xref: /linux/mm/slub.c (revision 9ad8d22f2f3fad7a366c9772362795ef6d6a2d51)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 #ifdef CONFIG_NUMA
222 static DEFINE_STATIC_KEY_FALSE(strict_numa);
223 #endif
224 
225 /* Structure holding parameters for get_partial() call chain */
226 struct partial_context {
227 	gfp_t flags;
228 	unsigned int orig_size;
229 	void *object;
230 };
231 
232 static inline bool kmem_cache_debug(struct kmem_cache *s)
233 {
234 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
235 }
236 
237 void *fixup_red_left(struct kmem_cache *s, void *p)
238 {
239 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
240 		p += s->red_left_pad;
241 
242 	return p;
243 }
244 
245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
246 {
247 #ifdef CONFIG_SLUB_CPU_PARTIAL
248 	return !kmem_cache_debug(s);
249 #else
250 	return false;
251 #endif
252 }
253 
254 /*
255  * Issues still to be resolved:
256  *
257  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
258  *
259  * - Variable sizing of the per node arrays
260  */
261 
262 /* Enable to log cmpxchg failures */
263 #undef SLUB_DEBUG_CMPXCHG
264 
265 #ifndef CONFIG_SLUB_TINY
266 /*
267  * Minimum number of partial slabs. These will be left on the partial
268  * lists even if they are empty. kmem_cache_shrink may reclaim them.
269  */
270 #define MIN_PARTIAL 5
271 
272 /*
273  * Maximum number of desirable partial slabs.
274  * The existence of more partial slabs makes kmem_cache_shrink
275  * sort the partial list by the number of objects in use.
276  */
277 #define MAX_PARTIAL 10
278 #else
279 #define MIN_PARTIAL 0
280 #define MAX_PARTIAL 0
281 #endif
282 
283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
284 				SLAB_POISON | SLAB_STORE_USER)
285 
286 /*
287  * These debug flags cannot use CMPXCHG because there might be consistency
288  * issues when checking or reading debug information
289  */
290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
291 				SLAB_TRACE)
292 
293 
294 /*
295  * Debugging flags that require metadata to be stored in the slab.  These get
296  * disabled when slab_debug=O is used and a cache's min order increases with
297  * metadata.
298  */
299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
300 
301 #define OO_SHIFT	16
302 #define OO_MASK		((1 << OO_SHIFT) - 1)
303 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
304 
305 /* Internal SLUB flags */
306 /* Poison object */
307 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
308 /* Use cmpxchg_double */
309 
310 #ifdef system_has_freelist_aba
311 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
312 #else
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
314 #endif
315 
316 /*
317  * Tracking user of a slab.
318  */
319 #define TRACK_ADDRS_COUNT 16
320 struct track {
321 	unsigned long addr;	/* Called from address */
322 #ifdef CONFIG_STACKDEPOT
323 	depot_stack_handle_t handle;
324 #endif
325 	int cpu;		/* Was running on cpu */
326 	int pid;		/* Pid context */
327 	unsigned long when;	/* When did the operation occur */
328 };
329 
330 enum track_item { TRACK_ALLOC, TRACK_FREE };
331 
332 #ifdef SLAB_SUPPORTS_SYSFS
333 static int sysfs_slab_add(struct kmem_cache *);
334 static int sysfs_slab_alias(struct kmem_cache *, const char *);
335 #else
336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
338 							{ return 0; }
339 #endif
340 
341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
342 static void debugfs_slab_add(struct kmem_cache *);
343 #else
344 static inline void debugfs_slab_add(struct kmem_cache *s) { }
345 #endif
346 
347 enum stat_item {
348 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
349 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
350 	FREE_FASTPATH,		/* Free to cpu slab */
351 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
352 	FREE_FROZEN,		/* Freeing to frozen slab */
353 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
354 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
355 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
356 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
357 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
358 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
359 	FREE_SLAB,		/* Slab freed to the page allocator */
360 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
361 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
362 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
363 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
364 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
365 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
366 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
367 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
368 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
369 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
370 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
371 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
372 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
373 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
374 	NR_SLUB_STAT_ITEMS
375 };
376 
377 #ifndef CONFIG_SLUB_TINY
378 /*
379  * When changing the layout, make sure freelist and tid are still compatible
380  * with this_cpu_cmpxchg_double() alignment requirements.
381  */
382 struct kmem_cache_cpu {
383 	union {
384 		struct {
385 			void **freelist;	/* Pointer to next available object */
386 			unsigned long tid;	/* Globally unique transaction id */
387 		};
388 		freelist_aba_t freelist_tid;
389 	};
390 	struct slab *slab;	/* The slab from which we are allocating */
391 #ifdef CONFIG_SLUB_CPU_PARTIAL
392 	struct slab *partial;	/* Partially allocated slabs */
393 #endif
394 	local_lock_t lock;	/* Protects the fields above */
395 #ifdef CONFIG_SLUB_STATS
396 	unsigned int stat[NR_SLUB_STAT_ITEMS];
397 #endif
398 };
399 #endif /* CONFIG_SLUB_TINY */
400 
401 static inline void stat(const struct kmem_cache *s, enum stat_item si)
402 {
403 #ifdef CONFIG_SLUB_STATS
404 	/*
405 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
406 	 * avoid this_cpu_add()'s irq-disable overhead.
407 	 */
408 	raw_cpu_inc(s->cpu_slab->stat[si]);
409 #endif
410 }
411 
412 static inline
413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
414 {
415 #ifdef CONFIG_SLUB_STATS
416 	raw_cpu_add(s->cpu_slab->stat[si], v);
417 #endif
418 }
419 
420 /*
421  * The slab lists for all objects.
422  */
423 struct kmem_cache_node {
424 	spinlock_t list_lock;
425 	unsigned long nr_partial;
426 	struct list_head partial;
427 #ifdef CONFIG_SLUB_DEBUG
428 	atomic_long_t nr_slabs;
429 	atomic_long_t total_objects;
430 	struct list_head full;
431 #endif
432 };
433 
434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
435 {
436 	return s->node[node];
437 }
438 
439 /*
440  * Iterator over all nodes. The body will be executed for each node that has
441  * a kmem_cache_node structure allocated (which is true for all online nodes)
442  */
443 #define for_each_kmem_cache_node(__s, __node, __n) \
444 	for (__node = 0; __node < nr_node_ids; __node++) \
445 		 if ((__n = get_node(__s, __node)))
446 
447 /*
448  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
449  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
450  * differ during memory hotplug/hotremove operations.
451  * Protected by slab_mutex.
452  */
453 static nodemask_t slab_nodes;
454 
455 #ifndef CONFIG_SLUB_TINY
456 /*
457  * Workqueue used for flush_cpu_slab().
458  */
459 static struct workqueue_struct *flushwq;
460 #endif
461 
462 /********************************************************************
463  * 			Core slab cache functions
464  *******************************************************************/
465 
466 /*
467  * Returns freelist pointer (ptr). With hardening, this is obfuscated
468  * with an XOR of the address where the pointer is held and a per-cache
469  * random number.
470  */
471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
472 					    void *ptr, unsigned long ptr_addr)
473 {
474 	unsigned long encoded;
475 
476 #ifdef CONFIG_SLAB_FREELIST_HARDENED
477 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
478 #else
479 	encoded = (unsigned long)ptr;
480 #endif
481 	return (freeptr_t){.v = encoded};
482 }
483 
484 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
485 					freeptr_t ptr, unsigned long ptr_addr)
486 {
487 	void *decoded;
488 
489 #ifdef CONFIG_SLAB_FREELIST_HARDENED
490 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
491 #else
492 	decoded = (void *)ptr.v;
493 #endif
494 	return decoded;
495 }
496 
497 static inline void *get_freepointer(struct kmem_cache *s, void *object)
498 {
499 	unsigned long ptr_addr;
500 	freeptr_t p;
501 
502 	object = kasan_reset_tag(object);
503 	ptr_addr = (unsigned long)object + s->offset;
504 	p = *(freeptr_t *)(ptr_addr);
505 	return freelist_ptr_decode(s, p, ptr_addr);
506 }
507 
508 #ifndef CONFIG_SLUB_TINY
509 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
510 {
511 	prefetchw(object + s->offset);
512 }
513 #endif
514 
515 /*
516  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
517  * pointer value in the case the current thread loses the race for the next
518  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
519  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
520  * KMSAN will still check all arguments of cmpxchg because of imperfect
521  * handling of inline assembly.
522  * To work around this problem, we apply __no_kmsan_checks to ensure that
523  * get_freepointer_safe() returns initialized memory.
524  */
525 __no_kmsan_checks
526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
527 {
528 	unsigned long freepointer_addr;
529 	freeptr_t p;
530 
531 	if (!debug_pagealloc_enabled_static())
532 		return get_freepointer(s, object);
533 
534 	object = kasan_reset_tag(object);
535 	freepointer_addr = (unsigned long)object + s->offset;
536 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
537 	return freelist_ptr_decode(s, p, freepointer_addr);
538 }
539 
540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
541 {
542 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
543 
544 #ifdef CONFIG_SLAB_FREELIST_HARDENED
545 	BUG_ON(object == fp); /* naive detection of double free or corruption */
546 #endif
547 
548 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
549 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
550 }
551 
552 /*
553  * See comment in calculate_sizes().
554  */
555 static inline bool freeptr_outside_object(struct kmem_cache *s)
556 {
557 	return s->offset >= s->inuse;
558 }
559 
560 /*
561  * Return offset of the end of info block which is inuse + free pointer if
562  * not overlapping with object.
563  */
564 static inline unsigned int get_info_end(struct kmem_cache *s)
565 {
566 	if (freeptr_outside_object(s))
567 		return s->inuse + sizeof(void *);
568 	else
569 		return s->inuse;
570 }
571 
572 /* Loop over all objects in a slab */
573 #define for_each_object(__p, __s, __addr, __objects) \
574 	for (__p = fixup_red_left(__s, __addr); \
575 		__p < (__addr) + (__objects) * (__s)->size; \
576 		__p += (__s)->size)
577 
578 static inline unsigned int order_objects(unsigned int order, unsigned int size)
579 {
580 	return ((unsigned int)PAGE_SIZE << order) / size;
581 }
582 
583 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
584 		unsigned int size)
585 {
586 	struct kmem_cache_order_objects x = {
587 		(order << OO_SHIFT) + order_objects(order, size)
588 	};
589 
590 	return x;
591 }
592 
593 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
594 {
595 	return x.x >> OO_SHIFT;
596 }
597 
598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
599 {
600 	return x.x & OO_MASK;
601 }
602 
603 #ifdef CONFIG_SLUB_CPU_PARTIAL
604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
605 {
606 	unsigned int nr_slabs;
607 
608 	s->cpu_partial = nr_objects;
609 
610 	/*
611 	 * We take the number of objects but actually limit the number of
612 	 * slabs on the per cpu partial list, in order to limit excessive
613 	 * growth of the list. For simplicity we assume that the slabs will
614 	 * be half-full.
615 	 */
616 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
617 	s->cpu_partial_slabs = nr_slabs;
618 }
619 
620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
621 {
622 	return s->cpu_partial_slabs;
623 }
624 #else
625 static inline void
626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
627 {
628 }
629 
630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
631 {
632 	return 0;
633 }
634 #endif /* CONFIG_SLUB_CPU_PARTIAL */
635 
636 /*
637  * Per slab locking using the pagelock
638  */
639 static __always_inline void slab_lock(struct slab *slab)
640 {
641 	bit_spin_lock(PG_locked, &slab->__page_flags);
642 }
643 
644 static __always_inline void slab_unlock(struct slab *slab)
645 {
646 	bit_spin_unlock(PG_locked, &slab->__page_flags);
647 }
648 
649 static inline bool
650 __update_freelist_fast(struct slab *slab,
651 		      void *freelist_old, unsigned long counters_old,
652 		      void *freelist_new, unsigned long counters_new)
653 {
654 #ifdef system_has_freelist_aba
655 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
656 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
657 
658 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
659 #else
660 	return false;
661 #endif
662 }
663 
664 static inline bool
665 __update_freelist_slow(struct slab *slab,
666 		      void *freelist_old, unsigned long counters_old,
667 		      void *freelist_new, unsigned long counters_new)
668 {
669 	bool ret = false;
670 
671 	slab_lock(slab);
672 	if (slab->freelist == freelist_old &&
673 	    slab->counters == counters_old) {
674 		slab->freelist = freelist_new;
675 		slab->counters = counters_new;
676 		ret = true;
677 	}
678 	slab_unlock(slab);
679 
680 	return ret;
681 }
682 
683 /*
684  * Interrupts must be disabled (for the fallback code to work right), typically
685  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
686  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
687  * allocation/ free operation in hardirq context. Therefore nothing can
688  * interrupt the operation.
689  */
690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
691 		void *freelist_old, unsigned long counters_old,
692 		void *freelist_new, unsigned long counters_new,
693 		const char *n)
694 {
695 	bool ret;
696 
697 	if (USE_LOCKLESS_FAST_PATH())
698 		lockdep_assert_irqs_disabled();
699 
700 	if (s->flags & __CMPXCHG_DOUBLE) {
701 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
702 				            freelist_new, counters_new);
703 	} else {
704 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
705 				            freelist_new, counters_new);
706 	}
707 	if (likely(ret))
708 		return true;
709 
710 	cpu_relax();
711 	stat(s, CMPXCHG_DOUBLE_FAIL);
712 
713 #ifdef SLUB_DEBUG_CMPXCHG
714 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
715 #endif
716 
717 	return false;
718 }
719 
720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
721 		void *freelist_old, unsigned long counters_old,
722 		void *freelist_new, unsigned long counters_new,
723 		const char *n)
724 {
725 	bool ret;
726 
727 	if (s->flags & __CMPXCHG_DOUBLE) {
728 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
729 				            freelist_new, counters_new);
730 	} else {
731 		unsigned long flags;
732 
733 		local_irq_save(flags);
734 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
735 				            freelist_new, counters_new);
736 		local_irq_restore(flags);
737 	}
738 	if (likely(ret))
739 		return true;
740 
741 	cpu_relax();
742 	stat(s, CMPXCHG_DOUBLE_FAIL);
743 
744 #ifdef SLUB_DEBUG_CMPXCHG
745 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
746 #endif
747 
748 	return false;
749 }
750 
751 /*
752  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
753  * family will round up the real request size to these fixed ones, so
754  * there could be an extra area than what is requested. Save the original
755  * request size in the meta data area, for better debug and sanity check.
756  */
757 static inline void set_orig_size(struct kmem_cache *s,
758 				void *object, unsigned int orig_size)
759 {
760 	void *p = kasan_reset_tag(object);
761 
762 	if (!slub_debug_orig_size(s))
763 		return;
764 
765 	p += get_info_end(s);
766 	p += sizeof(struct track) * 2;
767 
768 	*(unsigned int *)p = orig_size;
769 }
770 
771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
772 {
773 	void *p = kasan_reset_tag(object);
774 
775 	if (is_kfence_address(object))
776 		return kfence_ksize(object);
777 
778 	if (!slub_debug_orig_size(s))
779 		return s->object_size;
780 
781 	p += get_info_end(s);
782 	p += sizeof(struct track) * 2;
783 
784 	return *(unsigned int *)p;
785 }
786 
787 #ifdef CONFIG_SLUB_DEBUG
788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
789 static DEFINE_SPINLOCK(object_map_lock);
790 
791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
792 		       struct slab *slab)
793 {
794 	void *addr = slab_address(slab);
795 	void *p;
796 
797 	bitmap_zero(obj_map, slab->objects);
798 
799 	for (p = slab->freelist; p; p = get_freepointer(s, p))
800 		set_bit(__obj_to_index(s, addr, p), obj_map);
801 }
802 
803 #if IS_ENABLED(CONFIG_KUNIT)
804 static bool slab_add_kunit_errors(void)
805 {
806 	struct kunit_resource *resource;
807 
808 	if (!kunit_get_current_test())
809 		return false;
810 
811 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
812 	if (!resource)
813 		return false;
814 
815 	(*(int *)resource->data)++;
816 	kunit_put_resource(resource);
817 	return true;
818 }
819 
820 bool slab_in_kunit_test(void)
821 {
822 	struct kunit_resource *resource;
823 
824 	if (!kunit_get_current_test())
825 		return false;
826 
827 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
828 	if (!resource)
829 		return false;
830 
831 	kunit_put_resource(resource);
832 	return true;
833 }
834 #else
835 static inline bool slab_add_kunit_errors(void) { return false; }
836 #endif
837 
838 static inline unsigned int size_from_object(struct kmem_cache *s)
839 {
840 	if (s->flags & SLAB_RED_ZONE)
841 		return s->size - s->red_left_pad;
842 
843 	return s->size;
844 }
845 
846 static inline void *restore_red_left(struct kmem_cache *s, void *p)
847 {
848 	if (s->flags & SLAB_RED_ZONE)
849 		p -= s->red_left_pad;
850 
851 	return p;
852 }
853 
854 /*
855  * Debug settings:
856  */
857 #if defined(CONFIG_SLUB_DEBUG_ON)
858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
859 #else
860 static slab_flags_t slub_debug;
861 #endif
862 
863 static char *slub_debug_string;
864 static int disable_higher_order_debug;
865 
866 /*
867  * slub is about to manipulate internal object metadata.  This memory lies
868  * outside the range of the allocated object, so accessing it would normally
869  * be reported by kasan as a bounds error.  metadata_access_enable() is used
870  * to tell kasan that these accesses are OK.
871  */
872 static inline void metadata_access_enable(void)
873 {
874 	kasan_disable_current();
875 	kmsan_disable_current();
876 }
877 
878 static inline void metadata_access_disable(void)
879 {
880 	kmsan_enable_current();
881 	kasan_enable_current();
882 }
883 
884 /*
885  * Object debugging
886  */
887 
888 /* Verify that a pointer has an address that is valid within a slab page */
889 static inline int check_valid_pointer(struct kmem_cache *s,
890 				struct slab *slab, void *object)
891 {
892 	void *base;
893 
894 	if (!object)
895 		return 1;
896 
897 	base = slab_address(slab);
898 	object = kasan_reset_tag(object);
899 	object = restore_red_left(s, object);
900 	if (object < base || object >= base + slab->objects * s->size ||
901 		(object - base) % s->size) {
902 		return 0;
903 	}
904 
905 	return 1;
906 }
907 
908 static void print_section(char *level, char *text, u8 *addr,
909 			  unsigned int length)
910 {
911 	metadata_access_enable();
912 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
913 			16, 1, kasan_reset_tag((void *)addr), length, 1);
914 	metadata_access_disable();
915 }
916 
917 static struct track *get_track(struct kmem_cache *s, void *object,
918 	enum track_item alloc)
919 {
920 	struct track *p;
921 
922 	p = object + get_info_end(s);
923 
924 	return kasan_reset_tag(p + alloc);
925 }
926 
927 #ifdef CONFIG_STACKDEPOT
928 static noinline depot_stack_handle_t set_track_prepare(void)
929 {
930 	depot_stack_handle_t handle;
931 	unsigned long entries[TRACK_ADDRS_COUNT];
932 	unsigned int nr_entries;
933 
934 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
935 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
936 
937 	return handle;
938 }
939 #else
940 static inline depot_stack_handle_t set_track_prepare(void)
941 {
942 	return 0;
943 }
944 #endif
945 
946 static void set_track_update(struct kmem_cache *s, void *object,
947 			     enum track_item alloc, unsigned long addr,
948 			     depot_stack_handle_t handle)
949 {
950 	struct track *p = get_track(s, object, alloc);
951 
952 #ifdef CONFIG_STACKDEPOT
953 	p->handle = handle;
954 #endif
955 	p->addr = addr;
956 	p->cpu = smp_processor_id();
957 	p->pid = current->pid;
958 	p->when = jiffies;
959 }
960 
961 static __always_inline void set_track(struct kmem_cache *s, void *object,
962 				      enum track_item alloc, unsigned long addr)
963 {
964 	depot_stack_handle_t handle = set_track_prepare();
965 
966 	set_track_update(s, object, alloc, addr, handle);
967 }
968 
969 static void init_tracking(struct kmem_cache *s, void *object)
970 {
971 	struct track *p;
972 
973 	if (!(s->flags & SLAB_STORE_USER))
974 		return;
975 
976 	p = get_track(s, object, TRACK_ALLOC);
977 	memset(p, 0, 2*sizeof(struct track));
978 }
979 
980 static void print_track(const char *s, struct track *t, unsigned long pr_time)
981 {
982 	depot_stack_handle_t handle __maybe_unused;
983 
984 	if (!t->addr)
985 		return;
986 
987 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
988 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
989 #ifdef CONFIG_STACKDEPOT
990 	handle = READ_ONCE(t->handle);
991 	if (handle)
992 		stack_depot_print(handle);
993 	else
994 		pr_err("object allocation/free stack trace missing\n");
995 #endif
996 }
997 
998 void print_tracking(struct kmem_cache *s, void *object)
999 {
1000 	unsigned long pr_time = jiffies;
1001 	if (!(s->flags & SLAB_STORE_USER))
1002 		return;
1003 
1004 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1005 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1006 }
1007 
1008 static void print_slab_info(const struct slab *slab)
1009 {
1010 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1011 	       slab, slab->objects, slab->inuse, slab->freelist,
1012 	       &slab->__page_flags);
1013 }
1014 
1015 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1016 {
1017 	set_orig_size(s, (void *)object, s->object_size);
1018 }
1019 
1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1021 {
1022 	struct va_format vaf;
1023 	va_list args;
1024 
1025 	va_start(args, fmt);
1026 	vaf.fmt = fmt;
1027 	vaf.va = &args;
1028 	pr_err("=============================================================================\n");
1029 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1030 	pr_err("-----------------------------------------------------------------------------\n\n");
1031 	va_end(args);
1032 }
1033 
1034 __printf(2, 3)
1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1036 {
1037 	struct va_format vaf;
1038 	va_list args;
1039 
1040 	if (slab_add_kunit_errors())
1041 		return;
1042 
1043 	va_start(args, fmt);
1044 	vaf.fmt = fmt;
1045 	vaf.va = &args;
1046 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1047 	va_end(args);
1048 }
1049 
1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1051 {
1052 	unsigned int off;	/* Offset of last byte */
1053 	u8 *addr = slab_address(slab);
1054 
1055 	print_tracking(s, p);
1056 
1057 	print_slab_info(slab);
1058 
1059 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1060 	       p, p - addr, get_freepointer(s, p));
1061 
1062 	if (s->flags & SLAB_RED_ZONE)
1063 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1064 			      s->red_left_pad);
1065 	else if (p > addr + 16)
1066 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1067 
1068 	print_section(KERN_ERR,         "Object   ", p,
1069 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1070 	if (s->flags & SLAB_RED_ZONE)
1071 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1072 			s->inuse - s->object_size);
1073 
1074 	off = get_info_end(s);
1075 
1076 	if (s->flags & SLAB_STORE_USER)
1077 		off += 2 * sizeof(struct track);
1078 
1079 	if (slub_debug_orig_size(s))
1080 		off += sizeof(unsigned int);
1081 
1082 	off += kasan_metadata_size(s, false);
1083 
1084 	if (off != size_from_object(s))
1085 		/* Beginning of the filler is the free pointer */
1086 		print_section(KERN_ERR, "Padding  ", p + off,
1087 			      size_from_object(s) - off);
1088 
1089 	dump_stack();
1090 }
1091 
1092 static void object_err(struct kmem_cache *s, struct slab *slab,
1093 			u8 *object, char *reason)
1094 {
1095 	if (slab_add_kunit_errors())
1096 		return;
1097 
1098 	slab_bug(s, "%s", reason);
1099 	print_trailer(s, slab, object);
1100 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1101 }
1102 
1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1104 			       void **freelist, void *nextfree)
1105 {
1106 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1107 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1108 		object_err(s, slab, *freelist, "Freechain corrupt");
1109 		*freelist = NULL;
1110 		slab_fix(s, "Isolate corrupted freechain");
1111 		return true;
1112 	}
1113 
1114 	return false;
1115 }
1116 
1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1118 			const char *fmt, ...)
1119 {
1120 	va_list args;
1121 	char buf[100];
1122 
1123 	if (slab_add_kunit_errors())
1124 		return;
1125 
1126 	va_start(args, fmt);
1127 	vsnprintf(buf, sizeof(buf), fmt, args);
1128 	va_end(args);
1129 	slab_bug(s, "%s", buf);
1130 	print_slab_info(slab);
1131 	dump_stack();
1132 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1133 }
1134 
1135 static void init_object(struct kmem_cache *s, void *object, u8 val)
1136 {
1137 	u8 *p = kasan_reset_tag(object);
1138 	unsigned int poison_size = s->object_size;
1139 
1140 	if (s->flags & SLAB_RED_ZONE) {
1141 		/*
1142 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1143 		 * the shadow makes it possible to distinguish uninit-value
1144 		 * from use-after-free.
1145 		 */
1146 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1147 					  s->red_left_pad);
1148 
1149 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1150 			/*
1151 			 * Redzone the extra allocated space by kmalloc than
1152 			 * requested, and the poison size will be limited to
1153 			 * the original request size accordingly.
1154 			 */
1155 			poison_size = get_orig_size(s, object);
1156 		}
1157 	}
1158 
1159 	if (s->flags & __OBJECT_POISON) {
1160 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1161 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1162 	}
1163 
1164 	if (s->flags & SLAB_RED_ZONE)
1165 		memset_no_sanitize_memory(p + poison_size, val,
1166 					  s->inuse - poison_size);
1167 }
1168 
1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1170 						void *from, void *to)
1171 {
1172 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1173 	memset(from, data, to - from);
1174 }
1175 
1176 #ifdef CONFIG_KMSAN
1177 #define pad_check_attributes noinline __no_kmsan_checks
1178 #else
1179 #define pad_check_attributes
1180 #endif
1181 
1182 static pad_check_attributes int
1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1184 		       u8 *object, char *what,
1185 		       u8 *start, unsigned int value, unsigned int bytes)
1186 {
1187 	u8 *fault;
1188 	u8 *end;
1189 	u8 *addr = slab_address(slab);
1190 
1191 	metadata_access_enable();
1192 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1193 	metadata_access_disable();
1194 	if (!fault)
1195 		return 1;
1196 
1197 	end = start + bytes;
1198 	while (end > fault && end[-1] == value)
1199 		end--;
1200 
1201 	if (slab_add_kunit_errors())
1202 		goto skip_bug_print;
1203 
1204 	slab_bug(s, "%s overwritten", what);
1205 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1206 					fault, end - 1, fault - addr,
1207 					fault[0], value);
1208 
1209 skip_bug_print:
1210 	restore_bytes(s, what, value, fault, end);
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Object layout:
1216  *
1217  * object address
1218  * 	Bytes of the object to be managed.
1219  * 	If the freepointer may overlay the object then the free
1220  *	pointer is at the middle of the object.
1221  *
1222  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1223  * 	0xa5 (POISON_END)
1224  *
1225  * object + s->object_size
1226  * 	Padding to reach word boundary. This is also used for Redzoning.
1227  * 	Padding is extended by another word if Redzoning is enabled and
1228  * 	object_size == inuse.
1229  *
1230  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1231  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1232  *
1233  * object + s->inuse
1234  * 	Meta data starts here.
