xref: /linux/mm/slub.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * freeptr_t represents a SLUB freelist pointer, which might be encoded
470  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471  */
472 typedef struct { unsigned long v; } freeptr_t;
473 
474 /*
475  * Returns freelist pointer (ptr). With hardening, this is obfuscated
476  * with an XOR of the address where the pointer is held and a per-cache
477  * random number.
478  */
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 					    void *ptr, unsigned long ptr_addr)
481 {
482 	unsigned long encoded;
483 
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486 #else
487 	encoded = (unsigned long)ptr;
488 #endif
489 	return (freeptr_t){.v = encoded};
490 }
491 
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 					freeptr_t ptr, unsigned long ptr_addr)
494 {
495 	void *decoded;
496 
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499 #else
500 	decoded = (void *)ptr.v;
501 #endif
502 	return decoded;
503 }
504 
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
506 {
507 	unsigned long ptr_addr;
508 	freeptr_t p;
509 
510 	object = kasan_reset_tag(object);
511 	ptr_addr = (unsigned long)object + s->offset;
512 	p = *(freeptr_t *)(ptr_addr);
513 	return freelist_ptr_decode(s, p, ptr_addr);
514 }
515 
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518 {
519 	prefetchw(object + s->offset);
520 }
521 #endif
522 
523 /*
524  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525  * pointer value in the case the current thread loses the race for the next
526  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528  * KMSAN will still check all arguments of cmpxchg because of imperfect
529  * handling of inline assembly.
530  * To work around this problem, we apply __no_kmsan_checks to ensure that
531  * get_freepointer_safe() returns initialized memory.
532  */
533 __no_kmsan_checks
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535 {
536 	unsigned long freepointer_addr;
537 	freeptr_t p;
538 
539 	if (!debug_pagealloc_enabled_static())
540 		return get_freepointer(s, object);
541 
542 	object = kasan_reset_tag(object);
543 	freepointer_addr = (unsigned long)object + s->offset;
544 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 	return freelist_ptr_decode(s, p, freepointer_addr);
546 }
547 
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549 {
550 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
551 
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 	BUG_ON(object == fp); /* naive detection of double free or corruption */
554 #endif
555 
556 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558 }
559 
560 /*
561  * See comment in calculate_sizes().
562  */
563 static inline bool freeptr_outside_object(struct kmem_cache *s)
564 {
565 	return s->offset >= s->inuse;
566 }
567 
568 /*
569  * Return offset of the end of info block which is inuse + free pointer if
570  * not overlapping with object.
571  */
572 static inline unsigned int get_info_end(struct kmem_cache *s)
573 {
574 	if (freeptr_outside_object(s))
575 		return s->inuse + sizeof(void *);
576 	else
577 		return s->inuse;
578 }
579 
580 /* Loop over all objects in a slab */
581 #define for_each_object(__p, __s, __addr, __objects) \
582 	for (__p = fixup_red_left(__s, __addr); \
583 		__p < (__addr) + (__objects) * (__s)->size; \
584 		__p += (__s)->size)
585 
586 static inline unsigned int order_objects(unsigned int order, unsigned int size)
587 {
588 	return ((unsigned int)PAGE_SIZE << order) / size;
589 }
590 
591 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
592 		unsigned int size)
593 {
594 	struct kmem_cache_order_objects x = {
595 		(order << OO_SHIFT) + order_objects(order, size)
596 	};
597 
598 	return x;
599 }
600 
601 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
602 {
603 	return x.x >> OO_SHIFT;
604 }
605 
606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
607 {
608 	return x.x & OO_MASK;
609 }
610 
611 #ifdef CONFIG_SLUB_CPU_PARTIAL
612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613 {
614 	unsigned int nr_slabs;
615 
616 	s->cpu_partial = nr_objects;
617 
618 	/*
619 	 * We take the number of objects but actually limit the number of
620 	 * slabs on the per cpu partial list, in order to limit excessive
621 	 * growth of the list. For simplicity we assume that the slabs will
622 	 * be half-full.
623 	 */
624 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 	s->cpu_partial_slabs = nr_slabs;
626 }
627 
628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629 {
630 	return s->cpu_partial_slabs;
631 }
632 #else
633 static inline void
634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635 {
636 }
637 
638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639 {
640 	return 0;
641 }
642 #endif /* CONFIG_SLUB_CPU_PARTIAL */
643 
644 /*
645  * Per slab locking using the pagelock
646  */
647 static __always_inline void slab_lock(struct slab *slab)
648 {
649 	struct page *page = slab_page(slab);
650 
651 	VM_BUG_ON_PAGE(PageTail(page), page);
652 	bit_spin_lock(PG_locked, &page->flags);
653 }
654 
655 static __always_inline void slab_unlock(struct slab *slab)
656 {
657 	struct page *page = slab_page(slab);
658 
659 	VM_BUG_ON_PAGE(PageTail(page), page);
660 	bit_spin_unlock(PG_locked, &page->flags);
661 }
662 
663 static inline bool
664 __update_freelist_fast(struct slab *slab,
665 		      void *freelist_old, unsigned long counters_old,
666 		      void *freelist_new, unsigned long counters_new)
667 {
668 #ifdef system_has_freelist_aba
669 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
670 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
671 
672 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
673 #else
674 	return false;
675 #endif
676 }
677 
678 static inline bool
679 __update_freelist_slow(struct slab *slab,
680 		      void *freelist_old, unsigned long counters_old,
681 		      void *freelist_new, unsigned long counters_new)
682 {
683 	bool ret = false;
684 
685 	slab_lock(slab);
686 	if (slab->freelist == freelist_old &&
687 	    slab->counters == counters_old) {
688 		slab->freelist = freelist_new;
689 		slab->counters = counters_new;
690 		ret = true;
691 	}
692 	slab_unlock(slab);
693 
694 	return ret;
695 }
696 
697 /*
698  * Interrupts must be disabled (for the fallback code to work right), typically
699  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
700  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
701  * allocation/ free operation in hardirq context. Therefore nothing can
702  * interrupt the operation.
703  */
704 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
705 		void *freelist_old, unsigned long counters_old,
706 		void *freelist_new, unsigned long counters_new,
707 		const char *n)
708 {
709 	bool ret;
710 
711 	if (USE_LOCKLESS_FAST_PATH())
712 		lockdep_assert_irqs_disabled();
713 
714 	if (s->flags & __CMPXCHG_DOUBLE) {
715 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
716 				            freelist_new, counters_new);
717 	} else {
718 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
719 				            freelist_new, counters_new);
720 	}
721 	if (likely(ret))
722 		return true;
723 
724 	cpu_relax();
725 	stat(s, CMPXCHG_DOUBLE_FAIL);
726 
727 #ifdef SLUB_DEBUG_CMPXCHG
728 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
729 #endif
730 
731 	return false;
732 }
733 
734 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
735 		void *freelist_old, unsigned long counters_old,
736 		void *freelist_new, unsigned long counters_new,
737 		const char *n)
738 {
739 	bool ret;
740 
741 	if (s->flags & __CMPXCHG_DOUBLE) {
742 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
743 				            freelist_new, counters_new);
744 	} else {
745 		unsigned long flags;
746 
747 		local_irq_save(flags);
748 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
749 				            freelist_new, counters_new);
750 		local_irq_restore(flags);
751 	}
752 	if (likely(ret))
753 		return true;
754 
755 	cpu_relax();
756 	stat(s, CMPXCHG_DOUBLE_FAIL);
757 
758 #ifdef SLUB_DEBUG_CMPXCHG
759 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
760 #endif
761 
762 	return false;
763 }
764 
765 #ifdef CONFIG_SLUB_DEBUG
766 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
767 static DEFINE_SPINLOCK(object_map_lock);
768 
769 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
770 		       struct slab *slab)
771 {
772 	void *addr = slab_address(slab);
773 	void *p;
774 
775 	bitmap_zero(obj_map, slab->objects);
776 
777 	for (p = slab->freelist; p; p = get_freepointer(s, p))
778 		set_bit(__obj_to_index(s, addr, p), obj_map);
779 }
780 
781 #if IS_ENABLED(CONFIG_KUNIT)
782 static bool slab_add_kunit_errors(void)
783 {
784 	struct kunit_resource *resource;
785 
786 	if (!kunit_get_current_test())
787 		return false;
788 
789 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
790 	if (!resource)
791 		return false;
792 
793 	(*(int *)resource->data)++;
794 	kunit_put_resource(resource);
795 	return true;
796 }
797 #else
798 static inline bool slab_add_kunit_errors(void) { return false; }
799 #endif
800 
801 static inline unsigned int size_from_object(struct kmem_cache *s)
802 {
803 	if (s->flags & SLAB_RED_ZONE)
804 		return s->size - s->red_left_pad;
805 
806 	return s->size;
807 }
808 
809 static inline void *restore_red_left(struct kmem_cache *s, void *p)
810 {
811 	if (s->flags & SLAB_RED_ZONE)
812 		p -= s->red_left_pad;
813 
814 	return p;
815 }
816 
817 /*
818  * Debug settings:
819  */
820 #if defined(CONFIG_SLUB_DEBUG_ON)
821 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
822 #else
823 static slab_flags_t slub_debug;
824 #endif
825 
826 static char *slub_debug_string;
827 static int disable_higher_order_debug;
828 
829 /*
830  * slub is about to manipulate internal object metadata.  This memory lies
831  * outside the range of the allocated object, so accessing it would normally
832  * be reported by kasan as a bounds error.  metadata_access_enable() is used
833  * to tell kasan that these accesses are OK.
834  */
835 static inline void metadata_access_enable(void)
836 {
837 	kasan_disable_current();
838 }
839 
840 static inline void metadata_access_disable(void)
841 {
842 	kasan_enable_current();
843 }
844 
845 /*
846  * Object debugging
847  */
848 
849 /* Verify that a pointer has an address that is valid within a slab page */
850 static inline int check_valid_pointer(struct kmem_cache *s,
851 				struct slab *slab, void *object)
852 {
853 	void *base;
854 
855 	if (!object)
856 		return 1;
857 
858 	base = slab_address(slab);
859 	object = kasan_reset_tag(object);
860 	object = restore_red_left(s, object);
861 	if (object < base || object >= base + slab->objects * s->size ||
862 		(object - base) % s->size) {
863 		return 0;
864 	}
865 
866 	return 1;
867 }
868 
869 static void print_section(char *level, char *text, u8 *addr,
870 			  unsigned int length)
871 {
872 	metadata_access_enable();
873 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
874 			16, 1, kasan_reset_tag((void *)addr), length, 1);
875 	metadata_access_disable();
876 }
877 
878 static struct track *get_track(struct kmem_cache *s, void *object,
879 	enum track_item alloc)
880 {
881 	struct track *p;
882 
883 	p = object + get_info_end(s);
884 
885 	return kasan_reset_tag(p + alloc);
886 }
887 
888 #ifdef CONFIG_STACKDEPOT
889 static noinline depot_stack_handle_t set_track_prepare(void)
890 {
891 	depot_stack_handle_t handle;
892 	unsigned long entries[TRACK_ADDRS_COUNT];
893 	unsigned int nr_entries;
894 
895 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
896 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
897 
898 	return handle;
899 }
900 #else
901 static inline depot_stack_handle_t set_track_prepare(void)
902 {
903 	return 0;
904 }
905 #endif
906 
907 static void set_track_update(struct kmem_cache *s, void *object,
908 			     enum track_item alloc, unsigned long addr,
909 			     depot_stack_handle_t handle)
910 {
911 	struct track *p = get_track(s, object, alloc);
912 
913 #ifdef CONFIG_STACKDEPOT
914 	p->handle = handle;
915 #endif
916 	p->addr = addr;
917 	p->cpu = smp_processor_id();
918 	p->pid = current->pid;
919 	p->when = jiffies;
920 }
921 
922 static __always_inline void set_track(struct kmem_cache *s, void *object,
923 				      enum track_item alloc, unsigned long addr)
924 {
925 	depot_stack_handle_t handle = set_track_prepare();
926 
927 	set_track_update(s, object, alloc, addr, handle);
928 }
929 
930 static void init_tracking(struct kmem_cache *s, void *object)
931 {
932 	struct track *p;
933 
934 	if (!(s->flags & SLAB_STORE_USER))
935 		return;
936 
937 	p = get_track(s, object, TRACK_ALLOC);
938 	memset(p, 0, 2*sizeof(struct track));
939 }
940 
941 static void print_track(const char *s, struct track *t, unsigned long pr_time)
942 {
943 	depot_stack_handle_t handle __maybe_unused;
944 
945 	if (!t->addr)
946 		return;
947 
948 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
949 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
950 #ifdef CONFIG_STACKDEPOT
951 	handle = READ_ONCE(t->handle);
952 	if (handle)
953 		stack_depot_print(handle);
954 	else
955 		pr_err("object allocation/free stack trace missing\n");
956 #endif
957 }
958 
959 void print_tracking(struct kmem_cache *s, void *object)
960 {
961 	unsigned long pr_time = jiffies;
962 	if (!(s->flags & SLAB_STORE_USER))
963 		return;
964 
965 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
966 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
967 }
968 
969 static void print_slab_info(const struct slab *slab)
970 {
971 	struct folio *folio = (struct folio *)slab_folio(slab);
972 
973 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
974 	       slab, slab->objects, slab->inuse, slab->freelist,
975 	       folio_flags(folio, 0));
976 }
977 
978 /*
979  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
980  * family will round up the real request size to these fixed ones, so
981  * there could be an extra area than what is requested. Save the original
982  * request size in the meta data area, for better debug and sanity check.
983  */
984 static inline void set_orig_size(struct kmem_cache *s,
985 				void *object, unsigned int orig_size)
986 {
987 	void *p = kasan_reset_tag(object);
988 	unsigned int kasan_meta_size;
989 
990 	if (!slub_debug_orig_size(s))
991 		return;
992 
993 	/*
994 	 * KASAN can save its free meta data inside of the object at offset 0.
995 	 * If this meta data size is larger than 'orig_size', it will overlap
996 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
997 	 * 'orig_size' to be as at least as big as KASAN's meta data.
998 	 */
999 	kasan_meta_size = kasan_metadata_size(s, true);
1000 	if (kasan_meta_size > orig_size)
1001 		orig_size = kasan_meta_size;
1002 
1003 	p += get_info_end(s);
1004 	p += sizeof(struct track) * 2;
1005 
1006 	*(unsigned int *)p = orig_size;
1007 }
1008 
1009 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1010 {
1011 	void *p = kasan_reset_tag(object);
1012 
1013 	if (!slub_debug_orig_size(s))
1014 		return s->object_size;
1015 
1016 	p += get_info_end(s);
1017 	p += sizeof(struct track) * 2;
1018 
1019 	return *(unsigned int *)p;
1020 }
1021 
1022 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1023 {
1024 	set_orig_size(s, (void *)object, s->object_size);
1025 }
1026 
1027 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1028 {
1029 	struct va_format vaf;
1030 	va_list args;
1031 
1032 	va_start(args, fmt);
1033 	vaf.fmt = fmt;
1034 	vaf.va = &args;
1035 	pr_err("=============================================================================\n");
1036 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1037 	pr_err("-----------------------------------------------------------------------------\n\n");
1038 	va_end(args);
1039 }
1040 
1041 __printf(2, 3)
1042 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1043 {
1044 	struct va_format vaf;
1045 	va_list args;
1046 
1047 	if (slab_add_kunit_errors())
1048 		return;
1049 
1050 	va_start(args, fmt);
1051 	vaf.fmt = fmt;
1052 	vaf.va = &args;
1053 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1054 	va_end(args);
1055 }
1056 
1057 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1058 {
1059 	unsigned int off;	/* Offset of last byte */
1060 	u8 *addr = slab_address(slab);
1061 
1062 	print_tracking(s, p);
1063 
1064 	print_slab_info(slab);
1065 
1066 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1067 	       p, p - addr, get_freepointer(s, p));
1068 
1069 	if (s->flags & SLAB_RED_ZONE)
1070 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1071 			      s->red_left_pad);
1072 	else if (p > addr + 16)
1073 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1074 
1075 	print_section(KERN_ERR,         "Object   ", p,
1076 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1077 	if (s->flags & SLAB_RED_ZONE)
1078 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1079 			s->inuse - s->object_size);
1080 
1081 	off = get_info_end(s);
1082 
1083 	if (s->flags & SLAB_STORE_USER)
1084 		off += 2 * sizeof(struct track);
1085 
1086 	if (slub_debug_orig_size(s))
1087 		off += sizeof(unsigned int);
1088 
1089 	off += kasan_metadata_size(s, false);
1090 
1091 	if (off != size_from_object(s))
1092 		/* Beginning of the filler is the free pointer */
1093 		print_section(KERN_ERR, "Padding  ", p + off,
1094 			      size_from_object(s) - off);
1095 
1096 	dump_stack();
1097 }
1098 
1099 static void object_err(struct kmem_cache *s, struct slab *slab,
1100 			u8 *object, char *reason)
1101 {
1102 	if (slab_add_kunit_errors())
1103 		return;
1104 
1105 	slab_bug(s, "%s", reason);
1106 	print_trailer(s, slab, object);
1107 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1108 }
1109 
1110 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1111 			       void **freelist, void *nextfree)
1112 {
1113 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1114 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1115 		object_err(s, slab, *freelist, "Freechain corrupt");
1116 		*freelist = NULL;
1117 		slab_fix(s, "Isolate corrupted freechain");
1118 		return true;
1119 	}
1120 
1121 	return false;
1122 }
1123 
1124 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1125 			const char *fmt, ...)
1126 {
1127 	va_list args;
1128 	char buf[100];
1129 
1130 	if (slab_add_kunit_errors())
1131 		return;
1132 
1133 	va_start(args, fmt);
1134 	vsnprintf(buf, sizeof(buf), fmt, args);
1135 	va_end(args);
1136 	slab_bug(s, "%s", buf);
1137 	print_slab_info(slab);
1138 	dump_stack();
1139 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1140 }
1141 
1142 static void init_object(struct kmem_cache *s, void *object, u8 val)
1143 {
1144 	u8 *p = kasan_reset_tag(object);
1145 	unsigned int poison_size = s->object_size;
1146 
1147 	if (s->flags & SLAB_RED_ZONE) {
1148 		memset(p - s->red_left_pad, val, s->red_left_pad);
1149 
1150 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1151 			/*
1152 			 * Redzone the extra allocated space by kmalloc than
1153 			 * requested, and the poison size will be limited to
1154 			 * the original request size accordingly.
1155 			 */
1156 			poison_size = get_orig_size(s, object);
1157 		}
1158 	}
1159 
1160 	if (s->flags & __OBJECT_POISON) {
1161 		memset(p, POISON_FREE, poison_size - 1);
1162 		p[poison_size - 1] = POISON_END;
1163 	}
1164 
1165 	if (s->flags & SLAB_RED_ZONE)
1166 		memset(p + poison_size, val, s->inuse - poison_size);
1167 }
1168 
1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1170 						void *from, void *to)
1171 {
1172 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1173 	memset(from, data, to - from);
1174 }
1175 
1176 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1177 			u8 *object, char *what,
1178 			u8 *start, unsigned int value, unsigned int bytes)
1179 {
1180 	u8 *fault;
1181 	u8 *end;
1182 	u8 *addr = slab_address(slab);
1183 
1184 	metadata_access_enable();
1185 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1186 	metadata_access_disable();
1187 	if (!fault)
1188 		return 1;
1189 
1190 	end = start + bytes;
1191 	while (end > fault && end[-1] == value)
1192 		end--;
1193 
1194 	if (slab_add_kunit_errors())
1195 		goto skip_bug_print;
1196 
1197 	slab_bug(s, "%s overwritten", what);
1198 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1199 					fault, end - 1, fault - addr,
1200 					fault[0], value);
1201 	print_trailer(s, slab, object);
1202 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1203 
1204 skip_bug_print:
1205 	restore_bytes(s, what, value, fault, end);
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Object layout:
1211  *
1212  * object address
1213  * 	Bytes of the object to be managed.
1214  * 	If the freepointer may overlay the object then the free
1215  *	pointer is at the middle of the object.
1216  *
1217  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1218  * 	0xa5 (POISON_END)
1219  *
1220  * object + s->object_size
1221  * 	Padding to reach word boundary. This is also used for Redzoning.
1222  * 	Padding is extended by another word if Redzoning is enabled and
1223  * 	object_size == inuse.
1224  *
1225  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1226  * 	0xcc (RED_ACTIVE) for objects in use.
1227  *
1228  * object + s->inuse
1229  * 	Meta data starts here.
1230  *
1231  * 	A. Free pointer (if we cannot overwrite object on free)
1232  * 	B. Tracking data for SLAB_STORE_USER
1233  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1234  *	D. Padding to reach required alignment boundary or at minimum
1235  * 		one word if debugging is on to be able to detect writes
1236  * 		before the word boundary.
1237  *
1238  *	Padding is done using 0x5a (POISON_INUSE)
1239  *
1240  * object + s->size
1241  * 	Nothing is used beyond s->size.
1242  *
1243  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1244  * ignored. And therefore no slab options that rely on these boundaries
1245  * may be used with merged slabcaches.
1246  */
1247 
1248 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1249 {
1250 	unsigned long off = get_info_end(s);	/* The end of info */
1251 
1252 	if (s->flags & SLAB_STORE_USER) {
1253 		/* We also have user information there */
1254 		off += 2 * sizeof(struct track);
1255 
1256 		if (s->flags & SLAB_KMALLOC)
1257 			off += sizeof(unsigned int);
1258 	}
1259 
1260 	off += kasan_metadata_size(s, false);
1261 
1262 	if (size_from_object(s) == off)
1263 		return 1;
1264 
1265 	return check_bytes_and_report(s, slab, p, "Object padding",
1266 			p + off, POISON_INUSE, size_from_object(s) - off);
1267 }
1268 
1269 /* Check the pad bytes at the end of a slab page */
1270 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1271 {
1272 	u8 *start;
1273 	u8 *fault;
1274 	u8 *end;
1275 	u8 *pad;
1276 	int length;
1277 	int remainder;
1278 
1279 	if (!(s->flags & SLAB_POISON))
1280 		return;
1281 
1282 	start = slab_address(slab);
1283 	length = slab_size(slab);
1284 	end = start + length;
1285 	remainder = length % s->size;
1286 	if (!remainder)
1287 		return;
1288 
1289 	pad = end - remainder;
1290 	metadata_access_enable();
1291 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1292 	metadata_access_disable();
1293 	if (!fault)
1294 		return;
1295 	while (end > fault && end[-1] == POISON_INUSE)
1296 		end--;
1297 
1298 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1299 			fault, end - 1, fault - start);
1300 	print_section(KERN_ERR, "Padding ", pad, remainder);
1301 
1302 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1303 }
1304 
1305 static int check_object(struct kmem_cache *s, struct slab *slab,
1306 					void *object, u8 val)
1307 {
1308 	u8 *p = object;
1309 	u8 *endobject = object + s->object_size;
1310 	unsigned int orig_size, kasan_meta_size;
1311 
1312 	if (s->flags & SLAB_RED_ZONE) {
1313 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1314 			object - s->red_left_pad, val, s->red_left_pad))
1315 			return 0;
1316 
1317 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1318 			endobject, val, s->inuse - s->object_size))
1319 			return 0;
1320 
1321 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1322 			orig_size = get_orig_size(s, object);
1323 
1324 			if (s->object_size > orig_size  &&
1325 				!check_bytes_and_report(s, slab, object,
1326 					"kmalloc Redzone", p + orig_size,
1327 					val, s->object_size - orig_size)) {
1328 				return 0;
1329 			}
1330 		}
1331 	} else {
1332 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1333 			check_bytes_and_report(s, slab, p, "Alignment padding",
1334 				endobject, POISON_INUSE,
1335 				s->inuse - s->object_size);
1336 		}
1337 	}
1338 
1339 	if (s->flags & SLAB_POISON) {
1340 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1341 			/*
1342 			 * KASAN can save its free meta data inside of the
1343 			 * object at offset 0. Thus, skip checking the part of
1344 			 * the redzone that overlaps with the meta data.
1345 			 */
1346 			kasan_meta_size = kasan_metadata_size(s, true);
1347 			if (kasan_meta_size < s->object_size - 1 &&
1348 			    !check_bytes_and_report(s, slab, p, "Poison",
1349 					p + kasan_meta_size, POISON_FREE,
1350 					s->object_size - kasan_meta_size - 1))
1351 				return 0;
1352 			if (kasan_meta_size < s->object_size &&
1353 			    !check_bytes_and_report(s, slab, p, "End Poison",
1354 					p + s->object_size - 1, POISON_END, 1))
1355 				return 0;
1356 		}
1357 		/*
1358 		 * check_pad_bytes cleans up on its own.
1359 		 */
1360 		check_pad_bytes(s, slab, p);
1361 	}
1362 
1363 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1364 		/*
1365 		 * Object and freepointer overlap. Cannot check
1366 		 * freepointer while object is allocated.
