1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/bit_spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/bitops.h> 16 #include <linux/slab.h> 17 #include <linux/proc_fs.h> 18 #include <linux/seq_file.h> 19 #include <linux/cpu.h> 20 #include <linux/cpuset.h> 21 #include <linux/mempolicy.h> 22 #include <linux/ctype.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/memory.h> 26 #include <linux/math64.h> 27 28 /* 29 * Lock order: 30 * 1. slab_lock(page) 31 * 2. slab->list_lock 32 * 33 * The slab_lock protects operations on the object of a particular 34 * slab and its metadata in the page struct. If the slab lock 35 * has been taken then no allocations nor frees can be performed 36 * on the objects in the slab nor can the slab be added or removed 37 * from the partial or full lists since this would mean modifying 38 * the page_struct of the slab. 39 * 40 * The list_lock protects the partial and full list on each node and 41 * the partial slab counter. If taken then no new slabs may be added or 42 * removed from the lists nor make the number of partial slabs be modified. 43 * (Note that the total number of slabs is an atomic value that may be 44 * modified without taking the list lock). 45 * 46 * The list_lock is a centralized lock and thus we avoid taking it as 47 * much as possible. As long as SLUB does not have to handle partial 48 * slabs, operations can continue without any centralized lock. F.e. 49 * allocating a long series of objects that fill up slabs does not require 50 * the list lock. 51 * 52 * The lock order is sometimes inverted when we are trying to get a slab 53 * off a list. We take the list_lock and then look for a page on the list 54 * to use. While we do that objects in the slabs may be freed. We can 55 * only operate on the slab if we have also taken the slab_lock. So we use 56 * a slab_trylock() on the slab. If trylock was successful then no frees 57 * can occur anymore and we can use the slab for allocations etc. If the 58 * slab_trylock() does not succeed then frees are in progress in the slab and 59 * we must stay away from it for a while since we may cause a bouncing 60 * cacheline if we try to acquire the lock. So go onto the next slab. 61 * If all pages are busy then we may allocate a new slab instead of reusing 62 * a partial slab. A new slab has noone operating on it and thus there is 63 * no danger of cacheline contention. 64 * 65 * Interrupts are disabled during allocation and deallocation in order to 66 * make the slab allocator safe to use in the context of an irq. In addition 67 * interrupts are disabled to ensure that the processor does not change 68 * while handling per_cpu slabs, due to kernel preemption. 69 * 70 * SLUB assigns one slab for allocation to each processor. 71 * Allocations only occur from these slabs called cpu slabs. 72 * 73 * Slabs with free elements are kept on a partial list and during regular 74 * operations no list for full slabs is used. If an object in a full slab is 75 * freed then the slab will show up again on the partial lists. 76 * We track full slabs for debugging purposes though because otherwise we 77 * cannot scan all objects. 78 * 79 * Slabs are freed when they become empty. Teardown and setup is 80 * minimal so we rely on the page allocators per cpu caches for 81 * fast frees and allocs. 82 * 83 * Overloading of page flags that are otherwise used for LRU management. 84 * 85 * PageActive The slab is frozen and exempt from list processing. 86 * This means that the slab is dedicated to a purpose 87 * such as satisfying allocations for a specific 88 * processor. Objects may be freed in the slab while 89 * it is frozen but slab_free will then skip the usual 90 * list operations. It is up to the processor holding 91 * the slab to integrate the slab into the slab lists 92 * when the slab is no longer needed. 93 * 94 * One use of this flag is to mark slabs that are 95 * used for allocations. Then such a slab becomes a cpu 96 * slab. The cpu slab may be equipped with an additional 97 * freelist that allows lockless access to 98 * free objects in addition to the regular freelist 99 * that requires the slab lock. 100 * 101 * PageError Slab requires special handling due to debug 102 * options set. This moves slab handling out of 103 * the fast path and disables lockless freelists. 104 */ 105 106 #ifdef CONFIG_SLUB_DEBUG 107 #define SLABDEBUG 1 108 #else 109 #define SLABDEBUG 0 110 #endif 111 112 /* 113 * Issues still to be resolved: 114 * 115 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 116 * 117 * - Variable sizing of the per node arrays 118 */ 119 120 /* Enable to test recovery from slab corruption on boot */ 121 #undef SLUB_RESILIENCY_TEST 122 123 /* 124 * Mininum number of partial slabs. These will be left on the partial 125 * lists even if they are empty. kmem_cache_shrink may reclaim them. 126 */ 127 #define MIN_PARTIAL 5 128 129 /* 130 * Maximum number of desirable partial slabs. 131 * The existence of more partial slabs makes kmem_cache_shrink 132 * sort the partial list by the number of objects in the. 133 */ 134 #define MAX_PARTIAL 10 135 136 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 137 SLAB_POISON | SLAB_STORE_USER) 138 139 /* 140 * Set of flags that will prevent slab merging 141 */ 142 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 143 SLAB_TRACE | SLAB_DESTROY_BY_RCU) 144 145 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 146 SLAB_CACHE_DMA) 147 148 #ifndef ARCH_KMALLOC_MINALIGN 149 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 150 #endif 151 152 #ifndef ARCH_SLAB_MINALIGN 153 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 154 #endif 155 156 /* Internal SLUB flags */ 157 #define __OBJECT_POISON 0x80000000 /* Poison object */ 158 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 159 160 static int kmem_size = sizeof(struct kmem_cache); 161 162 #ifdef