1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 /* Structure holding parameters for get_partial() call chain */ 222 struct partial_context { 223 gfp_t flags; 224 unsigned int orig_size; 225 void *object; 226 }; 227 228 static inline bool kmem_cache_debug(struct kmem_cache *s) 229 { 230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 231 } 232 233 static inline bool slub_debug_orig_size(struct kmem_cache *s) 234 { 235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 236 (s->flags & SLAB_KMALLOC)); 237 } 238 239 void *fixup_red_left(struct kmem_cache *s, void *p) 240 { 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 242 p += s->red_left_pad; 243 244 return p; 245 } 246 247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 248 { 249 #ifdef CONFIG_SLUB_CPU_PARTIAL 250 return !kmem_cache_debug(s); 251 #else 252 return false; 253 #endif 254 } 255 256 /* 257 * Issues still to be resolved: 258 * 259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 260 * 261 * - Variable sizing of the per node arrays 262 */ 263 264 /* Enable to log cmpxchg failures */ 265 #undef SLUB_DEBUG_CMPXCHG 266 267 #ifndef CONFIG_SLUB_TINY 268 /* 269 * Minimum number of partial slabs. These will be left on the partial 270 * lists even if they are empty. kmem_cache_shrink may reclaim them. 271 */ 272 #define MIN_PARTIAL 5 273 274 /* 275 * Maximum number of desirable partial slabs. 276 * The existence of more partial slabs makes kmem_cache_shrink 277 * sort the partial list by the number of objects in use. 278 */ 279 #define MAX_PARTIAL 10 280 #else 281 #define MIN_PARTIAL 0 282 #define MAX_PARTIAL 0 283 #endif 284 285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 286 SLAB_POISON | SLAB_STORE_USER) 287 288 /* 289 * These debug flags cannot use CMPXCHG because there might be consistency 290 * issues when checking or reading debug information 291 */ 292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 293 SLAB_TRACE) 294 295 296 /* 297 * Debugging flags that require metadata to be stored in the slab. These get 298 * disabled when slab_debug=O is used and a cache's min order increases with 299 * metadata. 300 */ 301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 302 303 #define OO_SHIFT 16 304 #define OO_MASK ((1 << OO_SHIFT) - 1) 305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 306 307 /* Internal SLUB flags */ 308 /* Poison object */ 309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 310 /* Use cmpxchg_double */ 311 312 #ifdef system_has_freelist_aba 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 314 #else 315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 316 #endif 317 318 /* 319 * Tracking user of a slab. 320 */ 321 #define TRACK_ADDRS_COUNT 16 322 struct track { 323 unsigned long addr; /* Called from address */ 324 #ifdef CONFIG_STACKDEPOT 325 depot_stack_handle_t handle; 326 #endif 327 int cpu; /* Was running on cpu */ 328 int pid; /* Pid context */ 329 unsigned long when; /* When did the operation occur */ 330 }; 331 332 enum track_item { TRACK_ALLOC, TRACK_FREE }; 333 334 #ifdef SLAB_SUPPORTS_SYSFS 335 static int sysfs_slab_add(struct kmem_cache *); 336 static int sysfs_slab_alias(struct kmem_cache *, const char *); 337 #else 338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 340 { return 0; } 341 #endif 342 343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 344 static void debugfs_slab_add(struct kmem_cache *); 345 #else 346 static inline void debugfs_slab_add(struct kmem_cache *s) { } 347 #endif 348 349 enum stat_item { 350 ALLOC_FASTPATH, /* Allocation from cpu slab */ 351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 352 FREE_FASTPATH, /* Free to cpu slab */ 353 FREE_SLOWPATH, /* Freeing not to cpu slab */ 354 FREE_FROZEN, /* Freeing to frozen slab */ 355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 361 FREE_SLAB, /* Slab freed to the page allocator */ 362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 368 DEACTIVATE_BYPASS, /* Implicit deactivation */ 369 ORDER_FALLBACK, /* Number of times fallback was necessary */ 370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 376 NR_SLUB_STAT_ITEMS 377 }; 378 379 #ifndef CONFIG_SLUB_TINY 380 /* 381 * When changing the layout, make sure freelist and tid are still compatible 382 * with this_cpu_cmpxchg_double() alignment requirements. 383 */ 384 struct kmem_cache_cpu { 385 union { 386 struct { 387 void **freelist; /* Pointer to next available object */ 388 unsigned long tid; /* Globally unique transaction id */ 389 }; 390 freelist_aba_t freelist_tid; 391 }; 392 struct slab *slab; /* The slab from which we are allocating */ 393 #ifdef CONFIG_SLUB_CPU_PARTIAL 394 struct slab *partial; /* Partially allocated slabs */ 395 #endif 396 local_lock_t lock; /* Protects the fields above */ 397 #ifdef CONFIG_SLUB_STATS 398 unsigned int stat[NR_SLUB_STAT_ITEMS]; 399 #endif 400 }; 401 #endif /* CONFIG_SLUB_TINY */ 402 403 static inline void stat(const struct kmem_cache *s, enum stat_item si) 404 { 405 #ifdef CONFIG_SLUB_STATS 406 /* 407 * The rmw is racy on a preemptible kernel but this is acceptable, so 408 * avoid this_cpu_add()'s irq-disable overhead. 409 */ 410 raw_cpu_inc(s->cpu_slab->stat[si]); 411 #endif 412 } 413 414 static inline 415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 416 { 417 #ifdef CONFIG_SLUB_STATS 418 raw_cpu_add(s->cpu_slab->stat[si], v); 419 #endif 420 } 421 422 /* 423 * The slab lists for all objects. 424 */ 425 struct kmem_cache_node { 426 spinlock_t list_lock; 427 unsigned long nr_partial; 428 struct list_head partial; 429 #ifdef CONFIG_SLUB_DEBUG 430 atomic_long_t nr_slabs; 431 atomic_long_t total_objects; 432 struct list_head full; 433 #endif 434 }; 435 436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 437 { 438 return s->node[node]; 439 } 440 441 /* 442 * Iterator over all nodes. The body will be executed for each node that has 443 * a kmem_cache_node structure allocated (which is true for all online nodes) 444 */ 445 #define for_each_kmem_cache_node(__s, __node, __n) \ 446 for (__node = 0; __node < nr_node_ids; __node++) \ 447 if ((__n = get_node(__s, __node))) 448 449 /* 450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 452 * differ during memory hotplug/hotremove operations. 453 * Protected by slab_mutex. 454 */ 455 static nodemask_t slab_nodes; 456 457 #ifndef CONFIG_SLUB_TINY 458 /* 459 * Workqueue used for flush_cpu_slab(). 460 */ 461 static struct workqueue_struct *flushwq; 462 #endif 463 464 /******************************************************************** 465 * Core slab cache functions 466 *******************************************************************/ 467 468 /* 469 * freeptr_t represents a SLUB freelist pointer, which might be encoded 470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 471 */ 472 typedef struct { unsigned long v; } freeptr_t; 473 474 /* 475 * Returns freelist pointer (ptr). With hardening, this is obfuscated 476 * with an XOR of the address where the pointer is held and a per-cache 477 * random number. 478 */ 479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 480 void *ptr, unsigned long ptr_addr) 481 { 482 unsigned long encoded; 483 484 #ifdef CONFIG_SLAB_FREELIST_HARDENED 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 486 #else 487 encoded = (unsigned long)ptr; 488 #endif 489 return (freeptr_t){.v = encoded}; 490 } 491 492 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 493 freeptr_t ptr, unsigned long ptr_addr) 494 { 495 void *decoded; 496 497 #ifdef CONFIG_SLAB_FREELIST_HARDENED 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 499 #else 500 decoded = (void *)ptr.v; 501 #endif 502 return decoded; 503 } 504 505 static inline void *get_freepointer(struct kmem_cache *s, void *object) 506 { 507 unsigned long ptr_addr; 508 freeptr_t p; 509 510 object = kasan_reset_tag(object); 511 ptr_addr = (unsigned long)object + s->offset; 512 p = *(freeptr_t *)(ptr_addr); 513 return freelist_ptr_decode(s, p, ptr_addr); 514 } 515 516 #ifndef CONFIG_SLUB_TINY 517 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 518 { 519 prefetchw(object + s->offset); 520 } 521 #endif 522 523 /* 524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 525 * pointer value in the case the current thread loses the race for the next 526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 528 * KMSAN will still check all arguments of cmpxchg because of imperfect 529 * handling of inline assembly. 530 * To work around this problem, we apply __no_kmsan_checks to ensure that 531 * get_freepointer_safe() returns initialized memory. 532 */ 533 __no_kmsan_checks 534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 535 { 536 unsigned long freepointer_addr; 537 freeptr_t p; 538 539 if (!debug_pagealloc_enabled_static()) 540 return get_freepointer(s, object); 541 542 object = kasan_reset_tag(object); 543 freepointer_addr = (unsigned long)object + s->offset; 544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 545 return freelist_ptr_decode(s, p, freepointer_addr); 546 } 547 548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 549 { 550 unsigned long freeptr_addr = (unsigned long)object + s->offset; 551 552 #ifdef CONFIG_SLAB_FREELIST_HARDENED 553 BUG_ON(object == fp); /* naive detection of double free or corruption */ 554 #endif 555 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 558 } 559 560 /* 561 * See comment in calculate_sizes(). 562 */ 563 static inline bool freeptr_outside_object(struct kmem_cache *s) 564 { 565 return s->offset >= s->inuse; 566 } 567 568 /* 569 * Return offset of the end of info block which is inuse + free pointer if 570 * not overlapping with object. 571 */ 572 static inline unsigned int get_info_end(struct kmem_cache *s) 573 { 574 if (freeptr_outside_object(s)) 575 return s->inuse + sizeof(void *); 576 else 577 return s->inuse; 578 } 579 580 /* Loop over all objects in a slab */ 581 #define for_each_object(__p, __s, __addr, __objects) \ 582 for (__p = fixup_red_left(__s, __addr); \ 583 __p < (__addr) + (__objects) * (__s)->size; \ 584 __p += (__s)->size) 585 586 static inline unsigned int order_objects(unsigned int order, unsigned int size) 587 { 588 return ((unsigned int)PAGE_SIZE << order) / size; 589 } 590 591 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 592 unsigned int size) 593 { 594 struct kmem_cache_order_objects x = { 595 (order << OO_SHIFT) + order_objects(order, size) 596 }; 597 598 return x; 599 } 600 601 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 602 { 603 return x.x >> OO_SHIFT; 604 } 605 606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 607 { 608 return x.x & OO_MASK; 609 } 610 611 #ifdef CONFIG_SLUB_CPU_PARTIAL 612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 613 { 614 unsigned int nr_slabs; 615 616 s->cpu_partial = nr_objects; 617 618 /* 619 * We take the number of objects but actually limit the number of 620 * slabs on the per cpu partial list, in order to limit excessive 621 * growth of the list. For simplicity we assume that the slabs will 622 * be half-full. 623 */ 624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 625 s->cpu_partial_slabs = nr_slabs; 626 } 627 628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 629 { 630 return s->cpu_partial_slabs; 631 } 632 #else 633 static inline void 634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 635 { 636 } 637 638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 639 { 640 return 0; 641 } 642 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 643 644 /* 645 * Per slab locking using the pagelock 646 */ 647 static __always_inline void slab_lock(struct slab *slab) 648 { 649 struct page *page = slab_page(slab); 650 651 VM_BUG_ON_PAGE(PageTail(page), page); 652 bit_spin_lock(PG_locked, &page->flags); 653 } 654 655 static __always_inline void slab_unlock(struct slab *slab) 656 { 657 struct page *page = slab_page(slab); 658 659 VM_BUG_ON_PAGE(PageTail(page), page); 660 bit_spin_unlock(PG_locked, &page->flags); 661 } 662 663 static inline bool 664 __update_freelist_fast(struct slab *slab, 665 void *freelist_old, unsigned long counters_old, 666 void *freelist_new, unsigned long counters_new) 667 { 668 #ifdef system_has_freelist_aba 669 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 670 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 671 672 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 673 #else 674 return false; 675 #endif 676 } 677 678 static inline bool 679 __update_freelist_slow(struct slab *slab, 680 void *freelist_old, unsigned long counters_old, 681 void *freelist_new, unsigned long counters_new) 682 { 683 bool ret = false; 684 685 slab_lock(slab); 686 if (slab->freelist == freelist_old && 687 slab->counters == counters_old) { 688 slab->freelist = freelist_new; 689 slab->counters = counters_new; 690 ret = true; 691 } 692 slab_unlock(slab); 693 694 return ret; 695 } 696 697 /* 698 * Interrupts must be disabled (for the fallback code to work right), typically 699 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 700 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 701 * allocation/ free operation in hardirq context. Therefore nothing can 702 * interrupt the operation. 703 */ 704 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 705 void *freelist_old, unsigned long counters_old, 706 void *freelist_new, unsigned long counters_new, 707 const char *n) 708 { 709 bool ret; 710 711 if (USE_LOCKLESS_FAST_PATH()) 712 lockdep_assert_irqs_disabled(); 713 714 if (s->flags & __CMPXCHG_DOUBLE) { 715 ret = __update_freelist_fast(slab, freelist_old, counters_old, 716 freelist_new, counters_new); 717 } else { 718 ret = __update_freelist_slow(slab, freelist_old, counters_old, 719 freelist_new, counters_new); 720 } 721 if (likely(ret)) 722 return true; 723 724 cpu_relax(); 725 stat(s, CMPXCHG_DOUBLE_FAIL); 726 727 #ifdef SLUB_DEBUG_CMPXCHG 728 pr_info("%s %s: cmpxchg double redo ", n, s->name); 729 #endif 730 731 return false; 732 } 733 734 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 735 void *freelist_old, unsigned long counters_old, 736 void *freelist_new, unsigned long counters_new, 737 const char *n) 738 { 739 bool ret; 740 741 if (s->flags & __CMPXCHG_DOUBLE) { 742 ret = __update_freelist_fast(slab, freelist_old, counters_old, 743 freelist_new, counters_new); 744 } else { 745 unsigned long flags; 746 747 local_irq_save(flags); 748 ret = __update_freelist_slow(slab, freelist_old, counters_old, 749 freelist_new, counters_new); 750 local_irq_restore(flags); 751 } 752 if (likely(ret)) 753 return true; 754 755 cpu_relax(); 756 stat(s, CMPXCHG_DOUBLE_FAIL); 757 758 #ifdef SLUB_DEBUG_CMPXCHG 759 pr_info("%s %s: cmpxchg double redo ", n, s->name); 760 #endif 761 762 return false; 763 } 764 765 #ifdef CONFIG_SLUB_DEBUG 766 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 767 static DEFINE_SPINLOCK(object_map_lock); 768 769 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 770 struct slab *slab) 771 { 772 void *addr = slab_address(slab); 773 void *p; 774 775 bitmap_zero(obj_map, slab->objects); 776 777 for (p = slab->freelist; p; p = get_freepointer(s, p)) 778 set_bit(__obj_to_index(s, addr, p), obj_map); 779 } 780 781 #if IS_ENABLED(CONFIG_KUNIT) 782 static bool slab_add_kunit_errors(void) 783 { 784 struct kunit_resource *resource; 785 786 if (!kunit_get_current_test()) 787 return false; 788 789 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 790 if (!resource) 791 return false; 792 793 (*(int *)resource->data)++; 794 kunit_put_resource(resource); 795 return true; 796 } 797 #else 798 static inline bool slab_add_kunit_errors(void) { return false; } 799 #endif 800 801 static inline unsigned int size_from_object(struct kmem_cache *s) 802 { 803 if (s->flags & SLAB_RED_ZONE) 804 return s->size - s->red_left_pad; 805 806 return s->size; 807 } 808 809 static inline void *restore_red_left(struct kmem_cache *s, void *p) 810 { 811 if (s->flags & SLAB_RED_ZONE) 812 p -= s->red_left_pad; 813 814 return p; 815 } 816 817 /* 818 * Debug settings: 819 */ 820 #if defined(CONFIG_SLUB_DEBUG_ON) 821 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 822 #else 823 static slab_flags_t slub_debug; 824 #endif 825 826 static char *slub_debug_string; 827 static int disable_higher_order_debug; 828 829 /* 830 * slub is about to manipulate internal object metadata. This memory lies 831 * outside the range of the allocated object, so accessing it would normally 832 * be reported by kasan as a bounds error. metadata_access_enable() is used 833 * to tell kasan that these accesses are OK. 834 */ 835 static inline void metadata_access_enable(void) 836 { 837 kasan_disable_current(); 838 } 839 840 static inline void metadata_access_disable(void) 841 { 842 kasan_enable_current(); 843 } 844 845 /* 846 * Object debugging 847 */ 848 849 /* Verify that a pointer has an address that is valid within a slab page */ 850 static inline int check_valid_pointer(struct kmem_cache *s, 851 struct slab *slab, void *object) 852 { 853 void *base; 854 855 if (!object) 856 return 1; 857 858 base = slab_address(slab); 859 object = kasan_reset_tag(object); 860 object = restore_red_left(s, object); 861 if (object < base || object >= base + slab->objects * s->size || 862 (object - base) % s->size) { 863 return 0; 864 } 865 866 return 1; 867 } 868 869 static void print_section(char *level, char *text, u8 *addr, 870 unsigned int length) 871 { 872 metadata_access_enable(); 873 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 874 16, 1, kasan_reset_tag((void *)addr), length, 1); 875 metadata_access_disable(); 876 } 877 878 static struct track *get_track(struct kmem_cache *s, void *object, 879 enum track_item alloc) 880 { 881 struct track *p; 882 883 p = object + get_info_end(s); 884 885 return kasan_reset_tag(p + alloc); 886 } 887 888 #ifdef CONFIG_STACKDEPOT 889 static noinline depot_stack_handle_t set_track_prepare(void) 890 { 891 depot_stack_handle_t handle; 892 unsigned long entries[TRACK_ADDRS_COUNT]; 893 unsigned int nr_entries; 894 895 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 896 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 897 898 return handle; 899 } 900 #else 901 static inline depot_stack_handle_t set_track_prepare(void) 902 { 903 return 0; 904 } 905 #endif 906 907 static void set_track_update(struct kmem_cache *s, void *object, 908 enum track_item alloc, unsigned long addr, 909 depot_stack_handle_t handle) 910 { 911 struct track *p = get_track(s, object, alloc); 912 913 #ifdef CONFIG_STACKDEPOT 914 p->handle = handle; 915 #endif 916 p->addr = addr; 917 p->cpu = smp_processor_id(); 918 p->pid = current->pid; 919 p->when = jiffies; 920 } 921 922 static __always_inline void set_track(struct kmem_cache *s, void *object, 923 enum track_item alloc, unsigned long addr) 924 { 925 depot_stack_handle_t handle = set_track_prepare(); 926 927 set_track_update(s, object, alloc, addr, handle); 928 } 929 930 static void init_tracking(struct kmem_cache *s, void *object) 931 { 932 struct track *p; 933 934 if (!(s->flags & SLAB_STORE_USER)) 935 return; 936 937 p = get_track(s, object, TRACK_ALLOC); 938 memset(p, 0, 2*sizeof(struct track)); 939 } 940 941 static void print_track(const char *s, struct track *t, unsigned long pr_time) 942 { 943 depot_stack_handle_t handle __maybe_unused; 944 945 if (!t->addr) 946 return; 947 948 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 949 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 950 #ifdef CONFIG_STACKDEPOT 951 handle = READ_ONCE(t->handle); 952 if (handle) 953 stack_depot_print(handle); 954 else 955 pr_err("object allocation/free stack trace missing\n"); 956 #endif 957 } 958 959 void print_tracking(struct kmem_cache *s, void *object) 960 { 961 unsigned long pr_time = jiffies; 962 if (!(s->flags & SLAB_STORE_USER)) 963 return; 964 965 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 966 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 967 } 968 969 static void print_slab_info(const struct slab *slab) 970 { 971 struct folio *folio = (struct folio *)slab_folio(slab); 972 973 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 974 slab, slab->objects, slab->inuse, slab->freelist, 975 folio_flags(folio, 0)); 976 } 977 978 /* 979 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 980 * family will round up the real request size to these fixed ones, so 981 * there could be an extra area than what is requested. Save the original 982 * request size in the meta data area, for better debug and sanity check. 983 */ 984 static inline void set_orig_size(struct kmem_cache *s, 985 void *object, unsigned int orig_size) 986 { 987 void *p = kasan_reset_tag(object); 988 unsigned int kasan_meta_size; 989 990 if (!slub_debug_orig_size(s)) 991 return; 992 993 /* 994 * KASAN can save its free meta data inside of the object at offset 0. 995 * If this meta data size is larger than 'orig_size', it will overlap 996 * the data redzone in [orig_size+1, object_size]. Thus, we adjust 997 * 'orig_size' to be as at least as big as KASAN's meta data. 998 */ 999 kasan_meta_size = kasan_metadata_size(s, true); 1000 if (kasan_meta_size > orig_size) 1001 orig_size = kasan_meta_size; 1002 1003 p += get_info_end(s); 1004 p += sizeof(struct track) * 2; 1005 1006 *(unsigned int *)p = orig_size; 1007 } 1008 1009 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 1010 { 1011 void *p = kasan_reset_tag(object); 1012 1013 if (!slub_debug_orig_size(s)) 1014 return s->object_size; 1015 1016 p += get_info_end(s); 1017 p += sizeof(struct track) * 2; 1018 1019 return *(unsigned int *)p; 1020 } 1021 1022 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1023 { 1024 set_orig_size(s, (void *)object, s->object_size); 1025 } 1026 1027 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1028 { 1029 struct va_format vaf; 1030 va_list args; 1031 1032 va_start(args, fmt); 1033 vaf.fmt = fmt; 1034 vaf.va = &args; 1035 pr_err("=============================================================================\n"); 1036 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1037 pr_err("-----------------------------------------------------------------------------\n\n"); 1038 va_end(args); 1039 } 1040 1041 __printf(2, 3) 1042 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1043 { 1044 struct va_format vaf; 1045 va_list args; 1046 1047 if (slab_add_kunit_errors()) 1048 return; 1049 1050 va_start(args, fmt); 1051 vaf.fmt = fmt; 1052 vaf.va = &args; 1053 pr_err("FIX %s: %pV\n", s->name, &vaf); 1054 va_end(args); 1055 } 1056 1057 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1058 { 1059 unsigned int off; /* Offset of last byte */ 1060 u8 *addr = slab_address(slab); 1061 1062 print_tracking(s, p); 1063 1064 print_slab_info(slab); 1065 1066 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1067 p, p - addr, get_freepointer(s, p)); 1068 1069 if (s->flags & SLAB_RED_ZONE) 1070 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1071 s->red_left_pad); 1072 else if (p > addr + 16) 1073 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1074 1075 print_section(KERN_ERR, "Object ", p, 1076 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1077 if (s->flags & SLAB_RED_ZONE) 1078 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1079 s->inuse - s->object_size); 1080 1081 off = get_info_end(s); 1082 1083 if (s->flags & SLAB_STORE_USER) 1084 off += 2 * sizeof(struct track); 1085 1086 if (slub_debug_orig_size(s)) 1087 off += sizeof(unsigned int); 1088 1089 off += kasan_metadata_size(s, false); 1090 1091 if (off != size_from_object(s)) 1092 /* Beginning of the filler is the free pointer */ 1093 print_section(KERN_ERR, "Padding ", p + off, 1094 size_from_object(s) - off); 1095 1096 dump_stack(); 1097 } 1098 1099 static void object_err(struct kmem_cache *s, struct slab *slab, 1100 u8 *object, char *reason) 1101 { 1102 if (slab_add_kunit_errors()) 1103 return; 1104 1105 slab_bug(s, "%s", reason); 1106 print_trailer(s, slab, object); 1107 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1108 } 1109 1110 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1111 void **freelist, void *nextfree) 1112 { 1113 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1114 !check_valid_pointer(s, slab, nextfree) && freelist) { 1115 object_err(s, slab, *freelist, "Freechain corrupt"); 1116 *freelist = NULL; 1117 slab_fix(s, "Isolate corrupted freechain"); 1118 return true; 1119 } 1120 1121 return false; 1122 } 1123 1124 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1125 const char *fmt, ...) 