xref: /linux/mm/slub.c (revision 8a7c601e14576a22c2bbf7f67455ccf3f3d2737f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/node.h>
27 #include <linux/kmsan.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/mempolicy.h>
31 #include <linux/ctype.h>
32 #include <linux/stackdepot.h>
33 #include <linux/debugobjects.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kfence.h>
36 #include <linux/memory.h>
37 #include <linux/math64.h>
38 #include <linux/fault-inject.h>
39 #include <linux/kmemleak.h>
40 #include <linux/stacktrace.h>
41 #include <linux/prefetch.h>
42 #include <linux/memcontrol.h>
43 #include <linux/random.h>
44 #include <kunit/test.h>
45 #include <kunit/test-bug.h>
46 #include <linux/sort.h>
47 #include <linux/irq_work.h>
48 #include <linux/kprobes.h>
49 #include <linux/debugfs.h>
50 #include <trace/events/kmem.h>
51 
52 #include "internal.h"
53 
54 /*
55  * Lock order:
56  *   1. slab_mutex (Global Mutex)
57  *   2. node->list_lock (Spinlock)
58  *   3. kmem_cache->cpu_slab->lock (Local lock)
59  *   4. slab_lock(slab) (Only on some arches)
60  *   5. object_map_lock (Only for debugging)
61  *
62  *   slab_mutex
63  *
64  *   The role of the slab_mutex is to protect the list of all the slabs
65  *   and to synchronize major metadata changes to slab cache structures.
66  *   Also synchronizes memory hotplug callbacks.
67  *
68  *   slab_lock
69  *
70  *   The slab_lock is a wrapper around the page lock, thus it is a bit
71  *   spinlock.
72  *
73  *   The slab_lock is only used on arches that do not have the ability
74  *   to do a cmpxchg_double. It only protects:
75  *
76  *	A. slab->freelist	-> List of free objects in a slab
77  *	B. slab->inuse		-> Number of objects in use
78  *	C. slab->objects	-> Number of objects in slab
79  *	D. slab->frozen		-> frozen state
80  *
81  *   Frozen slabs
82  *
83  *   If a slab is frozen then it is exempt from list management. It is
84  *   the cpu slab which is actively allocated from by the processor that
85  *   froze it and it is not on any list. The processor that froze the
86  *   slab is the one who can perform list operations on the slab. Other
87  *   processors may put objects onto the freelist but the processor that
88  *   froze the slab is the only one that can retrieve the objects from the
89  *   slab's freelist.
90  *
91  *   CPU partial slabs
92  *
93  *   The partially empty slabs cached on the CPU partial list are used
94  *   for performance reasons, which speeds up the allocation process.
95  *   These slabs are not frozen, but are also exempt from list management,
96  *   by clearing the SL_partial flag when moving out of the node
97  *   partial list. Please see __slab_free() for more details.
98  *
99  *   To sum up, the current scheme is:
100  *   - node partial slab: SL_partial && !frozen
101  *   - cpu partial slab: !SL_partial && !frozen
102  *   - cpu slab: !SL_partial && frozen
103  *   - full slab: !SL_partial && !frozen
104  *
105  *   list_lock
106  *
107  *   The list_lock protects the partial and full list on each node and
108  *   the partial slab counter. If taken then no new slabs may be added or
109  *   removed from the lists nor make the number of partial slabs be modified.
110  *   (Note that the total number of slabs is an atomic value that may be
111  *   modified without taking the list lock).
112  *
113  *   The list_lock is a centralized lock and thus we avoid taking it as
114  *   much as possible. As long as SLUB does not have to handle partial
115  *   slabs, operations can continue without any centralized lock. F.e.
116  *   allocating a long series of objects that fill up slabs does not require
117  *   the list lock.
118  *
119  *   For debug caches, all allocations are forced to go through a list_lock
120  *   protected region to serialize against concurrent validation.
121  *
122  *   cpu_slab->lock local lock
123  *
124  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
125  *   except the stat counters. This is a percpu structure manipulated only by
126  *   the local cpu, so the lock protects against being preempted or interrupted
127  *   by an irq. Fast path operations rely on lockless operations instead.
128  *
129  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
130  *   which means the lockless fastpath cannot be used as it might interfere with
131  *   an in-progress slow path operations. In this case the local lock is always
132  *   taken but it still utilizes the freelist for the common operations.
133  *
134  *   lockless fastpaths
135  *
136  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
137  *   are fully lockless when satisfied from the percpu slab (and when
138  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
139  *   They also don't disable preemption or migration or irqs. They rely on
140  *   the transaction id (tid) field to detect being preempted or moved to
141  *   another cpu.
142  *
143  *   irq, preemption, migration considerations
144  *
145  *   Interrupts are disabled as part of list_lock or local_lock operations, or
146  *   around the slab_lock operation, in order to make the slab allocator safe
147  *   to use in the context of an irq.
148  *
149  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
150  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
151  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
152  *   doesn't have to be revalidated in each section protected by the local lock.
153  *
154  * SLUB assigns one slab for allocation to each processor.
155  * Allocations only occur from these slabs called cpu slabs.
156  *
157  * Slabs with free elements are kept on a partial list and during regular
158  * operations no list for full slabs is used. If an object in a full slab is
159  * freed then the slab will show up again on the partial lists.
160  * We track full slabs for debugging purposes though because otherwise we
161  * cannot scan all objects.
162  *
163  * Slabs are freed when they become empty. Teardown and setup is
164  * minimal so we rely on the page allocators per cpu caches for
165  * fast frees and allocs.
166  *
167  * slab->frozen		The slab is frozen and exempt from list processing.
168  * 			This means that the slab is dedicated to a purpose
169  * 			such as satisfying allocations for a specific
170  * 			processor. Objects may be freed in the slab while
171  * 			it is frozen but slab_free will then skip the usual
172  * 			list operations. It is up to the processor holding
173  * 			the slab to integrate the slab into the slab lists
174  * 			when the slab is no longer needed.
175  *
176  * 			One use of this flag is to mark slabs that are
177  * 			used for allocations. Then such a slab becomes a cpu
178  * 			slab. The cpu slab may be equipped with an additional
179  * 			freelist that allows lockless access to
180  * 			free objects in addition to the regular freelist
181  * 			that requires the slab lock.
182  *
183  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
184  * 			options set. This moves	slab handling out of
185  * 			the fast path and disables lockless freelists.
186  */
187 
188 /**
189  * enum slab_flags - How the slab flags bits are used.
190  * @SL_locked: Is locked with slab_lock()
191  * @SL_partial: On the per-node partial list
192  * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
193  *
194  * The slab flags share space with the page flags but some bits have
195  * different interpretations.  The high bits are used for information
196  * like zone/node/section.
197  */
198 enum slab_flags {
199 	SL_locked = PG_locked,
200 	SL_partial = PG_workingset,	/* Historical reasons for this bit */
201 	SL_pfmemalloc = PG_active,	/* Historical reasons for this bit */
202 };
203 
204 /*
205  * We could simply use migrate_disable()/enable() but as long as it's a
206  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
207  */
208 #ifndef CONFIG_PREEMPT_RT
209 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
210 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
211 #define USE_LOCKLESS_FAST_PATH()	(true)
212 #else
213 #define slub_get_cpu_ptr(var)		\
214 ({					\
215 	migrate_disable();		\
216 	this_cpu_ptr(var);		\
217 })
218 #define slub_put_cpu_ptr(var)		\
219 do {					\
220 	(void)(var);			\
221 	migrate_enable();		\
222 } while (0)
223 #define USE_LOCKLESS_FAST_PATH()	(false)
224 #endif
225 
226 #ifndef CONFIG_SLUB_TINY
227 #define __fastpath_inline __always_inline
228 #else
229 #define __fastpath_inline
230 #endif
231 
232 #ifdef CONFIG_SLUB_DEBUG
233 #ifdef CONFIG_SLUB_DEBUG_ON
234 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
235 #else
236 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
237 #endif
238 #endif		/* CONFIG_SLUB_DEBUG */
239 
240 #ifdef CONFIG_NUMA
241 static DEFINE_STATIC_KEY_FALSE(strict_numa);
242 #endif
243 
244 /* Structure holding parameters for get_partial() call chain */
245 struct partial_context {
246 	gfp_t flags;
247 	unsigned int orig_size;
248 	void *object;
249 };
250 
251 static inline bool kmem_cache_debug(struct kmem_cache *s)
252 {
253 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
254 }
255 
256 void *fixup_red_left(struct kmem_cache *s, void *p)
257 {
258 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
259 		p += s->red_left_pad;
260 
261 	return p;
262 }
263 
264 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
265 {
266 #ifdef CONFIG_SLUB_CPU_PARTIAL
267 	return !kmem_cache_debug(s);
268 #else
269 	return false;
270 #endif
271 }
272 
273 /*
274  * Issues still to be resolved:
275  *
276  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
277  *
278  * - Variable sizing of the per node arrays
279  */
280 
281 /* Enable to log cmpxchg failures */
282 #undef SLUB_DEBUG_CMPXCHG
283 
284 #ifndef CONFIG_SLUB_TINY
285 /*
286  * Minimum number of partial slabs. These will be left on the partial
287  * lists even if they are empty. kmem_cache_shrink may reclaim them.
288  */
289 #define MIN_PARTIAL 5
290 
291 /*
292  * Maximum number of desirable partial slabs.
293  * The existence of more partial slabs makes kmem_cache_shrink
294  * sort the partial list by the number of objects in use.
295  */
296 #define MAX_PARTIAL 10
297 #else
298 #define MIN_PARTIAL 0
299 #define MAX_PARTIAL 0
300 #endif
301 
302 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
303 				SLAB_POISON | SLAB_STORE_USER)
304 
305 /*
306  * These debug flags cannot use CMPXCHG because there might be consistency
307  * issues when checking or reading debug information
308  */
309 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
310 				SLAB_TRACE)
311 
312 
313 /*
314  * Debugging flags that require metadata to be stored in the slab.  These get
315  * disabled when slab_debug=O is used and a cache's min order increases with
316  * metadata.
317  */
318 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
319 
320 #define OO_SHIFT	16
321 #define OO_MASK		((1 << OO_SHIFT) - 1)
322 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
323 
324 /* Internal SLUB flags */
325 /* Poison object */
326 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
327 /* Use cmpxchg_double */
328 
329 #ifdef system_has_freelist_aba
330 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
331 #else
332 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
333 #endif
334 
335 /*
336  * Tracking user of a slab.
337  */
338 #define TRACK_ADDRS_COUNT 16
339 struct track {
340 	unsigned long addr;	/* Called from address */
341 #ifdef CONFIG_STACKDEPOT
342 	depot_stack_handle_t handle;
343 #endif
344 	int cpu;		/* Was running on cpu */
345 	int pid;		/* Pid context */
346 	unsigned long when;	/* When did the operation occur */
347 };
348 
349 enum track_item { TRACK_ALLOC, TRACK_FREE };
350 
351 #ifdef SLAB_SUPPORTS_SYSFS
352 static int sysfs_slab_add(struct kmem_cache *);
353 static int sysfs_slab_alias(struct kmem_cache *, const char *);
354 #else
355 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
356 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
357 							{ return 0; }
358 #endif
359 
360 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
361 static void debugfs_slab_add(struct kmem_cache *);
362 #else
363 static inline void debugfs_slab_add(struct kmem_cache *s) { }
364 #endif
365 
366 enum stat_item {
367 	ALLOC_PCS,		/* Allocation from percpu sheaf */
368 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
369 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
370 	FREE_PCS,		/* Free to percpu sheaf */
371 	FREE_RCU_SHEAF,		/* Free to rcu_free sheaf */
372 	FREE_RCU_SHEAF_FAIL,	/* Failed to free to a rcu_free sheaf */
373 	FREE_FASTPATH,		/* Free to cpu slab */
374 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
375 	FREE_FROZEN,		/* Freeing to frozen slab */
376 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
377 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
378 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
379 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
380 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
381 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
382 	FREE_SLAB,		/* Slab freed to the page allocator */
383 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
384 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
385 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
386 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
387 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
388 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
389 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
390 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
391 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
392 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
393 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
394 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
395 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
396 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
397 	SHEAF_FLUSH,		/* Objects flushed from a sheaf */
398 	SHEAF_REFILL,		/* Objects refilled to a sheaf */
399 	SHEAF_ALLOC,		/* Allocation of an empty sheaf */
400 	SHEAF_FREE,		/* Freeing of an empty sheaf */
401 	BARN_GET,		/* Got full sheaf from barn */
402 	BARN_GET_FAIL,		/* Failed to get full sheaf from barn */
403 	BARN_PUT,		/* Put full sheaf to barn */
404 	BARN_PUT_FAIL,		/* Failed to put full sheaf to barn */
405 	SHEAF_PREFILL_FAST,	/* Sheaf prefill grabbed the spare sheaf */
406 	SHEAF_PREFILL_SLOW,	/* Sheaf prefill found no spare sheaf */
407 	SHEAF_PREFILL_OVERSIZE,	/* Allocation of oversize sheaf for prefill */
408 	SHEAF_RETURN_FAST,	/* Sheaf return reattached spare sheaf */
409 	SHEAF_RETURN_SLOW,	/* Sheaf return could not reattach spare */
410 	NR_SLUB_STAT_ITEMS
411 };
412 
413 #ifndef CONFIG_SLUB_TINY
414 /*
415  * When changing the layout, make sure freelist and tid are still compatible
416  * with this_cpu_cmpxchg_double() alignment requirements.
417  */
418 struct kmem_cache_cpu {
419 	union {
420 		struct {
421 			void **freelist;	/* Pointer to next available object */
422 			unsigned long tid;	/* Globally unique transaction id */
423 		};
424 		freelist_aba_t freelist_tid;
425 	};
426 	struct slab *slab;	/* The slab from which we are allocating */
427 #ifdef CONFIG_SLUB_CPU_PARTIAL
428 	struct slab *partial;	/* Partially allocated slabs */
429 #endif
430 	local_trylock_t lock;	/* Protects the fields above */
431 #ifdef CONFIG_SLUB_STATS
432 	unsigned int stat[NR_SLUB_STAT_ITEMS];
433 #endif
434 };
435 #endif /* CONFIG_SLUB_TINY */
436 
437 static inline void stat(const struct kmem_cache *s, enum stat_item si)
438 {
439 #ifdef CONFIG_SLUB_STATS
440 	/*
441 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
442 	 * avoid this_cpu_add()'s irq-disable overhead.
443 	 */
444 	raw_cpu_inc(s->cpu_slab->stat[si]);
445 #endif
446 }
447 
448 static inline
449 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
450 {
451 #ifdef CONFIG_SLUB_STATS
452 	raw_cpu_add(s->cpu_slab->stat[si], v);
453 #endif
454 }
455 
456 #define MAX_FULL_SHEAVES	10
457 #define MAX_EMPTY_SHEAVES	10
458 
459 struct node_barn {
460 	spinlock_t lock;
461 	struct list_head sheaves_full;
462 	struct list_head sheaves_empty;
463 	unsigned int nr_full;
464 	unsigned int nr_empty;
465 };
466 
467 struct slab_sheaf {
468 	union {
469 		struct rcu_head rcu_head;
470 		struct list_head barn_list;
471 		/* only used for prefilled sheafs */
472 		unsigned int capacity;
473 	};
474 	struct kmem_cache *cache;
475 	unsigned int size;
476 	int node; /* only used for rcu_sheaf */
477 	void *objects[];
478 };
479 
480 struct slub_percpu_sheaves {
481 	local_trylock_t lock;
482 	struct slab_sheaf *main; /* never NULL when unlocked */
483 	struct slab_sheaf *spare; /* empty or full, may be NULL */
484 	struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
485 };
486 
487 /*
488  * The slab lists for all objects.
489  */
490 struct kmem_cache_node {
491 	spinlock_t list_lock;
492 	unsigned long nr_partial;
493 	struct list_head partial;
494 #ifdef CONFIG_SLUB_DEBUG
495 	atomic_long_t nr_slabs;
496 	atomic_long_t total_objects;
497 	struct list_head full;
498 #endif
499 	struct node_barn *barn;
500 };
501 
502 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
503 {
504 	return s->node[node];
505 }
506 
507 /*
508  * Get the barn of the current cpu's closest memory node. It may not exist on
509  * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES
510  */
511 static inline struct node_barn *get_barn(struct kmem_cache *s)
512 {
513 	struct kmem_cache_node *n = get_node(s, numa_mem_id());
514 
515 	if (!n)
516 		return NULL;
517 
518 	return n->barn;
519 }
520 
521 /*
522  * Iterator over all nodes. The body will be executed for each node that has
523  * a kmem_cache_node structure allocated (which is true for all online nodes)
524  */
525 #define for_each_kmem_cache_node(__s, __node, __n) \
526 	for (__node = 0; __node < nr_node_ids; __node++) \
527 		 if ((__n = get_node(__s, __node)))
528 
529 /*
530  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
531  * Corresponds to node_state[N_MEMORY], but can temporarily
532  * differ during memory hotplug/hotremove operations.
533  * Protected by slab_mutex.
534  */
535 static nodemask_t slab_nodes;
536 
537 /*
538  * Workqueue used for flush_cpu_slab().
539  */
540 static struct workqueue_struct *flushwq;
541 
542 struct slub_flush_work {
543 	struct work_struct work;
544 	struct kmem_cache *s;
545 	bool skip;
546 };
547 
548 static DEFINE_MUTEX(flush_lock);
549 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
550 
551 /********************************************************************
552  * 			Core slab cache functions
553  *******************************************************************/
554 
555 /*
556  * Returns freelist pointer (ptr). With hardening, this is obfuscated
557  * with an XOR of the address where the pointer is held and a per-cache
558  * random number.
559  */
560 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
561 					    void *ptr, unsigned long ptr_addr)
562 {
563 	unsigned long encoded;
564 
565 #ifdef CONFIG_SLAB_FREELIST_HARDENED
566 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
567 #else
568 	encoded = (unsigned long)ptr;
569 #endif
570 	return (freeptr_t){.v = encoded};
571 }
572 
573 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
574 					freeptr_t ptr, unsigned long ptr_addr)
575 {
576 	void *decoded;
577 
578 #ifdef CONFIG_SLAB_FREELIST_HARDENED
579 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
580 #else
581 	decoded = (void *)ptr.v;
582 #endif
583 	return decoded;
584 }
585 
586 static inline void *get_freepointer(struct kmem_cache *s, void *object)
587 {
588 	unsigned long ptr_addr;
589 	freeptr_t p;
590 
591 	object = kasan_reset_tag(object);
592 	ptr_addr = (unsigned long)object + s->offset;
593 	p = *(freeptr_t *)(ptr_addr);
594 	return freelist_ptr_decode(s, p, ptr_addr);
595 }
596 
597 #ifndef CONFIG_SLUB_TINY
598 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
599 {
600 	prefetchw(object + s->offset);
601 }
602 #endif
603 
604 /*
605  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
606  * pointer value in the case the current thread loses the race for the next
607  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
608  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
609  * KMSAN will still check all arguments of cmpxchg because of imperfect
610  * handling of inline assembly.
611  * To work around this problem, we apply __no_kmsan_checks to ensure that
612  * get_freepointer_safe() returns initialized memory.
613  */
614 __no_kmsan_checks
615 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
616 {
617 	unsigned long freepointer_addr;
618 	freeptr_t p;
619 
620 	if (!debug_pagealloc_enabled_static())
621 		return get_freepointer(s, object);
622 
623 	object = kasan_reset_tag(object);
624 	freepointer_addr = (unsigned long)object + s->offset;
625 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
626 	return freelist_ptr_decode(s, p, freepointer_addr);
627 }
628 
629 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
630 {
631 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
632 
633 #ifdef CONFIG_SLAB_FREELIST_HARDENED
634 	BUG_ON(object == fp); /* naive detection of double free or corruption */
635 #endif
636 
637 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
638 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
639 }
640 
641 /*
642  * See comment in calculate_sizes().
643  */
644 static inline bool freeptr_outside_object(struct kmem_cache *s)
645 {
646 	return s->offset >= s->inuse;
647 }
648 
649 /*
650  * Return offset of the end of info block which is inuse + free pointer if
651  * not overlapping with object.
652  */
653 static inline unsigned int get_info_end(struct kmem_cache *s)
654 {
655 	if (freeptr_outside_object(s))
656 		return s->inuse + sizeof(void *);
657 	else
658 		return s->inuse;
659 }
660 
661 /* Loop over all objects in a slab */
662 #define for_each_object(__p, __s, __addr, __objects) \
663 	for (__p = fixup_red_left(__s, __addr); \
664 		__p < (__addr) + (__objects) * (__s)->size; \
665 		__p += (__s)->size)
666 
667 static inline unsigned int order_objects(unsigned int order, unsigned int size)
668 {
669 	return ((unsigned int)PAGE_SIZE << order) / size;
670 }
671 
672 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
673 		unsigned int size)
674 {
675 	struct kmem_cache_order_objects x = {
676 		(order << OO_SHIFT) + order_objects(order, size)
677 	};
678 
679 	return x;
680 }
681 
682 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
683 {
684 	return x.x >> OO_SHIFT;
685 }
686 
687 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
688 {
689 	return x.x & OO_MASK;
690 }
691 
692 #ifdef CONFIG_SLUB_CPU_PARTIAL
693 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
694 {
695 	unsigned int nr_slabs;
696 
697 	s->cpu_partial = nr_objects;
698 
699 	/*
700 	 * We take the number of objects but actually limit the number of
701 	 * slabs on the per cpu partial list, in order to limit excessive
702 	 * growth of the list. For simplicity we assume that the slabs will
703 	 * be half-full.
704 	 */
705 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
706 	s->cpu_partial_slabs = nr_slabs;
707 }
708 
709 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
710 {
711 	return s->cpu_partial_slabs;
712 }
713 #else
714 static inline void
715 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
716 {
717 }
718 
719 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
720 {
721 	return 0;
722 }
723 #endif /* CONFIG_SLUB_CPU_PARTIAL */
724 
725 /*
726  * If network-based swap is enabled, slub must keep track of whether memory
727  * were allocated from pfmemalloc reserves.
728  */
729 static inline bool slab_test_pfmemalloc(const struct slab *slab)
730 {
731 	return test_bit(SL_pfmemalloc, &slab->flags.f);
732 }
733 
734 static inline void slab_set_pfmemalloc(struct slab *slab)
735 {
736 	set_bit(SL_pfmemalloc, &slab->flags.f);
737 }
738 
739 static inline void __slab_clear_pfmemalloc(struct slab *slab)
740 {
741 	__clear_bit(SL_pfmemalloc, &slab->flags.f);
742 }
743 
744 /*
745  * Per slab locking using the pagelock
746  */
747 static __always_inline void slab_lock(struct slab *slab)
748 {
749 	bit_spin_lock(SL_locked, &slab->flags.f);
750 }
751 
752 static __always_inline void slab_unlock(struct slab *slab)
753 {
754 	bit_spin_unlock(SL_locked, &slab->flags.f);
755 }
756 
757 static inline bool
758 __update_freelist_fast(struct slab *slab,
759 		      void *freelist_old, unsigned long counters_old,
760 		      void *freelist_new, unsigned long counters_new)
761 {
762 #ifdef system_has_freelist_aba
763 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
764 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
765 
766 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
767 #else
768 	return false;
769 #endif
770 }
771 
772 static inline bool
773 __update_freelist_slow(struct slab *slab,
774 		      void *freelist_old, unsigned long counters_old,
775 		      void *freelist_new, unsigned long counters_new)
776 {
777 	bool ret = false;
778 
779 	slab_lock(slab);
780 	if (slab->freelist == freelist_old &&
781 	    slab->counters == counters_old) {
782 		slab->freelist = freelist_new;
783 		slab->counters = counters_new;
784 		ret = true;
785 	}
786 	slab_unlock(slab);
787 
788 	return ret;
789 }
790 
791 /*
792  * Interrupts must be disabled (for the fallback code to work right), typically
793  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
794  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
795  * allocation/ free operation in hardirq context. Therefore nothing can
796  * interrupt the operation.
797  */
798 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
799 		void *freelist_old, unsigned long counters_old,
800 		void *freelist_new, unsigned long counters_new,
801 		const char *n)
802 {
803 	bool ret;
804 
805 	if (USE_LOCKLESS_FAST_PATH())
806 		lockdep_assert_irqs_disabled();
807 
808 	if (s->flags & __CMPXCHG_DOUBLE) {
809 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
810 				            freelist_new, counters_new);
811 	} else {
812 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
813 				            freelist_new, counters_new);
814 	}
815 	if (likely(ret))
816 		return true;
817 
818 	cpu_relax();
819 	stat(s, CMPXCHG_DOUBLE_FAIL);
820 
821 #ifdef SLUB_DEBUG_CMPXCHG
822 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
823 #endif
824 
825 	return false;
826 }
827 
828 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
829 		void *freelist_old, unsigned long counters_old,
830 		void *freelist_new, unsigned long counters_new,
831 		const char *n)
832 {
833 	bool ret;
834 
835 	if (s->flags & __CMPXCHG_DOUBLE) {
836 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
837 				            freelist_new, counters_new);
838 	} else {
839 		unsigned long flags;
840 
841 		local_irq_save(flags);
842 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
843 				            freelist_new, counters_new);
844 		local_irq_restore(flags);
845 	}
846 	if (likely(ret))
847 		return true;
848 
849 	cpu_relax();
850 	stat(s, CMPXCHG_DOUBLE_FAIL);
851 
852 #ifdef SLUB_DEBUG_CMPXCHG
853 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
854 #endif
855 
856 	return false;
857 }
858 
859 /*
860  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
861  * family will round up the real request size to these fixed ones, so
862  * there could be an extra area than what is requested. Save the original
863  * request size in the meta data area, for better debug and sanity check.
864  */
865 static inline void set_orig_size(struct kmem_cache *s,
866 				void *object, unsigned int orig_size)
867 {
868 	void *p = kasan_reset_tag(object);
869 
870 	if (!slub_debug_orig_size(s))
871 		return;
872 
873 	p += get_info_end(s);
874 	p += sizeof(struct track) * 2;
875 
876 	*(unsigned int *)p = orig_size;
877 }
878 
879 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
880 {
881 	void *p = kasan_reset_tag(object);
882 
883 	if (is_kfence_address(object))
884 		return kfence_ksize(object);
885 
886 	if (!slub_debug_orig_size(s))
887 		return s->object_size;
888 
889 	p += get_info_end(s);
890 	p += sizeof(struct track) * 2;
891 
892 	return *(unsigned int *)p;
893 }
894 
895 #ifdef CONFIG_SLUB_DEBUG
896 
897 /*
898  * For debugging context when we want to check if the struct slab pointer
899  * appears to be valid.
900  */
901 static inline bool validate_slab_ptr(struct slab *slab)
902 {
903 	return PageSlab(slab_page(slab));
904 }
905 
906 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
907 static DEFINE_SPINLOCK(object_map_lock);
908 
909 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
910 		       struct slab *slab)
911 {
912 	void *addr = slab_address(slab);
913 	void *p;
914 
915 	bitmap_zero(obj_map, slab->objects);
916 
917 	for (p = slab->freelist; p; p = get_freepointer(s, p))
918 		set_bit(__obj_to_index(s, addr, p), obj_map);
919 }
920 
921 #if IS_ENABLED(CONFIG_KUNIT)
922 static bool slab_add_kunit_errors(void)
923 {
924 	struct kunit_resource *resource;
925 
926 	if (!kunit_get_current_test())
927 		return false;
928 
929 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
930 	if (!resource)
931 		return false;
932 
933 	(*(int *)resource->data)++;
934 	kunit_put_resource(resource);
935 	return true;
936 }
937 
938 bool slab_in_kunit_test(void)
939 {
940 	struct kunit_resource *resource;
941 
942 	if (!kunit_get_current_test())
943 		return false;
944 
945 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
946 	if (!resource)
947 		return false;
948 
949 	kunit_put_resource(resource);
950 	return true;
951 }
952 #else
953 static inline bool slab_add_kunit_errors(void) { return false; }
954 #endif
955 
956 static inline unsigned int size_from_object(struct kmem_cache *s)
957 {
958 	if (s->flags & SLAB_RED_ZONE)
959 		return s->size - s->red_left_pad;
960 
961 	return s->size;
962 }
963 
964 static inline void *restore_red_left(struct kmem_cache *s, void *p)
965 {
966 	if (s->flags & SLAB_RED_ZONE)
967 		p -= s->red_left_pad;
968 
969 	return p;
970 }
971 
972 /*
973  * Debug settings:
974  */
975 #if defined(CONFIG_SLUB_DEBUG_ON)
976 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
977 #else
978 static slab_flags_t slub_debug;
979 #endif
980 
981 static char *slub_debug_string;
982 static int disable_higher_order_debug;
983 
984 /*
985  * slub is about to manipulate internal object metadata.  This memory lies
986  * outside the range of the allocated object, so accessing it would normally
987  * be reported by kasan as a bounds error.  metadata_access_enable() is used
988  * to tell kasan that these accesses are OK.
989  */
990 static inline void metadata_access_enable(void)
991 {
992 	kasan_disable_current();
993 	kmsan_disable_current();
994 }
995 
996 static inline void metadata_access_disable(void)
997 {
998 	kmsan_enable_current();
999 	kasan_enable_current();
1000 }
1001 
1002 /*
1003  * Object debugging
1004  */
1005 
1006 /* Verify that a pointer has an address that is valid within a slab page */
1007 static inline int check_valid_pointer(struct kmem_cache *s,
1008 				struct slab *slab, void *object)
1009 {
1010 	void *base;
1011 
1012 	if (!object)
1013 		return 1;
1014 
1015 	base = slab_address(slab);
1016 	object = kasan_reset_tag(object);
1017 	object = restore_red_left(s, object);
1018 	if (object < base || object >= base + slab->objects * s->size ||
1019 		(object - base) % s->size) {
1020 		return 0;
1021 	}
1022 
1023 	return 1;
1024 }
1025 
1026 static void print_section(char *level, char *text, u8 *addr,
1027 			  unsigned int length)
1028 {
1029 	metadata_access_enable();
1030 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
1031 			16, 1, kasan_reset_tag((void *)addr), length, 1);
1032 	metadata_access_disable();
1033 }
1034 
1035 static struct track *get_track(struct kmem_cache *s, void *object,
1036 	enum track_item alloc)
1037 {
1038 	struct track *p;
1039 
1040 	p = object + get_info_end(s);
1041 
1042 	return kasan_reset_tag(p + alloc);
1043 }
1044 
1045 #ifdef CONFIG_STACKDEPOT
1046 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1047 {
1048 	depot_stack_handle_t handle;
1049 	unsigned long entries[TRACK_ADDRS_COUNT];
1050 	unsigned int nr_entries;
1051 
1052 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
1053 	handle = stack_depot_save(entries, nr_entries, gfp_flags);
1054 
1055 	return handle;
1056 }
1057 #else
1058 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1059 {
1060 	return 0;
1061 }
1062 #endif
1063 
1064 static void set_track_update(struct kmem_cache *s, void *object,
1065 			     enum track_item alloc, unsigned long addr,
1066 			     depot_stack_handle_t handle)
1067 {
1068 	struct track *p = get_track(s, object, alloc);
1069 
1070 #ifdef CONFIG_STACKDEPOT
1071 	p->handle = handle;
1072 #endif
1073 	p->addr = addr;
1074 	p->cpu = smp_processor_id();
1075 	p->pid = current->pid;
1076 	p->when = jiffies;
1077 }
1078 
1079 static __always_inline void set_track(struct kmem_cache *s, void *object,
1080 				      enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1081 {
1082 	depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1083 
1084 	set_track_update(s, object, alloc, addr, handle);
1085 }
1086 
1087 static void init_tracking(struct kmem_cache *s, void *object)
1088 {
1089 	struct track *p;
1090 
1091 	if (!(s->flags & SLAB_STORE_USER))
1092 		return;
1093 
1094 	p = get_track(s, object, TRACK_ALLOC);
1095 	memset(p, 0, 2*sizeof(struct track));
1096 }
1097 
1098 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1099 {
1100 	depot_stack_handle_t handle __maybe_unused;
1101 
1102 	if (!t->addr)
1103 		return;
1104 
1105 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1106 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1107 #ifdef CONFIG_STACKDEPOT
1108 	handle = READ_ONCE(t->handle);
1109 	if (handle)
1110 		stack_depot_print(handle);
1111 	else
1112 		pr_err("object allocation/free stack trace missing\n");
1113 #endif
1114 }
1115 
1116 void print_tracking(struct kmem_cache *s, void *object)
1117 {
1118 	unsigned long pr_time = jiffies;
1119 	if (!(s->flags & SLAB_STORE_USER))
1120 		return;
1121 
1122 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1123 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1124 }
1125 
1126 static void print_slab_info(const struct slab *slab)
1127 {
1128 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1129 	       slab, slab->objects, slab->inuse, slab->freelist,
1130 	       &slab->flags.f);
1131 }
1132 
1133 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1134 {
1135 	set_orig_size(s, (void *)object, s->object_size);
1136 }
1137 
1138 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1139 {
1140 	struct va_format vaf;
1141 	va_list args;
1142 
1143 	va_copy(args, argsp);
1144 	vaf.fmt = fmt;
1145 	vaf.va = &args;
1146 	pr_err("=============================================================================\n");
1147 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1148 	pr_err("-----------------------------------------------------------------------------\n\n");
1149 	va_end(args);
1150 }
1151 
1152 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1153 {
1154 	va_list args;
1155 
1156 	va_start(args, fmt);
1157 	__slab_bug(s, fmt, args);
1158 	va_end(args);
1159 }
1160 
1161 __printf(2, 3)
1162 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1163 {
1164 	struct va_format vaf;
1165 	va_list args;
1166 
1167 	if (slab_add_kunit_errors())
1168 		return;
1169 
1170 	va_start(args, fmt);
1171 	vaf.fmt = fmt;
1172 	vaf.va = &args;
1173 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1174 	va_end(args);
1175 }
1176 
1177 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1178 {
1179 	unsigned int off;	/* Offset of last byte */
1180 	u8 *addr = slab_address(slab);
1181 
1182 	print_tracking(s, p);
1183 
1184 	print_slab_info(slab);
1185 
1186 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1187 	       p, p - addr, get_freepointer(s, p));
1188 
1189 	if (s->flags & SLAB_RED_ZONE)
1190 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1191 			      s->red_left_pad);
1192 	else if (p > addr + 16)
1193 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1194 
1195 	print_section(KERN_ERR,         "Object   ", p,
1196 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1197 	if (s->flags & SLAB_RED_ZONE)
1198 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1199 			s->inuse - s->object_size);
1200 
1201 	off = get_info_end(s);
1202 
1203 	if (s->flags & SLAB_STORE_USER)
1204 		off += 2 * sizeof(struct track);
1205 
1206 	if (slub_debug_orig_size(s))
1207 		off += sizeof(unsigned int);
1208 
1209 	off += kasan_metadata_size(s, false);
1210 
1211 	if (off != size_from_object(s))
1212 		/* Beginning of the filler is the free pointer */
1213 		print_section(KERN_ERR, "Padding  ", p + off,
1214 			      size_from_object(s) - off);
1215 }
1216 
1217 static void object_err(struct kmem_cache *s, struct slab *slab,
1218 			u8 *object, const char *reason)
1219 {
1220 	if (slab_add_kunit_errors())
1221 		return;
1222 
1223 	slab_bug(s, reason);
1224 	if (!object || !check_valid_pointer(s, slab, object)) {
1225 		print_slab_info(slab);
1226 		pr_err("Invalid pointer 0x%p\n", object);
1227 	} else {
1228 		print_trailer(s, slab, object);
1229 	}
1230 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1231 
1232 	WARN_ON(1);
1233 }
1234 
1235 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1236 			       void **freelist, void *nextfree)
1237 {
1238 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1239 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1240 		object_err(s, slab, *freelist, "Freechain corrupt");
1241 		*freelist = NULL;
1242 		slab_fix(s, "Isolate corrupted freechain");
1243 		return true;
1244 	}
1245 
1246 	return false;
1247 }
1248 
1249 static void __slab_err(struct slab *slab)
1250 {
1251 	if (slab_in_kunit_test())
1252 		return;
1253 
1254 	print_slab_info(slab);
1255 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1256 
1257 	WARN_ON(1);
1258 }
1259 
1260 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1261 			const char *fmt, ...)
1262 {
1263 	va_list args;
1264 
1265 	if (slab_add_kunit_errors())
1266 		return;
1267 
1268 	va_start(args, fmt);
1269 	__slab_bug(s, fmt, args);
1270 	va_end(args);
1271 
1272 	__slab_err(slab);
1273 }
1274 
1275 static void init_object(struct kmem_cache *s, void *object, u8 val)
1276 {
1277 	u8 *p = kasan_reset_tag(object);
1278 	unsigned int poison_size = s->object_size;
1279 
1280 	if (s->flags & SLAB_RED_ZONE) {
1281 		/*
1282 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1283 		 * the shadow makes it possible to distinguish uninit-value
1284 		 * from use-after-free.
1285 		 */
1286 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1287 					  s->red_left_pad);
1288 
1289 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1290 			/*
1291 			 * Redzone the extra allocated space by kmalloc than
1292 			 * requested, and the poison size will be limited to
1293 			 * the original request size accordingly.
1294 			 */
1295 			poison_size = get_orig_size(s, object);
1296 		}
1297 	}
1298 
1299 	if (s->flags & __OBJECT_POISON) {
1300 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1301 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1302 	}
1303 
1304 	if (s->flags & SLAB_RED_ZONE)
1305 		memset_no_sanitize_memory(p + poison_size, val,
1306 					  s->inuse - poison_size);
1307 }
1308 
1309 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1310 						void *from, void *to)
1311 {
1312 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1313 	memset(from, data, to - from);
1314 }
1315 
1316 #ifdef CONFIG_KMSAN
1317 #define pad_check_attributes noinline __no_kmsan_checks
1318 #else
1319 #define pad_check_attributes
1320 #endif
1321 
1322 static pad_check_attributes int
1323 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1324 		       u8 *object, const char *what, u8 *start, unsigned int value,
1325 		       unsigned int bytes, bool slab_obj_print)
1326 {
1327 	u8 *fault;
1328 	u8 *end;
1329 	u8 *addr = slab_address(slab);
1330 
1331 	metadata_access_enable();
1332 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1333 	metadata_access_disable();
1334 	if (!fault)
1335 		return 1;
1336 
1337 	end = start + bytes;
1338 	while (end > fault && end[-1] == value)
1339 		end--;
1340 
1341 	if (slab_add_kunit_errors())
1342 		goto skip_bug_print;
1343 
1344 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1345 	       what, fault, end - 1, fault - addr, fault[0], value);
1346 
1347 	if (slab_obj_print)
1348 		object_err(s, slab, object, "Object corrupt");
1349 
1350 skip_bug_print:
1351 	restore_bytes(s, what, value, fault, end);
1352 	return 0;
1353 }
1354 
1355 /*
1356  * Object layout:
1357  *
1358  * object address
1359  * 	Bytes of the object to be managed.
