xref: /linux/mm/slub.c (revision a64917bc2e9b1e0aa716b783c4ec879fdd280300)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
40 
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
43 
44 #include "internal.h"
45 
46 /*
47  * Lock order:
48  *   1. slab_mutex (Global Mutex)
49  *   2. node->list_lock (Spinlock)
50  *   3. kmem_cache->cpu_slab->lock (Local lock)
51  *   4. slab_lock(page) (Only on some arches or for debugging)
52  *   5. object_map_lock (Only for debugging)
53  *
54  *   slab_mutex
55  *
56  *   The role of the slab_mutex is to protect the list of all the slabs
57  *   and to synchronize major metadata changes to slab cache structures.
58  *   Also synchronizes memory hotplug callbacks.
59  *
60  *   slab_lock
61  *
62  *   The slab_lock is a wrapper around the page lock, thus it is a bit
63  *   spinlock.
64  *
65  *   The slab_lock is only used for debugging and on arches that do not
66  *   have the ability to do a cmpxchg_double. It only protects:
67  *	A. page->freelist	-> List of object free in a page
68  *	B. page->inuse		-> Number of objects in use
69  *	C. page->objects	-> Number of objects in page
70  *	D. page->frozen		-> frozen state
71  *
72  *   Frozen slabs
73  *
74  *   If a slab is frozen then it is exempt from list management. It is not
75  *   on any list except per cpu partial list. The processor that froze the
76  *   slab is the one who can perform list operations on the page. Other
77  *   processors may put objects onto the freelist but the processor that
78  *   froze the slab is the only one that can retrieve the objects from the
79  *   page's freelist.
80  *
81  *   list_lock
82  *
83  *   The list_lock protects the partial and full list on each node and
84  *   the partial slab counter. If taken then no new slabs may be added or
85  *   removed from the lists nor make the number of partial slabs be modified.
86  *   (Note that the total number of slabs is an atomic value that may be
87  *   modified without taking the list lock).
88  *
89  *   The list_lock is a centralized lock and thus we avoid taking it as
90  *   much as possible. As long as SLUB does not have to handle partial
91  *   slabs, operations can continue without any centralized lock. F.e.
92  *   allocating a long series of objects that fill up slabs does not require
93  *   the list lock.
94  *
95  *   cpu_slab->lock local lock
96  *
97  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
98  *   except the stat counters. This is a percpu structure manipulated only by
99  *   the local cpu, so the lock protects against being preempted or interrupted
100  *   by an irq. Fast path operations rely on lockless operations instead.
101  *   On PREEMPT_RT, the local lock does not actually disable irqs (and thus
102  *   prevent the lockless operations), so fastpath operations also need to take
103  *   the lock and are no longer lockless.
104  *
105  *   lockless fastpaths
106  *
107  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
108  *   are fully lockless when satisfied from the percpu slab (and when
109  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
110  *   They also don't disable preemption or migration or irqs. They rely on
111  *   the transaction id (tid) field to detect being preempted or moved to
112  *   another cpu.
113  *
114  *   irq, preemption, migration considerations
115  *
116  *   Interrupts are disabled as part of list_lock or local_lock operations, or
117  *   around the slab_lock operation, in order to make the slab allocator safe
118  *   to use in the context of an irq.
119  *
120  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
121  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
122  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
123  *   doesn't have to be revalidated in each section protected by the local lock.
124  *
125  * SLUB assigns one slab for allocation to each processor.
126  * Allocations only occur from these slabs called cpu slabs.
127  *
128  * Slabs with free elements are kept on a partial list and during regular
129  * operations no list for full slabs is used. If an object in a full slab is
130  * freed then the slab will show up again on the partial lists.
131  * We track full slabs for debugging purposes though because otherwise we
132  * cannot scan all objects.
133  *
134  * Slabs are freed when they become empty. Teardown and setup is
135  * minimal so we rely on the page allocators per cpu caches for
136  * fast frees and allocs.
137  *
138  * page->frozen		The slab is frozen and exempt from list processing.
139  * 			This means that the slab is dedicated to a purpose
140  * 			such as satisfying allocations for a specific
141  * 			processor. Objects may be freed in the slab while
142  * 			it is frozen but slab_free will then skip the usual
143  * 			list operations. It is up to the processor holding
144  * 			the slab to integrate the slab into the slab lists
145  * 			when the slab is no longer needed.
146  *
147  * 			One use of this flag is to mark slabs that are
148  * 			used for allocations. Then such a slab becomes a cpu
149  * 			slab. The cpu slab may be equipped with an additional
150  * 			freelist that allows lockless access to
151  * 			free objects in addition to the regular freelist
152  * 			that requires the slab lock.
153  *
154  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
155  * 			options set. This moves	slab handling out of
156  * 			the fast path and disables lockless freelists.
157  */
158 
159 /*
160  * We could simply use migrate_disable()/enable() but as long as it's a
161  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
162  */
163 #ifndef CONFIG_PREEMPT_RT
164 #define slub_get_cpu_ptr(var)	get_cpu_ptr(var)
165 #define slub_put_cpu_ptr(var)	put_cpu_ptr(var)
166 #else
167 #define slub_get_cpu_ptr(var)		\
168 ({					\
169 	migrate_disable();		\
170 	this_cpu_ptr(var);		\
171 })
172 #define slub_put_cpu_ptr(var)		\
173 do {					\
174 	(void)(var);			\
175 	migrate_enable();		\
176 } while (0)
177 #endif
178 
179 #ifdef CONFIG_SLUB_DEBUG
180 #ifdef CONFIG_SLUB_DEBUG_ON
181 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
182 #else
183 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
184 #endif
185 #endif		/* CONFIG_SLUB_DEBUG */
186 
187 static inline bool kmem_cache_debug(struct kmem_cache *s)
188 {
189 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
190 }
191 
192 void *fixup_red_left(struct kmem_cache *s, void *p)
193 {
194 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
195 		p += s->red_left_pad;
196 
197 	return p;
198 }
199 
200 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
201 {
202 #ifdef CONFIG_SLUB_CPU_PARTIAL
203 	return !kmem_cache_debug(s);
204 #else
205 	return false;
206 #endif
207 }
208 
209 /*
210  * Issues still to be resolved:
211  *
212  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
213  *
214  * - Variable sizing of the per node arrays
215  */
216 
217 /* Enable to log cmpxchg failures */
218 #undef SLUB_DEBUG_CMPXCHG
219 
220 /*
221  * Minimum number of partial slabs. These will be left on the partial
222  * lists even if they are empty. kmem_cache_shrink may reclaim them.
223  */
224 #define MIN_PARTIAL 5
225 
226 /*
227  * Maximum number of desirable partial slabs.
228  * The existence of more partial slabs makes kmem_cache_shrink
229  * sort the partial list by the number of objects in use.
230  */
231 #define MAX_PARTIAL 10
232 
233 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
234 				SLAB_POISON | SLAB_STORE_USER)
235 
236 /*
237  * These debug flags cannot use CMPXCHG because there might be consistency
238  * issues when checking or reading debug information
239  */
240 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
241 				SLAB_TRACE)
242 
243 
244 /*
245  * Debugging flags that require metadata to be stored in the slab.  These get
246  * disabled when slub_debug=O is used and a cache's min order increases with
247  * metadata.
248  */
249 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
250 
251 #define OO_SHIFT	16
252 #define OO_MASK		((1 << OO_SHIFT) - 1)
253 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
254 
255 /* Internal SLUB flags */
256 /* Poison object */
257 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
258 /* Use cmpxchg_double */
259 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
260 
261 /*
262  * Tracking user of a slab.
263  */
264 #define TRACK_ADDRS_COUNT 16
265 struct track {
266 	unsigned long addr;	/* Called from address */
267 #ifdef CONFIG_STACKTRACE
268 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
269 #endif
270 	int cpu;		/* Was running on cpu */
271 	int pid;		/* Pid context */
272 	unsigned long when;	/* When did the operation occur */
273 };
274 
275 enum track_item { TRACK_ALLOC, TRACK_FREE };
276 
277 #ifdef CONFIG_SYSFS
278 static int sysfs_slab_add(struct kmem_cache *);
279 static int sysfs_slab_alias(struct kmem_cache *, const char *);
280 #else
281 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
282 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
283 							{ return 0; }
284 #endif
285 
286 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
287 static void debugfs_slab_add(struct kmem_cache *);
288 #else
289 static inline void debugfs_slab_add(struct kmem_cache *s) { }
290 #endif
291 
292 static inline void stat(const struct kmem_cache *s, enum stat_item si)
293 {
294 #ifdef CONFIG_SLUB_STATS
295 	/*
296 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
297 	 * avoid this_cpu_add()'s irq-disable overhead.
298 	 */
299 	raw_cpu_inc(s->cpu_slab->stat[si]);
300 #endif
301 }
302 
303 /*
304  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
305  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
306  * differ during memory hotplug/hotremove operations.
307  * Protected by slab_mutex.
308  */
309 static nodemask_t slab_nodes;
310 
311 /********************************************************************
312  * 			Core slab cache functions
313  *******************************************************************/
314 
315 /*
316  * Returns freelist pointer (ptr). With hardening, this is obfuscated
317  * with an XOR of the address where the pointer is held and a per-cache
318  * random number.
319  */
320 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
321 				 unsigned long ptr_addr)
322 {
323 #ifdef CONFIG_SLAB_FREELIST_HARDENED
324 	/*
325 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
326 	 * Normally, this doesn't cause any issues, as both set_freepointer()
327 	 * and get_freepointer() are called with a pointer with the same tag.
328 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
329 	 * example, when __free_slub() iterates over objects in a cache, it
330 	 * passes untagged pointers to check_object(). check_object() in turns
331 	 * calls get_freepointer() with an untagged pointer, which causes the
332 	 * freepointer to be restored incorrectly.
333 	 */
334 	return (void *)((unsigned long)ptr ^ s->random ^
335 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
336 #else
337 	return ptr;
338 #endif
339 }
340 
341 /* Returns the freelist pointer recorded at location ptr_addr. */
342 static inline void *freelist_dereference(const struct kmem_cache *s,
343 					 void *ptr_addr)
344 {
345 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
346 			    (unsigned long)ptr_addr);
347 }
348 
349 static inline void *get_freepointer(struct kmem_cache *s, void *object)
350 {
351 	object = kasan_reset_tag(object);
352 	return freelist_dereference(s, object + s->offset);
353 }
354 
355 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
356 {
357 	prefetchw(object + s->offset);
358 }
359 
360 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
361 {
362 	unsigned long freepointer_addr;
363 	void *p;
364 
365 	if (!debug_pagealloc_enabled_static())
366 		return get_freepointer(s, object);
367 
368 	object = kasan_reset_tag(object);
369 	freepointer_addr = (unsigned long)object + s->offset;
370 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
371 	return freelist_ptr(s, p, freepointer_addr);
372 }
373 
374 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
375 {
376 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
377 
378 #ifdef CONFIG_SLAB_FREELIST_HARDENED
379 	BUG_ON(object == fp); /* naive detection of double free or corruption */
380 #endif
381 
382 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
383 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
384 }
385 
386 /* Loop over all objects in a slab */
387 #define for_each_object(__p, __s, __addr, __objects) \
388 	for (__p = fixup_red_left(__s, __addr); \
389 		__p < (__addr) + (__objects) * (__s)->size; \
390 		__p += (__s)->size)
391 
392 static inline unsigned int order_objects(unsigned int order, unsigned int size)
393 {
394 	return ((unsigned int)PAGE_SIZE << order) / size;
395 }
396 
397 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
398 		unsigned int size)
399 {
400 	struct kmem_cache_order_objects x = {
401 		(order << OO_SHIFT) + order_objects(order, size)
402 	};
403 
404 	return x;
405 }
406 
407 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
408 {
409 	return x.x >> OO_SHIFT;
410 }
411 
412 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
413 {
414 	return x.x & OO_MASK;
415 }
416 
417 #ifdef CONFIG_SLUB_CPU_PARTIAL
418 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
419 {
420 	unsigned int nr_pages;
421 
422 	s->cpu_partial = nr_objects;
423 
424 	/*
425 	 * We take the number of objects but actually limit the number of
426 	 * pages on the per cpu partial list, in order to limit excessive
427 	 * growth of the list. For simplicity we assume that the pages will
428 	 * be half-full.
429 	 */
430 	nr_pages = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
431 	s->cpu_partial_pages = nr_pages;
432 }
433 #else
434 static inline void
435 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
436 {
437 }
438 #endif /* CONFIG_SLUB_CPU_PARTIAL */
439 
440 /*
441  * Per slab locking using the pagelock
442  */
443 static __always_inline void __slab_lock(struct page *page)
444 {
445 	VM_BUG_ON_PAGE(PageTail(page), page);
446 	bit_spin_lock(PG_locked, &page->flags);
447 }
448 
449 static __always_inline void __slab_unlock(struct page *page)
450 {
451 	VM_BUG_ON_PAGE(PageTail(page), page);
452 	__bit_spin_unlock(PG_locked, &page->flags);
453 }
454 
455 static __always_inline void slab_lock(struct page *page, unsigned long *flags)
456 {
457 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
458 		local_irq_save(*flags);
459 	__slab_lock(page);
460 }
461 
462 static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
463 {
464 	__slab_unlock(page);
465 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
466 		local_irq_restore(*flags);
467 }
468 
469 /*
470  * Interrupts must be disabled (for the fallback code to work right), typically
471  * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
472  * so we disable interrupts as part of slab_[un]lock().
473  */
474 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
475 		void *freelist_old, unsigned long counters_old,
476 		void *freelist_new, unsigned long counters_new,
477 		const char *n)
478 {
479 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
480 		lockdep_assert_irqs_disabled();
481 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
482     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
483 	if (s->flags & __CMPXCHG_DOUBLE) {
484 		if (cmpxchg_double(&page->freelist, &page->counters,
485 				   freelist_old, counters_old,
486 				   freelist_new, counters_new))
487 			return true;
488 	} else
489 #endif
490 	{
491 		/* init to 0 to prevent spurious warnings */
492 		unsigned long flags = 0;
493 
494 		slab_lock(page, &flags);
495 		if (page->freelist == freelist_old &&
496 					page->counters == counters_old) {
497 			page->freelist = freelist_new;
498 			page->counters = counters_new;
499 			slab_unlock(page, &flags);
500 			return true;
501 		}
502 		slab_unlock(page, &flags);
503 	}
504 
505 	cpu_relax();
506 	stat(s, CMPXCHG_DOUBLE_FAIL);
507 
508 #ifdef SLUB_DEBUG_CMPXCHG
509 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
510 #endif
511 
512 	return false;
513 }
514 
515 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
516 		void *freelist_old, unsigned long counters_old,
517 		void *freelist_new, unsigned long counters_new,
518 		const char *n)
519 {
520 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
521     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
522 	if (s->flags & __CMPXCHG_DOUBLE) {
523 		if (cmpxchg_double(&page->freelist, &page->counters,
524 				   freelist_old, counters_old,
525 				   freelist_new, counters_new))
526 			return true;
527 	} else
528 #endif
529 	{
530 		unsigned long flags;
531 
532 		local_irq_save(flags);
533 		__slab_lock(page);
534 		if (page->freelist == freelist_old &&
535 					page->counters == counters_old) {
536 			page->freelist = freelist_new;
537 			page->counters = counters_new;
538 			__slab_unlock(page);
539 			local_irq_restore(flags);
540 			return true;
541 		}
542 		__slab_unlock(page);
543 		local_irq_restore(flags);
544 	}
545 
546 	cpu_relax();
547 	stat(s, CMPXCHG_DOUBLE_FAIL);
548 
549 #ifdef SLUB_DEBUG_CMPXCHG
550 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
551 #endif
552 
553 	return false;
554 }
555 
556 #ifdef CONFIG_SLUB_DEBUG
557 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
558 static DEFINE_RAW_SPINLOCK(object_map_lock);
559 
560 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
561 		       struct page *page)
562 {
563 	void *addr = page_address(page);
564 	void *p;
565 
566 	bitmap_zero(obj_map, page->objects);
567 
568 	for (p = page->freelist; p; p = get_freepointer(s, p))
569 		set_bit(__obj_to_index(s, addr, p), obj_map);
570 }
571 
572 #if IS_ENABLED(CONFIG_KUNIT)
573 static bool slab_add_kunit_errors(void)
574 {
575 	struct kunit_resource *resource;
576 
577 	if (likely(!current->kunit_test))
578 		return false;
579 
580 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
581 	if (!resource)
582 		return false;
583 
584 	(*(int *)resource->data)++;
585 	kunit_put_resource(resource);
586 	return true;
587 }
588 #else
589 static inline bool slab_add_kunit_errors(void) { return false; }
590 #endif
591 
592 /*
593  * Determine a map of object in use on a page.
594  *
595  * Node listlock must be held to guarantee that the page does
596  * not vanish from under us.
597  */
598 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
599 	__acquires(&object_map_lock)
600 {
601 	VM_BUG_ON(!irqs_disabled());
602 
603 	raw_spin_lock(&object_map_lock);
604 
605 	__fill_map(object_map, s, page);
606 
607 	return object_map;
608 }
609 
610 static void put_map(unsigned long *map) __releases(&object_map_lock)
611 {
612 	VM_BUG_ON(map != object_map);
613 	raw_spin_unlock(&object_map_lock);
614 }
615 
616 static inline unsigned int size_from_object(struct kmem_cache *s)
617 {
618 	if (s->flags & SLAB_RED_ZONE)
619 		return s->size - s->red_left_pad;
620 
621 	return s->size;
622 }
623 
624 static inline void *restore_red_left(struct kmem_cache *s, void *p)
625 {
626 	if (s->flags & SLAB_RED_ZONE)
627 		p -= s->red_left_pad;
628 
629 	return p;
630 }
631 
632 /*
633  * Debug settings:
634  */
635 #if defined(CONFIG_SLUB_DEBUG_ON)
636 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
637 #else
638 static slab_flags_t slub_debug;
639 #endif
640 
641 static char *slub_debug_string;
642 static int disable_higher_order_debug;
643 
644 /*
645  * slub is about to manipulate internal object metadata.  This memory lies
646  * outside the range of the allocated object, so accessing it would normally
647  * be reported by kasan as a bounds error.  metadata_access_enable() is used
648  * to tell kasan that these accesses are OK.
649  */
650 static inline void metadata_access_enable(void)
651 {
652 	kasan_disable_current();
653 }
654 
655 static inline void metadata_access_disable(void)
656 {
657 	kasan_enable_current();
658 }
659 
660 /*
661  * Object debugging
662  */
663 
664 /* Verify that a pointer has an address that is valid within a slab page */
665 static inline int check_valid_pointer(struct kmem_cache *s,
666 				struct page *page, void *object)
667 {
668 	void *base;
669 
670 	if (!object)
671 		return 1;
672 
673 	base = page_address(page);
674 	object = kasan_reset_tag(object);
675 	object = restore_red_left(s, object);
676 	if (object < base || object >= base + page->objects * s->size ||
677 		(object - base) % s->size) {
678 		return 0;
679 	}
680 
681 	return 1;
682 }
683 
684 static void print_section(char *level, char *text, u8 *addr,
685 			  unsigned int length)
686 {
687 	metadata_access_enable();
688 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
689 			16, 1, kasan_reset_tag((void *)addr), length, 1);
690 	metadata_access_disable();
691 }
692 
693 /*
694  * See comment in calculate_sizes().
695  */
696 static inline bool freeptr_outside_object(struct kmem_cache *s)
697 {
698 	return s->offset >= s->inuse;
699 }
700 
701 /*
702  * Return offset of the end of info block which is inuse + free pointer if
703  * not overlapping with object.
704  */
705 static inline unsigned int get_info_end(struct kmem_cache *s)
706 {
707 	if (freeptr_outside_object(s))
708 		return s->inuse + sizeof(void *);
709 	else
710 		return s->inuse;
711 }
712 
713 static struct track *get_track(struct kmem_cache *s, void *object,
714 	enum track_item alloc)
715 {
716 	struct track *p;
717 
718 	p = object + get_info_end(s);
719 
720 	return kasan_reset_tag(p + alloc);
721 }
722 
723 static void set_track(struct kmem_cache *s, void *object,
724 			enum track_item alloc, unsigned long addr)
725 {
726 	struct track *p = get_track(s, object, alloc);
727 
728 	if (addr) {
729 #ifdef CONFIG_STACKTRACE
730 		unsigned int nr_entries;
731 
732 		metadata_access_enable();
733 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
734 					      TRACK_ADDRS_COUNT, 3);
735 		metadata_access_disable();
736 
737 		if (nr_entries < TRACK_ADDRS_COUNT)
738 			p->addrs[nr_entries] = 0;
739 #endif
740 		p->addr = addr;
741 		p->cpu = smp_processor_id();
742 		p->pid = current->pid;
743 		p->when = jiffies;
744 	} else {
745 		memset(p, 0, sizeof(struct track));
746 	}
747 }
748 
749 static void init_tracking(struct kmem_cache *s, void *object)
750 {
751 	if (!(s->flags & SLAB_STORE_USER))
752 		return;
753 
754 	set_track(s, object, TRACK_FREE, 0UL);
755 	set_track(s, object, TRACK_ALLOC, 0UL);
756 }
757 
758 static void print_track(const char *s, struct track *t, unsigned long pr_time)
759 {
760 	if (!t->addr)
761 		return;
762 
763 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
764 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
765 #ifdef CONFIG_STACKTRACE
766 	{
767 		int i;
768 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
769 			if (t->addrs[i])
770 				pr_err("\t%pS\n", (void *)t->addrs[i]);
771 			else
772 				break;
773 	}
774 #endif
775 }
776 
777 void print_tracking(struct kmem_cache *s, void *object)
778 {
779 	unsigned long pr_time = jiffies;
780 	if (!(s->flags & SLAB_STORE_USER))
781 		return;
782 
783 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
784 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
785 }
786 
787 static void print_page_info(struct page *page)
788 {
789 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
790 	       page, page->objects, page->inuse, page->freelist,
791 	       &page->flags);
792 
793 }
794 
795 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
796 {
797 	struct va_format vaf;
798 	va_list args;
799 
800 	va_start(args, fmt);
801 	vaf.fmt = fmt;
802 	vaf.va = &args;
803 	pr_err("=============================================================================\n");
804 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
805 	pr_err("-----------------------------------------------------------------------------\n\n");
806 	va_end(args);
807 }
808 
809 __printf(2, 3)
810 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
811 {
812 	struct va_format vaf;
813 	va_list args;
814 
815 	if (slab_add_kunit_errors())
816 		return;
817 
818 	va_start(args, fmt);
819 	vaf.fmt = fmt;
820 	vaf.va = &args;
821 	pr_err("FIX %s: %pV\n", s->name, &vaf);
822 	va_end(args);
823 }
824 
825 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
826 			       void **freelist, void *nextfree)
827 {
828 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
829 	    !check_valid_pointer(s, page, nextfree) && freelist) {
830 		object_err(s, page, *freelist, "Freechain corrupt");
831 		*freelist = NULL;
832 		slab_fix(s, "Isolate corrupted freechain");
833 		return true;
834 	}
835 
836 	return false;
837 }
838 
839 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
840 {
841 	unsigned int off;	/* Offset of last byte */
842 	u8 *addr = page_address(page);
843 
844 	print_tracking(s, p);
845 
846 	print_page_info(page);
847 
848 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
849 	       p, p - addr, get_freepointer(s, p));
850 
851 	if (s->flags & SLAB_RED_ZONE)
852 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
853 			      s->red_left_pad);
854 	else if (p > addr + 16)
855 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
856 
857 	print_section(KERN_ERR,         "Object   ", p,
858 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
859 	if (s->flags & SLAB_RED_ZONE)
860 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
861 			s->inuse - s->object_size);
862 
863 	off = get_info_end(s);
864 
865 	if (s->flags & SLAB_STORE_USER)
866 		off += 2 * sizeof(struct track);
867 
868 	off += kasan_metadata_size(s);
869 
870 	if (off != size_from_object(s))
871 		/* Beginning of the filler is the free pointer */
872 		print_section(KERN_ERR, "Padding  ", p + off,
873 			      size_from_object(s) - off);
874 
875 	dump_stack();
876 }
877 
878 void object_err(struct kmem_cache *s, struct page *page,
879 			u8 *object, char *reason)
880 {
881 	if (slab_add_kunit_errors())
882 		return;
883 
884 	slab_bug(s, "%s", reason);
885 	print_trailer(s, page, object);
886 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
887 }
888 
889 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
890 			const char *fmt, ...)
