1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 #ifdef CONFIG_NUMA 222 static DEFINE_STATIC_KEY_FALSE(strict_numa); 223 #endif 224 225 /* Structure holding parameters for get_partial() call chain */ 226 struct partial_context { 227 gfp_t flags; 228 unsigned int orig_size; 229 void *object; 230 }; 231 232 static inline bool kmem_cache_debug(struct kmem_cache *s) 233 { 234 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 235 } 236 237 void *fixup_red_left(struct kmem_cache *s, void *p) 238 { 239 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 240 p += s->red_left_pad; 241 242 return p; 243 } 244 245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 246 { 247 #ifdef CONFIG_SLUB_CPU_PARTIAL 248 return !kmem_cache_debug(s); 249 #else 250 return false; 251 #endif 252 } 253 254 /* 255 * Issues still to be resolved: 256 * 257 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 258 * 259 * - Variable sizing of the per node arrays 260 */ 261 262 /* Enable to log cmpxchg failures */ 263 #undef SLUB_DEBUG_CMPXCHG 264 265 #ifndef CONFIG_SLUB_TINY 266 /* 267 * Minimum number of partial slabs. These will be left on the partial 268 * lists even if they are empty. kmem_cache_shrink may reclaim them. 269 */ 270 #define MIN_PARTIAL 5 271 272 /* 273 * Maximum number of desirable partial slabs. 274 * The existence of more partial slabs makes kmem_cache_shrink 275 * sort the partial list by the number of objects in use. 276 */ 277 #define MAX_PARTIAL 10 278 #else 279 #define MIN_PARTIAL 0 280 #define MAX_PARTIAL 0 281 #endif 282 283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 284 SLAB_POISON | SLAB_STORE_USER) 285 286 /* 287 * These debug flags cannot use CMPXCHG because there might be consistency 288 * issues when checking or reading debug information 289 */ 290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 291 SLAB_TRACE) 292 293 294 /* 295 * Debugging flags that require metadata to be stored in the slab. These get 296 * disabled when slab_debug=O is used and a cache's min order increases with 297 * metadata. 298 */ 299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 300 301 #define OO_SHIFT 16 302 #define OO_MASK ((1 << OO_SHIFT) - 1) 303 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 304 305 /* Internal SLUB flags */ 306 /* Poison object */ 307 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 308 /* Use cmpxchg_double */ 309 310 #ifdef system_has_freelist_aba 311 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 312 #else 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 314 #endif 315 316 /* 317 * Tracking user of a slab. 318 */ 319 #define TRACK_ADDRS_COUNT 16 320 struct track { 321 unsigned long addr; /* Called from address */ 322 #ifdef CONFIG_STACKDEPOT 323 depot_stack_handle_t handle; 324 #endif 325 int cpu; /* Was running on cpu */ 326 int pid; /* Pid context */ 327 unsigned long when; /* When did the operation occur */ 328 }; 329 330 enum track_item { TRACK_ALLOC, TRACK_FREE }; 331 332 #ifdef SLAB_SUPPORTS_SYSFS 333 static int sysfs_slab_add(struct kmem_cache *); 334 static int sysfs_slab_alias(struct kmem_cache *, const char *); 335 #else 336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 338 { return 0; } 339 #endif 340 341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 342 static void debugfs_slab_add(struct kmem_cache *); 343 #else 344 static inline void debugfs_slab_add(struct kmem_cache *s) { } 345 #endif 346 347 enum stat_item { 348 ALLOC_FASTPATH, /* Allocation from cpu slab */ 349 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 350 FREE_FASTPATH, /* Free to cpu slab */ 351 FREE_SLOWPATH, /* Freeing not to cpu slab */ 352 FREE_FROZEN, /* Freeing to frozen slab */ 353 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 354 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 355 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 356 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 357 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 358 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 359 FREE_SLAB, /* Slab freed to the page allocator */ 360 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 361 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 362 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 363 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 364 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 365 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 366 DEACTIVATE_BYPASS, /* Implicit deactivation */ 367 ORDER_FALLBACK, /* Number of times fallback was necessary */ 368 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 369 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 370 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 371 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 372 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 373 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 374 NR_SLUB_STAT_ITEMS 375 }; 376 377 #ifndef CONFIG_SLUB_TINY 378 /* 379 * When changing the layout, make sure freelist and tid are still compatible 380 * with this_cpu_cmpxchg_double() alignment requirements. 381 */ 382 struct kmem_cache_cpu { 383 union { 384 struct { 385 void **freelist; /* Pointer to next available object */ 386 unsigned long tid; /* Globally unique transaction id */ 387 }; 388 freelist_aba_t freelist_tid; 389 }; 390 struct slab *slab; /* The slab from which we are allocating */ 391 #ifdef CONFIG_SLUB_CPU_PARTIAL 392 struct slab *partial; /* Partially allocated slabs */ 393 #endif 394 local_lock_t lock; /* Protects the fields above */ 395 #ifdef CONFIG_SLUB_STATS 396 unsigned int stat[NR_SLUB_STAT_ITEMS]; 397 #endif 398 }; 399 #endif /* CONFIG_SLUB_TINY */ 400 401 static inline void stat(const struct kmem_cache *s, enum stat_item si) 402 { 403 #ifdef CONFIG_SLUB_STATS 404 /* 405 * The rmw is racy on a preemptible kernel but this is acceptable, so 406 * avoid this_cpu_add()'s irq-disable overhead. 407 */ 408 raw_cpu_inc(s->cpu_slab->stat[si]); 409 #endif 410 } 411 412 static inline 413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 414 { 415 #ifdef CONFIG_SLUB_STATS 416 raw_cpu_add(s->cpu_slab->stat[si], v); 417 #endif 418 } 419 420 /* 421 * The slab lists for all objects. 422 */ 423 struct kmem_cache_node { 424 spinlock_t list_lock; 425 unsigned long nr_partial; 426 struct list_head partial; 427 #ifdef CONFIG_SLUB_DEBUG 428 atomic_long_t nr_slabs; 429 atomic_long_t total_objects; 430 struct list_head full; 431 #endif 432 }; 433 434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 435 { 436 return s->node[node]; 437 } 438 439 /* 440 * Iterator over all nodes. The body will be executed for each node that has 441 * a kmem_cache_node structure allocated (which is true for all online nodes) 442 */ 443 #define for_each_kmem_cache_node(__s, __node, __n) \ 444 for (__node = 0; __node < nr_node_ids; __node++) \ 445 if ((__n = get_node(__s, __node))) 446 447 /* 448 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 449 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 450 * differ during memory hotplug/hotremove operations. 451 * Protected by slab_mutex. 452 */ 453 static nodemask_t slab_nodes; 454 455 #ifndef CONFIG_SLUB_TINY 456 /* 457 * Workqueue used for flush_cpu_slab(). 458 */ 459 static struct workqueue_struct *flushwq; 460 #endif 461 462 /******************************************************************** 463 * Core slab cache functions 464 *******************************************************************/ 465 466 /* 467 * Returns freelist pointer (ptr). With hardening, this is obfuscated 468 * with an XOR of the address where the pointer is held and a per-cache 469 * random number. 470 */ 471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 472 void *ptr, unsigned long ptr_addr) 473 { 474 unsigned long encoded; 475 476 #ifdef CONFIG_SLAB_FREELIST_HARDENED 477 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 478 #else 479 encoded = (unsigned long)ptr; 480 #endif 481 return (freeptr_t){.v = encoded}; 482 } 483 484 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 485 freeptr_t ptr, unsigned long ptr_addr) 486 { 487 void *decoded; 488 489 #ifdef CONFIG_SLAB_FREELIST_HARDENED 490 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 491 #else 492 decoded = (void *)ptr.v; 493 #endif 494 return decoded; 495 } 496 497 static inline void *get_freepointer(struct kmem_cache *s, void *object) 498 { 499 unsigned long ptr_addr; 500 freeptr_t p; 501 502 object = kasan_reset_tag(object); 503 ptr_addr = (unsigned long)object + s->offset; 504 p = *(freeptr_t *)(ptr_addr); 505 return freelist_ptr_decode(s, p, ptr_addr); 506 } 507 508 #ifndef CONFIG_SLUB_TINY 509 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 510 { 511 prefetchw(object + s->offset); 512 } 513 #endif 514 515 /* 516 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 517 * pointer value in the case the current thread loses the race for the next 518 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 519 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 520 * KMSAN will still check all arguments of cmpxchg because of imperfect 521 * handling of inline assembly. 522 * To work around this problem, we apply __no_kmsan_checks to ensure that 523 * get_freepointer_safe() returns initialized memory. 524 */ 525 __no_kmsan_checks 526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 527 { 528 unsigned long freepointer_addr; 529 freeptr_t p; 530 531 if (!debug_pagealloc_enabled_static()) 532 return get_freepointer(s, object); 533 534 object = kasan_reset_tag(object); 535 freepointer_addr = (unsigned long)object + s->offset; 536 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 537 return freelist_ptr_decode(s, p, freepointer_addr); 538 } 539 540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 541 { 542 unsigned long freeptr_addr = (unsigned long)object + s->offset; 543 544 #ifdef CONFIG_SLAB_FREELIST_HARDENED 545 BUG_ON(object == fp); /* naive detection of double free or corruption */ 546 #endif 547 548 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 549 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 550 } 551 552 /* 553 * See comment in calculate_sizes(). 554 */ 555 static inline bool freeptr_outside_object(struct kmem_cache *s) 556 { 557 return s->offset >= s->inuse; 558 } 559 560 /* 561 * Return offset of the end of info block which is inuse + free pointer if 562 * not overlapping with object. 563 */ 564 static inline unsigned int get_info_end(struct kmem_cache *s) 565 { 566 if (freeptr_outside_object(s)) 567 return s->inuse + sizeof(void *); 568 else 569 return s->inuse; 570 } 571 572 /* Loop over all objects in a slab */ 573 #define for_each_object(__p, __s, __addr, __objects) \ 574 for (__p = fixup_red_left(__s, __addr); \ 575 __p < (__addr) + (__objects) * (__s)->size; \ 576 __p += (__s)->size) 577 578 static inline unsigned int order_objects(unsigned int order, unsigned int size) 579 { 580 return ((unsigned int)PAGE_SIZE << order) / size; 581 } 582 583 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 584 unsigned int size) 585 { 586 struct kmem_cache_order_objects x = { 587 (order << OO_SHIFT) + order_objects(order, size) 588 }; 589 590 return x; 591 } 592 593 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 594 { 595 return x.x >> OO_SHIFT; 596 } 597 598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 599 { 600 return x.x & OO_MASK; 601 } 602 603 #ifdef CONFIG_SLUB_CPU_PARTIAL 604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 605 { 606 unsigned int nr_slabs; 607 608 s->cpu_partial = nr_objects; 609 610 /* 611 * We take the number of objects but actually limit the number of 612 * slabs on the per cpu partial list, in order to limit excessive 613 * growth of the list. For simplicity we assume that the slabs will 614 * be half-full. 615 */ 616 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 617 s->cpu_partial_slabs = nr_slabs; 618 } 619 620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 621 { 622 return s->cpu_partial_slabs; 623 } 624 #else 625 static inline void 626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 627 { 628 } 629 630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 631 { 632 return 0; 633 } 634 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 635 636 /* 637 * Per slab locking using the pagelock 638 */ 639 static __always_inline void slab_lock(struct slab *slab) 640 { 641 bit_spin_lock(PG_locked, &slab->__page_flags); 642 } 643 644 static __always_inline void slab_unlock(struct slab *slab) 645 { 646 bit_spin_unlock(PG_locked, &slab->__page_flags); 647 } 648 649 static inline bool 650 __update_freelist_fast(struct slab *slab, 651 void *freelist_old, unsigned long counters_old, 652 void *freelist_new, unsigned long counters_new) 653 { 654 #ifdef system_has_freelist_aba 655 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 656 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 657 658 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 659 #else 660 return false; 661 #endif 662 } 663 664 static inline bool 665 __update_freelist_slow(struct slab *slab, 666 void *freelist_old, unsigned long counters_old, 667 void *freelist_new, unsigned long counters_new) 668 { 669 bool ret = false; 670 671 slab_lock(slab); 672 if (slab->freelist == freelist_old && 673 slab->counters == counters_old) { 674 slab->freelist = freelist_new; 675 slab->counters = counters_new; 676 ret = true; 677 } 678 slab_unlock(slab); 679 680 return ret; 681 } 682 683 /* 684 * Interrupts must be disabled (for the fallback code to work right), typically 685 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 686 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 687 * allocation/ free operation in hardirq context. Therefore nothing can 688 * interrupt the operation. 689 */ 690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 691 void *freelist_old, unsigned long counters_old, 692 void *freelist_new, unsigned long counters_new, 693 const char *n) 694 { 695 bool ret; 696 697 if (USE_LOCKLESS_FAST_PATH()) 698 lockdep_assert_irqs_disabled(); 699 700 if (s->flags & __CMPXCHG_DOUBLE) { 701 ret = __update_freelist_fast(slab, freelist_old, counters_old, 702 freelist_new, counters_new); 703 } else { 704 ret = __update_freelist_slow(slab, freelist_old, counters_old, 705 freelist_new, counters_new); 706 } 707 if (likely(ret)) 708 return true; 709 710 cpu_relax(); 711 stat(s, CMPXCHG_DOUBLE_FAIL); 712 713 #ifdef SLUB_DEBUG_CMPXCHG 714 pr_info("%s %s: cmpxchg double redo ", n, s->name); 715 #endif 716 717 return false; 718 } 719 720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 721 void *freelist_old, unsigned long counters_old, 722 void *freelist_new, unsigned long counters_new, 723 const char *n) 724 { 725 bool ret; 726 727 if (s->flags & __CMPXCHG_DOUBLE) { 728 ret = __update_freelist_fast(slab, freelist_old, counters_old, 729 freelist_new, counters_new); 730 } else { 731 unsigned long flags; 732 733 local_irq_save(flags); 734 ret = __update_freelist_slow(slab, freelist_old, counters_old, 735 freelist_new, counters_new); 736 local_irq_restore(flags); 737 } 738 if (likely(ret)) 739 return true; 740 741 cpu_relax(); 742 stat(s, CMPXCHG_DOUBLE_FAIL); 743 744 #ifdef SLUB_DEBUG_CMPXCHG 745 pr_info("%s %s: cmpxchg double redo ", n, s->name); 746 #endif 747 748 return false; 749 } 750 751 /* 752 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 753 * family will round up the real request size to these fixed ones, so 754 * there could be an extra area than what is requested. Save the original 755 * request size in the meta data area, for better debug and sanity check. 756 */ 757 static inline void set_orig_size(struct kmem_cache *s, 758 void *object, unsigned int orig_size) 759 { 760 void *p = kasan_reset_tag(object); 761 762 if (!slub_debug_orig_size(s)) 763 return; 764 765 p += get_info_end(s); 766 p += sizeof(struct track) * 2; 767 768 *(unsigned int *)p = orig_size; 769 } 770 771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 772 { 773 void *p = kasan_reset_tag(object); 774 775 if (is_kfence_address(object)) 776 return kfence_ksize(object); 777 778 if (!slub_debug_orig_size(s)) 779 return s->object_size; 780 781 p += get_info_end(s); 782 p += sizeof(struct track) * 2; 783 784 return *(unsigned int *)p; 785 } 786 787 #ifdef CONFIG_SLUB_DEBUG 788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 789 static DEFINE_SPINLOCK(object_map_lock); 790 791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 792 struct slab *slab) 793 { 794 void *addr = slab_address(slab); 795 void *p; 796 797 bitmap_zero(obj_map, slab->objects); 798 799 for (p = slab->freelist; p; p = get_freepointer(s, p)) 800 set_bit(__obj_to_index(s, addr, p), obj_map); 801 } 802 803 #if IS_ENABLED(CONFIG_KUNIT) 804 static bool slab_add_kunit_errors(void) 805 { 806 struct kunit_resource *resource; 807 808 if (!kunit_get_current_test()) 809 return false; 810 811 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 812 if (!resource) 813 return false; 814 815 (*(int *)resource->data)++; 816 kunit_put_resource(resource); 817 return true; 818 } 819 820 bool slab_in_kunit_test(void) 821 { 822 struct kunit_resource *resource; 823 824 if (!kunit_get_current_test()) 825 return false; 826 827 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 828 if (!resource) 829 return false; 830 831 kunit_put_resource(resource); 832 return true; 833 } 834 #else 835 static inline bool slab_add_kunit_errors(void) { return false; } 836 #endif 837 838 static inline unsigned int size_from_object(struct kmem_cache *s) 839 { 840 if (s->flags & SLAB_RED_ZONE) 841 return s->size - s->red_left_pad; 842 843 return s->size; 844 } 845 846 static inline void *restore_red_left(struct kmem_cache *s, void *p) 847 { 848 if (s->flags & SLAB_RED_ZONE) 849 p -= s->red_left_pad; 850 851 return p; 852 } 853 854 /* 855 * Debug settings: 856 */ 857 #if defined(CONFIG_SLUB_DEBUG_ON) 858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 859 #else 860 static slab_flags_t slub_debug; 861 #endif 862 863 static char *slub_debug_string; 864 static int disable_higher_order_debug; 865 866 /* 867 * slub is about to manipulate internal object metadata. This memory lies 868 * outside the range of the allocated object, so accessing it would normally 869 * be reported by kasan as a bounds error. metadata_access_enable() is used 870 * to tell kasan that these accesses are OK. 871 */ 872 static inline void metadata_access_enable(void) 873 { 874 kasan_disable_current(); 875 kmsan_disable_current(); 876 } 877 878 static inline void metadata_access_disable(void) 879 { 880 kmsan_enable_current(); 881 kasan_enable_current(); 882 } 883 884 /* 885 * Object debugging 886 */ 887 888 /* Verify that a pointer has an address that is valid within a slab page */ 889 static inline int check_valid_pointer(struct kmem_cache *s, 890 struct slab *slab, void *object) 891 { 892 void *base; 893 894 if (!object) 895 return 1; 896 897 base = slab_address(slab); 898 object = kasan_reset_tag(object); 899 object = restore_red_left(s, object); 900 if (object < base || object >= base + slab->objects * s->size || 901 (object - base) % s->size) { 902 return 0; 903 } 904 905 return 1; 906 } 907 908 static void print_section(char *level, char *text, u8 *addr, 909 unsigned int length) 910 { 911 metadata_access_enable(); 912 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 913 16, 1, kasan_reset_tag((void *)addr), length, 1); 914 metadata_access_disable(); 915 } 916 917 static struct track *get_track(struct kmem_cache *s, void *object, 918 enum track_item alloc) 919 { 920 struct track *p; 921 922 p = object + get_info_end(s); 923 924 return kasan_reset_tag(p + alloc); 925 } 926 927 #ifdef CONFIG_STACKDEPOT 928 static noinline depot_stack_handle_t set_track_prepare(void) 929 { 930 depot_stack_handle_t handle; 931 unsigned long entries[TRACK_ADDRS_COUNT]; 932 unsigned int nr_entries; 933 934 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 935 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 936 937 return handle; 938 } 939 #else 940 static inline depot_stack_handle_t set_track_prepare(void) 941 { 942 return 0; 943 } 944 #endif 945 946 static void set_track_update(struct kmem_cache *s, void *object, 947 enum track_item alloc, unsigned long addr, 948 depot_stack_handle_t handle) 949 { 950 struct track *p = get_track(s, object, alloc); 951 952 #ifdef CONFIG_STACKDEPOT 953 p->handle = handle; 954 #endif 955 p->addr = addr; 956 p->cpu = smp_processor_id(); 957 p->pid = current->pid; 958 p->when = jiffies; 959 } 960 961 static __always_inline void set_track(struct kmem_cache *s, void *object, 962 enum track_item alloc, unsigned long addr) 963 { 964 depot_stack_handle_t handle = set_track_prepare(); 965 966 set_track_update(s, object, alloc, addr, handle); 967 } 968 969 static void init_tracking(struct kmem_cache *s, void *object) 970 { 971 struct track *p; 972 973 if (!(s->flags & SLAB_STORE_USER)) 974 return; 975 976 p = get_track(s, object, TRACK_ALLOC); 977 memset(p, 0, 2*sizeof(struct track)); 978 } 979 980 static void print_track(const char *s, struct track *t, unsigned long pr_time) 981 { 982 depot_stack_handle_t handle __maybe_unused; 983 984 if (!t->addr) 985 return; 986 987 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 988 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 989 #ifdef CONFIG_STACKDEPOT 990 handle = READ_ONCE(t->handle); 991 if (handle) 992 stack_depot_print(handle); 993 else 994 pr_err("object allocation/free stack trace missing\n"); 995 #endif 996 } 997 998 void print_tracking(struct kmem_cache *s, void *object) 999 { 1000 unsigned long pr_time = jiffies; 1001 if (!(s->flags & SLAB_STORE_USER)) 1002 return; 1003 1004 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 1005 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 1006 } 1007 1008 static void print_slab_info(const struct slab *slab) 1009 { 1010 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 1011 slab, slab->objects, slab->inuse, slab->freelist, 1012 &slab->__page_flags); 1013 } 1014 1015 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1016 { 1017 set_orig_size(s, (void *)object, s->object_size); 1018 } 1019 1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1021 { 1022 struct va_format vaf; 1023 va_list args; 1024 1025 va_start(args, fmt); 1026 vaf.fmt = fmt; 1027 vaf.va = &args; 1028 pr_err("=============================================================================\n"); 1029 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1030 pr_err("-----------------------------------------------------------------------------\n\n"); 1031 va_end(args); 1032 } 1033 1034 __printf(2, 3) 1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1036 { 1037 struct va_format vaf; 1038 va_list args; 1039 1040 if (slab_add_kunit_errors()) 1041 return; 1042 1043 va_start(args, fmt); 1044 vaf.fmt = fmt; 1045 vaf.va = &args; 1046 pr_err("FIX %s: %pV\n", s->name, &vaf); 1047 va_end(args); 1048 } 1049 1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1051 { 1052 unsigned int off; /* Offset of last byte */ 1053 u8 *addr = slab_address(slab); 1054 1055 print_tracking(s, p); 1056 1057 print_slab_info(slab); 1058 1059 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1060 p, p - addr, get_freepointer(s, p)); 1061 1062 if (s->flags & SLAB_RED_ZONE) 1063 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1064 s->red_left_pad); 1065 else if (p > addr + 16) 1066 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1067 1068 print_section(KERN_ERR, "Object ", p, 1069 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1070 if (s->flags & SLAB_RED_ZONE) 1071 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1072 s->inuse - s->object_size); 1073 1074 off = get_info_end(s); 1075 1076 if (s->flags & SLAB_STORE_USER) 1077 off += 2 * sizeof(struct track); 1078 1079 if (slub_debug_orig_size(s)) 1080 off += sizeof(unsigned int); 1081 1082 off += kasan_metadata_size(s, false); 1083 1084 if (off != size_from_object(s)) 1085 /* Beginning of the filler is the free pointer */ 1086 print_section(KERN_ERR, "Padding ", p + off, 1087 size_from_object(s) - off); 1088 1089 dump_stack(); 1090 } 1091 1092 static void object_err(struct kmem_cache *s, struct slab *slab, 1093 u8 *object, char *reason) 1094 { 1095 if (slab_add_kunit_errors()) 1096 return; 1097 1098 slab_bug(s, "%s", reason); 1099 print_trailer(s, slab, object); 1100 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1101 } 1102 1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1104 void **freelist, void *nextfree) 1105 { 1106 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1107 !check_valid_pointer(s, slab, nextfree) && freelist) { 1108 object_err(s, slab, *freelist, "Freechain corrupt"); 1109 *freelist = NULL; 1110 slab_fix(s, "Isolate corrupted freechain"); 1111 return true; 1112 } 1113 1114 return false; 1115 } 1116 1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1118 const char *fmt, ...) 1119 { 1120 va_list args; 1121 char buf[100]; 1122 1123 if (slab_add_kunit_errors()) 1124 return; 1125 1126 va_start(args, fmt); 1127 vsnprintf(buf, sizeof(buf), fmt, args); 1128 va_end(args); 1129 slab_bug(s, "%s", buf); 1130 print_slab_info(slab); 1131 dump_stack(); 1132 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1133 } 1134 1135 static void init_object(struct kmem_cache *s, void *object, u8 val) 1136 { 1137 u8 *p = kasan_reset_tag(object); 1138 unsigned int poison_size = s->object_size; 1139 1140 if (s->flags & SLAB_RED_ZONE) { 1141 /* 1142 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1143 * the shadow makes it possible to distinguish uninit-value 1144 * from use-after-free. 1145 */ 1146 memset_no_sanitize_memory(p - s->red_left_pad, val, 1147 s->red_left_pad); 1148 1149 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1150 /* 1151 * Redzone the extra allocated space by kmalloc than 1152 * requested, and the poison size will be limited to 1153 * the original request size accordingly. 