1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 128 { 129 #ifdef CONFIG_SLUB_CPU_PARTIAL 130 return !kmem_cache_debug(s); 131 #else 132 return false; 133 #endif 134 } 135 136 /* 137 * Issues still to be resolved: 138 * 139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 140 * 141 * - Variable sizing of the per node arrays 142 */ 143 144 /* Enable to test recovery from slab corruption on boot */ 145 #undef SLUB_RESILIENCY_TEST 146 147 /* Enable to log cmpxchg failures */ 148 #undef SLUB_DEBUG_CMPXCHG 149 150 /* 151 * Mininum number of partial slabs. These will be left on the partial 152 * lists even if they are empty. kmem_cache_shrink may reclaim them. 153 */ 154 #define MIN_PARTIAL 5 155 156 /* 157 * Maximum number of desirable partial slabs. 158 * The existence of more partial slabs makes kmem_cache_shrink 159 * sort the partial list by the number of objects in use. 160 */ 161 #define MAX_PARTIAL 10 162 163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 164 SLAB_POISON | SLAB_STORE_USER) 165 166 /* 167 * Debugging flags that require metadata to be stored in the slab. These get 168 * disabled when slub_debug=O is used and a cache's min order increases with 169 * metadata. 170 */ 171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 172 173 #define OO_SHIFT 16 174 #define OO_MASK ((1 << OO_SHIFT) - 1) 175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 176 177 /* Internal SLUB flags */ 178 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 180 181 #ifdef CONFIG_SMP 182 static struct notifier_block slab_notifier; 183 #endif 184 185 /* 186 * Tracking user of a slab. 187 */ 188 #define TRACK_ADDRS_COUNT 16 189 struct track { 190 unsigned long addr; /* Called from address */ 191 #ifdef CONFIG_STACKTRACE 192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 193 #endif 194 int cpu; /* Was running on cpu */ 195 int pid; /* Pid context */ 196 unsigned long when; /* When did the operation occur */ 197 }; 198 199 enum track_item { TRACK_ALLOC, TRACK_FREE }; 200 201 #ifdef CONFIG_SYSFS 202 static int sysfs_slab_add(struct kmem_cache *); 203 static int sysfs_slab_alias(struct kmem_cache *, const char *); 204 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 205 #else 206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 208 { return 0; } 209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 210 #endif 211 212 static inline void stat(const struct kmem_cache *s, enum stat_item si) 213 { 214 #ifdef CONFIG_SLUB_STATS 215 /* 216 * The rmw is racy on a preemptible kernel but this is acceptable, so 217 * avoid this_cpu_add()'s irq-disable overhead. 218 */ 219 raw_cpu_inc(s->cpu_slab->stat[si]); 220 #endif 221 } 222 223 /******************************************************************** 224 * Core slab cache functions 225 *******************************************************************/ 226 227 /* Verify that a pointer has an address that is valid within a slab page */ 228 static inline int check_valid_pointer(struct kmem_cache *s, 229 struct page *page, const void *object) 230 { 231 void *base; 232 233 if (!object) 234 return 1; 235 236 base = page_address(page); 237 if (object < base || object >= base + page->objects * s->size || 238 (object - base) % s->size) { 239 return 0; 240 } 241 242 return 1; 243 } 244 245 static inline void *get_freepointer(struct kmem_cache *s, void *object) 246 { 247 return *(void **)(object + s->offset); 248 } 249 250 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 251 { 252 prefetch(object + s->offset); 253 } 254 255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 256 { 257 void *p; 258 259 #ifdef CONFIG_DEBUG_PAGEALLOC 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 261 #else 262 p = get_freepointer(s, object); 263 #endif 264 return p; 265 } 266 267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 268 { 269 *(void **)(object + s->offset) = fp; 270 } 271 272 /* Loop over all objects in a slab */ 273 #define for_each_object(__p, __s, __addr, __objects) \ 274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 275 __p += (__s)->size) 276 277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 278 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 279 __p += (__s)->size, __idx++) 280 281 /* Determine object index from a given position */ 282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 283 { 284 return (p - addr) / s->size; 285 } 286 287 static inline size_t slab_ksize(const struct kmem_cache *s) 288 { 289 #ifdef CONFIG_SLUB_DEBUG 290 /* 291 * Debugging requires use of the padding between object 292 * and whatever may come after it. 293 */ 294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 295 return s->object_size; 296 297 #endif 298 /* 299 * If we have the need to store the freelist pointer 300 * back there or track user information then we can 301 * only use the space before that information. 302 */ 303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 304 return s->inuse; 305 /* 306 * Else we can use all the padding etc for the allocation 307 */ 308 return s->size; 309 } 310 311 static inline int order_objects(int order, unsigned long size, int reserved) 312 { 313 return ((PAGE_SIZE << order) - reserved) / size; 314 } 315 316 static inline struct kmem_cache_order_objects oo_make(int order, 317 unsigned long size, int reserved) 318 { 319 struct kmem_cache_order_objects x = { 320 (order << OO_SHIFT) + order_objects(order, size, reserved) 321 }; 322 323 return x; 324 } 325 326 static inline int oo_order(struct kmem_cache_order_objects x) 327 { 328 return x.x >> OO_SHIFT; 329 } 330 331 static inline int oo_objects(struct kmem_cache_order_objects x) 332 { 333 return x.x & OO_MASK; 334 } 335 336 /* 337 * Per slab locking using the pagelock 338 */ 339 static __always_inline void slab_lock(struct page *page) 340 { 341 VM_BUG_ON_PAGE(PageTail(page), page); 342 bit_spin_lock(PG_locked, &page->flags); 343 } 344 345 static __always_inline void slab_unlock(struct page *page) 346 { 347 VM_BUG_ON_PAGE(PageTail(page), page); 348 __bit_spin_unlock(PG_locked, &page->flags); 349 } 350 351 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 352 { 353 struct page tmp; 354 tmp.counters = counters_new; 355 /* 356 * page->counters can cover frozen/inuse/objects as well 357 * as page->_count. If we assign to ->counters directly 358 * we run the risk of losing updates to page->_count, so 359 * be careful and only assign to the fields we need. 360 */ 361 page->frozen = tmp.frozen; 362 page->inuse = tmp.inuse; 363 page->objects = tmp.objects; 364 } 365 366 /* Interrupts must be disabled (for the fallback code to work right) */ 367 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 368 void *freelist_old, unsigned long counters_old, 369 void *freelist_new, unsigned long counters_new, 370 const char *n) 371 { 372 VM_BUG_ON(!irqs_disabled()); 373 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 374 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 375 if (s->flags & __CMPXCHG_DOUBLE) { 376 if (cmpxchg_double(&page->freelist, &page->counters, 377 freelist_old, counters_old, 378 freelist_new, counters_new)) 379 return true; 380 } else 381 #endif 382 { 383 slab_lock(page); 384 if (page->freelist == freelist_old && 385 page->counters == counters_old) { 386 page->freelist = freelist_new; 387 set_page_slub_counters(page, counters_new); 388 slab_unlock(page); 389 return true; 390 } 391 slab_unlock(page); 392 } 393 394 cpu_relax(); 395 stat(s, CMPXCHG_DOUBLE_FAIL); 396 397 #ifdef SLUB_DEBUG_CMPXCHG 398 pr_info("%s %s: cmpxchg double redo ", n, s->name); 399 #endif 400 401 return false; 402 } 403 404 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 405 void *freelist_old, unsigned long counters_old, 406 void *freelist_new, unsigned long counters_new, 407 const char *n) 408 { 409 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 410 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 411 if (s->flags & __CMPXCHG_DOUBLE) { 412 if (cmpxchg_double(&page->freelist, &page->counters, 413 freelist_old, counters_old, 414 freelist_new, counters_new)) 415 return true; 416 } else 417 #endif 418 { 419 unsigned long flags; 420 421 local_irq_save(flags); 422 slab_lock(page); 423 if (page->freelist == freelist_old && 424 page->counters == counters_old) { 425 page->freelist = freelist_new; 426 set_page_slub_counters(page, counters_new); 427 slab_unlock(page); 428 local_irq_restore(flags); 429 return true; 430 } 431 slab_unlock(page); 432 local_irq_restore(flags); 433 } 434 435 cpu_relax(); 436 stat(s, CMPXCHG_DOUBLE_FAIL); 437 438 #ifdef SLUB_DEBUG_CMPXCHG 439 pr_info("%s %s: cmpxchg double redo ", n, s->name); 440 #endif 441 442 return false; 443 } 444 445 #ifdef CONFIG_SLUB_DEBUG 446 /* 447 * Determine a map of object in use on a page. 448 * 449 * Node listlock must be held to guarantee that the page does 450 * not vanish from under us. 451 */ 452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 453 { 454 void *p; 455 void *addr = page_address(page); 456 457 for (p = page->freelist; p; p = get_freepointer(s, p)) 458 set_bit(slab_index(p, s, addr), map); 459 } 460 461 /* 462 * Debug settings: 463 */ 464 #if defined(CONFIG_SLUB_DEBUG_ON) 465 static int slub_debug = DEBUG_DEFAULT_FLAGS; 466 #elif defined(CONFIG_KASAN) 467 static int slub_debug = SLAB_STORE_USER; 468 #else 469 static int slub_debug; 470 #endif 471 472 static char *slub_debug_slabs; 473 static int disable_higher_order_debug; 474 475 /* 476 * slub is about to manipulate internal object metadata. This memory lies 477 * outside the range of the allocated object, so accessing it would normally 478 * be reported by kasan as a bounds error. metadata_access_enable() is used 479 * to tell kasan that these accesses are OK. 480 */ 481 static inline void metadata_access_enable(void) 482 { 483 kasan_disable_current(); 484 } 485 486 static inline void metadata_access_disable(void) 487 { 488 kasan_enable_current(); 489 } 490 491 /* 492 * Object debugging 493 */ 494 static void print_section(char *text, u8 *addr, unsigned int length) 495 { 496 metadata_access_enable(); 497 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 498 length, 1); 499 metadata_access_disable(); 500 } 501 502 static struct track *get_track(struct kmem_cache *s, void *object, 503 enum track_item alloc) 504 { 505 struct track *p; 506 507 if (s->offset) 508 p = object + s->offset + sizeof(void *); 509 else 510 p = object + s->inuse; 511 512 return p + alloc; 513 } 514 515 static void set_track(struct kmem_cache *s, void *object, 516 enum track_item alloc, unsigned long addr) 517 { 518 struct track *p = get_track(s, object, alloc); 519 520 if (addr) { 521 #ifdef CONFIG_STACKTRACE 522 struct stack_trace trace; 523 int i; 524 525 trace.nr_entries = 0; 526 trace.max_entries = TRACK_ADDRS_COUNT; 527 trace.entries = p->addrs; 528 trace.skip = 3; 529 metadata_access_enable(); 530 save_stack_trace(&trace); 531 metadata_access_disable(); 532 533 /* See rant in lockdep.c */ 534 if (trace.nr_entries != 0 && 535 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 536 trace.nr_entries--; 537 538 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 539 p->addrs[i] = 0; 540 #endif 541 p->addr = addr; 542 p->cpu = smp_processor_id(); 543 p->pid = current->pid; 544 p->when = jiffies; 545 } else 546 memset(p, 0, sizeof(struct track)); 547 } 548 549 static void init_tracking(struct kmem_cache *s, void *object) 550 { 551 if (!(s->flags & SLAB_STORE_USER)) 552 return; 553 554 set_track(s, object, TRACK_FREE, 0UL); 555 set_track(s, object, TRACK_ALLOC, 0UL); 556 } 557 558 static void print_track(const char *s, struct track *t) 559 { 560 if (!t->addr) 561 return; 562 563 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 564 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 565 #ifdef CONFIG_STACKTRACE 566 { 567 int i; 568 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 569 if (t->addrs[i]) 570 pr_err("\t%pS\n", (void *)t->addrs[i]); 571 else 572 break; 573 } 574 #endif 575 } 576 577 static void print_tracking(struct kmem_cache *s, void *object) 578 { 579 if (!(s->flags & SLAB_STORE_USER)) 580 return; 581 582 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 583 print_track("Freed", get_track(s, object, TRACK_FREE)); 584 } 585 586 static void print_page_info(struct page *page) 587 { 588 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 589 page, page->objects, page->inuse, page->freelist, page->flags); 590 591 } 592 593 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 pr_err("=============================================================================\n"); 602 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 603 pr_err("-----------------------------------------------------------------------------\n\n"); 604 605 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 606 va_end(args); 607 } 608 609 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 610 { 611 struct va_format vaf; 612 va_list args; 613 614 va_start(args, fmt); 615 vaf.fmt = fmt; 616 vaf.va = &args; 617 pr_err("FIX %s: %pV\n", s->name, &vaf); 618 va_end(args); 619 } 620 621 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 622 { 623 unsigned int off; /* Offset of last byte */ 624 u8 *addr = page_address(page); 625 626 print_tracking(s, p); 627 628 print_page_info(page); 629 630 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 631 p, p - addr, get_freepointer(s, p)); 632 633 if (p > addr + 16) 634 print_section("Bytes b4 ", p - 16, 16); 635 636 print_section("Object ", p, min_t(unsigned long, s->object_size, 637 PAGE_SIZE)); 638 if (s->flags & SLAB_RED_ZONE) 639 print_section("Redzone ", p + s->object_size, 640 s->inuse - s->object_size); 641 642 if (s->offset) 643 off = s->offset + sizeof(void *); 644 else 645 off = s->inuse; 646 647 if (s->flags & SLAB_STORE_USER) 648 off += 2 * sizeof(struct track); 649 650 if (off != s->size) 651 /* Beginning of the filler is the free pointer */ 652 print_section("Padding ", p + off, s->size - off); 653 654 dump_stack(); 655 } 656 657 void object_err(struct kmem_cache *s, struct page *page, 658 u8 *object, char *reason) 659 { 660 slab_bug(s, "%s", reason); 661 print_trailer(s, page, object); 662 } 663 664 static void slab_err(struct kmem_cache *s, struct page *page, 665 const char *fmt, ...) 666 { 667 va_list args; 668 char buf[100]; 669 670 va_start(args, fmt); 671 vsnprintf(buf, sizeof(buf), fmt, args); 672 va_end(args); 673 slab_bug(s, "%s", buf); 674 print_page_info(page); 675 dump_stack(); 676 } 677 678 static void init_object(struct kmem_cache *s, void *object, u8 val) 679 { 680 u8 *p = object; 681 682 if (s->flags & __OBJECT_POISON) { 683 memset(p, POISON_FREE, s->object_size - 1); 684 p[s->object_size - 1] = POISON_END; 685 } 686 687 if (s->flags & SLAB_RED_ZONE) 688 memset(p + s->object_size, val, s->inuse - s->object_size); 689 } 690 691 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 692 void *from, void *to) 693 { 694 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 695 memset(from, data, to - from); 696 } 697 698 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 699 u8 *object, char *what, 700 u8 *start, unsigned int value, unsigned int bytes) 701 { 702 u8 *fault; 703 u8 *end; 704 705 metadata_access_enable(); 706 fault = memchr_inv(start, value, bytes); 707 metadata_access_disable(); 708 if (!fault) 709 return 1; 710 711 end = start + bytes; 712 while (end > fault && end[-1] == value) 713 end--; 714 715 slab_bug(s, "%s overwritten", what); 716 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 717 fault, end - 1, fault[0], value); 718 print_trailer(s, page, object); 719 720 restore_bytes(s, what, value, fault, end); 721 return 0; 722 } 723 724 /* 725 * Object layout: 726 * 727 * object address 728 * Bytes of the object to be managed. 729 * If the freepointer may overlay the object then the free 730 * pointer is the first word of the object. 731 * 732 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 733 * 0xa5 (POISON_END) 734 * 735 * object + s->object_size 736 * Padding to reach word boundary. This is also used for Redzoning. 737 * Padding is extended by another word if Redzoning is enabled and 738 * object_size == inuse. 739 * 740 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 741 * 0xcc (RED_ACTIVE) for objects in use. 742 * 743 * object + s->inuse 744 * Meta data starts here. 745 * 746 * A. Free pointer (if we cannot overwrite object on free) 747 * B. Tracking data for SLAB_STORE_USER 748 * C. Padding to reach required alignment boundary or at mininum 749 * one word if debugging is on to be able to detect writes 750 * before the word boundary. 751 * 752 * Padding is done using 0x5a (POISON_INUSE) 753 * 754 * object + s->size 755 * Nothing is used beyond s->size. 756 * 757 * If slabcaches are merged then the object_size and inuse boundaries are mostly 758 * ignored. And therefore no slab options that rely on these boundaries 759 * may be used with merged slabcaches. 760 */ 761 762 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 763 { 764 unsigned long off = s->inuse; /* The end of info */ 765 766 if (s->offset) 767 /* Freepointer is placed after the object. */ 768 off += sizeof(void *); 769 770 if (s->flags & SLAB_STORE_USER) 771 /* We also have user information there */ 772 off += 2 * sizeof(struct track); 773 774 if (s->size == off) 775 return 1; 776 777 return check_bytes_and_report(s, page, p, "Object padding", 778 p + off, POISON_INUSE, s->size - off); 779 } 780 781 /* Check the pad bytes at the end of a slab page */ 782 static int slab_pad_check(struct kmem_cache *s, struct page *page) 783 { 784 u8 *start; 785 u8 *fault; 786 u8 *end; 787 int length; 788 int remainder; 789 790 if (!