1235  *
1236  * 	A. Free pointer (if we cannot overwrite object on free)
1237  * 	B. Tracking data for SLAB_STORE_USER
1238  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1239  *	D. Padding to reach required alignment boundary or at minimum
1240  * 		one word if debugging is on to be able to detect writes
1241  * 		before the word boundary.
1242  *
1243  *	Padding is done using 0x5a (POISON_INUSE)
1244  *
1245  * object + s->size
1246  * 	Nothing is used beyond s->size.
1247  *
1248  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1249  * ignored. And therefore no slab options that rely on these boundaries
1250  * may be used with merged slabcaches.
1251  */
1252 
1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1254 {
1255 	unsigned long off = get_info_end(s);	/* The end of info */
1256 
1257 	if (s->flags & SLAB_STORE_USER) {
1258 		/* We also have user information there */
1259 		off += 2 * sizeof(struct track);
1260 
1261 		if (s->flags & SLAB_KMALLOC)
1262 			off += sizeof(unsigned int);
1263 	}
1264 
1265 	off += kasan_metadata_size(s, false);
1266 
1267 	if (size_from_object(s) == off)
1268 		return 1;
1269 
1270 	return check_bytes_and_report(s, slab, p, "Object padding",
1271 			p + off, POISON_INUSE, size_from_object(s) - off);
1272 }
1273 
1274 /* Check the pad bytes at the end of a slab page */
1275 static pad_check_attributes void
1276 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1277 {
1278 	u8 *start;
1279 	u8 *fault;
1280 	u8 *end;
1281 	u8 *pad;
1282 	int length;
1283 	int remainder;
1284 
1285 	if (!(s->flags & SLAB_POISON))
1286 		return;
1287 
1288 	start = slab_address(slab);
1289 	length = slab_size(slab);
1290 	end = start + length;
1291 	remainder = length % s->size;
1292 	if (!remainder)
1293 		return;
1294 
1295 	pad = end - remainder;
1296 	metadata_access_enable();
1297 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1298 	metadata_access_disable();
1299 	if (!fault)
1300 		return;
1301 	while (end > fault && end[-1] == POISON_INUSE)
1302 		end--;
1303 
1304 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1305 			fault, end - 1, fault - start);
1306 	print_section(KERN_ERR, "Padding ", pad, remainder);
1307 
1308 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1309 }
1310 
1311 static int check_object(struct kmem_cache *s, struct slab *slab,
1312 					void *object, u8 val)
1313 {
1314 	u8 *p = object;
1315 	u8 *endobject = object + s->object_size;
1316 	unsigned int orig_size, kasan_meta_size;
1317 	int ret = 1;
1318 
1319 	if (s->flags & SLAB_RED_ZONE) {
1320 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1321 			object - s->red_left_pad, val, s->red_left_pad))
1322 			ret = 0;
1323 
1324 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1325 			endobject, val, s->inuse - s->object_size))
1326 			ret = 0;
1327 
1328 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1329 			orig_size = get_orig_size(s, object);
1330 
1331 			if (s->object_size > orig_size  &&
1332 				!check_bytes_and_report(s, slab, object,
1333 					"kmalloc Redzone", p + orig_size,
1334 					val, s->object_size - orig_size)) {
1335 				ret = 0;
1336 			}
1337 		}
1338 	} else {
1339 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1340 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1341 				endobject, POISON_INUSE,
1342 				s->inuse - s->object_size))
1343 				ret = 0;
1344 		}
1345 	}
1346 
1347 	if (s->flags & SLAB_POISON) {
1348 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1349 			/*
1350 			 * KASAN can save its free meta data inside of the
1351 			 * object at offset 0. Thus, skip checking the part of
1352 			 * the redzone that overlaps with the meta data.
1353 			 */
1354 			kasan_meta_size = kasan_metadata_size(s, true);
1355 			if (kasan_meta_size < s->object_size - 1 &&
1356 			    !check_bytes_and_report(s, slab, p, "Poison",
1357 					p + kasan_meta_size, POISON_FREE,
1358 					s->object_size - kasan_meta_size - 1))
1359 				ret = 0;
1360 			if (kasan_meta_size < s->object_size &&
1361 			    !check_bytes_and_report(s, slab, p, "End Poison",
1362 					p + s->object_size - 1, POISON_END, 1))
1363 				ret = 0;
1364 		}
1365 		/*
1366 		 * check_pad_bytes cleans up on its own.
1367 		 */
1368 		if (!check_pad_bytes(s, slab, p))
1369 			ret = 0;
1370 	}
1371 
1372 	/*
1373 	 * Cannot check freepointer while object is allocated if
1374 	 * object and freepointer overlap.
1375 	 */
1376 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1377 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1378 		object_err(s, slab, p, "Freepointer corrupt");
1379 		/*
1380 		 * No choice but to zap it and thus lose the remainder
1381 		 * of the free objects in this slab. May cause
1382 		 * another error because the object count is now wrong.
1383 		 */
1384 		set_freepointer(s, p, NULL);
1385 		ret = 0;
1386 	}
1387 
1388 	if (!ret && !slab_in_kunit_test()) {
1389 		print_trailer(s, slab, object);
1390 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1391 	}
1392 
1393 	return ret;
1394 }
1395 
1396 static int check_slab(struct kmem_cache *s, struct slab *slab)
1397 {
1398 	int maxobj;
1399 
1400 	if (!folio_test_slab(slab_folio(slab))) {
1401 		slab_err(s, slab, "Not a valid slab page");
1402 		return 0;
1403 	}
1404 
1405 	maxobj = order_objects(slab_order(slab), s->size);
1406 	if (slab->objects > maxobj) {
1407 		slab_err(s, slab, "objects %u > max %u",
1408 			slab->objects, maxobj);
1409 		return 0;
1410 	}
1411 	if (slab->inuse > slab->objects) {
1412 		slab_err(s, slab, "inuse %u > max %u",
1413 			slab->inuse, slab->objects);
1414 		return 0;
1415 	}
1416 	if (slab->frozen) {
1417 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1418 		return 0;
1419 	}
1420 
1421 	/* Slab_pad_check fixes things up after itself */
1422 	slab_pad_check(s, slab);
1423 	return 1;
1424 }
1425 
1426 /*
1427  * Determine if a certain object in a slab is on the freelist. Must hold the
1428  * slab lock to guarantee that the chains are in a consistent state.
1429  */
1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1431 {
1432 	int nr = 0;
1433 	void *fp;
1434 	void *object = NULL;
1435 	int max_objects;
1436 
1437 	fp = slab->freelist;
1438 	while (fp && nr <= slab->objects) {
1439 		if (fp == search)
1440 			return 1;
1441 		if (!check_valid_pointer(s, slab, fp)) {
1442 			if (object) {
1443 				object_err(s, slab, object,
1444 					"Freechain corrupt");
1445 				set_freepointer(s, object, NULL);
1446 			} else {
1447 				slab_err(s, slab, "Freepointer corrupt");
1448 				slab->freelist = NULL;
1449 				slab->inuse = slab->objects;
1450 				slab_fix(s, "Freelist cleared");
1451 				return 0;
1452 			}
1453 			break;
1454 		}
1455 		object = fp;
1456 		fp = get_freepointer(s, object);
1457 		nr++;
1458 	}
1459 
1460 	max_objects = order_objects(slab_order(slab), s->size);
1461 	if (max_objects > MAX_OBJS_PER_PAGE)
1462 		max_objects = MAX_OBJS_PER_PAGE;
1463 
1464 	if (slab->objects != max_objects) {
1465 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1466 			 slab->objects, max_objects);
1467 		slab->objects = max_objects;
1468 		slab_fix(s, "Number of objects adjusted");
1469 	}
1470 	if (slab->inuse != slab->objects - nr) {
1471 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1472 			 slab->inuse, slab->objects - nr);
1473 		slab->inuse = slab->objects - nr;
1474 		slab_fix(s, "Object count adjusted");
1475 	}
1476 	return search == NULL;
1477 }
1478 
1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1480 								int alloc)
1481 {
1482 	if (s->flags & SLAB_TRACE) {
1483 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1484 			s->name,
1485 			alloc ? "alloc" : "free",
1486 			object, slab->inuse,
1487 			slab->freelist);
1488 
1489 		if (!alloc)
1490 			print_section(KERN_INFO, "Object ", (void *)object,
1491 					s->object_size);
1492 
1493 		dump_stack();
1494 	}
1495 }
1496 
1497 /*
1498  * Tracking of fully allocated slabs for debugging purposes.
1499  */
1500 static void add_full(struct kmem_cache *s,
1501 	struct kmem_cache_node *n, struct slab *slab)
1502 {
1503 	if (!(s->flags & SLAB_STORE_USER))
1504 		return;
1505 
1506 	lockdep_assert_held(&n->list_lock);
1507 	list_add(&slab->slab_list, &n->full);
1508 }
1509 
1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1511 {
1512 	if (!(s->flags & SLAB_STORE_USER))
1513 		return;
1514 
1515 	lockdep_assert_held(&n->list_lock);
1516 	list_del(&slab->slab_list);
1517 }
1518 
1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1520 {
1521 	return atomic_long_read(&n->nr_slabs);
1522 }
1523 
1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1525 {
1526 	struct kmem_cache_node *n = get_node(s, node);
1527 
1528 	atomic_long_inc(&n->nr_slabs);
1529 	atomic_long_add(objects, &n->total_objects);
1530 }
1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1532 {
1533 	struct kmem_cache_node *n = get_node(s, node);
1534 
1535 	atomic_long_dec(&n->nr_slabs);
1536 	atomic_long_sub(objects, &n->total_objects);
1537 }
1538 
1539 /* Object debug checks for alloc/free paths */
1540 static void setup_object_debug(struct kmem_cache *s, void *object)
1541 {
1542 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1543 		return;
1544 
1545 	init_object(s, object, SLUB_RED_INACTIVE);
1546 	init_tracking(s, object);
1547 }
1548 
1549 static
1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1551 {
1552 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1553 		return;
1554 
1555 	metadata_access_enable();
1556 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1557 	metadata_access_disable();
1558 }
1559 
1560 static inline int alloc_consistency_checks(struct kmem_cache *s,
1561 					struct slab *slab, void *object)
1562 {
1563 	if (!check_slab(s, slab))
1564 		return 0;
1565 
1566 	if (!check_valid_pointer(s, slab, object)) {
1567 		object_err(s, slab, object, "Freelist Pointer check fails");
1568 		return 0;
1569 	}
1570 
1571 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1572 		return 0;
1573 
1574 	return 1;
1575 }
1576 
1577 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1578 			struct slab *slab, void *object, int orig_size)
1579 {
1580 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1581 		if (!alloc_consistency_checks(s, slab, object))
1582 			goto bad;
1583 	}
1584 
1585 	/* Success. Perform special debug activities for allocs */
1586 	trace(s, slab, object, 1);
1587 	set_orig_size(s, object, orig_size);
1588 	init_object(s, object, SLUB_RED_ACTIVE);
1589 	return true;
1590 
1591 bad:
1592 	if (folio_test_slab(slab_folio(slab))) {
1593 		/*
1594 		 * If this is a slab page then lets do the best we can
1595 		 * to avoid issues in the future. Marking all objects
1596 		 * as used avoids touching the remaining objects.
1597 		 */
1598 		slab_fix(s, "Marking all objects used");
1599 		slab->inuse = slab->objects;
1600 		slab->freelist = NULL;
1601 		slab->frozen = 1; /* mark consistency-failed slab as frozen */
1602 	}
1603 	return false;
1604 }
1605 
1606 static inline int free_consistency_checks(struct kmem_cache *s,
1607 		struct slab *slab, void *object, unsigned long addr)
1608 {
1609 	if (!check_valid_pointer(s, slab, object)) {
1610 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1611 		return 0;
1612 	}
1613 
1614 	if (on_freelist(s, slab, object)) {
1615 		object_err(s, slab, object, "Object already free");
1616 		return 0;
1617 	}
1618 
1619 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1620 		return 0;
1621 
1622 	if (unlikely(s != slab->slab_cache)) {
1623 		if (!folio_test_slab(slab_folio(slab))) {
1624 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1625 				 object);
1626 		} else if (!slab->slab_cache) {
1627 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1628 			       object);
1629 			dump_stack();
1630 		} else
1631 			object_err(s, slab, object,
1632 					"page slab pointer corrupt.");
1633 		return 0;
1634 	}
1635 	return 1;
1636 }
1637 
1638 /*
1639  * Parse a block of slab_debug options. Blocks are delimited by ';'
1640  *
1641  * @str:    start of block
1642  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1643  * @slabs:  return start of list of slabs, or NULL when there's no list
1644  * @init:   assume this is initial parsing and not per-kmem-create parsing
1645  *
1646  * returns the start of next block if there's any, or NULL
1647  */
1648 static char *
1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1650 {
1651 	bool higher_order_disable = false;
1652 
1653 	/* Skip any completely empty blocks */
1654 	while (*str && *str == ';')
1655 		str++;
1656 
1657 	if (*str == ',') {
1658 		/*
1659 		 * No options but restriction on slabs. This means full
1660 		 * debugging for slabs matching a pattern.
1661 		 */
1662 		*flags = DEBUG_DEFAULT_FLAGS;
1663 		goto check_slabs;
1664 	}
1665 	*flags = 0;
1666 
1667 	/* Determine which debug features should be switched on */
1668 	for (; *str && *str != ',' && *str != ';'; str++) {
1669 		switch (tolower(*str)) {
1670 		case '-':
1671 			*flags = 0;
1672 			break;
1673 		case 'f':
1674 			*flags |= SLAB_CONSISTENCY_CHECKS;
1675 			break;
1676 		case 'z':
1677 			*flags |= SLAB_RED_ZONE;
1678 			break;
1679 		case 'p':
1680 			*flags |= SLAB_POISON;
1681 			break;
1682 		case 'u':
1683 			*flags |= SLAB_STORE_USER;
1684 			break;
1685 		case 't':
1686 			*flags |= SLAB_TRACE;
1687 			break;
1688 		case 'a':
1689 			*flags |= SLAB_FAILSLAB;
1690 			break;
1691 		case 'o':
1692 			/*
1693 			 * Avoid enabling debugging on caches if its minimum
1694 			 * order would increase as a result.
1695 			 */
1696 			higher_order_disable = true;
1697 			break;
1698 		default:
1699 			if (init)
1700 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1701 		}
1702 	}
1703 check_slabs:
1704 	if (*str == ',')
1705 		*slabs = ++str;
1706 	else
1707 		*slabs = NULL;
1708 
1709 	/* Skip over the slab list */
1710 	while (*str && *str != ';')
1711 		str++;
1712 
1713 	/* Skip any completely empty blocks */
1714 	while (*str && *str == ';')
1715 		str++;
1716 
1717 	if (init && higher_order_disable)
1718 		disable_higher_order_debug = 1;
1719 
1720 	if (*str)
1721 		return str;
1722 	else
1723 		return NULL;
1724 }
1725 
1726 static int __init setup_slub_debug(char *str)
1727 {
1728 	slab_flags_t flags;
1729 	slab_flags_t global_flags;
1730 	char *saved_str;
1731 	char *slab_list;
1732 	bool global_slub_debug_changed = false;
1733 	bool slab_list_specified = false;
1734 
1735 	global_flags = DEBUG_DEFAULT_FLAGS;
1736 	if (*str++ != '=' || !*str)
1737 		/*
1738 		 * No options specified. Switch on full debugging.
1739 		 */
1740 		goto out;
1741 
1742 	saved_str = str;
1743 	while (str) {
1744 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1745 
1746 		if (!slab_list) {
1747 			global_flags = flags;
1748 			global_slub_debug_changed = true;
1749 		} else {
1750 			slab_list_specified = true;
1751 			if (flags & SLAB_STORE_USER)
1752 				stack_depot_request_early_init();
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * For backwards compatibility, a single list of flags with list of
1758 	 * slabs means debugging is only changed for those slabs, so the global
1759 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1760 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1761 	 * long as there is no option specifying flags without a slab list.
1762 	 */
1763 	if (slab_list_specified) {
1764 		if (!global_slub_debug_changed)
1765 			global_flags = slub_debug;
1766 		slub_debug_string = saved_str;
1767 	}
1768 out:
1769 	slub_debug = global_flags;
1770 	if (slub_debug & SLAB_STORE_USER)
1771 		stack_depot_request_early_init();
1772 	if (slub_debug != 0 || slub_debug_string)
1773 		static_branch_enable(&slub_debug_enabled);
1774 	else
1775 		static_branch_disable(&slub_debug_enabled);
1776 	if ((static_branch_unlikely(&init_on_alloc) ||
1777 	     static_branch_unlikely(&init_on_free)) &&
1778 	    (slub_debug & SLAB_POISON))
1779 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1780 	return 1;
1781 }
1782 
1783 __setup("slab_debug", setup_slub_debug);
1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1785 
1786 /*
1787  * kmem_cache_flags - apply debugging options to the cache
1788  * @flags:		flags to set
1789  * @name:		name of the cache
1790  *
1791  * Debug option(s) are applied to @flags. In addition to the debug
1792  * option(s), if a slab name (or multiple) is specified i.e.
1793  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1794  * then only the select slabs will receive the debug option(s).
1795  */
1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1797 {
1798 	char *iter;
1799 	size_t len;
1800 	char *next_block;
1801 	slab_flags_t block_flags;
1802 	slab_flags_t slub_debug_local = slub_debug;
1803 
1804 	if (flags & SLAB_NO_USER_FLAGS)
1805 		return flags;
1806 
1807 	/*
1808 	 * If the slab cache is for debugging (e.g. kmemleak) then
1809 	 * don't store user (stack trace) information by default,
1810 	 * but let the user enable it via the command line below.
1811 	 */
1812 	if (flags & SLAB_NOLEAKTRACE)
1813 		slub_debug_local &= ~SLAB_STORE_USER;
1814 
1815 	len = strlen(name);
1816 	next_block = slub_debug_string;
1817 	/* Go through all blocks of debug options, see if any matches our slab's name */
1818 	while (next_block) {
1819 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1820 		if (!iter)
1821 			continue;
1822 		/* Found a block that has a slab list, search it */
1823 		while (*iter) {
1824 			char *end, *glob;
1825 			size_t cmplen;
1826 
1827 			end = strchrnul(iter, ',');
1828 			if (next_block && next_block < end)
1829 				end = next_block - 1;
1830 
1831 			glob = strnchr(iter, end - iter, '*');
1832 			if (glob)
1833 				cmplen = glob - iter;
1834 			else
1835 				cmplen = max_t(size_t, len, (end - iter));
1836 
1837 			if (!strncmp(name, iter, cmplen)) {
1838 				flags |= block_flags;
1839 				return flags;
1840 			}
1841 
1842 			if (!*end || *end == ';')
1843 				break;
1844 			iter = end + 1;
1845 		}
1846 	}
1847 
1848 	return flags | slub_debug_local;
1849 }
1850 #else /* !CONFIG_SLUB_DEBUG */
1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1852 static inline
1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1854 
1855 static inline bool alloc_debug_processing(struct kmem_cache *s,
1856 	struct slab *slab, void *object, int orig_size) { return true; }
1857 
1858 static inline bool free_debug_processing(struct kmem_cache *s,
1859 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1860 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1861 
1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1863 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1864 			void *object, u8 val) { return 1; }
1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1866 static inline void set_track(struct kmem_cache *s, void *object,
1867 			     enum track_item alloc, unsigned long addr) {}
1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1869 					struct slab *slab) {}
1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1871 					struct slab *slab) {}
1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1873 {
1874 	return flags;
1875 }
1876 #define slub_debug 0
1877 
1878 #define disable_higher_order_debug 0
1879 
1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1881 							{ return 0; }
1882 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1883 							int objects) {}
1884 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1885 							int objects) {}
1886 #ifndef CONFIG_SLUB_TINY
1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1888 			       void **freelist, void *nextfree)
1889 {
1890 	return false;
1891 }
1892 #endif
1893 #endif /* CONFIG_SLUB_DEBUG */
1894 
1895 #ifdef CONFIG_SLAB_OBJ_EXT
1896 
1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1898 
1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1900 {
1901 	struct slabobj_ext *slab_exts;
1902 	struct slab *obj_exts_slab;
1903 
1904 	obj_exts_slab = virt_to_slab(obj_exts);
1905 	slab_exts = slab_obj_exts(obj_exts_slab);
1906 	if (slab_exts) {
1907 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1908 						 obj_exts_slab, obj_exts);
1909 		/* codetag should be NULL */
1910 		WARN_ON(slab_exts[offs].ref.ct);
1911 		set_codetag_empty(&slab_exts[offs].ref);
1912 	}
1913 }
1914 
1915 static inline void mark_failed_objexts_alloc(struct slab *slab)
1916 {
1917 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1918 }
1919 
1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1921 			struct slabobj_ext *vec, unsigned int objects)
1922 {
1923 	/*
1924 	 * If vector previously failed to allocate then we have live
1925 	 * objects with no tag reference. Mark all references in this
1926 	 * vector as empty to avoid warnings later on.
1927 	 */
1928 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1929 		unsigned int i;
1930 
1931 		for (i = 0; i < objects; i++)
1932 			set_codetag_empty(&vec[i].ref);
1933 	}
1934 }
1935 
1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1937 
1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1941 			struct slabobj_ext *vec, unsigned int objects) {}
1942 
1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1944 
1945 /*
1946  * The allocated objcg pointers array is not accounted directly.
1947  * Moreover, it should not come from DMA buffer and is not readily
1948  * reclaimable. So those GFP bits should be masked off.
1949  */
1950 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1951 				__GFP_ACCOUNT | __GFP_NOFAIL)
1952 
1953 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1954 		        gfp_t gfp, bool new_slab)
1955 {
1956 	unsigned int objects = objs_per_slab(s, slab);
1957 	unsigned long new_exts;
1958 	unsigned long old_exts;
1959 	struct slabobj_ext *vec;
1960 
1961 	gfp &= ~OBJCGS_CLEAR_MASK;
1962 	/* Prevent recursive extension vector allocation */
1963 	gfp |= __GFP_NO_OBJ_EXT;
1964 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1965 			   slab_nid(slab));
1966 	if (!vec) {
1967 		/* Mark vectors which failed to allocate */
1968 		if (new_slab)
1969 			mark_failed_objexts_alloc(slab);
1970 
1971 		return -ENOMEM;
1972 	}
1973 
1974 	new_exts = (unsigned long)vec;
1975 #ifdef CONFIG_MEMCG
1976 	new_exts |= MEMCG_DATA_OBJEXTS;
1977 #endif
1978 	old_exts = READ_ONCE(slab->obj_exts);
1979 	handle_failed_objexts_alloc(old_exts, vec, objects);
1980 	if (new_slab) {
1981 		/*
1982 		 * If the slab is brand new and nobody can yet access its
1983 		 * obj_exts, no synchronization is required and obj_exts can
1984 		 * be simply assigned.
1985 		 */
1986 		slab->obj_exts = new_exts;
1987 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1988 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1989 		/*
1990 		 * If the slab is already in use, somebody can allocate and
1991 		 * assign slabobj_exts in parallel. In this case the existing
1992 		 * objcg vector should be reused.
1993 		 */
1994 		mark_objexts_empty(vec);
1995 		kfree(vec);
1996 		return 0;
1997 	}
1998 
1999 	kmemleak_not_leak(vec);
2000 	return 0;
2001 }
2002 
2003 static inline void free_slab_obj_exts(struct slab *slab)
2004 {
2005 	struct slabobj_ext *obj_exts;
2006 
2007 	obj_exts = slab_obj_exts(slab);
2008 	if (!obj_exts)
2009 		return;
2010 
2011 	/*
2012 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2013 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2014 	 * warning if slab has extensions but the extension of an object is
2015 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2016 	 * the extension for obj_exts is expected to be NULL.
2017 	 */
2018 	mark_objexts_empty(obj_exts);
2019 	kfree(obj_exts);
2020 	slab->obj_exts = 0;
2021 }
2022 
2023 static inline bool need_slab_obj_ext(void)
2024 {
2025 	if (mem_alloc_profiling_enabled())
2026 		return true;
2027 
2028 	/*
2029 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2030 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2031 	 */
2032 	return false;
2033 }
2034 
2035 #else /* CONFIG_SLAB_OBJ_EXT */
2036 
2037 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2038 			       gfp_t gfp, bool new_slab)
2039 {
2040 	return 0;
2041 }
2042 
2043 static inline void free_slab_obj_exts(struct slab *slab)
2044 {
2045 }
2046 
2047 static inline bool need_slab_obj_ext(void)
2048 {
2049 	return false;
2050 }
2051 
2052 #endif /* CONFIG_SLAB_OBJ_EXT */
2053 
2054 #ifdef CONFIG_MEM_ALLOC_PROFILING
2055 
2056 static inline struct slabobj_ext *
2057 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2058 {
2059 	struct slab *slab;
2060 
2061 	if (!p)
2062 		return NULL;
2063 
2064 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2065 		return NULL;
2066 
2067 	if (flags & __GFP_NO_OBJ_EXT)
2068 		return NULL;
2069 
2070 	slab = virt_to_slab(p);
2071 	if (!slab_obj_exts(slab) &&
2072 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2073 		 "%s, %s: Failed to create slab extension vector!\n",
2074 		 __func__, s->name))
2075 		return NULL;
2076 
2077 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2078 }
2079 
2080 static inline void
2081 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2082 {
2083 	if (need_slab_obj_ext()) {
2084 		struct slabobj_ext *obj_exts;
2085 
2086 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2087 		/*
2088 		 * Currently obj_exts is used only for allocation profiling.
2089 		 * If other users appear then mem_alloc_profiling_enabled()
2090 		 * check should be added before alloc_tag_add().
2091 		 */
2092 		if (likely(obj_exts))
2093 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2094 	}
2095 }
2096 
2097 static inline void
2098 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2099 			     int objects)
2100 {
2101 	struct slabobj_ext *obj_exts;
2102 	int i;
2103 
2104 	if (!mem_alloc_profiling_enabled())
2105 		return;
2106 
2107 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2108 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2109 		return;
2110 
2111 	obj_exts = slab_obj_exts(slab);
2112 	if (!obj_exts)
2113 		return;
2114 
2115 	for (i = 0; i < objects; i++) {
2116 		unsigned int off = obj_to_index(s, slab, p[i]);
2117 
2118 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2119 	}
2120 }
2121 
2122 #else /* CONFIG_MEM_ALLOC_PROFILING */
2123 
2124 static inline void
2125 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2126 {
2127 }
2128 
2129 static inline void
2130 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2131 			     int objects)
2132 {
2133 }
2134 
2135 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2136 
2137 
2138 #ifdef CONFIG_MEMCG
2139 
2140 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2141 
2142 static __fastpath_inline
2143 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2144 				gfp_t flags, size_t size, void **p)
2145 {
2146 	if (likely(!memcg_kmem_online()))
2147 		return true;
2148 
2149 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2150 		return true;
2151 
2152 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2153 		return true;
2154 
2155 	if (likely(size == 1)) {
2156 		memcg_alloc_abort_single(s, *p);
2157 		*p = NULL;
2158 	} else {
2159 		kmem_cache_free_bulk(s, size, p);
2160 	}
2161 
2162 	return false;
2163 }
2164 
2165 static __fastpath_inline
2166 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2167 			  int objects)
2168 {
2169 	struct slabobj_ext *obj_exts;
2170 
2171 	if (!memcg_kmem_online())
2172 		return;
2173 
2174 	obj_exts = slab_obj_exts(slab);
2175 	if (likely(!obj_exts))
2176 		return;
2177 
2178 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2179 }
2180 
2181 static __fastpath_inline
2182 bool memcg_slab_post_charge(void *p, gfp_t flags)
2183 {
2184 	struct slabobj_ext *slab_exts;
2185 	struct kmem_cache *s;
2186 	struct folio *folio;
2187 	struct slab *slab;
2188 	unsigned long off;
2189 
2190 	folio = virt_to_folio(p);
2191 	if (!folio_test_slab(folio)) {
2192 		return folio_memcg_kmem(folio) ||
2193 			(__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2194 						  folio_order(folio)) == 0);
2195 	}
2196 
2197 	slab = folio_slab(folio);
2198 	s = slab->slab_cache;
2199 
2200 	/*
2201 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2202 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2203 	 * becoming effectively unfreeable.
