xref: /linux/mm/slub.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 
24 /*
25  * Lock order:
26  *   1. slab_lock(page)
27  *   2. slab->list_lock
28  *
29  *   The slab_lock protects operations on the object of a particular
30  *   slab and its metadata in the page struct. If the slab lock
31  *   has been taken then no allocations nor frees can be performed
32  *   on the objects in the slab nor can the slab be added or removed
33  *   from the partial or full lists since this would mean modifying
34  *   the page_struct of the slab.
35  *
36  *   The list_lock protects the partial and full list on each node and
37  *   the partial slab counter. If taken then no new slabs may be added or
38  *   removed from the lists nor make the number of partial slabs be modified.
39  *   (Note that the total number of slabs is an atomic value that may be
40  *   modified without taking the list lock).
41  *
42  *   The list_lock is a centralized lock and thus we avoid taking it as
43  *   much as possible. As long as SLUB does not have to handle partial
44  *   slabs, operations can continue without any centralized lock. F.e.
45  *   allocating a long series of objects that fill up slabs does not require
46  *   the list lock.
47  *
48  *   The lock order is sometimes inverted when we are trying to get a slab
49  *   off a list. We take the list_lock and then look for a page on the list
50  *   to use. While we do that objects in the slabs may be freed. We can
51  *   only operate on the slab if we have also taken the slab_lock. So we use
52  *   a slab_trylock() on the slab. If trylock was successful then no frees
53  *   can occur anymore and we can use the slab for allocations etc. If the
54  *   slab_trylock() does not succeed then frees are in progress in the slab and
55  *   we must stay away from it for a while since we may cause a bouncing
56  *   cacheline if we try to acquire the lock. So go onto the next slab.
57  *   If all pages are busy then we may allocate a new slab instead of reusing
58  *   a partial slab. A new slab has noone operating on it and thus there is
59  *   no danger of cacheline contention.
60  *
61  *   Interrupts are disabled during allocation and deallocation in order to
62  *   make the slab allocator safe to use in the context of an irq. In addition
63  *   interrupts are disabled to ensure that the processor does not change
64  *   while handling per_cpu slabs, due to kernel preemption.
65  *
66  * SLUB assigns one slab for allocation to each processor.
67  * Allocations only occur from these slabs called cpu slabs.
68  *
69  * Slabs with free elements are kept on a partial list and during regular
70  * operations no list for full slabs is used. If an object in a full slab is
71  * freed then the slab will show up again on the partial lists.
72  * We track full slabs for debugging purposes though because otherwise we
73  * cannot scan all objects.
74  *
75  * Slabs are freed when they become empty. Teardown and setup is
76  * minimal so we rely on the page allocators per cpu caches for
77  * fast frees and allocs.
78  *
79  * Overloading of page flags that are otherwise used for LRU management.
80  *
81  * PageActive 		The slab is frozen and exempt from list processing.
82  * 			This means that the slab is dedicated to a purpose
83  * 			such as satisfying allocations for a specific
84  * 			processor. Objects may be freed in the slab while
85  * 			it is frozen but slab_free will then skip the usual
86  * 			list operations. It is up to the processor holding
87  * 			the slab to integrate the slab into the slab lists
88  * 			when the slab is no longer needed.
89  *
90  * 			One use of this flag is to mark slabs that are
91  * 			used for allocations. Then such a slab becomes a cpu
92  * 			slab. The cpu slab may be equipped with an additional
93  * 			lockless_freelist that allows lockless access to
94  * 			free objects in addition to the regular freelist
95  * 			that requires the slab lock.
96  *
97  * PageError		Slab requires special handling due to debug
98  * 			options set. This moves	slab handling out of
99  * 			the fast path and disables lockless freelists.
100  */
101 
102 #define FROZEN (1 << PG_active)
103 
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
109 
110 static inline int SlabFrozen(struct page *page)
111 {
112 	return page->flags & FROZEN;
113 }
114 
115 static inline void SetSlabFrozen(struct page *page)
116 {
117 	page->flags |= FROZEN;
118 }
119 
120 static inline void ClearSlabFrozen(struct page *page)
121 {
122 	page->flags &= ~FROZEN;
123 }
124 
125 static inline int SlabDebug(struct page *page)
126 {
127 	return page->flags & SLABDEBUG;
128 }
129 
130 static inline void SetSlabDebug(struct page *page)
131 {
132 	page->flags |= SLABDEBUG;
133 }
134 
135 static inline void ClearSlabDebug(struct page *page)
136 {
137 	page->flags &= ~SLABDEBUG;
138 }
139 
140 /*
141  * Issues still to be resolved:
142  *
143  * - The per cpu array is updated for each new slab and and is a remote
144  *   cacheline for most nodes. This could become a bouncing cacheline given
145  *   enough frequent updates. There are 16 pointers in a cacheline, so at
146  *   max 16 cpus could compete for the cacheline which may be okay.
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 #if PAGE_SHIFT <= 12
157 
158 /*
159  * Small page size. Make sure that we do not fragment memory
160  */
161 #define DEFAULT_MAX_ORDER 1
162 #define DEFAULT_MIN_OBJECTS 4
163 
164 #else
165 
166 /*
167  * Large page machines are customarily able to handle larger
168  * page orders.
169  */
170 #define DEFAULT_MAX_ORDER 2
171 #define DEFAULT_MIN_OBJECTS 8
172 
173 #endif
174 
175 /*
176  * Mininum number of partial slabs. These will be left on the partial
177  * lists even if they are empty. kmem_cache_shrink may reclaim them.
178  */
179 #define MIN_PARTIAL 2
180 
181 /*
182  * Maximum number of desirable partial slabs.
183  * The existence of more partial slabs makes kmem_cache_shrink
184  * sort the partial list by the number of objects in the.
185  */
186 #define MAX_PARTIAL 10
187 
188 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 				SLAB_POISON | SLAB_STORE_USER)
190 
191 /*
192  * Set of flags that will prevent slab merging
193  */
194 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196 
197 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 		SLAB_CACHE_DMA)
199 
200 #ifndef ARCH_KMALLOC_MINALIGN
201 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
202 #endif
203 
204 #ifndef ARCH_SLAB_MINALIGN
205 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
206 #endif
207 
208 /*
209  * The page->inuse field is 16 bit thus we have this limitation
210  */
211 #define MAX_OBJECTS_PER_SLAB 65535
212 
213 /* Internal SLUB flags */
214 #define __OBJECT_POISON 0x80000000	/* Poison object */
215 
216 /* Not all arches define cache_line_size */
217 #ifndef cache_line_size
218 #define cache_line_size()	L1_CACHE_BYTES
219 #endif
220 
221 static int kmem_size = sizeof(struct kmem_cache);
222 
223 #ifdef CONFIG_SMP
224 static struct notifier_block slab_notifier;
225 #endif
226 
227 static enum {
228 	DOWN,		/* No slab functionality available */
229 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
230 	UP,		/* Everything works but does not show up in sysfs */
231 	SYSFS		/* Sysfs up */
232 } slab_state = DOWN;
233 
234 /* A list of all slab caches on the system */
235 static DECLARE_RWSEM(slub_lock);
236 static LIST_HEAD(slab_caches);
237 
238 /*
239  * Tracking user of a slab.
240  */
241 struct track {
242 	void *addr;		/* Called from address */
243 	int cpu;		/* Was running on cpu */
244 	int pid;		/* Pid context */
245 	unsigned long when;	/* When did the operation occur */
246 };
247 
248 enum track_item { TRACK_ALLOC, TRACK_FREE };
249 
250 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
251 static int sysfs_slab_add(struct kmem_cache *);
252 static int sysfs_slab_alias(struct kmem_cache *, const char *);
253 static void sysfs_slab_remove(struct kmem_cache *);
254 #else
255 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
256 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
257 							{ return 0; }
258 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
259 #endif
260 
261 /********************************************************************
262  * 			Core slab cache functions
263  *******************************************************************/
264 
265 int slab_is_available(void)
266 {
267 	return slab_state >= UP;
268 }
269 
270 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
271 {
272 #ifdef CONFIG_NUMA
273 	return s->node[node];
274 #else
275 	return &s->local_node;
276 #endif
277 }
278 
279 static inline int check_valid_pointer(struct kmem_cache *s,
280 				struct page *page, const void *object)
281 {
282 	void *base;
283 
284 	if (!object)
285 		return 1;
286 
287 	base = page_address(page);
288 	if (object < base || object >= base + s->objects * s->size ||
289 		(object - base) % s->size) {
290 		return 0;
291 	}
292 
293 	return 1;
294 }
295 
296 /*
297  * Slow version of get and set free pointer.
298  *
299  * This version requires touching the cache lines of kmem_cache which
300  * we avoid to do in the fast alloc free paths. There we obtain the offset
301  * from the page struct.
302  */
303 static inline void *get_freepointer(struct kmem_cache *s, void *object)
304 {
305 	return *(void **)(object + s->offset);
306 }
307 
308 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
309 {
310 	*(void **)(object + s->offset) = fp;
311 }
312 
313 /* Loop over all objects in a slab */
314 #define for_each_object(__p, __s, __addr) \
315 	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
316 			__p += (__s)->size)
317 
318 /* Scan freelist */
319 #define for_each_free_object(__p, __s, __free) \
320 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
321 
322 /* Determine object index from a given position */
323 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
324 {
325 	return (p - addr) / s->size;
326 }
327 
328 #ifdef CONFIG_SLUB_DEBUG
329 /*
330  * Debug settings:
331  */
332 #ifdef CONFIG_SLUB_DEBUG_ON
333 static int slub_debug = DEBUG_DEFAULT_FLAGS;
334 #else
335 static int slub_debug;
336 #endif
337 
338 static char *slub_debug_slabs;
339 
340 /*
341  * Object debugging
342  */
343 static void print_section(char *text, u8 *addr, unsigned int length)
344 {
345 	int i, offset;
346 	int newline = 1;
347 	char ascii[17];
348 
349 	ascii[16] = 0;
350 
351 	for (i = 0; i < length; i++) {
352 		if (newline) {
353 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
354 			newline = 0;
355 		}
356 		printk(" %02x", addr[i]);
357 		offset = i % 16;
358 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
359 		if (offset == 15) {
360 			printk(" %s\n",ascii);
361 			newline = 1;
362 		}
363 	}
364 	if (!newline) {
365 		i %= 16;
366 		while (i < 16) {
367 			printk("   ");
368 			ascii[i] = ' ';
369 			i++;
370 		}
371 		printk(" %s\n", ascii);
372 	}
373 }
374 
375 static struct track *get_track(struct kmem_cache *s, void *object,
376 	enum track_item alloc)
377 {
378 	struct track *p;
379 
380 	if (s->offset)
381 		p = object + s->offset + sizeof(void *);
382 	else
383 		p = object + s->inuse;
384 
385 	return p + alloc;
386 }
387 
388 static void set_track(struct kmem_cache *s, void *object,
389 				enum track_item alloc, void *addr)
390 {
391 	struct track *p;
392 
393 	if (s->offset)
394 		p = object + s->offset + sizeof(void *);
395 	else
396 		p = object + s->inuse;
397 
398 	p += alloc;
399 	if (addr) {
400 		p->addr = addr;
401 		p->cpu = smp_processor_id();
402 		p->pid = current ? current->pid : -1;
403 		p->when = jiffies;
404 	} else
405 		memset(p, 0, sizeof(struct track));
406 }
407 
408 static void init_tracking(struct kmem_cache *s, void *object)
409 {
410 	if (!(s->flags & SLAB_STORE_USER))
411 		return;
412 
413 	set_track(s, object, TRACK_FREE, NULL);
414 	set_track(s, object, TRACK_ALLOC, NULL);
415 }
416 
417 static void print_track(const char *s, struct track *t)
418 {
419 	if (!t->addr)
420 		return;
421 
422 	printk(KERN_ERR "INFO: %s in ", s);
423 	__print_symbol("%s", (unsigned long)t->addr);
424 	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
425 }
426 
427 static void print_tracking(struct kmem_cache *s, void *object)
428 {
429 	if (!(s->flags & SLAB_STORE_USER))
430 		return;
431 
432 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
433 	print_track("Freed", get_track(s, object, TRACK_FREE));
434 }
435 
436 static void print_page_info(struct page *page)
437 {
438 	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
439 		page, page->inuse, page->freelist, page->flags);
440 
441 }
442 
443 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
444 {
445 	va_list args;
446 	char buf[100];
447 
448 	va_start(args, fmt);
449 	vsnprintf(buf, sizeof(buf), fmt, args);
450 	va_end(args);
451 	printk(KERN_ERR "========================================"
452 			"=====================================\n");
453 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
454 	printk(KERN_ERR "----------------------------------------"
455 			"-------------------------------------\n\n");
456 }
457 
458 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
459 {
460 	va_list args;
461 	char buf[100];
462 
463 	va_start(args, fmt);
464 	vsnprintf(buf, sizeof(buf), fmt, args);
465 	va_end(args);
466 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
467 }
468 
469 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
470 {
471 	unsigned int off;	/* Offset of last byte */
472 	u8 *addr = page_address(page);
473 
474 	print_tracking(s, p);
475 
476 	print_page_info(page);
477 
478 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
479 			p, p - addr, get_freepointer(s, p));
480 
481 	if (p > addr + 16)
482 		print_section("Bytes b4", p - 16, 16);
483 
484 	print_section("Object", p, min(s->objsize, 128));
485 
486 	if (s->flags & SLAB_RED_ZONE)
487 		print_section("Redzone", p + s->objsize,
488 			s->inuse - s->objsize);
489 
490 	if (s->offset)
491 		off = s->offset + sizeof(void *);
492 	else
493 		off = s->inuse;
494 
495 	if (s->flags & SLAB_STORE_USER)
496 		off += 2 * sizeof(struct track);
497 
498 	if (off != s->size)
499 		/* Beginning of the filler is the free pointer */
500 		print_section("Padding", p + off, s->size - off);
501 
502 	dump_stack();
503 }
504 
505 static void object_err(struct kmem_cache *s, struct page *page,
506 			u8 *object, char *reason)
507 {
508 	slab_bug(s, reason);
509 	print_trailer(s, page, object);
510 }
511 
512 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
513 {
514 	va_list args;
515 	char buf[100];
516 
517 	va_start(args, fmt);
518 	vsnprintf(buf, sizeof(buf), fmt, args);
519 	va_end(args);
520 	slab_bug(s, fmt);
521 	print_page_info(page);
522 	dump_stack();
523 }
524 
525 static void init_object(struct kmem_cache *s, void *object, int active)
526 {
527 	u8 *p = object;
528 
529 	if (s->flags & __OBJECT_POISON) {
530 		memset(p, POISON_FREE, s->objsize - 1);
531 		p[s->objsize -1] = POISON_END;
532 	}
533 
534 	if (s->flags & SLAB_RED_ZONE)
535 		memset(p + s->objsize,
536 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
537 			s->inuse - s->objsize);
538 }
539 
540 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
541 {
542 	while (bytes) {
543 		if (*start != (u8)value)
544 			return start;
545 		start++;
546 		bytes--;
547 	}
548 	return NULL;
549 }
550 
551 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
552 						void *from, void *to)
553 {
554 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
555 	memset(from, data, to - from);
556 }
557 
558 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
559 			u8 *object, char *what,
560 			u8* start, unsigned int value, unsigned int bytes)
561 {
562 	u8 *fault;
563 	u8 *end;
564 
565 	fault = check_bytes(start, value, bytes);
566 	if (!fault)
567 		return 1;
568 
569 	end = start + bytes;
570 	while (end > fault && end[-1] == value)
571 		end--;
572 
573 	slab_bug(s, "%s overwritten", what);
574 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
575 					fault, end - 1, fault[0], value);
576 	print_trailer(s, page, object);
577 
578 	restore_bytes(s, what, value, fault, end);
579 	return 0;
580 }
581 
582 /*
583  * Object layout:
584  *
585  * object address
586  * 	Bytes of the object to be managed.
