1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/bit_spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/bitops.h> 16 #include <linux/slab.h> 17 #include <linux/seq_file.h> 18 #include <linux/cpu.h> 19 #include <linux/cpuset.h> 20 #include <linux/mempolicy.h> 21 #include <linux/ctype.h> 22 #include <linux/kallsyms.h> 23 #include <linux/memory.h> 24 25 /* 26 * Lock order: 27 * 1. slab_lock(page) 28 * 2. slab->list_lock 29 * 30 * The slab_lock protects operations on the object of a particular 31 * slab and its metadata in the page struct. If the slab lock 32 * has been taken then no allocations nor frees can be performed 33 * on the objects in the slab nor can the slab be added or removed 34 * from the partial or full lists since this would mean modifying 35 * the page_struct of the slab. 36 * 37 * The list_lock protects the partial and full list on each node and 38 * the partial slab counter. If taken then no new slabs may be added or 39 * removed from the lists nor make the number of partial slabs be modified. 40 * (Note that the total number of slabs is an atomic value that may be 41 * modified without taking the list lock). 42 * 43 * The list_lock is a centralized lock and thus we avoid taking it as 44 * much as possible. As long as SLUB does not have to handle partial 45 * slabs, operations can continue without any centralized lock. F.e. 46 * allocating a long series of objects that fill up slabs does not require 47 * the list lock. 48 * 49 * The lock order is sometimes inverted when we are trying to get a slab 50 * off a list. We take the list_lock and then look for a page on the list 51 * to use. While we do that objects in the slabs may be freed. We can 52 * only operate on the slab if we have also taken the slab_lock. So we use 53 * a slab_trylock() on the slab. If trylock was successful then no frees 54 * can occur anymore and we can use the slab for allocations etc. If the 55 * slab_trylock() does not succeed then frees are in progress in the slab and 56 * we must stay away from it for a while since we may cause a bouncing 57 * cacheline if we try to acquire the lock. So go onto the next slab. 58 * If all pages are busy then we may allocate a new slab instead of reusing 59 * a partial slab. A new slab has noone operating on it and thus there is 60 * no danger of cacheline contention. 61 * 62 * Interrupts are disabled during allocation and deallocation in order to 63 * make the slab allocator safe to use in the context of an irq. In addition 64 * interrupts are disabled to ensure that the processor does not change 65 * while handling per_cpu slabs, due to kernel preemption. 66 * 67 * SLUB assigns one slab for allocation to each processor. 68 * Allocations only occur from these slabs called cpu slabs. 69 * 70 * Slabs with free elements are kept on a partial list and during regular 71 * operations no list for full slabs is used. If an object in a full slab is 72 * freed then the slab will show up again on the partial lists. 73 * We track full slabs for debugging purposes though because otherwise we 74 * cannot scan all objects. 75 * 76 * Slabs are freed when they become empty. Teardown and setup is 77 * minimal so we rely on the page allocators per cpu caches for 78 * fast frees and allocs. 79 * 80 * Overloading of page flags that are otherwise used for LRU management. 81 * 82 * PageActive The slab is frozen and exempt from list processing. 83 * This means that the slab is dedicated to a purpose 84 * such as satisfying allocations for a specific 85 * processor. Objects may be freed in the slab while 86 * it is frozen but slab_free will then skip the usual 87 * list operations. It is up to the processor holding 88 * the slab to integrate the slab into the slab lists 89 * when the slab is no longer needed. 90 * 91 * One use of this flag is to mark slabs that are 92 * used for allocations. Then such a slab becomes a cpu 93 * slab. The cpu slab may be equipped with an additional 94 * freelist that allows lockless access to 95 * free objects in addition to the regular freelist 96 * that requires the slab lock. 97 * 98 * PageError Slab requires special handling due to debug 99 * options set. This moves slab handling out of 100 * the fast path and disables lockless freelists. 101 */ 102 103 #define FROZEN (1 << PG_active) 104 105 #ifdef CONFIG_SLUB_DEBUG 106 #define SLABDEBUG (1 << PG_error) 107 #else 108 #define SLABDEBUG 0 109 #endif 110 111 static inline int SlabFrozen(struct page *page) 112 { 113 return page->flags & FROZEN; 114 } 115 116 static inline void SetSlabFrozen(struct page *page) 117 { 118 page->flags |= FROZEN; 119 } 120 121 static inline void ClearSlabFrozen(struct page *page) 122 { 123 page->flags &= ~FROZEN; 124 } 125 126 static inline int SlabDebug(struct page *page) 127 { 128 return page->flags & SLABDEBUG; 129 } 130 131 static inline void SetSlabDebug(struct page *page) 132 { 133 page->flags |= SLABDEBUG; 134 } 135 136 static inline void ClearSlabDebug(struct page *page) 137 { 138 page->flags &= ~SLABDEBUG; 139 } 140 141 /* 142 * Issues still to be resolved: 143 * 144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 145 * 146 * - Variable sizing of the per node arrays 147 */ 148 149 /* Enable to test recovery from slab corruption on boot */ 150 #undef SLUB_RESILIENCY_TEST 151 152 #if PAGE_SHIFT <= 12 153 154 /* 155 * Small page size. Make sure that we do not fragment memory 156 */ 157 #define DEFAULT_MAX_ORDER 1 158 #define DEFAULT_MIN_OBJECTS 4 159 160 #else 161 162 /* 163 * Large page machines are customarily able to handle larger 164 * page orders. 165 */ 166 #define DEFAULT_MAX_ORDER 2 167 #define DEFAULT_MIN_OBJECTS 8 168 169 #endif 170 171 /* 172 * Mininum number of partial slabs. These will be left on the partial 173 * lists even if they are empty. kmem_cache_shrink may reclaim them. 174 */ 175 #define MIN_PARTIAL 2 176 177 /* 178 * Maximum number of desirable partial slabs. 179 * The existence of more partial slabs makes kmem_cache_shrink 180 * sort the partial list by the number of objects in the. 181 */ 182 #define MAX_PARTIAL 10 183 184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 185 SLAB_POISON | SLAB_STORE_USER) 186 187 /* 188 * Set of flags that will prevent slab merging 189 */ 190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 191 SLAB_TRACE | SLAB_DESTROY_BY_RCU) 192 193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 194 SLAB_CACHE_DMA) 195 196 #ifndef ARCH_KMALLOC_MINALIGN 197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 198 #endif 199 200 #ifndef ARCH_SLAB_MINALIGN 201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 202 #endif 203 204 /* Internal SLUB flags */ 205 #define __OBJECT_POISON 0x80000000 /* Poison object */ 206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 207 208 /* Not all arches define cache_line_size */ 209 #ifndef cache_line_size 210 #define cache_line_size() L1_CACHE_BYTES 211 #endif 212 213 static int kmem_size = sizeof(struct kmem_cache); 214 215 #ifdef CONFIG_SMP 216 static struct notifier_block slab_notifier; 217 #endif 218 219 static enum { 220 DOWN, /* No slab functionality available */ 221 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 222 UP, /* Everything works but does not show up in sysfs */ 223 SYSFS /* Sysfs up */ 224 } slab_state = DOWN; 225 226 /* A list of all slab caches on the system */ 227 static DECLARE_RWSEM(slub_lock); 228 static LIST_HEAD(slab_caches); 229 230 /* 231 * Tracking user of a slab. 232 */ 233 struct track { 234 void *addr; /* Called from address */ 235 int cpu; /* Was running on cpu */ 236 int pid; /* Pid context */ 237 unsigned long when; /* When did the operation occur */ 238 }; 239 240 enum track_item { TRACK_ALLOC, TRACK_FREE }; 241 242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) 243 static int sysfs_slab_add(struct kmem_cache *); 244 static int sysfs_slab_alias(struct kmem_cache *, const char *); 245 static void sysfs_slab_remove(struct kmem_cache *); 246 #else 247 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 248 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 249 { return 0; } 250 static inline void sysfs_slab_remove(struct kmem_cache *s) {} 251 #endif 252 253 /******************************************************************** 254 * Core slab cache functions 255 *******************************************************************/ 256 257 int slab_is_available(void) 258 { 259 return slab_state >= UP; 260 } 261 262 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 263 { 264 #ifdef CONFIG_NUMA 265 return s->node[node]; 266 #else 267 return &s->local_node; 268 #endif 269 } 270 271 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 272 { 273 #ifdef CONFIG_SMP 274 return s->cpu_slab[cpu]; 275 #else 276 return &s->cpu_slab; 277 #endif 278 } 279 280 static inline int check_valid_pointer(struct kmem_cache *s, 281 struct page *page, const void *object) 282 { 283 void *base; 284 285 if (!object) 286 return 1; 287 288 base = page_address(page); 289 if (object < base || object >= base + s->objects * s->size || 290 (object - base) % s->size) { 291 return 0; 292 } 293 294 return 1; 295 } 296 297 /* 298 * Slow version of get and set free pointer. 299 * 300 * This version requires touching the cache lines of kmem_cache which 301 * we avoid to do in the fast alloc free paths. There we obtain the offset 302 * from the page struct. 303 */ 304 static inline void *get_freepointer(struct kmem_cache *s, void *object) 305 { 306 return *(void **)(object + s->offset); 307 } 308 309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 310 { 311 *(void **)(object + s->offset) = fp; 312 } 313 314 /* Loop over all objects in a slab */ 315 #define for_each_object(__p, __s, __addr) \ 316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\ 317 __p += (__s)->size) 318 319 /* Scan freelist */ 320 #define for_each_free_object(__p, __s, __free) \ 321 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 322 323 /* Determine object index from a given position */ 324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 325 { 326 return (p - addr) / s->size; 327 } 328 329 #ifdef CONFIG_SLUB_DEBUG 330 /* 331 * Debug settings: 332 */ 333 #ifdef CONFIG_SLUB_DEBUG_ON 334 static int slub_debug = DEBUG_DEFAULT_FLAGS; 335 #else 336 static int slub_debug; 337 #endif 338 339 static char *slub_debug_slabs; 340 341 /* 342 * Object debugging 343 */ 344 static void print_section(char *text, u8 *addr, unsigned int length) 345 { 346 int i, offset; 347 int newline = 1; 348 char ascii[17]; 349 350 ascii[16] = 0; 351 352 for (i = 0; i < length; i++) { 353 if (newline) { 354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 355 newline = 0; 356 } 357 printk(" %02x", addr[i]); 358 offset = i % 16; 359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 360 if (offset == 15) { 361 printk(" %s\n",ascii); 362 newline = 1; 363 } 364 } 365 if (!newline) { 366 i %= 16; 367 while (i < 16) { 368 printk(" "); 369 ascii[i] = ' '; 370 i++; 371 } 372 printk(" %s\n", ascii); 373 } 374 } 375 376 static struct track *get_track(struct kmem_cache *s, void *object, 377 enum track_item alloc) 378 { 379 struct track *p; 380 381 if (s->offset) 382 p = object + s->offset + sizeof(void *); 383 else 384 p = object + s->inuse; 385 386 return p + alloc; 387 } 388 389 static void set_track(struct kmem_cache *s, void *object, 390 enum track_item alloc, void *addr) 391 { 392 struct track *p; 393 394 if (s->offset) 395 p = object + s->offset + sizeof(void *); 396 else 397 p = object + s->inuse; 398 399 p += alloc; 400 if (addr) { 401 p->addr = addr; 402 p->cpu = smp_processor_id(); 403 p->pid = current ? current->pid : -1; 404 p->when = jiffies; 405 } else 406 memset(p, 0, sizeof(struct track)); 407 } 408 409 static void init_tracking(struct kmem_cache *s, void *object) 410 { 411 if (!(s->flags & SLAB_STORE_USER)) 412 return; 413 414 set_track(s, object, TRACK_FREE, NULL); 415 set_track(s, object, TRACK_ALLOC, NULL); 416 } 417 418 static void print_track(const char *s, struct track *t) 419 { 420 if (!t->addr) 421 return; 422 423 printk(KERN_ERR "INFO: %s in ", s); 424 __print_symbol("%s", (unsigned long)t->addr); 425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); 426 } 427 428 static void print_tracking(struct kmem_cache *s, void *object) 429 { 430 if (!