1126 { 1127 va_list args; 1128 char buf[100]; 1129 1130 if (slab_add_kunit_errors()) 1131 return; 1132 1133 va_start(args, fmt); 1134 vsnprintf(buf, sizeof(buf), fmt, args); 1135 va_end(args); 1136 slab_bug(s, "%s", buf); 1137 print_slab_info(slab); 1138 dump_stack(); 1139 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1140 } 1141 1142 static void init_object(struct kmem_cache *s, void *object, u8 val) 1143 { 1144 u8 *p = kasan_reset_tag(object); 1145 unsigned int poison_size = s->object_size; 1146 1147 if (s->flags & SLAB_RED_ZONE) { 1148 memset(p - s->red_left_pad, val, s->red_left_pad); 1149 1150 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1151 /* 1152 * Redzone the extra allocated space by kmalloc than 1153 * requested, and the poison size will be limited to 1154 * the original request size accordingly. 1155 */ 1156 poison_size = get_orig_size(s, object); 1157 } 1158 } 1159 1160 if (s->flags & __OBJECT_POISON) { 1161 memset(p, POISON_FREE, poison_size - 1); 1162 p[poison_size - 1] = POISON_END; 1163 } 1164 1165 if (s->flags & SLAB_RED_ZONE) 1166 memset(p + poison_size, val, s->inuse - poison_size); 1167 } 1168 1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1170 void *from, void *to) 1171 { 1172 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1173 memset(from, data, to - from); 1174 } 1175 1176 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1177 u8 *object, char *what, 1178 u8 *start, unsigned int value, unsigned int bytes) 1179 { 1180 u8 *fault; 1181 u8 *end; 1182 u8 *addr = slab_address(slab); 1183 1184 metadata_access_enable(); 1185 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1186 metadata_access_disable(); 1187 if (!fault) 1188 return 1; 1189 1190 end = start + bytes; 1191 while (end > fault && end[-1] == value) 1192 end--; 1193 1194 if (slab_add_kunit_errors()) 1195 goto skip_bug_print; 1196 1197 slab_bug(s, "%s overwritten", what); 1198 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1199 fault, end - 1, fault - addr, 1200 fault[0], value); 1201 print_trailer(s, slab, object); 1202 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1203 1204 skip_bug_print: 1205 restore_bytes(s, what, value, fault, end); 1206 return 0; 1207 } 1208 1209 /* 1210 * Object layout: 1211 * 1212 * object address 1213 * Bytes of the object to be managed. 1214 * If the freepointer may overlay the object then the free 1215 * pointer is at the middle of the object. 1216 * 1217 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1218 * 0xa5 (POISON_END) 1219 * 1220 * object + s->object_size 1221 * Padding to reach word boundary. This is also used for Redzoning. 1222 * Padding is extended by another word if Redzoning is enabled and 1223 * object_size == inuse. 1224 * 1225 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1226 * 0xcc (RED_ACTIVE) for objects in use. 1227 * 1228 * object + s->inuse 1229 * Meta data starts here. 1230 * 1231 * A. Free pointer (if we cannot overwrite object on free) 1232 * B. Tracking data for SLAB_STORE_USER 1233 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1234 * D. Padding to reach required alignment boundary or at minimum 1235 * one word if debugging is on to be able to detect writes 1236 * before the word boundary. 1237 * 1238 * Padding is done using 0x5a (POISON_INUSE) 1239 * 1240 * object + s->size 1241 * Nothing is used beyond s->size. 1242 * 1243 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1244 * ignored. And therefore no slab options that rely on these boundaries 1245 * may be used with merged slabcaches. 1246 */ 1247 1248 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1249 { 1250 unsigned long off = get_info_end(s); /* The end of info */ 1251 1252 if (s->flags & SLAB_STORE_USER) { 1253 /* We also have user information there */ 1254 off += 2 * sizeof(struct track); 1255 1256 if (s->flags & SLAB_KMALLOC) 1257 off += sizeof(unsigned int); 1258 } 1259 1260 off += kasan_metadata_size(s, false); 1261 1262 if (size_from_object(s) == off) 1263 return 1; 1264 1265 return check_bytes_and_report(s, slab, p, "Object padding", 1266 p + off, POISON_INUSE, size_from_object(s) - off); 1267 } 1268 1269 /* Check the pad bytes at the end of a slab page */ 1270 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1271 { 1272 u8 *start; 1273 u8 *fault; 1274 u8 *end; 1275 u8 *pad; 1276 int length; 1277 int remainder; 1278 1279 if (!(s->flags & SLAB_POISON)) 1280 return; 1281 1282 start = slab_address(slab); 1283 length = slab_size(slab); 1284 end = start + length; 1285 remainder = length % s->size; 1286 if (!remainder) 1287 return; 1288 1289 pad = end - remainder; 1290 metadata_access_enable(); 1291 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1292 metadata_access_disable(); 1293 if (!fault) 1294 return; 1295 while (end > fault && end[-1] == POISON_INUSE) 1296 end--; 1297 1298 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1299 fault, end - 1, fault - start); 1300 print_section(KERN_ERR, "Padding ", pad, remainder); 1301 1302 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1303 } 1304 1305 static int check_object(struct kmem_cache *s, struct slab *slab, 1306 void *object, u8 val) 1307 { 1308 u8 *p = object; 1309 u8 *endobject = object + s->object_size; 1310 unsigned int orig_size, kasan_meta_size; 1311 1312 if (s->flags & SLAB_RED_ZONE) { 1313 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1314 object - s->red_left_pad, val, s->red_left_pad)) 1315 return 0; 1316 1317 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1318 endobject, val, s->inuse - s->object_size)) 1319 return 0; 1320 1321 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1322 orig_size = get_orig_size(s, object); 1323 1324 if (s->object_size > orig_size && 1325 !check_bytes_and_report(s, slab, object, 1326 "kmalloc Redzone", p + orig_size, 1327 val, s->object_size - orig_size)) { 1328 return 0; 1329 } 1330 } 1331 } else { 1332 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1333 check_bytes_and_report(s, slab, p, "Alignment padding", 1334 endobject, POISON_INUSE, 1335 s->inuse - s->object_size); 1336 } 1337 } 1338 1339 if (s->flags & SLAB_POISON) { 1340 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1341 /* 1342 * KASAN can save its free meta data inside of the 1343 * object at offset 0. Thus, skip checking the part of 1344 * the redzone that overlaps with the meta data. 1345 */ 1346 kasan_meta_size = kasan_metadata_size(s, true); 1347 if (kasan_meta_size < s->object_size - 1 && 1348 !check_bytes_and_report(s, slab, p, "Poison", 1349 p + kasan_meta_size, POISON_FREE, 1350 s->object_size - kasan_meta_size - 1)) 1351 return 0; 1352 if (kasan_meta_size < s->object_size && 1353 !check_bytes_and_report(s, slab, p, "End Poison", 1354 p + s->object_size - 1, POISON_END, 1)) 1355 return 0; 1356 } 1357 /* 1358 * check_pad_bytes cleans up on its own. 1359 */ 1360 check_pad_bytes(s, slab, p); 1361 } 1362 1363 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1364 /* 1365 * Object and freepointer overlap. Cannot check 1366 * freepointer while object is allocated. 1367 */ 1368 return 1; 1369 1370 /* Check free pointer validity */ 1371 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1372 object_err(s, slab, p, "Freepointer corrupt"); 1373 /* 1374 * No choice but to zap it and thus lose the remainder 1375 * of the free objects in this slab. May cause 1376 * another error because the object count is now wrong. 1377 */ 1378 set_freepointer(s, p, NULL); 1379 return 0; 1380 } 1381 return 1; 1382 } 1383 1384 static int check_slab(struct kmem_cache *s, struct slab *slab) 1385 { 1386 int maxobj; 1387 1388 if (!folio_test_slab(slab_folio(slab))) { 1389 slab_err(s, slab, "Not a valid slab page"); 1390 return 0; 1391 } 1392 1393 maxobj = order_objects(slab_order(slab), s->size); 1394 if (slab->objects > maxobj) { 1395 slab_err(s, slab, "objects %u > max %u", 1396 slab->objects, maxobj); 1397 return 0; 1398 } 1399 if (slab->inuse > slab->objects) { 1400 slab_err(s, slab, "inuse %u > max %u", 1401 slab->inuse, slab->objects); 1402 return 0; 1403 } 1404 /* Slab_pad_check fixes things up after itself */ 1405 slab_pad_check(s, slab); 1406 return 1; 1407 } 1408 1409 /* 1410 * Determine if a certain object in a slab is on the freelist. Must hold the 1411 * slab lock to guarantee that the chains are in a consistent state. 1412 */ 1413 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1414 { 1415 int nr = 0; 1416 void *fp; 1417 void *object = NULL; 1418 int max_objects; 1419 1420 fp = slab->freelist; 1421 while (fp && nr <= slab->objects) { 1422 if (fp == search) 1423 return 1; 1424 if (!check_valid_pointer(s, slab, fp)) { 1425 if (object) { 1426 object_err(s, slab, object, 1427 "Freechain corrupt"); 1428 set_freepointer(s, object, NULL); 1429 } else { 1430 slab_err(s, slab, "Freepointer corrupt"); 1431 slab->freelist = NULL; 1432 slab->inuse = slab->objects; 1433 slab_fix(s, "Freelist cleared"); 1434 return 0; 1435 } 1436 break; 1437 } 1438 object = fp; 1439 fp = get_freepointer(s, object); 1440 nr++; 1441 } 1442 1443 max_objects = order_objects(slab_order(slab), s->size); 1444 if (max_objects > MAX_OBJS_PER_PAGE) 1445 max_objects = MAX_OBJS_PER_PAGE; 1446 1447 if (slab->objects != max_objects) { 1448 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1449 slab->objects, max_objects); 1450 slab->objects = max_objects; 1451 slab_fix(s, "Number of objects adjusted"); 1452 } 1453 if (slab->inuse != slab->objects - nr) { 1454 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1455 slab->inuse, slab->objects - nr); 1456 slab->inuse = slab->objects - nr; 1457 slab_fix(s, "Object count adjusted"); 1458 } 1459 return search == NULL; 1460 } 1461 1462 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1463 int alloc) 1464 { 1465 if (s->flags & SLAB_TRACE) { 1466 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1467 s->name, 1468 alloc ? "alloc" : "free", 1469 object, slab->inuse, 1470 slab->freelist); 1471 1472 if (!alloc) 1473 print_section(KERN_INFO, "Object ", (void *)object, 1474 s->object_size); 1475 1476 dump_stack(); 1477 } 1478 } 1479 1480 /* 1481 * Tracking of fully allocated slabs for debugging purposes. 1482 */ 1483 static void add_full(struct kmem_cache *s, 1484 struct kmem_cache_node *n, struct slab *slab) 1485 { 1486 if (!(s->flags & SLAB_STORE_USER)) 1487 return; 1488 1489 lockdep_assert_held(&n->list_lock); 1490 list_add(&slab->slab_list, &n->full); 1491 } 1492 1493 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1494 { 1495 if (!(s->flags & SLAB_STORE_USER)) 1496 return; 1497 1498 lockdep_assert_held(&n->list_lock); 1499 list_del(&slab->slab_list); 1500 } 1501 1502 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1503 { 1504 return atomic_long_read(&n->nr_slabs); 1505 } 1506 1507 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1508 { 1509 struct kmem_cache_node *n = get_node(s, node); 1510 1511 atomic_long_inc(&n->nr_slabs); 1512 atomic_long_add(objects, &n->total_objects); 1513 } 1514 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1515 { 1516 struct kmem_cache_node *n = get_node(s, node); 1517 1518 atomic_long_dec(&n->nr_slabs); 1519 atomic_long_sub(objects, &n->total_objects); 1520 } 1521 1522 /* Object debug checks for alloc/free paths */ 1523 static void setup_object_debug(struct kmem_cache *s, void *object) 1524 { 1525 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1526 return; 1527 1528 init_object(s, object, SLUB_RED_INACTIVE); 1529 init_tracking(s, object); 1530 } 1531 1532 static 1533 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1534 { 1535 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1536 return; 1537 1538 metadata_access_enable(); 1539 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1540 metadata_access_disable(); 1541 } 1542 1543 static inline int alloc_consistency_checks(struct kmem_cache *s, 1544 struct slab *slab, void *object) 1545 { 1546 if (!check_slab(s, slab)) 1547 return 0; 1548 1549 if (!check_valid_pointer(s, slab, object)) { 1550 object_err(s, slab, object, "Freelist Pointer check fails"); 1551 return 0; 1552 } 1553 1554 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1555 return 0; 1556 1557 return 1; 1558 } 1559 1560 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1561 struct slab *slab, void *object, int orig_size) 1562 { 1563 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1564 if (!alloc_consistency_checks(s, slab, object)) 1565 goto bad; 1566 } 1567 1568 /* Success. Perform special debug activities for allocs */ 1569 trace(s, slab, object, 1); 1570 set_orig_size(s, object, orig_size); 1571 init_object(s, object, SLUB_RED_ACTIVE); 1572 return true; 1573 1574 bad: 1575 if (folio_test_slab(slab_folio(slab))) { 1576 /* 1577 * If this is a slab page then lets do the best we can 1578 * to avoid issues in the future. Marking all objects 1579 * as used avoids touching the remaining objects. 1580 */ 1581 slab_fix(s, "Marking all objects used"); 1582 slab->inuse = slab->objects; 1583 slab->freelist = NULL; 1584 } 1585 return false; 1586 } 1587 1588 static inline int free_consistency_checks(struct kmem_cache *s, 1589 struct slab *slab, void *object, unsigned long addr) 1590 { 1591 if (!check_valid_pointer(s, slab, object)) { 1592 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1593 return 0; 1594 } 1595 1596 if (on_freelist(s, slab, object)) { 1597 object_err(s, slab, object, "Object already free"); 1598 return 0; 1599 } 1600 1601 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1602 return 0; 1603 1604 if (unlikely(s != slab->slab_cache)) { 1605 if (!folio_test_slab(slab_folio(slab))) { 1606 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1607 object); 1608 } else if (!slab->slab_cache) { 1609 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1610 object); 1611 dump_stack(); 1612 } else 1613 object_err(s, slab, object, 1614 "page slab pointer corrupt."); 1615 return 0; 1616 } 1617 return 1; 1618 } 1619 1620 /* 1621 * Parse a block of slab_debug options. Blocks are delimited by ';' 1622 * 1623 * @str: start of block 1624 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1625 * @slabs: return start of list of slabs, or NULL when there's no list 1626 * @init: assume this is initial parsing and not per-kmem-create parsing 1627 * 1628 * returns the start of next block if there's any, or NULL 1629 */ 1630 static char * 1631 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1632 { 1633 bool higher_order_disable = false; 1634 1635 /* Skip any completely empty blocks */ 1636 while (*str && *str == ';') 1637 str++; 1638 1639 if (*str == ',') { 1640 /* 1641 * No options but restriction on slabs. This means full 1642 * debugging for slabs matching a pattern. 1643 */ 1644 *flags = DEBUG_DEFAULT_FLAGS; 1645 goto check_slabs; 1646 } 1647 *flags = 0; 1648 1649 /* Determine which debug features should be switched on */ 1650 for (; *str && *str != ',' && *str != ';'; str++) { 1651 switch (tolower(*str)) { 1652 case '-': 1653 *flags = 0; 1654 break; 1655 case 'f': 1656 *flags |= SLAB_CONSISTENCY_CHECKS; 1657 break; 1658 case 'z': 1659 *flags |= SLAB_RED_ZONE; 1660 break; 1661 case 'p': 1662 *flags |= SLAB_POISON; 1663 break; 1664 case 'u': 1665 *flags |= SLAB_STORE_USER; 1666 break; 1667 case 't': 1668 *flags |= SLAB_TRACE; 1669 break; 1670 case 'a': 1671 *flags |= SLAB_FAILSLAB; 1672 break; 1673 case 'o': 1674 /* 1675 * Avoid enabling debugging on caches if its minimum 1676 * order would increase as a result. 1677 */ 1678 higher_order_disable = true; 1679 break; 1680 default: 1681 if (init) 1682 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1683 } 1684 } 1685 check_slabs: 1686 if (*str == ',') 1687 *slabs = ++str; 1688 else 1689 *slabs = NULL; 1690 1691 /* Skip over the slab list */ 1692 while (*str && *str != ';') 1693 str++; 1694 1695 /* Skip any completely empty blocks */ 1696 while (*str && *str == ';') 1697 str++; 1698 1699 if (init && higher_order_disable) 1700 disable_higher_order_debug = 1; 1701 1702 if (*str) 1703 return str; 1704 else 1705 return NULL; 1706 } 1707 1708 static int __init setup_slub_debug(char *str) 1709 { 1710 slab_flags_t flags; 1711 slab_flags_t global_flags; 1712 char *saved_str; 1713 char *slab_list; 1714 bool global_slub_debug_changed = false; 1715 bool slab_list_specified = false; 1716 1717 global_flags = DEBUG_DEFAULT_FLAGS; 1718 if (*str++ != '=' || !*str) 1719 /* 1720 * No options specified. Switch on full debugging. 1721 */ 1722 goto out; 1723 1724 saved_str = str; 1725 while (str) { 1726 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1727 1728 if (!slab_list) { 1729 global_flags = flags; 1730 global_slub_debug_changed = true; 1731 } else { 1732 slab_list_specified = true; 1733 if (flags & SLAB_STORE_USER) 1734 stack_depot_request_early_init(); 1735 } 1736 } 1737 1738 /* 1739 * For backwards compatibility, a single list of flags with list of 1740 * slabs means debugging is only changed for those slabs, so the global 1741 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1742 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1743 * long as there is no option specifying flags without a slab list. 1744 */ 1745 if (slab_list_specified) { 1746 if (!global_slub_debug_changed) 1747 global_flags = slub_debug; 1748 slub_debug_string = saved_str; 1749 } 1750 out: 1751 slub_debug = global_flags; 1752 if (slub_debug & SLAB_STORE_USER) 1753 stack_depot_request_early_init(); 1754 if (slub_debug != 0 || slub_debug_string) 1755 static_branch_enable(&slub_debug_enabled); 1756 else 1757 static_branch_disable(&slub_debug_enabled); 1758 if ((static_branch_unlikely(&init_on_alloc) || 1759 static_branch_unlikely(&init_on_free)) && 1760 (slub_debug & SLAB_POISON)) 1761 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1762 return 1; 1763 } 1764 1765 __setup("slab_debug", setup_slub_debug); 1766 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1767 1768 /* 1769 * kmem_cache_flags - apply debugging options to the cache 1770 * @flags: flags to set 1771 * @name: name of the cache 1772 * 1773 * Debug option(s) are applied to @flags. In addition to the debug 1774 * option(s), if a slab name (or multiple) is specified i.e. 1775 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1776 * then only the select slabs will receive the debug option(s). 1777 */ 1778 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1779 { 1780 char *iter; 1781 size_t len; 1782 char *next_block; 1783 slab_flags_t block_flags; 1784 slab_flags_t slub_debug_local = slub_debug; 1785 1786 if (flags & SLAB_NO_USER_FLAGS) 1787 return flags; 1788 1789 /* 1790 * If the slab cache is for debugging (e.g. kmemleak) then 1791 * don't store user (stack trace) information by default, 1792 * but let the user enable it via the command line below. 1793 */ 1794 if (flags & SLAB_NOLEAKTRACE) 1795 slub_debug_local &= ~SLAB_STORE_USER; 1796 1797 len = strlen(name); 1798 next_block = slub_debug_string; 1799 /* Go through all blocks of debug options, see if any matches our slab's name */ 1800 while (next_block) { 1801 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1802 if (!iter) 1803 continue; 1804 /* Found a block that has a slab list, search it */ 1805 while (*iter) { 1806 char *end, *glob; 1807 size_t cmplen; 1808 1809 end = strchrnul(iter, ','); 1810 if (next_block && next_block < end) 1811 end = next_block - 1; 1812 1813 glob = strnchr(iter, end - iter, '*'); 1814 if (glob) 1815 cmplen = glob - iter; 1816 else 1817 cmplen = max_t(size_t, len, (end - iter)); 1818 1819 if (!strncmp(name, iter, cmplen)) { 1820 flags |= block_flags; 1821 return flags; 1822 } 1823 1824 if (!*end || *end == ';') 1825 break; 1826 iter = end + 1; 1827 } 1828 } 1829 1830 return flags | slub_debug_local; 1831 } 1832 #else /* !CONFIG_SLUB_DEBUG */ 1833 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1834 static inline 1835 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1836 1837 static inline bool alloc_debug_processing(struct kmem_cache *s, 1838 struct slab *slab, void *object, int orig_size) { return true; } 1839 1840 static inline bool free_debug_processing(struct kmem_cache *s, 1841 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1842 unsigned long addr, depot_stack_handle_t handle) { return true; } 1843 1844 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1845 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1846 void *object, u8 val) { return 1; } 1847 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1848 static inline void set_track(struct kmem_cache *s, void *object, 1849 enum track_item alloc, unsigned long addr) {} 1850 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1851 struct slab *slab) {} 1852 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1853 struct slab *slab) {} 1854 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1855 { 1856 return flags; 1857 } 1858 #define slub_debug 0 1859 1860 #define disable_higher_order_debug 0 1861 1862 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1863 { return 0; } 1864 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1865 int objects) {} 1866 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1867 int objects) {} 1868 1869 #ifndef CONFIG_SLUB_TINY 1870 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1871 void **freelist, void *nextfree) 1872 { 1873 return false; 1874 } 1875 #endif 1876 #endif /* CONFIG_SLUB_DEBUG */ 1877 1878 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) 1879 { 1880 return (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1881 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; 1882 } 1883 1884 #ifdef CONFIG_MEMCG_KMEM 1885 static inline void memcg_free_slab_cgroups(struct slab *slab) 1886 { 1887 kfree(slab_objcgs(slab)); 1888 slab->memcg_data = 0; 1889 } 1890 1891 static inline size_t obj_full_size(struct kmem_cache *s) 1892 { 1893 /* 1894 * For each accounted object there is an extra space which is used 1895 * to store obj_cgroup membership. Charge it too. 1896 */ 1897 return s->size + sizeof(struct obj_cgroup *); 1898 } 1899 1900 /* 1901 * Returns false if the allocation should fail. 1902 */ 1903 static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s, 1904 struct list_lru *lru, 1905 struct obj_cgroup **objcgp, 1906 size_t objects, gfp_t flags) 1907 { 1908 /* 1909 * The obtained objcg pointer is safe to use within the current scope, 1910 * defined by current task or set_active_memcg() pair. 1911 * obj_cgroup_get() is used to get a permanent reference. 