1367 		 */
1368 		return 1;
1369 
1370 	/* Check free pointer validity */
1371 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1372 		object_err(s, slab, p, "Freepointer corrupt");
1373 		/*
1374 		 * No choice but to zap it and thus lose the remainder
1375 		 * of the free objects in this slab. May cause
1376 		 * another error because the object count is now wrong.
1377 		 */
1378 		set_freepointer(s, p, NULL);
1379 		return 0;
1380 	}
1381 	return 1;
1382 }
1383 
1384 static int check_slab(struct kmem_cache *s, struct slab *slab)
1385 {
1386 	int maxobj;
1387 
1388 	if (!folio_test_slab(slab_folio(slab))) {
1389 		slab_err(s, slab, "Not a valid slab page");
1390 		return 0;
1391 	}
1392 
1393 	maxobj = order_objects(slab_order(slab), s->size);
1394 	if (slab->objects > maxobj) {
1395 		slab_err(s, slab, "objects %u > max %u",
1396 			slab->objects, maxobj);
1397 		return 0;
1398 	}
1399 	if (slab->inuse > slab->objects) {
1400 		slab_err(s, slab, "inuse %u > max %u",
1401 			slab->inuse, slab->objects);
1402 		return 0;
1403 	}
1404 	/* Slab_pad_check fixes things up after itself */
1405 	slab_pad_check(s, slab);
1406 	return 1;
1407 }
1408 
1409 /*
1410  * Determine if a certain object in a slab is on the freelist. Must hold the
1411  * slab lock to guarantee that the chains are in a consistent state.
1412  */
1413 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1414 {
1415 	int nr = 0;
1416 	void *fp;
1417 	void *object = NULL;
1418 	int max_objects;
1419 
1420 	fp = slab->freelist;
1421 	while (fp && nr <= slab->objects) {
1422 		if (fp == search)
1423 			return 1;
1424 		if (!check_valid_pointer(s, slab, fp)) {
1425 			if (object) {
1426 				object_err(s, slab, object,
1427 					"Freechain corrupt");
1428 				set_freepointer(s, object, NULL);
1429 			} else {
1430 				slab_err(s, slab, "Freepointer corrupt");
1431 				slab->freelist = NULL;
1432 				slab->inuse = slab->objects;
1433 				slab_fix(s, "Freelist cleared");
1434 				return 0;
1435 			}
1436 			break;
1437 		}
1438 		object = fp;
1439 		fp = get_freepointer(s, object);
1440 		nr++;
1441 	}
1442 
1443 	max_objects = order_objects(slab_order(slab), s->size);
1444 	if (max_objects > MAX_OBJS_PER_PAGE)
1445 		max_objects = MAX_OBJS_PER_PAGE;
1446 
1447 	if (slab->objects != max_objects) {
1448 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1449 			 slab->objects, max_objects);
1450 		slab->objects = max_objects;
1451 		slab_fix(s, "Number of objects adjusted");
1452 	}
1453 	if (slab->inuse != slab->objects - nr) {
1454 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1455 			 slab->inuse, slab->objects - nr);
1456 		slab->inuse = slab->objects - nr;
1457 		slab_fix(s, "Object count adjusted");
1458 	}
1459 	return search == NULL;
1460 }
1461 
1462 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1463 								int alloc)
1464 {
1465 	if (s->flags & SLAB_TRACE) {
1466 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1467 			s->name,
1468 			alloc ? "alloc" : "free",
1469 			object, slab->inuse,
1470 			slab->freelist);
1471 
1472 		if (!alloc)
1473 			print_section(KERN_INFO, "Object ", (void *)object,
1474 					s->object_size);
1475 
1476 		dump_stack();
1477 	}
1478 }
1479 
1480 /*
1481  * Tracking of fully allocated slabs for debugging purposes.
1482  */
1483 static void add_full(struct kmem_cache *s,
1484 	struct kmem_cache_node *n, struct slab *slab)
1485 {
1486 	if (!(s->flags & SLAB_STORE_USER))
1487 		return;
1488 
1489 	lockdep_assert_held(&n->list_lock);
1490 	list_add(&slab->slab_list, &n->full);
1491 }
1492 
1493 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1494 {
1495 	if (!(s->flags & SLAB_STORE_USER))
1496 		return;
1497 
1498 	lockdep_assert_held(&n->list_lock);
1499 	list_del(&slab->slab_list);
1500 }
1501 
1502 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1503 {
1504 	return atomic_long_read(&n->nr_slabs);
1505 }
1506 
1507 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1508 {
1509 	struct kmem_cache_node *n = get_node(s, node);
1510 
1511 	atomic_long_inc(&n->nr_slabs);
1512 	atomic_long_add(objects, &n->total_objects);
1513 }
1514 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1515 {
1516 	struct kmem_cache_node *n = get_node(s, node);
1517 
1518 	atomic_long_dec(&n->nr_slabs);
1519 	atomic_long_sub(objects, &n->total_objects);
1520 }
1521 
1522 /* Object debug checks for alloc/free paths */
1523 static void setup_object_debug(struct kmem_cache *s, void *object)
1524 {
1525 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1526 		return;
1527 
1528 	init_object(s, object, SLUB_RED_INACTIVE);
1529 	init_tracking(s, object);
1530 }
1531 
1532 static
1533 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1534 {
1535 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1536 		return;
1537 
1538 	metadata_access_enable();
1539 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1540 	metadata_access_disable();
1541 }
1542 
1543 static inline int alloc_consistency_checks(struct kmem_cache *s,
1544 					struct slab *slab, void *object)
1545 {
1546 	if (!check_slab(s, slab))
1547 		return 0;
1548 
1549 	if (!check_valid_pointer(s, slab, object)) {
1550 		object_err(s, slab, object, "Freelist Pointer check fails");
1551 		return 0;
1552 	}
1553 
1554 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1555 		return 0;
1556 
1557 	return 1;
1558 }
1559 
1560 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1561 			struct slab *slab, void *object, int orig_size)
1562 {
1563 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1564 		if (!alloc_consistency_checks(s, slab, object))
1565 			goto bad;
1566 	}
1567 
1568 	/* Success. Perform special debug activities for allocs */
1569 	trace(s, slab, object, 1);
1570 	set_orig_size(s, object, orig_size);
1571 	init_object(s, object, SLUB_RED_ACTIVE);
1572 	return true;
1573 
1574 bad:
1575 	if (folio_test_slab(slab_folio(slab))) {
1576 		/*
1577 		 * If this is a slab page then lets do the best we can
1578 		 * to avoid issues in the future. Marking all objects
1579 		 * as used avoids touching the remaining objects.
1580 		 */
1581 		slab_fix(s, "Marking all objects used");
1582 		slab->inuse = slab->objects;
1583 		slab->freelist = NULL;
1584 	}
1585 	return false;
1586 }
1587 
1588 static inline int free_consistency_checks(struct kmem_cache *s,
1589 		struct slab *slab, void *object, unsigned long addr)
1590 {
1591 	if (!check_valid_pointer(s, slab, object)) {
1592 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1593 		return 0;
1594 	}
1595 
1596 	if (on_freelist(s, slab, object)) {
1597 		object_err(s, slab, object, "Object already free");
1598 		return 0;
1599 	}
1600 
1601 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1602 		return 0;
1603 
1604 	if (unlikely(s != slab->slab_cache)) {
1605 		if (!folio_test_slab(slab_folio(slab))) {
1606 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1607 				 object);
1608 		} else if (!slab->slab_cache) {
1609 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1610 			       object);
1611 			dump_stack();
1612 		} else
1613 			object_err(s, slab, object,
1614 					"page slab pointer corrupt.");
1615 		return 0;
1616 	}
1617 	return 1;
1618 }
1619 
1620 /*
1621  * Parse a block of slab_debug options. Blocks are delimited by ';'
1622  *
1623  * @str:    start of block
1624  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1625  * @slabs:  return start of list of slabs, or NULL when there's no list
1626  * @init:   assume this is initial parsing and not per-kmem-create parsing
1627  *
1628  * returns the start of next block if there's any, or NULL
1629  */
1630 static char *
1631 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1632 {
1633 	bool higher_order_disable = false;
1634 
1635 	/* Skip any completely empty blocks */
1636 	while (*str && *str == ';')
1637 		str++;
1638 
1639 	if (*str == ',') {
1640 		/*
1641 		 * No options but restriction on slabs. This means full
1642 		 * debugging for slabs matching a pattern.
1643 		 */
1644 		*flags = DEBUG_DEFAULT_FLAGS;
1645 		goto check_slabs;
1646 	}
1647 	*flags = 0;
1648 
1649 	/* Determine which debug features should be switched on */
1650 	for (; *str && *str != ',' && *str != ';'; str++) {
1651 		switch (tolower(*str)) {
1652 		case '-':
1653 			*flags = 0;
1654 			break;
1655 		case 'f':
1656 			*flags |= SLAB_CONSISTENCY_CHECKS;
1657 			break;
1658 		case 'z':
1659 			*flags |= SLAB_RED_ZONE;
1660 			break;
1661 		case 'p':
1662 			*flags |= SLAB_POISON;
1663 			break;
1664 		case 'u':
1665 			*flags |= SLAB_STORE_USER;
1666 			break;
1667 		case 't':
1668 			*flags |= SLAB_TRACE;
1669 			break;
1670 		case 'a':
1671 			*flags |= SLAB_FAILSLAB;
1672 			break;
1673 		case 'o':
1674 			/*
1675 			 * Avoid enabling debugging on caches if its minimum
1676 			 * order would increase as a result.
1677 			 */
1678 			higher_order_disable = true;
1679 			break;
1680 		default:
1681 			if (init)
1682 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1683 		}
1684 	}
1685 check_slabs:
1686 	if (*str == ',')
1687 		*slabs = ++str;
1688 	else
1689 		*slabs = NULL;
1690 
1691 	/* Skip over the slab list */
1692 	while (*str && *str != ';')
1693 		str++;
1694 
1695 	/* Skip any completely empty blocks */
1696 	while (*str && *str == ';')
1697 		str++;
1698 
1699 	if (init && higher_order_disable)
1700 		disable_higher_order_debug = 1;
1701 
1702 	if (*str)
1703 		return str;
1704 	else
1705 		return NULL;
1706 }
1707 
1708 static int __init setup_slub_debug(char *str)
1709 {
1710 	slab_flags_t flags;
1711 	slab_flags_t global_flags;
1712 	char *saved_str;
1713 	char *slab_list;
1714 	bool global_slub_debug_changed = false;
1715 	bool slab_list_specified = false;
1716 
1717 	global_flags = DEBUG_DEFAULT_FLAGS;
1718 	if (*str++ != '=' || !*str)
1719 		/*
1720 		 * No options specified. Switch on full debugging.
1721 		 */
1722 		goto out;
1723 
1724 	saved_str = str;
1725 	while (str) {
1726 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1727 
1728 		if (!slab_list) {
1729 			global_flags = flags;
1730 			global_slub_debug_changed = true;
1731 		} else {
1732 			slab_list_specified = true;
1733 			if (flags & SLAB_STORE_USER)
1734 				stack_depot_request_early_init();
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * For backwards compatibility, a single list of flags with list of
1740 	 * slabs means debugging is only changed for those slabs, so the global
1741 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1742 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1743 	 * long as there is no option specifying flags without a slab list.
1744 	 */
1745 	if (slab_list_specified) {
1746 		if (!global_slub_debug_changed)
1747 			global_flags = slub_debug;
1748 		slub_debug_string = saved_str;
1749 	}
1750 out:
1751 	slub_debug = global_flags;
1752 	if (slub_debug & SLAB_STORE_USER)
1753 		stack_depot_request_early_init();
1754 	if (slub_debug != 0 || slub_debug_string)
1755 		static_branch_enable(&slub_debug_enabled);
1756 	else
1757 		static_branch_disable(&slub_debug_enabled);
1758 	if ((static_branch_unlikely(&init_on_alloc) ||
1759 	     static_branch_unlikely(&init_on_free)) &&
1760 	    (slub_debug & SLAB_POISON))
1761 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1762 	return 1;
1763 }
1764 
1765 __setup("slab_debug", setup_slub_debug);
1766 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1767 
1768 /*
1769  * kmem_cache_flags - apply debugging options to the cache
1770  * @flags:		flags to set
1771  * @name:		name of the cache
1772  *
1773  * Debug option(s) are applied to @flags. In addition to the debug
1774  * option(s), if a slab name (or multiple) is specified i.e.
1775  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1776  * then only the select slabs will receive the debug option(s).
1777  */
1778 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1779 {
1780 	char *iter;
1781 	size_t len;
1782 	char *next_block;
1783 	slab_flags_t block_flags;
1784 	slab_flags_t slub_debug_local = slub_debug;
1785 
1786 	if (flags & SLAB_NO_USER_FLAGS)
1787 		return flags;
1788 
1789 	/*
1790 	 * If the slab cache is for debugging (e.g. kmemleak) then
1791 	 * don't store user (stack trace) information by default,
1792 	 * but let the user enable it via the command line below.
1793 	 */
1794 	if (flags & SLAB_NOLEAKTRACE)
1795 		slub_debug_local &= ~SLAB_STORE_USER;
1796 
1797 	len = strlen(name);
1798 	next_block = slub_debug_string;
1799 	/* Go through all blocks of debug options, see if any matches our slab's name */
1800 	while (next_block) {
1801 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1802 		if (!iter)
1803 			continue;
1804 		/* Found a block that has a slab list, search it */
1805 		while (*iter) {
1806 			char *end, *glob;
1807 			size_t cmplen;
1808 
1809 			end = strchrnul(iter, ',');
1810 			if (next_block && next_block < end)
1811 				end = next_block - 1;
1812 
1813 			glob = strnchr(iter, end - iter, '*');
1814 			if (glob)
1815 				cmplen = glob - iter;
1816 			else
1817 				cmplen = max_t(size_t, len, (end - iter));
1818 
1819 			if (!strncmp(name, iter, cmplen)) {
1820 				flags |= block_flags;
1821 				return flags;
1822 			}
1823 
1824 			if (!*end || *end == ';')
1825 				break;
1826 			iter = end + 1;
1827 		}
1828 	}
1829 
1830 	return flags | slub_debug_local;
1831 }
1832 #else /* !CONFIG_SLUB_DEBUG */
1833 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1834 static inline
1835 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1836 
1837 static inline bool alloc_debug_processing(struct kmem_cache *s,
1838 	struct slab *slab, void *object, int orig_size) { return true; }
1839 
1840 static inline bool free_debug_processing(struct kmem_cache *s,
1841 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1842 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1843 
1844 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1845 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1846 			void *object, u8 val) { return 1; }
1847 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1848 static inline void set_track(struct kmem_cache *s, void *object,
1849 			     enum track_item alloc, unsigned long addr) {}
1850 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1851 					struct slab *slab) {}
1852 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1853 					struct slab *slab) {}
1854 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1855 {
1856 	return flags;
1857 }
1858 #define slub_debug 0
1859 
1860 #define disable_higher_order_debug 0
1861 
1862 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1863 							{ return 0; }
1864 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1865 							int objects) {}
1866 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1867 							int objects) {}
1868 
1869 #ifndef CONFIG_SLUB_TINY
1870 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1871 			       void **freelist, void *nextfree)
1872 {
1873 	return false;
1874 }
1875 #endif
1876 #endif /* CONFIG_SLUB_DEBUG */
1877 
1878 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
1879 {
1880 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1881 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
1882 }
1883 
1884 #ifdef CONFIG_MEMCG_KMEM
1885 static inline void memcg_free_slab_cgroups(struct slab *slab)
1886 {
1887 	kfree(slab_objcgs(slab));
1888 	slab->memcg_data = 0;
1889 }
1890 
1891 static inline size_t obj_full_size(struct kmem_cache *s)
1892 {
1893 	/*
1894 	 * For each accounted object there is an extra space which is used
1895 	 * to store obj_cgroup membership. Charge it too.
1896 	 */
1897 	return s->size + sizeof(struct obj_cgroup *);
1898 }
1899 
1900 /*
1901  * Returns false if the allocation should fail.
1902  */
1903 static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
1904 					struct list_lru *lru,
1905 					struct obj_cgroup **objcgp,
1906 					size_t objects, gfp_t flags)
1907 {
1908 	/*
1909 	 * The obtained objcg pointer is safe to use within the current scope,
1910 	 * defined by current task or set_active_memcg() pair.
1911 	 * obj_cgroup_get() is used to get a permanent reference.
1912 	 */
1913 	struct obj_cgroup *objcg = current_obj_cgroup();
1914 	if (!objcg)
1915 		return true;
1916 
1917 	if (lru) {
1918 		int ret;
1919 		struct mem_cgroup *memcg;
1920 
1921 		memcg = get_mem_cgroup_from_objcg(objcg);
1922 		ret = memcg_list_lru_alloc(memcg, lru, flags);
1923 		css_put(&memcg->css);
1924 
1925 		if (ret)
1926 			return false;
1927 	}
1928 
1929 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
1930 		return false;
1931 
1932 	*objcgp = objcg;
1933 	return true;
1934 }
1935 
1936 /*
1937  * Returns false if the allocation should fail.
1938  */
1939 static __fastpath_inline
1940 bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
1941 			       struct obj_cgroup **objcgp, size_t objects,
1942 			       gfp_t flags)
1943 {
1944 	if (!memcg_kmem_online())
1945 		return true;
1946 
1947 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
1948 		return true;
1949 
1950 	return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
1951 						  flags));
1952 }
1953 
1954 static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
1955 					 struct obj_cgroup *objcg,
1956 					 gfp_t flags, size_t size,
1957 					 void **p)
1958 {
1959 	struct slab *slab;
1960 	unsigned long off;
1961 	size_t i;
1962 
1963 	flags &= gfp_allowed_mask;
1964 
1965 	for (i = 0; i < size; i++) {
1966 		if (likely(p[i])) {
1967 			slab = virt_to_slab(p[i]);
1968 
1969 			if (!slab_objcgs(slab) &&
1970 			    memcg_alloc_slab_cgroups(slab, s, flags, false)) {
1971 				obj_cgroup_uncharge(objcg, obj_full_size(s));
1972 				continue;
1973 			}
1974 
1975 			off = obj_to_index(s, slab, p[i]);
1976 			obj_cgroup_get(objcg);
1977 			slab_objcgs(slab)[off] = objcg;
1978 			mod_objcg_state(objcg, slab_pgdat(slab),
1979 					cache_vmstat_idx(s), obj_full_size(s));
1980 		} else {
1981 			obj_cgroup_uncharge(objcg, obj_full_size(s));
1982 		}
1983 	}
1984 }
1985 
1986 static __fastpath_inline
1987 void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
1988 				gfp_t flags, size_t size, void **p)
1989 {
1990 	if (likely(!memcg_kmem_online() || !objcg))
1991 		return;
1992 
1993 	return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
1994 }
1995 
1996 static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
1997 				   void **p, int objects,
1998 				   struct obj_cgroup **objcgs)
1999 {
2000 	for (int i = 0; i < objects; i++) {
2001 		struct obj_cgroup *objcg;
2002 		unsigned int off;
2003 
2004 		off = obj_to_index(s, slab, p[i]);
2005 		objcg = objcgs[off];
2006 		if (!objcg)
2007 			continue;
2008 
2009 		objcgs[off] = NULL;
2010 		obj_cgroup_uncharge(objcg, obj_full_size(s));
2011 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
2012 				-obj_full_size(s));
2013 		obj_cgroup_put(objcg);
2014 	}
2015 }
2016 
2017 static __fastpath_inline
2018 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2019 			  int objects)
2020 {
2021 	struct obj_cgroup **objcgs;
2022 
2023 	if (!memcg_kmem_online())
2024 		return;
2025 
2026 	objcgs = slab_objcgs(slab);
2027 	if (likely(!objcgs))
2028 		return;
2029 
2030 	__memcg_slab_free_hook(s, slab, p, objects, objcgs);
2031 }
2032 
2033 static inline
2034 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2035 			   struct obj_cgroup *objcg)
2036 {
2037 	if (objcg)
2038 		obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
2039 }
2040 #else /* CONFIG_MEMCG_KMEM */
2041 static inline void memcg_free_slab_cgroups(struct slab *slab)
2042 {
2043 }
2044 
2045 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
2046 					     struct list_lru *lru,
2047 					     struct obj_cgroup **objcgp,
2048 					     size_t objects, gfp_t flags)
2049 {
2050 	return true;
2051 }
2052 
2053 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
2054 					      struct obj_cgroup *objcg,
2055 					      gfp_t flags, size_t size,
2056 					      void **p)
2057 {
2058 }
2059 
2060 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2061 					void **p, int objects)
2062 {
2063 }
2064 
2065 static inline
2066 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2067 				 struct obj_cgroup *objcg)
2068 {
2069 }
2070 #endif /* CONFIG_MEMCG_KMEM */
2071 
2072 /*
2073  * Hooks for other subsystems that check memory allocations. In a typical
2074  * production configuration these hooks all should produce no code at all.
2075  *
2076  * Returns true if freeing of the object can proceed, false if its reuse
2077  * was delayed by KASAN quarantine, or it was returned to KFENCE.
2078  */
2079 static __always_inline
2080 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2081 {
2082 	kmemleak_free_recursive(x, s->flags);
2083 	kmsan_slab_free(s, x);
2084 
2085 	debug_check_no_locks_freed(x, s->object_size);
2086 
2087 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2088 		debug_check_no_obj_freed(x, s->object_size);
2089 
2090 	/* Use KCSAN to help debug racy use-after-free. */
2091 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2092 		__kcsan_check_access(x, s->object_size,
2093 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2094 
2095 	if (kfence_free(x))
2096 		return false;
2097 
2098 	/*
2099 	 * As memory initialization might be integrated into KASAN,
2100 	 * kasan_slab_free and initialization memset's must be
2101 	 * kept together to avoid discrepancies in behavior.
2102 	 *
2103 	 * The initialization memset's clear the object and the metadata,
2104 	 * but don't touch the SLAB redzone.
2105 	 *
2106 	 * The object's freepointer is also avoided if stored outside the
2107 	 * object.
2108 	 */
2109 	if (unlikely(init)) {
2110 		int rsize;
2111 		unsigned int inuse;
2112 
2113 		inuse = get_info_end(s);
2114 		if (!kasan_has_integrated_init())
2115 			memset(kasan_reset_tag(x), 0, s->object_size);
2116 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2117 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2118 		       s->size - inuse - rsize);
2119 	}
2120 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2121 	return !kasan_slab_free(s, x, init);
2122 }
2123 
2124 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
2125 					   void **head, void **tail,
2126 					   int *cnt)
2127 {
2128 
2129 	void *object;
2130 	void *next = *head;
2131 	void *old_tail = *tail;
2132 	bool init;
2133 
2134 	if (is_kfence_address(next)) {
2135 		slab_free_hook(s, next, false);
2136 		return false;
2137 	}
2138 
2139 	/* Head and tail of the reconstructed freelist */
2140 	*head = NULL;
2141 	*tail = NULL;
2142 
2143 	init = slab_want_init_on_free(s);
2144 
2145 	do {
2146 		object = next;
2147 		next = get_freepointer(s, object);
2148 
2149 		/* If object's reuse doesn't have to be delayed */
2150 		if (likely(slab_free_hook(s, object, init))) {
2151 			/* Move object to the new freelist */
2152 			set_freepointer(s, object, *head);
2153 			*head = object;
2154 			if (!*tail)
2155 				*tail = object;
2156 		} else {
2157 			/*
2158 			 * Adjust the reconstructed freelist depth
2159 			 * accordingly if object's reuse is delayed.
2160 			 */
2161 			--(*cnt);
2162 		}
2163 	} while (object != old_tail);
2164 
2165 	return *head != NULL;
2166 }
2167 
2168 static void *setup_object(struct kmem_cache *s, void *object)
2169 {
2170 	setup_object_debug(s, object);
2171 	object = kasan_init_slab_obj(s, object);
2172 	if (unlikely(s->ctor)) {
2173 		kasan_unpoison_new_object(s, object);
2174 		s->ctor(object);
2175 		kasan_poison_new_object(s, object);
2176 	}
2177 	return object;
2178 }
2179 
2180 /*
2181  * Slab allocation and freeing
2182  */
2183 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2184 		struct kmem_cache_order_objects oo)
2185 {
2186 	struct folio *folio;
2187 	struct slab *slab;
2188 	unsigned int order = oo_order(oo);
2189 
2190 	folio = (struct folio *)alloc_pages_node(node, flags, order);
2191 	if (!folio)
2192 		return NULL;
2193 
2194 	slab = folio_slab(folio);
2195 	__folio_set_slab(folio);
2196 	/* Make the flag visible before any changes to folio->mapping */
2197 	smp_wmb();
2198 	if (folio_is_pfmemalloc(folio))
2199 		slab_set_pfmemalloc(slab);
2200 
2201 	return slab;
2202 }
2203 
2204 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2205 /* Pre-initialize the random sequence cache */
2206 static int init_cache_random_seq(struct kmem_cache *s)
2207 {
2208 	unsigned int count = oo_objects(s->oo);
2209 	int err;
2210 
2211 	/* Bailout if already initialised */
2212 	if (s->random_seq)
2213 		return 0;
2214 
2215 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2216 	if (err) {
2217 		pr_err("SLUB: Unable to initialize free list for %s\n",
2218 			s->name);
2219 		return err;
2220 	}
2221 
2222 	/* Transform to an offset on the set of pages */
2223 	if (s->random_seq) {
2224 		unsigned int i;
2225 
2226 		for (i = 0; i < count; i++)
2227 			s->random_seq[i] *= s->size;
2228 	}
2229 	return 0;
2230 }
2231 
2232 /* Initialize each random sequence freelist per cache */
2233 static void __init init_freelist_randomization(void)
2234 {
2235 	struct kmem_cache *s;
2236 
2237 	mutex_lock(&slab_mutex);
2238 
2239 	list_for_each_entry(s, &slab_caches, list)
2240 		init_cache_random_seq(s);
2241 
2242 	mutex_unlock(&slab_mutex);
2243 }
2244 
2245 /* Get the next entry on the pre-computed freelist randomized */
2246 static void *next_freelist_entry(struct kmem_cache *s,
2247 				unsigned long *pos, void *start,
2248 				unsigned long page_limit,
2249 				unsigned long freelist_count)
2250 {
2251 	unsigned int idx;
2252 
2253 	/*
2254 	 * If the target page allocation failed, the number of objects on the
2255 	 * page might be smaller than the usual size defined by the cache.
