xref: /linux/mm/slub.c (revision a67ff6a54095e27093ea501fb143fefe51a536c2)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 
33 #include <trace/events/kmem.h>
34 
35 /*
36  * Lock order:
37  *   1. slub_lock (Global Semaphore)
38  *   2. node->list_lock
39  *   3. slab_lock(page) (Only on some arches and for debugging)
40  *
41  *   slub_lock
42  *
43  *   The role of the slub_lock is to protect the list of all the slabs
44  *   and to synchronize major metadata changes to slab cache structures.
45  *
46  *   The slab_lock is only used for debugging and on arches that do not
47  *   have the ability to do a cmpxchg_double. It only protects the second
48  *   double word in the page struct. Meaning
49  *	A. page->freelist	-> List of object free in a page
50  *	B. page->counters	-> Counters of objects
51  *	C. page->frozen		-> frozen state
52  *
53  *   If a slab is frozen then it is exempt from list management. It is not
54  *   on any list. The processor that froze the slab is the one who can
55  *   perform list operations on the page. Other processors may put objects
56  *   onto the freelist but the processor that froze the slab is the only
57  *   one that can retrieve the objects from the page's freelist.
58  *
59  *   The list_lock protects the partial and full list on each node and
60  *   the partial slab counter. If taken then no new slabs may be added or
61  *   removed from the lists nor make the number of partial slabs be modified.
62  *   (Note that the total number of slabs is an atomic value that may be
63  *   modified without taking the list lock).
64  *
65  *   The list_lock is a centralized lock and thus we avoid taking it as
66  *   much as possible. As long as SLUB does not have to handle partial
67  *   slabs, operations can continue without any centralized lock. F.e.
68  *   allocating a long series of objects that fill up slabs does not require
69  *   the list lock.
70  *   Interrupts are disabled during allocation and deallocation in order to
71  *   make the slab allocator safe to use in the context of an irq. In addition
72  *   interrupts are disabled to ensure that the processor does not change
73  *   while handling per_cpu slabs, due to kernel preemption.
74  *
75  * SLUB assigns one slab for allocation to each processor.
76  * Allocations only occur from these slabs called cpu slabs.
77  *
78  * Slabs with free elements are kept on a partial list and during regular
79  * operations no list for full slabs is used. If an object in a full slab is
80  * freed then the slab will show up again on the partial lists.
81  * We track full slabs for debugging purposes though because otherwise we
82  * cannot scan all objects.
83  *
84  * Slabs are freed when they become empty. Teardown and setup is
85  * minimal so we rely on the page allocators per cpu caches for
86  * fast frees and allocs.
87  *
88  * Overloading of page flags that are otherwise used for LRU management.
89  *
90  * PageActive 		The slab is frozen and exempt from list processing.
91  * 			This means that the slab is dedicated to a purpose
92  * 			such as satisfying allocations for a specific
93  * 			processor. Objects may be freed in the slab while
94  * 			it is frozen but slab_free will then skip the usual
95  * 			list operations. It is up to the processor holding
96  * 			the slab to integrate the slab into the slab lists
97  * 			when the slab is no longer needed.
98  *
99  * 			One use of this flag is to mark slabs that are
100  * 			used for allocations. Then such a slab becomes a cpu
101  * 			slab. The cpu slab may be equipped with an additional
102  * 			freelist that allows lockless access to
103  * 			free objects in addition to the regular freelist
104  * 			that requires the slab lock.
105  *
106  * PageError		Slab requires special handling due to debug
107  * 			options set. This moves	slab handling out of
108  * 			the fast path and disables lockless freelists.
109  */
110 
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 		SLAB_TRACE | SLAB_DEBUG_FREE)
113 
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 	return 0;
120 #endif
121 }
122 
123 /*
124  * Issues still to be resolved:
125  *
126  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127  *
128  * - Variable sizing of the per node arrays
129  */
130 
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133 
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
136 
137 /*
138  * Mininum number of partial slabs. These will be left on the partial
139  * lists even if they are empty. kmem_cache_shrink may reclaim them.
140  */
141 #define MIN_PARTIAL 5
142 
143 /*
144  * Maximum number of desirable partial slabs.
145  * The existence of more partial slabs makes kmem_cache_shrink
146  * sort the partial list by the number of objects in the.
147  */
148 #define MAX_PARTIAL 10
149 
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 				SLAB_POISON | SLAB_STORE_USER)
152 
153 /*
154  * Debugging flags that require metadata to be stored in the slab.  These get
155  * disabled when slub_debug=O is used and a cache's min order increases with
156  * metadata.
157  */
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159 
160 /*
161  * Set of flags that will prevent slab merging
162  */
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 		SLAB_FAILSLAB)
166 
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 		SLAB_CACHE_DMA | SLAB_NOTRACK)
169 
170 #define OO_SHIFT	16
171 #define OO_MASK		((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
173 
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON		0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
177 
178 static int kmem_size = sizeof(struct kmem_cache);
179 
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183 
184 static enum {
185 	DOWN,		/* No slab functionality available */
186 	PARTIAL,	/* Kmem_cache_node works */
187 	UP,		/* Everything works but does not show up in sysfs */
188 	SYSFS		/* Sysfs up */
189 } slab_state = DOWN;
190 
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
194 
195 /*
196  * Tracking user of a slab.
197  */
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 	unsigned long addr;	/* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
203 #endif
204 	int cpu;		/* Was running on cpu */
205 	int pid;		/* Pid context */
206 	unsigned long when;	/* When did the operation occur */
207 };
208 
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
210 
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
215 
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 							{ return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
221 {
222 	kfree(s->name);
223 	kfree(s);
224 }
225 
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	__this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234 
235 /********************************************************************
236  * 			Core slab cache functions
237  *******************************************************************/
238 
239 int slab_is_available(void)
240 {
241 	return slab_state >= UP;
242 }
243 
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245 {
246 	return s->node[node];
247 }
248 
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 				struct page *page, const void *object)
252 {
253 	void *base;
254 
255 	if (!object)
256 		return 1;
257 
258 	base = page_address(page);
259 	if (object < base || object >= base + page->objects * s->size ||
260 		(object - base) % s->size) {
261 		return 0;
262 	}
263 
264 	return 1;
265 }
266 
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 	return *(void **)(object + s->offset);
270 }
271 
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273 {
274 	void *p;
275 
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 	p = get_freepointer(s, object);
280 #endif
281 	return p;
282 }
283 
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 	*(void **)(object + s->offset) = fp;
287 }
288 
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 			__p += (__s)->size)
293 
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296 {
297 	return (p - addr) / s->size;
298 }
299 
300 static inline size_t slab_ksize(const struct kmem_cache *s)
301 {
302 #ifdef CONFIG_SLUB_DEBUG
303 	/*
304 	 * Debugging requires use of the padding between object
305 	 * and whatever may come after it.
306 	 */
307 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 		return s->objsize;
309 
310 #endif
311 	/*
312 	 * If we have the need to store the freelist pointer
313 	 * back there or track user information then we can
314 	 * only use the space before that information.
315 	 */
316 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 		return s->inuse;
318 	/*
319 	 * Else we can use all the padding etc for the allocation
320 	 */
321 	return s->size;
322 }
323 
324 static inline int order_objects(int order, unsigned long size, int reserved)
325 {
326 	return ((PAGE_SIZE << order) - reserved) / size;
327 }
328 
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 		unsigned long size, int reserved)
331 {
332 	struct kmem_cache_order_objects x = {
333 		(order << OO_SHIFT) + order_objects(order, size, reserved)
334 	};
335 
336 	return x;
337 }
338 
339 static inline int oo_order(struct kmem_cache_order_objects x)
340 {
341 	return x.x >> OO_SHIFT;
342 }
343 
344 static inline int oo_objects(struct kmem_cache_order_objects x)
345 {
346 	return x.x & OO_MASK;
347 }
348 
349 /*
350  * Per slab locking using the pagelock
351  */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 	bit_spin_lock(PG_locked, &page->flags);
355 }
356 
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 	__bit_spin_unlock(PG_locked, &page->flags);
360 }
361 
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 		void *freelist_old, unsigned long counters_old,
365 		void *freelist_new, unsigned long counters_new,
366 		const char *n)
367 {
368 	VM_BUG_ON(!irqs_disabled());
369 #ifdef CONFIG_CMPXCHG_DOUBLE
370 	if (s->flags & __CMPXCHG_DOUBLE) {
371 		if (cmpxchg_double(&page->freelist,
372 			freelist_old, counters_old,
373 			freelist_new, counters_new))
374 		return 1;
375 	} else
376 #endif
377 	{
378 		slab_lock(page);
379 		if (page->freelist == freelist_old && page->counters == counters_old) {
380 			page->freelist = freelist_new;
381 			page->counters = counters_new;
382 			slab_unlock(page);
383 			return 1;
384 		}
385 		slab_unlock(page);
386 	}
387 
388 	cpu_relax();
389 	stat(s, CMPXCHG_DOUBLE_FAIL);
390 
391 #ifdef SLUB_DEBUG_CMPXCHG
392 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393 #endif
394 
395 	return 0;
396 }
397 
398 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 		void *freelist_old, unsigned long counters_old,
400 		void *freelist_new, unsigned long counters_new,
401 		const char *n)
402 {
403 #ifdef CONFIG_CMPXCHG_DOUBLE
404 	if (s->flags & __CMPXCHG_DOUBLE) {
405 		if (cmpxchg_double(&page->freelist,
406 			freelist_old, counters_old,
407 			freelist_new, counters_new))
408 		return 1;
409 	} else
410 #endif
411 	{
412 		unsigned long flags;
413 
414 		local_irq_save(flags);
415 		slab_lock(page);
416 		if (page->freelist == freelist_old && page->counters == counters_old) {
417 			page->freelist = freelist_new;
418 			page->counters = counters_new;
419 			slab_unlock(page);
420 			local_irq_restore(flags);
421 			return 1;
422 		}
423 		slab_unlock(page);
424 		local_irq_restore(flags);
425 	}
426 
427 	cpu_relax();
428 	stat(s, CMPXCHG_DOUBLE_FAIL);
429 
430 #ifdef SLUB_DEBUG_CMPXCHG
431 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433 
434 	return 0;
435 }
436 
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439  * Determine a map of object in use on a page.
440  *
441  * Node listlock must be held to guarantee that the page does
442  * not vanish from under us.
443  */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 	void *p;
447 	void *addr = page_address(page);
448 
449 	for (p = page->freelist; p; p = get_freepointer(s, p))
450 		set_bit(slab_index(p, s, addr), map);
451 }
452 
453 /*
454  * Debug settings:
455  */
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
461 
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
464 
465 /*
466  * Object debugging
467  */
468 static void print_section(char *text, u8 *addr, unsigned int length)
469 {
470 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 			length, 1);
472 }
473 
474 static struct track *get_track(struct kmem_cache *s, void *object,
475 	enum track_item alloc)
476 {
477 	struct track *p;
478 
479 	if (s->offset)
480 		p = object + s->offset + sizeof(void *);
481 	else
482 		p = object + s->inuse;
483 
484 	return p + alloc;
485 }
486 
487 static void set_track(struct kmem_cache *s, void *object,
488 			enum track_item alloc, unsigned long addr)
489 {
490 	struct track *p = get_track(s, object, alloc);
491 
492 	if (addr) {
493 #ifdef CONFIG_STACKTRACE
494 		struct stack_trace trace;
495 		int i;
496 
497 		trace.nr_entries = 0;
498 		trace.max_entries = TRACK_ADDRS_COUNT;
499 		trace.entries = p->addrs;
500 		trace.skip = 3;
501 		save_stack_trace(&trace);
502 
503 		/* See rant in lockdep.c */
504 		if (trace.nr_entries != 0 &&
505 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 			trace.nr_entries--;
507 
508 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 			p->addrs[i] = 0;
510 #endif
511 		p->addr = addr;
512 		p->cpu = smp_processor_id();
513 		p->pid = current->pid;
514 		p->when = jiffies;
515 	} else
516 		memset(p, 0, sizeof(struct track));
517 }
518 
519 static void init_tracking(struct kmem_cache *s, void *object)
520 {
521 	if (!(s->flags & SLAB_STORE_USER))
522 		return;
523 
524 	set_track(s, object, TRACK_FREE, 0UL);
525 	set_track(s, object, TRACK_ALLOC, 0UL);
526 }
527 
528 static void print_track(const char *s, struct track *t)
529 {
530 	if (!t->addr)
531 		return;
532 
533 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 #ifdef CONFIG_STACKTRACE
536 	{
537 		int i;
538 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 			if (t->addrs[i])
540 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 			else
542 				break;
543 	}
544 #endif
545 }
546 
547 static void print_tracking(struct kmem_cache *s, void *object)
548 {
549 	if (!(s->flags & SLAB_STORE_USER))
550 		return;
551 
552 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 	print_track("Freed", get_track(s, object, TRACK_FREE));
554 }
555 
556 static void print_page_info(struct page *page)
557 {
558 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
559 		page, page->objects, page->inuse, page->freelist, page->flags);
560 
561 }
562 
563 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
564 {
565 	va_list args;
566 	char buf[100];
567 
568 	va_start(args, fmt);
569 	vsnprintf(buf, sizeof(buf), fmt, args);
570 	va_end(args);
571 	printk(KERN_ERR "========================================"
572 			"=====================================\n");
573 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
574 	printk(KERN_ERR "----------------------------------------"
575 			"-------------------------------------\n\n");
576 }
577 
578 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579 {
580 	va_list args;
581 	char buf[100];
582 
583 	va_start(args, fmt);
584 	vsnprintf(buf, sizeof(buf), fmt, args);
585 	va_end(args);
586 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587 }
588 
589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
590 {
591 	unsigned int off;	/* Offset of last byte */
592 	u8 *addr = page_address(page);
593 
594 	print_tracking(s, p);
595 
596 	print_page_info(page);
597 
598 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 			p, p - addr, get_freepointer(s, p));
600 
601 	if (p > addr + 16)
602 		print_section("Bytes b4 ", p - 16, 16);
603 
604 	print_section("Object ", p, min_t(unsigned long, s->objsize,
605 				PAGE_SIZE));
606 	if (s->flags & SLAB_RED_ZONE)
607 		print_section("Redzone ", p + s->objsize,
608 			s->inuse - s->objsize);
609 
610 	if (s->offset)
611 		off = s->offset + sizeof(void *);
612 	else
613 		off = s->inuse;
614 
615 	if (s->flags & SLAB_STORE_USER)
616 		off += 2 * sizeof(struct track);
617 
618 	if (off != s->size)
619 		/* Beginning of the filler is the free pointer */
620 		print_section("Padding ", p + off, s->size - off);
621 
622 	dump_stack();
623 }
624 
625 static void object_err(struct kmem_cache *s, struct page *page,
626 			u8 *object, char *reason)
627 {
628 	slab_bug(s, "%s", reason);
629 	print_trailer(s, page, object);
630 }
631 
632 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
633 {
634 	va_list args;
635 	char buf[100];
636 
637 	va_start(args, fmt);
638 	vsnprintf(buf, sizeof(buf), fmt, args);
639 	va_end(args);
640 	slab_bug(s, "%s", buf);
641 	print_page_info(page);
642 	dump_stack();
643 }
644 
645 static void init_object(struct kmem_cache *s, void *object, u8 val)
646 {
647 	u8 *p = object;
648 
649 	if (s->flags & __OBJECT_POISON) {
650 		memset(p, POISON_FREE, s->objsize - 1);
651 		p[s->objsize - 1] = POISON_END;
652 	}
653 
654 	if (s->flags & SLAB_RED_ZONE)
655 		memset(p + s->objsize, val, s->inuse - s->objsize);
656 }
657 
658 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
659 						void *from, void *to)
660 {
661 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
662 	memset(from, data, to - from);
663 }
664 
665 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
666 			u8 *object, char *what,
667 			u8 *start, unsigned int value, unsigned int bytes)
668 {
669 	u8 *fault;
670 	u8 *end;
671 
672 	fault = memchr_inv(start, value, bytes);
673 	if (!fault)
674 		return 1;
675 
676 	end = start + bytes;
677 	while (end > fault && end[-1] == value)
678 		end--;
679 
680 	slab_bug(s, "%s overwritten", what);
681 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
682 					fault, end - 1, fault[0], value);
683 	print_trailer(s, page, object);
684 
685 	restore_bytes(s, what, value, fault, end);
686 	return 0;
687 }
688 
689 /*
690  * Object layout:
691  *
692  * object address
693  * 	Bytes of the object to be managed.
694  * 	If the freepointer may overlay the object then the free
695  * 	pointer is the first word of the object.
696  *
697  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
698  * 	0xa5 (POISON_END)
699  *
700  * object + s->objsize
701  * 	Padding to reach word boundary. This is also used for Redzoning.
702  * 	Padding is extended by another word if Redzoning is enabled and
703  * 	objsize == inuse.
704  *
705  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
706  * 	0xcc (RED_ACTIVE) for objects in use.
707  *
708  * object + s->inuse
709  * 	Meta data starts here.
710  *
711  * 	A. Free pointer (if we cannot overwrite object on free)
712  * 	B. Tracking data for SLAB_STORE_USER
713  * 	C. Padding to reach required alignment boundary or at mininum
714  * 		one word if debugging is on to be able to detect writes
715  * 		before the word boundary.
716  *
717  *	Padding is done using 0x5a (POISON_INUSE)
718  *
719  * object + s->size
720  * 	Nothing is used beyond s->size.
721  *
722  * If slabcaches are merged then the objsize and inuse boundaries are mostly
723  * ignored. And therefore no slab options that rely on these boundaries
724  * may be used with merged slabcaches.
725  */
726 
727 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
728 {
729 	unsigned long off = s->inuse;	/* The end of info */
730 
731 	if (s->offset)
732 		/* Freepointer is placed after the object. */
733 		off += sizeof(void *);
734 
735 	if (s->flags & SLAB_STORE_USER)
736 		/* We also have user information there */
737 		off += 2 * sizeof(struct track);
738 
739 	if (s->size == off)
740 		return 1;
741 
742 	return check_bytes_and_report(s, page, p, "Object padding",
743 				p + off, POISON_INUSE, s->size - off);
744 }
745 
746 /* Check the pad bytes at the end of a slab page */
747 static int slab_pad_check(struct kmem_cache *s, struct page *page)
748 {
749 	u8 *start;
750 	u8 *fault;
751 	u8 *end;
752 	int length;
753 	int remainder;
754 
755 	if (!(s->flags & SLAB_POISON))
756 		return 1;
757 
758 	start = page_address(page);
759 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
760 	end = start + length;
761 	remainder = length % s->size;
762 	if (!remainder)
763 		return 1;
764 
765 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
766 	if (!fault)
767 		return 1;
768 	while (end > fault && end[-1] == POISON_INUSE)
769 		end--;
770 
771 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
772 	print_section("Padding ", end - remainder, remainder);
773 
774 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
775 	return 0;
776 }
777 
778 static int check_object(struct kmem_cache *s, struct page *page,
779 					void *object, u8 val)
780 {
781 	u8 *p = object;
782 	u8 *endobject = object + s->objsize;
783 
784 	if (s->flags & SLAB_RED_ZONE) {
785 		if (!check_bytes_and_report(s, page, object, "Redzone",
786 			endobject, val, s->inuse - s->objsize))
787 			return 0;
788 	} else {
789 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
790 			check_bytes_and_report(s, page, p, "Alignment padding",
791 				endobject, POISON_INUSE, s->inuse - s->objsize);
792 		}
793 	}
794 
795 	if (s->flags & SLAB_POISON) {
796 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
797 			(!check_bytes_and_report(s, page, p, "Poison", p,
798 					POISON_FREE, s->objsize - 1) ||
799 			 !check_bytes_and_report(s, page, p, "Poison",
800 				p + s->objsize - 1, POISON_END, 1)))
801 			return 0;
802 		/*
803 		 * check_pad_bytes cleans up on its own.