1912 */ 1913 struct obj_cgroup *objcg = current_obj_cgroup(); 1914 if (!objcg) 1915 return true; 1916 1917 if (lru) { 1918 int ret; 1919 struct mem_cgroup *memcg; 1920 1921 memcg = get_mem_cgroup_from_objcg(objcg); 1922 ret = memcg_list_lru_alloc(memcg, lru, flags); 1923 css_put(&memcg->css); 1924 1925 if (ret) 1926 return false; 1927 } 1928 1929 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) 1930 return false; 1931 1932 *objcgp = objcg; 1933 return true; 1934 } 1935 1936 /* 1937 * Returns false if the allocation should fail. 1938 */ 1939 static __fastpath_inline 1940 bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 1941 struct obj_cgroup **objcgp, size_t objects, 1942 gfp_t flags) 1943 { 1944 if (!memcg_kmem_online()) 1945 return true; 1946 1947 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 1948 return true; 1949 1950 return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects, 1951 flags)); 1952 } 1953 1954 static void __memcg_slab_post_alloc_hook(struct kmem_cache *s, 1955 struct obj_cgroup *objcg, 1956 gfp_t flags, size_t size, 1957 void **p) 1958 { 1959 struct slab *slab; 1960 unsigned long off; 1961 size_t i; 1962 1963 flags &= gfp_allowed_mask; 1964 1965 for (i = 0; i < size; i++) { 1966 if (likely(p[i])) { 1967 slab = virt_to_slab(p[i]); 1968 1969 if (!slab_objcgs(slab) && 1970 memcg_alloc_slab_cgroups(slab, s, flags, false)) { 1971 obj_cgroup_uncharge(objcg, obj_full_size(s)); 1972 continue; 1973 } 1974 1975 off = obj_to_index(s, slab, p[i]); 1976 obj_cgroup_get(objcg); 1977 slab_objcgs(slab)[off] = objcg; 1978 mod_objcg_state(objcg, slab_pgdat(slab), 1979 cache_vmstat_idx(s), obj_full_size(s)); 1980 } else { 1981 obj_cgroup_uncharge(objcg, obj_full_size(s)); 1982 } 1983 } 1984 } 1985 1986 static __fastpath_inline 1987 void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, 1988 gfp_t flags, size_t size, void **p) 1989 { 1990 if (likely(!memcg_kmem_online() || !objcg)) 1991 return; 1992 1993 return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p); 1994 } 1995 1996 static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 1997 void **p, int objects, 1998 struct obj_cgroup **objcgs) 1999 { 2000 for (int i = 0; i < objects; i++) { 2001 struct obj_cgroup *objcg; 2002 unsigned int off; 2003 2004 off = obj_to_index(s, slab, p[i]); 2005 objcg = objcgs[off]; 2006 if (!objcg) 2007 continue; 2008 2009 objcgs[off] = NULL; 2010 obj_cgroup_uncharge(objcg, obj_full_size(s)); 2011 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 2012 -obj_full_size(s)); 2013 obj_cgroup_put(objcg); 2014 } 2015 } 2016 2017 static __fastpath_inline 2018 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2019 int objects) 2020 { 2021 struct obj_cgroup **objcgs; 2022 2023 if (!memcg_kmem_online()) 2024 return; 2025 2026 objcgs = slab_objcgs(slab); 2027 if (likely(!objcgs)) 2028 return; 2029 2030 __memcg_slab_free_hook(s, slab, p, objects, objcgs); 2031 } 2032 2033 static inline 2034 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, 2035 struct obj_cgroup *objcg) 2036 { 2037 if (objcg) 2038 obj_cgroup_uncharge(objcg, objects * obj_full_size(s)); 2039 } 2040 #else /* CONFIG_MEMCG_KMEM */ 2041 static inline void memcg_free_slab_cgroups(struct slab *slab) 2042 { 2043 } 2044 2045 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, 2046 struct list_lru *lru, 2047 struct obj_cgroup **objcgp, 2048 size_t objects, gfp_t flags) 2049 { 2050 return true; 2051 } 2052 2053 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, 2054 struct obj_cgroup *objcg, 2055 gfp_t flags, size_t size, 2056 void **p) 2057 { 2058 } 2059 2060 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2061 void **p, int objects) 2062 { 2063 } 2064 2065 static inline 2066 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, 2067 struct obj_cgroup *objcg) 2068 { 2069 } 2070 #endif /* CONFIG_MEMCG_KMEM */ 2071 2072 /* 2073 * Hooks for other subsystems that check memory allocations. In a typical 2074 * production configuration these hooks all should produce no code at all. 2075 * 2076 * Returns true if freeing of the object can proceed, false if its reuse 2077 * was delayed by KASAN quarantine, or it was returned to KFENCE. 2078 */ 2079 static __always_inline 2080 bool slab_free_hook(struct kmem_cache *s, void *x, bool init) 2081 { 2082 kmemleak_free_recursive(x, s->flags); 2083 kmsan_slab_free(s, x); 2084 2085 debug_check_no_locks_freed(x, s->object_size); 2086 2087 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2088 debug_check_no_obj_freed(x, s->object_size); 2089 2090 /* Use KCSAN to help debug racy use-after-free. */ 2091 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 2092 __kcsan_check_access(x, s->object_size, 2093 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2094 2095 if (kfence_free(x)) 2096 return false; 2097 2098 /* 2099 * As memory initialization might be integrated into KASAN, 2100 * kasan_slab_free and initialization memset's must be 2101 * kept together to avoid discrepancies in behavior. 2102 * 2103 * The initialization memset's clear the object and the metadata, 2104 * but don't touch the SLAB redzone. 2105 * 2106 * The object's freepointer is also avoided if stored outside the 2107 * object. 2108 */ 2109 if (unlikely(init)) { 2110 int rsize; 2111 unsigned int inuse; 2112 2113 inuse = get_info_end(s); 2114 if (!kasan_has_integrated_init()) 2115 memset(kasan_reset_tag(x), 0, s->object_size); 2116 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2117 memset((char *)kasan_reset_tag(x) + inuse, 0, 2118 s->size - inuse - rsize); 2119 } 2120 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2121 return !kasan_slab_free(s, x, init); 2122 } 2123 2124 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 2125 void **head, void **tail, 2126 int *cnt) 2127 { 2128 2129 void *object; 2130 void *next = *head; 2131 void *old_tail = *tail; 2132 bool init; 2133 2134 if (is_kfence_address(next)) { 2135 slab_free_hook(s, next, false); 2136 return false; 2137 } 2138 2139 /* Head and tail of the reconstructed freelist */ 2140 *head = NULL; 2141 *tail = NULL; 2142 2143 init = slab_want_init_on_free(s); 2144 2145 do { 2146 object = next; 2147 next = get_freepointer(s, object); 2148 2149 /* If object's reuse doesn't have to be delayed */ 2150 if (likely(slab_free_hook(s, object, init))) { 2151 /* Move object to the new freelist */ 2152 set_freepointer(s, object, *head); 2153 *head = object; 2154 if (!*tail) 2155 *tail = object; 2156 } else { 2157 /* 2158 * Adjust the reconstructed freelist depth 2159 * accordingly if object's reuse is delayed. 2160 */ 2161 --(*cnt); 2162 } 2163 } while (object != old_tail); 2164 2165 return *head != NULL; 2166 } 2167 2168 static void *setup_object(struct kmem_cache *s, void *object) 2169 { 2170 setup_object_debug(s, object); 2171 object = kasan_init_slab_obj(s, object); 2172 if (unlikely(s->ctor)) { 2173 kasan_unpoison_new_object(s, object); 2174 s->ctor(object); 2175 kasan_poison_new_object(s, object); 2176 } 2177 return object; 2178 } 2179 2180 /* 2181 * Slab allocation and freeing 2182 */ 2183 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2184 struct kmem_cache_order_objects oo) 2185 { 2186 struct folio *folio; 2187 struct slab *slab; 2188 unsigned int order = oo_order(oo); 2189 2190 folio = (struct folio *)alloc_pages_node(node, flags, order); 2191 if (!folio) 2192 return NULL; 2193 2194 slab = folio_slab(folio); 2195 __folio_set_slab(folio); 2196 /* Make the flag visible before any changes to folio->mapping */ 2197 smp_wmb(); 2198 if (folio_is_pfmemalloc(folio)) 2199 slab_set_pfmemalloc(slab); 2200 2201 return slab; 2202 } 2203 2204 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2205 /* Pre-initialize the random sequence cache */ 2206 static int init_cache_random_seq(struct kmem_cache *s) 2207 { 2208 unsigned int count = oo_objects(s->oo); 2209 int err; 2210 2211 /* Bailout if already initialised */ 2212 if (s->random_seq) 2213 return 0; 2214 2215 err = cache_random_seq_create(s, count, GFP_KERNEL); 2216 if (err) { 2217 pr_err("SLUB: Unable to initialize free list for %s\n", 2218 s->name); 2219 return err; 2220 } 2221 2222 /* Transform to an offset on the set of pages */ 2223 if (s->random_seq) { 2224 unsigned int i; 2225 2226 for (i = 0; i < count; i++) 2227 s->random_seq[i] *= s->size; 2228 } 2229 return 0; 2230 } 2231 2232 /* Initialize each random sequence freelist per cache */ 2233 static void __init init_freelist_randomization(void) 2234 { 2235 struct kmem_cache *s; 2236 2237 mutex_lock(&slab_mutex); 2238 2239 list_for_each_entry(s, &slab_caches, list) 2240 init_cache_random_seq(s); 2241 2242 mutex_unlock(&slab_mutex); 2243 } 2244 2245 /* Get the next entry on the pre-computed freelist randomized */ 2246 static void *next_freelist_entry(struct kmem_cache *s, 2247 unsigned long *pos, void *start, 2248 unsigned long page_limit, 2249 unsigned long freelist_count) 2250 { 2251 unsigned int idx; 2252 2253 /* 2254 * If the target page allocation failed, the number of objects on the 2255 * page might be smaller than the usual size defined by the cache. 2256 */ 2257 do { 2258 idx = s->random_seq[*pos]; 2259 *pos += 1; 2260 if (*pos >= freelist_count) 2261 *pos = 0; 2262 } while (unlikely(idx >= page_limit)); 2263 2264 return (char *)start + idx; 2265 } 2266 2267 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2268 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2269 { 2270 void *start; 2271 void *cur; 2272 void *next; 2273 unsigned long idx, pos, page_limit, freelist_count; 2274 2275 if (slab->objects < 2 || !s->random_seq) 2276 return false; 2277 2278 freelist_count = oo_objects(s->oo); 2279 pos = get_random_u32_below(freelist_count); 2280 2281 page_limit = slab->objects * s->size; 2282 start = fixup_red_left(s, slab_address(slab)); 2283 2284 /* First entry is used as the base of the freelist */ 2285 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2286 cur = setup_object(s, cur); 2287 slab->freelist = cur; 2288 2289 for (idx = 1; idx < slab->objects; idx++) { 2290 next = next_freelist_entry(s, &pos, start, page_limit, 2291 freelist_count); 2292 next = setup_object(s, next); 2293 set_freepointer(s, cur, next); 2294 cur = next; 2295 } 2296 set_freepointer(s, cur, NULL); 2297 2298 return true; 2299 } 2300 #else 2301 static inline int init_cache_random_seq(struct kmem_cache *s) 2302 { 2303 return 0; 2304 } 2305 static inline void init_freelist_randomization(void) { } 2306 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2307 { 2308 return false; 2309 } 2310 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2311 2312 static __always_inline void account_slab(struct slab *slab, int order, 2313 struct kmem_cache *s, gfp_t gfp) 2314 { 2315 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2316 memcg_alloc_slab_cgroups(slab, s, gfp, true); 2317 2318 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2319 PAGE_SIZE << order); 2320 } 2321 2322 static __always_inline void unaccount_slab(struct slab *slab, int order, 2323 struct kmem_cache *s) 2324 { 2325 if (memcg_kmem_online()) 2326 memcg_free_slab_cgroups(slab); 2327 2328 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2329 -(PAGE_SIZE << order)); 2330 } 2331 2332 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2333 { 2334 struct slab *slab; 2335 struct kmem_cache_order_objects oo = s->oo; 2336 gfp_t alloc_gfp; 2337 void *start, *p, *next; 2338 int idx; 2339 bool shuffle; 2340 2341 flags &= gfp_allowed_mask; 2342 2343 flags |= s->allocflags; 2344 2345 /* 2346 * Let the initial higher-order allocation fail under memory pressure 2347 * so we fall-back to the minimum order allocation. 2348 */ 2349 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2350 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2351 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2352 2353 slab = alloc_slab_page(alloc_gfp, node, oo); 2354 if (unlikely(!slab)) { 2355 oo = s->min; 2356 alloc_gfp = flags; 2357 /* 2358 * Allocation may have failed due to fragmentation. 2359 * Try a lower order alloc if possible 2360 */ 2361 slab = alloc_slab_page(alloc_gfp, node, oo); 2362 if (unlikely(!slab)) 2363 return NULL; 2364 stat(s, ORDER_FALLBACK); 2365 } 2366 2367 slab->objects = oo_objects(oo); 2368 slab->inuse = 0; 2369 slab->frozen = 0; 2370 2371 account_slab(slab, oo_order(oo), s, flags); 2372 2373 slab->slab_cache = s; 2374 2375 kasan_poison_slab(slab); 2376 2377 start = slab_address(slab); 2378 2379 setup_slab_debug(s, slab, start); 2380 2381 shuffle = shuffle_freelist(s, slab); 2382 2383 if (!shuffle) { 2384 start = fixup_red_left(s, start); 2385 start = setup_object(s, start); 2386 slab->freelist = start; 2387 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2388 next = p + s->size; 2389 next = setup_object(s, next); 2390 set_freepointer(s, p, next); 2391 p = next; 2392 } 2393 set_freepointer(s, p, NULL); 2394 } 2395 2396 return slab; 2397 } 2398 2399 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2400 { 2401 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2402 flags = kmalloc_fix_flags(flags); 2403 2404 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2405 2406 return allocate_slab(s, 2407 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2408 } 2409 2410 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2411 { 2412 struct folio *folio = slab_folio(slab); 2413 int order = folio_order(folio); 2414 int pages = 1 << order; 2415 2416 __slab_clear_pfmemalloc(slab); 2417 folio->mapping = NULL; 2418 /* Make the mapping reset visible before clearing the flag */ 2419 smp_wmb(); 2420 __folio_clear_slab(folio); 2421 mm_account_reclaimed_pages(pages); 2422 unaccount_slab(slab, order, s); 2423 __free_pages(&folio->page, order); 2424 } 2425 2426 static void rcu_free_slab(struct rcu_head *h) 2427 { 2428 struct slab *slab = container_of(h, struct slab, rcu_head); 2429 2430 __free_slab(slab->slab_cache, slab); 2431 } 2432 2433 static void free_slab(struct kmem_cache *s, struct slab *slab) 2434 { 2435 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2436 void *p; 2437 2438 slab_pad_check(s, slab); 2439 for_each_object(p, s, slab_address(slab), slab->objects) 2440 check_object(s, slab, p, SLUB_RED_INACTIVE); 2441 } 2442 2443 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2444 call_rcu(&slab->rcu_head, rcu_free_slab); 2445 else 2446 __free_slab(s, slab); 2447 } 2448 2449 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2450 { 2451 dec_slabs_node(s, slab_nid(slab), slab->objects); 2452 free_slab(s, slab); 2453 } 2454 2455 /* 2456 * SLUB reuses PG_workingset bit to keep track of whether it's on 2457 * the per-node partial list. 2458 */ 2459 static inline bool slab_test_node_partial(const struct slab *slab) 2460 { 2461 return folio_test_workingset((struct folio *)slab_folio(slab)); 2462 } 2463 2464 static inline void slab_set_node_partial(struct slab *slab) 2465 { 2466 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2467 } 2468 2469 static inline void slab_clear_node_partial(struct slab *slab) 2470 { 2471 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2472 } 2473 2474 /* 2475 * Management of partially allocated slabs. 2476 */ 2477 static inline void 2478 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2479 { 2480 n->nr_partial++; 2481 if (tail == DEACTIVATE_TO_TAIL) 2482 list_add_tail(&slab->slab_list, &n->partial); 2483 else 2484 list_add(&slab->slab_list, &n->partial); 2485 slab_set_node_partial(slab); 2486 } 2487 2488 static inline void add_partial(struct kmem_cache_node *n, 2489 struct slab *slab, int tail) 2490 { 2491 lockdep_assert_held(&n->list_lock); 2492 __add_partial(n, slab, tail); 2493 } 2494 2495 static inline void remove_partial(struct kmem_cache_node *n, 2496 struct slab *slab) 2497 { 2498 lockdep_assert_held(&n->list_lock); 2499 list_del(&slab->slab_list); 2500 slab_clear_node_partial(slab); 2501 n->nr_partial--; 2502 } 2503 2504 /* 2505 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2506 * slab from the n->partial list. Remove only a single object from the slab, do 2507 * the alloc_debug_processing() checks and leave the slab on the list, or move 2508 * it to full list if it was the last free object. 2509 */ 2510 static void *alloc_single_from_partial(struct kmem_cache *s, 2511 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2512 { 2513 void *object; 2514 2515 lockdep_assert_held(&n->list_lock); 2516 2517 object = slab->freelist; 2518 slab->freelist = get_freepointer(s, object); 2519 slab->inuse++; 2520 2521 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2522 remove_partial(n, slab); 2523 return NULL; 2524 } 2525 2526 if (slab->inuse == slab->objects) { 2527 remove_partial(n, slab); 2528 add_full(s, n, slab); 2529 } 2530 2531 return object; 2532 } 2533 2534 /* 2535 * Called only for kmem_cache_debug() caches to allocate from a freshly 2536 * allocated slab. Allocate a single object instead of whole freelist 2537 * and put the slab to the partial (or full) list. 2538 */ 2539 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2540 struct slab *slab, int orig_size) 2541 { 2542 int nid = slab_nid(slab); 2543 struct kmem_cache_node *n = get_node(s, nid); 2544 unsigned long flags; 2545 void *object; 2546 2547 2548 object = slab->freelist; 2549 slab->freelist = get_freepointer(s, object); 2550 slab->inuse = 1; 2551 2552 if (!alloc_debug_processing(s, slab, object, orig_size)) 2553 /* 2554 * It's not really expected that this would fail on a 2555 * freshly allocated slab, but a concurrent memory 2556 * corruption in theory could cause that. 2557 */ 2558 return NULL; 2559 2560 spin_lock_irqsave(&n->list_lock, flags); 2561 2562 if (slab->inuse == slab->objects) 2563 add_full(s, n, slab); 2564 else 2565 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2566 2567 inc_slabs_node(s, nid, slab->objects); 2568 spin_unlock_irqrestore(&n->list_lock, flags); 2569 2570 return object; 2571 } 2572 2573 #ifdef CONFIG_SLUB_CPU_PARTIAL 2574 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2575 #else 2576 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2577 int drain) { } 2578 #endif 2579 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2580 2581 /* 2582 * Try to allocate a partial slab from a specific node. 2583 */ 2584 static struct slab *get_partial_node(struct kmem_cache *s, 2585 struct kmem_cache_node *n, 2586 struct partial_context *pc) 2587 { 2588 struct slab *slab, *slab2, *partial = NULL; 2589 unsigned long flags; 2590 unsigned int partial_slabs = 0; 2591 2592 /* 2593 * Racy check. If we mistakenly see no partial slabs then we 2594 * just allocate an empty slab. If we mistakenly try to get a 2595 * partial slab and there is none available then get_partial() 2596 * will return NULL. 2597 */ 2598 if (!n || !n->nr_partial) 2599 return NULL; 2600 2601 spin_lock_irqsave(&n->list_lock, flags); 2602 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2603 if (!pfmemalloc_match(slab, pc->flags)) 2604 continue; 2605 2606 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2607 void *object = alloc_single_from_partial(s, n, slab, 2608 pc->orig_size); 2609 if (object) { 2610 partial = slab; 2611 pc->object = object; 2612 break; 2613 } 2614 continue; 2615 } 2616 2617 remove_partial(n, slab); 2618 2619 if (!partial) { 2620 partial = slab; 2621 stat(s, ALLOC_FROM_PARTIAL); 2622 2623 if ((slub_get_cpu_partial(s) == 0)) { 2624 break; 2625 } 2626 } else { 2627 put_cpu_partial(s, slab, 0); 2628 stat(s, CPU_PARTIAL_NODE); 2629 2630 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2631 break; 2632 } 2633 } 2634 } 2635 spin_unlock_irqrestore(&n->list_lock, flags); 2636 return partial; 2637 } 2638 2639 /* 2640 * Get a slab from somewhere. Search in increasing NUMA distances. 2641 */ 2642 static struct slab *get_any_partial(struct kmem_cache *s, 2643 struct partial_context *pc) 2644 { 2645 #ifdef CONFIG_NUMA 2646 struct zonelist *zonelist; 2647 struct zoneref *z; 2648 struct zone *zone; 2649 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2650 struct slab *slab; 2651 unsigned int cpuset_mems_cookie; 2652 2653 /* 2654 * The defrag ratio allows a configuration of the tradeoffs between 2655 * inter node defragmentation and node local allocations. A lower 2656 * defrag_ratio increases the tendency to do local allocations 2657 * instead of attempting to obtain partial slabs from other nodes. 2658 * 2659 * If the defrag_ratio is set to 0 then kmalloc() always 2660 * returns node local objects. If the ratio is higher then kmalloc() 2661 * may return off node objects because partial slabs are obtained 2662 * from other nodes and filled up. 2663 * 2664 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2665 * (which makes defrag_ratio = 1000) then every (well almost) 2666 * allocation will first attempt to defrag slab caches on other nodes. 2667 * This means scanning over all nodes to look for partial slabs which 2668 * may be expensive if we do it every time we are trying to find a slab 2669 * with available objects. 2670 */ 2671 if (!s->remote_node_defrag_ratio || 2672 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2673 return NULL; 2674 2675 do { 2676 cpuset_mems_cookie = read_mems_allowed_begin(); 2677 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2678 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2679 struct kmem_cache_node *n; 2680 2681 n = get_node(s, zone_to_nid(zone)); 2682 2683 if (n && cpuset_zone_allowed(zone, pc->flags) && 2684 n->nr_partial > s->min_partial) { 2685 slab = get_partial_node(s, n, pc); 2686 if (slab) { 2687 /* 2688 * Don't check read_mems_allowed_retry() 2689 * here - if mems_allowed was updated in 2690 * parallel, that was a harmless race 2691 * between allocation and the cpuset 2692 * update 2693 */ 2694 return slab; 2695 } 2696 } 2697 } 2698 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2699 #endif /* CONFIG_NUMA */ 2700 return NULL; 2701 } 2702 2703 /* 2704 * Get a partial slab, lock it and return it. 2705 */ 2706 static struct slab *get_partial(struct kmem_cache *s, int node, 2707 struct partial_context *pc) 2708 { 2709 struct slab *slab; 2710 int searchnode = node; 2711 2712 if (node == NUMA_NO_NODE) 2713 searchnode = numa_mem_id(); 2714 2715 slab = get_partial_node(s, get_node(s, searchnode), pc); 2716 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2717 return slab; 2718 2719 return get_any_partial(s, pc); 2720 } 2721 2722 #ifndef CONFIG_SLUB_TINY 2723 2724 #ifdef CONFIG_PREEMPTION 2725 /* 2726 * Calculate the next globally unique transaction for disambiguation 2727 * during cmpxchg. The transactions start with the cpu number and are then 2728 * incremented by CONFIG_NR_CPUS. 2729 */ 2730 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2731 #else 2732 /* 2733 * No preemption supported therefore also no need to check for 2734 * different cpus. 2735 */ 2736 #define TID_STEP 1 2737 #endif /* CONFIG_PREEMPTION */ 2738 2739 static inline unsigned long next_tid(unsigned long tid) 2740 { 2741 return tid + TID_STEP; 2742 } 2743 2744 #ifdef SLUB_DEBUG_CMPXCHG 2745 static inline unsigned int tid_to_cpu(unsigned long tid) 2746 { 2747 return tid % TID_STEP; 2748 } 2749 2750 static inline unsigned long tid_to_event(unsigned long tid) 2751 { 2752 return tid / TID_STEP; 2753 } 2754 #endif 2755 2756 static inline unsigned int init_tid(int cpu) 2757 { 2758 return cpu; 2759 } 2760 2761 static inline void note_cmpxchg_failure(const char *n, 2762 const struct kmem_cache *s, unsigned long tid) 2763 { 2764 #ifdef SLUB_DEBUG_CMPXCHG 2765 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2766 2767 pr_info("%s %s: cmpxchg redo ", n, s->name); 2768 2769 #ifdef CONFIG_PREEMPTION 2770 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2771 pr_warn("due to cpu change %d -> %d\n", 2772 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2773 else 2774 #endif 2775 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2776 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2777 tid_to_event(tid), tid_to_event(actual_tid)); 2778 else 2779 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2780 actual_tid, tid, next_tid(tid)); 2781 #endif 2782 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2783 } 2784 2785 static void init_kmem_cache_cpus(struct kmem_cache *s) 2786 { 2787 int cpu; 2788 struct kmem_cache_cpu *c; 2789 2790 for_each_possible_cpu(cpu) { 2791 c = per_cpu_ptr(s->cpu_slab, cpu); 2792 local_lock_init(&c->lock); 2793 c->tid = init_tid(cpu); 2794 } 2795 } 2796 2797 /* 2798 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2799 * unfreezes the slabs and puts it on the proper list. 2800 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2801 * by the caller. 2802 */ 2803 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2804 void *freelist) 2805 { 2806 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2807 int free_delta = 0; 2808 void *nextfree, *freelist_iter, *freelist_tail; 2809 int tail = DEACTIVATE_TO_HEAD; 2810 unsigned long flags = 0; 2811 struct slab new; 2812 struct slab old; 2813 2814 if (READ_ONCE(slab->freelist)) { 2815 stat(s, DEACTIVATE_REMOTE_FREES); 2816 tail = DEACTIVATE_TO_TAIL; 2817 } 2818 2819 /* 2820 * Stage one: Count the objects on cpu's freelist as free_delta and 2821 * remember the last object in freelist_tail for later splicing. 