587  * 	If the freepointer may overlay the object then the free
588  * 	pointer is the first word of the object.
589  *
590  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
591  * 	0xa5 (POISON_END)
592  *
593  * object + s->objsize
594  * 	Padding to reach word boundary. This is also used for Redzoning.
595  * 	Padding is extended by another word if Redzoning is enabled and
596  * 	objsize == inuse.
597  *
598  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
599  * 	0xcc (RED_ACTIVE) for objects in use.
600  *
601  * object + s->inuse
602  * 	Meta data starts here.
603  *
604  * 	A. Free pointer (if we cannot overwrite object on free)
605  * 	B. Tracking data for SLAB_STORE_USER
606  * 	C. Padding to reach required alignment boundary or at mininum
607  * 		one word if debuggin is on to be able to detect writes
608  * 		before the word boundary.
609  *
610  *	Padding is done using 0x5a (POISON_INUSE)
611  *
612  * object + s->size
613  * 	Nothing is used beyond s->size.
614  *
615  * If slabcaches are merged then the objsize and inuse boundaries are mostly
616  * ignored. And therefore no slab options that rely on these boundaries
617  * may be used with merged slabcaches.
618  */
619 
620 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
621 {
622 	unsigned long off = s->inuse;	/* The end of info */
623 
624 	if (s->offset)
625 		/* Freepointer is placed after the object. */
626 		off += sizeof(void *);
627 
628 	if (s->flags & SLAB_STORE_USER)
629 		/* We also have user information there */
630 		off += 2 * sizeof(struct track);
631 
632 	if (s->size == off)
633 		return 1;
634 
635 	return check_bytes_and_report(s, page, p, "Object padding",
636 				p + off, POISON_INUSE, s->size - off);
637 }
638 
639 static int slab_pad_check(struct kmem_cache *s, struct page *page)
640 {
641 	u8 *start;
642 	u8 *fault;
643 	u8 *end;
644 	int length;
645 	int remainder;
646 
647 	if (!(s->flags & SLAB_POISON))
648 		return 1;
649 
650 	start = page_address(page);
651 	end = start + (PAGE_SIZE << s->order);
652 	length = s->objects * s->size;
653 	remainder = end - (start + length);
654 	if (!remainder)
655 		return 1;
656 
657 	fault = check_bytes(start + length, POISON_INUSE, remainder);
658 	if (!fault)
659 		return 1;
660 	while (end > fault && end[-1] == POISON_INUSE)
661 		end--;
662 
663 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
664 	print_section("Padding", start, length);
665 
666 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
667 	return 0;
668 }
669 
670 static int check_object(struct kmem_cache *s, struct page *page,
671 					void *object, int active)
672 {
673 	u8 *p = object;
674 	u8 *endobject = object + s->objsize;
675 
676 	if (s->flags & SLAB_RED_ZONE) {
677 		unsigned int red =
678 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
679 
680 		if (!check_bytes_and_report(s, page, object, "Redzone",
681 			endobject, red, s->inuse - s->objsize))
682 			return 0;
683 	} else {
684 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
685 			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
686 				POISON_INUSE, s->inuse - s->objsize);
687 	}
688 
689 	if (s->flags & SLAB_POISON) {
690 		if (!active && (s->flags & __OBJECT_POISON) &&
691 			(!check_bytes_and_report(s, page, p, "Poison", p,
692 					POISON_FREE, s->objsize - 1) ||
693 			 !check_bytes_and_report(s, page, p, "Poison",
694 			 	p + s->objsize -1, POISON_END, 1)))
695 			return 0;
696 		/*
697 		 * check_pad_bytes cleans up on its own.
698 		 */
699 		check_pad_bytes(s, page, p);
700 	}
701 
702 	if (!s->offset && active)
703 		/*
704 		 * Object and freepointer overlap. Cannot check
705 		 * freepointer while object is allocated.
706 		 */
707 		return 1;
708 
709 	/* Check free pointer validity */
710 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
711 		object_err(s, page, p, "Freepointer corrupt");
712 		/*
713 		 * No choice but to zap it and thus loose the remainder
714 		 * of the free objects in this slab. May cause
715 		 * another error because the object count is now wrong.
716 		 */
717 		set_freepointer(s, p, NULL);
718 		return 0;
719 	}
720 	return 1;
721 }
722 
723 static int check_slab(struct kmem_cache *s, struct page *page)
724 {
725 	VM_BUG_ON(!irqs_disabled());
726 
727 	if (!PageSlab(page)) {
728 		slab_err(s, page, "Not a valid slab page");
729 		return 0;
730 	}
731 	if (page->offset * sizeof(void *) != s->offset) {
732 		slab_err(s, page, "Corrupted offset %lu",
733 			(unsigned long)(page->offset * sizeof(void *)));
734 		return 0;
735 	}
736 	if (page->inuse > s->objects) {
737 		slab_err(s, page, "inuse %u > max %u",
738 			s->name, page->inuse, s->objects);
739 		return 0;
740 	}
741 	/* Slab_pad_check fixes things up after itself */
742 	slab_pad_check(s, page);
743 	return 1;
744 }
745 
746 /*
747  * Determine if a certain object on a page is on the freelist. Must hold the
748  * slab lock to guarantee that the chains are in a consistent state.
749  */
750 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
751 {
752 	int nr = 0;
753 	void *fp = page->freelist;
754 	void *object = NULL;
755 
756 	while (fp && nr <= s->objects) {
757 		if (fp == search)
758 			return 1;
759 		if (!check_valid_pointer(s, page, fp)) {
760 			if (object) {
761 				object_err(s, page, object,
762 					"Freechain corrupt");
763 				set_freepointer(s, object, NULL);
764 				break;
765 			} else {
766 				slab_err(s, page, "Freepointer corrupt");
767 				page->freelist = NULL;
768 				page->inuse = s->objects;
769 				slab_fix(s, "Freelist cleared");
770 				return 0;
771 			}
772 			break;
773 		}
774 		object = fp;
775 		fp = get_freepointer(s, object);
776 		nr++;
777 	}
778 
779 	if (page->inuse != s->objects - nr) {
780 		slab_err(s, page, "Wrong object count. Counter is %d but "
781 			"counted were %d", page->inuse, s->objects - nr);
782 		page->inuse = s->objects - nr;
783 		slab_fix(s, "Object count adjusted.");
784 	}
785 	return search == NULL;
786 }
787 
788 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
789 {
790 	if (s->flags & SLAB_TRACE) {
791 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
792 			s->name,
793 			alloc ? "alloc" : "free",
794 			object, page->inuse,
795 			page->freelist);
796 
797 		if (!alloc)
798 			print_section("Object", (void *)object, s->objsize);
799 
800 		dump_stack();
801 	}
802 }
803 
804 /*
805  * Tracking of fully allocated slabs for debugging purposes.
806  */
807 static void add_full(struct kmem_cache_node *n, struct page *page)
808 {
809 	spin_lock(&n->list_lock);
810 	list_add(&page->lru, &n->full);
811 	spin_unlock(&n->list_lock);
812 }
813 
814 static void remove_full(struct kmem_cache *s, struct page *page)
815 {
816 	struct kmem_cache_node *n;
817 
818 	if (!(s->flags & SLAB_STORE_USER))
819 		return;
820 
821 	n = get_node(s, page_to_nid(page));
822 
823 	spin_lock(&n->list_lock);
824 	list_del(&page->lru);
825 	spin_unlock(&n->list_lock);
826 }
827 
828 static void setup_object_debug(struct kmem_cache *s, struct page *page,
829 								void *object)
830 {
831 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
832 		return;
833 
834 	init_object(s, object, 0);
835 	init_tracking(s, object);
836 }
837 
838 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
839 						void *object, void *addr)
840 {
841 	if (!check_slab(s, page))
842 		goto bad;
843 
844 	if (object && !on_freelist(s, page, object)) {
845 		object_err(s, page, object, "Object already allocated");
846 		goto bad;
847 	}
848 
849 	if (!check_valid_pointer(s, page, object)) {
850 		object_err(s, page, object, "Freelist Pointer check fails");
851 		goto bad;
852 	}
853 
854 	if (object && !check_object(s, page, object, 0))
855 		goto bad;
856 
857 	/* Success perform special debug activities for allocs */
858 	if (s->flags & SLAB_STORE_USER)
859 		set_track(s, object, TRACK_ALLOC, addr);
860 	trace(s, page, object, 1);
861 	init_object(s, object, 1);
862 	return 1;
863 
864 bad:
865 	if (PageSlab(page)) {
866 		/*
867 		 * If this is a slab page then lets do the best we can
868 		 * to avoid issues in the future. Marking all objects
869 		 * as used avoids touching the remaining objects.
870 		 */
871 		slab_fix(s, "Marking all objects used");
872 		page->inuse = s->objects;
873 		page->freelist = NULL;
874 		/* Fix up fields that may be corrupted */
875 		page->offset = s->offset / sizeof(void *);
876 	}
877 	return 0;
878 }
879 
880 static int free_debug_processing(struct kmem_cache *s, struct page *page,
881 						void *object, void *addr)
882 {
883 	if (!check_slab(s, page))
884 		goto fail;
885 
886 	if (!check_valid_pointer(s, page, object)) {
887 		slab_err(s, page, "Invalid object pointer 0x%p", object);
888 		goto fail;
889 	}
890 
891 	if (on_freelist(s, page, object)) {
892 		object_err(s, page, object, "Object already free");
893 		goto fail;
894 	}
895 
896 	if (!check_object(s, page, object, 1))
897 		return 0;
898 
899 	if (unlikely(s != page->slab)) {
900 		if (!PageSlab(page))
901 			slab_err(s, page, "Attempt to free object(0x%p) "
902 				"outside of slab", object);
903 		else
904 		if (!page->slab) {
905 			printk(KERN_ERR
906 				"SLUB <none>: no slab for object 0x%p.\n",
907 						object);
908 			dump_stack();
909 		}
910 		else
911 			object_err(s, page, object,
912 					"page slab pointer corrupt.");
913 		goto fail;
914 	}
915 
916 	/* Special debug activities for freeing objects */
917 	if (!SlabFrozen(page) && !page->freelist)
918 		remove_full(s, page);
919 	if (s->flags & SLAB_STORE_USER)
920 		set_track(s, object, TRACK_FREE, addr);
921 	trace(s, page, object, 0);
922 	init_object(s, object, 0);
923 	return 1;
924 
925 fail:
926 	slab_fix(s, "Object at 0x%p not freed", object);
927 	return 0;
928 }
929 
930 static int __init setup_slub_debug(char *str)
931 {
932 	slub_debug = DEBUG_DEFAULT_FLAGS;
933 	if (*str++ != '=' || !*str)
934 		/*
935 		 * No options specified. Switch on full debugging.
936 		 */
937 		goto out;
938 
939 	if (*str == ',')
940 		/*
941 		 * No options but restriction on slabs. This means full
942 		 * debugging for slabs matching a pattern.
943 		 */
944 		goto check_slabs;
945 
946 	slub_debug = 0;
947 	if (*str == '-')
948 		/*
949 		 * Switch off all debugging measures.
950 		 */
951 		goto out;
952 
953 	/*
954 	 * Determine which debug features should be switched on
955 	 */
956 	for ( ;*str && *str != ','; str++) {
957 		switch (tolower(*str)) {
958 		case 'f':
959 			slub_debug |= SLAB_DEBUG_FREE;
960 			break;
961 		case 'z':
962 			slub_debug |= SLAB_RED_ZONE;
963 			break;
964 		case 'p':
965 			slub_debug |= SLAB_POISON;
966 			break;
967 		case 'u':
968 			slub_debug |= SLAB_STORE_USER;
969 			break;
970 		case 't':
971 			slub_debug |= SLAB_TRACE;
972 			break;
973 		default:
974 			printk(KERN_ERR "slub_debug option '%c' "
975 				"unknown. skipped\n",*str);
976 		}
977 	}
978 
979 check_slabs:
980 	if (*str == ',')
981 		slub_debug_slabs = str + 1;
982 out:
983 	return 1;
984 }
985 
986 __setup("slub_debug", setup_slub_debug);
987 
988 static void kmem_cache_open_debug_check(struct kmem_cache *s)
989 {
990 	/*
991 	 * The page->offset field is only 16 bit wide. This is an offset
992 	 * in units of words from the beginning of an object. If the slab
993 	 * size is bigger then we cannot move the free pointer behind the
994 	 * object anymore.
995 	 *
996 	 * On 32 bit platforms the limit is 256k. On 64bit platforms
997 	 * the limit is 512k.
998 	 *
999 	 * Debugging or ctor may create a need to move the free
1000 	 * pointer. Fail if this happens.
