainder)
1312 		return;
1313 
1314 	pad = end - remainder;
1315 	metadata_access_enable();
1316 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1317 	metadata_access_disable();
1318 	if (!fault)
1319 		return;
1320 	while (end > fault && end[-1] == POISON_INUSE)
1321 		end--;
1322 
1323 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1324 		 fault, end - 1, fault - start);
1325 	print_section(KERN_ERR, "Padding ", pad, remainder);
1326 	__slab_err(slab);
1327 
1328 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1329 }
1330 
1331 static int check_object(struct kmem_cache *s, struct slab *slab,
1332 					void *object, u8 val)
1333 {
1334 	u8 *p = object;
1335 	u8 *endobject = object + s->object_size;
1336 	unsigned int orig_size, kasan_meta_size;
1337 	int ret = 1;
1338 
1339 	if (s->flags & SLAB_RED_ZONE) {
1340 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1341 			object - s->red_left_pad, val, s->red_left_pad, ret))
1342 			ret = 0;
1343 
1344 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1345 			endobject, val, s->inuse - s->object_size, ret))
1346 			ret = 0;
1347 
1348 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1349 			orig_size = get_orig_size(s, object);
1350 
1351 			if (s->object_size > orig_size  &&
1352 				!check_bytes_and_report(s, slab, object,
1353 					"kmalloc Redzone", p + orig_size,
1354 					val, s->object_size - orig_size, ret)) {
1355 				ret = 0;
1356 			}
1357 		}
1358 	} else {
1359 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1360 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1361 				endobject, POISON_INUSE,
1362 				s->inuse - s->object_size, ret))
1363 				ret = 0;
1364 		}
1365 	}
1366 
1367 	if (s->flags & SLAB_POISON) {
1368 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1369 			/*
1370 			 * KASAN can save its free meta data inside of the
1371 			 * object at offset 0. Thus, skip checking the part of
1372 			 * the redzone that overlaps with the meta data.
1373 			 */
1374 			kasan_meta_size = kasan_metadata_size(s, true);
1375 			if (kasan_meta_size < s->object_size - 1 &&
1376 			    !check_bytes_and_report(s, slab, p, "Poison",
1377 					p + kasan_meta_size, POISON_FREE,
1378 					s->object_size - kasan_meta_size - 1, ret))
1379 				ret = 0;
1380 			if (kasan_meta_size < s->object_size &&
1381 			    !check_bytes_and_report(s, slab, p, "End Poison",
1382 					p + s->object_size - 1, POISON_END, 1, ret))
1383 				ret = 0;
1384 		}
1385 		/*
1386 		 * check_pad_bytes cleans up on its own.
1387 		 */
1388 		if (!check_pad_bytes(s, slab, p))
1389 			ret = 0;
1390 	}
1391 
1392 	/*
1393 	 * Cannot check freepointer while object is allocated if
1394 	 * object and freepointer overlap.
1395 	 */
1396 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1397 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1398 		object_err(s, slab, p, "Freepointer corrupt");
1399 		/*
1400 		 * No choice but to zap it and thus lose the remainder
1401 		 * of the free objects in this slab. May cause
1402 		 * another error because the object count is now wrong.
1403 		 */
1404 		set_freepointer(s, p, NULL);
1405 		ret = 0;
1406 	}
1407 
1408 	return ret;
1409 }
1410 
1411 static int check_slab(struct kmem_cache *s, struct slab *slab)
1412 {
1413 	int maxobj;
1414 
1415 	if (!folio_test_slab(slab_folio(slab))) {
1416 		slab_err(s, slab, "Not a valid slab page");
1417 		return 0;
1418 	}
1419 
1420 	maxobj = order_objects(slab_order(slab), s->size);
1421 	if (slab->objects > maxobj) {
1422 		slab_err(s, slab, "objects %u > max %u",
1423 			slab->objects, maxobj);
1424 		return 0;
1425 	}
1426 	if (slab->inuse > slab->objects) {
1427 		slab_err(s, slab, "inuse %u > max %u",
1428 			slab->inuse, slab->objects);
1429 		return 0;
1430 	}
1431 	if (slab->frozen) {
1432 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1433 		return 0;
1434 	}
1435 
1436 	/* Slab_pad_check fixes things up after itself */
1437 	slab_pad_check(s, slab);
1438 	return 1;
1439 }
1440 
1441 /*
1442  * Determine if a certain object in a slab is on the freelist. Must hold the
1443  * slab lock to guarantee that the chains are in a consistent state.
1444  */
1445 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1446 {
1447 	int nr = 0;
1448 	void *fp;
1449 	void *object = NULL;
1450 	int max_objects;
1451 
1452 	fp = slab->freelist;
1453 	while (fp && nr <= slab->objects) {
1454 		if (fp == search)
1455 			return true;
1456 		if (!check_valid_pointer(s, slab, fp)) {
1457 			if (object) {
1458 				object_err(s, slab, object,
1459 					"Freechain corrupt");
1460 				set_freepointer(s, object, NULL);
1461 				break;
1462 			} else {
1463 				slab_err(s, slab, "Freepointer corrupt");
1464 				slab->freelist = NULL;
1465 				slab->inuse = slab->objects;
1466 				slab_fix(s, "Freelist cleared");
1467 				return false;
1468 			}
1469 		}
1470 		object = fp;
1471 		fp = get_freepointer(s, object);
1472 		nr++;
1473 	}
1474 
1475 	if (nr > slab->objects) {
1476 		slab_err(s, slab, "Freelist cycle detected");
1477 		slab->freelist = NULL;
1478 		slab->inuse = slab->objects;
1479 		slab_fix(s, "Freelist cleared");
1480 		return false;
1481 	}
1482 
1483 	max_objects = order_objects(slab_order(slab), s->size);
1484 	if (max_objects > MAX_OBJS_PER_PAGE)
1485 		max_objects = MAX_OBJS_PER_PAGE;
1486 
1487 	if (slab->objects != max_objects) {
1488 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1489 			 slab->objects, max_objects);
1490 		slab->objects = max_objects;
1491 		slab_fix(s, "Number of objects adjusted");
1492 	}
1493 	if (slab->inuse != slab->objects - nr) {
1494 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1495 			 slab->inuse, slab->objects - nr);
1496 		slab->inuse = slab->objects - nr;
1497 		slab_fix(s, "Object count adjusted");
1498 	}
1499 	return search == NULL;
1500 }
1501 
1502 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1503 								int alloc)
1504 {
1505 	if (s->flags & SLAB_TRACE) {
1506 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1507 			s->name,
1508 			alloc ? "alloc" : "free",
1509 			object, slab->inuse,
1510 			slab->freelist);
1511 
1512 		if (!alloc)
1513 			print_section(KERN_INFO, "Object ", (void *)object,
1514 					s->object_size);
1515 
1516 		dump_stack();
1517 	}
1518 }
1519 
1520 /*
1521  * Tracking of fully allocated slabs for debugging purposes.
1522  */
1523 static void add_full(struct kmem_cache *s,
1524 	struct kmem_cache_node *n, struct slab *slab)
1525 {
1526 	if (!(s->flags & SLAB_STORE_USER))
1527 		return;
1528 
1529 	lockdep_assert_held(&n->list_lock);
1530 	list_add(&slab->slab_list, &n->full);
1531 }
1532 
1533 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1534 {
1535 	if (!(s->flags & SLAB_STORE_USER))
1536 		return;
1537 
1538 	lockdep_assert_held(&n->list_lock);
1539 	list_del(&slab->slab_list);
1540 }
1541 
1542 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1543 {
1544 	return atomic_long_read(&n->nr_slabs);
1545 }
1546 
1547 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1548 {
1549 	struct kmem_cache_node *n = get_node(s, node);
1550 
1551 	atomic_long_inc(&n->nr_slabs);
1552 	atomic_long_add(objects, &n->total_objects);
1553 }
1554 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1555 {
1556 	struct kmem_cache_node *n = get_node(s, node);
1557 
1558 	atomic_long_dec(&n->nr_slabs);
1559 	atomic_long_sub(objects, &n->total_objects);
1560 }
1561 
1562 /* Object debug checks for alloc/free paths */
1563 static void setup_object_debug(struct kmem_cache *s, void *object)
1564 {
1565 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1566 		return;
1567 
1568 	init_object(s, object, SLUB_RED_INACTIVE);
1569 	init_tracking(s, object);
1570 }
1571 
1572 static
1573 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1574 {
1575 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1576 		return;
1577 
1578 	metadata_access_enable();
1579 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1580 	metadata_access_disable();
1581 }
1582 
1583 static inline int alloc_consistency_checks(struct kmem_cache *s,
1584 					struct slab *slab, void *object)
1585 {
1586 	if (!check_slab(s, slab))
1587 		return 0;
1588 
1589 	if (!check_valid_pointer(s, slab, object)) {
1590 		object_err(s, slab, object, "Freelist Pointer check fails");
1591 		return 0;
1592 	}
1593 
1594 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1595 		return 0;
1596 
1597 	return 1;
1598 }
1599 
1600 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1601 			struct slab *slab, void *object, int orig_size)
1602 {
1603 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1604 		if (!alloc_consistency_checks(s, slab, object))
1605 			goto bad;
1606 	}
1607 
1608 	/* Success. Perform special debug activities for allocs */
1609 	trace(s, slab, object, 1);
1610 	set_orig_size(s, object, orig_size);
1611 	init_object(s, object, SLUB_RED_ACTIVE);
1612 	return true;
1613 
1614 bad:
1615 	if (folio_test_slab(slab_folio(slab))) {
1616 		/*
1617 		 * If this is a slab page then lets do the best we can
1618 		 * to avoid issues in the future. Marking all objects
1619 		 * as used avoids touching the remaining objects.
1620 		 */
1621 		slab_fix(s, "Marking all objects used");
1622 		slab->inuse = slab->objects;
1623 		slab->freelist = NULL;
1624 		slab->frozen = 1; /* mark consistency-failed slab as frozen */
1625 	}
1626 	return false;
1627 }
1628 
1629 static inline int free_consistency_checks(struct kmem_cache *s,
1630 		struct slab *slab, void *object, unsigned long addr)
1631 {
1632 	if (!check_valid_pointer(s, slab, object)) {
1633 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1634 		return 0;
1635 	}
1636 
1637 	if (on_freelist(s, slab, object)) {
1638 		object_err(s, slab, object, "Object already free");
1639 		return 0;
1640 	}
1641 
1642 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1643 		return 0;
1644 
1645 	if (unlikely(s != slab->slab_cache)) {
1646 		if (!folio_test_slab(slab_folio(slab))) {
1647 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1648 				 object);
1649 		} else if (!slab->slab_cache) {
1650 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1651 				 object);
1652 		} else {
1653 			object_err(s, slab, object,
1654 				   "page slab pointer corrupt.");
1655 		}
1656 		return 0;
1657 	}
1658 	return 1;
1659 }
1660 
1661 /*
1662  * Parse a block of slab_debug options. Blocks are delimited by ';'
1663  *
1664  * @str:    start of block
1665  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1666  * @slabs:  return start of list of slabs, or NULL when there's no list
1667  * @init:   assume this is initial parsing and not per-kmem-create parsing
1668  *
1669  * returns the start of next block if there's any, or NULL
1670  */
1671 static char *
1672 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1673 {
1674 	bool higher_order_disable = false;
1675 
1676 	/* Skip any completely empty blocks */
1677 	while (*str && *str == ';')
1678 		str++;
1679 
1680 	if (*str == ',') {
1681 		/*
1682 		 * No options but restriction on slabs. This means full
1683 		 * debugging for slabs matching a pattern.
1684 		 */
1685 		*flags = DEBUG_DEFAULT_FLAGS;
1686 		goto check_slabs;
1687 	}
1688 	*flags = 0;
1689 
1690 	/* Determine which debug features should be switched on */
1691 	for (; *str && *str != ',' && *str != ';'; str++) {
1692 		switch (tolower(*str)) {
1693 		case '-':
1694 			*flags = 0;
1695 			break;
1696 		case 'f':
1697 			*flags |= SLAB_CONSISTENCY_CHECKS;
1698 			break;
1699 		case 'z':
1700 			*flags |= SLAB_RED_ZONE;
1701 			break;
1702 		case 'p':
1703 			*flags |= SLAB_POISON;
1704 			break;
1705 		case 'u':
1706 			*flags |= SLAB_STORE_USER;
1707 			break;
1708 		case 't':
1709 			*flags |= SLAB_TRACE;
1710 			break;
1711 		case 'a':
1712 			*flags |= SLAB_FAILSLAB;
1713 			break;
1714 		case 'o':
1715 			/*
1716 			 * Avoid enabling debugging on caches if its minimum
1717 			 * order would increase as a result.
1718 			 */
1719 			higher_order_disable = true;
1720 			break;
1721 		default:
1722 			if (init)
1723 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1724 		}
1725 	}
1726 check_slabs:
1727 	if (*str == ',')
1728 		*slabs = ++str;
1729 	else
1730 		*slabs = NULL;
1731 
1732 	/* Skip over the slab list */
1733 	while (*str && *str != ';')
1734 		str++;
1735 
1736 	/* Skip any completely empty blocks */
1737 	while (*str && *str == ';')
1738 		str++;
1739 
1740 	if (init && higher_order_disable)
1741 		disable_higher_order_debug = 1;
1742 
1743 	if (*str)
1744 		return str;
1745 	else
1746 		return NULL;
1747 }
1748 
1749 static int __init setup_slub_debug(char *str)
1750 {
1751 	slab_flags_t flags;
1752 	slab_flags_t global_flags;
1753 	char *saved_str;
1754 	char *slab_list;
1755 	bool global_slub_debug_changed = false;
1756 	bool slab_list_specified = false;
1757 
1758 	global_flags = DEBUG_DEFAULT_FLAGS;
1759 	if (*str++ != '=' || !*str)
1760 		/*
1761 		 * No options specified. Switch on full debugging.
1762 		 */
1763 		goto out;
1764 
1765 	saved_str = str;
1766 	while (str) {
1767 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1768 
1769 		if (!slab_list) {
1770 			global_flags = flags;
1771 			global_slub_debug_changed = true;
1772 		} else {
1773 			slab_list_specified = true;
1774 			if (flags & SLAB_STORE_USER)
1775 				stack_depot_request_early_init();
1776 		}
1777 	}
1778 
1779 	/*
1780 	 * For backwards compatibility, a single list of flags with list of
1781 	 * slabs means debugging is only changed for those slabs, so the global
1782 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1783 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1784 	 * long as there is no option specifying flags without a slab list.
1785 	 */
1786 	if (slab_list_specified) {
1787 		if (!global_slub_debug_changed)
1788 			global_flags = slub_debug;
1789 		slub_debug_string = saved_str;
1790 	}
1791 out:
1792 	slub_debug = global_flags;
1793 	if (slub_debug & SLAB_STORE_USER)
1794 		stack_depot_request_early_init();
1795 	if (slub_debug != 0 || slub_debug_string)
1796 		static_branch_enable(&slub_debug_enabled);
1797 	else
1798 		static_branch_disable(&slub_debug_enabled);
1799 	if ((static_branch_unlikely(&init_on_alloc) ||
1800 	     static_branch_unlikely(&init_on_free)) &&
1801 	    (slub_debug & SLAB_POISON))
1802 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1803 	return 1;
1804 }
1805 
1806 __setup("slab_debug", setup_slub_debug);
1807 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1808 
1809 /*
1810  * kmem_cache_flags - apply debugging options to the cache
1811  * @flags:		flags to set
1812  * @name:		name of the cache
1813  *
1814  * Debug option(s) are applied to @flags. In addition to the debug
1815  * option(s), if a slab name (or multiple) is specified i.e.
1816  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1817  * then only the select slabs will receive the debug option(s).
1818  */
1819 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1820 {
1821 	char *iter;
1822 	size_t len;
1823 	char *next_block;
1824 	slab_flags_t block_flags;
1825 	slab_flags_t slub_debug_local = slub_debug;
1826 
1827 	if (flags & SLAB_NO_USER_FLAGS)
1828 		return flags;
1829 
1830 	/*
1831 	 * If the slab cache is for debugging (e.g. kmemleak) then
1832 	 * don't store user (stack trace) information by default,
1833 	 * but let the user enable it via the command line below.
1834 	 */
1835 	if (flags & SLAB_NOLEAKTRACE)
1836 		slub_debug_local &= ~SLAB_STORE_USER;
1837 
1838 	len = strlen(name);
1839 	next_block = slub_debug_string;
1840 	/* Go through all blocks of debug options, see if any matches our slab's name */
1841 	while (next_block) {
1842 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1843 		if (!iter)
1844 			continue;
1845 		/* Found a block that has a slab list, search it */
1846 		while (*iter) {
1847 			char *end, *glob;
1848 			size_t cmplen;
1849 
1850 			end = strchrnul(iter, ',');
1851 			if (next_block && next_block < end)
1852 				end = next_block - 1;
1853 
1854 			glob = strnchr(iter, end - iter, '*');
1855 			if (glob)
1856 				cmplen = glob - iter;
1857 			else
1858 				cmplen = max_t(size_t, len, (end - iter));
1859 
1860 			if (!strncmp(name, iter, cmplen)) {
1861 				flags |= block_flags;
1862 				return flags;
1863 			}
1864 
1865 			if (!*end || *end == ';')
1866 				break;
1867 			iter = end + 1;
1868 		}
1869 	}
1870 
1871 	return flags | slub_debug_local;
1872 }
1873 #else /* !CONFIG_SLUB_DEBUG */
1874 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1875 static inline
1876 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1877 
1878 static inline bool alloc_debug_processing(struct kmem_cache *s,
1879 	struct slab *slab, void *object, int orig_size) { return true; }
1880 
1881 static inline bool free_debug_processing(struct kmem_cache *s,
1882 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1883 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1884 
1885 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1886 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1887 			void *object, u8 val) { return 1; }
1888 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1889 static inline void set_track(struct kmem_cache *s, void *object,
1890 			     enum track_item alloc, unsigned long addr) {}
1891 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1892 					struct slab *slab) {}
1893 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1894 					struct slab *slab) {}
1895 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1896 {
1897 	return flags;
1898 }
1899 #define slub_debug 0
1900 
1901 #define disable_higher_order_debug 0
1902 
1903 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1904 							{ return 0; }
1905 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1906 							int objects) {}
1907 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1908 							int objects) {}
1909 #ifndef CONFIG_SLUB_TINY
1910 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1911 			       void **freelist, void *nextfree)
1912 {
1913 	return false;
1914 }
1915 #endif
1916 #endif /* CONFIG_SLUB_DEBUG */
1917 
1918 #ifdef CONFIG_SLAB_OBJ_EXT
1919 
1920 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1921 
1922 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1923 {
1924 	struct slabobj_ext *slab_exts;
1925 	struct slab *obj_exts_slab;
1926 
1927 	obj_exts_slab = virt_to_slab(obj_exts);
1928 	slab_exts = slab_obj_exts(obj_exts_slab);
1929 	if (slab_exts) {
1930 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1931 						 obj_exts_slab, obj_exts);
1932 		/* codetag should be NULL */
1933 		WARN_ON(slab_exts[offs].ref.ct);
1934 		set_codetag_empty(&slab_exts[offs].ref);
1935 	}
1936 }
1937 
1938 static inline void mark_failed_objexts_alloc(struct slab *slab)
1939 {
1940 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1941 }
1942 
1943 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1944 			struct slabobj_ext *vec, unsigned int objects)
1945 {
1946 	/*
1947 	 * If vector previously failed to allocate then we have live
1948 	 * objects with no tag reference. Mark all references in this
1949 	 * vector as empty to avoid warnings later on.
1950 	 */
1951 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1952 		unsigned int i;
1953 
1954 		for (i = 0; i < objects; i++)
1955 			set_codetag_empty(&vec[i].ref);
1956 	}
1957 }
1958 
1959 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1960 
1961 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1962 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1963 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1964 			struct slabobj_ext *vec, unsigned int objects) {}
1965 
1966 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1967 
1968 /*
1969  * The allocated objcg pointers array is not accounted directly.
1970  * Moreover, it should not come from DMA buffer and is not readily
1971  * reclaimable. So those GFP bits should be masked off.
1972  */
1973 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1974 				__GFP_ACCOUNT | __GFP_NOFAIL)
1975 
1976 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1977 		        gfp_t gfp, bool new_slab)
1978 {
1979 	unsigned int objects = objs_per_slab(s, slab);
1980 	unsigned long new_exts;
1981 	unsigned long old_exts;
1982 	struct slabobj_ext *vec;
1983 
1984 	gfp &= ~OBJCGS_CLEAR_MASK;
1985 	/* Prevent recursive extension vector allocation */
1986 	gfp |= __GFP_NO_OBJ_EXT;
1987 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1988 			   slab_nid(slab));
1989 	if (!vec) {
1990 		/* Mark vectors which failed to allocate */
1991 		if (new_slab)
1992 			mark_failed_objexts_alloc(slab);
1993 
1994 		return -ENOMEM;
1995 	}
1996 
1997 	new_exts = (unsigned long)vec;
1998 #ifdef CONFIG_MEMCG
1999 	new_exts |= MEMCG_DATA_OBJEXTS;
2000 #endif
2001 	old_exts = READ_ONCE(slab->obj_exts);
2002 	handle_failed_objexts_alloc(old_exts, vec, objects);
2003 	if (new_slab) {
2004 		/*
2005 		 * If the slab is brand new and nobody can yet access its
2006 		 * obj_exts, no synchronization is required and obj_exts can
2007 		 * be simply assigned.
2008 		 */
2009 		slab->obj_exts = new_exts;
2010 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2011 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2012 		/*
2013 		 * If the slab is already in use, somebody can allocate and
2014 		 * assign slabobj_exts in parallel. In this case the existing
2015 		 * objcg vector should be reused.
2016 		 */
2017 		mark_objexts_empty(vec);
2018 		kfree(vec);
2019 		return 0;
2020 	}
2021 
2022 	kmemleak_not_leak(vec);
2023 	return 0;
2024 }
2025 
2026 static inline void free_slab_obj_exts(struct slab *slab)
2027 {
2028 	struct slabobj_ext *obj_exts;
2029 
2030 	obj_exts = slab_obj_exts(slab);
2031 	if (!obj_exts)
2032 		return;
2033 
2034 	/*
2035 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2036 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2037 	 * warning if slab has extensions but the extension of an object is
2038 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2039 	 * the extension for obj_exts is expected to be NULL.
2040 	 */
2041 	mark_objexts_empty(obj_exts);
2042 	kfree(obj_exts);
2043 	slab->obj_exts = 0;
2044 }
2045 
2046 static inline bool need_slab_obj_ext(void)
2047 {
2048 	if (mem_alloc_profiling_enabled())
2049 		return true;
2050 
2051 	/*
2052 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2053 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2054 	 */
2055 	return false;
2056 }
2057 
2058 #else /* CONFIG_SLAB_OBJ_EXT */
2059 
2060 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2061 			       gfp_t gfp, bool new_slab)
2062 {
2063 	return 0;
2064 }
2065 
2066 static inline void free_slab_obj_exts(struct slab *slab)
2067 {
2068 }
2069 
2070 static inline bool need_slab_obj_ext(void)
2071 {
2072 	return false;
2073 }
2074 
2075 #endif /* CONFIG_SLAB_OBJ_EXT */
2076 
2077 #ifdef CONFIG_MEM_ALLOC_PROFILING
2078 
2079 static inline struct slabobj_ext *
2080 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2081 {
2082 	struct slab *slab;
2083 
2084 	if (!p)
2085 		return NULL;
2086 
2087 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2088 		return NULL;
2089 
2090 	if (flags & __GFP_NO_OBJ_EXT)
2091 		return NULL;
2092 
2093 	slab = virt_to_slab(p);
2094 	if (!slab_obj_exts(slab) &&
2095 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2096 		 "%s, %s: Failed to create slab extension vector!\n",
2097 		 __func__, s->name))
2098 		return NULL;
2099 
2100 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2101 }
2102 
2103 static inline void
2104 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2105 {
2106 	if (need_slab_obj_ext()) {
2107 		struct slabobj_ext *obj_exts;
2108 
2109 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2110 		/*
2111 		 * Currently obj_exts is used only for allocation profiling.
2112 		 * If other users appear then mem_alloc_profiling_enabled()
2113 		 * check should be added before alloc_tag_add().
