xref: /linux/mm/slub.c (revision a58f3dcf20ea9e7e968ee8369fd782bbb53dff73)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 #ifdef CONFIG_NUMA
222 static DEFINE_STATIC_KEY_FALSE(strict_numa);
223 #endif
224 
225 /* Structure holding parameters for get_partial() call chain */
226 struct partial_context {
227 	gfp_t flags;
228 	unsigned int orig_size;
229 	void *object;
230 };
231 
232 static inline bool kmem_cache_debug(struct kmem_cache *s)
233 {
234 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
235 }
236 
237 void *fixup_red_left(struct kmem_cache *s, void *p)
238 {
239 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
240 		p += s->red_left_pad;
241 
242 	return p;
243 }
244 
245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
246 {
247 #ifdef CONFIG_SLUB_CPU_PARTIAL
248 	return !kmem_cache_debug(s);
249 #else
250 	return false;
251 #endif
252 }
253 
254 /*
255  * Issues still to be resolved:
256  *
257  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
258  *
259  * - Variable sizing of the per node arrays
260  */
261 
262 /* Enable to log cmpxchg failures */
263 #undef SLUB_DEBUG_CMPXCHG
264 
265 #ifndef CONFIG_SLUB_TINY
266 /*
267  * Minimum number of partial slabs. These will be left on the partial
268  * lists even if they are empty. kmem_cache_shrink may reclaim them.
269  */
270 #define MIN_PARTIAL 5
271 
272 /*
273  * Maximum number of desirable partial slabs.
274  * The existence of more partial slabs makes kmem_cache_shrink
275  * sort the partial list by the number of objects in use.
276  */
277 #define MAX_PARTIAL 10
278 #else
279 #define MIN_PARTIAL 0
280 #define MAX_PARTIAL 0
281 #endif
282 
283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
284 				SLAB_POISON | SLAB_STORE_USER)
285 
286 /*
287  * These debug flags cannot use CMPXCHG because there might be consistency
288  * issues when checking or reading debug information
289  */
290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
291 				SLAB_TRACE)
292 
293 
294 /*
295  * Debugging flags that require metadata to be stored in the slab.  These get
296  * disabled when slab_debug=O is used and a cache's min order increases with
297  * metadata.
298  */
299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
300 
301 #define OO_SHIFT	16
302 #define OO_MASK		((1 << OO_SHIFT) - 1)
303 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
304 
305 /* Internal SLUB flags */
306 /* Poison object */
307 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
308 /* Use cmpxchg_double */
309 
310 #ifdef system_has_freelist_aba
311 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
312 #else
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
314 #endif
315 
316 /*
317  * Tracking user of a slab.
318  */
319 #define TRACK_ADDRS_COUNT 16
320 struct track {
321 	unsigned long addr;	/* Called from address */
322 #ifdef CONFIG_STACKDEPOT
323 	depot_stack_handle_t handle;
324 #endif
325 	int cpu;		/* Was running on cpu */
326 	int pid;		/* Pid context */
327 	unsigned long when;	/* When did the operation occur */
328 };
329 
330 enum track_item { TRACK_ALLOC, TRACK_FREE };
331 
332 #ifdef SLAB_SUPPORTS_SYSFS
333 static int sysfs_slab_add(struct kmem_cache *);
334 static int sysfs_slab_alias(struct kmem_cache *, const char *);
335 #else
336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
338 							{ return 0; }
339 #endif
340 
341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
342 static void debugfs_slab_add(struct kmem_cache *);
343 #else
344 static inline void debugfs_slab_add(struct kmem_cache *s) { }
345 #endif
346 
347 enum stat_item {
348 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
349 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
350 	FREE_FASTPATH,		/* Free to cpu slab */
351 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
352 	FREE_FROZEN,		/* Freeing to frozen slab */
353 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
354 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
355 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
356 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
357 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
358 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
359 	FREE_SLAB,		/* Slab freed to the page allocator */
360 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
361 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
362 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
363 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
364 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
365 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
366 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
367 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
368 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
369 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
370 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
371 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
372 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
373 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
374 	NR_SLUB_STAT_ITEMS
375 };
376 
377 #ifndef CONFIG_SLUB_TINY
378 /*
379  * When changing the layout, make sure freelist and tid are still compatible
380  * with this_cpu_cmpxchg_double() alignment requirements.
381  */
382 struct kmem_cache_cpu {
383 	union {
384 		struct {
385 			void **freelist;	/* Pointer to next available object */
386 			unsigned long tid;	/* Globally unique transaction id */
387 		};
388 		freelist_aba_t freelist_tid;
389 	};
390 	struct slab *slab;	/* The slab from which we are allocating */
391 #ifdef CONFIG_SLUB_CPU_PARTIAL
392 	struct slab *partial;	/* Partially allocated slabs */
393 #endif
394 	local_lock_t lock;	/* Protects the fields above */
395 #ifdef CONFIG_SLUB_STATS
396 	unsigned int stat[NR_SLUB_STAT_ITEMS];
397 #endif
398 };
399 #endif /* CONFIG_SLUB_TINY */
400 
401 static inline void stat(const struct kmem_cache *s, enum stat_item si)
402 {
403 #ifdef CONFIG_SLUB_STATS
404 	/*
405 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
406 	 * avoid this_cpu_add()'s irq-disable overhead.
407 	 */
408 	raw_cpu_inc(s->cpu_slab->stat[si]);
409 #endif
410 }
411 
412 static inline
413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
414 {
415 #ifdef CONFIG_SLUB_STATS
416 	raw_cpu_add(s->cpu_slab->stat[si], v);
417 #endif
418 }
419 
420 /*
421  * The slab lists for all objects.
422  */
423 struct kmem_cache_node {
424 	spinlock_t list_lock;
425 	unsigned long nr_partial;
426 	struct list_head partial;
427 #ifdef CONFIG_SLUB_DEBUG
428 	atomic_long_t nr_slabs;
429 	atomic_long_t total_objects;
430 	struct list_head full;
431 #endif
432 };
433 
434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
435 {
436 	return s->node[node];
437 }
438 
439 /*
440  * Iterator over all nodes. The body will be executed for each node that has
441  * a kmem_cache_node structure allocated (which is true for all online nodes)
442  */
443 #define for_each_kmem_cache_node(__s, __node, __n) \
444 	for (__node = 0; __node < nr_node_ids; __node++) \
445 		 if ((__n = get_node(__s, __node)))
446 
447 /*
448  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
449  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
450  * differ during memory hotplug/hotremove operations.
451  * Protected by slab_mutex.
452  */
453 static nodemask_t slab_nodes;
454 
455 #ifndef CONFIG_SLUB_TINY
456 /*
457  * Workqueue used for flush_cpu_slab().
458  */
459 static struct workqueue_struct *flushwq;
460 #endif
461 
462 /********************************************************************
463  * 			Core slab cache functions
464  *******************************************************************/
465 
466 /*
467  * Returns freelist pointer (ptr). With hardening, this is obfuscated
468  * with an XOR of the address where the pointer is held and a per-cache
469  * random number.
470  */
471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
472 					    void *ptr, unsigned long ptr_addr)
473 {
474 	unsigned long encoded;
475 
476 #ifdef CONFIG_SLAB_FREELIST_HARDENED
477 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
478 #else
479 	encoded = (unsigned long)ptr;
480 #endif
481 	return (freeptr_t){.v = encoded};
482 }
483 
484 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
485 					freeptr_t ptr, unsigned long ptr_addr)
486 {
487 	void *decoded;
488 
489 #ifdef CONFIG_SLAB_FREELIST_HARDENED
490 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
491 #else
492 	decoded = (void *)ptr.v;
493 #endif
494 	return decoded;
495 }
496 
497 static inline void *get_freepointer(struct kmem_cache *s, void *object)
498 {
499 	unsigned long ptr_addr;
500 	freeptr_t p;
501 
502 	object = kasan_reset_tag(object);
503 	ptr_addr = (unsigned long)object + s->offset;
504 	p = *(freeptr_t *)(ptr_addr);
505 	return freelist_ptr_decode(s, p, ptr_addr);
506 }
507 
508 #ifndef CONFIG_SLUB_TINY
509 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
510 {
511 	prefetchw(object + s->offset);
512 }
513 #endif
514 
515 /*
516  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
517  * pointer value in the case the current thread loses the race for the next
518  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
519  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
520  * KMSAN will still check all arguments of cmpxchg because of imperfect
521  * handling of inline assembly.
522  * To work around this problem, we apply __no_kmsan_checks to ensure that
523  * get_freepointer_safe() returns initialized memory.
524  */
525 __no_kmsan_checks
526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
527 {
528 	unsigned long freepointer_addr;
529 	freeptr_t p;
530 
531 	if (!debug_pagealloc_enabled_static())
532 		return get_freepointer(s, object);
533 
534 	object = kasan_reset_tag(object);
535 	freepointer_addr = (unsigned long)object + s->offset;
536 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
537 	return freelist_ptr_decode(s, p, freepointer_addr);
538 }
539 
540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
541 {
542 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
543 
544 #ifdef CONFIG_SLAB_FREELIST_HARDENED
545 	BUG_ON(object == fp); /* naive detection of double free or corruption */
546 #endif
547 
548 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
549 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
550 }
551 
552 /*
553  * See comment in calculate_sizes().
554  */
555 static inline bool freeptr_outside_object(struct kmem_cache *s)
556 {
557 	return s->offset >= s->inuse;
558 }
559 
560 /*
561  * Return offset of the end of info block which is inuse + free pointer if
562  * not overlapping with object.
563  */
564 static inline unsigned int get_info_end(struct kmem_cache *s)
565 {
566 	if (freeptr_outside_object(s))
567 		return s->inuse + sizeof(void *);
568 	else
569 		return s->inuse;
570 }
571 
572 /* Loop over all objects in a slab */
573 #define for_each_object(__p, __s, __addr, __objects) \
574 	for (__p = fixup_red_left(__s, __addr); \
575 		__p < (__addr) + (__objects) * (__s)->size; \
576 		__p += (__s)->size)
577 
578 static inline unsigned int order_objects(unsigned int order, unsigned int size)
579 {
580 	return ((unsigned int)PAGE_SIZE << order) / size;
581 }
582 
583 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
584 		unsigned int size)
585 {
586 	struct kmem_cache_order_objects x = {
587 		(order << OO_SHIFT) + order_objects(order, size)
588 	};
589 
590 	return x;
591 }
592 
593 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
594 {
595 	return x.x >> OO_SHIFT;
596 }
597 
598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
599 {
600 	return x.x & OO_MASK;
601 }
602 
603 #ifdef CONFIG_SLUB_CPU_PARTIAL
604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
605 {
606 	unsigned int nr_slabs;
607 
608 	s->cpu_partial = nr_objects;
609 
610 	/*
611 	 * We take the number of objects but actually limit the number of
612 	 * slabs on the per cpu partial list, in order to limit excessive
613 	 * growth of the list. For simplicity we assume that the slabs will
614 	 * be half-full.
615 	 */
616 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
617 	s->cpu_partial_slabs = nr_slabs;
618 }
619 
620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
621 {
622 	return s->cpu_partial_slabs;
623 }
624 #else
625 static inline void
626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
627 {
628 }
629 
630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
631 {
632 	return 0;
633 }
634 #endif /* CONFIG_SLUB_CPU_PARTIAL */
635 
636 /*
637  * Per slab locking using the pagelock
638  */
639 static __always_inline void slab_lock(struct slab *slab)
640 {
641 	bit_spin_lock(PG_locked, &slab->__page_flags);
642 }
643 
644 static __always_inline void slab_unlock(struct slab *slab)
645 {
646 	bit_spin_unlock(PG_locked, &slab->__page_flags);
647 }
648 
649 static inline bool
650 __update_freelist_fast(struct slab *slab,
651 		      void *freelist_old, unsigned long counters_old,
652 		      void *freelist_new, unsigned long counters_new)
653 {
654 #ifdef system_has_freelist_aba
655 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
656 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
657 
658 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
659 #else
660 	return false;
661 #endif
662 }
663 
664 static inline bool
665 __update_freelist_slow(struct slab *slab,
666 		      void *freelist_old, unsigned long counters_old,
667 		      void *freelist_new, unsigned long counters_new)
668 {
669 	bool ret = false;
670 
671 	slab_lock(slab);
672 	if (slab->freelist == freelist_old &&
673 	    slab->counters == counters_old) {
674 		slab->freelist = freelist_new;
675 		slab->counters = counters_new;
676 		ret = true;
677 	}
678 	slab_unlock(slab);
679 
680 	return ret;
681 }
682 
683 /*
684  * Interrupts must be disabled (for the fallback code to work right), typically
685  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
686  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
687  * allocation/ free operation in hardirq context. Therefore nothing can
688  * interrupt the operation.
689  */
690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
691 		void *freelist_old, unsigned long counters_old,
692 		void *freelist_new, unsigned long counters_new,
693 		const char *n)
694 {
695 	bool ret;
696 
697 	if (USE_LOCKLESS_FAST_PATH())
698 		lockdep_assert_irqs_disabled();
699 
700 	if (s->flags & __CMPXCHG_DOUBLE) {
701 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
702 				            freelist_new, counters_new);
703 	} else {
704 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
705 				            freelist_new, counters_new);
706 	}
707 	if (likely(ret))
708 		return true;
709 
710 	cpu_relax();
711 	stat(s, CMPXCHG_DOUBLE_FAIL);
712 
713 #ifdef SLUB_DEBUG_CMPXCHG
714 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
715 #endif
716 
717 	return false;
718 }
719 
720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
721 		void *freelist_old, unsigned long counters_old,
722 		void *freelist_new, unsigned long counters_new,
723 		const char *n)
724 {
725 	bool ret;
726 
727 	if (s->flags & __CMPXCHG_DOUBLE) {
728 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
729 				            freelist_new, counters_new);
730 	} else {
731 		unsigned long flags;
732 
733 		local_irq_save(flags);
734 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
735 				            freelist_new, counters_new);
736 		local_irq_restore(flags);
737 	}
738 	if (likely(ret))
739 		return true;
740 
741 	cpu_relax();
742 	stat(s, CMPXCHG_DOUBLE_FAIL);
743 
744 #ifdef SLUB_DEBUG_CMPXCHG
745 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
746 #endif
747 
748 	return false;
749 }
750 
751 /*
752  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
753  * family will round up the real request size to these fixed ones, so
754  * there could be an extra area than what is requested. Save the original
755  * request size in the meta data area, for better debug and sanity check.
756  */
757 static inline void set_orig_size(struct kmem_cache *s,
758 				void *object, unsigned int orig_size)
759 {
760 	void *p = kasan_reset_tag(object);
761 
762 	if (!slub_debug_orig_size(s))
763 		return;
764 
765 	p += get_info_end(s);
766 	p += sizeof(struct track) * 2;
767 
768 	*(unsigned int *)p = orig_size;
769 }
770 
771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
772 {
773 	void *p = kasan_reset_tag(object);
774 
775 	if (is_kfence_address(object))
776 		return kfence_ksize(object);
777 
778 	if (!slub_debug_orig_size(s))
779 		return s->object_size;
780 
781 	p += get_info_end(s);
782 	p += sizeof(struct track) * 2;
783 
784 	return *(unsigned int *)p;
785 }
786 
787 #ifdef CONFIG_SLUB_DEBUG
788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
789 static DEFINE_SPINLOCK(object_map_lock);
790 
791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
792 		       struct slab *slab)
793 {
794 	void *addr = slab_address(slab);
795 	void *p;
796 
797 	bitmap_zero(obj_map, slab->objects);
798 
799 	for (p = slab->freelist; p; p = get_freepointer(s, p))
800 		set_bit(__obj_to_index(s, addr, p), obj_map);
801 }
802 
803 #if IS_ENABLED(CONFIG_KUNIT)
804 static bool slab_add_kunit_errors(void)
805 {
806 	struct kunit_resource *resource;
807 
808 	if (!kunit_get_current_test())
809 		return false;
810 
811 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
812 	if (!resource)
813 		return false;
814 
815 	(*(int *)resource->data)++;
816 	kunit_put_resource(resource);
817 	return true;
818 }
819 
820 bool slab_in_kunit_test(void)
821 {
822 	struct kunit_resource *resource;
823 
824 	if (!kunit_get_current_test())
825 		return false;
826 
827 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
828 	if (!resource)
829 		return false;
830 
831 	kunit_put_resource(resource);
832 	return true;
833 }
834 #else
835 static inline bool slab_add_kunit_errors(void) { return false; }
836 #endif
837 
838 static inline unsigned int size_from_object(struct kmem_cache *s)
839 {
840 	if (s->flags & SLAB_RED_ZONE)
841 		return s->size - s->red_left_pad;
842 
843 	return s->size;
844 }
845 
846 static inline void *restore_red_left(struct kmem_cache *s, void *p)
847 {
848 	if (s->flags & SLAB_RED_ZONE)
849 		p -= s->red_left_pad;
850 
851 	return p;
852 }
853 
854 /*
855  * Debug settings:
856  */
857 #if defined(CONFIG_SLUB_DEBUG_ON)
858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
859 #else
860 static slab_flags_t slub_debug;
861 #endif
862 
863 static char *slub_debug_string;
864 static int disable_higher_order_debug;
865 
866 /*
867  * slub is about to manipulate internal object metadata.  This memory lies
868  * outside the range of the allocated object, so accessing it would normally
869  * be reported by kasan as a bounds error.  metadata_access_enable() is used
870  * to tell kasan that these accesses are OK.
871  */
872 static inline void metadata_access_enable(void)
873 {
874 	kasan_disable_current();
875 	kmsan_disable_current();
876 }
877 
878 static inline void metadata_access_disable(void)
879 {
880 	kmsan_enable_current();
881 	kasan_enable_current();
882 }
883 
884 /*
885  * Object debugging
886  */
887 
888 /* Verify that a pointer has an address that is valid within a slab page */
889 static inline int check_valid_pointer(struct kmem_cache *s,
890 				struct slab *slab, void *object)
891 {
892 	void *base;
893 
894 	if (!object)
895 		return 1;
896 
897 	base = slab_address(slab);
898 	object = kasan_reset_tag(object);
899 	object = restore_red_left(s, object);
900 	if (object < base || object >= base + slab->objects * s->size ||
901 		(object - base) % s->size) {
902 		return 0;
903 	}
904 
905 	return 1;
906 }
907 
908 static void print_section(char *level, char *text, u8 *addr,
909 			  unsigned int length)
910 {
911 	metadata_access_enable();
912 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
913 			16, 1, kasan_reset_tag((void *)addr), length, 1);
914 	metadata_access_disable();
915 }
916 
917 static struct track *get_track(struct kmem_cache *s, void *object,
918 	enum track_item alloc)
919 {
920 	struct track *p;
921 
922 	p = object + get_info_end(s);
923 
924 	return kasan_reset_tag(p + alloc);
925 }
926 
927 #ifdef CONFIG_STACKDEPOT
928 static noinline depot_stack_handle_t set_track_prepare(void)
929 {
930 	depot_stack_handle_t handle;
931 	unsigned long entries[TRACK_ADDRS_COUNT];
932 	unsigned int nr_entries;
933 
934 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
935 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
936 
937 	return handle;
938 }
939 #else
940 static inline depot_stack_handle_t set_track_prepare(void)
941 {
942 	return 0;
943 }
944 #endif
945 
946 static void set_track_update(struct kmem_cache *s, void *object,
947 			     enum track_item alloc, unsigned long addr,
948 			     depot_stack_handle_t handle)
949 {
950 	struct track *p = get_track(s, object, alloc);
951 
952 #ifdef CONFIG_STACKDEPOT
953 	p->handle = handle;
954 #endif
955 	p->addr = addr;
956 	p->cpu = smp_processor_id();
957 	p->pid = current->pid;
958 	p->when = jiffies;
959 }
960 
961 static __always_inline void set_track(struct kmem_cache *s, void *object,
962 				      enum track_item alloc, unsigned long addr)
963 {
964 	depot_stack_handle_t handle = set_track_prepare();
965 
966 	set_track_update(s, object, alloc, addr, handle);
967 }
968 
969 static void init_tracking(struct kmem_cache *s, void *object)
970 {
971 	struct track *p;
972 
973 	if (!(s->flags & SLAB_STORE_USER))
974 		return;
975 
976 	p = get_track(s, object, TRACK_ALLOC);
977 	memset(p, 0, 2*sizeof(struct track));
978 }
979 
980 static void print_track(const char *s, struct track *t, unsigned long pr_time)
981 {
982 	depot_stack_handle_t handle __maybe_unused;
983 
984 	if (!t->addr)
985 		return;
986 
987 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
988 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
989 #ifdef CONFIG_STACKDEPOT
990 	handle = READ_ONCE(t->handle);
991 	if (handle)
992 		stack_depot_print(handle);
993 	else
994 		pr_err("object allocation/free stack trace missing\n");
995 #endif
996 }
997 
998 void print_tracking(struct kmem_cache *s, void *object)
999 {
1000 	unsigned long pr_time = jiffies;
1001 	if (!(s->flags & SLAB_STORE_USER))
1002 		return;
1003 
1004 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1005 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1006 }
1007 
1008 static void print_slab_info(const struct slab *slab)
1009 {
1010 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1011 	       slab, slab->objects, slab->inuse, slab->freelist,
1012 	       &slab->__page_flags);
1013 }
1014 
1015 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1016 {
1017 	set_orig_size(s, (void *)object, s->object_size);
1018 }
1019 
1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1021 {
1022 	struct va_format vaf;
1023 	va_list args;
1024 
1025 	va_start(args, fmt);
1026 	vaf.fmt = fmt;
1027 	vaf.va = &args;
1028 	pr_err("=============================================================================\n");
1029 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1030 	pr_err("-----------------------------------------------------------------------------\n\n");
1031 	va_end(args);
1032 }
1033 
1034 __printf(2, 3)
1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1036 {
1037 	struct va_format vaf;
1038 	va_list args;
1039 
1040 	if (slab_add_kunit_errors())
1041 		return;
1042 
1043 	va_start(args, fmt);
1044 	vaf.fmt = fmt;
1045 	vaf.va = &args;
1046 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1047 	va_end(args);
1048 }
1049 
1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1051 {
1052 	unsigned int off;	/* Offset of last byte */
1053 	u8 *addr = slab_address(slab);
1054 
1055 	print_tracking(s, p);
1056 
1057 	print_slab_info(slab);
1058 
1059 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1060 	       p, p - addr, get_freepointer(s, p));
1061 
1062 	if (s->flags & SLAB_RED_ZONE)
1063 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1064 			      s->red_left_pad);
1065 	else if (p > addr + 16)
1066 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1067 
1068 	print_section(KERN_ERR,         "Object   ", p,
1069 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1070 	if (s->flags & SLAB_RED_ZONE)
1071 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1072 			s->inuse - s->object_size);
1073 
1074 	off = get_info_end(s);
1075 
1076 	if (s->flags & SLAB_STORE_USER)
1077 		off += 2 * sizeof(struct track);
1078 
1079 	if (slub_debug_orig_size(s))
1080 		off += sizeof(unsigned int);
1081 
1082 	off += kasan_metadata_size(s, false);
1083 
1084 	if (off != size_from_object(s))
1085 		/* Beginning of the filler is the free pointer */
1086 		print_section(KERN_ERR, "Padding  ", p + off,
1087 			      size_from_object(s) - off);
1088 
1089 	dump_stack();
1090 }
1091 
1092 static void object_err(struct kmem_cache *s, struct slab *slab,
1093 			u8 *object, char *reason)
1094 {
1095 	if (slab_add_kunit_errors())
1096 		return;
1097 
1098 	slab_bug(s, "%s", reason);
1099 	print_trailer(s, slab, object);
1100 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1101 }
1102 
1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1104 			       void **freelist, void *nextfree)
1105 {
1106 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1107 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1108 		object_err(s, slab, *freelist, "Freechain corrupt");
1109 		*freelist = NULL;
1110 		slab_fix(s, "Isolate corrupted freechain");
1111 		return true;
1112 	}
1113 
1114 	return false;
1115 }
1116 
1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1118 			const char *fmt, ...)
1119 {
1120 	va_list args;
1121 	char buf[100];
1122 
1123 	if (slab_add_kunit_errors())
1124 		return;
1125 
1126 	va_start(args, fmt);
1127 	vsnprintf(buf, sizeof(buf), fmt, args);
1128 	va_end(args);
1129 	slab_bug(s, "%s", buf);
1130 	print_slab_info(slab);
1131 	dump_stack();
1132 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1133 }
1134 
1135 static void init_object(struct kmem_cache *s, void *object, u8 val)
1136 {
1137 	u8 *p = kasan_reset_tag(object);
1138 	unsigned int poison_size = s->object_size;
1139 
1140 	if (s->flags & SLAB_RED_ZONE) {
1141 		/*
1142 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1143 		 * the shadow makes it possible to distinguish uninit-value
1144 		 * from use-after-free.
1145 		 */
1146 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1147 					  s->red_left_pad);
1148 
1149 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1150 			/*
1151 			 * Redzone the extra allocated space by kmalloc than
1152 			 * requested, and the poison size will be limited to
1153 			 * the original request size accordingly.
1154 			 */
1155 			poison_size = get_orig_size(s, object);
1156 		}
1157 	}
1158 
1159 	if (s->flags & __OBJECT_POISON) {
1160 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1161 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1162 	}
1163 
1164 	if (s->flags & SLAB_RED_ZONE)
1165 		memset_no_sanitize_memory(p + poison_size, val,
1166 					  s->inuse - poison_size);
1167 }
1168 
1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1170 						void *from, void *to)
1171 {
1172 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1173 	memset(from, data, to - from);
1174 }
1175 
1176 #ifdef CONFIG_KMSAN
1177 #define pad_check_attributes noinline __no_kmsan_checks
1178 #else
1179 #define pad_check_attributes
1180 #endif
1181 
1182 static pad_check_attributes int
1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1184 		       u8 *object, char *what,
1185 		       u8 *start, unsigned int value, unsigned int bytes)
1186 {
1187 	u8 *fault;
1188 	u8 *end;
1189 	u8 *addr = slab_address(slab);
1190 
1191 	metadata_access_enable();
1192 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1193 	metadata_access_disable();
1194 	if (!fault)
1195 		return 1;
1196 
1197 	end = start + bytes;
1198 	while (end > fault && end[-1] == value)
1199 		end--;
1200 
1201 	if (slab_add_kunit_errors())
1202 		goto skip_bug_print;
1203 
1204 	slab_bug(s, "%s overwritten", what);
1205 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1206 					fault, end - 1, fault - addr,
1207 					fault[0], value);
1208 
1209 skip_bug_print:
1210 	restore_bytes(s, what, value, fault, end);
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Object layout:
1216  *
1217  * object address
1218  * 	Bytes of the object to be managed.
1219  * 	If the freepointer may overlay the object then the free
1220  *	pointer is at the middle of the object.
1221  *
1222  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1223  * 	0xa5 (POISON_END)
1224  *
1225  * object + s->object_size
1226  * 	Padding to reach word boundary. This is also used for Redzoning.
1227  * 	Padding is extended by another word if Redzoning is enabled and
1228  * 	object_size == inuse.
1229  *
1230  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1231  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1232  *
1233  * object + s->inuse
1234  * 	Meta data starts here.
