xref: /linux/mm/slub.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24 
25 /*
26  * Lock order:
27  *   1. slab_lock(page)
28  *   2. slab->list_lock
29  *
30  *   The slab_lock protects operations on the object of a particular
31  *   slab and its metadata in the page struct. If the slab lock
32  *   has been taken then no allocations nor frees can be performed
33  *   on the objects in the slab nor can the slab be added or removed
34  *   from the partial or full lists since this would mean modifying
35  *   the page_struct of the slab.
36  *
37  *   The list_lock protects the partial and full list on each node and
38  *   the partial slab counter. If taken then no new slabs may be added or
39  *   removed from the lists nor make the number of partial slabs be modified.
40  *   (Note that the total number of slabs is an atomic value that may be
41  *   modified without taking the list lock).
42  *
43  *   The list_lock is a centralized lock and thus we avoid taking it as
44  *   much as possible. As long as SLUB does not have to handle partial
45  *   slabs, operations can continue without any centralized lock. F.e.
46  *   allocating a long series of objects that fill up slabs does not require
47  *   the list lock.
48  *
49  *   The lock order is sometimes inverted when we are trying to get a slab
50  *   off a list. We take the list_lock and then look for a page on the list
51  *   to use. While we do that objects in the slabs may be freed. We can
52  *   only operate on the slab if we have also taken the slab_lock. So we use
53  *   a slab_trylock() on the slab. If trylock was successful then no frees
54  *   can occur anymore and we can use the slab for allocations etc. If the
55  *   slab_trylock() does not succeed then frees are in progress in the slab and
56  *   we must stay away from it for a while since we may cause a bouncing
57  *   cacheline if we try to acquire the lock. So go onto the next slab.
58  *   If all pages are busy then we may allocate a new slab instead of reusing
59  *   a partial slab. A new slab has noone operating on it and thus there is
60  *   no danger of cacheline contention.
61  *
62  *   Interrupts are disabled during allocation and deallocation in order to
63  *   make the slab allocator safe to use in the context of an irq. In addition
64  *   interrupts are disabled to ensure that the processor does not change
65  *   while handling per_cpu slabs, due to kernel preemption.
66  *
67  * SLUB assigns one slab for allocation to each processor.
68  * Allocations only occur from these slabs called cpu slabs.
69  *
70  * Slabs with free elements are kept on a partial list and during regular
71  * operations no list for full slabs is used. If an object in a full slab is
72  * freed then the slab will show up again on the partial lists.
73  * We track full slabs for debugging purposes though because otherwise we
74  * cannot scan all objects.
75  *
76  * Slabs are freed when they become empty. Teardown and setup is
77  * minimal so we rely on the page allocators per cpu caches for
78  * fast frees and allocs.
79  *
80  * Overloading of page flags that are otherwise used for LRU management.
81  *
82  * PageActive 		The slab is frozen and exempt from list processing.
83  * 			This means that the slab is dedicated to a purpose
84  * 			such as satisfying allocations for a specific
85  * 			processor. Objects may be freed in the slab while
86  * 			it is frozen but slab_free will then skip the usual
87  * 			list operations. It is up to the processor holding
88  * 			the slab to integrate the slab into the slab lists
89  * 			when the slab is no longer needed.
90  *
91  * 			One use of this flag is to mark slabs that are
92  * 			used for allocations. Then such a slab becomes a cpu
93  * 			slab. The cpu slab may be equipped with an additional
94  * 			freelist that allows lockless access to
95  * 			free objects in addition to the regular freelist
96  * 			that requires the slab lock.
97  *
98  * PageError		Slab requires special handling due to debug
99  * 			options set. This moves	slab handling out of
100  * 			the fast path and disables lockless freelists.
101  */
102 
103 #define FROZEN (1 << PG_active)
104 
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110 
111 static inline int SlabFrozen(struct page *page)
112 {
113 	return page->flags & FROZEN;
114 }
115 
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 	page->flags |= FROZEN;
119 }
120 
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 	page->flags &= ~FROZEN;
124 }
125 
126 static inline int SlabDebug(struct page *page)
127 {
128 	return page->flags & SLABDEBUG;
129 }
130 
131 static inline void SetSlabDebug(struct page *page)
132 {
133 	page->flags |= SLABDEBUG;
134 }
135 
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 	page->flags &= ~SLABDEBUG;
139 }
140 
141 /*
142  * Issues still to be resolved:
143  *
144  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145  *
146  * - Variable sizing of the per node arrays
147  */
148 
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151 
152 #if PAGE_SHIFT <= 12
153 
154 /*
155  * Small page size. Make sure that we do not fragment memory
156  */
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
159 
160 #else
161 
162 /*
163  * Large page machines are customarily able to handle larger
164  * page orders.
165  */
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
168 
169 #endif
170 
171 /*
172  * Mininum number of partial slabs. These will be left on the partial
173  * lists even if they are empty. kmem_cache_shrink may reclaim them.
174  */
175 #define MIN_PARTIAL 2
176 
177 /*
178  * Maximum number of desirable partial slabs.
179  * The existence of more partial slabs makes kmem_cache_shrink
180  * sort the partial list by the number of objects in the.
181  */
182 #define MAX_PARTIAL 10
183 
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 				SLAB_POISON | SLAB_STORE_USER)
186 
187 /*
188  * Set of flags that will prevent slab merging
189  */
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192 
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 		SLAB_CACHE_DMA)
195 
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
199 
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
203 
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON		0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
207 
208 /* Not all arches define cache_line_size */
209 #ifndef cache_line_size
210 #define cache_line_size()	L1_CACHE_BYTES
211 #endif
212 
213 static int kmem_size = sizeof(struct kmem_cache);
214 
215 #ifdef CONFIG_SMP
216 static struct notifier_block slab_notifier;
217 #endif
218 
219 static enum {
220 	DOWN,		/* No slab functionality available */
221 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
222 	UP,		/* Everything works but does not show up in sysfs */
223 	SYSFS		/* Sysfs up */
224 } slab_state = DOWN;
225 
226 /* A list of all slab caches on the system */
227 static DECLARE_RWSEM(slub_lock);
228 static LIST_HEAD(slab_caches);
229 
230 /*
231  * Tracking user of a slab.
232  */
233 struct track {
234 	void *addr;		/* Called from address */
235 	int cpu;		/* Was running on cpu */
236 	int pid;		/* Pid context */
237 	unsigned long when;	/* When did the operation occur */
238 };
239 
240 enum track_item { TRACK_ALLOC, TRACK_FREE };
241 
242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243 static int sysfs_slab_add(struct kmem_cache *);
244 static int sysfs_slab_alias(struct kmem_cache *, const char *);
245 static void sysfs_slab_remove(struct kmem_cache *);
246 #else
247 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
248 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
249 							{ return 0; }
250 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
251 #endif
252 
253 /********************************************************************
254  * 			Core slab cache functions
255  *******************************************************************/
256 
257 int slab_is_available(void)
258 {
259 	return slab_state >= UP;
260 }
261 
262 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
263 {
264 #ifdef CONFIG_NUMA
265 	return s->node[node];
266 #else
267 	return &s->local_node;
268 #endif
269 }
270 
271 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
272 {
273 #ifdef CONFIG_SMP
274 	return s->cpu_slab[cpu];
275 #else
276 	return &s->cpu_slab;
277 #endif
278 }
279 
280 static inline int check_valid_pointer(struct kmem_cache *s,
281 				struct page *page, const void *object)
282 {
283 	void *base;
284 
285 	if (!object)
286 		return 1;
287 
288 	base = page_address(page);
289 	if (object < base || object >= base + s->objects * s->size ||
290 		(object - base) % s->size) {
291 		return 0;
292 	}
293 
294 	return 1;
295 }
296 
297 /*
298  * Slow version of get and set free pointer.
299  *
300  * This version requires touching the cache lines of kmem_cache which
301  * we avoid to do in the fast alloc free paths. There we obtain the offset
302  * from the page struct.
303  */
304 static inline void *get_freepointer(struct kmem_cache *s, void *object)
305 {
306 	return *(void **)(object + s->offset);
307 }
308 
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310 {
311 	*(void **)(object + s->offset) = fp;
312 }
313 
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 			__p += (__s)->size)
318 
319 /* Scan freelist */
320 #define for_each_free_object(__p, __s, __free) \
321 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322 
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325 {
326 	return (p - addr) / s->size;
327 }
328 
329 #ifdef CONFIG_SLUB_DEBUG
330 /*
331  * Debug settings:
332  */
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug = DEBUG_DEFAULT_FLAGS;
335 #else
336 static int slub_debug;
337 #endif
338 
339 static char *slub_debug_slabs;
340 
341 /*
342  * Object debugging
343  */
344 static void print_section(char *text, u8 *addr, unsigned int length)
345 {
346 	int i, offset;
347 	int newline = 1;
348 	char ascii[17];
349 
350 	ascii[16] = 0;
351 
352 	for (i = 0; i < length; i++) {
353 		if (newline) {
354 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355 			newline = 0;
356 		}
357 		printk(" %02x", addr[i]);
358 		offset = i % 16;
359 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 		if (offset == 15) {
361 			printk(" %s\n",ascii);
362 			newline = 1;
363 		}
364 	}
365 	if (!newline) {
366 		i %= 16;
367 		while (i < 16) {
368 			printk("   ");
369 			ascii[i] = ' ';
370 			i++;
371 		}
372 		printk(" %s\n", ascii);
373 	}
374 }
375 
376 static struct track *get_track(struct kmem_cache *s, void *object,
377 	enum track_item alloc)
378 {
379 	struct track *p;
380 
381 	if (s->offset)
382 		p = object + s->offset + sizeof(void *);
383 	else
384 		p = object + s->inuse;
385 
386 	return p + alloc;
387 }
388 
389 static void set_track(struct kmem_cache *s, void *object,
390 				enum track_item alloc, void *addr)
391 {
392 	struct track *p;
393 
394 	if (s->offset)
395 		p = object + s->offset + sizeof(void *);
396 	else
397 		p = object + s->inuse;
398 
399 	p += alloc;
400 	if (addr) {
401 		p->addr = addr;
402 		p->cpu = smp_processor_id();
403 		p->pid = current ? current->pid : -1;
404 		p->when = jiffies;
405 	} else
406 		memset(p, 0, sizeof(struct track));
407 }
408 
409 static void init_tracking(struct kmem_cache *s, void *object)
410 {
411 	if (!(s->flags & SLAB_STORE_USER))
412 		return;
413 
414 	set_track(s, object, TRACK_FREE, NULL);
415 	set_track(s, object, TRACK_ALLOC, NULL);
416 }
417 
418 static void print_track(const char *s, struct track *t)
419 {
420 	if (!t->addr)
421 		return;
422 
423 	printk(KERN_ERR "INFO: %s in ", s);
424 	__print_symbol("%s", (unsigned long)t->addr);
425 	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
426 }
427 
428 static void print_tracking(struct kmem_cache *s, void *object)
429 {
430 	if (!(s->flags & SLAB_STORE_USER))
431 		return;
432 
433 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 	print_track("Freed", get_track(s, object, TRACK_FREE));
435 }
436 
437 static void print_page_info(struct page *page)
438 {
439 	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 		page, page->inuse, page->freelist, page->flags);
441 
442 }
443 
444 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445 {
446 	va_list args;
447 	char buf[100];
448 
449 	va_start(args, fmt);
450 	vsnprintf(buf, sizeof(buf), fmt, args);
451 	va_end(args);
452 	printk(KERN_ERR "========================================"
453 			"=====================================\n");
454 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 	printk(KERN_ERR "----------------------------------------"
456 			"-------------------------------------\n\n");
457 }
458 
459 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460 {
461 	va_list args;
462 	char buf[100];
463 
464 	va_start(args, fmt);
465 	vsnprintf(buf, sizeof(buf), fmt, args);
466 	va_end(args);
467 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468 }
469 
470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
471 {
472 	unsigned int off;	/* Offset of last byte */
473 	u8 *addr = page_address(page);
474 
475 	print_tracking(s, p);
476 
477 	print_page_info(page);
478 
479 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 			p, p - addr, get_freepointer(s, p));
481 
482 	if (p > addr + 16)
483 		print_section("Bytes b4", p - 16, 16);
484 
485 	print_section("Object", p, min(s->objsize, 128));
486 
487 	if (s->flags & SLAB_RED_ZONE)
488 		print_section("Redzone", p + s->objsize,
489 			s->inuse - s->objsize);
490 
491 	if (s->offset)
492 		off = s->offset + sizeof(void *);
493 	else
494 		off = s->inuse;
495 
496 	if (s->flags & SLAB_STORE_USER)
497 		off += 2 * sizeof(struct track);
498 
499 	if (off != s->size)
500 		/* Beginning of the filler is the free pointer */
501 		print_section("Padding", p + off, s->size - off);
502 
503 	dump_stack();
504 }
505 
506 static void object_err(struct kmem_cache *s, struct page *page,
507 			u8 *object, char *reason)
508 {
509 	slab_bug(s, reason);
510 	print_trailer(s, page, object);
511 }
512 
513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
514 {
515 	va_list args;
516 	char buf[100];
517 
518 	va_start(args, fmt);
519 	vsnprintf(buf, sizeof(buf), fmt, args);
520 	va_end(args);
521 	slab_bug(s, fmt);
522 	print_page_info(page);
523 	dump_stack();
524 }
525 
526 static void init_object(struct kmem_cache *s, void *object, int active)
527 {
528 	u8 *p = object;
529 
530 	if (s->flags & __OBJECT_POISON) {
531 		memset(p, POISON_FREE, s->objsize - 1);
532 		p[s->objsize -1] = POISON_END;
533 	}
534 
535 	if (s->flags & SLAB_RED_ZONE)
536 		memset(p + s->objsize,
537 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 			s->inuse - s->objsize);
539 }
540 
541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
542 {
543 	while (bytes) {
544 		if (*start != (u8)value)
545 			return start;
546 		start++;
547 		bytes--;
548 	}
549 	return NULL;
550 }
551 
552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 						void *from, void *to)
554 {
555 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 	memset(from, data, to - from);
557 }
558 
559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 			u8 *object, char *what,
561 			u8* start, unsigned int value, unsigned int bytes)
562 {
563 	u8 *fault;
564 	u8 *end;
565 
566 	fault = check_bytes(start, value, bytes);
567 	if (!fault)
568 		return 1;
569 
570 	end = start + bytes;
571 	while (end > fault && end[-1] == value)
572 		end--;
573 
574 	slab_bug(s, "%s overwritten", what);
575 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 					fault, end - 1, fault[0], value);
577 	print_trailer(s, page, object);
578 
579 	restore_bytes(s, what, value, fault, end);
580 	return 0;
581 }
582 
583 /*
584  * Object layout:
585  *
586  * object address
587  * 	Bytes of the object to be managed.
588  * 	If the freepointer may overlay the object then the free
589  * 	pointer is the first word of the object.
590  *
591  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
592  * 	0xa5 (POISON_END)
593  *
594  * object + s->objsize
595  * 	Padding to reach word boundary. This is also used for Redzoning.
596  * 	Padding is extended by another word if Redzoning is enabled and
597  * 	objsize == inuse.