(s->flags & SLAB_POISON)) 791 return 1; 792 793 start = page_address(page); 794 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 795 end = start + length; 796 remainder = length % s->size; 797 if (!remainder) 798 return 1; 799 800 metadata_access_enable(); 801 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 802 metadata_access_disable(); 803 if (!fault) 804 return 1; 805 while (end > fault && end[-1] == POISON_INUSE) 806 end--; 807 808 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 809 print_section("Padding ", end - remainder, remainder); 810 811 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 812 return 0; 813 } 814 815 static int check_object(struct kmem_cache *s, struct page *page, 816 void *object, u8 val) 817 { 818 u8 *p = object; 819 u8 *endobject = object + s->object_size; 820 821 if (s->flags & SLAB_RED_ZONE) { 822 if (!check_bytes_and_report(s, page, object, "Redzone", 823 endobject, val, s->inuse - s->object_size)) 824 return 0; 825 } else { 826 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 827 check_bytes_and_report(s, page, p, "Alignment padding", 828 endobject, POISON_INUSE, 829 s->inuse - s->object_size); 830 } 831 } 832 833 if (s->flags & SLAB_POISON) { 834 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 835 (!check_bytes_and_report(s, page, p, "Poison", p, 836 POISON_FREE, s->object_size - 1) || 837 !check_bytes_and_report(s, page, p, "Poison", 838 p + s->object_size - 1, POISON_END, 1))) 839 return 0; 840 /* 841 * check_pad_bytes cleans up on its own. 842 */ 843 check_pad_bytes(s, page, p); 844 } 845 846 if (!s->offset && val == SLUB_RED_ACTIVE) 847 /* 848 * Object and freepointer overlap. Cannot check 849 * freepointer while object is allocated. 850 */ 851 return 1; 852 853 /* Check free pointer validity */ 854 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 855 object_err(s, page, p, "Freepointer corrupt"); 856 /* 857 * No choice but to zap it and thus lose the remainder 858 * of the free objects in this slab. May cause 859 * another error because the object count is now wrong. 860 */ 861 set_freepointer(s, p, NULL); 862 return 0; 863 } 864 return 1; 865 } 866 867 static int check_slab(struct kmem_cache *s, struct page *page) 868 { 869 int maxobj; 870 871 VM_BUG_ON(!irqs_disabled()); 872 873 if (!PageSlab(page)) { 874 slab_err(s, page, "Not a valid slab page"); 875 return 0; 876 } 877 878 maxobj = order_objects(compound_order(page), s->size, s->reserved); 879 if (page->objects > maxobj) { 880 slab_err(s, page, "objects %u > max %u", 881 page->objects, maxobj); 882 return 0; 883 } 884 if (page->inuse > page->objects) { 885 slab_err(s, page, "inuse %u > max %u", 886 page->inuse, page->objects); 887 return 0; 888 } 889 /* Slab_pad_check fixes things up after itself */ 890 slab_pad_check(s, page); 891 return 1; 892 } 893 894 /* 895 * Determine if a certain object on a page is on the freelist. Must hold the 896 * slab lock to guarantee that the chains are in a consistent state. 897 */ 898 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 899 { 900 int nr = 0; 901 void *fp; 902 void *object = NULL; 903 int max_objects; 904 905 fp = page->freelist; 906 while (fp && nr <= page->objects) { 907 if (fp == search) 908 return 1; 909 if (!check_valid_pointer(s, page, fp)) { 910 if (object) { 911 object_err(s, page, object, 912 "Freechain corrupt"); 913 set_freepointer(s, object, NULL); 914 } else { 915 slab_err(s, page, "Freepointer corrupt"); 916 page->freelist = NULL; 917 page->inuse = page->objects; 918 slab_fix(s, "Freelist cleared"); 919 return 0; 920 } 921 break; 922 } 923 object = fp; 924 fp = get_freepointer(s, object); 925 nr++; 926 } 927 928 max_objects = order_objects(compound_order(page), s->size, s->reserved); 929 if (max_objects > MAX_OBJS_PER_PAGE) 930 max_objects = MAX_OBJS_PER_PAGE; 931 932 if (page->objects != max_objects) { 933 slab_err(s, page, "Wrong number of objects. Found %d but " 934 "should be %d", page->objects, max_objects); 935 page->objects = max_objects; 936 slab_fix(s, "Number of objects adjusted."); 937 } 938 if (page->inuse != page->objects - nr) { 939 slab_err(s, page, "Wrong object count. Counter is %d but " 940 "counted were %d", page->inuse, page->objects - nr); 941 page->inuse = page->objects - nr; 942 slab_fix(s, "Object count adjusted."); 943 } 944 return search == NULL; 945 } 946 947 static void trace(struct kmem_cache *s, struct page *page, void *object, 948 int alloc) 949 { 950 if (s->flags & SLAB_TRACE) { 951 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 952 s->name, 953 alloc ? "alloc" : "free", 954 object, page->inuse, 955 page->freelist); 956 957 if (!alloc) 958 print_section("Object ", (void *)object, 959 s->object_size); 960 961 dump_stack(); 962 } 963 } 964 965 /* 966 * Tracking of fully allocated slabs for debugging purposes. 967 */ 968 static void add_full(struct kmem_cache *s, 969 struct kmem_cache_node *n, struct page *page) 970 { 971 if (!(s->flags & SLAB_STORE_USER)) 972 return; 973 974 lockdep_assert_held(&n->list_lock); 975 list_add(&page->lru, &n->full); 976 } 977 978 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 979 { 980 if (!(s->flags & SLAB_STORE_USER)) 981 return; 982 983 lockdep_assert_held(&n->list_lock); 984 list_del(&page->lru); 985 } 986 987 /* Tracking of the number of slabs for debugging purposes */ 988 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 989 { 990 struct kmem_cache_node *n = get_node(s, node); 991 992 return atomic_long_read(&n->nr_slabs); 993 } 994 995 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 996 { 997 return atomic_long_read(&n->nr_slabs); 998 } 999 1000 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1001 { 1002 struct kmem_cache_node *n = get_node(s, node); 1003 1004 /* 1005 * May be called early in order to allocate a slab for the 1006 * kmem_cache_node structure. Solve the chicken-egg 1007 * dilemma by deferring the increment of the count during 1008 * bootstrap (see early_kmem_cache_node_alloc). 1009 */ 1010 if (likely(n)) { 1011 atomic_long_inc(&n->nr_slabs); 1012 atomic_long_add(objects, &n->total_objects); 1013 } 1014 } 1015 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1016 { 1017 struct kmem_cache_node *n = get_node(s, node); 1018 1019 atomic_long_dec(&n->nr_slabs); 1020 atomic_long_sub(objects, &n->total_objects); 1021 } 1022 1023 /* Object debug checks for alloc/free paths */ 1024 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1025 void *object) 1026 { 1027 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1028 return; 1029 1030 init_object(s, object, SLUB_RED_INACTIVE); 1031 init_tracking(s, object); 1032 } 1033 1034 static noinline int alloc_debug_processing(struct kmem_cache *s, 1035 struct page *page, 1036 void *object, unsigned long addr) 1037 { 1038 if (!check_slab(s, page)) 1039 goto bad; 1040 1041 if (!check_valid_pointer(s, page, object)) { 1042 object_err(s, page, object, "Freelist Pointer check fails"); 1043 goto bad; 1044 } 1045 1046 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1047 goto bad; 1048 1049 /* Success perform special debug activities for allocs */ 1050 if (s->flags & SLAB_STORE_USER) 1051 set_track(s, object, TRACK_ALLOC, addr); 1052 trace(s, page, object, 1); 1053 init_object(s, object, SLUB_RED_ACTIVE); 1054 return 1; 1055 1056 bad: 1057 if (PageSlab(page)) { 1058 /* 1059 * If this is a slab page then lets do the best we can 1060 * to avoid issues in the future. Marking all objects 1061 * as used avoids touching the remaining objects. 1062 */ 1063 slab_fix(s, "Marking all objects used"); 1064 page->inuse = page->objects; 1065 page->freelist = NULL; 1066 } 1067 return 0; 1068 } 1069 1070 /* Supports checking bulk free of a constructed freelist */ 1071 static noinline struct kmem_cache_node *free_debug_processing( 1072 struct kmem_cache *s, struct page *page, 1073 void *head, void *tail, int bulk_cnt, 1074 unsigned long addr, unsigned long *flags) 1075 { 1076 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1077 void *object = head; 1078 int cnt = 0; 1079 1080 spin_lock_irqsave(&n->list_lock, *flags); 1081 slab_lock(page); 1082 1083 if (!check_slab(s, page)) 1084 goto fail; 1085 1086 next_object: 1087 cnt++; 1088 1089 if (!check_valid_pointer(s, page, object)) { 1090 slab_err(s, page, "Invalid object pointer 0x%p", object); 1091 goto fail; 1092 } 1093 1094 if (on_freelist(s, page, object)) { 1095 object_err(s, page, object, "Object already free"); 1096 goto fail; 1097 } 1098 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1100 goto out; 1101 1102 if (unlikely(s != page->slab_cache)) { 1103 if (!PageSlab(page)) { 1104 slab_err(s, page, "Attempt to free object(0x%p) " 1105 "outside of slab", object); 1106 } else if (!page->slab_cache) { 1107 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1108 object); 1109 dump_stack(); 1110 } else 1111 object_err(s, page, object, 1112 "page slab pointer corrupt."); 1113 goto fail; 1114 } 1115 1116 if (s->flags & SLAB_STORE_USER) 1117 set_track(s, object, TRACK_FREE, addr); 1118 trace(s, page, object, 0); 1119 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1120 init_object(s, object, SLUB_RED_INACTIVE); 1121 1122 /* Reached end of constructed freelist yet? */ 1123 if (object != tail) { 1124 object = get_freepointer(s, object); 1125 goto next_object; 1126 } 1127 out: 1128 if (cnt != bulk_cnt) 1129 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1130 bulk_cnt, cnt); 1131 1132 slab_unlock(page); 1133 /* 1134 * Keep node_lock to preserve integrity 1135 * until the object is actually freed 1136 */ 1137 return n; 1138 1139 fail: 1140 slab_unlock(page); 1141 spin_unlock_irqrestore(&n->list_lock, *flags); 1142 slab_fix(s, "Object at 0x%p not freed", object); 1143 return NULL; 1144 } 1145 1146 static int __init setup_slub_debug(char *str) 1147 { 1148 slub_debug = DEBUG_DEFAULT_FLAGS; 1149 if (*str++ != '=' || !*str) 1150 /* 1151 * No options specified. Switch on full debugging. 1152 */ 1153 goto out; 1154 1155 if (*str == ',') 1156 /* 1157 * No options but restriction on slabs. This means full 1158 * debugging for slabs matching a pattern. 1159 */ 1160 goto check_slabs; 1161 1162 slub_debug = 0; 1163 if (*str == '-') 1164 /* 1165 * Switch off all debugging measures. 1166 */ 1167 goto out; 1168 1169 /* 1170 * Determine which debug features should be switched on 1171 */ 1172 for (; *str && *str != ','; str++) { 1173 switch (tolower(*str)) { 1174 case 'f': 1175 slub_debug |= SLAB_DEBUG_FREE; 1176 break; 1177 case 'z': 1178 slub_debug |= SLAB_RED_ZONE; 1179 break; 1180 case 'p': 1181 slub_debug |= SLAB_POISON; 1182 break; 1183 case 'u': 1184 slub_debug |= SLAB_STORE_USER; 1185 break; 1186 case 't': 1187 slub_debug |= SLAB_TRACE; 1188 break; 1189 case 'a': 1190 slub_debug |= SLAB_FAILSLAB; 1191 break; 1192 case 'o': 1193 /* 1194 * Avoid enabling debugging on caches if its minimum 1195 * order would increase as a result. 1196 */ 1197 disable_higher_order_debug = 1; 1198 break; 1199 default: 1200 pr_err("slub_debug option '%c' unknown. skipped\n", 1201 *str); 1202 } 1203 } 1204 1205 check_slabs: 1206 if (*str == ',') 1207 slub_debug_slabs = str + 1; 1208 out: 1209 return 1; 1210 } 1211 1212 __setup("slub_debug", setup_slub_debug); 1213 1214 unsigned long kmem_cache_flags(unsigned long object_size, 1215 unsigned long flags, const char *name, 1216 void (*ctor)(void *)) 1217 { 1218 /* 1219 * Enable debugging if selected on the kernel commandline. 1220 */ 1221 if (slub_debug && (!slub_debug_slabs || (name && 1222 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1223 flags |= slub_debug; 1224 1225 return flags; 1226 } 1227 #else /* !CONFIG_SLUB_DEBUG */ 1228 static inline void setup_object_debug(struct kmem_cache *s, 1229 struct page *page, void *object) {} 1230 1231 static inline int alloc_debug_processing(struct kmem_cache *s, 1232 struct page *page, void *object, unsigned long addr) { return 0; } 1233 1234 static inline struct kmem_cache_node *free_debug_processing( 1235 struct kmem_cache *s, struct page *page, 1236 void *head, void *tail, int bulk_cnt, 1237 unsigned long addr, unsigned long *flags) { return NULL; } 1238 1239 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1240 { return 1; } 1241 static inline int check_object(struct kmem_cache *s, struct page *page, 1242 void *object, u8 val) { return 1; } 1243 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1244 struct page *page) {} 1245 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1246 struct page *page) {} 1247 unsigned long kmem_cache_flags(unsigned long object_size, 1248 unsigned long flags, const char *name, 1249 void (*ctor)(void *)) 1250 { 1251 return flags; 1252 } 1253 #define slub_debug 0 1254 1255 #define disable_higher_order_debug 0 1256 1257 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1258 { return 0; } 1259 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1260 { return 0; } 1261 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1262 int objects) {} 1263 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1264 int objects) {} 1265 1266 #endif /* CONFIG_SLUB_DEBUG */ 1267 1268 /* 1269 * Hooks for other subsystems that check memory allocations. In a typical 1270 * production configuration these hooks all should produce no code at all. 1271 */ 1272 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1273 { 1274 kmemleak_alloc(ptr, size, 1, flags); 1275 kasan_kmalloc_large(ptr, size); 1276 } 1277 1278 static inline void kfree_hook(const void *x) 1279 { 1280 kmemleak_free(x); 1281 kasan_kfree_large(x); 1282 } 1283 1284 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 1285 gfp_t flags) 1286 { 1287 flags &= gfp_allowed_mask; 1288 lockdep_trace_alloc(flags); 1289 might_sleep_if(gfpflags_allow_blocking(flags)); 1290 1291 if (should_failslab(s->object_size, flags, s->flags)) 1292 return NULL; 1293 1294 return memcg_kmem_get_cache(s, flags); 1295 } 1296 1297 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1298 size_t size, void **p) 1299 { 1300 size_t i; 1301 1302 flags &= gfp_allowed_mask; 1303 for (i = 0; i < size; i++) { 1304 void *object = p[i]; 1305 1306 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1307 kmemleak_alloc_recursive(object, s->object_size, 1, 1308 s->flags, flags); 1309 kasan_slab_alloc(s, object); 1310 } 1311 memcg_kmem_put_cache(s); 1312 } 1313 1314 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1315 { 1316 kmemleak_free_recursive(x, s->flags); 1317 1318 /* 1319 * Trouble is that we may no longer disable interrupts in the fast path 1320 * So in order to make the debug calls that expect irqs to be 1321 * disabled we need to disable interrupts temporarily. 1322 */ 1323 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1324 { 1325 unsigned long flags; 1326 1327 local_irq_save(flags); 1328 kmemcheck_slab_free(s, x, s->object_size); 1329 debug_check_no_locks_freed(x, s->object_size); 1330 local_irq_restore(flags); 1331 } 1332 #endif 1333 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1334 debug_check_no_obj_freed(x, s->object_size); 1335 1336 kasan_slab_free(s, x); 1337 } 1338 1339 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1340 void *head, void *tail) 1341 { 1342 /* 1343 * Compiler cannot detect this function can be removed if slab_free_hook() 1344 * evaluates to nothing. Thus, catch all relevant config debug options here. 1345 */ 1346 #if defined(CONFIG_KMEMCHECK) || \ 1347 defined(CONFIG_LOCKDEP) || \ 1348 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1349 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1350 defined(CONFIG_KASAN) 1351 1352 void *object = head; 1353 void *tail_obj = tail ? : head; 1354 1355 do { 1356 slab_free_hook(s, object); 1357 } while ((object != tail_obj) && 1358 (object = get_freepointer(s, object))); 1359 #endif 1360 } 1361 1362 static void setup_object(struct kmem_cache *s, struct page *page, 1363 void *object) 1364 { 1365 setup_object_debug(s, page, object); 1366 if (unlikely(s->ctor)) { 1367 kasan_unpoison_object_data(s, object); 1368 s->ctor(object); 1369 kasan_poison_object_data(s, object); 1370 } 1371 } 1372 1373 /* 1374 * Slab allocation and freeing 1375 */ 1376 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1377 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1378 { 1379 struct page *page; 1380 int order = oo_order(oo); 1381 1382 flags |= __GFP_NOTRACK; 1383 1384 if (node == NUMA_NO_NODE) 1385 page = alloc_pages(flags, order); 1386 else 1387 page = __alloc_pages_node(node, flags, order); 1388 1389 if (page && memcg_charge_slab(page, flags, order, s)) { 1390 __free_pages(page, order); 1391 page = NULL; 1392 } 1393 1394 return page; 1395 } 1396 1397 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1398 { 1399 struct page *page; 1400 struct kmem_cache_order_objects oo = s->oo; 1401 gfp_t alloc_gfp; 1402 void *start, *p; 1403 int idx, order; 1404 1405 flags &= gfp_allowed_mask; 1406 1407 if (gfpflags_allow_blocking(flags)) 1408 local_irq_enable(); 1409 1410 flags |= s->allocflags; 1411 1412 /* 1413 * Let the initial higher-order allocation fail under memory pressure 1414 * so we fall-back to the minimum order allocation. 1415 */ 1416 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1417 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1418 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM; 1419 1420 page = alloc_slab_page(s, alloc_gfp, node, oo); 1421 if (unlikely(!page)) { 1422 oo = s->min; 1423 alloc_gfp = flags; 1424 /* 1425 * Allocation may have failed due to fragmentation. 