2204 	 */
2205 	if (is_kmalloc_normal(s))
2206 		return true;
2207 
2208 	/* Ignore already charged objects. */
2209 	slab_exts = slab_obj_exts(slab);
2210 	if (slab_exts) {
2211 		off = obj_to_index(s, slab, p);
2212 		if (unlikely(slab_exts[off].objcg))
2213 			return true;
2214 	}
2215 
2216 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2217 }
2218 
2219 #else /* CONFIG_MEMCG */
2220 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2221 					      struct list_lru *lru,
2222 					      gfp_t flags, size_t size,
2223 					      void **p)
2224 {
2225 	return true;
2226 }
2227 
2228 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2229 					void **p, int objects)
2230 {
2231 }
2232 
2233 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2234 {
2235 	return true;
2236 }
2237 #endif /* CONFIG_MEMCG */
2238 
2239 #ifdef CONFIG_SLUB_RCU_DEBUG
2240 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2241 
2242 struct rcu_delayed_free {
2243 	struct rcu_head head;
2244 	void *object;
2245 };
2246 #endif
2247 
2248 /*
2249  * Hooks for other subsystems that check memory allocations. In a typical
2250  * production configuration these hooks all should produce no code at all.
2251  *
2252  * Returns true if freeing of the object can proceed, false if its reuse
2253  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2254  * to KFENCE.
2255  */
2256 static __always_inline
2257 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2258 		    bool after_rcu_delay)
2259 {
2260 	/* Are the object contents still accessible? */
2261 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2262 
2263 	kmemleak_free_recursive(x, s->flags);
2264 	kmsan_slab_free(s, x);
2265 
2266 	debug_check_no_locks_freed(x, s->object_size);
2267 
2268 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2269 		debug_check_no_obj_freed(x, s->object_size);
2270 
2271 	/* Use KCSAN to help debug racy use-after-free. */
2272 	if (!still_accessible)
2273 		__kcsan_check_access(x, s->object_size,
2274 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2275 
2276 	if (kfence_free(x))
2277 		return false;
2278 
2279 	/*
2280 	 * Give KASAN a chance to notice an invalid free operation before we
2281 	 * modify the object.
2282 	 */
2283 	if (kasan_slab_pre_free(s, x))
2284 		return false;
2285 
2286 #ifdef CONFIG_SLUB_RCU_DEBUG
2287 	if (still_accessible) {
2288 		struct rcu_delayed_free *delayed_free;
2289 
2290 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2291 		if (delayed_free) {
2292 			/*
2293 			 * Let KASAN track our call stack as a "related work
2294 			 * creation", just like if the object had been freed
2295 			 * normally via kfree_rcu().
2296 			 * We have to do this manually because the rcu_head is
2297 			 * not located inside the object.
2298 			 */
2299 			kasan_record_aux_stack_noalloc(x);
2300 
2301 			delayed_free->object = x;
2302 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2303 			return false;
2304 		}
2305 	}
2306 #endif /* CONFIG_SLUB_RCU_DEBUG */
2307 
2308 	/*
2309 	 * As memory initialization might be integrated into KASAN,
2310 	 * kasan_slab_free and initialization memset's must be
2311 	 * kept together to avoid discrepancies in behavior.
2312 	 *
2313 	 * The initialization memset's clear the object and the metadata,
2314 	 * but don't touch the SLAB redzone.
2315 	 *
2316 	 * The object's freepointer is also avoided if stored outside the
2317 	 * object.
2318 	 */
2319 	if (unlikely(init)) {
2320 		int rsize;
2321 		unsigned int inuse, orig_size;
2322 
2323 		inuse = get_info_end(s);
2324 		orig_size = get_orig_size(s, x);
2325 		if (!kasan_has_integrated_init())
2326 			memset(kasan_reset_tag(x), 0, orig_size);
2327 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2328 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2329 		       s->size - inuse - rsize);
2330 		/*
2331 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2332 		 * would be reported
2333 		 */
2334 		set_orig_size(s, x, orig_size);
2335 
2336 	}
2337 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2338 	return !kasan_slab_free(s, x, init, still_accessible);
2339 }
2340 
2341 static __fastpath_inline
2342 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2343 			     int *cnt)
2344 {
2345 
2346 	void *object;
2347 	void *next = *head;
2348 	void *old_tail = *tail;
2349 	bool init;
2350 
2351 	if (is_kfence_address(next)) {
2352 		slab_free_hook(s, next, false, false);
2353 		return false;
2354 	}
2355 
2356 	/* Head and tail of the reconstructed freelist */
2357 	*head = NULL;
2358 	*tail = NULL;
2359 
2360 	init = slab_want_init_on_free(s);
2361 
2362 	do {
2363 		object = next;
2364 		next = get_freepointer(s, object);
2365 
2366 		/* If object's reuse doesn't have to be delayed */
2367 		if (likely(slab_free_hook(s, object, init, false))) {
2368 			/* Move object to the new freelist */
2369 			set_freepointer(s, object, *head);
2370 			*head = object;
2371 			if (!*tail)
2372 				*tail = object;
2373 		} else {
2374 			/*
2375 			 * Adjust the reconstructed freelist depth
2376 			 * accordingly if object's reuse is delayed.
2377 			 */
2378 			--(*cnt);
2379 		}
2380 	} while (object != old_tail);
2381 
2382 	return *head != NULL;
2383 }
2384 
2385 static void *setup_object(struct kmem_cache *s, void *object)
2386 {
2387 	setup_object_debug(s, object);
2388 	object = kasan_init_slab_obj(s, object);
2389 	if (unlikely(s->ctor)) {
2390 		kasan_unpoison_new_object(s, object);
2391 		s->ctor(object);
2392 		kasan_poison_new_object(s, object);
2393 	}
2394 	return object;
2395 }
2396 
2397 /*
2398  * Slab allocation and freeing
2399  */
2400 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2401 		struct kmem_cache_order_objects oo)
2402 {
2403 	struct folio *folio;
2404 	struct slab *slab;
2405 	unsigned int order = oo_order(oo);
2406 
2407 	if (node == NUMA_NO_NODE)
2408 		folio = (struct folio *)alloc_pages(flags, order);
2409 	else
2410 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
2411 
2412 	if (!folio)
2413 		return NULL;
2414 
2415 	slab = folio_slab(folio);
2416 	__folio_set_slab(folio);
2417 	/* Make the flag visible before any changes to folio->mapping */
2418 	smp_wmb();
2419 	if (folio_is_pfmemalloc(folio))
2420 		slab_set_pfmemalloc(slab);
2421 
2422 	return slab;
2423 }
2424 
2425 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2426 /* Pre-initialize the random sequence cache */
2427 static int init_cache_random_seq(struct kmem_cache *s)
2428 {
2429 	unsigned int count = oo_objects(s->oo);
2430 	int err;
2431 
2432 	/* Bailout if already initialised */
2433 	if (s->random_seq)
2434 		return 0;
2435 
2436 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2437 	if (err) {
2438 		pr_err("SLUB: Unable to initialize free list for %s\n",
2439 			s->name);
2440 		return err;
2441 	}
2442 
2443 	/* Transform to an offset on the set of pages */
2444 	if (s->random_seq) {
2445 		unsigned int i;
2446 
2447 		for (i = 0; i < count; i++)
2448 			s->random_seq[i] *= s->size;
2449 	}
2450 	return 0;
2451 }
2452 
2453 /* Initialize each random sequence freelist per cache */
2454 static void __init init_freelist_randomization(void)
2455 {
2456 	struct kmem_cache *s;
2457 
2458 	mutex_lock(&slab_mutex);
2459 
2460 	list_for_each_entry(s, &slab_caches, list)
2461 		init_cache_random_seq(s);
2462 
2463 	mutex_unlock(&slab_mutex);
2464 }
2465 
2466 /* Get the next entry on the pre-computed freelist randomized */
2467 static void *next_freelist_entry(struct kmem_cache *s,
2468 				unsigned long *pos, void *start,
2469 				unsigned long page_limit,
2470 				unsigned long freelist_count)
2471 {
2472 	unsigned int idx;
2473 
2474 	/*
2475 	 * If the target page allocation failed, the number of objects on the
2476 	 * page might be smaller than the usual size defined by the cache.
2477 	 */
2478 	do {
2479 		idx = s->random_seq[*pos];
2480 		*pos += 1;
2481 		if (*pos >= freelist_count)
2482 			*pos = 0;
2483 	} while (unlikely(idx >= page_limit));
2484 
2485 	return (char *)start + idx;
2486 }
2487 
2488 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2489 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2490 {
2491 	void *start;
2492 	void *cur;
2493 	void *next;
2494 	unsigned long idx, pos, page_limit, freelist_count;
2495 
2496 	if (slab->objects < 2 || !s->random_seq)
2497 		return false;
2498 
2499 	freelist_count = oo_objects(s->oo);
2500 	pos = get_random_u32_below(freelist_count);
2501 
2502 	page_limit = slab->objects * s->size;
2503 	start = fixup_red_left(s, slab_address(slab));
2504 
2505 	/* First entry is used as the base of the freelist */
2506 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2507 	cur = setup_object(s, cur);
2508 	slab->freelist = cur;
2509 
2510 	for (idx = 1; idx < slab->objects; idx++) {
2511 		next = next_freelist_entry(s, &pos, start, page_limit,
2512 			freelist_count);
2513 		next = setup_object(s, next);
2514 		set_freepointer(s, cur, next);
2515 		cur = next;
2516 	}
2517 	set_freepointer(s, cur, NULL);
2518 
2519 	return true;
2520 }
2521 #else
2522 static inline int init_cache_random_seq(struct kmem_cache *s)
2523 {
2524 	return 0;
2525 }
2526 static inline void init_freelist_randomization(void) { }
2527 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2528 {
2529 	return false;
2530 }
2531 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2532 
2533 static __always_inline void account_slab(struct slab *slab, int order,
2534 					 struct kmem_cache *s, gfp_t gfp)
2535 {
2536 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2537 		alloc_slab_obj_exts(slab, s, gfp, true);
2538 
2539 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2540 			    PAGE_SIZE << order);
2541 }
2542 
2543 static __always_inline void unaccount_slab(struct slab *slab, int order,
2544 					   struct kmem_cache *s)
2545 {
2546 	if (memcg_kmem_online() || need_slab_obj_ext())
2547 		free_slab_obj_exts(slab);
2548 
2549 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2550 			    -(PAGE_SIZE << order));
2551 }
2552 
2553 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2554 {
2555 	struct slab *slab;
2556 	struct kmem_cache_order_objects oo = s->oo;
2557 	gfp_t alloc_gfp;
2558 	void *start, *p, *next;
2559 	int idx;
2560 	bool shuffle;
2561 
2562 	flags &= gfp_allowed_mask;
2563 
2564 	flags |= s->allocflags;
2565 
2566 	/*
2567 	 * Let the initial higher-order allocation fail under memory pressure
2568 	 * so we fall-back to the minimum order allocation.
2569 	 */
2570 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2571 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2572 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2573 
2574 	slab = alloc_slab_page(alloc_gfp, node, oo);
2575 	if (unlikely(!slab)) {
2576 		oo = s->min;
2577 		alloc_gfp = flags;
2578 		/*
2579 		 * Allocation may have failed due to fragmentation.
2580 		 * Try a lower order alloc if possible
2581 		 */
2582 		slab = alloc_slab_page(alloc_gfp, node, oo);
2583 		if (unlikely(!slab))
2584 			return NULL;
2585 		stat(s, ORDER_FALLBACK);
2586 	}
2587 
2588 	slab->objects = oo_objects(oo);
2589 	slab->inuse = 0;
2590 	slab->frozen = 0;
2591 
2592 	account_slab(slab, oo_order(oo), s, flags);
2593 
2594 	slab->slab_cache = s;
2595 
2596 	kasan_poison_slab(slab);
2597 
2598 	start = slab_address(slab);
2599 
2600 	setup_slab_debug(s, slab, start);
2601 
2602 	shuffle = shuffle_freelist(s, slab);
2603 
2604 	if (!shuffle) {
2605 		start = fixup_red_left(s, start);
2606 		start = setup_object(s, start);
2607 		slab->freelist = start;
2608 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2609 			next = p + s->size;
2610 			next = setup_object(s, next);
2611 			set_freepointer(s, p, next);
2612 			p = next;
2613 		}
2614 		set_freepointer(s, p, NULL);
2615 	}
2616 
2617 	return slab;
2618 }
2619 
2620 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2621 {
2622 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2623 		flags = kmalloc_fix_flags(flags);
2624 
2625 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2626 
2627 	return allocate_slab(s,
2628 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2629 }
2630 
2631 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2632 {
2633 	struct folio *folio = slab_folio(slab);
2634 	int order = folio_order(folio);
2635 	int pages = 1 << order;
2636 
2637 	__slab_clear_pfmemalloc(slab);
2638 	folio->mapping = NULL;
2639 	/* Make the mapping reset visible before clearing the flag */
2640 	smp_wmb();
2641 	__folio_clear_slab(folio);
2642 	mm_account_reclaimed_pages(pages);
2643 	unaccount_slab(slab, order, s);
2644 	__free_pages(&folio->page, order);
2645 }
2646 
2647 static void rcu_free_slab(struct rcu_head *h)
2648 {
2649 	struct slab *slab = container_of(h, struct slab, rcu_head);
2650 
2651 	__free_slab(slab->slab_cache, slab);
2652 }
2653 
2654 static void free_slab(struct kmem_cache *s, struct slab *slab)
2655 {
2656 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2657 		void *p;
2658 
2659 		slab_pad_check(s, slab);
2660 		for_each_object(p, s, slab_address(slab), slab->objects)
2661 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2662 	}
2663 
2664 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2665 		call_rcu(&slab->rcu_head, rcu_free_slab);
2666 	else
2667 		__free_slab(s, slab);
2668 }
2669 
2670 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2671 {
2672 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2673 	free_slab(s, slab);
2674 }
2675 
2676 /*
2677  * SLUB reuses PG_workingset bit to keep track of whether it's on
2678  * the per-node partial list.
2679  */
2680 static inline bool slab_test_node_partial(const struct slab *slab)
2681 {
2682 	return folio_test_workingset(slab_folio(slab));
2683 }
2684 
2685 static inline void slab_set_node_partial(struct slab *slab)
2686 {
2687 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2688 }
2689 
2690 static inline void slab_clear_node_partial(struct slab *slab)
2691 {
2692 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2693 }
2694 
2695 /*
2696  * Management of partially allocated slabs.
2697  */
2698 static inline void
2699 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2700 {
2701 	n->nr_partial++;
2702 	if (tail == DEACTIVATE_TO_TAIL)
2703 		list_add_tail(&slab->slab_list, &n->partial);
2704 	else
2705 		list_add(&slab->slab_list, &n->partial);
2706 	slab_set_node_partial(slab);
2707 }
2708 
2709 static inline void add_partial(struct kmem_cache_node *n,
2710 				struct slab *slab, int tail)
2711 {
2712 	lockdep_assert_held(&n->list_lock);
2713 	__add_partial(n, slab, tail);
2714 }
2715 
2716 static inline void remove_partial(struct kmem_cache_node *n,
2717 					struct slab *slab)
2718 {
2719 	lockdep_assert_held(&n->list_lock);
2720 	list_del(&slab->slab_list);
2721 	slab_clear_node_partial(slab);
2722 	n->nr_partial--;
2723 }
2724 
2725 /*
2726  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2727  * slab from the n->partial list. Remove only a single object from the slab, do
2728  * the alloc_debug_processing() checks and leave the slab on the list, or move
2729  * it to full list if it was the last free object.
2730  */
2731 static void *alloc_single_from_partial(struct kmem_cache *s,
2732 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2733 {
2734 	void *object;
2735 
2736 	lockdep_assert_held(&n->list_lock);
2737 
2738 	object = slab->freelist;
2739 	slab->freelist = get_freepointer(s, object);
2740 	slab->inuse++;
2741 
2742 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2743 		if (folio_test_slab(slab_folio(slab)))
2744 			remove_partial(n, slab);
2745 		return NULL;
2746 	}
2747 
2748 	if (slab->inuse == slab->objects) {
2749 		remove_partial(n, slab);
2750 		add_full(s, n, slab);
2751 	}
2752 
2753 	return object;
2754 }
2755 
2756 /*
2757  * Called only for kmem_cache_debug() caches to allocate from a freshly
2758  * allocated slab. Allocate a single object instead of whole freelist
2759  * and put the slab to the partial (or full) list.
2760  */
2761 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2762 					struct slab *slab, int orig_size)
2763 {
2764 	int nid = slab_nid(slab);
2765 	struct kmem_cache_node *n = get_node(s, nid);
2766 	unsigned long flags;
2767 	void *object;
2768 
2769 
2770 	object = slab->freelist;
2771 	slab->freelist = get_freepointer(s, object);
2772 	slab->inuse = 1;
2773 
2774 	if (!alloc_debug_processing(s, slab, object, orig_size))
2775 		/*
2776 		 * It's not really expected that this would fail on a
2777 		 * freshly allocated slab, but a concurrent memory
2778 		 * corruption in theory could cause that.
2779 		 */
2780 		return NULL;
2781 
2782 	spin_lock_irqsave(&n->list_lock, flags);
2783 
2784 	if (slab->inuse == slab->objects)
2785 		add_full(s, n, slab);
2786 	else
2787 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2788 
2789 	inc_slabs_node(s, nid, slab->objects);
2790 	spin_unlock_irqrestore(&n->list_lock, flags);
2791 
2792 	return object;
2793 }
2794 
2795 #ifdef CONFIG_SLUB_CPU_PARTIAL
2796 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2797 #else
2798 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2799 				   int drain) { }
2800 #endif
2801 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2802 
2803 /*
2804  * Try to allocate a partial slab from a specific node.
2805  */
2806 static struct slab *get_partial_node(struct kmem_cache *s,
2807 				     struct kmem_cache_node *n,
2808 				     struct partial_context *pc)
2809 {
2810 	struct slab *slab, *slab2, *partial = NULL;
2811 	unsigned long flags;
2812 	unsigned int partial_slabs = 0;
2813 
2814 	/*
2815 	 * Racy check. If we mistakenly see no partial slabs then we
2816 	 * just allocate an empty slab. If we mistakenly try to get a
2817 	 * partial slab and there is none available then get_partial()
2818 	 * will return NULL.
2819 	 */
2820 	if (!n || !n->nr_partial)
2821 		return NULL;
2822 
2823 	spin_lock_irqsave(&n->list_lock, flags);
2824 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2825 		if (!pfmemalloc_match(slab, pc->flags))
2826 			continue;
2827 
2828 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2829 			void *object = alloc_single_from_partial(s, n, slab,
2830 							pc->orig_size);
2831 			if (object) {
2832 				partial = slab;
2833 				pc->object = object;
2834 				break;
2835 			}
2836 			continue;
2837 		}
2838 
2839 		remove_partial(n, slab);
2840 
2841 		if (!partial) {
2842 			partial = slab;
2843 			stat(s, ALLOC_FROM_PARTIAL);
2844 
2845 			if ((slub_get_cpu_partial(s) == 0)) {
2846 				break;
2847 			}
2848 		} else {
2849 			put_cpu_partial(s, slab, 0);
2850 			stat(s, CPU_PARTIAL_NODE);
2851 
2852 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2853 				break;
2854 			}
2855 		}
2856 	}
2857 	spin_unlock_irqrestore(&n->list_lock, flags);
2858 	return partial;
2859 }
2860 
2861 /*
2862  * Get a slab from somewhere. Search in increasing NUMA distances.
2863  */
2864 static struct slab *get_any_partial(struct kmem_cache *s,
2865 				    struct partial_context *pc)
2866 {
2867 #ifdef CONFIG_NUMA
2868 	struct zonelist *zonelist;
2869 	struct zoneref *z;
2870 	struct zone *zone;
2871 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2872 	struct slab *slab;
2873 	unsigned int cpuset_mems_cookie;
2874 
2875 	/*
2876 	 * The defrag ratio allows a configuration of the tradeoffs between
2877 	 * inter node defragmentation and node local allocations. A lower
2878 	 * defrag_ratio increases the tendency to do local allocations
2879 	 * instead of attempting to obtain partial slabs from other nodes.
2880 	 *
2881 	 * If the defrag_ratio is set to 0 then kmalloc() always
2882 	 * returns node local objects. If the ratio is higher then kmalloc()
2883 	 * may return off node objects because partial slabs are obtained
2884 	 * from other nodes and filled up.
2885 	 *
2886 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2887 	 * (which makes defrag_ratio = 1000) then every (well almost)
2888 	 * allocation will first attempt to defrag slab caches on other nodes.
2889 	 * This means scanning over all nodes to look for partial slabs which
2890 	 * may be expensive if we do it every time we are trying to find a slab
2891 	 * with available objects.
2892 	 */
2893 	if (!s->remote_node_defrag_ratio ||
2894 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2895 		return NULL;
2896 
2897 	do {
2898 		cpuset_mems_cookie = read_mems_allowed_begin();
2899 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2900 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2901 			struct kmem_cache_node *n;
2902 
2903 			n = get_node(s, zone_to_nid(zone));
2904 
2905 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2906 					n->nr_partial > s->min_partial) {
2907 				slab = get_partial_node(s, n, pc);
2908 				if (slab) {
2909 					/*
2910 					 * Don't check read_mems_allowed_retry()
2911 					 * here - if mems_allowed was updated in
2912 					 * parallel, that was a harmless race
2913 					 * between allocation and the cpuset
2914 					 * update
2915 					 */
2916 					return slab;
2917 				}
2918 			}
2919 		}
2920 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2921 #endif	/* CONFIG_NUMA */
2922 	return NULL;
2923 }
2924 
2925 /*
2926  * Get a partial slab, lock it and return it.
2927  */
2928 static struct slab *get_partial(struct kmem_cache *s, int node,
2929 				struct partial_context *pc)
2930 {
2931 	struct slab *slab;
2932 	int searchnode = node;
2933 
2934 	if (node == NUMA_NO_NODE)
2935 		searchnode = numa_mem_id();
2936 
2937 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2938 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2939 		return slab;
2940 
2941 	return get_any_partial(s, pc);
2942 }
2943 
2944 #ifndef CONFIG_SLUB_TINY
2945 
2946 #ifdef CONFIG_PREEMPTION
2947 /*
2948  * Calculate the next globally unique transaction for disambiguation
2949  * during cmpxchg. The transactions start with the cpu number and are then
2950  * incremented by CONFIG_NR_CPUS.
2951  */
2952 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2953 #else
2954 /*
2955  * No preemption supported therefore also no need to check for
2956  * different cpus.
2957  */
2958 #define TID_STEP 1
2959 #endif /* CONFIG_PREEMPTION */
2960 
2961 static inline unsigned long next_tid(unsigned long tid)
2962 {
2963 	return tid + TID_STEP;
2964 }
2965 
2966 #ifdef SLUB_DEBUG_CMPXCHG
2967 static inline unsigned int tid_to_cpu(unsigned long tid)
2968 {
2969 	return tid % TID_STEP;
2970 }
2971 
2972 static inline unsigned long tid_to_event(unsigned long tid)
2973 {
2974 	return tid / TID_STEP;
2975 }
2976 #endif
2977 
2978 static inline unsigned int init_tid(int cpu)
2979 {
2980 	return cpu;
2981 }
2982 
2983 static inline void note_cmpxchg_failure(const char *n,
2984 		const struct kmem_cache *s, unsigned long tid)
2985 {
2986 #ifdef SLUB_DEBUG_CMPXCHG
2987 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2988 
2989 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2990 
2991 #ifdef CONFIG_PREEMPTION
2992 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2993 		pr_warn("due to cpu change %d -> %d\n",
2994 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2995 	else
2996 #endif
2997 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2998 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2999 			tid_to_event(tid), tid_to_event(actual_tid));
3000 	else
3001 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3002 			actual_tid, tid, next_tid(tid));
3003 #endif
3004 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3005 }
3006 
3007 static void init_kmem_cache_cpus(struct kmem_cache *s)
3008 {
3009 	int cpu;
3010 	struct kmem_cache_cpu *c;
3011 
3012 	for_each_possible_cpu(cpu) {
3013 		c = per_cpu_ptr(s->cpu_slab, cpu);
3014 		local_lock_init(&c->lock);
3015 		c->tid = init_tid(cpu);
3016 	}
3017 }
3018 
3019 /*
3020  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3021  * unfreezes the slabs and puts it on the proper list.
3022  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3023  * by the caller.
3024  */
3025 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3026 			    void *freelist)
3027 {
3028 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3029 	int free_delta = 0;
3030 	void *nextfree, *freelist_iter, *freelist_tail;
3031 	int tail = DEACTIVATE_TO_HEAD;
3032 	unsigned long flags = 0;
3033 	struct slab new;
3034 	struct slab old;
3035 
3036 	if (READ_ONCE(slab->freelist)) {
3037 		stat(s, DEACTIVATE_REMOTE_FREES);
3038 		tail = DEACTIVATE_TO_TAIL;
3039 	}
3040 
3041 	/*
3042 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3043 	 * remember the last object in freelist_tail for later splicing.
3044 	 */
3045 	freelist_tail = NULL;
3046 	freelist_iter = freelist;
3047 	while (freelist_iter) {
3048 		nextfree = get_freepointer(s, freelist_iter);
3049 
3050 		/*
3051 		 * If 'nextfree' is invalid, it is possible that the object at
3052 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3053 		 * starting at 'freelist_iter' by skipping them.
3054 		 */
3055 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3056 			break;
3057 
3058 		freelist_tail = freelist_iter;
3059 		free_delta++;
3060 
3061 		freelist_iter = nextfree;
3062 	}
3063 
3064 	/*
3065 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3066 	 * freelist to the head of slab's freelist.
3067 	 */
3068 	do {
3069 		old.freelist = READ_ONCE(slab->freelist);
3070 		old.counters = READ_ONCE(slab->counters);
3071 		VM_BUG_ON(!old.frozen);
3072 
3073 		/* Determine target state of the slab */
3074 		new.counters = old.counters;
3075 		new.frozen = 0;
3076 		if (freelist_tail) {
3077 			new.inuse -= free_delta;
3078 			set_freepointer(s, freelist_tail, old.freelist);
3079 			new.freelist = freelist;
3080 		} else {
3081 			new.freelist = old.freelist;
3082 		}
3083 	} while (!slab_update_freelist(s, slab,
3084 		old.freelist, old.counters,
3085 		new.freelist, new.counters,
3086 		"unfreezing slab"));
3087 
3088 	/*
3089 	 * Stage three: Manipulate the slab list based on the updated state.