598  *
599  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600  * 	0xcc (RED_ACTIVE) for objects in use.
601  *
602  * object + s->inuse
603  * 	Meta data starts here.
604  *
605  * 	A. Free pointer (if we cannot overwrite object on free)
606  * 	B. Tracking data for SLAB_STORE_USER
607  * 	C. Padding to reach required alignment boundary or at mininum
608  * 		one word if debuggin is on to be able to detect writes
609  * 		before the word boundary.
610  *
611  *	Padding is done using 0x5a (POISON_INUSE)
612  *
613  * object + s->size
614  * 	Nothing is used beyond s->size.
615  *
616  * If slabcaches are merged then the objsize and inuse boundaries are mostly
617  * ignored. And therefore no slab options that rely on these boundaries
618  * may be used with merged slabcaches.
619  */
620 
621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622 {
623 	unsigned long off = s->inuse;	/* The end of info */
624 
625 	if (s->offset)
626 		/* Freepointer is placed after the object. */
627 		off += sizeof(void *);
628 
629 	if (s->flags & SLAB_STORE_USER)
630 		/* We also have user information there */
631 		off += 2 * sizeof(struct track);
632 
633 	if (s->size == off)
634 		return 1;
635 
636 	return check_bytes_and_report(s, page, p, "Object padding",
637 				p + off, POISON_INUSE, s->size - off);
638 }
639 
640 static int slab_pad_check(struct kmem_cache *s, struct page *page)
641 {
642 	u8 *start;
643 	u8 *fault;
644 	u8 *end;
645 	int length;
646 	int remainder;
647 
648 	if (!(s->flags & SLAB_POISON))
649 		return 1;
650 
651 	start = page_address(page);
652 	end = start + (PAGE_SIZE << s->order);
653 	length = s->objects * s->size;
654 	remainder = end - (start + length);
655 	if (!remainder)
656 		return 1;
657 
658 	fault = check_bytes(start + length, POISON_INUSE, remainder);
659 	if (!fault)
660 		return 1;
661 	while (end > fault && end[-1] == POISON_INUSE)
662 		end--;
663 
664 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 	print_section("Padding", start, length);
666 
667 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 	return 0;
669 }
670 
671 static int check_object(struct kmem_cache *s, struct page *page,
672 					void *object, int active)
673 {
674 	u8 *p = object;
675 	u8 *endobject = object + s->objsize;
676 
677 	if (s->flags & SLAB_RED_ZONE) {
678 		unsigned int red =
679 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680 
681 		if (!check_bytes_and_report(s, page, object, "Redzone",
682 			endobject, red, s->inuse - s->objsize))
683 			return 0;
684 	} else {
685 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 				POISON_INUSE, s->inuse - s->objsize);
688 	}
689 
690 	if (s->flags & SLAB_POISON) {
691 		if (!active && (s->flags & __OBJECT_POISON) &&
692 			(!check_bytes_and_report(s, page, p, "Poison", p,
693 					POISON_FREE, s->objsize - 1) ||
694 			 !check_bytes_and_report(s, page, p, "Poison",
695 			 	p + s->objsize -1, POISON_END, 1)))
696 			return 0;
697 		/*
698 		 * check_pad_bytes cleans up on its own.
699 		 */
700 		check_pad_bytes(s, page, p);
701 	}
702 
703 	if (!s->offset && active)
704 		/*
705 		 * Object and freepointer overlap. Cannot check
706 		 * freepointer while object is allocated.
707 		 */
708 		return 1;
709 
710 	/* Check free pointer validity */
711 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 		object_err(s, page, p, "Freepointer corrupt");
713 		/*
714 		 * No choice but to zap it and thus loose the remainder
715 		 * of the free objects in this slab. May cause
716 		 * another error because the object count is now wrong.
717 		 */
718 		set_freepointer(s, p, NULL);
719 		return 0;
720 	}
721 	return 1;
722 }
723 
724 static int check_slab(struct kmem_cache *s, struct page *page)
725 {
726 	VM_BUG_ON(!irqs_disabled());
727 
728 	if (!PageSlab(page)) {
729 		slab_err(s, page, "Not a valid slab page");
730 		return 0;
731 	}
732 	if (page->inuse > s->objects) {
733 		slab_err(s, page, "inuse %u > max %u",
734 			s->name, page->inuse, s->objects);
735 		return 0;
736 	}
737 	/* Slab_pad_check fixes things up after itself */
738 	slab_pad_check(s, page);
739 	return 1;
740 }
741 
742 /*
743  * Determine if a certain object on a page is on the freelist. Must hold the
744  * slab lock to guarantee that the chains are in a consistent state.
745  */
746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
747 {
748 	int nr = 0;
749 	void *fp = page->freelist;
750 	void *object = NULL;
751 
752 	while (fp && nr <= s->objects) {
753 		if (fp == search)
754 			return 1;
755 		if (!check_valid_pointer(s, page, fp)) {
756 			if (object) {
757 				object_err(s, page, object,
758 					"Freechain corrupt");
759 				set_freepointer(s, object, NULL);
760 				break;
761 			} else {
762 				slab_err(s, page, "Freepointer corrupt");
763 				page->freelist = NULL;
764 				page->inuse = s->objects;
765 				slab_fix(s, "Freelist cleared");
766 				return 0;
767 			}
768 			break;
769 		}
770 		object = fp;
771 		fp = get_freepointer(s, object);
772 		nr++;
773 	}
774 
775 	if (page->inuse != s->objects - nr) {
776 		slab_err(s, page, "Wrong object count. Counter is %d but "
777 			"counted were %d", page->inuse, s->objects - nr);
778 		page->inuse = s->objects - nr;
779 		slab_fix(s, "Object count adjusted.");
780 	}
781 	return search == NULL;
782 }
783 
784 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
785 {
786 	if (s->flags & SLAB_TRACE) {
787 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
788 			s->name,
789 			alloc ? "alloc" : "free",
790 			object, page->inuse,
791 			page->freelist);
792 
793 		if (!alloc)
794 			print_section("Object", (void *)object, s->objsize);
795 
796 		dump_stack();
797 	}
798 }
799 
800 /*
801  * Tracking of fully allocated slabs for debugging purposes.
802  */
803 static void add_full(struct kmem_cache_node *n, struct page *page)
804 {
805 	spin_lock(&n->list_lock);
806 	list_add(&page->lru, &n->full);
807 	spin_unlock(&n->list_lock);
808 }
809 
810 static void remove_full(struct kmem_cache *s, struct page *page)
811 {
812 	struct kmem_cache_node *n;
813 
814 	if (!(s->flags & SLAB_STORE_USER))
815 		return;
816 
817 	n = get_node(s, page_to_nid(page));
818 
819 	spin_lock(&n->list_lock);
820 	list_del(&page->lru);
821 	spin_unlock(&n->list_lock);
822 }
823 
824 static void setup_object_debug(struct kmem_cache *s, struct page *page,
825 								void *object)
826 {
827 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
828 		return;
829 
830 	init_object(s, object, 0);
831 	init_tracking(s, object);
832 }
833 
834 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
835 						void *object, void *addr)
836 {
837 	if (!check_slab(s, page))
838 		goto bad;
839 
840 	if (object && !on_freelist(s, page, object)) {
841 		object_err(s, page, object, "Object already allocated");
842 		goto bad;
843 	}
844 
845 	if (!check_valid_pointer(s, page, object)) {
846 		object_err(s, page, object, "Freelist Pointer check fails");
847 		goto bad;
848 	}
849 
850 	if (object && !check_object(s, page, object, 0))
851 		goto bad;
852 
853 	/* Success perform special debug activities for allocs */
854 	if (s->flags & SLAB_STORE_USER)
855 		set_track(s, object, TRACK_ALLOC, addr);
856 	trace(s, page, object, 1);
857 	init_object(s, object, 1);
858 	return 1;
859 
860 bad:
861 	if (PageSlab(page)) {
862 		/*
863 		 * If this is a slab page then lets do the best we can
864 		 * to avoid issues in the future. Marking all objects
865 		 * as used avoids touching the remaining objects.
866 		 */
867 		slab_fix(s, "Marking all objects used");
868 		page->inuse = s->objects;
869 		page->freelist = NULL;
870 	}
871 	return 0;
872 }
873 
874 static int free_debug_processing(struct kmem_cache *s, struct page *page,
875 						void *object, void *addr)
876 {
877 	if (!check_slab(s, page))
878 		goto fail;
879 
880 	if (!check_valid_pointer(s, page, object)) {
881 		slab_err(s, page, "Invalid object pointer 0x%p", object);
882 		goto fail;
883 	}
884 
885 	if (on_freelist(s, page, object)) {
886 		object_err(s, page, object, "Object already free");
887 		goto fail;
888 	}
889 
890 	if (!check_object(s, page, object, 1))
891 		return 0;
892 
893 	if (unlikely(s != page->slab)) {
894 		if (!PageSlab(page))
895 			slab_err(s, page, "Attempt to free object(0x%p) "
896 				"outside of slab", object);
897 		else
898 		if (!page->slab) {
899 			printk(KERN_ERR
900 				"SLUB <none>: no slab for object 0x%p.\n",
901 						object);
902 			dump_stack();
903 		}
904 		else
905 			object_err(s, page, object,
906 					"page slab pointer corrupt.");
907 		goto fail;
908 	}
909 
910 	/* Special debug activities for freeing objects */
911 	if (!SlabFrozen(page) && !page->freelist)
912 		remove_full(s, page);
913 	if (s->flags & SLAB_STORE_USER)
914 		set_track(s, object, TRACK_FREE, addr);
915 	trace(s, page, object, 0);
916 	init_object(s, object, 0);
917 	return 1;
918 
919 fail:
920 	slab_fix(s, "Object at 0x%p not freed", object);
921 	return 0;
922 }
923 
924 static int __init setup_slub_debug(char *str)
925 {
926 	slub_debug = DEBUG_DEFAULT_FLAGS;
927 	if (*str++ != '=' || !*str)
928 		/*
929 		 * No options specified. Switch on full debugging.
930 		 */
931 		goto out;
932 
933 	if (*str == ',')
934 		/*
935 		 * No options but restriction on slabs. This means full
936 		 * debugging for slabs matching a pattern.
937 		 */
938 		goto check_slabs;
939 
940 	slub_debug = 0;
941 	if (*str == '-')
942 		/*
943 		 * Switch off all debugging measures.
944 		 */
945 		goto out;
946 
947 	/*
948 	 * Determine which debug features should be switched on
949 	 */
950 	for ( ;*str && *str != ','; str++) {
951 		switch (tolower(*str)) {
952 		case 'f':
953 			slub_debug |= SLAB_DEBUG_FREE;
954 			break;
955 		case 'z':
956 			slub_debug |= SLAB_RED_ZONE;
957 			break;
958 		case 'p':
959 			slub_debug |= SLAB_POISON;
960 			break;
961 		case 'u':
962 			slub_debug |= SLAB_STORE_USER;
963 			break;
964 		case 't':
965 			slub_debug |= SLAB_TRACE;
966 			break;
967 		default:
968 			printk(KERN_ERR "slub_debug option '%c' "
969 				"unknown. skipped\n",*str);
970 		}
971 	}
972 
973 check_slabs:
974 	if (*str == ',')
975 		slub_debug_slabs = str + 1;
976 out:
977 	return 1;
978 }
979 
980 __setup("slub_debug", setup_slub_debug);
981 
982 static unsigned long kmem_cache_flags(unsigned long objsize,
983 	unsigned long flags, const char *name,
984 	void (*ctor)(struct kmem_cache *, void *))
985 {
986 	/*
987 	 * The page->offset field is only 16 bit wide. This is an offset
988 	 * in units of words from the beginning of an object. If the slab
989 	 * size is bigger then we cannot move the free pointer behind the
990 	 * object anymore.
991 	 *
992 	 * On 32 bit platforms the limit is 256k. On 64bit platforms
993 	 * the limit is 512k.
994 	 *
995 	 * Debugging or ctor may create a need to move the free
996 	 * pointer. Fail if this happens.
997 	 */
998 	if (objsize >= 65535 * sizeof(void *)) {
999 		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1000 				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1001 		BUG_ON(ctor);
1002 	} else {
1003 		/*
1004 		 * Enable debugging if selected on the kernel commandline.
