1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/stackdepot.h> 30 #include <linux/debugobjects.h> 31 #include <linux/kallsyms.h> 32 #include <linux/kfence.h> 33 #include <linux/memory.h> 34 #include <linux/math64.h> 35 #include <linux/fault-inject.h> 36 #include <linux/stacktrace.h> 37 #include <linux/prefetch.h> 38 #include <linux/memcontrol.h> 39 #include <linux/random.h> 40 #include <kunit/test.h> 41 #include <linux/sort.h> 42 43 #include <linux/debugfs.h> 44 #include <trace/events/kmem.h> 45 46 #include "internal.h" 47 48 /* 49 * Lock order: 50 * 1. slab_mutex (Global Mutex) 51 * 2. node->list_lock (Spinlock) 52 * 3. kmem_cache->cpu_slab->lock (Local lock) 53 * 4. slab_lock(slab) (Only on some arches) 54 * 5. object_map_lock (Only for debugging) 55 * 56 * slab_mutex 57 * 58 * The role of the slab_mutex is to protect the list of all the slabs 59 * and to synchronize major metadata changes to slab cache structures. 60 * Also synchronizes memory hotplug callbacks. 61 * 62 * slab_lock 63 * 64 * The slab_lock is a wrapper around the page lock, thus it is a bit 65 * spinlock. 66 * 67 * The slab_lock is only used on arches that do not have the ability 68 * to do a cmpxchg_double. It only protects: 69 * 70 * A. slab->freelist -> List of free objects in a slab 71 * B. slab->inuse -> Number of objects in use 72 * C. slab->objects -> Number of objects in slab 73 * D. slab->frozen -> frozen state 74 * 75 * Frozen slabs 76 * 77 * If a slab is frozen then it is exempt from list management. It is not 78 * on any list except per cpu partial list. The processor that froze the 79 * slab is the one who can perform list operations on the slab. Other 80 * processors may put objects onto the freelist but the processor that 81 * froze the slab is the only one that can retrieve the objects from the 82 * slab's freelist. 83 * 84 * list_lock 85 * 86 * The list_lock protects the partial and full list on each node and 87 * the partial slab counter. If taken then no new slabs may be added or 88 * removed from the lists nor make the number of partial slabs be modified. 89 * (Note that the total number of slabs is an atomic value that may be 90 * modified without taking the list lock). 91 * 92 * The list_lock is a centralized lock and thus we avoid taking it as 93 * much as possible. As long as SLUB does not have to handle partial 94 * slabs, operations can continue without any centralized lock. F.e. 95 * allocating a long series of objects that fill up slabs does not require 96 * the list lock. 97 * 98 * For debug caches, all allocations are forced to go through a list_lock 99 * protected region to serialize against concurrent validation. 100 * 101 * cpu_slab->lock local lock 102 * 103 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 104 * except the stat counters. This is a percpu structure manipulated only by 105 * the local cpu, so the lock protects against being preempted or interrupted 106 * by an irq. Fast path operations rely on lockless operations instead. 107 * 108 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 109 * which means the lockless fastpath cannot be used as it might interfere with 110 * an in-progress slow path operations. In this case the local lock is always 111 * taken but it still utilizes the freelist for the common operations. 112 * 113 * lockless fastpaths 114 * 115 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 116 * are fully lockless when satisfied from the percpu slab (and when 117 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 118 * They also don't disable preemption or migration or irqs. They rely on 119 * the transaction id (tid) field to detect being preempted or moved to 120 * another cpu. 121 * 122 * irq, preemption, migration considerations 123 * 124 * Interrupts are disabled as part of list_lock or local_lock operations, or 125 * around the slab_lock operation, in order to make the slab allocator safe 126 * to use in the context of an irq. 127 * 128 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 129 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 130 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 131 * doesn't have to be revalidated in each section protected by the local lock. 132 * 133 * SLUB assigns one slab for allocation to each processor. 134 * Allocations only occur from these slabs called cpu slabs. 135 * 136 * Slabs with free elements are kept on a partial list and during regular 137 * operations no list for full slabs is used. If an object in a full slab is 138 * freed then the slab will show up again on the partial lists. 139 * We track full slabs for debugging purposes though because otherwise we 140 * cannot scan all objects. 141 * 142 * Slabs are freed when they become empty. Teardown and setup is 143 * minimal so we rely on the page allocators per cpu caches for 144 * fast frees and allocs. 145 * 146 * slab->frozen The slab is frozen and exempt from list processing. 147 * This means that the slab is dedicated to a purpose 148 * such as satisfying allocations for a specific 149 * processor. Objects may be freed in the slab while 150 * it is frozen but slab_free will then skip the usual 151 * list operations. It is up to the processor holding 152 * the slab to integrate the slab into the slab lists 153 * when the slab is no longer needed. 154 * 155 * One use of this flag is to mark slabs that are 156 * used for allocations. Then such a slab becomes a cpu 157 * slab. The cpu slab may be equipped with an additional 158 * freelist that allows lockless access to 159 * free objects in addition to the regular freelist 160 * that requires the slab lock. 161 * 162 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 163 * options set. This moves slab handling out of 164 * the fast path and disables lockless freelists. 165 */ 166 167 /* 168 * We could simply use migrate_disable()/enable() but as long as it's a 169 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 170 */ 171 #ifndef CONFIG_PREEMPT_RT 172 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 173 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 174 #define USE_LOCKLESS_FAST_PATH() (true) 175 #else 176 #define slub_get_cpu_ptr(var) \ 177 ({ \ 178 migrate_disable(); \ 179 this_cpu_ptr(var); \ 180 }) 181 #define slub_put_cpu_ptr(var) \ 182 do { \ 183 (void)(var); \ 184 migrate_enable(); \ 185 } while (0) 186 #define USE_LOCKLESS_FAST_PATH() (false) 187 #endif 188 189 #ifdef CONFIG_SLUB_DEBUG 190 #ifdef CONFIG_SLUB_DEBUG_ON 191 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 192 #else 193 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 194 #endif 195 #endif /* CONFIG_SLUB_DEBUG */ 196 197 /* Structure holding parameters for get_partial() call chain */ 198 struct partial_context { 199 struct slab **slab; 200 gfp_t flags; 201 unsigned int orig_size; 202 }; 203 204 static inline bool kmem_cache_debug(struct kmem_cache *s) 205 { 206 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 207 } 208 209 static inline bool slub_debug_orig_size(struct kmem_cache *s) 210 { 211 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 212 (s->flags & SLAB_KMALLOC)); 213 } 214 215 void *fixup_red_left(struct kmem_cache *s, void *p) 216 { 217 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 218 p += s->red_left_pad; 219 220 return p; 221 } 222 223 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 224 { 225 #ifdef CONFIG_SLUB_CPU_PARTIAL 226 return !kmem_cache_debug(s); 227 #else 228 return false; 229 #endif 230 } 231 232 /* 233 * Issues still to be resolved: 234 * 235 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 236 * 237 * - Variable sizing of the per node arrays 238 */ 239 240 /* Enable to log cmpxchg failures */ 241 #undef SLUB_DEBUG_CMPXCHG 242 243 /* 244 * Minimum number of partial slabs. These will be left on the partial 245 * lists even if they are empty. kmem_cache_shrink may reclaim them. 246 */ 247 #define MIN_PARTIAL 5 248 249 /* 250 * Maximum number of desirable partial slabs. 251 * The existence of more partial slabs makes kmem_cache_shrink 252 * sort the partial list by the number of objects in use. 253 */ 254 #define MAX_PARTIAL 10 255 256 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 257 SLAB_POISON | SLAB_STORE_USER) 258 259 /* 260 * These debug flags cannot use CMPXCHG because there might be consistency 261 * issues when checking or reading debug information 262 */ 263 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 264 SLAB_TRACE) 265 266 267 /* 268 * Debugging flags that require metadata to be stored in the slab. These get 269 * disabled when slub_debug=O is used and a cache's min order increases with 270 * metadata. 271 */ 272 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 273 274 #define OO_SHIFT 16 275 #define OO_MASK ((1 << OO_SHIFT) - 1) 276 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 277 278 /* Internal SLUB flags */ 279 /* Poison object */ 280 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 281 /* Use cmpxchg_double */ 282 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 283 284 /* 285 * Tracking user of a slab. 286 */ 287 #define TRACK_ADDRS_COUNT 16 288 struct track { 289 unsigned long addr; /* Called from address */ 290 #ifdef CONFIG_STACKDEPOT 291 depot_stack_handle_t handle; 292 #endif 293 int cpu; /* Was running on cpu */ 294 int pid; /* Pid context */ 295 unsigned long when; /* When did the operation occur */ 296 }; 297 298 enum track_item { TRACK_ALLOC, TRACK_FREE }; 299 300 #ifdef CONFIG_SYSFS 301 static int sysfs_slab_add(struct kmem_cache *); 302 static int sysfs_slab_alias(struct kmem_cache *, const char *); 303 #else 304 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 305 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 306 { return 0; } 307 #endif 308 309 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 310 static void debugfs_slab_add(struct kmem_cache *); 311 #else 312 static inline void debugfs_slab_add(struct kmem_cache *s) { } 313 #endif 314 315 static inline void stat(const struct kmem_cache *s, enum stat_item si) 316 { 317 #ifdef CONFIG_SLUB_STATS 318 /* 319 * The rmw is racy on a preemptible kernel but this is acceptable, so 320 * avoid this_cpu_add()'s irq-disable overhead. 321 */ 322 raw_cpu_inc(s->cpu_slab->stat[si]); 323 #endif 324 } 325 326 /* 327 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 328 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 329 * differ during memory hotplug/hotremove operations. 330 * Protected by slab_mutex. 331 */ 332 static nodemask_t slab_nodes; 333 334 /* 335 * Workqueue used for flush_cpu_slab(). 336 */ 337 static struct workqueue_struct *flushwq; 338 339 /******************************************************************** 340 * Core slab cache functions 341 *******************************************************************/ 342 343 /* 344 * Returns freelist pointer (ptr). With hardening, this is obfuscated 345 * with an XOR of the address where the pointer is held and a per-cache 346 * random number. 347 */ 348 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 349 unsigned long ptr_addr) 350 { 351 #ifdef CONFIG_SLAB_FREELIST_HARDENED 352 /* 353 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 354 * Normally, this doesn't cause any issues, as both set_freepointer() 355 * and get_freepointer() are called with a pointer with the same tag. 356 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 357 * example, when __free_slub() iterates over objects in a cache, it 358 * passes untagged pointers to check_object(). check_object() in turns 359 * calls get_freepointer() with an untagged pointer, which causes the 360 * freepointer to be restored incorrectly. 361 */ 362 return (void *)((unsigned long)ptr ^ s->random ^ 363 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 364 #else 365 return ptr; 366 #endif 367 } 368 369 /* Returns the freelist pointer recorded at location ptr_addr. */ 370 static inline void *freelist_dereference(const struct kmem_cache *s, 371 void *ptr_addr) 372 { 373 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 374 (unsigned long)ptr_addr); 375 } 376 377 static inline void *get_freepointer(struct kmem_cache *s, void *object) 378 { 379 object = kasan_reset_tag(object); 380 return freelist_dereference(s, object + s->offset); 381 } 382 383 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 384 { 385 prefetchw(object + s->offset); 386 } 387 388 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 389 { 390 unsigned long freepointer_addr; 391 void *p; 392 393 if (!debug_pagealloc_enabled_static()) 394 return get_freepointer(s, object); 395 396 object = kasan_reset_tag(object); 397 freepointer_addr = (unsigned long)object + s->offset; 398 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 399 return freelist_ptr(s, p, freepointer_addr); 400 } 401 402 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 403 { 404 unsigned long freeptr_addr = (unsigned long)object + s->offset; 405 406 #ifdef CONFIG_SLAB_FREELIST_HARDENED 407 BUG_ON(object == fp); /* naive detection of double free or corruption */ 408 #endif 409 410 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 411 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 412 } 413 414 /* Loop over all objects in a slab */ 415 #define for_each_object(__p, __s, __addr, __objects) \ 416 for (__p = fixup_red_left(__s, __addr); \ 417 __p < (__addr) + (__objects) * (__s)->size; \ 418 __p += (__s)->size) 419 420 static inline unsigned int order_objects(unsigned int order, unsigned int size) 421 { 422 return ((unsigned int)PAGE_SIZE << order) / size; 423 } 424 425 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 426 unsigned int size) 427 { 428 struct kmem_cache_order_objects x = { 429 (order << OO_SHIFT) + order_objects(order, size) 430 }; 431 432 return x; 433 } 434 435 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 436 { 437 return x.x >> OO_SHIFT; 438 } 439 440 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 441 { 442 return x.x & OO_MASK; 443 } 444 445 #ifdef CONFIG_SLUB_CPU_PARTIAL 446 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 447 { 448 unsigned int nr_slabs; 449 450 s->cpu_partial = nr_objects; 451 452 /* 453 * We take the number of objects but actually limit the number of 454 * slabs on the per cpu partial list, in order to limit excessive 455 * growth of the list. For simplicity we assume that the slabs will 456 * be half-full. 457 */ 458 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 459 s->cpu_partial_slabs = nr_slabs; 460 } 461 #else 462 static inline void 463 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 464 { 465 } 466 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 467 468 /* 469 * Per slab locking using the pagelock 470 */ 471 static __always_inline void slab_lock(struct slab *slab) 472 { 473 struct page *page = slab_page(slab); 474 475 VM_BUG_ON_PAGE(PageTail(page), page); 476 bit_spin_lock(PG_locked, &page->flags); 477 } 478 479 static __always_inline void slab_unlock(struct slab *slab) 480 { 481 struct page *page = slab_page(slab); 482 483 VM_BUG_ON_PAGE(PageTail(page), page); 484 __bit_spin_unlock(PG_locked, &page->flags); 485 } 486 487 /* 488 * Interrupts must be disabled (for the fallback code to work right), typically 489 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 490 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 491 * allocation/ free operation in hardirq context. Therefore nothing can 492 * interrupt the operation. 493 */ 494 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 495 void *freelist_old, unsigned long counters_old, 496 void *freelist_new, unsigned long counters_new, 497 const char *n) 498 { 499 if (USE_LOCKLESS_FAST_PATH()) 500 lockdep_assert_irqs_disabled(); 501 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 502 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 503 if (s->flags & __CMPXCHG_DOUBLE) { 504 if (cmpxchg_double(&slab->freelist, &slab->counters, 505 freelist_old, counters_old, 506 freelist_new, counters_new)) 507 return true; 508 } else 509 #endif 510 { 511 slab_lock(slab); 512 if (slab->freelist == freelist_old && 513 slab->counters == counters_old) { 514 slab->freelist = freelist_new; 515 slab->counters = counters_new; 516 slab_unlock(slab); 517 return true; 518 } 519 slab_unlock(slab); 520 } 521 522 cpu_relax(); 523 stat(s, CMPXCHG_DOUBLE_FAIL); 524 525 #ifdef SLUB_DEBUG_CMPXCHG 526 pr_info("%s %s: cmpxchg double redo ", n, s->name); 527 #endif 528 529 return false; 530 } 531 532 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 533 void *freelist_old, unsigned long counters_old, 534 void *freelist_new, unsigned long counters_new, 535 const char *n) 536 { 537 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 538 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 539 if (s->flags & __CMPXCHG_DOUBLE) { 540 if (cmpxchg_double(&slab->freelist, &slab->counters, 541 freelist_old, counters_old, 542 freelist_new, counters_new)) 543 return true; 544 } else 545 #endif 546 { 547 unsigned long flags; 548 549 local_irq_save(flags); 550 slab_lock(slab); 551 if (slab->freelist == freelist_old && 552 slab->counters == counters_old) { 553 slab->freelist = freelist_new; 554 slab->counters = counters_new; 555 slab_unlock(slab); 556 local_irq_restore(flags); 557 return true; 558 } 559 slab_unlock(slab); 560 local_irq_restore(flags); 561 } 562 563 cpu_relax(); 564 stat(s, CMPXCHG_DOUBLE_FAIL); 565 566 #ifdef SLUB_DEBUG_CMPXCHG 567 pr_info("%s %s: cmpxchg double redo ", n, s->name); 568 #endif 569 570 return false; 571 } 572 573 #ifdef CONFIG_SLUB_DEBUG 574 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 575 static DEFINE_SPINLOCK(object_map_lock); 576 577 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 578 struct slab *slab) 579 { 580 void *addr = slab_address(slab); 581 void *p; 582 583 bitmap_zero(obj_map, slab->objects); 584 585 for (p = slab->freelist; p; p = get_freepointer(s, p)) 586 set_bit(__obj_to_index(s, addr, p), obj_map); 587 } 588 589 #if IS_ENABLED(CONFIG_KUNIT) 590 static bool slab_add_kunit_errors(void) 591 { 592 struct kunit_resource *resource; 593 594 if (likely(!current->kunit_test)) 595 return false; 596 597 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 598 if (!resource) 599 return false; 600 601 (*(int *)resource->data)++; 602 kunit_put_resource(resource); 603 return true; 604 } 605 #else 606 static inline bool slab_add_kunit_errors(void) { return false; } 607 #endif 608 609 static inline unsigned int size_from_object(struct kmem_cache *s) 610 { 611 if (s->flags & SLAB_RED_ZONE) 612 return s->size - s->red_left_pad; 613 614 return s->size; 615 } 616 617 static inline void *restore_red_left(struct kmem_cache *s, void *p) 618 { 619 if (s->flags & SLAB_RED_ZONE) 620 p -= s->red_left_pad; 621 622 return p; 623 } 624 625 /* 626 * Debug settings: 627 */ 628 #if defined(CONFIG_SLUB_DEBUG_ON) 629 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 630 #else 631 static slab_flags_t slub_debug; 632 #endif 633 634 static char *slub_debug_string; 635 static int disable_higher_order_debug; 636 637 /* 638 * slub is about to manipulate internal object metadata. This memory lies 639 * outside the range of the allocated object, so accessing it would normally 640 * be reported by kasan as a bounds error. metadata_access_enable() is used 641 * to tell kasan that these accesses are OK. 642 */ 643 static inline void metadata_access_enable(void) 644 { 645 kasan_disable_current(); 646 } 647 648 static inline void metadata_access_disable(void) 649 { 650 kasan_enable_current(); 651 } 652 653 /* 654 * Object debugging 655 */ 656 657 /* Verify that a pointer has an address that is valid within a slab page */ 658 static inline int check_valid_pointer(struct kmem_cache *s, 659 struct slab *slab, void *object) 660 { 661 void *base; 662 663 if (!object) 664 return 1; 665 666 base = slab_address(slab); 667 object = kasan_reset_tag(object); 668 object = restore_red_left(s, object); 669 if (object < base || object >= base + slab->objects * s->size || 670 (object - base) % s->size) { 671 return 0; 672 } 673 674 return 1; 675 } 676 677 static void print_section(char *level, char *text, u8 *addr, 678 unsigned int length) 679 { 680 metadata_access_enable(); 681 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 682 16, 1, kasan_reset_tag((void *)addr), length, 1); 683 metadata_access_disable(); 684 } 685 686 /* 687 * See comment in calculate_sizes(). 688 */ 689 static inline bool freeptr_outside_object(struct kmem_cache *s) 690 { 691 return s->offset >= s->inuse; 692 } 693 694 /* 695 * Return offset of the end of info block which is inuse + free pointer if 696 * not overlapping with object. 697 */ 698 static inline unsigned int get_info_end(struct kmem_cache *s) 699 { 700 if (freeptr_outside_object(s)) 701 return s->inuse + sizeof(void *); 702 else 703 return s->inuse; 704 } 705 706 static struct track *get_track(struct kmem_cache *s, void *object, 707 enum track_item alloc) 708 { 709 struct track *p; 710 711 p = object + get_info_end(s); 712 713 return kasan_reset_tag(p + alloc); 714 } 715 716 #ifdef CONFIG_STACKDEPOT 717 static noinline depot_stack_handle_t set_track_prepare(void) 718 { 719 depot_stack_handle_t handle; 720 unsigned long entries[TRACK_ADDRS_COUNT]; 721 unsigned int nr_entries; 722 723 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 724 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 725 726 return handle; 727 } 728 #else 729 static inline depot_stack_handle_t set_track_prepare(void) 730 { 731 return 0; 732 } 733 #endif 734 735 static void set_track_update(struct kmem_cache *s, void *object, 736 enum track_item alloc, unsigned long addr, 737 depot_stack_handle_t handle) 738 { 739 struct track *p = get_track(s, object, alloc); 740 741 #ifdef CONFIG_STACKDEPOT 742 p->handle = handle; 743 #endif 744 p->addr = addr; 745 p->cpu = smp_processor_id(); 746 p->pid = current->pid; 747 p->when = jiffies; 748 } 749 750 static __always_inline void set_track(struct kmem_cache *s, void *object, 751 enum track_item alloc, unsigned long addr) 752 { 753 depot_stack_handle_t handle = set_track_prepare(); 754 755 set_track_update(s, object, alloc, addr, handle); 756 } 757 758 static void init_tracking(struct kmem_cache *s, void *object) 759 { 760 struct track *p; 761 762 if (!