2822 */ 2823 freelist_tail = NULL; 2824 freelist_iter = freelist; 2825 while (freelist_iter) { 2826 nextfree = get_freepointer(s, freelist_iter); 2827 2828 /* 2829 * If 'nextfree' is invalid, it is possible that the object at 2830 * 'freelist_iter' is already corrupted. So isolate all objects 2831 * starting at 'freelist_iter' by skipping them. 2832 */ 2833 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2834 break; 2835 2836 freelist_tail = freelist_iter; 2837 free_delta++; 2838 2839 freelist_iter = nextfree; 2840 } 2841 2842 /* 2843 * Stage two: Unfreeze the slab while splicing the per-cpu 2844 * freelist to the head of slab's freelist. 2845 */ 2846 do { 2847 old.freelist = READ_ONCE(slab->freelist); 2848 old.counters = READ_ONCE(slab->counters); 2849 VM_BUG_ON(!old.frozen); 2850 2851 /* Determine target state of the slab */ 2852 new.counters = old.counters; 2853 new.frozen = 0; 2854 if (freelist_tail) { 2855 new.inuse -= free_delta; 2856 set_freepointer(s, freelist_tail, old.freelist); 2857 new.freelist = freelist; 2858 } else { 2859 new.freelist = old.freelist; 2860 } 2861 } while (!slab_update_freelist(s, slab, 2862 old.freelist, old.counters, 2863 new.freelist, new.counters, 2864 "unfreezing slab")); 2865 2866 /* 2867 * Stage three: Manipulate the slab list based on the updated state. 2868 */ 2869 if (!new.inuse && n->nr_partial >= s->min_partial) { 2870 stat(s, DEACTIVATE_EMPTY); 2871 discard_slab(s, slab); 2872 stat(s, FREE_SLAB); 2873 } else if (new.freelist) { 2874 spin_lock_irqsave(&n->list_lock, flags); 2875 add_partial(n, slab, tail); 2876 spin_unlock_irqrestore(&n->list_lock, flags); 2877 stat(s, tail); 2878 } else { 2879 stat(s, DEACTIVATE_FULL); 2880 } 2881 } 2882 2883 #ifdef CONFIG_SLUB_CPU_PARTIAL 2884 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 2885 { 2886 struct kmem_cache_node *n = NULL, *n2 = NULL; 2887 struct slab *slab, *slab_to_discard = NULL; 2888 unsigned long flags = 0; 2889 2890 while (partial_slab) { 2891 slab = partial_slab; 2892 partial_slab = slab->next; 2893 2894 n2 = get_node(s, slab_nid(slab)); 2895 if (n != n2) { 2896 if (n) 2897 spin_unlock_irqrestore(&n->list_lock, flags); 2898 2899 n = n2; 2900 spin_lock_irqsave(&n->list_lock, flags); 2901 } 2902 2903 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 2904 slab->next = slab_to_discard; 2905 slab_to_discard = slab; 2906 } else { 2907 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2908 stat(s, FREE_ADD_PARTIAL); 2909 } 2910 } 2911 2912 if (n) 2913 spin_unlock_irqrestore(&n->list_lock, flags); 2914 2915 while (slab_to_discard) { 2916 slab = slab_to_discard; 2917 slab_to_discard = slab_to_discard->next; 2918 2919 stat(s, DEACTIVATE_EMPTY); 2920 discard_slab(s, slab); 2921 stat(s, FREE_SLAB); 2922 } 2923 } 2924 2925 /* 2926 * Put all the cpu partial slabs to the node partial list. 2927 */ 2928 static void put_partials(struct kmem_cache *s) 2929 { 2930 struct slab *partial_slab; 2931 unsigned long flags; 2932 2933 local_lock_irqsave(&s->cpu_slab->lock, flags); 2934 partial_slab = this_cpu_read(s->cpu_slab->partial); 2935 this_cpu_write(s->cpu_slab->partial, NULL); 2936 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2937 2938 if (partial_slab) 2939 __put_partials(s, partial_slab); 2940 } 2941 2942 static void put_partials_cpu(struct kmem_cache *s, 2943 struct kmem_cache_cpu *c) 2944 { 2945 struct slab *partial_slab; 2946 2947 partial_slab = slub_percpu_partial(c); 2948 c->partial = NULL; 2949 2950 if (partial_slab) 2951 __put_partials(s, partial_slab); 2952 } 2953 2954 /* 2955 * Put a slab into a partial slab slot if available. 2956 * 2957 * If we did not find a slot then simply move all the partials to the 2958 * per node partial list. 2959 */ 2960 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2961 { 2962 struct slab *oldslab; 2963 struct slab *slab_to_put = NULL; 2964 unsigned long flags; 2965 int slabs = 0; 2966 2967 local_lock_irqsave(&s->cpu_slab->lock, flags); 2968 2969 oldslab = this_cpu_read(s->cpu_slab->partial); 2970 2971 if (oldslab) { 2972 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2973 /* 2974 * Partial array is full. Move the existing set to the 2975 * per node partial list. Postpone the actual unfreezing 2976 * outside of the critical section. 2977 */ 2978 slab_to_put = oldslab; 2979 oldslab = NULL; 2980 } else { 2981 slabs = oldslab->slabs; 2982 } 2983 } 2984 2985 slabs++; 2986 2987 slab->slabs = slabs; 2988 slab->next = oldslab; 2989 2990 this_cpu_write(s->cpu_slab->partial, slab); 2991 2992 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2993 2994 if (slab_to_put) { 2995 __put_partials(s, slab_to_put); 2996 stat(s, CPU_PARTIAL_DRAIN); 2997 } 2998 } 2999 3000 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3001 3002 static inline void put_partials(struct kmem_cache *s) { } 3003 static inline void put_partials_cpu(struct kmem_cache *s, 3004 struct kmem_cache_cpu *c) { } 3005 3006 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3007 3008 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3009 { 3010 unsigned long flags; 3011 struct slab *slab; 3012 void *freelist; 3013 3014 local_lock_irqsave(&s->cpu_slab->lock, flags); 3015 3016 slab = c->slab; 3017 freelist = c->freelist; 3018 3019 c->slab = NULL; 3020 c->freelist = NULL; 3021 c->tid = next_tid(c->tid); 3022 3023 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3024 3025 if (slab) { 3026 deactivate_slab(s, slab, freelist); 3027 stat(s, CPUSLAB_FLUSH); 3028 } 3029 } 3030 3031 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3032 { 3033 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3034 void *freelist = c->freelist; 3035 struct slab *slab = c->slab; 3036 3037 c->slab = NULL; 3038 c->freelist = NULL; 3039 c->tid = next_tid(c->tid); 3040 3041 if (slab) { 3042 deactivate_slab(s, slab, freelist); 3043 stat(s, CPUSLAB_FLUSH); 3044 } 3045 3046 put_partials_cpu(s, c); 3047 } 3048 3049 struct slub_flush_work { 3050 struct work_struct work; 3051 struct kmem_cache *s; 3052 bool skip; 3053 }; 3054 3055 /* 3056 * Flush cpu slab. 3057 * 3058 * Called from CPU work handler with migration disabled. 3059 */ 3060 static void flush_cpu_slab(struct work_struct *w) 3061 { 3062 struct kmem_cache *s; 3063 struct kmem_cache_cpu *c; 3064 struct slub_flush_work *sfw; 3065 3066 sfw = container_of(w, struct slub_flush_work, work); 3067 3068 s = sfw->s; 3069 c = this_cpu_ptr(s->cpu_slab); 3070 3071 if (c->slab) 3072 flush_slab(s, c); 3073 3074 put_partials(s); 3075 } 3076 3077 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3078 { 3079 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3080 3081 return c->slab || slub_percpu_partial(c); 3082 } 3083 3084 static DEFINE_MUTEX(flush_lock); 3085 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3086 3087 static void flush_all_cpus_locked(struct kmem_cache *s) 3088 { 3089 struct slub_flush_work *sfw; 3090 unsigned int cpu; 3091 3092 lockdep_assert_cpus_held(); 3093 mutex_lock(&flush_lock); 3094 3095 for_each_online_cpu(cpu) { 3096 sfw = &per_cpu(slub_flush, cpu); 3097 if (!has_cpu_slab(cpu, s)) { 3098 sfw->skip = true; 3099 continue; 3100 } 3101 INIT_WORK(&sfw->work, flush_cpu_slab); 3102 sfw->skip = false; 3103 sfw->s = s; 3104 queue_work_on(cpu, flushwq, &sfw->work); 3105 } 3106 3107 for_each_online_cpu(cpu) { 3108 sfw = &per_cpu(slub_flush, cpu); 3109 if (sfw->skip) 3110 continue; 3111 flush_work(&sfw->work); 3112 } 3113 3114 mutex_unlock(&flush_lock); 3115 } 3116 3117 static void flush_all(struct kmem_cache *s) 3118 { 3119 cpus_read_lock(); 3120 flush_all_cpus_locked(s); 3121 cpus_read_unlock(); 3122 } 3123 3124 /* 3125 * Use the cpu notifier to insure that the cpu slabs are flushed when 3126 * necessary. 3127 */ 3128 static int slub_cpu_dead(unsigned int cpu) 3129 { 3130 struct kmem_cache *s; 3131 3132 mutex_lock(&slab_mutex); 3133 list_for_each_entry(s, &slab_caches, list) 3134 __flush_cpu_slab(s, cpu); 3135 mutex_unlock(&slab_mutex); 3136 return 0; 3137 } 3138 3139 #else /* CONFIG_SLUB_TINY */ 3140 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3141 static inline void flush_all(struct kmem_cache *s) { } 3142 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3143 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3144 #endif /* CONFIG_SLUB_TINY */ 3145 3146 /* 3147 * Check if the objects in a per cpu structure fit numa 3148 * locality expectations. 3149 */ 3150 static inline int node_match(struct slab *slab, int node) 3151 { 3152 #ifdef CONFIG_NUMA 3153 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3154 return 0; 3155 #endif 3156 return 1; 3157 } 3158 3159 #ifdef CONFIG_SLUB_DEBUG 3160 static int count_free(struct slab *slab) 3161 { 3162 return slab->objects - slab->inuse; 3163 } 3164 3165 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3166 { 3167 return atomic_long_read(&n->total_objects); 3168 } 3169 3170 /* Supports checking bulk free of a constructed freelist */ 3171 static inline bool free_debug_processing(struct kmem_cache *s, 3172 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3173 unsigned long addr, depot_stack_handle_t handle) 3174 { 3175 bool checks_ok = false; 3176 void *object = head; 3177 int cnt = 0; 3178 3179 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3180 if (!check_slab(s, slab)) 3181 goto out; 3182 } 3183 3184 if (slab->inuse < *bulk_cnt) { 3185 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3186 slab->inuse, *bulk_cnt); 3187 goto out; 3188 } 3189 3190 next_object: 3191 3192 if (++cnt > *bulk_cnt) 3193 goto out_cnt; 3194 3195 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3196 if (!free_consistency_checks(s, slab, object, addr)) 3197 goto out; 3198 } 3199 3200 if (s->flags & SLAB_STORE_USER) 3201 set_track_update(s, object, TRACK_FREE, addr, handle); 3202 trace(s, slab, object, 0); 3203 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3204 init_object(s, object, SLUB_RED_INACTIVE); 3205 3206 /* Reached end of constructed freelist yet? */ 3207 if (object != tail) { 3208 object = get_freepointer(s, object); 3209 goto next_object; 3210 } 3211 checks_ok = true; 3212 3213 out_cnt: 3214 if (cnt != *bulk_cnt) { 3215 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3216 *bulk_cnt, cnt); 3217 *bulk_cnt = cnt; 3218 } 3219 3220 out: 3221 3222 if (!checks_ok) 3223 slab_fix(s, "Object at 0x%p not freed", object); 3224 3225 return checks_ok; 3226 } 3227 #endif /* CONFIG_SLUB_DEBUG */ 3228 3229 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3230 static unsigned long count_partial(struct kmem_cache_node *n, 3231 int (*get_count)(struct slab *)) 3232 { 3233 unsigned long flags; 3234 unsigned long x = 0; 3235 struct slab *slab; 3236 3237 spin_lock_irqsave(&n->list_lock, flags); 3238 list_for_each_entry(slab, &n->partial, slab_list) 3239 x += get_count(slab); 3240 spin_unlock_irqrestore(&n->list_lock, flags); 3241 return x; 3242 } 3243 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3244 3245 #ifdef CONFIG_SLUB_DEBUG 3246 #define MAX_PARTIAL_TO_SCAN 10000 3247 3248 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3249 { 3250 unsigned long flags; 3251 unsigned long x = 0; 3252 struct slab *slab; 3253 3254 spin_lock_irqsave(&n->list_lock, flags); 3255 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3256 list_for_each_entry(slab, &n->partial, slab_list) 3257 x += slab->objects - slab->inuse; 3258 } else { 3259 /* 3260 * For a long list, approximate the total count of objects in 3261 * it to meet the limit on the number of slabs to scan. 3262 * Scan from both the list's head and tail for better accuracy. 3263 */ 3264 unsigned long scanned = 0; 3265 3266 list_for_each_entry(slab, &n->partial, slab_list) { 3267 x += slab->objects - slab->inuse; 3268 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3269 break; 3270 } 3271 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3272 x += slab->objects - slab->inuse; 3273 if (++scanned == MAX_PARTIAL_TO_SCAN) 3274 break; 3275 } 3276 x = mult_frac(x, n->nr_partial, scanned); 3277 x = min(x, node_nr_objs(n)); 3278 } 3279 spin_unlock_irqrestore(&n->list_lock, flags); 3280 return x; 3281 } 3282 3283 static noinline void 3284 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3285 { 3286 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3287 DEFAULT_RATELIMIT_BURST); 3288 int node; 3289 struct kmem_cache_node *n; 3290 3291 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3292 return; 3293 3294 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 3295 nid, gfpflags, &gfpflags); 3296 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3297 s->name, s->object_size, s->size, oo_order(s->oo), 3298 oo_order(s->min)); 3299 3300 if (oo_order(s->min) > get_order(s->object_size)) 3301 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3302 s->name); 3303 3304 for_each_kmem_cache_node(s, node, n) { 3305 unsigned long nr_slabs; 3306 unsigned long nr_objs; 3307 unsigned long nr_free; 3308 3309 nr_free = count_partial_free_approx(n); 3310 nr_slabs = node_nr_slabs(n); 3311 nr_objs = node_nr_objs(n); 3312 3313 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3314 node, nr_slabs, nr_objs, nr_free); 3315 } 3316 } 3317 #else /* CONFIG_SLUB_DEBUG */ 3318 static inline void 3319 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3320 #endif 3321 3322 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3323 { 3324 if (unlikely(slab_test_pfmemalloc(slab))) 3325 return gfp_pfmemalloc_allowed(gfpflags); 3326 3327 return true; 3328 } 3329 3330 #ifndef CONFIG_SLUB_TINY 3331 static inline bool 3332 __update_cpu_freelist_fast(struct kmem_cache *s, 3333 void *freelist_old, void *freelist_new, 3334 unsigned long tid) 3335 { 3336 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3337 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3338 3339 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3340 &old.full, new.full); 3341 } 3342 3343 /* 3344 * Check the slab->freelist and either transfer the freelist to the 3345 * per cpu freelist or deactivate the slab. 3346 * 3347 * The slab is still frozen if the return value is not NULL. 3348 * 3349 * If this function returns NULL then the slab has been unfrozen. 3350 */ 3351 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3352 { 3353 struct slab new; 3354 unsigned long counters; 3355 void *freelist; 3356 3357 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3358 3359 do { 3360 freelist = slab->freelist; 3361 counters = slab->counters; 3362 3363 new.counters = counters; 3364 3365 new.inuse = slab->objects; 3366 new.frozen = freelist != NULL; 3367 3368 } while (!__slab_update_freelist(s, slab, 3369 freelist, counters, 3370 NULL, new.counters, 3371 "get_freelist")); 3372 3373 return freelist; 3374 } 3375 3376 /* 3377 * Freeze the partial slab and return the pointer to the freelist. 3378 */ 3379 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3380 { 3381 struct slab new; 3382 unsigned long counters; 3383 void *freelist; 3384 3385 do { 3386 freelist = slab->freelist; 3387 counters = slab->counters; 3388 3389 new.counters = counters; 3390 VM_BUG_ON(new.frozen); 3391 3392 new.inuse = slab->objects; 3393 new.frozen = 1; 3394 3395 } while (!slab_update_freelist(s, slab, 3396 freelist, counters, 3397 NULL, new.counters, 3398 "freeze_slab")); 3399 3400 return freelist; 3401 } 3402 3403 /* 3404 * Slow path. The lockless freelist is empty or we need to perform 3405 * debugging duties. 3406 * 3407 * Processing is still very fast if new objects have been freed to the 3408 * regular freelist. In that case we simply take over the regular freelist 3409 * as the lockless freelist and zap the regular freelist. 3410 * 3411 * If that is not working then we fall back to the partial lists. We take the 3412 * first element of the freelist as the object to allocate now and move the 3413 * rest of the freelist to the lockless freelist. 3414 * 3415 * And if we were unable to get a new slab from the partial slab lists then 3416 * we need to allocate a new slab. This is the slowest path since it involves 3417 * a call to the page allocator and the setup of a new slab. 3418 * 3419 * Version of __slab_alloc to use when we know that preemption is 3420 * already disabled (which is the case for bulk allocation). 3421 */ 3422 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3423 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3424 { 3425 void *freelist; 3426 struct slab *slab; 3427 unsigned long flags; 3428 struct partial_context pc; 3429 bool try_thisnode = true; 3430 3431 stat(s, ALLOC_SLOWPATH); 3432 3433 reread_slab: 3434 3435 slab = READ_ONCE(c->slab); 3436 if (!slab) { 3437 /* 3438 * if the node is not online or has no normal memory, just 3439 * ignore the node constraint 3440 */ 3441 if (unlikely(node != NUMA_NO_NODE && 3442 !node_isset(node, slab_nodes))) 3443 node = NUMA_NO_NODE; 3444 goto new_slab; 3445 } 3446 3447 if (unlikely(!node_match(slab, node))) { 3448 /* 3449 * same as above but node_match() being false already 3450 * implies node != NUMA_NO_NODE 3451 */ 3452 if (!node_isset(node, slab_nodes)) { 3453 node = NUMA_NO_NODE; 3454 } else { 3455 stat(s, ALLOC_NODE_MISMATCH); 3456 goto deactivate_slab; 3457 } 3458 } 3459 3460 /* 3461 * By rights, we should be searching for a slab page that was 3462 * PFMEMALLOC but right now, we are losing the pfmemalloc 3463 * information when the page leaves the per-cpu allocator 3464 */ 3465 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3466 goto deactivate_slab; 3467 3468 /* must check again c->slab in case we got preempted and it changed */ 3469 local_lock_irqsave(&s->cpu_slab->lock, flags); 3470 if (unlikely(slab != c->slab)) { 3471 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3472 goto reread_slab; 3473 } 3474 freelist = c->freelist; 3475 if (freelist) 3476 goto load_freelist; 3477 3478 freelist = get_freelist(s, slab); 3479 3480 if (!freelist) { 3481 c->slab = NULL; 3482 c->tid = next_tid(c->tid); 3483 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3484 stat(s, DEACTIVATE_BYPASS); 3485 goto new_slab; 3486 } 3487 3488 stat(s, ALLOC_REFILL); 3489 3490 load_freelist: 3491 3492 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3493 3494 /* 3495 * freelist is pointing to the list of objects to be used. 3496 * slab is pointing to the slab from which the objects are obtained. 3497 * That slab must be frozen for per cpu allocations to work. 3498 */ 3499 VM_BUG_ON(!c->slab->frozen); 3500 c->freelist = get_freepointer(s, freelist); 3501 c->tid = next_tid(c->tid); 3502 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3503 return freelist; 3504 3505 deactivate_slab: 3506 3507 local_lock_irqsave(&s->cpu_slab->lock, flags); 3508 if (slab != c->slab) { 3509 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3510 goto reread_slab; 3511 } 3512 freelist = c->freelist; 3513 c->slab = NULL; 3514 c->freelist = NULL; 3515 c->tid = next_tid(c->tid); 3516 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3517 deactivate_slab(s, slab, freelist); 3518 3519 new_slab: 3520 3521 #ifdef CONFIG_SLUB_CPU_PARTIAL 3522 while (slub_percpu_partial(c)) { 3523 local_lock_irqsave(&s->cpu_slab->lock, flags); 3524 if (unlikely(c->slab)) { 3525 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3526 goto reread_slab; 3527 } 3528 if (unlikely(!slub_percpu_partial(c))) { 3529 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3530 /* we were preempted and partial list got empty */ 3531 goto new_objects; 3532 } 3533 3534 slab = slub_percpu_partial(c); 3535 slub_set_percpu_partial(c, slab); 3536 3537 if (likely(node_match(slab, node) && 3538 pfmemalloc_match(slab, gfpflags))) { 3539 c->slab = slab; 3540 freelist = get_freelist(s, slab); 3541 VM_BUG_ON(!freelist); 3542 stat(s, CPU_PARTIAL_ALLOC); 3543 goto load_freelist; 3544 } 3545 3546 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3547 3548 slab->next = NULL; 3549 __put_partials(s, slab); 3550 } 3551 #endif 3552 3553 new_objects: 3554 3555 pc.flags = gfpflags; 3556 /* 3557 * When a preferred node is indicated but no __GFP_THISNODE 3558 * 3559 * 1) try to get a partial slab from target node only by having 3560 * __GFP_THISNODE in pc.flags for get_partial() 3561 * 2) if 1) failed, try to allocate a new slab from target node with 3562 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3563 * 3) if 2) failed, retry with original gfpflags which will allow 3564 * get_partial() try partial lists of other nodes before potentially 3565 * allocating new page from other nodes 3566 */ 3567 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3568 && try_thisnode)) 3569 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3570 3571 pc.orig_size = orig_size; 3572 slab = get_partial(s, node, &pc); 3573 if (slab) { 3574 if (kmem_cache_debug(s)) { 3575 freelist = pc.object; 3576 /* 3577 * For debug caches here we had to go through 3578 * alloc_single_from_partial() so just store the 3579 * tracking info and return the object. 3580 */ 3581 if (s->flags & SLAB_STORE_USER) 3582 set_track(s, freelist, TRACK_ALLOC, addr); 3583 3584 return freelist; 3585 } 3586 3587 freelist = freeze_slab(s, slab); 3588 goto retry_load_slab; 3589 } 3590 3591 slub_put_cpu_ptr(s->cpu_slab); 3592 slab = new_slab(s, pc.flags, node); 3593 c = slub_get_cpu_ptr(s->cpu_slab); 3594 3595 if (unlikely(!slab)) { 3596 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3597 && try_thisnode) { 3598 try_thisnode = false; 3599 goto new_objects; 3600 } 3601 slab_out_of_memory(s, gfpflags, node); 3602 return NULL; 3603 } 3604 3605 stat(s, ALLOC_SLAB); 3606 3607 if (kmem_cache_debug(s)) { 3608 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3609 3610 if (unlikely(!freelist)) 3611 goto new_objects; 3612 3613 if (s->flags & SLAB_STORE_USER) 3614 set_track(s, freelist, TRACK_ALLOC, addr); 3615 3616 return freelist; 3617 } 3618 3619 /* 3620 * No other reference to the slab yet so we can 3621 * muck around with it freely without cmpxchg 3622 */ 3623 freelist = slab->freelist; 3624 slab->freelist = NULL; 3625 slab->inuse = slab->objects; 3626 slab->frozen = 1; 3627 3628 inc_slabs_node(s, slab_nid(slab), slab->objects); 3629 3630 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3631 /* 3632 * For !pfmemalloc_match() case we don't load freelist so that 3633 * we don't make further mismatched allocations easier. 3634 */ 3635 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3636 return freelist; 3637 } 3638 3639 retry_load_slab: 3640 3641 local_lock_irqsave(&s->cpu_slab->lock, flags); 3642 if (unlikely(c->slab)) { 3643 void *flush_freelist = c->freelist; 3644 struct slab *flush_slab = c->slab; 3645 3646 c->slab = NULL; 3647 c->freelist = NULL; 3648 c->tid = next_tid(c->tid); 3649 3650 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3651 3652 deactivate_slab(s, flush_slab, flush_freelist); 3653 3654 stat(s, CPUSLAB_FLUSH); 3655 3656 goto retry_load_slab; 3657 } 3658 c->slab = slab; 3659 3660 goto load_freelist; 3661 } 3662 3663 /* 3664 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3665 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3666 * pointer. 3667 */ 3668 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3669 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3670 { 3671 void *p; 3672 3673 #ifdef CONFIG_PREEMPT_COUNT 3674 /* 3675 * We may have been preempted and rescheduled on a different 3676 * cpu before disabling preemption. Need to reload cpu area 3677 * pointer. 3678 */ 3679 c = slub_get_cpu_ptr(s->cpu_slab); 3680 #endif 3681 3682 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3683 #ifdef CONFIG_PREEMPT_COUNT 3684 slub_put_cpu_ptr(s->cpu_slab); 3685 #endif 3686 return p; 3687 } 3688 3689 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3690 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3691 { 3692 struct kmem_cache_cpu *c; 3693 struct slab *slab; 3694 unsigned long tid; 3695 void *object; 3696 3697 redo: 3698 /* 3699 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3700 * enabled. We may switch back and forth between cpus while 3701 * reading from one cpu area. That does not matter as long 3702 * as we end up on the original cpu again when doing the cmpxchg. 