1005 		 */
1006 		if (slub_debug && (!slub_debug_slabs ||
1007 		    strncmp(slub_debug_slabs, name,
1008 		    	strlen(slub_debug_slabs)) == 0))
1009 				flags |= slub_debug;
1010 	}
1011 
1012 	return flags;
1013 }
1014 #else
1015 static inline void setup_object_debug(struct kmem_cache *s,
1016 			struct page *page, void *object) {}
1017 
1018 static inline int alloc_debug_processing(struct kmem_cache *s,
1019 	struct page *page, void *object, void *addr) { return 0; }
1020 
1021 static inline int free_debug_processing(struct kmem_cache *s,
1022 	struct page *page, void *object, void *addr) { return 0; }
1023 
1024 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1025 			{ return 1; }
1026 static inline int check_object(struct kmem_cache *s, struct page *page,
1027 			void *object, int active) { return 1; }
1028 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1029 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1030 	unsigned long flags, const char *name,
1031 	void (*ctor)(struct kmem_cache *, void *))
1032 {
1033 	return flags;
1034 }
1035 #define slub_debug 0
1036 #endif
1037 /*
1038  * Slab allocation and freeing
1039  */
1040 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1041 {
1042 	struct page * page;
1043 	int pages = 1 << s->order;
1044 
1045 	if (s->order)
1046 		flags |= __GFP_COMP;
1047 
1048 	if (s->flags & SLAB_CACHE_DMA)
1049 		flags |= SLUB_DMA;
1050 
1051 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
1052 		flags |= __GFP_RECLAIMABLE;
1053 
1054 	if (node == -1)
1055 		page = alloc_pages(flags, s->order);
1056 	else
1057 		page = alloc_pages_node(node, flags, s->order);
1058 
1059 	if (!page)
1060 		return NULL;
1061 
1062 	mod_zone_page_state(page_zone(page),
1063 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1064 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1065 		pages);
1066 
1067 	return page;
1068 }
1069 
1070 static void setup_object(struct kmem_cache *s, struct page *page,
1071 				void *object)
1072 {
1073 	setup_object_debug(s, page, object);
1074 	if (unlikely(s->ctor))
1075 		s->ctor(s, object);
1076 }
1077 
1078 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1079 {
1080 	struct page *page;
1081 	struct kmem_cache_node *n;
1082 	void *start;
1083 	void *end;
1084 	void *last;
1085 	void *p;
1086 
1087 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1088 
1089 	page = allocate_slab(s,
1090 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1091 	if (!page)
1092 		goto out;
1093 
1094 	n = get_node(s, page_to_nid(page));
1095 	if (n)
1096 		atomic_long_inc(&n->nr_slabs);
1097 	page->slab = s;
1098 	page->flags |= 1 << PG_slab;
1099 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1100 			SLAB_STORE_USER | SLAB_TRACE))
1101 		SetSlabDebug(page);
1102 
1103 	start = page_address(page);
1104 	end = start + s->objects * s->size;
1105 
1106 	if (unlikely(s->flags & SLAB_POISON))
1107 		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1108 
1109 	last = start;
1110 	for_each_object(p, s, start) {
1111 		setup_object(s, page, last);
1112 		set_freepointer(s, last, p);
1113 		last = p;
1114 	}
1115 	setup_object(s, page, last);
1116 	set_freepointer(s, last, NULL);
1117 
1118 	page->freelist = start;
1119 	page->inuse = 0;
1120 out:
1121 	return page;
1122 }
1123 
1124 static void __free_slab(struct kmem_cache *s, struct page *page)
1125 {
1126 	int pages = 1 << s->order;
1127 
1128 	if (unlikely(SlabDebug(page))) {
1129 		void *p;
1130 
1131 		slab_pad_check(s, page);
1132 		for_each_object(p, s, page_address(page))
1133 			check_object(s, page, p, 0);
1134 		ClearSlabDebug(page);
1135 	}
1136 
1137 	mod_zone_page_state(page_zone(page),
1138 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1139 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1140 		- pages);
1141 
1142 	__free_pages(page, s->order);
1143 }
1144 
1145 static void rcu_free_slab(struct rcu_head *h)
1146 {
1147 	struct page *page;
1148 
1149 	page = container_of((struct list_head *)h, struct page, lru);
1150 	__free_slab(page->slab, page);
1151 }
1152 
1153 static void free_slab(struct kmem_cache *s, struct page *page)
1154 {
1155 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1156 		/*
1157 		 * RCU free overloads the RCU head over the LRU
1158 		 */
1159 		struct rcu_head *head = (void *)&page->lru;
1160 
1161 		call_rcu(head, rcu_free_slab);
1162 	} else
1163 		__free_slab(s, page);
1164 }
1165 
1166 static void discard_slab(struct kmem_cache *s, struct page *page)
1167 {
1168 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1169 
1170 	atomic_long_dec(&n->nr_slabs);
1171 	reset_page_mapcount(page);
1172 	__ClearPageSlab(page);
1173 	free_slab(s, page);
1174 }
1175 
1176 /*
1177  * Per slab locking using the pagelock
1178  */
1179 static __always_inline void slab_lock(struct page *page)
1180 {
1181 	bit_spin_lock(PG_locked, &page->flags);
1182 }
1183 
1184 static __always_inline void slab_unlock(struct page *page)
1185 {
1186 	bit_spin_unlock(PG_locked, &page->flags);
1187 }
1188 
1189 static __always_inline int slab_trylock(struct page *page)
1190 {
1191 	int rc = 1;
1192 
1193 	rc = bit_spin_trylock(PG_locked, &page->flags);
1194 	return rc;
1195 }
1196 
1197 /*
1198  * Management of partially allocated slabs
1199  */
1200 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1201 {
1202 	spin_lock(&n->list_lock);
1203 	n->nr_partial++;
1204 	list_add_tail(&page->lru, &n->partial);
1205 	spin_unlock(&n->list_lock);
1206 }
1207 
1208 static void add_partial(struct kmem_cache_node *n, struct page *page)
1209 {
1210 	spin_lock(&n->list_lock);
1211 	n->nr_partial++;
1212 	list_add(&page->lru, &n->partial);
1213 	spin_unlock(&n->list_lock);
1214 }
1215 
1216 static void remove_partial(struct kmem_cache *s,
1217 						struct page *page)
1218 {
1219 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1220 
1221 	spin_lock(&n->list_lock);
1222 	list_del(&page->lru);
1223 	n->nr_partial--;
1224 	spin_unlock(&n->list_lock);
1225 }
1226 
1227 /*
1228  * Lock slab and remove from the partial list.
1229  *
1230  * Must hold list_lock.
1231  */
1232 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1233 {
1234 	if (slab_trylock(page)) {
1235 		list_del(&page->lru);
1236 		n->nr_partial--;
1237 		SetSlabFrozen(page);
1238 		return 1;
1239 	}
1240 	return 0;
1241 }
1242 
1243 /*
1244  * Try to allocate a partial slab from a specific node.
1245  */
1246 static struct page *get_partial_node(struct kmem_cache_node *n)
1247 {
1248 	struct page *page;
1249 
1250 	/*
1251 	 * Racy check. If we mistakenly see no partial slabs then we
1252 	 * just allocate an empty slab. If we mistakenly try to get a
1253 	 * partial slab and there is none available then get_partials()
1254 	 * will return NULL.
1255 	 */
1256 	if (!n || !n->nr_partial)
1257 		return NULL;
1258 
1259 	spin_lock(&n->list_lock);
1260 	list_for_each_entry(page, &n->partial, lru)
1261 		if (lock_and_freeze_slab(n, page))
1262 			goto out;
1263 	page = NULL;
1264 out:
1265 	spin_unlock(&n->list_lock);
1266 	return page;
1267 }
1268 
1269 /*
1270  * Get a page from somewhere. Search in increasing NUMA distances.
1271  */
1272 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1273 {
1274 #ifdef CONFIG_NUMA
1275 	struct zonelist *zonelist;
1276 	struct zone **z;
1277 	struct page *page;
1278 
1279 	/*
1280 	 * The defrag ratio allows a configuration of the tradeoffs between
1281 	 * inter node defragmentation and node local allocations. A lower
1282 	 * defrag_ratio increases the tendency to do local allocations
1283 	 * instead of attempting to obtain partial slabs from other nodes.
1284 	 *
1285 	 * If the defrag_ratio is set to 0 then kmalloc() always
1286 	 * returns node local objects. If the ratio is higher then kmalloc()
1287 	 * may return off node objects because partial slabs are obtained
1288 	 * from other nodes and filled up.
1289 	 *
1290 	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1291 	 * defrag_ratio = 1000) then every (well almost) allocation will
1292 	 * first attempt to defrag slab caches on other nodes. This means
1293 	 * scanning over all nodes to look for partial slabs which may be
1294 	 * expensive if we do it every time we are trying to find a slab
1295 	 * with available objects.
1296 	 */
1297 	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1298 		return NULL;
1299 
1300 	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1301 					->node_zonelists[gfp_zone(flags)];
1302 	for (z = zonelist->zones; *z; z++) {
1303 		struct kmem_cache_node *n;
1304 
1305 		n = get_node(s, zone_to_nid(*z));
1306 
1307 		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1308 				n->nr_partial > MIN_PARTIAL) {
1309 			page = get_partial_node(n);
1310 			if (page)
1311 				return page;
1312 		}
1313 	}
1314 #endif
1315 	return NULL;
1316 }
1317 
1318 /*
1319  * Get a partial page, lock it and return it.
1320  */
1321 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1322 {
1323 	struct page *page;
1324 	int searchnode = (node == -1) ? numa_node_id() : node;
1325 
1326 	page = get_partial_node(get_node(s, searchnode));
1327 	if (page || (flags & __GFP_THISNODE))
1328 		return page;
1329 
1330 	return get_any_partial(s, flags);
1331 }
1332 
1333 /*
1334  * Move a page back to the lists.
1335  *
1336  * Must be called with the slab lock held.
1337  *
1338  * On exit the slab lock will have been dropped.
1339  */
1340 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1341 {
1342 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1343 
1344 	ClearSlabFrozen(page);
1345 	if (page->inuse) {
1346 
1347 		if (page->freelist)
1348 			add_partial(n, page);
1349 		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1350 			add_full(n, page);
1351 		slab_unlock(page);
1352 
1353 	} else {
1354 		if (n->nr_partial < MIN_PARTIAL) {
1355 			/*
1356 			 * Adding an empty slab to the partial slabs in order
1357 			 * to avoid page allocator overhead. This slab needs
1358 			 * to come after the other slabs with objects in
1359 			 * order to fill them up. That way the size of the
1360 			 * partial list stays small. kmem_cache_shrink can
1361 			 * reclaim empty slabs from the partial list.
1362 			 */
1363 			add_partial_tail(n, page);
1364 			slab_unlock(page);
1365 		} else {
1366 			slab_unlock(page);
1367 			discard_slab(s, page);
1368 		}
1369 	}
1370 }
1371 
1372 /*
1373  * Remove the cpu slab
1374  */
1375 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1376 {
1377 	struct page *page = c->page;
1378 	/*
1379 	 * Merge cpu freelist into freelist. Typically we get here
1380 	 * because both freelists are empty. So this is unlikely
1381 	 * to occur.
1382 	 */
1383 	while (unlikely(c->freelist)) {
1384 		void **object;
1385 
1386 		/* Retrieve object from cpu_freelist */
1387 		object = c->freelist;
1388 		c->freelist = c->freelist[c->offset];
1389 
1390 		/* And put onto the regular freelist */
1391 		object[c->offset] = page->freelist;
1392 		page->freelist = object;
1393 		page->inuse--;
1394 	}
1395 	c->page = NULL;
1396 	unfreeze_slab(s, page);
1397 }
1398 
1399 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1400 {
1401 	slab_lock(c->page);
1402 	deactivate_slab(s, c);
1403 }
1404 
1405 /*
1406  * Flush cpu slab.
1407  * Called from IPI handler with interrupts disabled.
1408  */
1409 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1410 {
1411 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1412 
1413 	if (likely(c && c->page))
1414 		flush_slab(s, c);
1415 }
1416 
1417 static void flush_cpu_slab(void *d)
1418 {
1419 	struct kmem_cache *s = d;
1420 
1421 	__flush_cpu_slab(s, smp_processor_id());
1422 }
1423 
1424 static void flush_all(struct kmem_cache *s)
1425 {
1426 #ifdef CONFIG_SMP
1427 	on_each_cpu(flush_cpu_slab, s, 1, 1);
1428 #else
1429 	unsigned long flags;
1430 
1431 	local_irq_save(flags);
1432 	flush_cpu_slab(s);
1433 	local_irq_restore(flags);
1434 #endif
1435 }
1436 
1437 /*
1438  * Check if the objects in a per cpu structure fit numa
1439  * locality expectations.
1440  */
1441 static inline int node_match(struct kmem_cache_cpu *c, int node)
1442 {
1443 #ifdef CONFIG_NUMA
1444 	if (node != -1 && c->node != node)
1445 		return 0;
1446 #endif
1447 	return 1;
1448 }
1449 
1450 /*
1451  * Slow path. The lockless freelist is empty or we need to perform
1452  * debugging duties.
1453  *
1454  * Interrupts are disabled.
1455  *
1456  * Processing is still very fast if new objects have been freed to the
1457  * regular freelist. In that case we simply take over the regular freelist
1458  * as the lockless freelist and zap the regular freelist.
1459  *
1460  * If that is not working then we fall back to the partial lists. We take the
1461  * first element of the freelist as the object to allocate now and move the
1462  * rest of the freelist to the lockless freelist.
1463  *
1464  * And if we were unable to get a new slab from the partial slab lists then
1465  * we need to allocate a new slab. This is slowest path since we may sleep.
1466  */
1467 static void *__slab_alloc(struct kmem_cache *s,
1468 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1469 {
1470 	void **object;
1471 	struct page *new;
1472 
1473 	if (!c->page)
1474 		goto new_slab;
1475 
1476 	slab_lock(c->page);
1477 	if (unlikely(!node_match(c, node)))
1478 		goto another_slab;
1479 load_freelist:
1480 	object = c->page->freelist;
1481 	if (unlikely(!object))
1482 		goto another_slab;
1483 	if (unlikely(SlabDebug(c->page)))
1484 		goto debug;
1485 
1486 	object = c->page->freelist;
1487 	c->freelist = object[c->offset];
1488 	c->page->inuse = s->objects;
1489 	c->page->freelist = NULL;
1490 	c->node = page_to_nid(c->page);
1491 	slab_unlock(c->page);
1492 	return object;
1493 
1494 another_slab:
1495 	deactivate_slab(s, c);
1496 
1497 new_slab:
1498 	new = get_partial(s, gfpflags, node);
1499 	if (new) {
1500 		c->page = new;
1501 		goto load_freelist;
1502 	}
1503 
1504 	if (gfpflags & __GFP_WAIT)
1505 		local_irq_enable();
1506 
1507 	new = new_slab(s, gfpflags, node);
1508 
1509 	if (gfpflags & __GFP_WAIT)
1510 		local_irq_disable();
1511 
1512 	if (new) {
1513 		c = get_cpu_slab(s, smp_processor_id());
1514 		if (c->page)
1515 			flush_slab(s, c);
1516 		slab_lock(new);
1517 		SetSlabFrozen(new);
1518 		c->page = new;
1519 		goto load_freelist;
1520 	}
1521 	return NULL;
1522 debug:
1523 	object = c->page->freelist;
1524 	if (!alloc_debug_processing(s, c->page, object, addr))
1525 		goto another_slab;
1526 
1527 	c->page->inuse++;
1528 	c->page->freelist = object[c->offset];
1529 	c->node = -1;
1530 	slab_unlock(c->page);
1531 	return object;
1532 }
1533 
1534 /*
1535  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1536  * have the fastpath folded into their functions. So no function call
1537  * overhead for requests that can be satisfied on the fastpath.
1538  *
1539  * The fastpath works by first checking if the lockless freelist can be used.
1540  * If not then __slab_alloc is called for slow processing.
1541  *
1542  * Otherwise we can simply pick the next object from the lockless free list.
1543  */
1544 static void __always_inline *slab_alloc(struct kmem_cache *s,
1545 		gfp_t gfpflags, int node, void *addr)
1546 {
1547 	void **object;
1548 	unsigned long flags;
1549 	struct kmem_cache_cpu *c;
1550 
1551 	local_irq_save(flags);
1552 	c = get_cpu_slab(s, smp_processor_id());
1553 	if (unlikely(!c->freelist || !node_match(c, node)))
1554 
1555 		object = __slab_alloc(s, gfpflags, node, addr, c);
1556 
1557 	else {
1558 		object = c->freelist;
1559 		c->freelist = object[c->offset];
1560 	}
1561 	local_irq_restore(flags);
1562 
1563 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1564 		memset(object, 0, c->objsize);
1565 
1566 	return object;
1567 }
1568 
1569 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1570 {
1571 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1572 }
1573 EXPORT_SYMBOL(kmem_cache_alloc);
1574 
1575 #ifdef CONFIG_NUMA
1576 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1577 {
1578 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1579 }
1580 EXPORT_SYMBOL(kmem_cache_alloc_node);
1581 #endif
1582 
1583 /*
1584  * Slow patch handling. This may still be called frequently since objects
1585  * have a longer lifetime than the cpu slabs in most processing loads.
1586  *
1587  * So we still attempt to reduce cache line usage. Just take the slab
1588  * lock and free the item. If there is no additional partial page
1589  * handling required then we can return immediately.
1590  */
1591 static void __slab_free(struct kmem_cache *s, struct page *page,
1592 				void *x, void *addr, unsigned int offset)
1593 {
1594 	void *prior;
1595 	void **object = (void *)x;
1596 
1597 	slab_lock(page);
1598 
1599 	if (unlikely(SlabDebug(page)))
1600 		goto debug;
1601 checks_ok:
1602 	prior = object[offset] = page->freelist;
1603 	page->freelist = object;
1604 	page->inuse--;
1605 
1606 	if (unlikely(SlabFrozen(page)))
1607 		goto out_unlock;
1608 
1609 	if (unlikely(!page->inuse))
1610 		goto slab_empty;
1611 
1612 	/*
1613 	 * Objects left in the slab. If it
1614 	 * was not on the partial list before
1615 	 * then add it.