(s->flags & SLAB_STORE_USER)) 763 return; 764 765 p = get_track(s, object, TRACK_ALLOC); 766 memset(p, 0, 2*sizeof(struct track)); 767 } 768 769 static void print_track(const char *s, struct track *t, unsigned long pr_time) 770 { 771 depot_stack_handle_t handle __maybe_unused; 772 773 if (!t->addr) 774 return; 775 776 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 777 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 778 #ifdef CONFIG_STACKDEPOT 779 handle = READ_ONCE(t->handle); 780 if (handle) 781 stack_depot_print(handle); 782 else 783 pr_err("object allocation/free stack trace missing\n"); 784 #endif 785 } 786 787 void print_tracking(struct kmem_cache *s, void *object) 788 { 789 unsigned long pr_time = jiffies; 790 if (!(s->flags & SLAB_STORE_USER)) 791 return; 792 793 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 794 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 795 } 796 797 static void print_slab_info(const struct slab *slab) 798 { 799 struct folio *folio = (struct folio *)slab_folio(slab); 800 801 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 802 slab, slab->objects, slab->inuse, slab->freelist, 803 folio_flags(folio, 0)); 804 } 805 806 /* 807 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 808 * family will round up the real request size to these fixed ones, so 809 * there could be an extra area than what is requested. Save the original 810 * request size in the meta data area, for better debug and sanity check. 811 */ 812 static inline void set_orig_size(struct kmem_cache *s, 813 void *object, unsigned int orig_size) 814 { 815 void *p = kasan_reset_tag(object); 816 817 if (!slub_debug_orig_size(s)) 818 return; 819 820 p += get_info_end(s); 821 p += sizeof(struct track) * 2; 822 823 *(unsigned int *)p = orig_size; 824 } 825 826 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 827 { 828 void *p = kasan_reset_tag(object); 829 830 if (!slub_debug_orig_size(s)) 831 return s->object_size; 832 833 p += get_info_end(s); 834 p += sizeof(struct track) * 2; 835 836 return *(unsigned int *)p; 837 } 838 839 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 840 { 841 struct va_format vaf; 842 va_list args; 843 844 va_start(args, fmt); 845 vaf.fmt = fmt; 846 vaf.va = &args; 847 pr_err("=============================================================================\n"); 848 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 849 pr_err("-----------------------------------------------------------------------------\n\n"); 850 va_end(args); 851 } 852 853 __printf(2, 3) 854 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 855 { 856 struct va_format vaf; 857 va_list args; 858 859 if (slab_add_kunit_errors()) 860 return; 861 862 va_start(args, fmt); 863 vaf.fmt = fmt; 864 vaf.va = &args; 865 pr_err("FIX %s: %pV\n", s->name, &vaf); 866 va_end(args); 867 } 868 869 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 870 { 871 unsigned int off; /* Offset of last byte */ 872 u8 *addr = slab_address(slab); 873 874 print_tracking(s, p); 875 876 print_slab_info(slab); 877 878 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 879 p, p - addr, get_freepointer(s, p)); 880 881 if (s->flags & SLAB_RED_ZONE) 882 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 883 s->red_left_pad); 884 else if (p > addr + 16) 885 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 886 887 print_section(KERN_ERR, "Object ", p, 888 min_t(unsigned int, s->object_size, PAGE_SIZE)); 889 if (s->flags & SLAB_RED_ZONE) 890 print_section(KERN_ERR, "Redzone ", p + s->object_size, 891 s->inuse - s->object_size); 892 893 off = get_info_end(s); 894 895 if (s->flags & SLAB_STORE_USER) 896 off += 2 * sizeof(struct track); 897 898 if (slub_debug_orig_size(s)) 899 off += sizeof(unsigned int); 900 901 off += kasan_metadata_size(s); 902 903 if (off != size_from_object(s)) 904 /* Beginning of the filler is the free pointer */ 905 print_section(KERN_ERR, "Padding ", p + off, 906 size_from_object(s) - off); 907 908 dump_stack(); 909 } 910 911 static void object_err(struct kmem_cache *s, struct slab *slab, 912 u8 *object, char *reason) 913 { 914 if (slab_add_kunit_errors()) 915 return; 916 917 slab_bug(s, "%s", reason); 918 print_trailer(s, slab, object); 919 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 920 } 921 922 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 923 void **freelist, void *nextfree) 924 { 925 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 926 !check_valid_pointer(s, slab, nextfree) && freelist) { 927 object_err(s, slab, *freelist, "Freechain corrupt"); 928 *freelist = NULL; 929 slab_fix(s, "Isolate corrupted freechain"); 930 return true; 931 } 932 933 return false; 934 } 935 936 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 937 const char *fmt, ...) 938 { 939 va_list args; 940 char buf[100]; 941 942 if (slab_add_kunit_errors()) 943 return; 944 945 va_start(args, fmt); 946 vsnprintf(buf, sizeof(buf), fmt, args); 947 va_end(args); 948 slab_bug(s, "%s", buf); 949 print_slab_info(slab); 950 dump_stack(); 951 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 952 } 953 954 static void init_object(struct kmem_cache *s, void *object, u8 val) 955 { 956 u8 *p = kasan_reset_tag(object); 957 958 if (s->flags & SLAB_RED_ZONE) 959 memset(p - s->red_left_pad, val, s->red_left_pad); 960 961 if (s->flags & __OBJECT_POISON) { 962 memset(p, POISON_FREE, s->object_size - 1); 963 p[s->object_size - 1] = POISON_END; 964 } 965 966 if (s->flags & SLAB_RED_ZONE) 967 memset(p + s->object_size, val, s->inuse - s->object_size); 968 } 969 970 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 971 void *from, void *to) 972 { 973 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 974 memset(from, data, to - from); 975 } 976 977 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 978 u8 *object, char *what, 979 u8 *start, unsigned int value, unsigned int bytes) 980 { 981 u8 *fault; 982 u8 *end; 983 u8 *addr = slab_address(slab); 984 985 metadata_access_enable(); 986 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 987 metadata_access_disable(); 988 if (!fault) 989 return 1; 990 991 end = start + bytes; 992 while (end > fault && end[-1] == value) 993 end--; 994 995 if (slab_add_kunit_errors()) 996 goto skip_bug_print; 997 998 slab_bug(s, "%s overwritten", what); 999 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1000 fault, end - 1, fault - addr, 1001 fault[0], value); 1002 print_trailer(s, slab, object); 1003 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1004 1005 skip_bug_print: 1006 restore_bytes(s, what, value, fault, end); 1007 return 0; 1008 } 1009 1010 /* 1011 * Object layout: 1012 * 1013 * object address 1014 * Bytes of the object to be managed. 1015 * If the freepointer may overlay the object then the free 1016 * pointer is at the middle of the object. 1017 * 1018 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1019 * 0xa5 (POISON_END) 1020 * 1021 * object + s->object_size 1022 * Padding to reach word boundary. This is also used for Redzoning. 1023 * Padding is extended by another word if Redzoning is enabled and 1024 * object_size == inuse. 1025 * 1026 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1027 * 0xcc (RED_ACTIVE) for objects in use. 1028 * 1029 * object + s->inuse 1030 * Meta data starts here. 1031 * 1032 * A. Free pointer (if we cannot overwrite object on free) 1033 * B. Tracking data for SLAB_STORE_USER 1034 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1035 * D. Padding to reach required alignment boundary or at minimum 1036 * one word if debugging is on to be able to detect writes 1037 * before the word boundary. 1038 * 1039 * Padding is done using 0x5a (POISON_INUSE) 1040 * 1041 * object + s->size 1042 * Nothing is used beyond s->size. 1043 * 1044 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1045 * ignored. And therefore no slab options that rely on these boundaries 1046 * may be used with merged slabcaches. 1047 */ 1048 1049 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1050 { 1051 unsigned long off = get_info_end(s); /* The end of info */ 1052 1053 if (s->flags & SLAB_STORE_USER) { 1054 /* We also have user information there */ 1055 off += 2 * sizeof(struct track); 1056 1057 if (s->flags & SLAB_KMALLOC) 1058 off += sizeof(unsigned int); 1059 } 1060 1061 off += kasan_metadata_size(s); 1062 1063 if (size_from_object(s) == off) 1064 return 1; 1065 1066 return check_bytes_and_report(s, slab, p, "Object padding", 1067 p + off, POISON_INUSE, size_from_object(s) - off); 1068 } 1069 1070 /* Check the pad bytes at the end of a slab page */ 1071 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1072 { 1073 u8 *start; 1074 u8 *fault; 1075 u8 *end; 1076 u8 *pad; 1077 int length; 1078 int remainder; 1079 1080 if (!(s->flags & SLAB_POISON)) 1081 return; 1082 1083 start = slab_address(slab); 1084 length = slab_size(slab); 1085 end = start + length; 1086 remainder = length % s->size; 1087 if (!remainder) 1088 return; 1089 1090 pad = end - remainder; 1091 metadata_access_enable(); 1092 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1093 metadata_access_disable(); 1094 if (!fault) 1095 return; 1096 while (end > fault && end[-1] == POISON_INUSE) 1097 end--; 1098 1099 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1100 fault, end - 1, fault - start); 1101 print_section(KERN_ERR, "Padding ", pad, remainder); 1102 1103 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1104 } 1105 1106 static int check_object(struct kmem_cache *s, struct slab *slab, 1107 void *object, u8 val) 1108 { 1109 u8 *p = object; 1110 u8 *endobject = object + s->object_size; 1111 1112 if (s->flags & SLAB_RED_ZONE) { 1113 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1114 object - s->red_left_pad, val, s->red_left_pad)) 1115 return 0; 1116 1117 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1118 endobject, val, s->inuse - s->object_size)) 1119 return 0; 1120 } else { 1121 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1122 check_bytes_and_report(s, slab, p, "Alignment padding", 1123 endobject, POISON_INUSE, 1124 s->inuse - s->object_size); 1125 } 1126 } 1127 1128 if (s->flags & SLAB_POISON) { 1129 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1130 (!check_bytes_and_report(s, slab, p, "Poison", p, 1131 POISON_FREE, s->object_size - 1) || 1132 !check_bytes_and_report(s, slab, p, "End Poison", 1133 p + s->object_size - 1, POISON_END, 1))) 1134 return 0; 1135 /* 1136 * check_pad_bytes cleans up on its own. 1137 */ 1138 check_pad_bytes(s, slab, p); 1139 } 1140 1141 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1142 /* 1143 * Object and freepointer overlap. Cannot check 1144 * freepointer while object is allocated. 1145 */ 1146 return 1; 1147 1148 /* Check free pointer validity */ 1149 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1150 object_err(s, slab, p, "Freepointer corrupt"); 1151 /* 1152 * No choice but to zap it and thus lose the remainder 1153 * of the free objects in this slab. May cause 1154 * another error because the object count is now wrong. 1155 */ 1156 set_freepointer(s, p, NULL); 1157 return 0; 1158 } 1159 return 1; 1160 } 1161 1162 static int check_slab(struct kmem_cache *s, struct slab *slab) 1163 { 1164 int maxobj; 1165 1166 if (!folio_test_slab(slab_folio(slab))) { 1167 slab_err(s, slab, "Not a valid slab page"); 1168 return 0; 1169 } 1170 1171 maxobj = order_objects(slab_order(slab), s->size); 1172 if (slab->objects > maxobj) { 1173 slab_err(s, slab, "objects %u > max %u", 1174 slab->objects, maxobj); 1175 return 0; 1176 } 1177 if (slab->inuse > slab->objects) { 1178 slab_err(s, slab, "inuse %u > max %u", 1179 slab->inuse, slab->objects); 1180 return 0; 1181 } 1182 /* Slab_pad_check fixes things up after itself */ 1183 slab_pad_check(s, slab); 1184 return 1; 1185 } 1186 1187 /* 1188 * Determine if a certain object in a slab is on the freelist. Must hold the 1189 * slab lock to guarantee that the chains are in a consistent state. 1190 */ 1191 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1192 { 1193 int nr = 0; 1194 void *fp; 1195 void *object = NULL; 1196 int max_objects; 1197 1198 fp = slab->freelist; 1199 while (fp && nr <= slab->objects) { 1200 if (fp == search) 1201 return 1; 1202 if (!check_valid_pointer(s, slab, fp)) { 1203 if (object) { 1204 object_err(s, slab, object, 1205 "Freechain corrupt"); 1206 set_freepointer(s, object, NULL); 1207 } else { 1208 slab_err(s, slab, "Freepointer corrupt"); 1209 slab->freelist = NULL; 1210 slab->inuse = slab->objects; 1211 slab_fix(s, "Freelist cleared"); 1212 return 0; 1213 } 1214 break; 1215 } 1216 object = fp; 1217 fp = get_freepointer(s, object); 1218 nr++; 1219 } 1220 1221 max_objects = order_objects(slab_order(slab), s->size); 1222 if (max_objects > MAX_OBJS_PER_PAGE) 1223 max_objects = MAX_OBJS_PER_PAGE; 1224 1225 if (slab->objects != max_objects) { 1226 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1227 slab->objects, max_objects); 1228 slab->objects = max_objects; 1229 slab_fix(s, "Number of objects adjusted"); 1230 } 1231 if (slab->inuse != slab->objects - nr) { 1232 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1233 slab->inuse, slab->objects - nr); 1234 slab->inuse = slab->objects - nr; 1235 slab_fix(s, "Object count adjusted"); 1236 } 1237 return search == NULL; 1238 } 1239 1240 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1241 int alloc) 1242 { 1243 if (s->flags & SLAB_TRACE) { 1244 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1245 s->name, 1246 alloc ? "alloc" : "free", 1247 object, slab->inuse, 1248 slab->freelist); 1249 1250 if (!alloc) 1251 print_section(KERN_INFO, "Object ", (void *)object, 1252 s->object_size); 1253 1254 dump_stack(); 1255 } 1256 } 1257 1258 /* 1259 * Tracking of fully allocated slabs for debugging purposes. 1260 */ 1261 static void add_full(struct kmem_cache *s, 1262 struct kmem_cache_node *n, struct slab *slab) 1263 { 1264 if (!(s->flags & SLAB_STORE_USER)) 1265 return; 1266 1267 lockdep_assert_held(&n->list_lock); 1268 list_add(&slab->slab_list, &n->full); 1269 } 1270 1271 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1272 { 1273 if (!(s->flags & SLAB_STORE_USER)) 1274 return; 1275 1276 lockdep_assert_held(&n->list_lock); 1277 list_del(&slab->slab_list); 1278 } 1279 1280 /* Tracking of the number of slabs for debugging purposes */ 1281 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1282 { 1283 struct kmem_cache_node *n = get_node(s, node); 1284 1285 return atomic_long_read(&n->nr_slabs); 1286 } 1287 1288 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1289 { 1290 return atomic_long_read(&n->nr_slabs); 1291 } 1292 1293 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1294 { 1295 struct kmem_cache_node *n = get_node(s, node); 1296 1297 /* 1298 * May be called early in order to allocate a slab for the 1299 * kmem_cache_node structure. Solve the chicken-egg 1300 * dilemma by deferring the increment of the count during 1301 * bootstrap (see early_kmem_cache_node_alloc). 1302 */ 1303 if (likely(n)) { 1304 atomic_long_inc(&n->nr_slabs); 1305 atomic_long_add(objects, &n->total_objects); 1306 } 1307 } 1308 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1309 { 1310 struct kmem_cache_node *n = get_node(s, node); 1311 1312 atomic_long_dec(&n->nr_slabs); 1313 atomic_long_sub(objects, &n->total_objects); 1314 } 1315 1316 /* Object debug checks for alloc/free paths */ 1317 static void setup_object_debug(struct kmem_cache *s, void *object) 1318 { 1319 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1320 return; 1321 1322 init_object(s, object, SLUB_RED_INACTIVE); 1323 init_tracking(s, object); 1324 } 1325 1326 static 1327 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1328 { 1329 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1330 return; 1331 1332 metadata_access_enable(); 1333 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1334 metadata_access_disable(); 1335 } 1336 1337 static inline int alloc_consistency_checks(struct kmem_cache *s, 1338 struct slab *slab, void *object) 1339 { 1340 if (!check_slab(s, slab)) 1341 return 0; 1342 1343 if (!check_valid_pointer(s, slab, object)) { 1344 object_err(s, slab, object, "Freelist Pointer check fails"); 1345 return 0; 1346 } 1347 1348 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1349 return 0; 1350 1351 return 1; 1352 } 1353 1354 static noinline int alloc_debug_processing(struct kmem_cache *s, 1355 struct slab *slab, void *object, int orig_size) 1356 { 1357 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1358 if (!alloc_consistency_checks(s, slab, object)) 1359 goto bad; 1360 } 1361 1362 /* Success. Perform special debug activities for allocs */ 1363 trace(s, slab, object, 1); 1364 set_orig_size(s, object, orig_size); 1365 init_object(s, object, SLUB_RED_ACTIVE); 1366 return 1; 1367 1368 bad: 1369 if (folio_test_slab(slab_folio(slab))) { 1370 /* 1371 * If this is a slab page then lets do the best we can 1372 * to avoid issues in the future. Marking all objects 1373 * as used avoids touching the remaining objects. 1374 */ 1375 slab_fix(s, "Marking all objects used"); 1376 slab->inuse = slab->objects; 1377 slab->freelist = NULL; 1378 } 1379 return 0; 1380 } 1381 1382 static inline int free_consistency_checks(struct kmem_cache *s, 1383 struct slab *slab, void *object, unsigned long addr) 1384 { 1385 if (!check_valid_pointer(s, slab, object)) { 1386 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1387 return 0; 1388 } 1389 1390 if (on_freelist(s, slab, object)) { 1391 object_err(s, slab, object, "Object already free"); 1392 return 0; 1393 } 1394 1395 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1396 return 0; 1397 1398 if (unlikely(s != slab->slab_cache)) { 1399 if (!folio_test_slab(slab_folio(slab))) { 1400 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1401 object); 1402 } else if (!slab->slab_cache) { 1403 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1404 object); 1405 dump_stack(); 1406 } else 1407 object_err(s, slab, object, 1408 "page slab pointer corrupt."); 1409 return 0; 1410 } 1411 return 1; 1412 } 1413 1414 /* 1415 * Parse a block of slub_debug options. Blocks are delimited by ';' 1416 * 1417 * @str: start of block 1418 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1419 * @slabs: return start of list of slabs, or NULL when there's no list 1420 * @init: assume this is initial parsing and not per-kmem-create parsing 1421 * 1422 * returns the start of next block if there's any, or NULL 1423 */ 1424 static char * 1425 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1426 { 1427 bool higher_order_disable = false; 1428 1429 /* Skip any completely empty blocks */ 1430 while (*str && *str == ';') 1431 str++; 1432 1433 if (*str == ',') { 1434 /* 1435 * No options but restriction on slabs. This means full 1436 * debugging for slabs matching a pattern. 1437 */ 1438 *flags = DEBUG_DEFAULT_FLAGS; 1439 goto check_slabs; 1440 } 1441 *flags = 0; 1442 1443 /* Determine which debug features should be switched on */ 1444 for (; *str && *str != ',' && *str != ';'; str++) { 1445 switch (tolower(*str)) { 1446 case '-': 1447 *flags = 0; 1448 break; 1449 case 'f': 1450 *flags |= SLAB_CONSISTENCY_CHECKS; 1451 break; 1452 case 'z': 1453 *flags |= SLAB_RED_ZONE; 1454 break; 1455 case 'p': 1456 *flags |= SLAB_POISON; 1457 break; 1458 case 'u': 1459 *flags |= SLAB_STORE_USER; 1460 break; 1461 case 't': 1462 *flags |= SLAB_TRACE; 1463 break; 1464 case 'a': 1465 *flags |= SLAB_FAILSLAB; 1466 break; 1467 case 'o': 1468 /* 1469 * Avoid enabling debugging on caches if its minimum 1470 * order would increase as a result. 1471 */ 1472 higher_order_disable = true; 1473 break; 1474 default: 1475 if (init) 1476 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1477 } 1478 } 1479 check_slabs: 1480 if (*str == ',') 1481 *slabs = ++str; 1482 else 1483 *slabs = NULL; 1484 1485 /* Skip over the slab list */ 1486 while (*str && *str != ';') 1487 str++; 1488 1489 /* Skip any completely empty blocks */ 1490 while (*str && *str == ';') 1491 str++; 1492 1493 if (init && higher_order_disable) 1494 disable_higher_order_debug = 1; 1495 1496 if (*str) 1497 return str; 1498 else 1499 return NULL; 1500 } 1501 1502 static int __init setup_slub_debug(char *str) 1503 { 1504 slab_flags_t flags; 1505 slab_flags_t global_flags; 1506 char *saved_str; 1507 char *slab_list; 1508 bool global_slub_debug_changed = false; 1509 bool slab_list_specified = false; 1510 1511 global_flags = DEBUG_DEFAULT_FLAGS; 1512 if (*str++ != '=' || !*str) 1513 /* 1514 * No options specified. Switch on full debugging. 