(s->flags & SLAB_STORE_USER)) 431 return; 432 433 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 434 print_track("Freed", get_track(s, object, TRACK_FREE)); 435 } 436 437 static void print_page_info(struct page *page) 438 { 439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n", 440 page, page->inuse, page->freelist, page->flags); 441 442 } 443 444 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 445 { 446 va_list args; 447 char buf[100]; 448 449 va_start(args, fmt); 450 vsnprintf(buf, sizeof(buf), fmt, args); 451 va_end(args); 452 printk(KERN_ERR "========================================" 453 "=====================================\n"); 454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 455 printk(KERN_ERR "----------------------------------------" 456 "-------------------------------------\n\n"); 457 } 458 459 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 460 { 461 va_list args; 462 char buf[100]; 463 464 va_start(args, fmt); 465 vsnprintf(buf, sizeof(buf), fmt, args); 466 va_end(args); 467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 468 } 469 470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 471 { 472 unsigned int off; /* Offset of last byte */ 473 u8 *addr = page_address(page); 474 475 print_tracking(s, p); 476 477 print_page_info(page); 478 479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 480 p, p - addr, get_freepointer(s, p)); 481 482 if (p > addr + 16) 483 print_section("Bytes b4", p - 16, 16); 484 485 print_section("Object", p, min(s->objsize, 128)); 486 487 if (s->flags & SLAB_RED_ZONE) 488 print_section("Redzone", p + s->objsize, 489 s->inuse - s->objsize); 490 491 if (s->offset) 492 off = s->offset + sizeof(void *); 493 else 494 off = s->inuse; 495 496 if (s->flags & SLAB_STORE_USER) 497 off += 2 * sizeof(struct track); 498 499 if (off != s->size) 500 /* Beginning of the filler is the free pointer */ 501 print_section("Padding", p + off, s->size - off); 502 503 dump_stack(); 504 } 505 506 static void object_err(struct kmem_cache *s, struct page *page, 507 u8 *object, char *reason) 508 { 509 slab_bug(s, reason); 510 print_trailer(s, page, object); 511 } 512 513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 514 { 515 va_list args; 516 char buf[100]; 517 518 va_start(args, fmt); 519 vsnprintf(buf, sizeof(buf), fmt, args); 520 va_end(args); 521 slab_bug(s, fmt); 522 print_page_info(page); 523 dump_stack(); 524 } 525 526 static void init_object(struct kmem_cache *s, void *object, int active) 527 { 528 u8 *p = object; 529 530 if (s->flags & __OBJECT_POISON) { 531 memset(p, POISON_FREE, s->objsize - 1); 532 p[s->objsize -1] = POISON_END; 533 } 534 535 if (s->flags & SLAB_RED_ZONE) 536 memset(p + s->objsize, 537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 538 s->inuse - s->objsize); 539 } 540 541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 542 { 543 while (bytes) { 544 if (*start != (u8)value) 545 return start; 546 start++; 547 bytes--; 548 } 549 return NULL; 550 } 551 552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 553 void *from, void *to) 554 { 555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 556 memset(from, data, to - from); 557 } 558 559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 560 u8 *object, char *what, 561 u8* start, unsigned int value, unsigned int bytes) 562 { 563 u8 *fault; 564 u8 *end; 565 566 fault = check_bytes(start, value, bytes); 567 if (!fault) 568 return 1; 569 570 end = start + bytes; 571 while (end > fault && end[-1] == value) 572 end--; 573 574 slab_bug(s, "%s overwritten", what); 575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 576 fault, end - 1, fault[0], value); 577 print_trailer(s, page, object); 578 579 restore_bytes(s, what, value, fault, end); 580 return 0; 581 } 582 583 /* 584 * Object layout: 585 * 586 * object address 587 * Bytes of the object to be managed. 588 * If the freepointer may overlay the object then the free 589 * pointer is the first word of the object. 590 * 591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 592 * 0xa5 (POISON_END) 593 * 594 * object + s->objsize 595 * Padding to reach word boundary. This is also used for Redzoning. 596 * Padding is extended by another word if Redzoning is enabled and 597 * objsize == inuse. 598 * 599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 600 * 0xcc (RED_ACTIVE) for objects in use. 601 * 602 * object + s->inuse 603 * Meta data starts here. 604 * 605 * A. Free pointer (if we cannot overwrite object on free) 606 * B. Tracking data for SLAB_STORE_USER 607 * C. Padding to reach required alignment boundary or at mininum 608 * one word if debuggin is on to be able to detect writes 609 * before the word boundary. 610 * 611 * Padding is done using 0x5a (POISON_INUSE) 612 * 613 * object + s->size 614 * Nothing is used beyond s->size. 615 * 616 * If slabcaches are merged then the objsize and inuse boundaries are mostly 617 * ignored. And therefore no slab options that rely on these boundaries 618 * may be used with merged slabcaches. 619 */ 620 621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 622 { 623 unsigned long off = s->inuse; /* The end of info */ 624 625 if (s->offset) 626 /* Freepointer is placed after the object. */ 627 off += sizeof(void *); 628 629 if (s->flags & SLAB_STORE_USER) 630 /* We also have user information there */ 631 off += 2 * sizeof(struct track); 632 633 if (s->size == off) 634 return 1; 635 636 return check_bytes_and_report(s, page, p, "Object padding", 637 p + off, POISON_INUSE, s->size - off); 638 } 639 640 static int slab_pad_check(struct kmem_cache *s, struct page *page) 641 { 642 u8 *start; 643 u8 *fault; 644 u8 *end; 645 int length; 646 int remainder; 647 648 if (!(s->flags & SLAB_POISON)) 649 return 1; 650 651 start = page_address(page); 652 end = start + (PAGE_SIZE << s->order); 653 length = s->objects * s->size; 654 remainder = end - (start + length); 655 if (!remainder) 656 return 1; 657 658 fault = check_bytes(start + length, POISON_INUSE, remainder); 659 if (!fault) 660 return 1; 661 while (end > fault && end[-1] == POISON_INUSE) 662 end--; 663 664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 665 print_section("Padding", start, length); 666 667 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 668 return 0; 669 } 670 671 static int check_object(struct kmem_cache *s, struct page *page, 672 void *object, int active) 673 { 674 u8 *p = object; 675 u8 *endobject = object + s->objsize; 676 677 if (s->flags & SLAB_RED_ZONE) { 678 unsigned int red = 679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 680 681 if (!check_bytes_and_report(s, page, object, "Redzone", 682 endobject, red, s->inuse - s->objsize)) 683 return 0; 684 } else { 685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) 686 check_bytes_and_report(s, page, p, "Alignment padding", endobject, 687 POISON_INUSE, s->inuse - s->objsize); 688 } 689 690 if (s->flags & SLAB_POISON) { 691 if (!active && (s->flags & __OBJECT_POISON) && 692 (!check_bytes_and_report(s, page, p, "Poison", p, 693 POISON_FREE, s->objsize - 1) || 694 !check_bytes_and_report(s, page, p, "Poison", 695 p + s->objsize -1, POISON_END, 1))) 696 return 0; 697 /* 698 * check_pad_bytes cleans up on its own. 699 */ 700 check_pad_bytes(s, page, p); 701 } 702 703 if (!s->offset && active) 704 /* 705 * Object and freepointer overlap. Cannot check 706 * freepointer while object is allocated. 707 */ 708 return 1; 709 710 /* Check free pointer validity */ 711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 712 object_err(s, page, p, "Freepointer corrupt"); 713 /* 714 * No choice but to zap it and thus loose the remainder 715 * of the free objects in this slab. May cause 716 * another error because the object count is now wrong. 717 */ 718 set_freepointer(s, p, NULL); 719 return 0; 720 } 721 return 1; 722 } 723 724 static int check_slab(struct kmem_cache *s, struct page *page) 725 { 726 VM_BUG_ON(!irqs_disabled()); 727 728 if (!PageSlab(page)) { 729 slab_err(s, page, "Not a valid slab page"); 730 return 0; 731 } 732 if (page->inuse > s->objects) { 733 slab_err(s, page, "inuse %u > max %u", 734 s->name, page->inuse, s->objects); 735 return 0; 736 } 737 /* Slab_pad_check fixes things up after itself */ 738 slab_pad_check(s, page); 739 return 1; 740 } 741 742 /* 743 * Determine if a certain object on a page is on the freelist. Must hold the 744 * slab lock to guarantee that the chains are in a consistent state. 745 */ 746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 747 { 748 int nr = 0; 749 void *fp = page->freelist; 750 void *object = NULL; 751 752 while (fp && nr <= s->objects) { 753 if (fp == search) 754 return 1; 755 if (!check_valid_pointer(s, page, fp)) { 756 if (object) { 757 object_err(s, page, object, 758 "Freechain corrupt"); 759 set_freepointer(s, object, NULL); 760 break; 761 } else { 762 slab_err(s, page, "Freepointer corrupt"); 763 page->freelist = NULL; 764 page->inuse = s->objects; 765 slab_fix(s, "Freelist cleared"); 766 return 0; 767 } 768 break; 769 } 770 object = fp; 771 fp = get_freepointer(s, object); 772 nr++; 773 } 774 775 if (page->inuse != s->objects - nr) { 776 slab_err(s, page, "Wrong object count. Counter is %d but " 777 "counted were %d", page->inuse, s->objects - nr); 778 page->inuse = s->objects - nr; 779 slab_fix(s, "Object count adjusted."); 780 } 781 return search == NULL; 782 } 783 784 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc) 785 { 786 if (s->flags & SLAB_TRACE) { 787 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 788 s->name, 789 alloc ? "alloc" : "free", 790 object, page->inuse, 791 page->freelist); 792 793 if (!alloc) 794 print_section("Object", (void *)object, s->objsize); 795 796 dump_stack(); 797 } 798 } 799 800 /* 801 * Tracking of fully allocated slabs for debugging purposes. 802 */ 803 static void add_full(struct kmem_cache_node *n, struct page *page) 804 { 805 spin_lock(&n->list_lock); 806 list_add(&page->lru, &n->full); 807 spin_unlock(&n->list_lock); 808 } 809 810 static void remove_full(struct kmem_cache *s, struct page *page) 811 { 812 struct kmem_cache_node *n; 813 814 if (!(s->flags & SLAB_STORE_USER)) 815 return; 816 817 n = get_node(s, page_to_nid(page)); 818 819 spin_lock(&n->list_lock); 820 list_del(&page->lru); 821 spin_unlock(&n->list_lock); 822 } 823 824 static void setup_object_debug(struct kmem_cache *s, struct page *page, 825 void *object) 826 { 827 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 828 return; 829 830 init_object(s, object, 0); 831 init_tracking(s, object); 832 } 833 834 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 835 void *object, void *addr) 836 { 837 if (!check_slab(s, page)) 838 goto bad; 839 840 if (object && !on_freelist(s, page, object)) { 841 object_err(s, page, object, "Object already allocated"); 842 goto bad; 843 } 844 845 if (!check_valid_pointer(s, page, object)) { 846 object_err(s, page, object, "Freelist Pointer check fails"); 847 goto bad; 848 } 849 850 if (object && !check_object(s, page, object, 0)) 851 goto bad; 852 853 /* Success perform special debug activities for allocs */ 854 if (s->flags & SLAB_STORE_USER) 855 set_track(s, object, TRACK_ALLOC, addr); 856 trace(s, page, object, 1); 857 init_object(s, object, 1); 858 return 1; 859 860 bad: 861 if (PageSlab(page)) { 862 /* 863 * If this is a slab page then lets do the best we can 864 * to avoid issues in the future. Marking all objects 865 * as used avoids touching the remaining objects. 866 */ 867 slab_fix(s, "Marking all objects used"); 868 page->inuse = s->objects; 869 page->freelist = NULL; 870 } 871 return 0; 872 } 873 874 static int free_debug_processing(struct kmem_cache *s, struct page *page, 875 void *object, void *addr) 876 { 877 if (!check_slab(s, page)) 878 goto fail; 879 880 if (!check_valid_pointer(s, page, object)) { 881 slab_err(s, page, "Invalid object pointer 0x%p", object); 882 goto fail; 883 } 884 885 if (on_freelist(s, page, object)) { 886 object_err(s, page, object, "Object already free"); 887 goto fail; 888 } 889 890 if (!check_object(s, page, object, 1)) 891 return 0; 892 893 if (unlikely(s != page->slab)) { 894 if (!PageSlab(page)) 895 slab_err(s, page, "Attempt to free object(0x%p) " 896 "outside of slab", object); 897 else 898 if (!page->slab) { 899 printk(KERN_ERR 900 "SLUB <none>: no slab for object 0x%p.\n", 901 object); 902 dump_stack(); 903 } 904 else 905 object_err(s, page, object, 906 "page slab pointer corrupt."); 907 goto fail; 908 } 909 910 /* Special debug activities for freeing objects */ 911 if (!SlabFrozen(page) && !page->freelist) 912 remove_full(s, page); 913 if (s->flags & SLAB_STORE_USER) 914 set_track(s, object, TRACK_FREE, addr); 915 trace(s, page, object, 0); 916 init_object(s, object, 0); 917 return 1; 918 919 fail: 920 slab_fix(s, "Object at 0x%p not freed", object); 921 return 0; 922 } 923 924 static int __init setup_slub_debug(char *str) 925 { 926 slub_debug = DEBUG_DEFAULT_FLAGS; 927 if (*str++ != '=' || !*str) 928 /* 929 * No options specified. Switch on full debugging. 930 */ 931 goto out; 932 933 if (*str == ',') 934 /* 935 * No options but restriction on slabs. This means full 936 * debugging for slabs matching a pattern. 937 */ 938 goto check_slabs; 939 940 slub_debug = 0; 941 if (*str == '-') 942 /* 943 * Switch off all debugging measures. 944 */ 945 goto out; 946 947 /* 948 * Determine which debug features should be switched on 949 */ 950 for ( ;*str && *str != ','; str++) { 951 switch (tolower(*str)) { 952 case 'f': 953 slub_debug |= SLAB_DEBUG_FREE; 954 break; 955 case 'z': 956 slub_debug |= SLAB_RED_ZONE; 957 break; 958 case 'p': 959 slub_debug |= SLAB_POISON; 960 break; 961 case 'u': 962 slub_debug |= SLAB_STORE_USER; 963 break; 964 case 't': 965 slub_debug |= SLAB_TRACE; 966 break; 967 default: 968 printk(KERN_ERR "slub_debug option '%c' " 969 "unknown. skipped\n",*str); 970 } 971 } 972 973 check_slabs: 974 if (*str == ',') 975 slub_debug_slabs = str + 1; 976 out: 977 return 1; 978 } 979 980 __setup("slub_debug", setup_slub_debug); 981 982 static unsigned long kmem_cache_flags(unsigned long objsize, 983 unsigned long flags, const char *name, 984 void (*ctor)(struct kmem_cache *, void *)) 985 { 986 /* 987 * The page->offset field is only 16 bit wide. This is an offset 988 * in units of words from the beginning of an object. If the slab 989 * size is bigger then we cannot move the free pointer behind the 990 * object anymore. 991 * 992 * On 32 bit platforms the limit is 256k. On 64bit platforms 993 * the limit is 512k. 994 * 995 * Debugging or ctor may create a need to move the free 996 * pointer. Fail if this happens. 997 */ 998 if (objsize >= 65535 * sizeof(void *)) { 999 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON | 1000 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU)); 1001 BUG_ON(ctor); 1002 } else { 1003 /* 1004 * Enable debugging if selected on the kernel commandline. 