xref: /linux/mm/slub.c (revision 83439a0f1ce6a592f95e41338320b5f01b98a356)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 #include <linux/sort.h>
42 
43 #include <linux/debugfs.h>
44 #include <trace/events/kmem.h>
45 
46 #include "internal.h"
47 
48 /*
49  * Lock order:
50  *   1. slab_mutex (Global Mutex)
51  *   2. node->list_lock (Spinlock)
52  *   3. kmem_cache->cpu_slab->lock (Local lock)
53  *   4. slab_lock(slab) (Only on some arches)
54  *   5. object_map_lock (Only for debugging)
55  *
56  *   slab_mutex
57  *
58  *   The role of the slab_mutex is to protect the list of all the slabs
59  *   and to synchronize major metadata changes to slab cache structures.
60  *   Also synchronizes memory hotplug callbacks.
61  *
62  *   slab_lock
63  *
64  *   The slab_lock is a wrapper around the page lock, thus it is a bit
65  *   spinlock.
66  *
67  *   The slab_lock is only used on arches that do not have the ability
68  *   to do a cmpxchg_double. It only protects:
69  *
70  *	A. slab->freelist	-> List of free objects in a slab
71  *	B. slab->inuse		-> Number of objects in use
72  *	C. slab->objects	-> Number of objects in slab
73  *	D. slab->frozen		-> frozen state
74  *
75  *   Frozen slabs
76  *
77  *   If a slab is frozen then it is exempt from list management. It is not
78  *   on any list except per cpu partial list. The processor that froze the
79  *   slab is the one who can perform list operations on the slab. Other
80  *   processors may put objects onto the freelist but the processor that
81  *   froze the slab is the only one that can retrieve the objects from the
82  *   slab's freelist.
83  *
84  *   list_lock
85  *
86  *   The list_lock protects the partial and full list on each node and
87  *   the partial slab counter. If taken then no new slabs may be added or
88  *   removed from the lists nor make the number of partial slabs be modified.
89  *   (Note that the total number of slabs is an atomic value that may be
90  *   modified without taking the list lock).
91  *
92  *   The list_lock is a centralized lock and thus we avoid taking it as
93  *   much as possible. As long as SLUB does not have to handle partial
94  *   slabs, operations can continue without any centralized lock. F.e.
95  *   allocating a long series of objects that fill up slabs does not require
96  *   the list lock.
97  *
98  *   For debug caches, all allocations are forced to go through a list_lock
99  *   protected region to serialize against concurrent validation.
100  *
101  *   cpu_slab->lock local lock
102  *
103  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
104  *   except the stat counters. This is a percpu structure manipulated only by
105  *   the local cpu, so the lock protects against being preempted or interrupted
106  *   by an irq. Fast path operations rely on lockless operations instead.
107  *
108  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
109  *   which means the lockless fastpath cannot be used as it might interfere with
110  *   an in-progress slow path operations. In this case the local lock is always
111  *   taken but it still utilizes the freelist for the common operations.
112  *
113  *   lockless fastpaths
114  *
115  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
116  *   are fully lockless when satisfied from the percpu slab (and when
117  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
118  *   They also don't disable preemption or migration or irqs. They rely on
119  *   the transaction id (tid) field to detect being preempted or moved to
120  *   another cpu.
121  *
122  *   irq, preemption, migration considerations
123  *
124  *   Interrupts are disabled as part of list_lock or local_lock operations, or
125  *   around the slab_lock operation, in order to make the slab allocator safe
126  *   to use in the context of an irq.
127  *
128  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
129  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
130  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
131  *   doesn't have to be revalidated in each section protected by the local lock.
132  *
133  * SLUB assigns one slab for allocation to each processor.
134  * Allocations only occur from these slabs called cpu slabs.
135  *
136  * Slabs with free elements are kept on a partial list and during regular
137  * operations no list for full slabs is used. If an object in a full slab is
138  * freed then the slab will show up again on the partial lists.
139  * We track full slabs for debugging purposes though because otherwise we
140  * cannot scan all objects.
141  *
142  * Slabs are freed when they become empty. Teardown and setup is
143  * minimal so we rely on the page allocators per cpu caches for
144  * fast frees and allocs.
145  *
146  * slab->frozen		The slab is frozen and exempt from list processing.
147  * 			This means that the slab is dedicated to a purpose
148  * 			such as satisfying allocations for a specific
149  * 			processor. Objects may be freed in the slab while
150  * 			it is frozen but slab_free will then skip the usual
151  * 			list operations. It is up to the processor holding
152  * 			the slab to integrate the slab into the slab lists
153  * 			when the slab is no longer needed.
154  *
155  * 			One use of this flag is to mark slabs that are
156  * 			used for allocations. Then such a slab becomes a cpu
157  * 			slab. The cpu slab may be equipped with an additional
158  * 			freelist that allows lockless access to
159  * 			free objects in addition to the regular freelist
160  * 			that requires the slab lock.
161  *
162  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
163  * 			options set. This moves	slab handling out of
164  * 			the fast path and disables lockless freelists.
165  */
166 
167 /*
168  * We could simply use migrate_disable()/enable() but as long as it's a
169  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
170  */
171 #ifndef CONFIG_PREEMPT_RT
172 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
173 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
174 #define USE_LOCKLESS_FAST_PATH()	(true)
175 #else
176 #define slub_get_cpu_ptr(var)		\
177 ({					\
178 	migrate_disable();		\
179 	this_cpu_ptr(var);		\
180 })
181 #define slub_put_cpu_ptr(var)		\
182 do {					\
183 	(void)(var);			\
184 	migrate_enable();		\
185 } while (0)
186 #define USE_LOCKLESS_FAST_PATH()	(false)
187 #endif
188 
189 #ifdef CONFIG_SLUB_DEBUG
190 #ifdef CONFIG_SLUB_DEBUG_ON
191 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
192 #else
193 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
194 #endif
195 #endif		/* CONFIG_SLUB_DEBUG */
196 
197 /* Structure holding parameters for get_partial() call chain */
198 struct partial_context {
199 	struct slab **slab;
200 	gfp_t flags;
201 	unsigned int orig_size;
202 };
203 
204 static inline bool kmem_cache_debug(struct kmem_cache *s)
205 {
206 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
207 }
208 
209 static inline bool slub_debug_orig_size(struct kmem_cache *s)
210 {
211 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
212 			(s->flags & SLAB_KMALLOC));
213 }
214 
215 void *fixup_red_left(struct kmem_cache *s, void *p)
216 {
217 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
218 		p += s->red_left_pad;
219 
220 	return p;
221 }
222 
223 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
224 {
225 #ifdef CONFIG_SLUB_CPU_PARTIAL
226 	return !kmem_cache_debug(s);
227 #else
228 	return false;
229 #endif
230 }
231 
232 /*
233  * Issues still to be resolved:
234  *
235  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
236  *
237  * - Variable sizing of the per node arrays
238  */
239 
240 /* Enable to log cmpxchg failures */
241 #undef SLUB_DEBUG_CMPXCHG
242 
243 /*
244  * Minimum number of partial slabs. These will be left on the partial
245  * lists even if they are empty. kmem_cache_shrink may reclaim them.
246  */
247 #define MIN_PARTIAL 5
248 
249 /*
250  * Maximum number of desirable partial slabs.
251  * The existence of more partial slabs makes kmem_cache_shrink
252  * sort the partial list by the number of objects in use.
253  */
254 #define MAX_PARTIAL 10
255 
256 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
257 				SLAB_POISON | SLAB_STORE_USER)
258 
259 /*
260  * These debug flags cannot use CMPXCHG because there might be consistency
261  * issues when checking or reading debug information
262  */
263 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
264 				SLAB_TRACE)
265 
266 
267 /*
268  * Debugging flags that require metadata to be stored in the slab.  These get
269  * disabled when slub_debug=O is used and a cache's min order increases with
270  * metadata.
271  */
272 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
273 
274 #define OO_SHIFT	16
275 #define OO_MASK		((1 << OO_SHIFT) - 1)
276 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
277 
278 /* Internal SLUB flags */
279 /* Poison object */
280 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
281 /* Use cmpxchg_double */
282 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
283 
284 /*
285  * Tracking user of a slab.
286  */
287 #define TRACK_ADDRS_COUNT 16
288 struct track {
289 	unsigned long addr;	/* Called from address */
290 #ifdef CONFIG_STACKDEPOT
291 	depot_stack_handle_t handle;
292 #endif
293 	int cpu;		/* Was running on cpu */
294 	int pid;		/* Pid context */
295 	unsigned long when;	/* When did the operation occur */
296 };
297 
298 enum track_item { TRACK_ALLOC, TRACK_FREE };
299 
300 #ifdef CONFIG_SYSFS
301 static int sysfs_slab_add(struct kmem_cache *);
302 static int sysfs_slab_alias(struct kmem_cache *, const char *);
303 #else
304 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
305 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
306 							{ return 0; }
307 #endif
308 
309 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
310 static void debugfs_slab_add(struct kmem_cache *);
311 #else
312 static inline void debugfs_slab_add(struct kmem_cache *s) { }
313 #endif
314 
315 static inline void stat(const struct kmem_cache *s, enum stat_item si)
316 {
317 #ifdef CONFIG_SLUB_STATS
318 	/*
319 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
320 	 * avoid this_cpu_add()'s irq-disable overhead.
321 	 */
322 	raw_cpu_inc(s->cpu_slab->stat[si]);
323 #endif
324 }
325 
326 /*
327  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
328  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
329  * differ during memory hotplug/hotremove operations.
330  * Protected by slab_mutex.
331  */
332 static nodemask_t slab_nodes;
333 
334 /*
335  * Workqueue used for flush_cpu_slab().
336  */
337 static struct workqueue_struct *flushwq;
338 
339 /********************************************************************
340  * 			Core slab cache functions
341  *******************************************************************/
342 
343 /*
344  * Returns freelist pointer (ptr). With hardening, this is obfuscated
345  * with an XOR of the address where the pointer is held and a per-cache
346  * random number.
347  */
348 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
349 				 unsigned long ptr_addr)
350 {
351 #ifdef CONFIG_SLAB_FREELIST_HARDENED
352 	/*
353 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
354 	 * Normally, this doesn't cause any issues, as both set_freepointer()
355 	 * and get_freepointer() are called with a pointer with the same tag.
356 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
357 	 * example, when __free_slub() iterates over objects in a cache, it
358 	 * passes untagged pointers to check_object(). check_object() in turns
359 	 * calls get_freepointer() with an untagged pointer, which causes the
360 	 * freepointer to be restored incorrectly.
361 	 */
362 	return (void *)((unsigned long)ptr ^ s->random ^
363 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
364 #else
365 	return ptr;
366 #endif
367 }
368 
369 /* Returns the freelist pointer recorded at location ptr_addr. */
370 static inline void *freelist_dereference(const struct kmem_cache *s,
371 					 void *ptr_addr)
372 {
373 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
374 			    (unsigned long)ptr_addr);
375 }
376 
377 static inline void *get_freepointer(struct kmem_cache *s, void *object)
378 {
379 	object = kasan_reset_tag(object);
380 	return freelist_dereference(s, object + s->offset);
381 }
382 
383 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
384 {
385 	prefetchw(object + s->offset);
386 }
387 
388 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
389 {
390 	unsigned long freepointer_addr;
391 	void *p;
392 
393 	if (!debug_pagealloc_enabled_static())
394 		return get_freepointer(s, object);
395 
396 	object = kasan_reset_tag(object);
397 	freepointer_addr = (unsigned long)object + s->offset;
398 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
399 	return freelist_ptr(s, p, freepointer_addr);
400 }
401 
402 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
403 {
404 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
405 
406 #ifdef CONFIG_SLAB_FREELIST_HARDENED
407 	BUG_ON(object == fp); /* naive detection of double free or corruption */
408 #endif
409 
410 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
411 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
412 }
413 
414 /* Loop over all objects in a slab */
415 #define for_each_object(__p, __s, __addr, __objects) \
416 	for (__p = fixup_red_left(__s, __addr); \
417 		__p < (__addr) + (__objects) * (__s)->size; \
418 		__p += (__s)->size)
419 
420 static inline unsigned int order_objects(unsigned int order, unsigned int size)
421 {
422 	return ((unsigned int)PAGE_SIZE << order) / size;
423 }
424 
425 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
426 		unsigned int size)
427 {
428 	struct kmem_cache_order_objects x = {
429 		(order << OO_SHIFT) + order_objects(order, size)
430 	};
431 
432 	return x;
433 }
434 
435 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
436 {
437 	return x.x >> OO_SHIFT;
438 }
439 
440 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
441 {
442 	return x.x & OO_MASK;
443 }
444 
445 #ifdef CONFIG_SLUB_CPU_PARTIAL
446 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
447 {
448 	unsigned int nr_slabs;
449 
450 	s->cpu_partial = nr_objects;
451 
452 	/*
453 	 * We take the number of objects but actually limit the number of
454 	 * slabs on the per cpu partial list, in order to limit excessive
455 	 * growth of the list. For simplicity we assume that the slabs will
456 	 * be half-full.
457 	 */
458 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
459 	s->cpu_partial_slabs = nr_slabs;
460 }
461 #else
462 static inline void
463 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
464 {
465 }
466 #endif /* CONFIG_SLUB_CPU_PARTIAL */
467 
468 /*
469  * Per slab locking using the pagelock
470  */
471 static __always_inline void slab_lock(struct slab *slab)
472 {
473 	struct page *page = slab_page(slab);
474 
475 	VM_BUG_ON_PAGE(PageTail(page), page);
476 	bit_spin_lock(PG_locked, &page->flags);
477 }
478 
479 static __always_inline void slab_unlock(struct slab *slab)
480 {
481 	struct page *page = slab_page(slab);
482 
483 	VM_BUG_ON_PAGE(PageTail(page), page);
484 	__bit_spin_unlock(PG_locked, &page->flags);
485 }
486 
487 /*
488  * Interrupts must be disabled (for the fallback code to work right), typically
489  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
490  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
491  * allocation/ free operation in hardirq context. Therefore nothing can
492  * interrupt the operation.
493  */
494 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
495 		void *freelist_old, unsigned long counters_old,
496 		void *freelist_new, unsigned long counters_new,
497 		const char *n)
498 {
499 	if (USE_LOCKLESS_FAST_PATH())
500 		lockdep_assert_irqs_disabled();
501 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
502     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
503 	if (s->flags & __CMPXCHG_DOUBLE) {
504 		if (cmpxchg_double(&slab->freelist, &slab->counters,
505 				   freelist_old, counters_old,
506 				   freelist_new, counters_new))
507 			return true;
508 	} else
509 #endif
510 	{
511 		slab_lock(slab);
512 		if (slab->freelist == freelist_old &&
513 					slab->counters == counters_old) {
514 			slab->freelist = freelist_new;
515 			slab->counters = counters_new;
516 			slab_unlock(slab);
517 			return true;
518 		}
519 		slab_unlock(slab);
520 	}
521 
522 	cpu_relax();
523 	stat(s, CMPXCHG_DOUBLE_FAIL);
524 
525 #ifdef SLUB_DEBUG_CMPXCHG
526 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
527 #endif
528 
529 	return false;
530 }
531 
532 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
533 		void *freelist_old, unsigned long counters_old,
534 		void *freelist_new, unsigned long counters_new,
535 		const char *n)
536 {
537 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
538     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
539 	if (s->flags & __CMPXCHG_DOUBLE) {
540 		if (cmpxchg_double(&slab->freelist, &slab->counters,
541 				   freelist_old, counters_old,
542 				   freelist_new, counters_new))
543 			return true;
544 	} else
545 #endif
546 	{
547 		unsigned long flags;
548 
549 		local_irq_save(flags);
550 		slab_lock(slab);
551 		if (slab->freelist == freelist_old &&
552 					slab->counters == counters_old) {
553 			slab->freelist = freelist_new;
554 			slab->counters = counters_new;
555 			slab_unlock(slab);
556 			local_irq_restore(flags);
557 			return true;
558 		}
559 		slab_unlock(slab);
560 		local_irq_restore(flags);
561 	}
562 
563 	cpu_relax();
564 	stat(s, CMPXCHG_DOUBLE_FAIL);
565 
566 #ifdef SLUB_DEBUG_CMPXCHG
567 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
568 #endif
569 
570 	return false;
571 }
572 
573 #ifdef CONFIG_SLUB_DEBUG
574 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
575 static DEFINE_SPINLOCK(object_map_lock);
576 
577 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
578 		       struct slab *slab)
579 {
580 	void *addr = slab_address(slab);
581 	void *p;
582 
583 	bitmap_zero(obj_map, slab->objects);
584 
585 	for (p = slab->freelist; p; p = get_freepointer(s, p))
586 		set_bit(__obj_to_index(s, addr, p), obj_map);
587 }
588 
589 #if IS_ENABLED(CONFIG_KUNIT)
590 static bool slab_add_kunit_errors(void)
591 {
592 	struct kunit_resource *resource;
593 
594 	if (likely(!current->kunit_test))
595 		return false;
596 
597 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
598 	if (!resource)
599 		return false;
600 
601 	(*(int *)resource->data)++;
602 	kunit_put_resource(resource);
603 	return true;
604 }
605 #else
606 static inline bool slab_add_kunit_errors(void) { return false; }
607 #endif
608 
609 static inline unsigned int size_from_object(struct kmem_cache *s)
610 {
611 	if (s->flags & SLAB_RED_ZONE)
612 		return s->size - s->red_left_pad;
613 
614 	return s->size;
615 }
616 
617 static inline void *restore_red_left(struct kmem_cache *s, void *p)
618 {
619 	if (s->flags & SLAB_RED_ZONE)
620 		p -= s->red_left_pad;
621 
622 	return p;
623 }
624 
625 /*
626  * Debug settings:
627  */
628 #if defined(CONFIG_SLUB_DEBUG_ON)
629 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
630 #else
631 static slab_flags_t slub_debug;
632 #endif
633 
634 static char *slub_debug_string;
635 static int disable_higher_order_debug;
636 
637 /*
638  * slub is about to manipulate internal object metadata.  This memory lies
639  * outside the range of the allocated object, so accessing it would normally
640  * be reported by kasan as a bounds error.  metadata_access_enable() is used
641  * to tell kasan that these accesses are OK.
642  */
643 static inline void metadata_access_enable(void)
644 {
645 	kasan_disable_current();
646 }
647 
648 static inline void metadata_access_disable(void)
649 {
650 	kasan_enable_current();
651 }
652 
653 /*
654  * Object debugging
655  */
656 
657 /* Verify that a pointer has an address that is valid within a slab page */
658 static inline int check_valid_pointer(struct kmem_cache *s,
659 				struct slab *slab, void *object)
660 {
661 	void *base;
662 
663 	if (!object)
664 		return 1;
665 
666 	base = slab_address(slab);
667 	object = kasan_reset_tag(object);
668 	object = restore_red_left(s, object);
669 	if (object < base || object >= base + slab->objects * s->size ||
670 		(object - base) % s->size) {
671 		return 0;
672 	}
673 
674 	return 1;
675 }
676 
677 static void print_section(char *level, char *text, u8 *addr,
678 			  unsigned int length)
679 {
680 	metadata_access_enable();
681 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
682 			16, 1, kasan_reset_tag((void *)addr), length, 1);
683 	metadata_access_disable();
684 }
685 
686 /*
687  * See comment in calculate_sizes().
688  */
689 static inline bool freeptr_outside_object(struct kmem_cache *s)
690 {
691 	return s->offset >= s->inuse;
692 }
693 
694 /*
695  * Return offset of the end of info block which is inuse + free pointer if
696  * not overlapping with object.
697  */
698 static inline unsigned int get_info_end(struct kmem_cache *s)
699 {
700 	if (freeptr_outside_object(s))
701 		return s->inuse + sizeof(void *);
702 	else
703 		return s->inuse;
704 }
705 
706 static struct track *get_track(struct kmem_cache *s, void *object,
707 	enum track_item alloc)
708 {
709 	struct track *p;
710 
711 	p = object + get_info_end(s);
712 
713 	return kasan_reset_tag(p + alloc);
714 }
715 
716 #ifdef CONFIG_STACKDEPOT
717 static noinline depot_stack_handle_t set_track_prepare(void)
718 {
719 	depot_stack_handle_t handle;
720 	unsigned long entries[TRACK_ADDRS_COUNT];
721 	unsigned int nr_entries;
722 
723 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
724 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
725 
726 	return handle;
727 }
728 #else
729 static inline depot_stack_handle_t set_track_prepare(void)
730 {
731 	return 0;
732 }
733 #endif
734 
735 static void set_track_update(struct kmem_cache *s, void *object,
736 			     enum track_item alloc, unsigned long addr,
737 			     depot_stack_handle_t handle)
738 {
739 	struct track *p = get_track(s, object, alloc);
740 
741 #ifdef CONFIG_STACKDEPOT
742 	p->handle = handle;
743 #endif
744 	p->addr = addr;
745 	p->cpu = smp_processor_id();
746 	p->pid = current->pid;
747 	p->when = jiffies;
748 }
749 
750 static __always_inline void set_track(struct kmem_cache *s, void *object,
751 				      enum track_item alloc, unsigned long addr)
752 {
753 	depot_stack_handle_t handle = set_track_prepare();
754 
755 	set_track_update(s, object, alloc, addr, handle);
756 }
757 
758 static void init_tracking(struct kmem_cache *s, void *object)
759 {
760 	struct track *p;
761 
762 	if (!(s->flags & SLAB_STORE_USER))
763 		return;
764 
765 	p = get_track(s, object, TRACK_ALLOC);
766 	memset(p, 0, 2*sizeof(struct track));
767 }
768 
769 static void print_track(const char *s, struct track *t, unsigned long pr_time)
770 {
771 	depot_stack_handle_t handle __maybe_unused;
772 
773 	if (!t->addr)
774 		return;
775 
776 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
777 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
778 #ifdef CONFIG_STACKDEPOT
779 	handle = READ_ONCE(t->handle);
780 	if (handle)
781 		stack_depot_print(handle);
782 	else
783 		pr_err("object allocation/free stack trace missing\n");
784 #endif
785 }
786 
787 void print_tracking(struct kmem_cache *s, void *object)
788 {
789 	unsigned long pr_time = jiffies;
790 	if (!(s->flags & SLAB_STORE_USER))
791 		return;
792 
793 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
794 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
795 }
796 
797 static void print_slab_info(const struct slab *slab)
798 {
799 	struct folio *folio = (struct folio *)slab_folio(slab);
800 
801 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
802 	       slab, slab->objects, slab->inuse, slab->freelist,
803 	       folio_flags(folio, 0));
804 }
805 
806 /*
807  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
808  * family will round up the real request size to these fixed ones, so
809  * there could be an extra area than what is requested. Save the original
810  * request size in the meta data area, for better debug and sanity check.