1515 */ 1516 goto out; 1517 1518 saved_str = str; 1519 while (str) { 1520 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1521 1522 if (!slab_list) { 1523 global_flags = flags; 1524 global_slub_debug_changed = true; 1525 } else { 1526 slab_list_specified = true; 1527 if (flags & SLAB_STORE_USER) 1528 stack_depot_want_early_init(); 1529 } 1530 } 1531 1532 /* 1533 * For backwards compatibility, a single list of flags with list of 1534 * slabs means debugging is only changed for those slabs, so the global 1535 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1536 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1537 * long as there is no option specifying flags without a slab list. 1538 */ 1539 if (slab_list_specified) { 1540 if (!global_slub_debug_changed) 1541 global_flags = slub_debug; 1542 slub_debug_string = saved_str; 1543 } 1544 out: 1545 slub_debug = global_flags; 1546 if (slub_debug & SLAB_STORE_USER) 1547 stack_depot_want_early_init(); 1548 if (slub_debug != 0 || slub_debug_string) 1549 static_branch_enable(&slub_debug_enabled); 1550 else 1551 static_branch_disable(&slub_debug_enabled); 1552 if ((static_branch_unlikely(&init_on_alloc) || 1553 static_branch_unlikely(&init_on_free)) && 1554 (slub_debug & SLAB_POISON)) 1555 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1556 return 1; 1557 } 1558 1559 __setup("slub_debug", setup_slub_debug); 1560 1561 /* 1562 * kmem_cache_flags - apply debugging options to the cache 1563 * @object_size: the size of an object without meta data 1564 * @flags: flags to set 1565 * @name: name of the cache 1566 * 1567 * Debug option(s) are applied to @flags. In addition to the debug 1568 * option(s), if a slab name (or multiple) is specified i.e. 1569 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1570 * then only the select slabs will receive the debug option(s). 1571 */ 1572 slab_flags_t kmem_cache_flags(unsigned int object_size, 1573 slab_flags_t flags, const char *name) 1574 { 1575 char *iter; 1576 size_t len; 1577 char *next_block; 1578 slab_flags_t block_flags; 1579 slab_flags_t slub_debug_local = slub_debug; 1580 1581 if (flags & SLAB_NO_USER_FLAGS) 1582 return flags; 1583 1584 /* 1585 * If the slab cache is for debugging (e.g. kmemleak) then 1586 * don't store user (stack trace) information by default, 1587 * but let the user enable it via the command line below. 1588 */ 1589 if (flags & SLAB_NOLEAKTRACE) 1590 slub_debug_local &= ~SLAB_STORE_USER; 1591 1592 len = strlen(name); 1593 next_block = slub_debug_string; 1594 /* Go through all blocks of debug options, see if any matches our slab's name */ 1595 while (next_block) { 1596 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1597 if (!iter) 1598 continue; 1599 /* Found a block that has a slab list, search it */ 1600 while (*iter) { 1601 char *end, *glob; 1602 size_t cmplen; 1603 1604 end = strchrnul(iter, ','); 1605 if (next_block && next_block < end) 1606 end = next_block - 1; 1607 1608 glob = strnchr(iter, end - iter, '*'); 1609 if (glob) 1610 cmplen = glob - iter; 1611 else 1612 cmplen = max_t(size_t, len, (end - iter)); 1613 1614 if (!strncmp(name, iter, cmplen)) { 1615 flags |= block_flags; 1616 return flags; 1617 } 1618 1619 if (!*end || *end == ';') 1620 break; 1621 iter = end + 1; 1622 } 1623 } 1624 1625 return flags | slub_debug_local; 1626 } 1627 #else /* !CONFIG_SLUB_DEBUG */ 1628 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1629 static inline 1630 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1631 1632 static inline int alloc_debug_processing(struct kmem_cache *s, 1633 struct slab *slab, void *object, int orig_size) { return 0; } 1634 1635 static inline void free_debug_processing( 1636 struct kmem_cache *s, struct slab *slab, 1637 void *head, void *tail, int bulk_cnt, 1638 unsigned long addr) {} 1639 1640 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1641 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1642 void *object, u8 val) { return 1; } 1643 static inline void set_track(struct kmem_cache *s, void *object, 1644 enum track_item alloc, unsigned long addr) {} 1645 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1646 struct slab *slab) {} 1647 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1648 struct slab *slab) {} 1649 slab_flags_t kmem_cache_flags(unsigned int object_size, 1650 slab_flags_t flags, const char *name) 1651 { 1652 return flags; 1653 } 1654 #define slub_debug 0 1655 1656 #define disable_higher_order_debug 0 1657 1658 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1659 { return 0; } 1660 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1661 { return 0; } 1662 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1663 int objects) {} 1664 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1665 int objects) {} 1666 1667 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1668 void **freelist, void *nextfree) 1669 { 1670 return false; 1671 } 1672 #endif /* CONFIG_SLUB_DEBUG */ 1673 1674 /* 1675 * Hooks for other subsystems that check memory allocations. In a typical 1676 * production configuration these hooks all should produce no code at all. 1677 */ 1678 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1679 void *x, bool init) 1680 { 1681 kmemleak_free_recursive(x, s->flags); 1682 1683 debug_check_no_locks_freed(x, s->object_size); 1684 1685 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1686 debug_check_no_obj_freed(x, s->object_size); 1687 1688 /* Use KCSAN to help debug racy use-after-free. */ 1689 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1690 __kcsan_check_access(x, s->object_size, 1691 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1692 1693 /* 1694 * As memory initialization might be integrated into KASAN, 1695 * kasan_slab_free and initialization memset's must be 1696 * kept together to avoid discrepancies in behavior. 1697 * 1698 * The initialization memset's clear the object and the metadata, 1699 * but don't touch the SLAB redzone. 1700 */ 1701 if (init) { 1702 int rsize; 1703 1704 if (!kasan_has_integrated_init()) 1705 memset(kasan_reset_tag(x), 0, s->object_size); 1706 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1707 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1708 s->size - s->inuse - rsize); 1709 } 1710 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1711 return kasan_slab_free(s, x, init); 1712 } 1713 1714 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1715 void **head, void **tail, 1716 int *cnt) 1717 { 1718 1719 void *object; 1720 void *next = *head; 1721 void *old_tail = *tail ? *tail : *head; 1722 1723 if (is_kfence_address(next)) { 1724 slab_free_hook(s, next, false); 1725 return true; 1726 } 1727 1728 /* Head and tail of the reconstructed freelist */ 1729 *head = NULL; 1730 *tail = NULL; 1731 1732 do { 1733 object = next; 1734 next = get_freepointer(s, object); 1735 1736 /* If object's reuse doesn't have to be delayed */ 1737 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1738 /* Move object to the new freelist */ 1739 set_freepointer(s, object, *head); 1740 *head = object; 1741 if (!*tail) 1742 *tail = object; 1743 } else { 1744 /* 1745 * Adjust the reconstructed freelist depth 1746 * accordingly if object's reuse is delayed. 1747 */ 1748 --(*cnt); 1749 } 1750 } while (object != old_tail); 1751 1752 if (*head == *tail) 1753 *tail = NULL; 1754 1755 return *head != NULL; 1756 } 1757 1758 static void *setup_object(struct kmem_cache *s, void *object) 1759 { 1760 setup_object_debug(s, object); 1761 object = kasan_init_slab_obj(s, object); 1762 if (unlikely(s->ctor)) { 1763 kasan_unpoison_object_data(s, object); 1764 s->ctor(object); 1765 kasan_poison_object_data(s, object); 1766 } 1767 return object; 1768 } 1769 1770 /* 1771 * Slab allocation and freeing 1772 */ 1773 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1774 struct kmem_cache_order_objects oo) 1775 { 1776 struct folio *folio; 1777 struct slab *slab; 1778 unsigned int order = oo_order(oo); 1779 1780 if (node == NUMA_NO_NODE) 1781 folio = (struct folio *)alloc_pages(flags, order); 1782 else 1783 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1784 1785 if (!folio) 1786 return NULL; 1787 1788 slab = folio_slab(folio); 1789 __folio_set_slab(folio); 1790 if (page_is_pfmemalloc(folio_page(folio, 0))) 1791 slab_set_pfmemalloc(slab); 1792 1793 return slab; 1794 } 1795 1796 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1797 /* Pre-initialize the random sequence cache */ 1798 static int init_cache_random_seq(struct kmem_cache *s) 1799 { 1800 unsigned int count = oo_objects(s->oo); 1801 int err; 1802 1803 /* Bailout if already initialised */ 1804 if (s->random_seq) 1805 return 0; 1806 1807 err = cache_random_seq_create(s, count, GFP_KERNEL); 1808 if (err) { 1809 pr_err("SLUB: Unable to initialize free list for %s\n", 1810 s->name); 1811 return err; 1812 } 1813 1814 /* Transform to an offset on the set of pages */ 1815 if (s->random_seq) { 1816 unsigned int i; 1817 1818 for (i = 0; i < count; i++) 1819 s->random_seq[i] *= s->size; 1820 } 1821 return 0; 1822 } 1823 1824 /* Initialize each random sequence freelist per cache */ 1825 static void __init init_freelist_randomization(void) 1826 { 1827 struct kmem_cache *s; 1828 1829 mutex_lock(&slab_mutex); 1830 1831 list_for_each_entry(s, &slab_caches, list) 1832 init_cache_random_seq(s); 1833 1834 mutex_unlock(&slab_mutex); 1835 } 1836 1837 /* Get the next entry on the pre-computed freelist randomized */ 1838 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1839 unsigned long *pos, void *start, 1840 unsigned long page_limit, 1841 unsigned long freelist_count) 1842 { 1843 unsigned int idx; 1844 1845 /* 1846 * If the target page allocation failed, the number of objects on the 1847 * page might be smaller than the usual size defined by the cache. 1848 */ 1849 do { 1850 idx = s->random_seq[*pos]; 1851 *pos += 1; 1852 if (*pos >= freelist_count) 1853 *pos = 0; 1854 } while (unlikely(idx >= page_limit)); 1855 1856 return (char *)start + idx; 1857 } 1858 1859 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1860 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1861 { 1862 void *start; 1863 void *cur; 1864 void *next; 1865 unsigned long idx, pos, page_limit, freelist_count; 1866 1867 if (slab->objects < 2 || !s->random_seq) 1868 return false; 1869 1870 freelist_count = oo_objects(s->oo); 1871 pos = get_random_int() % freelist_count; 1872 1873 page_limit = slab->objects * s->size; 1874 start = fixup_red_left(s, slab_address(slab)); 1875 1876 /* First entry is used as the base of the freelist */ 1877 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1878 freelist_count); 1879 cur = setup_object(s, cur); 1880 slab->freelist = cur; 1881 1882 for (idx = 1; idx < slab->objects; idx++) { 1883 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1884 freelist_count); 1885 next = setup_object(s, next); 1886 set_freepointer(s, cur, next); 1887 cur = next; 1888 } 1889 set_freepointer(s, cur, NULL); 1890 1891 return true; 1892 } 1893 #else 1894 static inline int init_cache_random_seq(struct kmem_cache *s) 1895 { 1896 return 0; 1897 } 1898 static inline void init_freelist_randomization(void) { } 1899 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1900 { 1901 return false; 1902 } 1903 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1904 1905 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1906 { 1907 struct slab *slab; 1908 struct kmem_cache_order_objects oo = s->oo; 1909 gfp_t alloc_gfp; 1910 void *start, *p, *next; 1911 int idx; 1912 bool shuffle; 1913 1914 flags &= gfp_allowed_mask; 1915 1916 flags |= s->allocflags; 1917 1918 /* 1919 * Let the initial higher-order allocation fail under memory pressure 1920 * so we fall-back to the minimum order allocation. 1921 */ 1922 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1923 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1924 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 1925 1926 slab = alloc_slab_page(alloc_gfp, node, oo); 1927 if (unlikely(!slab)) { 1928 oo = s->min; 1929 alloc_gfp = flags; 1930 /* 1931 * Allocation may have failed due to fragmentation. 1932 * Try a lower order alloc if possible 1933 */ 1934 slab = alloc_slab_page(alloc_gfp, node, oo); 1935 if (unlikely(!slab)) 1936 return NULL; 1937 stat(s, ORDER_FALLBACK); 1938 } 1939 1940 slab->objects = oo_objects(oo); 1941 slab->inuse = 0; 1942 slab->frozen = 0; 1943 1944 account_slab(slab, oo_order(oo), s, flags); 1945 1946 slab->slab_cache = s; 1947 1948 kasan_poison_slab(slab); 1949 1950 start = slab_address(slab); 1951 1952 setup_slab_debug(s, slab, start); 1953 1954 shuffle = shuffle_freelist(s, slab); 1955 1956 if (!shuffle) { 1957 start = fixup_red_left(s, start); 1958 start = setup_object(s, start); 1959 slab->freelist = start; 1960 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 1961 next = p + s->size; 1962 next = setup_object(s, next); 1963 set_freepointer(s, p, next); 1964 p = next; 1965 } 1966 set_freepointer(s, p, NULL); 1967 } 1968 1969 return slab; 1970 } 1971 1972 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1973 { 1974 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 1975 flags = kmalloc_fix_flags(flags); 1976 1977 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 1978 1979 return allocate_slab(s, 1980 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1981 } 1982 1983 static void __free_slab(struct kmem_cache *s, struct slab *slab) 1984 { 1985 struct folio *folio = slab_folio(slab); 1986 int order = folio_order(folio); 1987 int pages = 1 << order; 1988 1989 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 1990 void *p; 1991 1992 slab_pad_check(s, slab); 1993 for_each_object(p, s, slab_address(slab), slab->objects) 1994 check_object(s, slab, p, SLUB_RED_INACTIVE); 1995 } 1996 1997 __slab_clear_pfmemalloc(slab); 1998 __folio_clear_slab(folio); 1999 folio->mapping = NULL; 2000 if (current->reclaim_state) 2001 current->reclaim_state->reclaimed_slab += pages; 2002 unaccount_slab(slab, order, s); 2003 __free_pages(folio_page(folio, 0), order); 2004 } 2005 2006 static void rcu_free_slab(struct rcu_head *h) 2007 { 2008 struct slab *slab = container_of(h, struct slab, rcu_head); 2009 2010 __free_slab(slab->slab_cache, slab); 2011 } 2012 2013 static void free_slab(struct kmem_cache *s, struct slab *slab) 2014 { 2015 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 2016 call_rcu(&slab->rcu_head, rcu_free_slab); 2017 } else 2018 __free_slab(s, slab); 2019 } 2020 2021 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2022 { 2023 dec_slabs_node(s, slab_nid(slab), slab->objects); 2024 free_slab(s, slab); 2025 } 2026 2027 /* 2028 * Management of partially allocated slabs. 2029 */ 2030 static inline void 2031 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2032 { 2033 n->nr_partial++; 2034 if (tail == DEACTIVATE_TO_TAIL) 2035 list_add_tail(&slab->slab_list, &n->partial); 2036 else 2037 list_add(&slab->slab_list, &n->partial); 2038 } 2039 2040 static inline void add_partial(struct kmem_cache_node *n, 2041 struct slab *slab, int tail) 2042 { 2043 lockdep_assert_held(&n->list_lock); 2044 __add_partial(n, slab, tail); 2045 } 2046 2047 static inline void remove_partial(struct kmem_cache_node *n, 2048 struct slab *slab) 2049 { 2050 lockdep_assert_held(&n->list_lock); 2051 list_del(&slab->slab_list); 2052 n->nr_partial--; 2053 } 2054 2055 /* 2056 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a 2057 * slab from the n->partial list. Remove only a single object from the slab, do 2058 * the alloc_debug_processing() checks and leave the slab on the list, or move 2059 * it to full list if it was the last free object. 2060 */ 2061 static void *alloc_single_from_partial(struct kmem_cache *s, 2062 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2063 { 2064 void *object; 2065 2066 lockdep_assert_held(&n->list_lock); 2067 2068 object = slab->freelist; 2069 slab->freelist = get_freepointer(s, object); 2070 slab->inuse++; 2071 2072 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2073 remove_partial(n, slab); 2074 return NULL; 2075 } 2076 2077 if (slab->inuse == slab->objects) { 2078 remove_partial(n, slab); 2079 add_full(s, n, slab); 2080 } 2081 2082 return object; 2083 } 2084 2085 /* 2086 * Called only for kmem_cache_debug() caches to allocate from a freshly 2087 * allocated slab. Allocate a single object instead of whole freelist 2088 * and put the slab to the partial (or full) list. 2089 */ 2090 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2091 struct slab *slab, int orig_size) 2092 { 2093 int nid = slab_nid(slab); 2094 struct kmem_cache_node *n = get_node(s, nid); 2095 unsigned long flags; 2096 void *object; 2097 2098 2099 object = slab->freelist; 2100 slab->freelist = get_freepointer(s, object); 2101 slab->inuse = 1; 2102 2103 if (!alloc_debug_processing(s, slab, object, orig_size)) 2104 /* 2105 * It's not really expected that this would fail on a 2106 * freshly allocated slab, but a concurrent memory 2107 * corruption in theory could cause that. 2108 */ 2109 return NULL; 2110 2111 spin_lock_irqsave(&n->list_lock, flags); 2112 2113 if (slab->inuse == slab->objects) 2114 add_full(s, n, slab); 2115 else 2116 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2117 2118 inc_slabs_node(s, nid, slab->objects); 2119 spin_unlock_irqrestore(&n->list_lock, flags); 2120 2121 return object; 2122 } 2123 2124 /* 2125 * Remove slab from the partial list, freeze it and 2126 * return the pointer to the freelist. 2127 * 2128 * Returns a list of objects or NULL if it fails. 2129 */ 2130 static inline void *acquire_slab(struct kmem_cache *s, 2131 struct kmem_cache_node *n, struct slab *slab, 2132 int mode) 2133 { 2134 void *freelist; 2135 unsigned long counters; 2136 struct slab new; 2137 2138 lockdep_assert_held(&n->list_lock); 2139 2140 /* 2141 * Zap the freelist and set the frozen bit. 2142 * The old freelist is the list of objects for the 2143 * per cpu allocation list. 2144 */ 2145 freelist = slab->freelist; 2146 counters = slab->counters; 2147 new.counters = counters; 2148 if (mode) { 2149 new.inuse = slab->objects; 2150 new.freelist = NULL; 2151 } else { 2152 new.freelist = freelist; 2153 } 2154 2155 VM_BUG_ON(new.frozen); 2156 new.frozen = 1; 2157 2158 if (!__cmpxchg_double_slab(s, slab, 2159 freelist, counters, 2160 new.freelist, new.counters, 2161 "acquire_slab")) 2162 return NULL; 2163 2164 remove_partial(n, slab); 2165 WARN_ON(!freelist); 2166 return freelist; 2167 } 2168 2169 #ifdef CONFIG_SLUB_CPU_PARTIAL 2170 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2171 #else 2172 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2173 int drain) { } 2174 #endif 2175 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2176 2177 /* 2178 * Try to allocate a partial slab from a specific node. 2179 */ 2180 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2181 struct partial_context *pc) 2182 { 2183 struct slab *slab, *slab2; 2184 void *object = NULL; 2185 unsigned long flags; 2186 unsigned int partial_slabs = 0; 2187 2188 /* 2189 * Racy check. If we mistakenly see no partial slabs then we 2190 * just allocate an empty slab. If we mistakenly try to get a 2191 * partial slab and there is none available then get_partial() 2192 * will return NULL. 2193 */ 2194 if (!n || !n->nr_partial) 2195 return NULL; 2196 2197 spin_lock_irqsave(&n->list_lock, flags); 2198 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2199 void *t; 2200 2201 if (!pfmemalloc_match(slab, pc->flags)) 2202 continue; 2203 2204 if (kmem_cache_debug(s)) { 2205 object = alloc_single_from_partial(s, n, slab, 2206 pc->orig_size); 2207 if (object) 2208 break; 2209 continue; 2210 } 2211 2212 t = acquire_slab(s, n, slab, object == NULL); 2213 if (!t) 2214 break; 2215 2216 if (!object) { 2217 *pc->slab = slab; 2218 stat(s, ALLOC_FROM_PARTIAL); 2219 object = t; 2220 } else { 2221 put_cpu_partial(s, slab, 0); 2222 stat(s, CPU_PARTIAL_NODE); 2223 partial_slabs++; 2224 } 2225 #ifdef CONFIG_SLUB_CPU_PARTIAL 2226 if (!kmem_cache_has_cpu_partial(s) 2227 || partial_slabs > s->cpu_partial_slabs / 2) 2228 break; 2229 #else 2230 break; 2231 #endif 2232 2233 } 2234 spin_unlock_irqrestore(&n->list_lock, flags); 2235 return object; 2236 } 2237 2238 /* 2239 * Get a slab from somewhere. Search in increasing NUMA distances. 2240 */ 2241 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) 2242 { 2243 #ifdef CONFIG_NUMA 2244 struct zonelist *zonelist; 2245 struct zoneref *z; 2246 struct zone *zone; 2247 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2248 void *object; 2249 unsigned int cpuset_mems_cookie; 2250 2251 /* 2252 * The defrag ratio allows a configuration of the tradeoffs between 2253 * inter node defragmentation and node local allocations. A lower 2254 * defrag_ratio increases the tendency to do local allocations 2255 * instead of attempting to obtain partial slabs from other nodes. 2256 * 2257 * If the defrag_ratio is set to 0 then kmalloc() always 2258 * returns node local objects. If the ratio is higher then kmalloc() 2259 * may return off node objects because partial slabs are obtained 2260 * from other nodes and filled up. 2261 * 2262 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2263 * (which makes defrag_ratio = 1000) then every (well almost) 2264 * allocation will first attempt to defrag slab caches on other nodes. 2265 * This means scanning over all nodes to look for partial slabs which 2266 * may be expensive if we do it every time we are trying to find a slab 2267 * with available objects. 