891 {
892 	va_list args;
893 	char buf[100];
894 
895 	if (slab_add_kunit_errors())
896 		return;
897 
898 	va_start(args, fmt);
899 	vsnprintf(buf, sizeof(buf), fmt, args);
900 	va_end(args);
901 	slab_bug(s, "%s", buf);
902 	print_page_info(page);
903 	dump_stack();
904 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
905 }
906 
907 static void init_object(struct kmem_cache *s, void *object, u8 val)
908 {
909 	u8 *p = kasan_reset_tag(object);
910 
911 	if (s->flags & SLAB_RED_ZONE)
912 		memset(p - s->red_left_pad, val, s->red_left_pad);
913 
914 	if (s->flags & __OBJECT_POISON) {
915 		memset(p, POISON_FREE, s->object_size - 1);
916 		p[s->object_size - 1] = POISON_END;
917 	}
918 
919 	if (s->flags & SLAB_RED_ZONE)
920 		memset(p + s->object_size, val, s->inuse - s->object_size);
921 }
922 
923 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
924 						void *from, void *to)
925 {
926 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
927 	memset(from, data, to - from);
928 }
929 
930 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
931 			u8 *object, char *what,
932 			u8 *start, unsigned int value, unsigned int bytes)
933 {
934 	u8 *fault;
935 	u8 *end;
936 	u8 *addr = page_address(page);
937 
938 	metadata_access_enable();
939 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
940 	metadata_access_disable();
941 	if (!fault)
942 		return 1;
943 
944 	end = start + bytes;
945 	while (end > fault && end[-1] == value)
946 		end--;
947 
948 	if (slab_add_kunit_errors())
949 		goto skip_bug_print;
950 
951 	slab_bug(s, "%s overwritten", what);
952 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
953 					fault, end - 1, fault - addr,
954 					fault[0], value);
955 	print_trailer(s, page, object);
956 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
957 
958 skip_bug_print:
959 	restore_bytes(s, what, value, fault, end);
960 	return 0;
961 }
962 
963 /*
964  * Object layout:
965  *
966  * object address
967  * 	Bytes of the object to be managed.
968  * 	If the freepointer may overlay the object then the free
969  *	pointer is at the middle of the object.
970  *
971  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
972  * 	0xa5 (POISON_END)
973  *
974  * object + s->object_size
975  * 	Padding to reach word boundary. This is also used for Redzoning.
976  * 	Padding is extended by another word if Redzoning is enabled and
977  * 	object_size == inuse.
978  *
979  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
980  * 	0xcc (RED_ACTIVE) for objects in use.
981  *
982  * object + s->inuse
983  * 	Meta data starts here.
984  *
985  * 	A. Free pointer (if we cannot overwrite object on free)
986  * 	B. Tracking data for SLAB_STORE_USER
987  *	C. Padding to reach required alignment boundary or at minimum
988  * 		one word if debugging is on to be able to detect writes
989  * 		before the word boundary.
990  *
991  *	Padding is done using 0x5a (POISON_INUSE)
992  *
993  * object + s->size
994  * 	Nothing is used beyond s->size.
995  *
996  * If slabcaches are merged then the object_size and inuse boundaries are mostly
997  * ignored. And therefore no slab options that rely on these boundaries
998  * may be used with merged slabcaches.
999  */
1000 
1001 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
1002 {
1003 	unsigned long off = get_info_end(s);	/* The end of info */
1004 
1005 	if (s->flags & SLAB_STORE_USER)
1006 		/* We also have user information there */
1007 		off += 2 * sizeof(struct track);
1008 
1009 	off += kasan_metadata_size(s);
1010 
1011 	if (size_from_object(s) == off)
1012 		return 1;
1013 
1014 	return check_bytes_and_report(s, page, p, "Object padding",
1015 			p + off, POISON_INUSE, size_from_object(s) - off);
1016 }
1017 
1018 /* Check the pad bytes at the end of a slab page */
1019 static int slab_pad_check(struct kmem_cache *s, struct page *page)
1020 {
1021 	u8 *start;
1022 	u8 *fault;
1023 	u8 *end;
1024 	u8 *pad;
1025 	int length;
1026 	int remainder;
1027 
1028 	if (!(s->flags & SLAB_POISON))
1029 		return 1;
1030 
1031 	start = page_address(page);
1032 	length = page_size(page);
1033 	end = start + length;
1034 	remainder = length % s->size;
1035 	if (!remainder)
1036 		return 1;
1037 
1038 	pad = end - remainder;
1039 	metadata_access_enable();
1040 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1041 	metadata_access_disable();
1042 	if (!fault)
1043 		return 1;
1044 	while (end > fault && end[-1] == POISON_INUSE)
1045 		end--;
1046 
1047 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1048 			fault, end - 1, fault - start);
1049 	print_section(KERN_ERR, "Padding ", pad, remainder);
1050 
1051 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1052 	return 0;
1053 }
1054 
1055 static int check_object(struct kmem_cache *s, struct page *page,
1056 					void *object, u8 val)
1057 {
1058 	u8 *p = object;
1059 	u8 *endobject = object + s->object_size;
1060 
1061 	if (s->flags & SLAB_RED_ZONE) {
1062 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
1063 			object - s->red_left_pad, val, s->red_left_pad))
1064 			return 0;
1065 
1066 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
1067 			endobject, val, s->inuse - s->object_size))
1068 			return 0;
1069 	} else {
1070 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1071 			check_bytes_and_report(s, page, p, "Alignment padding",
1072 				endobject, POISON_INUSE,
1073 				s->inuse - s->object_size);
1074 		}
1075 	}
1076 
1077 	if (s->flags & SLAB_POISON) {
1078 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1079 			(!check_bytes_and_report(s, page, p, "Poison", p,
1080 					POISON_FREE, s->object_size - 1) ||
1081 			 !check_bytes_and_report(s, page, p, "End Poison",
1082 				p + s->object_size - 1, POISON_END, 1)))
1083 			return 0;
1084 		/*
1085 		 * check_pad_bytes cleans up on its own.
1086 		 */
1087 		check_pad_bytes(s, page, p);
1088 	}
1089 
1090 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1091 		/*
1092 		 * Object and freepointer overlap. Cannot check
1093 		 * freepointer while object is allocated.
1094 		 */
1095 		return 1;
1096 
1097 	/* Check free pointer validity */
1098 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1099 		object_err(s, page, p, "Freepointer corrupt");
1100 		/*
1101 		 * No choice but to zap it and thus lose the remainder
1102 		 * of the free objects in this slab. May cause
1103 		 * another error because the object count is now wrong.
1104 		 */
1105 		set_freepointer(s, p, NULL);
1106 		return 0;
1107 	}
1108 	return 1;
1109 }
1110 
1111 static int check_slab(struct kmem_cache *s, struct page *page)
1112 {
1113 	int maxobj;
1114 
1115 	if (!PageSlab(page)) {
1116 		slab_err(s, page, "Not a valid slab page");
1117 		return 0;
1118 	}
1119 
1120 	maxobj = order_objects(compound_order(page), s->size);
1121 	if (page->objects > maxobj) {
1122 		slab_err(s, page, "objects %u > max %u",
1123 			page->objects, maxobj);
1124 		return 0;
1125 	}
1126 	if (page->inuse > page->objects) {
1127 		slab_err(s, page, "inuse %u > max %u",
1128 			page->inuse, page->objects);
1129 		return 0;
1130 	}
1131 	/* Slab_pad_check fixes things up after itself */
1132 	slab_pad_check(s, page);
1133 	return 1;
1134 }
1135 
1136 /*
1137  * Determine if a certain object on a page is on the freelist. Must hold the
1138  * slab lock to guarantee that the chains are in a consistent state.
1139  */
1140 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1141 {
1142 	int nr = 0;
1143 	void *fp;
1144 	void *object = NULL;
1145 	int max_objects;
1146 
1147 	fp = page->freelist;
1148 	while (fp && nr <= page->objects) {
1149 		if (fp == search)
1150 			return 1;
1151 		if (!check_valid_pointer(s, page, fp)) {
1152 			if (object) {
1153 				object_err(s, page, object,
1154 					"Freechain corrupt");
1155 				set_freepointer(s, object, NULL);
1156 			} else {
1157 				slab_err(s, page, "Freepointer corrupt");
1158 				page->freelist = NULL;
1159 				page->inuse = page->objects;
1160 				slab_fix(s, "Freelist cleared");
1161 				return 0;
1162 			}
1163 			break;
1164 		}
1165 		object = fp;
1166 		fp = get_freepointer(s, object);
1167 		nr++;
1168 	}
1169 
1170 	max_objects = order_objects(compound_order(page), s->size);
1171 	if (max_objects > MAX_OBJS_PER_PAGE)
1172 		max_objects = MAX_OBJS_PER_PAGE;
1173 
1174 	if (page->objects != max_objects) {
1175 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1176 			 page->objects, max_objects);
1177 		page->objects = max_objects;
1178 		slab_fix(s, "Number of objects adjusted");
1179 	}
1180 	if (page->inuse != page->objects - nr) {
1181 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1182 			 page->inuse, page->objects - nr);
1183 		page->inuse = page->objects - nr;
1184 		slab_fix(s, "Object count adjusted");
1185 	}
1186 	return search == NULL;
1187 }
1188 
1189 static void trace(struct kmem_cache *s, struct page *page, void *object,
1190 								int alloc)
1191 {
1192 	if (s->flags & SLAB_TRACE) {
1193 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1194 			s->name,
1195 			alloc ? "alloc" : "free",
1196 			object, page->inuse,
1197 			page->freelist);
1198 
1199 		if (!alloc)
1200 			print_section(KERN_INFO, "Object ", (void *)object,
1201 					s->object_size);
1202 
1203 		dump_stack();
1204 	}
1205 }
1206 
1207 /*
1208  * Tracking of fully allocated slabs for debugging purposes.
1209  */
1210 static void add_full(struct kmem_cache *s,
1211 	struct kmem_cache_node *n, struct page *page)
1212 {
1213 	if (!(s->flags & SLAB_STORE_USER))
1214 		return;
1215 
1216 	lockdep_assert_held(&n->list_lock);
1217 	list_add(&page->slab_list, &n->full);
1218 }
1219 
1220 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1221 {
1222 	if (!(s->flags & SLAB_STORE_USER))
1223 		return;
1224 
1225 	lockdep_assert_held(&n->list_lock);
1226 	list_del(&page->slab_list);
1227 }
1228 
1229 /* Tracking of the number of slabs for debugging purposes */
1230 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1231 {
1232 	struct kmem_cache_node *n = get_node(s, node);
1233 
1234 	return atomic_long_read(&n->nr_slabs);
1235 }
1236 
1237 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1238 {
1239 	return atomic_long_read(&n->nr_slabs);
1240 }
1241 
1242 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1243 {
1244 	struct kmem_cache_node *n = get_node(s, node);
1245 
1246 	/*
1247 	 * May be called early in order to allocate a slab for the
1248 	 * kmem_cache_node structure. Solve the chicken-egg
1249 	 * dilemma by deferring the increment of the count during
1250 	 * bootstrap (see early_kmem_cache_node_alloc).
1251 	 */
1252 	if (likely(n)) {
1253 		atomic_long_inc(&n->nr_slabs);
1254 		atomic_long_add(objects, &n->total_objects);
1255 	}
1256 }
1257 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1258 {
1259 	struct kmem_cache_node *n = get_node(s, node);
1260 
1261 	atomic_long_dec(&n->nr_slabs);
1262 	atomic_long_sub(objects, &n->total_objects);
1263 }
1264 
1265 /* Object debug checks for alloc/free paths */
1266 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1267 								void *object)
1268 {
1269 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1270 		return;
1271 
1272 	init_object(s, object, SLUB_RED_INACTIVE);
1273 	init_tracking(s, object);
1274 }
1275 
1276 static
1277 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1278 {
1279 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1280 		return;
1281 
1282 	metadata_access_enable();
1283 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1284 	metadata_access_disable();
1285 }
1286 
1287 static inline int alloc_consistency_checks(struct kmem_cache *s,
1288 					struct page *page, void *object)
1289 {
1290 	if (!check_slab(s, page))
1291 		return 0;
1292 
1293 	if (!check_valid_pointer(s, page, object)) {
1294 		object_err(s, page, object, "Freelist Pointer check fails");
1295 		return 0;
1296 	}
1297 
1298 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1299 		return 0;
1300 
1301 	return 1;
1302 }
1303 
1304 static noinline int alloc_debug_processing(struct kmem_cache *s,
1305 					struct page *page,
1306 					void *object, unsigned long addr)
1307 {
1308 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1309 		if (!alloc_consistency_checks(s, page, object))
1310 			goto bad;
1311 	}
1312 
1313 	/* Success perform special debug activities for allocs */
1314 	if (s->flags & SLAB_STORE_USER)
1315 		set_track(s, object, TRACK_ALLOC, addr);
1316 	trace(s, page, object, 1);
1317 	init_object(s, object, SLUB_RED_ACTIVE);
1318 	return 1;
1319 
1320 bad:
1321 	if (PageSlab(page)) {
1322 		/*
1323 		 * If this is a slab page then lets do the best we can
1324 		 * to avoid issues in the future. Marking all objects
1325 		 * as used avoids touching the remaining objects.
1326 		 */
1327 		slab_fix(s, "Marking all objects used");
1328 		page->inuse = page->objects;
1329 		page->freelist = NULL;
1330 	}
1331 	return 0;
1332 }
1333 
1334 static inline int free_consistency_checks(struct kmem_cache *s,
1335 		struct page *page, void *object, unsigned long addr)
1336 {
1337 	if (!check_valid_pointer(s, page, object)) {
1338 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1339 		return 0;
1340 	}
1341 
1342 	if (on_freelist(s, page, object)) {
1343 		object_err(s, page, object, "Object already free");
1344 		return 0;
1345 	}
1346 
1347 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1348 		return 0;
1349 
1350 	if (unlikely(s != page->slab_cache)) {
1351 		if (!PageSlab(page)) {
1352 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1353 				 object);
1354 		} else if (!page->slab_cache) {
1355 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1356 			       object);
1357 			dump_stack();
1358 		} else
1359 			object_err(s, page, object,
1360 					"page slab pointer corrupt.");
1361 		return 0;
1362 	}
1363 	return 1;
1364 }
1365 
1366 /* Supports checking bulk free of a constructed freelist */
1367 static noinline int free_debug_processing(
1368 	struct kmem_cache *s, struct page *page,
1369 	void *head, void *tail, int bulk_cnt,
1370 	unsigned long addr)
1371 {
1372 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1373 	void *object = head;
1374 	int cnt = 0;
1375 	unsigned long flags, flags2;
1376 	int ret = 0;
1377 
1378 	spin_lock_irqsave(&n->list_lock, flags);
1379 	slab_lock(page, &flags2);
1380 
1381 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1382 		if (!check_slab(s, page))
1383 			goto out;
1384 	}
1385 
1386 next_object:
1387 	cnt++;
1388 
1389 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1390 		if (!free_consistency_checks(s, page, object, addr))
1391 			goto out;
1392 	}
1393 
1394 	if (s->flags & SLAB_STORE_USER)
1395 		set_track(s, object, TRACK_FREE, addr);
1396 	trace(s, page, object, 0);
1397 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1398 	init_object(s, object, SLUB_RED_INACTIVE);
1399 
1400 	/* Reached end of constructed freelist yet? */
1401 	if (object != tail) {
1402 		object = get_freepointer(s, object);
1403 		goto next_object;
1404 	}
1405 	ret = 1;
1406 
1407 out:
1408 	if (cnt != bulk_cnt)
1409 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1410 			 bulk_cnt, cnt);
1411 
1412 	slab_unlock(page, &flags2);
1413 	spin_unlock_irqrestore(&n->list_lock, flags);
1414 	if (!ret)
1415 		slab_fix(s, "Object at 0x%p not freed", object);
1416 	return ret;
1417 }
1418 
1419 /*
1420  * Parse a block of slub_debug options. Blocks are delimited by ';'
1421  *
1422  * @str:    start of block
1423  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1424  * @slabs:  return start of list of slabs, or NULL when there's no list
1425  * @init:   assume this is initial parsing and not per-kmem-create parsing
1426  *
1427  * returns the start of next block if there's any, or NULL
1428  */
1429 static char *
1430 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1431 {
1432 	bool higher_order_disable = false;
1433 
1434 	/* Skip any completely empty blocks */
1435 	while (*str && *str == ';')
1436 		str++;
1437 
1438 	if (*str == ',') {
1439 		/*
1440 		 * No options but restriction on slabs. This means full
1441 		 * debugging for slabs matching a pattern.
1442 		 */
1443 		*flags = DEBUG_DEFAULT_FLAGS;
1444 		goto check_slabs;
1445 	}
1446 	*flags = 0;
1447 
1448 	/* Determine which debug features should be switched on */
1449 	for (; *str && *str != ',' && *str != ';'; str++) {
1450 		switch (tolower(*str)) {
1451 		case '-':
1452 			*flags = 0;
1453 			break;
1454 		case 'f':
1455 			*flags |= SLAB_CONSISTENCY_CHECKS;
1456 			break;
1457 		case 'z':
1458 			*flags |= SLAB_RED_ZONE;
1459 			break;
1460 		case 'p':
1461 			*flags |= SLAB_POISON;
1462 			break;
1463 		case 'u':
1464 			*flags |= SLAB_STORE_USER;
1465 			break;
1466 		case 't':
1467 			*flags |= SLAB_TRACE;
1468 			break;
1469 		case 'a':
1470 			*flags |= SLAB_FAILSLAB;
1471 			break;
1472 		case 'o':
1473 			/*
1474 			 * Avoid enabling debugging on caches if its minimum
1475 			 * order would increase as a result.
1476 			 */
1477 			higher_order_disable = true;
1478 			break;
1479 		default:
1480 			if (init)
1481 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1482 		}
1483 	}
1484 check_slabs:
1485 	if (*str == ',')
1486 		*slabs = ++str;
1487 	else
1488 		*slabs = NULL;
1489 
1490 	/* Skip over the slab list */
1491 	while (*str && *str != ';')
1492 		str++;
1493 
1494 	/* Skip any completely empty blocks */
1495 	while (*str && *str == ';')
1496 		str++;
1497 
1498 	if (init && higher_order_disable)
1499 		disable_higher_order_debug = 1;
1500 
1501 	if (*str)
1502 		return str;
1503 	else
1504 		return NULL;
1505 }
1506 
1507 static int __init setup_slub_debug(char *str)
1508 {
1509 	slab_flags_t flags;
1510 	slab_flags_t global_flags;
1511 	char *saved_str;
1512 	char *slab_list;
1513 	bool global_slub_debug_changed = false;
1514 	bool slab_list_specified = false;
1515 
1516 	global_flags = DEBUG_DEFAULT_FLAGS;
1517 	if (*str++ != '=' || !*str)
1518 		/*
1519 		 * No options specified. Switch on full debugging.
1520 		 */
1521 		goto out;
1522 
1523 	saved_str = str;
1524 	while (str) {
1525 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1526 
1527 		if (!slab_list) {
1528 			global_flags = flags;
1529 			global_slub_debug_changed = true;
1530 		} else {
1531 			slab_list_specified = true;
1532 		}
1533 	}
1534 
1535 	/*
1536 	 * For backwards compatibility, a single list of flags with list of
1537 	 * slabs means debugging is only changed for those slabs, so the global
1538 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1539 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1540 	 * long as there is no option specifying flags without a slab list.
1541 	 */
1542 	if (slab_list_specified) {
1543 		if (!global_slub_debug_changed)
1544 			global_flags = slub_debug;
1545 		slub_debug_string = saved_str;
1546 	}
1547 out:
1548 	slub_debug = global_flags;
1549 	if (slub_debug != 0 || slub_debug_string)
1550 		static_branch_enable(&slub_debug_enabled);
1551 	else
1552 		static_branch_disable(&slub_debug_enabled);
1553 	if ((static_branch_unlikely(&init_on_alloc) ||
1554 	     static_branch_unlikely(&init_on_free)) &&
1555 	    (slub_debug & SLAB_POISON))
1556 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1557 	return 1;
1558 }
1559 
1560 __setup("slub_debug", setup_slub_debug);
1561 
1562 /*
1563  * kmem_cache_flags - apply debugging options to the cache
1564  * @object_size:	the size of an object without meta data
1565  * @flags:		flags to set
1566  * @name:		name of the cache
1567  *
1568  * Debug option(s) are applied to @flags. In addition to the debug
1569  * option(s), if a slab name (or multiple) is specified i.e.
1570  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1571  * then only the select slabs will receive the debug option(s).
1572  */
1573 slab_flags_t kmem_cache_flags(unsigned int object_size,
1574 	slab_flags_t flags, const char *name)
1575 {
1576 	char *iter;
1577 	size_t len;
1578 	char *next_block;
1579 	slab_flags_t block_flags;
1580 	slab_flags_t slub_debug_local = slub_debug;
1581 
1582 	/*
1583 	 * If the slab cache is for debugging (e.g. kmemleak) then
1584 	 * don't store user (stack trace) information by default,
1585 	 * but let the user enable it via the command line below.
