1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/kmemcheck.h> 22 #include <linux/cpu.h> 23 #include <linux/cpuset.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 #include <linux/stacktrace.h> 32 33 #include <trace/events/kmem.h> 34 35 /* 36 * Lock order: 37 * 1. slub_lock (Global Semaphore) 38 * 2. node->list_lock 39 * 3. slab_lock(page) (Only on some arches and for debugging) 40 * 41 * slub_lock 42 * 43 * The role of the slub_lock is to protect the list of all the slabs 44 * and to synchronize major metadata changes to slab cache structures. 45 * 46 * The slab_lock is only used for debugging and on arches that do not 47 * have the ability to do a cmpxchg_double. It only protects the second 48 * double word in the page struct. Meaning 49 * A. page->freelist -> List of object free in a page 50 * B. page->counters -> Counters of objects 51 * C. page->frozen -> frozen state 52 * 53 * If a slab is frozen then it is exempt from list management. It is not 54 * on any list. The processor that froze the slab is the one who can 55 * perform list operations on the page. Other processors may put objects 56 * onto the freelist but the processor that froze the slab is the only 57 * one that can retrieve the objects from the page's freelist. 58 * 59 * The list_lock protects the partial and full list on each node and 60 * the partial slab counter. If taken then no new slabs may be added or 61 * removed from the lists nor make the number of partial slabs be modified. 62 * (Note that the total number of slabs is an atomic value that may be 63 * modified without taking the list lock). 64 * 65 * The list_lock is a centralized lock and thus we avoid taking it as 66 * much as possible. As long as SLUB does not have to handle partial 67 * slabs, operations can continue without any centralized lock. F.e. 68 * allocating a long series of objects that fill up slabs does not require 69 * the list lock. 70 * Interrupts are disabled during allocation and deallocation in order to 71 * make the slab allocator safe to use in the context of an irq. In addition 72 * interrupts are disabled to ensure that the processor does not change 73 * while handling per_cpu slabs, due to kernel preemption. 74 * 75 * SLUB assigns one slab for allocation to each processor. 76 * Allocations only occur from these slabs called cpu slabs. 77 * 78 * Slabs with free elements are kept on a partial list and during regular 79 * operations no list for full slabs is used. If an object in a full slab is 80 * freed then the slab will show up again on the partial lists. 81 * We track full slabs for debugging purposes though because otherwise we 82 * cannot scan all objects. 83 * 84 * Slabs are freed when they become empty. Teardown and setup is 85 * minimal so we rely on the page allocators per cpu caches for 86 * fast frees and allocs. 87 * 88 * Overloading of page flags that are otherwise used for LRU management. 89 * 90 * PageActive The slab is frozen and exempt from list processing. 91 * This means that the slab is dedicated to a purpose 92 * such as satisfying allocations for a specific 93 * processor. Objects may be freed in the slab while 94 * it is frozen but slab_free will then skip the usual 95 * list operations. It is up to the processor holding 96 * the slab to integrate the slab into the slab lists 97 * when the slab is no longer needed. 98 * 99 * One use of this flag is to mark slabs that are 100 * used for allocations. Then such a slab becomes a cpu 101 * slab. The cpu slab may be equipped with an additional 102 * freelist that allows lockless access to 103 * free objects in addition to the regular freelist 104 * that requires the slab lock. 105 * 106 * PageError Slab requires special handling due to debug 107 * options set. This moves slab handling out of 108 * the fast path and disables lockless freelists. 109 */ 110 111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 112 SLAB_TRACE | SLAB_DEBUG_FREE) 113 114 static inline int kmem_cache_debug(struct kmem_cache *s) 115 { 116 #ifdef CONFIG_SLUB_DEBUG 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 118 #else 119 return 0; 120 #endif 121 } 122 123 /* 124 * Issues still to be resolved: 125 * 126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 127 * 128 * - Variable sizing of the per node arrays 129 */ 130 131 /* Enable to test recovery from slab corruption on boot */ 132 #undef SLUB_RESILIENCY_TEST 133 134 /* Enable to log cmpxchg failures */ 135 #undef SLUB_DEBUG_CMPXCHG 136 137 /* 138 * Mininum number of partial slabs. These will be left on the partial 139 * lists even if they are empty. kmem_cache_shrink may reclaim them. 140 */ 141 #define MIN_PARTIAL 5 142 143 /* 144 * Maximum number of desirable partial slabs. 145 * The existence of more partial slabs makes kmem_cache_shrink 146 * sort the partial list by the number of objects in the. 147 */ 148 #define MAX_PARTIAL 10 149 150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 151 SLAB_POISON | SLAB_STORE_USER) 152 153 /* 154 * Debugging flags that require metadata to be stored in the slab. These get 155 * disabled when slub_debug=O is used and a cache's min order increases with 156 * metadata. 157 */ 158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 159 160 /* 161 * Set of flags that will prevent slab merging 162 */ 163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 165 SLAB_FAILSLAB) 166 167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 168 SLAB_CACHE_DMA | SLAB_NOTRACK) 169 170 #define OO_SHIFT 16 171 #define OO_MASK ((1 << OO_SHIFT) - 1) 172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 173 174 /* Internal SLUB flags */ 175 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 177 178 static int kmem_size = sizeof(struct kmem_cache); 179 180 #ifdef CONFIG_SMP 181 static struct notifier_block slab_notifier; 182 #endif 183 184 static enum { 185 DOWN, /* No slab functionality available */ 186 PARTIAL, /* Kmem_cache_node works */ 187 UP, /* Everything works but does not show up in sysfs */ 188 SYSFS /* Sysfs up */ 189 } slab_state = DOWN; 190 191 /* A list of all slab caches on the system */ 192 static DECLARE_RWSEM(slub_lock); 193 static LIST_HEAD(slab_caches); 194 195 /* 196 * Tracking user of a slab. 197 */ 198 #define TRACK_ADDRS_COUNT 16 199 struct track { 200 unsigned long addr; /* Called from address */ 201 #ifdef CONFIG_STACKTRACE 202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 203 #endif 204 int cpu; /* Was running on cpu */ 205 int pid; /* Pid context */ 206 unsigned long when; /* When did the operation occur */ 207 }; 208 209 enum track_item { TRACK_ALLOC, TRACK_FREE }; 210 211 #ifdef CONFIG_SYSFS 212 static int sysfs_slab_add(struct kmem_cache *); 213 static int sysfs_slab_alias(struct kmem_cache *, const char *); 214 static void sysfs_slab_remove(struct kmem_cache *); 215 216 #else 217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 219 { return 0; } 220 static inline void sysfs_slab_remove(struct kmem_cache *s) 221 { 222 kfree(s->name); 223 kfree(s); 224 } 225 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 __this_cpu_inc(s->cpu_slab->stat[si]); 232 #endif 233 } 234 235 /******************************************************************** 236 * Core slab cache functions 237 *******************************************************************/ 238 239 int slab_is_available(void) 240 { 241 return slab_state >= UP; 242 } 243 244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 245 { 246 return s->node[node]; 247 } 248 249 /* Verify that a pointer has an address that is valid within a slab page */ 250 static inline int check_valid_pointer(struct kmem_cache *s, 251 struct page *page, const void *object) 252 { 253 void *base; 254 255 if (!object) 256 return 1; 257 258 base = page_address(page); 259 if (object < base || object >= base + page->objects * s->size || 260 (object - base) % s->size) { 261 return 0; 262 } 263 264 return 1; 265 } 266 267 static inline void *get_freepointer(struct kmem_cache *s, void *object) 268 { 269 return *(void **)(object + s->offset); 270 } 271 272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 273 { 274 void *p; 275 276 #ifdef CONFIG_DEBUG_PAGEALLOC 277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 278 #else 279 p = get_freepointer(s, object); 280 #endif 281 return p; 282 } 283 284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 285 { 286 *(void **)(object + s->offset) = fp; 287 } 288 289 /* Loop over all objects in a slab */ 290 #define for_each_object(__p, __s, __addr, __objects) \ 291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 292 __p += (__s)->size) 293 294 /* Determine object index from a given position */ 295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 296 { 297 return (p - addr) / s->size; 298 } 299 300 static inline size_t slab_ksize(const struct kmem_cache *s) 301 { 302 #ifdef CONFIG_SLUB_DEBUG 303 /* 304 * Debugging requires use of the padding between object 305 * and whatever may come after it. 306 */ 307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 308 return s->objsize; 309 310 #endif 311 /* 312 * If we have the need to store the freelist pointer 313 * back there or track user information then we can 314 * only use the space before that information. 315 */ 316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 317 return s->inuse; 318 /* 319 * Else we can use all the padding etc for the allocation 320 */ 321 return s->size; 322 } 323 324 static inline int order_objects(int order, unsigned long size, int reserved) 325 { 326 return ((PAGE_SIZE << order) - reserved) / size; 327 } 328 329 static inline struct kmem_cache_order_objects oo_make(int order, 330 unsigned long size, int reserved) 331 { 332 struct kmem_cache_order_objects x = { 333 (order << OO_SHIFT) + order_objects(order, size, reserved) 334 }; 335 336 return x; 337 } 338 339 static inline int oo_order(struct kmem_cache_order_objects x) 340 { 341 return x.x >> OO_SHIFT; 342 } 343 344 static inline int oo_objects(struct kmem_cache_order_objects x) 345 { 346 return x.x & OO_MASK; 347 } 348 349 /* 350 * Per slab locking using the pagelock 351 */ 352 static __always_inline void slab_lock(struct page *page) 353 { 354 bit_spin_lock(PG_locked, &page->flags); 355 } 356 357 static __always_inline void slab_unlock(struct page *page) 358 { 359 __bit_spin_unlock(PG_locked, &page->flags); 360 } 361 362 /* Interrupts must be disabled (for the fallback code to work right) */ 363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 364 void *freelist_old, unsigned long counters_old, 365 void *freelist_new, unsigned long counters_new, 366 const char *n) 367 { 368 VM_BUG_ON(!irqs_disabled()); 369 #ifdef CONFIG_CMPXCHG_DOUBLE 370 if (s->flags & __CMPXCHG_DOUBLE) { 371 if (cmpxchg_double(&page->freelist, 372 freelist_old, counters_old, 373 freelist_new, counters_new)) 374 return 1; 375 } else 376 #endif 377 { 378 slab_lock(page); 379 if (page->freelist == freelist_old && page->counters == counters_old) { 380 page->freelist = freelist_new; 381 page->counters = counters_new; 382 slab_unlock(page); 383 return 1; 384 } 385 slab_unlock(page); 386 } 387 388 cpu_relax(); 389 stat(s, CMPXCHG_DOUBLE_FAIL); 390 391 #ifdef SLUB_DEBUG_CMPXCHG 392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 393 #endif 394 395 return 0; 396 } 397 398 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 399 void *freelist_old, unsigned long counters_old, 400 void *freelist_new, unsigned long counters_new, 401 const char *n) 402 { 403 #ifdef CONFIG_CMPXCHG_DOUBLE 404 if (s->flags & __CMPXCHG_DOUBLE) { 405 if (cmpxchg_double(&page->freelist, 406 freelist_old, counters_old, 407 freelist_new, counters_new)) 408 return 1; 409 } else 410 #endif 411 { 412 unsigned long flags; 413 414 local_irq_save(flags); 415 slab_lock(page); 416 if (page->freelist == freelist_old && page->counters == counters_old) { 417 page->freelist = freelist_new; 418 page->counters = counters_new; 419 slab_unlock(page); 420 local_irq_restore(flags); 421 return 1; 422 } 423 slab_unlock(page); 424 local_irq_restore(flags); 425 } 426 427 cpu_relax(); 428 stat(s, CMPXCHG_DOUBLE_FAIL); 429 430 #ifdef SLUB_DEBUG_CMPXCHG 431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 432 #endif 433 434 return 0; 435 } 436 437 #ifdef CONFIG_SLUB_DEBUG 438 /* 439 * Determine a map of object in use on a page. 440 * 441 * Node listlock must be held to guarantee that the page does 442 * not vanish from under us. 443 */ 444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 445 { 446 void *p; 447 void *addr = page_address(page); 448 449 for (p = page->freelist; p; p = get_freepointer(s, p)) 450 set_bit(slab_index(p, s, addr), map); 451 } 452 453 /* 454 * Debug settings: 455 */ 456 #ifdef CONFIG_SLUB_DEBUG_ON 457 static int slub_debug = DEBUG_DEFAULT_FLAGS; 458 #else 459 static int slub_debug; 460 #endif 461 462 static char *slub_debug_slabs; 463 static int disable_higher_order_debug; 464 465 /* 466 * Object debugging 467 */ 468 static void print_section(char *text, u8 *addr, unsigned int length) 469 { 470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 471 length, 1); 472 } 473 474 static struct track *get_track(struct kmem_cache *s, void *object, 475 enum track_item alloc) 476 { 477 struct track *p; 478 479 if (s->offset) 480 p = object + s->offset + sizeof(void *); 481 else 482 p = object + s->inuse; 483 484 return p + alloc; 485 } 486 487 static void set_track(struct kmem_cache *s, void *object, 488 enum track_item alloc, unsigned long addr) 489 { 490 struct track *p = get_track(s, object, alloc); 491 492 if (addr) { 493 #ifdef CONFIG_STACKTRACE 494 struct stack_trace trace; 495 int i; 496 497 trace.nr_entries = 0; 498 trace.max_entries = TRACK_ADDRS_COUNT; 499 trace.entries = p->addrs; 500 trace.skip = 3; 501 save_stack_trace(&trace); 502 503 /* See rant in lockdep.c */ 504 if (trace.nr_entries != 0 && 505 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 506 trace.nr_entries--; 507 508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 509 p->addrs[i] = 0; 510 #endif 511 p->addr = addr; 512 p->cpu = smp_processor_id(); 513 p->pid = current->pid; 514 p->when = jiffies; 515 } else 516 memset(p, 0, sizeof(struct track)); 517 } 518 519 static void init_tracking(struct kmem_cache *s, void *object) 520 { 521 if (!(s->flags & SLAB_STORE_USER)) 522 return; 523 524 set_track(s, object, TRACK_FREE, 0UL); 525 set_track(s, object, TRACK_ALLOC, 0UL); 526 } 527 528 static void print_track(const char *s, struct track *t) 529 { 530 if (!t->addr) 531 return; 532 533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 535 #ifdef CONFIG_STACKTRACE 536 { 537 int i; 538 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 539 if (t->addrs[i]) 540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 541 else 542 break; 543 } 544 #endif 545 } 546 547 static void print_tracking(struct kmem_cache *s, void *object) 548 { 549 if (!(s->flags & SLAB_STORE_USER)) 550 return; 551 552 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 553 print_track("Freed", get_track(s, object, TRACK_FREE)); 554 } 555 556 static void print_page_info(struct page *page) 557 { 558 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 559 page, page->objects, page->inuse, page->freelist, page->flags); 560 561 } 562 563 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 564 { 565 va_list args; 566 char buf[100]; 567 568 va_start(args, fmt); 569 vsnprintf(buf, sizeof(buf), fmt, args); 570 va_end(args); 571 printk(KERN_ERR "========================================" 572 "=====================================\n"); 573 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 574 printk(KERN_ERR "----------------------------------------" 575 "-------------------------------------\n\n"); 576 } 577 578 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 579 { 580 va_list args; 581 char buf[100]; 582 583 va_start(args, fmt); 584 vsnprintf(buf, sizeof(buf), fmt, args); 585 va_end(args); 586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 587 } 588 589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 590 { 591 unsigned int off; /* Offset of last byte */ 592 u8 *addr = page_address(page); 593 594 print_tracking(s, p); 595 596 print_page_info(page); 597 598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 599 p, p - addr, get_freepointer(s, p)); 600 601 if (p > addr + 16) 602 print_section("Bytes b4 ", p - 16, 16); 603 604 print_section("Object ", p, min_t(unsigned long, s->objsize, 605 PAGE_SIZE)); 606 if (s->flags & SLAB_RED_ZONE) 607 print_section("Redzone ", p + s->objsize, 608 s->inuse - s->objsize); 609 610 if (s->offset) 611 off = s->offset + sizeof(void *); 612 else 613 off = s->inuse; 614 615 if (s->flags & SLAB_STORE_USER) 616 off += 2 * sizeof(struct track); 617 618 if (off != s->size) 619 /* Beginning of the filler is the free pointer */ 620 print_section("Padding ", p + off, s->size - off); 621 622 dump_stack(); 623 } 624 625 static void object_err(struct kmem_cache *s, struct page *page, 626 u8 *object, char *reason) 627 { 628 slab_bug(s, "%s", reason); 629 print_trailer(s, page, object); 630 } 631 632 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 633 { 634 va_list args; 635 char buf[100]; 636 637 va_start(args, fmt); 638 vsnprintf(buf, sizeof(buf), fmt, args); 639 va_end(args); 640 slab_bug(s, "%s", buf); 641 print_page_info(page); 642 dump_stack(); 643 } 644 645 static void init_object(struct kmem_cache *s, void *object, u8 val) 646 { 647 u8 *p = object; 648 649 if (s->flags & __OBJECT_POISON) { 650 memset(p, POISON_FREE, s->objsize - 1); 651 p[s->objsize - 1] = POISON_END; 652 } 653 654 if (s->flags & SLAB_RED_ZONE) 655 memset(p + s->objsize, val, s->inuse - s->objsize); 656 } 657 658 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 659 void *from, void *to) 660 { 661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 662 memset(from, data, to - from); 663 } 664 665 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 666 u8 *object, char *what, 667 u8 *start, unsigned int value, unsigned int bytes) 668 { 669 u8 *fault; 670 u8 *end; 671 672 fault = memchr_inv(start, value, bytes); 673 if (!fault) 674 return 1; 675 676 end = start + bytes; 677 while (end > fault && end[-1] == value) 678 end--; 679 680 slab_bug(s, "%s overwritten", what); 681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 682 fault, end - 1, fault[0], value); 683 print_trailer(s, page, object); 684 685 restore_bytes(s, what, value, fault, end); 686 return 0; 687 } 688 689 /* 690 * Object layout: 691 * 692 * object address 693 * Bytes of the object to be managed. 