3703 * 3704 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3705 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3706 * the tid. If we are preempted and switched to another cpu between the 3707 * two reads, it's OK as the two are still associated with the same cpu 3708 * and cmpxchg later will validate the cpu. 3709 */ 3710 c = raw_cpu_ptr(s->cpu_slab); 3711 tid = READ_ONCE(c->tid); 3712 3713 /* 3714 * Irqless object alloc/free algorithm used here depends on sequence 3715 * of fetching cpu_slab's data. tid should be fetched before anything 3716 * on c to guarantee that object and slab associated with previous tid 3717 * won't be used with current tid. If we fetch tid first, object and 3718 * slab could be one associated with next tid and our alloc/free 3719 * request will be failed. In this case, we will retry. So, no problem. 3720 */ 3721 barrier(); 3722 3723 /* 3724 * The transaction ids are globally unique per cpu and per operation on 3725 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3726 * occurs on the right processor and that there was no operation on the 3727 * linked list in between. 3728 */ 3729 3730 object = c->freelist; 3731 slab = c->slab; 3732 3733 if (!USE_LOCKLESS_FAST_PATH() || 3734 unlikely(!object || !slab || !node_match(slab, node))) { 3735 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3736 } else { 3737 void *next_object = get_freepointer_safe(s, object); 3738 3739 /* 3740 * The cmpxchg will only match if there was no additional 3741 * operation and if we are on the right processor. 3742 * 3743 * The cmpxchg does the following atomically (without lock 3744 * semantics!) 3745 * 1. Relocate first pointer to the current per cpu area. 3746 * 2. Verify that tid and freelist have not been changed 3747 * 3. If they were not changed replace tid and freelist 3748 * 3749 * Since this is without lock semantics the protection is only 3750 * against code executing on this cpu *not* from access by 3751 * other cpus. 3752 */ 3753 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3754 note_cmpxchg_failure("slab_alloc", s, tid); 3755 goto redo; 3756 } 3757 prefetch_freepointer(s, next_object); 3758 stat(s, ALLOC_FASTPATH); 3759 } 3760 3761 return object; 3762 } 3763 #else /* CONFIG_SLUB_TINY */ 3764 static void *__slab_alloc_node(struct kmem_cache *s, 3765 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3766 { 3767 struct partial_context pc; 3768 struct slab *slab; 3769 void *object; 3770 3771 pc.flags = gfpflags; 3772 pc.orig_size = orig_size; 3773 slab = get_partial(s, node, &pc); 3774 3775 if (slab) 3776 return pc.object; 3777 3778 slab = new_slab(s, gfpflags, node); 3779 if (unlikely(!slab)) { 3780 slab_out_of_memory(s, gfpflags, node); 3781 return NULL; 3782 } 3783 3784 object = alloc_single_from_new_slab(s, slab, orig_size); 3785 3786 return object; 3787 } 3788 #endif /* CONFIG_SLUB_TINY */ 3789 3790 /* 3791 * If the object has been wiped upon free, make sure it's fully initialized by 3792 * zeroing out freelist pointer. 3793 */ 3794 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3795 void *obj) 3796 { 3797 if (unlikely(slab_want_init_on_free(s)) && obj && 3798 !freeptr_outside_object(s)) 3799 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3800 0, sizeof(void *)); 3801 } 3802 3803 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 3804 { 3805 if (__should_failslab(s, gfpflags)) 3806 return -ENOMEM; 3807 return 0; 3808 } 3809 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 3810 3811 static __fastpath_inline 3812 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 3813 struct list_lru *lru, 3814 struct obj_cgroup **objcgp, 3815 size_t size, gfp_t flags) 3816 { 3817 flags &= gfp_allowed_mask; 3818 3819 might_alloc(flags); 3820 3821 if (unlikely(should_failslab(s, flags))) 3822 return NULL; 3823 3824 if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))) 3825 return NULL; 3826 3827 return s; 3828 } 3829 3830 static __fastpath_inline 3831 void slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, 3832 gfp_t flags, size_t size, void **p, bool init, 3833 unsigned int orig_size) 3834 { 3835 unsigned int zero_size = s->object_size; 3836 bool kasan_init = init; 3837 size_t i; 3838 gfp_t init_flags = flags & gfp_allowed_mask; 3839 3840 /* 3841 * For kmalloc object, the allocated memory size(object_size) is likely 3842 * larger than the requested size(orig_size). If redzone check is 3843 * enabled for the extra space, don't zero it, as it will be redzoned 3844 * soon. The redzone operation for this extra space could be seen as a 3845 * replacement of current poisoning under certain debug option, and 3846 * won't break other sanity checks. 3847 */ 3848 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 3849 (s->flags & SLAB_KMALLOC)) 3850 zero_size = orig_size; 3851 3852 /* 3853 * When slab_debug is enabled, avoid memory initialization integrated 3854 * into KASAN and instead zero out the memory via the memset below with 3855 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 3856 * cause false-positive reports. This does not lead to a performance 3857 * penalty on production builds, as slab_debug is not intended to be 3858 * enabled there. 3859 */ 3860 if (__slub_debug_enabled()) 3861 kasan_init = false; 3862 3863 /* 3864 * As memory initialization might be integrated into KASAN, 3865 * kasan_slab_alloc and initialization memset must be 3866 * kept together to avoid discrepancies in behavior. 3867 * 3868 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 3869 */ 3870 for (i = 0; i < size; i++) { 3871 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 3872 if (p[i] && init && (!kasan_init || 3873 !kasan_has_integrated_init())) 3874 memset(p[i], 0, zero_size); 3875 kmemleak_alloc_recursive(p[i], s->object_size, 1, 3876 s->flags, init_flags); 3877 kmsan_slab_alloc(s, p[i], init_flags); 3878 } 3879 3880 memcg_slab_post_alloc_hook(s, objcg, flags, size, p); 3881 } 3882 3883 /* 3884 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3885 * have the fastpath folded into their functions. So no function call 3886 * overhead for requests that can be satisfied on the fastpath. 3887 * 3888 * The fastpath works by first checking if the lockless freelist can be used. 3889 * If not then __slab_alloc is called for slow processing. 3890 * 3891 * Otherwise we can simply pick the next object from the lockless free list. 3892 */ 3893 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3894 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3895 { 3896 void *object; 3897 struct obj_cgroup *objcg = NULL; 3898 bool init = false; 3899 3900 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3901 if (unlikely(!s)) 3902 return NULL; 3903 3904 object = kfence_alloc(s, orig_size, gfpflags); 3905 if (unlikely(object)) 3906 goto out; 3907 3908 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 3909 3910 maybe_wipe_obj_freeptr(s, object); 3911 init = slab_want_init_on_alloc(gfpflags, s); 3912 3913 out: 3914 /* 3915 * When init equals 'true', like for kzalloc() family, only 3916 * @orig_size bytes might be zeroed instead of s->object_size 3917 */ 3918 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); 3919 3920 return object; 3921 } 3922 3923 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3924 { 3925 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 3926 s->object_size); 3927 3928 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3929 3930 return ret; 3931 } 3932 EXPORT_SYMBOL(kmem_cache_alloc); 3933 3934 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3935 gfp_t gfpflags) 3936 { 3937 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 3938 s->object_size); 3939 3940 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3941 3942 return ret; 3943 } 3944 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3945 3946 /** 3947 * kmem_cache_alloc_node - Allocate an object on the specified node 3948 * @s: The cache to allocate from. 3949 * @gfpflags: See kmalloc(). 3950 * @node: node number of the target node. 3951 * 3952 * Identical to kmem_cache_alloc but it will allocate memory on the given 3953 * node, which can improve the performance for cpu bound structures. 3954 * 3955 * Fallback to other node is possible if __GFP_THISNODE is not set. 3956 * 3957 * Return: pointer to the new object or %NULL in case of error 3958 */ 3959 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3960 { 3961 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3962 3963 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 3964 3965 return ret; 3966 } 3967 EXPORT_SYMBOL(kmem_cache_alloc_node); 3968 3969 /* 3970 * To avoid unnecessary overhead, we pass through large allocation requests 3971 * directly to the page allocator. We use __GFP_COMP, because we will need to 3972 * know the allocation order to free the pages properly in kfree. 3973 */ 3974 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node) 3975 { 3976 struct folio *folio; 3977 void *ptr = NULL; 3978 unsigned int order = get_order(size); 3979 3980 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 3981 flags = kmalloc_fix_flags(flags); 3982 3983 flags |= __GFP_COMP; 3984 folio = (struct folio *)alloc_pages_node(node, flags, order); 3985 if (folio) { 3986 ptr = folio_address(folio); 3987 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 3988 PAGE_SIZE << order); 3989 } 3990 3991 ptr = kasan_kmalloc_large(ptr, size, flags); 3992 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 3993 kmemleak_alloc(ptr, size, 1, flags); 3994 kmsan_kmalloc_large(ptr, size, flags); 3995 3996 return ptr; 3997 } 3998 3999 void *kmalloc_large(size_t size, gfp_t flags) 4000 { 4001 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE); 4002 4003 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4004 flags, NUMA_NO_NODE); 4005 return ret; 4006 } 4007 EXPORT_SYMBOL(kmalloc_large); 4008 4009 void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4010 { 4011 void *ret = __kmalloc_large_node(size, flags, node); 4012 4013 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4014 flags, node); 4015 return ret; 4016 } 4017 EXPORT_SYMBOL(kmalloc_large_node); 4018 4019 static __always_inline 4020 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, 4021 unsigned long caller) 4022 { 4023 struct kmem_cache *s; 4024 void *ret; 4025 4026 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4027 ret = __kmalloc_large_node(size, flags, node); 4028 trace_kmalloc(caller, ret, size, 4029 PAGE_SIZE << get_order(size), flags, node); 4030 return ret; 4031 } 4032 4033 if (unlikely(!size)) 4034 return ZERO_SIZE_PTR; 4035 4036 s = kmalloc_slab(size, flags, caller); 4037 4038 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4039 ret = kasan_kmalloc(s, ret, size, flags); 4040 trace_kmalloc(caller, ret, size, s->size, flags, node); 4041 return ret; 4042 } 4043 4044 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4045 { 4046 return __do_kmalloc_node(size, flags, node, _RET_IP_); 4047 } 4048 EXPORT_SYMBOL(__kmalloc_node); 4049 4050 void *__kmalloc(size_t size, gfp_t flags) 4051 { 4052 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_); 4053 } 4054 EXPORT_SYMBOL(__kmalloc); 4055 4056 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 4057 int node, unsigned long caller) 4058 { 4059 return __do_kmalloc_node(size, flags, node, caller); 4060 } 4061 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4062 4063 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4064 { 4065 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4066 _RET_IP_, size); 4067 4068 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4069 4070 ret = kasan_kmalloc(s, ret, size, gfpflags); 4071 return ret; 4072 } 4073 EXPORT_SYMBOL(kmalloc_trace); 4074 4075 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 4076 int node, size_t size) 4077 { 4078 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4079 4080 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4081 4082 ret = kasan_kmalloc(s, ret, size, gfpflags); 4083 return ret; 4084 } 4085 EXPORT_SYMBOL(kmalloc_node_trace); 4086 4087 static noinline void free_to_partial_list( 4088 struct kmem_cache *s, struct slab *slab, 4089 void *head, void *tail, int bulk_cnt, 4090 unsigned long addr) 4091 { 4092 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4093 struct slab *slab_free = NULL; 4094 int cnt = bulk_cnt; 4095 unsigned long flags; 4096 depot_stack_handle_t handle = 0; 4097 4098 if (s->flags & SLAB_STORE_USER) 4099 handle = set_track_prepare(); 4100 4101 spin_lock_irqsave(&n->list_lock, flags); 4102 4103 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4104 void *prior = slab->freelist; 4105 4106 /* Perform the actual freeing while we still hold the locks */ 4107 slab->inuse -= cnt; 4108 set_freepointer(s, tail, prior); 4109 slab->freelist = head; 4110 4111 /* 4112 * If the slab is empty, and node's partial list is full, 4113 * it should be discarded anyway no matter it's on full or 4114 * partial list. 4115 */ 4116 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4117 slab_free = slab; 4118 4119 if (!prior) { 4120 /* was on full list */ 4121 remove_full(s, n, slab); 4122 if (!slab_free) { 4123 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4124 stat(s, FREE_ADD_PARTIAL); 4125 } 4126 } else if (slab_free) { 4127 remove_partial(n, slab); 4128 stat(s, FREE_REMOVE_PARTIAL); 4129 } 4130 } 4131 4132 if (slab_free) { 4133 /* 4134 * Update the counters while still holding n->list_lock to 4135 * prevent spurious validation warnings 4136 */ 4137 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4138 } 4139 4140 spin_unlock_irqrestore(&n->list_lock, flags); 4141 4142 if (slab_free) { 4143 stat(s, FREE_SLAB); 4144 free_slab(s, slab_free); 4145 } 4146 } 4147 4148 /* 4149 * Slow path handling. This may still be called frequently since objects 4150 * have a longer lifetime than the cpu slabs in most processing loads. 4151 * 4152 * So we still attempt to reduce cache line usage. Just take the slab 4153 * lock and free the item. If there is no additional partial slab 4154 * handling required then we can return immediately. 4155 */ 4156 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4157 void *head, void *tail, int cnt, 4158 unsigned long addr) 4159 4160 { 4161 void *prior; 4162 int was_frozen; 4163 struct slab new; 4164 unsigned long counters; 4165 struct kmem_cache_node *n = NULL; 4166 unsigned long flags; 4167 bool on_node_partial; 4168 4169 stat(s, FREE_SLOWPATH); 4170 4171 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4172 free_to_partial_list(s, slab, head, tail, cnt, addr); 4173 return; 4174 } 4175 4176 do { 4177 if (unlikely(n)) { 4178 spin_unlock_irqrestore(&n->list_lock, flags); 4179 n = NULL; 4180 } 4181 prior = slab->freelist; 4182 counters = slab->counters; 4183 set_freepointer(s, tail, prior); 4184 new.counters = counters; 4185 was_frozen = new.frozen; 4186 new.inuse -= cnt; 4187 if ((!new.inuse || !prior) && !was_frozen) { 4188 /* Needs to be taken off a list */ 4189 if (!kmem_cache_has_cpu_partial(s) || prior) { 4190 4191 n = get_node(s, slab_nid(slab)); 4192 /* 4193 * Speculatively acquire the list_lock. 4194 * If the cmpxchg does not succeed then we may 4195 * drop the list_lock without any processing. 4196 * 4197 * Otherwise the list_lock will synchronize with 4198 * other processors updating the list of slabs. 4199 */ 4200 spin_lock_irqsave(&n->list_lock, flags); 4201 4202 on_node_partial = slab_test_node_partial(slab); 4203 } 4204 } 4205 4206 } while (!slab_update_freelist(s, slab, 4207 prior, counters, 4208 head, new.counters, 4209 "__slab_free")); 4210 4211 if (likely(!n)) { 4212 4213 if (likely(was_frozen)) { 4214 /* 4215 * The list lock was not taken therefore no list 4216 * activity can be necessary. 4217 */ 4218 stat(s, FREE_FROZEN); 4219 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4220 /* 4221 * If we started with a full slab then put it onto the 4222 * per cpu partial list. 4223 */ 4224 put_cpu_partial(s, slab, 1); 4225 stat(s, CPU_PARTIAL_FREE); 4226 } 4227 4228 return; 4229 } 4230 4231 /* 4232 * This slab was partially empty but not on the per-node partial list, 4233 * in which case we shouldn't manipulate its list, just return. 4234 */ 4235 if (prior && !on_node_partial) { 4236 spin_unlock_irqrestore(&n->list_lock, flags); 4237 return; 4238 } 4239 4240 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4241 goto slab_empty; 4242 4243 /* 4244 * Objects left in the slab. If it was not on the partial list before 4245 * then add it. 4246 */ 4247 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4248 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4249 stat(s, FREE_ADD_PARTIAL); 4250 } 4251 spin_unlock_irqrestore(&n->list_lock, flags); 4252 return; 4253 4254 slab_empty: 4255 if (prior) { 4256 /* 4257 * Slab on the partial list. 4258 */ 4259 remove_partial(n, slab); 4260 stat(s, FREE_REMOVE_PARTIAL); 4261 } 4262 4263 spin_unlock_irqrestore(&n->list_lock, flags); 4264 stat(s, FREE_SLAB); 4265 discard_slab(s, slab); 4266 } 4267 4268 #ifndef CONFIG_SLUB_TINY 4269 /* 4270 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4271 * can perform fastpath freeing without additional function calls. 4272 * 4273 * The fastpath is only possible if we are freeing to the current cpu slab 4274 * of this processor. This typically the case if we have just allocated 4275 * the item before. 4276 * 4277 * If fastpath is not possible then fall back to __slab_free where we deal 4278 * with all sorts of special processing. 4279 * 4280 * Bulk free of a freelist with several objects (all pointing to the 4281 * same slab) possible by specifying head and tail ptr, plus objects 4282 * count (cnt). Bulk free indicated by tail pointer being set. 4283 */ 4284 static __always_inline void do_slab_free(struct kmem_cache *s, 4285 struct slab *slab, void *head, void *tail, 4286 int cnt, unsigned long addr) 4287 { 4288 struct kmem_cache_cpu *c; 4289 unsigned long tid; 4290 void **freelist; 4291 4292 redo: 4293 /* 4294 * Determine the currently cpus per cpu slab. 4295 * The cpu may change afterward. However that does not matter since 4296 * data is retrieved via this pointer. If we are on the same cpu 4297 * during the cmpxchg then the free will succeed. 4298 */ 4299 c = raw_cpu_ptr(s->cpu_slab); 4300 tid = READ_ONCE(c->tid); 4301 4302 /* Same with comment on barrier() in __slab_alloc_node() */ 4303 barrier(); 4304 4305 if (unlikely(slab != c->slab)) { 4306 __slab_free(s, slab, head, tail, cnt, addr); 4307 return; 4308 } 4309 4310 if (USE_LOCKLESS_FAST_PATH()) { 4311 freelist = READ_ONCE(c->freelist); 4312 4313 set_freepointer(s, tail, freelist); 4314 4315 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4316 note_cmpxchg_failure("slab_free", s, tid); 4317 goto redo; 4318 } 4319 } else { 4320 /* Update the free list under the local lock */ 4321 local_lock(&s->cpu_slab->lock); 4322 c = this_cpu_ptr(s->cpu_slab); 4323 if (unlikely(slab != c->slab)) { 4324 local_unlock(&s->cpu_slab->lock); 4325 goto redo; 4326 } 4327 tid = c->tid; 4328 freelist = c->freelist; 4329 4330 set_freepointer(s, tail, freelist); 4331 c->freelist = head; 4332 c->tid = next_tid(tid); 4333 4334 local_unlock(&s->cpu_slab->lock); 4335 } 4336 stat_add(s, FREE_FASTPATH, cnt); 4337 } 4338 #else /* CONFIG_SLUB_TINY */ 4339 static void do_slab_free(struct kmem_cache *s, 4340 struct slab *slab, void *head, void *tail, 4341 int cnt, unsigned long addr) 4342 { 4343 __slab_free(s, slab, head, tail, cnt, addr); 4344 } 4345 #endif /* CONFIG_SLUB_TINY */ 4346 4347 static __fastpath_inline 4348 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4349 unsigned long addr) 4350 { 4351 memcg_slab_free_hook(s, slab, &object, 1); 4352 4353 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4354 do_slab_free(s, slab, object, object, 1, addr); 4355 } 4356 4357 static __fastpath_inline 4358 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4359 void *tail, void **p, int cnt, unsigned long addr) 4360 { 4361 memcg_slab_free_hook(s, slab, p, cnt); 4362 /* 4363 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4364 * to remove objects, whose reuse must be delayed. 4365 */ 4366 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4367 do_slab_free(s, slab, head, tail, cnt, addr); 4368 } 4369 4370 #ifdef CONFIG_KASAN_GENERIC 4371 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4372 { 4373 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4374 } 4375 #endif 4376 4377 static inline struct kmem_cache *virt_to_cache(const void *obj) 4378 { 4379 struct slab *slab; 4380 4381 slab = virt_to_slab(obj); 4382 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4383 return NULL; 4384 return slab->slab_cache; 4385 } 4386 4387 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4388 { 4389 struct kmem_cache *cachep; 4390 4391 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4392 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4393 return s; 4394 4395 cachep = virt_to_cache(x); 4396 if (WARN(cachep && cachep != s, 4397 "%s: Wrong slab cache. %s but object is from %s\n", 4398 __func__, s->name, cachep->name)) 4399 print_tracking(cachep, x); 4400 return cachep; 4401 } 4402 4403 /** 4404 * kmem_cache_free - Deallocate an object 4405 * @s: The cache the allocation was from. 4406 * @x: The previously allocated object. 4407 * 4408 * Free an object which was previously allocated from this 4409 * cache. 4410 */ 4411 void kmem_cache_free(struct kmem_cache *s, void *x) 4412 { 4413 s = cache_from_obj(s, x); 4414 if (!s) 4415 return; 4416 trace_kmem_cache_free(_RET_IP_, x, s); 4417 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4418 } 4419 EXPORT_SYMBOL(kmem_cache_free); 4420 4421 static void free_large_kmalloc(struct folio *folio, void *object) 4422 { 4423 unsigned int order = folio_order(folio); 4424 4425 if (WARN_ON_ONCE(order == 0)) 4426 pr_warn_once("object pointer: 0x%p\n", object); 4427 4428 kmemleak_free(object); 4429 kasan_kfree_large(object); 4430 kmsan_kfree_large(object); 4431 4432 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4433 -(PAGE_SIZE << order)); 4434 folio_put(folio); 4435 } 4436 4437 /** 4438 * kfree - free previously allocated memory 4439 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4440 * 4441 * If @object is NULL, no operation is performed. 4442 */ 4443 void kfree(const void *object) 4444 { 4445 struct folio *folio; 4446 struct slab *slab; 4447 struct kmem_cache *s; 4448 void *x = (void *)object; 4449 4450 trace_kfree(_RET_IP_, object); 4451 4452 if (unlikely(ZERO_OR_NULL_PTR(object))) 4453 return; 4454 4455 folio = virt_to_folio(object); 4456 if (unlikely(!folio_test_slab(folio))) { 4457 free_large_kmalloc(folio, (void *)object); 4458 return; 4459 } 4460 4461 slab = folio_slab(folio); 4462 s = slab->slab_cache; 4463 slab_free(s, slab, x, _RET_IP_); 4464 } 4465 EXPORT_SYMBOL(kfree); 4466 4467 struct detached_freelist { 4468 struct slab *slab; 4469 void *tail; 4470 void *freelist; 4471 int cnt; 4472 struct kmem_cache *s; 4473 }; 4474 4475 /* 4476 * This function progressively scans the array with free objects (with 4477 * a limited look ahead) and extract objects belonging to the same 4478 * slab. It builds a detached freelist directly within the given 4479 * slab/objects. This can happen without any need for 4480 * synchronization, because the objects are owned by running process. 4481 * The freelist is build up as a single linked list in the objects. 4482 * The idea is, that this detached freelist can then be bulk 4483 * transferred to the real freelist(s), but only requiring a single 4484 * synchronization primitive. Look ahead in the array is limited due 4485 * to performance reasons. 