1005 */ 1006 if (slub_debug && (!slub_debug_slabs || 1007 strncmp(slub_debug_slabs, name, 1008 strlen(slub_debug_slabs)) == 0)) 1009 flags |= slub_debug; 1010 } 1011 1012 return flags; 1013 } 1014 #else 1015 static inline void setup_object_debug(struct kmem_cache *s, 1016 struct page *page, void *object) {} 1017 1018 static inline int alloc_debug_processing(struct kmem_cache *s, 1019 struct page *page, void *object, void *addr) { return 0; } 1020 1021 static inline int free_debug_processing(struct kmem_cache *s, 1022 struct page *page, void *object, void *addr) { return 0; } 1023 1024 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1025 { return 1; } 1026 static inline int check_object(struct kmem_cache *s, struct page *page, 1027 void *object, int active) { return 1; } 1028 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1029 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1030 unsigned long flags, const char *name, 1031 void (*ctor)(struct kmem_cache *, void *)) 1032 { 1033 return flags; 1034 } 1035 #define slub_debug 0 1036 #endif 1037 /* 1038 * Slab allocation and freeing 1039 */ 1040 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1041 { 1042 struct page * page; 1043 int pages = 1 << s->order; 1044 1045 if (s->order) 1046 flags |= __GFP_COMP; 1047 1048 if (s->flags & SLAB_CACHE_DMA) 1049 flags |= SLUB_DMA; 1050 1051 if (s->flags & SLAB_RECLAIM_ACCOUNT) 1052 flags |= __GFP_RECLAIMABLE; 1053 1054 if (node == -1) 1055 page = alloc_pages(flags, s->order); 1056 else 1057 page = alloc_pages_node(node, flags, s->order); 1058 1059 if (!page) 1060 return NULL; 1061 1062 mod_zone_page_state(page_zone(page), 1063 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1064 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1065 pages); 1066 1067 return page; 1068 } 1069 1070 static void setup_object(struct kmem_cache *s, struct page *page, 1071 void *object) 1072 { 1073 setup_object_debug(s, page, object); 1074 if (unlikely(s->ctor)) 1075 s->ctor(s, object); 1076 } 1077 1078 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1079 { 1080 struct page *page; 1081 struct kmem_cache_node *n; 1082 void *start; 1083 void *end; 1084 void *last; 1085 void *p; 1086 1087 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1088 1089 page = allocate_slab(s, 1090 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1091 if (!page) 1092 goto out; 1093 1094 n = get_node(s, page_to_nid(page)); 1095 if (n) 1096 atomic_long_inc(&n->nr_slabs); 1097 page->slab = s; 1098 page->flags |= 1 << PG_slab; 1099 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1100 SLAB_STORE_USER | SLAB_TRACE)) 1101 SetSlabDebug(page); 1102 1103 start = page_address(page); 1104 end = start + s->objects * s->size; 1105 1106 if (unlikely(s->flags & SLAB_POISON)) 1107 memset(start, POISON_INUSE, PAGE_SIZE << s->order); 1108 1109 last = start; 1110 for_each_object(p, s, start) { 1111 setup_object(s, page, last); 1112 set_freepointer(s, last, p); 1113 last = p; 1114 } 1115 setup_object(s, page, last); 1116 set_freepointer(s, last, NULL); 1117 1118 page->freelist = start; 1119 page->inuse = 0; 1120 out: 1121 return page; 1122 } 1123 1124 static void __free_slab(struct kmem_cache *s, struct page *page) 1125 { 1126 int pages = 1 << s->order; 1127 1128 if (unlikely(SlabDebug(page))) { 1129 void *p; 1130 1131 slab_pad_check(s, page); 1132 for_each_object(p, s, page_address(page)) 1133 check_object(s, page, p, 0); 1134 ClearSlabDebug(page); 1135 } 1136 1137 mod_zone_page_state(page_zone(page), 1138 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1139 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1140 - pages); 1141 1142 __free_pages(page, s->order); 1143 } 1144 1145 static void rcu_free_slab(struct rcu_head *h) 1146 { 1147 struct page *page; 1148 1149 page = container_of((struct list_head *)h, struct page, lru); 1150 __free_slab(page->slab, page); 1151 } 1152 1153 static void free_slab(struct kmem_cache *s, struct page *page) 1154 { 1155 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1156 /* 1157 * RCU free overloads the RCU head over the LRU 1158 */ 1159 struct rcu_head *head = (void *)&page->lru; 1160 1161 call_rcu(head, rcu_free_slab); 1162 } else 1163 __free_slab(s, page); 1164 } 1165 1166 static void discard_slab(struct kmem_cache *s, struct page *page) 1167 { 1168 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1169 1170 atomic_long_dec(&n->nr_slabs); 1171 reset_page_mapcount(page); 1172 __ClearPageSlab(page); 1173 free_slab(s, page); 1174 } 1175 1176 /* 1177 * Per slab locking using the pagelock 1178 */ 1179 static __always_inline void slab_lock(struct page *page) 1180 { 1181 bit_spin_lock(PG_locked, &page->flags); 1182 } 1183 1184 static __always_inline void slab_unlock(struct page *page) 1185 { 1186 bit_spin_unlock(PG_locked, &page->flags); 1187 } 1188 1189 static __always_inline int slab_trylock(struct page *page) 1190 { 1191 int rc = 1; 1192 1193 rc = bit_spin_trylock(PG_locked, &page->flags); 1194 return rc; 1195 } 1196 1197 /* 1198 * Management of partially allocated slabs 1199 */ 1200 static void add_partial_tail(struct kmem_cache_node *n, struct page *page) 1201 { 1202 spin_lock(&n->list_lock); 1203 n->nr_partial++; 1204 list_add_tail(&page->lru, &n->partial); 1205 spin_unlock(&n->list_lock); 1206 } 1207 1208 static void add_partial(struct kmem_cache_node *n, struct page *page) 1209 { 1210 spin_lock(&n->list_lock); 1211 n->nr_partial++; 1212 list_add(&page->lru, &n->partial); 1213 spin_unlock(&n->list_lock); 1214 } 1215 1216 static void remove_partial(struct kmem_cache *s, 1217 struct page *page) 1218 { 1219 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1220 1221 spin_lock(&n->list_lock); 1222 list_del(&page->lru); 1223 n->nr_partial--; 1224 spin_unlock(&n->list_lock); 1225 } 1226 1227 /* 1228 * Lock slab and remove from the partial list. 1229 * 1230 * Must hold list_lock. 1231 */ 1232 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page) 1233 { 1234 if (slab_trylock(page)) { 1235 list_del(&page->lru); 1236 n->nr_partial--; 1237 SetSlabFrozen(page); 1238 return 1; 1239 } 1240 return 0; 1241 } 1242 1243 /* 1244 * Try to allocate a partial slab from a specific node. 1245 */ 1246 static struct page *get_partial_node(struct kmem_cache_node *n) 1247 { 1248 struct page *page; 1249 1250 /* 1251 * Racy check. If we mistakenly see no partial slabs then we 1252 * just allocate an empty slab. If we mistakenly try to get a 1253 * partial slab and there is none available then get_partials() 1254 * will return NULL. 1255 */ 1256 if (!n || !n->nr_partial) 1257 return NULL; 1258 1259 spin_lock(&n->list_lock); 1260 list_for_each_entry(page, &n->partial, lru) 1261 if (lock_and_freeze_slab(n, page)) 1262 goto out; 1263 page = NULL; 1264 out: 1265 spin_unlock(&n->list_lock); 1266 return page; 1267 } 1268 1269 /* 1270 * Get a page from somewhere. Search in increasing NUMA distances. 1271 */ 1272 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1273 { 1274 #ifdef CONFIG_NUMA 1275 struct zonelist *zonelist; 1276 struct zone **z; 1277 struct page *page; 1278 1279 /* 1280 * The defrag ratio allows a configuration of the tradeoffs between 1281 * inter node defragmentation and node local allocations. A lower 1282 * defrag_ratio increases the tendency to do local allocations 1283 * instead of attempting to obtain partial slabs from other nodes. 1284 * 1285 * If the defrag_ratio is set to 0 then kmalloc() always 1286 * returns node local objects. If the ratio is higher then kmalloc() 1287 * may return off node objects because partial slabs are obtained 1288 * from other nodes and filled up. 1289 * 1290 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes 1291 * defrag_ratio = 1000) then every (well almost) allocation will 1292 * first attempt to defrag slab caches on other nodes. This means 1293 * scanning over all nodes to look for partial slabs which may be 1294 * expensive if we do it every time we are trying to find a slab 1295 * with available objects. 1296 */ 1297 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio) 1298 return NULL; 1299 1300 zonelist = &NODE_DATA(slab_node(current->mempolicy)) 1301 ->node_zonelists[gfp_zone(flags)]; 1302 for (z = zonelist->zones; *z; z++) { 1303 struct kmem_cache_node *n; 1304 1305 n = get_node(s, zone_to_nid(*z)); 1306 1307 if (n && cpuset_zone_allowed_hardwall(*z, flags) && 1308 n->nr_partial > MIN_PARTIAL) { 1309 page = get_partial_node(n); 1310 if (page) 1311 return page; 1312 } 1313 } 1314 #endif 1315 return NULL; 1316 } 1317 1318 /* 1319 * Get a partial page, lock it and return it. 1320 */ 1321 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1322 { 1323 struct page *page; 1324 int searchnode = (node == -1) ? numa_node_id() : node; 1325 1326 page = get_partial_node(get_node(s, searchnode)); 1327 if (page || (flags & __GFP_THISNODE)) 1328 return page; 1329 1330 return get_any_partial(s, flags); 1331 } 1332 1333 /* 1334 * Move a page back to the lists. 1335 * 1336 * Must be called with the slab lock held. 1337 * 1338 * On exit the slab lock will have been dropped. 1339 */ 1340 static void unfreeze_slab(struct kmem_cache *s, struct page *page) 1341 { 1342 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1343 1344 ClearSlabFrozen(page); 1345 if (page->inuse) { 1346 1347 if (page->freelist) 1348 add_partial(n, page); 1349 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) 1350 add_full(n, page); 1351 slab_unlock(page); 1352 1353 } else { 1354 if (n->nr_partial < MIN_PARTIAL) { 1355 /* 1356 * Adding an empty slab to the partial slabs in order 1357 * to avoid page allocator overhead. This slab needs 1358 * to come after the other slabs with objects in 1359 * order to fill them up. That way the size of the 1360 * partial list stays small. kmem_cache_shrink can 1361 * reclaim empty slabs from the partial list. 1362 */ 1363 add_partial_tail(n, page); 1364 slab_unlock(page); 1365 } else { 1366 slab_unlock(page); 1367 discard_slab(s, page); 1368 } 1369 } 1370 } 1371 1372 /* 1373 * Remove the cpu slab 1374 */ 1375 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1376 { 1377 struct page *page = c->page; 1378 /* 1379 * Merge cpu freelist into freelist. Typically we get here 1380 * because both freelists are empty. So this is unlikely 1381 * to occur. 1382 */ 1383 while (unlikely(c->freelist)) { 1384 void **object; 1385 1386 /* Retrieve object from cpu_freelist */ 1387 object = c->freelist; 1388 c->freelist = c->freelist[c->offset]; 1389 1390 /* And put onto the regular freelist */ 1391 object[c->offset] = page->freelist; 1392 page->freelist = object; 1393 page->inuse--; 1394 } 1395 c->page = NULL; 1396 unfreeze_slab(s, page); 1397 } 1398 1399 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1400 { 1401 slab_lock(c->page); 1402 deactivate_slab(s, c); 1403 } 1404 1405 /* 1406 * Flush cpu slab. 1407 * Called from IPI handler with interrupts disabled. 1408 */ 1409 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1410 { 1411 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1412 1413 if (likely(c && c->page)) 1414 flush_slab(s, c); 1415 } 1416 1417 static void flush_cpu_slab(void *d) 1418 { 1419 struct kmem_cache *s = d; 1420 1421 __flush_cpu_slab(s, smp_processor_id()); 1422 } 1423 1424 static void flush_all(struct kmem_cache *s) 1425 { 1426 #ifdef CONFIG_SMP 1427 on_each_cpu(flush_cpu_slab, s, 1, 1); 1428 #else 1429 unsigned long flags; 1430 1431 local_irq_save(flags); 1432 flush_cpu_slab(s); 1433 local_irq_restore(flags); 1434 #endif 1435 } 1436 1437 /* 1438 * Check if the objects in a per cpu structure fit numa 1439 * locality expectations. 1440 */ 1441 static inline int node_match(struct kmem_cache_cpu *c, int node) 1442 { 1443 #ifdef CONFIG_NUMA 1444 if (node != -1 && c->node != node) 1445 return 0; 1446 #endif 1447 return 1; 1448 } 1449 1450 /* 1451 * Slow path. The lockless freelist is empty or we need to perform 1452 * debugging duties. 1453 * 1454 * Interrupts are disabled. 1455 * 1456 * Processing is still very fast if new objects have been freed to the 1457 * regular freelist. In that case we simply take over the regular freelist 1458 * as the lockless freelist and zap the regular freelist. 1459 * 1460 * If that is not working then we fall back to the partial lists. We take the 1461 * first element of the freelist as the object to allocate now and move the 1462 * rest of the freelist to the lockless freelist. 1463 * 1464 * And if we were unable to get a new slab from the partial slab lists then 1465 * we need to allocate a new slab. This is slowest path since we may sleep. 1466 */ 1467 static void *__slab_alloc(struct kmem_cache *s, 1468 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) 1469 { 1470 void **object; 1471 struct page *new; 1472 1473 if (!c->page) 1474 goto new_slab; 1475 1476 slab_lock(c->page); 1477 if (unlikely(!node_match(c, node))) 1478 goto another_slab; 1479 load_freelist: 1480 object = c->page->freelist; 1481 if (unlikely(!object)) 1482 goto another_slab; 1483 if (unlikely(SlabDebug(c->page))) 1484 goto debug; 1485 1486 object = c->page->freelist; 1487 c->freelist = object[c->offset]; 1488 c->page->inuse = s->objects; 1489 c->page->freelist = NULL; 1490 c->node = page_to_nid(c->page); 1491 slab_unlock(c->page); 1492 return object; 1493 1494 another_slab: 1495 deactivate_slab(s, c); 1496 1497 new_slab: 1498 new = get_partial(s, gfpflags, node); 1499 if (new) { 1500 c->page = new; 1501 goto load_freelist; 1502 } 1503 1504 if (gfpflags & __GFP_WAIT) 1505 local_irq_enable(); 1506 1507 new = new_slab(s, gfpflags, node); 1508 1509 if (gfpflags & __GFP_WAIT) 1510 local_irq_disable(); 1511 1512 if (new) { 1513 c = get_cpu_slab(s, smp_processor_id()); 1514 if (c->page) 1515 flush_slab(s, c); 1516 slab_lock(new); 1517 SetSlabFrozen(new); 1518 c->page = new; 1519 goto load_freelist; 1520 } 1521 return NULL; 1522 debug: 1523 object = c->page->freelist; 1524 if (!alloc_debug_processing(s, c->page, object, addr)) 1525 goto another_slab; 1526 1527 c->page->inuse++; 1528 c->page->freelist = object[c->offset]; 1529 c->node = -1; 1530 slab_unlock(c->page); 1531 return object; 1532 } 1533 1534 /* 1535 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1536 * have the fastpath folded into their functions. So no function call 1537 * overhead for requests that can be satisfied on the fastpath. 