2114 		 */
2115 		if (likely(obj_exts))
2116 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2117 	}
2118 }
2119 
2120 static inline void
2121 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2122 			     int objects)
2123 {
2124 	struct slabobj_ext *obj_exts;
2125 	int i;
2126 
2127 	if (!mem_alloc_profiling_enabled())
2128 		return;
2129 
2130 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2131 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2132 		return;
2133 
2134 	obj_exts = slab_obj_exts(slab);
2135 	if (!obj_exts)
2136 		return;
2137 
2138 	for (i = 0; i < objects; i++) {
2139 		unsigned int off = obj_to_index(s, slab, p[i]);
2140 
2141 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2142 	}
2143 }
2144 
2145 #else /* CONFIG_MEM_ALLOC_PROFILING */
2146 
2147 static inline void
2148 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2149 {
2150 }
2151 
2152 static inline void
2153 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2154 			     int objects)
2155 {
2156 }
2157 
2158 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2159 
2160 
2161 #ifdef CONFIG_MEMCG
2162 
2163 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2164 
2165 static __fastpath_inline
2166 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2167 				gfp_t flags, size_t size, void **p)
2168 {
2169 	if (likely(!memcg_kmem_online()))
2170 		return true;
2171 
2172 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2173 		return true;
2174 
2175 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2176 		return true;
2177 
2178 	if (likely(size == 1)) {
2179 		memcg_alloc_abort_single(s, *p);
2180 		*p = NULL;
2181 	} else {
2182 		kmem_cache_free_bulk(s, size, p);
2183 	}
2184 
2185 	return false;
2186 }
2187 
2188 static __fastpath_inline
2189 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2190 			  int objects)
2191 {
2192 	struct slabobj_ext *obj_exts;
2193 
2194 	if (!memcg_kmem_online())
2195 		return;
2196 
2197 	obj_exts = slab_obj_exts(slab);
2198 	if (likely(!obj_exts))
2199 		return;
2200 
2201 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2202 }
2203 
2204 static __fastpath_inline
2205 bool memcg_slab_post_charge(void *p, gfp_t flags)
2206 {
2207 	struct slabobj_ext *slab_exts;
2208 	struct kmem_cache *s;
2209 	struct folio *folio;
2210 	struct slab *slab;
2211 	unsigned long off;
2212 
2213 	folio = virt_to_folio(p);
2214 	if (!folio_test_slab(folio)) {
2215 		int size;
2216 
2217 		if (folio_memcg_kmem(folio))
2218 			return true;
2219 
2220 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2221 					     folio_order(folio)))
2222 			return false;
2223 
2224 		/*
2225 		 * This folio has already been accounted in the global stats but
2226 		 * not in the memcg stats. So, subtract from the global and use
2227 		 * the interface which adds to both global and memcg stats.
2228 		 */
2229 		size = folio_size(folio);
2230 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2231 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2232 		return true;
2233 	}
2234 
2235 	slab = folio_slab(folio);
2236 	s = slab->slab_cache;
2237 
2238 	/*
2239 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2240 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2241 	 * becoming effectively unfreeable.
2242 	 */
2243 	if (is_kmalloc_normal(s))
2244 		return true;
2245 
2246 	/* Ignore already charged objects. */
2247 	slab_exts = slab_obj_exts(slab);
2248 	if (slab_exts) {
2249 		off = obj_to_index(s, slab, p);
2250 		if (unlikely(slab_exts[off].objcg))
2251 			return true;
2252 	}
2253 
2254 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2255 }
2256 
2257 #else /* CONFIG_MEMCG */
2258 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2259 					      struct list_lru *lru,
2260 					      gfp_t flags, size_t size,
2261 					      void **p)
2262 {
2263 	return true;
2264 }
2265 
2266 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2267 					void **p, int objects)
2268 {
2269 }
2270 
2271 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2272 {
2273 	return true;
2274 }
2275 #endif /* CONFIG_MEMCG */
2276 
2277 #ifdef CONFIG_SLUB_RCU_DEBUG
2278 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2279 
2280 struct rcu_delayed_free {
2281 	struct rcu_head head;
2282 	void *object;
2283 };
2284 #endif
2285 
2286 /*
2287  * Hooks for other subsystems that check memory allocations. In a typical
2288  * production configuration these hooks all should produce no code at all.
2289  *
2290  * Returns true if freeing of the object can proceed, false if its reuse
2291  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2292  * to KFENCE.
2293  */
2294 static __always_inline
2295 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2296 		    bool after_rcu_delay)
2297 {
2298 	/* Are the object contents still accessible? */
2299 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2300 
2301 	kmemleak_free_recursive(x, s->flags);
2302 	kmsan_slab_free(s, x);
2303 
2304 	debug_check_no_locks_freed(x, s->object_size);
2305 
2306 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2307 		debug_check_no_obj_freed(x, s->object_size);
2308 
2309 	/* Use KCSAN to help debug racy use-after-free. */
2310 	if (!still_accessible)
2311 		__kcsan_check_access(x, s->object_size,
2312 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2313 
2314 	if (kfence_free(x))
2315 		return false;
2316 
2317 	/*
2318 	 * Give KASAN a chance to notice an invalid free operation before we
2319 	 * modify the object.
2320 	 */
2321 	if (kasan_slab_pre_free(s, x))
2322 		return false;
2323 
2324 #ifdef CONFIG_SLUB_RCU_DEBUG
2325 	if (still_accessible) {
2326 		struct rcu_delayed_free *delayed_free;
2327 
2328 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2329 		if (delayed_free) {
2330 			/*
2331 			 * Let KASAN track our call stack as a "related work
2332 			 * creation", just like if the object had been freed
2333 			 * normally via kfree_rcu().
2334 			 * We have to do this manually because the rcu_head is
2335 			 * not located inside the object.
2336 			 */
2337 			kasan_record_aux_stack(x);
2338 
2339 			delayed_free->object = x;
2340 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2341 			return false;
2342 		}
2343 	}
2344 #endif /* CONFIG_SLUB_RCU_DEBUG */
2345 
2346 	/*
2347 	 * As memory initialization might be integrated into KASAN,
2348 	 * kasan_slab_free and initialization memset's must be
2349 	 * kept together to avoid discrepancies in behavior.
2350 	 *
2351 	 * The initialization memset's clear the object and the metadata,
2352 	 * but don't touch the SLAB redzone.
2353 	 *
2354 	 * The object's freepointer is also avoided if stored outside the
2355 	 * object.
2356 	 */
2357 	if (unlikely(init)) {
2358 		int rsize;
2359 		unsigned int inuse, orig_size;
2360 
2361 		inuse = get_info_end(s);
2362 		orig_size = get_orig_size(s, x);
2363 		if (!kasan_has_integrated_init())
2364 			memset(kasan_reset_tag(x), 0, orig_size);
2365 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2366 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2367 		       s->size - inuse - rsize);
2368 		/*
2369 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2370 		 * would be reported
2371 		 */
2372 		set_orig_size(s, x, orig_size);
2373 
2374 	}
2375 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2376 	return !kasan_slab_free(s, x, init, still_accessible);
2377 }
2378 
2379 static __fastpath_inline
2380 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2381 			     int *cnt)
2382 {
2383 
2384 	void *object;
2385 	void *next = *head;
2386 	void *old_tail = *tail;
2387 	bool init;
2388 
2389 	if (is_kfence_address(next)) {
2390 		slab_free_hook(s, next, false, false);
2391 		return false;
2392 	}
2393 
2394 	/* Head and tail of the reconstructed freelist */
2395 	*head = NULL;
2396 	*tail = NULL;
2397 
2398 	init = slab_want_init_on_free(s);
2399 
2400 	do {
2401 		object = next;
2402 		next = get_freepointer(s, object);
2403 
2404 		/* If object's reuse doesn't have to be delayed */
2405 		if (likely(slab_free_hook(s, object, init, false))) {
2406 			/* Move object to the new freelist */
2407 			set_freepointer(s, object, *head);
2408 			*head = object;
2409 			if (!*tail)
2410 				*tail = object;
2411 		} else {
2412 			/*
2413 			 * Adjust the reconstructed freelist depth
2414 			 * accordingly if object's reuse is delayed.
2415 			 */
2416 			--(*cnt);
2417 		}
2418 	} while (object != old_tail);
2419 
2420 	return *head != NULL;
2421 }
2422 
2423 static void *setup_object(struct kmem_cache *s, void *object)
2424 {
2425 	setup_object_debug(s, object);
2426 	object = kasan_init_slab_obj(s, object);
2427 	if (unlikely(s->ctor)) {
2428 		kasan_unpoison_new_object(s, object);
2429 		s->ctor(object);
2430 		kasan_poison_new_object(s, object);
2431 	}
2432 	return object;
2433 }
2434 
2435 /*
2436  * Slab allocation and freeing
2437  */
2438 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2439 		struct kmem_cache_order_objects oo)
2440 {
2441 	struct folio *folio;
2442 	struct slab *slab;
2443 	unsigned int order = oo_order(oo);
2444 
2445 	if (node == NUMA_NO_NODE)
2446 		folio = (struct folio *)alloc_frozen_pages(flags, order);
2447 	else
2448 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2449 
2450 	if (!folio)
2451 		return NULL;
2452 
2453 	slab = folio_slab(folio);
2454 	__folio_set_slab(folio);
2455 	if (folio_is_pfmemalloc(folio))
2456 		slab_set_pfmemalloc(slab);
2457 
2458 	return slab;
2459 }
2460 
2461 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2462 /* Pre-initialize the random sequence cache */
2463 static int init_cache_random_seq(struct kmem_cache *s)
2464 {
2465 	unsigned int count = oo_objects(s->oo);
2466 	int err;
2467 
2468 	/* Bailout if already initialised */
2469 	if (s->random_seq)
2470 		return 0;
2471 
2472 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2473 	if (err) {
2474 		pr_err("SLUB: Unable to initialize free list for %s\n",
2475 			s->name);
2476 		return err;
2477 	}
2478 
2479 	/* Transform to an offset on the set of pages */
2480 	if (s->random_seq) {
2481 		unsigned int i;
2482 
2483 		for (i = 0; i < count; i++)
2484 			s->random_seq[i] *= s->size;
2485 	}
2486 	return 0;
2487 }
2488 
2489 /* Initialize each random sequence freelist per cache */
2490 static void __init init_freelist_randomization(void)
2491 {
2492 	struct kmem_cache *s;
2493 
2494 	mutex_lock(&slab_mutex);
2495 
2496 	list_for_each_entry(s, &slab_caches, list)
2497 		init_cache_random_seq(s);
2498 
2499 	mutex_unlock(&slab_mutex);
2500 }
2501 
2502 /* Get the next entry on the pre-computed freelist randomized */
2503 static void *next_freelist_entry(struct kmem_cache *s,
2504 				unsigned long *pos, void *start,
2505 				unsigned long page_limit,
2506 				unsigned long freelist_count)
2507 {
2508 	unsigned int idx;
2509 
2510 	/*
2511 	 * If the target page allocation failed, the number of objects on the
2512 	 * page might be smaller than the usual size defined by the cache.
2513 	 */
2514 	do {
2515 		idx = s->random_seq[*pos];
2516 		*pos += 1;
2517 		if (*pos >= freelist_count)
2518 			*pos = 0;
2519 	} while (unlikely(idx >= page_limit));
2520 
2521 	return (char *)start + idx;
2522 }
2523 
2524 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2525 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2526 {
2527 	void *start;
2528 	void *cur;
2529 	void *next;
2530 	unsigned long idx, pos, page_limit, freelist_count;
2531 
2532 	if (slab->objects < 2 || !s->random_seq)
2533 		return false;
2534 
2535 	freelist_count = oo_objects(s->oo);
2536 	pos = get_random_u32_below(freelist_count);
2537 
2538 	page_limit = slab->objects * s->size;
2539 	start = fixup_red_left(s, slab_address(slab));
2540 
2541 	/* First entry is used as the base of the freelist */
2542 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2543 	cur = setup_object(s, cur);
2544 	slab->freelist = cur;
2545 
2546 	for (idx = 1; idx < slab->objects; idx++) {
2547 		next = next_freelist_entry(s, &pos, start, page_limit,
2548 			freelist_count);
2549 		next = setup_object(s, next);
2550 		set_freepointer(s, cur, next);
2551 		cur = next;
2552 	}
2553 	set_freepointer(s, cur, NULL);
2554 
2555 	return true;
2556 }
2557 #else
2558 static inline int init_cache_random_seq(struct kmem_cache *s)
2559 {
2560 	return 0;
2561 }
2562 static inline void init_freelist_randomization(void) { }
2563 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2564 {
2565 	return false;
2566 }
2567 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2568 
2569 static __always_inline void account_slab(struct slab *slab, int order,
2570 					 struct kmem_cache *s, gfp_t gfp)
2571 {
2572 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2573 		alloc_slab_obj_exts(slab, s, gfp, true);
2574 
2575 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2576 			    PAGE_SIZE << order);
2577 }
2578 
2579 static __always_inline void unaccount_slab(struct slab *slab, int order,
2580 					   struct kmem_cache *s)
2581 {
2582 	if (memcg_kmem_online() || need_slab_obj_ext())
2583 		free_slab_obj_exts(slab);
2584 
2585 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2586 			    -(PAGE_SIZE << order));
2587 }
2588 
2589 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2590 {
2591 	struct slab *slab;
2592 	struct kmem_cache_order_objects oo = s->oo;
2593 	gfp_t alloc_gfp;
2594 	void *start, *p, *next;
2595 	int idx;
2596 	bool shuffle;
2597 
2598 	flags &= gfp_allowed_mask;
2599 
2600 	flags |= s->allocflags;
2601 
2602 	/*
2603 	 * Let the initial higher-order allocation fail under memory pressure
2604 	 * so we fall-back to the minimum order allocation.
2605 	 */
2606 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2607 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2608 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2609 
2610 	slab = alloc_slab_page(alloc_gfp, node, oo);
2611 	if (unlikely(!slab)) {
2612 		oo = s->min;
2613 		alloc_gfp = flags;
2614 		/*
2615 		 * Allocation may have failed due to fragmentation.
2616 		 * Try a lower order alloc if possible
2617 		 */
2618 		slab = alloc_slab_page(alloc_gfp, node, oo);
2619 		if (unlikely(!slab))
2620 			return NULL;
2621 		stat(s, ORDER_FALLBACK);
2622 	}
2623 
2624 	slab->objects = oo_objects(oo);
2625 	slab->inuse = 0;
2626 	slab->frozen = 0;
2627 
2628 	account_slab(slab, oo_order(oo), s, flags);
2629 
2630 	slab->slab_cache = s;
2631 
2632 	kasan_poison_slab(slab);
2633 
2634 	start = slab_address(slab);
2635 
2636 	setup_slab_debug(s, slab, start);
2637 
2638 	shuffle = shuffle_freelist(s, slab);
2639 
2640 	if (!shuffle) {
2641 		start = fixup_red_left(s, start);
2642 		start = setup_object(s, start);
2643 		slab->freelist = start;
2644 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2645 			next = p + s->size;
2646 			next = setup_object(s, next);
2647 			set_freepointer(s, p, next);
2648 			p = next;
2649 		}
2650 		set_freepointer(s, p, NULL);
2651 	}
2652 
2653 	return slab;
2654 }
2655 
2656 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2657 {
2658 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2659 		flags = kmalloc_fix_flags(flags);
2660 
2661 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2662 
2663 	return allocate_slab(s,
2664 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2665 }
2666 
2667 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2668 {
2669 	struct folio *folio = slab_folio(slab);
2670 	int order = folio_order(folio);
2671 	int pages = 1 << order;
2672 
2673 	__slab_clear_pfmemalloc(slab);
2674 	folio->mapping = NULL;
2675 	__folio_clear_slab(folio);
2676 	mm_account_reclaimed_pages(pages);
2677 	unaccount_slab(slab, order, s);
2678 	free_frozen_pages(&folio->page, order);
2679 }
2680 
2681 static void rcu_free_slab(struct rcu_head *h)
2682 {
2683 	struct slab *slab = container_of(h, struct slab, rcu_head);
2684 
2685 	__free_slab(slab->slab_cache, slab);
2686 }
2687 
2688 static void free_slab(struct kmem_cache *s, struct slab *slab)
2689 {
2690 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2691 		void *p;
2692 
2693 		slab_pad_check(s, slab);
2694 		for_each_object(p, s, slab_address(slab), slab->objects)
2695 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2696 	}
2697 
2698 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2699 		call_rcu(&slab->rcu_head, rcu_free_slab);
2700 	else
2701 		__free_slab(s, slab);
2702 }
2703 
2704 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2705 {
2706 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2707 	free_slab(s, slab);
2708 }
2709 
2710 /*
2711  * SLUB reuses PG_workingset bit to keep track of whether it's on
2712  * the per-node partial list.
2713  */
2714 static inline bool slab_test_node_partial(const struct slab *slab)
2715 {
2716 	return folio_test_workingset(slab_folio(slab));
2717 }
2718 
2719 static inline void slab_set_node_partial(struct slab *slab)
2720 {
2721 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2722 }
2723 
2724 static inline void slab_clear_node_partial(struct slab *slab)
2725 {
2726 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2727 }
2728 
2729 /*
2730  * Management of partially allocated slabs.
2731  */
2732 static inline void
2733 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2734 {
2735 	n->nr_partial++;
2736 	if (tail == DEACTIVATE_TO_TAIL)
2737 		list_add_tail(&slab->slab_list, &n->partial);
2738 	else
2739 		list_add(&slab->slab_list, &n->partial);
2740 	slab_set_node_partial(slab);
2741 }
2742 
2743 static inline void add_partial(struct kmem_cache_node *n,
2744 				struct slab *slab, int tail)
2745 {
2746 	lockdep_assert_held(&n->list_lock);
2747 	__add_partial(n, slab, tail);
2748 }
2749 
2750 static inline void remove_partial(struct kmem_cache_node *n,
2751 					struct slab *slab)
2752 {
2753 	lockdep_assert_held(&n->list_lock);
2754 	list_del(&slab->slab_list);
2755 	slab_clear_node_partial(slab);
2756 	n->nr_partial--;
2757 }
2758 
2759 /*
2760  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2761  * slab from the n->partial list. Remove only a single object from the slab, do
2762  * the alloc_debug_processing() checks and leave the slab on the list, or move
2763  * it to full list if it was the last free object.
2764  */
2765 static void *alloc_single_from_partial(struct kmem_cache *s,
2766 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2767 {
2768 	void *object;
2769 
2770 	lockdep_assert_held(&n->list_lock);
2771 
2772 	object = slab->freelist;
2773 	slab->freelist = get_freepointer(s, object);
2774 	slab->inuse++;
2775 
2776 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2777 		if (folio_test_slab(slab_folio(slab)))
2778 			remove_partial(n, slab);
2779 		return NULL;
2780 	}
2781 
2782 	if (slab->inuse == slab->objects) {
2783 		remove_partial(n, slab);
2784 		add_full(s, n, slab);
2785 	}
2786 
2787 	return object;
2788 }
2789 
2790 /*
2791  * Called only for kmem_cache_debug() caches to allocate from a freshly
2792  * allocated slab. Allocate a single object instead of whole freelist
2793  * and put the slab to the partial (or full) list.
2794  */
2795 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2796 					struct slab *slab, int orig_size)
2797 {
2798 	int nid = slab_nid(slab);
2799 	struct kmem_cache_node *n = get_node(s, nid);
2800 	unsigned long flags;
2801 	void *object;
2802 
2803 
2804 	object = slab->freelist;
2805 	slab->freelist = get_freepointer(s, object);
2806 	slab->inuse = 1;
2807 
2808 	if (!alloc_debug_processing(s, slab, object, orig_size))
2809 		/*
2810 		 * It's not really expected that this would fail on a
2811 		 * freshly allocated slab, but a concurrent memory
2812 		 * corruption in theory could cause that.
2813 		 */
2814 		return NULL;
2815 
2816 	spin_lock_irqsave(&n->list_lock, flags);
2817 
2818 	if (slab->inuse == slab->objects)
2819 		add_full(s, n, slab);
2820 	else
2821 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2822 
2823 	inc_slabs_node(s, nid, slab->objects);
2824 	spin_unlock_irqrestore(&n->list_lock, flags);
2825 
2826 	return object;
2827 }
2828 
2829 #ifdef CONFIG_SLUB_CPU_PARTIAL
2830 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2831 #else
2832 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2833 				   int drain) { }
2834 #endif
2835 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2836 
2837 /*
2838  * Try to allocate a partial slab from a specific node.
2839  */
2840 static struct slab *get_partial_node(struct kmem_cache *s,
2841 				     struct kmem_cache_node *n,
2842 				     struct partial_context *pc)
2843 {
2844 	struct slab *slab, *slab2, *partial = NULL;
2845 	unsigned long flags;
2846 	unsigned int partial_slabs = 0;
2847 
2848 	/*
2849 	 * Racy check. If we mistakenly see no partial slabs then we
2850 	 * just allocate an empty slab. If we mistakenly try to get a
2851 	 * partial slab and there is none available then get_partial()
2852 	 * will return NULL.
2853 	 */
2854 	if (!n || !n->nr_partial)
2855 		return NULL;
2856 
2857 	spin_lock_irqsave(&n->list_lock, flags);
2858 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2859 		if (!pfmemalloc_match(slab, pc->flags))
2860 			continue;
2861 
2862 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2863 			void *object = alloc_single_from_partial(s, n, slab,
2864 							pc->orig_size);
2865 			if (object) {
2866 				partial = slab;
2867 				pc->object = object;
2868 				break;
2869 			}
2870 			continue;
2871 		}
2872 
2873 		remove_partial(n, slab);
2874 
2875 		if (!partial) {
2876 			partial = slab;
2877 			stat(s, ALLOC_FROM_PARTIAL);
2878 
2879 			if ((slub_get_cpu_partial(s) == 0)) {
2880 				break;
2881 			}
2882 		} else {
2883 			put_cpu_partial(s, slab, 0);
2884 			stat(s, CPU_PARTIAL_NODE);
2885 
2886 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2887 				break;
2888 			}
2889 		}
2890 	}
2891 	spin_unlock_irqrestore(&n->list_lock, flags);
2892 	return partial;
2893 }
2894 
2895 /*
2896  * Get a slab from somewhere. Search in increasing NUMA distances.
2897  */
2898 static struct slab *get_any_partial(struct kmem_cache *s,
2899 				    struct partial_context *pc)
2900 {
2901 #ifdef CONFIG_NUMA
2902 	struct zonelist *zonelist;
2903 	struct zoneref *z;
2904 	struct zone *zone;
2905 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2906 	struct slab *slab;
2907 	unsigned int cpuset_mems_cookie;
2908 
2909 	/*
2910 	 * The defrag ratio allows a configuration of the tradeoffs between
2911 	 * inter node defragmentation and node local allocations. A lower
2912 	 * defrag_ratio increases the tendency to do local allocations
2913 	 * instead of attempting to obtain partial slabs from other nodes.
2914 	 *
2915 	 * If the defrag_ratio is set to 0 then kmalloc() always
2916 	 * returns node local objects. If the ratio is higher then kmalloc()
2917 	 * may return off node objects because partial slabs are obtained
2918 	 * from other nodes and filled up.
2919 	 *
2920 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2921 	 * (which makes defrag_ratio = 1000) then every (well almost)
2922 	 * allocation will first attempt to defrag slab caches on other nodes.
2923 	 * This means scanning over all nodes to look for partial slabs which
2924 	 * may be expensive if we do it every time we are trying to find a slab
2925 	 * with available objects.
2926 	 */
2927 	if (!s->remote_node_defrag_ratio ||
2928 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2929 		return NULL;
2930 
2931 	do {
2932 		cpuset_mems_cookie = read_mems_allowed_begin();
2933 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2934 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2935 			struct kmem_cache_node *n;
2936 
2937 			n = get_node(s, zone_to_nid(zone));
2938 
2939 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2940 					n->nr_partial > s->min_partial) {
2941 				slab = get_partial_node(s, n, pc);
2942 				if (slab) {
2943 					/*
2944 					 * Don't check read_mems_allowed_retry()
2945 					 * here - if mems_allowed was updated in
2946 					 * parallel, that was a harmless race
2947 					 * between allocation and the cpuset
2948 					 * update
2949 					 */
2950 					return slab;
2951 				}
2952 			}
2953 		}
2954 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2955 #endif	/* CONFIG_NUMA */
2956 	return NULL;
2957 }
2958 
2959 /*
2960  * Get a partial slab, lock it and return it.
2961  */
2962 static struct slab *get_partial(struct kmem_cache *s, int node,
2963 				struct partial_context *pc)
2964 {
2965 	struct slab *slab;
2966 	int searchnode = node;
2967 
2968 	if (node == NUMA_NO_NODE)
2969 		searchnode = numa_mem_id();
2970 
2971 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2972 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2973 		return slab;
2974 
2975 	return get_any_partial(s, pc);
2976 }
2977 
2978 #ifndef CONFIG_SLUB_TINY
2979 
2980 #ifdef CONFIG_PREEMPTION
2981 /*
2982  * Calculate the next globally unique transaction for disambiguation
2983  * during cmpxchg. The transactions start with the cpu number and are then
2984  * incremented by CONFIG_NR_CPUS.