1426 * Try a lower order alloc if possible 1427 */ 1428 page = alloc_slab_page(s, alloc_gfp, node, oo); 1429 if (unlikely(!page)) 1430 goto out; 1431 stat(s, ORDER_FALLBACK); 1432 } 1433 1434 if (kmemcheck_enabled && 1435 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1436 int pages = 1 << oo_order(oo); 1437 1438 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1439 1440 /* 1441 * Objects from caches that have a constructor don't get 1442 * cleared when they're allocated, so we need to do it here. 1443 */ 1444 if (s->ctor) 1445 kmemcheck_mark_uninitialized_pages(page, pages); 1446 else 1447 kmemcheck_mark_unallocated_pages(page, pages); 1448 } 1449 1450 page->objects = oo_objects(oo); 1451 1452 order = compound_order(page); 1453 page->slab_cache = s; 1454 __SetPageSlab(page); 1455 if (page_is_pfmemalloc(page)) 1456 SetPageSlabPfmemalloc(page); 1457 1458 start = page_address(page); 1459 1460 if (unlikely(s->flags & SLAB_POISON)) 1461 memset(start, POISON_INUSE, PAGE_SIZE << order); 1462 1463 kasan_poison_slab(page); 1464 1465 for_each_object_idx(p, idx, s, start, page->objects) { 1466 setup_object(s, page, p); 1467 if (likely(idx < page->objects)) 1468 set_freepointer(s, p, p + s->size); 1469 else 1470 set_freepointer(s, p, NULL); 1471 } 1472 1473 page->freelist = start; 1474 page->inuse = page->objects; 1475 page->frozen = 1; 1476 1477 out: 1478 if (gfpflags_allow_blocking(flags)) 1479 local_irq_disable(); 1480 if (!page) 1481 return NULL; 1482 1483 mod_zone_page_state(page_zone(page), 1484 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1485 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1486 1 << oo_order(oo)); 1487 1488 inc_slabs_node(s, page_to_nid(page), page->objects); 1489 1490 return page; 1491 } 1492 1493 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1494 { 1495 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1496 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 1497 BUG(); 1498 } 1499 1500 return allocate_slab(s, 1501 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1502 } 1503 1504 static void __free_slab(struct kmem_cache *s, struct page *page) 1505 { 1506 int order = compound_order(page); 1507 int pages = 1 << order; 1508 1509 if (kmem_cache_debug(s)) { 1510 void *p; 1511 1512 slab_pad_check(s, page); 1513 for_each_object(p, s, page_address(page), 1514 page->objects) 1515 check_object(s, page, p, SLUB_RED_INACTIVE); 1516 } 1517 1518 kmemcheck_free_shadow(page, compound_order(page)); 1519 1520 mod_zone_page_state(page_zone(page), 1521 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1522 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1523 -pages); 1524 1525 __ClearPageSlabPfmemalloc(page); 1526 __ClearPageSlab(page); 1527 1528 page_mapcount_reset(page); 1529 if (current->reclaim_state) 1530 current->reclaim_state->reclaimed_slab += pages; 1531 __free_kmem_pages(page, order); 1532 } 1533 1534 #define need_reserve_slab_rcu \ 1535 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1536 1537 static void rcu_free_slab(struct rcu_head *h) 1538 { 1539 struct page *page; 1540 1541 if (need_reserve_slab_rcu) 1542 page = virt_to_head_page(h); 1543 else 1544 page = container_of((struct list_head *)h, struct page, lru); 1545 1546 __free_slab(page->slab_cache, page); 1547 } 1548 1549 static void free_slab(struct kmem_cache *s, struct page *page) 1550 { 1551 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1552 struct rcu_head *head; 1553 1554 if (need_reserve_slab_rcu) { 1555 int order = compound_order(page); 1556 int offset = (PAGE_SIZE << order) - s->reserved; 1557 1558 VM_BUG_ON(s->reserved != sizeof(*head)); 1559 head = page_address(page) + offset; 1560 } else { 1561 head = &page->rcu_head; 1562 } 1563 1564 call_rcu(head, rcu_free_slab); 1565 } else 1566 __free_slab(s, page); 1567 } 1568 1569 static void discard_slab(struct kmem_cache *s, struct page *page) 1570 { 1571 dec_slabs_node(s, page_to_nid(page), page->objects); 1572 free_slab(s, page); 1573 } 1574 1575 /* 1576 * Management of partially allocated slabs. 1577 */ 1578 static inline void 1579 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1580 { 1581 n->nr_partial++; 1582 if (tail == DEACTIVATE_TO_TAIL) 1583 list_add_tail(&page->lru, &n->partial); 1584 else 1585 list_add(&page->lru, &n->partial); 1586 } 1587 1588 static inline void add_partial(struct kmem_cache_node *n, 1589 struct page *page, int tail) 1590 { 1591 lockdep_assert_held(&n->list_lock); 1592 __add_partial(n, page, tail); 1593 } 1594 1595 static inline void 1596 __remove_partial(struct kmem_cache_node *n, struct page *page) 1597 { 1598 list_del(&page->lru); 1599 n->nr_partial--; 1600 } 1601 1602 static inline void remove_partial(struct kmem_cache_node *n, 1603 struct page *page) 1604 { 1605 lockdep_assert_held(&n->list_lock); 1606 __remove_partial(n, page); 1607 } 1608 1609 /* 1610 * Remove slab from the partial list, freeze it and 1611 * return the pointer to the freelist. 1612 * 1613 * Returns a list of objects or NULL if it fails. 1614 */ 1615 static inline void *acquire_slab(struct kmem_cache *s, 1616 struct kmem_cache_node *n, struct page *page, 1617 int mode, int *objects) 1618 { 1619 void *freelist; 1620 unsigned long counters; 1621 struct page new; 1622 1623 lockdep_assert_held(&n->list_lock); 1624 1625 /* 1626 * Zap the freelist and set the frozen bit. 1627 * The old freelist is the list of objects for the 1628 * per cpu allocation list. 1629 */ 1630 freelist = page->freelist; 1631 counters = page->counters; 1632 new.counters = counters; 1633 *objects = new.objects - new.inuse; 1634 if (mode) { 1635 new.inuse = page->objects; 1636 new.freelist = NULL; 1637 } else { 1638 new.freelist = freelist; 1639 } 1640 1641 VM_BUG_ON(new.frozen); 1642 new.frozen = 1; 1643 1644 if (!__cmpxchg_double_slab(s, page, 1645 freelist, counters, 1646 new.freelist, new.counters, 1647 "acquire_slab")) 1648 return NULL; 1649 1650 remove_partial(n, page); 1651 WARN_ON(!freelist); 1652 return freelist; 1653 } 1654 1655 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1656 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1657 1658 /* 1659 * Try to allocate a partial slab from a specific node. 1660 */ 1661 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1662 struct kmem_cache_cpu *c, gfp_t flags) 1663 { 1664 struct page *page, *page2; 1665 void *object = NULL; 1666 int available = 0; 1667 int objects; 1668 1669 /* 1670 * Racy check. If we mistakenly see no partial slabs then we 1671 * just allocate an empty slab. If we mistakenly try to get a 1672 * partial slab and there is none available then get_partials() 1673 * will return NULL. 1674 */ 1675 if (!n || !n->nr_partial) 1676 return NULL; 1677 1678 spin_lock(&n->list_lock); 1679 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1680 void *t; 1681 1682 if (!pfmemalloc_match(page, flags)) 1683 continue; 1684 1685 t = acquire_slab(s, n, page, object == NULL, &objects); 1686 if (!t) 1687 break; 1688 1689 available += objects; 1690 if (!object) { 1691 c->page = page; 1692 stat(s, ALLOC_FROM_PARTIAL); 1693 object = t; 1694 } else { 1695 put_cpu_partial(s, page, 0); 1696 stat(s, CPU_PARTIAL_NODE); 1697 } 1698 if (!kmem_cache_has_cpu_partial(s) 1699 || available > s->cpu_partial / 2) 1700 break; 1701 1702 } 1703 spin_unlock(&n->list_lock); 1704 return object; 1705 } 1706 1707 /* 1708 * Get a page from somewhere. Search in increasing NUMA distances. 1709 */ 1710 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1711 struct kmem_cache_cpu *c) 1712 { 1713 #ifdef CONFIG_NUMA 1714 struct zonelist *zonelist; 1715 struct zoneref *z; 1716 struct zone *zone; 1717 enum zone_type high_zoneidx = gfp_zone(flags); 1718 void *object; 1719 unsigned int cpuset_mems_cookie; 1720 1721 /* 1722 * The defrag ratio allows a configuration of the tradeoffs between 1723 * inter node defragmentation and node local allocations. A lower 1724 * defrag_ratio increases the tendency to do local allocations 1725 * instead of attempting to obtain partial slabs from other nodes. 1726 * 1727 * If the defrag_ratio is set to 0 then kmalloc() always 1728 * returns node local objects. If the ratio is higher then kmalloc() 1729 * may return off node objects because partial slabs are obtained 1730 * from other nodes and filled up. 1731 * 1732 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1733 * defrag_ratio = 1000) then every (well almost) allocation will 1734 * first attempt to defrag slab caches on other nodes. This means 1735 * scanning over all nodes to look for partial slabs which may be 1736 * expensive if we do it every time we are trying to find a slab 1737 * with available objects. 1738 */ 1739 if (!s->remote_node_defrag_ratio || 1740 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1741 return NULL; 1742 1743 do { 1744 cpuset_mems_cookie = read_mems_allowed_begin(); 1745 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1746 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1747 struct kmem_cache_node *n; 1748 1749 n = get_node(s, zone_to_nid(zone)); 1750 1751 if (n && cpuset_zone_allowed(zone, flags) && 1752 n->nr_partial > s->min_partial) { 1753 object = get_partial_node(s, n, c, flags); 1754 if (object) { 1755 /* 1756 * Don't check read_mems_allowed_retry() 1757 * here - if mems_allowed was updated in 1758 * parallel, that was a harmless race 1759 * between allocation and the cpuset 1760 * update 1761 */ 1762 return object; 1763 } 1764 } 1765 } 1766 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1767 #endif 1768 return NULL; 1769 } 1770 1771 /* 1772 * Get a partial page, lock it and return it. 1773 */ 1774 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1775 struct kmem_cache_cpu *c) 1776 { 1777 void *object; 1778 int searchnode = node; 1779 1780 if (node == NUMA_NO_NODE) 1781 searchnode = numa_mem_id(); 1782 else if (!node_present_pages(node)) 1783 searchnode = node_to_mem_node(node); 1784 1785 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1786 if (object || node != NUMA_NO_NODE) 1787 return object; 1788 1789 return get_any_partial(s, flags, c); 1790 } 1791 1792 #ifdef CONFIG_PREEMPT 1793 /* 1794 * Calculate the next globally unique transaction for disambiguiation 1795 * during cmpxchg. The transactions start with the cpu number and are then 1796 * incremented by CONFIG_NR_CPUS. 1797 */ 1798 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1799 #else 1800 /* 1801 * No preemption supported therefore also no need to check for 1802 * different cpus. 1803 */ 1804 #define TID_STEP 1 1805 #endif 1806 1807 static inline unsigned long next_tid(unsigned long tid) 1808 { 1809 return tid + TID_STEP; 1810 } 1811 1812 static inline unsigned int tid_to_cpu(unsigned long tid) 1813 { 1814 return tid % TID_STEP; 1815 } 1816 1817 static inline unsigned long tid_to_event(unsigned long tid) 1818 { 1819 return tid / TID_STEP; 1820 } 1821 1822 static inline unsigned int init_tid(int cpu) 1823 { 1824 return cpu; 1825 } 1826 1827 static inline void note_cmpxchg_failure(const char *n, 1828 const struct kmem_cache *s, unsigned long tid) 1829 { 1830 #ifdef SLUB_DEBUG_CMPXCHG 1831 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1832 1833 pr_info("%s %s: cmpxchg redo ", n, s->name); 1834 1835 #ifdef CONFIG_PREEMPT 1836 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1837 pr_warn("due to cpu change %d -> %d\n", 1838 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1839 else 1840 #endif 1841 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1842 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1843 tid_to_event(tid), tid_to_event(actual_tid)); 1844 else 1845 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1846 actual_tid, tid, next_tid(tid)); 1847 #endif 1848 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1849 } 1850 1851 static void init_kmem_cache_cpus(struct kmem_cache *s) 1852 { 1853 int cpu; 1854 1855 for_each_possible_cpu(cpu) 1856 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1857 } 1858 1859 /* 1860 * Remove the cpu slab 1861 */ 1862 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1863 void *freelist) 1864 { 1865 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1866 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1867 int lock = 0; 1868 enum slab_modes l = M_NONE, m = M_NONE; 1869 void *nextfree; 1870 int tail = DEACTIVATE_TO_HEAD; 1871 struct page new; 1872 struct page old; 1873 1874 if (page->freelist) { 1875 stat(s, DEACTIVATE_REMOTE_FREES); 1876 tail = DEACTIVATE_TO_TAIL; 1877 } 1878 1879 /* 1880 * Stage one: Free all available per cpu objects back 1881 * to the page freelist while it is still frozen. Leave the 1882 * last one. 1883 * 1884 * There is no need to take the list->lock because the page 1885 * is still frozen. 1886 */ 1887 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1888 void *prior; 1889 unsigned long counters; 1890 1891 do { 1892 prior = page->freelist; 1893 counters = page->counters; 1894 set_freepointer(s, freelist, prior); 1895 new.counters = counters; 1896 new.inuse--; 1897 VM_BUG_ON(!new.frozen); 1898 1899 } while (!__cmpxchg_double_slab(s, page, 1900 prior, counters, 1901 freelist, new.counters, 1902 "drain percpu freelist")); 1903 1904 freelist = nextfree; 1905 } 1906 1907 /* 1908 * Stage two: Ensure that the page is unfrozen while the 1909 * list presence reflects the actual number of objects 1910 * during unfreeze. 1911 * 1912 * We setup the list membership and then perform a cmpxchg 1913 * with the count. If there is a mismatch then the page 1914 * is not unfrozen but the page is on the wrong list. 1915 * 1916 * Then we restart the process which may have to remove 1917 * the page from the list that we just put it on again 1918 * because the number of objects in the slab may have 1919 * changed. 1920 */ 1921 redo: 1922 1923 old.freelist = page->freelist; 1924 old.counters = page->counters; 1925 VM_BUG_ON(!old.frozen); 1926 1927 /* Determine target state of the slab */ 1928 new.counters = old.counters; 1929 if (freelist) { 1930 new.inuse--; 1931 set_freepointer(s, freelist, old.freelist); 1932 new.freelist = freelist; 1933 } else 1934 new.freelist = old.freelist; 1935 1936 new.frozen = 0; 1937 1938 if (!new.inuse && n->nr_partial >= s->min_partial) 1939 m = M_FREE; 1940 else if (new.freelist) { 1941 m = M_PARTIAL; 1942 if (!lock) { 1943 lock = 1; 1944 /* 1945 * Taking the spinlock removes the possiblity 1946 * that acquire_slab() will see a slab page that 1947 * is frozen 1948 */ 1949 spin_lock(&n->list_lock); 1950 } 1951 } else { 1952 m = M_FULL; 1953 if (kmem_cache_debug(s) && !lock) { 1954 lock = 1; 1955 /* 1956 * This also ensures that the scanning of full 1957 * slabs from diagnostic functions will not see 1958 * any frozen slabs. 1959 */ 1960 spin_lock(&n->list_lock); 1961 } 1962 } 1963 1964 if (l != m) { 1965 1966 if (l == M_PARTIAL) 1967 1968 remove_partial(n, page); 1969 1970 else if (l == M_FULL) 1971 1972 remove_full(s, n, page); 1973 1974 if (m == M_PARTIAL) { 1975 1976 add_partial(n, page, tail); 1977 stat(s, tail); 1978 1979 } else if (m == M_FULL) { 1980 1981 stat(s, DEACTIVATE_FULL); 1982 add_full(s, n, page); 1983 1984 } 1985 } 1986 1987 l = m; 1988 if (!__cmpxchg_double_slab(s, page, 1989 old.freelist, old.counters, 1990 new.freelist, new.counters, 1991 "unfreezing slab")) 1992 goto redo; 1993 1994 if (lock) 1995 spin_unlock(&n->list_lock); 1996 1997 if (m == M_FREE) { 1998 stat(s, DEACTIVATE_EMPTY); 1999 discard_slab(s, page); 2000 stat(s, FREE_SLAB); 2001 } 2002 } 2003 2004 /* 2005 * Unfreeze all the cpu partial slabs. 2006 * 2007 * This function must be called with interrupts disabled 2008 * for the cpu using c (or some other guarantee must be there 2009 * to guarantee no concurrent accesses). 2010 */ 2011 static void unfreeze_partials(struct kmem_cache *s, 2012 struct kmem_cache_cpu *c) 2013 { 2014 #ifdef CONFIG_SLUB_CPU_PARTIAL 2015 struct kmem_cache_node *n = NULL, *n2 = NULL; 2016 struct page *page, *discard_page = NULL; 2017 2018 while ((page = c->partial)) { 2019 struct page new; 2020 struct page old; 2021 2022 c->partial = page->next; 2023 2024 n2 = get_node(s, page_to_nid(page)); 2025 if (n != n2) { 2026 if (n) 2027 spin_unlock(&n->list_lock); 2028 2029 n = n2; 2030 spin_lock(&n->list_lock); 2031 } 2032 2033 do { 2034 2035 old.freelist = page->freelist; 2036 old.counters = page->counters; 2037 VM_BUG_ON(!old.frozen); 2038 2039 new.counters = old.counters; 2040 new.freelist = old.freelist; 2041 2042 new.frozen = 0; 2043 2044 } while (!__cmpxchg_double_slab(s, page, 2045 old.freelist, old.counters, 2046 new.freelist, new.counters, 2047 "unfreezing slab")); 2048 2049 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2050 page->next = discard_page; 2051 discard_page = page; 2052 } else { 2053 add_partial(n, page, DEACTIVATE_TO_TAIL); 2054 stat(s, FREE_ADD_PARTIAL); 2055 } 2056 } 2057 2058 if (n) 2059 spin_unlock(&n->list_lock); 2060 2061 while (discard_page) { 2062 page = discard_page; 2063 discard_page = discard_page->next; 2064 2065 stat(s, DEACTIVATE_EMPTY); 2066 discard_slab(s, page); 2067 stat(s, FREE_SLAB); 2068 } 2069 #endif 2070 } 2071 2072 /* 2073 * Put a page that was just frozen (in __slab_free) into a partial page 2074 * slot if available. This is done without interrupts disabled and without 2075 * preemption disabled. The cmpxchg is racy and may put the partial page 2076 * onto a random cpus partial slot. 2077 * 2078 * If we did not find a slot then simply move all the partials to the 2079 * per node partial list. 2080 */ 2081 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2082 { 2083 #ifdef CONFIG_SLUB_CPU_PARTIAL 2084 struct page *oldpage; 2085 int pages; 2086 int pobjects; 2087 2088 preempt_disable(); 2089 do { 2090 pages = 0; 2091 pobjects = 0; 2092 oldpage = this_cpu_read(s->cpu_slab->partial); 2093 2094 if (oldpage) { 2095 pobjects = oldpage->pobjects; 2096 pages = oldpage->pages; 2097 if (drain && pobjects > s->cpu_partial) { 2098 unsigned long flags; 2099 /* 2100 * partial array is full. Move the existing 2101 * set to the per node partial list. 2102 */ 2103 local_irq_save(flags); 2104 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2105 local_irq_restore(flags); 2106 oldpage = NULL; 2107 pobjects = 0; 2108 pages = 0; 2109 stat(s, CPU_PARTIAL_DRAIN); 2110 } 2111 } 2112 2113 pages++; 2114 pobjects += page->objects - page->inuse; 2115 2116 page->pages = pages; 2117 page->pobjects = pobjects; 2118 page->next = oldpage; 2119 2120 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2121 != oldpage); 2122 if (unlikely(!s->cpu_partial)) { 2123 unsigned long flags; 2124 2125 local_irq_save(flags); 2126 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2127 local_irq_restore(flags); 2128 } 2129 preempt_enable(); 2130 #endif 2131 } 2132 2133 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2134 { 2135 stat(s, CPUSLAB_FLUSH); 2136 deactivate_slab(s, c->page, c->freelist); 2137 2138 c->tid = next_tid(c->tid); 2139 c->page = NULL; 2140 c->freelist = NULL; 2141 } 2142 2143 /* 2144 * Flush cpu slab. 2145 * 2146 * Called from IPI handler with interrupts disabled. 2147 */ 2148 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2149 { 2150 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2151 2152 if (likely(c)) { 2153 if (c->page) 2154 flush_slab(s, c); 2155 2156 unfreeze_partials(s, c); 2157 } 2158 } 2159 2160 static void flush_cpu_slab(void *d) 2161 { 2162 struct kmem_cache *s = d; 2163 2164 __flush_cpu_slab(s, smp_processor_id()); 2165 } 2166 2167 static bool has_cpu_slab(int cpu, void *info) 2168 { 2169 struct kmem_cache *s = info; 2170 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2171 2172 return c->page || c->partial; 2173 } 2174 2175 static void flush_all(struct kmem_cache *s) 2176 { 2177 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2178 } 2179 2180 /* 2181 * Check if the objects in a per cpu structure fit numa 2182 * locality expectations. 