2256 	 */
2257 	do {
2258 		idx = s->random_seq[*pos];
2259 		*pos += 1;
2260 		if (*pos >= freelist_count)
2261 			*pos = 0;
2262 	} while (unlikely(idx >= page_limit));
2263 
2264 	return (char *)start + idx;
2265 }
2266 
2267 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2268 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2269 {
2270 	void *start;
2271 	void *cur;
2272 	void *next;
2273 	unsigned long idx, pos, page_limit, freelist_count;
2274 
2275 	if (slab->objects < 2 || !s->random_seq)
2276 		return false;
2277 
2278 	freelist_count = oo_objects(s->oo);
2279 	pos = get_random_u32_below(freelist_count);
2280 
2281 	page_limit = slab->objects * s->size;
2282 	start = fixup_red_left(s, slab_address(slab));
2283 
2284 	/* First entry is used as the base of the freelist */
2285 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2286 	cur = setup_object(s, cur);
2287 	slab->freelist = cur;
2288 
2289 	for (idx = 1; idx < slab->objects; idx++) {
2290 		next = next_freelist_entry(s, &pos, start, page_limit,
2291 			freelist_count);
2292 		next = setup_object(s, next);
2293 		set_freepointer(s, cur, next);
2294 		cur = next;
2295 	}
2296 	set_freepointer(s, cur, NULL);
2297 
2298 	return true;
2299 }
2300 #else
2301 static inline int init_cache_random_seq(struct kmem_cache *s)
2302 {
2303 	return 0;
2304 }
2305 static inline void init_freelist_randomization(void) { }
2306 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2307 {
2308 	return false;
2309 }
2310 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2311 
2312 static __always_inline void account_slab(struct slab *slab, int order,
2313 					 struct kmem_cache *s, gfp_t gfp)
2314 {
2315 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2316 		memcg_alloc_slab_cgroups(slab, s, gfp, true);
2317 
2318 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2319 			    PAGE_SIZE << order);
2320 }
2321 
2322 static __always_inline void unaccount_slab(struct slab *slab, int order,
2323 					   struct kmem_cache *s)
2324 {
2325 	if (memcg_kmem_online())
2326 		memcg_free_slab_cgroups(slab);
2327 
2328 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2329 			    -(PAGE_SIZE << order));
2330 }
2331 
2332 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2333 {
2334 	struct slab *slab;
2335 	struct kmem_cache_order_objects oo = s->oo;
2336 	gfp_t alloc_gfp;
2337 	void *start, *p, *next;
2338 	int idx;
2339 	bool shuffle;
2340 
2341 	flags &= gfp_allowed_mask;
2342 
2343 	flags |= s->allocflags;
2344 
2345 	/*
2346 	 * Let the initial higher-order allocation fail under memory pressure
2347 	 * so we fall-back to the minimum order allocation.
2348 	 */
2349 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2350 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2351 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2352 
2353 	slab = alloc_slab_page(alloc_gfp, node, oo);
2354 	if (unlikely(!slab)) {
2355 		oo = s->min;
2356 		alloc_gfp = flags;
2357 		/*
2358 		 * Allocation may have failed due to fragmentation.
2359 		 * Try a lower order alloc if possible
2360 		 */
2361 		slab = alloc_slab_page(alloc_gfp, node, oo);
2362 		if (unlikely(!slab))
2363 			return NULL;
2364 		stat(s, ORDER_FALLBACK);
2365 	}
2366 
2367 	slab->objects = oo_objects(oo);
2368 	slab->inuse = 0;
2369 	slab->frozen = 0;
2370 
2371 	account_slab(slab, oo_order(oo), s, flags);
2372 
2373 	slab->slab_cache = s;
2374 
2375 	kasan_poison_slab(slab);
2376 
2377 	start = slab_address(slab);
2378 
2379 	setup_slab_debug(s, slab, start);
2380 
2381 	shuffle = shuffle_freelist(s, slab);
2382 
2383 	if (!shuffle) {
2384 		start = fixup_red_left(s, start);
2385 		start = setup_object(s, start);
2386 		slab->freelist = start;
2387 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2388 			next = p + s->size;
2389 			next = setup_object(s, next);
2390 			set_freepointer(s, p, next);
2391 			p = next;
2392 		}
2393 		set_freepointer(s, p, NULL);
2394 	}
2395 
2396 	return slab;
2397 }
2398 
2399 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2400 {
2401 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2402 		flags = kmalloc_fix_flags(flags);
2403 
2404 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2405 
2406 	return allocate_slab(s,
2407 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2408 }
2409 
2410 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2411 {
2412 	struct folio *folio = slab_folio(slab);
2413 	int order = folio_order(folio);
2414 	int pages = 1 << order;
2415 
2416 	__slab_clear_pfmemalloc(slab);
2417 	folio->mapping = NULL;
2418 	/* Make the mapping reset visible before clearing the flag */
2419 	smp_wmb();
2420 	__folio_clear_slab(folio);
2421 	mm_account_reclaimed_pages(pages);
2422 	unaccount_slab(slab, order, s);
2423 	__free_pages(&folio->page, order);
2424 }
2425 
2426 static void rcu_free_slab(struct rcu_head *h)
2427 {
2428 	struct slab *slab = container_of(h, struct slab, rcu_head);
2429 
2430 	__free_slab(slab->slab_cache, slab);
2431 }
2432 
2433 static void free_slab(struct kmem_cache *s, struct slab *slab)
2434 {
2435 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2436 		void *p;
2437 
2438 		slab_pad_check(s, slab);
2439 		for_each_object(p, s, slab_address(slab), slab->objects)
2440 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2441 	}
2442 
2443 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2444 		call_rcu(&slab->rcu_head, rcu_free_slab);
2445 	else
2446 		__free_slab(s, slab);
2447 }
2448 
2449 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2450 {
2451 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2452 	free_slab(s, slab);
2453 }
2454 
2455 /*
2456  * SLUB reuses PG_workingset bit to keep track of whether it's on
2457  * the per-node partial list.
2458  */
2459 static inline bool slab_test_node_partial(const struct slab *slab)
2460 {
2461 	return folio_test_workingset((struct folio *)slab_folio(slab));
2462 }
2463 
2464 static inline void slab_set_node_partial(struct slab *slab)
2465 {
2466 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2467 }
2468 
2469 static inline void slab_clear_node_partial(struct slab *slab)
2470 {
2471 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2472 }
2473 
2474 /*
2475  * Management of partially allocated slabs.
2476  */
2477 static inline void
2478 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2479 {
2480 	n->nr_partial++;
2481 	if (tail == DEACTIVATE_TO_TAIL)
2482 		list_add_tail(&slab->slab_list, &n->partial);
2483 	else
2484 		list_add(&slab->slab_list, &n->partial);
2485 	slab_set_node_partial(slab);
2486 }
2487 
2488 static inline void add_partial(struct kmem_cache_node *n,
2489 				struct slab *slab, int tail)
2490 {
2491 	lockdep_assert_held(&n->list_lock);
2492 	__add_partial(n, slab, tail);
2493 }
2494 
2495 static inline void remove_partial(struct kmem_cache_node *n,
2496 					struct slab *slab)
2497 {
2498 	lockdep_assert_held(&n->list_lock);
2499 	list_del(&slab->slab_list);
2500 	slab_clear_node_partial(slab);
2501 	n->nr_partial--;
2502 }
2503 
2504 /*
2505  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2506  * slab from the n->partial list. Remove only a single object from the slab, do
2507  * the alloc_debug_processing() checks and leave the slab on the list, or move
2508  * it to full list if it was the last free object.
2509  */
2510 static void *alloc_single_from_partial(struct kmem_cache *s,
2511 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2512 {
2513 	void *object;
2514 
2515 	lockdep_assert_held(&n->list_lock);
2516 
2517 	object = slab->freelist;
2518 	slab->freelist = get_freepointer(s, object);
2519 	slab->inuse++;
2520 
2521 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2522 		remove_partial(n, slab);
2523 		return NULL;
2524 	}
2525 
2526 	if (slab->inuse == slab->objects) {
2527 		remove_partial(n, slab);
2528 		add_full(s, n, slab);
2529 	}
2530 
2531 	return object;
2532 }
2533 
2534 /*
2535  * Called only for kmem_cache_debug() caches to allocate from a freshly
2536  * allocated slab. Allocate a single object instead of whole freelist
2537  * and put the slab to the partial (or full) list.
2538  */
2539 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2540 					struct slab *slab, int orig_size)
2541 {
2542 	int nid = slab_nid(slab);
2543 	struct kmem_cache_node *n = get_node(s, nid);
2544 	unsigned long flags;
2545 	void *object;
2546 
2547 
2548 	object = slab->freelist;
2549 	slab->freelist = get_freepointer(s, object);
2550 	slab->inuse = 1;
2551 
2552 	if (!alloc_debug_processing(s, slab, object, orig_size))
2553 		/*
2554 		 * It's not really expected that this would fail on a
2555 		 * freshly allocated slab, but a concurrent memory
2556 		 * corruption in theory could cause that.
2557 		 */
2558 		return NULL;
2559 
2560 	spin_lock_irqsave(&n->list_lock, flags);
2561 
2562 	if (slab->inuse == slab->objects)
2563 		add_full(s, n, slab);
2564 	else
2565 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2566 
2567 	inc_slabs_node(s, nid, slab->objects);
2568 	spin_unlock_irqrestore(&n->list_lock, flags);
2569 
2570 	return object;
2571 }
2572 
2573 #ifdef CONFIG_SLUB_CPU_PARTIAL
2574 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2575 #else
2576 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2577 				   int drain) { }
2578 #endif
2579 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2580 
2581 /*
2582  * Try to allocate a partial slab from a specific node.
2583  */
2584 static struct slab *get_partial_node(struct kmem_cache *s,
2585 				     struct kmem_cache_node *n,
2586 				     struct partial_context *pc)
2587 {
2588 	struct slab *slab, *slab2, *partial = NULL;
2589 	unsigned long flags;
2590 	unsigned int partial_slabs = 0;
2591 
2592 	/*
2593 	 * Racy check. If we mistakenly see no partial slabs then we
2594 	 * just allocate an empty slab. If we mistakenly try to get a
2595 	 * partial slab and there is none available then get_partial()
2596 	 * will return NULL.
2597 	 */
2598 	if (!n || !n->nr_partial)
2599 		return NULL;
2600 
2601 	spin_lock_irqsave(&n->list_lock, flags);
2602 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2603 		if (!pfmemalloc_match(slab, pc->flags))
2604 			continue;
2605 
2606 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2607 			void *object = alloc_single_from_partial(s, n, slab,
2608 							pc->orig_size);
2609 			if (object) {
2610 				partial = slab;
2611 				pc->object = object;
2612 				break;
2613 			}
2614 			continue;
2615 		}
2616 
2617 		remove_partial(n, slab);
2618 
2619 		if (!partial) {
2620 			partial = slab;
2621 			stat(s, ALLOC_FROM_PARTIAL);
2622 
2623 			if ((slub_get_cpu_partial(s) == 0)) {
2624 				break;
2625 			}
2626 		} else {
2627 			put_cpu_partial(s, slab, 0);
2628 			stat(s, CPU_PARTIAL_NODE);
2629 
2630 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2631 				break;
2632 			}
2633 		}
2634 	}
2635 	spin_unlock_irqrestore(&n->list_lock, flags);
2636 	return partial;
2637 }
2638 
2639 /*
2640  * Get a slab from somewhere. Search in increasing NUMA distances.
2641  */
2642 static struct slab *get_any_partial(struct kmem_cache *s,
2643 				    struct partial_context *pc)
2644 {
2645 #ifdef CONFIG_NUMA
2646 	struct zonelist *zonelist;
2647 	struct zoneref *z;
2648 	struct zone *zone;
2649 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2650 	struct slab *slab;
2651 	unsigned int cpuset_mems_cookie;
2652 
2653 	/*
2654 	 * The defrag ratio allows a configuration of the tradeoffs between
2655 	 * inter node defragmentation and node local allocations. A lower
2656 	 * defrag_ratio increases the tendency to do local allocations
2657 	 * instead of attempting to obtain partial slabs from other nodes.
2658 	 *
2659 	 * If the defrag_ratio is set to 0 then kmalloc() always
2660 	 * returns node local objects. If the ratio is higher then kmalloc()
2661 	 * may return off node objects because partial slabs are obtained
2662 	 * from other nodes and filled up.
2663 	 *
2664 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2665 	 * (which makes defrag_ratio = 1000) then every (well almost)
2666 	 * allocation will first attempt to defrag slab caches on other nodes.
2667 	 * This means scanning over all nodes to look for partial slabs which
2668 	 * may be expensive if we do it every time we are trying to find a slab
2669 	 * with available objects.
2670 	 */
2671 	if (!s->remote_node_defrag_ratio ||
2672 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2673 		return NULL;
2674 
2675 	do {
2676 		cpuset_mems_cookie = read_mems_allowed_begin();
2677 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2678 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2679 			struct kmem_cache_node *n;
2680 
2681 			n = get_node(s, zone_to_nid(zone));
2682 
2683 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2684 					n->nr_partial > s->min_partial) {
2685 				slab = get_partial_node(s, n, pc);
2686 				if (slab) {
2687 					/*
2688 					 * Don't check read_mems_allowed_retry()
2689 					 * here - if mems_allowed was updated in
2690 					 * parallel, that was a harmless race
2691 					 * between allocation and the cpuset
2692 					 * update
2693 					 */
2694 					return slab;
2695 				}
2696 			}
2697 		}
2698 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2699 #endif	/* CONFIG_NUMA */
2700 	return NULL;
2701 }
2702 
2703 /*
2704  * Get a partial slab, lock it and return it.
2705  */
2706 static struct slab *get_partial(struct kmem_cache *s, int node,
2707 				struct partial_context *pc)
2708 {
2709 	struct slab *slab;
2710 	int searchnode = node;
2711 
2712 	if (node == NUMA_NO_NODE)
2713 		searchnode = numa_mem_id();
2714 
2715 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2716 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2717 		return slab;
2718 
2719 	return get_any_partial(s, pc);
2720 }
2721 
2722 #ifndef CONFIG_SLUB_TINY
2723 
2724 #ifdef CONFIG_PREEMPTION
2725 /*
2726  * Calculate the next globally unique transaction for disambiguation
2727  * during cmpxchg. The transactions start with the cpu number and are then
2728  * incremented by CONFIG_NR_CPUS.
2729  */
2730 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2731 #else
2732 /*
2733  * No preemption supported therefore also no need to check for
2734  * different cpus.
2735  */
2736 #define TID_STEP 1
2737 #endif /* CONFIG_PREEMPTION */
2738 
2739 static inline unsigned long next_tid(unsigned long tid)
2740 {
2741 	return tid + TID_STEP;
2742 }
2743 
2744 #ifdef SLUB_DEBUG_CMPXCHG
2745 static inline unsigned int tid_to_cpu(unsigned long tid)
2746 {
2747 	return tid % TID_STEP;
2748 }
2749 
2750 static inline unsigned long tid_to_event(unsigned long tid)
2751 {
2752 	return tid / TID_STEP;
2753 }
2754 #endif
2755 
2756 static inline unsigned int init_tid(int cpu)
2757 {
2758 	return cpu;
2759 }
2760 
2761 static inline void note_cmpxchg_failure(const char *n,
2762 		const struct kmem_cache *s, unsigned long tid)
2763 {
2764 #ifdef SLUB_DEBUG_CMPXCHG
2765 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2766 
2767 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2768 
2769 #ifdef CONFIG_PREEMPTION
2770 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2771 		pr_warn("due to cpu change %d -> %d\n",
2772 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2773 	else
2774 #endif
2775 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2776 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2777 			tid_to_event(tid), tid_to_event(actual_tid));
2778 	else
2779 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2780 			actual_tid, tid, next_tid(tid));
2781 #endif
2782 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2783 }
2784 
2785 static void init_kmem_cache_cpus(struct kmem_cache *s)
2786 {
2787 	int cpu;
2788 	struct kmem_cache_cpu *c;
2789 
2790 	for_each_possible_cpu(cpu) {
2791 		c = per_cpu_ptr(s->cpu_slab, cpu);
2792 		local_lock_init(&c->lock);
2793 		c->tid = init_tid(cpu);
2794 	}
2795 }
2796 
2797 /*
2798  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2799  * unfreezes the slabs and puts it on the proper list.
2800  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2801  * by the caller.
2802  */
2803 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2804 			    void *freelist)
2805 {
2806 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2807 	int free_delta = 0;
2808 	void *nextfree, *freelist_iter, *freelist_tail;
2809 	int tail = DEACTIVATE_TO_HEAD;
2810 	unsigned long flags = 0;
2811 	struct slab new;
2812 	struct slab old;
2813 
2814 	if (READ_ONCE(slab->freelist)) {
2815 		stat(s, DEACTIVATE_REMOTE_FREES);
2816 		tail = DEACTIVATE_TO_TAIL;
2817 	}
2818 
2819 	/*
2820 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2821 	 * remember the last object in freelist_tail for later splicing.
2822 	 */
2823 	freelist_tail = NULL;
2824 	freelist_iter = freelist;
2825 	while (freelist_iter) {
2826 		nextfree = get_freepointer(s, freelist_iter);
2827 
2828 		/*
2829 		 * If 'nextfree' is invalid, it is possible that the object at
2830 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2831 		 * starting at 'freelist_iter' by skipping them.
2832 		 */
2833 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2834 			break;
2835 
2836 		freelist_tail = freelist_iter;
2837 		free_delta++;
2838 
2839 		freelist_iter = nextfree;
2840 	}
2841 
2842 	/*
2843 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2844 	 * freelist to the head of slab's freelist.
2845 	 */
2846 	do {
2847 		old.freelist = READ_ONCE(slab->freelist);
2848 		old.counters = READ_ONCE(slab->counters);
2849 		VM_BUG_ON(!old.frozen);
2850 
2851 		/* Determine target state of the slab */
2852 		new.counters = old.counters;
2853 		new.frozen = 0;
2854 		if (freelist_tail) {
2855 			new.inuse -= free_delta;
2856 			set_freepointer(s, freelist_tail, old.freelist);
2857 			new.freelist = freelist;
2858 		} else {
2859 			new.freelist = old.freelist;
2860 		}
2861 	} while (!slab_update_freelist(s, slab,
2862 		old.freelist, old.counters,
2863 		new.freelist, new.counters,
2864 		"unfreezing slab"));
2865 
2866 	/*
2867 	 * Stage three: Manipulate the slab list based on the updated state.
2868 	 */
2869 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2870 		stat(s, DEACTIVATE_EMPTY);
2871 		discard_slab(s, slab);
2872 		stat(s, FREE_SLAB);
2873 	} else if (new.freelist) {
2874 		spin_lock_irqsave(&n->list_lock, flags);
2875 		add_partial(n, slab, tail);
2876 		spin_unlock_irqrestore(&n->list_lock, flags);
2877 		stat(s, tail);
2878 	} else {
2879 		stat(s, DEACTIVATE_FULL);
2880 	}
2881 }
2882 
2883 #ifdef CONFIG_SLUB_CPU_PARTIAL
2884 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
2885 {
2886 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2887 	struct slab *slab, *slab_to_discard = NULL;
2888 	unsigned long flags = 0;
2889 
2890 	while (partial_slab) {
2891 		slab = partial_slab;
2892 		partial_slab = slab->next;
2893 
2894 		n2 = get_node(s, slab_nid(slab));
2895 		if (n != n2) {
2896 			if (n)
2897 				spin_unlock_irqrestore(&n->list_lock, flags);
2898 
2899 			n = n2;
2900 			spin_lock_irqsave(&n->list_lock, flags);
2901 		}
2902 
2903 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
2904 			slab->next = slab_to_discard;
2905 			slab_to_discard = slab;
2906 		} else {
2907 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2908 			stat(s, FREE_ADD_PARTIAL);
2909 		}
2910 	}
2911 
2912 	if (n)
2913 		spin_unlock_irqrestore(&n->list_lock, flags);
2914 
2915 	while (slab_to_discard) {
2916 		slab = slab_to_discard;
2917 		slab_to_discard = slab_to_discard->next;
2918 
2919 		stat(s, DEACTIVATE_EMPTY);
2920 		discard_slab(s, slab);
2921 		stat(s, FREE_SLAB);
2922 	}
2923 }
2924 
2925 /*
2926  * Put all the cpu partial slabs to the node partial list.
2927  */
2928 static void put_partials(struct kmem_cache *s)
2929 {
2930 	struct slab *partial_slab;
2931 	unsigned long flags;
2932 
2933 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2934 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2935 	this_cpu_write(s->cpu_slab->partial, NULL);
2936 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2937 
2938 	if (partial_slab)
2939 		__put_partials(s, partial_slab);
2940 }
2941 
2942 static void put_partials_cpu(struct kmem_cache *s,
2943 			     struct kmem_cache_cpu *c)
2944 {
2945 	struct slab *partial_slab;
2946 
2947 	partial_slab = slub_percpu_partial(c);
2948 	c->partial = NULL;
2949 
2950 	if (partial_slab)
2951 		__put_partials(s, partial_slab);
2952 }
2953 
2954 /*
2955  * Put a slab into a partial slab slot if available.
2956  *
2957  * If we did not find a slot then simply move all the partials to the
2958  * per node partial list.
2959  */
2960 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2961 {
2962 	struct slab *oldslab;
2963 	struct slab *slab_to_put = NULL;
2964 	unsigned long flags;
2965 	int slabs = 0;
2966 
2967 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2968 
2969 	oldslab = this_cpu_read(s->cpu_slab->partial);
2970 
2971 	if (oldslab) {
2972 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2973 			/*
2974 			 * Partial array is full. Move the existing set to the
2975 			 * per node partial list. Postpone the actual unfreezing
2976 			 * outside of the critical section.
2977 			 */
2978 			slab_to_put = oldslab;
2979 			oldslab = NULL;
2980 		} else {
2981 			slabs = oldslab->slabs;
2982 		}
2983 	}
2984 
2985 	slabs++;
2986 
2987 	slab->slabs = slabs;
2988 	slab->next = oldslab;
2989 
2990 	this_cpu_write(s->cpu_slab->partial, slab);
2991 
2992 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2993 
2994 	if (slab_to_put) {
2995 		__put_partials(s, slab_to_put);
2996 		stat(s, CPU_PARTIAL_DRAIN);
2997 	}
2998 }
2999 
3000 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3001 
3002 static inline void put_partials(struct kmem_cache *s) { }
3003 static inline void put_partials_cpu(struct kmem_cache *s,
3004 				    struct kmem_cache_cpu *c) { }
3005 
3006 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3007 
3008 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3009 {
3010 	unsigned long flags;
3011 	struct slab *slab;
3012 	void *freelist;
3013 
3014 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3015 
3016 	slab = c->slab;
3017 	freelist = c->freelist;
3018 
3019 	c->slab = NULL;
3020 	c->freelist = NULL;
3021 	c->tid = next_tid(c->tid);
3022 
3023 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3024 
3025 	if (slab) {
3026 		deactivate_slab(s, slab, freelist);
3027 		stat(s, CPUSLAB_FLUSH);
3028 	}
3029 }
3030 
3031 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3032 {
3033 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3034 	void *freelist = c->freelist;
3035 	struct slab *slab = c->slab;
3036 
3037 	c->slab = NULL;
3038 	c->freelist = NULL;
3039 	c->tid = next_tid(c->tid);
3040 
3041 	if (slab) {
3042 		deactivate_slab(s, slab, freelist);
3043 		stat(s, CPUSLAB_FLUSH);
3044 	}
3045 
3046 	put_partials_cpu(s, c);
3047 }
3048 
3049 struct slub_flush_work {
3050 	struct work_struct work;
3051 	struct kmem_cache *s;
3052 	bool skip;
3053 };
3054 
3055 /*
3056  * Flush cpu slab.