811  */
812 static inline void set_orig_size(struct kmem_cache *s,
813 				void *object, unsigned int orig_size)
814 {
815 	void *p = kasan_reset_tag(object);
816 
817 	if (!slub_debug_orig_size(s))
818 		return;
819 
820 	p += get_info_end(s);
821 	p += sizeof(struct track) * 2;
822 
823 	*(unsigned int *)p = orig_size;
824 }
825 
826 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
827 {
828 	void *p = kasan_reset_tag(object);
829 
830 	if (!slub_debug_orig_size(s))
831 		return s->object_size;
832 
833 	p += get_info_end(s);
834 	p += sizeof(struct track) * 2;
835 
836 	return *(unsigned int *)p;
837 }
838 
839 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
840 {
841 	struct va_format vaf;
842 	va_list args;
843 
844 	va_start(args, fmt);
845 	vaf.fmt = fmt;
846 	vaf.va = &args;
847 	pr_err("=============================================================================\n");
848 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
849 	pr_err("-----------------------------------------------------------------------------\n\n");
850 	va_end(args);
851 }
852 
853 __printf(2, 3)
854 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
855 {
856 	struct va_format vaf;
857 	va_list args;
858 
859 	if (slab_add_kunit_errors())
860 		return;
861 
862 	va_start(args, fmt);
863 	vaf.fmt = fmt;
864 	vaf.va = &args;
865 	pr_err("FIX %s: %pV\n", s->name, &vaf);
866 	va_end(args);
867 }
868 
869 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
870 {
871 	unsigned int off;	/* Offset of last byte */
872 	u8 *addr = slab_address(slab);
873 
874 	print_tracking(s, p);
875 
876 	print_slab_info(slab);
877 
878 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
879 	       p, p - addr, get_freepointer(s, p));
880 
881 	if (s->flags & SLAB_RED_ZONE)
882 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
883 			      s->red_left_pad);
884 	else if (p > addr + 16)
885 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
886 
887 	print_section(KERN_ERR,         "Object   ", p,
888 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
889 	if (s->flags & SLAB_RED_ZONE)
890 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
891 			s->inuse - s->object_size);
892 
893 	off = get_info_end(s);
894 
895 	if (s->flags & SLAB_STORE_USER)
896 		off += 2 * sizeof(struct track);
897 
898 	if (slub_debug_orig_size(s))
899 		off += sizeof(unsigned int);
900 
901 	off += kasan_metadata_size(s);
902 
903 	if (off != size_from_object(s))
904 		/* Beginning of the filler is the free pointer */
905 		print_section(KERN_ERR, "Padding  ", p + off,
906 			      size_from_object(s) - off);
907 
908 	dump_stack();
909 }
910 
911 static void object_err(struct kmem_cache *s, struct slab *slab,
912 			u8 *object, char *reason)
913 {
914 	if (slab_add_kunit_errors())
915 		return;
916 
917 	slab_bug(s, "%s", reason);
918 	print_trailer(s, slab, object);
919 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
920 }
921 
922 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
923 			       void **freelist, void *nextfree)
924 {
925 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
926 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
927 		object_err(s, slab, *freelist, "Freechain corrupt");
928 		*freelist = NULL;
929 		slab_fix(s, "Isolate corrupted freechain");
930 		return true;
931 	}
932 
933 	return false;
934 }
935 
936 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
937 			const char *fmt, ...)
938 {
939 	va_list args;
940 	char buf[100];
941 
942 	if (slab_add_kunit_errors())
943 		return;
944 
945 	va_start(args, fmt);
946 	vsnprintf(buf, sizeof(buf), fmt, args);
947 	va_end(args);
948 	slab_bug(s, "%s", buf);
949 	print_slab_info(slab);
950 	dump_stack();
951 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
952 }
953 
954 static void init_object(struct kmem_cache *s, void *object, u8 val)
955 {
956 	u8 *p = kasan_reset_tag(object);
957 
958 	if (s->flags & SLAB_RED_ZONE)
959 		memset(p - s->red_left_pad, val, s->red_left_pad);
960 
961 	if (s->flags & __OBJECT_POISON) {
962 		memset(p, POISON_FREE, s->object_size - 1);
963 		p[s->object_size - 1] = POISON_END;
964 	}
965 
966 	if (s->flags & SLAB_RED_ZONE)
967 		memset(p + s->object_size, val, s->inuse - s->object_size);
968 }
969 
970 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
971 						void *from, void *to)
972 {
973 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
974 	memset(from, data, to - from);
975 }
976 
977 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
978 			u8 *object, char *what,
979 			u8 *start, unsigned int value, unsigned int bytes)
980 {
981 	u8 *fault;
982 	u8 *end;
983 	u8 *addr = slab_address(slab);
984 
985 	metadata_access_enable();
986 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
987 	metadata_access_disable();
988 	if (!fault)
989 		return 1;
990 
991 	end = start + bytes;
992 	while (end > fault && end[-1] == value)
993 		end--;
994 
995 	if (slab_add_kunit_errors())
996 		goto skip_bug_print;
997 
998 	slab_bug(s, "%s overwritten", what);
999 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1000 					fault, end - 1, fault - addr,
1001 					fault[0], value);
1002 	print_trailer(s, slab, object);
1003 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1004 
1005 skip_bug_print:
1006 	restore_bytes(s, what, value, fault, end);
1007 	return 0;
1008 }
1009 
1010 /*
1011  * Object layout:
1012  *
1013  * object address
1014  * 	Bytes of the object to be managed.
1015  * 	If the freepointer may overlay the object then the free
1016  *	pointer is at the middle of the object.
1017  *
1018  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1019  * 	0xa5 (POISON_END)
1020  *
1021  * object + s->object_size
1022  * 	Padding to reach word boundary. This is also used for Redzoning.
1023  * 	Padding is extended by another word if Redzoning is enabled and
1024  * 	object_size == inuse.
1025  *
1026  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1027  * 	0xcc (RED_ACTIVE) for objects in use.
1028  *
1029  * object + s->inuse
1030  * 	Meta data starts here.
1031  *
1032  * 	A. Free pointer (if we cannot overwrite object on free)
1033  * 	B. Tracking data for SLAB_STORE_USER
1034  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1035  *	D. Padding to reach required alignment boundary or at minimum
1036  * 		one word if debugging is on to be able to detect writes
1037  * 		before the word boundary.
1038  *
1039  *	Padding is done using 0x5a (POISON_INUSE)
1040  *
1041  * object + s->size
1042  * 	Nothing is used beyond s->size.
1043  *
1044  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1045  * ignored. And therefore no slab options that rely on these boundaries
1046  * may be used with merged slabcaches.
1047  */
1048 
1049 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1050 {
1051 	unsigned long off = get_info_end(s);	/* The end of info */
1052 
1053 	if (s->flags & SLAB_STORE_USER) {
1054 		/* We also have user information there */
1055 		off += 2 * sizeof(struct track);
1056 
1057 		if (s->flags & SLAB_KMALLOC)
1058 			off += sizeof(unsigned int);
1059 	}
1060 
1061 	off += kasan_metadata_size(s);
1062 
1063 	if (size_from_object(s) == off)
1064 		return 1;
1065 
1066 	return check_bytes_and_report(s, slab, p, "Object padding",
1067 			p + off, POISON_INUSE, size_from_object(s) - off);
1068 }
1069 
1070 /* Check the pad bytes at the end of a slab page */
1071 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1072 {
1073 	u8 *start;
1074 	u8 *fault;
1075 	u8 *end;
1076 	u8 *pad;
1077 	int length;
1078 	int remainder;
1079 
1080 	if (!(s->flags & SLAB_POISON))
1081 		return;
1082 
1083 	start = slab_address(slab);
1084 	length = slab_size(slab);
1085 	end = start + length;
1086 	remainder = length % s->size;
1087 	if (!remainder)
1088 		return;
1089 
1090 	pad = end - remainder;
1091 	metadata_access_enable();
1092 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1093 	metadata_access_disable();
1094 	if (!fault)
1095 		return;
1096 	while (end > fault && end[-1] == POISON_INUSE)
1097 		end--;
1098 
1099 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1100 			fault, end - 1, fault - start);
1101 	print_section(KERN_ERR, "Padding ", pad, remainder);
1102 
1103 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1104 }
1105 
1106 static int check_object(struct kmem_cache *s, struct slab *slab,
1107 					void *object, u8 val)
1108 {
1109 	u8 *p = object;
1110 	u8 *endobject = object + s->object_size;
1111 
1112 	if (s->flags & SLAB_RED_ZONE) {
1113 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1114 			object - s->red_left_pad, val, s->red_left_pad))
1115 			return 0;
1116 
1117 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1118 			endobject, val, s->inuse - s->object_size))
1119 			return 0;
1120 	} else {
1121 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1122 			check_bytes_and_report(s, slab, p, "Alignment padding",
1123 				endobject, POISON_INUSE,
1124 				s->inuse - s->object_size);
1125 		}
1126 	}
1127 
1128 	if (s->flags & SLAB_POISON) {
1129 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1130 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1131 					POISON_FREE, s->object_size - 1) ||
1132 			 !check_bytes_and_report(s, slab, p, "End Poison",
1133 				p + s->object_size - 1, POISON_END, 1)))
1134 			return 0;
1135 		/*
1136 		 * check_pad_bytes cleans up on its own.
1137 		 */
1138 		check_pad_bytes(s, slab, p);
1139 	}
1140 
1141 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1142 		/*
1143 		 * Object and freepointer overlap. Cannot check
1144 		 * freepointer while object is allocated.
1145 		 */
1146 		return 1;
1147 
1148 	/* Check free pointer validity */
1149 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1150 		object_err(s, slab, p, "Freepointer corrupt");
1151 		/*
1152 		 * No choice but to zap it and thus lose the remainder
1153 		 * of the free objects in this slab. May cause
1154 		 * another error because the object count is now wrong.
1155 		 */
1156 		set_freepointer(s, p, NULL);
1157 		return 0;
1158 	}
1159 	return 1;
1160 }
1161 
1162 static int check_slab(struct kmem_cache *s, struct slab *slab)
1163 {
1164 	int maxobj;
1165 
1166 	if (!folio_test_slab(slab_folio(slab))) {
1167 		slab_err(s, slab, "Not a valid slab page");
1168 		return 0;
1169 	}
1170 
1171 	maxobj = order_objects(slab_order(slab), s->size);
1172 	if (slab->objects > maxobj) {
1173 		slab_err(s, slab, "objects %u > max %u",
1174 			slab->objects, maxobj);
1175 		return 0;
1176 	}
1177 	if (slab->inuse > slab->objects) {
1178 		slab_err(s, slab, "inuse %u > max %u",
1179 			slab->inuse, slab->objects);
1180 		return 0;
1181 	}
1182 	/* Slab_pad_check fixes things up after itself */
1183 	slab_pad_check(s, slab);
1184 	return 1;
1185 }
1186 
1187 /*
1188  * Determine if a certain object in a slab is on the freelist. Must hold the
1189  * slab lock to guarantee that the chains are in a consistent state.
1190  */
1191 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1192 {
1193 	int nr = 0;
1194 	void *fp;
1195 	void *object = NULL;
1196 	int max_objects;
1197 
1198 	fp = slab->freelist;
1199 	while (fp && nr <= slab->objects) {
1200 		if (fp == search)
1201 			return 1;
1202 		if (!check_valid_pointer(s, slab, fp)) {
1203 			if (object) {
1204 				object_err(s, slab, object,
1205 					"Freechain corrupt");
1206 				set_freepointer(s, object, NULL);
1207 			} else {
1208 				slab_err(s, slab, "Freepointer corrupt");
1209 				slab->freelist = NULL;
1210 				slab->inuse = slab->objects;
1211 				slab_fix(s, "Freelist cleared");
1212 				return 0;
1213 			}
1214 			break;
1215 		}
1216 		object = fp;
1217 		fp = get_freepointer(s, object);
1218 		nr++;
1219 	}
1220 
1221 	max_objects = order_objects(slab_order(slab), s->size);
1222 	if (max_objects > MAX_OBJS_PER_PAGE)
1223 		max_objects = MAX_OBJS_PER_PAGE;
1224 
1225 	if (slab->objects != max_objects) {
1226 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1227 			 slab->objects, max_objects);
1228 		slab->objects = max_objects;
1229 		slab_fix(s, "Number of objects adjusted");
1230 	}
1231 	if (slab->inuse != slab->objects - nr) {
1232 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1233 			 slab->inuse, slab->objects - nr);
1234 		slab->inuse = slab->objects - nr;
1235 		slab_fix(s, "Object count adjusted");
1236 	}
1237 	return search == NULL;
1238 }
1239 
1240 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1241 								int alloc)
1242 {
1243 	if (s->flags & SLAB_TRACE) {
1244 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1245 			s->name,
1246 			alloc ? "alloc" : "free",
1247 			object, slab->inuse,
1248 			slab->freelist);
1249 
1250 		if (!alloc)
1251 			print_section(KERN_INFO, "Object ", (void *)object,
1252 					s->object_size);
1253 
1254 		dump_stack();
1255 	}
1256 }
1257 
1258 /*
1259  * Tracking of fully allocated slabs for debugging purposes.
1260  */
1261 static void add_full(struct kmem_cache *s,
1262 	struct kmem_cache_node *n, struct slab *slab)
1263 {
1264 	if (!(s->flags & SLAB_STORE_USER))
1265 		return;
1266 
1267 	lockdep_assert_held(&n->list_lock);
1268 	list_add(&slab->slab_list, &n->full);
1269 }
1270 
1271 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1272 {
1273 	if (!(s->flags & SLAB_STORE_USER))
1274 		return;
1275 
1276 	lockdep_assert_held(&n->list_lock);
1277 	list_del(&slab->slab_list);
1278 }
1279 
1280 /* Tracking of the number of slabs for debugging purposes */
1281 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1282 {
1283 	struct kmem_cache_node *n = get_node(s, node);
1284 
1285 	return atomic_long_read(&n->nr_slabs);
1286 }
1287 
1288 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1289 {
1290 	return atomic_long_read(&n->nr_slabs);
1291 }
1292 
1293 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1294 {
1295 	struct kmem_cache_node *n = get_node(s, node);
1296 
1297 	/*
1298 	 * May be called early in order to allocate a slab for the
1299 	 * kmem_cache_node structure. Solve the chicken-egg
1300 	 * dilemma by deferring the increment of the count during
1301 	 * bootstrap (see early_kmem_cache_node_alloc).
1302 	 */
1303 	if (likely(n)) {
1304 		atomic_long_inc(&n->nr_slabs);
1305 		atomic_long_add(objects, &n->total_objects);
1306 	}
1307 }
1308 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1309 {
1310 	struct kmem_cache_node *n = get_node(s, node);
1311 
1312 	atomic_long_dec(&n->nr_slabs);
1313 	atomic_long_sub(objects, &n->total_objects);
1314 }
1315 
1316 /* Object debug checks for alloc/free paths */
1317 static void setup_object_debug(struct kmem_cache *s, void *object)
1318 {
1319 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1320 		return;
1321 
1322 	init_object(s, object, SLUB_RED_INACTIVE);
1323 	init_tracking(s, object);
1324 }
1325 
1326 static
1327 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1328 {
1329 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1330 		return;
1331 
1332 	metadata_access_enable();
1333 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1334 	metadata_access_disable();
1335 }
1336 
1337 static inline int alloc_consistency_checks(struct kmem_cache *s,
1338 					struct slab *slab, void *object)
1339 {
1340 	if (!check_slab(s, slab))
1341 		return 0;
1342 
1343 	if (!check_valid_pointer(s, slab, object)) {
1344 		object_err(s, slab, object, "Freelist Pointer check fails");
1345 		return 0;
1346 	}
1347 
1348 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1349 		return 0;
1350 
1351 	return 1;
1352 }
1353 
1354 static noinline int alloc_debug_processing(struct kmem_cache *s,
1355 			struct slab *slab, void *object, int orig_size)
1356 {
1357 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1358 		if (!alloc_consistency_checks(s, slab, object))
1359 			goto bad;
1360 	}
1361 
1362 	/* Success. Perform special debug activities for allocs */
1363 	trace(s, slab, object, 1);
1364 	set_orig_size(s, object, orig_size);
1365 	init_object(s, object, SLUB_RED_ACTIVE);
1366 	return 1;
1367 
1368 bad:
1369 	if (folio_test_slab(slab_folio(slab))) {
1370 		/*
1371 		 * If this is a slab page then lets do the best we can
1372 		 * to avoid issues in the future. Marking all objects
1373 		 * as used avoids touching the remaining objects.
1374 		 */
1375 		slab_fix(s, "Marking all objects used");
1376 		slab->inuse = slab->objects;
1377 		slab->freelist = NULL;
1378 	}
1379 	return 0;
1380 }
1381 
1382 static inline int free_consistency_checks(struct kmem_cache *s,
1383 		struct slab *slab, void *object, unsigned long addr)
1384 {
1385 	if (!check_valid_pointer(s, slab, object)) {
1386 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1387 		return 0;
1388 	}
1389 
1390 	if (on_freelist(s, slab, object)) {
1391 		object_err(s, slab, object, "Object already free");
1392 		return 0;
1393 	}
1394 
1395 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1396 		return 0;
1397 
1398 	if (unlikely(s != slab->slab_cache)) {
1399 		if (!folio_test_slab(slab_folio(slab))) {
1400 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1401 				 object);
1402 		} else if (!slab->slab_cache) {
1403 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1404 			       object);
1405 			dump_stack();
1406 		} else
1407 			object_err(s, slab, object,
1408 					"page slab pointer corrupt.");
1409 		return 0;
1410 	}
1411 	return 1;
1412 }
1413 
1414 /*
1415  * Parse a block of slub_debug options. Blocks are delimited by ';'
1416  *
1417  * @str:    start of block
1418  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1419  * @slabs:  return start of list of slabs, or NULL when there's no list
1420  * @init:   assume this is initial parsing and not per-kmem-create parsing
1421  *
1422  * returns the start of next block if there's any, or NULL
1423  */
1424 static char *
1425 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1426 {
1427 	bool higher_order_disable = false;
1428 
1429 	/* Skip any completely empty blocks */
1430 	while (*str && *str == ';')
1431 		str++;
1432 
1433 	if (*str == ',') {
1434 		/*
1435 		 * No options but restriction on slabs. This means full
1436 		 * debugging for slabs matching a pattern.
1437 		 */
1438 		*flags = DEBUG_DEFAULT_FLAGS;
1439 		goto check_slabs;
1440 	}
1441 	*flags = 0;
1442 
1443 	/* Determine which debug features should be switched on */
1444 	for (; *str && *str != ',' && *str != ';'; str++) {
1445 		switch (tolower(*str)) {
1446 		case '-':
1447 			*flags = 0;
1448 			break;
1449 		case 'f':
1450 			*flags |= SLAB_CONSISTENCY_CHECKS;
1451 			break;
1452 		case 'z':
1453 			*flags |= SLAB_RED_ZONE;
1454 			break;
1455 		case 'p':
1456 			*flags |= SLAB_POISON;
1457 			break;
1458 		case 'u':
1459 			*flags |= SLAB_STORE_USER;
1460 			break;
1461 		case 't':
1462 			*flags |= SLAB_TRACE;
1463 			break;
1464 		case 'a':
1465 			*flags |= SLAB_FAILSLAB;
1466 			break;
1467 		case 'o':
1468 			/*
1469 			 * Avoid enabling debugging on caches if its minimum
1470 			 * order would increase as a result.
1471 			 */
1472 			higher_order_disable = true;
1473 			break;
1474 		default:
1475 			if (init)
1476 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1477 		}
1478 	}
1479 check_slabs:
1480 	if (*str == ',')
1481 		*slabs = ++str;
1482 	else
1483 		*slabs = NULL;
1484 
1485 	/* Skip over the slab list */
1486 	while (*str && *str != ';')
1487 		str++;
1488 
1489 	/* Skip any completely empty blocks */
1490 	while (*str && *str == ';')
1491 		str++;
1492 
1493 	if (init && higher_order_disable)
1494 		disable_higher_order_debug = 1;
1495 
1496 	if (*str)
1497 		return str;
1498 	else
1499 		return NULL;
1500 }
1501 
1502 static int __init setup_slub_debug(char *str)
1503 {
1504 	slab_flags_t flags;
1505 	slab_flags_t global_flags;
1506 	char *saved_str;
1507 	char *slab_list;
1508 	bool global_slub_debug_changed = false;
1509 	bool slab_list_specified = false;
1510 
1511 	global_flags = DEBUG_DEFAULT_FLAGS;
1512 	if (*str++ != '=' || !*str)
1513 		/*
1514 		 * No options specified. Switch on full debugging.
1515 		 */
1516 		goto out;
1517 
1518 	saved_str = str;
1519 	while (str) {
1520 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1521 
1522 		if (!slab_list) {
1523 			global_flags = flags;
1524 			global_slub_debug_changed = true;
1525 		} else {
1526 			slab_list_specified = true;
1527 			if (flags & SLAB_STORE_USER)
1528 				stack_depot_want_early_init();
1529 		}
1530 	}
1531 
1532 	/*
1533 	 * For backwards compatibility, a single list of flags with list of
1534 	 * slabs means debugging is only changed for those slabs, so the global
1535 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1536 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1537 	 * long as there is no option specifying flags without a slab list.
1538 	 */
1539 	if (slab_list_specified) {
1540 		if (!global_slub_debug_changed)
1541 			global_flags = slub_debug;
1542 		slub_debug_string = saved_str;
1543 	}
1544 out:
1545 	slub_debug = global_flags;
1546 	if (slub_debug & SLAB_STORE_USER)
1547 		stack_depot_want_early_init();
1548 	if (slub_debug != 0 || slub_debug_string)
1549 		static_branch_enable(&slub_debug_enabled);
1550 	else
1551 		static_branch_disable(&slub_debug_enabled);
1552 	if ((static_branch_unlikely(&init_on_alloc) ||
1553 	     static_branch_unlikely(&init_on_free)) &&
1554 	    (slub_debug & SLAB_POISON))
1555 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1556 	return 1;
1557 }
1558 
1559 __setup("slub_debug", setup_slub_debug);
1560 
1561 /*
1562  * kmem_cache_flags - apply debugging options to the cache
1563  * @object_size:	the size of an object without meta data
1564  * @flags:		flags to set
1565  * @name:		name of the cache
1566  *
1567  * Debug option(s) are applied to @flags. In addition to the debug
1568  * option(s), if a slab name (or multiple) is specified i.e.
1569  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1570  * then only the select slabs will receive the debug option(s).
1571  */
1572 slab_flags_t kmem_cache_flags(unsigned int object_size,
1573 	slab_flags_t flags, const char *name)
1574 {
1575 	char *iter;
1576 	size_t len;
1577 	char *next_block;
1578 	slab_flags_t block_flags;
1579 	slab_flags_t slub_debug_local = slub_debug;
1580 
1581 	if (flags & SLAB_NO_USER_FLAGS)
1582 		return flags;
1583 
1584 	/*
1585 	 * If the slab cache is for debugging (e.g. kmemleak) then
1586 	 * don't store user (stack trace) information by default,
1587 	 * but let the user enable it via the command line below.