2183 */ 2184 static inline int node_match(struct page *page, int node) 2185 { 2186 #ifdef CONFIG_NUMA 2187 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2188 return 0; 2189 #endif 2190 return 1; 2191 } 2192 2193 #ifdef CONFIG_SLUB_DEBUG 2194 static int count_free(struct page *page) 2195 { 2196 return page->objects - page->inuse; 2197 } 2198 2199 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2200 { 2201 return atomic_long_read(&n->total_objects); 2202 } 2203 #endif /* CONFIG_SLUB_DEBUG */ 2204 2205 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2206 static unsigned long count_partial(struct kmem_cache_node *n, 2207 int (*get_count)(struct page *)) 2208 { 2209 unsigned long flags; 2210 unsigned long x = 0; 2211 struct page *page; 2212 2213 spin_lock_irqsave(&n->list_lock, flags); 2214 list_for_each_entry(page, &n->partial, lru) 2215 x += get_count(page); 2216 spin_unlock_irqrestore(&n->list_lock, flags); 2217 return x; 2218 } 2219 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2220 2221 static noinline void 2222 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2223 { 2224 #ifdef CONFIG_SLUB_DEBUG 2225 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2226 DEFAULT_RATELIMIT_BURST); 2227 int node; 2228 struct kmem_cache_node *n; 2229 2230 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2231 return; 2232 2233 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2234 nid, gfpflags); 2235 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2236 s->name, s->object_size, s->size, oo_order(s->oo), 2237 oo_order(s->min)); 2238 2239 if (oo_order(s->min) > get_order(s->object_size)) 2240 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2241 s->name); 2242 2243 for_each_kmem_cache_node(s, node, n) { 2244 unsigned long nr_slabs; 2245 unsigned long nr_objs; 2246 unsigned long nr_free; 2247 2248 nr_free = count_partial(n, count_free); 2249 nr_slabs = node_nr_slabs(n); 2250 nr_objs = node_nr_objs(n); 2251 2252 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2253 node, nr_slabs, nr_objs, nr_free); 2254 } 2255 #endif 2256 } 2257 2258 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2259 int node, struct kmem_cache_cpu **pc) 2260 { 2261 void *freelist; 2262 struct kmem_cache_cpu *c = *pc; 2263 struct page *page; 2264 2265 freelist = get_partial(s, flags, node, c); 2266 2267 if (freelist) 2268 return freelist; 2269 2270 page = new_slab(s, flags, node); 2271 if (page) { 2272 c = raw_cpu_ptr(s->cpu_slab); 2273 if (c->page) 2274 flush_slab(s, c); 2275 2276 /* 2277 * No other reference to the page yet so we can 2278 * muck around with it freely without cmpxchg 2279 */ 2280 freelist = page->freelist; 2281 page->freelist = NULL; 2282 2283 stat(s, ALLOC_SLAB); 2284 c->page = page; 2285 *pc = c; 2286 } else 2287 freelist = NULL; 2288 2289 return freelist; 2290 } 2291 2292 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2293 { 2294 if (unlikely(PageSlabPfmemalloc(page))) 2295 return gfp_pfmemalloc_allowed(gfpflags); 2296 2297 return true; 2298 } 2299 2300 /* 2301 * Check the page->freelist of a page and either transfer the freelist to the 2302 * per cpu freelist or deactivate the page. 2303 * 2304 * The page is still frozen if the return value is not NULL. 2305 * 2306 * If this function returns NULL then the page has been unfrozen. 2307 * 2308 * This function must be called with interrupt disabled. 2309 */ 2310 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2311 { 2312 struct page new; 2313 unsigned long counters; 2314 void *freelist; 2315 2316 do { 2317 freelist = page->freelist; 2318 counters = page->counters; 2319 2320 new.counters = counters; 2321 VM_BUG_ON(!new.frozen); 2322 2323 new.inuse = page->objects; 2324 new.frozen = freelist != NULL; 2325 2326 } while (!__cmpxchg_double_slab(s, page, 2327 freelist, counters, 2328 NULL, new.counters, 2329 "get_freelist")); 2330 2331 return freelist; 2332 } 2333 2334 /* 2335 * Slow path. The lockless freelist is empty or we need to perform 2336 * debugging duties. 2337 * 2338 * Processing is still very fast if new objects have been freed to the 2339 * regular freelist. In that case we simply take over the regular freelist 2340 * as the lockless freelist and zap the regular freelist. 2341 * 2342 * If that is not working then we fall back to the partial lists. We take the 2343 * first element of the freelist as the object to allocate now and move the 2344 * rest of the freelist to the lockless freelist. 2345 * 2346 * And if we were unable to get a new slab from the partial slab lists then 2347 * we need to allocate a new slab. This is the slowest path since it involves 2348 * a call to the page allocator and the setup of a new slab. 2349 * 2350 * Version of __slab_alloc to use when we know that interrupts are 2351 * already disabled (which is the case for bulk allocation). 2352 */ 2353 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2354 unsigned long addr, struct kmem_cache_cpu *c) 2355 { 2356 void *freelist; 2357 struct page *page; 2358 2359 page = c->page; 2360 if (!page) 2361 goto new_slab; 2362 redo: 2363 2364 if (unlikely(!node_match(page, node))) { 2365 int searchnode = node; 2366 2367 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2368 searchnode = node_to_mem_node(node); 2369 2370 if (unlikely(!node_match(page, searchnode))) { 2371 stat(s, ALLOC_NODE_MISMATCH); 2372 deactivate_slab(s, page, c->freelist); 2373 c->page = NULL; 2374 c->freelist = NULL; 2375 goto new_slab; 2376 } 2377 } 2378 2379 /* 2380 * By rights, we should be searching for a slab page that was 2381 * PFMEMALLOC but right now, we are losing the pfmemalloc 2382 * information when the page leaves the per-cpu allocator 2383 */ 2384 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2385 deactivate_slab(s, page, c->freelist); 2386 c->page = NULL; 2387 c->freelist = NULL; 2388 goto new_slab; 2389 } 2390 2391 /* must check again c->freelist in case of cpu migration or IRQ */ 2392 freelist = c->freelist; 2393 if (freelist) 2394 goto load_freelist; 2395 2396 freelist = get_freelist(s, page); 2397 2398 if (!freelist) { 2399 c->page = NULL; 2400 stat(s, DEACTIVATE_BYPASS); 2401 goto new_slab; 2402 } 2403 2404 stat(s, ALLOC_REFILL); 2405 2406 load_freelist: 2407 /* 2408 * freelist is pointing to the list of objects to be used. 2409 * page is pointing to the page from which the objects are obtained. 2410 * That page must be frozen for per cpu allocations to work. 2411 */ 2412 VM_BUG_ON(!c->page->frozen); 2413 c->freelist = get_freepointer(s, freelist); 2414 c->tid = next_tid(c->tid); 2415 return freelist; 2416 2417 new_slab: 2418 2419 if (c->partial) { 2420 page = c->page = c->partial; 2421 c->partial = page->next; 2422 stat(s, CPU_PARTIAL_ALLOC); 2423 c->freelist = NULL; 2424 goto redo; 2425 } 2426 2427 freelist = new_slab_objects(s, gfpflags, node, &c); 2428 2429 if (unlikely(!freelist)) { 2430 slab_out_of_memory(s, gfpflags, node); 2431 return NULL; 2432 } 2433 2434 page = c->page; 2435 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2436 goto load_freelist; 2437 2438 /* Only entered in the debug case */ 2439 if (kmem_cache_debug(s) && 2440 !alloc_debug_processing(s, page, freelist, addr)) 2441 goto new_slab; /* Slab failed checks. Next slab needed */ 2442 2443 deactivate_slab(s, page, get_freepointer(s, freelist)); 2444 c->page = NULL; 2445 c->freelist = NULL; 2446 return freelist; 2447 } 2448 2449 /* 2450 * Another one that disabled interrupt and compensates for possible 2451 * cpu changes by refetching the per cpu area pointer. 2452 */ 2453 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2454 unsigned long addr, struct kmem_cache_cpu *c) 2455 { 2456 void *p; 2457 unsigned long flags; 2458 2459 local_irq_save(flags); 2460 #ifdef CONFIG_PREEMPT 2461 /* 2462 * We may have been preempted and rescheduled on a different 2463 * cpu before disabling interrupts. Need to reload cpu area 2464 * pointer. 2465 */ 2466 c = this_cpu_ptr(s->cpu_slab); 2467 #endif 2468 2469 p = ___slab_alloc(s, gfpflags, node, addr, c); 2470 local_irq_restore(flags); 2471 return p; 2472 } 2473 2474 /* 2475 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2476 * have the fastpath folded into their functions. So no function call 2477 * overhead for requests that can be satisfied on the fastpath. 2478 * 2479 * The fastpath works by first checking if the lockless freelist can be used. 2480 * If not then __slab_alloc is called for slow processing. 2481 * 2482 * Otherwise we can simply pick the next object from the lockless free list. 2483 */ 2484 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2485 gfp_t gfpflags, int node, unsigned long addr) 2486 { 2487 void *object; 2488 struct kmem_cache_cpu *c; 2489 struct page *page; 2490 unsigned long tid; 2491 2492 s = slab_pre_alloc_hook(s, gfpflags); 2493 if (!s) 2494 return NULL; 2495 redo: 2496 /* 2497 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2498 * enabled. We may switch back and forth between cpus while 2499 * reading from one cpu area. That does not matter as long 2500 * as we end up on the original cpu again when doing the cmpxchg. 2501 * 2502 * We should guarantee that tid and kmem_cache are retrieved on 2503 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2504 * to check if it is matched or not. 2505 */ 2506 do { 2507 tid = this_cpu_read(s->cpu_slab->tid); 2508 c = raw_cpu_ptr(s->cpu_slab); 2509 } while (IS_ENABLED(CONFIG_PREEMPT) && 2510 unlikely(tid != READ_ONCE(c->tid))); 2511 2512 /* 2513 * Irqless object alloc/free algorithm used here depends on sequence 2514 * of fetching cpu_slab's data. tid should be fetched before anything 2515 * on c to guarantee that object and page associated with previous tid 2516 * won't be used with current tid. If we fetch tid first, object and 2517 * page could be one associated with next tid and our alloc/free 2518 * request will be failed. In this case, we will retry. So, no problem. 2519 */ 2520 barrier(); 2521 2522 /* 2523 * The transaction ids are globally unique per cpu and per operation on 2524 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2525 * occurs on the right processor and that there was no operation on the 2526 * linked list in between. 2527 */ 2528 2529 object = c->freelist; 2530 page = c->page; 2531 if (unlikely(!object || !node_match(page, node))) { 2532 object = __slab_alloc(s, gfpflags, node, addr, c); 2533 stat(s, ALLOC_SLOWPATH); 2534 } else { 2535 void *next_object = get_freepointer_safe(s, object); 2536 2537 /* 2538 * The cmpxchg will only match if there was no additional 2539 * operation and if we are on the right processor. 2540 * 2541 * The cmpxchg does the following atomically (without lock 2542 * semantics!) 2543 * 1. Relocate first pointer to the current per cpu area. 2544 * 2. Verify that tid and freelist have not been changed 2545 * 3. If they were not changed replace tid and freelist 2546 * 2547 * Since this is without lock semantics the protection is only 2548 * against code executing on this cpu *not* from access by 2549 * other cpus. 2550 */ 2551 if (unlikely(!this_cpu_cmpxchg_double( 2552 s->cpu_slab->freelist, s->cpu_slab->tid, 2553 object, tid, 2554 next_object, next_tid(tid)))) { 2555 2556 note_cmpxchg_failure("slab_alloc", s, tid); 2557 goto redo; 2558 } 2559 prefetch_freepointer(s, next_object); 2560 stat(s, ALLOC_FASTPATH); 2561 } 2562 2563 if (unlikely(gfpflags & __GFP_ZERO) && object) 2564 memset(object, 0, s->object_size); 2565 2566 slab_post_alloc_hook(s, gfpflags, 1, &object); 2567 2568 return object; 2569 } 2570 2571 static __always_inline void *slab_alloc(struct kmem_cache *s, 2572 gfp_t gfpflags, unsigned long addr) 2573 { 2574 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2575 } 2576 2577 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2578 { 2579 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2580 2581 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2582 s->size, gfpflags); 2583 2584 return ret; 2585 } 2586 EXPORT_SYMBOL(kmem_cache_alloc); 2587 2588 #ifdef CONFIG_TRACING 2589 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2590 { 2591 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2592 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2593 kasan_kmalloc(s, ret, size); 2594 return ret; 2595 } 2596 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2597 #endif 2598 2599 #ifdef CONFIG_NUMA 2600 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2601 { 2602 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2603 2604 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2605 s->object_size, s->size, gfpflags, node); 2606 2607 return ret; 2608 } 2609 EXPORT_SYMBOL(kmem_cache_alloc_node); 2610 2611 #ifdef CONFIG_TRACING 2612 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2613 gfp_t gfpflags, 2614 int node, size_t size) 2615 { 2616 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2617 2618 trace_kmalloc_node(_RET_IP_, ret, 2619 size, s->size, gfpflags, node); 2620 2621 kasan_kmalloc(s, ret, size); 2622 return ret; 2623 } 2624 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2625 #endif 2626 #endif 2627 2628 /* 2629 * Slow path handling. This may still be called frequently since objects 2630 * have a longer lifetime than the cpu slabs in most processing loads. 2631 * 2632 * So we still attempt to reduce cache line usage. Just take the slab 2633 * lock and free the item. If there is no additional partial page 2634 * handling required then we can return immediately. 2635 */ 2636 static void __slab_free(struct kmem_cache *s, struct page *page, 2637 void *head, void *tail, int cnt, 2638 unsigned long addr) 2639 2640 { 2641 void *prior; 2642 int was_frozen; 2643 struct page new; 2644 unsigned long counters; 2645 struct kmem_cache_node *n = NULL; 2646 unsigned long uninitialized_var(flags); 2647 2648 stat(s, FREE_SLOWPATH); 2649 2650 if (kmem_cache_debug(s) && 2651 !(n = free_debug_processing(s, page, head, tail, cnt, 2652 addr, &flags))) 2653 return; 2654 2655 do { 2656 if (unlikely(n)) { 2657 spin_unlock_irqrestore(&n->list_lock, flags); 2658 n = NULL; 2659 } 2660 prior = page->freelist; 2661 counters = page->counters; 2662 set_freepointer(s, tail, prior); 2663 new.counters = counters; 2664 was_frozen = new.frozen; 2665 new.inuse -= cnt; 2666 if ((!new.inuse || !prior) && !was_frozen) { 2667 2668 if (kmem_cache_has_cpu_partial(s) && !prior) { 2669 2670 /* 2671 * Slab was on no list before and will be 2672 * partially empty 2673 * We can defer the list move and instead 2674 * freeze it. 2675 */ 2676 new.frozen = 1; 2677 2678 } else { /* Needs to be taken off a list */ 2679 2680 n = get_node(s, page_to_nid(page)); 2681 /* 2682 * Speculatively acquire the list_lock. 2683 * If the cmpxchg does not succeed then we may 2684 * drop the list_lock without any processing. 2685 * 2686 * Otherwise the list_lock will synchronize with 2687 * other processors updating the list of slabs. 2688 */ 2689 spin_lock_irqsave(&n->list_lock, flags); 2690 2691 } 2692 } 2693 2694 } while (!cmpxchg_double_slab(s, page, 2695 prior, counters, 2696 head, new.counters, 2697 "__slab_free")); 2698 2699 if (likely(!n)) { 2700 2701 /* 2702 * If we just froze the page then put it onto the 2703 * per cpu partial list. 2704 */ 2705 if (new.frozen && !was_frozen) { 2706 put_cpu_partial(s, page, 1); 2707 stat(s, CPU_PARTIAL_FREE); 2708 } 2709 /* 2710 * The list lock was not taken therefore no list 2711 * activity can be necessary. 2712 */ 2713 if (was_frozen) 2714 stat(s, FREE_FROZEN); 2715 return; 2716 } 2717 2718 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2719 goto slab_empty; 2720 2721 /* 2722 * Objects left in the slab. If it was not on the partial list before 2723 * then add it. 2724 */ 2725 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2726 if (kmem_cache_debug(s)) 2727 remove_full(s, n, page); 2728 add_partial(n, page, DEACTIVATE_TO_TAIL); 2729 stat(s, FREE_ADD_PARTIAL); 2730 } 2731 spin_unlock_irqrestore(&n->list_lock, flags); 2732 return; 2733 2734 slab_empty: 2735 if (prior) { 2736 /* 2737 * Slab on the partial list. 2738 */ 2739 remove_partial(n, page); 2740 stat(s, FREE_REMOVE_PARTIAL); 2741 } else { 2742 /* Slab must be on the full list */ 2743 remove_full(s, n, page); 2744 } 2745 2746 spin_unlock_irqrestore(&n->list_lock, flags); 2747 stat(s, FREE_SLAB); 2748 discard_slab(s, page); 2749 } 2750 2751 /* 2752 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2753 * can perform fastpath freeing without additional function calls. 2754 * 2755 * The fastpath is only possible if we are freeing to the current cpu slab 2756 * of this processor. This typically the case if we have just allocated 2757 * the item before. 2758 * 2759 * If fastpath is not possible then fall back to __slab_free where we deal 2760 * with all sorts of special processing. 2761 * 2762 * Bulk free of a freelist with several objects (all pointing to the 2763 * same page) possible by specifying head and tail ptr, plus objects 2764 * count (cnt). Bulk free indicated by tail pointer being set. 2765 */ 2766 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2767 void *head, void *tail, int cnt, 2768 unsigned long addr) 2769 { 2770 void *tail_obj = tail ? : head; 2771 struct kmem_cache_cpu *c; 2772 unsigned long tid; 2773 2774 slab_free_freelist_hook(s, head, tail); 2775 2776 redo: 2777 /* 2778 * Determine the currently cpus per cpu slab. 2779 * The cpu may change afterward. However that does not matter since 2780 * data is retrieved via this pointer. If we are on the same cpu 2781 * during the cmpxchg then the free will succeed. 2782 */ 2783 do { 2784 tid = this_cpu_read(s->cpu_slab->tid); 2785 c = raw_cpu_ptr(s->cpu_slab); 2786 } while (IS_ENABLED(CONFIG_PREEMPT) && 2787 unlikely(tid != READ_ONCE(c->tid))); 2788 2789 /* Same with comment on barrier() in slab_alloc_node() */ 2790 barrier(); 2791 2792 if (likely(page == c->page)) { 2793 set_freepointer(s, tail_obj, c->freelist); 2794 2795 if (unlikely(!this_cpu_cmpxchg_double( 2796 s->cpu_slab->freelist, s->cpu_slab->tid, 2797 c->freelist, tid, 2798 head, next_tid(tid)))) { 2799 2800 note_cmpxchg_failure("slab_free", s, tid); 2801 goto redo; 2802 } 2803 stat(s, FREE_FASTPATH); 2804 } else 2805 __slab_free(s, page, head, tail_obj, cnt, addr); 2806 2807 } 2808 2809 void kmem_cache_free(struct kmem_cache *s, void *x) 2810 { 2811 s = cache_from_obj(s, x); 2812 if (!s) 2813 return; 2814 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2815 trace_kmem_cache_free(_RET_IP_, x); 2816 } 2817 EXPORT_SYMBOL(kmem_cache_free); 2818 2819 struct detached_freelist { 2820 struct page *page; 2821 void *tail; 2822 void *freelist; 2823 int cnt; 2824 }; 2825 2826 /* 2827 * This function progressively scans the array with free objects (with 2828 * a limited look ahead) and extract objects belonging to the same 2829 * page. It builds a detached freelist directly within the given 2830 * page/objects. This can happen without any need for 2831 * synchronization, because the objects are owned by running process. 