1360  * 	If the freepointer may overlay the object then the free
1361  *	pointer is at the middle of the object.
1362  *
1363  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1364  * 	0xa5 (POISON_END)
1365  *
1366  * object + s->object_size
1367  * 	Padding to reach word boundary. This is also used for Redzoning.
1368  * 	Padding is extended by another word if Redzoning is enabled and
1369  * 	object_size == inuse.
1370  *
1371  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1372  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1373  *
1374  * object + s->inuse
1375  * 	Meta data starts here.
1376  *
1377  * 	A. Free pointer (if we cannot overwrite object on free)
1378  * 	B. Tracking data for SLAB_STORE_USER
1379  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1380  *	D. Padding to reach required alignment boundary or at minimum
1381  * 		one word if debugging is on to be able to detect writes
1382  * 		before the word boundary.
1383  *
1384  *	Padding is done using 0x5a (POISON_INUSE)
1385  *
1386  * object + s->size
1387  * 	Nothing is used beyond s->size.
1388  *
1389  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1390  * ignored. And therefore no slab options that rely on these boundaries
1391  * may be used with merged slabcaches.
1392  */
1393 
1394 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1395 {
1396 	unsigned long off = get_info_end(s);	/* The end of info */
1397 
1398 	if (s->flags & SLAB_STORE_USER) {
1399 		/* We also have user information there */
1400 		off += 2 * sizeof(struct track);
1401 
1402 		if (s->flags & SLAB_KMALLOC)
1403 			off += sizeof(unsigned int);
1404 	}
1405 
1406 	off += kasan_metadata_size(s, false);
1407 
1408 	if (size_from_object(s) == off)
1409 		return 1;
1410 
1411 	return check_bytes_and_report(s, slab, p, "Object padding",
1412 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1413 }
1414 
1415 /* Check the pad bytes at the end of a slab page */
1416 static pad_check_attributes void
1417 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1418 {
1419 	u8 *start;
1420 	u8 *fault;
1421 	u8 *end;
1422 	u8 *pad;
1423 	int length;
1424 	int remainder;
1425 
1426 	if (!(s->flags & SLAB_POISON))
1427 		return;
1428 
1429 	start = slab_address(slab);
1430 	length = slab_size(slab);
1431 	end = start + length;
1432 	remainder = length % s->size;
1433 	if (!remainder)
1434 		return;
1435 
1436 	pad = end - remainder;
1437 	metadata_access_enable();
1438 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1439 	metadata_access_disable();
1440 	if (!fault)
1441 		return;
1442 	while (end > fault && end[-1] == POISON_INUSE)
1443 		end--;
1444 
1445 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1446 		 fault, end - 1, fault - start);
1447 	print_section(KERN_ERR, "Padding ", pad, remainder);
1448 	__slab_err(slab);
1449 
1450 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1451 }
1452 
1453 static int check_object(struct kmem_cache *s, struct slab *slab,
1454 					void *object, u8 val)
1455 {
1456 	u8 *p = object;
1457 	u8 *endobject = object + s->object_size;
1458 	unsigned int orig_size, kasan_meta_size;
1459 	int ret = 1;
1460 
1461 	if (s->flags & SLAB_RED_ZONE) {
1462 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1463 			object - s->red_left_pad, val, s->red_left_pad, ret))
1464 			ret = 0;
1465 
1466 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1467 			endobject, val, s->inuse - s->object_size, ret))
1468 			ret = 0;
1469 
1470 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1471 			orig_size = get_orig_size(s, object);
1472 
1473 			if (s->object_size > orig_size  &&
1474 				!check_bytes_and_report(s, slab, object,
1475 					"kmalloc Redzone", p + orig_size,
1476 					val, s->object_size - orig_size, ret)) {
1477 				ret = 0;
1478 			}
1479 		}
1480 	} else {
1481 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1482 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1483 				endobject, POISON_INUSE,
1484 				s->inuse - s->object_size, ret))
1485 				ret = 0;
1486 		}
1487 	}
1488 
1489 	if (s->flags & SLAB_POISON) {
1490 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1491 			/*
1492 			 * KASAN can save its free meta data inside of the
1493 			 * object at offset 0. Thus, skip checking the part of
1494 			 * the redzone that overlaps with the meta data.
1495 			 */
1496 			kasan_meta_size = kasan_metadata_size(s, true);
1497 			if (kasan_meta_size < s->object_size - 1 &&
1498 			    !check_bytes_and_report(s, slab, p, "Poison",
1499 					p + kasan_meta_size, POISON_FREE,
1500 					s->object_size - kasan_meta_size - 1, ret))
1501 				ret = 0;
1502 			if (kasan_meta_size < s->object_size &&
1503 			    !check_bytes_and_report(s, slab, p, "End Poison",
1504 					p + s->object_size - 1, POISON_END, 1, ret))
1505 				ret = 0;
1506 		}
1507 		/*
1508 		 * check_pad_bytes cleans up on its own.
1509 		 */
1510 		if (!check_pad_bytes(s, slab, p))
1511 			ret = 0;
1512 	}
1513 
1514 	/*
1515 	 * Cannot check freepointer while object is allocated if
1516 	 * object and freepointer overlap.
1517 	 */
1518 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1519 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1520 		object_err(s, slab, p, "Freepointer corrupt");
1521 		/*
1522 		 * No choice but to zap it and thus lose the remainder
1523 		 * of the free objects in this slab. May cause
1524 		 * another error because the object count is now wrong.
1525 		 */
1526 		set_freepointer(s, p, NULL);
1527 		ret = 0;
1528 	}
1529 
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Checks if the slab state looks sane. Assumes the struct slab pointer
1535  * was either obtained in a way that ensures it's valid, or validated
1536  * by validate_slab_ptr()
1537  */
1538 static int check_slab(struct kmem_cache *s, struct slab *slab)
1539 {
1540 	int maxobj;
1541 
1542 	maxobj = order_objects(slab_order(slab), s->size);
1543 	if (slab->objects > maxobj) {
1544 		slab_err(s, slab, "objects %u > max %u",
1545 			slab->objects, maxobj);
1546 		return 0;
1547 	}
1548 	if (slab->inuse > slab->objects) {
1549 		slab_err(s, slab, "inuse %u > max %u",
1550 			slab->inuse, slab->objects);
1551 		return 0;
1552 	}
1553 	if (slab->frozen) {
1554 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1555 		return 0;
1556 	}
1557 
1558 	/* Slab_pad_check fixes things up after itself */
1559 	slab_pad_check(s, slab);
1560 	return 1;
1561 }
1562 
1563 /*
1564  * Determine if a certain object in a slab is on the freelist. Must hold the
1565  * slab lock to guarantee that the chains are in a consistent state.
1566  */
1567 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1568 {
1569 	int nr = 0;
1570 	void *fp;
1571 	void *object = NULL;
1572 	int max_objects;
1573 
1574 	fp = slab->freelist;
1575 	while (fp && nr <= slab->objects) {
1576 		if (fp == search)
1577 			return true;
1578 		if (!check_valid_pointer(s, slab, fp)) {
1579 			if (object) {
1580 				object_err(s, slab, object,
1581 					"Freechain corrupt");
1582 				set_freepointer(s, object, NULL);
1583 				break;
1584 			} else {
1585 				slab_err(s, slab, "Freepointer corrupt");
1586 				slab->freelist = NULL;
1587 				slab->inuse = slab->objects;
1588 				slab_fix(s, "Freelist cleared");
1589 				return false;
1590 			}
1591 		}
1592 		object = fp;
1593 		fp = get_freepointer(s, object);
1594 		nr++;
1595 	}
1596 
1597 	if (nr > slab->objects) {
1598 		slab_err(s, slab, "Freelist cycle detected");
1599 		slab->freelist = NULL;
1600 		slab->inuse = slab->objects;
1601 		slab_fix(s, "Freelist cleared");
1602 		return false;
1603 	}
1604 
1605 	max_objects = order_objects(slab_order(slab), s->size);
1606 	if (max_objects > MAX_OBJS_PER_PAGE)
1607 		max_objects = MAX_OBJS_PER_PAGE;
1608 
1609 	if (slab->objects != max_objects) {
1610 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1611 			 slab->objects, max_objects);
1612 		slab->objects = max_objects;
1613 		slab_fix(s, "Number of objects adjusted");
1614 	}
1615 	if (slab->inuse != slab->objects - nr) {
1616 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1617 			 slab->inuse, slab->objects - nr);
1618 		slab->inuse = slab->objects - nr;
1619 		slab_fix(s, "Object count adjusted");
1620 	}
1621 	return search == NULL;
1622 }
1623 
1624 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1625 								int alloc)
1626 {
1627 	if (s->flags & SLAB_TRACE) {
1628 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1629 			s->name,
1630 			alloc ? "alloc" : "free",
1631 			object, slab->inuse,
1632 			slab->freelist);
1633 
1634 		if (!alloc)
1635 			print_section(KERN_INFO, "Object ", (void *)object,
1636 					s->object_size);
1637 
1638 		dump_stack();
1639 	}
1640 }
1641 
1642 /*
1643  * Tracking of fully allocated slabs for debugging purposes.
1644  */
1645 static void add_full(struct kmem_cache *s,
1646 	struct kmem_cache_node *n, struct slab *slab)
1647 {
1648 	if (!(s->flags & SLAB_STORE_USER))
1649 		return;
1650 
1651 	lockdep_assert_held(&n->list_lock);
1652 	list_add(&slab->slab_list, &n->full);
1653 }
1654 
1655 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1656 {
1657 	if (!(s->flags & SLAB_STORE_USER))
1658 		return;
1659 
1660 	lockdep_assert_held(&n->list_lock);
1661 	list_del(&slab->slab_list);
1662 }
1663 
1664 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1665 {
1666 	return atomic_long_read(&n->nr_slabs);
1667 }
1668 
1669 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1670 {
1671 	struct kmem_cache_node *n = get_node(s, node);
1672 
1673 	atomic_long_inc(&n->nr_slabs);
1674 	atomic_long_add(objects, &n->total_objects);
1675 }
1676 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1677 {
1678 	struct kmem_cache_node *n = get_node(s, node);
1679 
1680 	atomic_long_dec(&n->nr_slabs);
1681 	atomic_long_sub(objects, &n->total_objects);
1682 }
1683 
1684 /* Object debug checks for alloc/free paths */
1685 static void setup_object_debug(struct kmem_cache *s, void *object)
1686 {
1687 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1688 		return;
1689 
1690 	init_object(s, object, SLUB_RED_INACTIVE);
1691 	init_tracking(s, object);
1692 }
1693 
1694 static
1695 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1696 {
1697 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1698 		return;
1699 
1700 	metadata_access_enable();
1701 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1702 	metadata_access_disable();
1703 }
1704 
1705 static inline int alloc_consistency_checks(struct kmem_cache *s,
1706 					struct slab *slab, void *object)
1707 {
1708 	if (!check_slab(s, slab))
1709 		return 0;
1710 
1711 	if (!check_valid_pointer(s, slab, object)) {
1712 		object_err(s, slab, object, "Freelist Pointer check fails");
1713 		return 0;
1714 	}
1715 
1716 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1717 		return 0;
1718 
1719 	return 1;
1720 }
1721 
1722 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1723 			struct slab *slab, void *object, int orig_size)
1724 {
1725 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1726 		if (!alloc_consistency_checks(s, slab, object))
1727 			goto bad;
1728 	}
1729 
1730 	/* Success. Perform special debug activities for allocs */
1731 	trace(s, slab, object, 1);
1732 	set_orig_size(s, object, orig_size);
1733 	init_object(s, object, SLUB_RED_ACTIVE);
1734 	return true;
1735 
1736 bad:
1737 	/*
1738 	 * Let's do the best we can to avoid issues in the future. Marking all
1739 	 * objects as used avoids touching the remaining objects.
1740 	 */
1741 	slab_fix(s, "Marking all objects used");
1742 	slab->inuse = slab->objects;
1743 	slab->freelist = NULL;
1744 	slab->frozen = 1; /* mark consistency-failed slab as frozen */
1745 
1746 	return false;
1747 }
1748 
1749 static inline int free_consistency_checks(struct kmem_cache *s,
1750 		struct slab *slab, void *object, unsigned long addr)
1751 {
1752 	if (!check_valid_pointer(s, slab, object)) {
1753 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1754 		return 0;
1755 	}
1756 
1757 	if (on_freelist(s, slab, object)) {
1758 		object_err(s, slab, object, "Object already free");
1759 		return 0;
1760 	}
1761 
1762 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1763 		return 0;
1764 
1765 	if (unlikely(s != slab->slab_cache)) {
1766 		if (!slab->slab_cache) {
1767 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1768 				 object);
1769 		} else {
1770 			object_err(s, slab, object,
1771 				   "page slab pointer corrupt.");
1772 		}
1773 		return 0;
1774 	}
1775 	return 1;
1776 }
1777 
1778 /*
1779  * Parse a block of slab_debug options. Blocks are delimited by ';'
1780  *
1781  * @str:    start of block
1782  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1783  * @slabs:  return start of list of slabs, or NULL when there's no list
1784  * @init:   assume this is initial parsing and not per-kmem-create parsing
1785  *
1786  * returns the start of next block if there's any, or NULL
1787  */
1788 static char *
1789 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1790 {
1791 	bool higher_order_disable = false;
1792 
1793 	/* Skip any completely empty blocks */
1794 	while (*str && *str == ';')
1795 		str++;
1796 
1797 	if (*str == ',') {
1798 		/*
1799 		 * No options but restriction on slabs. This means full
1800 		 * debugging for slabs matching a pattern.
1801 		 */
1802 		*flags = DEBUG_DEFAULT_FLAGS;
1803 		goto check_slabs;
1804 	}
1805 	*flags = 0;
1806 
1807 	/* Determine which debug features should be switched on */
1808 	for (; *str && *str != ',' && *str != ';'; str++) {
1809 		switch (tolower(*str)) {
1810 		case '-':
1811 			*flags = 0;
1812 			break;
1813 		case 'f':
1814 			*flags |= SLAB_CONSISTENCY_CHECKS;
1815 			break;
1816 		case 'z':
1817 			*flags |= SLAB_RED_ZONE;
1818 			break;
1819 		case 'p':
1820 			*flags |= SLAB_POISON;
1821 			break;
1822 		case 'u':
1823 			*flags |= SLAB_STORE_USER;
1824 			break;
1825 		case 't':
1826 			*flags |= SLAB_TRACE;
1827 			break;
1828 		case 'a':
1829 			*flags |= SLAB_FAILSLAB;
1830 			break;
1831 		case 'o':
1832 			/*
1833 			 * Avoid enabling debugging on caches if its minimum
1834 			 * order would increase as a result.
1835 			 */
1836 			higher_order_disable = true;
1837 			break;
1838 		default:
1839 			if (init)
1840 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1841 		}
1842 	}
1843 check_slabs:
1844 	if (*str == ',')
1845 		*slabs = ++str;
1846 	else
1847 		*slabs = NULL;
1848 
1849 	/* Skip over the slab list */
1850 	while (*str && *str != ';')
1851 		str++;
1852 
1853 	/* Skip any completely empty blocks */
1854 	while (*str && *str == ';')
1855 		str++;
1856 
1857 	if (init && higher_order_disable)
1858 		disable_higher_order_debug = 1;
1859 
1860 	if (*str)
1861 		return str;
1862 	else
1863 		return NULL;
1864 }
1865 
1866 static int __init setup_slub_debug(char *str)
1867 {
1868 	slab_flags_t flags;
1869 	slab_flags_t global_flags;
1870 	char *saved_str;
1871 	char *slab_list;
1872 	bool global_slub_debug_changed = false;
1873 	bool slab_list_specified = false;
1874 
1875 	global_flags = DEBUG_DEFAULT_FLAGS;
1876 	if (*str++ != '=' || !*str)
1877 		/*
1878 		 * No options specified. Switch on full debugging.
1879 		 */
1880 		goto out;
1881 
1882 	saved_str = str;
1883 	while (str) {
1884 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1885 
1886 		if (!slab_list) {
1887 			global_flags = flags;
1888 			global_slub_debug_changed = true;
1889 		} else {
1890 			slab_list_specified = true;
1891 			if (flags & SLAB_STORE_USER)
1892 				stack_depot_request_early_init();
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * For backwards compatibility, a single list of flags with list of
1898 	 * slabs means debugging is only changed for those slabs, so the global
1899 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1900 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1901 	 * long as there is no option specifying flags without a slab list.
1902 	 */
1903 	if (slab_list_specified) {
1904 		if (!global_slub_debug_changed)
1905 			global_flags = slub_debug;
1906 		slub_debug_string = saved_str;
1907 	}
1908 out:
1909 	slub_debug = global_flags;
1910 	if (slub_debug & SLAB_STORE_USER)
1911 		stack_depot_request_early_init();
1912 	if (slub_debug != 0 || slub_debug_string)
1913 		static_branch_enable(&slub_debug_enabled);
1914 	else
1915 		static_branch_disable(&slub_debug_enabled);
1916 	if ((static_branch_unlikely(&init_on_alloc) ||
1917 	     static_branch_unlikely(&init_on_free)) &&
1918 	    (slub_debug & SLAB_POISON))
1919 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1920 	return 1;
1921 }
1922 
1923 __setup("slab_debug", setup_slub_debug);
1924 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1925 
1926 /*
1927  * kmem_cache_flags - apply debugging options to the cache
1928  * @flags:		flags to set
1929  * @name:		name of the cache
1930  *
1931  * Debug option(s) are applied to @flags. In addition to the debug
1932  * option(s), if a slab name (or multiple) is specified i.e.
1933  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1934  * then only the select slabs will receive the debug option(s).
1935  */
1936 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1937 {
1938 	char *iter;
1939 	size_t len;
1940 	char *next_block;
1941 	slab_flags_t block_flags;
1942 	slab_flags_t slub_debug_local = slub_debug;
1943 
1944 	if (flags & SLAB_NO_USER_FLAGS)
1945 		return flags;
1946 
1947 	/*
1948 	 * If the slab cache is for debugging (e.g. kmemleak) then
1949 	 * don't store user (stack trace) information by default,
1950 	 * but let the user enable it via the command line below.
1951 	 */
1952 	if (flags & SLAB_NOLEAKTRACE)
1953 		slub_debug_local &= ~SLAB_STORE_USER;
1954 
1955 	len = strlen(name);
1956 	next_block = slub_debug_string;
1957 	/* Go through all blocks of debug options, see if any matches our slab's name */
1958 	while (next_block) {
1959 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1960 		if (!iter)
1961 			continue;
1962 		/* Found a block that has a slab list, search it */
1963 		while (*iter) {
1964 			char *end, *glob;
1965 			size_t cmplen;
1966 
1967 			end = strchrnul(iter, ',');
1968 			if (next_block && next_block < end)
1969 				end = next_block - 1;
1970 
1971 			glob = strnchr(iter, end - iter, '*');
1972 			if (glob)
1973 				cmplen = glob - iter;
1974 			else
1975 				cmplen = max_t(size_t, len, (end - iter));
1976 
1977 			if (!strncmp(name, iter, cmplen)) {
1978 				flags |= block_flags;
1979 				return flags;
1980 			}
1981 
1982 			if (!*end || *end == ';')
1983 				break;
1984 			iter = end + 1;
1985 		}
1986 	}
1987 
1988 	return flags | slub_debug_local;
1989 }
1990 #else /* !CONFIG_SLUB_DEBUG */
1991 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1992 static inline
1993 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1994 
1995 static inline bool alloc_debug_processing(struct kmem_cache *s,
1996 	struct slab *slab, void *object, int orig_size) { return true; }
1997 
1998 static inline bool free_debug_processing(struct kmem_cache *s,
1999 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2000 	unsigned long addr, depot_stack_handle_t handle) { return true; }
2001 
2002 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
2003 static inline int check_object(struct kmem_cache *s, struct slab *slab,
2004 			void *object, u8 val) { return 1; }
2005 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
2006 static inline void set_track(struct kmem_cache *s, void *object,
2007 			     enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
2008 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
2009 					struct slab *slab) {}
2010 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
2011 					struct slab *slab) {}
2012 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
2013 {
2014 	return flags;
2015 }
2016 #define slub_debug 0
2017 
2018 #define disable_higher_order_debug 0
2019 
2020 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
2021 							{ return 0; }
2022 static inline void inc_slabs_node(struct kmem_cache *s, int node,
2023 							int objects) {}
2024 static inline void dec_slabs_node(struct kmem_cache *s, int node,
2025 							int objects) {}
2026 #ifndef CONFIG_SLUB_TINY
2027 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
2028 			       void **freelist, void *nextfree)
2029 {
2030 	return false;
2031 }
2032 #endif
2033 #endif /* CONFIG_SLUB_DEBUG */
2034 
2035 #ifdef CONFIG_SLAB_OBJ_EXT
2036 
2037 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2038 
2039 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
2040 {
2041 	struct slabobj_ext *slab_exts;
2042 	struct slab *obj_exts_slab;
2043 
2044 	obj_exts_slab = virt_to_slab(obj_exts);
2045 	slab_exts = slab_obj_exts(obj_exts_slab);
2046 	if (slab_exts) {
2047 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
2048 						 obj_exts_slab, obj_exts);
2049 		/* codetag should be NULL */
2050 		WARN_ON(slab_exts[offs].ref.ct);
2051 		set_codetag_empty(&slab_exts[offs].ref);
2052 	}
2053 }
2054 
2055 static inline void mark_failed_objexts_alloc(struct slab *slab)
2056 {
2057 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
2058 }
2059 
2060 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2061 			struct slabobj_ext *vec, unsigned int objects)
2062 {
2063 	/*
2064 	 * If vector previously failed to allocate then we have live
2065 	 * objects with no tag reference. Mark all references in this
2066 	 * vector as empty to avoid warnings later on.
2067 	 */
2068 	if (obj_exts == OBJEXTS_ALLOC_FAIL) {
2069 		unsigned int i;
2070 
2071 		for (i = 0; i < objects; i++)
2072 			set_codetag_empty(&vec[i].ref);
2073 	}
2074 }
2075 
2076 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2077 
2078 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
2079 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
2080 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2081 			struct slabobj_ext *vec, unsigned int objects) {}
2082 
2083 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2084 
2085 /*
2086  * The allocated objcg pointers array is not accounted directly.
2087  * Moreover, it should not come from DMA buffer and is not readily
2088  * reclaimable. So those GFP bits should be masked off.
2089  */
2090 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2091 				__GFP_ACCOUNT | __GFP_NOFAIL)
2092 
2093 static inline void init_slab_obj_exts(struct slab *slab)
2094 {
2095 	slab->obj_exts = 0;
2096 }
2097 
2098 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2099 		        gfp_t gfp, bool new_slab)
2100 {
2101 	bool allow_spin = gfpflags_allow_spinning(gfp);
2102 	unsigned int objects = objs_per_slab(s, slab);
2103 	unsigned long new_exts;
2104 	unsigned long old_exts;
2105 	struct slabobj_ext *vec;
2106 
2107 	gfp &= ~OBJCGS_CLEAR_MASK;
2108 	/* Prevent recursive extension vector allocation */
2109 	gfp |= __GFP_NO_OBJ_EXT;
2110 
2111 	/*
2112 	 * Note that allow_spin may be false during early boot and its
2113 	 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
2114 	 * architectures with cmpxchg16b, early obj_exts will be missing for
2115 	 * very early allocations on those.
2116 	 */
2117 	if (unlikely(!allow_spin)) {
2118 		size_t sz = objects * sizeof(struct slabobj_ext);
2119 
2120 		vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
2121 				     slab_nid(slab));
2122 	} else {
2123 		vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2124 				   slab_nid(slab));
2125 	}
2126 	if (!vec) {
2127 		/* Mark vectors which failed to allocate */
2128 		mark_failed_objexts_alloc(slab);
2129 
2130 		return -ENOMEM;
2131 	}
2132 
2133 	new_exts = (unsigned long)vec;
2134 	if (unlikely(!allow_spin))
2135 		new_exts |= OBJEXTS_NOSPIN_ALLOC;
2136 #ifdef CONFIG_MEMCG
2137 	new_exts |= MEMCG_DATA_OBJEXTS;
2138 #endif
2139 	old_exts = READ_ONCE(slab->obj_exts);
2140 	handle_failed_objexts_alloc(old_exts, vec, objects);
2141 	if (new_slab) {
2142 		/*
2143 		 * If the slab is brand new and nobody can yet access its
2144 		 * obj_exts, no synchronization is required and obj_exts can
2145 		 * be simply assigned.
2146 		 */
2147 		slab->obj_exts = new_exts;
2148 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2149 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2150 		/*
2151 		 * If the slab is already in use, somebody can allocate and
2152 		 * assign slabobj_exts in parallel. In this case the existing
2153 		 * objcg vector should be reused.
2154 		 */
2155 		mark_objexts_empty(vec);
2156 		if (unlikely(!allow_spin))
2157 			kfree_nolock(vec);
2158 		else
2159 			kfree(vec);
2160 		return 0;
2161 	}
2162 
2163 	if (allow_spin)
2164 		kmemleak_not_leak(vec);
2165 	return 0;
2166 }
2167 
2168 static inline void free_slab_obj_exts(struct slab *slab)
2169 {
2170 	struct slabobj_ext *obj_exts;
2171 
2172 	obj_exts = slab_obj_exts(slab);
2173 	if (!obj_exts)
2174 		return;
2175 
2176 	/*
2177 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2178 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2179 	 * warning if slab has extensions but the extension of an object is
2180 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2181 	 * the extension for obj_exts is expected to be NULL.
2182 	 */
2183 	mark_objexts_empty(obj_exts);
2184 	if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
2185 		kfree_nolock(obj_exts);
2186 	else
2187 		kfree(obj_exts);
2188 	slab->obj_exts = 0;
2189 }
2190 
2191 #else /* CONFIG_SLAB_OBJ_EXT */
2192 
2193 static inline void init_slab_obj_exts(struct slab *slab)
2194 {
2195 }
2196 
2197 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2198 			       gfp_t gfp, bool new_slab)
2199 {
2200 	return 0;
2201 }
2202 
2203 static inline void free_slab_obj_exts(struct slab *slab)
2204 {
2205 }
2206 
2207 #endif /* CONFIG_SLAB_OBJ_EXT */
2208 
2209 #ifdef CONFIG_MEM_ALLOC_PROFILING
2210 
2211 static inline struct slabobj_ext *
2212 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2213 {
2214 	struct slab *slab;
2215 
2216 	slab = virt_to_slab(p);
2217 	if (!slab_obj_exts(slab) &&
2218 	    alloc_slab_obj_exts(slab, s, flags, false)) {
2219 		pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2220 			     __func__, s->name);
2221 		return NULL;
2222 	}
2223 
2224 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2225 }
2226 
2227 /* Should be called only if mem_alloc_profiling_enabled() */
2228 static noinline void
2229 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2230 {
2231 	struct slabobj_ext *obj_exts;
2232 
2233 	if (!object)
2234 		return;
2235 
2236 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2237 		return;
2238 
2239 	if (flags & __GFP_NO_OBJ_EXT)
2240 		return;
2241 
2242 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2243 	/*
2244 	 * Currently obj_exts is used only for allocation profiling.
2245 	 * If other users appear then mem_alloc_profiling_enabled()
2246 	 * check should be added before alloc_tag_add().
2247 	 */
2248 	if (likely(obj_exts))
2249 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2250 	else
2251 		alloc_tag_set_inaccurate(current->alloc_tag);
2252 }
2253 
2254 static inline void
2255 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2256 {
2257 	if (mem_alloc_profiling_enabled())
2258 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2259 }
2260 
2261 /* Should be called only if mem_alloc_profiling_enabled() */
2262 static noinline void
2263 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2264 			       int objects)
2265 {
2266 	struct slabobj_ext *obj_exts;
2267 	int i;
2268 
2269 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2270 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2271 		return;
2272 
2273 	obj_exts = slab_obj_exts(slab);
2274 	if (!obj_exts)
2275 		return;
2276 
2277 	for (i = 0; i < objects; i++) {
2278 		unsigned int off = obj_to_index(s, slab, p[i]);
2279 
2280 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2281 	}
2282 }
2283 
2284 static inline void
2285 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2286 			     int objects)
2287 {
2288 	if (mem_alloc_profiling_enabled())
2289 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2290 }
2291 
2292 #else /* CONFIG_MEM_ALLOC_PROFILING */
2293 
2294 static inline void
2295 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2296 {
2297 }
2298 
2299 static inline void
2300 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2301 			     int objects)
2302 {
2303 }
2304 
2305 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2306 
2307 
2308 #ifdef CONFIG_MEMCG
2309 
2310 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2311 
2312 static __fastpath_inline
2313 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2314 				gfp_t flags, size_t size, void **p)
2315 {
2316 	if (likely(!memcg_kmem_online()))
2317 		return true;
2318 
2319 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2320 		return true;
2321 
2322 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2323 		return true;
2324 
2325 	if (likely(size == 1)) {
2326 		memcg_alloc_abort_single(s, *p);
2327 		*p = NULL;
2328 	} else {
2329 		kmem_cache_free_bulk(s, size, p);
2330 	}
2331 
2332 	return false;
2333 }
2334 
2335 static __fastpath_inline
2336 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2337 			  int objects)
2338 {
2339 	struct slabobj_ext *obj_exts;
2340 
2341 	if (!memcg_kmem_online())
2342 		return;
2343 
2344 	obj_exts = slab_obj_exts(slab);
2345 	if (likely(!obj_exts))
2346 		return;
2347 
2348 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2349 }
2350 
2351 static __fastpath_inline
2352 bool memcg_slab_post_charge(void *p, gfp_t flags)
2353 {
2354 	struct slabobj_ext *slab_exts;
2355 	struct kmem_cache *s;
2356 	struct folio *folio;
2357 	struct slab *slab;
2358 	unsigned long off;
2359 
2360 	folio = virt_to_folio(p);
2361 	if (!folio_test_slab(folio)) {
2362 		int size;
2363 
2364 		if (folio_memcg_kmem(folio))
2365 			return true;
2366 
2367 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2368 					     folio_order(folio)))
2369 			return false;
2370 
2371 		/*
2372 		 * This folio has already been accounted in the global stats but
2373 		 * not in the memcg stats. So, subtract from the global and use
2374 		 * the interface which adds to both global and memcg stats.
2375 		 */
2376 		size = folio_size(folio);
2377 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2378 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2379 		return true;
2380 	}
2381 
2382 	slab = folio_slab(folio);
2383 	s = slab->slab_cache;
2384 
2385 	/*
2386 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2387 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2388 	 * becoming effectively unfreeable.
2389 	 */
2390 	if (is_kmalloc_normal(s))
2391 		return true;
2392 
2393 	/* Ignore already charged objects. */
2394 	slab_exts = slab_obj_exts(slab);
2395 	if (slab_exts) {
2396 		off = obj_to_index(s, slab, p);
2397 		if (unlikely(slab_exts[off].objcg))
2398 			return true;
2399 	}
2400 
2401 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2402 }
2403 
2404 #else /* CONFIG_MEMCG */
2405 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2406 					      struct list_lru *lru,
2407 					      gfp_t flags, size_t size,
2408 					      void **p)
2409 {
2410 	return true;
2411 }
2412 
2413 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2414 					void **p, int objects)
2415 {
2416 }
2417 
2418 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2419 {
2420 	return true;
2421 }
2422 #endif /* CONFIG_MEMCG */
2423 
2424 #ifdef CONFIG_SLUB_RCU_DEBUG
2425 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2426 
2427 struct rcu_delayed_free {
2428 	struct rcu_head head;
2429 	void *object;
2430 };
2431 #endif
2432 
2433 /*
2434  * Hooks for other subsystems that check memory allocations. In a typical
2435  * production configuration these hooks all should produce no code at all.
2436  *
2437  * Returns true if freeing of the object can proceed, false if its reuse
2438  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2439  * to KFENCE.
2440  */
2441 static __always_inline
2442 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2443 		    bool after_rcu_delay)
2444 {
2445 	/* Are the object contents still accessible? */
2446 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2447 
2448 	kmemleak_free_recursive(x, s->flags);
2449 	kmsan_slab_free(s, x);
2450 
2451 	debug_check_no_locks_freed(x, s->object_size);
2452 
2453 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2454 		debug_check_no_obj_freed(x, s->object_size);
2455 
2456 	/* Use KCSAN to help debug racy use-after-free. */
2457 	if (!still_accessible)
2458 		__kcsan_check_access(x, s->object_size,
2459 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2460 
2461 	if (kfence_free(x))
2462 		return false;
2463 
2464 	/*
2465 	 * Give KASAN a chance to notice an invalid free operation before we
2466 	 * modify the object.
2467 	 */
2468 	if (kasan_slab_pre_free(s, x))
2469 		return false;
2470 
2471 #ifdef CONFIG_SLUB_RCU_DEBUG
2472 	if (still_accessible) {
2473 		struct rcu_delayed_free *delayed_free;
2474 
2475 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2476 		if (delayed_free) {
2477 			/*
2478 			 * Let KASAN track our call stack as a "related work
2479 			 * creation", just like if the object had been freed
2480 			 * normally via kfree_rcu().
2481 			 * We have to do this manually because the rcu_head is
2482 			 * not located inside the object.
2483 			 */
2484 			kasan_record_aux_stack(x);
2485 
2486 			delayed_free->object = x;
2487 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2488 			return false;
2489 		}
2490 	}
2491 #endif /* CONFIG_SLUB_RCU_DEBUG */
2492 
2493 	/*
2494 	 * As memory initialization might be integrated into KASAN,
2495 	 * kasan_slab_free and initialization memset's must be
2496 	 * kept together to avoid discrepancies in behavior.
2497 	 *
2498 	 * The initialization memset's clear the object and the metadata,
2499 	 * but don't touch the SLAB redzone.
2500 	 *
2501 	 * The object's freepointer is also avoided if stored outside the
2502 	 * object.
2503 	 */
2504 	if (unlikely(init)) {
2505 		int rsize;
2506 		unsigned int inuse, orig_size;
2507 
2508 		inuse = get_info_end(s);
2509 		orig_size = get_orig_size(s, x);
2510 		if (!kasan_has_integrated_init())
2511 			memset(kasan_reset_tag(x), 0, orig_size);
2512 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2513 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2514 		       s->size - inuse - rsize);
2515 		/*
2516 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2517 		 * would be reported
2518 		 */
2519 		set_orig_size(s, x, orig_size);
2520 
2521 	}
2522 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2523 	return !kasan_slab_free(s, x, init, still_accessible, false);
2524 }
2525 
2526 static __fastpath_inline
2527 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2528 			     int *cnt)
2529 {
2530 
2531 	void *object;
2532 	void *next = *head;
2533 	void *old_tail = *tail;
2534 	bool init;
2535 
2536 	if (is_kfence_address(next)) {
2537 		slab_free_hook(s, next, false, false);
2538 		return false;
2539 	}
2540 
2541 	/* Head and tail of the reconstructed freelist */
2542 	*head = NULL;
2543 	*tail = NULL;
2544 
2545 	init = slab_want_init_on_free(s);
2546 
2547 	do {
2548 		object = next;
2549 		next = get_freepointer(s, object);
2550 
2551 		/* If object's reuse doesn't have to be delayed */
2552 		if (likely(slab_free_hook(s, object, init, false))) {
2553 			/* Move object to the new freelist */
2554 			set_freepointer(s, object, *head);
2555 			*head = object;
2556 			if (!*tail)
2557 				*tail = object;
2558 		} else {
2559 			/*
2560 			 * Adjust the reconstructed freelist depth
2561 			 * accordingly if object's reuse is delayed.
2562 			 */
2563 			--(*cnt);
2564 		}
2565 	} while (object != old_tail);
2566 
2567 	return *head != NULL;
2568 }
2569 
2570 static void *setup_object(struct kmem_cache *s, void *object)
2571 {
2572 	setup_object_debug(s, object);
2573 	object = kasan_init_slab_obj(s, object);
2574 	if (unlikely(s->ctor)) {
2575 		kasan_unpoison_new_object(s, object);
2576 		s->ctor(object);
2577 		kasan_poison_new_object(s, object);
2578 	}
2579 	return object;
2580 }
2581 
2582 static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
2583 {
2584 	struct slab_sheaf *sheaf = kzalloc(struct_size(sheaf, objects,
2585 					s->sheaf_capacity), gfp);
2586 
2587 	if (unlikely(!sheaf))
2588 		return NULL;
2589 
2590 	sheaf->cache = s;
2591 
2592 	stat(s, SHEAF_ALLOC);
2593 
2594 	return sheaf;
2595 }
2596 
2597 static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf)
2598 {
2599 	kfree(sheaf);
2600 
2601 	stat(s, SHEAF_FREE);
2602 }
2603 
2604 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
2605 				   size_t size, void **p);
2606 
2607 
2608 static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf,
2609 			 gfp_t gfp)
2610 {
2611 	int to_fill = s->sheaf_capacity - sheaf->size;
2612 	int filled;
2613 
2614 	if (!to_fill)
2615 		return 0;
2616 
2617 	filled = __kmem_cache_alloc_bulk(s, gfp, to_fill,
2618 					 &sheaf->objects[sheaf->size]);
2619 
2620 	sheaf->size += filled;
2621 
2622 	stat_add(s, SHEAF_REFILL, filled);
2623 
2624 	if (filled < to_fill)
2625 		return -ENOMEM;
2626 
2627 	return 0;
2628 }
2629 
2630 
2631 static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp)
2632 {
2633 	struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp);
2634 
2635 	if (!sheaf)
2636 		return NULL;
2637 
2638 	if (refill_sheaf(s, sheaf, gfp)) {
2639 		free_empty_sheaf(s, sheaf);
2640 		return NULL;
2641 	}
2642 
2643 	return sheaf;
2644 }
2645 
2646 /*
2647  * Maximum number of objects freed during a single flush of main pcs sheaf.
2648  * Translates directly to an on-stack array size.
2649  */
2650 #define PCS_BATCH_MAX	32U
2651 
2652 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
2653 
2654 /*
2655  * Free all objects from the main sheaf. In order to perform
2656  * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where
2657  * object pointers are moved to a on-stack array under the lock. To bound the
2658  * stack usage, limit each batch to PCS_BATCH_MAX.