804 		 */
805 		check_pad_bytes(s, page, p);
806 	}
807 
808 	if (!s->offset && val == SLUB_RED_ACTIVE)
809 		/*
810 		 * Object and freepointer overlap. Cannot check
811 		 * freepointer while object is allocated.
812 		 */
813 		return 1;
814 
815 	/* Check free pointer validity */
816 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
817 		object_err(s, page, p, "Freepointer corrupt");
818 		/*
819 		 * No choice but to zap it and thus lose the remainder
820 		 * of the free objects in this slab. May cause
821 		 * another error because the object count is now wrong.
822 		 */
823 		set_freepointer(s, p, NULL);
824 		return 0;
825 	}
826 	return 1;
827 }
828 
829 static int check_slab(struct kmem_cache *s, struct page *page)
830 {
831 	int maxobj;
832 
833 	VM_BUG_ON(!irqs_disabled());
834 
835 	if (!PageSlab(page)) {
836 		slab_err(s, page, "Not a valid slab page");
837 		return 0;
838 	}
839 
840 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
841 	if (page->objects > maxobj) {
842 		slab_err(s, page, "objects %u > max %u",
843 			s->name, page->objects, maxobj);
844 		return 0;
845 	}
846 	if (page->inuse > page->objects) {
847 		slab_err(s, page, "inuse %u > max %u",
848 			s->name, page->inuse, page->objects);
849 		return 0;
850 	}
851 	/* Slab_pad_check fixes things up after itself */
852 	slab_pad_check(s, page);
853 	return 1;
854 }
855 
856 /*
857  * Determine if a certain object on a page is on the freelist. Must hold the
858  * slab lock to guarantee that the chains are in a consistent state.
859  */
860 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
861 {
862 	int nr = 0;
863 	void *fp;
864 	void *object = NULL;
865 	unsigned long max_objects;
866 
867 	fp = page->freelist;
868 	while (fp && nr <= page->objects) {
869 		if (fp == search)
870 			return 1;
871 		if (!check_valid_pointer(s, page, fp)) {
872 			if (object) {
873 				object_err(s, page, object,
874 					"Freechain corrupt");
875 				set_freepointer(s, object, NULL);
876 				break;
877 			} else {
878 				slab_err(s, page, "Freepointer corrupt");
879 				page->freelist = NULL;
880 				page->inuse = page->objects;
881 				slab_fix(s, "Freelist cleared");
882 				return 0;
883 			}
884 			break;
885 		}
886 		object = fp;
887 		fp = get_freepointer(s, object);
888 		nr++;
889 	}
890 
891 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
892 	if (max_objects > MAX_OBJS_PER_PAGE)
893 		max_objects = MAX_OBJS_PER_PAGE;
894 
895 	if (page->objects != max_objects) {
896 		slab_err(s, page, "Wrong number of objects. Found %d but "
897 			"should be %d", page->objects, max_objects);
898 		page->objects = max_objects;
899 		slab_fix(s, "Number of objects adjusted.");
900 	}
901 	if (page->inuse != page->objects - nr) {
902 		slab_err(s, page, "Wrong object count. Counter is %d but "
903 			"counted were %d", page->inuse, page->objects - nr);
904 		page->inuse = page->objects - nr;
905 		slab_fix(s, "Object count adjusted.");
906 	}
907 	return search == NULL;
908 }
909 
910 static void trace(struct kmem_cache *s, struct page *page, void *object,
911 								int alloc)
912 {
913 	if (s->flags & SLAB_TRACE) {
914 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
915 			s->name,
916 			alloc ? "alloc" : "free",
917 			object, page->inuse,
918 			page->freelist);
919 
920 		if (!alloc)
921 			print_section("Object ", (void *)object, s->objsize);
922 
923 		dump_stack();
924 	}
925 }
926 
927 /*
928  * Hooks for other subsystems that check memory allocations. In a typical
929  * production configuration these hooks all should produce no code at all.
930  */
931 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
932 {
933 	flags &= gfp_allowed_mask;
934 	lockdep_trace_alloc(flags);
935 	might_sleep_if(flags & __GFP_WAIT);
936 
937 	return should_failslab(s->objsize, flags, s->flags);
938 }
939 
940 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
941 {
942 	flags &= gfp_allowed_mask;
943 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
944 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
945 }
946 
947 static inline void slab_free_hook(struct kmem_cache *s, void *x)
948 {
949 	kmemleak_free_recursive(x, s->flags);
950 
951 	/*
952 	 * Trouble is that we may no longer disable interupts in the fast path
953 	 * So in order to make the debug calls that expect irqs to be
954 	 * disabled we need to disable interrupts temporarily.
955 	 */
956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
957 	{
958 		unsigned long flags;
959 
960 		local_irq_save(flags);
961 		kmemcheck_slab_free(s, x, s->objsize);
962 		debug_check_no_locks_freed(x, s->objsize);
963 		local_irq_restore(flags);
964 	}
965 #endif
966 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
967 		debug_check_no_obj_freed(x, s->objsize);
968 }
969 
970 /*
971  * Tracking of fully allocated slabs for debugging purposes.
972  *
973  * list_lock must be held.
974  */
975 static void add_full(struct kmem_cache *s,
976 	struct kmem_cache_node *n, struct page *page)
977 {
978 	if (!(s->flags & SLAB_STORE_USER))
979 		return;
980 
981 	list_add(&page->lru, &n->full);
982 }
983 
984 /*
985  * list_lock must be held.
986  */
987 static void remove_full(struct kmem_cache *s, struct page *page)
988 {
989 	if (!(s->flags & SLAB_STORE_USER))
990 		return;
991 
992 	list_del(&page->lru);
993 }
994 
995 /* Tracking of the number of slabs for debugging purposes */
996 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
997 {
998 	struct kmem_cache_node *n = get_node(s, node);
999 
1000 	return atomic_long_read(&n->nr_slabs);
1001 }
1002 
1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1004 {
1005 	return atomic_long_read(&n->nr_slabs);
1006 }
1007 
1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1009 {
1010 	struct kmem_cache_node *n = get_node(s, node);
1011 
1012 	/*
1013 	 * May be called early in order to allocate a slab for the
1014 	 * kmem_cache_node structure. Solve the chicken-egg
1015 	 * dilemma by deferring the increment of the count during
1016 	 * bootstrap (see early_kmem_cache_node_alloc).
1017 	 */
1018 	if (n) {
1019 		atomic_long_inc(&n->nr_slabs);
1020 		atomic_long_add(objects, &n->total_objects);
1021 	}
1022 }
1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 	struct kmem_cache_node *n = get_node(s, node);
1026 
1027 	atomic_long_dec(&n->nr_slabs);
1028 	atomic_long_sub(objects, &n->total_objects);
1029 }
1030 
1031 /* Object debug checks for alloc/free paths */
1032 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1033 								void *object)
1034 {
1035 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1036 		return;
1037 
1038 	init_object(s, object, SLUB_RED_INACTIVE);
1039 	init_tracking(s, object);
1040 }
1041 
1042 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1043 					void *object, unsigned long addr)
1044 {
1045 	if (!check_slab(s, page))
1046 		goto bad;
1047 
1048 	if (!check_valid_pointer(s, page, object)) {
1049 		object_err(s, page, object, "Freelist Pointer check fails");
1050 		goto bad;
1051 	}
1052 
1053 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1054 		goto bad;
1055 
1056 	/* Success perform special debug activities for allocs */
1057 	if (s->flags & SLAB_STORE_USER)
1058 		set_track(s, object, TRACK_ALLOC, addr);
1059 	trace(s, page, object, 1);
1060 	init_object(s, object, SLUB_RED_ACTIVE);
1061 	return 1;
1062 
1063 bad:
1064 	if (PageSlab(page)) {
1065 		/*
1066 		 * If this is a slab page then lets do the best we can
1067 		 * to avoid issues in the future. Marking all objects
1068 		 * as used avoids touching the remaining objects.
1069 		 */
1070 		slab_fix(s, "Marking all objects used");
1071 		page->inuse = page->objects;
1072 		page->freelist = NULL;
1073 	}
1074 	return 0;
1075 }
1076 
1077 static noinline int free_debug_processing(struct kmem_cache *s,
1078 		 struct page *page, void *object, unsigned long addr)
1079 {
1080 	unsigned long flags;
1081 	int rc = 0;
1082 
1083 	local_irq_save(flags);
1084 	slab_lock(page);
1085 
1086 	if (!check_slab(s, page))
1087 		goto fail;
1088 
1089 	if (!check_valid_pointer(s, page, object)) {
1090 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1091 		goto fail;
1092 	}
1093 
1094 	if (on_freelist(s, page, object)) {
1095 		object_err(s, page, object, "Object already free");
1096 		goto fail;
1097 	}
1098 
1099 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100 		goto out;
1101 
1102 	if (unlikely(s != page->slab)) {
1103 		if (!PageSlab(page)) {
1104 			slab_err(s, page, "Attempt to free object(0x%p) "
1105 				"outside of slab", object);
1106 		} else if (!page->slab) {
1107 			printk(KERN_ERR
1108 				"SLUB <none>: no slab for object 0x%p.\n",
1109 						object);
1110 			dump_stack();
1111 		} else
1112 			object_err(s, page, object,
1113 					"page slab pointer corrupt.");
1114 		goto fail;
1115 	}
1116 
1117 	if (s->flags & SLAB_STORE_USER)
1118 		set_track(s, object, TRACK_FREE, addr);
1119 	trace(s, page, object, 0);
1120 	init_object(s, object, SLUB_RED_INACTIVE);
1121 	rc = 1;
1122 out:
1123 	slab_unlock(page);
1124 	local_irq_restore(flags);
1125 	return rc;
1126 
1127 fail:
1128 	slab_fix(s, "Object at 0x%p not freed", object);
1129 	goto out;
1130 }
1131 
1132 static int __init setup_slub_debug(char *str)
1133 {
1134 	slub_debug = DEBUG_DEFAULT_FLAGS;
1135 	if (*str++ != '=' || !*str)
1136 		/*
1137 		 * No options specified. Switch on full debugging.
1138 		 */
1139 		goto out;
1140 
1141 	if (*str == ',')
1142 		/*
1143 		 * No options but restriction on slabs. This means full
1144 		 * debugging for slabs matching a pattern.
1145 		 */
1146 		goto check_slabs;
1147 
1148 	if (tolower(*str) == 'o') {
1149 		/*
1150 		 * Avoid enabling debugging on caches if its minimum order
1151 		 * would increase as a result.
1152 		 */
1153 		disable_higher_order_debug = 1;
1154 		goto out;
1155 	}
1156 
1157 	slub_debug = 0;
1158 	if (*str == '-')
1159 		/*
1160 		 * Switch off all debugging measures.
1161 		 */
1162 		goto out;
1163 
1164 	/*
1165 	 * Determine which debug features should be switched on
1166 	 */
1167 	for (; *str && *str != ','; str++) {
1168 		switch (tolower(*str)) {
1169 		case 'f':
1170 			slub_debug |= SLAB_DEBUG_FREE;
1171 			break;
1172 		case 'z':
1173 			slub_debug |= SLAB_RED_ZONE;
1174 			break;
1175 		case 'p':
1176 			slub_debug |= SLAB_POISON;
1177 			break;
1178 		case 'u':
1179 			slub_debug |= SLAB_STORE_USER;
1180 			break;
1181 		case 't':
1182 			slub_debug |= SLAB_TRACE;
1183 			break;
1184 		case 'a':
1185 			slub_debug |= SLAB_FAILSLAB;
1186 			break;
1187 		default:
1188 			printk(KERN_ERR "slub_debug option '%c' "
1189 				"unknown. skipped\n", *str);
1190 		}
1191 	}
1192 
1193 check_slabs:
1194 	if (*str == ',')
1195 		slub_debug_slabs = str + 1;
1196 out:
1197 	return 1;
1198 }
1199 
1200 __setup("slub_debug", setup_slub_debug);
1201 
1202 static unsigned long kmem_cache_flags(unsigned long objsize,
1203 	unsigned long flags, const char *name,
1204 	void (*ctor)(void *))
1205 {
1206 	/*
1207 	 * Enable debugging if selected on the kernel commandline.
1208 	 */
1209 	if (slub_debug && (!slub_debug_slabs ||
1210 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1211 		flags |= slub_debug;
1212 
1213 	return flags;
1214 }
1215 #else
1216 static inline void setup_object_debug(struct kmem_cache *s,
1217 			struct page *page, void *object) {}
1218 
1219 static inline int alloc_debug_processing(struct kmem_cache *s,
1220 	struct page *page, void *object, unsigned long addr) { return 0; }
1221 
1222 static inline int free_debug_processing(struct kmem_cache *s,
1223 	struct page *page, void *object, unsigned long addr) { return 0; }
1224 
1225 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1226 			{ return 1; }
1227 static inline int check_object(struct kmem_cache *s, struct page *page,
1228 			void *object, u8 val) { return 1; }
1229 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1230 					struct page *page) {}
1231 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1232 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1233 	unsigned long flags, const char *name,
1234 	void (*ctor)(void *))
1235 {
1236 	return flags;
1237 }
1238 #define slub_debug 0
1239 
1240 #define disable_higher_order_debug 0
1241 
1242 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1243 							{ return 0; }
1244 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1245 							{ return 0; }
1246 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1247 							int objects) {}
1248 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1249 							int objects) {}
1250 
1251 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1252 							{ return 0; }
1253 
1254 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1255 		void *object) {}
1256 
1257 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1258 
1259 #endif /* CONFIG_SLUB_DEBUG */
1260 
1261 /*
1262  * Slab allocation and freeing
1263  */
1264 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1265 					struct kmem_cache_order_objects oo)
1266 {
1267 	int order = oo_order(oo);
1268 
1269 	flags |= __GFP_NOTRACK;
1270 
1271 	if (node == NUMA_NO_NODE)
1272 		return alloc_pages(flags, order);
1273 	else
1274 		return alloc_pages_exact_node(node, flags, order);
1275 }
1276 
1277 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1278 {
1279 	struct page *page;
1280 	struct kmem_cache_order_objects oo = s->oo;
1281 	gfp_t alloc_gfp;
1282 
1283 	flags &= gfp_allowed_mask;
1284 
1285 	if (flags & __GFP_WAIT)
1286 		local_irq_enable();
1287 
1288 	flags |= s->allocflags;
1289 
1290 	/*
1291 	 * Let the initial higher-order allocation fail under memory pressure
1292 	 * so we fall-back to the minimum order allocation.
1293 	 */
1294 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1295 
1296 	page = alloc_slab_page(alloc_gfp, node, oo);
1297 	if (unlikely(!page)) {
1298 		oo = s->min;
1299 		/*
1300 		 * Allocation may have failed due to fragmentation.
1301 		 * Try a lower order alloc if possible
1302 		 */
1303 		page = alloc_slab_page(flags, node, oo);
1304 
1305 		if (page)
1306 			stat(s, ORDER_FALLBACK);
1307 	}
1308 
1309 	if (flags & __GFP_WAIT)
1310 		local_irq_disable();
1311 
1312 	if (!page)
1313 		return NULL;
1314 
1315 	if (kmemcheck_enabled
1316 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1317 		int pages = 1 << oo_order(oo);
1318 
1319 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1320 
1321 		/*
1322 		 * Objects from caches that have a constructor don't get
1323 		 * cleared when they're allocated, so we need to do it here.
1324 		 */
1325 		if (s->ctor)
1326 			kmemcheck_mark_uninitialized_pages(page, pages);
1327 		else
1328 			kmemcheck_mark_unallocated_pages(page, pages);
1329 	}
1330 
1331 	page->objects = oo_objects(oo);
1332 	mod_zone_page_state(page_zone(page),
1333 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1334 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1335 		1 << oo_order(oo));
1336 
1337 	return page;
1338 }
1339 
1340 static void setup_object(struct kmem_cache *s, struct page *page,
1341 				void *object)
1342 {
1343 	setup_object_debug(s, page, object);
1344 	if (unlikely(s->ctor))
1345 		s->ctor(object);
1346 }
1347 
1348 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1349 {
1350 	struct page *page;
1351 	void *start;
1352 	void *last;
1353 	void *p;
1354 
1355 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1356 
1357 	page = allocate_slab(s,
1358 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1359 	if (!page)
1360 		goto out;
1361 
1362 	inc_slabs_node(s, page_to_nid(page), page->objects);
1363 	page->slab = s;
1364 	page->flags |= 1 << PG_slab;
1365 
1366 	start = page_address(page);
1367 
1368 	if (unlikely(s->flags & SLAB_POISON))
1369 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1370 
1371 	last = start;
1372 	for_each_object(p, s, start, page->objects) {
1373 		setup_object(s, page, last);
1374 		set_freepointer(s, last, p);
1375 		last = p;
1376 	}
1377 	setup_object(s, page, last);
1378 	set_freepointer(s, last, NULL);
1379 
1380 	page->freelist = start;
1381 	page->inuse = page->objects;
1382 	page->frozen = 1;
1383 out:
1384 	return page;
1385 }
1386 
1387 static void __free_slab(struct kmem_cache *s, struct page *page)
1388 {
1389 	int order = compound_order(page);
1390 	int pages = 1 << order;
1391 
1392 	if (kmem_cache_debug(s)) {
1393 		void *p;
1394 
1395 		slab_pad_check(s, page);
1396 		for_each_object(p, s, page_address(page),
1397 						page->objects)
1398 			check_object(s, page, p, SLUB_RED_INACTIVE);
1399 	}
1400 
1401 	kmemcheck_free_shadow(page, compound_order(page));
1402 
1403 	mod_zone_page_state(page_zone(page),
1404 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1406 		-pages);
1407 
1408 	__ClearPageSlab(page);
1409 	reset_page_mapcount(page);
1410 	if (current->reclaim_state)
1411 		current->reclaim_state->reclaimed_slab += pages;
1412 	__free_pages(page, order);
1413 }
1414 
1415 #define need_reserve_slab_rcu						\
1416 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1417 
1418 static void rcu_free_slab(struct rcu_head *h)
1419 {
1420 	struct page *page;
1421 
1422 	if (need_reserve_slab_rcu)
1423 		page = virt_to_head_page(h);
1424 	else
1425 		page = container_of((struct list_head *)h, struct page, lru);
1426 
1427 	__free_slab(page->slab, page);
1428 }
1429 
1430 static void free_slab(struct kmem_cache *s, struct page *page)
1431 {
1432 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1433 		struct rcu_head *head;
1434 
1435 		if (need_reserve_slab_rcu) {
1436 			int order = compound_order(page);
1437 			int offset = (PAGE_SIZE << order) - s->reserved;
1438 
1439 			VM_BUG_ON(s->reserved != sizeof(*head));
1440 			head = page_address(page) + offset;
1441 		} else {
1442 			/*
1443 			 * RCU free overloads the RCU head over the LRU
1444 			 */
1445 			head = (void *)&page->lru;
1446 		}
1447 
1448 		call_rcu(head, rcu_free_slab);
1449 	} else
1450 		__free_slab(s, page);
1451 }
1452 
1453 static void discard_slab(struct kmem_cache *s, struct page *page)
1454 {
1455 	dec_slabs_node(s, page_to_nid(page), page->objects);
1456 	free_slab(s, page);
1457 }
1458 
1459 /*
1460  * Management of partially allocated slabs.
1461  *
1462  * list_lock must be held.
1463  */
1464 static inline void add_partial(struct kmem_cache_node *n,
1465 				struct page *page, int tail)
1466 {
1467 	n->nr_partial++;
1468 	if (tail == DEACTIVATE_TO_TAIL)
1469 		list_add_tail(&page->lru, &n->partial);
1470 	else
1471 		list_add(&page->lru, &n->partial);
1472 }
1473 
1474 /*
1475  * list_lock must be held.
1476  */
1477 static inline void remove_partial(struct kmem_cache_node *n,
1478 					struct page *page)
1479 {
1480 	list_del(&page->lru);
1481 	n->nr_partial--;
1482 }
1483 
1484 /*
1485  * Lock slab, remove from the partial list and put the object into the
1486  * per cpu freelist.
