xref: /linux/mm/slub.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * freeptr_t represents a SLUB freelist pointer, which might be encoded
470  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471  */
472 typedef struct { unsigned long v; } freeptr_t;
473 
474 /*
475  * Returns freelist pointer (ptr). With hardening, this is obfuscated
476  * with an XOR of the address where the pointer is held and a per-cache
477  * random number.
478  */
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 					    void *ptr, unsigned long ptr_addr)
481 {
482 	unsigned long encoded;
483 
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486 #else
487 	encoded = (unsigned long)ptr;
488 #endif
489 	return (freeptr_t){.v = encoded};
490 }
491 
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 					freeptr_t ptr, unsigned long ptr_addr)
494 {
495 	void *decoded;
496 
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499 #else
500 	decoded = (void *)ptr.v;
501 #endif
502 	return decoded;
503 }
504 
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
506 {
507 	unsigned long ptr_addr;
508 	freeptr_t p;
509 
510 	object = kasan_reset_tag(object);
511 	ptr_addr = (unsigned long)object + s->offset;
512 	p = *(freeptr_t *)(ptr_addr);
513 	return freelist_ptr_decode(s, p, ptr_addr);
514 }
515 
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518 {
519 	prefetchw(object + s->offset);
520 }
521 #endif
522 
523 /*
524  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525  * pointer value in the case the current thread loses the race for the next
526  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528  * KMSAN will still check all arguments of cmpxchg because of imperfect
529  * handling of inline assembly.
530  * To work around this problem, we apply __no_kmsan_checks to ensure that
531  * get_freepointer_safe() returns initialized memory.
532  */
533 __no_kmsan_checks
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535 {
536 	unsigned long freepointer_addr;
537 	freeptr_t p;
538 
539 	if (!debug_pagealloc_enabled_static())
540 		return get_freepointer(s, object);
541 
542 	object = kasan_reset_tag(object);
543 	freepointer_addr = (unsigned long)object + s->offset;
544 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 	return freelist_ptr_decode(s, p, freepointer_addr);
546 }
547 
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549 {
550 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
551 
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 	BUG_ON(object == fp); /* naive detection of double free or corruption */
554 #endif
555 
556 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558 }
559 
560 /*
561  * See comment in calculate_sizes().
562  */
563 static inline bool freeptr_outside_object(struct kmem_cache *s)
564 {
565 	return s->offset >= s->inuse;
566 }
567 
568 /*
569  * Return offset of the end of info block which is inuse + free pointer if
570  * not overlapping with object.
571  */
572 static inline unsigned int get_info_end(struct kmem_cache *s)
573 {
574 	if (freeptr_outside_object(s))
575 		return s->inuse + sizeof(void *);
576 	else
577 		return s->inuse;
578 }
579 
580 /* Loop over all objects in a slab */
581 #define for_each_object(__p, __s, __addr, __objects) \
582 	for (__p = fixup_red_left(__s, __addr); \
583 		__p < (__addr) + (__objects) * (__s)->size; \
584 		__p += (__s)->size)
585 
586 static inline unsigned int order_objects(unsigned int order, unsigned int size)
587 {
588 	return ((unsigned int)PAGE_SIZE << order) / size;
589 }
590 
591 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
592 		unsigned int size)
593 {
594 	struct kmem_cache_order_objects x = {
595 		(order << OO_SHIFT) + order_objects(order, size)
596 	};
597 
598 	return x;
599 }
600 
601 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
602 {
603 	return x.x >> OO_SHIFT;
604 }
605 
606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
607 {
608 	return x.x & OO_MASK;
609 }
610 
611 #ifdef CONFIG_SLUB_CPU_PARTIAL
612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613 {
614 	unsigned int nr_slabs;
615 
616 	s->cpu_partial = nr_objects;
617 
618 	/*
619 	 * We take the number of objects but actually limit the number of
620 	 * slabs on the per cpu partial list, in order to limit excessive
621 	 * growth of the list. For simplicity we assume that the slabs will
622 	 * be half-full.
623 	 */
624 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 	s->cpu_partial_slabs = nr_slabs;
626 }
627 
628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629 {
630 	return s->cpu_partial_slabs;
631 }
632 #else
633 static inline void
634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635 {
636 }
637 
638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639 {
640 	return 0;
641 }
642 #endif /* CONFIG_SLUB_CPU_PARTIAL */
643 
644 /*
645  * Per slab locking using the pagelock
646  */
647 static __always_inline void slab_lock(struct slab *slab)
648 {
649 	bit_spin_lock(PG_locked, &slab->__page_flags);
650 }
651 
652 static __always_inline void slab_unlock(struct slab *slab)
653 {
654 	bit_spin_unlock(PG_locked, &slab->__page_flags);
655 }
656 
657 static inline bool
658 __update_freelist_fast(struct slab *slab,
659 		      void *freelist_old, unsigned long counters_old,
660 		      void *freelist_new, unsigned long counters_new)
661 {
662 #ifdef system_has_freelist_aba
663 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
665 
666 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667 #else
668 	return false;
669 #endif
670 }
671 
672 static inline bool
673 __update_freelist_slow(struct slab *slab,
674 		      void *freelist_old, unsigned long counters_old,
675 		      void *freelist_new, unsigned long counters_new)
676 {
677 	bool ret = false;
678 
679 	slab_lock(slab);
680 	if (slab->freelist == freelist_old &&
681 	    slab->counters == counters_old) {
682 		slab->freelist = freelist_new;
683 		slab->counters = counters_new;
684 		ret = true;
685 	}
686 	slab_unlock(slab);
687 
688 	return ret;
689 }
690 
691 /*
692  * Interrupts must be disabled (for the fallback code to work right), typically
693  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695  * allocation/ free operation in hardirq context. Therefore nothing can
696  * interrupt the operation.
697  */
698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
699 		void *freelist_old, unsigned long counters_old,
700 		void *freelist_new, unsigned long counters_new,
701 		const char *n)
702 {
703 	bool ret;
704 
705 	if (USE_LOCKLESS_FAST_PATH())
706 		lockdep_assert_irqs_disabled();
707 
708 	if (s->flags & __CMPXCHG_DOUBLE) {
709 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 				            freelist_new, counters_new);
711 	} else {
712 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 				            freelist_new, counters_new);
714 	}
715 	if (likely(ret))
716 		return true;
717 
718 	cpu_relax();
719 	stat(s, CMPXCHG_DOUBLE_FAIL);
720 
721 #ifdef SLUB_DEBUG_CMPXCHG
722 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
723 #endif
724 
725 	return false;
726 }
727 
728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
729 		void *freelist_old, unsigned long counters_old,
730 		void *freelist_new, unsigned long counters_new,
731 		const char *n)
732 {
733 	bool ret;
734 
735 	if (s->flags & __CMPXCHG_DOUBLE) {
736 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 				            freelist_new, counters_new);
738 	} else {
739 		unsigned long flags;
740 
741 		local_irq_save(flags);
742 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 				            freelist_new, counters_new);
744 		local_irq_restore(flags);
745 	}
746 	if (likely(ret))
747 		return true;
748 
749 	cpu_relax();
750 	stat(s, CMPXCHG_DOUBLE_FAIL);
751 
752 #ifdef SLUB_DEBUG_CMPXCHG
753 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
754 #endif
755 
756 	return false;
757 }
758 
759 #ifdef CONFIG_SLUB_DEBUG
760 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
761 static DEFINE_SPINLOCK(object_map_lock);
762 
763 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
764 		       struct slab *slab)
765 {
766 	void *addr = slab_address(slab);
767 	void *p;
768 
769 	bitmap_zero(obj_map, slab->objects);
770 
771 	for (p = slab->freelist; p; p = get_freepointer(s, p))
772 		set_bit(__obj_to_index(s, addr, p), obj_map);
773 }
774 
775 #if IS_ENABLED(CONFIG_KUNIT)
776 static bool slab_add_kunit_errors(void)
777 {
778 	struct kunit_resource *resource;
779 
780 	if (!kunit_get_current_test())
781 		return false;
782 
783 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
784 	if (!resource)
785 		return false;
786 
787 	(*(int *)resource->data)++;
788 	kunit_put_resource(resource);
789 	return true;
790 }
791 
792 static bool slab_in_kunit_test(void)
793 {
794 	struct kunit_resource *resource;
795 
796 	if (!kunit_get_current_test())
797 		return false;
798 
799 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
800 	if (!resource)
801 		return false;
802 
803 	kunit_put_resource(resource);
804 	return true;
805 }
806 #else
807 static inline bool slab_add_kunit_errors(void) { return false; }
808 static inline bool slab_in_kunit_test(void) { return false; }
809 #endif
810 
811 static inline unsigned int size_from_object(struct kmem_cache *s)
812 {
813 	if (s->flags & SLAB_RED_ZONE)
814 		return s->size - s->red_left_pad;
815 
816 	return s->size;
817 }
818 
819 static inline void *restore_red_left(struct kmem_cache *s, void *p)
820 {
821 	if (s->flags & SLAB_RED_ZONE)
822 		p -= s->red_left_pad;
823 
824 	return p;
825 }
826 
827 /*
828  * Debug settings:
829  */
830 #if defined(CONFIG_SLUB_DEBUG_ON)
831 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
832 #else
833 static slab_flags_t slub_debug;
834 #endif
835 
836 static char *slub_debug_string;
837 static int disable_higher_order_debug;
838 
839 /*
840  * slub is about to manipulate internal object metadata.  This memory lies
841  * outside the range of the allocated object, so accessing it would normally
842  * be reported by kasan as a bounds error.  metadata_access_enable() is used
843  * to tell kasan that these accesses are OK.
844  */
845 static inline void metadata_access_enable(void)
846 {
847 	kasan_disable_current();
848 	kmsan_disable_current();
849 }
850 
851 static inline void metadata_access_disable(void)
852 {
853 	kmsan_enable_current();
854 	kasan_enable_current();
855 }
856 
857 /*
858  * Object debugging
859  */
860 
861 /* Verify that a pointer has an address that is valid within a slab page */
862 static inline int check_valid_pointer(struct kmem_cache *s,
863 				struct slab *slab, void *object)
864 {
865 	void *base;
866 
867 	if (!object)
868 		return 1;
869 
870 	base = slab_address(slab);
871 	object = kasan_reset_tag(object);
872 	object = restore_red_left(s, object);
873 	if (object < base || object >= base + slab->objects * s->size ||
874 		(object - base) % s->size) {
875 		return 0;
876 	}
877 
878 	return 1;
879 }
880 
881 static void print_section(char *level, char *text, u8 *addr,
882 			  unsigned int length)
883 {
884 	metadata_access_enable();
885 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
886 			16, 1, kasan_reset_tag((void *)addr), length, 1);
887 	metadata_access_disable();
888 }
889 
890 static struct track *get_track(struct kmem_cache *s, void *object,
891 	enum track_item alloc)
892 {
893 	struct track *p;
894 
895 	p = object + get_info_end(s);
896 
897 	return kasan_reset_tag(p + alloc);
898 }
899 
900 #ifdef CONFIG_STACKDEPOT
901 static noinline depot_stack_handle_t set_track_prepare(void)
902 {
903 	depot_stack_handle_t handle;
904 	unsigned long entries[TRACK_ADDRS_COUNT];
905 	unsigned int nr_entries;
906 
907 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
908 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
909 
910 	return handle;
911 }
912 #else
913 static inline depot_stack_handle_t set_track_prepare(void)
914 {
915 	return 0;
916 }
917 #endif
918 
919 static void set_track_update(struct kmem_cache *s, void *object,
920 			     enum track_item alloc, unsigned long addr,
921 			     depot_stack_handle_t handle)
922 {
923 	struct track *p = get_track(s, object, alloc);
924 
925 #ifdef CONFIG_STACKDEPOT
926 	p->handle = handle;
927 #endif
928 	p->addr = addr;
929 	p->cpu = smp_processor_id();
930 	p->pid = current->pid;
931 	p->when = jiffies;
932 }
933 
934 static __always_inline void set_track(struct kmem_cache *s, void *object,
935 				      enum track_item alloc, unsigned long addr)
936 {
937 	depot_stack_handle_t handle = set_track_prepare();
938 
939 	set_track_update(s, object, alloc, addr, handle);
940 }
941 
942 static void init_tracking(struct kmem_cache *s, void *object)
943 {
944 	struct track *p;
945 
946 	if (!(s->flags & SLAB_STORE_USER))
947 		return;
948 
949 	p = get_track(s, object, TRACK_ALLOC);
950 	memset(p, 0, 2*sizeof(struct track));
951 }
952 
953 static void print_track(const char *s, struct track *t, unsigned long pr_time)
954 {
955 	depot_stack_handle_t handle __maybe_unused;
956 
957 	if (!t->addr)
958 		return;
959 
960 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
961 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
962 #ifdef CONFIG_STACKDEPOT
963 	handle = READ_ONCE(t->handle);
964 	if (handle)
965 		stack_depot_print(handle);
966 	else
967 		pr_err("object allocation/free stack trace missing\n");
968 #endif
969 }
970 
971 void print_tracking(struct kmem_cache *s, void *object)
972 {
973 	unsigned long pr_time = jiffies;
974 	if (!(s->flags & SLAB_STORE_USER))
975 		return;
976 
977 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
978 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
979 }
980 
981 static void print_slab_info(const struct slab *slab)
982 {
983 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
984 	       slab, slab->objects, slab->inuse, slab->freelist,
985 	       &slab->__page_flags);
986 }
987 
988 /*
989  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
990  * family will round up the real request size to these fixed ones, so
991  * there could be an extra area than what is requested. Save the original
992  * request size in the meta data area, for better debug and sanity check.
993  */
994 static inline void set_orig_size(struct kmem_cache *s,
995 				void *object, unsigned int orig_size)
996 {
997 	void *p = kasan_reset_tag(object);
998 	unsigned int kasan_meta_size;
999 
1000 	if (!slub_debug_orig_size(s))
1001 		return;
1002 
1003 	/*
1004 	 * KASAN can save its free meta data inside of the object at offset 0.
1005 	 * If this meta data size is larger than 'orig_size', it will overlap
1006 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
1007 	 * 'orig_size' to be as at least as big as KASAN's meta data.
1008 	 */
1009 	kasan_meta_size = kasan_metadata_size(s, true);
1010 	if (kasan_meta_size > orig_size)
1011 		orig_size = kasan_meta_size;
1012 
1013 	p += get_info_end(s);
1014 	p += sizeof(struct track) * 2;
1015 
1016 	*(unsigned int *)p = orig_size;
1017 }
1018 
1019 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1020 {
1021 	void *p = kasan_reset_tag(object);
1022 
1023 	if (!slub_debug_orig_size(s))
1024 		return s->object_size;
1025 
1026 	p += get_info_end(s);
1027 	p += sizeof(struct track) * 2;
1028 
1029 	return *(unsigned int *)p;
1030 }
1031 
1032 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1033 {
1034 	set_orig_size(s, (void *)object, s->object_size);
1035 }
1036 
1037 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1038 {
1039 	struct va_format vaf;
1040 	va_list args;
1041 
1042 	va_start(args, fmt);
1043 	vaf.fmt = fmt;
1044 	vaf.va = &args;
1045 	pr_err("=============================================================================\n");
1046 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1047 	pr_err("-----------------------------------------------------------------------------\n\n");
1048 	va_end(args);
1049 }
1050 
1051 __printf(2, 3)
1052 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1053 {
1054 	struct va_format vaf;
1055 	va_list args;
1056 
1057 	if (slab_add_kunit_errors())
1058 		return;
1059 
1060 	va_start(args, fmt);
1061 	vaf.fmt = fmt;
1062 	vaf.va = &args;
1063 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1064 	va_end(args);
1065 }
1066 
1067 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1068 {
1069 	unsigned int off;	/* Offset of last byte */
1070 	u8 *addr = slab_address(slab);
1071 
1072 	print_tracking(s, p);
1073 
1074 	print_slab_info(slab);
1075 
1076 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1077 	       p, p - addr, get_freepointer(s, p));
1078 
1079 	if (s->flags & SLAB_RED_ZONE)
1080 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1081 			      s->red_left_pad);
1082 	else if (p > addr + 16)
1083 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1084 
1085 	print_section(KERN_ERR,         "Object   ", p,
1086 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1087 	if (s->flags & SLAB_RED_ZONE)
1088 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1089 			s->inuse - s->object_size);
1090 
1091 	off = get_info_end(s);
1092 
1093 	if (s->flags & SLAB_STORE_USER)
1094 		off += 2 * sizeof(struct track);
1095 
1096 	if (slub_debug_orig_size(s))
1097 		off += sizeof(unsigned int);
1098 
1099 	off += kasan_metadata_size(s, false);
1100 
1101 	if (off != size_from_object(s))
1102 		/* Beginning of the filler is the free pointer */
1103 		print_section(KERN_ERR, "Padding  ", p + off,
1104 			      size_from_object(s) - off);
1105 
1106 	dump_stack();
1107 }
1108 
1109 static void object_err(struct kmem_cache *s, struct slab *slab,
1110 			u8 *object, char *reason)
1111 {
1112 	if (slab_add_kunit_errors())
1113 		return;
1114 
1115 	slab_bug(s, "%s", reason);
1116 	print_trailer(s, slab, object);
1117 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1118 }
1119 
1120 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1121 			       void **freelist, void *nextfree)
1122 {
1123 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1124 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1125 		object_err(s, slab, *freelist, "Freechain corrupt");
1126 		*freelist = NULL;
1127 		slab_fix(s, "Isolate corrupted freechain");
1128 		return true;
1129 	}
1130 
1131 	return false;
1132 }
1133 
1134 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1135 			const char *fmt, ...)
1136 {
1137 	va_list args;
1138 	char buf[100];
1139 
1140 	if (slab_add_kunit_errors())
1141 		return;
1142 
1143 	va_start(args, fmt);
1144 	vsnprintf(buf, sizeof(buf), fmt, args);
1145 	va_end(args);
1146 	slab_bug(s, "%s", buf);
1147 	print_slab_info(slab);
1148 	dump_stack();
1149 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1150 }
1151 
1152 static void init_object(struct kmem_cache *s, void *object, u8 val)
1153 {
1154 	u8 *p = kasan_reset_tag(object);
1155 	unsigned int poison_size = s->object_size;
1156 
1157 	if (s->flags & SLAB_RED_ZONE) {
1158 		/*
1159 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1160 		 * the shadow makes it possible to distinguish uninit-value
1161 		 * from use-after-free.
1162 		 */
1163 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1164 					  s->red_left_pad);
1165 
1166 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1167 			/*
1168 			 * Redzone the extra allocated space by kmalloc than
1169 			 * requested, and the poison size will be limited to
1170 			 * the original request size accordingly.
1171 			 */
1172 			poison_size = get_orig_size(s, object);
1173 		}
1174 	}
1175 
1176 	if (s->flags & __OBJECT_POISON) {
1177 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1178 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1179 	}
1180 
1181 	if (s->flags & SLAB_RED_ZONE)
1182 		memset_no_sanitize_memory(p + poison_size, val,
1183 					  s->inuse - poison_size);
1184 }
1185 
1186 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1187 						void *from, void *to)
1188 {
1189 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1190 	memset(from, data, to - from);
1191 }
1192 
1193 #ifdef CONFIG_KMSAN
1194 #define pad_check_attributes noinline __no_kmsan_checks
1195 #else
1196 #define pad_check_attributes
1197 #endif
1198 
1199 static pad_check_attributes int
1200 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1201 		       u8 *object, char *what,
1202 		       u8 *start, unsigned int value, unsigned int bytes)
1203 {
1204 	u8 *fault;
1205 	u8 *end;
1206 	u8 *addr = slab_address(slab);
1207 
1208 	metadata_access_enable();
1209 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1210 	metadata_access_disable();
1211 	if (!fault)
1212 		return 1;
1213 
1214 	end = start + bytes;
1215 	while (end > fault && end[-1] == value)
1216 		end--;
1217 
1218 	if (slab_add_kunit_errors())
1219 		goto skip_bug_print;
1220 
1221 	slab_bug(s, "%s overwritten", what);
1222 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 					fault, end - 1, fault - addr,
1224 					fault[0], value);
1225 
1226 skip_bug_print:
1227 	restore_bytes(s, what, value, fault, end);
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Object layout:
1233  *
1234  * object address
1235  * 	Bytes of the object to be managed.
1236  * 	If the freepointer may overlay the object then the free
1237  *	pointer is at the middle of the object.
1238  *
1239  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1240  * 	0xa5 (POISON_END)
1241  *
1242  * object + s->object_size
1243  * 	Padding to reach word boundary. This is also used for Redzoning.
1244  * 	Padding is extended by another word if Redzoning is enabled and
1245  * 	object_size == inuse.
1246  *
1247  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1248  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1249  *
1250  * object + s->inuse
1251  * 	Meta data starts here.
1252  *
1253  * 	A. Free pointer (if we cannot overwrite object on free)
1254  * 	B. Tracking data for SLAB_STORE_USER
1255  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1256  *	D. Padding to reach required alignment boundary or at minimum
1257  * 		one word if debugging is on to be able to detect writes
1258  * 		before the word boundary.
1259  *
1260  *	Padding is done using 0x5a (POISON_INUSE)
1261  *
1262  * object + s->size
1263  * 	Nothing is used beyond s->size.
1264  *
1265  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1266  * ignored. And therefore no slab options that rely on these boundaries
1267  * may be used with merged slabcaches.
1268  */
1269 
1270 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1271 {
1272 	unsigned long off = get_info_end(s);	/* The end of info */
1273 
1274 	if (s->flags & SLAB_STORE_USER) {
1275 		/* We also have user information there */
1276 		off += 2 * sizeof(struct track);
1277 
1278 		if (s->flags & SLAB_KMALLOC)
1279 			off += sizeof(unsigned int);
1280 	}
1281 
1282 	off += kasan_metadata_size(s, false);
1283 
1284 	if (size_from_object(s) == off)
1285 		return 1;
1286 
1287 	return check_bytes_and_report(s, slab, p, "Object padding",
1288 			p + off, POISON_INUSE, size_from_object(s) - off);
1289 }
1290 
1291 /* Check the pad bytes at the end of a slab page */
1292 static pad_check_attributes void
1293 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1294 {
1295 	u8 *start;
1296 	u8 *fault;
1297 	u8 *end;
1298 	u8 *pad;
1299 	int length;
1300 	int remainder;
1301 
1302 	if (!(s->flags & SLAB_POISON))
1303 		return;
1304 
1305 	start = slab_address(slab);
1306 	length = slab_size(slab);
1307 	end = start + length;
1308 	remainder = length % s->size;
1309 	if (!remainder)
1310 		return;
1311 
1312 	pad = end - remainder;
1313 	metadata_access_enable();
1314 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1315 	metadata_access_disable();
1316 	if (!fault)
1317 		return;
1318 	while (end > fault && end[-1] == POISON_INUSE)
1319 		end--;
1320 
1321 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1322 			fault, end - 1, fault - start);
1323 	print_section(KERN_ERR, "Padding ", pad, remainder);
1324 
1325 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1326 }
1327 
1328 static int check_object(struct kmem_cache *s, struct slab *slab,
1329 					void *object, u8 val)
1330 {
1331 	u8 *p = object;
1332 	u8 *endobject = object + s->object_size;
1333 	unsigned int orig_size, kasan_meta_size;
1334 	int ret = 1;
1335 
1336 	if (s->flags & SLAB_RED_ZONE) {
1337 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1338 			object - s->red_left_pad, val, s->red_left_pad))
1339 			ret = 0;
1340 
1341 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1342 			endobject, val, s->inuse - s->object_size))
1343 			ret = 0;
1344 
1345 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1346 			orig_size = get_orig_size(s, object);
1347 
1348 			if (s->object_size > orig_size  &&
1349 				!check_bytes_and_report(s, slab, object,
1350 					"kmalloc Redzone", p + orig_size,
1351 					val, s->object_size - orig_size)) {
1352 				ret = 0;
1353 			}
1354 		}
1355 	} else {
1356 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1357 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1358 				endobject, POISON_INUSE,
1359 				s->inuse - s->object_size))
1360 				ret = 0;
1361 		}
1362 	}
1363 
1364 	if (s->flags & SLAB_POISON) {
1365 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1366 			/*
1367 			 * KASAN can save its free meta data inside of the
1368 			 * object at offset 0. Thus, skip checking the part of
1369 			 * the redzone that overlaps with the meta data.
1370 			 */
1371 			kasan_meta_size = kasan_metadata_size(s, true);
1372 			if (kasan_meta_size < s->object_size - 1 &&
1373 			    !check_bytes_and_report(s, slab, p, "Poison",
1374 					p + kasan_meta_size, POISON_FREE,
1375 					s->object_size - kasan_meta_size - 1))
1376 				ret = 0;
1377 			if (kasan_meta_size < s->object_size &&
1378 			    !check_bytes_and_report(s, slab, p, "End Poison",
1379 					p + s->object_size - 1, POISON_END, 1))
1380 				ret = 0;
1381 		}
1382 		/*
1383 		 * check_pad_bytes cleans up on its own.
1384 		 */
1385 		if (!check_pad_bytes(s, slab, p))
1386 			ret = 0;
1387 	}
1388 
1389 	/*
1390 	 * Cannot check freepointer while object is allocated if
1391 	 * object and freepointer overlap.