2832 * The freelist is build up as a single linked list in the objects. 2833 * The idea is, that this detached freelist can then be bulk 2834 * transferred to the real freelist(s), but only requiring a single 2835 * synchronization primitive. Look ahead in the array is limited due 2836 * to performance reasons. 2837 */ 2838 static int build_detached_freelist(struct kmem_cache *s, size_t size, 2839 void **p, struct detached_freelist *df) 2840 { 2841 size_t first_skipped_index = 0; 2842 int lookahead = 3; 2843 void *object; 2844 2845 /* Always re-init detached_freelist */ 2846 df->page = NULL; 2847 2848 do { 2849 object = p[--size]; 2850 } while (!object && size); 2851 2852 if (!object) 2853 return 0; 2854 2855 /* Start new detached freelist */ 2856 set_freepointer(s, object, NULL); 2857 df->page = virt_to_head_page(object); 2858 df->tail = object; 2859 df->freelist = object; 2860 p[size] = NULL; /* mark object processed */ 2861 df->cnt = 1; 2862 2863 while (size) { 2864 object = p[--size]; 2865 if (!object) 2866 continue; /* Skip processed objects */ 2867 2868 /* df->page is always set at this point */ 2869 if (df->page == virt_to_head_page(object)) { 2870 /* Opportunity build freelist */ 2871 set_freepointer(s, object, df->freelist); 2872 df->freelist = object; 2873 df->cnt++; 2874 p[size] = NULL; /* mark object processed */ 2875 2876 continue; 2877 } 2878 2879 /* Limit look ahead search */ 2880 if (!--lookahead) 2881 break; 2882 2883 if (!first_skipped_index) 2884 first_skipped_index = size + 1; 2885 } 2886 2887 return first_skipped_index; 2888 } 2889 2890 2891 /* Note that interrupts must be enabled when calling this function. */ 2892 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 2893 { 2894 if (WARN_ON(!size)) 2895 return; 2896 2897 do { 2898 struct detached_freelist df; 2899 struct kmem_cache *s; 2900 2901 /* Support for memcg */ 2902 s = cache_from_obj(orig_s, p[size - 1]); 2903 2904 size = build_detached_freelist(s, size, p, &df); 2905 if (unlikely(!df.page)) 2906 continue; 2907 2908 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); 2909 } while (likely(size)); 2910 } 2911 EXPORT_SYMBOL(kmem_cache_free_bulk); 2912 2913 /* Note that interrupts must be enabled when calling this function. */ 2914 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 2915 void **p) 2916 { 2917 struct kmem_cache_cpu *c; 2918 int i; 2919 2920 /* memcg and kmem_cache debug support */ 2921 s = slab_pre_alloc_hook(s, flags); 2922 if (unlikely(!s)) 2923 return false; 2924 /* 2925 * Drain objects in the per cpu slab, while disabling local 2926 * IRQs, which protects against PREEMPT and interrupts 2927 * handlers invoking normal fastpath. 2928 */ 2929 local_irq_disable(); 2930 c = this_cpu_ptr(s->cpu_slab); 2931 2932 for (i = 0; i < size; i++) { 2933 void *object = c->freelist; 2934 2935 if (unlikely(!object)) { 2936 /* 2937 * Invoking slow path likely have side-effect 2938 * of re-populating per CPU c->freelist 2939 */ 2940 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 2941 _RET_IP_, c); 2942 if (unlikely(!p[i])) 2943 goto error; 2944 2945 c = this_cpu_ptr(s->cpu_slab); 2946 continue; /* goto for-loop */ 2947 } 2948 c->freelist = get_freepointer(s, object); 2949 p[i] = object; 2950 } 2951 c->tid = next_tid(c->tid); 2952 local_irq_enable(); 2953 2954 /* Clear memory outside IRQ disabled fastpath loop */ 2955 if (unlikely(flags & __GFP_ZERO)) { 2956 int j; 2957 2958 for (j = 0; j < i; j++) 2959 memset(p[j], 0, s->object_size); 2960 } 2961 2962 /* memcg and kmem_cache debug support */ 2963 slab_post_alloc_hook(s, flags, size, p); 2964 return i; 2965 error: 2966 local_irq_enable(); 2967 slab_post_alloc_hook(s, flags, i, p); 2968 __kmem_cache_free_bulk(s, i, p); 2969 return 0; 2970 } 2971 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 2972 2973 2974 /* 2975 * Object placement in a slab is made very easy because we always start at 2976 * offset 0. If we tune the size of the object to the alignment then we can 2977 * get the required alignment by putting one properly sized object after 2978 * another. 2979 * 2980 * Notice that the allocation order determines the sizes of the per cpu 2981 * caches. Each processor has always one slab available for allocations. 2982 * Increasing the allocation order reduces the number of times that slabs 2983 * must be moved on and off the partial lists and is therefore a factor in 2984 * locking overhead. 2985 */ 2986 2987 /* 2988 * Mininum / Maximum order of slab pages. This influences locking overhead 2989 * and slab fragmentation. A higher order reduces the number of partial slabs 2990 * and increases the number of allocations possible without having to 2991 * take the list_lock. 2992 */ 2993 static int slub_min_order; 2994 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2995 static int slub_min_objects; 2996 2997 /* 2998 * Calculate the order of allocation given an slab object size. 2999 * 3000 * The order of allocation has significant impact on performance and other 3001 * system components. Generally order 0 allocations should be preferred since 3002 * order 0 does not cause fragmentation in the page allocator. Larger objects 3003 * be problematic to put into order 0 slabs because there may be too much 3004 * unused space left. We go to a higher order if more than 1/16th of the slab 3005 * would be wasted. 3006 * 3007 * In order to reach satisfactory performance we must ensure that a minimum 3008 * number of objects is in one slab. Otherwise we may generate too much 3009 * activity on the partial lists which requires taking the list_lock. This is 3010 * less a concern for large slabs though which are rarely used. 3011 * 3012 * slub_max_order specifies the order where we begin to stop considering the 3013 * number of objects in a slab as critical. If we reach slub_max_order then 3014 * we try to keep the page order as low as possible. So we accept more waste 3015 * of space in favor of a small page order. 3016 * 3017 * Higher order allocations also allow the placement of more objects in a 3018 * slab and thereby reduce object handling overhead. If the user has 3019 * requested a higher mininum order then we start with that one instead of 3020 * the smallest order which will fit the object. 3021 */ 3022 static inline int slab_order(int size, int min_objects, 3023 int max_order, int fract_leftover, int reserved) 3024 { 3025 int order; 3026 int rem; 3027 int min_order = slub_min_order; 3028 3029 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3030 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3031 3032 for (order = max(min_order, get_order(min_objects * size + reserved)); 3033 order <= max_order; order++) { 3034 3035 unsigned long slab_size = PAGE_SIZE << order; 3036 3037 rem = (slab_size - reserved) % size; 3038 3039 if (rem <= slab_size / fract_leftover) 3040 break; 3041 } 3042 3043 return order; 3044 } 3045 3046 static inline int calculate_order(int size, int reserved) 3047 { 3048 int order; 3049 int min_objects; 3050 int fraction; 3051 int max_objects; 3052 3053 /* 3054 * Attempt to find best configuration for a slab. This 3055 * works by first attempting to generate a layout with 3056 * the best configuration and backing off gradually. 3057 * 3058 * First we increase the acceptable waste in a slab. Then 3059 * we reduce the minimum objects required in a slab. 3060 */ 3061 min_objects = slub_min_objects; 3062 if (!min_objects) 3063 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3064 max_objects = order_objects(slub_max_order, size, reserved); 3065 min_objects = min(min_objects, max_objects); 3066 3067 while (min_objects > 1) { 3068 fraction = 16; 3069 while (fraction >= 4) { 3070 order = slab_order(size, min_objects, 3071 slub_max_order, fraction, reserved); 3072 if (order <= slub_max_order) 3073 return order; 3074 fraction /= 2; 3075 } 3076 min_objects--; 3077 } 3078 3079 /* 3080 * We were unable to place multiple objects in a slab. Now 3081 * lets see if we can place a single object there. 3082 */ 3083 order = slab_order(size, 1, slub_max_order, 1, reserved); 3084 if (order <= slub_max_order) 3085 return order; 3086 3087 /* 3088 * Doh this slab cannot be placed using slub_max_order. 3089 */ 3090 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3091 if (order < MAX_ORDER) 3092 return order; 3093 return -ENOSYS; 3094 } 3095 3096 static void 3097 init_kmem_cache_node(struct kmem_cache_node *n) 3098 { 3099 n->nr_partial = 0; 3100 spin_lock_init(&n->list_lock); 3101 INIT_LIST_HEAD(&n->partial); 3102 #ifdef CONFIG_SLUB_DEBUG 3103 atomic_long_set(&n->nr_slabs, 0); 3104 atomic_long_set(&n->total_objects, 0); 3105 INIT_LIST_HEAD(&n->full); 3106 #endif 3107 } 3108 3109 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3110 { 3111 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3112 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3113 3114 /* 3115 * Must align to double word boundary for the double cmpxchg 3116 * instructions to work; see __pcpu_double_call_return_bool(). 3117 */ 3118 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3119 2 * sizeof(void *)); 3120 3121 if (!s->cpu_slab) 3122 return 0; 3123 3124 init_kmem_cache_cpus(s); 3125 3126 return 1; 3127 } 3128 3129 static struct kmem_cache *kmem_cache_node; 3130 3131 /* 3132 * No kmalloc_node yet so do it by hand. We know that this is the first 3133 * slab on the node for this slabcache. There are no concurrent accesses 3134 * possible. 3135 * 3136 * Note that this function only works on the kmem_cache_node 3137 * when allocating for the kmem_cache_node. This is used for bootstrapping 3138 * memory on a fresh node that has no slab structures yet. 3139 */ 3140 static void early_kmem_cache_node_alloc(int node) 3141 { 3142 struct page *page; 3143 struct kmem_cache_node *n; 3144 3145 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3146 3147 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3148 3149 BUG_ON(!page); 3150 if (page_to_nid(page) != node) { 3151 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3152 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3153 } 3154 3155 n = page->freelist; 3156 BUG_ON(!n); 3157 page->freelist = get_freepointer(kmem_cache_node, n); 3158 page->inuse = 1; 3159 page->frozen = 0; 3160 kmem_cache_node->node[node] = n; 3161 #ifdef CONFIG_SLUB_DEBUG 3162 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3163 init_tracking(kmem_cache_node, n); 3164 #endif 3165 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node)); 3166 init_kmem_cache_node(n); 3167 inc_slabs_node(kmem_cache_node, node, page->objects); 3168 3169 /* 3170 * No locks need to be taken here as it has just been 3171 * initialized and there is no concurrent access. 3172 */ 3173 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3174 } 3175 3176 static void free_kmem_cache_nodes(struct kmem_cache *s) 3177 { 3178 int node; 3179 struct kmem_cache_node *n; 3180 3181 for_each_kmem_cache_node(s, node, n) { 3182 kmem_cache_free(kmem_cache_node, n); 3183 s->node[node] = NULL; 3184 } 3185 } 3186 3187 static int init_kmem_cache_nodes(struct kmem_cache *s) 3188 { 3189 int node; 3190 3191 for_each_node_state(node, N_NORMAL_MEMORY) { 3192 struct kmem_cache_node *n; 3193 3194 if (slab_state == DOWN) { 3195 early_kmem_cache_node_alloc(node); 3196 continue; 3197 } 3198 n = kmem_cache_alloc_node(kmem_cache_node, 3199 GFP_KERNEL, node); 3200 3201 if (!n) { 3202 free_kmem_cache_nodes(s); 3203 return 0; 3204 } 3205 3206 s->node[node] = n; 3207 init_kmem_cache_node(n); 3208 } 3209 return 1; 3210 } 3211 3212 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3213 { 3214 if (min < MIN_PARTIAL) 3215 min = MIN_PARTIAL; 3216 else if (min > MAX_PARTIAL) 3217 min = MAX_PARTIAL; 3218 s->min_partial = min; 3219 } 3220 3221 /* 3222 * calculate_sizes() determines the order and the distribution of data within 3223 * a slab object. 3224 */ 3225 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3226 { 3227 unsigned long flags = s->flags; 3228 unsigned long size = s->object_size; 3229 int order; 3230 3231 /* 3232 * Round up object size to the next word boundary. We can only 3233 * place the free pointer at word boundaries and this determines 3234 * the possible location of the free pointer. 3235 */ 3236 size = ALIGN(size, sizeof(void *)); 3237 3238 #ifdef CONFIG_SLUB_DEBUG 3239 /* 3240 * Determine if we can poison the object itself. If the user of 3241 * the slab may touch the object after free or before allocation 3242 * then we should never poison the object itself. 3243 */ 3244 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3245 !s->ctor) 3246 s->flags |= __OBJECT_POISON; 3247 else 3248 s->flags &= ~__OBJECT_POISON; 3249 3250 3251 /* 3252 * If we are Redzoning then check if there is some space between the 3253 * end of the object and the free pointer. If not then add an 3254 * additional word to have some bytes to store Redzone information. 3255 */ 3256 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3257 size += sizeof(void *); 3258 #endif 3259 3260 /* 3261 * With that we have determined the number of bytes in actual use 3262 * by the object. This is the potential offset to the free pointer. 3263 */ 3264 s->inuse = size; 3265 3266 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3267 s->ctor)) { 3268 /* 3269 * Relocate free pointer after the object if it is not 3270 * permitted to overwrite the first word of the object on 3271 * kmem_cache_free. 3272 * 3273 * This is the case if we do RCU, have a constructor or 3274 * destructor or are poisoning the objects. 3275 */ 3276 s->offset = size; 3277 size += sizeof(void *); 3278 } 3279 3280 #ifdef CONFIG_SLUB_DEBUG 3281 if (flags & SLAB_STORE_USER) 3282 /* 3283 * Need to store information about allocs and frees after 3284 * the object. 3285 */ 3286 size += 2 * sizeof(struct track); 3287 3288 if (flags & SLAB_RED_ZONE) 3289 /* 3290 * Add some empty padding so that we can catch 3291 * overwrites from earlier objects rather than let 3292 * tracking information or the free pointer be 3293 * corrupted if a user writes before the start 3294 * of the object. 3295 */ 3296 size += sizeof(void *); 3297 #endif 3298 3299 /* 3300 * SLUB stores one object immediately after another beginning from 3301 * offset 0. In order to align the objects we have to simply size 3302 * each object to conform to the alignment. 3303 */ 3304 size = ALIGN(size, s->align); 3305 s->size = size; 3306 if (forced_order >= 0) 3307 order = forced_order; 3308 else 3309 order = calculate_order(size, s->reserved); 3310 3311 if (order < 0) 3312 return 0; 3313 3314 s->allocflags = 0; 3315 if (order) 3316 s->allocflags |= __GFP_COMP; 3317 3318 if (s->flags & SLAB_CACHE_DMA) 3319 s->allocflags |= GFP_DMA; 3320 3321 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3322 s->allocflags |= __GFP_RECLAIMABLE; 3323 3324 /* 3325 * Determine the number of objects per slab 3326 */ 3327 s->oo = oo_make(order, size, s->reserved); 3328 s->min = oo_make(get_order(size), size, s->reserved); 3329 if (oo_objects(s->oo) > oo_objects(s->max)) 3330 s->max = s->oo; 3331 3332 return !!oo_objects(s->oo); 3333 } 3334 3335 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3336 { 3337 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3338 s->reserved = 0; 3339 3340 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3341 s->reserved = sizeof(struct rcu_head); 3342 3343 if (!calculate_sizes(s, -1)) 3344 goto error; 3345 if (disable_higher_order_debug) { 3346 /* 3347 * Disable debugging flags that store metadata if the min slab 3348 * order increased. 3349 */ 3350 if (get_order(s->size) > get_order(s->object_size)) { 3351 s->flags &= ~DEBUG_METADATA_FLAGS; 3352 s->offset = 0; 3353 if (!calculate_sizes(s, -1)) 3354 goto error; 3355 } 3356 } 3357 3358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3360 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3361 /* Enable fast mode */ 3362 s->flags |= __CMPXCHG_DOUBLE; 3363 #endif 3364 3365 /* 3366 * The larger the object size is, the more pages we want on the partial 3367 * list to avoid pounding the page allocator excessively. 3368 */ 3369 set_min_partial(s, ilog2(s->size) / 2); 3370 3371 /* 3372 * cpu_partial determined the maximum number of objects kept in the 3373 * per cpu partial lists of a processor. 3374 * 3375 * Per cpu partial lists mainly contain slabs that just have one 3376 * object freed. If they are used for allocation then they can be 3377 * filled up again with minimal effort. The slab will never hit the 3378 * per node partial lists and therefore no locking will be required. 3379 * 3380 * This setting also determines 3381 * 3382 * A) The number of objects from per cpu partial slabs dumped to the 3383 * per node list when we reach the limit. 3384 * B) The number of objects in cpu partial slabs to extract from the 3385 * per node list when we run out of per cpu objects. We only fetch 3386 * 50% to keep some capacity around for frees. 3387 */ 3388 if (!kmem_cache_has_cpu_partial(s)) 3389 s->cpu_partial = 0; 3390 else if (s->size >= PAGE_SIZE) 3391 s->cpu_partial = 2; 3392 else if (s->size >= 1024) 3393 s->cpu_partial = 6; 3394 else if (s->size >= 256) 3395 s->cpu_partial = 13; 3396 else 3397 s->cpu_partial = 30; 3398 3399 #ifdef CONFIG_NUMA 3400 s->remote_node_defrag_ratio = 1000; 3401 #endif 3402 if (!init_kmem_cache_nodes(s)) 3403 goto error; 3404 3405 if (alloc_kmem_cache_cpus(s)) 3406 return 0; 3407 3408 free_kmem_cache_nodes(s); 3409 error: 3410 if (flags & SLAB_PANIC) 3411 panic("Cannot create slab %s size=%lu realsize=%u " 3412 "order=%u offset=%u flags=%lx\n", 3413 s->name, (unsigned long)s->size, s->size, 3414 oo_order(s->oo), s->offset, flags); 3415 return -EINVAL; 3416 } 3417 3418 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3419 const char *text) 3420 { 3421 #ifdef CONFIG_SLUB_DEBUG 3422 void *addr = page_address(page); 3423 void *p; 3424 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3425 sizeof(long), GFP_ATOMIC); 3426 if (!map) 3427 return; 3428 slab_err(s, page, text, s->name); 3429 slab_lock(page); 3430 3431 get_map(s, page, map); 3432 for_each_object(p, s, addr, page->objects) { 3433 3434 if (!test_bit(slab_index(p, s, addr), map)) { 3435 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3436 print_tracking(s, p); 3437 } 3438 } 3439 slab_unlock(page); 3440 kfree(map); 3441 #endif 3442 } 3443 3444 /* 3445 * Attempt to free all partial slabs on a node. 3446 * This is called from kmem_cache_close(). We must be the last thread 3447 * using the cache and therefore we do not need to lock anymore. 