1487  *
1488  * Returns a list of objects or NULL if it fails.
1489  *
1490  * Must hold list_lock.
1491  */
1492 static inline void *acquire_slab(struct kmem_cache *s,
1493 		struct kmem_cache_node *n, struct page *page,
1494 		int mode)
1495 {
1496 	void *freelist;
1497 	unsigned long counters;
1498 	struct page new;
1499 
1500 	/*
1501 	 * Zap the freelist and set the frozen bit.
1502 	 * The old freelist is the list of objects for the
1503 	 * per cpu allocation list.
1504 	 */
1505 	do {
1506 		freelist = page->freelist;
1507 		counters = page->counters;
1508 		new.counters = counters;
1509 		if (mode)
1510 			new.inuse = page->objects;
1511 
1512 		VM_BUG_ON(new.frozen);
1513 		new.frozen = 1;
1514 
1515 	} while (!__cmpxchg_double_slab(s, page,
1516 			freelist, counters,
1517 			NULL, new.counters,
1518 			"lock and freeze"));
1519 
1520 	remove_partial(n, page);
1521 	return freelist;
1522 }
1523 
1524 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1525 
1526 /*
1527  * Try to allocate a partial slab from a specific node.
1528  */
1529 static void *get_partial_node(struct kmem_cache *s,
1530 		struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1531 {
1532 	struct page *page, *page2;
1533 	void *object = NULL;
1534 
1535 	/*
1536 	 * Racy check. If we mistakenly see no partial slabs then we
1537 	 * just allocate an empty slab. If we mistakenly try to get a
1538 	 * partial slab and there is none available then get_partials()
1539 	 * will return NULL.
1540 	 */
1541 	if (!n || !n->nr_partial)
1542 		return NULL;
1543 
1544 	spin_lock(&n->list_lock);
1545 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1546 		void *t = acquire_slab(s, n, page, object == NULL);
1547 		int available;
1548 
1549 		if (!t)
1550 			break;
1551 
1552 		if (!object) {
1553 			c->page = page;
1554 			c->node = page_to_nid(page);
1555 			stat(s, ALLOC_FROM_PARTIAL);
1556 			object = t;
1557 			available =  page->objects - page->inuse;
1558 		} else {
1559 			page->freelist = t;
1560 			available = put_cpu_partial(s, page, 0);
1561 		}
1562 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1563 			break;
1564 
1565 	}
1566 	spin_unlock(&n->list_lock);
1567 	return object;
1568 }
1569 
1570 /*
1571  * Get a page from somewhere. Search in increasing NUMA distances.
1572  */
1573 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1574 		struct kmem_cache_cpu *c)
1575 {
1576 #ifdef CONFIG_NUMA
1577 	struct zonelist *zonelist;
1578 	struct zoneref *z;
1579 	struct zone *zone;
1580 	enum zone_type high_zoneidx = gfp_zone(flags);
1581 	void *object;
1582 
1583 	/*
1584 	 * The defrag ratio allows a configuration of the tradeoffs between
1585 	 * inter node defragmentation and node local allocations. A lower
1586 	 * defrag_ratio increases the tendency to do local allocations
1587 	 * instead of attempting to obtain partial slabs from other nodes.
1588 	 *
1589 	 * If the defrag_ratio is set to 0 then kmalloc() always
1590 	 * returns node local objects. If the ratio is higher then kmalloc()
1591 	 * may return off node objects because partial slabs are obtained
1592 	 * from other nodes and filled up.
1593 	 *
1594 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1595 	 * defrag_ratio = 1000) then every (well almost) allocation will
1596 	 * first attempt to defrag slab caches on other nodes. This means
1597 	 * scanning over all nodes to look for partial slabs which may be
1598 	 * expensive if we do it every time we are trying to find a slab
1599 	 * with available objects.
1600 	 */
1601 	if (!s->remote_node_defrag_ratio ||
1602 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1603 		return NULL;
1604 
1605 	get_mems_allowed();
1606 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1607 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1608 		struct kmem_cache_node *n;
1609 
1610 		n = get_node(s, zone_to_nid(zone));
1611 
1612 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1613 				n->nr_partial > s->min_partial) {
1614 			object = get_partial_node(s, n, c);
1615 			if (object) {
1616 				put_mems_allowed();
1617 				return object;
1618 			}
1619 		}
1620 	}
1621 	put_mems_allowed();
1622 #endif
1623 	return NULL;
1624 }
1625 
1626 /*
1627  * Get a partial page, lock it and return it.
1628  */
1629 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1630 		struct kmem_cache_cpu *c)
1631 {
1632 	void *object;
1633 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1634 
1635 	object = get_partial_node(s, get_node(s, searchnode), c);
1636 	if (object || node != NUMA_NO_NODE)
1637 		return object;
1638 
1639 	return get_any_partial(s, flags, c);
1640 }
1641 
1642 #ifdef CONFIG_PREEMPT
1643 /*
1644  * Calculate the next globally unique transaction for disambiguiation
1645  * during cmpxchg. The transactions start with the cpu number and are then
1646  * incremented by CONFIG_NR_CPUS.
1647  */
1648 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1649 #else
1650 /*
1651  * No preemption supported therefore also no need to check for
1652  * different cpus.
1653  */
1654 #define TID_STEP 1
1655 #endif
1656 
1657 static inline unsigned long next_tid(unsigned long tid)
1658 {
1659 	return tid + TID_STEP;
1660 }
1661 
1662 static inline unsigned int tid_to_cpu(unsigned long tid)
1663 {
1664 	return tid % TID_STEP;
1665 }
1666 
1667 static inline unsigned long tid_to_event(unsigned long tid)
1668 {
1669 	return tid / TID_STEP;
1670 }
1671 
1672 static inline unsigned int init_tid(int cpu)
1673 {
1674 	return cpu;
1675 }
1676 
1677 static inline void note_cmpxchg_failure(const char *n,
1678 		const struct kmem_cache *s, unsigned long tid)
1679 {
1680 #ifdef SLUB_DEBUG_CMPXCHG
1681 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1682 
1683 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1684 
1685 #ifdef CONFIG_PREEMPT
1686 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1687 		printk("due to cpu change %d -> %d\n",
1688 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1689 	else
1690 #endif
1691 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1692 		printk("due to cpu running other code. Event %ld->%ld\n",
1693 			tid_to_event(tid), tid_to_event(actual_tid));
1694 	else
1695 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1696 			actual_tid, tid, next_tid(tid));
1697 #endif
1698 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1699 }
1700 
1701 void init_kmem_cache_cpus(struct kmem_cache *s)
1702 {
1703 	int cpu;
1704 
1705 	for_each_possible_cpu(cpu)
1706 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1707 }
1708 
1709 /*
1710  * Remove the cpu slab
1711  */
1712 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1713 {
1714 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1715 	struct page *page = c->page;
1716 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1717 	int lock = 0;
1718 	enum slab_modes l = M_NONE, m = M_NONE;
1719 	void *freelist;
1720 	void *nextfree;
1721 	int tail = DEACTIVATE_TO_HEAD;
1722 	struct page new;
1723 	struct page old;
1724 
1725 	if (page->freelist) {
1726 		stat(s, DEACTIVATE_REMOTE_FREES);
1727 		tail = DEACTIVATE_TO_TAIL;
1728 	}
1729 
1730 	c->tid = next_tid(c->tid);
1731 	c->page = NULL;
1732 	freelist = c->freelist;
1733 	c->freelist = NULL;
1734 
1735 	/*
1736 	 * Stage one: Free all available per cpu objects back
1737 	 * to the page freelist while it is still frozen. Leave the
1738 	 * last one.
1739 	 *
1740 	 * There is no need to take the list->lock because the page
1741 	 * is still frozen.
1742 	 */
1743 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1744 		void *prior;
1745 		unsigned long counters;
1746 
1747 		do {
1748 			prior = page->freelist;
1749 			counters = page->counters;
1750 			set_freepointer(s, freelist, prior);
1751 			new.counters = counters;
1752 			new.inuse--;
1753 			VM_BUG_ON(!new.frozen);
1754 
1755 		} while (!__cmpxchg_double_slab(s, page,
1756 			prior, counters,
1757 			freelist, new.counters,
1758 			"drain percpu freelist"));
1759 
1760 		freelist = nextfree;
1761 	}
1762 
1763 	/*
1764 	 * Stage two: Ensure that the page is unfrozen while the
1765 	 * list presence reflects the actual number of objects
1766 	 * during unfreeze.
1767 	 *
1768 	 * We setup the list membership and then perform a cmpxchg
1769 	 * with the count. If there is a mismatch then the page
1770 	 * is not unfrozen but the page is on the wrong list.
1771 	 *
1772 	 * Then we restart the process which may have to remove
1773 	 * the page from the list that we just put it on again
1774 	 * because the number of objects in the slab may have
1775 	 * changed.
1776 	 */
1777 redo:
1778 
1779 	old.freelist = page->freelist;
1780 	old.counters = page->counters;
1781 	VM_BUG_ON(!old.frozen);
1782 
1783 	/* Determine target state of the slab */
1784 	new.counters = old.counters;
1785 	if (freelist) {
1786 		new.inuse--;
1787 		set_freepointer(s, freelist, old.freelist);
1788 		new.freelist = freelist;
1789 	} else
1790 		new.freelist = old.freelist;
1791 
1792 	new.frozen = 0;
1793 
1794 	if (!new.inuse && n->nr_partial > s->min_partial)
1795 		m = M_FREE;
1796 	else if (new.freelist) {
1797 		m = M_PARTIAL;
1798 		if (!lock) {
1799 			lock = 1;
1800 			/*
1801 			 * Taking the spinlock removes the possiblity
1802 			 * that acquire_slab() will see a slab page that
1803 			 * is frozen
1804 			 */
1805 			spin_lock(&n->list_lock);
1806 		}
1807 	} else {
1808 		m = M_FULL;
1809 		if (kmem_cache_debug(s) && !lock) {
1810 			lock = 1;
1811 			/*
1812 			 * This also ensures that the scanning of full
1813 			 * slabs from diagnostic functions will not see
1814 			 * any frozen slabs.
1815 			 */
1816 			spin_lock(&n->list_lock);
1817 		}
1818 	}
1819 
1820 	if (l != m) {
1821 
1822 		if (l == M_PARTIAL)
1823 
1824 			remove_partial(n, page);
1825 
1826 		else if (l == M_FULL)
1827 
1828 			remove_full(s, page);
1829 
1830 		if (m == M_PARTIAL) {
1831 
1832 			add_partial(n, page, tail);
1833 			stat(s, tail);
1834 
1835 		} else if (m == M_FULL) {
1836 
1837 			stat(s, DEACTIVATE_FULL);
1838 			add_full(s, n, page);
1839 
1840 		}
1841 	}
1842 
1843 	l = m;
1844 	if (!__cmpxchg_double_slab(s, page,
1845 				old.freelist, old.counters,
1846 				new.freelist, new.counters,
1847 				"unfreezing slab"))
1848 		goto redo;
1849 
1850 	if (lock)
1851 		spin_unlock(&n->list_lock);
1852 
1853 	if (m == M_FREE) {
1854 		stat(s, DEACTIVATE_EMPTY);
1855 		discard_slab(s, page);
1856 		stat(s, FREE_SLAB);
1857 	}
1858 }
1859 
1860 /* Unfreeze all the cpu partial slabs */
1861 static void unfreeze_partials(struct kmem_cache *s)
1862 {
1863 	struct kmem_cache_node *n = NULL;
1864 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1865 	struct page *page;
1866 
1867 	while ((page = c->partial)) {
1868 		enum slab_modes { M_PARTIAL, M_FREE };
1869 		enum slab_modes l, m;
1870 		struct page new;
1871 		struct page old;
1872 
1873 		c->partial = page->next;
1874 		l = M_FREE;
1875 
1876 		do {
1877 
1878 			old.freelist = page->freelist;
1879 			old.counters = page->counters;
1880 			VM_BUG_ON(!old.frozen);
1881 
1882 			new.counters = old.counters;
1883 			new.freelist = old.freelist;
1884 
1885 			new.frozen = 0;
1886 
1887 			if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1888 				m = M_FREE;
1889 			else {
1890 				struct kmem_cache_node *n2 = get_node(s,
1891 							page_to_nid(page));
1892 
1893 				m = M_PARTIAL;
1894 				if (n != n2) {
1895 					if (n)
1896 						spin_unlock(&n->list_lock);
1897 
1898 					n = n2;
1899 					spin_lock(&n->list_lock);
1900 				}
1901 			}
1902 
1903 			if (l != m) {
1904 				if (l == M_PARTIAL)
1905 					remove_partial(n, page);
1906 				else
1907 					add_partial(n, page, 1);
1908 
1909 				l = m;
1910 			}
1911 
1912 		} while (!cmpxchg_double_slab(s, page,
1913 				old.freelist, old.counters,
1914 				new.freelist, new.counters,
1915 				"unfreezing slab"));
1916 
1917 		if (m == M_FREE) {
1918 			stat(s, DEACTIVATE_EMPTY);
1919 			discard_slab(s, page);
1920 			stat(s, FREE_SLAB);
1921 		}
1922 	}
1923 
1924 	if (n)
1925 		spin_unlock(&n->list_lock);
1926 }
1927 
1928 /*
1929  * Put a page that was just frozen (in __slab_free) into a partial page
1930  * slot if available. This is done without interrupts disabled and without
1931  * preemption disabled. The cmpxchg is racy and may put the partial page
1932  * onto a random cpus partial slot.
1933  *
1934  * If we did not find a slot then simply move all the partials to the
1935  * per node partial list.
1936  */
1937 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1938 {
1939 	struct page *oldpage;
1940 	int pages;
1941 	int pobjects;
1942 
1943 	do {
1944 		pages = 0;
1945 		pobjects = 0;
1946 		oldpage = this_cpu_read(s->cpu_slab->partial);
1947 
1948 		if (oldpage) {
1949 			pobjects = oldpage->pobjects;
1950 			pages = oldpage->pages;
1951 			if (drain && pobjects > s->cpu_partial) {
1952 				unsigned long flags;
1953 				/*
1954 				 * partial array is full. Move the existing
1955 				 * set to the per node partial list.
1956 				 */
1957 				local_irq_save(flags);
1958 				unfreeze_partials(s);
1959 				local_irq_restore(flags);
1960 				pobjects = 0;
1961 				pages = 0;
1962 			}
1963 		}
1964 
1965 		pages++;
1966 		pobjects += page->objects - page->inuse;
1967 
1968 		page->pages = pages;
1969 		page->pobjects = pobjects;
1970 		page->next = oldpage;
1971 
1972 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1973 	stat(s, CPU_PARTIAL_FREE);
1974 	return pobjects;
1975 }
1976 
1977 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1978 {
1979 	stat(s, CPUSLAB_FLUSH);
1980 	deactivate_slab(s, c);
1981 }
1982 
1983 /*
1984  * Flush cpu slab.
1985  *
1986  * Called from IPI handler with interrupts disabled.
1987  */
1988 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1989 {
1990 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1991 
1992 	if (likely(c)) {
1993 		if (c->page)
1994 			flush_slab(s, c);
1995 
1996 		unfreeze_partials(s);
1997 	}
1998 }
1999 
2000 static void flush_cpu_slab(void *d)
2001 {
2002 	struct kmem_cache *s = d;
2003 
2004 	__flush_cpu_slab(s, smp_processor_id());
2005 }
2006 
2007 static void flush_all(struct kmem_cache *s)
2008 {
2009 	on_each_cpu(flush_cpu_slab, s, 1);
2010 }
2011 
2012 /*
2013  * Check if the objects in a per cpu structure fit numa
2014  * locality expectations.
2015  */
2016 static inline int node_match(struct kmem_cache_cpu *c, int node)
2017 {
2018 #ifdef CONFIG_NUMA
2019 	if (node != NUMA_NO_NODE && c->node != node)
2020 		return 0;
2021 #endif
2022 	return 1;
2023 }
2024 
2025 static int count_free(struct page *page)
2026 {
2027 	return page->objects - page->inuse;
2028 }
2029 
2030 static unsigned long count_partial(struct kmem_cache_node *n,
2031 					int (*get_count)(struct page *))
2032 {
2033 	unsigned long flags;
2034 	unsigned long x = 0;
2035 	struct page *page;
2036 
2037 	spin_lock_irqsave(&n->list_lock, flags);
2038 	list_for_each_entry(page, &n->partial, lru)
2039 		x += get_count(page);
2040 	spin_unlock_irqrestore(&n->list_lock, flags);
2041 	return x;
2042 }
2043 
2044 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2045 {
2046 #ifdef CONFIG_SLUB_DEBUG
2047 	return atomic_long_read(&n->total_objects);
2048 #else
2049 	return 0;
2050 #endif
2051 }
2052 
2053 static noinline void
2054 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2055 {
2056 	int node;
2057 
2058 	printk(KERN_WARNING
2059 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2060 		nid, gfpflags);
2061 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2062 		"default order: %d, min order: %d\n", s->name, s->objsize,
2063 		s->size, oo_order(s->oo), oo_order(s->min));
2064 
2065 	if (oo_order(s->min) > get_order(s->objsize))
2066 		printk(KERN_WARNING "  %s debugging increased min order, use "
2067 		       "slub_debug=O to disable.\n", s->name);
2068 
2069 	for_each_online_node(node) {
2070 		struct kmem_cache_node *n = get_node(s, node);
2071 		unsigned long nr_slabs;
2072 		unsigned long nr_objs;
2073 		unsigned long nr_free;
2074 
2075 		if (!n)
2076 			continue;
2077 
2078 		nr_free  = count_partial(n, count_free);
2079 		nr_slabs = node_nr_slabs(n);
2080 		nr_objs  = node_nr_objs(n);
2081 
2082 		printk(KERN_WARNING
2083 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2084 			node, nr_slabs, nr_objs, nr_free);
2085 	}
2086 }
2087 
2088 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2089 			int node, struct kmem_cache_cpu **pc)
2090 {
2091 	void *object;
2092 	struct kmem_cache_cpu *c;
2093 	struct page *page = new_slab(s, flags, node);
2094 
2095 	if (page) {
2096 		c = __this_cpu_ptr(s->cpu_slab);
2097 		if (c->page)
2098 			flush_slab(s, c);
2099 
2100 		/*
2101 		 * No other reference to the page yet so we can
2102 		 * muck around with it freely without cmpxchg
2103 		 */
2104 		object = page->freelist;
2105 		page->freelist = NULL;
2106 
2107 		stat(s, ALLOC_SLAB);
2108 		c->node = page_to_nid(page);
2109 		c->page = page;
2110 		*pc = c;
2111 	} else
2112 		object = NULL;
2113 
2114 	return object;
2115 }
2116 
2117 /*
2118  * Slow path. The lockless freelist is empty or we need to perform
2119  * debugging duties.
2120  *
2121  * Processing is still very fast if new objects have been freed to the
2122  * regular freelist. In that case we simply take over the regular freelist
2123  * as the lockless freelist and zap the regular freelist.
2124  *
2125  * If that is not working then we fall back to the partial lists. We take the
2126  * first element of the freelist as the object to allocate now and move the
2127  * rest of the freelist to the lockless freelist.
2128  *
2129  * And if we were unable to get a new slab from the partial slab lists then
2130  * we need to allocate a new slab. This is the slowest path since it involves
2131  * a call to the page allocator and the setup of a new slab.
2132  */
2133 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2134 			  unsigned long addr, struct kmem_cache_cpu *c)
2135 {
2136 	void **object;
2137 	unsigned long flags;
2138 	struct page new;
2139 	unsigned long counters;
2140 
2141 	local_irq_save(flags);
2142 #ifdef CONFIG_PREEMPT
2143 	/*
2144 	 * We may have been preempted and rescheduled on a different
2145 	 * cpu before disabling interrupts. Need to reload cpu area
2146 	 * pointer.