1154 */ 1155 poison_size = get_orig_size(s, object); 1156 } 1157 } 1158 1159 if (s->flags & __OBJECT_POISON) { 1160 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1161 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1162 } 1163 1164 if (s->flags & SLAB_RED_ZONE) 1165 memset_no_sanitize_memory(p + poison_size, val, 1166 s->inuse - poison_size); 1167 } 1168 1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1170 void *from, void *to) 1171 { 1172 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1173 memset(from, data, to - from); 1174 } 1175 1176 #ifdef CONFIG_KMSAN 1177 #define pad_check_attributes noinline __no_kmsan_checks 1178 #else 1179 #define pad_check_attributes 1180 #endif 1181 1182 static pad_check_attributes int 1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1184 u8 *object, char *what, 1185 u8 *start, unsigned int value, unsigned int bytes) 1186 { 1187 u8 *fault; 1188 u8 *end; 1189 u8 *addr = slab_address(slab); 1190 1191 metadata_access_enable(); 1192 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1193 metadata_access_disable(); 1194 if (!fault) 1195 return 1; 1196 1197 end = start + bytes; 1198 while (end > fault && end[-1] == value) 1199 end--; 1200 1201 if (slab_add_kunit_errors()) 1202 goto skip_bug_print; 1203 1204 slab_bug(s, "%s overwritten", what); 1205 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1206 fault, end - 1, fault - addr, 1207 fault[0], value); 1208 1209 skip_bug_print: 1210 restore_bytes(s, what, value, fault, end); 1211 return 0; 1212 } 1213 1214 /* 1215 * Object layout: 1216 * 1217 * object address 1218 * Bytes of the object to be managed. 1219 * If the freepointer may overlay the object then the free 1220 * pointer is at the middle of the object. 1221 * 1222 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1223 * 0xa5 (POISON_END) 1224 * 1225 * object + s->object_size 1226 * Padding to reach word boundary. This is also used for Redzoning. 1227 * Padding is extended by another word if Redzoning is enabled and 1228 * object_size == inuse. 1229 * 1230 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1231 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1232 * 1233 * object + s->inuse 1234 * Meta data starts here. 1235 * 1236 * A. Free pointer (if we cannot overwrite object on free) 1237 * B. Tracking data for SLAB_STORE_USER 1238 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1239 * D. Padding to reach required alignment boundary or at minimum 1240 * one word if debugging is on to be able to detect writes 1241 * before the word boundary. 1242 * 1243 * Padding is done using 0x5a (POISON_INUSE) 1244 * 1245 * object + s->size 1246 * Nothing is used beyond s->size. 1247 * 1248 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1249 * ignored. And therefore no slab options that rely on these boundaries 1250 * may be used with merged slabcaches. 1251 */ 1252 1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1254 { 1255 unsigned long off = get_info_end(s); /* The end of info */ 1256 1257 if (s->flags & SLAB_STORE_USER) { 1258 /* We also have user information there */ 1259 off += 2 * sizeof(struct track); 1260 1261 if (s->flags & SLAB_KMALLOC) 1262 off += sizeof(unsigned int); 1263 } 1264 1265 off += kasan_metadata_size(s, false); 1266 1267 if (size_from_object(s) == off) 1268 return 1; 1269 1270 return check_bytes_and_report(s, slab, p, "Object padding", 1271 p + off, POISON_INUSE, size_from_object(s) - off); 1272 } 1273 1274 /* Check the pad bytes at the end of a slab page */ 1275 static pad_check_attributes void 1276 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1277 { 1278 u8 *start; 1279 u8 *fault; 1280 u8 *end; 1281 u8 *pad; 1282 int length; 1283 int remainder; 1284 1285 if (!(s->flags & SLAB_POISON)) 1286 return; 1287 1288 start = slab_address(slab); 1289 length = slab_size(slab); 1290 end = start + length; 1291 remainder = length % s->size; 1292 if (!remainder) 1293 return; 1294 1295 pad = end - remainder; 1296 metadata_access_enable(); 1297 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1298 metadata_access_disable(); 1299 if (!fault) 1300 return; 1301 while (end > fault && end[-1] == POISON_INUSE) 1302 end--; 1303 1304 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1305 fault, end - 1, fault - start); 1306 print_section(KERN_ERR, "Padding ", pad, remainder); 1307 1308 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1309 } 1310 1311 static int check_object(struct kmem_cache *s, struct slab *slab, 1312 void *object, u8 val) 1313 { 1314 u8 *p = object; 1315 u8 *endobject = object + s->object_size; 1316 unsigned int orig_size, kasan_meta_size; 1317 int ret = 1; 1318 1319 if (s->flags & SLAB_RED_ZONE) { 1320 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1321 object - s->red_left_pad, val, s->red_left_pad)) 1322 ret = 0; 1323 1324 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1325 endobject, val, s->inuse - s->object_size)) 1326 ret = 0; 1327 1328 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1329 orig_size = get_orig_size(s, object); 1330 1331 if (s->object_size > orig_size && 1332 !check_bytes_and_report(s, slab, object, 1333 "kmalloc Redzone", p + orig_size, 1334 val, s->object_size - orig_size)) { 1335 ret = 0; 1336 } 1337 } 1338 } else { 1339 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1340 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1341 endobject, POISON_INUSE, 1342 s->inuse - s->object_size)) 1343 ret = 0; 1344 } 1345 } 1346 1347 if (s->flags & SLAB_POISON) { 1348 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1349 /* 1350 * KASAN can save its free meta data inside of the 1351 * object at offset 0. Thus, skip checking the part of 1352 * the redzone that overlaps with the meta data. 1353 */ 1354 kasan_meta_size = kasan_metadata_size(s, true); 1355 if (kasan_meta_size < s->object_size - 1 && 1356 !check_bytes_and_report(s, slab, p, "Poison", 1357 p + kasan_meta_size, POISON_FREE, 1358 s->object_size - kasan_meta_size - 1)) 1359 ret = 0; 1360 if (kasan_meta_size < s->object_size && 1361 !check_bytes_and_report(s, slab, p, "End Poison", 1362 p + s->object_size - 1, POISON_END, 1)) 1363 ret = 0; 1364 } 1365 /* 1366 * check_pad_bytes cleans up on its own. 1367 */ 1368 if (!check_pad_bytes(s, slab, p)) 1369 ret = 0; 1370 } 1371 1372 /* 1373 * Cannot check freepointer while object is allocated if 1374 * object and freepointer overlap. 1375 */ 1376 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1377 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1378 object_err(s, slab, p, "Freepointer corrupt"); 1379 /* 1380 * No choice but to zap it and thus lose the remainder 1381 * of the free objects in this slab. May cause 1382 * another error because the object count is now wrong. 1383 */ 1384 set_freepointer(s, p, NULL); 1385 ret = 0; 1386 } 1387 1388 if (!ret && !slab_in_kunit_test()) { 1389 print_trailer(s, slab, object); 1390 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1391 } 1392 1393 return ret; 1394 } 1395 1396 static int check_slab(struct kmem_cache *s, struct slab *slab) 1397 { 1398 int maxobj; 1399 1400 if (!folio_test_slab(slab_folio(slab))) { 1401 slab_err(s, slab, "Not a valid slab page"); 1402 return 0; 1403 } 1404 1405 maxobj = order_objects(slab_order(slab), s->size); 1406 if (slab->objects > maxobj) { 1407 slab_err(s, slab, "objects %u > max %u", 1408 slab->objects, maxobj); 1409 return 0; 1410 } 1411 if (slab->inuse > slab->objects) { 1412 slab_err(s, slab, "inuse %u > max %u", 1413 slab->inuse, slab->objects); 1414 return 0; 1415 } 1416 if (slab->frozen) { 1417 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1418 return 0; 1419 } 1420 1421 /* Slab_pad_check fixes things up after itself */ 1422 slab_pad_check(s, slab); 1423 return 1; 1424 } 1425 1426 /* 1427 * Determine if a certain object in a slab is on the freelist. Must hold the 1428 * slab lock to guarantee that the chains are in a consistent state. 1429 */ 1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1431 { 1432 int nr = 0; 1433 void *fp; 1434 void *object = NULL; 1435 int max_objects; 1436 1437 fp = slab->freelist; 1438 while (fp && nr <= slab->objects) { 1439 if (fp == search) 1440 return 1; 1441 if (!check_valid_pointer(s, slab, fp)) { 1442 if (object) { 1443 object_err(s, slab, object, 1444 "Freechain corrupt"); 1445 set_freepointer(s, object, NULL); 1446 } else { 1447 slab_err(s, slab, "Freepointer corrupt"); 1448 slab->freelist = NULL; 1449 slab->inuse = slab->objects; 1450 slab_fix(s, "Freelist cleared"); 1451 return 0; 1452 } 1453 break; 1454 } 1455 object = fp; 1456 fp = get_freepointer(s, object); 1457 nr++; 1458 } 1459 1460 max_objects = order_objects(slab_order(slab), s->size); 1461 if (max_objects > MAX_OBJS_PER_PAGE) 1462 max_objects = MAX_OBJS_PER_PAGE; 1463 1464 if (slab->objects != max_objects) { 1465 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1466 slab->objects, max_objects); 1467 slab->objects = max_objects; 1468 slab_fix(s, "Number of objects adjusted"); 1469 } 1470 if (slab->inuse != slab->objects - nr) { 1471 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1472 slab->inuse, slab->objects - nr); 1473 slab->inuse = slab->objects - nr; 1474 slab_fix(s, "Object count adjusted"); 1475 } 1476 return search == NULL; 1477 } 1478 1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1480 int alloc) 1481 { 1482 if (s->flags & SLAB_TRACE) { 1483 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1484 s->name, 1485 alloc ? "alloc" : "free", 1486 object, slab->inuse, 1487 slab->freelist); 1488 1489 if (!alloc) 1490 print_section(KERN_INFO, "Object ", (void *)object, 1491 s->object_size); 1492 1493 dump_stack(); 1494 } 1495 } 1496 1497 /* 1498 * Tracking of fully allocated slabs for debugging purposes. 1499 */ 1500 static void add_full(struct kmem_cache *s, 1501 struct kmem_cache_node *n, struct slab *slab) 1502 { 1503 if (!(s->flags & SLAB_STORE_USER)) 1504 return; 1505 1506 lockdep_assert_held(&n->list_lock); 1507 list_add(&slab->slab_list, &n->full); 1508 } 1509 1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1511 { 1512 if (!(s->flags & SLAB_STORE_USER)) 1513 return; 1514 1515 lockdep_assert_held(&n->list_lock); 1516 list_del(&slab->slab_list); 1517 } 1518 1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1520 { 1521 return atomic_long_read(&n->nr_slabs); 1522 } 1523 1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1525 { 1526 struct kmem_cache_node *n = get_node(s, node); 1527 1528 atomic_long_inc(&n->nr_slabs); 1529 atomic_long_add(objects, &n->total_objects); 1530 } 1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1532 { 1533 struct kmem_cache_node *n = get_node(s, node); 1534 1535 atomic_long_dec(&n->nr_slabs); 1536 atomic_long_sub(objects, &n->total_objects); 1537 } 1538 1539 /* Object debug checks for alloc/free paths */ 1540 static void setup_object_debug(struct kmem_cache *s, void *object) 1541 { 1542 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1543 return; 1544 1545 init_object(s, object, SLUB_RED_INACTIVE); 1546 init_tracking(s, object); 1547 } 1548 1549 static 1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1551 { 1552 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1553 return; 1554 1555 metadata_access_enable(); 1556 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1557 metadata_access_disable(); 1558 } 1559 1560 static inline int alloc_consistency_checks(struct kmem_cache *s, 1561 struct slab *slab, void *object) 1562 { 1563 if (!check_slab(s, slab)) 1564 return 0; 1565 1566 if (!check_valid_pointer(s, slab, object)) { 1567 object_err(s, slab, object, "Freelist Pointer check fails"); 1568 return 0; 1569 } 1570 1571 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1572 return 0; 1573 1574 return 1; 1575 } 1576 1577 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1578 struct slab *slab, void *object, int orig_size) 1579 { 1580 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1581 if (!alloc_consistency_checks(s, slab, object)) 1582 goto bad; 1583 } 1584 1585 /* Success. Perform special debug activities for allocs */ 1586 trace(s, slab, object, 1); 1587 set_orig_size(s, object, orig_size); 1588 init_object(s, object, SLUB_RED_ACTIVE); 1589 return true; 1590 1591 bad: 1592 if (folio_test_slab(slab_folio(slab))) { 1593 /* 1594 * If this is a slab page then lets do the best we can 1595 * to avoid issues in the future. Marking all objects 1596 * as used avoids touching the remaining objects. 1597 */ 1598 slab_fix(s, "Marking all objects used"); 1599 slab->inuse = slab->objects; 1600 slab->freelist = NULL; 1601 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1602 } 1603 return false; 1604 } 1605 1606 static inline int free_consistency_checks(struct kmem_cache *s, 1607 struct slab *slab, void *object, unsigned long addr) 1608 { 1609 if (!check_valid_pointer(s, slab, object)) { 1610 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1611 return 0; 1612 } 1613 1614 if (on_freelist(s, slab, object)) { 1615 object_err(s, slab, object, "Object already free"); 1616 return 0; 1617 } 1618 1619 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1620 return 0; 1621 1622 if (unlikely(s != slab->slab_cache)) { 1623 if (!folio_test_slab(slab_folio(slab))) { 1624 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1625 object); 1626 } else if (!slab->slab_cache) { 1627 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1628 object); 1629 dump_stack(); 1630 } else 1631 object_err(s, slab, object, 1632 "page slab pointer corrupt."); 1633 return 0; 1634 } 1635 return 1; 1636 } 1637 1638 /* 1639 * Parse a block of slab_debug options. Blocks are delimited by ';' 1640 * 1641 * @str: start of block 1642 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1643 * @slabs: return start of list of slabs, or NULL when there's no list 1644 * @init: assume this is initial parsing and not per-kmem-create parsing 1645 * 1646 * returns the start of next block if there's any, or NULL 1647 */ 1648 static char * 1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1650 { 1651 bool higher_order_disable = false; 1652 1653 /* Skip any completely empty blocks */ 1654 while (*str && *str == ';') 1655 str++; 1656 1657 if (*str == ',') { 1658 /* 1659 * No options but restriction on slabs. This means full 1660 * debugging for slabs matching a pattern. 1661 */ 1662 *flags = DEBUG_DEFAULT_FLAGS; 1663 goto check_slabs; 1664 } 1665 *flags = 0; 1666 1667 /* Determine which debug features should be switched on */ 1668 for (; *str && *str != ',' && *str != ';'; str++) { 1669 switch (tolower(*str)) { 1670 case '-': 1671 *flags = 0; 1672 break; 1673 case 'f': 1674 *flags |= SLAB_CONSISTENCY_CHECKS; 1675 break; 1676 case 'z': 1677 *flags |= SLAB_RED_ZONE; 1678 break; 1679 case 'p': 1680 *flags |= SLAB_POISON; 1681 break; 1682 case 'u': 1683 *flags |= SLAB_STORE_USER; 1684 break; 1685 case 't': 1686 *flags |= SLAB_TRACE; 1687 break; 1688 case 'a': 1689 *flags |= SLAB_FAILSLAB; 1690 break; 1691 case 'o': 1692 /* 1693 * Avoid enabling debugging on caches if its minimum 1694 * order would increase as a result. 1695 */ 1696 higher_order_disable = true; 1697 break; 1698 default: 1699 if (init) 1700 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1701 } 1702 } 1703 check_slabs: 1704 if (*str == ',') 1705 *slabs = ++str; 1706 else 1707 *slabs = NULL; 1708 1709 /* Skip over the slab list */ 1710 while (*str && *str != ';') 1711 str++; 1712 1713 /* Skip any completely empty blocks */ 1714 while (*str && *str == ';') 1715 str++; 1716 1717 if (init && higher_order_disable) 1718 disable_higher_order_debug = 1; 1719 1720 if (*str) 1721 return str; 1722 else 1723 return NULL; 1724 } 1725 1726 static int __init setup_slub_debug(char *str) 1727 { 1728 slab_flags_t flags; 1729 slab_flags_t global_flags; 1730 char *saved_str; 1731 char *slab_list; 1732 bool global_slub_debug_changed = false; 1733 bool slab_list_specified = false; 1734 1735 global_flags = DEBUG_DEFAULT_FLAGS; 1736 if (*str++ != '=' || !*str) 1737 /* 1738 * No options specified. Switch on full debugging. 1739 */ 1740 goto out; 1741 1742 saved_str = str; 1743 while (str) { 1744 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1745 1746 if (!slab_list) { 1747 global_flags = flags; 1748 global_slub_debug_changed = true; 1749 } else { 1750 slab_list_specified = true; 1751 if (flags & SLAB_STORE_USER) 1752 stack_depot_request_early_init(); 1753 } 1754 } 1755 1756 /* 1757 * For backwards compatibility, a single list of flags with list of 1758 * slabs means debugging is only changed for those slabs, so the global 1759 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1760 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1761 * long as there is no option specifying flags without a slab list. 1762 */ 1763 if (slab_list_specified) { 1764 if (!global_slub_debug_changed) 1765 global_flags = slub_debug; 1766 slub_debug_string = saved_str; 1767 } 1768 out: 1769 slub_debug = global_flags; 1770 if (slub_debug & SLAB_STORE_USER) 1771 stack_depot_request_early_init(); 1772 if (slub_debug != 0 || slub_debug_string) 1773 static_branch_enable(&slub_debug_enabled); 1774 else 1775 static_branch_disable(&slub_debug_enabled); 1776 if ((static_branch_unlikely(&init_on_alloc) || 1777 static_branch_unlikely(&init_on_free)) && 1778 (slub_debug & SLAB_POISON)) 1779 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1780 return 1; 1781 } 1782 1783 __setup("slab_debug", setup_slub_debug); 1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1785 1786 /* 1787 * kmem_cache_flags - apply debugging options to the cache 1788 * @flags: flags to set 1789 * @name: name of the cache 1790 * 1791 * Debug option(s) are applied to @flags. In addition to the debug 1792 * option(s), if a slab name (or multiple) is specified i.e. 1793 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1794 * then only the select slabs will receive the debug option(s). 1795 */ 1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1797 { 1798 char *iter; 1799 size_t len; 1800 char *next_block; 1801 slab_flags_t block_flags; 1802 slab_flags_t slub_debug_local = slub_debug; 1803 1804 if (flags & SLAB_NO_USER_FLAGS) 1805 return flags; 1806 1807 /* 1808 * If the slab cache is for debugging (e.g. kmemleak) then 1809 * don't store user (stack trace) information by default, 1810 * but let the user enable it via the command line below. 1811 */ 1812 if (flags & SLAB_NOLEAKTRACE) 1813 slub_debug_local &= ~SLAB_STORE_USER; 1814 1815 len = strlen(name); 1816 next_block = slub_debug_string; 1817 /* Go through all blocks of debug options, see if any matches our slab's name */ 1818 while (next_block) { 1819 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1820 if (!iter) 1821 continue; 1822 /* Found a block that has a slab list, search it */ 1823 while (*iter) { 1824 char *end, *glob; 1825 size_t cmplen; 1826 1827 end = strchrnul(iter, ','); 1828 if (next_block && next_block < end) 1829 end = next_block - 1; 1830 1831 glob = strnchr(iter, end - iter, '*'); 1832 if (glob) 1833 cmplen = glob - iter; 1834 else 1835 cmplen = max_t(size_t, len, (end - iter)); 1836 1837 if (!strncmp(name, iter, cmplen)) { 1838 flags |= block_flags; 1839 return flags; 1840 } 1841 1842 if (!*end || *end == ';') 1843 break; 1844 iter = end + 1; 1845 } 1846 } 1847 1848 return flags | slub_debug_local; 1849 } 1850 #else /* !CONFIG_SLUB_DEBUG */ 1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1852 static inline 1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1854 1855 static inline bool alloc_debug_processing(struct kmem_cache *s, 1856 struct slab *slab, void *object, int orig_size) { return true; } 1857 1858 static inline bool free_debug_processing(struct kmem_cache *s, 1859 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1860 unsigned long addr, depot_stack_handle_t handle) { return true; } 1861 1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1863 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1864 void *object, u8 val) { return 1; } 1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1866 static inline void set_track(struct kmem_cache *s, void *object, 1867 enum track_item alloc, unsigned long addr) {} 1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1869 struct slab *slab) {} 1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1871 struct slab *slab) {} 1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1873 { 1874 return flags; 1875 } 1876 #define slub_debug 0 1877 1878 #define disable_higher_order_debug 0 1879 1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1881 { return 0; } 1882 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1883 int objects) {} 1884 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1885 int objects) {} 1886 #ifndef CONFIG_SLUB_TINY 1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1888 void **freelist, void *nextfree) 1889 { 1890 return false; 1891 } 1892 #endif 1893 #endif /* CONFIG_SLUB_DEBUG */ 1894 1895 #ifdef CONFIG_SLAB_OBJ_EXT 1896 1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1898 1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1900 { 1901 struct slabobj_ext *slab_exts; 1902 struct slab *obj_exts_slab; 1903 1904 obj_exts_slab = virt_to_slab(obj_exts); 1905 slab_exts = slab_obj_exts(obj_exts_slab); 1906 if (slab_exts) { 1907 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1908 obj_exts_slab, obj_exts); 1909 /* codetag should be NULL */ 1910 WARN_ON(slab_exts[offs].ref.ct); 1911 set_codetag_empty(&slab_exts[offs].ref); 1912 } 1913 } 1914 1915 static inline void mark_failed_objexts_alloc(struct slab *slab) 1916 { 1917 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1918 } 1919 1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1921 struct slabobj_ext *vec, unsigned int objects) 1922 { 1923 /* 1924 * If vector previously failed to allocate then we have live 1925 * objects with no tag reference. Mark all references in this 1926 * vector as empty to avoid warnings later on. 1927 */ 1928 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1929 unsigned int i; 1930 1931 for (i = 0; i < objects; i++) 1932 set_codetag_empty(&vec[i].ref); 1933 } 1934 } 1935 1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1937 1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1941 struct slabobj_ext *vec, unsigned int objects) {} 1942 1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1944 1945 /* 1946 * The allocated objcg pointers array is not accounted directly. 1947 * Moreover, it should not come from DMA buffer and is not readily 1948 * reclaimable. So those GFP bits should be masked off. 1949 */ 1950 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1951 __GFP_ACCOUNT | __GFP_NOFAIL) 1952 1953 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1954 gfp_t gfp, bool new_slab) 1955 { 1956 unsigned int objects = objs_per_slab(s, slab); 1957 unsigned long new_exts; 1958 unsigned long old_exts; 1959 struct slabobj_ext *vec; 1960 1961 gfp &= ~OBJCGS_CLEAR_MASK; 1962 /* Prevent recursive extension vector allocation */ 1963 gfp |= __GFP_NO_OBJ_EXT; 1964 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1965 slab_nid(slab)); 1966 if (!vec) { 1967 /* Mark vectors which failed to allocate */ 1968 if (new_slab) 1969 mark_failed_objexts_alloc(slab); 1970 1971 return -ENOMEM; 1972 } 1973 1974 new_exts = (unsigned long)vec; 1975 #ifdef CONFIG_MEMCG 1976 new_exts |= MEMCG_DATA_OBJEXTS; 1977 #endif 1978 old_exts = READ_ONCE(slab->obj_exts); 1979 handle_failed_objexts_alloc(old_exts, vec, objects); 1980 if (new_slab) { 1981 /* 1982 * If the slab is brand new and nobody can yet access its 1983 * obj_exts, no synchronization is required and obj_exts can 1984 * be simply assigned. 1985 */ 1986 slab->obj_exts = new_exts; 1987 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 1988 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 1989 /* 1990 * If the slab is already in use, somebody can allocate and 1991 * assign slabobj_exts in parallel. In this case the existing 1992 * objcg vector should be reused. 1993 */ 1994 mark_objexts_empty(vec); 1995 kfree(vec); 1996 return 0; 1997 } 1998 1999 kmemleak_not_leak(vec); 2000 return 0; 2001 } 2002 2003 /* Should be called only if mem_alloc_profiling_enabled() */ 2004 static noinline void free_slab_obj_exts(struct slab *slab) 2005 { 2006 struct slabobj_ext *obj_exts; 2007 2008 obj_exts = slab_obj_exts(slab); 2009 if (!obj_exts) 2010 return; 2011 2012 /* 2013 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2014 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2015 * warning if slab has extensions but the extension of an object is 2016 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2017 * the extension for obj_exts is expected to be NULL. 2018 */ 2019 mark_objexts_empty(obj_exts); 2020 kfree(obj_exts); 2021 slab->obj_exts = 0; 2022 } 2023 2024 static inline bool need_slab_obj_ext(void) 2025 { 2026 if (mem_alloc_profiling_enabled()) 2027 return true; 2028 2029 /* 2030 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally 2031 * inside memcg_slab_post_alloc_hook. No other users for now. 2032 */ 2033 return false; 2034 } 2035 2036 #else /* CONFIG_SLAB_OBJ_EXT */ 2037 2038 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2039 gfp_t gfp, bool new_slab) 2040 { 2041 return 0; 2042 } 2043 2044 static inline void free_slab_obj_exts(struct slab *slab) 2045 { 2046 } 2047 2048 static inline bool need_slab_obj_ext(void) 2049 { 2050 return false; 2051 } 2052 2053 #endif /* CONFIG_SLAB_OBJ_EXT */ 2054 2055 #ifdef CONFIG_MEM_ALLOC_PROFILING 2056 2057 static inline struct slabobj_ext * 2058 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2059 { 2060 struct slab *slab; 2061 2062 if (!p) 2063 return NULL; 2064 2065 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2066 return NULL; 2067 2068 if (flags & __GFP_NO_OBJ_EXT) 2069 return NULL; 2070 2071 slab = virt_to_slab(p); 2072 if (!slab_obj_exts(slab) && 2073 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2074 "%s, %s: Failed to create slab extension vector!