1392 	 */
1393 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1394 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1395 		object_err(s, slab, p, "Freepointer corrupt");
1396 		/*
1397 		 * No choice but to zap it and thus lose the remainder
1398 		 * of the free objects in this slab. May cause
1399 		 * another error because the object count is now wrong.
1400 		 */
1401 		set_freepointer(s, p, NULL);
1402 		ret = 0;
1403 	}
1404 
1405 	if (!ret && !slab_in_kunit_test()) {
1406 		print_trailer(s, slab, object);
1407 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1408 	}
1409 
1410 	return ret;
1411 }
1412 
1413 static int check_slab(struct kmem_cache *s, struct slab *slab)
1414 {
1415 	int maxobj;
1416 
1417 	if (!folio_test_slab(slab_folio(slab))) {
1418 		slab_err(s, slab, "Not a valid slab page");
1419 		return 0;
1420 	}
1421 
1422 	maxobj = order_objects(slab_order(slab), s->size);
1423 	if (slab->objects > maxobj) {
1424 		slab_err(s, slab, "objects %u > max %u",
1425 			slab->objects, maxobj);
1426 		return 0;
1427 	}
1428 	if (slab->inuse > slab->objects) {
1429 		slab_err(s, slab, "inuse %u > max %u",
1430 			slab->inuse, slab->objects);
1431 		return 0;
1432 	}
1433 	/* Slab_pad_check fixes things up after itself */
1434 	slab_pad_check(s, slab);
1435 	return 1;
1436 }
1437 
1438 /*
1439  * Determine if a certain object in a slab is on the freelist. Must hold the
1440  * slab lock to guarantee that the chains are in a consistent state.
1441  */
1442 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1443 {
1444 	int nr = 0;
1445 	void *fp;
1446 	void *object = NULL;
1447 	int max_objects;
1448 
1449 	fp = slab->freelist;
1450 	while (fp && nr <= slab->objects) {
1451 		if (fp == search)
1452 			return 1;
1453 		if (!check_valid_pointer(s, slab, fp)) {
1454 			if (object) {
1455 				object_err(s, slab, object,
1456 					"Freechain corrupt");
1457 				set_freepointer(s, object, NULL);
1458 			} else {
1459 				slab_err(s, slab, "Freepointer corrupt");
1460 				slab->freelist = NULL;
1461 				slab->inuse = slab->objects;
1462 				slab_fix(s, "Freelist cleared");
1463 				return 0;
1464 			}
1465 			break;
1466 		}
1467 		object = fp;
1468 		fp = get_freepointer(s, object);
1469 		nr++;
1470 	}
1471 
1472 	max_objects = order_objects(slab_order(slab), s->size);
1473 	if (max_objects > MAX_OBJS_PER_PAGE)
1474 		max_objects = MAX_OBJS_PER_PAGE;
1475 
1476 	if (slab->objects != max_objects) {
1477 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1478 			 slab->objects, max_objects);
1479 		slab->objects = max_objects;
1480 		slab_fix(s, "Number of objects adjusted");
1481 	}
1482 	if (slab->inuse != slab->objects - nr) {
1483 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1484 			 slab->inuse, slab->objects - nr);
1485 		slab->inuse = slab->objects - nr;
1486 		slab_fix(s, "Object count adjusted");
1487 	}
1488 	return search == NULL;
1489 }
1490 
1491 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1492 								int alloc)
1493 {
1494 	if (s->flags & SLAB_TRACE) {
1495 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1496 			s->name,
1497 			alloc ? "alloc" : "free",
1498 			object, slab->inuse,
1499 			slab->freelist);
1500 
1501 		if (!alloc)
1502 			print_section(KERN_INFO, "Object ", (void *)object,
1503 					s->object_size);
1504 
1505 		dump_stack();
1506 	}
1507 }
1508 
1509 /*
1510  * Tracking of fully allocated slabs for debugging purposes.
1511  */
1512 static void add_full(struct kmem_cache *s,
1513 	struct kmem_cache_node *n, struct slab *slab)
1514 {
1515 	if (!(s->flags & SLAB_STORE_USER))
1516 		return;
1517 
1518 	lockdep_assert_held(&n->list_lock);
1519 	list_add(&slab->slab_list, &n->full);
1520 }
1521 
1522 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1523 {
1524 	if (!(s->flags & SLAB_STORE_USER))
1525 		return;
1526 
1527 	lockdep_assert_held(&n->list_lock);
1528 	list_del(&slab->slab_list);
1529 }
1530 
1531 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1532 {
1533 	return atomic_long_read(&n->nr_slabs);
1534 }
1535 
1536 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1537 {
1538 	struct kmem_cache_node *n = get_node(s, node);
1539 
1540 	atomic_long_inc(&n->nr_slabs);
1541 	atomic_long_add(objects, &n->total_objects);
1542 }
1543 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1544 {
1545 	struct kmem_cache_node *n = get_node(s, node);
1546 
1547 	atomic_long_dec(&n->nr_slabs);
1548 	atomic_long_sub(objects, &n->total_objects);
1549 }
1550 
1551 /* Object debug checks for alloc/free paths */
1552 static void setup_object_debug(struct kmem_cache *s, void *object)
1553 {
1554 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1555 		return;
1556 
1557 	init_object(s, object, SLUB_RED_INACTIVE);
1558 	init_tracking(s, object);
1559 }
1560 
1561 static
1562 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1563 {
1564 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1565 		return;
1566 
1567 	metadata_access_enable();
1568 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1569 	metadata_access_disable();
1570 }
1571 
1572 static inline int alloc_consistency_checks(struct kmem_cache *s,
1573 					struct slab *slab, void *object)
1574 {
1575 	if (!check_slab(s, slab))
1576 		return 0;
1577 
1578 	if (!check_valid_pointer(s, slab, object)) {
1579 		object_err(s, slab, object, "Freelist Pointer check fails");
1580 		return 0;
1581 	}
1582 
1583 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1584 		return 0;
1585 
1586 	return 1;
1587 }
1588 
1589 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1590 			struct slab *slab, void *object, int orig_size)
1591 {
1592 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1593 		if (!alloc_consistency_checks(s, slab, object))
1594 			goto bad;
1595 	}
1596 
1597 	/* Success. Perform special debug activities for allocs */
1598 	trace(s, slab, object, 1);
1599 	set_orig_size(s, object, orig_size);
1600 	init_object(s, object, SLUB_RED_ACTIVE);
1601 	return true;
1602 
1603 bad:
1604 	if (folio_test_slab(slab_folio(slab))) {
1605 		/*
1606 		 * If this is a slab page then lets do the best we can
1607 		 * to avoid issues in the future. Marking all objects
1608 		 * as used avoids touching the remaining objects.
1609 		 */
1610 		slab_fix(s, "Marking all objects used");
1611 		slab->inuse = slab->objects;
1612 		slab->freelist = NULL;
1613 	}
1614 	return false;
1615 }
1616 
1617 static inline int free_consistency_checks(struct kmem_cache *s,
1618 		struct slab *slab, void *object, unsigned long addr)
1619 {
1620 	if (!check_valid_pointer(s, slab, object)) {
1621 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1622 		return 0;
1623 	}
1624 
1625 	if (on_freelist(s, slab, object)) {
1626 		object_err(s, slab, object, "Object already free");
1627 		return 0;
1628 	}
1629 
1630 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1631 		return 0;
1632 
1633 	if (unlikely(s != slab->slab_cache)) {
1634 		if (!folio_test_slab(slab_folio(slab))) {
1635 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1636 				 object);
1637 		} else if (!slab->slab_cache) {
1638 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1639 			       object);
1640 			dump_stack();
1641 		} else
1642 			object_err(s, slab, object,
1643 					"page slab pointer corrupt.");
1644 		return 0;
1645 	}
1646 	return 1;
1647 }
1648 
1649 /*
1650  * Parse a block of slab_debug options. Blocks are delimited by ';'
1651  *
1652  * @str:    start of block
1653  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1654  * @slabs:  return start of list of slabs, or NULL when there's no list
1655  * @init:   assume this is initial parsing and not per-kmem-create parsing
1656  *
1657  * returns the start of next block if there's any, or NULL
1658  */
1659 static char *
1660 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1661 {
1662 	bool higher_order_disable = false;
1663 
1664 	/* Skip any completely empty blocks */
1665 	while (*str && *str == ';')
1666 		str++;
1667 
1668 	if (*str == ',') {
1669 		/*
1670 		 * No options but restriction on slabs. This means full
1671 		 * debugging for slabs matching a pattern.
1672 		 */
1673 		*flags = DEBUG_DEFAULT_FLAGS;
1674 		goto check_slabs;
1675 	}
1676 	*flags = 0;
1677 
1678 	/* Determine which debug features should be switched on */
1679 	for (; *str && *str != ',' && *str != ';'; str++) {
1680 		switch (tolower(*str)) {
1681 		case '-':
1682 			*flags = 0;
1683 			break;
1684 		case 'f':
1685 			*flags |= SLAB_CONSISTENCY_CHECKS;
1686 			break;
1687 		case 'z':
1688 			*flags |= SLAB_RED_ZONE;
1689 			break;
1690 		case 'p':
1691 			*flags |= SLAB_POISON;
1692 			break;
1693 		case 'u':
1694 			*flags |= SLAB_STORE_USER;
1695 			break;
1696 		case 't':
1697 			*flags |= SLAB_TRACE;
1698 			break;
1699 		case 'a':
1700 			*flags |= SLAB_FAILSLAB;
1701 			break;
1702 		case 'o':
1703 			/*
1704 			 * Avoid enabling debugging on caches if its minimum
1705 			 * order would increase as a result.
1706 			 */
1707 			higher_order_disable = true;
1708 			break;
1709 		default:
1710 			if (init)
1711 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1712 		}
1713 	}
1714 check_slabs:
1715 	if (*str == ',')
1716 		*slabs = ++str;
1717 	else
1718 		*slabs = NULL;
1719 
1720 	/* Skip over the slab list */
1721 	while (*str && *str != ';')
1722 		str++;
1723 
1724 	/* Skip any completely empty blocks */
1725 	while (*str && *str == ';')
1726 		str++;
1727 
1728 	if (init && higher_order_disable)
1729 		disable_higher_order_debug = 1;
1730 
1731 	if (*str)
1732 		return str;
1733 	else
1734 		return NULL;
1735 }
1736 
1737 static int __init setup_slub_debug(char *str)
1738 {
1739 	slab_flags_t flags;
1740 	slab_flags_t global_flags;
1741 	char *saved_str;
1742 	char *slab_list;
1743 	bool global_slub_debug_changed = false;
1744 	bool slab_list_specified = false;
1745 
1746 	global_flags = DEBUG_DEFAULT_FLAGS;
1747 	if (*str++ != '=' || !*str)
1748 		/*
1749 		 * No options specified. Switch on full debugging.
1750 		 */
1751 		goto out;
1752 
1753 	saved_str = str;
1754 	while (str) {
1755 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1756 
1757 		if (!slab_list) {
1758 			global_flags = flags;
1759 			global_slub_debug_changed = true;
1760 		} else {
1761 			slab_list_specified = true;
1762 			if (flags & SLAB_STORE_USER)
1763 				stack_depot_request_early_init();
1764 		}
1765 	}
1766 
1767 	/*
1768 	 * For backwards compatibility, a single list of flags with list of
1769 	 * slabs means debugging is only changed for those slabs, so the global
1770 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1771 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1772 	 * long as there is no option specifying flags without a slab list.
1773 	 */
1774 	if (slab_list_specified) {
1775 		if (!global_slub_debug_changed)
1776 			global_flags = slub_debug;
1777 		slub_debug_string = saved_str;
1778 	}
1779 out:
1780 	slub_debug = global_flags;
1781 	if (slub_debug & SLAB_STORE_USER)
1782 		stack_depot_request_early_init();
1783 	if (slub_debug != 0 || slub_debug_string)
1784 		static_branch_enable(&slub_debug_enabled);
1785 	else
1786 		static_branch_disable(&slub_debug_enabled);
1787 	if ((static_branch_unlikely(&init_on_alloc) ||
1788 	     static_branch_unlikely(&init_on_free)) &&
1789 	    (slub_debug & SLAB_POISON))
1790 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1791 	return 1;
1792 }
1793 
1794 __setup("slab_debug", setup_slub_debug);
1795 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1796 
1797 /*
1798  * kmem_cache_flags - apply debugging options to the cache
1799  * @flags:		flags to set
1800  * @name:		name of the cache
1801  *
1802  * Debug option(s) are applied to @flags. In addition to the debug
1803  * option(s), if a slab name (or multiple) is specified i.e.
1804  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1805  * then only the select slabs will receive the debug option(s).
1806  */
1807 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1808 {
1809 	char *iter;
1810 	size_t len;
1811 	char *next_block;
1812 	slab_flags_t block_flags;
1813 	slab_flags_t slub_debug_local = slub_debug;
1814 
1815 	if (flags & SLAB_NO_USER_FLAGS)
1816 		return flags;
1817 
1818 	/*
1819 	 * If the slab cache is for debugging (e.g. kmemleak) then
1820 	 * don't store user (stack trace) information by default,
1821 	 * but let the user enable it via the command line below.
1822 	 */
1823 	if (flags & SLAB_NOLEAKTRACE)
1824 		slub_debug_local &= ~SLAB_STORE_USER;
1825 
1826 	len = strlen(name);
1827 	next_block = slub_debug_string;
1828 	/* Go through all blocks of debug options, see if any matches our slab's name */
1829 	while (next_block) {
1830 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1831 		if (!iter)
1832 			continue;
1833 		/* Found a block that has a slab list, search it */
1834 		while (*iter) {
1835 			char *end, *glob;
1836 			size_t cmplen;
1837 
1838 			end = strchrnul(iter, ',');
1839 			if (next_block && next_block < end)
1840 				end = next_block - 1;
1841 
1842 			glob = strnchr(iter, end - iter, '*');
1843 			if (glob)
1844 				cmplen = glob - iter;
1845 			else
1846 				cmplen = max_t(size_t, len, (end - iter));
1847 
1848 			if (!strncmp(name, iter, cmplen)) {
1849 				flags |= block_flags;
1850 				return flags;
1851 			}
1852 
1853 			if (!*end || *end == ';')
1854 				break;
1855 			iter = end + 1;
1856 		}
1857 	}
1858 
1859 	return flags | slub_debug_local;
1860 }
1861 #else /* !CONFIG_SLUB_DEBUG */
1862 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1863 static inline
1864 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1865 
1866 static inline bool alloc_debug_processing(struct kmem_cache *s,
1867 	struct slab *slab, void *object, int orig_size) { return true; }
1868 
1869 static inline bool free_debug_processing(struct kmem_cache *s,
1870 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1871 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1872 
1873 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1874 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1875 			void *object, u8 val) { return 1; }
1876 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1877 static inline void set_track(struct kmem_cache *s, void *object,
1878 			     enum track_item alloc, unsigned long addr) {}
1879 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1880 					struct slab *slab) {}
1881 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1882 					struct slab *slab) {}
1883 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1884 {
1885 	return flags;
1886 }
1887 #define slub_debug 0
1888 
1889 #define disable_higher_order_debug 0
1890 
1891 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1892 							{ return 0; }
1893 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1894 							int objects) {}
1895 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1896 							int objects) {}
1897 
1898 #ifndef CONFIG_SLUB_TINY
1899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1900 			       void **freelist, void *nextfree)
1901 {
1902 	return false;
1903 }
1904 #endif
1905 #endif /* CONFIG_SLUB_DEBUG */
1906 
1907 #ifdef CONFIG_SLAB_OBJ_EXT
1908 
1909 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1910 
1911 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1912 {
1913 	struct slabobj_ext *slab_exts;
1914 	struct slab *obj_exts_slab;
1915 
1916 	obj_exts_slab = virt_to_slab(obj_exts);
1917 	slab_exts = slab_obj_exts(obj_exts_slab);
1918 	if (slab_exts) {
1919 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1920 						 obj_exts_slab, obj_exts);
1921 		/* codetag should be NULL */
1922 		WARN_ON(slab_exts[offs].ref.ct);
1923 		set_codetag_empty(&slab_exts[offs].ref);
1924 	}
1925 }
1926 
1927 static inline void mark_failed_objexts_alloc(struct slab *slab)
1928 {
1929 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1930 }
1931 
1932 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1933 			struct slabobj_ext *vec, unsigned int objects)
1934 {
1935 	/*
1936 	 * If vector previously failed to allocate then we have live
1937 	 * objects with no tag reference. Mark all references in this
1938 	 * vector as empty to avoid warnings later on.
1939 	 */
1940 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1941 		unsigned int i;
1942 
1943 		for (i = 0; i < objects; i++)
1944 			set_codetag_empty(&vec[i].ref);
1945 	}
1946 }
1947 
1948 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1949 
1950 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1951 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1952 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1953 			struct slabobj_ext *vec, unsigned int objects) {}
1954 
1955 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1956 
1957 /*
1958  * The allocated objcg pointers array is not accounted directly.
1959  * Moreover, it should not come from DMA buffer and is not readily
1960  * reclaimable. So those GFP bits should be masked off.
1961  */
1962 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1963 				__GFP_ACCOUNT | __GFP_NOFAIL)
1964 
1965 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1966 		        gfp_t gfp, bool new_slab)
1967 {
1968 	unsigned int objects = objs_per_slab(s, slab);
1969 	unsigned long new_exts;
1970 	unsigned long old_exts;
1971 	struct slabobj_ext *vec;
1972 
1973 	gfp &= ~OBJCGS_CLEAR_MASK;
1974 	/* Prevent recursive extension vector allocation */
1975 	gfp |= __GFP_NO_OBJ_EXT;
1976 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1977 			   slab_nid(slab));
1978 	if (!vec) {
1979 		/* Mark vectors which failed to allocate */
1980 		if (new_slab)
1981 			mark_failed_objexts_alloc(slab);
1982 
1983 		return -ENOMEM;
1984 	}
1985 
1986 	new_exts = (unsigned long)vec;
1987 #ifdef CONFIG_MEMCG
1988 	new_exts |= MEMCG_DATA_OBJEXTS;
1989 #endif
1990 	old_exts = READ_ONCE(slab->obj_exts);
1991 	handle_failed_objexts_alloc(old_exts, vec, objects);
1992 	if (new_slab) {
1993 		/*
1994 		 * If the slab is brand new and nobody can yet access its
1995 		 * obj_exts, no synchronization is required and obj_exts can
1996 		 * be simply assigned.
1997 		 */
1998 		slab->obj_exts = new_exts;
1999 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2000 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2001 		/*
2002 		 * If the slab is already in use, somebody can allocate and
2003 		 * assign slabobj_exts in parallel. In this case the existing
2004 		 * objcg vector should be reused.
2005 		 */
2006 		mark_objexts_empty(vec);
2007 		kfree(vec);
2008 		return 0;
2009 	}
2010 
2011 	kmemleak_not_leak(vec);
2012 	return 0;
2013 }
2014 
2015 static inline void free_slab_obj_exts(struct slab *slab)
2016 {
2017 	struct slabobj_ext *obj_exts;
2018 
2019 	obj_exts = slab_obj_exts(slab);
2020 	if (!obj_exts)
2021 		return;
2022 
2023 	/*
2024 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2025 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2026 	 * warning if slab has extensions but the extension of an object is
2027 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2028 	 * the extension for obj_exts is expected to be NULL.
2029 	 */
2030 	mark_objexts_empty(obj_exts);
2031 	kfree(obj_exts);
2032 	slab->obj_exts = 0;
2033 }
2034 
2035 static inline bool need_slab_obj_ext(void)
2036 {
2037 	if (mem_alloc_profiling_enabled())
2038 		return true;
2039 
2040 	/*
2041 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2042 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2043 	 */
2044 	return false;
2045 }
2046 
2047 #else /* CONFIG_SLAB_OBJ_EXT */
2048 
2049 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2050 			       gfp_t gfp, bool new_slab)
2051 {
2052 	return 0;
2053 }
2054 
2055 static inline void free_slab_obj_exts(struct slab *slab)
2056 {
2057 }
2058 
2059 static inline bool need_slab_obj_ext(void)
2060 {
2061 	return false;
2062 }
2063 
2064 #endif /* CONFIG_SLAB_OBJ_EXT */
2065 
2066 #ifdef CONFIG_MEM_ALLOC_PROFILING
2067 
2068 static inline struct slabobj_ext *
2069 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2070 {
2071 	struct slab *slab;
2072 
2073 	if (!p)
2074 		return NULL;
2075 
2076 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2077 		return NULL;
2078 
2079 	if (flags & __GFP_NO_OBJ_EXT)
2080 		return NULL;
2081 
2082 	slab = virt_to_slab(p);
2083 	if (!slab_obj_exts(slab) &&
2084 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2085 		 "%s, %s: Failed to create slab extension vector!\n",
2086 		 __func__, s->name))
2087 		return NULL;
2088 
2089 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2090 }
2091 
2092 static inline void
2093 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2094 {
2095 	if (need_slab_obj_ext()) {
2096 		struct slabobj_ext *obj_exts;
2097 
2098 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2099 		/*
2100 		 * Currently obj_exts is used only for allocation profiling.
2101 		 * If other users appear then mem_alloc_profiling_enabled()
2102 		 * check should be added before alloc_tag_add().
2103 		 */
2104 		if (likely(obj_exts))
2105 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2106 	}
2107 }
2108 
2109 static inline void
2110 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2111 			     int objects)
2112 {
2113 	struct slabobj_ext *obj_exts;
2114 	int i;
2115 
2116 	if (!mem_alloc_profiling_enabled())
2117 		return;
2118 
2119 	obj_exts = slab_obj_exts(slab);
2120 	if (!obj_exts)
2121 		return;
2122 
2123 	for (i = 0; i < objects; i++) {
2124 		unsigned int off = obj_to_index(s, slab, p[i]);
2125 
2126 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2127 	}
2128 }
2129 
2130 #else /* CONFIG_MEM_ALLOC_PROFILING */
2131 
2132 static inline void
2133 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2134 {
2135 }
2136 
2137 static inline void
2138 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2139 			     int objects)
2140 {
2141 }
2142 
2143 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2144 
2145 
2146 #ifdef CONFIG_MEMCG
2147 
2148 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2149 
2150 static __fastpath_inline
2151 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2152 				gfp_t flags, size_t size, void **p)
2153 {
2154 	if (likely(!memcg_kmem_online()))
2155 		return true;
2156 
2157 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2158 		return true;
2159 
2160 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2161 		return true;
2162 
2163 	if (likely(size == 1)) {
2164 		memcg_alloc_abort_single(s, *p);
2165 		*p = NULL;
2166 	} else {
2167 		kmem_cache_free_bulk(s, size, p);
2168 	}
2169 
2170 	return false;
2171 }
2172 
2173 static __fastpath_inline
2174 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2175 			  int objects)
2176 {
2177 	struct slabobj_ext *obj_exts;
2178 
2179 	if (!memcg_kmem_online())
2180 		return;
2181 
2182 	obj_exts = slab_obj_exts(slab);
2183 	if (likely(!obj_exts))
2184 		return;
2185 
2186 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2187 }
2188 #else /* CONFIG_MEMCG */
2189 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2190 					      struct list_lru *lru,
2191 					      gfp_t flags, size_t size,
2192 					      void **p)
2193 {
2194 	return true;
2195 }
2196 
2197 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2198 					void **p, int objects)
2199 {
2200 }
2201 #endif /* CONFIG_MEMCG */
2202 
2203 /*
2204  * Hooks for other subsystems that check memory allocations. In a typical
2205  * production configuration these hooks all should produce no code at all.
2206  *
2207  * Returns true if freeing of the object can proceed, false if its reuse
2208  * was delayed by KASAN quarantine, or it was returned to KFENCE.
2209  */
2210 static __always_inline
2211 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2212 {
2213 	kmemleak_free_recursive(x, s->flags);
2214 	kmsan_slab_free(s, x);
2215 
2216 	debug_check_no_locks_freed(x, s->object_size);
2217 
2218 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2219 		debug_check_no_obj_freed(x, s->object_size);
2220 
2221 	/* Use KCSAN to help debug racy use-after-free. */
2222 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2223 		__kcsan_check_access(x, s->object_size,
2224 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2225 
2226 	if (kfence_free(x))
2227 		return false;
2228 
2229 	/*
2230 	 * As memory initialization might be integrated into KASAN,
2231 	 * kasan_slab_free and initialization memset's must be
2232 	 * kept together to avoid discrepancies in behavior.
2233 	 *
2234 	 * The initialization memset's clear the object and the metadata,
2235 	 * but don't touch the SLAB redzone.
2236 	 *
2237 	 * The object's freepointer is also avoided if stored outside the
2238 	 * object.