3057  *
3058  * Called from CPU work handler with migration disabled.
3059  */
3060 static void flush_cpu_slab(struct work_struct *w)
3061 {
3062 	struct kmem_cache *s;
3063 	struct kmem_cache_cpu *c;
3064 	struct slub_flush_work *sfw;
3065 
3066 	sfw = container_of(w, struct slub_flush_work, work);
3067 
3068 	s = sfw->s;
3069 	c = this_cpu_ptr(s->cpu_slab);
3070 
3071 	if (c->slab)
3072 		flush_slab(s, c);
3073 
3074 	put_partials(s);
3075 }
3076 
3077 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3078 {
3079 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3080 
3081 	return c->slab || slub_percpu_partial(c);
3082 }
3083 
3084 static DEFINE_MUTEX(flush_lock);
3085 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3086 
3087 static void flush_all_cpus_locked(struct kmem_cache *s)
3088 {
3089 	struct slub_flush_work *sfw;
3090 	unsigned int cpu;
3091 
3092 	lockdep_assert_cpus_held();
3093 	mutex_lock(&flush_lock);
3094 
3095 	for_each_online_cpu(cpu) {
3096 		sfw = &per_cpu(slub_flush, cpu);
3097 		if (!has_cpu_slab(cpu, s)) {
3098 			sfw->skip = true;
3099 			continue;
3100 		}
3101 		INIT_WORK(&sfw->work, flush_cpu_slab);
3102 		sfw->skip = false;
3103 		sfw->s = s;
3104 		queue_work_on(cpu, flushwq, &sfw->work);
3105 	}
3106 
3107 	for_each_online_cpu(cpu) {
3108 		sfw = &per_cpu(slub_flush, cpu);
3109 		if (sfw->skip)
3110 			continue;
3111 		flush_work(&sfw->work);
3112 	}
3113 
3114 	mutex_unlock(&flush_lock);
3115 }
3116 
3117 static void flush_all(struct kmem_cache *s)
3118 {
3119 	cpus_read_lock();
3120 	flush_all_cpus_locked(s);
3121 	cpus_read_unlock();
3122 }
3123 
3124 /*
3125  * Use the cpu notifier to insure that the cpu slabs are flushed when
3126  * necessary.
3127  */
3128 static int slub_cpu_dead(unsigned int cpu)
3129 {
3130 	struct kmem_cache *s;
3131 
3132 	mutex_lock(&slab_mutex);
3133 	list_for_each_entry(s, &slab_caches, list)
3134 		__flush_cpu_slab(s, cpu);
3135 	mutex_unlock(&slab_mutex);
3136 	return 0;
3137 }
3138 
3139 #else /* CONFIG_SLUB_TINY */
3140 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3141 static inline void flush_all(struct kmem_cache *s) { }
3142 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3143 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3144 #endif /* CONFIG_SLUB_TINY */
3145 
3146 /*
3147  * Check if the objects in a per cpu structure fit numa
3148  * locality expectations.
3149  */
3150 static inline int node_match(struct slab *slab, int node)
3151 {
3152 #ifdef CONFIG_NUMA
3153 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3154 		return 0;
3155 #endif
3156 	return 1;
3157 }
3158 
3159 #ifdef CONFIG_SLUB_DEBUG
3160 static int count_free(struct slab *slab)
3161 {
3162 	return slab->objects - slab->inuse;
3163 }
3164 
3165 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3166 {
3167 	return atomic_long_read(&n->total_objects);
3168 }
3169 
3170 /* Supports checking bulk free of a constructed freelist */
3171 static inline bool free_debug_processing(struct kmem_cache *s,
3172 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3173 	unsigned long addr, depot_stack_handle_t handle)
3174 {
3175 	bool checks_ok = false;
3176 	void *object = head;
3177 	int cnt = 0;
3178 
3179 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3180 		if (!check_slab(s, slab))
3181 			goto out;
3182 	}
3183 
3184 	if (slab->inuse < *bulk_cnt) {
3185 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3186 			 slab->inuse, *bulk_cnt);
3187 		goto out;
3188 	}
3189 
3190 next_object:
3191 
3192 	if (++cnt > *bulk_cnt)
3193 		goto out_cnt;
3194 
3195 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3196 		if (!free_consistency_checks(s, slab, object, addr))
3197 			goto out;
3198 	}
3199 
3200 	if (s->flags & SLAB_STORE_USER)
3201 		set_track_update(s, object, TRACK_FREE, addr, handle);
3202 	trace(s, slab, object, 0);
3203 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3204 	init_object(s, object, SLUB_RED_INACTIVE);
3205 
3206 	/* Reached end of constructed freelist yet? */
3207 	if (object != tail) {
3208 		object = get_freepointer(s, object);
3209 		goto next_object;
3210 	}
3211 	checks_ok = true;
3212 
3213 out_cnt:
3214 	if (cnt != *bulk_cnt) {
3215 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3216 			 *bulk_cnt, cnt);
3217 		*bulk_cnt = cnt;
3218 	}
3219 
3220 out:
3221 
3222 	if (!checks_ok)
3223 		slab_fix(s, "Object at 0x%p not freed", object);
3224 
3225 	return checks_ok;
3226 }
3227 #endif /* CONFIG_SLUB_DEBUG */
3228 
3229 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3230 static unsigned long count_partial(struct kmem_cache_node *n,
3231 					int (*get_count)(struct slab *))
3232 {
3233 	unsigned long flags;
3234 	unsigned long x = 0;
3235 	struct slab *slab;
3236 
3237 	spin_lock_irqsave(&n->list_lock, flags);
3238 	list_for_each_entry(slab, &n->partial, slab_list)
3239 		x += get_count(slab);
3240 	spin_unlock_irqrestore(&n->list_lock, flags);
3241 	return x;
3242 }
3243 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3244 
3245 #ifdef CONFIG_SLUB_DEBUG
3246 #define MAX_PARTIAL_TO_SCAN 10000
3247 
3248 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3249 {
3250 	unsigned long flags;
3251 	unsigned long x = 0;
3252 	struct slab *slab;
3253 
3254 	spin_lock_irqsave(&n->list_lock, flags);
3255 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3256 		list_for_each_entry(slab, &n->partial, slab_list)
3257 			x += slab->objects - slab->inuse;
3258 	} else {
3259 		/*
3260 		 * For a long list, approximate the total count of objects in
3261 		 * it to meet the limit on the number of slabs to scan.
3262 		 * Scan from both the list's head and tail for better accuracy.
3263 		 */
3264 		unsigned long scanned = 0;
3265 
3266 		list_for_each_entry(slab, &n->partial, slab_list) {
3267 			x += slab->objects - slab->inuse;
3268 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3269 				break;
3270 		}
3271 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3272 			x += slab->objects - slab->inuse;
3273 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3274 				break;
3275 		}
3276 		x = mult_frac(x, n->nr_partial, scanned);
3277 		x = min(x, node_nr_objs(n));
3278 	}
3279 	spin_unlock_irqrestore(&n->list_lock, flags);
3280 	return x;
3281 }
3282 
3283 static noinline void
3284 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3285 {
3286 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3287 				      DEFAULT_RATELIMIT_BURST);
3288 	int node;
3289 	struct kmem_cache_node *n;
3290 
3291 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3292 		return;
3293 
3294 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3295 		nid, gfpflags, &gfpflags);
3296 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3297 		s->name, s->object_size, s->size, oo_order(s->oo),
3298 		oo_order(s->min));
3299 
3300 	if (oo_order(s->min) > get_order(s->object_size))
3301 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3302 			s->name);
3303 
3304 	for_each_kmem_cache_node(s, node, n) {
3305 		unsigned long nr_slabs;
3306 		unsigned long nr_objs;
3307 		unsigned long nr_free;
3308 
3309 		nr_free  = count_partial_free_approx(n);
3310 		nr_slabs = node_nr_slabs(n);
3311 		nr_objs  = node_nr_objs(n);
3312 
3313 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3314 			node, nr_slabs, nr_objs, nr_free);
3315 	}
3316 }
3317 #else /* CONFIG_SLUB_DEBUG */
3318 static inline void
3319 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3320 #endif
3321 
3322 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3323 {
3324 	if (unlikely(slab_test_pfmemalloc(slab)))
3325 		return gfp_pfmemalloc_allowed(gfpflags);
3326 
3327 	return true;
3328 }
3329 
3330 #ifndef CONFIG_SLUB_TINY
3331 static inline bool
3332 __update_cpu_freelist_fast(struct kmem_cache *s,
3333 			   void *freelist_old, void *freelist_new,
3334 			   unsigned long tid)
3335 {
3336 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3337 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3338 
3339 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3340 					     &old.full, new.full);
3341 }
3342 
3343 /*
3344  * Check the slab->freelist and either transfer the freelist to the
3345  * per cpu freelist or deactivate the slab.
3346  *
3347  * The slab is still frozen if the return value is not NULL.
3348  *
3349  * If this function returns NULL then the slab has been unfrozen.
3350  */
3351 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3352 {
3353 	struct slab new;
3354 	unsigned long counters;
3355 	void *freelist;
3356 
3357 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3358 
3359 	do {
3360 		freelist = slab->freelist;
3361 		counters = slab->counters;
3362 
3363 		new.counters = counters;
3364 
3365 		new.inuse = slab->objects;
3366 		new.frozen = freelist != NULL;
3367 
3368 	} while (!__slab_update_freelist(s, slab,
3369 		freelist, counters,
3370 		NULL, new.counters,
3371 		"get_freelist"));
3372 
3373 	return freelist;
3374 }
3375 
3376 /*
3377  * Freeze the partial slab and return the pointer to the freelist.
3378  */
3379 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3380 {
3381 	struct slab new;
3382 	unsigned long counters;
3383 	void *freelist;
3384 
3385 	do {
3386 		freelist = slab->freelist;
3387 		counters = slab->counters;
3388 
3389 		new.counters = counters;
3390 		VM_BUG_ON(new.frozen);
3391 
3392 		new.inuse = slab->objects;
3393 		new.frozen = 1;
3394 
3395 	} while (!slab_update_freelist(s, slab,
3396 		freelist, counters,
3397 		NULL, new.counters,
3398 		"freeze_slab"));
3399 
3400 	return freelist;
3401 }
3402 
3403 /*
3404  * Slow path. The lockless freelist is empty or we need to perform
3405  * debugging duties.
3406  *
3407  * Processing is still very fast if new objects have been freed to the
3408  * regular freelist. In that case we simply take over the regular freelist
3409  * as the lockless freelist and zap the regular freelist.
3410  *
3411  * If that is not working then we fall back to the partial lists. We take the
3412  * first element of the freelist as the object to allocate now and move the
3413  * rest of the freelist to the lockless freelist.
3414  *
3415  * And if we were unable to get a new slab from the partial slab lists then
3416  * we need to allocate a new slab. This is the slowest path since it involves
3417  * a call to the page allocator and the setup of a new slab.
3418  *
3419  * Version of __slab_alloc to use when we know that preemption is
3420  * already disabled (which is the case for bulk allocation).
3421  */
3422 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3423 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3424 {
3425 	void *freelist;
3426 	struct slab *slab;
3427 	unsigned long flags;
3428 	struct partial_context pc;
3429 	bool try_thisnode = true;
3430 
3431 	stat(s, ALLOC_SLOWPATH);
3432 
3433 reread_slab:
3434 
3435 	slab = READ_ONCE(c->slab);
3436 	if (!slab) {
3437 		/*
3438 		 * if the node is not online or has no normal memory, just
3439 		 * ignore the node constraint
3440 		 */
3441 		if (unlikely(node != NUMA_NO_NODE &&
3442 			     !node_isset(node, slab_nodes)))
3443 			node = NUMA_NO_NODE;
3444 		goto new_slab;
3445 	}
3446 
3447 	if (unlikely(!node_match(slab, node))) {
3448 		/*
3449 		 * same as above but node_match() being false already
3450 		 * implies node != NUMA_NO_NODE
3451 		 */
3452 		if (!node_isset(node, slab_nodes)) {
3453 			node = NUMA_NO_NODE;
3454 		} else {
3455 			stat(s, ALLOC_NODE_MISMATCH);
3456 			goto deactivate_slab;
3457 		}
3458 	}
3459 
3460 	/*
3461 	 * By rights, we should be searching for a slab page that was
3462 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3463 	 * information when the page leaves the per-cpu allocator
3464 	 */
3465 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3466 		goto deactivate_slab;
3467 
3468 	/* must check again c->slab in case we got preempted and it changed */
3469 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3470 	if (unlikely(slab != c->slab)) {
3471 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3472 		goto reread_slab;
3473 	}
3474 	freelist = c->freelist;
3475 	if (freelist)
3476 		goto load_freelist;
3477 
3478 	freelist = get_freelist(s, slab);
3479 
3480 	if (!freelist) {
3481 		c->slab = NULL;
3482 		c->tid = next_tid(c->tid);
3483 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3484 		stat(s, DEACTIVATE_BYPASS);
3485 		goto new_slab;
3486 	}
3487 
3488 	stat(s, ALLOC_REFILL);
3489 
3490 load_freelist:
3491 
3492 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3493 
3494 	/*
3495 	 * freelist is pointing to the list of objects to be used.
3496 	 * slab is pointing to the slab from which the objects are obtained.
3497 	 * That slab must be frozen for per cpu allocations to work.
3498 	 */
3499 	VM_BUG_ON(!c->slab->frozen);
3500 	c->freelist = get_freepointer(s, freelist);
3501 	c->tid = next_tid(c->tid);
3502 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3503 	return freelist;
3504 
3505 deactivate_slab:
3506 
3507 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3508 	if (slab != c->slab) {
3509 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3510 		goto reread_slab;
3511 	}
3512 	freelist = c->freelist;
3513 	c->slab = NULL;
3514 	c->freelist = NULL;
3515 	c->tid = next_tid(c->tid);
3516 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3517 	deactivate_slab(s, slab, freelist);
3518 
3519 new_slab:
3520 
3521 #ifdef CONFIG_SLUB_CPU_PARTIAL
3522 	while (slub_percpu_partial(c)) {
3523 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3524 		if (unlikely(c->slab)) {
3525 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3526 			goto reread_slab;
3527 		}
3528 		if (unlikely(!slub_percpu_partial(c))) {
3529 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3530 			/* we were preempted and partial list got empty */
3531 			goto new_objects;
3532 		}
3533 
3534 		slab = slub_percpu_partial(c);
3535 		slub_set_percpu_partial(c, slab);
3536 
3537 		if (likely(node_match(slab, node) &&
3538 			   pfmemalloc_match(slab, gfpflags))) {
3539 			c->slab = slab;
3540 			freelist = get_freelist(s, slab);
3541 			VM_BUG_ON(!freelist);
3542 			stat(s, CPU_PARTIAL_ALLOC);
3543 			goto load_freelist;
3544 		}
3545 
3546 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3547 
3548 		slab->next = NULL;
3549 		__put_partials(s, slab);
3550 	}
3551 #endif
3552 
3553 new_objects:
3554 
3555 	pc.flags = gfpflags;
3556 	/*
3557 	 * When a preferred node is indicated but no __GFP_THISNODE
3558 	 *
3559 	 * 1) try to get a partial slab from target node only by having
3560 	 *    __GFP_THISNODE in pc.flags for get_partial()
3561 	 * 2) if 1) failed, try to allocate a new slab from target node with
3562 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3563 	 * 3) if 2) failed, retry with original gfpflags which will allow
3564 	 *    get_partial() try partial lists of other nodes before potentially
3565 	 *    allocating new page from other nodes
3566 	 */
3567 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3568 		     && try_thisnode))
3569 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3570 
3571 	pc.orig_size = orig_size;
3572 	slab = get_partial(s, node, &pc);
3573 	if (slab) {
3574 		if (kmem_cache_debug(s)) {
3575 			freelist = pc.object;
3576 			/*
3577 			 * For debug caches here we had to go through
3578 			 * alloc_single_from_partial() so just store the
3579 			 * tracking info and return the object.
3580 			 */
3581 			if (s->flags & SLAB_STORE_USER)
3582 				set_track(s, freelist, TRACK_ALLOC, addr);
3583 
3584 			return freelist;
3585 		}
3586 
3587 		freelist = freeze_slab(s, slab);
3588 		goto retry_load_slab;
3589 	}
3590 
3591 	slub_put_cpu_ptr(s->cpu_slab);
3592 	slab = new_slab(s, pc.flags, node);
3593 	c = slub_get_cpu_ptr(s->cpu_slab);
3594 
3595 	if (unlikely(!slab)) {
3596 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3597 		    && try_thisnode) {
3598 			try_thisnode = false;
3599 			goto new_objects;
3600 		}
3601 		slab_out_of_memory(s, gfpflags, node);
3602 		return NULL;
3603 	}
3604 
3605 	stat(s, ALLOC_SLAB);
3606 
3607 	if (kmem_cache_debug(s)) {
3608 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3609 
3610 		if (unlikely(!freelist))
3611 			goto new_objects;
3612 
3613 		if (s->flags & SLAB_STORE_USER)
3614 			set_track(s, freelist, TRACK_ALLOC, addr);
3615 
3616 		return freelist;
3617 	}
3618 
3619 	/*
3620 	 * No other reference to the slab yet so we can
3621 	 * muck around with it freely without cmpxchg
3622 	 */
3623 	freelist = slab->freelist;
3624 	slab->freelist = NULL;
3625 	slab->inuse = slab->objects;
3626 	slab->frozen = 1;
3627 
3628 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3629 
3630 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3631 		/*
3632 		 * For !pfmemalloc_match() case we don't load freelist so that
3633 		 * we don't make further mismatched allocations easier.
3634 		 */
3635 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3636 		return freelist;
3637 	}
3638 
3639 retry_load_slab:
3640 
3641 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3642 	if (unlikely(c->slab)) {
3643 		void *flush_freelist = c->freelist;
3644 		struct slab *flush_slab = c->slab;
3645 
3646 		c->slab = NULL;
3647 		c->freelist = NULL;
3648 		c->tid = next_tid(c->tid);
3649 
3650 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3651 
3652 		deactivate_slab(s, flush_slab, flush_freelist);
3653 
3654 		stat(s, CPUSLAB_FLUSH);
3655 
3656 		goto retry_load_slab;
3657 	}
3658 	c->slab = slab;
3659 
3660 	goto load_freelist;
3661 }
3662 
3663 /*
3664  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3665  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3666  * pointer.
3667  */
3668 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3669 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3670 {
3671 	void *p;
3672 
3673 #ifdef CONFIG_PREEMPT_COUNT
3674 	/*
3675 	 * We may have been preempted and rescheduled on a different
3676 	 * cpu before disabling preemption. Need to reload cpu area
3677 	 * pointer.
3678 	 */
3679 	c = slub_get_cpu_ptr(s->cpu_slab);
3680 #endif
3681 
3682 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3683 #ifdef CONFIG_PREEMPT_COUNT
3684 	slub_put_cpu_ptr(s->cpu_slab);
3685 #endif
3686 	return p;
3687 }
3688 
3689 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3690 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3691 {
3692 	struct kmem_cache_cpu *c;
3693 	struct slab *slab;
3694 	unsigned long tid;
3695 	void *object;
3696 
3697 redo:
3698 	/*
3699 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3700 	 * enabled. We may switch back and forth between cpus while
3701 	 * reading from one cpu area. That does not matter as long
3702 	 * as we end up on the original cpu again when doing the cmpxchg.
3703 	 *
3704 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3705 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3706 	 * the tid. If we are preempted and switched to another cpu between the
3707 	 * two reads, it's OK as the two are still associated with the same cpu
3708 	 * and cmpxchg later will validate the cpu.
3709 	 */
3710 	c = raw_cpu_ptr(s->cpu_slab);
3711 	tid = READ_ONCE(c->tid);
3712 
3713 	/*
3714 	 * Irqless object alloc/free algorithm used here depends on sequence
3715 	 * of fetching cpu_slab's data. tid should be fetched before anything
3716 	 * on c to guarantee that object and slab associated with previous tid
3717 	 * won't be used with current tid. If we fetch tid first, object and
3718 	 * slab could be one associated with next tid and our alloc/free
3719 	 * request will be failed. In this case, we will retry. So, no problem.
3720 	 */
3721 	barrier();
3722 
3723 	/*
3724 	 * The transaction ids are globally unique per cpu and per operation on
3725 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3726 	 * occurs on the right processor and that there was no operation on the
3727 	 * linked list in between.
3728 	 */
3729 
3730 	object = c->freelist;
3731 	slab = c->slab;
3732 
3733 	if (!USE_LOCKLESS_FAST_PATH() ||
3734 	    unlikely(!object || !slab || !node_match(slab, node))) {
3735 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3736 	} else {
3737 		void *next_object = get_freepointer_safe(s, object);
3738 
3739 		/*
3740 		 * The cmpxchg will only match if there was no additional
3741 		 * operation and if we are on the right processor.
3742 		 *
3743 		 * The cmpxchg does the following atomically (without lock
3744 		 * semantics!)
3745 		 * 1. Relocate first pointer to the current per cpu area.
3746 		 * 2. Verify that tid and freelist have not been changed
3747 		 * 3. If they were not changed replace tid and freelist
3748 		 *
3749 		 * Since this is without lock semantics the protection is only
3750 		 * against code executing on this cpu *not* from access by
3751 		 * other cpus.
3752 		 */
3753 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3754 			note_cmpxchg_failure("slab_alloc", s, tid);
3755 			goto redo;
3756 		}
3757 		prefetch_freepointer(s, next_object);
3758 		stat(s, ALLOC_FASTPATH);
3759 	}
3760 
3761 	return object;
3762 }
3763 #else /* CONFIG_SLUB_TINY */
3764 static void *__slab_alloc_node(struct kmem_cache *s,
3765 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3766 {
3767 	struct partial_context pc;
3768 	struct slab *slab;
3769 	void *object;
3770 
3771 	pc.flags = gfpflags;
3772 	pc.orig_size = orig_size;
3773 	slab = get_partial(s, node, &pc);
3774 
3775 	if (slab)
3776 		return pc.object;
3777 
3778 	slab = new_slab(s, gfpflags, node);
3779 	if (unlikely(!slab)) {
3780 		slab_out_of_memory(s, gfpflags, node);
3781 		return NULL;
3782 	}
3783 
3784 	object = alloc_single_from_new_slab(s, slab, orig_size);
3785 
3786 	return object;
3787 }
3788 #endif /* CONFIG_SLUB_TINY */
3789 
3790 /*
3791  * If the object has been wiped upon free, make sure it's fully initialized by
3792  * zeroing out freelist pointer.
3793  */
3794 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3795 						   void *obj)
3796 {
3797 	if (unlikely(slab_want_init_on_free(s)) && obj &&
3798 	    !freeptr_outside_object(s))
3799 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3800 			0, sizeof(void *));
3801 }
3802 
3803 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3804 {
3805 	if (__should_failslab(s, gfpflags))
3806 		return -ENOMEM;
3807 	return 0;
3808 }
3809 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3810 
3811 static __fastpath_inline
3812 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
3813 				       struct list_lru *lru,
3814 				       struct obj_cgroup **objcgp,
3815 				       size_t size, gfp_t flags)
3816 {
3817 	flags &= gfp_allowed_mask;
3818 
3819 	might_alloc(flags);
3820 
3821 	if (unlikely(should_failslab(s, flags)))
3822 		return NULL;
3823 
3824 	if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
3825 		return NULL;
3826 
3827 	return s;
3828 }
3829 
3830 static __fastpath_inline
3831 void slab_post_alloc_hook(struct kmem_cache *s,	struct obj_cgroup *objcg,
3832 			  gfp_t flags, size_t size, void **p, bool init,
3833 			  unsigned int orig_size)
3834 {
3835 	unsigned int zero_size = s->object_size;
3836 	bool kasan_init = init;
3837 	size_t i;
3838 	gfp_t init_flags = flags & gfp_allowed_mask;
3839 
3840 	/*
3841 	 * For kmalloc object, the allocated memory size(object_size) is likely
3842 	 * larger than the requested size(orig_size). If redzone check is
3843 	 * enabled for the extra space, don't zero it, as it will be redzoned
3844 	 * soon. The redzone operation for this extra space could be seen as a
3845 	 * replacement of current poisoning under certain debug option, and
3846 	 * won't break other sanity checks.
3847 	 */
3848 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3849 	    (s->flags & SLAB_KMALLOC))
3850 		zero_size = orig_size;
3851 
3852 	/*
3853 	 * When slab_debug is enabled, avoid memory initialization integrated
3854 	 * into KASAN and instead zero out the memory via the memset below with
3855 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3856 	 * cause false-positive reports. This does not lead to a performance
3857 	 * penalty on production builds, as slab_debug is not intended to be
3858 	 * enabled there.
3859 	 */
3860 	if (__slub_debug_enabled())
3861 		kasan_init = false;
3862 
3863 	/*
3864 	 * As memory initialization might be integrated into KASAN,
3865 	 * kasan_slab_alloc and initialization memset must be
3866 	 * kept together to avoid discrepancies in behavior.