3090 	 */
3091 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3092 		stat(s, DEACTIVATE_EMPTY);
3093 		discard_slab(s, slab);
3094 		stat(s, FREE_SLAB);
3095 	} else if (new.freelist) {
3096 		spin_lock_irqsave(&n->list_lock, flags);
3097 		add_partial(n, slab, tail);
3098 		spin_unlock_irqrestore(&n->list_lock, flags);
3099 		stat(s, tail);
3100 	} else {
3101 		stat(s, DEACTIVATE_FULL);
3102 	}
3103 }
3104 
3105 #ifdef CONFIG_SLUB_CPU_PARTIAL
3106 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3107 {
3108 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3109 	struct slab *slab, *slab_to_discard = NULL;
3110 	unsigned long flags = 0;
3111 
3112 	while (partial_slab) {
3113 		slab = partial_slab;
3114 		partial_slab = slab->next;
3115 
3116 		n2 = get_node(s, slab_nid(slab));
3117 		if (n != n2) {
3118 			if (n)
3119 				spin_unlock_irqrestore(&n->list_lock, flags);
3120 
3121 			n = n2;
3122 			spin_lock_irqsave(&n->list_lock, flags);
3123 		}
3124 
3125 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3126 			slab->next = slab_to_discard;
3127 			slab_to_discard = slab;
3128 		} else {
3129 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3130 			stat(s, FREE_ADD_PARTIAL);
3131 		}
3132 	}
3133 
3134 	if (n)
3135 		spin_unlock_irqrestore(&n->list_lock, flags);
3136 
3137 	while (slab_to_discard) {
3138 		slab = slab_to_discard;
3139 		slab_to_discard = slab_to_discard->next;
3140 
3141 		stat(s, DEACTIVATE_EMPTY);
3142 		discard_slab(s, slab);
3143 		stat(s, FREE_SLAB);
3144 	}
3145 }
3146 
3147 /*
3148  * Put all the cpu partial slabs to the node partial list.
3149  */
3150 static void put_partials(struct kmem_cache *s)
3151 {
3152 	struct slab *partial_slab;
3153 	unsigned long flags;
3154 
3155 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3156 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3157 	this_cpu_write(s->cpu_slab->partial, NULL);
3158 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3159 
3160 	if (partial_slab)
3161 		__put_partials(s, partial_slab);
3162 }
3163 
3164 static void put_partials_cpu(struct kmem_cache *s,
3165 			     struct kmem_cache_cpu *c)
3166 {
3167 	struct slab *partial_slab;
3168 
3169 	partial_slab = slub_percpu_partial(c);
3170 	c->partial = NULL;
3171 
3172 	if (partial_slab)
3173 		__put_partials(s, partial_slab);
3174 }
3175 
3176 /*
3177  * Put a slab into a partial slab slot if available.
3178  *
3179  * If we did not find a slot then simply move all the partials to the
3180  * per node partial list.
3181  */
3182 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3183 {
3184 	struct slab *oldslab;
3185 	struct slab *slab_to_put = NULL;
3186 	unsigned long flags;
3187 	int slabs = 0;
3188 
3189 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3190 
3191 	oldslab = this_cpu_read(s->cpu_slab->partial);
3192 
3193 	if (oldslab) {
3194 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3195 			/*
3196 			 * Partial array is full. Move the existing set to the
3197 			 * per node partial list. Postpone the actual unfreezing
3198 			 * outside of the critical section.
3199 			 */
3200 			slab_to_put = oldslab;
3201 			oldslab = NULL;
3202 		} else {
3203 			slabs = oldslab->slabs;
3204 		}
3205 	}
3206 
3207 	slabs++;
3208 
3209 	slab->slabs = slabs;
3210 	slab->next = oldslab;
3211 
3212 	this_cpu_write(s->cpu_slab->partial, slab);
3213 
3214 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3215 
3216 	if (slab_to_put) {
3217 		__put_partials(s, slab_to_put);
3218 		stat(s, CPU_PARTIAL_DRAIN);
3219 	}
3220 }
3221 
3222 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3223 
3224 static inline void put_partials(struct kmem_cache *s) { }
3225 static inline void put_partials_cpu(struct kmem_cache *s,
3226 				    struct kmem_cache_cpu *c) { }
3227 
3228 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3229 
3230 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3231 {
3232 	unsigned long flags;
3233 	struct slab *slab;
3234 	void *freelist;
3235 
3236 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3237 
3238 	slab = c->slab;
3239 	freelist = c->freelist;
3240 
3241 	c->slab = NULL;
3242 	c->freelist = NULL;
3243 	c->tid = next_tid(c->tid);
3244 
3245 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3246 
3247 	if (slab) {
3248 		deactivate_slab(s, slab, freelist);
3249 		stat(s, CPUSLAB_FLUSH);
3250 	}
3251 }
3252 
3253 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3254 {
3255 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3256 	void *freelist = c->freelist;
3257 	struct slab *slab = c->slab;
3258 
3259 	c->slab = NULL;
3260 	c->freelist = NULL;
3261 	c->tid = next_tid(c->tid);
3262 
3263 	if (slab) {
3264 		deactivate_slab(s, slab, freelist);
3265 		stat(s, CPUSLAB_FLUSH);
3266 	}
3267 
3268 	put_partials_cpu(s, c);
3269 }
3270 
3271 struct slub_flush_work {
3272 	struct work_struct work;
3273 	struct kmem_cache *s;
3274 	bool skip;
3275 };
3276 
3277 /*
3278  * Flush cpu slab.
3279  *
3280  * Called from CPU work handler with migration disabled.
3281  */
3282 static void flush_cpu_slab(struct work_struct *w)
3283 {
3284 	struct kmem_cache *s;
3285 	struct kmem_cache_cpu *c;
3286 	struct slub_flush_work *sfw;
3287 
3288 	sfw = container_of(w, struct slub_flush_work, work);
3289 
3290 	s = sfw->s;
3291 	c = this_cpu_ptr(s->cpu_slab);
3292 
3293 	if (c->slab)
3294 		flush_slab(s, c);
3295 
3296 	put_partials(s);
3297 }
3298 
3299 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3300 {
3301 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3302 
3303 	return c->slab || slub_percpu_partial(c);
3304 }
3305 
3306 static DEFINE_MUTEX(flush_lock);
3307 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3308 
3309 static void flush_all_cpus_locked(struct kmem_cache *s)
3310 {
3311 	struct slub_flush_work *sfw;
3312 	unsigned int cpu;
3313 
3314 	lockdep_assert_cpus_held();
3315 	mutex_lock(&flush_lock);
3316 
3317 	for_each_online_cpu(cpu) {
3318 		sfw = &per_cpu(slub_flush, cpu);
3319 		if (!has_cpu_slab(cpu, s)) {
3320 			sfw->skip = true;
3321 			continue;
3322 		}
3323 		INIT_WORK(&sfw->work, flush_cpu_slab);
3324 		sfw->skip = false;
3325 		sfw->s = s;
3326 		queue_work_on(cpu, flushwq, &sfw->work);
3327 	}
3328 
3329 	for_each_online_cpu(cpu) {
3330 		sfw = &per_cpu(slub_flush, cpu);
3331 		if (sfw->skip)
3332 			continue;
3333 		flush_work(&sfw->work);
3334 	}
3335 
3336 	mutex_unlock(&flush_lock);
3337 }
3338 
3339 static void flush_all(struct kmem_cache *s)
3340 {
3341 	cpus_read_lock();
3342 	flush_all_cpus_locked(s);
3343 	cpus_read_unlock();
3344 }
3345 
3346 /*
3347  * Use the cpu notifier to insure that the cpu slabs are flushed when
3348  * necessary.
3349  */
3350 static int slub_cpu_dead(unsigned int cpu)
3351 {
3352 	struct kmem_cache *s;
3353 
3354 	mutex_lock(&slab_mutex);
3355 	list_for_each_entry(s, &slab_caches, list)
3356 		__flush_cpu_slab(s, cpu);
3357 	mutex_unlock(&slab_mutex);
3358 	return 0;
3359 }
3360 
3361 #else /* CONFIG_SLUB_TINY */
3362 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3363 static inline void flush_all(struct kmem_cache *s) { }
3364 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3365 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3366 #endif /* CONFIG_SLUB_TINY */
3367 
3368 /*
3369  * Check if the objects in a per cpu structure fit numa
3370  * locality expectations.
3371  */
3372 static inline int node_match(struct slab *slab, int node)
3373 {
3374 #ifdef CONFIG_NUMA
3375 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3376 		return 0;
3377 #endif
3378 	return 1;
3379 }
3380 
3381 #ifdef CONFIG_SLUB_DEBUG
3382 static int count_free(struct slab *slab)
3383 {
3384 	return slab->objects - slab->inuse;
3385 }
3386 
3387 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3388 {
3389 	return atomic_long_read(&n->total_objects);
3390 }
3391 
3392 /* Supports checking bulk free of a constructed freelist */
3393 static inline bool free_debug_processing(struct kmem_cache *s,
3394 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3395 	unsigned long addr, depot_stack_handle_t handle)
3396 {
3397 	bool checks_ok = false;
3398 	void *object = head;
3399 	int cnt = 0;
3400 
3401 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3402 		if (!check_slab(s, slab))
3403 			goto out;
3404 	}
3405 
3406 	if (slab->inuse < *bulk_cnt) {
3407 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3408 			 slab->inuse, *bulk_cnt);
3409 		goto out;
3410 	}
3411 
3412 next_object:
3413 
3414 	if (++cnt > *bulk_cnt)
3415 		goto out_cnt;
3416 
3417 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3418 		if (!free_consistency_checks(s, slab, object, addr))
3419 			goto out;
3420 	}
3421 
3422 	if (s->flags & SLAB_STORE_USER)
3423 		set_track_update(s, object, TRACK_FREE, addr, handle);
3424 	trace(s, slab, object, 0);
3425 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3426 	init_object(s, object, SLUB_RED_INACTIVE);
3427 
3428 	/* Reached end of constructed freelist yet? */
3429 	if (object != tail) {
3430 		object = get_freepointer(s, object);
3431 		goto next_object;
3432 	}
3433 	checks_ok = true;
3434 
3435 out_cnt:
3436 	if (cnt != *bulk_cnt) {
3437 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3438 			 *bulk_cnt, cnt);
3439 		*bulk_cnt = cnt;
3440 	}
3441 
3442 out:
3443 
3444 	if (!checks_ok)
3445 		slab_fix(s, "Object at 0x%p not freed", object);
3446 
3447 	return checks_ok;
3448 }
3449 #endif /* CONFIG_SLUB_DEBUG */
3450 
3451 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3452 static unsigned long count_partial(struct kmem_cache_node *n,
3453 					int (*get_count)(struct slab *))
3454 {
3455 	unsigned long flags;
3456 	unsigned long x = 0;
3457 	struct slab *slab;
3458 
3459 	spin_lock_irqsave(&n->list_lock, flags);
3460 	list_for_each_entry(slab, &n->partial, slab_list)
3461 		x += get_count(slab);
3462 	spin_unlock_irqrestore(&n->list_lock, flags);
3463 	return x;
3464 }
3465 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3466 
3467 #ifdef CONFIG_SLUB_DEBUG
3468 #define MAX_PARTIAL_TO_SCAN 10000
3469 
3470 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3471 {
3472 	unsigned long flags;
3473 	unsigned long x = 0;
3474 	struct slab *slab;
3475 
3476 	spin_lock_irqsave(&n->list_lock, flags);
3477 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3478 		list_for_each_entry(slab, &n->partial, slab_list)
3479 			x += slab->objects - slab->inuse;
3480 	} else {
3481 		/*
3482 		 * For a long list, approximate the total count of objects in
3483 		 * it to meet the limit on the number of slabs to scan.
3484 		 * Scan from both the list's head and tail for better accuracy.
3485 		 */
3486 		unsigned long scanned = 0;
3487 
3488 		list_for_each_entry(slab, &n->partial, slab_list) {
3489 			x += slab->objects - slab->inuse;
3490 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3491 				break;
3492 		}
3493 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3494 			x += slab->objects - slab->inuse;
3495 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3496 				break;
3497 		}
3498 		x = mult_frac(x, n->nr_partial, scanned);
3499 		x = min(x, node_nr_objs(n));
3500 	}
3501 	spin_unlock_irqrestore(&n->list_lock, flags);
3502 	return x;
3503 }
3504 
3505 static noinline void
3506 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3507 {
3508 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3509 				      DEFAULT_RATELIMIT_BURST);
3510 	int cpu = raw_smp_processor_id();
3511 	int node;
3512 	struct kmem_cache_node *n;
3513 
3514 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3515 		return;
3516 
3517 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3518 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3519 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3520 		s->name, s->object_size, s->size, oo_order(s->oo),
3521 		oo_order(s->min));
3522 
3523 	if (oo_order(s->min) > get_order(s->object_size))
3524 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3525 			s->name);
3526 
3527 	for_each_kmem_cache_node(s, node, n) {
3528 		unsigned long nr_slabs;
3529 		unsigned long nr_objs;
3530 		unsigned long nr_free;
3531 
3532 		nr_free  = count_partial_free_approx(n);
3533 		nr_slabs = node_nr_slabs(n);
3534 		nr_objs  = node_nr_objs(n);
3535 
3536 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3537 			node, nr_slabs, nr_objs, nr_free);
3538 	}
3539 }
3540 #else /* CONFIG_SLUB_DEBUG */
3541 static inline void
3542 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3543 #endif
3544 
3545 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3546 {
3547 	if (unlikely(slab_test_pfmemalloc(slab)))
3548 		return gfp_pfmemalloc_allowed(gfpflags);
3549 
3550 	return true;
3551 }
3552 
3553 #ifndef CONFIG_SLUB_TINY
3554 static inline bool
3555 __update_cpu_freelist_fast(struct kmem_cache *s,
3556 			   void *freelist_old, void *freelist_new,
3557 			   unsigned long tid)
3558 {
3559 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3560 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3561 
3562 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3563 					     &old.full, new.full);
3564 }
3565 
3566 /*
3567  * Check the slab->freelist and either transfer the freelist to the
3568  * per cpu freelist or deactivate the slab.
3569  *
3570  * The slab is still frozen if the return value is not NULL.
3571  *
3572  * If this function returns NULL then the slab has been unfrozen.
3573  */
3574 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3575 {
3576 	struct slab new;
3577 	unsigned long counters;
3578 	void *freelist;
3579 
3580 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3581 
3582 	do {
3583 		freelist = slab->freelist;
3584 		counters = slab->counters;
3585 
3586 		new.counters = counters;
3587 
3588 		new.inuse = slab->objects;
3589 		new.frozen = freelist != NULL;
3590 
3591 	} while (!__slab_update_freelist(s, slab,
3592 		freelist, counters,
3593 		NULL, new.counters,
3594 		"get_freelist"));
3595 
3596 	return freelist;
3597 }
3598 
3599 /*
3600  * Freeze the partial slab and return the pointer to the freelist.
3601  */
3602 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3603 {
3604 	struct slab new;
3605 	unsigned long counters;
3606 	void *freelist;
3607 
3608 	do {
3609 		freelist = slab->freelist;
3610 		counters = slab->counters;
3611 
3612 		new.counters = counters;
3613 		VM_BUG_ON(new.frozen);
3614 
3615 		new.inuse = slab->objects;
3616 		new.frozen = 1;
3617 
3618 	} while (!slab_update_freelist(s, slab,
3619 		freelist, counters,
3620 		NULL, new.counters,
3621 		"freeze_slab"));
3622 
3623 	return freelist;
3624 }
3625 
3626 /*
3627  * Slow path. The lockless freelist is empty or we need to perform
3628  * debugging duties.
3629  *
3630  * Processing is still very fast if new objects have been freed to the
3631  * regular freelist. In that case we simply take over the regular freelist
3632  * as the lockless freelist and zap the regular freelist.
3633  *
3634  * If that is not working then we fall back to the partial lists. We take the
3635  * first element of the freelist as the object to allocate now and move the
3636  * rest of the freelist to the lockless freelist.
3637  *
3638  * And if we were unable to get a new slab from the partial slab lists then
3639  * we need to allocate a new slab. This is the slowest path since it involves
3640  * a call to the page allocator and the setup of a new slab.
3641  *
3642  * Version of __slab_alloc to use when we know that preemption is
3643  * already disabled (which is the case for bulk allocation).
3644  */
3645 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3646 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3647 {
3648 	void *freelist;
3649 	struct slab *slab;
3650 	unsigned long flags;
3651 	struct partial_context pc;
3652 	bool try_thisnode = true;
3653 
3654 	stat(s, ALLOC_SLOWPATH);
3655 
3656 reread_slab:
3657 
3658 	slab = READ_ONCE(c->slab);
3659 	if (!slab) {
3660 		/*
3661 		 * if the node is not online or has no normal memory, just
3662 		 * ignore the node constraint
3663 		 */
3664 		if (unlikely(node != NUMA_NO_NODE &&
3665 			     !node_isset(node, slab_nodes)))
3666 			node = NUMA_NO_NODE;
3667 		goto new_slab;
3668 	}
3669 
3670 	if (unlikely(!node_match(slab, node))) {
3671 		/*
3672 		 * same as above but node_match() being false already
3673 		 * implies node != NUMA_NO_NODE
3674 		 */
3675 		if (!node_isset(node, slab_nodes)) {
3676 			node = NUMA_NO_NODE;
3677 		} else {
3678 			stat(s, ALLOC_NODE_MISMATCH);
3679 			goto deactivate_slab;
3680 		}
3681 	}
3682 
3683 	/*
3684 	 * By rights, we should be searching for a slab page that was
3685 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3686 	 * information when the page leaves the per-cpu allocator
3687 	 */
3688 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3689 		goto deactivate_slab;
3690 
3691 	/* must check again c->slab in case we got preempted and it changed */
3692 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3693 	if (unlikely(slab != c->slab)) {
3694 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3695 		goto reread_slab;
3696 	}
3697 	freelist = c->freelist;
3698 	if (freelist)
3699 		goto load_freelist;
3700 
3701 	freelist = get_freelist(s, slab);
3702 
3703 	if (!freelist) {
3704 		c->slab = NULL;
3705 		c->tid = next_tid(c->tid);
3706 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3707 		stat(s, DEACTIVATE_BYPASS);
3708 		goto new_slab;
3709 	}
3710 
3711 	stat(s, ALLOC_REFILL);
3712 
3713 load_freelist:
3714 
3715 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3716 
3717 	/*
3718 	 * freelist is pointing to the list of objects to be used.
3719 	 * slab is pointing to the slab from which the objects are obtained.
3720 	 * That slab must be frozen for per cpu allocations to work.
3721 	 */
3722 	VM_BUG_ON(!c->slab->frozen);
3723 	c->freelist = get_freepointer(s, freelist);
3724 	c->tid = next_tid(c->tid);
3725 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3726 	return freelist;
3727 
3728 deactivate_slab:
3729 
3730 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3731 	if (slab != c->slab) {
3732 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3733 		goto reread_slab;
3734 	}
3735 	freelist = c->freelist;
3736 	c->slab = NULL;
3737 	c->freelist = NULL;
3738 	c->tid = next_tid(c->tid);
3739 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3740 	deactivate_slab(s, slab, freelist);
3741 
3742 new_slab:
3743 
3744 #ifdef CONFIG_SLUB_CPU_PARTIAL
3745 	while (slub_percpu_partial(c)) {
3746 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3747 		if (unlikely(c->slab)) {
3748 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3749 			goto reread_slab;
3750 		}
3751 		if (unlikely(!slub_percpu_partial(c))) {
3752 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3753 			/* we were preempted and partial list got empty */
3754 			goto new_objects;
3755 		}
3756 
3757 		slab = slub_percpu_partial(c);
3758 		slub_set_percpu_partial(c, slab);
3759 
3760 		if (likely(node_match(slab, node) &&
3761 			   pfmemalloc_match(slab, gfpflags))) {
3762 			c->slab = slab;
3763 			freelist = get_freelist(s, slab);
3764 			VM_BUG_ON(!freelist);
3765 			stat(s, CPU_PARTIAL_ALLOC);
3766 			goto load_freelist;
3767 		}
3768 
3769 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3770 
3771 		slab->next = NULL;
3772 		__put_partials(s, slab);
3773 	}
3774 #endif
3775 
3776 new_objects:
3777 
3778 	pc.flags = gfpflags;
3779 	/*
3780 	 * When a preferred node is indicated but no __GFP_THISNODE
3781 	 *
3782 	 * 1) try to get a partial slab from target node only by having
3783 	 *    __GFP_THISNODE in pc.flags for get_partial()
3784 	 * 2) if 1) failed, try to allocate a new slab from target node with
3785 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3786 	 * 3) if 2) failed, retry with original gfpflags which will allow
3787 	 *    get_partial() try partial lists of other nodes before potentially
3788 	 *    allocating new page from other nodes
3789 	 */
3790 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3791 		     && try_thisnode))
3792 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3793 
3794 	pc.orig_size = orig_size;
3795 	slab = get_partial(s, node, &pc);
3796 	if (slab) {
3797 		if (kmem_cache_debug(s)) {
3798 			freelist = pc.object;
3799 			/*
3800 			 * For debug caches here we had to go through
3801 			 * alloc_single_from_partial() so just store the
3802 			 * tracking info and return the object.
3803 			 */
3804 			if (s->flags & SLAB_STORE_USER)
3805 				set_track(s, freelist, TRACK_ALLOC, addr);
3806 
3807 			return freelist;
3808 		}
3809 
3810 		freelist = freeze_slab(s, slab);
3811 		goto retry_load_slab;
3812 	}
3813 
3814 	slub_put_cpu_ptr(s->cpu_slab);
3815 	slab = new_slab(s, pc.flags, node);
3816 	c = slub_get_cpu_ptr(s->cpu_slab);
3817 
3818 	if (unlikely(!slab)) {
3819 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3820 		    && try_thisnode) {
3821 			try_thisnode = false;
3822 			goto new_objects;
3823 		}
3824 		slab_out_of_memory(s, gfpflags, node);
3825 		return NULL;
3826 	}
3827 
3828 	stat(s, ALLOC_SLAB);
3829 
3830 	if (kmem_cache_debug(s)) {
3831 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3832 
3833 		if (unlikely(!freelist))
3834 			goto new_objects;
3835 
3836 		if (s->flags & SLAB_STORE_USER)
3837 			set_track(s, freelist, TRACK_ALLOC, addr);
3838 
3839 		return freelist;
3840 	}
3841 
3842 	/*
3843 	 * No other reference to the slab yet so we can
3844 	 * muck around with it freely without cmpxchg
3845 	 */
3846 	freelist = slab->freelist;
3847 	slab->freelist = NULL;
3848 	slab->inuse = slab->objects;
3849 	slab->frozen = 1;
3850 
3851 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3852 
3853 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3854 		/*
3855 		 * For !pfmemalloc_match() case we don't load freelist so that
3856 		 * we don't make further mismatched allocations easier.
3857 		 */
3858 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3859 		return freelist;
3860 	}
3861 
3862 retry_load_slab:
3863 
3864 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3865 	if (unlikely(c->slab)) {
3866 		void *flush_freelist = c->freelist;
3867 		struct slab *flush_slab = c->slab;
3868 
3869 		c->slab = NULL;
3870 		c->freelist = NULL;
3871 		c->tid = next_tid(c->tid);
3872 
3873 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3874 
3875 		deactivate_slab(s, flush_slab, flush_freelist);
3876 
3877 		stat(s, CPUSLAB_FLUSH);
3878 
3879 		goto retry_load_slab;
3880 	}
3881 	c->slab = slab;
3882 
3883 	goto load_freelist;
3884 }
3885 
3886 /*
3887  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3888  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3889  * pointer.
3890  */
3891 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3892 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3893 {
3894 	void *p;
3895 
3896 #ifdef CONFIG_PREEMPT_COUNT
3897 	/*
3898 	 * We may have been preempted and rescheduled on a different
3899 	 * cpu before disabling preemption. Need to reload cpu area
3900 	 * pointer.
3901 	 */
3902 	c = slub_get_cpu_ptr(s->cpu_slab);
3903 #endif
3904 
3905 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3906 #ifdef CONFIG_PREEMPT_COUNT
3907 	slub_put_cpu_ptr(s->cpu_slab);
3908 #endif
3909 	return p;
3910 }
3911 
3912 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3913 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3914 {
3915 	struct kmem_cache_cpu *c;
3916 	struct slab *slab;
3917 	unsigned long tid;
3918 	void *object;
3919 
3920 redo:
3921 	/*
3922 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3923 	 * enabled. We may switch back and forth between cpus while
3924 	 * reading from one cpu area. That does not matter as long
3925 	 * as we end up on the original cpu again when doing the cmpxchg.
3926 	 *
3927 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3928 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3929 	 * the tid. If we are preempted and switched to another cpu between the
3930 	 * two reads, it's OK as the two are still associated with the same cpu
3931 	 * and cmpxchg later will validate the cpu.
3932 	 */
3933 	c = raw_cpu_ptr(s->cpu_slab);
3934 	tid = READ_ONCE(c->tid);
3935 
3936 	/*
3937 	 * Irqless object alloc/free algorithm used here depends on sequence
3938 	 * of fetching cpu_slab's data. tid should be fetched before anything
3939 	 * on c to guarantee that object and slab associated with previous tid
3940 	 * won't be used with current tid. If we fetch tid first, object and
3941 	 * slab could be one associated with next tid and our alloc/free
3942 	 * request will be failed. In this case, we will retry. So, no problem.
3943 	 */
3944 	barrier();
3945 
3946 	/*
3947 	 * The transaction ids are globally unique per cpu and per operation on
3948 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3949 	 * occurs on the right processor and that there was no operation on the
3950 	 * linked list in between.
3951 	 */
3952 
3953 	object = c->freelist;
3954 	slab = c->slab;
3955 
3956 #ifdef CONFIG_NUMA
3957 	if (static_branch_unlikely(&strict_numa) &&
3958 			node == NUMA_NO_NODE) {
3959 
3960 		struct mempolicy *mpol = current->mempolicy;
3961 
3962 		if (mpol) {
3963 			/*
3964 			 * Special BIND rule support. If existing slab
3965 			 * is in permitted set then do not redirect
3966 			 * to a particular node.
3967 			 * Otherwise we apply the memory policy to get
3968 			 * the node we need to allocate on.
3969 			 */
3970 			if (mpol->mode != MPOL_BIND || !slab ||
3971 					!node_isset(slab_nid(slab), mpol->nodes))
3972 
3973 				node = mempolicy_slab_node();
3974 		}
3975 	}
3976 #endif
3977 
3978 	if (!USE_LOCKLESS_FAST_PATH() ||
3979 	    unlikely(!object || !slab || !node_match(slab, node))) {
3980 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3981 	} else {
3982 		void *next_object = get_freepointer_safe(s, object);
3983 
3984 		/*
3985 		 * The cmpxchg will only match if there was no additional
3986 		 * operation and if we are on the right processor.
3987 		 *
3988 		 * The cmpxchg does the following atomically (without lock
3989 		 * semantics!)
3990 		 * 1. Relocate first pointer to the current per cpu area.