3448 */ 3449 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3450 { 3451 struct page *page, *h; 3452 3453 list_for_each_entry_safe(page, h, &n->partial, lru) { 3454 if (!page->inuse) { 3455 __remove_partial(n, page); 3456 discard_slab(s, page); 3457 } else { 3458 list_slab_objects(s, page, 3459 "Objects remaining in %s on kmem_cache_close()"); 3460 } 3461 } 3462 } 3463 3464 /* 3465 * Release all resources used by a slab cache. 3466 */ 3467 static inline int kmem_cache_close(struct kmem_cache *s) 3468 { 3469 int node; 3470 struct kmem_cache_node *n; 3471 3472 flush_all(s); 3473 /* Attempt to free all objects */ 3474 for_each_kmem_cache_node(s, node, n) { 3475 free_partial(s, n); 3476 if (n->nr_partial || slabs_node(s, node)) 3477 return 1; 3478 } 3479 free_percpu(s->cpu_slab); 3480 free_kmem_cache_nodes(s); 3481 return 0; 3482 } 3483 3484 int __kmem_cache_shutdown(struct kmem_cache *s) 3485 { 3486 return kmem_cache_close(s); 3487 } 3488 3489 /******************************************************************** 3490 * Kmalloc subsystem 3491 *******************************************************************/ 3492 3493 static int __init setup_slub_min_order(char *str) 3494 { 3495 get_option(&str, &slub_min_order); 3496 3497 return 1; 3498 } 3499 3500 __setup("slub_min_order=", setup_slub_min_order); 3501 3502 static int __init setup_slub_max_order(char *str) 3503 { 3504 get_option(&str, &slub_max_order); 3505 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3506 3507 return 1; 3508 } 3509 3510 __setup("slub_max_order=", setup_slub_max_order); 3511 3512 static int __init setup_slub_min_objects(char *str) 3513 { 3514 get_option(&str, &slub_min_objects); 3515 3516 return 1; 3517 } 3518 3519 __setup("slub_min_objects=", setup_slub_min_objects); 3520 3521 void *__kmalloc(size_t size, gfp_t flags) 3522 { 3523 struct kmem_cache *s; 3524 void *ret; 3525 3526 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3527 return kmalloc_large(size, flags); 3528 3529 s = kmalloc_slab(size, flags); 3530 3531 if (unlikely(ZERO_OR_NULL_PTR(s))) 3532 return s; 3533 3534 ret = slab_alloc(s, flags, _RET_IP_); 3535 3536 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3537 3538 kasan_kmalloc(s, ret, size); 3539 3540 return ret; 3541 } 3542 EXPORT_SYMBOL(__kmalloc); 3543 3544 #ifdef CONFIG_NUMA 3545 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3546 { 3547 struct page *page; 3548 void *ptr = NULL; 3549 3550 flags |= __GFP_COMP | __GFP_NOTRACK; 3551 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3552 if (page) 3553 ptr = page_address(page); 3554 3555 kmalloc_large_node_hook(ptr, size, flags); 3556 return ptr; 3557 } 3558 3559 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3560 { 3561 struct kmem_cache *s; 3562 void *ret; 3563 3564 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3565 ret = kmalloc_large_node(size, flags, node); 3566 3567 trace_kmalloc_node(_RET_IP_, ret, 3568 size, PAGE_SIZE << get_order(size), 3569 flags, node); 3570 3571 return ret; 3572 } 3573 3574 s = kmalloc_slab(size, flags); 3575 3576 if (unlikely(ZERO_OR_NULL_PTR(s))) 3577 return s; 3578 3579 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3580 3581 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3582 3583 kasan_kmalloc(s, ret, size); 3584 3585 return ret; 3586 } 3587 EXPORT_SYMBOL(__kmalloc_node); 3588 #endif 3589 3590 static size_t __ksize(const void *object) 3591 { 3592 struct page *page; 3593 3594 if (unlikely(object == ZERO_SIZE_PTR)) 3595 return 0; 3596 3597 page = virt_to_head_page(object); 3598 3599 if (unlikely(!PageSlab(page))) { 3600 WARN_ON(!PageCompound(page)); 3601 return PAGE_SIZE << compound_order(page); 3602 } 3603 3604 return slab_ksize(page->slab_cache); 3605 } 3606 3607 size_t ksize(const void *object) 3608 { 3609 size_t size = __ksize(object); 3610 /* We assume that ksize callers could use whole allocated area, 3611 so we need unpoison this area. */ 3612 kasan_krealloc(object, size); 3613 return size; 3614 } 3615 EXPORT_SYMBOL(ksize); 3616 3617 void kfree(const void *x) 3618 { 3619 struct page *page; 3620 void *object = (void *)x; 3621 3622 trace_kfree(_RET_IP_, x); 3623 3624 if (unlikely(ZERO_OR_NULL_PTR(x))) 3625 return; 3626 3627 page = virt_to_head_page(x); 3628 if (unlikely(!PageSlab(page))) { 3629 BUG_ON(!PageCompound(page)); 3630 kfree_hook(x); 3631 __free_kmem_pages(page, compound_order(page)); 3632 return; 3633 } 3634 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3635 } 3636 EXPORT_SYMBOL(kfree); 3637 3638 #define SHRINK_PROMOTE_MAX 32 3639 3640 /* 3641 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3642 * up most to the head of the partial lists. New allocations will then 3643 * fill those up and thus they can be removed from the partial lists. 3644 * 3645 * The slabs with the least items are placed last. This results in them 3646 * being allocated from last increasing the chance that the last objects 3647 * are freed in them. 3648 */ 3649 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate) 3650 { 3651 int node; 3652 int i; 3653 struct kmem_cache_node *n; 3654 struct page *page; 3655 struct page *t; 3656 struct list_head discard; 3657 struct list_head promote[SHRINK_PROMOTE_MAX]; 3658 unsigned long flags; 3659 int ret = 0; 3660 3661 if (deactivate) { 3662 /* 3663 * Disable empty slabs caching. Used to avoid pinning offline 3664 * memory cgroups by kmem pages that can be freed. 3665 */ 3666 s->cpu_partial = 0; 3667 s->min_partial = 0; 3668 3669 /* 3670 * s->cpu_partial is checked locklessly (see put_cpu_partial), 3671 * so we have to make sure the change is visible. 3672 */ 3673 kick_all_cpus_sync(); 3674 } 3675 3676 flush_all(s); 3677 for_each_kmem_cache_node(s, node, n) { 3678 INIT_LIST_HEAD(&discard); 3679 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3680 INIT_LIST_HEAD(promote + i); 3681 3682 spin_lock_irqsave(&n->list_lock, flags); 3683 3684 /* 3685 * Build lists of slabs to discard or promote. 3686 * 3687 * Note that concurrent frees may occur while we hold the 3688 * list_lock. page->inuse here is the upper limit. 3689 */ 3690 list_for_each_entry_safe(page, t, &n->partial, lru) { 3691 int free = page->objects - page->inuse; 3692 3693 /* Do not reread page->inuse */ 3694 barrier(); 3695 3696 /* We do not keep full slabs on the list */ 3697 BUG_ON(free <= 0); 3698 3699 if (free == page->objects) { 3700 list_move(&page->lru, &discard); 3701 n->nr_partial--; 3702 } else if (free <= SHRINK_PROMOTE_MAX) 3703 list_move(&page->lru, promote + free - 1); 3704 } 3705 3706 /* 3707 * Promote the slabs filled up most to the head of the 3708 * partial list. 3709 */ 3710 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3711 list_splice(promote + i, &n->partial); 3712 3713 spin_unlock_irqrestore(&n->list_lock, flags); 3714 3715 /* Release empty slabs */ 3716 list_for_each_entry_safe(page, t, &discard, lru) 3717 discard_slab(s, page); 3718 3719 if (slabs_node(s, node)) 3720 ret = 1; 3721 } 3722 3723 return ret; 3724 } 3725 3726 static int slab_mem_going_offline_callback(void *arg) 3727 { 3728 struct kmem_cache *s; 3729 3730 mutex_lock(&slab_mutex); 3731 list_for_each_entry(s, &slab_caches, list) 3732 __kmem_cache_shrink(s, false); 3733 mutex_unlock(&slab_mutex); 3734 3735 return 0; 3736 } 3737 3738 static void slab_mem_offline_callback(void *arg) 3739 { 3740 struct kmem_cache_node *n; 3741 struct kmem_cache *s; 3742 struct memory_notify *marg = arg; 3743 int offline_node; 3744 3745 offline_node = marg->status_change_nid_normal; 3746 3747 /* 3748 * If the node still has available memory. we need kmem_cache_node 3749 * for it yet. 3750 */ 3751 if (offline_node < 0) 3752 return; 3753 3754 mutex_lock(&slab_mutex); 3755 list_for_each_entry(s, &slab_caches, list) { 3756 n = get_node(s, offline_node); 3757 if (n) { 3758 /* 3759 * if n->nr_slabs > 0, slabs still exist on the node 3760 * that is going down. We were unable to free them, 3761 * and offline_pages() function shouldn't call this 3762 * callback. So, we must fail. 3763 */ 3764 BUG_ON(slabs_node(s, offline_node)); 3765 3766 s->node[offline_node] = NULL; 3767 kmem_cache_free(kmem_cache_node, n); 3768 } 3769 } 3770 mutex_unlock(&slab_mutex); 3771 } 3772 3773 static int slab_mem_going_online_callback(void *arg) 3774 { 3775 struct kmem_cache_node *n; 3776 struct kmem_cache *s; 3777 struct memory_notify *marg = arg; 3778 int nid = marg->status_change_nid_normal; 3779 int ret = 0; 3780 3781 /* 3782 * If the node's memory is already available, then kmem_cache_node is 3783 * already created. Nothing to do. 3784 */ 3785 if (nid < 0) 3786 return 0; 3787 3788 /* 3789 * We are bringing a node online. No memory is available yet. We must 3790 * allocate a kmem_cache_node structure in order to bring the node 3791 * online. 3792 */ 3793 mutex_lock(&slab_mutex); 3794 list_for_each_entry(s, &slab_caches, list) { 3795 /* 3796 * XXX: kmem_cache_alloc_node will fallback to other nodes 3797 * since memory is not yet available from the node that 3798 * is brought up. 3799 */ 3800 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3801 if (!n) { 3802 ret = -ENOMEM; 3803 goto out; 3804 } 3805 init_kmem_cache_node(n); 3806 s->node[nid] = n; 3807 } 3808 out: 3809 mutex_unlock(&slab_mutex); 3810 return ret; 3811 } 3812 3813 static int slab_memory_callback(struct notifier_block *self, 3814 unsigned long action, void *arg) 3815 { 3816 int ret = 0; 3817 3818 switch (action) { 3819 case MEM_GOING_ONLINE: 3820 ret = slab_mem_going_online_callback(arg); 3821 break; 3822 case MEM_GOING_OFFLINE: 3823 ret = slab_mem_going_offline_callback(arg); 3824 break; 3825 case MEM_OFFLINE: 3826 case MEM_CANCEL_ONLINE: 3827 slab_mem_offline_callback(arg); 3828 break; 3829 case MEM_ONLINE: 3830 case MEM_CANCEL_OFFLINE: 3831 break; 3832 } 3833 if (ret) 3834 ret = notifier_from_errno(ret); 3835 else 3836 ret = NOTIFY_OK; 3837 return ret; 3838 } 3839 3840 static struct notifier_block slab_memory_callback_nb = { 3841 .notifier_call = slab_memory_callback, 3842 .priority = SLAB_CALLBACK_PRI, 3843 }; 3844 3845 /******************************************************************** 3846 * Basic setup of slabs 3847 *******************************************************************/ 3848 3849 /* 3850 * Used for early kmem_cache structures that were allocated using 3851 * the page allocator. Allocate them properly then fix up the pointers 3852 * that may be pointing to the wrong kmem_cache structure. 3853 */ 3854 3855 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3856 { 3857 int node; 3858 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3859 struct kmem_cache_node *n; 3860 3861 memcpy(s, static_cache, kmem_cache->object_size); 3862 3863 /* 3864 * This runs very early, and only the boot processor is supposed to be 3865 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3866 * IPIs around. 3867 */ 3868 __flush_cpu_slab(s, smp_processor_id()); 3869 for_each_kmem_cache_node(s, node, n) { 3870 struct page *p; 3871 3872 list_for_each_entry(p, &n->partial, lru) 3873 p->slab_cache = s; 3874 3875 #ifdef CONFIG_SLUB_DEBUG 3876 list_for_each_entry(p, &n->full, lru) 3877 p->slab_cache = s; 3878 #endif 3879 } 3880 slab_init_memcg_params(s); 3881 list_add(&s->list, &slab_caches); 3882 return s; 3883 } 3884 3885 void __init kmem_cache_init(void) 3886 { 3887 static __initdata struct kmem_cache boot_kmem_cache, 3888 boot_kmem_cache_node; 3889 3890 if (debug_guardpage_minorder()) 3891 slub_max_order = 0; 3892 3893 kmem_cache_node = &boot_kmem_cache_node; 3894 kmem_cache = &boot_kmem_cache; 3895 3896 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3897 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3898 3899 register_hotmemory_notifier(&slab_memory_callback_nb); 3900 3901 /* Able to allocate the per node structures */ 3902 slab_state = PARTIAL; 3903 3904 create_boot_cache(kmem_cache, "kmem_cache", 3905 offsetof(struct kmem_cache, node) + 3906 nr_node_ids * sizeof(struct kmem_cache_node *), 3907 SLAB_HWCACHE_ALIGN); 3908 3909 kmem_cache = bootstrap(&boot_kmem_cache); 3910 3911 /* 3912 * Allocate kmem_cache_node properly from the kmem_cache slab. 3913 * kmem_cache_node is separately allocated so no need to 3914 * update any list pointers. 3915 */ 3916 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3917 3918 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3919 setup_kmalloc_cache_index_table(); 3920 create_kmalloc_caches(0); 3921 3922 #ifdef CONFIG_SMP 3923 register_cpu_notifier(&slab_notifier); 3924 #endif 3925 3926 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3927 cache_line_size(), 3928 slub_min_order, slub_max_order, slub_min_objects, 3929 nr_cpu_ids, nr_node_ids); 3930 } 3931 3932 void __init kmem_cache_init_late(void) 3933 { 3934 } 3935 3936 struct kmem_cache * 3937 __kmem_cache_alias(const char *name, size_t size, size_t align, 3938 unsigned long flags, void (*ctor)(void *)) 3939 { 3940 struct kmem_cache *s, *c; 3941 3942 s = find_mergeable(size, align, flags, name, ctor); 3943 if (s) { 3944 s->refcount++; 3945 3946 /* 3947 * Adjust the object sizes so that we clear 3948 * the complete object on kzalloc. 3949 */ 3950 s->object_size = max(s->object_size, (int)size); 3951 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3952 3953 for_each_memcg_cache(c, s) { 3954 c->object_size = s->object_size; 3955 c->inuse = max_t(int, c->inuse, 3956 ALIGN(size, sizeof(void *))); 3957 } 3958 3959 if (sysfs_slab_alias(s, name)) { 3960 s->refcount--; 3961 s = NULL; 3962 } 3963 } 3964 3965 return s; 3966 } 3967 3968 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3969 { 3970 int err; 3971 3972 err = kmem_cache_open(s, flags); 3973 if (err) 3974 return err; 3975 3976 /* Mutex is not taken during early boot */ 3977 if (slab_state <= UP) 3978 return 0; 3979 3980 memcg_propagate_slab_attrs(s); 3981 err = sysfs_slab_add(s); 3982 if (err) 3983 kmem_cache_close(s); 3984 3985 return err; 3986 } 3987 3988 #ifdef CONFIG_SMP 3989 /* 3990 * Use the cpu notifier to insure that the cpu slabs are flushed when 3991 * necessary. 3992 */ 3993 static int slab_cpuup_callback(struct notifier_block *nfb, 3994 unsigned long action, void *hcpu) 3995 { 3996 long cpu = (long)hcpu; 3997 struct kmem_cache *s; 3998 unsigned long flags; 3999 4000 switch (action) { 4001 case CPU_UP_CANCELED: 4002 case CPU_UP_CANCELED_FROZEN: 4003 case CPU_DEAD: 4004 case CPU_DEAD_FROZEN: 4005 mutex_lock(&slab_mutex); 4006 list_for_each_entry(s, &slab_caches, list) { 4007 local_irq_save(flags); 4008 __flush_cpu_slab(s, cpu); 4009 local_irq_restore(flags); 4010 } 4011 mutex_unlock(&slab_mutex); 4012 break; 4013 default: 4014 break; 4015 } 4016 return NOTIFY_OK; 4017 } 4018 4019 static struct notifier_block slab_notifier = { 4020 .notifier_call = slab_cpuup_callback 4021 }; 4022 4023 #endif 4024 4025 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4026 { 4027 struct kmem_cache *s; 4028 void *ret; 4029 4030 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4031 return kmalloc_large(size, gfpflags); 4032 4033 s = kmalloc_slab(size, gfpflags); 4034 4035 if (unlikely(ZERO_OR_NULL_PTR(s))) 4036 return s; 4037 4038 ret = slab_alloc(s, gfpflags, caller); 4039 4040 /* Honor the call site pointer we received. */ 4041 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4042 4043 return ret; 4044 } 4045 4046 #ifdef CONFIG_NUMA 4047 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4048 int node, unsigned long caller) 4049 { 4050 struct kmem_cache *s; 4051 void *ret; 4052 4053 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4054 ret = kmalloc_large_node(size, gfpflags, node); 4055 4056 trace_kmalloc_node(caller, ret, 4057 size, PAGE_SIZE << get_order(size), 4058 gfpflags, node); 4059 4060 return ret; 4061 } 4062 4063 s = kmalloc_slab(size, gfpflags); 4064 4065 if (unlikely(ZERO_OR_NULL_PTR(s))) 4066 return s; 4067 4068 ret = slab_alloc_node(s, gfpflags, node, caller); 4069 4070 /* Honor the call site pointer we received. */ 4071 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4072 4073 return ret; 4074 } 4075 #endif 4076 4077 #ifdef CONFIG_SYSFS 4078 static int count_inuse(struct page *page) 4079 { 4080 return page->inuse; 4081 } 4082 4083 static int count_total(struct page *page) 4084 { 4085 return page->objects; 4086 } 4087 #endif 4088 4089 #ifdef CONFIG_SLUB_DEBUG 4090 static int validate_slab(struct kmem_cache *s, struct page *page, 4091 unsigned long *map) 4092 { 4093 void *p; 4094 void *addr = page_address(page); 4095 4096 if (!check_slab(s, page) || 4097 !on_freelist(s, page, NULL)) 4098 return 0; 4099 4100 /* Now we know that a valid freelist exists */ 4101 bitmap_zero(map, page->objects); 4102 4103 get_map(s, page, map); 4104 for_each_object(p, s, addr, page->objects) { 4105 if (test_bit(slab_index(p, s, addr), map)) 4106 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4107 return 0; 4108 } 4109 4110 for_each_object(p, s, addr, page->objects) 4111 if (!test_bit(slab_index(p, s, addr), map)) 4112 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4113 return 0; 4114 return 1; 4115 } 4116 4117 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4118 unsigned long *map) 4119 { 4120 slab_lock(page); 4121 validate_slab(s, page, map); 4122 slab_unlock(page); 4123 } 4124 4125 static int validate_slab_node(struct kmem_cache *s, 4126 struct kmem_cache_node *n, unsigned long *map) 4127 { 4128 unsigned long count = 0; 4129 struct page *page; 4130 unsigned long flags; 4131 4132 spin_lock_irqsave(&n->list_lock, flags); 4133 4134 list_for_each_entry(page, &n->partial, lru) { 4135 validate_slab_slab(s, page, map); 4136 count++; 4137 } 4138 if (count != n->nr_partial) 4139 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4140 s->name, count, n->nr_partial); 4141 4142 if (!