2268 */ 2269 if (!s->remote_node_defrag_ratio || 2270 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2271 return NULL; 2272 2273 do { 2274 cpuset_mems_cookie = read_mems_allowed_begin(); 2275 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2276 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2277 struct kmem_cache_node *n; 2278 2279 n = get_node(s, zone_to_nid(zone)); 2280 2281 if (n && cpuset_zone_allowed(zone, pc->flags) && 2282 n->nr_partial > s->min_partial) { 2283 object = get_partial_node(s, n, pc); 2284 if (object) { 2285 /* 2286 * Don't check read_mems_allowed_retry() 2287 * here - if mems_allowed was updated in 2288 * parallel, that was a harmless race 2289 * between allocation and the cpuset 2290 * update 2291 */ 2292 return object; 2293 } 2294 } 2295 } 2296 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2297 #endif /* CONFIG_NUMA */ 2298 return NULL; 2299 } 2300 2301 /* 2302 * Get a partial slab, lock it and return it. 2303 */ 2304 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc) 2305 { 2306 void *object; 2307 int searchnode = node; 2308 2309 if (node == NUMA_NO_NODE) 2310 searchnode = numa_mem_id(); 2311 2312 object = get_partial_node(s, get_node(s, searchnode), pc); 2313 if (object || node != NUMA_NO_NODE) 2314 return object; 2315 2316 return get_any_partial(s, pc); 2317 } 2318 2319 #ifdef CONFIG_PREEMPTION 2320 /* 2321 * Calculate the next globally unique transaction for disambiguation 2322 * during cmpxchg. The transactions start with the cpu number and are then 2323 * incremented by CONFIG_NR_CPUS. 2324 */ 2325 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2326 #else 2327 /* 2328 * No preemption supported therefore also no need to check for 2329 * different cpus. 2330 */ 2331 #define TID_STEP 1 2332 #endif 2333 2334 static inline unsigned long next_tid(unsigned long tid) 2335 { 2336 return tid + TID_STEP; 2337 } 2338 2339 #ifdef SLUB_DEBUG_CMPXCHG 2340 static inline unsigned int tid_to_cpu(unsigned long tid) 2341 { 2342 return tid % TID_STEP; 2343 } 2344 2345 static inline unsigned long tid_to_event(unsigned long tid) 2346 { 2347 return tid / TID_STEP; 2348 } 2349 #endif 2350 2351 static inline unsigned int init_tid(int cpu) 2352 { 2353 return cpu; 2354 } 2355 2356 static inline void note_cmpxchg_failure(const char *n, 2357 const struct kmem_cache *s, unsigned long tid) 2358 { 2359 #ifdef SLUB_DEBUG_CMPXCHG 2360 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2361 2362 pr_info("%s %s: cmpxchg redo ", n, s->name); 2363 2364 #ifdef CONFIG_PREEMPTION 2365 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2366 pr_warn("due to cpu change %d -> %d\n", 2367 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2368 else 2369 #endif 2370 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2371 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2372 tid_to_event(tid), tid_to_event(actual_tid)); 2373 else 2374 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2375 actual_tid, tid, next_tid(tid)); 2376 #endif 2377 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2378 } 2379 2380 static void init_kmem_cache_cpus(struct kmem_cache *s) 2381 { 2382 int cpu; 2383 struct kmem_cache_cpu *c; 2384 2385 for_each_possible_cpu(cpu) { 2386 c = per_cpu_ptr(s->cpu_slab, cpu); 2387 local_lock_init(&c->lock); 2388 c->tid = init_tid(cpu); 2389 } 2390 } 2391 2392 /* 2393 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2394 * unfreezes the slabs and puts it on the proper list. 2395 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2396 * by the caller. 2397 */ 2398 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2399 void *freelist) 2400 { 2401 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST }; 2402 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2403 int free_delta = 0; 2404 enum slab_modes mode = M_NONE; 2405 void *nextfree, *freelist_iter, *freelist_tail; 2406 int tail = DEACTIVATE_TO_HEAD; 2407 unsigned long flags = 0; 2408 struct slab new; 2409 struct slab old; 2410 2411 if (slab->freelist) { 2412 stat(s, DEACTIVATE_REMOTE_FREES); 2413 tail = DEACTIVATE_TO_TAIL; 2414 } 2415 2416 /* 2417 * Stage one: Count the objects on cpu's freelist as free_delta and 2418 * remember the last object in freelist_tail for later splicing. 2419 */ 2420 freelist_tail = NULL; 2421 freelist_iter = freelist; 2422 while (freelist_iter) { 2423 nextfree = get_freepointer(s, freelist_iter); 2424 2425 /* 2426 * If 'nextfree' is invalid, it is possible that the object at 2427 * 'freelist_iter' is already corrupted. So isolate all objects 2428 * starting at 'freelist_iter' by skipping them. 2429 */ 2430 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2431 break; 2432 2433 freelist_tail = freelist_iter; 2434 free_delta++; 2435 2436 freelist_iter = nextfree; 2437 } 2438 2439 /* 2440 * Stage two: Unfreeze the slab while splicing the per-cpu 2441 * freelist to the head of slab's freelist. 2442 * 2443 * Ensure that the slab is unfrozen while the list presence 2444 * reflects the actual number of objects during unfreeze. 2445 * 2446 * We first perform cmpxchg holding lock and insert to list 2447 * when it succeed. If there is mismatch then the slab is not 2448 * unfrozen and number of objects in the slab may have changed. 2449 * Then release lock and retry cmpxchg again. 2450 */ 2451 redo: 2452 2453 old.freelist = READ_ONCE(slab->freelist); 2454 old.counters = READ_ONCE(slab->counters); 2455 VM_BUG_ON(!old.frozen); 2456 2457 /* Determine target state of the slab */ 2458 new.counters = old.counters; 2459 if (freelist_tail) { 2460 new.inuse -= free_delta; 2461 set_freepointer(s, freelist_tail, old.freelist); 2462 new.freelist = freelist; 2463 } else 2464 new.freelist = old.freelist; 2465 2466 new.frozen = 0; 2467 2468 if (!new.inuse && n->nr_partial >= s->min_partial) { 2469 mode = M_FREE; 2470 } else if (new.freelist) { 2471 mode = M_PARTIAL; 2472 /* 2473 * Taking the spinlock removes the possibility that 2474 * acquire_slab() will see a slab that is frozen 2475 */ 2476 spin_lock_irqsave(&n->list_lock, flags); 2477 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) { 2478 mode = M_FULL; 2479 /* 2480 * This also ensures that the scanning of full 2481 * slabs from diagnostic functions will not see 2482 * any frozen slabs. 2483 */ 2484 spin_lock_irqsave(&n->list_lock, flags); 2485 } else { 2486 mode = M_FULL_NOLIST; 2487 } 2488 2489 2490 if (!cmpxchg_double_slab(s, slab, 2491 old.freelist, old.counters, 2492 new.freelist, new.counters, 2493 "unfreezing slab")) { 2494 if (mode == M_PARTIAL || mode == M_FULL) 2495 spin_unlock_irqrestore(&n->list_lock, flags); 2496 goto redo; 2497 } 2498 2499 2500 if (mode == M_PARTIAL) { 2501 add_partial(n, slab, tail); 2502 spin_unlock_irqrestore(&n->list_lock, flags); 2503 stat(s, tail); 2504 } else if (mode == M_FREE) { 2505 stat(s, DEACTIVATE_EMPTY); 2506 discard_slab(s, slab); 2507 stat(s, FREE_SLAB); 2508 } else if (mode == M_FULL) { 2509 add_full(s, n, slab); 2510 spin_unlock_irqrestore(&n->list_lock, flags); 2511 stat(s, DEACTIVATE_FULL); 2512 } else if (mode == M_FULL_NOLIST) { 2513 stat(s, DEACTIVATE_FULL); 2514 } 2515 } 2516 2517 #ifdef CONFIG_SLUB_CPU_PARTIAL 2518 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2519 { 2520 struct kmem_cache_node *n = NULL, *n2 = NULL; 2521 struct slab *slab, *slab_to_discard = NULL; 2522 unsigned long flags = 0; 2523 2524 while (partial_slab) { 2525 struct slab new; 2526 struct slab old; 2527 2528 slab = partial_slab; 2529 partial_slab = slab->next; 2530 2531 n2 = get_node(s, slab_nid(slab)); 2532 if (n != n2) { 2533 if (n) 2534 spin_unlock_irqrestore(&n->list_lock, flags); 2535 2536 n = n2; 2537 spin_lock_irqsave(&n->list_lock, flags); 2538 } 2539 2540 do { 2541 2542 old.freelist = slab->freelist; 2543 old.counters = slab->counters; 2544 VM_BUG_ON(!old.frozen); 2545 2546 new.counters = old.counters; 2547 new.freelist = old.freelist; 2548 2549 new.frozen = 0; 2550 2551 } while (!__cmpxchg_double_slab(s, slab, 2552 old.freelist, old.counters, 2553 new.freelist, new.counters, 2554 "unfreezing slab")); 2555 2556 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2557 slab->next = slab_to_discard; 2558 slab_to_discard = slab; 2559 } else { 2560 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2561 stat(s, FREE_ADD_PARTIAL); 2562 } 2563 } 2564 2565 if (n) 2566 spin_unlock_irqrestore(&n->list_lock, flags); 2567 2568 while (slab_to_discard) { 2569 slab = slab_to_discard; 2570 slab_to_discard = slab_to_discard->next; 2571 2572 stat(s, DEACTIVATE_EMPTY); 2573 discard_slab(s, slab); 2574 stat(s, FREE_SLAB); 2575 } 2576 } 2577 2578 /* 2579 * Unfreeze all the cpu partial slabs. 2580 */ 2581 static void unfreeze_partials(struct kmem_cache *s) 2582 { 2583 struct slab *partial_slab; 2584 unsigned long flags; 2585 2586 local_lock_irqsave(&s->cpu_slab->lock, flags); 2587 partial_slab = this_cpu_read(s->cpu_slab->partial); 2588 this_cpu_write(s->cpu_slab->partial, NULL); 2589 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2590 2591 if (partial_slab) 2592 __unfreeze_partials(s, partial_slab); 2593 } 2594 2595 static void unfreeze_partials_cpu(struct kmem_cache *s, 2596 struct kmem_cache_cpu *c) 2597 { 2598 struct slab *partial_slab; 2599 2600 partial_slab = slub_percpu_partial(c); 2601 c->partial = NULL; 2602 2603 if (partial_slab) 2604 __unfreeze_partials(s, partial_slab); 2605 } 2606 2607 /* 2608 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2609 * partial slab slot if available. 2610 * 2611 * If we did not find a slot then simply move all the partials to the 2612 * per node partial list. 2613 */ 2614 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2615 { 2616 struct slab *oldslab; 2617 struct slab *slab_to_unfreeze = NULL; 2618 unsigned long flags; 2619 int slabs = 0; 2620 2621 local_lock_irqsave(&s->cpu_slab->lock, flags); 2622 2623 oldslab = this_cpu_read(s->cpu_slab->partial); 2624 2625 if (oldslab) { 2626 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2627 /* 2628 * Partial array is full. Move the existing set to the 2629 * per node partial list. Postpone the actual unfreezing 2630 * outside of the critical section. 2631 */ 2632 slab_to_unfreeze = oldslab; 2633 oldslab = NULL; 2634 } else { 2635 slabs = oldslab->slabs; 2636 } 2637 } 2638 2639 slabs++; 2640 2641 slab->slabs = slabs; 2642 slab->next = oldslab; 2643 2644 this_cpu_write(s->cpu_slab->partial, slab); 2645 2646 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2647 2648 if (slab_to_unfreeze) { 2649 __unfreeze_partials(s, slab_to_unfreeze); 2650 stat(s, CPU_PARTIAL_DRAIN); 2651 } 2652 } 2653 2654 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2655 2656 static inline void unfreeze_partials(struct kmem_cache *s) { } 2657 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2658 struct kmem_cache_cpu *c) { } 2659 2660 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2661 2662 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2663 { 2664 unsigned long flags; 2665 struct slab *slab; 2666 void *freelist; 2667 2668 local_lock_irqsave(&s->cpu_slab->lock, flags); 2669 2670 slab = c->slab; 2671 freelist = c->freelist; 2672 2673 c->slab = NULL; 2674 c->freelist = NULL; 2675 c->tid = next_tid(c->tid); 2676 2677 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2678 2679 if (slab) { 2680 deactivate_slab(s, slab, freelist); 2681 stat(s, CPUSLAB_FLUSH); 2682 } 2683 } 2684 2685 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2686 { 2687 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2688 void *freelist = c->freelist; 2689 struct slab *slab = c->slab; 2690 2691 c->slab = NULL; 2692 c->freelist = NULL; 2693 c->tid = next_tid(c->tid); 2694 2695 if (slab) { 2696 deactivate_slab(s, slab, freelist); 2697 stat(s, CPUSLAB_FLUSH); 2698 } 2699 2700 unfreeze_partials_cpu(s, c); 2701 } 2702 2703 struct slub_flush_work { 2704 struct work_struct work; 2705 struct kmem_cache *s; 2706 bool skip; 2707 }; 2708 2709 /* 2710 * Flush cpu slab. 2711 * 2712 * Called from CPU work handler with migration disabled. 2713 */ 2714 static void flush_cpu_slab(struct work_struct *w) 2715 { 2716 struct kmem_cache *s; 2717 struct kmem_cache_cpu *c; 2718 struct slub_flush_work *sfw; 2719 2720 sfw = container_of(w, struct slub_flush_work, work); 2721 2722 s = sfw->s; 2723 c = this_cpu_ptr(s->cpu_slab); 2724 2725 if (c->slab) 2726 flush_slab(s, c); 2727 2728 unfreeze_partials(s); 2729 } 2730 2731 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2732 { 2733 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2734 2735 return c->slab || slub_percpu_partial(c); 2736 } 2737 2738 static DEFINE_MUTEX(flush_lock); 2739 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2740 2741 static void flush_all_cpus_locked(struct kmem_cache *s) 2742 { 2743 struct slub_flush_work *sfw; 2744 unsigned int cpu; 2745 2746 lockdep_assert_cpus_held(); 2747 mutex_lock(&flush_lock); 2748 2749 for_each_online_cpu(cpu) { 2750 sfw = &per_cpu(slub_flush, cpu); 2751 if (!has_cpu_slab(cpu, s)) { 2752 sfw->skip = true; 2753 continue; 2754 } 2755 INIT_WORK(&sfw->work, flush_cpu_slab); 2756 sfw->skip = false; 2757 sfw->s = s; 2758 queue_work_on(cpu, flushwq, &sfw->work); 2759 } 2760 2761 for_each_online_cpu(cpu) { 2762 sfw = &per_cpu(slub_flush, cpu); 2763 if (sfw->skip) 2764 continue; 2765 flush_work(&sfw->work); 2766 } 2767 2768 mutex_unlock(&flush_lock); 2769 } 2770 2771 static void flush_all(struct kmem_cache *s) 2772 { 2773 cpus_read_lock(); 2774 flush_all_cpus_locked(s); 2775 cpus_read_unlock(); 2776 } 2777 2778 /* 2779 * Use the cpu notifier to insure that the cpu slabs are flushed when 2780 * necessary. 2781 */ 2782 static int slub_cpu_dead(unsigned int cpu) 2783 { 2784 struct kmem_cache *s; 2785 2786 mutex_lock(&slab_mutex); 2787 list_for_each_entry(s, &slab_caches, list) 2788 __flush_cpu_slab(s, cpu); 2789 mutex_unlock(&slab_mutex); 2790 return 0; 2791 } 2792 2793 /* 2794 * Check if the objects in a per cpu structure fit numa 2795 * locality expectations. 2796 */ 2797 static inline int node_match(struct slab *slab, int node) 2798 { 2799 #ifdef CONFIG_NUMA 2800 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2801 return 0; 2802 #endif 2803 return 1; 2804 } 2805 2806 #ifdef CONFIG_SLUB_DEBUG 2807 static int count_free(struct slab *slab) 2808 { 2809 return slab->objects - slab->inuse; 2810 } 2811 2812 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2813 { 2814 return atomic_long_read(&n->total_objects); 2815 } 2816 2817 /* Supports checking bulk free of a constructed freelist */ 2818 static noinline void free_debug_processing( 2819 struct kmem_cache *s, struct slab *slab, 2820 void *head, void *tail, int bulk_cnt, 2821 unsigned long addr) 2822 { 2823 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2824 struct slab *slab_free = NULL; 2825 void *object = head; 2826 int cnt = 0; 2827 unsigned long flags; 2828 bool checks_ok = false; 2829 depot_stack_handle_t handle = 0; 2830 2831 if (s->flags & SLAB_STORE_USER) 2832 handle = set_track_prepare(); 2833 2834 spin_lock_irqsave(&n->list_lock, flags); 2835 2836 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2837 if (!check_slab(s, slab)) 2838 goto out; 2839 } 2840 2841 if (slab->inuse < bulk_cnt) { 2842 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 2843 slab->inuse, bulk_cnt); 2844 goto out; 2845 } 2846 2847 next_object: 2848 2849 if (++cnt > bulk_cnt) 2850 goto out_cnt; 2851 2852 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2853 if (!free_consistency_checks(s, slab, object, addr)) 2854 goto out; 2855 } 2856 2857 if (s->flags & SLAB_STORE_USER) 2858 set_track_update(s, object, TRACK_FREE, addr, handle); 2859 trace(s, slab, object, 0); 2860 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 2861 init_object(s, object, SLUB_RED_INACTIVE); 2862 2863 /* Reached end of constructed freelist yet? */ 2864 if (object != tail) { 2865 object = get_freepointer(s, object); 2866 goto next_object; 2867 } 2868 checks_ok = true; 2869 2870 out_cnt: 2871 if (cnt != bulk_cnt) 2872 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 2873 bulk_cnt, cnt); 2874 2875 out: 2876 if (checks_ok) { 2877 void *prior = slab->freelist; 2878 2879 /* Perform the actual freeing while we still hold the locks */ 2880 slab->inuse -= cnt; 2881 set_freepointer(s, tail, prior); 2882 slab->freelist = head; 2883 2884 /* 2885 * If the slab is empty, and node's partial list is full, 2886 * it should be discarded anyway no matter it's on full or 2887 * partial list. 2888 */ 2889 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 2890 slab_free = slab; 2891 2892 if (!prior) { 2893 /* was on full list */ 2894 remove_full(s, n, slab); 2895 if (!slab_free) { 2896 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2897 stat(s, FREE_ADD_PARTIAL); 2898 } 2899 } else if (slab_free) { 2900 remove_partial(n, slab); 2901 stat(s, FREE_REMOVE_PARTIAL); 2902 } 2903 } 2904 2905 if (slab_free) { 2906 /* 2907 * Update the counters while still holding n->list_lock to 2908 * prevent spurious validation warnings 2909 */ 2910 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 2911 } 2912 2913 spin_unlock_irqrestore(&n->list_lock, flags); 2914 2915 if (!checks_ok) 2916 slab_fix(s, "Object at 0x%p not freed", object); 2917 2918 if (slab_free) { 2919 stat(s, FREE_SLAB); 2920 free_slab(s, slab_free); 2921 } 2922 } 2923 #endif /* CONFIG_SLUB_DEBUG */ 2924 2925 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2926 static unsigned long count_partial(struct kmem_cache_node *n, 2927 int (*get_count)(struct slab *)) 2928 { 2929 unsigned long flags; 2930 unsigned long x = 0; 2931 struct slab *slab; 2932 2933 spin_lock_irqsave(&n->list_lock, flags); 2934 list_for_each_entry(slab, &n->partial, slab_list) 2935 x += get_count(slab); 2936 spin_unlock_irqrestore(&n->list_lock, flags); 2937 return x; 2938 } 2939 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2940 2941 static noinline void 2942 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2943 { 2944 #ifdef CONFIG_SLUB_DEBUG 2945 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2946 DEFAULT_RATELIMIT_BURST); 2947 int node; 2948 struct kmem_cache_node *n; 2949 2950 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2951 return; 2952 2953 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2954 nid, gfpflags, &gfpflags); 2955 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2956 s->name, s->object_size, s->size, oo_order(s->oo), 2957 oo_order(s->min)); 2958 2959 if (oo_order(s->min) > get_order(s->object_size)) 2960 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2961 s->name); 2962 2963 for_each_kmem_cache_node(s, node, n) { 2964 unsigned long nr_slabs; 2965 unsigned long nr_objs; 2966 unsigned long nr_free; 2967 2968 nr_free = count_partial(n, count_free); 2969 nr_slabs = node_nr_slabs(n); 2970 nr_objs = node_nr_objs(n); 2971 2972 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2973 node, nr_slabs, nr_objs, nr_free); 2974 } 2975 #endif 2976 } 2977 2978 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 2979 { 2980 if (unlikely(slab_test_pfmemalloc(slab))) 2981 return gfp_pfmemalloc_allowed(gfpflags); 2982 2983 return true; 2984 } 2985 2986 /* 2987 * Check the slab->freelist and either transfer the freelist to the 2988 * per cpu freelist or deactivate the slab. 2989 * 2990 * The slab is still frozen if the return value is not NULL. 2991 * 2992 * If this function returns NULL then the slab has been unfrozen. 2993 */ 2994 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 2995 { 2996 struct slab new; 2997 unsigned long counters; 2998 void *freelist; 2999 3000 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3001 3002 do { 3003 freelist = slab->freelist; 3004 counters = slab->counters; 3005 3006 new.counters = counters; 3007 VM_BUG_ON(!new.frozen); 3008 3009 new.inuse = slab->objects; 3010 new.frozen = freelist != NULL; 3011 3012 } while (!__cmpxchg_double_slab(s, slab, 3013 freelist, counters, 3014 NULL, new.counters, 3015 "get_freelist")); 3016 3017 return freelist; 3018 } 3019 3020 /* 3021 * Slow path. The lockless freelist is empty or we need to perform 3022 * debugging duties. 3023 * 3024 * Processing is still very fast if new objects have been freed to the 3025 * regular freelist. In that case we simply take over the regular freelist 3026 * as the lockless freelist and zap the regular freelist. 3027 * 3028 * If that is not working then we fall back to the partial lists. We take the 3029 * first element of the freelist as the object to allocate now and move the 3030 * rest of the freelist to the lockless freelist. 3031 * 3032 * And if we were unable to get a new slab from the partial slab lists then 3033 * we need to allocate a new slab. This is the slowest path since it involves 3034 * a call to the page allocator and the setup of a new slab. 3035 * 3036 * Version of __slab_alloc to use when we know that preemption is 3037 * already disabled (which is the case for bulk allocation). 3038 */ 3039 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3040 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3041 { 3042 void *freelist; 3043 struct slab *slab; 3044 unsigned long flags; 3045 struct partial_context pc; 3046 3047 stat(s, ALLOC_SLOWPATH); 3048 3049 reread_slab: 3050 3051 slab = READ_ONCE(c->slab); 3052 if (!slab) { 3053 /* 3054 * if the node is not online or has no normal memory, just 3055 * ignore the node constraint 3056 */ 3057 if (unlikely(node != NUMA_NO_NODE && 3058 !node_isset(node, slab_nodes))) 3059 node = NUMA_NO_NODE; 3060 goto new_slab; 3061 } 3062 redo: 3063 3064 if (unlikely(!node_match(slab, node))) { 3065 /* 3066 * same as above but node_match() being false already 3067 * implies node != NUMA_NO_NODE 3068 */ 3069 if (!node_isset(node, slab_nodes)) { 3070 node = NUMA_NO_NODE; 3071 } else { 3072 stat(s, ALLOC_NODE_MISMATCH); 3073 goto deactivate_slab; 3074 } 3075 } 3076 3077 /* 3078 * By rights, we should be searching for a slab page that was 3079 * PFMEMALLOC but right now, we are losing the pfmemalloc 3080 * information when the page leaves the per-cpu allocator 3081 */ 3082 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3083 goto deactivate_slab; 3084 3085 /* must check again c->slab in case we got preempted and it changed */ 3086 local_lock_irqsave(&s->cpu_slab->lock, flags); 3087 if (unlikely(slab != c->slab)) { 3088 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3089 goto reread_slab; 3090 } 3091 freelist = c->freelist; 3092 if (freelist) 3093 goto load_freelist; 3094 3095 freelist = get_freelist(s, slab); 3096 3097 if (!freelist) { 3098 c->slab = NULL; 3099 c->tid = next_tid(c->tid); 3100 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3101 stat(s, DEACTIVATE_BYPASS); 3102 goto new_slab; 3103 } 3104 3105 stat(s, ALLOC_REFILL); 3106 3107 load_freelist: 3108 3109 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3110 3111 /* 3112 * freelist is pointing to the list of objects to be used. 3113 * slab is pointing to the slab from which the objects are obtained. 