694 * If the freepointer may overlay the object then the free 695 * pointer is the first word of the object. 696 * 697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 698 * 0xa5 (POISON_END) 699 * 700 * object + s->objsize 701 * Padding to reach word boundary. This is also used for Redzoning. 702 * Padding is extended by another word if Redzoning is enabled and 703 * objsize == inuse. 704 * 705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 706 * 0xcc (RED_ACTIVE) for objects in use. 707 * 708 * object + s->inuse 709 * Meta data starts here. 710 * 711 * A. Free pointer (if we cannot overwrite object on free) 712 * B. Tracking data for SLAB_STORE_USER 713 * C. Padding to reach required alignment boundary or at mininum 714 * one word if debugging is on to be able to detect writes 715 * before the word boundary. 716 * 717 * Padding is done using 0x5a (POISON_INUSE) 718 * 719 * object + s->size 720 * Nothing is used beyond s->size. 721 * 722 * If slabcaches are merged then the objsize and inuse boundaries are mostly 723 * ignored. And therefore no slab options that rely on these boundaries 724 * may be used with merged slabcaches. 725 */ 726 727 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 728 { 729 unsigned long off = s->inuse; /* The end of info */ 730 731 if (s->offset) 732 /* Freepointer is placed after the object. */ 733 off += sizeof(void *); 734 735 if (s->flags & SLAB_STORE_USER) 736 /* We also have user information there */ 737 off += 2 * sizeof(struct track); 738 739 if (s->size == off) 740 return 1; 741 742 return check_bytes_and_report(s, page, p, "Object padding", 743 p + off, POISON_INUSE, s->size - off); 744 } 745 746 /* Check the pad bytes at the end of a slab page */ 747 static int slab_pad_check(struct kmem_cache *s, struct page *page) 748 { 749 u8 *start; 750 u8 *fault; 751 u8 *end; 752 int length; 753 int remainder; 754 755 if (!(s->flags & SLAB_POISON)) 756 return 1; 757 758 start = page_address(page); 759 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 760 end = start + length; 761 remainder = length % s->size; 762 if (!remainder) 763 return 1; 764 765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 766 if (!fault) 767 return 1; 768 while (end > fault && end[-1] == POISON_INUSE) 769 end--; 770 771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 772 print_section("Padding ", end - remainder, remainder); 773 774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 775 return 0; 776 } 777 778 static int check_object(struct kmem_cache *s, struct page *page, 779 void *object, u8 val) 780 { 781 u8 *p = object; 782 u8 *endobject = object + s->objsize; 783 784 if (s->flags & SLAB_RED_ZONE) { 785 if (!check_bytes_and_report(s, page, object, "Redzone", 786 endobject, val, s->inuse - s->objsize)) 787 return 0; 788 } else { 789 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 790 check_bytes_and_report(s, page, p, "Alignment padding", 791 endobject, POISON_INUSE, s->inuse - s->objsize); 792 } 793 } 794 795 if (s->flags & SLAB_POISON) { 796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 797 (!check_bytes_and_report(s, page, p, "Poison", p, 798 POISON_FREE, s->objsize - 1) || 799 !check_bytes_and_report(s, page, p, "Poison", 800 p + s->objsize - 1, POISON_END, 1))) 801 return 0; 802 /* 803 * check_pad_bytes cleans up on its own. 804 */ 805 check_pad_bytes(s, page, p); 806 } 807 808 if (!s->offset && val == SLUB_RED_ACTIVE) 809 /* 810 * Object and freepointer overlap. Cannot check 811 * freepointer while object is allocated. 812 */ 813 return 1; 814 815 /* Check free pointer validity */ 816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 817 object_err(s, page, p, "Freepointer corrupt"); 818 /* 819 * No choice but to zap it and thus lose the remainder 820 * of the free objects in this slab. May cause 821 * another error because the object count is now wrong. 822 */ 823 set_freepointer(s, p, NULL); 824 return 0; 825 } 826 return 1; 827 } 828 829 static int check_slab(struct kmem_cache *s, struct page *page) 830 { 831 int maxobj; 832 833 VM_BUG_ON(!irqs_disabled()); 834 835 if (!PageSlab(page)) { 836 slab_err(s, page, "Not a valid slab page"); 837 return 0; 838 } 839 840 maxobj = order_objects(compound_order(page), s->size, s->reserved); 841 if (page->objects > maxobj) { 842 slab_err(s, page, "objects %u > max %u", 843 s->name, page->objects, maxobj); 844 return 0; 845 } 846 if (page->inuse > page->objects) { 847 slab_err(s, page, "inuse %u > max %u", 848 s->name, page->inuse, page->objects); 849 return 0; 850 } 851 /* Slab_pad_check fixes things up after itself */ 852 slab_pad_check(s, page); 853 return 1; 854 } 855 856 /* 857 * Determine if a certain object on a page is on the freelist. Must hold the 858 * slab lock to guarantee that the chains are in a consistent state. 859 */ 860 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 861 { 862 int nr = 0; 863 void *fp; 864 void *object = NULL; 865 unsigned long max_objects; 866 867 fp = page->freelist; 868 while (fp && nr <= page->objects) { 869 if (fp == search) 870 return 1; 871 if (!check_valid_pointer(s, page, fp)) { 872 if (object) { 873 object_err(s, page, object, 874 "Freechain corrupt"); 875 set_freepointer(s, object, NULL); 876 break; 877 } else { 878 slab_err(s, page, "Freepointer corrupt"); 879 page->freelist = NULL; 880 page->inuse = page->objects; 881 slab_fix(s, "Freelist cleared"); 882 return 0; 883 } 884 break; 885 } 886 object = fp; 887 fp = get_freepointer(s, object); 888 nr++; 889 } 890 891 max_objects = order_objects(compound_order(page), s->size, s->reserved); 892 if (max_objects > MAX_OBJS_PER_PAGE) 893 max_objects = MAX_OBJS_PER_PAGE; 894 895 if (page->objects != max_objects) { 896 slab_err(s, page, "Wrong number of objects. Found %d but " 897 "should be %d", page->objects, max_objects); 898 page->objects = max_objects; 899 slab_fix(s, "Number of objects adjusted."); 900 } 901 if (page->inuse != page->objects - nr) { 902 slab_err(s, page, "Wrong object count. Counter is %d but " 903 "counted were %d", page->inuse, page->objects - nr); 904 page->inuse = page->objects - nr; 905 slab_fix(s, "Object count adjusted."); 906 } 907 return search == NULL; 908 } 909 910 static void trace(struct kmem_cache *s, struct page *page, void *object, 911 int alloc) 912 { 913 if (s->flags & SLAB_TRACE) { 914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 915 s->name, 916 alloc ? "alloc" : "free", 917 object, page->inuse, 918 page->freelist); 919 920 if (!alloc) 921 print_section("Object ", (void *)object, s->objsize); 922 923 dump_stack(); 924 } 925 } 926 927 /* 928 * Hooks for other subsystems that check memory allocations. In a typical 929 * production configuration these hooks all should produce no code at all. 930 */ 931 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 932 { 933 flags &= gfp_allowed_mask; 934 lockdep_trace_alloc(flags); 935 might_sleep_if(flags & __GFP_WAIT); 936 937 return should_failslab(s->objsize, flags, s->flags); 938 } 939 940 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 941 { 942 flags &= gfp_allowed_mask; 943 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 944 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); 945 } 946 947 static inline void slab_free_hook(struct kmem_cache *s, void *x) 948 { 949 kmemleak_free_recursive(x, s->flags); 950 951 /* 952 * Trouble is that we may no longer disable interupts in the fast path 953 * So in order to make the debug calls that expect irqs to be 954 * disabled we need to disable interrupts temporarily. 955 */ 956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 957 { 958 unsigned long flags; 959 960 local_irq_save(flags); 961 kmemcheck_slab_free(s, x, s->objsize); 962 debug_check_no_locks_freed(x, s->objsize); 963 local_irq_restore(flags); 964 } 965 #endif 966 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 967 debug_check_no_obj_freed(x, s->objsize); 968 } 969 970 /* 971 * Tracking of fully allocated slabs for debugging purposes. 972 * 973 * list_lock must be held. 974 */ 975 static void add_full(struct kmem_cache *s, 976 struct kmem_cache_node *n, struct page *page) 977 { 978 if (!(s->flags & SLAB_STORE_USER)) 979 return; 980 981 list_add(&page->lru, &n->full); 982 } 983 984 /* 985 * list_lock must be held. 986 */ 987 static void remove_full(struct kmem_cache *s, struct page *page) 988 { 989 if (!(s->flags & SLAB_STORE_USER)) 990 return; 991 992 list_del(&page->lru); 993 } 994 995 /* Tracking of the number of slabs for debugging purposes */ 996 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 997 { 998 struct kmem_cache_node *n = get_node(s, node); 999 1000 return atomic_long_read(&n->nr_slabs); 1001 } 1002 1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1004 { 1005 return atomic_long_read(&n->nr_slabs); 1006 } 1007 1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1009 { 1010 struct kmem_cache_node *n = get_node(s, node); 1011 1012 /* 1013 * May be called early in order to allocate a slab for the 1014 * kmem_cache_node structure. Solve the chicken-egg 1015 * dilemma by deferring the increment of the count during 1016 * bootstrap (see early_kmem_cache_node_alloc). 1017 */ 1018 if (n) { 1019 atomic_long_inc(&n->nr_slabs); 1020 atomic_long_add(objects, &n->total_objects); 1021 } 1022 } 1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1024 { 1025 struct kmem_cache_node *n = get_node(s, node); 1026 1027 atomic_long_dec(&n->nr_slabs); 1028 atomic_long_sub(objects, &n->total_objects); 1029 } 1030 1031 /* Object debug checks for alloc/free paths */ 1032 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1033 void *object) 1034 { 1035 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1036 return; 1037 1038 init_object(s, object, SLUB_RED_INACTIVE); 1039 init_tracking(s, object); 1040 } 1041 1042 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1043 void *object, unsigned long addr) 1044 { 1045 if (!check_slab(s, page)) 1046 goto bad; 1047 1048 if (!check_valid_pointer(s, page, object)) { 1049 object_err(s, page, object, "Freelist Pointer check fails"); 1050 goto bad; 1051 } 1052 1053 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1054 goto bad; 1055 1056 /* Success perform special debug activities for allocs */ 1057 if (s->flags & SLAB_STORE_USER) 1058 set_track(s, object, TRACK_ALLOC, addr); 1059 trace(s, page, object, 1); 1060 init_object(s, object, SLUB_RED_ACTIVE); 1061 return 1; 1062 1063 bad: 1064 if (PageSlab(page)) { 1065 /* 1066 * If this is a slab page then lets do the best we can 1067 * to avoid issues in the future. Marking all objects 1068 * as used avoids touching the remaining objects. 1069 */ 1070 slab_fix(s, "Marking all objects used"); 1071 page->inuse = page->objects; 1072 page->freelist = NULL; 1073 } 1074 return 0; 1075 } 1076 1077 static noinline int free_debug_processing(struct kmem_cache *s, 1078 struct page *page, void *object, unsigned long addr) 1079 { 1080 unsigned long flags; 1081 int rc = 0; 1082 1083 local_irq_save(flags); 1084 slab_lock(page); 1085 1086 if (!check_slab(s, page)) 1087 goto fail; 1088 1089 if (!check_valid_pointer(s, page, object)) { 1090 slab_err(s, page, "Invalid object pointer 0x%p", object); 1091 goto fail; 1092 } 1093 1094 if (on_freelist(s, page, object)) { 1095 object_err(s, page, object, "Object already free"); 1096 goto fail; 1097 } 1098 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1100 goto out; 1101 1102 if (unlikely(s != page->slab)) { 1103 if (!PageSlab(page)) { 1104 slab_err(s, page, "Attempt to free object(0x%p) " 1105 "outside of slab", object); 1106 } else if (!page->slab) { 1107 printk(KERN_ERR 1108 "SLUB <none>: no slab for object 0x%p.\n", 1109 object); 1110 dump_stack(); 1111 } else 1112 object_err(s, page, object, 1113 "page slab pointer corrupt."); 1114 goto fail; 1115 } 1116 1117 if (s->flags & SLAB_STORE_USER) 1118 set_track(s, object, TRACK_FREE, addr); 1119 trace(s, page, object, 0); 1120 init_object(s, object, SLUB_RED_INACTIVE); 1121 rc = 1; 1122 out: 1123 slab_unlock(page); 1124 local_irq_restore(flags); 1125 return rc; 1126 1127 fail: 1128 slab_fix(s, "Object at 0x%p not freed", object); 1129 goto out; 1130 } 1131 1132 static int __init setup_slub_debug(char *str) 1133 { 1134 slub_debug = DEBUG_DEFAULT_FLAGS; 1135 if (*str++ != '=' || !*str) 1136 /* 1137 * No options specified. Switch on full debugging. 1138 */ 1139 goto out; 1140 1141 if (*str == ',') 1142 /* 1143 * No options but restriction on slabs. This means full 1144 * debugging for slabs matching a pattern. 1145 */ 1146 goto check_slabs; 1147 1148 if (tolower(*str) == 'o') { 1149 /* 1150 * Avoid enabling debugging on caches if its minimum order 1151 * would increase as a result. 1152 */ 1153 disable_higher_order_debug = 1; 1154 goto out; 1155 } 1156 1157 slub_debug = 0; 1158 if (*str == '-') 1159 /* 1160 * Switch off all debugging measures. 1161 */ 1162 goto out; 1163 1164 /* 1165 * Determine which debug features should be switched on 1166 */ 1167 for (; *str && *str != ','; str++) { 1168 switch (tolower(*str)) { 1169 case 'f': 1170 slub_debug |= SLAB_DEBUG_FREE; 1171 break; 1172 case 'z': 1173 slub_debug |= SLAB_RED_ZONE; 1174 break; 1175 case 'p': 1176 slub_debug |= SLAB_POISON; 1177 break; 1178 case 'u': 1179 slub_debug |= SLAB_STORE_USER; 1180 break; 1181 case 't': 1182 slub_debug |= SLAB_TRACE; 1183 break; 1184 case 'a': 1185 slub_debug |= SLAB_FAILSLAB; 1186 break; 1187 default: 1188 printk(KERN_ERR "slub_debug option '%c' " 1189 "unknown. skipped\n", *str); 1190 } 1191 } 1192 1193 check_slabs: 1194 if (*str == ',') 1195 slub_debug_slabs = str + 1; 1196 out: 1197 return 1; 1198 } 1199 1200 __setup("slub_debug", setup_slub_debug); 1201 1202 static unsigned long kmem_cache_flags(unsigned long objsize, 1203 unsigned long flags, const char *name, 1204 void (*ctor)(void *)) 1205 { 1206 /* 1207 * Enable debugging if selected on the kernel commandline. 1208 */ 1209 if (slub_debug && (!slub_debug_slabs || 1210 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1211 flags |= slub_debug; 1212 1213 return flags; 1214 } 1215 #else 1216 static inline void setup_object_debug(struct kmem_cache *s, 1217 struct page *page, void *object) {} 1218 1219 static inline int alloc_debug_processing(struct kmem_cache *s, 1220 struct page *page, void *object, unsigned long addr) { return 0; } 1221 1222 static inline int free_debug_processing(struct kmem_cache *s, 1223 struct page *page, void *object, unsigned long addr) { return 0; } 1224 1225 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1226 { return 1; } 1227 static inline int check_object(struct kmem_cache *s, struct page *page, 1228 void *object, u8 val) { return 1; } 1229 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1230 struct page *page) {} 1231 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1232 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1233 unsigned long flags, const char *name, 1234 void (*ctor)(void *)) 1235 { 1236 return flags; 1237 } 1238 #define slub_debug 0 1239 1240 #define disable_higher_order_debug 0 1241 1242 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1243 { return 0; } 1244 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1245 { return 0; } 1246 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1247 int objects) {} 1248 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1249 int objects) {} 1250 1251 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1252 { return 0; } 1253 1254 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1255 void *object) {} 1256 1257 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1258 1259 #endif /* CONFIG_SLUB_DEBUG */ 1260 1261 /* 1262 * Slab allocation and freeing 1263 */ 1264 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1265 struct kmem_cache_order_objects oo) 1266 { 1267 int order = oo_order(oo); 1268 1269 flags |= __GFP_NOTRACK; 1270 1271 if (node == NUMA_NO_NODE) 1272 return alloc_pages(flags, order); 1273 else 1274 return alloc_pages_exact_node(node, flags, order); 1275 } 1276 1277 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1278 { 1279 struct page *page; 1280 struct kmem_cache_order_objects oo = s->oo; 1281 gfp_t alloc_gfp; 1282 1283 flags &= gfp_allowed_mask; 1284 1285 if (flags & __GFP_WAIT) 1286 local_irq_enable(); 1287 1288 flags |= s->allocflags; 1289 1290 /* 1291 * Let the initial higher-order allocation fail under memory pressure 1292 * so we fall-back to the minimum order allocation. 1293 */ 1294 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1295 1296 page = alloc_slab_page(alloc_gfp, node, oo); 1297 if (unlikely(!page)) { 1298 oo = s->min; 1299 /* 1300 * Allocation may have failed due to fragmentation. 