\n", 2075 __func__, s->name)) 2076 return NULL; 2077 2078 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2079 } 2080 2081 /* Should be called only if mem_alloc_profiling_enabled() */ 2082 static noinline void 2083 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2084 { 2085 struct slabobj_ext *obj_exts; 2086 2087 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2088 /* 2089 * Currently obj_exts is used only for allocation profiling. 2090 * If other users appear then mem_alloc_profiling_enabled() 2091 * check should be added before alloc_tag_add(). 2092 */ 2093 if (likely(obj_exts)) 2094 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2095 } 2096 2097 static inline void 2098 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2099 { 2100 if (need_slab_obj_ext()) 2101 __alloc_tagging_slab_alloc_hook(s, object, flags); 2102 } 2103 2104 /* Should be called only if mem_alloc_profiling_enabled() */ 2105 static noinline void 2106 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2107 int objects) 2108 { 2109 struct slabobj_ext *obj_exts; 2110 int i; 2111 2112 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2113 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2114 return; 2115 2116 obj_exts = slab_obj_exts(slab); 2117 if (!obj_exts) 2118 return; 2119 2120 for (i = 0; i < objects; i++) { 2121 unsigned int off = obj_to_index(s, slab, p[i]); 2122 2123 alloc_tag_sub(&obj_exts[off].ref, s->size); 2124 } 2125 } 2126 2127 static inline void 2128 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2129 int objects) 2130 { 2131 if (mem_alloc_profiling_enabled()) 2132 __alloc_tagging_slab_free_hook(s, slab, p, objects); 2133 } 2134 2135 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2136 2137 static inline void 2138 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2139 { 2140 } 2141 2142 static inline void 2143 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2144 int objects) 2145 { 2146 } 2147 2148 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2149 2150 2151 #ifdef CONFIG_MEMCG 2152 2153 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2154 2155 static __fastpath_inline 2156 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2157 gfp_t flags, size_t size, void **p) 2158 { 2159 if (likely(!memcg_kmem_online())) 2160 return true; 2161 2162 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2163 return true; 2164 2165 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2166 return true; 2167 2168 if (likely(size == 1)) { 2169 memcg_alloc_abort_single(s, *p); 2170 *p = NULL; 2171 } else { 2172 kmem_cache_free_bulk(s, size, p); 2173 } 2174 2175 return false; 2176 } 2177 2178 static __fastpath_inline 2179 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2180 int objects) 2181 { 2182 struct slabobj_ext *obj_exts; 2183 2184 if (!memcg_kmem_online()) 2185 return; 2186 2187 obj_exts = slab_obj_exts(slab); 2188 if (likely(!obj_exts)) 2189 return; 2190 2191 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2192 } 2193 2194 static __fastpath_inline 2195 bool memcg_slab_post_charge(void *p, gfp_t flags) 2196 { 2197 struct slabobj_ext *slab_exts; 2198 struct kmem_cache *s; 2199 struct folio *folio; 2200 struct slab *slab; 2201 unsigned long off; 2202 2203 folio = virt_to_folio(p); 2204 if (!folio_test_slab(folio)) { 2205 int size; 2206 2207 if (folio_memcg_kmem(folio)) 2208 return true; 2209 2210 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags, 2211 folio_order(folio))) 2212 return false; 2213 2214 /* 2215 * This folio has already been accounted in the global stats but 2216 * not in the memcg stats. So, subtract from the global and use 2217 * the interface which adds to both global and memcg stats. 2218 */ 2219 size = folio_size(folio); 2220 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size); 2221 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size); 2222 return true; 2223 } 2224 2225 slab = folio_slab(folio); 2226 s = slab->slab_cache; 2227 2228 /* 2229 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency 2230 * of slab_obj_exts being allocated from the same slab and thus the slab 2231 * becoming effectively unfreeable. 2232 */ 2233 if (is_kmalloc_normal(s)) 2234 return true; 2235 2236 /* Ignore already charged objects. */ 2237 slab_exts = slab_obj_exts(slab); 2238 if (slab_exts) { 2239 off = obj_to_index(s, slab, p); 2240 if (unlikely(slab_exts[off].objcg)) 2241 return true; 2242 } 2243 2244 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); 2245 } 2246 2247 #else /* CONFIG_MEMCG */ 2248 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2249 struct list_lru *lru, 2250 gfp_t flags, size_t size, 2251 void **p) 2252 { 2253 return true; 2254 } 2255 2256 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2257 void **p, int objects) 2258 { 2259 } 2260 2261 static inline bool memcg_slab_post_charge(void *p, gfp_t flags) 2262 { 2263 return true; 2264 } 2265 #endif /* CONFIG_MEMCG */ 2266 2267 #ifdef CONFIG_SLUB_RCU_DEBUG 2268 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); 2269 2270 struct rcu_delayed_free { 2271 struct rcu_head head; 2272 void *object; 2273 }; 2274 #endif 2275 2276 /* 2277 * Hooks for other subsystems that check memory allocations. In a typical 2278 * production configuration these hooks all should produce no code at all. 2279 * 2280 * Returns true if freeing of the object can proceed, false if its reuse 2281 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned 2282 * to KFENCE. 2283 */ 2284 static __always_inline 2285 bool slab_free_hook(struct kmem_cache *s, void *x, bool init, 2286 bool after_rcu_delay) 2287 { 2288 /* Are the object contents still accessible? */ 2289 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; 2290 2291 kmemleak_free_recursive(x, s->flags); 2292 kmsan_slab_free(s, x); 2293 2294 debug_check_no_locks_freed(x, s->object_size); 2295 2296 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2297 debug_check_no_obj_freed(x, s->object_size); 2298 2299 /* Use KCSAN to help debug racy use-after-free. */ 2300 if (!still_accessible) 2301 __kcsan_check_access(x, s->object_size, 2302 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2303 2304 if (kfence_free(x)) 2305 return false; 2306 2307 /* 2308 * Give KASAN a chance to notice an invalid free operation before we 2309 * modify the object. 2310 */ 2311 if (kasan_slab_pre_free(s, x)) 2312 return false; 2313 2314 #ifdef CONFIG_SLUB_RCU_DEBUG 2315 if (still_accessible) { 2316 struct rcu_delayed_free *delayed_free; 2317 2318 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); 2319 if (delayed_free) { 2320 /* 2321 * Let KASAN track our call stack as a "related work 2322 * creation", just like if the object had been freed 2323 * normally via kfree_rcu(). 2324 * We have to do this manually because the rcu_head is 2325 * not located inside the object. 2326 */ 2327 kasan_record_aux_stack(x); 2328 2329 delayed_free->object = x; 2330 call_rcu(&delayed_free->head, slab_free_after_rcu_debug); 2331 return false; 2332 } 2333 } 2334 #endif /* CONFIG_SLUB_RCU_DEBUG */ 2335 2336 /* 2337 * As memory initialization might be integrated into KASAN, 2338 * kasan_slab_free and initialization memset's must be 2339 * kept together to avoid discrepancies in behavior. 2340 * 2341 * The initialization memset's clear the object and the metadata, 2342 * but don't touch the SLAB redzone. 2343 * 2344 * The object's freepointer is also avoided if stored outside the 2345 * object. 2346 */ 2347 if (unlikely(init)) { 2348 int rsize; 2349 unsigned int inuse, orig_size; 2350 2351 inuse = get_info_end(s); 2352 orig_size = get_orig_size(s, x); 2353 if (!kasan_has_integrated_init()) 2354 memset(kasan_reset_tag(x), 0, orig_size); 2355 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2356 memset((char *)kasan_reset_tag(x) + inuse, 0, 2357 s->size - inuse - rsize); 2358 /* 2359 * Restore orig_size, otherwize kmalloc redzone overwritten 2360 * would be reported 2361 */ 2362 set_orig_size(s, x, orig_size); 2363 2364 } 2365 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2366 return !kasan_slab_free(s, x, init, still_accessible); 2367 } 2368 2369 static __fastpath_inline 2370 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2371 int *cnt) 2372 { 2373 2374 void *object; 2375 void *next = *head; 2376 void *old_tail = *tail; 2377 bool init; 2378 2379 if (is_kfence_address(next)) { 2380 slab_free_hook(s, next, false, false); 2381 return false; 2382 } 2383 2384 /* Head and tail of the reconstructed freelist */ 2385 *head = NULL; 2386 *tail = NULL; 2387 2388 init = slab_want_init_on_free(s); 2389 2390 do { 2391 object = next; 2392 next = get_freepointer(s, object); 2393 2394 /* If object's reuse doesn't have to be delayed */ 2395 if (likely(slab_free_hook(s, object, init, false))) { 2396 /* Move object to the new freelist */ 2397 set_freepointer(s, object, *head); 2398 *head = object; 2399 if (!*tail) 2400 *tail = object; 2401 } else { 2402 /* 2403 * Adjust the reconstructed freelist depth 2404 * accordingly if object's reuse is delayed. 2405 */ 2406 --(*cnt); 2407 } 2408 } while (object != old_tail); 2409 2410 return *head != NULL; 2411 } 2412 2413 static void *setup_object(struct kmem_cache *s, void *object) 2414 { 2415 setup_object_debug(s, object); 2416 object = kasan_init_slab_obj(s, object); 2417 if (unlikely(s->ctor)) { 2418 kasan_unpoison_new_object(s, object); 2419 s->ctor(object); 2420 kasan_poison_new_object(s, object); 2421 } 2422 return object; 2423 } 2424 2425 /* 2426 * Slab allocation and freeing 2427 */ 2428 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2429 struct kmem_cache_order_objects oo) 2430 { 2431 struct folio *folio; 2432 struct slab *slab; 2433 unsigned int order = oo_order(oo); 2434 2435 if (node == NUMA_NO_NODE) 2436 folio = (struct folio *)alloc_frozen_pages(flags, order); 2437 else 2438 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL); 2439 2440 if (!folio) 2441 return NULL; 2442 2443 slab = folio_slab(folio); 2444 __folio_set_slab(folio); 2445 if (folio_is_pfmemalloc(folio)) 2446 slab_set_pfmemalloc(slab); 2447 2448 return slab; 2449 } 2450 2451 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2452 /* Pre-initialize the random sequence cache */ 2453 static int init_cache_random_seq(struct kmem_cache *s) 2454 { 2455 unsigned int count = oo_objects(s->oo); 2456 int err; 2457 2458 /* Bailout if already initialised */ 2459 if (s->random_seq) 2460 return 0; 2461 2462 err = cache_random_seq_create(s, count, GFP_KERNEL); 2463 if (err) { 2464 pr_err("SLUB: Unable to initialize free list for %s\n", 2465 s->name); 2466 return err; 2467 } 2468 2469 /* Transform to an offset on the set of pages */ 2470 if (s->random_seq) { 2471 unsigned int i; 2472 2473 for (i = 0; i < count; i++) 2474 s->random_seq[i] *= s->size; 2475 } 2476 return 0; 2477 } 2478 2479 /* Initialize each random sequence freelist per cache */ 2480 static void __init init_freelist_randomization(void) 2481 { 2482 struct kmem_cache *s; 2483 2484 mutex_lock(&slab_mutex); 2485 2486 list_for_each_entry(s, &slab_caches, list) 2487 init_cache_random_seq(s); 2488 2489 mutex_unlock(&slab_mutex); 2490 } 2491 2492 /* Get the next entry on the pre-computed freelist randomized */ 2493 static void *next_freelist_entry(struct kmem_cache *s, 2494 unsigned long *pos, void *start, 2495 unsigned long page_limit, 2496 unsigned long freelist_count) 2497 { 2498 unsigned int idx; 2499 2500 /* 2501 * If the target page allocation failed, the number of objects on the 2502 * page might be smaller than the usual size defined by the cache. 2503 */ 2504 do { 2505 idx = s->random_seq[*pos]; 2506 *pos += 1; 2507 if (*pos >= freelist_count) 2508 *pos = 0; 2509 } while (unlikely(idx >= page_limit)); 2510 2511 return (char *)start + idx; 2512 } 2513 2514 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2515 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2516 { 2517 void *start; 2518 void *cur; 2519 void *next; 2520 unsigned long idx, pos, page_limit, freelist_count; 2521 2522 if (slab->objects < 2 || !s->random_seq) 2523 return false; 2524 2525 freelist_count = oo_objects(s->oo); 2526 pos = get_random_u32_below(freelist_count); 2527 2528 page_limit = slab->objects * s->size; 2529 start = fixup_red_left(s, slab_address(slab)); 2530 2531 /* First entry is used as the base of the freelist */ 2532 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2533 cur = setup_object(s, cur); 2534 slab->freelist = cur; 2535 2536 for (idx = 1; idx < slab->objects; idx++) { 2537 next = next_freelist_entry(s, &pos, start, page_limit, 2538 freelist_count); 2539 next = setup_object(s, next); 2540 set_freepointer(s, cur, next); 2541 cur = next; 2542 } 2543 set_freepointer(s, cur, NULL); 2544 2545 return true; 2546 } 2547 #else 2548 static inline int init_cache_random_seq(struct kmem_cache *s) 2549 { 2550 return 0; 2551 } 2552 static inline void init_freelist_randomization(void) { } 2553 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2554 { 2555 return false; 2556 } 2557 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2558 2559 static __always_inline void account_slab(struct slab *slab, int order, 2560 struct kmem_cache *s, gfp_t gfp) 2561 { 2562 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2563 alloc_slab_obj_exts(slab, s, gfp, true); 2564 2565 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2566 PAGE_SIZE << order); 2567 } 2568 2569 static __always_inline void unaccount_slab(struct slab *slab, int order, 2570 struct kmem_cache *s) 2571 { 2572 if (memcg_kmem_online() || need_slab_obj_ext()) 2573 free_slab_obj_exts(slab); 2574 2575 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2576 -(PAGE_SIZE << order)); 2577 } 2578 2579 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2580 { 2581 struct slab *slab; 2582 struct kmem_cache_order_objects oo = s->oo; 2583 gfp_t alloc_gfp; 2584 void *start, *p, *next; 2585 int idx; 2586 bool shuffle; 2587 2588 flags &= gfp_allowed_mask; 2589 2590 flags |= s->allocflags; 2591 2592 /* 2593 * Let the initial higher-order allocation fail under memory pressure 2594 * so we fall-back to the minimum order allocation. 2595 */ 2596 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2597 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2598 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2599 2600 slab = alloc_slab_page(alloc_gfp, node, oo); 2601 if (unlikely(!slab)) { 2602 oo = s->min; 2603 alloc_gfp = flags; 2604 /* 2605 * Allocation may have failed due to fragmentation. 2606 * Try a lower order alloc if possible 2607 */ 2608 slab = alloc_slab_page(alloc_gfp, node, oo); 2609 if (unlikely(!slab)) 2610 return NULL; 2611 stat(s, ORDER_FALLBACK); 2612 } 2613 2614 slab->objects = oo_objects(oo); 2615 slab->inuse = 0; 2616 slab->frozen = 0; 2617 2618 account_slab(slab, oo_order(oo), s, flags); 2619 2620 slab->slab_cache = s; 2621 2622 kasan_poison_slab(slab); 2623 2624 start = slab_address(slab); 2625 2626 setup_slab_debug(s, slab, start); 2627 2628 shuffle = shuffle_freelist(s, slab); 2629 2630 if (!shuffle) { 2631 start = fixup_red_left(s, start); 2632 start = setup_object(s, start); 2633 slab->freelist = start; 2634 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2635 next = p + s->size; 2636 next = setup_object(s, next); 2637 set_freepointer(s, p, next); 2638 p = next; 2639 } 2640 set_freepointer(s, p, NULL); 2641 } 2642 2643 return slab; 2644 } 2645 2646 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2647 { 2648 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2649 flags = kmalloc_fix_flags(flags); 2650 2651 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2652 2653 return allocate_slab(s, 2654 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2655 } 2656 2657 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2658 { 2659 struct folio *folio = slab_folio(slab); 2660 int order = folio_order(folio); 2661 int pages = 1 << order; 2662 2663 __slab_clear_pfmemalloc(slab); 2664 folio->mapping = NULL; 2665 __folio_clear_slab(folio); 2666 mm_account_reclaimed_pages(pages); 2667 unaccount_slab(slab, order, s); 2668 free_frozen_pages(&folio->page, order); 2669 } 2670 2671 static void rcu_free_slab(struct rcu_head *h) 2672 { 2673 struct slab *slab = container_of(h, struct slab, rcu_head); 2674 2675 __free_slab(slab->slab_cache, slab); 2676 } 2677 2678 static void free_slab(struct kmem_cache *s, struct slab *slab) 2679 { 2680 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2681 void *p; 2682 2683 slab_pad_check(s, slab); 2684 for_each_object(p, s, slab_address(slab), slab->objects) 2685 check_object(s, slab, p, SLUB_RED_INACTIVE); 2686 } 2687 2688 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2689 call_rcu(&slab->rcu_head, rcu_free_slab); 2690 else 2691 __free_slab(s, slab); 2692 } 2693 2694 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2695 { 2696 dec_slabs_node(s, slab_nid(slab), slab->objects); 2697 free_slab(s, slab); 2698 } 2699 2700 /* 2701 * SLUB reuses PG_workingset bit to keep track of whether it's on 2702 * the per-node partial list. 2703 */ 2704 static inline bool slab_test_node_partial(const struct slab *slab) 2705 { 2706 return folio_test_workingset(slab_folio(slab)); 2707 } 2708 2709 static inline void slab_set_node_partial(struct slab *slab) 2710 { 2711 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2712 } 2713 2714 static inline void slab_clear_node_partial(struct slab *slab) 2715 { 2716 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2717 } 2718 2719 /* 2720 * Management of partially allocated slabs. 2721 */ 2722 static inline void 2723 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2724 { 2725 n->nr_partial++; 2726 if (tail == DEACTIVATE_TO_TAIL) 2727 list_add_tail(&slab->slab_list, &n->partial); 2728 else 2729 list_add(&slab->slab_list, &n->partial); 2730 slab_set_node_partial(slab); 2731 } 2732 2733 static inline void add_partial(struct kmem_cache_node *n, 2734 struct slab *slab, int tail) 2735 { 2736 lockdep_assert_held(&n->list_lock); 2737 __add_partial(n, slab, tail); 2738 } 2739 2740 static inline void remove_partial(struct kmem_cache_node *n, 2741 struct slab *slab) 2742 { 2743 lockdep_assert_held(&n->list_lock); 2744 list_del(&slab->slab_list); 2745 slab_clear_node_partial(slab); 2746 n->nr_partial--; 2747 } 2748 2749 /* 2750 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2751 * slab from the n->partial list. Remove only a single object from the slab, do 2752 * the alloc_debug_processing() checks and leave the slab on the list, or move 2753 * it to full list if it was the last free object. 2754 */ 2755 static void *alloc_single_from_partial(struct kmem_cache *s, 2756 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2757 { 2758 void *object; 2759 2760 lockdep_assert_held(&n->list_lock); 2761 2762 object = slab->freelist; 2763 slab->freelist = get_freepointer(s, object); 2764 slab->inuse++; 2765 2766 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2767 if (folio_test_slab(slab_folio(slab))) 2768 remove_partial(n, slab); 2769 return NULL; 2770 } 2771 2772 if (slab->inuse == slab->objects) { 2773 remove_partial(n, slab); 2774 add_full(s, n, slab); 2775 } 2776 2777 return object; 2778 } 2779 2780 /* 2781 * Called only for kmem_cache_debug() caches to allocate from a freshly 2782 * allocated slab. Allocate a single object instead of whole freelist 2783 * and put the slab to the partial (or full) list. 2784 */ 2785 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2786 struct slab *slab, int orig_size) 2787 { 2788 int nid = slab_nid(slab); 2789 struct kmem_cache_node *n = get_node(s, nid); 2790 unsigned long flags; 2791 void *object; 2792 2793 2794 object = slab->freelist; 2795 slab->freelist = get_freepointer(s, object); 2796 slab->inuse = 1; 2797 2798 if (!alloc_debug_processing(s, slab, object, orig_size)) 2799 /* 2800 * It's not really expected that this would fail on a 2801 * freshly allocated slab, but a concurrent memory 2802 * corruption in theory could cause that. 2803 */ 2804 return NULL; 2805 2806 spin_lock_irqsave(&n->list_lock, flags); 2807 2808 if (slab->inuse == slab->objects) 2809 add_full(s, n, slab); 2810 else 2811 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2812 2813 inc_slabs_node(s, nid, slab->objects); 2814 spin_unlock_irqrestore(&n->list_lock, flags); 2815 2816 return object; 2817 } 2818 2819 #ifdef CONFIG_SLUB_CPU_PARTIAL 2820 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2821 #else 2822 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2823 int drain) { } 2824 #endif 2825 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2826 2827 /* 2828 * Try to allocate a partial slab from a specific node. 2829 */ 2830 static struct slab *get_partial_node(struct kmem_cache *s, 2831 struct kmem_cache_node *n, 2832 struct partial_context *pc) 2833 { 2834 struct slab *slab, *slab2, *partial = NULL; 2835 unsigned long flags; 2836 unsigned int partial_slabs = 0; 2837 2838 /* 2839 * Racy check. If we mistakenly see no partial slabs then we 2840 * just allocate an empty slab. If we mistakenly try to get a 2841 * partial slab and there is none available then get_partial() 2842 * will return NULL. 2843 */ 2844 if (!n || !n->nr_partial) 2845 return NULL; 2846 2847 spin_lock_irqsave(&n->list_lock, flags); 2848 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2849 if (!pfmemalloc_match(slab, pc->flags)) 2850 continue; 2851 2852 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2853 void *object = alloc_single_from_partial(s, n, slab, 2854 pc->orig_size); 2855 if (object) { 2856 partial = slab; 2857 pc->object = object; 2858 break; 2859 } 2860 continue; 2861 } 2862 2863 remove_partial(n, slab); 2864 2865 if (!partial) { 2866 partial = slab; 2867 stat(s, ALLOC_FROM_PARTIAL); 2868 2869 if ((slub_get_cpu_partial(s) == 0)) { 2870 break; 2871 } 2872 } else { 2873 put_cpu_partial(s, slab, 0); 2874 stat(s, CPU_PARTIAL_NODE); 2875 2876 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2877 break; 2878 } 2879 } 2880 } 2881 spin_unlock_irqrestore(&n->list_lock, flags); 2882 return partial; 2883 } 2884 2885 /* 2886 * Get a slab from somewhere. Search in increasing NUMA distances. 2887 */ 2888 static struct slab *get_any_partial(struct kmem_cache *s, 2889 struct partial_context *pc) 2890 { 2891 #ifdef CONFIG_NUMA 2892 struct zonelist *zonelist; 2893 struct zoneref *z; 2894 struct zone *zone; 2895 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2896 struct slab *slab; 2897 unsigned int cpuset_mems_cookie; 2898 2899 /* 2900 * The defrag ratio allows a configuration of the tradeoffs between 2901 * inter node defragmentation and node local allocations. A lower 2902 * defrag_ratio increases the tendency to do local allocations 2903 * instead of attempting to obtain partial slabs from other nodes. 2904 * 2905 * If the defrag_ratio is set to 0 then kmalloc() always 2906 * returns node local objects. If the ratio is higher then kmalloc() 2907 * may return off node objects because partial slabs are obtained 2908 * from other nodes and filled up. 2909 * 2910 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2911 * (which makes defrag_ratio = 1000) then every (well almost) 2912 * allocation will first attempt to defrag slab caches on other nodes. 2913 * This means scanning over all nodes to look for partial slabs which 2914 * may be expensive if we do it every time we are trying to find a slab 2915 * with available objects. 2916 */ 2917 if (!s->remote_node_defrag_ratio || 2918 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2919 return NULL; 2920 2921 do { 2922 cpuset_mems_cookie = read_mems_allowed_begin(); 2923 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2924 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2925 struct kmem_cache_node *n; 2926 2927 n = get_node(s, zone_to_nid(zone)); 2928 2929 if (n && cpuset_zone_allowed(zone, pc->flags) && 2930 n->nr_partial > s->min_partial) { 2931 slab = get_partial_node(s, n, pc); 2932 if (slab) { 2933 /* 2934 * Don't check read_mems_allowed_retry() 2935 * here - if mems_allowed was updated in 2936 * parallel, that was a harmless race 2937 * between allocation and the cpuset 2938 * update 2939 */ 2940 return slab; 2941 } 2942 } 2943 } 2944 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2945 #endif /* CONFIG_NUMA */ 2946 return NULL; 2947 } 2948 2949 /* 2950 * Get a partial slab, lock it and return it. 2951 */ 2952 static struct slab *get_partial(struct kmem_cache *s, int node, 2953 struct partial_context *pc) 2954 { 2955 struct slab *slab; 2956 int searchnode = node; 2957 2958 if (node == NUMA_NO_NODE) 2959 searchnode = numa_mem_id(); 2960 2961 slab = get_partial_node(s, get_node(s, searchnode), pc); 2962 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2963 return slab; 2964 2965 return get_any_partial(s, pc); 2966 } 2967 2968 #ifndef CONFIG_SLUB_TINY 2969 2970 #ifdef CONFIG_PREEMPTION 2971 /* 2972 * Calculate the next globally unique transaction for disambiguation 2973 * during cmpxchg. The transactions start with the cpu number and are then 2974 * incremented by CONFIG_NR_CPUS. 2975 */ 2976 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2977 #else 2978 /* 2979 * No preemption supported therefore also no need to check for 2980 * different cpus. 2981 */ 2982 #define TID_STEP 1 2983 #endif /* CONFIG_PREEMPTION */ 2984 2985 static inline unsigned long next_tid(unsigned long tid) 2986 { 2987 return tid + TID_STEP; 2988 } 2989 2990 #ifdef SLUB_DEBUG_CMPXCHG 2991 static inline unsigned int tid_to_cpu(unsigned long tid) 2992 { 2993 return tid % TID_STEP; 2994 } 2995 2996 static inline unsigned long tid_to_event(unsigned long tid) 2997 { 2998 return tid / TID_STEP; 2999 } 3000 #endif 3001 3002 static inline unsigned int init_tid(int cpu) 3003 { 3004 return cpu; 3005 } 3006 3007 static inline void note_cmpxchg_failure(const char *n, 3008 const struct kmem_cache *s, unsigned long tid) 3009 { 3010 #ifdef SLUB_DEBUG_CMPXCHG 3011 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 3012 3013 pr_info("%s %s: cmpxchg redo ", n, s->name); 3014 3015 #ifdef CONFIG_PREEMPTION 3016 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 3017 pr_warn("due to cpu change %d -> %d\n", 3018 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 3019 else 3020 #endif 3021 if (tid_to_event(tid) != tid_to_event(actual_tid)) 3022 pr_warn("due to cpu running other code. Event %ld->%ld\n", 3023 tid_to_event(tid), tid_to_event(actual_tid)); 3024 else 3025 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 3026 actual_tid, tid, next_tid(tid)); 3027 #endif 3028 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 3029 } 3030 3031 static void init_kmem_cache_cpus(struct kmem_cache *s) 3032 { 3033 int cpu; 3034 struct kmem_cache_cpu *c; 3035 3036 for_each_possible_cpu(cpu) { 3037 c = per_cpu_ptr(s->cpu_slab, cpu); 3038 local_lock_init(&c->lock); 3039 c->tid = init_tid(cpu); 3040 } 3041 } 3042 3043 /* 3044 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 3045 * unfreezes the slabs and puts it on the proper list. 3046 * Assumes the slab has been already safely taken away from kmem_cache_cpu 3047 * by the caller. 