xref: /linux/mm/slub.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24 
25 /*
26  * Lock order:
27  *   1. slab_lock(page)
28  *   2. slab->list_lock
29  *
30  *   The slab_lock protects operations on the object of a particular
31  *   slab and its metadata in the page struct. If the slab lock
32  *   has been taken then no allocations nor frees can be performed
33  *   on the objects in the slab nor can the slab be added or removed
34  *   from the partial or full lists since this would mean modifying
35  *   the page_struct of the slab.
36  *
37  *   The list_lock protects the partial and full list on each node and
38  *   the partial slab counter. If taken then no new slabs may be added or
39  *   removed from the lists nor make the number of partial slabs be modified.
40  *   (Note that the total number of slabs is an atomic value that may be
41  *   modified without taking the list lock).
42  *
43  *   The list_lock is a centralized lock and thus we avoid taking it as
44  *   much as possible. As long as SLUB does not have to handle partial
45  *   slabs, operations can continue without any centralized lock. F.e.
46  *   allocating a long series of objects that fill up slabs does not require
47  *   the list lock.
48  *
49  *   The lock order is sometimes inverted when we are trying to get a slab
50  *   off a list. We take the list_lock and then look for a page on the list
51  *   to use. While we do that objects in the slabs may be freed. We can
52  *   only operate on the slab if we have also taken the slab_lock. So we use
53  *   a slab_trylock() on the slab. If trylock was successful then no frees
54  *   can occur anymore and we can use the slab for allocations etc. If the
55  *   slab_trylock() does not succeed then frees are in progress in the slab and
56  *   we must stay away from it for a while since we may cause a bouncing
57  *   cacheline if we try to acquire the lock. So go onto the next slab.
58  *   If all pages are busy then we may allocate a new slab instead of reusing
59  *   a partial slab. A new slab has noone operating on it and thus there is
60  *   no danger of cacheline contention.
61  *
62  *   Interrupts are disabled during allocation and deallocation in order to
63  *   make the slab allocator safe to use in the context of an irq. In addition
64  *   interrupts are disabled to ensure that the processor does not change
65  *   while handling per_cpu slabs, due to kernel preemption.
66  *
67  * SLUB assigns one slab for allocation to each processor.
68  * Allocations only occur from these slabs called cpu slabs.
69  *
70  * Slabs with free elements are kept on a partial list and during regular
71  * operations no list for full slabs is used. If an object in a full slab is
72  * freed then the slab will show up again on the partial lists.
73  * We track full slabs for debugging purposes though because otherwise we
74  * cannot scan all objects.
75  *
76  * Slabs are freed when they become empty. Teardown and setup is
77  * minimal so we rely on the page allocators per cpu caches for
78  * fast frees and allocs.
79  *
80  * Overloading of page flags that are otherwise used for LRU management.
81  *
82  * PageActive 		The slab is frozen and exempt from list processing.
83  * 			This means that the slab is dedicated to a purpose
84  * 			such as satisfying allocations for a specific
85  * 			processor. Objects may be freed in the slab while
86  * 			it is frozen but slab_free will then skip the usual
87  * 			list operations. It is up to the processor holding
88  * 			the slab to integrate the slab into the slab lists
89  * 			when the slab is no longer needed.
90  *
91  * 			One use of this flag is to mark slabs that are
92  * 			used for allocations. Then such a slab becomes a cpu
93  * 			slab. The cpu slab may be equipped with an additional
94  * 			freelist that allows lockless access to
95  * 			free objects in addition to the regular freelist
96  * 			that requires the slab lock.
97  *
98  * PageError		Slab requires special handling due to debug
99  * 			options set. This moves	slab handling out of
100  * 			the fast path and disables lockless freelists.
101  */
102 
103 #define FROZEN (1 << PG_active)
104 
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110 
111 static inline int SlabFrozen(struct page *page)
112 {
113 	return page->flags & FROZEN;
114 }
115 
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 	page->flags |= FROZEN;
119 }
120 
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 	page->flags &= ~FROZEN;
124 }
125 
126 static inline int SlabDebug(struct page *page)
127 {
128 	return page->flags & SLABDEBUG;
129 }
130 
131 static inline void SetSlabDebug(struct page *page)
132 {
133 	page->flags |= SLABDEBUG;
134 }
135 
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 	page->flags &= ~SLABDEBUG;
139 }
140 
141 /*
142  * Issues still to be resolved:
143  *
144  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145  *
146  * - Variable sizing of the per node arrays
147  */
148 
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151 
152 #if PAGE_SHIFT <= 12
153 
154 /*
155  * Small page size. Make sure that we do not fragment memory
156  */
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
159 
160 #else
161 
162 /*
163  * Large page machines are customarily able to handle larger
164  * page orders.
165  */
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
168 
169 #endif
170 
171 /*
172  * Mininum number of partial slabs. These will be left on the partial
173  * lists even if they are empty. kmem_cache_shrink may reclaim them.
174  */
175 #define MIN_PARTIAL 5
176 
177 /*
178  * Maximum number of desirable partial slabs.
179  * The existence of more partial slabs makes kmem_cache_shrink
180  * sort the partial list by the number of objects in the.
181  */
182 #define MAX_PARTIAL 10
183 
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 				SLAB_POISON | SLAB_STORE_USER)
186 
187 /*
188  * Set of flags that will prevent slab merging
189  */
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192 
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 		SLAB_CACHE_DMA)
195 
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
199 
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
203 
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON		0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
207 
208 /* Not all arches define cache_line_size */
209 #ifndef cache_line_size
210 #define cache_line_size()	L1_CACHE_BYTES
211 #endif
212 
213 static int kmem_size = sizeof(struct kmem_cache);
214 
215 #ifdef CONFIG_SMP
216 static struct notifier_block slab_notifier;
217 #endif
218 
219 static enum {
220 	DOWN,		/* No slab functionality available */
221 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
222 	UP,		/* Everything works but does not show up in sysfs */
223 	SYSFS		/* Sysfs up */
224 } slab_state = DOWN;
225 
226 /* A list of all slab caches on the system */
227 static DECLARE_RWSEM(slub_lock);
228 static LIST_HEAD(slab_caches);
229 
230 /*
231  * Tracking user of a slab.
232  */
233 struct track {
234 	void *addr;		/* Called from address */
235 	int cpu;		/* Was running on cpu */
236 	int pid;		/* Pid context */
237 	unsigned long when;	/* When did the operation occur */
238 };
239 
240 enum track_item { TRACK_ALLOC, TRACK_FREE };
241 
242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243 static int sysfs_slab_add(struct kmem_cache *);
244 static int sysfs_slab_alias(struct kmem_cache *, const char *);
245 static void sysfs_slab_remove(struct kmem_cache *);
246 #else
247 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
248 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
249 							{ return 0; }
250 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
251 #endif
252 
253 /********************************************************************
254  * 			Core slab cache functions
255  *******************************************************************/
256 
257 int slab_is_available(void)
258 {
259 	return slab_state >= UP;
260 }
261 
262 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
263 {
264 #ifdef CONFIG_NUMA
265 	return s->node[node];
266 #else
267 	return &s->local_node;
268 #endif
269 }
270 
271 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
272 {
273 #ifdef CONFIG_SMP
274 	return s->cpu_slab[cpu];
275 #else
276 	return &s->cpu_slab;
277 #endif
278 }
279 
280 static inline int check_valid_pointer(struct kmem_cache *s,
281 				struct page *page, const void *object)
282 {
283 	void *base;
284 
285 	if (!object)
286 		return 1;
287 
288 	base = page_address(page);
289 	if (object < base || object >= base + s->objects * s->size ||
290 		(object - base) % s->size) {
291 		return 0;
292 	}
293 
294 	return 1;
295 }
296 
297 /*
298  * Slow version of get and set free pointer.
299  *
300  * This version requires touching the cache lines of kmem_cache which
301  * we avoid to do in the fast alloc free paths. There we obtain the offset
302  * from the page struct.
303  */
304 static inline void *get_freepointer(struct kmem_cache *s, void *object)
305 {
306 	return *(void **)(object + s->offset);
307 }
308 
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310 {
311 	*(void **)(object + s->offset) = fp;
312 }
313 
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 			__p += (__s)->size)
318 
319 /* Scan freelist */
320 #define for_each_free_object(__p, __s, __free) \
321 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322 
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325 {
326 	return (p - addr) / s->size;
327 }
328 
329 #ifdef CONFIG_SLUB_DEBUG
330 /*
331  * Debug settings:
332  */
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug = DEBUG_DEFAULT_FLAGS;
335 #else
336 static int slub_debug;
337 #endif
338 
339 static char *slub_debug_slabs;
340 
341 /*
342  * Object debugging
343  */
344 static void print_section(char *text, u8 *addr, unsigned int length)
345 {
346 	int i, offset;
347 	int newline = 1;
348 	char ascii[17];
349 
350 	ascii[16] = 0;
351 
352 	for (i = 0; i < length; i++) {
353 		if (newline) {
354 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355 			newline = 0;
356 		}
357 		printk(" %02x", addr[i]);
358 		offset = i % 16;
359 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 		if (offset == 15) {
361 			printk(" %s\n",ascii);
362 			newline = 1;
363 		}
364 	}
365 	if (!newline) {
366 		i %= 16;
367 		while (i < 16) {
368 			printk("   ");
369 			ascii[i] = ' ';
370 			i++;
371 		}
372 		printk(" %s\n", ascii);
373 	}
374 }
375 
376 static struct track *get_track(struct kmem_cache *s, void *object,
377 	enum track_item alloc)
378 {
379 	struct track *p;
380 
381 	if (s->offset)
382 		p = object + s->offset + sizeof(void *);
383 	else
384 		p = object + s->inuse;
385 
386 	return p + alloc;
387 }
388 
389 static void set_track(struct kmem_cache *s, void *object,
390 				enum track_item alloc, void *addr)
391 {
392 	struct track *p;
393 
394 	if (s->offset)
395 		p = object + s->offset + sizeof(void *);
396 	else
397 		p = object + s->inuse;
398 
399 	p += alloc;
400 	if (addr) {
401 		p->addr = addr;
402 		p->cpu = smp_processor_id();
403 		p->pid = current ? current->pid : -1;
404 		p->when = jiffies;
405 	} else
406 		memset(p, 0, sizeof(struct track));
407 }
408 
409 static void init_tracking(struct kmem_cache *s, void *object)
410 {
411 	if (!(s->flags & SLAB_STORE_USER))
412 		return;
413 
414 	set_track(s, object, TRACK_FREE, NULL);
415 	set_track(s, object, TRACK_ALLOC, NULL);
416 }
417 
418 static void print_track(const char *s, struct track *t)
419 {
420 	if (!t->addr)
421 		return;
422 
423 	printk(KERN_ERR "INFO: %s in ", s);
424 	__print_symbol("%s", (unsigned long)t->addr);
425 	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
426 }
427 
428 static void print_tracking(struct kmem_cache *s, void *object)
429 {
430 	if (!(s->flags & SLAB_STORE_USER))
431 		return;
432 
433 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 	print_track("Freed", get_track(s, object, TRACK_FREE));
435 }
436 
437 static void print_page_info(struct page *page)
438 {
439 	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 		page, page->inuse, page->freelist, page->flags);
441 
442 }
443 
444 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445 {
446 	va_list args;
447 	char buf[100];
448 
449 	va_start(args, fmt);
450 	vsnprintf(buf, sizeof(buf), fmt, args);
451 	va_end(args);
452 	printk(KERN_ERR "========================================"
453 			"=====================================\n");
454 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 	printk(KERN_ERR "----------------------------------------"
456 			"-------------------------------------\n\n");
457 }
458 
459 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460 {
461 	va_list args;
462 	char buf[100];
463 
464 	va_start(args, fmt);
465 	vsnprintf(buf, sizeof(buf), fmt, args);
466 	va_end(args);
467 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468 }
469 
470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
471 {
472 	unsigned int off;	/* Offset of last byte */
473 	u8 *addr = page_address(page);
474 
475 	print_tracking(s, p);
476 
477 	print_page_info(page);
478 
479 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 			p, p - addr, get_freepointer(s, p));
481 
482 	if (p > addr + 16)
483 		print_section("Bytes b4", p - 16, 16);
484 
485 	print_section("Object", p, min(s->objsize, 128));
486 
487 	if (s->flags & SLAB_RED_ZONE)
488 		print_section("Redzone", p + s->objsize,
489 			s->inuse - s->objsize);
490 
491 	if (s->offset)
492 		off = s->offset + sizeof(void *);
493 	else
494 		off = s->inuse;
495 
496 	if (s->flags & SLAB_STORE_USER)
497 		off += 2 * sizeof(struct track);
498 
499 	if (off != s->size)
500 		/* Beginning of the filler is the free pointer */
501 		print_section("Padding", p + off, s->size - off);
502 
503 	dump_stack();
504 }
505 
506 static void object_err(struct kmem_cache *s, struct page *page,
507 			u8 *object, char *reason)
508 {
509 	slab_bug(s, reason);
510 	print_trailer(s, page, object);
511 }
512 
513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
514 {
515 	va_list args;
516 	char buf[100];
517 
518 	va_start(args, fmt);
519 	vsnprintf(buf, sizeof(buf), fmt, args);
520 	va_end(args);
521 	slab_bug(s, fmt);
522 	print_page_info(page);
523 	dump_stack();
524 }
525 
526 static void init_object(struct kmem_cache *s, void *object, int active)
527 {
528 	u8 *p = object;
529 
530 	if (s->flags & __OBJECT_POISON) {
531 		memset(p, POISON_FREE, s->objsize - 1);
532 		p[s->objsize -1] = POISON_END;
533 	}
534 
535 	if (s->flags & SLAB_RED_ZONE)
536 		memset(p + s->objsize,
537 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 			s->inuse - s->objsize);
539 }
540 
541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
542 {
543 	while (bytes) {
544 		if (*start != (u8)value)
545 			return start;
546 		start++;
547 		bytes--;
548 	}
549 	return NULL;
550 }
551 
552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 						void *from, void *to)
554 {
555 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 	memset(from, data, to - from);
557 }
558 
559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 			u8 *object, char *what,
561 			u8* start, unsigned int value, unsigned int bytes)
562 {
563 	u8 *fault;
564 	u8 *end;
565 
566 	fault = check_bytes(start, value, bytes);
567 	if (!fault)
568 		return 1;
569 
570 	end = start + bytes;
571 	while (end > fault && end[-1] == value)
572 		end--;
573 
574 	slab_bug(s, "%s overwritten", what);
575 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 					fault, end - 1, fault[0], value);
577 	print_trailer(s, page, object);
578 
579 	restore_bytes(s, what, value, fault, end);
580 	return 0;
581 }
582 
583 /*
584  * Object layout:
585  *
586  * object address
587  * 	Bytes of the object to be managed.
588  * 	If the freepointer may overlay the object then the free
589  * 	pointer is the first word of the object.
590  *
591  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
592  * 	0xa5 (POISON_END)
593  *
594  * object + s->objsize
595  * 	Padding to reach word boundary. This is also used for Redzoning.
596  * 	Padding is extended by another word if Redzoning is enabled and
597  * 	objsize == inuse.
598  *
599  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600  * 	0xcc (RED_ACTIVE) for objects in use.
601  *
602  * object + s->inuse
603  * 	Meta data starts here.
604  *
605  * 	A. Free pointer (if we cannot overwrite object on free)
606  * 	B. Tracking data for SLAB_STORE_USER
607  * 	C. Padding to reach required alignment boundary or at mininum
608  * 		one word if debuggin is on to be able to detect writes
609  * 		before the word boundary.