3114 * That slab must be frozen for per cpu allocations to work. 3115 */ 3116 VM_BUG_ON(!c->slab->frozen); 3117 c->freelist = get_freepointer(s, freelist); 3118 c->tid = next_tid(c->tid); 3119 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3120 return freelist; 3121 3122 deactivate_slab: 3123 3124 local_lock_irqsave(&s->cpu_slab->lock, flags); 3125 if (slab != c->slab) { 3126 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3127 goto reread_slab; 3128 } 3129 freelist = c->freelist; 3130 c->slab = NULL; 3131 c->freelist = NULL; 3132 c->tid = next_tid(c->tid); 3133 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3134 deactivate_slab(s, slab, freelist); 3135 3136 new_slab: 3137 3138 if (slub_percpu_partial(c)) { 3139 local_lock_irqsave(&s->cpu_slab->lock, flags); 3140 if (unlikely(c->slab)) { 3141 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3142 goto reread_slab; 3143 } 3144 if (unlikely(!slub_percpu_partial(c))) { 3145 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3146 /* we were preempted and partial list got empty */ 3147 goto new_objects; 3148 } 3149 3150 slab = c->slab = slub_percpu_partial(c); 3151 slub_set_percpu_partial(c, slab); 3152 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3153 stat(s, CPU_PARTIAL_ALLOC); 3154 goto redo; 3155 } 3156 3157 new_objects: 3158 3159 pc.flags = gfpflags; 3160 pc.slab = &slab; 3161 pc.orig_size = orig_size; 3162 freelist = get_partial(s, node, &pc); 3163 if (freelist) 3164 goto check_new_slab; 3165 3166 slub_put_cpu_ptr(s->cpu_slab); 3167 slab = new_slab(s, gfpflags, node); 3168 c = slub_get_cpu_ptr(s->cpu_slab); 3169 3170 if (unlikely(!slab)) { 3171 slab_out_of_memory(s, gfpflags, node); 3172 return NULL; 3173 } 3174 3175 stat(s, ALLOC_SLAB); 3176 3177 if (kmem_cache_debug(s)) { 3178 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3179 3180 if (unlikely(!freelist)) 3181 goto new_objects; 3182 3183 if (s->flags & SLAB_STORE_USER) 3184 set_track(s, freelist, TRACK_ALLOC, addr); 3185 3186 return freelist; 3187 } 3188 3189 /* 3190 * No other reference to the slab yet so we can 3191 * muck around with it freely without cmpxchg 3192 */ 3193 freelist = slab->freelist; 3194 slab->freelist = NULL; 3195 slab->inuse = slab->objects; 3196 slab->frozen = 1; 3197 3198 inc_slabs_node(s, slab_nid(slab), slab->objects); 3199 3200 check_new_slab: 3201 3202 if (kmem_cache_debug(s)) { 3203 /* 3204 * For debug caches here we had to go through 3205 * alloc_single_from_partial() so just store the tracking info 3206 * and return the object 3207 */ 3208 if (s->flags & SLAB_STORE_USER) 3209 set_track(s, freelist, TRACK_ALLOC, addr); 3210 3211 return freelist; 3212 } 3213 3214 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3215 /* 3216 * For !pfmemalloc_match() case we don't load freelist so that 3217 * we don't make further mismatched allocations easier. 3218 */ 3219 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3220 return freelist; 3221 } 3222 3223 retry_load_slab: 3224 3225 local_lock_irqsave(&s->cpu_slab->lock, flags); 3226 if (unlikely(c->slab)) { 3227 void *flush_freelist = c->freelist; 3228 struct slab *flush_slab = c->slab; 3229 3230 c->slab = NULL; 3231 c->freelist = NULL; 3232 c->tid = next_tid(c->tid); 3233 3234 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3235 3236 deactivate_slab(s, flush_slab, flush_freelist); 3237 3238 stat(s, CPUSLAB_FLUSH); 3239 3240 goto retry_load_slab; 3241 } 3242 c->slab = slab; 3243 3244 goto load_freelist; 3245 } 3246 3247 /* 3248 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3249 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3250 * pointer. 3251 */ 3252 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3253 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3254 { 3255 void *p; 3256 3257 #ifdef CONFIG_PREEMPT_COUNT 3258 /* 3259 * We may have been preempted and rescheduled on a different 3260 * cpu before disabling preemption. Need to reload cpu area 3261 * pointer. 3262 */ 3263 c = slub_get_cpu_ptr(s->cpu_slab); 3264 #endif 3265 3266 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3267 #ifdef CONFIG_PREEMPT_COUNT 3268 slub_put_cpu_ptr(s->cpu_slab); 3269 #endif 3270 return p; 3271 } 3272 3273 /* 3274 * If the object has been wiped upon free, make sure it's fully initialized by 3275 * zeroing out freelist pointer. 3276 */ 3277 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3278 void *obj) 3279 { 3280 if (unlikely(slab_want_init_on_free(s)) && obj) 3281 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3282 0, sizeof(void *)); 3283 } 3284 3285 /* 3286 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3287 * have the fastpath folded into their functions. So no function call 3288 * overhead for requests that can be satisfied on the fastpath. 3289 * 3290 * The fastpath works by first checking if the lockless freelist can be used. 3291 * If not then __slab_alloc is called for slow processing. 3292 * 3293 * Otherwise we can simply pick the next object from the lockless free list. 3294 */ 3295 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3296 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3297 { 3298 void *object; 3299 struct kmem_cache_cpu *c; 3300 struct slab *slab; 3301 unsigned long tid; 3302 struct obj_cgroup *objcg = NULL; 3303 bool init = false; 3304 3305 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3306 if (!s) 3307 return NULL; 3308 3309 object = kfence_alloc(s, orig_size, gfpflags); 3310 if (unlikely(object)) 3311 goto out; 3312 3313 redo: 3314 /* 3315 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3316 * enabled. We may switch back and forth between cpus while 3317 * reading from one cpu area. That does not matter as long 3318 * as we end up on the original cpu again when doing the cmpxchg. 3319 * 3320 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3321 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3322 * the tid. If we are preempted and switched to another cpu between the 3323 * two reads, it's OK as the two are still associated with the same cpu 3324 * and cmpxchg later will validate the cpu. 3325 */ 3326 c = raw_cpu_ptr(s->cpu_slab); 3327 tid = READ_ONCE(c->tid); 3328 3329 /* 3330 * Irqless object alloc/free algorithm used here depends on sequence 3331 * of fetching cpu_slab's data. tid should be fetched before anything 3332 * on c to guarantee that object and slab associated with previous tid 3333 * won't be used with current tid. If we fetch tid first, object and 3334 * slab could be one associated with next tid and our alloc/free 3335 * request will be failed. In this case, we will retry. So, no problem. 3336 */ 3337 barrier(); 3338 3339 /* 3340 * The transaction ids are globally unique per cpu and per operation on 3341 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3342 * occurs on the right processor and that there was no operation on the 3343 * linked list in between. 3344 */ 3345 3346 object = c->freelist; 3347 slab = c->slab; 3348 3349 if (!USE_LOCKLESS_FAST_PATH() || 3350 unlikely(!object || !slab || !node_match(slab, node))) { 3351 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3352 } else { 3353 void *next_object = get_freepointer_safe(s, object); 3354 3355 /* 3356 * The cmpxchg will only match if there was no additional 3357 * operation and if we are on the right processor. 3358 * 3359 * The cmpxchg does the following atomically (without lock 3360 * semantics!) 3361 * 1. Relocate first pointer to the current per cpu area. 3362 * 2. Verify that tid and freelist have not been changed 3363 * 3. If they were not changed replace tid and freelist 3364 * 3365 * Since this is without lock semantics the protection is only 3366 * against code executing on this cpu *not* from access by 3367 * other cpus. 3368 */ 3369 if (unlikely(!this_cpu_cmpxchg_double( 3370 s->cpu_slab->freelist, s->cpu_slab->tid, 3371 object, tid, 3372 next_object, next_tid(tid)))) { 3373 3374 note_cmpxchg_failure("slab_alloc", s, tid); 3375 goto redo; 3376 } 3377 prefetch_freepointer(s, next_object); 3378 stat(s, ALLOC_FASTPATH); 3379 } 3380 3381 maybe_wipe_obj_freeptr(s, object); 3382 init = slab_want_init_on_alloc(gfpflags, s); 3383 3384 out: 3385 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 3386 3387 return object; 3388 } 3389 3390 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3391 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3392 { 3393 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3394 } 3395 3396 static __always_inline 3397 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3398 gfp_t gfpflags) 3399 { 3400 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3401 3402 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3403 3404 return ret; 3405 } 3406 3407 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3408 { 3409 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3410 } 3411 EXPORT_SYMBOL(kmem_cache_alloc); 3412 3413 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3414 gfp_t gfpflags) 3415 { 3416 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3417 } 3418 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3419 3420 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, 3421 int node, size_t orig_size, 3422 unsigned long caller) 3423 { 3424 return slab_alloc_node(s, NULL, gfpflags, node, 3425 caller, orig_size); 3426 } 3427 3428 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3429 { 3430 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3431 3432 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 3433 3434 return ret; 3435 } 3436 EXPORT_SYMBOL(kmem_cache_alloc_node); 3437 3438 /* 3439 * Slow path handling. This may still be called frequently since objects 3440 * have a longer lifetime than the cpu slabs in most processing loads. 3441 * 3442 * So we still attempt to reduce cache line usage. Just take the slab 3443 * lock and free the item. If there is no additional partial slab 3444 * handling required then we can return immediately. 3445 */ 3446 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3447 void *head, void *tail, int cnt, 3448 unsigned long addr) 3449 3450 { 3451 void *prior; 3452 int was_frozen; 3453 struct slab new; 3454 unsigned long counters; 3455 struct kmem_cache_node *n = NULL; 3456 unsigned long flags; 3457 3458 stat(s, FREE_SLOWPATH); 3459 3460 if (kfence_free(head)) 3461 return; 3462 3463 if (kmem_cache_debug(s)) { 3464 free_debug_processing(s, slab, head, tail, cnt, addr); 3465 return; 3466 } 3467 3468 do { 3469 if (unlikely(n)) { 3470 spin_unlock_irqrestore(&n->list_lock, flags); 3471 n = NULL; 3472 } 3473 prior = slab->freelist; 3474 counters = slab->counters; 3475 set_freepointer(s, tail, prior); 3476 new.counters = counters; 3477 was_frozen = new.frozen; 3478 new.inuse -= cnt; 3479 if ((!new.inuse || !prior) && !was_frozen) { 3480 3481 if (kmem_cache_has_cpu_partial(s) && !prior) { 3482 3483 /* 3484 * Slab was on no list before and will be 3485 * partially empty 3486 * We can defer the list move and instead 3487 * freeze it. 3488 */ 3489 new.frozen = 1; 3490 3491 } else { /* Needs to be taken off a list */ 3492 3493 n = get_node(s, slab_nid(slab)); 3494 /* 3495 * Speculatively acquire the list_lock. 3496 * If the cmpxchg does not succeed then we may 3497 * drop the list_lock without any processing. 3498 * 3499 * Otherwise the list_lock will synchronize with 3500 * other processors updating the list of slabs. 3501 */ 3502 spin_lock_irqsave(&n->list_lock, flags); 3503 3504 } 3505 } 3506 3507 } while (!cmpxchg_double_slab(s, slab, 3508 prior, counters, 3509 head, new.counters, 3510 "__slab_free")); 3511 3512 if (likely(!n)) { 3513 3514 if (likely(was_frozen)) { 3515 /* 3516 * The list lock was not taken therefore no list 3517 * activity can be necessary. 3518 */ 3519 stat(s, FREE_FROZEN); 3520 } else if (new.frozen) { 3521 /* 3522 * If we just froze the slab then put it onto the 3523 * per cpu partial list. 3524 */ 3525 put_cpu_partial(s, slab, 1); 3526 stat(s, CPU_PARTIAL_FREE); 3527 } 3528 3529 return; 3530 } 3531 3532 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3533 goto slab_empty; 3534 3535 /* 3536 * Objects left in the slab. If it was not on the partial list before 3537 * then add it. 3538 */ 3539 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3540 remove_full(s, n, slab); 3541 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3542 stat(s, FREE_ADD_PARTIAL); 3543 } 3544 spin_unlock_irqrestore(&n->list_lock, flags); 3545 return; 3546 3547 slab_empty: 3548 if (prior) { 3549 /* 3550 * Slab on the partial list. 3551 */ 3552 remove_partial(n, slab); 3553 stat(s, FREE_REMOVE_PARTIAL); 3554 } else { 3555 /* Slab must be on the full list */ 3556 remove_full(s, n, slab); 3557 } 3558 3559 spin_unlock_irqrestore(&n->list_lock, flags); 3560 stat(s, FREE_SLAB); 3561 discard_slab(s, slab); 3562 } 3563 3564 /* 3565 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3566 * can perform fastpath freeing without additional function calls. 3567 * 3568 * The fastpath is only possible if we are freeing to the current cpu slab 3569 * of this processor. This typically the case if we have just allocated 3570 * the item before. 3571 * 3572 * If fastpath is not possible then fall back to __slab_free where we deal 3573 * with all sorts of special processing. 3574 * 3575 * Bulk free of a freelist with several objects (all pointing to the 3576 * same slab) possible by specifying head and tail ptr, plus objects 3577 * count (cnt). Bulk free indicated by tail pointer being set. 3578 */ 3579 static __always_inline void do_slab_free(struct kmem_cache *s, 3580 struct slab *slab, void *head, void *tail, 3581 int cnt, unsigned long addr) 3582 { 3583 void *tail_obj = tail ? : head; 3584 struct kmem_cache_cpu *c; 3585 unsigned long tid; 3586 void **freelist; 3587 3588 redo: 3589 /* 3590 * Determine the currently cpus per cpu slab. 3591 * The cpu may change afterward. However that does not matter since 3592 * data is retrieved via this pointer. If we are on the same cpu 3593 * during the cmpxchg then the free will succeed. 3594 */ 3595 c = raw_cpu_ptr(s->cpu_slab); 3596 tid = READ_ONCE(c->tid); 3597 3598 /* Same with comment on barrier() in slab_alloc_node() */ 3599 barrier(); 3600 3601 if (unlikely(slab != c->slab)) { 3602 __slab_free(s, slab, head, tail_obj, cnt, addr); 3603 return; 3604 } 3605 3606 if (USE_LOCKLESS_FAST_PATH()) { 3607 freelist = READ_ONCE(c->freelist); 3608 3609 set_freepointer(s, tail_obj, freelist); 3610 3611 if (unlikely(!this_cpu_cmpxchg_double( 3612 s->cpu_slab->freelist, s->cpu_slab->tid, 3613 freelist, tid, 3614 head, next_tid(tid)))) { 3615 3616 note_cmpxchg_failure("slab_free", s, tid); 3617 goto redo; 3618 } 3619 } else { 3620 /* Update the free list under the local lock */ 3621 local_lock(&s->cpu_slab->lock); 3622 c = this_cpu_ptr(s->cpu_slab); 3623 if (unlikely(slab != c->slab)) { 3624 local_unlock(&s->cpu_slab->lock); 3625 goto redo; 3626 } 3627 tid = c->tid; 3628 freelist = c->freelist; 3629 3630 set_freepointer(s, tail_obj, freelist); 3631 c->freelist = head; 3632 c->tid = next_tid(tid); 3633 3634 local_unlock(&s->cpu_slab->lock); 3635 } 3636 stat(s, FREE_FASTPATH); 3637 } 3638 3639 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3640 void *head, void *tail, void **p, int cnt, 3641 unsigned long addr) 3642 { 3643 memcg_slab_free_hook(s, slab, p, cnt); 3644 /* 3645 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3646 * to remove objects, whose reuse must be delayed. 3647 */ 3648 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3649 do_slab_free(s, slab, head, tail, cnt, addr); 3650 } 3651 3652 #ifdef CONFIG_KASAN_GENERIC 3653 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3654 { 3655 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3656 } 3657 #endif 3658 3659 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller) 3660 { 3661 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller); 3662 } 3663 3664 void kmem_cache_free(struct kmem_cache *s, void *x) 3665 { 3666 s = cache_from_obj(s, x); 3667 if (!s) 3668 return; 3669 trace_kmem_cache_free(_RET_IP_, x, s); 3670 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); 3671 } 3672 EXPORT_SYMBOL(kmem_cache_free); 3673 3674 struct detached_freelist { 3675 struct slab *slab; 3676 void *tail; 3677 void *freelist; 3678 int cnt; 3679 struct kmem_cache *s; 3680 }; 3681 3682 /* 3683 * This function progressively scans the array with free objects (with 3684 * a limited look ahead) and extract objects belonging to the same 3685 * slab. It builds a detached freelist directly within the given 3686 * slab/objects. This can happen without any need for 3687 * synchronization, because the objects are owned by running process. 3688 * The freelist is build up as a single linked list in the objects. 3689 * The idea is, that this detached freelist can then be bulk 3690 * transferred to the real freelist(s), but only requiring a single 3691 * synchronization primitive. Look ahead in the array is limited due 3692 * to performance reasons. 3693 */ 3694 static inline 3695 int build_detached_freelist(struct kmem_cache *s, size_t size, 3696 void **p, struct detached_freelist *df) 3697 { 3698 int lookahead = 3; 3699 void *object; 3700 struct folio *folio; 3701 size_t same; 3702 3703 object = p[--size]; 3704 folio = virt_to_folio(object); 3705 if (!s) { 3706 /* Handle kalloc'ed objects */ 3707 if (unlikely(!folio_test_slab(folio))) { 3708 free_large_kmalloc(folio, object); 3709 df->slab = NULL; 3710 return size; 3711 } 3712 /* Derive kmem_cache from object */ 3713 df->slab = folio_slab(folio); 3714 df->s = df->slab->slab_cache; 3715 } else { 3716 df->slab = folio_slab(folio); 3717 df->s = cache_from_obj(s, object); /* Support for memcg */ 3718 } 3719 3720 /* Start new detached freelist */ 3721 df->tail = object; 3722 df->freelist = object; 3723 df->cnt = 1; 3724 3725 if (is_kfence_address(object)) 3726 return size; 3727 3728 set_freepointer(df->s, object, NULL); 3729 3730 same = size; 3731 while (size) { 3732 object = p[--size]; 3733 /* df->slab is always set at this point */ 3734 if (df->slab == virt_to_slab(object)) { 3735 /* Opportunity build freelist */ 3736 set_freepointer(df->s, object, df->freelist); 3737 df->freelist = object; 3738 df->cnt++; 3739 same--; 3740 if (size != same) 3741 swap(p[size], p[same]); 3742 continue; 3743 } 3744 3745 /* Limit look ahead search */ 3746 if (!--lookahead) 3747 break; 3748 } 3749 3750 return same; 3751 } 3752 3753 /* Note that interrupts must be enabled when calling this function. */ 3754 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3755 { 3756 if (!size) 3757 return; 3758 3759 do { 3760 struct detached_freelist df; 3761 3762 size = build_detached_freelist(s, size, p, &df); 3763 if (!df.slab) 3764 continue; 3765 3766 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, 3767 _RET_IP_); 3768 } while (likely(size)); 3769 } 3770 EXPORT_SYMBOL(kmem_cache_free_bulk); 3771 3772 /* Note that interrupts must be enabled when calling this function. */ 3773 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3774 void **p) 3775 { 3776 struct kmem_cache_cpu *c; 3777 int i; 3778 struct obj_cgroup *objcg = NULL; 3779 3780 /* memcg and kmem_cache debug support */ 3781 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3782 if (unlikely(!s)) 3783 return false; 3784 /* 3785 * Drain objects in the per cpu slab, while disabling local 3786 * IRQs, which protects against PREEMPT and interrupts 3787 * handlers invoking normal fastpath. 3788 */ 3789 c = slub_get_cpu_ptr(s->cpu_slab); 3790 local_lock_irq(&s->cpu_slab->lock); 3791 3792 for (i = 0; i < size; i++) { 3793 void *object = kfence_alloc(s, s->object_size, flags); 3794 3795 if (unlikely(object)) { 3796 p[i] = object; 3797 continue; 3798 } 3799 3800 object = c->freelist; 3801 if (unlikely(!object)) { 3802 /* 3803 * We may have removed an object from c->freelist using 3804 * the fastpath in the previous iteration; in that case, 3805 * c->tid has not been bumped yet. 3806 * Since ___slab_alloc() may reenable interrupts while 3807 * allocating memory, we should bump c->tid now. 3808 */ 3809 c->tid = next_tid(c->tid); 3810 3811 local_unlock_irq(&s->cpu_slab->lock); 3812 3813 /* 3814 * Invoking slow path likely have side-effect 3815 * of re-populating per CPU c->freelist 3816 */ 3817 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3818 _RET_IP_, c, s->object_size); 3819 if (unlikely(!p[i])) 3820 goto error; 3821 3822 c = this_cpu_ptr(s->cpu_slab); 3823 maybe_wipe_obj_freeptr(s, p[i]); 3824 3825 local_lock_irq(&s->cpu_slab->lock); 3826 3827 continue; /* goto for-loop */ 3828 } 3829 c->freelist = get_freepointer(s, object); 3830 p[i] = object; 3831 maybe_wipe_obj_freeptr(s, p[i]); 3832 } 3833 c->tid = next_tid(c->tid); 3834 local_unlock_irq(&s->cpu_slab->lock); 3835 slub_put_cpu_ptr(s->cpu_slab); 3836 3837 /* 3838 * memcg and kmem_cache debug support and memory initialization. 3839 * Done outside of the IRQ disabled fastpath loop. 3840 */ 3841 slab_post_alloc_hook(s, objcg, flags, size, p, 3842 slab_want_init_on_alloc(flags, s)); 3843 return i; 3844 error: 3845 slub_put_cpu_ptr(s->cpu_slab); 3846 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3847 kmem_cache_free_bulk(s, i, p); 3848 return 0; 3849 } 3850 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3851 3852 3853 /* 3854 * Object placement in a slab is made very easy because we always start at 3855 * offset 0. If we tune the size of the object to the alignment then we can 3856 * get the required alignment by putting one properly sized object after 3857 * another. 3858 * 3859 * Notice that the allocation order determines the sizes of the per cpu 3860 * caches. Each processor has always one slab available for allocations. 