1616 	 */
1617 	if (unlikely(!prior))
1618 		add_partial(get_node(s, page_to_nid(page)), page);
1619 
1620 out_unlock:
1621 	slab_unlock(page);
1622 	return;
1623 
1624 slab_empty:
1625 	if (prior)
1626 		/*
1627 		 * Slab still on the partial list.
1628 		 */
1629 		remove_partial(s, page);
1630 
1631 	slab_unlock(page);
1632 	discard_slab(s, page);
1633 	return;
1634 
1635 debug:
1636 	if (!free_debug_processing(s, page, x, addr))
1637 		goto out_unlock;
1638 	goto checks_ok;
1639 }
1640 
1641 /*
1642  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1643  * can perform fastpath freeing without additional function calls.
1644  *
1645  * The fastpath is only possible if we are freeing to the current cpu slab
1646  * of this processor. This typically the case if we have just allocated
1647  * the item before.
1648  *
1649  * If fastpath is not possible then fall back to __slab_free where we deal
1650  * with all sorts of special processing.
1651  */
1652 static void __always_inline slab_free(struct kmem_cache *s,
1653 			struct page *page, void *x, void *addr)
1654 {
1655 	void **object = (void *)x;
1656 	unsigned long flags;
1657 	struct kmem_cache_cpu *c;
1658 
1659 	local_irq_save(flags);
1660 	debug_check_no_locks_freed(object, s->objsize);
1661 	c = get_cpu_slab(s, smp_processor_id());
1662 	if (likely(page == c->page && c->node >= 0)) {
1663 		object[c->offset] = c->freelist;
1664 		c->freelist = object;
1665 	} else
1666 		__slab_free(s, page, x, addr, c->offset);
1667 
1668 	local_irq_restore(flags);
1669 }
1670 
1671 void kmem_cache_free(struct kmem_cache *s, void *x)
1672 {
1673 	struct page *page;
1674 
1675 	page = virt_to_head_page(x);
1676 
1677 	slab_free(s, page, x, __builtin_return_address(0));
1678 }
1679 EXPORT_SYMBOL(kmem_cache_free);
1680 
1681 /* Figure out on which slab object the object resides */
1682 static struct page *get_object_page(const void *x)
1683 {
1684 	struct page *page = virt_to_head_page(x);
1685 
1686 	if (!PageSlab(page))
1687 		return NULL;
1688 
1689 	return page;
1690 }
1691 
1692 /*
1693  * Object placement in a slab is made very easy because we always start at
1694  * offset 0. If we tune the size of the object to the alignment then we can
1695  * get the required alignment by putting one properly sized object after
1696  * another.
1697  *
1698  * Notice that the allocation order determines the sizes of the per cpu
1699  * caches. Each processor has always one slab available for allocations.
1700  * Increasing the allocation order reduces the number of times that slabs
1701  * must be moved on and off the partial lists and is therefore a factor in
1702  * locking overhead.
1703  */
1704 
1705 /*
1706  * Mininum / Maximum order of slab pages. This influences locking overhead
1707  * and slab fragmentation. A higher order reduces the number of partial slabs
1708  * and increases the number of allocations possible without having to
1709  * take the list_lock.
1710  */
1711 static int slub_min_order;
1712 static int slub_max_order = DEFAULT_MAX_ORDER;
1713 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1714 
1715 /*
1716  * Merge control. If this is set then no merging of slab caches will occur.
1717  * (Could be removed. This was introduced to pacify the merge skeptics.)
1718  */
1719 static int slub_nomerge;
1720 
1721 /*
1722  * Calculate the order of allocation given an slab object size.
1723  *
1724  * The order of allocation has significant impact on performance and other
1725  * system components. Generally order 0 allocations should be preferred since
1726  * order 0 does not cause fragmentation in the page allocator. Larger objects
1727  * be problematic to put into order 0 slabs because there may be too much
1728  * unused space left. We go to a higher order if more than 1/8th of the slab
1729  * would be wasted.
1730  *
1731  * In order to reach satisfactory performance we must ensure that a minimum
1732  * number of objects is in one slab. Otherwise we may generate too much
1733  * activity on the partial lists which requires taking the list_lock. This is
1734  * less a concern for large slabs though which are rarely used.
1735  *
1736  * slub_max_order specifies the order where we begin to stop considering the
1737  * number of objects in a slab as critical. If we reach slub_max_order then
1738  * we try to keep the page order as low as possible. So we accept more waste
1739  * of space in favor of a small page order.
1740  *
1741  * Higher order allocations also allow the placement of more objects in a
1742  * slab and thereby reduce object handling overhead. If the user has
1743  * requested a higher mininum order then we start with that one instead of
1744  * the smallest order which will fit the object.
1745  */
1746 static inline int slab_order(int size, int min_objects,
1747 				int max_order, int fract_leftover)
1748 {
1749 	int order;
1750 	int rem;
1751 	int min_order = slub_min_order;
1752 
1753 	for (order = max(min_order,
1754 				fls(min_objects * size - 1) - PAGE_SHIFT);
1755 			order <= max_order; order++) {
1756 
1757 		unsigned long slab_size = PAGE_SIZE << order;
1758 
1759 		if (slab_size < min_objects * size)
1760 			continue;
1761 
1762 		rem = slab_size % size;
1763 
1764 		if (rem <= slab_size / fract_leftover)
1765 			break;
1766 
1767 	}
1768 
1769 	return order;
1770 }
1771 
1772 static inline int calculate_order(int size)
1773 {
1774 	int order;
1775 	int min_objects;
1776 	int fraction;
1777 
1778 	/*
1779 	 * Attempt to find best configuration for a slab. This
1780 	 * works by first attempting to generate a layout with
1781 	 * the best configuration and backing off gradually.
1782 	 *
1783 	 * First we reduce the acceptable waste in a slab. Then
1784 	 * we reduce the minimum objects required in a slab.
1785 	 */
1786 	min_objects = slub_min_objects;
1787 	while (min_objects > 1) {
1788 		fraction = 8;
1789 		while (fraction >= 4) {
1790 			order = slab_order(size, min_objects,
1791 						slub_max_order, fraction);
1792 			if (order <= slub_max_order)
1793 				return order;
1794 			fraction /= 2;
1795 		}
1796 		min_objects /= 2;
1797 	}
1798 
1799 	/*
1800 	 * We were unable to place multiple objects in a slab. Now
1801 	 * lets see if we can place a single object there.
1802 	 */
1803 	order = slab_order(size, 1, slub_max_order, 1);
1804 	if (order <= slub_max_order)
1805 		return order;
1806 
1807 	/*
1808 	 * Doh this slab cannot be placed using slub_max_order.
1809 	 */
1810 	order = slab_order(size, 1, MAX_ORDER, 1);
1811 	if (order <= MAX_ORDER)
1812 		return order;
1813 	return -ENOSYS;
1814 }
1815 
1816 /*
1817  * Figure out what the alignment of the objects will be.
1818  */
1819 static unsigned long calculate_alignment(unsigned long flags,
1820 		unsigned long align, unsigned long size)
1821 {
1822 	/*
1823 	 * If the user wants hardware cache aligned objects then
1824 	 * follow that suggestion if the object is sufficiently
1825 	 * large.
1826 	 *
1827 	 * The hardware cache alignment cannot override the
1828 	 * specified alignment though. If that is greater
1829 	 * then use it.
1830 	 */
1831 	if ((flags & SLAB_HWCACHE_ALIGN) &&
1832 			size > cache_line_size() / 2)
1833 		return max_t(unsigned long, align, cache_line_size());
1834 
1835 	if (align < ARCH_SLAB_MINALIGN)
1836 		return ARCH_SLAB_MINALIGN;
1837 
1838 	return ALIGN(align, sizeof(void *));
1839 }
1840 
1841 static void init_kmem_cache_cpu(struct kmem_cache *s,
1842 			struct kmem_cache_cpu *c)
1843 {
1844 	c->page = NULL;
1845 	c->freelist = NULL;
1846 	c->node = 0;
1847 	c->offset = s->offset / sizeof(void *);
1848 	c->objsize = s->objsize;
1849 }
1850 
1851 static void init_kmem_cache_node(struct kmem_cache_node *n)
1852 {
1853 	n->nr_partial = 0;
1854 	atomic_long_set(&n->nr_slabs, 0);
1855 	spin_lock_init(&n->list_lock);
1856 	INIT_LIST_HEAD(&n->partial);
1857 #ifdef CONFIG_SLUB_DEBUG
1858 	INIT_LIST_HEAD(&n->full);
1859 #endif
1860 }
1861 
1862 #ifdef CONFIG_SMP
1863 /*
1864  * Per cpu array for per cpu structures.
1865  *
1866  * The per cpu array places all kmem_cache_cpu structures from one processor
1867  * close together meaning that it becomes possible that multiple per cpu
1868  * structures are contained in one cacheline. This may be particularly
1869  * beneficial for the kmalloc caches.
1870  *
1871  * A desktop system typically has around 60-80 slabs. With 100 here we are
1872  * likely able to get per cpu structures for all caches from the array defined
1873  * here. We must be able to cover all kmalloc caches during bootstrap.
1874  *
1875  * If the per cpu array is exhausted then fall back to kmalloc
1876  * of individual cachelines. No sharing is possible then.
1877  */
1878 #define NR_KMEM_CACHE_CPU 100
1879 
1880 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1881 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1882 
1883 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1884 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1885 
1886 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1887 							int cpu, gfp_t flags)
1888 {
1889 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1890 
1891 	if (c)
1892 		per_cpu(kmem_cache_cpu_free, cpu) =
1893 				(void *)c->freelist;
1894 	else {
1895 		/* Table overflow: So allocate ourselves */
1896 		c = kmalloc_node(
1897 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1898 			flags, cpu_to_node(cpu));
1899 		if (!c)
1900 			return NULL;
1901 	}
1902 
1903 	init_kmem_cache_cpu(s, c);
1904 	return c;
1905 }
1906 
1907 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1908 {
1909 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1910 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1911 		kfree(c);
1912 		return;
1913 	}
1914 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1915 	per_cpu(kmem_cache_cpu_free, cpu) = c;
1916 }
1917 
1918 static void free_kmem_cache_cpus(struct kmem_cache *s)
1919 {
1920 	int cpu;
1921 
1922 	for_each_online_cpu(cpu) {
1923 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1924 
1925 		if (c) {
1926 			s->cpu_slab[cpu] = NULL;
1927 			free_kmem_cache_cpu(c, cpu);
1928 		}
1929 	}
1930 }
1931 
1932 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1933 {
1934 	int cpu;
1935 
1936 	for_each_online_cpu(cpu) {
1937 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1938 
1939 		if (c)
1940 			continue;
1941 
1942 		c = alloc_kmem_cache_cpu(s, cpu, flags);
1943 		if (!c) {
1944 			free_kmem_cache_cpus(s);
1945 			return 0;
1946 		}
1947 		s->cpu_slab[cpu] = c;
1948 	}
1949 	return 1;
1950 }
1951 
1952 /*
1953  * Initialize the per cpu array.
1954  */
1955 static void init_alloc_cpu_cpu(int cpu)
1956 {
1957 	int i;
1958 
1959 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1960 		return;
1961 
1962 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1963 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1964 
1965 	cpu_set(cpu, kmem_cach_cpu_free_init_once);
1966 }
1967 
1968 static void __init init_alloc_cpu(void)
1969 {
1970 	int cpu;
1971 
1972 	for_each_online_cpu(cpu)
1973 		init_alloc_cpu_cpu(cpu);
1974   }
1975 
1976 #else
1977 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1978 static inline void init_alloc_cpu(void) {}
1979 
1980 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1981 {
1982 	init_kmem_cache_cpu(s, &s->cpu_slab);
1983 	return 1;
1984 }
1985 #endif
1986 
1987 #ifdef CONFIG_NUMA
1988 /*
1989  * No kmalloc_node yet so do it by hand. We know that this is the first
1990  * slab on the node for this slabcache. There are no concurrent accesses
1991  * possible.
1992  *
1993  * Note that this function only works on the kmalloc_node_cache
1994  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1995  * memory on a fresh node that has no slab structures yet.
1996  */
1997 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1998 							   int node)
1999 {
2000 	struct page *page;
2001 	struct kmem_cache_node *n;
2002 
2003 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2004 
2005 	page = new_slab(kmalloc_caches, gfpflags, node);
2006 
2007 	BUG_ON(!page);
2008 	if (page_to_nid(page) != node) {
2009 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2010 				"node %d\n", node);
2011 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2012 				"in order to be able to continue\n");
2013 	}
2014 
2015 	n = page->freelist;
2016 	BUG_ON(!n);
2017 	page->freelist = get_freepointer(kmalloc_caches, n);
2018 	page->inuse++;
2019 	kmalloc_caches->node[node] = n;
2020 #ifdef CONFIG_SLUB_DEBUG
2021 	init_object(kmalloc_caches, n, 1);
2022 	init_tracking(kmalloc_caches, n);
2023 #endif
2024 	init_kmem_cache_node(n);
2025 	atomic_long_inc(&n->nr_slabs);
2026 	add_partial(n, page);
2027 	return n;
2028 }
2029 
2030 static void free_kmem_cache_nodes(struct kmem_cache *s)
2031 {
2032 	int node;
2033 
2034 	for_each_node_state(node, N_NORMAL_MEMORY) {
2035 		struct kmem_cache_node *n = s->node[node];
2036 		if (n && n != &s->local_node)
2037 			kmem_cache_free(kmalloc_caches, n);
2038 		s->node[node] = NULL;
2039 	}
2040 }
2041 
2042 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2043 {
2044 	int node;
2045 	int local_node;
2046 
2047 	if (slab_state >= UP)
2048 		local_node = page_to_nid(virt_to_page(s));
2049 	else
2050 		local_node = 0;
2051 
2052 	for_each_node_state(node, N_NORMAL_MEMORY) {
2053 		struct kmem_cache_node *n;
2054 
2055 		if (local_node == node)
2056 			n = &s->local_node;
2057 		else {
2058 			if (slab_state == DOWN) {
2059 				n = early_kmem_cache_node_alloc(gfpflags,
2060 								node);
2061 				continue;
2062 			}
2063 			n = kmem_cache_alloc_node(kmalloc_caches,
2064 							gfpflags, node);
2065 
2066 			if (!n) {
2067 				free_kmem_cache_nodes(s);
2068 				return 0;
2069 			}
2070 
2071 		}
2072 		s->node[node] = n;
2073 		init_kmem_cache_node(n);
2074 	}
2075 	return 1;
2076 }
2077 #else
2078 static void free_kmem_cache_nodes(struct kmem_cache *s)
2079 {
2080 }
2081 
2082 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2083 {
2084 	init_kmem_cache_node(&s->local_node);
2085 	return 1;
2086 }
2087 #endif
2088 
2089 /*
2090  * calculate_sizes() determines the order and the distribution of data within
2091  * a slab object.