1001 	 */
1002 	if (s->objsize >= 65535 * sizeof(void *)) {
1003 		BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
1004 				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1005 		BUG_ON(s->ctor);
1006 	}
1007 	else
1008 		/*
1009 		 * Enable debugging if selected on the kernel commandline.
1010 		 */
1011 		if (slub_debug && (!slub_debug_slabs ||
1012 		    strncmp(slub_debug_slabs, s->name,
1013 		    	strlen(slub_debug_slabs)) == 0))
1014 				s->flags |= slub_debug;
1015 }
1016 #else
1017 static inline void setup_object_debug(struct kmem_cache *s,
1018 			struct page *page, void *object) {}
1019 
1020 static inline int alloc_debug_processing(struct kmem_cache *s,
1021 	struct page *page, void *object, void *addr) { return 0; }
1022 
1023 static inline int free_debug_processing(struct kmem_cache *s,
1024 	struct page *page, void *object, void *addr) { return 0; }
1025 
1026 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1027 			{ return 1; }
1028 static inline int check_object(struct kmem_cache *s, struct page *page,
1029 			void *object, int active) { return 1; }
1030 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1031 static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
1032 #define slub_debug 0
1033 #endif
1034 /*
1035  * Slab allocation and freeing
1036  */
1037 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1038 {
1039 	struct page * page;
1040 	int pages = 1 << s->order;
1041 
1042 	if (s->order)
1043 		flags |= __GFP_COMP;
1044 
1045 	if (s->flags & SLAB_CACHE_DMA)
1046 		flags |= SLUB_DMA;
1047 
1048 	if (node == -1)
1049 		page = alloc_pages(flags, s->order);
1050 	else
1051 		page = alloc_pages_node(node, flags, s->order);
1052 
1053 	if (!page)
1054 		return NULL;
1055 
1056 	mod_zone_page_state(page_zone(page),
1057 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1058 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1059 		pages);
1060 
1061 	return page;
1062 }
1063 
1064 static void setup_object(struct kmem_cache *s, struct page *page,
1065 				void *object)
1066 {
1067 	setup_object_debug(s, page, object);
1068 	if (unlikely(s->ctor))
1069 		s->ctor(object, s, 0);
1070 }
1071 
1072 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1073 {
1074 	struct page *page;
1075 	struct kmem_cache_node *n;
1076 	void *start;
1077 	void *end;
1078 	void *last;
1079 	void *p;
1080 
1081 	BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
1082 
1083 	if (flags & __GFP_WAIT)
1084 		local_irq_enable();
1085 
1086 	page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1087 	if (!page)
1088 		goto out;
1089 
1090 	n = get_node(s, page_to_nid(page));
1091 	if (n)
1092 		atomic_long_inc(&n->nr_slabs);
1093 	page->offset = s->offset / sizeof(void *);
1094 	page->slab = s;
1095 	page->flags |= 1 << PG_slab;
1096 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1097 			SLAB_STORE_USER | SLAB_TRACE))
1098 		SetSlabDebug(page);
1099 
1100 	start = page_address(page);
1101 	end = start + s->objects * s->size;
1102 
1103 	if (unlikely(s->flags & SLAB_POISON))
1104 		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1105 
1106 	last = start;
1107 	for_each_object(p, s, start) {
1108 		setup_object(s, page, last);
1109 		set_freepointer(s, last, p);
1110 		last = p;
1111 	}
1112 	setup_object(s, page, last);
1113 	set_freepointer(s, last, NULL);
1114 
1115 	page->freelist = start;
1116 	page->lockless_freelist = NULL;
1117 	page->inuse = 0;
1118 out:
1119 	if (flags & __GFP_WAIT)
1120 		local_irq_disable();
1121 	return page;
1122 }
1123 
1124 static void __free_slab(struct kmem_cache *s, struct page *page)
1125 {
1126 	int pages = 1 << s->order;
1127 
1128 	if (unlikely(SlabDebug(page))) {
1129 		void *p;
1130 
1131 		slab_pad_check(s, page);
1132 		for_each_object(p, s, page_address(page))
1133 			check_object(s, page, p, 0);
1134 	}
1135 
1136 	mod_zone_page_state(page_zone(page),
1137 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1138 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1139 		- pages);
1140 
1141 	page->mapping = NULL;
1142 	__free_pages(page, s->order);
1143 }
1144 
1145 static void rcu_free_slab(struct rcu_head *h)
1146 {
1147 	struct page *page;
1148 
1149 	page = container_of((struct list_head *)h, struct page, lru);
1150 	__free_slab(page->slab, page);
1151 }
1152 
1153 static void free_slab(struct kmem_cache *s, struct page *page)
1154 {
1155 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1156 		/*
1157 		 * RCU free overloads the RCU head over the LRU
1158 		 */
1159 		struct rcu_head *head = (void *)&page->lru;
1160 
1161 		call_rcu(head, rcu_free_slab);
1162 	} else
1163 		__free_slab(s, page);
1164 }
1165 
1166 static void discard_slab(struct kmem_cache *s, struct page *page)
1167 {
1168 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1169 
1170 	atomic_long_dec(&n->nr_slabs);
1171 	reset_page_mapcount(page);
1172 	ClearSlabDebug(page);
1173 	__ClearPageSlab(page);
1174 	free_slab(s, page);
1175 }
1176 
1177 /*
1178  * Per slab locking using the pagelock
1179  */
1180 static __always_inline void slab_lock(struct page *page)
1181 {
1182 	bit_spin_lock(PG_locked, &page->flags);
1183 }
1184 
1185 static __always_inline void slab_unlock(struct page *page)
1186 {
1187 	bit_spin_unlock(PG_locked, &page->flags);
1188 }
1189 
1190 static __always_inline int slab_trylock(struct page *page)
1191 {
1192 	int rc = 1;
1193 
1194 	rc = bit_spin_trylock(PG_locked, &page->flags);
1195 	return rc;
1196 }
1197 
1198 /*
1199  * Management of partially allocated slabs
1200  */
1201 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1202 {
1203 	spin_lock(&n->list_lock);
1204 	n->nr_partial++;
1205 	list_add_tail(&page->lru, &n->partial);
1206 	spin_unlock(&n->list_lock);
1207 }
1208 
1209 static void add_partial(struct kmem_cache_node *n, struct page *page)
1210 {
1211 	spin_lock(&n->list_lock);
1212 	n->nr_partial++;
1213 	list_add(&page->lru, &n->partial);
1214 	spin_unlock(&n->list_lock);
1215 }
1216 
1217 static void remove_partial(struct kmem_cache *s,
1218 						struct page *page)
1219 {
1220 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1221 
1222 	spin_lock(&n->list_lock);
1223 	list_del(&page->lru);
1224 	n->nr_partial--;
1225 	spin_unlock(&n->list_lock);
1226 }
1227 
1228 /*
1229  * Lock slab and remove from the partial list.
1230  *
1231  * Must hold list_lock.
1232  */
1233 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1234 {
1235 	if (slab_trylock(page)) {
1236 		list_del(&page->lru);
1237 		n->nr_partial--;
1238 		SetSlabFrozen(page);
1239 		return 1;
1240 	}
1241 	return 0;
1242 }
1243 
1244 /*
1245  * Try to allocate a partial slab from a specific node.
1246  */
1247 static struct page *get_partial_node(struct kmem_cache_node *n)
1248 {
1249 	struct page *page;
1250 
1251 	/*
1252 	 * Racy check. If we mistakenly see no partial slabs then we
1253 	 * just allocate an empty slab. If we mistakenly try to get a
1254 	 * partial slab and there is none available then get_partials()
1255 	 * will return NULL.
1256 	 */
1257 	if (!n || !n->nr_partial)
1258 		return NULL;
1259 
1260 	spin_lock(&n->list_lock);
1261 	list_for_each_entry(page, &n->partial, lru)
1262 		if (lock_and_freeze_slab(n, page))
1263 			goto out;
1264 	page = NULL;
1265 out:
1266 	spin_unlock(&n->list_lock);
1267 	return page;
1268 }
1269 
1270 /*
1271  * Get a page from somewhere. Search in increasing NUMA distances.
1272  */
1273 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1274 {
1275 #ifdef CONFIG_NUMA
1276 	struct zonelist *zonelist;
1277 	struct zone **z;
1278 	struct page *page;
1279 
1280 	/*
1281 	 * The defrag ratio allows a configuration of the tradeoffs between
1282 	 * inter node defragmentation and node local allocations. A lower
1283 	 * defrag_ratio increases the tendency to do local allocations
1284 	 * instead of attempting to obtain partial slabs from other nodes.
1285 	 *
1286 	 * If the defrag_ratio is set to 0 then kmalloc() always
1287 	 * returns node local objects. If the ratio is higher then kmalloc()
1288 	 * may return off node objects because partial slabs are obtained
1289 	 * from other nodes and filled up.
1290 	 *
1291 	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1292 	 * defrag_ratio = 1000) then every (well almost) allocation will
1293 	 * first attempt to defrag slab caches on other nodes. This means
1294 	 * scanning over all nodes to look for partial slabs which may be
1295 	 * expensive if we do it every time we are trying to find a slab
1296 	 * with available objects.
1297 	 */
1298 	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1299 		return NULL;
1300 
1301 	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1302 					->node_zonelists[gfp_zone(flags)];
1303 	for (z = zonelist->zones; *z; z++) {
1304 		struct kmem_cache_node *n;
1305 
1306 		n = get_node(s, zone_to_nid(*z));
1307 
1308 		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1309 				n->nr_partial > MIN_PARTIAL) {
1310 			page = get_partial_node(n);
1311 			if (page)
1312 				return page;
1313 		}
1314 	}
1315 #endif
1316 	return NULL;
1317 }
1318 
1319 /*
1320  * Get a partial page, lock it and return it.
1321  */
1322 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1323 {
1324 	struct page *page;
1325 	int searchnode = (node == -1) ? numa_node_id() : node;
1326 
1327 	page = get_partial_node(get_node(s, searchnode));
1328 	if (page || (flags & __GFP_THISNODE))
1329 		return page;
1330 
1331 	return get_any_partial(s, flags);
1332 }
1333 
1334 /*
1335  * Move a page back to the lists.
1336  *
1337  * Must be called with the slab lock held.
1338  *
1339  * On exit the slab lock will have been dropped.
1340  */
1341 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1342 {
1343 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1344 
1345 	ClearSlabFrozen(page);
1346 	if (page->inuse) {
1347 
1348 		if (page->freelist)
1349 			add_partial(n, page);
1350 		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1351 			add_full(n, page);
1352 		slab_unlock(page);
1353 
1354 	} else {
1355 		if (n->nr_partial < MIN_PARTIAL) {
1356 			/*
1357 			 * Adding an empty slab to the partial slabs in order
1358 			 * to avoid page allocator overhead. This slab needs
1359 			 * to come after the other slabs with objects in
1360 			 * order to fill them up. That way the size of the
1361 			 * partial list stays small. kmem_cache_shrink can
1362 			 * reclaim empty slabs from the partial list.
1363 			 */
1364 			add_partial_tail(n, page);
1365 			slab_unlock(page);
1366 		} else {
1367 			slab_unlock(page);
1368 			discard_slab(s, page);
1369 		}
1370 	}
1371 }
1372 
1373 /*
1374  * Remove the cpu slab
1375  */
1376 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1377 {
1378 	/*
1379 	 * Merge cpu freelist into freelist. Typically we get here
1380 	 * because both freelists are empty. So this is unlikely
1381 	 * to occur.
1382 	 */
1383 	while (unlikely(page->lockless_freelist)) {
1384 		void **object;
1385 
1386 		/* Retrieve object from cpu_freelist */
1387 		object = page->lockless_freelist;
1388 		page->lockless_freelist = page->lockless_freelist[page->offset];
1389 
1390 		/* And put onto the regular freelist */
1391 		object[page->offset] = page->freelist;
1392 		page->freelist = object;
1393 		page->inuse--;
1394 	}
1395 	s->cpu_slab[cpu] = NULL;
1396 	unfreeze_slab(s, page);
1397 }
1398 
1399 static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1400 {
1401 	slab_lock(page);
1402 	deactivate_slab(s, page, cpu);
1403 }
1404 
1405 /*
1406  * Flush cpu slab.
1407  * Called from IPI handler with interrupts disabled.
1408  */
1409 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1410 {
1411 	struct page *page = s->cpu_slab[cpu];
1412 
1413 	if (likely(page))
1414 		flush_slab(s, page, cpu);
1415 }
1416 
1417 static void flush_cpu_slab(void *d)
1418 {
1419 	struct kmem_cache *s = d;
1420 	int cpu = smp_processor_id();
1421 
1422 	__flush_cpu_slab(s, cpu);
1423 }
1424 
1425 static void flush_all(struct kmem_cache *s)
1426 {
1427 #ifdef CONFIG_SMP
1428 	on_each_cpu(flush_cpu_slab, s, 1, 1);
1429 #else
1430 	unsigned long flags;
1431 
1432 	local_irq_save(flags);
1433 	flush_cpu_slab(s);
1434 	local_irq_restore(flags);
1435 #endif
1436 }
1437 
1438 /*
1439  * Slow path. The lockless freelist is empty or we need to perform
1440  * debugging duties.
1441  *
1442  * Interrupts are disabled.
1443  *
1444  * Processing is still very fast if new objects have been freed to the
1445  * regular freelist. In that case we simply take over the regular freelist
1446  * as the lockless freelist and zap the regular freelist.
1447  *
1448  * If that is not working then we fall back to the partial lists. We take the
1449  * first element of the freelist as the object to allocate now and move the
1450  * rest of the freelist to the lockless freelist.
1451  *
1452  * And if we were unable to get a new slab from the partial slab lists then
1453  * we need to allocate a new slab. This is slowest path since we may sleep.