1538 * 1539 * The fastpath works by first checking if the lockless freelist can be used. 1540 * If not then __slab_alloc is called for slow processing. 1541 * 1542 * Otherwise we can simply pick the next object from the lockless free list. 1543 */ 1544 static void __always_inline *slab_alloc(struct kmem_cache *s, 1545 gfp_t gfpflags, int node, void *addr) 1546 { 1547 void **object; 1548 unsigned long flags; 1549 struct kmem_cache_cpu *c; 1550 1551 local_irq_save(flags); 1552 c = get_cpu_slab(s, smp_processor_id()); 1553 if (unlikely(!c->freelist || !node_match(c, node))) 1554 1555 object = __slab_alloc(s, gfpflags, node, addr, c); 1556 1557 else { 1558 object = c->freelist; 1559 c->freelist = object[c->offset]; 1560 } 1561 local_irq_restore(flags); 1562 1563 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1564 memset(object, 0, c->objsize); 1565 1566 return object; 1567 } 1568 1569 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1570 { 1571 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); 1572 } 1573 EXPORT_SYMBOL(kmem_cache_alloc); 1574 1575 #ifdef CONFIG_NUMA 1576 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1577 { 1578 return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); 1579 } 1580 EXPORT_SYMBOL(kmem_cache_alloc_node); 1581 #endif 1582 1583 /* 1584 * Slow patch handling. This may still be called frequently since objects 1585 * have a longer lifetime than the cpu slabs in most processing loads. 1586 * 1587 * So we still attempt to reduce cache line usage. Just take the slab 1588 * lock and free the item. If there is no additional partial page 1589 * handling required then we can return immediately. 1590 */ 1591 static void __slab_free(struct kmem_cache *s, struct page *page, 1592 void *x, void *addr, unsigned int offset) 1593 { 1594 void *prior; 1595 void **object = (void *)x; 1596 1597 slab_lock(page); 1598 1599 if (unlikely(SlabDebug(page))) 1600 goto debug; 1601 checks_ok: 1602 prior = object[offset] = page->freelist; 1603 page->freelist = object; 1604 page->inuse--; 1605 1606 if (unlikely(SlabFrozen(page))) 1607 goto out_unlock; 1608 1609 if (unlikely(!page->inuse)) 1610 goto slab_empty; 1611 1612 /* 1613 * Objects left in the slab. If it 1614 * was not on the partial list before 1615 * then add it. 1616 */ 1617 if (unlikely(!prior)) 1618 add_partial(get_node(s, page_to_nid(page)), page); 1619 1620 out_unlock: 1621 slab_unlock(page); 1622 return; 1623 1624 slab_empty: 1625 if (prior) 1626 /* 1627 * Slab still on the partial list. 1628 */ 1629 remove_partial(s, page); 1630 1631 slab_unlock(page); 1632 discard_slab(s, page); 1633 return; 1634 1635 debug: 1636 if (!free_debug_processing(s, page, x, addr)) 1637 goto out_unlock; 1638 goto checks_ok; 1639 } 1640 1641 /* 1642 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1643 * can perform fastpath freeing without additional function calls. 1644 * 1645 * The fastpath is only possible if we are freeing to the current cpu slab 1646 * of this processor. This typically the case if we have just allocated 1647 * the item before. 1648 * 1649 * If fastpath is not possible then fall back to __slab_free where we deal 1650 * with all sorts of special processing. 1651 */ 1652 static void __always_inline slab_free(struct kmem_cache *s, 1653 struct page *page, void *x, void *addr) 1654 { 1655 void **object = (void *)x; 1656 unsigned long flags; 1657 struct kmem_cache_cpu *c; 1658 1659 local_irq_save(flags); 1660 debug_check_no_locks_freed(object, s->objsize); 1661 c = get_cpu_slab(s, smp_processor_id()); 1662 if (likely(page == c->page && c->node >= 0)) { 1663 object[c->offset] = c->freelist; 1664 c->freelist = object; 1665 } else 1666 __slab_free(s, page, x, addr, c->offset); 1667 1668 local_irq_restore(flags); 1669 } 1670 1671 void kmem_cache_free(struct kmem_cache *s, void *x) 1672 { 1673 struct page *page; 1674 1675 page = virt_to_head_page(x); 1676 1677 slab_free(s, page, x, __builtin_return_address(0)); 1678 } 1679 EXPORT_SYMBOL(kmem_cache_free); 1680 1681 /* Figure out on which slab object the object resides */ 1682 static struct page *get_object_page(const void *x) 1683 { 1684 struct page *page = virt_to_head_page(x); 1685 1686 if (!PageSlab(page)) 1687 return NULL; 1688 1689 return page; 1690 } 1691 1692 /* 1693 * Object placement in a slab is made very easy because we always start at 1694 * offset 0. If we tune the size of the object to the alignment then we can 1695 * get the required alignment by putting one properly sized object after 1696 * another. 1697 * 1698 * Notice that the allocation order determines the sizes of the per cpu 1699 * caches. Each processor has always one slab available for allocations. 1700 * Increasing the allocation order reduces the number of times that slabs 1701 * must be moved on and off the partial lists and is therefore a factor in 1702 * locking overhead. 1703 */ 1704 1705 /* 1706 * Mininum / Maximum order of slab pages. This influences locking overhead 1707 * and slab fragmentation. A higher order reduces the number of partial slabs 1708 * and increases the number of allocations possible without having to 1709 * take the list_lock. 1710 */ 1711 static int slub_min_order; 1712 static int slub_max_order = DEFAULT_MAX_ORDER; 1713 static int slub_min_objects = DEFAULT_MIN_OBJECTS; 1714 1715 /* 1716 * Merge control. If this is set then no merging of slab caches will occur. 1717 * (Could be removed. This was introduced to pacify the merge skeptics.) 1718 */ 1719 static int slub_nomerge; 1720 1721 /* 1722 * Calculate the order of allocation given an slab object size. 1723 * 1724 * The order of allocation has significant impact on performance and other 1725 * system components. Generally order 0 allocations should be preferred since 1726 * order 0 does not cause fragmentation in the page allocator. Larger objects 1727 * be problematic to put into order 0 slabs because there may be too much 1728 * unused space left. We go to a higher order if more than 1/8th of the slab 1729 * would be wasted. 1730 * 1731 * In order to reach satisfactory performance we must ensure that a minimum 1732 * number of objects is in one slab. Otherwise we may generate too much 1733 * activity on the partial lists which requires taking the list_lock. This is 1734 * less a concern for large slabs though which are rarely used. 1735 * 1736 * slub_max_order specifies the order where we begin to stop considering the 1737 * number of objects in a slab as critical. If we reach slub_max_order then 1738 * we try to keep the page order as low as possible. So we accept more waste 1739 * of space in favor of a small page order. 1740 * 1741 * Higher order allocations also allow the placement of more objects in a 1742 * slab and thereby reduce object handling overhead. If the user has 1743 * requested a higher mininum order then we start with that one instead of 1744 * the smallest order which will fit the object. 1745 */ 1746 static inline int slab_order(int size, int min_objects, 1747 int max_order, int fract_leftover) 1748 { 1749 int order; 1750 int rem; 1751 int min_order = slub_min_order; 1752 1753 for (order = max(min_order, 1754 fls(min_objects * size - 1) - PAGE_SHIFT); 1755 order <= max_order; order++) { 1756 1757 unsigned long slab_size = PAGE_SIZE << order; 1758 1759 if (slab_size < min_objects * size) 1760 continue; 1761 1762 rem = slab_size % size; 1763 1764 if (rem <= slab_size / fract_leftover) 1765 break; 1766 1767 } 1768 1769 return order; 1770 } 1771 1772 static inline int calculate_order(int size) 1773 { 1774 int order; 1775 int min_objects; 1776 int fraction; 1777 1778 /* 1779 * Attempt to find best configuration for a slab. This 1780 * works by first attempting to generate a layout with 1781 * the best configuration and backing off gradually. 1782 * 1783 * First we reduce the acceptable waste in a slab. Then 1784 * we reduce the minimum objects required in a slab. 1785 */ 1786 min_objects = slub_min_objects; 1787 while (min_objects > 1) { 1788 fraction = 8; 1789 while (fraction >= 4) { 1790 order = slab_order(size, min_objects, 1791 slub_max_order, fraction); 1792 if (order <= slub_max_order) 1793 return order; 1794 fraction /= 2; 1795 } 1796 min_objects /= 2; 1797 } 1798 1799 /* 1800 * We were unable to place multiple objects in a slab. Now 1801 * lets see if we can place a single object there. 1802 */ 1803 order = slab_order(size, 1, slub_max_order, 1); 1804 if (order <= slub_max_order) 1805 return order; 1806 1807 /* 1808 * Doh this slab cannot be placed using slub_max_order. 1809 */ 1810 order = slab_order(size, 1, MAX_ORDER, 1); 1811 if (order <= MAX_ORDER) 1812 return order; 1813 return -ENOSYS; 1814 } 1815 1816 /* 1817 * Figure out what the alignment of the objects will be. 1818 */ 1819 static unsigned long calculate_alignment(unsigned long flags, 1820 unsigned long align, unsigned long size) 1821 { 1822 /* 1823 * If the user wants hardware cache aligned objects then 1824 * follow that suggestion if the object is sufficiently 1825 * large. 1826 * 1827 * The hardware cache alignment cannot override the 1828 * specified alignment though. If that is greater 1829 * then use it. 1830 */ 1831 if ((flags & SLAB_HWCACHE_ALIGN) && 1832 size > cache_line_size() / 2) 1833 return max_t(unsigned long, align, cache_line_size()); 1834 1835 if (align < ARCH_SLAB_MINALIGN) 1836 return ARCH_SLAB_MINALIGN; 1837 1838 return ALIGN(align, sizeof(void *)); 1839 } 1840 1841 static void init_kmem_cache_cpu(struct kmem_cache *s, 1842 struct kmem_cache_cpu *c) 1843 { 1844 c->page = NULL; 1845 c->freelist = NULL; 1846 c->node = 0; 1847 c->offset = s->offset / sizeof(void *); 1848 c->objsize = s->objsize; 1849 } 1850 1851 static void init_kmem_cache_node(struct kmem_cache_node *n) 1852 { 1853 n->nr_partial = 0; 1854 atomic_long_set(&n->nr_slabs, 0); 1855 spin_lock_init(&n->list_lock); 1856 INIT_LIST_HEAD(&n->partial); 1857 #ifdef CONFIG_SLUB_DEBUG 1858 INIT_LIST_HEAD(&n->full); 1859 #endif 1860 } 1861 1862 #ifdef CONFIG_SMP 1863 /* 1864 * Per cpu array for per cpu structures. 1865 * 1866 * The per cpu array places all kmem_cache_cpu structures from one processor 1867 * close together meaning that it becomes possible that multiple per cpu 1868 * structures are contained in one cacheline. This may be particularly 1869 * beneficial for the kmalloc caches. 1870 * 1871 * A desktop system typically has around 60-80 slabs. With 100 here we are 1872 * likely able to get per cpu structures for all caches from the array defined 1873 * here. We must be able to cover all kmalloc caches during bootstrap. 1874 * 1875 * If the per cpu array is exhausted then fall back to kmalloc 1876 * of individual cachelines. No sharing is possible then. 1877 */ 1878 #define NR_KMEM_CACHE_CPU 100 1879 1880 static DEFINE_PER_CPU(struct kmem_cache_cpu, 1881 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 1882 1883 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 1884 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; 1885 1886 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 1887 int cpu, gfp_t flags) 1888 { 1889 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 1890 1891 if (c) 1892 per_cpu(kmem_cache_cpu_free, cpu) = 1893 (void *)c->freelist; 1894 else { 1895 /* Table overflow: So allocate ourselves */ 1896 c = kmalloc_node( 1897 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 1898 flags, cpu_to_node(cpu)); 1899 if (!c) 1900 return NULL; 1901 } 1902 1903 init_kmem_cache_cpu(s, c); 1904 return c; 1905 } 1906 1907 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 1908 { 1909 if (c < per_cpu(kmem_cache_cpu, cpu) || 1910 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 1911 kfree(c); 1912 return; 1913 } 1914 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 1915 per_cpu(kmem_cache_cpu_free, cpu) = c; 1916 } 1917 1918 static void free_kmem_cache_cpus(struct kmem_cache *s) 1919 { 1920 int cpu; 1921 1922 for_each_online_cpu(cpu) { 1923 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1924 1925 if (c) { 1926 s->cpu_slab[cpu] = NULL; 1927 free_kmem_cache_cpu(c, cpu); 1928 } 1929 } 1930 } 1931 1932 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 1933 { 1934 int cpu; 1935 1936 for_each_online_cpu(cpu) { 1937 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1938 1939 if (c) 1940 continue; 1941 1942 c = alloc_kmem_cache_cpu(s, cpu, flags); 1943 if (!c) { 1944 free_kmem_cache_cpus(s); 1945 return 0; 1946 } 1947 s->cpu_slab[cpu] = c; 1948 } 1949 return 1; 1950 } 1951 1952 /* 1953 * Initialize the per cpu array. 1954 */ 1955 static void init_alloc_cpu_cpu(int cpu) 1956 { 1957 int i; 1958 1959 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) 1960 return; 1961 1962 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 1963 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 1964 1965 cpu_set(cpu, kmem_cach_cpu_free_init_once); 1966 } 1967 1968 static void __init init_alloc_cpu(void) 1969 { 1970 int cpu; 1971 1972 for_each_online_cpu(cpu) 1973 init_alloc_cpu_cpu(cpu); 1974 } 1975 1976 #else 1977 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 1978 static inline void init_alloc_cpu(void) {} 1979 1980 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 1981 { 1982 init_kmem_cache_cpu(s, &s->cpu_slab); 1983 return 1; 1984 } 1985 #endif 1986 1987 #ifdef CONFIG_NUMA 1988 /* 1989 * No kmalloc_node yet so do it by hand. We know that this is the first 1990 * slab on the node for this slabcache. There are no concurrent accesses 1991 * possible. 