1235  *
1236  * 	A. Free pointer (if we cannot overwrite object on free)
1237  * 	B. Tracking data for SLAB_STORE_USER
1238  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1239  *	D. Padding to reach required alignment boundary or at minimum
1240  * 		one word if debugging is on to be able to detect writes
1241  * 		before the word boundary.
1242  *
1243  *	Padding is done using 0x5a (POISON_INUSE)
1244  *
1245  * object + s->size
1246  * 	Nothing is used beyond s->size.
1247  *
1248  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1249  * ignored. And therefore no slab options that rely on these boundaries
1250  * may be used with merged slabcaches.
1251  */
1252 
1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1254 {
1255 	unsigned long off = get_info_end(s);	/* The end of info */
1256 
1257 	if (s->flags & SLAB_STORE_USER) {
1258 		/* We also have user information there */
1259 		off += 2 * sizeof(struct track);
1260 
1261 		if (s->flags & SLAB_KMALLOC)
1262 			off += sizeof(unsigned int);
1263 	}
1264 
1265 	off += kasan_metadata_size(s, false);
1266 
1267 	if (size_from_object(s) == off)
1268 		return 1;
1269 
1270 	return check_bytes_and_report(s, slab, p, "Object padding",
1271 			p + off, POISON_INUSE, size_from_object(s) - off);
1272 }
1273 
1274 /* Check the pad bytes at the end of a slab page */
1275 static pad_check_attributes void
1276 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1277 {
1278 	u8 *start;
1279 	u8 *fault;
1280 	u8 *end;
1281 	u8 *pad;
1282 	int length;
1283 	int remainder;
1284 
1285 	if (!(s->flags & SLAB_POISON))
1286 		return;
1287 
1288 	start = slab_address(slab);
1289 	length = slab_size(slab);
1290 	end = start + length;
1291 	remainder = length % s->size;
1292 	if (!remainder)
1293 		return;
1294 
1295 	pad = end - remainder;
1296 	metadata_access_enable();
1297 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1298 	metadata_access_disable();
1299 	if (!fault)
1300 		return;
1301 	while (end > fault && end[-1] == POISON_INUSE)
1302 		end--;
1303 
1304 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1305 			fault, end - 1, fault - start);
1306 	print_section(KERN_ERR, "Padding ", pad, remainder);
1307 
1308 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1309 }
1310 
1311 static int check_object(struct kmem_cache *s, struct slab *slab,
1312 					void *object, u8 val)
1313 {
1314 	u8 *p = object;
1315 	u8 *endobject = object + s->object_size;
1316 	unsigned int orig_size, kasan_meta_size;
1317 	int ret = 1;
1318 
1319 	if (s->flags & SLAB_RED_ZONE) {
1320 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1321 			object - s->red_left_pad, val, s->red_left_pad))
1322 			ret = 0;
1323 
1324 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1325 			endobject, val, s->inuse - s->object_size))
1326 			ret = 0;
1327 
1328 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1329 			orig_size = get_orig_size(s, object);
1330 
1331 			if (s->object_size > orig_size  &&
1332 				!check_bytes_and_report(s, slab, object,
1333 					"kmalloc Redzone", p + orig_size,
1334 					val, s->object_size - orig_size)) {
1335 				ret = 0;
1336 			}
1337 		}
1338 	} else {
1339 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1340 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1341 				endobject, POISON_INUSE,
1342 				s->inuse - s->object_size))
1343 				ret = 0;
1344 		}
1345 	}
1346 
1347 	if (s->flags & SLAB_POISON) {
1348 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1349 			/*
1350 			 * KASAN can save its free meta data inside of the
1351 			 * object at offset 0. Thus, skip checking the part of
1352 			 * the redzone that overlaps with the meta data.
1353 			 */
1354 			kasan_meta_size = kasan_metadata_size(s, true);
1355 			if (kasan_meta_size < s->object_size - 1 &&
1356 			    !check_bytes_and_report(s, slab, p, "Poison",
1357 					p + kasan_meta_size, POISON_FREE,
1358 					s->object_size - kasan_meta_size - 1))
1359 				ret = 0;
1360 			if (kasan_meta_size < s->object_size &&
1361 			    !check_bytes_and_report(s, slab, p, "End Poison",
1362 					p + s->object_size - 1, POISON_END, 1))
1363 				ret = 0;
1364 		}
1365 		/*
1366 		 * check_pad_bytes cleans up on its own.
1367 		 */
1368 		if (!check_pad_bytes(s, slab, p))
1369 			ret = 0;
1370 	}
1371 
1372 	/*
1373 	 * Cannot check freepointer while object is allocated if
1374 	 * object and freepointer overlap.
1375 	 */
1376 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1377 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1378 		object_err(s, slab, p, "Freepointer corrupt");
1379 		/*
1380 		 * No choice but to zap it and thus lose the remainder
1381 		 * of the free objects in this slab. May cause
1382 		 * another error because the object count is now wrong.
1383 		 */
1384 		set_freepointer(s, p, NULL);
1385 		ret = 0;
1386 	}
1387 
1388 	if (!ret && !slab_in_kunit_test()) {
1389 		print_trailer(s, slab, object);
1390 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1391 	}
1392 
1393 	return ret;
1394 }
1395 
1396 static int check_slab(struct kmem_cache *s, struct slab *slab)
1397 {
1398 	int maxobj;
1399 
1400 	if (!folio_test_slab(slab_folio(slab))) {
1401 		slab_err(s, slab, "Not a valid slab page");
1402 		return 0;
1403 	}
1404 
1405 	maxobj = order_objects(slab_order(slab), s->size);
1406 	if (slab->objects > maxobj) {
1407 		slab_err(s, slab, "objects %u > max %u",
1408 			slab->objects, maxobj);
1409 		return 0;
1410 	}
1411 	if (slab->inuse > slab->objects) {
1412 		slab_err(s, slab, "inuse %u > max %u",
1413 			slab->inuse, slab->objects);
1414 		return 0;
1415 	}
1416 	if (slab->frozen) {
1417 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1418 		return 0;
1419 	}
1420 
1421 	/* Slab_pad_check fixes things up after itself */
1422 	slab_pad_check(s, slab);
1423 	return 1;
1424 }
1425 
1426 /*
1427  * Determine if a certain object in a slab is on the freelist. Must hold the
1428  * slab lock to guarantee that the chains are in a consistent state.
1429  */
1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1431 {
1432 	int nr = 0;
1433 	void *fp;
1434 	void *object = NULL;
1435 	int max_objects;
1436 
1437 	fp = slab->freelist;
1438 	while (fp && nr <= slab->objects) {
1439 		if (fp == search)
1440 			return 1;
1441 		if (!check_valid_pointer(s, slab, fp)) {
1442 			if (object) {
1443 				object_err(s, slab, object,
1444 					"Freechain corrupt");
1445 				set_freepointer(s, object, NULL);
1446 			} else {
1447 				slab_err(s, slab, "Freepointer corrupt");
1448 				slab->freelist = NULL;
1449 				slab->inuse = slab->objects;
1450 				slab_fix(s, "Freelist cleared");
1451 				return 0;
1452 			}
1453 			break;
1454 		}
1455 		object = fp;
1456 		fp = get_freepointer(s, object);
1457 		nr++;
1458 	}
1459 
1460 	max_objects = order_objects(slab_order(slab), s->size);
1461 	if (max_objects > MAX_OBJS_PER_PAGE)
1462 		max_objects = MAX_OBJS_PER_PAGE;
1463 
1464 	if (slab->objects != max_objects) {
1465 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1466 			 slab->objects, max_objects);
1467 		slab->objects = max_objects;
1468 		slab_fix(s, "Number of objects adjusted");
1469 	}
1470 	if (slab->inuse != slab->objects - nr) {
1471 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1472 			 slab->inuse, slab->objects - nr);
1473 		slab->inuse = slab->objects - nr;
1474 		slab_fix(s, "Object count adjusted");
1475 	}
1476 	return search == NULL;
1477 }
1478 
1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1480 								int alloc)
1481 {
1482 	if (s->flags & SLAB_TRACE) {
1483 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1484 			s->name,
1485 			alloc ? "alloc" : "free",
1486 			object, slab->inuse,
1487 			slab->freelist);
1488 
1489 		if (!alloc)
1490 			print_section(KERN_INFO, "Object ", (void *)object,
1491 					s->object_size);
1492 
1493 		dump_stack();
1494 	}
1495 }
1496 
1497 /*
1498  * Tracking of fully allocated slabs for debugging purposes.
1499  */
1500 static void add_full(struct kmem_cache *s,
1501 	struct kmem_cache_node *n, struct slab *slab)
1502 {
1503 	if (!(s->flags & SLAB_STORE_USER))
1504 		return;
1505 
1506 	lockdep_assert_held(&n->list_lock);
1507 	list_add(&slab->slab_list, &n->full);
1508 }
1509 
1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1511 {
1512 	if (!(s->flags & SLAB_STORE_USER))
1513 		return;
1514 
1515 	lockdep_assert_held(&n->list_lock);
1516 	list_del(&slab->slab_list);
1517 }
1518 
1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1520 {
1521 	return atomic_long_read(&n->nr_slabs);
1522 }
1523 
1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1525 {
1526 	struct kmem_cache_node *n = get_node(s, node);
1527 
1528 	atomic_long_inc(&n->nr_slabs);
1529 	atomic_long_add(objects, &n->total_objects);
1530 }
1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1532 {
1533 	struct kmem_cache_node *n = get_node(s, node);
1534 
1535 	atomic_long_dec(&n->nr_slabs);
1536 	atomic_long_sub(objects, &n->total_objects);
1537 }
1538 
1539 /* Object debug checks for alloc/free paths */
1540 static void setup_object_debug(struct kmem_cache *s, void *object)
1541 {
1542 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1543 		return;
1544 
1545 	init_object(s, object, SLUB_RED_INACTIVE);
1546 	init_tracking(s, object);
1547 }
1548 
1549 static
1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1551 {
1552 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1553 		return;
1554 
1555 	metadata_access_enable();
1556 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1557 	metadata_access_disable();
1558 }
1559 
1560 static inline int alloc_consistency_checks(struct kmem_cache *s,
1561 					struct slab *slab, void *object)
1562 {
1563 	if (!check_slab(s, slab))
1564 		return 0;
1565 
1566 	if (!check_valid_pointer(s, slab, object)) {
1567 		object_err(s, slab, object, "Freelist Pointer check fails");
1568 		return 0;
1569 	}
1570 
1571 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1572 		return 0;
1573 
1574 	return 1;
1575 }
1576 
1577 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1578 			struct slab *slab, void *object, int orig_size)
1579 {
1580 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1581 		if (!alloc_consistency_checks(s, slab, object))
1582 			goto bad;
1583 	}
1584 
1585 	/* Success. Perform special debug activities for allocs */
1586 	trace(s, slab, object, 1);
1587 	set_orig_size(s, object, orig_size);
1588 	init_object(s, object, SLUB_RED_ACTIVE);
1589 	return true;
1590 
1591 bad:
1592 	if (folio_test_slab(slab_folio(slab))) {
1593 		/*
1594 		 * If this is a slab page then lets do the best we can
1595 		 * to avoid issues in the future. Marking all objects
1596 		 * as used avoids touching the remaining objects.
1597 		 */
1598 		slab_fix(s, "Marking all objects used");
1599 		slab->inuse = slab->objects;
1600 		slab->freelist = NULL;
1601 		slab->frozen = 1; /* mark consistency-failed slab as frozen */
1602 	}
1603 	return false;
1604 }
1605 
1606 static inline int free_consistency_checks(struct kmem_cache *s,
1607 		struct slab *slab, void *object, unsigned long addr)
1608 {
1609 	if (!check_valid_pointer(s, slab, object)) {
1610 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1611 		return 0;
1612 	}
1613 
1614 	if (on_freelist(s, slab, object)) {
1615 		object_err(s, slab, object, "Object already free");
1616 		return 0;
1617 	}
1618 
1619 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1620 		return 0;
1621 
1622 	if (unlikely(s != slab->slab_cache)) {
1623 		if (!folio_test_slab(slab_folio(slab))) {
1624 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1625 				 object);
1626 		} else if (!slab->slab_cache) {
1627 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1628 			       object);
1629 			dump_stack();
1630 		} else
1631 			object_err(s, slab, object,
1632 					"page slab pointer corrupt.");
1633 		return 0;
1634 	}
1635 	return 1;
1636 }
1637 
1638 /*
1639  * Parse a block of slab_debug options. Blocks are delimited by ';'
1640  *
1641  * @str:    start of block
1642  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1643  * @slabs:  return start of list of slabs, or NULL when there's no list
1644  * @init:   assume this is initial parsing and not per-kmem-create parsing
1645  *
1646  * returns the start of next block if there's any, or NULL
1647  */
1648 static char *
1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1650 {
1651 	bool higher_order_disable = false;
1652 
1653 	/* Skip any completely empty blocks */
1654 	while (*str && *str == ';')
1655 		str++;
1656 
1657 	if (*str == ',') {
1658 		/*
1659 		 * No options but restriction on slabs. This means full
1660 		 * debugging for slabs matching a pattern.
1661 		 */
1662 		*flags = DEBUG_DEFAULT_FLAGS;
1663 		goto check_slabs;
1664 	}
1665 	*flags = 0;
1666 
1667 	/* Determine which debug features should be switched on */
1668 	for (; *str && *str != ',' && *str != ';'; str++) {
1669 		switch (tolower(*str)) {
1670 		case '-':
1671 			*flags = 0;
1672 			break;
1673 		case 'f':
1674 			*flags |= SLAB_CONSISTENCY_CHECKS;
1675 			break;
1676 		case 'z':
1677 			*flags |= SLAB_RED_ZONE;
1678 			break;
1679 		case 'p':
1680 			*flags |= SLAB_POISON;
1681 			break;
1682 		case 'u':
1683 			*flags |= SLAB_STORE_USER;
1684 			break;
1685 		case 't':
1686 			*flags |= SLAB_TRACE;
1687 			break;
1688 		case 'a':
1689 			*flags |= SLAB_FAILSLAB;
1690 			break;
1691 		case 'o':
1692 			/*
1693 			 * Avoid enabling debugging on caches if its minimum
1694 			 * order would increase as a result.
1695 			 */
1696 			higher_order_disable = true;
1697 			break;
1698 		default:
1699 			if (init)
1700 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1701 		}
1702 	}
1703 check_slabs:
1704 	if (*str == ',')
1705 		*slabs = ++str;
1706 	else
1707 		*slabs = NULL;
1708 
1709 	/* Skip over the slab list */
1710 	while (*str && *str != ';')
1711 		str++;
1712 
1713 	/* Skip any completely empty blocks */
1714 	while (*str && *str == ';')
1715 		str++;
1716 
1717 	if (init && higher_order_disable)
1718 		disable_higher_order_debug = 1;
1719 
1720 	if (*str)
1721 		return str;
1722 	else
1723 		return NULL;
1724 }
1725 
1726 static int __init setup_slub_debug(char *str)
1727 {
1728 	slab_flags_t flags;
1729 	slab_flags_t global_flags;
1730 	char *saved_str;
1731 	char *slab_list;
1732 	bool global_slub_debug_changed = false;
1733 	bool slab_list_specified = false;
1734 
1735 	global_flags = DEBUG_DEFAULT_FLAGS;
1736 	if (*str++ != '=' || !*str)
1737 		/*
1738 		 * No options specified. Switch on full debugging.
1739 		 */
1740 		goto out;
1741 
1742 	saved_str = str;
1743 	while (str) {
1744 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1745 
1746 		if (!slab_list) {
1747 			global_flags = flags;
1748 			global_slub_debug_changed = true;
1749 		} else {
1750 			slab_list_specified = true;
1751 			if (flags & SLAB_STORE_USER)
1752 				stack_depot_request_early_init();
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * For backwards compatibility, a single list of flags with list of
1758 	 * slabs means debugging is only changed for those slabs, so the global
1759 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1760 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1761 	 * long as there is no option specifying flags without a slab list.
1762 	 */
1763 	if (slab_list_specified) {
1764 		if (!global_slub_debug_changed)
1765 			global_flags = slub_debug;
1766 		slub_debug_string = saved_str;
1767 	}
1768 out:
1769 	slub_debug = global_flags;
1770 	if (slub_debug & SLAB_STORE_USER)
1771 		stack_depot_request_early_init();
1772 	if (slub_debug != 0 || slub_debug_string)
1773 		static_branch_enable(&slub_debug_enabled);
1774 	else
1775 		static_branch_disable(&slub_debug_enabled);
1776 	if ((static_branch_unlikely(&init_on_alloc) ||
1777 	     static_branch_unlikely(&init_on_free)) &&
1778 	    (slub_debug & SLAB_POISON))
1779 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1780 	return 1;
1781 }
1782 
1783 __setup("slab_debug", setup_slub_debug);
1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1785 
1786 /*
1787  * kmem_cache_flags - apply debugging options to the cache
1788  * @flags:		flags to set
1789  * @name:		name of the cache
1790  *
1791  * Debug option(s) are applied to @flags. In addition to the debug
1792  * option(s), if a slab name (or multiple) is specified i.e.
1793  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1794  * then only the select slabs will receive the debug option(s).
1795  */
1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1797 {
1798 	char *iter;
1799 	size_t len;
1800 	char *next_block;
1801 	slab_flags_t block_flags;
1802 	slab_flags_t slub_debug_local = slub_debug;
1803 
1804 	if (flags & SLAB_NO_USER_FLAGS)
1805 		return flags;
1806 
1807 	/*
1808 	 * If the slab cache is for debugging (e.g. kmemleak) then
1809 	 * don't store user (stack trace) information by default,
1810 	 * but let the user enable it via the command line below.
1811 	 */
1812 	if (flags & SLAB_NOLEAKTRACE)
1813 		slub_debug_local &= ~SLAB_STORE_USER;
1814 
1815 	len = strlen(name);
1816 	next_block = slub_debug_string;
1817 	/* Go through all blocks of debug options, see if any matches our slab's name */
1818 	while (next_block) {
1819 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1820 		if (!iter)
1821 			continue;
1822 		/* Found a block that has a slab list, search it */
1823 		while (*iter) {
1824 			char *end, *glob;
1825 			size_t cmplen;
1826 
1827 			end = strchrnul(iter, ',');
1828 			if (next_block && next_block < end)
1829 				end = next_block - 1;
1830 
1831 			glob = strnchr(iter, end - iter, '*');
1832 			if (glob)
1833 				cmplen = glob - iter;
1834 			else
1835 				cmplen = max_t(size_t, len, (end - iter));
1836 
1837 			if (!strncmp(name, iter, cmplen)) {
1838 				flags |= block_flags;
1839 				return flags;
1840 			}
1841 
1842 			if (!*end || *end == ';')
1843 				break;
1844 			iter = end + 1;
1845 		}
1846 	}
1847 
1848 	return flags | slub_debug_local;
1849 }
1850 #else /* !CONFIG_SLUB_DEBUG */
1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1852 static inline
1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1854 
1855 static inline bool alloc_debug_processing(struct kmem_cache *s,
1856 	struct slab *slab, void *object, int orig_size) { return true; }
1857 
1858 static inline bool free_debug_processing(struct kmem_cache *s,
1859 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1860 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1861 
1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1863 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1864 			void *object, u8 val) { return 1; }
1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1866 static inline void set_track(struct kmem_cache *s, void *object,
1867 			     enum track_item alloc, unsigned long addr) {}
1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1869 					struct slab *slab) {}
1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1871 					struct slab *slab) {}
1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1873 {
1874 	return flags;
1875 }
1876 #define slub_debug 0
1877 
1878 #define disable_higher_order_debug 0
1879 
1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1881 							{ return 0; }
1882 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1883 							int objects) {}
1884 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1885 							int objects) {}
1886 #ifndef CONFIG_SLUB_TINY
1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1888 			       void **freelist, void *nextfree)
1889 {
1890 	return false;
1891 }
1892 #endif
1893 #endif /* CONFIG_SLUB_DEBUG */
1894 
1895 #ifdef CONFIG_SLAB_OBJ_EXT
1896 
1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1898 
1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1900 {
1901 	struct slabobj_ext *slab_exts;
1902 	struct slab *obj_exts_slab;
1903 
1904 	obj_exts_slab = virt_to_slab(obj_exts);
1905 	slab_exts = slab_obj_exts(obj_exts_slab);
1906 	if (slab_exts) {
1907 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1908 						 obj_exts_slab, obj_exts);
1909 		/* codetag should be NULL */
1910 		WARN_ON(slab_exts[offs].ref.ct);
1911 		set_codetag_empty(&slab_exts[offs].ref);
1912 	}
1913 }
1914 
1915 static inline void mark_failed_objexts_alloc(struct slab *slab)
1916 {
1917 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1918 }
1919 
1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1921 			struct slabobj_ext *vec, unsigned int objects)
1922 {
1923 	/*
1924 	 * If vector previously failed to allocate then we have live
1925 	 * objects with no tag reference. Mark all references in this
1926 	 * vector as empty to avoid warnings later on.
1927 	 */
1928 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1929 		unsigned int i;
1930 
1931 		for (i = 0; i < objects; i++)
1932 			set_codetag_empty(&vec[i].ref);
1933 	}
1934 }
1935 
1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1937 
1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1941 			struct slabobj_ext *vec, unsigned int objects) {}
1942 
1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1944 
1945 /*
1946  * The allocated objcg pointers array is not accounted directly.
1947  * Moreover, it should not come from DMA buffer and is not readily
1948  * reclaimable. So those GFP bits should be masked off.
1949  */
1950 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1951 				__GFP_ACCOUNT | __GFP_NOFAIL)
1952 
1953 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1954 		        gfp_t gfp, bool new_slab)
1955 {
1956 	unsigned int objects = objs_per_slab(s, slab);
1957 	unsigned long new_exts;
1958 	unsigned long old_exts;
1959 	struct slabobj_ext *vec;
1960 
1961 	gfp &= ~OBJCGS_CLEAR_MASK;
1962 	/* Prevent recursive extension vector allocation */
1963 	gfp |= __GFP_NO_OBJ_EXT;
1964 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1965 			   slab_nid(slab));
1966 	if (!vec) {
1967 		/* Mark vectors which failed to allocate */
1968 		if (new_slab)
1969 			mark_failed_objexts_alloc(slab);
1970 
1971 		return -ENOMEM;
1972 	}
1973 
1974 	new_exts = (unsigned long)vec;
1975 #ifdef CONFIG_MEMCG
1976 	new_exts |= MEMCG_DATA_OBJEXTS;
1977 #endif
1978 	old_exts = READ_ONCE(slab->obj_exts);
1979 	handle_failed_objexts_alloc(old_exts, vec, objects);
1980 	if (new_slab) {
1981 		/*
1982 		 * If the slab is brand new and nobody can yet access its
1983 		 * obj_exts, no synchronization is required and obj_exts can
1984 		 * be simply assigned.
1985 		 */
1986 		slab->obj_exts = new_exts;
1987 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1988 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1989 		/*
1990 		 * If the slab is already in use, somebody can allocate and
1991 		 * assign slabobj_exts in parallel. In this case the existing
1992 		 * objcg vector should be reused.
1993 		 */
1994 		mark_objexts_empty(vec);
1995 		kfree(vec);
1996 		return 0;
1997 	}
1998 
1999 	kmemleak_not_leak(vec);
2000 	return 0;
2001 }
2002 
2003 /* Should be called only if mem_alloc_profiling_enabled() */
2004 static noinline void free_slab_obj_exts(struct slab *slab)
2005 {
2006 	struct slabobj_ext *obj_exts;
2007 
2008 	obj_exts = slab_obj_exts(slab);
2009 	if (!obj_exts)
2010 		return;
2011 
2012 	/*
2013 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2014 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2015 	 * warning if slab has extensions but the extension of an object is
2016 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2017 	 * the extension for obj_exts is expected to be NULL.
2018 	 */
2019 	mark_objexts_empty(obj_exts);
2020 	kfree(obj_exts);
2021 	slab->obj_exts = 0;
2022 }
2023 
2024 static inline bool need_slab_obj_ext(void)
2025 {
2026 	if (mem_alloc_profiling_enabled())
2027 		return true;
2028 
2029 	/*
2030 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2031 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2032 	 */
2033 	return false;
2034 }
2035 
2036 #else /* CONFIG_SLAB_OBJ_EXT */
2037 
2038 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2039 			       gfp_t gfp, bool new_slab)
2040 {
2041 	return 0;
2042 }
2043 
2044 static inline void free_slab_obj_exts(struct slab *slab)
2045 {
2046 }
2047 
2048 static inline bool need_slab_obj_ext(void)
2049 {
2050 	return false;
2051 }
2052 
2053 #endif /* CONFIG_SLAB_OBJ_EXT */
2054 
2055 #ifdef CONFIG_MEM_ALLOC_PROFILING
2056 
2057 static inline struct slabobj_ext *
2058 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2059 {
2060 	struct slab *slab;
2061 
2062 	if (!p)
2063 		return NULL;
2064 
2065 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2066 		return NULL;
2067 
2068 	if (flags & __GFP_NO_OBJ_EXT)
2069 		return NULL;
2070 
2071 	slab = virt_to_slab(p);
2072 	if (!slab_obj_exts(slab) &&
2073 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2074 		 "%s, %s: Failed to create slab extension vector!\n",
2075 		 __func__, s->name))
2076 		return NULL;
2077 
2078 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2079 }
2080 
2081 /* Should be called only if mem_alloc_profiling_enabled() */
2082 static noinline void
2083 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2084 {
2085 	struct slabobj_ext *obj_exts;
2086 
2087 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2088 	/*
2089 	 * Currently obj_exts is used only for allocation profiling.
2090 	 * If other users appear then mem_alloc_profiling_enabled()
2091 	 * check should be added before alloc_tag_add().
2092 	 */
2093 	if (likely(obj_exts))
2094 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2095 }
2096 
2097 static inline void
2098 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2099 {
2100 	if (need_slab_obj_ext())
2101 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2102 }
2103 
2104 /* Should be called only if mem_alloc_profiling_enabled() */
2105 static noinline void
2106 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2107 			       int objects)
2108 {
2109 	struct slabobj_ext *obj_exts;
2110 	int i;
2111 
2112 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2113 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2114 		return;
2115 
2116 	obj_exts = slab_obj_exts(slab);
2117 	if (!obj_exts)
2118 		return;
2119 
2120 	for (i = 0; i < objects; i++) {
2121 		unsigned int off = obj_to_index(s, slab, p[i]);
2122 
2123 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2124 	}
2125 }
2126 
2127 static inline void
2128 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2129 			     int objects)
2130 {
2131 	if (mem_alloc_profiling_enabled())
2132 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2133 }
2134 
2135 #else /* CONFIG_MEM_ALLOC_PROFILING */
2136 
2137 static inline void
2138 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2139 {
2140 }
2141 
2142 static inline void
2143 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2144 			     int objects)
2145 {
2146 }
2147 
2148 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2149 
2150 
2151 #ifdef CONFIG_MEMCG
2152 
2153 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2154 
2155 static __fastpath_inline
2156 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2157 				gfp_t flags, size_t size, void **p)
2158 {
2159 	if (likely(!memcg_kmem_online()))
2160 		return true;
2161 
2162 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2163 		return true;
2164 
2165 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2166 		return true;
2167 
2168 	if (likely(size == 1)) {
2169 		memcg_alloc_abort_single(s, *p);
2170 		*p = NULL;
2171 	} else {
2172 		kmem_cache_free_bulk(s, size, p);
2173 	}
2174 
2175 	return false;
2176 }
2177 
2178 static __fastpath_inline
2179 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2180 			  int objects)
2181 {
2182 	struct slabobj_ext *obj_exts;
2183 
2184 	if (!memcg_kmem_online())
2185 		return;
2186 
2187 	obj_exts = slab_obj_exts(slab);
2188 	if (likely(!obj_exts))
2189 		return;
2190 
2191 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2192 }
2193 
2194 static __fastpath_inline
2195 bool memcg_slab_post_charge(void *p, gfp_t flags)
2196 {
2197 	struct slabobj_ext *slab_exts;
2198 	struct kmem_cache *s;
2199 	struct folio *folio;
2200 	struct slab *slab;
2201 	unsigned long off;
2202 
2203 	folio = virt_to_folio(p);
2204 	if (!folio_test_slab(folio)) {
2205 		int size;
2206 
2207 		if (folio_memcg_kmem(folio))
2208 			return true;
2209 
2210 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2211 					     folio_order(folio)))
2212 			return false;
2213 
2214 		/*
2215 		 * This folio has already been accounted in the global stats but
2216 		 * not in the memcg stats. So, subtract from the global and use
2217 		 * the interface which adds to both global and memcg stats.