1454  */
1455 static void *__slab_alloc(struct kmem_cache *s,
1456 		gfp_t gfpflags, int node, void *addr, struct page *page)
1457 {
1458 	void **object;
1459 	int cpu = smp_processor_id();
1460 
1461 	if (!page)
1462 		goto new_slab;
1463 
1464 	slab_lock(page);
1465 	if (unlikely(node != -1 && page_to_nid(page) != node))
1466 		goto another_slab;
1467 load_freelist:
1468 	object = page->freelist;
1469 	if (unlikely(!object))
1470 		goto another_slab;
1471 	if (unlikely(SlabDebug(page)))
1472 		goto debug;
1473 
1474 	object = page->freelist;
1475 	page->lockless_freelist = object[page->offset];
1476 	page->inuse = s->objects;
1477 	page->freelist = NULL;
1478 	slab_unlock(page);
1479 	return object;
1480 
1481 another_slab:
1482 	deactivate_slab(s, page, cpu);
1483 
1484 new_slab:
1485 	page = get_partial(s, gfpflags, node);
1486 	if (page) {
1487 		s->cpu_slab[cpu] = page;
1488 		goto load_freelist;
1489 	}
1490 
1491 	page = new_slab(s, gfpflags, node);
1492 	if (page) {
1493 		cpu = smp_processor_id();
1494 		if (s->cpu_slab[cpu]) {
1495 			/*
1496 			 * Someone else populated the cpu_slab while we
1497 			 * enabled interrupts, or we have gotten scheduled
1498 			 * on another cpu. The page may not be on the
1499 			 * requested node even if __GFP_THISNODE was
1500 			 * specified. So we need to recheck.
1501 			 */
1502 			if (node == -1 ||
1503 				page_to_nid(s->cpu_slab[cpu]) == node) {
1504 				/*
1505 				 * Current cpuslab is acceptable and we
1506 				 * want the current one since its cache hot
1507 				 */
1508 				discard_slab(s, page);
1509 				page = s->cpu_slab[cpu];
1510 				slab_lock(page);
1511 				goto load_freelist;
1512 			}
1513 			/* New slab does not fit our expectations */
1514 			flush_slab(s, s->cpu_slab[cpu], cpu);
1515 		}
1516 		slab_lock(page);
1517 		SetSlabFrozen(page);
1518 		s->cpu_slab[cpu] = page;
1519 		goto load_freelist;
1520 	}
1521 	return NULL;
1522 debug:
1523 	object = page->freelist;
1524 	if (!alloc_debug_processing(s, page, object, addr))
1525 		goto another_slab;
1526 
1527 	page->inuse++;
1528 	page->freelist = object[page->offset];
1529 	slab_unlock(page);
1530 	return object;
1531 }
1532 
1533 /*
1534  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1535  * have the fastpath folded into their functions. So no function call
1536  * overhead for requests that can be satisfied on the fastpath.
1537  *
1538  * The fastpath works by first checking if the lockless freelist can be used.
1539  * If not then __slab_alloc is called for slow processing.
1540  *
1541  * Otherwise we can simply pick the next object from the lockless free list.
1542  */
1543 static void __always_inline *slab_alloc(struct kmem_cache *s,
1544 		gfp_t gfpflags, int node, void *addr)
1545 {
1546 	struct page *page;
1547 	void **object;
1548 	unsigned long flags;
1549 
1550 	local_irq_save(flags);
1551 	page = s->cpu_slab[smp_processor_id()];
1552 	if (unlikely(!page || !page->lockless_freelist ||
1553 			(node != -1 && page_to_nid(page) != node)))
1554 
1555 		object = __slab_alloc(s, gfpflags, node, addr, page);
1556 
1557 	else {
1558 		object = page->lockless_freelist;
1559 		page->lockless_freelist = object[page->offset];
1560 	}
1561 	local_irq_restore(flags);
1562 
1563 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1564 		memset(object, 0, s->objsize);
1565 
1566 	return object;
1567 }
1568 
1569 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1570 {
1571 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1572 }
1573 EXPORT_SYMBOL(kmem_cache_alloc);
1574 
1575 #ifdef CONFIG_NUMA
1576 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1577 {
1578 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1579 }
1580 EXPORT_SYMBOL(kmem_cache_alloc_node);
1581 #endif
1582 
1583 /*
1584  * Slow patch handling. This may still be called frequently since objects
1585  * have a longer lifetime than the cpu slabs in most processing loads.
1586  *
1587  * So we still attempt to reduce cache line usage. Just take the slab
1588  * lock and free the item. If there is no additional partial page
1589  * handling required then we can return immediately.
1590  */
1591 static void __slab_free(struct kmem_cache *s, struct page *page,
1592 					void *x, void *addr)
1593 {
1594 	void *prior;
1595 	void **object = (void *)x;
1596 
1597 	slab_lock(page);
1598 
1599 	if (unlikely(SlabDebug(page)))
1600 		goto debug;
1601 checks_ok:
1602 	prior = object[page->offset] = page->freelist;
1603 	page->freelist = object;
1604 	page->inuse--;
1605 
1606 	if (unlikely(SlabFrozen(page)))
1607 		goto out_unlock;
1608 
1609 	if (unlikely(!page->inuse))
1610 		goto slab_empty;
1611 
1612 	/*
1613 	 * Objects left in the slab. If it
1614 	 * was not on the partial list before
1615 	 * then add it.
1616 	 */
1617 	if (unlikely(!prior))
1618 		add_partial(get_node(s, page_to_nid(page)), page);
1619 
1620 out_unlock:
1621 	slab_unlock(page);
1622 	return;
1623 
1624 slab_empty:
1625 	if (prior)
1626 		/*
1627 		 * Slab still on the partial list.
1628 		 */
1629 		remove_partial(s, page);
1630 
1631 	slab_unlock(page);
1632 	discard_slab(s, page);
1633 	return;
1634 
1635 debug:
1636 	if (!free_debug_processing(s, page, x, addr))
1637 		goto out_unlock;
1638 	goto checks_ok;
1639 }
1640 
1641 /*
1642  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1643  * can perform fastpath freeing without additional function calls.
1644  *
1645  * The fastpath is only possible if we are freeing to the current cpu slab
1646  * of this processor. This typically the case if we have just allocated
1647  * the item before.
1648  *
1649  * If fastpath is not possible then fall back to __slab_free where we deal
1650  * with all sorts of special processing.
1651  */
1652 static void __always_inline slab_free(struct kmem_cache *s,
1653 			struct page *page, void *x, void *addr)
1654 {
1655 	void **object = (void *)x;
1656 	unsigned long flags;
1657 
1658 	local_irq_save(flags);
1659 	if (likely(page == s->cpu_slab[smp_processor_id()] &&
1660 						!SlabDebug(page))) {
1661 		object[page->offset] = page->lockless_freelist;
1662 		page->lockless_freelist = object;
1663 	} else
1664 		__slab_free(s, page, x, addr);
1665 
1666 	local_irq_restore(flags);
1667 }
1668 
1669 void kmem_cache_free(struct kmem_cache *s, void *x)
1670 {
1671 	struct page *page;
1672 
1673 	page = virt_to_head_page(x);
1674 
1675 	slab_free(s, page, x, __builtin_return_address(0));
1676 }
1677 EXPORT_SYMBOL(kmem_cache_free);
1678 
1679 /* Figure out on which slab object the object resides */
1680 static struct page *get_object_page(const void *x)
1681 {
1682 	struct page *page = virt_to_head_page(x);
1683 
1684 	if (!PageSlab(page))
1685 		return NULL;
1686 
1687 	return page;
1688 }
1689 
1690 /*
1691  * Object placement in a slab is made very easy because we always start at
1692  * offset 0. If we tune the size of the object to the alignment then we can
1693  * get the required alignment by putting one properly sized object after
1694  * another.
1695  *
1696  * Notice that the allocation order determines the sizes of the per cpu
1697  * caches. Each processor has always one slab available for allocations.
1698  * Increasing the allocation order reduces the number of times that slabs
1699  * must be moved on and off the partial lists and is therefore a factor in
1700  * locking overhead.
1701  */
1702 
1703 /*
1704  * Mininum / Maximum order of slab pages. This influences locking overhead
1705  * and slab fragmentation. A higher order reduces the number of partial slabs
1706  * and increases the number of allocations possible without having to
1707  * take the list_lock.
1708  */
1709 static int slub_min_order;
1710 static int slub_max_order = DEFAULT_MAX_ORDER;
1711 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1712 
1713 /*
1714  * Merge control. If this is set then no merging of slab caches will occur.
1715  * (Could be removed. This was introduced to pacify the merge skeptics.)
1716  */
1717 static int slub_nomerge;
1718 
1719 /*
1720  * Calculate the order of allocation given an slab object size.
1721  *
1722  * The order of allocation has significant impact on performance and other
1723  * system components. Generally order 0 allocations should be preferred since
1724  * order 0 does not cause fragmentation in the page allocator. Larger objects
1725  * be problematic to put into order 0 slabs because there may be too much
1726  * unused space left. We go to a higher order if more than 1/8th of the slab
1727  * would be wasted.
1728  *
1729  * In order to reach satisfactory performance we must ensure that a minimum
1730  * number of objects is in one slab. Otherwise we may generate too much
1731  * activity on the partial lists which requires taking the list_lock. This is
1732  * less a concern for large slabs though which are rarely used.
1733  *
1734  * slub_max_order specifies the order where we begin to stop considering the
1735  * number of objects in a slab as critical. If we reach slub_max_order then
1736  * we try to keep the page order as low as possible. So we accept more waste
1737  * of space in favor of a small page order.
1738  *
1739  * Higher order allocations also allow the placement of more objects in a
1740  * slab and thereby reduce object handling overhead. If the user has
1741  * requested a higher mininum order then we start with that one instead of
1742  * the smallest order which will fit the object.
1743  */
1744 static inline int slab_order(int size, int min_objects,
1745 				int max_order, int fract_leftover)
1746 {
1747 	int order;
1748 	int rem;
1749 	int min_order = slub_min_order;
1750 
1751 	/*
1752 	 * If we would create too many object per slab then reduce
1753 	 * the slab order even if it goes below slub_min_order.
1754 	 */
1755 	while (min_order > 0 &&
1756 		(PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1757 			min_order--;
1758 
1759 	for (order = max(min_order,
1760 				fls(min_objects * size - 1) - PAGE_SHIFT);
1761 			order <= max_order; order++) {
1762 
1763 		unsigned long slab_size = PAGE_SIZE << order;
1764 
1765 		if (slab_size < min_objects * size)
1766 			continue;
1767 
1768 		rem = slab_size % size;
1769 
1770 		if (rem <= slab_size / fract_leftover)
1771 			break;
1772 
1773 		/* If the next size is too high then exit now */
1774 		if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1775 			break;
1776 	}
1777 
1778 	return order;
1779 }
1780 
1781 static inline int calculate_order(int size)
1782 {
1783 	int order;
1784 	int min_objects;
1785 	int fraction;
1786 
1787 	/*
1788 	 * Attempt to find best configuration for a slab. This
1789 	 * works by first attempting to generate a layout with
1790 	 * the best configuration and backing off gradually.
1791 	 *
1792 	 * First we reduce the acceptable waste in a slab. Then
1793 	 * we reduce the minimum objects required in a slab.
1794 	 */
1795 	min_objects = slub_min_objects;
1796 	while (min_objects > 1) {
1797 		fraction = 8;
1798 		while (fraction >= 4) {
1799 			order = slab_order(size, min_objects,
1800 						slub_max_order, fraction);
1801 			if (order <= slub_max_order)
1802 				return order;
1803 			fraction /= 2;
1804 		}
1805 		min_objects /= 2;
1806 	}
1807 
1808 	/*
1809 	 * We were unable to place multiple objects in a slab. Now
1810 	 * lets see if we can place a single object there.
1811 	 */
1812 	order = slab_order(size, 1, slub_max_order, 1);
1813 	if (order <= slub_max_order)
1814 		return order;
1815 
1816 	/*
1817 	 * Doh this slab cannot be placed using slub_max_order.
1818 	 */
1819 	order = slab_order(size, 1, MAX_ORDER, 1);
1820 	if (order <= MAX_ORDER)
1821 		return order;
1822 	return -ENOSYS;
1823 }
1824 
1825 /*
1826  * Figure out what the alignment of the objects will be.
1827  */
1828 static unsigned long calculate_alignment(unsigned long flags,
1829 		unsigned long align, unsigned long size)
1830 {
1831 	/*
1832 	 * If the user wants hardware cache aligned objects then
1833 	 * follow that suggestion if the object is sufficiently
1834 	 * large.
1835 	 *
1836 	 * The hardware cache alignment cannot override the
1837 	 * specified alignment though. If that is greater
1838 	 * then use it.
1839 	 */
1840 	if ((flags & SLAB_HWCACHE_ALIGN) &&
1841 			size > cache_line_size() / 2)
1842 		return max_t(unsigned long, align, cache_line_size());
1843 
1844 	if (align < ARCH_SLAB_MINALIGN)
1845 		return ARCH_SLAB_MINALIGN;
1846 
1847 	return ALIGN(align, sizeof(void *));
1848 }
1849 
1850 static void init_kmem_cache_node(struct kmem_cache_node *n)
1851 {
1852 	n->nr_partial = 0;
1853 	atomic_long_set(&n->nr_slabs, 0);
1854 	spin_lock_init(&n->list_lock);
1855 	INIT_LIST_HEAD(&n->partial);
1856 #ifdef CONFIG_SLUB_DEBUG
1857 	INIT_LIST_HEAD(&n->full);
1858 #endif
1859 }
1860 
1861 #ifdef CONFIG_NUMA
1862 /*
1863  * No kmalloc_node yet so do it by hand. We know that this is the first
1864  * slab on the node for this slabcache. There are no concurrent accesses
1865  * possible.
1866  *
1867  * Note that this function only works on the kmalloc_node_cache
1868  * when allocating for the kmalloc_node_cache.
1869  */
1870 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1871 								int node)
1872 {
1873 	struct page *page;
1874 	struct kmem_cache_node *n;
1875 
1876 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1877 
1878 	page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1879 
1880 	BUG_ON(!page);
1881 	n = page->freelist;
1882 	BUG_ON(!n);
1883 	page->freelist = get_freepointer(kmalloc_caches, n);
1884 	page->inuse++;
1885 	kmalloc_caches->node[node] = n;
1886 #ifdef CONFIG_SLUB_DEBUG
1887 	init_object(kmalloc_caches, n, 1);
1888 	init_tracking(kmalloc_caches, n);
1889 #endif
1890 	init_kmem_cache_node(n);
1891 	atomic_long_inc(&n->nr_slabs);
1892 	add_partial(n, page);
1893 
1894 	/*
1895 	 * new_slab() disables interupts. If we do not reenable interrupts here
1896 	 * then bootup would continue with interrupts disabled.