3867 	 *
3868 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3869 	 */
3870 	for (i = 0; i < size; i++) {
3871 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3872 		if (p[i] && init && (!kasan_init ||
3873 				     !kasan_has_integrated_init()))
3874 			memset(p[i], 0, zero_size);
3875 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3876 					 s->flags, init_flags);
3877 		kmsan_slab_alloc(s, p[i], init_flags);
3878 	}
3879 
3880 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
3881 }
3882 
3883 /*
3884  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3885  * have the fastpath folded into their functions. So no function call
3886  * overhead for requests that can be satisfied on the fastpath.
3887  *
3888  * The fastpath works by first checking if the lockless freelist can be used.
3889  * If not then __slab_alloc is called for slow processing.
3890  *
3891  * Otherwise we can simply pick the next object from the lockless free list.
3892  */
3893 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3894 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3895 {
3896 	void *object;
3897 	struct obj_cgroup *objcg = NULL;
3898 	bool init = false;
3899 
3900 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3901 	if (unlikely(!s))
3902 		return NULL;
3903 
3904 	object = kfence_alloc(s, orig_size, gfpflags);
3905 	if (unlikely(object))
3906 		goto out;
3907 
3908 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3909 
3910 	maybe_wipe_obj_freeptr(s, object);
3911 	init = slab_want_init_on_alloc(gfpflags, s);
3912 
3913 out:
3914 	/*
3915 	 * When init equals 'true', like for kzalloc() family, only
3916 	 * @orig_size bytes might be zeroed instead of s->object_size
3917 	 */
3918 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3919 
3920 	return object;
3921 }
3922 
3923 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3924 {
3925 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
3926 				    s->object_size);
3927 
3928 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3929 
3930 	return ret;
3931 }
3932 EXPORT_SYMBOL(kmem_cache_alloc);
3933 
3934 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3935 			   gfp_t gfpflags)
3936 {
3937 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
3938 				    s->object_size);
3939 
3940 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3941 
3942 	return ret;
3943 }
3944 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3945 
3946 /**
3947  * kmem_cache_alloc_node - Allocate an object on the specified node
3948  * @s: The cache to allocate from.
3949  * @gfpflags: See kmalloc().
3950  * @node: node number of the target node.
3951  *
3952  * Identical to kmem_cache_alloc but it will allocate memory on the given
3953  * node, which can improve the performance for cpu bound structures.
3954  *
3955  * Fallback to other node is possible if __GFP_THISNODE is not set.
3956  *
3957  * Return: pointer to the new object or %NULL in case of error
3958  */
3959 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3960 {
3961 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3962 
3963 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3964 
3965 	return ret;
3966 }
3967 EXPORT_SYMBOL(kmem_cache_alloc_node);
3968 
3969 /*
3970  * To avoid unnecessary overhead, we pass through large allocation requests
3971  * directly to the page allocator. We use __GFP_COMP, because we will need to
3972  * know the allocation order to free the pages properly in kfree.
3973  */
3974 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
3975 {
3976 	struct folio *folio;
3977 	void *ptr = NULL;
3978 	unsigned int order = get_order(size);
3979 
3980 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3981 		flags = kmalloc_fix_flags(flags);
3982 
3983 	flags |= __GFP_COMP;
3984 	folio = (struct folio *)alloc_pages_node(node, flags, order);
3985 	if (folio) {
3986 		ptr = folio_address(folio);
3987 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
3988 				      PAGE_SIZE << order);
3989 	}
3990 
3991 	ptr = kasan_kmalloc_large(ptr, size, flags);
3992 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
3993 	kmemleak_alloc(ptr, size, 1, flags);
3994 	kmsan_kmalloc_large(ptr, size, flags);
3995 
3996 	return ptr;
3997 }
3998 
3999 void *kmalloc_large(size_t size, gfp_t flags)
4000 {
4001 	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
4002 
4003 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4004 		      flags, NUMA_NO_NODE);
4005 	return ret;
4006 }
4007 EXPORT_SYMBOL(kmalloc_large);
4008 
4009 void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4010 {
4011 	void *ret = __kmalloc_large_node(size, flags, node);
4012 
4013 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4014 		      flags, node);
4015 	return ret;
4016 }
4017 EXPORT_SYMBOL(kmalloc_large_node);
4018 
4019 static __always_inline
4020 void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
4021 			unsigned long caller)
4022 {
4023 	struct kmem_cache *s;
4024 	void *ret;
4025 
4026 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4027 		ret = __kmalloc_large_node(size, flags, node);
4028 		trace_kmalloc(caller, ret, size,
4029 			      PAGE_SIZE << get_order(size), flags, node);
4030 		return ret;
4031 	}
4032 
4033 	if (unlikely(!size))
4034 		return ZERO_SIZE_PTR;
4035 
4036 	s = kmalloc_slab(size, flags, caller);
4037 
4038 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4039 	ret = kasan_kmalloc(s, ret, size, flags);
4040 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4041 	return ret;
4042 }
4043 
4044 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4045 {
4046 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
4047 }
4048 EXPORT_SYMBOL(__kmalloc_node);
4049 
4050 void *__kmalloc(size_t size, gfp_t flags)
4051 {
4052 	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
4053 }
4054 EXPORT_SYMBOL(__kmalloc);
4055 
4056 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
4057 				  int node, unsigned long caller)
4058 {
4059 	return __do_kmalloc_node(size, flags, node, caller);
4060 }
4061 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4062 
4063 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4064 {
4065 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4066 					    _RET_IP_, size);
4067 
4068 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4069 
4070 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4071 	return ret;
4072 }
4073 EXPORT_SYMBOL(kmalloc_trace);
4074 
4075 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
4076 			 int node, size_t size)
4077 {
4078 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4079 
4080 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4081 
4082 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4083 	return ret;
4084 }
4085 EXPORT_SYMBOL(kmalloc_node_trace);
4086 
4087 static noinline void free_to_partial_list(
4088 	struct kmem_cache *s, struct slab *slab,
4089 	void *head, void *tail, int bulk_cnt,
4090 	unsigned long addr)
4091 {
4092 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4093 	struct slab *slab_free = NULL;
4094 	int cnt = bulk_cnt;
4095 	unsigned long flags;
4096 	depot_stack_handle_t handle = 0;
4097 
4098 	if (s->flags & SLAB_STORE_USER)
4099 		handle = set_track_prepare();
4100 
4101 	spin_lock_irqsave(&n->list_lock, flags);
4102 
4103 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4104 		void *prior = slab->freelist;
4105 
4106 		/* Perform the actual freeing while we still hold the locks */
4107 		slab->inuse -= cnt;
4108 		set_freepointer(s, tail, prior);
4109 		slab->freelist = head;
4110 
4111 		/*
4112 		 * If the slab is empty, and node's partial list is full,
4113 		 * it should be discarded anyway no matter it's on full or
4114 		 * partial list.
4115 		 */
4116 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4117 			slab_free = slab;
4118 
4119 		if (!prior) {
4120 			/* was on full list */
4121 			remove_full(s, n, slab);
4122 			if (!slab_free) {
4123 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4124 				stat(s, FREE_ADD_PARTIAL);
4125 			}
4126 		} else if (slab_free) {
4127 			remove_partial(n, slab);
4128 			stat(s, FREE_REMOVE_PARTIAL);
4129 		}
4130 	}
4131 
4132 	if (slab_free) {
4133 		/*
4134 		 * Update the counters while still holding n->list_lock to
4135 		 * prevent spurious validation warnings
4136 		 */
4137 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4138 	}
4139 
4140 	spin_unlock_irqrestore(&n->list_lock, flags);
4141 
4142 	if (slab_free) {
4143 		stat(s, FREE_SLAB);
4144 		free_slab(s, slab_free);
4145 	}
4146 }
4147 
4148 /*
4149  * Slow path handling. This may still be called frequently since objects
4150  * have a longer lifetime than the cpu slabs in most processing loads.
4151  *
4152  * So we still attempt to reduce cache line usage. Just take the slab
4153  * lock and free the item. If there is no additional partial slab
4154  * handling required then we can return immediately.
4155  */
4156 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4157 			void *head, void *tail, int cnt,
4158 			unsigned long addr)
4159 
4160 {
4161 	void *prior;
4162 	int was_frozen;
4163 	struct slab new;
4164 	unsigned long counters;
4165 	struct kmem_cache_node *n = NULL;
4166 	unsigned long flags;
4167 	bool on_node_partial;
4168 
4169 	stat(s, FREE_SLOWPATH);
4170 
4171 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4172 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4173 		return;
4174 	}
4175 
4176 	do {
4177 		if (unlikely(n)) {
4178 			spin_unlock_irqrestore(&n->list_lock, flags);
4179 			n = NULL;
4180 		}
4181 		prior = slab->freelist;
4182 		counters = slab->counters;
4183 		set_freepointer(s, tail, prior);
4184 		new.counters = counters;
4185 		was_frozen = new.frozen;
4186 		new.inuse -= cnt;
4187 		if ((!new.inuse || !prior) && !was_frozen) {
4188 			/* Needs to be taken off a list */
4189 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4190 
4191 				n = get_node(s, slab_nid(slab));
4192 				/*
4193 				 * Speculatively acquire the list_lock.
4194 				 * If the cmpxchg does not succeed then we may
4195 				 * drop the list_lock without any processing.
4196 				 *
4197 				 * Otherwise the list_lock will synchronize with
4198 				 * other processors updating the list of slabs.
4199 				 */
4200 				spin_lock_irqsave(&n->list_lock, flags);
4201 
4202 				on_node_partial = slab_test_node_partial(slab);
4203 			}
4204 		}
4205 
4206 	} while (!slab_update_freelist(s, slab,
4207 		prior, counters,
4208 		head, new.counters,
4209 		"__slab_free"));
4210 
4211 	if (likely(!n)) {
4212 
4213 		if (likely(was_frozen)) {
4214 			/*
4215 			 * The list lock was not taken therefore no list
4216 			 * activity can be necessary.
4217 			 */
4218 			stat(s, FREE_FROZEN);
4219 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4220 			/*
4221 			 * If we started with a full slab then put it onto the
4222 			 * per cpu partial list.
4223 			 */
4224 			put_cpu_partial(s, slab, 1);
4225 			stat(s, CPU_PARTIAL_FREE);
4226 		}
4227 
4228 		return;
4229 	}
4230 
4231 	/*
4232 	 * This slab was partially empty but not on the per-node partial list,
4233 	 * in which case we shouldn't manipulate its list, just return.
4234 	 */
4235 	if (prior && !on_node_partial) {
4236 		spin_unlock_irqrestore(&n->list_lock, flags);
4237 		return;
4238 	}
4239 
4240 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4241 		goto slab_empty;
4242 
4243 	/*
4244 	 * Objects left in the slab. If it was not on the partial list before
4245 	 * then add it.
4246 	 */
4247 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4248 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4249 		stat(s, FREE_ADD_PARTIAL);
4250 	}
4251 	spin_unlock_irqrestore(&n->list_lock, flags);
4252 	return;
4253 
4254 slab_empty:
4255 	if (prior) {
4256 		/*
4257 		 * Slab on the partial list.
4258 		 */
4259 		remove_partial(n, slab);
4260 		stat(s, FREE_REMOVE_PARTIAL);
4261 	}
4262 
4263 	spin_unlock_irqrestore(&n->list_lock, flags);
4264 	stat(s, FREE_SLAB);
4265 	discard_slab(s, slab);
4266 }
4267 
4268 #ifndef CONFIG_SLUB_TINY
4269 /*
4270  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4271  * can perform fastpath freeing without additional function calls.
4272  *
4273  * The fastpath is only possible if we are freeing to the current cpu slab
4274  * of this processor. This typically the case if we have just allocated
4275  * the item before.
4276  *
4277  * If fastpath is not possible then fall back to __slab_free where we deal
4278  * with all sorts of special processing.
4279  *
4280  * Bulk free of a freelist with several objects (all pointing to the
4281  * same slab) possible by specifying head and tail ptr, plus objects
4282  * count (cnt). Bulk free indicated by tail pointer being set.
4283  */
4284 static __always_inline void do_slab_free(struct kmem_cache *s,
4285 				struct slab *slab, void *head, void *tail,
4286 				int cnt, unsigned long addr)
4287 {
4288 	struct kmem_cache_cpu *c;
4289 	unsigned long tid;
4290 	void **freelist;
4291 
4292 redo:
4293 	/*
4294 	 * Determine the currently cpus per cpu slab.
4295 	 * The cpu may change afterward. However that does not matter since
4296 	 * data is retrieved via this pointer. If we are on the same cpu
4297 	 * during the cmpxchg then the free will succeed.
4298 	 */
4299 	c = raw_cpu_ptr(s->cpu_slab);
4300 	tid = READ_ONCE(c->tid);
4301 
4302 	/* Same with comment on barrier() in __slab_alloc_node() */
4303 	barrier();
4304 
4305 	if (unlikely(slab != c->slab)) {
4306 		__slab_free(s, slab, head, tail, cnt, addr);
4307 		return;
4308 	}
4309 
4310 	if (USE_LOCKLESS_FAST_PATH()) {
4311 		freelist = READ_ONCE(c->freelist);
4312 
4313 		set_freepointer(s, tail, freelist);
4314 
4315 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4316 			note_cmpxchg_failure("slab_free", s, tid);
4317 			goto redo;
4318 		}
4319 	} else {
4320 		/* Update the free list under the local lock */
4321 		local_lock(&s->cpu_slab->lock);
4322 		c = this_cpu_ptr(s->cpu_slab);
4323 		if (unlikely(slab != c->slab)) {
4324 			local_unlock(&s->cpu_slab->lock);
4325 			goto redo;
4326 		}
4327 		tid = c->tid;
4328 		freelist = c->freelist;
4329 
4330 		set_freepointer(s, tail, freelist);
4331 		c->freelist = head;
4332 		c->tid = next_tid(tid);
4333 
4334 		local_unlock(&s->cpu_slab->lock);
4335 	}
4336 	stat_add(s, FREE_FASTPATH, cnt);
4337 }
4338 #else /* CONFIG_SLUB_TINY */
4339 static void do_slab_free(struct kmem_cache *s,
4340 				struct slab *slab, void *head, void *tail,
4341 				int cnt, unsigned long addr)
4342 {
4343 	__slab_free(s, slab, head, tail, cnt, addr);
4344 }
4345 #endif /* CONFIG_SLUB_TINY */
4346 
4347 static __fastpath_inline
4348 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4349 	       unsigned long addr)
4350 {
4351 	memcg_slab_free_hook(s, slab, &object, 1);
4352 
4353 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4354 		do_slab_free(s, slab, object, object, 1, addr);
4355 }
4356 
4357 static __fastpath_inline
4358 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4359 		    void *tail, void **p, int cnt, unsigned long addr)
4360 {
4361 	memcg_slab_free_hook(s, slab, p, cnt);
4362 	/*
4363 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4364 	 * to remove objects, whose reuse must be delayed.
4365 	 */
4366 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4367 		do_slab_free(s, slab, head, tail, cnt, addr);
4368 }
4369 
4370 #ifdef CONFIG_KASAN_GENERIC
4371 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4372 {
4373 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4374 }
4375 #endif
4376 
4377 static inline struct kmem_cache *virt_to_cache(const void *obj)
4378 {
4379 	struct slab *slab;
4380 
4381 	slab = virt_to_slab(obj);
4382 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4383 		return NULL;
4384 	return slab->slab_cache;
4385 }
4386 
4387 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4388 {
4389 	struct kmem_cache *cachep;
4390 
4391 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4392 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4393 		return s;
4394 
4395 	cachep = virt_to_cache(x);
4396 	if (WARN(cachep && cachep != s,
4397 		 "%s: Wrong slab cache. %s but object is from %s\n",
4398 		 __func__, s->name, cachep->name))
4399 		print_tracking(cachep, x);
4400 	return cachep;
4401 }
4402 
4403 /**
4404  * kmem_cache_free - Deallocate an object
4405  * @s: The cache the allocation was from.
4406  * @x: The previously allocated object.
4407  *
4408  * Free an object which was previously allocated from this
4409  * cache.
4410  */
4411 void kmem_cache_free(struct kmem_cache *s, void *x)
4412 {
4413 	s = cache_from_obj(s, x);
4414 	if (!s)
4415 		return;
4416 	trace_kmem_cache_free(_RET_IP_, x, s);
4417 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4418 }
4419 EXPORT_SYMBOL(kmem_cache_free);
4420 
4421 static void free_large_kmalloc(struct folio *folio, void *object)
4422 {
4423 	unsigned int order = folio_order(folio);
4424 
4425 	if (WARN_ON_ONCE(order == 0))
4426 		pr_warn_once("object pointer: 0x%p\n", object);
4427 
4428 	kmemleak_free(object);
4429 	kasan_kfree_large(object);
4430 	kmsan_kfree_large(object);
4431 
4432 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4433 			      -(PAGE_SIZE << order));
4434 	folio_put(folio);
4435 }
4436 
4437 /**
4438  * kfree - free previously allocated memory
4439  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4440  *
4441  * If @object is NULL, no operation is performed.
4442  */
4443 void kfree(const void *object)
4444 {
4445 	struct folio *folio;
4446 	struct slab *slab;
4447 	struct kmem_cache *s;
4448 	void *x = (void *)object;
4449 
4450 	trace_kfree(_RET_IP_, object);
4451 
4452 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4453 		return;
4454 
4455 	folio = virt_to_folio(object);
4456 	if (unlikely(!folio_test_slab(folio))) {
4457 		free_large_kmalloc(folio, (void *)object);
4458 		return;
4459 	}
4460 
4461 	slab = folio_slab(folio);
4462 	s = slab->slab_cache;
4463 	slab_free(s, slab, x, _RET_IP_);
4464 }
4465 EXPORT_SYMBOL(kfree);
4466 
4467 struct detached_freelist {
4468 	struct slab *slab;
4469 	void *tail;
4470 	void *freelist;
4471 	int cnt;
4472 	struct kmem_cache *s;
4473 };
4474 
4475 /*
4476  * This function progressively scans the array with free objects (with
4477  * a limited look ahead) and extract objects belonging to the same
4478  * slab.  It builds a detached freelist directly within the given
4479  * slab/objects.  This can happen without any need for
4480  * synchronization, because the objects are owned by running process.
4481  * The freelist is build up as a single linked list in the objects.
4482  * The idea is, that this detached freelist can then be bulk
4483  * transferred to the real freelist(s), but only requiring a single
4484  * synchronization primitive.  Look ahead in the array is limited due
4485  * to performance reasons.
4486  */
4487 static inline
4488 int build_detached_freelist(struct kmem_cache *s, size_t size,
4489 			    void **p, struct detached_freelist *df)
4490 {
4491 	int lookahead = 3;
4492 	void *object;
4493 	struct folio *folio;
4494 	size_t same;
4495 
4496 	object = p[--size];
4497 	folio = virt_to_folio(object);
4498 	if (!s) {
4499 		/* Handle kalloc'ed objects */
4500 		if (unlikely(!folio_test_slab(folio))) {
4501 			free_large_kmalloc(folio, object);
4502 			df->slab = NULL;
4503 			return size;
4504 		}
4505 		/* Derive kmem_cache from object */
4506 		df->slab = folio_slab(folio);
4507 		df->s = df->slab->slab_cache;
4508 	} else {
4509 		df->slab = folio_slab(folio);
4510 		df->s = cache_from_obj(s, object); /* Support for memcg */
4511 	}
4512 
4513 	/* Start new detached freelist */
4514 	df->tail = object;
4515 	df->freelist = object;
4516 	df->cnt = 1;
4517 
4518 	if (is_kfence_address(object))
4519 		return size;
4520 
4521 	set_freepointer(df->s, object, NULL);
4522 
4523 	same = size;
4524 	while (size) {
4525 		object = p[--size];
4526 		/* df->slab is always set at this point */
4527 		if (df->slab == virt_to_slab(object)) {
4528 			/* Opportunity build freelist */
4529 			set_freepointer(df->s, object, df->freelist);
4530 			df->freelist = object;
4531 			df->cnt++;
4532 			same--;
4533 			if (size != same)
4534 				swap(p[size], p[same]);
4535 			continue;
4536 		}
4537 
4538 		/* Limit look ahead search */
4539 		if (!--lookahead)
4540 			break;
4541 	}
4542 
4543 	return same;
4544 }
4545 
4546 /*
4547  * Internal bulk free of objects that were not initialised by the post alloc
4548  * hooks and thus should not be processed by the free hooks
4549  */
4550 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4551 {
4552 	if (!size)
4553 		return;
4554 
4555 	do {
4556 		struct detached_freelist df;
4557 
4558 		size = build_detached_freelist(s, size, p, &df);
4559 		if (!df.slab)
4560 			continue;
4561 
4562 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4563 			     _RET_IP_);
4564 	} while (likely(size));
4565 }
4566 
4567 /* Note that interrupts must be enabled when calling this function. */
4568 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4569 {
4570 	if (!size)
4571 		return;
4572 
4573 	do {
4574 		struct detached_freelist df;
4575 
4576 		size = build_detached_freelist(s, size, p, &df);
4577 		if (!df.slab)
4578 			continue;
4579 
4580 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4581 			       df.cnt, _RET_IP_);
4582 	} while (likely(size));
4583 }
4584 EXPORT_SYMBOL(kmem_cache_free_bulk);
4585 
4586 #ifndef CONFIG_SLUB_TINY
4587 static inline
4588 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4589 			    void **p)
4590 {
4591 	struct kmem_cache_cpu *c;
4592 	unsigned long irqflags;
4593 	int i;
4594 
4595 	/*
4596 	 * Drain objects in the per cpu slab, while disabling local
4597 	 * IRQs, which protects against PREEMPT and interrupts
4598 	 * handlers invoking normal fastpath.
4599 	 */
4600 	c = slub_get_cpu_ptr(s->cpu_slab);
4601 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4602 
4603 	for (i = 0; i < size; i++) {
4604 		void *object = kfence_alloc(s, s->object_size, flags);
4605 
4606 		if (unlikely(object)) {
4607 			p[i] = object;
4608 			continue;
4609 		}
4610 
4611 		object = c->freelist;
4612 		if (unlikely(!object)) {
4613 			/*
4614 			 * We may have removed an object from c->freelist using
4615 			 * the fastpath in the previous iteration; in that case,
4616 			 * c->tid has not been bumped yet.
4617 			 * Since ___slab_alloc() may reenable interrupts while
4618 			 * allocating memory, we should bump c->tid now.
4619 			 */
4620 			c->tid = next_tid(c->tid);
4621 
4622 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4623 
4624 			/*
4625 			 * Invoking slow path likely have side-effect
4626 			 * of re-populating per CPU c->freelist
4627 			 */
4628 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4629 					    _RET_IP_, c, s->object_size);
4630 			if (unlikely(!p[i]))
4631 				goto error;
4632 
4633 			c = this_cpu_ptr(s->cpu_slab);
4634 			maybe_wipe_obj_freeptr(s, p[i]);
4635 
4636 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4637 
4638 			continue; /* goto for-loop */
4639 		}
4640 		c->freelist = get_freepointer(s, object);
4641 		p[i] = object;
4642 		maybe_wipe_obj_freeptr(s, p[i]);
4643 		stat(s, ALLOC_FASTPATH);
4644 	}
4645 	c->tid = next_tid(c->tid);
4646 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4647 	slub_put_cpu_ptr(s->cpu_slab);
4648 
4649 	return i;
4650 
4651 error:
4652 	slub_put_cpu_ptr(s->cpu_slab);
4653 	__kmem_cache_free_bulk(s, i, p);
4654 	return 0;
4655 
4656 }
4657 #else /* CONFIG_SLUB_TINY */
4658 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4659 				   size_t size, void **p)
4660 {
4661 	int i;
4662 
4663 	for (i = 0; i < size; i++) {
4664 		void *object = kfence_alloc(s, s->object_size, flags);
4665 
4666 		if (unlikely(object)) {
4667 			p[i] = object;
4668 			continue;
4669 		}
4670 
4671 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4672 					 _RET_IP_, s->object_size);
4673 		if (unlikely(!p[i]))
4674 			goto error;
4675 
4676 		maybe_wipe_obj_freeptr(s, p[i]);
4677 	}
4678 
4679 	return i;
4680 
4681 error:
4682 	__kmem_cache_free_bulk(s, i, p);
4683 	return 0;
4684 }
4685 #endif /* CONFIG_SLUB_TINY */
4686 
4687 /* Note that interrupts must be enabled when calling this function. */
4688 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4689 			  void **p)
4690 {
4691 	int i;
4692 	struct obj_cgroup *objcg = NULL;
4693 
4694 	if (!size)
4695 		return 0;
4696 
4697 	/* memcg and kmem_cache debug support */
4698 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4699 	if (unlikely(!s))
4700 		return 0;
4701 
4702 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4703 
4704 	/*
4705 	 * memcg and kmem_cache debug support and memory initialization.
4706 	 * Done outside of the IRQ disabled fastpath loop.