2092  */
2093 static int calculate_sizes(struct kmem_cache *s)
2094 {
2095 	unsigned long flags = s->flags;
2096 	unsigned long size = s->objsize;
2097 	unsigned long align = s->align;
2098 
2099 	/*
2100 	 * Determine if we can poison the object itself. If the user of
2101 	 * the slab may touch the object after free or before allocation
2102 	 * then we should never poison the object itself.
2103 	 */
2104 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2105 			!s->ctor)
2106 		s->flags |= __OBJECT_POISON;
2107 	else
2108 		s->flags &= ~__OBJECT_POISON;
2109 
2110 	/*
2111 	 * Round up object size to the next word boundary. We can only
2112 	 * place the free pointer at word boundaries and this determines
2113 	 * the possible location of the free pointer.
2114 	 */
2115 	size = ALIGN(size, sizeof(void *));
2116 
2117 #ifdef CONFIG_SLUB_DEBUG
2118 	/*
2119 	 * If we are Redzoning then check if there is some space between the
2120 	 * end of the object and the free pointer. If not then add an
2121 	 * additional word to have some bytes to store Redzone information.
2122 	 */
2123 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2124 		size += sizeof(void *);
2125 #endif
2126 
2127 	/*
2128 	 * With that we have determined the number of bytes in actual use
2129 	 * by the object. This is the potential offset to the free pointer.
2130 	 */
2131 	s->inuse = size;
2132 
2133 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2134 		s->ctor)) {
2135 		/*
2136 		 * Relocate free pointer after the object if it is not
2137 		 * permitted to overwrite the first word of the object on
2138 		 * kmem_cache_free.
2139 		 *
2140 		 * This is the case if we do RCU, have a constructor or
2141 		 * destructor or are poisoning the objects.
2142 		 */
2143 		s->offset = size;
2144 		size += sizeof(void *);
2145 	}
2146 
2147 #ifdef CONFIG_SLUB_DEBUG
2148 	if (flags & SLAB_STORE_USER)
2149 		/*
2150 		 * Need to store information about allocs and frees after
2151 		 * the object.
2152 		 */
2153 		size += 2 * sizeof(struct track);
2154 
2155 	if (flags & SLAB_RED_ZONE)
2156 		/*
2157 		 * Add some empty padding so that we can catch
2158 		 * overwrites from earlier objects rather than let
2159 		 * tracking information or the free pointer be
2160 		 * corrupted if an user writes before the start
2161 		 * of the object.
2162 		 */
2163 		size += sizeof(void *);
2164 #endif
2165 
2166 	/*
2167 	 * Determine the alignment based on various parameters that the
2168 	 * user specified and the dynamic determination of cache line size
2169 	 * on bootup.
2170 	 */
2171 	align = calculate_alignment(flags, align, s->objsize);
2172 
2173 	/*
2174 	 * SLUB stores one object immediately after another beginning from
2175 	 * offset 0. In order to align the objects we have to simply size
2176 	 * each object to conform to the alignment.
2177 	 */
2178 	size = ALIGN(size, align);
2179 	s->size = size;
2180 
2181 	s->order = calculate_order(size);
2182 	if (s->order < 0)
2183 		return 0;
2184 
2185 	/*
2186 	 * Determine the number of objects per slab
2187 	 */
2188 	s->objects = (PAGE_SIZE << s->order) / size;
2189 
2190 	return !!s->objects;
2191 
2192 }
2193 
2194 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2195 		const char *name, size_t size,
2196 		size_t align, unsigned long flags,
2197 		void (*ctor)(struct kmem_cache *, void *))
2198 {
2199 	memset(s, 0, kmem_size);
2200 	s->name = name;
2201 	s->ctor = ctor;
2202 	s->objsize = size;
2203 	s->align = align;
2204 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2205 
2206 	if (!calculate_sizes(s))
2207 		goto error;
2208 
2209 	s->refcount = 1;
2210 #ifdef CONFIG_NUMA
2211 	s->defrag_ratio = 100;
2212 #endif
2213 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2214 		goto error;
2215 
2216 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2217 		return 1;
2218 	free_kmem_cache_nodes(s);
2219 error:
2220 	if (flags & SLAB_PANIC)
2221 		panic("Cannot create slab %s size=%lu realsize=%u "
2222 			"order=%u offset=%u flags=%lx\n",
2223 			s->name, (unsigned long)size, s->size, s->order,
2224 			s->offset, flags);
2225 	return 0;
2226 }
2227 
2228 /*
2229  * Check if a given pointer is valid
2230  */
2231 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2232 {
2233 	struct page * page;
2234 
2235 	page = get_object_page(object);
2236 
2237 	if (!page || s != page->slab)
2238 		/* No slab or wrong slab */
2239 		return 0;
2240 
2241 	if (!check_valid_pointer(s, page, object))
2242 		return 0;
2243 
2244 	/*
2245 	 * We could also check if the object is on the slabs freelist.
2246 	 * But this would be too expensive and it seems that the main
2247 	 * purpose of kmem_ptr_valid is to check if the object belongs
2248 	 * to a certain slab.
2249 	 */
2250 	return 1;
2251 }
2252 EXPORT_SYMBOL(kmem_ptr_validate);
2253 
2254 /*
2255  * Determine the size of a slab object
2256  */
2257 unsigned int kmem_cache_size(struct kmem_cache *s)
2258 {
2259 	return s->objsize;
2260 }
2261 EXPORT_SYMBOL(kmem_cache_size);
2262 
2263 const char *kmem_cache_name(struct kmem_cache *s)
2264 {
2265 	return s->name;
2266 }
2267 EXPORT_SYMBOL(kmem_cache_name);
2268 
2269 /*
2270  * Attempt to free all slabs on a node. Return the number of slabs we
2271  * were unable to free.
2272  */
2273 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2274 			struct list_head *list)
2275 {
2276 	int slabs_inuse = 0;
2277 	unsigned long flags;
2278 	struct page *page, *h;
2279 
2280 	spin_lock_irqsave(&n->list_lock, flags);
2281 	list_for_each_entry_safe(page, h, list, lru)
2282 		if (!page->inuse) {
2283 			list_del(&page->lru);
2284 			discard_slab(s, page);
2285 		} else
2286 			slabs_inuse++;
2287 	spin_unlock_irqrestore(&n->list_lock, flags);
2288 	return slabs_inuse;
2289 }
2290 
2291 /*
2292  * Release all resources used by a slab cache.
2293  */
2294 static inline int kmem_cache_close(struct kmem_cache *s)
2295 {
2296 	int node;
2297 
2298 	flush_all(s);
2299 
2300 	/* Attempt to free all objects */
2301 	free_kmem_cache_cpus(s);
2302 	for_each_node_state(node, N_NORMAL_MEMORY) {
2303 		struct kmem_cache_node *n = get_node(s, node);
2304 
2305 		n->nr_partial -= free_list(s, n, &n->partial);
2306 		if (atomic_long_read(&n->nr_slabs))
2307 			return 1;
2308 	}
2309 	free_kmem_cache_nodes(s);
2310 	return 0;
2311 }
2312 
2313 /*
2314  * Close a cache and release the kmem_cache structure
2315  * (must be used for caches created using kmem_cache_create)
2316  */
2317 void kmem_cache_destroy(struct kmem_cache *s)
2318 {
2319 	down_write(&slub_lock);
2320 	s->refcount--;
2321 	if (!s->refcount) {
2322 		list_del(&s->list);
2323 		up_write(&slub_lock);
2324 		if (kmem_cache_close(s))
2325 			WARN_ON(1);
2326 		sysfs_slab_remove(s);
2327 		kfree(s);
2328 	} else
2329 		up_write(&slub_lock);
2330 }
2331 EXPORT_SYMBOL(kmem_cache_destroy);
2332 
2333 /********************************************************************
2334  *		Kmalloc subsystem
2335  *******************************************************************/
2336 
2337 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2338 EXPORT_SYMBOL(kmalloc_caches);
2339 
2340 #ifdef CONFIG_ZONE_DMA
2341 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2342 #endif
2343 
2344 static int __init setup_slub_min_order(char *str)
2345 {
2346 	get_option (&str, &slub_min_order);
2347 
2348 	return 1;
2349 }
2350 
2351 __setup("slub_min_order=", setup_slub_min_order);
2352 
2353 static int __init setup_slub_max_order(char *str)
2354 {
2355 	get_option (&str, &slub_max_order);
2356 
2357 	return 1;
2358 }
2359 
2360 __setup("slub_max_order=", setup_slub_max_order);
2361 
2362 static int __init setup_slub_min_objects(char *str)
2363 {
2364 	get_option (&str, &slub_min_objects);
2365 
2366 	return 1;
2367 }
2368 
2369 __setup("slub_min_objects=", setup_slub_min_objects);
2370 
2371 static int __init setup_slub_nomerge(char *str)
2372 {
2373 	slub_nomerge = 1;
2374 	return 1;
2375 }
2376 
2377 __setup("slub_nomerge", setup_slub_nomerge);
2378 
2379 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2380 		const char *name, int size, gfp_t gfp_flags)
2381 {
2382 	unsigned int flags = 0;
2383 
2384 	if (gfp_flags & SLUB_DMA)
2385 		flags = SLAB_CACHE_DMA;
2386 
2387 	down_write(&slub_lock);
2388 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2389 			flags, NULL))
2390 		goto panic;
2391 
2392 	list_add(&s->list, &slab_caches);
2393 	up_write(&slub_lock);
2394 	if (sysfs_slab_add(s))
2395 		goto panic;
2396 	return s;
2397 
2398 panic:
2399 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2400 }
2401 
2402 #ifdef CONFIG_ZONE_DMA
2403 
2404 static void sysfs_add_func(struct work_struct *w)
2405 {
2406 	struct kmem_cache *s;
2407 
2408 	down_write(&slub_lock);
2409 	list_for_each_entry(s, &slab_caches, list) {
2410 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2411 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2412 			sysfs_slab_add(s);
2413 		}
2414 	}
2415 	up_write(&slub_lock);
2416 }
2417 
2418 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2419 
2420 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2421 {
2422 	struct kmem_cache *s;
2423 	char *text;
2424 	size_t realsize;
2425 
2426 	s = kmalloc_caches_dma[index];
2427 	if (s)
2428 		return s;
2429 
2430 	/* Dynamically create dma cache */
2431 	if (flags & __GFP_WAIT)
2432 		down_write(&slub_lock);
2433 	else {
2434 		if (!down_write_trylock(&slub_lock))
2435 			goto out;
2436 	}
2437 
2438 	if (kmalloc_caches_dma[index])
2439 		goto unlock_out;
2440 
2441 	realsize = kmalloc_caches[index].objsize;
2442 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2443 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2444 
2445 	if (!s || !text || !kmem_cache_open(s, flags, text,
2446 			realsize, ARCH_KMALLOC_MINALIGN,
2447 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2448 		kfree(s);
2449 		kfree(text);
2450 		goto unlock_out;
2451 	}
2452 
2453 	list_add(&s->list, &slab_caches);
2454 	kmalloc_caches_dma[index] = s;
2455 
2456 	schedule_work(&sysfs_add_work);
2457 
2458 unlock_out:
2459 	up_write(&slub_lock);
2460 out:
2461 	return kmalloc_caches_dma[index];
2462 }
2463 #endif
2464 
2465 /*
2466  * Conversion table for small slabs sizes / 8 to the index in the
2467  * kmalloc array. This is necessary for slabs < 192 since we have non power
2468  * of two cache sizes there. The size of larger slabs can be determined using
2469  * fls.
2470  */
2471 static s8 size_index[24] = {
2472 	3,	/* 8 */
2473 	4,	/* 16 */
2474 	5,	/* 24 */
2475 	5,	/* 32 */
2476 	6,	/* 40 */
2477 	6,	/* 48 */
2478 	6,	/* 56 */
2479 	6,	/* 64 */
2480 	1,	/* 72 */
2481 	1,	/* 80 */
2482 	1,	/* 88 */
2483 	1,	/* 96 */
2484 	7,	/* 104 */
2485 	7,	/* 112 */
2486 	7,	/* 120 */
2487 	7,	/* 128 */
2488 	2,	/* 136 */
2489 	2,	/* 144 */
2490 	2,	/* 152 */
2491 	2,	/* 160 */
2492 	2,	/* 168 */
2493 	2,	/* 176 */
2494 	2,	/* 184 */
2495 	2	/* 192 */
2496 };
2497 
2498 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2499 {
2500 	int index;
2501 
2502 	if (size <= 192) {
2503 		if (!size)
2504 			return ZERO_SIZE_PTR;
2505 
2506 		index = size_index[(size - 1) / 8];
2507 	} else
2508 		index = fls(size - 1);
2509 
2510 #ifdef CONFIG_ZONE_DMA
2511 	if (unlikely((flags & SLUB_DMA)))
2512 		return dma_kmalloc_cache(index, flags);
2513 
2514 #endif
2515 	return &kmalloc_caches[index];
2516 }
2517 
2518 void *__kmalloc(size_t size, gfp_t flags)
2519 {
2520 	struct kmem_cache *s;
2521 
2522 	if (unlikely(size > PAGE_SIZE / 2))
2523 		return (void *)__get_free_pages(flags | __GFP_COMP,
2524 							get_order(size));
2525 
2526 	s = get_slab(size, flags);
2527 
2528 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2529 		return s;
2530 
2531 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2532 }
2533 EXPORT_SYMBOL(__kmalloc);
2534 
2535 #ifdef CONFIG_NUMA
2536 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2537 {
2538 	struct kmem_cache *s;
2539 
2540 	if (unlikely(size > PAGE_SIZE / 2))
2541 		return (void *)__get_free_pages(flags | __GFP_COMP,
2542 							get_order(size));
2543 
2544 	s = get_slab(size, flags);
2545 
2546 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2547 		return s;
2548 
2549 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2550 }
2551 EXPORT_SYMBOL(__kmalloc_node);
2552 #endif
2553 
2554 size_t ksize(const void *object)
2555 {
2556 	struct page *page;
2557 	struct kmem_cache *s;
2558 
2559 	BUG_ON(!object);
2560 	if (unlikely(object == ZERO_SIZE_PTR))
2561 		return 0;
2562 
2563 	page = get_object_page(object);
2564 	BUG_ON(!page);
2565 	s = page->slab;
2566 	BUG_ON(!s);
2567 
2568 	/*
2569 	 * Debugging requires use of the padding between object
2570 	 * and whatever may come after it.
2571 	 */
2572 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2573 		return s->objsize;
2574 
2575 	/*
2576 	 * If we have the need to store the freelist pointer
2577 	 * back there or track user information then we can
2578 	 * only use the space before that information.
2579 	 */
2580 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2581 		return s->inuse;
2582 
2583 	/*
2584 	 * Else we can use all the padding etc for the allocation
2585 	 */
2586 	return s->size;
2587 }
2588 EXPORT_SYMBOL(ksize);
2589 
2590 void kfree(const void *x)
2591 {
2592 	struct page *page;
2593 
2594 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2595 		return;
2596 
2597 	page = virt_to_head_page(x);
2598 	if (unlikely(!PageSlab(page))) {
2599 		put_page(page);
2600 		return;
2601 	}
2602 	slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2603 }
2604 EXPORT_SYMBOL(kfree);
2605 
2606 /*
2607  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2608  * the remaining slabs by the number of items in use. The slabs with the
2609  * most items in use come first. New allocations will then fill those up
2610  * and thus they can be removed from the partial lists.