3861 * Increasing the allocation order reduces the number of times that slabs 3862 * must be moved on and off the partial lists and is therefore a factor in 3863 * locking overhead. 3864 */ 3865 3866 /* 3867 * Minimum / Maximum order of slab pages. This influences locking overhead 3868 * and slab fragmentation. A higher order reduces the number of partial slabs 3869 * and increases the number of allocations possible without having to 3870 * take the list_lock. 3871 */ 3872 static unsigned int slub_min_order; 3873 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3874 static unsigned int slub_min_objects; 3875 3876 /* 3877 * Calculate the order of allocation given an slab object size. 3878 * 3879 * The order of allocation has significant impact on performance and other 3880 * system components. Generally order 0 allocations should be preferred since 3881 * order 0 does not cause fragmentation in the page allocator. Larger objects 3882 * be problematic to put into order 0 slabs because there may be too much 3883 * unused space left. We go to a higher order if more than 1/16th of the slab 3884 * would be wasted. 3885 * 3886 * In order to reach satisfactory performance we must ensure that a minimum 3887 * number of objects is in one slab. Otherwise we may generate too much 3888 * activity on the partial lists which requires taking the list_lock. This is 3889 * less a concern for large slabs though which are rarely used. 3890 * 3891 * slub_max_order specifies the order where we begin to stop considering the 3892 * number of objects in a slab as critical. If we reach slub_max_order then 3893 * we try to keep the page order as low as possible. So we accept more waste 3894 * of space in favor of a small page order. 3895 * 3896 * Higher order allocations also allow the placement of more objects in a 3897 * slab and thereby reduce object handling overhead. If the user has 3898 * requested a higher minimum order then we start with that one instead of 3899 * the smallest order which will fit the object. 3900 */ 3901 static inline unsigned int calc_slab_order(unsigned int size, 3902 unsigned int min_objects, unsigned int max_order, 3903 unsigned int fract_leftover) 3904 { 3905 unsigned int min_order = slub_min_order; 3906 unsigned int order; 3907 3908 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3909 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3910 3911 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3912 order <= max_order; order++) { 3913 3914 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3915 unsigned int rem; 3916 3917 rem = slab_size % size; 3918 3919 if (rem <= slab_size / fract_leftover) 3920 break; 3921 } 3922 3923 return order; 3924 } 3925 3926 static inline int calculate_order(unsigned int size) 3927 { 3928 unsigned int order; 3929 unsigned int min_objects; 3930 unsigned int max_objects; 3931 unsigned int nr_cpus; 3932 3933 /* 3934 * Attempt to find best configuration for a slab. This 3935 * works by first attempting to generate a layout with 3936 * the best configuration and backing off gradually. 3937 * 3938 * First we increase the acceptable waste in a slab. Then 3939 * we reduce the minimum objects required in a slab. 3940 */ 3941 min_objects = slub_min_objects; 3942 if (!min_objects) { 3943 /* 3944 * Some architectures will only update present cpus when 3945 * onlining them, so don't trust the number if it's just 1. But 3946 * we also don't want to use nr_cpu_ids always, as on some other 3947 * architectures, there can be many possible cpus, but never 3948 * onlined. Here we compromise between trying to avoid too high 3949 * order on systems that appear larger than they are, and too 3950 * low order on systems that appear smaller than they are. 3951 */ 3952 nr_cpus = num_present_cpus(); 3953 if (nr_cpus <= 1) 3954 nr_cpus = nr_cpu_ids; 3955 min_objects = 4 * (fls(nr_cpus) + 1); 3956 } 3957 max_objects = order_objects(slub_max_order, size); 3958 min_objects = min(min_objects, max_objects); 3959 3960 while (min_objects > 1) { 3961 unsigned int fraction; 3962 3963 fraction = 16; 3964 while (fraction >= 4) { 3965 order = calc_slab_order(size, min_objects, 3966 slub_max_order, fraction); 3967 if (order <= slub_max_order) 3968 return order; 3969 fraction /= 2; 3970 } 3971 min_objects--; 3972 } 3973 3974 /* 3975 * We were unable to place multiple objects in a slab. Now 3976 * lets see if we can place a single object there. 3977 */ 3978 order = calc_slab_order(size, 1, slub_max_order, 1); 3979 if (order <= slub_max_order) 3980 return order; 3981 3982 /* 3983 * Doh this slab cannot be placed using slub_max_order. 3984 */ 3985 order = calc_slab_order(size, 1, MAX_ORDER, 1); 3986 if (order < MAX_ORDER) 3987 return order; 3988 return -ENOSYS; 3989 } 3990 3991 static void 3992 init_kmem_cache_node(struct kmem_cache_node *n) 3993 { 3994 n->nr_partial = 0; 3995 spin_lock_init(&n->list_lock); 3996 INIT_LIST_HEAD(&n->partial); 3997 #ifdef CONFIG_SLUB_DEBUG 3998 atomic_long_set(&n->nr_slabs, 0); 3999 atomic_long_set(&n->total_objects, 0); 4000 INIT_LIST_HEAD(&n->full); 4001 #endif 4002 } 4003 4004 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4005 { 4006 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4007 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 4008 4009 /* 4010 * Must align to double word boundary for the double cmpxchg 4011 * instructions to work; see __pcpu_double_call_return_bool(). 4012 */ 4013 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4014 2 * sizeof(void *)); 4015 4016 if (!s->cpu_slab) 4017 return 0; 4018 4019 init_kmem_cache_cpus(s); 4020 4021 return 1; 4022 } 4023 4024 static struct kmem_cache *kmem_cache_node; 4025 4026 /* 4027 * No kmalloc_node yet so do it by hand. We know that this is the first 4028 * slab on the node for this slabcache. There are no concurrent accesses 4029 * possible. 4030 * 4031 * Note that this function only works on the kmem_cache_node 4032 * when allocating for the kmem_cache_node. This is used for bootstrapping 4033 * memory on a fresh node that has no slab structures yet. 4034 */ 4035 static void early_kmem_cache_node_alloc(int node) 4036 { 4037 struct slab *slab; 4038 struct kmem_cache_node *n; 4039 4040 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 4041 4042 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 4043 4044 BUG_ON(!slab); 4045 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects); 4046 if (slab_nid(slab) != node) { 4047 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 4048 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 4049 } 4050 4051 n = slab->freelist; 4052 BUG_ON(!n); 4053 #ifdef CONFIG_SLUB_DEBUG 4054 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 4055 init_tracking(kmem_cache_node, n); 4056 #endif 4057 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 4058 slab->freelist = get_freepointer(kmem_cache_node, n); 4059 slab->inuse = 1; 4060 kmem_cache_node->node[node] = n; 4061 init_kmem_cache_node(n); 4062 inc_slabs_node(kmem_cache_node, node, slab->objects); 4063 4064 /* 4065 * No locks need to be taken here as it has just been 4066 * initialized and there is no concurrent access. 4067 */ 4068 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 4069 } 4070 4071 static void free_kmem_cache_nodes(struct kmem_cache *s) 4072 { 4073 int node; 4074 struct kmem_cache_node *n; 4075 4076 for_each_kmem_cache_node(s, node, n) { 4077 s->node[node] = NULL; 4078 kmem_cache_free(kmem_cache_node, n); 4079 } 4080 } 4081 4082 void __kmem_cache_release(struct kmem_cache *s) 4083 { 4084 cache_random_seq_destroy(s); 4085 free_percpu(s->cpu_slab); 4086 free_kmem_cache_nodes(s); 4087 } 4088 4089 static int init_kmem_cache_nodes(struct kmem_cache *s) 4090 { 4091 int node; 4092 4093 for_each_node_mask(node, slab_nodes) { 4094 struct kmem_cache_node *n; 4095 4096 if (slab_state == DOWN) { 4097 early_kmem_cache_node_alloc(node); 4098 continue; 4099 } 4100 n = kmem_cache_alloc_node(kmem_cache_node, 4101 GFP_KERNEL, node); 4102 4103 if (!n) { 4104 free_kmem_cache_nodes(s); 4105 return 0; 4106 } 4107 4108 init_kmem_cache_node(n); 4109 s->node[node] = n; 4110 } 4111 return 1; 4112 } 4113 4114 static void set_cpu_partial(struct kmem_cache *s) 4115 { 4116 #ifdef CONFIG_SLUB_CPU_PARTIAL 4117 unsigned int nr_objects; 4118 4119 /* 4120 * cpu_partial determined the maximum number of objects kept in the 4121 * per cpu partial lists of a processor. 4122 * 4123 * Per cpu partial lists mainly contain slabs that just have one 4124 * object freed. If they are used for allocation then they can be 4125 * filled up again with minimal effort. The slab will never hit the 4126 * per node partial lists and therefore no locking will be required. 4127 * 4128 * For backwards compatibility reasons, this is determined as number 4129 * of objects, even though we now limit maximum number of pages, see 4130 * slub_set_cpu_partial() 4131 */ 4132 if (!kmem_cache_has_cpu_partial(s)) 4133 nr_objects = 0; 4134 else if (s->size >= PAGE_SIZE) 4135 nr_objects = 6; 4136 else if (s->size >= 1024) 4137 nr_objects = 24; 4138 else if (s->size >= 256) 4139 nr_objects = 52; 4140 else 4141 nr_objects = 120; 4142 4143 slub_set_cpu_partial(s, nr_objects); 4144 #endif 4145 } 4146 4147 /* 4148 * calculate_sizes() determines the order and the distribution of data within 4149 * a slab object. 4150 */ 4151 static int calculate_sizes(struct kmem_cache *s) 4152 { 4153 slab_flags_t flags = s->flags; 4154 unsigned int size = s->object_size; 4155 unsigned int order; 4156 4157 /* 4158 * Round up object size to the next word boundary. We can only 4159 * place the free pointer at word boundaries and this determines 4160 * the possible location of the free pointer. 4161 */ 4162 size = ALIGN(size, sizeof(void *)); 4163 4164 #ifdef CONFIG_SLUB_DEBUG 4165 /* 4166 * Determine if we can poison the object itself. If the user of 4167 * the slab may touch the object after free or before allocation 4168 * then we should never poison the object itself. 4169 */ 4170 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4171 !s->ctor) 4172 s->flags |= __OBJECT_POISON; 4173 else 4174 s->flags &= ~__OBJECT_POISON; 4175 4176 4177 /* 4178 * If we are Redzoning then check if there is some space between the 4179 * end of the object and the free pointer. If not then add an 4180 * additional word to have some bytes to store Redzone information. 4181 */ 4182 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4183 size += sizeof(void *); 4184 #endif 4185 4186 /* 4187 * With that we have determined the number of bytes in actual use 4188 * by the object and redzoning. 4189 */ 4190 s->inuse = size; 4191 4192 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4193 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4194 s->ctor) { 4195 /* 4196 * Relocate free pointer after the object if it is not 4197 * permitted to overwrite the first word of the object on 4198 * kmem_cache_free. 4199 * 4200 * This is the case if we do RCU, have a constructor or 4201 * destructor, are poisoning the objects, or are 4202 * redzoning an object smaller than sizeof(void *). 4203 * 4204 * The assumption that s->offset >= s->inuse means free 4205 * pointer is outside of the object is used in the 4206 * freeptr_outside_object() function. If that is no 4207 * longer true, the function needs to be modified. 4208 */ 4209 s->offset = size; 4210 size += sizeof(void *); 4211 } else { 4212 /* 4213 * Store freelist pointer near middle of object to keep 4214 * it away from the edges of the object to avoid small 4215 * sized over/underflows from neighboring allocations. 4216 */ 4217 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4218 } 4219 4220 #ifdef CONFIG_SLUB_DEBUG 4221 if (flags & SLAB_STORE_USER) { 4222 /* 4223 * Need to store information about allocs and frees after 4224 * the object. 4225 */ 4226 size += 2 * sizeof(struct track); 4227 4228 /* Save the original kmalloc request size */ 4229 if (flags & SLAB_KMALLOC) 4230 size += sizeof(unsigned int); 4231 } 4232 #endif 4233 4234 kasan_cache_create(s, &size, &s->flags); 4235 #ifdef CONFIG_SLUB_DEBUG 4236 if (flags & SLAB_RED_ZONE) { 4237 /* 4238 * Add some empty padding so that we can catch 4239 * overwrites from earlier objects rather than let 4240 * tracking information or the free pointer be 4241 * corrupted if a user writes before the start 4242 * of the object. 4243 */ 4244 size += sizeof(void *); 4245 4246 s->red_left_pad = sizeof(void *); 4247 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4248 size += s->red_left_pad; 4249 } 4250 #endif 4251 4252 /* 4253 * SLUB stores one object immediately after another beginning from 4254 * offset 0. In order to align the objects we have to simply size 4255 * each object to conform to the alignment. 4256 */ 4257 size = ALIGN(size, s->align); 4258 s->size = size; 4259 s->reciprocal_size = reciprocal_value(size); 4260 order = calculate_order(size); 4261 4262 if ((int)order < 0) 4263 return 0; 4264 4265 s->allocflags = 0; 4266 if (order) 4267 s->allocflags |= __GFP_COMP; 4268 4269 if (s->flags & SLAB_CACHE_DMA) 4270 s->allocflags |= GFP_DMA; 4271 4272 if (s->flags & SLAB_CACHE_DMA32) 4273 s->allocflags |= GFP_DMA32; 4274 4275 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4276 s->allocflags |= __GFP_RECLAIMABLE; 4277 4278 /* 4279 * Determine the number of objects per slab 4280 */ 4281 s->oo = oo_make(order, size); 4282 s->min = oo_make(get_order(size), size); 4283 4284 return !!oo_objects(s->oo); 4285 } 4286 4287 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4288 { 4289 s->flags = kmem_cache_flags(s->size, flags, s->name); 4290 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4291 s->random = get_random_long(); 4292 #endif 4293 4294 if (!calculate_sizes(s)) 4295 goto error; 4296 if (disable_higher_order_debug) { 4297 /* 4298 * Disable debugging flags that store metadata if the min slab 4299 * order increased. 4300 */ 4301 if (get_order(s->size) > get_order(s->object_size)) { 4302 s->flags &= ~DEBUG_METADATA_FLAGS; 4303 s->offset = 0; 4304 if (!calculate_sizes(s)) 4305 goto error; 4306 } 4307 } 4308 4309 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4310 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4311 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4312 /* Enable fast mode */ 4313 s->flags |= __CMPXCHG_DOUBLE; 4314 #endif 4315 4316 /* 4317 * The larger the object size is, the more slabs we want on the partial 4318 * list to avoid pounding the page allocator excessively. 4319 */ 4320 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4321 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4322 4323 set_cpu_partial(s); 4324 4325 #ifdef CONFIG_NUMA 4326 s->remote_node_defrag_ratio = 1000; 4327 #endif 4328 4329 /* Initialize the pre-computed randomized freelist if slab is up */ 4330 if (slab_state >= UP) { 4331 if (init_cache_random_seq(s)) 4332 goto error; 4333 } 4334 4335 if (!init_kmem_cache_nodes(s)) 4336 goto error; 4337 4338 if (alloc_kmem_cache_cpus(s)) 4339 return 0; 4340 4341 error: 4342 __kmem_cache_release(s); 4343 return -EINVAL; 4344 } 4345 4346 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4347 const char *text) 4348 { 4349 #ifdef CONFIG_SLUB_DEBUG 4350 void *addr = slab_address(slab); 4351 void *p; 4352 4353 slab_err(s, slab, text, s->name); 4354 4355 spin_lock(&object_map_lock); 4356 __fill_map(object_map, s, slab); 4357 4358 for_each_object(p, s, addr, slab->objects) { 4359 4360 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 4361 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4362 print_tracking(s, p); 4363 } 4364 } 4365 spin_unlock(&object_map_lock); 4366 #endif 4367 } 4368 4369 /* 4370 * Attempt to free all partial slabs on a node. 4371 * This is called from __kmem_cache_shutdown(). We must take list_lock 4372 * because sysfs file might still access partial list after the shutdowning. 4373 */ 4374 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4375 { 4376 LIST_HEAD(discard); 4377 struct slab *slab, *h; 4378 4379 BUG_ON(irqs_disabled()); 4380 spin_lock_irq(&n->list_lock); 4381 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4382 if (!slab->inuse) { 4383 remove_partial(n, slab); 4384 list_add(&slab->slab_list, &discard); 4385 } else { 4386 list_slab_objects(s, slab, 4387 "Objects remaining in %s on __kmem_cache_shutdown()"); 4388 } 4389 } 4390 spin_unlock_irq(&n->list_lock); 4391 4392 list_for_each_entry_safe(slab, h, &discard, slab_list) 4393 discard_slab(s, slab); 4394 } 4395 4396 bool __kmem_cache_empty(struct kmem_cache *s) 4397 { 4398 int node; 4399 struct kmem_cache_node *n; 4400 4401 for_each_kmem_cache_node(s, node, n) 4402 if (n->nr_partial || slabs_node(s, node)) 4403 return false; 4404 return true; 4405 } 4406 4407 /* 4408 * Release all resources used by a slab cache. 4409 */ 4410 int __kmem_cache_shutdown(struct kmem_cache *s) 4411 { 4412 int node; 4413 struct kmem_cache_node *n; 4414 4415 flush_all_cpus_locked(s); 4416 /* Attempt to free all objects */ 4417 for_each_kmem_cache_node(s, node, n) { 4418 free_partial(s, n); 4419 if (n->nr_partial || slabs_node(s, node)) 4420 return 1; 4421 } 4422 return 0; 4423 } 4424 4425 #ifdef CONFIG_PRINTK 4426 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4427 { 4428 void *base; 4429 int __maybe_unused i; 4430 unsigned int objnr; 4431 void *objp; 4432 void *objp0; 4433 struct kmem_cache *s = slab->slab_cache; 4434 struct track __maybe_unused *trackp; 4435 4436 kpp->kp_ptr = object; 4437 kpp->kp_slab = slab; 4438 kpp->kp_slab_cache = s; 4439 base = slab_address(slab); 4440 objp0 = kasan_reset_tag(object); 4441 #ifdef CONFIG_SLUB_DEBUG 4442 objp = restore_red_left(s, objp0); 4443 #else 4444 objp = objp0; 4445 #endif 4446 objnr = obj_to_index(s, slab, objp); 4447 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4448 objp = base + s->size * objnr; 4449 kpp->kp_objp = objp; 4450 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4451 || (objp - base) % s->size) || 4452 !(s->flags & SLAB_STORE_USER)) 4453 return; 4454 #ifdef CONFIG_SLUB_DEBUG 4455 objp = fixup_red_left(s, objp); 4456 trackp = get_track(s, objp, TRACK_ALLOC); 4457 kpp->kp_ret = (void *)trackp->addr; 4458 #ifdef CONFIG_STACKDEPOT 4459 { 4460 depot_stack_handle_t handle; 4461 unsigned long *entries; 4462 unsigned int nr_entries; 4463 4464 handle = READ_ONCE(trackp->handle); 4465 if (handle) { 4466 nr_entries = stack_depot_fetch(handle, &entries); 4467 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4468 kpp->kp_stack[i] = (void *)entries[i]; 4469 } 4470 4471 trackp = get_track(s, objp, TRACK_FREE); 4472 handle = READ_ONCE(trackp->handle); 4473 if (handle) { 4474 nr_entries = stack_depot_fetch(handle, &entries); 4475 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4476 kpp->kp_free_stack[i] = (void *)entries[i]; 4477 } 4478 } 4479 #endif 4480 #endif 4481 } 4482 #endif 4483 4484 /******************************************************************** 4485 * Kmalloc subsystem 4486 *******************************************************************/ 4487 4488 static int __init setup_slub_min_order(char *str) 4489 { 4490 get_option(&str, (int *)&slub_min_order); 4491 4492 return 1; 4493 } 4494 4495 __setup("slub_min_order=", setup_slub_min_order); 4496 4497 static int __init setup_slub_max_order(char *str) 4498 { 4499 get_option(&str, (int *)&slub_max_order); 4500 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4501 4502 return 1; 4503 } 4504 4505 __setup("slub_max_order=", setup_slub_max_order); 4506 4507 static int __init setup_slub_min_objects(char *str) 4508 { 4509 get_option(&str, (int *)&slub_min_objects); 4510 4511 return 1; 4512 } 4513 4514 __setup("slub_min_objects=", setup_slub_min_objects); 4515 4516 #ifdef CONFIG_HARDENED_USERCOPY 4517 /* 4518 * Rejects incorrectly sized objects and objects that are to be copied 4519 * to/from userspace but do not fall entirely within the containing slab 4520 * cache's usercopy region. 4521 * 4522 * Returns NULL if check passes, otherwise const char * to name of cache 4523 * to indicate an error. 4524 */ 4525 void __check_heap_object(const void *ptr, unsigned long n, 4526 const struct slab *slab, bool to_user) 4527 { 4528 struct kmem_cache *s; 4529 unsigned int offset; 4530 bool is_kfence = is_kfence_address(ptr); 4531 4532 ptr = kasan_reset_tag(ptr); 4533 4534 /* Find object and usable object size. */ 4535 s = slab->slab_cache; 4536 4537 /* Reject impossible pointers. */ 4538 if (ptr < slab_address(slab)) 4539 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4540 to_user, 0, n); 4541 4542 /* Find offset within object. */ 4543 if (is_kfence) 4544 offset = ptr - kfence_object_start(ptr); 4545 else 4546 offset = (ptr - slab_address(slab)) % s->size; 4547 4548 /* Adjust for redzone and reject if within the redzone. */ 4549 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4550 if (offset < s->red_left_pad) 4551 usercopy_abort("SLUB object in left red zone", 4552 s->name, to_user, offset, n); 4553 offset -= s->red_left_pad; 4554 } 4555 4556 /* Allow address range falling entirely within usercopy region. */ 4557 if (offset >= s->useroffset && 4558 offset - s->useroffset <= s->usersize && 4559 n <= s->useroffset - offset + s->usersize) 4560 return; 4561 4562 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4563 } 4564 #endif /* CONFIG_HARDENED_USERCOPY */ 4565 4566 #define SHRINK_PROMOTE_MAX 32 4567 4568 /* 4569 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4570 * up most to the head of the partial lists. New allocations will then 4571 * fill those up and thus they can be removed from the partial lists. 