1301 * Try a lower order alloc if possible 1302 */ 1303 page = alloc_slab_page(flags, node, oo); 1304 1305 if (page) 1306 stat(s, ORDER_FALLBACK); 1307 } 1308 1309 if (flags & __GFP_WAIT) 1310 local_irq_disable(); 1311 1312 if (!page) 1313 return NULL; 1314 1315 if (kmemcheck_enabled 1316 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1317 int pages = 1 << oo_order(oo); 1318 1319 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1320 1321 /* 1322 * Objects from caches that have a constructor don't get 1323 * cleared when they're allocated, so we need to do it here. 1324 */ 1325 if (s->ctor) 1326 kmemcheck_mark_uninitialized_pages(page, pages); 1327 else 1328 kmemcheck_mark_unallocated_pages(page, pages); 1329 } 1330 1331 page->objects = oo_objects(oo); 1332 mod_zone_page_state(page_zone(page), 1333 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1334 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1335 1 << oo_order(oo)); 1336 1337 return page; 1338 } 1339 1340 static void setup_object(struct kmem_cache *s, struct page *page, 1341 void *object) 1342 { 1343 setup_object_debug(s, page, object); 1344 if (unlikely(s->ctor)) 1345 s->ctor(object); 1346 } 1347 1348 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1349 { 1350 struct page *page; 1351 void *start; 1352 void *last; 1353 void *p; 1354 1355 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1356 1357 page = allocate_slab(s, 1358 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1359 if (!page) 1360 goto out; 1361 1362 inc_slabs_node(s, page_to_nid(page), page->objects); 1363 page->slab = s; 1364 page->flags |= 1 << PG_slab; 1365 1366 start = page_address(page); 1367 1368 if (unlikely(s->flags & SLAB_POISON)) 1369 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1370 1371 last = start; 1372 for_each_object(p, s, start, page->objects) { 1373 setup_object(s, page, last); 1374 set_freepointer(s, last, p); 1375 last = p; 1376 } 1377 setup_object(s, page, last); 1378 set_freepointer(s, last, NULL); 1379 1380 page->freelist = start; 1381 page->inuse = page->objects; 1382 page->frozen = 1; 1383 out: 1384 return page; 1385 } 1386 1387 static void __free_slab(struct kmem_cache *s, struct page *page) 1388 { 1389 int order = compound_order(page); 1390 int pages = 1 << order; 1391 1392 if (kmem_cache_debug(s)) { 1393 void *p; 1394 1395 slab_pad_check(s, page); 1396 for_each_object(p, s, page_address(page), 1397 page->objects) 1398 check_object(s, page, p, SLUB_RED_INACTIVE); 1399 } 1400 1401 kmemcheck_free_shadow(page, compound_order(page)); 1402 1403 mod_zone_page_state(page_zone(page), 1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1406 -pages); 1407 1408 __ClearPageSlab(page); 1409 reset_page_mapcount(page); 1410 if (current->reclaim_state) 1411 current->reclaim_state->reclaimed_slab += pages; 1412 __free_pages(page, order); 1413 } 1414 1415 #define need_reserve_slab_rcu \ 1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1417 1418 static void rcu_free_slab(struct rcu_head *h) 1419 { 1420 struct page *page; 1421 1422 if (need_reserve_slab_rcu) 1423 page = virt_to_head_page(h); 1424 else 1425 page = container_of((struct list_head *)h, struct page, lru); 1426 1427 __free_slab(page->slab, page); 1428 } 1429 1430 static void free_slab(struct kmem_cache *s, struct page *page) 1431 { 1432 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1433 struct rcu_head *head; 1434 1435 if (need_reserve_slab_rcu) { 1436 int order = compound_order(page); 1437 int offset = (PAGE_SIZE << order) - s->reserved; 1438 1439 VM_BUG_ON(s->reserved != sizeof(*head)); 1440 head = page_address(page) + offset; 1441 } else { 1442 /* 1443 * RCU free overloads the RCU head over the LRU 1444 */ 1445 head = (void *)&page->lru; 1446 } 1447 1448 call_rcu(head, rcu_free_slab); 1449 } else 1450 __free_slab(s, page); 1451 } 1452 1453 static void discard_slab(struct kmem_cache *s, struct page *page) 1454 { 1455 dec_slabs_node(s, page_to_nid(page), page->objects); 1456 free_slab(s, page); 1457 } 1458 1459 /* 1460 * Management of partially allocated slabs. 1461 * 1462 * list_lock must be held. 1463 */ 1464 static inline void add_partial(struct kmem_cache_node *n, 1465 struct page *page, int tail) 1466 { 1467 n->nr_partial++; 1468 if (tail == DEACTIVATE_TO_TAIL) 1469 list_add_tail(&page->lru, &n->partial); 1470 else 1471 list_add(&page->lru, &n->partial); 1472 } 1473 1474 /* 1475 * list_lock must be held. 1476 */ 1477 static inline void remove_partial(struct kmem_cache_node *n, 1478 struct page *page) 1479 { 1480 list_del(&page->lru); 1481 n->nr_partial--; 1482 } 1483 1484 /* 1485 * Lock slab, remove from the partial list and put the object into the 1486 * per cpu freelist. 1487 * 1488 * Returns a list of objects or NULL if it fails. 1489 * 1490 * Must hold list_lock. 1491 */ 1492 static inline void *acquire_slab(struct kmem_cache *s, 1493 struct kmem_cache_node *n, struct page *page, 1494 int mode) 1495 { 1496 void *freelist; 1497 unsigned long counters; 1498 struct page new; 1499 1500 /* 1501 * Zap the freelist and set the frozen bit. 1502 * The old freelist is the list of objects for the 1503 * per cpu allocation list. 1504 */ 1505 do { 1506 freelist = page->freelist; 1507 counters = page->counters; 1508 new.counters = counters; 1509 if (mode) 1510 new.inuse = page->objects; 1511 1512 VM_BUG_ON(new.frozen); 1513 new.frozen = 1; 1514 1515 } while (!__cmpxchg_double_slab(s, page, 1516 freelist, counters, 1517 NULL, new.counters, 1518 "lock and freeze")); 1519 1520 remove_partial(n, page); 1521 return freelist; 1522 } 1523 1524 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1525 1526 /* 1527 * Try to allocate a partial slab from a specific node. 1528 */ 1529 static void *get_partial_node(struct kmem_cache *s, 1530 struct kmem_cache_node *n, struct kmem_cache_cpu *c) 1531 { 1532 struct page *page, *page2; 1533 void *object = NULL; 1534 1535 /* 1536 * Racy check. If we mistakenly see no partial slabs then we 1537 * just allocate an empty slab. If we mistakenly try to get a 1538 * partial slab and there is none available then get_partials() 1539 * will return NULL. 1540 */ 1541 if (!n || !n->nr_partial) 1542 return NULL; 1543 1544 spin_lock(&n->list_lock); 1545 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1546 void *t = acquire_slab(s, n, page, object == NULL); 1547 int available; 1548 1549 if (!t) 1550 break; 1551 1552 if (!object) { 1553 c->page = page; 1554 c->node = page_to_nid(page); 1555 stat(s, ALLOC_FROM_PARTIAL); 1556 object = t; 1557 available = page->objects - page->inuse; 1558 } else { 1559 page->freelist = t; 1560 available = put_cpu_partial(s, page, 0); 1561 } 1562 if (kmem_cache_debug(s) || available > s->cpu_partial / 2) 1563 break; 1564 1565 } 1566 spin_unlock(&n->list_lock); 1567 return object; 1568 } 1569 1570 /* 1571 * Get a page from somewhere. Search in increasing NUMA distances. 1572 */ 1573 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags, 1574 struct kmem_cache_cpu *c) 1575 { 1576 #ifdef CONFIG_NUMA 1577 struct zonelist *zonelist; 1578 struct zoneref *z; 1579 struct zone *zone; 1580 enum zone_type high_zoneidx = gfp_zone(flags); 1581 void *object; 1582 1583 /* 1584 * The defrag ratio allows a configuration of the tradeoffs between 1585 * inter node defragmentation and node local allocations. A lower 1586 * defrag_ratio increases the tendency to do local allocations 1587 * instead of attempting to obtain partial slabs from other nodes. 1588 * 1589 * If the defrag_ratio is set to 0 then kmalloc() always 1590 * returns node local objects. If the ratio is higher then kmalloc() 1591 * may return off node objects because partial slabs are obtained 1592 * from other nodes and filled up. 1593 * 1594 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1595 * defrag_ratio = 1000) then every (well almost) allocation will 1596 * first attempt to defrag slab caches on other nodes. This means 1597 * scanning over all nodes to look for partial slabs which may be 1598 * expensive if we do it every time we are trying to find a slab 1599 * with available objects. 1600 */ 1601 if (!s->remote_node_defrag_ratio || 1602 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1603 return NULL; 1604 1605 get_mems_allowed(); 1606 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1607 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1608 struct kmem_cache_node *n; 1609 1610 n = get_node(s, zone_to_nid(zone)); 1611 1612 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1613 n->nr_partial > s->min_partial) { 1614 object = get_partial_node(s, n, c); 1615 if (object) { 1616 put_mems_allowed(); 1617 return object; 1618 } 1619 } 1620 } 1621 put_mems_allowed(); 1622 #endif 1623 return NULL; 1624 } 1625 1626 /* 1627 * Get a partial page, lock it and return it. 1628 */ 1629 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1630 struct kmem_cache_cpu *c) 1631 { 1632 void *object; 1633 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1634 1635 object = get_partial_node(s, get_node(s, searchnode), c); 1636 if (object || node != NUMA_NO_NODE) 1637 return object; 1638 1639 return get_any_partial(s, flags, c); 1640 } 1641 1642 #ifdef CONFIG_PREEMPT 1643 /* 1644 * Calculate the next globally unique transaction for disambiguiation 1645 * during cmpxchg. The transactions start with the cpu number and are then 1646 * incremented by CONFIG_NR_CPUS. 1647 */ 1648 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1649 #else 1650 /* 1651 * No preemption supported therefore also no need to check for 1652 * different cpus. 1653 */ 1654 #define TID_STEP 1 1655 #endif 1656 1657 static inline unsigned long next_tid(unsigned long tid) 1658 { 1659 return tid + TID_STEP; 1660 } 1661 1662 static inline unsigned int tid_to_cpu(unsigned long tid) 1663 { 1664 return tid % TID_STEP; 1665 } 1666 1667 static inline unsigned long tid_to_event(unsigned long tid) 1668 { 1669 return tid / TID_STEP; 1670 } 1671 1672 static inline unsigned int init_tid(int cpu) 1673 { 1674 return cpu; 1675 } 1676 1677 static inline void note_cmpxchg_failure(const char *n, 1678 const struct kmem_cache *s, unsigned long tid) 1679 { 1680 #ifdef SLUB_DEBUG_CMPXCHG 1681 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1682 1683 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1684 1685 #ifdef CONFIG_PREEMPT 1686 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1687 printk("due to cpu change %d -> %d\n", 1688 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1689 else 1690 #endif 1691 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1692 printk("due to cpu running other code. Event %ld->%ld\n", 1693 tid_to_event(tid), tid_to_event(actual_tid)); 1694 else 1695 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1696 actual_tid, tid, next_tid(tid)); 1697 #endif 1698 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1699 } 1700 1701 void init_kmem_cache_cpus(struct kmem_cache *s) 1702 { 1703 int cpu; 1704 1705 for_each_possible_cpu(cpu) 1706 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1707 } 1708 1709 /* 1710 * Remove the cpu slab 1711 */ 1712 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1713 { 1714 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1715 struct page *page = c->page; 1716 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1717 int lock = 0; 1718 enum slab_modes l = M_NONE, m = M_NONE; 1719 void *freelist; 1720 void *nextfree; 1721 int tail = DEACTIVATE_TO_HEAD; 1722 struct page new; 1723 struct page old; 1724 1725 if (page->freelist) { 1726 stat(s, DEACTIVATE_REMOTE_FREES); 1727 tail = DEACTIVATE_TO_TAIL; 1728 } 1729 1730 c->tid = next_tid(c->tid); 1731 c->page = NULL; 1732 freelist = c->freelist; 1733 c->freelist = NULL; 1734 1735 /* 1736 * Stage one: Free all available per cpu objects back 1737 * to the page freelist while it is still frozen. Leave the 1738 * last one. 1739 * 1740 * There is no need to take the list->lock because the page 1741 * is still frozen. 1742 */ 1743 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1744 void *prior; 1745 unsigned long counters; 1746 1747 do { 1748 prior = page->freelist; 1749 counters = page->counters; 1750 set_freepointer(s, freelist, prior); 1751 new.counters = counters; 1752 new.inuse--; 1753 VM_BUG_ON(!new.frozen); 1754 1755 } while (!__cmpxchg_double_slab(s, page, 1756 prior, counters, 1757 freelist, new.counters, 1758 "drain percpu freelist")); 1759 1760 freelist = nextfree; 1761 } 1762 1763 /* 1764 * Stage two: Ensure that the page is unfrozen while the 1765 * list presence reflects the actual number of objects 1766 * during unfreeze. 1767 * 1768 * We setup the list membership and then perform a cmpxchg 1769 * with the count. If there is a mismatch then the page 1770 * is not unfrozen but the page is on the wrong list. 1771 * 1772 * Then we restart the process which may have to remove 1773 * the page from the list that we just put it on again 1774 * because the number of objects in the slab may have 1775 * changed. 1776 */ 1777 redo: 1778 1779 old.freelist = page->freelist; 1780 old.counters = page->counters; 1781 VM_BUG_ON(!old.frozen); 1782 1783 /* Determine target state of the slab */ 1784 new.counters = old.counters; 1785 if (freelist) { 1786 new.inuse--; 1787 set_freepointer(s, freelist, old.freelist); 1788 new.freelist = freelist; 1789 } else 1790 new.freelist = old.freelist; 1791 1792 new.frozen = 0; 1793 1794 if (!new.inuse && n->nr_partial > s->min_partial) 1795 m = M_FREE; 1796 else if (new.freelist) { 1797 m = M_PARTIAL; 1798 if (!lock) { 1799 lock = 1; 1800 /* 1801 * Taking the spinlock removes the possiblity 1802 * that acquire_slab() will see a slab page that 1803 * is frozen 1804 */ 1805 spin_lock(&n->list_lock); 1806 } 1807 } else { 1808 m = M_FULL; 1809 if (kmem_cache_debug(s) && !lock) { 1810 lock = 1; 1811 /* 1812 * This also ensures that the scanning of full 1813 * slabs from diagnostic functions will not see 1814 * any frozen slabs. 1815 */ 1816 spin_lock(&n->list_lock); 1817 } 1818 } 1819 1820 if (l != m) { 1821 1822 if (l == M_PARTIAL) 1823 1824 remove_partial(n, page); 1825 1826 else if (l == M_FULL) 1827 1828 remove_full(s, page); 1829 1830 if (m == M_PARTIAL) { 1831 1832 add_partial(n, page, tail); 1833 stat(s, tail); 1834 1835 } else if (m == M_FULL) { 1836 1837 stat(s, DEACTIVATE_FULL); 1838 add_full(s, n, page); 1839 1840 } 1841 } 1842 1843 l = m; 1844 if (!__cmpxchg_double_slab(s, page, 1845 old.freelist, old.counters, 1846 new.freelist, new.counters, 1847 "unfreezing slab")) 1848 goto redo; 1849 1850 if (lock) 1851 spin_unlock(&n->list_lock); 1852 1853 if (m == M_FREE) { 1854 stat(s, DEACTIVATE_EMPTY); 1855 discard_slab(s, page); 1856 stat(s, FREE_SLAB); 1857 } 1858 } 1859 1860 /* Unfreeze all the cpu partial slabs */ 1861 static void unfreeze_partials(struct kmem_cache *s) 1862 { 1863 struct kmem_cache_node *n = NULL; 1864 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); 1865 struct page *page; 1866 1867 while ((page = c->partial)) { 1868 enum slab_modes { M_PARTIAL, M_FREE }; 1869 enum slab_modes l, m; 1870 struct page new; 1871 struct page old; 1872 1873 c->partial = page->next; 1874 l = M_FREE; 1875 1876 do { 1877 1878 old.freelist = page->freelist; 1879 old.counters = page->counters; 1880 VM_BUG_ON(!old.frozen); 1881 1882 new.counters = old.counters; 1883 new.freelist = old.freelist; 1884 1885 new.frozen = 0; 1886 1887 if (!new.inuse && (!n || n->nr_partial > s->min_partial)) 1888 m = M_FREE; 1889 else { 1890 struct kmem_cache_node *n2 = get_node(s, 1891 page_to_nid(page)); 1892 1893 m = M_PARTIAL; 1894 if (n != n2) { 1895 if (n) 1896 spin_unlock(&n->list_lock); 1897 1898 n = n2; 1899 spin_lock(&n->list_lock); 1900 } 1901 } 1902 1903 if (l != m) { 1904 if (l == M_PARTIAL) 1905 remove_partial(n, page); 1906 else 1907 add_partial(n, page, 1); 1908 1909 l = m; 1910 } 1911 1912 } while (!cmpxchg_double_slab(s, page, 1913 old.freelist, old.counters, 1914 new.freelist, new.counters, 1915 "unfreezing slab")); 1916 1917 if (m == M_FREE) { 1918 stat(s, DEACTIVATE_EMPTY); 1919 discard_slab(s, page); 1920 stat(s, FREE_SLAB); 1921 } 1922 } 1923 1924 if (n) 1925 spin_unlock(&n->list_lock); 1926 } 1927 1928 /* 1929 * Put a page that was just frozen (in __slab_free) into a partial page 1930 * slot if available. This is done without interrupts disabled and without 1931 * preemption disabled. The cmpxchg is racy and may put the partial page 1932 * onto a random cpus partial slot. 1933 * 1934 * If we did not find a slot then simply move all the partials to the 1935 * per node partial list. 1936 */ 1937 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1938 { 1939 struct page *oldpage; 1940 int pages; 1941 int pobjects; 1942 1943 do { 1944 pages = 0; 1945 pobjects = 0; 1946 oldpage = this_cpu_read(s->cpu_slab->partial); 1947 1948 if (oldpage) { 1949 pobjects = oldpage->pobjects; 1950 pages = oldpage->pages; 1951 if (drain && pobjects > s->cpu_partial) { 1952 unsigned long flags; 1953 /* 1954 * partial array is full. Move the existing 1955 * set to the per node partial list. 1956 */ 1957 local_irq_save(flags); 1958 unfreeze_partials(s); 1959 local_irq_restore(flags); 1960 pobjects = 0; 1961 pages = 0; 1962 } 1963 } 1964 1965 pages++; 1966 pobjects += page->objects - page->inuse; 1967 1968 page->pages = pages; 1969 page->pobjects = pobjects; 1970 page->next = oldpage; 1971 1972 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 1973 stat(s, CPU_PARTIAL_FREE); 1974 return pobjects; 1975 } 1976 1977 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1978 { 1979 stat(s, CPUSLAB_FLUSH); 1980 deactivate_slab(s, c); 1981 } 1982 1983 /* 1984 * Flush cpu slab. 1985 * 1986 * Called from IPI handler with interrupts disabled. 1987 */ 1988 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1989 { 1990 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 1991 1992 if (likely(c)) { 1993 if (c->page) 1994 flush_slab(s, c); 1995 1996 unfreeze_partials(s); 1997 } 1998 } 1999 2000 static void flush_cpu_slab(void *d) 2001 { 2002 struct kmem_cache *s = d; 2003 2004 __flush_cpu_slab(s, smp_processor_id()); 2005 } 2006 2007 static void flush_all(struct kmem_cache *s) 2008 { 2009 on_each_cpu(flush_cpu_slab, s, 1); 2010 } 2011 2012 /* 2013 * Check if the objects in a per cpu structure fit numa 2014 * locality expectations. 2015 */ 2016 static inline int node_match(struct kmem_cache_cpu *c, int node) 2017 { 2018 #ifdef CONFIG_NUMA 2019 if (node != NUMA_NO_NODE && c->node != node) 2020 return 0; 2021 #endif 2022 return 1; 2023 } 2024 2025 static int count_free(struct page *page) 2026 { 2027 return page->objects - page->inuse; 2028 } 2029 2030 static unsigned long count_partial(struct kmem_cache_node *n, 2031 int (*get_count)(struct page *)) 2032 { 2033 unsigned long flags; 2034 unsigned long x = 0; 2035 struct page *page; 2036 2037 spin_lock_irqsave(&n->list_lock, flags); 2038 list_for_each_entry(page, &n->partial, lru) 2039 x += get_count(page); 2040 spin_unlock_irqrestore(&n->list_lock, flags); 2041 return x; 2042 } 2043 2044 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2045 { 2046 #ifdef CONFIG_SLUB_DEBUG 2047 return atomic_long_read(&n->total_objects); 2048 #else 2049 return 0; 2050 #endif 2051 } 2052 2053 static noinline void 2054 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2055 { 2056 int node; 2057 2058 printk(KERN_WARNING 2059 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2060 nid, gfpflags); 2061 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2062 "default order: %d, min order: %d\n", s->name, s->objsize, 2063 s->size, oo_order(s->oo), oo_order(s->min)); 2064 2065 if (oo_order(s->min) > get_order(s->objsize)) 2066 printk(KERN_WARNING " %s debugging increased min order, use " 2067 "slub_debug=O to disable.