CONFIG_SMP 163 static struct notifier_block slab_notifier; 164 #endif 165 166 static enum { 167 DOWN, /* No slab functionality available */ 168 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 169 UP, /* Everything works but does not show up in sysfs */ 170 SYSFS /* Sysfs up */ 171 } slab_state = DOWN; 172 173 /* A list of all slab caches on the system */ 174 static DECLARE_RWSEM(slub_lock); 175 static LIST_HEAD(slab_caches); 176 177 /* 178 * Tracking user of a slab. 179 */ 180 struct track { 181 void *addr; /* Called from address */ 182 int cpu; /* Was running on cpu */ 183 int pid; /* Pid context */ 184 unsigned long when; /* When did the operation occur */ 185 }; 186 187 enum track_item { TRACK_ALLOC, TRACK_FREE }; 188 189 #ifdef CONFIG_SLUB_DEBUG 190 static int sysfs_slab_add(struct kmem_cache *); 191 static int sysfs_slab_alias(struct kmem_cache *, const char *); 192 static void sysfs_slab_remove(struct kmem_cache *); 193 194 #else 195 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 196 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 197 { return 0; } 198 static inline void sysfs_slab_remove(struct kmem_cache *s) 199 { 200 kfree(s); 201 } 202 203 #endif 204 205 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) 206 { 207 #ifdef CONFIG_SLUB_STATS 208 c->stat[si]++; 209 #endif 210 } 211 212 /******************************************************************** 213 * Core slab cache functions 214 *******************************************************************/ 215 216 int slab_is_available(void) 217 { 218 return slab_state >= UP; 219 } 220 221 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 222 { 223 #ifdef CONFIG_NUMA 224 return s->node[node]; 225 #else 226 return &s->local_node; 227 #endif 228 } 229 230 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 231 { 232 #ifdef CONFIG_SMP 233 return s->cpu_slab[cpu]; 234 #else 235 return &s->cpu_slab; 236 #endif 237 } 238 239 /* Verify that a pointer has an address that is valid within a slab page */ 240 static inline int check_valid_pointer(struct kmem_cache *s, 241 struct page *page, const void *object) 242 { 243 void *base; 244 245 if (!object) 246 return 1; 247 248 base = page_address(page); 249 if (object < base || object >= base + page->objects * s->size || 250 (object - base) % s->size) { 251 return 0; 252 } 253 254 return 1; 255 } 256 257 /* 258 * Slow version of get and set free pointer. 259 * 260 * This version requires touching the cache lines of kmem_cache which 261 * we avoid to do in the fast alloc free paths. There we obtain the offset 262 * from the page struct. 263 */ 264 static inline void *get_freepointer(struct kmem_cache *s, void *object) 265 { 266 return *(void **)(object + s->offset); 267 } 268 269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 270 { 271 *(void **)(object + s->offset) = fp; 272 } 273 274 /* Loop over all objects in a slab */ 275 #define for_each_object(__p, __s, __addr, __objects) \ 276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 277 __p += (__s)->size) 278 279 /* Scan freelist */ 280 #define for_each_free_object(__p, __s, __free) \ 281 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 282 283 /* Determine object index from a given position */ 284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 285 { 286 return (p - addr) / s->size; 287 } 288 289 static inline struct kmem_cache_order_objects oo_make(int order, 290 unsigned long size) 291 { 292 struct kmem_cache_order_objects x = { 293 (order << 16) + (PAGE_SIZE << order) / size 294 }; 295 296 return x; 297 } 298 299 static inline int oo_order(struct kmem_cache_order_objects x) 300 { 301 return x.x >> 16; 302 } 303 304 static inline int oo_objects(struct kmem_cache_order_objects x) 305 { 306 return x.x & ((1 << 16) - 1); 307 } 308 309 #ifdef CONFIG_SLUB_DEBUG 310 /* 311 * Debug settings: 312 */ 313 #ifdef CONFIG_SLUB_DEBUG_ON 314 static int slub_debug = DEBUG_DEFAULT_FLAGS; 315 #else 316 static int slub_debug; 317 #endif 318 319 static char *slub_debug_slabs; 320 321 /* 322 * Object debugging 323 */ 324 static void print_section(char *text, u8 *addr, unsigned int length) 325 { 326 int i, offset; 327 int newline = 1; 328 char ascii[17]; 329 330 ascii[16] = 0; 331 332 for (i = 0; i < length; i++) { 333 if (newline) { 334 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 335 newline = 0; 336 } 337 printk(KERN_CONT " %02x", addr[i]); 338 offset = i % 16; 339 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 340 if (offset == 15) { 341 printk(KERN_CONT " %s\n", ascii); 342 newline = 1; 343 } 344 } 345 if (!newline) { 346 i %= 16; 347 while (i < 16) { 348 printk(KERN_CONT " "); 349 ascii[i] = ' '; 350 i++; 351 } 352 printk(KERN_CONT " %s\n", ascii); 353 } 354 } 355 356 static struct track *get_track(struct kmem_cache *s, void *object, 357 enum track_item alloc) 358 { 359 struct track *p; 360 361 if (s->offset) 362 p = object + s->offset + sizeof(void *); 363 else 364 p = object + s->inuse; 365 366 return p + alloc; 367 } 368 369 static void set_track(struct kmem_cache *s, void *object, 370 enum track_item alloc, void *addr) 371 { 372 struct track *p; 373 374 if (s->offset) 375 p = object + s->offset + sizeof(void *); 376 else 377 p = object + s->inuse; 378 379 p += alloc; 380 if (addr) { 381 p->addr = addr; 382 p->cpu = smp_processor_id(); 383 p->pid = current->pid; 384 p->when = jiffies; 385 } else 386 memset(p, 0, sizeof(struct track)); 387 } 388 389 static void init_tracking(struct kmem_cache *s, void *object) 390 { 391 if (!(s->flags & SLAB_STORE_USER)) 392 return; 393 394 set_track(s, object, TRACK_FREE, NULL); 395 set_track(s, object, TRACK_ALLOC, NULL); 396 } 397 398 static void print_track(const char *s, struct track *t) 399 { 400 if (!t->addr) 401 return; 402 403 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 404 s, t->addr, jiffies - t->when, t->cpu, t->pid); 405 } 406 407 static void print_tracking(struct kmem_cache *s, void *object) 408 { 409 if (!