2611  *
2612  * The slabs with the least items are placed last. This results in them
2613  * being allocated from last increasing the chance that the last objects
2614  * are freed in them.
2615  */
2616 int kmem_cache_shrink(struct kmem_cache *s)
2617 {
2618 	int node;
2619 	int i;
2620 	struct kmem_cache_node *n;
2621 	struct page *page;
2622 	struct page *t;
2623 	struct list_head *slabs_by_inuse =
2624 		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2625 	unsigned long flags;
2626 
2627 	if (!slabs_by_inuse)
2628 		return -ENOMEM;
2629 
2630 	flush_all(s);
2631 	for_each_node_state(node, N_NORMAL_MEMORY) {
2632 		n = get_node(s, node);
2633 
2634 		if (!n->nr_partial)
2635 			continue;
2636 
2637 		for (i = 0; i < s->objects; i++)
2638 			INIT_LIST_HEAD(slabs_by_inuse + i);
2639 
2640 		spin_lock_irqsave(&n->list_lock, flags);
2641 
2642 		/*
2643 		 * Build lists indexed by the items in use in each slab.
2644 		 *
2645 		 * Note that concurrent frees may occur while we hold the
2646 		 * list_lock. page->inuse here is the upper limit.
2647 		 */
2648 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2649 			if (!page->inuse && slab_trylock(page)) {
2650 				/*
2651 				 * Must hold slab lock here because slab_free
2652 				 * may have freed the last object and be
2653 				 * waiting to release the slab.
2654 				 */
2655 				list_del(&page->lru);
2656 				n->nr_partial--;
2657 				slab_unlock(page);
2658 				discard_slab(s, page);
2659 			} else {
2660 				list_move(&page->lru,
2661 				slabs_by_inuse + page->inuse);
2662 			}
2663 		}
2664 
2665 		/*
2666 		 * Rebuild the partial list with the slabs filled up most
2667 		 * first and the least used slabs at the end.
2668 		 */
2669 		for (i = s->objects - 1; i >= 0; i--)
2670 			list_splice(slabs_by_inuse + i, n->partial.prev);
2671 
2672 		spin_unlock_irqrestore(&n->list_lock, flags);
2673 	}
2674 
2675 	kfree(slabs_by_inuse);
2676 	return 0;
2677 }
2678 EXPORT_SYMBOL(kmem_cache_shrink);
2679 
2680 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2681 static int slab_mem_going_offline_callback(void *arg)
2682 {
2683 	struct kmem_cache *s;
2684 
2685 	down_read(&slub_lock);
2686 	list_for_each_entry(s, &slab_caches, list)
2687 		kmem_cache_shrink(s);
2688 	up_read(&slub_lock);
2689 
2690 	return 0;
2691 }
2692 
2693 static void slab_mem_offline_callback(void *arg)
2694 {
2695 	struct kmem_cache_node *n;
2696 	struct kmem_cache *s;
2697 	struct memory_notify *marg = arg;
2698 	int offline_node;
2699 
2700 	offline_node = marg->status_change_nid;
2701 
2702 	/*
2703 	 * If the node still has available memory. we need kmem_cache_node
2704 	 * for it yet.
2705 	 */
2706 	if (offline_node < 0)
2707 		return;
2708 
2709 	down_read(&slub_lock);
2710 	list_for_each_entry(s, &slab_caches, list) {
2711 		n = get_node(s, offline_node);
2712 		if (n) {
2713 			/*
2714 			 * if n->nr_slabs > 0, slabs still exist on the node
2715 			 * that is going down. We were unable to free them,
2716 			 * and offline_pages() function shoudn't call this
2717 			 * callback. So, we must fail.
2718 			 */
2719 			BUG_ON(atomic_long_read(&n->nr_slabs));
2720 
2721 			s->node[offline_node] = NULL;
2722 			kmem_cache_free(kmalloc_caches, n);
2723 		}
2724 	}
2725 	up_read(&slub_lock);
2726 }
2727 
2728 static int slab_mem_going_online_callback(void *arg)
2729 {
2730 	struct kmem_cache_node *n;
2731 	struct kmem_cache *s;
2732 	struct memory_notify *marg = arg;
2733 	int nid = marg->status_change_nid;
2734 	int ret = 0;
2735 
2736 	/*
2737 	 * If the node's memory is already available, then kmem_cache_node is
2738 	 * already created. Nothing to do.
2739 	 */
2740 	if (nid < 0)
2741 		return 0;
2742 
2743 	/*
2744 	 * We are bringing a node online. No memory is availabe yet. We must
2745 	 * allocate a kmem_cache_node structure in order to bring the node
2746 	 * online.
2747 	 */
2748 	down_read(&slub_lock);
2749 	list_for_each_entry(s, &slab_caches, list) {
2750 		/*
2751 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2752 		 *      since memory is not yet available from the node that
2753 		 *      is brought up.
2754 		 */
2755 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2756 		if (!n) {
2757 			ret = -ENOMEM;
2758 			goto out;
2759 		}
2760 		init_kmem_cache_node(n);
2761 		s->node[nid] = n;
2762 	}
2763 out:
2764 	up_read(&slub_lock);
2765 	return ret;
2766 }
2767 
2768 static int slab_memory_callback(struct notifier_block *self,
2769 				unsigned long action, void *arg)
2770 {
2771 	int ret = 0;
2772 
2773 	switch (action) {
2774 	case MEM_GOING_ONLINE:
2775 		ret = slab_mem_going_online_callback(arg);
2776 		break;
2777 	case MEM_GOING_OFFLINE:
2778 		ret = slab_mem_going_offline_callback(arg);
2779 		break;
2780 	case MEM_OFFLINE:
2781 	case MEM_CANCEL_ONLINE:
2782 		slab_mem_offline_callback(arg);
2783 		break;
2784 	case MEM_ONLINE:
2785 	case MEM_CANCEL_OFFLINE:
2786 		break;
2787 	}
2788 
2789 	ret = notifier_from_errno(ret);
2790 	return ret;
2791 }
2792 
2793 #endif /* CONFIG_MEMORY_HOTPLUG */
2794 
2795 /********************************************************************
2796  *			Basic setup of slabs
2797  *******************************************************************/
2798 
2799 void __init kmem_cache_init(void)
2800 {
2801 	int i;
2802 	int caches = 0;
2803 
2804 	init_alloc_cpu();
2805 
2806 #ifdef CONFIG_NUMA
2807 	/*
2808 	 * Must first have the slab cache available for the allocations of the
2809 	 * struct kmem_cache_node's. There is special bootstrap code in
2810 	 * kmem_cache_open for slab_state == DOWN.
2811 	 */
2812 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2813 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2814 	kmalloc_caches[0].refcount = -1;
2815 	caches++;
2816 
2817 	hotplug_memory_notifier(slab_memory_callback, 1);
2818 #endif
2819 
2820 	/* Able to allocate the per node structures */
2821 	slab_state = PARTIAL;
2822 
2823 	/* Caches that are not of the two-to-the-power-of size */
2824 	if (KMALLOC_MIN_SIZE <= 64) {
2825 		create_kmalloc_cache(&kmalloc_caches[1],
2826 				"kmalloc-96", 96, GFP_KERNEL);
2827 		caches++;
2828 	}
2829 	if (KMALLOC_MIN_SIZE <= 128) {
2830 		create_kmalloc_cache(&kmalloc_caches[2],
2831 				"kmalloc-192", 192, GFP_KERNEL);
2832 		caches++;
2833 	}
2834 
2835 	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2836 		create_kmalloc_cache(&kmalloc_caches[i],
2837 			"kmalloc", 1 << i, GFP_KERNEL);
2838 		caches++;
2839 	}
2840 
2841 
2842 	/*
2843 	 * Patch up the size_index table if we have strange large alignment
2844 	 * requirements for the kmalloc array. This is only the case for
2845 	 * mips it seems. The standard arches will not generate any code here.
2846 	 *
2847 	 * Largest permitted alignment is 256 bytes due to the way we
2848 	 * handle the index determination for the smaller caches.
2849 	 *
2850 	 * Make sure that nothing crazy happens if someone starts tinkering
2851 	 * around with ARCH_KMALLOC_MINALIGN
2852 	 */
2853 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2854 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2855 
2856 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2857 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2858 
2859 	slab_state = UP;
2860 
2861 	/* Provide the correct kmalloc names now that the caches are up */
2862 	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2863 		kmalloc_caches[i]. name =
2864 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2865 
2866 #ifdef CONFIG_SMP
2867 	register_cpu_notifier(&slab_notifier);
2868 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2869 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2870 #else
2871 	kmem_size = sizeof(struct kmem_cache);
2872 #endif
2873 
2874 
2875 	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2876 		" CPUs=%d, Nodes=%d\n",
2877 		caches, cache_line_size(),
2878 		slub_min_order, slub_max_order, slub_min_objects,
2879 		nr_cpu_ids, nr_node_ids);
2880 }
2881 
2882 /*
2883  * Find a mergeable slab cache
2884  */
2885 static int slab_unmergeable(struct kmem_cache *s)
2886 {
2887 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2888 		return 1;
2889 
2890 	if (s->ctor)
2891 		return 1;
2892 
2893 	/*
2894 	 * We may have set a slab to be unmergeable during bootstrap.
2895 	 */
2896 	if (s->refcount < 0)
2897 		return 1;
2898 
2899 	return 0;
2900 }
2901 
2902 static struct kmem_cache *find_mergeable(size_t size,
2903 		size_t align, unsigned long flags, const char *name,
2904 		void (*ctor)(struct kmem_cache *, void *))
2905 {
2906 	struct kmem_cache *s;
2907 
2908 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2909 		return NULL;
2910 
2911 	if (ctor)
2912 		return NULL;
2913 
2914 	size = ALIGN(size, sizeof(void *));
2915 	align = calculate_alignment(flags, align, size);
2916 	size = ALIGN(size, align);
2917 	flags = kmem_cache_flags(size, flags, name, NULL);
2918 
2919 	list_for_each_entry(s, &slab_caches, list) {
2920 		if (slab_unmergeable(s))
2921 			continue;
2922 
2923 		if (size > s->size)
2924 			continue;
2925 
2926 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2927 				continue;
2928 		/*
2929 		 * Check if alignment is compatible.
2930 		 * Courtesy of Adrian Drzewiecki
2931 		 */
2932 		if ((s->size & ~(align -1)) != s->size)
2933 			continue;
2934 
2935 		if (s->size - size >= sizeof(void *))
2936 			continue;
2937 
2938 		return s;
2939 	}
2940 	return NULL;
2941 }
2942 
2943 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2944 		size_t align, unsigned long flags,
2945 		void (*ctor)(struct kmem_cache *, void *))
2946 {
2947 	struct kmem_cache *s;
2948 
2949 	down_write(&slub_lock);
2950 	s = find_mergeable(size, align, flags, name, ctor);
2951 	if (s) {
2952 		int cpu;
2953 
2954 		s->refcount++;
2955 		/*
2956 		 * Adjust the object sizes so that we clear
2957 		 * the complete object on kzalloc.
2958 		 */
2959 		s->objsize = max(s->objsize, (int)size);
2960 
2961 		/*
2962 		 * And then we need to update the object size in the
2963 		 * per cpu structures
2964 		 */
2965 		for_each_online_cpu(cpu)
2966 			get_cpu_slab(s, cpu)->objsize = s->objsize;
2967 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2968 		up_write(&slub_lock);
2969 		if (sysfs_slab_alias(s, name))
2970 			goto err;
2971 		return s;
2972 	}
2973 	s = kmalloc(kmem_size, GFP_KERNEL);
2974 	if (s) {
2975 		if (kmem_cache_open(s, GFP_KERNEL, name,
2976 				size, align, flags, ctor)) {
2977 			list_add(&s->list, &slab_caches);
2978 			up_write(&slub_lock);
2979 			if (sysfs_slab_add(s))
2980 				goto err;
2981 			return s;
2982 		}
2983 		kfree(s);
2984 	}
2985 	up_write(&slub_lock);
2986 
2987 err:
2988 	if (flags & SLAB_PANIC)
2989 		panic("Cannot create slabcache %s\n", name);
2990 	else
2991 		s = NULL;
2992 	return s;
2993 }
2994 EXPORT_SYMBOL(kmem_cache_create);
2995 
2996 #ifdef CONFIG_SMP
2997 /*
2998  * Use the cpu notifier to insure that the cpu slabs are flushed when
2999  * necessary.