2218 		 */
2219 		size = folio_size(folio);
2220 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2221 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2222 		return true;
2223 	}
2224 
2225 	slab = folio_slab(folio);
2226 	s = slab->slab_cache;
2227 
2228 	/*
2229 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2230 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2231 	 * becoming effectively unfreeable.
2232 	 */
2233 	if (is_kmalloc_normal(s))
2234 		return true;
2235 
2236 	/* Ignore already charged objects. */
2237 	slab_exts = slab_obj_exts(slab);
2238 	if (slab_exts) {
2239 		off = obj_to_index(s, slab, p);
2240 		if (unlikely(slab_exts[off].objcg))
2241 			return true;
2242 	}
2243 
2244 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2245 }
2246 
2247 #else /* CONFIG_MEMCG */
2248 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2249 					      struct list_lru *lru,
2250 					      gfp_t flags, size_t size,
2251 					      void **p)
2252 {
2253 	return true;
2254 }
2255 
2256 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2257 					void **p, int objects)
2258 {
2259 }
2260 
2261 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2262 {
2263 	return true;
2264 }
2265 #endif /* CONFIG_MEMCG */
2266 
2267 #ifdef CONFIG_SLUB_RCU_DEBUG
2268 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2269 
2270 struct rcu_delayed_free {
2271 	struct rcu_head head;
2272 	void *object;
2273 };
2274 #endif
2275 
2276 /*
2277  * Hooks for other subsystems that check memory allocations. In a typical
2278  * production configuration these hooks all should produce no code at all.
2279  *
2280  * Returns true if freeing of the object can proceed, false if its reuse
2281  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2282  * to KFENCE.
2283  */
2284 static __always_inline
2285 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2286 		    bool after_rcu_delay)
2287 {
2288 	/* Are the object contents still accessible? */
2289 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2290 
2291 	kmemleak_free_recursive(x, s->flags);
2292 	kmsan_slab_free(s, x);
2293 
2294 	debug_check_no_locks_freed(x, s->object_size);
2295 
2296 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2297 		debug_check_no_obj_freed(x, s->object_size);
2298 
2299 	/* Use KCSAN to help debug racy use-after-free. */
2300 	if (!still_accessible)
2301 		__kcsan_check_access(x, s->object_size,
2302 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2303 
2304 	if (kfence_free(x))
2305 		return false;
2306 
2307 	/*
2308 	 * Give KASAN a chance to notice an invalid free operation before we
2309 	 * modify the object.
2310 	 */
2311 	if (kasan_slab_pre_free(s, x))
2312 		return false;
2313 
2314 #ifdef CONFIG_SLUB_RCU_DEBUG
2315 	if (still_accessible) {
2316 		struct rcu_delayed_free *delayed_free;
2317 
2318 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2319 		if (delayed_free) {
2320 			/*
2321 			 * Let KASAN track our call stack as a "related work
2322 			 * creation", just like if the object had been freed
2323 			 * normally via kfree_rcu().
2324 			 * We have to do this manually because the rcu_head is
2325 			 * not located inside the object.
2326 			 */
2327 			kasan_record_aux_stack(x);
2328 
2329 			delayed_free->object = x;
2330 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2331 			return false;
2332 		}
2333 	}
2334 #endif /* CONFIG_SLUB_RCU_DEBUG */
2335 
2336 	/*
2337 	 * As memory initialization might be integrated into KASAN,
2338 	 * kasan_slab_free and initialization memset's must be
2339 	 * kept together to avoid discrepancies in behavior.
2340 	 *
2341 	 * The initialization memset's clear the object and the metadata,
2342 	 * but don't touch the SLAB redzone.
2343 	 *
2344 	 * The object's freepointer is also avoided if stored outside the
2345 	 * object.
2346 	 */
2347 	if (unlikely(init)) {
2348 		int rsize;
2349 		unsigned int inuse, orig_size;
2350 
2351 		inuse = get_info_end(s);
2352 		orig_size = get_orig_size(s, x);
2353 		if (!kasan_has_integrated_init())
2354 			memset(kasan_reset_tag(x), 0, orig_size);
2355 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2356 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2357 		       s->size - inuse - rsize);
2358 		/*
2359 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2360 		 * would be reported
2361 		 */
2362 		set_orig_size(s, x, orig_size);
2363 
2364 	}
2365 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2366 	return !kasan_slab_free(s, x, init, still_accessible);
2367 }
2368 
2369 static __fastpath_inline
2370 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2371 			     int *cnt)
2372 {
2373 
2374 	void *object;
2375 	void *next = *head;
2376 	void *old_tail = *tail;
2377 	bool init;
2378 
2379 	if (is_kfence_address(next)) {
2380 		slab_free_hook(s, next, false, false);
2381 		return false;
2382 	}
2383 
2384 	/* Head and tail of the reconstructed freelist */
2385 	*head = NULL;
2386 	*tail = NULL;
2387 
2388 	init = slab_want_init_on_free(s);
2389 
2390 	do {
2391 		object = next;
2392 		next = get_freepointer(s, object);
2393 
2394 		/* If object's reuse doesn't have to be delayed */
2395 		if (likely(slab_free_hook(s, object, init, false))) {
2396 			/* Move object to the new freelist */
2397 			set_freepointer(s, object, *head);
2398 			*head = object;
2399 			if (!*tail)
2400 				*tail = object;
2401 		} else {
2402 			/*
2403 			 * Adjust the reconstructed freelist depth
2404 			 * accordingly if object's reuse is delayed.
2405 			 */
2406 			--(*cnt);
2407 		}
2408 	} while (object != old_tail);
2409 
2410 	return *head != NULL;
2411 }
2412 
2413 static void *setup_object(struct kmem_cache *s, void *object)
2414 {
2415 	setup_object_debug(s, object);
2416 	object = kasan_init_slab_obj(s, object);
2417 	if (unlikely(s->ctor)) {
2418 		kasan_unpoison_new_object(s, object);
2419 		s->ctor(object);
2420 		kasan_poison_new_object(s, object);
2421 	}
2422 	return object;
2423 }
2424 
2425 /*
2426  * Slab allocation and freeing
2427  */
2428 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2429 		struct kmem_cache_order_objects oo)
2430 {
2431 	struct folio *folio;
2432 	struct slab *slab;
2433 	unsigned int order = oo_order(oo);
2434 
2435 	if (node == NUMA_NO_NODE)
2436 		folio = (struct folio *)alloc_frozen_pages(flags, order);
2437 	else
2438 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2439 
2440 	if (!folio)
2441 		return NULL;
2442 
2443 	slab = folio_slab(folio);
2444 	__folio_set_slab(folio);
2445 	if (folio_is_pfmemalloc(folio))
2446 		slab_set_pfmemalloc(slab);
2447 
2448 	return slab;
2449 }
2450 
2451 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2452 /* Pre-initialize the random sequence cache */
2453 static int init_cache_random_seq(struct kmem_cache *s)
2454 {
2455 	unsigned int count = oo_objects(s->oo);
2456 	int err;
2457 
2458 	/* Bailout if already initialised */
2459 	if (s->random_seq)
2460 		return 0;
2461 
2462 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2463 	if (err) {
2464 		pr_err("SLUB: Unable to initialize free list for %s\n",
2465 			s->name);
2466 		return err;
2467 	}
2468 
2469 	/* Transform to an offset on the set of pages */
2470 	if (s->random_seq) {
2471 		unsigned int i;
2472 
2473 		for (i = 0; i < count; i++)
2474 			s->random_seq[i] *= s->size;
2475 	}
2476 	return 0;
2477 }
2478 
2479 /* Initialize each random sequence freelist per cache */
2480 static void __init init_freelist_randomization(void)
2481 {
2482 	struct kmem_cache *s;
2483 
2484 	mutex_lock(&slab_mutex);
2485 
2486 	list_for_each_entry(s, &slab_caches, list)
2487 		init_cache_random_seq(s);
2488 
2489 	mutex_unlock(&slab_mutex);
2490 }
2491 
2492 /* Get the next entry on the pre-computed freelist randomized */
2493 static void *next_freelist_entry(struct kmem_cache *s,
2494 				unsigned long *pos, void *start,
2495 				unsigned long page_limit,
2496 				unsigned long freelist_count)
2497 {
2498 	unsigned int idx;
2499 
2500 	/*
2501 	 * If the target page allocation failed, the number of objects on the
2502 	 * page might be smaller than the usual size defined by the cache.
2503 	 */
2504 	do {
2505 		idx = s->random_seq[*pos];
2506 		*pos += 1;
2507 		if (*pos >= freelist_count)
2508 			*pos = 0;
2509 	} while (unlikely(idx >= page_limit));
2510 
2511 	return (char *)start + idx;
2512 }
2513 
2514 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2515 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2516 {
2517 	void *start;
2518 	void *cur;
2519 	void *next;
2520 	unsigned long idx, pos, page_limit, freelist_count;
2521 
2522 	if (slab->objects < 2 || !s->random_seq)
2523 		return false;
2524 
2525 	freelist_count = oo_objects(s->oo);
2526 	pos = get_random_u32_below(freelist_count);
2527 
2528 	page_limit = slab->objects * s->size;
2529 	start = fixup_red_left(s, slab_address(slab));
2530 
2531 	/* First entry is used as the base of the freelist */
2532 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2533 	cur = setup_object(s, cur);
2534 	slab->freelist = cur;
2535 
2536 	for (idx = 1; idx < slab->objects; idx++) {
2537 		next = next_freelist_entry(s, &pos, start, page_limit,
2538 			freelist_count);
2539 		next = setup_object(s, next);
2540 		set_freepointer(s, cur, next);
2541 		cur = next;
2542 	}
2543 	set_freepointer(s, cur, NULL);
2544 
2545 	return true;
2546 }
2547 #else
2548 static inline int init_cache_random_seq(struct kmem_cache *s)
2549 {
2550 	return 0;
2551 }
2552 static inline void init_freelist_randomization(void) { }
2553 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2554 {
2555 	return false;
2556 }
2557 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2558 
2559 static __always_inline void account_slab(struct slab *slab, int order,
2560 					 struct kmem_cache *s, gfp_t gfp)
2561 {
2562 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2563 		alloc_slab_obj_exts(slab, s, gfp, true);
2564 
2565 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2566 			    PAGE_SIZE << order);
2567 }
2568 
2569 static __always_inline void unaccount_slab(struct slab *slab, int order,
2570 					   struct kmem_cache *s)
2571 {
2572 	if (memcg_kmem_online() || need_slab_obj_ext())
2573 		free_slab_obj_exts(slab);
2574 
2575 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2576 			    -(PAGE_SIZE << order));
2577 }
2578 
2579 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2580 {
2581 	struct slab *slab;
2582 	struct kmem_cache_order_objects oo = s->oo;
2583 	gfp_t alloc_gfp;
2584 	void *start, *p, *next;
2585 	int idx;
2586 	bool shuffle;
2587 
2588 	flags &= gfp_allowed_mask;
2589 
2590 	flags |= s->allocflags;
2591 
2592 	/*
2593 	 * Let the initial higher-order allocation fail under memory pressure
2594 	 * so we fall-back to the minimum order allocation.
2595 	 */
2596 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2597 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2598 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2599 
2600 	slab = alloc_slab_page(alloc_gfp, node, oo);
2601 	if (unlikely(!slab)) {
2602 		oo = s->min;
2603 		alloc_gfp = flags;
2604 		/*
2605 		 * Allocation may have failed due to fragmentation.
2606 		 * Try a lower order alloc if possible
2607 		 */
2608 		slab = alloc_slab_page(alloc_gfp, node, oo);
2609 		if (unlikely(!slab))
2610 			return NULL;
2611 		stat(s, ORDER_FALLBACK);
2612 	}
2613 
2614 	slab->objects = oo_objects(oo);
2615 	slab->inuse = 0;
2616 	slab->frozen = 0;
2617 
2618 	account_slab(slab, oo_order(oo), s, flags);
2619 
2620 	slab->slab_cache = s;
2621 
2622 	kasan_poison_slab(slab);
2623 
2624 	start = slab_address(slab);
2625 
2626 	setup_slab_debug(s, slab, start);
2627 
2628 	shuffle = shuffle_freelist(s, slab);
2629 
2630 	if (!shuffle) {
2631 		start = fixup_red_left(s, start);
2632 		start = setup_object(s, start);
2633 		slab->freelist = start;
2634 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2635 			next = p + s->size;
2636 			next = setup_object(s, next);
2637 			set_freepointer(s, p, next);
2638 			p = next;
2639 		}
2640 		set_freepointer(s, p, NULL);
2641 	}
2642 
2643 	return slab;
2644 }
2645 
2646 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2647 {
2648 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2649 		flags = kmalloc_fix_flags(flags);
2650 
2651 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2652 
2653 	return allocate_slab(s,
2654 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2655 }
2656 
2657 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2658 {
2659 	struct folio *folio = slab_folio(slab);
2660 	int order = folio_order(folio);
2661 	int pages = 1 << order;
2662 
2663 	__slab_clear_pfmemalloc(slab);
2664 	folio->mapping = NULL;
2665 	__folio_clear_slab(folio);
2666 	mm_account_reclaimed_pages(pages);
2667 	unaccount_slab(slab, order, s);
2668 	free_frozen_pages(&folio->page, order);
2669 }
2670 
2671 static void rcu_free_slab(struct rcu_head *h)
2672 {
2673 	struct slab *slab = container_of(h, struct slab, rcu_head);
2674 
2675 	__free_slab(slab->slab_cache, slab);
2676 }
2677 
2678 static void free_slab(struct kmem_cache *s, struct slab *slab)
2679 {
2680 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2681 		void *p;
2682 
2683 		slab_pad_check(s, slab);
2684 		for_each_object(p, s, slab_address(slab), slab->objects)
2685 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2686 	}
2687 
2688 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2689 		call_rcu(&slab->rcu_head, rcu_free_slab);
2690 	else
2691 		__free_slab(s, slab);
2692 }
2693 
2694 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2695 {
2696 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2697 	free_slab(s, slab);
2698 }
2699 
2700 /*
2701  * SLUB reuses PG_workingset bit to keep track of whether it's on
2702  * the per-node partial list.
2703  */
2704 static inline bool slab_test_node_partial(const struct slab *slab)
2705 {
2706 	return folio_test_workingset(slab_folio(slab));
2707 }
2708 
2709 static inline void slab_set_node_partial(struct slab *slab)
2710 {
2711 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2712 }
2713 
2714 static inline void slab_clear_node_partial(struct slab *slab)
2715 {
2716 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2717 }
2718 
2719 /*
2720  * Management of partially allocated slabs.
2721  */
2722 static inline void
2723 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2724 {
2725 	n->nr_partial++;
2726 	if (tail == DEACTIVATE_TO_TAIL)
2727 		list_add_tail(&slab->slab_list, &n->partial);
2728 	else
2729 		list_add(&slab->slab_list, &n->partial);
2730 	slab_set_node_partial(slab);
2731 }
2732 
2733 static inline void add_partial(struct kmem_cache_node *n,
2734 				struct slab *slab, int tail)
2735 {
2736 	lockdep_assert_held(&n->list_lock);
2737 	__add_partial(n, slab, tail);
2738 }
2739 
2740 static inline void remove_partial(struct kmem_cache_node *n,
2741 					struct slab *slab)
2742 {
2743 	lockdep_assert_held(&n->list_lock);
2744 	list_del(&slab->slab_list);
2745 	slab_clear_node_partial(slab);
2746 	n->nr_partial--;
2747 }
2748 
2749 /*
2750  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2751  * slab from the n->partial list. Remove only a single object from the slab, do
2752  * the alloc_debug_processing() checks and leave the slab on the list, or move
2753  * it to full list if it was the last free object.
2754  */
2755 static void *alloc_single_from_partial(struct kmem_cache *s,
2756 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2757 {
2758 	void *object;
2759 
2760 	lockdep_assert_held(&n->list_lock);
2761 
2762 	object = slab->freelist;
2763 	slab->freelist = get_freepointer(s, object);
2764 	slab->inuse++;
2765 
2766 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2767 		if (folio_test_slab(slab_folio(slab)))
2768 			remove_partial(n, slab);
2769 		return NULL;
2770 	}
2771 
2772 	if (slab->inuse == slab->objects) {
2773 		remove_partial(n, slab);
2774 		add_full(s, n, slab);
2775 	}
2776 
2777 	return object;
2778 }
2779 
2780 /*
2781  * Called only for kmem_cache_debug() caches to allocate from a freshly
2782  * allocated slab. Allocate a single object instead of whole freelist
2783  * and put the slab to the partial (or full) list.
2784  */
2785 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2786 					struct slab *slab, int orig_size)
2787 {
2788 	int nid = slab_nid(slab);
2789 	struct kmem_cache_node *n = get_node(s, nid);
2790 	unsigned long flags;
2791 	void *object;
2792 
2793 
2794 	object = slab->freelist;
2795 	slab->freelist = get_freepointer(s, object);
2796 	slab->inuse = 1;
2797 
2798 	if (!alloc_debug_processing(s, slab, object, orig_size))
2799 		/*
2800 		 * It's not really expected that this would fail on a
2801 		 * freshly allocated slab, but a concurrent memory
2802 		 * corruption in theory could cause that.
2803 		 */
2804 		return NULL;
2805 
2806 	spin_lock_irqsave(&n->list_lock, flags);
2807 
2808 	if (slab->inuse == slab->objects)
2809 		add_full(s, n, slab);
2810 	else
2811 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2812 
2813 	inc_slabs_node(s, nid, slab->objects);
2814 	spin_unlock_irqrestore(&n->list_lock, flags);
2815 
2816 	return object;
2817 }
2818 
2819 #ifdef CONFIG_SLUB_CPU_PARTIAL
2820 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2821 #else
2822 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2823 				   int drain) { }
2824 #endif
2825 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2826 
2827 /*
2828  * Try to allocate a partial slab from a specific node.
2829  */
2830 static struct slab *get_partial_node(struct kmem_cache *s,
2831 				     struct kmem_cache_node *n,
2832 				     struct partial_context *pc)
2833 {
2834 	struct slab *slab, *slab2, *partial = NULL;
2835 	unsigned long flags;
2836 	unsigned int partial_slabs = 0;
2837 
2838 	/*
2839 	 * Racy check. If we mistakenly see no partial slabs then we
2840 	 * just allocate an empty slab. If we mistakenly try to get a
2841 	 * partial slab and there is none available then get_partial()
2842 	 * will return NULL.
2843 	 */
2844 	if (!n || !n->nr_partial)
2845 		return NULL;
2846 
2847 	spin_lock_irqsave(&n->list_lock, flags);
2848 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2849 		if (!pfmemalloc_match(slab, pc->flags))
2850 			continue;
2851 
2852 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2853 			void *object = alloc_single_from_partial(s, n, slab,
2854 							pc->orig_size);
2855 			if (object) {
2856 				partial = slab;
2857 				pc->object = object;
2858 				break;
2859 			}
2860 			continue;
2861 		}
2862 
2863 		remove_partial(n, slab);
2864 
2865 		if (!partial) {
2866 			partial = slab;
2867 			stat(s, ALLOC_FROM_PARTIAL);
2868 
2869 			if ((slub_get_cpu_partial(s) == 0)) {
2870 				break;
2871 			}
2872 		} else {
2873 			put_cpu_partial(s, slab, 0);
2874 			stat(s, CPU_PARTIAL_NODE);
2875 
2876 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2877 				break;
2878 			}
2879 		}
2880 	}
2881 	spin_unlock_irqrestore(&n->list_lock, flags);
2882 	return partial;
2883 }
2884 
2885 /*
2886  * Get a slab from somewhere. Search in increasing NUMA distances.
2887  */
2888 static struct slab *get_any_partial(struct kmem_cache *s,
2889 				    struct partial_context *pc)
2890 {
2891 #ifdef CONFIG_NUMA
2892 	struct zonelist *zonelist;
2893 	struct zoneref *z;
2894 	struct zone *zone;
2895 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2896 	struct slab *slab;
2897 	unsigned int cpuset_mems_cookie;
2898 
2899 	/*
2900 	 * The defrag ratio allows a configuration of the tradeoffs between
2901 	 * inter node defragmentation and node local allocations. A lower
2902 	 * defrag_ratio increases the tendency to do local allocations
2903 	 * instead of attempting to obtain partial slabs from other nodes.
2904 	 *
2905 	 * If the defrag_ratio is set to 0 then kmalloc() always
2906 	 * returns node local objects. If the ratio is higher then kmalloc()
2907 	 * may return off node objects because partial slabs are obtained
2908 	 * from other nodes and filled up.
2909 	 *
2910 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2911 	 * (which makes defrag_ratio = 1000) then every (well almost)
2912 	 * allocation will first attempt to defrag slab caches on other nodes.
2913 	 * This means scanning over all nodes to look for partial slabs which
2914 	 * may be expensive if we do it every time we are trying to find a slab
2915 	 * with available objects.
2916 	 */
2917 	if (!s->remote_node_defrag_ratio ||
2918 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2919 		return NULL;
2920 
2921 	do {
2922 		cpuset_mems_cookie = read_mems_allowed_begin();
2923 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2924 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2925 			struct kmem_cache_node *n;
2926 
2927 			n = get_node(s, zone_to_nid(zone));
2928 
2929 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2930 					n->nr_partial > s->min_partial) {
2931 				slab = get_partial_node(s, n, pc);
2932 				if (slab) {
2933 					/*
2934 					 * Don't check read_mems_allowed_retry()
2935 					 * here - if mems_allowed was updated in
2936 					 * parallel, that was a harmless race
2937 					 * between allocation and the cpuset
2938 					 * update
2939 					 */
2940 					return slab;
2941 				}
2942 			}
2943 		}
2944 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2945 #endif	/* CONFIG_NUMA */
2946 	return NULL;
2947 }
2948 
2949 /*
2950  * Get a partial slab, lock it and return it.
2951  */
2952 static struct slab *get_partial(struct kmem_cache *s, int node,
2953 				struct partial_context *pc)
2954 {
2955 	struct slab *slab;
2956 	int searchnode = node;
2957 
2958 	if (node == NUMA_NO_NODE)
2959 		searchnode = numa_mem_id();
2960 
2961 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2962 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2963 		return slab;
2964 
2965 	return get_any_partial(s, pc);
2966 }
2967 
2968 #ifndef CONFIG_SLUB_TINY
2969 
2970 #ifdef CONFIG_PREEMPTION
2971 /*
2972  * Calculate the next globally unique transaction for disambiguation
2973  * during cmpxchg. The transactions start with the cpu number and are then
2974  * incremented by CONFIG_NR_CPUS.
2975  */
2976 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2977 #else
2978 /*
2979  * No preemption supported therefore also no need to check for
2980  * different cpus.
2981  */
2982 #define TID_STEP 1
2983 #endif /* CONFIG_PREEMPTION */
2984 
2985 static inline unsigned long next_tid(unsigned long tid)
2986 {
2987 	return tid + TID_STEP;
2988 }
2989 
2990 #ifdef SLUB_DEBUG_CMPXCHG
2991 static inline unsigned int tid_to_cpu(unsigned long tid)
2992 {
2993 	return tid % TID_STEP;
2994 }
2995 
2996 static inline unsigned long tid_to_event(unsigned long tid)
2997 {
2998 	return tid / TID_STEP;
2999 }
3000 #endif
3001 
3002 static inline unsigned int init_tid(int cpu)
3003 {
3004 	return cpu;
3005 }
3006 
3007 static inline void note_cmpxchg_failure(const char *n,
3008 		const struct kmem_cache *s, unsigned long tid)
3009 {
3010 #ifdef SLUB_DEBUG_CMPXCHG
3011 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3012 
3013 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3014 
3015 #ifdef CONFIG_PREEMPTION
3016 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3017 		pr_warn("due to cpu change %d -> %d\n",
3018 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3019 	else
3020 #endif
3021 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3022 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3023 			tid_to_event(tid), tid_to_event(actual_tid));
3024 	else
3025 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3026 			actual_tid, tid, next_tid(tid));
3027 #endif
3028 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3029 }
3030 
3031 static void init_kmem_cache_cpus(struct kmem_cache *s)
3032 {
3033 	int cpu;
3034 	struct kmem_cache_cpu *c;
3035 
3036 	for_each_possible_cpu(cpu) {
3037 		c = per_cpu_ptr(s->cpu_slab, cpu);
3038 		local_lock_init(&c->lock);
3039 		c->tid = init_tid(cpu);
3040 	}
3041 }
3042 
3043 /*
3044  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3045  * unfreezes the slabs and puts it on the proper list.
3046  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3047  * by the caller.
3048  */
3049 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3050 			    void *freelist)
3051 {
3052 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3053 	int free_delta = 0;
3054 	void *nextfree, *freelist_iter, *freelist_tail;
3055 	int tail = DEACTIVATE_TO_HEAD;
3056 	unsigned long flags = 0;
3057 	struct slab new;
3058 	struct slab old;
3059 
3060 	if (READ_ONCE(slab->freelist)) {
3061 		stat(s, DEACTIVATE_REMOTE_FREES);
3062 		tail = DEACTIVATE_TO_TAIL;
3063 	}
3064 
3065 	/*
3066 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3067 	 * remember the last object in freelist_tail for later splicing.
3068 	 */
3069 	freelist_tail = NULL;
3070 	freelist_iter = freelist;
3071 	while (freelist_iter) {
3072 		nextfree = get_freepointer(s, freelist_iter);
3073 
3074 		/*
3075 		 * If 'nextfree' is invalid, it is possible that the object at
3076 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3077 		 * starting at 'freelist_iter' by skipping them.
3078 		 */
3079 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3080 			break;
3081 
3082 		freelist_tail = freelist_iter;
3083 		free_delta++;
3084 
3085 		freelist_iter = nextfree;
3086 	}
3087 
3088 	/*
3089 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3090 	 * freelist to the head of slab's freelist.