1588 	 */
1589 	if (flags & SLAB_NOLEAKTRACE)
1590 		slub_debug_local &= ~SLAB_STORE_USER;
1591 
1592 	len = strlen(name);
1593 	next_block = slub_debug_string;
1594 	/* Go through all blocks of debug options, see if any matches our slab's name */
1595 	while (next_block) {
1596 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1597 		if (!iter)
1598 			continue;
1599 		/* Found a block that has a slab list, search it */
1600 		while (*iter) {
1601 			char *end, *glob;
1602 			size_t cmplen;
1603 
1604 			end = strchrnul(iter, ',');
1605 			if (next_block && next_block < end)
1606 				end = next_block - 1;
1607 
1608 			glob = strnchr(iter, end - iter, '*');
1609 			if (glob)
1610 				cmplen = glob - iter;
1611 			else
1612 				cmplen = max_t(size_t, len, (end - iter));
1613 
1614 			if (!strncmp(name, iter, cmplen)) {
1615 				flags |= block_flags;
1616 				return flags;
1617 			}
1618 
1619 			if (!*end || *end == ';')
1620 				break;
1621 			iter = end + 1;
1622 		}
1623 	}
1624 
1625 	return flags | slub_debug_local;
1626 }
1627 #else /* !CONFIG_SLUB_DEBUG */
1628 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1629 static inline
1630 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1631 
1632 static inline int alloc_debug_processing(struct kmem_cache *s,
1633 	struct slab *slab, void *object, int orig_size) { return 0; }
1634 
1635 static inline void free_debug_processing(
1636 	struct kmem_cache *s, struct slab *slab,
1637 	void *head, void *tail, int bulk_cnt,
1638 	unsigned long addr) {}
1639 
1640 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1641 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1642 			void *object, u8 val) { return 1; }
1643 static inline void set_track(struct kmem_cache *s, void *object,
1644 			     enum track_item alloc, unsigned long addr) {}
1645 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1646 					struct slab *slab) {}
1647 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1648 					struct slab *slab) {}
1649 slab_flags_t kmem_cache_flags(unsigned int object_size,
1650 	slab_flags_t flags, const char *name)
1651 {
1652 	return flags;
1653 }
1654 #define slub_debug 0
1655 
1656 #define disable_higher_order_debug 0
1657 
1658 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1659 							{ return 0; }
1660 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1661 							{ return 0; }
1662 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1663 							int objects) {}
1664 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1665 							int objects) {}
1666 
1667 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1668 			       void **freelist, void *nextfree)
1669 {
1670 	return false;
1671 }
1672 #endif /* CONFIG_SLUB_DEBUG */
1673 
1674 /*
1675  * Hooks for other subsystems that check memory allocations. In a typical
1676  * production configuration these hooks all should produce no code at all.
1677  */
1678 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1679 						void *x, bool init)
1680 {
1681 	kmemleak_free_recursive(x, s->flags);
1682 
1683 	debug_check_no_locks_freed(x, s->object_size);
1684 
1685 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1686 		debug_check_no_obj_freed(x, s->object_size);
1687 
1688 	/* Use KCSAN to help debug racy use-after-free. */
1689 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1690 		__kcsan_check_access(x, s->object_size,
1691 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1692 
1693 	/*
1694 	 * As memory initialization might be integrated into KASAN,
1695 	 * kasan_slab_free and initialization memset's must be
1696 	 * kept together to avoid discrepancies in behavior.
1697 	 *
1698 	 * The initialization memset's clear the object and the metadata,
1699 	 * but don't touch the SLAB redzone.
1700 	 */
1701 	if (init) {
1702 		int rsize;
1703 
1704 		if (!kasan_has_integrated_init())
1705 			memset(kasan_reset_tag(x), 0, s->object_size);
1706 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1707 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1708 		       s->size - s->inuse - rsize);
1709 	}
1710 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1711 	return kasan_slab_free(s, x, init);
1712 }
1713 
1714 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1715 					   void **head, void **tail,
1716 					   int *cnt)
1717 {
1718 
1719 	void *object;
1720 	void *next = *head;
1721 	void *old_tail = *tail ? *tail : *head;
1722 
1723 	if (is_kfence_address(next)) {
1724 		slab_free_hook(s, next, false);
1725 		return true;
1726 	}
1727 
1728 	/* Head and tail of the reconstructed freelist */
1729 	*head = NULL;
1730 	*tail = NULL;
1731 
1732 	do {
1733 		object = next;
1734 		next = get_freepointer(s, object);
1735 
1736 		/* If object's reuse doesn't have to be delayed */
1737 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1738 			/* Move object to the new freelist */
1739 			set_freepointer(s, object, *head);
1740 			*head = object;
1741 			if (!*tail)
1742 				*tail = object;
1743 		} else {
1744 			/*
1745 			 * Adjust the reconstructed freelist depth
1746 			 * accordingly if object's reuse is delayed.
1747 			 */
1748 			--(*cnt);
1749 		}
1750 	} while (object != old_tail);
1751 
1752 	if (*head == *tail)
1753 		*tail = NULL;
1754 
1755 	return *head != NULL;
1756 }
1757 
1758 static void *setup_object(struct kmem_cache *s, void *object)
1759 {
1760 	setup_object_debug(s, object);
1761 	object = kasan_init_slab_obj(s, object);
1762 	if (unlikely(s->ctor)) {
1763 		kasan_unpoison_object_data(s, object);
1764 		s->ctor(object);
1765 		kasan_poison_object_data(s, object);
1766 	}
1767 	return object;
1768 }
1769 
1770 /*
1771  * Slab allocation and freeing
1772  */
1773 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1774 		struct kmem_cache_order_objects oo)
1775 {
1776 	struct folio *folio;
1777 	struct slab *slab;
1778 	unsigned int order = oo_order(oo);
1779 
1780 	if (node == NUMA_NO_NODE)
1781 		folio = (struct folio *)alloc_pages(flags, order);
1782 	else
1783 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1784 
1785 	if (!folio)
1786 		return NULL;
1787 
1788 	slab = folio_slab(folio);
1789 	__folio_set_slab(folio);
1790 	if (page_is_pfmemalloc(folio_page(folio, 0)))
1791 		slab_set_pfmemalloc(slab);
1792 
1793 	return slab;
1794 }
1795 
1796 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1797 /* Pre-initialize the random sequence cache */
1798 static int init_cache_random_seq(struct kmem_cache *s)
1799 {
1800 	unsigned int count = oo_objects(s->oo);
1801 	int err;
1802 
1803 	/* Bailout if already initialised */
1804 	if (s->random_seq)
1805 		return 0;
1806 
1807 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1808 	if (err) {
1809 		pr_err("SLUB: Unable to initialize free list for %s\n",
1810 			s->name);
1811 		return err;
1812 	}
1813 
1814 	/* Transform to an offset on the set of pages */
1815 	if (s->random_seq) {
1816 		unsigned int i;
1817 
1818 		for (i = 0; i < count; i++)
1819 			s->random_seq[i] *= s->size;
1820 	}
1821 	return 0;
1822 }
1823 
1824 /* Initialize each random sequence freelist per cache */
1825 static void __init init_freelist_randomization(void)
1826 {
1827 	struct kmem_cache *s;
1828 
1829 	mutex_lock(&slab_mutex);
1830 
1831 	list_for_each_entry(s, &slab_caches, list)
1832 		init_cache_random_seq(s);
1833 
1834 	mutex_unlock(&slab_mutex);
1835 }
1836 
1837 /* Get the next entry on the pre-computed freelist randomized */
1838 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1839 				unsigned long *pos, void *start,
1840 				unsigned long page_limit,
1841 				unsigned long freelist_count)
1842 {
1843 	unsigned int idx;
1844 
1845 	/*
1846 	 * If the target page allocation failed, the number of objects on the
1847 	 * page might be smaller than the usual size defined by the cache.
1848 	 */
1849 	do {
1850 		idx = s->random_seq[*pos];
1851 		*pos += 1;
1852 		if (*pos >= freelist_count)
1853 			*pos = 0;
1854 	} while (unlikely(idx >= page_limit));
1855 
1856 	return (char *)start + idx;
1857 }
1858 
1859 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1860 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1861 {
1862 	void *start;
1863 	void *cur;
1864 	void *next;
1865 	unsigned long idx, pos, page_limit, freelist_count;
1866 
1867 	if (slab->objects < 2 || !s->random_seq)
1868 		return false;
1869 
1870 	freelist_count = oo_objects(s->oo);
1871 	pos = get_random_int() % freelist_count;
1872 
1873 	page_limit = slab->objects * s->size;
1874 	start = fixup_red_left(s, slab_address(slab));
1875 
1876 	/* First entry is used as the base of the freelist */
1877 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1878 				freelist_count);
1879 	cur = setup_object(s, cur);
1880 	slab->freelist = cur;
1881 
1882 	for (idx = 1; idx < slab->objects; idx++) {
1883 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1884 			freelist_count);
1885 		next = setup_object(s, next);
1886 		set_freepointer(s, cur, next);
1887 		cur = next;
1888 	}
1889 	set_freepointer(s, cur, NULL);
1890 
1891 	return true;
1892 }
1893 #else
1894 static inline int init_cache_random_seq(struct kmem_cache *s)
1895 {
1896 	return 0;
1897 }
1898 static inline void init_freelist_randomization(void) { }
1899 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1900 {
1901 	return false;
1902 }
1903 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1904 
1905 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1906 {
1907 	struct slab *slab;
1908 	struct kmem_cache_order_objects oo = s->oo;
1909 	gfp_t alloc_gfp;
1910 	void *start, *p, *next;
1911 	int idx;
1912 	bool shuffle;
1913 
1914 	flags &= gfp_allowed_mask;
1915 
1916 	flags |= s->allocflags;
1917 
1918 	/*
1919 	 * Let the initial higher-order allocation fail under memory pressure
1920 	 * so we fall-back to the minimum order allocation.
1921 	 */
1922 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1923 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1924 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1925 
1926 	slab = alloc_slab_page(alloc_gfp, node, oo);
1927 	if (unlikely(!slab)) {
1928 		oo = s->min;
1929 		alloc_gfp = flags;
1930 		/*
1931 		 * Allocation may have failed due to fragmentation.
1932 		 * Try a lower order alloc if possible
1933 		 */
1934 		slab = alloc_slab_page(alloc_gfp, node, oo);
1935 		if (unlikely(!slab))
1936 			return NULL;
1937 		stat(s, ORDER_FALLBACK);
1938 	}
1939 
1940 	slab->objects = oo_objects(oo);
1941 	slab->inuse = 0;
1942 	slab->frozen = 0;
1943 
1944 	account_slab(slab, oo_order(oo), s, flags);
1945 
1946 	slab->slab_cache = s;
1947 
1948 	kasan_poison_slab(slab);
1949 
1950 	start = slab_address(slab);
1951 
1952 	setup_slab_debug(s, slab, start);
1953 
1954 	shuffle = shuffle_freelist(s, slab);
1955 
1956 	if (!shuffle) {
1957 		start = fixup_red_left(s, start);
1958 		start = setup_object(s, start);
1959 		slab->freelist = start;
1960 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
1961 			next = p + s->size;
1962 			next = setup_object(s, next);
1963 			set_freepointer(s, p, next);
1964 			p = next;
1965 		}
1966 		set_freepointer(s, p, NULL);
1967 	}
1968 
1969 	return slab;
1970 }
1971 
1972 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1973 {
1974 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1975 		flags = kmalloc_fix_flags(flags);
1976 
1977 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1978 
1979 	return allocate_slab(s,
1980 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1981 }
1982 
1983 static void __free_slab(struct kmem_cache *s, struct slab *slab)
1984 {
1985 	struct folio *folio = slab_folio(slab);
1986 	int order = folio_order(folio);
1987 	int pages = 1 << order;
1988 
1989 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1990 		void *p;
1991 
1992 		slab_pad_check(s, slab);
1993 		for_each_object(p, s, slab_address(slab), slab->objects)
1994 			check_object(s, slab, p, SLUB_RED_INACTIVE);
1995 	}
1996 
1997 	__slab_clear_pfmemalloc(slab);
1998 	__folio_clear_slab(folio);
1999 	folio->mapping = NULL;
2000 	if (current->reclaim_state)
2001 		current->reclaim_state->reclaimed_slab += pages;
2002 	unaccount_slab(slab, order, s);
2003 	__free_pages(folio_page(folio, 0), order);
2004 }
2005 
2006 static void rcu_free_slab(struct rcu_head *h)
2007 {
2008 	struct slab *slab = container_of(h, struct slab, rcu_head);
2009 
2010 	__free_slab(slab->slab_cache, slab);
2011 }
2012 
2013 static void free_slab(struct kmem_cache *s, struct slab *slab)
2014 {
2015 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2016 		call_rcu(&slab->rcu_head, rcu_free_slab);
2017 	} else
2018 		__free_slab(s, slab);
2019 }
2020 
2021 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2022 {
2023 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2024 	free_slab(s, slab);
2025 }
2026 
2027 /*
2028  * Management of partially allocated slabs.
2029  */
2030 static inline void
2031 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2032 {
2033 	n->nr_partial++;
2034 	if (tail == DEACTIVATE_TO_TAIL)
2035 		list_add_tail(&slab->slab_list, &n->partial);
2036 	else
2037 		list_add(&slab->slab_list, &n->partial);
2038 }
2039 
2040 static inline void add_partial(struct kmem_cache_node *n,
2041 				struct slab *slab, int tail)
2042 {
2043 	lockdep_assert_held(&n->list_lock);
2044 	__add_partial(n, slab, tail);
2045 }
2046 
2047 static inline void remove_partial(struct kmem_cache_node *n,
2048 					struct slab *slab)
2049 {
2050 	lockdep_assert_held(&n->list_lock);
2051 	list_del(&slab->slab_list);
2052 	n->nr_partial--;
2053 }
2054 
2055 /*
2056  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2057  * slab from the n->partial list. Remove only a single object from the slab, do
2058  * the alloc_debug_processing() checks and leave the slab on the list, or move
2059  * it to full list if it was the last free object.
2060  */
2061 static void *alloc_single_from_partial(struct kmem_cache *s,
2062 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2063 {
2064 	void *object;
2065 
2066 	lockdep_assert_held(&n->list_lock);
2067 
2068 	object = slab->freelist;
2069 	slab->freelist = get_freepointer(s, object);
2070 	slab->inuse++;
2071 
2072 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2073 		remove_partial(n, slab);
2074 		return NULL;
2075 	}
2076 
2077 	if (slab->inuse == slab->objects) {
2078 		remove_partial(n, slab);
2079 		add_full(s, n, slab);
2080 	}
2081 
2082 	return object;
2083 }
2084 
2085 /*
2086  * Called only for kmem_cache_debug() caches to allocate from a freshly
2087  * allocated slab. Allocate a single object instead of whole freelist
2088  * and put the slab to the partial (or full) list.
2089  */
2090 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2091 					struct slab *slab, int orig_size)
2092 {
2093 	int nid = slab_nid(slab);
2094 	struct kmem_cache_node *n = get_node(s, nid);
2095 	unsigned long flags;
2096 	void *object;
2097 
2098 
2099 	object = slab->freelist;
2100 	slab->freelist = get_freepointer(s, object);
2101 	slab->inuse = 1;
2102 
2103 	if (!alloc_debug_processing(s, slab, object, orig_size))
2104 		/*
2105 		 * It's not really expected that this would fail on a
2106 		 * freshly allocated slab, but a concurrent memory
2107 		 * corruption in theory could cause that.
2108 		 */
2109 		return NULL;
2110 
2111 	spin_lock_irqsave(&n->list_lock, flags);
2112 
2113 	if (slab->inuse == slab->objects)
2114 		add_full(s, n, slab);
2115 	else
2116 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2117 
2118 	inc_slabs_node(s, nid, slab->objects);
2119 	spin_unlock_irqrestore(&n->list_lock, flags);
2120 
2121 	return object;
2122 }
2123 
2124 /*
2125  * Remove slab from the partial list, freeze it and
2126  * return the pointer to the freelist.
2127  *
2128  * Returns a list of objects or NULL if it fails.
2129  */
2130 static inline void *acquire_slab(struct kmem_cache *s,
2131 		struct kmem_cache_node *n, struct slab *slab,
2132 		int mode)
2133 {
2134 	void *freelist;
2135 	unsigned long counters;
2136 	struct slab new;
2137 
2138 	lockdep_assert_held(&n->list_lock);
2139 
2140 	/*
2141 	 * Zap the freelist and set the frozen bit.
2142 	 * The old freelist is the list of objects for the
2143 	 * per cpu allocation list.
2144 	 */
2145 	freelist = slab->freelist;
2146 	counters = slab->counters;
2147 	new.counters = counters;
2148 	if (mode) {
2149 		new.inuse = slab->objects;
2150 		new.freelist = NULL;
2151 	} else {
2152 		new.freelist = freelist;
2153 	}
2154 
2155 	VM_BUG_ON(new.frozen);
2156 	new.frozen = 1;
2157 
2158 	if (!__cmpxchg_double_slab(s, slab,
2159 			freelist, counters,
2160 			new.freelist, new.counters,
2161 			"acquire_slab"))
2162 		return NULL;
2163 
2164 	remove_partial(n, slab);
2165 	WARN_ON(!freelist);
2166 	return freelist;
2167 }
2168 
2169 #ifdef CONFIG_SLUB_CPU_PARTIAL
2170 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2171 #else
2172 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2173 				   int drain) { }
2174 #endif
2175 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2176 
2177 /*
2178  * Try to allocate a partial slab from a specific node.
2179  */
2180 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2181 			      struct partial_context *pc)
2182 {
2183 	struct slab *slab, *slab2;
2184 	void *object = NULL;
2185 	unsigned long flags;
2186 	unsigned int partial_slabs = 0;
2187 
2188 	/*
2189 	 * Racy check. If we mistakenly see no partial slabs then we
2190 	 * just allocate an empty slab. If we mistakenly try to get a
2191 	 * partial slab and there is none available then get_partial()
2192 	 * will return NULL.
2193 	 */
2194 	if (!n || !n->nr_partial)
2195 		return NULL;
2196 
2197 	spin_lock_irqsave(&n->list_lock, flags);
2198 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2199 		void *t;
2200 
2201 		if (!pfmemalloc_match(slab, pc->flags))
2202 			continue;
2203 
2204 		if (kmem_cache_debug(s)) {
2205 			object = alloc_single_from_partial(s, n, slab,
2206 							pc->orig_size);
2207 			if (object)
2208 				break;
2209 			continue;
2210 		}
2211 
2212 		t = acquire_slab(s, n, slab, object == NULL);
2213 		if (!t)
2214 			break;
2215 
2216 		if (!object) {
2217 			*pc->slab = slab;
2218 			stat(s, ALLOC_FROM_PARTIAL);
2219 			object = t;
2220 		} else {
2221 			put_cpu_partial(s, slab, 0);
2222 			stat(s, CPU_PARTIAL_NODE);
2223 			partial_slabs++;
2224 		}
2225 #ifdef CONFIG_SLUB_CPU_PARTIAL
2226 		if (!kmem_cache_has_cpu_partial(s)
2227 			|| partial_slabs > s->cpu_partial_slabs / 2)
2228 			break;
2229 #else
2230 		break;
2231 #endif
2232 
2233 	}
2234 	spin_unlock_irqrestore(&n->list_lock, flags);
2235 	return object;
2236 }
2237 
2238 /*
2239  * Get a slab from somewhere. Search in increasing NUMA distances.
2240  */
2241 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2242 {
2243 #ifdef CONFIG_NUMA
2244 	struct zonelist *zonelist;
2245 	struct zoneref *z;
2246 	struct zone *zone;
2247 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2248 	void *object;
2249 	unsigned int cpuset_mems_cookie;
2250 
2251 	/*
2252 	 * The defrag ratio allows a configuration of the tradeoffs between
2253 	 * inter node defragmentation and node local allocations. A lower
2254 	 * defrag_ratio increases the tendency to do local allocations
2255 	 * instead of attempting to obtain partial slabs from other nodes.
2256 	 *
2257 	 * If the defrag_ratio is set to 0 then kmalloc() always
2258 	 * returns node local objects. If the ratio is higher then kmalloc()
2259 	 * may return off node objects because partial slabs are obtained
2260 	 * from other nodes and filled up.
2261 	 *
2262 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2263 	 * (which makes defrag_ratio = 1000) then every (well almost)
2264 	 * allocation will first attempt to defrag slab caches on other nodes.
2265 	 * This means scanning over all nodes to look for partial slabs which
2266 	 * may be expensive if we do it every time we are trying to find a slab
2267 	 * with available objects.
2268 	 */
2269 	if (!s->remote_node_defrag_ratio ||
2270 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2271 		return NULL;
2272 
2273 	do {
2274 		cpuset_mems_cookie = read_mems_allowed_begin();
2275 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2276 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2277 			struct kmem_cache_node *n;
2278 
2279 			n = get_node(s, zone_to_nid(zone));
2280 
2281 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2282 					n->nr_partial > s->min_partial) {
2283 				object = get_partial_node(s, n, pc);
2284 				if (object) {
2285 					/*
2286 					 * Don't check read_mems_allowed_retry()
2287 					 * here - if mems_allowed was updated in
2288 					 * parallel, that was a harmless race
2289 					 * between allocation and the cpuset
2290 					 * update
2291 					 */
2292 					return object;
2293 				}
2294 			}
2295 		}
2296 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2297 #endif	/* CONFIG_NUMA */
2298 	return NULL;
2299 }
2300 
2301 /*
2302  * Get a partial slab, lock it and return it.
2303  */
2304 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2305 {
2306 	void *object;
2307 	int searchnode = node;
2308 
2309 	if (node == NUMA_NO_NODE)
2310 		searchnode = numa_mem_id();
2311 
2312 	object = get_partial_node(s, get_node(s, searchnode), pc);
2313 	if (object || node != NUMA_NO_NODE)
2314 		return object;
2315 
2316 	return get_any_partial(s, pc);
2317 }
2318 
2319 #ifdef CONFIG_PREEMPTION
2320 /*
2321  * Calculate the next globally unique transaction for disambiguation
2322  * during cmpxchg. The transactions start with the cpu number and are then
2323  * incremented by CONFIG_NR_CPUS.
2324  */
2325 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2326 #else
2327 /*
2328  * No preemption supported therefore also no need to check for
2329  * different cpus.
2330  */
2331 #define TID_STEP 1
2332 #endif
2333 
2334 static inline unsigned long next_tid(unsigned long tid)
2335 {
2336 	return tid + TID_STEP;
2337 }
2338 
2339 #ifdef SLUB_DEBUG_CMPXCHG
2340 static inline unsigned int tid_to_cpu(unsigned long tid)
2341 {
2342 	return tid % TID_STEP;
2343 }
2344 
2345 static inline unsigned long tid_to_event(unsigned long tid)
2346 {
2347 	return tid / TID_STEP;
2348 }
2349 #endif
2350 
2351 static inline unsigned int init_tid(int cpu)
2352 {
2353 	return cpu;
2354 }
2355 
2356 static inline void note_cmpxchg_failure(const char *n,
2357 		const struct kmem_cache *s, unsigned long tid)
2358 {
2359 #ifdef SLUB_DEBUG_CMPXCHG
2360 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2361 
2362 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2363 
2364 #ifdef CONFIG_PREEMPTION
2365 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2366 		pr_warn("due to cpu change %d -> %d\n",
2367 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2368 	else
2369 #endif
2370 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2371 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2372 			tid_to_event(tid), tid_to_event(actual_tid));
2373 	else
2374 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2375 			actual_tid, tid, next_tid(tid));
2376 #endif
2377 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2378 }
2379 
2380 static void init_kmem_cache_cpus(struct kmem_cache *s)
2381 {
2382 	int cpu;
2383 	struct kmem_cache_cpu *c;
2384 
2385 	for_each_possible_cpu(cpu) {
2386 		c = per_cpu_ptr(s->cpu_slab, cpu);
2387 		local_lock_init(&c->lock);
2388 		c->tid = init_tid(cpu);
2389 	}
2390 }
2391 
2392 /*
2393  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2394  * unfreezes the slabs and puts it on the proper list.
2395  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2396  * by the caller.
2397  */
2398 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2399 			    void *freelist)
2400 {
2401 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2402 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2403 	int free_delta = 0;
2404 	enum slab_modes mode = M_NONE;
2405 	void *nextfree, *freelist_iter, *freelist_tail;
2406 	int tail = DEACTIVATE_TO_HEAD;
2407 	unsigned long flags = 0;
2408 	struct slab new;
2409 	struct slab old;
2410 
2411 	if (slab->freelist) {
2412 		stat(s, DEACTIVATE_REMOTE_FREES);
2413 		tail = DEACTIVATE_TO_TAIL;
2414 	}
2415 
2416 	/*
2417 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2418 	 * remember the last object in freelist_tail for later splicing.