2659  *
2660  * returns true if at least partially flushed
2661  */
2662 static bool sheaf_flush_main(struct kmem_cache *s)
2663 {
2664 	struct slub_percpu_sheaves *pcs;
2665 	unsigned int batch, remaining;
2666 	void *objects[PCS_BATCH_MAX];
2667 	struct slab_sheaf *sheaf;
2668 	bool ret = false;
2669 
2670 next_batch:
2671 	if (!local_trylock(&s->cpu_sheaves->lock))
2672 		return ret;
2673 
2674 	pcs = this_cpu_ptr(s->cpu_sheaves);
2675 	sheaf = pcs->main;
2676 
2677 	batch = min(PCS_BATCH_MAX, sheaf->size);
2678 
2679 	sheaf->size -= batch;
2680 	memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *));
2681 
2682 	remaining = sheaf->size;
2683 
2684 	local_unlock(&s->cpu_sheaves->lock);
2685 
2686 	__kmem_cache_free_bulk(s, batch, &objects[0]);
2687 
2688 	stat_add(s, SHEAF_FLUSH, batch);
2689 
2690 	ret = true;
2691 
2692 	if (remaining)
2693 		goto next_batch;
2694 
2695 	return ret;
2696 }
2697 
2698 /*
2699  * Free all objects from a sheaf that's unused, i.e. not linked to any
2700  * cpu_sheaves, so we need no locking and batching. The locking is also not
2701  * necessary when flushing cpu's sheaves (both spare and main) during cpu
2702  * hotremove as the cpu is not executing anymore.
2703  */
2704 static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
2705 {
2706 	if (!sheaf->size)
2707 		return;
2708 
2709 	stat_add(s, SHEAF_FLUSH, sheaf->size);
2710 
2711 	__kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
2712 
2713 	sheaf->size = 0;
2714 }
2715 
2716 static void __rcu_free_sheaf_prepare(struct kmem_cache *s,
2717 				     struct slab_sheaf *sheaf)
2718 {
2719 	bool init = slab_want_init_on_free(s);
2720 	void **p = &sheaf->objects[0];
2721 	unsigned int i = 0;
2722 
2723 	while (i < sheaf->size) {
2724 		struct slab *slab = virt_to_slab(p[i]);
2725 
2726 		memcg_slab_free_hook(s, slab, p + i, 1);
2727 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
2728 
2729 		if (unlikely(!slab_free_hook(s, p[i], init, true))) {
2730 			p[i] = p[--sheaf->size];
2731 			continue;
2732 		}
2733 
2734 		i++;
2735 	}
2736 }
2737 
2738 static void rcu_free_sheaf_nobarn(struct rcu_head *head)
2739 {
2740 	struct slab_sheaf *sheaf;
2741 	struct kmem_cache *s;
2742 
2743 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
2744 	s = sheaf->cache;
2745 
2746 	__rcu_free_sheaf_prepare(s, sheaf);
2747 
2748 	sheaf_flush_unused(s, sheaf);
2749 
2750 	free_empty_sheaf(s, sheaf);
2751 }
2752 
2753 /*
2754  * Caller needs to make sure migration is disabled in order to fully flush
2755  * single cpu's sheaves
2756  *
2757  * must not be called from an irq
2758  *
2759  * flushing operations are rare so let's keep it simple and flush to slabs
2760  * directly, skipping the barn
2761  */
2762 static void pcs_flush_all(struct kmem_cache *s)
2763 {
2764 	struct slub_percpu_sheaves *pcs;
2765 	struct slab_sheaf *spare, *rcu_free;
2766 
2767 	local_lock(&s->cpu_sheaves->lock);
2768 	pcs = this_cpu_ptr(s->cpu_sheaves);
2769 
2770 	spare = pcs->spare;
2771 	pcs->spare = NULL;
2772 
2773 	rcu_free = pcs->rcu_free;
2774 	pcs->rcu_free = NULL;
2775 
2776 	local_unlock(&s->cpu_sheaves->lock);
2777 
2778 	if (spare) {
2779 		sheaf_flush_unused(s, spare);
2780 		free_empty_sheaf(s, spare);
2781 	}
2782 
2783 	if (rcu_free)
2784 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2785 
2786 	sheaf_flush_main(s);
2787 }
2788 
2789 static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
2790 {
2791 	struct slub_percpu_sheaves *pcs;
2792 
2793 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2794 
2795 	/* The cpu is not executing anymore so we don't need pcs->lock */
2796 	sheaf_flush_unused(s, pcs->main);
2797 	if (pcs->spare) {
2798 		sheaf_flush_unused(s, pcs->spare);
2799 		free_empty_sheaf(s, pcs->spare);
2800 		pcs->spare = NULL;
2801 	}
2802 
2803 	if (pcs->rcu_free) {
2804 		call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2805 		pcs->rcu_free = NULL;
2806 	}
2807 }
2808 
2809 static void pcs_destroy(struct kmem_cache *s)
2810 {
2811 	int cpu;
2812 
2813 	for_each_possible_cpu(cpu) {
2814 		struct slub_percpu_sheaves *pcs;
2815 
2816 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2817 
2818 		/* can happen when unwinding failed create */
2819 		if (!pcs->main)
2820 			continue;
2821 
2822 		/*
2823 		 * We have already passed __kmem_cache_shutdown() so everything
2824 		 * was flushed and there should be no objects allocated from
2825 		 * slabs, otherwise kmem_cache_destroy() would have aborted.
2826 		 * Therefore something would have to be really wrong if the
2827 		 * warnings here trigger, and we should rather leave objects and
2828 		 * sheaves to leak in that case.
2829 		 */
2830 
2831 		WARN_ON(pcs->spare);
2832 		WARN_ON(pcs->rcu_free);
2833 
2834 		if (!WARN_ON(pcs->main->size)) {
2835 			free_empty_sheaf(s, pcs->main);
2836 			pcs->main = NULL;
2837 		}
2838 	}
2839 
2840 	free_percpu(s->cpu_sheaves);
2841 	s->cpu_sheaves = NULL;
2842 }
2843 
2844 static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn)
2845 {
2846 	struct slab_sheaf *empty = NULL;
2847 	unsigned long flags;
2848 
2849 	if (!data_race(barn->nr_empty))
2850 		return NULL;
2851 
2852 	spin_lock_irqsave(&barn->lock, flags);
2853 
2854 	if (likely(barn->nr_empty)) {
2855 		empty = list_first_entry(&barn->sheaves_empty,
2856 					 struct slab_sheaf, barn_list);
2857 		list_del(&empty->barn_list);
2858 		barn->nr_empty--;
2859 	}
2860 
2861 	spin_unlock_irqrestore(&barn->lock, flags);
2862 
2863 	return empty;
2864 }
2865 
2866 /*
2867  * The following two functions are used mainly in cases where we have to undo an
2868  * intended action due to a race or cpu migration. Thus they do not check the
2869  * empty or full sheaf limits for simplicity.
2870  */
2871 
2872 static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2873 {
2874 	unsigned long flags;
2875 
2876 	spin_lock_irqsave(&barn->lock, flags);
2877 
2878 	list_add(&sheaf->barn_list, &barn->sheaves_empty);
2879 	barn->nr_empty++;
2880 
2881 	spin_unlock_irqrestore(&barn->lock, flags);
2882 }
2883 
2884 static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2885 {
2886 	unsigned long flags;
2887 
2888 	spin_lock_irqsave(&barn->lock, flags);
2889 
2890 	list_add(&sheaf->barn_list, &barn->sheaves_full);
2891 	barn->nr_full++;
2892 
2893 	spin_unlock_irqrestore(&barn->lock, flags);
2894 }
2895 
2896 static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn)
2897 {
2898 	struct slab_sheaf *sheaf = NULL;
2899 	unsigned long flags;
2900 
2901 	if (!data_race(barn->nr_full) && !data_race(barn->nr_empty))
2902 		return NULL;
2903 
2904 	spin_lock_irqsave(&barn->lock, flags);
2905 
2906 	if (barn->nr_full) {
2907 		sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2908 					barn_list);
2909 		list_del(&sheaf->barn_list);
2910 		barn->nr_full--;
2911 	} else if (barn->nr_empty) {
2912 		sheaf = list_first_entry(&barn->sheaves_empty,
2913 					 struct slab_sheaf, barn_list);
2914 		list_del(&sheaf->barn_list);
2915 		barn->nr_empty--;
2916 	}
2917 
2918 	spin_unlock_irqrestore(&barn->lock, flags);
2919 
2920 	return sheaf;
2921 }
2922 
2923 /*
2924  * If a full sheaf is available, return it and put the supplied empty one to
2925  * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't
2926  * change.
2927  */
2928 static struct slab_sheaf *
2929 barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty)
2930 {
2931 	struct slab_sheaf *full = NULL;
2932 	unsigned long flags;
2933 
2934 	if (!data_race(barn->nr_full))
2935 		return NULL;
2936 
2937 	spin_lock_irqsave(&barn->lock, flags);
2938 
2939 	if (likely(barn->nr_full)) {
2940 		full = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2941 					barn_list);
2942 		list_del(&full->barn_list);
2943 		list_add(&empty->barn_list, &barn->sheaves_empty);
2944 		barn->nr_full--;
2945 		barn->nr_empty++;
2946 	}
2947 
2948 	spin_unlock_irqrestore(&barn->lock, flags);
2949 
2950 	return full;
2951 }
2952 
2953 /*
2954  * If an empty sheaf is available, return it and put the supplied full one to
2955  * barn. But if there are too many full sheaves, reject this with -E2BIG.
2956  */
2957 static struct slab_sheaf *
2958 barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full)
2959 {
2960 	struct slab_sheaf *empty;
2961 	unsigned long flags;
2962 
2963 	/* we don't repeat this check under barn->lock as it's not critical */
2964 	if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES)
2965 		return ERR_PTR(-E2BIG);
2966 	if (!data_race(barn->nr_empty))
2967 		return ERR_PTR(-ENOMEM);
2968 
2969 	spin_lock_irqsave(&barn->lock, flags);
2970 
2971 	if (likely(barn->nr_empty)) {
2972 		empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf,
2973 					 barn_list);
2974 		list_del(&empty->barn_list);
2975 		list_add(&full->barn_list, &barn->sheaves_full);
2976 		barn->nr_empty--;
2977 		barn->nr_full++;
2978 	} else {
2979 		empty = ERR_PTR(-ENOMEM);
2980 	}
2981 
2982 	spin_unlock_irqrestore(&barn->lock, flags);
2983 
2984 	return empty;
2985 }
2986 
2987 static void barn_init(struct node_barn *barn)
2988 {
2989 	spin_lock_init(&barn->lock);
2990 	INIT_LIST_HEAD(&barn->sheaves_full);
2991 	INIT_LIST_HEAD(&barn->sheaves_empty);
2992 	barn->nr_full = 0;
2993 	barn->nr_empty = 0;
2994 }
2995 
2996 static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
2997 {
2998 	struct list_head empty_list;
2999 	struct list_head full_list;
3000 	struct slab_sheaf *sheaf, *sheaf2;
3001 	unsigned long flags;
3002 
3003 	INIT_LIST_HEAD(&empty_list);
3004 	INIT_LIST_HEAD(&full_list);
3005 
3006 	spin_lock_irqsave(&barn->lock, flags);
3007 
3008 	list_splice_init(&barn->sheaves_full, &full_list);
3009 	barn->nr_full = 0;
3010 	list_splice_init(&barn->sheaves_empty, &empty_list);
3011 	barn->nr_empty = 0;
3012 
3013 	spin_unlock_irqrestore(&barn->lock, flags);
3014 
3015 	list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) {
3016 		sheaf_flush_unused(s, sheaf);
3017 		free_empty_sheaf(s, sheaf);
3018 	}
3019 
3020 	list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list)
3021 		free_empty_sheaf(s, sheaf);
3022 }
3023 
3024 /*
3025  * Slab allocation and freeing
3026  */
3027 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
3028 					   struct kmem_cache_order_objects oo,
3029 					   bool allow_spin)
3030 {
3031 	struct folio *folio;
3032 	struct slab *slab;
3033 	unsigned int order = oo_order(oo);
3034 
3035 	if (unlikely(!allow_spin))
3036 		folio = (struct folio *)alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
3037 								  node, order);
3038 	else if (node == NUMA_NO_NODE)
3039 		folio = (struct folio *)alloc_frozen_pages(flags, order);
3040 	else
3041 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
3042 
3043 	if (!folio)
3044 		return NULL;
3045 
3046 	slab = folio_slab(folio);
3047 	__folio_set_slab(folio);
3048 	if (folio_is_pfmemalloc(folio))
3049 		slab_set_pfmemalloc(slab);
3050 
3051 	return slab;
3052 }
3053 
3054 #ifdef CONFIG_SLAB_FREELIST_RANDOM
3055 /* Pre-initialize the random sequence cache */
3056 static int init_cache_random_seq(struct kmem_cache *s)
3057 {
3058 	unsigned int count = oo_objects(s->oo);
3059 	int err;
3060 
3061 	/* Bailout if already initialised */
3062 	if (s->random_seq)
3063 		return 0;
3064 
3065 	err = cache_random_seq_create(s, count, GFP_KERNEL);
3066 	if (err) {
3067 		pr_err("SLUB: Unable to initialize free list for %s\n",
3068 			s->name);
3069 		return err;
3070 	}
3071 
3072 	/* Transform to an offset on the set of pages */
3073 	if (s->random_seq) {
3074 		unsigned int i;
3075 
3076 		for (i = 0; i < count; i++)
3077 			s->random_seq[i] *= s->size;
3078 	}
3079 	return 0;
3080 }
3081 
3082 /* Initialize each random sequence freelist per cache */
3083 static void __init init_freelist_randomization(void)
3084 {
3085 	struct kmem_cache *s;
3086 
3087 	mutex_lock(&slab_mutex);
3088 
3089 	list_for_each_entry(s, &slab_caches, list)
3090 		init_cache_random_seq(s);
3091 
3092 	mutex_unlock(&slab_mutex);
3093 }
3094 
3095 /* Get the next entry on the pre-computed freelist randomized */
3096 static void *next_freelist_entry(struct kmem_cache *s,
3097 				unsigned long *pos, void *start,
3098 				unsigned long page_limit,
3099 				unsigned long freelist_count)
3100 {
3101 	unsigned int idx;
3102 
3103 	/*
3104 	 * If the target page allocation failed, the number of objects on the
3105 	 * page might be smaller than the usual size defined by the cache.
3106 	 */
3107 	do {
3108 		idx = s->random_seq[*pos];
3109 		*pos += 1;
3110 		if (*pos >= freelist_count)
3111 			*pos = 0;
3112 	} while (unlikely(idx >= page_limit));
3113 
3114 	return (char *)start + idx;
3115 }
3116 
3117 /* Shuffle the single linked freelist based on a random pre-computed sequence */
3118 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3119 {
3120 	void *start;
3121 	void *cur;
3122 	void *next;
3123 	unsigned long idx, pos, page_limit, freelist_count;
3124 
3125 	if (slab->objects < 2 || !s->random_seq)
3126 		return false;
3127 
3128 	freelist_count = oo_objects(s->oo);
3129 	pos = get_random_u32_below(freelist_count);
3130 
3131 	page_limit = slab->objects * s->size;
3132 	start = fixup_red_left(s, slab_address(slab));
3133 
3134 	/* First entry is used as the base of the freelist */
3135 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
3136 	cur = setup_object(s, cur);
3137 	slab->freelist = cur;
3138 
3139 	for (idx = 1; idx < slab->objects; idx++) {
3140 		next = next_freelist_entry(s, &pos, start, page_limit,
3141 			freelist_count);
3142 		next = setup_object(s, next);
3143 		set_freepointer(s, cur, next);
3144 		cur = next;
3145 	}
3146 	set_freepointer(s, cur, NULL);
3147 
3148 	return true;
3149 }
3150 #else
3151 static inline int init_cache_random_seq(struct kmem_cache *s)
3152 {
3153 	return 0;
3154 }
3155 static inline void init_freelist_randomization(void) { }
3156 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3157 {
3158 	return false;
3159 }
3160 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
3161 
3162 static __always_inline void account_slab(struct slab *slab, int order,
3163 					 struct kmem_cache *s, gfp_t gfp)
3164 {
3165 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
3166 		alloc_slab_obj_exts(slab, s, gfp, true);
3167 
3168 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3169 			    PAGE_SIZE << order);
3170 }
3171 
3172 static __always_inline void unaccount_slab(struct slab *slab, int order,
3173 					   struct kmem_cache *s)
3174 {
3175 	/*
3176 	 * The slab object extensions should now be freed regardless of
3177 	 * whether mem_alloc_profiling_enabled() or not because profiling
3178 	 * might have been disabled after slab->obj_exts got allocated.
3179 	 */
3180 	free_slab_obj_exts(slab);
3181 
3182 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3183 			    -(PAGE_SIZE << order));
3184 }
3185 
3186 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
3187 {
3188 	bool allow_spin = gfpflags_allow_spinning(flags);
3189 	struct slab *slab;
3190 	struct kmem_cache_order_objects oo = s->oo;
3191 	gfp_t alloc_gfp;
3192 	void *start, *p, *next;
3193 	int idx;
3194 	bool shuffle;
3195 
3196 	flags &= gfp_allowed_mask;
3197 
3198 	flags |= s->allocflags;
3199 
3200 	/*
3201 	 * Let the initial higher-order allocation fail under memory pressure
3202 	 * so we fall-back to the minimum order allocation.
3203 	 */
3204 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
3205 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
3206 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
3207 
3208 	/*
3209 	 * __GFP_RECLAIM could be cleared on the first allocation attempt,
3210 	 * so pass allow_spin flag directly.
3211 	 */
3212 	slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3213 	if (unlikely(!slab)) {
3214 		oo = s->min;
3215 		alloc_gfp = flags;
3216 		/*
3217 		 * Allocation may have failed due to fragmentation.
3218 		 * Try a lower order alloc if possible
3219 		 */
3220 		slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3221 		if (unlikely(!slab))
3222 			return NULL;
3223 		stat(s, ORDER_FALLBACK);
3224 	}
3225 
3226 	slab->objects = oo_objects(oo);
3227 	slab->inuse = 0;
3228 	slab->frozen = 0;
3229 	init_slab_obj_exts(slab);
3230 
3231 	account_slab(slab, oo_order(oo), s, flags);
3232 
3233 	slab->slab_cache = s;
3234 
3235 	kasan_poison_slab(slab);
3236 
3237 	start = slab_address(slab);
3238 
3239 	setup_slab_debug(s, slab, start);
3240 
3241 	shuffle = shuffle_freelist(s, slab);
3242 
3243 	if (!shuffle) {
3244 		start = fixup_red_left(s, start);
3245 		start = setup_object(s, start);
3246 		slab->freelist = start;
3247 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
3248 			next = p + s->size;
3249 			next = setup_object(s, next);
3250 			set_freepointer(s, p, next);
3251 			p = next;
3252 		}
3253 		set_freepointer(s, p, NULL);
3254 	}
3255 
3256 	return slab;
3257 }
3258 
3259 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
3260 {
3261 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3262 		flags = kmalloc_fix_flags(flags);
3263 
3264 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
3265 
3266 	return allocate_slab(s,
3267 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
3268 }
3269 
3270 static void __free_slab(struct kmem_cache *s, struct slab *slab)
3271 {
3272 	struct folio *folio = slab_folio(slab);
3273 	int order = folio_order(folio);
3274 	int pages = 1 << order;
3275 
3276 	__slab_clear_pfmemalloc(slab);
3277 	folio->mapping = NULL;
3278 	__folio_clear_slab(folio);
3279 	mm_account_reclaimed_pages(pages);
3280 	unaccount_slab(slab, order, s);
3281 	free_frozen_pages(&folio->page, order);
3282 }
3283 
3284 static void rcu_free_slab(struct rcu_head *h)
3285 {
3286 	struct slab *slab = container_of(h, struct slab, rcu_head);
3287 
3288 	__free_slab(slab->slab_cache, slab);
3289 }
3290 
3291 static void free_slab(struct kmem_cache *s, struct slab *slab)
3292 {
3293 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
3294 		void *p;
3295 
3296 		slab_pad_check(s, slab);
3297 		for_each_object(p, s, slab_address(slab), slab->objects)
3298 			check_object(s, slab, p, SLUB_RED_INACTIVE);
3299 	}
3300 
3301 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
3302 		call_rcu(&slab->rcu_head, rcu_free_slab);
3303 	else
3304 		__free_slab(s, slab);
3305 }
3306 
3307 static void discard_slab(struct kmem_cache *s, struct slab *slab)
3308 {
3309 	dec_slabs_node(s, slab_nid(slab), slab->objects);
3310 	free_slab(s, slab);
3311 }
3312 
3313 static inline bool slab_test_node_partial(const struct slab *slab)
3314 {
3315 	return test_bit(SL_partial, &slab->flags.f);
3316 }
3317 
3318 static inline void slab_set_node_partial(struct slab *slab)
3319 {
3320 	set_bit(SL_partial, &slab->flags.f);
3321 }
3322 
3323 static inline void slab_clear_node_partial(struct slab *slab)
3324 {
3325 	clear_bit(SL_partial, &slab->flags.f);
3326 }
3327 
3328 /*
3329  * Management of partially allocated slabs.
3330  */
3331 static inline void
3332 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
3333 {
3334 	n->nr_partial++;
3335 	if (tail == DEACTIVATE_TO_TAIL)
3336 		list_add_tail(&slab->slab_list, &n->partial);
3337 	else
3338 		list_add(&slab->slab_list, &n->partial);
3339 	slab_set_node_partial(slab);
3340 }
3341 
3342 static inline void add_partial(struct kmem_cache_node *n,
3343 				struct slab *slab, int tail)
3344 {
3345 	lockdep_assert_held(&n->list_lock);
3346 	__add_partial(n, slab, tail);
3347 }
3348 
3349 static inline void remove_partial(struct kmem_cache_node *n,
3350 					struct slab *slab)
3351 {
3352 	lockdep_assert_held(&n->list_lock);
3353 	list_del(&slab->slab_list);
3354 	slab_clear_node_partial(slab);
3355 	n->nr_partial--;
3356 }
3357 
3358 /*
3359  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
3360  * slab from the n->partial list. Remove only a single object from the slab, do
3361  * the alloc_debug_processing() checks and leave the slab on the list, or move
3362  * it to full list if it was the last free object.
3363  */
3364 static void *alloc_single_from_partial(struct kmem_cache *s,
3365 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
3366 {
3367 	void *object;
3368 
3369 	lockdep_assert_held(&n->list_lock);
3370 
3371 #ifdef CONFIG_SLUB_DEBUG
3372 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3373 		if (!validate_slab_ptr(slab)) {
3374 			slab_err(s, slab, "Not a valid slab page");
3375 			return NULL;
3376 		}
3377 	}
3378 #endif
3379 
3380 	object = slab->freelist;
3381 	slab->freelist = get_freepointer(s, object);
3382 	slab->inuse++;
3383 
3384 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3385 		remove_partial(n, slab);
3386 		return NULL;
3387 	}
3388 
3389 	if (slab->inuse == slab->objects) {
3390 		remove_partial(n, slab);
3391 		add_full(s, n, slab);
3392 	}
3393 
3394 	return object;
3395 }
3396 
3397 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
3398 
3399 /*
3400  * Called only for kmem_cache_debug() caches to allocate from a freshly
3401  * allocated slab. Allocate a single object instead of whole freelist
3402  * and put the slab to the partial (or full) list.
3403  */
3404 static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
3405 					int orig_size, gfp_t gfpflags)
3406 {
3407 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
3408 	int nid = slab_nid(slab);
3409 	struct kmem_cache_node *n = get_node(s, nid);
3410 	unsigned long flags;
3411 	void *object;
3412 
3413 	if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
3414 		/* Unlucky, discard newly allocated slab */
3415 		slab->frozen = 1;
3416 		defer_deactivate_slab(slab, NULL);
3417 		return NULL;
3418 	}
3419 
3420 	object = slab->freelist;
3421 	slab->freelist = get_freepointer(s, object);
3422 	slab->inuse = 1;
3423 
3424 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3425 		/*
3426 		 * It's not really expected that this would fail on a
3427 		 * freshly allocated slab, but a concurrent memory
3428 		 * corruption in theory could cause that.
3429 		 * Leak memory of allocated slab.
3430 		 */
3431 		if (!allow_spin)
3432 			spin_unlock_irqrestore(&n->list_lock, flags);
3433 		return NULL;
3434 	}
3435 
3436 	if (allow_spin)
3437 		spin_lock_irqsave(&n->list_lock, flags);
3438 
3439 	if (slab->inuse == slab->objects)
3440 		add_full(s, n, slab);
3441 	else
3442 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
3443 
3444 	inc_slabs_node(s, nid, slab->objects);
3445 	spin_unlock_irqrestore(&n->list_lock, flags);
3446 
3447 	return object;
3448 }
3449 
3450 #ifdef CONFIG_SLUB_CPU_PARTIAL
3451 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
3452 #else
3453 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
3454 				   int drain) { }
3455 #endif
3456 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
3457 
3458 /*
3459  * Try to allocate a partial slab from a specific node.
3460  */
3461 static struct slab *get_partial_node(struct kmem_cache *s,
3462 				     struct kmem_cache_node *n,
3463 				     struct partial_context *pc)
3464 {
3465 	struct slab *slab, *slab2, *partial = NULL;
3466 	unsigned long flags;
3467 	unsigned int partial_slabs = 0;
3468 
3469 	/*
3470 	 * Racy check. If we mistakenly see no partial slabs then we
3471 	 * just allocate an empty slab. If we mistakenly try to get a
3472 	 * partial slab and there is none available then get_partial()
3473 	 * will return NULL.
3474 	 */
3475 	if (!n || !n->nr_partial)
3476 		return NULL;
3477 
3478 	if (gfpflags_allow_spinning(pc->flags))
3479 		spin_lock_irqsave(&n->list_lock, flags);
3480 	else if (!spin_trylock_irqsave(&n->list_lock, flags))
3481 		return NULL;
3482 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
3483 		if (!pfmemalloc_match(slab, pc->flags))
3484 			continue;
3485 
3486 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3487 			void *object = alloc_single_from_partial(s, n, slab,
3488 							pc->orig_size);
3489 			if (object) {
3490 				partial = slab;
3491 				pc->object = object;
3492 				break;
3493 			}
3494 			continue;
3495 		}
3496 
3497 		remove_partial(n, slab);
3498 
3499 		if (!partial) {
3500 			partial = slab;
3501 			stat(s, ALLOC_FROM_PARTIAL);
3502 
3503 			if ((slub_get_cpu_partial(s) == 0)) {
3504 				break;
3505 			}
3506 		} else {
3507 			put_cpu_partial(s, slab, 0);
3508 			stat(s, CPU_PARTIAL_NODE);
3509 
3510 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
3511 				break;
3512 			}
3513 		}
3514 	}
3515 	spin_unlock_irqrestore(&n->list_lock, flags);
3516 	return partial;
3517 }
3518 
3519 /*
3520  * Get a slab from somewhere. Search in increasing NUMA distances.
3521  */
3522 static struct slab *get_any_partial(struct kmem_cache *s,
3523 				    struct partial_context *pc)
3524 {
3525 #ifdef CONFIG_NUMA
3526 	struct zonelist *zonelist;
3527 	struct zoneref *z;
3528 	struct zone *zone;
3529 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
3530 	struct slab *slab;
3531 	unsigned int cpuset_mems_cookie;
3532 
3533 	/*
3534 	 * The defrag ratio allows a configuration of the tradeoffs between
3535 	 * inter node defragmentation and node local allocations. A lower
3536 	 * defrag_ratio increases the tendency to do local allocations
3537 	 * instead of attempting to obtain partial slabs from other nodes.
3538 	 *
3539 	 * If the defrag_ratio is set to 0 then kmalloc() always
3540 	 * returns node local objects. If the ratio is higher then kmalloc()
3541 	 * may return off node objects because partial slabs are obtained
3542 	 * from other nodes and filled up.
3543 	 *
3544 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
3545 	 * (which makes defrag_ratio = 1000) then every (well almost)
3546 	 * allocation will first attempt to defrag slab caches on other nodes.
3547 	 * This means scanning over all nodes to look for partial slabs which
3548 	 * may be expensive if we do it every time we are trying to find a slab
3549 	 * with available objects.
3550 	 */
3551 	if (!s->remote_node_defrag_ratio ||
3552 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
3553 		return NULL;
3554 
3555 	do {
3556 		cpuset_mems_cookie = read_mems_allowed_begin();
3557 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
3558 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3559 			struct kmem_cache_node *n;
3560 
3561 			n = get_node(s, zone_to_nid(zone));
3562 
3563 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
3564 					n->nr_partial > s->min_partial) {
3565 				slab = get_partial_node(s, n, pc);
3566 				if (slab) {
3567 					/*
3568 					 * Don't check read_mems_allowed_retry()
3569 					 * here - if mems_allowed was updated in
3570 					 * parallel, that was a harmless race
3571 					 * between allocation and the cpuset
3572 					 * update
3573 					 */
3574 					return slab;
3575 				}
3576 			}
3577 		}
3578 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3579 #endif	/* CONFIG_NUMA */
3580 	return NULL;
3581 }
3582 
3583 /*
3584  * Get a partial slab, lock it and return it.
3585  */
3586 static struct slab *get_partial(struct kmem_cache *s, int node,
3587 				struct partial_context *pc)
3588 {
3589 	struct slab *slab;
3590 	int searchnode = node;
3591 
3592 	if (node == NUMA_NO_NODE)
3593 		searchnode = numa_mem_id();
3594 
3595 	slab = get_partial_node(s, get_node(s, searchnode), pc);
3596 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3597 		return slab;
3598 
3599 	return get_any_partial(s, pc);
3600 }
3601 
3602 #ifndef CONFIG_SLUB_TINY
3603 
3604 #ifdef CONFIG_PREEMPTION
3605 /*
3606  * Calculate the next globally unique transaction for disambiguation
3607  * during cmpxchg. The transactions start with the cpu number and are then
3608  * incremented by CONFIG_NR_CPUS.
3609  */
3610 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
3611 #else
3612 /*
3613  * No preemption supported therefore also no need to check for
3614  * different cpus.
3615  */
3616 #define TID_STEP 1
3617 #endif /* CONFIG_PREEMPTION */
3618 
3619 static inline unsigned long next_tid(unsigned long tid)
3620 {
3621 	return tid + TID_STEP;
3622 }
3623 
3624 #ifdef SLUB_DEBUG_CMPXCHG
3625 static inline unsigned int tid_to_cpu(unsigned long tid)
3626 {
3627 	return tid % TID_STEP;
3628 }
3629 
3630 static inline unsigned long tid_to_event(unsigned long tid)
3631 {
3632 	return tid / TID_STEP;
3633 }
3634 #endif
3635 
3636 static inline unsigned int init_tid(int cpu)
3637 {
3638 	return cpu;
3639 }
3640 
3641 static inline void note_cmpxchg_failure(const char *n,
3642 		const struct kmem_cache *s, unsigned long tid)
3643 {
3644 #ifdef SLUB_DEBUG_CMPXCHG
3645 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3646 
3647 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3648 
3649 	if (IS_ENABLED(CONFIG_PREEMPTION) &&
3650 	    tid_to_cpu(tid) != tid_to_cpu(actual_tid)) {
3651 		pr_warn("due to cpu change %d -> %d\n",
3652 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3653 	} else if (tid_to_event(tid) != tid_to_event(actual_tid)) {
3654 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3655 			tid_to_event(tid), tid_to_event(actual_tid));
3656 	} else {
3657 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3658 			actual_tid, tid, next_tid(tid));
3659 	}
3660 #endif
3661 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3662 }
3663 
3664 static void init_kmem_cache_cpus(struct kmem_cache *s)
3665 {
3666 #ifdef CONFIG_PREEMPT_RT
3667 	/*
3668 	 * Register lockdep key for non-boot kmem caches to avoid
3669 	 * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
3670 	 */
3671 	bool finegrain_lockdep = !init_section_contains(s, 1);
3672 #else
3673 	/*
3674 	 * Don't bother with different lockdep classes for each
3675 	 * kmem_cache, since we only use local_trylock_irqsave().
3676 	 */
3677 	bool finegrain_lockdep = false;
3678 #endif
3679 	int cpu;
3680 	struct kmem_cache_cpu *c;
3681 
3682 	if (finegrain_lockdep)
3683 		lockdep_register_key(&s->lock_key);
3684 	for_each_possible_cpu(cpu) {
3685 		c = per_cpu_ptr(s->cpu_slab, cpu);
3686 		local_trylock_init(&c->lock);
3687 		if (finegrain_lockdep)
3688 			lockdep_set_class(&c->lock, &s->lock_key);
3689 		c->tid = init_tid(cpu);
3690 	}
3691 }
3692 
3693 /*
3694  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3695  * unfreezes the slabs and puts it on the proper list.
3696  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3697  * by the caller.
3698  */
3699 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3700 			    void *freelist)
3701 {
3702 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3703 	int free_delta = 0;
3704 	void *nextfree, *freelist_iter, *freelist_tail;
3705 	int tail = DEACTIVATE_TO_HEAD;
3706 	unsigned long flags = 0;
3707 	struct slab new;
3708 	struct slab old;
3709 
3710 	if (READ_ONCE(slab->freelist)) {
3711 		stat(s, DEACTIVATE_REMOTE_FREES);
3712 		tail = DEACTIVATE_TO_TAIL;
3713 	}
3714 
3715 	/*
3716 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3717 	 * remember the last object in freelist_tail for later splicing.
3718 	 */
3719 	freelist_tail = NULL;
3720 	freelist_iter = freelist;
3721 	while (freelist_iter) {
3722 		nextfree = get_freepointer(s, freelist_iter);
3723 
3724 		/*
3725 		 * If 'nextfree' is invalid, it is possible that the object at
3726 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3727 		 * starting at 'freelist_iter' by skipping them.
3728 		 */
3729 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3730 			break;
3731 
3732 		freelist_tail = freelist_iter;
3733 		free_delta++;
3734 
3735 		freelist_iter = nextfree;
3736 	}
3737 
3738 	/*
3739 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3740 	 * freelist to the head of slab's freelist.
3741 	 */
3742 	do {
3743 		old.freelist = READ_ONCE(slab->freelist);
3744 		old.counters = READ_ONCE(slab->counters);
3745 		VM_BUG_ON(!old.frozen);
3746 
3747 		/* Determine target state of the slab */
3748 		new.counters = old.counters;
3749 		new.frozen = 0;
3750 		if (freelist_tail) {
3751 			new.inuse -= free_delta;
3752 			set_freepointer(s, freelist_tail, old.freelist);
3753 			new.freelist = freelist;
3754 		} else {
3755 			new.freelist = old.freelist;
3756 		}
3757 	} while (!slab_update_freelist(s, slab,
3758 		old.freelist, old.counters,
3759 		new.freelist, new.counters,
3760 		"unfreezing slab"));
3761 
3762 	/*
3763 	 * Stage three: Manipulate the slab list based on the updated state.
3764 	 */
3765 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3766 		stat(s, DEACTIVATE_EMPTY);
3767 		discard_slab(s, slab);
3768 		stat(s, FREE_SLAB);
3769 	} else if (new.freelist) {
3770 		spin_lock_irqsave(&n->list_lock, flags);
3771 		add_partial(n, slab, tail);
3772 		spin_unlock_irqrestore(&n->list_lock, flags);
3773 		stat(s, tail);
3774 	} else {
3775 		stat(s, DEACTIVATE_FULL);
3776 	}
3777 }
3778 
3779 /*
3780  * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
3781  * can be acquired without a deadlock before invoking the function.
3782  *
3783  * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
3784  * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
3785  * and kmalloc() is not used in an unsupported context.
3786  *
3787  * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
3788  * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
3789  * lockdep_assert() will catch a bug in case:
3790  * #1
3791  * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
3792  * or
3793  * #2
3794  * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
3795  *
3796  * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
3797  * disabled context. The lock will always be acquired and if needed it
3798  * block and sleep until the lock is available.
3799  * #1 is possible in !PREEMPT_RT only.
3800  * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
3801  * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
3802  *    tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
3803  *
3804  * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
3805  */
3806 #if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
3807 #define local_lock_cpu_slab(s, flags)	\
3808 	local_lock_irqsave(&(s)->cpu_slab->lock, flags)
3809 #else
3810 #define local_lock_cpu_slab(s, flags)					       \
3811 	do {								       \
3812 		bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
3813 		lockdep_assert(__l);					       \
3814 	} while (0)
3815 #endif
3816 
3817 #define local_unlock_cpu_slab(s, flags)	\
3818 	local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
3819 
3820 #ifdef CONFIG_SLUB_CPU_PARTIAL
3821 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3822 {
3823 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3824 	struct slab *slab, *slab_to_discard = NULL;
3825 	unsigned long flags = 0;
3826 
3827 	while (partial_slab) {
3828 		slab = partial_slab;
3829 		partial_slab = slab->next;
3830 
3831 		n2 = get_node(s, slab_nid(slab));
3832 		if (n != n2) {
3833 			if (n)
3834 				spin_unlock_irqrestore(&n->list_lock, flags);
3835 
3836 			n = n2;
3837 			spin_lock_irqsave(&n->list_lock, flags);
3838 		}
3839 
3840 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3841 			slab->next = slab_to_discard;
3842 			slab_to_discard = slab;
3843 		} else {
3844 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3845 			stat(s, FREE_ADD_PARTIAL);
3846 		}
3847 	}
3848 
3849 	if (n)
3850 		spin_unlock_irqrestore(&n->list_lock, flags);
3851 
3852 	while (slab_to_discard) {
3853 		slab = slab_to_discard;
3854 		slab_to_discard = slab_to_discard->next;
3855 
3856 		stat(s, DEACTIVATE_EMPTY);
3857 		discard_slab(s, slab);
3858 		stat(s, FREE_SLAB);
3859 	}
3860 }
3861 
3862 /*
3863  * Put all the cpu partial slabs to the node partial list.
3864  */
3865 static void put_partials(struct kmem_cache *s)
3866 {
3867 	struct slab *partial_slab;
3868 	unsigned long flags;
3869 
3870 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3871 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3872 	this_cpu_write(s->cpu_slab->partial, NULL);
3873 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3874 
3875 	if (partial_slab)
3876 		__put_partials(s, partial_slab);
3877 }
3878 
3879 static void put_partials_cpu(struct kmem_cache *s,
3880 			     struct kmem_cache_cpu *c)
3881 {
3882 	struct slab *partial_slab;
3883 
3884 	partial_slab = slub_percpu_partial(c);
3885 	c->partial = NULL;
3886 
3887 	if (partial_slab)
3888 		__put_partials(s, partial_slab);
3889 }
3890 
3891 /*
3892  * Put a slab into a partial slab slot if available.
3893  *
3894  * If we did not find a slot then simply move all the partials to the
3895  * per node partial list.
3896  */
3897 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3898 {
3899 	struct slab *oldslab;
3900 	struct slab *slab_to_put = NULL;
3901 	unsigned long flags;
3902 	int slabs = 0;
3903 
3904 	local_lock_cpu_slab(s, flags);
3905 
3906 	oldslab = this_cpu_read(s->cpu_slab->partial);
3907 
3908 	if (oldslab) {
3909 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3910 			/*
3911 			 * Partial array is full. Move the existing set to the
3912 			 * per node partial list. Postpone the actual unfreezing
3913 			 * outside of the critical section.