3091 	 */
3092 	do {
3093 		old.freelist = READ_ONCE(slab->freelist);
3094 		old.counters = READ_ONCE(slab->counters);
3095 		VM_BUG_ON(!old.frozen);
3096 
3097 		/* Determine target state of the slab */
3098 		new.counters = old.counters;
3099 		new.frozen = 0;
3100 		if (freelist_tail) {
3101 			new.inuse -= free_delta;
3102 			set_freepointer(s, freelist_tail, old.freelist);
3103 			new.freelist = freelist;
3104 		} else {
3105 			new.freelist = old.freelist;
3106 		}
3107 	} while (!slab_update_freelist(s, slab,
3108 		old.freelist, old.counters,
3109 		new.freelist, new.counters,
3110 		"unfreezing slab"));
3111 
3112 	/*
3113 	 * Stage three: Manipulate the slab list based on the updated state.
3114 	 */
3115 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3116 		stat(s, DEACTIVATE_EMPTY);
3117 		discard_slab(s, slab);
3118 		stat(s, FREE_SLAB);
3119 	} else if (new.freelist) {
3120 		spin_lock_irqsave(&n->list_lock, flags);
3121 		add_partial(n, slab, tail);
3122 		spin_unlock_irqrestore(&n->list_lock, flags);
3123 		stat(s, tail);
3124 	} else {
3125 		stat(s, DEACTIVATE_FULL);
3126 	}
3127 }
3128 
3129 #ifdef CONFIG_SLUB_CPU_PARTIAL
3130 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3131 {
3132 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3133 	struct slab *slab, *slab_to_discard = NULL;
3134 	unsigned long flags = 0;
3135 
3136 	while (partial_slab) {
3137 		slab = partial_slab;
3138 		partial_slab = slab->next;
3139 
3140 		n2 = get_node(s, slab_nid(slab));
3141 		if (n != n2) {
3142 			if (n)
3143 				spin_unlock_irqrestore(&n->list_lock, flags);
3144 
3145 			n = n2;
3146 			spin_lock_irqsave(&n->list_lock, flags);
3147 		}
3148 
3149 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3150 			slab->next = slab_to_discard;
3151 			slab_to_discard = slab;
3152 		} else {
3153 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3154 			stat(s, FREE_ADD_PARTIAL);
3155 		}
3156 	}
3157 
3158 	if (n)
3159 		spin_unlock_irqrestore(&n->list_lock, flags);
3160 
3161 	while (slab_to_discard) {
3162 		slab = slab_to_discard;
3163 		slab_to_discard = slab_to_discard->next;
3164 
3165 		stat(s, DEACTIVATE_EMPTY);
3166 		discard_slab(s, slab);
3167 		stat(s, FREE_SLAB);
3168 	}
3169 }
3170 
3171 /*
3172  * Put all the cpu partial slabs to the node partial list.
3173  */
3174 static void put_partials(struct kmem_cache *s)
3175 {
3176 	struct slab *partial_slab;
3177 	unsigned long flags;
3178 
3179 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3180 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3181 	this_cpu_write(s->cpu_slab->partial, NULL);
3182 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3183 
3184 	if (partial_slab)
3185 		__put_partials(s, partial_slab);
3186 }
3187 
3188 static void put_partials_cpu(struct kmem_cache *s,
3189 			     struct kmem_cache_cpu *c)
3190 {
3191 	struct slab *partial_slab;
3192 
3193 	partial_slab = slub_percpu_partial(c);
3194 	c->partial = NULL;
3195 
3196 	if (partial_slab)
3197 		__put_partials(s, partial_slab);
3198 }
3199 
3200 /*
3201  * Put a slab into a partial slab slot if available.
3202  *
3203  * If we did not find a slot then simply move all the partials to the
3204  * per node partial list.
3205  */
3206 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3207 {
3208 	struct slab *oldslab;
3209 	struct slab *slab_to_put = NULL;
3210 	unsigned long flags;
3211 	int slabs = 0;
3212 
3213 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3214 
3215 	oldslab = this_cpu_read(s->cpu_slab->partial);
3216 
3217 	if (oldslab) {
3218 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3219 			/*
3220 			 * Partial array is full. Move the existing set to the
3221 			 * per node partial list. Postpone the actual unfreezing
3222 			 * outside of the critical section.
3223 			 */
3224 			slab_to_put = oldslab;
3225 			oldslab = NULL;
3226 		} else {
3227 			slabs = oldslab->slabs;
3228 		}
3229 	}
3230 
3231 	slabs++;
3232 
3233 	slab->slabs = slabs;
3234 	slab->next = oldslab;
3235 
3236 	this_cpu_write(s->cpu_slab->partial, slab);
3237 
3238 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3239 
3240 	if (slab_to_put) {
3241 		__put_partials(s, slab_to_put);
3242 		stat(s, CPU_PARTIAL_DRAIN);
3243 	}
3244 }
3245 
3246 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3247 
3248 static inline void put_partials(struct kmem_cache *s) { }
3249 static inline void put_partials_cpu(struct kmem_cache *s,
3250 				    struct kmem_cache_cpu *c) { }
3251 
3252 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3253 
3254 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3255 {
3256 	unsigned long flags;
3257 	struct slab *slab;
3258 	void *freelist;
3259 
3260 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3261 
3262 	slab = c->slab;
3263 	freelist = c->freelist;
3264 
3265 	c->slab = NULL;
3266 	c->freelist = NULL;
3267 	c->tid = next_tid(c->tid);
3268 
3269 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3270 
3271 	if (slab) {
3272 		deactivate_slab(s, slab, freelist);
3273 		stat(s, CPUSLAB_FLUSH);
3274 	}
3275 }
3276 
3277 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3278 {
3279 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3280 	void *freelist = c->freelist;
3281 	struct slab *slab = c->slab;
3282 
3283 	c->slab = NULL;
3284 	c->freelist = NULL;
3285 	c->tid = next_tid(c->tid);
3286 
3287 	if (slab) {
3288 		deactivate_slab(s, slab, freelist);
3289 		stat(s, CPUSLAB_FLUSH);
3290 	}
3291 
3292 	put_partials_cpu(s, c);
3293 }
3294 
3295 struct slub_flush_work {
3296 	struct work_struct work;
3297 	struct kmem_cache *s;
3298 	bool skip;
3299 };
3300 
3301 /*
3302  * Flush cpu slab.
3303  *
3304  * Called from CPU work handler with migration disabled.
3305  */
3306 static void flush_cpu_slab(struct work_struct *w)
3307 {
3308 	struct kmem_cache *s;
3309 	struct kmem_cache_cpu *c;
3310 	struct slub_flush_work *sfw;
3311 
3312 	sfw = container_of(w, struct slub_flush_work, work);
3313 
3314 	s = sfw->s;
3315 	c = this_cpu_ptr(s->cpu_slab);
3316 
3317 	if (c->slab)
3318 		flush_slab(s, c);
3319 
3320 	put_partials(s);
3321 }
3322 
3323 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3324 {
3325 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3326 
3327 	return c->slab || slub_percpu_partial(c);
3328 }
3329 
3330 static DEFINE_MUTEX(flush_lock);
3331 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3332 
3333 static void flush_all_cpus_locked(struct kmem_cache *s)
3334 {
3335 	struct slub_flush_work *sfw;
3336 	unsigned int cpu;
3337 
3338 	lockdep_assert_cpus_held();
3339 	mutex_lock(&flush_lock);
3340 
3341 	for_each_online_cpu(cpu) {
3342 		sfw = &per_cpu(slub_flush, cpu);
3343 		if (!has_cpu_slab(cpu, s)) {
3344 			sfw->skip = true;
3345 			continue;
3346 		}
3347 		INIT_WORK(&sfw->work, flush_cpu_slab);
3348 		sfw->skip = false;
3349 		sfw->s = s;
3350 		queue_work_on(cpu, flushwq, &sfw->work);
3351 	}
3352 
3353 	for_each_online_cpu(cpu) {
3354 		sfw = &per_cpu(slub_flush, cpu);
3355 		if (sfw->skip)
3356 			continue;
3357 		flush_work(&sfw->work);
3358 	}
3359 
3360 	mutex_unlock(&flush_lock);
3361 }
3362 
3363 static void flush_all(struct kmem_cache *s)
3364 {
3365 	cpus_read_lock();
3366 	flush_all_cpus_locked(s);
3367 	cpus_read_unlock();
3368 }
3369 
3370 /*
3371  * Use the cpu notifier to insure that the cpu slabs are flushed when
3372  * necessary.
3373  */
3374 static int slub_cpu_dead(unsigned int cpu)
3375 {
3376 	struct kmem_cache *s;
3377 
3378 	mutex_lock(&slab_mutex);
3379 	list_for_each_entry(s, &slab_caches, list)
3380 		__flush_cpu_slab(s, cpu);
3381 	mutex_unlock(&slab_mutex);
3382 	return 0;
3383 }
3384 
3385 #else /* CONFIG_SLUB_TINY */
3386 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3387 static inline void flush_all(struct kmem_cache *s) { }
3388 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3389 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3390 #endif /* CONFIG_SLUB_TINY */
3391 
3392 /*
3393  * Check if the objects in a per cpu structure fit numa
3394  * locality expectations.
3395  */
3396 static inline int node_match(struct slab *slab, int node)
3397 {
3398 #ifdef CONFIG_NUMA
3399 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3400 		return 0;
3401 #endif
3402 	return 1;
3403 }
3404 
3405 #ifdef CONFIG_SLUB_DEBUG
3406 static int count_free(struct slab *slab)
3407 {
3408 	return slab->objects - slab->inuse;
3409 }
3410 
3411 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3412 {
3413 	return atomic_long_read(&n->total_objects);
3414 }
3415 
3416 /* Supports checking bulk free of a constructed freelist */
3417 static inline bool free_debug_processing(struct kmem_cache *s,
3418 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3419 	unsigned long addr, depot_stack_handle_t handle)
3420 {
3421 	bool checks_ok = false;
3422 	void *object = head;
3423 	int cnt = 0;
3424 
3425 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3426 		if (!check_slab(s, slab))
3427 			goto out;
3428 	}
3429 
3430 	if (slab->inuse < *bulk_cnt) {
3431 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3432 			 slab->inuse, *bulk_cnt);
3433 		goto out;
3434 	}
3435 
3436 next_object:
3437 
3438 	if (++cnt > *bulk_cnt)
3439 		goto out_cnt;
3440 
3441 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3442 		if (!free_consistency_checks(s, slab, object, addr))
3443 			goto out;
3444 	}
3445 
3446 	if (s->flags & SLAB_STORE_USER)
3447 		set_track_update(s, object, TRACK_FREE, addr, handle);
3448 	trace(s, slab, object, 0);
3449 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3450 	init_object(s, object, SLUB_RED_INACTIVE);
3451 
3452 	/* Reached end of constructed freelist yet? */
3453 	if (object != tail) {
3454 		object = get_freepointer(s, object);
3455 		goto next_object;
3456 	}
3457 	checks_ok = true;
3458 
3459 out_cnt:
3460 	if (cnt != *bulk_cnt) {
3461 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3462 			 *bulk_cnt, cnt);
3463 		*bulk_cnt = cnt;
3464 	}
3465 
3466 out:
3467 
3468 	if (!checks_ok)
3469 		slab_fix(s, "Object at 0x%p not freed", object);
3470 
3471 	return checks_ok;
3472 }
3473 #endif /* CONFIG_SLUB_DEBUG */
3474 
3475 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3476 static unsigned long count_partial(struct kmem_cache_node *n,
3477 					int (*get_count)(struct slab *))
3478 {
3479 	unsigned long flags;
3480 	unsigned long x = 0;
3481 	struct slab *slab;
3482 
3483 	spin_lock_irqsave(&n->list_lock, flags);
3484 	list_for_each_entry(slab, &n->partial, slab_list)
3485 		x += get_count(slab);
3486 	spin_unlock_irqrestore(&n->list_lock, flags);
3487 	return x;
3488 }
3489 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3490 
3491 #ifdef CONFIG_SLUB_DEBUG
3492 #define MAX_PARTIAL_TO_SCAN 10000
3493 
3494 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3495 {
3496 	unsigned long flags;
3497 	unsigned long x = 0;
3498 	struct slab *slab;
3499 
3500 	spin_lock_irqsave(&n->list_lock, flags);
3501 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3502 		list_for_each_entry(slab, &n->partial, slab_list)
3503 			x += slab->objects - slab->inuse;
3504 	} else {
3505 		/*
3506 		 * For a long list, approximate the total count of objects in
3507 		 * it to meet the limit on the number of slabs to scan.
3508 		 * Scan from both the list's head and tail for better accuracy.
3509 		 */
3510 		unsigned long scanned = 0;
3511 
3512 		list_for_each_entry(slab, &n->partial, slab_list) {
3513 			x += slab->objects - slab->inuse;
3514 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3515 				break;
3516 		}
3517 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3518 			x += slab->objects - slab->inuse;
3519 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3520 				break;
3521 		}
3522 		x = mult_frac(x, n->nr_partial, scanned);
3523 		x = min(x, node_nr_objs(n));
3524 	}
3525 	spin_unlock_irqrestore(&n->list_lock, flags);
3526 	return x;
3527 }
3528 
3529 static noinline void
3530 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3531 {
3532 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3533 				      DEFAULT_RATELIMIT_BURST);
3534 	int cpu = raw_smp_processor_id();
3535 	int node;
3536 	struct kmem_cache_node *n;
3537 
3538 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3539 		return;
3540 
3541 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3542 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3543 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3544 		s->name, s->object_size, s->size, oo_order(s->oo),
3545 		oo_order(s->min));
3546 
3547 	if (oo_order(s->min) > get_order(s->object_size))
3548 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3549 			s->name);
3550 
3551 	for_each_kmem_cache_node(s, node, n) {
3552 		unsigned long nr_slabs;
3553 		unsigned long nr_objs;
3554 		unsigned long nr_free;
3555 
3556 		nr_free  = count_partial_free_approx(n);
3557 		nr_slabs = node_nr_slabs(n);
3558 		nr_objs  = node_nr_objs(n);
3559 
3560 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3561 			node, nr_slabs, nr_objs, nr_free);
3562 	}
3563 }
3564 #else /* CONFIG_SLUB_DEBUG */
3565 static inline void
3566 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3567 #endif
3568 
3569 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3570 {
3571 	if (unlikely(slab_test_pfmemalloc(slab)))
3572 		return gfp_pfmemalloc_allowed(gfpflags);
3573 
3574 	return true;
3575 }
3576 
3577 #ifndef CONFIG_SLUB_TINY
3578 static inline bool
3579 __update_cpu_freelist_fast(struct kmem_cache *s,
3580 			   void *freelist_old, void *freelist_new,
3581 			   unsigned long tid)
3582 {
3583 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3584 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3585 
3586 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3587 					     &old.full, new.full);
3588 }
3589 
3590 /*
3591  * Check the slab->freelist and either transfer the freelist to the
3592  * per cpu freelist or deactivate the slab.
3593  *
3594  * The slab is still frozen if the return value is not NULL.
3595  *
3596  * If this function returns NULL then the slab has been unfrozen.
3597  */
3598 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3599 {
3600 	struct slab new;
3601 	unsigned long counters;
3602 	void *freelist;
3603 
3604 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3605 
3606 	do {
3607 		freelist = slab->freelist;
3608 		counters = slab->counters;
3609 
3610 		new.counters = counters;
3611 
3612 		new.inuse = slab->objects;
3613 		new.frozen = freelist != NULL;
3614 
3615 	} while (!__slab_update_freelist(s, slab,
3616 		freelist, counters,
3617 		NULL, new.counters,
3618 		"get_freelist"));
3619 
3620 	return freelist;
3621 }
3622 
3623 /*
3624  * Freeze the partial slab and return the pointer to the freelist.
3625  */
3626 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3627 {
3628 	struct slab new;
3629 	unsigned long counters;
3630 	void *freelist;
3631 
3632 	do {
3633 		freelist = slab->freelist;
3634 		counters = slab->counters;
3635 
3636 		new.counters = counters;
3637 		VM_BUG_ON(new.frozen);
3638 
3639 		new.inuse = slab->objects;
3640 		new.frozen = 1;
3641 
3642 	} while (!slab_update_freelist(s, slab,
3643 		freelist, counters,
3644 		NULL, new.counters,
3645 		"freeze_slab"));
3646 
3647 	return freelist;
3648 }
3649 
3650 /*
3651  * Slow path. The lockless freelist is empty or we need to perform
3652  * debugging duties.
3653  *
3654  * Processing is still very fast if new objects have been freed to the
3655  * regular freelist. In that case we simply take over the regular freelist
3656  * as the lockless freelist and zap the regular freelist.
3657  *
3658  * If that is not working then we fall back to the partial lists. We take the
3659  * first element of the freelist as the object to allocate now and move the
3660  * rest of the freelist to the lockless freelist.
3661  *
3662  * And if we were unable to get a new slab from the partial slab lists then
3663  * we need to allocate a new slab. This is the slowest path since it involves
3664  * a call to the page allocator and the setup of a new slab.
3665  *
3666  * Version of __slab_alloc to use when we know that preemption is
3667  * already disabled (which is the case for bulk allocation).
3668  */
3669 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3670 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3671 {
3672 	void *freelist;
3673 	struct slab *slab;
3674 	unsigned long flags;
3675 	struct partial_context pc;
3676 	bool try_thisnode = true;
3677 
3678 	stat(s, ALLOC_SLOWPATH);
3679 
3680 reread_slab:
3681 
3682 	slab = READ_ONCE(c->slab);
3683 	if (!slab) {
3684 		/*
3685 		 * if the node is not online or has no normal memory, just
3686 		 * ignore the node constraint
3687 		 */
3688 		if (unlikely(node != NUMA_NO_NODE &&
3689 			     !node_isset(node, slab_nodes)))
3690 			node = NUMA_NO_NODE;
3691 		goto new_slab;
3692 	}
3693 
3694 	if (unlikely(!node_match(slab, node))) {
3695 		/*
3696 		 * same as above but node_match() being false already
3697 		 * implies node != NUMA_NO_NODE
3698 		 */
3699 		if (!node_isset(node, slab_nodes)) {
3700 			node = NUMA_NO_NODE;
3701 		} else {
3702 			stat(s, ALLOC_NODE_MISMATCH);
3703 			goto deactivate_slab;
3704 		}
3705 	}
3706 
3707 	/*
3708 	 * By rights, we should be searching for a slab page that was
3709 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3710 	 * information when the page leaves the per-cpu allocator
3711 	 */
3712 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3713 		goto deactivate_slab;
3714 
3715 	/* must check again c->slab in case we got preempted and it changed */
3716 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3717 	if (unlikely(slab != c->slab)) {
3718 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3719 		goto reread_slab;
3720 	}
3721 	freelist = c->freelist;
3722 	if (freelist)
3723 		goto load_freelist;
3724 
3725 	freelist = get_freelist(s, slab);
3726 
3727 	if (!freelist) {
3728 		c->slab = NULL;
3729 		c->tid = next_tid(c->tid);
3730 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3731 		stat(s, DEACTIVATE_BYPASS);
3732 		goto new_slab;
3733 	}
3734 
3735 	stat(s, ALLOC_REFILL);
3736 
3737 load_freelist:
3738 
3739 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3740 
3741 	/*
3742 	 * freelist is pointing to the list of objects to be used.
3743 	 * slab is pointing to the slab from which the objects are obtained.
3744 	 * That slab must be frozen for per cpu allocations to work.
3745 	 */
3746 	VM_BUG_ON(!c->slab->frozen);
3747 	c->freelist = get_freepointer(s, freelist);
3748 	c->tid = next_tid(c->tid);
3749 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3750 	return freelist;
3751 
3752 deactivate_slab:
3753 
3754 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3755 	if (slab != c->slab) {
3756 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3757 		goto reread_slab;
3758 	}
3759 	freelist = c->freelist;
3760 	c->slab = NULL;
3761 	c->freelist = NULL;
3762 	c->tid = next_tid(c->tid);
3763 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3764 	deactivate_slab(s, slab, freelist);
3765 
3766 new_slab:
3767 
3768 #ifdef CONFIG_SLUB_CPU_PARTIAL
3769 	while (slub_percpu_partial(c)) {
3770 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3771 		if (unlikely(c->slab)) {
3772 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3773 			goto reread_slab;
3774 		}
3775 		if (unlikely(!slub_percpu_partial(c))) {
3776 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3777 			/* we were preempted and partial list got empty */
3778 			goto new_objects;
3779 		}
3780 
3781 		slab = slub_percpu_partial(c);
3782 		slub_set_percpu_partial(c, slab);
3783 
3784 		if (likely(node_match(slab, node) &&
3785 			   pfmemalloc_match(slab, gfpflags))) {
3786 			c->slab = slab;
3787 			freelist = get_freelist(s, slab);
3788 			VM_BUG_ON(!freelist);
3789 			stat(s, CPU_PARTIAL_ALLOC);
3790 			goto load_freelist;
3791 		}
3792 
3793 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3794 
3795 		slab->next = NULL;
3796 		__put_partials(s, slab);
3797 	}
3798 #endif
3799 
3800 new_objects:
3801 
3802 	pc.flags = gfpflags;
3803 	/*
3804 	 * When a preferred node is indicated but no __GFP_THISNODE
3805 	 *
3806 	 * 1) try to get a partial slab from target node only by having
3807 	 *    __GFP_THISNODE in pc.flags for get_partial()
3808 	 * 2) if 1) failed, try to allocate a new slab from target node with
3809 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3810 	 * 3) if 2) failed, retry with original gfpflags which will allow
3811 	 *    get_partial() try partial lists of other nodes before potentially
3812 	 *    allocating new page from other nodes
3813 	 */
3814 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3815 		     && try_thisnode))
3816 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3817 
3818 	pc.orig_size = orig_size;
3819 	slab = get_partial(s, node, &pc);
3820 	if (slab) {
3821 		if (kmem_cache_debug(s)) {
3822 			freelist = pc.object;
3823 			/*
3824 			 * For debug caches here we had to go through
3825 			 * alloc_single_from_partial() so just store the
3826 			 * tracking info and return the object.
3827 			 */
3828 			if (s->flags & SLAB_STORE_USER)
3829 				set_track(s, freelist, TRACK_ALLOC, addr);
3830 
3831 			return freelist;
3832 		}
3833 
3834 		freelist = freeze_slab(s, slab);
3835 		goto retry_load_slab;
3836 	}
3837 
3838 	slub_put_cpu_ptr(s->cpu_slab);
3839 	slab = new_slab(s, pc.flags, node);
3840 	c = slub_get_cpu_ptr(s->cpu_slab);
3841 
3842 	if (unlikely(!slab)) {
3843 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3844 		    && try_thisnode) {
3845 			try_thisnode = false;
3846 			goto new_objects;
3847 		}
3848 		slab_out_of_memory(s, gfpflags, node);
3849 		return NULL;
3850 	}
3851 
3852 	stat(s, ALLOC_SLAB);
3853 
3854 	if (kmem_cache_debug(s)) {
3855 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3856 
3857 		if (unlikely(!freelist))
3858 			goto new_objects;
3859 
3860 		if (s->flags & SLAB_STORE_USER)
3861 			set_track(s, freelist, TRACK_ALLOC, addr);
3862 
3863 		return freelist;
3864 	}
3865 
3866 	/*
3867 	 * No other reference to the slab yet so we can
3868 	 * muck around with it freely without cmpxchg
3869 	 */
3870 	freelist = slab->freelist;
3871 	slab->freelist = NULL;
3872 	slab->inuse = slab->objects;
3873 	slab->frozen = 1;
3874 
3875 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3876 
3877 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3878 		/*
3879 		 * For !pfmemalloc_match() case we don't load freelist so that
3880 		 * we don't make further mismatched allocations easier.
3881 		 */
3882 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3883 		return freelist;
3884 	}
3885 
3886 retry_load_slab:
3887 
3888 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3889 	if (unlikely(c->slab)) {
3890 		void *flush_freelist = c->freelist;
3891 		struct slab *flush_slab = c->slab;
3892 
3893 		c->slab = NULL;
3894 		c->freelist = NULL;
3895 		c->tid = next_tid(c->tid);
3896 
3897 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3898 
3899 		deactivate_slab(s, flush_slab, flush_freelist);
3900 
3901 		stat(s, CPUSLAB_FLUSH);
3902 
3903 		goto retry_load_slab;
3904 	}
3905 	c->slab = slab;
3906 
3907 	goto load_freelist;
3908 }
3909 
3910 /*
3911  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3912  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3913  * pointer.
3914  */
3915 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3916 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3917 {
3918 	void *p;
3919 
3920 #ifdef CONFIG_PREEMPT_COUNT
3921 	/*
3922 	 * We may have been preempted and rescheduled on a different
3923 	 * cpu before disabling preemption. Need to reload cpu area
3924 	 * pointer.
3925 	 */
3926 	c = slub_get_cpu_ptr(s->cpu_slab);
3927 #endif
3928 
3929 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3930 #ifdef CONFIG_PREEMPT_COUNT
3931 	slub_put_cpu_ptr(s->cpu_slab);
3932 #endif
3933 	return p;
3934 }
3935 
3936 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3937 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3938 {
3939 	struct kmem_cache_cpu *c;
3940 	struct slab *slab;
3941 	unsigned long tid;
3942 	void *object;
3943 
3944 redo:
3945 	/*
3946 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3947 	 * enabled. We may switch back and forth between cpus while
3948 	 * reading from one cpu area. That does not matter as long
3949 	 * as we end up on the original cpu again when doing the cmpxchg.
3950 	 *
3951 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3952 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3953 	 * the tid. If we are preempted and switched to another cpu between the
3954 	 * two reads, it's OK as the two are still associated with the same cpu
3955 	 * and cmpxchg later will validate the cpu.
3956 	 */
3957 	c = raw_cpu_ptr(s->cpu_slab);
3958 	tid = READ_ONCE(c->tid);
3959 
3960 	/*
3961 	 * Irqless object alloc/free algorithm used here depends on sequence
3962 	 * of fetching cpu_slab's data. tid should be fetched before anything
3963 	 * on c to guarantee that object and slab associated with previous tid
3964 	 * won't be used with current tid. If we fetch tid first, object and
3965 	 * slab could be one associated with next tid and our alloc/free
3966 	 * request will be failed. In this case, we will retry. So, no problem.
3967 	 */
3968 	barrier();
3969 
3970 	/*
3971 	 * The transaction ids are globally unique per cpu and per operation on
3972 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3973 	 * occurs on the right processor and that there was no operation on the
3974 	 * linked list in between.
3975 	 */
3976 
3977 	object = c->freelist;
3978 	slab = c->slab;
3979 
3980 #ifdef CONFIG_NUMA
3981 	if (static_branch_unlikely(&strict_numa) &&
3982 			node == NUMA_NO_NODE) {
3983 
3984 		struct mempolicy *mpol = current->mempolicy;
3985 
3986 		if (mpol) {
3987 			/*
3988 			 * Special BIND rule support. If existing slab
3989 			 * is in permitted set then do not redirect
3990 			 * to a particular node.
3991 			 * Otherwise we apply the memory policy to get
3992 			 * the node we need to allocate on.
3993 			 */
3994 			if (mpol->mode != MPOL_BIND || !slab ||
3995 					!node_isset(slab_nid(slab), mpol->nodes))
3996 
3997 				node = mempolicy_slab_node();
3998 		}
3999 	}
4000 #endif
4001 
4002 	if (!USE_LOCKLESS_FAST_PATH() ||
4003 	    unlikely(!object || !slab || !node_match(slab, node))) {
4004 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4005 	} else {
4006 		void *next_object = get_freepointer_safe(s, object);
4007 
4008 		/*
4009 		 * The cmpxchg will only match if there was no additional
4010 		 * operation and if we are on the right processor.