4707 	 */
4708 	if (likely(i != 0)) {
4709 		slab_post_alloc_hook(s, objcg, flags, size, p,
4710 			slab_want_init_on_alloc(flags, s), s->object_size);
4711 	} else {
4712 		memcg_slab_alloc_error_hook(s, size, objcg);
4713 	}
4714 
4715 	return i;
4716 }
4717 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4718 
4719 
4720 /*
4721  * Object placement in a slab is made very easy because we always start at
4722  * offset 0. If we tune the size of the object to the alignment then we can
4723  * get the required alignment by putting one properly sized object after
4724  * another.
4725  *
4726  * Notice that the allocation order determines the sizes of the per cpu
4727  * caches. Each processor has always one slab available for allocations.
4728  * Increasing the allocation order reduces the number of times that slabs
4729  * must be moved on and off the partial lists and is therefore a factor in
4730  * locking overhead.
4731  */
4732 
4733 /*
4734  * Minimum / Maximum order of slab pages. This influences locking overhead
4735  * and slab fragmentation. A higher order reduces the number of partial slabs
4736  * and increases the number of allocations possible without having to
4737  * take the list_lock.
4738  */
4739 static unsigned int slub_min_order;
4740 static unsigned int slub_max_order =
4741 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4742 static unsigned int slub_min_objects;
4743 
4744 /*
4745  * Calculate the order of allocation given an slab object size.
4746  *
4747  * The order of allocation has significant impact on performance and other
4748  * system components. Generally order 0 allocations should be preferred since
4749  * order 0 does not cause fragmentation in the page allocator. Larger objects
4750  * be problematic to put into order 0 slabs because there may be too much
4751  * unused space left. We go to a higher order if more than 1/16th of the slab
4752  * would be wasted.
4753  *
4754  * In order to reach satisfactory performance we must ensure that a minimum
4755  * number of objects is in one slab. Otherwise we may generate too much
4756  * activity on the partial lists which requires taking the list_lock. This is
4757  * less a concern for large slabs though which are rarely used.
4758  *
4759  * slab_max_order specifies the order where we begin to stop considering the
4760  * number of objects in a slab as critical. If we reach slab_max_order then
4761  * we try to keep the page order as low as possible. So we accept more waste
4762  * of space in favor of a small page order.
4763  *
4764  * Higher order allocations also allow the placement of more objects in a
4765  * slab and thereby reduce object handling overhead. If the user has
4766  * requested a higher minimum order then we start with that one instead of
4767  * the smallest order which will fit the object.
4768  */
4769 static inline unsigned int calc_slab_order(unsigned int size,
4770 		unsigned int min_order, unsigned int max_order,
4771 		unsigned int fract_leftover)
4772 {
4773 	unsigned int order;
4774 
4775 	for (order = min_order; order <= max_order; order++) {
4776 
4777 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4778 		unsigned int rem;
4779 
4780 		rem = slab_size % size;
4781 
4782 		if (rem <= slab_size / fract_leftover)
4783 			break;
4784 	}
4785 
4786 	return order;
4787 }
4788 
4789 static inline int calculate_order(unsigned int size)
4790 {
4791 	unsigned int order;
4792 	unsigned int min_objects;
4793 	unsigned int max_objects;
4794 	unsigned int min_order;
4795 
4796 	min_objects = slub_min_objects;
4797 	if (!min_objects) {
4798 		/*
4799 		 * Some architectures will only update present cpus when
4800 		 * onlining them, so don't trust the number if it's just 1. But
4801 		 * we also don't want to use nr_cpu_ids always, as on some other
4802 		 * architectures, there can be many possible cpus, but never
4803 		 * onlined. Here we compromise between trying to avoid too high
4804 		 * order on systems that appear larger than they are, and too
4805 		 * low order on systems that appear smaller than they are.
4806 		 */
4807 		unsigned int nr_cpus = num_present_cpus();
4808 		if (nr_cpus <= 1)
4809 			nr_cpus = nr_cpu_ids;
4810 		min_objects = 4 * (fls(nr_cpus) + 1);
4811 	}
4812 	/* min_objects can't be 0 because get_order(0) is undefined */
4813 	max_objects = max(order_objects(slub_max_order, size), 1U);
4814 	min_objects = min(min_objects, max_objects);
4815 
4816 	min_order = max_t(unsigned int, slub_min_order,
4817 			  get_order(min_objects * size));
4818 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4819 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4820 
4821 	/*
4822 	 * Attempt to find best configuration for a slab. This works by first
4823 	 * attempting to generate a layout with the best possible configuration
4824 	 * and backing off gradually.
4825 	 *
4826 	 * We start with accepting at most 1/16 waste and try to find the
4827 	 * smallest order from min_objects-derived/slab_min_order up to
4828 	 * slab_max_order that will satisfy the constraint. Note that increasing
4829 	 * the order can only result in same or less fractional waste, not more.
4830 	 *
4831 	 * If that fails, we increase the acceptable fraction of waste and try
4832 	 * again. The last iteration with fraction of 1/2 would effectively
4833 	 * accept any waste and give us the order determined by min_objects, as
4834 	 * long as at least single object fits within slab_max_order.
4835 	 */
4836 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4837 		order = calc_slab_order(size, min_order, slub_max_order,
4838 					fraction);
4839 		if (order <= slub_max_order)
4840 			return order;
4841 	}
4842 
4843 	/*
4844 	 * Doh this slab cannot be placed using slab_max_order.
4845 	 */
4846 	order = get_order(size);
4847 	if (order <= MAX_PAGE_ORDER)
4848 		return order;
4849 	return -ENOSYS;
4850 }
4851 
4852 static void
4853 init_kmem_cache_node(struct kmem_cache_node *n)
4854 {
4855 	n->nr_partial = 0;
4856 	spin_lock_init(&n->list_lock);
4857 	INIT_LIST_HEAD(&n->partial);
4858 #ifdef CONFIG_SLUB_DEBUG
4859 	atomic_long_set(&n->nr_slabs, 0);
4860 	atomic_long_set(&n->total_objects, 0);
4861 	INIT_LIST_HEAD(&n->full);
4862 #endif
4863 }
4864 
4865 #ifndef CONFIG_SLUB_TINY
4866 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4867 {
4868 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4869 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4870 			sizeof(struct kmem_cache_cpu));
4871 
4872 	/*
4873 	 * Must align to double word boundary for the double cmpxchg
4874 	 * instructions to work; see __pcpu_double_call_return_bool().
4875 	 */
4876 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4877 				     2 * sizeof(void *));
4878 
4879 	if (!s->cpu_slab)
4880 		return 0;
4881 
4882 	init_kmem_cache_cpus(s);
4883 
4884 	return 1;
4885 }
4886 #else
4887 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4888 {
4889 	return 1;
4890 }
4891 #endif /* CONFIG_SLUB_TINY */
4892 
4893 static struct kmem_cache *kmem_cache_node;
4894 
4895 /*
4896  * No kmalloc_node yet so do it by hand. We know that this is the first
4897  * slab on the node for this slabcache. There are no concurrent accesses
4898  * possible.
4899  *
4900  * Note that this function only works on the kmem_cache_node
4901  * when allocating for the kmem_cache_node. This is used for bootstrapping
4902  * memory on a fresh node that has no slab structures yet.
4903  */
4904 static void early_kmem_cache_node_alloc(int node)
4905 {
4906 	struct slab *slab;
4907 	struct kmem_cache_node *n;
4908 
4909 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4910 
4911 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4912 
4913 	BUG_ON(!slab);
4914 	if (slab_nid(slab) != node) {
4915 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4916 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4917 	}
4918 
4919 	n = slab->freelist;
4920 	BUG_ON(!n);
4921 #ifdef CONFIG_SLUB_DEBUG
4922 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4923 #endif
4924 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4925 	slab->freelist = get_freepointer(kmem_cache_node, n);
4926 	slab->inuse = 1;
4927 	kmem_cache_node->node[node] = n;
4928 	init_kmem_cache_node(n);
4929 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4930 
4931 	/*
4932 	 * No locks need to be taken here as it has just been
4933 	 * initialized and there is no concurrent access.
4934 	 */
4935 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4936 }
4937 
4938 static void free_kmem_cache_nodes(struct kmem_cache *s)
4939 {
4940 	int node;
4941 	struct kmem_cache_node *n;
4942 
4943 	for_each_kmem_cache_node(s, node, n) {
4944 		s->node[node] = NULL;
4945 		kmem_cache_free(kmem_cache_node, n);
4946 	}
4947 }
4948 
4949 void __kmem_cache_release(struct kmem_cache *s)
4950 {
4951 	cache_random_seq_destroy(s);
4952 #ifndef CONFIG_SLUB_TINY
4953 	free_percpu(s->cpu_slab);
4954 #endif
4955 	free_kmem_cache_nodes(s);
4956 }
4957 
4958 static int init_kmem_cache_nodes(struct kmem_cache *s)
4959 {
4960 	int node;
4961 
4962 	for_each_node_mask(node, slab_nodes) {
4963 		struct kmem_cache_node *n;
4964 
4965 		if (slab_state == DOWN) {
4966 			early_kmem_cache_node_alloc(node);
4967 			continue;
4968 		}
4969 		n = kmem_cache_alloc_node(kmem_cache_node,
4970 						GFP_KERNEL, node);
4971 
4972 		if (!n) {
4973 			free_kmem_cache_nodes(s);
4974 			return 0;
4975 		}
4976 
4977 		init_kmem_cache_node(n);
4978 		s->node[node] = n;
4979 	}
4980 	return 1;
4981 }
4982 
4983 static void set_cpu_partial(struct kmem_cache *s)
4984 {
4985 #ifdef CONFIG_SLUB_CPU_PARTIAL
4986 	unsigned int nr_objects;
4987 
4988 	/*
4989 	 * cpu_partial determined the maximum number of objects kept in the
4990 	 * per cpu partial lists of a processor.
4991 	 *
4992 	 * Per cpu partial lists mainly contain slabs that just have one
4993 	 * object freed. If they are used for allocation then they can be
4994 	 * filled up again with minimal effort. The slab will never hit the
4995 	 * per node partial lists and therefore no locking will be required.
4996 	 *
4997 	 * For backwards compatibility reasons, this is determined as number
4998 	 * of objects, even though we now limit maximum number of pages, see
4999 	 * slub_set_cpu_partial()
5000 	 */
5001 	if (!kmem_cache_has_cpu_partial(s))
5002 		nr_objects = 0;
5003 	else if (s->size >= PAGE_SIZE)
5004 		nr_objects = 6;
5005 	else if (s->size >= 1024)
5006 		nr_objects = 24;
5007 	else if (s->size >= 256)
5008 		nr_objects = 52;
5009 	else
5010 		nr_objects = 120;
5011 
5012 	slub_set_cpu_partial(s, nr_objects);
5013 #endif
5014 }
5015 
5016 /*
5017  * calculate_sizes() determines the order and the distribution of data within
5018  * a slab object.
5019  */
5020 static int calculate_sizes(struct kmem_cache *s)
5021 {
5022 	slab_flags_t flags = s->flags;
5023 	unsigned int size = s->object_size;
5024 	unsigned int order;
5025 
5026 	/*
5027 	 * Round up object size to the next word boundary. We can only
5028 	 * place the free pointer at word boundaries and this determines
5029 	 * the possible location of the free pointer.
5030 	 */
5031 	size = ALIGN(size, sizeof(void *));
5032 
5033 #ifdef CONFIG_SLUB_DEBUG
5034 	/*
5035 	 * Determine if we can poison the object itself. If the user of
5036 	 * the slab may touch the object after free or before allocation
5037 	 * then we should never poison the object itself.
5038 	 */
5039 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5040 			!s->ctor)
5041 		s->flags |= __OBJECT_POISON;
5042 	else
5043 		s->flags &= ~__OBJECT_POISON;
5044 
5045 
5046 	/*
5047 	 * If we are Redzoning then check if there is some space between the
5048 	 * end of the object and the free pointer. If not then add an
5049 	 * additional word to have some bytes to store Redzone information.
5050 	 */
5051 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5052 		size += sizeof(void *);
5053 #endif
5054 
5055 	/*
5056 	 * With that we have determined the number of bytes in actual use
5057 	 * by the object and redzoning.
5058 	 */
5059 	s->inuse = size;
5060 
5061 	if (slub_debug_orig_size(s) ||
5062 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
5063 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
5064 	    s->ctor) {
5065 		/*
5066 		 * Relocate free pointer after the object if it is not
5067 		 * permitted to overwrite the first word of the object on
5068 		 * kmem_cache_free.
5069 		 *
5070 		 * This is the case if we do RCU, have a constructor or
5071 		 * destructor, are poisoning the objects, or are
5072 		 * redzoning an object smaller than sizeof(void *).
5073 		 *
5074 		 * The assumption that s->offset >= s->inuse means free
5075 		 * pointer is outside of the object is used in the
5076 		 * freeptr_outside_object() function. If that is no
5077 		 * longer true, the function needs to be modified.
5078 		 */
5079 		s->offset = size;
5080 		size += sizeof(void *);
5081 	} else {
5082 		/*
5083 		 * Store freelist pointer near middle of object to keep
5084 		 * it away from the edges of the object to avoid small
5085 		 * sized over/underflows from neighboring allocations.
5086 		 */
5087 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5088 	}
5089 
5090 #ifdef CONFIG_SLUB_DEBUG
5091 	if (flags & SLAB_STORE_USER) {
5092 		/*
5093 		 * Need to store information about allocs and frees after
5094 		 * the object.
5095 		 */
5096 		size += 2 * sizeof(struct track);
5097 
5098 		/* Save the original kmalloc request size */
5099 		if (flags & SLAB_KMALLOC)
5100 			size += sizeof(unsigned int);
5101 	}
5102 #endif
5103 
5104 	kasan_cache_create(s, &size, &s->flags);
5105 #ifdef CONFIG_SLUB_DEBUG
5106 	if (flags & SLAB_RED_ZONE) {
5107 		/*
5108 		 * Add some empty padding so that we can catch
5109 		 * overwrites from earlier objects rather than let
5110 		 * tracking information or the free pointer be
5111 		 * corrupted if a user writes before the start
5112 		 * of the object.
5113 		 */
5114 		size += sizeof(void *);
5115 
5116 		s->red_left_pad = sizeof(void *);
5117 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5118 		size += s->red_left_pad;
5119 	}
5120 #endif
5121 
5122 	/*
5123 	 * SLUB stores one object immediately after another beginning from
5124 	 * offset 0. In order to align the objects we have to simply size
5125 	 * each object to conform to the alignment.
5126 	 */
5127 	size = ALIGN(size, s->align);
5128 	s->size = size;
5129 	s->reciprocal_size = reciprocal_value(size);
5130 	order = calculate_order(size);
5131 
5132 	if ((int)order < 0)
5133 		return 0;
5134 
5135 	s->allocflags = __GFP_COMP;
5136 
5137 	if (s->flags & SLAB_CACHE_DMA)
5138 		s->allocflags |= GFP_DMA;
5139 
5140 	if (s->flags & SLAB_CACHE_DMA32)
5141 		s->allocflags |= GFP_DMA32;
5142 
5143 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5144 		s->allocflags |= __GFP_RECLAIMABLE;
5145 
5146 	/*
5147 	 * Determine the number of objects per slab
5148 	 */
5149 	s->oo = oo_make(order, size);
5150 	s->min = oo_make(get_order(size), size);
5151 
5152 	return !!oo_objects(s->oo);
5153 }
5154 
5155 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5156 {
5157 	s->flags = kmem_cache_flags(flags, s->name);
5158 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5159 	s->random = get_random_long();
5160 #endif
5161 
5162 	if (!calculate_sizes(s))
5163 		goto error;
5164 	if (disable_higher_order_debug) {
5165 		/*
5166 		 * Disable debugging flags that store metadata if the min slab
5167 		 * order increased.
5168 		 */
5169 		if (get_order(s->size) > get_order(s->object_size)) {
5170 			s->flags &= ~DEBUG_METADATA_FLAGS;
5171 			s->offset = 0;
5172 			if (!calculate_sizes(s))
5173 				goto error;
5174 		}
5175 	}
5176 
5177 #ifdef system_has_freelist_aba
5178 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5179 		/* Enable fast mode */
5180 		s->flags |= __CMPXCHG_DOUBLE;
5181 	}
5182 #endif
5183 
5184 	/*
5185 	 * The larger the object size is, the more slabs we want on the partial
5186 	 * list to avoid pounding the page allocator excessively.
5187 	 */
5188 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5189 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5190 
5191 	set_cpu_partial(s);
5192 
5193 #ifdef CONFIG_NUMA
5194 	s->remote_node_defrag_ratio = 1000;
5195 #endif
5196 
5197 	/* Initialize the pre-computed randomized freelist if slab is up */
5198 	if (slab_state >= UP) {
5199 		if (init_cache_random_seq(s))
5200 			goto error;
5201 	}
5202 
5203 	if (!init_kmem_cache_nodes(s))
5204 		goto error;
5205 
5206 	if (alloc_kmem_cache_cpus(s))
5207 		return 0;
5208 
5209 error:
5210 	__kmem_cache_release(s);
5211 	return -EINVAL;
5212 }
5213 
5214 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5215 			      const char *text)
5216 {
5217 #ifdef CONFIG_SLUB_DEBUG
5218 	void *addr = slab_address(slab);
5219 	void *p;
5220 
5221 	slab_err(s, slab, text, s->name);
5222 
5223 	spin_lock(&object_map_lock);
5224 	__fill_map(object_map, s, slab);
5225 
5226 	for_each_object(p, s, addr, slab->objects) {
5227 
5228 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5229 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5230 			print_tracking(s, p);
5231 		}
5232 	}
5233 	spin_unlock(&object_map_lock);
5234 #endif
5235 }
5236 
5237 /*
5238  * Attempt to free all partial slabs on a node.
5239  * This is called from __kmem_cache_shutdown(). We must take list_lock
5240  * because sysfs file might still access partial list after the shutdowning.
5241  */
5242 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5243 {
5244 	LIST_HEAD(discard);
5245 	struct slab *slab, *h;
5246 
5247 	BUG_ON(irqs_disabled());
5248 	spin_lock_irq(&n->list_lock);
5249 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5250 		if (!slab->inuse) {
5251 			remove_partial(n, slab);
5252 			list_add(&slab->slab_list, &discard);
5253 		} else {
5254 			list_slab_objects(s, slab,
5255 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5256 		}
5257 	}
5258 	spin_unlock_irq(&n->list_lock);
5259 
5260 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5261 		discard_slab(s, slab);
5262 }
5263 
5264 bool __kmem_cache_empty(struct kmem_cache *s)
5265 {
5266 	int node;
5267 	struct kmem_cache_node *n;
5268 
5269 	for_each_kmem_cache_node(s, node, n)
5270 		if (n->nr_partial || node_nr_slabs(n))
5271 			return false;
5272 	return true;
5273 }
5274 
5275 /*
5276  * Release all resources used by a slab cache.
5277  */
5278 int __kmem_cache_shutdown(struct kmem_cache *s)
5279 {
5280 	int node;
5281 	struct kmem_cache_node *n;
5282 
5283 	flush_all_cpus_locked(s);
5284 	/* Attempt to free all objects */
5285 	for_each_kmem_cache_node(s, node, n) {
5286 		free_partial(s, n);
5287 		if (n->nr_partial || node_nr_slabs(n))
5288 			return 1;
5289 	}
5290 	return 0;
5291 }
5292 
5293 #ifdef CONFIG_PRINTK
5294 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5295 {
5296 	void *base;
5297 	int __maybe_unused i;
5298 	unsigned int objnr;
5299 	void *objp;
5300 	void *objp0;
5301 	struct kmem_cache *s = slab->slab_cache;
5302 	struct track __maybe_unused *trackp;
5303 
5304 	kpp->kp_ptr = object;
5305 	kpp->kp_slab = slab;
5306 	kpp->kp_slab_cache = s;
5307 	base = slab_address(slab);
5308 	objp0 = kasan_reset_tag(object);
5309 #ifdef CONFIG_SLUB_DEBUG
5310 	objp = restore_red_left(s, objp0);
5311 #else
5312 	objp = objp0;
5313 #endif
5314 	objnr = obj_to_index(s, slab, objp);
5315 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5316 	objp = base + s->size * objnr;
5317 	kpp->kp_objp = objp;
5318 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5319 			 || (objp - base) % s->size) ||
5320 	    !(s->flags & SLAB_STORE_USER))
5321 		return;
5322 #ifdef CONFIG_SLUB_DEBUG
5323 	objp = fixup_red_left(s, objp);
5324 	trackp = get_track(s, objp, TRACK_ALLOC);
5325 	kpp->kp_ret = (void *)trackp->addr;
5326 #ifdef CONFIG_STACKDEPOT
5327 	{
5328 		depot_stack_handle_t handle;
5329 		unsigned long *entries;
5330 		unsigned int nr_entries;
5331 
5332 		handle = READ_ONCE(trackp->handle);
5333 		if (handle) {
5334 			nr_entries = stack_depot_fetch(handle, &entries);
5335 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5336 				kpp->kp_stack[i] = (void *)entries[i];
5337 		}
5338 
5339 		trackp = get_track(s, objp, TRACK_FREE);
5340 		handle = READ_ONCE(trackp->handle);
5341 		if (handle) {
5342 			nr_entries = stack_depot_fetch(handle, &entries);
5343 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5344 				kpp->kp_free_stack[i] = (void *)entries[i];
5345 		}
5346 	}
5347 #endif
5348 #endif
5349 }
5350 #endif
5351 
5352 /********************************************************************
5353  *		Kmalloc subsystem
5354  *******************************************************************/
5355 
5356 static int __init setup_slub_min_order(char *str)
5357 {
5358 	get_option(&str, (int *)&slub_min_order);
5359 
5360 	if (slub_min_order > slub_max_order)
5361 		slub_max_order = slub_min_order;
5362 
5363 	return 1;
5364 }
5365 
5366 __setup("slab_min_order=", setup_slub_min_order);
5367 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5368 
5369 
5370 static int __init setup_slub_max_order(char *str)
5371 {
5372 	get_option(&str, (int *)&slub_max_order);
5373 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5374 
5375 	if (slub_min_order > slub_max_order)
5376 		slub_min_order = slub_max_order;
5377 
5378 	return 1;
5379 }
5380 
5381 __setup("slab_max_order=", setup_slub_max_order);
5382 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5383 
5384 static int __init setup_slub_min_objects(char *str)
5385 {
5386 	get_option(&str, (int *)&slub_min_objects);
5387 
5388 	return 1;
5389 }
5390 
5391 __setup("slab_min_objects=", setup_slub_min_objects);
5392 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5393 
5394 #ifdef CONFIG_HARDENED_USERCOPY
5395 /*
5396  * Rejects incorrectly sized objects and objects that are to be copied
5397  * to/from userspace but do not fall entirely within the containing slab
5398  * cache's usercopy region.
5399  *
5400  * Returns NULL if check passes, otherwise const char * to name of cache
5401  * to indicate an error.
5402  */
5403 void __check_heap_object(const void *ptr, unsigned long n,
5404 			 const struct slab *slab, bool to_user)
5405 {
5406 	struct kmem_cache *s;
5407 	unsigned int offset;
5408 	bool is_kfence = is_kfence_address(ptr);
5409 
5410 	ptr = kasan_reset_tag(ptr);
5411 
5412 	/* Find object and usable object size. */
5413 	s = slab->slab_cache;
5414 
5415 	/* Reject impossible pointers. */
5416 	if (ptr < slab_address(slab))
5417 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5418 			       to_user, 0, n);
5419 
5420 	/* Find offset within object. */
5421 	if (is_kfence)
5422 		offset = ptr - kfence_object_start(ptr);
5423 	else
5424 		offset = (ptr - slab_address(slab)) % s->size;
5425 
5426 	/* Adjust for redzone and reject if within the redzone. */
5427 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5428 		if (offset < s->red_left_pad)
5429 			usercopy_abort("SLUB object in left red zone",
5430 				       s->name, to_user, offset, n);
5431 		offset -= s->red_left_pad;
5432 	}
5433 
5434 	/* Allow address range falling entirely within usercopy region. */
5435 	if (offset >= s->useroffset &&
5436 	    offset - s->useroffset <= s->usersize &&
5437 	    n <= s->useroffset - offset + s->usersize)
5438 		return;
5439 
5440 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5441 }
5442 #endif /* CONFIG_HARDENED_USERCOPY */
5443 
5444 #define SHRINK_PROMOTE_MAX 32
5445 
5446 /*
5447  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5448  * up most to the head of the partial lists. New allocations will then
5449  * fill those up and thus they can be removed from the partial lists.
5450  *
5451  * The slabs with the least items are placed last. This results in them
5452  * being allocated from last increasing the chance that the last objects
5453  * are freed in them.