2147 	 */
2148 	c = this_cpu_ptr(s->cpu_slab);
2149 #endif
2150 
2151 	if (!c->page)
2152 		goto new_slab;
2153 redo:
2154 	if (unlikely(!node_match(c, node))) {
2155 		stat(s, ALLOC_NODE_MISMATCH);
2156 		deactivate_slab(s, c);
2157 		goto new_slab;
2158 	}
2159 
2160 	stat(s, ALLOC_SLOWPATH);
2161 
2162 	do {
2163 		object = c->page->freelist;
2164 		counters = c->page->counters;
2165 		new.counters = counters;
2166 		VM_BUG_ON(!new.frozen);
2167 
2168 		/*
2169 		 * If there is no object left then we use this loop to
2170 		 * deactivate the slab which is simple since no objects
2171 		 * are left in the slab and therefore we do not need to
2172 		 * put the page back onto the partial list.
2173 		 *
2174 		 * If there are objects left then we retrieve them
2175 		 * and use them to refill the per cpu queue.
2176 		 */
2177 
2178 		new.inuse = c->page->objects;
2179 		new.frozen = object != NULL;
2180 
2181 	} while (!__cmpxchg_double_slab(s, c->page,
2182 			object, counters,
2183 			NULL, new.counters,
2184 			"__slab_alloc"));
2185 
2186 	if (!object) {
2187 		c->page = NULL;
2188 		stat(s, DEACTIVATE_BYPASS);
2189 		goto new_slab;
2190 	}
2191 
2192 	stat(s, ALLOC_REFILL);
2193 
2194 load_freelist:
2195 	c->freelist = get_freepointer(s, object);
2196 	c->tid = next_tid(c->tid);
2197 	local_irq_restore(flags);
2198 	return object;
2199 
2200 new_slab:
2201 
2202 	if (c->partial) {
2203 		c->page = c->partial;
2204 		c->partial = c->page->next;
2205 		c->node = page_to_nid(c->page);
2206 		stat(s, CPU_PARTIAL_ALLOC);
2207 		c->freelist = NULL;
2208 		goto redo;
2209 	}
2210 
2211 	/* Then do expensive stuff like retrieving pages from the partial lists */
2212 	object = get_partial(s, gfpflags, node, c);
2213 
2214 	if (unlikely(!object)) {
2215 
2216 		object = new_slab_objects(s, gfpflags, node, &c);
2217 
2218 		if (unlikely(!object)) {
2219 			if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2220 				slab_out_of_memory(s, gfpflags, node);
2221 
2222 			local_irq_restore(flags);
2223 			return NULL;
2224 		}
2225 	}
2226 
2227 	if (likely(!kmem_cache_debug(s)))
2228 		goto load_freelist;
2229 
2230 	/* Only entered in the debug case */
2231 	if (!alloc_debug_processing(s, c->page, object, addr))
2232 		goto new_slab;	/* Slab failed checks. Next slab needed */
2233 
2234 	c->freelist = get_freepointer(s, object);
2235 	deactivate_slab(s, c);
2236 	c->node = NUMA_NO_NODE;
2237 	local_irq_restore(flags);
2238 	return object;
2239 }
2240 
2241 /*
2242  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2243  * have the fastpath folded into their functions. So no function call
2244  * overhead for requests that can be satisfied on the fastpath.
2245  *
2246  * The fastpath works by first checking if the lockless freelist can be used.
2247  * If not then __slab_alloc is called for slow processing.
2248  *
2249  * Otherwise we can simply pick the next object from the lockless free list.
2250  */
2251 static __always_inline void *slab_alloc(struct kmem_cache *s,
2252 		gfp_t gfpflags, int node, unsigned long addr)
2253 {
2254 	void **object;
2255 	struct kmem_cache_cpu *c;
2256 	unsigned long tid;
2257 
2258 	if (slab_pre_alloc_hook(s, gfpflags))
2259 		return NULL;
2260 
2261 redo:
2262 
2263 	/*
2264 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2265 	 * enabled. We may switch back and forth between cpus while
2266 	 * reading from one cpu area. That does not matter as long
2267 	 * as we end up on the original cpu again when doing the cmpxchg.
2268 	 */
2269 	c = __this_cpu_ptr(s->cpu_slab);
2270 
2271 	/*
2272 	 * The transaction ids are globally unique per cpu and per operation on
2273 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2274 	 * occurs on the right processor and that there was no operation on the
2275 	 * linked list in between.
2276 	 */
2277 	tid = c->tid;
2278 	barrier();
2279 
2280 	object = c->freelist;
2281 	if (unlikely(!object || !node_match(c, node)))
2282 
2283 		object = __slab_alloc(s, gfpflags, node, addr, c);
2284 
2285 	else {
2286 		/*
2287 		 * The cmpxchg will only match if there was no additional
2288 		 * operation and if we are on the right processor.
2289 		 *
2290 		 * The cmpxchg does the following atomically (without lock semantics!)
2291 		 * 1. Relocate first pointer to the current per cpu area.
2292 		 * 2. Verify that tid and freelist have not been changed
2293 		 * 3. If they were not changed replace tid and freelist
2294 		 *
2295 		 * Since this is without lock semantics the protection is only against
2296 		 * code executing on this cpu *not* from access by other cpus.
2297 		 */
2298 		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2299 				s->cpu_slab->freelist, s->cpu_slab->tid,
2300 				object, tid,
2301 				get_freepointer_safe(s, object), next_tid(tid)))) {
2302 
2303 			note_cmpxchg_failure("slab_alloc", s, tid);
2304 			goto redo;
2305 		}
2306 		stat(s, ALLOC_FASTPATH);
2307 	}
2308 
2309 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2310 		memset(object, 0, s->objsize);
2311 
2312 	slab_post_alloc_hook(s, gfpflags, object);
2313 
2314 	return object;
2315 }
2316 
2317 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2318 {
2319 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2320 
2321 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2322 
2323 	return ret;
2324 }
2325 EXPORT_SYMBOL(kmem_cache_alloc);
2326 
2327 #ifdef CONFIG_TRACING
2328 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2329 {
2330 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2331 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2332 	return ret;
2333 }
2334 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2335 
2336 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2337 {
2338 	void *ret = kmalloc_order(size, flags, order);
2339 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2340 	return ret;
2341 }
2342 EXPORT_SYMBOL(kmalloc_order_trace);
2343 #endif
2344 
2345 #ifdef CONFIG_NUMA
2346 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2347 {
2348 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2349 
2350 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2351 				    s->objsize, s->size, gfpflags, node);
2352 
2353 	return ret;
2354 }
2355 EXPORT_SYMBOL(kmem_cache_alloc_node);
2356 
2357 #ifdef CONFIG_TRACING
2358 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2359 				    gfp_t gfpflags,
2360 				    int node, size_t size)
2361 {
2362 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2363 
2364 	trace_kmalloc_node(_RET_IP_, ret,
2365 			   size, s->size, gfpflags, node);
2366 	return ret;
2367 }
2368 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2369 #endif
2370 #endif
2371 
2372 /*
2373  * Slow patch handling. This may still be called frequently since objects
2374  * have a longer lifetime than the cpu slabs in most processing loads.
2375  *
2376  * So we still attempt to reduce cache line usage. Just take the slab
2377  * lock and free the item. If there is no additional partial page
2378  * handling required then we can return immediately.
2379  */
2380 static void __slab_free(struct kmem_cache *s, struct page *page,
2381 			void *x, unsigned long addr)
2382 {
2383 	void *prior;
2384 	void **object = (void *)x;
2385 	int was_frozen;
2386 	int inuse;
2387 	struct page new;
2388 	unsigned long counters;
2389 	struct kmem_cache_node *n = NULL;
2390 	unsigned long uninitialized_var(flags);
2391 
2392 	stat(s, FREE_SLOWPATH);
2393 
2394 	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2395 		return;
2396 
2397 	do {
2398 		prior = page->freelist;
2399 		counters = page->counters;
2400 		set_freepointer(s, object, prior);
2401 		new.counters = counters;
2402 		was_frozen = new.frozen;
2403 		new.inuse--;
2404 		if ((!new.inuse || !prior) && !was_frozen && !n) {
2405 
2406 			if (!kmem_cache_debug(s) && !prior)
2407 
2408 				/*
2409 				 * Slab was on no list before and will be partially empty
2410 				 * We can defer the list move and instead freeze it.
2411 				 */
2412 				new.frozen = 1;
2413 
2414 			else { /* Needs to be taken off a list */
2415 
2416 	                        n = get_node(s, page_to_nid(page));
2417 				/*
2418 				 * Speculatively acquire the list_lock.
2419 				 * If the cmpxchg does not succeed then we may
2420 				 * drop the list_lock without any processing.
2421 				 *
2422 				 * Otherwise the list_lock will synchronize with
2423 				 * other processors updating the list of slabs.
2424 				 */
2425 				spin_lock_irqsave(&n->list_lock, flags);
2426 
2427 			}
2428 		}
2429 		inuse = new.inuse;
2430 
2431 	} while (!cmpxchg_double_slab(s, page,
2432 		prior, counters,
2433 		object, new.counters,
2434 		"__slab_free"));
2435 
2436 	if (likely(!n)) {
2437 
2438 		/*
2439 		 * If we just froze the page then put it onto the
2440 		 * per cpu partial list.
2441 		 */
2442 		if (new.frozen && !was_frozen)
2443 			put_cpu_partial(s, page, 1);
2444 
2445 		/*
2446 		 * The list lock was not taken therefore no list
2447 		 * activity can be necessary.
2448 		 */
2449                 if (was_frozen)
2450                         stat(s, FREE_FROZEN);
2451                 return;
2452         }
2453 
2454 	/*
2455 	 * was_frozen may have been set after we acquired the list_lock in
2456 	 * an earlier loop. So we need to check it here again.
2457 	 */
2458 	if (was_frozen)
2459 		stat(s, FREE_FROZEN);
2460 	else {
2461 		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2462                         goto slab_empty;
2463 
2464 		/*
2465 		 * Objects left in the slab. If it was not on the partial list before
2466 		 * then add it.
2467 		 */
2468 		if (unlikely(!prior)) {
2469 			remove_full(s, page);
2470 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2471 			stat(s, FREE_ADD_PARTIAL);
2472 		}
2473 	}
2474 	spin_unlock_irqrestore(&n->list_lock, flags);
2475 	return;
2476 
2477 slab_empty:
2478 	if (prior) {
2479 		/*
2480 		 * Slab on the partial list.
2481 		 */
2482 		remove_partial(n, page);
2483 		stat(s, FREE_REMOVE_PARTIAL);
2484 	} else
2485 		/* Slab must be on the full list */
2486 		remove_full(s, page);
2487 
2488 	spin_unlock_irqrestore(&n->list_lock, flags);
2489 	stat(s, FREE_SLAB);
2490 	discard_slab(s, page);
2491 }
2492 
2493 /*
2494  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2495  * can perform fastpath freeing without additional function calls.
2496  *
2497  * The fastpath is only possible if we are freeing to the current cpu slab
2498  * of this processor. This typically the case if we have just allocated
2499  * the item before.
2500  *
2501  * If fastpath is not possible then fall back to __slab_free where we deal
2502  * with all sorts of special processing.
2503  */
2504 static __always_inline void slab_free(struct kmem_cache *s,
2505 			struct page *page, void *x, unsigned long addr)
2506 {
2507 	void **object = (void *)x;
2508 	struct kmem_cache_cpu *c;
2509 	unsigned long tid;
2510 
2511 	slab_free_hook(s, x);
2512 
2513 redo:
2514 	/*
2515 	 * Determine the currently cpus per cpu slab.
2516 	 * The cpu may change afterward. However that does not matter since
2517 	 * data is retrieved via this pointer. If we are on the same cpu
2518 	 * during the cmpxchg then the free will succedd.
2519 	 */
2520 	c = __this_cpu_ptr(s->cpu_slab);
2521 
2522 	tid = c->tid;
2523 	barrier();
2524 
2525 	if (likely(page == c->page)) {
2526 		set_freepointer(s, object, c->freelist);
2527 
2528 		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2529 				s->cpu_slab->freelist, s->cpu_slab->tid,
2530 				c->freelist, tid,
2531 				object, next_tid(tid)))) {
2532 
2533 			note_cmpxchg_failure("slab_free", s, tid);
2534 			goto redo;
2535 		}
2536 		stat(s, FREE_FASTPATH);
2537 	} else
2538 		__slab_free(s, page, x, addr);
2539 
2540 }
2541 
2542 void kmem_cache_free(struct kmem_cache *s, void *x)
2543 {
2544 	struct page *page;
2545 
2546 	page = virt_to_head_page(x);
2547 
2548 	slab_free(s, page, x, _RET_IP_);
2549 
2550 	trace_kmem_cache_free(_RET_IP_, x);
2551 }
2552 EXPORT_SYMBOL(kmem_cache_free);
2553 
2554 /*
2555  * Object placement in a slab is made very easy because we always start at
2556  * offset 0. If we tune the size of the object to the alignment then we can
2557  * get the required alignment by putting one properly sized object after
2558  * another.
2559  *
2560  * Notice that the allocation order determines the sizes of the per cpu
2561  * caches. Each processor has always one slab available for allocations.
2562  * Increasing the allocation order reduces the number of times that slabs
2563  * must be moved on and off the partial lists and is therefore a factor in
2564  * locking overhead.
2565  */
2566 
2567 /*
2568  * Mininum / Maximum order of slab pages. This influences locking overhead
2569  * and slab fragmentation. A higher order reduces the number of partial slabs
2570  * and increases the number of allocations possible without having to
2571  * take the list_lock.
2572  */
2573 static int slub_min_order;
2574 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2575 static int slub_min_objects;
2576 
2577 /*
2578  * Merge control. If this is set then no merging of slab caches will occur.
2579  * (Could be removed. This was introduced to pacify the merge skeptics.)
2580  */
2581 static int slub_nomerge;
2582 
2583 /*
2584  * Calculate the order of allocation given an slab object size.
2585  *
2586  * The order of allocation has significant impact on performance and other
2587  * system components. Generally order 0 allocations should be preferred since
2588  * order 0 does not cause fragmentation in the page allocator. Larger objects
2589  * be problematic to put into order 0 slabs because there may be too much
2590  * unused space left. We go to a higher order if more than 1/16th of the slab
2591  * would be wasted.
2592  *
2593  * In order to reach satisfactory performance we must ensure that a minimum
2594  * number of objects is in one slab. Otherwise we may generate too much
2595  * activity on the partial lists which requires taking the list_lock. This is
2596  * less a concern for large slabs though which are rarely used.
2597  *
2598  * slub_max_order specifies the order where we begin to stop considering the
2599  * number of objects in a slab as critical. If we reach slub_max_order then
2600  * we try to keep the page order as low as possible. So we accept more waste
2601  * of space in favor of a small page order.
2602  *
2603  * Higher order allocations also allow the placement of more objects in a
2604  * slab and thereby reduce object handling overhead. If the user has
2605  * requested a higher mininum order then we start with that one instead of
2606  * the smallest order which will fit the object.
2607  */
2608 static inline int slab_order(int size, int min_objects,
2609 				int max_order, int fract_leftover, int reserved)
2610 {
2611 	int order;
2612 	int rem;
2613 	int min_order = slub_min_order;
2614 
2615 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2616 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2617 
2618 	for (order = max(min_order,
2619 				fls(min_objects * size - 1) - PAGE_SHIFT);
2620 			order <= max_order; order++) {
2621 
2622 		unsigned long slab_size = PAGE_SIZE << order;
2623 
2624 		if (slab_size < min_objects * size + reserved)
2625 			continue;
2626 
2627 		rem = (slab_size - reserved) % size;
2628 
2629 		if (rem <= slab_size / fract_leftover)
2630 			break;
2631 
2632 	}
2633 
2634 	return order;
2635 }
2636 
2637 static inline int calculate_order(int size, int reserved)
2638 {
2639 	int order;
2640 	int min_objects;
2641 	int fraction;
2642 	int max_objects;
2643 
2644 	/*
2645 	 * Attempt to find best configuration for a slab. This
2646 	 * works by first attempting to generate a layout with
2647 	 * the best configuration and backing off gradually.
2648 	 *
2649 	 * First we reduce the acceptable waste in a slab. Then
2650 	 * we reduce the minimum objects required in a slab.
2651 	 */
2652 	min_objects = slub_min_objects;
2653 	if (!min_objects)
2654 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2655 	max_objects = order_objects(slub_max_order, size, reserved);
2656 	min_objects = min(min_objects, max_objects);
2657 
2658 	while (min_objects > 1) {
2659 		fraction = 16;
2660 		while (fraction >= 4) {
2661 			order = slab_order(size, min_objects,
2662 					slub_max_order, fraction, reserved);
2663 			if (order <= slub_max_order)
2664 				return order;
2665 			fraction /= 2;
2666 		}
2667 		min_objects--;
2668 	}
2669 
2670 	/*
2671 	 * We were unable to place multiple objects in a slab. Now
2672 	 * lets see if we can place a single object there.
2673 	 */
2674 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2675 	if (order <= slub_max_order)
2676 		return order;
2677 
2678 	/*
2679 	 * Doh this slab cannot be placed using slub_max_order.
2680 	 */
2681 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2682 	if (order < MAX_ORDER)
2683 		return order;
2684 	return -ENOSYS;
2685 }
2686 
2687 /*
2688  * Figure out what the alignment of the objects will be.
2689  */
2690 static unsigned long calculate_alignment(unsigned long flags,
2691 		unsigned long align, unsigned long size)
2692 {
2693 	/*
2694 	 * If the user wants hardware cache aligned objects then follow that
2695 	 * suggestion if the object is sufficiently large.
2696 	 *
2697 	 * The hardware cache alignment cannot override the specified
2698 	 * alignment though. If that is greater then use it.
2699 	 */
2700 	if (flags & SLAB_HWCACHE_ALIGN) {
2701 		unsigned long ralign = cache_line_size();
2702 		while (size <= ralign / 2)
2703 			ralign /= 2;
2704 		align = max(align, ralign);
2705 	}
2706 
2707 	if (align < ARCH_SLAB_MINALIGN)
2708 		align = ARCH_SLAB_MINALIGN;
2709 
2710 	return ALIGN(align, sizeof(void *));
2711 }
2712 
2713 static void
2714 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2715 {
2716 	n->nr_partial = 0;
2717 	spin_lock_init(&n->list_lock);
2718 	INIT_LIST_HEAD(&n->partial);
2719 #ifdef CONFIG_SLUB_DEBUG
2720 	atomic_long_set(&n->nr_slabs, 0);
2721 	atomic_long_set(&n->total_objects, 0);
2722 	INIT_LIST_HEAD(&n->full);
2723 #endif
2724 }
2725 
2726 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2727 {
2728 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2729 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2730 
2731 	/*
2732 	 * Must align to double word boundary for the double cmpxchg
2733 	 * instructions to work; see __pcpu_double_call_return_bool().
2734 	 */
2735 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2736 				     2 * sizeof(void *));
2737 
2738 	if (!s->cpu_slab)
2739 		return 0;
2740 
2741 	init_kmem_cache_cpus(s);
2742 
2743 	return 1;
2744 }
2745 
2746 static struct kmem_cache *kmem_cache_node;
2747 
2748 /*
2749  * No kmalloc_node yet so do it by hand. We know that this is the first
2750  * slab on the node for this slabcache. There are no concurrent accesses
2751  * possible.
2752  *
2753  * Note that this function only works on the kmalloc_node_cache
2754  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2755  * memory on a fresh node that has no slab structures yet.