4572 * 4573 * The slabs with the least items are placed last. This results in them 4574 * being allocated from last increasing the chance that the last objects 4575 * are freed in them. 4576 */ 4577 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4578 { 4579 int node; 4580 int i; 4581 struct kmem_cache_node *n; 4582 struct slab *slab; 4583 struct slab *t; 4584 struct list_head discard; 4585 struct list_head promote[SHRINK_PROMOTE_MAX]; 4586 unsigned long flags; 4587 int ret = 0; 4588 4589 for_each_kmem_cache_node(s, node, n) { 4590 INIT_LIST_HEAD(&discard); 4591 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4592 INIT_LIST_HEAD(promote + i); 4593 4594 spin_lock_irqsave(&n->list_lock, flags); 4595 4596 /* 4597 * Build lists of slabs to discard or promote. 4598 * 4599 * Note that concurrent frees may occur while we hold the 4600 * list_lock. slab->inuse here is the upper limit. 4601 */ 4602 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4603 int free = slab->objects - slab->inuse; 4604 4605 /* Do not reread slab->inuse */ 4606 barrier(); 4607 4608 /* We do not keep full slabs on the list */ 4609 BUG_ON(free <= 0); 4610 4611 if (free == slab->objects) { 4612 list_move(&slab->slab_list, &discard); 4613 n->nr_partial--; 4614 dec_slabs_node(s, node, slab->objects); 4615 } else if (free <= SHRINK_PROMOTE_MAX) 4616 list_move(&slab->slab_list, promote + free - 1); 4617 } 4618 4619 /* 4620 * Promote the slabs filled up most to the head of the 4621 * partial list. 4622 */ 4623 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4624 list_splice(promote + i, &n->partial); 4625 4626 spin_unlock_irqrestore(&n->list_lock, flags); 4627 4628 /* Release empty slabs */ 4629 list_for_each_entry_safe(slab, t, &discard, slab_list) 4630 free_slab(s, slab); 4631 4632 if (slabs_node(s, node)) 4633 ret = 1; 4634 } 4635 4636 return ret; 4637 } 4638 4639 int __kmem_cache_shrink(struct kmem_cache *s) 4640 { 4641 flush_all(s); 4642 return __kmem_cache_do_shrink(s); 4643 } 4644 4645 static int slab_mem_going_offline_callback(void *arg) 4646 { 4647 struct kmem_cache *s; 4648 4649 mutex_lock(&slab_mutex); 4650 list_for_each_entry(s, &slab_caches, list) { 4651 flush_all_cpus_locked(s); 4652 __kmem_cache_do_shrink(s); 4653 } 4654 mutex_unlock(&slab_mutex); 4655 4656 return 0; 4657 } 4658 4659 static void slab_mem_offline_callback(void *arg) 4660 { 4661 struct memory_notify *marg = arg; 4662 int offline_node; 4663 4664 offline_node = marg->status_change_nid_normal; 4665 4666 /* 4667 * If the node still has available memory. we need kmem_cache_node 4668 * for it yet. 4669 */ 4670 if (offline_node < 0) 4671 return; 4672 4673 mutex_lock(&slab_mutex); 4674 node_clear(offline_node, slab_nodes); 4675 /* 4676 * We no longer free kmem_cache_node structures here, as it would be 4677 * racy with all get_node() users, and infeasible to protect them with 4678 * slab_mutex. 4679 */ 4680 mutex_unlock(&slab_mutex); 4681 } 4682 4683 static int slab_mem_going_online_callback(void *arg) 4684 { 4685 struct kmem_cache_node *n; 4686 struct kmem_cache *s; 4687 struct memory_notify *marg = arg; 4688 int nid = marg->status_change_nid_normal; 4689 int ret = 0; 4690 4691 /* 4692 * If the node's memory is already available, then kmem_cache_node is 4693 * already created. Nothing to do. 4694 */ 4695 if (nid < 0) 4696 return 0; 4697 4698 /* 4699 * We are bringing a node online. No memory is available yet. We must 4700 * allocate a kmem_cache_node structure in order to bring the node 4701 * online. 4702 */ 4703 mutex_lock(&slab_mutex); 4704 list_for_each_entry(s, &slab_caches, list) { 4705 /* 4706 * The structure may already exist if the node was previously 4707 * onlined and offlined. 4708 */ 4709 if (get_node(s, nid)) 4710 continue; 4711 /* 4712 * XXX: kmem_cache_alloc_node will fallback to other nodes 4713 * since memory is not yet available from the node that 4714 * is brought up. 4715 */ 4716 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4717 if (!n) { 4718 ret = -ENOMEM; 4719 goto out; 4720 } 4721 init_kmem_cache_node(n); 4722 s->node[nid] = n; 4723 } 4724 /* 4725 * Any cache created after this point will also have kmem_cache_node 4726 * initialized for the new node. 4727 */ 4728 node_set(nid, slab_nodes); 4729 out: 4730 mutex_unlock(&slab_mutex); 4731 return ret; 4732 } 4733 4734 static int slab_memory_callback(struct notifier_block *self, 4735 unsigned long action, void *arg) 4736 { 4737 int ret = 0; 4738 4739 switch (action) { 4740 case MEM_GOING_ONLINE: 4741 ret = slab_mem_going_online_callback(arg); 4742 break; 4743 case MEM_GOING_OFFLINE: 4744 ret = slab_mem_going_offline_callback(arg); 4745 break; 4746 case MEM_OFFLINE: 4747 case MEM_CANCEL_ONLINE: 4748 slab_mem_offline_callback(arg); 4749 break; 4750 case MEM_ONLINE: 4751 case MEM_CANCEL_OFFLINE: 4752 break; 4753 } 4754 if (ret) 4755 ret = notifier_from_errno(ret); 4756 else 4757 ret = NOTIFY_OK; 4758 return ret; 4759 } 4760 4761 static struct notifier_block slab_memory_callback_nb = { 4762 .notifier_call = slab_memory_callback, 4763 .priority = SLAB_CALLBACK_PRI, 4764 }; 4765 4766 /******************************************************************** 4767 * Basic setup of slabs 4768 *******************************************************************/ 4769 4770 /* 4771 * Used for early kmem_cache structures that were allocated using 4772 * the page allocator. Allocate them properly then fix up the pointers 4773 * that may be pointing to the wrong kmem_cache structure. 4774 */ 4775 4776 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4777 { 4778 int node; 4779 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4780 struct kmem_cache_node *n; 4781 4782 memcpy(s, static_cache, kmem_cache->object_size); 4783 4784 /* 4785 * This runs very early, and only the boot processor is supposed to be 4786 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4787 * IPIs around. 4788 */ 4789 __flush_cpu_slab(s, smp_processor_id()); 4790 for_each_kmem_cache_node(s, node, n) { 4791 struct slab *p; 4792 4793 list_for_each_entry(p, &n->partial, slab_list) 4794 p->slab_cache = s; 4795 4796 #ifdef CONFIG_SLUB_DEBUG 4797 list_for_each_entry(p, &n->full, slab_list) 4798 p->slab_cache = s; 4799 #endif 4800 } 4801 list_add(&s->list, &slab_caches); 4802 return s; 4803 } 4804 4805 void __init kmem_cache_init(void) 4806 { 4807 static __initdata struct kmem_cache boot_kmem_cache, 4808 boot_kmem_cache_node; 4809 int node; 4810 4811 if (debug_guardpage_minorder()) 4812 slub_max_order = 0; 4813 4814 /* Print slub debugging pointers without hashing */ 4815 if (__slub_debug_enabled()) 4816 no_hash_pointers_enable(NULL); 4817 4818 kmem_cache_node = &boot_kmem_cache_node; 4819 kmem_cache = &boot_kmem_cache; 4820 4821 /* 4822 * Initialize the nodemask for which we will allocate per node 4823 * structures. Here we don't need taking slab_mutex yet. 4824 */ 4825 for_each_node_state(node, N_NORMAL_MEMORY) 4826 node_set(node, slab_nodes); 4827 4828 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4829 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4830 4831 register_hotmemory_notifier(&slab_memory_callback_nb); 4832 4833 /* Able to allocate the per node structures */ 4834 slab_state = PARTIAL; 4835 4836 create_boot_cache(kmem_cache, "kmem_cache", 4837 offsetof(struct kmem_cache, node) + 4838 nr_node_ids * sizeof(struct kmem_cache_node *), 4839 SLAB_HWCACHE_ALIGN, 0, 0); 4840 4841 kmem_cache = bootstrap(&boot_kmem_cache); 4842 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4843 4844 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4845 setup_kmalloc_cache_index_table(); 4846 create_kmalloc_caches(0); 4847 4848 /* Setup random freelists for each cache */ 4849 init_freelist_randomization(); 4850 4851 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4852 slub_cpu_dead); 4853 4854 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4855 cache_line_size(), 4856 slub_min_order, slub_max_order, slub_min_objects, 4857 nr_cpu_ids, nr_node_ids); 4858 } 4859 4860 void __init kmem_cache_init_late(void) 4861 { 4862 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 4863 WARN_ON(!flushwq); 4864 } 4865 4866 struct kmem_cache * 4867 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4868 slab_flags_t flags, void (*ctor)(void *)) 4869 { 4870 struct kmem_cache *s; 4871 4872 s = find_mergeable(size, align, flags, name, ctor); 4873 if (s) { 4874 if (sysfs_slab_alias(s, name)) 4875 return NULL; 4876 4877 s->refcount++; 4878 4879 /* 4880 * Adjust the object sizes so that we clear 4881 * the complete object on kzalloc. 4882 */ 4883 s->object_size = max(s->object_size, size); 4884 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4885 } 4886 4887 return s; 4888 } 4889 4890 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4891 { 4892 int err; 4893 4894 err = kmem_cache_open(s, flags); 4895 if (err) 4896 return err; 4897 4898 /* Mutex is not taken during early boot */ 4899 if (slab_state <= UP) 4900 return 0; 4901 4902 err = sysfs_slab_add(s); 4903 if (err) { 4904 __kmem_cache_release(s); 4905 return err; 4906 } 4907 4908 if (s->flags & SLAB_STORE_USER) 4909 debugfs_slab_add(s); 4910 4911 return 0; 4912 } 4913 4914 #ifdef CONFIG_SYSFS 4915 static int count_inuse(struct slab *slab) 4916 { 4917 return slab->inuse; 4918 } 4919 4920 static int count_total(struct slab *slab) 4921 { 4922 return slab->objects; 4923 } 4924 #endif 4925 4926 #ifdef CONFIG_SLUB_DEBUG 4927 static void validate_slab(struct kmem_cache *s, struct slab *slab, 4928 unsigned long *obj_map) 4929 { 4930 void *p; 4931 void *addr = slab_address(slab); 4932 4933 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 4934 return; 4935 4936 /* Now we know that a valid freelist exists */ 4937 __fill_map(obj_map, s, slab); 4938 for_each_object(p, s, addr, slab->objects) { 4939 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 4940 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4941 4942 if (!check_object(s, slab, p, val)) 4943 break; 4944 } 4945 } 4946 4947 static int validate_slab_node(struct kmem_cache *s, 4948 struct kmem_cache_node *n, unsigned long *obj_map) 4949 { 4950 unsigned long count = 0; 4951 struct slab *slab; 4952 unsigned long flags; 4953 4954 spin_lock_irqsave(&n->list_lock, flags); 4955 4956 list_for_each_entry(slab, &n->partial, slab_list) { 4957 validate_slab(s, slab, obj_map); 4958 count++; 4959 } 4960 if (count != n->nr_partial) { 4961 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4962 s->name, count, n->nr_partial); 4963 slab_add_kunit_errors(); 4964 } 4965 4966 if (!(s->flags & SLAB_STORE_USER)) 4967 goto out; 4968 4969 list_for_each_entry(slab, &n->full, slab_list) { 4970 validate_slab(s, slab, obj_map); 4971 count++; 4972 } 4973 if (count != atomic_long_read(&n->nr_slabs)) { 4974 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4975 s->name, count, atomic_long_read(&n->nr_slabs)); 4976 slab_add_kunit_errors(); 4977 } 4978 4979 out: 4980 spin_unlock_irqrestore(&n->list_lock, flags); 4981 return count; 4982 } 4983 4984 long validate_slab_cache(struct kmem_cache *s) 4985 { 4986 int node; 4987 unsigned long count = 0; 4988 struct kmem_cache_node *n; 4989 unsigned long *obj_map; 4990 4991 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 4992 if (!obj_map) 4993 return -ENOMEM; 4994 4995 flush_all(s); 4996 for_each_kmem_cache_node(s, node, n) 4997 count += validate_slab_node(s, n, obj_map); 4998 4999 bitmap_free(obj_map); 5000 5001 return count; 5002 } 5003 EXPORT_SYMBOL(validate_slab_cache); 5004 5005 #ifdef CONFIG_DEBUG_FS 5006 /* 5007 * Generate lists of code addresses where slabcache objects are allocated 5008 * and freed. 5009 */ 5010 5011 struct location { 5012 depot_stack_handle_t handle; 5013 unsigned long count; 5014 unsigned long addr; 5015 unsigned long waste; 5016 long long sum_time; 5017 long min_time; 5018 long max_time; 5019 long min_pid; 5020 long max_pid; 5021 DECLARE_BITMAP(cpus, NR_CPUS); 5022 nodemask_t nodes; 5023 }; 5024 5025 struct loc_track { 5026 unsigned long max; 5027 unsigned long count; 5028 struct location *loc; 5029 loff_t idx; 5030 }; 5031 5032 static struct dentry *slab_debugfs_root; 5033 5034 static void free_loc_track(struct loc_track *t) 5035 { 5036 if (t->max) 5037 free_pages((unsigned long)t->loc, 5038 get_order(sizeof(struct location) * t->max)); 5039 } 5040 5041 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5042 { 5043 struct location *l; 5044 int order; 5045 5046 order = get_order(sizeof(struct location) * max); 5047 5048 l = (void *)__get_free_pages(flags, order); 5049 if (!l) 5050 return 0; 5051 5052 if (t->count) { 5053 memcpy(l, t->loc, sizeof(struct location) * t->count); 5054 free_loc_track(t); 5055 } 5056 t->max = max; 5057 t->loc = l; 5058 return 1; 5059 } 5060 5061 static int add_location(struct loc_track *t, struct kmem_cache *s, 5062 const struct track *track, 5063 unsigned int orig_size) 5064 { 5065 long start, end, pos; 5066 struct location *l; 5067 unsigned long caddr, chandle, cwaste; 5068 unsigned long age = jiffies - track->when; 5069 depot_stack_handle_t handle = 0; 5070 unsigned int waste = s->object_size - orig_size; 5071 5072 #ifdef CONFIG_STACKDEPOT 5073 handle = READ_ONCE(track->handle); 5074 #endif 5075 start = -1; 5076 end = t->count; 5077 5078 for ( ; ; ) { 5079 pos = start + (end - start + 1) / 2; 5080 5081 /* 5082 * There is nothing at "end". If we end up there 5083 * we need to add something to before end. 5084 */ 5085 if (pos == end) 5086 break; 5087 5088 l = &t->loc[pos]; 5089 caddr = l->addr; 5090 chandle = l->handle; 5091 cwaste = l->waste; 5092 if ((track->addr == caddr) && (handle == chandle) && 5093 (waste == cwaste)) { 5094 5095 l->count++; 5096 if (track->when) { 5097 l->sum_time += age; 5098 if (age < l->min_time) 5099 l->min_time = age; 5100 if (age > l->max_time) 5101 l->max_time = age; 5102 5103 if (track->pid < l->min_pid) 5104 l->min_pid = track->pid; 5105 if (track->pid > l->max_pid) 5106 l->max_pid = track->pid; 5107 5108 cpumask_set_cpu(track->cpu, 5109 to_cpumask(l->cpus)); 5110 } 5111 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5112 return 1; 5113 } 5114 5115 if (track->addr < caddr) 5116 end = pos; 5117 else if (track->addr == caddr && handle < chandle) 5118 end = pos; 5119 else if (track->addr == caddr && handle == chandle && 5120 waste < cwaste) 5121 end = pos; 5122 else 5123 start = pos; 5124 } 5125 5126 /* 5127 * Not found. Insert new tracking element. 5128 */ 5129 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5130 return 0; 5131 5132 l = t->loc + pos; 5133 if (pos < t->count) 5134 memmove(l + 1, l, 5135 (t->count - pos) * sizeof(struct location)); 5136 t->count++; 5137 l->count = 1; 5138 l->addr = track->addr; 5139 l->sum_time = age; 5140 l->min_time = age; 5141 l->max_time = age; 5142 l->min_pid = track->pid; 5143 l->max_pid = track->pid; 5144 l->handle = handle; 5145 l->waste = waste; 5146 cpumask_clear(to_cpumask(l->cpus)); 5147 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5148 nodes_clear(l->nodes); 5149 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5150 return 1; 5151 } 5152 5153 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5154 struct slab *slab, enum track_item alloc, 5155 unsigned long *obj_map) 5156 { 5157 void *addr = slab_address(slab); 5158 bool is_alloc = (alloc == TRACK_ALLOC); 5159 void *p; 5160 5161 __fill_map(obj_map, s, slab); 5162 5163 for_each_object(p, s, addr, slab->objects) 5164 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5165 add_location(t, s, get_track(s, p, alloc), 5166 is_alloc ? get_orig_size(s, p) : 5167 s->object_size); 5168 } 5169 #endif /* CONFIG_DEBUG_FS */ 5170 #endif /* CONFIG_SLUB_DEBUG */ 5171 5172 #ifdef CONFIG_SYSFS 5173 enum slab_stat_type { 5174 SL_ALL, /* All slabs */ 5175 SL_PARTIAL, /* Only partially allocated slabs */ 5176 SL_CPU, /* Only slabs used for cpu caches */ 5177 SL_OBJECTS, /* Determine allocated objects not slabs */ 5178 SL_TOTAL /* Determine object capacity not slabs */ 5179 }; 5180 5181 #define SO_ALL (1 << SL_ALL) 5182 #define SO_PARTIAL (1 << SL_PARTIAL) 5183 #define SO_CPU (1 << SL_CPU) 5184 #define SO_OBJECTS (1 << SL_OBJECTS) 5185 #define SO_TOTAL (1 << SL_TOTAL) 5186 5187 static ssize_t show_slab_objects(struct kmem_cache *s, 5188 char *buf, unsigned long flags) 5189 { 5190 unsigned long total = 0; 5191 int node; 5192 int x; 5193 unsigned long *nodes; 5194 int len = 0; 5195 5196 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5197 if (!nodes) 5198 return -ENOMEM; 5199 5200 if (flags & SO_CPU) { 5201 int cpu; 5202 5203 for_each_possible_cpu(cpu) { 5204 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5205 cpu); 5206 int node; 5207 struct slab *slab; 5208 5209 slab = READ_ONCE(c->slab); 5210 if (!slab) 5211 continue; 5212 5213 node = slab_nid(slab); 5214 if (flags & SO_TOTAL) 5215 x = slab->objects; 5216 else if (flags & SO_OBJECTS) 5217 x = slab->inuse; 5218 else 5219 x = 1; 5220 5221 total += x; 5222 nodes[node] += x; 5223 5224 #ifdef CONFIG_SLUB_CPU_PARTIAL 5225 slab = slub_percpu_partial_read_once(c); 5226 if (slab) { 5227 node = slab_nid(slab); 5228 if (flags & SO_TOTAL) 5229 WARN_ON_ONCE(1); 5230 else if (flags & SO_OBJECTS) 5231 WARN_ON_ONCE(1); 5232 else 5233 x = slab->slabs; 5234 total += x; 5235 nodes[node] += x; 5236 } 5237 #endif 5238 } 5239 } 5240 5241 /* 5242 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5243 * already held which will conflict with an existing lock order: 5244 * 5245 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5246 * 5247 * We don't really need mem_hotplug_lock (to hold off 5248 * slab_mem_going_offline_callback) here because slab's memory hot 5249 * unplug code doesn't destroy the kmem_cache->node[] data. 5250 */ 5251 5252 #ifdef CONFIG_SLUB_DEBUG 5253 if (flags & SO_ALL) { 5254 struct kmem_cache_node *n; 5255 5256 for_each_kmem_cache_node(s, node, n) { 5257 5258 if (flags & SO_TOTAL) 5259 x = atomic_long_read(&n->total_objects); 5260 else if (flags & SO_OBJECTS) 5261 x = atomic_long_read(&n->total_objects) - 5262 count_partial(n, count_free); 5263 else 5264 x = atomic_long_read(&n->nr_slabs); 5265 total += x; 5266 nodes[node] += x; 5267 } 5268 5269 } else 5270 #endif 5271 if (flags & SO_PARTIAL) { 5272 struct kmem_cache_node *n; 5273 5274 for_each_kmem_cache_node(s, node, n) { 5275 if (flags & SO_TOTAL) 5276 x = count_partial(n, count_total); 5277 else if (flags & SO_OBJECTS) 5278 x = count_partial(n, count_inuse); 5279 else 5280 x = n->nr_partial; 5281 total += x; 5282 nodes[node] += x; 5283 } 5284 } 5285 5286 len += sysfs_emit_at(buf, len, "%lu", total); 5287 #ifdef CONFIG_NUMA 5288 for (node = 0; node < nr_node_ids; node++) { 5289 if (nodes[node]) 5290 len += sysfs_emit_at(buf, len, " N%d=%lu", 5291 node, nodes[node]); 5292 } 5293 #endif 5294 len += sysfs_emit_at(buf, len, "\n"); 5295 kfree(nodes); 5296 5297 return len; 5298 } 5299 5300 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5301 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5302 5303 struct slab_attribute { 5304 struct attribute attr; 5305 ssize_t (*show)(struct kmem_cache *s, char *buf); 5306 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5307 }; 5308 5309 #define SLAB_ATTR_RO(_name) \ 5310 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5311 5312 #define SLAB_ATTR(_name) \ 5313 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5314 5315 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5316 { 5317 return sysfs_emit(buf, "%u\n", s->size); 5318 } 5319 SLAB_ATTR_RO(slab_size); 5320 5321 static ssize_t align_show(struct kmem_cache *s, char *buf) 5322 { 5323 return sysfs_emit(buf, "%u\n", s->align); 5324 } 5325 SLAB_ATTR_RO(align); 5326 5327 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5328 { 5329 return sysfs_emit(buf, "%u\n", s->object_size); 5330 } 5331 SLAB_ATTR_RO(object_size); 5332 5333 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5334 { 5335 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5336 } 5337 SLAB_ATTR_RO(objs_per_slab); 5338 5339 static ssize_t order_show(struct kmem_cache *s, char *buf) 5340 { 5341 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5342 } 5343 SLAB_ATTR_RO(order); 5344 5345 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5346 { 5347 return sysfs_emit(buf, "%lu\n", s->min_partial); 5348 } 5349 5350 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5351 size_t length) 5352 { 5353 unsigned long min; 5354 int err; 5355 5356 err = kstrtoul(buf, 10, &min); 5357 if (err) 5358 return err; 5359 5360 s->min_partial = min; 5361 return length; 5362 } 5363 SLAB_ATTR(min_partial); 5364 5365 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5366 { 5367 unsigned int nr_partial = 0; 5368 #ifdef CONFIG_SLUB_CPU_PARTIAL 5369 nr_partial = s->cpu_partial; 5370 #endif 5371 5372 return sysfs_emit(buf, "%u\n", nr_partial); 5373 } 5374 5375 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5376 size_t length) 5377 { 5378 unsigned int objects; 5379 int err; 5380 5381 err = kstrtouint(buf, 10, &objects); 5382 if (err) 5383 return err; 5384 if (objects && !kmem_cache_has_cpu_partial(s)) 5385 return -EINVAL; 5386 5387 slub_set_cpu_partial(s, objects); 5388 flush_all(s); 5389 return length; 5390 } 5391 SLAB_ATTR(cpu_partial); 5392 5393 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5394 { 5395 if (!s->ctor) 5396 return 0; 5397 return sysfs_emit(buf, "%pS\n", s->ctor); 5398 } 5399 SLAB_ATTR_RO(ctor); 5400 5401 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5402 { 5403 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5404 } 5405 SLAB_ATTR_RO(aliases); 5406 5407 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5408 { 5409 return show_slab_objects(s, buf, SO_PARTIAL); 5410 } 5411 SLAB_ATTR_RO(partial); 5412 5413 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5414 { 5415 return show_slab_objects(s, buf, SO_CPU); 5416 } 5417 SLAB_ATTR_RO(cpu_slabs); 5418 5419 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5420 { 5421 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5422 } 5423 SLAB_ATTR_RO(objects); 5424 5425 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5426 { 5427 