2239 	 */
2240 	if (unlikely(init)) {
2241 		int rsize;
2242 		unsigned int inuse;
2243 
2244 		inuse = get_info_end(s);
2245 		if (!kasan_has_integrated_init())
2246 			memset(kasan_reset_tag(x), 0, s->object_size);
2247 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2248 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2249 		       s->size - inuse - rsize);
2250 	}
2251 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2252 	return !kasan_slab_free(s, x, init);
2253 }
2254 
2255 static __fastpath_inline
2256 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2257 			     int *cnt)
2258 {
2259 
2260 	void *object;
2261 	void *next = *head;
2262 	void *old_tail = *tail;
2263 	bool init;
2264 
2265 	if (is_kfence_address(next)) {
2266 		slab_free_hook(s, next, false);
2267 		return false;
2268 	}
2269 
2270 	/* Head and tail of the reconstructed freelist */
2271 	*head = NULL;
2272 	*tail = NULL;
2273 
2274 	init = slab_want_init_on_free(s);
2275 
2276 	do {
2277 		object = next;
2278 		next = get_freepointer(s, object);
2279 
2280 		/* If object's reuse doesn't have to be delayed */
2281 		if (likely(slab_free_hook(s, object, init))) {
2282 			/* Move object to the new freelist */
2283 			set_freepointer(s, object, *head);
2284 			*head = object;
2285 			if (!*tail)
2286 				*tail = object;
2287 		} else {
2288 			/*
2289 			 * Adjust the reconstructed freelist depth
2290 			 * accordingly if object's reuse is delayed.
2291 			 */
2292 			--(*cnt);
2293 		}
2294 	} while (object != old_tail);
2295 
2296 	return *head != NULL;
2297 }
2298 
2299 static void *setup_object(struct kmem_cache *s, void *object)
2300 {
2301 	setup_object_debug(s, object);
2302 	object = kasan_init_slab_obj(s, object);
2303 	if (unlikely(s->ctor)) {
2304 		kasan_unpoison_new_object(s, object);
2305 		s->ctor(object);
2306 		kasan_poison_new_object(s, object);
2307 	}
2308 	return object;
2309 }
2310 
2311 /*
2312  * Slab allocation and freeing
2313  */
2314 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2315 		struct kmem_cache_order_objects oo)
2316 {
2317 	struct folio *folio;
2318 	struct slab *slab;
2319 	unsigned int order = oo_order(oo);
2320 
2321 	folio = (struct folio *)alloc_pages_node(node, flags, order);
2322 	if (!folio)
2323 		return NULL;
2324 
2325 	slab = folio_slab(folio);
2326 	__folio_set_slab(folio);
2327 	/* Make the flag visible before any changes to folio->mapping */
2328 	smp_wmb();
2329 	if (folio_is_pfmemalloc(folio))
2330 		slab_set_pfmemalloc(slab);
2331 
2332 	return slab;
2333 }
2334 
2335 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2336 /* Pre-initialize the random sequence cache */
2337 static int init_cache_random_seq(struct kmem_cache *s)
2338 {
2339 	unsigned int count = oo_objects(s->oo);
2340 	int err;
2341 
2342 	/* Bailout if already initialised */
2343 	if (s->random_seq)
2344 		return 0;
2345 
2346 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2347 	if (err) {
2348 		pr_err("SLUB: Unable to initialize free list for %s\n",
2349 			s->name);
2350 		return err;
2351 	}
2352 
2353 	/* Transform to an offset on the set of pages */
2354 	if (s->random_seq) {
2355 		unsigned int i;
2356 
2357 		for (i = 0; i < count; i++)
2358 			s->random_seq[i] *= s->size;
2359 	}
2360 	return 0;
2361 }
2362 
2363 /* Initialize each random sequence freelist per cache */
2364 static void __init init_freelist_randomization(void)
2365 {
2366 	struct kmem_cache *s;
2367 
2368 	mutex_lock(&slab_mutex);
2369 
2370 	list_for_each_entry(s, &slab_caches, list)
2371 		init_cache_random_seq(s);
2372 
2373 	mutex_unlock(&slab_mutex);
2374 }
2375 
2376 /* Get the next entry on the pre-computed freelist randomized */
2377 static void *next_freelist_entry(struct kmem_cache *s,
2378 				unsigned long *pos, void *start,
2379 				unsigned long page_limit,
2380 				unsigned long freelist_count)
2381 {
2382 	unsigned int idx;
2383 
2384 	/*
2385 	 * If the target page allocation failed, the number of objects on the
2386 	 * page might be smaller than the usual size defined by the cache.
2387 	 */
2388 	do {
2389 		idx = s->random_seq[*pos];
2390 		*pos += 1;
2391 		if (*pos >= freelist_count)
2392 			*pos = 0;
2393 	} while (unlikely(idx >= page_limit));
2394 
2395 	return (char *)start + idx;
2396 }
2397 
2398 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2399 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2400 {
2401 	void *start;
2402 	void *cur;
2403 	void *next;
2404 	unsigned long idx, pos, page_limit, freelist_count;
2405 
2406 	if (slab->objects < 2 || !s->random_seq)
2407 		return false;
2408 
2409 	freelist_count = oo_objects(s->oo);
2410 	pos = get_random_u32_below(freelist_count);
2411 
2412 	page_limit = slab->objects * s->size;
2413 	start = fixup_red_left(s, slab_address(slab));
2414 
2415 	/* First entry is used as the base of the freelist */
2416 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2417 	cur = setup_object(s, cur);
2418 	slab->freelist = cur;
2419 
2420 	for (idx = 1; idx < slab->objects; idx++) {
2421 		next = next_freelist_entry(s, &pos, start, page_limit,
2422 			freelist_count);
2423 		next = setup_object(s, next);
2424 		set_freepointer(s, cur, next);
2425 		cur = next;
2426 	}
2427 	set_freepointer(s, cur, NULL);
2428 
2429 	return true;
2430 }
2431 #else
2432 static inline int init_cache_random_seq(struct kmem_cache *s)
2433 {
2434 	return 0;
2435 }
2436 static inline void init_freelist_randomization(void) { }
2437 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2438 {
2439 	return false;
2440 }
2441 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2442 
2443 static __always_inline void account_slab(struct slab *slab, int order,
2444 					 struct kmem_cache *s, gfp_t gfp)
2445 {
2446 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2447 		alloc_slab_obj_exts(slab, s, gfp, true);
2448 
2449 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2450 			    PAGE_SIZE << order);
2451 }
2452 
2453 static __always_inline void unaccount_slab(struct slab *slab, int order,
2454 					   struct kmem_cache *s)
2455 {
2456 	if (memcg_kmem_online() || need_slab_obj_ext())
2457 		free_slab_obj_exts(slab);
2458 
2459 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2460 			    -(PAGE_SIZE << order));
2461 }
2462 
2463 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2464 {
2465 	struct slab *slab;
2466 	struct kmem_cache_order_objects oo = s->oo;
2467 	gfp_t alloc_gfp;
2468 	void *start, *p, *next;
2469 	int idx;
2470 	bool shuffle;
2471 
2472 	flags &= gfp_allowed_mask;
2473 
2474 	flags |= s->allocflags;
2475 
2476 	/*
2477 	 * Let the initial higher-order allocation fail under memory pressure
2478 	 * so we fall-back to the minimum order allocation.
2479 	 */
2480 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2481 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2482 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2483 
2484 	slab = alloc_slab_page(alloc_gfp, node, oo);
2485 	if (unlikely(!slab)) {
2486 		oo = s->min;
2487 		alloc_gfp = flags;
2488 		/*
2489 		 * Allocation may have failed due to fragmentation.
2490 		 * Try a lower order alloc if possible
2491 		 */
2492 		slab = alloc_slab_page(alloc_gfp, node, oo);
2493 		if (unlikely(!slab))
2494 			return NULL;
2495 		stat(s, ORDER_FALLBACK);
2496 	}
2497 
2498 	slab->objects = oo_objects(oo);
2499 	slab->inuse = 0;
2500 	slab->frozen = 0;
2501 
2502 	account_slab(slab, oo_order(oo), s, flags);
2503 
2504 	slab->slab_cache = s;
2505 
2506 	kasan_poison_slab(slab);
2507 
2508 	start = slab_address(slab);
2509 
2510 	setup_slab_debug(s, slab, start);
2511 
2512 	shuffle = shuffle_freelist(s, slab);
2513 
2514 	if (!shuffle) {
2515 		start = fixup_red_left(s, start);
2516 		start = setup_object(s, start);
2517 		slab->freelist = start;
2518 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2519 			next = p + s->size;
2520 			next = setup_object(s, next);
2521 			set_freepointer(s, p, next);
2522 			p = next;
2523 		}
2524 		set_freepointer(s, p, NULL);
2525 	}
2526 
2527 	return slab;
2528 }
2529 
2530 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2531 {
2532 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2533 		flags = kmalloc_fix_flags(flags);
2534 
2535 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2536 
2537 	return allocate_slab(s,
2538 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2539 }
2540 
2541 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2542 {
2543 	struct folio *folio = slab_folio(slab);
2544 	int order = folio_order(folio);
2545 	int pages = 1 << order;
2546 
2547 	__slab_clear_pfmemalloc(slab);
2548 	folio->mapping = NULL;
2549 	/* Make the mapping reset visible before clearing the flag */
2550 	smp_wmb();
2551 	__folio_clear_slab(folio);
2552 	mm_account_reclaimed_pages(pages);
2553 	unaccount_slab(slab, order, s);
2554 	__free_pages(&folio->page, order);
2555 }
2556 
2557 static void rcu_free_slab(struct rcu_head *h)
2558 {
2559 	struct slab *slab = container_of(h, struct slab, rcu_head);
2560 
2561 	__free_slab(slab->slab_cache, slab);
2562 }
2563 
2564 static void free_slab(struct kmem_cache *s, struct slab *slab)
2565 {
2566 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2567 		void *p;
2568 
2569 		slab_pad_check(s, slab);
2570 		for_each_object(p, s, slab_address(slab), slab->objects)
2571 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2572 	}
2573 
2574 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2575 		call_rcu(&slab->rcu_head, rcu_free_slab);
2576 	else
2577 		__free_slab(s, slab);
2578 }
2579 
2580 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2581 {
2582 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2583 	free_slab(s, slab);
2584 }
2585 
2586 /*
2587  * SLUB reuses PG_workingset bit to keep track of whether it's on
2588  * the per-node partial list.
2589  */
2590 static inline bool slab_test_node_partial(const struct slab *slab)
2591 {
2592 	return folio_test_workingset(slab_folio(slab));
2593 }
2594 
2595 static inline void slab_set_node_partial(struct slab *slab)
2596 {
2597 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2598 }
2599 
2600 static inline void slab_clear_node_partial(struct slab *slab)
2601 {
2602 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2603 }
2604 
2605 /*
2606  * Management of partially allocated slabs.
2607  */
2608 static inline void
2609 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2610 {
2611 	n->nr_partial++;
2612 	if (tail == DEACTIVATE_TO_TAIL)
2613 		list_add_tail(&slab->slab_list, &n->partial);
2614 	else
2615 		list_add(&slab->slab_list, &n->partial);
2616 	slab_set_node_partial(slab);
2617 }
2618 
2619 static inline void add_partial(struct kmem_cache_node *n,
2620 				struct slab *slab, int tail)
2621 {
2622 	lockdep_assert_held(&n->list_lock);
2623 	__add_partial(n, slab, tail);
2624 }
2625 
2626 static inline void remove_partial(struct kmem_cache_node *n,
2627 					struct slab *slab)
2628 {
2629 	lockdep_assert_held(&n->list_lock);
2630 	list_del(&slab->slab_list);
2631 	slab_clear_node_partial(slab);
2632 	n->nr_partial--;
2633 }
2634 
2635 /*
2636  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2637  * slab from the n->partial list. Remove only a single object from the slab, do
2638  * the alloc_debug_processing() checks and leave the slab on the list, or move
2639  * it to full list if it was the last free object.
2640  */
2641 static void *alloc_single_from_partial(struct kmem_cache *s,
2642 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2643 {
2644 	void *object;
2645 
2646 	lockdep_assert_held(&n->list_lock);
2647 
2648 	object = slab->freelist;
2649 	slab->freelist = get_freepointer(s, object);
2650 	slab->inuse++;
2651 
2652 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2653 		remove_partial(n, slab);
2654 		return NULL;
2655 	}
2656 
2657 	if (slab->inuse == slab->objects) {
2658 		remove_partial(n, slab);
2659 		add_full(s, n, slab);
2660 	}
2661 
2662 	return object;
2663 }
2664 
2665 /*
2666  * Called only for kmem_cache_debug() caches to allocate from a freshly
2667  * allocated slab. Allocate a single object instead of whole freelist
2668  * and put the slab to the partial (or full) list.
2669  */
2670 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2671 					struct slab *slab, int orig_size)
2672 {
2673 	int nid = slab_nid(slab);
2674 	struct kmem_cache_node *n = get_node(s, nid);
2675 	unsigned long flags;
2676 	void *object;
2677 
2678 
2679 	object = slab->freelist;
2680 	slab->freelist = get_freepointer(s, object);
2681 	slab->inuse = 1;
2682 
2683 	if (!alloc_debug_processing(s, slab, object, orig_size))
2684 		/*
2685 		 * It's not really expected that this would fail on a
2686 		 * freshly allocated slab, but a concurrent memory
2687 		 * corruption in theory could cause that.
2688 		 */
2689 		return NULL;
2690 
2691 	spin_lock_irqsave(&n->list_lock, flags);
2692 
2693 	if (slab->inuse == slab->objects)
2694 		add_full(s, n, slab);
2695 	else
2696 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2697 
2698 	inc_slabs_node(s, nid, slab->objects);
2699 	spin_unlock_irqrestore(&n->list_lock, flags);
2700 
2701 	return object;
2702 }
2703 
2704 #ifdef CONFIG_SLUB_CPU_PARTIAL
2705 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2706 #else
2707 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2708 				   int drain) { }
2709 #endif
2710 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2711 
2712 /*
2713  * Try to allocate a partial slab from a specific node.
2714  */
2715 static struct slab *get_partial_node(struct kmem_cache *s,
2716 				     struct kmem_cache_node *n,
2717 				     struct partial_context *pc)
2718 {
2719 	struct slab *slab, *slab2, *partial = NULL;
2720 	unsigned long flags;
2721 	unsigned int partial_slabs = 0;
2722 
2723 	/*
2724 	 * Racy check. If we mistakenly see no partial slabs then we
2725 	 * just allocate an empty slab. If we mistakenly try to get a
2726 	 * partial slab and there is none available then get_partial()
2727 	 * will return NULL.
2728 	 */
2729 	if (!n || !n->nr_partial)
2730 		return NULL;
2731 
2732 	spin_lock_irqsave(&n->list_lock, flags);
2733 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2734 		if (!pfmemalloc_match(slab, pc->flags))
2735 			continue;
2736 
2737 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2738 			void *object = alloc_single_from_partial(s, n, slab,
2739 							pc->orig_size);
2740 			if (object) {
2741 				partial = slab;
2742 				pc->object = object;
2743 				break;
2744 			}
2745 			continue;
2746 		}
2747 
2748 		remove_partial(n, slab);
2749 
2750 		if (!partial) {
2751 			partial = slab;
2752 			stat(s, ALLOC_FROM_PARTIAL);
2753 
2754 			if ((slub_get_cpu_partial(s) == 0)) {
2755 				break;
2756 			}
2757 		} else {
2758 			put_cpu_partial(s, slab, 0);
2759 			stat(s, CPU_PARTIAL_NODE);
2760 
2761 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2762 				break;
2763 			}
2764 		}
2765 	}
2766 	spin_unlock_irqrestore(&n->list_lock, flags);
2767 	return partial;
2768 }
2769 
2770 /*
2771  * Get a slab from somewhere. Search in increasing NUMA distances.
2772  */
2773 static struct slab *get_any_partial(struct kmem_cache *s,
2774 				    struct partial_context *pc)
2775 {
2776 #ifdef CONFIG_NUMA
2777 	struct zonelist *zonelist;
2778 	struct zoneref *z;
2779 	struct zone *zone;
2780 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2781 	struct slab *slab;
2782 	unsigned int cpuset_mems_cookie;
2783 
2784 	/*
2785 	 * The defrag ratio allows a configuration of the tradeoffs between
2786 	 * inter node defragmentation and node local allocations. A lower
2787 	 * defrag_ratio increases the tendency to do local allocations
2788 	 * instead of attempting to obtain partial slabs from other nodes.
2789 	 *
2790 	 * If the defrag_ratio is set to 0 then kmalloc() always
2791 	 * returns node local objects. If the ratio is higher then kmalloc()
2792 	 * may return off node objects because partial slabs are obtained
2793 	 * from other nodes and filled up.
2794 	 *
2795 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2796 	 * (which makes defrag_ratio = 1000) then every (well almost)
2797 	 * allocation will first attempt to defrag slab caches on other nodes.
2798 	 * This means scanning over all nodes to look for partial slabs which
2799 	 * may be expensive if we do it every time we are trying to find a slab
2800 	 * with available objects.
2801 	 */
2802 	if (!s->remote_node_defrag_ratio ||
2803 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2804 		return NULL;
2805 
2806 	do {
2807 		cpuset_mems_cookie = read_mems_allowed_begin();
2808 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2809 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2810 			struct kmem_cache_node *n;
2811 
2812 			n = get_node(s, zone_to_nid(zone));
2813 
2814 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2815 					n->nr_partial > s->min_partial) {
2816 				slab = get_partial_node(s, n, pc);
2817 				if (slab) {
2818 					/*
2819 					 * Don't check read_mems_allowed_retry()
2820 					 * here - if mems_allowed was updated in
2821 					 * parallel, that was a harmless race
2822 					 * between allocation and the cpuset
2823 					 * update
2824 					 */
2825 					return slab;
2826 				}
2827 			}
2828 		}
2829 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2830 #endif	/* CONFIG_NUMA */
2831 	return NULL;
2832 }
2833 
2834 /*
2835  * Get a partial slab, lock it and return it.
2836  */
2837 static struct slab *get_partial(struct kmem_cache *s, int node,
2838 				struct partial_context *pc)
2839 {
2840 	struct slab *slab;
2841 	int searchnode = node;
2842 
2843 	if (node == NUMA_NO_NODE)
2844 		searchnode = numa_mem_id();
2845 
2846 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2847 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2848 		return slab;
2849 
2850 	return get_any_partial(s, pc);
2851 }
2852 
2853 #ifndef CONFIG_SLUB_TINY
2854 
2855 #ifdef CONFIG_PREEMPTION
2856 /*
2857  * Calculate the next globally unique transaction for disambiguation
2858  * during cmpxchg. The transactions start with the cpu number and are then
2859  * incremented by CONFIG_NR_CPUS.
2860  */
2861 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2862 #else
2863 /*
2864  * No preemption supported therefore also no need to check for
2865  * different cpus.
2866  */
2867 #define TID_STEP 1
2868 #endif /* CONFIG_PREEMPTION */
2869 
2870 static inline unsigned long next_tid(unsigned long tid)
2871 {
2872 	return tid + TID_STEP;
2873 }
2874 
2875 #ifdef SLUB_DEBUG_CMPXCHG
2876 static inline unsigned int tid_to_cpu(unsigned long tid)
2877 {
2878 	return tid % TID_STEP;
2879 }
2880 
2881 static inline unsigned long tid_to_event(unsigned long tid)
2882 {
2883 	return tid / TID_STEP;
2884 }
2885 #endif
2886 
2887 static inline unsigned int init_tid(int cpu)
2888 {
2889 	return cpu;
2890 }
2891 
2892 static inline void note_cmpxchg_failure(const char *n,
2893 		const struct kmem_cache *s, unsigned long tid)
2894 {
2895 #ifdef SLUB_DEBUG_CMPXCHG
2896 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2897 
2898 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2899 
2900 #ifdef CONFIG_PREEMPTION
2901 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2902 		pr_warn("due to cpu change %d -> %d\n",
2903 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2904 	else
2905 #endif
2906 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2907 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2908 			tid_to_event(tid), tid_to_event(actual_tid));
2909 	else
2910 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2911 			actual_tid, tid, next_tid(tid));
2912 #endif
2913 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2914 }
2915 
2916 static void init_kmem_cache_cpus(struct kmem_cache *s)
2917 {
2918 	int cpu;
2919 	struct kmem_cache_cpu *c;
2920 
2921 	for_each_possible_cpu(cpu) {
2922 		c = per_cpu_ptr(s->cpu_slab, cpu);
2923 		local_lock_init(&c->lock);
2924 		c->tid = init_tid(cpu);
2925 	}
2926 }
2927 
2928 /*
2929  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2930  * unfreezes the slabs and puts it on the proper list.
2931  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2932  * by the caller.
2933  */
2934 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2935 			    void *freelist)
2936 {
2937 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2938 	int free_delta = 0;
2939 	void *nextfree, *freelist_iter, *freelist_tail;
2940 	int tail = DEACTIVATE_TO_HEAD;
2941 	unsigned long flags = 0;
2942 	struct slab new;
2943 	struct slab old;
2944 
2945 	if (READ_ONCE(slab->freelist)) {
2946 		stat(s, DEACTIVATE_REMOTE_FREES);
2947 		tail = DEACTIVATE_TO_TAIL;
2948 	}
2949 
2950 	/*
2951 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2952 	 * remember the last object in freelist_tail for later splicing.
2953 	 */
2954 	freelist_tail = NULL;
2955 	freelist_iter = freelist;
2956 	while (freelist_iter) {
2957 		nextfree = get_freepointer(s, freelist_iter);
2958 
2959 		/*
2960 		 * If 'nextfree' is invalid, it is possible that the object at
2961 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2962 		 * starting at 'freelist_iter' by skipping them.
2963 		 */
2964 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2965 			break;
2966 
2967 		freelist_tail = freelist_iter;
2968 		free_delta++;
2969 
2970 		freelist_iter = nextfree;
2971 	}
2972 
2973 	/*
2974 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2975 	 * freelist to the head of slab's freelist.
2976 	 */
2977 	do {
2978 		old.freelist = READ_ONCE(slab->freelist);
2979 		old.counters = READ_ONCE(slab->counters);
2980 		VM_BUG_ON(!old.frozen);
2981 
2982 		/* Determine target state of the slab */
2983 		new.counters = old.counters;
2984 		new.frozen = 0;
2985 		if (freelist_tail) {
2986 			new.inuse -= free_delta;
2987 			set_freepointer(s, freelist_tail, old.freelist);
2988 			new.freelist = freelist;
2989 		} else {
2990 			new.freelist = old.freelist;
2991 		}
2992 	} while (!slab_update_freelist(s, slab,
2993 		old.freelist, old.counters,
2994 		new.freelist, new.counters,
2995 		"unfreezing slab"));
2996 
2997 	/*
2998 	 * Stage three: Manipulate the slab list based on the updated state.
2999 	 */
3000 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3001 		stat(s, DEACTIVATE_EMPTY);
3002 		discard_slab(s, slab);
3003 		stat(s, FREE_SLAB);
3004 	} else if (new.freelist) {
3005 		spin_lock_irqsave(&n->list_lock, flags);
3006 		add_partial(n, slab, tail);
3007 		spin_unlock_irqrestore(&n->list_lock, flags);
3008 		stat(s, tail);
3009 	} else {
3010 		stat(s, DEACTIVATE_FULL);
3011 	}
3012 }
3013 
3014 #ifdef CONFIG_SLUB_CPU_PARTIAL
3015 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3016 {
3017 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3018 	struct slab *slab, *slab_to_discard = NULL;
3019 	unsigned long flags = 0;
3020 
3021 	while (partial_slab) {
3022 		slab = partial_slab;
3023 		partial_slab = slab->next;
3024 
3025 		n2 = get_node(s, slab_nid(slab));
3026 		if (n != n2) {
3027 			if (n)
3028 				spin_unlock_irqrestore(&n->list_lock, flags);
3029 
3030 			n = n2;
3031 			spin_lock_irqsave(&n->list_lock, flags);
3032 		}
3033 
3034 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3035 			slab->next = slab_to_discard;
3036 			slab_to_discard = slab;
3037 		} else {
3038 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3039 			stat(s, FREE_ADD_PARTIAL);
3040 		}
3041 	}
3042 
3043 	if (n)
3044 		spin_unlock_irqrestore(&n->list_lock, flags);
3045 
3046 	while (slab_to_discard) {
3047 		slab = slab_to_discard;
3048 		slab_to_discard = slab_to_discard->next;
3049 
3050 		stat(s, DEACTIVATE_EMPTY);
3051 		discard_slab(s, slab);
3052 		stat(s, FREE_SLAB);
3053 	}
3054 }
3055 
3056 /*
3057  * Put all the cpu partial slabs to the node partial list.
3058  */
3059 static void put_partials(struct kmem_cache *s)
3060 {
3061 	struct slab *partial_slab;
3062 	unsigned long flags;
3063 
3064 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3065 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3066 	this_cpu_write(s->cpu_slab->partial, NULL);
3067 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3068 
3069 	if (partial_slab)
3070 		__put_partials(s, partial_slab);
3071 }
3072 
3073 static void put_partials_cpu(struct kmem_cache *s,
3074 			     struct kmem_cache_cpu *c)
3075 {
3076 	struct slab *partial_slab;
3077 
3078 	partial_slab = slub_percpu_partial(c);
3079 	c->partial = NULL;
3080 
3081 	if (partial_slab)
3082 		__put_partials(s, partial_slab);
3083 }
3084 
3085 /*
3086  * Put a slab into a partial slab slot if available.
3087  *
3088  * If we did not find a slot then simply move all the partials to the
3089  * per node partial list.
3090  */
3091 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3092 {
3093 	struct slab *oldslab;
3094 	struct slab *slab_to_put = NULL;
3095 	unsigned long flags;
3096 	int slabs = 0;
3097 
3098 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3099 
3100 	oldslab = this_cpu_read(s->cpu_slab->partial);
3101 
3102 	if (oldslab) {
3103 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3104 			/*
3105 			 * Partial array is full. Move the existing set to the
3106 			 * per node partial list. Postpone the actual unfreezing
3107 			 * outside of the critical section.