\n", s->name); 2068 2069 for_each_online_node(node) { 2070 struct kmem_cache_node *n = get_node(s, node); 2071 unsigned long nr_slabs; 2072 unsigned long nr_objs; 2073 unsigned long nr_free; 2074 2075 if (!n) 2076 continue; 2077 2078 nr_free = count_partial(n, count_free); 2079 nr_slabs = node_nr_slabs(n); 2080 nr_objs = node_nr_objs(n); 2081 2082 printk(KERN_WARNING 2083 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2084 node, nr_slabs, nr_objs, nr_free); 2085 } 2086 } 2087 2088 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2089 int node, struct kmem_cache_cpu **pc) 2090 { 2091 void *object; 2092 struct kmem_cache_cpu *c; 2093 struct page *page = new_slab(s, flags, node); 2094 2095 if (page) { 2096 c = __this_cpu_ptr(s->cpu_slab); 2097 if (c->page) 2098 flush_slab(s, c); 2099 2100 /* 2101 * No other reference to the page yet so we can 2102 * muck around with it freely without cmpxchg 2103 */ 2104 object = page->freelist; 2105 page->freelist = NULL; 2106 2107 stat(s, ALLOC_SLAB); 2108 c->node = page_to_nid(page); 2109 c->page = page; 2110 *pc = c; 2111 } else 2112 object = NULL; 2113 2114 return object; 2115 } 2116 2117 /* 2118 * Slow path. The lockless freelist is empty or we need to perform 2119 * debugging duties. 2120 * 2121 * Processing is still very fast if new objects have been freed to the 2122 * regular freelist. In that case we simply take over the regular freelist 2123 * as the lockless freelist and zap the regular freelist. 2124 * 2125 * If that is not working then we fall back to the partial lists. We take the 2126 * first element of the freelist as the object to allocate now and move the 2127 * rest of the freelist to the lockless freelist. 2128 * 2129 * And if we were unable to get a new slab from the partial slab lists then 2130 * we need to allocate a new slab. This is the slowest path since it involves 2131 * a call to the page allocator and the setup of a new slab. 2132 */ 2133 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2134 unsigned long addr, struct kmem_cache_cpu *c) 2135 { 2136 void **object; 2137 unsigned long flags; 2138 struct page new; 2139 unsigned long counters; 2140 2141 local_irq_save(flags); 2142 #ifdef CONFIG_PREEMPT 2143 /* 2144 * We may have been preempted and rescheduled on a different 2145 * cpu before disabling interrupts. Need to reload cpu area 2146 * pointer. 2147 */ 2148 c = this_cpu_ptr(s->cpu_slab); 2149 #endif 2150 2151 if (!c->page) 2152 goto new_slab; 2153 redo: 2154 if (unlikely(!node_match(c, node))) { 2155 stat(s, ALLOC_NODE_MISMATCH); 2156 deactivate_slab(s, c); 2157 goto new_slab; 2158 } 2159 2160 stat(s, ALLOC_SLOWPATH); 2161 2162 do { 2163 object = c->page->freelist; 2164 counters = c->page->counters; 2165 new.counters = counters; 2166 VM_BUG_ON(!new.frozen); 2167 2168 /* 2169 * If there is no object left then we use this loop to 2170 * deactivate the slab which is simple since no objects 2171 * are left in the slab and therefore we do not need to 2172 * put the page back onto the partial list. 2173 * 2174 * If there are objects left then we retrieve them 2175 * and use them to refill the per cpu queue. 2176 */ 2177 2178 new.inuse = c->page->objects; 2179 new.frozen = object != NULL; 2180 2181 } while (!__cmpxchg_double_slab(s, c->page, 2182 object, counters, 2183 NULL, new.counters, 2184 "__slab_alloc")); 2185 2186 if (!object) { 2187 c->page = NULL; 2188 stat(s, DEACTIVATE_BYPASS); 2189 goto new_slab; 2190 } 2191 2192 stat(s, ALLOC_REFILL); 2193 2194 load_freelist: 2195 c->freelist = get_freepointer(s, object); 2196 c->tid = next_tid(c->tid); 2197 local_irq_restore(flags); 2198 return object; 2199 2200 new_slab: 2201 2202 if (c->partial) { 2203 c->page = c->partial; 2204 c->partial = c->page->next; 2205 c->node = page_to_nid(c->page); 2206 stat(s, CPU_PARTIAL_ALLOC); 2207 c->freelist = NULL; 2208 goto redo; 2209 } 2210 2211 /* Then do expensive stuff like retrieving pages from the partial lists */ 2212 object = get_partial(s, gfpflags, node, c); 2213 2214 if (unlikely(!object)) { 2215 2216 object = new_slab_objects(s, gfpflags, node, &c); 2217 2218 if (unlikely(!object)) { 2219 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2220 slab_out_of_memory(s, gfpflags, node); 2221 2222 local_irq_restore(flags); 2223 return NULL; 2224 } 2225 } 2226 2227 if (likely(!kmem_cache_debug(s))) 2228 goto load_freelist; 2229 2230 /* Only entered in the debug case */ 2231 if (!alloc_debug_processing(s, c->page, object, addr)) 2232 goto new_slab; /* Slab failed checks. Next slab needed */ 2233 2234 c->freelist = get_freepointer(s, object); 2235 deactivate_slab(s, c); 2236 c->node = NUMA_NO_NODE; 2237 local_irq_restore(flags); 2238 return object; 2239 } 2240 2241 /* 2242 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2243 * have the fastpath folded into their functions. So no function call 2244 * overhead for requests that can be satisfied on the fastpath. 2245 * 2246 * The fastpath works by first checking if the lockless freelist can be used. 2247 * If not then __slab_alloc is called for slow processing. 2248 * 2249 * Otherwise we can simply pick the next object from the lockless free list. 2250 */ 2251 static __always_inline void *slab_alloc(struct kmem_cache *s, 2252 gfp_t gfpflags, int node, unsigned long addr) 2253 { 2254 void **object; 2255 struct kmem_cache_cpu *c; 2256 unsigned long tid; 2257 2258 if (slab_pre_alloc_hook(s, gfpflags)) 2259 return NULL; 2260 2261 redo: 2262 2263 /* 2264 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2265 * enabled. We may switch back and forth between cpus while 2266 * reading from one cpu area. That does not matter as long 2267 * as we end up on the original cpu again when doing the cmpxchg. 2268 */ 2269 c = __this_cpu_ptr(s->cpu_slab); 2270 2271 /* 2272 * The transaction ids are globally unique per cpu and per operation on 2273 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2274 * occurs on the right processor and that there was no operation on the 2275 * linked list in between. 2276 */ 2277 tid = c->tid; 2278 barrier(); 2279 2280 object = c->freelist; 2281 if (unlikely(!object || !node_match(c, node))) 2282 2283 object = __slab_alloc(s, gfpflags, node, addr, c); 2284 2285 else { 2286 /* 2287 * The cmpxchg will only match if there was no additional 2288 * operation and if we are on the right processor. 2289 * 2290 * The cmpxchg does the following atomically (without lock semantics!) 2291 * 1. Relocate first pointer to the current per cpu area. 2292 * 2. Verify that tid and freelist have not been changed 2293 * 3. If they were not changed replace tid and freelist 2294 * 2295 * Since this is without lock semantics the protection is only against 2296 * code executing on this cpu *not* from access by other cpus. 2297 */ 2298 if (unlikely(!irqsafe_cpu_cmpxchg_double( 2299 s->cpu_slab->freelist, s->cpu_slab->tid, 2300 object, tid, 2301 get_freepointer_safe(s, object), next_tid(tid)))) { 2302 2303 note_cmpxchg_failure("slab_alloc", s, tid); 2304 goto redo; 2305 } 2306 stat(s, ALLOC_FASTPATH); 2307 } 2308 2309 if (unlikely(gfpflags & __GFP_ZERO) && object) 2310 memset(object, 0, s->objsize); 2311 2312 slab_post_alloc_hook(s, gfpflags, object); 2313 2314 return object; 2315 } 2316 2317 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2318 { 2319 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2320 2321 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 2322 2323 return ret; 2324 } 2325 EXPORT_SYMBOL(kmem_cache_alloc); 2326 2327 #ifdef CONFIG_TRACING 2328 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2329 { 2330 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2331 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2332 return ret; 2333 } 2334 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2335 2336 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2337 { 2338 void *ret = kmalloc_order(size, flags, order); 2339 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2340 return ret; 2341 } 2342 EXPORT_SYMBOL(kmalloc_order_trace); 2343 #endif 2344 2345 #ifdef CONFIG_NUMA 2346 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2347 { 2348 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2349 2350 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2351 s->objsize, s->size, gfpflags, node); 2352 2353 return ret; 2354 } 2355 EXPORT_SYMBOL(kmem_cache_alloc_node); 2356 2357 #ifdef CONFIG_TRACING 2358 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2359 gfp_t gfpflags, 2360 int node, size_t size) 2361 { 2362 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2363 2364 trace_kmalloc_node(_RET_IP_, ret, 2365 size, s->size, gfpflags, node); 2366 return ret; 2367 } 2368 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2369 #endif 2370 #endif 2371 2372 /* 2373 * Slow patch handling. This may still be called frequently since objects 2374 * have a longer lifetime than the cpu slabs in most processing loads. 2375 * 2376 * So we still attempt to reduce cache line usage. Just take the slab 2377 * lock and free the item. If there is no additional partial page 2378 * handling required then we can return immediately. 2379 */ 2380 static void __slab_free(struct kmem_cache *s, struct page *page, 2381 void *x, unsigned long addr) 2382 { 2383 void *prior; 2384 void **object = (void *)x; 2385 int was_frozen; 2386 int inuse; 2387 struct page new; 2388 unsigned long counters; 2389 struct kmem_cache_node *n = NULL; 2390 unsigned long uninitialized_var(flags); 2391 2392 stat(s, FREE_SLOWPATH); 2393 2394 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr)) 2395 return; 2396 2397 do { 2398 prior = page->freelist; 2399 counters = page->counters; 2400 set_freepointer(s, object, prior); 2401 new.counters = counters; 2402 was_frozen = new.frozen; 2403 new.inuse--; 2404 if ((!new.inuse || !prior) && !was_frozen && !n) { 2405 2406 if (!kmem_cache_debug(s) && !prior) 2407 2408 /* 2409 * Slab was on no list before and will be partially empty 2410 * We can defer the list move and instead freeze it. 2411 */ 2412 new.frozen = 1; 2413 2414 else { /* Needs to be taken off a list */ 2415 2416 n = get_node(s, page_to_nid(page)); 2417 /* 2418 * Speculatively acquire the list_lock. 2419 * If the cmpxchg does not succeed then we may 2420 * drop the list_lock without any processing. 2421 * 2422 * Otherwise the list_lock will synchronize with 2423 * other processors updating the list of slabs. 2424 */ 2425 spin_lock_irqsave(&n->list_lock, flags); 2426 2427 } 2428 } 2429 inuse = new.inuse; 2430 2431 } while (!cmpxchg_double_slab(s, page, 2432 prior, counters, 2433 object, new.counters, 2434 "__slab_free")); 2435 2436 if (likely(!n)) { 2437 2438 /* 2439 * If we just froze the page then put it onto the 2440 * per cpu partial list. 2441 */ 2442 if (new.frozen && !was_frozen) 2443 put_cpu_partial(s, page, 1); 2444 2445 /* 2446 * The list lock was not taken therefore no list 2447 * activity can be necessary. 2448 */ 2449 if (was_frozen) 2450 stat(s, FREE_FROZEN); 2451 return; 2452 } 2453 2454 /* 2455 * was_frozen may have been set after we acquired the list_lock in 2456 * an earlier loop. So we need to check it here again. 2457 */ 2458 if (was_frozen) 2459 stat(s, FREE_FROZEN); 2460 else { 2461 if (unlikely(!inuse && n->nr_partial > s->min_partial)) 2462 goto slab_empty; 2463 2464 /* 2465 * Objects left in the slab. If it was not on the partial list before 2466 * then add it. 2467 */ 2468 if (unlikely(!prior)) { 2469 remove_full(s, page); 2470 add_partial(n, page, DEACTIVATE_TO_TAIL); 2471 stat(s, FREE_ADD_PARTIAL); 2472 } 2473 } 2474 spin_unlock_irqrestore(&n->list_lock, flags); 2475 return; 2476 2477 slab_empty: 2478 if (prior) { 2479 /* 2480 * Slab on the partial list. 2481 */ 2482 remove_partial(n, page); 2483 stat(s, FREE_REMOVE_PARTIAL); 2484 } else 2485 /* Slab must be on the full list */ 2486 remove_full(s, page); 2487 2488 spin_unlock_irqrestore(&n->list_lock, flags); 2489 stat(s, FREE_SLAB); 2490 discard_slab(s, page); 2491 } 2492 2493 /* 2494 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2495 * can perform fastpath freeing without additional function calls. 2496 * 2497 * The fastpath is only possible if we are freeing to the current cpu slab 2498 * of this processor. This typically the case if we have just allocated 2499 * the item before. 2500 * 2501 * If fastpath is not possible then fall back to __slab_free where we deal 2502 * with all sorts of special processing. 2503 */ 2504 static __always_inline void slab_free(struct kmem_cache *s, 2505 struct page *page, void *x, unsigned long addr) 2506 { 2507 void **object = (void *)x; 2508 struct kmem_cache_cpu *c; 2509 unsigned long tid; 2510 2511 slab_free_hook(s, x); 2512 2513 redo: 2514 /* 2515 * Determine the currently cpus per cpu slab. 2516 * The cpu may change afterward. However that does not matter since 2517 * data is retrieved via this pointer. If we are on the same cpu 2518 * during the cmpxchg then the free will succedd. 2519 */ 2520 c = __this_cpu_ptr(s->cpu_slab); 2521 2522 tid = c->tid; 2523 barrier(); 2524 2525 if (likely(page == c->page)) { 2526 set_freepointer(s, object, c->freelist); 2527 2528 if (unlikely(!irqsafe_cpu_cmpxchg_double( 2529 s->cpu_slab->freelist, s->cpu_slab->tid, 2530 c->freelist, tid, 2531 object, next_tid(tid)))) { 2532 2533 note_cmpxchg_failure("slab_free", s, tid); 2534 goto redo; 2535 } 2536 stat(s, FREE_FASTPATH); 2537 } else 2538 __slab_free(s, page, x, addr); 2539 2540 } 2541 2542 void kmem_cache_free(struct kmem_cache *s, void *x) 2543 { 2544 struct page *page; 2545 2546 page = virt_to_head_page(x); 2547 2548 slab_free(s, page, x, _RET_IP_); 2549 2550 trace_kmem_cache_free(_RET_IP_, x); 2551 } 2552 EXPORT_SYMBOL(kmem_cache_free); 2553 2554 /* 2555 * Object placement in a slab is made very easy because we always start at 2556 * offset 0. If we tune the size of the object to the alignment then we can 2557 * get the required alignment by putting one properly sized object after 2558 * another. 2559 * 2560 * Notice that the allocation order determines the sizes of the per cpu 2561 * caches. Each processor has always one slab available for allocations. 2562 * Increasing the allocation order reduces the number of times that slabs 2563 * must be moved on and off the partial lists and is therefore a factor in 2564 * locking overhead. 2565 */ 2566 2567 /* 2568 * Mininum / Maximum order of slab pages. This influences locking overhead 2569 * and slab fragmentation. A higher order reduces the number of partial slabs 2570 * and increases the number of allocations possible without having to 2571 * take the list_lock. 2572 */ 2573 static int slub_min_order; 2574 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2575 static int slub_min_objects; 2576 2577 /* 2578 * Merge control. If this is set then no merging of slab caches will occur. 2579 * (Could be removed. This was introduced to pacify the merge skeptics.) 2580 */ 2581 static int slub_nomerge; 2582 2583 /* 2584 * Calculate the order of allocation given an slab object size. 2585 * 2586 * The order of allocation has significant impact on performance and other 2587 * system components. Generally order 0 allocations should be preferred since 2588 * order 0 does not cause fragmentation in the page allocator. Larger objects 2589 * be problematic to put into order 0 slabs because there may be too much 2590 * unused space left. We go to a higher order if more than 1/16th of the slab 2591 * would be wasted. 2592 * 2593 * In order to reach satisfactory performance we must ensure that a minimum 2594 * number of objects is in one slab. Otherwise we may generate too much 2595 * activity on the partial lists which requires taking the list_lock. This is 2596 * less a concern for large slabs though which are rarely used. 2597 * 2598 * slub_max_order specifies the order where we begin to stop considering the 2599 * number of objects in a slab as critical. If we reach slub_max_order then 2600 * we try to keep the page order as low as possible. So we accept more waste 2601 * of space in favor of a small page order. 2602 * 2603 * Higher order allocations also allow the placement of more objects in a 2604 * slab and thereby reduce object handling overhead. If the user has 2605 * requested a higher mininum order then we start with that one instead of 2606 * the smallest order which will fit the object. 2607 */ 2608 static inline int slab_order(int size, int min_objects, 2609 int max_order, int fract_leftover, int reserved) 2610 { 2611 int order; 2612 int rem; 2613 int min_order = slub_min_order; 2614 2615 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2616 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2617 2618 for (order = max(min_order, 2619 fls(min_objects * size - 1) - PAGE_SHIFT); 2620 order <= max_order; order++) { 2621 2622 unsigned long slab_size = PAGE_SIZE << order; 2623 2624 if (slab_size < min_objects * size + reserved) 2625 continue; 2626 2627 rem = (slab_size - reserved) % size; 2628 2629 if (rem <= slab_size / fract_leftover) 2630 break; 2631 2632 } 2633 2634 return order; 2635 } 2636 2637 static inline int calculate_order(int size, int reserved) 2638 { 2639 int order; 2640 int min_objects; 2641 int fraction; 2642 int max_objects; 2643 2644 /* 2645 * Attempt to find best configuration for a slab. This 2646 * works by first attempting to generate a layout with 2647 * the best configuration and backing off gradually. 