2756  */
2757 static void early_kmem_cache_node_alloc(int node)
2758 {
2759 	struct page *page;
2760 	struct kmem_cache_node *n;
2761 
2762 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2763 
2764 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2765 
2766 	BUG_ON(!page);
2767 	if (page_to_nid(page) != node) {
2768 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2769 				"node %d\n", node);
2770 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2771 				"in order to be able to continue\n");
2772 	}
2773 
2774 	n = page->freelist;
2775 	BUG_ON(!n);
2776 	page->freelist = get_freepointer(kmem_cache_node, n);
2777 	page->inuse = 1;
2778 	page->frozen = 0;
2779 	kmem_cache_node->node[node] = n;
2780 #ifdef CONFIG_SLUB_DEBUG
2781 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2782 	init_tracking(kmem_cache_node, n);
2783 #endif
2784 	init_kmem_cache_node(n, kmem_cache_node);
2785 	inc_slabs_node(kmem_cache_node, node, page->objects);
2786 
2787 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2788 }
2789 
2790 static void free_kmem_cache_nodes(struct kmem_cache *s)
2791 {
2792 	int node;
2793 
2794 	for_each_node_state(node, N_NORMAL_MEMORY) {
2795 		struct kmem_cache_node *n = s->node[node];
2796 
2797 		if (n)
2798 			kmem_cache_free(kmem_cache_node, n);
2799 
2800 		s->node[node] = NULL;
2801 	}
2802 }
2803 
2804 static int init_kmem_cache_nodes(struct kmem_cache *s)
2805 {
2806 	int node;
2807 
2808 	for_each_node_state(node, N_NORMAL_MEMORY) {
2809 		struct kmem_cache_node *n;
2810 
2811 		if (slab_state == DOWN) {
2812 			early_kmem_cache_node_alloc(node);
2813 			continue;
2814 		}
2815 		n = kmem_cache_alloc_node(kmem_cache_node,
2816 						GFP_KERNEL, node);
2817 
2818 		if (!n) {
2819 			free_kmem_cache_nodes(s);
2820 			return 0;
2821 		}
2822 
2823 		s->node[node] = n;
2824 		init_kmem_cache_node(n, s);
2825 	}
2826 	return 1;
2827 }
2828 
2829 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2830 {
2831 	if (min < MIN_PARTIAL)
2832 		min = MIN_PARTIAL;
2833 	else if (min > MAX_PARTIAL)
2834 		min = MAX_PARTIAL;
2835 	s->min_partial = min;
2836 }
2837 
2838 /*
2839  * calculate_sizes() determines the order and the distribution of data within
2840  * a slab object.
2841  */
2842 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2843 {
2844 	unsigned long flags = s->flags;
2845 	unsigned long size = s->objsize;
2846 	unsigned long align = s->align;
2847 	int order;
2848 
2849 	/*
2850 	 * Round up object size to the next word boundary. We can only
2851 	 * place the free pointer at word boundaries and this determines
2852 	 * the possible location of the free pointer.
2853 	 */
2854 	size = ALIGN(size, sizeof(void *));
2855 
2856 #ifdef CONFIG_SLUB_DEBUG
2857 	/*
2858 	 * Determine if we can poison the object itself. If the user of
2859 	 * the slab may touch the object after free or before allocation
2860 	 * then we should never poison the object itself.
2861 	 */
2862 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2863 			!s->ctor)
2864 		s->flags |= __OBJECT_POISON;
2865 	else
2866 		s->flags &= ~__OBJECT_POISON;
2867 
2868 
2869 	/*
2870 	 * If we are Redzoning then check if there is some space between the
2871 	 * end of the object and the free pointer. If not then add an
2872 	 * additional word to have some bytes to store Redzone information.
2873 	 */
2874 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2875 		size += sizeof(void *);
2876 #endif
2877 
2878 	/*
2879 	 * With that we have determined the number of bytes in actual use
2880 	 * by the object. This is the potential offset to the free pointer.
2881 	 */
2882 	s->inuse = size;
2883 
2884 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2885 		s->ctor)) {
2886 		/*
2887 		 * Relocate free pointer after the object if it is not
2888 		 * permitted to overwrite the first word of the object on
2889 		 * kmem_cache_free.
2890 		 *
2891 		 * This is the case if we do RCU, have a constructor or
2892 		 * destructor or are poisoning the objects.
2893 		 */
2894 		s->offset = size;
2895 		size += sizeof(void *);
2896 	}
2897 
2898 #ifdef CONFIG_SLUB_DEBUG
2899 	if (flags & SLAB_STORE_USER)
2900 		/*
2901 		 * Need to store information about allocs and frees after
2902 		 * the object.
2903 		 */
2904 		size += 2 * sizeof(struct track);
2905 
2906 	if (flags & SLAB_RED_ZONE)
2907 		/*
2908 		 * Add some empty padding so that we can catch
2909 		 * overwrites from earlier objects rather than let
2910 		 * tracking information or the free pointer be
2911 		 * corrupted if a user writes before the start
2912 		 * of the object.
2913 		 */
2914 		size += sizeof(void *);
2915 #endif
2916 
2917 	/*
2918 	 * Determine the alignment based on various parameters that the
2919 	 * user specified and the dynamic determination of cache line size
2920 	 * on bootup.
2921 	 */
2922 	align = calculate_alignment(flags, align, s->objsize);
2923 	s->align = align;
2924 
2925 	/*
2926 	 * SLUB stores one object immediately after another beginning from
2927 	 * offset 0. In order to align the objects we have to simply size
2928 	 * each object to conform to the alignment.
2929 	 */
2930 	size = ALIGN(size, align);
2931 	s->size = size;
2932 	if (forced_order >= 0)
2933 		order = forced_order;
2934 	else
2935 		order = calculate_order(size, s->reserved);
2936 
2937 	if (order < 0)
2938 		return 0;
2939 
2940 	s->allocflags = 0;
2941 	if (order)
2942 		s->allocflags |= __GFP_COMP;
2943 
2944 	if (s->flags & SLAB_CACHE_DMA)
2945 		s->allocflags |= SLUB_DMA;
2946 
2947 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2948 		s->allocflags |= __GFP_RECLAIMABLE;
2949 
2950 	/*
2951 	 * Determine the number of objects per slab
2952 	 */
2953 	s->oo = oo_make(order, size, s->reserved);
2954 	s->min = oo_make(get_order(size), size, s->reserved);
2955 	if (oo_objects(s->oo) > oo_objects(s->max))
2956 		s->max = s->oo;
2957 
2958 	return !!oo_objects(s->oo);
2959 
2960 }
2961 
2962 static int kmem_cache_open(struct kmem_cache *s,
2963 		const char *name, size_t size,
2964 		size_t align, unsigned long flags,
2965 		void (*ctor)(void *))
2966 {
2967 	memset(s, 0, kmem_size);
2968 	s->name = name;
2969 	s->ctor = ctor;
2970 	s->objsize = size;
2971 	s->align = align;
2972 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2973 	s->reserved = 0;
2974 
2975 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2976 		s->reserved = sizeof(struct rcu_head);
2977 
2978 	if (!calculate_sizes(s, -1))
2979 		goto error;
2980 	if (disable_higher_order_debug) {
2981 		/*
2982 		 * Disable debugging flags that store metadata if the min slab
2983 		 * order increased.
2984 		 */
2985 		if (get_order(s->size) > get_order(s->objsize)) {
2986 			s->flags &= ~DEBUG_METADATA_FLAGS;
2987 			s->offset = 0;
2988 			if (!calculate_sizes(s, -1))
2989 				goto error;
2990 		}
2991 	}
2992 
2993 #ifdef CONFIG_CMPXCHG_DOUBLE
2994 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2995 		/* Enable fast mode */
2996 		s->flags |= __CMPXCHG_DOUBLE;
2997 #endif
2998 
2999 	/*
3000 	 * The larger the object size is, the more pages we want on the partial
3001 	 * list to avoid pounding the page allocator excessively.
3002 	 */
3003 	set_min_partial(s, ilog2(s->size) / 2);
3004 
3005 	/*
3006 	 * cpu_partial determined the maximum number of objects kept in the
3007 	 * per cpu partial lists of a processor.
3008 	 *
3009 	 * Per cpu partial lists mainly contain slabs that just have one
3010 	 * object freed. If they are used for allocation then they can be
3011 	 * filled up again with minimal effort. The slab will never hit the
3012 	 * per node partial lists and therefore no locking will be required.
3013 	 *
3014 	 * This setting also determines
3015 	 *
3016 	 * A) The number of objects from per cpu partial slabs dumped to the
3017 	 *    per node list when we reach the limit.
3018 	 * B) The number of objects in cpu partial slabs to extract from the
3019 	 *    per node list when we run out of per cpu objects. We only fetch 50%
3020 	 *    to keep some capacity around for frees.
3021 	 */
3022 	if (s->size >= PAGE_SIZE)
3023 		s->cpu_partial = 2;
3024 	else if (s->size >= 1024)
3025 		s->cpu_partial = 6;
3026 	else if (s->size >= 256)
3027 		s->cpu_partial = 13;
3028 	else
3029 		s->cpu_partial = 30;
3030 
3031 	s->refcount = 1;
3032 #ifdef CONFIG_NUMA
3033 	s->remote_node_defrag_ratio = 1000;
3034 #endif
3035 	if (!init_kmem_cache_nodes(s))
3036 		goto error;
3037 
3038 	if (alloc_kmem_cache_cpus(s))
3039 		return 1;
3040 
3041 	free_kmem_cache_nodes(s);
3042 error:
3043 	if (flags & SLAB_PANIC)
3044 		panic("Cannot create slab %s size=%lu realsize=%u "
3045 			"order=%u offset=%u flags=%lx\n",
3046 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
3047 			s->offset, flags);
3048 	return 0;
3049 }
3050 
3051 /*
3052  * Determine the size of a slab object
3053  */
3054 unsigned int kmem_cache_size(struct kmem_cache *s)
3055 {
3056 	return s->objsize;
3057 }
3058 EXPORT_SYMBOL(kmem_cache_size);
3059 
3060 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3061 							const char *text)
3062 {
3063 #ifdef CONFIG_SLUB_DEBUG
3064 	void *addr = page_address(page);
3065 	void *p;
3066 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3067 				     sizeof(long), GFP_ATOMIC);
3068 	if (!map)
3069 		return;
3070 	slab_err(s, page, "%s", text);
3071 	slab_lock(page);
3072 
3073 	get_map(s, page, map);
3074 	for_each_object(p, s, addr, page->objects) {
3075 
3076 		if (!test_bit(slab_index(p, s, addr), map)) {
3077 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3078 							p, p - addr);
3079 			print_tracking(s, p);
3080 		}
3081 	}
3082 	slab_unlock(page);
3083 	kfree(map);
3084 #endif
3085 }
3086 
3087 /*
3088  * Attempt to free all partial slabs on a node.
3089  * This is called from kmem_cache_close(). We must be the last thread
3090  * using the cache and therefore we do not need to lock anymore.
3091  */
3092 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3093 {
3094 	struct page *page, *h;
3095 
3096 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3097 		if (!page->inuse) {
3098 			remove_partial(n, page);
3099 			discard_slab(s, page);
3100 		} else {
3101 			list_slab_objects(s, page,
3102 				"Objects remaining on kmem_cache_close()");
3103 		}
3104 	}
3105 }
3106 
3107 /*
3108  * Release all resources used by a slab cache.
3109  */
3110 static inline int kmem_cache_close(struct kmem_cache *s)
3111 {
3112 	int node;
3113 
3114 	flush_all(s);
3115 	free_percpu(s->cpu_slab);
3116 	/* Attempt to free all objects */
3117 	for_each_node_state(node, N_NORMAL_MEMORY) {
3118 		struct kmem_cache_node *n = get_node(s, node);
3119 
3120 		free_partial(s, n);
3121 		if (n->nr_partial || slabs_node(s, node))
3122 			return 1;
3123 	}
3124 	free_kmem_cache_nodes(s);
3125 	return 0;
3126 }
3127 
3128 /*
3129  * Close a cache and release the kmem_cache structure
3130  * (must be used for caches created using kmem_cache_create)
3131  */
3132 void kmem_cache_destroy(struct kmem_cache *s)
3133 {
3134 	down_write(&slub_lock);
3135 	s->refcount--;
3136 	if (!s->refcount) {
3137 		list_del(&s->list);
3138 		up_write(&slub_lock);
3139 		if (kmem_cache_close(s)) {
3140 			printk(KERN_ERR "SLUB %s: %s called for cache that "
3141 				"still has objects.\n", s->name, __func__);
3142 			dump_stack();
3143 		}
3144 		if (s->flags & SLAB_DESTROY_BY_RCU)
3145 			rcu_barrier();
3146 		sysfs_slab_remove(s);
3147 	} else
3148 		up_write(&slub_lock);
3149 }
3150 EXPORT_SYMBOL(kmem_cache_destroy);
3151 
3152 /********************************************************************
3153  *		Kmalloc subsystem
3154  *******************************************************************/
3155 
3156 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3157 EXPORT_SYMBOL(kmalloc_caches);
3158 
3159 static struct kmem_cache *kmem_cache;
3160 
3161 #ifdef CONFIG_ZONE_DMA
3162 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3163 #endif
3164 
3165 static int __init setup_slub_min_order(char *str)
3166 {
3167 	get_option(&str, &slub_min_order);
3168 
3169 	return 1;
3170 }
3171 
3172 __setup("slub_min_order=", setup_slub_min_order);
3173 
3174 static int __init setup_slub_max_order(char *str)
3175 {
3176 	get_option(&str, &slub_max_order);
3177 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3178 
3179 	return 1;
3180 }
3181 
3182 __setup("slub_max_order=", setup_slub_max_order);
3183 
3184 static int __init setup_slub_min_objects(char *str)
3185 {
3186 	get_option(&str, &slub_min_objects);
3187 
3188 	return 1;
3189 }
3190 
3191 __setup("slub_min_objects=", setup_slub_min_objects);
3192 
3193 static int __init setup_slub_nomerge(char *str)
3194 {
3195 	slub_nomerge = 1;
3196 	return 1;
3197 }
3198 
3199 __setup("slub_nomerge", setup_slub_nomerge);
3200 
3201 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3202 						int size, unsigned int flags)
3203 {
3204 	struct kmem_cache *s;
3205 
3206 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3207 
3208 	/*
3209 	 * This function is called with IRQs disabled during early-boot on
3210 	 * single CPU so there's no need to take slub_lock here.
3211 	 */
3212 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3213 								flags, NULL))
3214 		goto panic;
3215 
3216 	list_add(&s->list, &slab_caches);
3217 	return s;
3218 
3219 panic:
3220 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3221 	return NULL;
3222 }
3223 
3224 /*
3225  * Conversion table for small slabs sizes / 8 to the index in the
3226  * kmalloc array. This is necessary for slabs < 192 since we have non power
3227  * of two cache sizes there. The size of larger slabs can be determined using
3228  * fls.
3229  */
3230 static s8 size_index[24] = {
3231 	3,	/* 8 */
3232 	4,	/* 16 */
3233 	5,	/* 24 */
3234 	5,	/* 32 */
3235 	6,	/* 40 */
3236 	6,	/* 48 */
3237 	6,	/* 56 */
3238 	6,	/* 64 */
3239 	1,	/* 72 */
3240 	1,	/* 80 */
3241 	1,	/* 88 */
3242 	1,	/* 96 */
3243 	7,	/* 104 */
3244 	7,	/* 112 */
3245 	7,	/* 120 */
3246 	7,	/* 128 */
3247 	2,	/* 136 */
3248 	2,	/* 144 */
3249 	2,	/* 152 */
3250 	2,	/* 160 */
3251 	2,	/* 168 */
3252 	2,	/* 176 */
3253 	2,	/* 184 */
3254 	2	/* 192 */
3255 };
3256 
3257 static inline int size_index_elem(size_t bytes)
3258 {
3259 	return (bytes - 1) / 8;
3260 }
3261 
3262 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3263 {
3264 	int index;
3265 
3266 	if (size <= 192) {
3267 		if (!size)
3268 			return ZERO_SIZE_PTR;
3269 
3270 		index = size_index[size_index_elem(size)];
3271 	} else
3272 		index = fls(size - 1);
3273 
3274 #ifdef CONFIG_ZONE_DMA
3275 	if (unlikely((flags & SLUB_DMA)))
3276 		return kmalloc_dma_caches[index];
3277 
3278 #endif
3279 	return kmalloc_caches[index];
3280 }
3281 
3282 void *__kmalloc(size_t size, gfp_t flags)
3283 {
3284 	struct kmem_cache *s;
3285 	void *ret;
3286 
3287 	if (unlikely(size > SLUB_MAX_SIZE))
3288 		return kmalloc_large(size, flags);
3289 
3290 	s = get_slab(size, flags);
3291 
3292 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3293 		return s;
3294 
3295 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3296 
3297 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3298 
3299 	return ret;
3300 }
3301 EXPORT_SYMBOL(__kmalloc);
3302 
3303 #ifdef CONFIG_NUMA
3304 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3305 {
3306 	struct page *page;
3307 	void *ptr = NULL;
3308 
3309 	flags |= __GFP_COMP | __GFP_NOTRACK;
3310 	page = alloc_pages_node(node, flags, get_order(size));
3311 	if (page)
3312 		ptr = page_address(page);
3313 
3314 	kmemleak_alloc(ptr, size, 1, flags);
3315 	return ptr;
3316 }
3317 
3318 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3319 {
3320 	struct kmem_cache *s;
3321 	void *ret;
3322 
3323 	if (unlikely(size > SLUB_MAX_SIZE)) {
3324 		ret = kmalloc_large_node(size, flags, node);
3325 
3326 		trace_kmalloc_node(_RET_IP_, ret,
3327 				   size, PAGE_SIZE << get_order(size),
3328 				   flags, node);
3329 
3330 		return ret;
3331 	}
3332 
3333 	s = get_slab(size, flags);
3334 
3335 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3336 		return s;
3337 
3338 	ret = slab_alloc(s, flags, node, _RET_IP_);
3339 
3340 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3341 
3342 	return ret;
3343 }
3344 EXPORT_SYMBOL(__kmalloc_node);
3345 #endif
3346 
3347 size_t ksize(const void *object)
3348 {
3349 	struct page *page;
3350 
3351 	if (unlikely(object == ZERO_SIZE_PTR))
3352 		return 0;
3353 
3354 	page = virt_to_head_page(object);
3355 
3356 	if (unlikely(!PageSlab(page))) {
3357 		WARN_ON(!PageCompound(page));
3358 		return PAGE_SIZE << compound_order(page);
3359 	}
3360 
3361 	return slab_ksize(page->slab);
3362 }
3363 EXPORT_SYMBOL(ksize);
3364 
3365 #ifdef CONFIG_SLUB_DEBUG
3366 bool verify_mem_not_deleted(const void *x)
3367 {
3368 	struct page *page;
3369 	void *object = (void *)x;
3370 	unsigned long flags;
3371 	bool rv;
3372 
3373 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3374 		return false;
3375 
3376 	local_irq_save(flags);
3377 
3378 	page = virt_to_head_page(x);
3379 	if (unlikely(!PageSlab(page))) {
3380 		/* maybe it was from stack? */
3381 		rv = true;
3382 		goto out_unlock;
3383 	}
3384 
3385 	slab_lock(page);
3386 	if (on_freelist(page->slab, page, object)) {
3387 		object_err(page->slab, page, object, "Object is on free-list");
3388 		rv = false;
3389 	} else {
3390 		rv = true;
3391 	}
3392 	slab_unlock(page);
3393 
3394 out_unlock:
3395 	local_irq_restore(flags);
3396 	return rv;
3397 }
3398 EXPORT_SYMBOL(verify_mem_not_deleted);
3399 #endif
3400 
3401 void kfree(const void *x)
3402 {
3403 	struct page *page;
3404 	void *object = (void *)x;
3405 
3406 	trace_kfree(_RET_IP_, x);
3407 
3408 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3409 		return;
3410 
3411 	page = virt_to_head_page(x);
3412 	if (unlikely(!PageSlab(page))) {
3413 		BUG_ON(!PageCompound(page));
3414 		kmemleak_free(x);
3415 		put_page(page);
3416 		return;
3417 	}
3418 	slab_free(page->slab, page, object, _RET_IP_);
3419 }
3420 EXPORT_SYMBOL(kfree);
3421 
3422 /*
3423  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3424  * the remaining slabs by the number of items in use. The slabs with the
3425  * most items in use come first. New allocations will then fill those up
3426  * and thus they can be removed from the partial lists.