3048 */ 3049 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 3050 void *freelist) 3051 { 3052 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3053 int free_delta = 0; 3054 void *nextfree, *freelist_iter, *freelist_tail; 3055 int tail = DEACTIVATE_TO_HEAD; 3056 unsigned long flags = 0; 3057 struct slab new; 3058 struct slab old; 3059 3060 if (READ_ONCE(slab->freelist)) { 3061 stat(s, DEACTIVATE_REMOTE_FREES); 3062 tail = DEACTIVATE_TO_TAIL; 3063 } 3064 3065 /* 3066 * Stage one: Count the objects on cpu's freelist as free_delta and 3067 * remember the last object in freelist_tail for later splicing. 3068 */ 3069 freelist_tail = NULL; 3070 freelist_iter = freelist; 3071 while (freelist_iter) { 3072 nextfree = get_freepointer(s, freelist_iter); 3073 3074 /* 3075 * If 'nextfree' is invalid, it is possible that the object at 3076 * 'freelist_iter' is already corrupted. So isolate all objects 3077 * starting at 'freelist_iter' by skipping them. 3078 */ 3079 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 3080 break; 3081 3082 freelist_tail = freelist_iter; 3083 free_delta++; 3084 3085 freelist_iter = nextfree; 3086 } 3087 3088 /* 3089 * Stage two: Unfreeze the slab while splicing the per-cpu 3090 * freelist to the head of slab's freelist. 3091 */ 3092 do { 3093 old.freelist = READ_ONCE(slab->freelist); 3094 old.counters = READ_ONCE(slab->counters); 3095 VM_BUG_ON(!old.frozen); 3096 3097 /* Determine target state of the slab */ 3098 new.counters = old.counters; 3099 new.frozen = 0; 3100 if (freelist_tail) { 3101 new.inuse -= free_delta; 3102 set_freepointer(s, freelist_tail, old.freelist); 3103 new.freelist = freelist; 3104 } else { 3105 new.freelist = old.freelist; 3106 } 3107 } while (!slab_update_freelist(s, slab, 3108 old.freelist, old.counters, 3109 new.freelist, new.counters, 3110 "unfreezing slab")); 3111 3112 /* 3113 * Stage three: Manipulate the slab list based on the updated state. 3114 */ 3115 if (!new.inuse && n->nr_partial >= s->min_partial) { 3116 stat(s, DEACTIVATE_EMPTY); 3117 discard_slab(s, slab); 3118 stat(s, FREE_SLAB); 3119 } else if (new.freelist) { 3120 spin_lock_irqsave(&n->list_lock, flags); 3121 add_partial(n, slab, tail); 3122 spin_unlock_irqrestore(&n->list_lock, flags); 3123 stat(s, tail); 3124 } else { 3125 stat(s, DEACTIVATE_FULL); 3126 } 3127 } 3128 3129 #ifdef CONFIG_SLUB_CPU_PARTIAL 3130 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3131 { 3132 struct kmem_cache_node *n = NULL, *n2 = NULL; 3133 struct slab *slab, *slab_to_discard = NULL; 3134 unsigned long flags = 0; 3135 3136 while (partial_slab) { 3137 slab = partial_slab; 3138 partial_slab = slab->next; 3139 3140 n2 = get_node(s, slab_nid(slab)); 3141 if (n != n2) { 3142 if (n) 3143 spin_unlock_irqrestore(&n->list_lock, flags); 3144 3145 n = n2; 3146 spin_lock_irqsave(&n->list_lock, flags); 3147 } 3148 3149 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3150 slab->next = slab_to_discard; 3151 slab_to_discard = slab; 3152 } else { 3153 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3154 stat(s, FREE_ADD_PARTIAL); 3155 } 3156 } 3157 3158 if (n) 3159 spin_unlock_irqrestore(&n->list_lock, flags); 3160 3161 while (slab_to_discard) { 3162 slab = slab_to_discard; 3163 slab_to_discard = slab_to_discard->next; 3164 3165 stat(s, DEACTIVATE_EMPTY); 3166 discard_slab(s, slab); 3167 stat(s, FREE_SLAB); 3168 } 3169 } 3170 3171 /* 3172 * Put all the cpu partial slabs to the node partial list. 3173 */ 3174 static void put_partials(struct kmem_cache *s) 3175 { 3176 struct slab *partial_slab; 3177 unsigned long flags; 3178 3179 local_lock_irqsave(&s->cpu_slab->lock, flags); 3180 partial_slab = this_cpu_read(s->cpu_slab->partial); 3181 this_cpu_write(s->cpu_slab->partial, NULL); 3182 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3183 3184 if (partial_slab) 3185 __put_partials(s, partial_slab); 3186 } 3187 3188 static void put_partials_cpu(struct kmem_cache *s, 3189 struct kmem_cache_cpu *c) 3190 { 3191 struct slab *partial_slab; 3192 3193 partial_slab = slub_percpu_partial(c); 3194 c->partial = NULL; 3195 3196 if (partial_slab) 3197 __put_partials(s, partial_slab); 3198 } 3199 3200 /* 3201 * Put a slab into a partial slab slot if available. 3202 * 3203 * If we did not find a slot then simply move all the partials to the 3204 * per node partial list. 3205 */ 3206 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3207 { 3208 struct slab *oldslab; 3209 struct slab *slab_to_put = NULL; 3210 unsigned long flags; 3211 int slabs = 0; 3212 3213 local_lock_irqsave(&s->cpu_slab->lock, flags); 3214 3215 oldslab = this_cpu_read(s->cpu_slab->partial); 3216 3217 if (oldslab) { 3218 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3219 /* 3220 * Partial array is full. Move the existing set to the 3221 * per node partial list. Postpone the actual unfreezing 3222 * outside of the critical section. 3223 */ 3224 slab_to_put = oldslab; 3225 oldslab = NULL; 3226 } else { 3227 slabs = oldslab->slabs; 3228 } 3229 } 3230 3231 slabs++; 3232 3233 slab->slabs = slabs; 3234 slab->next = oldslab; 3235 3236 this_cpu_write(s->cpu_slab->partial, slab); 3237 3238 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3239 3240 if (slab_to_put) { 3241 __put_partials(s, slab_to_put); 3242 stat(s, CPU_PARTIAL_DRAIN); 3243 } 3244 } 3245 3246 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3247 3248 static inline void put_partials(struct kmem_cache *s) { } 3249 static inline void put_partials_cpu(struct kmem_cache *s, 3250 struct kmem_cache_cpu *c) { } 3251 3252 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3253 3254 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3255 { 3256 unsigned long flags; 3257 struct slab *slab; 3258 void *freelist; 3259 3260 local_lock_irqsave(&s->cpu_slab->lock, flags); 3261 3262 slab = c->slab; 3263 freelist = c->freelist; 3264 3265 c->slab = NULL; 3266 c->freelist = NULL; 3267 c->tid = next_tid(c->tid); 3268 3269 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3270 3271 if (slab) { 3272 deactivate_slab(s, slab, freelist); 3273 stat(s, CPUSLAB_FLUSH); 3274 } 3275 } 3276 3277 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3278 { 3279 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3280 void *freelist = c->freelist; 3281 struct slab *slab = c->slab; 3282 3283 c->slab = NULL; 3284 c->freelist = NULL; 3285 c->tid = next_tid(c->tid); 3286 3287 if (slab) { 3288 deactivate_slab(s, slab, freelist); 3289 stat(s, CPUSLAB_FLUSH); 3290 } 3291 3292 put_partials_cpu(s, c); 3293 } 3294 3295 struct slub_flush_work { 3296 struct work_struct work; 3297 struct kmem_cache *s; 3298 bool skip; 3299 }; 3300 3301 /* 3302 * Flush cpu slab. 3303 * 3304 * Called from CPU work handler with migration disabled. 3305 */ 3306 static void flush_cpu_slab(struct work_struct *w) 3307 { 3308 struct kmem_cache *s; 3309 struct kmem_cache_cpu *c; 3310 struct slub_flush_work *sfw; 3311 3312 sfw = container_of(w, struct slub_flush_work, work); 3313 3314 s = sfw->s; 3315 c = this_cpu_ptr(s->cpu_slab); 3316 3317 if (c->slab) 3318 flush_slab(s, c); 3319 3320 put_partials(s); 3321 } 3322 3323 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3324 { 3325 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3326 3327 return c->slab || slub_percpu_partial(c); 3328 } 3329 3330 static DEFINE_MUTEX(flush_lock); 3331 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3332 3333 static void flush_all_cpus_locked(struct kmem_cache *s) 3334 { 3335 struct slub_flush_work *sfw; 3336 unsigned int cpu; 3337 3338 lockdep_assert_cpus_held(); 3339 mutex_lock(&flush_lock); 3340 3341 for_each_online_cpu(cpu) { 3342 sfw = &per_cpu(slub_flush, cpu); 3343 if (!has_cpu_slab(cpu, s)) { 3344 sfw->skip = true; 3345 continue; 3346 } 3347 INIT_WORK(&sfw->work, flush_cpu_slab); 3348 sfw->skip = false; 3349 sfw->s = s; 3350 queue_work_on(cpu, flushwq, &sfw->work); 3351 } 3352 3353 for_each_online_cpu(cpu) { 3354 sfw = &per_cpu(slub_flush, cpu); 3355 if (sfw->skip) 3356 continue; 3357 flush_work(&sfw->work); 3358 } 3359 3360 mutex_unlock(&flush_lock); 3361 } 3362 3363 static void flush_all(struct kmem_cache *s) 3364 { 3365 cpus_read_lock(); 3366 flush_all_cpus_locked(s); 3367 cpus_read_unlock(); 3368 } 3369 3370 /* 3371 * Use the cpu notifier to insure that the cpu slabs are flushed when 3372 * necessary. 3373 */ 3374 static int slub_cpu_dead(unsigned int cpu) 3375 { 3376 struct kmem_cache *s; 3377 3378 mutex_lock(&slab_mutex); 3379 list_for_each_entry(s, &slab_caches, list) 3380 __flush_cpu_slab(s, cpu); 3381 mutex_unlock(&slab_mutex); 3382 return 0; 3383 } 3384 3385 #else /* CONFIG_SLUB_TINY */ 3386 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3387 static inline void flush_all(struct kmem_cache *s) { } 3388 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3389 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3390 #endif /* CONFIG_SLUB_TINY */ 3391 3392 /* 3393 * Check if the objects in a per cpu structure fit numa 3394 * locality expectations. 3395 */ 3396 static inline int node_match(struct slab *slab, int node) 3397 { 3398 #ifdef CONFIG_NUMA 3399 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3400 return 0; 3401 #endif 3402 return 1; 3403 } 3404 3405 #ifdef CONFIG_SLUB_DEBUG 3406 static int count_free(struct slab *slab) 3407 { 3408 return slab->objects - slab->inuse; 3409 } 3410 3411 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3412 { 3413 return atomic_long_read(&n->total_objects); 3414 } 3415 3416 /* Supports checking bulk free of a constructed freelist */ 3417 static inline bool free_debug_processing(struct kmem_cache *s, 3418 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3419 unsigned long addr, depot_stack_handle_t handle) 3420 { 3421 bool checks_ok = false; 3422 void *object = head; 3423 int cnt = 0; 3424 3425 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3426 if (!check_slab(s, slab)) 3427 goto out; 3428 } 3429 3430 if (slab->inuse < *bulk_cnt) { 3431 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3432 slab->inuse, *bulk_cnt); 3433 goto out; 3434 } 3435 3436 next_object: 3437 3438 if (++cnt > *bulk_cnt) 3439 goto out_cnt; 3440 3441 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3442 if (!free_consistency_checks(s, slab, object, addr)) 3443 goto out; 3444 } 3445 3446 if (s->flags & SLAB_STORE_USER) 3447 set_track_update(s, object, TRACK_FREE, addr, handle); 3448 trace(s, slab, object, 0); 3449 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3450 init_object(s, object, SLUB_RED_INACTIVE); 3451 3452 /* Reached end of constructed freelist yet? */ 3453 if (object != tail) { 3454 object = get_freepointer(s, object); 3455 goto next_object; 3456 } 3457 checks_ok = true; 3458 3459 out_cnt: 3460 if (cnt != *bulk_cnt) { 3461 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3462 *bulk_cnt, cnt); 3463 *bulk_cnt = cnt; 3464 } 3465 3466 out: 3467 3468 if (!checks_ok) 3469 slab_fix(s, "Object at 0x%p not freed", object); 3470 3471 return checks_ok; 3472 } 3473 #endif /* CONFIG_SLUB_DEBUG */ 3474 3475 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3476 static unsigned long count_partial(struct kmem_cache_node *n, 3477 int (*get_count)(struct slab *)) 3478 { 3479 unsigned long flags; 3480 unsigned long x = 0; 3481 struct slab *slab; 3482 3483 spin_lock_irqsave(&n->list_lock, flags); 3484 list_for_each_entry(slab, &n->partial, slab_list) 3485 x += get_count(slab); 3486 spin_unlock_irqrestore(&n->list_lock, flags); 3487 return x; 3488 } 3489 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3490 3491 #ifdef CONFIG_SLUB_DEBUG 3492 #define MAX_PARTIAL_TO_SCAN 10000 3493 3494 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3495 { 3496 unsigned long flags; 3497 unsigned long x = 0; 3498 struct slab *slab; 3499 3500 spin_lock_irqsave(&n->list_lock, flags); 3501 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3502 list_for_each_entry(slab, &n->partial, slab_list) 3503 x += slab->objects - slab->inuse; 3504 } else { 3505 /* 3506 * For a long list, approximate the total count of objects in 3507 * it to meet the limit on the number of slabs to scan. 3508 * Scan from both the list's head and tail for better accuracy. 3509 */ 3510 unsigned long scanned = 0; 3511 3512 list_for_each_entry(slab, &n->partial, slab_list) { 3513 x += slab->objects - slab->inuse; 3514 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3515 break; 3516 } 3517 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3518 x += slab->objects - slab->inuse; 3519 if (++scanned == MAX_PARTIAL_TO_SCAN) 3520 break; 3521 } 3522 x = mult_frac(x, n->nr_partial, scanned); 3523 x = min(x, node_nr_objs(n)); 3524 } 3525 spin_unlock_irqrestore(&n->list_lock, flags); 3526 return x; 3527 } 3528 3529 static noinline void 3530 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3531 { 3532 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3533 DEFAULT_RATELIMIT_BURST); 3534 int cpu = raw_smp_processor_id(); 3535 int node; 3536 struct kmem_cache_node *n; 3537 3538 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3539 return; 3540 3541 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", 3542 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); 3543 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3544 s->name, s->object_size, s->size, oo_order(s->oo), 3545 oo_order(s->min)); 3546 3547 if (oo_order(s->min) > get_order(s->object_size)) 3548 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3549 s->name); 3550 3551 for_each_kmem_cache_node(s, node, n) { 3552 unsigned long nr_slabs; 3553 unsigned long nr_objs; 3554 unsigned long nr_free; 3555 3556 nr_free = count_partial_free_approx(n); 3557 nr_slabs = node_nr_slabs(n); 3558 nr_objs = node_nr_objs(n); 3559 3560 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3561 node, nr_slabs, nr_objs, nr_free); 3562 } 3563 } 3564 #else /* CONFIG_SLUB_DEBUG */ 3565 static inline void 3566 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3567 #endif 3568 3569 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3570 { 3571 if (unlikely(slab_test_pfmemalloc(slab))) 3572 return gfp_pfmemalloc_allowed(gfpflags); 3573 3574 return true; 3575 } 3576 3577 #ifndef CONFIG_SLUB_TINY 3578 static inline bool 3579 __update_cpu_freelist_fast(struct kmem_cache *s, 3580 void *freelist_old, void *freelist_new, 3581 unsigned long tid) 3582 { 3583 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3584 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3585 3586 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3587 &old.full, new.full); 3588 } 3589 3590 /* 3591 * Check the slab->freelist and either transfer the freelist to the 3592 * per cpu freelist or deactivate the slab. 3593 * 3594 * The slab is still frozen if the return value is not NULL. 3595 * 3596 * If this function returns NULL then the slab has been unfrozen. 3597 */ 3598 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3599 { 3600 struct slab new; 3601 unsigned long counters; 3602 void *freelist; 3603 3604 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3605 3606 do { 3607 freelist = slab->freelist; 3608 counters = slab->counters; 3609 3610 new.counters = counters; 3611 3612 new.inuse = slab->objects; 3613 new.frozen = freelist != NULL; 3614 3615 } while (!__slab_update_freelist(s, slab, 3616 freelist, counters, 3617 NULL, new.counters, 3618 "get_freelist")); 3619 3620 return freelist; 3621 } 3622 3623 /* 3624 * Freeze the partial slab and return the pointer to the freelist. 3625 */ 3626 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3627 { 3628 struct slab new; 3629 unsigned long counters; 3630 void *freelist; 3631 3632 do { 3633 freelist = slab->freelist; 3634 counters = slab->counters; 3635 3636 new.counters = counters; 3637 VM_BUG_ON(new.frozen); 3638 3639 new.inuse = slab->objects; 3640 new.frozen = 1; 3641 3642 } while (!slab_update_freelist(s, slab, 3643 freelist, counters, 3644 NULL, new.counters, 3645 "freeze_slab")); 3646 3647 return freelist; 3648 } 3649 3650 /* 3651 * Slow path. The lockless freelist is empty or we need to perform 3652 * debugging duties. 3653 * 3654 * Processing is still very fast if new objects have been freed to the 3655 * regular freelist. In that case we simply take over the regular freelist 3656 * as the lockless freelist and zap the regular freelist. 3657 * 3658 * If that is not working then we fall back to the partial lists. We take the 3659 * first element of the freelist as the object to allocate now and move the 3660 * rest of the freelist to the lockless freelist. 3661 * 3662 * And if we were unable to get a new slab from the partial slab lists then 3663 * we need to allocate a new slab. This is the slowest path since it involves 3664 * a call to the page allocator and the setup of a new slab. 3665 * 3666 * Version of __slab_alloc to use when we know that preemption is 3667 * already disabled (which is the case for bulk allocation). 3668 */ 3669 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3670 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3671 { 3672 void *freelist; 3673 struct slab *slab; 3674 unsigned long flags; 3675 struct partial_context pc; 3676 bool try_thisnode = true; 3677 3678 stat(s, ALLOC_SLOWPATH); 3679 3680 reread_slab: 3681 3682 slab = READ_ONCE(c->slab); 3683 if (!slab) { 3684 /* 3685 * if the node is not online or has no normal memory, just 3686 * ignore the node constraint 3687 */ 3688 if (unlikely(node != NUMA_NO_NODE && 3689 !node_isset(node, slab_nodes))) 3690 node = NUMA_NO_NODE; 3691 goto new_slab; 3692 } 3693 3694 if (unlikely(!node_match(slab, node))) { 3695 /* 3696 * same as above but node_match() being false already 3697 * implies node != NUMA_NO_NODE 3698 */ 3699 if (!node_isset(node, slab_nodes)) { 3700 node = NUMA_NO_NODE; 3701 } else { 3702 stat(s, ALLOC_NODE_MISMATCH); 3703 goto deactivate_slab; 3704 } 3705 } 3706 3707 /* 3708 * By rights, we should be searching for a slab page that was 3709 * PFMEMALLOC but right now, we are losing the pfmemalloc 3710 * information when the page leaves the per-cpu allocator 3711 */ 3712 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3713 goto deactivate_slab; 3714 3715 /* must check again c->slab in case we got preempted and it changed */ 3716 local_lock_irqsave(&s->cpu_slab->lock, flags); 3717 if (unlikely(slab != c->slab)) { 3718 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3719 goto reread_slab; 3720 } 3721 freelist = c->freelist; 3722 if (freelist) 3723 goto load_freelist; 3724 3725 freelist = get_freelist(s, slab); 3726 3727 if (!freelist) { 3728 c->slab = NULL; 3729 c->tid = next_tid(c->tid); 3730 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3731 stat(s, DEACTIVATE_BYPASS); 3732 goto new_slab; 3733 } 3734 3735 stat(s, ALLOC_REFILL); 3736 3737 load_freelist: 3738 3739 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3740 3741 /* 3742 * freelist is pointing to the list of objects to be used. 3743 * slab is pointing to the slab from which the objects are obtained. 3744 * That slab must be frozen for per cpu allocations to work. 3745 */ 3746 VM_BUG_ON(!c->slab->frozen); 3747 c->freelist = get_freepointer(s, freelist); 3748 c->tid = next_tid(c->tid); 3749 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3750 return freelist; 3751 3752 deactivate_slab: 3753 3754 local_lock_irqsave(&s->cpu_slab->lock, flags); 3755 if (slab != c->slab) { 3756 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3757 goto reread_slab; 3758 } 3759 freelist = c->freelist; 3760 c->slab = NULL; 3761 c->freelist = NULL; 3762 c->tid = next_tid(c->tid); 3763 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3764 deactivate_slab(s, slab, freelist); 3765 3766 new_slab: 3767 3768 #ifdef CONFIG_SLUB_CPU_PARTIAL 3769 while (slub_percpu_partial(c)) { 3770 local_lock_irqsave(&s->cpu_slab->lock, flags); 3771 if (unlikely(c->slab)) { 3772 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3773 goto reread_slab; 3774 } 3775 if (unlikely(!slub_percpu_partial(c))) { 3776 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3777 /* we were preempted and partial list got empty */ 3778 goto new_objects; 3779 } 3780 3781 slab = slub_percpu_partial(c); 3782 slub_set_percpu_partial(c, slab); 3783 3784 if (likely(node_match(slab, node) && 3785 pfmemalloc_match(slab, gfpflags))) { 3786 c->slab = slab; 3787 freelist = get_freelist(s, slab); 3788 VM_BUG_ON(!freelist); 3789 stat(s, CPU_PARTIAL_ALLOC); 3790 goto load_freelist; 3791 } 3792 3793 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3794 3795 slab->next = NULL; 3796 __put_partials(s, slab); 3797 } 3798 #endif 3799 3800 new_objects: 3801 3802 pc.flags = gfpflags; 3803 /* 3804 * When a preferred node is indicated but no __GFP_THISNODE 3805 * 3806 * 1) try to get a partial slab from target node only by having 3807 * __GFP_THISNODE in pc.flags for get_partial() 3808 * 2) if 1) failed, try to allocate a new slab from target node with 3809 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3810 * 3) if 2) failed, retry with original gfpflags which will allow 3811 * get_partial() try partial lists of other nodes before potentially 3812 * allocating new page from other nodes 3813 */ 3814 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3815 && try_thisnode)) 3816 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3817 3818 pc.orig_size = orig_size; 3819 slab = get_partial(s, node, &pc); 3820 if (slab) { 3821 if (kmem_cache_debug(s)) { 3822 freelist = pc.object; 3823 /* 3824 * For debug caches here we had to go through 3825 * alloc_single_from_partial() so just store the 3826 * tracking info and return the object. 3827 */ 3828 if (s->flags & SLAB_STORE_USER) 3829 set_track(s, freelist, TRACK_ALLOC, addr); 3830 3831 return freelist; 3832 } 3833 3834 freelist = freeze_slab(s, slab); 3835 goto retry_load_slab; 3836 } 3837 3838 slub_put_cpu_ptr(s->cpu_slab); 3839 slab = new_slab(s, pc.flags, node); 3840 c = slub_get_cpu_ptr(s->cpu_slab); 3841 3842 if (unlikely(!slab)) { 3843 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3844 && try_thisnode) { 3845 try_thisnode = false; 3846 goto new_objects; 3847 } 3848 slab_out_of_memory(s, gfpflags, node); 3849 return NULL; 3850 } 3851 3852 stat(s, ALLOC_SLAB); 3853 3854 if (kmem_cache_debug(s)) { 3855 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3856 3857 if (unlikely(!freelist)) 3858 goto new_objects; 3859 3860 if (s->flags & SLAB_STORE_USER) 3861 set_track(s, freelist, TRACK_ALLOC, addr); 3862 3863 return freelist; 3864 } 3865 3866 /* 3867 * No other reference to the slab yet so we can 3868 * muck around with it freely without cmpxchg 3869 */ 3870 freelist = slab->freelist; 3871 slab->freelist = NULL; 3872 slab->inuse = slab->objects; 3873 slab->frozen = 1; 3874 3875 inc_slabs_node(s, slab_nid(slab), slab->objects); 3876 3877 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3878 /* 3879 * For !pfmemalloc_match() case we don't load freelist so that 3880 * we don't make further mismatched allocations easier. 3881 */ 3882 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3883 return freelist; 3884 } 3885 3886 retry_load_slab: 3887 3888 local_lock_irqsave(&s->cpu_slab->lock, flags); 3889 if (unlikely(c->slab)) { 3890 void *flush_freelist = c->freelist; 3891 struct slab *flush_slab = c->slab; 3892 3893 c->slab = NULL; 3894 c->freelist = NULL; 3895 c->tid = next_tid(c->tid); 3896 3897 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3898 3899 deactivate_slab(s, flush_slab, flush_freelist); 3900 3901 stat(s, CPUSLAB_FLUSH); 3902 3903 goto retry_load_slab; 3904 } 3905 c->slab = slab; 3906 3907 goto load_freelist; 3908 } 3909 3910 /* 3911 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3912 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3913 * pointer. 3914 */ 3915 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3916 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3917 { 3918 void *p; 3919 3920 #ifdef CONFIG_PREEMPT_COUNT 3921 /* 3922 * We may have been preempted and rescheduled on a different 3923 * cpu before disabling preemption. Need to reload cpu area 3924 * pointer. 3925 */ 3926 c = slub_get_cpu_ptr(s->cpu_slab); 3927 #endif 3928 3929 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3930 #ifdef CONFIG_PREEMPT_COUNT 3931 slub_put_cpu_ptr(s->cpu_slab); 3932 #endif 3933 return p; 3934 } 3935 3936 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3937 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3938 { 3939 struct kmem_cache_cpu *c; 3940 struct slab *slab; 3941 unsigned long tid; 3942 void *object; 3943 3944 redo: 3945 /* 3946 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3947 * enabled. We may switch back and forth between cpus while 3948 * reading from one cpu area. That does not matter as long 3949 * as we end up on the original cpu again when doing the cmpxchg. 