3108 			 */
3109 			slab_to_put = oldslab;
3110 			oldslab = NULL;
3111 		} else {
3112 			slabs = oldslab->slabs;
3113 		}
3114 	}
3115 
3116 	slabs++;
3117 
3118 	slab->slabs = slabs;
3119 	slab->next = oldslab;
3120 
3121 	this_cpu_write(s->cpu_slab->partial, slab);
3122 
3123 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3124 
3125 	if (slab_to_put) {
3126 		__put_partials(s, slab_to_put);
3127 		stat(s, CPU_PARTIAL_DRAIN);
3128 	}
3129 }
3130 
3131 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3132 
3133 static inline void put_partials(struct kmem_cache *s) { }
3134 static inline void put_partials_cpu(struct kmem_cache *s,
3135 				    struct kmem_cache_cpu *c) { }
3136 
3137 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3138 
3139 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3140 {
3141 	unsigned long flags;
3142 	struct slab *slab;
3143 	void *freelist;
3144 
3145 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3146 
3147 	slab = c->slab;
3148 	freelist = c->freelist;
3149 
3150 	c->slab = NULL;
3151 	c->freelist = NULL;
3152 	c->tid = next_tid(c->tid);
3153 
3154 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3155 
3156 	if (slab) {
3157 		deactivate_slab(s, slab, freelist);
3158 		stat(s, CPUSLAB_FLUSH);
3159 	}
3160 }
3161 
3162 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3163 {
3164 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3165 	void *freelist = c->freelist;
3166 	struct slab *slab = c->slab;
3167 
3168 	c->slab = NULL;
3169 	c->freelist = NULL;
3170 	c->tid = next_tid(c->tid);
3171 
3172 	if (slab) {
3173 		deactivate_slab(s, slab, freelist);
3174 		stat(s, CPUSLAB_FLUSH);
3175 	}
3176 
3177 	put_partials_cpu(s, c);
3178 }
3179 
3180 struct slub_flush_work {
3181 	struct work_struct work;
3182 	struct kmem_cache *s;
3183 	bool skip;
3184 };
3185 
3186 /*
3187  * Flush cpu slab.
3188  *
3189  * Called from CPU work handler with migration disabled.
3190  */
3191 static void flush_cpu_slab(struct work_struct *w)
3192 {
3193 	struct kmem_cache *s;
3194 	struct kmem_cache_cpu *c;
3195 	struct slub_flush_work *sfw;
3196 
3197 	sfw = container_of(w, struct slub_flush_work, work);
3198 
3199 	s = sfw->s;
3200 	c = this_cpu_ptr(s->cpu_slab);
3201 
3202 	if (c->slab)
3203 		flush_slab(s, c);
3204 
3205 	put_partials(s);
3206 }
3207 
3208 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3209 {
3210 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3211 
3212 	return c->slab || slub_percpu_partial(c);
3213 }
3214 
3215 static DEFINE_MUTEX(flush_lock);
3216 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3217 
3218 static void flush_all_cpus_locked(struct kmem_cache *s)
3219 {
3220 	struct slub_flush_work *sfw;
3221 	unsigned int cpu;
3222 
3223 	lockdep_assert_cpus_held();
3224 	mutex_lock(&flush_lock);
3225 
3226 	for_each_online_cpu(cpu) {
3227 		sfw = &per_cpu(slub_flush, cpu);
3228 		if (!has_cpu_slab(cpu, s)) {
3229 			sfw->skip = true;
3230 			continue;
3231 		}
3232 		INIT_WORK(&sfw->work, flush_cpu_slab);
3233 		sfw->skip = false;
3234 		sfw->s = s;
3235 		queue_work_on(cpu, flushwq, &sfw->work);
3236 	}
3237 
3238 	for_each_online_cpu(cpu) {
3239 		sfw = &per_cpu(slub_flush, cpu);
3240 		if (sfw->skip)
3241 			continue;
3242 		flush_work(&sfw->work);
3243 	}
3244 
3245 	mutex_unlock(&flush_lock);
3246 }
3247 
3248 static void flush_all(struct kmem_cache *s)
3249 {
3250 	cpus_read_lock();
3251 	flush_all_cpus_locked(s);
3252 	cpus_read_unlock();
3253 }
3254 
3255 /*
3256  * Use the cpu notifier to insure that the cpu slabs are flushed when
3257  * necessary.
3258  */
3259 static int slub_cpu_dead(unsigned int cpu)
3260 {
3261 	struct kmem_cache *s;
3262 
3263 	mutex_lock(&slab_mutex);
3264 	list_for_each_entry(s, &slab_caches, list)
3265 		__flush_cpu_slab(s, cpu);
3266 	mutex_unlock(&slab_mutex);
3267 	return 0;
3268 }
3269 
3270 #else /* CONFIG_SLUB_TINY */
3271 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3272 static inline void flush_all(struct kmem_cache *s) { }
3273 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3274 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3275 #endif /* CONFIG_SLUB_TINY */
3276 
3277 /*
3278  * Check if the objects in a per cpu structure fit numa
3279  * locality expectations.
3280  */
3281 static inline int node_match(struct slab *slab, int node)
3282 {
3283 #ifdef CONFIG_NUMA
3284 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3285 		return 0;
3286 #endif
3287 	return 1;
3288 }
3289 
3290 #ifdef CONFIG_SLUB_DEBUG
3291 static int count_free(struct slab *slab)
3292 {
3293 	return slab->objects - slab->inuse;
3294 }
3295 
3296 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3297 {
3298 	return atomic_long_read(&n->total_objects);
3299 }
3300 
3301 /* Supports checking bulk free of a constructed freelist */
3302 static inline bool free_debug_processing(struct kmem_cache *s,
3303 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3304 	unsigned long addr, depot_stack_handle_t handle)
3305 {
3306 	bool checks_ok = false;
3307 	void *object = head;
3308 	int cnt = 0;
3309 
3310 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3311 		if (!check_slab(s, slab))
3312 			goto out;
3313 	}
3314 
3315 	if (slab->inuse < *bulk_cnt) {
3316 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3317 			 slab->inuse, *bulk_cnt);
3318 		goto out;
3319 	}
3320 
3321 next_object:
3322 
3323 	if (++cnt > *bulk_cnt)
3324 		goto out_cnt;
3325 
3326 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3327 		if (!free_consistency_checks(s, slab, object, addr))
3328 			goto out;
3329 	}
3330 
3331 	if (s->flags & SLAB_STORE_USER)
3332 		set_track_update(s, object, TRACK_FREE, addr, handle);
3333 	trace(s, slab, object, 0);
3334 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3335 	init_object(s, object, SLUB_RED_INACTIVE);
3336 
3337 	/* Reached end of constructed freelist yet? */
3338 	if (object != tail) {
3339 		object = get_freepointer(s, object);
3340 		goto next_object;
3341 	}
3342 	checks_ok = true;
3343 
3344 out_cnt:
3345 	if (cnt != *bulk_cnt) {
3346 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3347 			 *bulk_cnt, cnt);
3348 		*bulk_cnt = cnt;
3349 	}
3350 
3351 out:
3352 
3353 	if (!checks_ok)
3354 		slab_fix(s, "Object at 0x%p not freed", object);
3355 
3356 	return checks_ok;
3357 }
3358 #endif /* CONFIG_SLUB_DEBUG */
3359 
3360 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3361 static unsigned long count_partial(struct kmem_cache_node *n,
3362 					int (*get_count)(struct slab *))
3363 {
3364 	unsigned long flags;
3365 	unsigned long x = 0;
3366 	struct slab *slab;
3367 
3368 	spin_lock_irqsave(&n->list_lock, flags);
3369 	list_for_each_entry(slab, &n->partial, slab_list)
3370 		x += get_count(slab);
3371 	spin_unlock_irqrestore(&n->list_lock, flags);
3372 	return x;
3373 }
3374 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3375 
3376 #ifdef CONFIG_SLUB_DEBUG
3377 #define MAX_PARTIAL_TO_SCAN 10000
3378 
3379 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3380 {
3381 	unsigned long flags;
3382 	unsigned long x = 0;
3383 	struct slab *slab;
3384 
3385 	spin_lock_irqsave(&n->list_lock, flags);
3386 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3387 		list_for_each_entry(slab, &n->partial, slab_list)
3388 			x += slab->objects - slab->inuse;
3389 	} else {
3390 		/*
3391 		 * For a long list, approximate the total count of objects in
3392 		 * it to meet the limit on the number of slabs to scan.
3393 		 * Scan from both the list's head and tail for better accuracy.
3394 		 */
3395 		unsigned long scanned = 0;
3396 
3397 		list_for_each_entry(slab, &n->partial, slab_list) {
3398 			x += slab->objects - slab->inuse;
3399 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3400 				break;
3401 		}
3402 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3403 			x += slab->objects - slab->inuse;
3404 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3405 				break;
3406 		}
3407 		x = mult_frac(x, n->nr_partial, scanned);
3408 		x = min(x, node_nr_objs(n));
3409 	}
3410 	spin_unlock_irqrestore(&n->list_lock, flags);
3411 	return x;
3412 }
3413 
3414 static noinline void
3415 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3416 {
3417 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3418 				      DEFAULT_RATELIMIT_BURST);
3419 	int node;
3420 	struct kmem_cache_node *n;
3421 
3422 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3423 		return;
3424 
3425 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3426 		nid, gfpflags, &gfpflags);
3427 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3428 		s->name, s->object_size, s->size, oo_order(s->oo),
3429 		oo_order(s->min));
3430 
3431 	if (oo_order(s->min) > get_order(s->object_size))
3432 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3433 			s->name);
3434 
3435 	for_each_kmem_cache_node(s, node, n) {
3436 		unsigned long nr_slabs;
3437 		unsigned long nr_objs;
3438 		unsigned long nr_free;
3439 
3440 		nr_free  = count_partial_free_approx(n);
3441 		nr_slabs = node_nr_slabs(n);
3442 		nr_objs  = node_nr_objs(n);
3443 
3444 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3445 			node, nr_slabs, nr_objs, nr_free);
3446 	}
3447 }
3448 #else /* CONFIG_SLUB_DEBUG */
3449 static inline void
3450 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3451 #endif
3452 
3453 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3454 {
3455 	if (unlikely(slab_test_pfmemalloc(slab)))
3456 		return gfp_pfmemalloc_allowed(gfpflags);
3457 
3458 	return true;
3459 }
3460 
3461 #ifndef CONFIG_SLUB_TINY
3462 static inline bool
3463 __update_cpu_freelist_fast(struct kmem_cache *s,
3464 			   void *freelist_old, void *freelist_new,
3465 			   unsigned long tid)
3466 {
3467 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3468 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3469 
3470 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3471 					     &old.full, new.full);
3472 }
3473 
3474 /*
3475  * Check the slab->freelist and either transfer the freelist to the
3476  * per cpu freelist or deactivate the slab.
3477  *
3478  * The slab is still frozen if the return value is not NULL.
3479  *
3480  * If this function returns NULL then the slab has been unfrozen.
3481  */
3482 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3483 {
3484 	struct slab new;
3485 	unsigned long counters;
3486 	void *freelist;
3487 
3488 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3489 
3490 	do {
3491 		freelist = slab->freelist;
3492 		counters = slab->counters;
3493 
3494 		new.counters = counters;
3495 
3496 		new.inuse = slab->objects;
3497 		new.frozen = freelist != NULL;
3498 
3499 	} while (!__slab_update_freelist(s, slab,
3500 		freelist, counters,
3501 		NULL, new.counters,
3502 		"get_freelist"));
3503 
3504 	return freelist;
3505 }
3506 
3507 /*
3508  * Freeze the partial slab and return the pointer to the freelist.
3509  */
3510 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3511 {
3512 	struct slab new;
3513 	unsigned long counters;
3514 	void *freelist;
3515 
3516 	do {
3517 		freelist = slab->freelist;
3518 		counters = slab->counters;
3519 
3520 		new.counters = counters;
3521 		VM_BUG_ON(new.frozen);
3522 
3523 		new.inuse = slab->objects;
3524 		new.frozen = 1;
3525 
3526 	} while (!slab_update_freelist(s, slab,
3527 		freelist, counters,
3528 		NULL, new.counters,
3529 		"freeze_slab"));
3530 
3531 	return freelist;
3532 }
3533 
3534 /*
3535  * Slow path. The lockless freelist is empty or we need to perform
3536  * debugging duties.
3537  *
3538  * Processing is still very fast if new objects have been freed to the
3539  * regular freelist. In that case we simply take over the regular freelist
3540  * as the lockless freelist and zap the regular freelist.
3541  *
3542  * If that is not working then we fall back to the partial lists. We take the
3543  * first element of the freelist as the object to allocate now and move the
3544  * rest of the freelist to the lockless freelist.
3545  *
3546  * And if we were unable to get a new slab from the partial slab lists then
3547  * we need to allocate a new slab. This is the slowest path since it involves
3548  * a call to the page allocator and the setup of a new slab.
3549  *
3550  * Version of __slab_alloc to use when we know that preemption is
3551  * already disabled (which is the case for bulk allocation).
3552  */
3553 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3554 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3555 {
3556 	void *freelist;
3557 	struct slab *slab;
3558 	unsigned long flags;
3559 	struct partial_context pc;
3560 	bool try_thisnode = true;
3561 
3562 	stat(s, ALLOC_SLOWPATH);
3563 
3564 reread_slab:
3565 
3566 	slab = READ_ONCE(c->slab);
3567 	if (!slab) {
3568 		/*
3569 		 * if the node is not online or has no normal memory, just
3570 		 * ignore the node constraint
3571 		 */
3572 		if (unlikely(node != NUMA_NO_NODE &&
3573 			     !node_isset(node, slab_nodes)))
3574 			node = NUMA_NO_NODE;
3575 		goto new_slab;
3576 	}
3577 
3578 	if (unlikely(!node_match(slab, node))) {
3579 		/*
3580 		 * same as above but node_match() being false already
3581 		 * implies node != NUMA_NO_NODE
3582 		 */
3583 		if (!node_isset(node, slab_nodes)) {
3584 			node = NUMA_NO_NODE;
3585 		} else {
3586 			stat(s, ALLOC_NODE_MISMATCH);
3587 			goto deactivate_slab;
3588 		}
3589 	}
3590 
3591 	/*
3592 	 * By rights, we should be searching for a slab page that was
3593 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3594 	 * information when the page leaves the per-cpu allocator
3595 	 */
3596 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3597 		goto deactivate_slab;
3598 
3599 	/* must check again c->slab in case we got preempted and it changed */
3600 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3601 	if (unlikely(slab != c->slab)) {
3602 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3603 		goto reread_slab;
3604 	}
3605 	freelist = c->freelist;
3606 	if (freelist)
3607 		goto load_freelist;
3608 
3609 	freelist = get_freelist(s, slab);
3610 
3611 	if (!freelist) {
3612 		c->slab = NULL;
3613 		c->tid = next_tid(c->tid);
3614 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3615 		stat(s, DEACTIVATE_BYPASS);
3616 		goto new_slab;
3617 	}
3618 
3619 	stat(s, ALLOC_REFILL);
3620 
3621 load_freelist:
3622 
3623 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3624 
3625 	/*
3626 	 * freelist is pointing to the list of objects to be used.
3627 	 * slab is pointing to the slab from which the objects are obtained.
3628 	 * That slab must be frozen for per cpu allocations to work.
3629 	 */
3630 	VM_BUG_ON(!c->slab->frozen);
3631 	c->freelist = get_freepointer(s, freelist);
3632 	c->tid = next_tid(c->tid);
3633 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3634 	return freelist;
3635 
3636 deactivate_slab:
3637 
3638 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3639 	if (slab != c->slab) {
3640 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3641 		goto reread_slab;
3642 	}
3643 	freelist = c->freelist;
3644 	c->slab = NULL;
3645 	c->freelist = NULL;
3646 	c->tid = next_tid(c->tid);
3647 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3648 	deactivate_slab(s, slab, freelist);
3649 
3650 new_slab:
3651 
3652 #ifdef CONFIG_SLUB_CPU_PARTIAL
3653 	while (slub_percpu_partial(c)) {
3654 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3655 		if (unlikely(c->slab)) {
3656 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3657 			goto reread_slab;
3658 		}
3659 		if (unlikely(!slub_percpu_partial(c))) {
3660 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3661 			/* we were preempted and partial list got empty */
3662 			goto new_objects;
3663 		}
3664 
3665 		slab = slub_percpu_partial(c);
3666 		slub_set_percpu_partial(c, slab);
3667 
3668 		if (likely(node_match(slab, node) &&
3669 			   pfmemalloc_match(slab, gfpflags))) {
3670 			c->slab = slab;
3671 			freelist = get_freelist(s, slab);
3672 			VM_BUG_ON(!freelist);
3673 			stat(s, CPU_PARTIAL_ALLOC);
3674 			goto load_freelist;
3675 		}
3676 
3677 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3678 
3679 		slab->next = NULL;
3680 		__put_partials(s, slab);
3681 	}
3682 #endif
3683 
3684 new_objects:
3685 
3686 	pc.flags = gfpflags;
3687 	/*
3688 	 * When a preferred node is indicated but no __GFP_THISNODE
3689 	 *
3690 	 * 1) try to get a partial slab from target node only by having
3691 	 *    __GFP_THISNODE in pc.flags for get_partial()
3692 	 * 2) if 1) failed, try to allocate a new slab from target node with
3693 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3694 	 * 3) if 2) failed, retry with original gfpflags which will allow
3695 	 *    get_partial() try partial lists of other nodes before potentially
3696 	 *    allocating new page from other nodes
3697 	 */
3698 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3699 		     && try_thisnode))
3700 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3701 
3702 	pc.orig_size = orig_size;
3703 	slab = get_partial(s, node, &pc);
3704 	if (slab) {
3705 		if (kmem_cache_debug(s)) {
3706 			freelist = pc.object;
3707 			/*
3708 			 * For debug caches here we had to go through
3709 			 * alloc_single_from_partial() so just store the
3710 			 * tracking info and return the object.
3711 			 */
3712 			if (s->flags & SLAB_STORE_USER)
3713 				set_track(s, freelist, TRACK_ALLOC, addr);
3714 
3715 			return freelist;
3716 		}
3717 
3718 		freelist = freeze_slab(s, slab);
3719 		goto retry_load_slab;
3720 	}
3721 
3722 	slub_put_cpu_ptr(s->cpu_slab);
3723 	slab = new_slab(s, pc.flags, node);
3724 	c = slub_get_cpu_ptr(s->cpu_slab);
3725 
3726 	if (unlikely(!slab)) {
3727 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3728 		    && try_thisnode) {
3729 			try_thisnode = false;
3730 			goto new_objects;
3731 		}
3732 		slab_out_of_memory(s, gfpflags, node);
3733 		return NULL;
3734 	}
3735 
3736 	stat(s, ALLOC_SLAB);
3737 
3738 	if (kmem_cache_debug(s)) {
3739 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3740 
3741 		if (unlikely(!freelist))
3742 			goto new_objects;
3743 
3744 		if (s->flags & SLAB_STORE_USER)
3745 			set_track(s, freelist, TRACK_ALLOC, addr);
3746 
3747 		return freelist;
3748 	}
3749 
3750 	/*
3751 	 * No other reference to the slab yet so we can
3752 	 * muck around with it freely without cmpxchg
3753 	 */
3754 	freelist = slab->freelist;
3755 	slab->freelist = NULL;
3756 	slab->inuse = slab->objects;
3757 	slab->frozen = 1;
3758 
3759 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3760 
3761 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3762 		/*
3763 		 * For !pfmemalloc_match() case we don't load freelist so that
3764 		 * we don't make further mismatched allocations easier.
3765 		 */
3766 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3767 		return freelist;
3768 	}
3769 
3770 retry_load_slab:
3771 
3772 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3773 	if (unlikely(c->slab)) {
3774 		void *flush_freelist = c->freelist;
3775 		struct slab *flush_slab = c->slab;
3776 
3777 		c->slab = NULL;
3778 		c->freelist = NULL;
3779 		c->tid = next_tid(c->tid);
3780 
3781 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3782 
3783 		deactivate_slab(s, flush_slab, flush_freelist);
3784 
3785 		stat(s, CPUSLAB_FLUSH);
3786 
3787 		goto retry_load_slab;
3788 	}
3789 	c->slab = slab;
3790 
3791 	goto load_freelist;
3792 }
3793 
3794 /*
3795  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3796  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3797  * pointer.
3798  */
3799 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3800 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3801 {
3802 	void *p;
3803 
3804 #ifdef CONFIG_PREEMPT_COUNT
3805 	/*
3806 	 * We may have been preempted and rescheduled on a different
3807 	 * cpu before disabling preemption. Need to reload cpu area
3808 	 * pointer.
3809 	 */
3810 	c = slub_get_cpu_ptr(s->cpu_slab);
3811 #endif
3812 
3813 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3814 #ifdef CONFIG_PREEMPT_COUNT
3815 	slub_put_cpu_ptr(s->cpu_slab);
3816 #endif
3817 	return p;
3818 }
3819 
3820 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3821 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3822 {
3823 	struct kmem_cache_cpu *c;
3824 	struct slab *slab;
3825 	unsigned long tid;
3826 	void *object;
3827 
3828 redo:
3829 	/*
3830 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3831 	 * enabled. We may switch back and forth between cpus while
3832 	 * reading from one cpu area. That does not matter as long
3833 	 * as we end up on the original cpu again when doing the cmpxchg.
3834 	 *
3835 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3836 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3837 	 * the tid. If we are preempted and switched to another cpu between the
3838 	 * two reads, it's OK as the two are still associated with the same cpu
3839 	 * and cmpxchg later will validate the cpu.
3840 	 */
3841 	c = raw_cpu_ptr(s->cpu_slab);
3842 	tid = READ_ONCE(c->tid);
3843 
3844 	/*
3845 	 * Irqless object alloc/free algorithm used here depends on sequence
3846 	 * of fetching cpu_slab's data. tid should be fetched before anything
3847 	 * on c to guarantee that object and slab associated with previous tid
3848 	 * won't be used with current tid. If we fetch tid first, object and
3849 	 * slab could be one associated with next tid and our alloc/free
3850 	 * request will be failed. In this case, we will retry. So, no problem.
3851 	 */
3852 	barrier();
3853 
3854 	/*
3855 	 * The transaction ids are globally unique per cpu and per operation on
3856 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3857 	 * occurs on the right processor and that there was no operation on the
3858 	 * linked list in between.
3859 	 */
3860 
3861 	object = c->freelist;
3862 	slab = c->slab;
3863 
3864 	if (!USE_LOCKLESS_FAST_PATH() ||
3865 	    unlikely(!object || !slab || !node_match(slab, node))) {
3866 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3867 	} else {
3868 		void *next_object = get_freepointer_safe(s, object);
3869 
3870 		/*
3871 		 * The cmpxchg will only match if there was no additional
3872 		 * operation and if we are on the right processor.
3873 		 *
3874 		 * The cmpxchg does the following atomically (without lock
3875 		 * semantics!)
3876 		 * 1. Relocate first pointer to the current per cpu area.
3877 		 * 2. Verify that tid and freelist have not been changed
3878 		 * 3. If they were not changed replace tid and freelist
3879 		 *
3880 		 * Since this is without lock semantics the protection is only
3881 		 * against code executing on this cpu *not* from access by
3882 		 * other cpus.
3883 		 */
3884 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3885 			note_cmpxchg_failure("slab_alloc", s, tid);
3886 			goto redo;
3887 		}
3888 		prefetch_freepointer(s, next_object);
3889 		stat(s, ALLOC_FASTPATH);
3890 	}
3891 
3892 	return object;
3893 }
3894 #else /* CONFIG_SLUB_TINY */
3895 static void *__slab_alloc_node(struct kmem_cache *s,
3896 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3897 {
3898 	struct partial_context pc;
3899 	struct slab *slab;
3900 	void *object;
3901 
3902 	pc.flags = gfpflags;
3903 	pc.orig_size = orig_size;
3904 	slab = get_partial(s, node, &pc);
3905 
3906 	if (slab)
3907 		return pc.object;
3908 
3909 	slab = new_slab(s, gfpflags, node);
3910 	if (unlikely(!slab)) {
3911 		slab_out_of_memory(s, gfpflags, node);
3912 		return NULL;
3913 	}
3914 
3915 	object = alloc_single_from_new_slab(s, slab, orig_size);
3916 
3917 	return object;
3918 }
3919 #endif /* CONFIG_SLUB_TINY */
3920 
3921 /*
3922  * If the object has been wiped upon free, make sure it's fully initialized by
3923  * zeroing out freelist pointer.