2985  */
2986 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2987 #else
2988 /*
2989  * No preemption supported therefore also no need to check for
2990  * different cpus.
2991  */
2992 #define TID_STEP 1
2993 #endif /* CONFIG_PREEMPTION */
2994 
2995 static inline unsigned long next_tid(unsigned long tid)
2996 {
2997 	return tid + TID_STEP;
2998 }
2999 
3000 #ifdef SLUB_DEBUG_CMPXCHG
3001 static inline unsigned int tid_to_cpu(unsigned long tid)
3002 {
3003 	return tid % TID_STEP;
3004 }
3005 
3006 static inline unsigned long tid_to_event(unsigned long tid)
3007 {
3008 	return tid / TID_STEP;
3009 }
3010 #endif
3011 
3012 static inline unsigned int init_tid(int cpu)
3013 {
3014 	return cpu;
3015 }
3016 
3017 static inline void note_cmpxchg_failure(const char *n,
3018 		const struct kmem_cache *s, unsigned long tid)
3019 {
3020 #ifdef SLUB_DEBUG_CMPXCHG
3021 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3022 
3023 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3024 
3025 #ifdef CONFIG_PREEMPTION
3026 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3027 		pr_warn("due to cpu change %d -> %d\n",
3028 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3029 	else
3030 #endif
3031 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3032 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3033 			tid_to_event(tid), tid_to_event(actual_tid));
3034 	else
3035 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3036 			actual_tid, tid, next_tid(tid));
3037 #endif
3038 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3039 }
3040 
3041 static void init_kmem_cache_cpus(struct kmem_cache *s)
3042 {
3043 	int cpu;
3044 	struct kmem_cache_cpu *c;
3045 
3046 	for_each_possible_cpu(cpu) {
3047 		c = per_cpu_ptr(s->cpu_slab, cpu);
3048 		local_lock_init(&c->lock);
3049 		c->tid = init_tid(cpu);
3050 	}
3051 }
3052 
3053 /*
3054  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3055  * unfreezes the slabs and puts it on the proper list.
3056  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3057  * by the caller.
3058  */
3059 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3060 			    void *freelist)
3061 {
3062 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3063 	int free_delta = 0;
3064 	void *nextfree, *freelist_iter, *freelist_tail;
3065 	int tail = DEACTIVATE_TO_HEAD;
3066 	unsigned long flags = 0;
3067 	struct slab new;
3068 	struct slab old;
3069 
3070 	if (READ_ONCE(slab->freelist)) {
3071 		stat(s, DEACTIVATE_REMOTE_FREES);
3072 		tail = DEACTIVATE_TO_TAIL;
3073 	}
3074 
3075 	/*
3076 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3077 	 * remember the last object in freelist_tail for later splicing.
3078 	 */
3079 	freelist_tail = NULL;
3080 	freelist_iter = freelist;
3081 	while (freelist_iter) {
3082 		nextfree = get_freepointer(s, freelist_iter);
3083 
3084 		/*
3085 		 * If 'nextfree' is invalid, it is possible that the object at
3086 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3087 		 * starting at 'freelist_iter' by skipping them.
3088 		 */
3089 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3090 			break;
3091 
3092 		freelist_tail = freelist_iter;
3093 		free_delta++;
3094 
3095 		freelist_iter = nextfree;
3096 	}
3097 
3098 	/*
3099 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3100 	 * freelist to the head of slab's freelist.
3101 	 */
3102 	do {
3103 		old.freelist = READ_ONCE(slab->freelist);
3104 		old.counters = READ_ONCE(slab->counters);
3105 		VM_BUG_ON(!old.frozen);
3106 
3107 		/* Determine target state of the slab */
3108 		new.counters = old.counters;
3109 		new.frozen = 0;
3110 		if (freelist_tail) {
3111 			new.inuse -= free_delta;
3112 			set_freepointer(s, freelist_tail, old.freelist);
3113 			new.freelist = freelist;
3114 		} else {
3115 			new.freelist = old.freelist;
3116 		}
3117 	} while (!slab_update_freelist(s, slab,
3118 		old.freelist, old.counters,
3119 		new.freelist, new.counters,
3120 		"unfreezing slab"));
3121 
3122 	/*
3123 	 * Stage three: Manipulate the slab list based on the updated state.
3124 	 */
3125 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3126 		stat(s, DEACTIVATE_EMPTY);
3127 		discard_slab(s, slab);
3128 		stat(s, FREE_SLAB);
3129 	} else if (new.freelist) {
3130 		spin_lock_irqsave(&n->list_lock, flags);
3131 		add_partial(n, slab, tail);
3132 		spin_unlock_irqrestore(&n->list_lock, flags);
3133 		stat(s, tail);
3134 	} else {
3135 		stat(s, DEACTIVATE_FULL);
3136 	}
3137 }
3138 
3139 #ifdef CONFIG_SLUB_CPU_PARTIAL
3140 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3141 {
3142 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3143 	struct slab *slab, *slab_to_discard = NULL;
3144 	unsigned long flags = 0;
3145 
3146 	while (partial_slab) {
3147 		slab = partial_slab;
3148 		partial_slab = slab->next;
3149 
3150 		n2 = get_node(s, slab_nid(slab));
3151 		if (n != n2) {
3152 			if (n)
3153 				spin_unlock_irqrestore(&n->list_lock, flags);
3154 
3155 			n = n2;
3156 			spin_lock_irqsave(&n->list_lock, flags);
3157 		}
3158 
3159 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3160 			slab->next = slab_to_discard;
3161 			slab_to_discard = slab;
3162 		} else {
3163 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3164 			stat(s, FREE_ADD_PARTIAL);
3165 		}
3166 	}
3167 
3168 	if (n)
3169 		spin_unlock_irqrestore(&n->list_lock, flags);
3170 
3171 	while (slab_to_discard) {
3172 		slab = slab_to_discard;
3173 		slab_to_discard = slab_to_discard->next;
3174 
3175 		stat(s, DEACTIVATE_EMPTY);
3176 		discard_slab(s, slab);
3177 		stat(s, FREE_SLAB);
3178 	}
3179 }
3180 
3181 /*
3182  * Put all the cpu partial slabs to the node partial list.
3183  */
3184 static void put_partials(struct kmem_cache *s)
3185 {
3186 	struct slab *partial_slab;
3187 	unsigned long flags;
3188 
3189 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3190 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3191 	this_cpu_write(s->cpu_slab->partial, NULL);
3192 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3193 
3194 	if (partial_slab)
3195 		__put_partials(s, partial_slab);
3196 }
3197 
3198 static void put_partials_cpu(struct kmem_cache *s,
3199 			     struct kmem_cache_cpu *c)
3200 {
3201 	struct slab *partial_slab;
3202 
3203 	partial_slab = slub_percpu_partial(c);
3204 	c->partial = NULL;
3205 
3206 	if (partial_slab)
3207 		__put_partials(s, partial_slab);
3208 }
3209 
3210 /*
3211  * Put a slab into a partial slab slot if available.
3212  *
3213  * If we did not find a slot then simply move all the partials to the
3214  * per node partial list.
3215  */
3216 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3217 {
3218 	struct slab *oldslab;
3219 	struct slab *slab_to_put = NULL;
3220 	unsigned long flags;
3221 	int slabs = 0;
3222 
3223 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3224 
3225 	oldslab = this_cpu_read(s->cpu_slab->partial);
3226 
3227 	if (oldslab) {
3228 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3229 			/*
3230 			 * Partial array is full. Move the existing set to the
3231 			 * per node partial list. Postpone the actual unfreezing
3232 			 * outside of the critical section.
3233 			 */
3234 			slab_to_put = oldslab;
3235 			oldslab = NULL;
3236 		} else {
3237 			slabs = oldslab->slabs;
3238 		}
3239 	}
3240 
3241 	slabs++;
3242 
3243 	slab->slabs = slabs;
3244 	slab->next = oldslab;
3245 
3246 	this_cpu_write(s->cpu_slab->partial, slab);
3247 
3248 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3249 
3250 	if (slab_to_put) {
3251 		__put_partials(s, slab_to_put);
3252 		stat(s, CPU_PARTIAL_DRAIN);
3253 	}
3254 }
3255 
3256 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3257 
3258 static inline void put_partials(struct kmem_cache *s) { }
3259 static inline void put_partials_cpu(struct kmem_cache *s,
3260 				    struct kmem_cache_cpu *c) { }
3261 
3262 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3263 
3264 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3265 {
3266 	unsigned long flags;
3267 	struct slab *slab;
3268 	void *freelist;
3269 
3270 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3271 
3272 	slab = c->slab;
3273 	freelist = c->freelist;
3274 
3275 	c->slab = NULL;
3276 	c->freelist = NULL;
3277 	c->tid = next_tid(c->tid);
3278 
3279 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3280 
3281 	if (slab) {
3282 		deactivate_slab(s, slab, freelist);
3283 		stat(s, CPUSLAB_FLUSH);
3284 	}
3285 }
3286 
3287 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3288 {
3289 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3290 	void *freelist = c->freelist;
3291 	struct slab *slab = c->slab;
3292 
3293 	c->slab = NULL;
3294 	c->freelist = NULL;
3295 	c->tid = next_tid(c->tid);
3296 
3297 	if (slab) {
3298 		deactivate_slab(s, slab, freelist);
3299 		stat(s, CPUSLAB_FLUSH);
3300 	}
3301 
3302 	put_partials_cpu(s, c);
3303 }
3304 
3305 struct slub_flush_work {
3306 	struct work_struct work;
3307 	struct kmem_cache *s;
3308 	bool skip;
3309 };
3310 
3311 /*
3312  * Flush cpu slab.
3313  *
3314  * Called from CPU work handler with migration disabled.
3315  */
3316 static void flush_cpu_slab(struct work_struct *w)
3317 {
3318 	struct kmem_cache *s;
3319 	struct kmem_cache_cpu *c;
3320 	struct slub_flush_work *sfw;
3321 
3322 	sfw = container_of(w, struct slub_flush_work, work);
3323 
3324 	s = sfw->s;
3325 	c = this_cpu_ptr(s->cpu_slab);
3326 
3327 	if (c->slab)
3328 		flush_slab(s, c);
3329 
3330 	put_partials(s);
3331 }
3332 
3333 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3334 {
3335 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3336 
3337 	return c->slab || slub_percpu_partial(c);
3338 }
3339 
3340 static DEFINE_MUTEX(flush_lock);
3341 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3342 
3343 static void flush_all_cpus_locked(struct kmem_cache *s)
3344 {
3345 	struct slub_flush_work *sfw;
3346 	unsigned int cpu;
3347 
3348 	lockdep_assert_cpus_held();
3349 	mutex_lock(&flush_lock);
3350 
3351 	for_each_online_cpu(cpu) {
3352 		sfw = &per_cpu(slub_flush, cpu);
3353 		if (!has_cpu_slab(cpu, s)) {
3354 			sfw->skip = true;
3355 			continue;
3356 		}
3357 		INIT_WORK(&sfw->work, flush_cpu_slab);
3358 		sfw->skip = false;
3359 		sfw->s = s;
3360 		queue_work_on(cpu, flushwq, &sfw->work);
3361 	}
3362 
3363 	for_each_online_cpu(cpu) {
3364 		sfw = &per_cpu(slub_flush, cpu);
3365 		if (sfw->skip)
3366 			continue;
3367 		flush_work(&sfw->work);
3368 	}
3369 
3370 	mutex_unlock(&flush_lock);
3371 }
3372 
3373 static void flush_all(struct kmem_cache *s)
3374 {
3375 	cpus_read_lock();
3376 	flush_all_cpus_locked(s);
3377 	cpus_read_unlock();
3378 }
3379 
3380 /*
3381  * Use the cpu notifier to insure that the cpu slabs are flushed when
3382  * necessary.
3383  */
3384 static int slub_cpu_dead(unsigned int cpu)
3385 {
3386 	struct kmem_cache *s;
3387 
3388 	mutex_lock(&slab_mutex);
3389 	list_for_each_entry(s, &slab_caches, list)
3390 		__flush_cpu_slab(s, cpu);
3391 	mutex_unlock(&slab_mutex);
3392 	return 0;
3393 }
3394 
3395 #else /* CONFIG_SLUB_TINY */
3396 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3397 static inline void flush_all(struct kmem_cache *s) { }
3398 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3399 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3400 #endif /* CONFIG_SLUB_TINY */
3401 
3402 /*
3403  * Check if the objects in a per cpu structure fit numa
3404  * locality expectations.
3405  */
3406 static inline int node_match(struct slab *slab, int node)
3407 {
3408 #ifdef CONFIG_NUMA
3409 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3410 		return 0;
3411 #endif
3412 	return 1;
3413 }
3414 
3415 #ifdef CONFIG_SLUB_DEBUG
3416 static int count_free(struct slab *slab)
3417 {
3418 	return slab->objects - slab->inuse;
3419 }
3420 
3421 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3422 {
3423 	return atomic_long_read(&n->total_objects);
3424 }
3425 
3426 /* Supports checking bulk free of a constructed freelist */
3427 static inline bool free_debug_processing(struct kmem_cache *s,
3428 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3429 	unsigned long addr, depot_stack_handle_t handle)
3430 {
3431 	bool checks_ok = false;
3432 	void *object = head;
3433 	int cnt = 0;
3434 
3435 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3436 		if (!check_slab(s, slab))
3437 			goto out;
3438 	}
3439 
3440 	if (slab->inuse < *bulk_cnt) {
3441 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3442 			 slab->inuse, *bulk_cnt);
3443 		goto out;
3444 	}
3445 
3446 next_object:
3447 
3448 	if (++cnt > *bulk_cnt)
3449 		goto out_cnt;
3450 
3451 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3452 		if (!free_consistency_checks(s, slab, object, addr))
3453 			goto out;
3454 	}
3455 
3456 	if (s->flags & SLAB_STORE_USER)
3457 		set_track_update(s, object, TRACK_FREE, addr, handle);
3458 	trace(s, slab, object, 0);
3459 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3460 	init_object(s, object, SLUB_RED_INACTIVE);
3461 
3462 	/* Reached end of constructed freelist yet? */
3463 	if (object != tail) {
3464 		object = get_freepointer(s, object);
3465 		goto next_object;
3466 	}
3467 	checks_ok = true;
3468 
3469 out_cnt:
3470 	if (cnt != *bulk_cnt) {
3471 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3472 			 *bulk_cnt, cnt);
3473 		*bulk_cnt = cnt;
3474 	}
3475 
3476 out:
3477 
3478 	if (!checks_ok)
3479 		slab_fix(s, "Object at 0x%p not freed", object);
3480 
3481 	return checks_ok;
3482 }
3483 #endif /* CONFIG_SLUB_DEBUG */
3484 
3485 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3486 static unsigned long count_partial(struct kmem_cache_node *n,
3487 					int (*get_count)(struct slab *))
3488 {
3489 	unsigned long flags;
3490 	unsigned long x = 0;
3491 	struct slab *slab;
3492 
3493 	spin_lock_irqsave(&n->list_lock, flags);
3494 	list_for_each_entry(slab, &n->partial, slab_list)
3495 		x += get_count(slab);
3496 	spin_unlock_irqrestore(&n->list_lock, flags);
3497 	return x;
3498 }
3499 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3500 
3501 #ifdef CONFIG_SLUB_DEBUG
3502 #define MAX_PARTIAL_TO_SCAN 10000
3503 
3504 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3505 {
3506 	unsigned long flags;
3507 	unsigned long x = 0;
3508 	struct slab *slab;
3509 
3510 	spin_lock_irqsave(&n->list_lock, flags);
3511 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3512 		list_for_each_entry(slab, &n->partial, slab_list)
3513 			x += slab->objects - slab->inuse;
3514 	} else {
3515 		/*
3516 		 * For a long list, approximate the total count of objects in
3517 		 * it to meet the limit on the number of slabs to scan.
3518 		 * Scan from both the list's head and tail for better accuracy.
3519 		 */
3520 		unsigned long scanned = 0;
3521 
3522 		list_for_each_entry(slab, &n->partial, slab_list) {
3523 			x += slab->objects - slab->inuse;
3524 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3525 				break;
3526 		}
3527 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3528 			x += slab->objects - slab->inuse;
3529 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3530 				break;
3531 		}
3532 		x = mult_frac(x, n->nr_partial, scanned);
3533 		x = min(x, node_nr_objs(n));
3534 	}
3535 	spin_unlock_irqrestore(&n->list_lock, flags);
3536 	return x;
3537 }
3538 
3539 static noinline void
3540 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3541 {
3542 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3543 				      DEFAULT_RATELIMIT_BURST);
3544 	int cpu = raw_smp_processor_id();
3545 	int node;
3546 	struct kmem_cache_node *n;
3547 
3548 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3549 		return;
3550 
3551 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3552 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3553 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3554 		s->name, s->object_size, s->size, oo_order(s->oo),
3555 		oo_order(s->min));
3556 
3557 	if (oo_order(s->min) > get_order(s->object_size))
3558 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3559 			s->name);
3560 
3561 	for_each_kmem_cache_node(s, node, n) {
3562 		unsigned long nr_slabs;
3563 		unsigned long nr_objs;
3564 		unsigned long nr_free;
3565 
3566 		nr_free  = count_partial_free_approx(n);
3567 		nr_slabs = node_nr_slabs(n);
3568 		nr_objs  = node_nr_objs(n);
3569 
3570 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3571 			node, nr_slabs, nr_objs, nr_free);
3572 	}
3573 }
3574 #else /* CONFIG_SLUB_DEBUG */
3575 static inline void
3576 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3577 #endif
3578 
3579 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3580 {
3581 	if (unlikely(slab_test_pfmemalloc(slab)))
3582 		return gfp_pfmemalloc_allowed(gfpflags);
3583 
3584 	return true;
3585 }
3586 
3587 #ifndef CONFIG_SLUB_TINY
3588 static inline bool
3589 __update_cpu_freelist_fast(struct kmem_cache *s,
3590 			   void *freelist_old, void *freelist_new,
3591 			   unsigned long tid)
3592 {
3593 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3594 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3595 
3596 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3597 					     &old.full, new.full);
3598 }
3599 
3600 /*
3601  * Check the slab->freelist and either transfer the freelist to the
3602  * per cpu freelist or deactivate the slab.
3603  *
3604  * The slab is still frozen if the return value is not NULL.
3605  *
3606  * If this function returns NULL then the slab has been unfrozen.
3607  */
3608 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3609 {
3610 	struct slab new;
3611 	unsigned long counters;
3612 	void *freelist;
3613 
3614 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3615 
3616 	do {
3617 		freelist = slab->freelist;
3618 		counters = slab->counters;
3619 
3620 		new.counters = counters;
3621 
3622 		new.inuse = slab->objects;
3623 		new.frozen = freelist != NULL;
3624 
3625 	} while (!__slab_update_freelist(s, slab,
3626 		freelist, counters,
3627 		NULL, new.counters,
3628 		"get_freelist"));
3629 
3630 	return freelist;
3631 }
3632 
3633 /*
3634  * Freeze the partial slab and return the pointer to the freelist.
3635  */
3636 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3637 {
3638 	struct slab new;
3639 	unsigned long counters;
3640 	void *freelist;
3641 
3642 	do {
3643 		freelist = slab->freelist;
3644 		counters = slab->counters;
3645 
3646 		new.counters = counters;
3647 		VM_BUG_ON(new.frozen);
3648 
3649 		new.inuse = slab->objects;
3650 		new.frozen = 1;
3651 
3652 	} while (!slab_update_freelist(s, slab,
3653 		freelist, counters,
3654 		NULL, new.counters,
3655 		"freeze_slab"));
3656 
3657 	return freelist;
3658 }
3659 
3660 /*
3661  * Slow path. The lockless freelist is empty or we need to perform
3662  * debugging duties.
3663  *
3664  * Processing is still very fast if new objects have been freed to the
3665  * regular freelist. In that case we simply take over the regular freelist
3666  * as the lockless freelist and zap the regular freelist.
3667  *
3668  * If that is not working then we fall back to the partial lists. We take the
3669  * first element of the freelist as the object to allocate now and move the
3670  * rest of the freelist to the lockless freelist.
3671  *
3672  * And if we were unable to get a new slab from the partial slab lists then
3673  * we need to allocate a new slab. This is the slowest path since it involves
3674  * a call to the page allocator and the setup of a new slab.
3675  *
3676  * Version of __slab_alloc to use when we know that preemption is
3677  * already disabled (which is the case for bulk allocation).
3678  */
3679 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3680 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3681 {
3682 	void *freelist;
3683 	struct slab *slab;
3684 	unsigned long flags;
3685 	struct partial_context pc;
3686 	bool try_thisnode = true;
3687 
3688 	stat(s, ALLOC_SLOWPATH);
3689 
3690 reread_slab:
3691 
3692 	slab = READ_ONCE(c->slab);
3693 	if (!slab) {
3694 		/*
3695 		 * if the node is not online or has no normal memory, just
3696 		 * ignore the node constraint
3697 		 */
3698 		if (unlikely(node != NUMA_NO_NODE &&
3699 			     !node_isset(node, slab_nodes)))
3700 			node = NUMA_NO_NODE;
3701 		goto new_slab;
3702 	}
3703 
3704 	if (unlikely(!node_match(slab, node))) {
3705 		/*
3706 		 * same as above but node_match() being false already
3707 		 * implies node != NUMA_NO_NODE
3708 		 */
3709 		if (!node_isset(node, slab_nodes)) {
3710 			node = NUMA_NO_NODE;
3711 		} else {
3712 			stat(s, ALLOC_NODE_MISMATCH);
3713 			goto deactivate_slab;
3714 		}
3715 	}
3716 
3717 	/*
3718 	 * By rights, we should be searching for a slab page that was
3719 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3720 	 * information when the page leaves the per-cpu allocator
3721 	 */
3722 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3723 		goto deactivate_slab;
3724 
3725 	/* must check again c->slab in case we got preempted and it changed */
3726 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3727 	if (unlikely(slab != c->slab)) {
3728 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3729 		goto reread_slab;
3730 	}
3731 	freelist = c->freelist;
3732 	if (freelist)
3733 		goto load_freelist;
3734 
3735 	freelist = get_freelist(s, slab);
3736 
3737 	if (!freelist) {
3738 		c->slab = NULL;
3739 		c->tid = next_tid(c->tid);
3740 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3741 		stat(s, DEACTIVATE_BYPASS);
3742 		goto new_slab;
3743 	}
3744 
3745 	stat(s, ALLOC_REFILL);
3746 
3747 load_freelist:
3748 
3749 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3750 
3751 	/*
3752 	 * freelist is pointing to the list of objects to be used.
3753 	 * slab is pointing to the slab from which the objects are obtained.
3754 	 * That slab must be frozen for per cpu allocations to work.
3755 	 */
3756 	VM_BUG_ON(!c->slab->frozen);
3757 	c->freelist = get_freepointer(s, freelist);
3758 	c->tid = next_tid(c->tid);
3759 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3760 	return freelist;
3761 
3762 deactivate_slab:
3763 
3764 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3765 	if (slab != c->slab) {
3766 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3767 		goto reread_slab;
3768 	}
3769 	freelist = c->freelist;
3770 	c->slab = NULL;
3771 	c->freelist = NULL;
3772 	c->tid = next_tid(c->tid);
3773 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3774 	deactivate_slab(s, slab, freelist);
3775 
3776 new_slab:
3777 
3778 #ifdef CONFIG_SLUB_CPU_PARTIAL
3779 	while (slub_percpu_partial(c)) {
3780 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3781 		if (unlikely(c->slab)) {
3782 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3783 			goto reread_slab;
3784 		}
3785 		if (unlikely(!slub_percpu_partial(c))) {
3786 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3787 			/* we were preempted and partial list got empty */
3788 			goto new_objects;
3789 		}
3790 
3791 		slab = slub_percpu_partial(c);
3792 		slub_set_percpu_partial(c, slab);
3793 
3794 		if (likely(node_match(slab, node) &&
3795 			   pfmemalloc_match(slab, gfpflags))) {
3796 			c->slab = slab;
3797 			freelist = get_freelist(s, slab);
3798 			VM_BUG_ON(!freelist);
3799 			stat(s, CPU_PARTIAL_ALLOC);
3800 			goto load_freelist;
3801 		}
3802 
3803 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3804 
3805 		slab->next = NULL;
3806 		__put_partials(s, slab);
3807 	}
3808 #endif
3809 
3810 new_objects:
3811 
3812 	pc.flags = gfpflags;
3813 	/*
3814 	 * When a preferred node is indicated but no __GFP_THISNODE
3815 	 *
3816 	 * 1) try to get a partial slab from target node only by having
3817 	 *    __GFP_THISNODE in pc.flags for get_partial()
3818 	 * 2) if 1) failed, try to allocate a new slab from target node with
3819 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3820 	 * 3) if 2) failed, retry with original gfpflags which will allow
3821 	 *    get_partial() try partial lists of other nodes before potentially
3822 	 *    allocating new page from other nodes
3823 	 */
3824 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3825 		     && try_thisnode))
3826 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3827 
3828 	pc.orig_size = orig_size;
3829 	slab = get_partial(s, node, &pc);
3830 	if (slab) {
3831 		if (kmem_cache_debug(s)) {
3832 			freelist = pc.object;
3833 			/*
3834 			 * For debug caches here we had to go through
3835 			 * alloc_single_from_partial() so just store the
3836 			 * tracking info and return the object.