(s->flags & SLAB_STORE_USER)) 410 return; 411 412 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 413 print_track("Freed", get_track(s, object, TRACK_FREE)); 414 } 415 416 static void print_page_info(struct page *page) 417 { 418 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 419 page, page->objects, page->inuse, page->freelist, page->flags); 420 421 } 422 423 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 424 { 425 va_list args; 426 char buf[100]; 427 428 va_start(args, fmt); 429 vsnprintf(buf, sizeof(buf), fmt, args); 430 va_end(args); 431 printk(KERN_ERR "========================================" 432 "=====================================\n"); 433 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 434 printk(KERN_ERR "----------------------------------------" 435 "-------------------------------------\n\n"); 436 } 437 438 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 439 { 440 va_list args; 441 char buf[100]; 442 443 va_start(args, fmt); 444 vsnprintf(buf, sizeof(buf), fmt, args); 445 va_end(args); 446 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 447 } 448 449 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 450 { 451 unsigned int off; /* Offset of last byte */ 452 u8 *addr = page_address(page); 453 454 print_tracking(s, p); 455 456 print_page_info(page); 457 458 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 459 p, p - addr, get_freepointer(s, p)); 460 461 if (p > addr + 16) 462 print_section("Bytes b4", p - 16, 16); 463 464 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 465 466 if (s->flags & SLAB_RED_ZONE) 467 print_section("Redzone", p + s->objsize, 468 s->inuse - s->objsize); 469 470 if (s->offset) 471 off = s->offset + sizeof(void *); 472 else 473 off = s->inuse; 474 475 if (s->flags & SLAB_STORE_USER) 476 off += 2 * sizeof(struct track); 477 478 if (off != s->size) 479 /* Beginning of the filler is the free pointer */ 480 print_section("Padding", p + off, s->size - off); 481 482 dump_stack(); 483 } 484 485 static void object_err(struct kmem_cache *s, struct page *page, 486 u8 *object, char *reason) 487 { 488 slab_bug(s, "%s", reason); 489 print_trailer(s, page, object); 490 } 491 492 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 493 { 494 va_list args; 495 char buf[100]; 496 497 va_start(args, fmt); 498 vsnprintf(buf, sizeof(buf), fmt, args); 499 va_end(args); 500 slab_bug(s, "%s", buf); 501 print_page_info(page); 502 dump_stack(); 503 } 504 505 static void init_object(struct kmem_cache *s, void *object, int active) 506 { 507 u8 *p = object; 508 509 if (s->flags & __OBJECT_POISON) { 510 memset(p, POISON_FREE, s->objsize - 1); 511 p[s->objsize - 1] = POISON_END; 512 } 513 514 if (s->flags & SLAB_RED_ZONE) 515 memset(p + s->objsize, 516 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 517 s->inuse - s->objsize); 518 } 519 520 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 521 { 522 while (bytes) { 523 if (*start != (u8)value) 524 return start; 525 start++; 526 bytes--; 527 } 528 return NULL; 529 } 530 531 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 532 void *from, void *to) 533 { 534 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 535 memset(from, data, to - from); 536 } 537 538 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 539 u8 *object, char *what, 540 u8 *start, unsigned int value, unsigned int bytes) 541 { 542 u8 *fault; 543 u8 *end; 544 545 fault = check_bytes(start, value, bytes); 546 if (!fault) 547 return 1; 548 549 end = start + bytes; 550 while (end > fault && end[-1] == value) 551 end--; 552 553 slab_bug(s, "%s overwritten", what); 554 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 555 fault, end - 1, fault[0], value); 556 print_trailer(s, page, object); 557 558 restore_bytes(s, what, value, fault, end); 559 return 0; 560 } 561 562 /* 563 * Object layout: 564 * 565 * object address 566 * Bytes of the object to be managed. 567 * If the freepointer may overlay the object then the free 568 * pointer is the first word of the object. 569 * 570 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 571 * 0xa5 (POISON_END) 572 * 573 * object + s->objsize 574 * Padding to reach word boundary. This is also used for Redzoning. 575 * Padding is extended by another word if Redzoning is enabled and 576 * objsize == inuse. 577 * 578 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 579 * 0xcc (RED_ACTIVE) for objects in use. 580 * 581 * object + s->inuse 582 * Meta data starts here. 583 * 584 * A. Free pointer (if we cannot overwrite object on free) 585 * B. Tracking data for SLAB_STORE_USER 586 * C. Padding to reach required alignment boundary or at mininum 587 * one word if debugging is on to be able to detect writes 588 * before the word boundary. 589 * 590 * Padding is done using 0x5a (POISON_INUSE) 591 * 592 * object + s->size 593 * Nothing is used beyond s->size. 594 * 595 * If slabcaches are merged then the objsize and inuse boundaries are mostly 596 * ignored. And therefore no slab options that rely on these boundaries 597 * may be used with merged slabcaches. 598 */ 599 600 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 601 { 602 unsigned long off = s->inuse; /* The end of info */ 603 604 if (s->offset) 605 /* Freepointer is placed after the object. */ 606 off += sizeof(void *); 607 608 if (s->flags & SLAB_STORE_USER) 609 /* We also have user information there */ 610 off += 2 * sizeof(struct track); 611 612 if (s->size == off) 613 return 1; 614 615 return check_bytes_and_report(s, page, p, "Object padding", 616 p + off, POISON_INUSE, s->size - off); 617 } 618 619 /* Check the pad bytes at the end of a slab page */ 620 static int slab_pad_check(struct kmem_cache *s, struct page *page) 621 { 622 u8 *start; 623 u8 *fault; 624 u8 *end; 625 int length; 626 int remainder; 627 628 if (!