3950 * 3951 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3952 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3953 * the tid. If we are preempted and switched to another cpu between the 3954 * two reads, it's OK as the two are still associated with the same cpu 3955 * and cmpxchg later will validate the cpu. 3956 */ 3957 c = raw_cpu_ptr(s->cpu_slab); 3958 tid = READ_ONCE(c->tid); 3959 3960 /* 3961 * Irqless object alloc/free algorithm used here depends on sequence 3962 * of fetching cpu_slab's data. tid should be fetched before anything 3963 * on c to guarantee that object and slab associated with previous tid 3964 * won't be used with current tid. If we fetch tid first, object and 3965 * slab could be one associated with next tid and our alloc/free 3966 * request will be failed. In this case, we will retry. So, no problem. 3967 */ 3968 barrier(); 3969 3970 /* 3971 * The transaction ids are globally unique per cpu and per operation on 3972 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3973 * occurs on the right processor and that there was no operation on the 3974 * linked list in between. 3975 */ 3976 3977 object = c->freelist; 3978 slab = c->slab; 3979 3980 #ifdef CONFIG_NUMA 3981 if (static_branch_unlikely(&strict_numa) && 3982 node == NUMA_NO_NODE) { 3983 3984 struct mempolicy *mpol = current->mempolicy; 3985 3986 if (mpol) { 3987 /* 3988 * Special BIND rule support. If existing slab 3989 * is in permitted set then do not redirect 3990 * to a particular node. 3991 * Otherwise we apply the memory policy to get 3992 * the node we need to allocate on. 3993 */ 3994 if (mpol->mode != MPOL_BIND || !slab || 3995 !node_isset(slab_nid(slab), mpol->nodes)) 3996 3997 node = mempolicy_slab_node(); 3998 } 3999 } 4000 #endif 4001 4002 if (!USE_LOCKLESS_FAST_PATH() || 4003 unlikely(!object || !slab || !node_match(slab, node))) { 4004 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 4005 } else { 4006 void *next_object = get_freepointer_safe(s, object); 4007 4008 /* 4009 * The cmpxchg will only match if there was no additional 4010 * operation and if we are on the right processor. 4011 * 4012 * The cmpxchg does the following atomically (without lock 4013 * semantics!) 4014 * 1. Relocate first pointer to the current per cpu area. 4015 * 2. Verify that tid and freelist have not been changed 4016 * 3. If they were not changed replace tid and freelist 4017 * 4018 * Since this is without lock semantics the protection is only 4019 * against code executing on this cpu *not* from access by 4020 * other cpus. 4021 */ 4022 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 4023 note_cmpxchg_failure("slab_alloc", s, tid); 4024 goto redo; 4025 } 4026 prefetch_freepointer(s, next_object); 4027 stat(s, ALLOC_FASTPATH); 4028 } 4029 4030 return object; 4031 } 4032 #else /* CONFIG_SLUB_TINY */ 4033 static void *__slab_alloc_node(struct kmem_cache *s, 4034 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4035 { 4036 struct partial_context pc; 4037 struct slab *slab; 4038 void *object; 4039 4040 pc.flags = gfpflags; 4041 pc.orig_size = orig_size; 4042 slab = get_partial(s, node, &pc); 4043 4044 if (slab) 4045 return pc.object; 4046 4047 slab = new_slab(s, gfpflags, node); 4048 if (unlikely(!slab)) { 4049 slab_out_of_memory(s, gfpflags, node); 4050 return NULL; 4051 } 4052 4053 object = alloc_single_from_new_slab(s, slab, orig_size); 4054 4055 return object; 4056 } 4057 #endif /* CONFIG_SLUB_TINY */ 4058 4059 /* 4060 * If the object has been wiped upon free, make sure it's fully initialized by 4061 * zeroing out freelist pointer. 4062 * 4063 * Note that we also wipe custom freelist pointers. 4064 */ 4065 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 4066 void *obj) 4067 { 4068 if (unlikely(slab_want_init_on_free(s)) && obj && 4069 !freeptr_outside_object(s)) 4070 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 4071 0, sizeof(void *)); 4072 } 4073 4074 static __fastpath_inline 4075 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 4076 { 4077 flags &= gfp_allowed_mask; 4078 4079 might_alloc(flags); 4080 4081 if (unlikely(should_failslab(s, flags))) 4082 return NULL; 4083 4084 return s; 4085 } 4086 4087 static __fastpath_inline 4088 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 4089 gfp_t flags, size_t size, void **p, bool init, 4090 unsigned int orig_size) 4091 { 4092 unsigned int zero_size = s->object_size; 4093 bool kasan_init = init; 4094 size_t i; 4095 gfp_t init_flags = flags & gfp_allowed_mask; 4096 4097 /* 4098 * For kmalloc object, the allocated memory size(object_size) is likely 4099 * larger than the requested size(orig_size). If redzone check is 4100 * enabled for the extra space, don't zero it, as it will be redzoned 4101 * soon. The redzone operation for this extra space could be seen as a 4102 * replacement of current poisoning under certain debug option, and 4103 * won't break other sanity checks. 4104 */ 4105 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 4106 (s->flags & SLAB_KMALLOC)) 4107 zero_size = orig_size; 4108 4109 /* 4110 * When slab_debug is enabled, avoid memory initialization integrated 4111 * into KASAN and instead zero out the memory via the memset below with 4112 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 4113 * cause false-positive reports. This does not lead to a performance 4114 * penalty on production builds, as slab_debug is not intended to be 4115 * enabled there. 4116 */ 4117 if (__slub_debug_enabled()) 4118 kasan_init = false; 4119 4120 /* 4121 * As memory initialization might be integrated into KASAN, 4122 * kasan_slab_alloc and initialization memset must be 4123 * kept together to avoid discrepancies in behavior. 4124 * 4125 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 4126 */ 4127 for (i = 0; i < size; i++) { 4128 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 4129 if (p[i] && init && (!kasan_init || 4130 !kasan_has_integrated_init())) 4131 memset(p[i], 0, zero_size); 4132 kmemleak_alloc_recursive(p[i], s->object_size, 1, 4133 s->flags, init_flags); 4134 kmsan_slab_alloc(s, p[i], init_flags); 4135 alloc_tagging_slab_alloc_hook(s, p[i], flags); 4136 } 4137 4138 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4139 } 4140 4141 /* 4142 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4143 * have the fastpath folded into their functions. So no function call 4144 * overhead for requests that can be satisfied on the fastpath. 4145 * 4146 * The fastpath works by first checking if the lockless freelist can be used. 4147 * If not then __slab_alloc is called for slow processing. 4148 * 4149 * Otherwise we can simply pick the next object from the lockless free list. 4150 */ 4151 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4152 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4153 { 4154 void *object; 4155 bool init = false; 4156 4157 s = slab_pre_alloc_hook(s, gfpflags); 4158 if (unlikely(!s)) 4159 return NULL; 4160 4161 object = kfence_alloc(s, orig_size, gfpflags); 4162 if (unlikely(object)) 4163 goto out; 4164 4165 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4166 4167 maybe_wipe_obj_freeptr(s, object); 4168 init = slab_want_init_on_alloc(gfpflags, s); 4169 4170 out: 4171 /* 4172 * When init equals 'true', like for kzalloc() family, only 4173 * @orig_size bytes might be zeroed instead of s->object_size 4174 * In case this fails due to memcg_slab_post_alloc_hook(), 4175 * object is set to NULL 4176 */ 4177 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4178 4179 return object; 4180 } 4181 4182 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4183 { 4184 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4185 s->object_size); 4186 4187 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4188 4189 return ret; 4190 } 4191 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4192 4193 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4194 gfp_t gfpflags) 4195 { 4196 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4197 s->object_size); 4198 4199 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4200 4201 return ret; 4202 } 4203 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4204 4205 bool kmem_cache_charge(void *objp, gfp_t gfpflags) 4206 { 4207 if (!memcg_kmem_online()) 4208 return true; 4209 4210 return memcg_slab_post_charge(objp, gfpflags); 4211 } 4212 EXPORT_SYMBOL(kmem_cache_charge); 4213 4214 /** 4215 * kmem_cache_alloc_node - Allocate an object on the specified node 4216 * @s: The cache to allocate from. 4217 * @gfpflags: See kmalloc(). 4218 * @node: node number of the target node. 4219 * 4220 * Identical to kmem_cache_alloc but it will allocate memory on the given 4221 * node, which can improve the performance for cpu bound structures. 4222 * 4223 * Fallback to other node is possible if __GFP_THISNODE is not set. 4224 * 4225 * Return: pointer to the new object or %NULL in case of error 4226 */ 4227 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4228 { 4229 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4230 4231 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4232 4233 return ret; 4234 } 4235 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4236 4237 /* 4238 * To avoid unnecessary overhead, we pass through large allocation requests 4239 * directly to the page allocator. We use __GFP_COMP, because we will need to 4240 * know the allocation order to free the pages properly in kfree. 4241 */ 4242 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4243 { 4244 struct folio *folio; 4245 void *ptr = NULL; 4246 unsigned int order = get_order(size); 4247 4248 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4249 flags = kmalloc_fix_flags(flags); 4250 4251 flags |= __GFP_COMP; 4252 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4253 if (folio) { 4254 ptr = folio_address(folio); 4255 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4256 PAGE_SIZE << order); 4257 } 4258 4259 ptr = kasan_kmalloc_large(ptr, size, flags); 4260 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4261 kmemleak_alloc(ptr, size, 1, flags); 4262 kmsan_kmalloc_large(ptr, size, flags); 4263 4264 return ptr; 4265 } 4266 4267 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4268 { 4269 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4270 4271 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4272 flags, NUMA_NO_NODE); 4273 return ret; 4274 } 4275 EXPORT_SYMBOL(__kmalloc_large_noprof); 4276 4277 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4278 { 4279 void *ret = ___kmalloc_large_node(size, flags, node); 4280 4281 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4282 flags, node); 4283 return ret; 4284 } 4285 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4286 4287 static __always_inline 4288 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4289 unsigned long caller) 4290 { 4291 struct kmem_cache *s; 4292 void *ret; 4293 4294 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4295 ret = __kmalloc_large_node_noprof(size, flags, node); 4296 trace_kmalloc(caller, ret, size, 4297 PAGE_SIZE << get_order(size), flags, node); 4298 return ret; 4299 } 4300 4301 if (unlikely(!size)) 4302 return ZERO_SIZE_PTR; 4303 4304 s = kmalloc_slab(size, b, flags, caller); 4305 4306 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4307 ret = kasan_kmalloc(s, ret, size, flags); 4308 trace_kmalloc(caller, ret, size, s->size, flags, node); 4309 return ret; 4310 } 4311 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4312 { 4313 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4314 } 4315 EXPORT_SYMBOL(__kmalloc_node_noprof); 4316 4317 void *__kmalloc_noprof(size_t size, gfp_t flags) 4318 { 4319 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4320 } 4321 EXPORT_SYMBOL(__kmalloc_noprof); 4322 4323 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4324 int node, unsigned long caller) 4325 { 4326 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4327 4328 } 4329 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4330 4331 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4332 { 4333 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4334 _RET_IP_, size); 4335 4336 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4337 4338 ret = kasan_kmalloc(s, ret, size, gfpflags); 4339 return ret; 4340 } 4341 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4342 4343 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4344 int node, size_t size) 4345 { 4346 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4347 4348 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4349 4350 ret = kasan_kmalloc(s, ret, size, gfpflags); 4351 return ret; 4352 } 4353 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4354 4355 static noinline void free_to_partial_list( 4356 struct kmem_cache *s, struct slab *slab, 4357 void *head, void *tail, int bulk_cnt, 4358 unsigned long addr) 4359 { 4360 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4361 struct slab *slab_free = NULL; 4362 int cnt = bulk_cnt; 4363 unsigned long flags; 4364 depot_stack_handle_t handle = 0; 4365 4366 if (s->flags & SLAB_STORE_USER) 4367 handle = set_track_prepare(); 4368 4369 spin_lock_irqsave(&n->list_lock, flags); 4370 4371 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4372 void *prior = slab->freelist; 4373 4374 /* Perform the actual freeing while we still hold the locks */ 4375 slab->inuse -= cnt; 4376 set_freepointer(s, tail, prior); 4377 slab->freelist = head; 4378 4379 /* 4380 * If the slab is empty, and node's partial list is full, 4381 * it should be discarded anyway no matter it's on full or 4382 * partial list. 4383 */ 4384 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4385 slab_free = slab; 4386 4387 if (!prior) { 4388 /* was on full list */ 4389 remove_full(s, n, slab); 4390 if (!slab_free) { 4391 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4392 stat(s, FREE_ADD_PARTIAL); 4393 } 4394 } else if (slab_free) { 4395 remove_partial(n, slab); 4396 stat(s, FREE_REMOVE_PARTIAL); 4397 } 4398 } 4399 4400 if (slab_free) { 4401 /* 4402 * Update the counters while still holding n->list_lock to 4403 * prevent spurious validation warnings 4404 */ 4405 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4406 } 4407 4408 spin_unlock_irqrestore(&n->list_lock, flags); 4409 4410 if (slab_free) { 4411 stat(s, FREE_SLAB); 4412 free_slab(s, slab_free); 4413 } 4414 } 4415 4416 /* 4417 * Slow path handling. This may still be called frequently since objects 4418 * have a longer lifetime than the cpu slabs in most processing loads. 4419 * 4420 * So we still attempt to reduce cache line usage. Just take the slab 4421 * lock and free the item. If there is no additional partial slab 4422 * handling required then we can return immediately. 4423 */ 4424 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4425 void *head, void *tail, int cnt, 4426 unsigned long addr) 4427 4428 { 4429 void *prior; 4430 int was_frozen; 4431 struct slab new; 4432 unsigned long counters; 4433 struct kmem_cache_node *n = NULL; 4434 unsigned long flags; 4435 bool on_node_partial; 4436 4437 stat(s, FREE_SLOWPATH); 4438 4439 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4440 free_to_partial_list(s, slab, head, tail, cnt, addr); 4441 return; 4442 } 4443 4444 do { 4445 if (unlikely(n)) { 4446 spin_unlock_irqrestore(&n->list_lock, flags); 4447 n = NULL; 4448 } 4449 prior = slab->freelist; 4450 counters = slab->counters; 4451 set_freepointer(s, tail, prior); 4452 new.counters = counters; 4453 was_frozen = new.frozen; 4454 new.inuse -= cnt; 4455 if ((!new.inuse || !prior) && !was_frozen) { 4456 /* Needs to be taken off a list */ 4457 if (!kmem_cache_has_cpu_partial(s) || prior) { 4458 4459 n = get_node(s, slab_nid(slab)); 4460 /* 4461 * Speculatively acquire the list_lock. 4462 * If the cmpxchg does not succeed then we may 4463 * drop the list_lock without any processing. 4464 * 4465 * Otherwise the list_lock will synchronize with 4466 * other processors updating the list of slabs. 4467 */ 4468 spin_lock_irqsave(&n->list_lock, flags); 4469 4470 on_node_partial = slab_test_node_partial(slab); 4471 } 4472 } 4473 4474 } while (!slab_update_freelist(s, slab, 4475 prior, counters, 4476 head, new.counters, 4477 "__slab_free")); 4478 4479 if (likely(!n)) { 4480 4481 if (likely(was_frozen)) { 4482 /* 4483 * The list lock was not taken therefore no list 4484 * activity can be necessary. 4485 */ 4486 stat(s, FREE_FROZEN); 4487 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4488 /* 4489 * If we started with a full slab then put it onto the 4490 * per cpu partial list. 4491 */ 4492 put_cpu_partial(s, slab, 1); 4493 stat(s, CPU_PARTIAL_FREE); 4494 } 4495 4496 return; 4497 } 4498 4499 /* 4500 * This slab was partially empty but not on the per-node partial list, 4501 * in which case we shouldn't manipulate its list, just return. 4502 */ 4503 if (prior && !on_node_partial) { 4504 spin_unlock_irqrestore(&n->list_lock, flags); 4505 return; 4506 } 4507 4508 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4509 goto slab_empty; 4510 4511 /* 4512 * Objects left in the slab. If it was not on the partial list before 4513 * then add it. 4514 */ 4515 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4516 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4517 stat(s, FREE_ADD_PARTIAL); 4518 } 4519 spin_unlock_irqrestore(&n->list_lock, flags); 4520 return; 4521 4522 slab_empty: 4523 if (prior) { 4524 /* 4525 * Slab on the partial list. 4526 */ 4527 remove_partial(n, slab); 4528 stat(s, FREE_REMOVE_PARTIAL); 4529 } 4530 4531 spin_unlock_irqrestore(&n->list_lock, flags); 4532 stat(s, FREE_SLAB); 4533 discard_slab(s, slab); 4534 } 4535 4536 #ifndef CONFIG_SLUB_TINY 4537 /* 4538 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4539 * can perform fastpath freeing without additional function calls. 4540 * 4541 * The fastpath is only possible if we are freeing to the current cpu slab 4542 * of this processor. This typically the case if we have just allocated 4543 * the item before. 4544 * 4545 * If fastpath is not possible then fall back to __slab_free where we deal 4546 * with all sorts of special processing. 4547 * 4548 * Bulk free of a freelist with several objects (all pointing to the 4549 * same slab) possible by specifying head and tail ptr, plus objects 4550 * count (cnt). Bulk free indicated by tail pointer being set. 4551 */ 4552 static __always_inline void do_slab_free(struct kmem_cache *s, 4553 struct slab *slab, void *head, void *tail, 4554 int cnt, unsigned long addr) 4555 { 4556 struct kmem_cache_cpu *c; 4557 unsigned long tid; 4558 void **freelist; 4559 4560 redo: 4561 /* 4562 * Determine the currently cpus per cpu slab. 4563 * The cpu may change afterward. However that does not matter since 4564 * data is retrieved via this pointer. If we are on the same cpu 4565 * during the cmpxchg then the free will succeed. 4566 */ 4567 c = raw_cpu_ptr(s->cpu_slab); 4568 tid = READ_ONCE(c->tid); 4569 4570 /* Same with comment on barrier() in __slab_alloc_node() */ 4571 barrier(); 4572 4573 if (unlikely(slab != c->slab)) { 4574 __slab_free(s, slab, head, tail, cnt, addr); 4575 return; 4576 } 4577 4578 if (USE_LOCKLESS_FAST_PATH()) { 4579 freelist = READ_ONCE(c->freelist); 4580 4581 set_freepointer(s, tail, freelist); 4582 4583 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4584 note_cmpxchg_failure("slab_free", s, tid); 4585 goto redo; 4586 } 4587 } else { 4588 /* Update the free list under the local lock */ 4589 local_lock(&s->cpu_slab->lock); 4590 c = this_cpu_ptr(s->cpu_slab); 4591 if (unlikely(slab != c->slab)) { 4592 local_unlock(&s->cpu_slab->lock); 4593 goto redo; 4594 } 4595 tid = c->tid; 4596 freelist = c->freelist; 4597 4598 set_freepointer(s, tail, freelist); 4599 c->freelist = head; 4600 c->tid = next_tid(tid); 4601 4602 local_unlock(&s->cpu_slab->lock); 4603 } 4604 stat_add(s, FREE_FASTPATH, cnt); 4605 } 4606 #else /* CONFIG_SLUB_TINY */ 4607 static void do_slab_free(struct kmem_cache *s, 4608 struct slab *slab, void *head, void *tail, 4609 int cnt, unsigned long addr) 4610 { 4611 __slab_free(s, slab, head, tail, cnt, addr); 4612 } 4613 #endif /* CONFIG_SLUB_TINY */ 4614 4615 static __fastpath_inline 4616 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4617 unsigned long addr) 4618 { 4619 memcg_slab_free_hook(s, slab, &object, 1); 4620 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4621 4622 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4623 do_slab_free(s, slab, object, object, 1, addr); 4624 } 4625 4626 #ifdef CONFIG_MEMCG 4627 /* Do not inline the rare memcg charging failed path into the allocation path */ 4628 static noinline 4629 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4630 { 4631 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4632 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4633 } 4634 #endif 4635 4636 static __fastpath_inline 4637 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4638 void *tail, void **p, int cnt, unsigned long addr) 4639 { 4640 memcg_slab_free_hook(s, slab, p, cnt); 4641 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4642 /* 4643 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4644 * to remove objects, whose reuse must be delayed. 4645 */ 4646 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4647 do_slab_free(s, slab, head, tail, cnt, addr); 4648 } 4649 4650 #ifdef CONFIG_SLUB_RCU_DEBUG 4651 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) 4652 { 4653 struct rcu_delayed_free *delayed_free = 4654 container_of(rcu_head, struct rcu_delayed_free, head); 4655 void *object = delayed_free->object; 4656 struct slab *slab = virt_to_slab(object); 4657 struct kmem_cache *s; 4658 4659 kfree(delayed_free); 4660 4661 if (WARN_ON(is_kfence_address(object))) 4662 return; 4663 4664 /* find the object and the cache again */ 4665 if (WARN_ON(!slab)) 4666 return; 4667 s = slab->slab_cache; 4668 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) 4669 return; 4670 4671 /* resume freeing */ 4672 if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) 4673 do_slab_free(s, slab, object, object, 1, _THIS_IP_); 4674 } 4675 #endif /* CONFIG_SLUB_RCU_DEBUG */ 4676 4677 #ifdef CONFIG_KASAN_GENERIC 4678 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4679 { 4680 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4681 } 4682 #endif 4683 4684 static inline struct kmem_cache *virt_to_cache(const void *obj) 4685 { 4686 struct slab *slab; 4687 4688 slab = virt_to_slab(obj); 4689 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4690 return NULL; 4691 return slab->slab_cache; 4692 } 4693 4694 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4695 { 4696 struct kmem_cache *cachep; 4697 4698 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4699 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4700 return s; 4701 4702 cachep = virt_to_cache(x); 4703 if (WARN(cachep && cachep != s, 4704 "%s: Wrong slab cache. %s but object is from %s\n", 4705 __func__, s->name, cachep->name)) 4706 print_tracking(cachep, x); 4707 return cachep; 4708 } 4709 4710 /** 4711 * kmem_cache_free - Deallocate an object 4712 * @s: The cache the allocation was from. 4713 * @x: The previously allocated object. 4714 * 4715 * Free an object which was previously allocated from this 4716 * cache. 4717 */ 4718 void kmem_cache_free(struct kmem_cache *s, void *x) 4719 { 4720 s = cache_from_obj(s, x); 4721 if (!s) 4722 return; 4723 trace_kmem_cache_free(_RET_IP_, x, s); 4724 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4725 } 4726 EXPORT_SYMBOL(kmem_cache_free); 4727 4728 static void free_large_kmalloc(struct folio *folio, void *object) 4729 { 4730 unsigned int order = folio_order(folio); 4731 4732 if (WARN_ON_ONCE(order == 0)) 4733 pr_warn_once("object pointer: 0x%p\n", object); 4734 4735 kmemleak_free(object); 4736 kasan_kfree_large(object); 4737 kmsan_kfree_large(object); 4738 4739 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4740 -(PAGE_SIZE << order)); 4741 folio_put(folio); 4742 } 4743 4744 /** 4745 * kfree - free previously allocated memory 4746 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4747 * 4748 * If @object is NULL, no operation is performed. 4749 */ 4750 void kfree(const void *object) 4751 { 4752 struct folio *folio; 4753 struct slab *slab; 4754 struct kmem_cache *s; 4755 void *x = (void *)object; 4756 4757 trace_kfree(_RET_IP_, object); 4758 4759 if (unlikely(ZERO_OR_NULL_PTR(object))) 4760 return; 4761 4762 folio = virt_to_folio(object); 4763 if (unlikely(!folio_test_slab(folio))) { 4764 free_large_kmalloc(folio, (void *)object); 4765 return; 4766 } 4767 4768 slab = folio_slab(folio); 4769 s = slab->slab_cache; 4770 slab_free(s, slab, x, _RET_IP_); 4771 } 4772 EXPORT_SYMBOL(kfree); 4773 4774 static __always_inline __realloc_size(2) void * 4775 __do_krealloc(const void *p, size_t new_size, gfp_t flags) 4776 { 4777 void *ret; 4778 size_t ks = 0; 4779 int orig_size = 0; 4780 struct kmem_cache *s = NULL; 4781 4782 if (unlikely(ZERO_OR_NULL_PTR(p))) 4783 goto alloc_new; 4784 4785 /* Check for double-free. */ 4786 if (!kasan_check_byte(p)) 4787 return NULL; 4788 4789 if (is_kfence_address(p)) { 4790 ks = orig_size = kfence_ksize(p); 4791 } else { 4792 struct folio *folio; 4793 4794 folio = virt_to_folio(p); 4795 if (unlikely(!folio_test_slab(folio))) { 4796 /* Big kmalloc object */ 4797 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE); 4798 WARN_ON(p != folio_address(folio)); 4799 ks = folio_size(folio); 4800 } else { 4801 s = folio_slab(folio)->slab_cache; 4802 orig_size = get_orig_size(s, (void *)p); 4803 ks = s->object_size; 4804 } 4805 } 4806 4807 /* If the old object doesn't fit, allocate a bigger one */ 4808 if (new_size > ks) 4809 goto alloc_new; 4810 4811 /* Zero out spare memory. */ 4812 if (want_init_on_alloc(flags)) { 4813 kasan_disable_current(); 4814 if (orig_size && orig_size < new_size) 4815 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); 4816 else 4817 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); 4818 kasan_enable_current(); 4819 } 4820 4821 /* Setup kmalloc redzone when needed */ 4822 if (s && slub_debug_orig_size(s)) { 4823 set_orig_size(s, (void *)p, new_size); 4824 if (s->flags & SLAB_RED_ZONE && new_size < ks) 4825 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, 4826 SLUB_RED_ACTIVE, ks - new_size); 4827 } 4828 4829 p = kasan_krealloc(p, new_size, flags); 4830 return (void *)p; 4831 4832 alloc_new: 4833 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_); 4834 if (ret && p) { 4835 /* Disable KASAN checks as the object's redzone is accessed. */ 4836 kasan_disable_current(); 4837 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); 4838 kasan_enable_current(); 4839 } 4840 4841 return ret; 4842 } 4843 4844 /** 4845 * krealloc - reallocate memory. The contents will remain unchanged. 