2419 	 */
2420 	freelist_tail = NULL;
2421 	freelist_iter = freelist;
2422 	while (freelist_iter) {
2423 		nextfree = get_freepointer(s, freelist_iter);
2424 
2425 		/*
2426 		 * If 'nextfree' is invalid, it is possible that the object at
2427 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2428 		 * starting at 'freelist_iter' by skipping them.
2429 		 */
2430 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2431 			break;
2432 
2433 		freelist_tail = freelist_iter;
2434 		free_delta++;
2435 
2436 		freelist_iter = nextfree;
2437 	}
2438 
2439 	/*
2440 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2441 	 * freelist to the head of slab's freelist.
2442 	 *
2443 	 * Ensure that the slab is unfrozen while the list presence
2444 	 * reflects the actual number of objects during unfreeze.
2445 	 *
2446 	 * We first perform cmpxchg holding lock and insert to list
2447 	 * when it succeed. If there is mismatch then the slab is not
2448 	 * unfrozen and number of objects in the slab may have changed.
2449 	 * Then release lock and retry cmpxchg again.
2450 	 */
2451 redo:
2452 
2453 	old.freelist = READ_ONCE(slab->freelist);
2454 	old.counters = READ_ONCE(slab->counters);
2455 	VM_BUG_ON(!old.frozen);
2456 
2457 	/* Determine target state of the slab */
2458 	new.counters = old.counters;
2459 	if (freelist_tail) {
2460 		new.inuse -= free_delta;
2461 		set_freepointer(s, freelist_tail, old.freelist);
2462 		new.freelist = freelist;
2463 	} else
2464 		new.freelist = old.freelist;
2465 
2466 	new.frozen = 0;
2467 
2468 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2469 		mode = M_FREE;
2470 	} else if (new.freelist) {
2471 		mode = M_PARTIAL;
2472 		/*
2473 		 * Taking the spinlock removes the possibility that
2474 		 * acquire_slab() will see a slab that is frozen
2475 		 */
2476 		spin_lock_irqsave(&n->list_lock, flags);
2477 	} else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2478 		mode = M_FULL;
2479 		/*
2480 		 * This also ensures that the scanning of full
2481 		 * slabs from diagnostic functions will not see
2482 		 * any frozen slabs.
2483 		 */
2484 		spin_lock_irqsave(&n->list_lock, flags);
2485 	} else {
2486 		mode = M_FULL_NOLIST;
2487 	}
2488 
2489 
2490 	if (!cmpxchg_double_slab(s, slab,
2491 				old.freelist, old.counters,
2492 				new.freelist, new.counters,
2493 				"unfreezing slab")) {
2494 		if (mode == M_PARTIAL || mode == M_FULL)
2495 			spin_unlock_irqrestore(&n->list_lock, flags);
2496 		goto redo;
2497 	}
2498 
2499 
2500 	if (mode == M_PARTIAL) {
2501 		add_partial(n, slab, tail);
2502 		spin_unlock_irqrestore(&n->list_lock, flags);
2503 		stat(s, tail);
2504 	} else if (mode == M_FREE) {
2505 		stat(s, DEACTIVATE_EMPTY);
2506 		discard_slab(s, slab);
2507 		stat(s, FREE_SLAB);
2508 	} else if (mode == M_FULL) {
2509 		add_full(s, n, slab);
2510 		spin_unlock_irqrestore(&n->list_lock, flags);
2511 		stat(s, DEACTIVATE_FULL);
2512 	} else if (mode == M_FULL_NOLIST) {
2513 		stat(s, DEACTIVATE_FULL);
2514 	}
2515 }
2516 
2517 #ifdef CONFIG_SLUB_CPU_PARTIAL
2518 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2519 {
2520 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2521 	struct slab *slab, *slab_to_discard = NULL;
2522 	unsigned long flags = 0;
2523 
2524 	while (partial_slab) {
2525 		struct slab new;
2526 		struct slab old;
2527 
2528 		slab = partial_slab;
2529 		partial_slab = slab->next;
2530 
2531 		n2 = get_node(s, slab_nid(slab));
2532 		if (n != n2) {
2533 			if (n)
2534 				spin_unlock_irqrestore(&n->list_lock, flags);
2535 
2536 			n = n2;
2537 			spin_lock_irqsave(&n->list_lock, flags);
2538 		}
2539 
2540 		do {
2541 
2542 			old.freelist = slab->freelist;
2543 			old.counters = slab->counters;
2544 			VM_BUG_ON(!old.frozen);
2545 
2546 			new.counters = old.counters;
2547 			new.freelist = old.freelist;
2548 
2549 			new.frozen = 0;
2550 
2551 		} while (!__cmpxchg_double_slab(s, slab,
2552 				old.freelist, old.counters,
2553 				new.freelist, new.counters,
2554 				"unfreezing slab"));
2555 
2556 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2557 			slab->next = slab_to_discard;
2558 			slab_to_discard = slab;
2559 		} else {
2560 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2561 			stat(s, FREE_ADD_PARTIAL);
2562 		}
2563 	}
2564 
2565 	if (n)
2566 		spin_unlock_irqrestore(&n->list_lock, flags);
2567 
2568 	while (slab_to_discard) {
2569 		slab = slab_to_discard;
2570 		slab_to_discard = slab_to_discard->next;
2571 
2572 		stat(s, DEACTIVATE_EMPTY);
2573 		discard_slab(s, slab);
2574 		stat(s, FREE_SLAB);
2575 	}
2576 }
2577 
2578 /*
2579  * Unfreeze all the cpu partial slabs.
2580  */
2581 static void unfreeze_partials(struct kmem_cache *s)
2582 {
2583 	struct slab *partial_slab;
2584 	unsigned long flags;
2585 
2586 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2587 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2588 	this_cpu_write(s->cpu_slab->partial, NULL);
2589 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2590 
2591 	if (partial_slab)
2592 		__unfreeze_partials(s, partial_slab);
2593 }
2594 
2595 static void unfreeze_partials_cpu(struct kmem_cache *s,
2596 				  struct kmem_cache_cpu *c)
2597 {
2598 	struct slab *partial_slab;
2599 
2600 	partial_slab = slub_percpu_partial(c);
2601 	c->partial = NULL;
2602 
2603 	if (partial_slab)
2604 		__unfreeze_partials(s, partial_slab);
2605 }
2606 
2607 /*
2608  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2609  * partial slab slot if available.
2610  *
2611  * If we did not find a slot then simply move all the partials to the
2612  * per node partial list.
2613  */
2614 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2615 {
2616 	struct slab *oldslab;
2617 	struct slab *slab_to_unfreeze = NULL;
2618 	unsigned long flags;
2619 	int slabs = 0;
2620 
2621 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2622 
2623 	oldslab = this_cpu_read(s->cpu_slab->partial);
2624 
2625 	if (oldslab) {
2626 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2627 			/*
2628 			 * Partial array is full. Move the existing set to the
2629 			 * per node partial list. Postpone the actual unfreezing
2630 			 * outside of the critical section.
2631 			 */
2632 			slab_to_unfreeze = oldslab;
2633 			oldslab = NULL;
2634 		} else {
2635 			slabs = oldslab->slabs;
2636 		}
2637 	}
2638 
2639 	slabs++;
2640 
2641 	slab->slabs = slabs;
2642 	slab->next = oldslab;
2643 
2644 	this_cpu_write(s->cpu_slab->partial, slab);
2645 
2646 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2647 
2648 	if (slab_to_unfreeze) {
2649 		__unfreeze_partials(s, slab_to_unfreeze);
2650 		stat(s, CPU_PARTIAL_DRAIN);
2651 	}
2652 }
2653 
2654 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2655 
2656 static inline void unfreeze_partials(struct kmem_cache *s) { }
2657 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2658 				  struct kmem_cache_cpu *c) { }
2659 
2660 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2661 
2662 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2663 {
2664 	unsigned long flags;
2665 	struct slab *slab;
2666 	void *freelist;
2667 
2668 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2669 
2670 	slab = c->slab;
2671 	freelist = c->freelist;
2672 
2673 	c->slab = NULL;
2674 	c->freelist = NULL;
2675 	c->tid = next_tid(c->tid);
2676 
2677 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2678 
2679 	if (slab) {
2680 		deactivate_slab(s, slab, freelist);
2681 		stat(s, CPUSLAB_FLUSH);
2682 	}
2683 }
2684 
2685 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2686 {
2687 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2688 	void *freelist = c->freelist;
2689 	struct slab *slab = c->slab;
2690 
2691 	c->slab = NULL;
2692 	c->freelist = NULL;
2693 	c->tid = next_tid(c->tid);
2694 
2695 	if (slab) {
2696 		deactivate_slab(s, slab, freelist);
2697 		stat(s, CPUSLAB_FLUSH);
2698 	}
2699 
2700 	unfreeze_partials_cpu(s, c);
2701 }
2702 
2703 struct slub_flush_work {
2704 	struct work_struct work;
2705 	struct kmem_cache *s;
2706 	bool skip;
2707 };
2708 
2709 /*
2710  * Flush cpu slab.
2711  *
2712  * Called from CPU work handler with migration disabled.
2713  */
2714 static void flush_cpu_slab(struct work_struct *w)
2715 {
2716 	struct kmem_cache *s;
2717 	struct kmem_cache_cpu *c;
2718 	struct slub_flush_work *sfw;
2719 
2720 	sfw = container_of(w, struct slub_flush_work, work);
2721 
2722 	s = sfw->s;
2723 	c = this_cpu_ptr(s->cpu_slab);
2724 
2725 	if (c->slab)
2726 		flush_slab(s, c);
2727 
2728 	unfreeze_partials(s);
2729 }
2730 
2731 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2732 {
2733 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2734 
2735 	return c->slab || slub_percpu_partial(c);
2736 }
2737 
2738 static DEFINE_MUTEX(flush_lock);
2739 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2740 
2741 static void flush_all_cpus_locked(struct kmem_cache *s)
2742 {
2743 	struct slub_flush_work *sfw;
2744 	unsigned int cpu;
2745 
2746 	lockdep_assert_cpus_held();
2747 	mutex_lock(&flush_lock);
2748 
2749 	for_each_online_cpu(cpu) {
2750 		sfw = &per_cpu(slub_flush, cpu);
2751 		if (!has_cpu_slab(cpu, s)) {
2752 			sfw->skip = true;
2753 			continue;
2754 		}
2755 		INIT_WORK(&sfw->work, flush_cpu_slab);
2756 		sfw->skip = false;
2757 		sfw->s = s;
2758 		queue_work_on(cpu, flushwq, &sfw->work);
2759 	}
2760 
2761 	for_each_online_cpu(cpu) {
2762 		sfw = &per_cpu(slub_flush, cpu);
2763 		if (sfw->skip)
2764 			continue;
2765 		flush_work(&sfw->work);
2766 	}
2767 
2768 	mutex_unlock(&flush_lock);
2769 }
2770 
2771 static void flush_all(struct kmem_cache *s)
2772 {
2773 	cpus_read_lock();
2774 	flush_all_cpus_locked(s);
2775 	cpus_read_unlock();
2776 }
2777 
2778 /*
2779  * Use the cpu notifier to insure that the cpu slabs are flushed when
2780  * necessary.
2781  */
2782 static int slub_cpu_dead(unsigned int cpu)
2783 {
2784 	struct kmem_cache *s;
2785 
2786 	mutex_lock(&slab_mutex);
2787 	list_for_each_entry(s, &slab_caches, list)
2788 		__flush_cpu_slab(s, cpu);
2789 	mutex_unlock(&slab_mutex);
2790 	return 0;
2791 }
2792 
2793 /*
2794  * Check if the objects in a per cpu structure fit numa
2795  * locality expectations.
2796  */
2797 static inline int node_match(struct slab *slab, int node)
2798 {
2799 #ifdef CONFIG_NUMA
2800 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2801 		return 0;
2802 #endif
2803 	return 1;
2804 }
2805 
2806 #ifdef CONFIG_SLUB_DEBUG
2807 static int count_free(struct slab *slab)
2808 {
2809 	return slab->objects - slab->inuse;
2810 }
2811 
2812 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2813 {
2814 	return atomic_long_read(&n->total_objects);
2815 }
2816 
2817 /* Supports checking bulk free of a constructed freelist */
2818 static noinline void free_debug_processing(
2819 	struct kmem_cache *s, struct slab *slab,
2820 	void *head, void *tail, int bulk_cnt,
2821 	unsigned long addr)
2822 {
2823 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2824 	struct slab *slab_free = NULL;
2825 	void *object = head;
2826 	int cnt = 0;
2827 	unsigned long flags;
2828 	bool checks_ok = false;
2829 	depot_stack_handle_t handle = 0;
2830 
2831 	if (s->flags & SLAB_STORE_USER)
2832 		handle = set_track_prepare();
2833 
2834 	spin_lock_irqsave(&n->list_lock, flags);
2835 
2836 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2837 		if (!check_slab(s, slab))
2838 			goto out;
2839 	}
2840 
2841 	if (slab->inuse < bulk_cnt) {
2842 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2843 			 slab->inuse, bulk_cnt);
2844 		goto out;
2845 	}
2846 
2847 next_object:
2848 
2849 	if (++cnt > bulk_cnt)
2850 		goto out_cnt;
2851 
2852 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2853 		if (!free_consistency_checks(s, slab, object, addr))
2854 			goto out;
2855 	}
2856 
2857 	if (s->flags & SLAB_STORE_USER)
2858 		set_track_update(s, object, TRACK_FREE, addr, handle);
2859 	trace(s, slab, object, 0);
2860 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2861 	init_object(s, object, SLUB_RED_INACTIVE);
2862 
2863 	/* Reached end of constructed freelist yet? */
2864 	if (object != tail) {
2865 		object = get_freepointer(s, object);
2866 		goto next_object;
2867 	}
2868 	checks_ok = true;
2869 
2870 out_cnt:
2871 	if (cnt != bulk_cnt)
2872 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2873 			 bulk_cnt, cnt);
2874 
2875 out:
2876 	if (checks_ok) {
2877 		void *prior = slab->freelist;
2878 
2879 		/* Perform the actual freeing while we still hold the locks */
2880 		slab->inuse -= cnt;
2881 		set_freepointer(s, tail, prior);
2882 		slab->freelist = head;
2883 
2884 		/*
2885 		 * If the slab is empty, and node's partial list is full,
2886 		 * it should be discarded anyway no matter it's on full or
2887 		 * partial list.
2888 		 */
2889 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
2890 			slab_free = slab;
2891 
2892 		if (!prior) {
2893 			/* was on full list */
2894 			remove_full(s, n, slab);
2895 			if (!slab_free) {
2896 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
2897 				stat(s, FREE_ADD_PARTIAL);
2898 			}
2899 		} else if (slab_free) {
2900 			remove_partial(n, slab);
2901 			stat(s, FREE_REMOVE_PARTIAL);
2902 		}
2903 	}
2904 
2905 	if (slab_free) {
2906 		/*
2907 		 * Update the counters while still holding n->list_lock to
2908 		 * prevent spurious validation warnings
2909 		 */
2910 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
2911 	}
2912 
2913 	spin_unlock_irqrestore(&n->list_lock, flags);
2914 
2915 	if (!checks_ok)
2916 		slab_fix(s, "Object at 0x%p not freed", object);
2917 
2918 	if (slab_free) {
2919 		stat(s, FREE_SLAB);
2920 		free_slab(s, slab_free);
2921 	}
2922 }
2923 #endif /* CONFIG_SLUB_DEBUG */
2924 
2925 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2926 static unsigned long count_partial(struct kmem_cache_node *n,
2927 					int (*get_count)(struct slab *))
2928 {
2929 	unsigned long flags;
2930 	unsigned long x = 0;
2931 	struct slab *slab;
2932 
2933 	spin_lock_irqsave(&n->list_lock, flags);
2934 	list_for_each_entry(slab, &n->partial, slab_list)
2935 		x += get_count(slab);
2936 	spin_unlock_irqrestore(&n->list_lock, flags);
2937 	return x;
2938 }
2939 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2940 
2941 static noinline void
2942 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2943 {
2944 #ifdef CONFIG_SLUB_DEBUG
2945 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2946 				      DEFAULT_RATELIMIT_BURST);
2947 	int node;
2948 	struct kmem_cache_node *n;
2949 
2950 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2951 		return;
2952 
2953 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2954 		nid, gfpflags, &gfpflags);
2955 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2956 		s->name, s->object_size, s->size, oo_order(s->oo),
2957 		oo_order(s->min));
2958 
2959 	if (oo_order(s->min) > get_order(s->object_size))
2960 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2961 			s->name);
2962 
2963 	for_each_kmem_cache_node(s, node, n) {
2964 		unsigned long nr_slabs;
2965 		unsigned long nr_objs;
2966 		unsigned long nr_free;
2967 
2968 		nr_free  = count_partial(n, count_free);
2969 		nr_slabs = node_nr_slabs(n);
2970 		nr_objs  = node_nr_objs(n);
2971 
2972 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2973 			node, nr_slabs, nr_objs, nr_free);
2974 	}
2975 #endif
2976 }
2977 
2978 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2979 {
2980 	if (unlikely(slab_test_pfmemalloc(slab)))
2981 		return gfp_pfmemalloc_allowed(gfpflags);
2982 
2983 	return true;
2984 }
2985 
2986 /*
2987  * Check the slab->freelist and either transfer the freelist to the
2988  * per cpu freelist or deactivate the slab.
2989  *
2990  * The slab is still frozen if the return value is not NULL.
2991  *
2992  * If this function returns NULL then the slab has been unfrozen.
2993  */
2994 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2995 {
2996 	struct slab new;
2997 	unsigned long counters;
2998 	void *freelist;
2999 
3000 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3001 
3002 	do {
3003 		freelist = slab->freelist;
3004 		counters = slab->counters;
3005 
3006 		new.counters = counters;
3007 		VM_BUG_ON(!new.frozen);
3008 
3009 		new.inuse = slab->objects;
3010 		new.frozen = freelist != NULL;
3011 
3012 	} while (!__cmpxchg_double_slab(s, slab,
3013 		freelist, counters,
3014 		NULL, new.counters,
3015 		"get_freelist"));
3016 
3017 	return freelist;
3018 }
3019 
3020 /*
3021  * Slow path. The lockless freelist is empty or we need to perform
3022  * debugging duties.
3023  *
3024  * Processing is still very fast if new objects have been freed to the
3025  * regular freelist. In that case we simply take over the regular freelist
3026  * as the lockless freelist and zap the regular freelist.
3027  *
3028  * If that is not working then we fall back to the partial lists. We take the
3029  * first element of the freelist as the object to allocate now and move the
3030  * rest of the freelist to the lockless freelist.
3031  *
3032  * And if we were unable to get a new slab from the partial slab lists then
3033  * we need to allocate a new slab. This is the slowest path since it involves
3034  * a call to the page allocator and the setup of a new slab.
3035  *
3036  * Version of __slab_alloc to use when we know that preemption is
3037  * already disabled (which is the case for bulk allocation).
3038  */
3039 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3040 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3041 {
3042 	void *freelist;
3043 	struct slab *slab;
3044 	unsigned long flags;
3045 	struct partial_context pc;
3046 
3047 	stat(s, ALLOC_SLOWPATH);
3048 
3049 reread_slab:
3050 
3051 	slab = READ_ONCE(c->slab);
3052 	if (!slab) {
3053 		/*
3054 		 * if the node is not online or has no normal memory, just
3055 		 * ignore the node constraint
3056 		 */
3057 		if (unlikely(node != NUMA_NO_NODE &&
3058 			     !node_isset(node, slab_nodes)))
3059 			node = NUMA_NO_NODE;
3060 		goto new_slab;
3061 	}
3062 redo:
3063 
3064 	if (unlikely(!node_match(slab, node))) {
3065 		/*
3066 		 * same as above but node_match() being false already
3067 		 * implies node != NUMA_NO_NODE
3068 		 */
3069 		if (!node_isset(node, slab_nodes)) {
3070 			node = NUMA_NO_NODE;
3071 		} else {
3072 			stat(s, ALLOC_NODE_MISMATCH);
3073 			goto deactivate_slab;
3074 		}
3075 	}
3076 
3077 	/*
3078 	 * By rights, we should be searching for a slab page that was
3079 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3080 	 * information when the page leaves the per-cpu allocator
3081 	 */
3082 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3083 		goto deactivate_slab;
3084 
3085 	/* must check again c->slab in case we got preempted and it changed */
3086 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3087 	if (unlikely(slab != c->slab)) {
3088 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3089 		goto reread_slab;
3090 	}
3091 	freelist = c->freelist;
3092 	if (freelist)
3093 		goto load_freelist;
3094 
3095 	freelist = get_freelist(s, slab);
3096 
3097 	if (!freelist) {
3098 		c->slab = NULL;
3099 		c->tid = next_tid(c->tid);
3100 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3101 		stat(s, DEACTIVATE_BYPASS);
3102 		goto new_slab;
3103 	}
3104 
3105 	stat(s, ALLOC_REFILL);
3106 
3107 load_freelist:
3108 
3109 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3110 
3111 	/*
3112 	 * freelist is pointing to the list of objects to be used.
3113 	 * slab is pointing to the slab from which the objects are obtained.
3114 	 * That slab must be frozen for per cpu allocations to work.
3115 	 */
3116 	VM_BUG_ON(!c->slab->frozen);
3117 	c->freelist = get_freepointer(s, freelist);
3118 	c->tid = next_tid(c->tid);
3119 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3120 	return freelist;
3121 
3122 deactivate_slab:
3123 
3124 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3125 	if (slab != c->slab) {
3126 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3127 		goto reread_slab;
3128 	}
3129 	freelist = c->freelist;
3130 	c->slab = NULL;
3131 	c->freelist = NULL;
3132 	c->tid = next_tid(c->tid);
3133 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3134 	deactivate_slab(s, slab, freelist);
3135 
3136 new_slab:
3137 
3138 	if (slub_percpu_partial(c)) {
3139 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3140 		if (unlikely(c->slab)) {
3141 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3142 			goto reread_slab;
3143 		}
3144 		if (unlikely(!slub_percpu_partial(c))) {
3145 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3146 			/* we were preempted and partial list got empty */
3147 			goto new_objects;
3148 		}
3149 
3150 		slab = c->slab = slub_percpu_partial(c);
3151 		slub_set_percpu_partial(c, slab);
3152 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3153 		stat(s, CPU_PARTIAL_ALLOC);
3154 		goto redo;
3155 	}
3156 
3157 new_objects:
3158 
3159 	pc.flags = gfpflags;
3160 	pc.slab = &slab;
3161 	pc.orig_size = orig_size;
3162 	freelist = get_partial(s, node, &pc);
3163 	if (freelist)
3164 		goto check_new_slab;
3165 
3166 	slub_put_cpu_ptr(s->cpu_slab);
3167 	slab = new_slab(s, gfpflags, node);
3168 	c = slub_get_cpu_ptr(s->cpu_slab);
3169 
3170 	if (unlikely(!slab)) {
3171 		slab_out_of_memory(s, gfpflags, node);
3172 		return NULL;
3173 	}
3174 
3175 	stat(s, ALLOC_SLAB);
3176 
3177 	if (kmem_cache_debug(s)) {
3178 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3179 
3180 		if (unlikely(!freelist))
3181 			goto new_objects;
3182 
3183 		if (s->flags & SLAB_STORE_USER)
3184 			set_track(s, freelist, TRACK_ALLOC, addr);
3185 
3186 		return freelist;
3187 	}
3188 
3189 	/*
3190 	 * No other reference to the slab yet so we can
3191 	 * muck around with it freely without cmpxchg
3192 	 */
3193 	freelist = slab->freelist;
3194 	slab->freelist = NULL;
3195 	slab->inuse = slab->objects;
3196 	slab->frozen = 1;
3197 
3198 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3199 
3200 check_new_slab:
3201 
3202 	if (kmem_cache_debug(s)) {
3203 		/*
3204 		 * For debug caches here we had to go through
3205 		 * alloc_single_from_partial() so just store the tracking info
3206 		 * and return the object
3207 		 */
3208 		if (s->flags & SLAB_STORE_USER)
3209 			set_track(s, freelist, TRACK_ALLOC, addr);
3210 
3211 		return freelist;
3212 	}
3213 
3214 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3215 		/*
3216 		 * For !pfmemalloc_match() case we don't load freelist so that
3217 		 * we don't make further mismatched allocations easier.