610  *
611  *	Padding is done using 0x5a (POISON_INUSE)
612  *
613  * object + s->size
614  * 	Nothing is used beyond s->size.
615  *
616  * If slabcaches are merged then the objsize and inuse boundaries are mostly
617  * ignored. And therefore no slab options that rely on these boundaries
618  * may be used with merged slabcaches.
619  */
620 
621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622 {
623 	unsigned long off = s->inuse;	/* The end of info */
624 
625 	if (s->offset)
626 		/* Freepointer is placed after the object. */
627 		off += sizeof(void *);
628 
629 	if (s->flags & SLAB_STORE_USER)
630 		/* We also have user information there */
631 		off += 2 * sizeof(struct track);
632 
633 	if (s->size == off)
634 		return 1;
635 
636 	return check_bytes_and_report(s, page, p, "Object padding",
637 				p + off, POISON_INUSE, s->size - off);
638 }
639 
640 static int slab_pad_check(struct kmem_cache *s, struct page *page)
641 {
642 	u8 *start;
643 	u8 *fault;
644 	u8 *end;
645 	int length;
646 	int remainder;
647 
648 	if (!(s->flags & SLAB_POISON))
649 		return 1;
650 
651 	start = page_address(page);
652 	end = start + (PAGE_SIZE << s->order);
653 	length = s->objects * s->size;
654 	remainder = end - (start + length);
655 	if (!remainder)
656 		return 1;
657 
658 	fault = check_bytes(start + length, POISON_INUSE, remainder);
659 	if (!fault)
660 		return 1;
661 	while (end > fault && end[-1] == POISON_INUSE)
662 		end--;
663 
664 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 	print_section("Padding", start, length);
666 
667 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 	return 0;
669 }
670 
671 static int check_object(struct kmem_cache *s, struct page *page,
672 					void *object, int active)
673 {
674 	u8 *p = object;
675 	u8 *endobject = object + s->objsize;
676 
677 	if (s->flags & SLAB_RED_ZONE) {
678 		unsigned int red =
679 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680 
681 		if (!check_bytes_and_report(s, page, object, "Redzone",
682 			endobject, red, s->inuse - s->objsize))
683 			return 0;
684 	} else {
685 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 				POISON_INUSE, s->inuse - s->objsize);
688 	}
689 
690 	if (s->flags & SLAB_POISON) {
691 		if (!active && (s->flags & __OBJECT_POISON) &&
692 			(!check_bytes_and_report(s, page, p, "Poison", p,
693 					POISON_FREE, s->objsize - 1) ||
694 			 !check_bytes_and_report(s, page, p, "Poison",
695 			 	p + s->objsize -1, POISON_END, 1)))
696 			return 0;
697 		/*
698 		 * check_pad_bytes cleans up on its own.
699 		 */
700 		check_pad_bytes(s, page, p);
701 	}
702 
703 	if (!s->offset && active)
704 		/*
705 		 * Object and freepointer overlap. Cannot check
706 		 * freepointer while object is allocated.
707 		 */
708 		return 1;
709 
710 	/* Check free pointer validity */
711 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 		object_err(s, page, p, "Freepointer corrupt");
713 		/*
714 		 * No choice but to zap it and thus loose the remainder
715 		 * of the free objects in this slab. May cause
716 		 * another error because the object count is now wrong.
717 		 */
718 		set_freepointer(s, p, NULL);
719 		return 0;
720 	}
721 	return 1;
722 }
723 
724 static int check_slab(struct kmem_cache *s, struct page *page)
725 {
726 	VM_BUG_ON(!irqs_disabled());
727 
728 	if (!PageSlab(page)) {
729 		slab_err(s, page, "Not a valid slab page");
730 		return 0;
731 	}
732 	if (page->inuse > s->objects) {
733 		slab_err(s, page, "inuse %u > max %u",
734 			s->name, page->inuse, s->objects);
735 		return 0;
736 	}
737 	/* Slab_pad_check fixes things up after itself */
738 	slab_pad_check(s, page);
739 	return 1;
740 }
741 
742 /*
743  * Determine if a certain object on a page is on the freelist. Must hold the
744  * slab lock to guarantee that the chains are in a consistent state.
745  */
746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
747 {
748 	int nr = 0;
749 	void *fp = page->freelist;
750 	void *object = NULL;
751 
752 	while (fp && nr <= s->objects) {
753 		if (fp == search)
754 			return 1;
755 		if (!check_valid_pointer(s, page, fp)) {
756 			if (object) {
757 				object_err(s, page, object,
758 					"Freechain corrupt");
759 				set_freepointer(s, object, NULL);
760 				break;
761 			} else {
762 				slab_err(s, page, "Freepointer corrupt");
763 				page->freelist = NULL;
764 				page->inuse = s->objects;
765 				slab_fix(s, "Freelist cleared");
766 				return 0;
767 			}
768 			break;
769 		}
770 		object = fp;
771 		fp = get_freepointer(s, object);
772 		nr++;
773 	}
774 
775 	if (page->inuse != s->objects - nr) {
776 		slab_err(s, page, "Wrong object count. Counter is %d but "
777 			"counted were %d", page->inuse, s->objects - nr);
778 		page->inuse = s->objects - nr;
779 		slab_fix(s, "Object count adjusted.");
780 	}
781 	return search == NULL;
782 }
783 
784 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
785 {
786 	if (s->flags & SLAB_TRACE) {
787 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
788 			s->name,
789 			alloc ? "alloc" : "free",
790 			object, page->inuse,
791 			page->freelist);
792 
793 		if (!alloc)
794 			print_section("Object", (void *)object, s->objsize);
795 
796 		dump_stack();
797 	}
798 }
799 
800 /*
801  * Tracking of fully allocated slabs for debugging purposes.
802  */
803 static void add_full(struct kmem_cache_node *n, struct page *page)
804 {
805 	spin_lock(&n->list_lock);
806 	list_add(&page->lru, &n->full);
807 	spin_unlock(&n->list_lock);
808 }
809 
810 static void remove_full(struct kmem_cache *s, struct page *page)
811 {
812 	struct kmem_cache_node *n;
813 
814 	if (!(s->flags & SLAB_STORE_USER))
815 		return;
816 
817 	n = get_node(s, page_to_nid(page));
818 
819 	spin_lock(&n->list_lock);
820 	list_del(&page->lru);
821 	spin_unlock(&n->list_lock);
822 }
823 
824 static void setup_object_debug(struct kmem_cache *s, struct page *page,
825 								void *object)
826 {
827 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
828 		return;
829 
830 	init_object(s, object, 0);
831 	init_tracking(s, object);
832 }
833 
834 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
835 						void *object, void *addr)
836 {
837 	if (!check_slab(s, page))
838 		goto bad;
839 
840 	if (object && !on_freelist(s, page, object)) {
841 		object_err(s, page, object, "Object already allocated");
842 		goto bad;
843 	}
844 
845 	if (!check_valid_pointer(s, page, object)) {
846 		object_err(s, page, object, "Freelist Pointer check fails");
847 		goto bad;
848 	}
849 
850 	if (object && !check_object(s, page, object, 0))
851 		goto bad;
852 
853 	/* Success perform special debug activities for allocs */
854 	if (s->flags & SLAB_STORE_USER)
855 		set_track(s, object, TRACK_ALLOC, addr);
856 	trace(s, page, object, 1);
857 	init_object(s, object, 1);
858 	return 1;
859 
860 bad:
861 	if (PageSlab(page)) {
862 		/*
863 		 * If this is a slab page then lets do the best we can
864 		 * to avoid issues in the future. Marking all objects
865 		 * as used avoids touching the remaining objects.
866 		 */
867 		slab_fix(s, "Marking all objects used");
868 		page->inuse = s->objects;
869 		page->freelist = NULL;
870 	}
871 	return 0;
872 }
873 
874 static int free_debug_processing(struct kmem_cache *s, struct page *page,
875 						void *object, void *addr)
876 {
877 	if (!check_slab(s, page))
878 		goto fail;
879 
880 	if (!check_valid_pointer(s, page, object)) {
881 		slab_err(s, page, "Invalid object pointer 0x%p", object);
882 		goto fail;
883 	}
884 
885 	if (on_freelist(s, page, object)) {
886 		object_err(s, page, object, "Object already free");
887 		goto fail;
888 	}
889 
890 	if (!check_object(s, page, object, 1))
891 		return 0;
892 
893 	if (unlikely(s != page->slab)) {
894 		if (!PageSlab(page))
895 			slab_err(s, page, "Attempt to free object(0x%p) "
896 				"outside of slab", object);
897 		else
898 		if (!page->slab) {
899 			printk(KERN_ERR
900 				"SLUB <none>: no slab for object 0x%p.\n",
901 						object);
902 			dump_stack();
903 		}
904 		else
905 			object_err(s, page, object,
906 					"page slab pointer corrupt.");
907 		goto fail;
908 	}
909 
910 	/* Special debug activities for freeing objects */
911 	if (!SlabFrozen(page) && !page->freelist)
912 		remove_full(s, page);
913 	if (s->flags & SLAB_STORE_USER)
914 		set_track(s, object, TRACK_FREE, addr);
915 	trace(s, page, object, 0);
916 	init_object(s, object, 0);
917 	return 1;
918 
919 fail:
920 	slab_fix(s, "Object at 0x%p not freed", object);
921 	return 0;
922 }
923 
924 static int __init setup_slub_debug(char *str)
925 {
926 	slub_debug = DEBUG_DEFAULT_FLAGS;
927 	if (*str++ != '=' || !*str)
928 		/*
929 		 * No options specified. Switch on full debugging.
930 		 */
931 		goto out;
932 
933 	if (*str == ',')
934 		/*
935 		 * No options but restriction on slabs. This means full
936 		 * debugging for slabs matching a pattern.
937 		 */
938 		goto check_slabs;
939 
940 	slub_debug = 0;
941 	if (*str == '-')
942 		/*
943 		 * Switch off all debugging measures.
944 		 */
945 		goto out;
946 
947 	/*
948 	 * Determine which debug features should be switched on
949 	 */
950 	for ( ;*str && *str != ','; str++) {
951 		switch (tolower(*str)) {
952 		case 'f':
953 			slub_debug |= SLAB_DEBUG_FREE;
954 			break;
955 		case 'z':
956 			slub_debug |= SLAB_RED_ZONE;
957 			break;
958 		case 'p':
959 			slub_debug |= SLAB_POISON;
960 			break;
961 		case 'u':
962 			slub_debug |= SLAB_STORE_USER;
963 			break;
964 		case 't':
965 			slub_debug |= SLAB_TRACE;
966 			break;
967 		default:
968 			printk(KERN_ERR "slub_debug option '%c' "
969 				"unknown. skipped\n",*str);
970 		}
971 	}
972 
973 check_slabs:
974 	if (*str == ',')
975 		slub_debug_slabs = str + 1;
976 out:
977 	return 1;
978 }
979 
980 __setup("slub_debug", setup_slub_debug);
981 
982 static unsigned long kmem_cache_flags(unsigned long objsize,
983 	unsigned long flags, const char *name,
984 	void (*ctor)(struct kmem_cache *, void *))
985 {
986 	/*
987 	 * The page->offset field is only 16 bit wide. This is an offset
988 	 * in units of words from the beginning of an object. If the slab
989 	 * size is bigger then we cannot move the free pointer behind the
990 	 * object anymore.
991 	 *
992 	 * On 32 bit platforms the limit is 256k. On 64bit platforms
993 	 * the limit is 512k.
994 	 *
995 	 * Debugging or ctor may create a need to move the free
996 	 * pointer. Fail if this happens.
997 	 */
998 	if (objsize >= 65535 * sizeof(void *)) {
999 		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1000 				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1001 		BUG_ON(ctor);
1002 	} else {
1003 		/*
1004 		 * Enable debugging if selected on the kernel commandline.
1005 		 */
1006 		if (slub_debug && (!slub_debug_slabs ||
1007 		    strncmp(slub_debug_slabs, name,
1008 		    	strlen(slub_debug_slabs)) == 0))
1009 				flags |= slub_debug;
1010 	}
1011 
1012 	return flags;
1013 }
1014 #else
1015 static inline void setup_object_debug(struct kmem_cache *s,
1016 			struct page *page, void *object) {}
1017 
1018 static inline int alloc_debug_processing(struct kmem_cache *s,
1019 	struct page *page, void *object, void *addr) { return 0; }
1020 
1021 static inline int free_debug_processing(struct kmem_cache *s,
1022 	struct page *page, void *object, void *addr) { return 0; }
1023 
1024 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1025 			{ return 1; }
1026 static inline int check_object(struct kmem_cache *s, struct page *page,
1027 			void *object, int active) { return 1; }
1028 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1029 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1030 	unsigned long flags, const char *name,
1031 	void (*ctor)(struct kmem_cache *, void *))
1032 {
1033 	return flags;
1034 }
1035 #define slub_debug 0
1036 #endif
1037 /*
1038  * Slab allocation and freeing
1039  */
1040 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1041 {
1042 	struct page * page;
1043 	int pages = 1 << s->order;
1044 
1045 	if (s->order)
1046 		flags |= __GFP_COMP;
1047 
1048 	if (s->flags & SLAB_CACHE_DMA)
1049 		flags |= SLUB_DMA;
1050 
1051 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
1052 		flags |= __GFP_RECLAIMABLE;
1053 
1054 	if (node == -1)
1055 		page = alloc_pages(flags, s->order);
1056 	else
1057 		page = alloc_pages_node(node, flags, s->order);
1058 
1059 	if (!page)
1060 		return NULL;
1061 
1062 	mod_zone_page_state(page_zone(page),
1063 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1064 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1065 		pages);
1066 
1067 	return page;
1068 }
1069 
1070 static void setup_object(struct kmem_cache *s, struct page *page,
1071 				void *object)
1072 {
1073 	setup_object_debug(s, page, object);
1074 	if (unlikely(s->ctor))
1075 		s->ctor(s, object);
1076 }
1077 
1078 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1079 {
1080 	struct page *page;
1081 	struct kmem_cache_node *n;
1082 	void *start;
1083 	void *last;
1084 	void *p;
1085 
1086 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1087 
1088 	page = allocate_slab(s,
1089 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1090 	if (!page)
1091 		goto out;
1092 
1093 	n = get_node(s, page_to_nid(page));
1094 	if (n)
1095 		atomic_long_inc(&n->nr_slabs);
1096 	page->slab = s;
1097 	page->flags |= 1 << PG_slab;
1098 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1099 			SLAB_STORE_USER | SLAB_TRACE))
1100 		SetSlabDebug(page);
1101 
1102 	start = page_address(page);
1103 
1104 	if (unlikely(s->flags & SLAB_POISON))
1105 		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1106 
1107 	last = start;
1108 	for_each_object(p, s, start) {
1109 		setup_object(s, page, last);
1110 		set_freepointer(s, last, p);
1111 		last = p;
1112 	}
1113 	setup_object(s, page, last);
1114 	set_freepointer(s, last, NULL);
1115 
1116 	page->freelist = start;
1117 	page->inuse = 0;
1118 out:
1119 	return page;
1120 }
1121 
1122 static void __free_slab(struct kmem_cache *s, struct page *page)
1123 {
1124 	int pages = 1 << s->order;
1125 
1126 	if (unlikely(SlabDebug(page))) {
1127 		void *p;
1128 
1129 		slab_pad_check(s, page);
1130 		for_each_object(p, s, page_address(page))
1131 			check_object(s, page, p, 0);
1132 		ClearSlabDebug(page);
1133 	}
1134 
1135 	mod_zone_page_state(page_zone(page),
1136 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1138 		- pages);
1139 
1140 	__free_pages(page, s->order);
1141 }
1142 
1143 static void rcu_free_slab(struct rcu_head *h)
1144 {
1145 	struct page *page;
1146 
1147 	page = container_of((struct list_head *)h, struct page, lru);
1148 	__free_slab(page->slab, page);
1149 }
1150 
1151 static void free_slab(struct kmem_cache *s, struct page *page)
1152 {
1153 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1154 		/*
1155 		 * RCU free overloads the RCU head over the LRU
1156 		 */
1157 		struct rcu_head *head = (void *)&page->lru;
1158 
1159 		call_rcu(head, rcu_free_slab);
1160 	} else
1161 		__free_slab(s, page);
1162 }
1163 
1164 static void discard_slab(struct kmem_cache *s, struct page *page)
1165 {
1166 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1167 
1168 	atomic_long_dec(&n->nr_slabs);
1169 	reset_page_mapcount(page);
1170 	__ClearPageSlab(page);
1171 	free_slab(s, page);
1172 }
1173 
1174 /*
1175  * Per slab locking using the pagelock
1176  */
1177 static __always_inline void slab_lock(struct page *page)
1178 {
1179 	bit_spin_lock(PG_locked, &page->flags);
1180 }
1181 
1182 static __always_inline void slab_unlock(struct page *page)
1183 {
1184 	bit_spin_unlock(PG_locked, &page->flags);
1185 }
1186 
1187 static __always_inline int slab_trylock(struct page *page)
1188 {
1189 	int rc = 1;
1190 
1191 	rc = bit_spin_trylock(PG_locked, &page->flags);
1192 	return rc;
1193 }
1194 
1195 /*
1196  * Management of partially allocated slabs
1197  */
1198 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1199 {
1200 	spin_lock(&n->list_lock);
1201 	n->nr_partial++;
1202 	list_add_tail(&page->lru, &n->partial);
1203 	spin_unlock(&n->list_lock);
1204 }
1205 
1206 static void add_partial(struct kmem_cache_node *n, struct page *page)
1207 {
1208 	spin_lock(&n->list_lock);
1209 	n->nr_partial++;
1210 	list_add(&page->lru, &n->partial);
1211 	spin_unlock(&n->list_lock);
1212 }
1213 
1214 static void remove_partial(struct kmem_cache *s,
1215 						struct page *page)
1216 {
1217 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1218 
1219 	spin_lock(&n->list_lock);
1220 	list_del(&page->lru);
1221 	n->nr_partial--;
1222 	spin_unlock(&n->list_lock);
1223 }
1224 
1225 /*
1226  * Lock slab and remove from the partial list.