4486 */ 4487 static inline 4488 int build_detached_freelist(struct kmem_cache *s, size_t size, 4489 void **p, struct detached_freelist *df) 4490 { 4491 int lookahead = 3; 4492 void *object; 4493 struct folio *folio; 4494 size_t same; 4495 4496 object = p[--size]; 4497 folio = virt_to_folio(object); 4498 if (!s) { 4499 /* Handle kalloc'ed objects */ 4500 if (unlikely(!folio_test_slab(folio))) { 4501 free_large_kmalloc(folio, object); 4502 df->slab = NULL; 4503 return size; 4504 } 4505 /* Derive kmem_cache from object */ 4506 df->slab = folio_slab(folio); 4507 df->s = df->slab->slab_cache; 4508 } else { 4509 df->slab = folio_slab(folio); 4510 df->s = cache_from_obj(s, object); /* Support for memcg */ 4511 } 4512 4513 /* Start new detached freelist */ 4514 df->tail = object; 4515 df->freelist = object; 4516 df->cnt = 1; 4517 4518 if (is_kfence_address(object)) 4519 return size; 4520 4521 set_freepointer(df->s, object, NULL); 4522 4523 same = size; 4524 while (size) { 4525 object = p[--size]; 4526 /* df->slab is always set at this point */ 4527 if (df->slab == virt_to_slab(object)) { 4528 /* Opportunity build freelist */ 4529 set_freepointer(df->s, object, df->freelist); 4530 df->freelist = object; 4531 df->cnt++; 4532 same--; 4533 if (size != same) 4534 swap(p[size], p[same]); 4535 continue; 4536 } 4537 4538 /* Limit look ahead search */ 4539 if (!--lookahead) 4540 break; 4541 } 4542 4543 return same; 4544 } 4545 4546 /* 4547 * Internal bulk free of objects that were not initialised by the post alloc 4548 * hooks and thus should not be processed by the free hooks 4549 */ 4550 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4551 { 4552 if (!size) 4553 return; 4554 4555 do { 4556 struct detached_freelist df; 4557 4558 size = build_detached_freelist(s, size, p, &df); 4559 if (!df.slab) 4560 continue; 4561 4562 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4563 _RET_IP_); 4564 } while (likely(size)); 4565 } 4566 4567 /* Note that interrupts must be enabled when calling this function. */ 4568 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4569 { 4570 if (!size) 4571 return; 4572 4573 do { 4574 struct detached_freelist df; 4575 4576 size = build_detached_freelist(s, size, p, &df); 4577 if (!df.slab) 4578 continue; 4579 4580 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4581 df.cnt, _RET_IP_); 4582 } while (likely(size)); 4583 } 4584 EXPORT_SYMBOL(kmem_cache_free_bulk); 4585 4586 #ifndef CONFIG_SLUB_TINY 4587 static inline 4588 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4589 void **p) 4590 { 4591 struct kmem_cache_cpu *c; 4592 unsigned long irqflags; 4593 int i; 4594 4595 /* 4596 * Drain objects in the per cpu slab, while disabling local 4597 * IRQs, which protects against PREEMPT and interrupts 4598 * handlers invoking normal fastpath. 4599 */ 4600 c = slub_get_cpu_ptr(s->cpu_slab); 4601 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4602 4603 for (i = 0; i < size; i++) { 4604 void *object = kfence_alloc(s, s->object_size, flags); 4605 4606 if (unlikely(object)) { 4607 p[i] = object; 4608 continue; 4609 } 4610 4611 object = c->freelist; 4612 if (unlikely(!object)) { 4613 /* 4614 * We may have removed an object from c->freelist using 4615 * the fastpath in the previous iteration; in that case, 4616 * c->tid has not been bumped yet. 4617 * Since ___slab_alloc() may reenable interrupts while 4618 * allocating memory, we should bump c->tid now. 4619 */ 4620 c->tid = next_tid(c->tid); 4621 4622 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4623 4624 /* 4625 * Invoking slow path likely have side-effect 4626 * of re-populating per CPU c->freelist 4627 */ 4628 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 4629 _RET_IP_, c, s->object_size); 4630 if (unlikely(!p[i])) 4631 goto error; 4632 4633 c = this_cpu_ptr(s->cpu_slab); 4634 maybe_wipe_obj_freeptr(s, p[i]); 4635 4636 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4637 4638 continue; /* goto for-loop */ 4639 } 4640 c->freelist = get_freepointer(s, object); 4641 p[i] = object; 4642 maybe_wipe_obj_freeptr(s, p[i]); 4643 stat(s, ALLOC_FASTPATH); 4644 } 4645 c->tid = next_tid(c->tid); 4646 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4647 slub_put_cpu_ptr(s->cpu_slab); 4648 4649 return i; 4650 4651 error: 4652 slub_put_cpu_ptr(s->cpu_slab); 4653 __kmem_cache_free_bulk(s, i, p); 4654 return 0; 4655 4656 } 4657 #else /* CONFIG_SLUB_TINY */ 4658 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4659 size_t size, void **p) 4660 { 4661 int i; 4662 4663 for (i = 0; i < size; i++) { 4664 void *object = kfence_alloc(s, s->object_size, flags); 4665 4666 if (unlikely(object)) { 4667 p[i] = object; 4668 continue; 4669 } 4670 4671 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4672 _RET_IP_, s->object_size); 4673 if (unlikely(!p[i])) 4674 goto error; 4675 4676 maybe_wipe_obj_freeptr(s, p[i]); 4677 } 4678 4679 return i; 4680 4681 error: 4682 __kmem_cache_free_bulk(s, i, p); 4683 return 0; 4684 } 4685 #endif /* CONFIG_SLUB_TINY */ 4686 4687 /* Note that interrupts must be enabled when calling this function. */ 4688 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4689 void **p) 4690 { 4691 int i; 4692 struct obj_cgroup *objcg = NULL; 4693 4694 if (!size) 4695 return 0; 4696 4697 /* memcg and kmem_cache debug support */ 4698 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 4699 if (unlikely(!s)) 4700 return 0; 4701 4702 i = __kmem_cache_alloc_bulk(s, flags, size, p); 4703 4704 /* 4705 * memcg and kmem_cache debug support and memory initialization. 4706 * Done outside of the IRQ disabled fastpath loop. 4707 */ 4708 if (likely(i != 0)) { 4709 slab_post_alloc_hook(s, objcg, flags, size, p, 4710 slab_want_init_on_alloc(flags, s), s->object_size); 4711 } else { 4712 memcg_slab_alloc_error_hook(s, size, objcg); 4713 } 4714 4715 return i; 4716 } 4717 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 4718 4719 4720 /* 4721 * Object placement in a slab is made very easy because we always start at 4722 * offset 0. If we tune the size of the object to the alignment then we can 4723 * get the required alignment by putting one properly sized object after 4724 * another. 4725 * 4726 * Notice that the allocation order determines the sizes of the per cpu 4727 * caches. Each processor has always one slab available for allocations. 4728 * Increasing the allocation order reduces the number of times that slabs 4729 * must be moved on and off the partial lists and is therefore a factor in 4730 * locking overhead. 4731 */ 4732 4733 /* 4734 * Minimum / Maximum order of slab pages. This influences locking overhead 4735 * and slab fragmentation. A higher order reduces the number of partial slabs 4736 * and increases the number of allocations possible without having to 4737 * take the list_lock. 4738 */ 4739 static unsigned int slub_min_order; 4740 static unsigned int slub_max_order = 4741 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4742 static unsigned int slub_min_objects; 4743 4744 /* 4745 * Calculate the order of allocation given an slab object size. 4746 * 4747 * The order of allocation has significant impact on performance and other 4748 * system components. Generally order 0 allocations should be preferred since 4749 * order 0 does not cause fragmentation in the page allocator. Larger objects 4750 * be problematic to put into order 0 slabs because there may be too much 4751 * unused space left. We go to a higher order if more than 1/16th of the slab 4752 * would be wasted. 4753 * 4754 * In order to reach satisfactory performance we must ensure that a minimum 4755 * number of objects is in one slab. Otherwise we may generate too much 4756 * activity on the partial lists which requires taking the list_lock. This is 4757 * less a concern for large slabs though which are rarely used. 4758 * 4759 * slab_max_order specifies the order where we begin to stop considering the 4760 * number of objects in a slab as critical. If we reach slab_max_order then 4761 * we try to keep the page order as low as possible. So we accept more waste 4762 * of space in favor of a small page order. 4763 * 4764 * Higher order allocations also allow the placement of more objects in a 4765 * slab and thereby reduce object handling overhead. If the user has 4766 * requested a higher minimum order then we start with that one instead of 4767 * the smallest order which will fit the object. 4768 */ 4769 static inline unsigned int calc_slab_order(unsigned int size, 4770 unsigned int min_order, unsigned int max_order, 4771 unsigned int fract_leftover) 4772 { 4773 unsigned int order; 4774 4775 for (order = min_order; order <= max_order; order++) { 4776 4777 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4778 unsigned int rem; 4779 4780 rem = slab_size % size; 4781 4782 if (rem <= slab_size / fract_leftover) 4783 break; 4784 } 4785 4786 return order; 4787 } 4788 4789 static inline int calculate_order(unsigned int size) 4790 { 4791 unsigned int order; 4792 unsigned int min_objects; 4793 unsigned int max_objects; 4794 unsigned int min_order; 4795 4796 min_objects = slub_min_objects; 4797 if (!min_objects) { 4798 /* 4799 * Some architectures will only update present cpus when 4800 * onlining them, so don't trust the number if it's just 1. But 4801 * we also don't want to use nr_cpu_ids always, as on some other 4802 * architectures, there can be many possible cpus, but never 4803 * onlined. Here we compromise between trying to avoid too high 4804 * order on systems that appear larger than they are, and too 4805 * low order on systems that appear smaller than they are. 4806 */ 4807 unsigned int nr_cpus = num_present_cpus(); 4808 if (nr_cpus <= 1) 4809 nr_cpus = nr_cpu_ids; 4810 min_objects = 4 * (fls(nr_cpus) + 1); 4811 } 4812 /* min_objects can't be 0 because get_order(0) is undefined */ 4813 max_objects = max(order_objects(slub_max_order, size), 1U); 4814 min_objects = min(min_objects, max_objects); 4815 4816 min_order = max_t(unsigned int, slub_min_order, 4817 get_order(min_objects * size)); 4818 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4819 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4820 4821 /* 4822 * Attempt to find best configuration for a slab. This works by first 4823 * attempting to generate a layout with the best possible configuration 4824 * and backing off gradually. 4825 * 4826 * We start with accepting at most 1/16 waste and try to find the 4827 * smallest order from min_objects-derived/slab_min_order up to 4828 * slab_max_order that will satisfy the constraint. Note that increasing 4829 * the order can only result in same or less fractional waste, not more. 4830 * 4831 * If that fails, we increase the acceptable fraction of waste and try 4832 * again. The last iteration with fraction of 1/2 would effectively 4833 * accept any waste and give us the order determined by min_objects, as 4834 * long as at least single object fits within slab_max_order. 4835 */ 4836 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 4837 order = calc_slab_order(size, min_order, slub_max_order, 4838 fraction); 4839 if (order <= slub_max_order) 4840 return order; 4841 } 4842 4843 /* 4844 * Doh this slab cannot be placed using slab_max_order. 4845 */ 4846 order = get_order(size); 4847 if (order <= MAX_PAGE_ORDER) 4848 return order; 4849 return -ENOSYS; 4850 } 4851 4852 static void 4853 init_kmem_cache_node(struct kmem_cache_node *n) 4854 { 4855 n->nr_partial = 0; 4856 spin_lock_init(&n->list_lock); 4857 INIT_LIST_HEAD(&n->partial); 4858 #ifdef CONFIG_SLUB_DEBUG 4859 atomic_long_set(&n->nr_slabs, 0); 4860 atomic_long_set(&n->total_objects, 0); 4861 INIT_LIST_HEAD(&n->full); 4862 #endif 4863 } 4864 4865 #ifndef CONFIG_SLUB_TINY 4866 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4867 { 4868 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4869 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4870 sizeof(struct kmem_cache_cpu)); 4871 4872 /* 4873 * Must align to double word boundary for the double cmpxchg 4874 * instructions to work; see __pcpu_double_call_return_bool(). 4875 */ 4876 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4877 2 * sizeof(void *)); 4878 4879 if (!s->cpu_slab) 4880 return 0; 4881 4882 init_kmem_cache_cpus(s); 4883 4884 return 1; 4885 } 4886 #else 4887 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4888 { 4889 return 1; 4890 } 4891 #endif /* CONFIG_SLUB_TINY */ 4892 4893 static struct kmem_cache *kmem_cache_node; 4894 4895 /* 4896 * No kmalloc_node yet so do it by hand. We know that this is the first 4897 * slab on the node for this slabcache. There are no concurrent accesses 4898 * possible. 4899 * 4900 * Note that this function only works on the kmem_cache_node 4901 * when allocating for the kmem_cache_node. This is used for bootstrapping 4902 * memory on a fresh node that has no slab structures yet. 4903 */ 4904 static void early_kmem_cache_node_alloc(int node) 4905 { 4906 struct slab *slab; 4907 struct kmem_cache_node *n; 4908 4909 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 4910 4911 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 4912 4913 BUG_ON(!slab); 4914 if (slab_nid(slab) != node) { 4915 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 4916 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 4917 } 4918 4919 n = slab->freelist; 4920 BUG_ON(!n); 4921 #ifdef CONFIG_SLUB_DEBUG 4922 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 4923 #endif 4924 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 4925 slab->freelist = get_freepointer(kmem_cache_node, n); 4926 slab->inuse = 1; 4927 kmem_cache_node->node[node] = n; 4928 init_kmem_cache_node(n); 4929 inc_slabs_node(kmem_cache_node, node, slab->objects); 4930 4931 /* 4932 * No locks need to be taken here as it has just been 4933 * initialized and there is no concurrent access. 4934 */ 4935 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 4936 } 4937 4938 static void free_kmem_cache_nodes(struct kmem_cache *s) 4939 { 4940 int node; 4941 struct kmem_cache_node *n; 4942 4943 for_each_kmem_cache_node(s, node, n) { 4944 s->node[node] = NULL; 4945 kmem_cache_free(kmem_cache_node, n); 4946 } 4947 } 4948 4949 void __kmem_cache_release(struct kmem_cache *s) 4950 { 4951 cache_random_seq_destroy(s); 4952 #ifndef CONFIG_SLUB_TINY 4953 free_percpu(s->cpu_slab); 4954 #endif 4955 free_kmem_cache_nodes(s); 4956 } 4957 4958 static int init_kmem_cache_nodes(struct kmem_cache *s) 4959 { 4960 int node; 4961 4962 for_each_node_mask(node, slab_nodes) { 4963 struct kmem_cache_node *n; 4964 4965 if (slab_state == DOWN) { 4966 early_kmem_cache_node_alloc(node); 4967 continue; 4968 } 4969 n = kmem_cache_alloc_node(kmem_cache_node, 4970 GFP_KERNEL, node); 4971 4972 if (!n) { 4973 free_kmem_cache_nodes(s); 4974 return 0; 4975 } 4976 4977 init_kmem_cache_node(n); 4978 s->node[node] = n; 4979 } 4980 return 1; 4981 } 4982 4983 static void set_cpu_partial(struct kmem_cache *s) 4984 { 4985 #ifdef CONFIG_SLUB_CPU_PARTIAL 4986 unsigned int nr_objects; 4987 4988 /* 4989 * cpu_partial determined the maximum number of objects kept in the 4990 * per cpu partial lists of a processor. 4991 * 4992 * Per cpu partial lists mainly contain slabs that just have one 4993 * object freed. If they are used for allocation then they can be 4994 * filled up again with minimal effort. The slab will never hit the 4995 * per node partial lists and therefore no locking will be required. 4996 * 4997 * For backwards compatibility reasons, this is determined as number 4998 * of objects, even though we now limit maximum number of pages, see 4999 * slub_set_cpu_partial() 5000 */ 5001 if (!kmem_cache_has_cpu_partial(s)) 5002 nr_objects = 0; 5003 else if (s->size >= PAGE_SIZE) 5004 nr_objects = 6; 5005 else if (s->size >= 1024) 5006 nr_objects = 24; 5007 else if (s->size >= 256) 5008 nr_objects = 52; 5009 else 5010 nr_objects = 120; 5011 5012 slub_set_cpu_partial(s, nr_objects); 5013 #endif 5014 } 5015 5016 /* 5017 * calculate_sizes() determines the order and the distribution of data within 5018 * a slab object. 5019 */ 5020 static int calculate_sizes(struct kmem_cache *s) 5021 { 5022 slab_flags_t flags = s->flags; 5023 unsigned int size = s->object_size; 5024 unsigned int order; 5025 5026 /* 5027 * Round up object size to the next word boundary. We can only 5028 * place the free pointer at word boundaries and this determines 5029 * the possible location of the free pointer. 5030 */ 5031 size = ALIGN(size, sizeof(void *)); 5032 5033 #ifdef CONFIG_SLUB_DEBUG 5034 /* 5035 * Determine if we can poison the object itself. If the user of 5036 * the slab may touch the object after free or before allocation 5037 * then we should never poison the object itself. 5038 */ 5039 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5040 !s->ctor) 5041 s->flags |= __OBJECT_POISON; 5042 else 5043 s->flags &= ~__OBJECT_POISON; 5044 5045 5046 /* 5047 * If we are Redzoning then check if there is some space between the 5048 * end of the object and the free pointer. If not then add an 5049 * additional word to have some bytes to store Redzone information. 5050 */ 5051 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5052 size += sizeof(void *); 5053 #endif 5054 5055 /* 5056 * With that we have determined the number of bytes in actual use 5057 * by the object and redzoning. 5058 */ 5059 s->inuse = size; 5060 5061 if (slub_debug_orig_size(s) || 5062 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 5063 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 5064 s->ctor) { 5065 /* 5066 * Relocate free pointer after the object if it is not 5067 * permitted to overwrite the first word of the object on 5068 * kmem_cache_free. 5069 * 5070 * This is the case if we do RCU, have a constructor or 5071 * destructor, are poisoning the objects, or are 5072 * redzoning an object smaller than sizeof(void *). 5073 * 5074 * The assumption that s->offset >= s->inuse means free 5075 * pointer is outside of the object is used in the 5076 * freeptr_outside_object() function. If that is no 5077 * longer true, the function needs to be modified. 5078 */ 5079 s->offset = size; 5080 size += sizeof(void *); 5081 } else { 5082 /* 5083 * Store freelist pointer near middle of object to keep 5084 * it away from the edges of the object to avoid small 5085 * sized over/underflows from neighboring allocations. 5086 */ 5087 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5088 } 5089 5090 #ifdef CONFIG_SLUB_DEBUG 5091 if (flags & SLAB_STORE_USER) { 5092 /* 5093 * Need to store information about allocs and frees after 5094 * the object. 5095 */ 5096 size += 2 * sizeof(struct track); 5097 5098 /* Save the original kmalloc request size */ 5099 if (flags & SLAB_KMALLOC) 5100 size += sizeof(unsigned int); 5101 } 5102 #endif 5103 5104 kasan_cache_create(s, &size, &s->flags); 5105 #ifdef CONFIG_SLUB_DEBUG 5106 if (flags & SLAB_RED_ZONE) { 5107 /* 5108 * Add some empty padding so that we can catch 5109 * overwrites from earlier objects rather than let 5110 * tracking information or the free pointer be 5111 * corrupted if a user writes before the start 5112 * of the object. 5113 */ 5114 size += sizeof(void *); 5115 5116 s->red_left_pad = sizeof(void *); 5117 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5118 size += s->red_left_pad; 5119 } 5120 #endif 5121 5122 /* 5123 * SLUB stores one object immediately after another beginning from 5124 * offset 0. In order to align the objects we have to simply size 5125 * each object to conform to the alignment. 5126 */ 5127 size = ALIGN(size, s->align); 5128 s->size = size; 5129 s->reciprocal_size = reciprocal_value(size); 5130 order = calculate_order(size); 5131 5132 if ((int)order < 0) 5133 return 0; 5134 5135 s->allocflags = __GFP_COMP; 5136 5137 if (s->flags & SLAB_CACHE_DMA) 5138 s->allocflags |= GFP_DMA; 5139 5140 if (s->flags & SLAB_CACHE_DMA32) 5141 s->allocflags |= GFP_DMA32; 5142 5143 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5144 s->allocflags |= __GFP_RECLAIMABLE; 5145 5146 /* 5147 * Determine the number of objects per slab 5148 */ 5149 s->oo = oo_make(order, size); 5150 s->min = oo_make(get_order(size), size); 5151 5152 return !!oo_objects(s->oo); 5153 } 5154 5155 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 5156 { 5157 s->flags = kmem_cache_flags(flags, s->name); 5158 #ifdef CONFIG_SLAB_FREELIST_HARDENED 5159 s->random = get_random_long(); 5160 #endif 5161 5162 if (!calculate_sizes(s)) 5163 goto error; 5164 if (disable_higher_order_debug) { 5165 /* 5166 * Disable debugging flags that store metadata if the min slab 5167 * order increased. 5168 */ 5169 if (get_order(s->size) > get_order(s->object_size)) { 5170 s->flags &= ~DEBUG_METADATA_FLAGS; 5171 s->offset = 0; 5172 if (!calculate_sizes(s)) 5173 goto error; 5174 } 5175 } 5176 5177 #ifdef system_has_freelist_aba 5178 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 5179 /* Enable fast mode */ 5180 s->flags |= __CMPXCHG_DOUBLE; 5181 } 5182 #endif 5183 5184 /* 5185 * The larger the object size is, the more slabs we want on the partial 5186 * list to avoid pounding the page allocator excessively. 5187 */ 5188 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 5189 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 5190 5191 set_cpu_partial(s); 5192 5193 #ifdef CONFIG_NUMA 5194 s->remote_node_defrag_ratio = 1000; 5195 #endif 5196 5197 /* Initialize the pre-computed randomized freelist if slab is up */ 5198 if (slab_state >= UP) { 5199 if (init_cache_random_seq(s)) 5200 goto error; 5201 } 5202 5203 if (!init_kmem_cache_nodes(s)) 5204 goto error; 5205 5206 if (alloc_kmem_cache_cpus(s)) 5207 return 0; 5208 5209 error: 5210 __kmem_cache_release(s); 5211 return -EINVAL; 5212 } 5213 5214 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5215 const char *text) 5216 { 5217 #ifdef CONFIG_SLUB_DEBUG 5218 void *addr = slab_address(slab); 5219 void *p; 5220 5221 slab_err(s, slab, text, s->name); 5222 5223 spin_lock(&object_map_lock); 5224 __fill_map(object_map, s, slab); 5225 5226 for_each_object(p, s, addr, slab->objects) { 5227 5228 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5229 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5230 print_tracking(s, p); 5231 } 5232 } 5233 spin_unlock(&object_map_lock); 5234 #endif 5235 } 5236 5237 /* 5238 * Attempt to free all partial slabs on a node. 5239 * This is called from __kmem_cache_shutdown(). We must take list_lock 5240 * because sysfs file might still access partial list after the shutdowning. 5241 */ 5242 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5243 { 5244 LIST_HEAD(discard); 5245 struct slab *slab, *h; 5246 5247 BUG_ON(irqs_disabled()); 5248 spin_lock_irq(&n->list_lock); 5249 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5250 if (!slab->inuse) { 5251 remove_partial(n, slab); 5252 list_add(&slab->slab_list, &discard); 5253 } else { 5254 list_slab_objects(s, slab, 5255 "Objects remaining in %s on __kmem_cache_shutdown()"); 5256 } 5257 } 5258 spin_unlock_irq(&n->list_lock); 5259 5260 list_for_each_entry_safe(slab, h, &discard, slab_list) 5261 discard_slab(s, slab); 5262 } 5263 5264 bool __kmem_cache_empty(struct kmem_cache *s) 5265 { 5266 int node; 5267 struct kmem_cache_node *n; 5268 5269 for_each_kmem_cache_node(s, node, n) 5270 if (n->nr_partial || node_nr_slabs(n)) 5271 return false; 5272 return true; 5273 } 5274 5275 /* 5276 * Release all resources used by a slab cache. 5277 */ 5278 int __kmem_cache_shutdown(struct kmem_cache *s) 5279 { 5280 int node; 5281 struct kmem_cache_node *n; 5282 5283 flush_all_cpus_locked(s); 5284 /* Attempt to free all objects */ 5285 for_each_kmem_cache_node(s, node, n) { 5286 free_partial(s, n); 5287 if (n->nr_partial || node_nr_slabs(n)) 5288 return 1; 5289 } 5290 return 0; 5291 } 5292 5293 #ifdef CONFIG_PRINTK 5294 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5295 { 5296 void *base; 5297 int __maybe_unused i; 5298 unsigned int objnr; 5299 void *objp; 5300 void *objp0; 5301 struct kmem_cache *s = slab->slab_cache; 5302 struct track __maybe_unused *trackp; 5303 5304 kpp->kp_ptr = object; 5305 kpp->kp_slab = slab; 5306 kpp->kp_slab_cache = s; 5307 base = slab_address(slab); 5308 objp0 = kasan_reset_tag(object); 5309 #ifdef CONFIG_SLUB_DEBUG 5310 objp = restore_red_left(s, objp0); 5311 #else 5312 objp = objp0; 5313 #endif 5314 objnr = obj_to_index(s, slab, objp); 5315 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5316 objp = base + s->size * objnr; 5317 kpp->kp_objp = objp; 5318 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5319 || (objp - base) % s->size) || 5320 !