3914 			 */
3915 			slab_to_put = oldslab;
3916 			oldslab = NULL;
3917 		} else {
3918 			slabs = oldslab->slabs;
3919 		}
3920 	}
3921 
3922 	slabs++;
3923 
3924 	slab->slabs = slabs;
3925 	slab->next = oldslab;
3926 
3927 	this_cpu_write(s->cpu_slab->partial, slab);
3928 
3929 	local_unlock_cpu_slab(s, flags);
3930 
3931 	if (slab_to_put) {
3932 		__put_partials(s, slab_to_put);
3933 		stat(s, CPU_PARTIAL_DRAIN);
3934 	}
3935 }
3936 
3937 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3938 
3939 static inline void put_partials(struct kmem_cache *s) { }
3940 static inline void put_partials_cpu(struct kmem_cache *s,
3941 				    struct kmem_cache_cpu *c) { }
3942 
3943 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3944 
3945 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3946 {
3947 	unsigned long flags;
3948 	struct slab *slab;
3949 	void *freelist;
3950 
3951 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3952 
3953 	slab = c->slab;
3954 	freelist = c->freelist;
3955 
3956 	c->slab = NULL;
3957 	c->freelist = NULL;
3958 	c->tid = next_tid(c->tid);
3959 
3960 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3961 
3962 	if (slab) {
3963 		deactivate_slab(s, slab, freelist);
3964 		stat(s, CPUSLAB_FLUSH);
3965 	}
3966 }
3967 
3968 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3969 {
3970 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3971 	void *freelist = c->freelist;
3972 	struct slab *slab = c->slab;
3973 
3974 	c->slab = NULL;
3975 	c->freelist = NULL;
3976 	c->tid = next_tid(c->tid);
3977 
3978 	if (slab) {
3979 		deactivate_slab(s, slab, freelist);
3980 		stat(s, CPUSLAB_FLUSH);
3981 	}
3982 
3983 	put_partials_cpu(s, c);
3984 }
3985 
3986 static inline void flush_this_cpu_slab(struct kmem_cache *s)
3987 {
3988 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
3989 
3990 	if (c->slab)
3991 		flush_slab(s, c);
3992 
3993 	put_partials(s);
3994 }
3995 
3996 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3997 {
3998 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3999 
4000 	return c->slab || slub_percpu_partial(c);
4001 }
4002 
4003 #else /* CONFIG_SLUB_TINY */
4004 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
4005 static inline bool has_cpu_slab(int cpu, struct kmem_cache *s) { return false; }
4006 static inline void flush_this_cpu_slab(struct kmem_cache *s) { }
4007 #endif /* CONFIG_SLUB_TINY */
4008 
4009 static bool has_pcs_used(int cpu, struct kmem_cache *s)
4010 {
4011 	struct slub_percpu_sheaves *pcs;
4012 
4013 	if (!s->cpu_sheaves)
4014 		return false;
4015 
4016 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
4017 
4018 	return (pcs->spare || pcs->rcu_free || pcs->main->size);
4019 }
4020 
4021 /*
4022  * Flush cpu slab.
4023  *
4024  * Called from CPU work handler with migration disabled.
4025  */
4026 static void flush_cpu_slab(struct work_struct *w)
4027 {
4028 	struct kmem_cache *s;
4029 	struct slub_flush_work *sfw;
4030 
4031 	sfw = container_of(w, struct slub_flush_work, work);
4032 
4033 	s = sfw->s;
4034 
4035 	if (s->cpu_sheaves)
4036 		pcs_flush_all(s);
4037 
4038 	flush_this_cpu_slab(s);
4039 }
4040 
4041 static void flush_all_cpus_locked(struct kmem_cache *s)
4042 {
4043 	struct slub_flush_work *sfw;
4044 	unsigned int cpu;
4045 
4046 	lockdep_assert_cpus_held();
4047 	mutex_lock(&flush_lock);
4048 
4049 	for_each_online_cpu(cpu) {
4050 		sfw = &per_cpu(slub_flush, cpu);
4051 		if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) {
4052 			sfw->skip = true;
4053 			continue;
4054 		}
4055 		INIT_WORK(&sfw->work, flush_cpu_slab);
4056 		sfw->skip = false;
4057 		sfw->s = s;
4058 		queue_work_on(cpu, flushwq, &sfw->work);
4059 	}
4060 
4061 	for_each_online_cpu(cpu) {
4062 		sfw = &per_cpu(slub_flush, cpu);
4063 		if (sfw->skip)
4064 			continue;
4065 		flush_work(&sfw->work);
4066 	}
4067 
4068 	mutex_unlock(&flush_lock);
4069 }
4070 
4071 static void flush_all(struct kmem_cache *s)
4072 {
4073 	cpus_read_lock();
4074 	flush_all_cpus_locked(s);
4075 	cpus_read_unlock();
4076 }
4077 
4078 static void flush_rcu_sheaf(struct work_struct *w)
4079 {
4080 	struct slub_percpu_sheaves *pcs;
4081 	struct slab_sheaf *rcu_free;
4082 	struct slub_flush_work *sfw;
4083 	struct kmem_cache *s;
4084 
4085 	sfw = container_of(w, struct slub_flush_work, work);
4086 	s = sfw->s;
4087 
4088 	local_lock(&s->cpu_sheaves->lock);
4089 	pcs = this_cpu_ptr(s->cpu_sheaves);
4090 
4091 	rcu_free = pcs->rcu_free;
4092 	pcs->rcu_free = NULL;
4093 
4094 	local_unlock(&s->cpu_sheaves->lock);
4095 
4096 	if (rcu_free)
4097 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
4098 }
4099 
4100 
4101 /* needed for kvfree_rcu_barrier() */
4102 void flush_all_rcu_sheaves(void)
4103 {
4104 	struct slub_flush_work *sfw;
4105 	struct kmem_cache *s;
4106 	unsigned int cpu;
4107 
4108 	cpus_read_lock();
4109 	mutex_lock(&slab_mutex);
4110 
4111 	list_for_each_entry(s, &slab_caches, list) {
4112 		if (!s->cpu_sheaves)
4113 			continue;
4114 
4115 		mutex_lock(&flush_lock);
4116 
4117 		for_each_online_cpu(cpu) {
4118 			sfw = &per_cpu(slub_flush, cpu);
4119 
4120 			/*
4121 			 * we don't check if rcu_free sheaf exists - racing
4122 			 * __kfree_rcu_sheaf() might have just removed it.
4123 			 * by executing flush_rcu_sheaf() on the cpu we make
4124 			 * sure the __kfree_rcu_sheaf() finished its call_rcu()
4125 			 */
4126 
4127 			INIT_WORK(&sfw->work, flush_rcu_sheaf);
4128 			sfw->s = s;
4129 			queue_work_on(cpu, flushwq, &sfw->work);
4130 		}
4131 
4132 		for_each_online_cpu(cpu) {
4133 			sfw = &per_cpu(slub_flush, cpu);
4134 			flush_work(&sfw->work);
4135 		}
4136 
4137 		mutex_unlock(&flush_lock);
4138 	}
4139 
4140 	mutex_unlock(&slab_mutex);
4141 	cpus_read_unlock();
4142 
4143 	rcu_barrier();
4144 }
4145 
4146 /*
4147  * Use the cpu notifier to insure that the cpu slabs are flushed when
4148  * necessary.
4149  */
4150 static int slub_cpu_dead(unsigned int cpu)
4151 {
4152 	struct kmem_cache *s;
4153 
4154 	mutex_lock(&slab_mutex);
4155 	list_for_each_entry(s, &slab_caches, list) {
4156 		__flush_cpu_slab(s, cpu);
4157 		if (s->cpu_sheaves)
4158 			__pcs_flush_all_cpu(s, cpu);
4159 	}
4160 	mutex_unlock(&slab_mutex);
4161 	return 0;
4162 }
4163 
4164 /*
4165  * Check if the objects in a per cpu structure fit numa
4166  * locality expectations.
4167  */
4168 static inline int node_match(struct slab *slab, int node)
4169 {
4170 #ifdef CONFIG_NUMA
4171 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
4172 		return 0;
4173 #endif
4174 	return 1;
4175 }
4176 
4177 #ifdef CONFIG_SLUB_DEBUG
4178 static int count_free(struct slab *slab)
4179 {
4180 	return slab->objects - slab->inuse;
4181 }
4182 
4183 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
4184 {
4185 	return atomic_long_read(&n->total_objects);
4186 }
4187 
4188 /* Supports checking bulk free of a constructed freelist */
4189 static inline bool free_debug_processing(struct kmem_cache *s,
4190 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
4191 	unsigned long addr, depot_stack_handle_t handle)
4192 {
4193 	bool checks_ok = false;
4194 	void *object = head;
4195 	int cnt = 0;
4196 
4197 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4198 		if (!check_slab(s, slab))
4199 			goto out;
4200 	}
4201 
4202 	if (slab->inuse < *bulk_cnt) {
4203 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
4204 			 slab->inuse, *bulk_cnt);
4205 		goto out;
4206 	}
4207 
4208 next_object:
4209 
4210 	if (++cnt > *bulk_cnt)
4211 		goto out_cnt;
4212 
4213 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4214 		if (!free_consistency_checks(s, slab, object, addr))
4215 			goto out;
4216 	}
4217 
4218 	if (s->flags & SLAB_STORE_USER)
4219 		set_track_update(s, object, TRACK_FREE, addr, handle);
4220 	trace(s, slab, object, 0);
4221 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
4222 	init_object(s, object, SLUB_RED_INACTIVE);
4223 
4224 	/* Reached end of constructed freelist yet? */
4225 	if (object != tail) {
4226 		object = get_freepointer(s, object);
4227 		goto next_object;
4228 	}
4229 	checks_ok = true;
4230 
4231 out_cnt:
4232 	if (cnt != *bulk_cnt) {
4233 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
4234 			 *bulk_cnt, cnt);
4235 		*bulk_cnt = cnt;
4236 	}
4237 
4238 out:
4239 
4240 	if (!checks_ok)
4241 		slab_fix(s, "Object at 0x%p not freed", object);
4242 
4243 	return checks_ok;
4244 }
4245 #endif /* CONFIG_SLUB_DEBUG */
4246 
4247 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
4248 static unsigned long count_partial(struct kmem_cache_node *n,
4249 					int (*get_count)(struct slab *))
4250 {
4251 	unsigned long flags;
4252 	unsigned long x = 0;
4253 	struct slab *slab;
4254 
4255 	spin_lock_irqsave(&n->list_lock, flags);
4256 	list_for_each_entry(slab, &n->partial, slab_list)
4257 		x += get_count(slab);
4258 	spin_unlock_irqrestore(&n->list_lock, flags);
4259 	return x;
4260 }
4261 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
4262 
4263 #ifdef CONFIG_SLUB_DEBUG
4264 #define MAX_PARTIAL_TO_SCAN 10000
4265 
4266 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
4267 {
4268 	unsigned long flags;
4269 	unsigned long x = 0;
4270 	struct slab *slab;
4271 
4272 	spin_lock_irqsave(&n->list_lock, flags);
4273 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
4274 		list_for_each_entry(slab, &n->partial, slab_list)
4275 			x += slab->objects - slab->inuse;
4276 	} else {
4277 		/*
4278 		 * For a long list, approximate the total count of objects in
4279 		 * it to meet the limit on the number of slabs to scan.
4280 		 * Scan from both the list's head and tail for better accuracy.
4281 		 */
4282 		unsigned long scanned = 0;
4283 
4284 		list_for_each_entry(slab, &n->partial, slab_list) {
4285 			x += slab->objects - slab->inuse;
4286 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
4287 				break;
4288 		}
4289 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
4290 			x += slab->objects - slab->inuse;
4291 			if (++scanned == MAX_PARTIAL_TO_SCAN)
4292 				break;
4293 		}
4294 		x = mult_frac(x, n->nr_partial, scanned);
4295 		x = min(x, node_nr_objs(n));
4296 	}
4297 	spin_unlock_irqrestore(&n->list_lock, flags);
4298 	return x;
4299 }
4300 
4301 static noinline void
4302 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
4303 {
4304 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
4305 				      DEFAULT_RATELIMIT_BURST);
4306 	int cpu = raw_smp_processor_id();
4307 	int node;
4308 	struct kmem_cache_node *n;
4309 
4310 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
4311 		return;
4312 
4313 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
4314 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
4315 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
4316 		s->name, s->object_size, s->size, oo_order(s->oo),
4317 		oo_order(s->min));
4318 
4319 	if (oo_order(s->min) > get_order(s->object_size))
4320 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
4321 			s->name);
4322 
4323 	for_each_kmem_cache_node(s, node, n) {
4324 		unsigned long nr_slabs;
4325 		unsigned long nr_objs;
4326 		unsigned long nr_free;
4327 
4328 		nr_free  = count_partial_free_approx(n);
4329 		nr_slabs = node_nr_slabs(n);
4330 		nr_objs  = node_nr_objs(n);
4331 
4332 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
4333 			node, nr_slabs, nr_objs, nr_free);
4334 	}
4335 }
4336 #else /* CONFIG_SLUB_DEBUG */
4337 static inline void
4338 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
4339 #endif
4340 
4341 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
4342 {
4343 	if (unlikely(slab_test_pfmemalloc(slab)))
4344 		return gfp_pfmemalloc_allowed(gfpflags);
4345 
4346 	return true;
4347 }
4348 
4349 #ifndef CONFIG_SLUB_TINY
4350 static inline bool
4351 __update_cpu_freelist_fast(struct kmem_cache *s,
4352 			   void *freelist_old, void *freelist_new,
4353 			   unsigned long tid)
4354 {
4355 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
4356 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
4357 
4358 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
4359 					     &old.full, new.full);
4360 }
4361 
4362 /*
4363  * Check the slab->freelist and either transfer the freelist to the
4364  * per cpu freelist or deactivate the slab.
4365  *
4366  * The slab is still frozen if the return value is not NULL.
4367  *
4368  * If this function returns NULL then the slab has been unfrozen.
4369  */
4370 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
4371 {
4372 	struct slab new;
4373 	unsigned long counters;
4374 	void *freelist;
4375 
4376 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4377 
4378 	do {
4379 		freelist = slab->freelist;
4380 		counters = slab->counters;
4381 
4382 		new.counters = counters;
4383 
4384 		new.inuse = slab->objects;
4385 		new.frozen = freelist != NULL;
4386 
4387 	} while (!__slab_update_freelist(s, slab,
4388 		freelist, counters,
4389 		NULL, new.counters,
4390 		"get_freelist"));
4391 
4392 	return freelist;
4393 }
4394 
4395 /*
4396  * Freeze the partial slab and return the pointer to the freelist.
4397  */
4398 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
4399 {
4400 	struct slab new;
4401 	unsigned long counters;
4402 	void *freelist;
4403 
4404 	do {
4405 		freelist = slab->freelist;
4406 		counters = slab->counters;
4407 
4408 		new.counters = counters;
4409 		VM_BUG_ON(new.frozen);
4410 
4411 		new.inuse = slab->objects;
4412 		new.frozen = 1;
4413 
4414 	} while (!slab_update_freelist(s, slab,
4415 		freelist, counters,
4416 		NULL, new.counters,
4417 		"freeze_slab"));
4418 
4419 	return freelist;
4420 }
4421 
4422 /*
4423  * Slow path. The lockless freelist is empty or we need to perform
4424  * debugging duties.
4425  *
4426  * Processing is still very fast if new objects have been freed to the
4427  * regular freelist. In that case we simply take over the regular freelist
4428  * as the lockless freelist and zap the regular freelist.
4429  *
4430  * If that is not working then we fall back to the partial lists. We take the
4431  * first element of the freelist as the object to allocate now and move the
4432  * rest of the freelist to the lockless freelist.
4433  *
4434  * And if we were unable to get a new slab from the partial slab lists then
4435  * we need to allocate a new slab. This is the slowest path since it involves
4436  * a call to the page allocator and the setup of a new slab.
4437  *
4438  * Version of __slab_alloc to use when we know that preemption is
4439  * already disabled (which is the case for bulk allocation).
4440  */
4441 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4442 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4443 {
4444 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
4445 	void *freelist;
4446 	struct slab *slab;
4447 	unsigned long flags;
4448 	struct partial_context pc;
4449 	bool try_thisnode = true;
4450 
4451 	stat(s, ALLOC_SLOWPATH);
4452 
4453 reread_slab:
4454 
4455 	slab = READ_ONCE(c->slab);
4456 	if (!slab) {
4457 		/*
4458 		 * if the node is not online or has no normal memory, just
4459 		 * ignore the node constraint
4460 		 */
4461 		if (unlikely(node != NUMA_NO_NODE &&
4462 			     !node_isset(node, slab_nodes)))
4463 			node = NUMA_NO_NODE;
4464 		goto new_slab;
4465 	}
4466 
4467 	if (unlikely(!node_match(slab, node))) {
4468 		/*
4469 		 * same as above but node_match() being false already
4470 		 * implies node != NUMA_NO_NODE.
4471 		 *
4472 		 * We don't strictly honor pfmemalloc and NUMA preferences
4473 		 * when !allow_spin because:
4474 		 *
4475 		 * 1. Most kmalloc() users allocate objects on the local node,
4476 		 *    so kmalloc_nolock() tries not to interfere with them by
4477 		 *    deactivating the cpu slab.
4478 		 *
4479 		 * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
4480 		 *    unnecessary slab allocations even when n->partial list
4481 		 *    is not empty.
4482 		 */
4483 		if (!node_isset(node, slab_nodes) ||
4484 		    !allow_spin) {
4485 			node = NUMA_NO_NODE;
4486 		} else {
4487 			stat(s, ALLOC_NODE_MISMATCH);
4488 			goto deactivate_slab;
4489 		}
4490 	}
4491 
4492 	/*
4493 	 * By rights, we should be searching for a slab page that was
4494 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
4495 	 * information when the page leaves the per-cpu allocator
4496 	 */
4497 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
4498 		goto deactivate_slab;
4499 
4500 	/* must check again c->slab in case we got preempted and it changed */
4501 	local_lock_cpu_slab(s, flags);
4502 
4503 	if (unlikely(slab != c->slab)) {
4504 		local_unlock_cpu_slab(s, flags);
4505 		goto reread_slab;
4506 	}
4507 	freelist = c->freelist;
4508 	if (freelist)
4509 		goto load_freelist;
4510 
4511 	freelist = get_freelist(s, slab);
4512 
4513 	if (!freelist) {
4514 		c->slab = NULL;
4515 		c->tid = next_tid(c->tid);
4516 		local_unlock_cpu_slab(s, flags);
4517 		stat(s, DEACTIVATE_BYPASS);
4518 		goto new_slab;
4519 	}
4520 
4521 	stat(s, ALLOC_REFILL);
4522 
4523 load_freelist:
4524 
4525 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4526 
4527 	/*
4528 	 * freelist is pointing to the list of objects to be used.
4529 	 * slab is pointing to the slab from which the objects are obtained.
4530 	 * That slab must be frozen for per cpu allocations to work.
4531 	 */
4532 	VM_BUG_ON(!c->slab->frozen);
4533 	c->freelist = get_freepointer(s, freelist);
4534 	c->tid = next_tid(c->tid);
4535 	local_unlock_cpu_slab(s, flags);
4536 	return freelist;
4537 
4538 deactivate_slab:
4539 
4540 	local_lock_cpu_slab(s, flags);
4541 	if (slab != c->slab) {
4542 		local_unlock_cpu_slab(s, flags);
4543 		goto reread_slab;
4544 	}
4545 	freelist = c->freelist;
4546 	c->slab = NULL;
4547 	c->freelist = NULL;
4548 	c->tid = next_tid(c->tid);
4549 	local_unlock_cpu_slab(s, flags);
4550 	deactivate_slab(s, slab, freelist);
4551 
4552 new_slab:
4553 
4554 #ifdef CONFIG_SLUB_CPU_PARTIAL
4555 	while (slub_percpu_partial(c)) {
4556 		local_lock_cpu_slab(s, flags);
4557 		if (unlikely(c->slab)) {
4558 			local_unlock_cpu_slab(s, flags);
4559 			goto reread_slab;
4560 		}
4561 		if (unlikely(!slub_percpu_partial(c))) {
4562 			local_unlock_cpu_slab(s, flags);
4563 			/* we were preempted and partial list got empty */
4564 			goto new_objects;
4565 		}
4566 
4567 		slab = slub_percpu_partial(c);
4568 		slub_set_percpu_partial(c, slab);
4569 
4570 		if (likely(node_match(slab, node) &&
4571 			   pfmemalloc_match(slab, gfpflags)) ||
4572 		    !allow_spin) {
4573 			c->slab = slab;
4574 			freelist = get_freelist(s, slab);
4575 			VM_BUG_ON(!freelist);
4576 			stat(s, CPU_PARTIAL_ALLOC);
4577 			goto load_freelist;
4578 		}
4579 
4580 		local_unlock_cpu_slab(s, flags);
4581 
4582 		slab->next = NULL;
4583 		__put_partials(s, slab);
4584 	}
4585 #endif
4586 
4587 new_objects:
4588 
4589 	pc.flags = gfpflags;
4590 	/*
4591 	 * When a preferred node is indicated but no __GFP_THISNODE
4592 	 *
4593 	 * 1) try to get a partial slab from target node only by having
4594 	 *    __GFP_THISNODE in pc.flags for get_partial()
4595 	 * 2) if 1) failed, try to allocate a new slab from target node with
4596 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
4597 	 * 3) if 2) failed, retry with original gfpflags which will allow
4598 	 *    get_partial() try partial lists of other nodes before potentially
4599 	 *    allocating new page from other nodes
4600 	 */
4601 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4602 		     && try_thisnode)) {
4603 		if (unlikely(!allow_spin))
4604 			/* Do not upgrade gfp to NOWAIT from more restrictive mode */
4605 			pc.flags = gfpflags | __GFP_THISNODE;
4606 		else
4607 			pc.flags = GFP_NOWAIT | __GFP_THISNODE;
4608 	}
4609 
4610 	pc.orig_size = orig_size;
4611 	slab = get_partial(s, node, &pc);
4612 	if (slab) {
4613 		if (kmem_cache_debug(s)) {
4614 			freelist = pc.object;
4615 			/*
4616 			 * For debug caches here we had to go through
4617 			 * alloc_single_from_partial() so just store the
4618 			 * tracking info and return the object.
4619 			 *
4620 			 * Due to disabled preemption we need to disallow
4621 			 * blocking. The flags are further adjusted by
4622 			 * gfp_nested_mask() in stack_depot itself.
4623 			 */
4624 			if (s->flags & SLAB_STORE_USER)
4625 				set_track(s, freelist, TRACK_ALLOC, addr,
4626 					  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4627 
4628 			return freelist;
4629 		}
4630 
4631 		freelist = freeze_slab(s, slab);
4632 		goto retry_load_slab;
4633 	}
4634 
4635 	slub_put_cpu_ptr(s->cpu_slab);
4636 	slab = new_slab(s, pc.flags, node);
4637 	c = slub_get_cpu_ptr(s->cpu_slab);
4638 
4639 	if (unlikely(!slab)) {
4640 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4641 		    && try_thisnode) {
4642 			try_thisnode = false;
4643 			goto new_objects;
4644 		}
4645 		slab_out_of_memory(s, gfpflags, node);
4646 		return NULL;
4647 	}
4648 
4649 	stat(s, ALLOC_SLAB);
4650 
4651 	if (kmem_cache_debug(s)) {
4652 		freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4653 
4654 		if (unlikely(!freelist))
4655 			goto new_objects;
4656 
4657 		if (s->flags & SLAB_STORE_USER)
4658 			set_track(s, freelist, TRACK_ALLOC, addr,
4659 				  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4660 
4661 		return freelist;
4662 	}
4663 
4664 	/*
4665 	 * No other reference to the slab yet so we can
4666 	 * muck around with it freely without cmpxchg
4667 	 */
4668 	freelist = slab->freelist;
4669 	slab->freelist = NULL;
4670 	slab->inuse = slab->objects;
4671 	slab->frozen = 1;
4672 
4673 	inc_slabs_node(s, slab_nid(slab), slab->objects);
4674 
4675 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
4676 		/*
4677 		 * For !pfmemalloc_match() case we don't load freelist so that
4678 		 * we don't make further mismatched allocations easier.
4679 		 */
4680 		deactivate_slab(s, slab, get_freepointer(s, freelist));
4681 		return freelist;
4682 	}
4683 
4684 retry_load_slab:
4685 
4686 	local_lock_cpu_slab(s, flags);
4687 	if (unlikely(c->slab)) {
4688 		void *flush_freelist = c->freelist;
4689 		struct slab *flush_slab = c->slab;
4690 
4691 		c->slab = NULL;
4692 		c->freelist = NULL;
4693 		c->tid = next_tid(c->tid);
4694 
4695 		local_unlock_cpu_slab(s, flags);
4696 
4697 		if (unlikely(!allow_spin)) {
4698 			/* Reentrant slub cannot take locks, defer */
4699 			defer_deactivate_slab(flush_slab, flush_freelist);
4700 		} else {
4701 			deactivate_slab(s, flush_slab, flush_freelist);
4702 		}
4703 
4704 		stat(s, CPUSLAB_FLUSH);
4705 
4706 		goto retry_load_slab;
4707 	}
4708 	c->slab = slab;
4709 
4710 	goto load_freelist;
4711 }
4712 /*
4713  * We disallow kprobes in ___slab_alloc() to prevent reentrance
4714  *
4715  * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
4716  * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
4717  * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
4718  * manipulating c->freelist without lock.
4719  *
4720  * This does not prevent kprobe in functions called from ___slab_alloc() such as
4721  * local_lock_irqsave() itself, and that is fine, we only need to protect the
4722  * c->freelist manipulation in ___slab_alloc() itself.
4723  */
4724 NOKPROBE_SYMBOL(___slab_alloc);
4725 
4726 /*
4727  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
4728  * disabled. Compensates for possible cpu changes by refetching the per cpu area
4729  * pointer.
4730  */
4731 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4732 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4733 {
4734 	void *p;
4735 
4736 #ifdef CONFIG_PREEMPT_COUNT
4737 	/*
4738 	 * We may have been preempted and rescheduled on a different
4739 	 * cpu before disabling preemption. Need to reload cpu area
4740 	 * pointer.
4741 	 */
4742 	c = slub_get_cpu_ptr(s->cpu_slab);
4743 #endif
4744 	if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
4745 		if (local_lock_is_locked(&s->cpu_slab->lock)) {
4746 			/*
4747 			 * EBUSY is an internal signal to kmalloc_nolock() to
4748 			 * retry a different bucket. It's not propagated
4749 			 * to the caller.
4750 			 */
4751 			p = ERR_PTR(-EBUSY);
4752 			goto out;
4753 		}
4754 	}
4755 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
4756 out:
4757 #ifdef CONFIG_PREEMPT_COUNT
4758 	slub_put_cpu_ptr(s->cpu_slab);
4759 #endif
4760 	return p;
4761 }
4762 
4763 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4764 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4765 {
4766 	struct kmem_cache_cpu *c;
4767 	struct slab *slab;
4768 	unsigned long tid;
4769 	void *object;
4770 
4771 redo:
4772 	/*
4773 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4774 	 * enabled. We may switch back and forth between cpus while
4775 	 * reading from one cpu area. That does not matter as long
4776 	 * as we end up on the original cpu again when doing the cmpxchg.
4777 	 *
4778 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4779 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4780 	 * the tid. If we are preempted and switched to another cpu between the
4781 	 * two reads, it's OK as the two are still associated with the same cpu
4782 	 * and cmpxchg later will validate the cpu.
4783 	 */
4784 	c = raw_cpu_ptr(s->cpu_slab);
4785 	tid = READ_ONCE(c->tid);
4786 
4787 	/*
4788 	 * Irqless object alloc/free algorithm used here depends on sequence
4789 	 * of fetching cpu_slab's data. tid should be fetched before anything
4790 	 * on c to guarantee that object and slab associated with previous tid
4791 	 * won't be used with current tid. If we fetch tid first, object and
4792 	 * slab could be one associated with next tid and our alloc/free
4793 	 * request will be failed. In this case, we will retry. So, no problem.
4794 	 */
4795 	barrier();
4796 
4797 	/*
4798 	 * The transaction ids are globally unique per cpu and per operation on
4799 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4800 	 * occurs on the right processor and that there was no operation on the
4801 	 * linked list in between.
4802 	 */
4803 
4804 	object = c->freelist;
4805 	slab = c->slab;
4806 
4807 #ifdef CONFIG_NUMA
4808 	if (static_branch_unlikely(&strict_numa) &&
4809 			node == NUMA_NO_NODE) {
4810 
4811 		struct mempolicy *mpol = current->mempolicy;
4812 
4813 		if (mpol) {
4814 			/*
4815 			 * Special BIND rule support. If existing slab
4816 			 * is in permitted set then do not redirect
4817 			 * to a particular node.
4818 			 * Otherwise we apply the memory policy to get
4819 			 * the node we need to allocate on.
4820 			 */
4821 			if (mpol->mode != MPOL_BIND || !slab ||
4822 					!node_isset(slab_nid(slab), mpol->nodes))
4823 
4824 				node = mempolicy_slab_node();
4825 		}
4826 	}
4827 #endif
4828 
4829 	if (!USE_LOCKLESS_FAST_PATH() ||
4830 	    unlikely(!object || !slab || !node_match(slab, node))) {
4831 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4832 	} else {
4833 		void *next_object = get_freepointer_safe(s, object);
4834 
4835 		/*
4836 		 * The cmpxchg will only match if there was no additional
4837 		 * operation and if we are on the right processor.
4838 		 *
4839 		 * The cmpxchg does the following atomically (without lock
4840 		 * semantics!)
4841 		 * 1. Relocate first pointer to the current per cpu area.
4842 		 * 2. Verify that tid and freelist have not been changed
4843 		 * 3. If they were not changed replace tid and freelist
4844 		 *
4845 		 * Since this is without lock semantics the protection is only
4846 		 * against code executing on this cpu *not* from access by
4847 		 * other cpus.
4848 		 */
4849 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4850 			note_cmpxchg_failure("slab_alloc", s, tid);
4851 			goto redo;
4852 		}
4853 		prefetch_freepointer(s, next_object);
4854 		stat(s, ALLOC_FASTPATH);
4855 	}
4856 
4857 	return object;
4858 }
4859 #else /* CONFIG_SLUB_TINY */
4860 static void *__slab_alloc_node(struct kmem_cache *s,
4861 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4862 {
4863 	struct partial_context pc;
4864 	struct slab *slab;
4865 	void *object;
4866 
4867 	pc.flags = gfpflags;
4868 	pc.orig_size = orig_size;
4869 	slab = get_partial(s, node, &pc);
4870 
4871 	if (slab)
4872 		return pc.object;
4873 
4874 	slab = new_slab(s, gfpflags, node);
4875 	if (unlikely(!slab)) {
4876 		slab_out_of_memory(s, gfpflags, node);
4877 		return NULL;
4878 	}
4879 
4880 	object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4881 
4882 	return object;
4883 }
4884 #endif /* CONFIG_SLUB_TINY */
4885 
4886 /*
4887  * If the object has been wiped upon free, make sure it's fully initialized by
4888  * zeroing out freelist pointer.
4889  *
4890  * Note that we also wipe custom freelist pointers.
4891  */
4892 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4893 						   void *obj)
4894 {
4895 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4896 	    !freeptr_outside_object(s))
4897 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4898 			0, sizeof(void *));
4899 }
4900 
4901 static __fastpath_inline
4902 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4903 {
4904 	flags &= gfp_allowed_mask;
4905 
4906 	might_alloc(flags);
4907 
4908 	if (unlikely(should_failslab(s, flags)))
4909 		return NULL;
4910 
4911 	return s;
4912 }
4913 
4914 static __fastpath_inline
4915 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4916 			  gfp_t flags, size_t size, void **p, bool init,
4917 			  unsigned int orig_size)
4918 {
4919 	unsigned int zero_size = s->object_size;
4920 	bool kasan_init = init;
4921 	size_t i;
4922 	gfp_t init_flags = flags & gfp_allowed_mask;
4923 
4924 	/*
4925 	 * For kmalloc object, the allocated memory size(object_size) is likely
4926 	 * larger than the requested size(orig_size). If redzone check is
4927 	 * enabled for the extra space, don't zero it, as it will be redzoned
4928 	 * soon. The redzone operation for this extra space could be seen as a
4929 	 * replacement of current poisoning under certain debug option, and
4930 	 * won't break other sanity checks.
4931 	 */
4932 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4933 	    (s->flags & SLAB_KMALLOC))
4934 		zero_size = orig_size;
4935 
4936 	/*
4937 	 * When slab_debug is enabled, avoid memory initialization integrated
4938 	 * into KASAN and instead zero out the memory via the memset below with
4939 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4940 	 * cause false-positive reports. This does not lead to a performance
4941 	 * penalty on production builds, as slab_debug is not intended to be
4942 	 * enabled there.
4943 	 */
4944 	if (__slub_debug_enabled())
4945 		kasan_init = false;
4946 
4947 	/*
4948 	 * As memory initialization might be integrated into KASAN,
4949 	 * kasan_slab_alloc and initialization memset must be
4950 	 * kept together to avoid discrepancies in behavior.
4951 	 *
4952 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4953 	 */
4954 	for (i = 0; i < size; i++) {
4955 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4956 		if (p[i] && init && (!kasan_init ||
4957 				     !kasan_has_integrated_init()))
4958 			memset(p[i], 0, zero_size);
4959 		if (gfpflags_allow_spinning(flags))
4960 			kmemleak_alloc_recursive(p[i], s->object_size, 1,
4961 						 s->flags, init_flags);
4962 		kmsan_slab_alloc(s, p[i], init_flags);
4963 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4964 	}
4965 
4966 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4967 }
4968 
4969 /*
4970  * Replace the empty main sheaf with a (at least partially) full sheaf.
4971  *
4972  * Must be called with the cpu_sheaves local lock locked. If successful, returns
4973  * the pcs pointer and the local lock locked (possibly on a different cpu than
4974  * initially called). If not successful, returns NULL and the local lock
4975  * unlocked.
4976  */
4977 static struct slub_percpu_sheaves *
4978 __pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp)
4979 {
4980 	struct slab_sheaf *empty = NULL;
4981 	struct slab_sheaf *full;
4982 	struct node_barn *barn;
4983 	bool can_alloc;
4984 
4985 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
4986 
4987 	if (pcs->spare && pcs->spare->size > 0) {
4988 		swap(pcs->main, pcs->spare);
4989 		return pcs;
4990 	}
4991 
4992 	barn = get_barn(s);
4993 	if (!barn) {
4994 		local_unlock(&s->cpu_sheaves->lock);
4995 		return NULL;
4996 	}
4997 
4998 	full = barn_replace_empty_sheaf(barn, pcs->main);
4999 
5000 	if (full) {
5001 		stat(s, BARN_GET);
5002 		pcs->main = full;
5003 		return pcs;
5004 	}
5005 
5006 	stat(s, BARN_GET_FAIL);
5007 
5008 	can_alloc = gfpflags_allow_blocking(gfp);
5009 
5010 	if (can_alloc) {
5011 		if (pcs->spare) {
5012 			empty = pcs->spare;
5013 			pcs->spare = NULL;
5014 		} else {
5015 			empty = barn_get_empty_sheaf(barn);
5016 		}
5017 	}
5018 
5019 	local_unlock(&s->cpu_sheaves->lock);
5020 
5021 	if (!can_alloc)
5022 		return NULL;
5023 
5024 	if (empty) {
5025 		if (!refill_sheaf(s, empty, gfp)) {
5026 			full = empty;
5027 		} else {
5028 			/*
5029 			 * we must be very low on memory so don't bother
5030 			 * with the barn
5031 			 */
5032 			free_empty_sheaf(s, empty);
5033 		}
5034 	} else {
5035 		full = alloc_full_sheaf(s, gfp);
5036 	}
5037 
5038 	if (!full)
5039 		return NULL;
5040 
5041 	/*
5042 	 * we can reach here only when gfpflags_allow_blocking
5043 	 * so this must not be an irq
5044 	 */
5045 	local_lock(&s->cpu_sheaves->lock);
5046 	pcs = this_cpu_ptr(s->cpu_sheaves);
5047 
5048 	/*
5049 	 * If we are returning empty sheaf, we either got it from the
5050 	 * barn or had to allocate one. If we are returning a full
5051 	 * sheaf, it's due to racing or being migrated to a different
5052 	 * cpu. Breaching the barn's sheaf limits should be thus rare
5053 	 * enough so just ignore them to simplify the recovery.
5054 	 */
5055 
5056 	if (pcs->main->size == 0) {
5057 		barn_put_empty_sheaf(barn, pcs->main);
5058 		pcs->main = full;
5059 		return pcs;
5060 	}
5061 
5062 	if (!pcs->spare) {
5063 		pcs->spare = full;
5064 		return pcs;
5065 	}
5066 
5067 	if (pcs->spare->size == 0) {
5068 		barn_put_empty_sheaf(barn, pcs->spare);
5069 		pcs->spare = full;
5070 		return pcs;
5071 	}
5072 
5073 	barn_put_full_sheaf(barn, full);
5074 	stat(s, BARN_PUT);
5075 
5076 	return pcs;
5077 }
5078 
5079 static __fastpath_inline
5080 void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node)
5081 {
5082 	struct slub_percpu_sheaves *pcs;
5083 	bool node_requested;
5084 	void *object;
5085 
5086 #ifdef CONFIG_NUMA
5087 	if (static_branch_unlikely(&strict_numa) &&
5088 			 node == NUMA_NO_NODE) {
5089 
5090 		struct mempolicy *mpol = current->mempolicy;
5091 
5092 		if (mpol) {
5093 			/*
5094 			 * Special BIND rule support. If the local node
5095 			 * is in permitted set then do not redirect
5096 			 * to a particular node.
5097 			 * Otherwise we apply the memory policy to get
5098 			 * the node we need to allocate on.
5099 			 */
5100 			if (mpol->mode != MPOL_BIND ||
5101 					!node_isset(numa_mem_id(), mpol->nodes))
5102 
5103 				node = mempolicy_slab_node();
5104 		}
5105 	}
5106 #endif
5107 
5108 	node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE;
5109 
5110 	/*
5111 	 * We assume the percpu sheaves contain only local objects although it's
5112 	 * not completely guaranteed, so we verify later.
5113 	 */
5114 	if (unlikely(node_requested && node != numa_mem_id()))
5115 		return NULL;
5116 
5117 	if (!local_trylock(&s->cpu_sheaves->lock))
5118 		return NULL;
5119 
5120 	pcs = this_cpu_ptr(s->cpu_sheaves);
5121 
5122 	if (unlikely(pcs->main->size == 0)) {
5123 		pcs = __pcs_replace_empty_main(s, pcs, gfp);
5124 		if (unlikely(!pcs))
5125 			return NULL;
5126 	}
5127 
5128 	object = pcs->main->objects[pcs->main->size - 1];
5129 
5130 	if (unlikely(node_requested)) {
5131 		/*
5132 		 * Verify that the object was from the node we want. This could
5133 		 * be false because of cpu migration during an unlocked part of
5134 		 * the current allocation or previous freeing process.