3837 			 */
3838 			if (s->flags & SLAB_STORE_USER)
3839 				set_track(s, freelist, TRACK_ALLOC, addr);
3840 
3841 			return freelist;
3842 		}
3843 
3844 		freelist = freeze_slab(s, slab);
3845 		goto retry_load_slab;
3846 	}
3847 
3848 	slub_put_cpu_ptr(s->cpu_slab);
3849 	slab = new_slab(s, pc.flags, node);
3850 	c = slub_get_cpu_ptr(s->cpu_slab);
3851 
3852 	if (unlikely(!slab)) {
3853 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3854 		    && try_thisnode) {
3855 			try_thisnode = false;
3856 			goto new_objects;
3857 		}
3858 		slab_out_of_memory(s, gfpflags, node);
3859 		return NULL;
3860 	}
3861 
3862 	stat(s, ALLOC_SLAB);
3863 
3864 	if (kmem_cache_debug(s)) {
3865 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3866 
3867 		if (unlikely(!freelist))
3868 			goto new_objects;
3869 
3870 		if (s->flags & SLAB_STORE_USER)
3871 			set_track(s, freelist, TRACK_ALLOC, addr);
3872 
3873 		return freelist;
3874 	}
3875 
3876 	/*
3877 	 * No other reference to the slab yet so we can
3878 	 * muck around with it freely without cmpxchg
3879 	 */
3880 	freelist = slab->freelist;
3881 	slab->freelist = NULL;
3882 	slab->inuse = slab->objects;
3883 	slab->frozen = 1;
3884 
3885 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3886 
3887 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3888 		/*
3889 		 * For !pfmemalloc_match() case we don't load freelist so that
3890 		 * we don't make further mismatched allocations easier.
3891 		 */
3892 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3893 		return freelist;
3894 	}
3895 
3896 retry_load_slab:
3897 
3898 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3899 	if (unlikely(c->slab)) {
3900 		void *flush_freelist = c->freelist;
3901 		struct slab *flush_slab = c->slab;
3902 
3903 		c->slab = NULL;
3904 		c->freelist = NULL;
3905 		c->tid = next_tid(c->tid);
3906 
3907 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3908 
3909 		deactivate_slab(s, flush_slab, flush_freelist);
3910 
3911 		stat(s, CPUSLAB_FLUSH);
3912 
3913 		goto retry_load_slab;
3914 	}
3915 	c->slab = slab;
3916 
3917 	goto load_freelist;
3918 }
3919 
3920 /*
3921  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3922  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3923  * pointer.
3924  */
3925 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3926 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3927 {
3928 	void *p;
3929 
3930 #ifdef CONFIG_PREEMPT_COUNT
3931 	/*
3932 	 * We may have been preempted and rescheduled on a different
3933 	 * cpu before disabling preemption. Need to reload cpu area
3934 	 * pointer.
3935 	 */
3936 	c = slub_get_cpu_ptr(s->cpu_slab);
3937 #endif
3938 
3939 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3940 #ifdef CONFIG_PREEMPT_COUNT
3941 	slub_put_cpu_ptr(s->cpu_slab);
3942 #endif
3943 	return p;
3944 }
3945 
3946 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3947 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3948 {
3949 	struct kmem_cache_cpu *c;
3950 	struct slab *slab;
3951 	unsigned long tid;
3952 	void *object;
3953 
3954 redo:
3955 	/*
3956 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3957 	 * enabled. We may switch back and forth between cpus while
3958 	 * reading from one cpu area. That does not matter as long
3959 	 * as we end up on the original cpu again when doing the cmpxchg.
3960 	 *
3961 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3962 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3963 	 * the tid. If we are preempted and switched to another cpu between the
3964 	 * two reads, it's OK as the two are still associated with the same cpu
3965 	 * and cmpxchg later will validate the cpu.
3966 	 */
3967 	c = raw_cpu_ptr(s->cpu_slab);
3968 	tid = READ_ONCE(c->tid);
3969 
3970 	/*
3971 	 * Irqless object alloc/free algorithm used here depends on sequence
3972 	 * of fetching cpu_slab's data. tid should be fetched before anything
3973 	 * on c to guarantee that object and slab associated with previous tid
3974 	 * won't be used with current tid. If we fetch tid first, object and
3975 	 * slab could be one associated with next tid and our alloc/free
3976 	 * request will be failed. In this case, we will retry. So, no problem.
3977 	 */
3978 	barrier();
3979 
3980 	/*
3981 	 * The transaction ids are globally unique per cpu and per operation on
3982 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3983 	 * occurs on the right processor and that there was no operation on the
3984 	 * linked list in between.
3985 	 */
3986 
3987 	object = c->freelist;
3988 	slab = c->slab;
3989 
3990 #ifdef CONFIG_NUMA
3991 	if (static_branch_unlikely(&strict_numa) &&
3992 			node == NUMA_NO_NODE) {
3993 
3994 		struct mempolicy *mpol = current->mempolicy;
3995 
3996 		if (mpol) {
3997 			/*
3998 			 * Special BIND rule support. If existing slab
3999 			 * is in permitted set then do not redirect
4000 			 * to a particular node.
4001 			 * Otherwise we apply the memory policy to get
4002 			 * the node we need to allocate on.
4003 			 */
4004 			if (mpol->mode != MPOL_BIND || !slab ||
4005 					!node_isset(slab_nid(slab), mpol->nodes))
4006 
4007 				node = mempolicy_slab_node();
4008 		}
4009 	}
4010 #endif
4011 
4012 	if (!USE_LOCKLESS_FAST_PATH() ||
4013 	    unlikely(!object || !slab || !node_match(slab, node))) {
4014 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4015 	} else {
4016 		void *next_object = get_freepointer_safe(s, object);
4017 
4018 		/*
4019 		 * The cmpxchg will only match if there was no additional
4020 		 * operation and if we are on the right processor.
4021 		 *
4022 		 * The cmpxchg does the following atomically (without lock
4023 		 * semantics!)
4024 		 * 1. Relocate first pointer to the current per cpu area.
4025 		 * 2. Verify that tid and freelist have not been changed
4026 		 * 3. If they were not changed replace tid and freelist
4027 		 *
4028 		 * Since this is without lock semantics the protection is only
4029 		 * against code executing on this cpu *not* from access by
4030 		 * other cpus.
4031 		 */
4032 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4033 			note_cmpxchg_failure("slab_alloc", s, tid);
4034 			goto redo;
4035 		}
4036 		prefetch_freepointer(s, next_object);
4037 		stat(s, ALLOC_FASTPATH);
4038 	}
4039 
4040 	return object;
4041 }
4042 #else /* CONFIG_SLUB_TINY */
4043 static void *__slab_alloc_node(struct kmem_cache *s,
4044 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4045 {
4046 	struct partial_context pc;
4047 	struct slab *slab;
4048 	void *object;
4049 
4050 	pc.flags = gfpflags;
4051 	pc.orig_size = orig_size;
4052 	slab = get_partial(s, node, &pc);
4053 
4054 	if (slab)
4055 		return pc.object;
4056 
4057 	slab = new_slab(s, gfpflags, node);
4058 	if (unlikely(!slab)) {
4059 		slab_out_of_memory(s, gfpflags, node);
4060 		return NULL;
4061 	}
4062 
4063 	object = alloc_single_from_new_slab(s, slab, orig_size);
4064 
4065 	return object;
4066 }
4067 #endif /* CONFIG_SLUB_TINY */
4068 
4069 /*
4070  * If the object has been wiped upon free, make sure it's fully initialized by
4071  * zeroing out freelist pointer.
4072  *
4073  * Note that we also wipe custom freelist pointers.
4074  */
4075 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4076 						   void *obj)
4077 {
4078 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4079 	    !freeptr_outside_object(s))
4080 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4081 			0, sizeof(void *));
4082 }
4083 
4084 static __fastpath_inline
4085 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4086 {
4087 	flags &= gfp_allowed_mask;
4088 
4089 	might_alloc(flags);
4090 
4091 	if (unlikely(should_failslab(s, flags)))
4092 		return NULL;
4093 
4094 	return s;
4095 }
4096 
4097 static __fastpath_inline
4098 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4099 			  gfp_t flags, size_t size, void **p, bool init,
4100 			  unsigned int orig_size)
4101 {
4102 	unsigned int zero_size = s->object_size;
4103 	bool kasan_init = init;
4104 	size_t i;
4105 	gfp_t init_flags = flags & gfp_allowed_mask;
4106 
4107 	/*
4108 	 * For kmalloc object, the allocated memory size(object_size) is likely
4109 	 * larger than the requested size(orig_size). If redzone check is
4110 	 * enabled for the extra space, don't zero it, as it will be redzoned
4111 	 * soon. The redzone operation for this extra space could be seen as a
4112 	 * replacement of current poisoning under certain debug option, and
4113 	 * won't break other sanity checks.
4114 	 */
4115 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4116 	    (s->flags & SLAB_KMALLOC))
4117 		zero_size = orig_size;
4118 
4119 	/*
4120 	 * When slab_debug is enabled, avoid memory initialization integrated
4121 	 * into KASAN and instead zero out the memory via the memset below with
4122 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4123 	 * cause false-positive reports. This does not lead to a performance
4124 	 * penalty on production builds, as slab_debug is not intended to be
4125 	 * enabled there.
4126 	 */
4127 	if (__slub_debug_enabled())
4128 		kasan_init = false;
4129 
4130 	/*
4131 	 * As memory initialization might be integrated into KASAN,
4132 	 * kasan_slab_alloc and initialization memset must be
4133 	 * kept together to avoid discrepancies in behavior.
4134 	 *
4135 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4136 	 */
4137 	for (i = 0; i < size; i++) {
4138 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4139 		if (p[i] && init && (!kasan_init ||
4140 				     !kasan_has_integrated_init()))
4141 			memset(p[i], 0, zero_size);
4142 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4143 					 s->flags, init_flags);
4144 		kmsan_slab_alloc(s, p[i], init_flags);
4145 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4146 	}
4147 
4148 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4149 }
4150 
4151 /*
4152  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4153  * have the fastpath folded into their functions. So no function call
4154  * overhead for requests that can be satisfied on the fastpath.
4155  *
4156  * The fastpath works by first checking if the lockless freelist can be used.
4157  * If not then __slab_alloc is called for slow processing.
4158  *
4159  * Otherwise we can simply pick the next object from the lockless free list.
4160  */
4161 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4162 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4163 {
4164 	void *object;
4165 	bool init = false;
4166 
4167 	s = slab_pre_alloc_hook(s, gfpflags);
4168 	if (unlikely(!s))
4169 		return NULL;
4170 
4171 	object = kfence_alloc(s, orig_size, gfpflags);
4172 	if (unlikely(object))
4173 		goto out;
4174 
4175 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4176 
4177 	maybe_wipe_obj_freeptr(s, object);
4178 	init = slab_want_init_on_alloc(gfpflags, s);
4179 
4180 out:
4181 	/*
4182 	 * When init equals 'true', like for kzalloc() family, only
4183 	 * @orig_size bytes might be zeroed instead of s->object_size
4184 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4185 	 * object is set to NULL
4186 	 */
4187 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4188 
4189 	return object;
4190 }
4191 
4192 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4193 {
4194 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4195 				    s->object_size);
4196 
4197 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4198 
4199 	return ret;
4200 }
4201 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4202 
4203 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4204 			   gfp_t gfpflags)
4205 {
4206 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4207 				    s->object_size);
4208 
4209 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4210 
4211 	return ret;
4212 }
4213 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4214 
4215 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4216 {
4217 	if (!memcg_kmem_online())
4218 		return true;
4219 
4220 	return memcg_slab_post_charge(objp, gfpflags);
4221 }
4222 EXPORT_SYMBOL(kmem_cache_charge);
4223 
4224 /**
4225  * kmem_cache_alloc_node - Allocate an object on the specified node
4226  * @s: The cache to allocate from.
4227  * @gfpflags: See kmalloc().
4228  * @node: node number of the target node.
4229  *
4230  * Identical to kmem_cache_alloc but it will allocate memory on the given
4231  * node, which can improve the performance for cpu bound structures.
4232  *
4233  * Fallback to other node is possible if __GFP_THISNODE is not set.
4234  *
4235  * Return: pointer to the new object or %NULL in case of error
4236  */
4237 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4238 {
4239 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4240 
4241 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4242 
4243 	return ret;
4244 }
4245 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4246 
4247 /*
4248  * To avoid unnecessary overhead, we pass through large allocation requests
4249  * directly to the page allocator. We use __GFP_COMP, because we will need to
4250  * know the allocation order to free the pages properly in kfree.
4251  */
4252 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4253 {
4254 	struct folio *folio;
4255 	void *ptr = NULL;
4256 	unsigned int order = get_order(size);
4257 
4258 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4259 		flags = kmalloc_fix_flags(flags);
4260 
4261 	flags |= __GFP_COMP;
4262 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4263 	if (folio) {
4264 		ptr = folio_address(folio);
4265 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4266 				      PAGE_SIZE << order);
4267 		__folio_set_large_kmalloc(folio);
4268 	}
4269 
4270 	ptr = kasan_kmalloc_large(ptr, size, flags);
4271 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4272 	kmemleak_alloc(ptr, size, 1, flags);
4273 	kmsan_kmalloc_large(ptr, size, flags);
4274 
4275 	return ptr;
4276 }
4277 
4278 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4279 {
4280 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4281 
4282 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4283 		      flags, NUMA_NO_NODE);
4284 	return ret;
4285 }
4286 EXPORT_SYMBOL(__kmalloc_large_noprof);
4287 
4288 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4289 {
4290 	void *ret = ___kmalloc_large_node(size, flags, node);
4291 
4292 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4293 		      flags, node);
4294 	return ret;
4295 }
4296 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4297 
4298 static __always_inline
4299 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4300 			unsigned long caller)
4301 {
4302 	struct kmem_cache *s;
4303 	void *ret;
4304 
4305 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4306 		ret = __kmalloc_large_node_noprof(size, flags, node);
4307 		trace_kmalloc(caller, ret, size,
4308 			      PAGE_SIZE << get_order(size), flags, node);
4309 		return ret;
4310 	}
4311 
4312 	if (unlikely(!size))
4313 		return ZERO_SIZE_PTR;
4314 
4315 	s = kmalloc_slab(size, b, flags, caller);
4316 
4317 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4318 	ret = kasan_kmalloc(s, ret, size, flags);
4319 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4320 	return ret;
4321 }
4322 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4323 {
4324 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4325 }
4326 EXPORT_SYMBOL(__kmalloc_node_noprof);
4327 
4328 void *__kmalloc_noprof(size_t size, gfp_t flags)
4329 {
4330 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4331 }
4332 EXPORT_SYMBOL(__kmalloc_noprof);
4333 
4334 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4335 					 int node, unsigned long caller)
4336 {
4337 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4338 
4339 }
4340 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4341 
4342 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4343 {
4344 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4345 					    _RET_IP_, size);
4346 
4347 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4348 
4349 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4350 	return ret;
4351 }
4352 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4353 
4354 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4355 				  int node, size_t size)
4356 {
4357 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4358 
4359 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4360 
4361 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4362 	return ret;
4363 }
4364 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4365 
4366 static noinline void free_to_partial_list(
4367 	struct kmem_cache *s, struct slab *slab,
4368 	void *head, void *tail, int bulk_cnt,
4369 	unsigned long addr)
4370 {
4371 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4372 	struct slab *slab_free = NULL;
4373 	int cnt = bulk_cnt;
4374 	unsigned long flags;
4375 	depot_stack_handle_t handle = 0;
4376 
4377 	if (s->flags & SLAB_STORE_USER)
4378 		handle = set_track_prepare();
4379 
4380 	spin_lock_irqsave(&n->list_lock, flags);
4381 
4382 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4383 		void *prior = slab->freelist;
4384 
4385 		/* Perform the actual freeing while we still hold the locks */
4386 		slab->inuse -= cnt;
4387 		set_freepointer(s, tail, prior);
4388 		slab->freelist = head;
4389 
4390 		/*
4391 		 * If the slab is empty, and node's partial list is full,
4392 		 * it should be discarded anyway no matter it's on full or
4393 		 * partial list.
4394 		 */
4395 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4396 			slab_free = slab;
4397 
4398 		if (!prior) {
4399 			/* was on full list */
4400 			remove_full(s, n, slab);
4401 			if (!slab_free) {
4402 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4403 				stat(s, FREE_ADD_PARTIAL);
4404 			}
4405 		} else if (slab_free) {
4406 			remove_partial(n, slab);
4407 			stat(s, FREE_REMOVE_PARTIAL);
4408 		}
4409 	}
4410 
4411 	if (slab_free) {
4412 		/*
4413 		 * Update the counters while still holding n->list_lock to
4414 		 * prevent spurious validation warnings
4415 		 */
4416 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4417 	}
4418 
4419 	spin_unlock_irqrestore(&n->list_lock, flags);
4420 
4421 	if (slab_free) {
4422 		stat(s, FREE_SLAB);
4423 		free_slab(s, slab_free);
4424 	}
4425 }
4426 
4427 /*
4428  * Slow path handling. This may still be called frequently since objects
4429  * have a longer lifetime than the cpu slabs in most processing loads.
4430  *
4431  * So we still attempt to reduce cache line usage. Just take the slab
4432  * lock and free the item. If there is no additional partial slab
4433  * handling required then we can return immediately.
4434  */
4435 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4436 			void *head, void *tail, int cnt,
4437 			unsigned long addr)
4438 
4439 {
4440 	void *prior;
4441 	int was_frozen;
4442 	struct slab new;
4443 	unsigned long counters;
4444 	struct kmem_cache_node *n = NULL;
4445 	unsigned long flags;
4446 	bool on_node_partial;
4447 
4448 	stat(s, FREE_SLOWPATH);
4449 
4450 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4451 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4452 		return;
4453 	}
4454 
4455 	do {
4456 		if (unlikely(n)) {
4457 			spin_unlock_irqrestore(&n->list_lock, flags);
4458 			n = NULL;
4459 		}
4460 		prior = slab->freelist;
4461 		counters = slab->counters;
4462 		set_freepointer(s, tail, prior);
4463 		new.counters = counters;
4464 		was_frozen = new.frozen;
4465 		new.inuse -= cnt;
4466 		if ((!new.inuse || !prior) && !was_frozen) {
4467 			/* Needs to be taken off a list */
4468 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4469 
4470 				n = get_node(s, slab_nid(slab));
4471 				/*
4472 				 * Speculatively acquire the list_lock.
4473 				 * If the cmpxchg does not succeed then we may
4474 				 * drop the list_lock without any processing.
4475 				 *
4476 				 * Otherwise the list_lock will synchronize with
4477 				 * other processors updating the list of slabs.
4478 				 */
4479 				spin_lock_irqsave(&n->list_lock, flags);
4480 
4481 				on_node_partial = slab_test_node_partial(slab);
4482 			}
4483 		}
4484 
4485 	} while (!slab_update_freelist(s, slab,
4486 		prior, counters,
4487 		head, new.counters,
4488 		"__slab_free"));
4489 
4490 	if (likely(!n)) {
4491 
4492 		if (likely(was_frozen)) {
4493 			/*
4494 			 * The list lock was not taken therefore no list
4495 			 * activity can be necessary.
4496 			 */
4497 			stat(s, FREE_FROZEN);
4498 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4499 			/*
4500 			 * If we started with a full slab then put it onto the
4501 			 * per cpu partial list.
4502 			 */
4503 			put_cpu_partial(s, slab, 1);
4504 			stat(s, CPU_PARTIAL_FREE);
4505 		}
4506 
4507 		return;
4508 	}
4509 
4510 	/*
4511 	 * This slab was partially empty but not on the per-node partial list,
4512 	 * in which case we shouldn't manipulate its list, just return.
4513 	 */
4514 	if (prior && !on_node_partial) {
4515 		spin_unlock_irqrestore(&n->list_lock, flags);
4516 		return;
4517 	}
4518 
4519 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4520 		goto slab_empty;
4521 
4522 	/*
4523 	 * Objects left in the slab. If it was not on the partial list before
4524 	 * then add it.
4525 	 */
4526 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4527 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4528 		stat(s, FREE_ADD_PARTIAL);
4529 	}
4530 	spin_unlock_irqrestore(&n->list_lock, flags);
4531 	return;
4532 
4533 slab_empty:
4534 	if (prior) {
4535 		/*
4536 		 * Slab on the partial list.
4537 		 */
4538 		remove_partial(n, slab);
4539 		stat(s, FREE_REMOVE_PARTIAL);
4540 	}
4541 
4542 	spin_unlock_irqrestore(&n->list_lock, flags);
4543 	stat(s, FREE_SLAB);
4544 	discard_slab(s, slab);
4545 }
4546 
4547 #ifndef CONFIG_SLUB_TINY
4548 /*
4549  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4550  * can perform fastpath freeing without additional function calls.
4551  *
4552  * The fastpath is only possible if we are freeing to the current cpu slab
4553  * of this processor. This typically the case if we have just allocated
4554  * the item before.
4555  *
4556  * If fastpath is not possible then fall back to __slab_free where we deal
4557  * with all sorts of special processing.
4558  *
4559  * Bulk free of a freelist with several objects (all pointing to the
4560  * same slab) possible by specifying head and tail ptr, plus objects
4561  * count (cnt). Bulk free indicated by tail pointer being set.
4562  */
4563 static __always_inline void do_slab_free(struct kmem_cache *s,
4564 				struct slab *slab, void *head, void *tail,
4565 				int cnt, unsigned long addr)
4566 {
4567 	struct kmem_cache_cpu *c;
4568 	unsigned long tid;
4569 	void **freelist;
4570 
4571 redo:
4572 	/*
4573 	 * Determine the currently cpus per cpu slab.
4574 	 * The cpu may change afterward. However that does not matter since
4575 	 * data is retrieved via this pointer. If we are on the same cpu
4576 	 * during the cmpxchg then the free will succeed.
4577 	 */
4578 	c = raw_cpu_ptr(s->cpu_slab);
4579 	tid = READ_ONCE(c->tid);
4580 
4581 	/* Same with comment on barrier() in __slab_alloc_node() */
4582 	barrier();
4583 
4584 	if (unlikely(slab != c->slab)) {
4585 		__slab_free(s, slab, head, tail, cnt, addr);
4586 		return;
4587 	}
4588 
4589 	if (USE_LOCKLESS_FAST_PATH()) {
4590 		freelist = READ_ONCE(c->freelist);
4591 
4592 		set_freepointer(s, tail, freelist);
4593 
4594 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4595 			note_cmpxchg_failure("slab_free", s, tid);
4596 			goto redo;
4597 		}
4598 	} else {
4599 		/* Update the free list under the local lock */
4600 		local_lock(&s->cpu_slab->lock);
4601 		c = this_cpu_ptr(s->cpu_slab);
4602 		if (unlikely(slab != c->slab)) {
4603 			local_unlock(&s->cpu_slab->lock);
4604 			goto redo;
4605 		}
4606 		tid = c->tid;
4607 		freelist = c->freelist;
4608 
4609 		set_freepointer(s, tail, freelist);
4610 		c->freelist = head;
4611 		c->tid = next_tid(tid);
4612 
4613 		local_unlock(&s->cpu_slab->lock);
4614 	}
4615 	stat_add(s, FREE_FASTPATH, cnt);
4616 }
4617 #else /* CONFIG_SLUB_TINY */
4618 static void do_slab_free(struct kmem_cache *s,
4619 				struct slab *slab, void *head, void *tail,
4620 				int cnt, unsigned long addr)
4621 {
4622 	__slab_free(s, slab, head, tail, cnt, addr);
4623 }
4624 #endif /* CONFIG_SLUB_TINY */
4625 
4626 static __fastpath_inline
4627 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4628 	       unsigned long addr)
4629 {
4630 	memcg_slab_free_hook(s, slab, &object, 1);
4631 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4632 
4633 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4634 		do_slab_free(s, slab, object, object, 1, addr);
4635 }
4636 
4637 #ifdef CONFIG_MEMCG
4638 /* Do not inline the rare memcg charging failed path into the allocation path */
4639 static noinline
4640 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4641 {
4642 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4643 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4644 }
4645 #endif
4646 
4647 static __fastpath_inline
4648 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4649 		    void *tail, void **p, int cnt, unsigned long addr)
4650 {
4651 	memcg_slab_free_hook(s, slab, p, cnt);
4652 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4653 	/*
4654 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4655 	 * to remove objects, whose reuse must be delayed.