1992 * 1993 * Note that this function only works on the kmalloc_node_cache 1994 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 1995 * memory on a fresh node that has no slab structures yet. 1996 */ 1997 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, 1998 int node) 1999 { 2000 struct page *page; 2001 struct kmem_cache_node *n; 2002 2003 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2004 2005 page = new_slab(kmalloc_caches, gfpflags, node); 2006 2007 BUG_ON(!page); 2008 if (page_to_nid(page) != node) { 2009 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2010 "node %d\n", node); 2011 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2012 "in order to be able to continue\n"); 2013 } 2014 2015 n = page->freelist; 2016 BUG_ON(!n); 2017 page->freelist = get_freepointer(kmalloc_caches, n); 2018 page->inuse++; 2019 kmalloc_caches->node[node] = n; 2020 #ifdef CONFIG_SLUB_DEBUG 2021 init_object(kmalloc_caches, n, 1); 2022 init_tracking(kmalloc_caches, n); 2023 #endif 2024 init_kmem_cache_node(n); 2025 atomic_long_inc(&n->nr_slabs); 2026 add_partial(n, page); 2027 return n; 2028 } 2029 2030 static void free_kmem_cache_nodes(struct kmem_cache *s) 2031 { 2032 int node; 2033 2034 for_each_node_state(node, N_NORMAL_MEMORY) { 2035 struct kmem_cache_node *n = s->node[node]; 2036 if (n && n != &s->local_node) 2037 kmem_cache_free(kmalloc_caches, n); 2038 s->node[node] = NULL; 2039 } 2040 } 2041 2042 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2043 { 2044 int node; 2045 int local_node; 2046 2047 if (slab_state >= UP) 2048 local_node = page_to_nid(virt_to_page(s)); 2049 else 2050 local_node = 0; 2051 2052 for_each_node_state(node, N_NORMAL_MEMORY) { 2053 struct kmem_cache_node *n; 2054 2055 if (local_node == node) 2056 n = &s->local_node; 2057 else { 2058 if (slab_state == DOWN) { 2059 n = early_kmem_cache_node_alloc(gfpflags, 2060 node); 2061 continue; 2062 } 2063 n = kmem_cache_alloc_node(kmalloc_caches, 2064 gfpflags, node); 2065 2066 if (!n) { 2067 free_kmem_cache_nodes(s); 2068 return 0; 2069 } 2070 2071 } 2072 s->node[node] = n; 2073 init_kmem_cache_node(n); 2074 } 2075 return 1; 2076 } 2077 #else 2078 static void free_kmem_cache_nodes(struct kmem_cache *s) 2079 { 2080 } 2081 2082 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2083 { 2084 init_kmem_cache_node(&s->local_node); 2085 return 1; 2086 } 2087 #endif 2088 2089 /* 2090 * calculate_sizes() determines the order and the distribution of data within 2091 * a slab object. 2092 */ 2093 static int calculate_sizes(struct kmem_cache *s) 2094 { 2095 unsigned long flags = s->flags; 2096 unsigned long size = s->objsize; 2097 unsigned long align = s->align; 2098 2099 /* 2100 * Determine if we can poison the object itself. If the user of 2101 * the slab may touch the object after free or before allocation 2102 * then we should never poison the object itself. 2103 */ 2104 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2105 !s->ctor) 2106 s->flags |= __OBJECT_POISON; 2107 else 2108 s->flags &= ~__OBJECT_POISON; 2109 2110 /* 2111 * Round up object size to the next word boundary. We can only 2112 * place the free pointer at word boundaries and this determines 2113 * the possible location of the free pointer. 2114 */ 2115 size = ALIGN(size, sizeof(void *)); 2116 2117 #ifdef CONFIG_SLUB_DEBUG 2118 /* 2119 * If we are Redzoning then check if there is some space between the 2120 * end of the object and the free pointer. If not then add an 2121 * additional word to have some bytes to store Redzone information. 2122 */ 2123 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2124 size += sizeof(void *); 2125 #endif 2126 2127 /* 2128 * With that we have determined the number of bytes in actual use 2129 * by the object. This is the potential offset to the free pointer. 2130 */ 2131 s->inuse = size; 2132 2133 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2134 s->ctor)) { 2135 /* 2136 * Relocate free pointer after the object if it is not 2137 * permitted to overwrite the first word of the object on 2138 * kmem_cache_free. 2139 * 2140 * This is the case if we do RCU, have a constructor or 2141 * destructor or are poisoning the objects. 2142 */ 2143 s->offset = size; 2144 size += sizeof(void *); 2145 } 2146 2147 #ifdef CONFIG_SLUB_DEBUG 2148 if (flags & SLAB_STORE_USER) 2149 /* 2150 * Need to store information about allocs and frees after 2151 * the object. 2152 */ 2153 size += 2 * sizeof(struct track); 2154 2155 if (flags & SLAB_RED_ZONE) 2156 /* 2157 * Add some empty padding so that we can catch 2158 * overwrites from earlier objects rather than let 2159 * tracking information or the free pointer be 2160 * corrupted if an user writes before the start 2161 * of the object. 2162 */ 2163 size += sizeof(void *); 2164 #endif 2165 2166 /* 2167 * Determine the alignment based on various parameters that the 2168 * user specified and the dynamic determination of cache line size 2169 * on bootup. 2170 */ 2171 align = calculate_alignment(flags, align, s->objsize); 2172 2173 /* 2174 * SLUB stores one object immediately after another beginning from 2175 * offset 0. In order to align the objects we have to simply size 2176 * each object to conform to the alignment. 2177 */ 2178 size = ALIGN(size, align); 2179 s->size = size; 2180 2181 s->order = calculate_order(size); 2182 if (s->order < 0) 2183 return 0; 2184 2185 /* 2186 * Determine the number of objects per slab 2187 */ 2188 s->objects = (PAGE_SIZE << s->order) / size; 2189 2190 return !!s->objects; 2191 2192 } 2193 2194 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2195 const char *name, size_t size, 2196 size_t align, unsigned long flags, 2197 void (*ctor)(struct kmem_cache *, void *)) 2198 { 2199 memset(s, 0, kmem_size); 2200 s->name = name; 2201 s->ctor = ctor; 2202 s->objsize = size; 2203 s->align = align; 2204 s->flags = kmem_cache_flags(size, flags, name, ctor); 2205 2206 if (!calculate_sizes(s)) 2207 goto error; 2208 2209 s->refcount = 1; 2210 #ifdef CONFIG_NUMA 2211 s->defrag_ratio = 100; 2212 #endif 2213 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2214 goto error; 2215 2216 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2217 return 1; 2218 free_kmem_cache_nodes(s); 2219 error: 2220 if (flags & SLAB_PANIC) 2221 panic("Cannot create slab %s size=%lu realsize=%u " 2222 "order=%u offset=%u flags=%lx\n", 2223 s->name, (unsigned long)size, s->size, s->order, 2224 s->offset, flags); 2225 return 0; 2226 } 2227 2228 /* 2229 * Check if a given pointer is valid 2230 */ 2231 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2232 { 2233 struct page * page; 2234 2235 page = get_object_page(object); 2236 2237 if (!page || s != page->slab) 2238 /* No slab or wrong slab */ 2239 return 0; 2240 2241 if (!check_valid_pointer(s, page, object)) 2242 return 0; 2243 2244 /* 2245 * We could also check if the object is on the slabs freelist. 2246 * But this would be too expensive and it seems that the main 2247 * purpose of kmem_ptr_valid is to check if the object belongs 2248 * to a certain slab. 2249 */ 2250 return 1; 2251 } 2252 EXPORT_SYMBOL(kmem_ptr_validate); 2253 2254 /* 2255 * Determine the size of a slab object 2256 */ 2257 unsigned int kmem_cache_size(struct kmem_cache *s) 2258 { 2259 return s->objsize; 2260 } 2261 EXPORT_SYMBOL(kmem_cache_size); 2262 2263 const char *kmem_cache_name(struct kmem_cache *s) 2264 { 2265 return s->name; 2266 } 2267 EXPORT_SYMBOL(kmem_cache_name); 2268 2269 /* 2270 * Attempt to free all slabs on a node. Return the number of slabs we 2271 * were unable to free. 2272 */ 2273 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, 2274 struct list_head *list) 2275 { 2276 int slabs_inuse = 0; 2277 unsigned long flags; 2278 struct page *page, *h; 2279 2280 spin_lock_irqsave(&n->list_lock, flags); 2281 list_for_each_entry_safe(page, h, list, lru) 2282 if (!page->inuse) { 2283 list_del(&page->lru); 2284 discard_slab(s, page); 2285 } else 2286 slabs_inuse++; 2287 spin_unlock_irqrestore(&n->list_lock, flags); 2288 return slabs_inuse; 2289 } 2290 2291 /* 2292 * Release all resources used by a slab cache. 2293 */ 2294 static inline int kmem_cache_close(struct kmem_cache *s) 2295 { 2296 int node; 2297 2298 flush_all(s); 2299 2300 /* Attempt to free all objects */ 2301 free_kmem_cache_cpus(s); 2302 for_each_node_state(node, N_NORMAL_MEMORY) { 2303 struct kmem_cache_node *n = get_node(s, node); 2304 2305 n->nr_partial -= free_list(s, n, &n->partial); 2306 if (atomic_long_read(&n->nr_slabs)) 2307 return 1; 2308 } 2309 free_kmem_cache_nodes(s); 2310 return 0; 2311 } 2312 2313 /* 2314 * Close a cache and release the kmem_cache structure 2315 * (must be used for caches created using kmem_cache_create) 2316 */ 2317 void kmem_cache_destroy(struct kmem_cache *s) 2318 { 2319 down_write(&slub_lock); 2320 s->refcount--; 2321 if (!s->refcount) { 2322 list_del(&s->list); 2323 up_write(&slub_lock); 2324 if (kmem_cache_close(s)) 2325 WARN_ON(1); 2326 sysfs_slab_remove(s); 2327 kfree(s); 2328 } else 2329 up_write(&slub_lock); 2330 } 2331 EXPORT_SYMBOL(kmem_cache_destroy); 2332 2333 /******************************************************************** 2334 * Kmalloc subsystem 2335 *******************************************************************/ 2336 2337 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned; 2338 EXPORT_SYMBOL(kmalloc_caches); 2339 2340 #ifdef CONFIG_ZONE_DMA 2341 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT]; 2342 #endif 2343 2344 static int __init setup_slub_min_order(char *str) 2345 { 2346 get_option (&str, &slub_min_order); 2347 2348 return 1; 2349 } 2350 2351 __setup("slub_min_order=", setup_slub_min_order); 2352 2353 static int __init setup_slub_max_order(char *str) 2354 { 2355 get_option (&str, &slub_max_order); 2356 2357 return 1; 2358 } 2359 2360 __setup("slub_max_order=", setup_slub_max_order); 2361 2362 static int __init setup_slub_min_objects(char *str) 2363 { 2364 get_option (&str, &slub_min_objects); 2365 2366 return 1; 2367 } 2368 2369 __setup("slub_min_objects=", setup_slub_min_objects); 2370 2371 static int __init setup_slub_nomerge(char *str) 2372 { 2373 slub_nomerge = 1; 2374 return 1; 2375 } 2376 2377 __setup("slub_nomerge", setup_slub_nomerge); 2378 2379 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2380 const char *name, int size, gfp_t gfp_flags) 2381 { 2382 unsigned int flags = 0; 2383 2384 if (gfp_flags & SLUB_DMA) 2385 flags = SLAB_CACHE_DMA; 2386 2387 down_write(&slub_lock); 2388 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2389 flags, NULL)) 2390 goto panic; 2391 2392 list_add(&s->list, &slab_caches); 2393 up_write(&slub_lock); 2394 if (sysfs_slab_add(s)) 2395 goto panic; 2396 return s; 2397 2398 panic: 2399 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2400 } 2401 2402 #ifdef CONFIG_ZONE_DMA 2403 2404 static void sysfs_add_func(struct work_struct *w) 2405 { 2406 struct kmem_cache *s; 2407 2408 down_write(&slub_lock); 2409 list_for_each_entry(s, &slab_caches, list) { 2410 if (s->flags & __SYSFS_ADD_DEFERRED) { 2411 s->flags &= ~__SYSFS_ADD_DEFERRED; 2412 sysfs_slab_add(s); 2413 } 2414 } 2415 up_write(&slub_lock); 2416 } 2417 2418 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2419 2420 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2421 { 2422 struct kmem_cache *s; 2423 char *text; 2424 size_t realsize; 2425 2426 s = kmalloc_caches_dma[index]; 2427 if (s) 2428 return s; 2429 2430 /* Dynamically create dma cache */ 2431 if (flags & __GFP_WAIT) 2432 down_write(&slub_lock); 2433 else { 2434 if (!down_write_trylock(&slub_lock)) 2435 goto out; 2436 } 2437 2438 if (kmalloc_caches_dma[index]) 2439 goto unlock_out; 2440 2441 realsize = kmalloc_caches[index].objsize; 2442 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize), 2443 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2444 2445 if (!s || !text || !kmem_cache_open(s, flags, text, 2446 realsize, ARCH_KMALLOC_MINALIGN, 2447 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2448 kfree(s); 2449 kfree(text); 2450 goto unlock_out; 2451 } 2452 2453 list_add(&s->list, &slab_caches); 2454 kmalloc_caches_dma[index] = s; 2455 2456 schedule_work(&sysfs_add_work); 2457 2458 unlock_out: 2459 up_write(&slub_lock); 2460 out: 2461 return kmalloc_caches_dma[index]; 2462 } 2463 #endif 2464 2465 /* 2466 * Conversion table for small slabs sizes / 8 to the index in the 2467 * kmalloc array. This is necessary for slabs < 192 since we have non power 2468 * of two cache sizes there. The size of larger slabs can be determined using 2469 * fls. 2470 */ 2471 static s8 size_index[24] = { 2472 3, /* 8 */ 2473 4, /* 16 */ 2474 5, /* 24 */ 2475 5, /* 32 */ 2476 6, /* 40 */ 2477 6, /* 48 */ 2478 6, /* 56 */ 2479 6, /* 64 */ 2480 1, /* 72 */ 2481 1, /* 80 */ 2482 1, /* 88 */ 2483 1, /* 96 */ 2484 7, /* 104 */ 2485 7, /* 112 */ 2486 7, /* 120 */ 2487 7, /* 128 */ 2488 2, /* 136 */ 2489 2, /* 144 */ 2490 2, /* 152 */ 2491 2, /* 160 */ 2492 2, /* 168 */ 2493 2, /* 176 */ 2494 2, /* 184 */ 2495 2 /* 192 */ 2496 }; 2497 2498 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2499 { 2500 int index; 2501 2502 if (size <= 192) { 2503 if (!size) 2504 return ZERO_SIZE_PTR; 2505 2506 index = size_index[(size - 1) / 8]; 2507 } else 2508 index = fls(size - 1); 2509 2510 #ifdef CONFIG_ZONE_DMA 2511 if (unlikely((flags & SLUB_DMA))) 2512 return dma_kmalloc_cache(index, flags); 2513 2514 #endif 2515 return &kmalloc_caches[index]; 2516 } 2517 2518 void *__kmalloc(size_t size, gfp_t flags) 2519 { 2520 struct kmem_cache *s; 2521 2522 if (unlikely(size > PAGE_SIZE / 2)) 2523 return (void *)__get_free_pages(flags | __GFP_COMP, 2524 get_order(size)); 2525 2526 s = get_slab(size, flags); 2527 2528 if (unlikely(ZERO_OR_NULL_PTR(s))) 2529 return s; 2530 2531 return slab_alloc(s, flags, -1, __builtin_return_address(0)); 2532 } 2533 EXPORT_SYMBOL(__kmalloc); 2534 2535 #ifdef CONFIG_NUMA 2536 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2537 { 2538 struct kmem_cache *s; 2539 2540 if (unlikely(size > PAGE_SIZE / 2)) 2541 return (void *)__get_free_pages(flags | __GFP_COMP, 2542 get_order(size)); 2543 2544 s = get_slab(size, flags); 2545 2546 if (unlikely(ZERO_OR_NULL_PTR(s))) 2547 return s; 2548 2549 return slab_alloc(s, flags, node, __builtin_return_address(0)); 2550 } 2551 EXPORT_SYMBOL(__kmalloc_node); 2552 #endif 2553 2554 size_t ksize(const void *object) 2555 { 2556 struct page *page; 2557 struct kmem_cache *s; 2558 2559 BUG_ON(!object); 2560 if (unlikely(object == ZERO_SIZE_PTR)) 2561 return 0; 2562 2563 page = get_object_page(object); 2564 BUG_ON(!page); 2565 s = page->slab; 2566 BUG_ON(!s); 2567 2568 /* 2569 * Debugging requires use of the padding between object 2570 * and whatever may come after it. 2571 */ 2572 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2573 return s->objsize; 2574 2575 /* 2576 * If we have the need to store the freelist pointer 2577 * back there or track user information then we can 2578 * only use the space before that information. 