(s->flags & SLAB_POISON)) 629 return 1; 630 631 start = page_address(page); 632 length = (PAGE_SIZE << compound_order(page)); 633 end = start + length; 634 remainder = length % s->size; 635 if (!remainder) 636 return 1; 637 638 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 639 if (!fault) 640 return 1; 641 while (end > fault && end[-1] == POISON_INUSE) 642 end--; 643 644 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 645 print_section("Padding", end - remainder, remainder); 646 647 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 648 return 0; 649 } 650 651 static int check_object(struct kmem_cache *s, struct page *page, 652 void *object, int active) 653 { 654 u8 *p = object; 655 u8 *endobject = object + s->objsize; 656 657 if (s->flags & SLAB_RED_ZONE) { 658 unsigned int red = 659 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 660 661 if (!check_bytes_and_report(s, page, object, "Redzone", 662 endobject, red, s->inuse - s->objsize)) 663 return 0; 664 } else { 665 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 666 check_bytes_and_report(s, page, p, "Alignment padding", 667 endobject, POISON_INUSE, s->inuse - s->objsize); 668 } 669 } 670 671 if (s->flags & SLAB_POISON) { 672 if (!active && (s->flags & __OBJECT_POISON) && 673 (!check_bytes_and_report(s, page, p, "Poison", p, 674 POISON_FREE, s->objsize - 1) || 675 !check_bytes_and_report(s, page, p, "Poison", 676 p + s->objsize - 1, POISON_END, 1))) 677 return 0; 678 /* 679 * check_pad_bytes cleans up on its own. 680 */ 681 check_pad_bytes(s, page, p); 682 } 683 684 if (!s->offset && active) 685 /* 686 * Object and freepointer overlap. Cannot check 687 * freepointer while object is allocated. 688 */ 689 return 1; 690 691 /* Check free pointer validity */ 692 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 693 object_err(s, page, p, "Freepointer corrupt"); 694 /* 695 * No choice but to zap it and thus loose the remainder 696 * of the free objects in this slab. May cause 697 * another error because the object count is now wrong. 698 */ 699 set_freepointer(s, p, NULL); 700 return 0; 701 } 702 return 1; 703 } 704 705 static int check_slab(struct kmem_cache *s, struct page *page) 706 { 707 int maxobj; 708 709 VM_BUG_ON(!irqs_disabled()); 710 711 if (!PageSlab(page)) { 712 slab_err(s, page, "Not a valid slab page"); 713 return 0; 714 } 715 716 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 717 if (page->objects > maxobj) { 718 slab_err(s, page, "objects %u > max %u", 719 s->name, page->objects, maxobj); 720 return 0; 721 } 722 if (page->inuse > page->objects) { 723 slab_err(s, page, "inuse %u > max %u", 724 s->name, page->inuse, page->objects); 725 return 0; 726 } 727 /* Slab_pad_check fixes things up after itself */ 728 slab_pad_check(s, page); 729 return 1; 730 } 731 732 /* 733 * Determine if a certain object on a page is on the freelist. Must hold the 734 * slab lock to guarantee that the chains are in a consistent state. 735 */ 736 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 737 { 738 int nr = 0; 739 void *fp = page->freelist; 740 void *object = NULL; 741 unsigned long max_objects; 742 743 while (fp && nr <= page->objects) { 744 if (fp == search) 745 return 1; 746 if (!check_valid_pointer(s, page, fp)) { 747 if (object) { 748 object_err(s, page, object, 749 "Freechain corrupt"); 750 set_freepointer(s, object, NULL); 751 break; 752 } else { 753 slab_err(s, page, "Freepointer corrupt"); 754 page->freelist = NULL; 755 page->inuse = page->objects; 756 slab_fix(s, "Freelist cleared"); 757 return 0; 758 } 759 break; 760 } 761 object = fp; 762 fp = get_freepointer(s, object); 763 nr++; 764 } 765 766 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 767 if (max_objects > 65535) 768 max_objects = 65535; 769 770 if (page->objects != max_objects) { 771 slab_err(s, page, "Wrong number of objects. Found %d but " 772 "should be %d", page->objects, max_objects); 773 page->objects = max_objects; 774 slab_fix(s, "Number of objects adjusted."); 775 } 776 if (page->inuse != page->objects - nr) { 777 slab_err(s, page, "Wrong object count. Counter is %d but " 778 "counted were %d", page->inuse, page->objects - nr); 779 page->inuse = page->objects - nr; 780 slab_fix(s, "Object count adjusted."); 781 } 782 return search == NULL; 783 } 784 785 static void trace(struct kmem_cache *s, struct page *page, void *object, 786 int alloc) 787 { 788 if (s->flags & SLAB_TRACE) { 789 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 790 s->name, 791 alloc ? "alloc" : "free", 792 object, page->inuse, 793 page->freelist); 794 795 if (!alloc) 796 print_section("Object", (void *)object, s->objsize); 797 798 dump_stack(); 799 } 800 } 801 802 /* 803 * Tracking of fully allocated slabs for debugging purposes. 804 */ 805 static void add_full(struct kmem_cache_node *n, struct page *page) 806 { 807 spin_lock(&n->list_lock); 808 list_add(&page->lru, &n->full); 809 spin_unlock(&n->list_lock); 810 } 811 812 static void remove_full(struct kmem_cache *s, struct page *page) 813 { 814 struct kmem_cache_node *n; 815 816 if (!(s->flags & SLAB_STORE_USER)) 817 return; 818 819 n = get_node(s, page_to_nid(page)); 820 821 spin_lock(&n->list_lock); 822 list_del(&page->lru); 823 spin_unlock(&n->list_lock); 824 } 825 826 /* Tracking of the number of slabs for debugging purposes */ 827 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 828 { 829 struct kmem_cache_node *n = get_node(s, node); 830 831 return atomic_long_read(&n->nr_slabs); 832 } 833 834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 835 { 836 struct kmem_cache_node *n = get_node(s, node); 837 838 /* 839 * May be called early in order to allocate a slab for the 840 * kmem_cache_node structure. Solve the chicken-egg 841 * dilemma by deferring the increment of the count during 842 * bootstrap (see early_kmem_cache_node_alloc). 