1227  *
1228  * Must hold list_lock.
1229  */
1230 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1231 {
1232 	if (slab_trylock(page)) {
1233 		list_del(&page->lru);
1234 		n->nr_partial--;
1235 		SetSlabFrozen(page);
1236 		return 1;
1237 	}
1238 	return 0;
1239 }
1240 
1241 /*
1242  * Try to allocate a partial slab from a specific node.
1243  */
1244 static struct page *get_partial_node(struct kmem_cache_node *n)
1245 {
1246 	struct page *page;
1247 
1248 	/*
1249 	 * Racy check. If we mistakenly see no partial slabs then we
1250 	 * just allocate an empty slab. If we mistakenly try to get a
1251 	 * partial slab and there is none available then get_partials()
1252 	 * will return NULL.
1253 	 */
1254 	if (!n || !n->nr_partial)
1255 		return NULL;
1256 
1257 	spin_lock(&n->list_lock);
1258 	list_for_each_entry(page, &n->partial, lru)
1259 		if (lock_and_freeze_slab(n, page))
1260 			goto out;
1261 	page = NULL;
1262 out:
1263 	spin_unlock(&n->list_lock);
1264 	return page;
1265 }
1266 
1267 /*
1268  * Get a page from somewhere. Search in increasing NUMA distances.
1269  */
1270 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1271 {
1272 #ifdef CONFIG_NUMA
1273 	struct zonelist *zonelist;
1274 	struct zone **z;
1275 	struct page *page;
1276 
1277 	/*
1278 	 * The defrag ratio allows a configuration of the tradeoffs between
1279 	 * inter node defragmentation and node local allocations. A lower
1280 	 * defrag_ratio increases the tendency to do local allocations
1281 	 * instead of attempting to obtain partial slabs from other nodes.
1282 	 *
1283 	 * If the defrag_ratio is set to 0 then kmalloc() always
1284 	 * returns node local objects. If the ratio is higher then kmalloc()
1285 	 * may return off node objects because partial slabs are obtained
1286 	 * from other nodes and filled up.
1287 	 *
1288 	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1289 	 * defrag_ratio = 1000) then every (well almost) allocation will
1290 	 * first attempt to defrag slab caches on other nodes. This means
1291 	 * scanning over all nodes to look for partial slabs which may be
1292 	 * expensive if we do it every time we are trying to find a slab
1293 	 * with available objects.
1294 	 */
1295 	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1296 		return NULL;
1297 
1298 	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1299 					->node_zonelists[gfp_zone(flags)];
1300 	for (z = zonelist->zones; *z; z++) {
1301 		struct kmem_cache_node *n;
1302 
1303 		n = get_node(s, zone_to_nid(*z));
1304 
1305 		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1306 				n->nr_partial > MIN_PARTIAL) {
1307 			page = get_partial_node(n);
1308 			if (page)
1309 				return page;
1310 		}
1311 	}
1312 #endif
1313 	return NULL;
1314 }
1315 
1316 /*
1317  * Get a partial page, lock it and return it.
1318  */
1319 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1320 {
1321 	struct page *page;
1322 	int searchnode = (node == -1) ? numa_node_id() : node;
1323 
1324 	page = get_partial_node(get_node(s, searchnode));
1325 	if (page || (flags & __GFP_THISNODE))
1326 		return page;
1327 
1328 	return get_any_partial(s, flags);
1329 }
1330 
1331 /*
1332  * Move a page back to the lists.
1333  *
1334  * Must be called with the slab lock held.
1335  *
1336  * On exit the slab lock will have been dropped.
1337  */
1338 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1339 {
1340 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1341 
1342 	ClearSlabFrozen(page);
1343 	if (page->inuse) {
1344 
1345 		if (page->freelist)
1346 			add_partial(n, page);
1347 		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1348 			add_full(n, page);
1349 		slab_unlock(page);
1350 
1351 	} else {
1352 		if (n->nr_partial < MIN_PARTIAL) {
1353 			/*
1354 			 * Adding an empty slab to the partial slabs in order
1355 			 * to avoid page allocator overhead. This slab needs
1356 			 * to come after the other slabs with objects in
1357 			 * order to fill them up. That way the size of the
1358 			 * partial list stays small. kmem_cache_shrink can
1359 			 * reclaim empty slabs from the partial list.
1360 			 */
1361 			add_partial_tail(n, page);
1362 			slab_unlock(page);
1363 		} else {
1364 			slab_unlock(page);
1365 			discard_slab(s, page);
1366 		}
1367 	}
1368 }
1369 
1370 /*
1371  * Remove the cpu slab
1372  */
1373 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1374 {
1375 	struct page *page = c->page;
1376 	/*
1377 	 * Merge cpu freelist into freelist. Typically we get here
1378 	 * because both freelists are empty. So this is unlikely
1379 	 * to occur.
1380 	 */
1381 	while (unlikely(c->freelist)) {
1382 		void **object;
1383 
1384 		/* Retrieve object from cpu_freelist */
1385 		object = c->freelist;
1386 		c->freelist = c->freelist[c->offset];
1387 
1388 		/* And put onto the regular freelist */
1389 		object[c->offset] = page->freelist;
1390 		page->freelist = object;
1391 		page->inuse--;
1392 	}
1393 	c->page = NULL;
1394 	unfreeze_slab(s, page);
1395 }
1396 
1397 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1398 {
1399 	slab_lock(c->page);
1400 	deactivate_slab(s, c);
1401 }
1402 
1403 /*
1404  * Flush cpu slab.
1405  * Called from IPI handler with interrupts disabled.
1406  */
1407 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1408 {
1409 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1410 
1411 	if (likely(c && c->page))
1412 		flush_slab(s, c);
1413 }
1414 
1415 static void flush_cpu_slab(void *d)
1416 {
1417 	struct kmem_cache *s = d;
1418 
1419 	__flush_cpu_slab(s, smp_processor_id());
1420 }
1421 
1422 static void flush_all(struct kmem_cache *s)
1423 {
1424 #ifdef CONFIG_SMP
1425 	on_each_cpu(flush_cpu_slab, s, 1, 1);
1426 #else
1427 	unsigned long flags;
1428 
1429 	local_irq_save(flags);
1430 	flush_cpu_slab(s);
1431 	local_irq_restore(flags);
1432 #endif
1433 }
1434 
1435 /*
1436  * Check if the objects in a per cpu structure fit numa
1437  * locality expectations.
1438  */
1439 static inline int node_match(struct kmem_cache_cpu *c, int node)
1440 {
1441 #ifdef CONFIG_NUMA
1442 	if (node != -1 && c->node != node)
1443 		return 0;
1444 #endif
1445 	return 1;
1446 }
1447 
1448 /*
1449  * Slow path. The lockless freelist is empty or we need to perform
1450  * debugging duties.
1451  *
1452  * Interrupts are disabled.
1453  *
1454  * Processing is still very fast if new objects have been freed to the
1455  * regular freelist. In that case we simply take over the regular freelist
1456  * as the lockless freelist and zap the regular freelist.
1457  *
1458  * If that is not working then we fall back to the partial lists. We take the
1459  * first element of the freelist as the object to allocate now and move the
1460  * rest of the freelist to the lockless freelist.
1461  *
1462  * And if we were unable to get a new slab from the partial slab lists then
1463  * we need to allocate a new slab. This is slowest path since we may sleep.
1464  */
1465 static void *__slab_alloc(struct kmem_cache *s,
1466 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1467 {
1468 	void **object;
1469 	struct page *new;
1470 
1471 	if (!c->page)
1472 		goto new_slab;
1473 
1474 	slab_lock(c->page);
1475 	if (unlikely(!node_match(c, node)))
1476 		goto another_slab;
1477 load_freelist:
1478 	object = c->page->freelist;
1479 	if (unlikely(!object))
1480 		goto another_slab;
1481 	if (unlikely(SlabDebug(c->page)))
1482 		goto debug;
1483 
1484 	object = c->page->freelist;
1485 	c->freelist = object[c->offset];
1486 	c->page->inuse = s->objects;
1487 	c->page->freelist = NULL;
1488 	c->node = page_to_nid(c->page);
1489 	slab_unlock(c->page);
1490 	return object;
1491 
1492 another_slab:
1493 	deactivate_slab(s, c);
1494 
1495 new_slab:
1496 	new = get_partial(s, gfpflags, node);
1497 	if (new) {
1498 		c->page = new;
1499 		goto load_freelist;
1500 	}
1501 
1502 	if (gfpflags & __GFP_WAIT)
1503 		local_irq_enable();
1504 
1505 	new = new_slab(s, gfpflags, node);
1506 
1507 	if (gfpflags & __GFP_WAIT)
1508 		local_irq_disable();
1509 
1510 	if (new) {
1511 		c = get_cpu_slab(s, smp_processor_id());
1512 		if (c->page)
1513 			flush_slab(s, c);
1514 		slab_lock(new);
1515 		SetSlabFrozen(new);
1516 		c->page = new;
1517 		goto load_freelist;
1518 	}
1519 	return NULL;
1520 debug:
1521 	object = c->page->freelist;
1522 	if (!alloc_debug_processing(s, c->page, object, addr))
1523 		goto another_slab;
1524 
1525 	c->page->inuse++;
1526 	c->page->freelist = object[c->offset];
1527 	c->node = -1;
1528 	slab_unlock(c->page);
1529 	return object;
1530 }
1531 
1532 /*
1533  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1534  * have the fastpath folded into their functions. So no function call
1535  * overhead for requests that can be satisfied on the fastpath.
1536  *
1537  * The fastpath works by first checking if the lockless freelist can be used.
1538  * If not then __slab_alloc is called for slow processing.
1539  *
1540  * Otherwise we can simply pick the next object from the lockless free list.
1541  */
1542 static void __always_inline *slab_alloc(struct kmem_cache *s,
1543 		gfp_t gfpflags, int node, void *addr)
1544 {
1545 	void **object;
1546 	unsigned long flags;
1547 	struct kmem_cache_cpu *c;
1548 
1549 	local_irq_save(flags);
1550 	c = get_cpu_slab(s, smp_processor_id());
1551 	if (unlikely(!c->freelist || !node_match(c, node)))
1552 
1553 		object = __slab_alloc(s, gfpflags, node, addr, c);
1554 
1555 	else {
1556 		object = c->freelist;
1557 		c->freelist = object[c->offset];
1558 	}
1559 	local_irq_restore(flags);
1560 
1561 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1562 		memset(object, 0, c->objsize);
1563 
1564 	return object;
1565 }
1566 
1567 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1568 {
1569 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1570 }
1571 EXPORT_SYMBOL(kmem_cache_alloc);
1572 
1573 #ifdef CONFIG_NUMA
1574 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1575 {
1576 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1577 }
1578 EXPORT_SYMBOL(kmem_cache_alloc_node);
1579 #endif
1580 
1581 /*
1582  * Slow patch handling. This may still be called frequently since objects
1583  * have a longer lifetime than the cpu slabs in most processing loads.
1584  *
1585  * So we still attempt to reduce cache line usage. Just take the slab
1586  * lock and free the item. If there is no additional partial page
1587  * handling required then we can return immediately.
1588  */
1589 static void __slab_free(struct kmem_cache *s, struct page *page,
1590 				void *x, void *addr, unsigned int offset)
1591 {
1592 	void *prior;
1593 	void **object = (void *)x;
1594 
1595 	slab_lock(page);
1596 
1597 	if (unlikely(SlabDebug(page)))
1598 		goto debug;
1599 checks_ok:
1600 	prior = object[offset] = page->freelist;
1601 	page->freelist = object;
1602 	page->inuse--;
1603 
1604 	if (unlikely(SlabFrozen(page)))
1605 		goto out_unlock;
1606 
1607 	if (unlikely(!page->inuse))
1608 		goto slab_empty;
1609 
1610 	/*
1611 	 * Objects left in the slab. If it
1612 	 * was not on the partial list before
1613 	 * then add it.
1614 	 */
1615 	if (unlikely(!prior))
1616 		add_partial_tail(get_node(s, page_to_nid(page)), page);
1617 
1618 out_unlock:
1619 	slab_unlock(page);
1620 	return;
1621 
1622 slab_empty:
1623 	if (prior)
1624 		/*
1625 		 * Slab still on the partial list.
1626 		 */
1627 		remove_partial(s, page);
1628 
1629 	slab_unlock(page);
1630 	discard_slab(s, page);
1631 	return;
1632 
1633 debug:
1634 	if (!free_debug_processing(s, page, x, addr))
1635 		goto out_unlock;
1636 	goto checks_ok;
1637 }
1638 
1639 /*
1640  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1641  * can perform fastpath freeing without additional function calls.