1897 	 */
1898 	local_irq_enable();
1899 	return n;
1900 }
1901 
1902 static void free_kmem_cache_nodes(struct kmem_cache *s)
1903 {
1904 	int node;
1905 
1906 	for_each_online_node(node) {
1907 		struct kmem_cache_node *n = s->node[node];
1908 		if (n && n != &s->local_node)
1909 			kmem_cache_free(kmalloc_caches, n);
1910 		s->node[node] = NULL;
1911 	}
1912 }
1913 
1914 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1915 {
1916 	int node;
1917 	int local_node;
1918 
1919 	if (slab_state >= UP)
1920 		local_node = page_to_nid(virt_to_page(s));
1921 	else
1922 		local_node = 0;
1923 
1924 	for_each_online_node(node) {
1925 		struct kmem_cache_node *n;
1926 
1927 		if (local_node == node)
1928 			n = &s->local_node;
1929 		else {
1930 			if (slab_state == DOWN) {
1931 				n = early_kmem_cache_node_alloc(gfpflags,
1932 								node);
1933 				continue;
1934 			}
1935 			n = kmem_cache_alloc_node(kmalloc_caches,
1936 							gfpflags, node);
1937 
1938 			if (!n) {
1939 				free_kmem_cache_nodes(s);
1940 				return 0;
1941 			}
1942 
1943 		}
1944 		s->node[node] = n;
1945 		init_kmem_cache_node(n);
1946 	}
1947 	return 1;
1948 }
1949 #else
1950 static void free_kmem_cache_nodes(struct kmem_cache *s)
1951 {
1952 }
1953 
1954 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1955 {
1956 	init_kmem_cache_node(&s->local_node);
1957 	return 1;
1958 }
1959 #endif
1960 
1961 /*
1962  * calculate_sizes() determines the order and the distribution of data within
1963  * a slab object.
1964  */
1965 static int calculate_sizes(struct kmem_cache *s)
1966 {
1967 	unsigned long flags = s->flags;
1968 	unsigned long size = s->objsize;
1969 	unsigned long align = s->align;
1970 
1971 	/*
1972 	 * Determine if we can poison the object itself. If the user of
1973 	 * the slab may touch the object after free or before allocation
1974 	 * then we should never poison the object itself.
1975 	 */
1976 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1977 			!s->ctor)
1978 		s->flags |= __OBJECT_POISON;
1979 	else
1980 		s->flags &= ~__OBJECT_POISON;
1981 
1982 	/*
1983 	 * Round up object size to the next word boundary. We can only
1984 	 * place the free pointer at word boundaries and this determines
1985 	 * the possible location of the free pointer.
1986 	 */
1987 	size = ALIGN(size, sizeof(void *));
1988 
1989 #ifdef CONFIG_SLUB_DEBUG
1990 	/*
1991 	 * If we are Redzoning then check if there is some space between the
1992 	 * end of the object and the free pointer. If not then add an
1993 	 * additional word to have some bytes to store Redzone information.
1994 	 */
1995 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1996 		size += sizeof(void *);
1997 #endif
1998 
1999 	/*
2000 	 * With that we have determined the number of bytes in actual use
2001 	 * by the object. This is the potential offset to the free pointer.
2002 	 */
2003 	s->inuse = size;
2004 
2005 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2006 		s->ctor)) {
2007 		/*
2008 		 * Relocate free pointer after the object if it is not
2009 		 * permitted to overwrite the first word of the object on
2010 		 * kmem_cache_free.
2011 		 *
2012 		 * This is the case if we do RCU, have a constructor or
2013 		 * destructor or are poisoning the objects.
2014 		 */
2015 		s->offset = size;
2016 		size += sizeof(void *);
2017 	}
2018 
2019 #ifdef CONFIG_SLUB_DEBUG
2020 	if (flags & SLAB_STORE_USER)
2021 		/*
2022 		 * Need to store information about allocs and frees after
2023 		 * the object.
2024 		 */
2025 		size += 2 * sizeof(struct track);
2026 
2027 	if (flags & SLAB_RED_ZONE)
2028 		/*
2029 		 * Add some empty padding so that we can catch
2030 		 * overwrites from earlier objects rather than let
2031 		 * tracking information or the free pointer be
2032 		 * corrupted if an user writes before the start
2033 		 * of the object.
2034 		 */
2035 		size += sizeof(void *);
2036 #endif
2037 
2038 	/*
2039 	 * Determine the alignment based on various parameters that the
2040 	 * user specified and the dynamic determination of cache line size
2041 	 * on bootup.
2042 	 */
2043 	align = calculate_alignment(flags, align, s->objsize);
2044 
2045 	/*
2046 	 * SLUB stores one object immediately after another beginning from
2047 	 * offset 0. In order to align the objects we have to simply size
2048 	 * each object to conform to the alignment.
2049 	 */
2050 	size = ALIGN(size, align);
2051 	s->size = size;
2052 
2053 	s->order = calculate_order(size);
2054 	if (s->order < 0)
2055 		return 0;
2056 
2057 	/*
2058 	 * Determine the number of objects per slab
2059 	 */
2060 	s->objects = (PAGE_SIZE << s->order) / size;
2061 
2062 	/*
2063 	 * Verify that the number of objects is within permitted limits.
2064 	 * The page->inuse field is only 16 bit wide! So we cannot have
2065 	 * more than 64k objects per slab.
2066 	 */
2067 	if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
2068 		return 0;
2069 	return 1;
2070 
2071 }
2072 
2073 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2074 		const char *name, size_t size,
2075 		size_t align, unsigned long flags,
2076 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2077 {
2078 	memset(s, 0, kmem_size);
2079 	s->name = name;
2080 	s->ctor = ctor;
2081 	s->objsize = size;
2082 	s->flags = flags;
2083 	s->align = align;
2084 	kmem_cache_open_debug_check(s);
2085 
2086 	if (!calculate_sizes(s))
2087 		goto error;
2088 
2089 	s->refcount = 1;
2090 #ifdef CONFIG_NUMA
2091 	s->defrag_ratio = 100;
2092 #endif
2093 
2094 	if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2095 		return 1;
2096 error:
2097 	if (flags & SLAB_PANIC)
2098 		panic("Cannot create slab %s size=%lu realsize=%u "
2099 			"order=%u offset=%u flags=%lx\n",
2100 			s->name, (unsigned long)size, s->size, s->order,
2101 			s->offset, flags);
2102 	return 0;
2103 }
2104 
2105 /*
2106  * Check if a given pointer is valid
2107  */
2108 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2109 {
2110 	struct page * page;
2111 
2112 	page = get_object_page(object);
2113 
2114 	if (!page || s != page->slab)
2115 		/* No slab or wrong slab */
2116 		return 0;
2117 
2118 	if (!check_valid_pointer(s, page, object))
2119 		return 0;
2120 
2121 	/*
2122 	 * We could also check if the object is on the slabs freelist.
2123 	 * But this would be too expensive and it seems that the main
2124 	 * purpose of kmem_ptr_valid is to check if the object belongs
2125 	 * to a certain slab.
2126 	 */
2127 	return 1;
2128 }
2129 EXPORT_SYMBOL(kmem_ptr_validate);
2130 
2131 /*
2132  * Determine the size of a slab object
2133  */
2134 unsigned int kmem_cache_size(struct kmem_cache *s)
2135 {
2136 	return s->objsize;
2137 }
2138 EXPORT_SYMBOL(kmem_cache_size);
2139 
2140 const char *kmem_cache_name(struct kmem_cache *s)
2141 {
2142 	return s->name;
2143 }
2144 EXPORT_SYMBOL(kmem_cache_name);
2145 
2146 /*
2147  * Attempt to free all slabs on a node. Return the number of slabs we
2148  * were unable to free.
2149  */
2150 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2151 			struct list_head *list)
2152 {
2153 	int slabs_inuse = 0;
2154 	unsigned long flags;
2155 	struct page *page, *h;
2156 
2157 	spin_lock_irqsave(&n->list_lock, flags);
2158 	list_for_each_entry_safe(page, h, list, lru)
2159 		if (!page->inuse) {
2160 			list_del(&page->lru);
2161 			discard_slab(s, page);
2162 		} else
2163 			slabs_inuse++;
2164 	spin_unlock_irqrestore(&n->list_lock, flags);
2165 	return slabs_inuse;
2166 }
2167 
2168 /*
2169  * Release all resources used by a slab cache.
2170  */
2171 static inline int kmem_cache_close(struct kmem_cache *s)
2172 {
2173 	int node;
2174 
2175 	flush_all(s);
2176 
2177 	/* Attempt to free all objects */
2178 	for_each_online_node(node) {
2179 		struct kmem_cache_node *n = get_node(s, node);
2180 
2181 		n->nr_partial -= free_list(s, n, &n->partial);
2182 		if (atomic_long_read(&n->nr_slabs))
2183 			return 1;
2184 	}
2185 	free_kmem_cache_nodes(s);
2186 	return 0;
2187 }
2188 
2189 /*
2190  * Close a cache and release the kmem_cache structure
2191  * (must be used for caches created using kmem_cache_create)
2192  */
2193 void kmem_cache_destroy(struct kmem_cache *s)
2194 {
2195 	down_write(&slub_lock);
2196 	s->refcount--;
2197 	if (!s->refcount) {
2198 		list_del(&s->list);
2199 		up_write(&slub_lock);
2200 		if (kmem_cache_close(s))
2201 			WARN_ON(1);
2202 		sysfs_slab_remove(s);
2203 		kfree(s);
2204 	} else
2205 		up_write(&slub_lock);
2206 }
2207 EXPORT_SYMBOL(kmem_cache_destroy);
2208 
2209 /********************************************************************
2210  *		Kmalloc subsystem
2211  *******************************************************************/
2212 
2213 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2214 EXPORT_SYMBOL(kmalloc_caches);
2215 
2216 #ifdef CONFIG_ZONE_DMA
2217 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2218 #endif
2219 
2220 static int __init setup_slub_min_order(char *str)
2221 {
2222 	get_option (&str, &slub_min_order);
2223 
2224 	return 1;
2225 }
2226 
2227 __setup("slub_min_order=", setup_slub_min_order);
2228 
2229 static int __init setup_slub_max_order(char *str)
2230 {
2231 	get_option (&str, &slub_max_order);
2232 
2233 	return 1;
2234 }
2235 
2236 __setup("slub_max_order=", setup_slub_max_order);
2237 
2238 static int __init setup_slub_min_objects(char *str)
2239 {
2240 	get_option (&str, &slub_min_objects);
2241 
2242 	return 1;
2243 }
2244 
2245 __setup("slub_min_objects=", setup_slub_min_objects);
2246 
2247 static int __init setup_slub_nomerge(char *str)
2248 {
2249 	slub_nomerge = 1;
2250 	return 1;
2251 }
2252 
2253 __setup("slub_nomerge", setup_slub_nomerge);
2254 
2255 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2256 		const char *name, int size, gfp_t gfp_flags)
2257 {
2258 	unsigned int flags = 0;
2259 
2260 	if (gfp_flags & SLUB_DMA)
2261 		flags = SLAB_CACHE_DMA;
2262 
2263 	down_write(&slub_lock);
2264 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2265 			flags, NULL))
2266 		goto panic;
2267 
2268 	list_add(&s->list, &slab_caches);
2269 	up_write(&slub_lock);
2270 	if (sysfs_slab_add(s))
2271 		goto panic;
2272 	return s;
2273 
2274 panic:
2275 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2276 }
2277 
2278 #ifdef CONFIG_ZONE_DMA
2279 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2280 {
2281 	struct kmem_cache *s;
2282 	struct kmem_cache *x;
2283 	char *text;
2284 	size_t realsize;
2285 
2286 	s = kmalloc_caches_dma[index];
2287 	if (s)
2288 		return s;
2289 
2290 	/* Dynamically create dma cache */
2291 	x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2292 	if (!x)
2293 		panic("Unable to allocate memory for dma cache\n");
2294 
2295 	realsize = kmalloc_caches[index].objsize;
2296 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2297 			(unsigned int)realsize);
2298 	s = create_kmalloc_cache(x, text, realsize, flags);
2299 	down_write(&slub_lock);
2300 	if (!kmalloc_caches_dma[index]) {
2301 		kmalloc_caches_dma[index] = s;
2302 		up_write(&slub_lock);
2303 		return s;
2304 	}
2305 	up_write(&slub_lock);
2306 	kmem_cache_destroy(s);
2307 	return kmalloc_caches_dma[index];
2308 }
2309 #endif
2310 
2311 /*
2312  * Conversion table for small slabs sizes / 8 to the index in the
2313  * kmalloc array. This is necessary for slabs < 192 since we have non power
2314  * of two cache sizes there. The size of larger slabs can be determined using
2315  * fls.
2316  */
2317 static s8 size_index[24] = {
2318 	3,	/* 8 */
2319 	4,	/* 16 */
2320 	5,	/* 24 */
2321 	5,	/* 32 */
2322 	6,	/* 40 */
2323 	6,	/* 48 */
2324 	6,	/* 56 */
2325 	6,	/* 64 */
2326 	1,	/* 72 */
2327 	1,	/* 80 */
2328 	1,	/* 88 */
2329 	1,	/* 96 */
2330 	7,	/* 104 */
2331 	7,	/* 112 */
2332 	7,	/* 120 */
2333 	7,	/* 128 */
2334 	2,	/* 136 */
2335 	2,	/* 144 */
2336 	2,	/* 152 */
2337 	2,	/* 160 */
2338 	2,	/* 168 */
2339 	2,	/* 176 */
2340 	2,	/* 184 */
2341 	2	/* 192 */
2342 };
2343 
2344 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2345 {
2346 	int index;
2347 
2348 	if (size <= 192) {
2349 		if (!size)
2350 			return ZERO_SIZE_PTR;
2351 
2352 		index = size_index[(size - 1) / 8];
2353 	} else {
2354 		if (size > KMALLOC_MAX_SIZE)
2355 			return NULL;
2356 
2357 		index = fls(size - 1);
2358 	}
2359 
2360 #ifdef CONFIG_ZONE_DMA
2361 	if (unlikely((flags & SLUB_DMA)))
2362 		return dma_kmalloc_cache(index, flags);
2363 
2364 #endif
2365 	return &kmalloc_caches[index];
2366 }
2367 
2368 void *__kmalloc(size_t size, gfp_t flags)
2369 {
2370 	struct kmem_cache *s = get_slab(size, flags);
2371 
2372 	if (ZERO_OR_NULL_PTR(s))
2373 		return s;
2374 
2375 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2376 }
2377 EXPORT_SYMBOL(__kmalloc);
2378 
2379 #ifdef CONFIG_NUMA
2380 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2381 {
2382 	struct kmem_cache *s = get_slab(size, flags);
2383 
2384 	if (ZERO_OR_NULL_PTR(s))
2385 		return s;
2386 
2387 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2388 }
2389 EXPORT_SYMBOL(__kmalloc_node);
2390 #endif
2391 
2392 size_t ksize(const void *object)
2393 {
2394 	struct page *page;
2395 	struct kmem_cache *s;
2396 
2397 	if (object == ZERO_SIZE_PTR)
2398 		return 0;
2399 
2400 	page = get_object_page(object);
2401 	BUG_ON(!page);
2402 	s = page->slab;
2403 	BUG_ON(!s);
2404 
2405 	/*
2406 	 * Debugging requires use of the padding between object
2407 	 * and whatever may come after it.