843 */ 844 if (!NUMA_BUILD || n) { 845 atomic_long_inc(&n->nr_slabs); 846 atomic_long_add(objects, &n->total_objects); 847 } 848 } 849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 850 { 851 struct kmem_cache_node *n = get_node(s, node); 852 853 atomic_long_dec(&n->nr_slabs); 854 atomic_long_sub(objects, &n->total_objects); 855 } 856 857 /* Object debug checks for alloc/free paths */ 858 static void setup_object_debug(struct kmem_cache *s, struct page *page, 859 void *object) 860 { 861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 862 return; 863 864 init_object(s, object, 0); 865 init_tracking(s, object); 866 } 867 868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 869 void *object, void *addr) 870 { 871 if (!check_slab(s, page)) 872 goto bad; 873 874 if (!on_freelist(s, page, object)) { 875 object_err(s, page, object, "Object already allocated"); 876 goto bad; 877 } 878 879 if (!check_valid_pointer(s, page, object)) { 880 object_err(s, page, object, "Freelist Pointer check fails"); 881 goto bad; 882 } 883 884 if (!check_object(s, page, object, 0)) 885 goto bad; 886 887 /* Success perform special debug activities for allocs */ 888 if (s->flags & SLAB_STORE_USER) 889 set_track(s, object, TRACK_ALLOC, addr); 890 trace(s, page, object, 1); 891 init_object(s, object, 1); 892 return 1; 893 894 bad: 895 if (PageSlab(page)) { 896 /* 897 * If this is a slab page then lets do the best we can 898 * to avoid issues in the future. Marking all objects 899 * as used avoids touching the remaining objects. 900 */ 901 slab_fix(s, "Marking all objects used"); 902 page->inuse = page->objects; 903 page->freelist = NULL; 904 } 905 return 0; 906 } 907 908 static int free_debug_processing(struct kmem_cache *s, struct page *page, 909 void *object, void *addr) 910 { 911 if (!check_slab(s, page)) 912 goto fail; 913 914 if (!check_valid_pointer(s, page, object)) { 915 slab_err(s, page, "Invalid object pointer 0x%p", object); 916 goto fail; 917 } 918 919 if (on_freelist(s, page, object)) { 920 object_err(s, page, object, "Object already free"); 921 goto fail; 922 } 923 924 if (!check_object(s, page, object, 1)) 925 return 0; 926 927 if (unlikely(s != page->slab)) { 928 if (!PageSlab(page)) { 929 slab_err(s, page, "Attempt to free object(0x%p) " 930 "outside of slab", object); 931 } else if (!page->slab) { 932 printk(KERN_ERR 933 "SLUB <none>: no slab for object 0x%p.\n", 934 object); 935 dump_stack(); 936 } else 937 object_err(s, page, object, 938 "page slab pointer corrupt."); 939 goto fail; 940 } 941 942 /* Special debug activities for freeing objects */ 943 if (!PageSlubFrozen(page) && !page->freelist) 944 remove_full(s, page); 945 if (s->flags & SLAB_STORE_USER) 946 set_track(s, object, TRACK_FREE, addr); 947 trace(s, page, object, 0); 948 init_object(s, object, 0); 949 return 1; 950 951 fail: 952 slab_fix(s, "Object at 0x%p not freed", object); 953 return 0; 954 } 955 956 static int __init setup_slub_debug(char *str) 957 { 958 slub_debug = DEBUG_DEFAULT_FLAGS; 959 if (*str++ != '=' || !*str) 960 /* 961 * No options specified. Switch on full debugging. 962 */ 963 goto out; 964 965 if (*str == ',') 966 /* 967 * No options but restriction on slabs. This means full 968 * debugging for slabs matching a pattern. 969 */ 970 goto check_slabs; 971 972 slub_debug = 0; 973 if (*str == '-') 974 /* 975 * Switch off all debugging measures. 976 */ 977 goto out; 978 979 /* 980 * Determine which debug features should be switched on 981 */ 982 for (; *str && *str != ','; str++) { 983 switch (tolower(*str)) { 984 case 'f': 985 slub_debug |= SLAB_DEBUG_FREE; 986 break; 987 case 'z': 988 slub_debug |= SLAB_RED_ZONE; 989 break; 990 case 'p': 991 slub_debug |= SLAB_POISON; 992 break; 993 case 'u': 994 slub_debug |= SLAB_STORE_USER; 995 break; 996 case 't': 997 slub_debug |= SLAB_TRACE; 998 break; 999 default: 1000 printk(KERN_ERR "slub_debug option '%c' " 1001 "unknown. skipped\n", *str); 1002 } 1003 } 1004 1005 check_slabs: 1006 if (*str == ',') 1007 slub_debug_slabs = str + 1; 1008 out: 1009 return 1; 1010 } 1011 1012 __setup("slub_debug", setup_slub_debug); 1013 1014 static unsigned long kmem_cache_flags(unsigned long objsize, 1015 unsigned long flags, const char *name, 1016 void (*ctor)(void *)) 1017 { 1018 /* 1019 * Enable debugging if selected on the kernel commandline. 1020 */ 1021 if (slub_debug && (!slub_debug_slabs || 1022 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) 1023 flags |= slub_debug; 1024 1025 return flags; 1026 } 1027 #else 1028 static inline void setup_object_debug(struct kmem_cache *s, 1029 struct page *page, void *object) {} 1030 1031 static inline int alloc_debug_processing(struct kmem_cache *s, 1032 struct page *page, void *object, void *addr) { return 0; } 1033 1034 static inline int free_debug_processing(struct kmem_cache *s, 1035 struct page *page, void *object, void *addr) { return 0; } 1036 1037 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1038 { return 1; } 1039 static inline int check_object(struct kmem_cache *s, struct page *page, 1040 void *object, int active) { return 1; } 1041 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1042 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1043 unsigned long flags, const char *name, 1044 void (*ctor)(void *)) 1045 { 1046 return flags; 1047 } 1048 #define slub_debug 0 1049 1050 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1051 { return 0; } 1052 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1053 int objects) {} 1054 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1055 int objects) {} 1056 #endif 1057 1058 /* 1059 * Slab allocation and freeing 1060 */ 1061 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1062 struct kmem_cache_order_objects oo) 1063 { 1064 int order = oo_order(oo); 1065 1066 if (node == -1) 1067 return alloc_pages(flags, order); 1068 else 1069 return alloc_pages_node(node, flags, order); 1070 } 1071 1072 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1073 { 1074 struct page *page; 1075 struct kmem_cache_order_objects oo = s->oo; 1076 1077 flags |= s->allocflags; 1078 1079 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, 1080 oo); 1081 if (unlikely(!page)) { 1082 oo = s->min; 1083 /* 1084 * Allocation may have failed due to fragmentation. 