1642  *
1643  * The fastpath is only possible if we are freeing to the current cpu slab
1644  * of this processor. This typically the case if we have just allocated
1645  * the item before.
1646  *
1647  * If fastpath is not possible then fall back to __slab_free where we deal
1648  * with all sorts of special processing.
1649  */
1650 static void __always_inline slab_free(struct kmem_cache *s,
1651 			struct page *page, void *x, void *addr)
1652 {
1653 	void **object = (void *)x;
1654 	unsigned long flags;
1655 	struct kmem_cache_cpu *c;
1656 
1657 	local_irq_save(flags);
1658 	debug_check_no_locks_freed(object, s->objsize);
1659 	c = get_cpu_slab(s, smp_processor_id());
1660 	if (likely(page == c->page && c->node >= 0)) {
1661 		object[c->offset] = c->freelist;
1662 		c->freelist = object;
1663 	} else
1664 		__slab_free(s, page, x, addr, c->offset);
1665 
1666 	local_irq_restore(flags);
1667 }
1668 
1669 void kmem_cache_free(struct kmem_cache *s, void *x)
1670 {
1671 	struct page *page;
1672 
1673 	page = virt_to_head_page(x);
1674 
1675 	slab_free(s, page, x, __builtin_return_address(0));
1676 }
1677 EXPORT_SYMBOL(kmem_cache_free);
1678 
1679 /* Figure out on which slab object the object resides */
1680 static struct page *get_object_page(const void *x)
1681 {
1682 	struct page *page = virt_to_head_page(x);
1683 
1684 	if (!PageSlab(page))
1685 		return NULL;
1686 
1687 	return page;
1688 }
1689 
1690 /*
1691  * Object placement in a slab is made very easy because we always start at
1692  * offset 0. If we tune the size of the object to the alignment then we can
1693  * get the required alignment by putting one properly sized object after
1694  * another.
1695  *
1696  * Notice that the allocation order determines the sizes of the per cpu
1697  * caches. Each processor has always one slab available for allocations.
1698  * Increasing the allocation order reduces the number of times that slabs
1699  * must be moved on and off the partial lists and is therefore a factor in
1700  * locking overhead.
1701  */
1702 
1703 /*
1704  * Mininum / Maximum order of slab pages. This influences locking overhead
1705  * and slab fragmentation. A higher order reduces the number of partial slabs
1706  * and increases the number of allocations possible without having to
1707  * take the list_lock.
1708  */
1709 static int slub_min_order;
1710 static int slub_max_order = DEFAULT_MAX_ORDER;
1711 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1712 
1713 /*
1714  * Merge control. If this is set then no merging of slab caches will occur.
1715  * (Could be removed. This was introduced to pacify the merge skeptics.)
1716  */
1717 static int slub_nomerge;
1718 
1719 /*
1720  * Calculate the order of allocation given an slab object size.
1721  *
1722  * The order of allocation has significant impact on performance and other
1723  * system components. Generally order 0 allocations should be preferred since
1724  * order 0 does not cause fragmentation in the page allocator. Larger objects
1725  * be problematic to put into order 0 slabs because there may be too much
1726  * unused space left. We go to a higher order if more than 1/8th of the slab
1727  * would be wasted.
1728  *
1729  * In order to reach satisfactory performance we must ensure that a minimum
1730  * number of objects is in one slab. Otherwise we may generate too much
1731  * activity on the partial lists which requires taking the list_lock. This is
1732  * less a concern for large slabs though which are rarely used.
1733  *
1734  * slub_max_order specifies the order where we begin to stop considering the
1735  * number of objects in a slab as critical. If we reach slub_max_order then
1736  * we try to keep the page order as low as possible. So we accept more waste
1737  * of space in favor of a small page order.
1738  *
1739  * Higher order allocations also allow the placement of more objects in a
1740  * slab and thereby reduce object handling overhead. If the user has
1741  * requested a higher mininum order then we start with that one instead of
1742  * the smallest order which will fit the object.
1743  */
1744 static inline int slab_order(int size, int min_objects,
1745 				int max_order, int fract_leftover)
1746 {
1747 	int order;
1748 	int rem;
1749 	int min_order = slub_min_order;
1750 
1751 	for (order = max(min_order,
1752 				fls(min_objects * size - 1) - PAGE_SHIFT);
1753 			order <= max_order; order++) {
1754 
1755 		unsigned long slab_size = PAGE_SIZE << order;
1756 
1757 		if (slab_size < min_objects * size)
1758 			continue;
1759 
1760 		rem = slab_size % size;
1761 
1762 		if (rem <= slab_size / fract_leftover)
1763 			break;
1764 
1765 	}
1766 
1767 	return order;
1768 }
1769 
1770 static inline int calculate_order(int size)
1771 {
1772 	int order;
1773 	int min_objects;
1774 	int fraction;
1775 
1776 	/*
1777 	 * Attempt to find best configuration for a slab. This
1778 	 * works by first attempting to generate a layout with
1779 	 * the best configuration and backing off gradually.
1780 	 *
1781 	 * First we reduce the acceptable waste in a slab. Then
1782 	 * we reduce the minimum objects required in a slab.
1783 	 */
1784 	min_objects = slub_min_objects;
1785 	while (min_objects > 1) {
1786 		fraction = 8;
1787 		while (fraction >= 4) {
1788 			order = slab_order(size, min_objects,
1789 						slub_max_order, fraction);
1790 			if (order <= slub_max_order)
1791 				return order;
1792 			fraction /= 2;
1793 		}
1794 		min_objects /= 2;
1795 	}
1796 
1797 	/*
1798 	 * We were unable to place multiple objects in a slab. Now
1799 	 * lets see if we can place a single object there.
1800 	 */
1801 	order = slab_order(size, 1, slub_max_order, 1);
1802 	if (order <= slub_max_order)
1803 		return order;
1804 
1805 	/*
1806 	 * Doh this slab cannot be placed using slub_max_order.
1807 	 */
1808 	order = slab_order(size, 1, MAX_ORDER, 1);
1809 	if (order <= MAX_ORDER)
1810 		return order;
1811 	return -ENOSYS;
1812 }
1813 
1814 /*
1815  * Figure out what the alignment of the objects will be.
1816  */
1817 static unsigned long calculate_alignment(unsigned long flags,
1818 		unsigned long align, unsigned long size)
1819 {
1820 	/*
1821 	 * If the user wants hardware cache aligned objects then
1822 	 * follow that suggestion if the object is sufficiently
1823 	 * large.
1824 	 *
1825 	 * The hardware cache alignment cannot override the
1826 	 * specified alignment though. If that is greater
1827 	 * then use it.
1828 	 */
1829 	if ((flags & SLAB_HWCACHE_ALIGN) &&
1830 			size > cache_line_size() / 2)
1831 		return max_t(unsigned long, align, cache_line_size());
1832 
1833 	if (align < ARCH_SLAB_MINALIGN)
1834 		return ARCH_SLAB_MINALIGN;
1835 
1836 	return ALIGN(align, sizeof(void *));
1837 }
1838 
1839 static void init_kmem_cache_cpu(struct kmem_cache *s,
1840 			struct kmem_cache_cpu *c)
1841 {
1842 	c->page = NULL;
1843 	c->freelist = NULL;
1844 	c->node = 0;
1845 	c->offset = s->offset / sizeof(void *);
1846 	c->objsize = s->objsize;
1847 }
1848 
1849 static void init_kmem_cache_node(struct kmem_cache_node *n)
1850 {
1851 	n->nr_partial = 0;
1852 	atomic_long_set(&n->nr_slabs, 0);
1853 	spin_lock_init(&n->list_lock);
1854 	INIT_LIST_HEAD(&n->partial);
1855 #ifdef CONFIG_SLUB_DEBUG
1856 	INIT_LIST_HEAD(&n->full);
1857 #endif
1858 }
1859 
1860 #ifdef CONFIG_SMP
1861 /*
1862  * Per cpu array for per cpu structures.
1863  *
1864  * The per cpu array places all kmem_cache_cpu structures from one processor
1865  * close together meaning that it becomes possible that multiple per cpu
1866  * structures are contained in one cacheline. This may be particularly
1867  * beneficial for the kmalloc caches.
1868  *
1869  * A desktop system typically has around 60-80 slabs. With 100 here we are
1870  * likely able to get per cpu structures for all caches from the array defined
1871  * here. We must be able to cover all kmalloc caches during bootstrap.
1872  *
1873  * If the per cpu array is exhausted then fall back to kmalloc
1874  * of individual cachelines. No sharing is possible then.
1875  */
1876 #define NR_KMEM_CACHE_CPU 100
1877 
1878 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1879 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1880 
1881 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1882 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1883 
1884 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1885 							int cpu, gfp_t flags)
1886 {
1887 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1888 
1889 	if (c)
1890 		per_cpu(kmem_cache_cpu_free, cpu) =
1891 				(void *)c->freelist;
1892 	else {
1893 		/* Table overflow: So allocate ourselves */
1894 		c = kmalloc_node(
1895 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1896 			flags, cpu_to_node(cpu));
1897 		if (!c)
1898 			return NULL;
1899 	}
1900 
1901 	init_kmem_cache_cpu(s, c);
1902 	return c;
1903 }
1904 
1905 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1906 {
1907 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1908 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1909 		kfree(c);
1910 		return;
1911 	}
1912 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1913 	per_cpu(kmem_cache_cpu_free, cpu) = c;
1914 }
1915 
1916 static void free_kmem_cache_cpus(struct kmem_cache *s)
1917 {
1918 	int cpu;
1919 
1920 	for_each_online_cpu(cpu) {
1921 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1922 
1923 		if (c) {
1924 			s->cpu_slab[cpu] = NULL;
1925 			free_kmem_cache_cpu(c, cpu);
1926 		}
1927 	}
1928 }
1929 
1930 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1931 {
1932 	int cpu;
1933 
1934 	for_each_online_cpu(cpu) {
1935 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1936 
1937 		if (c)
1938 			continue;
1939 
1940 		c = alloc_kmem_cache_cpu(s, cpu, flags);
1941 		if (!c) {
1942 			free_kmem_cache_cpus(s);
1943 			return 0;
1944 		}
1945 		s->cpu_slab[cpu] = c;
1946 	}
1947 	return 1;
1948 }
1949 
1950 /*
1951  * Initialize the per cpu array.
1952  */
1953 static void init_alloc_cpu_cpu(int cpu)
1954 {
1955 	int i;
1956 
1957 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1958 		return;
1959 
1960 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1961 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1962 
1963 	cpu_set(cpu, kmem_cach_cpu_free_init_once);
1964 }
1965 
1966 static void __init init_alloc_cpu(void)
1967 {
1968 	int cpu;
1969 
1970 	for_each_online_cpu(cpu)
1971 		init_alloc_cpu_cpu(cpu);
1972   }
1973 
1974 #else
1975 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1976 static inline void init_alloc_cpu(void) {}
1977 
1978 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1979 {
1980 	init_kmem_cache_cpu(s, &s->cpu_slab);
1981 	return 1;
1982 }
1983 #endif
1984 
1985 #ifdef CONFIG_NUMA
1986 /*
1987  * No kmalloc_node yet so do it by hand. We know that this is the first
1988  * slab on the node for this slabcache. There are no concurrent accesses
1989  * possible.
1990  *
1991  * Note that this function only works on the kmalloc_node_cache
1992  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1993  * memory on a fresh node that has no slab structures yet.
1994  */
1995 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1996 							   int node)
1997 {
1998 	struct page *page;
1999 	struct kmem_cache_node *n;
2000 
2001 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2002 
2003 	page = new_slab(kmalloc_caches, gfpflags, node);
2004 
2005 	BUG_ON(!page);
2006 	if (page_to_nid(page) != node) {
2007 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2008 				"node %d\n", node);
2009 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2010 				"in order to be able to continue\n");
2011 	}
2012 
2013 	n = page->freelist;
2014 	BUG_ON(!n);
2015 	page->freelist = get_freepointer(kmalloc_caches, n);
2016 	page->inuse++;
2017 	kmalloc_caches->node[node] = n;
2018 #ifdef CONFIG_SLUB_DEBUG
2019 	init_object(kmalloc_caches, n, 1);
2020 	init_tracking(kmalloc_caches, n);
2021 #endif
2022 	init_kmem_cache_node(n);
2023 	atomic_long_inc(&n->nr_slabs);
2024 	add_partial(n, page);
2025 	return n;
2026 }
2027 
2028 static void free_kmem_cache_nodes(struct kmem_cache *s)
2029 {
2030 	int node;
2031 
2032 	for_each_node_state(node, N_NORMAL_MEMORY) {
2033 		struct kmem_cache_node *n = s->node[node];
2034 		if (n && n != &s->local_node)
2035 			kmem_cache_free(kmalloc_caches, n);
2036 		s->node[node] = NULL;
2037 	}
2038 }
2039 
2040 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2041 {
2042 	int node;
2043 	int local_node;
2044 
2045 	if (slab_state >= UP)
2046 		local_node = page_to_nid(virt_to_page(s));
2047 	else
2048 		local_node = 0;
2049 
2050 	for_each_node_state(node, N_NORMAL_MEMORY) {
2051 		struct kmem_cache_node *n;
2052 
2053 		if (local_node == node)
2054 			n = &s->local_node;
2055 		else {
2056 			if (slab_state == DOWN) {
2057 				n = early_kmem_cache_node_alloc(gfpflags,
2058 								node);
2059 				continue;
2060 			}
2061 			n = kmem_cache_alloc_node(kmalloc_caches,
2062 							gfpflags, node);
2063 
2064 			if (!n) {
2065 				free_kmem_cache_nodes(s);
2066 				return 0;
2067 			}
2068 
2069 		}
2070 		s->node[node] = n;
2071 		init_kmem_cache_node(n);
2072 	}
2073 	return 1;
2074 }
2075 #else
2076 static void free_kmem_cache_nodes(struct kmem_cache *s)
2077 {
2078 }
2079 
2080 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2081 {
2082 	init_kmem_cache_node(&s->local_node);
2083 	return 1;
2084 }
2085 #endif
2086 
2087 /*
2088  * calculate_sizes() determines the order and the distribution of data within
2089  * a slab object.
2090  */
2091 static int calculate_sizes(struct kmem_cache *s)
2092 {
2093 	unsigned long flags = s->flags;
2094 	unsigned long size = s->objsize;
2095 	unsigned long align = s->align;
2096 
2097 	/*
2098 	 * Determine if we can poison the object itself. If the user of
2099 	 * the slab may touch the object after free or before allocation
2100 	 * then we should never poison the object itself.
2101 	 */
2102 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2103 			!s->ctor)
2104 		s->flags |= __OBJECT_POISON;
2105 	else
2106 		s->flags &= ~__OBJECT_POISON;
2107 
2108 	/*
2109 	 * Round up object size to the next word boundary. We can only
2110 	 * place the free pointer at word boundaries and this determines
2111 	 * the possible location of the free pointer.
2112 	 */
2113 	size = ALIGN(size, sizeof(void *));
2114 
2115 #ifdef CONFIG_SLUB_DEBUG
2116 	/*
2117 	 * If we are Redzoning then check if there is some space between the
2118 	 * end of the object and the free pointer. If not then add an
2119 	 * additional word to have some bytes to store Redzone information.
2120 	 */
2121 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2122 		size += sizeof(void *);
2123 #endif
2124 
2125 	/*
2126 	 * With that we have determined the number of bytes in actual use
2127 	 * by the object. This is the potential offset to the free pointer.