4656 	 */
4657 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4658 		do_slab_free(s, slab, head, tail, cnt, addr);
4659 }
4660 
4661 #ifdef CONFIG_SLUB_RCU_DEBUG
4662 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4663 {
4664 	struct rcu_delayed_free *delayed_free =
4665 			container_of(rcu_head, struct rcu_delayed_free, head);
4666 	void *object = delayed_free->object;
4667 	struct slab *slab = virt_to_slab(object);
4668 	struct kmem_cache *s;
4669 
4670 	kfree(delayed_free);
4671 
4672 	if (WARN_ON(is_kfence_address(object)))
4673 		return;
4674 
4675 	/* find the object and the cache again */
4676 	if (WARN_ON(!slab))
4677 		return;
4678 	s = slab->slab_cache;
4679 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4680 		return;
4681 
4682 	/* resume freeing */
4683 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4684 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4685 }
4686 #endif /* CONFIG_SLUB_RCU_DEBUG */
4687 
4688 #ifdef CONFIG_KASAN_GENERIC
4689 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4690 {
4691 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4692 }
4693 #endif
4694 
4695 static inline struct kmem_cache *virt_to_cache(const void *obj)
4696 {
4697 	struct slab *slab;
4698 
4699 	slab = virt_to_slab(obj);
4700 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4701 		return NULL;
4702 	return slab->slab_cache;
4703 }
4704 
4705 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4706 {
4707 	struct kmem_cache *cachep;
4708 
4709 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4710 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4711 		return s;
4712 
4713 	cachep = virt_to_cache(x);
4714 	if (WARN(cachep && cachep != s,
4715 		 "%s: Wrong slab cache. %s but object is from %s\n",
4716 		 __func__, s->name, cachep->name))
4717 		print_tracking(cachep, x);
4718 	return cachep;
4719 }
4720 
4721 /**
4722  * kmem_cache_free - Deallocate an object
4723  * @s: The cache the allocation was from.
4724  * @x: The previously allocated object.
4725  *
4726  * Free an object which was previously allocated from this
4727  * cache.
4728  */
4729 void kmem_cache_free(struct kmem_cache *s, void *x)
4730 {
4731 	s = cache_from_obj(s, x);
4732 	if (!s)
4733 		return;
4734 	trace_kmem_cache_free(_RET_IP_, x, s);
4735 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4736 }
4737 EXPORT_SYMBOL(kmem_cache_free);
4738 
4739 static void free_large_kmalloc(struct folio *folio, void *object)
4740 {
4741 	unsigned int order = folio_order(folio);
4742 
4743 	if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
4744 		dump_page(&folio->page, "Not a kmalloc allocation");
4745 		return;
4746 	}
4747 
4748 	if (WARN_ON_ONCE(order == 0))
4749 		pr_warn_once("object pointer: 0x%p\n", object);
4750 
4751 	kmemleak_free(object);
4752 	kasan_kfree_large(object);
4753 	kmsan_kfree_large(object);
4754 
4755 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4756 			      -(PAGE_SIZE << order));
4757 	__folio_clear_large_kmalloc(folio);
4758 	folio_put(folio);
4759 }
4760 
4761 /*
4762  * Given an rcu_head embedded within an object obtained from kvmalloc at an
4763  * offset < 4k, free the object in question.
4764  */
4765 void kvfree_rcu_cb(struct rcu_head *head)
4766 {
4767 	void *obj = head;
4768 	struct folio *folio;
4769 	struct slab *slab;
4770 	struct kmem_cache *s;
4771 	void *slab_addr;
4772 
4773 	if (is_vmalloc_addr(obj)) {
4774 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4775 		vfree(obj);
4776 		return;
4777 	}
4778 
4779 	folio = virt_to_folio(obj);
4780 	if (!folio_test_slab(folio)) {
4781 		/*
4782 		 * rcu_head offset can be only less than page size so no need to
4783 		 * consider folio order
4784 		 */
4785 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4786 		free_large_kmalloc(folio, obj);
4787 		return;
4788 	}
4789 
4790 	slab = folio_slab(folio);
4791 	s = slab->slab_cache;
4792 	slab_addr = folio_address(folio);
4793 
4794 	if (is_kfence_address(obj)) {
4795 		obj = kfence_object_start(obj);
4796 	} else {
4797 		unsigned int idx = __obj_to_index(s, slab_addr, obj);
4798 
4799 		obj = slab_addr + s->size * idx;
4800 		obj = fixup_red_left(s, obj);
4801 	}
4802 
4803 	slab_free(s, slab, obj, _RET_IP_);
4804 }
4805 
4806 /**
4807  * kfree - free previously allocated memory
4808  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4809  *
4810  * If @object is NULL, no operation is performed.
4811  */
4812 void kfree(const void *object)
4813 {
4814 	struct folio *folio;
4815 	struct slab *slab;
4816 	struct kmem_cache *s;
4817 	void *x = (void *)object;
4818 
4819 	trace_kfree(_RET_IP_, object);
4820 
4821 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4822 		return;
4823 
4824 	folio = virt_to_folio(object);
4825 	if (unlikely(!folio_test_slab(folio))) {
4826 		free_large_kmalloc(folio, (void *)object);
4827 		return;
4828 	}
4829 
4830 	slab = folio_slab(folio);
4831 	s = slab->slab_cache;
4832 	slab_free(s, slab, x, _RET_IP_);
4833 }
4834 EXPORT_SYMBOL(kfree);
4835 
4836 static __always_inline __realloc_size(2) void *
4837 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4838 {
4839 	void *ret;
4840 	size_t ks = 0;
4841 	int orig_size = 0;
4842 	struct kmem_cache *s = NULL;
4843 
4844 	if (unlikely(ZERO_OR_NULL_PTR(p)))
4845 		goto alloc_new;
4846 
4847 	/* Check for double-free. */
4848 	if (!kasan_check_byte(p))
4849 		return NULL;
4850 
4851 	if (is_kfence_address(p)) {
4852 		ks = orig_size = kfence_ksize(p);
4853 	} else {
4854 		struct folio *folio;
4855 
4856 		folio = virt_to_folio(p);
4857 		if (unlikely(!folio_test_slab(folio))) {
4858 			/* Big kmalloc object */
4859 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4860 			WARN_ON(p != folio_address(folio));
4861 			ks = folio_size(folio);
4862 		} else {
4863 			s = folio_slab(folio)->slab_cache;
4864 			orig_size = get_orig_size(s, (void *)p);
4865 			ks = s->object_size;
4866 		}
4867 	}
4868 
4869 	/* If the old object doesn't fit, allocate a bigger one */
4870 	if (new_size > ks)
4871 		goto alloc_new;
4872 
4873 	/* Zero out spare memory. */
4874 	if (want_init_on_alloc(flags)) {
4875 		kasan_disable_current();
4876 		if (orig_size && orig_size < new_size)
4877 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4878 		else
4879 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4880 		kasan_enable_current();
4881 	}
4882 
4883 	/* Setup kmalloc redzone when needed */
4884 	if (s && slub_debug_orig_size(s)) {
4885 		set_orig_size(s, (void *)p, new_size);
4886 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
4887 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4888 						SLUB_RED_ACTIVE, ks - new_size);
4889 	}
4890 
4891 	p = kasan_krealloc(p, new_size, flags);
4892 	return (void *)p;
4893 
4894 alloc_new:
4895 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4896 	if (ret && p) {
4897 		/* Disable KASAN checks as the object's redzone is accessed. */
4898 		kasan_disable_current();
4899 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4900 		kasan_enable_current();
4901 	}
4902 
4903 	return ret;
4904 }
4905 
4906 /**
4907  * krealloc - reallocate memory. The contents will remain unchanged.
4908  * @p: object to reallocate memory for.
4909  * @new_size: how many bytes of memory are required.
4910  * @flags: the type of memory to allocate.
4911  *
4912  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
4913  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4914  *
4915  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4916  * initial memory allocation, every subsequent call to this API for the same
4917  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4918  * __GFP_ZERO is not fully honored by this API.
4919  *
4920  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4921  * size of an allocation (but not the exact size it was allocated with) and
4922  * hence implements the following semantics for shrinking and growing buffers
4923  * with __GFP_ZERO.
4924  *
4925  *         new             bucket
4926  * 0       size             size
4927  * |--------|----------------|
4928  * |  keep  |      zero      |
4929  *
4930  * Otherwise, the original allocation size 'orig_size' could be used to
4931  * precisely clear the requested size, and the new size will also be stored
4932  * as the new 'orig_size'.
4933  *
4934  * In any case, the contents of the object pointed to are preserved up to the
4935  * lesser of the new and old sizes.
4936  *
4937  * Return: pointer to the allocated memory or %NULL in case of error
4938  */
4939 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4940 {
4941 	void *ret;
4942 
4943 	if (unlikely(!new_size)) {
4944 		kfree(p);
4945 		return ZERO_SIZE_PTR;
4946 	}
4947 
4948 	ret = __do_krealloc(p, new_size, flags);
4949 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4950 		kfree(p);
4951 
4952 	return ret;
4953 }
4954 EXPORT_SYMBOL(krealloc_noprof);
4955 
4956 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
4957 {
4958 	/*
4959 	 * We want to attempt a large physically contiguous block first because
4960 	 * it is less likely to fragment multiple larger blocks and therefore
4961 	 * contribute to a long term fragmentation less than vmalloc fallback.
4962 	 * However make sure that larger requests are not too disruptive - no
4963 	 * OOM killer and no allocation failure warnings as we have a fallback.
4964 	 */
4965 	if (size > PAGE_SIZE) {
4966 		flags |= __GFP_NOWARN;
4967 
4968 		if (!(flags & __GFP_RETRY_MAYFAIL))
4969 			flags |= __GFP_NORETRY;
4970 
4971 		/* nofail semantic is implemented by the vmalloc fallback */
4972 		flags &= ~__GFP_NOFAIL;
4973 	}
4974 
4975 	return flags;
4976 }
4977 
4978 /**
4979  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
4980  * failure, fall back to non-contiguous (vmalloc) allocation.
4981  * @size: size of the request.
4982  * @b: which set of kmalloc buckets to allocate from.
4983  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
4984  * @node: numa node to allocate from
4985  *
4986  * Uses kmalloc to get the memory but if the allocation fails then falls back
4987  * to the vmalloc allocator. Use kvfree for freeing the memory.
4988  *
4989  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
4990  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
4991  * preferable to the vmalloc fallback, due to visible performance drawbacks.
4992  *
4993  * Return: pointer to the allocated memory of %NULL in case of failure
4994  */
4995 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4996 {
4997 	void *ret;
4998 
4999 	/*
5000 	 * It doesn't really make sense to fallback to vmalloc for sub page
5001 	 * requests
5002 	 */
5003 	ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
5004 				kmalloc_gfp_adjust(flags, size),
5005 				node, _RET_IP_);
5006 	if (ret || size <= PAGE_SIZE)
5007 		return ret;
5008 
5009 	/* non-sleeping allocations are not supported by vmalloc */
5010 	if (!gfpflags_allow_blocking(flags))
5011 		return NULL;
5012 
5013 	/* Don't even allow crazy sizes */
5014 	if (unlikely(size > INT_MAX)) {
5015 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
5016 		return NULL;
5017 	}
5018 
5019 	/*
5020 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
5021 	 * since the callers already cannot assume anything
5022 	 * about the resulting pointer, and cannot play
5023 	 * protection games.
5024 	 */
5025 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
5026 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
5027 			node, __builtin_return_address(0));
5028 }
5029 EXPORT_SYMBOL(__kvmalloc_node_noprof);
5030 
5031 /**
5032  * kvfree() - Free memory.
5033  * @addr: Pointer to allocated memory.
5034  *
5035  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
5036  * It is slightly more efficient to use kfree() or vfree() if you are certain
5037  * that you know which one to use.
5038  *
5039  * Context: Either preemptible task context or not-NMI interrupt.
5040  */
5041 void kvfree(const void *addr)
5042 {
5043 	if (is_vmalloc_addr(addr))
5044 		vfree(addr);
5045 	else
5046 		kfree(addr);
5047 }
5048 EXPORT_SYMBOL(kvfree);
5049 
5050 /**
5051  * kvfree_sensitive - Free a data object containing sensitive information.
5052  * @addr: address of the data object to be freed.
5053  * @len: length of the data object.
5054  *
5055  * Use the special memzero_explicit() function to clear the content of a
5056  * kvmalloc'ed object containing sensitive data to make sure that the
5057  * compiler won't optimize out the data clearing.
5058  */
5059 void kvfree_sensitive(const void *addr, size_t len)
5060 {
5061 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
5062 		memzero_explicit((void *)addr, len);
5063 		kvfree(addr);
5064 	}
5065 }
5066 EXPORT_SYMBOL(kvfree_sensitive);
5067 
5068 /**
5069  * kvrealloc - reallocate memory; contents remain unchanged
5070  * @p: object to reallocate memory for
5071  * @size: the size to reallocate
5072  * @flags: the flags for the page level allocator
5073  *
5074  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
5075  * and @p is not a %NULL pointer, the object pointed to is freed.
5076  *
5077  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
5078  * initial memory allocation, every subsequent call to this API for the same
5079  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
5080  * __GFP_ZERO is not fully honored by this API.
5081  *
5082  * In any case, the contents of the object pointed to are preserved up to the
5083  * lesser of the new and old sizes.
5084  *
5085  * This function must not be called concurrently with itself or kvfree() for the
5086  * same memory allocation.
5087  *
5088  * Return: pointer to the allocated memory or %NULL in case of error
5089  */
5090 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
5091 {
5092 	void *n;
5093 
5094 	if (is_vmalloc_addr(p))
5095 		return vrealloc_noprof(p, size, flags);
5096 
5097 	n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
5098 	if (!n) {
5099 		/* We failed to krealloc(), fall back to kvmalloc(). */
5100 		n = kvmalloc_noprof(size, flags);
5101 		if (!n)
5102 			return NULL;
5103 
5104 		if (p) {
5105 			/* We already know that `p` is not a vmalloc address. */
5106 			kasan_disable_current();
5107 			memcpy(n, kasan_reset_tag(p), ksize(p));
5108 			kasan_enable_current();
5109 
5110 			kfree(p);
5111 		}
5112 	}
5113 
5114 	return n;
5115 }
5116 EXPORT_SYMBOL(kvrealloc_noprof);
5117 
5118 struct detached_freelist {
5119 	struct slab *slab;
5120 	void *tail;
5121 	void *freelist;
5122 	int cnt;
5123 	struct kmem_cache *s;
5124 };
5125 
5126 /*
5127  * This function progressively scans the array with free objects (with
5128  * a limited look ahead) and extract objects belonging to the same
5129  * slab.  It builds a detached freelist directly within the given
5130  * slab/objects.  This can happen without any need for
5131  * synchronization, because the objects are owned by running process.
5132  * The freelist is build up as a single linked list in the objects.
5133  * The idea is, that this detached freelist can then be bulk
5134  * transferred to the real freelist(s), but only requiring a single
5135  * synchronization primitive.  Look ahead in the array is limited due
5136  * to performance reasons.
5137  */
5138 static inline
5139 int build_detached_freelist(struct kmem_cache *s, size_t size,
5140 			    void **p, struct detached_freelist *df)
5141 {
5142 	int lookahead = 3;
5143 	void *object;
5144 	struct folio *folio;
5145 	size_t same;
5146 
5147 	object = p[--size];
5148 	folio = virt_to_folio(object);
5149 	if (!s) {
5150 		/* Handle kalloc'ed objects */
5151 		if (unlikely(!folio_test_slab(folio))) {
5152 			free_large_kmalloc(folio, object);
5153 			df->slab = NULL;
5154 			return size;
5155 		}
5156 		/* Derive kmem_cache from object */
5157 		df->slab = folio_slab(folio);
5158 		df->s = df->slab->slab_cache;
5159 	} else {
5160 		df->slab = folio_slab(folio);
5161 		df->s = cache_from_obj(s, object); /* Support for memcg */
5162 	}
5163 
5164 	/* Start new detached freelist */
5165 	df->tail = object;
5166 	df->freelist = object;
5167 	df->cnt = 1;
5168 
5169 	if (is_kfence_address(object))
5170 		return size;
5171 
5172 	set_freepointer(df->s, object, NULL);
5173 
5174 	same = size;
5175 	while (size) {
5176 		object = p[--size];
5177 		/* df->slab is always set at this point */
5178 		if (df->slab == virt_to_slab(object)) {
5179 			/* Opportunity build freelist */
5180 			set_freepointer(df->s, object, df->freelist);
5181 			df->freelist = object;
5182 			df->cnt++;
5183 			same--;
5184 			if (size != same)
5185 				swap(p[size], p[same]);
5186 			continue;
5187 		}
5188 
5189 		/* Limit look ahead search */
5190 		if (!--lookahead)
5191 			break;
5192 	}
5193 
5194 	return same;
5195 }
5196 
5197 /*
5198  * Internal bulk free of objects that were not initialised by the post alloc
5199  * hooks and thus should not be processed by the free hooks
5200  */
5201 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5202 {
5203 	if (!size)
5204 		return;
5205 
5206 	do {
5207 		struct detached_freelist df;
5208 
5209 		size = build_detached_freelist(s, size, p, &df);
5210 		if (!df.slab)
5211 			continue;
5212 
5213 		if (kfence_free(df.freelist))
5214 			continue;
5215 
5216 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
5217 			     _RET_IP_);
5218 	} while (likely(size));
5219 }
5220 
5221 /* Note that interrupts must be enabled when calling this function. */
5222 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5223 {
5224 	if (!size)
5225 		return;
5226 
5227 	do {
5228 		struct detached_freelist df;
5229 
5230 		size = build_detached_freelist(s, size, p, &df);
5231 		if (!df.slab)
5232 			continue;
5233 
5234 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5235 			       df.cnt, _RET_IP_);
5236 	} while (likely(size));
5237 }
5238 EXPORT_SYMBOL(kmem_cache_free_bulk);
5239 
5240 #ifndef CONFIG_SLUB_TINY
5241 static inline
5242 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5243 			    void **p)
5244 {
5245 	struct kmem_cache_cpu *c;
5246 	unsigned long irqflags;
5247 	int i;
5248 
5249 	/*
5250 	 * Drain objects in the per cpu slab, while disabling local
5251 	 * IRQs, which protects against PREEMPT and interrupts
5252 	 * handlers invoking normal fastpath.
5253 	 */
5254 	c = slub_get_cpu_ptr(s->cpu_slab);
5255 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5256 
5257 	for (i = 0; i < size; i++) {
5258 		void *object = kfence_alloc(s, s->object_size, flags);
5259 
5260 		if (unlikely(object)) {
5261 			p[i] = object;
5262 			continue;
5263 		}
5264 
5265 		object = c->freelist;
5266 		if (unlikely(!object)) {
5267 			/*
5268 			 * We may have removed an object from c->freelist using
5269 			 * the fastpath in the previous iteration; in that case,
5270 			 * c->tid has not been bumped yet.
5271 			 * Since ___slab_alloc() may reenable interrupts while
5272 			 * allocating memory, we should bump c->tid now.
5273 			 */
5274 			c->tid = next_tid(c->tid);
5275 
5276 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5277 
5278 			/*
5279 			 * Invoking slow path likely have side-effect
5280 			 * of re-populating per CPU c->freelist
5281 			 */
5282 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5283 					    _RET_IP_, c, s->object_size);
5284 			if (unlikely(!p[i]))
5285 				goto error;
5286 
5287 			c = this_cpu_ptr(s->cpu_slab);
5288 			maybe_wipe_obj_freeptr(s, p[i]);
5289 
5290 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5291 
5292 			continue; /* goto for-loop */
5293 		}
5294 		c->freelist = get_freepointer(s, object);
5295 		p[i] = object;
5296 		maybe_wipe_obj_freeptr(s, p[i]);
5297 		stat(s, ALLOC_FASTPATH);
5298 	}
5299 	c->tid = next_tid(c->tid);
5300 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5301 	slub_put_cpu_ptr(s->cpu_slab);
5302 
5303 	return i;
5304 
5305 error:
5306 	slub_put_cpu_ptr(s->cpu_slab);
5307 	__kmem_cache_free_bulk(s, i, p);
5308 	return 0;
5309 
5310 }
5311 #else /* CONFIG_SLUB_TINY */
5312 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5313 				   size_t size, void **p)
5314 {
5315 	int i;
5316 
5317 	for (i = 0; i < size; i++) {
5318 		void *object = kfence_alloc(s, s->object_size, flags);
5319 
5320 		if (unlikely(object)) {
5321 			p[i] = object;
5322 			continue;
5323 		}
5324 
5325 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5326 					 _RET_IP_, s->object_size);
5327 		if (unlikely(!p[i]))
5328 			goto error;
5329 
5330 		maybe_wipe_obj_freeptr(s, p[i]);
5331 	}
5332 
5333 	return i;
5334 
5335 error:
5336 	__kmem_cache_free_bulk(s, i, p);
5337 	return 0;
5338 }
5339 #endif /* CONFIG_SLUB_TINY */
5340 
5341 /* Note that interrupts must be enabled when calling this function. */
5342 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5343 				 void **p)
5344 {
5345 	int i;
5346 
5347 	if (!size)
5348 		return 0;
5349 
5350 	s = slab_pre_alloc_hook(s, flags);
5351 	if (unlikely(!s))
5352 		return 0;
5353 
5354 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
5355 	if (unlikely(i == 0))
5356 		return 0;
5357 
5358 	/*
5359 	 * memcg and kmem_cache debug support and memory initialization.
5360 	 * Done outside of the IRQ disabled fastpath loop.
5361 	 */
5362 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5363 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
5364 		return 0;
5365 	}
5366 	return i;
5367 }
5368 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5369 
5370 
5371 /*
5372  * Object placement in a slab is made very easy because we always start at
5373  * offset 0. If we tune the size of the object to the alignment then we can
5374  * get the required alignment by putting one properly sized object after
5375  * another.
5376  *
5377  * Notice that the allocation order determines the sizes of the per cpu
5378  * caches. Each processor has always one slab available for allocations.
5379  * Increasing the allocation order reduces the number of times that slabs
5380  * must be moved on and off the partial lists and is therefore a factor in
5381  * locking overhead.
5382  */
5383 
5384 /*
5385  * Minimum / Maximum order of slab pages. This influences locking overhead
5386  * and slab fragmentation. A higher order reduces the number of partial slabs
5387  * and increases the number of allocations possible without having to
5388  * take the list_lock.
5389  */
5390 static unsigned int slub_min_order;
5391 static unsigned int slub_max_order =
5392 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5393 static unsigned int slub_min_objects;
5394 
5395 /*
5396  * Calculate the order of allocation given an slab object size.
5397  *
5398  * The order of allocation has significant impact on performance and other
5399  * system components. Generally order 0 allocations should be preferred since
5400  * order 0 does not cause fragmentation in the page allocator. Larger objects
5401  * be problematic to put into order 0 slabs because there may be too much
5402  * unused space left. We go to a higher order if more than 1/16th of the slab
5403  * would be wasted.
5404  *
5405  * In order to reach satisfactory performance we must ensure that a minimum
5406  * number of objects is in one slab. Otherwise we may generate too much
5407  * activity on the partial lists which requires taking the list_lock. This is
5408  * less a concern for large slabs though which are rarely used.
5409  *
5410  * slab_max_order specifies the order where we begin to stop considering the
5411  * number of objects in a slab as critical. If we reach slab_max_order then
5412  * we try to keep the page order as low as possible. So we accept more waste
5413  * of space in favor of a small page order.
5414  *
5415  * Higher order allocations also allow the placement of more objects in a
5416  * slab and thereby reduce object handling overhead. If the user has
5417  * requested a higher minimum order then we start with that one instead of
5418  * the smallest order which will fit the object.