4011 		 *
4012 		 * The cmpxchg does the following atomically (without lock
4013 		 * semantics!)
4014 		 * 1. Relocate first pointer to the current per cpu area.
4015 		 * 2. Verify that tid and freelist have not been changed
4016 		 * 3. If they were not changed replace tid and freelist
4017 		 *
4018 		 * Since this is without lock semantics the protection is only
4019 		 * against code executing on this cpu *not* from access by
4020 		 * other cpus.
4021 		 */
4022 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4023 			note_cmpxchg_failure("slab_alloc", s, tid);
4024 			goto redo;
4025 		}
4026 		prefetch_freepointer(s, next_object);
4027 		stat(s, ALLOC_FASTPATH);
4028 	}
4029 
4030 	return object;
4031 }
4032 #else /* CONFIG_SLUB_TINY */
4033 static void *__slab_alloc_node(struct kmem_cache *s,
4034 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4035 {
4036 	struct partial_context pc;
4037 	struct slab *slab;
4038 	void *object;
4039 
4040 	pc.flags = gfpflags;
4041 	pc.orig_size = orig_size;
4042 	slab = get_partial(s, node, &pc);
4043 
4044 	if (slab)
4045 		return pc.object;
4046 
4047 	slab = new_slab(s, gfpflags, node);
4048 	if (unlikely(!slab)) {
4049 		slab_out_of_memory(s, gfpflags, node);
4050 		return NULL;
4051 	}
4052 
4053 	object = alloc_single_from_new_slab(s, slab, orig_size);
4054 
4055 	return object;
4056 }
4057 #endif /* CONFIG_SLUB_TINY */
4058 
4059 /*
4060  * If the object has been wiped upon free, make sure it's fully initialized by
4061  * zeroing out freelist pointer.
4062  *
4063  * Note that we also wipe custom freelist pointers.
4064  */
4065 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4066 						   void *obj)
4067 {
4068 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4069 	    !freeptr_outside_object(s))
4070 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4071 			0, sizeof(void *));
4072 }
4073 
4074 static __fastpath_inline
4075 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4076 {
4077 	flags &= gfp_allowed_mask;
4078 
4079 	might_alloc(flags);
4080 
4081 	if (unlikely(should_failslab(s, flags)))
4082 		return NULL;
4083 
4084 	return s;
4085 }
4086 
4087 static __fastpath_inline
4088 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4089 			  gfp_t flags, size_t size, void **p, bool init,
4090 			  unsigned int orig_size)
4091 {
4092 	unsigned int zero_size = s->object_size;
4093 	bool kasan_init = init;
4094 	size_t i;
4095 	gfp_t init_flags = flags & gfp_allowed_mask;
4096 
4097 	/*
4098 	 * For kmalloc object, the allocated memory size(object_size) is likely
4099 	 * larger than the requested size(orig_size). If redzone check is
4100 	 * enabled for the extra space, don't zero it, as it will be redzoned
4101 	 * soon. The redzone operation for this extra space could be seen as a
4102 	 * replacement of current poisoning under certain debug option, and
4103 	 * won't break other sanity checks.
4104 	 */
4105 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4106 	    (s->flags & SLAB_KMALLOC))
4107 		zero_size = orig_size;
4108 
4109 	/*
4110 	 * When slab_debug is enabled, avoid memory initialization integrated
4111 	 * into KASAN and instead zero out the memory via the memset below with
4112 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4113 	 * cause false-positive reports. This does not lead to a performance
4114 	 * penalty on production builds, as slab_debug is not intended to be
4115 	 * enabled there.
4116 	 */
4117 	if (__slub_debug_enabled())
4118 		kasan_init = false;
4119 
4120 	/*
4121 	 * As memory initialization might be integrated into KASAN,
4122 	 * kasan_slab_alloc and initialization memset must be
4123 	 * kept together to avoid discrepancies in behavior.
4124 	 *
4125 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4126 	 */
4127 	for (i = 0; i < size; i++) {
4128 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4129 		if (p[i] && init && (!kasan_init ||
4130 				     !kasan_has_integrated_init()))
4131 			memset(p[i], 0, zero_size);
4132 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4133 					 s->flags, init_flags);
4134 		kmsan_slab_alloc(s, p[i], init_flags);
4135 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4136 	}
4137 
4138 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4139 }
4140 
4141 /*
4142  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4143  * have the fastpath folded into their functions. So no function call
4144  * overhead for requests that can be satisfied on the fastpath.
4145  *
4146  * The fastpath works by first checking if the lockless freelist can be used.
4147  * If not then __slab_alloc is called for slow processing.
4148  *
4149  * Otherwise we can simply pick the next object from the lockless free list.
4150  */
4151 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4152 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4153 {
4154 	void *object;
4155 	bool init = false;
4156 
4157 	s = slab_pre_alloc_hook(s, gfpflags);
4158 	if (unlikely(!s))
4159 		return NULL;
4160 
4161 	object = kfence_alloc(s, orig_size, gfpflags);
4162 	if (unlikely(object))
4163 		goto out;
4164 
4165 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4166 
4167 	maybe_wipe_obj_freeptr(s, object);
4168 	init = slab_want_init_on_alloc(gfpflags, s);
4169 
4170 out:
4171 	/*
4172 	 * When init equals 'true', like for kzalloc() family, only
4173 	 * @orig_size bytes might be zeroed instead of s->object_size
4174 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4175 	 * object is set to NULL
4176 	 */
4177 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4178 
4179 	return object;
4180 }
4181 
4182 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4183 {
4184 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4185 				    s->object_size);
4186 
4187 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4188 
4189 	return ret;
4190 }
4191 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4192 
4193 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4194 			   gfp_t gfpflags)
4195 {
4196 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4197 				    s->object_size);
4198 
4199 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4200 
4201 	return ret;
4202 }
4203 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4204 
4205 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4206 {
4207 	if (!memcg_kmem_online())
4208 		return true;
4209 
4210 	return memcg_slab_post_charge(objp, gfpflags);
4211 }
4212 EXPORT_SYMBOL(kmem_cache_charge);
4213 
4214 /**
4215  * kmem_cache_alloc_node - Allocate an object on the specified node
4216  * @s: The cache to allocate from.
4217  * @gfpflags: See kmalloc().
4218  * @node: node number of the target node.
4219  *
4220  * Identical to kmem_cache_alloc but it will allocate memory on the given
4221  * node, which can improve the performance for cpu bound structures.
4222  *
4223  * Fallback to other node is possible if __GFP_THISNODE is not set.
4224  *
4225  * Return: pointer to the new object or %NULL in case of error
4226  */
4227 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4228 {
4229 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4230 
4231 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4232 
4233 	return ret;
4234 }
4235 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4236 
4237 /*
4238  * To avoid unnecessary overhead, we pass through large allocation requests
4239  * directly to the page allocator. We use __GFP_COMP, because we will need to
4240  * know the allocation order to free the pages properly in kfree.
4241  */
4242 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4243 {
4244 	struct folio *folio;
4245 	void *ptr = NULL;
4246 	unsigned int order = get_order(size);
4247 
4248 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4249 		flags = kmalloc_fix_flags(flags);
4250 
4251 	flags |= __GFP_COMP;
4252 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4253 	if (folio) {
4254 		ptr = folio_address(folio);
4255 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4256 				      PAGE_SIZE << order);
4257 	}
4258 
4259 	ptr = kasan_kmalloc_large(ptr, size, flags);
4260 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4261 	kmemleak_alloc(ptr, size, 1, flags);
4262 	kmsan_kmalloc_large(ptr, size, flags);
4263 
4264 	return ptr;
4265 }
4266 
4267 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4268 {
4269 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4270 
4271 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4272 		      flags, NUMA_NO_NODE);
4273 	return ret;
4274 }
4275 EXPORT_SYMBOL(__kmalloc_large_noprof);
4276 
4277 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4278 {
4279 	void *ret = ___kmalloc_large_node(size, flags, node);
4280 
4281 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4282 		      flags, node);
4283 	return ret;
4284 }
4285 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4286 
4287 static __always_inline
4288 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4289 			unsigned long caller)
4290 {
4291 	struct kmem_cache *s;
4292 	void *ret;
4293 
4294 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4295 		ret = __kmalloc_large_node_noprof(size, flags, node);
4296 		trace_kmalloc(caller, ret, size,
4297 			      PAGE_SIZE << get_order(size), flags, node);
4298 		return ret;
4299 	}
4300 
4301 	if (unlikely(!size))
4302 		return ZERO_SIZE_PTR;
4303 
4304 	s = kmalloc_slab(size, b, flags, caller);
4305 
4306 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4307 	ret = kasan_kmalloc(s, ret, size, flags);
4308 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4309 	return ret;
4310 }
4311 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4312 {
4313 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4314 }
4315 EXPORT_SYMBOL(__kmalloc_node_noprof);
4316 
4317 void *__kmalloc_noprof(size_t size, gfp_t flags)
4318 {
4319 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4320 }
4321 EXPORT_SYMBOL(__kmalloc_noprof);
4322 
4323 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4324 					 int node, unsigned long caller)
4325 {
4326 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4327 
4328 }
4329 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4330 
4331 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4332 {
4333 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4334 					    _RET_IP_, size);
4335 
4336 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4337 
4338 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4339 	return ret;
4340 }
4341 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4342 
4343 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4344 				  int node, size_t size)
4345 {
4346 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4347 
4348 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4349 
4350 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4351 	return ret;
4352 }
4353 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4354 
4355 static noinline void free_to_partial_list(
4356 	struct kmem_cache *s, struct slab *slab,
4357 	void *head, void *tail, int bulk_cnt,
4358 	unsigned long addr)
4359 {
4360 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4361 	struct slab *slab_free = NULL;
4362 	int cnt = bulk_cnt;
4363 	unsigned long flags;
4364 	depot_stack_handle_t handle = 0;
4365 
4366 	if (s->flags & SLAB_STORE_USER)
4367 		handle = set_track_prepare();
4368 
4369 	spin_lock_irqsave(&n->list_lock, flags);
4370 
4371 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4372 		void *prior = slab->freelist;
4373 
4374 		/* Perform the actual freeing while we still hold the locks */
4375 		slab->inuse -= cnt;
4376 		set_freepointer(s, tail, prior);
4377 		slab->freelist = head;
4378 
4379 		/*
4380 		 * If the slab is empty, and node's partial list is full,
4381 		 * it should be discarded anyway no matter it's on full or
4382 		 * partial list.
4383 		 */
4384 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4385 			slab_free = slab;
4386 
4387 		if (!prior) {
4388 			/* was on full list */
4389 			remove_full(s, n, slab);
4390 			if (!slab_free) {
4391 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4392 				stat(s, FREE_ADD_PARTIAL);
4393 			}
4394 		} else if (slab_free) {
4395 			remove_partial(n, slab);
4396 			stat(s, FREE_REMOVE_PARTIAL);
4397 		}
4398 	}
4399 
4400 	if (slab_free) {
4401 		/*
4402 		 * Update the counters while still holding n->list_lock to
4403 		 * prevent spurious validation warnings
4404 		 */
4405 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4406 	}
4407 
4408 	spin_unlock_irqrestore(&n->list_lock, flags);
4409 
4410 	if (slab_free) {
4411 		stat(s, FREE_SLAB);
4412 		free_slab(s, slab_free);
4413 	}
4414 }
4415 
4416 /*
4417  * Slow path handling. This may still be called frequently since objects
4418  * have a longer lifetime than the cpu slabs in most processing loads.
4419  *
4420  * So we still attempt to reduce cache line usage. Just take the slab
4421  * lock and free the item. If there is no additional partial slab
4422  * handling required then we can return immediately.
4423  */
4424 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4425 			void *head, void *tail, int cnt,
4426 			unsigned long addr)
4427 
4428 {
4429 	void *prior;
4430 	int was_frozen;
4431 	struct slab new;
4432 	unsigned long counters;
4433 	struct kmem_cache_node *n = NULL;
4434 	unsigned long flags;
4435 	bool on_node_partial;
4436 
4437 	stat(s, FREE_SLOWPATH);
4438 
4439 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4440 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4441 		return;
4442 	}
4443 
4444 	do {
4445 		if (unlikely(n)) {
4446 			spin_unlock_irqrestore(&n->list_lock, flags);
4447 			n = NULL;
4448 		}
4449 		prior = slab->freelist;
4450 		counters = slab->counters;
4451 		set_freepointer(s, tail, prior);
4452 		new.counters = counters;
4453 		was_frozen = new.frozen;
4454 		new.inuse -= cnt;
4455 		if ((!new.inuse || !prior) && !was_frozen) {
4456 			/* Needs to be taken off a list */
4457 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4458 
4459 				n = get_node(s, slab_nid(slab));
4460 				/*
4461 				 * Speculatively acquire the list_lock.
4462 				 * If the cmpxchg does not succeed then we may
4463 				 * drop the list_lock without any processing.
4464 				 *
4465 				 * Otherwise the list_lock will synchronize with
4466 				 * other processors updating the list of slabs.
4467 				 */
4468 				spin_lock_irqsave(&n->list_lock, flags);
4469 
4470 				on_node_partial = slab_test_node_partial(slab);
4471 			}
4472 		}
4473 
4474 	} while (!slab_update_freelist(s, slab,
4475 		prior, counters,
4476 		head, new.counters,
4477 		"__slab_free"));
4478 
4479 	if (likely(!n)) {
4480 
4481 		if (likely(was_frozen)) {
4482 			/*
4483 			 * The list lock was not taken therefore no list
4484 			 * activity can be necessary.
4485 			 */
4486 			stat(s, FREE_FROZEN);
4487 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4488 			/*
4489 			 * If we started with a full slab then put it onto the
4490 			 * per cpu partial list.
4491 			 */
4492 			put_cpu_partial(s, slab, 1);
4493 			stat(s, CPU_PARTIAL_FREE);
4494 		}
4495 
4496 		return;
4497 	}
4498 
4499 	/*
4500 	 * This slab was partially empty but not on the per-node partial list,
4501 	 * in which case we shouldn't manipulate its list, just return.
4502 	 */
4503 	if (prior && !on_node_partial) {
4504 		spin_unlock_irqrestore(&n->list_lock, flags);
4505 		return;
4506 	}
4507 
4508 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4509 		goto slab_empty;
4510 
4511 	/*
4512 	 * Objects left in the slab. If it was not on the partial list before
4513 	 * then add it.
4514 	 */
4515 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4516 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4517 		stat(s, FREE_ADD_PARTIAL);
4518 	}
4519 	spin_unlock_irqrestore(&n->list_lock, flags);
4520 	return;
4521 
4522 slab_empty:
4523 	if (prior) {
4524 		/*
4525 		 * Slab on the partial list.
4526 		 */
4527 		remove_partial(n, slab);
4528 		stat(s, FREE_REMOVE_PARTIAL);
4529 	}
4530 
4531 	spin_unlock_irqrestore(&n->list_lock, flags);
4532 	stat(s, FREE_SLAB);
4533 	discard_slab(s, slab);
4534 }
4535 
4536 #ifndef CONFIG_SLUB_TINY
4537 /*
4538  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4539  * can perform fastpath freeing without additional function calls.
4540  *
4541  * The fastpath is only possible if we are freeing to the current cpu slab
4542  * of this processor. This typically the case if we have just allocated
4543  * the item before.
4544  *
4545  * If fastpath is not possible then fall back to __slab_free where we deal
4546  * with all sorts of special processing.
4547  *
4548  * Bulk free of a freelist with several objects (all pointing to the
4549  * same slab) possible by specifying head and tail ptr, plus objects
4550  * count (cnt). Bulk free indicated by tail pointer being set.
4551  */
4552 static __always_inline void do_slab_free(struct kmem_cache *s,
4553 				struct slab *slab, void *head, void *tail,
4554 				int cnt, unsigned long addr)
4555 {
4556 	struct kmem_cache_cpu *c;
4557 	unsigned long tid;
4558 	void **freelist;
4559 
4560 redo:
4561 	/*
4562 	 * Determine the currently cpus per cpu slab.
4563 	 * The cpu may change afterward. However that does not matter since
4564 	 * data is retrieved via this pointer. If we are on the same cpu
4565 	 * during the cmpxchg then the free will succeed.
4566 	 */
4567 	c = raw_cpu_ptr(s->cpu_slab);
4568 	tid = READ_ONCE(c->tid);
4569 
4570 	/* Same with comment on barrier() in __slab_alloc_node() */
4571 	barrier();
4572 
4573 	if (unlikely(slab != c->slab)) {
4574 		__slab_free(s, slab, head, tail, cnt, addr);
4575 		return;
4576 	}
4577 
4578 	if (USE_LOCKLESS_FAST_PATH()) {
4579 		freelist = READ_ONCE(c->freelist);
4580 
4581 		set_freepointer(s, tail, freelist);
4582 
4583 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4584 			note_cmpxchg_failure("slab_free", s, tid);
4585 			goto redo;
4586 		}
4587 	} else {
4588 		/* Update the free list under the local lock */
4589 		local_lock(&s->cpu_slab->lock);
4590 		c = this_cpu_ptr(s->cpu_slab);
4591 		if (unlikely(slab != c->slab)) {
4592 			local_unlock(&s->cpu_slab->lock);
4593 			goto redo;
4594 		}
4595 		tid = c->tid;
4596 		freelist = c->freelist;
4597 
4598 		set_freepointer(s, tail, freelist);
4599 		c->freelist = head;
4600 		c->tid = next_tid(tid);
4601 
4602 		local_unlock(&s->cpu_slab->lock);
4603 	}
4604 	stat_add(s, FREE_FASTPATH, cnt);
4605 }
4606 #else /* CONFIG_SLUB_TINY */
4607 static void do_slab_free(struct kmem_cache *s,
4608 				struct slab *slab, void *head, void *tail,
4609 				int cnt, unsigned long addr)
4610 {
4611 	__slab_free(s, slab, head, tail, cnt, addr);
4612 }
4613 #endif /* CONFIG_SLUB_TINY */
4614 
4615 static __fastpath_inline
4616 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4617 	       unsigned long addr)
4618 {
4619 	memcg_slab_free_hook(s, slab, &object, 1);
4620 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4621 
4622 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4623 		do_slab_free(s, slab, object, object, 1, addr);
4624 }
4625 
4626 #ifdef CONFIG_MEMCG
4627 /* Do not inline the rare memcg charging failed path into the allocation path */
4628 static noinline
4629 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4630 {
4631 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4632 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4633 }
4634 #endif
4635 
4636 static __fastpath_inline
4637 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4638 		    void *tail, void **p, int cnt, unsigned long addr)
4639 {
4640 	memcg_slab_free_hook(s, slab, p, cnt);
4641 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4642 	/*
4643 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4644 	 * to remove objects, whose reuse must be delayed.
4645 	 */
4646 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4647 		do_slab_free(s, slab, head, tail, cnt, addr);
4648 }
4649 
4650 #ifdef CONFIG_SLUB_RCU_DEBUG
4651 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4652 {
4653 	struct rcu_delayed_free *delayed_free =
4654 			container_of(rcu_head, struct rcu_delayed_free, head);
4655 	void *object = delayed_free->object;
4656 	struct slab *slab = virt_to_slab(object);
4657 	struct kmem_cache *s;
4658 
4659 	kfree(delayed_free);
4660 
4661 	if (WARN_ON(is_kfence_address(object)))
4662 		return;
4663 
4664 	/* find the object and the cache again */
4665 	if (WARN_ON(!slab))
4666 		return;
4667 	s = slab->slab_cache;
4668 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4669 		return;
4670 
4671 	/* resume freeing */
4672 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4673 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4674 }
4675 #endif /* CONFIG_SLUB_RCU_DEBUG */
4676 
4677 #ifdef CONFIG_KASAN_GENERIC
4678 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4679 {
4680 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4681 }
4682 #endif
4683 
4684 static inline struct kmem_cache *virt_to_cache(const void *obj)
4685 {
4686 	struct slab *slab;
4687 
4688 	slab = virt_to_slab(obj);
4689 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4690 		return NULL;
4691 	return slab->slab_cache;
4692 }
4693 
4694 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4695 {
4696 	struct kmem_cache *cachep;
4697 
4698 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4699 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4700 		return s;
4701 
4702 	cachep = virt_to_cache(x);
4703 	if (WARN(cachep && cachep != s,
4704 		 "%s: Wrong slab cache. %s but object is from %s\n",
4705 		 __func__, s->name, cachep->name))
4706 		print_tracking(cachep, x);
4707 	return cachep;
4708 }
4709 
4710 /**
4711  * kmem_cache_free - Deallocate an object
4712  * @s: The cache the allocation was from.
4713  * @x: The previously allocated object.
4714  *
4715  * Free an object which was previously allocated from this
4716  * cache.
4717  */
4718 void kmem_cache_free(struct kmem_cache *s, void *x)
4719 {
4720 	s = cache_from_obj(s, x);
4721 	if (!s)
4722 		return;
4723 	trace_kmem_cache_free(_RET_IP_, x, s);
4724 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4725 }
4726 EXPORT_SYMBOL(kmem_cache_free);
4727 
4728 static void free_large_kmalloc(struct folio *folio, void *object)
4729 {
4730 	unsigned int order = folio_order(folio);
4731 
4732 	if (WARN_ON_ONCE(order == 0))
4733 		pr_warn_once("object pointer: 0x%p\n", object);
4734 
4735 	kmemleak_free(object);
4736 	kasan_kfree_large(object);
4737 	kmsan_kfree_large(object);
4738 
4739 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4740 			      -(PAGE_SIZE << order));
4741 	folio_put(folio);
4742 }
4743 
4744 /**
4745  * kfree - free previously allocated memory
4746  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4747  *
4748  * If @object is NULL, no operation is performed.
4749  */
4750 void kfree(const void *object)
4751 {
4752 	struct folio *folio;
4753 	struct slab *slab;
4754 	struct kmem_cache *s;
4755 	void *x = (void *)object;
4756 
4757 	trace_kfree(_RET_IP_, object);
4758 
4759 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4760 		return;
4761 
4762 	folio = virt_to_folio(object);
4763 	if (unlikely(!folio_test_slab(folio))) {
4764 		free_large_kmalloc(folio, (void *)object);
4765 		return;
4766 	}
4767 
4768 	slab = folio_slab(folio);
4769 	s = slab->slab_cache;
4770 	slab_free(s, slab, x, _RET_IP_);
4771 }
4772 EXPORT_SYMBOL(kfree);
4773 
4774 static __always_inline __realloc_size(2) void *
4775 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4776 {
4777 	void *ret;
4778 	size_t ks = 0;
4779 	int orig_size = 0;
4780 	struct kmem_cache *s = NULL;
4781 
4782 	if (unlikely(ZERO_OR_NULL_PTR(p)))
4783 		goto alloc_new;
4784 
4785 	/* Check for double-free. */
4786 	if (!kasan_check_byte(p))
4787 		return NULL;
4788 
4789 	if (is_kfence_address(p)) {
4790 		ks = orig_size = kfence_ksize(p);
4791 	} else {
4792 		struct folio *folio;
4793 
4794 		folio = virt_to_folio(p);
4795 		if (unlikely(!folio_test_slab(folio))) {
4796 			/* Big kmalloc object */
4797 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4798 			WARN_ON(p != folio_address(folio));
4799 			ks = folio_size(folio);
4800 		} else {
4801 			s = folio_slab(folio)->slab_cache;
4802 			orig_size = get_orig_size(s, (void *)p);
4803 			ks = s->object_size;
4804 		}
4805 	}
4806 
4807 	/* If the old object doesn't fit, allocate a bigger one */
4808 	if (new_size > ks)
4809 		goto alloc_new;
4810 
4811 	/* Zero out spare memory. */
4812 	if (want_init_on_alloc(flags)) {
4813 		kasan_disable_current();
4814 		if (orig_size && orig_size < new_size)
4815 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4816 		else
4817 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4818 		kasan_enable_current();
4819 	}
4820 
4821 	/* Setup kmalloc redzone when needed */
4822 	if (s && slub_debug_orig_size(s)) {
4823 		set_orig_size(s, (void *)p, new_size);
4824 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
4825 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4826 						SLUB_RED_ACTIVE, ks - new_size);
4827 	}
4828 
4829 	p = kasan_krealloc(p, new_size, flags);
4830 	return (void *)p;
4831 
4832 alloc_new:
4833 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4834 	if (ret && p) {
4835 		/* Disable KASAN checks as the object's redzone is accessed. */
4836 		kasan_disable_current();
4837 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4838 		kasan_enable_current();
4839 	}
4840 
4841 	return ret;
4842 }
4843 
4844 /**
4845  * krealloc - reallocate memory. The contents will remain unchanged.
4846  * @p: object to reallocate memory for.
4847  * @new_size: how many bytes of memory are required.
4848  * @flags: the type of memory to allocate.
4849  *
4850  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
4851  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4852  *
4853  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4854  * initial memory allocation, every subsequent call to this API for the same
4855  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4856  * __GFP_ZERO is not fully honored by this API.
4857  *
4858  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4859  * size of an allocation (but not the exact size it was allocated with) and
4860  * hence implements the following semantics for shrinking and growing buffers
4861  * with __GFP_ZERO.
4862  *
4863  *         new             bucket
4864  * 0       size             size
4865  * |--------|----------------|
4866  * |  keep  |      zero      |
4867  *
4868  * Otherwise, the original allocation size 'orig_size' could be used to
4869  * precisely clear the requested size, and the new size will also be stored
4870  * as the new 'orig_size'.
4871  *
4872  * In any case, the contents of the object pointed to are preserved up to the
4873  * lesser of the new and old sizes.
4874  *
4875  * Return: pointer to the allocated memory or %NULL in case of error
4876  */
4877 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4878 {
4879 	void *ret;
4880 
4881 	if (unlikely(!new_size)) {
4882 		kfree(p);
4883 		return ZERO_SIZE_PTR;
4884 	}
4885 
4886 	ret = __do_krealloc(p, new_size, flags);
4887 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4888 		kfree(p);
4889 
4890 	return ret;
4891 }
4892 EXPORT_SYMBOL(krealloc_noprof);
4893 
4894 struct detached_freelist {
4895 	struct slab *slab;
4896 	void *tail;
4897 	void *freelist;
4898 	int cnt;
4899 	struct kmem_cache *s;
4900 };
4901 
4902 /*
4903  * This function progressively scans the array with free objects (with
4904  * a limited look ahead) and extract objects belonging to the same
4905  * slab.  It builds a detached freelist directly within the given
4906  * slab/objects.  This can happen without any need for
4907  * synchronization, because the objects are owned by running process.
4908  * The freelist is build up as a single linked list in the objects.
4909  * The idea is, that this detached freelist can then be bulk
4910  * transferred to the real freelist(s), but only requiring a single
4911  * synchronization primitive.  Look ahead in the array is limited due
4912  * to performance reasons.