2128 	 */
2129 	s->inuse = size;
2130 
2131 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2132 		s->ctor)) {
2133 		/*
2134 		 * Relocate free pointer after the object if it is not
2135 		 * permitted to overwrite the first word of the object on
2136 		 * kmem_cache_free.
2137 		 *
2138 		 * This is the case if we do RCU, have a constructor or
2139 		 * destructor or are poisoning the objects.
2140 		 */
2141 		s->offset = size;
2142 		size += sizeof(void *);
2143 	}
2144 
2145 #ifdef CONFIG_SLUB_DEBUG
2146 	if (flags & SLAB_STORE_USER)
2147 		/*
2148 		 * Need to store information about allocs and frees after
2149 		 * the object.
2150 		 */
2151 		size += 2 * sizeof(struct track);
2152 
2153 	if (flags & SLAB_RED_ZONE)
2154 		/*
2155 		 * Add some empty padding so that we can catch
2156 		 * overwrites from earlier objects rather than let
2157 		 * tracking information or the free pointer be
2158 		 * corrupted if an user writes before the start
2159 		 * of the object.
2160 		 */
2161 		size += sizeof(void *);
2162 #endif
2163 
2164 	/*
2165 	 * Determine the alignment based on various parameters that the
2166 	 * user specified and the dynamic determination of cache line size
2167 	 * on bootup.
2168 	 */
2169 	align = calculate_alignment(flags, align, s->objsize);
2170 
2171 	/*
2172 	 * SLUB stores one object immediately after another beginning from
2173 	 * offset 0. In order to align the objects we have to simply size
2174 	 * each object to conform to the alignment.
2175 	 */
2176 	size = ALIGN(size, align);
2177 	s->size = size;
2178 
2179 	s->order = calculate_order(size);
2180 	if (s->order < 0)
2181 		return 0;
2182 
2183 	/*
2184 	 * Determine the number of objects per slab
2185 	 */
2186 	s->objects = (PAGE_SIZE << s->order) / size;
2187 
2188 	return !!s->objects;
2189 
2190 }
2191 
2192 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2193 		const char *name, size_t size,
2194 		size_t align, unsigned long flags,
2195 		void (*ctor)(struct kmem_cache *, void *))
2196 {
2197 	memset(s, 0, kmem_size);
2198 	s->name = name;
2199 	s->ctor = ctor;
2200 	s->objsize = size;
2201 	s->align = align;
2202 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2203 
2204 	if (!calculate_sizes(s))
2205 		goto error;
2206 
2207 	s->refcount = 1;
2208 #ifdef CONFIG_NUMA
2209 	s->defrag_ratio = 100;
2210 #endif
2211 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2212 		goto error;
2213 
2214 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2215 		return 1;
2216 	free_kmem_cache_nodes(s);
2217 error:
2218 	if (flags & SLAB_PANIC)
2219 		panic("Cannot create slab %s size=%lu realsize=%u "
2220 			"order=%u offset=%u flags=%lx\n",
2221 			s->name, (unsigned long)size, s->size, s->order,
2222 			s->offset, flags);
2223 	return 0;
2224 }
2225 
2226 /*
2227  * Check if a given pointer is valid
2228  */
2229 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2230 {
2231 	struct page * page;
2232 
2233 	page = get_object_page(object);
2234 
2235 	if (!page || s != page->slab)
2236 		/* No slab or wrong slab */
2237 		return 0;
2238 
2239 	if (!check_valid_pointer(s, page, object))
2240 		return 0;
2241 
2242 	/*
2243 	 * We could also check if the object is on the slabs freelist.
2244 	 * But this would be too expensive and it seems that the main
2245 	 * purpose of kmem_ptr_valid is to check if the object belongs
2246 	 * to a certain slab.
2247 	 */
2248 	return 1;
2249 }
2250 EXPORT_SYMBOL(kmem_ptr_validate);
2251 
2252 /*
2253  * Determine the size of a slab object
2254  */
2255 unsigned int kmem_cache_size(struct kmem_cache *s)
2256 {
2257 	return s->objsize;
2258 }
2259 EXPORT_SYMBOL(kmem_cache_size);
2260 
2261 const char *kmem_cache_name(struct kmem_cache *s)
2262 {
2263 	return s->name;
2264 }
2265 EXPORT_SYMBOL(kmem_cache_name);
2266 
2267 /*
2268  * Attempt to free all slabs on a node. Return the number of slabs we
2269  * were unable to free.
2270  */
2271 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2272 			struct list_head *list)
2273 {
2274 	int slabs_inuse = 0;
2275 	unsigned long flags;
2276 	struct page *page, *h;
2277 
2278 	spin_lock_irqsave(&n->list_lock, flags);
2279 	list_for_each_entry_safe(page, h, list, lru)
2280 		if (!page->inuse) {
2281 			list_del(&page->lru);
2282 			discard_slab(s, page);
2283 		} else
2284 			slabs_inuse++;
2285 	spin_unlock_irqrestore(&n->list_lock, flags);
2286 	return slabs_inuse;
2287 }
2288 
2289 /*
2290  * Release all resources used by a slab cache.
2291  */
2292 static inline int kmem_cache_close(struct kmem_cache *s)
2293 {
2294 	int node;
2295 
2296 	flush_all(s);
2297 
2298 	/* Attempt to free all objects */
2299 	free_kmem_cache_cpus(s);
2300 	for_each_node_state(node, N_NORMAL_MEMORY) {
2301 		struct kmem_cache_node *n = get_node(s, node);
2302 
2303 		n->nr_partial -= free_list(s, n, &n->partial);
2304 		if (atomic_long_read(&n->nr_slabs))
2305 			return 1;
2306 	}
2307 	free_kmem_cache_nodes(s);
2308 	return 0;
2309 }
2310 
2311 /*
2312  * Close a cache and release the kmem_cache structure
2313  * (must be used for caches created using kmem_cache_create)
2314  */
2315 void kmem_cache_destroy(struct kmem_cache *s)
2316 {
2317 	down_write(&slub_lock);
2318 	s->refcount--;
2319 	if (!s->refcount) {
2320 		list_del(&s->list);
2321 		up_write(&slub_lock);
2322 		if (kmem_cache_close(s))
2323 			WARN_ON(1);
2324 		sysfs_slab_remove(s);
2325 		kfree(s);
2326 	} else
2327 		up_write(&slub_lock);
2328 }
2329 EXPORT_SYMBOL(kmem_cache_destroy);
2330 
2331 /********************************************************************
2332  *		Kmalloc subsystem
2333  *******************************************************************/
2334 
2335 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2336 EXPORT_SYMBOL(kmalloc_caches);
2337 
2338 #ifdef CONFIG_ZONE_DMA
2339 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2340 #endif
2341 
2342 static int __init setup_slub_min_order(char *str)
2343 {
2344 	get_option (&str, &slub_min_order);
2345 
2346 	return 1;
2347 }
2348 
2349 __setup("slub_min_order=", setup_slub_min_order);
2350 
2351 static int __init setup_slub_max_order(char *str)
2352 {
2353 	get_option (&str, &slub_max_order);
2354 
2355 	return 1;
2356 }
2357 
2358 __setup("slub_max_order=", setup_slub_max_order);
2359 
2360 static int __init setup_slub_min_objects(char *str)
2361 {
2362 	get_option (&str, &slub_min_objects);
2363 
2364 	return 1;
2365 }
2366 
2367 __setup("slub_min_objects=", setup_slub_min_objects);
2368 
2369 static int __init setup_slub_nomerge(char *str)
2370 {
2371 	slub_nomerge = 1;
2372 	return 1;
2373 }
2374 
2375 __setup("slub_nomerge", setup_slub_nomerge);
2376 
2377 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2378 		const char *name, int size, gfp_t gfp_flags)
2379 {
2380 	unsigned int flags = 0;
2381 
2382 	if (gfp_flags & SLUB_DMA)
2383 		flags = SLAB_CACHE_DMA;
2384 
2385 	down_write(&slub_lock);
2386 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2387 			flags, NULL))
2388 		goto panic;
2389 
2390 	list_add(&s->list, &slab_caches);
2391 	up_write(&slub_lock);
2392 	if (sysfs_slab_add(s))
2393 		goto panic;
2394 	return s;
2395 
2396 panic:
2397 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2398 }
2399 
2400 #ifdef CONFIG_ZONE_DMA
2401 
2402 static void sysfs_add_func(struct work_struct *w)
2403 {
2404 	struct kmem_cache *s;
2405 
2406 	down_write(&slub_lock);
2407 	list_for_each_entry(s, &slab_caches, list) {
2408 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2409 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2410 			sysfs_slab_add(s);
2411 		}
2412 	}
2413 	up_write(&slub_lock);
2414 }
2415 
2416 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2417 
2418 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2419 {
2420 	struct kmem_cache *s;
2421 	char *text;
2422 	size_t realsize;
2423 
2424 	s = kmalloc_caches_dma[index];
2425 	if (s)
2426 		return s;
2427 
2428 	/* Dynamically create dma cache */
2429 	if (flags & __GFP_WAIT)
2430 		down_write(&slub_lock);
2431 	else {
2432 		if (!down_write_trylock(&slub_lock))
2433 			goto out;
2434 	}
2435 
2436 	if (kmalloc_caches_dma[index])
2437 		goto unlock_out;
2438 
2439 	realsize = kmalloc_caches[index].objsize;
2440 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2441 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2442 
2443 	if (!s || !text || !kmem_cache_open(s, flags, text,
2444 			realsize, ARCH_KMALLOC_MINALIGN,
2445 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2446 		kfree(s);
2447 		kfree(text);
2448 		goto unlock_out;
2449 	}
2450 
2451 	list_add(&s->list, &slab_caches);
2452 	kmalloc_caches_dma[index] = s;
2453 
2454 	schedule_work(&sysfs_add_work);
2455 
2456 unlock_out:
2457 	up_write(&slub_lock);
2458 out:
2459 	return kmalloc_caches_dma[index];
2460 }
2461 #endif
2462 
2463 /*
2464  * Conversion table for small slabs sizes / 8 to the index in the
2465  * kmalloc array. This is necessary for slabs < 192 since we have non power
2466  * of two cache sizes there. The size of larger slabs can be determined using
2467  * fls.
2468  */
2469 static s8 size_index[24] = {
2470 	3,	/* 8 */
2471 	4,	/* 16 */
2472 	5,	/* 24 */
2473 	5,	/* 32 */
2474 	6,	/* 40 */
2475 	6,	/* 48 */
2476 	6,	/* 56 */
2477 	6,	/* 64 */
2478 	1,	/* 72 */
2479 	1,	/* 80 */
2480 	1,	/* 88 */
2481 	1,	/* 96 */
2482 	7,	/* 104 */
2483 	7,	/* 112 */
2484 	7,	/* 120 */
2485 	7,	/* 128 */
2486 	2,	/* 136 */
2487 	2,	/* 144 */
2488 	2,	/* 152 */
2489 	2,	/* 160 */
2490 	2,	/* 168 */
2491 	2,	/* 176 */
2492 	2,	/* 184 */
2493 	2	/* 192 */
2494 };
2495 
2496 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2497 {
2498 	int index;
2499 
2500 	if (size <= 192) {
2501 		if (!size)
2502 			return ZERO_SIZE_PTR;
2503 
2504 		index = size_index[(size - 1) / 8];
2505 	} else
2506 		index = fls(size - 1);
2507 
2508 #ifdef CONFIG_ZONE_DMA
2509 	if (unlikely((flags & SLUB_DMA)))
2510 		return dma_kmalloc_cache(index, flags);
2511 
2512 #endif
2513 	return &kmalloc_caches[index];
2514 }
2515 
2516 void *__kmalloc(size_t size, gfp_t flags)
2517 {
2518 	struct kmem_cache *s;
2519 
2520 	if (unlikely(size > PAGE_SIZE / 2))
2521 		return (void *)__get_free_pages(flags | __GFP_COMP,
2522 							get_order(size));
2523 
2524 	s = get_slab(size, flags);
2525 
2526 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2527 		return s;
2528 
2529 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2530 }
2531 EXPORT_SYMBOL(__kmalloc);
2532 
2533 #ifdef CONFIG_NUMA
2534 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2535 {
2536 	struct kmem_cache *s;
2537 
2538 	if (unlikely(size > PAGE_SIZE / 2))
2539 		return (void *)__get_free_pages(flags | __GFP_COMP,
2540 							get_order(size));
2541 
2542 	s = get_slab(size, flags);
2543 
2544 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2545 		return s;
2546 
2547 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2548 }
2549 EXPORT_SYMBOL(__kmalloc_node);
2550 #endif
2551 
2552 size_t ksize(const void *object)
2553 {
2554 	struct page *page;
2555 	struct kmem_cache *s;
2556 
2557 	BUG_ON(!object);
2558 	if (unlikely(object == ZERO_SIZE_PTR))
2559 		return 0;
2560 
2561 	page = virt_to_head_page(object);
2562 	BUG_ON(!page);
2563 
2564 	if (unlikely(!PageSlab(page)))
2565 		return PAGE_SIZE << compound_order(page);
2566 
2567 	s = page->slab;
2568 	BUG_ON(!s);
2569 
2570 	/*
2571 	 * Debugging requires use of the padding between object
2572 	 * and whatever may come after it.
2573 	 */
2574 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2575 		return s->objsize;
2576 
2577 	/*
2578 	 * If we have the need to store the freelist pointer
2579 	 * back there or track user information then we can
2580 	 * only use the space before that information.
2581 	 */
2582 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2583 		return s->inuse;
2584 
2585 	/*
2586 	 * Else we can use all the padding etc for the allocation
2587 	 */
2588 	return s->size;
2589 }
2590 EXPORT_SYMBOL(ksize);
2591 
2592 void kfree(const void *x)
2593 {
2594 	struct page *page;
2595 
2596 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2597 		return;
2598 
2599 	page = virt_to_head_page(x);
2600 	if (unlikely(!PageSlab(page))) {
2601 		put_page(page);
2602 		return;
2603 	}
2604 	slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2605 }
2606 EXPORT_SYMBOL(kfree);
2607 
2608 /*
2609  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2610  * the remaining slabs by the number of items in use. The slabs with the
2611  * most items in use come first. New allocations will then fill those up
2612  * and thus they can be removed from the partial lists.
2613  *
2614  * The slabs with the least items are placed last. This results in them
2615  * being allocated from last increasing the chance that the last objects
2616  * are freed in them.
2617  */
2618 int kmem_cache_shrink(struct kmem_cache *s)
2619 {
2620 	int node;
2621 	int i;
2622 	struct kmem_cache_node *n;
2623 	struct page *page;
2624 	struct page *t;
2625 	struct list_head *slabs_by_inuse =
2626 		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2627 	unsigned long flags;
2628 
2629 	if (!slabs_by_inuse)
2630 		return -ENOMEM;
2631 
2632 	flush_all(s);
2633 	for_each_node_state(node, N_NORMAL_MEMORY) {
2634 		n = get_node(s, node);
2635 
2636 		if (!n->nr_partial)
2637 			continue;
2638 
2639 		for (i = 0; i < s->objects; i++)
2640 			INIT_LIST_HEAD(slabs_by_inuse + i);
2641 
2642 		spin_lock_irqsave(&n->list_lock, flags);
2643 
2644 		/*
2645 		 * Build lists indexed by the items in use in each slab.
2646 		 *
2647 		 * Note that concurrent frees may occur while we hold the
2648 		 * list_lock. page->inuse here is the upper limit.