3991 		 * 2. Verify that tid and freelist have not been changed
3992 		 * 3. If they were not changed replace tid and freelist
3993 		 *
3994 		 * Since this is without lock semantics the protection is only
3995 		 * against code executing on this cpu *not* from access by
3996 		 * other cpus.
3997 		 */
3998 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3999 			note_cmpxchg_failure("slab_alloc", s, tid);
4000 			goto redo;
4001 		}
4002 		prefetch_freepointer(s, next_object);
4003 		stat(s, ALLOC_FASTPATH);
4004 	}
4005 
4006 	return object;
4007 }
4008 #else /* CONFIG_SLUB_TINY */
4009 static void *__slab_alloc_node(struct kmem_cache *s,
4010 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4011 {
4012 	struct partial_context pc;
4013 	struct slab *slab;
4014 	void *object;
4015 
4016 	pc.flags = gfpflags;
4017 	pc.orig_size = orig_size;
4018 	slab = get_partial(s, node, &pc);
4019 
4020 	if (slab)
4021 		return pc.object;
4022 
4023 	slab = new_slab(s, gfpflags, node);
4024 	if (unlikely(!slab)) {
4025 		slab_out_of_memory(s, gfpflags, node);
4026 		return NULL;
4027 	}
4028 
4029 	object = alloc_single_from_new_slab(s, slab, orig_size);
4030 
4031 	return object;
4032 }
4033 #endif /* CONFIG_SLUB_TINY */
4034 
4035 /*
4036  * If the object has been wiped upon free, make sure it's fully initialized by
4037  * zeroing out freelist pointer.
4038  *
4039  * Note that we also wipe custom freelist pointers.
4040  */
4041 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4042 						   void *obj)
4043 {
4044 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4045 	    !freeptr_outside_object(s))
4046 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4047 			0, sizeof(void *));
4048 }
4049 
4050 static __fastpath_inline
4051 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4052 {
4053 	flags &= gfp_allowed_mask;
4054 
4055 	might_alloc(flags);
4056 
4057 	if (unlikely(should_failslab(s, flags)))
4058 		return NULL;
4059 
4060 	return s;
4061 }
4062 
4063 static __fastpath_inline
4064 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4065 			  gfp_t flags, size_t size, void **p, bool init,
4066 			  unsigned int orig_size)
4067 {
4068 	unsigned int zero_size = s->object_size;
4069 	bool kasan_init = init;
4070 	size_t i;
4071 	gfp_t init_flags = flags & gfp_allowed_mask;
4072 
4073 	/*
4074 	 * For kmalloc object, the allocated memory size(object_size) is likely
4075 	 * larger than the requested size(orig_size). If redzone check is
4076 	 * enabled for the extra space, don't zero it, as it will be redzoned
4077 	 * soon. The redzone operation for this extra space could be seen as a
4078 	 * replacement of current poisoning under certain debug option, and
4079 	 * won't break other sanity checks.
4080 	 */
4081 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4082 	    (s->flags & SLAB_KMALLOC))
4083 		zero_size = orig_size;
4084 
4085 	/*
4086 	 * When slab_debug is enabled, avoid memory initialization integrated
4087 	 * into KASAN and instead zero out the memory via the memset below with
4088 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4089 	 * cause false-positive reports. This does not lead to a performance
4090 	 * penalty on production builds, as slab_debug is not intended to be
4091 	 * enabled there.
4092 	 */
4093 	if (__slub_debug_enabled())
4094 		kasan_init = false;
4095 
4096 	/*
4097 	 * As memory initialization might be integrated into KASAN,
4098 	 * kasan_slab_alloc and initialization memset must be
4099 	 * kept together to avoid discrepancies in behavior.
4100 	 *
4101 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4102 	 */
4103 	for (i = 0; i < size; i++) {
4104 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4105 		if (p[i] && init && (!kasan_init ||
4106 				     !kasan_has_integrated_init()))
4107 			memset(p[i], 0, zero_size);
4108 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4109 					 s->flags, init_flags);
4110 		kmsan_slab_alloc(s, p[i], init_flags);
4111 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4112 	}
4113 
4114 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4115 }
4116 
4117 /*
4118  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4119  * have the fastpath folded into their functions. So no function call
4120  * overhead for requests that can be satisfied on the fastpath.
4121  *
4122  * The fastpath works by first checking if the lockless freelist can be used.
4123  * If not then __slab_alloc is called for slow processing.
4124  *
4125  * Otherwise we can simply pick the next object from the lockless free list.
4126  */
4127 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4128 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4129 {
4130 	void *object;
4131 	bool init = false;
4132 
4133 	s = slab_pre_alloc_hook(s, gfpflags);
4134 	if (unlikely(!s))
4135 		return NULL;
4136 
4137 	object = kfence_alloc(s, orig_size, gfpflags);
4138 	if (unlikely(object))
4139 		goto out;
4140 
4141 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4142 
4143 	maybe_wipe_obj_freeptr(s, object);
4144 	init = slab_want_init_on_alloc(gfpflags, s);
4145 
4146 out:
4147 	/*
4148 	 * When init equals 'true', like for kzalloc() family, only
4149 	 * @orig_size bytes might be zeroed instead of s->object_size
4150 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4151 	 * object is set to NULL
4152 	 */
4153 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4154 
4155 	return object;
4156 }
4157 
4158 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4159 {
4160 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4161 				    s->object_size);
4162 
4163 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4164 
4165 	return ret;
4166 }
4167 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4168 
4169 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4170 			   gfp_t gfpflags)
4171 {
4172 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4173 				    s->object_size);
4174 
4175 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4176 
4177 	return ret;
4178 }
4179 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4180 
4181 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4182 {
4183 	if (!memcg_kmem_online())
4184 		return true;
4185 
4186 	return memcg_slab_post_charge(objp, gfpflags);
4187 }
4188 EXPORT_SYMBOL(kmem_cache_charge);
4189 
4190 /**
4191  * kmem_cache_alloc_node - Allocate an object on the specified node
4192  * @s: The cache to allocate from.
4193  * @gfpflags: See kmalloc().
4194  * @node: node number of the target node.
4195  *
4196  * Identical to kmem_cache_alloc but it will allocate memory on the given
4197  * node, which can improve the performance for cpu bound structures.
4198  *
4199  * Fallback to other node is possible if __GFP_THISNODE is not set.
4200  *
4201  * Return: pointer to the new object or %NULL in case of error
4202  */
4203 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4204 {
4205 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4206 
4207 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4208 
4209 	return ret;
4210 }
4211 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4212 
4213 /*
4214  * To avoid unnecessary overhead, we pass through large allocation requests
4215  * directly to the page allocator. We use __GFP_COMP, because we will need to
4216  * know the allocation order to free the pages properly in kfree.
4217  */
4218 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4219 {
4220 	struct folio *folio;
4221 	void *ptr = NULL;
4222 	unsigned int order = get_order(size);
4223 
4224 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4225 		flags = kmalloc_fix_flags(flags);
4226 
4227 	flags |= __GFP_COMP;
4228 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4229 	if (folio) {
4230 		ptr = folio_address(folio);
4231 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4232 				      PAGE_SIZE << order);
4233 	}
4234 
4235 	ptr = kasan_kmalloc_large(ptr, size, flags);
4236 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4237 	kmemleak_alloc(ptr, size, 1, flags);
4238 	kmsan_kmalloc_large(ptr, size, flags);
4239 
4240 	return ptr;
4241 }
4242 
4243 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4244 {
4245 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4246 
4247 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4248 		      flags, NUMA_NO_NODE);
4249 	return ret;
4250 }
4251 EXPORT_SYMBOL(__kmalloc_large_noprof);
4252 
4253 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4254 {
4255 	void *ret = ___kmalloc_large_node(size, flags, node);
4256 
4257 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4258 		      flags, node);
4259 	return ret;
4260 }
4261 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4262 
4263 static __always_inline
4264 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4265 			unsigned long caller)
4266 {
4267 	struct kmem_cache *s;
4268 	void *ret;
4269 
4270 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4271 		ret = __kmalloc_large_node_noprof(size, flags, node);
4272 		trace_kmalloc(caller, ret, size,
4273 			      PAGE_SIZE << get_order(size), flags, node);
4274 		return ret;
4275 	}
4276 
4277 	if (unlikely(!size))
4278 		return ZERO_SIZE_PTR;
4279 
4280 	s = kmalloc_slab(size, b, flags, caller);
4281 
4282 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4283 	ret = kasan_kmalloc(s, ret, size, flags);
4284 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4285 	return ret;
4286 }
4287 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4288 {
4289 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4290 }
4291 EXPORT_SYMBOL(__kmalloc_node_noprof);
4292 
4293 void *__kmalloc_noprof(size_t size, gfp_t flags)
4294 {
4295 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4296 }
4297 EXPORT_SYMBOL(__kmalloc_noprof);
4298 
4299 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4300 					 int node, unsigned long caller)
4301 {
4302 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4303 
4304 }
4305 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4306 
4307 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4308 {
4309 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4310 					    _RET_IP_, size);
4311 
4312 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4313 
4314 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4315 	return ret;
4316 }
4317 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4318 
4319 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4320 				  int node, size_t size)
4321 {
4322 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4323 
4324 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4325 
4326 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4327 	return ret;
4328 }
4329 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4330 
4331 static noinline void free_to_partial_list(
4332 	struct kmem_cache *s, struct slab *slab,
4333 	void *head, void *tail, int bulk_cnt,
4334 	unsigned long addr)
4335 {
4336 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4337 	struct slab *slab_free = NULL;
4338 	int cnt = bulk_cnt;
4339 	unsigned long flags;
4340 	depot_stack_handle_t handle = 0;
4341 
4342 	if (s->flags & SLAB_STORE_USER)
4343 		handle = set_track_prepare();
4344 
4345 	spin_lock_irqsave(&n->list_lock, flags);
4346 
4347 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4348 		void *prior = slab->freelist;
4349 
4350 		/* Perform the actual freeing while we still hold the locks */
4351 		slab->inuse -= cnt;
4352 		set_freepointer(s, tail, prior);
4353 		slab->freelist = head;
4354 
4355 		/*
4356 		 * If the slab is empty, and node's partial list is full,
4357 		 * it should be discarded anyway no matter it's on full or
4358 		 * partial list.
4359 		 */
4360 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4361 			slab_free = slab;
4362 
4363 		if (!prior) {
4364 			/* was on full list */
4365 			remove_full(s, n, slab);
4366 			if (!slab_free) {
4367 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4368 				stat(s, FREE_ADD_PARTIAL);
4369 			}
4370 		} else if (slab_free) {
4371 			remove_partial(n, slab);
4372 			stat(s, FREE_REMOVE_PARTIAL);
4373 		}
4374 	}
4375 
4376 	if (slab_free) {
4377 		/*
4378 		 * Update the counters while still holding n->list_lock to
4379 		 * prevent spurious validation warnings
4380 		 */
4381 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4382 	}
4383 
4384 	spin_unlock_irqrestore(&n->list_lock, flags);
4385 
4386 	if (slab_free) {
4387 		stat(s, FREE_SLAB);
4388 		free_slab(s, slab_free);
4389 	}
4390 }
4391 
4392 /*
4393  * Slow path handling. This may still be called frequently since objects
4394  * have a longer lifetime than the cpu slabs in most processing loads.
4395  *
4396  * So we still attempt to reduce cache line usage. Just take the slab
4397  * lock and free the item. If there is no additional partial slab
4398  * handling required then we can return immediately.
4399  */
4400 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4401 			void *head, void *tail, int cnt,
4402 			unsigned long addr)
4403 
4404 {
4405 	void *prior;
4406 	int was_frozen;
4407 	struct slab new;
4408 	unsigned long counters;
4409 	struct kmem_cache_node *n = NULL;
4410 	unsigned long flags;
4411 	bool on_node_partial;
4412 
4413 	stat(s, FREE_SLOWPATH);
4414 
4415 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4416 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4417 		return;
4418 	}
4419 
4420 	do {
4421 		if (unlikely(n)) {
4422 			spin_unlock_irqrestore(&n->list_lock, flags);
4423 			n = NULL;
4424 		}
4425 		prior = slab->freelist;
4426 		counters = slab->counters;
4427 		set_freepointer(s, tail, prior);
4428 		new.counters = counters;
4429 		was_frozen = new.frozen;
4430 		new.inuse -= cnt;
4431 		if ((!new.inuse || !prior) && !was_frozen) {
4432 			/* Needs to be taken off a list */
4433 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4434 
4435 				n = get_node(s, slab_nid(slab));
4436 				/*
4437 				 * Speculatively acquire the list_lock.
4438 				 * If the cmpxchg does not succeed then we may
4439 				 * drop the list_lock without any processing.
4440 				 *
4441 				 * Otherwise the list_lock will synchronize with
4442 				 * other processors updating the list of slabs.
4443 				 */
4444 				spin_lock_irqsave(&n->list_lock, flags);
4445 
4446 				on_node_partial = slab_test_node_partial(slab);
4447 			}
4448 		}
4449 
4450 	} while (!slab_update_freelist(s, slab,
4451 		prior, counters,
4452 		head, new.counters,
4453 		"__slab_free"));
4454 
4455 	if (likely(!n)) {
4456 
4457 		if (likely(was_frozen)) {
4458 			/*
4459 			 * The list lock was not taken therefore no list
4460 			 * activity can be necessary.
4461 			 */
4462 			stat(s, FREE_FROZEN);
4463 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4464 			/*
4465 			 * If we started with a full slab then put it onto the
4466 			 * per cpu partial list.
4467 			 */
4468 			put_cpu_partial(s, slab, 1);
4469 			stat(s, CPU_PARTIAL_FREE);
4470 		}
4471 
4472 		return;
4473 	}
4474 
4475 	/*
4476 	 * This slab was partially empty but not on the per-node partial list,
4477 	 * in which case we shouldn't manipulate its list, just return.
4478 	 */
4479 	if (prior && !on_node_partial) {
4480 		spin_unlock_irqrestore(&n->list_lock, flags);
4481 		return;
4482 	}
4483 
4484 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4485 		goto slab_empty;
4486 
4487 	/*
4488 	 * Objects left in the slab. If it was not on the partial list before
4489 	 * then add it.
4490 	 */
4491 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4492 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4493 		stat(s, FREE_ADD_PARTIAL);
4494 	}
4495 	spin_unlock_irqrestore(&n->list_lock, flags);
4496 	return;
4497 
4498 slab_empty:
4499 	if (prior) {
4500 		/*
4501 		 * Slab on the partial list.
4502 		 */
4503 		remove_partial(n, slab);
4504 		stat(s, FREE_REMOVE_PARTIAL);
4505 	}
4506 
4507 	spin_unlock_irqrestore(&n->list_lock, flags);
4508 	stat(s, FREE_SLAB);
4509 	discard_slab(s, slab);
4510 }
4511 
4512 #ifndef CONFIG_SLUB_TINY
4513 /*
4514  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4515  * can perform fastpath freeing without additional function calls.
4516  *
4517  * The fastpath is only possible if we are freeing to the current cpu slab
4518  * of this processor. This typically the case if we have just allocated
4519  * the item before.
4520  *
4521  * If fastpath is not possible then fall back to __slab_free where we deal
4522  * with all sorts of special processing.
4523  *
4524  * Bulk free of a freelist with several objects (all pointing to the
4525  * same slab) possible by specifying head and tail ptr, plus objects
4526  * count (cnt). Bulk free indicated by tail pointer being set.
4527  */
4528 static __always_inline void do_slab_free(struct kmem_cache *s,
4529 				struct slab *slab, void *head, void *tail,
4530 				int cnt, unsigned long addr)
4531 {
4532 	struct kmem_cache_cpu *c;
4533 	unsigned long tid;
4534 	void **freelist;
4535 
4536 redo:
4537 	/*
4538 	 * Determine the currently cpus per cpu slab.
4539 	 * The cpu may change afterward. However that does not matter since
4540 	 * data is retrieved via this pointer. If we are on the same cpu
4541 	 * during the cmpxchg then the free will succeed.
4542 	 */
4543 	c = raw_cpu_ptr(s->cpu_slab);
4544 	tid = READ_ONCE(c->tid);
4545 
4546 	/* Same with comment on barrier() in __slab_alloc_node() */
4547 	barrier();
4548 
4549 	if (unlikely(slab != c->slab)) {
4550 		__slab_free(s, slab, head, tail, cnt, addr);
4551 		return;
4552 	}
4553 
4554 	if (USE_LOCKLESS_FAST_PATH()) {
4555 		freelist = READ_ONCE(c->freelist);
4556 
4557 		set_freepointer(s, tail, freelist);
4558 
4559 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4560 			note_cmpxchg_failure("slab_free", s, tid);
4561 			goto redo;
4562 		}
4563 	} else {
4564 		/* Update the free list under the local lock */
4565 		local_lock(&s->cpu_slab->lock);
4566 		c = this_cpu_ptr(s->cpu_slab);
4567 		if (unlikely(slab != c->slab)) {
4568 			local_unlock(&s->cpu_slab->lock);
4569 			goto redo;
4570 		}
4571 		tid = c->tid;
4572 		freelist = c->freelist;
4573 
4574 		set_freepointer(s, tail, freelist);
4575 		c->freelist = head;
4576 		c->tid = next_tid(tid);
4577 
4578 		local_unlock(&s->cpu_slab->lock);
4579 	}
4580 	stat_add(s, FREE_FASTPATH, cnt);
4581 }
4582 #else /* CONFIG_SLUB_TINY */
4583 static void do_slab_free(struct kmem_cache *s,
4584 				struct slab *slab, void *head, void *tail,
4585 				int cnt, unsigned long addr)
4586 {
4587 	__slab_free(s, slab, head, tail, cnt, addr);
4588 }
4589 #endif /* CONFIG_SLUB_TINY */
4590 
4591 static __fastpath_inline
4592 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4593 	       unsigned long addr)
4594 {
4595 	memcg_slab_free_hook(s, slab, &object, 1);
4596 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4597 
4598 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4599 		do_slab_free(s, slab, object, object, 1, addr);
4600 }
4601 
4602 #ifdef CONFIG_MEMCG
4603 /* Do not inline the rare memcg charging failed path into the allocation path */
4604 static noinline
4605 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4606 {
4607 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4608 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4609 }
4610 #endif
4611 
4612 static __fastpath_inline
4613 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4614 		    void *tail, void **p, int cnt, unsigned long addr)
4615 {
4616 	memcg_slab_free_hook(s, slab, p, cnt);
4617 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4618 	/*
4619 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4620 	 * to remove objects, whose reuse must be delayed.
4621 	 */
4622 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4623 		do_slab_free(s, slab, head, tail, cnt, addr);
4624 }
4625 
4626 #ifdef CONFIG_SLUB_RCU_DEBUG
4627 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4628 {
4629 	struct rcu_delayed_free *delayed_free =
4630 			container_of(rcu_head, struct rcu_delayed_free, head);
4631 	void *object = delayed_free->object;
4632 	struct slab *slab = virt_to_slab(object);
4633 	struct kmem_cache *s;
4634 
4635 	kfree(delayed_free);
4636 
4637 	if (WARN_ON(is_kfence_address(object)))
4638 		return;
4639 
4640 	/* find the object and the cache again */
4641 	if (WARN_ON(!slab))
4642 		return;
4643 	s = slab->slab_cache;
4644 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4645 		return;
4646 
4647 	/* resume freeing */
4648 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4649 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4650 }
4651 #endif /* CONFIG_SLUB_RCU_DEBUG */
4652 
4653 #ifdef CONFIG_KASAN_GENERIC
4654 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4655 {
4656 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4657 }
4658 #endif
4659 
4660 static inline struct kmem_cache *virt_to_cache(const void *obj)
4661 {
4662 	struct slab *slab;
4663 
4664 	slab = virt_to_slab(obj);
4665 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4666 		return NULL;
4667 	return slab->slab_cache;
4668 }
4669 
4670 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4671 {
4672 	struct kmem_cache *cachep;
4673 
4674 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4675 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4676 		return s;
4677 
4678 	cachep = virt_to_cache(x);
4679 	if (WARN(cachep && cachep != s,
4680 		 "%s: Wrong slab cache. %s but object is from %s\n",
4681 		 __func__, s->name, cachep->name))
4682 		print_tracking(cachep, x);
4683 	return cachep;
4684 }
4685 
4686 /**
4687  * kmem_cache_free - Deallocate an object
4688  * @s: The cache the allocation was from.
4689  * @x: The previously allocated object.
4690  *
4691  * Free an object which was previously allocated from this
4692  * cache.
4693  */
4694 void kmem_cache_free(struct kmem_cache *s, void *x)
4695 {
4696 	s = cache_from_obj(s, x);
4697 	if (!s)
4698 		return;
4699 	trace_kmem_cache_free(_RET_IP_, x, s);
4700 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4701 }
4702 EXPORT_SYMBOL(kmem_cache_free);
4703 
4704 static void free_large_kmalloc(struct folio *folio, void *object)
4705 {
4706 	unsigned int order = folio_order(folio);
4707 
4708 	if (WARN_ON_ONCE(order == 0))
4709 		pr_warn_once("object pointer: 0x%p\n", object);
4710 
4711 	kmemleak_free(object);
4712 	kasan_kfree_large(object);
4713 	kmsan_kfree_large(object);
4714 
4715 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4716 			      -(PAGE_SIZE << order));
4717 	folio_put(folio);
4718 }
4719 
4720 /**
4721  * kfree - free previously allocated memory
4722  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4723  *
4724  * If @object is NULL, no operation is performed.
4725  */
4726 void kfree(const void *object)
4727 {
4728 	struct folio *folio;
4729 	struct slab *slab;
4730 	struct kmem_cache *s;
4731 	void *x = (void *)object;
4732 
4733 	trace_kfree(_RET_IP_, object);
4734 
4735 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4736 		return;
4737 
4738 	folio = virt_to_folio(object);
4739 	if (unlikely(!folio_test_slab(folio))) {
4740 		free_large_kmalloc(folio, (void *)object);
4741 		return;
4742 	}
4743 
4744 	slab = folio_slab(folio);
4745 	s = slab->slab_cache;
4746 	slab_free(s, slab, x, _RET_IP_);
4747 }
4748 EXPORT_SYMBOL(kfree);
4749 
4750 static __always_inline __realloc_size(2) void *
4751 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4752 {
4753 	void *ret;
4754 	size_t ks = 0;
4755 	int orig_size = 0;
4756 	struct kmem_cache *s = NULL;
4757 
4758 	if (unlikely(ZERO_OR_NULL_PTR(p)))
4759 		goto alloc_new;
4760 
4761 	/* Check for double-free. */
4762 	if (!kasan_check_byte(p))
4763 		return NULL;
4764 
4765 	if (is_kfence_address(p)) {
4766 		ks = orig_size = kfence_ksize(p);
4767 	} else {
4768 		struct folio *folio;
4769 
4770 		folio = virt_to_folio(p);
4771 		if (unlikely(!folio_test_slab(folio))) {
4772 			/* Big kmalloc object */
4773 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4774 			WARN_ON(p != folio_address(folio));
4775 			ks = folio_size(folio);
4776 		} else {
4777 			s = folio_slab(folio)->slab_cache;
4778 			orig_size = get_orig_size(s, (void *)p);
4779 			ks = s->object_size;
4780 		}
4781 	}
4782 
4783 	/* If the old object doesn't fit, allocate a bigger one */
4784 	if (new_size > ks)
4785 		goto alloc_new;
4786 
4787 	/* Zero out spare memory. */
4788 	if (want_init_on_alloc(flags)) {
4789 		kasan_disable_current();
4790 		if (orig_size && orig_size < new_size)
4791 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4792 		else
4793 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4794 		kasan_enable_current();
4795 	}
4796 
4797 	/* Setup kmalloc redzone when needed */
4798 	if (s && slub_debug_orig_size(s)) {
4799 		set_orig_size(s, (void *)p, new_size);
4800 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
4801 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4802 						SLUB_RED_ACTIVE, ks - new_size);
4803 	}
4804 
4805 	p = kasan_krealloc(p, new_size, flags);
4806 	return (void *)p;
4807 
4808 alloc_new:
4809 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4810 	if (ret && p) {
4811 		/* Disable KASAN checks as the object's redzone is accessed. */
4812 		kasan_disable_current();
4813 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4814 		kasan_enable_current();
4815 	}
4816 
4817 	return ret;
4818 }
4819 
4820 /**
4821  * krealloc - reallocate memory. The contents will remain unchanged.
4822  * @p: object to reallocate memory for.
4823  * @new_size: how many bytes of memory are required.
4824  * @flags: the type of memory to allocate.
4825  *
4826  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
4827  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4828  *
4829  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4830  * initial memory allocation, every subsequent call to this API for the same
4831  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4832  * __GFP_ZERO is not fully honored by this API.
4833  *
4834  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4835  * size of an allocation (but not the exact size it was allocated with) and
4836  * hence implements the following semantics for shrinking and growing buffers
4837  * with __GFP_ZERO.
4838  *
4839  *         new             bucket
4840  * 0       size             size
4841  * |--------|----------------|
4842  * |  keep  |      zero      |
4843  *
4844  * Otherwise, the original allocation size 'orig_size' could be used to
4845  * precisely clear the requested size, and the new size will also be stored
4846  * as the new 'orig_size'.
4847  *
4848  * In any case, the contents of the object pointed to are preserved up to the
4849  * lesser of the new and old sizes.
4850  *
4851  * Return: pointer to the allocated memory or %NULL in case of error
4852  */
4853 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4854 {
4855 	void *ret;
4856 
4857 	if (unlikely(!new_size)) {
4858 		kfree(p);
4859 		return ZERO_SIZE_PTR;
4860 	}
4861 
4862 	ret = __do_krealloc(p, new_size, flags);
4863 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4864 		kfree(p);
4865 
4866 	return ret;
4867 }
4868 EXPORT_SYMBOL(krealloc_noprof);
4869 
4870 struct detached_freelist {
4871 	struct slab *slab;
4872 	void *tail;
4873 	void *freelist;
4874 	int cnt;
4875 	struct kmem_cache *s;
4876 };
4877 
4878 /*
4879  * This function progressively scans the array with free objects (with
4880  * a limited look ahead) and extract objects belonging to the same
4881  * slab.  It builds a detached freelist directly within the given
4882  * slab/objects.  This can happen without any need for
4883  * synchronization, because the objects are owned by running process.
4884  * The freelist is build up as a single linked list in the objects.
4885  * The idea is, that this detached freelist can then be bulk
4886  * transferred to the real freelist(s), but only requiring a single
4887  * synchronization primitive.  Look ahead in the array is limited due
4888  * to performance reasons.