5135 		 */
5136 		if (folio_nid(virt_to_folio(object)) != node) {
5137 			local_unlock(&s->cpu_sheaves->lock);
5138 			return NULL;
5139 		}
5140 	}
5141 
5142 	pcs->main->size--;
5143 
5144 	local_unlock(&s->cpu_sheaves->lock);
5145 
5146 	stat(s, ALLOC_PCS);
5147 
5148 	return object;
5149 }
5150 
5151 static __fastpath_inline
5152 unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
5153 {
5154 	struct slub_percpu_sheaves *pcs;
5155 	struct slab_sheaf *main;
5156 	unsigned int allocated = 0;
5157 	unsigned int batch;
5158 
5159 next_batch:
5160 	if (!local_trylock(&s->cpu_sheaves->lock))
5161 		return allocated;
5162 
5163 	pcs = this_cpu_ptr(s->cpu_sheaves);
5164 
5165 	if (unlikely(pcs->main->size == 0)) {
5166 
5167 		struct slab_sheaf *full;
5168 		struct node_barn *barn;
5169 
5170 		if (pcs->spare && pcs->spare->size > 0) {
5171 			swap(pcs->main, pcs->spare);
5172 			goto do_alloc;
5173 		}
5174 
5175 		barn = get_barn(s);
5176 		if (!barn) {
5177 			local_unlock(&s->cpu_sheaves->lock);
5178 			return allocated;
5179 		}
5180 
5181 		full = barn_replace_empty_sheaf(barn, pcs->main);
5182 
5183 		if (full) {
5184 			stat(s, BARN_GET);
5185 			pcs->main = full;
5186 			goto do_alloc;
5187 		}
5188 
5189 		stat(s, BARN_GET_FAIL);
5190 
5191 		local_unlock(&s->cpu_sheaves->lock);
5192 
5193 		/*
5194 		 * Once full sheaves in barn are depleted, let the bulk
5195 		 * allocation continue from slab pages, otherwise we would just
5196 		 * be copying arrays of pointers twice.
5197 		 */
5198 		return allocated;
5199 	}
5200 
5201 do_alloc:
5202 
5203 	main = pcs->main;
5204 	batch = min(size, main->size);
5205 
5206 	main->size -= batch;
5207 	memcpy(p, main->objects + main->size, batch * sizeof(void *));
5208 
5209 	local_unlock(&s->cpu_sheaves->lock);
5210 
5211 	stat_add(s, ALLOC_PCS, batch);
5212 
5213 	allocated += batch;
5214 
5215 	if (batch < size) {
5216 		p += batch;
5217 		size -= batch;
5218 		goto next_batch;
5219 	}
5220 
5221 	return allocated;
5222 }
5223 
5224 
5225 /*
5226  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
5227  * have the fastpath folded into their functions. So no function call
5228  * overhead for requests that can be satisfied on the fastpath.
5229  *
5230  * The fastpath works by first checking if the lockless freelist can be used.
5231  * If not then __slab_alloc is called for slow processing.
5232  *
5233  * Otherwise we can simply pick the next object from the lockless free list.
5234  */
5235 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
5236 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
5237 {
5238 	void *object;
5239 	bool init = false;
5240 
5241 	s = slab_pre_alloc_hook(s, gfpflags);
5242 	if (unlikely(!s))
5243 		return NULL;
5244 
5245 	object = kfence_alloc(s, orig_size, gfpflags);
5246 	if (unlikely(object))
5247 		goto out;
5248 
5249 	if (s->cpu_sheaves)
5250 		object = alloc_from_pcs(s, gfpflags, node);
5251 
5252 	if (!object)
5253 		object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
5254 
5255 	maybe_wipe_obj_freeptr(s, object);
5256 	init = slab_want_init_on_alloc(gfpflags, s);
5257 
5258 out:
5259 	/*
5260 	 * When init equals 'true', like for kzalloc() family, only
5261 	 * @orig_size bytes might be zeroed instead of s->object_size
5262 	 * In case this fails due to memcg_slab_post_alloc_hook(),
5263 	 * object is set to NULL
5264 	 */
5265 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5266 
5267 	return object;
5268 }
5269 
5270 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
5271 {
5272 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
5273 				    s->object_size);
5274 
5275 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5276 
5277 	return ret;
5278 }
5279 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
5280 
5281 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
5282 			   gfp_t gfpflags)
5283 {
5284 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
5285 				    s->object_size);
5286 
5287 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5288 
5289 	return ret;
5290 }
5291 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
5292 
5293 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
5294 {
5295 	if (!memcg_kmem_online())
5296 		return true;
5297 
5298 	return memcg_slab_post_charge(objp, gfpflags);
5299 }
5300 EXPORT_SYMBOL(kmem_cache_charge);
5301 
5302 /**
5303  * kmem_cache_alloc_node - Allocate an object on the specified node
5304  * @s: The cache to allocate from.
5305  * @gfpflags: See kmalloc().
5306  * @node: node number of the target node.
5307  *
5308  * Identical to kmem_cache_alloc but it will allocate memory on the given
5309  * node, which can improve the performance for cpu bound structures.
5310  *
5311  * Fallback to other node is possible if __GFP_THISNODE is not set.
5312  *
5313  * Return: pointer to the new object or %NULL in case of error
5314  */
5315 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
5316 {
5317 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5318 
5319 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5320 
5321 	return ret;
5322 }
5323 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
5324 
5325 /*
5326  * returns a sheaf that has at least the requested size
5327  * when prefilling is needed, do so with given gfp flags
5328  *
5329  * return NULL if sheaf allocation or prefilling failed
5330  */
5331 struct slab_sheaf *
5332 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
5333 {
5334 	struct slub_percpu_sheaves *pcs;
5335 	struct slab_sheaf *sheaf = NULL;
5336 	struct node_barn *barn;
5337 
5338 	if (unlikely(size > s->sheaf_capacity)) {
5339 
5340 		/*
5341 		 * slab_debug disables cpu sheaves intentionally so all
5342 		 * prefilled sheaves become "oversize" and we give up on
5343 		 * performance for the debugging. Same with SLUB_TINY.
5344 		 * Creating a cache without sheaves and then requesting a
5345 		 * prefilled sheaf is however not expected, so warn.
5346 		 */
5347 		WARN_ON_ONCE(s->sheaf_capacity == 0 &&
5348 			     !IS_ENABLED(CONFIG_SLUB_TINY) &&
5349 			     !(s->flags & SLAB_DEBUG_FLAGS));
5350 
5351 		sheaf = kzalloc(struct_size(sheaf, objects, size), gfp);
5352 		if (!sheaf)
5353 			return NULL;
5354 
5355 		stat(s, SHEAF_PREFILL_OVERSIZE);
5356 		sheaf->cache = s;
5357 		sheaf->capacity = size;
5358 
5359 		if (!__kmem_cache_alloc_bulk(s, gfp, size,
5360 					     &sheaf->objects[0])) {
5361 			kfree(sheaf);
5362 			return NULL;
5363 		}
5364 
5365 		sheaf->size = size;
5366 
5367 		return sheaf;
5368 	}
5369 
5370 	local_lock(&s->cpu_sheaves->lock);
5371 	pcs = this_cpu_ptr(s->cpu_sheaves);
5372 
5373 	if (pcs->spare) {
5374 		sheaf = pcs->spare;
5375 		pcs->spare = NULL;
5376 		stat(s, SHEAF_PREFILL_FAST);
5377 	} else {
5378 		barn = get_barn(s);
5379 
5380 		stat(s, SHEAF_PREFILL_SLOW);
5381 		if (barn)
5382 			sheaf = barn_get_full_or_empty_sheaf(barn);
5383 		if (sheaf && sheaf->size)
5384 			stat(s, BARN_GET);
5385 		else
5386 			stat(s, BARN_GET_FAIL);
5387 	}
5388 
5389 	local_unlock(&s->cpu_sheaves->lock);
5390 
5391 
5392 	if (!sheaf)
5393 		sheaf = alloc_empty_sheaf(s, gfp);
5394 
5395 	if (sheaf && sheaf->size < size) {
5396 		if (refill_sheaf(s, sheaf, gfp)) {
5397 			sheaf_flush_unused(s, sheaf);
5398 			free_empty_sheaf(s, sheaf);
5399 			sheaf = NULL;
5400 		}
5401 	}
5402 
5403 	if (sheaf)
5404 		sheaf->capacity = s->sheaf_capacity;
5405 
5406 	return sheaf;
5407 }
5408 
5409 /*
5410  * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf()
5411  *
5412  * If the sheaf cannot simply become the percpu spare sheaf, but there's space
5413  * for a full sheaf in the barn, we try to refill the sheaf back to the cache's
5414  * sheaf_capacity to avoid handling partially full sheaves.
5415  *
5416  * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the
5417  * sheaf is instead flushed and freed.
5418  */
5419 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
5420 			     struct slab_sheaf *sheaf)
5421 {
5422 	struct slub_percpu_sheaves *pcs;
5423 	struct node_barn *barn;
5424 
5425 	if (unlikely(sheaf->capacity != s->sheaf_capacity)) {
5426 		sheaf_flush_unused(s, sheaf);
5427 		kfree(sheaf);
5428 		return;
5429 	}
5430 
5431 	local_lock(&s->cpu_sheaves->lock);
5432 	pcs = this_cpu_ptr(s->cpu_sheaves);
5433 	barn = get_barn(s);
5434 
5435 	if (!pcs->spare) {
5436 		pcs->spare = sheaf;
5437 		sheaf = NULL;
5438 		stat(s, SHEAF_RETURN_FAST);
5439 	}
5440 
5441 	local_unlock(&s->cpu_sheaves->lock);
5442 
5443 	if (!sheaf)
5444 		return;
5445 
5446 	stat(s, SHEAF_RETURN_SLOW);
5447 
5448 	/*
5449 	 * If the barn has too many full sheaves or we fail to refill the sheaf,
5450 	 * simply flush and free it.
5451 	 */
5452 	if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES ||
5453 	    refill_sheaf(s, sheaf, gfp)) {
5454 		sheaf_flush_unused(s, sheaf);
5455 		free_empty_sheaf(s, sheaf);
5456 		return;
5457 	}
5458 
5459 	barn_put_full_sheaf(barn, sheaf);
5460 	stat(s, BARN_PUT);
5461 }
5462 
5463 /*
5464  * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least
5465  * the given size
5466  *
5467  * the sheaf might be replaced by a new one when requesting more than
5468  * s->sheaf_capacity objects if such replacement is necessary, but the refill
5469  * fails (returning -ENOMEM), the existing sheaf is left intact
5470  *
5471  * In practice we always refill to full sheaf's capacity.
5472  */
5473 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
5474 			    struct slab_sheaf **sheafp, unsigned int size)
5475 {
5476 	struct slab_sheaf *sheaf;
5477 
5478 	/*
5479 	 * TODO: do we want to support *sheaf == NULL to be equivalent of
5480 	 * kmem_cache_prefill_sheaf() ?
5481 	 */
5482 	if (!sheafp || !(*sheafp))
5483 		return -EINVAL;
5484 
5485 	sheaf = *sheafp;
5486 	if (sheaf->size >= size)
5487 		return 0;
5488 
5489 	if (likely(sheaf->capacity >= size)) {
5490 		if (likely(sheaf->capacity == s->sheaf_capacity))
5491 			return refill_sheaf(s, sheaf, gfp);
5492 
5493 		if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size,
5494 					     &sheaf->objects[sheaf->size])) {
5495 			return -ENOMEM;
5496 		}
5497 		sheaf->size = sheaf->capacity;
5498 
5499 		return 0;
5500 	}
5501 
5502 	/*
5503 	 * We had a regular sized sheaf and need an oversize one, or we had an
5504 	 * oversize one already but need a larger one now.
5505 	 * This should be a very rare path so let's not complicate it.
5506 	 */
5507 	sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
5508 	if (!sheaf)
5509 		return -ENOMEM;
5510 
5511 	kmem_cache_return_sheaf(s, gfp, *sheafp);
5512 	*sheafp = sheaf;
5513 	return 0;
5514 }
5515 
5516 /*
5517  * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf()
5518  *
5519  * Guaranteed not to fail as many allocations as was the requested size.
5520  * After the sheaf is emptied, it fails - no fallback to the slab cache itself.
5521  *
5522  * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT
5523  * memcg charging is forced over limit if necessary, to avoid failure.
5524  */
5525 void *
5526 kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp,
5527 				   struct slab_sheaf *sheaf)
5528 {
5529 	void *ret = NULL;
5530 	bool init;
5531 
5532 	if (sheaf->size == 0)
5533 		goto out;
5534 
5535 	ret = sheaf->objects[--sheaf->size];
5536 
5537 	init = slab_want_init_on_alloc(gfp, s);
5538 
5539 	/* add __GFP_NOFAIL to force successful memcg charging */
5540 	slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size);
5541 out:
5542 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE);
5543 
5544 	return ret;
5545 }
5546 
5547 unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf)
5548 {
5549 	return sheaf->size;
5550 }
5551 /*
5552  * To avoid unnecessary overhead, we pass through large allocation requests
5553  * directly to the page allocator. We use __GFP_COMP, because we will need to
5554  * know the allocation order to free the pages properly in kfree.
5555  */
5556 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
5557 {
5558 	struct folio *folio;
5559 	void *ptr = NULL;
5560 	unsigned int order = get_order(size);
5561 
5562 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
5563 		flags = kmalloc_fix_flags(flags);
5564 
5565 	flags |= __GFP_COMP;
5566 
5567 	if (node == NUMA_NO_NODE)
5568 		folio = (struct folio *)alloc_frozen_pages_noprof(flags, order);
5569 	else
5570 		folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL);
5571 
5572 	if (folio) {
5573 		ptr = folio_address(folio);
5574 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
5575 				      PAGE_SIZE << order);
5576 		__folio_set_large_kmalloc(folio);
5577 	}
5578 
5579 	ptr = kasan_kmalloc_large(ptr, size, flags);
5580 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
5581 	kmemleak_alloc(ptr, size, 1, flags);
5582 	kmsan_kmalloc_large(ptr, size, flags);
5583 
5584 	return ptr;
5585 }
5586 
5587 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
5588 {
5589 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
5590 
5591 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5592 		      flags, NUMA_NO_NODE);
5593 	return ret;
5594 }
5595 EXPORT_SYMBOL(__kmalloc_large_noprof);
5596 
5597 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
5598 {
5599 	void *ret = ___kmalloc_large_node(size, flags, node);
5600 
5601 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5602 		      flags, node);
5603 	return ret;
5604 }
5605 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5606 
5607 static __always_inline
5608 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
5609 			unsigned long caller)
5610 {
5611 	struct kmem_cache *s;
5612 	void *ret;
5613 
5614 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5615 		ret = __kmalloc_large_node_noprof(size, flags, node);
5616 		trace_kmalloc(caller, ret, size,
5617 			      PAGE_SIZE << get_order(size), flags, node);
5618 		return ret;
5619 	}
5620 
5621 	if (unlikely(!size))
5622 		return ZERO_SIZE_PTR;
5623 
5624 	s = kmalloc_slab(size, b, flags, caller);
5625 
5626 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
5627 	ret = kasan_kmalloc(s, ret, size, flags);
5628 	trace_kmalloc(caller, ret, size, s->size, flags, node);
5629 	return ret;
5630 }
5631 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5632 {
5633 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
5634 }
5635 EXPORT_SYMBOL(__kmalloc_node_noprof);
5636 
5637 void *__kmalloc_noprof(size_t size, gfp_t flags)
5638 {
5639 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
5640 }
5641 EXPORT_SYMBOL(__kmalloc_noprof);
5642 
5643 /**
5644  * kmalloc_nolock - Allocate an object of given size from any context.
5645  * @size: size to allocate
5646  * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
5647  * allowed.
5648  * @node: node number of the target node.
5649  *
5650  * Return: pointer to the new object or NULL in case of error.
5651  * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
5652  * There is no reason to call it again and expect !NULL.
5653  */
5654 void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
5655 {
5656 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
5657 	struct kmem_cache *s;
5658 	bool can_retry = true;
5659 	void *ret = ERR_PTR(-EBUSY);
5660 
5661 	VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
5662 				      __GFP_NO_OBJ_EXT));
5663 
5664 	if (unlikely(!size))
5665 		return ZERO_SIZE_PTR;
5666 
5667 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
5668 		/* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
5669 		return NULL;
5670 retry:
5671 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
5672 		return NULL;
5673 	s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
5674 
5675 	if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
5676 		/*
5677 		 * kmalloc_nolock() is not supported on architectures that
5678 		 * don't implement cmpxchg16b, but debug caches don't use
5679 		 * per-cpu slab and per-cpu partial slabs. They rely on
5680 		 * kmem_cache_node->list_lock, so kmalloc_nolock() can
5681 		 * attempt to allocate from debug caches by
5682 		 * spin_trylock_irqsave(&n->list_lock, ...)
5683 		 */
5684 		return NULL;
5685 
5686 	/*
5687 	 * Do not call slab_alloc_node(), since trylock mode isn't
5688 	 * compatible with slab_pre_alloc_hook/should_failslab and
5689 	 * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
5690 	 * and slab_post_alloc_hook() directly.
5691 	 *
5692 	 * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
5693 	 * in irq saved region. It assumes that the same cpu will not
5694 	 * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
5695 	 * Therefore use in_nmi() to check whether particular bucket is in
5696 	 * irq protected section.
5697 	 *
5698 	 * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
5699 	 * this cpu was interrupted somewhere inside ___slab_alloc() after
5700 	 * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
5701 	 * In this case fast path with __update_cpu_freelist_fast() is not safe.
5702 	 */
5703 #ifndef CONFIG_SLUB_TINY
5704 	if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
5705 #endif
5706 		ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
5707 
5708 	if (PTR_ERR(ret) == -EBUSY) {
5709 		if (can_retry) {
5710 			/* pick the next kmalloc bucket */
5711 			size = s->object_size + 1;
5712 			/*
5713 			 * Another alternative is to
5714 			 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
5715 			 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
5716 			 * to retry from bucket of the same size.
5717 			 */
5718 			can_retry = false;
5719 			goto retry;
5720 		}
5721 		ret = NULL;
5722 	}
5723 
5724 	maybe_wipe_obj_freeptr(s, ret);
5725 	slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
5726 			     slab_want_init_on_alloc(alloc_gfp, s), size);
5727 
5728 	ret = kasan_kmalloc(s, ret, size, alloc_gfp);
5729 	return ret;
5730 }
5731 EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
5732 
5733 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
5734 					 int node, unsigned long caller)
5735 {
5736 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
5737 
5738 }
5739 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
5740 
5741 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5742 {
5743 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
5744 					    _RET_IP_, size);
5745 
5746 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
5747 
5748 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5749 	return ret;
5750 }
5751 EXPORT_SYMBOL(__kmalloc_cache_noprof);
5752 
5753 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
5754 				  int node, size_t size)
5755 {
5756 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
5757 
5758 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
5759 
5760 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5761 	return ret;
5762 }
5763 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
5764 
5765 static noinline void free_to_partial_list(
5766 	struct kmem_cache *s, struct slab *slab,
5767 	void *head, void *tail, int bulk_cnt,
5768 	unsigned long addr)
5769 {
5770 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
5771 	struct slab *slab_free = NULL;
5772 	int cnt = bulk_cnt;
5773 	unsigned long flags;
5774 	depot_stack_handle_t handle = 0;
5775 
5776 	/*
5777 	 * We cannot use GFP_NOWAIT as there are callsites where waking up
5778 	 * kswapd could deadlock
5779 	 */
5780 	if (s->flags & SLAB_STORE_USER)
5781 		handle = set_track_prepare(__GFP_NOWARN);
5782 
5783 	spin_lock_irqsave(&n->list_lock, flags);
5784 
5785 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
5786 		void *prior = slab->freelist;
5787 
5788 		/* Perform the actual freeing while we still hold the locks */
5789 		slab->inuse -= cnt;
5790 		set_freepointer(s, tail, prior);
5791 		slab->freelist = head;
5792 
5793 		/*
5794 		 * If the slab is empty, and node's partial list is full,
5795 		 * it should be discarded anyway no matter it's on full or
5796 		 * partial list.
5797 		 */
5798 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
5799 			slab_free = slab;
5800 
5801 		if (!prior) {
5802 			/* was on full list */
5803 			remove_full(s, n, slab);
5804 			if (!slab_free) {
5805 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
5806 				stat(s, FREE_ADD_PARTIAL);
5807 			}
5808 		} else if (slab_free) {
5809 			remove_partial(n, slab);
5810 			stat(s, FREE_REMOVE_PARTIAL);
5811 		}
5812 	}
5813 
5814 	if (slab_free) {
5815 		/*
5816 		 * Update the counters while still holding n->list_lock to
5817 		 * prevent spurious validation warnings
5818 		 */
5819 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
5820 	}
5821 
5822 	spin_unlock_irqrestore(&n->list_lock, flags);
5823 
5824 	if (slab_free) {
5825 		stat(s, FREE_SLAB);
5826 		free_slab(s, slab_free);
5827 	}
5828 }
5829 
5830 /*
5831  * Slow path handling. This may still be called frequently since objects
5832  * have a longer lifetime than the cpu slabs in most processing loads.
5833  *
5834  * So we still attempt to reduce cache line usage. Just take the slab
5835  * lock and free the item. If there is no additional partial slab
5836  * handling required then we can return immediately.
5837  */
5838 static void __slab_free(struct kmem_cache *s, struct slab *slab,
5839 			void *head, void *tail, int cnt,
5840 			unsigned long addr)
5841 
5842 {
5843 	void *prior;
5844 	int was_frozen;
5845 	struct slab new;
5846 	unsigned long counters;
5847 	struct kmem_cache_node *n = NULL;
5848 	unsigned long flags;
5849 	bool on_node_partial;
5850 
5851 	stat(s, FREE_SLOWPATH);
5852 
5853 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
5854 		free_to_partial_list(s, slab, head, tail, cnt, addr);
5855 		return;
5856 	}
5857 
5858 	do {
5859 		if (unlikely(n)) {
5860 			spin_unlock_irqrestore(&n->list_lock, flags);
5861 			n = NULL;
5862 		}
5863 		prior = slab->freelist;
5864 		counters = slab->counters;
5865 		set_freepointer(s, tail, prior);
5866 		new.counters = counters;
5867 		was_frozen = new.frozen;
5868 		new.inuse -= cnt;
5869 		if ((!new.inuse || !prior) && !was_frozen) {
5870 			/* Needs to be taken off a list */
5871 			if (!kmem_cache_has_cpu_partial(s) || prior) {
5872 
5873 				n = get_node(s, slab_nid(slab));
5874 				/*
5875 				 * Speculatively acquire the list_lock.
5876 				 * If the cmpxchg does not succeed then we may
5877 				 * drop the list_lock without any processing.
5878 				 *
5879 				 * Otherwise the list_lock will synchronize with
5880 				 * other processors updating the list of slabs.
5881 				 */
5882 				spin_lock_irqsave(&n->list_lock, flags);
5883 
5884 				on_node_partial = slab_test_node_partial(slab);
5885 			}
5886 		}
5887 
5888 	} while (!slab_update_freelist(s, slab,
5889 		prior, counters,
5890 		head, new.counters,
5891 		"__slab_free"));
5892 
5893 	if (likely(!n)) {
5894 
5895 		if (likely(was_frozen)) {
5896 			/*
5897 			 * The list lock was not taken therefore no list
5898 			 * activity can be necessary.
5899 			 */
5900 			stat(s, FREE_FROZEN);
5901 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
5902 			/*
5903 			 * If we started with a full slab then put it onto the
5904 			 * per cpu partial list.
5905 			 */
5906 			put_cpu_partial(s, slab, 1);
5907 			stat(s, CPU_PARTIAL_FREE);
5908 		}
5909 
5910 		return;
5911 	}
5912 
5913 	/*
5914 	 * This slab was partially empty but not on the per-node partial list,
5915 	 * in which case we shouldn't manipulate its list, just return.
5916 	 */
5917 	if (prior && !on_node_partial) {
5918 		spin_unlock_irqrestore(&n->list_lock, flags);
5919 		return;
5920 	}
5921 
5922 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
5923 		goto slab_empty;
5924 
5925 	/*
5926 	 * Objects left in the slab. If it was not on the partial list before
5927 	 * then add it.
5928 	 */
5929 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
5930 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
5931 		stat(s, FREE_ADD_PARTIAL);
5932 	}
5933 	spin_unlock_irqrestore(&n->list_lock, flags);
5934 	return;
5935 
5936 slab_empty:
5937 	if (prior) {
5938 		/*
5939 		 * Slab on the partial list.
5940 		 */
5941 		remove_partial(n, slab);
5942 		stat(s, FREE_REMOVE_PARTIAL);
5943 	}
5944 
5945 	spin_unlock_irqrestore(&n->list_lock, flags);
5946 	stat(s, FREE_SLAB);
5947 	discard_slab(s, slab);
5948 }
5949 
5950 /*
5951  * pcs is locked. We should have get rid of the spare sheaf and obtained an
5952  * empty sheaf, while the main sheaf is full. We want to install the empty sheaf
5953  * as a main sheaf, and make the current main sheaf a spare sheaf.
5954  *
5955  * However due to having relinquished the cpu_sheaves lock when obtaining
5956  * the empty sheaf, we need to handle some unlikely but possible cases.
5957  *
5958  * If we put any sheaf to barn here, it's because we were interrupted or have
5959  * been migrated to a different cpu, which should be rare enough so just ignore
5960  * the barn's limits to simplify the handling.
5961  *
5962  * An alternative scenario that gets us here is when we fail
5963  * barn_replace_full_sheaf(), because there's no empty sheaf available in the
5964  * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the
5965  * limit on full sheaves was not exceeded, we assume it didn't change and just
5966  * put the full sheaf there.
5967  */
5968 static void __pcs_install_empty_sheaf(struct kmem_cache *s,
5969 		struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty,
5970 		struct node_barn *barn)
5971 {
5972 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
5973 
5974 	/* This is what we expect to find if nobody interrupted us. */
5975 	if (likely(!pcs->spare)) {
5976 		pcs->spare = pcs->main;
5977 		pcs->main = empty;
5978 		return;
5979 	}
5980 
5981 	/*
5982 	 * Unlikely because if the main sheaf had space, we would have just
5983 	 * freed to it. Get rid of our empty sheaf.
5984 	 */
5985 	if (pcs->main->size < s->sheaf_capacity) {
5986 		barn_put_empty_sheaf(barn, empty);
5987 		return;
5988 	}
5989 
5990 	/* Also unlikely for the same reason */
5991 	if (pcs->spare->size < s->sheaf_capacity) {
5992 		swap(pcs->main, pcs->spare);
5993 		barn_put_empty_sheaf(barn, empty);
5994 		return;
5995 	}
5996 
5997 	/*
5998 	 * We probably failed barn_replace_full_sheaf() due to no empty sheaf
5999 	 * available there, but we allocated one, so finish the job.
6000 	 */
6001 	barn_put_full_sheaf(barn, pcs->main);
6002 	stat(s, BARN_PUT);
6003 	pcs->main = empty;
6004 }
6005 
6006 /*
6007  * Replace the full main sheaf with a (at least partially) empty sheaf.
6008  *
6009  * Must be called with the cpu_sheaves local lock locked. If successful, returns
6010  * the pcs pointer and the local lock locked (possibly on a different cpu than
6011  * initially called). If not successful, returns NULL and the local lock
6012  * unlocked.
6013  */
6014 static struct slub_percpu_sheaves *
6015 __pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs)
6016 {
6017 	struct slab_sheaf *empty;
6018 	struct node_barn *barn;
6019 	bool put_fail;
6020 
6021 restart:
6022 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6023 
6024 	barn = get_barn(s);
6025 	if (!barn) {
6026 		local_unlock(&s->cpu_sheaves->lock);
6027 		return NULL;
6028 	}
6029 
6030 	put_fail = false;
6031 
6032 	if (!pcs->spare) {
6033 		empty = barn_get_empty_sheaf(barn);
6034 		if (empty) {
6035 			pcs->spare = pcs->main;
6036 			pcs->main = empty;
6037 			return pcs;
6038 		}
6039 		goto alloc_empty;
6040 	}
6041 
6042 	if (pcs->spare->size < s->sheaf_capacity) {
6043 		swap(pcs->main, pcs->spare);
6044 		return pcs;
6045 	}
6046 
6047 	empty = barn_replace_full_sheaf(barn, pcs->main);
6048 
6049 	if (!IS_ERR(empty)) {
6050 		stat(s, BARN_PUT);
6051 		pcs->main = empty;
6052 		return pcs;
6053 	}
6054 
6055 	if (PTR_ERR(empty) == -E2BIG) {
6056 		/* Since we got here, spare exists and is full */
6057 		struct slab_sheaf *to_flush = pcs->spare;
6058 
6059 		stat(s, BARN_PUT_FAIL);
6060 
6061 		pcs->spare = NULL;
6062 		local_unlock(&s->cpu_sheaves->lock);
6063 
6064 		sheaf_flush_unused(s, to_flush);
6065 		empty = to_flush;
6066 		goto got_empty;
6067 	}
6068 
6069 	/*
6070 	 * We could not replace full sheaf because barn had no empty
6071 	 * sheaves. We can still allocate it and put the full sheaf in
6072 	 * __pcs_install_empty_sheaf(), but if we fail to allocate it,
6073 	 * make sure to count the fail.
6074 	 */
6075 	put_fail = true;
6076 
6077 alloc_empty:
6078 	local_unlock(&s->cpu_sheaves->lock);
6079 
6080 	empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6081 	if (empty)
6082 		goto got_empty;
6083 
6084 	if (put_fail)
6085 		 stat(s, BARN_PUT_FAIL);
6086 
6087 	if (!sheaf_flush_main(s))
6088 		return NULL;
6089 
6090 	if (!local_trylock(&s->cpu_sheaves->lock))
6091 		return NULL;
6092 
6093 	pcs = this_cpu_ptr(s->cpu_sheaves);
6094 
6095 	/*
6096 	 * we flushed the main sheaf so it should be empty now,
6097 	 * but in case we got preempted or migrated, we need to
6098 	 * check again
6099 	 */
6100 	if (pcs->main->size == s->sheaf_capacity)
6101 		goto restart;
6102 
6103 	return pcs;
6104 
6105 got_empty:
6106 	if (!local_trylock(&s->cpu_sheaves->lock)) {
6107 		barn_put_empty_sheaf(barn, empty);
6108 		return NULL;
6109 	}
6110 
6111 	pcs = this_cpu_ptr(s->cpu_sheaves);
6112 	__pcs_install_empty_sheaf(s, pcs, empty, barn);
6113 
6114 	return pcs;
6115 }
6116 
6117 /*
6118  * Free an object to the percpu sheaves.
6119  * The object is expected to have passed slab_free_hook() already.
6120  */
6121 static __fastpath_inline
6122 bool free_to_pcs(struct kmem_cache *s, void *object)
6123 {
6124 	struct slub_percpu_sheaves *pcs;
6125 
6126 	if (!local_trylock(&s->cpu_sheaves->lock))
6127 		return false;
6128 
6129 	pcs = this_cpu_ptr(s->cpu_sheaves);
6130 
6131 	if (unlikely(pcs->main->size == s->sheaf_capacity)) {
6132 
6133 		pcs = __pcs_replace_full_main(s, pcs);
6134 		if (unlikely(!pcs))
6135 			return false;
6136 	}
6137 
6138 	pcs->main->objects[pcs->main->size++] = object;
6139 
6140 	local_unlock(&s->cpu_sheaves->lock);
6141 
6142 	stat(s, FREE_PCS);
6143 
6144 	return true;
6145 }
6146 
6147 static void rcu_free_sheaf(struct rcu_head *head)
6148 {
6149 	struct kmem_cache_node *n;
6150 	struct slab_sheaf *sheaf;
6151 	struct node_barn *barn = NULL;
6152 	struct kmem_cache *s;
6153 
6154 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
6155 
6156 	s = sheaf->cache;
6157 
6158 	/*
6159 	 * This may remove some objects due to slab_free_hook() returning false,
6160 	 * so that the sheaf might no longer be completely full. But it's easier
6161 	 * to handle it as full (unless it became completely empty), as the code
6162 	 * handles it fine. The only downside is that sheaf will serve fewer
6163 	 * allocations when reused. It only happens due to debugging, which is a
6164 	 * performance hit anyway.
6165 	 */
6166 	__rcu_free_sheaf_prepare(s, sheaf);
6167 
6168 	n = get_node(s, sheaf->node);
6169 	if (!n)
6170 		goto flush;
6171 
6172 	barn = n->barn;
6173 
6174 	/* due to slab_free_hook() */
6175 	if (unlikely(sheaf->size == 0))
6176 		goto empty;
6177 
6178 	/*
6179 	 * Checking nr_full/nr_empty outside lock avoids contention in case the
6180 	 * barn is at the respective limit. Due to the race we might go over the
6181 	 * limit but that should be rare and harmless.
6182 	 */
6183 
6184 	if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
6185 		stat(s, BARN_PUT);
6186 		barn_put_full_sheaf(barn, sheaf);
6187 		return;
6188 	}
6189 
6190 flush:
6191 	stat(s, BARN_PUT_FAIL);
6192 	sheaf_flush_unused(s, sheaf);
6193 
6194 empty:
6195 	if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
6196 		barn_put_empty_sheaf(barn, sheaf);
6197 		return;
6198 	}
6199 
6200 	free_empty_sheaf(s, sheaf);
6201 }
6202 
6203 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
6204 {
6205 	struct slub_percpu_sheaves *pcs;
6206 	struct slab_sheaf *rcu_sheaf;
6207 
6208 	if (!local_trylock(&s->cpu_sheaves->lock))
6209 		goto fail;
6210 
6211 	pcs = this_cpu_ptr(s->cpu_sheaves);
6212 
6213 	if (unlikely(!pcs->rcu_free)) {
6214 
6215 		struct slab_sheaf *empty;
6216 		struct node_barn *barn;
6217 
6218 		if (pcs->spare && pcs->spare->size == 0) {
6219 			pcs->rcu_free = pcs->spare;
6220 			pcs->spare = NULL;
6221 			goto do_free;
6222 		}
6223 
6224 		barn = get_barn(s);
6225 		if (!barn) {
6226 			local_unlock(&s->cpu_sheaves->lock);
6227 			goto fail;
6228 		}
6229 
6230 		empty = barn_get_empty_sheaf(barn);
6231 
6232 		if (empty) {
6233 			pcs->rcu_free = empty;
6234 			goto do_free;
6235 		}
6236 
6237 		local_unlock(&s->cpu_sheaves->lock);
6238 
6239 		empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6240 
6241 		if (!empty)
6242 			goto fail;
6243 
6244 		if (!local_trylock(&s->cpu_sheaves->lock)) {
6245 			barn_put_empty_sheaf(barn, empty);
6246 			goto fail;
6247 		}
6248 
6249 		pcs = this_cpu_ptr(s->cpu_sheaves);
6250 
6251 		if (unlikely(pcs->rcu_free))
6252 			barn_put_empty_sheaf(barn, empty);
6253 		else
6254 			pcs->rcu_free = empty;
6255 	}
6256 
6257 do_free:
6258 
6259 	rcu_sheaf = pcs->rcu_free;
6260 
6261 	/*
6262 	 * Since we flush immediately when size reaches capacity, we never reach
6263 	 * this with size already at capacity, so no OOB write is possible.
6264 	 */
6265 	rcu_sheaf->objects[rcu_sheaf->size++] = obj;
6266 
6267 	if (likely(rcu_sheaf->size < s->sheaf_capacity)) {
6268 		rcu_sheaf = NULL;
6269 	} else {
6270 		pcs->rcu_free = NULL;
6271 		rcu_sheaf->node = numa_mem_id();
6272 	}
6273 
6274 	/*
6275 	 * we flush before local_unlock to make sure a racing
6276 	 * flush_all_rcu_sheaves() doesn't miss this sheaf
6277 	 */
6278 	if (rcu_sheaf)
6279 		call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
6280 
6281 	local_unlock(&s->cpu_sheaves->lock);
6282 
6283 	stat(s, FREE_RCU_SHEAF);
6284 	return true;
6285 
6286 fail:
6287 	stat(s, FREE_RCU_SHEAF_FAIL);
6288 	return false;
6289 }
6290 
6291 /*
6292  * Bulk free objects to the percpu sheaves.
6293  * Unlike free_to_pcs() this includes the calls to all necessary hooks
6294  * and the fallback to freeing to slab pages.
6295  */
6296 static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
6297 {
6298 	struct slub_percpu_sheaves *pcs;
6299 	struct slab_sheaf *main, *empty;
6300 	bool init = slab_want_init_on_free(s);
6301 	unsigned int batch, i = 0;
6302 	struct node_barn *barn;
6303 	void *remote_objects[PCS_BATCH_MAX];
6304 	unsigned int remote_nr = 0;
6305 	int node = numa_mem_id();
6306 
6307 next_remote_batch:
6308 	while (i < size) {
6309 		struct slab *slab = virt_to_slab(p[i]);
6310 
6311 		memcg_slab_free_hook(s, slab, p + i, 1);
6312 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
6313 
6314 		if (unlikely(!slab_free_hook(s, p[i], init, false))) {
6315 			p[i] = p[--size];
6316 			if (!size)
6317 				goto flush_remote;
6318 			continue;
6319 		}
6320 
6321 		if (unlikely(IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)) {
6322 			remote_objects[remote_nr] = p[i];
6323 			p[i] = p[--size];
6324 			if (++remote_nr >= PCS_BATCH_MAX)
6325 				goto flush_remote;
6326 			continue;
6327 		}
6328 
6329 		i++;
6330 	}
6331 
6332 next_batch:
6333 	if (!local_trylock(&s->cpu_sheaves->lock))
6334 		goto fallback;
6335 
6336 	pcs = this_cpu_ptr(s->cpu_sheaves);
6337 
6338 	if (likely(pcs->main->size < s->sheaf_capacity))
6339 		goto do_free;
6340 
6341 	barn = get_barn(s);
6342 	if (!barn)
6343 		goto no_empty;
6344 
6345 	if (!pcs->spare) {
6346 		empty = barn_get_empty_sheaf(barn);
6347 		if (!empty)
6348 			goto no_empty;
6349 
6350 		pcs->spare = pcs->main;
6351 		pcs->main = empty;
6352 		goto do_free;
6353 	}
6354 
6355 	if (pcs->spare->size < s->sheaf_capacity) {
6356 		swap(pcs->main, pcs->spare);
6357 		goto do_free;
6358 	}
6359 
6360 	empty = barn_replace_full_sheaf(barn, pcs->main);
6361 	if (IS_ERR(empty)) {
6362 		stat(s, BARN_PUT_FAIL);
6363 		goto no_empty;
6364 	}
6365 
6366 	stat(s, BARN_PUT);
6367 	pcs->main = empty;
6368 
6369 do_free:
6370 	main = pcs->main;
6371 	batch = min(size, s->sheaf_capacity - main->size);
6372 
6373 	memcpy(main->objects + main->size, p, batch * sizeof(void *));
6374 	main->size += batch;
6375 
6376 	local_unlock(&s->cpu_sheaves->lock);
6377 
6378 	stat_add(s, FREE_PCS, batch);
6379 
6380 	if (batch < size) {
6381 		p += batch;
6382 		size -= batch;
6383 		goto next_batch;
6384 	}
6385 
6386 	return;
6387 
6388 no_empty:
6389 	local_unlock(&s->cpu_sheaves->lock);
6390 
6391 	/*
6392 	 * if we depleted all empty sheaves in the barn or there are too
6393 	 * many full sheaves, free the rest to slab pages
6394 	 */
6395 fallback:
6396 	__kmem_cache_free_bulk(s, size, p);
6397 
6398 flush_remote:
6399 	if (remote_nr) {
6400 		__kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]);
6401 		if (i < size) {
6402 			remote_nr = 0;
6403 			goto next_remote_batch;
6404 		}
6405 	}
6406 }
6407 
6408 struct defer_free {
6409 	struct llist_head objects;
6410 	struct llist_head slabs;
6411 	struct irq_work work;
6412 };
6413 
6414 static void free_deferred_objects(struct irq_work *work);
6415 
6416 static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
6417 	.objects = LLIST_HEAD_INIT(objects),
6418 	.slabs = LLIST_HEAD_INIT(slabs),
6419 	.work = IRQ_WORK_INIT(free_deferred_objects),
6420 };
6421 
6422 /*
6423  * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
6424  * to take sleeping spin_locks from __slab_free() and deactivate_slab().