1085 * Try a lower order alloc if possible 1086 */ 1087 page = alloc_slab_page(flags, node, oo); 1088 if (!page) 1089 return NULL; 1090 1091 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); 1092 } 1093 page->objects = oo_objects(oo); 1094 mod_zone_page_state(page_zone(page), 1095 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1096 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1097 1 << oo_order(oo)); 1098 1099 return page; 1100 } 1101 1102 static void setup_object(struct kmem_cache *s, struct page *page, 1103 void *object) 1104 { 1105 setup_object_debug(s, page, object); 1106 if (unlikely(s->ctor)) 1107 s->ctor(object); 1108 } 1109 1110 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1111 { 1112 struct page *page; 1113 void *start; 1114 void *last; 1115 void *p; 1116 1117 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1118 1119 page = allocate_slab(s, 1120 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1121 if (!page) 1122 goto out; 1123 1124 inc_slabs_node(s, page_to_nid(page), page->objects); 1125 page->slab = s; 1126 page->flags |= 1 << PG_slab; 1127 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1128 SLAB_STORE_USER | SLAB_TRACE)) 1129 __SetPageSlubDebug(page); 1130 1131 start = page_address(page); 1132 1133 if (unlikely(s->flags & SLAB_POISON)) 1134 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1135 1136 last = start; 1137 for_each_object(p, s, start, page->objects) { 1138 setup_object(s, page, last); 1139 set_freepointer(s, last, p); 1140 last = p; 1141 } 1142 setup_object(s, page, last); 1143 set_freepointer(s, last, NULL); 1144 1145 page->freelist = start; 1146 page->inuse = 0; 1147 out: 1148 return page; 1149 } 1150 1151 static void __free_slab(struct kmem_cache *s, struct page *page) 1152 { 1153 int order = compound_order(page); 1154 int pages = 1 << order; 1155 1156 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1157 void *p; 1158 1159 slab_pad_check(s, page); 1160 for_each_object(p, s, page_address(page), 1161 page->objects) 1162 check_object(s, page, p, 0); 1163 __ClearPageSlubDebug(page); 1164 } 1165 1166 mod_zone_page_state(page_zone(page), 1167 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1168 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1169 -pages); 1170 1171 __ClearPageSlab(page); 1172 reset_page_mapcount(page); 1173 __free_pages(page, order); 1174 } 1175 1176 static void rcu_free_slab(struct rcu_head *h) 1177 { 1178 struct page *page; 1179 1180 page = container_of((struct list_head *)h, struct page, lru); 1181 __free_slab(page->slab, page); 1182 } 1183 1184 static void free_slab(struct kmem_cache *s, struct page *page) 1185 { 1186 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1187 /* 1188 * RCU free overloads the RCU head over the LRU 1189 */ 1190 struct rcu_head *head = (void *)&page->lru; 1191 1192 call_rcu(head, rcu_free_slab); 1193 } else 1194 __free_slab(s, page); 1195 } 1196 1197 static void discard_slab(struct kmem_cache *s, struct page *page) 1198 { 1199 dec_slabs_node(s, page_to_nid(page), page->objects); 1200 free_slab(s, page); 1201 } 1202 1203 /* 1204 * Per slab locking using the pagelock 1205 */ 1206 static __always_inline void slab_lock(struct page *page) 1207 { 1208 bit_spin_lock(PG_locked, &page->flags); 1209 } 1210 1211 static __always_inline void slab_unlock(struct page *page) 1212 { 1213 __bit_spin_unlock(PG_locked, &page->flags); 1214 } 1215 1216 static __always_inline int slab_trylock(struct page *page) 1217 { 1218 int rc = 1; 1219 1220 rc = bit_spin_trylock(PG_locked, &page->flags); 1221 return rc; 1222 } 1223 1224 /* 1225 * Management of partially allocated slabs 1226 */ 1227 static void add_partial(struct kmem_cache_node *n, 1228 struct page *page, int tail) 1229 { 1230 spin_lock(&n->list_lock); 1231 n->nr_partial++; 1232 if (tail) 1233 list_add_tail(&page->lru, &n->partial); 1234 else 1235 list_add(&page->lru, &n->partial); 1236 spin_unlock(&n->list_lock); 1237 } 1238 1239 static void remove_partial(struct kmem_cache *s, struct page *page) 1240 { 1241 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1242 1243 spin_lock(&n->list_lock); 1244 list_del(&page->lru); 1245 n->nr_partial--; 1246 spin_unlock(&n->list_lock); 1247 } 1248 1249 /* 1250 * Lock slab and remove from the partial list. 1251 * 1252 * Must hold list_lock. 1253 */ 1254 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1255 struct page *page) 1256 { 1257 if (slab_trylock(page)) { 1258 list_del(&page->lru); 1259 n->nr_partial--; 1260 __SetPageSlubFrozen(page); 1261 return 1; 1262 } 1263 return 0; 1264 } 1265 1266 /* 1267 * Try to allocate a partial slab from a specific node. 1268 */ 1269 static struct page *get_partial_node(struct kmem_cache_node *n) 1270 { 1271 struct page *page; 1272 1273 /* 1274 * Racy check. If we mistakenly see no partial slabs then we 1275 * just allocate an empty slab. If we mistakenly try to get a 1276 * partial slab and there is none available then get_partials() 1277 * will return NULL. 1278 */ 1279 if (!n || !n->nr_partial) 1280 return NULL; 1281 1282 spin_lock(&n->list_lock); 1283 list_for_each_entry(page, &n->partial, lru) 1284 if (lock_and_freeze_slab(n, page)) 1285 goto out; 1286 page = NULL; 1287 out: 1288 spin_unlock(&n->list_lock); 1289 return page; 1290 } 1291 1292 /* 1293 * Get a page from somewhere. Search in increasing NUMA distances. 