2649 		 */
2650 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2651 			if (!page->inuse && slab_trylock(page)) {
2652 				/*
2653 				 * Must hold slab lock here because slab_free
2654 				 * may have freed the last object and be
2655 				 * waiting to release the slab.
2656 				 */
2657 				list_del(&page->lru);
2658 				n->nr_partial--;
2659 				slab_unlock(page);
2660 				discard_slab(s, page);
2661 			} else {
2662 				list_move(&page->lru,
2663 				slabs_by_inuse + page->inuse);
2664 			}
2665 		}
2666 
2667 		/*
2668 		 * Rebuild the partial list with the slabs filled up most
2669 		 * first and the least used slabs at the end.
2670 		 */
2671 		for (i = s->objects - 1; i >= 0; i--)
2672 			list_splice(slabs_by_inuse + i, n->partial.prev);
2673 
2674 		spin_unlock_irqrestore(&n->list_lock, flags);
2675 	}
2676 
2677 	kfree(slabs_by_inuse);
2678 	return 0;
2679 }
2680 EXPORT_SYMBOL(kmem_cache_shrink);
2681 
2682 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2683 static int slab_mem_going_offline_callback(void *arg)
2684 {
2685 	struct kmem_cache *s;
2686 
2687 	down_read(&slub_lock);
2688 	list_for_each_entry(s, &slab_caches, list)
2689 		kmem_cache_shrink(s);
2690 	up_read(&slub_lock);
2691 
2692 	return 0;
2693 }
2694 
2695 static void slab_mem_offline_callback(void *arg)
2696 {
2697 	struct kmem_cache_node *n;
2698 	struct kmem_cache *s;
2699 	struct memory_notify *marg = arg;
2700 	int offline_node;
2701 
2702 	offline_node = marg->status_change_nid;
2703 
2704 	/*
2705 	 * If the node still has available memory. we need kmem_cache_node
2706 	 * for it yet.
2707 	 */
2708 	if (offline_node < 0)
2709 		return;
2710 
2711 	down_read(&slub_lock);
2712 	list_for_each_entry(s, &slab_caches, list) {
2713 		n = get_node(s, offline_node);
2714 		if (n) {
2715 			/*
2716 			 * if n->nr_slabs > 0, slabs still exist on the node
2717 			 * that is going down. We were unable to free them,
2718 			 * and offline_pages() function shoudn't call this
2719 			 * callback. So, we must fail.
2720 			 */
2721 			BUG_ON(atomic_long_read(&n->nr_slabs));
2722 
2723 			s->node[offline_node] = NULL;
2724 			kmem_cache_free(kmalloc_caches, n);
2725 		}
2726 	}
2727 	up_read(&slub_lock);
2728 }
2729 
2730 static int slab_mem_going_online_callback(void *arg)
2731 {
2732 	struct kmem_cache_node *n;
2733 	struct kmem_cache *s;
2734 	struct memory_notify *marg = arg;
2735 	int nid = marg->status_change_nid;
2736 	int ret = 0;
2737 
2738 	/*
2739 	 * If the node's memory is already available, then kmem_cache_node is
2740 	 * already created. Nothing to do.
2741 	 */
2742 	if (nid < 0)
2743 		return 0;
2744 
2745 	/*
2746 	 * We are bringing a node online. No memory is availabe yet. We must
2747 	 * allocate a kmem_cache_node structure in order to bring the node
2748 	 * online.
2749 	 */
2750 	down_read(&slub_lock);
2751 	list_for_each_entry(s, &slab_caches, list) {
2752 		/*
2753 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2754 		 *      since memory is not yet available from the node that
2755 		 *      is brought up.
2756 		 */
2757 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2758 		if (!n) {
2759 			ret = -ENOMEM;
2760 			goto out;
2761 		}
2762 		init_kmem_cache_node(n);
2763 		s->node[nid] = n;
2764 	}
2765 out:
2766 	up_read(&slub_lock);
2767 	return ret;
2768 }
2769 
2770 static int slab_memory_callback(struct notifier_block *self,
2771 				unsigned long action, void *arg)
2772 {
2773 	int ret = 0;
2774 
2775 	switch (action) {
2776 	case MEM_GOING_ONLINE:
2777 		ret = slab_mem_going_online_callback(arg);
2778 		break;
2779 	case MEM_GOING_OFFLINE:
2780 		ret = slab_mem_going_offline_callback(arg);
2781 		break;
2782 	case MEM_OFFLINE:
2783 	case MEM_CANCEL_ONLINE:
2784 		slab_mem_offline_callback(arg);
2785 		break;
2786 	case MEM_ONLINE:
2787 	case MEM_CANCEL_OFFLINE:
2788 		break;
2789 	}
2790 
2791 	ret = notifier_from_errno(ret);
2792 	return ret;
2793 }
2794 
2795 #endif /* CONFIG_MEMORY_HOTPLUG */
2796 
2797 /********************************************************************
2798  *			Basic setup of slabs
2799  *******************************************************************/
2800 
2801 void __init kmem_cache_init(void)
2802 {
2803 	int i;
2804 	int caches = 0;
2805 
2806 	init_alloc_cpu();
2807 
2808 #ifdef CONFIG_NUMA
2809 	/*
2810 	 * Must first have the slab cache available for the allocations of the
2811 	 * struct kmem_cache_node's. There is special bootstrap code in
2812 	 * kmem_cache_open for slab_state == DOWN.
2813 	 */
2814 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2815 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2816 	kmalloc_caches[0].refcount = -1;
2817 	caches++;
2818 
2819 	hotplug_memory_notifier(slab_memory_callback, 1);
2820 #endif
2821 
2822 	/* Able to allocate the per node structures */
2823 	slab_state = PARTIAL;
2824 
2825 	/* Caches that are not of the two-to-the-power-of size */
2826 	if (KMALLOC_MIN_SIZE <= 64) {
2827 		create_kmalloc_cache(&kmalloc_caches[1],
2828 				"kmalloc-96", 96, GFP_KERNEL);
2829 		caches++;
2830 	}
2831 	if (KMALLOC_MIN_SIZE <= 128) {
2832 		create_kmalloc_cache(&kmalloc_caches[2],
2833 				"kmalloc-192", 192, GFP_KERNEL);
2834 		caches++;
2835 	}
2836 
2837 	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2838 		create_kmalloc_cache(&kmalloc_caches[i],
2839 			"kmalloc", 1 << i, GFP_KERNEL);
2840 		caches++;
2841 	}
2842 
2843 
2844 	/*
2845 	 * Patch up the size_index table if we have strange large alignment
2846 	 * requirements for the kmalloc array. This is only the case for
2847 	 * mips it seems. The standard arches will not generate any code here.
2848 	 *
2849 	 * Largest permitted alignment is 256 bytes due to the way we
2850 	 * handle the index determination for the smaller caches.
2851 	 *
2852 	 * Make sure that nothing crazy happens if someone starts tinkering
2853 	 * around with ARCH_KMALLOC_MINALIGN
2854 	 */
2855 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2856 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2857 
2858 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2859 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2860 
2861 	slab_state = UP;
2862 
2863 	/* Provide the correct kmalloc names now that the caches are up */
2864 	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2865 		kmalloc_caches[i]. name =
2866 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2867 
2868 #ifdef CONFIG_SMP
2869 	register_cpu_notifier(&slab_notifier);
2870 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2871 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2872 #else
2873 	kmem_size = sizeof(struct kmem_cache);
2874 #endif
2875 
2876 
2877 	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2878 		" CPUs=%d, Nodes=%d\n",
2879 		caches, cache_line_size(),
2880 		slub_min_order, slub_max_order, slub_min_objects,
2881 		nr_cpu_ids, nr_node_ids);
2882 }
2883 
2884 /*
2885  * Find a mergeable slab cache
2886  */
2887 static int slab_unmergeable(struct kmem_cache *s)
2888 {
2889 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2890 		return 1;
2891 
2892 	if (s->ctor)
2893 		return 1;
2894 
2895 	/*
2896 	 * We may have set a slab to be unmergeable during bootstrap.
2897 	 */
2898 	if (s->refcount < 0)
2899 		return 1;
2900 
2901 	return 0;
2902 }
2903 
2904 static struct kmem_cache *find_mergeable(size_t size,
2905 		size_t align, unsigned long flags, const char *name,
2906 		void (*ctor)(struct kmem_cache *, void *))
2907 {
2908 	struct kmem_cache *s;
2909 
2910 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2911 		return NULL;
2912 
2913 	if (ctor)
2914 		return NULL;
2915 
2916 	size = ALIGN(size, sizeof(void *));
2917 	align = calculate_alignment(flags, align, size);
2918 	size = ALIGN(size, align);
2919 	flags = kmem_cache_flags(size, flags, name, NULL);
2920 
2921 	list_for_each_entry(s, &slab_caches, list) {
2922 		if (slab_unmergeable(s))
2923 			continue;
2924 
2925 		if (size > s->size)
2926 			continue;
2927 
2928 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2929 				continue;
2930 		/*
2931 		 * Check if alignment is compatible.
2932 		 * Courtesy of Adrian Drzewiecki
2933 		 */
2934 		if ((s->size & ~(align -1)) != s->size)
2935 			continue;
2936 
2937 		if (s->size - size >= sizeof(void *))
2938 			continue;
2939 
2940 		return s;
2941 	}
2942 	return NULL;
2943 }
2944 
2945 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2946 		size_t align, unsigned long flags,
2947 		void (*ctor)(struct kmem_cache *, void *))
2948 {
2949 	struct kmem_cache *s;
2950 
2951 	down_write(&slub_lock);
2952 	s = find_mergeable(size, align, flags, name, ctor);
2953 	if (s) {
2954 		int cpu;
2955 
2956 		s->refcount++;
2957 		/*
2958 		 * Adjust the object sizes so that we clear
2959 		 * the complete object on kzalloc.
2960 		 */
2961 		s->objsize = max(s->objsize, (int)size);
2962 
2963 		/*
2964 		 * And then we need to update the object size in the
2965 		 * per cpu structures
2966 		 */
2967 		for_each_online_cpu(cpu)
2968 			get_cpu_slab(s, cpu)->objsize = s->objsize;
2969 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2970 		up_write(&slub_lock);
2971 		if (sysfs_slab_alias(s, name))
2972 			goto err;
2973 		return s;
2974 	}
2975 	s = kmalloc(kmem_size, GFP_KERNEL);
2976 	if (s) {
2977 		if (kmem_cache_open(s, GFP_KERNEL, name,
2978 				size, align, flags, ctor)) {
2979 			list_add(&s->list, &slab_caches);
2980 			up_write(&slub_lock);
2981 			if (sysfs_slab_add(s))
2982 				goto err;
2983 			return s;
2984 		}
2985 		kfree(s);
2986 	}
2987 	up_write(&slub_lock);
2988 
2989 err:
2990 	if (flags & SLAB_PANIC)
2991 		panic("Cannot create slabcache %s\n", name);
2992 	else
2993 		s = NULL;
2994 	return s;
2995 }
2996 EXPORT_SYMBOL(kmem_cache_create);
2997 
2998 #ifdef CONFIG_SMP
2999 /*
3000  * Use the cpu notifier to insure that the cpu slabs are flushed when
3001  * necessary.
3002  */
3003 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3004 		unsigned long action, void *hcpu)
3005 {
3006 	long cpu = (long)hcpu;
3007 	struct kmem_cache *s;
3008 	unsigned long flags;
3009 
3010 	switch (action) {
3011 	case CPU_UP_PREPARE:
3012 	case CPU_UP_PREPARE_FROZEN:
3013 		init_alloc_cpu_cpu(cpu);
3014 		down_read(&slub_lock);
3015 		list_for_each_entry(s, &slab_caches, list)
3016 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3017 							GFP_KERNEL);
3018 		up_read(&slub_lock);
3019 		break;
3020 
3021 	case CPU_UP_CANCELED:
3022 	case CPU_UP_CANCELED_FROZEN:
3023 	case CPU_DEAD:
3024 	case CPU_DEAD_FROZEN:
3025 		down_read(&slub_lock);
3026 		list_for_each_entry(s, &slab_caches, list) {
3027 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3028 
3029 			local_irq_save(flags);
3030 			__flush_cpu_slab(s, cpu);
3031 			local_irq_restore(flags);
3032 			free_kmem_cache_cpu(c, cpu);
3033 			s->cpu_slab[cpu] = NULL;
3034 		}
3035 		up_read(&slub_lock);
3036 		break;
3037 	default:
3038 		break;
3039 	}
3040 	return NOTIFY_OK;
3041 }
3042 
3043 static struct notifier_block __cpuinitdata slab_notifier =
3044 	{ &slab_cpuup_callback, NULL, 0 };
3045 
3046 #endif
3047 
3048 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3049 {
3050 	struct kmem_cache *s;
3051 
3052 	if (unlikely(size > PAGE_SIZE / 2))
3053 		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3054 							get_order(size));
3055 	s = get_slab(size, gfpflags);
3056 
3057 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3058 		return s;
3059 
3060 	return slab_alloc(s, gfpflags, -1, caller);
3061 }
3062 
3063 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3064 					int node, void *caller)
3065 {
3066 	struct kmem_cache *s;
3067 
3068 	if (unlikely(size > PAGE_SIZE / 2))
3069 		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3070 							get_order(size));
3071 	s = get_slab(size, gfpflags);
3072 
3073 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3074 		return s;
3075 
3076 	return slab_alloc(s, gfpflags, node, caller);
3077 }
3078 
3079 static unsigned long count_partial(struct kmem_cache_node *n)
3080 {
3081 	unsigned long flags;
3082 	unsigned long x = 0;
3083 	struct page *page;
3084 
3085 	spin_lock_irqsave(&n->list_lock, flags);
3086 	list_for_each_entry(page, &n->partial, lru)
3087 		x += page->inuse;
3088 	spin_unlock_irqrestore(&n->list_lock, flags);
3089 	return x;
3090 }
3091 
3092 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3093 static int validate_slab(struct kmem_cache *s, struct page *page,
3094 						unsigned long *map)
3095 {
3096 	void *p;
3097 	void *addr = page_address(page);
3098 
3099 	if (!check_slab(s, page) ||
3100 			!on_freelist(s, page, NULL))
3101 		return 0;
3102 
3103 	/* Now we know that a valid freelist exists */
3104 	bitmap_zero(map, s->objects);
3105 
3106 	for_each_free_object(p, s, page->freelist) {
3107 		set_bit(slab_index(p, s, addr), map);
3108 		if (!check_object(s, page, p, 0))
3109 			return 0;
3110 	}
3111 
3112 	for_each_object(p, s, addr)
3113 		if (!test_bit(slab_index(p, s, addr), map))
3114 			if (!check_object(s, page, p, 1))
3115 				return 0;
3116 	return 1;
3117 }
3118 
3119 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3120 						unsigned long *map)
3121 {
3122 	if (slab_trylock(page)) {
3123 		validate_slab(s, page, map);
3124 		slab_unlock(page);
3125 	} else
3126 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3127 			s->name, page);
3128 
3129 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3130 		if (!SlabDebug(page))
3131 			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3132 				"on slab 0x%p\n", s->name, page);
3133 	} else {
3134 		if (SlabDebug(page))
3135 			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3136 				"slab 0x%p\n", s->name, page);
3137 	}
3138 }
3139 
3140 static int validate_slab_node(struct kmem_cache *s,
3141 		struct kmem_cache_node *n, unsigned long *map)
3142 {
3143 	unsigned long count = 0;
3144 	struct page *page;
3145 	unsigned long flags;
3146 
3147 	spin_lock_irqsave(&n->list_lock, flags);
3148 
3149 	list_for_each_entry(page, &n->partial, lru) {
3150 		validate_slab_slab(s, page, map);
3151 		count++;
3152 	}
3153 	if (count != n->nr_partial)
3154 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3155 			"counter=%ld\n", s->name, count, n->nr_partial);
3156 
3157 	if (!(s->flags & SLAB_STORE_USER))
3158 		goto out;
3159 
3160 	list_for_each_entry(page, &n->full, lru) {
3161 		validate_slab_slab(s, page, map);
3162 		count++;
3163 	}
3164 	if (count != atomic_long_read(&n->nr_slabs))
3165 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3166 			"counter=%ld\n", s->name, count,
3167 			atomic_long_read(&n->nr_slabs));
3168 
3169 out:
3170 	spin_unlock_irqrestore(&n->list_lock, flags);
3171 	return count;
3172 }
3173 
3174 static long validate_slab_cache(struct kmem_cache *s)
3175 {
3176 	int node;
3177 	unsigned long count = 0;
3178 	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3179 				sizeof(unsigned long), GFP_KERNEL);
3180 
3181 	if (!map)
3182 		return -ENOMEM;
3183 
3184 	flush_all(s);
3185 	for_each_node_state(node, N_NORMAL_MEMORY) {
3186 		struct kmem_cache_node *n = get_node(s, node);
3187 
3188 		count += validate_slab_node(s, n, map);
3189 	}
3190 	kfree(map);
3191 	return count;
3192 }
3193 
3194 #ifdef SLUB_RESILIENCY_TEST
3195 static void resiliency_test(void)
3196 {
3197 	u8 *p;
3198 
3199 	printk(KERN_ERR "SLUB resiliency testing\n");
3200 	printk(KERN_ERR "-----------------------\n");
3201 	printk(KERN_ERR "A. Corruption after allocation\n");
3202 
3203 	p = kzalloc(16, GFP_KERNEL);
3204 	p[16] = 0x12;
3205 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3206 			" 0x12->0x%p\n\n", p + 16);
3207 
3208 	validate_slab_cache(kmalloc_caches + 4);
3209 
3210 	/* Hmmm... The next two are dangerous */
3211 	p = kzalloc(32, GFP_KERNEL);
3212 	p[32 + sizeof(void *)] = 0x34;
3213 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3214 		 	" 0x34 -> -0x%p\n", p);
3215 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3216 
3217 	validate_slab_cache(kmalloc_caches + 5);
3218 	p = kzalloc(64, GFP_KERNEL);
3219 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3220 	*p = 0x56;
3221 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3222 									p);
3223 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3224 	validate_slab_cache(kmalloc_caches + 6);
3225 
3226 	printk(KERN_ERR "\nB. Corruption after free\n");
3227 	p = kzalloc(128, GFP_KERNEL);
3228 	kfree(p);
3229 	*p = 0x78;
3230 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3231 	validate_slab_cache(kmalloc_caches + 7);
3232 
3233 	p = kzalloc(256, GFP_KERNEL);
3234 	kfree(p);
3235 	p[50] = 0x9a;
3236 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3237 	validate_slab_cache(kmalloc_caches + 8);
3238 
3239 	p = kzalloc(512, GFP_KERNEL);
3240 	kfree(p);
3241 	p[512] = 0xab;
3242 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3243 	validate_slab_cache(kmalloc_caches + 9);
3244 }
3245 #else
3246 static void resiliency_test(void) {};
3247 #endif
3248 
3249 /*
3250  * Generate lists of code addresses where slabcache objects are allocated
3251  * and freed.