1586 	 */
1587 	if (flags & SLAB_NOLEAKTRACE)
1588 		slub_debug_local &= ~SLAB_STORE_USER;
1589 
1590 	len = strlen(name);
1591 	next_block = slub_debug_string;
1592 	/* Go through all blocks of debug options, see if any matches our slab's name */
1593 	while (next_block) {
1594 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1595 		if (!iter)
1596 			continue;
1597 		/* Found a block that has a slab list, search it */
1598 		while (*iter) {
1599 			char *end, *glob;
1600 			size_t cmplen;
1601 
1602 			end = strchrnul(iter, ',');
1603 			if (next_block && next_block < end)
1604 				end = next_block - 1;
1605 
1606 			glob = strnchr(iter, end - iter, '*');
1607 			if (glob)
1608 				cmplen = glob - iter;
1609 			else
1610 				cmplen = max_t(size_t, len, (end - iter));
1611 
1612 			if (!strncmp(name, iter, cmplen)) {
1613 				flags |= block_flags;
1614 				return flags;
1615 			}
1616 
1617 			if (!*end || *end == ';')
1618 				break;
1619 			iter = end + 1;
1620 		}
1621 	}
1622 
1623 	return flags | slub_debug_local;
1624 }
1625 #else /* !CONFIG_SLUB_DEBUG */
1626 static inline void setup_object_debug(struct kmem_cache *s,
1627 			struct page *page, void *object) {}
1628 static inline
1629 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1630 
1631 static inline int alloc_debug_processing(struct kmem_cache *s,
1632 	struct page *page, void *object, unsigned long addr) { return 0; }
1633 
1634 static inline int free_debug_processing(
1635 	struct kmem_cache *s, struct page *page,
1636 	void *head, void *tail, int bulk_cnt,
1637 	unsigned long addr) { return 0; }
1638 
1639 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1640 			{ return 1; }
1641 static inline int check_object(struct kmem_cache *s, struct page *page,
1642 			void *object, u8 val) { return 1; }
1643 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1644 					struct page *page) {}
1645 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1646 					struct page *page) {}
1647 slab_flags_t kmem_cache_flags(unsigned int object_size,
1648 	slab_flags_t flags, const char *name)
1649 {
1650 	return flags;
1651 }
1652 #define slub_debug 0
1653 
1654 #define disable_higher_order_debug 0
1655 
1656 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1657 							{ return 0; }
1658 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1659 							{ return 0; }
1660 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1661 							int objects) {}
1662 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1663 							int objects) {}
1664 
1665 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1666 			       void **freelist, void *nextfree)
1667 {
1668 	return false;
1669 }
1670 #endif /* CONFIG_SLUB_DEBUG */
1671 
1672 /*
1673  * Hooks for other subsystems that check memory allocations. In a typical
1674  * production configuration these hooks all should produce no code at all.
1675  */
1676 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1677 {
1678 	ptr = kasan_kmalloc_large(ptr, size, flags);
1679 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1680 	kmemleak_alloc(ptr, size, 1, flags);
1681 	return ptr;
1682 }
1683 
1684 static __always_inline void kfree_hook(void *x)
1685 {
1686 	kmemleak_free(x);
1687 	kasan_kfree_large(x);
1688 }
1689 
1690 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1691 						void *x, bool init)
1692 {
1693 	kmemleak_free_recursive(x, s->flags);
1694 
1695 	debug_check_no_locks_freed(x, s->object_size);
1696 
1697 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1698 		debug_check_no_obj_freed(x, s->object_size);
1699 
1700 	/* Use KCSAN to help debug racy use-after-free. */
1701 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1702 		__kcsan_check_access(x, s->object_size,
1703 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1704 
1705 	/*
1706 	 * As memory initialization might be integrated into KASAN,
1707 	 * kasan_slab_free and initialization memset's must be
1708 	 * kept together to avoid discrepancies in behavior.
1709 	 *
1710 	 * The initialization memset's clear the object and the metadata,
1711 	 * but don't touch the SLAB redzone.
1712 	 */
1713 	if (init) {
1714 		int rsize;
1715 
1716 		if (!kasan_has_integrated_init())
1717 			memset(kasan_reset_tag(x), 0, s->object_size);
1718 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1719 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1720 		       s->size - s->inuse - rsize);
1721 	}
1722 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1723 	return kasan_slab_free(s, x, init);
1724 }
1725 
1726 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1727 					   void **head, void **tail,
1728 					   int *cnt)
1729 {
1730 
1731 	void *object;
1732 	void *next = *head;
1733 	void *old_tail = *tail ? *tail : *head;
1734 
1735 	if (is_kfence_address(next)) {
1736 		slab_free_hook(s, next, false);
1737 		return true;
1738 	}
1739 
1740 	/* Head and tail of the reconstructed freelist */
1741 	*head = NULL;
1742 	*tail = NULL;
1743 
1744 	do {
1745 		object = next;
1746 		next = get_freepointer(s, object);
1747 
1748 		/* If object's reuse doesn't have to be delayed */
1749 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1750 			/* Move object to the new freelist */
1751 			set_freepointer(s, object, *head);
1752 			*head = object;
1753 			if (!*tail)
1754 				*tail = object;
1755 		} else {
1756 			/*
1757 			 * Adjust the reconstructed freelist depth
1758 			 * accordingly if object's reuse is delayed.
1759 			 */
1760 			--(*cnt);
1761 		}
1762 	} while (object != old_tail);
1763 
1764 	if (*head == *tail)
1765 		*tail = NULL;
1766 
1767 	return *head != NULL;
1768 }
1769 
1770 static void *setup_object(struct kmem_cache *s, struct page *page,
1771 				void *object)
1772 {
1773 	setup_object_debug(s, page, object);
1774 	object = kasan_init_slab_obj(s, object);
1775 	if (unlikely(s->ctor)) {
1776 		kasan_unpoison_object_data(s, object);
1777 		s->ctor(object);
1778 		kasan_poison_object_data(s, object);
1779 	}
1780 	return object;
1781 }
1782 
1783 /*
1784  * Slab allocation and freeing
1785  */
1786 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1787 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1788 {
1789 	struct page *page;
1790 	unsigned int order = oo_order(oo);
1791 
1792 	if (node == NUMA_NO_NODE)
1793 		page = alloc_pages(flags, order);
1794 	else
1795 		page = __alloc_pages_node(node, flags, order);
1796 
1797 	return page;
1798 }
1799 
1800 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1801 /* Pre-initialize the random sequence cache */
1802 static int init_cache_random_seq(struct kmem_cache *s)
1803 {
1804 	unsigned int count = oo_objects(s->oo);
1805 	int err;
1806 
1807 	/* Bailout if already initialised */
1808 	if (s->random_seq)
1809 		return 0;
1810 
1811 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1812 	if (err) {
1813 		pr_err("SLUB: Unable to initialize free list for %s\n",
1814 			s->name);
1815 		return err;
1816 	}
1817 
1818 	/* Transform to an offset on the set of pages */
1819 	if (s->random_seq) {
1820 		unsigned int i;
1821 
1822 		for (i = 0; i < count; i++)
1823 			s->random_seq[i] *= s->size;
1824 	}
1825 	return 0;
1826 }
1827 
1828 /* Initialize each random sequence freelist per cache */
1829 static void __init init_freelist_randomization(void)
1830 {
1831 	struct kmem_cache *s;
1832 
1833 	mutex_lock(&slab_mutex);
1834 
1835 	list_for_each_entry(s, &slab_caches, list)
1836 		init_cache_random_seq(s);
1837 
1838 	mutex_unlock(&slab_mutex);
1839 }
1840 
1841 /* Get the next entry on the pre-computed freelist randomized */
1842 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1843 				unsigned long *pos, void *start,
1844 				unsigned long page_limit,
1845 				unsigned long freelist_count)
1846 {
1847 	unsigned int idx;
1848 
1849 	/*
1850 	 * If the target page allocation failed, the number of objects on the
1851 	 * page might be smaller than the usual size defined by the cache.
1852 	 */
1853 	do {
1854 		idx = s->random_seq[*pos];
1855 		*pos += 1;
1856 		if (*pos >= freelist_count)
1857 			*pos = 0;
1858 	} while (unlikely(idx >= page_limit));
1859 
1860 	return (char *)start + idx;
1861 }
1862 
1863 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1864 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1865 {
1866 	void *start;
1867 	void *cur;
1868 	void *next;
1869 	unsigned long idx, pos, page_limit, freelist_count;
1870 
1871 	if (page->objects < 2 || !s->random_seq)
1872 		return false;
1873 
1874 	freelist_count = oo_objects(s->oo);
1875 	pos = get_random_int() % freelist_count;
1876 
1877 	page_limit = page->objects * s->size;
1878 	start = fixup_red_left(s, page_address(page));
1879 
1880 	/* First entry is used as the base of the freelist */
1881 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1882 				freelist_count);
1883 	cur = setup_object(s, page, cur);
1884 	page->freelist = cur;
1885 
1886 	for (idx = 1; idx < page->objects; idx++) {
1887 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1888 			freelist_count);
1889 		next = setup_object(s, page, next);
1890 		set_freepointer(s, cur, next);
1891 		cur = next;
1892 	}
1893 	set_freepointer(s, cur, NULL);
1894 
1895 	return true;
1896 }
1897 #else
1898 static inline int init_cache_random_seq(struct kmem_cache *s)
1899 {
1900 	return 0;
1901 }
1902 static inline void init_freelist_randomization(void) { }
1903 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1904 {
1905 	return false;
1906 }
1907 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1908 
1909 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1910 {
1911 	struct page *page;
1912 	struct kmem_cache_order_objects oo = s->oo;
1913 	gfp_t alloc_gfp;
1914 	void *start, *p, *next;
1915 	int idx;
1916 	bool shuffle;
1917 
1918 	flags &= gfp_allowed_mask;
1919 
1920 	flags |= s->allocflags;
1921 
1922 	/*
1923 	 * Let the initial higher-order allocation fail under memory pressure
1924 	 * so we fall-back to the minimum order allocation.
1925 	 */
1926 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1927 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1928 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1929 
1930 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1931 	if (unlikely(!page)) {
1932 		oo = s->min;
1933 		alloc_gfp = flags;
1934 		/*
1935 		 * Allocation may have failed due to fragmentation.
1936 		 * Try a lower order alloc if possible
1937 		 */
1938 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1939 		if (unlikely(!page))
1940 			goto out;
1941 		stat(s, ORDER_FALLBACK);
1942 	}
1943 
1944 	page->objects = oo_objects(oo);
1945 
1946 	account_slab_page(page, oo_order(oo), s, flags);
1947 
1948 	page->slab_cache = s;
1949 	__SetPageSlab(page);
1950 	if (page_is_pfmemalloc(page))
1951 		SetPageSlabPfmemalloc(page);
1952 
1953 	kasan_poison_slab(page);
1954 
1955 	start = page_address(page);
1956 
1957 	setup_page_debug(s, page, start);
1958 
1959 	shuffle = shuffle_freelist(s, page);
1960 
1961 	if (!shuffle) {
1962 		start = fixup_red_left(s, start);
1963 		start = setup_object(s, page, start);
1964 		page->freelist = start;
1965 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1966 			next = p + s->size;
1967 			next = setup_object(s, page, next);
1968 			set_freepointer(s, p, next);
1969 			p = next;
1970 		}
1971 		set_freepointer(s, p, NULL);
1972 	}
1973 
1974 	page->inuse = page->objects;
1975 	page->frozen = 1;
1976 
1977 out:
1978 	if (!page)
1979 		return NULL;
1980 
1981 	inc_slabs_node(s, page_to_nid(page), page->objects);
1982 
1983 	return page;
1984 }
1985 
1986 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1987 {
1988 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1989 		flags = kmalloc_fix_flags(flags);
1990 
1991 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1992 
1993 	return allocate_slab(s,
1994 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1995 }
1996 
1997 static void __free_slab(struct kmem_cache *s, struct page *page)
1998 {
1999 	int order = compound_order(page);
2000 	int pages = 1 << order;
2001 
2002 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2003 		void *p;
2004 
2005 		slab_pad_check(s, page);
2006 		for_each_object(p, s, page_address(page),
2007 						page->objects)
2008 			check_object(s, page, p, SLUB_RED_INACTIVE);
2009 	}
2010 
2011 	__ClearPageSlabPfmemalloc(page);
2012 	__ClearPageSlab(page);
2013 	/* In union with page->mapping where page allocator expects NULL */
2014 	page->slab_cache = NULL;
2015 	if (current->reclaim_state)
2016 		current->reclaim_state->reclaimed_slab += pages;
2017 	unaccount_slab_page(page, order, s);
2018 	__free_pages(page, order);
2019 }
2020 
2021 static void rcu_free_slab(struct rcu_head *h)
2022 {
2023 	struct page *page = container_of(h, struct page, rcu_head);
2024 
2025 	__free_slab(page->slab_cache, page);
2026 }
2027 
2028 static void free_slab(struct kmem_cache *s, struct page *page)
2029 {
2030 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2031 		call_rcu(&page->rcu_head, rcu_free_slab);
2032 	} else
2033 		__free_slab(s, page);
2034 }
2035 
2036 static void discard_slab(struct kmem_cache *s, struct page *page)
2037 {
2038 	dec_slabs_node(s, page_to_nid(page), page->objects);
2039 	free_slab(s, page);
2040 }
2041 
2042 /*
2043  * Management of partially allocated slabs.
2044  */
2045 static inline void
2046 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
2047 {
2048 	n->nr_partial++;
2049 	if (tail == DEACTIVATE_TO_TAIL)
2050 		list_add_tail(&page->slab_list, &n->partial);
2051 	else
2052 		list_add(&page->slab_list, &n->partial);
2053 }
2054 
2055 static inline void add_partial(struct kmem_cache_node *n,
2056 				struct page *page, int tail)
2057 {
2058 	lockdep_assert_held(&n->list_lock);
2059 	__add_partial(n, page, tail);
2060 }
2061 
2062 static inline void remove_partial(struct kmem_cache_node *n,
2063 					struct page *page)
2064 {
2065 	lockdep_assert_held(&n->list_lock);
2066 	list_del(&page->slab_list);
2067 	n->nr_partial--;
2068 }
2069 
2070 /*
2071  * Remove slab from the partial list, freeze it and
2072  * return the pointer to the freelist.
2073  *
2074  * Returns a list of objects or NULL if it fails.
2075  */
2076 static inline void *acquire_slab(struct kmem_cache *s,
2077 		struct kmem_cache_node *n, struct page *page,
2078 		int mode)
2079 {
2080 	void *freelist;
2081 	unsigned long counters;
2082 	struct page new;
2083 
2084 	lockdep_assert_held(&n->list_lock);
2085 
2086 	/*
2087 	 * Zap the freelist and set the frozen bit.
2088 	 * The old freelist is the list of objects for the
2089 	 * per cpu allocation list.
2090 	 */
2091 	freelist = page->freelist;
2092 	counters = page->counters;
2093 	new.counters = counters;
2094 	if (mode) {
2095 		new.inuse = page->objects;
2096 		new.freelist = NULL;
2097 	} else {
2098 		new.freelist = freelist;
2099 	}
2100 
2101 	VM_BUG_ON(new.frozen);
2102 	new.frozen = 1;
2103 
2104 	if (!__cmpxchg_double_slab(s, page,
2105 			freelist, counters,
2106 			new.freelist, new.counters,
2107 			"acquire_slab"))
2108 		return NULL;
2109 
2110 	remove_partial(n, page);
2111 	WARN_ON(!freelist);
2112 	return freelist;
2113 }
2114 
2115 #ifdef CONFIG_SLUB_CPU_PARTIAL
2116 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2117 #else
2118 static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2119 				   int drain) { }
2120 #endif
2121 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2122 
2123 /*
2124  * Try to allocate a partial slab from a specific node.
2125  */
2126 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2127 			      struct page **ret_page, gfp_t gfpflags)
2128 {
2129 	struct page *page, *page2;
2130 	void *object = NULL;
2131 	unsigned long flags;
2132 	unsigned int partial_pages = 0;
2133 
2134 	/*
2135 	 * Racy check. If we mistakenly see no partial slabs then we
2136 	 * just allocate an empty slab. If we mistakenly try to get a
2137 	 * partial slab and there is none available then get_partial()
2138 	 * will return NULL.
2139 	 */
2140 	if (!n || !n->nr_partial)
2141 		return NULL;
2142 
2143 	spin_lock_irqsave(&n->list_lock, flags);
2144 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2145 		void *t;
2146 
2147 		if (!pfmemalloc_match(page, gfpflags))
2148 			continue;
2149 
2150 		t = acquire_slab(s, n, page, object == NULL);
2151 		if (!t)
2152 			break;
2153 
2154 		if (!object) {
2155 			*ret_page = page;
2156 			stat(s, ALLOC_FROM_PARTIAL);
2157 			object = t;
2158 		} else {
2159 			put_cpu_partial(s, page, 0);
2160 			stat(s, CPU_PARTIAL_NODE);
2161 			partial_pages++;
2162 		}
2163 #ifdef CONFIG_SLUB_CPU_PARTIAL
2164 		if (!kmem_cache_has_cpu_partial(s)
2165 			|| partial_pages > s->cpu_partial_pages / 2)
2166 			break;
2167 #else
2168 		break;
2169 #endif
2170 
2171 	}
2172 	spin_unlock_irqrestore(&n->list_lock, flags);
2173 	return object;
2174 }
2175 
2176 /*
2177  * Get a page from somewhere. Search in increasing NUMA distances.
2178  */
2179 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2180 			     struct page **ret_page)
2181 {
2182 #ifdef CONFIG_NUMA
2183 	struct zonelist *zonelist;
2184 	struct zoneref *z;
2185 	struct zone *zone;
2186 	enum zone_type highest_zoneidx = gfp_zone(flags);
2187 	void *object;
2188 	unsigned int cpuset_mems_cookie;
2189 
2190 	/*
2191 	 * The defrag ratio allows a configuration of the tradeoffs between
2192 	 * inter node defragmentation and node local allocations. A lower
2193 	 * defrag_ratio increases the tendency to do local allocations
2194 	 * instead of attempting to obtain partial slabs from other nodes.
2195 	 *
2196 	 * If the defrag_ratio is set to 0 then kmalloc() always
2197 	 * returns node local objects. If the ratio is higher then kmalloc()
2198 	 * may return off node objects because partial slabs are obtained
2199 	 * from other nodes and filled up.
2200 	 *
2201 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2202 	 * (which makes defrag_ratio = 1000) then every (well almost)
2203 	 * allocation will first attempt to defrag slab caches on other nodes.
2204 	 * This means scanning over all nodes to look for partial slabs which
2205 	 * may be expensive if we do it every time we are trying to find a slab
2206 	 * with available objects.
2207 	 */
2208 	if (!s->remote_node_defrag_ratio ||
2209 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2210 		return NULL;
2211 
2212 	do {
2213 		cpuset_mems_cookie = read_mems_allowed_begin();
2214 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2215 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2216 			struct kmem_cache_node *n;
2217 
2218 			n = get_node(s, zone_to_nid(zone));
2219 
2220 			if (n && cpuset_zone_allowed(zone, flags) &&
2221 					n->nr_partial > s->min_partial) {
2222 				object = get_partial_node(s, n, ret_page, flags);
2223 				if (object) {
2224 					/*
2225 					 * Don't check read_mems_allowed_retry()
2226 					 * here - if mems_allowed was updated in
2227 					 * parallel, that was a harmless race
2228 					 * between allocation and the cpuset
2229 					 * update
2230 					 */
2231 					return object;
2232 				}
2233 			}
2234 		}
2235 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2236 #endif	/* CONFIG_NUMA */
2237 	return NULL;
2238 }
2239 
2240 /*
2241  * Get a partial page, lock it and return it.
2242  */
2243 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2244 			 struct page **ret_page)
2245 {
2246 	void *object;
2247 	int searchnode = node;
2248 
2249 	if (node == NUMA_NO_NODE)
2250 		searchnode = numa_mem_id();
2251 
2252 	object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
2253 	if (object || node != NUMA_NO_NODE)
2254 		return object;
2255 
2256 	return get_any_partial(s, flags, ret_page);
2257 }
2258 
2259 #ifdef CONFIG_PREEMPTION
2260 /*
2261  * Calculate the next globally unique transaction for disambiguation
2262  * during cmpxchg. The transactions start with the cpu number and are then
2263  * incremented by CONFIG_NR_CPUS.
2264  */
2265 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2266 #else
2267 /*
2268  * No preemption supported therefore also no need to check for
2269  * different cpus.
2270  */
2271 #define TID_STEP 1
2272 #endif
2273 
2274 static inline unsigned long next_tid(unsigned long tid)
2275 {
2276 	return tid + TID_STEP;
2277 }
2278 
2279 #ifdef SLUB_DEBUG_CMPXCHG
2280 static inline unsigned int tid_to_cpu(unsigned long tid)
2281 {
2282 	return tid % TID_STEP;
2283 }
2284 
2285 static inline unsigned long tid_to_event(unsigned long tid)
2286 {
2287 	return tid / TID_STEP;
2288 }
2289 #endif
2290 
2291 static inline unsigned int init_tid(int cpu)
2292 {
2293 	return cpu;
2294 }
2295 
2296 static inline void note_cmpxchg_failure(const char *n,
2297 		const struct kmem_cache *s, unsigned long tid)
2298 {
2299 #ifdef SLUB_DEBUG_CMPXCHG
2300 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2301 
2302 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2303 
2304 #ifdef CONFIG_PREEMPTION
2305 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2306 		pr_warn("due to cpu change %d -> %d\n",
2307 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2308 	else
2309 #endif
2310 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2311 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2312 			tid_to_event(tid), tid_to_event(actual_tid));
2313 	else
2314 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2315 			actual_tid, tid, next_tid(tid));
2316 #endif
2317 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2318 }
2319 
2320 static void init_kmem_cache_cpus(struct kmem_cache *s)
2321 {
2322 	int cpu;
2323 	struct kmem_cache_cpu *c;
2324 
2325 	for_each_possible_cpu(cpu) {
2326 		c = per_cpu_ptr(s->cpu_slab, cpu);
2327 		local_lock_init(&c->lock);
2328 		c->tid = init_tid(cpu);
2329 	}
2330 }
2331 
2332 /*
2333  * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2334  * unfreezes the slabs and puts it on the proper list.
2335  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2336  * by the caller.
2337  */
2338 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2339 			    void *freelist)
2340 {
2341 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2342 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2343 	int lock = 0, free_delta = 0;
2344 	enum slab_modes l = M_NONE, m = M_NONE;
2345 	void *nextfree, *freelist_iter, *freelist_tail;
2346 	int tail = DEACTIVATE_TO_HEAD;
2347 	unsigned long flags = 0;
2348 	struct page new;
2349 	struct page old;
2350 
2351 	if (page->freelist) {
2352 		stat(s, DEACTIVATE_REMOTE_FREES);
2353 		tail = DEACTIVATE_TO_TAIL;
2354 	}
2355 
2356 	/*
2357 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2358 	 * remember the last object in freelist_tail for later splicing.
2359 	 */
2360 	freelist_tail = NULL;
2361 	freelist_iter = freelist;
2362 	while (freelist_iter) {
2363 		nextfree = get_freepointer(s, freelist_iter);
2364 
2365 		/*
2366 		 * If 'nextfree' is invalid, it is possible that the object at
2367 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2368 		 * starting at 'freelist_iter' by skipping them.
2369 		 */
2370 		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2371 			break;
2372 
2373 		freelist_tail = freelist_iter;
2374 		free_delta++;
2375 
2376 		freelist_iter = nextfree;
2377 	}
2378 
2379 	/*
2380 	 * Stage two: Unfreeze the page while splicing the per-cpu
2381 	 * freelist to the head of page's freelist.
2382 	 *
2383 	 * Ensure that the page is unfrozen while the list presence
2384 	 * reflects the actual number of objects during unfreeze.
2385 	 *
2386 	 * We setup the list membership and then perform a cmpxchg
2387 	 * with the count. If there is a mismatch then the page
2388 	 * is not unfrozen but the page is on the wrong list.
2389 	 *
2390 	 * Then we restart the process which may have to remove
2391 	 * the page from the list that we just put it on again
2392 	 * because the number of objects in the slab may have
2393 	 * changed.