3000  */
3001 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3002 		unsigned long action, void *hcpu)
3003 {
3004 	long cpu = (long)hcpu;
3005 	struct kmem_cache *s;
3006 	unsigned long flags;
3007 
3008 	switch (action) {
3009 	case CPU_UP_PREPARE:
3010 	case CPU_UP_PREPARE_FROZEN:
3011 		init_alloc_cpu_cpu(cpu);
3012 		down_read(&slub_lock);
3013 		list_for_each_entry(s, &slab_caches, list)
3014 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3015 							GFP_KERNEL);
3016 		up_read(&slub_lock);
3017 		break;
3018 
3019 	case CPU_UP_CANCELED:
3020 	case CPU_UP_CANCELED_FROZEN:
3021 	case CPU_DEAD:
3022 	case CPU_DEAD_FROZEN:
3023 		down_read(&slub_lock);
3024 		list_for_each_entry(s, &slab_caches, list) {
3025 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3026 
3027 			local_irq_save(flags);
3028 			__flush_cpu_slab(s, cpu);
3029 			local_irq_restore(flags);
3030 			free_kmem_cache_cpu(c, cpu);
3031 			s->cpu_slab[cpu] = NULL;
3032 		}
3033 		up_read(&slub_lock);
3034 		break;
3035 	default:
3036 		break;
3037 	}
3038 	return NOTIFY_OK;
3039 }
3040 
3041 static struct notifier_block __cpuinitdata slab_notifier =
3042 	{ &slab_cpuup_callback, NULL, 0 };
3043 
3044 #endif
3045 
3046 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3047 {
3048 	struct kmem_cache *s;
3049 
3050 	if (unlikely(size > PAGE_SIZE / 2))
3051 		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3052 							get_order(size));
3053 	s = get_slab(size, gfpflags);
3054 
3055 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3056 		return s;
3057 
3058 	return slab_alloc(s, gfpflags, -1, caller);
3059 }
3060 
3061 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3062 					int node, void *caller)
3063 {
3064 	struct kmem_cache *s;
3065 
3066 	if (unlikely(size > PAGE_SIZE / 2))
3067 		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3068 							get_order(size));
3069 	s = get_slab(size, gfpflags);
3070 
3071 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3072 		return s;
3073 
3074 	return slab_alloc(s, gfpflags, node, caller);
3075 }
3076 
3077 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3078 static int validate_slab(struct kmem_cache *s, struct page *page,
3079 						unsigned long *map)
3080 {
3081 	void *p;
3082 	void *addr = page_address(page);
3083 
3084 	if (!check_slab(s, page) ||
3085 			!on_freelist(s, page, NULL))
3086 		return 0;
3087 
3088 	/* Now we know that a valid freelist exists */
3089 	bitmap_zero(map, s->objects);
3090 
3091 	for_each_free_object(p, s, page->freelist) {
3092 		set_bit(slab_index(p, s, addr), map);
3093 		if (!check_object(s, page, p, 0))
3094 			return 0;
3095 	}
3096 
3097 	for_each_object(p, s, addr)
3098 		if (!test_bit(slab_index(p, s, addr), map))
3099 			if (!check_object(s, page, p, 1))
3100 				return 0;
3101 	return 1;
3102 }
3103 
3104 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3105 						unsigned long *map)
3106 {
3107 	if (slab_trylock(page)) {
3108 		validate_slab(s, page, map);
3109 		slab_unlock(page);
3110 	} else
3111 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3112 			s->name, page);
3113 
3114 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3115 		if (!SlabDebug(page))
3116 			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3117 				"on slab 0x%p\n", s->name, page);
3118 	} else {
3119 		if (SlabDebug(page))
3120 			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3121 				"slab 0x%p\n", s->name, page);
3122 	}
3123 }
3124 
3125 static int validate_slab_node(struct kmem_cache *s,
3126 		struct kmem_cache_node *n, unsigned long *map)
3127 {
3128 	unsigned long count = 0;
3129 	struct page *page;
3130 	unsigned long flags;
3131 
3132 	spin_lock_irqsave(&n->list_lock, flags);
3133 
3134 	list_for_each_entry(page, &n->partial, lru) {
3135 		validate_slab_slab(s, page, map);
3136 		count++;
3137 	}
3138 	if (count != n->nr_partial)
3139 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3140 			"counter=%ld\n", s->name, count, n->nr_partial);
3141 
3142 	if (!(s->flags & SLAB_STORE_USER))
3143 		goto out;
3144 
3145 	list_for_each_entry(page, &n->full, lru) {
3146 		validate_slab_slab(s, page, map);
3147 		count++;
3148 	}
3149 	if (count != atomic_long_read(&n->nr_slabs))
3150 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3151 			"counter=%ld\n", s->name, count,
3152 			atomic_long_read(&n->nr_slabs));
3153 
3154 out:
3155 	spin_unlock_irqrestore(&n->list_lock, flags);
3156 	return count;
3157 }
3158 
3159 static long validate_slab_cache(struct kmem_cache *s)
3160 {
3161 	int node;
3162 	unsigned long count = 0;
3163 	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3164 				sizeof(unsigned long), GFP_KERNEL);
3165 
3166 	if (!map)
3167 		return -ENOMEM;
3168 
3169 	flush_all(s);
3170 	for_each_node_state(node, N_NORMAL_MEMORY) {
3171 		struct kmem_cache_node *n = get_node(s, node);
3172 
3173 		count += validate_slab_node(s, n, map);
3174 	}
3175 	kfree(map);
3176 	return count;
3177 }
3178 
3179 #ifdef SLUB_RESILIENCY_TEST
3180 static void resiliency_test(void)
3181 {
3182 	u8 *p;
3183 
3184 	printk(KERN_ERR "SLUB resiliency testing\n");
3185 	printk(KERN_ERR "-----------------------\n");
3186 	printk(KERN_ERR "A. Corruption after allocation\n");
3187 
3188 	p = kzalloc(16, GFP_KERNEL);
3189 	p[16] = 0x12;
3190 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3191 			" 0x12->0x%p\n\n", p + 16);
3192 
3193 	validate_slab_cache(kmalloc_caches + 4);
3194 
3195 	/* Hmmm... The next two are dangerous */
3196 	p = kzalloc(32, GFP_KERNEL);
3197 	p[32 + sizeof(void *)] = 0x34;
3198 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3199 		 	" 0x34 -> -0x%p\n", p);
3200 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3201 
3202 	validate_slab_cache(kmalloc_caches + 5);
3203 	p = kzalloc(64, GFP_KERNEL);
3204 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3205 	*p = 0x56;
3206 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3207 									p);
3208 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3209 	validate_slab_cache(kmalloc_caches + 6);
3210 
3211 	printk(KERN_ERR "\nB. Corruption after free\n");
3212 	p = kzalloc(128, GFP_KERNEL);
3213 	kfree(p);
3214 	*p = 0x78;
3215 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3216 	validate_slab_cache(kmalloc_caches + 7);
3217 
3218 	p = kzalloc(256, GFP_KERNEL);
3219 	kfree(p);
3220 	p[50] = 0x9a;
3221 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3222 	validate_slab_cache(kmalloc_caches + 8);
3223 
3224 	p = kzalloc(512, GFP_KERNEL);
3225 	kfree(p);
3226 	p[512] = 0xab;
3227 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3228 	validate_slab_cache(kmalloc_caches + 9);
3229 }
3230 #else
3231 static void resiliency_test(void) {};
3232 #endif
3233 
3234 /*
3235  * Generate lists of code addresses where slabcache objects are allocated
3236  * and freed.
3237  */
3238 
3239 struct location {
3240 	unsigned long count;
3241 	void *addr;
3242 	long long sum_time;
3243 	long min_time;
3244 	long max_time;
3245 	long min_pid;
3246 	long max_pid;
3247 	cpumask_t cpus;
3248 	nodemask_t nodes;
3249 };
3250 
3251 struct loc_track {
3252 	unsigned long max;
3253 	unsigned long count;
3254 	struct location *loc;
3255 };
3256 
3257 static void free_loc_track(struct loc_track *t)
3258 {
3259 	if (t->max)
3260 		free_pages((unsigned long)t->loc,
3261 			get_order(sizeof(struct location) * t->max));
3262 }
3263 
3264 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3265 {
3266 	struct location *l;
3267 	int order;
3268 
3269 	order = get_order(sizeof(struct location) * max);
3270 
3271 	l = (void *)__get_free_pages(flags, order);
3272 	if (!l)
3273 		return 0;
3274 
3275 	if (t->count) {
3276 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3277 		free_loc_track(t);
3278 	}
3279 	t->max = max;
3280 	t->loc = l;
3281 	return 1;
3282 }
3283 
3284 static int add_location(struct loc_track *t, struct kmem_cache *s,
3285 				const struct track *track)
3286 {
3287 	long start, end, pos;
3288 	struct location *l;
3289 	void *caddr;
3290 	unsigned long age = jiffies - track->when;
3291 
3292 	start = -1;
3293 	end = t->count;
3294 
3295 	for ( ; ; ) {
3296 		pos = start + (end - start + 1) / 2;
3297 
3298 		/*
3299 		 * There is nothing at "end". If we end up there
3300 		 * we need to add something to before end.
3301 		 */
3302 		if (pos == end)
3303 			break;
3304 
3305 		caddr = t->loc[pos].addr;
3306 		if (track->addr == caddr) {
3307 
3308 			l = &t->loc[pos];
3309 			l->count++;
3310 			if (track->when) {
3311 				l->sum_time += age;
3312 				if (age < l->min_time)
3313 					l->min_time = age;
3314 				if (age > l->max_time)
3315 					l->max_time = age;
3316 
3317 				if (track->pid < l->min_pid)
3318 					l->min_pid = track->pid;
3319 				if (track->pid > l->max_pid)
3320 					l->max_pid = track->pid;
3321 
3322 				cpu_set(track->cpu, l->cpus);
3323 			}
3324 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3325 			return 1;
3326 		}
3327 
3328 		if (track->addr < caddr)
3329 			end = pos;
3330 		else
3331 			start = pos;
3332 	}
3333 
3334 	/*
3335 	 * Not found. Insert new tracking element.
3336 	 */
3337 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3338 		return 0;
3339 
3340 	l = t->loc + pos;
3341 	if (pos < t->count)
3342 		memmove(l + 1, l,
3343 			(t->count - pos) * sizeof(struct location));
3344 	t->count++;
3345 	l->count = 1;
3346 	l->addr = track->addr;
3347 	l->sum_time = age;
3348 	l->min_time = age;
3349 	l->max_time = age;
3350 	l->min_pid = track->pid;
3351 	l->max_pid = track->pid;
3352 	cpus_clear(l->cpus);
3353 	cpu_set(track->cpu, l->cpus);
3354 	nodes_clear(l->nodes);
3355 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3356 	return 1;
3357 }
3358 
3359 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3360 		struct page *page, enum track_item alloc)
3361 {
3362 	void *addr = page_address(page);
3363 	DECLARE_BITMAP(map, s->objects);
3364 	void *p;
3365 
3366 	bitmap_zero(map, s->objects);
3367 	for_each_free_object(p, s, page->freelist)
3368 		set_bit(slab_index(p, s, addr), map);
3369 
3370 	for_each_object(p, s, addr)
3371 		if (!test_bit(slab_index(p, s, addr), map))
3372 			add_location(t, s, get_track(s, p, alloc));
3373 }
3374 
3375 static int list_locations(struct kmem_cache *s, char *buf,
3376 					enum track_item alloc)
3377 {
3378 	int n = 0;
3379 	unsigned long i;
3380 	struct loc_track t = { 0, 0, NULL };
3381 	int node;
3382 
3383 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3384 			GFP_TEMPORARY))
3385 		return sprintf(buf, "Out of memory\n");
3386 
3387 	/* Push back cpu slabs */
3388 	flush_all(s);
3389 
3390 	for_each_node_state(node, N_NORMAL_MEMORY) {
3391 		struct kmem_cache_node *n = get_node(s, node);
3392 		unsigned long flags;
3393 		struct page *page;
3394 
3395 		if (!atomic_long_read(&n->nr_slabs))
3396 			continue;
3397 
3398 		spin_lock_irqsave(&n->list_lock, flags);
3399 		list_for_each_entry(page, &n->partial, lru)
3400 			process_slab(&t, s, page, alloc);
3401 		list_for_each_entry(page, &n->full, lru)
3402 			process_slab(&t, s, page, alloc);
3403 		spin_unlock_irqrestore(&n->list_lock, flags);
3404 	}
3405 
3406 	for (i = 0; i < t.count; i++) {
3407 		struct location *l = &t.loc[i];
3408 
3409 		if (n > PAGE_SIZE - 100)
3410 			break;
3411 		n += sprintf(buf + n, "%7ld ", l->count);
3412 
3413 		if (l->addr)
3414 			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3415 		else
3416 			n += sprintf(buf + n, "<not-available>");
3417 
3418 		if (l->sum_time != l->min_time) {
3419 			unsigned long remainder;
3420 
3421 			n += sprintf(buf + n, " age=%ld/%ld/%ld",
3422 			l->min_time,
3423 			div_long_long_rem(l->sum_time, l->count, &remainder),
3424 			l->max_time);
3425 		} else
3426 			n += sprintf(buf + n, " age=%ld",
3427 				l->min_time);
3428 
3429 		if (l->min_pid != l->max_pid)
3430 			n += sprintf(buf + n, " pid=%ld-%ld",
3431 				l->min_pid, l->max_pid);
3432 		else
3433 			n += sprintf(buf + n, " pid=%ld",
3434 				l->min_pid);
3435 
3436 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3437 				n < PAGE_SIZE - 60) {
3438 			n += sprintf(buf + n, " cpus=");
3439 			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3440 					l->cpus);
3441 		}
3442 
3443 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3444 				n < PAGE_SIZE - 60) {
3445 			n += sprintf(buf + n, " nodes=");
3446 			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3447 					l->nodes);
3448 		}
3449 
3450 		n += sprintf(buf + n, "\n");
3451 	}
3452 
3453 	free_loc_track(&t);
3454 	if (!t.count)
3455 		n += sprintf(buf, "No data\n");
3456 	return n;
3457 }
3458 
3459 static unsigned long count_partial(struct kmem_cache_node *n)
3460 {
3461 	unsigned long flags;
3462 	unsigned long x = 0;
3463 	struct page *page;
3464 
3465 	spin_lock_irqsave(&n->list_lock, flags);
3466 	list_for_each_entry(page, &n->partial, lru)
3467 		x += page->inuse;
3468 	spin_unlock_irqrestore(&n->list_lock, flags);
3469 	return x;
3470 }
3471 
3472 enum slab_stat_type {
3473 	SL_FULL,
3474 	SL_PARTIAL,
3475 	SL_CPU,
3476 	SL_OBJECTS
3477 };
3478 
3479 #define SO_FULL		(1 << SL_FULL)
3480 #define SO_PARTIAL	(1 << SL_PARTIAL)
3481 #define SO_CPU		(1 << SL_CPU)
3482 #define SO_OBJECTS	(1 << SL_OBJECTS)
3483 
3484 static unsigned long slab_objects(struct kmem_cache *s,
3485 			char *buf, unsigned long flags)
3486 {
3487 	unsigned long total = 0;
3488 	int cpu;
3489 	int node;
3490 	int x;
3491 	unsigned long *nodes;
3492 	unsigned long *per_cpu;
3493 
3494 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3495 	per_cpu = nodes + nr_node_ids;
3496 
3497 	for_each_possible_cpu(cpu) {
3498 		struct page *page;
3499 		int node;
3500 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3501 
3502 		if (!c)
3503 			continue;
3504 
3505 		page = c->page;
3506 		node = c->node;
3507 		if (node < 0)
3508 			continue;
3509 		if (page) {
3510 			if (flags & SO_CPU) {
3511 				int x = 0;
3512 
3513 				if (flags & SO_OBJECTS)
3514 					x = page->inuse;
3515 				else
3516 					x = 1;
3517 				total += x;
3518 				nodes[node] += x;
3519 			}
3520 			per_cpu[node]++;
3521 		}
3522 	}
3523 
3524 	for_each_node_state(node, N_NORMAL_MEMORY) {
3525 		struct kmem_cache_node *n = get_node(s, node);
3526 
3527 		if (flags & SO_PARTIAL) {
3528 			if (flags & SO_OBJECTS)
3529 				x = count_partial(n);
3530 			else
3531 				x = n->nr_partial;
3532 			total += x;
3533 			nodes[node] += x;
3534 		}
3535 
3536 		if (flags & SO_FULL) {
3537 			int full_slabs = atomic_long_read(&n->nr_slabs)
3538 					- per_cpu[node]
3539 					- n->nr_partial;
3540 
3541 			if (flags & SO_OBJECTS)
3542 				x = full_slabs * s->objects;