6425  * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
6426  */
6427 static void free_deferred_objects(struct irq_work *work)
6428 {
6429 	struct defer_free *df = container_of(work, struct defer_free, work);
6430 	struct llist_head *objs = &df->objects;
6431 	struct llist_head *slabs = &df->slabs;
6432 	struct llist_node *llnode, *pos, *t;
6433 
6434 	if (llist_empty(objs) && llist_empty(slabs))
6435 		return;
6436 
6437 	llnode = llist_del_all(objs);
6438 	llist_for_each_safe(pos, t, llnode) {
6439 		struct kmem_cache *s;
6440 		struct slab *slab;
6441 		void *x = pos;
6442 
6443 		slab = virt_to_slab(x);
6444 		s = slab->slab_cache;
6445 
6446 		/*
6447 		 * We used freepointer in 'x' to link 'x' into df->objects.
6448 		 * Clear it to NULL to avoid false positive detection
6449 		 * of "Freepointer corruption".
6450 		 */
6451 		*(void **)x = NULL;
6452 
6453 		/* Point 'x' back to the beginning of allocated object */
6454 		x -= s->offset;
6455 		__slab_free(s, slab, x, x, 1, _THIS_IP_);
6456 	}
6457 
6458 	llnode = llist_del_all(slabs);
6459 	llist_for_each_safe(pos, t, llnode) {
6460 		struct slab *slab = container_of(pos, struct slab, llnode);
6461 
6462 #ifdef CONFIG_SLUB_TINY
6463 		discard_slab(slab->slab_cache, slab);
6464 #else
6465 		deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
6466 #endif
6467 	}
6468 }
6469 
6470 static void defer_free(struct kmem_cache *s, void *head)
6471 {
6472 	struct defer_free *df;
6473 
6474 	guard(preempt)();
6475 
6476 	df = this_cpu_ptr(&defer_free_objects);
6477 	if (llist_add(head + s->offset, &df->objects))
6478 		irq_work_queue(&df->work);
6479 }
6480 
6481 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
6482 {
6483 	struct defer_free *df;
6484 
6485 	slab->flush_freelist = flush_freelist;
6486 
6487 	guard(preempt)();
6488 
6489 	df = this_cpu_ptr(&defer_free_objects);
6490 	if (llist_add(&slab->llnode, &df->slabs))
6491 		irq_work_queue(&df->work);
6492 }
6493 
6494 void defer_free_barrier(void)
6495 {
6496 	int cpu;
6497 
6498 	for_each_possible_cpu(cpu)
6499 		irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
6500 }
6501 
6502 #ifndef CONFIG_SLUB_TINY
6503 /*
6504  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
6505  * can perform fastpath freeing without additional function calls.
6506  *
6507  * The fastpath is only possible if we are freeing to the current cpu slab
6508  * of this processor. This typically the case if we have just allocated
6509  * the item before.
6510  *
6511  * If fastpath is not possible then fall back to __slab_free where we deal
6512  * with all sorts of special processing.
6513  *
6514  * Bulk free of a freelist with several objects (all pointing to the
6515  * same slab) possible by specifying head and tail ptr, plus objects
6516  * count (cnt). Bulk free indicated by tail pointer being set.
6517  */
6518 static __always_inline void do_slab_free(struct kmem_cache *s,
6519 				struct slab *slab, void *head, void *tail,
6520 				int cnt, unsigned long addr)
6521 {
6522 	/* cnt == 0 signals that it's called from kfree_nolock() */
6523 	bool allow_spin = cnt;
6524 	struct kmem_cache_cpu *c;
6525 	unsigned long tid;
6526 	void **freelist;
6527 
6528 redo:
6529 	/*
6530 	 * Determine the currently cpus per cpu slab.
6531 	 * The cpu may change afterward. However that does not matter since
6532 	 * data is retrieved via this pointer. If we are on the same cpu
6533 	 * during the cmpxchg then the free will succeed.
6534 	 */
6535 	c = raw_cpu_ptr(s->cpu_slab);
6536 	tid = READ_ONCE(c->tid);
6537 
6538 	/* Same with comment on barrier() in __slab_alloc_node() */
6539 	barrier();
6540 
6541 	if (unlikely(slab != c->slab)) {
6542 		if (unlikely(!allow_spin)) {
6543 			/*
6544 			 * __slab_free() can locklessly cmpxchg16 into a slab,
6545 			 * but then it might need to take spin_lock or local_lock
6546 			 * in put_cpu_partial() for further processing.
6547 			 * Avoid the complexity and simply add to a deferred list.
6548 			 */
6549 			defer_free(s, head);
6550 		} else {
6551 			__slab_free(s, slab, head, tail, cnt, addr);
6552 		}
6553 		return;
6554 	}
6555 
6556 	if (unlikely(!allow_spin)) {
6557 		if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
6558 		    local_lock_is_locked(&s->cpu_slab->lock)) {
6559 			defer_free(s, head);
6560 			return;
6561 		}
6562 		cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
6563 	}
6564 
6565 	if (USE_LOCKLESS_FAST_PATH()) {
6566 		freelist = READ_ONCE(c->freelist);
6567 
6568 		set_freepointer(s, tail, freelist);
6569 
6570 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
6571 			note_cmpxchg_failure("slab_free", s, tid);
6572 			goto redo;
6573 		}
6574 	} else {
6575 		__maybe_unused unsigned long flags = 0;
6576 
6577 		/* Update the free list under the local lock */
6578 		local_lock_cpu_slab(s, flags);
6579 		c = this_cpu_ptr(s->cpu_slab);
6580 		if (unlikely(slab != c->slab)) {
6581 			local_unlock_cpu_slab(s, flags);
6582 			goto redo;
6583 		}
6584 		tid = c->tid;
6585 		freelist = c->freelist;
6586 
6587 		set_freepointer(s, tail, freelist);
6588 		c->freelist = head;
6589 		c->tid = next_tid(tid);
6590 
6591 		local_unlock_cpu_slab(s, flags);
6592 	}
6593 	stat_add(s, FREE_FASTPATH, cnt);
6594 }
6595 #else /* CONFIG_SLUB_TINY */
6596 static void do_slab_free(struct kmem_cache *s,
6597 				struct slab *slab, void *head, void *tail,
6598 				int cnt, unsigned long addr)
6599 {
6600 	__slab_free(s, slab, head, tail, cnt, addr);
6601 }
6602 #endif /* CONFIG_SLUB_TINY */
6603 
6604 static __fastpath_inline
6605 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
6606 	       unsigned long addr)
6607 {
6608 	memcg_slab_free_hook(s, slab, &object, 1);
6609 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
6610 
6611 	if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6612 		return;
6613 
6614 	if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) ||
6615 				     slab_nid(slab) == numa_mem_id())) {
6616 		if (likely(free_to_pcs(s, object)))
6617 			return;
6618 	}
6619 
6620 	do_slab_free(s, slab, object, object, 1, addr);
6621 }
6622 
6623 #ifdef CONFIG_MEMCG
6624 /* Do not inline the rare memcg charging failed path into the allocation path */
6625 static noinline
6626 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
6627 {
6628 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6629 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
6630 }
6631 #endif
6632 
6633 static __fastpath_inline
6634 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
6635 		    void *tail, void **p, int cnt, unsigned long addr)
6636 {
6637 	memcg_slab_free_hook(s, slab, p, cnt);
6638 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
6639 	/*
6640 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
6641 	 * to remove objects, whose reuse must be delayed.
6642 	 */
6643 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
6644 		do_slab_free(s, slab, head, tail, cnt, addr);
6645 }
6646 
6647 #ifdef CONFIG_SLUB_RCU_DEBUG
6648 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
6649 {
6650 	struct rcu_delayed_free *delayed_free =
6651 			container_of(rcu_head, struct rcu_delayed_free, head);
6652 	void *object = delayed_free->object;
6653 	struct slab *slab = virt_to_slab(object);
6654 	struct kmem_cache *s;
6655 
6656 	kfree(delayed_free);
6657 
6658 	if (WARN_ON(is_kfence_address(object)))
6659 		return;
6660 
6661 	/* find the object and the cache again */
6662 	if (WARN_ON(!slab))
6663 		return;
6664 	s = slab->slab_cache;
6665 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
6666 		return;
6667 
6668 	/* resume freeing */
6669 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
6670 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
6671 }
6672 #endif /* CONFIG_SLUB_RCU_DEBUG */
6673 
6674 #ifdef CONFIG_KASAN_GENERIC
6675 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
6676 {
6677 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
6678 }
6679 #endif
6680 
6681 static inline struct kmem_cache *virt_to_cache(const void *obj)
6682 {
6683 	struct slab *slab;
6684 
6685 	slab = virt_to_slab(obj);
6686 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
6687 		return NULL;
6688 	return slab->slab_cache;
6689 }
6690 
6691 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
6692 {
6693 	struct kmem_cache *cachep;
6694 
6695 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
6696 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
6697 		return s;
6698 
6699 	cachep = virt_to_cache(x);
6700 	if (WARN(cachep && cachep != s,
6701 		 "%s: Wrong slab cache. %s but object is from %s\n",
6702 		 __func__, s->name, cachep->name))
6703 		print_tracking(cachep, x);
6704 	return cachep;
6705 }
6706 
6707 /**
6708  * kmem_cache_free - Deallocate an object
6709  * @s: The cache the allocation was from.
6710  * @x: The previously allocated object.
6711  *
6712  * Free an object which was previously allocated from this
6713  * cache.
6714  */
6715 void kmem_cache_free(struct kmem_cache *s, void *x)
6716 {
6717 	s = cache_from_obj(s, x);
6718 	if (!s)
6719 		return;
6720 	trace_kmem_cache_free(_RET_IP_, x, s);
6721 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
6722 }
6723 EXPORT_SYMBOL(kmem_cache_free);
6724 
6725 static void free_large_kmalloc(struct folio *folio, void *object)
6726 {
6727 	unsigned int order = folio_order(folio);
6728 
6729 	if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
6730 		dump_page(&folio->page, "Not a kmalloc allocation");
6731 		return;
6732 	}
6733 
6734 	if (WARN_ON_ONCE(order == 0))
6735 		pr_warn_once("object pointer: 0x%p\n", object);
6736 
6737 	kmemleak_free(object);
6738 	kasan_kfree_large(object);
6739 	kmsan_kfree_large(object);
6740 
6741 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
6742 			      -(PAGE_SIZE << order));
6743 	__folio_clear_large_kmalloc(folio);
6744 	free_frozen_pages(&folio->page, order);
6745 }
6746 
6747 /*
6748  * Given an rcu_head embedded within an object obtained from kvmalloc at an
6749  * offset < 4k, free the object in question.
6750  */
6751 void kvfree_rcu_cb(struct rcu_head *head)
6752 {
6753 	void *obj = head;
6754 	struct folio *folio;
6755 	struct slab *slab;
6756 	struct kmem_cache *s;
6757 	void *slab_addr;
6758 
6759 	if (is_vmalloc_addr(obj)) {
6760 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6761 		vfree(obj);
6762 		return;
6763 	}
6764 
6765 	folio = virt_to_folio(obj);
6766 	if (!folio_test_slab(folio)) {
6767 		/*
6768 		 * rcu_head offset can be only less than page size so no need to
6769 		 * consider folio order
6770 		 */
6771 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6772 		free_large_kmalloc(folio, obj);
6773 		return;
6774 	}
6775 
6776 	slab = folio_slab(folio);
6777 	s = slab->slab_cache;
6778 	slab_addr = folio_address(folio);
6779 
6780 	if (is_kfence_address(obj)) {
6781 		obj = kfence_object_start(obj);
6782 	} else {
6783 		unsigned int idx = __obj_to_index(s, slab_addr, obj);
6784 
6785 		obj = slab_addr + s->size * idx;
6786 		obj = fixup_red_left(s, obj);
6787 	}
6788 
6789 	slab_free(s, slab, obj, _RET_IP_);
6790 }
6791 
6792 /**
6793  * kfree - free previously allocated memory
6794  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
6795  *
6796  * If @object is NULL, no operation is performed.
6797  */
6798 void kfree(const void *object)
6799 {
6800 	struct folio *folio;
6801 	struct slab *slab;
6802 	struct kmem_cache *s;
6803 	void *x = (void *)object;
6804 
6805 	trace_kfree(_RET_IP_, object);
6806 
6807 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6808 		return;
6809 
6810 	folio = virt_to_folio(object);
6811 	if (unlikely(!folio_test_slab(folio))) {
6812 		free_large_kmalloc(folio, (void *)object);
6813 		return;
6814 	}
6815 
6816 	slab = folio_slab(folio);
6817 	s = slab->slab_cache;
6818 	slab_free(s, slab, x, _RET_IP_);
6819 }
6820 EXPORT_SYMBOL(kfree);
6821 
6822 /*
6823  * Can be called while holding raw_spinlock_t or from IRQ and NMI,
6824  * but ONLY for objects allocated by kmalloc_nolock().
6825  * Debug checks (like kmemleak and kfence) were skipped on allocation,
6826  * hence
6827  * obj = kmalloc(); kfree_nolock(obj);
6828  * will miss kmemleak/kfence book keeping and will cause false positives.
6829  * large_kmalloc is not supported either.
6830  */
6831 void kfree_nolock(const void *object)
6832 {
6833 	struct folio *folio;
6834 	struct slab *slab;
6835 	struct kmem_cache *s;
6836 	void *x = (void *)object;
6837 
6838 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6839 		return;
6840 
6841 	folio = virt_to_folio(object);
6842 	if (unlikely(!folio_test_slab(folio))) {
6843 		WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
6844 		return;
6845 	}
6846 
6847 	slab = folio_slab(folio);
6848 	s = slab->slab_cache;
6849 
6850 	memcg_slab_free_hook(s, slab, &x, 1);
6851 	alloc_tagging_slab_free_hook(s, slab, &x, 1);
6852 	/*
6853 	 * Unlike slab_free() do NOT call the following:
6854 	 * kmemleak_free_recursive(x, s->flags);
6855 	 * debug_check_no_locks_freed(x, s->object_size);
6856 	 * debug_check_no_obj_freed(x, s->object_size);
6857 	 * __kcsan_check_access(x, s->object_size, ..);
6858 	 * kfence_free(x);
6859 	 * since they take spinlocks or not safe from any context.
6860 	 */
6861 	kmsan_slab_free(s, x);
6862 	/*
6863 	 * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
6864 	 * which will call raw_spin_lock_irqsave() which is technically
6865 	 * unsafe from NMI, but take chance and report kernel bug.
6866 	 * The sequence of
6867 	 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
6868 	 *  -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
6869 	 * is double buggy and deserves to deadlock.
6870 	 */
6871 	if (kasan_slab_pre_free(s, x))
6872 		return;
6873 	/*
6874 	 * memcg, kasan_slab_pre_free are done for 'x'.
6875 	 * The only thing left is kasan_poison without quarantine,
6876 	 * since kasan quarantine takes locks and not supported from NMI.
6877 	 */
6878 	kasan_slab_free(s, x, false, false, /* skip quarantine */true);
6879 #ifndef CONFIG_SLUB_TINY
6880 	do_slab_free(s, slab, x, x, 0, _RET_IP_);
6881 #else
6882 	defer_free(s, x);
6883 #endif
6884 }
6885 EXPORT_SYMBOL_GPL(kfree_nolock);
6886 
6887 static __always_inline __realloc_size(2) void *
6888 __do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid)
6889 {
6890 	void *ret;
6891 	size_t ks = 0;
6892 	int orig_size = 0;
6893 	struct kmem_cache *s = NULL;
6894 
6895 	if (unlikely(ZERO_OR_NULL_PTR(p)))
6896 		goto alloc_new;
6897 
6898 	/* Check for double-free. */
6899 	if (!kasan_check_byte(p))
6900 		return NULL;
6901 
6902 	/*
6903 	 * If reallocation is not necessary (e. g. the new size is less
6904 	 * than the current allocated size), the current allocation will be
6905 	 * preserved unless __GFP_THISNODE is set. In the latter case a new
6906 	 * allocation on the requested node will be attempted.
6907 	 */
6908 	if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
6909 		     nid != page_to_nid(virt_to_page(p)))
6910 		goto alloc_new;
6911 
6912 	if (is_kfence_address(p)) {
6913 		ks = orig_size = kfence_ksize(p);
6914 	} else {
6915 		struct folio *folio;
6916 
6917 		folio = virt_to_folio(p);
6918 		if (unlikely(!folio_test_slab(folio))) {
6919 			/* Big kmalloc object */
6920 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
6921 			WARN_ON(p != folio_address(folio));
6922 			ks = folio_size(folio);
6923 		} else {
6924 			s = folio_slab(folio)->slab_cache;
6925 			orig_size = get_orig_size(s, (void *)p);
6926 			ks = s->object_size;
6927 		}
6928 	}
6929 
6930 	/* If the old object doesn't fit, allocate a bigger one */
6931 	if (new_size > ks)
6932 		goto alloc_new;
6933 
6934 	/* If the old object doesn't satisfy the new alignment, allocate a new one */
6935 	if (!IS_ALIGNED((unsigned long)p, align))
6936 		goto alloc_new;
6937 
6938 	/* Zero out spare memory. */
6939 	if (want_init_on_alloc(flags)) {
6940 		kasan_disable_current();
6941 		if (orig_size && orig_size < new_size)
6942 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
6943 		else
6944 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
6945 		kasan_enable_current();
6946 	}
6947 
6948 	/* Setup kmalloc redzone when needed */
6949 	if (s && slub_debug_orig_size(s)) {
6950 		set_orig_size(s, (void *)p, new_size);
6951 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
6952 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
6953 						SLUB_RED_ACTIVE, ks - new_size);
6954 	}
6955 
6956 	p = kasan_krealloc(p, new_size, flags);
6957 	return (void *)p;
6958 
6959 alloc_new:
6960 	ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_);
6961 	if (ret && p) {
6962 		/* Disable KASAN checks as the object's redzone is accessed. */
6963 		kasan_disable_current();
6964 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
6965 		kasan_enable_current();
6966 	}
6967 
6968 	return ret;
6969 }
6970 
6971 /**
6972  * krealloc_node_align - reallocate memory. The contents will remain unchanged.
6973  * @p: object to reallocate memory for.
6974  * @new_size: how many bytes of memory are required.
6975  * @align: desired alignment.
6976  * @flags: the type of memory to allocate.
6977  * @nid: NUMA node or NUMA_NO_NODE
6978  *
6979  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
6980  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
6981  *
6982  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
6983  * Documentation/core-api/memory-allocation.rst for more details.
6984  *
6985  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
6986  * initial memory allocation, every subsequent call to this API for the same
6987  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
6988  * __GFP_ZERO is not fully honored by this API.
6989  *
6990  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
6991  * size of an allocation (but not the exact size it was allocated with) and
6992  * hence implements the following semantics for shrinking and growing buffers
6993  * with __GFP_ZERO::
6994  *
6995  *           new             bucket
6996  *   0       size             size
6997  *   |--------|----------------|
6998  *   |  keep  |      zero      |
6999  *
7000  * Otherwise, the original allocation size 'orig_size' could be used to
7001  * precisely clear the requested size, and the new size will also be stored
7002  * as the new 'orig_size'.
7003  *
7004  * In any case, the contents of the object pointed to are preserved up to the
7005  * lesser of the new and old sizes.
7006  *
7007  * Return: pointer to the allocated memory or %NULL in case of error
7008  */
7009 void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align,
7010 				 gfp_t flags, int nid)
7011 {
7012 	void *ret;
7013 
7014 	if (unlikely(!new_size)) {
7015 		kfree(p);
7016 		return ZERO_SIZE_PTR;
7017 	}
7018 
7019 	ret = __do_krealloc(p, new_size, align, flags, nid);
7020 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
7021 		kfree(p);
7022 
7023 	return ret;
7024 }
7025 EXPORT_SYMBOL(krealloc_node_align_noprof);
7026 
7027 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
7028 {
7029 	/*
7030 	 * We want to attempt a large physically contiguous block first because
7031 	 * it is less likely to fragment multiple larger blocks and therefore
7032 	 * contribute to a long term fragmentation less than vmalloc fallback.
7033 	 * However make sure that larger requests are not too disruptive - i.e.
7034 	 * do not direct reclaim unless physically continuous memory is preferred
7035 	 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
7036 	 * start working in the background
7037 	 */
7038 	if (size > PAGE_SIZE) {
7039 		flags |= __GFP_NOWARN;
7040 
7041 		if (!(flags & __GFP_RETRY_MAYFAIL))
7042 			flags &= ~__GFP_DIRECT_RECLAIM;
7043 
7044 		/* nofail semantic is implemented by the vmalloc fallback */
7045 		flags &= ~__GFP_NOFAIL;
7046 	}
7047 
7048 	return flags;
7049 }
7050 
7051 /**
7052  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
7053  * failure, fall back to non-contiguous (vmalloc) allocation.
7054  * @size: size of the request.
7055  * @b: which set of kmalloc buckets to allocate from.
7056  * @align: desired alignment.
7057  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
7058  * @node: numa node to allocate from
7059  *
7060  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7061  * Documentation/core-api/memory-allocation.rst for more details.
7062  *
7063  * Uses kmalloc to get the memory but if the allocation fails then falls back
7064  * to the vmalloc allocator. Use kvfree for freeing the memory.
7065  *
7066  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
7067  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
7068  * preferable to the vmalloc fallback, due to visible performance drawbacks.
7069  *
7070  * Return: pointer to the allocated memory of %NULL in case of failure
7071  */
7072 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align,
7073 			     gfp_t flags, int node)
7074 {
7075 	void *ret;
7076 
7077 	/*
7078 	 * It doesn't really make sense to fallback to vmalloc for sub page
7079 	 * requests
7080 	 */
7081 	ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
7082 				kmalloc_gfp_adjust(flags, size),
7083 				node, _RET_IP_);
7084 	if (ret || size <= PAGE_SIZE)
7085 		return ret;
7086 
7087 	/* non-sleeping allocations are not supported by vmalloc */
7088 	if (!gfpflags_allow_blocking(flags))
7089 		return NULL;
7090 
7091 	/* Don't even allow crazy sizes */
7092 	if (unlikely(size > INT_MAX)) {
7093 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7094 		return NULL;
7095 	}
7096 
7097 	/*
7098 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
7099 	 * since the callers already cannot assume anything
7100 	 * about the resulting pointer, and cannot play
7101 	 * protection games.
7102 	 */
7103 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
7104 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
7105 			node, __builtin_return_address(0));
7106 }
7107 EXPORT_SYMBOL(__kvmalloc_node_noprof);
7108 
7109 /**
7110  * kvfree() - Free memory.
7111  * @addr: Pointer to allocated memory.
7112  *
7113  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
7114  * It is slightly more efficient to use kfree() or vfree() if you are certain
7115  * that you know which one to use.
7116  *
7117  * Context: Either preemptible task context or not-NMI interrupt.
7118  */
7119 void kvfree(const void *addr)
7120 {
7121 	if (is_vmalloc_addr(addr))
7122 		vfree(addr);
7123 	else
7124 		kfree(addr);
7125 }
7126 EXPORT_SYMBOL(kvfree);
7127 
7128 /**
7129  * kvfree_sensitive - Free a data object containing sensitive information.
7130  * @addr: address of the data object to be freed.
7131  * @len: length of the data object.
7132  *
7133  * Use the special memzero_explicit() function to clear the content of a
7134  * kvmalloc'ed object containing sensitive data to make sure that the
7135  * compiler won't optimize out the data clearing.
7136  */
7137 void kvfree_sensitive(const void *addr, size_t len)
7138 {
7139 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
7140 		memzero_explicit((void *)addr, len);
7141 		kvfree(addr);
7142 	}
7143 }
7144 EXPORT_SYMBOL(kvfree_sensitive);
7145 
7146 /**
7147  * kvrealloc_node_align - reallocate memory; contents remain unchanged
7148  * @p: object to reallocate memory for
7149  * @size: the size to reallocate
7150  * @align: desired alignment
7151  * @flags: the flags for the page level allocator
7152  * @nid: NUMA node id
7153  *
7154  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
7155  * and @p is not a %NULL pointer, the object pointed to is freed.
7156  *
7157  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7158  * Documentation/core-api/memory-allocation.rst for more details.
7159  *
7160  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7161  * initial memory allocation, every subsequent call to this API for the same
7162  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7163  * __GFP_ZERO is not fully honored by this API.
7164  *
7165  * In any case, the contents of the object pointed to are preserved up to the
7166  * lesser of the new and old sizes.
7167  *
7168  * This function must not be called concurrently with itself or kvfree() for the
7169  * same memory allocation.
7170  *
7171  * Return: pointer to the allocated memory or %NULL in case of error
7172  */
7173 void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
7174 				  gfp_t flags, int nid)
7175 {
7176 	void *n;
7177 
7178 	if (is_vmalloc_addr(p))
7179 		return vrealloc_node_align_noprof(p, size, align, flags, nid);
7180 
7181 	n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid);
7182 	if (!n) {
7183 		/* We failed to krealloc(), fall back to kvmalloc(). */
7184 		n = kvmalloc_node_align_noprof(size, align, flags, nid);
7185 		if (!n)
7186 			return NULL;
7187 
7188 		if (p) {
7189 			/* We already know that `p` is not a vmalloc address. */
7190 			kasan_disable_current();
7191 			memcpy(n, kasan_reset_tag(p), ksize(p));
7192 			kasan_enable_current();
7193 
7194 			kfree(p);
7195 		}
7196 	}
7197 
7198 	return n;
7199 }
7200 EXPORT_SYMBOL(kvrealloc_node_align_noprof);
7201 
7202 struct detached_freelist {
7203 	struct slab *slab;
7204 	void *tail;
7205 	void *freelist;
7206 	int cnt;
7207 	struct kmem_cache *s;
7208 };
7209 
7210 /*
7211  * This function progressively scans the array with free objects (with
7212  * a limited look ahead) and extract objects belonging to the same
7213  * slab.  It builds a detached freelist directly within the given
7214  * slab/objects.  This can happen without any need for
7215  * synchronization, because the objects are owned by running process.
7216  * The freelist is build up as a single linked list in the objects.
7217  * The idea is, that this detached freelist can then be bulk
7218  * transferred to the real freelist(s), but only requiring a single
7219  * synchronization primitive.  Look ahead in the array is limited due
7220  * to performance reasons.
7221  */
7222 static inline
7223 int build_detached_freelist(struct kmem_cache *s, size_t size,
7224 			    void **p, struct detached_freelist *df)
7225 {
7226 	int lookahead = 3;
7227 	void *object;
7228 	struct folio *folio;
7229 	size_t same;
7230 
7231 	object = p[--size];
7232 	folio = virt_to_folio(object);
7233 	if (!s) {
7234 		/* Handle kalloc'ed objects */
7235 		if (unlikely(!folio_test_slab(folio))) {
7236 			free_large_kmalloc(folio, object);
7237 			df->slab = NULL;
7238 			return size;
7239 		}
7240 		/* Derive kmem_cache from object */
7241 		df->slab = folio_slab(folio);
7242 		df->s = df->slab->slab_cache;
7243 	} else {
7244 		df->slab = folio_slab(folio);
7245 		df->s = cache_from_obj(s, object); /* Support for memcg */
7246 	}
7247 
7248 	/* Start new detached freelist */
7249 	df->tail = object;
7250 	df->freelist = object;
7251 	df->cnt = 1;
7252 
7253 	if (is_kfence_address(object))
7254 		return size;
7255 
7256 	set_freepointer(df->s, object, NULL);
7257 
7258 	same = size;
7259 	while (size) {
7260 		object = p[--size];
7261 		/* df->slab is always set at this point */
7262 		if (df->slab == virt_to_slab(object)) {
7263 			/* Opportunity build freelist */
7264 			set_freepointer(df->s, object, df->freelist);
7265 			df->freelist = object;
7266 			df->cnt++;
7267 			same--;
7268 			if (size != same)
7269 				swap(p[size], p[same]);
7270 			continue;
7271 		}
7272 
7273 		/* Limit look ahead search */
7274 		if (!--lookahead)
7275 			break;
7276 	}
7277 
7278 	return same;
7279 }
7280 
7281 /*
7282  * Internal bulk free of objects that were not initialised by the post alloc
7283  * hooks and thus should not be processed by the free hooks
7284  */
7285 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7286 {
7287 	if (!size)
7288 		return;
7289 
7290 	do {
7291 		struct detached_freelist df;
7292 
7293 		size = build_detached_freelist(s, size, p, &df);
7294 		if (!df.slab)
7295 			continue;
7296 
7297 		if (kfence_free(df.freelist))
7298 			continue;
7299 
7300 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
7301 			     _RET_IP_);
7302 	} while (likely(size));
7303 }
7304 
7305 /* Note that interrupts must be enabled when calling this function. */
7306 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7307 {
7308 	if (!size)
7309 		return;
7310 
7311 	/*
7312 	 * freeing to sheaves is so incompatible with the detached freelist so
7313 	 * once we go that way, we have to do everything differently
7314 	 */
7315 	if (s && s->cpu_sheaves) {
7316 		free_to_pcs_bulk(s, size, p);
7317 		return;
7318 	}
7319 
7320 	do {
7321 		struct detached_freelist df;
7322 
7323 		size = build_detached_freelist(s, size, p, &df);
7324 		if (!df.slab)
7325 			continue;
7326 
7327 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
7328 			       df.cnt, _RET_IP_);
7329 	} while (likely(size));
7330 }
7331 EXPORT_SYMBOL(kmem_cache_free_bulk);
7332 
7333 #ifndef CONFIG_SLUB_TINY
7334 static inline
7335 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
7336 			    void **p)
7337 {
7338 	struct kmem_cache_cpu *c;
7339 	unsigned long irqflags;
7340 	int i;
7341 
7342 	/*
7343 	 * Drain objects in the per cpu slab, while disabling local
7344 	 * IRQs, which protects against PREEMPT and interrupts
7345 	 * handlers invoking normal fastpath.
7346 	 */
7347 	c = slub_get_cpu_ptr(s->cpu_slab);
7348 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7349 
7350 	for (i = 0; i < size; i++) {
7351 		void *object = kfence_alloc(s, s->object_size, flags);
7352 
7353 		if (unlikely(object)) {
7354 			p[i] = object;
7355 			continue;
7356 		}
7357 
7358 		object = c->freelist;
7359 		if (unlikely(!object)) {
7360 			/*
7361 			 * We may have removed an object from c->freelist using
7362 			 * the fastpath in the previous iteration; in that case,
7363 			 * c->tid has not been bumped yet.
7364 			 * Since ___slab_alloc() may reenable interrupts while
7365 			 * allocating memory, we should bump c->tid now.
7366 			 */
7367 			c->tid = next_tid(c->tid);
7368 
7369 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7370 
7371 			/*
7372 			 * Invoking slow path likely have side-effect
7373 			 * of re-populating per CPU c->freelist
7374 			 */
7375 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
7376 					    _RET_IP_, c, s->object_size);
7377 			if (unlikely(!p[i]))
7378 				goto error;
7379 
7380 			c = this_cpu_ptr(s->cpu_slab);
7381 			maybe_wipe_obj_freeptr(s, p[i]);
7382 
7383 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7384 
7385 			continue; /* goto for-loop */
7386 		}
7387 		c->freelist = get_freepointer(s, object);
7388 		p[i] = object;
7389 		maybe_wipe_obj_freeptr(s, p[i]);
7390 		stat(s, ALLOC_FASTPATH);
7391 	}
7392 	c->tid = next_tid(c->tid);
7393 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7394 	slub_put_cpu_ptr(s->cpu_slab);
7395 
7396 	return i;
7397 
7398 error:
7399 	slub_put_cpu_ptr(s->cpu_slab);
7400 	__kmem_cache_free_bulk(s, i, p);
7401 	return 0;
7402 
7403 }
7404 #else /* CONFIG_SLUB_TINY */
7405 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
7406 				   size_t size, void **p)
7407 {
7408 	int i;
7409 
7410 	for (i = 0; i < size; i++) {
7411 		void *object = kfence_alloc(s, s->object_size, flags);
7412 
7413 		if (unlikely(object)) {
7414 			p[i] = object;
7415 			continue;
7416 		}
7417 
7418 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
7419 					 _RET_IP_, s->object_size);
7420 		if (unlikely(!p[i]))
7421 			goto error;
7422 
7423 		maybe_wipe_obj_freeptr(s, p[i]);
7424 	}
7425 
7426 	return i;
7427 
7428 error:
7429 	__kmem_cache_free_bulk(s, i, p);
7430 	return 0;
7431 }
7432 #endif /* CONFIG_SLUB_TINY */
7433 
7434 /* Note that interrupts must be enabled when calling this function. */
7435 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
7436 				 void **p)
7437 {
7438 	unsigned int i = 0;
7439 
7440 	if (!size)
7441 		return 0;
7442 
7443 	s = slab_pre_alloc_hook(s, flags);
7444 	if (unlikely(!s))
7445 		return 0;
7446 
7447 	if (s->cpu_sheaves)
7448 		i = alloc_from_pcs_bulk(s, size, p);
7449 
7450 	if (i < size) {
7451 		/*
7452 		 * If we ran out of memory, don't bother with freeing back to
7453 		 * the percpu sheaves, we have bigger problems.
7454 		 */
7455 		if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) {
7456 			if (i > 0)
7457 				__kmem_cache_free_bulk(s, i, p);
7458 			return 0;
7459 		}
7460 	}
7461 
7462 	/*
7463 	 * memcg and kmem_cache debug support and memory initialization.
7464 	 * Done outside of the IRQ disabled fastpath loop.
7465 	 */
7466 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
7467 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
7468 		return 0;
7469 	}
7470 
7471 	return size;
7472 }
7473 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
7474 
7475 /*
7476  * Object placement in a slab is made very easy because we always start at
7477  * offset 0. If we tune the size of the object to the alignment then we can
7478  * get the required alignment by putting one properly sized object after
7479  * another.
7480  *
7481  * Notice that the allocation order determines the sizes of the per cpu
7482  * caches. Each processor has always one slab available for allocations.
7483  * Increasing the allocation order reduces the number of times that slabs
7484  * must be moved on and off the partial lists and is therefore a factor in
7485  * locking overhead.
7486  */
7487 
7488 /*
7489  * Minimum / Maximum order of slab pages. This influences locking overhead
7490  * and slab fragmentation. A higher order reduces the number of partial slabs
7491  * and increases the number of allocations possible without having to
7492  * take the list_lock.
7493  */
7494 static unsigned int slub_min_order;
7495 static unsigned int slub_max_order =
7496 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
7497 static unsigned int slub_min_objects;
7498 
7499 /*
7500  * Calculate the order of allocation given an slab object size.
7501  *
7502  * The order of allocation has significant impact on performance and other
7503  * system components. Generally order 0 allocations should be preferred since
7504  * order 0 does not cause fragmentation in the page allocator. Larger objects
7505  * be problematic to put into order 0 slabs because there may be too much
7506  * unused space left. We go to a higher order if more than 1/16th of the slab
7507  * would be wasted.
7508  *
7509  * In order to reach satisfactory performance we must ensure that a minimum
7510  * number of objects is in one slab. Otherwise we may generate too much
7511  * activity on the partial lists which requires taking the list_lock. This is
7512  * less a concern for large slabs though which are rarely used.
7513  *
7514  * slab_max_order specifies the order where we begin to stop considering the
7515  * number of objects in a slab as critical. If we reach slab_max_order then
7516  * we try to keep the page order as low as possible. So we accept more waste
7517  * of space in favor of a small page order.
7518  *
7519  * Higher order allocations also allow the placement of more objects in a
7520  * slab and thereby reduce object handling overhead. If the user has
7521  * requested a higher minimum order then we start with that one instead of
7522  * the smallest order which will fit the object.
7523  */
7524 static inline unsigned int calc_slab_order(unsigned int size,
7525 		unsigned int min_order, unsigned int max_order,
7526 		unsigned int fract_leftover)
7527 {
7528 	unsigned int order;
7529 
7530 	for (order = min_order; order <= max_order; order++) {
7531 
7532 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
7533 		unsigned int rem;
7534 
7535 		rem = slab_size % size;
7536 
7537 		if (rem <= slab_size / fract_leftover)
7538 			break;
7539 	}
7540 
7541 	return order;
7542 }
7543 
7544 static inline int calculate_order(unsigned int size)
7545 {
7546 	unsigned int order;
7547 	unsigned int min_objects;
7548 	unsigned int max_objects;
7549 	unsigned int min_order;
7550 
7551 	min_objects = slub_min_objects;
7552 	if (!min_objects) {
7553 		/*
7554 		 * Some architectures will only update present cpus when
7555 		 * onlining them, so don't trust the number if it's just 1. But
7556 		 * we also don't want to use nr_cpu_ids always, as on some other
7557 		 * architectures, there can be many possible cpus, but never
7558 		 * onlined. Here we compromise between trying to avoid too high
7559 		 * order on systems that appear larger than they are, and too
7560 		 * low order on systems that appear smaller than they are.