2648 * 2649 * First we reduce the acceptable waste in a slab. Then 2650 * we reduce the minimum objects required in a slab. 2651 */ 2652 min_objects = slub_min_objects; 2653 if (!min_objects) 2654 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2655 max_objects = order_objects(slub_max_order, size, reserved); 2656 min_objects = min(min_objects, max_objects); 2657 2658 while (min_objects > 1) { 2659 fraction = 16; 2660 while (fraction >= 4) { 2661 order = slab_order(size, min_objects, 2662 slub_max_order, fraction, reserved); 2663 if (order <= slub_max_order) 2664 return order; 2665 fraction /= 2; 2666 } 2667 min_objects--; 2668 } 2669 2670 /* 2671 * We were unable to place multiple objects in a slab. Now 2672 * lets see if we can place a single object there. 2673 */ 2674 order = slab_order(size, 1, slub_max_order, 1, reserved); 2675 if (order <= slub_max_order) 2676 return order; 2677 2678 /* 2679 * Doh this slab cannot be placed using slub_max_order. 2680 */ 2681 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2682 if (order < MAX_ORDER) 2683 return order; 2684 return -ENOSYS; 2685 } 2686 2687 /* 2688 * Figure out what the alignment of the objects will be. 2689 */ 2690 static unsigned long calculate_alignment(unsigned long flags, 2691 unsigned long align, unsigned long size) 2692 { 2693 /* 2694 * If the user wants hardware cache aligned objects then follow that 2695 * suggestion if the object is sufficiently large. 2696 * 2697 * The hardware cache alignment cannot override the specified 2698 * alignment though. If that is greater then use it. 2699 */ 2700 if (flags & SLAB_HWCACHE_ALIGN) { 2701 unsigned long ralign = cache_line_size(); 2702 while (size <= ralign / 2) 2703 ralign /= 2; 2704 align = max(align, ralign); 2705 } 2706 2707 if (align < ARCH_SLAB_MINALIGN) 2708 align = ARCH_SLAB_MINALIGN; 2709 2710 return ALIGN(align, sizeof(void *)); 2711 } 2712 2713 static void 2714 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2715 { 2716 n->nr_partial = 0; 2717 spin_lock_init(&n->list_lock); 2718 INIT_LIST_HEAD(&n->partial); 2719 #ifdef CONFIG_SLUB_DEBUG 2720 atomic_long_set(&n->nr_slabs, 0); 2721 atomic_long_set(&n->total_objects, 0); 2722 INIT_LIST_HEAD(&n->full); 2723 #endif 2724 } 2725 2726 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2727 { 2728 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2729 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); 2730 2731 /* 2732 * Must align to double word boundary for the double cmpxchg 2733 * instructions to work; see __pcpu_double_call_return_bool(). 2734 */ 2735 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2736 2 * sizeof(void *)); 2737 2738 if (!s->cpu_slab) 2739 return 0; 2740 2741 init_kmem_cache_cpus(s); 2742 2743 return 1; 2744 } 2745 2746 static struct kmem_cache *kmem_cache_node; 2747 2748 /* 2749 * No kmalloc_node yet so do it by hand. We know that this is the first 2750 * slab on the node for this slabcache. There are no concurrent accesses 2751 * possible. 2752 * 2753 * Note that this function only works on the kmalloc_node_cache 2754 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2755 * memory on a fresh node that has no slab structures yet. 2756 */ 2757 static void early_kmem_cache_node_alloc(int node) 2758 { 2759 struct page *page; 2760 struct kmem_cache_node *n; 2761 2762 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2763 2764 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2765 2766 BUG_ON(!page); 2767 if (page_to_nid(page) != node) { 2768 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2769 "node %d\n", node); 2770 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2771 "in order to be able to continue\n"); 2772 } 2773 2774 n = page->freelist; 2775 BUG_ON(!n); 2776 page->freelist = get_freepointer(kmem_cache_node, n); 2777 page->inuse = 1; 2778 page->frozen = 0; 2779 kmem_cache_node->node[node] = n; 2780 #ifdef CONFIG_SLUB_DEBUG 2781 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2782 init_tracking(kmem_cache_node, n); 2783 #endif 2784 init_kmem_cache_node(n, kmem_cache_node); 2785 inc_slabs_node(kmem_cache_node, node, page->objects); 2786 2787 add_partial(n, page, DEACTIVATE_TO_HEAD); 2788 } 2789 2790 static void free_kmem_cache_nodes(struct kmem_cache *s) 2791 { 2792 int node; 2793 2794 for_each_node_state(node, N_NORMAL_MEMORY) { 2795 struct kmem_cache_node *n = s->node[node]; 2796 2797 if (n) 2798 kmem_cache_free(kmem_cache_node, n); 2799 2800 s->node[node] = NULL; 2801 } 2802 } 2803 2804 static int init_kmem_cache_nodes(struct kmem_cache *s) 2805 { 2806 int node; 2807 2808 for_each_node_state(node, N_NORMAL_MEMORY) { 2809 struct kmem_cache_node *n; 2810 2811 if (slab_state == DOWN) { 2812 early_kmem_cache_node_alloc(node); 2813 continue; 2814 } 2815 n = kmem_cache_alloc_node(kmem_cache_node, 2816 GFP_KERNEL, node); 2817 2818 if (!n) { 2819 free_kmem_cache_nodes(s); 2820 return 0; 2821 } 2822 2823 s->node[node] = n; 2824 init_kmem_cache_node(n, s); 2825 } 2826 return 1; 2827 } 2828 2829 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2830 { 2831 if (min < MIN_PARTIAL) 2832 min = MIN_PARTIAL; 2833 else if (min > MAX_PARTIAL) 2834 min = MAX_PARTIAL; 2835 s->min_partial = min; 2836 } 2837 2838 /* 2839 * calculate_sizes() determines the order and the distribution of data within 2840 * a slab object. 2841 */ 2842 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2843 { 2844 unsigned long flags = s->flags; 2845 unsigned long size = s->objsize; 2846 unsigned long align = s->align; 2847 int order; 2848 2849 /* 2850 * Round up object size to the next word boundary. We can only 2851 * place the free pointer at word boundaries and this determines 2852 * the possible location of the free pointer. 2853 */ 2854 size = ALIGN(size, sizeof(void *)); 2855 2856 #ifdef CONFIG_SLUB_DEBUG 2857 /* 2858 * Determine if we can poison the object itself. If the user of 2859 * the slab may touch the object after free or before allocation 2860 * then we should never poison the object itself. 2861 */ 2862 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2863 !s->ctor) 2864 s->flags |= __OBJECT_POISON; 2865 else 2866 s->flags &= ~__OBJECT_POISON; 2867 2868 2869 /* 2870 * If we are Redzoning then check if there is some space between the 2871 * end of the object and the free pointer. If not then add an 2872 * additional word to have some bytes to store Redzone information. 2873 */ 2874 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2875 size += sizeof(void *); 2876 #endif 2877 2878 /* 2879 * With that we have determined the number of bytes in actual use 2880 * by the object. This is the potential offset to the free pointer. 2881 */ 2882 s->inuse = size; 2883 2884 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2885 s->ctor)) { 2886 /* 2887 * Relocate free pointer after the object if it is not 2888 * permitted to overwrite the first word of the object on 2889 * kmem_cache_free. 2890 * 2891 * This is the case if we do RCU, have a constructor or 2892 * destructor or are poisoning the objects. 2893 */ 2894 s->offset = size; 2895 size += sizeof(void *); 2896 } 2897 2898 #ifdef CONFIG_SLUB_DEBUG 2899 if (flags & SLAB_STORE_USER) 2900 /* 2901 * Need to store information about allocs and frees after 2902 * the object. 2903 */ 2904 size += 2 * sizeof(struct track); 2905 2906 if (flags & SLAB_RED_ZONE) 2907 /* 2908 * Add some empty padding so that we can catch 2909 * overwrites from earlier objects rather than let 2910 * tracking information or the free pointer be 2911 * corrupted if a user writes before the start 2912 * of the object. 2913 */ 2914 size += sizeof(void *); 2915 #endif 2916 2917 /* 2918 * Determine the alignment based on various parameters that the 2919 * user specified and the dynamic determination of cache line size 2920 * on bootup. 2921 */ 2922 align = calculate_alignment(flags, align, s->objsize); 2923 s->align = align; 2924 2925 /* 2926 * SLUB stores one object immediately after another beginning from 2927 * offset 0. In order to align the objects we have to simply size 2928 * each object to conform to the alignment. 2929 */ 2930 size = ALIGN(size, align); 2931 s->size = size; 2932 if (forced_order >= 0) 2933 order = forced_order; 2934 else 2935 order = calculate_order(size, s->reserved); 2936 2937 if (order < 0) 2938 return 0; 2939 2940 s->allocflags = 0; 2941 if (order) 2942 s->allocflags |= __GFP_COMP; 2943 2944 if (s->flags & SLAB_CACHE_DMA) 2945 s->allocflags |= SLUB_DMA; 2946 2947 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2948 s->allocflags |= __GFP_RECLAIMABLE; 2949 2950 /* 2951 * Determine the number of objects per slab 2952 */ 2953 s->oo = oo_make(order, size, s->reserved); 2954 s->min = oo_make(get_order(size), size, s->reserved); 2955 if (oo_objects(s->oo) > oo_objects(s->max)) 2956 s->max = s->oo; 2957 2958 return !!oo_objects(s->oo); 2959 2960 } 2961 2962 static int kmem_cache_open(struct kmem_cache *s, 2963 const char *name, size_t size, 2964 size_t align, unsigned long flags, 2965 void (*ctor)(void *)) 2966 { 2967 memset(s, 0, kmem_size); 2968 s->name = name; 2969 s->ctor = ctor; 2970 s->objsize = size; 2971 s->align = align; 2972 s->flags = kmem_cache_flags(size, flags, name, ctor); 2973 s->reserved = 0; 2974 2975 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 2976 s->reserved = sizeof(struct rcu_head); 2977 2978 if (!calculate_sizes(s, -1)) 2979 goto error; 2980 if (disable_higher_order_debug) { 2981 /* 2982 * Disable debugging flags that store metadata if the min slab 2983 * order increased. 2984 */ 2985 if (get_order(s->size) > get_order(s->objsize)) { 2986 s->flags &= ~DEBUG_METADATA_FLAGS; 2987 s->offset = 0; 2988 if (!calculate_sizes(s, -1)) 2989 goto error; 2990 } 2991 } 2992 2993 #ifdef CONFIG_CMPXCHG_DOUBLE 2994 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 2995 /* Enable fast mode */ 2996 s->flags |= __CMPXCHG_DOUBLE; 2997 #endif 2998 2999 /* 3000 * The larger the object size is, the more pages we want on the partial 3001 * list to avoid pounding the page allocator excessively. 3002 */ 3003 set_min_partial(s, ilog2(s->size) / 2); 3004 3005 /* 3006 * cpu_partial determined the maximum number of objects kept in the 3007 * per cpu partial lists of a processor. 3008 * 3009 * Per cpu partial lists mainly contain slabs that just have one 3010 * object freed. If they are used for allocation then they can be 3011 * filled up again with minimal effort. The slab will never hit the 3012 * per node partial lists and therefore no locking will be required. 3013 * 3014 * This setting also determines 3015 * 3016 * A) The number of objects from per cpu partial slabs dumped to the 3017 * per node list when we reach the limit. 3018 * B) The number of objects in cpu partial slabs to extract from the 3019 * per node list when we run out of per cpu objects. We only fetch 50% 3020 * to keep some capacity around for frees. 3021 */ 3022 if (s->size >= PAGE_SIZE) 3023 s->cpu_partial = 2; 3024 else if (s->size >= 1024) 3025 s->cpu_partial = 6; 3026 else if (s->size >= 256) 3027 s->cpu_partial = 13; 3028 else 3029 s->cpu_partial = 30; 3030 3031 s->refcount = 1; 3032 #ifdef CONFIG_NUMA 3033 s->remote_node_defrag_ratio = 1000; 3034 #endif 3035 if (!init_kmem_cache_nodes(s)) 3036 goto error; 3037 3038 if (alloc_kmem_cache_cpus(s)) 3039 return 1; 3040 3041 free_kmem_cache_nodes(s); 3042 error: 3043 if (flags & SLAB_PANIC) 3044 panic("Cannot create slab %s size=%lu realsize=%u " 3045 "order=%u offset=%u flags=%lx\n", 3046 s->name, (unsigned long)size, s->size, oo_order(s->oo), 3047 s->offset, flags); 3048 return 0; 3049 } 3050 3051 /* 3052 * Determine the size of a slab object 3053 */ 3054 unsigned int kmem_cache_size(struct kmem_cache *s) 3055 { 3056 return s->objsize; 3057 } 3058 EXPORT_SYMBOL(kmem_cache_size); 3059 3060 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3061 const char *text) 3062 { 3063 #ifdef CONFIG_SLUB_DEBUG 3064 void *addr = page_address(page); 3065 void *p; 3066 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3067 sizeof(long), GFP_ATOMIC); 3068 if (!map) 3069 return; 3070 slab_err(s, page, "%s", text); 3071 slab_lock(page); 3072 3073 get_map(s, page, map); 3074 for_each_object(p, s, addr, page->objects) { 3075 3076 if (!test_bit(slab_index(p, s, addr), map)) { 3077 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3078 p, p - addr); 3079 print_tracking(s, p); 3080 } 3081 } 3082 slab_unlock(page); 3083 kfree(map); 3084 #endif 3085 } 3086 3087 /* 3088 * Attempt to free all partial slabs on a node. 3089 * This is called from kmem_cache_close(). We must be the last thread 3090 * using the cache and therefore we do not need to lock anymore. 3091 */ 3092 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3093 { 3094 struct page *page, *h; 3095 3096 list_for_each_entry_safe(page, h, &n->partial, lru) { 3097 if (!page->inuse) { 3098 remove_partial(n, page); 3099 discard_slab(s, page); 3100 } else { 3101 list_slab_objects(s, page, 3102 "Objects remaining on kmem_cache_close()"); 3103 } 3104 } 3105 } 3106 3107 /* 3108 * Release all resources used by a slab cache. 3109 */ 3110 static inline int kmem_cache_close(struct kmem_cache *s) 3111 { 3112 int node; 3113 3114 flush_all(s); 3115 free_percpu(s->cpu_slab); 3116 /* Attempt to free all objects */ 3117 for_each_node_state(node, N_NORMAL_MEMORY) { 3118 struct kmem_cache_node *n = get_node(s, node); 3119 3120 free_partial(s, n); 3121 if (n->nr_partial || slabs_node(s, node)) 3122 return 1; 3123 } 3124 free_kmem_cache_nodes(s); 3125 return 0; 3126 } 3127 3128 /* 3129 * Close a cache and release the kmem_cache structure 3130 * (must be used for caches created using kmem_cache_create) 3131 */ 3132 void kmem_cache_destroy(struct kmem_cache *s) 3133 { 3134 down_write(&slub_lock); 3135 s->refcount--; 3136 if (!s->refcount) { 3137 list_del(&s->list); 3138 up_write(&slub_lock); 3139 if (kmem_cache_close(s)) { 3140 printk(KERN_ERR "SLUB %s: %s called for cache that " 3141 "still has objects.\n", s->name, __func__); 3142 dump_stack(); 3143 } 3144 if (s->flags & SLAB_DESTROY_BY_RCU) 3145 rcu_barrier(); 3146 sysfs_slab_remove(s); 3147 } else 3148 up_write(&slub_lock); 3149 } 3150 EXPORT_SYMBOL(kmem_cache_destroy); 3151 3152 /******************************************************************** 3153 * Kmalloc subsystem 3154 *******************************************************************/ 3155 3156 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 3157 EXPORT_SYMBOL(kmalloc_caches); 3158 3159 static struct kmem_cache *kmem_cache; 3160 3161 #ifdef CONFIG_ZONE_DMA 3162 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; 3163 #endif 3164 3165 static int __init setup_slub_min_order(char *str) 3166 { 3167 get_option(&str, &slub_min_order); 3168 3169 return 1; 3170 } 3171 3172 __setup("slub_min_order=", setup_slub_min_order); 3173 3174 static int __init setup_slub_max_order(char *str) 3175 { 3176 get_option(&str, &slub_max_order); 3177 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3178 3179 return 1; 3180 } 3181 3182 __setup("slub_max_order=", setup_slub_max_order); 3183 3184 static int __init setup_slub_min_objects(char *str) 3185 { 3186 get_option(&str, &slub_min_objects); 3187 3188 return 1; 3189 } 3190 3191 __setup("slub_min_objects=", setup_slub_min_objects); 3192 3193 static int __init setup_slub_nomerge(char *str) 3194 { 3195 slub_nomerge = 1; 3196 return 1; 3197 } 3198 3199 __setup("slub_nomerge", setup_slub_nomerge); 3200 3201 static struct kmem_cache *__init create_kmalloc_cache(const char *name, 3202 int size, unsigned int flags) 3203 { 3204 struct kmem_cache *s; 3205 3206 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3207 3208 /* 3209 * This function is called with IRQs disabled during early-boot on 3210 * single CPU so there's no need to take slub_lock here. 3211 */ 3212 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, 3213 flags, NULL)) 3214 goto panic; 3215 3216 list_add(&s->list, &slab_caches); 3217 return s; 3218 3219 panic: 3220 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 3221 return NULL; 3222 } 3223 3224 /* 3225 * Conversion table for small slabs sizes / 8 to the index in the 3226 * kmalloc array. This is necessary for slabs < 192 since we have non power 3227 * of two cache sizes there. The size of larger slabs can be determined using 3228 * fls. 3229 */ 3230 static s8 size_index[24] = { 3231 3, /* 8 */ 3232 4, /* 16 */ 3233 5, /* 24 */ 3234 5, /* 32 */ 3235 6, /* 40 */ 3236 6, /* 48 */ 3237 6, /* 56 */ 3238 6, /* 64 */ 3239 1, /* 72 */ 3240 1, /* 80 */ 3241 1, /* 88 */ 3242 1, /* 96 */ 3243 7, /* 104 */ 3244 7, /* 112 */ 3245 7, /* 120 */ 3246 7, /* 128 */ 3247 2, /* 136 */ 3248 2, /* 144 */ 3249 2, /* 152 */ 3250 2, /* 160 */ 3251 2, /* 168 */ 3252 2, /* 176 */ 3253 2, /* 184 */ 3254 2 /* 192 */ 3255 }; 3256 3257 static inline int size_index_elem(size_t bytes) 3258 { 3259 return (bytes - 1) / 8; 3260 } 3261 3262 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 3263 { 3264 int index; 3265 3266 if (size <= 192) { 3267 if (!size) 3268 return ZERO_SIZE_PTR; 3269 3270 index = size_index[size_index_elem(size)]; 3271 } else 3272 index = fls(size - 1); 3273 3274 #ifdef CONFIG_ZONE_DMA 3275 if (unlikely((flags & SLUB_DMA))) 3276 return kmalloc_dma_caches[index]; 3277 3278 #endif 3279 return kmalloc_caches[index]; 3280 } 3281 3282 void *__kmalloc(size_t size, gfp_t flags) 3283 { 3284 struct kmem_cache *s; 3285 void *ret; 3286 3287 if (unlikely(size > SLUB_MAX_SIZE)) 3288 return kmalloc_large(size, flags); 3289 3290 s = get_slab(size, flags); 3291 3292 if (unlikely(ZERO_OR_NULL_PTR(s))) 3293 return s; 3294 3295 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); 3296 3297 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3298 3299 return ret; 3300 } 3301 EXPORT_SYMBOL(__kmalloc); 3302 3303 #ifdef CONFIG_NUMA 3304 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3305 { 3306 struct page *page; 3307 void *ptr = NULL; 3308 3309 flags |= __GFP_COMP | __GFP_NOTRACK; 3310 page = alloc_pages_node(node, flags, get_order(size)); 3311 if (page) 3312 ptr = page_address(page); 3313 3314 kmemleak_alloc(ptr, size, 1, flags); 3315 return ptr; 3316 } 3317 3318 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3319 { 3320 struct kmem_cache *s; 3321 void *ret; 3322 3323 if (unlikely(size > SLUB_MAX_SIZE)) { 3324 ret = kmalloc_large_node(size, flags, node); 3325 3326 trace_kmalloc_node(_RET_IP_, ret, 3327 size, PAGE_SIZE << get_order(size), 3328 flags, node); 3329 3330 return ret; 3331 } 3332 3333 s = get_slab(size, flags); 3334 3335 if (unlikely(ZERO_OR_NULL_PTR(s))) 3336 return s; 3337 3338 ret = slab_alloc(s, flags, node, _RET_IP_); 3339 3340 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3341 3342 return ret; 3343 } 3344 EXPORT_SYMBOL(__kmalloc_node); 3345 #endif 3346 3347 size_t ksize(const void *object) 3348 { 3349 struct page *page; 3350 3351 if (unlikely(object == ZERO_SIZE_PTR)) 3352 return 0; 3353 3354 page = virt_to_head_page(object); 3355 3356 if (unlikely(!PageSlab(page))) { 3357 WARN_ON(!PageCompound(page)); 3358 return PAGE_SIZE << compound_order(page); 3359 } 3360 3361 return slab_ksize(page->slab); 3362 } 3363 EXPORT_SYMBOL(ksize); 3364 3365 #ifdef CONFIG_SLUB_DEBUG 3366 bool verify_mem_not_deleted(const void *x) 3367 { 3368 struct page *page; 3369 void *object = (void *)x; 3370 unsigned long flags; 3371 bool rv; 3372 3373 if (unlikely(ZERO_OR_NULL_PTR(x))) 3374 return false; 3375 3376 local_irq_save(flags); 3377 3378 page = virt_to_head_page(x); 3379 if (unlikely(!PageSlab(page))) { 3380 /* maybe it was from stack? */ 3381 rv = true; 3382 goto out_unlock; 3383 } 3384 3385 slab_lock(page); 3386 if (on_freelist(page->slab, page, object)) { 3387 object_err(page->slab, page, object, "Object is on free-list"); 3388 rv = false; 3389 } else { 3390 rv = true; 3391 } 3392 slab_unlock(page); 3393 3394 out_unlock: 3395 local_irq_restore(flags); 3396 return rv; 3397 } 3398 EXPORT_SYMBOL(verify_mem_not_deleted); 3399 #endif 3400 3401 void kfree(const void *x) 3402 { 3403 struct page *page; 3404 void *object = (void *)x; 3405 3406 trace_kfree(_RET_IP_, x); 3407 3408 if (unlikely(ZERO_OR_NULL_PTR(x))) 3409 return; 3410 3411 page = virt_to_head_page(x); 3412 if (unlikely(!PageSlab(page))) { 3413 BUG_ON(!PageCompound(page)); 3414 kmemleak_free(x); 3415 put_page(page); 3416 return; 3417 } 3418 slab_free(page->slab, page, object, _RET_IP_); 3419 } 3420 EXPORT_SYMBOL(kfree); 3421 3422 /* 3423 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3424 * the remaining slabs by the number of items in use. The slabs with the 3425 * most items in use come first. New allocations will then fill those up 3426 * and thus they can be removed from the partial lists. 