2408 	 */
2409 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2410 		return s->objsize;
2411 
2412 	/*
2413 	 * If we have the need to store the freelist pointer
2414 	 * back there or track user information then we can
2415 	 * only use the space before that information.
2416 	 */
2417 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2418 		return s->inuse;
2419 
2420 	/*
2421 	 * Else we can use all the padding etc for the allocation
2422 	 */
2423 	return s->size;
2424 }
2425 EXPORT_SYMBOL(ksize);
2426 
2427 void kfree(const void *x)
2428 {
2429 	struct kmem_cache *s;
2430 	struct page *page;
2431 
2432 	/*
2433 	 * This has to be an unsigned comparison. According to Linus
2434 	 * some gcc version treat a pointer as a signed entity. Then
2435 	 * this comparison would be true for all "negative" pointers
2436 	 * (which would cover the whole upper half of the address space).
2437 	 */
2438 	if (ZERO_OR_NULL_PTR(x))
2439 		return;
2440 
2441 	page = virt_to_head_page(x);
2442 	s = page->slab;
2443 
2444 	slab_free(s, page, (void *)x, __builtin_return_address(0));
2445 }
2446 EXPORT_SYMBOL(kfree);
2447 
2448 /*
2449  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2450  * the remaining slabs by the number of items in use. The slabs with the
2451  * most items in use come first. New allocations will then fill those up
2452  * and thus they can be removed from the partial lists.
2453  *
2454  * The slabs with the least items are placed last. This results in them
2455  * being allocated from last increasing the chance that the last objects
2456  * are freed in them.
2457  */
2458 int kmem_cache_shrink(struct kmem_cache *s)
2459 {
2460 	int node;
2461 	int i;
2462 	struct kmem_cache_node *n;
2463 	struct page *page;
2464 	struct page *t;
2465 	struct list_head *slabs_by_inuse =
2466 		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2467 	unsigned long flags;
2468 
2469 	if (!slabs_by_inuse)
2470 		return -ENOMEM;
2471 
2472 	flush_all(s);
2473 	for_each_online_node(node) {
2474 		n = get_node(s, node);
2475 
2476 		if (!n->nr_partial)
2477 			continue;
2478 
2479 		for (i = 0; i < s->objects; i++)
2480 			INIT_LIST_HEAD(slabs_by_inuse + i);
2481 
2482 		spin_lock_irqsave(&n->list_lock, flags);
2483 
2484 		/*
2485 		 * Build lists indexed by the items in use in each slab.
2486 		 *
2487 		 * Note that concurrent frees may occur while we hold the
2488 		 * list_lock. page->inuse here is the upper limit.
2489 		 */
2490 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2491 			if (!page->inuse && slab_trylock(page)) {
2492 				/*
2493 				 * Must hold slab lock here because slab_free
2494 				 * may have freed the last object and be
2495 				 * waiting to release the slab.
2496 				 */
2497 				list_del(&page->lru);
2498 				n->nr_partial--;
2499 				slab_unlock(page);
2500 				discard_slab(s, page);
2501 			} else {
2502 				if (n->nr_partial > MAX_PARTIAL)
2503 					list_move(&page->lru,
2504 					slabs_by_inuse + page->inuse);
2505 			}
2506 		}
2507 
2508 		if (n->nr_partial <= MAX_PARTIAL)
2509 			goto out;
2510 
2511 		/*
2512 		 * Rebuild the partial list with the slabs filled up most
2513 		 * first and the least used slabs at the end.
2514 		 */
2515 		for (i = s->objects - 1; i >= 0; i--)
2516 			list_splice(slabs_by_inuse + i, n->partial.prev);
2517 
2518 	out:
2519 		spin_unlock_irqrestore(&n->list_lock, flags);
2520 	}
2521 
2522 	kfree(slabs_by_inuse);
2523 	return 0;
2524 }
2525 EXPORT_SYMBOL(kmem_cache_shrink);
2526 
2527 /********************************************************************
2528  *			Basic setup of slabs
2529  *******************************************************************/
2530 
2531 void __init kmem_cache_init(void)
2532 {
2533 	int i;
2534 	int caches = 0;
2535 
2536 #ifdef CONFIG_NUMA
2537 	/*
2538 	 * Must first have the slab cache available for the allocations of the
2539 	 * struct kmem_cache_node's. There is special bootstrap code in
2540 	 * kmem_cache_open for slab_state == DOWN.
2541 	 */
2542 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2543 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2544 	kmalloc_caches[0].refcount = -1;
2545 	caches++;
2546 #endif
2547 
2548 	/* Able to allocate the per node structures */
2549 	slab_state = PARTIAL;
2550 
2551 	/* Caches that are not of the two-to-the-power-of size */
2552 	if (KMALLOC_MIN_SIZE <= 64) {
2553 		create_kmalloc_cache(&kmalloc_caches[1],
2554 				"kmalloc-96", 96, GFP_KERNEL);
2555 		caches++;
2556 	}
2557 	if (KMALLOC_MIN_SIZE <= 128) {
2558 		create_kmalloc_cache(&kmalloc_caches[2],
2559 				"kmalloc-192", 192, GFP_KERNEL);
2560 		caches++;
2561 	}
2562 
2563 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
2564 		create_kmalloc_cache(&kmalloc_caches[i],
2565 			"kmalloc", 1 << i, GFP_KERNEL);
2566 		caches++;
2567 	}
2568 
2569 
2570 	/*
2571 	 * Patch up the size_index table if we have strange large alignment
2572 	 * requirements for the kmalloc array. This is only the case for
2573 	 * mips it seems. The standard arches will not generate any code here.
2574 	 *
2575 	 * Largest permitted alignment is 256 bytes due to the way we
2576 	 * handle the index determination for the smaller caches.
2577 	 *
2578 	 * Make sure that nothing crazy happens if someone starts tinkering
2579 	 * around with ARCH_KMALLOC_MINALIGN
2580 	 */
2581 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2582 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2583 
2584 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2585 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2586 
2587 	slab_state = UP;
2588 
2589 	/* Provide the correct kmalloc names now that the caches are up */
2590 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2591 		kmalloc_caches[i]. name =
2592 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2593 
2594 #ifdef CONFIG_SMP
2595 	register_cpu_notifier(&slab_notifier);
2596 #endif
2597 
2598 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2599 				nr_cpu_ids * sizeof(struct page *);
2600 
2601 	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2602 		" CPUs=%d, Nodes=%d\n",
2603 		caches, cache_line_size(),
2604 		slub_min_order, slub_max_order, slub_min_objects,
2605 		nr_cpu_ids, nr_node_ids);
2606 }
2607 
2608 /*
2609  * Find a mergeable slab cache
2610  */
2611 static int slab_unmergeable(struct kmem_cache *s)
2612 {
2613 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2614 		return 1;
2615 
2616 	if (s->ctor)
2617 		return 1;
2618 
2619 	/*
2620 	 * We may have set a slab to be unmergeable during bootstrap.
2621 	 */
2622 	if (s->refcount < 0)
2623 		return 1;
2624 
2625 	return 0;
2626 }
2627 
2628 static struct kmem_cache *find_mergeable(size_t size,
2629 		size_t align, unsigned long flags,
2630 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2631 {
2632 	struct kmem_cache *s;
2633 
2634 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2635 		return NULL;
2636 
2637 	if (ctor)
2638 		return NULL;
2639 
2640 	size = ALIGN(size, sizeof(void *));
2641 	align = calculate_alignment(flags, align, size);
2642 	size = ALIGN(size, align);
2643 
2644 	list_for_each_entry(s, &slab_caches, list) {
2645 		if (slab_unmergeable(s))
2646 			continue;
2647 
2648 		if (size > s->size)
2649 			continue;
2650 
2651 		if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2652 			(s->flags & SLUB_MERGE_SAME))
2653 				continue;
2654 		/*
2655 		 * Check if alignment is compatible.
2656 		 * Courtesy of Adrian Drzewiecki
2657 		 */
2658 		if ((s->size & ~(align -1)) != s->size)
2659 			continue;
2660 
2661 		if (s->size - size >= sizeof(void *))
2662 			continue;
2663 
2664 		return s;
2665 	}
2666 	return NULL;
2667 }
2668 
2669 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2670 		size_t align, unsigned long flags,
2671 		void (*ctor)(void *, struct kmem_cache *, unsigned long),
2672 		void (*dtor)(void *, struct kmem_cache *, unsigned long))
2673 {
2674 	struct kmem_cache *s;
2675 
2676 	BUG_ON(dtor);
2677 	down_write(&slub_lock);
2678 	s = find_mergeable(size, align, flags, ctor);
2679 	if (s) {
2680 		s->refcount++;
2681 		/*
2682 		 * Adjust the object sizes so that we clear
2683 		 * the complete object on kzalloc.
2684 		 */
2685 		s->objsize = max(s->objsize, (int)size);
2686 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2687 		up_write(&slub_lock);
2688 		if (sysfs_slab_alias(s, name))
2689 			goto err;
2690 		return s;
2691 	}
2692 	s = kmalloc(kmem_size, GFP_KERNEL);
2693 	if (s) {
2694 		if (kmem_cache_open(s, GFP_KERNEL, name,
2695 				size, align, flags, ctor)) {
2696 			list_add(&s->list, &slab_caches);
2697 			up_write(&slub_lock);
2698 			if (sysfs_slab_add(s))
2699 				goto err;
2700 			return s;
2701 		}
2702 		kfree(s);
2703 	}
2704 	up_write(&slub_lock);
2705 
2706 err:
2707 	if (flags & SLAB_PANIC)
2708 		panic("Cannot create slabcache %s\n", name);
2709 	else
2710 		s = NULL;
2711 	return s;
2712 }
2713 EXPORT_SYMBOL(kmem_cache_create);
2714 
2715 #ifdef CONFIG_SMP
2716 /*
2717  * Use the cpu notifier to insure that the cpu slabs are flushed when
2718  * necessary.
2719  */
2720 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2721 		unsigned long action, void *hcpu)
2722 {
2723 	long cpu = (long)hcpu;
2724 	struct kmem_cache *s;
2725 	unsigned long flags;
2726 
2727 	switch (action) {
2728 	case CPU_UP_CANCELED:
2729 	case CPU_UP_CANCELED_FROZEN:
2730 	case CPU_DEAD:
2731 	case CPU_DEAD_FROZEN:
2732 		down_read(&slub_lock);
2733 		list_for_each_entry(s, &slab_caches, list) {
2734 			local_irq_save(flags);
2735 			__flush_cpu_slab(s, cpu);
2736 			local_irq_restore(flags);
2737 		}
2738 		up_read(&slub_lock);
2739 		break;
2740 	default:
2741 		break;
2742 	}
2743 	return NOTIFY_OK;
2744 }
2745 
2746 static struct notifier_block __cpuinitdata slab_notifier =
2747 	{ &slab_cpuup_callback, NULL, 0 };
2748 
2749 #endif
2750 
2751 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2752 {
2753 	struct kmem_cache *s = get_slab(size, gfpflags);
2754 
2755 	if (ZERO_OR_NULL_PTR(s))
2756 		return s;
2757 
2758 	return slab_alloc(s, gfpflags, -1, caller);
2759 }
2760 
2761 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2762 					int node, void *caller)
2763 {
2764 	struct kmem_cache *s = get_slab(size, gfpflags);
2765 
2766 	if (ZERO_OR_NULL_PTR(s))
2767 		return s;
2768 
2769 	return slab_alloc(s, gfpflags, node, caller);
2770 }
2771 
2772 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2773 static int validate_slab(struct kmem_cache *s, struct page *page,
2774 						unsigned long *map)
2775 {
2776 	void *p;
2777 	void *addr = page_address(page);
2778 
2779 	if (!check_slab(s, page) ||
2780 			!on_freelist(s, page, NULL))
2781 		return 0;
2782 
2783 	/* Now we know that a valid freelist exists */
2784 	bitmap_zero(map, s->objects);
2785 
2786 	for_each_free_object(p, s, page->freelist) {
2787 		set_bit(slab_index(p, s, addr), map);
2788 		if (!check_object(s, page, p, 0))
2789 			return 0;
2790 	}
2791 
2792 	for_each_object(p, s, addr)
2793 		if (!test_bit(slab_index(p, s, addr), map))
2794 			if (!check_object(s, page, p, 1))
2795 				return 0;
2796 	return 1;
2797 }
2798 
2799 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2800 						unsigned long *map)
2801 {
2802 	if (slab_trylock(page)) {
2803 		validate_slab(s, page, map);
2804 		slab_unlock(page);
2805 	} else
2806 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2807 			s->name, page);
2808 
2809 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
2810 		if (!SlabDebug(page))
2811 			printk(KERN_ERR "SLUB %s: SlabDebug not set "
2812 				"on slab 0x%p\n", s->name, page);
2813 	} else {
2814 		if (SlabDebug(page))
2815 			printk(KERN_ERR "SLUB %s: SlabDebug set on "
2816 				"slab 0x%p\n", s->name, page);
2817 	}
2818 }
2819 
2820 static int validate_slab_node(struct kmem_cache *s,
2821 		struct kmem_cache_node *n, unsigned long *map)
2822 {
2823 	unsigned long count = 0;
2824 	struct page *page;
2825 	unsigned long flags;
2826 
2827 	spin_lock_irqsave(&n->list_lock, flags);
2828 
2829 	list_for_each_entry(page, &n->partial, lru) {
2830 		validate_slab_slab(s, page, map);
2831 		count++;
2832 	}
2833 	if (count != n->nr_partial)
2834 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2835 			"counter=%ld\n", s->name, count, n->nr_partial);
2836 
2837 	if (!(s->flags & SLAB_STORE_USER))
2838 		goto out;
2839 
2840 	list_for_each_entry(page, &n->full, lru) {
2841 		validate_slab_slab(s, page, map);
2842 		count++;
2843 	}
2844 	if (count != atomic_long_read(&n->nr_slabs))
2845 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2846 			"counter=%ld\n", s->name, count,
2847 			atomic_long_read(&n->nr_slabs));
2848 
2849 out:
2850 	spin_unlock_irqrestore(&n->list_lock, flags);
2851 	return count;
2852 }
2853 
2854 static long validate_slab_cache(struct kmem_cache *s)
2855 {
2856 	int node;
2857 	unsigned long count = 0;
2858 	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2859 				sizeof(unsigned long), GFP_KERNEL);
2860 
2861 	if (!map)
2862 		return -ENOMEM;
2863 
2864 	flush_all(s);
2865 	for_each_online_node(node) {
2866 		struct kmem_cache_node *n = get_node(s, node);
2867 
2868 		count += validate_slab_node(s, n, map);
2869 	}
2870 	kfree(map);
2871 	return count;
2872 }
2873 
2874 #ifdef SLUB_RESILIENCY_TEST
2875 static void resiliency_test(void)
2876 {
2877 	u8 *p;
2878 
2879 	printk(KERN_ERR "SLUB resiliency testing\n");
2880 	printk(KERN_ERR "-----------------------\n");
2881 	printk(KERN_ERR "A. Corruption after allocation\n");
2882 
2883 	p = kzalloc(16, GFP_KERNEL);
2884 	p[16] = 0x12;
2885 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2886 			" 0x12->0x%p\n\n", p + 16);
2887 
2888 	validate_slab_cache(kmalloc_caches + 4);
2889 
2890 	/* Hmmm... The next two are dangerous */
2891 	p = kzalloc(32, GFP_KERNEL);
2892 	p[32 + sizeof(void *)] = 0x34;
2893 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2894 		 	" 0x34 -> -0x%p\n", p);
2895 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2896 
2897 	validate_slab_cache(kmalloc_caches + 5);
2898 	p = kzalloc(64, GFP_KERNEL);
2899 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2900 	*p = 0x56;
2901 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2902 									p);
2903 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2904 	validate_slab_cache(kmalloc_caches + 6);
2905 
2906 	printk(KERN_ERR "\nB. Corruption after free\n");
2907 	p = kzalloc(128, GFP_KERNEL);
2908 	kfree(p);
2909 	*p = 0x78;
2910 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2911 	validate_slab_cache(kmalloc_caches + 7);
2912 
2913 	p = kzalloc(256, GFP_KERNEL);
2914 	kfree(p);
2915 	p[50] = 0x9a;
2916 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2917 	validate_slab_cache(kmalloc_caches + 8);
2918 
2919 	p = kzalloc(512, GFP_KERNEL);
2920 	kfree(p);
2921 	p[512] = 0xab;
2922 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2923 	validate_slab_cache(kmalloc_caches + 9);
2924 }
2925 #else
2926 static void resiliency_test(void) {};
2927 #endif
2928 
2929 /*
2930  * Generate lists of code addresses where slabcache objects are allocated
2931  * and freed.