1294 */ 1295 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1296 { 1297 #ifdef CONFIG_NUMA 1298 struct zonelist *zonelist; 1299 struct zoneref *z; 1300 struct zone *zone; 1301 enum zone_type high_zoneidx = gfp_zone(flags); 1302 struct page *page; 1303 1304 /* 1305 * The defrag ratio allows a configuration of the tradeoffs between 1306 * inter node defragmentation and node local allocations. A lower 1307 * defrag_ratio increases the tendency to do local allocations 1308 * instead of attempting to obtain partial slabs from other nodes. 1309 * 1310 * If the defrag_ratio is set to 0 then kmalloc() always 1311 * returns node local objects. If the ratio is higher then kmalloc() 1312 * may return off node objects because partial slabs are obtained 1313 * from other nodes and filled up. 1314 * 1315 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1316 * defrag_ratio = 1000) then every (well almost) allocation will 1317 * first attempt to defrag slab caches on other nodes. This means 1318 * scanning over all nodes to look for partial slabs which may be 1319 * expensive if we do it every time we are trying to find a slab 1320 * with available objects. 1321 */ 1322 if (!s->remote_node_defrag_ratio || 1323 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1324 return NULL; 1325 1326 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1327 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1328 struct kmem_cache_node *n; 1329 1330 n = get_node(s, zone_to_nid(zone)); 1331 1332 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1333 n->nr_partial > n->min_partial) { 1334 page = get_partial_node(n); 1335 if (page) 1336 return page; 1337 } 1338 } 1339 #endif 1340 return NULL; 1341 } 1342 1343 /* 1344 * Get a partial page, lock it and return it. 1345 */ 1346 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1347 { 1348 struct page *page; 1349 int searchnode = (node == -1) ? numa_node_id() : node; 1350 1351 page = get_partial_node(get_node(s, searchnode)); 1352 if (page || (flags & __GFP_THISNODE)) 1353 return page; 1354 1355 return get_any_partial(s, flags); 1356 } 1357 1358 /* 1359 * Move a page back to the lists. 1360 * 1361 * Must be called with the slab lock held. 1362 * 1363 * On exit the slab lock will have been dropped. 1364 */ 1365 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1366 { 1367 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1368 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); 1369 1370 __ClearPageSlubFrozen(page); 1371 if (page->inuse) { 1372 1373 if (page->freelist) { 1374 add_partial(n, page, tail); 1375 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1376 } else { 1377 stat(c, DEACTIVATE_FULL); 1378 if (SLABDEBUG && PageSlubDebug(page) && 1379 (s->flags & SLAB_STORE_USER)) 1380 add_full(n, page); 1381 } 1382 slab_unlock(page); 1383 } else { 1384 stat(c, DEACTIVATE_EMPTY); 1385 if (n->nr_partial < n->min_partial) { 1386 /* 1387 * Adding an empty slab to the partial slabs in order 1388 * to avoid page allocator overhead. This slab needs 1389 * to come after the other slabs with objects in 1390 * so that the others get filled first. That way the 1391 * size of the partial list stays small. 1392 * 1393 * kmem_cache_shrink can reclaim any empty slabs from 1394 * the partial list. 1395 */ 1396 add_partial(n, page, 1); 1397 slab_unlock(page); 1398 } else { 1399 slab_unlock(page); 1400 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); 1401 discard_slab(s, page); 1402 } 1403 } 1404 } 1405 1406 /* 1407 * Remove the cpu slab 1408 */ 1409 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1410 { 1411 struct page *page = c->page; 1412 int tail = 1; 1413 1414 if (page->freelist) 1415 stat(c, DEACTIVATE_REMOTE_FREES); 1416 /* 1417 * Merge cpu freelist into slab freelist. Typically we get here 1418 * because both freelists are empty. So this is unlikely 1419 * to occur. 1420 */ 1421 while (unlikely(c->freelist)) { 1422 void **object; 1423 1424 tail = 0; /* Hot objects. Put the slab first */ 1425 1426 /* Retrieve object from cpu_freelist */ 1427 object = c->freelist; 1428 c->freelist = c->freelist[c->offset]; 1429 1430 /* And put onto the regular freelist */ 1431 object[c->offset] = page->freelist; 1432 page->freelist = object; 1433 page->inuse--; 1434 } 1435 c->page = NULL; 1436 unfreeze_slab(s, page, tail); 1437 } 1438 1439 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1440 { 1441 stat(c, CPUSLAB_FLUSH); 1442 slab_lock(c->page); 1443 deactivate_slab(s, c); 1444 } 1445 1446 /* 1447 * Flush cpu slab. 1448 * 1449 * Called from IPI handler with interrupts disabled. 1450 */ 1451 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1452 { 1453 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1454 1455 if (likely(c && c->page)) 1456 flush_slab(s, c); 1457 } 1458 1459 static void flush_cpu_slab(void *d) 1460 { 1461 struct kmem_cache *s = d; 1462 1463 __flush_cpu_slab(s, smp_processor_id()); 1464 } 1465 1466 static void flush_all(struct kmem_cache *s) 1467 { 1468 on_each_cpu(flush_cpu_slab, s, 1); 1469 } 1470 1471 /* 1472 * Check if the objects in a per cpu structure fit numa 1473 * locality expectations. 1474 */ 1475 static inline int node_match(struct kmem_cache_cpu *c, int node) 1476 { 1477 #ifdef CONFIG_NUMA 1478 if (node != -1 && c->node != node) 1479 return 0; 1480 #endif 1481 return 1; 1482 } 1483 1484 /* 1485 * Slow path. The lockless freelist is empty or we need to perform 1486 * debugging duties. 1487 * 1488 * Interrupts are disabled. 1489 * 1490 * Processing is still very fast if new objects have been freed to the 1491 * regular freelist. In that case we simply take over the regular freelist 1492 * as the lockless freelist and zap the regular freelist. 1493 * 1494 * If that is not working then we fall back to the partial lists. We take the 1495 * first element of the freelist as the object to allocate now and move the 1496 * rest of the freelist to the lockless freelist. 