3924  */
3925 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3926 						   void *obj)
3927 {
3928 	if (unlikely(slab_want_init_on_free(s)) && obj &&
3929 	    !freeptr_outside_object(s))
3930 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3931 			0, sizeof(void *));
3932 }
3933 
3934 static __fastpath_inline
3935 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
3936 {
3937 	flags &= gfp_allowed_mask;
3938 
3939 	might_alloc(flags);
3940 
3941 	if (unlikely(should_failslab(s, flags)))
3942 		return NULL;
3943 
3944 	return s;
3945 }
3946 
3947 static __fastpath_inline
3948 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3949 			  gfp_t flags, size_t size, void **p, bool init,
3950 			  unsigned int orig_size)
3951 {
3952 	unsigned int zero_size = s->object_size;
3953 	bool kasan_init = init;
3954 	size_t i;
3955 	gfp_t init_flags = flags & gfp_allowed_mask;
3956 
3957 	/*
3958 	 * For kmalloc object, the allocated memory size(object_size) is likely
3959 	 * larger than the requested size(orig_size). If redzone check is
3960 	 * enabled for the extra space, don't zero it, as it will be redzoned
3961 	 * soon. The redzone operation for this extra space could be seen as a
3962 	 * replacement of current poisoning under certain debug option, and
3963 	 * won't break other sanity checks.
3964 	 */
3965 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3966 	    (s->flags & SLAB_KMALLOC))
3967 		zero_size = orig_size;
3968 
3969 	/*
3970 	 * When slab_debug is enabled, avoid memory initialization integrated
3971 	 * into KASAN and instead zero out the memory via the memset below with
3972 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3973 	 * cause false-positive reports. This does not lead to a performance
3974 	 * penalty on production builds, as slab_debug is not intended to be
3975 	 * enabled there.
3976 	 */
3977 	if (__slub_debug_enabled())
3978 		kasan_init = false;
3979 
3980 	/*
3981 	 * As memory initialization might be integrated into KASAN,
3982 	 * kasan_slab_alloc and initialization memset must be
3983 	 * kept together to avoid discrepancies in behavior.
3984 	 *
3985 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3986 	 */
3987 	for (i = 0; i < size; i++) {
3988 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3989 		if (p[i] && init && (!kasan_init ||
3990 				     !kasan_has_integrated_init()))
3991 			memset(p[i], 0, zero_size);
3992 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3993 					 s->flags, init_flags);
3994 		kmsan_slab_alloc(s, p[i], init_flags);
3995 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
3996 	}
3997 
3998 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
3999 }
4000 
4001 /*
4002  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4003  * have the fastpath folded into their functions. So no function call
4004  * overhead for requests that can be satisfied on the fastpath.
4005  *
4006  * The fastpath works by first checking if the lockless freelist can be used.
4007  * If not then __slab_alloc is called for slow processing.
4008  *
4009  * Otherwise we can simply pick the next object from the lockless free list.
4010  */
4011 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4012 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4013 {
4014 	void *object;
4015 	bool init = false;
4016 
4017 	s = slab_pre_alloc_hook(s, gfpflags);
4018 	if (unlikely(!s))
4019 		return NULL;
4020 
4021 	object = kfence_alloc(s, orig_size, gfpflags);
4022 	if (unlikely(object))
4023 		goto out;
4024 
4025 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4026 
4027 	maybe_wipe_obj_freeptr(s, object);
4028 	init = slab_want_init_on_alloc(gfpflags, s);
4029 
4030 out:
4031 	/*
4032 	 * When init equals 'true', like for kzalloc() family, only
4033 	 * @orig_size bytes might be zeroed instead of s->object_size
4034 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4035 	 * object is set to NULL
4036 	 */
4037 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4038 
4039 	return object;
4040 }
4041 
4042 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4043 {
4044 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4045 				    s->object_size);
4046 
4047 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4048 
4049 	return ret;
4050 }
4051 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4052 
4053 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4054 			   gfp_t gfpflags)
4055 {
4056 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4057 				    s->object_size);
4058 
4059 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4060 
4061 	return ret;
4062 }
4063 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4064 
4065 /**
4066  * kmem_cache_alloc_node - Allocate an object on the specified node
4067  * @s: The cache to allocate from.
4068  * @gfpflags: See kmalloc().
4069  * @node: node number of the target node.
4070  *
4071  * Identical to kmem_cache_alloc but it will allocate memory on the given
4072  * node, which can improve the performance for cpu bound structures.
4073  *
4074  * Fallback to other node is possible if __GFP_THISNODE is not set.
4075  *
4076  * Return: pointer to the new object or %NULL in case of error
4077  */
4078 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4079 {
4080 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4081 
4082 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4083 
4084 	return ret;
4085 }
4086 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4087 
4088 /*
4089  * To avoid unnecessary overhead, we pass through large allocation requests
4090  * directly to the page allocator. We use __GFP_COMP, because we will need to
4091  * know the allocation order to free the pages properly in kfree.
4092  */
4093 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4094 {
4095 	struct folio *folio;
4096 	void *ptr = NULL;
4097 	unsigned int order = get_order(size);
4098 
4099 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4100 		flags = kmalloc_fix_flags(flags);
4101 
4102 	flags |= __GFP_COMP;
4103 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4104 	if (folio) {
4105 		ptr = folio_address(folio);
4106 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4107 				      PAGE_SIZE << order);
4108 	}
4109 
4110 	ptr = kasan_kmalloc_large(ptr, size, flags);
4111 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4112 	kmemleak_alloc(ptr, size, 1, flags);
4113 	kmsan_kmalloc_large(ptr, size, flags);
4114 
4115 	return ptr;
4116 }
4117 
4118 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4119 {
4120 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4121 
4122 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4123 		      flags, NUMA_NO_NODE);
4124 	return ret;
4125 }
4126 EXPORT_SYMBOL(__kmalloc_large_noprof);
4127 
4128 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4129 {
4130 	void *ret = ___kmalloc_large_node(size, flags, node);
4131 
4132 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4133 		      flags, node);
4134 	return ret;
4135 }
4136 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4137 
4138 static __always_inline
4139 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4140 			unsigned long caller)
4141 {
4142 	struct kmem_cache *s;
4143 	void *ret;
4144 
4145 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4146 		ret = __kmalloc_large_node_noprof(size, flags, node);
4147 		trace_kmalloc(caller, ret, size,
4148 			      PAGE_SIZE << get_order(size), flags, node);
4149 		return ret;
4150 	}
4151 
4152 	if (unlikely(!size))
4153 		return ZERO_SIZE_PTR;
4154 
4155 	s = kmalloc_slab(size, b, flags, caller);
4156 
4157 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4158 	ret = kasan_kmalloc(s, ret, size, flags);
4159 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4160 	return ret;
4161 }
4162 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4163 {
4164 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4165 }
4166 EXPORT_SYMBOL(__kmalloc_node_noprof);
4167 
4168 void *__kmalloc_noprof(size_t size, gfp_t flags)
4169 {
4170 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4171 }
4172 EXPORT_SYMBOL(__kmalloc_noprof);
4173 
4174 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4175 					 int node, unsigned long caller)
4176 {
4177 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4178 
4179 }
4180 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4181 
4182 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4183 {
4184 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4185 					    _RET_IP_, size);
4186 
4187 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4188 
4189 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4190 	return ret;
4191 }
4192 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4193 
4194 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4195 				  int node, size_t size)
4196 {
4197 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4198 
4199 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4200 
4201 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4202 	return ret;
4203 }
4204 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4205 
4206 static noinline void free_to_partial_list(
4207 	struct kmem_cache *s, struct slab *slab,
4208 	void *head, void *tail, int bulk_cnt,
4209 	unsigned long addr)
4210 {
4211 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4212 	struct slab *slab_free = NULL;
4213 	int cnt = bulk_cnt;
4214 	unsigned long flags;
4215 	depot_stack_handle_t handle = 0;
4216 
4217 	if (s->flags & SLAB_STORE_USER)
4218 		handle = set_track_prepare();
4219 
4220 	spin_lock_irqsave(&n->list_lock, flags);
4221 
4222 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4223 		void *prior = slab->freelist;
4224 
4225 		/* Perform the actual freeing while we still hold the locks */
4226 		slab->inuse -= cnt;
4227 		set_freepointer(s, tail, prior);
4228 		slab->freelist = head;
4229 
4230 		/*
4231 		 * If the slab is empty, and node's partial list is full,
4232 		 * it should be discarded anyway no matter it's on full or
4233 		 * partial list.
4234 		 */
4235 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4236 			slab_free = slab;
4237 
4238 		if (!prior) {
4239 			/* was on full list */
4240 			remove_full(s, n, slab);
4241 			if (!slab_free) {
4242 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4243 				stat(s, FREE_ADD_PARTIAL);
4244 			}
4245 		} else if (slab_free) {
4246 			remove_partial(n, slab);
4247 			stat(s, FREE_REMOVE_PARTIAL);
4248 		}
4249 	}
4250 
4251 	if (slab_free) {
4252 		/*
4253 		 * Update the counters while still holding n->list_lock to
4254 		 * prevent spurious validation warnings
4255 		 */
4256 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4257 	}
4258 
4259 	spin_unlock_irqrestore(&n->list_lock, flags);
4260 
4261 	if (slab_free) {
4262 		stat(s, FREE_SLAB);
4263 		free_slab(s, slab_free);
4264 	}
4265 }
4266 
4267 /*
4268  * Slow path handling. This may still be called frequently since objects
4269  * have a longer lifetime than the cpu slabs in most processing loads.
4270  *
4271  * So we still attempt to reduce cache line usage. Just take the slab
4272  * lock and free the item. If there is no additional partial slab
4273  * handling required then we can return immediately.
4274  */
4275 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4276 			void *head, void *tail, int cnt,
4277 			unsigned long addr)
4278 
4279 {
4280 	void *prior;
4281 	int was_frozen;
4282 	struct slab new;
4283 	unsigned long counters;
4284 	struct kmem_cache_node *n = NULL;
4285 	unsigned long flags;
4286 	bool on_node_partial;
4287 
4288 	stat(s, FREE_SLOWPATH);
4289 
4290 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4291 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4292 		return;
4293 	}
4294 
4295 	do {
4296 		if (unlikely(n)) {
4297 			spin_unlock_irqrestore(&n->list_lock, flags);
4298 			n = NULL;
4299 		}
4300 		prior = slab->freelist;
4301 		counters = slab->counters;
4302 		set_freepointer(s, tail, prior);
4303 		new.counters = counters;
4304 		was_frozen = new.frozen;
4305 		new.inuse -= cnt;
4306 		if ((!new.inuse || !prior) && !was_frozen) {
4307 			/* Needs to be taken off a list */
4308 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4309 
4310 				n = get_node(s, slab_nid(slab));
4311 				/*
4312 				 * Speculatively acquire the list_lock.
4313 				 * If the cmpxchg does not succeed then we may
4314 				 * drop the list_lock without any processing.
4315 				 *
4316 				 * Otherwise the list_lock will synchronize with
4317 				 * other processors updating the list of slabs.
4318 				 */
4319 				spin_lock_irqsave(&n->list_lock, flags);
4320 
4321 				on_node_partial = slab_test_node_partial(slab);
4322 			}
4323 		}
4324 
4325 	} while (!slab_update_freelist(s, slab,
4326 		prior, counters,
4327 		head, new.counters,
4328 		"__slab_free"));
4329 
4330 	if (likely(!n)) {
4331 
4332 		if (likely(was_frozen)) {
4333 			/*
4334 			 * The list lock was not taken therefore no list
4335 			 * activity can be necessary.
4336 			 */
4337 			stat(s, FREE_FROZEN);
4338 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4339 			/*
4340 			 * If we started with a full slab then put it onto the
4341 			 * per cpu partial list.
4342 			 */
4343 			put_cpu_partial(s, slab, 1);
4344 			stat(s, CPU_PARTIAL_FREE);
4345 		}
4346 
4347 		return;
4348 	}
4349 
4350 	/*
4351 	 * This slab was partially empty but not on the per-node partial list,
4352 	 * in which case we shouldn't manipulate its list, just return.
4353 	 */
4354 	if (prior && !on_node_partial) {
4355 		spin_unlock_irqrestore(&n->list_lock, flags);
4356 		return;
4357 	}
4358 
4359 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4360 		goto slab_empty;
4361 
4362 	/*
4363 	 * Objects left in the slab. If it was not on the partial list before
4364 	 * then add it.
4365 	 */
4366 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4367 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4368 		stat(s, FREE_ADD_PARTIAL);
4369 	}
4370 	spin_unlock_irqrestore(&n->list_lock, flags);
4371 	return;
4372 
4373 slab_empty:
4374 	if (prior) {
4375 		/*
4376 		 * Slab on the partial list.
4377 		 */
4378 		remove_partial(n, slab);
4379 		stat(s, FREE_REMOVE_PARTIAL);
4380 	}
4381 
4382 	spin_unlock_irqrestore(&n->list_lock, flags);
4383 	stat(s, FREE_SLAB);
4384 	discard_slab(s, slab);
4385 }
4386 
4387 #ifndef CONFIG_SLUB_TINY
4388 /*
4389  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4390  * can perform fastpath freeing without additional function calls.
4391  *
4392  * The fastpath is only possible if we are freeing to the current cpu slab
4393  * of this processor. This typically the case if we have just allocated
4394  * the item before.
4395  *
4396  * If fastpath is not possible then fall back to __slab_free where we deal
4397  * with all sorts of special processing.
4398  *
4399  * Bulk free of a freelist with several objects (all pointing to the
4400  * same slab) possible by specifying head and tail ptr, plus objects
4401  * count (cnt). Bulk free indicated by tail pointer being set.
4402  */
4403 static __always_inline void do_slab_free(struct kmem_cache *s,
4404 				struct slab *slab, void *head, void *tail,
4405 				int cnt, unsigned long addr)
4406 {
4407 	struct kmem_cache_cpu *c;
4408 	unsigned long tid;
4409 	void **freelist;
4410 
4411 redo:
4412 	/*
4413 	 * Determine the currently cpus per cpu slab.
4414 	 * The cpu may change afterward. However that does not matter since
4415 	 * data is retrieved via this pointer. If we are on the same cpu
4416 	 * during the cmpxchg then the free will succeed.
4417 	 */
4418 	c = raw_cpu_ptr(s->cpu_slab);
4419 	tid = READ_ONCE(c->tid);
4420 
4421 	/* Same with comment on barrier() in __slab_alloc_node() */
4422 	barrier();
4423 
4424 	if (unlikely(slab != c->slab)) {
4425 		__slab_free(s, slab, head, tail, cnt, addr);
4426 		return;
4427 	}
4428 
4429 	if (USE_LOCKLESS_FAST_PATH()) {
4430 		freelist = READ_ONCE(c->freelist);
4431 
4432 		set_freepointer(s, tail, freelist);
4433 
4434 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4435 			note_cmpxchg_failure("slab_free", s, tid);
4436 			goto redo;
4437 		}
4438 	} else {
4439 		/* Update the free list under the local lock */
4440 		local_lock(&s->cpu_slab->lock);
4441 		c = this_cpu_ptr(s->cpu_slab);
4442 		if (unlikely(slab != c->slab)) {
4443 			local_unlock(&s->cpu_slab->lock);
4444 			goto redo;
4445 		}
4446 		tid = c->tid;
4447 		freelist = c->freelist;
4448 
4449 		set_freepointer(s, tail, freelist);
4450 		c->freelist = head;
4451 		c->tid = next_tid(tid);
4452 
4453 		local_unlock(&s->cpu_slab->lock);
4454 	}
4455 	stat_add(s, FREE_FASTPATH, cnt);
4456 }
4457 #else /* CONFIG_SLUB_TINY */
4458 static void do_slab_free(struct kmem_cache *s,
4459 				struct slab *slab, void *head, void *tail,
4460 				int cnt, unsigned long addr)
4461 {
4462 	__slab_free(s, slab, head, tail, cnt, addr);
4463 }
4464 #endif /* CONFIG_SLUB_TINY */
4465 
4466 static __fastpath_inline
4467 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4468 	       unsigned long addr)
4469 {
4470 	memcg_slab_free_hook(s, slab, &object, 1);
4471 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4472 
4473 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4474 		do_slab_free(s, slab, object, object, 1, addr);
4475 }
4476 
4477 #ifdef CONFIG_MEMCG
4478 /* Do not inline the rare memcg charging failed path into the allocation path */
4479 static noinline
4480 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4481 {
4482 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4483 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4484 }
4485 #endif
4486 
4487 static __fastpath_inline
4488 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4489 		    void *tail, void **p, int cnt, unsigned long addr)
4490 {
4491 	memcg_slab_free_hook(s, slab, p, cnt);
4492 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4493 	/*
4494 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4495 	 * to remove objects, whose reuse must be delayed.
4496 	 */
4497 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4498 		do_slab_free(s, slab, head, tail, cnt, addr);
4499 }
4500 
4501 #ifdef CONFIG_KASAN_GENERIC
4502 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4503 {
4504 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4505 }
4506 #endif
4507 
4508 static inline struct kmem_cache *virt_to_cache(const void *obj)
4509 {
4510 	struct slab *slab;
4511 
4512 	slab = virt_to_slab(obj);
4513 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4514 		return NULL;
4515 	return slab->slab_cache;
4516 }
4517 
4518 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4519 {
4520 	struct kmem_cache *cachep;
4521 
4522 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4523 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4524 		return s;
4525 
4526 	cachep = virt_to_cache(x);
4527 	if (WARN(cachep && cachep != s,
4528 		 "%s: Wrong slab cache. %s but object is from %s\n",
4529 		 __func__, s->name, cachep->name))
4530 		print_tracking(cachep, x);
4531 	return cachep;
4532 }
4533 
4534 /**
4535  * kmem_cache_free - Deallocate an object
4536  * @s: The cache the allocation was from.
4537  * @x: The previously allocated object.
4538  *
4539  * Free an object which was previously allocated from this
4540  * cache.
4541  */
4542 void kmem_cache_free(struct kmem_cache *s, void *x)
4543 {
4544 	s = cache_from_obj(s, x);
4545 	if (!s)
4546 		return;
4547 	trace_kmem_cache_free(_RET_IP_, x, s);
4548 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4549 }
4550 EXPORT_SYMBOL(kmem_cache_free);
4551 
4552 static void free_large_kmalloc(struct folio *folio, void *object)
4553 {
4554 	unsigned int order = folio_order(folio);
4555 
4556 	if (WARN_ON_ONCE(order == 0))
4557 		pr_warn_once("object pointer: 0x%p\n", object);
4558 
4559 	kmemleak_free(object);
4560 	kasan_kfree_large(object);
4561 	kmsan_kfree_large(object);
4562 
4563 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4564 			      -(PAGE_SIZE << order));
4565 	folio_put(folio);
4566 }
4567 
4568 /**
4569  * kfree - free previously allocated memory
4570  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4571  *
4572  * If @object is NULL, no operation is performed.
4573  */
4574 void kfree(const void *object)
4575 {
4576 	struct folio *folio;
4577 	struct slab *slab;
4578 	struct kmem_cache *s;
4579 	void *x = (void *)object;
4580 
4581 	trace_kfree(_RET_IP_, object);
4582 
4583 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4584 		return;
4585 
4586 	folio = virt_to_folio(object);
4587 	if (unlikely(!folio_test_slab(folio))) {
4588 		free_large_kmalloc(folio, (void *)object);
4589 		return;
4590 	}
4591 
4592 	slab = folio_slab(folio);
4593 	s = slab->slab_cache;
4594 	slab_free(s, slab, x, _RET_IP_);
4595 }
4596 EXPORT_SYMBOL(kfree);
4597 
4598 struct detached_freelist {
4599 	struct slab *slab;
4600 	void *tail;
4601 	void *freelist;
4602 	int cnt;
4603 	struct kmem_cache *s;
4604 };
4605 
4606 /*
4607  * This function progressively scans the array with free objects (with
4608  * a limited look ahead) and extract objects belonging to the same
4609  * slab.  It builds a detached freelist directly within the given
4610  * slab/objects.  This can happen without any need for
4611  * synchronization, because the objects are owned by running process.
4612  * The freelist is build up as a single linked list in the objects.
4613  * The idea is, that this detached freelist can then be bulk
4614  * transferred to the real freelist(s), but only requiring a single
4615  * synchronization primitive.  Look ahead in the array is limited due
4616  * to performance reasons.
4617  */
4618 static inline
4619 int build_detached_freelist(struct kmem_cache *s, size_t size,
4620 			    void **p, struct detached_freelist *df)
4621 {
4622 	int lookahead = 3;
4623 	void *object;
4624 	struct folio *folio;
4625 	size_t same;
4626 
4627 	object = p[--size];
4628 	folio = virt_to_folio(object);
4629 	if (!s) {
4630 		/* Handle kalloc'ed objects */
4631 		if (unlikely(!folio_test_slab(folio))) {
4632 			free_large_kmalloc(folio, object);
4633 			df->slab = NULL;
4634 			return size;
4635 		}
4636 		/* Derive kmem_cache from object */
4637 		df->slab = folio_slab(folio);
4638 		df->s = df->slab->slab_cache;
4639 	} else {
4640 		df->slab = folio_slab(folio);
4641 		df->s = cache_from_obj(s, object); /* Support for memcg */
4642 	}
4643 
4644 	/* Start new detached freelist */
4645 	df->tail = object;
4646 	df->freelist = object;
4647 	df->cnt = 1;
4648 
4649 	if (is_kfence_address(object))
4650 		return size;
4651 
4652 	set_freepointer(df->s, object, NULL);
4653 
4654 	same = size;
4655 	while (size) {
4656 		object = p[--size];
4657 		/* df->slab is always set at this point */
4658 		if (df->slab == virt_to_slab(object)) {
4659 			/* Opportunity build freelist */
4660 			set_freepointer(df->s, object, df->freelist);
4661 			df->freelist = object;
4662 			df->cnt++;
4663 			same--;
4664 			if (size != same)
4665 				swap(p[size], p[same]);
4666 			continue;
4667 		}
4668 
4669 		/* Limit look ahead search */
4670 		if (!--lookahead)
4671 			break;
4672 	}
4673 
4674 	return same;
4675 }
4676 
4677 /*
4678  * Internal bulk free of objects that were not initialised by the post alloc
4679  * hooks and thus should not be processed by the free hooks
4680  */
4681 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4682 {
4683 	if (!size)
4684 		return;
4685 
4686 	do {
4687 		struct detached_freelist df;
4688 
4689 		size = build_detached_freelist(s, size, p, &df);
4690 		if (!df.slab)
4691 			continue;
4692 
4693 		if (kfence_free(df.freelist))
4694 			continue;
4695 
4696 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4697 			     _RET_IP_);
4698 	} while (likely(size));
4699 }
4700 
4701 /* Note that interrupts must be enabled when calling this function. */
4702 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4703 {
4704 	if (!size)
4705 		return;
4706 
4707 	do {
4708 		struct detached_freelist df;
4709 
4710 		size = build_detached_freelist(s, size, p, &df);
4711 		if (!df.slab)
4712 			continue;
4713 
4714 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4715 			       df.cnt, _RET_IP_);
4716 	} while (likely(size));
4717 }
4718 EXPORT_SYMBOL(kmem_cache_free_bulk);
4719 
4720 #ifndef CONFIG_SLUB_TINY
4721 static inline
4722 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4723 			    void **p)
4724 {
4725 	struct kmem_cache_cpu *c;
4726 	unsigned long irqflags;
4727 	int i;
4728 
4729 	/*
4730 	 * Drain objects in the per cpu slab, while disabling local
4731 	 * IRQs, which protects against PREEMPT and interrupts
4732 	 * handlers invoking normal fastpath.
4733 	 */
4734 	c = slub_get_cpu_ptr(s->cpu_slab);
4735 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4736 
4737 	for (i = 0; i < size; i++) {
4738 		void *object = kfence_alloc(s, s->object_size, flags);
4739 
4740 		if (unlikely(object)) {
4741 			p[i] = object;
4742 			continue;
4743 		}
4744 
4745 		object = c->freelist;
4746 		if (unlikely(!object)) {
4747 			/*
4748 			 * We may have removed an object from c->freelist using
4749 			 * the fastpath in the previous iteration; in that case,
4750 			 * c->tid has not been bumped yet.
4751 			 * Since ___slab_alloc() may reenable interrupts while
4752 			 * allocating memory, we should bump c->tid now.
4753 			 */
4754 			c->tid = next_tid(c->tid);
4755 
4756 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4757 
4758 			/*
4759 			 * Invoking slow path likely have side-effect
4760 			 * of re-populating per CPU c->freelist
4761 			 */
4762 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4763 					    _RET_IP_, c, s->object_size);
4764 			if (unlikely(!p[i]))
4765 				goto error;
4766 
4767 			c = this_cpu_ptr(s->cpu_slab);
4768 			maybe_wipe_obj_freeptr(s, p[i]);
4769 
4770 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4771 
4772 			continue; /* goto for-loop */
4773 		}
4774 		c->freelist = get_freepointer(s, object);
4775 		p[i] = object;
4776 		maybe_wipe_obj_freeptr(s, p[i]);
4777 		stat(s, ALLOC_FASTPATH);
4778 	}
4779 	c->tid = next_tid(c->tid);
4780 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4781 	slub_put_cpu_ptr(s->cpu_slab);
4782 
4783 	return i;
4784 
4785 error:
4786 	slub_put_cpu_ptr(s->cpu_slab);
4787 	__kmem_cache_free_bulk(s, i, p);
4788 	return 0;
4789 
4790 }
4791 #else /* CONFIG_SLUB_TINY */
4792 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4793 				   size_t size, void **p)
4794 {
4795 	int i;
4796 
4797 	for (i = 0; i < size; i++) {
4798 		void *object = kfence_alloc(s, s->object_size, flags);
4799 
4800 		if (unlikely(object)) {
4801 			p[i] = object;
4802 			continue;
4803 		}
4804 
4805 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4806 					 _RET_IP_, s->object_size);
4807 		if (unlikely(!p[i]))
4808 			goto error;
4809 
4810 		maybe_wipe_obj_freeptr(s, p[i]);
4811 	}
4812 
4813 	return i;
4814 
4815 error:
4816 	__kmem_cache_free_bulk(s, i, p);
4817 	return 0;
4818 }
4819 #endif /* CONFIG_SLUB_TINY */
4820 
4821 /* Note that interrupts must be enabled when calling this function. */
4822 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4823 				 void **p)
4824 {
4825 	int i;
4826 
4827 	if (!size)
4828 		return 0;
4829 
4830 	s = slab_pre_alloc_hook(s, flags);
4831 	if (unlikely(!s))
4832 		return 0;
4833 
4834 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4835 	if (unlikely(i == 0))
4836 		return 0;
4837 
4838 	/*
4839 	 * memcg and kmem_cache debug support and memory initialization.