2579 */ 2580 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2581 return s->inuse; 2582 2583 /* 2584 * Else we can use all the padding etc for the allocation 2585 */ 2586 return s->size; 2587 } 2588 EXPORT_SYMBOL(ksize); 2589 2590 void kfree(const void *x) 2591 { 2592 struct page *page; 2593 2594 if (unlikely(ZERO_OR_NULL_PTR(x))) 2595 return; 2596 2597 page = virt_to_head_page(x); 2598 if (unlikely(!PageSlab(page))) { 2599 put_page(page); 2600 return; 2601 } 2602 slab_free(page->slab, page, (void *)x, __builtin_return_address(0)); 2603 } 2604 EXPORT_SYMBOL(kfree); 2605 2606 /* 2607 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2608 * the remaining slabs by the number of items in use. The slabs with the 2609 * most items in use come first. New allocations will then fill those up 2610 * and thus they can be removed from the partial lists. 2611 * 2612 * The slabs with the least items are placed last. This results in them 2613 * being allocated from last increasing the chance that the last objects 2614 * are freed in them. 2615 */ 2616 int kmem_cache_shrink(struct kmem_cache *s) 2617 { 2618 int node; 2619 int i; 2620 struct kmem_cache_node *n; 2621 struct page *page; 2622 struct page *t; 2623 struct list_head *slabs_by_inuse = 2624 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL); 2625 unsigned long flags; 2626 2627 if (!slabs_by_inuse) 2628 return -ENOMEM; 2629 2630 flush_all(s); 2631 for_each_node_state(node, N_NORMAL_MEMORY) { 2632 n = get_node(s, node); 2633 2634 if (!n->nr_partial) 2635 continue; 2636 2637 for (i = 0; i < s->objects; i++) 2638 INIT_LIST_HEAD(slabs_by_inuse + i); 2639 2640 spin_lock_irqsave(&n->list_lock, flags); 2641 2642 /* 2643 * Build lists indexed by the items in use in each slab. 2644 * 2645 * Note that concurrent frees may occur while we hold the 2646 * list_lock. page->inuse here is the upper limit. 2647 */ 2648 list_for_each_entry_safe(page, t, &n->partial, lru) { 2649 if (!page->inuse && slab_trylock(page)) { 2650 /* 2651 * Must hold slab lock here because slab_free 2652 * may have freed the last object and be 2653 * waiting to release the slab. 2654 */ 2655 list_del(&page->lru); 2656 n->nr_partial--; 2657 slab_unlock(page); 2658 discard_slab(s, page); 2659 } else { 2660 list_move(&page->lru, 2661 slabs_by_inuse + page->inuse); 2662 } 2663 } 2664 2665 /* 2666 * Rebuild the partial list with the slabs filled up most 2667 * first and the least used slabs at the end. 2668 */ 2669 for (i = s->objects - 1; i >= 0; i--) 2670 list_splice(slabs_by_inuse + i, n->partial.prev); 2671 2672 spin_unlock_irqrestore(&n->list_lock, flags); 2673 } 2674 2675 kfree(slabs_by_inuse); 2676 return 0; 2677 } 2678 EXPORT_SYMBOL(kmem_cache_shrink); 2679 2680 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2681 static int slab_mem_going_offline_callback(void *arg) 2682 { 2683 struct kmem_cache *s; 2684 2685 down_read(&slub_lock); 2686 list_for_each_entry(s, &slab_caches, list) 2687 kmem_cache_shrink(s); 2688 up_read(&slub_lock); 2689 2690 return 0; 2691 } 2692 2693 static void slab_mem_offline_callback(void *arg) 2694 { 2695 struct kmem_cache_node *n; 2696 struct kmem_cache *s; 2697 struct memory_notify *marg = arg; 2698 int offline_node; 2699 2700 offline_node = marg->status_change_nid; 2701 2702 /* 2703 * If the node still has available memory. we need kmem_cache_node 2704 * for it yet. 2705 */ 2706 if (offline_node < 0) 2707 return; 2708 2709 down_read(&slub_lock); 2710 list_for_each_entry(s, &slab_caches, list) { 2711 n = get_node(s, offline_node); 2712 if (n) { 2713 /* 2714 * if n->nr_slabs > 0, slabs still exist on the node 2715 * that is going down. We were unable to free them, 2716 * and offline_pages() function shoudn't call this 2717 * callback. So, we must fail. 2718 */ 2719 BUG_ON(atomic_long_read(&n->nr_slabs)); 2720 2721 s->node[offline_node] = NULL; 2722 kmem_cache_free(kmalloc_caches, n); 2723 } 2724 } 2725 up_read(&slub_lock); 2726 } 2727 2728 static int slab_mem_going_online_callback(void *arg) 2729 { 2730 struct kmem_cache_node *n; 2731 struct kmem_cache *s; 2732 struct memory_notify *marg = arg; 2733 int nid = marg->status_change_nid; 2734 int ret = 0; 2735 2736 /* 2737 * If the node's memory is already available, then kmem_cache_node is 2738 * already created. Nothing to do. 2739 */ 2740 if (nid < 0) 2741 return 0; 2742 2743 /* 2744 * We are bringing a node online. No memory is availabe yet. We must 2745 * allocate a kmem_cache_node structure in order to bring the node 2746 * online. 2747 */ 2748 down_read(&slub_lock); 2749 list_for_each_entry(s, &slab_caches, list) { 2750 /* 2751 * XXX: kmem_cache_alloc_node will fallback to other nodes 2752 * since memory is not yet available from the node that 2753 * is brought up. 2754 */ 2755 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2756 if (!n) { 2757 ret = -ENOMEM; 2758 goto out; 2759 } 2760 init_kmem_cache_node(n); 2761 s->node[nid] = n; 2762 } 2763 out: 2764 up_read(&slub_lock); 2765 return ret; 2766 } 2767 2768 static int slab_memory_callback(struct notifier_block *self, 2769 unsigned long action, void *arg) 2770 { 2771 int ret = 0; 2772 2773 switch (action) { 2774 case MEM_GOING_ONLINE: 2775 ret = slab_mem_going_online_callback(arg); 2776 break; 2777 case MEM_GOING_OFFLINE: 2778 ret = slab_mem_going_offline_callback(arg); 2779 break; 2780 case MEM_OFFLINE: 2781 case MEM_CANCEL_ONLINE: 2782 slab_mem_offline_callback(arg); 2783 break; 2784 case MEM_ONLINE: 2785 case MEM_CANCEL_OFFLINE: 2786 break; 2787 } 2788 2789 ret = notifier_from_errno(ret); 2790 return ret; 2791 } 2792 2793 #endif /* CONFIG_MEMORY_HOTPLUG */ 2794 2795 /******************************************************************** 2796 * Basic setup of slabs 2797 *******************************************************************/ 2798 2799 void __init kmem_cache_init(void) 2800 { 2801 int i; 2802 int caches = 0; 2803 2804 init_alloc_cpu(); 2805 2806 #ifdef CONFIG_NUMA 2807 /* 2808 * Must first have the slab cache available for the allocations of the 2809 * struct kmem_cache_node's. There is special bootstrap code in 2810 * kmem_cache_open for slab_state == DOWN. 2811 */ 2812 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 2813 sizeof(struct kmem_cache_node), GFP_KERNEL); 2814 kmalloc_caches[0].refcount = -1; 2815 caches++; 2816 2817 hotplug_memory_notifier(slab_memory_callback, 1); 2818 #endif 2819 2820 /* Able to allocate the per node structures */ 2821 slab_state = PARTIAL; 2822 2823 /* Caches that are not of the two-to-the-power-of size */ 2824 if (KMALLOC_MIN_SIZE <= 64) { 2825 create_kmalloc_cache(&kmalloc_caches[1], 2826 "kmalloc-96", 96, GFP_KERNEL); 2827 caches++; 2828 } 2829 if (KMALLOC_MIN_SIZE <= 128) { 2830 create_kmalloc_cache(&kmalloc_caches[2], 2831 "kmalloc-192", 192, GFP_KERNEL); 2832 caches++; 2833 } 2834 2835 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) { 2836 create_kmalloc_cache(&kmalloc_caches[i], 2837 "kmalloc", 1 << i, GFP_KERNEL); 2838 caches++; 2839 } 2840 2841 2842 /* 2843 * Patch up the size_index table if we have strange large alignment 2844 * requirements for the kmalloc array. This is only the case for 2845 * mips it seems. The standard arches will not generate any code here. 2846 * 2847 * Largest permitted alignment is 256 bytes due to the way we 2848 * handle the index determination for the smaller caches. 2849 * 2850 * Make sure that nothing crazy happens if someone starts tinkering 2851 * around with ARCH_KMALLOC_MINALIGN 2852 */ 2853 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 2854 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 2855 2856 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 2857 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 2858 2859 slab_state = UP; 2860 2861 /* Provide the correct kmalloc names now that the caches are up */ 2862 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) 2863 kmalloc_caches[i]. name = 2864 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 2865 2866 #ifdef CONFIG_SMP 2867 register_cpu_notifier(&slab_notifier); 2868 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 2869 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 2870 #else 2871 kmem_size = sizeof(struct kmem_cache); 2872 #endif 2873 2874 2875 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 2876 " CPUs=%d, Nodes=%d\n", 2877 caches, cache_line_size(), 2878 slub_min_order, slub_max_order, slub_min_objects, 2879 nr_cpu_ids, nr_node_ids); 2880 } 2881 2882 /* 2883 * Find a mergeable slab cache 2884 */ 2885 static int slab_unmergeable(struct kmem_cache *s) 2886 { 2887 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 2888 return 1; 2889 2890 if (s->ctor) 2891 return 1; 2892 2893 /* 2894 * We may have set a slab to be unmergeable during bootstrap. 2895 */ 2896 if (s->refcount < 0) 2897 return 1; 2898 2899 return 0; 2900 } 2901 2902 static struct kmem_cache *find_mergeable(size_t size, 2903 size_t align, unsigned long flags, const char *name, 2904 void (*ctor)(struct kmem_cache *, void *)) 2905 { 2906 struct kmem_cache *s; 2907 2908 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 2909 return NULL; 2910 2911 if (ctor) 2912 return NULL; 2913 2914 size = ALIGN(size, sizeof(void *)); 2915 align = calculate_alignment(flags, align, size); 2916 size = ALIGN(size, align); 2917 flags = kmem_cache_flags(size, flags, name, NULL); 2918 2919 list_for_each_entry(s, &slab_caches, list) { 2920 if (slab_unmergeable(s)) 2921 continue; 2922 2923 if (size > s->size) 2924 continue; 2925 2926 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 2927 continue; 2928 /* 2929 * Check if alignment is compatible. 2930 * Courtesy of Adrian Drzewiecki 2931 */ 2932 if ((s->size & ~(align -1)) != s->size) 2933 continue; 2934 2935 if (s->size - size >= sizeof(void *)) 2936 continue; 2937 2938 return s; 2939 } 2940 return NULL; 2941 } 2942 2943 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 2944 size_t align, unsigned long flags, 2945 void (*ctor)(struct kmem_cache *, void *)) 2946 { 2947 struct kmem_cache *s; 2948 2949 down_write(&slub_lock); 2950 s = find_mergeable(size, align, flags, name, ctor); 2951 if (s) { 2952 int cpu; 2953 2954 s->refcount++; 2955 /* 2956 * Adjust the object sizes so that we clear 2957 * the complete object on kzalloc. 2958 */ 2959 s->objsize = max(s->objsize, (int)size); 2960 2961 /* 2962 * And then we need to update the object size in the 2963 * per cpu structures 2964 */ 2965 for_each_online_cpu(cpu) 2966 get_cpu_slab(s, cpu)->objsize = s->objsize; 2967 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 2968 up_write(&slub_lock); 2969 if (sysfs_slab_alias(s, name)) 2970 goto err; 2971 return s; 2972 } 2973 s = kmalloc(kmem_size, GFP_KERNEL); 2974 if (s) { 2975 if (kmem_cache_open(s, GFP_KERNEL, name, 2976 size, align, flags, ctor)) { 2977 list_add(&s->list, &slab_caches); 2978 up_write(&slub_lock); 2979 if (sysfs_slab_add(s)) 2980 goto err; 2981 return s; 2982 } 2983 kfree(s); 2984 } 2985 up_write(&slub_lock); 2986 2987 err: 2988 if (flags & SLAB_PANIC) 2989 panic("Cannot create slabcache %s\n", name); 2990 else 2991 s = NULL; 2992 return s; 2993 } 2994 EXPORT_SYMBOL(kmem_cache_create); 2995 2996 #ifdef CONFIG_SMP 2997 /* 2998 * Use the cpu notifier to insure that the cpu slabs are flushed when 2999 * necessary. 