3427  *
3428  * The slabs with the least items are placed last. This results in them
3429  * being allocated from last increasing the chance that the last objects
3430  * are freed in them.
3431  */
3432 int kmem_cache_shrink(struct kmem_cache *s)
3433 {
3434 	int node;
3435 	int i;
3436 	struct kmem_cache_node *n;
3437 	struct page *page;
3438 	struct page *t;
3439 	int objects = oo_objects(s->max);
3440 	struct list_head *slabs_by_inuse =
3441 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3442 	unsigned long flags;
3443 
3444 	if (!slabs_by_inuse)
3445 		return -ENOMEM;
3446 
3447 	flush_all(s);
3448 	for_each_node_state(node, N_NORMAL_MEMORY) {
3449 		n = get_node(s, node);
3450 
3451 		if (!n->nr_partial)
3452 			continue;
3453 
3454 		for (i = 0; i < objects; i++)
3455 			INIT_LIST_HEAD(slabs_by_inuse + i);
3456 
3457 		spin_lock_irqsave(&n->list_lock, flags);
3458 
3459 		/*
3460 		 * Build lists indexed by the items in use in each slab.
3461 		 *
3462 		 * Note that concurrent frees may occur while we hold the
3463 		 * list_lock. page->inuse here is the upper limit.
3464 		 */
3465 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3466 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3467 			if (!page->inuse)
3468 				n->nr_partial--;
3469 		}
3470 
3471 		/*
3472 		 * Rebuild the partial list with the slabs filled up most
3473 		 * first and the least used slabs at the end.
3474 		 */
3475 		for (i = objects - 1; i > 0; i--)
3476 			list_splice(slabs_by_inuse + i, n->partial.prev);
3477 
3478 		spin_unlock_irqrestore(&n->list_lock, flags);
3479 
3480 		/* Release empty slabs */
3481 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3482 			discard_slab(s, page);
3483 	}
3484 
3485 	kfree(slabs_by_inuse);
3486 	return 0;
3487 }
3488 EXPORT_SYMBOL(kmem_cache_shrink);
3489 
3490 #if defined(CONFIG_MEMORY_HOTPLUG)
3491 static int slab_mem_going_offline_callback(void *arg)
3492 {
3493 	struct kmem_cache *s;
3494 
3495 	down_read(&slub_lock);
3496 	list_for_each_entry(s, &slab_caches, list)
3497 		kmem_cache_shrink(s);
3498 	up_read(&slub_lock);
3499 
3500 	return 0;
3501 }
3502 
3503 static void slab_mem_offline_callback(void *arg)
3504 {
3505 	struct kmem_cache_node *n;
3506 	struct kmem_cache *s;
3507 	struct memory_notify *marg = arg;
3508 	int offline_node;
3509 
3510 	offline_node = marg->status_change_nid;
3511 
3512 	/*
3513 	 * If the node still has available memory. we need kmem_cache_node
3514 	 * for it yet.
3515 	 */
3516 	if (offline_node < 0)
3517 		return;
3518 
3519 	down_read(&slub_lock);
3520 	list_for_each_entry(s, &slab_caches, list) {
3521 		n = get_node(s, offline_node);
3522 		if (n) {
3523 			/*
3524 			 * if n->nr_slabs > 0, slabs still exist on the node
3525 			 * that is going down. We were unable to free them,
3526 			 * and offline_pages() function shouldn't call this
3527 			 * callback. So, we must fail.
3528 			 */
3529 			BUG_ON(slabs_node(s, offline_node));
3530 
3531 			s->node[offline_node] = NULL;
3532 			kmem_cache_free(kmem_cache_node, n);
3533 		}
3534 	}
3535 	up_read(&slub_lock);
3536 }
3537 
3538 static int slab_mem_going_online_callback(void *arg)
3539 {
3540 	struct kmem_cache_node *n;
3541 	struct kmem_cache *s;
3542 	struct memory_notify *marg = arg;
3543 	int nid = marg->status_change_nid;
3544 	int ret = 0;
3545 
3546 	/*
3547 	 * If the node's memory is already available, then kmem_cache_node is
3548 	 * already created. Nothing to do.
3549 	 */
3550 	if (nid < 0)
3551 		return 0;
3552 
3553 	/*
3554 	 * We are bringing a node online. No memory is available yet. We must
3555 	 * allocate a kmem_cache_node structure in order to bring the node
3556 	 * online.
3557 	 */
3558 	down_read(&slub_lock);
3559 	list_for_each_entry(s, &slab_caches, list) {
3560 		/*
3561 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3562 		 *      since memory is not yet available from the node that
3563 		 *      is brought up.
3564 		 */
3565 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3566 		if (!n) {
3567 			ret = -ENOMEM;
3568 			goto out;
3569 		}
3570 		init_kmem_cache_node(n, s);
3571 		s->node[nid] = n;
3572 	}
3573 out:
3574 	up_read(&slub_lock);
3575 	return ret;
3576 }
3577 
3578 static int slab_memory_callback(struct notifier_block *self,
3579 				unsigned long action, void *arg)
3580 {
3581 	int ret = 0;
3582 
3583 	switch (action) {
3584 	case MEM_GOING_ONLINE:
3585 		ret = slab_mem_going_online_callback(arg);
3586 		break;
3587 	case MEM_GOING_OFFLINE:
3588 		ret = slab_mem_going_offline_callback(arg);
3589 		break;
3590 	case MEM_OFFLINE:
3591 	case MEM_CANCEL_ONLINE:
3592 		slab_mem_offline_callback(arg);
3593 		break;
3594 	case MEM_ONLINE:
3595 	case MEM_CANCEL_OFFLINE:
3596 		break;
3597 	}
3598 	if (ret)
3599 		ret = notifier_from_errno(ret);
3600 	else
3601 		ret = NOTIFY_OK;
3602 	return ret;
3603 }
3604 
3605 #endif /* CONFIG_MEMORY_HOTPLUG */
3606 
3607 /********************************************************************
3608  *			Basic setup of slabs
3609  *******************************************************************/
3610 
3611 /*
3612  * Used for early kmem_cache structures that were allocated using
3613  * the page allocator
3614  */
3615 
3616 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3617 {
3618 	int node;
3619 
3620 	list_add(&s->list, &slab_caches);
3621 	s->refcount = -1;
3622 
3623 	for_each_node_state(node, N_NORMAL_MEMORY) {
3624 		struct kmem_cache_node *n = get_node(s, node);
3625 		struct page *p;
3626 
3627 		if (n) {
3628 			list_for_each_entry(p, &n->partial, lru)
3629 				p->slab = s;
3630 
3631 #ifdef CONFIG_SLUB_DEBUG
3632 			list_for_each_entry(p, &n->full, lru)
3633 				p->slab = s;
3634 #endif
3635 		}
3636 	}
3637 }
3638 
3639 void __init kmem_cache_init(void)
3640 {
3641 	int i;
3642 	int caches = 0;
3643 	struct kmem_cache *temp_kmem_cache;
3644 	int order;
3645 	struct kmem_cache *temp_kmem_cache_node;
3646 	unsigned long kmalloc_size;
3647 
3648 	kmem_size = offsetof(struct kmem_cache, node) +
3649 				nr_node_ids * sizeof(struct kmem_cache_node *);
3650 
3651 	/* Allocate two kmem_caches from the page allocator */
3652 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3653 	order = get_order(2 * kmalloc_size);
3654 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3655 
3656 	/*
3657 	 * Must first have the slab cache available for the allocations of the
3658 	 * struct kmem_cache_node's. There is special bootstrap code in
3659 	 * kmem_cache_open for slab_state == DOWN.
3660 	 */
3661 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3662 
3663 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3664 		sizeof(struct kmem_cache_node),
3665 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3666 
3667 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3668 
3669 	/* Able to allocate the per node structures */
3670 	slab_state = PARTIAL;
3671 
3672 	temp_kmem_cache = kmem_cache;
3673 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3674 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3675 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3676 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3677 
3678 	/*
3679 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3680 	 * kmem_cache_node is separately allocated so no need to
3681 	 * update any list pointers.
3682 	 */
3683 	temp_kmem_cache_node = kmem_cache_node;
3684 
3685 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3686 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3687 
3688 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3689 
3690 	caches++;
3691 	kmem_cache_bootstrap_fixup(kmem_cache);
3692 	caches++;
3693 	/* Free temporary boot structure */
3694 	free_pages((unsigned long)temp_kmem_cache, order);
3695 
3696 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3697 
3698 	/*
3699 	 * Patch up the size_index table if we have strange large alignment
3700 	 * requirements for the kmalloc array. This is only the case for
3701 	 * MIPS it seems. The standard arches will not generate any code here.
3702 	 *
3703 	 * Largest permitted alignment is 256 bytes due to the way we
3704 	 * handle the index determination for the smaller caches.
3705 	 *
3706 	 * Make sure that nothing crazy happens if someone starts tinkering
3707 	 * around with ARCH_KMALLOC_MINALIGN
3708 	 */
3709 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3710 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3711 
3712 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3713 		int elem = size_index_elem(i);
3714 		if (elem >= ARRAY_SIZE(size_index))
3715 			break;
3716 		size_index[elem] = KMALLOC_SHIFT_LOW;
3717 	}
3718 
3719 	if (KMALLOC_MIN_SIZE == 64) {
3720 		/*
3721 		 * The 96 byte size cache is not used if the alignment
3722 		 * is 64 byte.
3723 		 */
3724 		for (i = 64 + 8; i <= 96; i += 8)
3725 			size_index[size_index_elem(i)] = 7;
3726 	} else if (KMALLOC_MIN_SIZE == 128) {
3727 		/*
3728 		 * The 192 byte sized cache is not used if the alignment
3729 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3730 		 * instead.
3731 		 */
3732 		for (i = 128 + 8; i <= 192; i += 8)
3733 			size_index[size_index_elem(i)] = 8;
3734 	}
3735 
3736 	/* Caches that are not of the two-to-the-power-of size */
3737 	if (KMALLOC_MIN_SIZE <= 32) {
3738 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3739 		caches++;
3740 	}
3741 
3742 	if (KMALLOC_MIN_SIZE <= 64) {
3743 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3744 		caches++;
3745 	}
3746 
3747 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3748 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3749 		caches++;
3750 	}
3751 
3752 	slab_state = UP;
3753 
3754 	/* Provide the correct kmalloc names now that the caches are up */
3755 	if (KMALLOC_MIN_SIZE <= 32) {
3756 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3757 		BUG_ON(!kmalloc_caches[1]->name);
3758 	}
3759 
3760 	if (KMALLOC_MIN_SIZE <= 64) {
3761 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3762 		BUG_ON(!kmalloc_caches[2]->name);
3763 	}
3764 
3765 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3766 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3767 
3768 		BUG_ON(!s);
3769 		kmalloc_caches[i]->name = s;
3770 	}
3771 
3772 #ifdef CONFIG_SMP
3773 	register_cpu_notifier(&slab_notifier);
3774 #endif
3775 
3776 #ifdef CONFIG_ZONE_DMA
3777 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3778 		struct kmem_cache *s = kmalloc_caches[i];
3779 
3780 		if (s && s->size) {
3781 			char *name = kasprintf(GFP_NOWAIT,
3782 				 "dma-kmalloc-%d", s->objsize);
3783 
3784 			BUG_ON(!name);
3785 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3786 				s->objsize, SLAB_CACHE_DMA);
3787 		}
3788 	}
3789 #endif
3790 	printk(KERN_INFO
3791 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3792 		" CPUs=%d, Nodes=%d\n",
3793 		caches, cache_line_size(),
3794 		slub_min_order, slub_max_order, slub_min_objects,
3795 		nr_cpu_ids, nr_node_ids);
3796 }
3797 
3798 void __init kmem_cache_init_late(void)
3799 {
3800 }
3801 
3802 /*
3803  * Find a mergeable slab cache
3804  */
3805 static int slab_unmergeable(struct kmem_cache *s)
3806 {
3807 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3808 		return 1;
3809 
3810 	if (s->ctor)
3811 		return 1;
3812 
3813 	/*
3814 	 * We may have set a slab to be unmergeable during bootstrap.
3815 	 */
3816 	if (s->refcount < 0)
3817 		return 1;
3818 
3819 	return 0;
3820 }
3821 
3822 static struct kmem_cache *find_mergeable(size_t size,
3823 		size_t align, unsigned long flags, const char *name,
3824 		void (*ctor)(void *))
3825 {
3826 	struct kmem_cache *s;
3827 
3828 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3829 		return NULL;
3830 
3831 	if (ctor)
3832 		return NULL;
3833 
3834 	size = ALIGN(size, sizeof(void *));
3835 	align = calculate_alignment(flags, align, size);
3836 	size = ALIGN(size, align);
3837 	flags = kmem_cache_flags(size, flags, name, NULL);
3838 
3839 	list_for_each_entry(s, &slab_caches, list) {
3840 		if (slab_unmergeable(s))
3841 			continue;
3842 
3843 		if (size > s->size)
3844 			continue;
3845 
3846 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3847 				continue;
3848 		/*
3849 		 * Check if alignment is compatible.
3850 		 * Courtesy of Adrian Drzewiecki
3851 		 */
3852 		if ((s->size & ~(align - 1)) != s->size)
3853 			continue;
3854 
3855 		if (s->size - size >= sizeof(void *))
3856 			continue;
3857 
3858 		return s;
3859 	}
3860 	return NULL;
3861 }
3862 
3863 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3864 		size_t align, unsigned long flags, void (*ctor)(void *))
3865 {
3866 	struct kmem_cache *s;
3867 	char *n;
3868 
3869 	if (WARN_ON(!name))
3870 		return NULL;
3871 
3872 	down_write(&slub_lock);
3873 	s = find_mergeable(size, align, flags, name, ctor);
3874 	if (s) {
3875 		s->refcount++;
3876 		/*
3877 		 * Adjust the object sizes so that we clear
3878 		 * the complete object on kzalloc.
3879 		 */
3880 		s->objsize = max(s->objsize, (int)size);
3881 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3882 
3883 		if (sysfs_slab_alias(s, name)) {
3884 			s->refcount--;
3885 			goto err;
3886 		}
3887 		up_write(&slub_lock);
3888 		return s;
3889 	}
3890 
3891 	n = kstrdup(name, GFP_KERNEL);
3892 	if (!n)
3893 		goto err;
3894 
3895 	s = kmalloc(kmem_size, GFP_KERNEL);
3896 	if (s) {
3897 		if (kmem_cache_open(s, n,
3898 				size, align, flags, ctor)) {
3899 			list_add(&s->list, &slab_caches);
3900 			if (sysfs_slab_add(s)) {
3901 				list_del(&s->list);
3902 				kfree(n);
3903 				kfree(s);
3904 				goto err;
3905 			}
3906 			up_write(&slub_lock);
3907 			return s;
3908 		}
3909 		kfree(n);
3910 		kfree(s);
3911 	}
3912 err:
3913 	up_write(&slub_lock);
3914 
3915 	if (flags & SLAB_PANIC)
3916 		panic("Cannot create slabcache %s\n", name);
3917 	else
3918 		s = NULL;
3919 	return s;
3920 }
3921 EXPORT_SYMBOL(kmem_cache_create);
3922 
3923 #ifdef CONFIG_SMP
3924 /*
3925  * Use the cpu notifier to insure that the cpu slabs are flushed when
3926  * necessary.
3927  */
3928 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3929 		unsigned long action, void *hcpu)
3930 {
3931 	long cpu = (long)hcpu;
3932 	struct kmem_cache *s;
3933 	unsigned long flags;
3934 
3935 	switch (action) {
3936 	case CPU_UP_CANCELED:
3937 	case CPU_UP_CANCELED_FROZEN:
3938 	case CPU_DEAD:
3939 	case CPU_DEAD_FROZEN:
3940 		down_read(&slub_lock);
3941 		list_for_each_entry(s, &slab_caches, list) {
3942 			local_irq_save(flags);
3943 			__flush_cpu_slab(s, cpu);
3944 			local_irq_restore(flags);
3945 		}
3946 		up_read(&slub_lock);
3947 		break;
3948 	default:
3949 		break;
3950 	}
3951 	return NOTIFY_OK;
3952 }
3953 
3954 static struct notifier_block __cpuinitdata slab_notifier = {
3955 	.notifier_call = slab_cpuup_callback
3956 };
3957 
3958 #endif
3959 
3960 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3961 {
3962 	struct kmem_cache *s;
3963 	void *ret;
3964 
3965 	if (unlikely(size > SLUB_MAX_SIZE))
3966 		return kmalloc_large(size, gfpflags);
3967 
3968 	s = get_slab(size, gfpflags);
3969 
3970 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3971 		return s;
3972 
3973 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3974 
3975 	/* Honor the call site pointer we received. */
3976 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3977 
3978 	return ret;
3979 }
3980 
3981 #ifdef CONFIG_NUMA
3982 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3983 					int node, unsigned long caller)
3984 {
3985 	struct kmem_cache *s;
3986 	void *ret;
3987 
3988 	if (unlikely(size > SLUB_MAX_SIZE)) {
3989 		ret = kmalloc_large_node(size, gfpflags, node);
3990 
3991 		trace_kmalloc_node(caller, ret,
3992 				   size, PAGE_SIZE << get_order(size),
3993 				   gfpflags, node);
3994 
3995 		return ret;
3996 	}
3997 
3998 	s = get_slab(size, gfpflags);
3999 
4000 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4001 		return s;
4002 
4003 	ret = slab_alloc(s, gfpflags, node, caller);
4004 
4005 	/* Honor the call site pointer we received. */
4006 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4007 
4008 	return ret;
4009 }
4010 #endif
4011 
4012 #ifdef CONFIG_SYSFS
4013 static int count_inuse(struct page *page)
4014 {
4015 	return page->inuse;
4016 }
4017 
4018 static int count_total(struct page *page)
4019 {
4020 	return page->objects;
4021 }
4022 #endif
4023 
4024 #ifdef CONFIG_SLUB_DEBUG
4025 static int validate_slab(struct kmem_cache *s, struct page *page,
4026 						unsigned long *map)
4027 {
4028 	void *p;
4029 	void *addr = page_address(page);
4030 
4031 	if (!check_slab(s, page) ||
4032 			!on_freelist(s, page, NULL))
4033 		return 0;
4034 
4035 	/* Now we know that a valid freelist exists */
4036 	bitmap_zero(map, page->objects);
4037 
4038 	get_map(s, page, map);
4039 	for_each_object(p, s, addr, page->objects) {
4040 		if (test_bit(slab_index(p, s, addr), map))
4041 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4042 				return 0;
4043 	}
4044 
4045 	for_each_object(p, s, addr, page->objects)
4046 		if (!test_bit(slab_index(p, s, addr), map))
4047 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4048 				return 0;
4049 	return 1;
4050 }
4051 
4052 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4053 						unsigned long *map)
4054 {
4055 	slab_lock(page);
4056 	validate_slab(s, page, map);
4057 	slab_unlock(page);
4058 }
4059 
4060 static int validate_slab_node(struct kmem_cache *s,
4061 		struct kmem_cache_node *n, unsigned long *map)
4062 {
4063 	unsigned long count = 0;
4064 	struct page *page;
4065 	unsigned long flags;
4066 
4067 	spin_lock_irqsave(&n->list_lock, flags);
4068 
4069 	list_for_each_entry(page, &n->partial, lru) {
4070 		validate_slab_slab(s, page, map);
4071 		count++;
4072 	}
4073 	if (count != n->nr_partial)
4074 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4075 			"counter=%ld\n", s->name, count, n->nr_partial);
4076 
4077 	if (!(s->flags & SLAB_STORE_USER))
4078 		goto out;
4079 
4080 	list_for_each_entry(page, &n->full, lru) {
4081 		validate_slab_slab(s, page, map);
4082 		count++;
4083 	}
4084 	if (count != atomic_long_read(&n->nr_slabs))
4085 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4086 			"counter=%ld\n", s->name, count,
4087 			atomic_long_read(&n->nr_slabs));
4088 
4089 out:
4090 	spin_unlock_irqrestore(&n->list_lock, flags);
4091 	return count;
4092 }
4093 
4094 static long validate_slab_cache(struct kmem_cache *s)
4095 {
4096 	int node;
4097 	unsigned long count = 0;
4098 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4099 				sizeof(unsigned long), GFP_KERNEL);
4100 
4101 	if (!map)
4102 		return -ENOMEM;
4103 
4104 	flush_all(s);
4105 	for_each_node_state(node, N_NORMAL_MEMORY) {
4106 		struct kmem_cache_node *n = get_node(s, node);
4107 
4108 		count += validate_slab_node(s, n, map);
4109 	}
4110 	kfree(map);
4111 	return count;
4112 }
4113 /*
4114  * Generate lists of code addresses where slabcache objects are allocated
4115  * and freed.