2394 	 */
2395 redo:
2396 
2397 	old.freelist = READ_ONCE(page->freelist);
2398 	old.counters = READ_ONCE(page->counters);
2399 	VM_BUG_ON(!old.frozen);
2400 
2401 	/* Determine target state of the slab */
2402 	new.counters = old.counters;
2403 	if (freelist_tail) {
2404 		new.inuse -= free_delta;
2405 		set_freepointer(s, freelist_tail, old.freelist);
2406 		new.freelist = freelist;
2407 	} else
2408 		new.freelist = old.freelist;
2409 
2410 	new.frozen = 0;
2411 
2412 	if (!new.inuse && n->nr_partial >= s->min_partial)
2413 		m = M_FREE;
2414 	else if (new.freelist) {
2415 		m = M_PARTIAL;
2416 		if (!lock) {
2417 			lock = 1;
2418 			/*
2419 			 * Taking the spinlock removes the possibility
2420 			 * that acquire_slab() will see a slab page that
2421 			 * is frozen
2422 			 */
2423 			spin_lock_irqsave(&n->list_lock, flags);
2424 		}
2425 	} else {
2426 		m = M_FULL;
2427 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2428 			lock = 1;
2429 			/*
2430 			 * This also ensures that the scanning of full
2431 			 * slabs from diagnostic functions will not see
2432 			 * any frozen slabs.
2433 			 */
2434 			spin_lock_irqsave(&n->list_lock, flags);
2435 		}
2436 	}
2437 
2438 	if (l != m) {
2439 		if (l == M_PARTIAL)
2440 			remove_partial(n, page);
2441 		else if (l == M_FULL)
2442 			remove_full(s, n, page);
2443 
2444 		if (m == M_PARTIAL)
2445 			add_partial(n, page, tail);
2446 		else if (m == M_FULL)
2447 			add_full(s, n, page);
2448 	}
2449 
2450 	l = m;
2451 	if (!cmpxchg_double_slab(s, page,
2452 				old.freelist, old.counters,
2453 				new.freelist, new.counters,
2454 				"unfreezing slab"))
2455 		goto redo;
2456 
2457 	if (lock)
2458 		spin_unlock_irqrestore(&n->list_lock, flags);
2459 
2460 	if (m == M_PARTIAL)
2461 		stat(s, tail);
2462 	else if (m == M_FULL)
2463 		stat(s, DEACTIVATE_FULL);
2464 	else if (m == M_FREE) {
2465 		stat(s, DEACTIVATE_EMPTY);
2466 		discard_slab(s, page);
2467 		stat(s, FREE_SLAB);
2468 	}
2469 }
2470 
2471 #ifdef CONFIG_SLUB_CPU_PARTIAL
2472 static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2473 {
2474 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2475 	struct page *page, *discard_page = NULL;
2476 	unsigned long flags = 0;
2477 
2478 	while (partial_page) {
2479 		struct page new;
2480 		struct page old;
2481 
2482 		page = partial_page;
2483 		partial_page = page->next;
2484 
2485 		n2 = get_node(s, page_to_nid(page));
2486 		if (n != n2) {
2487 			if (n)
2488 				spin_unlock_irqrestore(&n->list_lock, flags);
2489 
2490 			n = n2;
2491 			spin_lock_irqsave(&n->list_lock, flags);
2492 		}
2493 
2494 		do {
2495 
2496 			old.freelist = page->freelist;
2497 			old.counters = page->counters;
2498 			VM_BUG_ON(!old.frozen);
2499 
2500 			new.counters = old.counters;
2501 			new.freelist = old.freelist;
2502 
2503 			new.frozen = 0;
2504 
2505 		} while (!__cmpxchg_double_slab(s, page,
2506 				old.freelist, old.counters,
2507 				new.freelist, new.counters,
2508 				"unfreezing slab"));
2509 
2510 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2511 			page->next = discard_page;
2512 			discard_page = page;
2513 		} else {
2514 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2515 			stat(s, FREE_ADD_PARTIAL);
2516 		}
2517 	}
2518 
2519 	if (n)
2520 		spin_unlock_irqrestore(&n->list_lock, flags);
2521 
2522 	while (discard_page) {
2523 		page = discard_page;
2524 		discard_page = discard_page->next;
2525 
2526 		stat(s, DEACTIVATE_EMPTY);
2527 		discard_slab(s, page);
2528 		stat(s, FREE_SLAB);
2529 	}
2530 }
2531 
2532 /*
2533  * Unfreeze all the cpu partial slabs.
2534  */
2535 static void unfreeze_partials(struct kmem_cache *s)
2536 {
2537 	struct page *partial_page;
2538 	unsigned long flags;
2539 
2540 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2541 	partial_page = this_cpu_read(s->cpu_slab->partial);
2542 	this_cpu_write(s->cpu_slab->partial, NULL);
2543 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2544 
2545 	if (partial_page)
2546 		__unfreeze_partials(s, partial_page);
2547 }
2548 
2549 static void unfreeze_partials_cpu(struct kmem_cache *s,
2550 				  struct kmem_cache_cpu *c)
2551 {
2552 	struct page *partial_page;
2553 
2554 	partial_page = slub_percpu_partial(c);
2555 	c->partial = NULL;
2556 
2557 	if (partial_page)
2558 		__unfreeze_partials(s, partial_page);
2559 }
2560 
2561 /*
2562  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2563  * partial page slot if available.
2564  *
2565  * If we did not find a slot then simply move all the partials to the
2566  * per node partial list.
2567  */
2568 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2569 {
2570 	struct page *oldpage;
2571 	struct page *page_to_unfreeze = NULL;
2572 	unsigned long flags;
2573 	int pages = 0;
2574 
2575 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2576 
2577 	oldpage = this_cpu_read(s->cpu_slab->partial);
2578 
2579 	if (oldpage) {
2580 		if (drain && oldpage->pages >= s->cpu_partial_pages) {
2581 			/*
2582 			 * Partial array is full. Move the existing set to the
2583 			 * per node partial list. Postpone the actual unfreezing
2584 			 * outside of the critical section.
2585 			 */
2586 			page_to_unfreeze = oldpage;
2587 			oldpage = NULL;
2588 		} else {
2589 			pages = oldpage->pages;
2590 		}
2591 	}
2592 
2593 	pages++;
2594 
2595 	page->pages = pages;
2596 	page->next = oldpage;
2597 
2598 	this_cpu_write(s->cpu_slab->partial, page);
2599 
2600 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2601 
2602 	if (page_to_unfreeze) {
2603 		__unfreeze_partials(s, page_to_unfreeze);
2604 		stat(s, CPU_PARTIAL_DRAIN);
2605 	}
2606 }
2607 
2608 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2609 
2610 static inline void unfreeze_partials(struct kmem_cache *s) { }
2611 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2612 				  struct kmem_cache_cpu *c) { }
2613 
2614 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2615 
2616 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2617 {
2618 	unsigned long flags;
2619 	struct page *page;
2620 	void *freelist;
2621 
2622 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2623 
2624 	page = c->page;
2625 	freelist = c->freelist;
2626 
2627 	c->page = NULL;
2628 	c->freelist = NULL;
2629 	c->tid = next_tid(c->tid);
2630 
2631 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2632 
2633 	if (page) {
2634 		deactivate_slab(s, page, freelist);
2635 		stat(s, CPUSLAB_FLUSH);
2636 	}
2637 }
2638 
2639 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2640 {
2641 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2642 	void *freelist = c->freelist;
2643 	struct page *page = c->page;
2644 
2645 	c->page = NULL;
2646 	c->freelist = NULL;
2647 	c->tid = next_tid(c->tid);
2648 
2649 	if (page) {
2650 		deactivate_slab(s, page, freelist);
2651 		stat(s, CPUSLAB_FLUSH);
2652 	}
2653 
2654 	unfreeze_partials_cpu(s, c);
2655 }
2656 
2657 struct slub_flush_work {
2658 	struct work_struct work;
2659 	struct kmem_cache *s;
2660 	bool skip;
2661 };
2662 
2663 /*
2664  * Flush cpu slab.
2665  *
2666  * Called from CPU work handler with migration disabled.
2667  */
2668 static void flush_cpu_slab(struct work_struct *w)
2669 {
2670 	struct kmem_cache *s;
2671 	struct kmem_cache_cpu *c;
2672 	struct slub_flush_work *sfw;
2673 
2674 	sfw = container_of(w, struct slub_flush_work, work);
2675 
2676 	s = sfw->s;
2677 	c = this_cpu_ptr(s->cpu_slab);
2678 
2679 	if (c->page)
2680 		flush_slab(s, c);
2681 
2682 	unfreeze_partials(s);
2683 }
2684 
2685 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2686 {
2687 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2688 
2689 	return c->page || slub_percpu_partial(c);
2690 }
2691 
2692 static DEFINE_MUTEX(flush_lock);
2693 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2694 
2695 static void flush_all_cpus_locked(struct kmem_cache *s)
2696 {
2697 	struct slub_flush_work *sfw;
2698 	unsigned int cpu;
2699 
2700 	lockdep_assert_cpus_held();
2701 	mutex_lock(&flush_lock);
2702 
2703 	for_each_online_cpu(cpu) {
2704 		sfw = &per_cpu(slub_flush, cpu);
2705 		if (!has_cpu_slab(cpu, s)) {
2706 			sfw->skip = true;
2707 			continue;
2708 		}
2709 		INIT_WORK(&sfw->work, flush_cpu_slab);
2710 		sfw->skip = false;
2711 		sfw->s = s;
2712 		schedule_work_on(cpu, &sfw->work);
2713 	}
2714 
2715 	for_each_online_cpu(cpu) {
2716 		sfw = &per_cpu(slub_flush, cpu);
2717 		if (sfw->skip)
2718 			continue;
2719 		flush_work(&sfw->work);
2720 	}
2721 
2722 	mutex_unlock(&flush_lock);
2723 }
2724 
2725 static void flush_all(struct kmem_cache *s)
2726 {
2727 	cpus_read_lock();
2728 	flush_all_cpus_locked(s);
2729 	cpus_read_unlock();
2730 }
2731 
2732 /*
2733  * Use the cpu notifier to insure that the cpu slabs are flushed when
2734  * necessary.
2735  */
2736 static int slub_cpu_dead(unsigned int cpu)
2737 {
2738 	struct kmem_cache *s;
2739 
2740 	mutex_lock(&slab_mutex);
2741 	list_for_each_entry(s, &slab_caches, list)
2742 		__flush_cpu_slab(s, cpu);
2743 	mutex_unlock(&slab_mutex);
2744 	return 0;
2745 }
2746 
2747 /*
2748  * Check if the objects in a per cpu structure fit numa
2749  * locality expectations.
2750  */
2751 static inline int node_match(struct page *page, int node)
2752 {
2753 #ifdef CONFIG_NUMA
2754 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2755 		return 0;
2756 #endif
2757 	return 1;
2758 }
2759 
2760 #ifdef CONFIG_SLUB_DEBUG
2761 static int count_free(struct page *page)
2762 {
2763 	return page->objects - page->inuse;
2764 }
2765 
2766 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2767 {
2768 	return atomic_long_read(&n->total_objects);
2769 }
2770 #endif /* CONFIG_SLUB_DEBUG */
2771 
2772 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2773 static unsigned long count_partial(struct kmem_cache_node *n,
2774 					int (*get_count)(struct page *))
2775 {
2776 	unsigned long flags;
2777 	unsigned long x = 0;
2778 	struct page *page;
2779 
2780 	spin_lock_irqsave(&n->list_lock, flags);
2781 	list_for_each_entry(page, &n->partial, slab_list)
2782 		x += get_count(page);
2783 	spin_unlock_irqrestore(&n->list_lock, flags);
2784 	return x;
2785 }
2786 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2787 
2788 static noinline void
2789 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2790 {
2791 #ifdef CONFIG_SLUB_DEBUG
2792 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2793 				      DEFAULT_RATELIMIT_BURST);
2794 	int node;
2795 	struct kmem_cache_node *n;
2796 
2797 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2798 		return;
2799 
2800 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2801 		nid, gfpflags, &gfpflags);
2802 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2803 		s->name, s->object_size, s->size, oo_order(s->oo),
2804 		oo_order(s->min));
2805 
2806 	if (oo_order(s->min) > get_order(s->object_size))
2807 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2808 			s->name);
2809 
2810 	for_each_kmem_cache_node(s, node, n) {
2811 		unsigned long nr_slabs;
2812 		unsigned long nr_objs;
2813 		unsigned long nr_free;
2814 
2815 		nr_free  = count_partial(n, count_free);
2816 		nr_slabs = node_nr_slabs(n);
2817 		nr_objs  = node_nr_objs(n);
2818 
2819 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2820 			node, nr_slabs, nr_objs, nr_free);
2821 	}
2822 #endif
2823 }
2824 
2825 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2826 {
2827 	if (unlikely(PageSlabPfmemalloc(page)))
2828 		return gfp_pfmemalloc_allowed(gfpflags);
2829 
2830 	return true;
2831 }
2832 
2833 /*
2834  * A variant of pfmemalloc_match() that tests page flags without asserting
2835  * PageSlab. Intended for opportunistic checks before taking a lock and
2836  * rechecking that nobody else freed the page under us.
2837  */
2838 static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2839 {
2840 	if (unlikely(__PageSlabPfmemalloc(page)))
2841 		return gfp_pfmemalloc_allowed(gfpflags);
2842 
2843 	return true;
2844 }
2845 
2846 /*
2847  * Check the page->freelist of a page and either transfer the freelist to the
2848  * per cpu freelist or deactivate the page.
2849  *
2850  * The page is still frozen if the return value is not NULL.
2851  *
2852  * If this function returns NULL then the page has been unfrozen.
2853  */
2854 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2855 {
2856 	struct page new;
2857 	unsigned long counters;
2858 	void *freelist;
2859 
2860 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2861 
2862 	do {
2863 		freelist = page->freelist;
2864 		counters = page->counters;
2865 
2866 		new.counters = counters;
2867 		VM_BUG_ON(!new.frozen);
2868 
2869 		new.inuse = page->objects;
2870 		new.frozen = freelist != NULL;
2871 
2872 	} while (!__cmpxchg_double_slab(s, page,
2873 		freelist, counters,
2874 		NULL, new.counters,
2875 		"get_freelist"));
2876 
2877 	return freelist;
2878 }
2879 
2880 /*
2881  * Slow path. The lockless freelist is empty or we need to perform
2882  * debugging duties.
2883  *
2884  * Processing is still very fast if new objects have been freed to the
2885  * regular freelist. In that case we simply take over the regular freelist
2886  * as the lockless freelist and zap the regular freelist.
2887  *
2888  * If that is not working then we fall back to the partial lists. We take the
2889  * first element of the freelist as the object to allocate now and move the
2890  * rest of the freelist to the lockless freelist.
2891  *
2892  * And if we were unable to get a new slab from the partial slab lists then
2893  * we need to allocate a new slab. This is the slowest path since it involves
2894  * a call to the page allocator and the setup of a new slab.
2895  *
2896  * Version of __slab_alloc to use when we know that preemption is
2897  * already disabled (which is the case for bulk allocation).
2898  */
2899 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2900 			  unsigned long addr, struct kmem_cache_cpu *c)
2901 {
2902 	void *freelist;
2903 	struct page *page;
2904 	unsigned long flags;
2905 
2906 	stat(s, ALLOC_SLOWPATH);
2907 
2908 reread_page:
2909 
2910 	page = READ_ONCE(c->page);
2911 	if (!page) {
2912 		/*
2913 		 * if the node is not online or has no normal memory, just
2914 		 * ignore the node constraint
2915 		 */
2916 		if (unlikely(node != NUMA_NO_NODE &&
2917 			     !node_isset(node, slab_nodes)))
2918 			node = NUMA_NO_NODE;
2919 		goto new_slab;
2920 	}
2921 redo:
2922 
2923 	if (unlikely(!node_match(page, node))) {
2924 		/*
2925 		 * same as above but node_match() being false already
2926 		 * implies node != NUMA_NO_NODE
2927 		 */
2928 		if (!node_isset(node, slab_nodes)) {
2929 			node = NUMA_NO_NODE;
2930 			goto redo;
2931 		} else {
2932 			stat(s, ALLOC_NODE_MISMATCH);
2933 			goto deactivate_slab;
2934 		}
2935 	}
2936 
2937 	/*
2938 	 * By rights, we should be searching for a slab page that was
2939 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2940 	 * information when the page leaves the per-cpu allocator
2941 	 */
2942 	if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2943 		goto deactivate_slab;
2944 
2945 	/* must check again c->page in case we got preempted and it changed */
2946 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2947 	if (unlikely(page != c->page)) {
2948 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2949 		goto reread_page;
2950 	}
2951 	freelist = c->freelist;
2952 	if (freelist)
2953 		goto load_freelist;
2954 
2955 	freelist = get_freelist(s, page);
2956 
2957 	if (!freelist) {
2958 		c->page = NULL;
2959 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2960 		stat(s, DEACTIVATE_BYPASS);
2961 		goto new_slab;
2962 	}
2963 
2964 	stat(s, ALLOC_REFILL);
2965 
2966 load_freelist:
2967 
2968 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2969 
2970 	/*
2971 	 * freelist is pointing to the list of objects to be used.
2972 	 * page is pointing to the page from which the objects are obtained.
2973 	 * That page must be frozen for per cpu allocations to work.
2974 	 */
2975 	VM_BUG_ON(!c->page->frozen);
2976 	c->freelist = get_freepointer(s, freelist);
2977 	c->tid = next_tid(c->tid);
2978 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2979 	return freelist;
2980 
2981 deactivate_slab:
2982 
2983 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2984 	if (page != c->page) {
2985 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2986 		goto reread_page;
2987 	}
2988 	freelist = c->freelist;
2989 	c->page = NULL;
2990 	c->freelist = NULL;
2991 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2992 	deactivate_slab(s, page, freelist);
2993 
2994 new_slab:
2995 
2996 	if (slub_percpu_partial(c)) {
2997 		local_lock_irqsave(&s->cpu_slab->lock, flags);
2998 		if (unlikely(c->page)) {
2999 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3000 			goto reread_page;
3001 		}
3002 		if (unlikely(!slub_percpu_partial(c))) {
3003 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3004 			/* we were preempted and partial list got empty */
3005 			goto new_objects;
3006 		}
3007 
3008 		page = c->page = slub_percpu_partial(c);
3009 		slub_set_percpu_partial(c, page);
3010 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3011 		stat(s, CPU_PARTIAL_ALLOC);
3012 		goto redo;
3013 	}
3014 
3015 new_objects:
3016 
3017 	freelist = get_partial(s, gfpflags, node, &page);
3018 	if (freelist)
3019 		goto check_new_page;
3020 
3021 	slub_put_cpu_ptr(s->cpu_slab);
3022 	page = new_slab(s, gfpflags, node);
3023 	c = slub_get_cpu_ptr(s->cpu_slab);
3024 
3025 	if (unlikely(!page)) {
3026 		slab_out_of_memory(s, gfpflags, node);
3027 		return NULL;
3028 	}
3029 
3030 	/*
3031 	 * No other reference to the page yet so we can
3032 	 * muck around with it freely without cmpxchg
3033 	 */
3034 	freelist = page->freelist;
3035 	page->freelist = NULL;
3036 
3037 	stat(s, ALLOC_SLAB);
3038 
3039 check_new_page:
3040 
3041 	if (kmem_cache_debug(s)) {
3042 		if (!alloc_debug_processing(s, page, freelist, addr)) {
3043 			/* Slab failed checks. Next slab needed */
3044 			goto new_slab;
3045 		} else {
3046 			/*
3047 			 * For debug case, we don't load freelist so that all
3048 			 * allocations go through alloc_debug_processing()
3049 			 */
3050 			goto return_single;
3051 		}
3052 	}
3053 
3054 	if (unlikely(!pfmemalloc_match(page, gfpflags)))
3055 		/*
3056 		 * For !pfmemalloc_match() case we don't load freelist so that
3057 		 * we don't make further mismatched allocations easier.
3058 		 */
3059 		goto return_single;
3060 
3061 retry_load_page:
3062 
3063 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3064 	if (unlikely(c->page)) {
3065 		void *flush_freelist = c->freelist;
3066 		struct page *flush_page = c->page;
3067 
3068 		c->page = NULL;
3069 		c->freelist = NULL;
3070 		c->tid = next_tid(c->tid);
3071 
3072 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3073 
3074 		deactivate_slab(s, flush_page, flush_freelist);
3075 
3076 		stat(s, CPUSLAB_FLUSH);
3077 
3078 		goto retry_load_page;
3079 	}
3080 	c->page = page;
3081 
3082 	goto load_freelist;
3083 
3084 return_single:
3085 
3086 	deactivate_slab(s, page, get_freepointer(s, freelist));
3087 	return freelist;
3088 }
3089 
3090 /*
3091  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3092  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3093  * pointer.
3094  */
3095 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3096 			  unsigned long addr, struct kmem_cache_cpu *c)
3097 {
3098 	void *p;
3099 
3100 #ifdef CONFIG_PREEMPT_COUNT
3101 	/*
3102 	 * We may have been preempted and rescheduled on a different
3103 	 * cpu before disabling preemption. Need to reload cpu area
3104 	 * pointer.
3105 	 */
3106 	c = slub_get_cpu_ptr(s->cpu_slab);
3107 #endif
3108 
3109 	p = ___slab_alloc(s, gfpflags, node, addr, c);
3110 #ifdef CONFIG_PREEMPT_COUNT
3111 	slub_put_cpu_ptr(s->cpu_slab);
3112 #endif
3113 	return p;
3114 }
3115 
3116 /*
3117  * If the object has been wiped upon free, make sure it's fully initialized by
3118  * zeroing out freelist pointer.
3119  */
3120 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3121 						   void *obj)
3122 {
3123 	if (unlikely(slab_want_init_on_free(s)) && obj)
3124 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3125 			0, sizeof(void *));
3126 }
3127 
3128 /*
3129  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3130  * have the fastpath folded into their functions. So no function call
3131  * overhead for requests that can be satisfied on the fastpath.
3132  *
3133  * The fastpath works by first checking if the lockless freelist can be used.
3134  * If not then __slab_alloc is called for slow processing.
3135  *
3136  * Otherwise we can simply pick the next object from the lockless free list.
3137  */
3138 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
3139 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3140 {
3141 	void *object;
3142 	struct kmem_cache_cpu *c;
3143 	struct page *page;
3144 	unsigned long tid;
3145 	struct obj_cgroup *objcg = NULL;
3146 	bool init = false;
3147 
3148 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
3149 	if (!s)
3150 		return NULL;
3151 
3152 	object = kfence_alloc(s, orig_size, gfpflags);
3153 	if (unlikely(object))
3154 		goto out;
3155 
3156 redo:
3157 	/*
3158 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3159 	 * enabled. We may switch back and forth between cpus while
3160 	 * reading from one cpu area. That does not matter as long
3161 	 * as we end up on the original cpu again when doing the cmpxchg.
3162 	 *
3163 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3164 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3165 	 * the tid. If we are preempted and switched to another cpu between the
3166 	 * two reads, it's OK as the two are still associated with the same cpu
3167 	 * and cmpxchg later will validate the cpu.
3168 	 */
3169 	c = raw_cpu_ptr(s->cpu_slab);
3170 	tid = READ_ONCE(c->tid);
3171 
3172 	/*
3173 	 * Irqless object alloc/free algorithm used here depends on sequence
3174 	 * of fetching cpu_slab's data. tid should be fetched before anything
3175 	 * on c to guarantee that object and page associated with previous tid
3176 	 * won't be used with current tid. If we fetch tid first, object and
3177 	 * page could be one associated with next tid and our alloc/free
3178 	 * request will be failed. In this case, we will retry. So, no problem.
3179 	 */
3180 	barrier();
3181 
3182 	/*
3183 	 * The transaction ids are globally unique per cpu and per operation on
3184 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3185 	 * occurs on the right processor and that there was no operation on the
3186 	 * linked list in between.