3000 */ 3001 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3002 unsigned long action, void *hcpu) 3003 { 3004 long cpu = (long)hcpu; 3005 struct kmem_cache *s; 3006 unsigned long flags; 3007 3008 switch (action) { 3009 case CPU_UP_PREPARE: 3010 case CPU_UP_PREPARE_FROZEN: 3011 init_alloc_cpu_cpu(cpu); 3012 down_read(&slub_lock); 3013 list_for_each_entry(s, &slab_caches, list) 3014 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3015 GFP_KERNEL); 3016 up_read(&slub_lock); 3017 break; 3018 3019 case CPU_UP_CANCELED: 3020 case CPU_UP_CANCELED_FROZEN: 3021 case CPU_DEAD: 3022 case CPU_DEAD_FROZEN: 3023 down_read(&slub_lock); 3024 list_for_each_entry(s, &slab_caches, list) { 3025 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3026 3027 local_irq_save(flags); 3028 __flush_cpu_slab(s, cpu); 3029 local_irq_restore(flags); 3030 free_kmem_cache_cpu(c, cpu); 3031 s->cpu_slab[cpu] = NULL; 3032 } 3033 up_read(&slub_lock); 3034 break; 3035 default: 3036 break; 3037 } 3038 return NOTIFY_OK; 3039 } 3040 3041 static struct notifier_block __cpuinitdata slab_notifier = 3042 { &slab_cpuup_callback, NULL, 0 }; 3043 3044 #endif 3045 3046 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) 3047 { 3048 struct kmem_cache *s; 3049 3050 if (unlikely(size > PAGE_SIZE / 2)) 3051 return (void *)__get_free_pages(gfpflags | __GFP_COMP, 3052 get_order(size)); 3053 s = get_slab(size, gfpflags); 3054 3055 if (unlikely(ZERO_OR_NULL_PTR(s))) 3056 return s; 3057 3058 return slab_alloc(s, gfpflags, -1, caller); 3059 } 3060 3061 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3062 int node, void *caller) 3063 { 3064 struct kmem_cache *s; 3065 3066 if (unlikely(size > PAGE_SIZE / 2)) 3067 return (void *)__get_free_pages(gfpflags | __GFP_COMP, 3068 get_order(size)); 3069 s = get_slab(size, gfpflags); 3070 3071 if (unlikely(ZERO_OR_NULL_PTR(s))) 3072 return s; 3073 3074 return slab_alloc(s, gfpflags, node, caller); 3075 } 3076 3077 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) 3078 static int validate_slab(struct kmem_cache *s, struct page *page, 3079 unsigned long *map) 3080 { 3081 void *p; 3082 void *addr = page_address(page); 3083 3084 if (!check_slab(s, page) || 3085 !on_freelist(s, page, NULL)) 3086 return 0; 3087 3088 /* Now we know that a valid freelist exists */ 3089 bitmap_zero(map, s->objects); 3090 3091 for_each_free_object(p, s, page->freelist) { 3092 set_bit(slab_index(p, s, addr), map); 3093 if (!check_object(s, page, p, 0)) 3094 return 0; 3095 } 3096 3097 for_each_object(p, s, addr) 3098 if (!test_bit(slab_index(p, s, addr), map)) 3099 if (!check_object(s, page, p, 1)) 3100 return 0; 3101 return 1; 3102 } 3103 3104 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3105 unsigned long *map) 3106 { 3107 if (slab_trylock(page)) { 3108 validate_slab(s, page, map); 3109 slab_unlock(page); 3110 } else 3111 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3112 s->name, page); 3113 3114 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3115 if (!SlabDebug(page)) 3116 printk(KERN_ERR "SLUB %s: SlabDebug not set " 3117 "on slab 0x%p\n", s->name, page); 3118 } else { 3119 if (SlabDebug(page)) 3120 printk(KERN_ERR "SLUB %s: SlabDebug set on " 3121 "slab 0x%p\n", s->name, page); 3122 } 3123 } 3124 3125 static int validate_slab_node(struct kmem_cache *s, 3126 struct kmem_cache_node *n, unsigned long *map) 3127 { 3128 unsigned long count = 0; 3129 struct page *page; 3130 unsigned long flags; 3131 3132 spin_lock_irqsave(&n->list_lock, flags); 3133 3134 list_for_each_entry(page, &n->partial, lru) { 3135 validate_slab_slab(s, page, map); 3136 count++; 3137 } 3138 if (count != n->nr_partial) 3139 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3140 "counter=%ld\n", s->name, count, n->nr_partial); 3141 3142 if (!(s->flags & SLAB_STORE_USER)) 3143 goto out; 3144 3145 list_for_each_entry(page, &n->full, lru) { 3146 validate_slab_slab(s, page, map); 3147 count++; 3148 } 3149 if (count != atomic_long_read(&n->nr_slabs)) 3150 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3151 "counter=%ld\n", s->name, count, 3152 atomic_long_read(&n->nr_slabs)); 3153 3154 out: 3155 spin_unlock_irqrestore(&n->list_lock, flags); 3156 return count; 3157 } 3158 3159 static long validate_slab_cache(struct kmem_cache *s) 3160 { 3161 int node; 3162 unsigned long count = 0; 3163 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) * 3164 sizeof(unsigned long), GFP_KERNEL); 3165 3166 if (!map) 3167 return -ENOMEM; 3168 3169 flush_all(s); 3170 for_each_node_state(node, N_NORMAL_MEMORY) { 3171 struct kmem_cache_node *n = get_node(s, node); 3172 3173 count += validate_slab_node(s, n, map); 3174 } 3175 kfree(map); 3176 return count; 3177 } 3178 3179 #ifdef SLUB_RESILIENCY_TEST 3180 static void resiliency_test(void) 3181 { 3182 u8 *p; 3183 3184 printk(KERN_ERR "SLUB resiliency testing\n"); 3185 printk(KERN_ERR "-----------------------\n"); 3186 printk(KERN_ERR "A. Corruption after allocation\n"); 3187 3188 p = kzalloc(16, GFP_KERNEL); 3189 p[16] = 0x12; 3190 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3191 " 0x12->0x%p\n\n", p + 16); 3192 3193 validate_slab_cache(kmalloc_caches + 4); 3194 3195 /* Hmmm... The next two are dangerous */ 3196 p = kzalloc(32, GFP_KERNEL); 3197 p[32 + sizeof(void *)] = 0x34; 3198 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3199 " 0x34 -> -0x%p\n", p); 3200 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); 3201 3202 validate_slab_cache(kmalloc_caches + 5); 3203 p = kzalloc(64, GFP_KERNEL); 3204 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3205 *p = 0x56; 3206 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3207 p); 3208 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); 3209 validate_slab_cache(kmalloc_caches + 6); 3210 3211 printk(KERN_ERR "\nB. Corruption after free\n"); 3212 p = kzalloc(128, GFP_KERNEL); 3213 kfree(p); 3214 *p = 0x78; 3215 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3216 validate_slab_cache(kmalloc_caches + 7); 3217 3218 p = kzalloc(256, GFP_KERNEL); 3219 kfree(p); 3220 p[50] = 0x9a; 3221 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 3222 validate_slab_cache(kmalloc_caches + 8); 3223 3224 p = kzalloc(512, GFP_KERNEL); 3225 kfree(p); 3226 p[512] = 0xab; 3227 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3228 validate_slab_cache(kmalloc_caches + 9); 3229 } 3230 #else 3231 static void resiliency_test(void) {}; 3232 #endif 3233 3234 /* 3235 * Generate lists of code addresses where slabcache objects are allocated 3236 * and freed. 3237 */ 3238 3239 struct location { 3240 unsigned long count; 3241 void *addr; 3242 long long sum_time; 3243 long min_time; 3244 long max_time; 3245 long min_pid; 3246 long max_pid; 3247 cpumask_t cpus; 3248 nodemask_t nodes; 3249 }; 3250 3251 struct loc_track { 3252 unsigned long max; 3253 unsigned long count; 3254 struct location *loc; 3255 }; 3256 3257 static void free_loc_track(struct loc_track *t) 3258 { 3259 if (t->max) 3260 free_pages((unsigned long)t->loc, 3261 get_order(sizeof(struct location) * t->max)); 3262 } 3263 3264 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3265 { 3266 struct location *l; 3267 int order; 3268 3269 order = get_order(sizeof(struct location) * max); 3270 3271 l = (void *)__get_free_pages(flags, order); 3272 if (!l) 3273 return 0; 3274 3275 if (t->count) { 3276 memcpy(l, t->loc, sizeof(struct location) * t->count); 3277 free_loc_track(t); 3278 } 3279 t->max = max; 3280 t->loc = l; 3281 return 1; 3282 } 3283 3284 static int add_location(struct loc_track *t, struct kmem_cache *s, 3285 const struct track *track) 3286 { 3287 long start, end, pos; 3288 struct location *l; 3289 void *caddr; 3290 unsigned long age = jiffies - track->when; 3291 3292 start = -1; 3293 end = t->count; 3294 3295 for ( ; ; ) { 3296 pos = start + (end - start + 1) / 2; 3297 3298 /* 3299 * There is nothing at "end". If we end up there 3300 * we need to add something to before end. 3301 */ 3302 if (pos == end) 3303 break; 3304 3305 caddr = t->loc[pos].addr; 3306 if (track->addr == caddr) { 3307 3308 l = &t->loc[pos]; 3309 l->count++; 3310 if (track->when) { 3311 l->sum_time += age; 3312 if (age < l->min_time) 3313 l->min_time = age; 3314 if (age > l->max_time) 3315 l->max_time = age; 3316 3317 if (track->pid < l->min_pid) 3318 l->min_pid = track->pid; 3319 if (track->pid > l->max_pid) 3320 l->max_pid = track->pid; 3321 3322 cpu_set(track->cpu, l->cpus); 3323 } 3324 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3325 return 1; 3326 } 3327 3328 if (track->addr < caddr) 3329 end = pos; 3330 else 3331 start = pos; 3332 } 3333 3334 /* 3335 * Not found. Insert new tracking element. 3336 */ 3337 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3338 return 0; 3339 3340 l = t->loc + pos; 3341 if (pos < t->count) 3342 memmove(l + 1, l, 3343 (t->count - pos) * sizeof(struct location)); 3344 t->count++; 3345 l->count = 1; 3346 l->addr = track->addr; 3347 l->sum_time = age; 3348 l->min_time = age; 3349 l->max_time = age; 3350 l->min_pid = track->pid; 3351 l->max_pid = track->pid; 3352 cpus_clear(l->cpus); 3353 cpu_set(track->cpu, l->cpus); 3354 nodes_clear(l->nodes); 3355 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3356 return 1; 3357 } 3358 3359 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3360 struct page *page, enum track_item alloc) 3361 { 3362 void *addr = page_address(page); 3363 DECLARE_BITMAP(map, s->objects); 3364 void *p; 3365 3366 bitmap_zero(map, s->objects); 3367 for_each_free_object(p, s, page->freelist) 3368 set_bit(slab_index(p, s, addr), map); 3369 3370 for_each_object(p, s, addr) 3371 if (!test_bit(slab_index(p, s, addr), map)) 3372 add_location(t, s, get_track(s, p, alloc)); 3373 } 3374 3375 static int list_locations(struct kmem_cache *s, char *buf, 3376 enum track_item alloc) 3377 { 3378 int n = 0; 3379 unsigned long i; 3380 struct loc_track t = { 0, 0, NULL }; 3381 int node; 3382 3383 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3384 GFP_TEMPORARY)) 3385 return sprintf(buf, "Out of memory\n"); 3386 3387 /* Push back cpu slabs */ 3388 flush_all(s); 3389 3390 for_each_node_state(node, N_NORMAL_MEMORY) { 3391 struct kmem_cache_node *n = get_node(s, node); 3392 unsigned long flags; 3393 struct page *page; 3394 3395 if (!atomic_long_read(&n->nr_slabs)) 3396 continue; 3397 3398 spin_lock_irqsave(&n->list_lock, flags); 3399 list_for_each_entry(page, &n->partial, lru) 3400 process_slab(&t, s, page, alloc); 3401 list_for_each_entry(page, &n->full, lru) 3402 process_slab(&t, s, page, alloc); 3403 spin_unlock_irqrestore(&n->list_lock, flags); 3404 } 3405 3406 for (i = 0; i < t.count; i++) { 3407 struct location *l = &t.loc[i]; 3408 3409 if (n > PAGE_SIZE - 100) 3410 break; 3411 n += sprintf(buf + n, "%7ld ", l->count); 3412 3413 if (l->addr) 3414 n += sprint_symbol(buf + n, (unsigned long)l->addr); 3415 else 3416 n += sprintf(buf + n, "<not-available>"); 3417 3418 if (l->sum_time != l->min_time) { 3419 unsigned long remainder; 3420 3421 n += sprintf(buf + n, " age=%ld/%ld/%ld", 3422 l->min_time, 3423 div_long_long_rem(l->sum_time, l->count, &remainder), 3424 l->max_time); 3425 } else 3426 n += sprintf(buf + n, " age=%ld", 3427 l->min_time); 3428 3429 if (l->min_pid != l->max_pid) 3430 n += sprintf(buf + n, " pid=%ld-%ld", 3431 l->min_pid, l->max_pid); 3432 else 3433 n += sprintf(buf + n, " pid=%ld", 3434 l->min_pid); 3435 3436 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && 3437 n < PAGE_SIZE - 60) { 3438 n += sprintf(buf + n, " cpus="); 3439 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50, 3440 l->cpus); 3441 } 3442 3443 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3444 n < PAGE_SIZE - 60) { 3445 n += sprintf(buf + n, " nodes="); 3446 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50, 3447 l->nodes); 3448 } 3449 3450 n += sprintf(buf + n, "\n"); 3451 } 3452 3453 free_loc_track(&t); 3454 if (!t.count) 3455 n += sprintf(buf, "No data\n"); 3456 return n; 3457 } 3458 3459 static unsigned long count_partial(struct kmem_cache_node *n) 3460 { 3461 unsigned long flags; 3462 unsigned long x = 0; 3463 struct page *page; 3464 3465 spin_lock_irqsave(&n->list_lock, flags); 3466 list_for_each_entry(page, &n->partial, lru) 3467 x += page->inuse; 3468 spin_unlock_irqrestore(&n->list_lock, flags); 3469 return x; 3470 } 3471 3472 enum slab_stat_type { 3473 SL_FULL, 3474 SL_PARTIAL, 3475 SL_CPU, 3476 SL_OBJECTS 3477 }; 3478 3479 #define SO_FULL (1 << SL_FULL) 3480 #define SO_PARTIAL (1 << SL_PARTIAL) 3481 #define SO_CPU (1 << SL_CPU) 3482 #define SO_OBJECTS (1 << SL_OBJECTS) 3483 3484 static unsigned long slab_objects(struct kmem_cache *s, 3485 char *buf, unsigned long flags) 3486 { 3487 unsigned long total = 0; 3488 int cpu; 3489 int node; 3490 int x; 3491 unsigned long *nodes; 3492 unsigned long *per_cpu; 3493 3494 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3495 per_cpu = nodes + nr_node_ids; 3496 3497 for_each_possible_cpu(cpu) { 3498 struct page *page; 3499 int node; 3500 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3501 3502 if (!c) 3503 continue; 3504 3505 page = c->page; 3506 node = c->node; 3507 if (node < 0) 3508 continue; 3509 if (page) { 3510 if (flags & SO_CPU) { 3511 int x = 0; 3512 3513 if (flags & SO_OBJECTS) 3514 x = page->inuse; 3515 else 3516 x = 1; 3517 total += x; 3518 nodes[node] += x; 3519 } 3520 per_cpu[node]++; 3521 } 3522 } 3523 3524 for_each_node_state(node, N_NORMAL_MEMORY) { 3525 struct kmem_cache_node *n = get_node(s, node); 3526 3527 if (flags & SO_PARTIAL) { 3528 if (flags & SO_OBJECTS) 3529 x = count_partial(n); 3530 else 3531 x = n->nr_partial; 3532 total += x; 3533 nodes[node] += x; 3534 } 3535 3536 if (flags & SO_FULL) { 3537 int full_slabs = atomic_long_read(&n->nr_slabs) 3538 - per_cpu[node] 3539 - n->nr_partial; 3540 3541 if (flags & SO_OBJECTS) 3542 x = full_slabs * s->objects; 3543 else 3544 x = full_slabs; 3545 total += x; 3546 nodes[node] += x; 3547 } 3548 } 3549 3550 x = sprintf(buf, "%lu", total); 3551 #ifdef CONFIG_NUMA 3552 for_each_node_state(node, N_NORMAL_MEMORY) 3553 if (nodes[node]) 3554 x += sprintf(buf + x, " N%d=%lu", 3555 node, nodes[node]); 3556 #endif 3557 kfree(nodes); 3558 return x + sprintf(buf + x, "\n"); 3559 } 3560 3561 static int any_slab_objects(struct kmem_cache *s) 3562 { 3563 int node; 3564 int cpu; 3565 3566 for_each_possible_cpu(cpu) { 3567 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3568 