4846 * @p: object to reallocate memory for. 4847 * @new_size: how many bytes of memory are required. 4848 * @flags: the type of memory to allocate. 4849 * 4850 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 4851 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 4852 * 4853 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4854 * initial memory allocation, every subsequent call to this API for the same 4855 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4856 * __GFP_ZERO is not fully honored by this API. 4857 * 4858 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket 4859 * size of an allocation (but not the exact size it was allocated with) and 4860 * hence implements the following semantics for shrinking and growing buffers 4861 * with __GFP_ZERO. 4862 * 4863 * new bucket 4864 * 0 size size 4865 * |--------|----------------| 4866 * | keep | zero | 4867 * 4868 * Otherwise, the original allocation size 'orig_size' could be used to 4869 * precisely clear the requested size, and the new size will also be stored 4870 * as the new 'orig_size'. 4871 * 4872 * In any case, the contents of the object pointed to are preserved up to the 4873 * lesser of the new and old sizes. 4874 * 4875 * Return: pointer to the allocated memory or %NULL in case of error 4876 */ 4877 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags) 4878 { 4879 void *ret; 4880 4881 if (unlikely(!new_size)) { 4882 kfree(p); 4883 return ZERO_SIZE_PTR; 4884 } 4885 4886 ret = __do_krealloc(p, new_size, flags); 4887 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 4888 kfree(p); 4889 4890 return ret; 4891 } 4892 EXPORT_SYMBOL(krealloc_noprof); 4893 4894 struct detached_freelist { 4895 struct slab *slab; 4896 void *tail; 4897 void *freelist; 4898 int cnt; 4899 struct kmem_cache *s; 4900 }; 4901 4902 /* 4903 * This function progressively scans the array with free objects (with 4904 * a limited look ahead) and extract objects belonging to the same 4905 * slab. It builds a detached freelist directly within the given 4906 * slab/objects. This can happen without any need for 4907 * synchronization, because the objects are owned by running process. 4908 * The freelist is build up as a single linked list in the objects. 4909 * The idea is, that this detached freelist can then be bulk 4910 * transferred to the real freelist(s), but only requiring a single 4911 * synchronization primitive. Look ahead in the array is limited due 4912 * to performance reasons. 4913 */ 4914 static inline 4915 int build_detached_freelist(struct kmem_cache *s, size_t size, 4916 void **p, struct detached_freelist *df) 4917 { 4918 int lookahead = 3; 4919 void *object; 4920 struct folio *folio; 4921 size_t same; 4922 4923 object = p[--size]; 4924 folio = virt_to_folio(object); 4925 if (!s) { 4926 /* Handle kalloc'ed objects */ 4927 if (unlikely(!folio_test_slab(folio))) { 4928 free_large_kmalloc(folio, object); 4929 df->slab = NULL; 4930 return size; 4931 } 4932 /* Derive kmem_cache from object */ 4933 df->slab = folio_slab(folio); 4934 df->s = df->slab->slab_cache; 4935 } else { 4936 df->slab = folio_slab(folio); 4937 df->s = cache_from_obj(s, object); /* Support for memcg */ 4938 } 4939 4940 /* Start new detached freelist */ 4941 df->tail = object; 4942 df->freelist = object; 4943 df->cnt = 1; 4944 4945 if (is_kfence_address(object)) 4946 return size; 4947 4948 set_freepointer(df->s, object, NULL); 4949 4950 same = size; 4951 while (size) { 4952 object = p[--size]; 4953 /* df->slab is always set at this point */ 4954 if (df->slab == virt_to_slab(object)) { 4955 /* Opportunity build freelist */ 4956 set_freepointer(df->s, object, df->freelist); 4957 df->freelist = object; 4958 df->cnt++; 4959 same--; 4960 if (size != same) 4961 swap(p[size], p[same]); 4962 continue; 4963 } 4964 4965 /* Limit look ahead search */ 4966 if (!--lookahead) 4967 break; 4968 } 4969 4970 return same; 4971 } 4972 4973 /* 4974 * Internal bulk free of objects that were not initialised by the post alloc 4975 * hooks and thus should not be processed by the free hooks 4976 */ 4977 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4978 { 4979 if (!size) 4980 return; 4981 4982 do { 4983 struct detached_freelist df; 4984 4985 size = build_detached_freelist(s, size, p, &df); 4986 if (!df.slab) 4987 continue; 4988 4989 if (kfence_free(df.freelist)) 4990 continue; 4991 4992 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4993 _RET_IP_); 4994 } while (likely(size)); 4995 } 4996 4997 /* Note that interrupts must be enabled when calling this function. */ 4998 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4999 { 5000 if (!size) 5001 return; 5002 5003 do { 5004 struct detached_freelist df; 5005 5006 size = build_detached_freelist(s, size, p, &df); 5007 if (!df.slab) 5008 continue; 5009 5010 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 5011 df.cnt, _RET_IP_); 5012 } while (likely(size)); 5013 } 5014 EXPORT_SYMBOL(kmem_cache_free_bulk); 5015 5016 #ifndef CONFIG_SLUB_TINY 5017 static inline 5018 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 5019 void **p) 5020 { 5021 struct kmem_cache_cpu *c; 5022 unsigned long irqflags; 5023 int i; 5024 5025 /* 5026 * Drain objects in the per cpu slab, while disabling local 5027 * IRQs, which protects against PREEMPT and interrupts 5028 * handlers invoking normal fastpath. 5029 */ 5030 c = slub_get_cpu_ptr(s->cpu_slab); 5031 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5032 5033 for (i = 0; i < size; i++) { 5034 void *object = kfence_alloc(s, s->object_size, flags); 5035 5036 if (unlikely(object)) { 5037 p[i] = object; 5038 continue; 5039 } 5040 5041 object = c->freelist; 5042 if (unlikely(!object)) { 5043 /* 5044 * We may have removed an object from c->freelist using 5045 * the fastpath in the previous iteration; in that case, 5046 * c->tid has not been bumped yet. 5047 * Since ___slab_alloc() may reenable interrupts while 5048 * allocating memory, we should bump c->tid now. 5049 */ 5050 c->tid = next_tid(c->tid); 5051 5052 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5053 5054 /* 5055 * Invoking slow path likely have side-effect 5056 * of re-populating per CPU c->freelist 5057 */ 5058 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 5059 _RET_IP_, c, s->object_size); 5060 if (unlikely(!p[i])) 5061 goto error; 5062 5063 c = this_cpu_ptr(s->cpu_slab); 5064 maybe_wipe_obj_freeptr(s, p[i]); 5065 5066 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5067 5068 continue; /* goto for-loop */ 5069 } 5070 c->freelist = get_freepointer(s, object); 5071 p[i] = object; 5072 maybe_wipe_obj_freeptr(s, p[i]); 5073 stat(s, ALLOC_FASTPATH); 5074 } 5075 c->tid = next_tid(c->tid); 5076 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5077 slub_put_cpu_ptr(s->cpu_slab); 5078 5079 return i; 5080 5081 error: 5082 slub_put_cpu_ptr(s->cpu_slab); 5083 __kmem_cache_free_bulk(s, i, p); 5084 return 0; 5085 5086 } 5087 #else /* CONFIG_SLUB_TINY */ 5088 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 5089 size_t size, void **p) 5090 { 5091 int i; 5092 5093 for (i = 0; i < size; i++) { 5094 void *object = kfence_alloc(s, s->object_size, flags); 5095 5096 if (unlikely(object)) { 5097 p[i] = object; 5098 continue; 5099 } 5100 5101 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 5102 _RET_IP_, s->object_size); 5103 if (unlikely(!p[i])) 5104 goto error; 5105 5106 maybe_wipe_obj_freeptr(s, p[i]); 5107 } 5108 5109 return i; 5110 5111 error: 5112 __kmem_cache_free_bulk(s, i, p); 5113 return 0; 5114 } 5115 #endif /* CONFIG_SLUB_TINY */ 5116 5117 /* Note that interrupts must be enabled when calling this function. */ 5118 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 5119 void **p) 5120 { 5121 int i; 5122 5123 if (!size) 5124 return 0; 5125 5126 s = slab_pre_alloc_hook(s, flags); 5127 if (unlikely(!s)) 5128 return 0; 5129 5130 i = __kmem_cache_alloc_bulk(s, flags, size, p); 5131 if (unlikely(i == 0)) 5132 return 0; 5133 5134 /* 5135 * memcg and kmem_cache debug support and memory initialization. 5136 * Done outside of the IRQ disabled fastpath loop. 5137 */ 5138 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 5139 slab_want_init_on_alloc(flags, s), s->object_size))) { 5140 return 0; 5141 } 5142 return i; 5143 } 5144 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 5145 5146 5147 /* 5148 * Object placement in a slab is made very easy because we always start at 5149 * offset 0. If we tune the size of the object to the alignment then we can 5150 * get the required alignment by putting one properly sized object after 5151 * another. 5152 * 5153 * Notice that the allocation order determines the sizes of the per cpu 5154 * caches. Each processor has always one slab available for allocations. 5155 * Increasing the allocation order reduces the number of times that slabs 5156 * must be moved on and off the partial lists and is therefore a factor in 5157 * locking overhead. 5158 */ 5159 5160 /* 5161 * Minimum / Maximum order of slab pages. This influences locking overhead 5162 * and slab fragmentation. A higher order reduces the number of partial slabs 5163 * and increases the number of allocations possible without having to 5164 * take the list_lock. 5165 */ 5166 static unsigned int slub_min_order; 5167 static unsigned int slub_max_order = 5168 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 5169 static unsigned int slub_min_objects; 5170 5171 /* 5172 * Calculate the order of allocation given an slab object size. 5173 * 5174 * The order of allocation has significant impact on performance and other 5175 * system components. Generally order 0 allocations should be preferred since 5176 * order 0 does not cause fragmentation in the page allocator. Larger objects 5177 * be problematic to put into order 0 slabs because there may be too much 5178 * unused space left. We go to a higher order if more than 1/16th of the slab 5179 * would be wasted. 5180 * 5181 * In order to reach satisfactory performance we must ensure that a minimum 5182 * number of objects is in one slab. Otherwise we may generate too much 5183 * activity on the partial lists which requires taking the list_lock. This is 5184 * less a concern for large slabs though which are rarely used. 5185 * 5186 * slab_max_order specifies the order where we begin to stop considering the 5187 * number of objects in a slab as critical. If we reach slab_max_order then 5188 * we try to keep the page order as low as possible. So we accept more waste 5189 * of space in favor of a small page order. 5190 * 5191 * Higher order allocations also allow the placement of more objects in a 5192 * slab and thereby reduce object handling overhead. If the user has 5193 * requested a higher minimum order then we start with that one instead of 5194 * the smallest order which will fit the object. 5195 */ 5196 static inline unsigned int calc_slab_order(unsigned int size, 5197 unsigned int min_order, unsigned int max_order, 5198 unsigned int fract_leftover) 5199 { 5200 unsigned int order; 5201 5202 for (order = min_order; order <= max_order; order++) { 5203 5204 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 5205 unsigned int rem; 5206 5207 rem = slab_size % size; 5208 5209 if (rem <= slab_size / fract_leftover) 5210 break; 5211 } 5212 5213 return order; 5214 } 5215 5216 static inline int calculate_order(unsigned int size) 5217 { 5218 unsigned int order; 5219 unsigned int min_objects; 5220 unsigned int max_objects; 5221 unsigned int min_order; 5222 5223 min_objects = slub_min_objects; 5224 if (!min_objects) { 5225 /* 5226 * Some architectures will only update present cpus when 5227 * onlining them, so don't trust the number if it's just 1. But 5228 * we also don't want to use nr_cpu_ids always, as on some other 5229 * architectures, there can be many possible cpus, but never 5230 * onlined. Here we compromise between trying to avoid too high 5231 * order on systems that appear larger than they are, and too 5232 * low order on systems that appear smaller than they are. 5233 */ 5234 unsigned int nr_cpus = num_present_cpus(); 5235 if (nr_cpus <= 1) 5236 nr_cpus = nr_cpu_ids; 5237 min_objects = 4 * (fls(nr_cpus) + 1); 5238 } 5239 /* min_objects can't be 0 because get_order(0) is undefined */ 5240 max_objects = max(order_objects(slub_max_order, size), 1U); 5241 min_objects = min(min_objects, max_objects); 5242 5243 min_order = max_t(unsigned int, slub_min_order, 5244 get_order(min_objects * size)); 5245 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 5246 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 5247 5248 /* 5249 * Attempt to find best configuration for a slab. This works by first 5250 * attempting to generate a layout with the best possible configuration 5251 * and backing off gradually. 5252 * 5253 * We start with accepting at most 1/16 waste and try to find the 5254 * smallest order from min_objects-derived/slab_min_order up to 5255 * slab_max_order that will satisfy the constraint. Note that increasing 5256 * the order can only result in same or less fractional waste, not more. 5257 * 5258 * If that fails, we increase the acceptable fraction of waste and try 5259 * again. The last iteration with fraction of 1/2 would effectively 5260 * accept any waste and give us the order determined by min_objects, as 5261 * long as at least single object fits within slab_max_order. 5262 */ 5263 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 5264 order = calc_slab_order(size, min_order, slub_max_order, 5265 fraction); 5266 if (order <= slub_max_order) 5267 return order; 5268 } 5269 5270 /* 5271 * Doh this slab cannot be placed using slab_max_order. 5272 */ 5273 order = get_order(size); 5274 if (order <= MAX_PAGE_ORDER) 5275 return order; 5276 return -ENOSYS; 5277 } 5278 5279 static void 5280 init_kmem_cache_node(struct kmem_cache_node *n) 5281 { 5282 n->nr_partial = 0; 5283 spin_lock_init(&n->list_lock); 5284 INIT_LIST_HEAD(&n->partial); 5285 #ifdef CONFIG_SLUB_DEBUG 5286 atomic_long_set(&n->nr_slabs, 0); 5287 atomic_long_set(&n->total_objects, 0); 5288 INIT_LIST_HEAD(&n->full); 5289 #endif 5290 } 5291 5292 #ifndef CONFIG_SLUB_TINY 5293 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5294 { 5295 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 5296 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 5297 sizeof(struct kmem_cache_cpu)); 5298 5299 /* 5300 * Must align to double word boundary for the double cmpxchg 5301 * instructions to work; see __pcpu_double_call_return_bool(). 5302 */ 5303 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 5304 2 * sizeof(void *)); 5305 5306 if (!s->cpu_slab) 5307 return 0; 5308 5309 init_kmem_cache_cpus(s); 5310 5311 return 1; 5312 } 5313 #else 5314 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5315 { 5316 return 1; 5317 } 5318 #endif /* CONFIG_SLUB_TINY */ 5319 5320 static struct kmem_cache *kmem_cache_node; 5321 5322 /* 5323 * No kmalloc_node yet so do it by hand. We know that this is the first 5324 * slab on the node for this slabcache. There are no concurrent accesses 5325 * possible. 5326 * 5327 * Note that this function only works on the kmem_cache_node 5328 * when allocating for the kmem_cache_node. This is used for bootstrapping 5329 * memory on a fresh node that has no slab structures yet. 5330 */ 5331 static void early_kmem_cache_node_alloc(int node) 5332 { 5333 struct slab *slab; 5334 struct kmem_cache_node *n; 5335 5336 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5337 5338 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5339 5340 BUG_ON(!slab); 5341 if (slab_nid(slab) != node) { 5342 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5343 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5344 } 5345 5346 n = slab->freelist; 5347 BUG_ON(!n); 5348 #ifdef CONFIG_SLUB_DEBUG 5349 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5350 #endif 5351 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5352 slab->freelist = get_freepointer(kmem_cache_node, n); 5353 slab->inuse = 1; 5354 kmem_cache_node->node[node] = n; 5355 init_kmem_cache_node(n); 5356 inc_slabs_node(kmem_cache_node, node, slab->objects); 5357 5358 /* 5359 * No locks need to be taken here as it has just been 5360 * initialized and there is no concurrent access. 5361 */ 5362 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5363 } 5364 5365 static void free_kmem_cache_nodes(struct kmem_cache *s) 5366 { 5367 int node; 5368 struct kmem_cache_node *n; 5369 5370 for_each_kmem_cache_node(s, node, n) { 5371 s->node[node] = NULL; 5372 kmem_cache_free(kmem_cache_node, n); 5373 } 5374 } 5375 5376 void __kmem_cache_release(struct kmem_cache *s) 5377 { 5378 cache_random_seq_destroy(s); 5379 #ifndef CONFIG_SLUB_TINY 5380 free_percpu(s->cpu_slab); 5381 #endif 5382 free_kmem_cache_nodes(s); 5383 } 5384 5385 static int init_kmem_cache_nodes(struct kmem_cache *s) 5386 { 5387 int node; 5388 5389 for_each_node_mask(node, slab_nodes) { 5390 struct kmem_cache_node *n; 5391 5392 if (slab_state == DOWN) { 5393 early_kmem_cache_node_alloc(node); 5394 continue; 5395 } 5396 n = kmem_cache_alloc_node(kmem_cache_node, 5397 GFP_KERNEL, node); 5398 5399 if (!n) { 5400 free_kmem_cache_nodes(s); 5401 return 0; 5402 } 5403 5404 init_kmem_cache_node(n); 5405 s->node[node] = n; 5406 } 5407 return 1; 5408 } 5409 5410 static void set_cpu_partial(struct kmem_cache *s) 5411 { 5412 #ifdef CONFIG_SLUB_CPU_PARTIAL 5413 unsigned int nr_objects; 5414 5415 /* 5416 * cpu_partial determined the maximum number of objects kept in the 5417 * per cpu partial lists of a processor. 5418 * 5419 * Per cpu partial lists mainly contain slabs that just have one 5420 * object freed. If they are used for allocation then they can be 5421 * filled up again with minimal effort. The slab will never hit the 5422 * per node partial lists and therefore no locking will be required. 5423 * 5424 * For backwards compatibility reasons, this is determined as number 5425 * of objects, even though we now limit maximum number of pages, see 5426 * slub_set_cpu_partial() 5427 */ 5428 if (!kmem_cache_has_cpu_partial(s)) 5429 nr_objects = 0; 5430 else if (s->size >= PAGE_SIZE) 5431 nr_objects = 6; 5432 else if (s->size >= 1024) 5433 nr_objects = 24; 5434 else if (s->size >= 256) 5435 nr_objects = 52; 5436 else 5437 nr_objects = 120; 5438 5439 slub_set_cpu_partial(s, nr_objects); 5440 #endif 5441 } 5442 5443 /* 5444 * calculate_sizes() determines the order and the distribution of data within 5445 * a slab object. 5446 */ 5447 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) 5448 { 5449 slab_flags_t flags = s->flags; 5450 unsigned int size = s->object_size; 5451 unsigned int order; 5452 5453 /* 5454 * Round up object size to the next word boundary. We can only 5455 * place the free pointer at word boundaries and this determines 5456 * the possible location of the free pointer. 5457 */ 5458 size = ALIGN(size, sizeof(void *)); 5459 5460 #ifdef CONFIG_SLUB_DEBUG 5461 /* 5462 * Determine if we can poison the object itself. If the user of 5463 * the slab may touch the object after free or before allocation 5464 * then we should never poison the object itself. 5465 */ 5466 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5467 !s->ctor) 5468 s->flags |= __OBJECT_POISON; 5469 else 5470 s->flags &= ~__OBJECT_POISON; 5471 5472 5473 /* 5474 * If we are Redzoning then check if there is some space between the 5475 * end of the object and the free pointer. If not then add an 5476 * additional word to have some bytes to store Redzone information. 5477 */ 5478 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5479 size += sizeof(void *); 5480 #endif 5481 5482 /* 5483 * With that we have determined the number of bytes in actual use 5484 * by the object and redzoning. 5485 */ 5486 s->inuse = size; 5487 5488 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || 5489 (flags & SLAB_POISON) || s->ctor || 5490 ((flags & SLAB_RED_ZONE) && 5491 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5492 /* 5493 * Relocate free pointer after the object if it is not 5494 * permitted to overwrite the first word of the object on 5495 * kmem_cache_free. 5496 * 5497 * This is the case if we do RCU, have a constructor or 5498 * destructor, are poisoning the objects, or are 5499 * redzoning an object smaller than sizeof(void *) or are 5500 * redzoning an object with slub_debug_orig_size() enabled, 5501 * in which case the right redzone may be extended. 5502 * 5503 * The assumption that s->offset >= s->inuse means free 5504 * pointer is outside of the object is used in the 5505 * freeptr_outside_object() function. If that is no 5506 * longer true, the function needs to be modified. 5507 */ 5508 s->offset = size; 5509 size += sizeof(void *); 5510 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { 5511 s->offset = args->freeptr_offset; 5512 } else { 5513 /* 5514 * Store freelist pointer near middle of object to keep 5515 * it away from the edges of the object to avoid small 5516 * sized over/underflows from neighboring allocations. 5517 */ 5518 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5519 } 5520 5521 #ifdef CONFIG_SLUB_DEBUG 5522 if (flags & SLAB_STORE_USER) { 5523 /* 5524 * Need to store information about allocs and frees after 5525 * the object. 5526 */ 5527 size += 2 * sizeof(struct track); 5528 5529 /* Save the original kmalloc request size */ 5530 if (flags & SLAB_KMALLOC) 5531 size += sizeof(unsigned int); 5532 } 5533 #endif 5534 5535 kasan_cache_create(s, &size, &s->flags); 5536 #ifdef CONFIG_SLUB_DEBUG 5537 if (flags & SLAB_RED_ZONE) { 5538 /* 5539 * Add some empty padding so that we can catch 5540 * overwrites from earlier objects rather than let 5541 * tracking information or the free pointer be 5542 * corrupted if a user writes before the start 5543 * of the object. 5544 */ 5545 size += sizeof(void *); 5546 5547 s->red_left_pad = sizeof(void *); 5548 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5549 size += s->red_left_pad; 5550 } 5551 #endif 5552 5553 /* 5554 * SLUB stores one object immediately after another beginning from 5555 * offset 0. In order to align the objects we have to simply size 5556 * each object to conform to the alignment. 5557 */ 5558 size = ALIGN(size, s->align); 5559 s->size = size; 5560 s->reciprocal_size = reciprocal_value(size); 5561 order = calculate_order(size); 5562 5563 if ((int)order < 0) 5564 return 0; 5565 5566 s->allocflags = __GFP_COMP; 5567 5568 if (s->flags & SLAB_CACHE_DMA) 5569 s->allocflags |= GFP_DMA; 5570 5571 if (s->flags & SLAB_CACHE_DMA32) 5572 s->allocflags |= GFP_DMA32; 5573 5574 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5575 s->allocflags |= __GFP_RECLAIMABLE; 5576 5577 /* 5578 * Determine the number of objects per slab 5579 */ 5580 s->oo = oo_make(order, size); 5581 s->min = oo_make(get_order(size), size); 5582 5583 return !!oo_objects(s->oo); 5584 } 5585 5586 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5587 const char *text) 5588 { 5589 #ifdef CONFIG_SLUB_DEBUG 5590 void *addr = slab_address(slab); 5591 void *p; 5592 5593 slab_err(s, slab, text, s->name); 5594 5595 spin_lock(&object_map_lock); 5596 __fill_map(object_map, s, slab); 5597 5598 for_each_object(p, s, addr, slab->objects) { 5599 5600 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5601 if (slab_add_kunit_errors()) 5602 continue; 5603 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5604 print_tracking(s, p); 5605 } 5606 } 5607 spin_unlock(&object_map_lock); 5608 #endif 5609 } 5610 5611 /* 5612 * Attempt to free all partial slabs on a node. 5613 * This is called from __kmem_cache_shutdown(). We must take list_lock 5614 * because sysfs file might still access partial list after the shutdowning. 5615 */ 5616 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5617 { 5618 LIST_HEAD(discard); 5619 struct slab *slab, *h; 5620 5621 BUG_ON(irqs_disabled()); 5622 spin_lock_irq(&n->list_lock); 5623 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5624 if (!slab->inuse) { 5625 remove_partial(n, slab); 5626 list_add(&slab->slab_list, &discard); 5627 } else { 5628 list_slab_objects(s, slab, 5629 "Objects remaining in %s on __kmem_cache_shutdown()"); 5630 } 5631 } 5632 spin_unlock_irq(&n->list_lock); 5633 5634 list_for_each_entry_safe(slab, h, &discard, slab_list) 5635 discard_slab(s, slab); 5636 } 5637 5638 bool __kmem_cache_empty(struct kmem_cache *s) 5639 { 5640 int node; 5641 struct kmem_cache_node *n; 5642 5643 for_each_kmem_cache_node(s, node, n) 5644 if (n->nr_partial || node_nr_slabs(n)) 5645 return false; 5646 return true; 5647 } 5648 5649 /* 5650 * Release all resources used by a slab cache. 