4840 	 * Done outside of the IRQ disabled fastpath loop.
4841 	 */
4842 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4843 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
4844 		return 0;
4845 	}
4846 	return i;
4847 }
4848 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4849 
4850 
4851 /*
4852  * Object placement in a slab is made very easy because we always start at
4853  * offset 0. If we tune the size of the object to the alignment then we can
4854  * get the required alignment by putting one properly sized object after
4855  * another.
4856  *
4857  * Notice that the allocation order determines the sizes of the per cpu
4858  * caches. Each processor has always one slab available for allocations.
4859  * Increasing the allocation order reduces the number of times that slabs
4860  * must be moved on and off the partial lists and is therefore a factor in
4861  * locking overhead.
4862  */
4863 
4864 /*
4865  * Minimum / Maximum order of slab pages. This influences locking overhead
4866  * and slab fragmentation. A higher order reduces the number of partial slabs
4867  * and increases the number of allocations possible without having to
4868  * take the list_lock.
4869  */
4870 static unsigned int slub_min_order;
4871 static unsigned int slub_max_order =
4872 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4873 static unsigned int slub_min_objects;
4874 
4875 /*
4876  * Calculate the order of allocation given an slab object size.
4877  *
4878  * The order of allocation has significant impact on performance and other
4879  * system components. Generally order 0 allocations should be preferred since
4880  * order 0 does not cause fragmentation in the page allocator. Larger objects
4881  * be problematic to put into order 0 slabs because there may be too much
4882  * unused space left. We go to a higher order if more than 1/16th of the slab
4883  * would be wasted.
4884  *
4885  * In order to reach satisfactory performance we must ensure that a minimum
4886  * number of objects is in one slab. Otherwise we may generate too much
4887  * activity on the partial lists which requires taking the list_lock. This is
4888  * less a concern for large slabs though which are rarely used.
4889  *
4890  * slab_max_order specifies the order where we begin to stop considering the
4891  * number of objects in a slab as critical. If we reach slab_max_order then
4892  * we try to keep the page order as low as possible. So we accept more waste
4893  * of space in favor of a small page order.
4894  *
4895  * Higher order allocations also allow the placement of more objects in a
4896  * slab and thereby reduce object handling overhead. If the user has
4897  * requested a higher minimum order then we start with that one instead of
4898  * the smallest order which will fit the object.
4899  */
4900 static inline unsigned int calc_slab_order(unsigned int size,
4901 		unsigned int min_order, unsigned int max_order,
4902 		unsigned int fract_leftover)
4903 {
4904 	unsigned int order;
4905 
4906 	for (order = min_order; order <= max_order; order++) {
4907 
4908 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4909 		unsigned int rem;
4910 
4911 		rem = slab_size % size;
4912 
4913 		if (rem <= slab_size / fract_leftover)
4914 			break;
4915 	}
4916 
4917 	return order;
4918 }
4919 
4920 static inline int calculate_order(unsigned int size)
4921 {
4922 	unsigned int order;
4923 	unsigned int min_objects;
4924 	unsigned int max_objects;
4925 	unsigned int min_order;
4926 
4927 	min_objects = slub_min_objects;
4928 	if (!min_objects) {
4929 		/*
4930 		 * Some architectures will only update present cpus when
4931 		 * onlining them, so don't trust the number if it's just 1. But
4932 		 * we also don't want to use nr_cpu_ids always, as on some other
4933 		 * architectures, there can be many possible cpus, but never
4934 		 * onlined. Here we compromise between trying to avoid too high
4935 		 * order on systems that appear larger than they are, and too
4936 		 * low order on systems that appear smaller than they are.
4937 		 */
4938 		unsigned int nr_cpus = num_present_cpus();
4939 		if (nr_cpus <= 1)
4940 			nr_cpus = nr_cpu_ids;
4941 		min_objects = 4 * (fls(nr_cpus) + 1);
4942 	}
4943 	/* min_objects can't be 0 because get_order(0) is undefined */
4944 	max_objects = max(order_objects(slub_max_order, size), 1U);
4945 	min_objects = min(min_objects, max_objects);
4946 
4947 	min_order = max_t(unsigned int, slub_min_order,
4948 			  get_order(min_objects * size));
4949 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4950 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4951 
4952 	/*
4953 	 * Attempt to find best configuration for a slab. This works by first
4954 	 * attempting to generate a layout with the best possible configuration
4955 	 * and backing off gradually.
4956 	 *
4957 	 * We start with accepting at most 1/16 waste and try to find the
4958 	 * smallest order from min_objects-derived/slab_min_order up to
4959 	 * slab_max_order that will satisfy the constraint. Note that increasing
4960 	 * the order can only result in same or less fractional waste, not more.
4961 	 *
4962 	 * If that fails, we increase the acceptable fraction of waste and try
4963 	 * again. The last iteration with fraction of 1/2 would effectively
4964 	 * accept any waste and give us the order determined by min_objects, as
4965 	 * long as at least single object fits within slab_max_order.
4966 	 */
4967 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4968 		order = calc_slab_order(size, min_order, slub_max_order,
4969 					fraction);
4970 		if (order <= slub_max_order)
4971 			return order;
4972 	}
4973 
4974 	/*
4975 	 * Doh this slab cannot be placed using slab_max_order.
4976 	 */
4977 	order = get_order(size);
4978 	if (order <= MAX_PAGE_ORDER)
4979 		return order;
4980 	return -ENOSYS;
4981 }
4982 
4983 static void
4984 init_kmem_cache_node(struct kmem_cache_node *n)
4985 {
4986 	n->nr_partial = 0;
4987 	spin_lock_init(&n->list_lock);
4988 	INIT_LIST_HEAD(&n->partial);
4989 #ifdef CONFIG_SLUB_DEBUG
4990 	atomic_long_set(&n->nr_slabs, 0);
4991 	atomic_long_set(&n->total_objects, 0);
4992 	INIT_LIST_HEAD(&n->full);
4993 #endif
4994 }
4995 
4996 #ifndef CONFIG_SLUB_TINY
4997 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4998 {
4999 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5000 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5001 			sizeof(struct kmem_cache_cpu));
5002 
5003 	/*
5004 	 * Must align to double word boundary for the double cmpxchg
5005 	 * instructions to work; see __pcpu_double_call_return_bool().
5006 	 */
5007 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5008 				     2 * sizeof(void *));
5009 
5010 	if (!s->cpu_slab)
5011 		return 0;
5012 
5013 	init_kmem_cache_cpus(s);
5014 
5015 	return 1;
5016 }
5017 #else
5018 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5019 {
5020 	return 1;
5021 }
5022 #endif /* CONFIG_SLUB_TINY */
5023 
5024 static struct kmem_cache *kmem_cache_node;
5025 
5026 /*
5027  * No kmalloc_node yet so do it by hand. We know that this is the first
5028  * slab on the node for this slabcache. There are no concurrent accesses
5029  * possible.
5030  *
5031  * Note that this function only works on the kmem_cache_node
5032  * when allocating for the kmem_cache_node. This is used for bootstrapping
5033  * memory on a fresh node that has no slab structures yet.
5034  */
5035 static void early_kmem_cache_node_alloc(int node)
5036 {
5037 	struct slab *slab;
5038 	struct kmem_cache_node *n;
5039 
5040 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5041 
5042 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5043 
5044 	BUG_ON(!slab);
5045 	if (slab_nid(slab) != node) {
5046 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5047 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5048 	}
5049 
5050 	n = slab->freelist;
5051 	BUG_ON(!n);
5052 #ifdef CONFIG_SLUB_DEBUG
5053 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5054 #endif
5055 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5056 	slab->freelist = get_freepointer(kmem_cache_node, n);
5057 	slab->inuse = 1;
5058 	kmem_cache_node->node[node] = n;
5059 	init_kmem_cache_node(n);
5060 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5061 
5062 	/*
5063 	 * No locks need to be taken here as it has just been
5064 	 * initialized and there is no concurrent access.
5065 	 */
5066 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5067 }
5068 
5069 static void free_kmem_cache_nodes(struct kmem_cache *s)
5070 {
5071 	int node;
5072 	struct kmem_cache_node *n;
5073 
5074 	for_each_kmem_cache_node(s, node, n) {
5075 		s->node[node] = NULL;
5076 		kmem_cache_free(kmem_cache_node, n);
5077 	}
5078 }
5079 
5080 void __kmem_cache_release(struct kmem_cache *s)
5081 {
5082 	cache_random_seq_destroy(s);
5083 #ifndef CONFIG_SLUB_TINY
5084 	free_percpu(s->cpu_slab);
5085 #endif
5086 	free_kmem_cache_nodes(s);
5087 }
5088 
5089 static int init_kmem_cache_nodes(struct kmem_cache *s)
5090 {
5091 	int node;
5092 
5093 	for_each_node_mask(node, slab_nodes) {
5094 		struct kmem_cache_node *n;
5095 
5096 		if (slab_state == DOWN) {
5097 			early_kmem_cache_node_alloc(node);
5098 			continue;
5099 		}
5100 		n = kmem_cache_alloc_node(kmem_cache_node,
5101 						GFP_KERNEL, node);
5102 
5103 		if (!n) {
5104 			free_kmem_cache_nodes(s);
5105 			return 0;
5106 		}
5107 
5108 		init_kmem_cache_node(n);
5109 		s->node[node] = n;
5110 	}
5111 	return 1;
5112 }
5113 
5114 static void set_cpu_partial(struct kmem_cache *s)
5115 {
5116 #ifdef CONFIG_SLUB_CPU_PARTIAL
5117 	unsigned int nr_objects;
5118 
5119 	/*
5120 	 * cpu_partial determined the maximum number of objects kept in the
5121 	 * per cpu partial lists of a processor.
5122 	 *
5123 	 * Per cpu partial lists mainly contain slabs that just have one
5124 	 * object freed. If they are used for allocation then they can be
5125 	 * filled up again with minimal effort. The slab will never hit the
5126 	 * per node partial lists and therefore no locking will be required.
5127 	 *
5128 	 * For backwards compatibility reasons, this is determined as number
5129 	 * of objects, even though we now limit maximum number of pages, see
5130 	 * slub_set_cpu_partial()
5131 	 */
5132 	if (!kmem_cache_has_cpu_partial(s))
5133 		nr_objects = 0;
5134 	else if (s->size >= PAGE_SIZE)
5135 		nr_objects = 6;
5136 	else if (s->size >= 1024)
5137 		nr_objects = 24;
5138 	else if (s->size >= 256)
5139 		nr_objects = 52;
5140 	else
5141 		nr_objects = 120;
5142 
5143 	slub_set_cpu_partial(s, nr_objects);
5144 #endif
5145 }
5146 
5147 /*
5148  * calculate_sizes() determines the order and the distribution of data within
5149  * a slab object.
5150  */
5151 static int calculate_sizes(struct kmem_cache *s)
5152 {
5153 	slab_flags_t flags = s->flags;
5154 	unsigned int size = s->object_size;
5155 	unsigned int order;
5156 
5157 	/*
5158 	 * Round up object size to the next word boundary. We can only
5159 	 * place the free pointer at word boundaries and this determines
5160 	 * the possible location of the free pointer.
5161 	 */
5162 	size = ALIGN(size, sizeof(void *));
5163 
5164 #ifdef CONFIG_SLUB_DEBUG
5165 	/*
5166 	 * Determine if we can poison the object itself. If the user of
5167 	 * the slab may touch the object after free or before allocation
5168 	 * then we should never poison the object itself.
5169 	 */
5170 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5171 			!s->ctor)
5172 		s->flags |= __OBJECT_POISON;
5173 	else
5174 		s->flags &= ~__OBJECT_POISON;
5175 
5176 
5177 	/*
5178 	 * If we are Redzoning then check if there is some space between the
5179 	 * end of the object and the free pointer. If not then add an
5180 	 * additional word to have some bytes to store Redzone information.
5181 	 */
5182 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5183 		size += sizeof(void *);
5184 #endif
5185 
5186 	/*
5187 	 * With that we have determined the number of bytes in actual use
5188 	 * by the object and redzoning.
5189 	 */
5190 	s->inuse = size;
5191 
5192 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
5193 	    ((flags & SLAB_RED_ZONE) &&
5194 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5195 		/*
5196 		 * Relocate free pointer after the object if it is not
5197 		 * permitted to overwrite the first word of the object on
5198 		 * kmem_cache_free.
5199 		 *
5200 		 * This is the case if we do RCU, have a constructor or
5201 		 * destructor, are poisoning the objects, or are
5202 		 * redzoning an object smaller than sizeof(void *) or are
5203 		 * redzoning an object with slub_debug_orig_size() enabled,
5204 		 * in which case the right redzone may be extended.
5205 		 *
5206 		 * The assumption that s->offset >= s->inuse means free
5207 		 * pointer is outside of the object is used in the
5208 		 * freeptr_outside_object() function. If that is no
5209 		 * longer true, the function needs to be modified.
5210 		 */
5211 		s->offset = size;
5212 		size += sizeof(void *);
5213 	} else {
5214 		/*
5215 		 * Store freelist pointer near middle of object to keep
5216 		 * it away from the edges of the object to avoid small
5217 		 * sized over/underflows from neighboring allocations.
5218 		 */
5219 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5220 	}
5221 
5222 #ifdef CONFIG_SLUB_DEBUG
5223 	if (flags & SLAB_STORE_USER) {
5224 		/*
5225 		 * Need to store information about allocs and frees after
5226 		 * the object.
5227 		 */
5228 		size += 2 * sizeof(struct track);
5229 
5230 		/* Save the original kmalloc request size */
5231 		if (flags & SLAB_KMALLOC)
5232 			size += sizeof(unsigned int);
5233 	}
5234 #endif
5235 
5236 	kasan_cache_create(s, &size, &s->flags);
5237 #ifdef CONFIG_SLUB_DEBUG
5238 	if (flags & SLAB_RED_ZONE) {
5239 		/*
5240 		 * Add some empty padding so that we can catch
5241 		 * overwrites from earlier objects rather than let
5242 		 * tracking information or the free pointer be
5243 		 * corrupted if a user writes before the start
5244 		 * of the object.
5245 		 */
5246 		size += sizeof(void *);
5247 
5248 		s->red_left_pad = sizeof(void *);
5249 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5250 		size += s->red_left_pad;
5251 	}
5252 #endif
5253 
5254 	/*
5255 	 * SLUB stores one object immediately after another beginning from
5256 	 * offset 0. In order to align the objects we have to simply size
5257 	 * each object to conform to the alignment.
5258 	 */
5259 	size = ALIGN(size, s->align);
5260 	s->size = size;
5261 	s->reciprocal_size = reciprocal_value(size);
5262 	order = calculate_order(size);
5263 
5264 	if ((int)order < 0)
5265 		return 0;
5266 
5267 	s->allocflags = __GFP_COMP;
5268 
5269 	if (s->flags & SLAB_CACHE_DMA)
5270 		s->allocflags |= GFP_DMA;
5271 
5272 	if (s->flags & SLAB_CACHE_DMA32)
5273 		s->allocflags |= GFP_DMA32;
5274 
5275 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5276 		s->allocflags |= __GFP_RECLAIMABLE;
5277 
5278 	/*
5279 	 * Determine the number of objects per slab
5280 	 */
5281 	s->oo = oo_make(order, size);
5282 	s->min = oo_make(get_order(size), size);
5283 
5284 	return !!oo_objects(s->oo);
5285 }
5286 
5287 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5288 {
5289 	s->flags = kmem_cache_flags(flags, s->name);
5290 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5291 	s->random = get_random_long();
5292 #endif
5293 
5294 	if (!calculate_sizes(s))
5295 		goto error;
5296 	if (disable_higher_order_debug) {
5297 		/*
5298 		 * Disable debugging flags that store metadata if the min slab
5299 		 * order increased.
5300 		 */
5301 		if (get_order(s->size) > get_order(s->object_size)) {
5302 			s->flags &= ~DEBUG_METADATA_FLAGS;
5303 			s->offset = 0;
5304 			if (!calculate_sizes(s))
5305 				goto error;
5306 		}
5307 	}
5308 
5309 #ifdef system_has_freelist_aba
5310 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5311 		/* Enable fast mode */
5312 		s->flags |= __CMPXCHG_DOUBLE;
5313 	}
5314 #endif
5315 
5316 	/*
5317 	 * The larger the object size is, the more slabs we want on the partial
5318 	 * list to avoid pounding the page allocator excessively.
5319 	 */
5320 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5321 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5322 
5323 	set_cpu_partial(s);
5324 
5325 #ifdef CONFIG_NUMA
5326 	s->remote_node_defrag_ratio = 1000;
5327 #endif
5328 
5329 	/* Initialize the pre-computed randomized freelist if slab is up */
5330 	if (slab_state >= UP) {
5331 		if (init_cache_random_seq(s))
5332 			goto error;
5333 	}
5334 
5335 	if (!init_kmem_cache_nodes(s))
5336 		goto error;
5337 
5338 	if (alloc_kmem_cache_cpus(s))
5339 		return 0;
5340 
5341 error:
5342 	__kmem_cache_release(s);
5343 	return -EINVAL;
5344 }
5345 
5346 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5347 			      const char *text)
5348 {
5349 #ifdef CONFIG_SLUB_DEBUG
5350 	void *addr = slab_address(slab);
5351 	void *p;
5352 
5353 	slab_err(s, slab, text, s->name);
5354 
5355 	spin_lock(&object_map_lock);
5356 	__fill_map(object_map, s, slab);
5357 
5358 	for_each_object(p, s, addr, slab->objects) {
5359 
5360 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5361 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5362 			print_tracking(s, p);
5363 		}
5364 	}
5365 	spin_unlock(&object_map_lock);
5366 #endif
5367 }
5368 
5369 /*
5370  * Attempt to free all partial slabs on a node.
5371  * This is called from __kmem_cache_shutdown(). We must take list_lock
5372  * because sysfs file might still access partial list after the shutdowning.
5373  */
5374 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5375 {
5376 	LIST_HEAD(discard);
5377 	struct slab *slab, *h;
5378 
5379 	BUG_ON(irqs_disabled());
5380 	spin_lock_irq(&n->list_lock);
5381 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5382 		if (!slab->inuse) {
5383 			remove_partial(n, slab);
5384 			list_add(&slab->slab_list, &discard);
5385 		} else {
5386 			list_slab_objects(s, slab,
5387 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5388 		}
5389 	}
5390 	spin_unlock_irq(&n->list_lock);
5391 
5392 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5393 		discard_slab(s, slab);
5394 }
5395 
5396 bool __kmem_cache_empty(struct kmem_cache *s)
5397 {
5398 	int node;
5399 	struct kmem_cache_node *n;
5400 
5401 	for_each_kmem_cache_node(s, node, n)
5402 		if (n->nr_partial || node_nr_slabs(n))
5403 			return false;
5404 	return true;
5405 }
5406 
5407 /*
5408  * Release all resources used by a slab cache.
5409  */
5410 int __kmem_cache_shutdown(struct kmem_cache *s)
5411 {
5412 	int node;
5413 	struct kmem_cache_node *n;
5414 
5415 	flush_all_cpus_locked(s);
5416 	/* Attempt to free all objects */
5417 	for_each_kmem_cache_node(s, node, n) {
5418 		free_partial(s, n);
5419 		if (n->nr_partial || node_nr_slabs(n))
5420 			return 1;
5421 	}
5422 	return 0;
5423 }
5424 
5425 #ifdef CONFIG_PRINTK
5426 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5427 {
5428 	void *base;
5429 	int __maybe_unused i;
5430 	unsigned int objnr;
5431 	void *objp;
5432 	void *objp0;
5433 	struct kmem_cache *s = slab->slab_cache;
5434 	struct track __maybe_unused *trackp;
5435 
5436 	kpp->kp_ptr = object;
5437 	kpp->kp_slab = slab;
5438 	kpp->kp_slab_cache = s;
5439 	base = slab_address(slab);
5440 	objp0 = kasan_reset_tag(object);
5441 #ifdef CONFIG_SLUB_DEBUG
5442 	objp = restore_red_left(s, objp0);
5443 #else
5444 	objp = objp0;
5445 #endif
5446 	objnr = obj_to_index(s, slab, objp);
5447 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5448 	objp = base + s->size * objnr;
5449 	kpp->kp_objp = objp;
5450 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5451 			 || (objp - base) % s->size) ||
5452 	    !(s->flags & SLAB_STORE_USER))
5453 		return;
5454 #ifdef CONFIG_SLUB_DEBUG
5455 	objp = fixup_red_left(s, objp);
5456 	trackp = get_track(s, objp, TRACK_ALLOC);
5457 	kpp->kp_ret = (void *)trackp->addr;
5458 #ifdef CONFIG_STACKDEPOT
5459 	{
5460 		depot_stack_handle_t handle;
5461 		unsigned long *entries;
5462 		unsigned int nr_entries;
5463 
5464 		handle = READ_ONCE(trackp->handle);
5465 		if (handle) {
5466 			nr_entries = stack_depot_fetch(handle, &entries);
5467 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5468 				kpp->kp_stack[i] = (void *)entries[i];
5469 		}
5470 
5471 		trackp = get_track(s, objp, TRACK_FREE);
5472 		handle = READ_ONCE(trackp->handle);
5473 		if (handle) {
5474 			nr_entries = stack_depot_fetch(handle, &entries);
5475 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5476 				kpp->kp_free_stack[i] = (void *)entries[i];
5477 		}
5478 	}
5479 #endif
5480 #endif
5481 }
5482 #endif
5483 
5484 /********************************************************************
5485  *		Kmalloc subsystem
5486  *******************************************************************/
5487 
5488 static int __init setup_slub_min_order(char *str)
5489 {
5490 	get_option(&str, (int *)&slub_min_order);
5491 
5492 	if (slub_min_order > slub_max_order)
5493 		slub_max_order = slub_min_order;
5494 
5495 	return 1;
5496 }
5497 
5498 __setup("slab_min_order=", setup_slub_min_order);
5499 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5500 
5501 
5502 static int __init setup_slub_max_order(char *str)
5503 {
5504 	get_option(&str, (int *)&slub_max_order);
5505 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5506 
5507 	if (slub_min_order > slub_max_order)
5508 		slub_min_order = slub_max_order;
5509 
5510 	return 1;
5511 }
5512 
5513 __setup("slab_max_order=", setup_slub_max_order);
5514 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5515 
5516 static int __init setup_slub_min_objects(char *str)
5517 {
5518 	get_option(&str, (int *)&slub_min_objects);
5519 
5520 	return 1;
5521 }
5522 
5523 __setup("slab_min_objects=", setup_slub_min_objects);
5524 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5525 
5526 #ifdef CONFIG_HARDENED_USERCOPY
5527 /*
5528  * Rejects incorrectly sized objects and objects that are to be copied
5529  * to/from userspace but do not fall entirely within the containing slab
5530  * cache's usercopy region.
5531  *
5532  * Returns NULL if check passes, otherwise const char * to name of cache
5533  * to indicate an error.
5534  */
5535 void __check_heap_object(const void *ptr, unsigned long n,
5536 			 const struct slab *slab, bool to_user)
5537 {
5538 	struct kmem_cache *s;
5539 	unsigned int offset;
5540 	bool is_kfence = is_kfence_address(ptr);
5541 
5542 	ptr = kasan_reset_tag(ptr);
5543 
5544 	/* Find object and usable object size. */
5545 	s = slab->slab_cache;
5546 
5547 	/* Reject impossible pointers. */
5548 	if (ptr < slab_address(slab))
5549 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5550 			       to_user, 0, n);
5551 
5552 	/* Find offset within object. */
5553 	if (is_kfence)
5554 		offset = ptr - kfence_object_start(ptr);
5555 	else
5556 		offset = (ptr - slab_address(slab)) % s->size;
5557 
5558 	/* Adjust for redzone and reject if within the redzone. */
5559 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5560 		if (offset < s->red_left_pad)
5561 			usercopy_abort("SLUB object in left red zone",
5562 				       s->name, to_user, offset, n);
5563 		offset -= s->red_left_pad;
5564 	}
5565 
5566 	/* Allow address range falling entirely within usercopy region. */
5567 	if (offset >= s->useroffset &&
5568 	    offset - s->useroffset <= s->usersize &&
5569 	    n <= s->useroffset - offset + s->usersize)
5570 		return;
5571 
5572 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5573 }
5574 #endif /* CONFIG_HARDENED_USERCOPY */
5575 
5576 #define SHRINK_PROMOTE_MAX 32
5577 
5578 /*
5579  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5580  * up most to the head of the partial lists. New allocations will then
5581  * fill those up and thus they can be removed from the partial lists.