3218 		 */
3219 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3220 		return freelist;
3221 	}
3222 
3223 retry_load_slab:
3224 
3225 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3226 	if (unlikely(c->slab)) {
3227 		void *flush_freelist = c->freelist;
3228 		struct slab *flush_slab = c->slab;
3229 
3230 		c->slab = NULL;
3231 		c->freelist = NULL;
3232 		c->tid = next_tid(c->tid);
3233 
3234 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3235 
3236 		deactivate_slab(s, flush_slab, flush_freelist);
3237 
3238 		stat(s, CPUSLAB_FLUSH);
3239 
3240 		goto retry_load_slab;
3241 	}
3242 	c->slab = slab;
3243 
3244 	goto load_freelist;
3245 }
3246 
3247 /*
3248  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3249  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3250  * pointer.
3251  */
3252 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3253 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3254 {
3255 	void *p;
3256 
3257 #ifdef CONFIG_PREEMPT_COUNT
3258 	/*
3259 	 * We may have been preempted and rescheduled on a different
3260 	 * cpu before disabling preemption. Need to reload cpu area
3261 	 * pointer.
3262 	 */
3263 	c = slub_get_cpu_ptr(s->cpu_slab);
3264 #endif
3265 
3266 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3267 #ifdef CONFIG_PREEMPT_COUNT
3268 	slub_put_cpu_ptr(s->cpu_slab);
3269 #endif
3270 	return p;
3271 }
3272 
3273 /*
3274  * If the object has been wiped upon free, make sure it's fully initialized by
3275  * zeroing out freelist pointer.
3276  */
3277 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3278 						   void *obj)
3279 {
3280 	if (unlikely(slab_want_init_on_free(s)) && obj)
3281 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3282 			0, sizeof(void *));
3283 }
3284 
3285 /*
3286  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3287  * have the fastpath folded into their functions. So no function call
3288  * overhead for requests that can be satisfied on the fastpath.
3289  *
3290  * The fastpath works by first checking if the lockless freelist can be used.
3291  * If not then __slab_alloc is called for slow processing.
3292  *
3293  * Otherwise we can simply pick the next object from the lockless free list.
3294  */
3295 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3296 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3297 {
3298 	void *object;
3299 	struct kmem_cache_cpu *c;
3300 	struct slab *slab;
3301 	unsigned long tid;
3302 	struct obj_cgroup *objcg = NULL;
3303 	bool init = false;
3304 
3305 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3306 	if (!s)
3307 		return NULL;
3308 
3309 	object = kfence_alloc(s, orig_size, gfpflags);
3310 	if (unlikely(object))
3311 		goto out;
3312 
3313 redo:
3314 	/*
3315 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3316 	 * enabled. We may switch back and forth between cpus while
3317 	 * reading from one cpu area. That does not matter as long
3318 	 * as we end up on the original cpu again when doing the cmpxchg.
3319 	 *
3320 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3321 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3322 	 * the tid. If we are preempted and switched to another cpu between the
3323 	 * two reads, it's OK as the two are still associated with the same cpu
3324 	 * and cmpxchg later will validate the cpu.
3325 	 */
3326 	c = raw_cpu_ptr(s->cpu_slab);
3327 	tid = READ_ONCE(c->tid);
3328 
3329 	/*
3330 	 * Irqless object alloc/free algorithm used here depends on sequence
3331 	 * of fetching cpu_slab's data. tid should be fetched before anything
3332 	 * on c to guarantee that object and slab associated with previous tid
3333 	 * won't be used with current tid. If we fetch tid first, object and
3334 	 * slab could be one associated with next tid and our alloc/free
3335 	 * request will be failed. In this case, we will retry. So, no problem.
3336 	 */
3337 	barrier();
3338 
3339 	/*
3340 	 * The transaction ids are globally unique per cpu and per operation on
3341 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3342 	 * occurs on the right processor and that there was no operation on the
3343 	 * linked list in between.
3344 	 */
3345 
3346 	object = c->freelist;
3347 	slab = c->slab;
3348 
3349 	if (!USE_LOCKLESS_FAST_PATH() ||
3350 	    unlikely(!object || !slab || !node_match(slab, node))) {
3351 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3352 	} else {
3353 		void *next_object = get_freepointer_safe(s, object);
3354 
3355 		/*
3356 		 * The cmpxchg will only match if there was no additional
3357 		 * operation and if we are on the right processor.
3358 		 *
3359 		 * The cmpxchg does the following atomically (without lock
3360 		 * semantics!)
3361 		 * 1. Relocate first pointer to the current per cpu area.
3362 		 * 2. Verify that tid and freelist have not been changed
3363 		 * 3. If they were not changed replace tid and freelist
3364 		 *
3365 		 * Since this is without lock semantics the protection is only
3366 		 * against code executing on this cpu *not* from access by
3367 		 * other cpus.
3368 		 */
3369 		if (unlikely(!this_cpu_cmpxchg_double(
3370 				s->cpu_slab->freelist, s->cpu_slab->tid,
3371 				object, tid,
3372 				next_object, next_tid(tid)))) {
3373 
3374 			note_cmpxchg_failure("slab_alloc", s, tid);
3375 			goto redo;
3376 		}
3377 		prefetch_freepointer(s, next_object);
3378 		stat(s, ALLOC_FASTPATH);
3379 	}
3380 
3381 	maybe_wipe_obj_freeptr(s, object);
3382 	init = slab_want_init_on_alloc(gfpflags, s);
3383 
3384 out:
3385 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3386 
3387 	return object;
3388 }
3389 
3390 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3391 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3392 {
3393 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3394 }
3395 
3396 static __always_inline
3397 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3398 			     gfp_t gfpflags)
3399 {
3400 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3401 
3402 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3403 
3404 	return ret;
3405 }
3406 
3407 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3408 {
3409 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3410 }
3411 EXPORT_SYMBOL(kmem_cache_alloc);
3412 
3413 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3414 			   gfp_t gfpflags)
3415 {
3416 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3417 }
3418 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3419 
3420 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3421 			      int node, size_t orig_size,
3422 			      unsigned long caller)
3423 {
3424 	return slab_alloc_node(s, NULL, gfpflags, node,
3425 			       caller, orig_size);
3426 }
3427 
3428 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3429 {
3430 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3431 
3432 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3433 
3434 	return ret;
3435 }
3436 EXPORT_SYMBOL(kmem_cache_alloc_node);
3437 
3438 /*
3439  * Slow path handling. This may still be called frequently since objects
3440  * have a longer lifetime than the cpu slabs in most processing loads.
3441  *
3442  * So we still attempt to reduce cache line usage. Just take the slab
3443  * lock and free the item. If there is no additional partial slab
3444  * handling required then we can return immediately.
3445  */
3446 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3447 			void *head, void *tail, int cnt,
3448 			unsigned long addr)
3449 
3450 {
3451 	void *prior;
3452 	int was_frozen;
3453 	struct slab new;
3454 	unsigned long counters;
3455 	struct kmem_cache_node *n = NULL;
3456 	unsigned long flags;
3457 
3458 	stat(s, FREE_SLOWPATH);
3459 
3460 	if (kfence_free(head))
3461 		return;
3462 
3463 	if (kmem_cache_debug(s)) {
3464 		free_debug_processing(s, slab, head, tail, cnt, addr);
3465 		return;
3466 	}
3467 
3468 	do {
3469 		if (unlikely(n)) {
3470 			spin_unlock_irqrestore(&n->list_lock, flags);
3471 			n = NULL;
3472 		}
3473 		prior = slab->freelist;
3474 		counters = slab->counters;
3475 		set_freepointer(s, tail, prior);
3476 		new.counters = counters;
3477 		was_frozen = new.frozen;
3478 		new.inuse -= cnt;
3479 		if ((!new.inuse || !prior) && !was_frozen) {
3480 
3481 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3482 
3483 				/*
3484 				 * Slab was on no list before and will be
3485 				 * partially empty
3486 				 * We can defer the list move and instead
3487 				 * freeze it.
3488 				 */
3489 				new.frozen = 1;
3490 
3491 			} else { /* Needs to be taken off a list */
3492 
3493 				n = get_node(s, slab_nid(slab));
3494 				/*
3495 				 * Speculatively acquire the list_lock.
3496 				 * If the cmpxchg does not succeed then we may
3497 				 * drop the list_lock without any processing.
3498 				 *
3499 				 * Otherwise the list_lock will synchronize with
3500 				 * other processors updating the list of slabs.
3501 				 */
3502 				spin_lock_irqsave(&n->list_lock, flags);
3503 
3504 			}
3505 		}
3506 
3507 	} while (!cmpxchg_double_slab(s, slab,
3508 		prior, counters,
3509 		head, new.counters,
3510 		"__slab_free"));
3511 
3512 	if (likely(!n)) {
3513 
3514 		if (likely(was_frozen)) {
3515 			/*
3516 			 * The list lock was not taken therefore no list
3517 			 * activity can be necessary.
3518 			 */
3519 			stat(s, FREE_FROZEN);
3520 		} else if (new.frozen) {
3521 			/*
3522 			 * If we just froze the slab then put it onto the
3523 			 * per cpu partial list.
3524 			 */
3525 			put_cpu_partial(s, slab, 1);
3526 			stat(s, CPU_PARTIAL_FREE);
3527 		}
3528 
3529 		return;
3530 	}
3531 
3532 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3533 		goto slab_empty;
3534 
3535 	/*
3536 	 * Objects left in the slab. If it was not on the partial list before
3537 	 * then add it.
3538 	 */
3539 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3540 		remove_full(s, n, slab);
3541 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3542 		stat(s, FREE_ADD_PARTIAL);
3543 	}
3544 	spin_unlock_irqrestore(&n->list_lock, flags);
3545 	return;
3546 
3547 slab_empty:
3548 	if (prior) {
3549 		/*
3550 		 * Slab on the partial list.
3551 		 */
3552 		remove_partial(n, slab);
3553 		stat(s, FREE_REMOVE_PARTIAL);
3554 	} else {
3555 		/* Slab must be on the full list */
3556 		remove_full(s, n, slab);
3557 	}
3558 
3559 	spin_unlock_irqrestore(&n->list_lock, flags);
3560 	stat(s, FREE_SLAB);
3561 	discard_slab(s, slab);
3562 }
3563 
3564 /*
3565  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3566  * can perform fastpath freeing without additional function calls.
3567  *
3568  * The fastpath is only possible if we are freeing to the current cpu slab
3569  * of this processor. This typically the case if we have just allocated
3570  * the item before.
3571  *
3572  * If fastpath is not possible then fall back to __slab_free where we deal
3573  * with all sorts of special processing.
3574  *
3575  * Bulk free of a freelist with several objects (all pointing to the
3576  * same slab) possible by specifying head and tail ptr, plus objects
3577  * count (cnt). Bulk free indicated by tail pointer being set.
3578  */
3579 static __always_inline void do_slab_free(struct kmem_cache *s,
3580 				struct slab *slab, void *head, void *tail,
3581 				int cnt, unsigned long addr)
3582 {
3583 	void *tail_obj = tail ? : head;
3584 	struct kmem_cache_cpu *c;
3585 	unsigned long tid;
3586 	void **freelist;
3587 
3588 redo:
3589 	/*
3590 	 * Determine the currently cpus per cpu slab.
3591 	 * The cpu may change afterward. However that does not matter since
3592 	 * data is retrieved via this pointer. If we are on the same cpu
3593 	 * during the cmpxchg then the free will succeed.
3594 	 */
3595 	c = raw_cpu_ptr(s->cpu_slab);
3596 	tid = READ_ONCE(c->tid);
3597 
3598 	/* Same with comment on barrier() in slab_alloc_node() */
3599 	barrier();
3600 
3601 	if (unlikely(slab != c->slab)) {
3602 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3603 		return;
3604 	}
3605 
3606 	if (USE_LOCKLESS_FAST_PATH()) {
3607 		freelist = READ_ONCE(c->freelist);
3608 
3609 		set_freepointer(s, tail_obj, freelist);
3610 
3611 		if (unlikely(!this_cpu_cmpxchg_double(
3612 				s->cpu_slab->freelist, s->cpu_slab->tid,
3613 				freelist, tid,
3614 				head, next_tid(tid)))) {
3615 
3616 			note_cmpxchg_failure("slab_free", s, tid);
3617 			goto redo;
3618 		}
3619 	} else {
3620 		/* Update the free list under the local lock */
3621 		local_lock(&s->cpu_slab->lock);
3622 		c = this_cpu_ptr(s->cpu_slab);
3623 		if (unlikely(slab != c->slab)) {
3624 			local_unlock(&s->cpu_slab->lock);
3625 			goto redo;
3626 		}
3627 		tid = c->tid;
3628 		freelist = c->freelist;
3629 
3630 		set_freepointer(s, tail_obj, freelist);
3631 		c->freelist = head;
3632 		c->tid = next_tid(tid);
3633 
3634 		local_unlock(&s->cpu_slab->lock);
3635 	}
3636 	stat(s, FREE_FASTPATH);
3637 }
3638 
3639 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3640 				      void *head, void *tail, void **p, int cnt,
3641 				      unsigned long addr)
3642 {
3643 	memcg_slab_free_hook(s, slab, p, cnt);
3644 	/*
3645 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3646 	 * to remove objects, whose reuse must be delayed.
3647 	 */
3648 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3649 		do_slab_free(s, slab, head, tail, cnt, addr);
3650 }
3651 
3652 #ifdef CONFIG_KASAN_GENERIC
3653 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3654 {
3655 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3656 }
3657 #endif
3658 
3659 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3660 {
3661 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3662 }
3663 
3664 void kmem_cache_free(struct kmem_cache *s, void *x)
3665 {
3666 	s = cache_from_obj(s, x);
3667 	if (!s)
3668 		return;
3669 	trace_kmem_cache_free(_RET_IP_, x, s);
3670 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3671 }
3672 EXPORT_SYMBOL(kmem_cache_free);
3673 
3674 struct detached_freelist {
3675 	struct slab *slab;
3676 	void *tail;
3677 	void *freelist;
3678 	int cnt;
3679 	struct kmem_cache *s;
3680 };
3681 
3682 /*
3683  * This function progressively scans the array with free objects (with
3684  * a limited look ahead) and extract objects belonging to the same
3685  * slab.  It builds a detached freelist directly within the given
3686  * slab/objects.  This can happen without any need for
3687  * synchronization, because the objects are owned by running process.
3688  * The freelist is build up as a single linked list in the objects.
3689  * The idea is, that this detached freelist can then be bulk
3690  * transferred to the real freelist(s), but only requiring a single
3691  * synchronization primitive.  Look ahead in the array is limited due
3692  * to performance reasons.
3693  */
3694 static inline
3695 int build_detached_freelist(struct kmem_cache *s, size_t size,
3696 			    void **p, struct detached_freelist *df)
3697 {
3698 	int lookahead = 3;
3699 	void *object;
3700 	struct folio *folio;
3701 	size_t same;
3702 
3703 	object = p[--size];
3704 	folio = virt_to_folio(object);
3705 	if (!s) {
3706 		/* Handle kalloc'ed objects */
3707 		if (unlikely(!folio_test_slab(folio))) {
3708 			free_large_kmalloc(folio, object);
3709 			df->slab = NULL;
3710 			return size;
3711 		}
3712 		/* Derive kmem_cache from object */
3713 		df->slab = folio_slab(folio);
3714 		df->s = df->slab->slab_cache;
3715 	} else {
3716 		df->slab = folio_slab(folio);
3717 		df->s = cache_from_obj(s, object); /* Support for memcg */
3718 	}
3719 
3720 	/* Start new detached freelist */
3721 	df->tail = object;
3722 	df->freelist = object;
3723 	df->cnt = 1;
3724 
3725 	if (is_kfence_address(object))
3726 		return size;
3727 
3728 	set_freepointer(df->s, object, NULL);
3729 
3730 	same = size;
3731 	while (size) {
3732 		object = p[--size];
3733 		/* df->slab is always set at this point */
3734 		if (df->slab == virt_to_slab(object)) {
3735 			/* Opportunity build freelist */
3736 			set_freepointer(df->s, object, df->freelist);
3737 			df->freelist = object;
3738 			df->cnt++;
3739 			same--;
3740 			if (size != same)
3741 				swap(p[size], p[same]);
3742 			continue;
3743 		}
3744 
3745 		/* Limit look ahead search */
3746 		if (!--lookahead)
3747 			break;
3748 	}
3749 
3750 	return same;
3751 }
3752 
3753 /* Note that interrupts must be enabled when calling this function. */
3754 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3755 {
3756 	if (!size)
3757 		return;
3758 
3759 	do {
3760 		struct detached_freelist df;
3761 
3762 		size = build_detached_freelist(s, size, p, &df);
3763 		if (!df.slab)
3764 			continue;
3765 
3766 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3767 			  _RET_IP_);
3768 	} while (likely(size));
3769 }
3770 EXPORT_SYMBOL(kmem_cache_free_bulk);
3771 
3772 /* Note that interrupts must be enabled when calling this function. */
3773 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3774 			  void **p)
3775 {
3776 	struct kmem_cache_cpu *c;
3777 	int i;
3778 	struct obj_cgroup *objcg = NULL;
3779 
3780 	/* memcg and kmem_cache debug support */
3781 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3782 	if (unlikely(!s))
3783 		return false;
3784 	/*
3785 	 * Drain objects in the per cpu slab, while disabling local
3786 	 * IRQs, which protects against PREEMPT and interrupts
3787 	 * handlers invoking normal fastpath.
3788 	 */
3789 	c = slub_get_cpu_ptr(s->cpu_slab);
3790 	local_lock_irq(&s->cpu_slab->lock);
3791 
3792 	for (i = 0; i < size; i++) {
3793 		void *object = kfence_alloc(s, s->object_size, flags);
3794 
3795 		if (unlikely(object)) {
3796 			p[i] = object;
3797 			continue;
3798 		}
3799 
3800 		object = c->freelist;
3801 		if (unlikely(!object)) {
3802 			/*
3803 			 * We may have removed an object from c->freelist using
3804 			 * the fastpath in the previous iteration; in that case,
3805 			 * c->tid has not been bumped yet.
3806 			 * Since ___slab_alloc() may reenable interrupts while
3807 			 * allocating memory, we should bump c->tid now.
3808 			 */
3809 			c->tid = next_tid(c->tid);
3810 
3811 			local_unlock_irq(&s->cpu_slab->lock);
3812 
3813 			/*
3814 			 * Invoking slow path likely have side-effect
3815 			 * of re-populating per CPU c->freelist
3816 			 */
3817 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3818 					    _RET_IP_, c, s->object_size);
3819 			if (unlikely(!p[i]))
3820 				goto error;
3821 
3822 			c = this_cpu_ptr(s->cpu_slab);
3823 			maybe_wipe_obj_freeptr(s, p[i]);
3824 
3825 			local_lock_irq(&s->cpu_slab->lock);
3826 
3827 			continue; /* goto for-loop */
3828 		}
3829 		c->freelist = get_freepointer(s, object);
3830 		p[i] = object;
3831 		maybe_wipe_obj_freeptr(s, p[i]);
3832 	}
3833 	c->tid = next_tid(c->tid);
3834 	local_unlock_irq(&s->cpu_slab->lock);
3835 	slub_put_cpu_ptr(s->cpu_slab);
3836 
3837 	/*
3838 	 * memcg and kmem_cache debug support and memory initialization.
3839 	 * Done outside of the IRQ disabled fastpath loop.
3840 	 */
3841 	slab_post_alloc_hook(s, objcg, flags, size, p,
3842 				slab_want_init_on_alloc(flags, s));
3843 	return i;
3844 error:
3845 	slub_put_cpu_ptr(s->cpu_slab);
3846 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3847 	kmem_cache_free_bulk(s, i, p);
3848 	return 0;
3849 }
3850 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3851 
3852 
3853 /*
3854  * Object placement in a slab is made very easy because we always start at
3855  * offset 0. If we tune the size of the object to the alignment then we can
3856  * get the required alignment by putting one properly sized object after
3857  * another.
3858  *
3859  * Notice that the allocation order determines the sizes of the per cpu
3860  * caches. Each processor has always one slab available for allocations.
3861  * Increasing the allocation order reduces the number of times that slabs
3862  * must be moved on and off the partial lists and is therefore a factor in
3863  * locking overhead.
3864  */
3865 
3866 /*
3867  * Minimum / Maximum order of slab pages. This influences locking overhead
3868  * and slab fragmentation. A higher order reduces the number of partial slabs
3869  * and increases the number of allocations possible without having to
3870  * take the list_lock.
3871  */
3872 static unsigned int slub_min_order;
3873 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3874 static unsigned int slub_min_objects;
3875 
3876 /*
3877  * Calculate the order of allocation given an slab object size.
3878  *
3879  * The order of allocation has significant impact on performance and other
3880  * system components. Generally order 0 allocations should be preferred since
3881  * order 0 does not cause fragmentation in the page allocator. Larger objects
3882  * be problematic to put into order 0 slabs because there may be too much
3883  * unused space left. We go to a higher order if more than 1/16th of the slab
3884  * would be wasted.
3885  *
3886  * In order to reach satisfactory performance we must ensure that a minimum
3887  * number of objects is in one slab. Otherwise we may generate too much
3888  * activity on the partial lists which requires taking the list_lock. This is
3889  * less a concern for large slabs though which are rarely used.
3890  *
3891  * slub_max_order specifies the order where we begin to stop considering the
3892  * number of objects in a slab as critical. If we reach slub_max_order then
3893  * we try to keep the page order as low as possible. So we accept more waste
3894  * of space in favor of a small page order.
3895  *
3896  * Higher order allocations also allow the placement of more objects in a
3897  * slab and thereby reduce object handling overhead. If the user has
3898  * requested a higher minimum order then we start with that one instead of
3899  * the smallest order which will fit the object.
3900  */
3901 static inline unsigned int calc_slab_order(unsigned int size,
3902 		unsigned int min_objects, unsigned int max_order,
3903 		unsigned int fract_leftover)
3904 {
3905 	unsigned int min_order = slub_min_order;
3906 	unsigned int order;
3907 
3908 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3909 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3910 
3911 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3912 			order <= max_order; order++) {
3913 
3914 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3915 		unsigned int rem;
3916 
3917 		rem = slab_size % size;
3918 
3919 		if (rem <= slab_size / fract_leftover)
3920 			break;
3921 	}
3922 
3923 	return order;
3924 }
3925 
3926 static inline int calculate_order(unsigned int size)
3927 {
3928 	unsigned int order;
3929 	unsigned int min_objects;
3930 	unsigned int max_objects;
3931 	unsigned int nr_cpus;
3932 
3933 	/*
3934 	 * Attempt to find best configuration for a slab. This
3935 	 * works by first attempting to generate a layout with
3936 	 * the best configuration and backing off gradually.