3187 	 */
3188 
3189 	object = c->freelist;
3190 	page = c->page;
3191 	/*
3192 	 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3193 	 * slowpath has taken the local_lock_irqsave(), it is not protected
3194 	 * against a fast path operation in an irq handler. So we need to take
3195 	 * the slow path which uses local_lock. It is still relatively fast if
3196 	 * there is a suitable cpu freelist.
3197 	 */
3198 	if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3199 	    unlikely(!object || !page || !node_match(page, node))) {
3200 		object = __slab_alloc(s, gfpflags, node, addr, c);
3201 	} else {
3202 		void *next_object = get_freepointer_safe(s, object);
3203 
3204 		/*
3205 		 * The cmpxchg will only match if there was no additional
3206 		 * operation and if we are on the right processor.
3207 		 *
3208 		 * The cmpxchg does the following atomically (without lock
3209 		 * semantics!)
3210 		 * 1. Relocate first pointer to the current per cpu area.
3211 		 * 2. Verify that tid and freelist have not been changed
3212 		 * 3. If they were not changed replace tid and freelist
3213 		 *
3214 		 * Since this is without lock semantics the protection is only
3215 		 * against code executing on this cpu *not* from access by
3216 		 * other cpus.
3217 		 */
3218 		if (unlikely(!this_cpu_cmpxchg_double(
3219 				s->cpu_slab->freelist, s->cpu_slab->tid,
3220 				object, tid,
3221 				next_object, next_tid(tid)))) {
3222 
3223 			note_cmpxchg_failure("slab_alloc", s, tid);
3224 			goto redo;
3225 		}
3226 		prefetch_freepointer(s, next_object);
3227 		stat(s, ALLOC_FASTPATH);
3228 	}
3229 
3230 	maybe_wipe_obj_freeptr(s, object);
3231 	init = slab_want_init_on_alloc(gfpflags, s);
3232 
3233 out:
3234 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3235 
3236 	return object;
3237 }
3238 
3239 static __always_inline void *slab_alloc(struct kmem_cache *s,
3240 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3241 {
3242 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
3243 }
3244 
3245 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3246 {
3247 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
3248 
3249 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3250 				s->size, gfpflags);
3251 
3252 	return ret;
3253 }
3254 EXPORT_SYMBOL(kmem_cache_alloc);
3255 
3256 #ifdef CONFIG_TRACING
3257 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3258 {
3259 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
3260 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3261 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3262 	return ret;
3263 }
3264 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3265 #endif
3266 
3267 #ifdef CONFIG_NUMA
3268 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3269 {
3270 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3271 
3272 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3273 				    s->object_size, s->size, gfpflags, node);
3274 
3275 	return ret;
3276 }
3277 EXPORT_SYMBOL(kmem_cache_alloc_node);
3278 
3279 #ifdef CONFIG_TRACING
3280 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3281 				    gfp_t gfpflags,
3282 				    int node, size_t size)
3283 {
3284 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3285 
3286 	trace_kmalloc_node(_RET_IP_, ret,
3287 			   size, s->size, gfpflags, node);
3288 
3289 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3290 	return ret;
3291 }
3292 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3293 #endif
3294 #endif	/* CONFIG_NUMA */
3295 
3296 /*
3297  * Slow path handling. This may still be called frequently since objects
3298  * have a longer lifetime than the cpu slabs in most processing loads.
3299  *
3300  * So we still attempt to reduce cache line usage. Just take the slab
3301  * lock and free the item. If there is no additional partial page
3302  * handling required then we can return immediately.
3303  */
3304 static void __slab_free(struct kmem_cache *s, struct page *page,
3305 			void *head, void *tail, int cnt,
3306 			unsigned long addr)
3307 
3308 {
3309 	void *prior;
3310 	int was_frozen;
3311 	struct page new;
3312 	unsigned long counters;
3313 	struct kmem_cache_node *n = NULL;
3314 	unsigned long flags;
3315 
3316 	stat(s, FREE_SLOWPATH);
3317 
3318 	if (kfence_free(head))
3319 		return;
3320 
3321 	if (kmem_cache_debug(s) &&
3322 	    !free_debug_processing(s, page, head, tail, cnt, addr))
3323 		return;
3324 
3325 	do {
3326 		if (unlikely(n)) {
3327 			spin_unlock_irqrestore(&n->list_lock, flags);
3328 			n = NULL;
3329 		}
3330 		prior = page->freelist;
3331 		counters = page->counters;
3332 		set_freepointer(s, tail, prior);
3333 		new.counters = counters;
3334 		was_frozen = new.frozen;
3335 		new.inuse -= cnt;
3336 		if ((!new.inuse || !prior) && !was_frozen) {
3337 
3338 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3339 
3340 				/*
3341 				 * Slab was on no list before and will be
3342 				 * partially empty
3343 				 * We can defer the list move and instead
3344 				 * freeze it.
3345 				 */
3346 				new.frozen = 1;
3347 
3348 			} else { /* Needs to be taken off a list */
3349 
3350 				n = get_node(s, page_to_nid(page));
3351 				/*
3352 				 * Speculatively acquire the list_lock.
3353 				 * If the cmpxchg does not succeed then we may
3354 				 * drop the list_lock without any processing.
3355 				 *
3356 				 * Otherwise the list_lock will synchronize with
3357 				 * other processors updating the list of slabs.
3358 				 */
3359 				spin_lock_irqsave(&n->list_lock, flags);
3360 
3361 			}
3362 		}
3363 
3364 	} while (!cmpxchg_double_slab(s, page,
3365 		prior, counters,
3366 		head, new.counters,
3367 		"__slab_free"));
3368 
3369 	if (likely(!n)) {
3370 
3371 		if (likely(was_frozen)) {
3372 			/*
3373 			 * The list lock was not taken therefore no list
3374 			 * activity can be necessary.
3375 			 */
3376 			stat(s, FREE_FROZEN);
3377 		} else if (new.frozen) {
3378 			/*
3379 			 * If we just froze the page then put it onto the
3380 			 * per cpu partial list.
3381 			 */
3382 			put_cpu_partial(s, page, 1);
3383 			stat(s, CPU_PARTIAL_FREE);
3384 		}
3385 
3386 		return;
3387 	}
3388 
3389 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3390 		goto slab_empty;
3391 
3392 	/*
3393 	 * Objects left in the slab. If it was not on the partial list before
3394 	 * then add it.
3395 	 */
3396 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3397 		remove_full(s, n, page);
3398 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3399 		stat(s, FREE_ADD_PARTIAL);
3400 	}
3401 	spin_unlock_irqrestore(&n->list_lock, flags);
3402 	return;
3403 
3404 slab_empty:
3405 	if (prior) {
3406 		/*
3407 		 * Slab on the partial list.
3408 		 */
3409 		remove_partial(n, page);
3410 		stat(s, FREE_REMOVE_PARTIAL);
3411 	} else {
3412 		/* Slab must be on the full list */
3413 		remove_full(s, n, page);
3414 	}
3415 
3416 	spin_unlock_irqrestore(&n->list_lock, flags);
3417 	stat(s, FREE_SLAB);
3418 	discard_slab(s, page);
3419 }
3420 
3421 /*
3422  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3423  * can perform fastpath freeing without additional function calls.
3424  *
3425  * The fastpath is only possible if we are freeing to the current cpu slab
3426  * of this processor. This typically the case if we have just allocated
3427  * the item before.
3428  *
3429  * If fastpath is not possible then fall back to __slab_free where we deal
3430  * with all sorts of special processing.
3431  *
3432  * Bulk free of a freelist with several objects (all pointing to the
3433  * same page) possible by specifying head and tail ptr, plus objects
3434  * count (cnt). Bulk free indicated by tail pointer being set.
3435  */
3436 static __always_inline void do_slab_free(struct kmem_cache *s,
3437 				struct page *page, void *head, void *tail,
3438 				int cnt, unsigned long addr)
3439 {
3440 	void *tail_obj = tail ? : head;
3441 	struct kmem_cache_cpu *c;
3442 	unsigned long tid;
3443 
3444 	/* memcg_slab_free_hook() is already called for bulk free. */
3445 	if (!tail)
3446 		memcg_slab_free_hook(s, &head, 1);
3447 redo:
3448 	/*
3449 	 * Determine the currently cpus per cpu slab.
3450 	 * The cpu may change afterward. However that does not matter since
3451 	 * data is retrieved via this pointer. If we are on the same cpu
3452 	 * during the cmpxchg then the free will succeed.
3453 	 */
3454 	c = raw_cpu_ptr(s->cpu_slab);
3455 	tid = READ_ONCE(c->tid);
3456 
3457 	/* Same with comment on barrier() in slab_alloc_node() */
3458 	barrier();
3459 
3460 	if (likely(page == c->page)) {
3461 #ifndef CONFIG_PREEMPT_RT
3462 		void **freelist = READ_ONCE(c->freelist);
3463 
3464 		set_freepointer(s, tail_obj, freelist);
3465 
3466 		if (unlikely(!this_cpu_cmpxchg_double(
3467 				s->cpu_slab->freelist, s->cpu_slab->tid,
3468 				freelist, tid,
3469 				head, next_tid(tid)))) {
3470 
3471 			note_cmpxchg_failure("slab_free", s, tid);
3472 			goto redo;
3473 		}
3474 #else /* CONFIG_PREEMPT_RT */
3475 		/*
3476 		 * We cannot use the lockless fastpath on PREEMPT_RT because if
3477 		 * a slowpath has taken the local_lock_irqsave(), it is not
3478 		 * protected against a fast path operation in an irq handler. So
3479 		 * we need to take the local_lock. We shouldn't simply defer to
3480 		 * __slab_free() as that wouldn't use the cpu freelist at all.
3481 		 */
3482 		void **freelist;
3483 
3484 		local_lock(&s->cpu_slab->lock);
3485 		c = this_cpu_ptr(s->cpu_slab);
3486 		if (unlikely(page != c->page)) {
3487 			local_unlock(&s->cpu_slab->lock);
3488 			goto redo;
3489 		}
3490 		tid = c->tid;
3491 		freelist = c->freelist;
3492 
3493 		set_freepointer(s, tail_obj, freelist);
3494 		c->freelist = head;
3495 		c->tid = next_tid(tid);
3496 
3497 		local_unlock(&s->cpu_slab->lock);
3498 #endif
3499 		stat(s, FREE_FASTPATH);
3500 	} else
3501 		__slab_free(s, page, head, tail_obj, cnt, addr);
3502 
3503 }
3504 
3505 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3506 				      void *head, void *tail, int cnt,
3507 				      unsigned long addr)
3508 {
3509 	/*
3510 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3511 	 * to remove objects, whose reuse must be delayed.
3512 	 */
3513 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3514 		do_slab_free(s, page, head, tail, cnt, addr);
3515 }
3516 
3517 #ifdef CONFIG_KASAN_GENERIC
3518 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3519 {
3520 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3521 }
3522 #endif
3523 
3524 void kmem_cache_free(struct kmem_cache *s, void *x)
3525 {
3526 	s = cache_from_obj(s, x);
3527 	if (!s)
3528 		return;
3529 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3530 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3531 }
3532 EXPORT_SYMBOL(kmem_cache_free);
3533 
3534 struct detached_freelist {
3535 	struct page *page;
3536 	void *tail;
3537 	void *freelist;
3538 	int cnt;
3539 	struct kmem_cache *s;
3540 };
3541 
3542 static inline void free_nonslab_page(struct page *page, void *object)
3543 {
3544 	unsigned int order = compound_order(page);
3545 
3546 	if (WARN_ON_ONCE(!PageCompound(page)))
3547 		pr_warn_once("object pointer: 0x%p\n", object);
3548 
3549 	kfree_hook(object);
3550 	mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3551 	__free_pages(page, order);
3552 }
3553 
3554 /*
3555  * This function progressively scans the array with free objects (with
3556  * a limited look ahead) and extract objects belonging to the same
3557  * page.  It builds a detached freelist directly within the given
3558  * page/objects.  This can happen without any need for
3559  * synchronization, because the objects are owned by running process.
3560  * The freelist is build up as a single linked list in the objects.
3561  * The idea is, that this detached freelist can then be bulk
3562  * transferred to the real freelist(s), but only requiring a single
3563  * synchronization primitive.  Look ahead in the array is limited due
3564  * to performance reasons.
3565  */
3566 static inline
3567 int build_detached_freelist(struct kmem_cache *s, size_t size,
3568 			    void **p, struct detached_freelist *df)
3569 {
3570 	size_t first_skipped_index = 0;
3571 	int lookahead = 3;
3572 	void *object;
3573 	struct page *page;
3574 
3575 	/* Always re-init detached_freelist */
3576 	df->page = NULL;
3577 
3578 	do {
3579 		object = p[--size];
3580 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3581 	} while (!object && size);
3582 
3583 	if (!object)
3584 		return 0;
3585 
3586 	page = virt_to_head_page(object);
3587 	if (!s) {
3588 		/* Handle kalloc'ed objects */
3589 		if (unlikely(!PageSlab(page))) {
3590 			free_nonslab_page(page, object);
3591 			p[size] = NULL; /* mark object processed */
3592 			return size;
3593 		}
3594 		/* Derive kmem_cache from object */
3595 		df->s = page->slab_cache;
3596 	} else {
3597 		df->s = cache_from_obj(s, object); /* Support for memcg */
3598 	}
3599 
3600 	if (is_kfence_address(object)) {
3601 		slab_free_hook(df->s, object, false);
3602 		__kfence_free(object);
3603 		p[size] = NULL; /* mark object processed */
3604 		return size;
3605 	}
3606 
3607 	/* Start new detached freelist */
3608 	df->page = page;
3609 	set_freepointer(df->s, object, NULL);
3610 	df->tail = object;
3611 	df->freelist = object;
3612 	p[size] = NULL; /* mark object processed */
3613 	df->cnt = 1;
3614 
3615 	while (size) {
3616 		object = p[--size];
3617 		if (!object)
3618 			continue; /* Skip processed objects */
3619 
3620 		/* df->page is always set at this point */
3621 		if (df->page == virt_to_head_page(object)) {
3622 			/* Opportunity build freelist */
3623 			set_freepointer(df->s, object, df->freelist);
3624 			df->freelist = object;
3625 			df->cnt++;
3626 			p[size] = NULL; /* mark object processed */
3627 
3628 			continue;
3629 		}
3630 
3631 		/* Limit look ahead search */
3632 		if (!--lookahead)
3633 			break;
3634 
3635 		if (!first_skipped_index)
3636 			first_skipped_index = size + 1;
3637 	}
3638 
3639 	return first_skipped_index;
3640 }
3641 
3642 /* Note that interrupts must be enabled when calling this function. */
3643 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3644 {
3645 	if (WARN_ON(!size))
3646 		return;
3647 
3648 	memcg_slab_free_hook(s, p, size);
3649 	do {
3650 		struct detached_freelist df;
3651 
3652 		size = build_detached_freelist(s, size, p, &df);
3653 		if (!df.page)
3654 			continue;
3655 
3656 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3657 	} while (likely(size));
3658 }
3659 EXPORT_SYMBOL(kmem_cache_free_bulk);
3660 
3661 /* Note that interrupts must be enabled when calling this function. */
3662 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3663 			  void **p)
3664 {
3665 	struct kmem_cache_cpu *c;
3666 	int i;
3667 	struct obj_cgroup *objcg = NULL;
3668 
3669 	/* memcg and kmem_cache debug support */
3670 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3671 	if (unlikely(!s))
3672 		return false;
3673 	/*
3674 	 * Drain objects in the per cpu slab, while disabling local
3675 	 * IRQs, which protects against PREEMPT and interrupts
3676 	 * handlers invoking normal fastpath.
3677 	 */
3678 	c = slub_get_cpu_ptr(s->cpu_slab);
3679 	local_lock_irq(&s->cpu_slab->lock);
3680 
3681 	for (i = 0; i < size; i++) {
3682 		void *object = kfence_alloc(s, s->object_size, flags);
3683 
3684 		if (unlikely(object)) {
3685 			p[i] = object;
3686 			continue;
3687 		}
3688 
3689 		object = c->freelist;
3690 		if (unlikely(!object)) {
3691 			/*
3692 			 * We may have removed an object from c->freelist using
3693 			 * the fastpath in the previous iteration; in that case,
3694 			 * c->tid has not been bumped yet.
3695 			 * Since ___slab_alloc() may reenable interrupts while
3696 			 * allocating memory, we should bump c->tid now.
3697 			 */
3698 			c->tid = next_tid(c->tid);
3699 
3700 			local_unlock_irq(&s->cpu_slab->lock);
3701 
3702 			/*
3703 			 * Invoking slow path likely have side-effect
3704 			 * of re-populating per CPU c->freelist
3705 			 */
3706 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3707 					    _RET_IP_, c);
3708 			if (unlikely(!p[i]))
3709 				goto error;
3710 
3711 			c = this_cpu_ptr(s->cpu_slab);
3712 			maybe_wipe_obj_freeptr(s, p[i]);
3713 
3714 			local_lock_irq(&s->cpu_slab->lock);
3715 
3716 			continue; /* goto for-loop */
3717 		}
3718 		c->freelist = get_freepointer(s, object);
3719 		p[i] = object;
3720 		maybe_wipe_obj_freeptr(s, p[i]);
3721 	}
3722 	c->tid = next_tid(c->tid);
3723 	local_unlock_irq(&s->cpu_slab->lock);
3724 	slub_put_cpu_ptr(s->cpu_slab);
3725 
3726 	/*
3727 	 * memcg and kmem_cache debug support and memory initialization.
3728 	 * Done outside of the IRQ disabled fastpath loop.
3729 	 */
3730 	slab_post_alloc_hook(s, objcg, flags, size, p,
3731 				slab_want_init_on_alloc(flags, s));
3732 	return i;
3733 error:
3734 	slub_put_cpu_ptr(s->cpu_slab);
3735 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3736 	__kmem_cache_free_bulk(s, i, p);
3737 	return 0;
3738 }
3739 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3740 
3741 
3742 /*
3743  * Object placement in a slab is made very easy because we always start at
3744  * offset 0. If we tune the size of the object to the alignment then we can
3745  * get the required alignment by putting one properly sized object after
3746  * another.
3747  *
3748  * Notice that the allocation order determines the sizes of the per cpu
3749  * caches. Each processor has always one slab available for allocations.
3750  * Increasing the allocation order reduces the number of times that slabs
3751  * must be moved on and off the partial lists and is therefore a factor in
3752  * locking overhead.
3753  */
3754 
3755 /*
3756  * Minimum / Maximum order of slab pages. This influences locking overhead
3757  * and slab fragmentation. A higher order reduces the number of partial slabs
3758  * and increases the number of allocations possible without having to
3759  * take the list_lock.
3760  */
3761 static unsigned int slub_min_order;
3762 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3763 static unsigned int slub_min_objects;
3764 
3765 /*
3766  * Calculate the order of allocation given an slab object size.
3767  *
3768  * The order of allocation has significant impact on performance and other
3769  * system components. Generally order 0 allocations should be preferred since
3770  * order 0 does not cause fragmentation in the page allocator. Larger objects
3771  * be problematic to put into order 0 slabs because there may be too much
3772  * unused space left. We go to a higher order if more than 1/16th of the slab
3773  * would be wasted.
3774  *
3775  * In order to reach satisfactory performance we must ensure that a minimum
3776  * number of objects is in one slab. Otherwise we may generate too much
3777  * activity on the partial lists which requires taking the list_lock. This is
3778  * less a concern for large slabs though which are rarely used.
3779  *
3780  * slub_max_order specifies the order where we begin to stop considering the
3781  * number of objects in a slab as critical. If we reach slub_max_order then
3782  * we try to keep the page order as low as possible. So we accept more waste
3783  * of space in favor of a small page order.
3784  *
3785  * Higher order allocations also allow the placement of more objects in a
3786  * slab and thereby reduce object handling overhead. If the user has
3787  * requested a higher minimum order then we start with that one instead of
3788  * the smallest order which will fit the object.
3789  */
3790 static inline unsigned int slab_order(unsigned int size,
3791 		unsigned int min_objects, unsigned int max_order,
3792 		unsigned int fract_leftover)
3793 {
3794 	unsigned int min_order = slub_min_order;
3795 	unsigned int order;
3796 
3797 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3798 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3799 
3800 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3801 			order <= max_order; order++) {
3802 
3803 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3804 		unsigned int rem;
3805 
3806 		rem = slab_size % size;
3807 
3808 		if (rem <= slab_size / fract_leftover)
3809 			break;
3810 	}
3811 
3812 	return order;
3813 }
3814 
3815 static inline int calculate_order(unsigned int size)
3816 {
3817 	unsigned int order;
3818 	unsigned int min_objects;
3819 	unsigned int max_objects;
3820 	unsigned int nr_cpus;
3821 
3822 	/*
3823 	 * Attempt to find best configuration for a slab. This
3824 	 * works by first attempting to generate a layout with
3825 	 * the best configuration and backing off gradually.
3826 	 *
3827 	 * First we increase the acceptable waste in a slab. Then
3828 	 * we reduce the minimum objects required in a slab.
3829 	 */
3830 	min_objects = slub_min_objects;
3831 	if (!min_objects) {
3832 		/*
3833 		 * Some architectures will only update present cpus when
3834 		 * onlining them, so don't trust the number if it's just 1. But
3835 		 * we also don't want to use nr_cpu_ids always, as on some other
3836 		 * architectures, there can be many possible cpus, but never
3837 		 * onlined. Here we compromise between trying to avoid too high
3838 		 * order on systems that appear larger than they are, and too
3839 		 * low order on systems that appear smaller than they are.
3840 		 */
3841 		nr_cpus = num_present_cpus();
3842 		if (nr_cpus <= 1)
3843 			nr_cpus = nr_cpu_ids;
3844 		min_objects = 4 * (fls(nr_cpus) + 1);
3845 	}
3846 	max_objects = order_objects(slub_max_order, size);
3847 	min_objects = min(min_objects, max_objects);
3848 
3849 	while (min_objects > 1) {
3850 		unsigned int fraction;
3851 
3852 		fraction = 16;
3853 		while (fraction >= 4) {
3854 			order = slab_order(size, min_objects,
3855 					slub_max_order, fraction);
3856 			if (order <= slub_max_order)
3857 				return order;
3858 			fraction /= 2;
3859 		}
3860 		min_objects--;
3861 	}
3862 
3863 	/*
3864 	 * We were unable to place multiple objects in a slab. Now
3865 	 * lets see if we can place a single object there.
3866 	 */
3867 	order = slab_order(size, 1, slub_max_order, 1);
3868 	if (order <= slub_max_order)
3869 		return order;
3870 
3871 	/*
3872 	 * Doh this slab cannot be placed using slub_max_order.
3873 	 */
3874 	order = slab_order(size, 1, MAX_ORDER, 1);
3875 	if (order < MAX_ORDER)
3876 		return order;
3877 	return -ENOSYS;
3878 }
3879 
3880 static void
3881 init_kmem_cache_node(struct kmem_cache_node *n)
3882 {
3883 	n->nr_partial = 0;
3884 	spin_lock_init(&n->list_lock);
3885 	INIT_LIST_HEAD(&n->partial);
3886 #ifdef CONFIG_SLUB_DEBUG
3887 	atomic_long_set(&n->nr_slabs, 0);
3888 	atomic_long_set(&n->total_objects, 0);
3889 	INIT_LIST_HEAD(&n->full);
3890 #endif
3891 }
3892 
3893 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3894 {
3895 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3896 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3897 
3898 	/*
3899 	 * Must align to double word boundary for the double cmpxchg
3900 	 * instructions to work; see __pcpu_double_call_return_bool().