5419  */
5420 static inline unsigned int calc_slab_order(unsigned int size,
5421 		unsigned int min_order, unsigned int max_order,
5422 		unsigned int fract_leftover)
5423 {
5424 	unsigned int order;
5425 
5426 	for (order = min_order; order <= max_order; order++) {
5427 
5428 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5429 		unsigned int rem;
5430 
5431 		rem = slab_size % size;
5432 
5433 		if (rem <= slab_size / fract_leftover)
5434 			break;
5435 	}
5436 
5437 	return order;
5438 }
5439 
5440 static inline int calculate_order(unsigned int size)
5441 {
5442 	unsigned int order;
5443 	unsigned int min_objects;
5444 	unsigned int max_objects;
5445 	unsigned int min_order;
5446 
5447 	min_objects = slub_min_objects;
5448 	if (!min_objects) {
5449 		/*
5450 		 * Some architectures will only update present cpus when
5451 		 * onlining them, so don't trust the number if it's just 1. But
5452 		 * we also don't want to use nr_cpu_ids always, as on some other
5453 		 * architectures, there can be many possible cpus, but never
5454 		 * onlined. Here we compromise between trying to avoid too high
5455 		 * order on systems that appear larger than they are, and too
5456 		 * low order on systems that appear smaller than they are.
5457 		 */
5458 		unsigned int nr_cpus = num_present_cpus();
5459 		if (nr_cpus <= 1)
5460 			nr_cpus = nr_cpu_ids;
5461 		min_objects = 4 * (fls(nr_cpus) + 1);
5462 	}
5463 	/* min_objects can't be 0 because get_order(0) is undefined */
5464 	max_objects = max(order_objects(slub_max_order, size), 1U);
5465 	min_objects = min(min_objects, max_objects);
5466 
5467 	min_order = max_t(unsigned int, slub_min_order,
5468 			  get_order(min_objects * size));
5469 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5470 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5471 
5472 	/*
5473 	 * Attempt to find best configuration for a slab. This works by first
5474 	 * attempting to generate a layout with the best possible configuration
5475 	 * and backing off gradually.
5476 	 *
5477 	 * We start with accepting at most 1/16 waste and try to find the
5478 	 * smallest order from min_objects-derived/slab_min_order up to
5479 	 * slab_max_order that will satisfy the constraint. Note that increasing
5480 	 * the order can only result in same or less fractional waste, not more.
5481 	 *
5482 	 * If that fails, we increase the acceptable fraction of waste and try
5483 	 * again. The last iteration with fraction of 1/2 would effectively
5484 	 * accept any waste and give us the order determined by min_objects, as
5485 	 * long as at least single object fits within slab_max_order.
5486 	 */
5487 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5488 		order = calc_slab_order(size, min_order, slub_max_order,
5489 					fraction);
5490 		if (order <= slub_max_order)
5491 			return order;
5492 	}
5493 
5494 	/*
5495 	 * Doh this slab cannot be placed using slab_max_order.
5496 	 */
5497 	order = get_order(size);
5498 	if (order <= MAX_PAGE_ORDER)
5499 		return order;
5500 	return -ENOSYS;
5501 }
5502 
5503 static void
5504 init_kmem_cache_node(struct kmem_cache_node *n)
5505 {
5506 	n->nr_partial = 0;
5507 	spin_lock_init(&n->list_lock);
5508 	INIT_LIST_HEAD(&n->partial);
5509 #ifdef CONFIG_SLUB_DEBUG
5510 	atomic_long_set(&n->nr_slabs, 0);
5511 	atomic_long_set(&n->total_objects, 0);
5512 	INIT_LIST_HEAD(&n->full);
5513 #endif
5514 }
5515 
5516 #ifndef CONFIG_SLUB_TINY
5517 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5518 {
5519 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5520 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5521 			sizeof(struct kmem_cache_cpu));
5522 
5523 	/*
5524 	 * Must align to double word boundary for the double cmpxchg
5525 	 * instructions to work; see __pcpu_double_call_return_bool().
5526 	 */
5527 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5528 				     2 * sizeof(void *));
5529 
5530 	if (!s->cpu_slab)
5531 		return 0;
5532 
5533 	init_kmem_cache_cpus(s);
5534 
5535 	return 1;
5536 }
5537 #else
5538 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5539 {
5540 	return 1;
5541 }
5542 #endif /* CONFIG_SLUB_TINY */
5543 
5544 static struct kmem_cache *kmem_cache_node;
5545 
5546 /*
5547  * No kmalloc_node yet so do it by hand. We know that this is the first
5548  * slab on the node for this slabcache. There are no concurrent accesses
5549  * possible.
5550  *
5551  * Note that this function only works on the kmem_cache_node
5552  * when allocating for the kmem_cache_node. This is used for bootstrapping
5553  * memory on a fresh node that has no slab structures yet.
5554  */
5555 static void early_kmem_cache_node_alloc(int node)
5556 {
5557 	struct slab *slab;
5558 	struct kmem_cache_node *n;
5559 
5560 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5561 
5562 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5563 
5564 	BUG_ON(!slab);
5565 	if (slab_nid(slab) != node) {
5566 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5567 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5568 	}
5569 
5570 	n = slab->freelist;
5571 	BUG_ON(!n);
5572 #ifdef CONFIG_SLUB_DEBUG
5573 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5574 #endif
5575 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5576 	slab->freelist = get_freepointer(kmem_cache_node, n);
5577 	slab->inuse = 1;
5578 	kmem_cache_node->node[node] = n;
5579 	init_kmem_cache_node(n);
5580 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5581 
5582 	/*
5583 	 * No locks need to be taken here as it has just been
5584 	 * initialized and there is no concurrent access.
5585 	 */
5586 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5587 }
5588 
5589 static void free_kmem_cache_nodes(struct kmem_cache *s)
5590 {
5591 	int node;
5592 	struct kmem_cache_node *n;
5593 
5594 	for_each_kmem_cache_node(s, node, n) {
5595 		s->node[node] = NULL;
5596 		kmem_cache_free(kmem_cache_node, n);
5597 	}
5598 }
5599 
5600 void __kmem_cache_release(struct kmem_cache *s)
5601 {
5602 	cache_random_seq_destroy(s);
5603 #ifndef CONFIG_SLUB_TINY
5604 	free_percpu(s->cpu_slab);
5605 #endif
5606 	free_kmem_cache_nodes(s);
5607 }
5608 
5609 static int init_kmem_cache_nodes(struct kmem_cache *s)
5610 {
5611 	int node;
5612 
5613 	for_each_node_mask(node, slab_nodes) {
5614 		struct kmem_cache_node *n;
5615 
5616 		if (slab_state == DOWN) {
5617 			early_kmem_cache_node_alloc(node);
5618 			continue;
5619 		}
5620 		n = kmem_cache_alloc_node(kmem_cache_node,
5621 						GFP_KERNEL, node);
5622 
5623 		if (!n) {
5624 			free_kmem_cache_nodes(s);
5625 			return 0;
5626 		}
5627 
5628 		init_kmem_cache_node(n);
5629 		s->node[node] = n;
5630 	}
5631 	return 1;
5632 }
5633 
5634 static void set_cpu_partial(struct kmem_cache *s)
5635 {
5636 #ifdef CONFIG_SLUB_CPU_PARTIAL
5637 	unsigned int nr_objects;
5638 
5639 	/*
5640 	 * cpu_partial determined the maximum number of objects kept in the
5641 	 * per cpu partial lists of a processor.
5642 	 *
5643 	 * Per cpu partial lists mainly contain slabs that just have one
5644 	 * object freed. If they are used for allocation then they can be
5645 	 * filled up again with minimal effort. The slab will never hit the
5646 	 * per node partial lists and therefore no locking will be required.
5647 	 *
5648 	 * For backwards compatibility reasons, this is determined as number
5649 	 * of objects, even though we now limit maximum number of pages, see
5650 	 * slub_set_cpu_partial()
5651 	 */
5652 	if (!kmem_cache_has_cpu_partial(s))
5653 		nr_objects = 0;
5654 	else if (s->size >= PAGE_SIZE)
5655 		nr_objects = 6;
5656 	else if (s->size >= 1024)
5657 		nr_objects = 24;
5658 	else if (s->size >= 256)
5659 		nr_objects = 52;
5660 	else
5661 		nr_objects = 120;
5662 
5663 	slub_set_cpu_partial(s, nr_objects);
5664 #endif
5665 }
5666 
5667 /*
5668  * calculate_sizes() determines the order and the distribution of data within
5669  * a slab object.
5670  */
5671 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5672 {
5673 	slab_flags_t flags = s->flags;
5674 	unsigned int size = s->object_size;
5675 	unsigned int order;
5676 
5677 	/*
5678 	 * Round up object size to the next word boundary. We can only
5679 	 * place the free pointer at word boundaries and this determines
5680 	 * the possible location of the free pointer.
5681 	 */
5682 	size = ALIGN(size, sizeof(void *));
5683 
5684 #ifdef CONFIG_SLUB_DEBUG
5685 	/*
5686 	 * Determine if we can poison the object itself. If the user of
5687 	 * the slab may touch the object after free or before allocation
5688 	 * then we should never poison the object itself.
5689 	 */
5690 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5691 			!s->ctor)
5692 		s->flags |= __OBJECT_POISON;
5693 	else
5694 		s->flags &= ~__OBJECT_POISON;
5695 
5696 
5697 	/*
5698 	 * If we are Redzoning then check if there is some space between the
5699 	 * end of the object and the free pointer. If not then add an
5700 	 * additional word to have some bytes to store Redzone information.
5701 	 */
5702 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5703 		size += sizeof(void *);
5704 #endif
5705 
5706 	/*
5707 	 * With that we have determined the number of bytes in actual use
5708 	 * by the object and redzoning.
5709 	 */
5710 	s->inuse = size;
5711 
5712 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5713 	    (flags & SLAB_POISON) || s->ctor ||
5714 	    ((flags & SLAB_RED_ZONE) &&
5715 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5716 		/*
5717 		 * Relocate free pointer after the object if it is not
5718 		 * permitted to overwrite the first word of the object on
5719 		 * kmem_cache_free.
5720 		 *
5721 		 * This is the case if we do RCU, have a constructor or
5722 		 * destructor, are poisoning the objects, or are
5723 		 * redzoning an object smaller than sizeof(void *) or are
5724 		 * redzoning an object with slub_debug_orig_size() enabled,
5725 		 * in which case the right redzone may be extended.
5726 		 *
5727 		 * The assumption that s->offset >= s->inuse means free
5728 		 * pointer is outside of the object is used in the
5729 		 * freeptr_outside_object() function. If that is no
5730 		 * longer true, the function needs to be modified.
5731 		 */
5732 		s->offset = size;
5733 		size += sizeof(void *);
5734 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5735 		s->offset = args->freeptr_offset;
5736 	} else {
5737 		/*
5738 		 * Store freelist pointer near middle of object to keep
5739 		 * it away from the edges of the object to avoid small
5740 		 * sized over/underflows from neighboring allocations.
5741 		 */
5742 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5743 	}
5744 
5745 #ifdef CONFIG_SLUB_DEBUG
5746 	if (flags & SLAB_STORE_USER) {
5747 		/*
5748 		 * Need to store information about allocs and frees after
5749 		 * the object.
5750 		 */
5751 		size += 2 * sizeof(struct track);
5752 
5753 		/* Save the original kmalloc request size */
5754 		if (flags & SLAB_KMALLOC)
5755 			size += sizeof(unsigned int);
5756 	}
5757 #endif
5758 
5759 	kasan_cache_create(s, &size, &s->flags);
5760 #ifdef CONFIG_SLUB_DEBUG
5761 	if (flags & SLAB_RED_ZONE) {
5762 		/*
5763 		 * Add some empty padding so that we can catch
5764 		 * overwrites from earlier objects rather than let
5765 		 * tracking information or the free pointer be
5766 		 * corrupted if a user writes before the start
5767 		 * of the object.
5768 		 */
5769 		size += sizeof(void *);
5770 
5771 		s->red_left_pad = sizeof(void *);
5772 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5773 		size += s->red_left_pad;
5774 	}
5775 #endif
5776 
5777 	/*
5778 	 * SLUB stores one object immediately after another beginning from
5779 	 * offset 0. In order to align the objects we have to simply size
5780 	 * each object to conform to the alignment.
5781 	 */
5782 	size = ALIGN(size, s->align);
5783 	s->size = size;
5784 	s->reciprocal_size = reciprocal_value(size);
5785 	order = calculate_order(size);
5786 
5787 	if ((int)order < 0)
5788 		return 0;
5789 
5790 	s->allocflags = __GFP_COMP;
5791 
5792 	if (s->flags & SLAB_CACHE_DMA)
5793 		s->allocflags |= GFP_DMA;
5794 
5795 	if (s->flags & SLAB_CACHE_DMA32)
5796 		s->allocflags |= GFP_DMA32;
5797 
5798 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5799 		s->allocflags |= __GFP_RECLAIMABLE;
5800 
5801 	/*
5802 	 * Determine the number of objects per slab
5803 	 */
5804 	s->oo = oo_make(order, size);
5805 	s->min = oo_make(get_order(size), size);
5806 
5807 	return !!oo_objects(s->oo);
5808 }
5809 
5810 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
5811 {
5812 #ifdef CONFIG_SLUB_DEBUG
5813 	void *addr = slab_address(slab);
5814 	void *p;
5815 
5816 	if (!slab_add_kunit_errors())
5817 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
5818 
5819 	spin_lock(&object_map_lock);
5820 	__fill_map(object_map, s, slab);
5821 
5822 	for_each_object(p, s, addr, slab->objects) {
5823 
5824 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5825 			if (slab_add_kunit_errors())
5826 				continue;
5827 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5828 			print_tracking(s, p);
5829 		}
5830 	}
5831 	spin_unlock(&object_map_lock);
5832 
5833 	__slab_err(slab);
5834 #endif
5835 }
5836 
5837 /*
5838  * Attempt to free all partial slabs on a node.
5839  * This is called from __kmem_cache_shutdown(). We must take list_lock
5840  * because sysfs file might still access partial list after the shutdowning.
5841  */
5842 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5843 {
5844 	LIST_HEAD(discard);
5845 	struct slab *slab, *h;
5846 
5847 	BUG_ON(irqs_disabled());
5848 	spin_lock_irq(&n->list_lock);
5849 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5850 		if (!slab->inuse) {
5851 			remove_partial(n, slab);
5852 			list_add(&slab->slab_list, &discard);
5853 		} else {
5854 			list_slab_objects(s, slab);
5855 		}
5856 	}
5857 	spin_unlock_irq(&n->list_lock);
5858 
5859 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5860 		discard_slab(s, slab);
5861 }
5862 
5863 bool __kmem_cache_empty(struct kmem_cache *s)
5864 {
5865 	int node;
5866 	struct kmem_cache_node *n;
5867 
5868 	for_each_kmem_cache_node(s, node, n)
5869 		if (n->nr_partial || node_nr_slabs(n))
5870 			return false;
5871 	return true;
5872 }
5873 
5874 /*
5875  * Release all resources used by a slab cache.
5876  */
5877 int __kmem_cache_shutdown(struct kmem_cache *s)
5878 {
5879 	int node;
5880 	struct kmem_cache_node *n;
5881 
5882 	flush_all_cpus_locked(s);
5883 	/* Attempt to free all objects */
5884 	for_each_kmem_cache_node(s, node, n) {
5885 		free_partial(s, n);
5886 		if (n->nr_partial || node_nr_slabs(n))
5887 			return 1;
5888 	}
5889 	return 0;
5890 }
5891 
5892 #ifdef CONFIG_PRINTK
5893 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5894 {
5895 	void *base;
5896 	int __maybe_unused i;
5897 	unsigned int objnr;
5898 	void *objp;
5899 	void *objp0;
5900 	struct kmem_cache *s = slab->slab_cache;
5901 	struct track __maybe_unused *trackp;
5902 
5903 	kpp->kp_ptr = object;
5904 	kpp->kp_slab = slab;
5905 	kpp->kp_slab_cache = s;
5906 	base = slab_address(slab);
5907 	objp0 = kasan_reset_tag(object);
5908 #ifdef CONFIG_SLUB_DEBUG
5909 	objp = restore_red_left(s, objp0);
5910 #else
5911 	objp = objp0;
5912 #endif
5913 	objnr = obj_to_index(s, slab, objp);
5914 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5915 	objp = base + s->size * objnr;
5916 	kpp->kp_objp = objp;
5917 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5918 			 || (objp - base) % s->size) ||
5919 	    !(s->flags & SLAB_STORE_USER))
5920 		return;
5921 #ifdef CONFIG_SLUB_DEBUG
5922 	objp = fixup_red_left(s, objp);
5923 	trackp = get_track(s, objp, TRACK_ALLOC);
5924 	kpp->kp_ret = (void *)trackp->addr;
5925 #ifdef CONFIG_STACKDEPOT
5926 	{
5927 		depot_stack_handle_t handle;
5928 		unsigned long *entries;
5929 		unsigned int nr_entries;
5930 
5931 		handle = READ_ONCE(trackp->handle);
5932 		if (handle) {
5933 			nr_entries = stack_depot_fetch(handle, &entries);
5934 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5935 				kpp->kp_stack[i] = (void *)entries[i];
5936 		}
5937 
5938 		trackp = get_track(s, objp, TRACK_FREE);
5939 		handle = READ_ONCE(trackp->handle);
5940 		if (handle) {
5941 			nr_entries = stack_depot_fetch(handle, &entries);
5942 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5943 				kpp->kp_free_stack[i] = (void *)entries[i];
5944 		}
5945 	}
5946 #endif
5947 #endif
5948 }
5949 #endif
5950 
5951 /********************************************************************
5952  *		Kmalloc subsystem
5953  *******************************************************************/
5954 
5955 static int __init setup_slub_min_order(char *str)
5956 {
5957 	get_option(&str, (int *)&slub_min_order);
5958 
5959 	if (slub_min_order > slub_max_order)
5960 		slub_max_order = slub_min_order;
5961 
5962 	return 1;
5963 }
5964 
5965 __setup("slab_min_order=", setup_slub_min_order);
5966 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5967 
5968 
5969 static int __init setup_slub_max_order(char *str)
5970 {
5971 	get_option(&str, (int *)&slub_max_order);
5972 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5973 
5974 	if (slub_min_order > slub_max_order)
5975 		slub_min_order = slub_max_order;
5976 
5977 	return 1;
5978 }
5979 
5980 __setup("slab_max_order=", setup_slub_max_order);
5981 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5982 
5983 static int __init setup_slub_min_objects(char *str)
5984 {
5985 	get_option(&str, (int *)&slub_min_objects);
5986 
5987 	return 1;
5988 }
5989 
5990 __setup("slab_min_objects=", setup_slub_min_objects);
5991 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5992 
5993 #ifdef CONFIG_NUMA
5994 static int __init setup_slab_strict_numa(char *str)
5995 {
5996 	if (nr_node_ids > 1) {
5997 		static_branch_enable(&strict_numa);
5998 		pr_info("SLUB: Strict NUMA enabled.\n");
5999 	} else {
6000 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
6001 	}
6002 
6003 	return 1;
6004 }
6005 
6006 __setup("slab_strict_numa", setup_slab_strict_numa);
6007 #endif
6008 
6009 
6010 #ifdef CONFIG_HARDENED_USERCOPY
6011 /*
6012  * Rejects incorrectly sized objects and objects that are to be copied
6013  * to/from userspace but do not fall entirely within the containing slab
6014  * cache's usercopy region.
6015  *
6016  * Returns NULL if check passes, otherwise const char * to name of cache
6017  * to indicate an error.
6018  */
6019 void __check_heap_object(const void *ptr, unsigned long n,
6020 			 const struct slab *slab, bool to_user)
6021 {
6022 	struct kmem_cache *s;
6023 	unsigned int offset;
6024 	bool is_kfence = is_kfence_address(ptr);
6025 
6026 	ptr = kasan_reset_tag(ptr);
6027 
6028 	/* Find object and usable object size. */
6029 	s = slab->slab_cache;
6030 
6031 	/* Reject impossible pointers. */
6032 	if (ptr < slab_address(slab))
6033 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
6034 			       to_user, 0, n);
6035 
6036 	/* Find offset within object. */
6037 	if (is_kfence)
6038 		offset = ptr - kfence_object_start(ptr);
6039 	else
6040 		offset = (ptr - slab_address(slab)) % s->size;
6041 
6042 	/* Adjust for redzone and reject if within the redzone. */
6043 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
6044 		if (offset < s->red_left_pad)
6045 			usercopy_abort("SLUB object in left red zone",
6046 				       s->name, to_user, offset, n);
6047 		offset -= s->red_left_pad;
6048 	}
6049 
6050 	/* Allow address range falling entirely within usercopy region. */
6051 	if (offset >= s->useroffset &&
6052 	    offset - s->useroffset <= s->usersize &&
6053 	    n <= s->useroffset - offset + s->usersize)
6054 		return;
6055 
6056 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
6057 }
6058 #endif /* CONFIG_HARDENED_USERCOPY */
6059 
6060 #define SHRINK_PROMOTE_MAX 32
6061 
6062 /*
6063  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
6064  * up most to the head of the partial lists. New allocations will then
6065  * fill those up and thus they can be removed from the partial lists.
6066  *
6067  * The slabs with the least items are placed last. This results in them
6068  * being allocated from last increasing the chance that the last objects
6069  * are freed in them.
6070  */
6071 static int __kmem_cache_do_shrink(struct kmem_cache *s)
6072 {
6073 	int node;
6074 	int i;
6075 	struct kmem_cache_node *n;
6076 	struct slab *slab;
6077 	struct slab *t;
6078 	struct list_head discard;
6079 	struct list_head promote[SHRINK_PROMOTE_MAX];
6080 	unsigned long flags;
6081 	int ret = 0;
6082 
6083 	for_each_kmem_cache_node(s, node, n) {
6084 		INIT_LIST_HEAD(&discard);
6085 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
6086 			INIT_LIST_HEAD(promote + i);
6087 
6088 		spin_lock_irqsave(&n->list_lock, flags);
6089 
6090 		/*
6091 		 * Build lists of slabs to discard or promote.
6092 		 *
6093 		 * Note that concurrent frees may occur while we hold the
6094 		 * list_lock. slab->inuse here is the upper limit.
6095 		 */
6096 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
6097 			int free = slab->objects - slab->inuse;
6098 
6099 			/* Do not reread slab->inuse */
6100 			barrier();
6101 
6102 			/* We do not keep full slabs on the list */
6103 			BUG_ON(free <= 0);
6104 
6105 			if (free == slab->objects) {
6106 				list_move(&slab->slab_list, &discard);
6107 				slab_clear_node_partial(slab);
6108 				n->nr_partial--;
6109 				dec_slabs_node(s, node, slab->objects);
6110 			} else if (free <= SHRINK_PROMOTE_MAX)
6111 				list_move(&slab->slab_list, promote + free - 1);
6112 		}
6113 
6114 		/*
6115 		 * Promote the slabs filled up most to the head of the
6116 		 * partial list.
6117 		 */
6118 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
6119 			list_splice(promote + i, &n->partial);
6120 
6121 		spin_unlock_irqrestore(&n->list_lock, flags);
6122 
6123 		/* Release empty slabs */
6124 		list_for_each_entry_safe(slab, t, &discard, slab_list)
6125 			free_slab(s, slab);
6126 
6127 		if (node_nr_slabs(n))
6128 			ret = 1;
6129 	}
6130 
6131 	return ret;
6132 }
6133 
6134 int __kmem_cache_shrink(struct kmem_cache *s)
6135 {
6136 	flush_all(s);
6137 	return __kmem_cache_do_shrink(s);
6138 }
6139 
6140 static int slab_mem_going_offline_callback(void *arg)
6141 {
6142 	struct kmem_cache *s;
6143 
6144 	mutex_lock(&slab_mutex);
6145 	list_for_each_entry(s, &slab_caches, list) {
6146 		flush_all_cpus_locked(s);
6147 		__kmem_cache_do_shrink(s);
6148 	}
6149 	mutex_unlock(&slab_mutex);
6150 
6151 	return 0;
6152 }
6153 
6154 static void slab_mem_offline_callback(void *arg)
6155 {
6156 	struct memory_notify *marg = arg;
6157 	int offline_node;
6158 
6159 	offline_node = marg->status_change_nid_normal;
6160 
6161 	/*
6162 	 * If the node still has available memory. we need kmem_cache_node
6163 	 * for it yet.
6164 	 */
6165 	if (offline_node < 0)
6166 		return;
6167 
6168 	mutex_lock(&slab_mutex);
6169 	node_clear(offline_node, slab_nodes);
6170 	/*
6171 	 * We no longer free kmem_cache_node structures here, as it would be
6172 	 * racy with all get_node() users, and infeasible to protect them with
6173 	 * slab_mutex.
6174 	 */
6175 	mutex_unlock(&slab_mutex);
6176 }
6177 
6178 static int slab_mem_going_online_callback(void *arg)
6179 {
6180 	struct kmem_cache_node *n;
6181 	struct kmem_cache *s;
6182 	struct memory_notify *marg = arg;
6183 	int nid = marg->status_change_nid_normal;
6184 	int ret = 0;
6185 
6186 	/*
6187 	 * If the node's memory is already available, then kmem_cache_node is
6188 	 * already created. Nothing to do.