4889  */
4890 static inline
4891 int build_detached_freelist(struct kmem_cache *s, size_t size,
4892 			    void **p, struct detached_freelist *df)
4893 {
4894 	int lookahead = 3;
4895 	void *object;
4896 	struct folio *folio;
4897 	size_t same;
4898 
4899 	object = p[--size];
4900 	folio = virt_to_folio(object);
4901 	if (!s) {
4902 		/* Handle kalloc'ed objects */
4903 		if (unlikely(!folio_test_slab(folio))) {
4904 			free_large_kmalloc(folio, object);
4905 			df->slab = NULL;
4906 			return size;
4907 		}
4908 		/* Derive kmem_cache from object */
4909 		df->slab = folio_slab(folio);
4910 		df->s = df->slab->slab_cache;
4911 	} else {
4912 		df->slab = folio_slab(folio);
4913 		df->s = cache_from_obj(s, object); /* Support for memcg */
4914 	}
4915 
4916 	/* Start new detached freelist */
4917 	df->tail = object;
4918 	df->freelist = object;
4919 	df->cnt = 1;
4920 
4921 	if (is_kfence_address(object))
4922 		return size;
4923 
4924 	set_freepointer(df->s, object, NULL);
4925 
4926 	same = size;
4927 	while (size) {
4928 		object = p[--size];
4929 		/* df->slab is always set at this point */
4930 		if (df->slab == virt_to_slab(object)) {
4931 			/* Opportunity build freelist */
4932 			set_freepointer(df->s, object, df->freelist);
4933 			df->freelist = object;
4934 			df->cnt++;
4935 			same--;
4936 			if (size != same)
4937 				swap(p[size], p[same]);
4938 			continue;
4939 		}
4940 
4941 		/* Limit look ahead search */
4942 		if (!--lookahead)
4943 			break;
4944 	}
4945 
4946 	return same;
4947 }
4948 
4949 /*
4950  * Internal bulk free of objects that were not initialised by the post alloc
4951  * hooks and thus should not be processed by the free hooks
4952  */
4953 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4954 {
4955 	if (!size)
4956 		return;
4957 
4958 	do {
4959 		struct detached_freelist df;
4960 
4961 		size = build_detached_freelist(s, size, p, &df);
4962 		if (!df.slab)
4963 			continue;
4964 
4965 		if (kfence_free(df.freelist))
4966 			continue;
4967 
4968 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4969 			     _RET_IP_);
4970 	} while (likely(size));
4971 }
4972 
4973 /* Note that interrupts must be enabled when calling this function. */
4974 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4975 {
4976 	if (!size)
4977 		return;
4978 
4979 	do {
4980 		struct detached_freelist df;
4981 
4982 		size = build_detached_freelist(s, size, p, &df);
4983 		if (!df.slab)
4984 			continue;
4985 
4986 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4987 			       df.cnt, _RET_IP_);
4988 	} while (likely(size));
4989 }
4990 EXPORT_SYMBOL(kmem_cache_free_bulk);
4991 
4992 #ifndef CONFIG_SLUB_TINY
4993 static inline
4994 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4995 			    void **p)
4996 {
4997 	struct kmem_cache_cpu *c;
4998 	unsigned long irqflags;
4999 	int i;
5000 
5001 	/*
5002 	 * Drain objects in the per cpu slab, while disabling local
5003 	 * IRQs, which protects against PREEMPT and interrupts
5004 	 * handlers invoking normal fastpath.
5005 	 */
5006 	c = slub_get_cpu_ptr(s->cpu_slab);
5007 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5008 
5009 	for (i = 0; i < size; i++) {
5010 		void *object = kfence_alloc(s, s->object_size, flags);
5011 
5012 		if (unlikely(object)) {
5013 			p[i] = object;
5014 			continue;
5015 		}
5016 
5017 		object = c->freelist;
5018 		if (unlikely(!object)) {
5019 			/*
5020 			 * We may have removed an object from c->freelist using
5021 			 * the fastpath in the previous iteration; in that case,
5022 			 * c->tid has not been bumped yet.
5023 			 * Since ___slab_alloc() may reenable interrupts while
5024 			 * allocating memory, we should bump c->tid now.
5025 			 */
5026 			c->tid = next_tid(c->tid);
5027 
5028 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5029 
5030 			/*
5031 			 * Invoking slow path likely have side-effect
5032 			 * of re-populating per CPU c->freelist
5033 			 */
5034 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5035 					    _RET_IP_, c, s->object_size);
5036 			if (unlikely(!p[i]))
5037 				goto error;
5038 
5039 			c = this_cpu_ptr(s->cpu_slab);
5040 			maybe_wipe_obj_freeptr(s, p[i]);
5041 
5042 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5043 
5044 			continue; /* goto for-loop */
5045 		}
5046 		c->freelist = get_freepointer(s, object);
5047 		p[i] = object;
5048 		maybe_wipe_obj_freeptr(s, p[i]);
5049 		stat(s, ALLOC_FASTPATH);
5050 	}
5051 	c->tid = next_tid(c->tid);
5052 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5053 	slub_put_cpu_ptr(s->cpu_slab);
5054 
5055 	return i;
5056 
5057 error:
5058 	slub_put_cpu_ptr(s->cpu_slab);
5059 	__kmem_cache_free_bulk(s, i, p);
5060 	return 0;
5061 
5062 }
5063 #else /* CONFIG_SLUB_TINY */
5064 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5065 				   size_t size, void **p)
5066 {
5067 	int i;
5068 
5069 	for (i = 0; i < size; i++) {
5070 		void *object = kfence_alloc(s, s->object_size, flags);
5071 
5072 		if (unlikely(object)) {
5073 			p[i] = object;
5074 			continue;
5075 		}
5076 
5077 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5078 					 _RET_IP_, s->object_size);
5079 		if (unlikely(!p[i]))
5080 			goto error;
5081 
5082 		maybe_wipe_obj_freeptr(s, p[i]);
5083 	}
5084 
5085 	return i;
5086 
5087 error:
5088 	__kmem_cache_free_bulk(s, i, p);
5089 	return 0;
5090 }
5091 #endif /* CONFIG_SLUB_TINY */
5092 
5093 /* Note that interrupts must be enabled when calling this function. */
5094 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5095 				 void **p)
5096 {
5097 	int i;
5098 
5099 	if (!size)
5100 		return 0;
5101 
5102 	s = slab_pre_alloc_hook(s, flags);
5103 	if (unlikely(!s))
5104 		return 0;
5105 
5106 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
5107 	if (unlikely(i == 0))
5108 		return 0;
5109 
5110 	/*
5111 	 * memcg and kmem_cache debug support and memory initialization.
5112 	 * Done outside of the IRQ disabled fastpath loop.
5113 	 */
5114 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5115 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
5116 		return 0;
5117 	}
5118 	return i;
5119 }
5120 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5121 
5122 
5123 /*
5124  * Object placement in a slab is made very easy because we always start at
5125  * offset 0. If we tune the size of the object to the alignment then we can
5126  * get the required alignment by putting one properly sized object after
5127  * another.
5128  *
5129  * Notice that the allocation order determines the sizes of the per cpu
5130  * caches. Each processor has always one slab available for allocations.
5131  * Increasing the allocation order reduces the number of times that slabs
5132  * must be moved on and off the partial lists and is therefore a factor in
5133  * locking overhead.
5134  */
5135 
5136 /*
5137  * Minimum / Maximum order of slab pages. This influences locking overhead
5138  * and slab fragmentation. A higher order reduces the number of partial slabs
5139  * and increases the number of allocations possible without having to
5140  * take the list_lock.
5141  */
5142 static unsigned int slub_min_order;
5143 static unsigned int slub_max_order =
5144 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5145 static unsigned int slub_min_objects;
5146 
5147 /*
5148  * Calculate the order of allocation given an slab object size.
5149  *
5150  * The order of allocation has significant impact on performance and other
5151  * system components. Generally order 0 allocations should be preferred since
5152  * order 0 does not cause fragmentation in the page allocator. Larger objects
5153  * be problematic to put into order 0 slabs because there may be too much
5154  * unused space left. We go to a higher order if more than 1/16th of the slab
5155  * would be wasted.
5156  *
5157  * In order to reach satisfactory performance we must ensure that a minimum
5158  * number of objects is in one slab. Otherwise we may generate too much
5159  * activity on the partial lists which requires taking the list_lock. This is
5160  * less a concern for large slabs though which are rarely used.
5161  *
5162  * slab_max_order specifies the order where we begin to stop considering the
5163  * number of objects in a slab as critical. If we reach slab_max_order then
5164  * we try to keep the page order as low as possible. So we accept more waste
5165  * of space in favor of a small page order.
5166  *
5167  * Higher order allocations also allow the placement of more objects in a
5168  * slab and thereby reduce object handling overhead. If the user has
5169  * requested a higher minimum order then we start with that one instead of
5170  * the smallest order which will fit the object.
5171  */
5172 static inline unsigned int calc_slab_order(unsigned int size,
5173 		unsigned int min_order, unsigned int max_order,
5174 		unsigned int fract_leftover)
5175 {
5176 	unsigned int order;
5177 
5178 	for (order = min_order; order <= max_order; order++) {
5179 
5180 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5181 		unsigned int rem;
5182 
5183 		rem = slab_size % size;
5184 
5185 		if (rem <= slab_size / fract_leftover)
5186 			break;
5187 	}
5188 
5189 	return order;
5190 }
5191 
5192 static inline int calculate_order(unsigned int size)
5193 {
5194 	unsigned int order;
5195 	unsigned int min_objects;
5196 	unsigned int max_objects;
5197 	unsigned int min_order;
5198 
5199 	min_objects = slub_min_objects;
5200 	if (!min_objects) {
5201 		/*
5202 		 * Some architectures will only update present cpus when
5203 		 * onlining them, so don't trust the number if it's just 1. But
5204 		 * we also don't want to use nr_cpu_ids always, as on some other
5205 		 * architectures, there can be many possible cpus, but never
5206 		 * onlined. Here we compromise between trying to avoid too high
5207 		 * order on systems that appear larger than they are, and too
5208 		 * low order on systems that appear smaller than they are.
5209 		 */
5210 		unsigned int nr_cpus = num_present_cpus();
5211 		if (nr_cpus <= 1)
5212 			nr_cpus = nr_cpu_ids;
5213 		min_objects = 4 * (fls(nr_cpus) + 1);
5214 	}
5215 	/* min_objects can't be 0 because get_order(0) is undefined */
5216 	max_objects = max(order_objects(slub_max_order, size), 1U);
5217 	min_objects = min(min_objects, max_objects);
5218 
5219 	min_order = max_t(unsigned int, slub_min_order,
5220 			  get_order(min_objects * size));
5221 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5222 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5223 
5224 	/*
5225 	 * Attempt to find best configuration for a slab. This works by first
5226 	 * attempting to generate a layout with the best possible configuration
5227 	 * and backing off gradually.
5228 	 *
5229 	 * We start with accepting at most 1/16 waste and try to find the
5230 	 * smallest order from min_objects-derived/slab_min_order up to
5231 	 * slab_max_order that will satisfy the constraint. Note that increasing
5232 	 * the order can only result in same or less fractional waste, not more.
5233 	 *
5234 	 * If that fails, we increase the acceptable fraction of waste and try
5235 	 * again. The last iteration with fraction of 1/2 would effectively
5236 	 * accept any waste and give us the order determined by min_objects, as
5237 	 * long as at least single object fits within slab_max_order.
5238 	 */
5239 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5240 		order = calc_slab_order(size, min_order, slub_max_order,
5241 					fraction);
5242 		if (order <= slub_max_order)
5243 			return order;
5244 	}
5245 
5246 	/*
5247 	 * Doh this slab cannot be placed using slab_max_order.
5248 	 */
5249 	order = get_order(size);
5250 	if (order <= MAX_PAGE_ORDER)
5251 		return order;
5252 	return -ENOSYS;
5253 }
5254 
5255 static void
5256 init_kmem_cache_node(struct kmem_cache_node *n)
5257 {
5258 	n->nr_partial = 0;
5259 	spin_lock_init(&n->list_lock);
5260 	INIT_LIST_HEAD(&n->partial);
5261 #ifdef CONFIG_SLUB_DEBUG
5262 	atomic_long_set(&n->nr_slabs, 0);
5263 	atomic_long_set(&n->total_objects, 0);
5264 	INIT_LIST_HEAD(&n->full);
5265 #endif
5266 }
5267 
5268 #ifndef CONFIG_SLUB_TINY
5269 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5270 {
5271 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5272 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5273 			sizeof(struct kmem_cache_cpu));
5274 
5275 	/*
5276 	 * Must align to double word boundary for the double cmpxchg
5277 	 * instructions to work; see __pcpu_double_call_return_bool().
5278 	 */
5279 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5280 				     2 * sizeof(void *));
5281 
5282 	if (!s->cpu_slab)
5283 		return 0;
5284 
5285 	init_kmem_cache_cpus(s);
5286 
5287 	return 1;
5288 }
5289 #else
5290 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5291 {
5292 	return 1;
5293 }
5294 #endif /* CONFIG_SLUB_TINY */
5295 
5296 static struct kmem_cache *kmem_cache_node;
5297 
5298 /*
5299  * No kmalloc_node yet so do it by hand. We know that this is the first
5300  * slab on the node for this slabcache. There are no concurrent accesses
5301  * possible.
5302  *
5303  * Note that this function only works on the kmem_cache_node
5304  * when allocating for the kmem_cache_node. This is used for bootstrapping
5305  * memory on a fresh node that has no slab structures yet.
5306  */
5307 static void early_kmem_cache_node_alloc(int node)
5308 {
5309 	struct slab *slab;
5310 	struct kmem_cache_node *n;
5311 
5312 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5313 
5314 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5315 
5316 	BUG_ON(!slab);
5317 	if (slab_nid(slab) != node) {
5318 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5319 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5320 	}
5321 
5322 	n = slab->freelist;
5323 	BUG_ON(!n);
5324 #ifdef CONFIG_SLUB_DEBUG
5325 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5326 #endif
5327 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5328 	slab->freelist = get_freepointer(kmem_cache_node, n);
5329 	slab->inuse = 1;
5330 	kmem_cache_node->node[node] = n;
5331 	init_kmem_cache_node(n);
5332 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5333 
5334 	/*
5335 	 * No locks need to be taken here as it has just been
5336 	 * initialized and there is no concurrent access.
5337 	 */
5338 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5339 }
5340 
5341 static void free_kmem_cache_nodes(struct kmem_cache *s)
5342 {
5343 	int node;
5344 	struct kmem_cache_node *n;
5345 
5346 	for_each_kmem_cache_node(s, node, n) {
5347 		s->node[node] = NULL;
5348 		kmem_cache_free(kmem_cache_node, n);
5349 	}
5350 }
5351 
5352 void __kmem_cache_release(struct kmem_cache *s)
5353 {
5354 	cache_random_seq_destroy(s);
5355 #ifndef CONFIG_SLUB_TINY
5356 	free_percpu(s->cpu_slab);
5357 #endif
5358 	free_kmem_cache_nodes(s);
5359 }
5360 
5361 static int init_kmem_cache_nodes(struct kmem_cache *s)
5362 {
5363 	int node;
5364 
5365 	for_each_node_mask(node, slab_nodes) {
5366 		struct kmem_cache_node *n;
5367 
5368 		if (slab_state == DOWN) {
5369 			early_kmem_cache_node_alloc(node);
5370 			continue;
5371 		}
5372 		n = kmem_cache_alloc_node(kmem_cache_node,
5373 						GFP_KERNEL, node);
5374 
5375 		if (!n) {
5376 			free_kmem_cache_nodes(s);
5377 			return 0;
5378 		}
5379 
5380 		init_kmem_cache_node(n);
5381 		s->node[node] = n;
5382 	}
5383 	return 1;
5384 }
5385 
5386 static void set_cpu_partial(struct kmem_cache *s)
5387 {
5388 #ifdef CONFIG_SLUB_CPU_PARTIAL
5389 	unsigned int nr_objects;
5390 
5391 	/*
5392 	 * cpu_partial determined the maximum number of objects kept in the
5393 	 * per cpu partial lists of a processor.
5394 	 *
5395 	 * Per cpu partial lists mainly contain slabs that just have one
5396 	 * object freed. If they are used for allocation then they can be
5397 	 * filled up again with minimal effort. The slab will never hit the
5398 	 * per node partial lists and therefore no locking will be required.
5399 	 *
5400 	 * For backwards compatibility reasons, this is determined as number
5401 	 * of objects, even though we now limit maximum number of pages, see
5402 	 * slub_set_cpu_partial()
5403 	 */
5404 	if (!kmem_cache_has_cpu_partial(s))
5405 		nr_objects = 0;
5406 	else if (s->size >= PAGE_SIZE)
5407 		nr_objects = 6;
5408 	else if (s->size >= 1024)
5409 		nr_objects = 24;
5410 	else if (s->size >= 256)
5411 		nr_objects = 52;
5412 	else
5413 		nr_objects = 120;
5414 
5415 	slub_set_cpu_partial(s, nr_objects);
5416 #endif
5417 }
5418 
5419 /*
5420  * calculate_sizes() determines the order and the distribution of data within
5421  * a slab object.
5422  */
5423 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5424 {
5425 	slab_flags_t flags = s->flags;
5426 	unsigned int size = s->object_size;
5427 	unsigned int order;
5428 
5429 	/*
5430 	 * Round up object size to the next word boundary. We can only
5431 	 * place the free pointer at word boundaries and this determines
5432 	 * the possible location of the free pointer.
5433 	 */
5434 	size = ALIGN(size, sizeof(void *));
5435 
5436 #ifdef CONFIG_SLUB_DEBUG
5437 	/*
5438 	 * Determine if we can poison the object itself. If the user of
5439 	 * the slab may touch the object after free or before allocation
5440 	 * then we should never poison the object itself.
5441 	 */
5442 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5443 			!s->ctor)
5444 		s->flags |= __OBJECT_POISON;
5445 	else
5446 		s->flags &= ~__OBJECT_POISON;
5447 
5448 
5449 	/*
5450 	 * If we are Redzoning then check if there is some space between the
5451 	 * end of the object and the free pointer. If not then add an
5452 	 * additional word to have some bytes to store Redzone information.
5453 	 */
5454 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5455 		size += sizeof(void *);
5456 #endif
5457 
5458 	/*
5459 	 * With that we have determined the number of bytes in actual use
5460 	 * by the object and redzoning.
5461 	 */
5462 	s->inuse = size;
5463 
5464 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5465 	    (flags & SLAB_POISON) || s->ctor ||
5466 	    ((flags & SLAB_RED_ZONE) &&
5467 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5468 		/*
5469 		 * Relocate free pointer after the object if it is not
5470 		 * permitted to overwrite the first word of the object on
5471 		 * kmem_cache_free.
5472 		 *
5473 		 * This is the case if we do RCU, have a constructor or
5474 		 * destructor, are poisoning the objects, or are
5475 		 * redzoning an object smaller than sizeof(void *) or are
5476 		 * redzoning an object with slub_debug_orig_size() enabled,
5477 		 * in which case the right redzone may be extended.
5478 		 *
5479 		 * The assumption that s->offset >= s->inuse means free
5480 		 * pointer is outside of the object is used in the
5481 		 * freeptr_outside_object() function. If that is no
5482 		 * longer true, the function needs to be modified.
5483 		 */
5484 		s->offset = size;
5485 		size += sizeof(void *);
5486 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5487 		s->offset = args->freeptr_offset;
5488 	} else {
5489 		/*
5490 		 * Store freelist pointer near middle of object to keep
5491 		 * it away from the edges of the object to avoid small
5492 		 * sized over/underflows from neighboring allocations.
5493 		 */
5494 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5495 	}
5496 
5497 #ifdef CONFIG_SLUB_DEBUG
5498 	if (flags & SLAB_STORE_USER) {
5499 		/*
5500 		 * Need to store information about allocs and frees after
5501 		 * the object.
5502 		 */
5503 		size += 2 * sizeof(struct track);
5504 
5505 		/* Save the original kmalloc request size */
5506 		if (flags & SLAB_KMALLOC)
5507 			size += sizeof(unsigned int);
5508 	}
5509 #endif
5510 
5511 	kasan_cache_create(s, &size, &s->flags);
5512 #ifdef CONFIG_SLUB_DEBUG
5513 	if (flags & SLAB_RED_ZONE) {
5514 		/*
5515 		 * Add some empty padding so that we can catch
5516 		 * overwrites from earlier objects rather than let
5517 		 * tracking information or the free pointer be
5518 		 * corrupted if a user writes before the start
5519 		 * of the object.
5520 		 */
5521 		size += sizeof(void *);
5522 
5523 		s->red_left_pad = sizeof(void *);
5524 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5525 		size += s->red_left_pad;
5526 	}
5527 #endif
5528 
5529 	/*
5530 	 * SLUB stores one object immediately after another beginning from
5531 	 * offset 0. In order to align the objects we have to simply size
5532 	 * each object to conform to the alignment.
5533 	 */
5534 	size = ALIGN(size, s->align);
5535 	s->size = size;
5536 	s->reciprocal_size = reciprocal_value(size);
5537 	order = calculate_order(size);
5538 
5539 	if ((int)order < 0)
5540 		return 0;
5541 
5542 	s->allocflags = __GFP_COMP;
5543 
5544 	if (s->flags & SLAB_CACHE_DMA)
5545 		s->allocflags |= GFP_DMA;
5546 
5547 	if (s->flags & SLAB_CACHE_DMA32)
5548 		s->allocflags |= GFP_DMA32;
5549 
5550 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5551 		s->allocflags |= __GFP_RECLAIMABLE;
5552 
5553 	/*
5554 	 * Determine the number of objects per slab
5555 	 */
5556 	s->oo = oo_make(order, size);
5557 	s->min = oo_make(get_order(size), size);
5558 
5559 	return !!oo_objects(s->oo);
5560 }
5561 
5562 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5563 			      const char *text)
5564 {
5565 #ifdef CONFIG_SLUB_DEBUG
5566 	void *addr = slab_address(slab);
5567 	void *p;
5568 
5569 	slab_err(s, slab, text, s->name);
5570 
5571 	spin_lock(&object_map_lock);
5572 	__fill_map(object_map, s, slab);
5573 
5574 	for_each_object(p, s, addr, slab->objects) {
5575 
5576 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5577 			if (slab_add_kunit_errors())
5578 				continue;
5579 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5580 			print_tracking(s, p);
5581 		}
5582 	}
5583 	spin_unlock(&object_map_lock);
5584 #endif
5585 }
5586 
5587 /*
5588  * Attempt to free all partial slabs on a node.
5589  * This is called from __kmem_cache_shutdown(). We must take list_lock
5590  * because sysfs file might still access partial list after the shutdowning.
5591  */
5592 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5593 {
5594 	LIST_HEAD(discard);
5595 	struct slab *slab, *h;
5596 
5597 	BUG_ON(irqs_disabled());
5598 	spin_lock_irq(&n->list_lock);
5599 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5600 		if (!slab->inuse) {
5601 			remove_partial(n, slab);
5602 			list_add(&slab->slab_list, &discard);
5603 		} else {
5604 			list_slab_objects(s, slab,
5605 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5606 		}
5607 	}
5608 	spin_unlock_irq(&n->list_lock);
5609 
5610 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5611 		discard_slab(s, slab);
5612 }
5613 
5614 bool __kmem_cache_empty(struct kmem_cache *s)
5615 {
5616 	int node;
5617 	struct kmem_cache_node *n;
5618 
5619 	for_each_kmem_cache_node(s, node, n)
5620 		if (n->nr_partial || node_nr_slabs(n))
5621 			return false;
5622 	return true;
5623 }
5624 
5625 /*
5626  * Release all resources used by a slab cache.
5627  */
5628 int __kmem_cache_shutdown(struct kmem_cache *s)
5629 {
5630 	int node;
5631 	struct kmem_cache_node *n;
5632 
5633 	flush_all_cpus_locked(s);
5634 	/* Attempt to free all objects */
5635 	for_each_kmem_cache_node(s, node, n) {
5636 		free_partial(s, n);
5637 		if (n->nr_partial || node_nr_slabs(n))
5638 			return 1;
5639 	}
5640 	return 0;
5641 }
5642 
5643 #ifdef CONFIG_PRINTK
5644 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5645 {
5646 	void *base;
5647 	int __maybe_unused i;
5648 	unsigned int objnr;
5649 	void *objp;
5650 	void *objp0;
5651 	struct kmem_cache *s = slab->slab_cache;
5652 	struct track __maybe_unused *trackp;
5653 
5654 	kpp->kp_ptr = object;
5655 	kpp->kp_slab = slab;
5656 	kpp->kp_slab_cache = s;
5657 	base = slab_address(slab);
5658 	objp0 = kasan_reset_tag(object);
5659 #ifdef CONFIG_SLUB_DEBUG
5660 	objp = restore_red_left(s, objp0);
5661 #else
5662 	objp = objp0;
5663 #endif
5664 	objnr = obj_to_index(s, slab, objp);
5665 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5666 	objp = base + s->size * objnr;
5667 	kpp->kp_objp = objp;
5668 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5669 			 || (objp - base) % s->size) ||
5670 	    !(s->flags & SLAB_STORE_USER))
5671 		return;
5672 #ifdef CONFIG_SLUB_DEBUG
5673 	objp = fixup_red_left(s, objp);
5674 	trackp = get_track(s, objp, TRACK_ALLOC);
5675 	kpp->kp_ret = (void *)trackp->addr;
5676 #ifdef CONFIG_STACKDEPOT
5677 	{
5678 		depot_stack_handle_t handle;
5679 		unsigned long *entries;
5680 		unsigned int nr_entries;
5681 
5682 		handle = READ_ONCE(trackp->handle);
5683 		if (handle) {
5684 			nr_entries = stack_depot_fetch(handle, &entries);
5685 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5686 				kpp->kp_stack[i] = (void *)entries[i];
5687 		}
5688 
5689 		trackp = get_track(s, objp, TRACK_FREE);
5690 		handle = READ_ONCE(trackp->handle);
5691 		if (handle) {
5692 			nr_entries = stack_depot_fetch(handle, &entries);
5693 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5694 				kpp->kp_free_stack[i] = (void *)entries[i];
5695 		}
5696 	}
5697 #endif
5698 #endif
5699 }
5700 #endif
5701 
5702 /********************************************************************
5703  *		Kmalloc subsystem
5704  *******************************************************************/
5705 
5706 static int __init setup_slub_min_order(char *str)
5707 {
5708 	get_option(&str, (int *)&slub_min_order);
5709 
5710 	if (slub_min_order > slub_max_order)
5711 		slub_max_order = slub_min_order;
5712 
5713 	return 1;
5714 }
5715 
5716 __setup("slab_min_order=", setup_slub_min_order);
5717 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5718 
5719 
5720 static int __init setup_slub_max_order(char *str)
5721 {
5722 	get_option(&str, (int *)&slub_max_order);
5723 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5724 
5725 	if (slub_min_order > slub_max_order)
5726 		slub_min_order = slub_max_order;
5727 
5728 	return 1;
5729 }
5730 
5731 __setup("slab_max_order=", setup_slub_max_order);
5732 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5733 
5734 static int __init setup_slub_min_objects(char *str)
5735 {
5736 	get_option(&str, (int *)&slub_min_objects);
5737 
5738 	return 1;
5739 }
5740 
5741 __setup("slab_min_objects=", setup_slub_min_objects);
5742 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5743 
5744 #ifdef CONFIG_NUMA
5745 static int __init setup_slab_strict_numa(char *str)
5746 {
5747 	if (nr_node_ids > 1) {
5748 		static_branch_enable(&strict_numa);
5749 		pr_info("SLUB: Strict NUMA enabled.\n");
5750 	} else {
5751 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
5752 	}
5753 
5754 	return 1;
5755 }
5756 
5757 __setup("slab_strict_numa", setup_slab_strict_numa);
5758 #endif
5759 
5760 
5761 #ifdef CONFIG_HARDENED_USERCOPY
5762 /*
5763  * Rejects incorrectly sized objects and objects that are to be copied
5764  * to/from userspace but do not fall entirely within the containing slab
5765  * cache's usercopy region.