4913  */
4914 static inline
4915 int build_detached_freelist(struct kmem_cache *s, size_t size,
4916 			    void **p, struct detached_freelist *df)
4917 {
4918 	int lookahead = 3;
4919 	void *object;
4920 	struct folio *folio;
4921 	size_t same;
4922 
4923 	object = p[--size];
4924 	folio = virt_to_folio(object);
4925 	if (!s) {
4926 		/* Handle kalloc'ed objects */
4927 		if (unlikely(!folio_test_slab(folio))) {
4928 			free_large_kmalloc(folio, object);
4929 			df->slab = NULL;
4930 			return size;
4931 		}
4932 		/* Derive kmem_cache from object */
4933 		df->slab = folio_slab(folio);
4934 		df->s = df->slab->slab_cache;
4935 	} else {
4936 		df->slab = folio_slab(folio);
4937 		df->s = cache_from_obj(s, object); /* Support for memcg */
4938 	}
4939 
4940 	/* Start new detached freelist */
4941 	df->tail = object;
4942 	df->freelist = object;
4943 	df->cnt = 1;
4944 
4945 	if (is_kfence_address(object))
4946 		return size;
4947 
4948 	set_freepointer(df->s, object, NULL);
4949 
4950 	same = size;
4951 	while (size) {
4952 		object = p[--size];
4953 		/* df->slab is always set at this point */
4954 		if (df->slab == virt_to_slab(object)) {
4955 			/* Opportunity build freelist */
4956 			set_freepointer(df->s, object, df->freelist);
4957 			df->freelist = object;
4958 			df->cnt++;
4959 			same--;
4960 			if (size != same)
4961 				swap(p[size], p[same]);
4962 			continue;
4963 		}
4964 
4965 		/* Limit look ahead search */
4966 		if (!--lookahead)
4967 			break;
4968 	}
4969 
4970 	return same;
4971 }
4972 
4973 /*
4974  * Internal bulk free of objects that were not initialised by the post alloc
4975  * hooks and thus should not be processed by the free hooks
4976  */
4977 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4978 {
4979 	if (!size)
4980 		return;
4981 
4982 	do {
4983 		struct detached_freelist df;
4984 
4985 		size = build_detached_freelist(s, size, p, &df);
4986 		if (!df.slab)
4987 			continue;
4988 
4989 		if (kfence_free(df.freelist))
4990 			continue;
4991 
4992 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4993 			     _RET_IP_);
4994 	} while (likely(size));
4995 }
4996 
4997 /* Note that interrupts must be enabled when calling this function. */
4998 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4999 {
5000 	if (!size)
5001 		return;
5002 
5003 	do {
5004 		struct detached_freelist df;
5005 
5006 		size = build_detached_freelist(s, size, p, &df);
5007 		if (!df.slab)
5008 			continue;
5009 
5010 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5011 			       df.cnt, _RET_IP_);
5012 	} while (likely(size));
5013 }
5014 EXPORT_SYMBOL(kmem_cache_free_bulk);
5015 
5016 #ifndef CONFIG_SLUB_TINY
5017 static inline
5018 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5019 			    void **p)
5020 {
5021 	struct kmem_cache_cpu *c;
5022 	unsigned long irqflags;
5023 	int i;
5024 
5025 	/*
5026 	 * Drain objects in the per cpu slab, while disabling local
5027 	 * IRQs, which protects against PREEMPT and interrupts
5028 	 * handlers invoking normal fastpath.
5029 	 */
5030 	c = slub_get_cpu_ptr(s->cpu_slab);
5031 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5032 
5033 	for (i = 0; i < size; i++) {
5034 		void *object = kfence_alloc(s, s->object_size, flags);
5035 
5036 		if (unlikely(object)) {
5037 			p[i] = object;
5038 			continue;
5039 		}
5040 
5041 		object = c->freelist;
5042 		if (unlikely(!object)) {
5043 			/*
5044 			 * We may have removed an object from c->freelist using
5045 			 * the fastpath in the previous iteration; in that case,
5046 			 * c->tid has not been bumped yet.
5047 			 * Since ___slab_alloc() may reenable interrupts while
5048 			 * allocating memory, we should bump c->tid now.
5049 			 */
5050 			c->tid = next_tid(c->tid);
5051 
5052 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5053 
5054 			/*
5055 			 * Invoking slow path likely have side-effect
5056 			 * of re-populating per CPU c->freelist
5057 			 */
5058 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5059 					    _RET_IP_, c, s->object_size);
5060 			if (unlikely(!p[i]))
5061 				goto error;
5062 
5063 			c = this_cpu_ptr(s->cpu_slab);
5064 			maybe_wipe_obj_freeptr(s, p[i]);
5065 
5066 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5067 
5068 			continue; /* goto for-loop */
5069 		}
5070 		c->freelist = get_freepointer(s, object);
5071 		p[i] = object;
5072 		maybe_wipe_obj_freeptr(s, p[i]);
5073 		stat(s, ALLOC_FASTPATH);
5074 	}
5075 	c->tid = next_tid(c->tid);
5076 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5077 	slub_put_cpu_ptr(s->cpu_slab);
5078 
5079 	return i;
5080 
5081 error:
5082 	slub_put_cpu_ptr(s->cpu_slab);
5083 	__kmem_cache_free_bulk(s, i, p);
5084 	return 0;
5085 
5086 }
5087 #else /* CONFIG_SLUB_TINY */
5088 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5089 				   size_t size, void **p)
5090 {
5091 	int i;
5092 
5093 	for (i = 0; i < size; i++) {
5094 		void *object = kfence_alloc(s, s->object_size, flags);
5095 
5096 		if (unlikely(object)) {
5097 			p[i] = object;
5098 			continue;
5099 		}
5100 
5101 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5102 					 _RET_IP_, s->object_size);
5103 		if (unlikely(!p[i]))
5104 			goto error;
5105 
5106 		maybe_wipe_obj_freeptr(s, p[i]);
5107 	}
5108 
5109 	return i;
5110 
5111 error:
5112 	__kmem_cache_free_bulk(s, i, p);
5113 	return 0;
5114 }
5115 #endif /* CONFIG_SLUB_TINY */
5116 
5117 /* Note that interrupts must be enabled when calling this function. */
5118 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5119 				 void **p)
5120 {
5121 	int i;
5122 
5123 	if (!size)
5124 		return 0;
5125 
5126 	s = slab_pre_alloc_hook(s, flags);
5127 	if (unlikely(!s))
5128 		return 0;
5129 
5130 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
5131 	if (unlikely(i == 0))
5132 		return 0;
5133 
5134 	/*
5135 	 * memcg and kmem_cache debug support and memory initialization.
5136 	 * Done outside of the IRQ disabled fastpath loop.
5137 	 */
5138 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5139 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
5140 		return 0;
5141 	}
5142 	return i;
5143 }
5144 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5145 
5146 
5147 /*
5148  * Object placement in a slab is made very easy because we always start at
5149  * offset 0. If we tune the size of the object to the alignment then we can
5150  * get the required alignment by putting one properly sized object after
5151  * another.
5152  *
5153  * Notice that the allocation order determines the sizes of the per cpu
5154  * caches. Each processor has always one slab available for allocations.
5155  * Increasing the allocation order reduces the number of times that slabs
5156  * must be moved on and off the partial lists and is therefore a factor in
5157  * locking overhead.
5158  */
5159 
5160 /*
5161  * Minimum / Maximum order of slab pages. This influences locking overhead
5162  * and slab fragmentation. A higher order reduces the number of partial slabs
5163  * and increases the number of allocations possible without having to
5164  * take the list_lock.
5165  */
5166 static unsigned int slub_min_order;
5167 static unsigned int slub_max_order =
5168 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5169 static unsigned int slub_min_objects;
5170 
5171 /*
5172  * Calculate the order of allocation given an slab object size.
5173  *
5174  * The order of allocation has significant impact on performance and other
5175  * system components. Generally order 0 allocations should be preferred since
5176  * order 0 does not cause fragmentation in the page allocator. Larger objects
5177  * be problematic to put into order 0 slabs because there may be too much
5178  * unused space left. We go to a higher order if more than 1/16th of the slab
5179  * would be wasted.
5180  *
5181  * In order to reach satisfactory performance we must ensure that a minimum
5182  * number of objects is in one slab. Otherwise we may generate too much
5183  * activity on the partial lists which requires taking the list_lock. This is
5184  * less a concern for large slabs though which are rarely used.
5185  *
5186  * slab_max_order specifies the order where we begin to stop considering the
5187  * number of objects in a slab as critical. If we reach slab_max_order then
5188  * we try to keep the page order as low as possible. So we accept more waste
5189  * of space in favor of a small page order.
5190  *
5191  * Higher order allocations also allow the placement of more objects in a
5192  * slab and thereby reduce object handling overhead. If the user has
5193  * requested a higher minimum order then we start with that one instead of
5194  * the smallest order which will fit the object.
5195  */
5196 static inline unsigned int calc_slab_order(unsigned int size,
5197 		unsigned int min_order, unsigned int max_order,
5198 		unsigned int fract_leftover)
5199 {
5200 	unsigned int order;
5201 
5202 	for (order = min_order; order <= max_order; order++) {
5203 
5204 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5205 		unsigned int rem;
5206 
5207 		rem = slab_size % size;
5208 
5209 		if (rem <= slab_size / fract_leftover)
5210 			break;
5211 	}
5212 
5213 	return order;
5214 }
5215 
5216 static inline int calculate_order(unsigned int size)
5217 {
5218 	unsigned int order;
5219 	unsigned int min_objects;
5220 	unsigned int max_objects;
5221 	unsigned int min_order;
5222 
5223 	min_objects = slub_min_objects;
5224 	if (!min_objects) {
5225 		/*
5226 		 * Some architectures will only update present cpus when
5227 		 * onlining them, so don't trust the number if it's just 1. But
5228 		 * we also don't want to use nr_cpu_ids always, as on some other
5229 		 * architectures, there can be many possible cpus, but never
5230 		 * onlined. Here we compromise between trying to avoid too high
5231 		 * order on systems that appear larger than they are, and too
5232 		 * low order on systems that appear smaller than they are.
5233 		 */
5234 		unsigned int nr_cpus = num_present_cpus();
5235 		if (nr_cpus <= 1)
5236 			nr_cpus = nr_cpu_ids;
5237 		min_objects = 4 * (fls(nr_cpus) + 1);
5238 	}
5239 	/* min_objects can't be 0 because get_order(0) is undefined */
5240 	max_objects = max(order_objects(slub_max_order, size), 1U);
5241 	min_objects = min(min_objects, max_objects);
5242 
5243 	min_order = max_t(unsigned int, slub_min_order,
5244 			  get_order(min_objects * size));
5245 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5246 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5247 
5248 	/*
5249 	 * Attempt to find best configuration for a slab. This works by first
5250 	 * attempting to generate a layout with the best possible configuration
5251 	 * and backing off gradually.
5252 	 *
5253 	 * We start with accepting at most 1/16 waste and try to find the
5254 	 * smallest order from min_objects-derived/slab_min_order up to
5255 	 * slab_max_order that will satisfy the constraint. Note that increasing
5256 	 * the order can only result in same or less fractional waste, not more.
5257 	 *
5258 	 * If that fails, we increase the acceptable fraction of waste and try
5259 	 * again. The last iteration with fraction of 1/2 would effectively
5260 	 * accept any waste and give us the order determined by min_objects, as
5261 	 * long as at least single object fits within slab_max_order.
5262 	 */
5263 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5264 		order = calc_slab_order(size, min_order, slub_max_order,
5265 					fraction);
5266 		if (order <= slub_max_order)
5267 			return order;
5268 	}
5269 
5270 	/*
5271 	 * Doh this slab cannot be placed using slab_max_order.
5272 	 */
5273 	order = get_order(size);
5274 	if (order <= MAX_PAGE_ORDER)
5275 		return order;
5276 	return -ENOSYS;
5277 }
5278 
5279 static void
5280 init_kmem_cache_node(struct kmem_cache_node *n)
5281 {
5282 	n->nr_partial = 0;
5283 	spin_lock_init(&n->list_lock);
5284 	INIT_LIST_HEAD(&n->partial);
5285 #ifdef CONFIG_SLUB_DEBUG
5286 	atomic_long_set(&n->nr_slabs, 0);
5287 	atomic_long_set(&n->total_objects, 0);
5288 	INIT_LIST_HEAD(&n->full);
5289 #endif
5290 }
5291 
5292 #ifndef CONFIG_SLUB_TINY
5293 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5294 {
5295 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5296 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5297 			sizeof(struct kmem_cache_cpu));
5298 
5299 	/*
5300 	 * Must align to double word boundary for the double cmpxchg
5301 	 * instructions to work; see __pcpu_double_call_return_bool().
5302 	 */
5303 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5304 				     2 * sizeof(void *));
5305 
5306 	if (!s->cpu_slab)
5307 		return 0;
5308 
5309 	init_kmem_cache_cpus(s);
5310 
5311 	return 1;
5312 }
5313 #else
5314 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5315 {
5316 	return 1;
5317 }
5318 #endif /* CONFIG_SLUB_TINY */
5319 
5320 static struct kmem_cache *kmem_cache_node;
5321 
5322 /*
5323  * No kmalloc_node yet so do it by hand. We know that this is the first
5324  * slab on the node for this slabcache. There are no concurrent accesses
5325  * possible.
5326  *
5327  * Note that this function only works on the kmem_cache_node
5328  * when allocating for the kmem_cache_node. This is used for bootstrapping
5329  * memory on a fresh node that has no slab structures yet.
5330  */
5331 static void early_kmem_cache_node_alloc(int node)
5332 {
5333 	struct slab *slab;
5334 	struct kmem_cache_node *n;
5335 
5336 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5337 
5338 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5339 
5340 	BUG_ON(!slab);
5341 	if (slab_nid(slab) != node) {
5342 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5343 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5344 	}
5345 
5346 	n = slab->freelist;
5347 	BUG_ON(!n);
5348 #ifdef CONFIG_SLUB_DEBUG
5349 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5350 #endif
5351 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5352 	slab->freelist = get_freepointer(kmem_cache_node, n);
5353 	slab->inuse = 1;
5354 	kmem_cache_node->node[node] = n;
5355 	init_kmem_cache_node(n);
5356 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5357 
5358 	/*
5359 	 * No locks need to be taken here as it has just been
5360 	 * initialized and there is no concurrent access.
5361 	 */
5362 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5363 }
5364 
5365 static void free_kmem_cache_nodes(struct kmem_cache *s)
5366 {
5367 	int node;
5368 	struct kmem_cache_node *n;
5369 
5370 	for_each_kmem_cache_node(s, node, n) {
5371 		s->node[node] = NULL;
5372 		kmem_cache_free(kmem_cache_node, n);
5373 	}
5374 }
5375 
5376 void __kmem_cache_release(struct kmem_cache *s)
5377 {
5378 	cache_random_seq_destroy(s);
5379 #ifndef CONFIG_SLUB_TINY
5380 	free_percpu(s->cpu_slab);
5381 #endif
5382 	free_kmem_cache_nodes(s);
5383 }
5384 
5385 static int init_kmem_cache_nodes(struct kmem_cache *s)
5386 {
5387 	int node;
5388 
5389 	for_each_node_mask(node, slab_nodes) {
5390 		struct kmem_cache_node *n;
5391 
5392 		if (slab_state == DOWN) {
5393 			early_kmem_cache_node_alloc(node);
5394 			continue;
5395 		}
5396 		n = kmem_cache_alloc_node(kmem_cache_node,
5397 						GFP_KERNEL, node);
5398 
5399 		if (!n) {
5400 			free_kmem_cache_nodes(s);
5401 			return 0;
5402 		}
5403 
5404 		init_kmem_cache_node(n);
5405 		s->node[node] = n;
5406 	}
5407 	return 1;
5408 }
5409 
5410 static void set_cpu_partial(struct kmem_cache *s)
5411 {
5412 #ifdef CONFIG_SLUB_CPU_PARTIAL
5413 	unsigned int nr_objects;
5414 
5415 	/*
5416 	 * cpu_partial determined the maximum number of objects kept in the
5417 	 * per cpu partial lists of a processor.
5418 	 *
5419 	 * Per cpu partial lists mainly contain slabs that just have one
5420 	 * object freed. If they are used for allocation then they can be
5421 	 * filled up again with minimal effort. The slab will never hit the
5422 	 * per node partial lists and therefore no locking will be required.
5423 	 *
5424 	 * For backwards compatibility reasons, this is determined as number
5425 	 * of objects, even though we now limit maximum number of pages, see
5426 	 * slub_set_cpu_partial()
5427 	 */
5428 	if (!kmem_cache_has_cpu_partial(s))
5429 		nr_objects = 0;
5430 	else if (s->size >= PAGE_SIZE)
5431 		nr_objects = 6;
5432 	else if (s->size >= 1024)
5433 		nr_objects = 24;
5434 	else if (s->size >= 256)
5435 		nr_objects = 52;
5436 	else
5437 		nr_objects = 120;
5438 
5439 	slub_set_cpu_partial(s, nr_objects);
5440 #endif
5441 }
5442 
5443 /*
5444  * calculate_sizes() determines the order and the distribution of data within
5445  * a slab object.
5446  */
5447 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5448 {
5449 	slab_flags_t flags = s->flags;
5450 	unsigned int size = s->object_size;
5451 	unsigned int order;
5452 
5453 	/*
5454 	 * Round up object size to the next word boundary. We can only
5455 	 * place the free pointer at word boundaries and this determines
5456 	 * the possible location of the free pointer.
5457 	 */
5458 	size = ALIGN(size, sizeof(void *));
5459 
5460 #ifdef CONFIG_SLUB_DEBUG
5461 	/*
5462 	 * Determine if we can poison the object itself. If the user of
5463 	 * the slab may touch the object after free or before allocation
5464 	 * then we should never poison the object itself.
5465 	 */
5466 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5467 			!s->ctor)
5468 		s->flags |= __OBJECT_POISON;
5469 	else
5470 		s->flags &= ~__OBJECT_POISON;
5471 
5472 
5473 	/*
5474 	 * If we are Redzoning then check if there is some space between the
5475 	 * end of the object and the free pointer. If not then add an
5476 	 * additional word to have some bytes to store Redzone information.
5477 	 */
5478 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5479 		size += sizeof(void *);
5480 #endif
5481 
5482 	/*
5483 	 * With that we have determined the number of bytes in actual use
5484 	 * by the object and redzoning.
5485 	 */
5486 	s->inuse = size;
5487 
5488 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5489 	    (flags & SLAB_POISON) || s->ctor ||
5490 	    ((flags & SLAB_RED_ZONE) &&
5491 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5492 		/*
5493 		 * Relocate free pointer after the object if it is not
5494 		 * permitted to overwrite the first word of the object on
5495 		 * kmem_cache_free.
5496 		 *
5497 		 * This is the case if we do RCU, have a constructor or
5498 		 * destructor, are poisoning the objects, or are
5499 		 * redzoning an object smaller than sizeof(void *) or are
5500 		 * redzoning an object with slub_debug_orig_size() enabled,
5501 		 * in which case the right redzone may be extended.
5502 		 *
5503 		 * The assumption that s->offset >= s->inuse means free
5504 		 * pointer is outside of the object is used in the
5505 		 * freeptr_outside_object() function. If that is no
5506 		 * longer true, the function needs to be modified.
5507 		 */
5508 		s->offset = size;
5509 		size += sizeof(void *);
5510 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5511 		s->offset = args->freeptr_offset;
5512 	} else {
5513 		/*
5514 		 * Store freelist pointer near middle of object to keep
5515 		 * it away from the edges of the object to avoid small
5516 		 * sized over/underflows from neighboring allocations.
5517 		 */
5518 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5519 	}
5520 
5521 #ifdef CONFIG_SLUB_DEBUG
5522 	if (flags & SLAB_STORE_USER) {
5523 		/*
5524 		 * Need to store information about allocs and frees after
5525 		 * the object.
5526 		 */
5527 		size += 2 * sizeof(struct track);
5528 
5529 		/* Save the original kmalloc request size */
5530 		if (flags & SLAB_KMALLOC)
5531 			size += sizeof(unsigned int);
5532 	}
5533 #endif
5534 
5535 	kasan_cache_create(s, &size, &s->flags);
5536 #ifdef CONFIG_SLUB_DEBUG
5537 	if (flags & SLAB_RED_ZONE) {
5538 		/*
5539 		 * Add some empty padding so that we can catch
5540 		 * overwrites from earlier objects rather than let
5541 		 * tracking information or the free pointer be
5542 		 * corrupted if a user writes before the start
5543 		 * of the object.
5544 		 */
5545 		size += sizeof(void *);
5546 
5547 		s->red_left_pad = sizeof(void *);
5548 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5549 		size += s->red_left_pad;
5550 	}
5551 #endif
5552 
5553 	/*
5554 	 * SLUB stores one object immediately after another beginning from
5555 	 * offset 0. In order to align the objects we have to simply size
5556 	 * each object to conform to the alignment.
5557 	 */
5558 	size = ALIGN(size, s->align);
5559 	s->size = size;
5560 	s->reciprocal_size = reciprocal_value(size);
5561 	order = calculate_order(size);
5562 
5563 	if ((int)order < 0)
5564 		return 0;
5565 
5566 	s->allocflags = __GFP_COMP;
5567 
5568 	if (s->flags & SLAB_CACHE_DMA)
5569 		s->allocflags |= GFP_DMA;
5570 
5571 	if (s->flags & SLAB_CACHE_DMA32)
5572 		s->allocflags |= GFP_DMA32;
5573 
5574 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5575 		s->allocflags |= __GFP_RECLAIMABLE;
5576 
5577 	/*
5578 	 * Determine the number of objects per slab
5579 	 */
5580 	s->oo = oo_make(order, size);
5581 	s->min = oo_make(get_order(size), size);
5582 
5583 	return !!oo_objects(s->oo);
5584 }
5585 
5586 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5587 			      const char *text)
5588 {
5589 #ifdef CONFIG_SLUB_DEBUG
5590 	void *addr = slab_address(slab);
5591 	void *p;
5592 
5593 	slab_err(s, slab, text, s->name);
5594 
5595 	spin_lock(&object_map_lock);
5596 	__fill_map(object_map, s, slab);
5597 
5598 	for_each_object(p, s, addr, slab->objects) {
5599 
5600 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5601 			if (slab_add_kunit_errors())
5602 				continue;
5603 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5604 			print_tracking(s, p);
5605 		}
5606 	}
5607 	spin_unlock(&object_map_lock);
5608 #endif
5609 }
5610 
5611 /*
5612  * Attempt to free all partial slabs on a node.
5613  * This is called from __kmem_cache_shutdown(). We must take list_lock
5614  * because sysfs file might still access partial list after the shutdowning.
5615  */
5616 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5617 {
5618 	LIST_HEAD(discard);
5619 	struct slab *slab, *h;
5620 
5621 	BUG_ON(irqs_disabled());
5622 	spin_lock_irq(&n->list_lock);
5623 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5624 		if (!slab->inuse) {
5625 			remove_partial(n, slab);
5626 			list_add(&slab->slab_list, &discard);
5627 		} else {
5628 			list_slab_objects(s, slab,
5629 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5630 		}
5631 	}
5632 	spin_unlock_irq(&n->list_lock);
5633 
5634 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5635 		discard_slab(s, slab);
5636 }
5637 
5638 bool __kmem_cache_empty(struct kmem_cache *s)
5639 {
5640 	int node;
5641 	struct kmem_cache_node *n;
5642 
5643 	for_each_kmem_cache_node(s, node, n)
5644 		if (n->nr_partial || node_nr_slabs(n))
5645 			return false;
5646 	return true;
5647 }
5648 
5649 /*
5650  * Release all resources used by a slab cache.
5651  */
5652 int __kmem_cache_shutdown(struct kmem_cache *s)
5653 {
5654 	int node;
5655 	struct kmem_cache_node *n;
5656 
5657 	flush_all_cpus_locked(s);
5658 	/* Attempt to free all objects */
5659 	for_each_kmem_cache_node(s, node, n) {
5660 		free_partial(s, n);
5661 		if (n->nr_partial || node_nr_slabs(n))
5662 			return 1;
5663 	}
5664 	return 0;
5665 }
5666 
5667 #ifdef CONFIG_PRINTK
5668 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5669 {
5670 	void *base;
5671 	int __maybe_unused i;
5672 	unsigned int objnr;
5673 	void *objp;
5674 	void *objp0;
5675 	struct kmem_cache *s = slab->slab_cache;
5676 	struct track __maybe_unused *trackp;
5677 
5678 	kpp->kp_ptr = object;
5679 	kpp->kp_slab = slab;
5680 	kpp->kp_slab_cache = s;
5681 	base = slab_address(slab);
5682 	objp0 = kasan_reset_tag(object);
5683 #ifdef CONFIG_SLUB_DEBUG
5684 	objp = restore_red_left(s, objp0);
5685 #else
5686 	objp = objp0;
5687 #endif
5688 	objnr = obj_to_index(s, slab, objp);
5689 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5690 	objp = base + s->size * objnr;
5691 	kpp->kp_objp = objp;
5692 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5693 			 || (objp - base) % s->size) ||
5694 	    !(s->flags & SLAB_STORE_USER))
5695 		return;
5696 #ifdef CONFIG_SLUB_DEBUG
5697 	objp = fixup_red_left(s, objp);
5698 	trackp = get_track(s, objp, TRACK_ALLOC);
5699 	kpp->kp_ret = (void *)trackp->addr;
5700 #ifdef CONFIG_STACKDEPOT
5701 	{
5702 		depot_stack_handle_t handle;
5703 		unsigned long *entries;
5704 		unsigned int nr_entries;
5705 
5706 		handle = READ_ONCE(trackp->handle);
5707 		if (handle) {
5708 			nr_entries = stack_depot_fetch(handle, &entries);
5709 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5710 				kpp->kp_stack[i] = (void *)entries[i];
5711 		}
5712 
5713 		trackp = get_track(s, objp, TRACK_FREE);
5714 		handle = READ_ONCE(trackp->handle);
5715 		if (handle) {
5716 			nr_entries = stack_depot_fetch(handle, &entries);
5717 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5718 				kpp->kp_free_stack[i] = (void *)entries[i];
5719 		}
5720 	}
5721 #endif
5722 #endif
5723 }
5724 #endif
5725 
5726 /********************************************************************
5727  *		Kmalloc subsystem
5728  *******************************************************************/
5729 
5730 static int __init setup_slub_min_order(char *str)
5731 {
5732 	get_option(&str, (int *)&slub_min_order);
5733 
5734 	if (slub_min_order > slub_max_order)
5735 		slub_max_order = slub_min_order;
5736 
5737 	return 1;
5738 }
5739 
5740 __setup("slab_min_order=", setup_slub_min_order);
5741 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5742 
5743 
5744 static int __init setup_slub_max_order(char *str)
5745 {
5746 	get_option(&str, (int *)&slub_max_order);
5747 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5748 
5749 	if (slub_min_order > slub_max_order)
5750 		slub_min_order = slub_max_order;
5751 
5752 	return 1;
5753 }
5754 
5755 __setup("slab_max_order=", setup_slub_max_order);
5756 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5757 
5758 static int __init setup_slub_min_objects(char *str)
5759 {
5760 	get_option(&str, (int *)&slub_min_objects);
5761 
5762 	return 1;
5763 }
5764 
5765 __setup("slab_min_objects=", setup_slub_min_objects);
5766 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5767 
5768 #ifdef CONFIG_NUMA
5769 static int __init setup_slab_strict_numa(char *str)
5770 {
5771 	if (nr_node_ids > 1) {
5772 		static_branch_enable(&strict_numa);
5773 		pr_info("SLUB: Strict NUMA enabled.\n");
5774 	} else {
5775 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
5776 	}
5777 
5778 	return 1;
5779 }
5780 
5781 __setup("slab_strict_numa", setup_slab_strict_numa);
5782 #endif
5783 
5784 
5785 #ifdef CONFIG_HARDENED_USERCOPY
5786 /*
5787  * Rejects incorrectly sized objects and objects that are to be copied
5788  * to/from userspace but do not fall entirely within the containing slab
5789  * cache's usercopy region.