3427 * 3428 * The slabs with the least items are placed last. This results in them 3429 * being allocated from last increasing the chance that the last objects 3430 * are freed in them. 3431 */ 3432 int kmem_cache_shrink(struct kmem_cache *s) 3433 { 3434 int node; 3435 int i; 3436 struct kmem_cache_node *n; 3437 struct page *page; 3438 struct page *t; 3439 int objects = oo_objects(s->max); 3440 struct list_head *slabs_by_inuse = 3441 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3442 unsigned long flags; 3443 3444 if (!slabs_by_inuse) 3445 return -ENOMEM; 3446 3447 flush_all(s); 3448 for_each_node_state(node, N_NORMAL_MEMORY) { 3449 n = get_node(s, node); 3450 3451 if (!n->nr_partial) 3452 continue; 3453 3454 for (i = 0; i < objects; i++) 3455 INIT_LIST_HEAD(slabs_by_inuse + i); 3456 3457 spin_lock_irqsave(&n->list_lock, flags); 3458 3459 /* 3460 * Build lists indexed by the items in use in each slab. 3461 * 3462 * Note that concurrent frees may occur while we hold the 3463 * list_lock. page->inuse here is the upper limit. 3464 */ 3465 list_for_each_entry_safe(page, t, &n->partial, lru) { 3466 list_move(&page->lru, slabs_by_inuse + page->inuse); 3467 if (!page->inuse) 3468 n->nr_partial--; 3469 } 3470 3471 /* 3472 * Rebuild the partial list with the slabs filled up most 3473 * first and the least used slabs at the end. 3474 */ 3475 for (i = objects - 1; i > 0; i--) 3476 list_splice(slabs_by_inuse + i, n->partial.prev); 3477 3478 spin_unlock_irqrestore(&n->list_lock, flags); 3479 3480 /* Release empty slabs */ 3481 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3482 discard_slab(s, page); 3483 } 3484 3485 kfree(slabs_by_inuse); 3486 return 0; 3487 } 3488 EXPORT_SYMBOL(kmem_cache_shrink); 3489 3490 #if defined(CONFIG_MEMORY_HOTPLUG) 3491 static int slab_mem_going_offline_callback(void *arg) 3492 { 3493 struct kmem_cache *s; 3494 3495 down_read(&slub_lock); 3496 list_for_each_entry(s, &slab_caches, list) 3497 kmem_cache_shrink(s); 3498 up_read(&slub_lock); 3499 3500 return 0; 3501 } 3502 3503 static void slab_mem_offline_callback(void *arg) 3504 { 3505 struct kmem_cache_node *n; 3506 struct kmem_cache *s; 3507 struct memory_notify *marg = arg; 3508 int offline_node; 3509 3510 offline_node = marg->status_change_nid; 3511 3512 /* 3513 * If the node still has available memory. we need kmem_cache_node 3514 * for it yet. 3515 */ 3516 if (offline_node < 0) 3517 return; 3518 3519 down_read(&slub_lock); 3520 list_for_each_entry(s, &slab_caches, list) { 3521 n = get_node(s, offline_node); 3522 if (n) { 3523 /* 3524 * if n->nr_slabs > 0, slabs still exist on the node 3525 * that is going down. We were unable to free them, 3526 * and offline_pages() function shouldn't call this 3527 * callback. So, we must fail. 3528 */ 3529 BUG_ON(slabs_node(s, offline_node)); 3530 3531 s->node[offline_node] = NULL; 3532 kmem_cache_free(kmem_cache_node, n); 3533 } 3534 } 3535 up_read(&slub_lock); 3536 } 3537 3538 static int slab_mem_going_online_callback(void *arg) 3539 { 3540 struct kmem_cache_node *n; 3541 struct kmem_cache *s; 3542 struct memory_notify *marg = arg; 3543 int nid = marg->status_change_nid; 3544 int ret = 0; 3545 3546 /* 3547 * If the node's memory is already available, then kmem_cache_node is 3548 * already created. Nothing to do. 3549 */ 3550 if (nid < 0) 3551 return 0; 3552 3553 /* 3554 * We are bringing a node online. No memory is available yet. We must 3555 * allocate a kmem_cache_node structure in order to bring the node 3556 * online. 3557 */ 3558 down_read(&slub_lock); 3559 list_for_each_entry(s, &slab_caches, list) { 3560 /* 3561 * XXX: kmem_cache_alloc_node will fallback to other nodes 3562 * since memory is not yet available from the node that 3563 * is brought up. 3564 */ 3565 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3566 if (!n) { 3567 ret = -ENOMEM; 3568 goto out; 3569 } 3570 init_kmem_cache_node(n, s); 3571 s->node[nid] = n; 3572 } 3573 out: 3574 up_read(&slub_lock); 3575 return ret; 3576 } 3577 3578 static int slab_memory_callback(struct notifier_block *self, 3579 unsigned long action, void *arg) 3580 { 3581 int ret = 0; 3582 3583 switch (action) { 3584 case MEM_GOING_ONLINE: 3585 ret = slab_mem_going_online_callback(arg); 3586 break; 3587 case MEM_GOING_OFFLINE: 3588 ret = slab_mem_going_offline_callback(arg); 3589 break; 3590 case MEM_OFFLINE: 3591 case MEM_CANCEL_ONLINE: 3592 slab_mem_offline_callback(arg); 3593 break; 3594 case MEM_ONLINE: 3595 case MEM_CANCEL_OFFLINE: 3596 break; 3597 } 3598 if (ret) 3599 ret = notifier_from_errno(ret); 3600 else 3601 ret = NOTIFY_OK; 3602 return ret; 3603 } 3604 3605 #endif /* CONFIG_MEMORY_HOTPLUG */ 3606 3607 /******************************************************************** 3608 * Basic setup of slabs 3609 *******************************************************************/ 3610 3611 /* 3612 * Used for early kmem_cache structures that were allocated using 3613 * the page allocator 3614 */ 3615 3616 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) 3617 { 3618 int node; 3619 3620 list_add(&s->list, &slab_caches); 3621 s->refcount = -1; 3622 3623 for_each_node_state(node, N_NORMAL_MEMORY) { 3624 struct kmem_cache_node *n = get_node(s, node); 3625 struct page *p; 3626 3627 if (n) { 3628 list_for_each_entry(p, &n->partial, lru) 3629 p->slab = s; 3630 3631 #ifdef CONFIG_SLUB_DEBUG 3632 list_for_each_entry(p, &n->full, lru) 3633 p->slab = s; 3634 #endif 3635 } 3636 } 3637 } 3638 3639 void __init kmem_cache_init(void) 3640 { 3641 int i; 3642 int caches = 0; 3643 struct kmem_cache *temp_kmem_cache; 3644 int order; 3645 struct kmem_cache *temp_kmem_cache_node; 3646 unsigned long kmalloc_size; 3647 3648 kmem_size = offsetof(struct kmem_cache, node) + 3649 nr_node_ids * sizeof(struct kmem_cache_node *); 3650 3651 /* Allocate two kmem_caches from the page allocator */ 3652 kmalloc_size = ALIGN(kmem_size, cache_line_size()); 3653 order = get_order(2 * kmalloc_size); 3654 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); 3655 3656 /* 3657 * Must first have the slab cache available for the allocations of the 3658 * struct kmem_cache_node's. There is special bootstrap code in 3659 * kmem_cache_open for slab_state == DOWN. 3660 */ 3661 kmem_cache_node = (void *)kmem_cache + kmalloc_size; 3662 3663 kmem_cache_open(kmem_cache_node, "kmem_cache_node", 3664 sizeof(struct kmem_cache_node), 3665 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3666 3667 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3668 3669 /* Able to allocate the per node structures */ 3670 slab_state = PARTIAL; 3671 3672 temp_kmem_cache = kmem_cache; 3673 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, 3674 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3675 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3676 memcpy(kmem_cache, temp_kmem_cache, kmem_size); 3677 3678 /* 3679 * Allocate kmem_cache_node properly from the kmem_cache slab. 3680 * kmem_cache_node is separately allocated so no need to 3681 * update any list pointers. 3682 */ 3683 temp_kmem_cache_node = kmem_cache_node; 3684 3685 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3686 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); 3687 3688 kmem_cache_bootstrap_fixup(kmem_cache_node); 3689 3690 caches++; 3691 kmem_cache_bootstrap_fixup(kmem_cache); 3692 caches++; 3693 /* Free temporary boot structure */ 3694 free_pages((unsigned long)temp_kmem_cache, order); 3695 3696 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3697 3698 /* 3699 * Patch up the size_index table if we have strange large alignment 3700 * requirements for the kmalloc array. This is only the case for 3701 * MIPS it seems. The standard arches will not generate any code here. 3702 * 3703 * Largest permitted alignment is 256 bytes due to the way we 3704 * handle the index determination for the smaller caches. 3705 * 3706 * Make sure that nothing crazy happens if someone starts tinkering 3707 * around with ARCH_KMALLOC_MINALIGN 3708 */ 3709 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3710 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3711 3712 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3713 int elem = size_index_elem(i); 3714 if (elem >= ARRAY_SIZE(size_index)) 3715 break; 3716 size_index[elem] = KMALLOC_SHIFT_LOW; 3717 } 3718 3719 if (KMALLOC_MIN_SIZE == 64) { 3720 /* 3721 * The 96 byte size cache is not used if the alignment 3722 * is 64 byte. 3723 */ 3724 for (i = 64 + 8; i <= 96; i += 8) 3725 size_index[size_index_elem(i)] = 7; 3726 } else if (KMALLOC_MIN_SIZE == 128) { 3727 /* 3728 * The 192 byte sized cache is not used if the alignment 3729 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3730 * instead. 3731 */ 3732 for (i = 128 + 8; i <= 192; i += 8) 3733 size_index[size_index_elem(i)] = 8; 3734 } 3735 3736 /* Caches that are not of the two-to-the-power-of size */ 3737 if (KMALLOC_MIN_SIZE <= 32) { 3738 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); 3739 caches++; 3740 } 3741 3742 if (KMALLOC_MIN_SIZE <= 64) { 3743 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); 3744 caches++; 3745 } 3746 3747 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3748 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); 3749 caches++; 3750 } 3751 3752 slab_state = UP; 3753 3754 /* Provide the correct kmalloc names now that the caches are up */ 3755 if (KMALLOC_MIN_SIZE <= 32) { 3756 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); 3757 BUG_ON(!kmalloc_caches[1]->name); 3758 } 3759 3760 if (KMALLOC_MIN_SIZE <= 64) { 3761 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); 3762 BUG_ON(!kmalloc_caches[2]->name); 3763 } 3764 3765 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3766 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3767 3768 BUG_ON(!s); 3769 kmalloc_caches[i]->name = s; 3770 } 3771 3772 #ifdef CONFIG_SMP 3773 register_cpu_notifier(&slab_notifier); 3774 #endif 3775 3776 #ifdef CONFIG_ZONE_DMA 3777 for (i = 0; i < SLUB_PAGE_SHIFT; i++) { 3778 struct kmem_cache *s = kmalloc_caches[i]; 3779 3780 if (s && s->size) { 3781 char *name = kasprintf(GFP_NOWAIT, 3782 "dma-kmalloc-%d", s->objsize); 3783 3784 BUG_ON(!name); 3785 kmalloc_dma_caches[i] = create_kmalloc_cache(name, 3786 s->objsize, SLAB_CACHE_DMA); 3787 } 3788 } 3789 #endif 3790 printk(KERN_INFO 3791 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3792 " CPUs=%d, Nodes=%d\n", 3793 caches, cache_line_size(), 3794 slub_min_order, slub_max_order, slub_min_objects, 3795 nr_cpu_ids, nr_node_ids); 3796 } 3797 3798 void __init kmem_cache_init_late(void) 3799 { 3800 } 3801 3802 /* 3803 * Find a mergeable slab cache 3804 */ 3805 static int slab_unmergeable(struct kmem_cache *s) 3806 { 3807 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3808 return 1; 3809 3810 if (s->ctor) 3811 return 1; 3812 3813 /* 3814 * We may have set a slab to be unmergeable during bootstrap. 3815 */ 3816 if (s->refcount < 0) 3817 return 1; 3818 3819 return 0; 3820 } 3821 3822 static struct kmem_cache *find_mergeable(size_t size, 3823 size_t align, unsigned long flags, const char *name, 3824 void (*ctor)(void *)) 3825 { 3826 struct kmem_cache *s; 3827 3828 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3829 return NULL; 3830 3831 if (ctor) 3832 return NULL; 3833 3834 size = ALIGN(size, sizeof(void *)); 3835 align = calculate_alignment(flags, align, size); 3836 size = ALIGN(size, align); 3837 flags = kmem_cache_flags(size, flags, name, NULL); 3838 3839 list_for_each_entry(s, &slab_caches, list) { 3840 if (slab_unmergeable(s)) 3841 continue; 3842 3843 if (size > s->size) 3844 continue; 3845 3846 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3847 continue; 3848 /* 3849 * Check if alignment is compatible. 3850 * Courtesy of Adrian Drzewiecki 3851 */ 3852 if ((s->size & ~(align - 1)) != s->size) 3853 continue; 3854 3855 if (s->size - size >= sizeof(void *)) 3856 continue; 3857 3858 return s; 3859 } 3860 return NULL; 3861 } 3862 3863 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3864 size_t align, unsigned long flags, void (*ctor)(void *)) 3865 { 3866 struct kmem_cache *s; 3867 char *n; 3868 3869 if (WARN_ON(!name)) 3870 return NULL; 3871 3872 down_write(&slub_lock); 3873 s = find_mergeable(size, align, flags, name, ctor); 3874 if (s) { 3875 s->refcount++; 3876 /* 3877 * Adjust the object sizes so that we clear 3878 * the complete object on kzalloc. 3879 */ 3880 s->objsize = max(s->objsize, (int)size); 3881 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3882 3883 if (sysfs_slab_alias(s, name)) { 3884 s->refcount--; 3885 goto err; 3886 } 3887 up_write(&slub_lock); 3888 return s; 3889 } 3890 3891 n = kstrdup(name, GFP_KERNEL); 3892 if (!n) 3893 goto err; 3894 3895 s = kmalloc(kmem_size, GFP_KERNEL); 3896 if (s) { 3897 if (kmem_cache_open(s, n, 3898 size, align, flags, ctor)) { 3899 list_add(&s->list, &slab_caches); 3900 if (sysfs_slab_add(s)) { 3901 list_del(&s->list); 3902 kfree(n); 3903 kfree(s); 3904 goto err; 3905 } 3906 up_write(&slub_lock); 3907 return s; 3908 } 3909 kfree(n); 3910 kfree(s); 3911 } 3912 err: 3913 up_write(&slub_lock); 3914 3915 if (flags & SLAB_PANIC) 3916 panic("Cannot create slabcache %s\n", name); 3917 else 3918 s = NULL; 3919 return s; 3920 } 3921 EXPORT_SYMBOL(kmem_cache_create); 3922 3923 #ifdef CONFIG_SMP 3924 /* 3925 * Use the cpu notifier to insure that the cpu slabs are flushed when 3926 * necessary. 3927 */ 3928 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3929 unsigned long action, void *hcpu) 3930 { 3931 long cpu = (long)hcpu; 3932 struct kmem_cache *s; 3933 unsigned long flags; 3934 3935 switch (action) { 3936 case CPU_UP_CANCELED: 3937 case CPU_UP_CANCELED_FROZEN: 3938 case CPU_DEAD: 3939 case CPU_DEAD_FROZEN: 3940 down_read(&slub_lock); 3941 list_for_each_entry(s, &slab_caches, list) { 3942 local_irq_save(flags); 3943 __flush_cpu_slab(s, cpu); 3944 local_irq_restore(flags); 3945 } 3946 up_read(&slub_lock); 3947 break; 3948 default: 3949 break; 3950 } 3951 return NOTIFY_OK; 3952 } 3953 3954 static struct notifier_block __cpuinitdata slab_notifier = { 3955 .notifier_call = slab_cpuup_callback 3956 }; 3957 3958 #endif 3959 3960 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3961 { 3962 struct kmem_cache *s; 3963 void *ret; 3964 3965 if (unlikely(size > SLUB_MAX_SIZE)) 3966 return kmalloc_large(size, gfpflags); 3967 3968 s = get_slab(size, gfpflags); 3969 3970 if (unlikely(ZERO_OR_NULL_PTR(s))) 3971 return s; 3972 3973 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); 3974 3975 /* Honor the call site pointer we received. */ 3976 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3977 3978 return ret; 3979 } 3980 3981 #ifdef CONFIG_NUMA 3982 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3983 int node, unsigned long caller) 3984 { 3985 struct kmem_cache *s; 3986 void *ret; 3987 3988 if (unlikely(size > SLUB_MAX_SIZE)) { 3989 ret = kmalloc_large_node(size, gfpflags, node); 3990 3991 trace_kmalloc_node(caller, ret, 3992 size, PAGE_SIZE << get_order(size), 3993 gfpflags, node); 3994 3995 return ret; 3996 } 3997 3998 s = get_slab(size, gfpflags); 3999 4000 if (unlikely(ZERO_OR_NULL_PTR(s))) 4001 return s; 4002 4003 ret = slab_alloc(s, gfpflags, node, caller); 4004 4005 /* Honor the call site pointer we received. */ 4006 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4007 4008 return ret; 4009 } 4010 #endif 4011 4012 #ifdef CONFIG_SYSFS 4013 static int count_inuse(struct page *page) 4014 { 4015 return page->inuse; 4016 } 4017 4018 static int count_total(struct page *page) 4019 { 4020 return page->objects; 4021 } 4022 #endif 4023 4024 #ifdef CONFIG_SLUB_DEBUG 4025 static int validate_slab(struct kmem_cache *s, struct page *page, 4026 unsigned long *map) 4027 { 4028 void *p; 4029 void *addr = page_address(page); 4030 4031 if (!check_slab(s, page) || 4032 !on_freelist(s, page, NULL)) 4033 return 0; 4034 4035 /* Now we know that a valid freelist exists */ 4036 bitmap_zero(map, page->objects); 4037 4038 get_map(s, page, map); 4039 for_each_object(p, s, addr, page->objects) { 4040 if (test_bit(slab_index(p, s, addr), map)) 4041 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4042 return 0; 4043 } 4044 4045 for_each_object(p, s, addr, page->objects) 4046 if (!test_bit(slab_index(p, s, addr), map)) 4047 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4048 return 0; 4049 return 1; 4050 } 4051 4052 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4053 unsigned long *map) 4054 { 4055 slab_lock(page); 4056 validate_slab(s, page, map); 4057 slab_unlock(page); 4058 } 4059 4060 static int validate_slab_node(struct kmem_cache *s, 4061 struct kmem_cache_node *n, unsigned long *map) 4062 { 4063 unsigned long count = 0; 4064 struct page *page; 4065 unsigned long flags; 4066 4067 spin_lock_irqsave(&n->list_lock, flags); 4068 4069 list_for_each_entry(page, &n->partial, lru) { 4070 validate_slab_slab(s, page, map); 4071 count++; 4072 } 4073 if (count != n->nr_partial) 4074 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 4075 "counter=%ld\n", s->name, count, n->nr_partial); 4076 4077 if (!