5651 */ 5652 int __kmem_cache_shutdown(struct kmem_cache *s) 5653 { 5654 int node; 5655 struct kmem_cache_node *n; 5656 5657 flush_all_cpus_locked(s); 5658 /* Attempt to free all objects */ 5659 for_each_kmem_cache_node(s, node, n) { 5660 free_partial(s, n); 5661 if (n->nr_partial || node_nr_slabs(n)) 5662 return 1; 5663 } 5664 return 0; 5665 } 5666 5667 #ifdef CONFIG_PRINTK 5668 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5669 { 5670 void *base; 5671 int __maybe_unused i; 5672 unsigned int objnr; 5673 void *objp; 5674 void *objp0; 5675 struct kmem_cache *s = slab->slab_cache; 5676 struct track __maybe_unused *trackp; 5677 5678 kpp->kp_ptr = object; 5679 kpp->kp_slab = slab; 5680 kpp->kp_slab_cache = s; 5681 base = slab_address(slab); 5682 objp0 = kasan_reset_tag(object); 5683 #ifdef CONFIG_SLUB_DEBUG 5684 objp = restore_red_left(s, objp0); 5685 #else 5686 objp = objp0; 5687 #endif 5688 objnr = obj_to_index(s, slab, objp); 5689 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5690 objp = base + s->size * objnr; 5691 kpp->kp_objp = objp; 5692 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5693 || (objp - base) % s->size) || 5694 !(s->flags & SLAB_STORE_USER)) 5695 return; 5696 #ifdef CONFIG_SLUB_DEBUG 5697 objp = fixup_red_left(s, objp); 5698 trackp = get_track(s, objp, TRACK_ALLOC); 5699 kpp->kp_ret = (void *)trackp->addr; 5700 #ifdef CONFIG_STACKDEPOT 5701 { 5702 depot_stack_handle_t handle; 5703 unsigned long *entries; 5704 unsigned int nr_entries; 5705 5706 handle = READ_ONCE(trackp->handle); 5707 if (handle) { 5708 nr_entries = stack_depot_fetch(handle, &entries); 5709 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5710 kpp->kp_stack[i] = (void *)entries[i]; 5711 } 5712 5713 trackp = get_track(s, objp, TRACK_FREE); 5714 handle = READ_ONCE(trackp->handle); 5715 if (handle) { 5716 nr_entries = stack_depot_fetch(handle, &entries); 5717 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5718 kpp->kp_free_stack[i] = (void *)entries[i]; 5719 } 5720 } 5721 #endif 5722 #endif 5723 } 5724 #endif 5725 5726 /******************************************************************** 5727 * Kmalloc subsystem 5728 *******************************************************************/ 5729 5730 static int __init setup_slub_min_order(char *str) 5731 { 5732 get_option(&str, (int *)&slub_min_order); 5733 5734 if (slub_min_order > slub_max_order) 5735 slub_max_order = slub_min_order; 5736 5737 return 1; 5738 } 5739 5740 __setup("slab_min_order=", setup_slub_min_order); 5741 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5742 5743 5744 static int __init setup_slub_max_order(char *str) 5745 { 5746 get_option(&str, (int *)&slub_max_order); 5747 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5748 5749 if (slub_min_order > slub_max_order) 5750 slub_min_order = slub_max_order; 5751 5752 return 1; 5753 } 5754 5755 __setup("slab_max_order=", setup_slub_max_order); 5756 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5757 5758 static int __init setup_slub_min_objects(char *str) 5759 { 5760 get_option(&str, (int *)&slub_min_objects); 5761 5762 return 1; 5763 } 5764 5765 __setup("slab_min_objects=", setup_slub_min_objects); 5766 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5767 5768 #ifdef CONFIG_NUMA 5769 static int __init setup_slab_strict_numa(char *str) 5770 { 5771 if (nr_node_ids > 1) { 5772 static_branch_enable(&strict_numa); 5773 pr_info("SLUB: Strict NUMA enabled.\n"); 5774 } else { 5775 pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); 5776 } 5777 5778 return 1; 5779 } 5780 5781 __setup("slab_strict_numa", setup_slab_strict_numa); 5782 #endif 5783 5784 5785 #ifdef CONFIG_HARDENED_USERCOPY 5786 /* 5787 * Rejects incorrectly sized objects and objects that are to be copied 5788 * to/from userspace but do not fall entirely within the containing slab 5789 * cache's usercopy region. 5790 * 5791 * Returns NULL if check passes, otherwise const char * to name of cache 5792 * to indicate an error. 5793 */ 5794 void __check_heap_object(const void *ptr, unsigned long n, 5795 const struct slab *slab, bool to_user) 5796 { 5797 struct kmem_cache *s; 5798 unsigned int offset; 5799 bool is_kfence = is_kfence_address(ptr); 5800 5801 ptr = kasan_reset_tag(ptr); 5802 5803 /* Find object and usable object size. */ 5804 s = slab->slab_cache; 5805 5806 /* Reject impossible pointers. */ 5807 if (ptr < slab_address(slab)) 5808 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5809 to_user, 0, n); 5810 5811 /* Find offset within object. */ 5812 if (is_kfence) 5813 offset = ptr - kfence_object_start(ptr); 5814 else 5815 offset = (ptr - slab_address(slab)) % s->size; 5816 5817 /* Adjust for redzone and reject if within the redzone. */ 5818 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5819 if (offset < s->red_left_pad) 5820 usercopy_abort("SLUB object in left red zone", 5821 s->name, to_user, offset, n); 5822 offset -= s->red_left_pad; 5823 } 5824 5825 /* Allow address range falling entirely within usercopy region. */ 5826 if (offset >= s->useroffset && 5827 offset - s->useroffset <= s->usersize && 5828 n <= s->useroffset - offset + s->usersize) 5829 return; 5830 5831 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5832 } 5833 #endif /* CONFIG_HARDENED_USERCOPY */ 5834 5835 #define SHRINK_PROMOTE_MAX 32 5836 5837 /* 5838 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5839 * up most to the head of the partial lists. New allocations will then 5840 * fill those up and thus they can be removed from the partial lists. 5841 * 5842 * The slabs with the least items are placed last. This results in them 5843 * being allocated from last increasing the chance that the last objects 5844 * are freed in them. 5845 */ 5846 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5847 { 5848 int node; 5849 int i; 5850 struct kmem_cache_node *n; 5851 struct slab *slab; 5852 struct slab *t; 5853 struct list_head discard; 5854 struct list_head promote[SHRINK_PROMOTE_MAX]; 5855 unsigned long flags; 5856 int ret = 0; 5857 5858 for_each_kmem_cache_node(s, node, n) { 5859 INIT_LIST_HEAD(&discard); 5860 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5861 INIT_LIST_HEAD(promote + i); 5862 5863 spin_lock_irqsave(&n->list_lock, flags); 5864 5865 /* 5866 * Build lists of slabs to discard or promote. 5867 * 5868 * Note that concurrent frees may occur while we hold the 5869 * list_lock. slab->inuse here is the upper limit. 5870 */ 5871 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5872 int free = slab->objects - slab->inuse; 5873 5874 /* Do not reread slab->inuse */ 5875 barrier(); 5876 5877 /* We do not keep full slabs on the list */ 5878 BUG_ON(free <= 0); 5879 5880 if (free == slab->objects) { 5881 list_move(&slab->slab_list, &discard); 5882 slab_clear_node_partial(slab); 5883 n->nr_partial--; 5884 dec_slabs_node(s, node, slab->objects); 5885 } else if (free <= SHRINK_PROMOTE_MAX) 5886 list_move(&slab->slab_list, promote + free - 1); 5887 } 5888 5889 /* 5890 * Promote the slabs filled up most to the head of the 5891 * partial list. 5892 */ 5893 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5894 list_splice(promote + i, &n->partial); 5895 5896 spin_unlock_irqrestore(&n->list_lock, flags); 5897 5898 /* Release empty slabs */ 5899 list_for_each_entry_safe(slab, t, &discard, slab_list) 5900 free_slab(s, slab); 5901 5902 if (node_nr_slabs(n)) 5903 ret = 1; 5904 } 5905 5906 return ret; 5907 } 5908 5909 int __kmem_cache_shrink(struct kmem_cache *s) 5910 { 5911 flush_all(s); 5912 return __kmem_cache_do_shrink(s); 5913 } 5914 5915 static int slab_mem_going_offline_callback(void *arg) 5916 { 5917 struct kmem_cache *s; 5918 5919 mutex_lock(&slab_mutex); 5920 list_for_each_entry(s, &slab_caches, list) { 5921 flush_all_cpus_locked(s); 5922 __kmem_cache_do_shrink(s); 5923 } 5924 mutex_unlock(&slab_mutex); 5925 5926 return 0; 5927 } 5928 5929 static void slab_mem_offline_callback(void *arg) 5930 { 5931 struct memory_notify *marg = arg; 5932 int offline_node; 5933 5934 offline_node = marg->status_change_nid_normal; 5935 5936 /* 5937 * If the node still has available memory. we need kmem_cache_node 5938 * for it yet. 5939 */ 5940 if (offline_node < 0) 5941 return; 5942 5943 mutex_lock(&slab_mutex); 5944 node_clear(offline_node, slab_nodes); 5945 /* 5946 * We no longer free kmem_cache_node structures here, as it would be 5947 * racy with all get_node() users, and infeasible to protect them with 5948 * slab_mutex. 5949 */ 5950 mutex_unlock(&slab_mutex); 5951 } 5952 5953 static int slab_mem_going_online_callback(void *arg) 5954 { 5955 struct kmem_cache_node *n; 5956 struct kmem_cache *s; 5957 struct memory_notify *marg = arg; 5958 int nid = marg->status_change_nid_normal; 5959 int ret = 0; 5960 5961 /* 5962 * If the node's memory is already available, then kmem_cache_node is 5963 * already created. Nothing to do. 5964 */ 5965 if (nid < 0) 5966 return 0; 5967 5968 /* 5969 * We are bringing a node online. No memory is available yet. We must 5970 * allocate a kmem_cache_node structure in order to bring the node 5971 * online. 5972 */ 5973 mutex_lock(&slab_mutex); 5974 list_for_each_entry(s, &slab_caches, list) { 5975 /* 5976 * The structure may already exist if the node was previously 5977 * onlined and offlined. 5978 */ 5979 if (get_node(s, nid)) 5980 continue; 5981 /* 5982 * XXX: kmem_cache_alloc_node will fallback to other nodes 5983 * since memory is not yet available from the node that 5984 * is brought up. 5985 */ 5986 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5987 if (!n) { 5988 ret = -ENOMEM; 5989 goto out; 5990 } 5991 init_kmem_cache_node(n); 5992 s->node[nid] = n; 5993 } 5994 /* 5995 * Any cache created after this point will also have kmem_cache_node 5996 * initialized for the new node. 5997 */ 5998 node_set(nid, slab_nodes); 5999 out: 6000 mutex_unlock(&slab_mutex); 6001 return ret; 6002 } 6003 6004 static int slab_memory_callback(struct notifier_block *self, 6005 unsigned long action, void *arg) 6006 { 6007 int ret = 0; 6008 6009 switch (action) { 6010 case MEM_GOING_ONLINE: 6011 ret = slab_mem_going_online_callback(arg); 6012 break; 6013 case MEM_GOING_OFFLINE: 6014 ret = slab_mem_going_offline_callback(arg); 6015 break; 6016 case MEM_OFFLINE: 6017 case MEM_CANCEL_ONLINE: 6018 slab_mem_offline_callback(arg); 6019 break; 6020 case MEM_ONLINE: 6021 case MEM_CANCEL_OFFLINE: 6022 break; 6023 } 6024 if (ret) 6025 ret = notifier_from_errno(ret); 6026 else 6027 ret = NOTIFY_OK; 6028 return ret; 6029 } 6030 6031 /******************************************************************** 6032 * Basic setup of slabs 6033 *******************************************************************/ 6034 6035 /* 6036 * Used for early kmem_cache structures that were allocated using 6037 * the page allocator. Allocate them properly then fix up the pointers 6038 * that may be pointing to the wrong kmem_cache structure. 6039 */ 6040 6041 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 6042 { 6043 int node; 6044 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 6045 struct kmem_cache_node *n; 6046 6047 memcpy(s, static_cache, kmem_cache->object_size); 6048 6049 /* 6050 * This runs very early, and only the boot processor is supposed to be 6051 * up. Even if it weren't true, IRQs are not up so we couldn't fire 6052 * IPIs around. 6053 */ 6054 __flush_cpu_slab(s, smp_processor_id()); 6055 for_each_kmem_cache_node(s, node, n) { 6056 struct slab *p; 6057 6058 list_for_each_entry(p, &n->partial, slab_list) 6059 p->slab_cache = s; 6060 6061 #ifdef CONFIG_SLUB_DEBUG 6062 list_for_each_entry(p, &n->full, slab_list) 6063 p->slab_cache = s; 6064 #endif 6065 } 6066 list_add(&s->list, &slab_caches); 6067 return s; 6068 } 6069 6070 void __init kmem_cache_init(void) 6071 { 6072 static __initdata struct kmem_cache boot_kmem_cache, 6073 boot_kmem_cache_node; 6074 int node; 6075 6076 if (debug_guardpage_minorder()) 6077 slub_max_order = 0; 6078 6079 /* Print slub debugging pointers without hashing */ 6080 if (__slub_debug_enabled()) 6081 no_hash_pointers_enable(NULL); 6082 6083 kmem_cache_node = &boot_kmem_cache_node; 6084 kmem_cache = &boot_kmem_cache; 6085 6086 /* 6087 * Initialize the nodemask for which we will allocate per node 6088 * structures. Here we don't need taking slab_mutex yet. 6089 */ 6090 for_each_node_state(node, N_NORMAL_MEMORY) 6091 node_set(node, slab_nodes); 6092 6093 create_boot_cache(kmem_cache_node, "kmem_cache_node", 6094 sizeof(struct kmem_cache_node), 6095 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6096 6097 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 6098 6099 /* Able to allocate the per node structures */ 6100 slab_state = PARTIAL; 6101 6102 create_boot_cache(kmem_cache, "kmem_cache", 6103 offsetof(struct kmem_cache, node) + 6104 nr_node_ids * sizeof(struct kmem_cache_node *), 6105 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6106 6107 kmem_cache = bootstrap(&boot_kmem_cache); 6108 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 6109 6110 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 6111 setup_kmalloc_cache_index_table(); 6112 create_kmalloc_caches(); 6113 6114 /* Setup random freelists for each cache */ 6115 init_freelist_randomization(); 6116 6117 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 6118 slub_cpu_dead); 6119 6120 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 6121 cache_line_size(), 6122 slub_min_order, slub_max_order, slub_min_objects, 6123 nr_cpu_ids, nr_node_ids); 6124 } 6125 6126 void __init kmem_cache_init_late(void) 6127 { 6128 #ifndef CONFIG_SLUB_TINY 6129 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 6130 WARN_ON(!flushwq); 6131 #endif 6132 } 6133 6134 struct kmem_cache * 6135 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 6136 slab_flags_t flags, void (*ctor)(void *)) 6137 { 6138 struct kmem_cache *s; 6139 6140 s = find_mergeable(size, align, flags, name, ctor); 6141 if (s) { 6142 if (sysfs_slab_alias(s, name)) 6143 pr_err("SLUB: Unable to add cache alias %s to sysfs\n", 6144 name); 6145 6146 s->refcount++; 6147 6148 /* 6149 * Adjust the object sizes so that we clear 6150 * the complete object on kzalloc. 6151 */ 6152 s->object_size = max(s->object_size, size); 6153 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 6154 } 6155 6156 return s; 6157 } 6158 6159 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 6160 unsigned int size, struct kmem_cache_args *args, 6161 slab_flags_t flags) 6162 { 6163 int err = -EINVAL; 6164 6165 s->name = name; 6166 s->size = s->object_size = size; 6167 6168 s->flags = kmem_cache_flags(flags, s->name); 6169 #ifdef CONFIG_SLAB_FREELIST_HARDENED 6170 s->random = get_random_long(); 6171 #endif 6172 s->align = args->align; 6173 s->ctor = args->ctor; 6174 #ifdef CONFIG_HARDENED_USERCOPY 6175 s->useroffset = args->useroffset; 6176 s->usersize = args->usersize; 6177 #endif 6178 6179 if (!calculate_sizes(args, s)) 6180 goto out; 6181 if (disable_higher_order_debug) { 6182 /* 6183 * Disable debugging flags that store metadata if the min slab 6184 * order increased. 6185 */ 6186 if (get_order(s->size) > get_order(s->object_size)) { 6187 s->flags &= ~DEBUG_METADATA_FLAGS; 6188 s->offset = 0; 6189 if (!calculate_sizes(args, s)) 6190 goto out; 6191 } 6192 } 6193 6194 #ifdef system_has_freelist_aba 6195 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 6196 /* Enable fast mode */ 6197 s->flags |= __CMPXCHG_DOUBLE; 6198 } 6199 #endif 6200 6201 /* 6202 * The larger the object size is, the more slabs we want on the partial 6203 * list to avoid pounding the page allocator excessively. 6204 */ 6205 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 6206 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 6207 6208 set_cpu_partial(s); 6209 6210 #ifdef CONFIG_NUMA 6211 s->remote_node_defrag_ratio = 1000; 6212 #endif 6213 6214 /* Initialize the pre-computed randomized freelist if slab is up */ 6215 if (slab_state >= UP) { 6216 if (init_cache_random_seq(s)) 6217 goto out; 6218 } 6219 6220 if (!init_kmem_cache_nodes(s)) 6221 goto out; 6222 6223 if (!alloc_kmem_cache_cpus(s)) 6224 goto out; 6225 6226 err = 0; 6227 6228 /* Mutex is not taken during early boot */ 6229 if (slab_state <= UP) 6230 goto out; 6231 6232 /* 6233 * Failing to create sysfs files is not critical to SLUB functionality. 6234 * If it fails, proceed with cache creation without these files. 6235 */ 6236 if (sysfs_slab_add(s)) 6237 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); 6238 6239 if (s->flags & SLAB_STORE_USER) 6240 debugfs_slab_add(s); 6241 6242 out: 6243 if (err) 6244 __kmem_cache_release(s); 6245 return err; 6246 } 6247 6248 #ifdef SLAB_SUPPORTS_SYSFS 6249 static int count_inuse(struct slab *slab) 6250 { 6251 return slab->inuse; 6252 } 6253 6254 static int count_total(struct slab *slab) 6255 { 6256 return slab->objects; 6257 } 6258 #endif 6259 6260 #ifdef CONFIG_SLUB_DEBUG 6261 static void validate_slab(struct kmem_cache *s, struct slab *slab, 6262 unsigned long *obj_map) 6263 { 6264 void *p; 6265 void *addr = slab_address(slab); 6266 6267 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 6268 return; 6269 6270 /* Now we know that a valid freelist exists */ 6271 __fill_map(obj_map, s, slab); 6272 for_each_object(p, s, addr, slab->objects) { 6273 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 6274 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 6275 6276 if (!check_object(s, slab, p, val)) 6277 break; 6278 } 6279 } 6280 6281 static int validate_slab_node(struct kmem_cache *s, 6282 struct kmem_cache_node *n, unsigned long *obj_map) 6283 { 6284 unsigned long count = 0; 6285 struct slab *slab; 6286 unsigned long flags; 6287 6288 spin_lock_irqsave(&n->list_lock, flags); 6289 6290 list_for_each_entry(slab, &n->partial, slab_list) { 6291 validate_slab(s, slab, obj_map); 6292 count++; 6293 } 6294 if (count != n->nr_partial) { 6295 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 6296 s->name, count, n->nr_partial); 6297 slab_add_kunit_errors(); 6298 } 6299 6300 if (!(s->flags & SLAB_STORE_USER)) 6301 goto out; 6302 6303 list_for_each_entry(slab, &n->full, slab_list) { 6304 validate_slab(s, slab, obj_map); 6305 count++; 6306 } 6307 if (count != node_nr_slabs(n)) { 6308 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 6309 s->name, count, node_nr_slabs(n)); 6310 slab_add_kunit_errors(); 6311 } 6312 6313 out: 6314 spin_unlock_irqrestore(&n->list_lock, flags); 6315 return count; 6316 } 6317 6318 long validate_slab_cache(struct kmem_cache *s) 6319 { 6320 int node; 6321 unsigned long count = 0; 6322 struct kmem_cache_node *n; 6323 unsigned long *obj_map; 6324 6325 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6326 if (!obj_map) 6327 return -ENOMEM; 6328 6329 flush_all(s); 6330 for_each_kmem_cache_node(s, node, n) 6331 count += validate_slab_node(s, n, obj_map); 6332 6333 bitmap_free(obj_map); 6334 6335 return count; 6336 } 6337 EXPORT_SYMBOL(validate_slab_cache); 6338 6339 #ifdef CONFIG_DEBUG_FS 6340 /* 6341 * Generate lists of code addresses where slabcache objects are allocated 6342 * and freed. 6343 */ 6344 6345 struct location { 6346 depot_stack_handle_t handle; 6347 unsigned long count; 6348 unsigned long addr; 6349 unsigned long waste; 6350 long long sum_time; 6351 long min_time; 6352 long max_time; 6353 long min_pid; 6354 long max_pid; 6355 DECLARE_BITMAP(cpus, NR_CPUS); 6356 nodemask_t nodes; 6357 }; 6358 6359 struct loc_track { 6360 unsigned long max; 6361 unsigned long count; 6362 struct location *loc; 6363 loff_t idx; 6364 }; 6365 6366 static struct dentry *slab_debugfs_root; 6367 6368 static void free_loc_track(struct loc_track *t) 6369 { 6370 if (t->max) 6371 free_pages((unsigned long)t->loc, 6372 get_order(sizeof(struct location) * t->max)); 6373 } 6374 6375 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6376 { 6377 struct location *l; 6378 int order; 6379 6380 order = get_order(sizeof(struct location) * max); 6381 6382 l = (void *)__get_free_pages(flags, order); 6383 if (!l) 6384 return 0; 6385 6386 if (t->count) { 6387 memcpy(l, t->loc, sizeof(struct location) * t->count); 6388 free_loc_track(t); 6389 } 6390 t->max = max; 6391 t->loc = l; 6392 return 1; 6393 } 6394 6395 static int add_location(struct loc_track *t, struct kmem_cache *s, 6396 const struct track *track, 6397 unsigned int orig_size) 6398 { 6399 long start, end, pos; 6400 struct location *l; 6401 unsigned long caddr, chandle, cwaste; 6402 unsigned long age = jiffies - track->when; 6403 depot_stack_handle_t handle = 0; 6404 unsigned int waste = s->object_size - orig_size; 6405 6406 #ifdef CONFIG_STACKDEPOT 6407 handle = READ_ONCE(track->handle); 6408 #endif 6409 start = -1; 6410 end = t->count; 6411 6412 for ( ; ; ) { 6413 pos = start + (end - start + 1) / 2; 6414 6415 /* 6416 * There is nothing at "end". If we end up there 6417 * we need to add something to before end. 6418 */ 6419 if (pos == end) 6420 break; 6421 6422 l = &t->loc[pos]; 6423 caddr = l->addr; 6424 chandle = l->handle; 6425 cwaste = l->waste; 6426 if ((track->addr == caddr) && (handle == chandle) && 6427 (waste == cwaste)) { 6428 6429 l->count++; 6430 if (track->when) { 6431 l->sum_time += age; 6432 if (age < l->min_time) 6433 l->min_time = age; 6434 if (age > l->max_time) 6435 l->max_time = age; 6436 6437 if (track->pid < l->min_pid) 6438 l->min_pid = track->pid; 6439 if (track->pid > l->max_pid) 6440 l->max_pid = track->pid; 6441 6442 cpumask_set_cpu(track->cpu, 6443 to_cpumask(l->cpus)); 6444 } 6445 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6446 return 1; 6447 } 6448 6449 if (track->addr < caddr) 6450 end = pos; 6451 else if (track->addr == caddr && handle < chandle) 6452 end = pos; 6453 else if (track->addr == caddr && handle == chandle && 6454 waste < cwaste) 6455 end = pos; 6456 else 6457 start = pos; 6458 } 6459 6460 /* 6461 * Not found. Insert new tracking element. 6462 */ 6463 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6464 return 0; 6465 6466 l = t->loc + pos; 6467 if (pos < t->count) 6468 memmove(l + 1, l, 6469 (t->count - pos) * sizeof(struct location)); 6470 t->count++; 6471 l->count = 1; 6472 l->addr = track->addr; 6473 l->sum_time = age; 6474 l->min_time = age; 6475 l->max_time = age; 6476 l->min_pid = track->pid; 6477 l->max_pid = track->pid; 6478 l->handle = handle; 6479 l->waste = waste; 6480 cpumask_clear(to_cpumask(l->cpus)); 6481 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6482 nodes_clear(l->nodes); 6483 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6484 return 1; 6485 } 6486 6487 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6488 struct slab *slab, enum track_item alloc, 6489 unsigned long *obj_map) 6490 { 6491 void *addr = slab_address(slab); 6492 bool is_alloc = (alloc == TRACK_ALLOC); 6493 void *p; 6494 6495 __fill_map(obj_map, s, slab); 6496 6497 for_each_object(p, s, addr, slab->objects) 6498 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6499 add_location(t, s, get_track(s, p, alloc), 6500 is_alloc ? get_orig_size(s, p) : 6501 s->object_size); 6502 } 6503 #endif /* CONFIG_DEBUG_FS */ 6504 #endif /* CONFIG_SLUB_DEBUG */ 6505 6506 #ifdef SLAB_SUPPORTS_SYSFS 6507 enum slab_stat_type { 6508 SL_ALL, /* All slabs */ 6509 SL_PARTIAL, /* Only partially allocated slabs */ 6510 SL_CPU, /* Only slabs used for cpu caches */ 6511 SL_OBJECTS, /* Determine allocated objects not slabs */ 6512 SL_TOTAL /* Determine object capacity not slabs */ 6513 }; 6514 6515 #define SO_ALL (1 << SL_ALL) 6516 #define SO_PARTIAL (1 << SL_PARTIAL) 6517 #define SO_CPU (1 << SL_CPU) 6518 #define SO_OBJECTS (1 << SL_OBJECTS) 6519 #define SO_TOTAL (1 << SL_TOTAL) 6520 6521 static ssize_t show_slab_objects(struct kmem_cache *s, 6522 char *buf, unsigned long flags) 6523 { 6524 unsigned long total = 0; 6525 int node; 6526 int x; 6527 unsigned long *nodes; 6528 int len = 0; 6529 6530 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6531 if (!nodes) 6532 return -ENOMEM; 6533 6534 if (flags & SO_CPU) { 6535 int cpu; 6536 6537 for_each_possible_cpu(cpu) { 6538 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6539 cpu); 6540 int node; 6541 struct slab *slab; 6542 6543 slab = READ_ONCE(c->slab); 6544 if (!slab) 6545 continue; 6546 6547 node = slab_nid(slab); 6548 if (flags & SO_TOTAL) 6549 x = slab->objects; 6550 else if (flags & SO_OBJECTS) 6551 x = slab->inuse; 6552 else 6553 x = 1; 6554 6555 total += x; 6556 nodes[node] += x; 6557 6558 #ifdef CONFIG_SLUB_CPU_PARTIAL 6559 slab = slub_percpu_partial_read_once(c); 6560 if (slab) { 6561 node = slab_nid(slab); 6562 if (flags & SO_TOTAL) 6563 WARN_ON_ONCE(1); 6564 else if (flags & SO_OBJECTS) 6565 WARN_ON_ONCE(1); 6566 else 6567 x = data_race(slab->slabs); 6568 total += x; 6569 nodes[node] += x; 6570 } 6571 #endif 6572 } 6573 } 6574 6575 /* 6576 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6577 * already held which will conflict with an existing lock order: 6578 * 6579 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6580 * 6581 * We don't really need mem_hotplug_lock (to hold off 6582 * slab_mem_going_offline_callback) here because slab's memory hot 6583 * unplug code doesn't destroy the kmem_cache->node[] data. 6584 */ 6585 6586 #ifdef CONFIG_SLUB_DEBUG 6587 if (flags & SO_ALL) { 6588 struct kmem_cache_node *n; 6589 6590 for_each_kmem_cache_node(s, node, n) { 6591 6592 if (flags & SO_TOTAL) 6593 x = node_nr_objs(n); 6594 else if (flags & SO_OBJECTS) 6595 x = node_nr_objs(n) - count_partial(n, count_free); 6596 else 6597 x = node_nr_slabs(n); 6598 total += x; 6599 nodes[node] += x; 6600 } 6601 6602 } else 6603 #endif 6604 if (flags & SO_PARTIAL) { 6605 struct kmem_cache_node *n; 6606 6607 for_each_kmem_cache_node(s, node, n) { 6608 if (flags & SO_TOTAL) 6609 x = count_partial(n, count_total); 6610 else if (flags & SO_OBJECTS) 6611 x = count_partial(n, count_inuse); 6612 else 6613 x = n->nr_partial; 6614 total += x; 6615 nodes[node] += x; 6616 } 6617 } 6618 6619 len += sysfs_emit_at(buf, len, "%lu", total); 6620 #ifdef CONFIG_NUMA 6621 for (node = 0; node < nr_node_ids; node++) { 6622 if (nodes[node]) 6623 len += sysfs_emit_at(buf, len, " N%d=%lu", 6624 node, nodes[node]); 6625 } 6626 #endif 6627 len += sysfs_emit_at(buf, len, "\n"); 6628 kfree(nodes); 6629 6630 return len; 6631 } 6632 6633 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6634 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6635 6636 struct slab_attribute { 6637 struct attribute attr; 6638 ssize_t (*show)(struct kmem_cache *s, char *buf); 6639 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6640 }; 6641 6642 #define SLAB_ATTR_RO(_name) \ 6643 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6644 6645 #define SLAB_ATTR(_name) \ 6646 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6647 6648 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6649 { 6650 return sysfs_emit(buf, "%u\n", s->size); 6651 } 6652 SLAB_ATTR_RO(slab_size); 6653 6654 static ssize_t align_show(struct kmem_cache *s, char *buf) 6655 { 6656 return sysfs_emit(buf, "%u\n", s->align); 6657 } 6658 SLAB_ATTR_RO(align); 6659 6660 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6661 { 6662 return sysfs_emit(buf, "%u\n", s->object_size); 6663 } 6664 SLAB_ATTR_RO(object_size); 6665 6666 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6667 { 6668 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6669 } 6670 SLAB_ATTR_RO(objs_per_slab); 6671 6672 static ssize_t order_show(struct kmem_cache *s, char *buf) 6673 { 6674 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6675 } 6676 SLAB_ATTR_RO(order); 6677 6678 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6679 { 6680 return sysfs_emit(buf, "%lu\n", s->min_partial); 6681 } 6682 6683 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6684 size_t length) 6685 { 6686 unsigned long min; 6687 int err; 6688 6689 err = kstrtoul(buf, 10, &min); 6690 if (err) 6691 return err; 6692 6693 s->min_partial = min; 6694 return length; 6695 } 6696 SLAB_ATTR(min_partial); 6697 6698 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6699 { 6700 unsigned int nr_partial = 0; 6701 #ifdef CONFIG_SLUB_CPU_PARTIAL 6702 nr_partial = s->cpu_partial; 6703 #endif 6704 6705 return sysfs_emit(buf, "%u\n", nr_partial); 6706 } 6707 6708 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6709 size_t length) 6710 { 6711 unsigned int objects; 6712 int err; 6713 6714 err = kstrtouint(buf, 10, &objects); 6715 if (err) 6716 return err; 6717 if (objects && !kmem_cache_has_cpu_partial(s)) 6718 return -EINVAL; 6719 6720 slub_set_cpu_partial(s, objects); 6721 flush_all(s); 6722 return length; 6723 } 6724 SLAB_ATTR(cpu_partial); 6725 6726 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6727 { 6728 if (!s->ctor) 6729 return 0; 6730 return sysfs_emit(buf, "%pS\n", s->ctor); 6731 } 6732 SLAB_ATTR_RO(ctor); 6733 6734 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6735 { 6736 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6737 } 6738 SLAB_ATTR_RO(aliases); 6739 6740 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6741 { 6742 return show_slab_objects(s, buf, SO_PARTIAL); 6743 } 6744 SLAB_ATTR_RO(partial); 6745 6746 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6747 { 6748 return show_slab_objects(s, buf, SO_CPU); 6749 } 6750 SLAB_ATTR_RO(cpu_slabs); 6751 6752 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6753 { 6754 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6755 } 6756 SLAB_ATTR_RO(objects_partial); 6757 6758 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6759 { 6760 int objects = 0; 6761 int slabs = 0; 6762 int cpu __maybe_unused; 6763 int len = 0; 6764 6765 #ifdef CONFIG_SLUB_CPU_PARTIAL 6766 for_each_online_cpu(cpu) { 6767 struct slab *slab; 6768 6769 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6770 6771 if (slab) 6772 slabs += data_race(slab->slabs); 6773 } 6774 #endif 6775 6776 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6777 objects = (slabs * oo_objects(s->oo)) / 2; 6778 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6779 6780 #ifdef CONFIG_SLUB_CPU_PARTIAL 6781 for_each_online_cpu(cpu) { 6782 struct slab *slab; 6783 6784 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6785 if (slab) { 6786 slabs = data_race(slab->slabs); 6787 objects = (slabs * oo_objects(s->oo)) / 2; 6788 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6789 cpu, objects, slabs); 6790 } 6791 } 6792 #endif 6793 len += sysfs_emit_at(buf, len, "\n"); 6794 6795 return len; 6796 } 6797 SLAB_ATTR_RO(slabs_cpu_partial); 6798 6799 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6800 { 6801 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6802 } 6803 SLAB_ATTR_RO(reclaim_account); 6804 6805 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6806 { 6807 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6808 } 6809 SLAB_ATTR_RO(hwcache_align); 6810 6811 #ifdef CONFIG_ZONE_DMA 6812 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6813 { 6814 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6815 } 6816 SLAB_ATTR_RO(cache_dma); 6817 #endif 6818 6819 #ifdef CONFIG_HARDENED_USERCOPY 6820 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6821 { 6822 return sysfs_emit(buf, "%u\n", s->usersize); 6823 } 6824 SLAB_ATTR_RO(usersize); 6825 #endif 6826 6827 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6828 { 6829 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6830 } 6831 SLAB_ATTR_RO(destroy_by_rcu); 6832 6833 #ifdef CONFIG_SLUB_DEBUG 6834 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6835 { 6836 return show_slab_objects(s, buf, SO_ALL); 6837 } 6838 SLAB_ATTR_RO(slabs); 6839 6840 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6841 { 6842 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6843 } 6844 SLAB_ATTR_RO(total_objects); 6845 6846 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6847 { 6848 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6849 } 6850 SLAB_ATTR_RO(objects); 6851 6852 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6853 { 6854 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6855 } 6856 SLAB_ATTR_RO(sanity_checks); 6857 6858 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6859 { 6860 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6861 } 6862 SLAB_ATTR_RO(trace); 6863 6864 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6865 { 6866 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6867 } 6868 6869 SLAB_ATTR_RO(red_zone); 6870 6871 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6872 { 6873 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6874 } 6875 6876 SLAB_ATTR_RO(poison); 6877 6878 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6879 { 6880 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6881 } 6882 6883 SLAB_ATTR_RO(store_user); 6884 6885 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6886 { 6887 return 0; 6888 } 6889 6890 static ssize_t validate_store(struct kmem_cache *s, 6891 const char *buf, size_t length) 6892 { 6893 int ret = -EINVAL; 6894 6895 if (buf[0] == '1' && kmem_cache_debug(s)) { 6896 ret = validate_slab_cache(s); 6897 if (ret >= 0) 6898 ret = length; 6899 } 6900 return ret; 6901 } 6902 SLAB_ATTR(validate); 6903 6904 #endif /* CONFIG_SLUB_DEBUG */ 6905 6906 #ifdef CONFIG_FAILSLAB 6907 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6908 { 6909 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6910 } 6911 6912 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6913 size_t length) 6914 { 6915 if (s->refcount > 1) 6916 return -EINVAL; 6917 6918 if (buf[0] == '1') 6919 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6920 else 6921 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6922 6923 return length; 6924 } 6925 SLAB_ATTR(failslab); 6926 #endif 6927 6928 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6929 { 6930 return 0; 6931 } 6932 6933 static ssize_t shrink_store(struct kmem_cache *s, 6934 const char *buf, size_t length) 6935 { 6936 if (buf[0] == '1') 6937 kmem_cache_shrink(s); 6938 else 6939 return -EINVAL; 6940 return length; 6941 } 6942 SLAB_ATTR(shrink); 6943 6944 #ifdef CONFIG_NUMA 6945 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6946 { 6947 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6948 } 6949 6950 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6951 const char *buf, size_t length) 6952 { 6953 unsigned int ratio; 6954 int err; 6955 6956 err = kstrtouint(buf, 10, &ratio); 6957 if (err) 6958 return err; 6959 if (ratio > 100) 6960 return -ERANGE; 6961 6962 s->remote_node_defrag_ratio = ratio * 10; 6963 6964 return length; 6965 } 6966 SLAB_ATTR(remote_node_defrag_ratio); 6967 #endif 6968 6969 #ifdef CONFIG_SLUB_STATS 6970 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6971 { 6972 unsigned long sum = 0; 6973 int cpu; 6974 int len = 0; 6975 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6976 6977 if (!data) 6978 return -ENOMEM; 6979 6980 for_each_online_cpu(cpu) { 6981 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6982 6983 data[cpu] = x; 6984 sum += x; 6985 } 6986 6987 len += sysfs_emit_at(buf, len, "%lu", sum); 6988 6989 #ifdef CONFIG_SMP 6990 for_each_online_cpu(cpu) { 6991 if (data[cpu]) 6992 len += sysfs_emit_at(buf, len, " C%d=%u", 6993 cpu, data[cpu]); 6994 } 6995 #endif 6996 kfree(data); 6997 len += sysfs_emit_at(buf, len, "\n"); 6998 6999 return len; 7000 } 7001 7002 static void clear_stat(struct kmem_cache *s, enum stat_item si) 7003 { 7004 int cpu; 7005 7006 for_each_online_cpu(cpu) 7007 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 7008 } 7009 7010 #define STAT_ATTR(si, text) \ 7011 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 7012 { \ 7013 return show_stat(s, buf, si); \ 7014 } \ 7015 static ssize_t text##_store(struct kmem_cache *s, \ 7016 const char *buf, size_t length) \ 7017 { \ 7018 if (buf[0] != '0') \ 7019 return -EINVAL; \ 7020 clear_stat(s, si); \ 7021 return length; \ 7022 } \ 7023 SLAB_ATTR(text); \ 7024 7025 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 7026 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 7027 STAT_ATTR(FREE_FASTPATH, free_fastpath); 7028 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 7029 STAT_ATTR(FREE_FROZEN, free_frozen); 7030 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 7031 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 7032 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 7033 STAT_ATTR(ALLOC_SLAB, alloc_slab); 7034 STAT_ATTR(ALLOC_REFILL, alloc_refill); 7035 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 7036 STAT_ATTR(FREE_SLAB, free_slab); 7037 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 7038 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 7039 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 7040 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 7041 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 7042 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 7043 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 7044 STAT_ATTR(ORDER_FALLBACK, order_fallback); 7045 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 7046 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 7047 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 7048 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 7049 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 7050 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 7051 #endif /* CONFIG_SLUB_STATS */ 7052 7053 #ifdef CONFIG_KFENCE 7054 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 7055 { 7056 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 7057 } 7058 7059 static ssize_t skip_kfence_store(struct kmem_cache *s, 7060 const char *buf, size_t length) 7061 { 7062 int ret = length; 7063 7064 if (buf[0] == '0') 7065 s->flags &= ~SLAB_SKIP_KFENCE; 7066 else if (buf[0] == '1') 7067 s->flags |= SLAB_SKIP_KFENCE; 7068 else 7069 ret = -EINVAL; 7070 7071 return ret; 7072 } 7073 SLAB_ATTR(skip_kfence); 7074 #endif 7075 7076 static struct attribute *slab_attrs[] = { 7077 &slab_size_attr.attr, 7078 &object_size_attr.attr, 7079 &objs_per_slab_attr.attr, 7080 &order_attr.attr, 7081 &min_partial_attr.attr, 7082 &cpu_partial_attr.attr, 7083 &objects_partial_attr.attr, 7084 &partial_attr.attr, 7085 &cpu_slabs_attr.attr, 7086 &ctor_attr.attr, 7087 &aliases_attr.attr, 7088 &align_attr.attr, 7089 &hwcache_align_attr.attr, 7090 &reclaim_account_attr.attr, 7091 &destroy_by_rcu_attr.attr, 7092 &shrink_attr.attr, 7093 &slabs_cpu_partial_attr.attr, 7094 #ifdef CONFIG_SLUB_DEBUG 7095 &total_objects_attr.attr, 7096 &objects_attr.attr, 7097 &slabs_attr.attr, 7098 &sanity_checks_attr.attr, 7099 &trace_attr.attr, 7100 &red_zone_attr.attr, 7101 &poison_attr.attr, 7102 &store_user_attr.attr, 7103 &validate_attr.attr, 7104 #endif 7105 #ifdef CONFIG_ZONE_DMA 7106 &cache_dma_attr.attr, 7107 #endif 7108 #ifdef CONFIG_NUMA 7109 &remote_node_defrag_ratio_attr.attr, 7110 #endif 7111 #ifdef CONFIG_SLUB_STATS 7112 &alloc_fastpath_attr.attr, 7113 &alloc_slowpath_attr.attr, 7114 &free_fastpath_attr.attr, 7115 &free_slowpath_attr.attr, 7116 &free_frozen_attr.attr, 7117 &free_add_partial_attr.attr, 7118 &free_remove_partial_attr.attr, 7119 &alloc_from_partial_attr.attr, 7120 &alloc_slab_attr.attr, 7121 &alloc_refill_attr.attr, 7122 &alloc_node_mismatch_attr.attr, 7123 &free_slab_attr.attr, 7124 &cpuslab_flush_attr.attr, 7125 &deactivate_full_attr.attr, 7126 &deactivate_empty_attr.attr, 7127 &deactivate_to_head_attr.attr, 7128 &deactivate_to_tail_attr.attr, 7129 &deactivate_remote_frees_attr.attr, 7130 &deactivate_bypass_attr.attr, 7131 &order_fallback_attr.attr, 7132 &cmpxchg_double_fail_attr.attr, 7133 &cmpxchg_double_cpu_fail_attr.attr, 7134 &cpu_partial_alloc_attr.attr, 7135 &cpu_partial_free_attr.attr, 7136 &cpu_partial_node_attr.attr, 7137 &cpu_partial_drain_attr.attr, 7138 #endif 7139 #ifdef CONFIG_FAILSLAB 7140 &failslab_attr.attr, 7141 #endif 7142 #ifdef CONFIG_HARDENED_USERCOPY 7143 &usersize_attr.attr, 7144 #endif 7145 #ifdef CONFIG_KFENCE 7146 &skip_kfence_attr.attr, 7147 #endif 7148 7149 NULL 7150 }; 7151 7152 static const struct attribute_group slab_attr_group = { 7153 .attrs = slab_attrs, 7154 }; 7155 7156 static ssize_t slab_attr_show(struct kobject *kobj, 7157 struct attribute *attr, 7158 char *buf) 7159 { 7160 struct slab_attribute *attribute; 7161 struct kmem_cache *s; 7162 7163 attribute = to_slab_attr(attr); 7164 s = to_slab(kobj); 7165 7166 if (!attribute->show) 7167 return -EIO; 7168 7169 return attribute->show(s, buf); 7170 } 7171 7172 static ssize_t slab_attr_store(struct kobject *kobj, 7173 struct attribute *attr, 7174 const char *buf, size_t len) 7175 { 7176 struct slab_attribute *attribute; 7177 struct kmem_cache *s; 7178 7179 attribute = to_slab_attr(attr); 7180 s = to_slab(kobj); 7181 7182 if (!attribute->store) 7183 return -EIO; 7184 7185 return attribute->store(s, buf, len); 7186 } 7187 7188 static void kmem_cache_release(struct kobject *k) 7189 { 7190 slab_kmem_cache_release(to_slab(k)); 7191 } 7192 7193 static const struct sysfs_ops slab_sysfs_ops = { 7194 .show = slab_attr_show, 7195 .store = slab_attr_store, 7196 }; 7197 7198 static const struct kobj_type slab_ktype = { 7199 .sysfs_ops = &slab_sysfs_ops, 7200 .release = kmem_cache_release, 7201 }; 7202 7203 static struct kset *slab_kset; 7204 7205 static inline struct kset *cache_kset(struct kmem_cache *s) 7206 { 7207 return slab_kset; 7208 } 7209 7210 #define ID_STR_LENGTH 32 7211 7212 /* Create a unique string id for a slab cache: 7213 * 7214 * Format :[flags-]size 7215 */ 7216 static char *create_unique_id(struct kmem_cache *s) 7217 { 7218 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 7219 char *p = name; 7220 7221 if (!name) 7222 return ERR_PTR(-ENOMEM); 7223 7224 *p++ = ':'; 7225 /* 7226 * First flags affecting slabcache operations. We will only 7227 * get here for aliasable slabs so we do not need to support 7228 * too many flags. The flags here must cover all flags that 7229 * are matched during merging to guarantee that the id is 7230 * unique. 7231 */ 7232 if (s->flags & SLAB_CACHE_DMA) 7233 *p++ = 'd'; 7234 if (s->flags & SLAB_CACHE_DMA32) 7235 *p++ = 'D'; 7236 if (s->flags & SLAB_RECLAIM_ACCOUNT) 7237 *p++ = 'a'; 7238 if (s->flags & SLAB_CONSISTENCY_CHECKS) 7239 *p++ = 'F'; 7240 if (s->flags & SLAB_ACCOUNT) 7241 *p++ = 'A'; 7242 if (p != name + 1) 7243 *p++ = '-'; 7244 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 7245 7246 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 7247 kfree(name); 7248 return ERR_PTR(-EINVAL); 7249 } 7250 kmsan_unpoison_memory(name, p - name); 7251 return name; 7252 } 7253 7254 static int sysfs_slab_add(struct kmem_cache *s) 7255 { 7256 int err; 7257 const char *name; 7258 struct kset *kset = cache_kset(s); 7259 int unmergeable = slab_unmergeable(s); 7260 7261 if (!unmergeable && disable_higher_order_debug && 7262 (slub_debug & DEBUG_METADATA_FLAGS)) 7263 unmergeable = 1; 7264 7265 if (unmergeable) { 7266 /* 7267 * Slabcache can never be merged so we can use the name proper. 7268 * This is typically the case for debug situations. In that 7269 * case we can catch duplicate names easily. 7270 */ 7271 sysfs_remove_link(&slab_kset->kobj, s->name); 7272 name = s->name; 7273 } else { 7274 /* 7275 * Create a unique name for the slab as a target 7276 * for the symlinks. 7277 */ 7278 name = create_unique_id(s); 7279 if (IS_ERR(name)) 7280 return PTR_ERR(name); 7281 } 7282 7283 s->kobj.kset = kset; 7284 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 7285 if (err) 7286 goto out; 7287 7288 err = sysfs_create_group(&s->kobj, &slab_attr_group); 7289 if (err) 7290 goto out_del_kobj; 7291 7292 if (!unmergeable) { 7293 /* Setup first alias */ 7294 sysfs_slab_alias(s, s->name); 7295 } 7296 out: 7297 if (!unmergeable) 7298 kfree(name); 7299 return err; 7300 out_del_kobj: 7301 kobject_del(&s->kobj); 7302 goto out; 7303 } 7304 7305 void sysfs_slab_unlink(struct kmem_cache *s) 7306 { 7307 if (s->kobj.state_in_sysfs) 7308 kobject_del(&s->kobj); 7309 } 7310 7311 void sysfs_slab_release(struct kmem_cache *s) 7312 { 7313 kobject_put(&s->kobj); 7314 } 7315 7316 /* 7317 * Need to buffer aliases during bootup until sysfs becomes 7318 * available lest we lose that information. 7319 */ 7320 struct saved_alias { 7321 struct kmem_cache *s; 7322 const char *name; 7323 struct saved_alias *next; 7324 }; 7325 7326 static struct saved_alias *alias_list; 7327 7328 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 7329 { 7330 struct saved_alias *al; 7331 7332 if (slab_state == FULL) { 7333 /* 7334 * If we have a leftover link then remove it. 7335 */ 7336 sysfs_remove_link(&slab_kset->kobj, name); 7337 /* 7338 * The original cache may have failed to generate sysfs file. 7339 * In that case, sysfs_create_link() returns -ENOENT and 7340 * symbolic link creation is skipped. 7341 */ 7342 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7343 } 7344 7345 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7346 if (!al) 7347 return -ENOMEM; 7348 7349 al->s = s; 7350 al->name = name; 7351 al->next = alias_list; 7352 alias_list = al; 7353 kmsan_unpoison_memory(al, sizeof(*al)); 7354 return 0; 7355 } 7356 7357 static int __init slab_sysfs_init(void) 7358 { 7359 struct kmem_cache *s; 7360 int err; 7361 7362 mutex_lock(&slab_mutex); 7363 7364 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7365 if (!slab_kset) { 7366 mutex_unlock(&slab_mutex); 7367 pr_err("Cannot register slab subsystem.\n"); 7368 return -ENOMEM; 7369 } 7370 7371 slab_state = FULL; 7372 7373 list_for_each_entry(s, &slab_caches, list) { 7374 err = sysfs_slab_add(s); 7375 if (err) 7376 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7377 s->name); 7378 } 7379 7380 while (alias_list) { 7381 struct saved_alias *al = alias_list; 7382 7383 alias_list = alias_list->next; 7384 err = sysfs_slab_alias(al->s, al->name); 7385 if (err) 7386 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7387 al->name); 7388 kfree(al); 7389 } 7390 7391 mutex_unlock(&slab_mutex); 7392 return 0; 7393 } 7394 late_initcall(slab_sysfs_init); 7395 #endif /* SLAB_SUPPORTS_SYSFS */ 7396 7397 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7398 static int slab_debugfs_show(struct seq_file *seq, void *v) 7399 { 7400 struct loc_track *t = seq->private; 7401 struct location *l; 7402 unsigned long idx; 7403 7404 idx = (unsigned long) t->idx; 7405 if (idx < t->count) { 7406 l = &t->loc[idx]; 7407 7408 seq_printf(seq, "%7ld ", l->count); 7409 7410 if (l->addr) 7411 seq_printf(seq, "%pS", (void *)l->addr); 7412 else 7413 seq_puts(seq, "<not-available>"); 7414 7415 if (l->waste) 7416 seq_printf(seq, " waste=%lu/%lu", 7417 l->count * l->waste, l->waste); 7418 7419 if (l->sum_time != l->min_time) { 7420 seq_printf(seq, " age=%ld/%llu/%ld", 7421 l->min_time, div_u64(l->sum_time, l->count), 7422 l->max_time); 7423 } else 7424 seq_printf(seq, " age=%ld", l->min_time); 7425 7426 if (l->min_pid != l->max_pid) 7427 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7428 else 7429 seq_printf(seq, " pid=%ld", 7430 l->min_pid); 7431 7432 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7433 seq_printf(seq, " cpus=%*pbl", 7434 cpumask_pr_args(to_cpumask(l->cpus))); 7435 7436 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7437 seq_printf(seq, " nodes=%*pbl", 7438 nodemask_pr_args(&l->nodes)); 7439 7440 #ifdef CONFIG_STACKDEPOT 7441 { 7442 depot_stack_handle_t handle; 7443 unsigned long *entries; 7444 unsigned int nr_entries, j; 7445 7446 handle = READ_ONCE(l->handle); 7447 if (handle) { 7448 nr_entries = stack_depot_fetch(handle, &entries); 7449 seq_puts(seq, "\n"); 7450 for (j = 0; j < nr_entries; j++) 7451 seq_printf(seq, " %pS\n", (void *)entries[j]); 7452 } 7453 } 7454 #endif 7455 seq_puts(seq, "\n"); 7456 } 7457 7458 if (!idx && !t->count) 7459 seq_puts(seq, "No data\n"); 7460 7461 return 0; 7462 } 7463 7464 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7465 { 7466 } 7467 7468 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7469 { 7470 struct loc_track *t = seq->private; 7471 7472 t->idx = ++(*ppos); 7473 if (*ppos <= t->count) 7474 return ppos; 7475 7476 return NULL; 7477 } 7478 7479 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7480 { 7481 struct location *loc1 = (struct location *)a; 7482 struct location *loc2 = (struct location *)b; 7483 7484 if (loc1->count > loc2->count) 7485 return -1; 7486 else 7487 return 1; 7488 } 7489 7490 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7491 { 7492 struct loc_track *t = seq->private; 7493 7494 t->idx = *ppos; 7495 return ppos; 7496 } 7497 7498 static const struct seq_operations slab_debugfs_sops = { 7499 .start = slab_debugfs_start, 7500 .next = slab_debugfs_next, 7501 .stop = slab_debugfs_stop, 7502 .show = slab_debugfs_show, 7503 }; 7504 7505 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7506 { 7507 7508 struct kmem_cache_node *n; 7509 enum track_item alloc; 7510 int node; 7511 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7512 sizeof(struct loc_track)); 7513 struct kmem_cache *s = file_inode(filep)->i_private; 7514 unsigned long *obj_map; 7515 7516 if (!t) 7517 return -ENOMEM; 7518 7519 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7520 if (!obj_map) { 7521 seq_release_private(inode, filep); 7522 return -ENOMEM; 7523 } 7524 7525 alloc = debugfs_get_aux_num(filep); 7526 7527 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7528 bitmap_free(obj_map); 7529 seq_release_private(inode, filep); 7530 return -ENOMEM; 7531 } 7532 7533 for_each_kmem_cache_node(s, node, n) { 7534 unsigned long flags; 7535 struct slab *slab; 7536 7537 if (!node_nr_slabs(n)) 7538 continue; 7539 7540 spin_lock_irqsave(&n->list_lock, flags); 7541 list_for_each_entry(slab, &n->partial, slab_list) 7542 process_slab(t, s, slab, alloc, obj_map); 7543 list_for_each_entry(slab, &n->full, slab_list) 7544 process_slab(t, s, slab, alloc, obj_map); 7545 spin_unlock_irqrestore(&n->list_lock, flags); 7546 } 7547 7548 /* Sort locations by count */ 7549 sort_r(t->loc, t->count, sizeof(struct location), 7550 cmp_loc_by_count, NULL, NULL); 7551 7552 bitmap_free(obj_map); 7553 return 0; 7554 } 7555 7556 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7557 { 7558 struct seq_file *seq = file->private_data; 7559 struct loc_track *t = seq->private; 7560 7561 free_loc_track(t); 7562 return seq_release_private(inode, file); 7563 } 7564 7565 static const struct file_operations slab_debugfs_fops = { 7566 .open = slab_debug_trace_open, 7567 .read = seq_read, 7568 .llseek = seq_lseek, 7569 .release = slab_debug_trace_release, 7570 }; 7571 7572 static void debugfs_slab_add(struct kmem_cache *s) 7573 { 7574 struct dentry *slab_cache_dir; 7575 7576 if (unlikely(!slab_debugfs_root)) 7577 return; 7578 7579 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7580 7581 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s, 7582 TRACK_ALLOC, &slab_debugfs_fops); 7583 7584 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s, 7585 TRACK_FREE, &slab_debugfs_fops); 7586 } 7587 7588 void debugfs_slab_release(struct kmem_cache *s) 7589 { 7590 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7591 } 7592 7593 static int __init slab_debugfs_init(void) 7594 { 7595 struct kmem_cache *s; 7596 7597 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7598 7599 list_for_each_entry(s, &slab_caches, list) 7600 if (s->flags & SLAB_STORE_USER) 7601 debugfs_slab_add(s); 7602 7603 return 0; 7604 7605 } 7606 __initcall(slab_debugfs_init); 7607 #endif 7608 /* 7609 * The /proc/slabinfo ABI 7610 */ 7611 #ifdef CONFIG_SLUB_DEBUG 7612 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7613 { 7614 unsigned long nr_slabs = 0; 7615 unsigned long nr_objs = 0; 7616 unsigned long nr_free = 0; 7617 int node; 7618 struct kmem_cache_node *n; 7619 7620 for_each_kmem_cache_node(s, node, n) { 7621 nr_slabs += node_nr_slabs(n); 7622 nr_objs += node_nr_objs(n); 7623 nr_free += count_partial_free_approx(n); 7624 } 7625 7626 sinfo->active_objs = nr_objs - nr_free; 7627 sinfo->num_objs = nr_objs; 7628 sinfo->active_slabs = nr_slabs; 7629 sinfo->num_slabs = nr_slabs; 7630 sinfo->objects_per_slab = oo_objects(s->oo); 7631 sinfo->cache_order = oo_order(s->oo); 7632 } 7633 #endif /* CONFIG_SLUB_DEBUG */ 7634