3543 			else
3544 				x = full_slabs;
3545 			total += x;
3546 			nodes[node] += x;
3547 		}
3548 	}
3549 
3550 	x = sprintf(buf, "%lu", total);
3551 #ifdef CONFIG_NUMA
3552 	for_each_node_state(node, N_NORMAL_MEMORY)
3553 		if (nodes[node])
3554 			x += sprintf(buf + x, " N%d=%lu",
3555 					node, nodes[node]);
3556 #endif
3557 	kfree(nodes);
3558 	return x + sprintf(buf + x, "\n");
3559 }
3560 
3561 static int any_slab_objects(struct kmem_cache *s)
3562 {
3563 	int node;
3564 	int cpu;
3565 
3566 	for_each_possible_cpu(cpu) {
3567 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3568 
3569 		if (c && c->page)
3570 			return 1;
3571 	}
3572 
3573 	for_each_online_node(node) {
3574 		struct kmem_cache_node *n = get_node(s, node);
3575 
3576 		if (!n)
3577 			continue;
3578 
3579 		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3580 			return 1;
3581 	}
3582 	return 0;
3583 }
3584 
3585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3586 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3587 
3588 struct slab_attribute {
3589 	struct attribute attr;
3590 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3591 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3592 };
3593 
3594 #define SLAB_ATTR_RO(_name) \
3595 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3596 
3597 #define SLAB_ATTR(_name) \
3598 	static struct slab_attribute _name##_attr =  \
3599 	__ATTR(_name, 0644, _name##_show, _name##_store)
3600 
3601 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3602 {
3603 	return sprintf(buf, "%d\n", s->size);
3604 }
3605 SLAB_ATTR_RO(slab_size);
3606 
3607 static ssize_t align_show(struct kmem_cache *s, char *buf)
3608 {
3609 	return sprintf(buf, "%d\n", s->align);
3610 }
3611 SLAB_ATTR_RO(align);
3612 
3613 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3614 {
3615 	return sprintf(buf, "%d\n", s->objsize);
3616 }
3617 SLAB_ATTR_RO(object_size);
3618 
3619 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3620 {
3621 	return sprintf(buf, "%d\n", s->objects);
3622 }
3623 SLAB_ATTR_RO(objs_per_slab);
3624 
3625 static ssize_t order_show(struct kmem_cache *s, char *buf)
3626 {
3627 	return sprintf(buf, "%d\n", s->order);
3628 }
3629 SLAB_ATTR_RO(order);
3630 
3631 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3632 {
3633 	if (s->ctor) {
3634 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3635 
3636 		return n + sprintf(buf + n, "\n");
3637 	}
3638 	return 0;
3639 }
3640 SLAB_ATTR_RO(ctor);
3641 
3642 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3643 {
3644 	return sprintf(buf, "%d\n", s->refcount - 1);
3645 }
3646 SLAB_ATTR_RO(aliases);
3647 
3648 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3649 {
3650 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3651 }
3652 SLAB_ATTR_RO(slabs);
3653 
3654 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3655 {
3656 	return slab_objects(s, buf, SO_PARTIAL);
3657 }
3658 SLAB_ATTR_RO(partial);
3659 
3660 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3661 {
3662 	return slab_objects(s, buf, SO_CPU);
3663 }
3664 SLAB_ATTR_RO(cpu_slabs);
3665 
3666 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3667 {
3668 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3669 }
3670 SLAB_ATTR_RO(objects);
3671 
3672 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3673 {
3674 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3675 }
3676 
3677 static ssize_t sanity_checks_store(struct kmem_cache *s,
3678 				const char *buf, size_t length)
3679 {
3680 	s->flags &= ~SLAB_DEBUG_FREE;
3681 	if (buf[0] == '1')
3682 		s->flags |= SLAB_DEBUG_FREE;
3683 	return length;
3684 }
3685 SLAB_ATTR(sanity_checks);
3686 
3687 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3688 {
3689 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3690 }
3691 
3692 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3693 							size_t length)
3694 {
3695 	s->flags &= ~SLAB_TRACE;
3696 	if (buf[0] == '1')
3697 		s->flags |= SLAB_TRACE;
3698 	return length;
3699 }
3700 SLAB_ATTR(trace);
3701 
3702 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3703 {
3704 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3705 }
3706 
3707 static ssize_t reclaim_account_store(struct kmem_cache *s,
3708 				const char *buf, size_t length)
3709 {
3710 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3711 	if (buf[0] == '1')
3712 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3713 	return length;
3714 }
3715 SLAB_ATTR(reclaim_account);
3716 
3717 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3718 {
3719 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3720 }
3721 SLAB_ATTR_RO(hwcache_align);
3722 
3723 #ifdef CONFIG_ZONE_DMA
3724 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3725 {
3726 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3727 }
3728 SLAB_ATTR_RO(cache_dma);
3729 #endif
3730 
3731 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3732 {
3733 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3734 }
3735 SLAB_ATTR_RO(destroy_by_rcu);
3736 
3737 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3738 {
3739 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3740 }
3741 
3742 static ssize_t red_zone_store(struct kmem_cache *s,
3743 				const char *buf, size_t length)
3744 {
3745 	if (any_slab_objects(s))
3746 		return -EBUSY;
3747 
3748 	s->flags &= ~SLAB_RED_ZONE;
3749 	if (buf[0] == '1')
3750 		s->flags |= SLAB_RED_ZONE;
3751 	calculate_sizes(s);
3752 	return length;
3753 }
3754 SLAB_ATTR(red_zone);
3755 
3756 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3757 {
3758 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3759 }
3760 
3761 static ssize_t poison_store(struct kmem_cache *s,
3762 				const char *buf, size_t length)
3763 {
3764 	if (any_slab_objects(s))
3765 		return -EBUSY;
3766 
3767 	s->flags &= ~SLAB_POISON;
3768 	if (buf[0] == '1')
3769 		s->flags |= SLAB_POISON;
3770 	calculate_sizes(s);
3771 	return length;
3772 }
3773 SLAB_ATTR(poison);
3774 
3775 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3776 {
3777 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3778 }
3779 
3780 static ssize_t store_user_store(struct kmem_cache *s,
3781 				const char *buf, size_t length)
3782 {
3783 	if (any_slab_objects(s))
3784 		return -EBUSY;
3785 
3786 	s->flags &= ~SLAB_STORE_USER;
3787 	if (buf[0] == '1')
3788 		s->flags |= SLAB_STORE_USER;
3789 	calculate_sizes(s);
3790 	return length;
3791 }
3792 SLAB_ATTR(store_user);
3793 
3794 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3795 {
3796 	return 0;
3797 }
3798 
3799 static ssize_t validate_store(struct kmem_cache *s,
3800 			const char *buf, size_t length)
3801 {
3802 	int ret = -EINVAL;
3803 
3804 	if (buf[0] == '1') {
3805 		ret = validate_slab_cache(s);
3806 		if (ret >= 0)
3807 			ret = length;
3808 	}
3809 	return ret;
3810 }
3811 SLAB_ATTR(validate);
3812 
3813 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3814 {
3815 	return 0;
3816 }
3817 
3818 static ssize_t shrink_store(struct kmem_cache *s,
3819 			const char *buf, size_t length)
3820 {
3821 	if (buf[0] == '1') {
3822 		int rc = kmem_cache_shrink(s);
3823 
3824 		if (rc)
3825 			return rc;
3826 	} else
3827 		return -EINVAL;
3828 	return length;
3829 }
3830 SLAB_ATTR(shrink);
3831 
3832 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3833 {
3834 	if (!(s->flags & SLAB_STORE_USER))
3835 		return -ENOSYS;
3836 	return list_locations(s, buf, TRACK_ALLOC);
3837 }
3838 SLAB_ATTR_RO(alloc_calls);
3839 
3840 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3841 {
3842 	if (!(s->flags & SLAB_STORE_USER))
3843 		return -ENOSYS;
3844 	return list_locations(s, buf, TRACK_FREE);
3845 }
3846 SLAB_ATTR_RO(free_calls);
3847 
3848 #ifdef CONFIG_NUMA
3849 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3850 {
3851 	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3852 }
3853 
3854 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3855 				const char *buf, size_t length)
3856 {
3857 	int n = simple_strtoul(buf, NULL, 10);
3858 
3859 	if (n < 100)
3860 		s->defrag_ratio = n * 10;
3861 	return length;
3862 }
3863 SLAB_ATTR(defrag_ratio);
3864 #endif
3865 
3866 static struct attribute * slab_attrs[] = {
3867 	&slab_size_attr.attr,
3868 	&object_size_attr.attr,
3869 	&objs_per_slab_attr.attr,
3870 	&order_attr.attr,
3871 	&objects_attr.attr,
3872 	&slabs_attr.attr,
3873 	&partial_attr.attr,
3874 	&cpu_slabs_attr.attr,
3875 	&ctor_attr.attr,
3876 	&aliases_attr.attr,
3877 	&align_attr.attr,
3878 	&sanity_checks_attr.attr,
3879 	&trace_attr.attr,
3880 	&hwcache_align_attr.attr,
3881 	&reclaim_account_attr.attr,
3882 	&destroy_by_rcu_attr.attr,
3883 	&red_zone_attr.attr,
3884 	&poison_attr.attr,
3885 	&store_user_attr.attr,
3886 	&validate_attr.attr,
3887 	&shrink_attr.attr,
3888 	&alloc_calls_attr.attr,
3889 	&free_calls_attr.attr,
3890 #ifdef CONFIG_ZONE_DMA
3891 	&cache_dma_attr.attr,
3892 #endif
3893 #ifdef CONFIG_NUMA
3894 	&defrag_ratio_attr.attr,
3895 #endif
3896 	NULL
3897 };
3898 
3899 static struct attribute_group slab_attr_group = {
3900 	.attrs = slab_attrs,
3901 };
3902 
3903 static ssize_t slab_attr_show(struct kobject *kobj,
3904 				struct attribute *attr,
3905 				char *buf)
3906 {
3907 	struct slab_attribute *attribute;
3908 	struct kmem_cache *s;
3909 	int err;
3910 
3911 	attribute = to_slab_attr(attr);
3912 	s = to_slab(kobj);
3913 
3914 	if (!attribute->show)
3915 		return -EIO;
3916 
3917 	err = attribute->show(s, buf);
3918 
3919 	return err;
3920 }
3921 
3922 static ssize_t slab_attr_store(struct kobject *kobj,
3923 				struct attribute *attr,
3924 				const char *buf, size_t len)
3925 {
3926 	struct slab_attribute *attribute;
3927 	struct kmem_cache *s;
3928 	int err;
3929 
3930 	attribute = to_slab_attr(attr);
3931 	s = to_slab(kobj);
3932 
3933 	if (!attribute->store)
3934 		return -EIO;
3935 
3936 	err = attribute->store(s, buf, len);
3937 
3938 	return err;
3939 }
3940 
3941 static struct sysfs_ops slab_sysfs_ops = {
3942 	.show = slab_attr_show,
3943 	.store = slab_attr_store,
3944 };
3945 
3946 static struct kobj_type slab_ktype = {
3947 	.sysfs_ops = &slab_sysfs_ops,
3948 };
3949 
3950 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3951 {
3952 	struct kobj_type *ktype = get_ktype(kobj);
3953 
3954 	if (ktype == &slab_ktype)
3955 		return 1;
3956 	return 0;
3957 }
3958 
3959 static struct kset_uevent_ops slab_uevent_ops = {
3960 	.filter = uevent_filter,
3961 };
3962 
3963 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3964 
3965 #define ID_STR_LENGTH 64
3966 
3967 /* Create a unique string id for a slab cache:
3968  * format
3969  * :[flags-]size:[memory address of kmemcache]
3970  */
3971 static char *create_unique_id(struct kmem_cache *s)
3972 {
3973 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3974 	char *p = name;
3975 
3976 	BUG_ON(!name);
3977 
3978 	*p++ = ':';
3979 	/*
3980 	 * First flags affecting slabcache operations. We will only
3981 	 * get here for aliasable slabs so we do not need to support
3982 	 * too many flags. The flags here must cover all flags that
3983 	 * are matched during merging to guarantee that the id is
3984 	 * unique.
3985 	 */
3986 	if (s->flags & SLAB_CACHE_DMA)
3987 		*p++ = 'd';
3988 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3989 		*p++ = 'a';
3990 	if (s->flags & SLAB_DEBUG_FREE)
3991 		*p++ = 'F';
3992 	if (p != name + 1)
3993 		*p++ = '-';
3994 	p += sprintf(p, "%07d", s->size);
3995 	BUG_ON(p > name + ID_STR_LENGTH - 1);
3996 	return name;
3997 }
3998 
3999 static int sysfs_slab_add(struct kmem_cache *s)
4000 {
4001 	int err;
4002 	const char *name;
4003 	int unmergeable;
4004 
4005 	if (slab_state < SYSFS)
4006 		/* Defer until later */
4007 		return 0;
4008 
4009 	unmergeable = slab_unmergeable(s);
4010 	if (unmergeable) {
4011 		/*
4012 		 * Slabcache can never be merged so we can use the name proper.
4013 		 * This is typically the case for debug situations. In that
4014 		 * case we can catch duplicate names easily.
4015 		 */
4016 		sysfs_remove_link(&slab_subsys.kobj, s->name);
4017 		name = s->name;
4018 	} else {
4019 		/*
4020 		 * Create a unique name for the slab as a target
4021 		 * for the symlinks.
4022 		 */
4023 		name = create_unique_id(s);
4024 	}
4025 
4026 	kobj_set_kset_s(s, slab_subsys);
4027 	kobject_set_name(&s->kobj, name);
4028 	kobject_init(&s->kobj);
4029 	err = kobject_add(&s->kobj);
4030 	if (err)
4031 		return err;
4032 
4033 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4034 	if (err)
4035 		return err;
4036 	kobject_uevent(&s->kobj, KOBJ_ADD);
4037 	if (!unmergeable) {
4038 		/* Setup first alias */
4039 		sysfs_slab_alias(s, s->name);
4040 		kfree(name);
4041 	}
4042 	return 0;
4043 }
4044 
4045 static void sysfs_slab_remove(struct kmem_cache *s)
4046 {
4047 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4048 	kobject_del(&s->kobj);
4049 }
4050 
4051 /*
4052  * Need to buffer aliases during bootup until sysfs becomes
4053  * available lest we loose that information.
4054  */
4055 struct saved_alias {
4056 	struct kmem_cache *s;
4057 	const char *name;
4058 	struct saved_alias *next;
4059 };
4060 
4061 static struct saved_alias *alias_list;
4062 
4063 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4064 {
4065 	struct saved_alias *al;
4066 
4067 	if (slab_state == SYSFS) {
4068 		/*
4069 		 * If we have a leftover link then remove it.
4070 		 */
4071 		sysfs_remove_link(&slab_subsys.kobj, name);
4072 		return sysfs_create_link(&slab_subsys.kobj,
4073 						&s->kobj, name);
4074 	}
4075 
4076 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4077 	if (!al)
4078 		return -ENOMEM;
4079 
4080 	al->s = s;
4081 	al->name = name;
4082 	al->next = alias_list;
4083 	alias_list = al;
4084 	return 0;
4085 }
4086 
4087 static int __init slab_sysfs_init(void)
4088 {
4089 	struct kmem_cache *s;
4090 	int err;
4091 
4092 	err = subsystem_register(&slab_subsys);
4093 	if (err) {
4094 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4095 		return -ENOSYS;
4096 	}
4097 
4098 	slab_state = SYSFS;
4099 
4100 	list_for_each_entry(s, &slab_caches, list) {
4101 		err = sysfs_slab_add(s);
4102 		if (err)
4103 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4104 						" to sysfs\n", s->name);
4105 	}
4106 
4107 	while (alias_list) {
4108 		struct saved_alias *al = alias_list;
4109 
4110 		alias_list = alias_list->next;
4111 		err = sysfs_slab_alias(al->s, al->name);
4112 		if (err)
4113 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4114 					" %s to sysfs\n", s->name);
4115 		kfree(al);
4116 	}
4117 
4118 	resiliency_test();
4119 	return 0;
4120 }
4121 
4122 __initcall(slab_sysfs_init);
4123 #endif
4124