6189 	 */
6190 	if (nid < 0)
6191 		return 0;
6192 
6193 	/*
6194 	 * We are bringing a node online. No memory is available yet. We must
6195 	 * allocate a kmem_cache_node structure in order to bring the node
6196 	 * online.
6197 	 */
6198 	mutex_lock(&slab_mutex);
6199 	list_for_each_entry(s, &slab_caches, list) {
6200 		/*
6201 		 * The structure may already exist if the node was previously
6202 		 * onlined and offlined.
6203 		 */
6204 		if (get_node(s, nid))
6205 			continue;
6206 		/*
6207 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
6208 		 *      since memory is not yet available from the node that
6209 		 *      is brought up.
6210 		 */
6211 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
6212 		if (!n) {
6213 			ret = -ENOMEM;
6214 			goto out;
6215 		}
6216 		init_kmem_cache_node(n);
6217 		s->node[nid] = n;
6218 	}
6219 	/*
6220 	 * Any cache created after this point will also have kmem_cache_node
6221 	 * initialized for the new node.
6222 	 */
6223 	node_set(nid, slab_nodes);
6224 out:
6225 	mutex_unlock(&slab_mutex);
6226 	return ret;
6227 }
6228 
6229 static int slab_memory_callback(struct notifier_block *self,
6230 				unsigned long action, void *arg)
6231 {
6232 	int ret = 0;
6233 
6234 	switch (action) {
6235 	case MEM_GOING_ONLINE:
6236 		ret = slab_mem_going_online_callback(arg);
6237 		break;
6238 	case MEM_GOING_OFFLINE:
6239 		ret = slab_mem_going_offline_callback(arg);
6240 		break;
6241 	case MEM_OFFLINE:
6242 	case MEM_CANCEL_ONLINE:
6243 		slab_mem_offline_callback(arg);
6244 		break;
6245 	case MEM_ONLINE:
6246 	case MEM_CANCEL_OFFLINE:
6247 		break;
6248 	}
6249 	if (ret)
6250 		ret = notifier_from_errno(ret);
6251 	else
6252 		ret = NOTIFY_OK;
6253 	return ret;
6254 }
6255 
6256 /********************************************************************
6257  *			Basic setup of slabs
6258  *******************************************************************/
6259 
6260 /*
6261  * Used for early kmem_cache structures that were allocated using
6262  * the page allocator. Allocate them properly then fix up the pointers
6263  * that may be pointing to the wrong kmem_cache structure.
6264  */
6265 
6266 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6267 {
6268 	int node;
6269 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6270 	struct kmem_cache_node *n;
6271 
6272 	memcpy(s, static_cache, kmem_cache->object_size);
6273 
6274 	/*
6275 	 * This runs very early, and only the boot processor is supposed to be
6276 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
6277 	 * IPIs around.
6278 	 */
6279 	__flush_cpu_slab(s, smp_processor_id());
6280 	for_each_kmem_cache_node(s, node, n) {
6281 		struct slab *p;
6282 
6283 		list_for_each_entry(p, &n->partial, slab_list)
6284 			p->slab_cache = s;
6285 
6286 #ifdef CONFIG_SLUB_DEBUG
6287 		list_for_each_entry(p, &n->full, slab_list)
6288 			p->slab_cache = s;
6289 #endif
6290 	}
6291 	list_add(&s->list, &slab_caches);
6292 	return s;
6293 }
6294 
6295 void __init kmem_cache_init(void)
6296 {
6297 	static __initdata struct kmem_cache boot_kmem_cache,
6298 		boot_kmem_cache_node;
6299 	int node;
6300 
6301 	if (debug_guardpage_minorder())
6302 		slub_max_order = 0;
6303 
6304 	/* Print slub debugging pointers without hashing */
6305 	if (__slub_debug_enabled())
6306 		no_hash_pointers_enable(NULL);
6307 
6308 	kmem_cache_node = &boot_kmem_cache_node;
6309 	kmem_cache = &boot_kmem_cache;
6310 
6311 	/*
6312 	 * Initialize the nodemask for which we will allocate per node
6313 	 * structures. Here we don't need taking slab_mutex yet.
6314 	 */
6315 	for_each_node_state(node, N_NORMAL_MEMORY)
6316 		node_set(node, slab_nodes);
6317 
6318 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
6319 			sizeof(struct kmem_cache_node),
6320 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6321 
6322 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6323 
6324 	/* Able to allocate the per node structures */
6325 	slab_state = PARTIAL;
6326 
6327 	create_boot_cache(kmem_cache, "kmem_cache",
6328 			offsetof(struct kmem_cache, node) +
6329 				nr_node_ids * sizeof(struct kmem_cache_node *),
6330 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6331 
6332 	kmem_cache = bootstrap(&boot_kmem_cache);
6333 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6334 
6335 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
6336 	setup_kmalloc_cache_index_table();
6337 	create_kmalloc_caches();
6338 
6339 	/* Setup random freelists for each cache */
6340 	init_freelist_randomization();
6341 
6342 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6343 				  slub_cpu_dead);
6344 
6345 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6346 		cache_line_size(),
6347 		slub_min_order, slub_max_order, slub_min_objects,
6348 		nr_cpu_ids, nr_node_ids);
6349 }
6350 
6351 void __init kmem_cache_init_late(void)
6352 {
6353 #ifndef CONFIG_SLUB_TINY
6354 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6355 	WARN_ON(!flushwq);
6356 #endif
6357 }
6358 
6359 struct kmem_cache *
6360 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6361 		   slab_flags_t flags, void (*ctor)(void *))
6362 {
6363 	struct kmem_cache *s;
6364 
6365 	s = find_mergeable(size, align, flags, name, ctor);
6366 	if (s) {
6367 		if (sysfs_slab_alias(s, name))
6368 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6369 			       name);
6370 
6371 		s->refcount++;
6372 
6373 		/*
6374 		 * Adjust the object sizes so that we clear
6375 		 * the complete object on kzalloc.
6376 		 */
6377 		s->object_size = max(s->object_size, size);
6378 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6379 	}
6380 
6381 	return s;
6382 }
6383 
6384 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6385 			 unsigned int size, struct kmem_cache_args *args,
6386 			 slab_flags_t flags)
6387 {
6388 	int err = -EINVAL;
6389 
6390 	s->name = name;
6391 	s->size = s->object_size = size;
6392 
6393 	s->flags = kmem_cache_flags(flags, s->name);
6394 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6395 	s->random = get_random_long();
6396 #endif
6397 	s->align = args->align;
6398 	s->ctor = args->ctor;
6399 #ifdef CONFIG_HARDENED_USERCOPY
6400 	s->useroffset = args->useroffset;
6401 	s->usersize = args->usersize;
6402 #endif
6403 
6404 	if (!calculate_sizes(args, s))
6405 		goto out;
6406 	if (disable_higher_order_debug) {
6407 		/*
6408 		 * Disable debugging flags that store metadata if the min slab
6409 		 * order increased.
6410 		 */
6411 		if (get_order(s->size) > get_order(s->object_size)) {
6412 			s->flags &= ~DEBUG_METADATA_FLAGS;
6413 			s->offset = 0;
6414 			if (!calculate_sizes(args, s))
6415 				goto out;
6416 		}
6417 	}
6418 
6419 #ifdef system_has_freelist_aba
6420 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6421 		/* Enable fast mode */
6422 		s->flags |= __CMPXCHG_DOUBLE;
6423 	}
6424 #endif
6425 
6426 	/*
6427 	 * The larger the object size is, the more slabs we want on the partial
6428 	 * list to avoid pounding the page allocator excessively.
6429 	 */
6430 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6431 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6432 
6433 	set_cpu_partial(s);
6434 
6435 #ifdef CONFIG_NUMA
6436 	s->remote_node_defrag_ratio = 1000;
6437 #endif
6438 
6439 	/* Initialize the pre-computed randomized freelist if slab is up */
6440 	if (slab_state >= UP) {
6441 		if (init_cache_random_seq(s))
6442 			goto out;
6443 	}
6444 
6445 	if (!init_kmem_cache_nodes(s))
6446 		goto out;
6447 
6448 	if (!alloc_kmem_cache_cpus(s))
6449 		goto out;
6450 
6451 	err = 0;
6452 
6453 	/* Mutex is not taken during early boot */
6454 	if (slab_state <= UP)
6455 		goto out;
6456 
6457 	/*
6458 	 * Failing to create sysfs files is not critical to SLUB functionality.
6459 	 * If it fails, proceed with cache creation without these files.
6460 	 */
6461 	if (sysfs_slab_add(s))
6462 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6463 
6464 	if (s->flags & SLAB_STORE_USER)
6465 		debugfs_slab_add(s);
6466 
6467 out:
6468 	if (err)
6469 		__kmem_cache_release(s);
6470 	return err;
6471 }
6472 
6473 #ifdef SLAB_SUPPORTS_SYSFS
6474 static int count_inuse(struct slab *slab)
6475 {
6476 	return slab->inuse;
6477 }
6478 
6479 static int count_total(struct slab *slab)
6480 {
6481 	return slab->objects;
6482 }
6483 #endif
6484 
6485 #ifdef CONFIG_SLUB_DEBUG
6486 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6487 			  unsigned long *obj_map)
6488 {
6489 	void *p;
6490 	void *addr = slab_address(slab);
6491 
6492 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6493 		return;
6494 
6495 	/* Now we know that a valid freelist exists */
6496 	__fill_map(obj_map, s, slab);
6497 	for_each_object(p, s, addr, slab->objects) {
6498 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6499 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6500 
6501 		if (!check_object(s, slab, p, val))
6502 			break;
6503 	}
6504 }
6505 
6506 static int validate_slab_node(struct kmem_cache *s,
6507 		struct kmem_cache_node *n, unsigned long *obj_map)
6508 {
6509 	unsigned long count = 0;
6510 	struct slab *slab;
6511 	unsigned long flags;
6512 
6513 	spin_lock_irqsave(&n->list_lock, flags);
6514 
6515 	list_for_each_entry(slab, &n->partial, slab_list) {
6516 		validate_slab(s, slab, obj_map);
6517 		count++;
6518 	}
6519 	if (count != n->nr_partial) {
6520 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6521 		       s->name, count, n->nr_partial);
6522 		slab_add_kunit_errors();
6523 	}
6524 
6525 	if (!(s->flags & SLAB_STORE_USER))
6526 		goto out;
6527 
6528 	list_for_each_entry(slab, &n->full, slab_list) {
6529 		validate_slab(s, slab, obj_map);
6530 		count++;
6531 	}
6532 	if (count != node_nr_slabs(n)) {
6533 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6534 		       s->name, count, node_nr_slabs(n));
6535 		slab_add_kunit_errors();
6536 	}
6537 
6538 out:
6539 	spin_unlock_irqrestore(&n->list_lock, flags);
6540 	return count;
6541 }
6542 
6543 long validate_slab_cache(struct kmem_cache *s)
6544 {
6545 	int node;
6546 	unsigned long count = 0;
6547 	struct kmem_cache_node *n;
6548 	unsigned long *obj_map;
6549 
6550 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6551 	if (!obj_map)
6552 		return -ENOMEM;
6553 
6554 	flush_all(s);
6555 	for_each_kmem_cache_node(s, node, n)
6556 		count += validate_slab_node(s, n, obj_map);
6557 
6558 	bitmap_free(obj_map);
6559 
6560 	return count;
6561 }
6562 EXPORT_SYMBOL(validate_slab_cache);
6563 
6564 #ifdef CONFIG_DEBUG_FS
6565 /*
6566  * Generate lists of code addresses where slabcache objects are allocated
6567  * and freed.
6568  */
6569 
6570 struct location {
6571 	depot_stack_handle_t handle;
6572 	unsigned long count;
6573 	unsigned long addr;
6574 	unsigned long waste;
6575 	long long sum_time;
6576 	long min_time;
6577 	long max_time;
6578 	long min_pid;
6579 	long max_pid;
6580 	DECLARE_BITMAP(cpus, NR_CPUS);
6581 	nodemask_t nodes;
6582 };
6583 
6584 struct loc_track {
6585 	unsigned long max;
6586 	unsigned long count;
6587 	struct location *loc;
6588 	loff_t idx;
6589 };
6590 
6591 static struct dentry *slab_debugfs_root;
6592 
6593 static void free_loc_track(struct loc_track *t)
6594 {
6595 	if (t->max)
6596 		free_pages((unsigned long)t->loc,
6597 			get_order(sizeof(struct location) * t->max));
6598 }
6599 
6600 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6601 {
6602 	struct location *l;
6603 	int order;
6604 
6605 	order = get_order(sizeof(struct location) * max);
6606 
6607 	l = (void *)__get_free_pages(flags, order);
6608 	if (!l)
6609 		return 0;
6610 
6611 	if (t->count) {
6612 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6613 		free_loc_track(t);
6614 	}
6615 	t->max = max;
6616 	t->loc = l;
6617 	return 1;
6618 }
6619 
6620 static int add_location(struct loc_track *t, struct kmem_cache *s,
6621 				const struct track *track,
6622 				unsigned int orig_size)
6623 {
6624 	long start, end, pos;
6625 	struct location *l;
6626 	unsigned long caddr, chandle, cwaste;
6627 	unsigned long age = jiffies - track->when;
6628 	depot_stack_handle_t handle = 0;
6629 	unsigned int waste = s->object_size - orig_size;
6630 
6631 #ifdef CONFIG_STACKDEPOT
6632 	handle = READ_ONCE(track->handle);
6633 #endif
6634 	start = -1;
6635 	end = t->count;
6636 
6637 	for ( ; ; ) {
6638 		pos = start + (end - start + 1) / 2;
6639 
6640 		/*
6641 		 * There is nothing at "end". If we end up there
6642 		 * we need to add something to before end.
6643 		 */
6644 		if (pos == end)
6645 			break;
6646 
6647 		l = &t->loc[pos];
6648 		caddr = l->addr;
6649 		chandle = l->handle;
6650 		cwaste = l->waste;
6651 		if ((track->addr == caddr) && (handle == chandle) &&
6652 			(waste == cwaste)) {
6653 
6654 			l->count++;
6655 			if (track->when) {
6656 				l->sum_time += age;
6657 				if (age < l->min_time)
6658 					l->min_time = age;
6659 				if (age > l->max_time)
6660 					l->max_time = age;
6661 
6662 				if (track->pid < l->min_pid)
6663 					l->min_pid = track->pid;
6664 				if (track->pid > l->max_pid)
6665 					l->max_pid = track->pid;
6666 
6667 				cpumask_set_cpu(track->cpu,
6668 						to_cpumask(l->cpus));
6669 			}
6670 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6671 			return 1;
6672 		}
6673 
6674 		if (track->addr < caddr)
6675 			end = pos;
6676 		else if (track->addr == caddr && handle < chandle)
6677 			end = pos;
6678 		else if (track->addr == caddr && handle == chandle &&
6679 				waste < cwaste)
6680 			end = pos;
6681 		else
6682 			start = pos;
6683 	}
6684 
6685 	/*
6686 	 * Not found. Insert new tracking element.
6687 	 */
6688 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6689 		return 0;
6690 
6691 	l = t->loc + pos;
6692 	if (pos < t->count)
6693 		memmove(l + 1, l,
6694 			(t->count - pos) * sizeof(struct location));
6695 	t->count++;
6696 	l->count = 1;
6697 	l->addr = track->addr;
6698 	l->sum_time = age;
6699 	l->min_time = age;
6700 	l->max_time = age;
6701 	l->min_pid = track->pid;
6702 	l->max_pid = track->pid;
6703 	l->handle = handle;
6704 	l->waste = waste;
6705 	cpumask_clear(to_cpumask(l->cpus));
6706 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6707 	nodes_clear(l->nodes);
6708 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6709 	return 1;
6710 }
6711 
6712 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6713 		struct slab *slab, enum track_item alloc,
6714 		unsigned long *obj_map)
6715 {
6716 	void *addr = slab_address(slab);
6717 	bool is_alloc = (alloc == TRACK_ALLOC);
6718 	void *p;
6719 
6720 	__fill_map(obj_map, s, slab);
6721 
6722 	for_each_object(p, s, addr, slab->objects)
6723 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6724 			add_location(t, s, get_track(s, p, alloc),
6725 				     is_alloc ? get_orig_size(s, p) :
6726 						s->object_size);
6727 }
6728 #endif  /* CONFIG_DEBUG_FS   */
6729 #endif	/* CONFIG_SLUB_DEBUG */
6730 
6731 #ifdef SLAB_SUPPORTS_SYSFS
6732 enum slab_stat_type {
6733 	SL_ALL,			/* All slabs */
6734 	SL_PARTIAL,		/* Only partially allocated slabs */
6735 	SL_CPU,			/* Only slabs used for cpu caches */
6736 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6737 	SL_TOTAL		/* Determine object capacity not slabs */
6738 };
6739 
6740 #define SO_ALL		(1 << SL_ALL)
6741 #define SO_PARTIAL	(1 << SL_PARTIAL)
6742 #define SO_CPU		(1 << SL_CPU)
6743 #define SO_OBJECTS	(1 << SL_OBJECTS)
6744 #define SO_TOTAL	(1 << SL_TOTAL)
6745 
6746 static ssize_t show_slab_objects(struct kmem_cache *s,
6747 				 char *buf, unsigned long flags)
6748 {
6749 	unsigned long total = 0;
6750 	int node;
6751 	int x;
6752 	unsigned long *nodes;
6753 	int len = 0;
6754 
6755 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6756 	if (!nodes)
6757 		return -ENOMEM;
6758 
6759 	if (flags & SO_CPU) {
6760 		int cpu;
6761 
6762 		for_each_possible_cpu(cpu) {
6763 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6764 							       cpu);
6765 			int node;
6766 			struct slab *slab;
6767 
6768 			slab = READ_ONCE(c->slab);
6769 			if (!slab)
6770 				continue;
6771 
6772 			node = slab_nid(slab);
6773 			if (flags & SO_TOTAL)
6774 				x = slab->objects;
6775 			else if (flags & SO_OBJECTS)
6776 				x = slab->inuse;
6777 			else
6778 				x = 1;
6779 
6780 			total += x;
6781 			nodes[node] += x;
6782 
6783 #ifdef CONFIG_SLUB_CPU_PARTIAL
6784 			slab = slub_percpu_partial_read_once(c);
6785 			if (slab) {
6786 				node = slab_nid(slab);
6787 				if (flags & SO_TOTAL)
6788 					WARN_ON_ONCE(1);
6789 				else if (flags & SO_OBJECTS)
6790 					WARN_ON_ONCE(1);
6791 				else
6792 					x = data_race(slab->slabs);
6793 				total += x;
6794 				nodes[node] += x;
6795 			}
6796 #endif
6797 		}
6798 	}
6799 
6800 	/*
6801 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6802 	 * already held which will conflict with an existing lock order:
6803 	 *
6804 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6805 	 *
6806 	 * We don't really need mem_hotplug_lock (to hold off
6807 	 * slab_mem_going_offline_callback) here because slab's memory hot
6808 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6809 	 */
6810 
6811 #ifdef CONFIG_SLUB_DEBUG
6812 	if (flags & SO_ALL) {
6813 		struct kmem_cache_node *n;
6814 
6815 		for_each_kmem_cache_node(s, node, n) {
6816 
6817 			if (flags & SO_TOTAL)
6818 				x = node_nr_objs(n);
6819 			else if (flags & SO_OBJECTS)
6820 				x = node_nr_objs(n) - count_partial(n, count_free);
6821 			else
6822 				x = node_nr_slabs(n);
6823 			total += x;
6824 			nodes[node] += x;
6825 		}
6826 
6827 	} else
6828 #endif
6829 	if (flags & SO_PARTIAL) {
6830 		struct kmem_cache_node *n;
6831 
6832 		for_each_kmem_cache_node(s, node, n) {
6833 			if (flags & SO_TOTAL)
6834 				x = count_partial(n, count_total);
6835 			else if (flags & SO_OBJECTS)
6836 				x = count_partial(n, count_inuse);
6837 			else
6838 				x = n->nr_partial;
6839 			total += x;
6840 			nodes[node] += x;
6841 		}
6842 	}
6843 
6844 	len += sysfs_emit_at(buf, len, "%lu", total);
6845 #ifdef CONFIG_NUMA
6846 	for (node = 0; node < nr_node_ids; node++) {
6847 		if (nodes[node])
6848 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6849 					     node, nodes[node]);
6850 	}
6851 #endif
6852 	len += sysfs_emit_at(buf, len, "\n");
6853 	kfree(nodes);
6854 
6855 	return len;
6856 }
6857 
6858 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6859 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6860 
6861 struct slab_attribute {
6862 	struct attribute attr;
6863 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6864 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6865 };
6866 
6867 #define SLAB_ATTR_RO(_name) \
6868 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6869 
6870 #define SLAB_ATTR(_name) \
6871 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6872 
6873 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6874 {
6875 	return sysfs_emit(buf, "%u\n", s->size);
6876 }
6877 SLAB_ATTR_RO(slab_size);
6878 
6879 static ssize_t align_show(struct kmem_cache *s, char *buf)
6880 {
6881 	return sysfs_emit(buf, "%u\n", s->align);
6882 }
6883 SLAB_ATTR_RO(align);
6884 
6885 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6886 {
6887 	return sysfs_emit(buf, "%u\n", s->object_size);
6888 }
6889 SLAB_ATTR_RO(object_size);
6890 
6891 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6892 {
6893 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6894 }
6895 SLAB_ATTR_RO(objs_per_slab);
6896 
6897 static ssize_t order_show(struct kmem_cache *s, char *buf)
6898 {
6899 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6900 }
6901 SLAB_ATTR_RO(order);
6902 
6903 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6904 {
6905 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6906 }
6907 
6908 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6909 				 size_t length)
6910 {
6911 	unsigned long min;
6912 	int err;
6913 
6914 	err = kstrtoul(buf, 10, &min);
6915 	if (err)
6916 		return err;
6917 
6918 	s->min_partial = min;
6919 	return length;
6920 }
6921 SLAB_ATTR(min_partial);
6922 
6923 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6924 {
6925 	unsigned int nr_partial = 0;
6926 #ifdef CONFIG_SLUB_CPU_PARTIAL
6927 	nr_partial = s->cpu_partial;
6928 #endif
6929 
6930 	return sysfs_emit(buf, "%u\n", nr_partial);
6931 }
6932 
6933 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6934 				 size_t length)
6935 {
6936 	unsigned int objects;
6937 	int err;
6938 
6939 	err = kstrtouint(buf, 10, &objects);
6940 	if (err)
6941 		return err;
6942 	if (objects && !kmem_cache_has_cpu_partial(s))
6943 		return -EINVAL;
6944 
6945 	slub_set_cpu_partial(s, objects);
6946 	flush_all(s);
6947 	return length;
6948 }
6949 SLAB_ATTR(cpu_partial);
6950 
6951 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6952 {
6953 	if (!s->ctor)
6954 		return 0;
6955 	return sysfs_emit(buf, "%pS\n", s->ctor);
6956 }
6957 SLAB_ATTR_RO(ctor);
6958 
6959 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6960 {
6961 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6962 }
6963 SLAB_ATTR_RO(aliases);
6964 
6965 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6966 {
6967 	return show_slab_objects(s, buf, SO_PARTIAL);
6968 }
6969 SLAB_ATTR_RO(partial);
6970 
6971 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6972 {
6973 	return show_slab_objects(s, buf, SO_CPU);
6974 }
6975 SLAB_ATTR_RO(cpu_slabs);
6976 
6977 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6978 {
6979 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6980 }
6981 SLAB_ATTR_RO(objects_partial);
6982 
6983 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6984 {
6985 	int objects = 0;
6986 	int slabs = 0;
6987 	int cpu __maybe_unused;
6988 	int len = 0;
6989 
6990 #ifdef CONFIG_SLUB_CPU_PARTIAL
6991 	for_each_online_cpu(cpu) {
6992 		struct slab *slab;
6993 
6994 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6995 
6996 		if (slab)
6997 			slabs += data_race(slab->slabs);
6998 	}
6999 #endif
7000 
7001 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
7002 	objects = (slabs * oo_objects(s->oo)) / 2;
7003 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
7004 
7005 #ifdef CONFIG_SLUB_CPU_PARTIAL
7006 	for_each_online_cpu(cpu) {
7007 		struct slab *slab;
7008 
7009 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7010 		if (slab) {
7011 			slabs = data_race(slab->slabs);
7012 			objects = (slabs * oo_objects(s->oo)) / 2;
7013 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
7014 					     cpu, objects, slabs);
7015 		}
7016 	}
7017 #endif
7018 	len += sysfs_emit_at(buf, len, "\n");
7019 
7020 	return len;
7021 }
7022 SLAB_ATTR_RO(slabs_cpu_partial);