5790  *
5791  * Returns NULL if check passes, otherwise const char * to name of cache
5792  * to indicate an error.
5793  */
5794 void __check_heap_object(const void *ptr, unsigned long n,
5795 			 const struct slab *slab, bool to_user)
5796 {
5797 	struct kmem_cache *s;
5798 	unsigned int offset;
5799 	bool is_kfence = is_kfence_address(ptr);
5800 
5801 	ptr = kasan_reset_tag(ptr);
5802 
5803 	/* Find object and usable object size. */
5804 	s = slab->slab_cache;
5805 
5806 	/* Reject impossible pointers. */
5807 	if (ptr < slab_address(slab))
5808 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5809 			       to_user, 0, n);
5810 
5811 	/* Find offset within object. */
5812 	if (is_kfence)
5813 		offset = ptr - kfence_object_start(ptr);
5814 	else
5815 		offset = (ptr - slab_address(slab)) % s->size;
5816 
5817 	/* Adjust for redzone and reject if within the redzone. */
5818 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5819 		if (offset < s->red_left_pad)
5820 			usercopy_abort("SLUB object in left red zone",
5821 				       s->name, to_user, offset, n);
5822 		offset -= s->red_left_pad;
5823 	}
5824 
5825 	/* Allow address range falling entirely within usercopy region. */
5826 	if (offset >= s->useroffset &&
5827 	    offset - s->useroffset <= s->usersize &&
5828 	    n <= s->useroffset - offset + s->usersize)
5829 		return;
5830 
5831 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5832 }
5833 #endif /* CONFIG_HARDENED_USERCOPY */
5834 
5835 #define SHRINK_PROMOTE_MAX 32
5836 
5837 /*
5838  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5839  * up most to the head of the partial lists. New allocations will then
5840  * fill those up and thus they can be removed from the partial lists.
5841  *
5842  * The slabs with the least items are placed last. This results in them
5843  * being allocated from last increasing the chance that the last objects
5844  * are freed in them.
5845  */
5846 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5847 {
5848 	int node;
5849 	int i;
5850 	struct kmem_cache_node *n;
5851 	struct slab *slab;
5852 	struct slab *t;
5853 	struct list_head discard;
5854 	struct list_head promote[SHRINK_PROMOTE_MAX];
5855 	unsigned long flags;
5856 	int ret = 0;
5857 
5858 	for_each_kmem_cache_node(s, node, n) {
5859 		INIT_LIST_HEAD(&discard);
5860 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5861 			INIT_LIST_HEAD(promote + i);
5862 
5863 		spin_lock_irqsave(&n->list_lock, flags);
5864 
5865 		/*
5866 		 * Build lists of slabs to discard or promote.
5867 		 *
5868 		 * Note that concurrent frees may occur while we hold the
5869 		 * list_lock. slab->inuse here is the upper limit.
5870 		 */
5871 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5872 			int free = slab->objects - slab->inuse;
5873 
5874 			/* Do not reread slab->inuse */
5875 			barrier();
5876 
5877 			/* We do not keep full slabs on the list */
5878 			BUG_ON(free <= 0);
5879 
5880 			if (free == slab->objects) {
5881 				list_move(&slab->slab_list, &discard);
5882 				slab_clear_node_partial(slab);
5883 				n->nr_partial--;
5884 				dec_slabs_node(s, node, slab->objects);
5885 			} else if (free <= SHRINK_PROMOTE_MAX)
5886 				list_move(&slab->slab_list, promote + free - 1);
5887 		}
5888 
5889 		/*
5890 		 * Promote the slabs filled up most to the head of the
5891 		 * partial list.
5892 		 */
5893 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5894 			list_splice(promote + i, &n->partial);
5895 
5896 		spin_unlock_irqrestore(&n->list_lock, flags);
5897 
5898 		/* Release empty slabs */
5899 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5900 			free_slab(s, slab);
5901 
5902 		if (node_nr_slabs(n))
5903 			ret = 1;
5904 	}
5905 
5906 	return ret;
5907 }
5908 
5909 int __kmem_cache_shrink(struct kmem_cache *s)
5910 {
5911 	flush_all(s);
5912 	return __kmem_cache_do_shrink(s);
5913 }
5914 
5915 static int slab_mem_going_offline_callback(void *arg)
5916 {
5917 	struct kmem_cache *s;
5918 
5919 	mutex_lock(&slab_mutex);
5920 	list_for_each_entry(s, &slab_caches, list) {
5921 		flush_all_cpus_locked(s);
5922 		__kmem_cache_do_shrink(s);
5923 	}
5924 	mutex_unlock(&slab_mutex);
5925 
5926 	return 0;
5927 }
5928 
5929 static void slab_mem_offline_callback(void *arg)
5930 {
5931 	struct memory_notify *marg = arg;
5932 	int offline_node;
5933 
5934 	offline_node = marg->status_change_nid_normal;
5935 
5936 	/*
5937 	 * If the node still has available memory. we need kmem_cache_node
5938 	 * for it yet.
5939 	 */
5940 	if (offline_node < 0)
5941 		return;
5942 
5943 	mutex_lock(&slab_mutex);
5944 	node_clear(offline_node, slab_nodes);
5945 	/*
5946 	 * We no longer free kmem_cache_node structures here, as it would be
5947 	 * racy with all get_node() users, and infeasible to protect them with
5948 	 * slab_mutex.
5949 	 */
5950 	mutex_unlock(&slab_mutex);
5951 }
5952 
5953 static int slab_mem_going_online_callback(void *arg)
5954 {
5955 	struct kmem_cache_node *n;
5956 	struct kmem_cache *s;
5957 	struct memory_notify *marg = arg;
5958 	int nid = marg->status_change_nid_normal;
5959 	int ret = 0;
5960 
5961 	/*
5962 	 * If the node's memory is already available, then kmem_cache_node is
5963 	 * already created. Nothing to do.
5964 	 */
5965 	if (nid < 0)
5966 		return 0;
5967 
5968 	/*
5969 	 * We are bringing a node online. No memory is available yet. We must
5970 	 * allocate a kmem_cache_node structure in order to bring the node
5971 	 * online.
5972 	 */
5973 	mutex_lock(&slab_mutex);
5974 	list_for_each_entry(s, &slab_caches, list) {
5975 		/*
5976 		 * The structure may already exist if the node was previously
5977 		 * onlined and offlined.
5978 		 */
5979 		if (get_node(s, nid))
5980 			continue;
5981 		/*
5982 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5983 		 *      since memory is not yet available from the node that
5984 		 *      is brought up.
5985 		 */
5986 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5987 		if (!n) {
5988 			ret = -ENOMEM;
5989 			goto out;
5990 		}
5991 		init_kmem_cache_node(n);
5992 		s->node[nid] = n;
5993 	}
5994 	/*
5995 	 * Any cache created after this point will also have kmem_cache_node
5996 	 * initialized for the new node.
5997 	 */
5998 	node_set(nid, slab_nodes);
5999 out:
6000 	mutex_unlock(&slab_mutex);
6001 	return ret;
6002 }
6003 
6004 static int slab_memory_callback(struct notifier_block *self,
6005 				unsigned long action, void *arg)
6006 {
6007 	int ret = 0;
6008 
6009 	switch (action) {
6010 	case MEM_GOING_ONLINE:
6011 		ret = slab_mem_going_online_callback(arg);
6012 		break;
6013 	case MEM_GOING_OFFLINE:
6014 		ret = slab_mem_going_offline_callback(arg);
6015 		break;
6016 	case MEM_OFFLINE:
6017 	case MEM_CANCEL_ONLINE:
6018 		slab_mem_offline_callback(arg);
6019 		break;
6020 	case MEM_ONLINE:
6021 	case MEM_CANCEL_OFFLINE:
6022 		break;
6023 	}
6024 	if (ret)
6025 		ret = notifier_from_errno(ret);
6026 	else
6027 		ret = NOTIFY_OK;
6028 	return ret;
6029 }
6030 
6031 /********************************************************************
6032  *			Basic setup of slabs
6033  *******************************************************************/
6034 
6035 /*
6036  * Used for early kmem_cache structures that were allocated using
6037  * the page allocator. Allocate them properly then fix up the pointers
6038  * that may be pointing to the wrong kmem_cache structure.
6039  */
6040 
6041 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6042 {
6043 	int node;
6044 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6045 	struct kmem_cache_node *n;
6046 
6047 	memcpy(s, static_cache, kmem_cache->object_size);
6048 
6049 	/*
6050 	 * This runs very early, and only the boot processor is supposed to be
6051 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
6052 	 * IPIs around.
6053 	 */
6054 	__flush_cpu_slab(s, smp_processor_id());
6055 	for_each_kmem_cache_node(s, node, n) {
6056 		struct slab *p;
6057 
6058 		list_for_each_entry(p, &n->partial, slab_list)
6059 			p->slab_cache = s;
6060 
6061 #ifdef CONFIG_SLUB_DEBUG
6062 		list_for_each_entry(p, &n->full, slab_list)
6063 			p->slab_cache = s;
6064 #endif
6065 	}
6066 	list_add(&s->list, &slab_caches);
6067 	return s;
6068 }
6069 
6070 void __init kmem_cache_init(void)
6071 {
6072 	static __initdata struct kmem_cache boot_kmem_cache,
6073 		boot_kmem_cache_node;
6074 	int node;
6075 
6076 	if (debug_guardpage_minorder())
6077 		slub_max_order = 0;
6078 
6079 	/* Print slub debugging pointers without hashing */
6080 	if (__slub_debug_enabled())
6081 		no_hash_pointers_enable(NULL);
6082 
6083 	kmem_cache_node = &boot_kmem_cache_node;
6084 	kmem_cache = &boot_kmem_cache;
6085 
6086 	/*
6087 	 * Initialize the nodemask for which we will allocate per node
6088 	 * structures. Here we don't need taking slab_mutex yet.
6089 	 */
6090 	for_each_node_state(node, N_NORMAL_MEMORY)
6091 		node_set(node, slab_nodes);
6092 
6093 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
6094 			sizeof(struct kmem_cache_node),
6095 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6096 
6097 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6098 
6099 	/* Able to allocate the per node structures */
6100 	slab_state = PARTIAL;
6101 
6102 	create_boot_cache(kmem_cache, "kmem_cache",
6103 			offsetof(struct kmem_cache, node) +
6104 				nr_node_ids * sizeof(struct kmem_cache_node *),
6105 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6106 
6107 	kmem_cache = bootstrap(&boot_kmem_cache);
6108 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6109 
6110 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
6111 	setup_kmalloc_cache_index_table();
6112 	create_kmalloc_caches();
6113 
6114 	/* Setup random freelists for each cache */
6115 	init_freelist_randomization();
6116 
6117 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6118 				  slub_cpu_dead);
6119 
6120 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6121 		cache_line_size(),
6122 		slub_min_order, slub_max_order, slub_min_objects,
6123 		nr_cpu_ids, nr_node_ids);
6124 }
6125 
6126 void __init kmem_cache_init_late(void)
6127 {
6128 #ifndef CONFIG_SLUB_TINY
6129 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6130 	WARN_ON(!flushwq);
6131 #endif
6132 }
6133 
6134 struct kmem_cache *
6135 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6136 		   slab_flags_t flags, void (*ctor)(void *))
6137 {
6138 	struct kmem_cache *s;
6139 
6140 	s = find_mergeable(size, align, flags, name, ctor);
6141 	if (s) {
6142 		if (sysfs_slab_alias(s, name))
6143 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6144 			       name);
6145 
6146 		s->refcount++;
6147 
6148 		/*
6149 		 * Adjust the object sizes so that we clear
6150 		 * the complete object on kzalloc.
6151 		 */
6152 		s->object_size = max(s->object_size, size);
6153 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6154 	}
6155 
6156 	return s;
6157 }
6158 
6159 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6160 			 unsigned int size, struct kmem_cache_args *args,
6161 			 slab_flags_t flags)
6162 {
6163 	int err = -EINVAL;
6164 
6165 	s->name = name;
6166 	s->size = s->object_size = size;
6167 
6168 	s->flags = kmem_cache_flags(flags, s->name);
6169 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6170 	s->random = get_random_long();
6171 #endif
6172 	s->align = args->align;
6173 	s->ctor = args->ctor;
6174 #ifdef CONFIG_HARDENED_USERCOPY
6175 	s->useroffset = args->useroffset;
6176 	s->usersize = args->usersize;
6177 #endif
6178 
6179 	if (!calculate_sizes(args, s))
6180 		goto out;
6181 	if (disable_higher_order_debug) {
6182 		/*
6183 		 * Disable debugging flags that store metadata if the min slab
6184 		 * order increased.
6185 		 */
6186 		if (get_order(s->size) > get_order(s->object_size)) {
6187 			s->flags &= ~DEBUG_METADATA_FLAGS;
6188 			s->offset = 0;
6189 			if (!calculate_sizes(args, s))
6190 				goto out;
6191 		}
6192 	}
6193 
6194 #ifdef system_has_freelist_aba
6195 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6196 		/* Enable fast mode */
6197 		s->flags |= __CMPXCHG_DOUBLE;
6198 	}
6199 #endif
6200 
6201 	/*
6202 	 * The larger the object size is, the more slabs we want on the partial
6203 	 * list to avoid pounding the page allocator excessively.
6204 	 */
6205 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6206 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6207 
6208 	set_cpu_partial(s);
6209 
6210 #ifdef CONFIG_NUMA
6211 	s->remote_node_defrag_ratio = 1000;
6212 #endif
6213 
6214 	/* Initialize the pre-computed randomized freelist if slab is up */
6215 	if (slab_state >= UP) {
6216 		if (init_cache_random_seq(s))
6217 			goto out;
6218 	}
6219 
6220 	if (!init_kmem_cache_nodes(s))
6221 		goto out;
6222 
6223 	if (!alloc_kmem_cache_cpus(s))
6224 		goto out;
6225 
6226 	err = 0;
6227 
6228 	/* Mutex is not taken during early boot */
6229 	if (slab_state <= UP)
6230 		goto out;
6231 
6232 	/*
6233 	 * Failing to create sysfs files is not critical to SLUB functionality.
6234 	 * If it fails, proceed with cache creation without these files.
6235 	 */
6236 	if (sysfs_slab_add(s))
6237 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6238 
6239 	if (s->flags & SLAB_STORE_USER)
6240 		debugfs_slab_add(s);
6241 
6242 out:
6243 	if (err)
6244 		__kmem_cache_release(s);
6245 	return err;
6246 }
6247 
6248 #ifdef SLAB_SUPPORTS_SYSFS
6249 static int count_inuse(struct slab *slab)
6250 {
6251 	return slab->inuse;
6252 }
6253 
6254 static int count_total(struct slab *slab)
6255 {
6256 	return slab->objects;
6257 }
6258 #endif
6259 
6260 #ifdef CONFIG_SLUB_DEBUG
6261 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6262 			  unsigned long *obj_map)
6263 {
6264 	void *p;
6265 	void *addr = slab_address(slab);
6266 
6267 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6268 		return;
6269 
6270 	/* Now we know that a valid freelist exists */
6271 	__fill_map(obj_map, s, slab);
6272 	for_each_object(p, s, addr, slab->objects) {
6273 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6274 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6275 
6276 		if (!check_object(s, slab, p, val))
6277 			break;
6278 	}
6279 }
6280 
6281 static int validate_slab_node(struct kmem_cache *s,
6282 		struct kmem_cache_node *n, unsigned long *obj_map)
6283 {
6284 	unsigned long count = 0;
6285 	struct slab *slab;
6286 	unsigned long flags;
6287 
6288 	spin_lock_irqsave(&n->list_lock, flags);
6289 
6290 	list_for_each_entry(slab, &n->partial, slab_list) {
6291 		validate_slab(s, slab, obj_map);
6292 		count++;
6293 	}
6294 	if (count != n->nr_partial) {
6295 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6296 		       s->name, count, n->nr_partial);
6297 		slab_add_kunit_errors();
6298 	}
6299 
6300 	if (!(s->flags & SLAB_STORE_USER))
6301 		goto out;
6302 
6303 	list_for_each_entry(slab, &n->full, slab_list) {
6304 		validate_slab(s, slab, obj_map);
6305 		count++;
6306 	}
6307 	if (count != node_nr_slabs(n)) {
6308 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6309 		       s->name, count, node_nr_slabs(n));
6310 		slab_add_kunit_errors();
6311 	}
6312 
6313 out:
6314 	spin_unlock_irqrestore(&n->list_lock, flags);
6315 	return count;
6316 }
6317 
6318 long validate_slab_cache(struct kmem_cache *s)
6319 {
6320 	int node;
6321 	unsigned long count = 0;
6322 	struct kmem_cache_node *n;
6323 	unsigned long *obj_map;
6324 
6325 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6326 	if (!obj_map)
6327 		return -ENOMEM;
6328 
6329 	flush_all(s);
6330 	for_each_kmem_cache_node(s, node, n)
6331 		count += validate_slab_node(s, n, obj_map);
6332 
6333 	bitmap_free(obj_map);
6334 
6335 	return count;
6336 }
6337 EXPORT_SYMBOL(validate_slab_cache);
6338 
6339 #ifdef CONFIG_DEBUG_FS
6340 /*
6341  * Generate lists of code addresses where slabcache objects are allocated
6342  * and freed.
6343  */
6344 
6345 struct location {
6346 	depot_stack_handle_t handle;
6347 	unsigned long count;
6348 	unsigned long addr;
6349 	unsigned long waste;
6350 	long long sum_time;
6351 	long min_time;
6352 	long max_time;
6353 	long min_pid;
6354 	long max_pid;
6355 	DECLARE_BITMAP(cpus, NR_CPUS);
6356 	nodemask_t nodes;
6357 };
6358 
6359 struct loc_track {
6360 	unsigned long max;
6361 	unsigned long count;
6362 	struct location *loc;
6363 	loff_t idx;
6364 };
6365 
6366 static struct dentry *slab_debugfs_root;
6367 
6368 static void free_loc_track(struct loc_track *t)
6369 {
6370 	if (t->max)
6371 		free_pages((unsigned long)t->loc,
6372 			get_order(sizeof(struct location) * t->max));
6373 }
6374 
6375 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6376 {
6377 	struct location *l;
6378 	int order;
6379 
6380 	order = get_order(sizeof(struct location) * max);
6381 
6382 	l = (void *)__get_free_pages(flags, order);
6383 	if (!l)
6384 		return 0;
6385 
6386 	if (t->count) {
6387 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6388 		free_loc_track(t);
6389 	}
6390 	t->max = max;
6391 	t->loc = l;
6392 	return 1;
6393 }
6394 
6395 static int add_location(struct loc_track *t, struct kmem_cache *s,
6396 				const struct track *track,
6397 				unsigned int orig_size)
6398 {
6399 	long start, end, pos;
6400 	struct location *l;
6401 	unsigned long caddr, chandle, cwaste;
6402 	unsigned long age = jiffies - track->when;
6403 	depot_stack_handle_t handle = 0;
6404 	unsigned int waste = s->object_size - orig_size;
6405 
6406 #ifdef CONFIG_STACKDEPOT
6407 	handle = READ_ONCE(track->handle);
6408 #endif
6409 	start = -1;
6410 	end = t->count;
6411 
6412 	for ( ; ; ) {
6413 		pos = start + (end - start + 1) / 2;
6414 
6415 		/*
6416 		 * There is nothing at "end". If we end up there
6417 		 * we need to add something to before end.
6418 		 */
6419 		if (pos == end)
6420 			break;
6421 
6422 		l = &t->loc[pos];
6423 		caddr = l->addr;
6424 		chandle = l->handle;
6425 		cwaste = l->waste;
6426 		if ((track->addr == caddr) && (handle == chandle) &&
6427 			(waste == cwaste)) {
6428 
6429 			l->count++;
6430 			if (track->when) {
6431 				l->sum_time += age;
6432 				if (age < l->min_time)
6433 					l->min_time = age;
6434 				if (age > l->max_time)
6435 					l->max_time = age;
6436 
6437 				if (track->pid < l->min_pid)
6438 					l->min_pid = track->pid;
6439 				if (track->pid > l->max_pid)
6440 					l->max_pid = track->pid;
6441 
6442 				cpumask_set_cpu(track->cpu,
6443 						to_cpumask(l->cpus));
6444 			}
6445 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6446 			return 1;
6447 		}
6448 
6449 		if (track->addr < caddr)
6450 			end = pos;
6451 		else if (track->addr == caddr && handle < chandle)
6452 			end = pos;
6453 		else if (track->addr == caddr && handle == chandle &&
6454 				waste < cwaste)
6455 			end = pos;
6456 		else
6457 			start = pos;
6458 	}
6459 
6460 	/*
6461 	 * Not found. Insert new tracking element.