2932  */
2933 
2934 struct location {
2935 	unsigned long count;
2936 	void *addr;
2937 	long long sum_time;
2938 	long min_time;
2939 	long max_time;
2940 	long min_pid;
2941 	long max_pid;
2942 	cpumask_t cpus;
2943 	nodemask_t nodes;
2944 };
2945 
2946 struct loc_track {
2947 	unsigned long max;
2948 	unsigned long count;
2949 	struct location *loc;
2950 };
2951 
2952 static void free_loc_track(struct loc_track *t)
2953 {
2954 	if (t->max)
2955 		free_pages((unsigned long)t->loc,
2956 			get_order(sizeof(struct location) * t->max));
2957 }
2958 
2959 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
2960 {
2961 	struct location *l;
2962 	int order;
2963 
2964 	order = get_order(sizeof(struct location) * max);
2965 
2966 	l = (void *)__get_free_pages(flags, order);
2967 	if (!l)
2968 		return 0;
2969 
2970 	if (t->count) {
2971 		memcpy(l, t->loc, sizeof(struct location) * t->count);
2972 		free_loc_track(t);
2973 	}
2974 	t->max = max;
2975 	t->loc = l;
2976 	return 1;
2977 }
2978 
2979 static int add_location(struct loc_track *t, struct kmem_cache *s,
2980 				const struct track *track)
2981 {
2982 	long start, end, pos;
2983 	struct location *l;
2984 	void *caddr;
2985 	unsigned long age = jiffies - track->when;
2986 
2987 	start = -1;
2988 	end = t->count;
2989 
2990 	for ( ; ; ) {
2991 		pos = start + (end - start + 1) / 2;
2992 
2993 		/*
2994 		 * There is nothing at "end". If we end up there
2995 		 * we need to add something to before end.
2996 		 */
2997 		if (pos == end)
2998 			break;
2999 
3000 		caddr = t->loc[pos].addr;
3001 		if (track->addr == caddr) {
3002 
3003 			l = &t->loc[pos];
3004 			l->count++;
3005 			if (track->when) {
3006 				l->sum_time += age;
3007 				if (age < l->min_time)
3008 					l->min_time = age;
3009 				if (age > l->max_time)
3010 					l->max_time = age;
3011 
3012 				if (track->pid < l->min_pid)
3013 					l->min_pid = track->pid;
3014 				if (track->pid > l->max_pid)
3015 					l->max_pid = track->pid;
3016 
3017 				cpu_set(track->cpu, l->cpus);
3018 			}
3019 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3020 			return 1;
3021 		}
3022 
3023 		if (track->addr < caddr)
3024 			end = pos;
3025 		else
3026 			start = pos;
3027 	}
3028 
3029 	/*
3030 	 * Not found. Insert new tracking element.
3031 	 */
3032 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3033 		return 0;
3034 
3035 	l = t->loc + pos;
3036 	if (pos < t->count)
3037 		memmove(l + 1, l,
3038 			(t->count - pos) * sizeof(struct location));
3039 	t->count++;
3040 	l->count = 1;
3041 	l->addr = track->addr;
3042 	l->sum_time = age;
3043 	l->min_time = age;
3044 	l->max_time = age;
3045 	l->min_pid = track->pid;
3046 	l->max_pid = track->pid;
3047 	cpus_clear(l->cpus);
3048 	cpu_set(track->cpu, l->cpus);
3049 	nodes_clear(l->nodes);
3050 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3051 	return 1;
3052 }
3053 
3054 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3055 		struct page *page, enum track_item alloc)
3056 {
3057 	void *addr = page_address(page);
3058 	DECLARE_BITMAP(map, s->objects);
3059 	void *p;
3060 
3061 	bitmap_zero(map, s->objects);
3062 	for_each_free_object(p, s, page->freelist)
3063 		set_bit(slab_index(p, s, addr), map);
3064 
3065 	for_each_object(p, s, addr)
3066 		if (!test_bit(slab_index(p, s, addr), map))
3067 			add_location(t, s, get_track(s, p, alloc));
3068 }
3069 
3070 static int list_locations(struct kmem_cache *s, char *buf,
3071 					enum track_item alloc)
3072 {
3073 	int n = 0;
3074 	unsigned long i;
3075 	struct loc_track t = { 0, 0, NULL };
3076 	int node;
3077 
3078 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3079 			GFP_KERNEL))
3080 		return sprintf(buf, "Out of memory\n");
3081 
3082 	/* Push back cpu slabs */
3083 	flush_all(s);
3084 
3085 	for_each_online_node(node) {
3086 		struct kmem_cache_node *n = get_node(s, node);
3087 		unsigned long flags;
3088 		struct page *page;
3089 
3090 		if (!atomic_read(&n->nr_slabs))
3091 			continue;
3092 
3093 		spin_lock_irqsave(&n->list_lock, flags);
3094 		list_for_each_entry(page, &n->partial, lru)
3095 			process_slab(&t, s, page, alloc);
3096 		list_for_each_entry(page, &n->full, lru)
3097 			process_slab(&t, s, page, alloc);
3098 		spin_unlock_irqrestore(&n->list_lock, flags);
3099 	}
3100 
3101 	for (i = 0; i < t.count; i++) {
3102 		struct location *l = &t.loc[i];
3103 
3104 		if (n > PAGE_SIZE - 100)
3105 			break;
3106 		n += sprintf(buf + n, "%7ld ", l->count);
3107 
3108 		if (l->addr)
3109 			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3110 		else
3111 			n += sprintf(buf + n, "<not-available>");
3112 
3113 		if (l->sum_time != l->min_time) {
3114 			unsigned long remainder;
3115 
3116 			n += sprintf(buf + n, " age=%ld/%ld/%ld",
3117 			l->min_time,
3118 			div_long_long_rem(l->sum_time, l->count, &remainder),
3119 			l->max_time);
3120 		} else
3121 			n += sprintf(buf + n, " age=%ld",
3122 				l->min_time);
3123 
3124 		if (l->min_pid != l->max_pid)
3125 			n += sprintf(buf + n, " pid=%ld-%ld",
3126 				l->min_pid, l->max_pid);
3127 		else
3128 			n += sprintf(buf + n, " pid=%ld",
3129 				l->min_pid);
3130 
3131 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3132 				n < PAGE_SIZE - 60) {
3133 			n += sprintf(buf + n, " cpus=");
3134 			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3135 					l->cpus);
3136 		}
3137 
3138 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3139 				n < PAGE_SIZE - 60) {
3140 			n += sprintf(buf + n, " nodes=");
3141 			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3142 					l->nodes);
3143 		}
3144 
3145 		n += sprintf(buf + n, "\n");
3146 	}
3147 
3148 	free_loc_track(&t);
3149 	if (!t.count)
3150 		n += sprintf(buf, "No data\n");
3151 	return n;
3152 }
3153 
3154 static unsigned long count_partial(struct kmem_cache_node *n)
3155 {
3156 	unsigned long flags;
3157 	unsigned long x = 0;
3158 	struct page *page;
3159 
3160 	spin_lock_irqsave(&n->list_lock, flags);
3161 	list_for_each_entry(page, &n->partial, lru)
3162 		x += page->inuse;
3163 	spin_unlock_irqrestore(&n->list_lock, flags);
3164 	return x;
3165 }
3166 
3167 enum slab_stat_type {
3168 	SL_FULL,
3169 	SL_PARTIAL,
3170 	SL_CPU,
3171 	SL_OBJECTS
3172 };
3173 
3174 #define SO_FULL		(1 << SL_FULL)
3175 #define SO_PARTIAL	(1 << SL_PARTIAL)
3176 #define SO_CPU		(1 << SL_CPU)
3177 #define SO_OBJECTS	(1 << SL_OBJECTS)
3178 
3179 static unsigned long slab_objects(struct kmem_cache *s,
3180 			char *buf, unsigned long flags)
3181 {
3182 	unsigned long total = 0;
3183 	int cpu;
3184 	int node;
3185 	int x;
3186 	unsigned long *nodes;
3187 	unsigned long *per_cpu;
3188 
3189 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3190 	per_cpu = nodes + nr_node_ids;
3191 
3192 	for_each_possible_cpu(cpu) {
3193 		struct page *page = s->cpu_slab[cpu];
3194 		int node;
3195 
3196 		if (page) {
3197 			node = page_to_nid(page);
3198 			if (flags & SO_CPU) {
3199 				int x = 0;
3200 
3201 				if (flags & SO_OBJECTS)
3202 					x = page->inuse;
3203 				else
3204 					x = 1;
3205 				total += x;
3206 				nodes[node] += x;
3207 			}
3208 			per_cpu[node]++;
3209 		}
3210 	}
3211 
3212 	for_each_online_node(node) {
3213 		struct kmem_cache_node *n = get_node(s, node);
3214 
3215 		if (flags & SO_PARTIAL) {
3216 			if (flags & SO_OBJECTS)
3217 				x = count_partial(n);
3218 			else
3219 				x = n->nr_partial;
3220 			total += x;
3221 			nodes[node] += x;
3222 		}
3223 
3224 		if (flags & SO_FULL) {
3225 			int full_slabs = atomic_read(&n->nr_slabs)
3226 					- per_cpu[node]
3227 					- n->nr_partial;
3228 
3229 			if (flags & SO_OBJECTS)
3230 				x = full_slabs * s->objects;
3231 			else
3232 				x = full_slabs;
3233 			total += x;
3234 			nodes[node] += x;
3235 		}
3236 	}
3237 
3238 	x = sprintf(buf, "%lu", total);
3239 #ifdef CONFIG_NUMA
3240 	for_each_online_node(node)
3241 		if (nodes[node])
3242 			x += sprintf(buf + x, " N%d=%lu",
3243 					node, nodes[node]);
3244 #endif
3245 	kfree(nodes);
3246 	return x + sprintf(buf + x, "\n");
3247 }
3248 
3249 static int any_slab_objects(struct kmem_cache *s)
3250 {
3251 	int node;
3252 	int cpu;
3253 
3254 	for_each_possible_cpu(cpu)
3255 		if (s->cpu_slab[cpu])
3256 			return 1;
3257 
3258 	for_each_node(node) {
3259 		struct kmem_cache_node *n = get_node(s, node);
3260 
3261 		if (n->nr_partial || atomic_read(&n->nr_slabs))
3262 			return 1;
3263 	}
3264 	return 0;
3265 }
3266 
3267 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3268 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3269 
3270 struct slab_attribute {
3271 	struct attribute attr;
3272 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3273 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3274 };
3275 
3276 #define SLAB_ATTR_RO(_name) \
3277 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3278 
3279 #define SLAB_ATTR(_name) \
3280 	static struct slab_attribute _name##_attr =  \
3281 	__ATTR(_name, 0644, _name##_show, _name##_store)
3282 
3283 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3284 {
3285 	return sprintf(buf, "%d\n", s->size);
3286 }
3287 SLAB_ATTR_RO(slab_size);
3288 
3289 static ssize_t align_show(struct kmem_cache *s, char *buf)
3290 {
3291 	return sprintf(buf, "%d\n", s->align);
3292 }
3293 SLAB_ATTR_RO(align);
3294 
3295 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3296 {
3297 	return sprintf(buf, "%d\n", s->objsize);
3298 }
3299 SLAB_ATTR_RO(object_size);
3300 
3301 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3302 {
3303 	return sprintf(buf, "%d\n", s->objects);
3304 }
3305 SLAB_ATTR_RO(objs_per_slab);
3306 
3307 static ssize_t order_show(struct kmem_cache *s, char *buf)
3308 {
3309 	return sprintf(buf, "%d\n", s->order);
3310 }
3311 SLAB_ATTR_RO(order);
3312 
3313 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3314 {
3315 	if (s->ctor) {
3316 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3317 
3318 		return n + sprintf(buf + n, "\n");
3319 	}
3320 	return 0;
3321 }
3322 SLAB_ATTR_RO(ctor);
3323 
3324 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3325 {
3326 	return sprintf(buf, "%d\n", s->refcount - 1);
3327 }
3328 SLAB_ATTR_RO(aliases);
3329 
3330 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3331 {
3332 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3333 }
3334 SLAB_ATTR_RO(slabs);
3335 
3336 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3337 {
3338 	return slab_objects(s, buf, SO_PARTIAL);
3339 }
3340 SLAB_ATTR_RO(partial);
3341 
3342 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3343 {
3344 	return slab_objects(s, buf, SO_CPU);
3345 }
3346 SLAB_ATTR_RO(cpu_slabs);
3347 
3348 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3349 {
3350 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3351 }
3352 SLAB_ATTR_RO(objects);
3353 
3354 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3355 {
3356 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3357 }
3358 
3359 static ssize_t sanity_checks_store(struct kmem_cache *s,
3360 				const char *buf, size_t length)