3252  */
3253 
3254 struct location {
3255 	unsigned long count;
3256 	void *addr;
3257 	long long sum_time;
3258 	long min_time;
3259 	long max_time;
3260 	long min_pid;
3261 	long max_pid;
3262 	cpumask_t cpus;
3263 	nodemask_t nodes;
3264 };
3265 
3266 struct loc_track {
3267 	unsigned long max;
3268 	unsigned long count;
3269 	struct location *loc;
3270 };
3271 
3272 static void free_loc_track(struct loc_track *t)
3273 {
3274 	if (t->max)
3275 		free_pages((unsigned long)t->loc,
3276 			get_order(sizeof(struct location) * t->max));
3277 }
3278 
3279 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3280 {
3281 	struct location *l;
3282 	int order;
3283 
3284 	order = get_order(sizeof(struct location) * max);
3285 
3286 	l = (void *)__get_free_pages(flags, order);
3287 	if (!l)
3288 		return 0;
3289 
3290 	if (t->count) {
3291 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3292 		free_loc_track(t);
3293 	}
3294 	t->max = max;
3295 	t->loc = l;
3296 	return 1;
3297 }
3298 
3299 static int add_location(struct loc_track *t, struct kmem_cache *s,
3300 				const struct track *track)
3301 {
3302 	long start, end, pos;
3303 	struct location *l;
3304 	void *caddr;
3305 	unsigned long age = jiffies - track->when;
3306 
3307 	start = -1;
3308 	end = t->count;
3309 
3310 	for ( ; ; ) {
3311 		pos = start + (end - start + 1) / 2;
3312 
3313 		/*
3314 		 * There is nothing at "end". If we end up there
3315 		 * we need to add something to before end.
3316 		 */
3317 		if (pos == end)
3318 			break;
3319 
3320 		caddr = t->loc[pos].addr;
3321 		if (track->addr == caddr) {
3322 
3323 			l = &t->loc[pos];
3324 			l->count++;
3325 			if (track->when) {
3326 				l->sum_time += age;
3327 				if (age < l->min_time)
3328 					l->min_time = age;
3329 				if (age > l->max_time)
3330 					l->max_time = age;
3331 
3332 				if (track->pid < l->min_pid)
3333 					l->min_pid = track->pid;
3334 				if (track->pid > l->max_pid)
3335 					l->max_pid = track->pid;
3336 
3337 				cpu_set(track->cpu, l->cpus);
3338 			}
3339 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3340 			return 1;
3341 		}
3342 
3343 		if (track->addr < caddr)
3344 			end = pos;
3345 		else
3346 			start = pos;
3347 	}
3348 
3349 	/*
3350 	 * Not found. Insert new tracking element.
3351 	 */
3352 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3353 		return 0;
3354 
3355 	l = t->loc + pos;
3356 	if (pos < t->count)
3357 		memmove(l + 1, l,
3358 			(t->count - pos) * sizeof(struct location));
3359 	t->count++;
3360 	l->count = 1;
3361 	l->addr = track->addr;
3362 	l->sum_time = age;
3363 	l->min_time = age;
3364 	l->max_time = age;
3365 	l->min_pid = track->pid;
3366 	l->max_pid = track->pid;
3367 	cpus_clear(l->cpus);
3368 	cpu_set(track->cpu, l->cpus);
3369 	nodes_clear(l->nodes);
3370 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3371 	return 1;
3372 }
3373 
3374 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3375 		struct page *page, enum track_item alloc)
3376 {
3377 	void *addr = page_address(page);
3378 	DECLARE_BITMAP(map, s->objects);
3379 	void *p;
3380 
3381 	bitmap_zero(map, s->objects);
3382 	for_each_free_object(p, s, page->freelist)
3383 		set_bit(slab_index(p, s, addr), map);
3384 
3385 	for_each_object(p, s, addr)
3386 		if (!test_bit(slab_index(p, s, addr), map))
3387 			add_location(t, s, get_track(s, p, alloc));
3388 }
3389 
3390 static int list_locations(struct kmem_cache *s, char *buf,
3391 					enum track_item alloc)
3392 {
3393 	int n = 0;
3394 	unsigned long i;
3395 	struct loc_track t = { 0, 0, NULL };
3396 	int node;
3397 
3398 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3399 			GFP_TEMPORARY))
3400 		return sprintf(buf, "Out of memory\n");
3401 
3402 	/* Push back cpu slabs */
3403 	flush_all(s);
3404 
3405 	for_each_node_state(node, N_NORMAL_MEMORY) {
3406 		struct kmem_cache_node *n = get_node(s, node);
3407 		unsigned long flags;
3408 		struct page *page;
3409 
3410 		if (!atomic_long_read(&n->nr_slabs))
3411 			continue;
3412 
3413 		spin_lock_irqsave(&n->list_lock, flags);
3414 		list_for_each_entry(page, &n->partial, lru)
3415 			process_slab(&t, s, page, alloc);
3416 		list_for_each_entry(page, &n->full, lru)
3417 			process_slab(&t, s, page, alloc);
3418 		spin_unlock_irqrestore(&n->list_lock, flags);
3419 	}
3420 
3421 	for (i = 0; i < t.count; i++) {
3422 		struct location *l = &t.loc[i];
3423 
3424 		if (n > PAGE_SIZE - 100)
3425 			break;
3426 		n += sprintf(buf + n, "%7ld ", l->count);
3427 
3428 		if (l->addr)
3429 			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3430 		else
3431 			n += sprintf(buf + n, "<not-available>");
3432 
3433 		if (l->sum_time != l->min_time) {
3434 			unsigned long remainder;
3435 
3436 			n += sprintf(buf + n, " age=%ld/%ld/%ld",
3437 			l->min_time,
3438 			div_long_long_rem(l->sum_time, l->count, &remainder),
3439 			l->max_time);
3440 		} else
3441 			n += sprintf(buf + n, " age=%ld",
3442 				l->min_time);
3443 
3444 		if (l->min_pid != l->max_pid)
3445 			n += sprintf(buf + n, " pid=%ld-%ld",
3446 				l->min_pid, l->max_pid);
3447 		else
3448 			n += sprintf(buf + n, " pid=%ld",
3449 				l->min_pid);
3450 
3451 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3452 				n < PAGE_SIZE - 60) {
3453 			n += sprintf(buf + n, " cpus=");
3454 			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3455 					l->cpus);
3456 		}
3457 
3458 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3459 				n < PAGE_SIZE - 60) {
3460 			n += sprintf(buf + n, " nodes=");
3461 			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3462 					l->nodes);
3463 		}
3464 
3465 		n += sprintf(buf + n, "\n");
3466 	}
3467 
3468 	free_loc_track(&t);
3469 	if (!t.count)
3470 		n += sprintf(buf, "No data\n");
3471 	return n;
3472 }
3473 
3474 enum slab_stat_type {
3475 	SL_FULL,
3476 	SL_PARTIAL,
3477 	SL_CPU,
3478 	SL_OBJECTS
3479 };
3480 
3481 #define SO_FULL		(1 << SL_FULL)
3482 #define SO_PARTIAL	(1 << SL_PARTIAL)
3483 #define SO_CPU		(1 << SL_CPU)
3484 #define SO_OBJECTS	(1 << SL_OBJECTS)
3485 
3486 static unsigned long slab_objects(struct kmem_cache *s,
3487 			char *buf, unsigned long flags)
3488 {
3489 	unsigned long total = 0;
3490 	int cpu;
3491 	int node;
3492 	int x;
3493 	unsigned long *nodes;
3494 	unsigned long *per_cpu;
3495 
3496 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3497 	per_cpu = nodes + nr_node_ids;
3498 
3499 	for_each_possible_cpu(cpu) {
3500 		struct page *page;
3501 		int node;
3502 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3503 
3504 		if (!c)
3505 			continue;
3506 
3507 		page = c->page;
3508 		node = c->node;
3509 		if (node < 0)
3510 			continue;
3511 		if (page) {
3512 			if (flags & SO_CPU) {
3513 				int x = 0;
3514 
3515 				if (flags & SO_OBJECTS)
3516 					x = page->inuse;
3517 				else
3518 					x = 1;
3519 				total += x;
3520 				nodes[node] += x;
3521 			}
3522 			per_cpu[node]++;
3523 		}
3524 	}
3525 
3526 	for_each_node_state(node, N_NORMAL_MEMORY) {
3527 		struct kmem_cache_node *n = get_node(s, node);
3528 
3529 		if (flags & SO_PARTIAL) {
3530 			if (flags & SO_OBJECTS)
3531 				x = count_partial(n);
3532 			else
3533 				x = n->nr_partial;
3534 			total += x;
3535 			nodes[node] += x;
3536 		}
3537 
3538 		if (flags & SO_FULL) {
3539 			int full_slabs = atomic_long_read(&n->nr_slabs)
3540 					- per_cpu[node]
3541 					- n->nr_partial;
3542 
3543 			if (flags & SO_OBJECTS)
3544 				x = full_slabs * s->objects;
3545 			else
3546 				x = full_slabs;
3547 			total += x;
3548 			nodes[node] += x;
3549 		}
3550 	}
3551 
3552 	x = sprintf(buf, "%lu", total);
3553 #ifdef CONFIG_NUMA
3554 	for_each_node_state(node, N_NORMAL_MEMORY)
3555 		if (nodes[node])
3556 			x += sprintf(buf + x, " N%d=%lu",
3557 					node, nodes[node]);
3558 #endif
3559 	kfree(nodes);
3560 	return x + sprintf(buf + x, "\n");
3561 }
3562 
3563 static int any_slab_objects(struct kmem_cache *s)
3564 {
3565 	int node;
3566 	int cpu;
3567 
3568 	for_each_possible_cpu(cpu) {
3569 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3570 
3571 		if (c && c->page)
3572 			return 1;
3573 	}
3574 
3575 	for_each_online_node(node) {
3576 		struct kmem_cache_node *n = get_node(s, node);
3577 
3578 		if (!n)
3579 			continue;
3580 
3581 		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3582 			return 1;
3583 	}
3584 	return 0;
3585 }
3586 
3587 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3588 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3589 
3590 struct slab_attribute {
3591 	struct attribute attr;
3592 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3593 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3594 };
3595 
3596 #define SLAB_ATTR_RO(_name) \
3597 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3598 
3599 #define SLAB_ATTR(_name) \
3600 	static struct slab_attribute _name##_attr =  \
3601 	__ATTR(_name, 0644, _name##_show, _name##_store)
3602 
3603 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3604 {
3605 	return sprintf(buf, "%d\n", s->size);
3606 }
3607 SLAB_ATTR_RO(slab_size);
3608 
3609 static ssize_t align_show(struct kmem_cache *s, char *buf)
3610 {
3611 	return sprintf(buf, "%d\n", s->align);
3612 }
3613 SLAB_ATTR_RO(align);
3614 
3615 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3616 {
3617 	return sprintf(buf, "%d\n", s->objsize);
3618 }
3619 SLAB_ATTR_RO(object_size);
3620 
3621 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3622 {
3623 	return sprintf(buf, "%d\n", s->objects);
3624 }
3625 SLAB_ATTR_RO(objs_per_slab);
3626 
3627 static ssize_t order_show(struct kmem_cache *s, char *buf)
3628 {
3629 	return sprintf(buf, "%d\n", s->order);
3630 }
3631 SLAB_ATTR_RO(order);
3632 
3633 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3634 {
3635 	if (s->ctor) {
3636 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3637 
3638 		return n + sprintf(buf + n, "\n");
3639 	}
3640 	return 0;
3641 }
3642 SLAB_ATTR_RO(ctor);
3643 
3644 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3645 {
3646 	return sprintf(buf, "%d\n", s->refcount - 1);
3647 }
3648 SLAB_ATTR_RO(aliases);
3649 
3650 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3651 {
3652 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3653 }
3654 SLAB_ATTR_RO(slabs);
3655 
3656 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3657 {
3658 	return slab_objects(s, buf, SO_PARTIAL);
3659 }
3660 SLAB_ATTR_RO(partial);
3661 
3662 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3663 {
3664 	return slab_objects(s, buf, SO_CPU);
3665 }
3666 SLAB_ATTR_RO(cpu_slabs);
3667 
3668 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3669 {
3670 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3671 }
3672 SLAB_ATTR_RO(objects);
3673 
3674 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3675 {
3676 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3677 }
3678 
3679 static ssize_t sanity_checks_store(struct kmem_cache *s,
3680 				const char *buf, size_t length)
3681 {
3682 	s->flags &= ~SLAB_DEBUG_FREE;
3683 	if (buf[0] == '1')
3684 		s->flags |= SLAB_DEBUG_FREE;
3685 	return length;
3686 }
3687 SLAB_ATTR(sanity_checks);
3688 
3689 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3690 {
3691 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3692 }
3693 
3694 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3695 							size_t length)
3696 {
3697 	s->flags &= ~SLAB_TRACE;
3698 	if (buf[0] == '1')
3699 		s->flags |= SLAB_TRACE;
3700 	return length;
3701 }
3702 SLAB_ATTR(trace);
3703 
3704 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3705 {
3706 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3707 }
3708 
3709 static ssize_t reclaim_account_store(struct kmem_cache *s,
3710 				const char *buf, size_t length)
3711 {
3712 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3713 	if (buf[0] == '1')
3714 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3715 	return length;
3716 }
3717 SLAB_ATTR(reclaim_account);
3718 
3719 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3720 {
3721 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3722 }
3723 SLAB_ATTR_RO(hwcache_align);
3724 
3725 #ifdef CONFIG_ZONE_DMA