(s->flags & SLAB_STORE_USER)) 4078 goto out; 4079 4080 list_for_each_entry(page, &n->full, lru) { 4081 validate_slab_slab(s, page, map); 4082 count++; 4083 } 4084 if (count != atomic_long_read(&n->nr_slabs)) 4085 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 4086 "counter=%ld\n", s->name, count, 4087 atomic_long_read(&n->nr_slabs)); 4088 4089 out: 4090 spin_unlock_irqrestore(&n->list_lock, flags); 4091 return count; 4092 } 4093 4094 static long validate_slab_cache(struct kmem_cache *s) 4095 { 4096 int node; 4097 unsigned long count = 0; 4098 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4099 sizeof(unsigned long), GFP_KERNEL); 4100 4101 if (!map) 4102 return -ENOMEM; 4103 4104 flush_all(s); 4105 for_each_node_state(node, N_NORMAL_MEMORY) { 4106 struct kmem_cache_node *n = get_node(s, node); 4107 4108 count += validate_slab_node(s, n, map); 4109 } 4110 kfree(map); 4111 return count; 4112 } 4113 /* 4114 * Generate lists of code addresses where slabcache objects are allocated 4115 * and freed. 4116 */ 4117 4118 struct location { 4119 unsigned long count; 4120 unsigned long addr; 4121 long long sum_time; 4122 long min_time; 4123 long max_time; 4124 long min_pid; 4125 long max_pid; 4126 DECLARE_BITMAP(cpus, NR_CPUS); 4127 nodemask_t nodes; 4128 }; 4129 4130 struct loc_track { 4131 unsigned long max; 4132 unsigned long count; 4133 struct location *loc; 4134 }; 4135 4136 static void free_loc_track(struct loc_track *t) 4137 { 4138 if (t->max) 4139 free_pages((unsigned long)t->loc, 4140 get_order(sizeof(struct location) * t->max)); 4141 } 4142 4143 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4144 { 4145 struct location *l; 4146 int order; 4147 4148 order = get_order(sizeof(struct location) * max); 4149 4150 l = (void *)__get_free_pages(flags, order); 4151 if (!l) 4152 return 0; 4153 4154 if (t->count) { 4155 memcpy(l, t->loc, sizeof(struct location) * t->count); 4156 free_loc_track(t); 4157 } 4158 t->max = max; 4159 t->loc = l; 4160 return 1; 4161 } 4162 4163 static int add_location(struct loc_track *t, struct kmem_cache *s, 4164 const struct track *track) 4165 { 4166 long start, end, pos; 4167 struct location *l; 4168 unsigned long caddr; 4169 unsigned long age = jiffies - track->when; 4170 4171 start = -1; 4172 end = t->count; 4173 4174 for ( ; ; ) { 4175 pos = start + (end - start + 1) / 2; 4176 4177 /* 4178 * There is nothing at "end". If we end up there 4179 * we need to add something to before end. 4180 */ 4181 if (pos == end) 4182 break; 4183 4184 caddr = t->loc[pos].addr; 4185 if (track->addr == caddr) { 4186 4187 l = &t->loc[pos]; 4188 l->count++; 4189 if (track->when) { 4190 l->sum_time += age; 4191 if (age < l->min_time) 4192 l->min_time = age; 4193 if (age > l->max_time) 4194 l->max_time = age; 4195 4196 if (track->pid < l->min_pid) 4197 l->min_pid = track->pid; 4198 if (track->pid > l->max_pid) 4199 l->max_pid = track->pid; 4200 4201 cpumask_set_cpu(track->cpu, 4202 to_cpumask(l->cpus)); 4203 } 4204 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4205 return 1; 4206 } 4207 4208 if (track->addr < caddr) 4209 end = pos; 4210 else 4211 start = pos; 4212 } 4213 4214 /* 4215 * Not found. Insert new tracking element. 4216 */ 4217 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4218 return 0; 4219 4220 l = t->loc + pos; 4221 if (pos < t->count) 4222 memmove(l + 1, l, 4223 (t->count - pos) * sizeof(struct location)); 4224 t->count++; 4225 l->count = 1; 4226 l->addr = track->addr; 4227 l->sum_time = age; 4228 l->min_time = age; 4229 l->max_time = age; 4230 l->min_pid = track->pid; 4231 l->max_pid = track->pid; 4232 cpumask_clear(to_cpumask(l->cpus)); 4233 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4234 nodes_clear(l->nodes); 4235 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4236 return 1; 4237 } 4238 4239 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4240 struct page *page, enum track_item alloc, 4241 unsigned long *map) 4242 { 4243 void *addr = page_address(page); 4244 void *p; 4245 4246 bitmap_zero(map, page->objects); 4247 get_map(s, page, map); 4248 4249 for_each_object(p, s, addr, page->objects) 4250 if (!test_bit(slab_index(p, s, addr), map)) 4251 add_location(t, s, get_track(s, p, alloc)); 4252 } 4253 4254 static int list_locations(struct kmem_cache *s, char *buf, 4255 enum track_item alloc) 4256 { 4257 int len = 0; 4258 unsigned long i; 4259 struct loc_track t = { 0, 0, NULL }; 4260 int node; 4261 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4262 sizeof(unsigned long), GFP_KERNEL); 4263 4264 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4265 GFP_TEMPORARY)) { 4266 kfree(map); 4267 return sprintf(buf, "Out of memory\n"); 4268 } 4269 /* Push back cpu slabs */ 4270 flush_all(s); 4271 4272 for_each_node_state(node, N_NORMAL_MEMORY) { 4273 struct kmem_cache_node *n = get_node(s, node); 4274 unsigned long flags; 4275 struct page *page; 4276 4277 if (!atomic_long_read(&n->nr_slabs)) 4278 continue; 4279 4280 spin_lock_irqsave(&n->list_lock, flags); 4281 list_for_each_entry(page, &n->partial, lru) 4282 process_slab(&t, s, page, alloc, map); 4283 list_for_each_entry(page, &n->full, lru) 4284 process_slab(&t, s, page, alloc, map); 4285 spin_unlock_irqrestore(&n->list_lock, flags); 4286 } 4287 4288 for (i = 0; i < t.count; i++) { 4289 struct location *l = &t.loc[i]; 4290 4291 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4292 break; 4293 len += sprintf(buf + len, "%7ld ", l->count); 4294 4295 if (l->addr) 4296 len += sprintf(buf + len, "%pS", (void *)l->addr); 4297 else 4298 len += sprintf(buf + len, "<not-available>"); 4299 4300 if (l->sum_time != l->min_time) { 4301 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4302 l->min_time, 4303 (long)div_u64(l->sum_time, l->count), 4304 l->max_time); 4305 } else 4306 len += sprintf(buf + len, " age=%ld", 4307 l->min_time); 4308 4309 if (l->min_pid != l->max_pid) 4310 len += sprintf(buf + len, " pid=%ld-%ld", 4311 l->min_pid, l->max_pid); 4312 else 4313 len += sprintf(buf + len, " pid=%ld", 4314 l->min_pid); 4315 4316 if (num_online_cpus() > 1 && 4317 !cpumask_empty(to_cpumask(l->cpus)) && 4318 len < PAGE_SIZE - 60) { 4319 len += sprintf(buf + len, " cpus="); 4320 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4321 to_cpumask(l->cpus)); 4322 } 4323 4324 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4325 len < PAGE_SIZE - 60) { 4326 len += sprintf(buf + len, " nodes="); 4327 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4328 l->nodes); 4329 } 4330 4331 len += sprintf(buf + len, "\n"); 4332 } 4333 4334 free_loc_track(&t); 4335 kfree(map); 4336 if (!t.count) 4337 len += sprintf(buf, "No data\n"); 4338 return len; 4339 } 4340 #endif 4341 4342 #ifdef SLUB_RESILIENCY_TEST 4343 static void resiliency_test(void) 4344 { 4345 u8 *p; 4346 4347 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); 4348 4349 printk(KERN_ERR "SLUB resiliency testing\n"); 4350 printk(KERN_ERR "-----------------------\n"); 4351 printk(KERN_ERR "A. Corruption after allocation\n"); 4352 4353 p = kzalloc(16, GFP_KERNEL); 4354 p[16] = 0x12; 4355 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4356 " 0x12->0x%p\n\n", p + 16); 4357 4358 validate_slab_cache(kmalloc_caches[4]); 4359 4360 /* Hmmm... The next two are dangerous */ 4361 p = kzalloc(32, GFP_KERNEL); 4362 p[32 + sizeof(void *)] = 0x34; 4363 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4364 " 0x34 -> -0x%p\n", p); 4365 printk(KERN_ERR 4366 "If allocated object is overwritten then not detectable\n\n"); 4367 4368 validate_slab_cache(kmalloc_caches[5]); 4369 p = kzalloc(64, GFP_KERNEL); 4370 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4371 *p = 0x56; 4372 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4373 p); 4374 printk(KERN_ERR 4375 "If allocated object is overwritten then not detectable\n\n"); 4376 validate_slab_cache(kmalloc_caches[6]); 4377 4378 printk(KERN_ERR "\nB. Corruption after free\n"); 4379 p = kzalloc(128, GFP_KERNEL); 4380 kfree(p); 4381 *p = 0x78; 4382 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4383 validate_slab_cache(kmalloc_caches[7]); 4384 4385 p = kzalloc(256, GFP_KERNEL); 4386 kfree(p); 4387 p[50] = 0x9a; 4388 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4389 p); 4390 validate_slab_cache(kmalloc_caches[8]); 4391 4392 p = kzalloc(512, GFP_KERNEL); 4393 kfree(p); 4394 p[512] = 0xab; 4395 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4396 validate_slab_cache(kmalloc_caches[9]); 4397 } 4398 #else 4399 #ifdef CONFIG_SYSFS 4400 static void resiliency_test(void) {}; 4401 #endif 4402 #endif 4403 4404 #ifdef CONFIG_SYSFS 4405 enum slab_stat_type { 4406 SL_ALL, /* All slabs */ 4407 SL_PARTIAL, /* Only partially allocated slabs */ 4408 SL_CPU, /* Only slabs used for cpu caches */ 4409 SL_OBJECTS, /* Determine allocated objects not slabs */ 4410 SL_TOTAL /* Determine object capacity not slabs */ 4411 }; 4412 4413 #define SO_ALL (1 << SL_ALL) 4414 #define SO_PARTIAL (1 << SL_PARTIAL) 4415 #define SO_CPU (1 << SL_CPU) 4416 #define SO_OBJECTS (1 << SL_OBJECTS) 4417 #define SO_TOTAL (1 << SL_TOTAL) 4418 4419 static ssize_t show_slab_objects(struct kmem_cache *s, 4420 char *buf, unsigned long flags) 4421 { 4422 unsigned long total = 0; 4423 int node; 4424 int x; 4425 unsigned long *nodes; 4426 unsigned long *per_cpu; 4427 4428 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4429 if (!nodes) 4430 return -ENOMEM; 4431 per_cpu = nodes + nr_node_ids; 4432 4433 if (flags & SO_CPU) { 4434 int cpu; 4435 4436 for_each_possible_cpu(cpu) { 4437 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4438 struct page *page; 4439 4440 if (!c || c->node < 0) 4441 continue; 4442 4443 if (c->page) { 4444 if (flags & SO_TOTAL) 4445 x = c->page->objects; 4446 else if (flags & SO_OBJECTS) 4447 x = c->page->inuse; 4448 else 4449 x = 1; 4450 4451 total += x; 4452 nodes[c->node] += x; 4453 } 4454 page = c->partial; 4455 4456 if (page) { 4457 x = page->pobjects; 4458 total += x; 4459 nodes[c->node] += x; 4460 } 4461 per_cpu[c->node]++; 4462 } 4463 } 4464 4465 lock_memory_hotplug(); 4466 #ifdef CONFIG_SLUB_DEBUG 4467 if (flags & SO_ALL) { 4468 for_each_node_state(node, N_NORMAL_MEMORY) { 4469 struct kmem_cache_node *n = get_node(s, node); 4470 4471 if (flags & SO_TOTAL) 4472 x = atomic_long_read(&n->total_objects); 4473 else if (flags & SO_OBJECTS) 4474 x = atomic_long_read(&n->total_objects) - 4475 count_partial(n, count_free); 4476 4477 else 4478 x = atomic_long_read(&n->nr_slabs); 4479 total += x; 4480 nodes[node] += x; 4481 } 4482 4483 } else 4484 #endif 4485 if (flags & SO_PARTIAL) { 4486 for_each_node_state(node, N_NORMAL_MEMORY) { 4487 struct kmem_cache_node *n = get_node(s, node); 4488 4489 if (flags & SO_TOTAL) 4490 x = count_partial(n, count_total); 4491 else if (flags & SO_OBJECTS) 4492 x = count_partial(n, count_inuse); 4493 else 4494 x = n->nr_partial; 4495 total += x; 4496 nodes[node] += x; 4497 } 4498 } 4499 x = sprintf(buf, "%lu", total); 4500 #ifdef CONFIG_NUMA 4501 for_each_node_state(node, N_NORMAL_MEMORY) 4502 if (nodes[node]) 4503 x += sprintf(buf + x, " N%d=%lu", 4504 node, nodes[node]); 4505 #endif 4506 unlock_memory_hotplug(); 4507 kfree(nodes); 4508 return x + sprintf(buf + x, "\n"); 4509 } 4510 4511 #ifdef CONFIG_SLUB_DEBUG 4512 static int any_slab_objects(struct kmem_cache *s) 4513 { 4514 int node; 4515 4516 for_each_online_node(node) { 4517 struct kmem_cache_node *n = get_node(s, node); 4518 4519 if (!n) 4520 continue; 4521 4522 if (atomic_long_read(&n->total_objects)) 4523 return 1; 4524 } 4525 return 0; 4526 } 4527 #endif 4528 4529 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4530 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4531 4532 struct slab_attribute { 4533 struct attribute attr; 4534 ssize_t (*show)(struct kmem_cache *s, char *buf); 4535 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4536 }; 4537 4538 #define SLAB_ATTR_RO(_name) \ 4539 static struct slab_attribute _name##_attr = \ 4540 __ATTR(_name, 0400, _name##_show, NULL) 4541 4542 #define SLAB_ATTR(_name) \ 4543 static struct slab_attribute _name##_attr = \ 4544 __ATTR(_name, 0600, _name##_show, _name##_store) 4545 4546 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4547 { 4548 return sprintf(buf, "%d\n", s->size); 4549 } 4550 SLAB_ATTR_RO(slab_size); 4551 4552 static ssize_t align_show(struct kmem_cache *s, char *buf) 4553 { 4554 return sprintf(buf, "%d\n", s->align); 4555 } 4556 SLAB_ATTR_RO(align); 4557 4558 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4559 { 4560 return sprintf(buf, "%d\n", s->objsize); 4561 } 4562 SLAB_ATTR_RO(object_size); 4563 4564 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4565 { 4566 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4567 } 4568 SLAB_ATTR_RO(objs_per_slab); 4569 4570 static ssize_t order_store(struct kmem_cache *s, 4571 const char *buf, size_t length) 4572 { 4573 unsigned long order; 4574 int err; 4575 4576 err = strict_strtoul(buf, 10, &order); 4577 if (err) 4578 return err; 4579 4580 if (order > slub_max_order || order < slub_min_order) 4581 return -EINVAL; 4582 4583 calculate_sizes(s, order); 4584 return length; 4585 } 4586 4587 static ssize_t order_show(struct kmem_cache *s, char *buf) 4588 { 4589 return sprintf(buf, "%d\n", oo_order(s->oo)); 4590 } 4591 SLAB_ATTR(order); 4592 4593 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4594 { 4595 return sprintf(buf, "%lu\n", s->min_partial); 4596 } 4597 4598 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4599 size_t length) 4600 { 4601 unsigned long min; 4602 int err; 4603 4604 err = strict_strtoul(buf, 10, &min); 4605 if (err) 4606 return err; 4607 4608 set_min_partial(s, min); 4609 return length; 4610 } 4611 SLAB_ATTR(min_partial); 4612 4613 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4614 { 4615 return sprintf(buf, "%u\n", s->cpu_partial); 4616 } 4617 4618 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4619 size_t length) 4620 { 4621 unsigned long objects; 4622 int err; 4623 4624 err = strict_strtoul(buf, 10, &objects); 4625 if (err) 4626 return err; 4627 4628 s->cpu_partial = objects; 4629 flush_all(s); 4630 return length; 4631 } 4632 SLAB_ATTR(cpu_partial); 4633 4634 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4635 { 4636 if (!s->ctor) 4637 return 0; 4638 return sprintf(buf, "%pS\n", s->ctor); 4639 } 4640 SLAB_ATTR_RO(ctor); 4641 4642 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4643 { 4644 return sprintf(buf, "%d\n", s->refcount - 1); 4645 } 4646 SLAB_ATTR_RO(aliases); 4647 4648 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4649 { 4650 return show_slab_objects(s, buf, SO_PARTIAL); 4651 } 4652 SLAB_ATTR_RO(partial); 4653 4654 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4655 { 4656 return show_slab_objects(s, buf, SO_CPU); 4657 } 4658 SLAB_ATTR_RO(cpu_slabs); 4659 4660 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4661 { 4662 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4663 } 4664 SLAB_ATTR_RO(objects); 4665 4666 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4667 { 4668 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4669 } 4670 SLAB_ATTR_RO(objects_partial); 4671 4672 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4673 { 4674 int objects = 0; 4675 int pages = 0; 4676 int cpu; 4677 int len; 4678 4679 for_each_online_cpu(cpu) { 4680 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4681 4682 if (page) { 4683 pages += page->pages; 4684 objects += page->pobjects; 4685 } 4686 } 4687 4688 len = sprintf(buf, "%d(%d)", objects, pages); 4689 4690 #ifdef CONFIG_SMP 4691 for_each_online_cpu(cpu) { 4692 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4693 4694 if (page && len < PAGE_SIZE - 20) 4695 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4696 page->pobjects, page->pages); 4697 } 4698 #endif 4699 return len + sprintf(buf + len, "\n"); 4700 } 4701 SLAB_ATTR_RO(slabs_cpu_partial); 4702 4703 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4704 { 4705 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4706 } 4707 4708 static ssize_t reclaim_account_store(struct kmem_cache *s, 4709 const char *buf, size_t length) 4710 { 4711 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4712 if (buf[0] == '1') 4713 s->flags |= SLAB_RECLAIM_ACCOUNT; 4714 return length; 4715 } 4716 SLAB_ATTR(reclaim_account); 4717 4718 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4719 { 4720 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4721 } 4722 SLAB_ATTR_RO(hwcache_align); 4723 4724 #ifdef CONFIG_ZONE_DMA 4725 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4726 { 4727 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4728 } 4729 SLAB_ATTR_RO(cache_dma); 4730 #endif 4731 4732 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4733 { 4734 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4735 } 4736 SLAB_ATTR_RO(destroy_by_rcu); 4737 4738 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4739 { 4740 return sprintf(buf, "%d\n", s->reserved); 4741 } 4742 SLAB_ATTR_RO(reserved); 4743 4744 #ifdef CONFIG_SLUB_DEBUG 4745 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4746 { 4747 return show_slab_objects(s, buf, SO_ALL); 4748 } 4749 SLAB_ATTR_RO(slabs); 4750 4751 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4752 { 4753 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4754 } 4755 SLAB_ATTR_RO(total_objects); 4756 4757 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4758 { 4759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4760 } 4761 4762 static ssize_t sanity_checks_store(struct kmem_cache *s, 4763 const char *buf, size_t length) 4764 { 4765 s->flags &= ~SLAB_DEBUG_FREE; 4766 if (buf[0] == '1') { 4767 s->flags &= ~__CMPXCHG_DOUBLE; 4768 s->flags |= SLAB_DEBUG_FREE; 4769 } 4770 return length; 4771 } 4772 SLAB_ATTR(sanity_checks); 4773 4774 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4775 { 4776 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4777 } 4778 4779 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4780 size_t length) 4781 { 4782 s->flags &= ~SLAB_TRACE; 4783 if (buf[0] == '1') { 4784 s->flags &= ~__CMPXCHG_DOUBLE; 4785 s->flags |= SLAB_TRACE; 4786 } 4787 return length; 4788 } 4789 SLAB_ATTR(trace); 4790 4791 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4792 { 4793 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4794 } 4795 4796 static ssize_t red_zone_store(struct kmem_cache *s, 4797 const char *buf, size_t length) 4798 { 4799 if (any_slab_objects(s)) 4800 return -EBUSY; 4801 4802 s->flags &= ~SLAB_RED_ZONE; 4803 if (buf[0] == '1') { 4804 s->flags &= ~__CMPXCHG_DOUBLE; 4805 s->flags |= SLAB_RED_ZONE; 4806 } 4807 calculate_sizes(s, -1); 4808 return length; 4809 } 4810 SLAB_ATTR(red_zone); 4811 4812 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4813 { 4814 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4815 } 4816 4817 static ssize_t poison_store(struct kmem_cache *s, 4818 const char *buf, size_t length) 4819 { 4820 if (any_slab_objects(s)) 4821 return -EBUSY; 4822 4823 s->flags &= ~SLAB_POISON; 4824 if (buf[0] == '1') { 4825 s->flags &= ~__CMPXCHG_DOUBLE; 4826 s->flags |= SLAB_POISON; 4827 } 4828 calculate_sizes(s, -1); 4829 return length; 4830 } 4831 SLAB_ATTR(poison); 4832 4833 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4834 { 4835 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4836 } 4837 4838 static ssize_t store_user_store(struct kmem_cache *s, 4839 const char *buf, size_t length) 4840 { 4841 if (any_slab_objects(s)) 4842 return -EBUSY; 4843 4844 s->flags &= ~SLAB_STORE_USER; 4845 if (buf[0] == '1') { 4846 s->flags &= ~__CMPXCHG_DOUBLE; 4847 s->flags |= SLAB_STORE_USER; 4848 } 4849 calculate_sizes(s, -1); 4850 return length; 4851 } 4852 SLAB_ATTR(store_user); 4853 4854 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4855 { 4856 return 0; 4857 } 4858 4859 static ssize_t validate_store(struct kmem_cache *s, 4860 const char *buf, size_t length) 4861 { 4862 int ret = -EINVAL; 4863 4864 if (buf[0] == '1') { 4865 ret = validate_slab_cache(s); 4866 if (ret >= 0) 4867 ret = length; 4868 } 4869 return ret; 4870 } 4871 SLAB_ATTR(validate); 4872 4873 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4874 { 4875 if (!(s->flags & SLAB_STORE_USER)) 4876 return -ENOSYS; 4877 return list_locations(s, buf, TRACK_ALLOC); 4878 } 4879 SLAB_ATTR_RO(alloc_calls); 4880 4881 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4882 { 4883 if (!(s->flags & SLAB_STORE_USER)) 4884 return -ENOSYS; 4885 return list_locations(s, buf, TRACK_FREE); 4886 } 4887 SLAB_ATTR_RO(free_calls); 4888 #endif /* CONFIG_SLUB_DEBUG */ 4889 4890 #ifdef CONFIG_FAILSLAB 4891 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4892 { 4893 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4894 } 4895 4896 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4897 size_t length) 4898 { 4899 s->flags &= ~SLAB_FAILSLAB; 4900 if (buf[0] == '1') 4901 s->flags |= SLAB_FAILSLAB; 4902 return length; 4903 } 4904 SLAB_ATTR(failslab); 4905 #endif 4906 4907 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4908 { 4909 return 0; 4910 } 4911 4912 static ssize_t shrink_store(struct kmem_cache *s, 4913 const char *buf, size_t length) 4914 { 4915 if (buf[0] == '1') { 4916 int rc = kmem_cache_shrink(s); 4917 4918 if (rc) 4919 return rc; 4920 } else 4921 return -EINVAL; 4922 return length; 4923 } 4924 SLAB_ATTR(shrink); 4925 4926 #ifdef CONFIG_NUMA 4927 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4928 { 4929 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4930 } 4931 4932 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4933 const char *buf, size_t length) 4934 { 4935 unsigned long ratio; 4936 int err; 4937 4938 err = strict_strtoul(buf, 10, &ratio); 4939 if (err) 4940 return err; 4941 4942 if (ratio <= 100) 4943 s->remote_node_defrag_ratio = ratio * 10; 4944 4945 return length; 4946 } 4947 SLAB_ATTR(remote_node_defrag_ratio); 4948 #endif 4949 4950 #ifdef CONFIG_SLUB_STATS 4951 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4952 { 4953 unsigned long sum = 0; 4954 int cpu; 4955 int len; 4956 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4957 4958 if (!data) 4959 return -ENOMEM; 4960 4961 for_each_online_cpu(cpu) { 4962 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4963 4964 data[cpu] = x; 4965 sum += x; 4966 } 4967 4968 len = sprintf(buf, "%lu", sum); 4969 4970 #ifdef CONFIG_SMP 4971 for_each_online_cpu(cpu) { 4972 if (data[cpu] && len < PAGE_SIZE - 20) 4973 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4974 } 4975 #endif 4976 kfree(data); 4977 return len + sprintf(buf + len, "\n"); 4978 } 4979 4980 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4981 { 4982 int cpu; 4983 4984 for_each_online_cpu(cpu) 4985 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4986 } 4987 4988 #define STAT_ATTR(si, text) \ 4989 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4990 { \ 4991 return show_stat(s, buf, si); \ 4992 } \ 4993 static ssize_t text##_store(struct kmem_cache *s, \ 4994 const char *buf, size_t length) \ 4995 { \ 4996 if (buf[0] != '0') \ 4997 return -EINVAL; \ 4998 clear_stat(s, si); \ 4999 return length; \ 5000 } \ 5001 SLAB_ATTR(text); \ 5002 5003 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5004 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5005 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5006 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5007 STAT_ATTR(FREE_FROZEN, free_frozen); 5008 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5009 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5010 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5011 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5012 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5013 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5014 STAT_ATTR(FREE_SLAB, free_slab); 5015 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5016 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5017 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5018 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5019 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5020 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5021 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5022 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5023 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5024 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5025 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5026 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5027 #endif 5028 5029 static struct attribute *slab_attrs[] = { 5030 &slab_size_attr.attr, 5031 &object_size_attr.attr, 5032 &objs_per_slab_attr.attr, 5033 &order_attr.attr, 5034 &min_partial_attr.attr, 5035 &cpu_partial_attr.attr, 5036 &objects_attr.attr, 5037 &objects_partial_attr.attr, 5038 &partial_attr.attr, 5039 &cpu_slabs_attr.attr, 5040 &ctor_attr.attr, 5041 &aliases_attr.attr, 5042 &align_attr.attr, 5043 &hwcache_align_attr.attr, 5044 &reclaim_account_attr.attr, 5045 &destroy_by_rcu_attr.attr, 5046 &shrink_attr.attr, 5047 &reserved_attr.attr, 5048 &slabs_cpu_partial_attr.attr, 5049 #ifdef CONFIG_SLUB_DEBUG 5050 &total_objects_attr.attr, 5051 &slabs_attr.attr, 5052 &sanity_checks_attr.attr, 5053 &trace_attr.attr, 5054 &red_zone_attr.attr, 5055 &poison_attr.attr, 5056 &store_user_attr.attr, 5057 &validate_attr.attr, 5058 &alloc_calls_attr.attr, 5059 &free_calls_attr.attr, 5060 #endif 5061 #ifdef CONFIG_ZONE_DMA 5062 &cache_dma_attr.attr, 5063 #endif 5064 #ifdef CONFIG_NUMA 5065 &remote_node_defrag_ratio_attr.attr, 5066 #endif 5067 #ifdef CONFIG_SLUB_STATS 5068 &alloc_fastpath_attr.attr, 5069 &alloc_slowpath_attr.attr, 5070 &free_fastpath_attr.attr, 5071 &free_slowpath_attr.attr, 5072 &free_frozen_attr.attr, 5073 &free_add_partial_attr.attr, 5074 &free_remove_partial_attr.attr, 5075 &alloc_from_partial_attr.attr, 5076 &alloc_slab_attr.attr, 5077 &alloc_refill_attr.attr, 5078 &alloc_node_mismatch_attr.attr, 5079 &free_slab_attr.attr, 5080 &cpuslab_flush_attr.attr, 5081 &deactivate_full_attr.attr, 5082 &deactivate_empty_attr.attr, 5083 &deactivate_to_head_attr.attr, 5084 &deactivate_to_tail_attr.attr, 5085 &deactivate_remote_frees_attr.attr, 5086 &deactivate_bypass_attr.attr, 5087 &order_fallback_attr.attr, 5088 &cmpxchg_double_fail_attr.attr, 5089 &cmpxchg_double_cpu_fail_attr.attr, 5090 &cpu_partial_alloc_attr.attr, 5091 &cpu_partial_free_attr.attr, 5092 #endif 5093 #ifdef CONFIG_FAILSLAB 5094 &failslab_attr.attr, 5095 #endif 5096 5097 NULL 5098 }; 5099 5100 static struct attribute_group slab_attr_group = { 5101 .attrs = slab_attrs, 5102 }; 5103 5104 static ssize_t slab_attr_show(struct kobject *kobj, 5105 struct attribute *attr, 5106 char *buf) 5107 { 5108 struct slab_attribute *attribute; 5109 struct kmem_cache *s; 5110 int err; 5111 5112 attribute = to_slab_attr(attr); 5113 s = to_slab(kobj); 5114 5115 if (!attribute->show) 5116 return -EIO; 5117 5118 err = attribute->show(s, buf); 5119 5120 return err; 5121 } 5122 5123 static ssize_t slab_attr_store(struct kobject *kobj, 5124 struct attribute *attr, 5125 const char *buf, size_t len) 5126 { 5127 struct slab_attribute *attribute; 5128 struct kmem_cache *s; 5129 int err; 5130 5131 attribute = to_slab_attr(attr); 5132 s = to_slab(kobj); 5133 5134 if (!attribute->store) 5135 return -EIO; 5136 5137 err = attribute->store(s, buf, len); 5138 5139 return err; 5140 } 5141 5142 static void kmem_cache_release(struct kobject *kobj) 5143 { 5144 struct kmem_cache *s = to_slab(kobj); 5145 5146 kfree(s->name); 5147 kfree(s); 5148 } 5149 5150 static const struct sysfs_ops slab_sysfs_ops = { 5151 .show = slab_attr_show, 5152 .store = slab_attr_store, 5153 }; 5154 5155 static struct kobj_type slab_ktype = { 5156 .sysfs_ops = &slab_sysfs_ops, 5157 .release = kmem_cache_release 5158 }; 5159 5160 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5161 { 5162 struct kobj_type *ktype = get_ktype(kobj); 5163 5164 if (ktype == &slab_ktype) 5165 return 1; 5166 return 0; 5167 } 5168 5169 static const struct kset_uevent_ops slab_uevent_ops = { 5170 .filter = uevent_filter, 5171 }; 5172 5173 static struct kset *slab_kset; 5174 5175 #define ID_STR_LENGTH 64 5176 5177 /* Create a unique string id for a slab cache: 5178 * 5179 * Format :[flags-]size 5180 */ 5181 static char *create_unique_id(struct kmem_cache *s) 5182 { 5183 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5184 char *p = name; 5185 5186 BUG_ON(!name); 5187 5188 *p++ = ':'; 5189 /* 5190 * First flags affecting slabcache operations. We will only 5191 * get here for aliasable slabs so we do not need to support 5192 * too many flags. The flags here must cover all flags that 5193 * are matched during merging to guarantee that the id is 5194 * unique. 5195 */ 5196 if (s->flags & SLAB_CACHE_DMA) 5197 *p++ = 'd'; 5198 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5199 *p++ = 'a'; 5200 if (s->flags & SLAB_DEBUG_FREE) 5201 *p++ = 'F'; 5202 if (!(s->flags & SLAB_NOTRACK)) 5203 *p++ = 't'; 5204 if (p != name + 1) 5205 *p++ = '-'; 5206 p += sprintf(p, "%07d", s->size); 5207 BUG_ON(p > name + ID_STR_LENGTH - 1); 5208 return name; 5209 } 5210 5211 static int sysfs_slab_add(struct kmem_cache *s) 5212 { 5213 int err; 5214 const char *name; 5215 int unmergeable; 5216 5217 if (slab_state < SYSFS) 5218 /* Defer until later */ 5219 return 0; 5220 5221 unmergeable = slab_unmergeable(s); 5222 if (unmergeable) { 5223 /* 5224 * Slabcache can never be merged so we can use the name proper. 5225 * This is typically the case for debug situations. In that 5226 * case we can catch duplicate names easily. 5227 */ 5228 sysfs_remove_link(&slab_kset->kobj, s->name); 5229 name = s->name; 5230 } else { 5231 /* 5232 * Create a unique name for the slab as a target 5233 * for the symlinks. 5234 */ 5235 name = create_unique_id(s); 5236 } 5237 5238 s->kobj.kset = slab_kset; 5239 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5240 if (err) { 5241 kobject_put(&s->kobj); 5242 return err; 5243 } 5244 5245 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5246 if (err) { 5247 kobject_del(&s->kobj); 5248 kobject_put(&s->kobj); 5249 return err; 5250 } 5251 kobject_uevent(&s->kobj, KOBJ_ADD); 5252 if (!unmergeable) { 5253 /* Setup first alias */ 5254 sysfs_slab_alias(s, s->name); 5255 kfree(name); 5256 } 5257 return 0; 5258 } 5259 5260 static void sysfs_slab_remove(struct kmem_cache *s) 5261 { 5262 if (slab_state < SYSFS) 5263 /* 5264 * Sysfs has not been setup yet so no need to remove the 5265 * cache from sysfs. 5266 */ 5267 return; 5268 5269 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5270 kobject_del(&s->kobj); 5271 kobject_put(&s->kobj); 5272 } 5273 5274 /* 5275 * Need to buffer aliases during bootup until sysfs becomes 5276 * available lest we lose that information. 5277 */ 5278 struct saved_alias { 5279 struct kmem_cache *s; 5280 const char *name; 5281 struct saved_alias *next; 5282 }; 5283 5284 static struct saved_alias *alias_list; 5285 5286 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5287 { 5288 struct saved_alias *al; 5289 5290 if (slab_state == SYSFS) { 5291 /* 5292 * If we have a leftover link then remove it. 5293 */ 5294 sysfs_remove_link(&slab_kset->kobj, name); 5295 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5296 } 5297 5298 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5299 if (!al) 5300 return -ENOMEM; 5301 5302 al->s = s; 5303 al->name = name; 5304 al->next = alias_list; 5305 alias_list = al; 5306 return 0; 5307 } 5308 5309 static int __init slab_sysfs_init(void) 5310 { 5311 struct kmem_cache *s; 5312 int err; 5313 5314 down_write(&slub_lock); 5315 5316 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5317 if (!slab_kset) { 5318 up_write(&slub_lock); 5319 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5320 return -ENOSYS; 5321 } 5322 5323 slab_state = SYSFS; 5324 5325 list_for_each_entry(s, &slab_caches, list) { 5326 err = sysfs_slab_add(s); 5327 if (err) 5328 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5329 " to sysfs\n", s->name); 5330 } 5331 5332 while (alias_list) { 5333 struct saved_alias *al = alias_list; 5334 5335 alias_list = alias_list->next; 5336 err = sysfs_slab_alias(al->s, al->name); 5337 if (err) 5338 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5339 " %s to sysfs\n", s->name); 5340 kfree(al); 5341 } 5342 5343 up_write(&slub_lock); 5344 resiliency_test(); 5345 return 0; 5346 } 5347 5348 __initcall(slab_sysfs_init); 5349 #endif /* CONFIG_SYSFS */ 5350 5351 /* 5352 * The /proc/slabinfo ABI 5353 */ 5354 #ifdef CONFIG_SLABINFO 5355 static void print_slabinfo_header(struct seq_file *m) 5356 { 5357 seq_puts(m, "slabinfo - version: 2.1\n"); 5358 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 5359 "<objperslab> <pagesperslab>"); 5360 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 5361 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 5362 seq_putc(m, '\n'); 5363 } 5364 5365 static void *s_start(struct seq_file *m, loff_t *pos) 5366 { 5367 loff_t n = *pos; 5368 5369 down_read(&slub_lock); 5370 if (!n) 5371 print_slabinfo_header(m); 5372 5373 return seq_list_start(&slab_caches, *pos); 5374 } 5375 5376 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 5377 { 5378 return seq_list_next(p, &slab_caches, pos); 5379 } 5380 5381 static void s_stop(struct seq_file *m, void *p) 5382 { 5383 up_read(&slub_lock); 5384 } 5385 5386 static int s_show(struct seq_file *m, void *p) 5387 { 5388 unsigned long nr_partials = 0; 5389 unsigned long nr_slabs = 0; 5390 unsigned long nr_inuse = 0; 5391 unsigned long nr_objs = 0; 5392 unsigned long nr_free = 0; 5393 struct kmem_cache *s; 5394 int node; 5395 5396 s = list_entry(p, struct kmem_cache, list); 5397 5398 for_each_online_node(node) { 5399 struct kmem_cache_node *n = get_node(s, node); 5400 5401 if (!n) 5402 continue; 5403 5404 nr_partials += n->nr_partial; 5405 nr_slabs += atomic_long_read(&n->nr_slabs); 5406 nr_objs += atomic_long_read(&n->total_objects); 5407 nr_free += count_partial(n, count_free); 5408 } 5409 5410 nr_inuse = nr_objs - nr_free; 5411 5412 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 5413 nr_objs, s->size, oo_objects(s->oo), 5414 (1 << oo_order(s->oo))); 5415 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 5416 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 5417 0UL); 5418 seq_putc(m, '\n'); 5419 return 0; 5420 } 5421 5422 static const struct seq_operations slabinfo_op = { 5423 .start = s_start, 5424 .next = s_next, 5425 .stop = s_stop, 5426 .show = s_show, 5427 }; 5428 5429 static int slabinfo_open(struct inode *inode, struct file *file) 5430 { 5431 return seq_open(file, &slabinfo_op); 5432 } 5433 5434 static const struct file_operations proc_slabinfo_operations = { 5435 .open = slabinfo_open, 5436 .read = seq_read, 5437 .llseek = seq_lseek, 5438 .release = seq_release, 5439 }; 5440 5441 static int __init slab_proc_init(void) 5442 { 5443 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); 5444 return 0; 5445 } 5446 module_init(slab_proc_init); 5447 #endif /* CONFIG_SLABINFO */ 5448