(s->flags & SLAB_STORE_USER)) 5321 return; 5322 #ifdef CONFIG_SLUB_DEBUG 5323 objp = fixup_red_left(s, objp); 5324 trackp = get_track(s, objp, TRACK_ALLOC); 5325 kpp->kp_ret = (void *)trackp->addr; 5326 #ifdef CONFIG_STACKDEPOT 5327 { 5328 depot_stack_handle_t handle; 5329 unsigned long *entries; 5330 unsigned int nr_entries; 5331 5332 handle = READ_ONCE(trackp->handle); 5333 if (handle) { 5334 nr_entries = stack_depot_fetch(handle, &entries); 5335 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5336 kpp->kp_stack[i] = (void *)entries[i]; 5337 } 5338 5339 trackp = get_track(s, objp, TRACK_FREE); 5340 handle = READ_ONCE(trackp->handle); 5341 if (handle) { 5342 nr_entries = stack_depot_fetch(handle, &entries); 5343 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5344 kpp->kp_free_stack[i] = (void *)entries[i]; 5345 } 5346 } 5347 #endif 5348 #endif 5349 } 5350 #endif 5351 5352 /******************************************************************** 5353 * Kmalloc subsystem 5354 *******************************************************************/ 5355 5356 static int __init setup_slub_min_order(char *str) 5357 { 5358 get_option(&str, (int *)&slub_min_order); 5359 5360 if (slub_min_order > slub_max_order) 5361 slub_max_order = slub_min_order; 5362 5363 return 1; 5364 } 5365 5366 __setup("slab_min_order=", setup_slub_min_order); 5367 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5368 5369 5370 static int __init setup_slub_max_order(char *str) 5371 { 5372 get_option(&str, (int *)&slub_max_order); 5373 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5374 5375 if (slub_min_order > slub_max_order) 5376 slub_min_order = slub_max_order; 5377 5378 return 1; 5379 } 5380 5381 __setup("slab_max_order=", setup_slub_max_order); 5382 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5383 5384 static int __init setup_slub_min_objects(char *str) 5385 { 5386 get_option(&str, (int *)&slub_min_objects); 5387 5388 return 1; 5389 } 5390 5391 __setup("slab_min_objects=", setup_slub_min_objects); 5392 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5393 5394 #ifdef CONFIG_HARDENED_USERCOPY 5395 /* 5396 * Rejects incorrectly sized objects and objects that are to be copied 5397 * to/from userspace but do not fall entirely within the containing slab 5398 * cache's usercopy region. 5399 * 5400 * Returns NULL if check passes, otherwise const char * to name of cache 5401 * to indicate an error. 5402 */ 5403 void __check_heap_object(const void *ptr, unsigned long n, 5404 const struct slab *slab, bool to_user) 5405 { 5406 struct kmem_cache *s; 5407 unsigned int offset; 5408 bool is_kfence = is_kfence_address(ptr); 5409 5410 ptr = kasan_reset_tag(ptr); 5411 5412 /* Find object and usable object size. */ 5413 s = slab->slab_cache; 5414 5415 /* Reject impossible pointers. */ 5416 if (ptr < slab_address(slab)) 5417 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5418 to_user, 0, n); 5419 5420 /* Find offset within object. */ 5421 if (is_kfence) 5422 offset = ptr - kfence_object_start(ptr); 5423 else 5424 offset = (ptr - slab_address(slab)) % s->size; 5425 5426 /* Adjust for redzone and reject if within the redzone. */ 5427 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5428 if (offset < s->red_left_pad) 5429 usercopy_abort("SLUB object in left red zone", 5430 s->name, to_user, offset, n); 5431 offset -= s->red_left_pad; 5432 } 5433 5434 /* Allow address range falling entirely within usercopy region. */ 5435 if (offset >= s->useroffset && 5436 offset - s->useroffset <= s->usersize && 5437 n <= s->useroffset - offset + s->usersize) 5438 return; 5439 5440 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5441 } 5442 #endif /* CONFIG_HARDENED_USERCOPY */ 5443 5444 #define SHRINK_PROMOTE_MAX 32 5445 5446 /* 5447 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5448 * up most to the head of the partial lists. New allocations will then 5449 * fill those up and thus they can be removed from the partial lists. 5450 * 5451 * The slabs with the least items are placed last. This results in them 5452 * being allocated from last increasing the chance that the last objects 5453 * are freed in them. 5454 */ 5455 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5456 { 5457 int node; 5458 int i; 5459 struct kmem_cache_node *n; 5460 struct slab *slab; 5461 struct slab *t; 5462 struct list_head discard; 5463 struct list_head promote[SHRINK_PROMOTE_MAX]; 5464 unsigned long flags; 5465 int ret = 0; 5466 5467 for_each_kmem_cache_node(s, node, n) { 5468 INIT_LIST_HEAD(&discard); 5469 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5470 INIT_LIST_HEAD(promote + i); 5471 5472 spin_lock_irqsave(&n->list_lock, flags); 5473 5474 /* 5475 * Build lists of slabs to discard or promote. 5476 * 5477 * Note that concurrent frees may occur while we hold the 5478 * list_lock. slab->inuse here is the upper limit. 5479 */ 5480 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5481 int free = slab->objects - slab->inuse; 5482 5483 /* Do not reread slab->inuse */ 5484 barrier(); 5485 5486 /* We do not keep full slabs on the list */ 5487 BUG_ON(free <= 0); 5488 5489 if (free == slab->objects) { 5490 list_move(&slab->slab_list, &discard); 5491 slab_clear_node_partial(slab); 5492 n->nr_partial--; 5493 dec_slabs_node(s, node, slab->objects); 5494 } else if (free <= SHRINK_PROMOTE_MAX) 5495 list_move(&slab->slab_list, promote + free - 1); 5496 } 5497 5498 /* 5499 * Promote the slabs filled up most to the head of the 5500 * partial list. 5501 */ 5502 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5503 list_splice(promote + i, &n->partial); 5504 5505 spin_unlock_irqrestore(&n->list_lock, flags); 5506 5507 /* Release empty slabs */ 5508 list_for_each_entry_safe(slab, t, &discard, slab_list) 5509 free_slab(s, slab); 5510 5511 if (node_nr_slabs(n)) 5512 ret = 1; 5513 } 5514 5515 return ret; 5516 } 5517 5518 int __kmem_cache_shrink(struct kmem_cache *s) 5519 { 5520 flush_all(s); 5521 return __kmem_cache_do_shrink(s); 5522 } 5523 5524 static int slab_mem_going_offline_callback(void *arg) 5525 { 5526 struct kmem_cache *s; 5527 5528 mutex_lock(&slab_mutex); 5529 list_for_each_entry(s, &slab_caches, list) { 5530 flush_all_cpus_locked(s); 5531 __kmem_cache_do_shrink(s); 5532 } 5533 mutex_unlock(&slab_mutex); 5534 5535 return 0; 5536 } 5537 5538 static void slab_mem_offline_callback(void *arg) 5539 { 5540 struct memory_notify *marg = arg; 5541 int offline_node; 5542 5543 offline_node = marg->status_change_nid_normal; 5544 5545 /* 5546 * If the node still has available memory. we need kmem_cache_node 5547 * for it yet. 5548 */ 5549 if (offline_node < 0) 5550 return; 5551 5552 mutex_lock(&slab_mutex); 5553 node_clear(offline_node, slab_nodes); 5554 /* 5555 * We no longer free kmem_cache_node structures here, as it would be 5556 * racy with all get_node() users, and infeasible to protect them with 5557 * slab_mutex. 5558 */ 5559 mutex_unlock(&slab_mutex); 5560 } 5561 5562 static int slab_mem_going_online_callback(void *arg) 5563 { 5564 struct kmem_cache_node *n; 5565 struct kmem_cache *s; 5566 struct memory_notify *marg = arg; 5567 int nid = marg->status_change_nid_normal; 5568 int ret = 0; 5569 5570 /* 5571 * If the node's memory is already available, then kmem_cache_node is 5572 * already created. Nothing to do. 5573 */ 5574 if (nid < 0) 5575 return 0; 5576 5577 /* 5578 * We are bringing a node online. No memory is available yet. We must 5579 * allocate a kmem_cache_node structure in order to bring the node 5580 * online. 5581 */ 5582 mutex_lock(&slab_mutex); 5583 list_for_each_entry(s, &slab_caches, list) { 5584 /* 5585 * The structure may already exist if the node was previously 5586 * onlined and offlined. 5587 */ 5588 if (get_node(s, nid)) 5589 continue; 5590 /* 5591 * XXX: kmem_cache_alloc_node will fallback to other nodes 5592 * since memory is not yet available from the node that 5593 * is brought up. 5594 */ 5595 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5596 if (!n) { 5597 ret = -ENOMEM; 5598 goto out; 5599 } 5600 init_kmem_cache_node(n); 5601 s->node[nid] = n; 5602 } 5603 /* 5604 * Any cache created after this point will also have kmem_cache_node 5605 * initialized for the new node. 5606 */ 5607 node_set(nid, slab_nodes); 5608 out: 5609 mutex_unlock(&slab_mutex); 5610 return ret; 5611 } 5612 5613 static int slab_memory_callback(struct notifier_block *self, 5614 unsigned long action, void *arg) 5615 { 5616 int ret = 0; 5617 5618 switch (action) { 5619 case MEM_GOING_ONLINE: 5620 ret = slab_mem_going_online_callback(arg); 5621 break; 5622 case MEM_GOING_OFFLINE: 5623 ret = slab_mem_going_offline_callback(arg); 5624 break; 5625 case MEM_OFFLINE: 5626 case MEM_CANCEL_ONLINE: 5627 slab_mem_offline_callback(arg); 5628 break; 5629 case MEM_ONLINE: 5630 case MEM_CANCEL_OFFLINE: 5631 break; 5632 } 5633 if (ret) 5634 ret = notifier_from_errno(ret); 5635 else 5636 ret = NOTIFY_OK; 5637 return ret; 5638 } 5639 5640 /******************************************************************** 5641 * Basic setup of slabs 5642 *******************************************************************/ 5643 5644 /* 5645 * Used for early kmem_cache structures that were allocated using 5646 * the page allocator. Allocate them properly then fix up the pointers 5647 * that may be pointing to the wrong kmem_cache structure. 5648 */ 5649 5650 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 5651 { 5652 int node; 5653 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5654 struct kmem_cache_node *n; 5655 5656 memcpy(s, static_cache, kmem_cache->object_size); 5657 5658 /* 5659 * This runs very early, and only the boot processor is supposed to be 5660 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5661 * IPIs around. 5662 */ 5663 __flush_cpu_slab(s, smp_processor_id()); 5664 for_each_kmem_cache_node(s, node, n) { 5665 struct slab *p; 5666 5667 list_for_each_entry(p, &n->partial, slab_list) 5668 p->slab_cache = s; 5669 5670 #ifdef CONFIG_SLUB_DEBUG 5671 list_for_each_entry(p, &n->full, slab_list) 5672 p->slab_cache = s; 5673 #endif 5674 } 5675 list_add(&s->list, &slab_caches); 5676 return s; 5677 } 5678 5679 void __init kmem_cache_init(void) 5680 { 5681 static __initdata struct kmem_cache boot_kmem_cache, 5682 boot_kmem_cache_node; 5683 int node; 5684 5685 if (debug_guardpage_minorder()) 5686 slub_max_order = 0; 5687 5688 /* Print slub debugging pointers without hashing */ 5689 if (__slub_debug_enabled()) 5690 no_hash_pointers_enable(NULL); 5691 5692 kmem_cache_node = &boot_kmem_cache_node; 5693 kmem_cache = &boot_kmem_cache; 5694 5695 /* 5696 * Initialize the nodemask for which we will allocate per node 5697 * structures. Here we don't need taking slab_mutex yet. 5698 */ 5699 for_each_node_state(node, N_NORMAL_MEMORY) 5700 node_set(node, slab_nodes); 5701 5702 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5703 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 5704 5705 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5706 5707 /* Able to allocate the per node structures */ 5708 slab_state = PARTIAL; 5709 5710 create_boot_cache(kmem_cache, "kmem_cache", 5711 offsetof(struct kmem_cache, node) + 5712 nr_node_ids * sizeof(struct kmem_cache_node *), 5713 SLAB_HWCACHE_ALIGN, 0, 0); 5714 5715 kmem_cache = bootstrap(&boot_kmem_cache); 5716 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5717 5718 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5719 setup_kmalloc_cache_index_table(); 5720 create_kmalloc_caches(); 5721 5722 /* Setup random freelists for each cache */ 5723 init_freelist_randomization(); 5724 5725 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5726 slub_cpu_dead); 5727 5728 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5729 cache_line_size(), 5730 slub_min_order, slub_max_order, slub_min_objects, 5731 nr_cpu_ids, nr_node_ids); 5732 } 5733 5734 void __init kmem_cache_init_late(void) 5735 { 5736 #ifndef CONFIG_SLUB_TINY 5737 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5738 WARN_ON(!flushwq); 5739 #endif 5740 } 5741 5742 struct kmem_cache * 5743 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5744 slab_flags_t flags, void (*ctor)(void *)) 5745 { 5746 struct kmem_cache *s; 5747 5748 s = find_mergeable(size, align, flags, name, ctor); 5749 if (s) { 5750 if (sysfs_slab_alias(s, name)) 5751 return NULL; 5752 5753 s->refcount++; 5754 5755 /* 5756 * Adjust the object sizes so that we clear 5757 * the complete object on kzalloc. 5758 */ 5759 s->object_size = max(s->object_size, size); 5760 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5761 } 5762 5763 return s; 5764 } 5765 5766 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5767 { 5768 int err; 5769 5770 err = kmem_cache_open(s, flags); 5771 if (err) 5772 return err; 5773 5774 /* Mutex is not taken during early boot */ 5775 if (slab_state <= UP) 5776 return 0; 5777 5778 err = sysfs_slab_add(s); 5779 if (err) { 5780 __kmem_cache_release(s); 5781 return err; 5782 } 5783 5784 if (s->flags & SLAB_STORE_USER) 5785 debugfs_slab_add(s); 5786 5787 return 0; 5788 } 5789 5790 #ifdef SLAB_SUPPORTS_SYSFS 5791 static int count_inuse(struct slab *slab) 5792 { 5793 return slab->inuse; 5794 } 5795 5796 static int count_total(struct slab *slab) 5797 { 5798 return slab->objects; 5799 } 5800 #endif 5801 5802 #ifdef CONFIG_SLUB_DEBUG 5803 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5804 unsigned long *obj_map) 5805 { 5806 void *p; 5807 void *addr = slab_address(slab); 5808 5809 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5810 return; 5811 5812 /* Now we know that a valid freelist exists */ 5813 __fill_map(obj_map, s, slab); 5814 for_each_object(p, s, addr, slab->objects) { 5815 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5816 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5817 5818 if (!check_object(s, slab, p, val)) 5819 break; 5820 } 5821 } 5822 5823 static int validate_slab_node(struct kmem_cache *s, 5824 struct kmem_cache_node *n, unsigned long *obj_map) 5825 { 5826 unsigned long count = 0; 5827 struct slab *slab; 5828 unsigned long flags; 5829 5830 spin_lock_irqsave(&n->list_lock, flags); 5831 5832 list_for_each_entry(slab, &n->partial, slab_list) { 5833 validate_slab(s, slab, obj_map); 5834 count++; 5835 } 5836 if (count != n->nr_partial) { 5837 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5838 s->name, count, n->nr_partial); 5839 slab_add_kunit_errors(); 5840 } 5841 5842 if (!(s->flags & SLAB_STORE_USER)) 5843 goto out; 5844 5845 list_for_each_entry(slab, &n->full, slab_list) { 5846 validate_slab(s, slab, obj_map); 5847 count++; 5848 } 5849 if (count != node_nr_slabs(n)) { 5850 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5851 s->name, count, node_nr_slabs(n)); 5852 slab_add_kunit_errors(); 5853 } 5854 5855 out: 5856 spin_unlock_irqrestore(&n->list_lock, flags); 5857 return count; 5858 } 5859 5860 long validate_slab_cache(struct kmem_cache *s) 5861 { 5862 int node; 5863 unsigned long count = 0; 5864 struct kmem_cache_node *n; 5865 unsigned long *obj_map; 5866 5867 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5868 if (!obj_map) 5869 return -ENOMEM; 5870 5871 flush_all(s); 5872 for_each_kmem_cache_node(s, node, n) 5873 count += validate_slab_node(s, n, obj_map); 5874 5875 bitmap_free(obj_map); 5876 5877 return count; 5878 } 5879 EXPORT_SYMBOL(validate_slab_cache); 5880 5881 #ifdef CONFIG_DEBUG_FS 5882 /* 5883 * Generate lists of code addresses where slabcache objects are allocated 5884 * and freed. 5885 */ 5886 5887 struct location { 5888 depot_stack_handle_t handle; 5889 unsigned long count; 5890 unsigned long addr; 5891 unsigned long waste; 5892 long long sum_time; 5893 long min_time; 5894 long max_time; 5895 long min_pid; 5896 long max_pid; 5897 DECLARE_BITMAP(cpus, NR_CPUS); 5898 nodemask_t nodes; 5899 }; 5900 5901 struct loc_track { 5902 unsigned long max; 5903 unsigned long count; 5904 struct location *loc; 5905 loff_t idx; 5906 }; 5907 5908 static struct dentry *slab_debugfs_root; 5909 5910 static void free_loc_track(struct loc_track *t) 5911 { 5912 if (t->max) 5913 free_pages((unsigned long)t->loc, 5914 get_order(sizeof(struct location) * t->max)); 5915 } 5916 5917 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5918 { 5919 struct location *l; 5920 int order; 5921 5922 order = get_order(sizeof(struct location) * max); 5923 5924 l = (void *)__get_free_pages(flags, order); 5925 if (!l) 5926 return 0; 5927 5928 if (t->count) { 5929 memcpy(l, t->loc, sizeof(struct location) * t->count); 5930 free_loc_track(t); 5931 } 5932 t->max = max; 5933 t->loc = l; 5934 return 1; 5935 } 5936 5937 static int add_location(struct loc_track *t, struct kmem_cache *s, 5938 const struct track *track, 5939 unsigned int orig_size) 5940 { 5941 long start, end, pos; 5942 struct location *l; 5943 unsigned long caddr, chandle, cwaste; 5944 unsigned long age = jiffies - track->when; 5945 depot_stack_handle_t handle = 0; 5946 unsigned int waste = s->object_size - orig_size; 5947 5948 #ifdef CONFIG_STACKDEPOT 5949 handle = READ_ONCE(track->handle); 5950 #endif 5951 start = -1; 5952 end = t->count; 5953 5954 for ( ; ; ) { 5955 pos = start + (end - start + 1) / 2; 5956 5957 /* 5958 * There is nothing at "end". If we end up there 5959 * we need to add something to before end. 5960 */ 5961 if (pos == end) 5962 break; 5963 5964 l = &t->loc[pos]; 5965 caddr = l->addr; 5966 chandle = l->handle; 5967 cwaste = l->waste; 5968 if ((track->addr == caddr) && (handle == chandle) && 5969 (waste == cwaste)) { 5970 5971 l->count++; 5972 if (track->when) { 5973 l->sum_time += age; 5974 if (age < l->min_time) 5975 l->min_time = age; 5976 if (age > l->max_time) 5977 l->max_time = age; 5978 5979 if (track->pid < l->min_pid) 5980 l->min_pid = track->pid; 5981 if (track->pid > l->max_pid) 5982 l->max_pid = track->pid; 5983 5984 cpumask_set_cpu(track->cpu, 5985 to_cpumask(l->cpus)); 5986 } 5987 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5988 return 1; 5989 } 5990 5991 if (track->addr < caddr) 5992 end = pos; 5993 else if (track->addr == caddr && handle < chandle) 5994 end = pos; 5995 else if (track->addr == caddr && handle == chandle && 5996 waste < cwaste) 5997 end = pos; 5998 else 5999 start = pos; 6000 } 6001 6002 /* 6003 * Not found. Insert new tracking element. 6004 */ 6005 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6006 return 0; 6007 6008 l = t->loc + pos; 6009 if (pos < t->count) 6010 memmove(l + 1, l, 6011 (t->count - pos) * sizeof(struct location)); 6012 t->count++; 6013 l->count = 1; 6014 l->addr = track->addr; 6015 l->sum_time = age; 6016 l->min_time = age; 6017 l->max_time = age; 6018 l->min_pid = track->pid; 6019 l->max_pid = track->pid; 6020 l->handle = handle; 6021 l->waste = waste; 6022 cpumask_clear(to_cpumask(l->cpus)); 6023 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6024 nodes_clear(l->nodes); 6025 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6026 return 1; 6027 } 6028 6029 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6030 struct slab *slab, enum track_item alloc, 6031 unsigned long *obj_map) 6032 { 6033 void *addr = slab_address(slab); 6034 bool is_alloc = (alloc == TRACK_ALLOC); 6035 void *p; 6036 6037 __fill_map(obj_map, s, slab); 6038 6039 for_each_object(p, s, addr, slab->objects) 6040 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6041 add_location(t, s, get_track(s, p, alloc), 6042 is_alloc ? get_orig_size(s, p) : 6043 s->object_size); 6044 } 6045 #endif /* CONFIG_DEBUG_FS */ 6046 #endif /* CONFIG_SLUB_DEBUG */ 6047 6048 #ifdef SLAB_SUPPORTS_SYSFS 6049 enum slab_stat_type { 6050 SL_ALL, /* All slabs */ 6051 SL_PARTIAL, /* Only partially allocated slabs */ 6052 SL_CPU, /* Only slabs used for cpu caches */ 6053 SL_OBJECTS, /* Determine allocated objects not slabs */ 6054 SL_TOTAL /* Determine object capacity not slabs */ 6055 }; 6056 6057 #define SO_ALL (1 << SL_ALL) 6058 #define SO_PARTIAL (1 << SL_PARTIAL) 6059 #define SO_CPU (1 << SL_CPU) 6060 #define SO_OBJECTS (1 << SL_OBJECTS) 6061 #define SO_TOTAL (1 << SL_TOTAL) 6062 6063 static ssize_t show_slab_objects(struct kmem_cache *s, 6064 char *buf, unsigned long flags) 6065 { 6066 unsigned long total = 0; 6067 int node; 6068 int x; 6069 unsigned long *nodes; 6070 int len = 0; 6071 6072 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6073 if (!nodes) 6074 return -ENOMEM; 6075 6076 if (flags & SO_CPU) { 6077 int cpu; 6078 6079 for_each_possible_cpu(cpu) { 6080 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6081 cpu); 6082 int node; 6083 struct slab *slab; 6084 6085 slab = READ_ONCE(c->slab); 6086 if (!slab) 6087 continue; 6088 6089 node = slab_nid(slab); 6090 if (flags & SO_TOTAL) 6091 x = slab->objects; 6092 else if (flags & SO_OBJECTS) 6093 x = slab->inuse; 6094 else 6095 x = 1; 6096 6097 total += x; 6098 nodes[node] += x; 6099 6100 #ifdef CONFIG_SLUB_CPU_PARTIAL 6101 slab = slub_percpu_partial_read_once(c); 6102 if (slab) { 6103 node = slab_nid(slab); 6104 if (flags & SO_TOTAL) 6105 WARN_ON_ONCE(1); 6106 else if (flags & SO_OBJECTS) 6107 WARN_ON_ONCE(1); 6108 else 6109 x = data_race(slab->slabs); 6110 total += x; 6111 nodes[node] += x; 6112 } 6113 #endif 6114 } 6115 } 6116 6117 /* 6118 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6119 * already held which will conflict with an existing lock order: 6120 * 6121 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6122 * 6123 * We don't really need mem_hotplug_lock (to hold off 6124 * slab_mem_going_offline_callback) here because slab's memory hot 6125 * unplug code doesn't destroy the kmem_cache->node[] data. 6126 */ 6127 6128 #ifdef CONFIG_SLUB_DEBUG 6129 if (flags & SO_ALL) { 6130 struct kmem_cache_node *n; 6131 6132 for_each_kmem_cache_node(s, node, n) { 6133 6134 if (flags & SO_TOTAL) 6135 x = node_nr_objs(n); 6136 else if (flags & SO_OBJECTS) 6137 x = node_nr_objs(n) - count_partial(n, count_free); 6138 else 6139 x = node_nr_slabs(n); 6140 total += x; 6141 nodes[node] += x; 6142 } 6143 6144 } else 6145 #endif 6146 if (flags & SO_PARTIAL) { 6147 struct kmem_cache_node *n; 6148 6149 for_each_kmem_cache_node(s, node, n) { 6150 if (flags & SO_TOTAL) 6151 x = count_partial(n, count_total); 6152 else if (flags & SO_OBJECTS) 6153 x = count_partial(n, count_inuse); 6154 else 6155 x = n->nr_partial; 6156 total += x; 6157 nodes[node] += x; 6158 } 6159 } 6160 6161 len += sysfs_emit_at(buf, len, "%lu", total); 6162 #ifdef CONFIG_NUMA 6163 for (node = 0; node < nr_node_ids; node++) { 6164 if (nodes[node]) 6165 len += sysfs_emit_at(buf, len, " N%d=%lu", 6166 node, nodes[node]); 6167 } 6168 #endif 6169 len += sysfs_emit_at(buf, len, "\n"); 6170 kfree(nodes); 6171 6172 return len; 6173 } 6174 6175 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6176 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6177 6178 struct slab_attribute { 6179 struct attribute attr; 6180 ssize_t (*show)(struct kmem_cache *s, char *buf); 6181 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6182 }; 6183 6184 #define SLAB_ATTR_RO(_name) \ 6185 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6186 6187 #define SLAB_ATTR(_name) \ 6188 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6189 6190 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6191 { 6192 return sysfs_emit(buf, "%u\n", s->size); 6193 } 6194 SLAB_ATTR_RO(slab_size); 6195 6196 static ssize_t align_show(struct kmem_cache *s, char *buf) 6197 { 6198 return sysfs_emit(buf, "%u\n", s->align); 6199 } 6200 SLAB_ATTR_RO(align); 6201 6202 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6203 { 6204 return sysfs_emit(buf, "%u\n", s->object_size); 6205 } 6206 SLAB_ATTR_RO(object_size); 6207 6208 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6209 { 6210 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6211 } 6212 SLAB_ATTR_RO(objs_per_slab); 6213 6214 static ssize_t order_show(struct kmem_cache *s, char *buf) 6215 { 6216 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6217 } 6218 SLAB_ATTR_RO(order); 6219 6220 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6221 { 6222 return sysfs_emit(buf, "%lu\n", s->min_partial); 6223 } 6224 6225 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6226 size_t length) 6227 { 6228 unsigned long min; 6229 int err; 6230 6231 err = kstrtoul(buf, 10, &min); 6232 if (err) 6233 return err; 6234 6235 s->min_partial = min; 6236 return