7561 		 */
7562 		unsigned int nr_cpus = num_present_cpus();
7563 		if (nr_cpus <= 1)
7564 			nr_cpus = nr_cpu_ids;
7565 		min_objects = 4 * (fls(nr_cpus) + 1);
7566 	}
7567 	/* min_objects can't be 0 because get_order(0) is undefined */
7568 	max_objects = max(order_objects(slub_max_order, size), 1U);
7569 	min_objects = min(min_objects, max_objects);
7570 
7571 	min_order = max_t(unsigned int, slub_min_order,
7572 			  get_order(min_objects * size));
7573 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
7574 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
7575 
7576 	/*
7577 	 * Attempt to find best configuration for a slab. This works by first
7578 	 * attempting to generate a layout with the best possible configuration
7579 	 * and backing off gradually.
7580 	 *
7581 	 * We start with accepting at most 1/16 waste and try to find the
7582 	 * smallest order from min_objects-derived/slab_min_order up to
7583 	 * slab_max_order that will satisfy the constraint. Note that increasing
7584 	 * the order can only result in same or less fractional waste, not more.
7585 	 *
7586 	 * If that fails, we increase the acceptable fraction of waste and try
7587 	 * again. The last iteration with fraction of 1/2 would effectively
7588 	 * accept any waste and give us the order determined by min_objects, as
7589 	 * long as at least single object fits within slab_max_order.
7590 	 */
7591 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
7592 		order = calc_slab_order(size, min_order, slub_max_order,
7593 					fraction);
7594 		if (order <= slub_max_order)
7595 			return order;
7596 	}
7597 
7598 	/*
7599 	 * Doh this slab cannot be placed using slab_max_order.
7600 	 */
7601 	order = get_order(size);
7602 	if (order <= MAX_PAGE_ORDER)
7603 		return order;
7604 	return -ENOSYS;
7605 }
7606 
7607 static void
7608 init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn)
7609 {
7610 	n->nr_partial = 0;
7611 	spin_lock_init(&n->list_lock);
7612 	INIT_LIST_HEAD(&n->partial);
7613 #ifdef CONFIG_SLUB_DEBUG
7614 	atomic_long_set(&n->nr_slabs, 0);
7615 	atomic_long_set(&n->total_objects, 0);
7616 	INIT_LIST_HEAD(&n->full);
7617 #endif
7618 	n->barn = barn;
7619 	if (barn)
7620 		barn_init(barn);
7621 }
7622 
7623 #ifndef CONFIG_SLUB_TINY
7624 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7625 {
7626 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
7627 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
7628 			sizeof(struct kmem_cache_cpu));
7629 
7630 	/*
7631 	 * Must align to double word boundary for the double cmpxchg
7632 	 * instructions to work; see __pcpu_double_call_return_bool().
7633 	 */
7634 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
7635 				     2 * sizeof(void *));
7636 
7637 	if (!s->cpu_slab)
7638 		return 0;
7639 
7640 	init_kmem_cache_cpus(s);
7641 
7642 	return 1;
7643 }
7644 #else
7645 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7646 {
7647 	return 1;
7648 }
7649 #endif /* CONFIG_SLUB_TINY */
7650 
7651 static int init_percpu_sheaves(struct kmem_cache *s)
7652 {
7653 	int cpu;
7654 
7655 	for_each_possible_cpu(cpu) {
7656 		struct slub_percpu_sheaves *pcs;
7657 
7658 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
7659 
7660 		local_trylock_init(&pcs->lock);
7661 
7662 		pcs->main = alloc_empty_sheaf(s, GFP_KERNEL);
7663 
7664 		if (!pcs->main)
7665 			return -ENOMEM;
7666 	}
7667 
7668 	return 0;
7669 }
7670 
7671 static struct kmem_cache *kmem_cache_node;
7672 
7673 /*
7674  * No kmalloc_node yet so do it by hand. We know that this is the first
7675  * slab on the node for this slabcache. There are no concurrent accesses
7676  * possible.
7677  *
7678  * Note that this function only works on the kmem_cache_node
7679  * when allocating for the kmem_cache_node. This is used for bootstrapping
7680  * memory on a fresh node that has no slab structures yet.
7681  */
7682 static void early_kmem_cache_node_alloc(int node)
7683 {
7684 	struct slab *slab;
7685 	struct kmem_cache_node *n;
7686 
7687 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
7688 
7689 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
7690 
7691 	BUG_ON(!slab);
7692 	if (slab_nid(slab) != node) {
7693 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
7694 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
7695 	}
7696 
7697 	n = slab->freelist;
7698 	BUG_ON(!n);
7699 #ifdef CONFIG_SLUB_DEBUG
7700 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
7701 #endif
7702 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
7703 	slab->freelist = get_freepointer(kmem_cache_node, n);
7704 	slab->inuse = 1;
7705 	kmem_cache_node->node[node] = n;
7706 	init_kmem_cache_node(n, NULL);
7707 	inc_slabs_node(kmem_cache_node, node, slab->objects);
7708 
7709 	/*
7710 	 * No locks need to be taken here as it has just been
7711 	 * initialized and there is no concurrent access.
7712 	 */
7713 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
7714 }
7715 
7716 static void free_kmem_cache_nodes(struct kmem_cache *s)
7717 {
7718 	int node;
7719 	struct kmem_cache_node *n;
7720 
7721 	for_each_kmem_cache_node(s, node, n) {
7722 		if (n->barn) {
7723 			WARN_ON(n->barn->nr_full);
7724 			WARN_ON(n->barn->nr_empty);
7725 			kfree(n->barn);
7726 			n->barn = NULL;
7727 		}
7728 
7729 		s->node[node] = NULL;
7730 		kmem_cache_free(kmem_cache_node, n);
7731 	}
7732 }
7733 
7734 void __kmem_cache_release(struct kmem_cache *s)
7735 {
7736 	cache_random_seq_destroy(s);
7737 	if (s->cpu_sheaves)
7738 		pcs_destroy(s);
7739 #ifndef CONFIG_SLUB_TINY
7740 #ifdef CONFIG_PREEMPT_RT
7741 	if (s->cpu_slab)
7742 		lockdep_unregister_key(&s->lock_key);
7743 #endif
7744 	free_percpu(s->cpu_slab);
7745 #endif
7746 	free_kmem_cache_nodes(s);
7747 }
7748 
7749 static int init_kmem_cache_nodes(struct kmem_cache *s)
7750 {
7751 	int node;
7752 
7753 	for_each_node_mask(node, slab_nodes) {
7754 		struct kmem_cache_node *n;
7755 		struct node_barn *barn = NULL;
7756 
7757 		if (slab_state == DOWN) {
7758 			early_kmem_cache_node_alloc(node);
7759 			continue;
7760 		}
7761 
7762 		if (s->cpu_sheaves) {
7763 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node);
7764 
7765 			if (!barn)
7766 				return 0;
7767 		}
7768 
7769 		n = kmem_cache_alloc_node(kmem_cache_node,
7770 						GFP_KERNEL, node);
7771 		if (!n) {
7772 			kfree(barn);
7773 			return 0;
7774 		}
7775 
7776 		init_kmem_cache_node(n, barn);
7777 
7778 		s->node[node] = n;
7779 	}
7780 	return 1;
7781 }
7782 
7783 static void set_cpu_partial(struct kmem_cache *s)
7784 {
7785 #ifdef CONFIG_SLUB_CPU_PARTIAL
7786 	unsigned int nr_objects;
7787 
7788 	/*
7789 	 * cpu_partial determined the maximum number of objects kept in the
7790 	 * per cpu partial lists of a processor.
7791 	 *
7792 	 * Per cpu partial lists mainly contain slabs that just have one
7793 	 * object freed. If they are used for allocation then they can be
7794 	 * filled up again with minimal effort. The slab will never hit the
7795 	 * per node partial lists and therefore no locking will be required.
7796 	 *
7797 	 * For backwards compatibility reasons, this is determined as number
7798 	 * of objects, even though we now limit maximum number of pages, see
7799 	 * slub_set_cpu_partial()
7800 	 */
7801 	if (!kmem_cache_has_cpu_partial(s))
7802 		nr_objects = 0;
7803 	else if (s->size >= PAGE_SIZE)
7804 		nr_objects = 6;
7805 	else if (s->size >= 1024)
7806 		nr_objects = 24;
7807 	else if (s->size >= 256)
7808 		nr_objects = 52;
7809 	else
7810 		nr_objects = 120;
7811 
7812 	slub_set_cpu_partial(s, nr_objects);
7813 #endif
7814 }
7815 
7816 /*
7817  * calculate_sizes() determines the order and the distribution of data within
7818  * a slab object.
7819  */
7820 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
7821 {
7822 	slab_flags_t flags = s->flags;
7823 	unsigned int size = s->object_size;
7824 	unsigned int order;
7825 
7826 	/*
7827 	 * Round up object size to the next word boundary. We can only
7828 	 * place the free pointer at word boundaries and this determines
7829 	 * the possible location of the free pointer.
7830 	 */
7831 	size = ALIGN(size, sizeof(void *));
7832 
7833 #ifdef CONFIG_SLUB_DEBUG
7834 	/*
7835 	 * Determine if we can poison the object itself. If the user of
7836 	 * the slab may touch the object after free or before allocation
7837 	 * then we should never poison the object itself.
7838 	 */
7839 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
7840 			!s->ctor)
7841 		s->flags |= __OBJECT_POISON;
7842 	else
7843 		s->flags &= ~__OBJECT_POISON;
7844 
7845 
7846 	/*
7847 	 * If we are Redzoning then check if there is some space between the
7848 	 * end of the object and the free pointer. If not then add an
7849 	 * additional word to have some bytes to store Redzone information.
7850 	 */
7851 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
7852 		size += sizeof(void *);
7853 #endif
7854 
7855 	/*
7856 	 * With that we have determined the number of bytes in actual use
7857 	 * by the object and redzoning.
7858 	 */
7859 	s->inuse = size;
7860 
7861 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
7862 	    (flags & SLAB_POISON) || s->ctor ||
7863 	    ((flags & SLAB_RED_ZONE) &&
7864 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
7865 		/*
7866 		 * Relocate free pointer after the object if it is not
7867 		 * permitted to overwrite the first word of the object on
7868 		 * kmem_cache_free.
7869 		 *
7870 		 * This is the case if we do RCU, have a constructor or
7871 		 * destructor, are poisoning the objects, or are
7872 		 * redzoning an object smaller than sizeof(void *) or are
7873 		 * redzoning an object with slub_debug_orig_size() enabled,
7874 		 * in which case the right redzone may be extended.
7875 		 *
7876 		 * The assumption that s->offset >= s->inuse means free
7877 		 * pointer is outside of the object is used in the
7878 		 * freeptr_outside_object() function. If that is no
7879 		 * longer true, the function needs to be modified.
7880 		 */
7881 		s->offset = size;
7882 		size += sizeof(void *);
7883 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
7884 		s->offset = args->freeptr_offset;
7885 	} else {
7886 		/*
7887 		 * Store freelist pointer near middle of object to keep
7888 		 * it away from the edges of the object to avoid small
7889 		 * sized over/underflows from neighboring allocations.
7890 		 */
7891 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
7892 	}
7893 
7894 #ifdef CONFIG_SLUB_DEBUG
7895 	if (flags & SLAB_STORE_USER) {
7896 		/*
7897 		 * Need to store information about allocs and frees after
7898 		 * the object.
7899 		 */
7900 		size += 2 * sizeof(struct track);
7901 
7902 		/* Save the original kmalloc request size */
7903 		if (flags & SLAB_KMALLOC)
7904 			size += sizeof(unsigned int);
7905 	}
7906 #endif
7907 
7908 	kasan_cache_create(s, &size, &s->flags);
7909 #ifdef CONFIG_SLUB_DEBUG
7910 	if (flags & SLAB_RED_ZONE) {
7911 		/*
7912 		 * Add some empty padding so that we can catch
7913 		 * overwrites from earlier objects rather than let
7914 		 * tracking information or the free pointer be
7915 		 * corrupted if a user writes before the start
7916 		 * of the object.
7917 		 */
7918 		size += sizeof(void *);
7919 
7920 		s->red_left_pad = sizeof(void *);
7921 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
7922 		size += s->red_left_pad;
7923 	}
7924 #endif
7925 
7926 	/*
7927 	 * SLUB stores one object immediately after another beginning from
7928 	 * offset 0. In order to align the objects we have to simply size
7929 	 * each object to conform to the alignment.
7930 	 */
7931 	size = ALIGN(size, s->align);
7932 	s->size = size;
7933 	s->reciprocal_size = reciprocal_value(size);
7934 	order = calculate_order(size);
7935 
7936 	if ((int)order < 0)
7937 		return 0;
7938 
7939 	s->allocflags = __GFP_COMP;
7940 
7941 	if (s->flags & SLAB_CACHE_DMA)
7942 		s->allocflags |= GFP_DMA;
7943 
7944 	if (s->flags & SLAB_CACHE_DMA32)
7945 		s->allocflags |= GFP_DMA32;
7946 
7947 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7948 		s->allocflags |= __GFP_RECLAIMABLE;
7949 
7950 	/*
7951 	 * Determine the number of objects per slab
7952 	 */
7953 	s->oo = oo_make(order, size);
7954 	s->min = oo_make(get_order(size), size);
7955 
7956 	return !!oo_objects(s->oo);
7957 }
7958 
7959 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
7960 {
7961 #ifdef CONFIG_SLUB_DEBUG
7962 	void *addr = slab_address(slab);
7963 	void *p;
7964 
7965 	if (!slab_add_kunit_errors())
7966 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
7967 
7968 	spin_lock(&object_map_lock);
7969 	__fill_map(object_map, s, slab);
7970 
7971 	for_each_object(p, s, addr, slab->objects) {
7972 
7973 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
7974 			if (slab_add_kunit_errors())
7975 				continue;
7976 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
7977 			print_tracking(s, p);
7978 		}
7979 	}
7980 	spin_unlock(&object_map_lock);
7981 
7982 	__slab_err(slab);
7983 #endif
7984 }
7985 
7986 /*
7987  * Attempt to free all partial slabs on a node.
7988  * This is called from __kmem_cache_shutdown(). We must take list_lock
7989  * because sysfs file might still access partial list after the shutdowning.
7990  */
7991 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
7992 {
7993 	LIST_HEAD(discard);
7994 	struct slab *slab, *h;
7995 
7996 	BUG_ON(irqs_disabled());
7997 	spin_lock_irq(&n->list_lock);
7998 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
7999 		if (!slab->inuse) {
8000 			remove_partial(n, slab);
8001 			list_add(&slab->slab_list, &discard);
8002 		} else {
8003 			list_slab_objects(s, slab);
8004 		}
8005 	}
8006 	spin_unlock_irq(&n->list_lock);
8007 
8008 	list_for_each_entry_safe(slab, h, &discard, slab_list)
8009 		discard_slab(s, slab);
8010 }
8011 
8012 bool __kmem_cache_empty(struct kmem_cache *s)
8013 {
8014 	int node;
8015 	struct kmem_cache_node *n;
8016 
8017 	for_each_kmem_cache_node(s, node, n)
8018 		if (n->nr_partial || node_nr_slabs(n))
8019 			return false;
8020 	return true;
8021 }
8022 
8023 /*
8024  * Release all resources used by a slab cache.
8025  */
8026 int __kmem_cache_shutdown(struct kmem_cache *s)
8027 {
8028 	int node;
8029 	struct kmem_cache_node *n;
8030 
8031 	flush_all_cpus_locked(s);
8032 
8033 	/* we might have rcu sheaves in flight */
8034 	if (s->cpu_sheaves)
8035 		rcu_barrier();
8036 
8037 	/* Attempt to free all objects */
8038 	for_each_kmem_cache_node(s, node, n) {
8039 		if (n->barn)
8040 			barn_shrink(s, n->barn);
8041 		free_partial(s, n);
8042 		if (n->nr_partial || node_nr_slabs(n))
8043 			return 1;
8044 	}
8045 	return 0;
8046 }
8047 
8048 #ifdef CONFIG_PRINTK
8049 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8050 {
8051 	void *base;
8052 	int __maybe_unused i;
8053 	unsigned int objnr;
8054 	void *objp;
8055 	void *objp0;
8056 	struct kmem_cache *s = slab->slab_cache;
8057 	struct track __maybe_unused *trackp;
8058 
8059 	kpp->kp_ptr = object;
8060 	kpp->kp_slab = slab;
8061 	kpp->kp_slab_cache = s;
8062 	base = slab_address(slab);
8063 	objp0 = kasan_reset_tag(object);
8064 #ifdef CONFIG_SLUB_DEBUG
8065 	objp = restore_red_left(s, objp0);
8066 #else
8067 	objp = objp0;
8068 #endif
8069 	objnr = obj_to_index(s, slab, objp);
8070 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
8071 	objp = base + s->size * objnr;
8072 	kpp->kp_objp = objp;
8073 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
8074 			 || (objp - base) % s->size) ||
8075 	    !(s->flags & SLAB_STORE_USER))
8076 		return;
8077 #ifdef CONFIG_SLUB_DEBUG
8078 	objp = fixup_red_left(s, objp);
8079 	trackp = get_track(s, objp, TRACK_ALLOC);
8080 	kpp->kp_ret = (void *)trackp->addr;
8081 #ifdef CONFIG_STACKDEPOT
8082 	{
8083 		depot_stack_handle_t handle;
8084 		unsigned long *entries;
8085 		unsigned int nr_entries;
8086 
8087 		handle = READ_ONCE(trackp->handle);
8088 		if (handle) {
8089 			nr_entries = stack_depot_fetch(handle, &entries);
8090 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8091 				kpp->kp_stack[i] = (void *)entries[i];
8092 		}
8093 
8094 		trackp = get_track(s, objp, TRACK_FREE);
8095 		handle = READ_ONCE(trackp->handle);
8096 		if (handle) {
8097 			nr_entries = stack_depot_fetch(handle, &entries);
8098 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8099 				kpp->kp_free_stack[i] = (void *)entries[i];
8100 		}
8101 	}
8102 #endif
8103 #endif
8104 }
8105 #endif
8106 
8107 /********************************************************************
8108  *		Kmalloc subsystem
8109  *******************************************************************/
8110 
8111 static int __init setup_slub_min_order(char *str)
8112 {
8113 	get_option(&str, (int *)&slub_min_order);
8114 
8115 	if (slub_min_order > slub_max_order)
8116 		slub_max_order = slub_min_order;
8117 
8118 	return 1;
8119 }
8120 
8121 __setup("slab_min_order=", setup_slub_min_order);
8122 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
8123 
8124 
8125 static int __init setup_slub_max_order(char *str)
8126 {
8127 	get_option(&str, (int *)&slub_max_order);
8128 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
8129 
8130 	if (slub_min_order > slub_max_order)
8131 		slub_min_order = slub_max_order;
8132 
8133 	return 1;
8134 }
8135 
8136 __setup("slab_max_order=", setup_slub_max_order);
8137 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
8138 
8139 static int __init setup_slub_min_objects(char *str)
8140 {
8141 	get_option(&str, (int *)&slub_min_objects);
8142 
8143 	return 1;
8144 }
8145 
8146 __setup("slab_min_objects=", setup_slub_min_objects);
8147 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
8148 
8149 #ifdef CONFIG_NUMA
8150 static int __init setup_slab_strict_numa(char *str)
8151 {
8152 	if (nr_node_ids > 1) {
8153 		static_branch_enable(&strict_numa);
8154 		pr_info("SLUB: Strict NUMA enabled.\n");
8155 	} else {
8156 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
8157 	}
8158 
8159 	return 1;
8160 }
8161 
8162 __setup("slab_strict_numa", setup_slab_strict_numa);
8163 #endif
8164 
8165 
8166 #ifdef CONFIG_HARDENED_USERCOPY
8167 /*
8168  * Rejects incorrectly sized objects and objects that are to be copied
8169  * to/from userspace but do not fall entirely within the containing slab
8170  * cache's usercopy region.
8171  *
8172  * Returns NULL if check passes, otherwise const char * to name of cache
8173  * to indicate an error.
8174  */
8175 void __check_heap_object(const void *ptr, unsigned long n,
8176 			 const struct slab *slab, bool to_user)
8177 {
8178 	struct kmem_cache *s;
8179 	unsigned int offset;
8180 	bool is_kfence = is_kfence_address(ptr);
8181 
8182 	ptr = kasan_reset_tag(ptr);
8183 
8184 	/* Find object and usable object size. */
8185 	s = slab->slab_cache;
8186 
8187 	/* Reject impossible pointers. */
8188 	if (ptr < slab_address(slab))
8189 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
8190 			       to_user, 0, n);
8191 
8192 	/* Find offset within object. */
8193 	if (is_kfence)
8194 		offset = ptr - kfence_object_start(ptr);
8195 	else
8196 		offset = (ptr - slab_address(slab)) % s->size;
8197 
8198 	/* Adjust for redzone and reject if within the redzone. */
8199 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
8200 		if (offset < s->red_left_pad)
8201 			usercopy_abort("SLUB object in left red zone",
8202 				       s->name, to_user, offset, n);
8203 		offset -= s->red_left_pad;
8204 	}
8205 
8206 	/* Allow address range falling entirely within usercopy region. */
8207 	if (offset >= s->useroffset &&
8208 	    offset - s->useroffset <= s->usersize &&
8209 	    n <= s->useroffset - offset + s->usersize)
8210 		return;
8211 
8212 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
8213 }
8214 #endif /* CONFIG_HARDENED_USERCOPY */
8215 
8216 #define SHRINK_PROMOTE_MAX 32
8217 
8218 /*
8219  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
8220  * up most to the head of the partial lists. New allocations will then
8221  * fill those up and thus they can be removed from the partial lists.
8222  *
8223  * The slabs with the least items are placed last. This results in them
8224  * being allocated from last increasing the chance that the last objects
8225  * are freed in them.
8226  */
8227 static int __kmem_cache_do_shrink(struct kmem_cache *s)
8228 {
8229 	int node;
8230 	int i;
8231 	struct kmem_cache_node *n;
8232 	struct slab *slab;
8233 	struct slab *t;
8234 	struct list_head discard;
8235 	struct list_head promote[SHRINK_PROMOTE_MAX];
8236 	unsigned long flags;
8237 	int ret = 0;
8238 
8239 	for_each_kmem_cache_node(s, node, n) {
8240 		INIT_LIST_HEAD(&discard);
8241 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
8242 			INIT_LIST_HEAD(promote + i);
8243 
8244 		if (n->barn)
8245 			barn_shrink(s, n->barn);
8246 
8247 		spin_lock_irqsave(&n->list_lock, flags);
8248 
8249 		/*
8250 		 * Build lists of slabs to discard or promote.
8251 		 *
8252 		 * Note that concurrent frees may occur while we hold the
8253 		 * list_lock. slab->inuse here is the upper limit.
8254 		 */
8255 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
8256 			int free = slab->objects - slab->inuse;
8257 
8258 			/* Do not reread slab->inuse */
8259 			barrier();
8260 
8261 			/* We do not keep full slabs on the list */
8262 			BUG_ON(free <= 0);
8263 
8264 			if (free == slab->objects) {
8265 				list_move(&slab->slab_list, &discard);
8266 				slab_clear_node_partial(slab);
8267 				n->nr_partial--;
8268 				dec_slabs_node(s, node, slab->objects);
8269 			} else if (free <= SHRINK_PROMOTE_MAX)
8270 				list_move(&slab->slab_list, promote + free - 1);
8271 		}
8272 
8273 		/*
8274 		 * Promote the slabs filled up most to the head of the
8275 		 * partial list.
8276 		 */
8277 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
8278 			list_splice(promote + i, &n->partial);
8279 
8280 		spin_unlock_irqrestore(&n->list_lock, flags);
8281 
8282 		/* Release empty slabs */
8283 		list_for_each_entry_safe(slab, t, &discard, slab_list)
8284 			free_slab(s, slab);
8285 
8286 		if (node_nr_slabs(n))
8287 			ret = 1;
8288 	}
8289 
8290 	return ret;
8291 }
8292 
8293 int __kmem_cache_shrink(struct kmem_cache *s)
8294 {
8295 	flush_all(s);
8296 	return __kmem_cache_do_shrink(s);
8297 }
8298 
8299 static int slab_mem_going_offline_callback(void)
8300 {
8301 	struct kmem_cache *s;
8302 
8303 	mutex_lock(&slab_mutex);
8304 	list_for_each_entry(s, &slab_caches, list) {
8305 		flush_all_cpus_locked(s);
8306 		__kmem_cache_do_shrink(s);
8307 	}
8308 	mutex_unlock(&slab_mutex);
8309 
8310 	return 0;
8311 }
8312 
8313 static int slab_mem_going_online_callback(int nid)
8314 {
8315 	struct kmem_cache_node *n;
8316 	struct kmem_cache *s;
8317 	int ret = 0;
8318 
8319 	/*
8320 	 * We are bringing a node online. No memory is available yet. We must
8321 	 * allocate a kmem_cache_node structure in order to bring the node
8322 	 * online.
8323 	 */
8324 	mutex_lock(&slab_mutex);
8325 	list_for_each_entry(s, &slab_caches, list) {
8326 		struct node_barn *barn = NULL;
8327 
8328 		/*
8329 		 * The structure may already exist if the node was previously
8330 		 * onlined and offlined.
8331 		 */
8332 		if (get_node(s, nid))
8333 			continue;
8334 
8335 		if (s->cpu_sheaves) {
8336 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid);
8337 
8338 			if (!barn) {
8339 				ret = -ENOMEM;
8340 				goto out;
8341 			}
8342 		}
8343 
8344 		/*
8345 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
8346 		 *      since memory is not yet available from the node that
8347 		 *      is brought up.
8348 		 */
8349 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
8350 		if (!n) {
8351 			kfree(barn);
8352 			ret = -ENOMEM;
8353 			goto out;
8354 		}
8355 
8356 		init_kmem_cache_node(n, barn);
8357 
8358 		s->node[nid] = n;
8359 	}
8360 	/*
8361 	 * Any cache created after this point will also have kmem_cache_node
8362 	 * initialized for the new node.
8363 	 */
8364 	node_set(nid, slab_nodes);
8365 out:
8366 	mutex_unlock(&slab_mutex);
8367 	return ret;
8368 }
8369 
8370 static int slab_memory_callback(struct notifier_block *self,
8371 				unsigned long action, void *arg)
8372 {
8373 	struct node_notify *nn = arg;
8374 	int nid = nn->nid;
8375 	int ret = 0;
8376 
8377 	switch (action) {
8378 	case NODE_ADDING_FIRST_MEMORY:
8379 		ret = slab_mem_going_online_callback(nid);
8380 		break;
8381 	case NODE_REMOVING_LAST_MEMORY:
8382 		ret = slab_mem_going_offline_callback();
8383 		break;
8384 	}
8385 	if (ret)
8386 		ret = notifier_from_errno(ret);
8387 	else
8388 		ret = NOTIFY_OK;
8389 	return ret;
8390 }
8391 
8392 /********************************************************************
8393  *			Basic setup of slabs
8394  *******************************************************************/
8395 
8396 /*
8397  * Used for early kmem_cache structures that were allocated using
8398  * the page allocator. Allocate them properly then fix up the pointers
8399  * that may be pointing to the wrong kmem_cache structure.
8400  */
8401 
8402 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
8403 {
8404 	int node;
8405 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8406 	struct kmem_cache_node *n;
8407 
8408 	memcpy(s, static_cache, kmem_cache->object_size);
8409 
8410 	/*
8411 	 * This runs very early, and only the boot processor is supposed to be
8412 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
8413 	 * IPIs around.
8414 	 */
8415 	__flush_cpu_slab(s, smp_processor_id());
8416 	for_each_kmem_cache_node(s, node, n) {
8417 		struct slab *p;
8418 
8419 		list_for_each_entry(p, &n->partial, slab_list)
8420 			p->slab_cache = s;
8421 
8422 #ifdef CONFIG_SLUB_DEBUG
8423 		list_for_each_entry(p, &n->full, slab_list)
8424 			p->slab_cache = s;
8425 #endif
8426 	}
8427 	list_add(&s->list, &slab_caches);
8428 	return s;
8429 }
8430 
8431 void __init kmem_cache_init(void)
8432 {
8433 	static __initdata struct kmem_cache boot_kmem_cache,
8434 		boot_kmem_cache_node;
8435 	int node;
8436 
8437 	if (debug_guardpage_minorder())
8438 		slub_max_order = 0;
8439 
8440 	/* Inform pointer hashing choice about slub debugging state. */
8441 	hash_pointers_finalize(__slub_debug_enabled());
8442 
8443 	kmem_cache_node = &boot_kmem_cache_node;
8444 	kmem_cache = &boot_kmem_cache;
8445 
8446 	/*
8447 	 * Initialize the nodemask for which we will allocate per node
8448 	 * structures. Here we don't need taking slab_mutex yet.
8449 	 */
8450 	for_each_node_state(node, N_MEMORY)
8451 		node_set(node, slab_nodes);
8452 
8453 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
8454 			sizeof(struct kmem_cache_node),
8455 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8456 
8457 	hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
8458 
8459 	/* Able to allocate the per node structures */
8460 	slab_state = PARTIAL;
8461 
8462 	create_boot_cache(kmem_cache, "kmem_cache",
8463 			offsetof(struct kmem_cache, node) +
8464 				nr_node_ids * sizeof(struct kmem_cache_node *),
8465 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8466 
8467 	kmem_cache = bootstrap(&boot_kmem_cache);
8468 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
8469 
8470 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
8471 	setup_kmalloc_cache_index_table();
8472 	create_kmalloc_caches();
8473 
8474 	/* Setup random freelists for each cache */
8475 	init_freelist_randomization();
8476 
8477 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
8478 				  slub_cpu_dead);
8479 
8480 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
8481 		cache_line_size(),
8482 		slub_min_order, slub_max_order, slub_min_objects,
8483 		nr_cpu_ids, nr_node_ids);
8484 }
8485 
8486 void __init kmem_cache_init_late(void)
8487 {
8488 #ifndef CONFIG_SLUB_TINY
8489 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
8490 	WARN_ON(!flushwq);
8491 #endif
8492 }
8493 
8494 struct kmem_cache *
8495 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
8496 		   slab_flags_t flags, void (*ctor)(void *))
8497 {
8498 	struct kmem_cache *s;
8499 
8500 	s = find_mergeable(size, align, flags, name, ctor);
8501 	if (s) {
8502 		if (sysfs_slab_alias(s, name))
8503 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
8504 			       name);
8505 
8506 		s->refcount++;
8507 
8508 		/*
8509 		 * Adjust the object sizes so that we clear
8510 		 * the complete object on kzalloc.
8511 		 */
8512 		s->object_size = max(s->object_size, size);
8513 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
8514 	}
8515 
8516 	return s;
8517 }
8518 
8519 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
8520 			 unsigned int size, struct kmem_cache_args *args,
8521 			 slab_flags_t flags)
8522 {
8523 	int err = -EINVAL;
8524 
8525 	s->name = name;
8526 	s->size = s->object_size = size;
8527 
8528 	s->flags = kmem_cache_flags(flags, s->name);
8529 #ifdef CONFIG_SLAB_FREELIST_HARDENED
8530 	s->random = get_random_long();
8531 #endif
8532 	s->align = args->align;
8533 	s->ctor = args->ctor;
8534 #ifdef CONFIG_HARDENED_USERCOPY
8535 	s->useroffset = args->useroffset;
8536 	s->usersize = args->usersize;
8537 #endif
8538 
8539 	if (!calculate_sizes(args, s))
8540 		goto out;
8541 	if (disable_higher_order_debug) {
8542 		/*
8543 		 * Disable debugging flags that store metadata if the min slab
8544 		 * order increased.
8545 		 */
8546 		if (get_order(s->size) > get_order(s->object_size)) {
8547 			s->flags &= ~DEBUG_METADATA_FLAGS;
8548 			s->offset = 0;
8549 			if (!calculate_sizes(args, s))
8550 				goto out;
8551 		}
8552 	}
8553 
8554 #ifdef system_has_freelist_aba
8555 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
8556 		/* Enable fast mode */
8557 		s->flags |= __CMPXCHG_DOUBLE;
8558 	}
8559 #endif
8560 
8561 	/*
8562 	 * The larger the object size is, the more slabs we want on the partial
8563 	 * list to avoid pounding the page allocator excessively.
8564 	 */
8565 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
8566 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
8567 
8568 	set_cpu_partial(s);
8569 
8570 	if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY)
8571 					&& !(s->flags & SLAB_DEBUG_FLAGS)) {
8572 		s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves);
8573 		if (!s->cpu_sheaves) {
8574 			err = -ENOMEM;
8575 			goto out;
8576 		}
8577 		// TODO: increase capacity to grow slab_sheaf up to next kmalloc size?
8578 		s->sheaf_capacity = args->sheaf_capacity;
8579 	}
8580 
8581 #ifdef CONFIG_NUMA
8582 	s->remote_node_defrag_ratio = 1000;
8583 #endif
8584 
8585 	/* Initialize the pre-computed randomized freelist if slab is up */
8586 	if (slab_state >= UP) {
8587 		if (init_cache_random_seq(s))
8588 			goto out;
8589 	}
8590 
8591 	if (!init_kmem_cache_nodes(s))
8592 		goto out;
8593 
8594 	if (!alloc_kmem_cache_cpus(s))
8595 		goto out;
8596 
8597 	if (s->cpu_sheaves) {
8598 		err = init_percpu_sheaves(s);
8599 		if (err)
8600 			goto out;
8601 	}
8602 
8603 	err = 0;
8604 
8605 	/* Mutex is not taken during early boot */
8606 	if (slab_state <= UP)
8607 		goto out;
8608 
8609 	/*
8610 	 * Failing to create sysfs files is not critical to SLUB functionality.
8611 	 * If it fails, proceed with cache creation without these files.
8612 	 */
8613 	if (sysfs_slab_add(s))
8614 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
8615 
8616 	if (s->flags & SLAB_STORE_USER)
8617 		debugfs_slab_add(s);
8618 
8619 out:
8620 	if (err)
8621 		__kmem_cache_release(s);
8622 	return err;
8623 }
8624 
8625 #ifdef SLAB_SUPPORTS_SYSFS
8626 static int count_inuse(struct slab *slab)
8627 {
8628 	return slab->inuse;
8629 }
8630 
8631 static int count_total(struct slab *slab)
8632 {
8633 	return slab->objects;
8634 }
8635 #endif
8636 
8637 #ifdef CONFIG_SLUB_DEBUG
8638 static void validate_slab(struct kmem_cache *s, struct slab *slab,
8639 			  unsigned long *obj_map)
8640 {
8641 	void *p;
8642 	void *addr = slab_address(slab);
8643 
8644 	if (!validate_slab_ptr(slab)) {
8645 		slab_err(s, slab, "Not a valid slab page");
8646 		return;
8647 	}
8648 
8649 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
8650 		return;
8651 
8652 	/* Now we know that a valid freelist exists */
8653 	__fill_map(obj_map, s, slab);
8654 	for_each_object(p, s, addr, slab->objects) {
8655 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
8656 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
8657 
8658 		if (!check_object(s, slab, p, val))
8659 			break;
8660 	}
8661 }
8662 
8663 static int validate_slab_node(struct kmem_cache *s,
8664 		struct kmem_cache_node *n, unsigned long *obj_map)
8665 {
8666 	unsigned long count = 0;
8667 	struct slab *slab;
8668 	unsigned long flags;
8669 
8670 	spin_lock_irqsave(&n->list_lock, flags);
8671 
8672 	list_for_each_entry(slab, &n->partial, slab_list) {
8673 		validate_slab(s, slab, obj_map);
8674 		count++;
8675 	}
8676 	if (count != n->nr_partial) {
8677 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
8678 		       s->name, count, n->nr_partial);
8679 		slab_add_kunit_errors();
8680 	}
8681 
8682 	if (!(s->flags & SLAB_STORE_USER))
8683 		goto out;
8684 
8685 	list_for_each_entry(slab, &n->full, slab_list) {
8686 		validate_slab(s, slab, obj_map);
8687 		count++;
8688 	}
8689 	if (count != node_nr_slabs(n)) {
8690 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8691 		       s->name, count, node_nr_slabs(n));
8692 		slab_add_kunit_errors();
8693 	}
8694 
8695 out:
8696 	spin_unlock_irqrestore(&n->list_lock, flags);
8697 	return count;
8698 }
8699 
8700 long validate_slab_cache(struct kmem_cache *s)
8701 {
8702 	int node;
8703 	unsigned long count = 0;
8704 	struct kmem_cache_node *n;
8705 	unsigned long *obj_map;
8706 
8707 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
8708 	if (!obj_map)
8709 		return -ENOMEM;
8710 
8711 	flush_all(s);
8712 	for_each_kmem_cache_node(s, node, n)
8713 		count += validate_slab_node(s, n, obj_map);
8714 
8715 	bitmap_free(obj_map);
8716 
8717 	return count;
8718 }
8719 EXPORT_SYMBOL(validate_slab_cache);
8720 
8721 #ifdef CONFIG_DEBUG_FS
8722 /*
8723  * Generate lists of code addresses where slabcache objects are allocated
8724  * and freed.
8725  */
8726 
8727 struct location {
8728 	depot_stack_handle_t handle;
8729 	unsigned long count;
8730 	unsigned long addr;
8731 	unsigned long waste;
8732 	long long sum_time;
8733 	long min_time;
8734 	long max_time;
8735 	long min_pid;
8736 	long max_pid;
8737 	DECLARE_BITMAP(cpus, NR_CPUS);
8738 	nodemask_t nodes;
8739 };
8740 
8741 struct loc_track {
8742 	unsigned long max;
8743 	unsigned long count;
8744 	struct location *loc;
8745 	loff_t idx;
8746 };
8747 
8748 static struct dentry *slab_debugfs_root;
8749 
8750 static void free_loc_track(struct loc_track *t)
8751 {
8752 	if (t->max)
8753 		free_pages((unsigned long)t->loc,
8754 			get_order(sizeof(struct location) * t->max));
8755 }
8756 
8757 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
8758 {
8759 	struct location *l;
8760 	int order;
8761 
8762 	order = get_order(sizeof(struct location) * max);
8763 
8764 	l = (void *)__get_free_pages(flags, order);
8765 	if (!l)
8766 		return 0;
8767 
8768 	if (t->count) {
8769 		memcpy(l, t->loc, sizeof(struct location) * t->count);
8770 		free_loc_track(t);
8771 	}
8772 	t->max = max;
8773 	t->loc = l;
8774 	return 1;
8775 }
8776 
8777 static int add_location(struct loc_track *t, struct kmem_cache *s,
8778 				const struct track *track,
8779 				unsigned int orig_size)
8780 {
8781 	long start, end, pos;
8782 	struct location *l;
8783 	unsigned long caddr, chandle, cwaste;
8784 	unsigned long age = jiffies - track->when;
8785 	depot_stack_handle_t handle = 0;
8786 	unsigned int waste = s->object_size - orig_size;
8787 
8788 #ifdef CONFIG_STACKDEPOT
8789 	handle = READ_ONCE(track->handle);
8790 #endif
8791 	start = -1;
8792 	end = t->count;
8793 
8794 	for ( ; ; ) {
8795 		pos = start + (end - start + 1) / 2;
8796 
8797 		/*
8798 		 * There is nothing at "end". If we end up there
8799 		 * we need to add something to before end.