3361 {
3362 	s->flags &= ~SLAB_DEBUG_FREE;
3363 	if (buf[0] == '1')
3364 		s->flags |= SLAB_DEBUG_FREE;
3365 	return length;
3366 }
3367 SLAB_ATTR(sanity_checks);
3368 
3369 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3370 {
3371 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3372 }
3373 
3374 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3375 							size_t length)
3376 {
3377 	s->flags &= ~SLAB_TRACE;
3378 	if (buf[0] == '1')
3379 		s->flags |= SLAB_TRACE;
3380 	return length;
3381 }
3382 SLAB_ATTR(trace);
3383 
3384 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3385 {
3386 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3387 }
3388 
3389 static ssize_t reclaim_account_store(struct kmem_cache *s,
3390 				const char *buf, size_t length)
3391 {
3392 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3393 	if (buf[0] == '1')
3394 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3395 	return length;
3396 }
3397 SLAB_ATTR(reclaim_account);
3398 
3399 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3400 {
3401 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3402 }
3403 SLAB_ATTR_RO(hwcache_align);
3404 
3405 #ifdef CONFIG_ZONE_DMA
3406 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3407 {
3408 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3409 }
3410 SLAB_ATTR_RO(cache_dma);
3411 #endif
3412 
3413 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3414 {
3415 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3416 }
3417 SLAB_ATTR_RO(destroy_by_rcu);
3418 
3419 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3420 {
3421 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3422 }
3423 
3424 static ssize_t red_zone_store(struct kmem_cache *s,
3425 				const char *buf, size_t length)
3426 {
3427 	if (any_slab_objects(s))
3428 		return -EBUSY;
3429 
3430 	s->flags &= ~SLAB_RED_ZONE;
3431 	if (buf[0] == '1')
3432 		s->flags |= SLAB_RED_ZONE;
3433 	calculate_sizes(s);
3434 	return length;
3435 }
3436 SLAB_ATTR(red_zone);
3437 
3438 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3439 {
3440 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3441 }
3442 
3443 static ssize_t poison_store(struct kmem_cache *s,
3444 				const char *buf, size_t length)
3445 {
3446 	if (any_slab_objects(s))
3447 		return -EBUSY;
3448 
3449 	s->flags &= ~SLAB_POISON;
3450 	if (buf[0] == '1')
3451 		s->flags |= SLAB_POISON;
3452 	calculate_sizes(s);
3453 	return length;
3454 }
3455 SLAB_ATTR(poison);
3456 
3457 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3458 {
3459 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3460 }
3461 
3462 static ssize_t store_user_store(struct kmem_cache *s,
3463 				const char *buf, size_t length)
3464 {
3465 	if (any_slab_objects(s))
3466 		return -EBUSY;
3467 
3468 	s->flags &= ~SLAB_STORE_USER;
3469 	if (buf[0] == '1')
3470 		s->flags |= SLAB_STORE_USER;
3471 	calculate_sizes(s);
3472 	return length;
3473 }
3474 SLAB_ATTR(store_user);
3475 
3476 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3477 {
3478 	return 0;
3479 }
3480 
3481 static ssize_t validate_store(struct kmem_cache *s,
3482 			const char *buf, size_t length)
3483 {
3484 	int ret = -EINVAL;
3485 
3486 	if (buf[0] == '1') {
3487 		ret = validate_slab_cache(s);
3488 		if (ret >= 0)
3489 			ret = length;
3490 	}
3491 	return ret;
3492 }
3493 SLAB_ATTR(validate);
3494 
3495 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3496 {
3497 	return 0;
3498 }
3499 
3500 static ssize_t shrink_store(struct kmem_cache *s,
3501 			const char *buf, size_t length)
3502 {
3503 	if (buf[0] == '1') {
3504 		int rc = kmem_cache_shrink(s);
3505 
3506 		if (rc)
3507 			return rc;
3508 	} else
3509 		return -EINVAL;
3510 	return length;
3511 }
3512 SLAB_ATTR(shrink);
3513 
3514 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3515 {
3516 	if (!(s->flags & SLAB_STORE_USER))
3517 		return -ENOSYS;
3518 	return list_locations(s, buf, TRACK_ALLOC);
3519 }
3520 SLAB_ATTR_RO(alloc_calls);
3521 
3522 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3523 {
3524 	if (!(s->flags & SLAB_STORE_USER))
3525 		return -ENOSYS;
3526 	return list_locations(s, buf, TRACK_FREE);
3527 }
3528 SLAB_ATTR_RO(free_calls);
3529 
3530 #ifdef CONFIG_NUMA
3531 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3532 {
3533 	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3534 }
3535 
3536 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3537 				const char *buf, size_t length)
3538 {
3539 	int n = simple_strtoul(buf, NULL, 10);
3540 
3541 	if (n < 100)
3542 		s->defrag_ratio = n * 10;
3543 	return length;
3544 }
3545 SLAB_ATTR(defrag_ratio);
3546 #endif
3547 
3548 static struct attribute * slab_attrs[] = {
3549 	&slab_size_attr.attr,
3550 	&object_size_attr.attr,
3551 	&objs_per_slab_attr.attr,
3552 	&order_attr.attr,
3553 	&objects_attr.attr,
3554 	&slabs_attr.attr,
3555 	&partial_attr.attr,
3556 	&cpu_slabs_attr.attr,
3557 	&ctor_attr.attr,
3558 	&aliases_attr.attr,
3559 	&align_attr.attr,
3560 	&sanity_checks_attr.attr,
3561 	&trace_attr.attr,
3562 	&hwcache_align_attr.attr,
3563 	&reclaim_account_attr.attr,
3564 	&destroy_by_rcu_attr.attr,
3565 	&red_zone_attr.attr,
3566 	&poison_attr.attr,
3567 	&store_user_attr.attr,
3568 	&validate_attr.attr,
3569 	&shrink_attr.attr,
3570 	&alloc_calls_attr.attr,
3571 	&free_calls_attr.attr,
3572 #ifdef CONFIG_ZONE_DMA
3573 	&cache_dma_attr.attr,
3574 #endif
3575 #ifdef CONFIG_NUMA
3576 	&defrag_ratio_attr.attr,
3577 #endif
3578 	NULL
3579 };
3580 
3581 static struct attribute_group slab_attr_group = {
3582 	.attrs = slab_attrs,
3583 };
3584 
3585 static ssize_t slab_attr_show(struct kobject *kobj,
3586 				struct attribute *attr,
3587 				char *buf)
3588 {
3589 	struct slab_attribute *attribute;
3590 	struct kmem_cache *s;
3591 	int err;
3592 
3593 	attribute = to_slab_attr(attr);
3594 	s = to_slab(kobj);
3595 
3596 	if (!attribute->show)
3597 		return -EIO;
3598 
3599 	err = attribute->show(s, buf);
3600 
3601 	return err;
3602 }
3603 
3604 static ssize_t slab_attr_store(struct kobject *kobj,
3605 				struct attribute *attr,
3606 				const char *buf, size_t len)
3607 {
3608 	struct slab_attribute *attribute;
3609 	struct kmem_cache *s;
3610 	int err;
3611 
3612 	attribute = to_slab_attr(attr);
3613 	s = to_slab(kobj);
3614 
3615 	if (!attribute->store)
3616 		return -EIO;
3617 
3618 	err = attribute->store(s, buf, len);
3619 
3620 	return err;
3621 }
3622 
3623 static struct sysfs_ops slab_sysfs_ops = {
3624 	.show = slab_attr_show,
3625 	.store = slab_attr_store,
3626 };
3627 
3628 static struct kobj_type slab_ktype = {
3629 	.sysfs_ops = &slab_sysfs_ops,
3630 };
3631 
3632 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3633 {
3634 	struct kobj_type *ktype = get_ktype(kobj);
3635 
3636 	if (ktype == &slab_ktype)
3637 		return 1;
3638 	return 0;
3639 }
3640 
3641 static struct kset_uevent_ops slab_uevent_ops = {
3642 	.filter = uevent_filter,
3643 };
3644 
3645 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3646 
3647 #define ID_STR_LENGTH 64
3648 
3649 /* Create a unique string id for a slab cache:
3650  * format
3651  * :[flags-]size:[memory address of kmemcache]
3652  */
3653 static char *create_unique_id(struct kmem_cache *s)
3654 {
3655 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3656 	char *p = name;
3657 
3658 	BUG_ON(!name);
3659 
3660 	*p++ = ':';
3661 	/*
3662 	 * First flags affecting slabcache operations. We will only
3663 	 * get here for aliasable slabs so we do not need to support
3664 	 * too many flags. The flags here must cover all flags that
3665 	 * are matched during merging to guarantee that the id is
3666 	 * unique.
3667 	 */
3668 	if (s->flags & SLAB_CACHE_DMA)
3669 		*p++ = 'd';
3670 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3671 		*p++ = 'a';
3672 	if (s->flags & SLAB_DEBUG_FREE)
3673 		*p++ = 'F';
3674 	if (p != name + 1)
3675 		*p++ = '-';
3676 	p += sprintf(p, "%07d", s->size);
3677 	BUG_ON(p > name + ID_STR_LENGTH - 1);
3678 	return name;
3679 }
3680 
3681 static int sysfs_slab_add(struct kmem_cache *s)
3682 {
3683 	int err;
3684 	const char *name;
3685 	int unmergeable;
3686 
3687 	if (slab_state < SYSFS)
3688 		/* Defer until later */
3689 		return 0;
3690 
3691 	unmergeable = slab_unmergeable(s);
3692 	if (unmergeable) {
3693 		/*
3694 		 * Slabcache can never be merged so we can use the name proper.
3695 		 * This is typically the case for debug situations. In that
3696 		 * case we can catch duplicate names easily.
3697 		 */
3698 		sysfs_remove_link(&slab_subsys.kobj, s->name);
3699 		name = s->name;
3700 	} else {
3701 		/*
3702 		 * Create a unique name for the slab as a target
3703 		 * for the symlinks.
3704 		 */
3705 		name = create_unique_id(s);
3706 	}
3707 
3708 	kobj_set_kset_s(s, slab_subsys);
3709 	kobject_set_name(&s->kobj, name);
3710 	kobject_init(&s->kobj);
3711 	err = kobject_add(&s->kobj);
3712 	if (err)
3713 		return err;
3714 
3715 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
3716 	if (err)
3717 		return err;
3718 	kobject_uevent(&s->kobj, KOBJ_ADD);
3719 	if (!unmergeable) {
3720 		/* Setup first alias */
3721 		sysfs_slab_alias(s, s->name);
3722 		kfree(name);
3723 	}
3724 	return 0;
3725 }
3726 
3727 static void sysfs_slab_remove(struct kmem_cache *s)
3728 {
3729 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
3730 	kobject_del(&s->kobj);
3731 }
3732 
3733 /*
3734  * Need to buffer aliases during bootup until sysfs becomes
3735  * available lest we loose that information.
3736  */
3737 struct saved_alias {
3738 	struct kmem_cache *s;
3739 	const char *name;
3740 	struct saved_alias *next;
3741 };
3742 
3743 static struct saved_alias *alias_list;
3744 
3745 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3746 {
3747 	struct saved_alias *al;
3748 
3749 	if (slab_state == SYSFS) {
3750 		/*
3751 		 * If we have a leftover link then remove it.
3752 		 */
3753 		sysfs_remove_link(&slab_subsys.kobj, name);
3754 		return sysfs_create_link(&slab_subsys.kobj,
3755 						&s->kobj, name);
3756 	}
3757 
3758 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3759 	if (!al)
3760 		return -ENOMEM;
3761 
3762 	al->s = s;
3763 	al->name = name;
3764 	al->next = alias_list;
3765 	alias_list = al;
3766 	return 0;
3767 }
3768 
3769 static int __init slab_sysfs_init(void)
3770 {
3771 	struct kmem_cache *s;
3772 	int err;
3773 
3774 	err = subsystem_register(&slab_subsys);
3775 	if (err) {
3776 		printk(KERN_ERR "Cannot register slab subsystem.\n");
3777 		return -ENOSYS;
3778 	}
3779 
3780 	slab_state = SYSFS;
3781 
3782 	list_for_each_entry(s, &slab_caches, list) {
3783 		err = sysfs_slab_add(s);
3784 		BUG_ON(err);
3785 	}
3786 
3787 	while (alias_list) {
3788 		struct saved_alias *al = alias_list;
3789 
3790 		alias_list = alias_list->next;
3791 		err = sysfs_slab_alias(al->s, al->name);
3792 		BUG_ON(err);
3793 		kfree(al);
3794 	}
3795 
3796 	resiliency_test();
3797 	return 0;
3798 }
3799 
3800 __initcall(slab_sysfs_init);
3801 #endif
3802