3901 	 */
3902 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3903 				     2 * sizeof(void *));
3904 
3905 	if (!s->cpu_slab)
3906 		return 0;
3907 
3908 	init_kmem_cache_cpus(s);
3909 
3910 	return 1;
3911 }
3912 
3913 static struct kmem_cache *kmem_cache_node;
3914 
3915 /*
3916  * No kmalloc_node yet so do it by hand. We know that this is the first
3917  * slab on the node for this slabcache. There are no concurrent accesses
3918  * possible.
3919  *
3920  * Note that this function only works on the kmem_cache_node
3921  * when allocating for the kmem_cache_node. This is used for bootstrapping
3922  * memory on a fresh node that has no slab structures yet.
3923  */
3924 static void early_kmem_cache_node_alloc(int node)
3925 {
3926 	struct page *page;
3927 	struct kmem_cache_node *n;
3928 
3929 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3930 
3931 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3932 
3933 	BUG_ON(!page);
3934 	if (page_to_nid(page) != node) {
3935 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3936 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3937 	}
3938 
3939 	n = page->freelist;
3940 	BUG_ON(!n);
3941 #ifdef CONFIG_SLUB_DEBUG
3942 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3943 	init_tracking(kmem_cache_node, n);
3944 #endif
3945 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3946 	page->freelist = get_freepointer(kmem_cache_node, n);
3947 	page->inuse = 1;
3948 	page->frozen = 0;
3949 	kmem_cache_node->node[node] = n;
3950 	init_kmem_cache_node(n);
3951 	inc_slabs_node(kmem_cache_node, node, page->objects);
3952 
3953 	/*
3954 	 * No locks need to be taken here as it has just been
3955 	 * initialized and there is no concurrent access.
3956 	 */
3957 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3958 }
3959 
3960 static void free_kmem_cache_nodes(struct kmem_cache *s)
3961 {
3962 	int node;
3963 	struct kmem_cache_node *n;
3964 
3965 	for_each_kmem_cache_node(s, node, n) {
3966 		s->node[node] = NULL;
3967 		kmem_cache_free(kmem_cache_node, n);
3968 	}
3969 }
3970 
3971 void __kmem_cache_release(struct kmem_cache *s)
3972 {
3973 	cache_random_seq_destroy(s);
3974 	free_percpu(s->cpu_slab);
3975 	free_kmem_cache_nodes(s);
3976 }
3977 
3978 static int init_kmem_cache_nodes(struct kmem_cache *s)
3979 {
3980 	int node;
3981 
3982 	for_each_node_mask(node, slab_nodes) {
3983 		struct kmem_cache_node *n;
3984 
3985 		if (slab_state == DOWN) {
3986 			early_kmem_cache_node_alloc(node);
3987 			continue;
3988 		}
3989 		n = kmem_cache_alloc_node(kmem_cache_node,
3990 						GFP_KERNEL, node);
3991 
3992 		if (!n) {
3993 			free_kmem_cache_nodes(s);
3994 			return 0;
3995 		}
3996 
3997 		init_kmem_cache_node(n);
3998 		s->node[node] = n;
3999 	}
4000 	return 1;
4001 }
4002 
4003 static void set_min_partial(struct kmem_cache *s, unsigned long min)
4004 {
4005 	if (min < MIN_PARTIAL)
4006 		min = MIN_PARTIAL;
4007 	else if (min > MAX_PARTIAL)
4008 		min = MAX_PARTIAL;
4009 	s->min_partial = min;
4010 }
4011 
4012 static void set_cpu_partial(struct kmem_cache *s)
4013 {
4014 #ifdef CONFIG_SLUB_CPU_PARTIAL
4015 	unsigned int nr_objects;
4016 
4017 	/*
4018 	 * cpu_partial determined the maximum number of objects kept in the
4019 	 * per cpu partial lists of a processor.
4020 	 *
4021 	 * Per cpu partial lists mainly contain slabs that just have one
4022 	 * object freed. If they are used for allocation then they can be
4023 	 * filled up again with minimal effort. The slab will never hit the
4024 	 * per node partial lists and therefore no locking will be required.
4025 	 *
4026 	 * For backwards compatibility reasons, this is determined as number
4027 	 * of objects, even though we now limit maximum number of pages, see
4028 	 * slub_set_cpu_partial()
4029 	 */
4030 	if (!kmem_cache_has_cpu_partial(s))
4031 		nr_objects = 0;
4032 	else if (s->size >= PAGE_SIZE)
4033 		nr_objects = 6;
4034 	else if (s->size >= 1024)
4035 		nr_objects = 24;
4036 	else if (s->size >= 256)
4037 		nr_objects = 52;
4038 	else
4039 		nr_objects = 120;
4040 
4041 	slub_set_cpu_partial(s, nr_objects);
4042 #endif
4043 }
4044 
4045 /*
4046  * calculate_sizes() determines the order and the distribution of data within
4047  * a slab object.
4048  */
4049 static int calculate_sizes(struct kmem_cache *s, int forced_order)
4050 {
4051 	slab_flags_t flags = s->flags;
4052 	unsigned int size = s->object_size;
4053 	unsigned int order;
4054 
4055 	/*
4056 	 * Round up object size to the next word boundary. We can only
4057 	 * place the free pointer at word boundaries and this determines
4058 	 * the possible location of the free pointer.
4059 	 */
4060 	size = ALIGN(size, sizeof(void *));
4061 
4062 #ifdef CONFIG_SLUB_DEBUG
4063 	/*
4064 	 * Determine if we can poison the object itself. If the user of
4065 	 * the slab may touch the object after free or before allocation
4066 	 * then we should never poison the object itself.
4067 	 */
4068 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4069 			!s->ctor)
4070 		s->flags |= __OBJECT_POISON;
4071 	else
4072 		s->flags &= ~__OBJECT_POISON;
4073 
4074 
4075 	/*
4076 	 * If we are Redzoning then check if there is some space between the
4077 	 * end of the object and the free pointer. If not then add an
4078 	 * additional word to have some bytes to store Redzone information.
4079 	 */
4080 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4081 		size += sizeof(void *);
4082 #endif
4083 
4084 	/*
4085 	 * With that we have determined the number of bytes in actual use
4086 	 * by the object and redzoning.
4087 	 */
4088 	s->inuse = size;
4089 
4090 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4091 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4092 	    s->ctor) {
4093 		/*
4094 		 * Relocate free pointer after the object if it is not
4095 		 * permitted to overwrite the first word of the object on
4096 		 * kmem_cache_free.
4097 		 *
4098 		 * This is the case if we do RCU, have a constructor or
4099 		 * destructor, are poisoning the objects, or are
4100 		 * redzoning an object smaller than sizeof(void *).
4101 		 *
4102 		 * The assumption that s->offset >= s->inuse means free
4103 		 * pointer is outside of the object is used in the
4104 		 * freeptr_outside_object() function. If that is no
4105 		 * longer true, the function needs to be modified.
4106 		 */
4107 		s->offset = size;
4108 		size += sizeof(void *);
4109 	} else {
4110 		/*
4111 		 * Store freelist pointer near middle of object to keep
4112 		 * it away from the edges of the object to avoid small
4113 		 * sized over/underflows from neighboring allocations.
4114 		 */
4115 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4116 	}
4117 
4118 #ifdef CONFIG_SLUB_DEBUG
4119 	if (flags & SLAB_STORE_USER)
4120 		/*
4121 		 * Need to store information about allocs and frees after
4122 		 * the object.
4123 		 */
4124 		size += 2 * sizeof(struct track);
4125 #endif
4126 
4127 	kasan_cache_create(s, &size, &s->flags);
4128 #ifdef CONFIG_SLUB_DEBUG
4129 	if (flags & SLAB_RED_ZONE) {
4130 		/*
4131 		 * Add some empty padding so that we can catch
4132 		 * overwrites from earlier objects rather than let
4133 		 * tracking information or the free pointer be
4134 		 * corrupted if a user writes before the start
4135 		 * of the object.
4136 		 */
4137 		size += sizeof(void *);
4138 
4139 		s->red_left_pad = sizeof(void *);
4140 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4141 		size += s->red_left_pad;
4142 	}
4143 #endif
4144 
4145 	/*
4146 	 * SLUB stores one object immediately after another beginning from
4147 	 * offset 0. In order to align the objects we have to simply size
4148 	 * each object to conform to the alignment.
4149 	 */
4150 	size = ALIGN(size, s->align);
4151 	s->size = size;
4152 	s->reciprocal_size = reciprocal_value(size);
4153 	if (forced_order >= 0)
4154 		order = forced_order;
4155 	else
4156 		order = calculate_order(size);
4157 
4158 	if ((int)order < 0)
4159 		return 0;
4160 
4161 	s->allocflags = 0;
4162 	if (order)
4163 		s->allocflags |= __GFP_COMP;
4164 
4165 	if (s->flags & SLAB_CACHE_DMA)
4166 		s->allocflags |= GFP_DMA;
4167 
4168 	if (s->flags & SLAB_CACHE_DMA32)
4169 		s->allocflags |= GFP_DMA32;
4170 
4171 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4172 		s->allocflags |= __GFP_RECLAIMABLE;
4173 
4174 	/*
4175 	 * Determine the number of objects per slab
4176 	 */
4177 	s->oo = oo_make(order, size);
4178 	s->min = oo_make(get_order(size), size);
4179 	if (oo_objects(s->oo) > oo_objects(s->max))
4180 		s->max = s->oo;
4181 
4182 	return !!oo_objects(s->oo);
4183 }
4184 
4185 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4186 {
4187 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4188 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4189 	s->random = get_random_long();
4190 #endif
4191 
4192 	if (!calculate_sizes(s, -1))
4193 		goto error;
4194 	if (disable_higher_order_debug) {
4195 		/*
4196 		 * Disable debugging flags that store metadata if the min slab
4197 		 * order increased.
4198 		 */
4199 		if (get_order(s->size) > get_order(s->object_size)) {
4200 			s->flags &= ~DEBUG_METADATA_FLAGS;
4201 			s->offset = 0;
4202 			if (!calculate_sizes(s, -1))
4203 				goto error;
4204 		}
4205 	}
4206 
4207 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4208     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4209 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4210 		/* Enable fast mode */
4211 		s->flags |= __CMPXCHG_DOUBLE;
4212 #endif
4213 
4214 	/*
4215 	 * The larger the object size is, the more pages we want on the partial
4216 	 * list to avoid pounding the page allocator excessively.
4217 	 */
4218 	set_min_partial(s, ilog2(s->size) / 2);
4219 
4220 	set_cpu_partial(s);
4221 
4222 #ifdef CONFIG_NUMA
4223 	s->remote_node_defrag_ratio = 1000;
4224 #endif
4225 
4226 	/* Initialize the pre-computed randomized freelist if slab is up */
4227 	if (slab_state >= UP) {
4228 		if (init_cache_random_seq(s))
4229 			goto error;
4230 	}
4231 
4232 	if (!init_kmem_cache_nodes(s))
4233 		goto error;
4234 
4235 	if (alloc_kmem_cache_cpus(s))
4236 		return 0;
4237 
4238 error:
4239 	__kmem_cache_release(s);
4240 	return -EINVAL;
4241 }
4242 
4243 static void list_slab_objects(struct kmem_cache *s, struct page *page,
4244 			      const char *text)
4245 {
4246 #ifdef CONFIG_SLUB_DEBUG
4247 	void *addr = page_address(page);
4248 	unsigned long flags;
4249 	unsigned long *map;
4250 	void *p;
4251 
4252 	slab_err(s, page, text, s->name);
4253 	slab_lock(page, &flags);
4254 
4255 	map = get_map(s, page);
4256 	for_each_object(p, s, addr, page->objects) {
4257 
4258 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
4259 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4260 			print_tracking(s, p);
4261 		}
4262 	}
4263 	put_map(map);
4264 	slab_unlock(page, &flags);
4265 #endif
4266 }
4267 
4268 /*
4269  * Attempt to free all partial slabs on a node.
4270  * This is called from __kmem_cache_shutdown(). We must take list_lock
4271  * because sysfs file might still access partial list after the shutdowning.
4272  */
4273 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4274 {
4275 	LIST_HEAD(discard);
4276 	struct page *page, *h;
4277 
4278 	BUG_ON(irqs_disabled());
4279 	spin_lock_irq(&n->list_lock);
4280 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
4281 		if (!page->inuse) {
4282 			remove_partial(n, page);
4283 			list_add(&page->slab_list, &discard);
4284 		} else {
4285 			list_slab_objects(s, page,
4286 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4287 		}
4288 	}
4289 	spin_unlock_irq(&n->list_lock);
4290 
4291 	list_for_each_entry_safe(page, h, &discard, slab_list)
4292 		discard_slab(s, page);
4293 }
4294 
4295 bool __kmem_cache_empty(struct kmem_cache *s)
4296 {
4297 	int node;
4298 	struct kmem_cache_node *n;
4299 
4300 	for_each_kmem_cache_node(s, node, n)
4301 		if (n->nr_partial || slabs_node(s, node))
4302 			return false;
4303 	return true;
4304 }
4305 
4306 /*
4307  * Release all resources used by a slab cache.
4308  */
4309 int __kmem_cache_shutdown(struct kmem_cache *s)
4310 {
4311 	int node;
4312 	struct kmem_cache_node *n;
4313 
4314 	flush_all_cpus_locked(s);
4315 	/* Attempt to free all objects */
4316 	for_each_kmem_cache_node(s, node, n) {
4317 		free_partial(s, n);
4318 		if (n->nr_partial || slabs_node(s, node))
4319 			return 1;
4320 	}
4321 	return 0;
4322 }
4323 
4324 #ifdef CONFIG_PRINTK
4325 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4326 {
4327 	void *base;
4328 	int __maybe_unused i;
4329 	unsigned int objnr;
4330 	void *objp;
4331 	void *objp0;
4332 	struct kmem_cache *s = page->slab_cache;
4333 	struct track __maybe_unused *trackp;
4334 
4335 	kpp->kp_ptr = object;
4336 	kpp->kp_page = page;
4337 	kpp->kp_slab_cache = s;
4338 	base = page_address(page);
4339 	objp0 = kasan_reset_tag(object);
4340 #ifdef CONFIG_SLUB_DEBUG
4341 	objp = restore_red_left(s, objp0);
4342 #else
4343 	objp = objp0;
4344 #endif
4345 	objnr = obj_to_index(s, page, objp);
4346 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4347 	objp = base + s->size * objnr;
4348 	kpp->kp_objp = objp;
4349 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4350 	    !(s->flags & SLAB_STORE_USER))
4351 		return;
4352 #ifdef CONFIG_SLUB_DEBUG
4353 	objp = fixup_red_left(s, objp);
4354 	trackp = get_track(s, objp, TRACK_ALLOC);
4355 	kpp->kp_ret = (void *)trackp->addr;
4356 #ifdef CONFIG_STACKTRACE
4357 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4358 		kpp->kp_stack[i] = (void *)trackp->addrs[i];
4359 		if (!kpp->kp_stack[i])
4360 			break;
4361 	}
4362 
4363 	trackp = get_track(s, objp, TRACK_FREE);
4364 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4365 		kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4366 		if (!kpp->kp_free_stack[i])
4367 			break;
4368 	}
4369 #endif
4370 #endif
4371 }
4372 #endif
4373 
4374 /********************************************************************
4375  *		Kmalloc subsystem
4376  *******************************************************************/
4377 
4378 static int __init setup_slub_min_order(char *str)
4379 {
4380 	get_option(&str, (int *)&slub_min_order);
4381 
4382 	return 1;
4383 }
4384 
4385 __setup("slub_min_order=", setup_slub_min_order);
4386 
4387 static int __init setup_slub_max_order(char *str)
4388 {
4389 	get_option(&str, (int *)&slub_max_order);
4390 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4391 
4392 	return 1;
4393 }
4394 
4395 __setup("slub_max_order=", setup_slub_max_order);
4396 
4397 static int __init setup_slub_min_objects(char *str)
4398 {
4399 	get_option(&str, (int *)&slub_min_objects);
4400 
4401 	return 1;
4402 }
4403 
4404 __setup("slub_min_objects=", setup_slub_min_objects);
4405 
4406 void *__kmalloc(size_t size, gfp_t flags)
4407 {
4408 	struct kmem_cache *s;
4409 	void *ret;
4410 
4411 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4412 		return kmalloc_large(size, flags);
4413 
4414 	s = kmalloc_slab(size, flags);
4415 
4416 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4417 		return s;
4418 
4419 	ret = slab_alloc(s, flags, _RET_IP_, size);
4420 
4421 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4422 
4423 	ret = kasan_kmalloc(s, ret, size, flags);
4424 
4425 	return ret;
4426 }
4427 EXPORT_SYMBOL(__kmalloc);
4428 
4429 #ifdef CONFIG_NUMA
4430 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4431 {
4432 	struct page *page;
4433 	void *ptr = NULL;
4434 	unsigned int order = get_order(size);
4435 
4436 	flags |= __GFP_COMP;
4437 	page = alloc_pages_node(node, flags, order);
4438 	if (page) {
4439 		ptr = page_address(page);
4440 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4441 				      PAGE_SIZE << order);
4442 	}
4443 
4444 	return kmalloc_large_node_hook(ptr, size, flags);
4445 }
4446 
4447 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4448 {
4449 	struct kmem_cache *s;
4450 	void *ret;
4451 
4452 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4453 		ret = kmalloc_large_node(size, flags, node);
4454 
4455 		trace_kmalloc_node(_RET_IP_, ret,
4456 				   size, PAGE_SIZE << get_order(size),
4457 				   flags, node);
4458 
4459 		return ret;
4460 	}
4461 
4462 	s = kmalloc_slab(size, flags);
4463 
4464 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4465 		return s;
4466 
4467 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4468 
4469 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4470 
4471 	ret = kasan_kmalloc(s, ret, size, flags);
4472 
4473 	return ret;
4474 }
4475 EXPORT_SYMBOL(__kmalloc_node);
4476 #endif	/* CONFIG_NUMA */
4477 
4478 #ifdef CONFIG_HARDENED_USERCOPY
4479 /*
4480  * Rejects incorrectly sized objects and objects that are to be copied
4481  * to/from userspace but do not fall entirely within the containing slab
4482  * cache's usercopy region.
4483  *
4484  * Returns NULL if check passes, otherwise const char * to name of cache
4485  * to indicate an error.
4486  */
4487 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4488 			 bool to_user)
4489 {
4490 	struct kmem_cache *s;
4491 	unsigned int offset;
4492 	bool is_kfence = is_kfence_address(ptr);
4493 
4494 	ptr = kasan_reset_tag(ptr);
4495 
4496 	/* Find object and usable object size. */
4497 	s = page->slab_cache;
4498 
4499 	/* Reject impossible pointers. */
4500 	if (ptr < page_address(page))
4501 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4502 			       to_user, 0, n);
4503 
4504 	/* Find offset within object. */
4505 	if (is_kfence)
4506 		offset = ptr - kfence_object_start(ptr);
4507 	else
4508 		offset = (ptr - page_address(page)) % s->size;
4509 
4510 	/* Adjust for redzone and reject if within the redzone. */
4511 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4512 		if (offset < s->red_left_pad)
4513 			usercopy_abort("SLUB object in left red zone",
4514 				       s->name, to_user, offset, n);
4515 		offset -= s->red_left_pad;
4516 	}
4517 
4518 	/* Allow address range falling entirely within usercopy region. */
4519 	if (offset >= s->useroffset &&
4520 	    offset - s->useroffset <= s->usersize &&
4521 	    n <= s->useroffset - offset + s->usersize)
4522 		return;
4523 
4524 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4525 }
4526 #endif /* CONFIG_HARDENED_USERCOPY */
4527 
4528 size_t __ksize(const void *object)
4529 {
4530 	struct page *page;
4531 
4532 	if (unlikely(object == ZERO_SIZE_PTR))
4533 		return 0;
4534 
4535 	page = virt_to_head_page(object);
4536 
4537 	if (unlikely(!PageSlab(page))) {
4538 		WARN_ON(!PageCompound(page));
4539 		return page_size(page);
4540 	}
4541 
4542 	return slab_ksize(page->slab_cache);
4543 }
4544 EXPORT_SYMBOL(__ksize);
4545 
4546 void kfree(const void *x)
4547 {
4548 	struct page *page;
4549 	void *object = (void *)x;
4550 
4551 	trace_kfree(_RET_IP_, x);
4552 
4553 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4554 		return;
4555 
4556 	page = virt_to_head_page(x);
4557 	if (unlikely(!PageSlab(page))) {
4558 		free_nonslab_page(page, object);
4559 		return;
4560 	}
4561 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4562 }
4563 EXPORT_SYMBOL(kfree);
4564 
4565 #define SHRINK_PROMOTE_MAX 32
4566 
4567 /*
4568  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4569  * up most to the head of the partial lists. New allocations will then
4570  * fill those up and thus they can be removed from the partial lists.
4571  *
4572  * The slabs with the least items are placed last. This results in them
4573  * being allocated from last increasing the chance that the last objects
4574  * are freed in them.
4575  */
4576 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4577 {
4578 	int node;
4579 	int i;
4580 	struct kmem_cache_node *n;
4581 	struct page *page;
4582 	struct page *t;
4583 	struct list_head discard;
4584 	struct list_head promote[SHRINK_PROMOTE_MAX];
4585 	unsigned long flags;
4586 	int ret = 0;
4587 
4588 	for_each_kmem_cache_node(s, node, n) {
4589 		INIT_LIST_HEAD(&discard);
4590 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4591 			INIT_LIST_HEAD(promote + i);
4592 
4593 		spin_lock_irqsave(&n->list_lock, flags);
4594 
4595 		/*
4596 		 * Build lists of slabs to discard or promote.
4597 		 *
4598 		 * Note that concurrent frees may occur while we hold the
4599 		 * list_lock. page->inuse here is the upper limit.
4600 		 */
4601 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4602 			int free = page->objects - page->inuse;
4603 
4604 			/* Do not reread page->inuse */
4605 			barrier();
4606 
4607 			/* We do not keep full slabs on the list */
4608 			BUG_ON(free <= 0);
4609 
4610 			if (free == page->objects) {
4611 				list_move(&page->slab_list, &discard);
4612 				n->nr_partial--;
4613 			} else if (free <= SHRINK_PROMOTE_MAX)
4614 				list_move(&page->slab_list, promote + free - 1);
4615 		}
4616 
4617 		/*
4618 		 * Promote the slabs filled up most to the head of the
4619 		 * partial list.
4620 		 */
4621 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4622 			list_splice(promote + i, &n->partial);
4623 
4624 		spin_unlock_irqrestore(&n->list_lock, flags);
4625 
4626 		/* Release empty slabs */
4627 		list_for_each_entry_safe(page, t, &discard, slab_list)
4628 			discard_slab(s, page);
4629 
4630 		if (slabs_node(s, node))
4631 			ret = 1;
4632 	}
4633 
4634 	return ret;
4635 }
4636 
4637 int __kmem_cache_shrink(struct kmem_cache *s)
4638 {
4639 	flush_all(s);
4640 	return __kmem_cache_do_shrink(s);
4641 }
4642 
4643 static int slab_mem_going_offline_callback(void *arg)
4644 {
4645 	struct kmem_cache *s;
4646 
4647 	mutex_lock(&slab_mutex);
4648 	list_for_each_entry(s, &slab_caches, list) {
4649 		flush_all_cpus_locked(s);
4650 		__kmem_cache_do_shrink(s);
4651 	}
4652 	mutex_unlock(&slab_mutex);
4653 
4654 	return 0;
4655 }
4656 
4657 static void slab_mem_offline_callback(void *arg)
4658 {
4659 	struct memory_notify *marg = arg;
4660 	int offline_node;
4661 
4662 	offline_node = marg->status_change_nid_normal;
4663 
4664 	/*
4665 	 * If the node still has available memory. we need kmem_cache_node
4666 	 * for it yet.