4116  */
4117 
4118 struct location {
4119 	unsigned long count;
4120 	unsigned long addr;
4121 	long long sum_time;
4122 	long min_time;
4123 	long max_time;
4124 	long min_pid;
4125 	long max_pid;
4126 	DECLARE_BITMAP(cpus, NR_CPUS);
4127 	nodemask_t nodes;
4128 };
4129 
4130 struct loc_track {
4131 	unsigned long max;
4132 	unsigned long count;
4133 	struct location *loc;
4134 };
4135 
4136 static void free_loc_track(struct loc_track *t)
4137 {
4138 	if (t->max)
4139 		free_pages((unsigned long)t->loc,
4140 			get_order(sizeof(struct location) * t->max));
4141 }
4142 
4143 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4144 {
4145 	struct location *l;
4146 	int order;
4147 
4148 	order = get_order(sizeof(struct location) * max);
4149 
4150 	l = (void *)__get_free_pages(flags, order);
4151 	if (!l)
4152 		return 0;
4153 
4154 	if (t->count) {
4155 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4156 		free_loc_track(t);
4157 	}
4158 	t->max = max;
4159 	t->loc = l;
4160 	return 1;
4161 }
4162 
4163 static int add_location(struct loc_track *t, struct kmem_cache *s,
4164 				const struct track *track)
4165 {
4166 	long start, end, pos;
4167 	struct location *l;
4168 	unsigned long caddr;
4169 	unsigned long age = jiffies - track->when;
4170 
4171 	start = -1;
4172 	end = t->count;
4173 
4174 	for ( ; ; ) {
4175 		pos = start + (end - start + 1) / 2;
4176 
4177 		/*
4178 		 * There is nothing at "end". If we end up there
4179 		 * we need to add something to before end.
4180 		 */
4181 		if (pos == end)
4182 			break;
4183 
4184 		caddr = t->loc[pos].addr;
4185 		if (track->addr == caddr) {
4186 
4187 			l = &t->loc[pos];
4188 			l->count++;
4189 			if (track->when) {
4190 				l->sum_time += age;
4191 				if (age < l->min_time)
4192 					l->min_time = age;
4193 				if (age > l->max_time)
4194 					l->max_time = age;
4195 
4196 				if (track->pid < l->min_pid)
4197 					l->min_pid = track->pid;
4198 				if (track->pid > l->max_pid)
4199 					l->max_pid = track->pid;
4200 
4201 				cpumask_set_cpu(track->cpu,
4202 						to_cpumask(l->cpus));
4203 			}
4204 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4205 			return 1;
4206 		}
4207 
4208 		if (track->addr < caddr)
4209 			end = pos;
4210 		else
4211 			start = pos;
4212 	}
4213 
4214 	/*
4215 	 * Not found. Insert new tracking element.
4216 	 */
4217 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4218 		return 0;
4219 
4220 	l = t->loc + pos;
4221 	if (pos < t->count)
4222 		memmove(l + 1, l,
4223 			(t->count - pos) * sizeof(struct location));
4224 	t->count++;
4225 	l->count = 1;
4226 	l->addr = track->addr;
4227 	l->sum_time = age;
4228 	l->min_time = age;
4229 	l->max_time = age;
4230 	l->min_pid = track->pid;
4231 	l->max_pid = track->pid;
4232 	cpumask_clear(to_cpumask(l->cpus));
4233 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4234 	nodes_clear(l->nodes);
4235 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4236 	return 1;
4237 }
4238 
4239 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4240 		struct page *page, enum track_item alloc,
4241 		unsigned long *map)
4242 {
4243 	void *addr = page_address(page);
4244 	void *p;
4245 
4246 	bitmap_zero(map, page->objects);
4247 	get_map(s, page, map);
4248 
4249 	for_each_object(p, s, addr, page->objects)
4250 		if (!test_bit(slab_index(p, s, addr), map))
4251 			add_location(t, s, get_track(s, p, alloc));
4252 }
4253 
4254 static int list_locations(struct kmem_cache *s, char *buf,
4255 					enum track_item alloc)
4256 {
4257 	int len = 0;
4258 	unsigned long i;
4259 	struct loc_track t = { 0, 0, NULL };
4260 	int node;
4261 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4262 				     sizeof(unsigned long), GFP_KERNEL);
4263 
4264 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4265 				     GFP_TEMPORARY)) {
4266 		kfree(map);
4267 		return sprintf(buf, "Out of memory\n");
4268 	}
4269 	/* Push back cpu slabs */
4270 	flush_all(s);
4271 
4272 	for_each_node_state(node, N_NORMAL_MEMORY) {
4273 		struct kmem_cache_node *n = get_node(s, node);
4274 		unsigned long flags;
4275 		struct page *page;
4276 
4277 		if (!atomic_long_read(&n->nr_slabs))
4278 			continue;
4279 
4280 		spin_lock_irqsave(&n->list_lock, flags);
4281 		list_for_each_entry(page, &n->partial, lru)
4282 			process_slab(&t, s, page, alloc, map);
4283 		list_for_each_entry(page, &n->full, lru)
4284 			process_slab(&t, s, page, alloc, map);
4285 		spin_unlock_irqrestore(&n->list_lock, flags);
4286 	}
4287 
4288 	for (i = 0; i < t.count; i++) {
4289 		struct location *l = &t.loc[i];
4290 
4291 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4292 			break;
4293 		len += sprintf(buf + len, "%7ld ", l->count);
4294 
4295 		if (l->addr)
4296 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4297 		else
4298 			len += sprintf(buf + len, "<not-available>");
4299 
4300 		if (l->sum_time != l->min_time) {
4301 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4302 				l->min_time,
4303 				(long)div_u64(l->sum_time, l->count),
4304 				l->max_time);
4305 		} else
4306 			len += sprintf(buf + len, " age=%ld",
4307 				l->min_time);
4308 
4309 		if (l->min_pid != l->max_pid)
4310 			len += sprintf(buf + len, " pid=%ld-%ld",
4311 				l->min_pid, l->max_pid);
4312 		else
4313 			len += sprintf(buf + len, " pid=%ld",
4314 				l->min_pid);
4315 
4316 		if (num_online_cpus() > 1 &&
4317 				!cpumask_empty(to_cpumask(l->cpus)) &&
4318 				len < PAGE_SIZE - 60) {
4319 			len += sprintf(buf + len, " cpus=");
4320 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4321 						 to_cpumask(l->cpus));
4322 		}
4323 
4324 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4325 				len < PAGE_SIZE - 60) {
4326 			len += sprintf(buf + len, " nodes=");
4327 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4328 					l->nodes);
4329 		}
4330 
4331 		len += sprintf(buf + len, "\n");
4332 	}
4333 
4334 	free_loc_track(&t);
4335 	kfree(map);
4336 	if (!t.count)
4337 		len += sprintf(buf, "No data\n");
4338 	return len;
4339 }
4340 #endif
4341 
4342 #ifdef SLUB_RESILIENCY_TEST
4343 static void resiliency_test(void)
4344 {
4345 	u8 *p;
4346 
4347 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4348 
4349 	printk(KERN_ERR "SLUB resiliency testing\n");
4350 	printk(KERN_ERR "-----------------------\n");
4351 	printk(KERN_ERR "A. Corruption after allocation\n");
4352 
4353 	p = kzalloc(16, GFP_KERNEL);
4354 	p[16] = 0x12;
4355 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4356 			" 0x12->0x%p\n\n", p + 16);
4357 
4358 	validate_slab_cache(kmalloc_caches[4]);
4359 
4360 	/* Hmmm... The next two are dangerous */
4361 	p = kzalloc(32, GFP_KERNEL);
4362 	p[32 + sizeof(void *)] = 0x34;
4363 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4364 			" 0x34 -> -0x%p\n", p);
4365 	printk(KERN_ERR
4366 		"If allocated object is overwritten then not detectable\n\n");
4367 
4368 	validate_slab_cache(kmalloc_caches[5]);
4369 	p = kzalloc(64, GFP_KERNEL);
4370 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4371 	*p = 0x56;
4372 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4373 									p);
4374 	printk(KERN_ERR
4375 		"If allocated object is overwritten then not detectable\n\n");
4376 	validate_slab_cache(kmalloc_caches[6]);
4377 
4378 	printk(KERN_ERR "\nB. Corruption after free\n");
4379 	p = kzalloc(128, GFP_KERNEL);
4380 	kfree(p);
4381 	*p = 0x78;
4382 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4383 	validate_slab_cache(kmalloc_caches[7]);
4384 
4385 	p = kzalloc(256, GFP_KERNEL);
4386 	kfree(p);
4387 	p[50] = 0x9a;
4388 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4389 			p);
4390 	validate_slab_cache(kmalloc_caches[8]);
4391 
4392 	p = kzalloc(512, GFP_KERNEL);
4393 	kfree(p);
4394 	p[512] = 0xab;
4395 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4396 	validate_slab_cache(kmalloc_caches[9]);
4397 }
4398 #else
4399 #ifdef CONFIG_SYSFS
4400 static void resiliency_test(void) {};
4401 #endif
4402 #endif
4403 
4404 #ifdef CONFIG_SYSFS
4405 enum slab_stat_type {
4406 	SL_ALL,			/* All slabs */
4407 	SL_PARTIAL,		/* Only partially allocated slabs */
4408 	SL_CPU,			/* Only slabs used for cpu caches */
4409 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4410 	SL_TOTAL		/* Determine object capacity not slabs */
4411 };
4412 
4413 #define SO_ALL		(1 << SL_ALL)
4414 #define SO_PARTIAL	(1 << SL_PARTIAL)
4415 #define SO_CPU		(1 << SL_CPU)
4416 #define SO_OBJECTS	(1 << SL_OBJECTS)
4417 #define SO_TOTAL	(1 << SL_TOTAL)
4418 
4419 static ssize_t show_slab_objects(struct kmem_cache *s,
4420 			    char *buf, unsigned long flags)
4421 {
4422 	unsigned long total = 0;
4423 	int node;
4424 	int x;
4425 	unsigned long *nodes;
4426 	unsigned long *per_cpu;
4427 
4428 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4429 	if (!nodes)
4430 		return -ENOMEM;
4431 	per_cpu = nodes + nr_node_ids;
4432 
4433 	if (flags & SO_CPU) {
4434 		int cpu;
4435 
4436 		for_each_possible_cpu(cpu) {
4437 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4438 			struct page *page;
4439 
4440 			if (!c || c->node < 0)
4441 				continue;
4442 
4443 			if (c->page) {
4444 					if (flags & SO_TOTAL)
4445 						x = c->page->objects;
4446 				else if (flags & SO_OBJECTS)
4447 					x = c->page->inuse;
4448 				else
4449 					x = 1;
4450 
4451 				total += x;
4452 				nodes[c->node] += x;
4453 			}
4454 			page = c->partial;
4455 
4456 			if (page) {
4457 				x = page->pobjects;
4458                                 total += x;
4459                                 nodes[c->node] += x;
4460 			}
4461 			per_cpu[c->node]++;
4462 		}
4463 	}
4464 
4465 	lock_memory_hotplug();
4466 #ifdef CONFIG_SLUB_DEBUG
4467 	if (flags & SO_ALL) {
4468 		for_each_node_state(node, N_NORMAL_MEMORY) {
4469 			struct kmem_cache_node *n = get_node(s, node);
4470 
4471 		if (flags & SO_TOTAL)
4472 			x = atomic_long_read(&n->total_objects);
4473 		else if (flags & SO_OBJECTS)
4474 			x = atomic_long_read(&n->total_objects) -
4475 				count_partial(n, count_free);
4476 
4477 			else
4478 				x = atomic_long_read(&n->nr_slabs);
4479 			total += x;
4480 			nodes[node] += x;
4481 		}
4482 
4483 	} else
4484 #endif
4485 	if (flags & SO_PARTIAL) {
4486 		for_each_node_state(node, N_NORMAL_MEMORY) {
4487 			struct kmem_cache_node *n = get_node(s, node);
4488 
4489 			if (flags & SO_TOTAL)
4490 				x = count_partial(n, count_total);
4491 			else if (flags & SO_OBJECTS)
4492 				x = count_partial(n, count_inuse);
4493 			else
4494 				x = n->nr_partial;
4495 			total += x;
4496 			nodes[node] += x;
4497 		}
4498 	}
4499 	x = sprintf(buf, "%lu", total);
4500 #ifdef CONFIG_NUMA
4501 	for_each_node_state(node, N_NORMAL_MEMORY)
4502 		if (nodes[node])
4503 			x += sprintf(buf + x, " N%d=%lu",
4504 					node, nodes[node]);
4505 #endif
4506 	unlock_memory_hotplug();
4507 	kfree(nodes);
4508 	return x + sprintf(buf + x, "\n");
4509 }
4510 
4511 #ifdef CONFIG_SLUB_DEBUG
4512 static int any_slab_objects(struct kmem_cache *s)
4513 {
4514 	int node;
4515 
4516 	for_each_online_node(node) {
4517 		struct kmem_cache_node *n = get_node(s, node);
4518 
4519 		if (!n)
4520 			continue;
4521 
4522 		if (atomic_long_read(&n->total_objects))
4523 			return 1;
4524 	}
4525 	return 0;
4526 }
4527 #endif
4528 
4529 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4530 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4531 
4532 struct slab_attribute {
4533 	struct attribute attr;
4534 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4535 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4536 };
4537 
4538 #define SLAB_ATTR_RO(_name) \
4539 	static struct slab_attribute _name##_attr = \
4540 	__ATTR(_name, 0400, _name##_show, NULL)
4541 
4542 #define SLAB_ATTR(_name) \
4543 	static struct slab_attribute _name##_attr =  \
4544 	__ATTR(_name, 0600, _name##_show, _name##_store)
4545 
4546 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4547 {
4548 	return sprintf(buf, "%d\n", s->size);
4549 }
4550 SLAB_ATTR_RO(slab_size);
4551 
4552 static ssize_t align_show(struct kmem_cache *s, char *buf)
4553 {
4554 	return sprintf(buf, "%d\n", s->align);
4555 }
4556 SLAB_ATTR_RO(align);
4557 
4558 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4559 {
4560 	return sprintf(buf, "%d\n", s->objsize);
4561 }
4562 SLAB_ATTR_RO(object_size);
4563 
4564 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4565 {
4566 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4567 }
4568 SLAB_ATTR_RO(objs_per_slab);
4569 
4570 static ssize_t order_store(struct kmem_cache *s,
4571 				const char *buf, size_t length)
4572 {
4573 	unsigned long order;
4574 	int err;
4575 
4576 	err = strict_strtoul(buf, 10, &order);
4577 	if (err)
4578 		return err;
4579 
4580 	if (order > slub_max_order || order < slub_min_order)
4581 		return -EINVAL;
4582 
4583 	calculate_sizes(s, order);
4584 	return length;
4585 }
4586 
4587 static ssize_t order_show(struct kmem_cache *s, char *buf)
4588 {
4589 	return sprintf(buf, "%d\n", oo_order(s->oo));
4590 }
4591 SLAB_ATTR(order);
4592 
4593 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4594 {
4595 	return sprintf(buf, "%lu\n", s->min_partial);
4596 }
4597 
4598 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4599 				 size_t length)
4600 {
4601 	unsigned long min;
4602 	int err;
4603 
4604 	err = strict_strtoul(buf, 10, &min);
4605 	if (err)
4606 		return err;
4607 
4608 	set_min_partial(s, min);
4609 	return length;
4610 }
4611 SLAB_ATTR(min_partial);
4612 
4613 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4614 {
4615 	return sprintf(buf, "%u\n", s->cpu_partial);
4616 }
4617 
4618 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4619 				 size_t length)
4620 {
4621 	unsigned long objects;
4622 	int err;
4623 
4624 	err = strict_strtoul(buf, 10, &objects);
4625 	if (err)
4626 		return err;
4627 
4628 	s->cpu_partial = objects;
4629 	flush_all(s);
4630 	return length;
4631 }
4632 SLAB_ATTR(cpu_partial);
4633 
4634 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4635 {
4636 	if (!s->ctor)
4637 		return 0;
4638 	return sprintf(buf, "%pS\n", s->ctor);
4639 }
4640 SLAB_ATTR_RO(ctor);
4641 
4642 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4643 {
4644 	return sprintf(buf, "%d\n", s->refcount - 1);
4645 }
4646 SLAB_ATTR_RO(aliases);
4647 
4648 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4649 {
4650 	return show_slab_objects(s, buf, SO_PARTIAL);
4651 }
4652 SLAB_ATTR_RO(partial);
4653 
4654 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4655 {
4656 	return show_slab_objects(s, buf, SO_CPU);
4657 }
4658 SLAB_ATTR_RO(cpu_slabs);
4659 
4660 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4661 {
4662 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4663 }
4664 SLAB_ATTR_RO(objects);
4665 
4666 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4667 {
4668 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4669 }
4670 SLAB_ATTR_RO(objects_partial);
4671 
4672 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4673 {
4674 	int objects = 0;
4675 	int pages = 0;
4676 	int cpu;
4677 	int len;
4678 
4679 	for_each_online_cpu(cpu) {
4680 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4681 
4682 		if (page) {
4683 			pages += page->pages;
4684 			objects += page->pobjects;
4685 		}
4686 	}
4687 
4688 	len = sprintf(buf, "%d(%d)", objects, pages);
4689 
4690 #ifdef CONFIG_SMP
4691 	for_each_online_cpu(cpu) {
4692 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4693 
4694 		if (page && len < PAGE_SIZE - 20)
4695 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4696 				page->pobjects, page->pages);
4697 	}
4698 #endif
4699 	return len + sprintf(buf + len, "\n");
4700 }
4701 SLAB_ATTR_RO(slabs_cpu_partial);
4702 
4703 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4704 {
4705 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4706 }
4707 
4708 static ssize_t reclaim_account_store(struct kmem_cache *s,
4709 				const char *buf, size_t length)
4710 {
4711 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4712 	if (buf[0] == '1')
4713 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4714 	return length;
4715 }
4716 SLAB_ATTR(reclaim_account);
4717 
4718 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4719 {
4720 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4721 }
4722 SLAB_ATTR_RO(hwcache_align);
4723 
4724 #ifdef CONFIG_ZONE_DMA
4725 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4726 {
4727 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4728 }
4729 SLAB_ATTR_RO(cache_dma);
4730 #endif
4731 
4732 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4733 {
4734 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4735 }
4736 SLAB_ATTR_RO(destroy_by_rcu);
4737 
4738 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4739 {
4740 	return sprintf(buf, "%d\n", s->reserved);
4741 }
4742 SLAB_ATTR_RO(reserved);
4743 
4744 #ifdef CONFIG_SLUB_DEBUG
4745 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4746 {
4747 	return show_slab_objects(s, buf, SO_ALL);
4748 }
4749 SLAB_ATTR_RO(slabs);
4750 
4751 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4752 {
4753 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4754 }
4755 SLAB_ATTR_RO(total_objects);
4756 
4757 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4758 {
4759 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4760 }
4761 
4762 static ssize_t sanity_checks_store(struct kmem_cache *s,
4763 				const char *buf, size_t length)
4764 {
4765 	s->flags &= ~SLAB_DEBUG_FREE;
4766 	if (buf[0] == '1') {
4767 		s->flags &= ~__CMPXCHG_DOUBLE;
4768 		s->flags |= SLAB_DEBUG_FREE;
4769 	}
4770 	return length;
4771 }
4772 SLAB_ATTR(sanity_checks);
4773 
4774 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4775 {
4776 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4777 }