3937 	 *
3938 	 * First we increase the acceptable waste in a slab. Then
3939 	 * we reduce the minimum objects required in a slab.
3940 	 */
3941 	min_objects = slub_min_objects;
3942 	if (!min_objects) {
3943 		/*
3944 		 * Some architectures will only update present cpus when
3945 		 * onlining them, so don't trust the number if it's just 1. But
3946 		 * we also don't want to use nr_cpu_ids always, as on some other
3947 		 * architectures, there can be many possible cpus, but never
3948 		 * onlined. Here we compromise between trying to avoid too high
3949 		 * order on systems that appear larger than they are, and too
3950 		 * low order on systems that appear smaller than they are.
3951 		 */
3952 		nr_cpus = num_present_cpus();
3953 		if (nr_cpus <= 1)
3954 			nr_cpus = nr_cpu_ids;
3955 		min_objects = 4 * (fls(nr_cpus) + 1);
3956 	}
3957 	max_objects = order_objects(slub_max_order, size);
3958 	min_objects = min(min_objects, max_objects);
3959 
3960 	while (min_objects > 1) {
3961 		unsigned int fraction;
3962 
3963 		fraction = 16;
3964 		while (fraction >= 4) {
3965 			order = calc_slab_order(size, min_objects,
3966 					slub_max_order, fraction);
3967 			if (order <= slub_max_order)
3968 				return order;
3969 			fraction /= 2;
3970 		}
3971 		min_objects--;
3972 	}
3973 
3974 	/*
3975 	 * We were unable to place multiple objects in a slab. Now
3976 	 * lets see if we can place a single object there.
3977 	 */
3978 	order = calc_slab_order(size, 1, slub_max_order, 1);
3979 	if (order <= slub_max_order)
3980 		return order;
3981 
3982 	/*
3983 	 * Doh this slab cannot be placed using slub_max_order.
3984 	 */
3985 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
3986 	if (order < MAX_ORDER)
3987 		return order;
3988 	return -ENOSYS;
3989 }
3990 
3991 static void
3992 init_kmem_cache_node(struct kmem_cache_node *n)
3993 {
3994 	n->nr_partial = 0;
3995 	spin_lock_init(&n->list_lock);
3996 	INIT_LIST_HEAD(&n->partial);
3997 #ifdef CONFIG_SLUB_DEBUG
3998 	atomic_long_set(&n->nr_slabs, 0);
3999 	atomic_long_set(&n->total_objects, 0);
4000 	INIT_LIST_HEAD(&n->full);
4001 #endif
4002 }
4003 
4004 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4005 {
4006 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4007 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4008 
4009 	/*
4010 	 * Must align to double word boundary for the double cmpxchg
4011 	 * instructions to work; see __pcpu_double_call_return_bool().
4012 	 */
4013 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4014 				     2 * sizeof(void *));
4015 
4016 	if (!s->cpu_slab)
4017 		return 0;
4018 
4019 	init_kmem_cache_cpus(s);
4020 
4021 	return 1;
4022 }
4023 
4024 static struct kmem_cache *kmem_cache_node;
4025 
4026 /*
4027  * No kmalloc_node yet so do it by hand. We know that this is the first
4028  * slab on the node for this slabcache. There are no concurrent accesses
4029  * possible.
4030  *
4031  * Note that this function only works on the kmem_cache_node
4032  * when allocating for the kmem_cache_node. This is used for bootstrapping
4033  * memory on a fresh node that has no slab structures yet.
4034  */
4035 static void early_kmem_cache_node_alloc(int node)
4036 {
4037 	struct slab *slab;
4038 	struct kmem_cache_node *n;
4039 
4040 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4041 
4042 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4043 
4044 	BUG_ON(!slab);
4045 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4046 	if (slab_nid(slab) != node) {
4047 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4048 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4049 	}
4050 
4051 	n = slab->freelist;
4052 	BUG_ON(!n);
4053 #ifdef CONFIG_SLUB_DEBUG
4054 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4055 	init_tracking(kmem_cache_node, n);
4056 #endif
4057 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4058 	slab->freelist = get_freepointer(kmem_cache_node, n);
4059 	slab->inuse = 1;
4060 	kmem_cache_node->node[node] = n;
4061 	init_kmem_cache_node(n);
4062 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4063 
4064 	/*
4065 	 * No locks need to be taken here as it has just been
4066 	 * initialized and there is no concurrent access.
4067 	 */
4068 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4069 }
4070 
4071 static void free_kmem_cache_nodes(struct kmem_cache *s)
4072 {
4073 	int node;
4074 	struct kmem_cache_node *n;
4075 
4076 	for_each_kmem_cache_node(s, node, n) {
4077 		s->node[node] = NULL;
4078 		kmem_cache_free(kmem_cache_node, n);
4079 	}
4080 }
4081 
4082 void __kmem_cache_release(struct kmem_cache *s)
4083 {
4084 	cache_random_seq_destroy(s);
4085 	free_percpu(s->cpu_slab);
4086 	free_kmem_cache_nodes(s);
4087 }
4088 
4089 static int init_kmem_cache_nodes(struct kmem_cache *s)
4090 {
4091 	int node;
4092 
4093 	for_each_node_mask(node, slab_nodes) {
4094 		struct kmem_cache_node *n;
4095 
4096 		if (slab_state == DOWN) {
4097 			early_kmem_cache_node_alloc(node);
4098 			continue;
4099 		}
4100 		n = kmem_cache_alloc_node(kmem_cache_node,
4101 						GFP_KERNEL, node);
4102 
4103 		if (!n) {
4104 			free_kmem_cache_nodes(s);
4105 			return 0;
4106 		}
4107 
4108 		init_kmem_cache_node(n);
4109 		s->node[node] = n;
4110 	}
4111 	return 1;
4112 }
4113 
4114 static void set_cpu_partial(struct kmem_cache *s)
4115 {
4116 #ifdef CONFIG_SLUB_CPU_PARTIAL
4117 	unsigned int nr_objects;
4118 
4119 	/*
4120 	 * cpu_partial determined the maximum number of objects kept in the
4121 	 * per cpu partial lists of a processor.
4122 	 *
4123 	 * Per cpu partial lists mainly contain slabs that just have one
4124 	 * object freed. If they are used for allocation then they can be
4125 	 * filled up again with minimal effort. The slab will never hit the
4126 	 * per node partial lists and therefore no locking will be required.
4127 	 *
4128 	 * For backwards compatibility reasons, this is determined as number
4129 	 * of objects, even though we now limit maximum number of pages, see
4130 	 * slub_set_cpu_partial()
4131 	 */
4132 	if (!kmem_cache_has_cpu_partial(s))
4133 		nr_objects = 0;
4134 	else if (s->size >= PAGE_SIZE)
4135 		nr_objects = 6;
4136 	else if (s->size >= 1024)
4137 		nr_objects = 24;
4138 	else if (s->size >= 256)
4139 		nr_objects = 52;
4140 	else
4141 		nr_objects = 120;
4142 
4143 	slub_set_cpu_partial(s, nr_objects);
4144 #endif
4145 }
4146 
4147 /*
4148  * calculate_sizes() determines the order and the distribution of data within
4149  * a slab object.
4150  */
4151 static int calculate_sizes(struct kmem_cache *s)
4152 {
4153 	slab_flags_t flags = s->flags;
4154 	unsigned int size = s->object_size;
4155 	unsigned int order;
4156 
4157 	/*
4158 	 * Round up object size to the next word boundary. We can only
4159 	 * place the free pointer at word boundaries and this determines
4160 	 * the possible location of the free pointer.
4161 	 */
4162 	size = ALIGN(size, sizeof(void *));
4163 
4164 #ifdef CONFIG_SLUB_DEBUG
4165 	/*
4166 	 * Determine if we can poison the object itself. If the user of
4167 	 * the slab may touch the object after free or before allocation
4168 	 * then we should never poison the object itself.
4169 	 */
4170 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4171 			!s->ctor)
4172 		s->flags |= __OBJECT_POISON;
4173 	else
4174 		s->flags &= ~__OBJECT_POISON;
4175 
4176 
4177 	/*
4178 	 * If we are Redzoning then check if there is some space between the
4179 	 * end of the object and the free pointer. If not then add an
4180 	 * additional word to have some bytes to store Redzone information.
4181 	 */
4182 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4183 		size += sizeof(void *);
4184 #endif
4185 
4186 	/*
4187 	 * With that we have determined the number of bytes in actual use
4188 	 * by the object and redzoning.
4189 	 */
4190 	s->inuse = size;
4191 
4192 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4193 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4194 	    s->ctor) {
4195 		/*
4196 		 * Relocate free pointer after the object if it is not
4197 		 * permitted to overwrite the first word of the object on
4198 		 * kmem_cache_free.
4199 		 *
4200 		 * This is the case if we do RCU, have a constructor or
4201 		 * destructor, are poisoning the objects, or are
4202 		 * redzoning an object smaller than sizeof(void *).
4203 		 *
4204 		 * The assumption that s->offset >= s->inuse means free
4205 		 * pointer is outside of the object is used in the
4206 		 * freeptr_outside_object() function. If that is no
4207 		 * longer true, the function needs to be modified.
4208 		 */
4209 		s->offset = size;
4210 		size += sizeof(void *);
4211 	} else {
4212 		/*
4213 		 * Store freelist pointer near middle of object to keep
4214 		 * it away from the edges of the object to avoid small
4215 		 * sized over/underflows from neighboring allocations.
4216 		 */
4217 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4218 	}
4219 
4220 #ifdef CONFIG_SLUB_DEBUG
4221 	if (flags & SLAB_STORE_USER) {
4222 		/*
4223 		 * Need to store information about allocs and frees after
4224 		 * the object.
4225 		 */
4226 		size += 2 * sizeof(struct track);
4227 
4228 		/* Save the original kmalloc request size */
4229 		if (flags & SLAB_KMALLOC)
4230 			size += sizeof(unsigned int);
4231 	}
4232 #endif
4233 
4234 	kasan_cache_create(s, &size, &s->flags);
4235 #ifdef CONFIG_SLUB_DEBUG
4236 	if (flags & SLAB_RED_ZONE) {
4237 		/*
4238 		 * Add some empty padding so that we can catch
4239 		 * overwrites from earlier objects rather than let
4240 		 * tracking information or the free pointer be
4241 		 * corrupted if a user writes before the start
4242 		 * of the object.
4243 		 */
4244 		size += sizeof(void *);
4245 
4246 		s->red_left_pad = sizeof(void *);
4247 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4248 		size += s->red_left_pad;
4249 	}
4250 #endif
4251 
4252 	/*
4253 	 * SLUB stores one object immediately after another beginning from
4254 	 * offset 0. In order to align the objects we have to simply size
4255 	 * each object to conform to the alignment.
4256 	 */
4257 	size = ALIGN(size, s->align);
4258 	s->size = size;
4259 	s->reciprocal_size = reciprocal_value(size);
4260 	order = calculate_order(size);
4261 
4262 	if ((int)order < 0)
4263 		return 0;
4264 
4265 	s->allocflags = 0;
4266 	if (order)
4267 		s->allocflags |= __GFP_COMP;
4268 
4269 	if (s->flags & SLAB_CACHE_DMA)
4270 		s->allocflags |= GFP_DMA;
4271 
4272 	if (s->flags & SLAB_CACHE_DMA32)
4273 		s->allocflags |= GFP_DMA32;
4274 
4275 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4276 		s->allocflags |= __GFP_RECLAIMABLE;
4277 
4278 	/*
4279 	 * Determine the number of objects per slab
4280 	 */
4281 	s->oo = oo_make(order, size);
4282 	s->min = oo_make(get_order(size), size);
4283 
4284 	return !!oo_objects(s->oo);
4285 }
4286 
4287 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4288 {
4289 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4290 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4291 	s->random = get_random_long();
4292 #endif
4293 
4294 	if (!calculate_sizes(s))
4295 		goto error;
4296 	if (disable_higher_order_debug) {
4297 		/*
4298 		 * Disable debugging flags that store metadata if the min slab
4299 		 * order increased.
4300 		 */
4301 		if (get_order(s->size) > get_order(s->object_size)) {
4302 			s->flags &= ~DEBUG_METADATA_FLAGS;
4303 			s->offset = 0;
4304 			if (!calculate_sizes(s))
4305 				goto error;
4306 		}
4307 	}
4308 
4309 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4310     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4311 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4312 		/* Enable fast mode */
4313 		s->flags |= __CMPXCHG_DOUBLE;
4314 #endif
4315 
4316 	/*
4317 	 * The larger the object size is, the more slabs we want on the partial
4318 	 * list to avoid pounding the page allocator excessively.
4319 	 */
4320 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4321 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4322 
4323 	set_cpu_partial(s);
4324 
4325 #ifdef CONFIG_NUMA
4326 	s->remote_node_defrag_ratio = 1000;
4327 #endif
4328 
4329 	/* Initialize the pre-computed randomized freelist if slab is up */
4330 	if (slab_state >= UP) {
4331 		if (init_cache_random_seq(s))
4332 			goto error;
4333 	}
4334 
4335 	if (!init_kmem_cache_nodes(s))
4336 		goto error;
4337 
4338 	if (alloc_kmem_cache_cpus(s))
4339 		return 0;
4340 
4341 error:
4342 	__kmem_cache_release(s);
4343 	return -EINVAL;
4344 }
4345 
4346 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4347 			      const char *text)
4348 {
4349 #ifdef CONFIG_SLUB_DEBUG
4350 	void *addr = slab_address(slab);
4351 	void *p;
4352 
4353 	slab_err(s, slab, text, s->name);
4354 
4355 	spin_lock(&object_map_lock);
4356 	__fill_map(object_map, s, slab);
4357 
4358 	for_each_object(p, s, addr, slab->objects) {
4359 
4360 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4361 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4362 			print_tracking(s, p);
4363 		}
4364 	}
4365 	spin_unlock(&object_map_lock);
4366 #endif
4367 }
4368 
4369 /*
4370  * Attempt to free all partial slabs on a node.
4371  * This is called from __kmem_cache_shutdown(). We must take list_lock
4372  * because sysfs file might still access partial list after the shutdowning.
4373  */
4374 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4375 {
4376 	LIST_HEAD(discard);
4377 	struct slab *slab, *h;
4378 
4379 	BUG_ON(irqs_disabled());
4380 	spin_lock_irq(&n->list_lock);
4381 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4382 		if (!slab->inuse) {
4383 			remove_partial(n, slab);
4384 			list_add(&slab->slab_list, &discard);
4385 		} else {
4386 			list_slab_objects(s, slab,
4387 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4388 		}
4389 	}
4390 	spin_unlock_irq(&n->list_lock);
4391 
4392 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4393 		discard_slab(s, slab);
4394 }
4395 
4396 bool __kmem_cache_empty(struct kmem_cache *s)
4397 {
4398 	int node;
4399 	struct kmem_cache_node *n;
4400 
4401 	for_each_kmem_cache_node(s, node, n)
4402 		if (n->nr_partial || slabs_node(s, node))
4403 			return false;
4404 	return true;
4405 }
4406 
4407 /*
4408  * Release all resources used by a slab cache.
4409  */
4410 int __kmem_cache_shutdown(struct kmem_cache *s)
4411 {
4412 	int node;
4413 	struct kmem_cache_node *n;
4414 
4415 	flush_all_cpus_locked(s);
4416 	/* Attempt to free all objects */
4417 	for_each_kmem_cache_node(s, node, n) {
4418 		free_partial(s, n);
4419 		if (n->nr_partial || slabs_node(s, node))
4420 			return 1;
4421 	}
4422 	return 0;
4423 }
4424 
4425 #ifdef CONFIG_PRINTK
4426 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4427 {
4428 	void *base;
4429 	int __maybe_unused i;
4430 	unsigned int objnr;
4431 	void *objp;
4432 	void *objp0;
4433 	struct kmem_cache *s = slab->slab_cache;
4434 	struct track __maybe_unused *trackp;
4435 
4436 	kpp->kp_ptr = object;
4437 	kpp->kp_slab = slab;
4438 	kpp->kp_slab_cache = s;
4439 	base = slab_address(slab);
4440 	objp0 = kasan_reset_tag(object);
4441 #ifdef CONFIG_SLUB_DEBUG
4442 	objp = restore_red_left(s, objp0);
4443 #else
4444 	objp = objp0;
4445 #endif
4446 	objnr = obj_to_index(s, slab, objp);
4447 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4448 	objp = base + s->size * objnr;
4449 	kpp->kp_objp = objp;
4450 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4451 			 || (objp - base) % s->size) ||
4452 	    !(s->flags & SLAB_STORE_USER))
4453 		return;
4454 #ifdef CONFIG_SLUB_DEBUG
4455 	objp = fixup_red_left(s, objp);
4456 	trackp = get_track(s, objp, TRACK_ALLOC);
4457 	kpp->kp_ret = (void *)trackp->addr;
4458 #ifdef CONFIG_STACKDEPOT
4459 	{
4460 		depot_stack_handle_t handle;
4461 		unsigned long *entries;
4462 		unsigned int nr_entries;
4463 
4464 		handle = READ_ONCE(trackp->handle);
4465 		if (handle) {
4466 			nr_entries = stack_depot_fetch(handle, &entries);
4467 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4468 				kpp->kp_stack[i] = (void *)entries[i];
4469 		}
4470 
4471 		trackp = get_track(s, objp, TRACK_FREE);
4472 		handle = READ_ONCE(trackp->handle);
4473 		if (handle) {
4474 			nr_entries = stack_depot_fetch(handle, &entries);
4475 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4476 				kpp->kp_free_stack[i] = (void *)entries[i];
4477 		}
4478 	}
4479 #endif
4480 #endif
4481 }
4482 #endif
4483 
4484 /********************************************************************
4485  *		Kmalloc subsystem
4486  *******************************************************************/
4487 
4488 static int __init setup_slub_min_order(char *str)
4489 {
4490 	get_option(&str, (int *)&slub_min_order);
4491 
4492 	return 1;
4493 }
4494 
4495 __setup("slub_min_order=", setup_slub_min_order);
4496 
4497 static int __init setup_slub_max_order(char *str)
4498 {
4499 	get_option(&str, (int *)&slub_max_order);
4500 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4501 
4502 	return 1;
4503 }
4504 
4505 __setup("slub_max_order=", setup_slub_max_order);
4506 
4507 static int __init setup_slub_min_objects(char *str)
4508 {
4509 	get_option(&str, (int *)&slub_min_objects);
4510 
4511 	return 1;
4512 }
4513 
4514 __setup("slub_min_objects=", setup_slub_min_objects);
4515 
4516 #ifdef CONFIG_HARDENED_USERCOPY
4517 /*
4518  * Rejects incorrectly sized objects and objects that are to be copied
4519  * to/from userspace but do not fall entirely within the containing slab
4520  * cache's usercopy region.
4521  *
4522  * Returns NULL if check passes, otherwise const char * to name of cache
4523  * to indicate an error.
4524  */
4525 void __check_heap_object(const void *ptr, unsigned long n,
4526 			 const struct slab *slab, bool to_user)
4527 {
4528 	struct kmem_cache *s;
4529 	unsigned int offset;
4530 	bool is_kfence = is_kfence_address(ptr);
4531 
4532 	ptr = kasan_reset_tag(ptr);
4533 
4534 	/* Find object and usable object size. */
4535 	s = slab->slab_cache;
4536 
4537 	/* Reject impossible pointers. */
4538 	if (ptr < slab_address(slab))
4539 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4540 			       to_user, 0, n);
4541 
4542 	/* Find offset within object. */
4543 	if (is_kfence)
4544 		offset = ptr - kfence_object_start(ptr);
4545 	else
4546 		offset = (ptr - slab_address(slab)) % s->size;
4547 
4548 	/* Adjust for redzone and reject if within the redzone. */
4549 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4550 		if (offset < s->red_left_pad)
4551 			usercopy_abort("SLUB object in left red zone",
4552 				       s->name, to_user, offset, n);
4553 		offset -= s->red_left_pad;
4554 	}
4555 
4556 	/* Allow address range falling entirely within usercopy region. */
4557 	if (offset >= s->useroffset &&
4558 	    offset - s->useroffset <= s->usersize &&
4559 	    n <= s->useroffset - offset + s->usersize)
4560 		return;
4561 
4562 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4563 }
4564 #endif /* CONFIG_HARDENED_USERCOPY */
4565 
4566 #define SHRINK_PROMOTE_MAX 32
4567 
4568 /*
4569  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4570  * up most to the head of the partial lists. New allocations will then
4571  * fill those up and thus they can be removed from the partial lists.
4572  *
4573  * The slabs with the least items are placed last. This results in them
4574  * being allocated from last increasing the chance that the last objects
4575  * are freed in them.
4576  */
4577 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4578 {
4579 	int node;
4580 	int i;
4581 	struct kmem_cache_node *n;
4582 	struct slab *slab;
4583 	struct slab *t;
4584 	struct list_head discard;
4585 	struct list_head promote[SHRINK_PROMOTE_MAX];
4586 	unsigned long flags;
4587 	int ret = 0;
4588 
4589 	for_each_kmem_cache_node(s, node, n) {
4590 		INIT_LIST_HEAD(&discard);
4591 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4592 			INIT_LIST_HEAD(promote + i);
4593 
4594 		spin_lock_irqsave(&n->list_lock, flags);
4595 
4596 		/*
4597 		 * Build lists of slabs to discard or promote.
4598 		 *
4599 		 * Note that concurrent frees may occur while we hold the
4600 		 * list_lock. slab->inuse here is the upper limit.
4601 		 */
4602 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4603 			int free = slab->objects - slab->inuse;
4604 
4605 			/* Do not reread slab->inuse */
4606 			barrier();
4607 
4608 			/* We do not keep full slabs on the list */
4609 			BUG_ON(free <= 0);
4610 
4611 			if (free == slab->objects) {
4612 				list_move(&slab->slab_list, &discard);
4613 				n->nr_partial--;
4614 				dec_slabs_node(s, node, slab->objects);
4615 			} else if (free <= SHRINK_PROMOTE_MAX)
4616 				list_move(&slab->slab_list, promote + free - 1);
4617 		}
4618 
4619 		/*
4620 		 * Promote the slabs filled up most to the head of the
4621 		 * partial list.
4622 		 */
4623 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4624 			list_splice(promote + i, &n->partial);
4625 
4626 		spin_unlock_irqrestore(&n->list_lock, flags);
4627 
4628 		/* Release empty slabs */
4629 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4630 			free_slab(s, slab);
4631 
4632 		if (slabs_node(s, node))
4633 			ret = 1;
4634 	}
4635 
4636 	return ret;
4637 }
4638 
4639 int __kmem_cache_shrink(struct kmem_cache *s)
4640 {
4641 	flush_all(s);
4642 	return __kmem_cache_do_shrink(s);
4643 }
4644 
4645 static int slab_mem_going_offline_callback(void *arg)
4646 {
4647 	struct kmem_cache *s;
4648 
4649 	mutex_lock(&slab_mutex);
4650 	list_for_each_entry(s, &slab_caches, list) {
4651 		flush_all_cpus_locked(s);
4652 		__kmem_cache_do_shrink(s);
4653 	}
4654 	mutex_unlock(&slab_mutex);
4655 
4656 	return 0;
4657 }
4658 
4659 static void slab_mem_offline_callback(void *arg)
4660 {
4661 	struct memory_notify *marg = arg;
4662 	int offline_node;
4663 
4664 	offline_node = marg->status_change_nid_normal;
4665 
4666 	/*
4667 	 * If the node still has available memory. we need kmem_cache_node
4668 	 * for it yet.