5766  *
5767  * Returns NULL if check passes, otherwise const char * to name of cache
5768  * to indicate an error.
5769  */
5770 void __check_heap_object(const void *ptr, unsigned long n,
5771 			 const struct slab *slab, bool to_user)
5772 {
5773 	struct kmem_cache *s;
5774 	unsigned int offset;
5775 	bool is_kfence = is_kfence_address(ptr);
5776 
5777 	ptr = kasan_reset_tag(ptr);
5778 
5779 	/* Find object and usable object size. */
5780 	s = slab->slab_cache;
5781 
5782 	/* Reject impossible pointers. */
5783 	if (ptr < slab_address(slab))
5784 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5785 			       to_user, 0, n);
5786 
5787 	/* Find offset within object. */
5788 	if (is_kfence)
5789 		offset = ptr - kfence_object_start(ptr);
5790 	else
5791 		offset = (ptr - slab_address(slab)) % s->size;
5792 
5793 	/* Adjust for redzone and reject if within the redzone. */
5794 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5795 		if (offset < s->red_left_pad)
5796 			usercopy_abort("SLUB object in left red zone",
5797 				       s->name, to_user, offset, n);
5798 		offset -= s->red_left_pad;
5799 	}
5800 
5801 	/* Allow address range falling entirely within usercopy region. */
5802 	if (offset >= s->useroffset &&
5803 	    offset - s->useroffset <= s->usersize &&
5804 	    n <= s->useroffset - offset + s->usersize)
5805 		return;
5806 
5807 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5808 }
5809 #endif /* CONFIG_HARDENED_USERCOPY */
5810 
5811 #define SHRINK_PROMOTE_MAX 32
5812 
5813 /*
5814  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5815  * up most to the head of the partial lists. New allocations will then
5816  * fill those up and thus they can be removed from the partial lists.
5817  *
5818  * The slabs with the least items are placed last. This results in them
5819  * being allocated from last increasing the chance that the last objects
5820  * are freed in them.
5821  */
5822 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5823 {
5824 	int node;
5825 	int i;
5826 	struct kmem_cache_node *n;
5827 	struct slab *slab;
5828 	struct slab *t;
5829 	struct list_head discard;
5830 	struct list_head promote[SHRINK_PROMOTE_MAX];
5831 	unsigned long flags;
5832 	int ret = 0;
5833 
5834 	for_each_kmem_cache_node(s, node, n) {
5835 		INIT_LIST_HEAD(&discard);
5836 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5837 			INIT_LIST_HEAD(promote + i);
5838 
5839 		spin_lock_irqsave(&n->list_lock, flags);
5840 
5841 		/*
5842 		 * Build lists of slabs to discard or promote.
5843 		 *
5844 		 * Note that concurrent frees may occur while we hold the
5845 		 * list_lock. slab->inuse here is the upper limit.
5846 		 */
5847 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5848 			int free = slab->objects - slab->inuse;
5849 
5850 			/* Do not reread slab->inuse */
5851 			barrier();
5852 
5853 			/* We do not keep full slabs on the list */
5854 			BUG_ON(free <= 0);
5855 
5856 			if (free == slab->objects) {
5857 				list_move(&slab->slab_list, &discard);
5858 				slab_clear_node_partial(slab);
5859 				n->nr_partial--;
5860 				dec_slabs_node(s, node, slab->objects);
5861 			} else if (free <= SHRINK_PROMOTE_MAX)
5862 				list_move(&slab->slab_list, promote + free - 1);
5863 		}
5864 
5865 		/*
5866 		 * Promote the slabs filled up most to the head of the
5867 		 * partial list.
5868 		 */
5869 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5870 			list_splice(promote + i, &n->partial);
5871 
5872 		spin_unlock_irqrestore(&n->list_lock, flags);
5873 
5874 		/* Release empty slabs */
5875 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5876 			free_slab(s, slab);
5877 
5878 		if (node_nr_slabs(n))
5879 			ret = 1;
5880 	}
5881 
5882 	return ret;
5883 }
5884 
5885 int __kmem_cache_shrink(struct kmem_cache *s)
5886 {
5887 	flush_all(s);
5888 	return __kmem_cache_do_shrink(s);
5889 }
5890 
5891 static int slab_mem_going_offline_callback(void *arg)
5892 {
5893 	struct kmem_cache *s;
5894 
5895 	mutex_lock(&slab_mutex);
5896 	list_for_each_entry(s, &slab_caches, list) {
5897 		flush_all_cpus_locked(s);
5898 		__kmem_cache_do_shrink(s);
5899 	}
5900 	mutex_unlock(&slab_mutex);
5901 
5902 	return 0;
5903 }
5904 
5905 static void slab_mem_offline_callback(void *arg)
5906 {
5907 	struct memory_notify *marg = arg;
5908 	int offline_node;
5909 
5910 	offline_node = marg->status_change_nid_normal;
5911 
5912 	/*
5913 	 * If the node still has available memory. we need kmem_cache_node
5914 	 * for it yet.
5915 	 */
5916 	if (offline_node < 0)
5917 		return;
5918 
5919 	mutex_lock(&slab_mutex);
5920 	node_clear(offline_node, slab_nodes);
5921 	/*
5922 	 * We no longer free kmem_cache_node structures here, as it would be
5923 	 * racy with all get_node() users, and infeasible to protect them with
5924 	 * slab_mutex.
5925 	 */
5926 	mutex_unlock(&slab_mutex);
5927 }
5928 
5929 static int slab_mem_going_online_callback(void *arg)
5930 {
5931 	struct kmem_cache_node *n;
5932 	struct kmem_cache *s;
5933 	struct memory_notify *marg = arg;
5934 	int nid = marg->status_change_nid_normal;
5935 	int ret = 0;
5936 
5937 	/*
5938 	 * If the node's memory is already available, then kmem_cache_node is
5939 	 * already created. Nothing to do.
5940 	 */
5941 	if (nid < 0)
5942 		return 0;
5943 
5944 	/*
5945 	 * We are bringing a node online. No memory is available yet. We must
5946 	 * allocate a kmem_cache_node structure in order to bring the node
5947 	 * online.
5948 	 */
5949 	mutex_lock(&slab_mutex);
5950 	list_for_each_entry(s, &slab_caches, list) {
5951 		/*
5952 		 * The structure may already exist if the node was previously
5953 		 * onlined and offlined.
5954 		 */
5955 		if (get_node(s, nid))
5956 			continue;
5957 		/*
5958 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5959 		 *      since memory is not yet available from the node that
5960 		 *      is brought up.
5961 		 */
5962 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5963 		if (!n) {
5964 			ret = -ENOMEM;
5965 			goto out;
5966 		}
5967 		init_kmem_cache_node(n);
5968 		s->node[nid] = n;
5969 	}
5970 	/*
5971 	 * Any cache created after this point will also have kmem_cache_node
5972 	 * initialized for the new node.
5973 	 */
5974 	node_set(nid, slab_nodes);
5975 out:
5976 	mutex_unlock(&slab_mutex);
5977 	return ret;
5978 }
5979 
5980 static int slab_memory_callback(struct notifier_block *self,
5981 				unsigned long action, void *arg)
5982 {
5983 	int ret = 0;
5984 
5985 	switch (action) {
5986 	case MEM_GOING_ONLINE:
5987 		ret = slab_mem_going_online_callback(arg);
5988 		break;
5989 	case MEM_GOING_OFFLINE:
5990 		ret = slab_mem_going_offline_callback(arg);
5991 		break;
5992 	case MEM_OFFLINE:
5993 	case MEM_CANCEL_ONLINE:
5994 		slab_mem_offline_callback(arg);
5995 		break;
5996 	case MEM_ONLINE:
5997 	case MEM_CANCEL_OFFLINE:
5998 		break;
5999 	}
6000 	if (ret)
6001 		ret = notifier_from_errno(ret);
6002 	else
6003 		ret = NOTIFY_OK;
6004 	return ret;
6005 }
6006 
6007 /********************************************************************
6008  *			Basic setup of slabs
6009  *******************************************************************/
6010 
6011 /*
6012  * Used for early kmem_cache structures that were allocated using
6013  * the page allocator. Allocate them properly then fix up the pointers
6014  * that may be pointing to the wrong kmem_cache structure.
6015  */
6016 
6017 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6018 {
6019 	int node;
6020 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6021 	struct kmem_cache_node *n;
6022 
6023 	memcpy(s, static_cache, kmem_cache->object_size);
6024 
6025 	/*
6026 	 * This runs very early, and only the boot processor is supposed to be
6027 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
6028 	 * IPIs around.
6029 	 */
6030 	__flush_cpu_slab(s, smp_processor_id());
6031 	for_each_kmem_cache_node(s, node, n) {
6032 		struct slab *p;
6033 
6034 		list_for_each_entry(p, &n->partial, slab_list)
6035 			p->slab_cache = s;
6036 
6037 #ifdef CONFIG_SLUB_DEBUG
6038 		list_for_each_entry(p, &n->full, slab_list)
6039 			p->slab_cache = s;
6040 #endif
6041 	}
6042 	list_add(&s->list, &slab_caches);
6043 	return s;
6044 }
6045 
6046 void __init kmem_cache_init(void)
6047 {
6048 	static __initdata struct kmem_cache boot_kmem_cache,
6049 		boot_kmem_cache_node;
6050 	int node;
6051 
6052 	if (debug_guardpage_minorder())
6053 		slub_max_order = 0;
6054 
6055 	/* Print slub debugging pointers without hashing */
6056 	if (__slub_debug_enabled())
6057 		no_hash_pointers_enable(NULL);
6058 
6059 	kmem_cache_node = &boot_kmem_cache_node;
6060 	kmem_cache = &boot_kmem_cache;
6061 
6062 	/*
6063 	 * Initialize the nodemask for which we will allocate per node
6064 	 * structures. Here we don't need taking slab_mutex yet.
6065 	 */
6066 	for_each_node_state(node, N_NORMAL_MEMORY)
6067 		node_set(node, slab_nodes);
6068 
6069 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
6070 			sizeof(struct kmem_cache_node),
6071 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6072 
6073 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6074 
6075 	/* Able to allocate the per node structures */
6076 	slab_state = PARTIAL;
6077 
6078 	create_boot_cache(kmem_cache, "kmem_cache",
6079 			offsetof(struct kmem_cache, node) +
6080 				nr_node_ids * sizeof(struct kmem_cache_node *),
6081 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6082 
6083 	kmem_cache = bootstrap(&boot_kmem_cache);
6084 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6085 
6086 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
6087 	setup_kmalloc_cache_index_table();
6088 	create_kmalloc_caches();
6089 
6090 	/* Setup random freelists for each cache */
6091 	init_freelist_randomization();
6092 
6093 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6094 				  slub_cpu_dead);
6095 
6096 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6097 		cache_line_size(),
6098 		slub_min_order, slub_max_order, slub_min_objects,
6099 		nr_cpu_ids, nr_node_ids);
6100 }
6101 
6102 void __init kmem_cache_init_late(void)
6103 {
6104 #ifndef CONFIG_SLUB_TINY
6105 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6106 	WARN_ON(!flushwq);
6107 #endif
6108 }
6109 
6110 struct kmem_cache *
6111 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6112 		   slab_flags_t flags, void (*ctor)(void *))
6113 {
6114 	struct kmem_cache *s;
6115 
6116 	s = find_mergeable(size, align, flags, name, ctor);
6117 	if (s) {
6118 		if (sysfs_slab_alias(s, name))
6119 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6120 			       name);
6121 
6122 		s->refcount++;
6123 
6124 		/*
6125 		 * Adjust the object sizes so that we clear
6126 		 * the complete object on kzalloc.
6127 		 */
6128 		s->object_size = max(s->object_size, size);
6129 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6130 	}
6131 
6132 	return s;
6133 }
6134 
6135 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6136 			 unsigned int size, struct kmem_cache_args *args,
6137 			 slab_flags_t flags)
6138 {
6139 	int err = -EINVAL;
6140 
6141 	s->name = name;
6142 	s->size = s->object_size = size;
6143 
6144 	s->flags = kmem_cache_flags(flags, s->name);
6145 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6146 	s->random = get_random_long();
6147 #endif
6148 	s->align = args->align;
6149 	s->ctor = args->ctor;
6150 #ifdef CONFIG_HARDENED_USERCOPY
6151 	s->useroffset = args->useroffset;
6152 	s->usersize = args->usersize;
6153 #endif
6154 
6155 	if (!calculate_sizes(args, s))
6156 		goto out;
6157 	if (disable_higher_order_debug) {
6158 		/*
6159 		 * Disable debugging flags that store metadata if the min slab
6160 		 * order increased.
6161 		 */
6162 		if (get_order(s->size) > get_order(s->object_size)) {
6163 			s->flags &= ~DEBUG_METADATA_FLAGS;
6164 			s->offset = 0;
6165 			if (!calculate_sizes(args, s))
6166 				goto out;
6167 		}
6168 	}
6169 
6170 #ifdef system_has_freelist_aba
6171 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6172 		/* Enable fast mode */
6173 		s->flags |= __CMPXCHG_DOUBLE;
6174 	}
6175 #endif
6176 
6177 	/*
6178 	 * The larger the object size is, the more slabs we want on the partial
6179 	 * list to avoid pounding the page allocator excessively.
6180 	 */
6181 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6182 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6183 
6184 	set_cpu_partial(s);
6185 
6186 #ifdef CONFIG_NUMA
6187 	s->remote_node_defrag_ratio = 1000;
6188 #endif
6189 
6190 	/* Initialize the pre-computed randomized freelist if slab is up */
6191 	if (slab_state >= UP) {
6192 		if (init_cache_random_seq(s))
6193 			goto out;
6194 	}
6195 
6196 	if (!init_kmem_cache_nodes(s))
6197 		goto out;
6198 
6199 	if (!alloc_kmem_cache_cpus(s))
6200 		goto out;
6201 
6202 	err = 0;
6203 
6204 	/* Mutex is not taken during early boot */
6205 	if (slab_state <= UP)
6206 		goto out;
6207 
6208 	/*
6209 	 * Failing to create sysfs files is not critical to SLUB functionality.
6210 	 * If it fails, proceed with cache creation without these files.
6211 	 */
6212 	if (sysfs_slab_add(s))
6213 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6214 
6215 	if (s->flags & SLAB_STORE_USER)
6216 		debugfs_slab_add(s);
6217 
6218 out:
6219 	if (err)
6220 		__kmem_cache_release(s);
6221 	return err;
6222 }
6223 
6224 #ifdef SLAB_SUPPORTS_SYSFS
6225 static int count_inuse(struct slab *slab)
6226 {
6227 	return slab->inuse;
6228 }
6229 
6230 static int count_total(struct slab *slab)
6231 {
6232 	return slab->objects;
6233 }
6234 #endif
6235 
6236 #ifdef CONFIG_SLUB_DEBUG
6237 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6238 			  unsigned long *obj_map)
6239 {
6240 	void *p;
6241 	void *addr = slab_address(slab);
6242 
6243 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6244 		return;
6245 
6246 	/* Now we know that a valid freelist exists */
6247 	__fill_map(obj_map, s, slab);
6248 	for_each_object(p, s, addr, slab->objects) {
6249 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6250 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6251 
6252 		if (!check_object(s, slab, p, val))
6253 			break;
6254 	}
6255 }
6256 
6257 static int validate_slab_node(struct kmem_cache *s,
6258 		struct kmem_cache_node *n, unsigned long *obj_map)
6259 {
6260 	unsigned long count = 0;
6261 	struct slab *slab;
6262 	unsigned long flags;
6263 
6264 	spin_lock_irqsave(&n->list_lock, flags);
6265 
6266 	list_for_each_entry(slab, &n->partial, slab_list) {
6267 		validate_slab(s, slab, obj_map);
6268 		count++;
6269 	}
6270 	if (count != n->nr_partial) {
6271 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6272 		       s->name, count, n->nr_partial);
6273 		slab_add_kunit_errors();
6274 	}
6275 
6276 	if (!(s->flags & SLAB_STORE_USER))
6277 		goto out;
6278 
6279 	list_for_each_entry(slab, &n->full, slab_list) {
6280 		validate_slab(s, slab, obj_map);
6281 		count++;
6282 	}
6283 	if (count != node_nr_slabs(n)) {
6284 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6285 		       s->name, count, node_nr_slabs(n));
6286 		slab_add_kunit_errors();
6287 	}
6288 
6289 out:
6290 	spin_unlock_irqrestore(&n->list_lock, flags);
6291 	return count;
6292 }
6293 
6294 long validate_slab_cache(struct kmem_cache *s)
6295 {
6296 	int node;
6297 	unsigned long count = 0;
6298 	struct kmem_cache_node *n;
6299 	unsigned long *obj_map;
6300 
6301 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6302 	if (!obj_map)
6303 		return -ENOMEM;
6304 
6305 	flush_all(s);
6306 	for_each_kmem_cache_node(s, node, n)
6307 		count += validate_slab_node(s, n, obj_map);
6308 
6309 	bitmap_free(obj_map);
6310 
6311 	return count;
6312 }
6313 EXPORT_SYMBOL(validate_slab_cache);
6314 
6315 #ifdef CONFIG_DEBUG_FS
6316 /*
6317  * Generate lists of code addresses where slabcache objects are allocated
6318  * and freed.
6319  */
6320 
6321 struct location {
6322 	depot_stack_handle_t handle;
6323 	unsigned long count;
6324 	unsigned long addr;
6325 	unsigned long waste;
6326 	long long sum_time;
6327 	long min_time;
6328 	long max_time;
6329 	long min_pid;
6330 	long max_pid;
6331 	DECLARE_BITMAP(cpus, NR_CPUS);
6332 	nodemask_t nodes;
6333 };
6334 
6335 struct loc_track {
6336 	unsigned long max;
6337 	unsigned long count;
6338 	struct location *loc;
6339 	loff_t idx;
6340 };
6341 
6342 static struct dentry *slab_debugfs_root;
6343 
6344 static void free_loc_track(struct loc_track *t)
6345 {
6346 	if (t->max)
6347 		free_pages((unsigned long)t->loc,
6348 			get_order(sizeof(struct location) * t->max));
6349 }
6350 
6351 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6352 {
6353 	struct location *l;
6354 	int order;
6355 
6356 	order = get_order(sizeof(struct location) * max);
6357 
6358 	l = (void *)__get_free_pages(flags, order);
6359 	if (!l)
6360 		return 0;
6361 
6362 	if (t->count) {
6363 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6364 		free_loc_track(t);
6365 	}
6366 	t->max = max;
6367 	t->loc = l;
6368 	return 1;
6369 }
6370 
6371 static int add_location(struct loc_track *t, struct kmem_cache *s,
6372 				const struct track *track,
6373 				unsigned int orig_size)
6374 {
6375 	long start, end, pos;
6376 	struct location *l;
6377 	unsigned long caddr, chandle, cwaste;
6378 	unsigned long age = jiffies - track->when;
6379 	depot_stack_handle_t handle = 0;
6380 	unsigned int waste = s->object_size - orig_size;
6381 
6382 #ifdef CONFIG_STACKDEPOT
6383 	handle = READ_ONCE(track->handle);
6384 #endif
6385 	start = -1;
6386 	end = t->count;
6387 
6388 	for ( ; ; ) {
6389 		pos = start + (end - start + 1) / 2;
6390 
6391 		/*
6392 		 * There is nothing at "end". If we end up there
6393 		 * we need to add something to before end.
6394 		 */
6395 		if (pos == end)
6396 			break;
6397 
6398 		l = &t->loc[pos];
6399 		caddr = l->addr;
6400 		chandle = l->handle;
6401 		cwaste = l->waste;
6402 		if ((track->addr == caddr) && (handle == chandle) &&
6403 			(waste == cwaste)) {
6404 
6405 			l->count++;
6406 			if (track->when) {
6407 				l->sum_time += age;
6408 				if (age < l->min_time)
6409 					l->min_time = age;
6410 				if (age > l->max_time)
6411 					l->max_time = age;
6412 
6413 				if (track->pid < l->min_pid)
6414 					l->min_pid = track->pid;
6415 				if (track->pid > l->max_pid)
6416 					l->max_pid = track->pid;
6417 
6418 				cpumask_set_cpu(track->cpu,
6419 						to_cpumask(l->cpus));
6420 			}
6421 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6422 			return 1;
6423 		}
6424 
6425 		if (track->addr < caddr)
6426 			end = pos;
6427 		else if (track->addr == caddr && handle < chandle)
6428 			end = pos;
6429 		else if (track->addr == caddr && handle == chandle &&
6430 				waste < cwaste)
6431 			end = pos;
6432 		else
6433 			start = pos;
6434 	}
6435 
6436 	/*
6437 	 * Not found. Insert new tracking element.