(s->flags & SLAB_STORE_USER)) 4143 goto out; 4144 4145 list_for_each_entry(page, &n->full, lru) { 4146 validate_slab_slab(s, page, map); 4147 count++; 4148 } 4149 if (count != atomic_long_read(&n->nr_slabs)) 4150 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4151 s->name, count, atomic_long_read(&n->nr_slabs)); 4152 4153 out: 4154 spin_unlock_irqrestore(&n->list_lock, flags); 4155 return count; 4156 } 4157 4158 static long validate_slab_cache(struct kmem_cache *s) 4159 { 4160 int node; 4161 unsigned long count = 0; 4162 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4163 sizeof(unsigned long), GFP_KERNEL); 4164 struct kmem_cache_node *n; 4165 4166 if (!map) 4167 return -ENOMEM; 4168 4169 flush_all(s); 4170 for_each_kmem_cache_node(s, node, n) 4171 count += validate_slab_node(s, n, map); 4172 kfree(map); 4173 return count; 4174 } 4175 /* 4176 * Generate lists of code addresses where slabcache objects are allocated 4177 * and freed. 4178 */ 4179 4180 struct location { 4181 unsigned long count; 4182 unsigned long addr; 4183 long long sum_time; 4184 long min_time; 4185 long max_time; 4186 long min_pid; 4187 long max_pid; 4188 DECLARE_BITMAP(cpus, NR_CPUS); 4189 nodemask_t nodes; 4190 }; 4191 4192 struct loc_track { 4193 unsigned long max; 4194 unsigned long count; 4195 struct location *loc; 4196 }; 4197 4198 static void free_loc_track(struct loc_track *t) 4199 { 4200 if (t->max) 4201 free_pages((unsigned long)t->loc, 4202 get_order(sizeof(struct location) * t->max)); 4203 } 4204 4205 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4206 { 4207 struct location *l; 4208 int order; 4209 4210 order = get_order(sizeof(struct location) * max); 4211 4212 l = (void *)__get_free_pages(flags, order); 4213 if (!l) 4214 return 0; 4215 4216 if (t->count) { 4217 memcpy(l, t->loc, sizeof(struct location) * t->count); 4218 free_loc_track(t); 4219 } 4220 t->max = max; 4221 t->loc = l; 4222 return 1; 4223 } 4224 4225 static int add_location(struct loc_track *t, struct kmem_cache *s, 4226 const struct track *track) 4227 { 4228 long start, end, pos; 4229 struct location *l; 4230 unsigned long caddr; 4231 unsigned long age = jiffies - track->when; 4232 4233 start = -1; 4234 end = t->count; 4235 4236 for ( ; ; ) { 4237 pos = start + (end - start + 1) / 2; 4238 4239 /* 4240 * There is nothing at "end". If we end up there 4241 * we need to add something to before end. 4242 */ 4243 if (pos == end) 4244 break; 4245 4246 caddr = t->loc[pos].addr; 4247 if (track->addr == caddr) { 4248 4249 l = &t->loc[pos]; 4250 l->count++; 4251 if (track->when) { 4252 l->sum_time += age; 4253 if (age < l->min_time) 4254 l->min_time = age; 4255 if (age > l->max_time) 4256 l->max_time = age; 4257 4258 if (track->pid < l->min_pid) 4259 l->min_pid = track->pid; 4260 if (track->pid > l->max_pid) 4261 l->max_pid = track->pid; 4262 4263 cpumask_set_cpu(track->cpu, 4264 to_cpumask(l->cpus)); 4265 } 4266 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4267 return 1; 4268 } 4269 4270 if (track->addr < caddr) 4271 end = pos; 4272 else 4273 start = pos; 4274 } 4275 4276 /* 4277 * Not found. Insert new tracking element. 4278 */ 4279 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4280 return 0; 4281 4282 l = t->loc + pos; 4283 if (pos < t->count) 4284 memmove(l + 1, l, 4285 (t->count - pos) * sizeof(struct location)); 4286 t->count++; 4287 l->count = 1; 4288 l->addr = track->addr; 4289 l->sum_time = age; 4290 l->min_time = age; 4291 l->max_time = age; 4292 l->min_pid = track->pid; 4293 l->max_pid = track->pid; 4294 cpumask_clear(to_cpumask(l->cpus)); 4295 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4296 nodes_clear(l->nodes); 4297 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4298 return 1; 4299 } 4300 4301 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4302 struct page *page, enum track_item alloc, 4303 unsigned long *map) 4304 { 4305 void *addr = page_address(page); 4306 void *p; 4307 4308 bitmap_zero(map, page->objects); 4309 get_map(s, page, map); 4310 4311 for_each_object(p, s, addr, page->objects) 4312 if (!test_bit(slab_index(p, s, addr), map)) 4313 add_location(t, s, get_track(s, p, alloc)); 4314 } 4315 4316 static int list_locations(struct kmem_cache *s, char *buf, 4317 enum track_item alloc) 4318 { 4319 int len = 0; 4320 unsigned long i; 4321 struct loc_track t = { 0, 0, NULL }; 4322 int node; 4323 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4324 sizeof(unsigned long), GFP_KERNEL); 4325 struct kmem_cache_node *n; 4326 4327 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4328 GFP_TEMPORARY)) { 4329 kfree(map); 4330 return sprintf(buf, "Out of memory\n"); 4331 } 4332 /* Push back cpu slabs */ 4333 flush_all(s); 4334 4335 for_each_kmem_cache_node(s, node, n) { 4336 unsigned long flags; 4337 struct page *page; 4338 4339 if (!atomic_long_read(&n->nr_slabs)) 4340 continue; 4341 4342 spin_lock_irqsave(&n->list_lock, flags); 4343 list_for_each_entry(page, &n->partial, lru) 4344 process_slab(&t, s, page, alloc, map); 4345 list_for_each_entry(page, &n->full, lru) 4346 process_slab(&t, s, page, alloc, map); 4347 spin_unlock_irqrestore(&n->list_lock, flags); 4348 } 4349 4350 for (i = 0; i < t.count; i++) { 4351 struct location *l = &t.loc[i]; 4352 4353 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4354 break; 4355 len += sprintf(buf + len, "%7ld ", l->count); 4356 4357 if (l->addr) 4358 len += sprintf(buf + len, "%pS", (void *)l->addr); 4359 else 4360 len += sprintf(buf + len, "<not-available>"); 4361 4362 if (l->sum_time != l->min_time) { 4363 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4364 l->min_time, 4365 (long)div_u64(l->sum_time, l->count), 4366 l->max_time); 4367 } else 4368 len += sprintf(buf + len, " age=%ld", 4369 l->min_time); 4370 4371 if (l->min_pid != l->max_pid) 4372 len += sprintf(buf + len, " pid=%ld-%ld", 4373 l->min_pid, l->max_pid); 4374 else 4375 len += sprintf(buf + len, " pid=%ld", 4376 l->min_pid); 4377 4378 if (num_online_cpus() > 1 && 4379 !cpumask_empty(to_cpumask(l->cpus)) && 4380 len < PAGE_SIZE - 60) 4381 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4382 " cpus=%*pbl", 4383 cpumask_pr_args(to_cpumask(l->cpus))); 4384 4385 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4386 len < PAGE_SIZE - 60) 4387 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4388 " nodes=%*pbl", 4389 nodemask_pr_args(&l->nodes)); 4390 4391 len += sprintf(buf + len, "\n"); 4392 } 4393 4394 free_loc_track(&t); 4395 kfree(map); 4396 if (!t.count) 4397 len += sprintf(buf, "No data\n"); 4398 return len; 4399 } 4400 #endif 4401 4402 #ifdef SLUB_RESILIENCY_TEST 4403 static void __init resiliency_test(void) 4404 { 4405 u8 *p; 4406 4407 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4408 4409 pr_err("SLUB resiliency testing\n"); 4410 pr_err("-----------------------\n"); 4411 pr_err("A. Corruption after allocation\n"); 4412 4413 p = kzalloc(16, GFP_KERNEL); 4414 p[16] = 0x12; 4415 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4416 p + 16); 4417 4418 validate_slab_cache(kmalloc_caches[4]); 4419 4420 /* Hmmm... The next two are dangerous */ 4421 p = kzalloc(32, GFP_KERNEL); 4422 p[32 + sizeof(void *)] = 0x34; 4423 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4424 p); 4425 pr_err("If allocated object is overwritten then not detectable\n\n"); 4426 4427 validate_slab_cache(kmalloc_caches[5]); 4428 p = kzalloc(64, GFP_KERNEL); 4429 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4430 *p = 0x56; 4431 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4432 p); 4433 pr_err("If allocated object is overwritten then not detectable\n\n"); 4434 validate_slab_cache(kmalloc_caches[6]); 4435 4436 pr_err("\nB. Corruption after free\n"); 4437 p = kzalloc(128, GFP_KERNEL); 4438 kfree(p); 4439 *p = 0x78; 4440 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4441 validate_slab_cache(kmalloc_caches[7]); 4442 4443 p = kzalloc(256, GFP_KERNEL); 4444 kfree(p); 4445 p[50] = 0x9a; 4446 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4447 validate_slab_cache(kmalloc_caches[8]); 4448 4449 p = kzalloc(512, GFP_KERNEL); 4450 kfree(p); 4451 p[512] = 0xab; 4452 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4453 validate_slab_cache(kmalloc_caches[9]); 4454 } 4455 #else 4456 #ifdef CONFIG_SYSFS 4457 static void resiliency_test(void) {}; 4458 #endif 4459 #endif 4460 4461 #ifdef CONFIG_SYSFS 4462 enum slab_stat_type { 4463 SL_ALL, /* All slabs */ 4464 SL_PARTIAL, /* Only partially allocated slabs */ 4465 SL_CPU, /* Only slabs used for cpu caches */ 4466 SL_OBJECTS, /* Determine allocated objects not slabs */ 4467 SL_TOTAL /* Determine object capacity not slabs */ 4468 }; 4469 4470 #define SO_ALL (1 << SL_ALL) 4471 #define SO_PARTIAL (1 << SL_PARTIAL) 4472 #define SO_CPU (1 << SL_CPU) 4473 #define SO_OBJECTS (1 << SL_OBJECTS) 4474 #define SO_TOTAL (1 << SL_TOTAL) 4475 4476 static ssize_t show_slab_objects(struct kmem_cache *s, 4477 char *buf, unsigned long flags) 4478 { 4479 unsigned long total = 0; 4480 int node; 4481 int x; 4482 unsigned long *nodes; 4483 4484 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4485 if (!nodes) 4486 return -ENOMEM; 4487 4488 if (flags & SO_CPU) { 4489 int cpu; 4490 4491 for_each_possible_cpu(cpu) { 4492 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4493 cpu); 4494 int node; 4495 struct page *page; 4496 4497 page = READ_ONCE(c->page); 4498 if (!page) 4499 continue; 4500 4501 node = page_to_nid(page); 4502 if (flags & SO_TOTAL) 4503 x = page->objects; 4504 else if (flags & SO_OBJECTS) 4505 x = page->inuse; 4506 else 4507 x = 1; 4508 4509 total += x; 4510 nodes[node] += x; 4511 4512 page = READ_ONCE(c->partial); 4513 if (page) { 4514 node = page_to_nid(page); 4515 if (flags & SO_TOTAL) 4516 WARN_ON_ONCE(1); 4517 else if (flags & SO_OBJECTS) 4518 WARN_ON_ONCE(1); 4519 else 4520 x = page->pages; 4521 total += x; 4522 nodes[node] += x; 4523 } 4524 } 4525 } 4526 4527 get_online_mems(); 4528 #ifdef CONFIG_SLUB_DEBUG 4529 if (flags & SO_ALL) { 4530 struct kmem_cache_node *n; 4531 4532 for_each_kmem_cache_node(s, node, n) { 4533 4534 if (flags & SO_TOTAL) 4535 x = atomic_long_read(&n->total_objects); 4536 else if (flags & SO_OBJECTS) 4537 x = atomic_long_read(&n->total_objects) - 4538 count_partial(n, count_free); 4539 else 4540 x = atomic_long_read(&n->nr_slabs); 4541 total += x; 4542 nodes[node] += x; 4543 } 4544 4545 } else 4546 #endif 4547 if (flags & SO_PARTIAL) { 4548 struct kmem_cache_node *n; 4549 4550 for_each_kmem_cache_node(s, node, n) { 4551 if (flags & SO_TOTAL) 4552 x = count_partial(n, count_total); 4553 else if (flags & SO_OBJECTS) 4554 x = count_partial(n, count_inuse); 4555 else 4556 x = n->nr_partial; 4557 total += x; 4558 nodes[node] += x; 4559 } 4560 } 4561 x = sprintf(buf, "%lu", total); 4562 #ifdef CONFIG_NUMA 4563 for (node = 0; node < nr_node_ids; node++) 4564 if (nodes[node]) 4565 x += sprintf(buf + x, " N%d=%lu", 4566 node, nodes[node]); 4567 #endif 4568 put_online_mems(); 4569 kfree(nodes); 4570 return x + sprintf(buf + x, "\n"); 4571 } 4572 4573 #ifdef CONFIG_SLUB_DEBUG 4574 static int any_slab_objects(struct kmem_cache *s) 4575 { 4576 int node; 4577 struct kmem_cache_node *n; 4578 4579 for_each_kmem_cache_node(s, node, n) 4580 if (atomic_long_read(&n->total_objects)) 4581 return 1; 4582 4583 return 0; 4584 } 4585 #endif 4586 4587 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4588 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4589 4590 struct slab_attribute { 4591 struct attribute attr; 4592 ssize_t (*show)(struct kmem_cache *s, char *buf); 4593 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4594 }; 4595 4596 #define SLAB_ATTR_RO(_name) \ 4597 static struct slab_attribute _name##_attr = \ 4598 __ATTR(_name, 0400, _name##_show, NULL) 4599 4600 #define SLAB_ATTR(_name) \ 4601 static struct slab_attribute _name##_attr = \ 4602 __ATTR(_name, 0600, _name##_show, _name##_store) 4603 4604 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4605 { 4606 return sprintf(buf, "%d\n", s->size); 4607 } 4608 SLAB_ATTR_RO(slab_size); 4609 4610 static ssize_t align_show(struct kmem_cache *s, char *buf) 4611 { 4612 return sprintf(buf, "%d\n", s->align); 4613 } 4614 SLAB_ATTR_RO(align); 4615 4616 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4617 { 4618 return sprintf(buf, "%d\n", s->object_size); 4619 } 4620 SLAB_ATTR_RO(object_size); 4621 4622 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4623 { 4624 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4625 } 4626 SLAB_ATTR_RO(objs_per_slab); 4627 4628 static ssize_t order_store(struct kmem_cache *s, 4629 const char *buf, size_t length) 4630 { 4631 unsigned long order; 4632 int err; 4633 4634 err = kstrtoul(buf, 10, &order); 4635 if (err) 4636 return err; 4637 4638 if (order > slub_max_order || order < slub_min_order) 4639 return -EINVAL; 4640 4641 calculate_sizes(s, order); 4642 return length; 4643 } 4644 4645 static ssize_t order_show(struct kmem_cache *s, char *buf) 4646 { 4647 return sprintf(buf, "%d\n", oo_order(s->oo)); 4648 } 4649 SLAB_ATTR(order); 4650 4651 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4652 { 4653 return sprintf(buf, "%lu\n", s->min_partial); 4654 } 4655 4656 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4657 size_t length) 4658 { 4659 unsigned long min; 4660 int err; 4661 4662 err = kstrtoul(buf, 10, &min); 4663 if (err) 4664 return err; 4665 4666 set_min_partial(s, min); 4667 return length; 4668 } 4669 SLAB_ATTR(min_partial); 4670 4671 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4672 { 4673 return sprintf(buf, "%u\n", s->cpu_partial); 4674 } 4675 4676 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4677 size_t length) 4678 { 4679 unsigned long objects; 4680 int err; 4681 4682 err = kstrtoul(buf, 10, &objects); 4683 if (err) 4684 return err; 4685 if (objects && !kmem_cache_has_cpu_partial(s)) 4686 return -EINVAL; 4687 4688 s->cpu_partial = objects; 4689 flush_all(s); 4690 return length; 4691 } 4692 SLAB_ATTR(cpu_partial); 4693 4694 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4695 { 4696 if (!s->ctor) 4697 return 0; 4698 return sprintf(buf, "%pS\n", s->ctor); 4699 } 4700 SLAB_ATTR_RO(ctor); 4701 4702 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4703 { 4704 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4705 } 4706 SLAB_ATTR_RO(aliases); 4707 4708 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4709 { 4710 return show_slab_objects(s, buf, SO_PARTIAL); 4711 } 4712 SLAB_ATTR_RO(partial); 4713 4714 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4715 { 4716 return show_slab_objects(s, buf, SO_CPU); 4717 } 4718 SLAB_ATTR_RO(cpu_slabs); 4719 4720 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4721 { 4722 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4723 } 4724 SLAB_ATTR_RO(objects); 4725 4726 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4727 { 4728 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4729 } 4730 SLAB_ATTR_RO(objects_partial); 4731 4732 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4733 { 4734 int objects = 0; 4735 int pages = 0; 4736 int cpu; 4737 int len; 4738 4739 for_each_online_cpu(cpu) { 4740 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4741 4742 if (page) { 4743 pages += page->pages; 4744 objects += page->pobjects; 4745 } 4746 } 4747 4748 len = sprintf(buf, "%d(%d)", objects, pages); 4749 4750 #ifdef CONFIG_SMP 4751 for_each_online_cpu(cpu) { 4752 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4753 4754 if (page && len < PAGE_SIZE - 20) 4755 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4756 page->pobjects, page->pages); 4757 } 4758 #endif 4759 return len + sprintf(buf + len, "\n"); 4760 } 4761 SLAB_ATTR_RO(slabs_cpu_partial); 4762 4763 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4764 { 4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4766 } 4767 4768 static ssize_t reclaim_account_store(struct kmem_cache *s, 4769 const char *buf, size_t length) 4770 { 4771 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4772 if (buf[0] == '1') 4773 s->flags |= SLAB_RECLAIM_ACCOUNT; 4774 return length; 4775 } 4776 SLAB_ATTR(reclaim_account); 4777 4778 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4779 { 4780 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4781 } 4782 SLAB_ATTR_RO(hwcache_align); 4783 4784 #ifdef CONFIG_ZONE_DMA 4785 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4786 { 4787 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4788 } 4789 SLAB_ATTR_RO(cache_dma); 4790 #endif 4791 4792 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4793 { 4794 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4795 } 4796 SLAB_ATTR_RO(destroy_by_rcu); 4797 4798 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4799 { 4800 return sprintf(buf, "%d\n", s->reserved); 4801 } 4802 SLAB_ATTR_RO(reserved); 4803 4804 #ifdef CONFIG_SLUB_DEBUG 4805 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4806 { 4807 return show_slab_objects(s, buf, SO_ALL); 4808 } 4809 SLAB_ATTR_RO(slabs); 4810 4811 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4812 { 4813 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4814 } 4815 SLAB_ATTR_RO(total_objects); 4816 4817 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4818 { 4819 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4820 } 4821 4822 static ssize_t sanity_checks_store(struct kmem_cache *s, 4823 const char *buf, size_t length) 4824 { 4825 s->flags &= ~SLAB_DEBUG_FREE; 4826 if (buf[0] == '1') { 4827 s->flags &= ~__CMPXCHG_DOUBLE; 4828 s->flags |= SLAB_DEBUG_FREE; 4829 } 4830 return length; 4831 } 4832 SLAB_ATTR(sanity_checks); 4833 4834 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4835 { 4836 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4837 } 4838 4839 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4840 size_t length) 4841 { 4842 /* 4843 * Tracing a merged cache is going to give confusing results 4844 * as well as cause other issues like converting a mergeable 4845 * cache into an umergeable one. 4846 */ 4847 if (s->refcount > 1) 4848 return -EINVAL; 4849 4850 s->flags &= ~SLAB_TRACE; 4851 if (buf[0] == '1') { 4852 s->flags &= ~__CMPXCHG_DOUBLE; 4853 s->flags |= SLAB_TRACE; 4854 } 4855 return length; 4856 } 4857 SLAB_ATTR(trace); 4858 4859 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4860 { 4861 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4862 } 4863 4864 static ssize_t red_zone_store(struct kmem_cache *s, 4865 const char *buf, size_t length) 4866 { 4867 if (any_slab_objects(s)) 4868 return -EBUSY; 4869 4870 s->flags &= ~SLAB_RED_ZONE; 4871 if (buf[0] == '1') { 4872 s->flags &= ~__CMPXCHG_DOUBLE; 4873 s->flags |= SLAB_RED_ZONE; 4874 } 4875 calculate_sizes(s, -1); 4876 return length; 4877 } 4878 SLAB_ATTR(red_zone); 4879 4880 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4881 { 4882 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4883 } 4884 4885 static ssize_t poison_store(struct kmem_cache *s, 4886 const char *buf, size_t length) 4887 { 4888 if (any_slab_objects(s)) 4889 return -EBUSY; 4890 4891 s->flags &= ~SLAB_POISON; 4892 if (buf[0] == '1') { 4893 s->flags &= ~__CMPXCHG_DOUBLE; 4894 s->flags |= SLAB_POISON; 4895 } 4896 calculate_sizes(s, -1); 4897 return length; 4898 } 4899 SLAB_ATTR(poison); 4900 4901 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4902 { 4903 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4904 } 4905 4906 static ssize_t store_user_store(struct kmem_cache *s, 4907 const char *buf, size_t length) 4908 { 4909 if (any_slab_objects(s)) 4910 return -EBUSY; 4911 4912 s->flags &= ~SLAB_STORE_USER; 4913 if (buf[0] == '1') { 4914 s->flags &= ~__CMPXCHG_DOUBLE; 4915 s->flags |= SLAB_STORE_USER; 4916 } 4917 calculate_sizes(s, -1); 4918 return length; 4919 } 4920 SLAB_ATTR(store_user); 4921 4922 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4923 { 4924 return 0; 4925 } 4926 4927 static ssize_t validate_store(struct kmem_cache *s, 4928 const char *buf, size_t length) 4929 { 4930 int ret = -EINVAL; 4931 4932 if (buf[0] == '1') { 4933 ret = validate_slab_cache(s); 4934 if (ret >= 0) 4935 ret = length; 4936 } 4937 return ret; 4938 } 4939 SLAB_ATTR(validate); 4940 4941 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4942 { 4943 if (!