4667 	 */
4668 	if (offline_node < 0)
4669 		return;
4670 
4671 	mutex_lock(&slab_mutex);
4672 	node_clear(offline_node, slab_nodes);
4673 	/*
4674 	 * We no longer free kmem_cache_node structures here, as it would be
4675 	 * racy with all get_node() users, and infeasible to protect them with
4676 	 * slab_mutex.
4677 	 */
4678 	mutex_unlock(&slab_mutex);
4679 }
4680 
4681 static int slab_mem_going_online_callback(void *arg)
4682 {
4683 	struct kmem_cache_node *n;
4684 	struct kmem_cache *s;
4685 	struct memory_notify *marg = arg;
4686 	int nid = marg->status_change_nid_normal;
4687 	int ret = 0;
4688 
4689 	/*
4690 	 * If the node's memory is already available, then kmem_cache_node is
4691 	 * already created. Nothing to do.
4692 	 */
4693 	if (nid < 0)
4694 		return 0;
4695 
4696 	/*
4697 	 * We are bringing a node online. No memory is available yet. We must
4698 	 * allocate a kmem_cache_node structure in order to bring the node
4699 	 * online.
4700 	 */
4701 	mutex_lock(&slab_mutex);
4702 	list_for_each_entry(s, &slab_caches, list) {
4703 		/*
4704 		 * The structure may already exist if the node was previously
4705 		 * onlined and offlined.
4706 		 */
4707 		if (get_node(s, nid))
4708 			continue;
4709 		/*
4710 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4711 		 *      since memory is not yet available from the node that
4712 		 *      is brought up.
4713 		 */
4714 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4715 		if (!n) {
4716 			ret = -ENOMEM;
4717 			goto out;
4718 		}
4719 		init_kmem_cache_node(n);
4720 		s->node[nid] = n;
4721 	}
4722 	/*
4723 	 * Any cache created after this point will also have kmem_cache_node
4724 	 * initialized for the new node.
4725 	 */
4726 	node_set(nid, slab_nodes);
4727 out:
4728 	mutex_unlock(&slab_mutex);
4729 	return ret;
4730 }
4731 
4732 static int slab_memory_callback(struct notifier_block *self,
4733 				unsigned long action, void *arg)
4734 {
4735 	int ret = 0;
4736 
4737 	switch (action) {
4738 	case MEM_GOING_ONLINE:
4739 		ret = slab_mem_going_online_callback(arg);
4740 		break;
4741 	case MEM_GOING_OFFLINE:
4742 		ret = slab_mem_going_offline_callback(arg);
4743 		break;
4744 	case MEM_OFFLINE:
4745 	case MEM_CANCEL_ONLINE:
4746 		slab_mem_offline_callback(arg);
4747 		break;
4748 	case MEM_ONLINE:
4749 	case MEM_CANCEL_OFFLINE:
4750 		break;
4751 	}
4752 	if (ret)
4753 		ret = notifier_from_errno(ret);
4754 	else
4755 		ret = NOTIFY_OK;
4756 	return ret;
4757 }
4758 
4759 static struct notifier_block slab_memory_callback_nb = {
4760 	.notifier_call = slab_memory_callback,
4761 	.priority = SLAB_CALLBACK_PRI,
4762 };
4763 
4764 /********************************************************************
4765  *			Basic setup of slabs
4766  *******************************************************************/
4767 
4768 /*
4769  * Used for early kmem_cache structures that were allocated using
4770  * the page allocator. Allocate them properly then fix up the pointers
4771  * that may be pointing to the wrong kmem_cache structure.
4772  */
4773 
4774 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4775 {
4776 	int node;
4777 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4778 	struct kmem_cache_node *n;
4779 
4780 	memcpy(s, static_cache, kmem_cache->object_size);
4781 
4782 	/*
4783 	 * This runs very early, and only the boot processor is supposed to be
4784 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4785 	 * IPIs around.
4786 	 */
4787 	__flush_cpu_slab(s, smp_processor_id());
4788 	for_each_kmem_cache_node(s, node, n) {
4789 		struct page *p;
4790 
4791 		list_for_each_entry(p, &n->partial, slab_list)
4792 			p->slab_cache = s;
4793 
4794 #ifdef CONFIG_SLUB_DEBUG
4795 		list_for_each_entry(p, &n->full, slab_list)
4796 			p->slab_cache = s;
4797 #endif
4798 	}
4799 	list_add(&s->list, &slab_caches);
4800 	return s;
4801 }
4802 
4803 void __init kmem_cache_init(void)
4804 {
4805 	static __initdata struct kmem_cache boot_kmem_cache,
4806 		boot_kmem_cache_node;
4807 	int node;
4808 
4809 	if (debug_guardpage_minorder())
4810 		slub_max_order = 0;
4811 
4812 	/* Print slub debugging pointers without hashing */
4813 	if (__slub_debug_enabled())
4814 		no_hash_pointers_enable(NULL);
4815 
4816 	kmem_cache_node = &boot_kmem_cache_node;
4817 	kmem_cache = &boot_kmem_cache;
4818 
4819 	/*
4820 	 * Initialize the nodemask for which we will allocate per node
4821 	 * structures. Here we don't need taking slab_mutex yet.
4822 	 */
4823 	for_each_node_state(node, N_NORMAL_MEMORY)
4824 		node_set(node, slab_nodes);
4825 
4826 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4827 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4828 
4829 	register_hotmemory_notifier(&slab_memory_callback_nb);
4830 
4831 	/* Able to allocate the per node structures */
4832 	slab_state = PARTIAL;
4833 
4834 	create_boot_cache(kmem_cache, "kmem_cache",
4835 			offsetof(struct kmem_cache, node) +
4836 				nr_node_ids * sizeof(struct kmem_cache_node *),
4837 		       SLAB_HWCACHE_ALIGN, 0, 0);
4838 
4839 	kmem_cache = bootstrap(&boot_kmem_cache);
4840 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4841 
4842 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4843 	setup_kmalloc_cache_index_table();
4844 	create_kmalloc_caches(0);
4845 
4846 	/* Setup random freelists for each cache */
4847 	init_freelist_randomization();
4848 
4849 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4850 				  slub_cpu_dead);
4851 
4852 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4853 		cache_line_size(),
4854 		slub_min_order, slub_max_order, slub_min_objects,
4855 		nr_cpu_ids, nr_node_ids);
4856 }
4857 
4858 void __init kmem_cache_init_late(void)
4859 {
4860 }
4861 
4862 struct kmem_cache *
4863 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4864 		   slab_flags_t flags, void (*ctor)(void *))
4865 {
4866 	struct kmem_cache *s;
4867 
4868 	s = find_mergeable(size, align, flags, name, ctor);
4869 	if (s) {
4870 		s->refcount++;
4871 
4872 		/*
4873 		 * Adjust the object sizes so that we clear
4874 		 * the complete object on kzalloc.
4875 		 */
4876 		s->object_size = max(s->object_size, size);
4877 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4878 
4879 		if (sysfs_slab_alias(s, name)) {
4880 			s->refcount--;
4881 			s = NULL;
4882 		}
4883 	}
4884 
4885 	return s;
4886 }
4887 
4888 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4889 {
4890 	int err;
4891 
4892 	err = kmem_cache_open(s, flags);
4893 	if (err)
4894 		return err;
4895 
4896 	/* Mutex is not taken during early boot */
4897 	if (slab_state <= UP)
4898 		return 0;
4899 
4900 	err = sysfs_slab_add(s);
4901 	if (err) {
4902 		__kmem_cache_release(s);
4903 		return err;
4904 	}
4905 
4906 	if (s->flags & SLAB_STORE_USER)
4907 		debugfs_slab_add(s);
4908 
4909 	return 0;
4910 }
4911 
4912 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4913 {
4914 	struct kmem_cache *s;
4915 	void *ret;
4916 
4917 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4918 		return kmalloc_large(size, gfpflags);
4919 
4920 	s = kmalloc_slab(size, gfpflags);
4921 
4922 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4923 		return s;
4924 
4925 	ret = slab_alloc(s, gfpflags, caller, size);
4926 
4927 	/* Honor the call site pointer we received. */
4928 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4929 
4930 	return ret;
4931 }
4932 EXPORT_SYMBOL(__kmalloc_track_caller);
4933 
4934 #ifdef CONFIG_NUMA
4935 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4936 					int node, unsigned long caller)
4937 {
4938 	struct kmem_cache *s;
4939 	void *ret;
4940 
4941 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4942 		ret = kmalloc_large_node(size, gfpflags, node);
4943 
4944 		trace_kmalloc_node(caller, ret,
4945 				   size, PAGE_SIZE << get_order(size),
4946 				   gfpflags, node);
4947 
4948 		return ret;
4949 	}
4950 
4951 	s = kmalloc_slab(size, gfpflags);
4952 
4953 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4954 		return s;
4955 
4956 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4957 
4958 	/* Honor the call site pointer we received. */
4959 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4960 
4961 	return ret;
4962 }
4963 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4964 #endif
4965 
4966 #ifdef CONFIG_SYSFS
4967 static int count_inuse(struct page *page)
4968 {
4969 	return page->inuse;
4970 }
4971 
4972 static int count_total(struct page *page)
4973 {
4974 	return page->objects;
4975 }
4976 #endif
4977 
4978 #ifdef CONFIG_SLUB_DEBUG
4979 static void validate_slab(struct kmem_cache *s, struct page *page,
4980 			  unsigned long *obj_map)
4981 {
4982 	void *p;
4983 	void *addr = page_address(page);
4984 	unsigned long flags;
4985 
4986 	slab_lock(page, &flags);
4987 
4988 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4989 		goto unlock;
4990 
4991 	/* Now we know that a valid freelist exists */
4992 	__fill_map(obj_map, s, page);
4993 	for_each_object(p, s, addr, page->objects) {
4994 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4995 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4996 
4997 		if (!check_object(s, page, p, val))
4998 			break;
4999 	}
5000 unlock:
5001 	slab_unlock(page, &flags);
5002 }
5003 
5004 static int validate_slab_node(struct kmem_cache *s,
5005 		struct kmem_cache_node *n, unsigned long *obj_map)
5006 {
5007 	unsigned long count = 0;
5008 	struct page *page;
5009 	unsigned long flags;
5010 
5011 	spin_lock_irqsave(&n->list_lock, flags);
5012 
5013 	list_for_each_entry(page, &n->partial, slab_list) {
5014 		validate_slab(s, page, obj_map);
5015 		count++;
5016 	}
5017 	if (count != n->nr_partial) {
5018 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5019 		       s->name, count, n->nr_partial);
5020 		slab_add_kunit_errors();
5021 	}
5022 
5023 	if (!(s->flags & SLAB_STORE_USER))
5024 		goto out;
5025 
5026 	list_for_each_entry(page, &n->full, slab_list) {
5027 		validate_slab(s, page, obj_map);
5028 		count++;
5029 	}
5030 	if (count != atomic_long_read(&n->nr_slabs)) {
5031 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5032 		       s->name, count, atomic_long_read(&n->nr_slabs));
5033 		slab_add_kunit_errors();
5034 	}
5035 
5036 out:
5037 	spin_unlock_irqrestore(&n->list_lock, flags);
5038 	return count;
5039 }
5040 
5041 long validate_slab_cache(struct kmem_cache *s)
5042 {
5043 	int node;
5044 	unsigned long count = 0;
5045 	struct kmem_cache_node *n;
5046 	unsigned long *obj_map;
5047 
5048 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5049 	if (!obj_map)
5050 		return -ENOMEM;
5051 
5052 	flush_all(s);
5053 	for_each_kmem_cache_node(s, node, n)
5054 		count += validate_slab_node(s, n, obj_map);
5055 
5056 	bitmap_free(obj_map);
5057 
5058 	return count;
5059 }
5060 EXPORT_SYMBOL(validate_slab_cache);
5061 
5062 #ifdef CONFIG_DEBUG_FS
5063 /*
5064  * Generate lists of code addresses where slabcache objects are allocated
5065  * and freed.
5066  */
5067 
5068 struct location {
5069 	unsigned long count;
5070 	unsigned long addr;
5071 	long long sum_time;
5072 	long min_time;
5073 	long max_time;
5074 	long min_pid;
5075 	long max_pid;
5076 	DECLARE_BITMAP(cpus, NR_CPUS);
5077 	nodemask_t nodes;
5078 };
5079 
5080 struct loc_track {
5081 	unsigned long max;
5082 	unsigned long count;
5083 	struct location *loc;
5084 	loff_t idx;
5085 };
5086 
5087 static struct dentry *slab_debugfs_root;
5088 
5089 static void free_loc_track(struct loc_track *t)
5090 {
5091 	if (t->max)
5092 		free_pages((unsigned long)t->loc,
5093 			get_order(sizeof(struct location) * t->max));
5094 }
5095 
5096 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5097 {
5098 	struct location *l;
5099 	int order;
5100 
5101 	order = get_order(sizeof(struct location) * max);
5102 
5103 	l = (void *)__get_free_pages(flags, order);
5104 	if (!l)
5105 		return 0;
5106 
5107 	if (t->count) {
5108 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5109 		free_loc_track(t);
5110 	}
5111 	t->max = max;
5112 	t->loc = l;
5113 	return 1;
5114 }
5115 
5116 static int add_location(struct loc_track *t, struct kmem_cache *s,
5117 				const struct track *track)
5118 {
5119 	long start, end, pos;
5120 	struct location *l;
5121 	unsigned long caddr;
5122 	unsigned long age = jiffies - track->when;
5123 
5124 	start = -1;
5125 	end = t->count;
5126 
5127 	for ( ; ; ) {
5128 		pos = start + (end - start + 1) / 2;
5129 
5130 		/*
5131 		 * There is nothing at "end". If we end up there
5132 		 * we need to add something to before end.
5133 		 */
5134 		if (pos == end)
5135 			break;
5136 
5137 		caddr = t->loc[pos].addr;
5138 		if (track->addr == caddr) {
5139 
5140 			l = &t->loc[pos];
5141 			l->count++;
5142 			if (track->when) {
5143 				l->sum_time += age;
5144 				if (age < l->min_time)
5145 					l->min_time = age;
5146 				if (age > l->max_time)
5147 					l->max_time = age;
5148 
5149 				if (track->pid < l->min_pid)
5150 					l->min_pid = track->pid;
5151 				if (track->pid > l->max_pid)
5152 					l->max_pid = track->pid;
5153 
5154 				cpumask_set_cpu(track->cpu,
5155 						to_cpumask(l->cpus));
5156 			}
5157 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5158 			return 1;
5159 		}
5160 
5161 		if (track->addr < caddr)
5162 			end = pos;
5163 		else
5164 			start = pos;
5165 	}
5166 
5167 	/*
5168 	 * Not found. Insert new tracking element.
5169 	 */
5170 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5171 		return 0;
5172 
5173 	l = t->loc + pos;
5174 	if (pos < t->count)
5175 		memmove(l + 1, l,
5176 			(t->count - pos) * sizeof(struct location));
5177 	t->count++;
5178 	l->count = 1;
5179 	l->addr = track->addr;
5180 	l->sum_time = age;
5181 	l->min_time = age;
5182 	l->max_time = age;
5183 	l->min_pid = track->pid;
5184 	l->max_pid = track->pid;
5185 	cpumask_clear(to_cpumask(l->cpus));
5186 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5187 	nodes_clear(l->nodes);
5188 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5189 	return 1;
5190 }
5191 
5192 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5193 		struct page *page, enum track_item alloc,
5194 		unsigned long *obj_map)
5195 {
5196 	void *addr = page_address(page);
5197 	void *p;
5198 
5199 	__fill_map(obj_map, s, page);
5200 
5201 	for_each_object(p, s, addr, page->objects)
5202 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5203 			add_location(t, s, get_track(s, p, alloc));
5204 }
5205 #endif  /* CONFIG_DEBUG_FS   */
5206 #endif	/* CONFIG_SLUB_DEBUG */
5207 
5208 #ifdef CONFIG_SYSFS
5209 enum slab_stat_type {
5210 	SL_ALL,			/* All slabs */
5211 	SL_PARTIAL,		/* Only partially allocated slabs */
5212 	SL_CPU,			/* Only slabs used for cpu caches */
5213 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5214 	SL_TOTAL		/* Determine object capacity not slabs */
5215 };
5216 
5217 #define SO_ALL		(1 << SL_ALL)
5218 #define SO_PARTIAL	(1 << SL_PARTIAL)
5219 #define SO_CPU		(1 << SL_CPU)
5220 #define SO_OBJECTS	(1 << SL_OBJECTS)
5221 #define SO_TOTAL	(1 << SL_TOTAL)
5222 
5223 static ssize_t show_slab_objects(struct kmem_cache *s,
5224 				 char *buf, unsigned long flags)
5225 {
5226 	unsigned long total = 0;
5227 	int node;
5228 	int x;
5229 	unsigned long *nodes;
5230 	int len = 0;
5231 
5232 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5233 	if (!nodes)
5234 		return -ENOMEM;
5235 
5236 	if (flags & SO_CPU) {
5237 		int cpu;
5238 
5239 		for_each_possible_cpu(cpu) {
5240 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5241 							       cpu);
5242 			int node;
5243 			struct page *page;
5244 
5245 			page = READ_ONCE(c->page);
5246 			if (!page)
5247 				continue;
5248 
5249 			node = page_to_nid(page);
5250 			if (flags & SO_TOTAL)
5251 				x = page->objects;
5252 			else if (flags & SO_OBJECTS)
5253 				x = page->inuse;
5254 			else
5255 				x = 1;
5256 
5257 			total += x;
5258 			nodes[node] += x;
5259 
5260 			page = slub_percpu_partial_read_once(c);
5261 			if (page) {
5262 				node = page_to_nid(page);
5263 				if (flags & SO_TOTAL)
5264 					WARN_ON_ONCE(1);
5265 				else if (flags & SO_OBJECTS)
5266 					WARN_ON_ONCE(1);
5267 				else
5268 					x = page->pages;
5269 				total += x;
5270 				nodes[node] += x;
5271 			}
5272 		}
5273 	}
5274 
5275 	/*
5276 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5277 	 * already held which will conflict with an existing lock order:
5278 	 *
5279 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5280 	 *
5281 	 * We don't really need mem_hotplug_lock (to hold off
5282 	 * slab_mem_going_offline_callback) here because slab's memory hot
5283 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5284 	 */
5285 
5286 #ifdef CONFIG_SLUB_DEBUG
5287 	if (flags & SO_ALL) {
5288 		struct kmem_cache_node *n;
5289 
5290 		for_each_kmem_cache_node(s, node, n) {
5291 
5292 			if (flags & SO_TOTAL)
5293 				x = atomic_long_read(&n->total_objects);
5294 			else if (flags & SO_OBJECTS)
5295 				x = atomic_long_read(&n->total_objects) -
5296 					count_partial(n, count_free);
5297 			else
5298 				x = atomic_long_read(&n->nr_slabs);
5299 			total += x;
5300 			nodes[node] += x;
5301 		}
5302 
5303 	} else
5304 #endif
5305 	if (flags & SO_PARTIAL) {
5306 		struct kmem_cache_node *n;
5307 
5308 		for_each_kmem_cache_node(s, node, n) {
5309 			if (flags & SO_TOTAL)
5310 				x = count_partial(n, count_total);
5311 			else if (flags & SO_OBJECTS)
5312 				x = count_partial(n, count_inuse);
5313 			else
5314 				x = n->nr_partial;
5315 			total += x;
5316 			nodes[node] += x;
5317 		}
5318 	}
5319 
5320 	len += sysfs_emit_at(buf, len, "%lu", total);
5321 #ifdef CONFIG_NUMA
5322 	for (node = 0; node < nr_node_ids; node++) {
5323 		if (nodes[node])
5324 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5325 					     node, nodes[node]);
5326 	}
5327 #endif
5328 	len += sysfs_emit_at(buf, len, "\n");
5329 	kfree(nodes);
5330 
5331 	return len;
5332 }
5333 
5334 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5335 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5336 
5337 struct slab_attribute {
5338 	struct attribute attr;
5339 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5340 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5341 };
5342 
5343 #define SLAB_ATTR_RO(_name) \
5344 	static struct slab_attribute _name##_attr = \
5345 	__ATTR(_name, 0400, _name##_show, NULL)
5346 
5347 #define SLAB_ATTR(_name) \
5348 	static struct slab_attribute _name##_attr =  \
5349 	__ATTR(_name, 0600, _name##_show, _name##_store)
5350 
5351 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5352 {
5353 	return sysfs_emit(buf, "%u\n", s->size);
5354 }
5355 SLAB_ATTR_RO(slab_size);
5356 
5357 static ssize_t align_show(struct kmem_cache *s, char *buf)
5358 {
5359 	return sysfs_emit(buf, "%u\n", s->align);
5360 }
5361 SLAB_ATTR_RO(align);
5362 
5363 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5364 {
5365 	return sysfs_emit(buf, "%u\n", s->object_size);
5366 }
5367 SLAB_ATTR_RO(object_size);
5368 
5369 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5370 {
5371 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5372 }
5373 SLAB_ATTR_RO(objs_per_slab);
5374 
5375 static ssize_t order_show(struct kmem_cache *s, char *buf)
5376 {
5377 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5378 }
5379 SLAB_ATTR_RO(order);
5380 
5381 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5382 {
5383 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5384 }
5385 
5386 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5387 				 size_t length)
5388 {
5389 	unsigned long min;
5390 	int err;
5391 
5392 	err = kstrtoul(buf, 10, &min);
5393 	if (err)
5394 		return err;
5395 
5396 	set_min_partial(s, min);
5397 	return length;
5398 }
5399 SLAB_ATTR(min_partial);
5400 
5401 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5402 {
5403 	unsigned int nr_partial = 0;
5404 #ifdef CONFIG_SLUB_CPU_PARTIAL
5405 	nr_partial = s->cpu_partial;
5406 #endif
5407 
5408 	return sysfs_emit(buf, "%u\n", nr_partial);
5409 }
5410 
5411 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5412 				 size_t length)
5413 {
5414 	unsigned int objects;
5415 	int err;
5416 
5417 	err = kstrtouint(buf, 10, &objects);
5418 	if (err)
5419 		return err;
5420 	if (objects && !kmem_cache_has_cpu_partial(s))
5421 		return -EINVAL;
5422 
5423 	slub_set_cpu_partial(s, objects);
5424 	flush_all(s);
5425 	return length;
5426 }
5427 SLAB_ATTR(cpu_partial);
5428 
5429 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5430 {
5431 	if (!s->ctor)
5432 		return 0;
5433 	return sysfs_emit(buf, "%pS\n", s->ctor);
5434 }
5435 SLAB_ATTR_RO(ctor);
5436 
5437 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5438 {
5439 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5440 }
5441 SLAB_ATTR_RO(aliases);
5442 
5443 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5444 {
5445 	return show_slab_objects(s, buf, SO_PARTIAL);
5446 }
5447 SLAB_ATTR_RO(partial);
5448 
5449 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5450 {
5451 	return show_slab_objects(s, buf, SO_CPU);
5452 }
5453 SLAB_ATTR_RO(cpu_slabs);
5454 
5455 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5456 {
5457 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5458 }
5459 SLAB_ATTR_RO(objects);
5460 
5461 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5462 {
5463 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5464 }
5465 SLAB_ATTR_RO(objects_partial);
5466 