5454  */
5455 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5456 {
5457 	int node;
5458 	int i;
5459 	struct kmem_cache_node *n;
5460 	struct slab *slab;
5461 	struct slab *t;
5462 	struct list_head discard;
5463 	struct list_head promote[SHRINK_PROMOTE_MAX];
5464 	unsigned long flags;
5465 	int ret = 0;
5466 
5467 	for_each_kmem_cache_node(s, node, n) {
5468 		INIT_LIST_HEAD(&discard);
5469 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5470 			INIT_LIST_HEAD(promote + i);
5471 
5472 		spin_lock_irqsave(&n->list_lock, flags);
5473 
5474 		/*
5475 		 * Build lists of slabs to discard or promote.
5476 		 *
5477 		 * Note that concurrent frees may occur while we hold the
5478 		 * list_lock. slab->inuse here is the upper limit.
5479 		 */
5480 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5481 			int free = slab->objects - slab->inuse;
5482 
5483 			/* Do not reread slab->inuse */
5484 			barrier();
5485 
5486 			/* We do not keep full slabs on the list */
5487 			BUG_ON(free <= 0);
5488 
5489 			if (free == slab->objects) {
5490 				list_move(&slab->slab_list, &discard);
5491 				slab_clear_node_partial(slab);
5492 				n->nr_partial--;
5493 				dec_slabs_node(s, node, slab->objects);
5494 			} else if (free <= SHRINK_PROMOTE_MAX)
5495 				list_move(&slab->slab_list, promote + free - 1);
5496 		}
5497 
5498 		/*
5499 		 * Promote the slabs filled up most to the head of the
5500 		 * partial list.
5501 		 */
5502 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5503 			list_splice(promote + i, &n->partial);
5504 
5505 		spin_unlock_irqrestore(&n->list_lock, flags);
5506 
5507 		/* Release empty slabs */
5508 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5509 			free_slab(s, slab);
5510 
5511 		if (node_nr_slabs(n))
5512 			ret = 1;
5513 	}
5514 
5515 	return ret;
5516 }
5517 
5518 int __kmem_cache_shrink(struct kmem_cache *s)
5519 {
5520 	flush_all(s);
5521 	return __kmem_cache_do_shrink(s);
5522 }
5523 
5524 static int slab_mem_going_offline_callback(void *arg)
5525 {
5526 	struct kmem_cache *s;
5527 
5528 	mutex_lock(&slab_mutex);
5529 	list_for_each_entry(s, &slab_caches, list) {
5530 		flush_all_cpus_locked(s);
5531 		__kmem_cache_do_shrink(s);
5532 	}
5533 	mutex_unlock(&slab_mutex);
5534 
5535 	return 0;
5536 }
5537 
5538 static void slab_mem_offline_callback(void *arg)
5539 {
5540 	struct memory_notify *marg = arg;
5541 	int offline_node;
5542 
5543 	offline_node = marg->status_change_nid_normal;
5544 
5545 	/*
5546 	 * If the node still has available memory. we need kmem_cache_node
5547 	 * for it yet.
5548 	 */
5549 	if (offline_node < 0)
5550 		return;
5551 
5552 	mutex_lock(&slab_mutex);
5553 	node_clear(offline_node, slab_nodes);
5554 	/*
5555 	 * We no longer free kmem_cache_node structures here, as it would be
5556 	 * racy with all get_node() users, and infeasible to protect them with
5557 	 * slab_mutex.
5558 	 */
5559 	mutex_unlock(&slab_mutex);
5560 }
5561 
5562 static int slab_mem_going_online_callback(void *arg)
5563 {
5564 	struct kmem_cache_node *n;
5565 	struct kmem_cache *s;
5566 	struct memory_notify *marg = arg;
5567 	int nid = marg->status_change_nid_normal;
5568 	int ret = 0;
5569 
5570 	/*
5571 	 * If the node's memory is already available, then kmem_cache_node is
5572 	 * already created. Nothing to do.
5573 	 */
5574 	if (nid < 0)
5575 		return 0;
5576 
5577 	/*
5578 	 * We are bringing a node online. No memory is available yet. We must
5579 	 * allocate a kmem_cache_node structure in order to bring the node
5580 	 * online.
5581 	 */
5582 	mutex_lock(&slab_mutex);
5583 	list_for_each_entry(s, &slab_caches, list) {
5584 		/*
5585 		 * The structure may already exist if the node was previously
5586 		 * onlined and offlined.
5587 		 */
5588 		if (get_node(s, nid))
5589 			continue;
5590 		/*
5591 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5592 		 *      since memory is not yet available from the node that
5593 		 *      is brought up.
5594 		 */
5595 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5596 		if (!n) {
5597 			ret = -ENOMEM;
5598 			goto out;
5599 		}
5600 		init_kmem_cache_node(n);
5601 		s->node[nid] = n;
5602 	}
5603 	/*
5604 	 * Any cache created after this point will also have kmem_cache_node
5605 	 * initialized for the new node.
5606 	 */
5607 	node_set(nid, slab_nodes);
5608 out:
5609 	mutex_unlock(&slab_mutex);
5610 	return ret;
5611 }
5612 
5613 static int slab_memory_callback(struct notifier_block *self,
5614 				unsigned long action, void *arg)
5615 {
5616 	int ret = 0;
5617 
5618 	switch (action) {
5619 	case MEM_GOING_ONLINE:
5620 		ret = slab_mem_going_online_callback(arg);
5621 		break;
5622 	case MEM_GOING_OFFLINE:
5623 		ret = slab_mem_going_offline_callback(arg);
5624 		break;
5625 	case MEM_OFFLINE:
5626 	case MEM_CANCEL_ONLINE:
5627 		slab_mem_offline_callback(arg);
5628 		break;
5629 	case MEM_ONLINE:
5630 	case MEM_CANCEL_OFFLINE:
5631 		break;
5632 	}
5633 	if (ret)
5634 		ret = notifier_from_errno(ret);
5635 	else
5636 		ret = NOTIFY_OK;
5637 	return ret;
5638 }
5639 
5640 /********************************************************************
5641  *			Basic setup of slabs
5642  *******************************************************************/
5643 
5644 /*
5645  * Used for early kmem_cache structures that were allocated using
5646  * the page allocator. Allocate them properly then fix up the pointers
5647  * that may be pointing to the wrong kmem_cache structure.
5648  */
5649 
5650 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5651 {
5652 	int node;
5653 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5654 	struct kmem_cache_node *n;
5655 
5656 	memcpy(s, static_cache, kmem_cache->object_size);
5657 
5658 	/*
5659 	 * This runs very early, and only the boot processor is supposed to be
5660 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5661 	 * IPIs around.
5662 	 */
5663 	__flush_cpu_slab(s, smp_processor_id());
5664 	for_each_kmem_cache_node(s, node, n) {
5665 		struct slab *p;
5666 
5667 		list_for_each_entry(p, &n->partial, slab_list)
5668 			p->slab_cache = s;
5669 
5670 #ifdef CONFIG_SLUB_DEBUG
5671 		list_for_each_entry(p, &n->full, slab_list)
5672 			p->slab_cache = s;
5673 #endif
5674 	}
5675 	list_add(&s->list, &slab_caches);
5676 	return s;
5677 }
5678 
5679 void __init kmem_cache_init(void)
5680 {
5681 	static __initdata struct kmem_cache boot_kmem_cache,
5682 		boot_kmem_cache_node;
5683 	int node;
5684 
5685 	if (debug_guardpage_minorder())
5686 		slub_max_order = 0;
5687 
5688 	/* Print slub debugging pointers without hashing */
5689 	if (__slub_debug_enabled())
5690 		no_hash_pointers_enable(NULL);
5691 
5692 	kmem_cache_node = &boot_kmem_cache_node;
5693 	kmem_cache = &boot_kmem_cache;
5694 
5695 	/*
5696 	 * Initialize the nodemask for which we will allocate per node
5697 	 * structures. Here we don't need taking slab_mutex yet.
5698 	 */
5699 	for_each_node_state(node, N_NORMAL_MEMORY)
5700 		node_set(node, slab_nodes);
5701 
5702 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5703 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5704 
5705 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5706 
5707 	/* Able to allocate the per node structures */
5708 	slab_state = PARTIAL;
5709 
5710 	create_boot_cache(kmem_cache, "kmem_cache",
5711 			offsetof(struct kmem_cache, node) +
5712 				nr_node_ids * sizeof(struct kmem_cache_node *),
5713 		       SLAB_HWCACHE_ALIGN, 0, 0);
5714 
5715 	kmem_cache = bootstrap(&boot_kmem_cache);
5716 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5717 
5718 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5719 	setup_kmalloc_cache_index_table();
5720 	create_kmalloc_caches();
5721 
5722 	/* Setup random freelists for each cache */
5723 	init_freelist_randomization();
5724 
5725 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5726 				  slub_cpu_dead);
5727 
5728 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5729 		cache_line_size(),
5730 		slub_min_order, slub_max_order, slub_min_objects,
5731 		nr_cpu_ids, nr_node_ids);
5732 }
5733 
5734 void __init kmem_cache_init_late(void)
5735 {
5736 #ifndef CONFIG_SLUB_TINY
5737 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5738 	WARN_ON(!flushwq);
5739 #endif
5740 }
5741 
5742 struct kmem_cache *
5743 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5744 		   slab_flags_t flags, void (*ctor)(void *))
5745 {
5746 	struct kmem_cache *s;
5747 
5748 	s = find_mergeable(size, align, flags, name, ctor);
5749 	if (s) {
5750 		if (sysfs_slab_alias(s, name))
5751 			return NULL;
5752 
5753 		s->refcount++;
5754 
5755 		/*
5756 		 * Adjust the object sizes so that we clear
5757 		 * the complete object on kzalloc.
5758 		 */
5759 		s->object_size = max(s->object_size, size);
5760 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5761 	}
5762 
5763 	return s;
5764 }
5765 
5766 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5767 {
5768 	int err;
5769 
5770 	err = kmem_cache_open(s, flags);
5771 	if (err)
5772 		return err;
5773 
5774 	/* Mutex is not taken during early boot */
5775 	if (slab_state <= UP)
5776 		return 0;
5777 
5778 	err = sysfs_slab_add(s);
5779 	if (err) {
5780 		__kmem_cache_release(s);
5781 		return err;
5782 	}
5783 
5784 	if (s->flags & SLAB_STORE_USER)
5785 		debugfs_slab_add(s);
5786 
5787 	return 0;
5788 }
5789 
5790 #ifdef SLAB_SUPPORTS_SYSFS
5791 static int count_inuse(struct slab *slab)
5792 {
5793 	return slab->inuse;
5794 }
5795 
5796 static int count_total(struct slab *slab)
5797 {
5798 	return slab->objects;
5799 }
5800 #endif
5801 
5802 #ifdef CONFIG_SLUB_DEBUG
5803 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5804 			  unsigned long *obj_map)
5805 {
5806 	void *p;
5807 	void *addr = slab_address(slab);
5808 
5809 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5810 		return;
5811 
5812 	/* Now we know that a valid freelist exists */
5813 	__fill_map(obj_map, s, slab);
5814 	for_each_object(p, s, addr, slab->objects) {
5815 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5816 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5817 
5818 		if (!check_object(s, slab, p, val))
5819 			break;
5820 	}
5821 }
5822 
5823 static int validate_slab_node(struct kmem_cache *s,
5824 		struct kmem_cache_node *n, unsigned long *obj_map)
5825 {
5826 	unsigned long count = 0;
5827 	struct slab *slab;
5828 	unsigned long flags;
5829 
5830 	spin_lock_irqsave(&n->list_lock, flags);
5831 
5832 	list_for_each_entry(slab, &n->partial, slab_list) {
5833 		validate_slab(s, slab, obj_map);
5834 		count++;
5835 	}
5836 	if (count != n->nr_partial) {
5837 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5838 		       s->name, count, n->nr_partial);
5839 		slab_add_kunit_errors();
5840 	}
5841 
5842 	if (!(s->flags & SLAB_STORE_USER))
5843 		goto out;
5844 
5845 	list_for_each_entry(slab, &n->full, slab_list) {
5846 		validate_slab(s, slab, obj_map);
5847 		count++;
5848 	}
5849 	if (count != node_nr_slabs(n)) {
5850 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5851 		       s->name, count, node_nr_slabs(n));
5852 		slab_add_kunit_errors();
5853 	}
5854 
5855 out:
5856 	spin_unlock_irqrestore(&n->list_lock, flags);
5857 	return count;
5858 }
5859 
5860 long validate_slab_cache(struct kmem_cache *s)
5861 {
5862 	int node;
5863 	unsigned long count = 0;
5864 	struct kmem_cache_node *n;
5865 	unsigned long *obj_map;
5866 
5867 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5868 	if (!obj_map)
5869 		return -ENOMEM;
5870 
5871 	flush_all(s);
5872 	for_each_kmem_cache_node(s, node, n)
5873 		count += validate_slab_node(s, n, obj_map);
5874 
5875 	bitmap_free(obj_map);
5876 
5877 	return count;
5878 }
5879 EXPORT_SYMBOL(validate_slab_cache);
5880 
5881 #ifdef CONFIG_DEBUG_FS
5882 /*
5883  * Generate lists of code addresses where slabcache objects are allocated
5884  * and freed.
5885  */
5886 
5887 struct location {
5888 	depot_stack_handle_t handle;
5889 	unsigned long count;
5890 	unsigned long addr;
5891 	unsigned long waste;
5892 	long long sum_time;
5893 	long min_time;
5894 	long max_time;
5895 	long min_pid;
5896 	long max_pid;
5897 	DECLARE_BITMAP(cpus, NR_CPUS);
5898 	nodemask_t nodes;
5899 };
5900 
5901 struct loc_track {
5902 	unsigned long max;
5903 	unsigned long count;
5904 	struct location *loc;
5905 	loff_t idx;
5906 };
5907 
5908 static struct dentry *slab_debugfs_root;
5909 
5910 static void free_loc_track(struct loc_track *t)
5911 {
5912 	if (t->max)
5913 		free_pages((unsigned long)t->loc,
5914 			get_order(sizeof(struct location) * t->max));
5915 }
5916 
5917 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5918 {
5919 	struct location *l;
5920 	int order;
5921 
5922 	order = get_order(sizeof(struct location) * max);
5923 
5924 	l = (void *)__get_free_pages(flags, order);
5925 	if (!l)
5926 		return 0;
5927 
5928 	if (t->count) {
5929 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5930 		free_loc_track(t);
5931 	}
5932 	t->max = max;
5933 	t->loc = l;
5934 	return 1;
5935 }
5936 
5937 static int add_location(struct loc_track *t, struct kmem_cache *s,
5938 				const struct track *track,
5939 				unsigned int orig_size)
5940 {
5941 	long start, end, pos;
5942 	struct location *l;
5943 	unsigned long caddr, chandle, cwaste;
5944 	unsigned long age = jiffies - track->when;
5945 	depot_stack_handle_t handle = 0;
5946 	unsigned int waste = s->object_size - orig_size;
5947 
5948 #ifdef CONFIG_STACKDEPOT
5949 	handle = READ_ONCE(track->handle);
5950 #endif
5951 	start = -1;
5952 	end = t->count;
5953 
5954 	for ( ; ; ) {
5955 		pos = start + (end - start + 1) / 2;
5956 
5957 		/*
5958 		 * There is nothing at "end". If we end up there
5959 		 * we need to add something to before end.
5960 		 */
5961 		if (pos == end)
5962 			break;
5963 
5964 		l = &t->loc[pos];
5965 		caddr = l->addr;
5966 		chandle = l->handle;
5967 		cwaste = l->waste;
5968 		if ((track->addr == caddr) && (handle == chandle) &&
5969 			(waste == cwaste)) {
5970 
5971 			l->count++;
5972 			if (track->when) {
5973 				l->sum_time += age;
5974 				if (age < l->min_time)
5975 					l->min_time = age;
5976 				if (age > l->max_time)
5977 					l->max_time = age;
5978 
5979 				if (track->pid < l->min_pid)
5980 					l->min_pid = track->pid;
5981 				if (track->pid > l->max_pid)
5982 					l->max_pid = track->pid;
5983 
5984 				cpumask_set_cpu(track->cpu,
5985 						to_cpumask(l->cpus));
5986 			}
5987 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5988 			return 1;
5989 		}
5990 
5991 		if (track->addr < caddr)
5992 			end = pos;
5993 		else if (track->addr == caddr && handle < chandle)
5994 			end = pos;
5995 		else if (track->addr == caddr && handle == chandle &&
5996 				waste < cwaste)
5997 			end = pos;
5998 		else
5999 			start = pos;
6000 	}
6001 
6002 	/*
6003 	 * Not found. Insert new tracking element.
6004 	 */
6005 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6006 		return 0;
6007 
6008 	l = t->loc + pos;
6009 	if (pos < t->count)
6010 		memmove(l + 1, l,
6011 			(t->count - pos) * sizeof(struct location));
6012 	t->count++;
6013 	l->count = 1;
6014 	l->addr = track->addr;
6015 	l->sum_time = age;
6016 	l->min_time = age;
6017 	l->max_time = age;
6018 	l->min_pid = track->pid;
6019 	l->max_pid = track->pid;
6020 	l->handle = handle;
6021 	l->waste = waste;
6022 	cpumask_clear(to_cpumask(l->cpus));
6023 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6024 	nodes_clear(l->nodes);
6025 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6026 	return 1;
6027 }
6028 
6029 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6030 		struct slab *slab, enum track_item alloc,
6031 		unsigned long *obj_map)
6032 {
6033 	void *addr = slab_address(slab);
6034 	bool is_alloc = (alloc == TRACK_ALLOC);
6035 	void *p;
6036 
6037 	__fill_map(obj_map, s, slab);
6038 
6039 	for_each_object(p, s, addr, slab->objects)
6040 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6041 			add_location(t, s, get_track(s, p, alloc),
6042 				     is_alloc ? get_orig_size(s, p) :
6043 						s->object_size);
6044 }
6045 #endif  /* CONFIG_DEBUG_FS   */
6046 #endif	/* CONFIG_SLUB_DEBUG */
6047 
6048 #ifdef SLAB_SUPPORTS_SYSFS
6049 enum slab_stat_type {
6050 	SL_ALL,			/* All slabs */
6051 	SL_PARTIAL,		/* Only partially allocated slabs */
6052 	SL_CPU,			/* Only slabs used for cpu caches */
6053 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6054 	SL_TOTAL		/* Determine object capacity not slabs */
6055 };
6056 
6057 #define SO_ALL		(1 << SL_ALL)
6058 #define SO_PARTIAL	(1 << SL_PARTIAL)
6059 #define SO_CPU		(1 << SL_CPU)
6060 #define SO_OBJECTS	(1 << SL_OBJECTS)
6061 #define SO_TOTAL	(1 << SL_TOTAL)
6062 
6063 static ssize_t show_slab_objects(struct kmem_cache *s,
6064 				 char *buf, unsigned long flags)
6065 {
6066 	unsigned long total = 0;
6067 	int node;
6068 	int x;
6069 	unsigned long *nodes;
6070 	int len = 0;
6071 
6072 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6073 	if (!nodes)
6074 		return -ENOMEM;
6075 
6076 	if (flags & SO_CPU) {
6077 		int cpu;
6078 
6079 		for_each_possible_cpu(cpu) {
6080 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6081 							       cpu);
6082 			int node;
6083 			struct slab *slab;
6084 
6085 			slab = READ_ONCE(c->slab);
6086 			if (!slab)
6087 				continue;
6088 
6089 			node = slab_nid(slab);
6090 			if (flags & SO_TOTAL)
6091 				x = slab->objects;
6092 			else if (flags & SO_OBJECTS)
6093 				x = slab->inuse;
6094 			else
6095 				x = 1;
6096 
6097 			total += x;
6098 			nodes[node] += x;
6099 
6100 #ifdef CONFIG_SLUB_CPU_PARTIAL
6101 			slab = slub_percpu_partial_read_once(c);
6102 			if (slab) {
6103 				node = slab_nid(slab);
6104 				if (flags & SO_TOTAL)
6105 					WARN_ON_ONCE(1);
6106 				else if (flags & SO_OBJECTS)
6107 					WARN_ON_ONCE(1);
6108 				else
6109 					x = data_race(slab->slabs);
6110 				total += x;
6111 				nodes[node] += x;
6112 			}
6113 #endif
6114 		}
6115 	}
6116 
6117 	/*
6118 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6119 	 * already held which will conflict with an existing lock order:
6120 	 *
6121 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6122 	 *
6123 	 * We don't really need mem_hotplug_lock (to hold off
6124 	 * slab_mem_going_offline_callback) here because slab's memory hot
6125 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6126 	 */
6127 
6128 #ifdef CONFIG_SLUB_DEBUG
6129 	if (flags & SO_ALL) {
6130 		struct kmem_cache_node *n;
6131 
6132 		for_each_kmem_cache_node(s, node, n) {
6133 
6134 			if (flags & SO_TOTAL)
6135 				x = node_nr_objs(n);
6136 			else if (flags & SO_OBJECTS)
6137 				x = node_nr_objs(n) - count_partial(n, count_free);
6138 			else
6139 				x = node_nr_slabs(n);
6140 			total += x;
6141 			nodes[node] += x;
6142 		}
6143 
6144 	} else
6145 #endif
6146 	if (flags & SO_PARTIAL) {
6147 		struct kmem_cache_node *n;
6148 
6149 		for_each_kmem_cache_node(s, node, n) {
6150 			if (flags & SO_TOTAL)
6151 				x = count_partial(n, count_total);
6152 			else if (flags & SO_OBJECTS)
6153 				x = count_partial(n, count_inuse);
6154 			else
6155 				x = n->nr_partial;
6156 			total += x;
6157 			nodes[node] += x;
6158 		}
6159 	}
6160 
6161 	len += sysfs_emit_at(buf, len, "%lu", total);
6162 #ifdef CONFIG_NUMA
6163 	for (node = 0; node < nr_node_ids; node++) {
6164 		if (nodes[node])
6165 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6166 					     node, nodes[node]);
6167 	}
6168 #endif
6169 	len += sysfs_emit_at(buf, len, "\n");
6170 	kfree(nodes);
6171 
6172 	return len;
6173 }
6174 
6175 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6176 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6177 
6178 struct slab_attribute {
6179 	struct attribute attr;
6180 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6181 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6182 };
6183 
6184 #define SLAB_ATTR_RO(_name) \
6185 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6186 
6187 #define SLAB_ATTR(_name) \
6188 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6189 
6190 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6191 {
6192 	return sysfs_emit(buf, "%u\n", s->size);
6193 }
6194 SLAB_ATTR_RO(slab_size);
6195 
6196 static ssize_t align_show(struct kmem_cache *s, char *buf)
6197 {
6198 	return sysfs_emit(buf, "%u\n", s->align);
6199 }
6200 SLAB_ATTR_RO(align);
6201 
6202 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6203 {
6204 	return sysfs_emit(buf, "%u\n", s->object_size);
6205 }
6206 SLAB_ATTR_RO(object_size);
6207 
6208 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6209 {
6210 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6211 }
6212 SLAB_ATTR_RO(objs_per_slab);
6213 
6214 static ssize_t order_show(struct kmem_cache *s, char *buf)
6215 {
6216 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6217 }
6218 SLAB_ATTR_RO(order);
6219 
6220 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6221 {
6222 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6223 }
6224 
6225 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6226 				 size_t length)
6227 {
6228 	unsigned long min;
6229 	int err;
6230 
6231 	err = kstrtoul(buf, 10, &min);
6232 	if (err)
6233 		return err;
6234 
6235 	s->min_partial = min;
6236 	return length;
6237 }
6238 SLAB_ATTR(min_partial);
6239 
6240 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6241 {
6242 	unsigned int nr_partial = 0;
6243 #ifdef CONFIG_SLUB_CPU_PARTIAL
6244 	nr_partial = s->cpu_partial;
6245 #endif
6246 
6247 	return sysfs_emit(buf, "%u\n", nr_partial);
6248 }
6249 
6250 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6251 				 size_t length)
6252 {
6253 	unsigned int objects;
6254 	int err;
6255 
6256 	err = kstrtouint(buf, 10, &objects);
6257 	if (err)
6258 		return err;
6259 	if (objects && !kmem_cache_has_cpu_partial(s))
6260 		return -EINVAL;
6261 
6262 	slub_set_cpu_partial(s, objects);
6263 	flush_all(s);
6264 	return length;
6265 }
6266 SLAB_ATTR(cpu_partial);
6267 
6268 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6269 {
6270 	if (!s->ctor)
6271 		return 0;
6272 	return sysfs_emit(buf, "%pS\n", s->ctor);
6273 }
6274 SLAB_ATTR_RO(ctor);
6275 
6276 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6277 {
6278 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6279 }
6280 SLAB_ATTR_RO(aliases);
6281 
6282 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6283 {
6284 	return show_slab_objects(s, buf, SO_PARTIAL);
6285 }
6286 SLAB_ATTR_RO(partial);
6287 
6288 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6289 {
6290 	return show_slab_objects(s, buf, SO_CPU);
6291 }
6292 SLAB_ATTR_RO(cpu_slabs);
6293 
6294 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6295 {
6296 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6297 }
6298 SLAB_ATTR_RO(objects_partial);
6299 
6300 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6301 {
6302 	int objects = 0;
6303 	int slabs = 0;
6304 	int cpu __maybe_unused;
6305 	int len = 0;
6306 
6307 #ifdef CONFIG_SLUB_CPU_PARTIAL
6308 	for_each_online_cpu(cpu) {
6309 		struct slab *slab;
6310 
6311 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6312 
6313 		if (slab)