7023 
7024 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
7025 {
7026 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
7027 }
7028 SLAB_ATTR_RO(reclaim_account);
7029 
7030 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
7031 {
7032 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
7033 }
7034 SLAB_ATTR_RO(hwcache_align);
7035 
7036 #ifdef CONFIG_ZONE_DMA
7037 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
7038 {
7039 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
7040 }
7041 SLAB_ATTR_RO(cache_dma);
7042 #endif
7043 
7044 #ifdef CONFIG_HARDENED_USERCOPY
7045 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
7046 {
7047 	return sysfs_emit(buf, "%u\n", s->usersize);
7048 }
7049 SLAB_ATTR_RO(usersize);
7050 #endif
7051 
7052 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
7053 {
7054 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
7055 }
7056 SLAB_ATTR_RO(destroy_by_rcu);
7057 
7058 #ifdef CONFIG_SLUB_DEBUG
7059 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
7060 {
7061 	return show_slab_objects(s, buf, SO_ALL);
7062 }
7063 SLAB_ATTR_RO(slabs);
7064 
7065 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
7066 {
7067 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
7068 }
7069 SLAB_ATTR_RO(total_objects);
7070 
7071 static ssize_t objects_show(struct kmem_cache *s, char *buf)
7072 {
7073 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
7074 }
7075 SLAB_ATTR_RO(objects);
7076 
7077 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
7078 {
7079 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
7080 }
7081 SLAB_ATTR_RO(sanity_checks);
7082 
7083 static ssize_t trace_show(struct kmem_cache *s, char *buf)
7084 {
7085 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
7086 }
7087 SLAB_ATTR_RO(trace);
7088 
7089 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
7090 {
7091 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
7092 }
7093 
7094 SLAB_ATTR_RO(red_zone);
7095 
7096 static ssize_t poison_show(struct kmem_cache *s, char *buf)
7097 {
7098 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
7099 }
7100 
7101 SLAB_ATTR_RO(poison);
7102 
7103 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
7104 {
7105 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
7106 }
7107 
7108 SLAB_ATTR_RO(store_user);
7109 
7110 static ssize_t validate_show(struct kmem_cache *s, char *buf)
7111 {
7112 	return 0;
7113 }
7114 
7115 static ssize_t validate_store(struct kmem_cache *s,
7116 			const char *buf, size_t length)
7117 {
7118 	int ret = -EINVAL;
7119 
7120 	if (buf[0] == '1' && kmem_cache_debug(s)) {
7121 		ret = validate_slab_cache(s);
7122 		if (ret >= 0)
7123 			ret = length;
7124 	}
7125 	return ret;
7126 }
7127 SLAB_ATTR(validate);
7128 
7129 #endif /* CONFIG_SLUB_DEBUG */
7130 
7131 #ifdef CONFIG_FAILSLAB
7132 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
7133 {
7134 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
7135 }
7136 
7137 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
7138 				size_t length)
7139 {
7140 	if (s->refcount > 1)
7141 		return -EINVAL;
7142 
7143 	if (buf[0] == '1')
7144 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
7145 	else
7146 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
7147 
7148 	return length;
7149 }
7150 SLAB_ATTR(failslab);
7151 #endif
7152 
7153 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
7154 {
7155 	return 0;
7156 }
7157 
7158 static ssize_t shrink_store(struct kmem_cache *s,
7159 			const char *buf, size_t length)
7160 {
7161 	if (buf[0] == '1')
7162 		kmem_cache_shrink(s);
7163 	else
7164 		return -EINVAL;
7165 	return length;
7166 }
7167 SLAB_ATTR(shrink);
7168 
7169 #ifdef CONFIG_NUMA
7170 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
7171 {
7172 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
7173 }
7174 
7175 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
7176 				const char *buf, size_t length)
7177 {
7178 	unsigned int ratio;
7179 	int err;
7180 
7181 	err = kstrtouint(buf, 10, &ratio);
7182 	if (err)
7183 		return err;
7184 	if (ratio > 100)
7185 		return -ERANGE;
7186 
7187 	s->remote_node_defrag_ratio = ratio * 10;
7188 
7189 	return length;
7190 }
7191 SLAB_ATTR(remote_node_defrag_ratio);
7192 #endif
7193 
7194 #ifdef CONFIG_SLUB_STATS
7195 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
7196 {
7197 	unsigned long sum  = 0;
7198 	int cpu;
7199 	int len = 0;
7200 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
7201 
7202 	if (!data)
7203 		return -ENOMEM;
7204 
7205 	for_each_online_cpu(cpu) {
7206 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
7207 
7208 		data[cpu] = x;
7209 		sum += x;
7210 	}
7211 
7212 	len += sysfs_emit_at(buf, len, "%lu", sum);
7213 
7214 #ifdef CONFIG_SMP
7215 	for_each_online_cpu(cpu) {
7216 		if (data[cpu])
7217 			len += sysfs_emit_at(buf, len, " C%d=%u",
7218 					     cpu, data[cpu]);
7219 	}
7220 #endif
7221 	kfree(data);
7222 	len += sysfs_emit_at(buf, len, "\n");
7223 
7224 	return len;
7225 }
7226 
7227 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7228 {
7229 	int cpu;
7230 
7231 	for_each_online_cpu(cpu)
7232 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7233 }
7234 
7235 #define STAT_ATTR(si, text) 					\
7236 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
7237 {								\
7238 	return show_stat(s, buf, si);				\
7239 }								\
7240 static ssize_t text##_store(struct kmem_cache *s,		\
7241 				const char *buf, size_t length)	\
7242 {								\
7243 	if (buf[0] != '0')					\
7244 		return -EINVAL;					\
7245 	clear_stat(s, si);					\
7246 	return length;						\
7247 }								\
7248 SLAB_ATTR(text);						\
7249 
7250 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7251 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7252 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7253 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7254 STAT_ATTR(FREE_FROZEN, free_frozen);
7255 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7256 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7257 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7258 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7259 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7260 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7261 STAT_ATTR(FREE_SLAB, free_slab);
7262 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7263 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7264 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7265 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7266 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7267 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7268 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7269 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7270 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7271 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7272 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7273 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7274 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7275 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7276 #endif	/* CONFIG_SLUB_STATS */
7277 
7278 #ifdef CONFIG_KFENCE
7279 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7280 {
7281 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7282 }
7283 
7284 static ssize_t skip_kfence_store(struct kmem_cache *s,
7285 			const char *buf, size_t length)
7286 {
7287 	int ret = length;
7288 
7289 	if (buf[0] == '0')
7290 		s->flags &= ~SLAB_SKIP_KFENCE;
7291 	else if (buf[0] == '1')
7292 		s->flags |= SLAB_SKIP_KFENCE;
7293 	else
7294 		ret = -EINVAL;
7295 
7296 	return ret;
7297 }
7298 SLAB_ATTR(skip_kfence);
7299 #endif
7300 
7301 static struct attribute *slab_attrs[] = {
7302 	&slab_size_attr.attr,
7303 	&object_size_attr.attr,
7304 	&objs_per_slab_attr.attr,
7305 	&order_attr.attr,
7306 	&min_partial_attr.attr,
7307 	&cpu_partial_attr.attr,
7308 	&objects_partial_attr.attr,
7309 	&partial_attr.attr,
7310 	&cpu_slabs_attr.attr,
7311 	&ctor_attr.attr,
7312 	&aliases_attr.attr,
7313 	&align_attr.attr,
7314 	&hwcache_align_attr.attr,
7315 	&reclaim_account_attr.attr,
7316 	&destroy_by_rcu_attr.attr,
7317 	&shrink_attr.attr,
7318 	&slabs_cpu_partial_attr.attr,
7319 #ifdef CONFIG_SLUB_DEBUG
7320 	&total_objects_attr.attr,
7321 	&objects_attr.attr,
7322 	&slabs_attr.attr,
7323 	&sanity_checks_attr.attr,
7324 	&trace_attr.attr,
7325 	&red_zone_attr.attr,
7326 	&poison_attr.attr,
7327 	&store_user_attr.attr,
7328 	&validate_attr.attr,
7329 #endif
7330 #ifdef CONFIG_ZONE_DMA
7331 	&cache_dma_attr.attr,
7332 #endif
7333 #ifdef CONFIG_NUMA
7334 	&remote_node_defrag_ratio_attr.attr,
7335 #endif
7336 #ifdef CONFIG_SLUB_STATS
7337 	&alloc_fastpath_attr.attr,
7338 	&alloc_slowpath_attr.attr,
7339 	&free_fastpath_attr.attr,
7340 	&free_slowpath_attr.attr,
7341 	&free_frozen_attr.attr,
7342 	&free_add_partial_attr.attr,
7343 	&free_remove_partial_attr.attr,
7344 	&alloc_from_partial_attr.attr,
7345 	&alloc_slab_attr.attr,
7346 	&alloc_refill_attr.attr,
7347 	&alloc_node_mismatch_attr.attr,
7348 	&free_slab_attr.attr,
7349 	&cpuslab_flush_attr.attr,
7350 	&deactivate_full_attr.attr,
7351 	&deactivate_empty_attr.attr,
7352 	&deactivate_to_head_attr.attr,
7353 	&deactivate_to_tail_attr.attr,
7354 	&deactivate_remote_frees_attr.attr,
7355 	&deactivate_bypass_attr.attr,
7356 	&order_fallback_attr.attr,
7357 	&cmpxchg_double_fail_attr.attr,
7358 	&cmpxchg_double_cpu_fail_attr.attr,
7359 	&cpu_partial_alloc_attr.attr,
7360 	&cpu_partial_free_attr.attr,
7361 	&cpu_partial_node_attr.attr,
7362 	&cpu_partial_drain_attr.attr,
7363 #endif
7364 #ifdef CONFIG_FAILSLAB
7365 	&failslab_attr.attr,
7366 #endif
7367 #ifdef CONFIG_HARDENED_USERCOPY
7368 	&usersize_attr.attr,
7369 #endif
7370 #ifdef CONFIG_KFENCE
7371 	&skip_kfence_attr.attr,
7372 #endif
7373 
7374 	NULL
7375 };
7376 
7377 static const struct attribute_group slab_attr_group = {
7378 	.attrs = slab_attrs,
7379 };
7380 
7381 static ssize_t slab_attr_show(struct kobject *kobj,
7382 				struct attribute *attr,
7383 				char *buf)
7384 {
7385 	struct slab_attribute *attribute;
7386 	struct kmem_cache *s;
7387 
7388 	attribute = to_slab_attr(attr);
7389 	s = to_slab(kobj);
7390 
7391 	if (!attribute->show)
7392 		return -EIO;
7393 
7394 	return attribute->show(s, buf);
7395 }
7396 
7397 static ssize_t slab_attr_store(struct kobject *kobj,
7398 				struct attribute *attr,
7399 				const char *buf, size_t len)
7400 {
7401 	struct slab_attribute *attribute;
7402 	struct kmem_cache *s;
7403 
7404 	attribute = to_slab_attr(attr);
7405 	s = to_slab(kobj);
7406 
7407 	if (!attribute->store)
7408 		return -EIO;
7409 
7410 	return attribute->store(s, buf, len);
7411 }
7412 
7413 static void kmem_cache_release(struct kobject *k)
7414 {
7415 	slab_kmem_cache_release(to_slab(k));
7416 }
7417 
7418 static const struct sysfs_ops slab_sysfs_ops = {
7419 	.show = slab_attr_show,
7420 	.store = slab_attr_store,
7421 };
7422 
7423 static const struct kobj_type slab_ktype = {
7424 	.sysfs_ops = &slab_sysfs_ops,
7425 	.release = kmem_cache_release,
7426 };
7427 
7428 static struct kset *slab_kset;
7429 
7430 static inline struct kset *cache_kset(struct kmem_cache *s)
7431 {
7432 	return slab_kset;
7433 }
7434 
7435 #define ID_STR_LENGTH 32
7436 
7437 /* Create a unique string id for a slab cache:
7438  *
7439  * Format	:[flags-]size
7440  */
7441 static char *create_unique_id(struct kmem_cache *s)
7442 {
7443 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7444 	char *p = name;
7445 
7446 	if (!name)
7447 		return ERR_PTR(-ENOMEM);
7448 
7449 	*p++ = ':';
7450 	/*
7451 	 * First flags affecting slabcache operations. We will only
7452 	 * get here for aliasable slabs so we do not need to support
7453 	 * too many flags. The flags here must cover all flags that
7454 	 * are matched during merging to guarantee that the id is
7455 	 * unique.
7456 	 */
7457 	if (s->flags & SLAB_CACHE_DMA)
7458 		*p++ = 'd';
7459 	if (s->flags & SLAB_CACHE_DMA32)
7460 		*p++ = 'D';
7461 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7462 		*p++ = 'a';
7463 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7464 		*p++ = 'F';
7465 	if (s->flags & SLAB_ACCOUNT)
7466 		*p++ = 'A';
7467 	if (p != name + 1)
7468 		*p++ = '-';
7469 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7470 
7471 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7472 		kfree(name);
7473 		return ERR_PTR(-EINVAL);
7474 	}
7475 	kmsan_unpoison_memory(name, p - name);
7476 	return name;
7477 }
7478 
7479 static int sysfs_slab_add(struct kmem_cache *s)
7480 {
7481 	int err;
7482 	const char *name;
7483 	struct kset *kset = cache_kset(s);
7484 	int unmergeable = slab_unmergeable(s);
7485 
7486 	if (!unmergeable && disable_higher_order_debug &&
7487 			(slub_debug & DEBUG_METADATA_FLAGS))
7488 		unmergeable = 1;
7489 
7490 	if (unmergeable) {
7491 		/*
7492 		 * Slabcache can never be merged so we can use the name proper.
7493 		 * This is typically the case for debug situations. In that
7494 		 * case we can catch duplicate names easily.
7495 		 */
7496 		sysfs_remove_link(&slab_kset->kobj, s->name);
7497 		name = s->name;
7498 	} else {
7499 		/*
7500 		 * Create a unique name for the slab as a target
7501 		 * for the symlinks.
7502 		 */
7503 		name = create_unique_id(s);
7504 		if (IS_ERR(name))
7505 			return PTR_ERR(name);
7506 	}
7507 
7508 	s->kobj.kset = kset;
7509 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7510 	if (err)
7511 		goto out;
7512 
7513 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7514 	if (err)
7515 		goto out_del_kobj;
7516 
7517 	if (!unmergeable) {
7518 		/* Setup first alias */
7519 		sysfs_slab_alias(s, s->name);
7520 	}
7521 out:
7522 	if (!unmergeable)
7523 		kfree(name);
7524 	return err;
7525 out_del_kobj:
7526 	kobject_del(&s->kobj);
7527 	goto out;
7528 }
7529 
7530 void sysfs_slab_unlink(struct kmem_cache *s)
7531 {
7532 	if (s->kobj.state_in_sysfs)
7533 		kobject_del(&s->kobj);
7534 }
7535 
7536 void sysfs_slab_release(struct kmem_cache *s)
7537 {
7538 	kobject_put(&s->kobj);
7539 }
7540 
7541 /*
7542  * Need to buffer aliases during bootup until sysfs becomes
7543  * available lest we lose that information.
7544  */
7545 struct saved_alias {
7546 	struct kmem_cache *s;
7547 	const char *name;
7548 	struct saved_alias *next;
7549 };
7550 
7551 static struct saved_alias *alias_list;
7552 
7553 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7554 {
7555 	struct saved_alias *al;
7556 
7557 	if (slab_state == FULL) {
7558 		/*
7559 		 * If we have a leftover link then remove it.
7560 		 */
7561 		sysfs_remove_link(&slab_kset->kobj, name);
7562 		/*
7563 		 * The original cache may have failed to generate sysfs file.
7564 		 * In that case, sysfs_create_link() returns -ENOENT and
7565 		 * symbolic link creation is skipped.
7566 		 */
7567 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7568 	}
7569 
7570 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7571 	if (!al)
7572 		return -ENOMEM;
7573 
7574 	al->s = s;
7575 	al->name = name;
7576 	al->next = alias_list;
7577 	alias_list = al;
7578 	kmsan_unpoison_memory(al, sizeof(*al));
7579 	return 0;
7580 }
7581 
7582 static int __init slab_sysfs_init(void)
7583 {
7584 	struct kmem_cache *s;
7585 	int err;
7586 
7587 	mutex_lock(&slab_mutex);
7588 
7589 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7590 	if (!slab_kset) {
7591 		mutex_unlock(&slab_mutex);
7592 		pr_err("Cannot register slab subsystem.\n");
7593 		return -ENOMEM;
7594 	}
7595 
7596 	slab_state = FULL;
7597 
7598 	list_for_each_entry(s, &slab_caches, list) {
7599 		err = sysfs_slab_add(s);
7600 		if (err)
7601 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7602 			       s->name);
7603 	}
7604 
7605 	while (alias_list) {
7606 		struct saved_alias *al = alias_list;
7607 
7608 		alias_list = alias_list->next;
7609 		err = sysfs_slab_alias(al->s, al->name);
7610 		if (err)
7611 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7612 			       al->name);
7613 		kfree(al);
7614 	}
7615 
7616 	mutex_unlock(&slab_mutex);
7617 	return 0;
7618 }
7619 late_initcall(slab_sysfs_init);
7620 #endif /* SLAB_SUPPORTS_SYSFS */
7621 
7622 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7623 static int slab_debugfs_show(struct seq_file *seq, void *v)
7624 {
7625 	struct loc_track *t = seq->private;
7626 	struct location *l;
7627 	unsigned long idx;
7628 
7629 	idx = (unsigned long) t->idx;
7630 	if (idx < t->count) {
7631 		l = &t->loc[idx];
7632 
7633 		seq_printf(seq, "%7ld ", l->count);
7634 
7635 		if (l->addr)
7636 			seq_printf(seq, "%pS", (void *)l->addr);
7637 		else
7638 			seq_puts(seq, "<not-available>");
7639 
7640 		if (l->waste)
7641 			seq_printf(seq, " waste=%lu/%lu",
7642 				l->count * l->waste, l->waste);
7643 
7644 		if (l->sum_time != l->min_time) {
7645 			seq_printf(seq, " age=%ld/%llu/%ld",
7646 				l->min_time, div_u64(l->sum_time, l->count),
7647 				l->max_time);
7648 		} else
7649 			seq_printf(seq, " age=%ld", l->min_time);
7650 
7651 		if (l->min_pid != l->max_pid)
7652 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7653 		else
7654 			seq_printf(seq, " pid=%ld",
7655 				l->min_pid);
7656 
7657 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7658 			seq_printf(seq, " cpus=%*pbl",
7659 				 cpumask_pr_args(to_cpumask(l->cpus)));
7660 
7661 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7662 			seq_printf(seq, " nodes=%*pbl",
7663 				 nodemask_pr_args(&l->nodes));
7664 
7665 #ifdef CONFIG_STACKDEPOT
7666 		{
7667 			depot_stack_handle_t handle;
7668 			unsigned long *entries;
7669 			unsigned int nr_entries, j;
7670 
7671 			handle = READ_ONCE(l->handle);
7672 			if (handle) {
7673 				nr_entries = stack_depot_fetch(handle, &entries);
7674 				seq_puts(seq, "\n");
7675 				for (j = 0; j < nr_entries; j++)
7676 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7677 			}
7678 		}
7679 #endif
7680 		seq_puts(seq, "\n");
7681 	}
7682 
7683 	if (!idx && !t->count)
7684 		seq_puts(seq, "No data\n");
7685 
7686 	return 0;
7687 }
7688 
7689 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7690 {
7691 }
7692 
7693 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7694 {
7695 	struct loc_track *t = seq->private;
7696 
7697 	t->idx = ++(*ppos);
7698 	if (*ppos <= t->count)
7699 		return ppos;
7700 
7701 	return NULL;
7702 }
7703 
7704 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7705 {
7706 	struct location *loc1 = (struct location *)a;
7707 	struct location *loc2 = (struct location *)b;
7708 
7709 	if (loc1->count > loc2->count)
7710 		return -1;
7711 	else
7712 		return 1;
7713 }
7714 
7715 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7716 {
7717 	struct loc_track *t = seq->private;
7718 
7719 	t->idx = *ppos;
7720 	return ppos;
7721 }
7722 
7723 static const struct seq_operations slab_debugfs_sops = {
7724 	.start  = slab_debugfs_start,
7725 	.next   = slab_debugfs_next,
7726 	.stop   = slab_debugfs_stop,
7727 	.show   = slab_debugfs_show,
7728 };
7729 
7730 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7731 {
7732 
7733 	struct kmem_cache_node *n;
7734 	enum track_item alloc;
7735 	int node;
7736 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7737 						sizeof(struct loc_track));
7738 	struct kmem_cache *s = file_inode(filep)->i_private;
7739 	unsigned long *obj_map;
7740 
7741 	if (!t)
7742 		return -ENOMEM;
7743 
7744 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7745 	if (!obj_map) {
7746 		seq_release_private(inode, filep);
7747 		return -ENOMEM;
7748 	}
7749 
7750 	alloc = debugfs_get_aux_num(filep);
7751 
7752 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7753 		bitmap_free(obj_map);
7754 		seq_release_private(inode, filep);
7755 		return -ENOMEM;
7756 	}
7757 
7758 	for_each_kmem_cache_node(s, node, n) {
7759 		unsigned long flags;
7760 		struct slab *slab;
7761 
7762 		if (!node_nr_slabs(n))
7763 			continue;
7764 
7765 		spin_lock_irqsave(&n->list_lock, flags);
7766 		list_for_each_entry(slab, &n->partial, slab_list)
7767 			process_slab(t, s, slab, alloc, obj_map);
7768 		list_for_each_entry(slab, &n->full, slab_list)
7769 			process_slab(t, s, slab, alloc, obj_map);
7770 		spin_unlock_irqrestore(&n->list_lock, flags);
7771 	}
7772 
7773 	/* Sort locations by count */
7774 	sort_r(t->loc, t->count, sizeof(struct location),
7775 		cmp_loc_by_count, NULL, NULL);
7776 
7777 	bitmap_free(obj_map);
7778 	return 0;
7779 }
7780 
7781 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7782 {
7783 	struct seq_file *seq = file->private_data;
7784 	struct loc_track *t = seq->private;
7785 
7786 	free_loc_track(t);
7787 	return seq_release_private(inode, file);
7788 }
7789 
7790 static const struct file_operations slab_debugfs_fops = {
7791 	.open    = slab_debug_trace_open,
7792 	.read    = seq_read,
7793 	.llseek  = seq_lseek,
7794 	.release = slab_debug_trace_release,
7795 };
7796 
7797 static void debugfs_slab_add(struct kmem_cache *s)
7798 {
7799 	struct dentry *slab_cache_dir;
7800 
7801 	if (unlikely(!slab_debugfs_root))
7802 		return;
7803 
7804 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7805 
7806 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7807 					TRACK_ALLOC, &slab_debugfs_fops);
7808 
7809 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7810 					TRACK_FREE, &slab_debugfs_fops);
7811 }
7812 
7813 void debugfs_slab_release(struct kmem_cache *s)
7814 {
7815 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7816 }
7817 
7818 static int __init slab_debugfs_init(void)
7819 {
7820 	struct kmem_cache *s;
7821 
7822 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7823 
7824 	list_for_each_entry(s, &slab_caches, list)
7825 		if (s->flags & SLAB_STORE_USER)
7826 			debugfs_slab_add(s);
7827 
7828 	return 0;
7829 
7830 }
7831 __initcall(slab_debugfs_init);
7832 #endif
7833 /*
7834  * The /proc/slabinfo ABI
7835  */
7836 #ifdef CONFIG_SLUB_DEBUG
7837 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7838 {
7839 	unsigned long nr_slabs = 0;
7840 	unsigned long nr_objs = 0;
7841 	unsigned long nr_free = 0;
7842 	int node;
7843 	struct kmem_cache_node *n;
7844 
7845 	for_each_kmem_cache_node(s, node, n) {
7846 		nr_slabs += node_nr_slabs(n);
7847 		nr_objs += node_nr_objs(n);
7848 		nr_free += count_partial_free_approx(n);
7849 	}
7850 
7851 	sinfo->active_objs = nr_objs - nr_free;
7852 	sinfo->num_objs = nr_objs;
7853 	sinfo->active_slabs = nr_slabs;
7854 	sinfo->num_slabs = nr_slabs;
7855 	sinfo->objects_per_slab = oo_objects(s->oo);
7856 	sinfo->cache_order = oo_order(s->oo);
7857 }
7858 #endif /* CONFIG_SLUB_DEBUG */
7859