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5428 } 5429 SLAB_ATTR_RO(objects_partial); 5430 5431 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5432 { 5433 int objects = 0; 5434 int slabs = 0; 5435 int cpu __maybe_unused; 5436 int len = 0; 5437 5438 #ifdef CONFIG_SLUB_CPU_PARTIAL 5439 for_each_online_cpu(cpu) { 5440 struct slab *slab; 5441 5442 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5443 5444 if (slab) 5445 slabs += slab->slabs; 5446 } 5447 #endif 5448 5449 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5450 objects = (slabs * oo_objects(s->oo)) / 2; 5451 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5452 5453 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) 5454 for_each_online_cpu(cpu) { 5455 struct slab *slab; 5456 5457 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5458 if (slab) { 5459 slabs = READ_ONCE(slab->slabs); 5460 objects = (slabs * oo_objects(s->oo)) / 2; 5461 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5462 cpu, objects, slabs); 5463 } 5464 } 5465 #endif 5466 len += sysfs_emit_at(buf, len, "\n"); 5467 5468 return len; 5469 } 5470 SLAB_ATTR_RO(slabs_cpu_partial); 5471 5472 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5473 { 5474 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5475 } 5476 SLAB_ATTR_RO(reclaim_account); 5477 5478 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5479 { 5480 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5481 } 5482 SLAB_ATTR_RO(hwcache_align); 5483 5484 #ifdef CONFIG_ZONE_DMA 5485 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5486 { 5487 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5488 } 5489 SLAB_ATTR_RO(cache_dma); 5490 #endif 5491 5492 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5493 { 5494 return sysfs_emit(buf, "%u\n", s->usersize); 5495 } 5496 SLAB_ATTR_RO(usersize); 5497 5498 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5499 { 5500 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5501 } 5502 SLAB_ATTR_RO(destroy_by_rcu); 5503 5504 #ifdef CONFIG_SLUB_DEBUG 5505 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5506 { 5507 return show_slab_objects(s, buf, SO_ALL); 5508 } 5509 SLAB_ATTR_RO(slabs); 5510 5511 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5512 { 5513 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5514 } 5515 SLAB_ATTR_RO(total_objects); 5516 5517 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5518 { 5519 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5520 } 5521 SLAB_ATTR_RO(sanity_checks); 5522 5523 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5524 { 5525 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5526 } 5527 SLAB_ATTR_RO(trace); 5528 5529 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5530 { 5531 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5532 } 5533 5534 SLAB_ATTR_RO(red_zone); 5535 5536 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5537 { 5538 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5539 } 5540 5541 SLAB_ATTR_RO(poison); 5542 5543 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5544 { 5545 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5546 } 5547 5548 SLAB_ATTR_RO(store_user); 5549 5550 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5551 { 5552 return 0; 5553 } 5554 5555 static ssize_t validate_store(struct kmem_cache *s, 5556 const char *buf, size_t length) 5557 { 5558 int ret = -EINVAL; 5559 5560 if (buf[0] == '1' && kmem_cache_debug(s)) { 5561 ret = validate_slab_cache(s); 5562 if (ret >= 0) 5563 ret = length; 5564 } 5565 return ret; 5566 } 5567 SLAB_ATTR(validate); 5568 5569 #endif /* CONFIG_SLUB_DEBUG */ 5570 5571 #ifdef CONFIG_FAILSLAB 5572 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5573 { 5574 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5575 } 5576 SLAB_ATTR_RO(failslab); 5577 #endif 5578 5579 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5580 { 5581 return 0; 5582 } 5583 5584 static ssize_t shrink_store(struct kmem_cache *s, 5585 const char *buf, size_t length) 5586 { 5587 if (buf[0] == '1') 5588 kmem_cache_shrink(s); 5589 else 5590 return -EINVAL; 5591 return length; 5592 } 5593 SLAB_ATTR(shrink); 5594 5595 #ifdef CONFIG_NUMA 5596 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5597 { 5598 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5599 } 5600 5601 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5602 const char *buf, size_t length) 5603 { 5604 unsigned int ratio; 5605 int err; 5606 5607 err = kstrtouint(buf, 10, &ratio); 5608 if (err) 5609 return err; 5610 if (ratio > 100) 5611 return -ERANGE; 5612 5613 s->remote_node_defrag_ratio = ratio * 10; 5614 5615 return length; 5616 } 5617 SLAB_ATTR(remote_node_defrag_ratio); 5618 #endif 5619 5620 #ifdef CONFIG_SLUB_STATS 5621 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5622 { 5623 unsigned long sum = 0; 5624 int cpu; 5625 int len = 0; 5626 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5627 5628 if (!data) 5629 return -ENOMEM; 5630 5631 for_each_online_cpu(cpu) { 5632 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5633 5634 data[cpu] = x; 5635 sum += x; 5636 } 5637 5638 len += sysfs_emit_at(buf, len, "%lu", sum); 5639 5640 #ifdef CONFIG_SMP 5641 for_each_online_cpu(cpu) { 5642 if (data[cpu]) 5643 len += sysfs_emit_at(buf, len, " C%d=%u", 5644 cpu, data[cpu]); 5645 } 5646 #endif 5647 kfree(data); 5648 len += sysfs_emit_at(buf, len, "\n"); 5649 5650 return len; 5651 } 5652 5653 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5654 { 5655 int cpu; 5656 5657 for_each_online_cpu(cpu) 5658 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5659 } 5660 5661 #define STAT_ATTR(si, text) \ 5662 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5663 { \ 5664 return show_stat(s, buf, si); \ 5665 } \ 5666 static ssize_t text##_store(struct kmem_cache *s, \ 5667 const char *buf, size_t length) \ 5668 { \ 5669 if (buf[0] != '0') \ 5670 return -EINVAL; \ 5671 clear_stat(s, si); \ 5672 return length; \ 5673 } \ 5674 SLAB_ATTR(text); \ 5675 5676 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5677 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5678 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5679 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5680 STAT_ATTR(FREE_FROZEN, free_frozen); 5681 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5682 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5683 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5684 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5685 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5686 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5687 STAT_ATTR(FREE_SLAB, free_slab); 5688 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5689 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5690 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5691 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5692 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5693 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5694 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5695 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5696 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5697 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5698 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5699 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5700 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5701 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5702 #endif /* CONFIG_SLUB_STATS */ 5703 5704 static struct attribute *slab_attrs[] = { 5705 &slab_size_attr.attr, 5706 &object_size_attr.attr, 5707 &objs_per_slab_attr.attr, 5708 &order_attr.attr, 5709 &min_partial_attr.attr, 5710 &cpu_partial_attr.attr, 5711 &objects_attr.attr, 5712 &objects_partial_attr.attr, 5713 &partial_attr.attr, 5714 &cpu_slabs_attr.attr, 5715 &ctor_attr.attr, 5716 &aliases_attr.attr, 5717 &align_attr.attr, 5718 &hwcache_align_attr.attr, 5719 &reclaim_account_attr.attr, 5720 &destroy_by_rcu_attr.attr, 5721 &shrink_attr.attr, 5722 &slabs_cpu_partial_attr.attr, 5723 #ifdef CONFIG_SLUB_DEBUG 5724 &total_objects_attr.attr, 5725 &slabs_attr.attr, 5726 &sanity_checks_attr.attr, 5727 &trace_attr.attr, 5728 &red_zone_attr.attr, 5729 &poison_attr.attr, 5730 &store_user_attr.attr, 5731 &validate_attr.attr, 5732 #endif 5733 #ifdef CONFIG_ZONE_DMA 5734 &cache_dma_attr.attr, 5735 #endif 5736 #ifdef CONFIG_NUMA 5737 &remote_node_defrag_ratio_attr.attr, 5738 #endif 5739 #ifdef CONFIG_SLUB_STATS 5740 &alloc_fastpath_attr.attr, 5741 &alloc_slowpath_attr.attr, 5742 &free_fastpath_attr.attr, 5743 &free_slowpath_attr.attr, 5744 &free_frozen_attr.attr, 5745 &free_add_partial_attr.attr, 5746 &free_remove_partial_attr.attr, 5747 &alloc_from_partial_attr.attr, 5748 &alloc_slab_attr.attr, 5749 &alloc_refill_attr.attr, 5750 &alloc_node_mismatch_attr.attr, 5751 &free_slab_attr.attr, 5752 &cpuslab_flush_attr.attr, 5753 &deactivate_full_attr.attr, 5754 &deactivate_empty_attr.attr, 5755 &deactivate_to_head_attr.attr, 5756 &deactivate_to_tail_attr.attr, 5757 &deactivate_remote_frees_attr.attr, 5758 &deactivate_bypass_attr.attr, 5759 &order_fallback_attr.attr, 5760 &cmpxchg_double_fail_attr.attr, 5761 &cmpxchg_double_cpu_fail_attr.attr, 5762 &cpu_partial_alloc_attr.attr, 5763 &cpu_partial_free_attr.attr, 5764 &cpu_partial_node_attr.attr, 5765 &cpu_partial_drain_attr.attr, 5766 #endif 5767 #ifdef CONFIG_FAILSLAB 5768 &failslab_attr.attr, 5769 #endif 5770 &usersize_attr.attr, 5771 5772 NULL 5773 }; 5774 5775 static const struct attribute_group slab_attr_group = { 5776 .attrs = slab_attrs, 5777 }; 5778 5779 static ssize_t slab_attr_show(struct kobject *kobj, 5780 struct attribute *attr, 5781 char *buf) 5782 { 5783 struct slab_attribute *attribute; 5784 struct kmem_cache *s; 5785 5786 attribute = to_slab_attr(attr); 5787 s = to_slab(kobj); 5788 5789 if (!attribute->show) 5790 return -EIO; 5791 5792 return attribute->show(s, buf); 5793 } 5794 5795 static ssize_t slab_attr_store(struct kobject *kobj, 5796 struct attribute *attr, 5797 const char *buf, size_t len) 5798 { 5799 struct slab_attribute *attribute; 5800 struct kmem_cache *s; 5801 5802 attribute = to_slab_attr(attr); 5803 s = to_slab(kobj); 5804 5805 if (!attribute->store) 5806 return -EIO; 5807 5808 return attribute->store(s, buf, len); 5809 } 5810 5811 static void kmem_cache_release(struct kobject *k) 5812 { 5813 slab_kmem_cache_release(to_slab(k)); 5814 } 5815 5816 static const struct sysfs_ops slab_sysfs_ops = { 5817 .show = slab_attr_show, 5818 .store = slab_attr_store, 5819 }; 5820 5821 static struct kobj_type slab_ktype = { 5822 .sysfs_ops = &slab_sysfs_ops, 5823 .release = kmem_cache_release, 5824 }; 5825 5826 static struct kset *slab_kset; 5827 5828 static inline struct kset *cache_kset(struct kmem_cache *s) 5829 { 5830 return slab_kset; 5831 } 5832 5833 #define ID_STR_LENGTH 32 5834 5835 /* Create a unique string id for a slab cache: 5836 * 5837 * Format :[flags-]size 5838 */ 5839 static char *create_unique_id(struct kmem_cache *s) 5840 { 5841 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5842 char *p = name; 5843 5844 if (!name) 5845 return ERR_PTR(-ENOMEM); 5846 5847 *p++ = ':'; 5848 /* 5849 * First flags affecting slabcache operations. We will only 5850 * get here for aliasable slabs so we do not need to support 5851 * too many flags. The flags here must cover all flags that 5852 * are matched during merging to guarantee that the id is 5853 * unique. 5854 */ 5855 if (s->flags & SLAB_CACHE_DMA) 5856 *p++ = 'd'; 5857 if (s->flags & SLAB_CACHE_DMA32) 5858 *p++ = 'D'; 5859 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5860 *p++ = 'a'; 5861 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5862 *p++ = 'F'; 5863 if (s->flags & SLAB_ACCOUNT) 5864 *p++ = 'A'; 5865 if (p != name + 1) 5866 *p++ = '-'; 5867 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 5868 5869 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 5870 kfree(name); 5871 return ERR_PTR(-EINVAL); 5872 } 5873 return name; 5874 } 5875 5876 static int sysfs_slab_add(struct kmem_cache *s) 5877 { 5878 int err; 5879 const char *name; 5880 struct kset *kset = cache_kset(s); 5881 int unmergeable = slab_unmergeable(s); 5882 5883 if (!kset) { 5884 kobject_init(&s->kobj, &slab_ktype); 5885 return 0; 5886 } 5887 5888 if (!unmergeable && disable_higher_order_debug && 5889 (slub_debug & DEBUG_METADATA_FLAGS)) 5890 unmergeable = 1; 5891 5892 if (unmergeable) { 5893 /* 5894 * Slabcache can never be merged so we can use the name proper. 5895 * This is typically the case for debug situations. In that 5896 * case we can catch duplicate names easily. 5897 */ 5898 sysfs_remove_link(&slab_kset->kobj, s->name); 5899 name = s->name; 5900 } else { 5901 /* 5902 * Create a unique name for the slab as a target 5903 * for the symlinks. 5904 */ 5905 name = create_unique_id(s); 5906 if (IS_ERR(name)) 5907 return PTR_ERR(name); 5908 } 5909 5910 s->kobj.kset = kset; 5911 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5912 if (err) 5913 goto out; 5914 5915 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5916 if (err) 5917 goto out_del_kobj; 5918 5919 if (!unmergeable) { 5920 /* Setup first alias */ 5921 sysfs_slab_alias(s, s->name); 5922 } 5923 out: 5924 if (!unmergeable) 5925 kfree(name); 5926 return err; 5927 out_del_kobj: 5928 kobject_del(&s->kobj); 5929 goto out; 5930 } 5931 5932 void sysfs_slab_unlink(struct kmem_cache *s) 5933 { 5934 if (slab_state >= FULL) 5935 kobject_del(&s->kobj); 5936 } 5937 5938 void sysfs_slab_release(struct kmem_cache *s) 5939 { 5940 if (slab_state >= FULL) 5941 kobject_put(&s->kobj); 5942 } 5943 5944 /* 5945 * Need to buffer aliases during bootup until sysfs becomes 5946 * available lest we lose that information. 5947 */ 5948 struct saved_alias { 5949 struct kmem_cache *s; 5950 const char *name; 5951 struct saved_alias *next; 5952 }; 5953 5954 static struct saved_alias *alias_list; 5955 5956 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5957 { 5958 struct saved_alias *al; 5959 5960 if (slab_state == FULL) { 5961 /* 5962 * If we have a leftover link then remove it. 5963 */ 5964 sysfs_remove_link(&slab_kset->kobj, name); 5965 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5966 } 5967 5968 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5969 if (!al) 5970 return -ENOMEM; 5971 5972 al->s = s; 5973 al->name = name; 5974 al->next = alias_list; 5975 alias_list = al; 5976 return 0; 5977 } 5978 5979 static int __init slab_sysfs_init(void) 5980 { 5981 struct kmem_cache *s; 5982 int err; 5983 5984 mutex_lock(&slab_mutex); 5985 5986 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 5987 if (!slab_kset) { 5988 mutex_unlock(&slab_mutex); 5989 pr_err("Cannot register slab subsystem.\n"); 5990 return -ENOSYS; 5991 } 5992 5993 slab_state = FULL; 5994 5995 list_for_each_entry(s, &slab_caches, list) { 5996 err = sysfs_slab_add(s); 5997 if (err) 5998 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5999 s->name); 6000 } 6001 6002 while (alias_list) { 6003 struct saved_alias *al = alias_list; 6004 6005 alias_list = alias_list->next; 6006 err = sysfs_slab_alias(al->s, al->name); 6007 if (err) 6008 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6009 al->name); 6010 kfree(al); 6011 } 6012 6013 mutex_unlock(&slab_mutex); 6014 return 0; 6015 } 6016 6017 __initcall(slab_sysfs_init); 6018 #endif /* CONFIG_SYSFS */ 6019 6020 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6021 static int slab_debugfs_show(struct seq_file *seq, void *v) 6022 { 6023 struct loc_track *t = seq->private; 6024 struct location *l; 6025 unsigned long idx; 6026 6027 idx = (unsigned long) t->idx; 6028 if (idx < t->count) { 6029 l = &t->loc[idx]; 6030 6031 seq_printf(seq, "%7ld ", l->count); 6032 6033 if (l->addr) 6034 seq_printf(seq, "%pS", (void *)l->addr); 6035 else 6036 seq_puts(seq, "<not-available>"); 6037 6038 if (l->waste) 6039 seq_printf(seq, " waste=%lu/%lu", 6040 l->count * l->waste, l->waste); 6041 6042 if (l->sum_time != l->min_time) { 6043 seq_printf(seq, " age=%ld/%llu/%ld", 6044 l->min_time, div_u64(l->sum_time, l->count), 6045 l->max_time); 6046 } else 6047 seq_printf(seq, " age=%ld", l->min_time); 6048 6049 if (l->min_pid != l->max_pid) 6050 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6051 else 6052 seq_printf(seq, " pid=%ld", 6053 l->min_pid); 6054 6055 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6056 seq_printf(seq, " cpus=%*pbl", 6057 cpumask_pr_args(to_cpumask(l->cpus))); 6058 6059 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6060 seq_printf(seq, " nodes=%*pbl", 6061 nodemask_pr_args(&l->nodes)); 6062 6063 #ifdef CONFIG_STACKDEPOT 6064 { 6065 depot_stack_handle_t handle; 6066 unsigned long *entries; 6067 unsigned int nr_entries, j; 6068 6069 handle = READ_ONCE(l->handle); 6070 if (handle) { 6071 nr_entries = stack_depot_fetch(handle, &entries); 6072 seq_puts(seq, "\n"); 6073 for (j = 0; j < nr_entries; j++) 6074 seq_printf(seq, " %pS\n", (void *)entries[j]); 6075 } 6076 } 6077 #endif 6078 seq_puts(seq, "\n"); 6079 } 6080 6081 if (!idx && !t->count) 6082 seq_puts(seq, "No data\n"); 6083 6084 return 0; 6085 } 6086 6087 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6088 { 6089 } 6090 6091 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6092 { 6093 struct loc_track *t = seq->private; 6094 6095 t->idx = ++(*ppos); 6096 if (*ppos <= t->count) 6097 return ppos; 6098 6099 return NULL; 6100 } 6101 6102 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6103 { 6104 struct location *loc1 = (struct location *)a; 6105 struct location *loc2 = (struct location *)b; 6106 6107 if (loc1->count > loc2->count) 6108 return -1; 6109 else 6110 return 1; 6111 } 6112 6113 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6114 { 6115 struct loc_track *t = seq->private; 6116 6117 t->idx = *ppos; 6118 return ppos; 6119 } 6120 6121 static const struct seq_operations slab_debugfs_sops = { 6122 .start = slab_debugfs_start, 6123 .next = slab_debugfs_next, 6124 .stop = slab_debugfs_stop, 6125 .show = slab_debugfs_show, 6126 }; 6127 6128 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6129 { 6130 6131 struct kmem_cache_node *n; 6132 enum track_item alloc; 6133 int node; 6134 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6135 sizeof(struct loc_track)); 6136 struct kmem_cache *s = file_inode(filep)->i_private; 6137 unsigned long *obj_map; 6138 6139 if (!t) 6140 return -ENOMEM; 6141 6142 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6143 if (!obj_map) { 6144 seq_release_private(inode, filep); 6145 return -ENOMEM; 6146 } 6147 6148 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6149 alloc = TRACK_ALLOC; 6150 else 6151 alloc = TRACK_FREE; 6152 6153 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6154 bitmap_free(obj_map); 6155 seq_release_private(inode, filep); 6156 return -ENOMEM; 6157 } 6158 6159 for_each_kmem_cache_node(s, node, n) { 6160 unsigned long flags; 6161 struct slab *slab; 6162 6163 if (!atomic_long_read(&n->nr_slabs)) 6164 continue; 6165 6166 spin_lock_irqsave(&n->list_lock, flags); 6167 list_for_each_entry(slab, &n->partial, slab_list) 6168 process_slab(t, s, slab, alloc, obj_map); 6169 list_for_each_entry(slab, &n->full, slab_list) 6170 process_slab(t, s, slab, alloc, obj_map); 6171 spin_unlock_irqrestore(&n->list_lock, flags); 6172 } 6173 6174 /* Sort locations by count */ 6175 sort_r(t->loc, t->count, sizeof(struct location), 6176 cmp_loc_by_count, NULL, NULL); 6177 6178 bitmap_free(obj_map); 6179 return 0; 6180 } 6181 6182 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6183 { 6184 struct seq_file *seq = file->private_data; 6185 struct loc_track *t = seq->private; 6186 6187 free_loc_track(t); 6188 return seq_release_private(inode, file); 6189 } 6190 6191 static const struct file_operations slab_debugfs_fops = { 6192 .open = slab_debug_trace_open, 6193 .read = seq_read, 6194 .llseek = seq_lseek, 6195 .release = slab_debug_trace_release, 6196 }; 6197 6198 static void debugfs_slab_add(struct kmem_cache *s) 6199 { 6200 struct dentry *slab_cache_dir; 6201 6202 if (unlikely(!slab_debugfs_root)) 6203 return; 6204 6205 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6206 6207 debugfs_create_file("alloc_traces", 0400, 6208 slab_cache_dir, s, &slab_debugfs_fops); 6209 6210 debugfs_create_file("free_traces", 0400, 6211 slab_cache_dir, s, &slab_debugfs_fops); 6212 } 6213 6214 void debugfs_slab_release(struct kmem_cache *s) 6215 { 6216 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 6217 } 6218 6219 static int __init slab_debugfs_init(void) 6220 { 6221 struct kmem_cache *s; 6222 6223 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6224 6225 list_for_each_entry(s, &slab_caches, list) 6226 if (s->flags & SLAB_STORE_USER) 6227 debugfs_slab_add(s); 6228 6229 return 0; 6230 6231 } 6232 __initcall(slab_debugfs_init); 6233 #endif 6234 /* 6235 * The /proc/slabinfo ABI 6236 */ 6237 #ifdef CONFIG_SLUB_DEBUG 6238 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6239 { 6240 unsigned long nr_slabs = 0; 6241 unsigned long nr_objs = 0; 6242 unsigned long nr_free = 0; 6243 int node; 6244 struct kmem_cache_node *n; 6245 6246 for_each_kmem_cache_node(s, node, n) { 6247 nr_slabs += node_nr_slabs(n); 6248 nr_objs += node_nr_objs(n); 6249 nr_free += count_partial(n, count_free); 6250 } 6251 6252 sinfo->active_objs = nr_objs - nr_free; 6253 sinfo->num_objs = nr_objs; 6254 sinfo->active_slabs = nr_slabs; 6255 sinfo->num_slabs = nr_slabs; 6256 sinfo->objects_per_slab = oo_objects(s->oo); 6257 sinfo->cache_order = oo_order(s->oo); 6258 } 6259 6260 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6261 { 6262 } 6263 6264 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6265 size_t count, loff_t *ppos) 6266 { 6267 return -EIO; 6268 } 6269 #endif /* CONFIG_SLUB_DEBUG */ 6270