4778 
4779 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4780 							size_t length)
4781 {
4782 	s->flags &= ~SLAB_TRACE;
4783 	if (buf[0] == '1') {
4784 		s->flags &= ~__CMPXCHG_DOUBLE;
4785 		s->flags |= SLAB_TRACE;
4786 	}
4787 	return length;
4788 }
4789 SLAB_ATTR(trace);
4790 
4791 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4792 {
4793 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4794 }
4795 
4796 static ssize_t red_zone_store(struct kmem_cache *s,
4797 				const char *buf, size_t length)
4798 {
4799 	if (any_slab_objects(s))
4800 		return -EBUSY;
4801 
4802 	s->flags &= ~SLAB_RED_ZONE;
4803 	if (buf[0] == '1') {
4804 		s->flags &= ~__CMPXCHG_DOUBLE;
4805 		s->flags |= SLAB_RED_ZONE;
4806 	}
4807 	calculate_sizes(s, -1);
4808 	return length;
4809 }
4810 SLAB_ATTR(red_zone);
4811 
4812 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4813 {
4814 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4815 }
4816 
4817 static ssize_t poison_store(struct kmem_cache *s,
4818 				const char *buf, size_t length)
4819 {
4820 	if (any_slab_objects(s))
4821 		return -EBUSY;
4822 
4823 	s->flags &= ~SLAB_POISON;
4824 	if (buf[0] == '1') {
4825 		s->flags &= ~__CMPXCHG_DOUBLE;
4826 		s->flags |= SLAB_POISON;
4827 	}
4828 	calculate_sizes(s, -1);
4829 	return length;
4830 }
4831 SLAB_ATTR(poison);
4832 
4833 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4834 {
4835 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4836 }
4837 
4838 static ssize_t store_user_store(struct kmem_cache *s,
4839 				const char *buf, size_t length)
4840 {
4841 	if (any_slab_objects(s))
4842 		return -EBUSY;
4843 
4844 	s->flags &= ~SLAB_STORE_USER;
4845 	if (buf[0] == '1') {
4846 		s->flags &= ~__CMPXCHG_DOUBLE;
4847 		s->flags |= SLAB_STORE_USER;
4848 	}
4849 	calculate_sizes(s, -1);
4850 	return length;
4851 }
4852 SLAB_ATTR(store_user);
4853 
4854 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4855 {
4856 	return 0;
4857 }
4858 
4859 static ssize_t validate_store(struct kmem_cache *s,
4860 			const char *buf, size_t length)
4861 {
4862 	int ret = -EINVAL;
4863 
4864 	if (buf[0] == '1') {
4865 		ret = validate_slab_cache(s);
4866 		if (ret >= 0)
4867 			ret = length;
4868 	}
4869 	return ret;
4870 }
4871 SLAB_ATTR(validate);
4872 
4873 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4874 {
4875 	if (!(s->flags & SLAB_STORE_USER))
4876 		return -ENOSYS;
4877 	return list_locations(s, buf, TRACK_ALLOC);
4878 }
4879 SLAB_ATTR_RO(alloc_calls);
4880 
4881 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4882 {
4883 	if (!(s->flags & SLAB_STORE_USER))
4884 		return -ENOSYS;
4885 	return list_locations(s, buf, TRACK_FREE);
4886 }
4887 SLAB_ATTR_RO(free_calls);
4888 #endif /* CONFIG_SLUB_DEBUG */
4889 
4890 #ifdef CONFIG_FAILSLAB
4891 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4892 {
4893 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4894 }
4895 
4896 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4897 							size_t length)
4898 {
4899 	s->flags &= ~SLAB_FAILSLAB;
4900 	if (buf[0] == '1')
4901 		s->flags |= SLAB_FAILSLAB;
4902 	return length;
4903 }
4904 SLAB_ATTR(failslab);
4905 #endif
4906 
4907 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4908 {
4909 	return 0;
4910 }
4911 
4912 static ssize_t shrink_store(struct kmem_cache *s,
4913 			const char *buf, size_t length)
4914 {
4915 	if (buf[0] == '1') {
4916 		int rc = kmem_cache_shrink(s);
4917 
4918 		if (rc)
4919 			return rc;
4920 	} else
4921 		return -EINVAL;
4922 	return length;
4923 }
4924 SLAB_ATTR(shrink);
4925 
4926 #ifdef CONFIG_NUMA
4927 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4928 {
4929 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4930 }
4931 
4932 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4933 				const char *buf, size_t length)
4934 {
4935 	unsigned long ratio;
4936 	int err;
4937 
4938 	err = strict_strtoul(buf, 10, &ratio);
4939 	if (err)
4940 		return err;
4941 
4942 	if (ratio <= 100)
4943 		s->remote_node_defrag_ratio = ratio * 10;
4944 
4945 	return length;
4946 }
4947 SLAB_ATTR(remote_node_defrag_ratio);
4948 #endif
4949 
4950 #ifdef CONFIG_SLUB_STATS
4951 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4952 {
4953 	unsigned long sum  = 0;
4954 	int cpu;
4955 	int len;
4956 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4957 
4958 	if (!data)
4959 		return -ENOMEM;
4960 
4961 	for_each_online_cpu(cpu) {
4962 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4963 
4964 		data[cpu] = x;
4965 		sum += x;
4966 	}
4967 
4968 	len = sprintf(buf, "%lu", sum);
4969 
4970 #ifdef CONFIG_SMP
4971 	for_each_online_cpu(cpu) {
4972 		if (data[cpu] && len < PAGE_SIZE - 20)
4973 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4974 	}
4975 #endif
4976 	kfree(data);
4977 	return len + sprintf(buf + len, "\n");
4978 }
4979 
4980 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4981 {
4982 	int cpu;
4983 
4984 	for_each_online_cpu(cpu)
4985 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4986 }
4987 
4988 #define STAT_ATTR(si, text) 					\
4989 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4990 {								\
4991 	return show_stat(s, buf, si);				\
4992 }								\
4993 static ssize_t text##_store(struct kmem_cache *s,		\
4994 				const char *buf, size_t length)	\
4995 {								\
4996 	if (buf[0] != '0')					\
4997 		return -EINVAL;					\
4998 	clear_stat(s, si);					\
4999 	return length;						\
5000 }								\
5001 SLAB_ATTR(text);						\
5002 
5003 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5004 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5005 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5006 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5007 STAT_ATTR(FREE_FROZEN, free_frozen);
5008 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5009 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5010 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5011 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5012 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5013 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5014 STAT_ATTR(FREE_SLAB, free_slab);
5015 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5016 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5017 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5018 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5019 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5020 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5021 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5022 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5023 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5024 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5025 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5026 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5027 #endif
5028 
5029 static struct attribute *slab_attrs[] = {
5030 	&slab_size_attr.attr,
5031 	&object_size_attr.attr,
5032 	&objs_per_slab_attr.attr,
5033 	&order_attr.attr,
5034 	&min_partial_attr.attr,
5035 	&cpu_partial_attr.attr,
5036 	&objects_attr.attr,
5037 	&objects_partial_attr.attr,
5038 	&partial_attr.attr,
5039 	&cpu_slabs_attr.attr,
5040 	&ctor_attr.attr,
5041 	&aliases_attr.attr,
5042 	&align_attr.attr,
5043 	&hwcache_align_attr.attr,
5044 	&reclaim_account_attr.attr,
5045 	&destroy_by_rcu_attr.attr,
5046 	&shrink_attr.attr,
5047 	&reserved_attr.attr,
5048 	&slabs_cpu_partial_attr.attr,
5049 #ifdef CONFIG_SLUB_DEBUG
5050 	&total_objects_attr.attr,
5051 	&slabs_attr.attr,
5052 	&sanity_checks_attr.attr,
5053 	&trace_attr.attr,
5054 	&red_zone_attr.attr,
5055 	&poison_attr.attr,
5056 	&store_user_attr.attr,
5057 	&validate_attr.attr,
5058 	&alloc_calls_attr.attr,
5059 	&free_calls_attr.attr,
5060 #endif
5061 #ifdef CONFIG_ZONE_DMA
5062 	&cache_dma_attr.attr,
5063 #endif
5064 #ifdef CONFIG_NUMA
5065 	&remote_node_defrag_ratio_attr.attr,
5066 #endif
5067 #ifdef CONFIG_SLUB_STATS
5068 	&alloc_fastpath_attr.attr,
5069 	&alloc_slowpath_attr.attr,
5070 	&free_fastpath_attr.attr,
5071 	&free_slowpath_attr.attr,
5072 	&free_frozen_attr.attr,
5073 	&free_add_partial_attr.attr,
5074 	&free_remove_partial_attr.attr,
5075 	&alloc_from_partial_attr.attr,
5076 	&alloc_slab_attr.attr,
5077 	&alloc_refill_attr.attr,
5078 	&alloc_node_mismatch_attr.attr,
5079 	&free_slab_attr.attr,
5080 	&cpuslab_flush_attr.attr,
5081 	&deactivate_full_attr.attr,
5082 	&deactivate_empty_attr.attr,
5083 	&deactivate_to_head_attr.attr,
5084 	&deactivate_to_tail_attr.attr,
5085 	&deactivate_remote_frees_attr.attr,
5086 	&deactivate_bypass_attr.attr,
5087 	&order_fallback_attr.attr,
5088 	&cmpxchg_double_fail_attr.attr,
5089 	&cmpxchg_double_cpu_fail_attr.attr,
5090 	&cpu_partial_alloc_attr.attr,
5091 	&cpu_partial_free_attr.attr,
5092 #endif
5093 #ifdef CONFIG_FAILSLAB
5094 	&failslab_attr.attr,
5095 #endif
5096 
5097 	NULL
5098 };
5099 
5100 static struct attribute_group slab_attr_group = {
5101 	.attrs = slab_attrs,
5102 };
5103 
5104 static ssize_t slab_attr_show(struct kobject *kobj,
5105 				struct attribute *attr,
5106 				char *buf)
5107 {
5108 	struct slab_attribute *attribute;
5109 	struct kmem_cache *s;
5110 	int err;
5111 
5112 	attribute = to_slab_attr(attr);
5113 	s = to_slab(kobj);
5114 
5115 	if (!attribute->show)
5116 		return -EIO;
5117 
5118 	err = attribute->show(s, buf);
5119 
5120 	return err;
5121 }
5122 
5123 static ssize_t slab_attr_store(struct kobject *kobj,
5124 				struct attribute *attr,
5125 				const char *buf, size_t len)
5126 {
5127 	struct slab_attribute *attribute;
5128 	struct kmem_cache *s;
5129 	int err;
5130 
5131 	attribute = to_slab_attr(attr);
5132 	s = to_slab(kobj);
5133 
5134 	if (!attribute->store)
5135 		return -EIO;
5136 
5137 	err = attribute->store(s, buf, len);
5138 
5139 	return err;
5140 }
5141 
5142 static void kmem_cache_release(struct kobject *kobj)
5143 {
5144 	struct kmem_cache *s = to_slab(kobj);
5145 
5146 	kfree(s->name);
5147 	kfree(s);
5148 }
5149 
5150 static const struct sysfs_ops slab_sysfs_ops = {
5151 	.show = slab_attr_show,
5152 	.store = slab_attr_store,
5153 };
5154 
5155 static struct kobj_type slab_ktype = {
5156 	.sysfs_ops = &slab_sysfs_ops,
5157 	.release = kmem_cache_release
5158 };
5159 
5160 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5161 {
5162 	struct kobj_type *ktype = get_ktype(kobj);
5163 
5164 	if (ktype == &slab_ktype)
5165 		return 1;
5166 	return 0;
5167 }
5168 
5169 static const struct kset_uevent_ops slab_uevent_ops = {
5170 	.filter = uevent_filter,
5171 };
5172 
5173 static struct kset *slab_kset;
5174 
5175 #define ID_STR_LENGTH 64
5176 
5177 /* Create a unique string id for a slab cache:
5178  *
5179  * Format	:[flags-]size
5180  */
5181 static char *create_unique_id(struct kmem_cache *s)
5182 {
5183 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5184 	char *p = name;
5185 
5186 	BUG_ON(!name);
5187 
5188 	*p++ = ':';
5189 	/*
5190 	 * First flags affecting slabcache operations. We will only
5191 	 * get here for aliasable slabs so we do not need to support
5192 	 * too many flags. The flags here must cover all flags that
5193 	 * are matched during merging to guarantee that the id is
5194 	 * unique.
5195 	 */
5196 	if (s->flags & SLAB_CACHE_DMA)
5197 		*p++ = 'd';
5198 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5199 		*p++ = 'a';
5200 	if (s->flags & SLAB_DEBUG_FREE)
5201 		*p++ = 'F';
5202 	if (!(s->flags & SLAB_NOTRACK))
5203 		*p++ = 't';
5204 	if (p != name + 1)
5205 		*p++ = '-';
5206 	p += sprintf(p, "%07d", s->size);
5207 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5208 	return name;
5209 }
5210 
5211 static int sysfs_slab_add(struct kmem_cache *s)
5212 {
5213 	int err;
5214 	const char *name;
5215 	int unmergeable;
5216 
5217 	if (slab_state < SYSFS)
5218 		/* Defer until later */
5219 		return 0;
5220 
5221 	unmergeable = slab_unmergeable(s);
5222 	if (unmergeable) {
5223 		/*
5224 		 * Slabcache can never be merged so we can use the name proper.
5225 		 * This is typically the case for debug situations. In that
5226 		 * case we can catch duplicate names easily.
5227 		 */
5228 		sysfs_remove_link(&slab_kset->kobj, s->name);
5229 		name = s->name;
5230 	} else {
5231 		/*
5232 		 * Create a unique name for the slab as a target
5233 		 * for the symlinks.
5234 		 */
5235 		name = create_unique_id(s);
5236 	}
5237 
5238 	s->kobj.kset = slab_kset;
5239 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5240 	if (err) {
5241 		kobject_put(&s->kobj);
5242 		return err;
5243 	}
5244 
5245 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5246 	if (err) {
5247 		kobject_del(&s->kobj);
5248 		kobject_put(&s->kobj);
5249 		return err;
5250 	}
5251 	kobject_uevent(&s->kobj, KOBJ_ADD);
5252 	if (!unmergeable) {
5253 		/* Setup first alias */
5254 		sysfs_slab_alias(s, s->name);
5255 		kfree(name);
5256 	}
5257 	return 0;
5258 }
5259 
5260 static void sysfs_slab_remove(struct kmem_cache *s)
5261 {
5262 	if (slab_state < SYSFS)
5263 		/*
5264 		 * Sysfs has not been setup yet so no need to remove the
5265 		 * cache from sysfs.
5266 		 */
5267 		return;
5268 
5269 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5270 	kobject_del(&s->kobj);
5271 	kobject_put(&s->kobj);
5272 }
5273 
5274 /*
5275  * Need to buffer aliases during bootup until sysfs becomes
5276  * available lest we lose that information.
5277  */
5278 struct saved_alias {
5279 	struct kmem_cache *s;
5280 	const char *name;
5281 	struct saved_alias *next;
5282 };
5283 
5284 static struct saved_alias *alias_list;
5285 
5286 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5287 {
5288 	struct saved_alias *al;
5289 
5290 	if (slab_state == SYSFS) {
5291 		/*
5292 		 * If we have a leftover link then remove it.
5293 		 */
5294 		sysfs_remove_link(&slab_kset->kobj, name);
5295 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5296 	}
5297 
5298 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5299 	if (!al)
5300 		return -ENOMEM;
5301 
5302 	al->s = s;
5303 	al->name = name;
5304 	al->next = alias_list;
5305 	alias_list = al;
5306 	return 0;
5307 }
5308 
5309 static int __init slab_sysfs_init(void)
5310 {
5311 	struct kmem_cache *s;
5312 	int err;
5313 
5314 	down_write(&slub_lock);
5315 
5316 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5317 	if (!slab_kset) {
5318 		up_write(&slub_lock);
5319 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5320 		return -ENOSYS;
5321 	}
5322 
5323 	slab_state = SYSFS;
5324 
5325 	list_for_each_entry(s, &slab_caches, list) {
5326 		err = sysfs_slab_add(s);
5327 		if (err)
5328 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5329 						" to sysfs\n", s->name);
5330 	}
5331 
5332 	while (alias_list) {
5333 		struct saved_alias *al = alias_list;
5334 
5335 		alias_list = alias_list->next;
5336 		err = sysfs_slab_alias(al->s, al->name);
5337 		if (err)
5338 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5339 					" %s to sysfs\n", s->name);
5340 		kfree(al);
5341 	}
5342 
5343 	up_write(&slub_lock);
5344 	resiliency_test();
5345 	return 0;
5346 }
5347 
5348 __initcall(slab_sysfs_init);
5349 #endif /* CONFIG_SYSFS */
5350 
5351 /*
5352  * The /proc/slabinfo ABI
5353  */
5354 #ifdef CONFIG_SLABINFO
5355 static void print_slabinfo_header(struct seq_file *m)
5356 {
5357 	seq_puts(m, "slabinfo - version: 2.1\n");
5358 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5359 		 "<objperslab> <pagesperslab>");
5360 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5361 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5362 	seq_putc(m, '\n');
5363 }
5364 
5365 static void *s_start(struct seq_file *m, loff_t *pos)
5366 {
5367 	loff_t n = *pos;
5368 
5369 	down_read(&slub_lock);
5370 	if (!n)
5371 		print_slabinfo_header(m);
5372 
5373 	return seq_list_start(&slab_caches, *pos);
5374 }
5375 
5376 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5377 {
5378 	return seq_list_next(p, &slab_caches, pos);
5379 }
5380 
5381 static void s_stop(struct seq_file *m, void *p)
5382 {
5383 	up_read(&slub_lock);
5384 }
5385 
5386 static int s_show(struct seq_file *m, void *p)
5387 {
5388 	unsigned long nr_partials = 0;
5389 	unsigned long nr_slabs = 0;
5390 	unsigned long nr_inuse = 0;
5391 	unsigned long nr_objs = 0;
5392 	unsigned long nr_free = 0;
5393 	struct kmem_cache *s;
5394 	int node;
5395 
5396 	s = list_entry(p, struct kmem_cache, list);
5397 
5398 	for_each_online_node(node) {
5399 		struct kmem_cache_node *n = get_node(s, node);
5400 
5401 		if (!n)
5402 			continue;
5403 
5404 		nr_partials += n->nr_partial;
5405 		nr_slabs += atomic_long_read(&n->nr_slabs);
5406 		nr_objs += atomic_long_read(&n->total_objects);
5407 		nr_free += count_partial(n, count_free);
5408 	}
5409 
5410 	nr_inuse = nr_objs - nr_free;
5411 
5412 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5413 		   nr_objs, s->size, oo_objects(s->oo),
5414 		   (1 << oo_order(s->oo)));
5415 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5416 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5417 		   0UL);
5418 	seq_putc(m, '\n');
5419 	return 0;
5420 }
5421 
5422 static const struct seq_operations slabinfo_op = {
5423 	.start = s_start,
5424 	.next = s_next,
5425 	.stop = s_stop,
5426 	.show = s_show,
5427 };
5428 
5429 static int slabinfo_open(struct inode *inode, struct file *file)
5430 {
5431 	return seq_open(file, &slabinfo_op);
5432 }
5433 
5434 static const struct file_operations proc_slabinfo_operations = {
5435 	.open		= slabinfo_open,
5436 	.read		= seq_read,
5437 	.llseek		= seq_lseek,
5438 	.release	= seq_release,
5439 };
5440 
5441 static int __init slab_proc_init(void)
5442 {
5443 	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5444 	return 0;
5445 }
5446 module_init(slab_proc_init);
5447 #endif /* CONFIG_SLABINFO */
5448