5582  *
5583  * The slabs with the least items are placed last. This results in them
5584  * being allocated from last increasing the chance that the last objects
5585  * are freed in them.
5586  */
5587 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5588 {
5589 	int node;
5590 	int i;
5591 	struct kmem_cache_node *n;
5592 	struct slab *slab;
5593 	struct slab *t;
5594 	struct list_head discard;
5595 	struct list_head promote[SHRINK_PROMOTE_MAX];
5596 	unsigned long flags;
5597 	int ret = 0;
5598 
5599 	for_each_kmem_cache_node(s, node, n) {
5600 		INIT_LIST_HEAD(&discard);
5601 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5602 			INIT_LIST_HEAD(promote + i);
5603 
5604 		spin_lock_irqsave(&n->list_lock, flags);
5605 
5606 		/*
5607 		 * Build lists of slabs to discard or promote.
5608 		 *
5609 		 * Note that concurrent frees may occur while we hold the
5610 		 * list_lock. slab->inuse here is the upper limit.
5611 		 */
5612 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5613 			int free = slab->objects - slab->inuse;
5614 
5615 			/* Do not reread slab->inuse */
5616 			barrier();
5617 
5618 			/* We do not keep full slabs on the list */
5619 			BUG_ON(free <= 0);
5620 
5621 			if (free == slab->objects) {
5622 				list_move(&slab->slab_list, &discard);
5623 				slab_clear_node_partial(slab);
5624 				n->nr_partial--;
5625 				dec_slabs_node(s, node, slab->objects);
5626 			} else if (free <= SHRINK_PROMOTE_MAX)
5627 				list_move(&slab->slab_list, promote + free - 1);
5628 		}
5629 
5630 		/*
5631 		 * Promote the slabs filled up most to the head of the
5632 		 * partial list.
5633 		 */
5634 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5635 			list_splice(promote + i, &n->partial);
5636 
5637 		spin_unlock_irqrestore(&n->list_lock, flags);
5638 
5639 		/* Release empty slabs */
5640 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5641 			free_slab(s, slab);
5642 
5643 		if (node_nr_slabs(n))
5644 			ret = 1;
5645 	}
5646 
5647 	return ret;
5648 }
5649 
5650 int __kmem_cache_shrink(struct kmem_cache *s)
5651 {
5652 	flush_all(s);
5653 	return __kmem_cache_do_shrink(s);
5654 }
5655 
5656 static int slab_mem_going_offline_callback(void *arg)
5657 {
5658 	struct kmem_cache *s;
5659 
5660 	mutex_lock(&slab_mutex);
5661 	list_for_each_entry(s, &slab_caches, list) {
5662 		flush_all_cpus_locked(s);
5663 		__kmem_cache_do_shrink(s);
5664 	}
5665 	mutex_unlock(&slab_mutex);
5666 
5667 	return 0;
5668 }
5669 
5670 static void slab_mem_offline_callback(void *arg)
5671 {
5672 	struct memory_notify *marg = arg;
5673 	int offline_node;
5674 
5675 	offline_node = marg->status_change_nid_normal;
5676 
5677 	/*
5678 	 * If the node still has available memory. we need kmem_cache_node
5679 	 * for it yet.
5680 	 */
5681 	if (offline_node < 0)
5682 		return;
5683 
5684 	mutex_lock(&slab_mutex);
5685 	node_clear(offline_node, slab_nodes);
5686 	/*
5687 	 * We no longer free kmem_cache_node structures here, as it would be
5688 	 * racy with all get_node() users, and infeasible to protect them with
5689 	 * slab_mutex.
5690 	 */
5691 	mutex_unlock(&slab_mutex);
5692 }
5693 
5694 static int slab_mem_going_online_callback(void *arg)
5695 {
5696 	struct kmem_cache_node *n;
5697 	struct kmem_cache *s;
5698 	struct memory_notify *marg = arg;
5699 	int nid = marg->status_change_nid_normal;
5700 	int ret = 0;
5701 
5702 	/*
5703 	 * If the node's memory is already available, then kmem_cache_node is
5704 	 * already created. Nothing to do.
5705 	 */
5706 	if (nid < 0)
5707 		return 0;
5708 
5709 	/*
5710 	 * We are bringing a node online. No memory is available yet. We must
5711 	 * allocate a kmem_cache_node structure in order to bring the node
5712 	 * online.
5713 	 */
5714 	mutex_lock(&slab_mutex);
5715 	list_for_each_entry(s, &slab_caches, list) {
5716 		/*
5717 		 * The structure may already exist if the node was previously
5718 		 * onlined and offlined.
5719 		 */
5720 		if (get_node(s, nid))
5721 			continue;
5722 		/*
5723 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5724 		 *      since memory is not yet available from the node that
5725 		 *      is brought up.
5726 		 */
5727 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5728 		if (!n) {
5729 			ret = -ENOMEM;
5730 			goto out;
5731 		}
5732 		init_kmem_cache_node(n);
5733 		s->node[nid] = n;
5734 	}
5735 	/*
5736 	 * Any cache created after this point will also have kmem_cache_node
5737 	 * initialized for the new node.
5738 	 */
5739 	node_set(nid, slab_nodes);
5740 out:
5741 	mutex_unlock(&slab_mutex);
5742 	return ret;
5743 }
5744 
5745 static int slab_memory_callback(struct notifier_block *self,
5746 				unsigned long action, void *arg)
5747 {
5748 	int ret = 0;
5749 
5750 	switch (action) {
5751 	case MEM_GOING_ONLINE:
5752 		ret = slab_mem_going_online_callback(arg);
5753 		break;
5754 	case MEM_GOING_OFFLINE:
5755 		ret = slab_mem_going_offline_callback(arg);
5756 		break;
5757 	case MEM_OFFLINE:
5758 	case MEM_CANCEL_ONLINE:
5759 		slab_mem_offline_callback(arg);
5760 		break;
5761 	case MEM_ONLINE:
5762 	case MEM_CANCEL_OFFLINE:
5763 		break;
5764 	}
5765 	if (ret)
5766 		ret = notifier_from_errno(ret);
5767 	else
5768 		ret = NOTIFY_OK;
5769 	return ret;
5770 }
5771 
5772 /********************************************************************
5773  *			Basic setup of slabs
5774  *******************************************************************/
5775 
5776 /*
5777  * Used for early kmem_cache structures that were allocated using
5778  * the page allocator. Allocate them properly then fix up the pointers
5779  * that may be pointing to the wrong kmem_cache structure.
5780  */
5781 
5782 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5783 {
5784 	int node;
5785 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5786 	struct kmem_cache_node *n;
5787 
5788 	memcpy(s, static_cache, kmem_cache->object_size);
5789 
5790 	/*
5791 	 * This runs very early, and only the boot processor is supposed to be
5792 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5793 	 * IPIs around.
5794 	 */
5795 	__flush_cpu_slab(s, smp_processor_id());
5796 	for_each_kmem_cache_node(s, node, n) {
5797 		struct slab *p;
5798 
5799 		list_for_each_entry(p, &n->partial, slab_list)
5800 			p->slab_cache = s;
5801 
5802 #ifdef CONFIG_SLUB_DEBUG
5803 		list_for_each_entry(p, &n->full, slab_list)
5804 			p->slab_cache = s;
5805 #endif
5806 	}
5807 	list_add(&s->list, &slab_caches);
5808 	return s;
5809 }
5810 
5811 void __init kmem_cache_init(void)
5812 {
5813 	static __initdata struct kmem_cache boot_kmem_cache,
5814 		boot_kmem_cache_node;
5815 	int node;
5816 
5817 	if (debug_guardpage_minorder())
5818 		slub_max_order = 0;
5819 
5820 	/* Print slub debugging pointers without hashing */
5821 	if (__slub_debug_enabled())
5822 		no_hash_pointers_enable(NULL);
5823 
5824 	kmem_cache_node = &boot_kmem_cache_node;
5825 	kmem_cache = &boot_kmem_cache;
5826 
5827 	/*
5828 	 * Initialize the nodemask for which we will allocate per node
5829 	 * structures. Here we don't need taking slab_mutex yet.
5830 	 */
5831 	for_each_node_state(node, N_NORMAL_MEMORY)
5832 		node_set(node, slab_nodes);
5833 
5834 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5835 			sizeof(struct kmem_cache_node),
5836 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5837 
5838 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5839 
5840 	/* Able to allocate the per node structures */
5841 	slab_state = PARTIAL;
5842 
5843 	create_boot_cache(kmem_cache, "kmem_cache",
5844 			offsetof(struct kmem_cache, node) +
5845 				nr_node_ids * sizeof(struct kmem_cache_node *),
5846 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5847 
5848 	kmem_cache = bootstrap(&boot_kmem_cache);
5849 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5850 
5851 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5852 	setup_kmalloc_cache_index_table();
5853 	create_kmalloc_caches();
5854 
5855 	/* Setup random freelists for each cache */
5856 	init_freelist_randomization();
5857 
5858 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5859 				  slub_cpu_dead);
5860 
5861 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5862 		cache_line_size(),
5863 		slub_min_order, slub_max_order, slub_min_objects,
5864 		nr_cpu_ids, nr_node_ids);
5865 }
5866 
5867 void __init kmem_cache_init_late(void)
5868 {
5869 #ifndef CONFIG_SLUB_TINY
5870 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5871 	WARN_ON(!flushwq);
5872 #endif
5873 }
5874 
5875 struct kmem_cache *
5876 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5877 		   slab_flags_t flags, void (*ctor)(void *))
5878 {
5879 	struct kmem_cache *s;
5880 
5881 	s = find_mergeable(size, align, flags, name, ctor);
5882 	if (s) {
5883 		if (sysfs_slab_alias(s, name))
5884 			return NULL;
5885 
5886 		s->refcount++;
5887 
5888 		/*
5889 		 * Adjust the object sizes so that we clear
5890 		 * the complete object on kzalloc.
5891 		 */
5892 		s->object_size = max(s->object_size, size);
5893 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5894 	}
5895 
5896 	return s;
5897 }
5898 
5899 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5900 {
5901 	int err;
5902 
5903 	err = kmem_cache_open(s, flags);
5904 	if (err)
5905 		return err;
5906 
5907 	/* Mutex is not taken during early boot */
5908 	if (slab_state <= UP)
5909 		return 0;
5910 
5911 	err = sysfs_slab_add(s);
5912 	if (err) {
5913 		__kmem_cache_release(s);
5914 		return err;
5915 	}
5916 
5917 	if (s->flags & SLAB_STORE_USER)
5918 		debugfs_slab_add(s);
5919 
5920 	return 0;
5921 }
5922 
5923 #ifdef SLAB_SUPPORTS_SYSFS
5924 static int count_inuse(struct slab *slab)
5925 {
5926 	return slab->inuse;
5927 }
5928 
5929 static int count_total(struct slab *slab)
5930 {
5931 	return slab->objects;
5932 }
5933 #endif
5934 
5935 #ifdef CONFIG_SLUB_DEBUG
5936 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5937 			  unsigned long *obj_map)
5938 {
5939 	void *p;
5940 	void *addr = slab_address(slab);
5941 
5942 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5943 		return;
5944 
5945 	/* Now we know that a valid freelist exists */
5946 	__fill_map(obj_map, s, slab);
5947 	for_each_object(p, s, addr, slab->objects) {
5948 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5949 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5950 
5951 		if (!check_object(s, slab, p, val))
5952 			break;
5953 	}
5954 }
5955 
5956 static int validate_slab_node(struct kmem_cache *s,
5957 		struct kmem_cache_node *n, unsigned long *obj_map)
5958 {
5959 	unsigned long count = 0;
5960 	struct slab *slab;
5961 	unsigned long flags;
5962 
5963 	spin_lock_irqsave(&n->list_lock, flags);
5964 
5965 	list_for_each_entry(slab, &n->partial, slab_list) {
5966 		validate_slab(s, slab, obj_map);
5967 		count++;
5968 	}
5969 	if (count != n->nr_partial) {
5970 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5971 		       s->name, count, n->nr_partial);
5972 		slab_add_kunit_errors();
5973 	}
5974 
5975 	if (!(s->flags & SLAB_STORE_USER))
5976 		goto out;
5977 
5978 	list_for_each_entry(slab, &n->full, slab_list) {
5979 		validate_slab(s, slab, obj_map);
5980 		count++;
5981 	}
5982 	if (count != node_nr_slabs(n)) {
5983 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5984 		       s->name, count, node_nr_slabs(n));
5985 		slab_add_kunit_errors();
5986 	}
5987 
5988 out:
5989 	spin_unlock_irqrestore(&n->list_lock, flags);
5990 	return count;
5991 }
5992 
5993 long validate_slab_cache(struct kmem_cache *s)
5994 {
5995 	int node;
5996 	unsigned long count = 0;
5997 	struct kmem_cache_node *n;
5998 	unsigned long *obj_map;
5999 
6000 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6001 	if (!obj_map)
6002 		return -ENOMEM;
6003 
6004 	flush_all(s);
6005 	for_each_kmem_cache_node(s, node, n)
6006 		count += validate_slab_node(s, n, obj_map);
6007 
6008 	bitmap_free(obj_map);
6009 
6010 	return count;
6011 }
6012 EXPORT_SYMBOL(validate_slab_cache);
6013 
6014 #ifdef CONFIG_DEBUG_FS
6015 /*
6016  * Generate lists of code addresses where slabcache objects are allocated
6017  * and freed.
6018  */
6019 
6020 struct location {
6021 	depot_stack_handle_t handle;
6022 	unsigned long count;
6023 	unsigned long addr;
6024 	unsigned long waste;
6025 	long long sum_time;
6026 	long min_time;
6027 	long max_time;
6028 	long min_pid;
6029 	long max_pid;
6030 	DECLARE_BITMAP(cpus, NR_CPUS);
6031 	nodemask_t nodes;
6032 };
6033 
6034 struct loc_track {
6035 	unsigned long max;
6036 	unsigned long count;
6037 	struct location *loc;
6038 	loff_t idx;
6039 };
6040 
6041 static struct dentry *slab_debugfs_root;
6042 
6043 static void free_loc_track(struct loc_track *t)
6044 {
6045 	if (t->max)
6046 		free_pages((unsigned long)t->loc,
6047 			get_order(sizeof(struct location) * t->max));
6048 }
6049 
6050 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6051 {
6052 	struct location *l;
6053 	int order;
6054 
6055 	order = get_order(sizeof(struct location) * max);
6056 
6057 	l = (void *)__get_free_pages(flags, order);
6058 	if (!l)
6059 		return 0;
6060 
6061 	if (t->count) {
6062 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6063 		free_loc_track(t);
6064 	}
6065 	t->max = max;
6066 	t->loc = l;
6067 	return 1;
6068 }
6069 
6070 static int add_location(struct loc_track *t, struct kmem_cache *s,
6071 				const struct track *track,
6072 				unsigned int orig_size)
6073 {
6074 	long start, end, pos;
6075 	struct location *l;
6076 	unsigned long caddr, chandle, cwaste;
6077 	unsigned long age = jiffies - track->when;
6078 	depot_stack_handle_t handle = 0;
6079 	unsigned int waste = s->object_size - orig_size;
6080 
6081 #ifdef CONFIG_STACKDEPOT
6082 	handle = READ_ONCE(track->handle);
6083 #endif
6084 	start = -1;
6085 	end = t->count;
6086 
6087 	for ( ; ; ) {
6088 		pos = start + (end - start + 1) / 2;
6089 
6090 		/*
6091 		 * There is nothing at "end". If we end up there
6092 		 * we need to add something to before end.
6093 		 */
6094 		if (pos == end)
6095 			break;
6096 
6097 		l = &t->loc[pos];
6098 		caddr = l->addr;
6099 		chandle = l->handle;
6100 		cwaste = l->waste;
6101 		if ((track->addr == caddr) && (handle == chandle) &&
6102 			(waste == cwaste)) {
6103 
6104 			l->count++;
6105 			if (track->when) {
6106 				l->sum_time += age;
6107 				if (age < l->min_time)
6108 					l->min_time = age;
6109 				if (age > l->max_time)
6110 					l->max_time = age;
6111 
6112 				if (track->pid < l->min_pid)
6113 					l->min_pid = track->pid;
6114 				if (track->pid > l->max_pid)
6115 					l->max_pid = track->pid;
6116 
6117 				cpumask_set_cpu(track->cpu,
6118 						to_cpumask(l->cpus));
6119 			}
6120 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6121 			return 1;
6122 		}
6123 
6124 		if (track->addr < caddr)
6125 			end = pos;
6126 		else if (track->addr == caddr && handle < chandle)
6127 			end = pos;
6128 		else if (track->addr == caddr && handle == chandle &&
6129 				waste < cwaste)
6130 			end = pos;
6131 		else
6132 			start = pos;
6133 	}
6134 
6135 	/*
6136 	 * Not found. Insert new tracking element.
6137 	 */
6138 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6139 		return 0;
6140 
6141 	l = t->loc + pos;
6142 	if (pos < t->count)
6143 		memmove(l + 1, l,
6144 			(t->count - pos) * sizeof(struct location));
6145 	t->count++;
6146 	l->count = 1;
6147 	l->addr = track->addr;
6148 	l->sum_time = age;
6149 	l->min_time = age;
6150 	l->max_time = age;
6151 	l->min_pid = track->pid;
6152 	l->max_pid = track->pid;
6153 	l->handle = handle;
6154 	l->waste = waste;
6155 	cpumask_clear(to_cpumask(l->cpus));
6156 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6157 	nodes_clear(l->nodes);
6158 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6159 	return 1;
6160 }
6161 
6162 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6163 		struct slab *slab, enum track_item alloc,
6164 		unsigned long *obj_map)
6165 {
6166 	void *addr = slab_address(slab);
6167 	bool is_alloc = (alloc == TRACK_ALLOC);
6168 	void *p;
6169 
6170 	__fill_map(obj_map, s, slab);
6171 
6172 	for_each_object(p, s, addr, slab->objects)
6173 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6174 			add_location(t, s, get_track(s, p, alloc),
6175 				     is_alloc ? get_orig_size(s, p) :
6176 						s->object_size);
6177 }
6178 #endif  /* CONFIG_DEBUG_FS   */
6179 #endif	/* CONFIG_SLUB_DEBUG */
6180 
6181 #ifdef SLAB_SUPPORTS_SYSFS
6182 enum slab_stat_type {
6183 	SL_ALL,			/* All slabs */
6184 	SL_PARTIAL,		/* Only partially allocated slabs */
6185 	SL_CPU,			/* Only slabs used for cpu caches */
6186 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6187 	SL_TOTAL		/* Determine object capacity not slabs */
6188 };
6189 
6190 #define SO_ALL		(1 << SL_ALL)
6191 #define SO_PARTIAL	(1 << SL_PARTIAL)
6192 #define SO_CPU		(1 << SL_CPU)
6193 #define SO_OBJECTS	(1 << SL_OBJECTS)
6194 #define SO_TOTAL	(1 << SL_TOTAL)
6195 
6196 static ssize_t show_slab_objects(struct kmem_cache *s,
6197 				 char *buf, unsigned long flags)
6198 {
6199 	unsigned long total = 0;
6200 	int node;
6201 	int x;
6202 	unsigned long *nodes;
6203 	int len = 0;
6204 
6205 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6206 	if (!nodes)
6207 		return -ENOMEM;
6208 
6209 	if (flags & SO_CPU) {
6210 		int cpu;
6211 
6212 		for_each_possible_cpu(cpu) {
6213 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6214 							       cpu);
6215 			int node;
6216 			struct slab *slab;
6217 
6218 			slab = READ_ONCE(c->slab);
6219 			if (!slab)
6220 				continue;
6221 
6222 			node = slab_nid(slab);
6223 			if (flags & SO_TOTAL)
6224 				x = slab->objects;
6225 			else if (flags & SO_OBJECTS)
6226 				x = slab->inuse;
6227 			else
6228 				x = 1;
6229 
6230 			total += x;
6231 			nodes[node] += x;
6232 
6233 #ifdef CONFIG_SLUB_CPU_PARTIAL
6234 			slab = slub_percpu_partial_read_once(c);
6235 			if (slab) {
6236 				node = slab_nid(slab);
6237 				if (flags & SO_TOTAL)
6238 					WARN_ON_ONCE(1);
6239 				else if (flags & SO_OBJECTS)
6240 					WARN_ON_ONCE(1);
6241 				else
6242 					x = data_race(slab->slabs);
6243 				total += x;
6244 				nodes[node] += x;
6245 			}
6246 #endif
6247 		}
6248 	}
6249 
6250 	/*
6251 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6252 	 * already held which will conflict with an existing lock order:
6253 	 *
6254 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6255 	 *
6256 	 * We don't really need mem_hotplug_lock (to hold off
6257 	 * slab_mem_going_offline_callback) here because slab's memory hot
6258 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6259 	 */
6260 
6261 #ifdef CONFIG_SLUB_DEBUG
6262 	if (flags & SO_ALL) {
6263 		struct kmem_cache_node *n;
6264 
6265 		for_each_kmem_cache_node(s, node, n) {
6266 
6267 			if (flags & SO_TOTAL)
6268 				x = node_nr_objs(n);
6269 			else if (flags & SO_OBJECTS)
6270 				x = node_nr_objs(n) - count_partial(n, count_free);
6271 			else
6272 				x = node_nr_slabs(n);
6273 			total += x;
6274 			nodes[node] += x;
6275 		}
6276 
6277 	} else
6278 #endif
6279 	if (flags & SO_PARTIAL) {
6280 		struct kmem_cache_node *n;
6281 
6282 		for_each_kmem_cache_node(s, node, n) {
6283 			if (flags & SO_TOTAL)
6284 				x = count_partial(n, count_total);
6285 			else if (flags & SO_OBJECTS)
6286 				x = count_partial(n, count_inuse);
6287 			else
6288 				x = n->nr_partial;
6289 			total += x;
6290 			nodes[node] += x;
6291 		}
6292 	}
6293 
6294 	len += sysfs_emit_at(buf, len, "%lu", total);
6295 #ifdef CONFIG_NUMA
6296 	for (node = 0; node < nr_node_ids; node++) {
6297 		if (nodes[node])
6298 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6299 					     node, nodes[node]);
6300 	}
6301 #endif
6302 	len += sysfs_emit_at(buf, len, "\n");
6303 	kfree(nodes);
6304 
6305 	return len;
6306 }
6307 
6308 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6309 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6310 
6311 struct slab_attribute {
6312 	struct attribute attr;
6313 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6314 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6315 };
6316 
6317 #define SLAB_ATTR_RO(_name) \
6318 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6319 
6320 #define SLAB_ATTR(_name) \
6321 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6322 
6323 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6324 {
6325 	return sysfs_emit(buf, "%u\n", s->size);
6326 }
6327 SLAB_ATTR_RO(slab_size);
6328 
6329 static ssize_t align_show(struct kmem_cache *s, char *buf)
6330 {
6331 	return sysfs_emit(buf, "%u\n", s->align);
6332 }
6333 SLAB_ATTR_RO(align);
6334 
6335 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6336 {
6337 	return sysfs_emit(buf, "%u\n", s->object_size);
6338 }
6339 SLAB_ATTR_RO(object_size);
6340 
6341 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6342 {
6343 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6344 }
6345 SLAB_ATTR_RO(objs_per_slab);
6346 
6347 static ssize_t order_show(struct kmem_cache *s, char *buf)
6348 {
6349 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6350 }
6351 SLAB_ATTR_RO(order);
6352 
6353 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6354 {
6355 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6356 }
6357 
6358 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6359 				 size_t length)
6360 {
6361 	unsigned long min;
6362 	int err;
6363 
6364 	err = kstrtoul(buf, 10, &min);
6365 	if (err)
6366 		return err;
6367 
6368 	s->min_partial = min;
6369 	return length;
6370 }
6371 SLAB_ATTR(min_partial);
6372 
6373 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6374 {
6375 	unsigned int nr_partial = 0;
6376 #ifdef CONFIG_SLUB_CPU_PARTIAL
6377 	nr_partial = s->cpu_partial;
6378 #endif
6379 
6380 	return sysfs_emit(buf, "%u\n", nr_partial);
6381 }
6382 
6383 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6384 				 size_t length)
6385 {
6386 	unsigned int objects;
6387 	int err;
6388 
6389 	err = kstrtouint(buf, 10, &objects);
6390 	if (err)
6391 		return err;
6392 	if (objects && !kmem_cache_has_cpu_partial(s))
6393 		return -EINVAL;
6394 
6395 	slub_set_cpu_partial(s, objects);
6396 	flush_all(s);
6397 	return length;
6398 }
6399 SLAB_ATTR(cpu_partial);
6400 
6401 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6402 {
6403 	if (!s->ctor)
6404 		return 0;
6405 	return sysfs_emit(buf, "%pS\n", s->ctor);
6406 }
6407 SLAB_ATTR_RO(ctor);
6408 
6409 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6410 {
6411 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6412 }
6413 SLAB_ATTR_RO(aliases);
6414 
6415 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6416 {
6417 	return show_slab_objects(s, buf, SO_PARTIAL);
6418 }
6419 SLAB_ATTR_RO(partial);
6420 
6421 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6422 {
6423 	return show_slab_objects(s, buf, SO_CPU);
6424 }
6425 SLAB_ATTR_RO(cpu_slabs);
6426 
6427 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6428 {
6429 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6430 }
6431 SLAB_ATTR_RO(objects_partial);
6432 
6433 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6434 {
6435 	int objects = 0;
6436 	int slabs = 0;
6437 	int cpu __maybe_unused;
6438 	int len = 0;
6439 
6440 #ifdef CONFIG_SLUB_CPU_PARTIAL
6441 	for_each_online_cpu(cpu) {