6438 	 */
6439 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6440 		return 0;
6441 
6442 	l = t->loc + pos;
6443 	if (pos < t->count)
6444 		memmove(l + 1, l,
6445 			(t->count - pos) * sizeof(struct location));
6446 	t->count++;
6447 	l->count = 1;
6448 	l->addr = track->addr;
6449 	l->sum_time = age;
6450 	l->min_time = age;
6451 	l->max_time = age;
6452 	l->min_pid = track->pid;
6453 	l->max_pid = track->pid;
6454 	l->handle = handle;
6455 	l->waste = waste;
6456 	cpumask_clear(to_cpumask(l->cpus));
6457 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6458 	nodes_clear(l->nodes);
6459 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6460 	return 1;
6461 }
6462 
6463 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6464 		struct slab *slab, enum track_item alloc,
6465 		unsigned long *obj_map)
6466 {
6467 	void *addr = slab_address(slab);
6468 	bool is_alloc = (alloc == TRACK_ALLOC);
6469 	void *p;
6470 
6471 	__fill_map(obj_map, s, slab);
6472 
6473 	for_each_object(p, s, addr, slab->objects)
6474 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6475 			add_location(t, s, get_track(s, p, alloc),
6476 				     is_alloc ? get_orig_size(s, p) :
6477 						s->object_size);
6478 }
6479 #endif  /* CONFIG_DEBUG_FS   */
6480 #endif	/* CONFIG_SLUB_DEBUG */
6481 
6482 #ifdef SLAB_SUPPORTS_SYSFS
6483 enum slab_stat_type {
6484 	SL_ALL,			/* All slabs */
6485 	SL_PARTIAL,		/* Only partially allocated slabs */
6486 	SL_CPU,			/* Only slabs used for cpu caches */
6487 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6488 	SL_TOTAL		/* Determine object capacity not slabs */
6489 };
6490 
6491 #define SO_ALL		(1 << SL_ALL)
6492 #define SO_PARTIAL	(1 << SL_PARTIAL)
6493 #define SO_CPU		(1 << SL_CPU)
6494 #define SO_OBJECTS	(1 << SL_OBJECTS)
6495 #define SO_TOTAL	(1 << SL_TOTAL)
6496 
6497 static ssize_t show_slab_objects(struct kmem_cache *s,
6498 				 char *buf, unsigned long flags)
6499 {
6500 	unsigned long total = 0;
6501 	int node;
6502 	int x;
6503 	unsigned long *nodes;
6504 	int len = 0;
6505 
6506 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6507 	if (!nodes)
6508 		return -ENOMEM;
6509 
6510 	if (flags & SO_CPU) {
6511 		int cpu;
6512 
6513 		for_each_possible_cpu(cpu) {
6514 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6515 							       cpu);
6516 			int node;
6517 			struct slab *slab;
6518 
6519 			slab = READ_ONCE(c->slab);
6520 			if (!slab)
6521 				continue;
6522 
6523 			node = slab_nid(slab);
6524 			if (flags & SO_TOTAL)
6525 				x = slab->objects;
6526 			else if (flags & SO_OBJECTS)
6527 				x = slab->inuse;
6528 			else
6529 				x = 1;
6530 
6531 			total += x;
6532 			nodes[node] += x;
6533 
6534 #ifdef CONFIG_SLUB_CPU_PARTIAL
6535 			slab = slub_percpu_partial_read_once(c);
6536 			if (slab) {
6537 				node = slab_nid(slab);
6538 				if (flags & SO_TOTAL)
6539 					WARN_ON_ONCE(1);
6540 				else if (flags & SO_OBJECTS)
6541 					WARN_ON_ONCE(1);
6542 				else
6543 					x = data_race(slab->slabs);
6544 				total += x;
6545 				nodes[node] += x;
6546 			}
6547 #endif
6548 		}
6549 	}
6550 
6551 	/*
6552 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6553 	 * already held which will conflict with an existing lock order:
6554 	 *
6555 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6556 	 *
6557 	 * We don't really need mem_hotplug_lock (to hold off
6558 	 * slab_mem_going_offline_callback) here because slab's memory hot
6559 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6560 	 */
6561 
6562 #ifdef CONFIG_SLUB_DEBUG
6563 	if (flags & SO_ALL) {
6564 		struct kmem_cache_node *n;
6565 
6566 		for_each_kmem_cache_node(s, node, n) {
6567 
6568 			if (flags & SO_TOTAL)
6569 				x = node_nr_objs(n);
6570 			else if (flags & SO_OBJECTS)
6571 				x = node_nr_objs(n) - count_partial(n, count_free);
6572 			else
6573 				x = node_nr_slabs(n);
6574 			total += x;
6575 			nodes[node] += x;
6576 		}
6577 
6578 	} else
6579 #endif
6580 	if (flags & SO_PARTIAL) {
6581 		struct kmem_cache_node *n;
6582 
6583 		for_each_kmem_cache_node(s, node, n) {
6584 			if (flags & SO_TOTAL)
6585 				x = count_partial(n, count_total);
6586 			else if (flags & SO_OBJECTS)
6587 				x = count_partial(n, count_inuse);
6588 			else
6589 				x = n->nr_partial;
6590 			total += x;
6591 			nodes[node] += x;
6592 		}
6593 	}
6594 
6595 	len += sysfs_emit_at(buf, len, "%lu", total);
6596 #ifdef CONFIG_NUMA
6597 	for (node = 0; node < nr_node_ids; node++) {
6598 		if (nodes[node])
6599 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6600 					     node, nodes[node]);
6601 	}
6602 #endif
6603 	len += sysfs_emit_at(buf, len, "\n");
6604 	kfree(nodes);
6605 
6606 	return len;
6607 }
6608 
6609 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6610 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6611 
6612 struct slab_attribute {
6613 	struct attribute attr;
6614 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6615 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6616 };
6617 
6618 #define SLAB_ATTR_RO(_name) \
6619 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6620 
6621 #define SLAB_ATTR(_name) \
6622 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6623 
6624 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6625 {
6626 	return sysfs_emit(buf, "%u\n", s->size);
6627 }
6628 SLAB_ATTR_RO(slab_size);
6629 
6630 static ssize_t align_show(struct kmem_cache *s, char *buf)
6631 {
6632 	return sysfs_emit(buf, "%u\n", s->align);
6633 }
6634 SLAB_ATTR_RO(align);
6635 
6636 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6637 {
6638 	return sysfs_emit(buf, "%u\n", s->object_size);
6639 }
6640 SLAB_ATTR_RO(object_size);
6641 
6642 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6643 {
6644 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6645 }
6646 SLAB_ATTR_RO(objs_per_slab);
6647 
6648 static ssize_t order_show(struct kmem_cache *s, char *buf)
6649 {
6650 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6651 }
6652 SLAB_ATTR_RO(order);
6653 
6654 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6655 {
6656 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6657 }
6658 
6659 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6660 				 size_t length)
6661 {
6662 	unsigned long min;
6663 	int err;
6664 
6665 	err = kstrtoul(buf, 10, &min);
6666 	if (err)
6667 		return err;
6668 
6669 	s->min_partial = min;
6670 	return length;
6671 }
6672 SLAB_ATTR(min_partial);
6673 
6674 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6675 {
6676 	unsigned int nr_partial = 0;
6677 #ifdef CONFIG_SLUB_CPU_PARTIAL
6678 	nr_partial = s->cpu_partial;
6679 #endif
6680 
6681 	return sysfs_emit(buf, "%u\n", nr_partial);
6682 }
6683 
6684 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6685 				 size_t length)
6686 {
6687 	unsigned int objects;
6688 	int err;
6689 
6690 	err = kstrtouint(buf, 10, &objects);
6691 	if (err)
6692 		return err;
6693 	if (objects && !kmem_cache_has_cpu_partial(s))
6694 		return -EINVAL;
6695 
6696 	slub_set_cpu_partial(s, objects);
6697 	flush_all(s);
6698 	return length;
6699 }
6700 SLAB_ATTR(cpu_partial);
6701 
6702 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6703 {
6704 	if (!s->ctor)
6705 		return 0;
6706 	return sysfs_emit(buf, "%pS\n", s->ctor);
6707 }
6708 SLAB_ATTR_RO(ctor);
6709 
6710 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6711 {
6712 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6713 }
6714 SLAB_ATTR_RO(aliases);
6715 
6716 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6717 {
6718 	return show_slab_objects(s, buf, SO_PARTIAL);
6719 }
6720 SLAB_ATTR_RO(partial);
6721 
6722 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6723 {
6724 	return show_slab_objects(s, buf, SO_CPU);
6725 }
6726 SLAB_ATTR_RO(cpu_slabs);
6727 
6728 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6729 {
6730 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6731 }
6732 SLAB_ATTR_RO(objects_partial);
6733 
6734 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6735 {
6736 	int objects = 0;
6737 	int slabs = 0;
6738 	int cpu __maybe_unused;
6739 	int len = 0;
6740 
6741 #ifdef CONFIG_SLUB_CPU_PARTIAL
6742 	for_each_online_cpu(cpu) {
6743 		struct slab *slab;
6744 
6745 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6746 
6747 		if (slab)
6748 			slabs += data_race(slab->slabs);
6749 	}
6750 #endif
6751 
6752 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6753 	objects = (slabs * oo_objects(s->oo)) / 2;
6754 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6755 
6756 #ifdef CONFIG_SLUB_CPU_PARTIAL
6757 	for_each_online_cpu(cpu) {
6758 		struct slab *slab;
6759 
6760 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6761 		if (slab) {
6762 			slabs = data_race(slab->slabs);
6763 			objects = (slabs * oo_objects(s->oo)) / 2;
6764 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6765 					     cpu, objects, slabs);
6766 		}
6767 	}
6768 #endif
6769 	len += sysfs_emit_at(buf, len, "\n");
6770 
6771 	return len;
6772 }
6773 SLAB_ATTR_RO(slabs_cpu_partial);
6774 
6775 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6776 {
6777 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6778 }
6779 SLAB_ATTR_RO(reclaim_account);
6780 
6781 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6782 {
6783 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6784 }
6785 SLAB_ATTR_RO(hwcache_align);
6786 
6787 #ifdef CONFIG_ZONE_DMA
6788 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6789 {
6790 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6791 }
6792 SLAB_ATTR_RO(cache_dma);
6793 #endif
6794 
6795 #ifdef CONFIG_HARDENED_USERCOPY
6796 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6797 {
6798 	return sysfs_emit(buf, "%u\n", s->usersize);
6799 }
6800 SLAB_ATTR_RO(usersize);
6801 #endif
6802 
6803 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6804 {
6805 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6806 }
6807 SLAB_ATTR_RO(destroy_by_rcu);
6808 
6809 #ifdef CONFIG_SLUB_DEBUG
6810 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6811 {
6812 	return show_slab_objects(s, buf, SO_ALL);
6813 }
6814 SLAB_ATTR_RO(slabs);
6815 
6816 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6817 {
6818 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6819 }
6820 SLAB_ATTR_RO(total_objects);
6821 
6822 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6823 {
6824 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6825 }
6826 SLAB_ATTR_RO(objects);
6827 
6828 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6829 {
6830 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6831 }
6832 SLAB_ATTR_RO(sanity_checks);
6833 
6834 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6835 {
6836 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6837 }
6838 SLAB_ATTR_RO(trace);
6839 
6840 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6841 {
6842 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6843 }
6844 
6845 SLAB_ATTR_RO(red_zone);
6846 
6847 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6848 {
6849 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6850 }
6851 
6852 SLAB_ATTR_RO(poison);
6853 
6854 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6855 {
6856 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6857 }
6858 
6859 SLAB_ATTR_RO(store_user);
6860 
6861 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6862 {
6863 	return 0;
6864 }
6865 
6866 static ssize_t validate_store(struct kmem_cache *s,
6867 			const char *buf, size_t length)
6868 {
6869 	int ret = -EINVAL;
6870 
6871 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6872 		ret = validate_slab_cache(s);
6873 		if (ret >= 0)
6874 			ret = length;
6875 	}
6876 	return ret;
6877 }
6878 SLAB_ATTR(validate);
6879 
6880 #endif /* CONFIG_SLUB_DEBUG */
6881 
6882 #ifdef CONFIG_FAILSLAB
6883 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6884 {
6885 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6886 }
6887 
6888 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6889 				size_t length)
6890 {
6891 	if (s->refcount > 1)
6892 		return -EINVAL;
6893 
6894 	if (buf[0] == '1')
6895 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6896 	else
6897 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6898 
6899 	return length;
6900 }
6901 SLAB_ATTR(failslab);
6902 #endif
6903 
6904 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6905 {
6906 	return 0;
6907 }
6908 
6909 static ssize_t shrink_store(struct kmem_cache *s,
6910 			const char *buf, size_t length)
6911 {
6912 	if (buf[0] == '1')
6913 		kmem_cache_shrink(s);
6914 	else
6915 		return -EINVAL;
6916 	return length;
6917 }
6918 SLAB_ATTR(shrink);
6919 
6920 #ifdef CONFIG_NUMA
6921 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6922 {
6923 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6924 }
6925 
6926 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6927 				const char *buf, size_t length)
6928 {
6929 	unsigned int ratio;
6930 	int err;
6931 
6932 	err = kstrtouint(buf, 10, &ratio);
6933 	if (err)
6934 		return err;
6935 	if (ratio > 100)
6936 		return -ERANGE;
6937 
6938 	s->remote_node_defrag_ratio = ratio * 10;
6939 
6940 	return length;
6941 }
6942 SLAB_ATTR(remote_node_defrag_ratio);
6943 #endif
6944 
6945 #ifdef CONFIG_SLUB_STATS
6946 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6947 {
6948 	unsigned long sum  = 0;
6949 	int cpu;
6950 	int len = 0;
6951 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6952 
6953 	if (!data)
6954 		return -ENOMEM;
6955 
6956 	for_each_online_cpu(cpu) {
6957 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6958 
6959 		data[cpu] = x;
6960 		sum += x;
6961 	}
6962 
6963 	len += sysfs_emit_at(buf, len, "%lu", sum);
6964 
6965 #ifdef CONFIG_SMP
6966 	for_each_online_cpu(cpu) {
6967 		if (data[cpu])
6968 			len += sysfs_emit_at(buf, len, " C%d=%u",
6969 					     cpu, data[cpu]);
6970 	}
6971 #endif
6972 	kfree(data);
6973 	len += sysfs_emit_at(buf, len, "\n");
6974 
6975 	return len;
6976 }
6977 
6978 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6979 {
6980 	int cpu;
6981 
6982 	for_each_online_cpu(cpu)
6983 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6984 }
6985 
6986 #define STAT_ATTR(si, text) 					\
6987 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6988 {								\
6989 	return show_stat(s, buf, si);				\
6990 }								\
6991 static ssize_t text##_store(struct kmem_cache *s,		\
6992 				const char *buf, size_t length)	\
6993 {								\
6994 	if (buf[0] != '0')					\
6995 		return -EINVAL;					\
6996 	clear_stat(s, si);					\
6997 	return length;						\
6998 }								\
6999 SLAB_ATTR(text);						\
7000 
7001 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7002 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7003 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7004 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7005 STAT_ATTR(FREE_FROZEN, free_frozen);
7006 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7007 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7008 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7009 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7010 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7011 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7012 STAT_ATTR(FREE_SLAB, free_slab);
7013 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7014 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7015 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7016 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7017 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7018 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7019 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7020 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7021 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7022 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7023 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7024 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7025 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7026 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7027 #endif	/* CONFIG_SLUB_STATS */
7028 
7029 #ifdef CONFIG_KFENCE
7030 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7031 {
7032 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7033 }
7034 
7035 static ssize_t skip_kfence_store(struct kmem_cache *s,
7036 			const char *buf, size_t length)
7037 {
7038 	int ret = length;
7039 
7040 	if (buf[0] == '0')
7041 		s->flags &= ~SLAB_SKIP_KFENCE;
7042 	else if (buf[0] == '1')
7043 		s->flags |= SLAB_SKIP_KFENCE;
7044 	else
7045 		ret = -EINVAL;
7046 
7047 	return ret;
7048 }
7049 SLAB_ATTR(skip_kfence);
7050 #endif
7051 
7052 static struct attribute *slab_attrs[] = {
7053 	&slab_size_attr.attr,
7054 	&object_size_attr.attr,
7055 	&objs_per_slab_attr.attr,
7056 	&order_attr.attr,
7057 	&min_partial_attr.attr,
7058 	&cpu_partial_attr.attr,
7059 	&objects_partial_attr.attr,
7060 	&partial_attr.attr,
7061 	&cpu_slabs_attr.attr,
7062 	&ctor_attr.attr,
7063 	&aliases_attr.attr,
7064 	&align_attr.attr,
7065 	&hwcache_align_attr.attr,
7066 	&reclaim_account_attr.attr,
7067 	&destroy_by_rcu_attr.attr,
7068 	&shrink_attr.attr,
7069 	&slabs_cpu_partial_attr.attr,
7070 #ifdef CONFIG_SLUB_DEBUG
7071 	&total_objects_attr.attr,
7072 	&objects_attr.attr,
7073 	&slabs_attr.attr,
7074 	&sanity_checks_attr.attr,
7075 	&trace_attr.attr,
7076 	&red_zone_attr.attr,
7077 	&poison_attr.attr,
7078 	&store_user_attr.attr,
7079 	&validate_attr.attr,
7080 #endif
7081 #ifdef CONFIG_ZONE_DMA
7082 	&cache_dma_attr.attr,
7083 #endif
7084 #ifdef CONFIG_NUMA
7085 	&remote_node_defrag_ratio_attr.attr,
7086 #endif
7087 #ifdef CONFIG_SLUB_STATS
7088 	&alloc_fastpath_attr.attr,
7089 	&alloc_slowpath_attr.attr,
7090 	&free_fastpath_attr.attr,
7091 	&free_slowpath_attr.attr,
7092 	&free_frozen_attr.attr,
7093 	&free_add_partial_attr.attr,
7094 	&free_remove_partial_attr.attr,
7095 	&alloc_from_partial_attr.attr,
7096 	&alloc_slab_attr.attr,
7097 	&alloc_refill_attr.attr,
7098 	&alloc_node_mismatch_attr.attr,
7099 	&free_slab_attr.attr,
7100 	&cpuslab_flush_attr.attr,
7101 	&deactivate_full_attr.attr,
7102 	&deactivate_empty_attr.attr,
7103 	&deactivate_to_head_attr.attr,
7104 	&deactivate_to_tail_attr.attr,
7105 	&deactivate_remote_frees_attr.attr,
7106 	&deactivate_bypass_attr.attr,
7107 	&order_fallback_attr.attr,
7108 	&cmpxchg_double_fail_attr.attr,
7109 	&cmpxchg_double_cpu_fail_attr.attr,
7110 	&cpu_partial_alloc_attr.attr,
7111 	&cpu_partial_free_attr.attr,
7112 	&cpu_partial_node_attr.attr,
7113 	&cpu_partial_drain_attr.attr,
7114 #endif
7115 #ifdef CONFIG_FAILSLAB
7116 	&failslab_attr.attr,
7117 #endif
7118 #ifdef CONFIG_HARDENED_USERCOPY
7119 	&usersize_attr.attr,
7120 #endif
7121 #ifdef CONFIG_KFENCE
7122 	&skip_kfence_attr.attr,
7123 #endif
7124 
7125 	NULL
7126 };
7127 
7128 static const struct attribute_group slab_attr_group = {
7129 	.attrs = slab_attrs,
7130 };
7131 
7132 static ssize_t slab_attr_show(struct kobject *kobj,
7133 				struct attribute *attr,
7134 				char *buf)
7135 {
7136 	struct slab_attribute *attribute;
7137 	struct kmem_cache *s;
7138 
7139 	attribute = to_slab_attr(attr);
7140 	s = to_slab(kobj);
7141 
7142 	if (!attribute->show)
7143 		return -EIO;
7144 
7145 	return attribute->show(s, buf);
7146 }
7147 
7148 static ssize_t slab_attr_store(struct kobject *kobj,
7149 				struct attribute *attr,
7150 				const char *buf, size_t len)
7151 {
7152 	struct slab_attribute *attribute;
7153 	struct kmem_cache *s;
7154 
7155 	attribute = to_slab_attr(attr);
7156 	s = to_slab(kobj);
7157 
7158 	if (!attribute->store)
7159 		return -EIO;
7160 
7161 	return attribute->store(s, buf, len);
7162 }
7163 
7164 static void kmem_cache_release(struct kobject *k)
7165 {
7166 	slab_kmem_cache_release(to_slab(k));
7167 }
7168 
7169 static const struct sysfs_ops slab_sysfs_ops = {
7170 	.show = slab_attr_show,
7171 	.store = slab_attr_store,
7172 };
7173 
7174 static const struct kobj_type slab_ktype = {
7175 	.sysfs_ops = &slab_sysfs_ops,
7176 	.release = kmem_cache_release,
7177 };
7178 
7179 static struct kset *slab_kset;
7180 
7181 static inline struct kset *cache_kset(struct kmem_cache *s)
7182 {
7183 	return slab_kset;
7184 }
7185 
7186 #define ID_STR_LENGTH 32
7187 
7188 /* Create a unique string id for a slab cache:
7189  *
7190  * Format	:[flags-]size
7191  */
7192 static char *create_unique_id(struct kmem_cache *s)
7193 {
7194 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7195 	char *p = name;
7196 
7197 	if (!name)
7198 		return ERR_PTR(-ENOMEM);
7199 
7200 	*p++ = ':';
7201 	/*
7202 	 * First flags affecting slabcache operations. We will only
7203 	 * get here for aliasable slabs so we do not need to support
7204 	 * too many flags. The flags here must cover all flags that
7205 	 * are matched during merging to guarantee that the id is
7206 	 * unique.
7207 	 */
7208 	if (s->flags & SLAB_CACHE_DMA)
7209 		*p++ = 'd';
7210 	if (s->flags & SLAB_CACHE_DMA32)
7211 		*p++ = 'D';
7212 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7213 		*p++ = 'a';
7214 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7215 		*p++ = 'F';
7216 	if (s->flags & SLAB_ACCOUNT)
7217 		*p++ = 'A';
7218 	if (p != name + 1)
7219 		*p++ = '-';
7220 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7221 
7222 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7223 		kfree(name);
7224 		return ERR_PTR(-EINVAL);
7225 	}
7226 	kmsan_unpoison_memory(name, p - name);
7227 	return name;
7228 }
7229 
7230 static int sysfs_slab_add(struct kmem_cache *s)
7231 {
7232 	int err;
7233 	const char *name;
7234 	struct kset *kset = cache_kset(s);
7235 	int unmergeable = slab_unmergeable(s);
7236 
7237 	if (!unmergeable && disable_higher_order_debug &&
7238 			(slub_debug & DEBUG_METADATA_FLAGS))
7239 		unmergeable = 1;
7240 
7241 	if (unmergeable) {
7242 		/*
7243 		 * Slabcache can never be merged so we can use the name proper.
7244 		 * This is typically the case for debug situations. In that
7245 		 * case we can catch duplicate names easily.
7246 		 */
7247 		sysfs_remove_link(&slab_kset->kobj, s->name);
7248 		name = s->name;
7249 	} else {
7250 		/*
7251 		 * Create a unique name for the slab as a target
7252 		 * for the symlinks.
7253 		 */
7254 		name = create_unique_id(s);
7255 		if (IS_ERR(name))
7256 			return PTR_ERR(name);
7257 	}
7258 
7259 	s->kobj.kset = kset;
7260 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7261 	if (err)
7262 		goto out;
7263 
7264 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7265 	if (err)
7266 		goto out_del_kobj;
7267 
7268 	if (!unmergeable) {
7269 		/* Setup first alias */
7270 		sysfs_slab_alias(s, s->name);
7271 	}
7272 out:
7273 	if (!unmergeable)
7274 		kfree(name);
7275 	return err;
7276 out_del_kobj:
7277 	kobject_del(&s->kobj);
7278 	goto out;
7279 }
7280 
7281 void sysfs_slab_unlink(struct kmem_cache *s)
7282 {
7283 	if (s->kobj.state_in_sysfs)
7284 		kobject_del(&s->kobj);
7285 }
7286 
7287 void sysfs_slab_release(struct kmem_cache *s)
7288 {
7289 	kobject_put(&s->kobj);
7290 }
7291 
7292 /*
7293  * Need to buffer aliases during bootup until sysfs becomes
7294  * available lest we lose that information.
7295  */
7296 struct saved_alias {
7297 	struct kmem_cache *s;
7298 	const char *name;
7299 	struct saved_alias *next;
7300 };
7301 
7302 static struct saved_alias *alias_list;
7303 
7304 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7305 {
7306 	struct saved_alias *al;
7307 
7308 	if (slab_state == FULL) {
7309 		/*
7310 		 * If we have a leftover link then remove it.
7311 		 */
7312 		sysfs_remove_link(&slab_kset->kobj, name);
7313 		/*
7314 		 * The original cache may have failed to generate sysfs file.
7315 		 * In that case, sysfs_create_link() returns -ENOENT and
7316 		 * symbolic link creation is skipped.
7317 		 */
7318 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7319 	}
7320 
7321 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7322 	if (!al)
7323 		return -ENOMEM;
7324 
7325 	al->s = s;
7326 	al->name = name;
7327 	al->next = alias_list;
7328 	alias_list = al;
7329 	kmsan_unpoison_memory(al, sizeof(*al));
7330 	return 0;
7331 }
7332 
7333 static int __init slab_sysfs_init(void)
7334 {
7335 	struct kmem_cache *s;
7336 	int err;
7337 
7338 	mutex_lock(&slab_mutex);
7339 
7340 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7341 	if (!slab_kset) {
7342 		mutex_unlock(&slab_mutex);
7343 		pr_err("Cannot register slab subsystem.\n");
7344 		return -ENOMEM;
7345 	}
7346 
7347 	slab_state = FULL;
7348 
7349 	list_for_each_entry(s, &slab_caches, list) {
7350 		err = sysfs_slab_add(s);
7351 		if (err)
7352 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7353 			       s->name);
7354 	}
7355 
7356 	while (alias_list) {
7357 		struct saved_alias *al = alias_list;
7358 
7359 		alias_list = alias_list->next;
7360 		err = sysfs_slab_alias(al->s, al->name);
7361 		if (err)
7362 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7363 			       al->name);
7364 		kfree(al);
7365 	}
7366 
7367 	mutex_unlock(&slab_mutex);
7368 	return 0;
7369 }
7370 late_initcall(slab_sysfs_init);
7371 #endif /* SLAB_SUPPORTS_SYSFS */
7372 
7373 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7374 static int slab_debugfs_show(struct seq_file *seq, void *v)
7375 {
7376 	struct loc_track *t = seq->private;
7377 	struct location *l;
7378 	unsigned long idx;
7379 
7380 	idx = (unsigned long) t->idx;
7381 	if (idx < t->count) {
7382 		l = &t->loc[idx];
7383 
7384 		seq_printf(seq, "%7ld ", l->count);
7385 
7386 		if (l->addr)
7387 			seq_printf(seq, "%pS", (void *)l->addr);
7388 		else
7389 			seq_puts(seq, "<not-available>");
7390 
7391 		if (l->waste)
7392 			seq_printf(seq, " waste=%lu/%lu",
7393 				l->count * l->waste, l->waste);
7394 
7395 		if (l->sum_time != l->min_time) {
7396 			seq_printf(seq, " age=%ld/%llu/%ld",
7397 				l->min_time, div_u64(l->sum_time, l->count),
7398 				l->max_time);
7399 		} else
7400 			seq_printf(seq, " age=%ld", l->min_time);
7401 
7402 		if (l->min_pid != l->max_pid)
7403 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7404 		else
7405 			seq_printf(seq, " pid=%ld",
7406 				l->min_pid);
7407 
7408 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7409 			seq_printf(seq, " cpus=%*pbl",
7410 				 cpumask_pr_args(to_cpumask(l->cpus)));
7411 
7412 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7413 			seq_printf(seq, " nodes=%*pbl",
7414 				 nodemask_pr_args(&l->nodes));
7415 
7416 #ifdef CONFIG_STACKDEPOT
7417 		{
7418 			depot_stack_handle_t handle;
7419 			unsigned long *entries;
7420 			unsigned int nr_entries, j;
7421 
7422 			handle = READ_ONCE(l->handle);
7423 			if (handle) {
7424 				nr_entries = stack_depot_fetch(handle, &entries);
7425 				seq_puts(seq, "\n");
7426 				for (j = 0; j < nr_entries; j++)
7427 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7428 			}
7429 		}
7430 #endif
7431 		seq_puts(seq, "\n");
7432 	}
7433 
7434 	if (!idx && !t->count)
7435 		seq_puts(seq, "No data\n");
7436 
7437 	return 0;
7438 }
7439 
7440 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7441 {
7442 }
7443 
7444 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7445 {
7446 	struct loc_track *t = seq->private;
7447 
7448 	t->idx = ++(*ppos);
7449 	if (*ppos <= t->count)
7450 		return ppos;
7451 
7452 	return NULL;
7453 }
7454 
7455 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7456 {
7457 	struct location *loc1 = (struct location *)a;
7458 	struct location *loc2 = (struct location *)b;
7459 
7460 	if (loc1->count > loc2->count)
7461 		return -1;
7462 	else
7463 		return 1;
7464 }
7465 
7466 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7467 {
7468 	struct loc_track *t = seq->private;
7469 
7470 	t->idx = *ppos;
7471 	return ppos;
7472 }
7473 
7474 static const struct seq_operations slab_debugfs_sops = {
7475 	.start  = slab_debugfs_start,
7476 	.next   = slab_debugfs_next,
7477 	.stop   = slab_debugfs_stop,
7478 	.show   = slab_debugfs_show,
7479 };
7480 
7481 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7482 {
7483 
7484 	struct kmem_cache_node *n;
7485 	enum track_item alloc;
7486 	int node;
7487 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7488 						sizeof(struct loc_track));
7489 	struct kmem_cache *s = file_inode(filep)->i_private;
7490 	unsigned long *obj_map;
7491 
7492 	if (!t)
7493 		return -ENOMEM;
7494 
7495 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7496 	if (!obj_map) {
7497 		seq_release_private(inode, filep);
7498 		return -ENOMEM;
7499 	}
7500 
7501 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7502 		alloc = TRACK_ALLOC;
7503 	else
7504 		alloc = TRACK_FREE;
7505 
7506 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7507 		bitmap_free(obj_map);
7508 		seq_release_private(inode, filep);
7509 		return -ENOMEM;
7510 	}
7511 
7512 	for_each_kmem_cache_node(s, node, n) {
7513 		unsigned long flags;
7514 		struct slab *slab;
7515 
7516 		if (!node_nr_slabs(n))
7517 			continue;
7518 
7519 		spin_lock_irqsave(&n->list_lock, flags);
7520 		list_for_each_entry(slab, &n->partial, slab_list)
7521 			process_slab(t, s, slab, alloc, obj_map);
7522 		list_for_each_entry(slab, &n->full, slab_list)
7523 			process_slab(t, s, slab, alloc, obj_map);
7524 		spin_unlock_irqrestore(&n->list_lock, flags);
7525 	}
7526 
7527 	/* Sort locations by count */
7528 	sort_r(t->loc, t->count, sizeof(struct location),
7529 		cmp_loc_by_count, NULL, NULL);
7530 
7531 	bitmap_free(obj_map);
7532 	return 0;
7533 }
7534 
7535 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7536 {
7537 	struct seq_file *seq = file->private_data;
7538 	struct loc_track *t = seq->private;
7539 
7540 	free_loc_track(t);
7541 	return seq_release_private(inode, file);
7542 }
7543 
7544 static const struct file_operations slab_debugfs_fops = {
7545 	.open    = slab_debug_trace_open,
7546 	.read    = seq_read,
7547 	.llseek  = seq_lseek,
7548 	.release = slab_debug_trace_release,
7549 };
7550 
7551 static void debugfs_slab_add(struct kmem_cache *s)
7552 {
7553 	struct dentry *slab_cache_dir;
7554 
7555 	if (unlikely(!slab_debugfs_root))
7556 		return;
7557 
7558 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7559 
7560 	debugfs_create_file("alloc_traces", 0400,
7561 		slab_cache_dir, s, &slab_debugfs_fops);
7562 
7563 	debugfs_create_file("free_traces", 0400,
7564 		slab_cache_dir, s, &slab_debugfs_fops);
7565 }
7566 
7567 void debugfs_slab_release(struct kmem_cache *s)
7568 {
7569 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7570 }
7571 
7572 static int __init slab_debugfs_init(void)
7573 {
7574 	struct kmem_cache *s;
7575 
7576 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7577 
7578 	list_for_each_entry(s, &slab_caches, list)
7579 		if (s->flags & SLAB_STORE_USER)
7580 			debugfs_slab_add(s);
7581 
7582 	return 0;
7583 
7584 }
7585 __initcall(slab_debugfs_init);
7586 #endif
7587 /*
7588  * The /proc/slabinfo ABI
7589  */
7590 #ifdef CONFIG_SLUB_DEBUG
7591 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7592 {
7593 	unsigned long nr_slabs = 0;
7594 	unsigned long nr_objs = 0;
7595 	unsigned long nr_free = 0;
7596 	int node;
7597 	struct kmem_cache_node *n;
7598 
7599 	for_each_kmem_cache_node(s, node, n) {
7600 		nr_slabs += node_nr_slabs(n);
7601 		nr_objs += node_nr_objs(n);
7602 		nr_free += count_partial_free_approx(n);
7603 	}
7604 
7605 	sinfo->active_objs = nr_objs - nr_free;
7606 	sinfo->num_objs = nr_objs;
7607 	sinfo->active_slabs = nr_slabs;
7608 	sinfo->num_slabs = nr_slabs;
7609 	sinfo->objects_per_slab = oo_objects(s->oo);
7610 	sinfo->cache_order = oo_order(s->oo);
7611 }
7612 #endif /* CONFIG_SLUB_DEBUG */
7613