6462 	 */
6463 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6464 		return 0;
6465 
6466 	l = t->loc + pos;
6467 	if (pos < t->count)
6468 		memmove(l + 1, l,
6469 			(t->count - pos) * sizeof(struct location));
6470 	t->count++;
6471 	l->count = 1;
6472 	l->addr = track->addr;
6473 	l->sum_time = age;
6474 	l->min_time = age;
6475 	l->max_time = age;
6476 	l->min_pid = track->pid;
6477 	l->max_pid = track->pid;
6478 	l->handle = handle;
6479 	l->waste = waste;
6480 	cpumask_clear(to_cpumask(l->cpus));
6481 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6482 	nodes_clear(l->nodes);
6483 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6484 	return 1;
6485 }
6486 
6487 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6488 		struct slab *slab, enum track_item alloc,
6489 		unsigned long *obj_map)
6490 {
6491 	void *addr = slab_address(slab);
6492 	bool is_alloc = (alloc == TRACK_ALLOC);
6493 	void *p;
6494 
6495 	__fill_map(obj_map, s, slab);
6496 
6497 	for_each_object(p, s, addr, slab->objects)
6498 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6499 			add_location(t, s, get_track(s, p, alloc),
6500 				     is_alloc ? get_orig_size(s, p) :
6501 						s->object_size);
6502 }
6503 #endif  /* CONFIG_DEBUG_FS   */
6504 #endif	/* CONFIG_SLUB_DEBUG */
6505 
6506 #ifdef SLAB_SUPPORTS_SYSFS
6507 enum slab_stat_type {
6508 	SL_ALL,			/* All slabs */
6509 	SL_PARTIAL,		/* Only partially allocated slabs */
6510 	SL_CPU,			/* Only slabs used for cpu caches */
6511 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6512 	SL_TOTAL		/* Determine object capacity not slabs */
6513 };
6514 
6515 #define SO_ALL		(1 << SL_ALL)
6516 #define SO_PARTIAL	(1 << SL_PARTIAL)
6517 #define SO_CPU		(1 << SL_CPU)
6518 #define SO_OBJECTS	(1 << SL_OBJECTS)
6519 #define SO_TOTAL	(1 << SL_TOTAL)
6520 
6521 static ssize_t show_slab_objects(struct kmem_cache *s,
6522 				 char *buf, unsigned long flags)
6523 {
6524 	unsigned long total = 0;
6525 	int node;
6526 	int x;
6527 	unsigned long *nodes;
6528 	int len = 0;
6529 
6530 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6531 	if (!nodes)
6532 		return -ENOMEM;
6533 
6534 	if (flags & SO_CPU) {
6535 		int cpu;
6536 
6537 		for_each_possible_cpu(cpu) {
6538 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6539 							       cpu);
6540 			int node;
6541 			struct slab *slab;
6542 
6543 			slab = READ_ONCE(c->slab);
6544 			if (!slab)
6545 				continue;
6546 
6547 			node = slab_nid(slab);
6548 			if (flags & SO_TOTAL)
6549 				x = slab->objects;
6550 			else if (flags & SO_OBJECTS)
6551 				x = slab->inuse;
6552 			else
6553 				x = 1;
6554 
6555 			total += x;
6556 			nodes[node] += x;
6557 
6558 #ifdef CONFIG_SLUB_CPU_PARTIAL
6559 			slab = slub_percpu_partial_read_once(c);
6560 			if (slab) {
6561 				node = slab_nid(slab);
6562 				if (flags & SO_TOTAL)
6563 					WARN_ON_ONCE(1);
6564 				else if (flags & SO_OBJECTS)
6565 					WARN_ON_ONCE(1);
6566 				else
6567 					x = data_race(slab->slabs);
6568 				total += x;
6569 				nodes[node] += x;
6570 			}
6571 #endif
6572 		}
6573 	}
6574 
6575 	/*
6576 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6577 	 * already held which will conflict with an existing lock order:
6578 	 *
6579 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6580 	 *
6581 	 * We don't really need mem_hotplug_lock (to hold off
6582 	 * slab_mem_going_offline_callback) here because slab's memory hot
6583 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6584 	 */
6585 
6586 #ifdef CONFIG_SLUB_DEBUG
6587 	if (flags & SO_ALL) {
6588 		struct kmem_cache_node *n;
6589 
6590 		for_each_kmem_cache_node(s, node, n) {
6591 
6592 			if (flags & SO_TOTAL)
6593 				x = node_nr_objs(n);
6594 			else if (flags & SO_OBJECTS)
6595 				x = node_nr_objs(n) - count_partial(n, count_free);
6596 			else
6597 				x = node_nr_slabs(n);
6598 			total += x;
6599 			nodes[node] += x;
6600 		}
6601 
6602 	} else
6603 #endif
6604 	if (flags & SO_PARTIAL) {
6605 		struct kmem_cache_node *n;
6606 
6607 		for_each_kmem_cache_node(s, node, n) {
6608 			if (flags & SO_TOTAL)
6609 				x = count_partial(n, count_total);
6610 			else if (flags & SO_OBJECTS)
6611 				x = count_partial(n, count_inuse);
6612 			else
6613 				x = n->nr_partial;
6614 			total += x;
6615 			nodes[node] += x;
6616 		}
6617 	}
6618 
6619 	len += sysfs_emit_at(buf, len, "%lu", total);
6620 #ifdef CONFIG_NUMA
6621 	for (node = 0; node < nr_node_ids; node++) {
6622 		if (nodes[node])
6623 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6624 					     node, nodes[node]);
6625 	}
6626 #endif
6627 	len += sysfs_emit_at(buf, len, "\n");
6628 	kfree(nodes);
6629 
6630 	return len;
6631 }
6632 
6633 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6634 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6635 
6636 struct slab_attribute {
6637 	struct attribute attr;
6638 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6639 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6640 };
6641 
6642 #define SLAB_ATTR_RO(_name) \
6643 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6644 
6645 #define SLAB_ATTR(_name) \
6646 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6647 
6648 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6649 {
6650 	return sysfs_emit(buf, "%u\n", s->size);
6651 }
6652 SLAB_ATTR_RO(slab_size);
6653 
6654 static ssize_t align_show(struct kmem_cache *s, char *buf)
6655 {
6656 	return sysfs_emit(buf, "%u\n", s->align);
6657 }
6658 SLAB_ATTR_RO(align);
6659 
6660 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6661 {
6662 	return sysfs_emit(buf, "%u\n", s->object_size);
6663 }
6664 SLAB_ATTR_RO(object_size);
6665 
6666 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6667 {
6668 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6669 }
6670 SLAB_ATTR_RO(objs_per_slab);
6671 
6672 static ssize_t order_show(struct kmem_cache *s, char *buf)
6673 {
6674 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6675 }
6676 SLAB_ATTR_RO(order);
6677 
6678 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6679 {
6680 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6681 }
6682 
6683 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6684 				 size_t length)
6685 {
6686 	unsigned long min;
6687 	int err;
6688 
6689 	err = kstrtoul(buf, 10, &min);
6690 	if (err)
6691 		return err;
6692 
6693 	s->min_partial = min;
6694 	return length;
6695 }
6696 SLAB_ATTR(min_partial);
6697 
6698 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6699 {
6700 	unsigned int nr_partial = 0;
6701 #ifdef CONFIG_SLUB_CPU_PARTIAL
6702 	nr_partial = s->cpu_partial;
6703 #endif
6704 
6705 	return sysfs_emit(buf, "%u\n", nr_partial);
6706 }
6707 
6708 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6709 				 size_t length)
6710 {
6711 	unsigned int objects;
6712 	int err;
6713 
6714 	err = kstrtouint(buf, 10, &objects);
6715 	if (err)
6716 		return err;
6717 	if (objects && !kmem_cache_has_cpu_partial(s))
6718 		return -EINVAL;
6719 
6720 	slub_set_cpu_partial(s, objects);
6721 	flush_all(s);
6722 	return length;
6723 }
6724 SLAB_ATTR(cpu_partial);
6725 
6726 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6727 {
6728 	if (!s->ctor)
6729 		return 0;
6730 	return sysfs_emit(buf, "%pS\n", s->ctor);
6731 }
6732 SLAB_ATTR_RO(ctor);
6733 
6734 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6735 {
6736 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6737 }
6738 SLAB_ATTR_RO(aliases);
6739 
6740 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6741 {
6742 	return show_slab_objects(s, buf, SO_PARTIAL);
6743 }
6744 SLAB_ATTR_RO(partial);
6745 
6746 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6747 {
6748 	return show_slab_objects(s, buf, SO_CPU);
6749 }
6750 SLAB_ATTR_RO(cpu_slabs);
6751 
6752 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6753 {
6754 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6755 }
6756 SLAB_ATTR_RO(objects_partial);
6757 
6758 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6759 {
6760 	int objects = 0;
6761 	int slabs = 0;
6762 	int cpu __maybe_unused;
6763 	int len = 0;
6764 
6765 #ifdef CONFIG_SLUB_CPU_PARTIAL
6766 	for_each_online_cpu(cpu) {
6767 		struct slab *slab;
6768 
6769 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6770 
6771 		if (slab)
6772 			slabs += data_race(slab->slabs);
6773 	}
6774 #endif
6775 
6776 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6777 	objects = (slabs * oo_objects(s->oo)) / 2;
6778 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6779 
6780 #ifdef CONFIG_SLUB_CPU_PARTIAL
6781 	for_each_online_cpu(cpu) {
6782 		struct slab *slab;
6783 
6784 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6785 		if (slab) {
6786 			slabs = data_race(slab->slabs);
6787 			objects = (slabs * oo_objects(s->oo)) / 2;
6788 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6789 					     cpu, objects, slabs);
6790 		}
6791 	}
6792 #endif
6793 	len += sysfs_emit_at(buf, len, "\n");
6794 
6795 	return len;
6796 }
6797 SLAB_ATTR_RO(slabs_cpu_partial);
6798 
6799 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6800 {
6801 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6802 }
6803 SLAB_ATTR_RO(reclaim_account);
6804 
6805 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6806 {
6807 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6808 }
6809 SLAB_ATTR_RO(hwcache_align);
6810 
6811 #ifdef CONFIG_ZONE_DMA
6812 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6813 {
6814 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6815 }
6816 SLAB_ATTR_RO(cache_dma);
6817 #endif
6818 
6819 #ifdef CONFIG_HARDENED_USERCOPY
6820 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6821 {
6822 	return sysfs_emit(buf, "%u\n", s->usersize);
6823 }
6824 SLAB_ATTR_RO(usersize);
6825 #endif
6826 
6827 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6828 {
6829 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6830 }
6831 SLAB_ATTR_RO(destroy_by_rcu);
6832 
6833 #ifdef CONFIG_SLUB_DEBUG
6834 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6835 {
6836 	return show_slab_objects(s, buf, SO_ALL);
6837 }
6838 SLAB_ATTR_RO(slabs);
6839 
6840 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6841 {
6842 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6843 }
6844 SLAB_ATTR_RO(total_objects);
6845 
6846 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6847 {
6848 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6849 }
6850 SLAB_ATTR_RO(objects);
6851 
6852 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6853 {
6854 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6855 }
6856 SLAB_ATTR_RO(sanity_checks);
6857 
6858 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6859 {
6860 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6861 }
6862 SLAB_ATTR_RO(trace);
6863 
6864 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6865 {
6866 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6867 }
6868 
6869 SLAB_ATTR_RO(red_zone);
6870 
6871 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6872 {
6873 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6874 }
6875 
6876 SLAB_ATTR_RO(poison);
6877 
6878 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6879 {
6880 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6881 }
6882 
6883 SLAB_ATTR_RO(store_user);
6884 
6885 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6886 {
6887 	return 0;
6888 }
6889 
6890 static ssize_t validate_store(struct kmem_cache *s,
6891 			const char *buf, size_t length)
6892 {
6893 	int ret = -EINVAL;
6894 
6895 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6896 		ret = validate_slab_cache(s);
6897 		if (ret >= 0)
6898 			ret = length;
6899 	}
6900 	return ret;
6901 }
6902 SLAB_ATTR(validate);
6903 
6904 #endif /* CONFIG_SLUB_DEBUG */
6905 
6906 #ifdef CONFIG_FAILSLAB
6907 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6908 {
6909 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6910 }
6911 
6912 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6913 				size_t length)
6914 {
6915 	if (s->refcount > 1)
6916 		return -EINVAL;
6917 
6918 	if (buf[0] == '1')
6919 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6920 	else
6921 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6922 
6923 	return length;
6924 }
6925 SLAB_ATTR(failslab);
6926 #endif
6927 
6928 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6929 {
6930 	return 0;
6931 }
6932 
6933 static ssize_t shrink_store(struct kmem_cache *s,
6934 			const char *buf, size_t length)
6935 {
6936 	if (buf[0] == '1')
6937 		kmem_cache_shrink(s);
6938 	else
6939 		return -EINVAL;
6940 	return length;
6941 }
6942 SLAB_ATTR(shrink);
6943 
6944 #ifdef CONFIG_NUMA
6945 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6946 {
6947 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6948 }
6949 
6950 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6951 				const char *buf, size_t length)
6952 {
6953 	unsigned int ratio;
6954 	int err;
6955 
6956 	err = kstrtouint(buf, 10, &ratio);
6957 	if (err)
6958 		return err;
6959 	if (ratio > 100)
6960 		return -ERANGE;
6961 
6962 	s->remote_node_defrag_ratio = ratio * 10;
6963 
6964 	return length;
6965 }
6966 SLAB_ATTR(remote_node_defrag_ratio);
6967 #endif
6968 
6969 #ifdef CONFIG_SLUB_STATS
6970 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6971 {
6972 	unsigned long sum  = 0;
6973 	int cpu;
6974 	int len = 0;
6975 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6976 
6977 	if (!data)
6978 		return -ENOMEM;
6979 
6980 	for_each_online_cpu(cpu) {
6981 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6982 
6983 		data[cpu] = x;
6984 		sum += x;
6985 	}
6986 
6987 	len += sysfs_emit_at(buf, len, "%lu", sum);
6988 
6989 #ifdef CONFIG_SMP
6990 	for_each_online_cpu(cpu) {
6991 		if (data[cpu])
6992 			len += sysfs_emit_at(buf, len, " C%d=%u",
6993 					     cpu, data[cpu]);
6994 	}
6995 #endif
6996 	kfree(data);
6997 	len += sysfs_emit_at(buf, len, "\n");
6998 
6999 	return len;
7000 }
7001 
7002 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7003 {
7004 	int cpu;
7005 
7006 	for_each_online_cpu(cpu)
7007 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7008 }
7009 
7010 #define STAT_ATTR(si, text) 					\
7011 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
7012 {								\
7013 	return show_stat(s, buf, si);				\
7014 }								\
7015 static ssize_t text##_store(struct kmem_cache *s,		\
7016 				const char *buf, size_t length)	\
7017 {								\
7018 	if (buf[0] != '0')					\
7019 		return -EINVAL;					\
7020 	clear_stat(s, si);					\
7021 	return length;						\
7022 }								\
7023 SLAB_ATTR(text);						\
7024 
7025 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7026 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7027 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7028 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7029 STAT_ATTR(FREE_FROZEN, free_frozen);
7030 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7031 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7032 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7033 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7034 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7035 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7036 STAT_ATTR(FREE_SLAB, free_slab);
7037 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7038 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7039 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7040 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7041 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7042 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7043 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7044 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7045 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7046 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7047 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7048 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7049 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7050 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7051 #endif	/* CONFIG_SLUB_STATS */
7052 
7053 #ifdef CONFIG_KFENCE
7054 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7055 {
7056 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7057 }
7058 
7059 static ssize_t skip_kfence_store(struct kmem_cache *s,
7060 			const char *buf, size_t length)
7061 {
7062 	int ret = length;
7063 
7064 	if (buf[0] == '0')
7065 		s->flags &= ~SLAB_SKIP_KFENCE;
7066 	else if (buf[0] == '1')
7067 		s->flags |= SLAB_SKIP_KFENCE;
7068 	else
7069 		ret = -EINVAL;
7070 
7071 	return ret;
7072 }
7073 SLAB_ATTR(skip_kfence);
7074 #endif
7075 
7076 static struct attribute *slab_attrs[] = {
7077 	&slab_size_attr.attr,
7078 	&object_size_attr.attr,
7079 	&objs_per_slab_attr.attr,
7080 	&order_attr.attr,
7081 	&min_partial_attr.attr,
7082 	&cpu_partial_attr.attr,
7083 	&objects_partial_attr.attr,
7084 	&partial_attr.attr,
7085 	&cpu_slabs_attr.attr,
7086 	&ctor_attr.attr,
7087 	&aliases_attr.attr,
7088 	&align_attr.attr,
7089 	&hwcache_align_attr.attr,
7090 	&reclaim_account_attr.attr,
7091 	&destroy_by_rcu_attr.attr,
7092 	&shrink_attr.attr,
7093 	&slabs_cpu_partial_attr.attr,
7094 #ifdef CONFIG_SLUB_DEBUG
7095 	&total_objects_attr.attr,
7096 	&objects_attr.attr,
7097 	&slabs_attr.attr,
7098 	&sanity_checks_attr.attr,
7099 	&trace_attr.attr,
7100 	&red_zone_attr.attr,
7101 	&poison_attr.attr,
7102 	&store_user_attr.attr,
7103 	&validate_attr.attr,
7104 #endif
7105 #ifdef CONFIG_ZONE_DMA
7106 	&cache_dma_attr.attr,
7107 #endif
7108 #ifdef CONFIG_NUMA
7109 	&remote_node_defrag_ratio_attr.attr,
7110 #endif
7111 #ifdef CONFIG_SLUB_STATS
7112 	&alloc_fastpath_attr.attr,
7113 	&alloc_slowpath_attr.attr,
7114 	&free_fastpath_attr.attr,
7115 	&free_slowpath_attr.attr,
7116 	&free_frozen_attr.attr,
7117 	&free_add_partial_attr.attr,
7118 	&free_remove_partial_attr.attr,
7119 	&alloc_from_partial_attr.attr,
7120 	&alloc_slab_attr.attr,
7121 	&alloc_refill_attr.attr,
7122 	&alloc_node_mismatch_attr.attr,
7123 	&free_slab_attr.attr,
7124 	&cpuslab_flush_attr.attr,
7125 	&deactivate_full_attr.attr,
7126 	&deactivate_empty_attr.attr,
7127 	&deactivate_to_head_attr.attr,
7128 	&deactivate_to_tail_attr.attr,
7129 	&deactivate_remote_frees_attr.attr,
7130 	&deactivate_bypass_attr.attr,
7131 	&order_fallback_attr.attr,
7132 	&cmpxchg_double_fail_attr.attr,
7133 	&cmpxchg_double_cpu_fail_attr.attr,
7134 	&cpu_partial_alloc_attr.attr,
7135 	&cpu_partial_free_attr.attr,
7136 	&cpu_partial_node_attr.attr,
7137 	&cpu_partial_drain_attr.attr,
7138 #endif
7139 #ifdef CONFIG_FAILSLAB
7140 	&failslab_attr.attr,
7141 #endif
7142 #ifdef CONFIG_HARDENED_USERCOPY
7143 	&usersize_attr.attr,
7144 #endif
7145 #ifdef CONFIG_KFENCE
7146 	&skip_kfence_attr.attr,
7147 #endif
7148 
7149 	NULL
7150 };
7151 
7152 static const struct attribute_group slab_attr_group = {
7153 	.attrs = slab_attrs,
7154 };
7155 
7156 static ssize_t slab_attr_show(struct kobject *kobj,
7157 				struct attribute *attr,
7158 				char *buf)
7159 {
7160 	struct slab_attribute *attribute;
7161 	struct kmem_cache *s;
7162 
7163 	attribute = to_slab_attr(attr);
7164 	s = to_slab(kobj);
7165 
7166 	if (!attribute->show)
7167 		return -EIO;
7168 
7169 	return attribute->show(s, buf);
7170 }
7171 
7172 static ssize_t slab_attr_store(struct kobject *kobj,
7173 				struct attribute *attr,
7174 				const char *buf, size_t len)
7175 {
7176 	struct slab_attribute *attribute;
7177 	struct kmem_cache *s;
7178 
7179 	attribute = to_slab_attr(attr);
7180 	s = to_slab(kobj);
7181 
7182 	if (!attribute->store)
7183 		return -EIO;
7184 
7185 	return attribute->store(s, buf, len);
7186 }
7187 
7188 static void kmem_cache_release(struct kobject *k)
7189 {
7190 	slab_kmem_cache_release(to_slab(k));
7191 }
7192 
7193 static const struct sysfs_ops slab_sysfs_ops = {
7194 	.show = slab_attr_show,
7195 	.store = slab_attr_store,
7196 };
7197 
7198 static const struct kobj_type slab_ktype = {
7199 	.sysfs_ops = &slab_sysfs_ops,
7200 	.release = kmem_cache_release,
7201 };
7202 
7203 static struct kset *slab_kset;
7204 
7205 static inline struct kset *cache_kset(struct kmem_cache *s)
7206 {
7207 	return slab_kset;
7208 }
7209 
7210 #define ID_STR_LENGTH 32
7211 
7212 /* Create a unique string id for a slab cache:
7213  *
7214  * Format	:[flags-]size
7215  */
7216 static char *create_unique_id(struct kmem_cache *s)
7217 {
7218 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7219 	char *p = name;
7220 
7221 	if (!name)
7222 		return ERR_PTR(-ENOMEM);
7223 
7224 	*p++ = ':';
7225 	/*
7226 	 * First flags affecting slabcache operations. We will only
7227 	 * get here for aliasable slabs so we do not need to support
7228 	 * too many flags. The flags here must cover all flags that
7229 	 * are matched during merging to guarantee that the id is
7230 	 * unique.
7231 	 */
7232 	if (s->flags & SLAB_CACHE_DMA)
7233 		*p++ = 'd';
7234 	if (s->flags & SLAB_CACHE_DMA32)
7235 		*p++ = 'D';
7236 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7237 		*p++ = 'a';
7238 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7239 		*p++ = 'F';
7240 	if (s->flags & SLAB_ACCOUNT)
7241 		*p++ = 'A';
7242 	if (p != name + 1)
7243 		*p++ = '-';
7244 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7245 
7246 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7247 		kfree(name);
7248 		return ERR_PTR(-EINVAL);
7249 	}
7250 	kmsan_unpoison_memory(name, p - name);
7251 	return name;
7252 }
7253 
7254 static int sysfs_slab_add(struct kmem_cache *s)
7255 {
7256 	int err;
7257 	const char *name;
7258 	struct kset *kset = cache_kset(s);
7259 	int unmergeable = slab_unmergeable(s);
7260 
7261 	if (!unmergeable && disable_higher_order_debug &&
7262 			(slub_debug & DEBUG_METADATA_FLAGS))
7263 		unmergeable = 1;
7264 
7265 	if (unmergeable) {
7266 		/*
7267 		 * Slabcache can never be merged so we can use the name proper.
7268 		 * This is typically the case for debug situations. In that
7269 		 * case we can catch duplicate names easily.
7270 		 */
7271 		sysfs_remove_link(&slab_kset->kobj, s->name);
7272 		name = s->name;
7273 	} else {
7274 		/*
7275 		 * Create a unique name for the slab as a target
7276 		 * for the symlinks.
7277 		 */
7278 		name = create_unique_id(s);
7279 		if (IS_ERR(name))
7280 			return PTR_ERR(name);
7281 	}
7282 
7283 	s->kobj.kset = kset;
7284 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7285 	if (err)
7286 		goto out;
7287 
7288 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7289 	if (err)
7290 		goto out_del_kobj;
7291 
7292 	if (!unmergeable) {
7293 		/* Setup first alias */
7294 		sysfs_slab_alias(s, s->name);
7295 	}
7296 out:
7297 	if (!unmergeable)
7298 		kfree(name);
7299 	return err;
7300 out_del_kobj:
7301 	kobject_del(&s->kobj);
7302 	goto out;
7303 }
7304 
7305 void sysfs_slab_unlink(struct kmem_cache *s)
7306 {
7307 	if (s->kobj.state_in_sysfs)
7308 		kobject_del(&s->kobj);
7309 }
7310 
7311 void sysfs_slab_release(struct kmem_cache *s)
7312 {
7313 	kobject_put(&s->kobj);
7314 }
7315 
7316 /*
7317  * Need to buffer aliases during bootup until sysfs becomes
7318  * available lest we lose that information.
7319  */
7320 struct saved_alias {
7321 	struct kmem_cache *s;
7322 	const char *name;
7323 	struct saved_alias *next;
7324 };
7325 
7326 static struct saved_alias *alias_list;
7327 
7328 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7329 {
7330 	struct saved_alias *al;
7331 
7332 	if (slab_state == FULL) {
7333 		/*
7334 		 * If we have a leftover link then remove it.
7335 		 */
7336 		sysfs_remove_link(&slab_kset->kobj, name);
7337 		/*
7338 		 * The original cache may have failed to generate sysfs file.
7339 		 * In that case, sysfs_create_link() returns -ENOENT and
7340 		 * symbolic link creation is skipped.
7341 		 */
7342 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7343 	}
7344 
7345 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7346 	if (!al)
7347 		return -ENOMEM;
7348 
7349 	al->s = s;
7350 	al->name = name;
7351 	al->next = alias_list;
7352 	alias_list = al;
7353 	kmsan_unpoison_memory(al, sizeof(*al));
7354 	return 0;
7355 }
7356 
7357 static int __init slab_sysfs_init(void)
7358 {
7359 	struct kmem_cache *s;
7360 	int err;
7361 
7362 	mutex_lock(&slab_mutex);
7363 
7364 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7365 	if (!slab_kset) {
7366 		mutex_unlock(&slab_mutex);
7367 		pr_err("Cannot register slab subsystem.\n");
7368 		return -ENOMEM;
7369 	}
7370 
7371 	slab_state = FULL;
7372 
7373 	list_for_each_entry(s, &slab_caches, list) {
7374 		err = sysfs_slab_add(s);
7375 		if (err)
7376 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7377 			       s->name);
7378 	}
7379 
7380 	while (alias_list) {
7381 		struct saved_alias *al = alias_list;
7382 
7383 		alias_list = alias_list->next;
7384 		err = sysfs_slab_alias(al->s, al->name);
7385 		if (err)
7386 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7387 			       al->name);
7388 		kfree(al);
7389 	}
7390 
7391 	mutex_unlock(&slab_mutex);
7392 	return 0;
7393 }
7394 late_initcall(slab_sysfs_init);
7395 #endif /* SLAB_SUPPORTS_SYSFS */
7396 
7397 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7398 static int slab_debugfs_show(struct seq_file *seq, void *v)
7399 {
7400 	struct loc_track *t = seq->private;
7401 	struct location *l;
7402 	unsigned long idx;
7403 
7404 	idx = (unsigned long) t->idx;
7405 	if (idx < t->count) {
7406 		l = &t->loc[idx];
7407 
7408 		seq_printf(seq, "%7ld ", l->count);
7409 
7410 		if (l->addr)
7411 			seq_printf(seq, "%pS", (void *)l->addr);
7412 		else
7413 			seq_puts(seq, "<not-available>");
7414 
7415 		if (l->waste)
7416 			seq_printf(seq, " waste=%lu/%lu",
7417 				l->count * l->waste, l->waste);
7418 
7419 		if (l->sum_time != l->min_time) {
7420 			seq_printf(seq, " age=%ld/%llu/%ld",
7421 				l->min_time, div_u64(l->sum_time, l->count),
7422 				l->max_time);
7423 		} else
7424 			seq_printf(seq, " age=%ld", l->min_time);
7425 
7426 		if (l->min_pid != l->max_pid)
7427 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7428 		else
7429 			seq_printf(seq, " pid=%ld",
7430 				l->min_pid);
7431 
7432 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7433 			seq_printf(seq, " cpus=%*pbl",
7434 				 cpumask_pr_args(to_cpumask(l->cpus)));
7435 
7436 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7437 			seq_printf(seq, " nodes=%*pbl",
7438 				 nodemask_pr_args(&l->nodes));
7439 
7440 #ifdef CONFIG_STACKDEPOT
7441 		{
7442 			depot_stack_handle_t handle;
7443 			unsigned long *entries;
7444 			unsigned int nr_entries, j;
7445 
7446 			handle = READ_ONCE(l->handle);
7447 			if (handle) {
7448 				nr_entries = stack_depot_fetch(handle, &entries);
7449 				seq_puts(seq, "\n");
7450 				for (j = 0; j < nr_entries; j++)
7451 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7452 			}
7453 		}
7454 #endif
7455 		seq_puts(seq, "\n");
7456 	}
7457 
7458 	if (!idx && !t->count)
7459 		seq_puts(seq, "No data\n");
7460 
7461 	return 0;
7462 }
7463 
7464 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7465 {
7466 }
7467 
7468 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7469 {
7470 	struct loc_track *t = seq->private;
7471 
7472 	t->idx = ++(*ppos);
7473 	if (*ppos <= t->count)
7474 		return ppos;
7475 
7476 	return NULL;
7477 }
7478 
7479 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7480 {
7481 	struct location *loc1 = (struct location *)a;
7482 	struct location *loc2 = (struct location *)b;
7483 
7484 	if (loc1->count > loc2->count)
7485 		return -1;
7486 	else
7487 		return 1;
7488 }
7489 
7490 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7491 {
7492 	struct loc_track *t = seq->private;
7493 
7494 	t->idx = *ppos;
7495 	return ppos;
7496 }
7497 
7498 static const struct seq_operations slab_debugfs_sops = {
7499 	.start  = slab_debugfs_start,
7500 	.next   = slab_debugfs_next,
7501 	.stop   = slab_debugfs_stop,
7502 	.show   = slab_debugfs_show,
7503 };
7504 
7505 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7506 {
7507 
7508 	struct kmem_cache_node *n;
7509 	enum track_item alloc;
7510 	int node;
7511 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7512 						sizeof(struct loc_track));
7513 	struct kmem_cache *s = file_inode(filep)->i_private;
7514 	unsigned long *obj_map;
7515 
7516 	if (!t)
7517 		return -ENOMEM;
7518 
7519 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7520 	if (!obj_map) {
7521 		seq_release_private(inode, filep);
7522 		return -ENOMEM;
7523 	}
7524 
7525 	alloc = debugfs_get_aux_num(filep);
7526 
7527 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7528 		bitmap_free(obj_map);
7529 		seq_release_private(inode, filep);
7530 		return -ENOMEM;
7531 	}
7532 
7533 	for_each_kmem_cache_node(s, node, n) {
7534 		unsigned long flags;
7535 		struct slab *slab;
7536 
7537 		if (!node_nr_slabs(n))
7538 			continue;
7539 
7540 		spin_lock_irqsave(&n->list_lock, flags);
7541 		list_for_each_entry(slab, &n->partial, slab_list)
7542 			process_slab(t, s, slab, alloc, obj_map);
7543 		list_for_each_entry(slab, &n->full, slab_list)
7544 			process_slab(t, s, slab, alloc, obj_map);
7545 		spin_unlock_irqrestore(&n->list_lock, flags);
7546 	}
7547 
7548 	/* Sort locations by count */
7549 	sort_r(t->loc, t->count, sizeof(struct location),
7550 		cmp_loc_by_count, NULL, NULL);
7551 
7552 	bitmap_free(obj_map);
7553 	return 0;
7554 }
7555 
7556 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7557 {
7558 	struct seq_file *seq = file->private_data;
7559 	struct loc_track *t = seq->private;
7560 
7561 	free_loc_track(t);
7562 	return seq_release_private(inode, file);
7563 }
7564 
7565 static const struct file_operations slab_debugfs_fops = {
7566 	.open    = slab_debug_trace_open,
7567 	.read    = seq_read,
7568 	.llseek  = seq_lseek,
7569 	.release = slab_debug_trace_release,
7570 };
7571 
7572 static void debugfs_slab_add(struct kmem_cache *s)
7573 {
7574 	struct dentry *slab_cache_dir;
7575 
7576 	if (unlikely(!slab_debugfs_root))
7577 		return;
7578 
7579 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7580 
7581 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7582 					TRACK_ALLOC, &slab_debugfs_fops);
7583 
7584 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7585 					TRACK_FREE, &slab_debugfs_fops);
7586 }
7587 
7588 void debugfs_slab_release(struct kmem_cache *s)
7589 {
7590 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7591 }
7592 
7593 static int __init slab_debugfs_init(void)
7594 {
7595 	struct kmem_cache *s;
7596 
7597 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7598 
7599 	list_for_each_entry(s, &slab_caches, list)
7600 		if (s->flags & SLAB_STORE_USER)
7601 			debugfs_slab_add(s);
7602 
7603 	return 0;
7604 
7605 }
7606 __initcall(slab_debugfs_init);
7607 #endif
7608 /*
7609  * The /proc/slabinfo ABI
7610  */
7611 #ifdef CONFIG_SLUB_DEBUG
7612 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7613 {
7614 	unsigned long nr_slabs = 0;
7615 	unsigned long nr_objs = 0;
7616 	unsigned long nr_free = 0;
7617 	int node;
7618 	struct kmem_cache_node *n;
7619 
7620 	for_each_kmem_cache_node(s, node, n) {
7621 		nr_slabs += node_nr_slabs(n);
7622 		nr_objs += node_nr_objs(n);
7623 		nr_free += count_partial_free_approx(n);
7624 	}
7625 
7626 	sinfo->active_objs = nr_objs - nr_free;
7627 	sinfo->num_objs = nr_objs;
7628 	sinfo->active_slabs = nr_slabs;
7629 	sinfo->num_slabs = nr_slabs;
7630 	sinfo->objects_per_slab = oo_objects(s->oo);
7631 	sinfo->cache_order = oo_order(s->oo);
7632 }
7633 #endif /* CONFIG_SLUB_DEBUG */
7634