6442 		struct slab *slab;
6443 
6444 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6445 
6446 		if (slab)
6447 			slabs += data_race(slab->slabs);
6448 	}
6449 #endif
6450 
6451 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6452 	objects = (slabs * oo_objects(s->oo)) / 2;
6453 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6454 
6455 #ifdef CONFIG_SLUB_CPU_PARTIAL
6456 	for_each_online_cpu(cpu) {
6457 		struct slab *slab;
6458 
6459 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6460 		if (slab) {
6461 			slabs = data_race(slab->slabs);
6462 			objects = (slabs * oo_objects(s->oo)) / 2;
6463 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6464 					     cpu, objects, slabs);
6465 		}
6466 	}
6467 #endif
6468 	len += sysfs_emit_at(buf, len, "\n");
6469 
6470 	return len;
6471 }
6472 SLAB_ATTR_RO(slabs_cpu_partial);
6473 
6474 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6475 {
6476 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6477 }
6478 SLAB_ATTR_RO(reclaim_account);
6479 
6480 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6481 {
6482 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6483 }
6484 SLAB_ATTR_RO(hwcache_align);
6485 
6486 #ifdef CONFIG_ZONE_DMA
6487 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6488 {
6489 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6490 }
6491 SLAB_ATTR_RO(cache_dma);
6492 #endif
6493 
6494 #ifdef CONFIG_HARDENED_USERCOPY
6495 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6496 {
6497 	return sysfs_emit(buf, "%u\n", s->usersize);
6498 }
6499 SLAB_ATTR_RO(usersize);
6500 #endif
6501 
6502 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6503 {
6504 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6505 }
6506 SLAB_ATTR_RO(destroy_by_rcu);
6507 
6508 #ifdef CONFIG_SLUB_DEBUG
6509 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6510 {
6511 	return show_slab_objects(s, buf, SO_ALL);
6512 }
6513 SLAB_ATTR_RO(slabs);
6514 
6515 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6516 {
6517 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6518 }
6519 SLAB_ATTR_RO(total_objects);
6520 
6521 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6522 {
6523 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6524 }
6525 SLAB_ATTR_RO(objects);
6526 
6527 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6528 {
6529 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6530 }
6531 SLAB_ATTR_RO(sanity_checks);
6532 
6533 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6534 {
6535 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6536 }
6537 SLAB_ATTR_RO(trace);
6538 
6539 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6540 {
6541 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6542 }
6543 
6544 SLAB_ATTR_RO(red_zone);
6545 
6546 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6547 {
6548 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6549 }
6550 
6551 SLAB_ATTR_RO(poison);
6552 
6553 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6554 {
6555 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6556 }
6557 
6558 SLAB_ATTR_RO(store_user);
6559 
6560 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6561 {
6562 	return 0;
6563 }
6564 
6565 static ssize_t validate_store(struct kmem_cache *s,
6566 			const char *buf, size_t length)
6567 {
6568 	int ret = -EINVAL;
6569 
6570 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6571 		ret = validate_slab_cache(s);
6572 		if (ret >= 0)
6573 			ret = length;
6574 	}
6575 	return ret;
6576 }
6577 SLAB_ATTR(validate);
6578 
6579 #endif /* CONFIG_SLUB_DEBUG */
6580 
6581 #ifdef CONFIG_FAILSLAB
6582 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6583 {
6584 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6585 }
6586 
6587 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6588 				size_t length)
6589 {
6590 	if (s->refcount > 1)
6591 		return -EINVAL;
6592 
6593 	if (buf[0] == '1')
6594 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6595 	else
6596 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6597 
6598 	return length;
6599 }
6600 SLAB_ATTR(failslab);
6601 #endif
6602 
6603 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6604 {
6605 	return 0;
6606 }
6607 
6608 static ssize_t shrink_store(struct kmem_cache *s,
6609 			const char *buf, size_t length)
6610 {
6611 	if (buf[0] == '1')
6612 		kmem_cache_shrink(s);
6613 	else
6614 		return -EINVAL;
6615 	return length;
6616 }
6617 SLAB_ATTR(shrink);
6618 
6619 #ifdef CONFIG_NUMA
6620 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6621 {
6622 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6623 }
6624 
6625 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6626 				const char *buf, size_t length)
6627 {
6628 	unsigned int ratio;
6629 	int err;
6630 
6631 	err = kstrtouint(buf, 10, &ratio);
6632 	if (err)
6633 		return err;
6634 	if (ratio > 100)
6635 		return -ERANGE;
6636 
6637 	s->remote_node_defrag_ratio = ratio * 10;
6638 
6639 	return length;
6640 }
6641 SLAB_ATTR(remote_node_defrag_ratio);
6642 #endif
6643 
6644 #ifdef CONFIG_SLUB_STATS
6645 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6646 {
6647 	unsigned long sum  = 0;
6648 	int cpu;
6649 	int len = 0;
6650 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6651 
6652 	if (!data)
6653 		return -ENOMEM;
6654 
6655 	for_each_online_cpu(cpu) {
6656 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6657 
6658 		data[cpu] = x;
6659 		sum += x;
6660 	}
6661 
6662 	len += sysfs_emit_at(buf, len, "%lu", sum);
6663 
6664 #ifdef CONFIG_SMP
6665 	for_each_online_cpu(cpu) {
6666 		if (data[cpu])
6667 			len += sysfs_emit_at(buf, len, " C%d=%u",
6668 					     cpu, data[cpu]);
6669 	}
6670 #endif
6671 	kfree(data);
6672 	len += sysfs_emit_at(buf, len, "\n");
6673 
6674 	return len;
6675 }
6676 
6677 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6678 {
6679 	int cpu;
6680 
6681 	for_each_online_cpu(cpu)
6682 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6683 }
6684 
6685 #define STAT_ATTR(si, text) 					\
6686 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6687 {								\
6688 	return show_stat(s, buf, si);				\
6689 }								\
6690 static ssize_t text##_store(struct kmem_cache *s,		\
6691 				const char *buf, size_t length)	\
6692 {								\
6693 	if (buf[0] != '0')					\
6694 		return -EINVAL;					\
6695 	clear_stat(s, si);					\
6696 	return length;						\
6697 }								\
6698 SLAB_ATTR(text);						\
6699 
6700 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6701 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6702 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6703 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6704 STAT_ATTR(FREE_FROZEN, free_frozen);
6705 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6706 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6707 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6708 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6709 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6710 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6711 STAT_ATTR(FREE_SLAB, free_slab);
6712 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6713 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6714 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6715 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6716 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6717 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6718 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6719 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6720 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6721 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6722 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6723 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6724 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6725 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6726 #endif	/* CONFIG_SLUB_STATS */
6727 
6728 #ifdef CONFIG_KFENCE
6729 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6730 {
6731 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6732 }
6733 
6734 static ssize_t skip_kfence_store(struct kmem_cache *s,
6735 			const char *buf, size_t length)
6736 {
6737 	int ret = length;
6738 
6739 	if (buf[0] == '0')
6740 		s->flags &= ~SLAB_SKIP_KFENCE;
6741 	else if (buf[0] == '1')
6742 		s->flags |= SLAB_SKIP_KFENCE;
6743 	else
6744 		ret = -EINVAL;
6745 
6746 	return ret;
6747 }
6748 SLAB_ATTR(skip_kfence);
6749 #endif
6750 
6751 static struct attribute *slab_attrs[] = {
6752 	&slab_size_attr.attr,
6753 	&object_size_attr.attr,
6754 	&objs_per_slab_attr.attr,
6755 	&order_attr.attr,
6756 	&min_partial_attr.attr,
6757 	&cpu_partial_attr.attr,
6758 	&objects_partial_attr.attr,
6759 	&partial_attr.attr,
6760 	&cpu_slabs_attr.attr,
6761 	&ctor_attr.attr,
6762 	&aliases_attr.attr,
6763 	&align_attr.attr,
6764 	&hwcache_align_attr.attr,
6765 	&reclaim_account_attr.attr,
6766 	&destroy_by_rcu_attr.attr,
6767 	&shrink_attr.attr,
6768 	&slabs_cpu_partial_attr.attr,
6769 #ifdef CONFIG_SLUB_DEBUG
6770 	&total_objects_attr.attr,
6771 	&objects_attr.attr,
6772 	&slabs_attr.attr,
6773 	&sanity_checks_attr.attr,
6774 	&trace_attr.attr,
6775 	&red_zone_attr.attr,
6776 	&poison_attr.attr,
6777 	&store_user_attr.attr,
6778 	&validate_attr.attr,
6779 #endif
6780 #ifdef CONFIG_ZONE_DMA
6781 	&cache_dma_attr.attr,
6782 #endif
6783 #ifdef CONFIG_NUMA
6784 	&remote_node_defrag_ratio_attr.attr,
6785 #endif
6786 #ifdef CONFIG_SLUB_STATS
6787 	&alloc_fastpath_attr.attr,
6788 	&alloc_slowpath_attr.attr,
6789 	&free_fastpath_attr.attr,
6790 	&free_slowpath_attr.attr,
6791 	&free_frozen_attr.attr,
6792 	&free_add_partial_attr.attr,
6793 	&free_remove_partial_attr.attr,
6794 	&alloc_from_partial_attr.attr,
6795 	&alloc_slab_attr.attr,
6796 	&alloc_refill_attr.attr,
6797 	&alloc_node_mismatch_attr.attr,
6798 	&free_slab_attr.attr,
6799 	&cpuslab_flush_attr.attr,
6800 	&deactivate_full_attr.attr,
6801 	&deactivate_empty_attr.attr,
6802 	&deactivate_to_head_attr.attr,
6803 	&deactivate_to_tail_attr.attr,
6804 	&deactivate_remote_frees_attr.attr,
6805 	&deactivate_bypass_attr.attr,
6806 	&order_fallback_attr.attr,
6807 	&cmpxchg_double_fail_attr.attr,
6808 	&cmpxchg_double_cpu_fail_attr.attr,
6809 	&cpu_partial_alloc_attr.attr,
6810 	&cpu_partial_free_attr.attr,
6811 	&cpu_partial_node_attr.attr,
6812 	&cpu_partial_drain_attr.attr,
6813 #endif
6814 #ifdef CONFIG_FAILSLAB
6815 	&failslab_attr.attr,
6816 #endif
6817 #ifdef CONFIG_HARDENED_USERCOPY
6818 	&usersize_attr.attr,
6819 #endif
6820 #ifdef CONFIG_KFENCE
6821 	&skip_kfence_attr.attr,
6822 #endif
6823 
6824 	NULL
6825 };
6826 
6827 static const struct attribute_group slab_attr_group = {
6828 	.attrs = slab_attrs,
6829 };
6830 
6831 static ssize_t slab_attr_show(struct kobject *kobj,
6832 				struct attribute *attr,
6833 				char *buf)
6834 {
6835 	struct slab_attribute *attribute;
6836 	struct kmem_cache *s;
6837 
6838 	attribute = to_slab_attr(attr);
6839 	s = to_slab(kobj);
6840 
6841 	if (!attribute->show)
6842 		return -EIO;
6843 
6844 	return attribute->show(s, buf);
6845 }
6846 
6847 static ssize_t slab_attr_store(struct kobject *kobj,
6848 				struct attribute *attr,
6849 				const char *buf, size_t len)
6850 {
6851 	struct slab_attribute *attribute;
6852 	struct kmem_cache *s;
6853 
6854 	attribute = to_slab_attr(attr);
6855 	s = to_slab(kobj);
6856 
6857 	if (!attribute->store)
6858 		return -EIO;
6859 
6860 	return attribute->store(s, buf, len);
6861 }
6862 
6863 static void kmem_cache_release(struct kobject *k)
6864 {
6865 	slab_kmem_cache_release(to_slab(k));
6866 }
6867 
6868 static const struct sysfs_ops slab_sysfs_ops = {
6869 	.show = slab_attr_show,
6870 	.store = slab_attr_store,
6871 };
6872 
6873 static const struct kobj_type slab_ktype = {
6874 	.sysfs_ops = &slab_sysfs_ops,
6875 	.release = kmem_cache_release,
6876 };
6877 
6878 static struct kset *slab_kset;
6879 
6880 static inline struct kset *cache_kset(struct kmem_cache *s)
6881 {
6882 	return slab_kset;
6883 }
6884 
6885 #define ID_STR_LENGTH 32
6886 
6887 /* Create a unique string id for a slab cache:
6888  *
6889  * Format	:[flags-]size
6890  */
6891 static char *create_unique_id(struct kmem_cache *s)
6892 {
6893 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6894 	char *p = name;
6895 
6896 	if (!name)
6897 		return ERR_PTR(-ENOMEM);
6898 
6899 	*p++ = ':';
6900 	/*
6901 	 * First flags affecting slabcache operations. We will only
6902 	 * get here for aliasable slabs so we do not need to support
6903 	 * too many flags. The flags here must cover all flags that
6904 	 * are matched during merging to guarantee that the id is
6905 	 * unique.
6906 	 */
6907 	if (s->flags & SLAB_CACHE_DMA)
6908 		*p++ = 'd';
6909 	if (s->flags & SLAB_CACHE_DMA32)
6910 		*p++ = 'D';
6911 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6912 		*p++ = 'a';
6913 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6914 		*p++ = 'F';
6915 	if (s->flags & SLAB_ACCOUNT)
6916 		*p++ = 'A';
6917 	if (p != name + 1)
6918 		*p++ = '-';
6919 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6920 
6921 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6922 		kfree(name);
6923 		return ERR_PTR(-EINVAL);
6924 	}
6925 	kmsan_unpoison_memory(name, p - name);
6926 	return name;
6927 }
6928 
6929 static int sysfs_slab_add(struct kmem_cache *s)
6930 {
6931 	int err;
6932 	const char *name;
6933 	struct kset *kset = cache_kset(s);
6934 	int unmergeable = slab_unmergeable(s);
6935 
6936 	if (!unmergeable && disable_higher_order_debug &&
6937 			(slub_debug & DEBUG_METADATA_FLAGS))
6938 		unmergeable = 1;
6939 
6940 	if (unmergeable) {
6941 		/*
6942 		 * Slabcache can never be merged so we can use the name proper.
6943 		 * This is typically the case for debug situations. In that
6944 		 * case we can catch duplicate names easily.
6945 		 */
6946 		sysfs_remove_link(&slab_kset->kobj, s->name);
6947 		name = s->name;
6948 	} else {
6949 		/*
6950 		 * Create a unique name for the slab as a target
6951 		 * for the symlinks.
6952 		 */
6953 		name = create_unique_id(s);
6954 		if (IS_ERR(name))
6955 			return PTR_ERR(name);
6956 	}
6957 
6958 	s->kobj.kset = kset;
6959 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6960 	if (err)
6961 		goto out;
6962 
6963 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6964 	if (err)
6965 		goto out_del_kobj;
6966 
6967 	if (!unmergeable) {
6968 		/* Setup first alias */
6969 		sysfs_slab_alias(s, s->name);
6970 	}
6971 out:
6972 	if (!unmergeable)
6973 		kfree(name);
6974 	return err;
6975 out_del_kobj:
6976 	kobject_del(&s->kobj);
6977 	goto out;
6978 }
6979 
6980 void sysfs_slab_unlink(struct kmem_cache *s)
6981 {
6982 	kobject_del(&s->kobj);
6983 }
6984 
6985 void sysfs_slab_release(struct kmem_cache *s)
6986 {
6987 	kobject_put(&s->kobj);
6988 }
6989 
6990 /*
6991  * Need to buffer aliases during bootup until sysfs becomes
6992  * available lest we lose that information.
6993  */
6994 struct saved_alias {
6995 	struct kmem_cache *s;
6996 	const char *name;
6997 	struct saved_alias *next;
6998 };
6999 
7000 static struct saved_alias *alias_list;
7001 
7002 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7003 {
7004 	struct saved_alias *al;
7005 
7006 	if (slab_state == FULL) {
7007 		/*
7008 		 * If we have a leftover link then remove it.
7009 		 */
7010 		sysfs_remove_link(&slab_kset->kobj, name);
7011 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7012 	}
7013 
7014 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7015 	if (!al)
7016 		return -ENOMEM;
7017 
7018 	al->s = s;
7019 	al->name = name;
7020 	al->next = alias_list;
7021 	alias_list = al;
7022 	kmsan_unpoison_memory(al, sizeof(*al));
7023 	return 0;
7024 }
7025 
7026 static int __init slab_sysfs_init(void)
7027 {
7028 	struct kmem_cache *s;
7029 	int err;
7030 
7031 	mutex_lock(&slab_mutex);
7032 
7033 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7034 	if (!slab_kset) {
7035 		mutex_unlock(&slab_mutex);
7036 		pr_err("Cannot register slab subsystem.\n");
7037 		return -ENOMEM;
7038 	}
7039 
7040 	slab_state = FULL;
7041 
7042 	list_for_each_entry(s, &slab_caches, list) {
7043 		err = sysfs_slab_add(s);
7044 		if (err)
7045 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7046 			       s->name);
7047 	}
7048 
7049 	while (alias_list) {
7050 		struct saved_alias *al = alias_list;
7051 
7052 		alias_list = alias_list->next;
7053 		err = sysfs_slab_alias(al->s, al->name);
7054 		if (err)
7055 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7056 			       al->name);
7057 		kfree(al);
7058 	}
7059 
7060 	mutex_unlock(&slab_mutex);
7061 	return 0;
7062 }
7063 late_initcall(slab_sysfs_init);
7064 #endif /* SLAB_SUPPORTS_SYSFS */
7065 
7066 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7067 static int slab_debugfs_show(struct seq_file *seq, void *v)
7068 {
7069 	struct loc_track *t = seq->private;
7070 	struct location *l;
7071 	unsigned long idx;
7072 
7073 	idx = (unsigned long) t->idx;
7074 	if (idx < t->count) {
7075 		l = &t->loc[idx];
7076 
7077 		seq_printf(seq, "%7ld ", l->count);
7078 
7079 		if (l->addr)
7080 			seq_printf(seq, "%pS", (void *)l->addr);
7081 		else
7082 			seq_puts(seq, "<not-available>");
7083 
7084 		if (l->waste)
7085 			seq_printf(seq, " waste=%lu/%lu",
7086 				l->count * l->waste, l->waste);
7087 
7088 		if (l->sum_time != l->min_time) {
7089 			seq_printf(seq, " age=%ld/%llu/%ld",
7090 				l->min_time, div_u64(l->sum_time, l->count),
7091 				l->max_time);
7092 		} else
7093 			seq_printf(seq, " age=%ld", l->min_time);
7094 
7095 		if (l->min_pid != l->max_pid)
7096 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7097 		else
7098 			seq_printf(seq, " pid=%ld",
7099 				l->min_pid);
7100 
7101 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7102 			seq_printf(seq, " cpus=%*pbl",
7103 				 cpumask_pr_args(to_cpumask(l->cpus)));
7104 
7105 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7106 			seq_printf(seq, " nodes=%*pbl",
7107 				 nodemask_pr_args(&l->nodes));
7108 
7109 #ifdef CONFIG_STACKDEPOT
7110 		{
7111 			depot_stack_handle_t handle;
7112 			unsigned long *entries;
7113 			unsigned int nr_entries, j;
7114 
7115 			handle = READ_ONCE(l->handle);
7116 			if (handle) {
7117 				nr_entries = stack_depot_fetch(handle, &entries);
7118 				seq_puts(seq, "\n");
7119 				for (j = 0; j < nr_entries; j++)
7120 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7121 			}
7122 		}
7123 #endif
7124 		seq_puts(seq, "\n");
7125 	}
7126 
7127 	if (!idx && !t->count)
7128 		seq_puts(seq, "No data\n");
7129 
7130 	return 0;
7131 }
7132 
7133 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7134 {
7135 }
7136 
7137 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7138 {
7139 	struct loc_track *t = seq->private;
7140 
7141 	t->idx = ++(*ppos);
7142 	if (*ppos <= t->count)
7143 		return ppos;
7144 
7145 	return NULL;
7146 }
7147 
7148 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7149 {
7150 	struct location *loc1 = (struct location *)a;
7151 	struct location *loc2 = (struct location *)b;
7152 
7153 	if (loc1->count > loc2->count)
7154 		return -1;
7155 	else
7156 		return 1;
7157 }
7158 
7159 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7160 {
7161 	struct loc_track *t = seq->private;
7162 
7163 	t->idx = *ppos;
7164 	return ppos;
7165 }
7166 
7167 static const struct seq_operations slab_debugfs_sops = {
7168 	.start  = slab_debugfs_start,
7169 	.next   = slab_debugfs_next,
7170 	.stop   = slab_debugfs_stop,
7171 	.show   = slab_debugfs_show,
7172 };
7173 
7174 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7175 {
7176 
7177 	struct kmem_cache_node *n;
7178 	enum track_item alloc;
7179 	int node;
7180 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7181 						sizeof(struct loc_track));
7182 	struct kmem_cache *s = file_inode(filep)->i_private;
7183 	unsigned long *obj_map;
7184 
7185 	if (!t)
7186 		return -ENOMEM;
7187 
7188 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7189 	if (!obj_map) {
7190 		seq_release_private(inode, filep);
7191 		return -ENOMEM;
7192 	}
7193 
7194 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7195 		alloc = TRACK_ALLOC;
7196 	else
7197 		alloc = TRACK_FREE;
7198 
7199 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7200 		bitmap_free(obj_map);
7201 		seq_release_private(inode, filep);
7202 		return -ENOMEM;
7203 	}
7204 
7205 	for_each_kmem_cache_node(s, node, n) {
7206 		unsigned long flags;
7207 		struct slab *slab;
7208 
7209 		if (!node_nr_slabs(n))
7210 			continue;
7211 
7212 		spin_lock_irqsave(&n->list_lock, flags);
7213 		list_for_each_entry(slab, &n->partial, slab_list)
7214 			process_slab(t, s, slab, alloc, obj_map);
7215 		list_for_each_entry(slab, &n->full, slab_list)
7216 			process_slab(t, s, slab, alloc, obj_map);
7217 		spin_unlock_irqrestore(&n->list_lock, flags);
7218 	}
7219 
7220 	/* Sort locations by count */
7221 	sort_r(t->loc, t->count, sizeof(struct location),
7222 		cmp_loc_by_count, NULL, NULL);
7223 
7224 	bitmap_free(obj_map);
7225 	return 0;
7226 }
7227 
7228 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7229 {
7230 	struct seq_file *seq = file->private_data;
7231 	struct loc_track *t = seq->private;
7232 
7233 	free_loc_track(t);
7234 	return seq_release_private(inode, file);
7235 }
7236 
7237 static const struct file_operations slab_debugfs_fops = {
7238 	.open    = slab_debug_trace_open,
7239 	.read    = seq_read,
7240 	.llseek  = seq_lseek,
7241 	.release = slab_debug_trace_release,
7242 };
7243 
7244 static void debugfs_slab_add(struct kmem_cache *s)
7245 {
7246 	struct dentry *slab_cache_dir;
7247 
7248 	if (unlikely(!slab_debugfs_root))
7249 		return;
7250 
7251 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7252 
7253 	debugfs_create_file("alloc_traces", 0400,
7254 		slab_cache_dir, s, &slab_debugfs_fops);
7255 
7256 	debugfs_create_file("free_traces", 0400,
7257 		slab_cache_dir, s, &slab_debugfs_fops);
7258 }
7259 
7260 void debugfs_slab_release(struct kmem_cache *s)
7261 {
7262 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7263 }
7264 
7265 static int __init slab_debugfs_init(void)
7266 {
7267 	struct kmem_cache *s;
7268 
7269 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7270 
7271 	list_for_each_entry(s, &slab_caches, list)
7272 		if (s->flags & SLAB_STORE_USER)
7273 			debugfs_slab_add(s);
7274 
7275 	return 0;
7276 
7277 }
7278 __initcall(slab_debugfs_init);
7279 #endif
7280 /*
7281  * The /proc/slabinfo ABI
7282  */
7283 #ifdef CONFIG_SLUB_DEBUG
7284 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7285 {
7286 	unsigned long nr_slabs = 0;
7287 	unsigned long nr_objs = 0;
7288 	unsigned long nr_free = 0;
7289 	int node;
7290 	struct kmem_cache_node *n;
7291 
7292 	for_each_kmem_cache_node(s, node, n) {
7293 		nr_slabs += node_nr_slabs(n);
7294 		nr_objs += node_nr_objs(n);
7295 		nr_free += count_partial_free_approx(n);
7296 	}
7297 
7298 	sinfo->active_objs = nr_objs - nr_free;
7299 	sinfo->num_objs = nr_objs;
7300 	sinfo->active_slabs = nr_slabs;
7301 	sinfo->num_slabs = nr_slabs;
7302 	sinfo->objects_per_slab = oo_objects(s->oo);
7303 	sinfo->cache_order = oo_order(s->oo);
7304 }
7305 #endif /* CONFIG_SLUB_DEBUG */
7306