4669 	 */
4670 	if (offline_node < 0)
4671 		return;
4672 
4673 	mutex_lock(&slab_mutex);
4674 	node_clear(offline_node, slab_nodes);
4675 	/*
4676 	 * We no longer free kmem_cache_node structures here, as it would be
4677 	 * racy with all get_node() users, and infeasible to protect them with
4678 	 * slab_mutex.
4679 	 */
4680 	mutex_unlock(&slab_mutex);
4681 }
4682 
4683 static int slab_mem_going_online_callback(void *arg)
4684 {
4685 	struct kmem_cache_node *n;
4686 	struct kmem_cache *s;
4687 	struct memory_notify *marg = arg;
4688 	int nid = marg->status_change_nid_normal;
4689 	int ret = 0;
4690 
4691 	/*
4692 	 * If the node's memory is already available, then kmem_cache_node is
4693 	 * already created. Nothing to do.
4694 	 */
4695 	if (nid < 0)
4696 		return 0;
4697 
4698 	/*
4699 	 * We are bringing a node online. No memory is available yet. We must
4700 	 * allocate a kmem_cache_node structure in order to bring the node
4701 	 * online.
4702 	 */
4703 	mutex_lock(&slab_mutex);
4704 	list_for_each_entry(s, &slab_caches, list) {
4705 		/*
4706 		 * The structure may already exist if the node was previously
4707 		 * onlined and offlined.
4708 		 */
4709 		if (get_node(s, nid))
4710 			continue;
4711 		/*
4712 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4713 		 *      since memory is not yet available from the node that
4714 		 *      is brought up.
4715 		 */
4716 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4717 		if (!n) {
4718 			ret = -ENOMEM;
4719 			goto out;
4720 		}
4721 		init_kmem_cache_node(n);
4722 		s->node[nid] = n;
4723 	}
4724 	/*
4725 	 * Any cache created after this point will also have kmem_cache_node
4726 	 * initialized for the new node.
4727 	 */
4728 	node_set(nid, slab_nodes);
4729 out:
4730 	mutex_unlock(&slab_mutex);
4731 	return ret;
4732 }
4733 
4734 static int slab_memory_callback(struct notifier_block *self,
4735 				unsigned long action, void *arg)
4736 {
4737 	int ret = 0;
4738 
4739 	switch (action) {
4740 	case MEM_GOING_ONLINE:
4741 		ret = slab_mem_going_online_callback(arg);
4742 		break;
4743 	case MEM_GOING_OFFLINE:
4744 		ret = slab_mem_going_offline_callback(arg);
4745 		break;
4746 	case MEM_OFFLINE:
4747 	case MEM_CANCEL_ONLINE:
4748 		slab_mem_offline_callback(arg);
4749 		break;
4750 	case MEM_ONLINE:
4751 	case MEM_CANCEL_OFFLINE:
4752 		break;
4753 	}
4754 	if (ret)
4755 		ret = notifier_from_errno(ret);
4756 	else
4757 		ret = NOTIFY_OK;
4758 	return ret;
4759 }
4760 
4761 static struct notifier_block slab_memory_callback_nb = {
4762 	.notifier_call = slab_memory_callback,
4763 	.priority = SLAB_CALLBACK_PRI,
4764 };
4765 
4766 /********************************************************************
4767  *			Basic setup of slabs
4768  *******************************************************************/
4769 
4770 /*
4771  * Used for early kmem_cache structures that were allocated using
4772  * the page allocator. Allocate them properly then fix up the pointers
4773  * that may be pointing to the wrong kmem_cache structure.
4774  */
4775 
4776 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4777 {
4778 	int node;
4779 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4780 	struct kmem_cache_node *n;
4781 
4782 	memcpy(s, static_cache, kmem_cache->object_size);
4783 
4784 	/*
4785 	 * This runs very early, and only the boot processor is supposed to be
4786 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4787 	 * IPIs around.
4788 	 */
4789 	__flush_cpu_slab(s, smp_processor_id());
4790 	for_each_kmem_cache_node(s, node, n) {
4791 		struct slab *p;
4792 
4793 		list_for_each_entry(p, &n->partial, slab_list)
4794 			p->slab_cache = s;
4795 
4796 #ifdef CONFIG_SLUB_DEBUG
4797 		list_for_each_entry(p, &n->full, slab_list)
4798 			p->slab_cache = s;
4799 #endif
4800 	}
4801 	list_add(&s->list, &slab_caches);
4802 	return s;
4803 }
4804 
4805 void __init kmem_cache_init(void)
4806 {
4807 	static __initdata struct kmem_cache boot_kmem_cache,
4808 		boot_kmem_cache_node;
4809 	int node;
4810 
4811 	if (debug_guardpage_minorder())
4812 		slub_max_order = 0;
4813 
4814 	/* Print slub debugging pointers without hashing */
4815 	if (__slub_debug_enabled())
4816 		no_hash_pointers_enable(NULL);
4817 
4818 	kmem_cache_node = &boot_kmem_cache_node;
4819 	kmem_cache = &boot_kmem_cache;
4820 
4821 	/*
4822 	 * Initialize the nodemask for which we will allocate per node
4823 	 * structures. Here we don't need taking slab_mutex yet.
4824 	 */
4825 	for_each_node_state(node, N_NORMAL_MEMORY)
4826 		node_set(node, slab_nodes);
4827 
4828 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4829 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4830 
4831 	register_hotmemory_notifier(&slab_memory_callback_nb);
4832 
4833 	/* Able to allocate the per node structures */
4834 	slab_state = PARTIAL;
4835 
4836 	create_boot_cache(kmem_cache, "kmem_cache",
4837 			offsetof(struct kmem_cache, node) +
4838 				nr_node_ids * sizeof(struct kmem_cache_node *),
4839 		       SLAB_HWCACHE_ALIGN, 0, 0);
4840 
4841 	kmem_cache = bootstrap(&boot_kmem_cache);
4842 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4843 
4844 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4845 	setup_kmalloc_cache_index_table();
4846 	create_kmalloc_caches(0);
4847 
4848 	/* Setup random freelists for each cache */
4849 	init_freelist_randomization();
4850 
4851 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4852 				  slub_cpu_dead);
4853 
4854 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4855 		cache_line_size(),
4856 		slub_min_order, slub_max_order, slub_min_objects,
4857 		nr_cpu_ids, nr_node_ids);
4858 }
4859 
4860 void __init kmem_cache_init_late(void)
4861 {
4862 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
4863 	WARN_ON(!flushwq);
4864 }
4865 
4866 struct kmem_cache *
4867 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4868 		   slab_flags_t flags, void (*ctor)(void *))
4869 {
4870 	struct kmem_cache *s;
4871 
4872 	s = find_mergeable(size, align, flags, name, ctor);
4873 	if (s) {
4874 		if (sysfs_slab_alias(s, name))
4875 			return NULL;
4876 
4877 		s->refcount++;
4878 
4879 		/*
4880 		 * Adjust the object sizes so that we clear
4881 		 * the complete object on kzalloc.
4882 		 */
4883 		s->object_size = max(s->object_size, size);
4884 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4885 	}
4886 
4887 	return s;
4888 }
4889 
4890 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4891 {
4892 	int err;
4893 
4894 	err = kmem_cache_open(s, flags);
4895 	if (err)
4896 		return err;
4897 
4898 	/* Mutex is not taken during early boot */
4899 	if (slab_state <= UP)
4900 		return 0;
4901 
4902 	err = sysfs_slab_add(s);
4903 	if (err) {
4904 		__kmem_cache_release(s);
4905 		return err;
4906 	}
4907 
4908 	if (s->flags & SLAB_STORE_USER)
4909 		debugfs_slab_add(s);
4910 
4911 	return 0;
4912 }
4913 
4914 #ifdef CONFIG_SYSFS
4915 static int count_inuse(struct slab *slab)
4916 {
4917 	return slab->inuse;
4918 }
4919 
4920 static int count_total(struct slab *slab)
4921 {
4922 	return slab->objects;
4923 }
4924 #endif
4925 
4926 #ifdef CONFIG_SLUB_DEBUG
4927 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4928 			  unsigned long *obj_map)
4929 {
4930 	void *p;
4931 	void *addr = slab_address(slab);
4932 
4933 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
4934 		return;
4935 
4936 	/* Now we know that a valid freelist exists */
4937 	__fill_map(obj_map, s, slab);
4938 	for_each_object(p, s, addr, slab->objects) {
4939 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4940 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4941 
4942 		if (!check_object(s, slab, p, val))
4943 			break;
4944 	}
4945 }
4946 
4947 static int validate_slab_node(struct kmem_cache *s,
4948 		struct kmem_cache_node *n, unsigned long *obj_map)
4949 {
4950 	unsigned long count = 0;
4951 	struct slab *slab;
4952 	unsigned long flags;
4953 
4954 	spin_lock_irqsave(&n->list_lock, flags);
4955 
4956 	list_for_each_entry(slab, &n->partial, slab_list) {
4957 		validate_slab(s, slab, obj_map);
4958 		count++;
4959 	}
4960 	if (count != n->nr_partial) {
4961 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4962 		       s->name, count, n->nr_partial);
4963 		slab_add_kunit_errors();
4964 	}
4965 
4966 	if (!(s->flags & SLAB_STORE_USER))
4967 		goto out;
4968 
4969 	list_for_each_entry(slab, &n->full, slab_list) {
4970 		validate_slab(s, slab, obj_map);
4971 		count++;
4972 	}
4973 	if (count != atomic_long_read(&n->nr_slabs)) {
4974 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4975 		       s->name, count, atomic_long_read(&n->nr_slabs));
4976 		slab_add_kunit_errors();
4977 	}
4978 
4979 out:
4980 	spin_unlock_irqrestore(&n->list_lock, flags);
4981 	return count;
4982 }
4983 
4984 long validate_slab_cache(struct kmem_cache *s)
4985 {
4986 	int node;
4987 	unsigned long count = 0;
4988 	struct kmem_cache_node *n;
4989 	unsigned long *obj_map;
4990 
4991 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
4992 	if (!obj_map)
4993 		return -ENOMEM;
4994 
4995 	flush_all(s);
4996 	for_each_kmem_cache_node(s, node, n)
4997 		count += validate_slab_node(s, n, obj_map);
4998 
4999 	bitmap_free(obj_map);
5000 
5001 	return count;
5002 }
5003 EXPORT_SYMBOL(validate_slab_cache);
5004 
5005 #ifdef CONFIG_DEBUG_FS
5006 /*
5007  * Generate lists of code addresses where slabcache objects are allocated
5008  * and freed.
5009  */
5010 
5011 struct location {
5012 	depot_stack_handle_t handle;
5013 	unsigned long count;
5014 	unsigned long addr;
5015 	unsigned long waste;
5016 	long long sum_time;
5017 	long min_time;
5018 	long max_time;
5019 	long min_pid;
5020 	long max_pid;
5021 	DECLARE_BITMAP(cpus, NR_CPUS);
5022 	nodemask_t nodes;
5023 };
5024 
5025 struct loc_track {
5026 	unsigned long max;
5027 	unsigned long count;
5028 	struct location *loc;
5029 	loff_t idx;
5030 };
5031 
5032 static struct dentry *slab_debugfs_root;
5033 
5034 static void free_loc_track(struct loc_track *t)
5035 {
5036 	if (t->max)
5037 		free_pages((unsigned long)t->loc,
5038 			get_order(sizeof(struct location) * t->max));
5039 }
5040 
5041 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5042 {
5043 	struct location *l;
5044 	int order;
5045 
5046 	order = get_order(sizeof(struct location) * max);
5047 
5048 	l = (void *)__get_free_pages(flags, order);
5049 	if (!l)
5050 		return 0;
5051 
5052 	if (t->count) {
5053 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5054 		free_loc_track(t);
5055 	}
5056 	t->max = max;
5057 	t->loc = l;
5058 	return 1;
5059 }
5060 
5061 static int add_location(struct loc_track *t, struct kmem_cache *s,
5062 				const struct track *track,
5063 				unsigned int orig_size)
5064 {
5065 	long start, end, pos;
5066 	struct location *l;
5067 	unsigned long caddr, chandle, cwaste;
5068 	unsigned long age = jiffies - track->when;
5069 	depot_stack_handle_t handle = 0;
5070 	unsigned int waste = s->object_size - orig_size;
5071 
5072 #ifdef CONFIG_STACKDEPOT
5073 	handle = READ_ONCE(track->handle);
5074 #endif
5075 	start = -1;
5076 	end = t->count;
5077 
5078 	for ( ; ; ) {
5079 		pos = start + (end - start + 1) / 2;
5080 
5081 		/*
5082 		 * There is nothing at "end". If we end up there
5083 		 * we need to add something to before end.
5084 		 */
5085 		if (pos == end)
5086 			break;
5087 
5088 		l = &t->loc[pos];
5089 		caddr = l->addr;
5090 		chandle = l->handle;
5091 		cwaste = l->waste;
5092 		if ((track->addr == caddr) && (handle == chandle) &&
5093 			(waste == cwaste)) {
5094 
5095 			l->count++;
5096 			if (track->when) {
5097 				l->sum_time += age;
5098 				if (age < l->min_time)
5099 					l->min_time = age;
5100 				if (age > l->max_time)
5101 					l->max_time = age;
5102 
5103 				if (track->pid < l->min_pid)
5104 					l->min_pid = track->pid;
5105 				if (track->pid > l->max_pid)
5106 					l->max_pid = track->pid;
5107 
5108 				cpumask_set_cpu(track->cpu,
5109 						to_cpumask(l->cpus));
5110 			}
5111 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5112 			return 1;
5113 		}
5114 
5115 		if (track->addr < caddr)
5116 			end = pos;
5117 		else if (track->addr == caddr && handle < chandle)
5118 			end = pos;
5119 		else if (track->addr == caddr && handle == chandle &&
5120 				waste < cwaste)
5121 			end = pos;
5122 		else
5123 			start = pos;
5124 	}
5125 
5126 	/*
5127 	 * Not found. Insert new tracking element.
5128 	 */
5129 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5130 		return 0;
5131 
5132 	l = t->loc + pos;
5133 	if (pos < t->count)
5134 		memmove(l + 1, l,
5135 			(t->count - pos) * sizeof(struct location));
5136 	t->count++;
5137 	l->count = 1;
5138 	l->addr = track->addr;
5139 	l->sum_time = age;
5140 	l->min_time = age;
5141 	l->max_time = age;
5142 	l->min_pid = track->pid;
5143 	l->max_pid = track->pid;
5144 	l->handle = handle;
5145 	l->waste = waste;
5146 	cpumask_clear(to_cpumask(l->cpus));
5147 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5148 	nodes_clear(l->nodes);
5149 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5150 	return 1;
5151 }
5152 
5153 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5154 		struct slab *slab, enum track_item alloc,
5155 		unsigned long *obj_map)
5156 {
5157 	void *addr = slab_address(slab);
5158 	bool is_alloc = (alloc == TRACK_ALLOC);
5159 	void *p;
5160 
5161 	__fill_map(obj_map, s, slab);
5162 
5163 	for_each_object(p, s, addr, slab->objects)
5164 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5165 			add_location(t, s, get_track(s, p, alloc),
5166 				     is_alloc ? get_orig_size(s, p) :
5167 						s->object_size);
5168 }
5169 #endif  /* CONFIG_DEBUG_FS   */
5170 #endif	/* CONFIG_SLUB_DEBUG */
5171 
5172 #ifdef CONFIG_SYSFS
5173 enum slab_stat_type {
5174 	SL_ALL,			/* All slabs */
5175 	SL_PARTIAL,		/* Only partially allocated slabs */
5176 	SL_CPU,			/* Only slabs used for cpu caches */
5177 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5178 	SL_TOTAL		/* Determine object capacity not slabs */
5179 };
5180 
5181 #define SO_ALL		(1 << SL_ALL)
5182 #define SO_PARTIAL	(1 << SL_PARTIAL)
5183 #define SO_CPU		(1 << SL_CPU)
5184 #define SO_OBJECTS	(1 << SL_OBJECTS)
5185 #define SO_TOTAL	(1 << SL_TOTAL)
5186 
5187 static ssize_t show_slab_objects(struct kmem_cache *s,
5188 				 char *buf, unsigned long flags)
5189 {
5190 	unsigned long total = 0;
5191 	int node;
5192 	int x;
5193 	unsigned long *nodes;
5194 	int len = 0;
5195 
5196 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5197 	if (!nodes)
5198 		return -ENOMEM;
5199 
5200 	if (flags & SO_CPU) {
5201 		int cpu;
5202 
5203 		for_each_possible_cpu(cpu) {
5204 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5205 							       cpu);
5206 			int node;
5207 			struct slab *slab;
5208 
5209 			slab = READ_ONCE(c->slab);
5210 			if (!slab)
5211 				continue;
5212 
5213 			node = slab_nid(slab);
5214 			if (flags & SO_TOTAL)
5215 				x = slab->objects;
5216 			else if (flags & SO_OBJECTS)
5217 				x = slab->inuse;
5218 			else
5219 				x = 1;
5220 
5221 			total += x;
5222 			nodes[node] += x;
5223 
5224 #ifdef CONFIG_SLUB_CPU_PARTIAL
5225 			slab = slub_percpu_partial_read_once(c);
5226 			if (slab) {
5227 				node = slab_nid(slab);
5228 				if (flags & SO_TOTAL)
5229 					WARN_ON_ONCE(1);
5230 				else if (flags & SO_OBJECTS)
5231 					WARN_ON_ONCE(1);
5232 				else
5233 					x = slab->slabs;
5234 				total += x;
5235 				nodes[node] += x;
5236 			}
5237 #endif
5238 		}
5239 	}
5240 
5241 	/*
5242 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5243 	 * already held which will conflict with an existing lock order:
5244 	 *
5245 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5246 	 *
5247 	 * We don't really need mem_hotplug_lock (to hold off
5248 	 * slab_mem_going_offline_callback) here because slab's memory hot
5249 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5250 	 */
5251 
5252 #ifdef CONFIG_SLUB_DEBUG
5253 	if (flags & SO_ALL) {
5254 		struct kmem_cache_node *n;
5255 
5256 		for_each_kmem_cache_node(s, node, n) {
5257 
5258 			if (flags & SO_TOTAL)
5259 				x = atomic_long_read(&n->total_objects);
5260 			else if (flags & SO_OBJECTS)
5261 				x = atomic_long_read(&n->total_objects) -
5262 					count_partial(n, count_free);
5263 			else
5264 				x = atomic_long_read(&n->nr_slabs);
5265 			total += x;
5266 			nodes[node] += x;
5267 		}
5268 
5269 	} else
5270 #endif
5271 	if (flags & SO_PARTIAL) {
5272 		struct kmem_cache_node *n;
5273 
5274 		for_each_kmem_cache_node(s, node, n) {
5275 			if (flags & SO_TOTAL)
5276 				x = count_partial(n, count_total);
5277 			else if (flags & SO_OBJECTS)
5278 				x = count_partial(n, count_inuse);
5279 			else
5280 				x = n->nr_partial;
5281 			total += x;
5282 			nodes[node] += x;
5283 		}
5284 	}
5285 
5286 	len += sysfs_emit_at(buf, len, "%lu", total);
5287 #ifdef CONFIG_NUMA
5288 	for (node = 0; node < nr_node_ids; node++) {
5289 		if (nodes[node])
5290 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5291 					     node, nodes[node]);
5292 	}
5293 #endif
5294 	len += sysfs_emit_at(buf, len, "\n");
5295 	kfree(nodes);
5296 
5297 	return len;
5298 }
5299 
5300 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5301 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5302 
5303 struct slab_attribute {
5304 	struct attribute attr;
5305 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5306 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5307 };
5308 
5309 #define SLAB_ATTR_RO(_name) \
5310 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5311 
5312 #define SLAB_ATTR(_name) \
5313 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5314 
5315 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5316 {
5317 	return sysfs_emit(buf, "%u\n", s->size);
5318 }
5319 SLAB_ATTR_RO(slab_size);
5320 
5321 static ssize_t align_show(struct kmem_cache *s, char *buf)
5322 {
5323 	return sysfs_emit(buf, "%u\n", s->align);
5324 }
5325 SLAB_ATTR_RO(align);
5326 
5327 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5328 {
5329 	return sysfs_emit(buf, "%u\n", s->object_size);
5330 }
5331 SLAB_ATTR_RO(object_size);
5332 
5333 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5334 {
5335 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5336 }
5337 SLAB_ATTR_RO(objs_per_slab);
5338 
5339 static ssize_t order_show(struct kmem_cache *s, char *buf)
5340 {
5341 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5342 }
5343 SLAB_ATTR_RO(order);
5344 
5345 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5346 {
5347 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5348 }
5349 
5350 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5351 				 size_t length)
5352 {
5353 	unsigned long min;
5354 	int err;
5355 
5356 	err = kstrtoul(buf, 10, &min);
5357 	if (err)
5358 		return err;
5359 
5360 	s->min_partial = min;
5361 	return length;
5362 }
5363 SLAB_ATTR(min_partial);
5364 
5365 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5366 {
5367 	unsigned int nr_partial = 0;
5368 #ifdef CONFIG_SLUB_CPU_PARTIAL
5369 	nr_partial = s->cpu_partial;
5370 #endif
5371 
5372 	return sysfs_emit(buf, "%u\n", nr_partial);
5373 }
5374 
5375 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5376 				 size_t length)
5377 {
5378 	unsigned int objects;
5379 	int err;
5380 
5381 	err = kstrtouint(buf, 10, &objects);
5382 	if (err)
5383 		return err;
5384 	if (objects && !kmem_cache_has_cpu_partial(s))
5385 		return -EINVAL;
5386 
5387 	slub_set_cpu_partial(s, objects);
5388 	flush_all(s);
5389 	return length;
5390 }
5391 SLAB_ATTR(cpu_partial);
5392 
5393 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5394 {
5395 	if (!s->ctor)
5396 		return 0;
5397 	return sysfs_emit(buf, "%pS\n", s->ctor);
5398 }
5399 SLAB_ATTR_RO(ctor);
5400 
5401 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5402 {
5403 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5404 }
5405 SLAB_ATTR_RO(aliases);
5406 
5407 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5408 {
5409 	return show_slab_objects(s, buf, SO_PARTIAL);
5410 }
5411 SLAB_ATTR_RO(partial);
5412 
5413 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5414 {
5415 	return show_slab_objects(s, buf, SO_CPU);
5416 }
5417 SLAB_ATTR_RO(cpu_slabs);
5418 
5419 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5420 {
5421 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5422 }
5423 SLAB_ATTR_RO(objects);
5424 
5425 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5426 {
5427 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5428 }
5429 SLAB_ATTR_RO(objects_partial);
5430 
5431 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5432 {
5433 	int objects = 0;
5434 	int slabs = 0;
5435 	int cpu __maybe_unused;
5436 	int len = 0;
5437 
5438 #ifdef CONFIG_SLUB_CPU_PARTIAL
5439 	for_each_online_cpu(cpu) {
5440 		struct slab *slab;
5441 
5442 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5443 
5444 		if (slab)
5445 			slabs += slab->slabs;
5446 	}
5447 #endif
5448 
5449 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5450 	objects = (slabs * oo_objects(s->oo)) / 2;
5451 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5452 
5453 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5454 	for_each_online_cpu(cpu) {
5455 		struct slab *slab;
5456 
5457 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5458 		if (slab) {
5459 			slabs = READ_ONCE(slab->slabs);
5460 			objects = (slabs * oo_objects(s->oo)) / 2;
5461 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5462 					     cpu, objects, slabs);
5463 		}
5464 	}
5465 #endif
5466 	len += sysfs_emit_at(buf, len, "\n");