6314 			slabs += data_race(slab->slabs);
6315 	}
6316 #endif
6317 
6318 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6319 	objects = (slabs * oo_objects(s->oo)) / 2;
6320 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6321 
6322 #ifdef CONFIG_SLUB_CPU_PARTIAL
6323 	for_each_online_cpu(cpu) {
6324 		struct slab *slab;
6325 
6326 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6327 		if (slab) {
6328 			slabs = data_race(slab->slabs);
6329 			objects = (slabs * oo_objects(s->oo)) / 2;
6330 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6331 					     cpu, objects, slabs);
6332 		}
6333 	}
6334 #endif
6335 	len += sysfs_emit_at(buf, len, "\n");
6336 
6337 	return len;
6338 }
6339 SLAB_ATTR_RO(slabs_cpu_partial);
6340 
6341 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6342 {
6343 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6344 }
6345 SLAB_ATTR_RO(reclaim_account);
6346 
6347 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6348 {
6349 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6350 }
6351 SLAB_ATTR_RO(hwcache_align);
6352 
6353 #ifdef CONFIG_ZONE_DMA
6354 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6355 {
6356 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6357 }
6358 SLAB_ATTR_RO(cache_dma);
6359 #endif
6360 
6361 #ifdef CONFIG_HARDENED_USERCOPY
6362 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6363 {
6364 	return sysfs_emit(buf, "%u\n", s->usersize);
6365 }
6366 SLAB_ATTR_RO(usersize);
6367 #endif
6368 
6369 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6370 {
6371 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6372 }
6373 SLAB_ATTR_RO(destroy_by_rcu);
6374 
6375 #ifdef CONFIG_SLUB_DEBUG
6376 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6377 {
6378 	return show_slab_objects(s, buf, SO_ALL);
6379 }
6380 SLAB_ATTR_RO(slabs);
6381 
6382 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6383 {
6384 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6385 }
6386 SLAB_ATTR_RO(total_objects);
6387 
6388 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6389 {
6390 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6391 }
6392 SLAB_ATTR_RO(objects);
6393 
6394 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6395 {
6396 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6397 }
6398 SLAB_ATTR_RO(sanity_checks);
6399 
6400 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6401 {
6402 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6403 }
6404 SLAB_ATTR_RO(trace);
6405 
6406 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6407 {
6408 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6409 }
6410 
6411 SLAB_ATTR_RO(red_zone);
6412 
6413 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6414 {
6415 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6416 }
6417 
6418 SLAB_ATTR_RO(poison);
6419 
6420 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6421 {
6422 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6423 }
6424 
6425 SLAB_ATTR_RO(store_user);
6426 
6427 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6428 {
6429 	return 0;
6430 }
6431 
6432 static ssize_t validate_store(struct kmem_cache *s,
6433 			const char *buf, size_t length)
6434 {
6435 	int ret = -EINVAL;
6436 
6437 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6438 		ret = validate_slab_cache(s);
6439 		if (ret >= 0)
6440 			ret = length;
6441 	}
6442 	return ret;
6443 }
6444 SLAB_ATTR(validate);
6445 
6446 #endif /* CONFIG_SLUB_DEBUG */
6447 
6448 #ifdef CONFIG_FAILSLAB
6449 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6450 {
6451 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6452 }
6453 
6454 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6455 				size_t length)
6456 {
6457 	if (s->refcount > 1)
6458 		return -EINVAL;
6459 
6460 	if (buf[0] == '1')
6461 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6462 	else
6463 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6464 
6465 	return length;
6466 }
6467 SLAB_ATTR(failslab);
6468 #endif
6469 
6470 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6471 {
6472 	return 0;
6473 }
6474 
6475 static ssize_t shrink_store(struct kmem_cache *s,
6476 			const char *buf, size_t length)
6477 {
6478 	if (buf[0] == '1')
6479 		kmem_cache_shrink(s);
6480 	else
6481 		return -EINVAL;
6482 	return length;
6483 }
6484 SLAB_ATTR(shrink);
6485 
6486 #ifdef CONFIG_NUMA
6487 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6488 {
6489 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6490 }
6491 
6492 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6493 				const char *buf, size_t length)
6494 {
6495 	unsigned int ratio;
6496 	int err;
6497 
6498 	err = kstrtouint(buf, 10, &ratio);
6499 	if (err)
6500 		return err;
6501 	if (ratio > 100)
6502 		return -ERANGE;
6503 
6504 	s->remote_node_defrag_ratio = ratio * 10;
6505 
6506 	return length;
6507 }
6508 SLAB_ATTR(remote_node_defrag_ratio);
6509 #endif
6510 
6511 #ifdef CONFIG_SLUB_STATS
6512 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6513 {
6514 	unsigned long sum  = 0;
6515 	int cpu;
6516 	int len = 0;
6517 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6518 
6519 	if (!data)
6520 		return -ENOMEM;
6521 
6522 	for_each_online_cpu(cpu) {
6523 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6524 
6525 		data[cpu] = x;
6526 		sum += x;
6527 	}
6528 
6529 	len += sysfs_emit_at(buf, len, "%lu", sum);
6530 
6531 #ifdef CONFIG_SMP
6532 	for_each_online_cpu(cpu) {
6533 		if (data[cpu])
6534 			len += sysfs_emit_at(buf, len, " C%d=%u",
6535 					     cpu, data[cpu]);
6536 	}
6537 #endif
6538 	kfree(data);
6539 	len += sysfs_emit_at(buf, len, "\n");
6540 
6541 	return len;
6542 }
6543 
6544 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6545 {
6546 	int cpu;
6547 
6548 	for_each_online_cpu(cpu)
6549 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6550 }
6551 
6552 #define STAT_ATTR(si, text) 					\
6553 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6554 {								\
6555 	return show_stat(s, buf, si);				\
6556 }								\
6557 static ssize_t text##_store(struct kmem_cache *s,		\
6558 				const char *buf, size_t length)	\
6559 {								\
6560 	if (buf[0] != '0')					\
6561 		return -EINVAL;					\
6562 	clear_stat(s, si);					\
6563 	return length;						\
6564 }								\
6565 SLAB_ATTR(text);						\
6566 
6567 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6568 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6569 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6570 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6571 STAT_ATTR(FREE_FROZEN, free_frozen);
6572 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6573 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6574 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6575 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6576 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6577 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6578 STAT_ATTR(FREE_SLAB, free_slab);
6579 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6580 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6581 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6582 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6583 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6584 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6585 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6586 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6587 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6588 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6589 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6590 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6591 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6592 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6593 #endif	/* CONFIG_SLUB_STATS */
6594 
6595 #ifdef CONFIG_KFENCE
6596 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6597 {
6598 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6599 }
6600 
6601 static ssize_t skip_kfence_store(struct kmem_cache *s,
6602 			const char *buf, size_t length)
6603 {
6604 	int ret = length;
6605 
6606 	if (buf[0] == '0')
6607 		s->flags &= ~SLAB_SKIP_KFENCE;
6608 	else if (buf[0] == '1')
6609 		s->flags |= SLAB_SKIP_KFENCE;
6610 	else
6611 		ret = -EINVAL;
6612 
6613 	return ret;
6614 }
6615 SLAB_ATTR(skip_kfence);
6616 #endif
6617 
6618 static struct attribute *slab_attrs[] = {
6619 	&slab_size_attr.attr,
6620 	&object_size_attr.attr,
6621 	&objs_per_slab_attr.attr,
6622 	&order_attr.attr,
6623 	&min_partial_attr.attr,
6624 	&cpu_partial_attr.attr,
6625 	&objects_partial_attr.attr,
6626 	&partial_attr.attr,
6627 	&cpu_slabs_attr.attr,
6628 	&ctor_attr.attr,
6629 	&aliases_attr.attr,
6630 	&align_attr.attr,
6631 	&hwcache_align_attr.attr,
6632 	&reclaim_account_attr.attr,
6633 	&destroy_by_rcu_attr.attr,
6634 	&shrink_attr.attr,
6635 	&slabs_cpu_partial_attr.attr,
6636 #ifdef CONFIG_SLUB_DEBUG
6637 	&total_objects_attr.attr,
6638 	&objects_attr.attr,
6639 	&slabs_attr.attr,
6640 	&sanity_checks_attr.attr,
6641 	&trace_attr.attr,
6642 	&red_zone_attr.attr,
6643 	&poison_attr.attr,
6644 	&store_user_attr.attr,
6645 	&validate_attr.attr,
6646 #endif
6647 #ifdef CONFIG_ZONE_DMA
6648 	&cache_dma_attr.attr,
6649 #endif
6650 #ifdef CONFIG_NUMA
6651 	&remote_node_defrag_ratio_attr.attr,
6652 #endif
6653 #ifdef CONFIG_SLUB_STATS
6654 	&alloc_fastpath_attr.attr,
6655 	&alloc_slowpath_attr.attr,
6656 	&free_fastpath_attr.attr,
6657 	&free_slowpath_attr.attr,
6658 	&free_frozen_attr.attr,
6659 	&free_add_partial_attr.attr,
6660 	&free_remove_partial_attr.attr,
6661 	&alloc_from_partial_attr.attr,
6662 	&alloc_slab_attr.attr,
6663 	&alloc_refill_attr.attr,
6664 	&alloc_node_mismatch_attr.attr,
6665 	&free_slab_attr.attr,
6666 	&cpuslab_flush_attr.attr,
6667 	&deactivate_full_attr.attr,
6668 	&deactivate_empty_attr.attr,
6669 	&deactivate_to_head_attr.attr,
6670 	&deactivate_to_tail_attr.attr,
6671 	&deactivate_remote_frees_attr.attr,
6672 	&deactivate_bypass_attr.attr,
6673 	&order_fallback_attr.attr,
6674 	&cmpxchg_double_fail_attr.attr,
6675 	&cmpxchg_double_cpu_fail_attr.attr,
6676 	&cpu_partial_alloc_attr.attr,
6677 	&cpu_partial_free_attr.attr,
6678 	&cpu_partial_node_attr.attr,
6679 	&cpu_partial_drain_attr.attr,
6680 #endif
6681 #ifdef CONFIG_FAILSLAB
6682 	&failslab_attr.attr,
6683 #endif
6684 #ifdef CONFIG_HARDENED_USERCOPY
6685 	&usersize_attr.attr,
6686 #endif
6687 #ifdef CONFIG_KFENCE
6688 	&skip_kfence_attr.attr,
6689 #endif
6690 
6691 	NULL
6692 };
6693 
6694 static const struct attribute_group slab_attr_group = {
6695 	.attrs = slab_attrs,
6696 };
6697 
6698 static ssize_t slab_attr_show(struct kobject *kobj,
6699 				struct attribute *attr,
6700 				char *buf)
6701 {
6702 	struct slab_attribute *attribute;
6703 	struct kmem_cache *s;
6704 
6705 	attribute = to_slab_attr(attr);
6706 	s = to_slab(kobj);
6707 
6708 	if (!attribute->show)
6709 		return -EIO;
6710 
6711 	return attribute->show(s, buf);
6712 }
6713 
6714 static ssize_t slab_attr_store(struct kobject *kobj,
6715 				struct attribute *attr,
6716 				const char *buf, size_t len)
6717 {
6718 	struct slab_attribute *attribute;
6719 	struct kmem_cache *s;
6720 
6721 	attribute = to_slab_attr(attr);
6722 	s = to_slab(kobj);
6723 
6724 	if (!attribute->store)
6725 		return -EIO;
6726 
6727 	return attribute->store(s, buf, len);
6728 }
6729 
6730 static void kmem_cache_release(struct kobject *k)
6731 {
6732 	slab_kmem_cache_release(to_slab(k));
6733 }
6734 
6735 static const struct sysfs_ops slab_sysfs_ops = {
6736 	.show = slab_attr_show,
6737 	.store = slab_attr_store,
6738 };
6739 
6740 static const struct kobj_type slab_ktype = {
6741 	.sysfs_ops = &slab_sysfs_ops,
6742 	.release = kmem_cache_release,
6743 };
6744 
6745 static struct kset *slab_kset;
6746 
6747 static inline struct kset *cache_kset(struct kmem_cache *s)
6748 {
6749 	return slab_kset;
6750 }
6751 
6752 #define ID_STR_LENGTH 32
6753 
6754 /* Create a unique string id for a slab cache:
6755  *
6756  * Format	:[flags-]size
6757  */
6758 static char *create_unique_id(struct kmem_cache *s)
6759 {
6760 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6761 	char *p = name;
6762 
6763 	if (!name)
6764 		return ERR_PTR(-ENOMEM);
6765 
6766 	*p++ = ':';
6767 	/*
6768 	 * First flags affecting slabcache operations. We will only
6769 	 * get here for aliasable slabs so we do not need to support
6770 	 * too many flags. The flags here must cover all flags that
6771 	 * are matched during merging to guarantee that the id is
6772 	 * unique.
6773 	 */
6774 	if (s->flags & SLAB_CACHE_DMA)
6775 		*p++ = 'd';
6776 	if (s->flags & SLAB_CACHE_DMA32)
6777 		*p++ = 'D';
6778 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6779 		*p++ = 'a';
6780 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6781 		*p++ = 'F';
6782 	if (s->flags & SLAB_ACCOUNT)
6783 		*p++ = 'A';
6784 	if (p != name + 1)
6785 		*p++ = '-';
6786 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6787 
6788 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6789 		kfree(name);
6790 		return ERR_PTR(-EINVAL);
6791 	}
6792 	kmsan_unpoison_memory(name, p - name);
6793 	return name;
6794 }
6795 
6796 static int sysfs_slab_add(struct kmem_cache *s)
6797 {
6798 	int err;
6799 	const char *name;
6800 	struct kset *kset = cache_kset(s);
6801 	int unmergeable = slab_unmergeable(s);
6802 
6803 	if (!unmergeable && disable_higher_order_debug &&
6804 			(slub_debug & DEBUG_METADATA_FLAGS))
6805 		unmergeable = 1;
6806 
6807 	if (unmergeable) {
6808 		/*
6809 		 * Slabcache can never be merged so we can use the name proper.
6810 		 * This is typically the case for debug situations. In that
6811 		 * case we can catch duplicate names easily.
6812 		 */
6813 		sysfs_remove_link(&slab_kset->kobj, s->name);
6814 		name = s->name;
6815 	} else {
6816 		/*
6817 		 * Create a unique name for the slab as a target
6818 		 * for the symlinks.
6819 		 */
6820 		name = create_unique_id(s);
6821 		if (IS_ERR(name))
6822 			return PTR_ERR(name);
6823 	}
6824 
6825 	s->kobj.kset = kset;
6826 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6827 	if (err)
6828 		goto out;
6829 
6830 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6831 	if (err)
6832 		goto out_del_kobj;
6833 
6834 	if (!unmergeable) {
6835 		/* Setup first alias */
6836 		sysfs_slab_alias(s, s->name);
6837 	}
6838 out:
6839 	if (!unmergeable)
6840 		kfree(name);
6841 	return err;
6842 out_del_kobj:
6843 	kobject_del(&s->kobj);
6844 	goto out;
6845 }
6846 
6847 void sysfs_slab_unlink(struct kmem_cache *s)
6848 {
6849 	kobject_del(&s->kobj);
6850 }
6851 
6852 void sysfs_slab_release(struct kmem_cache *s)
6853 {
6854 	kobject_put(&s->kobj);
6855 }
6856 
6857 /*
6858  * Need to buffer aliases during bootup until sysfs becomes
6859  * available lest we lose that information.
6860  */
6861 struct saved_alias {
6862 	struct kmem_cache *s;
6863 	const char *name;
6864 	struct saved_alias *next;
6865 };
6866 
6867 static struct saved_alias *alias_list;
6868 
6869 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6870 {
6871 	struct saved_alias *al;
6872 
6873 	if (slab_state == FULL) {
6874 		/*
6875 		 * If we have a leftover link then remove it.
6876 		 */
6877 		sysfs_remove_link(&slab_kset->kobj, name);
6878 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6879 	}
6880 
6881 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6882 	if (!al)
6883 		return -ENOMEM;
6884 
6885 	al->s = s;
6886 	al->name = name;
6887 	al->next = alias_list;
6888 	alias_list = al;
6889 	kmsan_unpoison_memory(al, sizeof(*al));
6890 	return 0;
6891 }
6892 
6893 static int __init slab_sysfs_init(void)
6894 {
6895 	struct kmem_cache *s;
6896 	int err;
6897 
6898 	mutex_lock(&slab_mutex);
6899 
6900 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6901 	if (!slab_kset) {
6902 		mutex_unlock(&slab_mutex);
6903 		pr_err("Cannot register slab subsystem.\n");
6904 		return -ENOMEM;
6905 	}
6906 
6907 	slab_state = FULL;
6908 
6909 	list_for_each_entry(s, &slab_caches, list) {
6910 		err = sysfs_slab_add(s);
6911 		if (err)
6912 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6913 			       s->name);
6914 	}
6915 
6916 	while (alias_list) {
6917 		struct saved_alias *al = alias_list;
6918 
6919 		alias_list = alias_list->next;
6920 		err = sysfs_slab_alias(al->s, al->name);
6921 		if (err)
6922 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6923 			       al->name);
6924 		kfree(al);
6925 	}
6926 
6927 	mutex_unlock(&slab_mutex);
6928 	return 0;
6929 }
6930 late_initcall(slab_sysfs_init);
6931 #endif /* SLAB_SUPPORTS_SYSFS */
6932 
6933 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6934 static int slab_debugfs_show(struct seq_file *seq, void *v)
6935 {
6936 	struct loc_track *t = seq->private;
6937 	struct location *l;
6938 	unsigned long idx;
6939 
6940 	idx = (unsigned long) t->idx;
6941 	if (idx < t->count) {
6942 		l = &t->loc[idx];
6943 
6944 		seq_printf(seq, "%7ld ", l->count);
6945 
6946 		if (l->addr)
6947 			seq_printf(seq, "%pS", (void *)l->addr);
6948 		else
6949 			seq_puts(seq, "<not-available>");
6950 
6951 		if (l->waste)
6952 			seq_printf(seq, " waste=%lu/%lu",
6953 				l->count * l->waste, l->waste);
6954 
6955 		if (l->sum_time != l->min_time) {
6956 			seq_printf(seq, " age=%ld/%llu/%ld",
6957 				l->min_time, div_u64(l->sum_time, l->count),
6958 				l->max_time);
6959 		} else
6960 			seq_printf(seq, " age=%ld", l->min_time);
6961 
6962 		if (l->min_pid != l->max_pid)
6963 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6964 		else
6965 			seq_printf(seq, " pid=%ld",
6966 				l->min_pid);
6967 
6968 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6969 			seq_printf(seq, " cpus=%*pbl",
6970 				 cpumask_pr_args(to_cpumask(l->cpus)));
6971 
6972 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6973 			seq_printf(seq, " nodes=%*pbl",
6974 				 nodemask_pr_args(&l->nodes));
6975 
6976 #ifdef CONFIG_STACKDEPOT
6977 		{
6978 			depot_stack_handle_t handle;
6979 			unsigned long *entries;
6980 			unsigned int nr_entries, j;
6981 
6982 			handle = READ_ONCE(l->handle);
6983 			if (handle) {
6984 				nr_entries = stack_depot_fetch(handle, &entries);
6985 				seq_puts(seq, "\n");
6986 				for (j = 0; j < nr_entries; j++)
6987 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6988 			}
6989 		}
6990 #endif
6991 		seq_puts(seq, "\n");
6992 	}
6993 
6994 	if (!idx && !t->count)
6995 		seq_puts(seq, "No data\n");
6996 
6997 	return 0;
6998 }
6999 
7000 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7001 {
7002 }
7003 
7004 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7005 {
7006 	struct loc_track *t = seq->private;
7007 
7008 	t->idx = ++(*ppos);
7009 	if (*ppos <= t->count)
7010 		return ppos;
7011 
7012 	return NULL;
7013 }
7014 
7015 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7016 {
7017 	struct location *loc1 = (struct location *)a;
7018 	struct location *loc2 = (struct location *)b;
7019 
7020 	if (loc1->count > loc2->count)
7021 		return -1;
7022 	else
7023 		return 1;
7024 }
7025 
7026 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7027 {
7028 	struct loc_track *t = seq->private;
7029 
7030 	t->idx = *ppos;
7031 	return ppos;
7032 }
7033 
7034 static const struct seq_operations slab_debugfs_sops = {
7035 	.start  = slab_debugfs_start,
7036 	.next   = slab_debugfs_next,
7037 	.stop   = slab_debugfs_stop,
7038 	.show   = slab_debugfs_show,
7039 };
7040 
7041 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7042 {
7043 
7044 	struct kmem_cache_node *n;
7045 	enum track_item alloc;
7046 	int node;
7047 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7048 						sizeof(struct loc_track));
7049 	struct kmem_cache *s = file_inode(filep)->i_private;
7050 	unsigned long *obj_map;
7051 
7052 	if (!t)
7053 		return -ENOMEM;
7054 
7055 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7056 	if (!obj_map) {
7057 		seq_release_private(inode, filep);
7058 		return -ENOMEM;
7059 	}
7060 
7061 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7062 		alloc = TRACK_ALLOC;
7063 	else
7064 		alloc = TRACK_FREE;
7065 
7066 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7067 		bitmap_free(obj_map);
7068 		seq_release_private(inode, filep);
7069 		return -ENOMEM;
7070 	}
7071 
7072 	for_each_kmem_cache_node(s, node, n) {
7073 		unsigned long flags;
7074 		struct slab *slab;
7075 
7076 		if (!node_nr_slabs(n))
7077 			continue;
7078 
7079 		spin_lock_irqsave(&n->list_lock, flags);
7080 		list_for_each_entry(slab, &n->partial, slab_list)
7081 			process_slab(t, s, slab, alloc, obj_map);
7082 		list_for_each_entry(slab, &n->full, slab_list)
7083 			process_slab(t, s, slab, alloc, obj_map);
7084 		spin_unlock_irqrestore(&n->list_lock, flags);
7085 	}
7086 
7087 	/* Sort locations by count */
7088 	sort_r(t->loc, t->count, sizeof(struct location),
7089 		cmp_loc_by_count, NULL, NULL);
7090 
7091 	bitmap_free(obj_map);
7092 	return 0;
7093 }
7094 
7095 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7096 {
7097 	struct seq_file *seq = file->private_data;
7098 	struct loc_track *t = seq->private;
7099 
7100 	free_loc_track(t);
7101 	return seq_release_private(inode, file);
7102 }
7103 
7104 static const struct file_operations slab_debugfs_fops = {
7105 	.open    = slab_debug_trace_open,
7106 	.read    = seq_read,
7107 	.llseek  = seq_lseek,
7108 	.release = slab_debug_trace_release,
7109 };
7110 
7111 static void debugfs_slab_add(struct kmem_cache *s)
7112 {
7113 	struct dentry *slab_cache_dir;
7114 
7115 	if (unlikely(!slab_debugfs_root))
7116 		return;
7117 
7118 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7119 
7120 	debugfs_create_file("alloc_traces", 0400,
7121 		slab_cache_dir, s, &slab_debugfs_fops);
7122 
7123 	debugfs_create_file("free_traces", 0400,
7124 		slab_cache_dir, s, &slab_debugfs_fops);
7125 }
7126 
7127 void debugfs_slab_release(struct kmem_cache *s)
7128 {
7129 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7130 }
7131 
7132 static int __init slab_debugfs_init(void)
7133 {
7134 	struct kmem_cache *s;
7135 
7136 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7137 
7138 	list_for_each_entry(s, &slab_caches, list)
7139 		if (s->flags & SLAB_STORE_USER)
7140 			debugfs_slab_add(s);
7141 
7142 	return 0;
7143 
7144 }
7145 __initcall(slab_debugfs_init);
7146 #endif
7147 /*
7148  * The /proc/slabinfo ABI
7149  */
7150 #ifdef CONFIG_SLUB_DEBUG
7151 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7152 {
7153 	unsigned long nr_slabs = 0;
7154 	unsigned long nr_objs = 0;
7155 	unsigned long nr_free = 0;
7156 	int node;
7157 	struct kmem_cache_node *n;
7158 
7159 	for_each_kmem_cache_node(s, node, n) {
7160 		nr_slabs += node_nr_slabs(n);
7161 		nr_objs += node_nr_objs(n);
7162 		nr_free += count_partial_free_approx(n);
7163 	}
7164 
7165 	sinfo->active_objs = nr_objs - nr_free;
7166 	sinfo->num_objs = nr_objs;
7167 	sinfo->active_slabs = nr_slabs;
7168 	sinfo->num_slabs = nr_slabs;
7169 	sinfo->objects_per_slab = oo_objects(s->oo);
7170 	sinfo->cache_order = oo_order(s->oo);
7171 }
7172 #endif /* CONFIG_SLUB_DEBUG */
7173