length; 6237 } 6238 SLAB_ATTR(min_partial); 6239 6240 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6241 { 6242 unsigned int nr_partial = 0; 6243 #ifdef CONFIG_SLUB_CPU_PARTIAL 6244 nr_partial = s->cpu_partial; 6245 #endif 6246 6247 return sysfs_emit(buf, "%u\n", nr_partial); 6248 } 6249 6250 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6251 size_t length) 6252 { 6253 unsigned int objects; 6254 int err; 6255 6256 err = kstrtouint(buf, 10, &objects); 6257 if (err) 6258 return err; 6259 if (objects && !kmem_cache_has_cpu_partial(s)) 6260 return -EINVAL; 6261 6262 slub_set_cpu_partial(s, objects); 6263 flush_all(s); 6264 return length; 6265 } 6266 SLAB_ATTR(cpu_partial); 6267 6268 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6269 { 6270 if (!s->ctor) 6271 return 0; 6272 return sysfs_emit(buf, "%pS\n", s->ctor); 6273 } 6274 SLAB_ATTR_RO(ctor); 6275 6276 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6277 { 6278 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6279 } 6280 SLAB_ATTR_RO(aliases); 6281 6282 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6283 { 6284 return show_slab_objects(s, buf, SO_PARTIAL); 6285 } 6286 SLAB_ATTR_RO(partial); 6287 6288 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6289 { 6290 return show_slab_objects(s, buf, SO_CPU); 6291 } 6292 SLAB_ATTR_RO(cpu_slabs); 6293 6294 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6295 { 6296 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6297 } 6298 SLAB_ATTR_RO(objects_partial); 6299 6300 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6301 { 6302 int objects = 0; 6303 int slabs = 0; 6304 int cpu __maybe_unused; 6305 int len = 0; 6306 6307 #ifdef CONFIG_SLUB_CPU_PARTIAL 6308 for_each_online_cpu(cpu) { 6309 struct slab *slab; 6310 6311 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6312 6313 if (slab) 6314 slabs += data_race(slab->slabs); 6315 } 6316 #endif 6317 6318 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6319 objects = (slabs * oo_objects(s->oo)) / 2; 6320 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6321 6322 #ifdef CONFIG_SLUB_CPU_PARTIAL 6323 for_each_online_cpu(cpu) { 6324 struct slab *slab; 6325 6326 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6327 if (slab) { 6328 slabs = data_race(slab->slabs); 6329 objects = (slabs * oo_objects(s->oo)) / 2; 6330 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6331 cpu, objects, slabs); 6332 } 6333 } 6334 #endif 6335 len += sysfs_emit_at(buf, len, "\n"); 6336 6337 return len; 6338 } 6339 SLAB_ATTR_RO(slabs_cpu_partial); 6340 6341 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6342 { 6343 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6344 } 6345 SLAB_ATTR_RO(reclaim_account); 6346 6347 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6348 { 6349 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6350 } 6351 SLAB_ATTR_RO(hwcache_align); 6352 6353 #ifdef CONFIG_ZONE_DMA 6354 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6355 { 6356 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6357 } 6358 SLAB_ATTR_RO(cache_dma); 6359 #endif 6360 6361 #ifdef CONFIG_HARDENED_USERCOPY 6362 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6363 { 6364 return sysfs_emit(buf, "%u\n", s->usersize); 6365 } 6366 SLAB_ATTR_RO(usersize); 6367 #endif 6368 6369 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6370 { 6371 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6372 } 6373 SLAB_ATTR_RO(destroy_by_rcu); 6374 6375 #ifdef CONFIG_SLUB_DEBUG 6376 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6377 { 6378 return show_slab_objects(s, buf, SO_ALL); 6379 } 6380 SLAB_ATTR_RO(slabs); 6381 6382 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6383 { 6384 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6385 } 6386 SLAB_ATTR_RO(total_objects); 6387 6388 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6389 { 6390 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6391 } 6392 SLAB_ATTR_RO(objects); 6393 6394 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6395 { 6396 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6397 } 6398 SLAB_ATTR_RO(sanity_checks); 6399 6400 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6401 { 6402 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6403 } 6404 SLAB_ATTR_RO(trace); 6405 6406 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6407 { 6408 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6409 } 6410 6411 SLAB_ATTR_RO(red_zone); 6412 6413 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6414 { 6415 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6416 } 6417 6418 SLAB_ATTR_RO(poison); 6419 6420 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6421 { 6422 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6423 } 6424 6425 SLAB_ATTR_RO(store_user); 6426 6427 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6428 { 6429 return 0; 6430 } 6431 6432 static ssize_t validate_store(struct kmem_cache *s, 6433 const char *buf, size_t length) 6434 { 6435 int ret = -EINVAL; 6436 6437 if (buf[0] == '1' && kmem_cache_debug(s)) { 6438 ret = validate_slab_cache(s); 6439 if (ret >= 0) 6440 ret = length; 6441 } 6442 return ret; 6443 } 6444 SLAB_ATTR(validate); 6445 6446 #endif /* CONFIG_SLUB_DEBUG */ 6447 6448 #ifdef CONFIG_FAILSLAB 6449 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6450 { 6451 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6452 } 6453 6454 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6455 size_t length) 6456 { 6457 if (s->refcount > 1) 6458 return -EINVAL; 6459 6460 if (buf[0] == '1') 6461 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6462 else 6463 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6464 6465 return length; 6466 } 6467 SLAB_ATTR(failslab); 6468 #endif 6469 6470 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6471 { 6472 return 0; 6473 } 6474 6475 static ssize_t shrink_store(struct kmem_cache *s, 6476 const char *buf, size_t length) 6477 { 6478 if (buf[0] == '1') 6479 kmem_cache_shrink(s); 6480 else 6481 return -EINVAL; 6482 return length; 6483 } 6484 SLAB_ATTR(shrink); 6485 6486 #ifdef CONFIG_NUMA 6487 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6488 { 6489 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6490 } 6491 6492 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6493 const char *buf, size_t length) 6494 { 6495 unsigned int ratio; 6496 int err; 6497 6498 err = kstrtouint(buf, 10, &ratio); 6499 if (err) 6500 return err; 6501 if (ratio > 100) 6502 return -ERANGE; 6503 6504 s->remote_node_defrag_ratio = ratio * 10; 6505 6506 return length; 6507 } 6508 SLAB_ATTR(remote_node_defrag_ratio); 6509 #endif 6510 6511 #ifdef CONFIG_SLUB_STATS 6512 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6513 { 6514 unsigned long sum = 0; 6515 int cpu; 6516 int len = 0; 6517 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6518 6519 if (!data) 6520 return -ENOMEM; 6521 6522 for_each_online_cpu(cpu) { 6523 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6524 6525 data[cpu] = x; 6526 sum += x; 6527 } 6528 6529 len += sysfs_emit_at(buf, len, "%lu", sum); 6530 6531 #ifdef CONFIG_SMP 6532 for_each_online_cpu(cpu) { 6533 if (data[cpu]) 6534 len += sysfs_emit_at(buf, len, " C%d=%u", 6535 cpu, data[cpu]); 6536 } 6537 #endif 6538 kfree(data); 6539 len += sysfs_emit_at(buf, len, "\n"); 6540 6541 return len; 6542 } 6543 6544 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6545 { 6546 int cpu; 6547 6548 for_each_online_cpu(cpu) 6549 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6550 } 6551 6552 #define STAT_ATTR(si, text) \ 6553 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6554 { \ 6555 return show_stat(s, buf, si); \ 6556 } \ 6557 static ssize_t text##_store(struct kmem_cache *s, \ 6558 const char *buf, size_t length) \ 6559 { \ 6560 if (buf[0] != '0') \ 6561 return -EINVAL; \ 6562 clear_stat(s, si); \ 6563 return length; \ 6564 } \ 6565 SLAB_ATTR(text); \ 6566 6567 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 6568 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 6569 STAT_ATTR(FREE_FASTPATH, free_fastpath); 6570 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 6571 STAT_ATTR(FREE_FROZEN, free_frozen); 6572 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 6573 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 6574 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 6575 STAT_ATTR(ALLOC_SLAB, alloc_slab); 6576 STAT_ATTR(ALLOC_REFILL, alloc_refill); 6577 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 6578 STAT_ATTR(FREE_SLAB, free_slab); 6579 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 6580 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 6581 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 6582 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 6583 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 6584 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 6585 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 6586 STAT_ATTR(ORDER_FALLBACK, order_fallback); 6587 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 6588 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 6589 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 6590 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 6591 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 6592 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 6593 #endif /* CONFIG_SLUB_STATS */ 6594 6595 #ifdef CONFIG_KFENCE 6596 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 6597 { 6598 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 6599 } 6600 6601 static ssize_t skip_kfence_store(struct kmem_cache *s, 6602 const char *buf, size_t length) 6603 { 6604 int ret = length; 6605 6606 if (buf[0] == '0') 6607 s->flags &= ~SLAB_SKIP_KFENCE; 6608 else if (buf[0] == '1') 6609 s->flags |= SLAB_SKIP_KFENCE; 6610 else 6611 ret = -EINVAL; 6612 6613 return ret; 6614 } 6615 SLAB_ATTR(skip_kfence); 6616 #endif 6617 6618 static struct attribute *slab_attrs[] = { 6619 &slab_size_attr.attr, 6620 &object_size_attr.attr, 6621 &objs_per_slab_attr.attr, 6622 &order_attr.attr, 6623 &min_partial_attr.attr, 6624 &cpu_partial_attr.attr, 6625 &objects_partial_attr.attr, 6626 &partial_attr.attr, 6627 &cpu_slabs_attr.attr, 6628 &ctor_attr.attr, 6629 &aliases_attr.attr, 6630 &align_attr.attr, 6631 &hwcache_align_attr.attr, 6632 &reclaim_account_attr.attr, 6633 &destroy_by_rcu_attr.attr, 6634 &shrink_attr.attr, 6635 &slabs_cpu_partial_attr.attr, 6636 #ifdef CONFIG_SLUB_DEBUG 6637 &total_objects_attr.attr, 6638 &objects_attr.attr, 6639 &slabs_attr.attr, 6640 &sanity_checks_attr.attr, 6641 &trace_attr.attr, 6642 &red_zone_attr.attr, 6643 &poison_attr.attr, 6644 &store_user_attr.attr, 6645 &validate_attr.attr, 6646 #endif 6647 #ifdef CONFIG_ZONE_DMA 6648 &cache_dma_attr.attr, 6649 #endif 6650 #ifdef CONFIG_NUMA 6651 &remote_node_defrag_ratio_attr.attr, 6652 #endif 6653 #ifdef CONFIG_SLUB_STATS 6654 &alloc_fastpath_attr.attr, 6655 &alloc_slowpath_attr.attr, 6656 &free_fastpath_attr.attr, 6657 &free_slowpath_attr.attr, 6658 &free_frozen_attr.attr, 6659 &free_add_partial_attr.attr, 6660 &free_remove_partial_attr.attr, 6661 &alloc_from_partial_attr.attr, 6662 &alloc_slab_attr.attr, 6663 &alloc_refill_attr.attr, 6664 &alloc_node_mismatch_attr.attr, 6665 &free_slab_attr.attr, 6666 &cpuslab_flush_attr.attr, 6667 &deactivate_full_attr.attr, 6668 &deactivate_empty_attr.attr, 6669 &deactivate_to_head_attr.attr, 6670 &deactivate_to_tail_attr.attr, 6671 &deactivate_remote_frees_attr.attr, 6672 &deactivate_bypass_attr.attr, 6673 &order_fallback_attr.attr, 6674 &cmpxchg_double_fail_attr.attr, 6675 &cmpxchg_double_cpu_fail_attr.attr, 6676 &cpu_partial_alloc_attr.attr, 6677 &cpu_partial_free_attr.attr, 6678 &cpu_partial_node_attr.attr, 6679 &cpu_partial_drain_attr.attr, 6680 #endif 6681 #ifdef CONFIG_FAILSLAB 6682 &failslab_attr.attr, 6683 #endif 6684 #ifdef CONFIG_HARDENED_USERCOPY 6685 &usersize_attr.attr, 6686 #endif 6687 #ifdef CONFIG_KFENCE 6688 &skip_kfence_attr.attr, 6689 #endif 6690 6691 NULL 6692 }; 6693 6694 static const struct attribute_group slab_attr_group = { 6695 .attrs = slab_attrs, 6696 }; 6697 6698 static ssize_t slab_attr_show(struct kobject *kobj, 6699 struct attribute *attr, 6700 char *buf) 6701 { 6702 struct slab_attribute *attribute; 6703 struct kmem_cache *s; 6704 6705 attribute = to_slab_attr(attr); 6706 s = to_slab(kobj); 6707 6708 if (!attribute->show) 6709 return -EIO; 6710 6711 return attribute->show(s, buf); 6712 } 6713 6714 static ssize_t slab_attr_store(struct kobject *kobj, 6715 struct attribute *attr, 6716 const char *buf, size_t len) 6717 { 6718 struct slab_attribute *attribute; 6719 struct kmem_cache *s; 6720 6721 attribute = to_slab_attr(attr); 6722 s = to_slab(kobj); 6723 6724 if (!attribute->store) 6725 return -EIO; 6726 6727 return attribute->store(s, buf, len); 6728 } 6729 6730 static void kmem_cache_release(struct kobject *k) 6731 { 6732 slab_kmem_cache_release(to_slab(k)); 6733 } 6734 6735 static const struct sysfs_ops slab_sysfs_ops = { 6736 .show = slab_attr_show, 6737 .store = slab_attr_store, 6738 }; 6739 6740 static const struct kobj_type slab_ktype = { 6741 .sysfs_ops = &slab_sysfs_ops, 6742 .release = kmem_cache_release, 6743 }; 6744 6745 static struct kset *slab_kset; 6746 6747 static inline struct kset *cache_kset(struct kmem_cache *s) 6748 { 6749 return slab_kset; 6750 } 6751 6752 #define ID_STR_LENGTH 32 6753 6754 /* Create a unique string id for a slab cache: 6755 * 6756 * Format :[flags-]size 6757 */ 6758 static char *create_unique_id(struct kmem_cache *s) 6759 { 6760 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6761 char *p = name; 6762 6763 if (!name) 6764 return ERR_PTR(-ENOMEM); 6765 6766 *p++ = ':'; 6767 /* 6768 * First flags affecting slabcache operations. We will only 6769 * get here for aliasable slabs so we do not need to support 6770 * too many flags. The flags here must cover all flags that 6771 * are matched during merging to guarantee that the id is 6772 * unique. 6773 */ 6774 if (s->flags & SLAB_CACHE_DMA) 6775 *p++ = 'd'; 6776 if (s->flags & SLAB_CACHE_DMA32) 6777 *p++ = 'D'; 6778 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6779 *p++ = 'a'; 6780 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6781 *p++ = 'F'; 6782 if (s->flags & SLAB_ACCOUNT) 6783 *p++ = 'A'; 6784 if (p != name + 1) 6785 *p++ = '-'; 6786 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6787 6788 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6789 kfree(name); 6790 return ERR_PTR(-EINVAL); 6791 } 6792 kmsan_unpoison_memory(name, p - name); 6793 return name; 6794 } 6795 6796 static int sysfs_slab_add(struct kmem_cache *s) 6797 { 6798 int err; 6799 const char *name; 6800 struct kset *kset = cache_kset(s); 6801 int unmergeable = slab_unmergeable(s); 6802 6803 if (!unmergeable && disable_higher_order_debug && 6804 (slub_debug & DEBUG_METADATA_FLAGS)) 6805 unmergeable = 1; 6806 6807 if (unmergeable) { 6808 /* 6809 * Slabcache can never be merged so we can use the name proper. 6810 * This is typically the case for debug situations. In that 6811 * case we can catch duplicate names easily. 6812 */ 6813 sysfs_remove_link(&slab_kset->kobj, s->name); 6814 name = s->name; 6815 } else { 6816 /* 6817 * Create a unique name for the slab as a target 6818 * for the symlinks. 6819 */ 6820 name = create_unique_id(s); 6821 if (IS_ERR(name)) 6822 return PTR_ERR(name); 6823 } 6824 6825 s->kobj.kset = kset; 6826 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6827 if (err) 6828 goto out; 6829 6830 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6831 if (err) 6832 goto out_del_kobj; 6833 6834 if (!unmergeable) { 6835 /* Setup first alias */ 6836 sysfs_slab_alias(s, s->name); 6837 } 6838 out: 6839 if (!unmergeable) 6840 kfree(name); 6841 return err; 6842 out_del_kobj: 6843 kobject_del(&s->kobj); 6844 goto out; 6845 } 6846 6847 void sysfs_slab_unlink(struct kmem_cache *s) 6848 { 6849 kobject_del(&s->kobj); 6850 } 6851 6852 void sysfs_slab_release(struct kmem_cache *s) 6853 { 6854 kobject_put(&s->kobj); 6855 } 6856 6857 /* 6858 * Need to buffer aliases during bootup until sysfs becomes 6859 * available lest we lose that information. 6860 */ 6861 struct saved_alias { 6862 struct kmem_cache *s; 6863 const char *name; 6864 struct saved_alias *next; 6865 }; 6866 6867 static struct saved_alias *alias_list; 6868 6869 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6870 { 6871 struct saved_alias *al; 6872 6873 if (slab_state == FULL) { 6874 /* 6875 * If we have a leftover link then remove it. 6876 */ 6877 sysfs_remove_link(&slab_kset->kobj, name); 6878 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6879 } 6880 6881 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6882 if (!al) 6883 return -ENOMEM; 6884 6885 al->s = s; 6886 al->name = name; 6887 al->next = alias_list; 6888 alias_list = al; 6889 kmsan_unpoison_memory(al, sizeof(*al)); 6890 return 0; 6891 } 6892 6893 static int __init slab_sysfs_init(void) 6894 { 6895 struct kmem_cache *s; 6896 int err; 6897 6898 mutex_lock(&slab_mutex); 6899 6900 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6901 if (!slab_kset) { 6902 mutex_unlock(&slab_mutex); 6903 pr_err("Cannot register slab subsystem.\n"); 6904 return -ENOMEM; 6905 } 6906 6907 slab_state = FULL; 6908 6909 list_for_each_entry(s, &slab_caches, list) { 6910 err = sysfs_slab_add(s); 6911 if (err) 6912 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6913 s->name); 6914 } 6915 6916 while (alias_list) { 6917 struct saved_alias *al = alias_list; 6918 6919 alias_list = alias_list->next; 6920 err = sysfs_slab_alias(al->s, al->name); 6921 if (err) 6922 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6923 al->name); 6924 kfree(al); 6925 } 6926 6927 mutex_unlock(&slab_mutex); 6928 return 0; 6929 } 6930 late_initcall(slab_sysfs_init); 6931 #endif /* SLAB_SUPPORTS_SYSFS */ 6932 6933 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6934 static int slab_debugfs_show(struct seq_file *seq, void *v) 6935 { 6936 struct loc_track *t = seq->private; 6937 struct location *l; 6938 unsigned long idx; 6939 6940 idx = (unsigned long) t->idx; 6941 if (idx < t->count) { 6942 l = &t->loc[idx]; 6943 6944 seq_printf(seq, "%7ld ", l->count); 6945 6946 if (l->addr) 6947 seq_printf(seq, "%pS", (void *)l->addr); 6948 else 6949 seq_puts(seq, "<not-available>"); 6950 6951 if (l->waste) 6952 seq_printf(seq, " waste=%lu/%lu", 6953 l->count * l->waste, l->waste); 6954 6955 if (l->sum_time != l->min_time) { 6956 seq_printf(seq, " age=%ld/%llu/%ld", 6957 l->min_time, div_u64(l->sum_time, l->count), 6958 l->max_time); 6959 } else 6960 seq_printf(seq, " age=%ld", l->min_time); 6961 6962 if (l->min_pid != l->max_pid) 6963 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6964 else 6965 seq_printf(seq, " pid=%ld", 6966 l->min_pid); 6967 6968 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6969 seq_printf(seq, " cpus=%*pbl", 6970 cpumask_pr_args(to_cpumask(l->cpus))); 6971 6972 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6973 seq_printf(seq, " nodes=%*pbl", 6974 nodemask_pr_args(&l->nodes)); 6975 6976 #ifdef CONFIG_STACKDEPOT 6977 { 6978 depot_stack_handle_t handle; 6979 unsigned long *entries; 6980 unsigned int nr_entries, j; 6981 6982 handle = READ_ONCE(l->handle); 6983 if (handle) { 6984 nr_entries = stack_depot_fetch(handle, &entries); 6985 seq_puts(seq, "\n"); 6986 for (j = 0; j < nr_entries; j++) 6987 seq_printf(seq, " %pS\n", (void *)entries[j]); 6988 } 6989 } 6990 #endif 6991 seq_puts(seq, "\n"); 6992 } 6993 6994 if (!idx && !t->count) 6995 seq_puts(seq, "No data\n"); 6996 6997 return 0; 6998 } 6999 7000 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7001 { 7002 } 7003 7004 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7005 { 7006 struct loc_track *t = seq->private; 7007 7008 t->idx = ++(*ppos); 7009 if (*ppos <= t->count) 7010 return ppos; 7011 7012 return NULL; 7013 } 7014 7015 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7016 { 7017 struct location *loc1 = (struct location *)a; 7018 struct location *loc2 = (struct location *)b; 7019 7020 if (loc1->count > loc2->count) 7021 return -1; 7022 else 7023 return 1; 7024 } 7025 7026 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7027 { 7028 struct loc_track *t = seq->private; 7029 7030 t->idx = *ppos; 7031 return ppos; 7032 } 7033 7034 static const struct seq_operations slab_debugfs_sops = { 7035 .start = slab_debugfs_start, 7036 .next = slab_debugfs_next, 7037 .stop = slab_debugfs_stop, 7038 .show = slab_debugfs_show, 7039 }; 7040 7041 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7042 { 7043 7044 struct kmem_cache_node *n; 7045 enum track_item alloc; 7046 int node; 7047 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7048 sizeof(struct loc_track)); 7049 struct kmem_cache *s = file_inode(filep)->i_private; 7050 unsigned long *obj_map; 7051 7052 if (!t) 7053 return -ENOMEM; 7054 7055 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7056 if (!obj_map) { 7057 seq_release_private(inode, filep); 7058 return -ENOMEM; 7059 } 7060 7061 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 7062 alloc = TRACK_ALLOC; 7063 else 7064 alloc = TRACK_FREE; 7065 7066 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7067 bitmap_free(obj_map); 7068 seq_release_private(inode, filep); 7069 return -ENOMEM; 7070 } 7071 7072 for_each_kmem_cache_node(s, node, n) { 7073 unsigned long flags; 7074 struct slab *slab; 7075 7076 if (!node_nr_slabs(n)) 7077 continue; 7078 7079 spin_lock_irqsave(&n->list_lock, flags); 7080 list_for_each_entry(slab, &n->partial, slab_list) 7081 process_slab(t, s, slab, alloc, obj_map); 7082 list_for_each_entry(slab, &n->full, slab_list) 7083 process_slab(t, s, slab, alloc, obj_map); 7084 spin_unlock_irqrestore(&n->list_lock, flags); 7085 } 7086 7087 /* Sort locations by count */ 7088 sort_r(t->loc, t->count, sizeof(struct location), 7089 cmp_loc_by_count, NULL, NULL); 7090 7091 bitmap_free(obj_map); 7092 return 0; 7093 } 7094 7095 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7096 { 7097 struct seq_file *seq = file->private_data; 7098 struct loc_track *t = seq->private; 7099 7100 free_loc_track(t); 7101 return seq_release_private(inode, file); 7102 } 7103 7104 static const struct file_operations slab_debugfs_fops = { 7105 .open = slab_debug_trace_open, 7106 .read = seq_read, 7107 .llseek = seq_lseek, 7108 .release = slab_debug_trace_release, 7109 }; 7110 7111 static void debugfs_slab_add(struct kmem_cache *s) 7112 { 7113 struct dentry *slab_cache_dir; 7114 7115 if (unlikely(!slab_debugfs_root)) 7116 return; 7117 7118 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7119 7120 debugfs_create_file("alloc_traces", 0400, 7121 slab_cache_dir, s, &slab_debugfs_fops); 7122 7123 debugfs_create_file("free_traces", 0400, 7124 slab_cache_dir, s, &slab_debugfs_fops); 7125 } 7126 7127 void debugfs_slab_release(struct kmem_cache *s) 7128 { 7129 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7130 } 7131 7132 static int __init slab_debugfs_init(void) 7133 { 7134 struct kmem_cache *s; 7135 7136 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7137 7138 list_for_each_entry(s, &slab_caches, list) 7139 if (s->flags & SLAB_STORE_USER) 7140 debugfs_slab_add(s); 7141 7142 return 0; 7143 7144 } 7145 __initcall(slab_debugfs_init); 7146 #endif 7147 /* 7148 * The /proc/slabinfo ABI 7149 */ 7150 #ifdef CONFIG_SLUB_DEBUG 7151 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7152 { 7153 unsigned long nr_slabs = 0; 7154 unsigned long nr_objs = 0; 7155 unsigned long nr_free = 0; 7156 int node; 7157 struct kmem_cache_node *n; 7158 7159 for_each_kmem_cache_node(s, node, n) { 7160 nr_slabs += node_nr_slabs(n); 7161 nr_objs += node_nr_objs(n); 7162 nr_free += count_partial_free_approx(n); 7163 } 7164 7165 sinfo->active_objs = nr_objs - nr_free; 7166 sinfo->num_objs = nr_objs; 7167 sinfo->active_slabs = nr_slabs; 7168 sinfo->num_slabs = nr_slabs; 7169 sinfo->objects_per_slab = oo_objects(s->oo); 7170 sinfo->cache_order = oo_order(s->oo); 7171 } 7172 #endif /* CONFIG_SLUB_DEBUG */ 7173