5467 
5468 	return len;
5469 }
5470 SLAB_ATTR_RO(slabs_cpu_partial);
5471 
5472 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5473 {
5474 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5475 }
5476 SLAB_ATTR_RO(reclaim_account);
5477 
5478 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5479 {
5480 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5481 }
5482 SLAB_ATTR_RO(hwcache_align);
5483 
5484 #ifdef CONFIG_ZONE_DMA
5485 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5486 {
5487 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5488 }
5489 SLAB_ATTR_RO(cache_dma);
5490 #endif
5491 
5492 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5493 {
5494 	return sysfs_emit(buf, "%u\n", s->usersize);
5495 }
5496 SLAB_ATTR_RO(usersize);
5497 
5498 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5499 {
5500 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5501 }
5502 SLAB_ATTR_RO(destroy_by_rcu);
5503 
5504 #ifdef CONFIG_SLUB_DEBUG
5505 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5506 {
5507 	return show_slab_objects(s, buf, SO_ALL);
5508 }
5509 SLAB_ATTR_RO(slabs);
5510 
5511 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5512 {
5513 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5514 }
5515 SLAB_ATTR_RO(total_objects);
5516 
5517 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5518 {
5519 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5520 }
5521 SLAB_ATTR_RO(sanity_checks);
5522 
5523 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5524 {
5525 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5526 }
5527 SLAB_ATTR_RO(trace);
5528 
5529 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5530 {
5531 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5532 }
5533 
5534 SLAB_ATTR_RO(red_zone);
5535 
5536 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5537 {
5538 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5539 }
5540 
5541 SLAB_ATTR_RO(poison);
5542 
5543 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5544 {
5545 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5546 }
5547 
5548 SLAB_ATTR_RO(store_user);
5549 
5550 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5551 {
5552 	return 0;
5553 }
5554 
5555 static ssize_t validate_store(struct kmem_cache *s,
5556 			const char *buf, size_t length)
5557 {
5558 	int ret = -EINVAL;
5559 
5560 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5561 		ret = validate_slab_cache(s);
5562 		if (ret >= 0)
5563 			ret = length;
5564 	}
5565 	return ret;
5566 }
5567 SLAB_ATTR(validate);
5568 
5569 #endif /* CONFIG_SLUB_DEBUG */
5570 
5571 #ifdef CONFIG_FAILSLAB
5572 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5573 {
5574 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5575 }
5576 SLAB_ATTR_RO(failslab);
5577 #endif
5578 
5579 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5580 {
5581 	return 0;
5582 }
5583 
5584 static ssize_t shrink_store(struct kmem_cache *s,
5585 			const char *buf, size_t length)
5586 {
5587 	if (buf[0] == '1')
5588 		kmem_cache_shrink(s);
5589 	else
5590 		return -EINVAL;
5591 	return length;
5592 }
5593 SLAB_ATTR(shrink);
5594 
5595 #ifdef CONFIG_NUMA
5596 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5597 {
5598 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5599 }
5600 
5601 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5602 				const char *buf, size_t length)
5603 {
5604 	unsigned int ratio;
5605 	int err;
5606 
5607 	err = kstrtouint(buf, 10, &ratio);
5608 	if (err)
5609 		return err;
5610 	if (ratio > 100)
5611 		return -ERANGE;
5612 
5613 	s->remote_node_defrag_ratio = ratio * 10;
5614 
5615 	return length;
5616 }
5617 SLAB_ATTR(remote_node_defrag_ratio);
5618 #endif
5619 
5620 #ifdef CONFIG_SLUB_STATS
5621 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5622 {
5623 	unsigned long sum  = 0;
5624 	int cpu;
5625 	int len = 0;
5626 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5627 
5628 	if (!data)
5629 		return -ENOMEM;
5630 
5631 	for_each_online_cpu(cpu) {
5632 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5633 
5634 		data[cpu] = x;
5635 		sum += x;
5636 	}
5637 
5638 	len += sysfs_emit_at(buf, len, "%lu", sum);
5639 
5640 #ifdef CONFIG_SMP
5641 	for_each_online_cpu(cpu) {
5642 		if (data[cpu])
5643 			len += sysfs_emit_at(buf, len, " C%d=%u",
5644 					     cpu, data[cpu]);
5645 	}
5646 #endif
5647 	kfree(data);
5648 	len += sysfs_emit_at(buf, len, "\n");
5649 
5650 	return len;
5651 }
5652 
5653 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5654 {
5655 	int cpu;
5656 
5657 	for_each_online_cpu(cpu)
5658 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5659 }
5660 
5661 #define STAT_ATTR(si, text) 					\
5662 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5663 {								\
5664 	return show_stat(s, buf, si);				\
5665 }								\
5666 static ssize_t text##_store(struct kmem_cache *s,		\
5667 				const char *buf, size_t length)	\
5668 {								\
5669 	if (buf[0] != '0')					\
5670 		return -EINVAL;					\
5671 	clear_stat(s, si);					\
5672 	return length;						\
5673 }								\
5674 SLAB_ATTR(text);						\
5675 
5676 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5677 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5678 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5679 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5680 STAT_ATTR(FREE_FROZEN, free_frozen);
5681 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5682 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5683 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5684 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5685 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5686 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5687 STAT_ATTR(FREE_SLAB, free_slab);
5688 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5689 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5690 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5691 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5692 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5693 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5694 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5695 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5696 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5697 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5698 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5699 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5700 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5701 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5702 #endif	/* CONFIG_SLUB_STATS */
5703 
5704 static struct attribute *slab_attrs[] = {
5705 	&slab_size_attr.attr,
5706 	&object_size_attr.attr,
5707 	&objs_per_slab_attr.attr,
5708 	&order_attr.attr,
5709 	&min_partial_attr.attr,
5710 	&cpu_partial_attr.attr,
5711 	&objects_attr.attr,
5712 	&objects_partial_attr.attr,
5713 	&partial_attr.attr,
5714 	&cpu_slabs_attr.attr,
5715 	&ctor_attr.attr,
5716 	&aliases_attr.attr,
5717 	&align_attr.attr,
5718 	&hwcache_align_attr.attr,
5719 	&reclaim_account_attr.attr,
5720 	&destroy_by_rcu_attr.attr,
5721 	&shrink_attr.attr,
5722 	&slabs_cpu_partial_attr.attr,
5723 #ifdef CONFIG_SLUB_DEBUG
5724 	&total_objects_attr.attr,
5725 	&slabs_attr.attr,
5726 	&sanity_checks_attr.attr,
5727 	&trace_attr.attr,
5728 	&red_zone_attr.attr,
5729 	&poison_attr.attr,
5730 	&store_user_attr.attr,
5731 	&validate_attr.attr,
5732 #endif
5733 #ifdef CONFIG_ZONE_DMA
5734 	&cache_dma_attr.attr,
5735 #endif
5736 #ifdef CONFIG_NUMA
5737 	&remote_node_defrag_ratio_attr.attr,
5738 #endif
5739 #ifdef CONFIG_SLUB_STATS
5740 	&alloc_fastpath_attr.attr,
5741 	&alloc_slowpath_attr.attr,
5742 	&free_fastpath_attr.attr,
5743 	&free_slowpath_attr.attr,
5744 	&free_frozen_attr.attr,
5745 	&free_add_partial_attr.attr,
5746 	&free_remove_partial_attr.attr,
5747 	&alloc_from_partial_attr.attr,
5748 	&alloc_slab_attr.attr,
5749 	&alloc_refill_attr.attr,
5750 	&alloc_node_mismatch_attr.attr,
5751 	&free_slab_attr.attr,
5752 	&cpuslab_flush_attr.attr,
5753 	&deactivate_full_attr.attr,
5754 	&deactivate_empty_attr.attr,
5755 	&deactivate_to_head_attr.attr,
5756 	&deactivate_to_tail_attr.attr,
5757 	&deactivate_remote_frees_attr.attr,
5758 	&deactivate_bypass_attr.attr,
5759 	&order_fallback_attr.attr,
5760 	&cmpxchg_double_fail_attr.attr,
5761 	&cmpxchg_double_cpu_fail_attr.attr,
5762 	&cpu_partial_alloc_attr.attr,
5763 	&cpu_partial_free_attr.attr,
5764 	&cpu_partial_node_attr.attr,
5765 	&cpu_partial_drain_attr.attr,
5766 #endif
5767 #ifdef CONFIG_FAILSLAB
5768 	&failslab_attr.attr,
5769 #endif
5770 	&usersize_attr.attr,
5771 
5772 	NULL
5773 };
5774 
5775 static const struct attribute_group slab_attr_group = {
5776 	.attrs = slab_attrs,
5777 };
5778 
5779 static ssize_t slab_attr_show(struct kobject *kobj,
5780 				struct attribute *attr,
5781 				char *buf)
5782 {
5783 	struct slab_attribute *attribute;
5784 	struct kmem_cache *s;
5785 
5786 	attribute = to_slab_attr(attr);
5787 	s = to_slab(kobj);
5788 
5789 	if (!attribute->show)
5790 		return -EIO;
5791 
5792 	return attribute->show(s, buf);
5793 }
5794 
5795 static ssize_t slab_attr_store(struct kobject *kobj,
5796 				struct attribute *attr,
5797 				const char *buf, size_t len)
5798 {
5799 	struct slab_attribute *attribute;
5800 	struct kmem_cache *s;
5801 
5802 	attribute = to_slab_attr(attr);
5803 	s = to_slab(kobj);
5804 
5805 	if (!attribute->store)
5806 		return -EIO;
5807 
5808 	return attribute->store(s, buf, len);
5809 }
5810 
5811 static void kmem_cache_release(struct kobject *k)
5812 {
5813 	slab_kmem_cache_release(to_slab(k));
5814 }
5815 
5816 static const struct sysfs_ops slab_sysfs_ops = {
5817 	.show = slab_attr_show,
5818 	.store = slab_attr_store,
5819 };
5820 
5821 static struct kobj_type slab_ktype = {
5822 	.sysfs_ops = &slab_sysfs_ops,
5823 	.release = kmem_cache_release,
5824 };
5825 
5826 static struct kset *slab_kset;
5827 
5828 static inline struct kset *cache_kset(struct kmem_cache *s)
5829 {
5830 	return slab_kset;
5831 }
5832 
5833 #define ID_STR_LENGTH 32
5834 
5835 /* Create a unique string id for a slab cache:
5836  *
5837  * Format	:[flags-]size
5838  */
5839 static char *create_unique_id(struct kmem_cache *s)
5840 {
5841 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5842 	char *p = name;
5843 
5844 	if (!name)
5845 		return ERR_PTR(-ENOMEM);
5846 
5847 	*p++ = ':';
5848 	/*
5849 	 * First flags affecting slabcache operations. We will only
5850 	 * get here for aliasable slabs so we do not need to support
5851 	 * too many flags. The flags here must cover all flags that
5852 	 * are matched during merging to guarantee that the id is
5853 	 * unique.
5854 	 */
5855 	if (s->flags & SLAB_CACHE_DMA)
5856 		*p++ = 'd';
5857 	if (s->flags & SLAB_CACHE_DMA32)
5858 		*p++ = 'D';
5859 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5860 		*p++ = 'a';
5861 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5862 		*p++ = 'F';
5863 	if (s->flags & SLAB_ACCOUNT)
5864 		*p++ = 'A';
5865 	if (p != name + 1)
5866 		*p++ = '-';
5867 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
5868 
5869 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
5870 		kfree(name);
5871 		return ERR_PTR(-EINVAL);
5872 	}
5873 	return name;
5874 }
5875 
5876 static int sysfs_slab_add(struct kmem_cache *s)
5877 {
5878 	int err;
5879 	const char *name;
5880 	struct kset *kset = cache_kset(s);
5881 	int unmergeable = slab_unmergeable(s);
5882 
5883 	if (!kset) {
5884 		kobject_init(&s->kobj, &slab_ktype);
5885 		return 0;
5886 	}
5887 
5888 	if (!unmergeable && disable_higher_order_debug &&
5889 			(slub_debug & DEBUG_METADATA_FLAGS))
5890 		unmergeable = 1;
5891 
5892 	if (unmergeable) {
5893 		/*
5894 		 * Slabcache can never be merged so we can use the name proper.
5895 		 * This is typically the case for debug situations. In that
5896 		 * case we can catch duplicate names easily.
5897 		 */
5898 		sysfs_remove_link(&slab_kset->kobj, s->name);
5899 		name = s->name;
5900 	} else {
5901 		/*
5902 		 * Create a unique name for the slab as a target
5903 		 * for the symlinks.
5904 		 */
5905 		name = create_unique_id(s);
5906 		if (IS_ERR(name))
5907 			return PTR_ERR(name);
5908 	}
5909 
5910 	s->kobj.kset = kset;
5911 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5912 	if (err)
5913 		goto out;
5914 
5915 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5916 	if (err)
5917 		goto out_del_kobj;
5918 
5919 	if (!unmergeable) {
5920 		/* Setup first alias */
5921 		sysfs_slab_alias(s, s->name);
5922 	}
5923 out:
5924 	if (!unmergeable)
5925 		kfree(name);
5926 	return err;
5927 out_del_kobj:
5928 	kobject_del(&s->kobj);
5929 	goto out;
5930 }
5931 
5932 void sysfs_slab_unlink(struct kmem_cache *s)
5933 {
5934 	if (slab_state >= FULL)
5935 		kobject_del(&s->kobj);
5936 }
5937 
5938 void sysfs_slab_release(struct kmem_cache *s)
5939 {
5940 	if (slab_state >= FULL)
5941 		kobject_put(&s->kobj);
5942 }
5943 
5944 /*
5945  * Need to buffer aliases during bootup until sysfs becomes
5946  * available lest we lose that information.
5947  */
5948 struct saved_alias {
5949 	struct kmem_cache *s;
5950 	const char *name;
5951 	struct saved_alias *next;
5952 };
5953 
5954 static struct saved_alias *alias_list;
5955 
5956 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5957 {
5958 	struct saved_alias *al;
5959 
5960 	if (slab_state == FULL) {
5961 		/*
5962 		 * If we have a leftover link then remove it.
5963 		 */
5964 		sysfs_remove_link(&slab_kset->kobj, name);
5965 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5966 	}
5967 
5968 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5969 	if (!al)
5970 		return -ENOMEM;
5971 
5972 	al->s = s;
5973 	al->name = name;
5974 	al->next = alias_list;
5975 	alias_list = al;
5976 	return 0;
5977 }
5978 
5979 static int __init slab_sysfs_init(void)
5980 {
5981 	struct kmem_cache *s;
5982 	int err;
5983 
5984 	mutex_lock(&slab_mutex);
5985 
5986 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5987 	if (!slab_kset) {
5988 		mutex_unlock(&slab_mutex);
5989 		pr_err("Cannot register slab subsystem.\n");
5990 		return -ENOSYS;
5991 	}
5992 
5993 	slab_state = FULL;
5994 
5995 	list_for_each_entry(s, &slab_caches, list) {
5996 		err = sysfs_slab_add(s);
5997 		if (err)
5998 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5999 			       s->name);
6000 	}
6001 
6002 	while (alias_list) {
6003 		struct saved_alias *al = alias_list;
6004 
6005 		alias_list = alias_list->next;
6006 		err = sysfs_slab_alias(al->s, al->name);
6007 		if (err)
6008 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6009 			       al->name);
6010 		kfree(al);
6011 	}
6012 
6013 	mutex_unlock(&slab_mutex);
6014 	return 0;
6015 }
6016 
6017 __initcall(slab_sysfs_init);
6018 #endif /* CONFIG_SYSFS */
6019 
6020 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6021 static int slab_debugfs_show(struct seq_file *seq, void *v)
6022 {
6023 	struct loc_track *t = seq->private;
6024 	struct location *l;
6025 	unsigned long idx;
6026 
6027 	idx = (unsigned long) t->idx;
6028 	if (idx < t->count) {
6029 		l = &t->loc[idx];
6030 
6031 		seq_printf(seq, "%7ld ", l->count);
6032 
6033 		if (l->addr)
6034 			seq_printf(seq, "%pS", (void *)l->addr);
6035 		else
6036 			seq_puts(seq, "<not-available>");
6037 
6038 		if (l->waste)
6039 			seq_printf(seq, " waste=%lu/%lu",
6040 				l->count * l->waste, l->waste);
6041 
6042 		if (l->sum_time != l->min_time) {
6043 			seq_printf(seq, " age=%ld/%llu/%ld",
6044 				l->min_time, div_u64(l->sum_time, l->count),
6045 				l->max_time);
6046 		} else
6047 			seq_printf(seq, " age=%ld", l->min_time);
6048 
6049 		if (l->min_pid != l->max_pid)
6050 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6051 		else
6052 			seq_printf(seq, " pid=%ld",
6053 				l->min_pid);
6054 
6055 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6056 			seq_printf(seq, " cpus=%*pbl",
6057 				 cpumask_pr_args(to_cpumask(l->cpus)));
6058 
6059 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6060 			seq_printf(seq, " nodes=%*pbl",
6061 				 nodemask_pr_args(&l->nodes));
6062 
6063 #ifdef CONFIG_STACKDEPOT
6064 		{
6065 			depot_stack_handle_t handle;
6066 			unsigned long *entries;
6067 			unsigned int nr_entries, j;
6068 
6069 			handle = READ_ONCE(l->handle);
6070 			if (handle) {
6071 				nr_entries = stack_depot_fetch(handle, &entries);
6072 				seq_puts(seq, "\n");
6073 				for (j = 0; j < nr_entries; j++)
6074 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6075 			}
6076 		}
6077 #endif
6078 		seq_puts(seq, "\n");
6079 	}
6080 
6081 	if (!idx && !t->count)
6082 		seq_puts(seq, "No data\n");
6083 
6084 	return 0;
6085 }
6086 
6087 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6088 {
6089 }
6090 
6091 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6092 {
6093 	struct loc_track *t = seq->private;
6094 
6095 	t->idx = ++(*ppos);
6096 	if (*ppos <= t->count)
6097 		return ppos;
6098 
6099 	return NULL;
6100 }
6101 
6102 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6103 {
6104 	struct location *loc1 = (struct location *)a;
6105 	struct location *loc2 = (struct location *)b;
6106 
6107 	if (loc1->count > loc2->count)
6108 		return -1;
6109 	else
6110 		return 1;
6111 }
6112 
6113 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6114 {
6115 	struct loc_track *t = seq->private;
6116 
6117 	t->idx = *ppos;
6118 	return ppos;
6119 }
6120 
6121 static const struct seq_operations slab_debugfs_sops = {
6122 	.start  = slab_debugfs_start,
6123 	.next   = slab_debugfs_next,
6124 	.stop   = slab_debugfs_stop,
6125 	.show   = slab_debugfs_show,
6126 };
6127 
6128 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6129 {
6130 
6131 	struct kmem_cache_node *n;
6132 	enum track_item alloc;
6133 	int node;
6134 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6135 						sizeof(struct loc_track));
6136 	struct kmem_cache *s = file_inode(filep)->i_private;
6137 	unsigned long *obj_map;
6138 
6139 	if (!t)
6140 		return -ENOMEM;
6141 
6142 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6143 	if (!obj_map) {
6144 		seq_release_private(inode, filep);
6145 		return -ENOMEM;
6146 	}
6147 
6148 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6149 		alloc = TRACK_ALLOC;
6150 	else
6151 		alloc = TRACK_FREE;
6152 
6153 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6154 		bitmap_free(obj_map);
6155 		seq_release_private(inode, filep);
6156 		return -ENOMEM;
6157 	}
6158 
6159 	for_each_kmem_cache_node(s, node, n) {
6160 		unsigned long flags;
6161 		struct slab *slab;
6162 
6163 		if (!atomic_long_read(&n->nr_slabs))
6164 			continue;
6165 
6166 		spin_lock_irqsave(&n->list_lock, flags);
6167 		list_for_each_entry(slab, &n->partial, slab_list)
6168 			process_slab(t, s, slab, alloc, obj_map);
6169 		list_for_each_entry(slab, &n->full, slab_list)
6170 			process_slab(t, s, slab, alloc, obj_map);
6171 		spin_unlock_irqrestore(&n->list_lock, flags);
6172 	}
6173 
6174 	/* Sort locations by count */
6175 	sort_r(t->loc, t->count, sizeof(struct location),
6176 		cmp_loc_by_count, NULL, NULL);
6177 
6178 	bitmap_free(obj_map);
6179 	return 0;
6180 }
6181 
6182 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6183 {
6184 	struct seq_file *seq = file->private_data;
6185 	struct loc_track *t = seq->private;
6186 
6187 	free_loc_track(t);
6188 	return seq_release_private(inode, file);
6189 }
6190 
6191 static const struct file_operations slab_debugfs_fops = {
6192 	.open    = slab_debug_trace_open,
6193 	.read    = seq_read,
6194 	.llseek  = seq_lseek,
6195 	.release = slab_debug_trace_release,
6196 };
6197 
6198 static void debugfs_slab_add(struct kmem_cache *s)
6199 {
6200 	struct dentry *slab_cache_dir;
6201 
6202 	if (unlikely(!slab_debugfs_root))
6203 		return;
6204 
6205 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6206 
6207 	debugfs_create_file("alloc_traces", 0400,
6208 		slab_cache_dir, s, &slab_debugfs_fops);
6209 
6210 	debugfs_create_file("free_traces", 0400,
6211 		slab_cache_dir, s, &slab_debugfs_fops);
6212 }
6213 
6214 void debugfs_slab_release(struct kmem_cache *s)
6215 {
6216 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6217 }
6218 
6219 static int __init slab_debugfs_init(void)
6220 {
6221 	struct kmem_cache *s;
6222 
6223 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6224 
6225 	list_for_each_entry(s, &slab_caches, list)
6226 		if (s->flags & SLAB_STORE_USER)
6227 			debugfs_slab_add(s);
6228 
6229 	return 0;
6230 
6231 }
6232 __initcall(slab_debugfs_init);
6233 #endif
6234 /*
6235  * The /proc/slabinfo ABI
6236  */
6237 #ifdef CONFIG_SLUB_DEBUG
6238 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6239 {
6240 	unsigned long nr_slabs = 0;
6241 	unsigned long nr_objs = 0;
6242 	unsigned long nr_free = 0;
6243 	int node;
6244 	struct kmem_cache_node *n;
6245 
6246 	for_each_kmem_cache_node(s, node, n) {
6247 		nr_slabs += node_nr_slabs(n);
6248 		nr_objs += node_nr_objs(n);
6249 		nr_free += count_partial(n, count_free);
6250 	}
6251 
6252 	sinfo->active_objs = nr_objs - nr_free;
6253 	sinfo->num_objs = nr_objs;
6254 	sinfo->active_slabs = nr_slabs;
6255 	sinfo->num_slabs = nr_slabs;
6256 	sinfo->objects_per_slab = oo_objects(s->oo);
6257 	sinfo->cache_order = oo_order(s->oo);
6258 }
6259 
6260 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6261 {
6262 }
6263 
6264 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6265 		       size_t count, loff_t *ppos)
6266 {
6267 	return -EIO;
6268 }
6269 #endif /* CONFIG_SLUB_DEBUG */
6270