8800 		 */
8801 		if (pos == end)
8802 			break;
8803 
8804 		l = &t->loc[pos];
8805 		caddr = l->addr;
8806 		chandle = l->handle;
8807 		cwaste = l->waste;
8808 		if ((track->addr == caddr) && (handle == chandle) &&
8809 			(waste == cwaste)) {
8810 
8811 			l->count++;
8812 			if (track->when) {
8813 				l->sum_time += age;
8814 				if (age < l->min_time)
8815 					l->min_time = age;
8816 				if (age > l->max_time)
8817 					l->max_time = age;
8818 
8819 				if (track->pid < l->min_pid)
8820 					l->min_pid = track->pid;
8821 				if (track->pid > l->max_pid)
8822 					l->max_pid = track->pid;
8823 
8824 				cpumask_set_cpu(track->cpu,
8825 						to_cpumask(l->cpus));
8826 			}
8827 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
8828 			return 1;
8829 		}
8830 
8831 		if (track->addr < caddr)
8832 			end = pos;
8833 		else if (track->addr == caddr && handle < chandle)
8834 			end = pos;
8835 		else if (track->addr == caddr && handle == chandle &&
8836 				waste < cwaste)
8837 			end = pos;
8838 		else
8839 			start = pos;
8840 	}
8841 
8842 	/*
8843 	 * Not found. Insert new tracking element.
8844 	 */
8845 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
8846 		return 0;
8847 
8848 	l = t->loc + pos;
8849 	if (pos < t->count)
8850 		memmove(l + 1, l,
8851 			(t->count - pos) * sizeof(struct location));
8852 	t->count++;
8853 	l->count = 1;
8854 	l->addr = track->addr;
8855 	l->sum_time = age;
8856 	l->min_time = age;
8857 	l->max_time = age;
8858 	l->min_pid = track->pid;
8859 	l->max_pid = track->pid;
8860 	l->handle = handle;
8861 	l->waste = waste;
8862 	cpumask_clear(to_cpumask(l->cpus));
8863 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
8864 	nodes_clear(l->nodes);
8865 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
8866 	return 1;
8867 }
8868 
8869 static void process_slab(struct loc_track *t, struct kmem_cache *s,
8870 		struct slab *slab, enum track_item alloc,
8871 		unsigned long *obj_map)
8872 {
8873 	void *addr = slab_address(slab);
8874 	bool is_alloc = (alloc == TRACK_ALLOC);
8875 	void *p;
8876 
8877 	__fill_map(obj_map, s, slab);
8878 
8879 	for_each_object(p, s, addr, slab->objects)
8880 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
8881 			add_location(t, s, get_track(s, p, alloc),
8882 				     is_alloc ? get_orig_size(s, p) :
8883 						s->object_size);
8884 }
8885 #endif  /* CONFIG_DEBUG_FS   */
8886 #endif	/* CONFIG_SLUB_DEBUG */
8887 
8888 #ifdef SLAB_SUPPORTS_SYSFS
8889 enum slab_stat_type {
8890 	SL_ALL,			/* All slabs */
8891 	SL_PARTIAL,		/* Only partially allocated slabs */
8892 	SL_CPU,			/* Only slabs used for cpu caches */
8893 	SL_OBJECTS,		/* Determine allocated objects not slabs */
8894 	SL_TOTAL		/* Determine object capacity not slabs */
8895 };
8896 
8897 #define SO_ALL		(1 << SL_ALL)
8898 #define SO_PARTIAL	(1 << SL_PARTIAL)
8899 #define SO_CPU		(1 << SL_CPU)
8900 #define SO_OBJECTS	(1 << SL_OBJECTS)
8901 #define SO_TOTAL	(1 << SL_TOTAL)
8902 
8903 static ssize_t show_slab_objects(struct kmem_cache *s,
8904 				 char *buf, unsigned long flags)
8905 {
8906 	unsigned long total = 0;
8907 	int node;
8908 	int x;
8909 	unsigned long *nodes;
8910 	int len = 0;
8911 
8912 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
8913 	if (!nodes)
8914 		return -ENOMEM;
8915 
8916 	if (flags & SO_CPU) {
8917 		int cpu;
8918 
8919 		for_each_possible_cpu(cpu) {
8920 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
8921 							       cpu);
8922 			int node;
8923 			struct slab *slab;
8924 
8925 			slab = READ_ONCE(c->slab);
8926 			if (!slab)
8927 				continue;
8928 
8929 			node = slab_nid(slab);
8930 			if (flags & SO_TOTAL)
8931 				x = slab->objects;
8932 			else if (flags & SO_OBJECTS)
8933 				x = slab->inuse;
8934 			else
8935 				x = 1;
8936 
8937 			total += x;
8938 			nodes[node] += x;
8939 
8940 #ifdef CONFIG_SLUB_CPU_PARTIAL
8941 			slab = slub_percpu_partial_read_once(c);
8942 			if (slab) {
8943 				node = slab_nid(slab);
8944 				if (flags & SO_TOTAL)
8945 					WARN_ON_ONCE(1);
8946 				else if (flags & SO_OBJECTS)
8947 					WARN_ON_ONCE(1);
8948 				else
8949 					x = data_race(slab->slabs);
8950 				total += x;
8951 				nodes[node] += x;
8952 			}
8953 #endif
8954 		}
8955 	}
8956 
8957 	/*
8958 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
8959 	 * already held which will conflict with an existing lock order:
8960 	 *
8961 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
8962 	 *
8963 	 * We don't really need mem_hotplug_lock (to hold off
8964 	 * slab_mem_going_offline_callback) here because slab's memory hot
8965 	 * unplug code doesn't destroy the kmem_cache->node[] data.
8966 	 */
8967 
8968 #ifdef CONFIG_SLUB_DEBUG
8969 	if (flags & SO_ALL) {
8970 		struct kmem_cache_node *n;
8971 
8972 		for_each_kmem_cache_node(s, node, n) {
8973 
8974 			if (flags & SO_TOTAL)
8975 				x = node_nr_objs(n);
8976 			else if (flags & SO_OBJECTS)
8977 				x = node_nr_objs(n) - count_partial(n, count_free);
8978 			else
8979 				x = node_nr_slabs(n);
8980 			total += x;
8981 			nodes[node] += x;
8982 		}
8983 
8984 	} else
8985 #endif
8986 	if (flags & SO_PARTIAL) {
8987 		struct kmem_cache_node *n;
8988 
8989 		for_each_kmem_cache_node(s, node, n) {
8990 			if (flags & SO_TOTAL)
8991 				x = count_partial(n, count_total);
8992 			else if (flags & SO_OBJECTS)
8993 				x = count_partial(n, count_inuse);
8994 			else
8995 				x = n->nr_partial;
8996 			total += x;
8997 			nodes[node] += x;
8998 		}
8999 	}
9000 
9001 	len += sysfs_emit_at(buf, len, "%lu", total);
9002 #ifdef CONFIG_NUMA
9003 	for (node = 0; node < nr_node_ids; node++) {
9004 		if (nodes[node])
9005 			len += sysfs_emit_at(buf, len, " N%d=%lu",
9006 					     node, nodes[node]);
9007 	}
9008 #endif
9009 	len += sysfs_emit_at(buf, len, "\n");
9010 	kfree(nodes);
9011 
9012 	return len;
9013 }
9014 
9015 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
9016 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
9017 
9018 struct slab_attribute {
9019 	struct attribute attr;
9020 	ssize_t (*show)(struct kmem_cache *s, char *buf);
9021 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
9022 };
9023 
9024 #define SLAB_ATTR_RO(_name) \
9025 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
9026 
9027 #define SLAB_ATTR(_name) \
9028 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
9029 
9030 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
9031 {
9032 	return sysfs_emit(buf, "%u\n", s->size);
9033 }
9034 SLAB_ATTR_RO(slab_size);
9035 
9036 static ssize_t align_show(struct kmem_cache *s, char *buf)
9037 {
9038 	return sysfs_emit(buf, "%u\n", s->align);
9039 }
9040 SLAB_ATTR_RO(align);
9041 
9042 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
9043 {
9044 	return sysfs_emit(buf, "%u\n", s->object_size);
9045 }
9046 SLAB_ATTR_RO(object_size);
9047 
9048 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
9049 {
9050 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
9051 }
9052 SLAB_ATTR_RO(objs_per_slab);
9053 
9054 static ssize_t order_show(struct kmem_cache *s, char *buf)
9055 {
9056 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
9057 }
9058 SLAB_ATTR_RO(order);
9059 
9060 static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf)
9061 {
9062 	return sysfs_emit(buf, "%u\n", s->sheaf_capacity);
9063 }
9064 SLAB_ATTR_RO(sheaf_capacity);
9065 
9066 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
9067 {
9068 	return sysfs_emit(buf, "%lu\n", s->min_partial);
9069 }
9070 
9071 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
9072 				 size_t length)
9073 {
9074 	unsigned long min;
9075 	int err;
9076 
9077 	err = kstrtoul(buf, 10, &min);
9078 	if (err)
9079 		return err;
9080 
9081 	s->min_partial = min;
9082 	return length;
9083 }
9084 SLAB_ATTR(min_partial);
9085 
9086 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
9087 {
9088 	unsigned int nr_partial = 0;
9089 #ifdef CONFIG_SLUB_CPU_PARTIAL
9090 	nr_partial = s->cpu_partial;
9091 #endif
9092 
9093 	return sysfs_emit(buf, "%u\n", nr_partial);
9094 }
9095 
9096 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
9097 				 size_t length)
9098 {
9099 	unsigned int objects;
9100 	int err;
9101 
9102 	err = kstrtouint(buf, 10, &objects);
9103 	if (err)
9104 		return err;
9105 	if (objects && !kmem_cache_has_cpu_partial(s))
9106 		return -EINVAL;
9107 
9108 	slub_set_cpu_partial(s, objects);
9109 	flush_all(s);
9110 	return length;
9111 }
9112 SLAB_ATTR(cpu_partial);
9113 
9114 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
9115 {
9116 	if (!s->ctor)
9117 		return 0;
9118 	return sysfs_emit(buf, "%pS\n", s->ctor);
9119 }
9120 SLAB_ATTR_RO(ctor);
9121 
9122 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
9123 {
9124 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
9125 }
9126 SLAB_ATTR_RO(aliases);
9127 
9128 static ssize_t partial_show(struct kmem_cache *s, char *buf)
9129 {
9130 	return show_slab_objects(s, buf, SO_PARTIAL);
9131 }
9132 SLAB_ATTR_RO(partial);
9133 
9134 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
9135 {
9136 	return show_slab_objects(s, buf, SO_CPU);
9137 }
9138 SLAB_ATTR_RO(cpu_slabs);
9139 
9140 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
9141 {
9142 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
9143 }
9144 SLAB_ATTR_RO(objects_partial);
9145 
9146 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
9147 {
9148 	int objects = 0;
9149 	int slabs = 0;
9150 	int cpu __maybe_unused;
9151 	int len = 0;
9152 
9153 #ifdef CONFIG_SLUB_CPU_PARTIAL
9154 	for_each_online_cpu(cpu) {
9155 		struct slab *slab;
9156 
9157 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9158 
9159 		if (slab)
9160 			slabs += data_race(slab->slabs);
9161 	}
9162 #endif
9163 
9164 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
9165 	objects = (slabs * oo_objects(s->oo)) / 2;
9166 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
9167 
9168 #ifdef CONFIG_SLUB_CPU_PARTIAL
9169 	for_each_online_cpu(cpu) {
9170 		struct slab *slab;
9171 
9172 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9173 		if (slab) {
9174 			slabs = data_race(slab->slabs);
9175 			objects = (slabs * oo_objects(s->oo)) / 2;
9176 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
9177 					     cpu, objects, slabs);
9178 		}
9179 	}
9180 #endif
9181 	len += sysfs_emit_at(buf, len, "\n");
9182 
9183 	return len;
9184 }
9185 SLAB_ATTR_RO(slabs_cpu_partial);
9186 
9187 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
9188 {
9189 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
9190 }
9191 SLAB_ATTR_RO(reclaim_account);
9192 
9193 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
9194 {
9195 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
9196 }
9197 SLAB_ATTR_RO(hwcache_align);
9198 
9199 #ifdef CONFIG_ZONE_DMA
9200 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
9201 {
9202 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
9203 }
9204 SLAB_ATTR_RO(cache_dma);
9205 #endif
9206 
9207 #ifdef CONFIG_HARDENED_USERCOPY
9208 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
9209 {
9210 	return sysfs_emit(buf, "%u\n", s->usersize);
9211 }
9212 SLAB_ATTR_RO(usersize);
9213 #endif
9214 
9215 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
9216 {
9217 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
9218 }
9219 SLAB_ATTR_RO(destroy_by_rcu);
9220 
9221 #ifdef CONFIG_SLUB_DEBUG
9222 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
9223 {
9224 	return show_slab_objects(s, buf, SO_ALL);
9225 }
9226 SLAB_ATTR_RO(slabs);
9227 
9228 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
9229 {
9230 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
9231 }
9232 SLAB_ATTR_RO(total_objects);
9233 
9234 static ssize_t objects_show(struct kmem_cache *s, char *buf)
9235 {
9236 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
9237 }
9238 SLAB_ATTR_RO(objects);
9239 
9240 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
9241 {
9242 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
9243 }
9244 SLAB_ATTR_RO(sanity_checks);
9245 
9246 static ssize_t trace_show(struct kmem_cache *s, char *buf)
9247 {
9248 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
9249 }
9250 SLAB_ATTR_RO(trace);
9251 
9252 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
9253 {
9254 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
9255 }
9256 
9257 SLAB_ATTR_RO(red_zone);
9258 
9259 static ssize_t poison_show(struct kmem_cache *s, char *buf)
9260 {
9261 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
9262 }
9263 
9264 SLAB_ATTR_RO(poison);
9265 
9266 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
9267 {
9268 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
9269 }
9270 
9271 SLAB_ATTR_RO(store_user);
9272 
9273 static ssize_t validate_show(struct kmem_cache *s, char *buf)
9274 {
9275 	return 0;
9276 }
9277 
9278 static ssize_t validate_store(struct kmem_cache *s,
9279 			const char *buf, size_t length)
9280 {
9281 	int ret = -EINVAL;
9282 
9283 	if (buf[0] == '1' && kmem_cache_debug(s)) {
9284 		ret = validate_slab_cache(s);
9285 		if (ret >= 0)
9286 			ret = length;
9287 	}
9288 	return ret;
9289 }
9290 SLAB_ATTR(validate);
9291 
9292 #endif /* CONFIG_SLUB_DEBUG */
9293 
9294 #ifdef CONFIG_FAILSLAB
9295 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
9296 {
9297 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
9298 }
9299 
9300 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
9301 				size_t length)
9302 {
9303 	if (s->refcount > 1)
9304 		return -EINVAL;
9305 
9306 	if (buf[0] == '1')
9307 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
9308 	else
9309 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
9310 
9311 	return length;
9312 }
9313 SLAB_ATTR(failslab);
9314 #endif
9315 
9316 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
9317 {
9318 	return 0;
9319 }
9320 
9321 static ssize_t shrink_store(struct kmem_cache *s,
9322 			const char *buf, size_t length)
9323 {
9324 	if (buf[0] == '1')
9325 		kmem_cache_shrink(s);
9326 	else
9327 		return -EINVAL;
9328 	return length;
9329 }
9330 SLAB_ATTR(shrink);
9331 
9332 #ifdef CONFIG_NUMA
9333 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
9334 {
9335 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
9336 }
9337 
9338 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
9339 				const char *buf, size_t length)
9340 {
9341 	unsigned int ratio;
9342 	int err;
9343 
9344 	err = kstrtouint(buf, 10, &ratio);
9345 	if (err)
9346 		return err;
9347 	if (ratio > 100)
9348 		return -ERANGE;
9349 
9350 	s->remote_node_defrag_ratio = ratio * 10;
9351 
9352 	return length;
9353 }
9354 SLAB_ATTR(remote_node_defrag_ratio);
9355 #endif
9356 
9357 #ifdef CONFIG_SLUB_STATS
9358 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
9359 {
9360 	unsigned long sum  = 0;
9361 	int cpu;
9362 	int len = 0;
9363 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
9364 
9365 	if (!data)
9366 		return -ENOMEM;
9367 
9368 	for_each_online_cpu(cpu) {
9369 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
9370 
9371 		data[cpu] = x;
9372 		sum += x;
9373 	}
9374 
9375 	len += sysfs_emit_at(buf, len, "%lu", sum);
9376 
9377 #ifdef CONFIG_SMP
9378 	for_each_online_cpu(cpu) {
9379 		if (data[cpu])
9380 			len += sysfs_emit_at(buf, len, " C%d=%u",
9381 					     cpu, data[cpu]);
9382 	}
9383 #endif
9384 	kfree(data);
9385 	len += sysfs_emit_at(buf, len, "\n");
9386 
9387 	return len;
9388 }
9389 
9390 static void clear_stat(struct kmem_cache *s, enum stat_item si)
9391 {
9392 	int cpu;
9393 
9394 	for_each_online_cpu(cpu)
9395 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
9396 }
9397 
9398 #define STAT_ATTR(si, text) 					\
9399 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
9400 {								\
9401 	return show_stat(s, buf, si);				\
9402 }								\
9403 static ssize_t text##_store(struct kmem_cache *s,		\
9404 				const char *buf, size_t length)	\
9405 {								\
9406 	if (buf[0] != '0')					\
9407 		return -EINVAL;					\
9408 	clear_stat(s, si);					\
9409 	return length;						\
9410 }								\
9411 SLAB_ATTR(text);						\
9412 
9413 STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
9414 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
9415 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
9416 STAT_ATTR(FREE_PCS, free_cpu_sheaf);
9417 STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
9418 STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
9419 STAT_ATTR(FREE_FASTPATH, free_fastpath);
9420 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
9421 STAT_ATTR(FREE_FROZEN, free_frozen);
9422 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
9423 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
9424 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
9425 STAT_ATTR(ALLOC_SLAB, alloc_slab);
9426 STAT_ATTR(ALLOC_REFILL, alloc_refill);
9427 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
9428 STAT_ATTR(FREE_SLAB, free_slab);
9429 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
9430 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
9431 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
9432 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
9433 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
9434 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
9435 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
9436 STAT_ATTR(ORDER_FALLBACK, order_fallback);
9437 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
9438 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
9439 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
9440 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
9441 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
9442 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
9443 STAT_ATTR(SHEAF_FLUSH, sheaf_flush);
9444 STAT_ATTR(SHEAF_REFILL, sheaf_refill);
9445 STAT_ATTR(SHEAF_ALLOC, sheaf_alloc);
9446 STAT_ATTR(SHEAF_FREE, sheaf_free);
9447 STAT_ATTR(BARN_GET, barn_get);
9448 STAT_ATTR(BARN_GET_FAIL, barn_get_fail);
9449 STAT_ATTR(BARN_PUT, barn_put);
9450 STAT_ATTR(BARN_PUT_FAIL, barn_put_fail);
9451 STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast);
9452 STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow);
9453 STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize);
9454 STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast);
9455 STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow);
9456 #endif	/* CONFIG_SLUB_STATS */
9457 
9458 #ifdef CONFIG_KFENCE
9459 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
9460 {
9461 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
9462 }
9463 
9464 static ssize_t skip_kfence_store(struct kmem_cache *s,
9465 			const char *buf, size_t length)
9466 {
9467 	int ret = length;
9468 
9469 	if (buf[0] == '0')
9470 		s->flags &= ~SLAB_SKIP_KFENCE;
9471 	else if (buf[0] == '1')
9472 		s->flags |= SLAB_SKIP_KFENCE;
9473 	else
9474 		ret = -EINVAL;
9475 
9476 	return ret;
9477 }
9478 SLAB_ATTR(skip_kfence);
9479 #endif
9480 
9481 static struct attribute *slab_attrs[] = {
9482 	&slab_size_attr.attr,
9483 	&object_size_attr.attr,
9484 	&objs_per_slab_attr.attr,
9485 	&order_attr.attr,
9486 	&sheaf_capacity_attr.attr,
9487 	&min_partial_attr.attr,
9488 	&cpu_partial_attr.attr,
9489 	&objects_partial_attr.attr,
9490 	&partial_attr.attr,
9491 	&cpu_slabs_attr.attr,
9492 	&ctor_attr.attr,
9493 	&aliases_attr.attr,
9494 	&align_attr.attr,
9495 	&hwcache_align_attr.attr,
9496 	&reclaim_account_attr.attr,
9497 	&destroy_by_rcu_attr.attr,
9498 	&shrink_attr.attr,
9499 	&slabs_cpu_partial_attr.attr,
9500 #ifdef CONFIG_SLUB_DEBUG
9501 	&total_objects_attr.attr,
9502 	&objects_attr.attr,
9503 	&slabs_attr.attr,
9504 	&sanity_checks_attr.attr,
9505 	&trace_attr.attr,
9506 	&red_zone_attr.attr,
9507 	&poison_attr.attr,
9508 	&store_user_attr.attr,
9509 	&validate_attr.attr,
9510 #endif
9511 #ifdef CONFIG_ZONE_DMA
9512 	&cache_dma_attr.attr,
9513 #endif
9514 #ifdef CONFIG_NUMA
9515 	&remote_node_defrag_ratio_attr.attr,
9516 #endif
9517 #ifdef CONFIG_SLUB_STATS
9518 	&alloc_cpu_sheaf_attr.attr,
9519 	&alloc_fastpath_attr.attr,
9520 	&alloc_slowpath_attr.attr,
9521 	&free_cpu_sheaf_attr.attr,
9522 	&free_rcu_sheaf_attr.attr,
9523 	&free_rcu_sheaf_fail_attr.attr,
9524 	&free_fastpath_attr.attr,
9525 	&free_slowpath_attr.attr,
9526 	&free_frozen_attr.attr,
9527 	&free_add_partial_attr.attr,
9528 	&free_remove_partial_attr.attr,
9529 	&alloc_from_partial_attr.attr,
9530 	&alloc_slab_attr.attr,
9531 	&alloc_refill_attr.attr,
9532 	&alloc_node_mismatch_attr.attr,
9533 	&free_slab_attr.attr,
9534 	&cpuslab_flush_attr.attr,
9535 	&deactivate_full_attr.attr,
9536 	&deactivate_empty_attr.attr,
9537 	&deactivate_to_head_attr.attr,
9538 	&deactivate_to_tail_attr.attr,
9539 	&deactivate_remote_frees_attr.attr,
9540 	&deactivate_bypass_attr.attr,
9541 	&order_fallback_attr.attr,
9542 	&cmpxchg_double_fail_attr.attr,
9543 	&cmpxchg_double_cpu_fail_attr.attr,
9544 	&cpu_partial_alloc_attr.attr,
9545 	&cpu_partial_free_attr.attr,
9546 	&cpu_partial_node_attr.attr,
9547 	&cpu_partial_drain_attr.attr,
9548 	&sheaf_flush_attr.attr,
9549 	&sheaf_refill_attr.attr,
9550 	&sheaf_alloc_attr.attr,
9551 	&sheaf_free_attr.attr,
9552 	&barn_get_attr.attr,
9553 	&barn_get_fail_attr.attr,
9554 	&barn_put_attr.attr,
9555 	&barn_put_fail_attr.attr,
9556 	&sheaf_prefill_fast_attr.attr,
9557 	&sheaf_prefill_slow_attr.attr,
9558 	&sheaf_prefill_oversize_attr.attr,
9559 	&sheaf_return_fast_attr.attr,
9560 	&sheaf_return_slow_attr.attr,
9561 #endif
9562 #ifdef CONFIG_FAILSLAB
9563 	&failslab_attr.attr,
9564 #endif
9565 #ifdef CONFIG_HARDENED_USERCOPY
9566 	&usersize_attr.attr,
9567 #endif
9568 #ifdef CONFIG_KFENCE
9569 	&skip_kfence_attr.attr,
9570 #endif
9571 
9572 	NULL
9573 };
9574 
9575 static const struct attribute_group slab_attr_group = {
9576 	.attrs = slab_attrs,
9577 };
9578 
9579 static ssize_t slab_attr_show(struct kobject *kobj,
9580 				struct attribute *attr,
9581 				char *buf)
9582 {
9583 	struct slab_attribute *attribute;
9584 	struct kmem_cache *s;
9585 
9586 	attribute = to_slab_attr(attr);
9587 	s = to_slab(kobj);
9588 
9589 	if (!attribute->show)
9590 		return -EIO;
9591 
9592 	return attribute->show(s, buf);
9593 }
9594 
9595 static ssize_t slab_attr_store(struct kobject *kobj,
9596 				struct attribute *attr,
9597 				const char *buf, size_t len)
9598 {
9599 	struct slab_attribute *attribute;
9600 	struct kmem_cache *s;
9601 
9602 	attribute = to_slab_attr(attr);
9603 	s = to_slab(kobj);
9604 
9605 	if (!attribute->store)
9606 		return -EIO;
9607 
9608 	return attribute->store(s, buf, len);
9609 }
9610 
9611 static void kmem_cache_release(struct kobject *k)
9612 {
9613 	slab_kmem_cache_release(to_slab(k));
9614 }
9615 
9616 static const struct sysfs_ops slab_sysfs_ops = {
9617 	.show = slab_attr_show,
9618 	.store = slab_attr_store,
9619 };
9620 
9621 static const struct kobj_type slab_ktype = {
9622 	.sysfs_ops = &slab_sysfs_ops,
9623 	.release = kmem_cache_release,
9624 };
9625 
9626 static struct kset *slab_kset;
9627 
9628 static inline struct kset *cache_kset(struct kmem_cache *s)
9629 {
9630 	return slab_kset;
9631 }
9632 
9633 #define ID_STR_LENGTH 32
9634 
9635 /* Create a unique string id for a slab cache:
9636  *
9637  * Format	:[flags-]size
9638  */
9639 static char *create_unique_id(struct kmem_cache *s)
9640 {
9641 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
9642 	char *p = name;
9643 
9644 	if (!name)
9645 		return ERR_PTR(-ENOMEM);
9646 
9647 	*p++ = ':';
9648 	/*
9649 	 * First flags affecting slabcache operations. We will only
9650 	 * get here for aliasable slabs so we do not need to support
9651 	 * too many flags. The flags here must cover all flags that
9652 	 * are matched during merging to guarantee that the id is
9653 	 * unique.
9654 	 */
9655 	if (s->flags & SLAB_CACHE_DMA)
9656 		*p++ = 'd';
9657 	if (s->flags & SLAB_CACHE_DMA32)
9658 		*p++ = 'D';
9659 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
9660 		*p++ = 'a';
9661 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
9662 		*p++ = 'F';
9663 	if (s->flags & SLAB_ACCOUNT)
9664 		*p++ = 'A';
9665 	if (p != name + 1)
9666 		*p++ = '-';
9667 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
9668 
9669 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
9670 		kfree(name);
9671 		return ERR_PTR(-EINVAL);
9672 	}
9673 	kmsan_unpoison_memory(name, p - name);
9674 	return name;
9675 }
9676 
9677 static int sysfs_slab_add(struct kmem_cache *s)
9678 {
9679 	int err;
9680 	const char *name;
9681 	struct kset *kset = cache_kset(s);
9682 	int unmergeable = slab_unmergeable(s);
9683 
9684 	if (!unmergeable && disable_higher_order_debug &&
9685 			(slub_debug & DEBUG_METADATA_FLAGS))
9686 		unmergeable = 1;
9687 
9688 	if (unmergeable) {
9689 		/*
9690 		 * Slabcache can never be merged so we can use the name proper.
9691 		 * This is typically the case for debug situations. In that
9692 		 * case we can catch duplicate names easily.
9693 		 */
9694 		sysfs_remove_link(&slab_kset->kobj, s->name);
9695 		name = s->name;
9696 	} else {
9697 		/*
9698 		 * Create a unique name for the slab as a target
9699 		 * for the symlinks.
9700 		 */
9701 		name = create_unique_id(s);
9702 		if (IS_ERR(name))
9703 			return PTR_ERR(name);
9704 	}
9705 
9706 	s->kobj.kset = kset;
9707 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
9708 	if (err)
9709 		goto out;
9710 
9711 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
9712 	if (err)
9713 		goto out_del_kobj;
9714 
9715 	if (!unmergeable) {
9716 		/* Setup first alias */
9717 		sysfs_slab_alias(s, s->name);
9718 	}
9719 out:
9720 	if (!unmergeable)
9721 		kfree(name);
9722 	return err;
9723 out_del_kobj:
9724 	kobject_del(&s->kobj);
9725 	goto out;
9726 }
9727 
9728 void sysfs_slab_unlink(struct kmem_cache *s)
9729 {
9730 	if (s->kobj.state_in_sysfs)
9731 		kobject_del(&s->kobj);
9732 }
9733 
9734 void sysfs_slab_release(struct kmem_cache *s)
9735 {
9736 	kobject_put(&s->kobj);
9737 }
9738 
9739 /*
9740  * Need to buffer aliases during bootup until sysfs becomes
9741  * available lest we lose that information.
9742  */
9743 struct saved_alias {
9744 	struct kmem_cache *s;
9745 	const char *name;
9746 	struct saved_alias *next;
9747 };
9748 
9749 static struct saved_alias *alias_list;
9750 
9751 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
9752 {
9753 	struct saved_alias *al;
9754 
9755 	if (slab_state == FULL) {
9756 		/*
9757 		 * If we have a leftover link then remove it.
9758 		 */
9759 		sysfs_remove_link(&slab_kset->kobj, name);
9760 		/*
9761 		 * The original cache may have failed to generate sysfs file.
9762 		 * In that case, sysfs_create_link() returns -ENOENT and
9763 		 * symbolic link creation is skipped.
9764 		 */
9765 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
9766 	}
9767 
9768 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
9769 	if (!al)
9770 		return -ENOMEM;
9771 
9772 	al->s = s;
9773 	al->name = name;
9774 	al->next = alias_list;
9775 	alias_list = al;
9776 	kmsan_unpoison_memory(al, sizeof(*al));
9777 	return 0;
9778 }
9779 
9780 static int __init slab_sysfs_init(void)
9781 {
9782 	struct kmem_cache *s;
9783 	int err;
9784 
9785 	mutex_lock(&slab_mutex);
9786 
9787 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
9788 	if (!slab_kset) {
9789 		mutex_unlock(&slab_mutex);
9790 		pr_err("Cannot register slab subsystem.\n");
9791 		return -ENOMEM;
9792 	}
9793 
9794 	slab_state = FULL;
9795 
9796 	list_for_each_entry(s, &slab_caches, list) {
9797 		err = sysfs_slab_add(s);
9798 		if (err)
9799 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
9800 			       s->name);
9801 	}
9802 
9803 	while (alias_list) {
9804 		struct saved_alias *al = alias_list;
9805 
9806 		alias_list = alias_list->next;
9807 		err = sysfs_slab_alias(al->s, al->name);
9808 		if (err)
9809 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
9810 			       al->name);
9811 		kfree(al);
9812 	}
9813 
9814 	mutex_unlock(&slab_mutex);
9815 	return 0;
9816 }
9817 late_initcall(slab_sysfs_init);
9818 #endif /* SLAB_SUPPORTS_SYSFS */
9819 
9820 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
9821 static int slab_debugfs_show(struct seq_file *seq, void *v)
9822 {
9823 	struct loc_track *t = seq->private;
9824 	struct location *l;
9825 	unsigned long idx;
9826 
9827 	idx = (unsigned long) t->idx;
9828 	if (idx < t->count) {
9829 		l = &t->loc[idx];
9830 
9831 		seq_printf(seq, "%7ld ", l->count);
9832 
9833 		if (l->addr)
9834 			seq_printf(seq, "%pS", (void *)l->addr);
9835 		else
9836 			seq_puts(seq, "<not-available>");
9837 
9838 		if (l->waste)
9839 			seq_printf(seq, " waste=%lu/%lu",
9840 				l->count * l->waste, l->waste);
9841 
9842 		if (l->sum_time != l->min_time) {
9843 			seq_printf(seq, " age=%ld/%llu/%ld",
9844 				l->min_time, div_u64(l->sum_time, l->count),
9845 				l->max_time);
9846 		} else
9847 			seq_printf(seq, " age=%ld", l->min_time);
9848 
9849 		if (l->min_pid != l->max_pid)
9850 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
9851 		else
9852 			seq_printf(seq, " pid=%ld",
9853 				l->min_pid);
9854 
9855 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
9856 			seq_printf(seq, " cpus=%*pbl",
9857 				 cpumask_pr_args(to_cpumask(l->cpus)));
9858 
9859 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
9860 			seq_printf(seq, " nodes=%*pbl",
9861 				 nodemask_pr_args(&l->nodes));
9862 
9863 #ifdef CONFIG_STACKDEPOT
9864 		{
9865 			depot_stack_handle_t handle;
9866 			unsigned long *entries;
9867 			unsigned int nr_entries, j;
9868 
9869 			handle = READ_ONCE(l->handle);
9870 			if (handle) {
9871 				nr_entries = stack_depot_fetch(handle, &entries);
9872 				seq_puts(seq, "\n");
9873 				for (j = 0; j < nr_entries; j++)
9874 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
9875 			}
9876 		}
9877 #endif
9878 		seq_puts(seq, "\n");
9879 	}
9880 
9881 	if (!idx && !t->count)
9882 		seq_puts(seq, "No data\n");
9883 
9884 	return 0;
9885 }
9886 
9887 static void slab_debugfs_stop(struct seq_file *seq, void *v)
9888 {
9889 }
9890 
9891 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
9892 {
9893 	struct loc_track *t = seq->private;
9894 
9895 	t->idx = ++(*ppos);
9896 	if (*ppos <= t->count)
9897 		return ppos;
9898 
9899 	return NULL;
9900 }
9901 
9902 static int cmp_loc_by_count(const void *a, const void *b)
9903 {
9904 	struct location *loc1 = (struct location *)a;
9905 	struct location *loc2 = (struct location *)b;
9906 
9907 	return cmp_int(loc2->count, loc1->count);
9908 }
9909 
9910 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
9911 {
9912 	struct loc_track *t = seq->private;
9913 
9914 	t->idx = *ppos;
9915 	return ppos;
9916 }
9917 
9918 static const struct seq_operations slab_debugfs_sops = {
9919 	.start  = slab_debugfs_start,
9920 	.next   = slab_debugfs_next,
9921 	.stop   = slab_debugfs_stop,
9922 	.show   = slab_debugfs_show,
9923 };
9924 
9925 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
9926 {
9927 
9928 	struct kmem_cache_node *n;
9929 	enum track_item alloc;
9930 	int node;
9931 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
9932 						sizeof(struct loc_track));
9933 	struct kmem_cache *s = file_inode(filep)->i_private;
9934 	unsigned long *obj_map;
9935 
9936 	if (!t)
9937 		return -ENOMEM;
9938 
9939 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
9940 	if (!obj_map) {
9941 		seq_release_private(inode, filep);
9942 		return -ENOMEM;
9943 	}
9944 
9945 	alloc = debugfs_get_aux_num(filep);
9946 
9947 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
9948 		bitmap_free(obj_map);
9949 		seq_release_private(inode, filep);
9950 		return -ENOMEM;
9951 	}
9952 
9953 	for_each_kmem_cache_node(s, node, n) {
9954 		unsigned long flags;
9955 		struct slab *slab;
9956 
9957 		if (!node_nr_slabs(n))
9958 			continue;
9959 
9960 		spin_lock_irqsave(&n->list_lock, flags);
9961 		list_for_each_entry(slab, &n->partial, slab_list)
9962 			process_slab(t, s, slab, alloc, obj_map);
9963 		list_for_each_entry(slab, &n->full, slab_list)
9964 			process_slab(t, s, slab, alloc, obj_map);
9965 		spin_unlock_irqrestore(&n->list_lock, flags);
9966 	}
9967 
9968 	/* Sort locations by count */
9969 	sort(t->loc, t->count, sizeof(struct location),
9970 	     cmp_loc_by_count, NULL);
9971 
9972 	bitmap_free(obj_map);
9973 	return 0;
9974 }
9975 
9976 static int slab_debug_trace_release(struct inode *inode, struct file *file)
9977 {
9978 	struct seq_file *seq = file->private_data;
9979 	struct loc_track *t = seq->private;
9980 
9981 	free_loc_track(t);
9982 	return seq_release_private(inode, file);
9983 }
9984 
9985 static const struct file_operations slab_debugfs_fops = {
9986 	.open    = slab_debug_trace_open,
9987 	.read    = seq_read,
9988 	.llseek  = seq_lseek,
9989 	.release = slab_debug_trace_release,
9990 };
9991 
9992 static void debugfs_slab_add(struct kmem_cache *s)
9993 {
9994 	struct dentry *slab_cache_dir;
9995 
9996 	if (unlikely(!slab_debugfs_root))
9997 		return;
9998 
9999 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
10000 
10001 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
10002 					TRACK_ALLOC, &slab_debugfs_fops);
10003 
10004 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
10005 					TRACK_FREE, &slab_debugfs_fops);
10006 }
10007 
10008 void debugfs_slab_release(struct kmem_cache *s)
10009 {
10010 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
10011 }
10012 
10013 static int __init slab_debugfs_init(void)
10014 {
10015 	struct kmem_cache *s;
10016 
10017 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
10018 
10019 	list_for_each_entry(s, &slab_caches, list)
10020 		if (s->flags & SLAB_STORE_USER)
10021 			debugfs_slab_add(s);
10022 
10023 	return 0;
10024 
10025 }
10026 __initcall(slab_debugfs_init);
10027 #endif
10028 /*
10029  * The /proc/slabinfo ABI
10030  */
10031 #ifdef CONFIG_SLUB_DEBUG
10032 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
10033 {
10034 	unsigned long nr_slabs = 0;
10035 	unsigned long nr_objs = 0;
10036 	unsigned long nr_free = 0;
10037 	int node;
10038 	struct kmem_cache_node *n;
10039 
10040 	for_each_kmem_cache_node(s, node, n) {
10041 		nr_slabs += node_nr_slabs(n);
10042 		nr_objs += node_nr_objs(n);
10043 		nr_free += count_partial_free_approx(n);
10044 	}
10045 
10046 	sinfo->active_objs = nr_objs - nr_free;
10047 	sinfo->num_objs = nr_objs;
10048 	sinfo->active_slabs = nr_slabs;
10049 	sinfo->num_slabs = nr_slabs;
10050 	sinfo->objects_per_slab = oo_objects(s->oo);
10051 	sinfo->cache_order = oo_order(s->oo);
10052 }
10053 #endif /* CONFIG_SLUB_DEBUG */
10054