3726 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3727 {
3728 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3729 }
3730 SLAB_ATTR_RO(cache_dma);
3731 #endif
3732 
3733 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3734 {
3735 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3736 }
3737 SLAB_ATTR_RO(destroy_by_rcu);
3738 
3739 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3740 {
3741 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3742 }
3743 
3744 static ssize_t red_zone_store(struct kmem_cache *s,
3745 				const char *buf, size_t length)
3746 {
3747 	if (any_slab_objects(s))
3748 		return -EBUSY;
3749 
3750 	s->flags &= ~SLAB_RED_ZONE;
3751 	if (buf[0] == '1')
3752 		s->flags |= SLAB_RED_ZONE;
3753 	calculate_sizes(s);
3754 	return length;
3755 }
3756 SLAB_ATTR(red_zone);
3757 
3758 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3759 {
3760 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3761 }
3762 
3763 static ssize_t poison_store(struct kmem_cache *s,
3764 				const char *buf, size_t length)
3765 {
3766 	if (any_slab_objects(s))
3767 		return -EBUSY;
3768 
3769 	s->flags &= ~SLAB_POISON;
3770 	if (buf[0] == '1')
3771 		s->flags |= SLAB_POISON;
3772 	calculate_sizes(s);
3773 	return length;
3774 }
3775 SLAB_ATTR(poison);
3776 
3777 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3778 {
3779 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3780 }
3781 
3782 static ssize_t store_user_store(struct kmem_cache *s,
3783 				const char *buf, size_t length)
3784 {
3785 	if (any_slab_objects(s))
3786 		return -EBUSY;
3787 
3788 	s->flags &= ~SLAB_STORE_USER;
3789 	if (buf[0] == '1')
3790 		s->flags |= SLAB_STORE_USER;
3791 	calculate_sizes(s);
3792 	return length;
3793 }
3794 SLAB_ATTR(store_user);
3795 
3796 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3797 {
3798 	return 0;
3799 }
3800 
3801 static ssize_t validate_store(struct kmem_cache *s,
3802 			const char *buf, size_t length)
3803 {
3804 	int ret = -EINVAL;
3805 
3806 	if (buf[0] == '1') {
3807 		ret = validate_slab_cache(s);
3808 		if (ret >= 0)
3809 			ret = length;
3810 	}
3811 	return ret;
3812 }
3813 SLAB_ATTR(validate);
3814 
3815 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3816 {
3817 	return 0;
3818 }
3819 
3820 static ssize_t shrink_store(struct kmem_cache *s,
3821 			const char *buf, size_t length)
3822 {
3823 	if (buf[0] == '1') {
3824 		int rc = kmem_cache_shrink(s);
3825 
3826 		if (rc)
3827 			return rc;
3828 	} else
3829 		return -EINVAL;
3830 	return length;
3831 }
3832 SLAB_ATTR(shrink);
3833 
3834 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3835 {
3836 	if (!(s->flags & SLAB_STORE_USER))
3837 		return -ENOSYS;
3838 	return list_locations(s, buf, TRACK_ALLOC);
3839 }
3840 SLAB_ATTR_RO(alloc_calls);
3841 
3842 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3843 {
3844 	if (!(s->flags & SLAB_STORE_USER))
3845 		return -ENOSYS;
3846 	return list_locations(s, buf, TRACK_FREE);
3847 }
3848 SLAB_ATTR_RO(free_calls);
3849 
3850 #ifdef CONFIG_NUMA
3851 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3852 {
3853 	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3854 }
3855 
3856 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3857 				const char *buf, size_t length)
3858 {
3859 	int n = simple_strtoul(buf, NULL, 10);
3860 
3861 	if (n < 100)
3862 		s->defrag_ratio = n * 10;
3863 	return length;
3864 }
3865 SLAB_ATTR(defrag_ratio);
3866 #endif
3867 
3868 static struct attribute * slab_attrs[] = {
3869 	&slab_size_attr.attr,
3870 	&object_size_attr.attr,
3871 	&objs_per_slab_attr.attr,
3872 	&order_attr.attr,
3873 	&objects_attr.attr,
3874 	&slabs_attr.attr,
3875 	&partial_attr.attr,
3876 	&cpu_slabs_attr.attr,
3877 	&ctor_attr.attr,
3878 	&aliases_attr.attr,
3879 	&align_attr.attr,
3880 	&sanity_checks_attr.attr,
3881 	&trace_attr.attr,
3882 	&hwcache_align_attr.attr,
3883 	&reclaim_account_attr.attr,
3884 	&destroy_by_rcu_attr.attr,
3885 	&red_zone_attr.attr,
3886 	&poison_attr.attr,
3887 	&store_user_attr.attr,
3888 	&validate_attr.attr,
3889 	&shrink_attr.attr,
3890 	&alloc_calls_attr.attr,
3891 	&free_calls_attr.attr,
3892 #ifdef CONFIG_ZONE_DMA
3893 	&cache_dma_attr.attr,
3894 #endif
3895 #ifdef CONFIG_NUMA
3896 	&defrag_ratio_attr.attr,
3897 #endif
3898 	NULL
3899 };
3900 
3901 static struct attribute_group slab_attr_group = {
3902 	.attrs = slab_attrs,
3903 };
3904 
3905 static ssize_t slab_attr_show(struct kobject *kobj,
3906 				struct attribute *attr,
3907 				char *buf)
3908 {
3909 	struct slab_attribute *attribute;
3910 	struct kmem_cache *s;
3911 	int err;
3912 
3913 	attribute = to_slab_attr(attr);
3914 	s = to_slab(kobj);
3915 
3916 	if (!attribute->show)
3917 		return -EIO;
3918 
3919 	err = attribute->show(s, buf);
3920 
3921 	return err;
3922 }
3923 
3924 static ssize_t slab_attr_store(struct kobject *kobj,
3925 				struct attribute *attr,
3926 				const char *buf, size_t len)
3927 {
3928 	struct slab_attribute *attribute;
3929 	struct kmem_cache *s;
3930 	int err;
3931 
3932 	attribute = to_slab_attr(attr);
3933 	s = to_slab(kobj);
3934 
3935 	if (!attribute->store)
3936 		return -EIO;
3937 
3938 	err = attribute->store(s, buf, len);
3939 
3940 	return err;
3941 }
3942 
3943 static struct sysfs_ops slab_sysfs_ops = {
3944 	.show = slab_attr_show,
3945 	.store = slab_attr_store,
3946 };
3947 
3948 static struct kobj_type slab_ktype = {
3949 	.sysfs_ops = &slab_sysfs_ops,
3950 };
3951 
3952 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3953 {
3954 	struct kobj_type *ktype = get_ktype(kobj);
3955 
3956 	if (ktype == &slab_ktype)
3957 		return 1;
3958 	return 0;
3959 }
3960 
3961 static struct kset_uevent_ops slab_uevent_ops = {
3962 	.filter = uevent_filter,
3963 };
3964 
3965 static struct kset *slab_kset;
3966 
3967 #define ID_STR_LENGTH 64
3968 
3969 /* Create a unique string id for a slab cache:
3970  * format
3971  * :[flags-]size:[memory address of kmemcache]
3972  */
3973 static char *create_unique_id(struct kmem_cache *s)
3974 {
3975 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3976 	char *p = name;
3977 
3978 	BUG_ON(!name);
3979 
3980 	*p++ = ':';
3981 	/*
3982 	 * First flags affecting slabcache operations. We will only
3983 	 * get here for aliasable slabs so we do not need to support
3984 	 * too many flags. The flags here must cover all flags that
3985 	 * are matched during merging to guarantee that the id is
3986 	 * unique.
3987 	 */
3988 	if (s->flags & SLAB_CACHE_DMA)
3989 		*p++ = 'd';
3990 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3991 		*p++ = 'a';
3992 	if (s->flags & SLAB_DEBUG_FREE)
3993 		*p++ = 'F';
3994 	if (p != name + 1)
3995 		*p++ = '-';
3996 	p += sprintf(p, "%07d", s->size);
3997 	BUG_ON(p > name + ID_STR_LENGTH - 1);
3998 	return name;
3999 }
4000 
4001 static int sysfs_slab_add(struct kmem_cache *s)
4002 {
4003 	int err;
4004 	const char *name;
4005 	int unmergeable;
4006 
4007 	if (slab_state < SYSFS)
4008 		/* Defer until later */
4009 		return 0;
4010 
4011 	unmergeable = slab_unmergeable(s);
4012 	if (unmergeable) {
4013 		/*
4014 		 * Slabcache can never be merged so we can use the name proper.
4015 		 * This is typically the case for debug situations. In that
4016 		 * case we can catch duplicate names easily.
4017 		 */
4018 		sysfs_remove_link(&slab_kset->kobj, s->name);
4019 		name = s->name;
4020 	} else {
4021 		/*
4022 		 * Create a unique name for the slab as a target
4023 		 * for the symlinks.
4024 		 */
4025 		name = create_unique_id(s);
4026 	}
4027 
4028 	s->kobj.kset = slab_kset;
4029 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4030 	if (err) {
4031 		kobject_put(&s->kobj);
4032 		return err;
4033 	}
4034 
4035 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4036 	if (err)
4037 		return err;
4038 	kobject_uevent(&s->kobj, KOBJ_ADD);
4039 	if (!unmergeable) {
4040 		/* Setup first alias */
4041 		sysfs_slab_alias(s, s->name);
4042 		kfree(name);
4043 	}
4044 	return 0;
4045 }
4046 
4047 static void sysfs_slab_remove(struct kmem_cache *s)
4048 {
4049 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4050 	kobject_del(&s->kobj);
4051 }
4052 
4053 /*
4054  * Need to buffer aliases during bootup until sysfs becomes
4055  * available lest we loose that information.
4056  */
4057 struct saved_alias {
4058 	struct kmem_cache *s;
4059 	const char *name;
4060 	struct saved_alias *next;
4061 };
4062 
4063 static struct saved_alias *alias_list;
4064 
4065 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4066 {
4067 	struct saved_alias *al;
4068 
4069 	if (slab_state == SYSFS) {
4070 		/*
4071 		 * If we have a leftover link then remove it.
4072 		 */
4073 		sysfs_remove_link(&slab_kset->kobj, name);
4074 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4075 	}
4076 
4077 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4078 	if (!al)
4079 		return -ENOMEM;
4080 
4081 	al->s = s;
4082 	al->name = name;
4083 	al->next = alias_list;
4084 	alias_list = al;
4085 	return 0;
4086 }
4087 
4088 static int __init slab_sysfs_init(void)
4089 {
4090 	struct kmem_cache *s;
4091 	int err;
4092 
4093 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4094 	if (!slab_kset) {
4095 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4096 		return -ENOSYS;
4097 	}
4098 
4099 	slab_state = SYSFS;
4100 
4101 	list_for_each_entry(s, &slab_caches, list) {
4102 		err = sysfs_slab_add(s);
4103 		if (err)
4104 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4105 						" to sysfs\n", s->name);
4106 	}
4107 
4108 	while (alias_list) {
4109 		struct saved_alias *al = alias_list;
4110 
4111 		alias_list = alias_list->next;
4112 		err = sysfs_slab_alias(al->s, al->name);
4113 		if (err)
4114 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4115 					" %s to sysfs\n", s->name);
4116 		kfree(al);
4117 	}
4118 
4119 	resiliency_test();
4120 	return 0;
4121 }
4122 
4123 __initcall(slab_sysfs_init);
4124 #endif
4125 
4126 /*
4127  * The /proc/slabinfo ABI
4128  */
4129 #ifdef CONFIG_SLABINFO
4130 
4131 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4132                        size_t count, loff_t *ppos)
4133 {
4134 	return -EINVAL;
4135 }
4136 
4137 
4138 static void print_slabinfo_header(struct seq_file *m)
4139 {
4140 	seq_puts(m, "slabinfo - version: 2.1\n");
4141 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4142 		 "<objperslab> <pagesperslab>");
4143 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4144 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4145 	seq_putc(m, '\n');
4146 }
4147 
4148 static void *s_start(struct seq_file *m, loff_t *pos)
4149 {
4150 	loff_t n = *pos;
4151 
4152 	down_read(&slub_lock);
4153 	if (!n)
4154 		print_slabinfo_header(m);
4155 
4156 	return seq_list_start(&slab_caches, *pos);
4157 }
4158 
4159 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4160 {
4161 	return seq_list_next(p, &slab_caches, pos);
4162 }
4163 
4164 static void s_stop(struct seq_file *m, void *p)
4165 {
4166 	up_read(&slub_lock);
4167 }
4168 
4169 static int s_show(struct seq_file *m, void *p)
4170 {
4171 	unsigned long nr_partials = 0;
4172 	unsigned long nr_slabs = 0;
4173 	unsigned long nr_inuse = 0;
4174 	unsigned long nr_objs;
4175 	struct kmem_cache *s;
4176 	int node;
4177 
4178 	s = list_entry(p, struct kmem_cache, list);
4179 
4180 	for_each_online_node(node) {
4181 		struct kmem_cache_node *n = get_node(s, node);
4182 
4183 		if (!n)
4184 			continue;
4185 
4186 		nr_partials += n->nr_partial;
4187 		nr_slabs += atomic_long_read(&n->nr_slabs);
4188 		nr_inuse += count_partial(n);
4189 	}
4190 
4191 	nr_objs = nr_slabs * s->objects;
4192 	nr_inuse += (nr_slabs - nr_partials) * s->objects;
4193 
4194 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4195 		   nr_objs, s->size, s->objects, (1 << s->order));
4196 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4197 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4198 		   0UL);
4199 	seq_putc(m, '\n');
4200 	return 0;
4201 }
4202 
4203 const struct seq_operations slabinfo_op = {
4204 	.start = s_start,
4205 	.next = s_next,
4206 	.stop = s_stop,
4207 	.show = s_show,
4208 };
4209 
4210 #endif /* CONFIG_SLABINFO */
4211