3569 if (c && c->page) 3570 return 1; 3571 } 3572 3573 for_each_online_node(node) { 3574 struct kmem_cache_node *n = get_node(s, node); 3575 3576 if (!n) 3577 continue; 3578 3579 if (n->nr_partial || atomic_long_read(&n->nr_slabs)) 3580 return 1; 3581 } 3582 return 0; 3583 } 3584 3585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3586 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3587 3588 struct slab_attribute { 3589 struct attribute attr; 3590 ssize_t (*show)(struct kmem_cache *s, char *buf); 3591 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3592 }; 3593 3594 #define SLAB_ATTR_RO(_name) \ 3595 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3596 3597 #define SLAB_ATTR(_name) \ 3598 static struct slab_attribute _name##_attr = \ 3599 __ATTR(_name, 0644, _name##_show, _name##_store) 3600 3601 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3602 { 3603 return sprintf(buf, "%d\n", s->size); 3604 } 3605 SLAB_ATTR_RO(slab_size); 3606 3607 static ssize_t align_show(struct kmem_cache *s, char *buf) 3608 { 3609 return sprintf(buf, "%d\n", s->align); 3610 } 3611 SLAB_ATTR_RO(align); 3612 3613 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3614 { 3615 return sprintf(buf, "%d\n", s->objsize); 3616 } 3617 SLAB_ATTR_RO(object_size); 3618 3619 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3620 { 3621 return sprintf(buf, "%d\n", s->objects); 3622 } 3623 SLAB_ATTR_RO(objs_per_slab); 3624 3625 static ssize_t order_show(struct kmem_cache *s, char *buf) 3626 { 3627 return sprintf(buf, "%d\n", s->order); 3628 } 3629 SLAB_ATTR_RO(order); 3630 3631 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3632 { 3633 if (s->ctor) { 3634 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3635 3636 return n + sprintf(buf + n, "\n"); 3637 } 3638 return 0; 3639 } 3640 SLAB_ATTR_RO(ctor); 3641 3642 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3643 { 3644 return sprintf(buf, "%d\n", s->refcount - 1); 3645 } 3646 SLAB_ATTR_RO(aliases); 3647 3648 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3649 { 3650 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); 3651 } 3652 SLAB_ATTR_RO(slabs); 3653 3654 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3655 { 3656 return slab_objects(s, buf, SO_PARTIAL); 3657 } 3658 SLAB_ATTR_RO(partial); 3659 3660 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3661 { 3662 return slab_objects(s, buf, SO_CPU); 3663 } 3664 SLAB_ATTR_RO(cpu_slabs); 3665 3666 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3667 { 3668 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); 3669 } 3670 SLAB_ATTR_RO(objects); 3671 3672 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3673 { 3674 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3675 } 3676 3677 static ssize_t sanity_checks_store(struct kmem_cache *s, 3678 const char *buf, size_t length) 3679 { 3680 s->flags &= ~SLAB_DEBUG_FREE; 3681 if (buf[0] == '1') 3682 s->flags |= SLAB_DEBUG_FREE; 3683 return length; 3684 } 3685 SLAB_ATTR(sanity_checks); 3686 3687 static ssize_t trace_show(struct kmem_cache *s, char *buf) 3688 { 3689 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 3690 } 3691 3692 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 3693 size_t length) 3694 { 3695 s->flags &= ~SLAB_TRACE; 3696 if (buf[0] == '1') 3697 s->flags |= SLAB_TRACE; 3698 return length; 3699 } 3700 SLAB_ATTR(trace); 3701 3702 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 3703 { 3704 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 3705 } 3706 3707 static ssize_t reclaim_account_store(struct kmem_cache *s, 3708 const char *buf, size_t length) 3709 { 3710 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 3711 if (buf[0] == '1') 3712 s->flags |= SLAB_RECLAIM_ACCOUNT; 3713 return length; 3714 } 3715 SLAB_ATTR(reclaim_account); 3716 3717 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 3718 { 3719 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 3720 } 3721 SLAB_ATTR_RO(hwcache_align); 3722 3723 #ifdef CONFIG_ZONE_DMA 3724 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 3725 { 3726 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 3727 } 3728 SLAB_ATTR_RO(cache_dma); 3729 #endif 3730 3731 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 3732 { 3733 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 3734 } 3735 SLAB_ATTR_RO(destroy_by_rcu); 3736 3737 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 3738 { 3739 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 3740 } 3741 3742 static ssize_t red_zone_store(struct kmem_cache *s, 3743 const char *buf, size_t length) 3744 { 3745 if (any_slab_objects(s)) 3746 return -EBUSY; 3747 3748 s->flags &= ~SLAB_RED_ZONE; 3749 if (buf[0] == '1') 3750 s->flags |= SLAB_RED_ZONE; 3751 calculate_sizes(s); 3752 return length; 3753 } 3754 SLAB_ATTR(red_zone); 3755 3756 static ssize_t poison_show(struct kmem_cache *s, char *buf) 3757 { 3758 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 3759 } 3760 3761 static ssize_t poison_store(struct kmem_cache *s, 3762 const char *buf, size_t length) 3763 { 3764 if (any_slab_objects(s)) 3765 return -EBUSY; 3766 3767 s->flags &= ~SLAB_POISON; 3768 if (buf[0] == '1') 3769 s->flags |= SLAB_POISON; 3770 calculate_sizes(s); 3771 return length; 3772 } 3773 SLAB_ATTR(poison); 3774 3775 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 3776 { 3777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 3778 } 3779 3780 static ssize_t store_user_store(struct kmem_cache *s, 3781 const char *buf, size_t length) 3782 { 3783 if (any_slab_objects(s)) 3784 return -EBUSY; 3785 3786 s->flags &= ~SLAB_STORE_USER; 3787 if (buf[0] == '1') 3788 s->flags |= SLAB_STORE_USER; 3789 calculate_sizes(s); 3790 return length; 3791 } 3792 SLAB_ATTR(store_user); 3793 3794 static ssize_t validate_show(struct kmem_cache *s, char *buf) 3795 { 3796 return 0; 3797 } 3798 3799 static ssize_t validate_store(struct kmem_cache *s, 3800 const char *buf, size_t length) 3801 { 3802 int ret = -EINVAL; 3803 3804 if (buf[0] == '1') { 3805 ret = validate_slab_cache(s); 3806 if (ret >= 0) 3807 ret = length; 3808 } 3809 return ret; 3810 } 3811 SLAB_ATTR(validate); 3812 3813 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 3814 { 3815 return 0; 3816 } 3817 3818 static ssize_t shrink_store(struct kmem_cache *s, 3819 const char *buf, size_t length) 3820 { 3821 if (buf[0] == '1') { 3822 int rc = kmem_cache_shrink(s); 3823 3824 if (rc) 3825 return rc; 3826 } else 3827 return -EINVAL; 3828 return length; 3829 } 3830 SLAB_ATTR(shrink); 3831 3832 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 3833 { 3834 if (!(s->flags & SLAB_STORE_USER)) 3835 return -ENOSYS; 3836 return list_locations(s, buf, TRACK_ALLOC); 3837 } 3838 SLAB_ATTR_RO(alloc_calls); 3839 3840 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 3841 { 3842 if (!(s->flags & SLAB_STORE_USER)) 3843 return -ENOSYS; 3844 return list_locations(s, buf, TRACK_FREE); 3845 } 3846 SLAB_ATTR_RO(free_calls); 3847 3848 #ifdef CONFIG_NUMA 3849 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf) 3850 { 3851 return sprintf(buf, "%d\n", s->defrag_ratio / 10); 3852 } 3853 3854 static ssize_t defrag_ratio_store(struct kmem_cache *s, 3855 const char *buf, size_t length) 3856 { 3857 int n = simple_strtoul(buf, NULL, 10); 3858 3859 if (n < 100) 3860 s->defrag_ratio = n * 10; 3861 return length; 3862 } 3863 SLAB_ATTR(defrag_ratio); 3864 #endif 3865 3866 static struct attribute * slab_attrs[] = { 3867 &slab_size_attr.attr, 3868 &object_size_attr.attr, 3869 &objs_per_slab_attr.attr, 3870 &order_attr.attr, 3871 &objects_attr.attr, 3872 &slabs_attr.attr, 3873 &partial_attr.attr, 3874 &cpu_slabs_attr.attr, 3875 &ctor_attr.attr, 3876 &aliases_attr.attr, 3877 &align_attr.attr, 3878 &sanity_checks_attr.attr, 3879 &trace_attr.attr, 3880 &hwcache_align_attr.attr, 3881 &reclaim_account_attr.attr, 3882 &destroy_by_rcu_attr.attr, 3883 &red_zone_attr.attr, 3884 &poison_attr.attr, 3885 &store_user_attr.attr, 3886 &validate_attr.attr, 3887 &shrink_attr.attr, 3888 &alloc_calls_attr.attr, 3889 &free_calls_attr.attr, 3890 #ifdef CONFIG_ZONE_DMA 3891 &cache_dma_attr.attr, 3892 #endif 3893 #ifdef CONFIG_NUMA 3894 &defrag_ratio_attr.attr, 3895 #endif 3896 NULL 3897 }; 3898 3899 static struct attribute_group slab_attr_group = { 3900 .attrs = slab_attrs, 3901 }; 3902 3903 static ssize_t slab_attr_show(struct kobject *kobj, 3904 struct attribute *attr, 3905 char *buf) 3906 { 3907 struct slab_attribute *attribute; 3908 struct kmem_cache *s; 3909 int err; 3910 3911 attribute = to_slab_attr(attr); 3912 s = to_slab(kobj); 3913 3914 if (!attribute->show) 3915 return -EIO; 3916 3917 err = attribute->show(s, buf); 3918 3919 return err; 3920 } 3921 3922 static ssize_t slab_attr_store(struct kobject *kobj, 3923 struct attribute *attr, 3924 const char *buf, size_t len) 3925 { 3926 struct slab_attribute *attribute; 3927 struct kmem_cache *s; 3928 int err; 3929 3930 attribute = to_slab_attr(attr); 3931 s = to_slab(kobj); 3932 3933 if (!attribute->store) 3934 return -EIO; 3935 3936 err = attribute->store(s, buf, len); 3937 3938 return err; 3939 } 3940 3941 static struct sysfs_ops slab_sysfs_ops = { 3942 .show = slab_attr_show, 3943 .store = slab_attr_store, 3944 }; 3945 3946 static struct kobj_type slab_ktype = { 3947 .sysfs_ops = &slab_sysfs_ops, 3948 }; 3949 3950 static int uevent_filter(struct kset *kset, struct kobject *kobj) 3951 { 3952 struct kobj_type *ktype = get_ktype(kobj); 3953 3954 if (ktype == &slab_ktype) 3955 return 1; 3956 return 0; 3957 } 3958 3959 static struct kset_uevent_ops slab_uevent_ops = { 3960 .filter = uevent_filter, 3961 }; 3962 3963 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops); 3964 3965 #define ID_STR_LENGTH 64 3966 3967 /* Create a unique string id for a slab cache: 3968 * format 3969 * :[flags-]size:[memory address of kmemcache] 3970 */ 3971 static char *create_unique_id(struct kmem_cache *s) 3972 { 3973 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 3974 char *p = name; 3975 3976 BUG_ON(!name); 3977 3978 *p++ = ':'; 3979 /* 3980 * First flags affecting slabcache operations. We will only 3981 * get here for aliasable slabs so we do not need to support 3982 * too many flags. The flags here must cover all flags that 3983 * are matched during merging to guarantee that the id is 3984 * unique. 3985 */ 3986 if (s->flags & SLAB_CACHE_DMA) 3987 *p++ = 'd'; 3988 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3989 *p++ = 'a'; 3990 if (s->flags & SLAB_DEBUG_FREE) 3991 *p++ = 'F'; 3992 if (p != name + 1) 3993 *p++ = '-'; 3994 p += sprintf(p, "%07d", s->size); 3995 BUG_ON(p > name + ID_STR_LENGTH - 1); 3996 return name; 3997 } 3998 3999 static int sysfs_slab_add(struct kmem_cache *s) 4000 { 4001 int err; 4002 const char *name; 4003 int unmergeable; 4004 4005 if (slab_state < SYSFS) 4006 /* Defer until later */ 4007 return 0; 4008 4009 unmergeable = slab_unmergeable(s); 4010 if (unmergeable) { 4011 /* 4012 * Slabcache can never be merged so we can use the name proper. 4013 * This is typically the case for debug situations. In that 4014 * case we can catch duplicate names easily. 4015 */ 4016 sysfs_remove_link(&slab_subsys.kobj, s->name); 4017 name = s->name; 4018 } else { 4019 /* 4020 * Create a unique name for the slab as a target 4021 * for the symlinks. 4022 */ 4023 name = create_unique_id(s); 4024 } 4025 4026 kobj_set_kset_s(s, slab_subsys); 4027 kobject_set_name(&s->kobj, name); 4028 kobject_init(&s->kobj); 4029 err = kobject_add(&s->kobj); 4030 if (err) 4031 return err; 4032 4033 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4034 if (err) 4035 return err; 4036 kobject_uevent(&s->kobj, KOBJ_ADD); 4037 if (!unmergeable) { 4038 /* Setup first alias */ 4039 sysfs_slab_alias(s, s->name); 4040 kfree(name); 4041 } 4042 return 0; 4043 } 4044 4045 static void sysfs_slab_remove(struct kmem_cache *s) 4046 { 4047 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4048 kobject_del(&s->kobj); 4049 } 4050 4051 /* 4052 * Need to buffer aliases during bootup until sysfs becomes 4053 * available lest we loose that information. 4054 */ 4055 struct saved_alias { 4056 struct kmem_cache *s; 4057 const char *name; 4058 struct saved_alias *next; 4059 }; 4060 4061 static struct saved_alias *alias_list; 4062 4063 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4064 { 4065 struct saved_alias *al; 4066 4067 if (slab_state == SYSFS) { 4068 /* 4069 * If we have a leftover link then remove it. 4070 */ 4071 sysfs_remove_link(&slab_subsys.kobj, name); 4072 return sysfs_create_link(&slab_subsys.kobj, 4073 &s->kobj, name); 4074 } 4075 4076 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4077 if (!al) 4078 return -ENOMEM; 4079 4080 al->s = s; 4081 al->name = name; 4082 al->next = alias_list; 4083 alias_list = al; 4084 return 0; 4085 } 4086 4087 static int __init slab_sysfs_init(void) 4088 { 4089 struct kmem_cache *s; 4090 int err; 4091 4092 err = subsystem_register(&slab_subsys); 4093 if (err) { 4094 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4095 return -ENOSYS; 4096 } 4097 4098 slab_state = SYSFS; 4099 4100 list_for_each_entry(s, &slab_caches, list) { 4101 err = sysfs_slab_add(s); 4102 if (err) 4103 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4104 " to sysfs\n", s->name); 4105 } 4106 4107 while (alias_list) { 4108 struct saved_alias *al = alias_list; 4109 4110 alias_list = alias_list->next; 4111 err = sysfs_slab_alias(al->s, al->name); 4112 if (err) 4113 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4114 " %s to sysfs\n", s->name); 4115 kfree(al); 4116 } 4117 4118 resiliency_test(); 4119 return 0; 4120 } 4121 4122 __initcall(slab_sysfs_init); 4123 #endif 4124