(s->flags & SLAB_STORE_USER)) 4944 return -ENOSYS; 4945 return list_locations(s, buf, TRACK_ALLOC); 4946 } 4947 SLAB_ATTR_RO(alloc_calls); 4948 4949 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4950 { 4951 if (!(s->flags & SLAB_STORE_USER)) 4952 return -ENOSYS; 4953 return list_locations(s, buf, TRACK_FREE); 4954 } 4955 SLAB_ATTR_RO(free_calls); 4956 #endif /* CONFIG_SLUB_DEBUG */ 4957 4958 #ifdef CONFIG_FAILSLAB 4959 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4960 { 4961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4962 } 4963 4964 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4965 size_t length) 4966 { 4967 if (s->refcount > 1) 4968 return -EINVAL; 4969 4970 s->flags &= ~SLAB_FAILSLAB; 4971 if (buf[0] == '1') 4972 s->flags |= SLAB_FAILSLAB; 4973 return length; 4974 } 4975 SLAB_ATTR(failslab); 4976 #endif 4977 4978 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4979 { 4980 return 0; 4981 } 4982 4983 static ssize_t shrink_store(struct kmem_cache *s, 4984 const char *buf, size_t length) 4985 { 4986 if (buf[0] == '1') 4987 kmem_cache_shrink(s); 4988 else 4989 return -EINVAL; 4990 return length; 4991 } 4992 SLAB_ATTR(shrink); 4993 4994 #ifdef CONFIG_NUMA 4995 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4996 { 4997 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4998 } 4999 5000 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5001 const char *buf, size_t length) 5002 { 5003 unsigned long ratio; 5004 int err; 5005 5006 err = kstrtoul(buf, 10, &ratio); 5007 if (err) 5008 return err; 5009 5010 if (ratio <= 100) 5011 s->remote_node_defrag_ratio = ratio * 10; 5012 5013 return length; 5014 } 5015 SLAB_ATTR(remote_node_defrag_ratio); 5016 #endif 5017 5018 #ifdef CONFIG_SLUB_STATS 5019 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5020 { 5021 unsigned long sum = 0; 5022 int cpu; 5023 int len; 5024 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5025 5026 if (!data) 5027 return -ENOMEM; 5028 5029 for_each_online_cpu(cpu) { 5030 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5031 5032 data[cpu] = x; 5033 sum += x; 5034 } 5035 5036 len = sprintf(buf, "%lu", sum); 5037 5038 #ifdef CONFIG_SMP 5039 for_each_online_cpu(cpu) { 5040 if (data[cpu] && len < PAGE_SIZE - 20) 5041 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5042 } 5043 #endif 5044 kfree(data); 5045 return len + sprintf(buf + len, "\n"); 5046 } 5047 5048 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5049 { 5050 int cpu; 5051 5052 for_each_online_cpu(cpu) 5053 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5054 } 5055 5056 #define STAT_ATTR(si, text) \ 5057 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5058 { \ 5059 return show_stat(s, buf, si); \ 5060 } \ 5061 static ssize_t text##_store(struct kmem_cache *s, \ 5062 const char *buf, size_t length) \ 5063 { \ 5064 if (buf[0] != '0') \ 5065 return -EINVAL; \ 5066 clear_stat(s, si); \ 5067 return length; \ 5068 } \ 5069 SLAB_ATTR(text); \ 5070 5071 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5072 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5073 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5074 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5075 STAT_ATTR(FREE_FROZEN, free_frozen); 5076 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5077 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5078 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5079 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5080 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5081 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5082 STAT_ATTR(FREE_SLAB, free_slab); 5083 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5084 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5085 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5086 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5087 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5088 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5089 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5090 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5091 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5092 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5093 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5094 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5095 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5096 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5097 #endif 5098 5099 static struct attribute *slab_attrs[] = { 5100 &slab_size_attr.attr, 5101 &object_size_attr.attr, 5102 &objs_per_slab_attr.attr, 5103 &order_attr.attr, 5104 &min_partial_attr.attr, 5105 &cpu_partial_attr.attr, 5106 &objects_attr.attr, 5107 &objects_partial_attr.attr, 5108 &partial_attr.attr, 5109 &cpu_slabs_attr.attr, 5110 &ctor_attr.attr, 5111 &aliases_attr.attr, 5112 &align_attr.attr, 5113 &hwcache_align_attr.attr, 5114 &reclaim_account_attr.attr, 5115 &destroy_by_rcu_attr.attr, 5116 &shrink_attr.attr, 5117 &reserved_attr.attr, 5118 &slabs_cpu_partial_attr.attr, 5119 #ifdef CONFIG_SLUB_DEBUG 5120 &total_objects_attr.attr, 5121 &slabs_attr.attr, 5122 &sanity_checks_attr.attr, 5123 &trace_attr.attr, 5124 &red_zone_attr.attr, 5125 &poison_attr.attr, 5126 &store_user_attr.attr, 5127 &validate_attr.attr, 5128 &alloc_calls_attr.attr, 5129 &free_calls_attr.attr, 5130 #endif 5131 #ifdef CONFIG_ZONE_DMA 5132 &cache_dma_attr.attr, 5133 #endif 5134 #ifdef CONFIG_NUMA 5135 &remote_node_defrag_ratio_attr.attr, 5136 #endif 5137 #ifdef CONFIG_SLUB_STATS 5138 &alloc_fastpath_attr.attr, 5139 &alloc_slowpath_attr.attr, 5140 &free_fastpath_attr.attr, 5141 &free_slowpath_attr.attr, 5142 &free_frozen_attr.attr, 5143 &free_add_partial_attr.attr, 5144 &free_remove_partial_attr.attr, 5145 &alloc_from_partial_attr.attr, 5146 &alloc_slab_attr.attr, 5147 &alloc_refill_attr.attr, 5148 &alloc_node_mismatch_attr.attr, 5149 &free_slab_attr.attr, 5150 &cpuslab_flush_attr.attr, 5151 &deactivate_full_attr.attr, 5152 &deactivate_empty_attr.attr, 5153 &deactivate_to_head_attr.attr, 5154 &deactivate_to_tail_attr.attr, 5155 &deactivate_remote_frees_attr.attr, 5156 &deactivate_bypass_attr.attr, 5157 &order_fallback_attr.attr, 5158 &cmpxchg_double_fail_attr.attr, 5159 &cmpxchg_double_cpu_fail_attr.attr, 5160 &cpu_partial_alloc_attr.attr, 5161 &cpu_partial_free_attr.attr, 5162 &cpu_partial_node_attr.attr, 5163 &cpu_partial_drain_attr.attr, 5164 #endif 5165 #ifdef CONFIG_FAILSLAB 5166 &failslab_attr.attr, 5167 #endif 5168 5169 NULL 5170 }; 5171 5172 static struct attribute_group slab_attr_group = { 5173 .attrs = slab_attrs, 5174 }; 5175 5176 static ssize_t slab_attr_show(struct kobject *kobj, 5177 struct attribute *attr, 5178 char *buf) 5179 { 5180 struct slab_attribute *attribute; 5181 struct kmem_cache *s; 5182 int err; 5183 5184 attribute = to_slab_attr(attr); 5185 s = to_slab(kobj); 5186 5187 if (!attribute->show) 5188 return -EIO; 5189 5190 err = attribute->show(s, buf); 5191 5192 return err; 5193 } 5194 5195 static ssize_t slab_attr_store(struct kobject *kobj, 5196 struct attribute *attr, 5197 const char *buf, size_t len) 5198 { 5199 struct slab_attribute *attribute; 5200 struct kmem_cache *s; 5201 int err; 5202 5203 attribute = to_slab_attr(attr); 5204 s = to_slab(kobj); 5205 5206 if (!attribute->store) 5207 return -EIO; 5208 5209 err = attribute->store(s, buf, len); 5210 #ifdef CONFIG_MEMCG 5211 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5212 struct kmem_cache *c; 5213 5214 mutex_lock(&slab_mutex); 5215 if (s->max_attr_size < len) 5216 s->max_attr_size = len; 5217 5218 /* 5219 * This is a best effort propagation, so this function's return 5220 * value will be determined by the parent cache only. This is 5221 * basically because not all attributes will have a well 5222 * defined semantics for rollbacks - most of the actions will 5223 * have permanent effects. 5224 * 5225 * Returning the error value of any of the children that fail 5226 * is not 100 % defined, in the sense that users seeing the 5227 * error code won't be able to know anything about the state of 5228 * the cache. 5229 * 5230 * Only returning the error code for the parent cache at least 5231 * has well defined semantics. The cache being written to 5232 * directly either failed or succeeded, in which case we loop 5233 * through the descendants with best-effort propagation. 5234 */ 5235 for_each_memcg_cache(c, s) 5236 attribute->store(c, buf, len); 5237 mutex_unlock(&slab_mutex); 5238 } 5239 #endif 5240 return err; 5241 } 5242 5243 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5244 { 5245 #ifdef CONFIG_MEMCG 5246 int i; 5247 char *buffer = NULL; 5248 struct kmem_cache *root_cache; 5249 5250 if (is_root_cache(s)) 5251 return; 5252 5253 root_cache = s->memcg_params.root_cache; 5254 5255 /* 5256 * This mean this cache had no attribute written. Therefore, no point 5257 * in copying default values around 5258 */ 5259 if (!root_cache->max_attr_size) 5260 return; 5261 5262 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5263 char mbuf[64]; 5264 char *buf; 5265 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5266 5267 if (!attr || !attr->store || !attr->show) 5268 continue; 5269 5270 /* 5271 * It is really bad that we have to allocate here, so we will 5272 * do it only as a fallback. If we actually allocate, though, 5273 * we can just use the allocated buffer until the end. 5274 * 5275 * Most of the slub attributes will tend to be very small in 5276 * size, but sysfs allows buffers up to a page, so they can 5277 * theoretically happen. 5278 */ 5279 if (buffer) 5280 buf = buffer; 5281 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5282 buf = mbuf; 5283 else { 5284 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5285 if (WARN_ON(!buffer)) 5286 continue; 5287 buf = buffer; 5288 } 5289 5290 attr->show(root_cache, buf); 5291 attr->store(s, buf, strlen(buf)); 5292 } 5293 5294 if (buffer) 5295 free_page((unsigned long)buffer); 5296 #endif 5297 } 5298 5299 static void kmem_cache_release(struct kobject *k) 5300 { 5301 slab_kmem_cache_release(to_slab(k)); 5302 } 5303 5304 static const struct sysfs_ops slab_sysfs_ops = { 5305 .show = slab_attr_show, 5306 .store = slab_attr_store, 5307 }; 5308 5309 static struct kobj_type slab_ktype = { 5310 .sysfs_ops = &slab_sysfs_ops, 5311 .release = kmem_cache_release, 5312 }; 5313 5314 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5315 { 5316 struct kobj_type *ktype = get_ktype(kobj); 5317 5318 if (ktype == &slab_ktype) 5319 return 1; 5320 return 0; 5321 } 5322 5323 static const struct kset_uevent_ops slab_uevent_ops = { 5324 .filter = uevent_filter, 5325 }; 5326 5327 static struct kset *slab_kset; 5328 5329 static inline struct kset *cache_kset(struct kmem_cache *s) 5330 { 5331 #ifdef CONFIG_MEMCG 5332 if (!is_root_cache(s)) 5333 return s->memcg_params.root_cache->memcg_kset; 5334 #endif 5335 return slab_kset; 5336 } 5337 5338 #define ID_STR_LENGTH 64 5339 5340 /* Create a unique string id for a slab cache: 5341 * 5342 * Format :[flags-]size 5343 */ 5344 static char *create_unique_id(struct kmem_cache *s) 5345 { 5346 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5347 char *p = name; 5348 5349 BUG_ON(!name); 5350 5351 *p++ = ':'; 5352 /* 5353 * First flags affecting slabcache operations. We will only 5354 * get here for aliasable slabs so we do not need to support 5355 * too many flags. The flags here must cover all flags that 5356 * are matched during merging to guarantee that the id is 5357 * unique. 5358 */ 5359 if (s->flags & SLAB_CACHE_DMA) 5360 *p++ = 'd'; 5361 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5362 *p++ = 'a'; 5363 if (s->flags & SLAB_DEBUG_FREE) 5364 *p++ = 'F'; 5365 if (!(s->flags & SLAB_NOTRACK)) 5366 *p++ = 't'; 5367 if (s->flags & SLAB_ACCOUNT) 5368 *p++ = 'A'; 5369 if (p != name + 1) 5370 *p++ = '-'; 5371 p += sprintf(p, "%07d", s->size); 5372 5373 BUG_ON(p > name + ID_STR_LENGTH - 1); 5374 return name; 5375 } 5376 5377 static int sysfs_slab_add(struct kmem_cache *s) 5378 { 5379 int err; 5380 const char *name; 5381 int unmergeable = slab_unmergeable(s); 5382 5383 if (unmergeable) { 5384 /* 5385 * Slabcache can never be merged so we can use the name proper. 5386 * This is typically the case for debug situations. In that 5387 * case we can catch duplicate names easily. 5388 */ 5389 sysfs_remove_link(&slab_kset->kobj, s->name); 5390 name = s->name; 5391 } else { 5392 /* 5393 * Create a unique name for the slab as a target 5394 * for the symlinks. 5395 */ 5396 name = create_unique_id(s); 5397 } 5398 5399 s->kobj.kset = cache_kset(s); 5400 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5401 if (err) 5402 goto out; 5403 5404 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5405 if (err) 5406 goto out_del_kobj; 5407 5408 #ifdef CONFIG_MEMCG 5409 if (is_root_cache(s)) { 5410 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5411 if (!s->memcg_kset) { 5412 err = -ENOMEM; 5413 goto out_del_kobj; 5414 } 5415 } 5416 #endif 5417 5418 kobject_uevent(&s->kobj, KOBJ_ADD); 5419 if (!unmergeable) { 5420 /* Setup first alias */ 5421 sysfs_slab_alias(s, s->name); 5422 } 5423 out: 5424 if (!unmergeable) 5425 kfree(name); 5426 return err; 5427 out_del_kobj: 5428 kobject_del(&s->kobj); 5429 goto out; 5430 } 5431 5432 void sysfs_slab_remove(struct kmem_cache *s) 5433 { 5434 if (slab_state < FULL) 5435 /* 5436 * Sysfs has not been setup yet so no need to remove the 5437 * cache from sysfs. 5438 */ 5439 return; 5440 5441 #ifdef CONFIG_MEMCG 5442 kset_unregister(s->memcg_kset); 5443 #endif 5444 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5445 kobject_del(&s->kobj); 5446 kobject_put(&s->kobj); 5447 } 5448 5449 /* 5450 * Need to buffer aliases during bootup until sysfs becomes 5451 * available lest we lose that information. 5452 */ 5453 struct saved_alias { 5454 struct kmem_cache *s; 5455 const char *name; 5456 struct saved_alias *next; 5457 }; 5458 5459 static struct saved_alias *alias_list; 5460 5461 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5462 { 5463 struct saved_alias *al; 5464 5465 if (slab_state == FULL) { 5466 /* 5467 * If we have a leftover link then remove it. 5468 */ 5469 sysfs_remove_link(&slab_kset->kobj, name); 5470 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5471 } 5472 5473 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5474 if (!al) 5475 return -ENOMEM; 5476 5477 al->s = s; 5478 al->name = name; 5479 al->next = alias_list; 5480 alias_list = al; 5481 return 0; 5482 } 5483 5484 static int __init slab_sysfs_init(void) 5485 { 5486 struct kmem_cache *s; 5487 int err; 5488 5489 mutex_lock(&slab_mutex); 5490 5491 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5492 if (!slab_kset) { 5493 mutex_unlock(&slab_mutex); 5494 pr_err("Cannot register slab subsystem.\n"); 5495 return -ENOSYS; 5496 } 5497 5498 slab_state = FULL; 5499 5500 list_for_each_entry(s, &slab_caches, list) { 5501 err = sysfs_slab_add(s); 5502 if (err) 5503 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5504 s->name); 5505 } 5506 5507 while (alias_list) { 5508 struct saved_alias *al = alias_list; 5509 5510 alias_list = alias_list->next; 5511 err = sysfs_slab_alias(al->s, al->name); 5512 if (err) 5513 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5514 al->name); 5515 kfree(al); 5516 } 5517 5518 mutex_unlock(&slab_mutex); 5519 resiliency_test(); 5520 return 0; 5521 } 5522 5523 __initcall(slab_sysfs_init); 5524 #endif /* CONFIG_SYSFS */ 5525 5526 /* 5527 * The /proc/slabinfo ABI 5528 */ 5529 #ifdef CONFIG_SLABINFO 5530 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5531 { 5532 unsigned long nr_slabs = 0; 5533 unsigned long nr_objs = 0; 5534 unsigned long nr_free = 0; 5535 int node; 5536 struct kmem_cache_node *n; 5537 5538 for_each_kmem_cache_node(s, node, n) { 5539 nr_slabs += node_nr_slabs(n); 5540 nr_objs += node_nr_objs(n); 5541 nr_free += count_partial(n, count_free); 5542 } 5543 5544 sinfo->active_objs = nr_objs - nr_free; 5545 sinfo->num_objs = nr_objs; 5546 sinfo->active_slabs = nr_slabs; 5547 sinfo->num_slabs = nr_slabs; 5548 sinfo->objects_per_slab = oo_objects(s->oo); 5549 sinfo->cache_order = oo_order(s->oo); 5550 } 5551 5552 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5553 { 5554 } 5555 5556 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5557 size_t count, loff_t *ppos) 5558 { 5559 return -EIO; 5560 } 5561 #endif /* CONFIG_SLABINFO */ 5562