5467 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5468 {
5469 	int objects = 0;
5470 	int pages = 0;
5471 	int cpu;
5472 	int len = 0;
5473 
5474 	for_each_online_cpu(cpu) {
5475 		struct page *page;
5476 
5477 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5478 
5479 		if (page)
5480 			pages += page->pages;
5481 	}
5482 
5483 	/* Approximate half-full pages , see slub_set_cpu_partial() */
5484 	objects = (pages * oo_objects(s->oo)) / 2;
5485 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5486 
5487 #ifdef CONFIG_SMP
5488 	for_each_online_cpu(cpu) {
5489 		struct page *page;
5490 
5491 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5492 		if (page) {
5493 			pages = READ_ONCE(page->pages);
5494 			objects = (pages * oo_objects(s->oo)) / 2;
5495 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5496 					     cpu, objects, pages);
5497 		}
5498 	}
5499 #endif
5500 	len += sysfs_emit_at(buf, len, "\n");
5501 
5502 	return len;
5503 }
5504 SLAB_ATTR_RO(slabs_cpu_partial);
5505 
5506 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5507 {
5508 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5509 }
5510 SLAB_ATTR_RO(reclaim_account);
5511 
5512 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5513 {
5514 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5515 }
5516 SLAB_ATTR_RO(hwcache_align);
5517 
5518 #ifdef CONFIG_ZONE_DMA
5519 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5520 {
5521 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5522 }
5523 SLAB_ATTR_RO(cache_dma);
5524 #endif
5525 
5526 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5527 {
5528 	return sysfs_emit(buf, "%u\n", s->usersize);
5529 }
5530 SLAB_ATTR_RO(usersize);
5531 
5532 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5533 {
5534 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5535 }
5536 SLAB_ATTR_RO(destroy_by_rcu);
5537 
5538 #ifdef CONFIG_SLUB_DEBUG
5539 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5540 {
5541 	return show_slab_objects(s, buf, SO_ALL);
5542 }
5543 SLAB_ATTR_RO(slabs);
5544 
5545 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5546 {
5547 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5548 }
5549 SLAB_ATTR_RO(total_objects);
5550 
5551 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5552 {
5553 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5554 }
5555 SLAB_ATTR_RO(sanity_checks);
5556 
5557 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5558 {
5559 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5560 }
5561 SLAB_ATTR_RO(trace);
5562 
5563 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5564 {
5565 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5566 }
5567 
5568 SLAB_ATTR_RO(red_zone);
5569 
5570 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5571 {
5572 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5573 }
5574 
5575 SLAB_ATTR_RO(poison);
5576 
5577 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5578 {
5579 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5580 }
5581 
5582 SLAB_ATTR_RO(store_user);
5583 
5584 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5585 {
5586 	return 0;
5587 }
5588 
5589 static ssize_t validate_store(struct kmem_cache *s,
5590 			const char *buf, size_t length)
5591 {
5592 	int ret = -EINVAL;
5593 
5594 	if (buf[0] == '1') {
5595 		ret = validate_slab_cache(s);
5596 		if (ret >= 0)
5597 			ret = length;
5598 	}
5599 	return ret;
5600 }
5601 SLAB_ATTR(validate);
5602 
5603 #endif /* CONFIG_SLUB_DEBUG */
5604 
5605 #ifdef CONFIG_FAILSLAB
5606 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5607 {
5608 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5609 }
5610 SLAB_ATTR_RO(failslab);
5611 #endif
5612 
5613 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5614 {
5615 	return 0;
5616 }
5617 
5618 static ssize_t shrink_store(struct kmem_cache *s,
5619 			const char *buf, size_t length)
5620 {
5621 	if (buf[0] == '1')
5622 		kmem_cache_shrink(s);
5623 	else
5624 		return -EINVAL;
5625 	return length;
5626 }
5627 SLAB_ATTR(shrink);
5628 
5629 #ifdef CONFIG_NUMA
5630 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5631 {
5632 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5633 }
5634 
5635 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5636 				const char *buf, size_t length)
5637 {
5638 	unsigned int ratio;
5639 	int err;
5640 
5641 	err = kstrtouint(buf, 10, &ratio);
5642 	if (err)
5643 		return err;
5644 	if (ratio > 100)
5645 		return -ERANGE;
5646 
5647 	s->remote_node_defrag_ratio = ratio * 10;
5648 
5649 	return length;
5650 }
5651 SLAB_ATTR(remote_node_defrag_ratio);
5652 #endif
5653 
5654 #ifdef CONFIG_SLUB_STATS
5655 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5656 {
5657 	unsigned long sum  = 0;
5658 	int cpu;
5659 	int len = 0;
5660 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5661 
5662 	if (!data)
5663 		return -ENOMEM;
5664 
5665 	for_each_online_cpu(cpu) {
5666 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5667 
5668 		data[cpu] = x;
5669 		sum += x;
5670 	}
5671 
5672 	len += sysfs_emit_at(buf, len, "%lu", sum);
5673 
5674 #ifdef CONFIG_SMP
5675 	for_each_online_cpu(cpu) {
5676 		if (data[cpu])
5677 			len += sysfs_emit_at(buf, len, " C%d=%u",
5678 					     cpu, data[cpu]);
5679 	}
5680 #endif
5681 	kfree(data);
5682 	len += sysfs_emit_at(buf, len, "\n");
5683 
5684 	return len;
5685 }
5686 
5687 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5688 {
5689 	int cpu;
5690 
5691 	for_each_online_cpu(cpu)
5692 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5693 }
5694 
5695 #define STAT_ATTR(si, text) 					\
5696 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5697 {								\
5698 	return show_stat(s, buf, si);				\
5699 }								\
5700 static ssize_t text##_store(struct kmem_cache *s,		\
5701 				const char *buf, size_t length)	\
5702 {								\
5703 	if (buf[0] != '0')					\
5704 		return -EINVAL;					\
5705 	clear_stat(s, si);					\
5706 	return length;						\
5707 }								\
5708 SLAB_ATTR(text);						\
5709 
5710 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5711 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5712 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5713 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5714 STAT_ATTR(FREE_FROZEN, free_frozen);
5715 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5716 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5717 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5718 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5719 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5720 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5721 STAT_ATTR(FREE_SLAB, free_slab);
5722 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5723 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5724 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5725 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5726 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5727 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5728 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5729 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5730 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5731 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5732 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5733 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5734 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5735 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5736 #endif	/* CONFIG_SLUB_STATS */
5737 
5738 static struct attribute *slab_attrs[] = {
5739 	&slab_size_attr.attr,
5740 	&object_size_attr.attr,
5741 	&objs_per_slab_attr.attr,
5742 	&order_attr.attr,
5743 	&min_partial_attr.attr,
5744 	&cpu_partial_attr.attr,
5745 	&objects_attr.attr,
5746 	&objects_partial_attr.attr,
5747 	&partial_attr.attr,
5748 	&cpu_slabs_attr.attr,
5749 	&ctor_attr.attr,
5750 	&aliases_attr.attr,
5751 	&align_attr.attr,
5752 	&hwcache_align_attr.attr,
5753 	&reclaim_account_attr.attr,
5754 	&destroy_by_rcu_attr.attr,
5755 	&shrink_attr.attr,
5756 	&slabs_cpu_partial_attr.attr,
5757 #ifdef CONFIG_SLUB_DEBUG
5758 	&total_objects_attr.attr,
5759 	&slabs_attr.attr,
5760 	&sanity_checks_attr.attr,
5761 	&trace_attr.attr,
5762 	&red_zone_attr.attr,
5763 	&poison_attr.attr,
5764 	&store_user_attr.attr,
5765 	&validate_attr.attr,
5766 #endif
5767 #ifdef CONFIG_ZONE_DMA
5768 	&cache_dma_attr.attr,
5769 #endif
5770 #ifdef CONFIG_NUMA
5771 	&remote_node_defrag_ratio_attr.attr,
5772 #endif
5773 #ifdef CONFIG_SLUB_STATS
5774 	&alloc_fastpath_attr.attr,
5775 	&alloc_slowpath_attr.attr,
5776 	&free_fastpath_attr.attr,
5777 	&free_slowpath_attr.attr,
5778 	&free_frozen_attr.attr,
5779 	&free_add_partial_attr.attr,
5780 	&free_remove_partial_attr.attr,
5781 	&alloc_from_partial_attr.attr,
5782 	&alloc_slab_attr.attr,
5783 	&alloc_refill_attr.attr,
5784 	&alloc_node_mismatch_attr.attr,
5785 	&free_slab_attr.attr,
5786 	&cpuslab_flush_attr.attr,
5787 	&deactivate_full_attr.attr,
5788 	&deactivate_empty_attr.attr,
5789 	&deactivate_to_head_attr.attr,
5790 	&deactivate_to_tail_attr.attr,
5791 	&deactivate_remote_frees_attr.attr,
5792 	&deactivate_bypass_attr.attr,
5793 	&order_fallback_attr.attr,
5794 	&cmpxchg_double_fail_attr.attr,
5795 	&cmpxchg_double_cpu_fail_attr.attr,
5796 	&cpu_partial_alloc_attr.attr,
5797 	&cpu_partial_free_attr.attr,
5798 	&cpu_partial_node_attr.attr,
5799 	&cpu_partial_drain_attr.attr,
5800 #endif
5801 #ifdef CONFIG_FAILSLAB
5802 	&failslab_attr.attr,
5803 #endif
5804 	&usersize_attr.attr,
5805 
5806 	NULL
5807 };
5808 
5809 static const struct attribute_group slab_attr_group = {
5810 	.attrs = slab_attrs,
5811 };
5812 
5813 static ssize_t slab_attr_show(struct kobject *kobj,
5814 				struct attribute *attr,
5815 				char *buf)
5816 {
5817 	struct slab_attribute *attribute;
5818 	struct kmem_cache *s;
5819 	int err;
5820 
5821 	attribute = to_slab_attr(attr);
5822 	s = to_slab(kobj);
5823 
5824 	if (!attribute->show)
5825 		return -EIO;
5826 
5827 	err = attribute->show(s, buf);
5828 
5829 	return err;
5830 }
5831 
5832 static ssize_t slab_attr_store(struct kobject *kobj,
5833 				struct attribute *attr,
5834 				const char *buf, size_t len)
5835 {
5836 	struct slab_attribute *attribute;
5837 	struct kmem_cache *s;
5838 	int err;
5839 
5840 	attribute = to_slab_attr(attr);
5841 	s = to_slab(kobj);
5842 
5843 	if (!attribute->store)
5844 		return -EIO;
5845 
5846 	err = attribute->store(s, buf, len);
5847 	return err;
5848 }
5849 
5850 static void kmem_cache_release(struct kobject *k)
5851 {
5852 	slab_kmem_cache_release(to_slab(k));
5853 }
5854 
5855 static const struct sysfs_ops slab_sysfs_ops = {
5856 	.show = slab_attr_show,
5857 	.store = slab_attr_store,
5858 };
5859 
5860 static struct kobj_type slab_ktype = {
5861 	.sysfs_ops = &slab_sysfs_ops,
5862 	.release = kmem_cache_release,
5863 };
5864 
5865 static struct kset *slab_kset;
5866 
5867 static inline struct kset *cache_kset(struct kmem_cache *s)
5868 {
5869 	return slab_kset;
5870 }
5871 
5872 #define ID_STR_LENGTH 64
5873 
5874 /* Create a unique string id for a slab cache:
5875  *
5876  * Format	:[flags-]size
5877  */
5878 static char *create_unique_id(struct kmem_cache *s)
5879 {
5880 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5881 	char *p = name;
5882 
5883 	BUG_ON(!name);
5884 
5885 	*p++ = ':';
5886 	/*
5887 	 * First flags affecting slabcache operations. We will only
5888 	 * get here for aliasable slabs so we do not need to support
5889 	 * too many flags. The flags here must cover all flags that
5890 	 * are matched during merging to guarantee that the id is
5891 	 * unique.
5892 	 */
5893 	if (s->flags & SLAB_CACHE_DMA)
5894 		*p++ = 'd';
5895 	if (s->flags & SLAB_CACHE_DMA32)
5896 		*p++ = 'D';
5897 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5898 		*p++ = 'a';
5899 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5900 		*p++ = 'F';
5901 	if (s->flags & SLAB_ACCOUNT)
5902 		*p++ = 'A';
5903 	if (p != name + 1)
5904 		*p++ = '-';
5905 	p += sprintf(p, "%07u", s->size);
5906 
5907 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5908 	return name;
5909 }
5910 
5911 static int sysfs_slab_add(struct kmem_cache *s)
5912 {
5913 	int err;
5914 	const char *name;
5915 	struct kset *kset = cache_kset(s);
5916 	int unmergeable = slab_unmergeable(s);
5917 
5918 	if (!kset) {
5919 		kobject_init(&s->kobj, &slab_ktype);
5920 		return 0;
5921 	}
5922 
5923 	if (!unmergeable && disable_higher_order_debug &&
5924 			(slub_debug & DEBUG_METADATA_FLAGS))
5925 		unmergeable = 1;
5926 
5927 	if (unmergeable) {
5928 		/*
5929 		 * Slabcache can never be merged so we can use the name proper.
5930 		 * This is typically the case for debug situations. In that
5931 		 * case we can catch duplicate names easily.
5932 		 */
5933 		sysfs_remove_link(&slab_kset->kobj, s->name);
5934 		name = s->name;
5935 	} else {
5936 		/*
5937 		 * Create a unique name for the slab as a target
5938 		 * for the symlinks.
5939 		 */
5940 		name = create_unique_id(s);
5941 	}
5942 
5943 	s->kobj.kset = kset;
5944 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5945 	if (err)
5946 		goto out;
5947 
5948 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5949 	if (err)
5950 		goto out_del_kobj;
5951 
5952 	if (!unmergeable) {
5953 		/* Setup first alias */
5954 		sysfs_slab_alias(s, s->name);
5955 	}
5956 out:
5957 	if (!unmergeable)
5958 		kfree(name);
5959 	return err;
5960 out_del_kobj:
5961 	kobject_del(&s->kobj);
5962 	goto out;
5963 }
5964 
5965 void sysfs_slab_unlink(struct kmem_cache *s)
5966 {
5967 	if (slab_state >= FULL)
5968 		kobject_del(&s->kobj);
5969 }
5970 
5971 void sysfs_slab_release(struct kmem_cache *s)
5972 {
5973 	if (slab_state >= FULL)
5974 		kobject_put(&s->kobj);
5975 }
5976 
5977 /*
5978  * Need to buffer aliases during bootup until sysfs becomes
5979  * available lest we lose that information.
5980  */
5981 struct saved_alias {
5982 	struct kmem_cache *s;
5983 	const char *name;
5984 	struct saved_alias *next;
5985 };
5986 
5987 static struct saved_alias *alias_list;
5988 
5989 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5990 {
5991 	struct saved_alias *al;
5992 
5993 	if (slab_state == FULL) {
5994 		/*
5995 		 * If we have a leftover link then remove it.
5996 		 */
5997 		sysfs_remove_link(&slab_kset->kobj, name);
5998 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5999 	}
6000 
6001 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6002 	if (!al)
6003 		return -ENOMEM;
6004 
6005 	al->s = s;
6006 	al->name = name;
6007 	al->next = alias_list;
6008 	alias_list = al;
6009 	return 0;
6010 }
6011 
6012 static int __init slab_sysfs_init(void)
6013 {
6014 	struct kmem_cache *s;
6015 	int err;
6016 
6017 	mutex_lock(&slab_mutex);
6018 
6019 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6020 	if (!slab_kset) {
6021 		mutex_unlock(&slab_mutex);
6022 		pr_err("Cannot register slab subsystem.\n");
6023 		return -ENOSYS;
6024 	}
6025 
6026 	slab_state = FULL;
6027 
6028 	list_for_each_entry(s, &slab_caches, list) {
6029 		err = sysfs_slab_add(s);
6030 		if (err)
6031 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6032 			       s->name);
6033 	}
6034 
6035 	while (alias_list) {
6036 		struct saved_alias *al = alias_list;
6037 
6038 		alias_list = alias_list->next;
6039 		err = sysfs_slab_alias(al->s, al->name);
6040 		if (err)
6041 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6042 			       al->name);
6043 		kfree(al);
6044 	}
6045 
6046 	mutex_unlock(&slab_mutex);
6047 	return 0;
6048 }
6049 
6050 __initcall(slab_sysfs_init);
6051 #endif /* CONFIG_SYSFS */
6052 
6053 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6054 static int slab_debugfs_show(struct seq_file *seq, void *v)
6055 {
6056 	struct loc_track *t = seq->private;
6057 	struct location *l;
6058 	unsigned long idx;
6059 
6060 	idx = (unsigned long) t->idx;
6061 	if (idx < t->count) {
6062 		l = &t->loc[idx];
6063 
6064 		seq_printf(seq, "%7ld ", l->count);
6065 
6066 		if (l->addr)
6067 			seq_printf(seq, "%pS", (void *)l->addr);
6068 		else
6069 			seq_puts(seq, "<not-available>");
6070 
6071 		if (l->sum_time != l->min_time) {
6072 			seq_printf(seq, " age=%ld/%llu/%ld",
6073 				l->min_time, div_u64(l->sum_time, l->count),
6074 				l->max_time);
6075 		} else
6076 			seq_printf(seq, " age=%ld", l->min_time);
6077 
6078 		if (l->min_pid != l->max_pid)
6079 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6080 		else
6081 			seq_printf(seq, " pid=%ld",
6082 				l->min_pid);
6083 
6084 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6085 			seq_printf(seq, " cpus=%*pbl",
6086 				 cpumask_pr_args(to_cpumask(l->cpus)));
6087 
6088 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6089 			seq_printf(seq, " nodes=%*pbl",
6090 				 nodemask_pr_args(&l->nodes));
6091 
6092 		seq_puts(seq, "\n");
6093 	}
6094 
6095 	if (!idx && !t->count)
6096 		seq_puts(seq, "No data\n");
6097 
6098 	return 0;
6099 }
6100 
6101 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6102 {
6103 }
6104 
6105 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6106 {
6107 	struct loc_track *t = seq->private;
6108 
6109 	t->idx = ++(*ppos);
6110 	if (*ppos <= t->count)
6111 		return ppos;
6112 
6113 	return NULL;
6114 }
6115 
6116 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6117 {
6118 	struct loc_track *t = seq->private;
6119 
6120 	t->idx = *ppos;
6121 	return ppos;
6122 }
6123 
6124 static const struct seq_operations slab_debugfs_sops = {
6125 	.start  = slab_debugfs_start,
6126 	.next   = slab_debugfs_next,
6127 	.stop   = slab_debugfs_stop,
6128 	.show   = slab_debugfs_show,
6129 };
6130 
6131 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6132 {
6133 
6134 	struct kmem_cache_node *n;
6135 	enum track_item alloc;
6136 	int node;
6137 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6138 						sizeof(struct loc_track));
6139 	struct kmem_cache *s = file_inode(filep)->i_private;
6140 	unsigned long *obj_map;
6141 
6142 	if (!t)
6143 		return -ENOMEM;
6144 
6145 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6146 	if (!obj_map) {
6147 		seq_release_private(inode, filep);
6148 		return -ENOMEM;
6149 	}
6150 
6151 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6152 		alloc = TRACK_ALLOC;
6153 	else
6154 		alloc = TRACK_FREE;
6155 
6156 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6157 		bitmap_free(obj_map);
6158 		seq_release_private(inode, filep);
6159 		return -ENOMEM;
6160 	}
6161 
6162 	for_each_kmem_cache_node(s, node, n) {
6163 		unsigned long flags;
6164 		struct page *page;
6165 
6166 		if (!atomic_long_read(&n->nr_slabs))
6167 			continue;
6168 
6169 		spin_lock_irqsave(&n->list_lock, flags);
6170 		list_for_each_entry(page, &n->partial, slab_list)
6171 			process_slab(t, s, page, alloc, obj_map);
6172 		list_for_each_entry(page, &n->full, slab_list)
6173 			process_slab(t, s, page, alloc, obj_map);
6174 		spin_unlock_irqrestore(&n->list_lock, flags);
6175 	}
6176 
6177 	bitmap_free(obj_map);
6178 	return 0;
6179 }
6180 
6181 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6182 {
6183 	struct seq_file *seq = file->private_data;
6184 	struct loc_track *t = seq->private;
6185 
6186 	free_loc_track(t);
6187 	return seq_release_private(inode, file);
6188 }
6189 
6190 static const struct file_operations slab_debugfs_fops = {
6191 	.open    = slab_debug_trace_open,
6192 	.read    = seq_read,
6193 	.llseek  = seq_lseek,
6194 	.release = slab_debug_trace_release,
6195 };
6196 
6197 static void debugfs_slab_add(struct kmem_cache *s)
6198 {
6199 	struct dentry *slab_cache_dir;
6200 
6201 	if (unlikely(!slab_debugfs_root))
6202 		return;
6203 
6204 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6205 
6206 	debugfs_create_file("alloc_traces", 0400,
6207 		slab_cache_dir, s, &slab_debugfs_fops);
6208 
6209 	debugfs_create_file("free_traces", 0400,
6210 		slab_cache_dir, s, &slab_debugfs_fops);
6211 }
6212 
6213 void debugfs_slab_release(struct kmem_cache *s)
6214 {
6215 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6216 }
6217 
6218 static int __init slab_debugfs_init(void)
6219 {
6220 	struct kmem_cache *s;
6221 
6222 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6223 
6224 	list_for_each_entry(s, &slab_caches, list)
6225 		if (s->flags & SLAB_STORE_USER)
6226 			debugfs_slab_add(s);
6227 
6228 	return 0;
6229 
6230 }
6231 __initcall(slab_debugfs_init);
6232 #endif
6233 /*
6234  * The /proc/slabinfo ABI
6235  */
6236 #ifdef CONFIG_SLUB_DEBUG
6237 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6238 {
6239 	unsigned long nr_slabs = 0;
6240 	unsigned long nr_objs = 0;
6241 	unsigned long nr_free = 0;
6242 	int node;
6243 	struct kmem_cache_node *n;
6244 
6245 	for_each_kmem_cache_node(s, node, n) {
6246 		nr_slabs += node_nr_slabs(n);
6247 		nr_objs += node_nr_objs(n);
6248 		nr_free += count_partial(n, count_free);
6249 	}
6250 
6251 	sinfo->active_objs = nr_objs - nr_free;
6252 	sinfo->num_objs = nr_objs;
6253 	sinfo->active_slabs = nr_slabs;
6254 	sinfo->num_slabs = nr_slabs;
6255 	sinfo->objects_per_slab = oo_objects(s->oo);
6256 	sinfo->cache_order = oo_order(s->oo);
6257 }
6258 
6259 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6260 {
6261 }
6262 
6263 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6264 		       size_t count, loff_t *ppos)
6265 {
6266 	return -EIO;
6267 }
6268 #endif /* CONFIG_SLUB_DEBUG */
6269