1497 * 1498 * And if we were unable to get a new slab from the partial slab lists then 1499 * we need to allocate a new slab. This is the slowest path since it involves 1500 * a call to the page allocator and the setup of a new slab. 1501 */ 1502 static void *__slab_alloc(struct kmem_cache *s, 1503 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) 1504 { 1505 void **object; 1506 struct page *new; 1507 1508 /* We handle __GFP_ZERO in the caller */ 1509 gfpflags &= ~__GFP_ZERO; 1510 1511 if (!c->page) 1512 goto new_slab; 1513 1514 slab_lock(c->page); 1515 if (unlikely(!node_match(c, node))) 1516 goto another_slab; 1517 1518 stat(c, ALLOC_REFILL); 1519 1520 load_freelist: 1521 object = c->page->freelist; 1522 if (unlikely(!object)) 1523 goto another_slab; 1524 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1525 goto debug; 1526 1527 c->freelist = object[c->offset]; 1528 c->page->inuse = c->page->objects; 1529 c->page->freelist = NULL; 1530 c->node = page_to_nid(c->page); 1531 unlock_out: 1532 slab_unlock(c->page); 1533 stat(c, ALLOC_SLOWPATH); 1534 return object; 1535 1536 another_slab: 1537 deactivate_slab(s, c); 1538 1539 new_slab: 1540 new = get_partial(s, gfpflags, node); 1541 if (new) { 1542 c->page = new; 1543 stat(c, ALLOC_FROM_PARTIAL); 1544 goto load_freelist; 1545 } 1546 1547 if (gfpflags & __GFP_WAIT) 1548 local_irq_enable(); 1549 1550 new = new_slab(s, gfpflags, node); 1551 1552 if (gfpflags & __GFP_WAIT) 1553 local_irq_disable(); 1554 1555 if (new) { 1556 c = get_cpu_slab(s, smp_processor_id()); 1557 stat(c, ALLOC_SLAB); 1558 if (c->page) 1559 flush_slab(s, c); 1560 slab_lock(new); 1561 __SetPageSlubFrozen(new); 1562 c->page = new; 1563 goto load_freelist; 1564 } 1565 return NULL; 1566 debug: 1567 if (!alloc_debug_processing(s, c->page, object, addr)) 1568 goto another_slab; 1569 1570 c->page->inuse++; 1571 c->page->freelist = object[c->offset]; 1572 c->node = -1; 1573 goto unlock_out; 1574 } 1575 1576 /* 1577 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1578 * have the fastpath folded into their functions. So no function call 1579 * overhead for requests that can be satisfied on the fastpath. 1580 * 1581 * The fastpath works by first checking if the lockless freelist can be used. 1582 * If not then __slab_alloc is called for slow processing. 1583 * 1584 * Otherwise we can simply pick the next object from the lockless free list. 1585 */ 1586 static __always_inline void *slab_alloc(struct kmem_cache *s, 1587 gfp_t gfpflags, int node, void *addr) 1588 { 1589 void **object; 1590 struct kmem_cache_cpu *c; 1591 unsigned long flags; 1592 unsigned int objsize; 1593 1594 local_irq_save(flags); 1595 c = get_cpu_slab(s, smp_processor_id()); 1596 objsize = c->objsize; 1597 if (unlikely(!c->freelist || !node_match(c, node))) 1598 1599 object = __slab_alloc(s, gfpflags, node, addr, c); 1600 1601 else { 1602 object = c->freelist; 1603 c->freelist = object[c->offset]; 1604 stat(c, ALLOC_FASTPATH); 1605 } 1606 local_irq_restore(flags); 1607 1608 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1609 memset(object, 0, objsize); 1610 1611 return object; 1612 } 1613 1614 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1615 { 1616 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); 1617 } 1618 EXPORT_SYMBOL(kmem_cache_alloc); 1619 1620 #ifdef CONFIG_NUMA 1621 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1622 { 1623 return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); 1624 } 1625 EXPORT_SYMBOL(kmem_cache_alloc_node); 1626 #endif 1627 1628 /* 1629 * Slow patch handling. This may still be called frequently since objects 1630 * have a longer lifetime than the cpu slabs in most processing loads. 1631 * 1632 * So we still attempt to reduce cache line usage. Just take the slab 1633 * lock and free the item. If there is no additional partial page 1634 * handling required then we can return immediately. 1635 */ 1636 static void __slab_free(struct kmem_cache *s, struct page *page, 1637 void *x, void *addr, unsigned int offset) 1638 { 1639 void *prior; 1640 void **object = (void *)x; 1641 struct kmem_cache_cpu *c; 1642 1643 c = get_cpu_slab(s, raw_smp_processor_id()); 1644 stat(c, FREE_SLOWPATH); 1645 slab_lock(page); 1646 1647 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1648 goto debug; 1649 1650 checks_ok: 1651 prior = object[offset] = page->freelist; 1652 page->freelist = object; 1653 page->inuse--; 1654 1655 if (unlikely(PageSlubFrozen(page))) { 1656 stat(c, FREE_FROZEN); 1657 goto out_unlock; 1658 } 1659 1660 if (unlikely(!page->inuse)) 1661 goto slab_empty; 1662 1663 /* 1664 * Objects left in the slab. If it was not on the partial list before 1665 * then add it. 1666 */ 1667 if (unlikely(!prior)) { 1668 add_partial(get_node(s, page_to_nid(page)), page, 1); 1669 stat(c, FREE_ADD_PARTIAL); 1670 } 1671 1672 out_unlock: 1673 slab_unlock(page); 1674 return; 1675 1676 slab_empty: 1677 if (prior) { 1678 /* 1679 * Slab still on the partial list. 1680 */ 1681 remove_partial(s, page); 1682 stat(c, FREE_REMOVE_PARTIAL); 1683 } 1684 slab_unlock(page); 1685 stat(c, FREE_SLAB); 1686 discard_slab(s, page); 1687 return; 1688 1689 debug: 1690 if (!free_debug_processing(s, page, x, addr)) 1691 goto out_unlock; 1692 goto checks_ok; 1693 } 1694 1695 /* 1696 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1697 * can perform fastpath freeing without additional function calls. 1698 * 1699 * The fastpath is only possible if we are freeing to the current cpu slab 1700 * of this processor. This typically the case if we have just allocated 1701 * the item before. 1702 * 1703 * If fastpath is not possible then fall back to __slab_free where we deal 1704 * with all sorts of special processing. 1705 */ 1706 static __always_inline void slab_free(struct kmem_cache *s, 1707 struct page *page, void *x, void *addr) 1708 { 1709 void **object = (void *)x; 1710 struct kmem_cache_cpu *c; 1711 unsigned long flags; 1712 1713 local_irq_save(flags); 1714 c = get_cpu_slab(s, smp_processor_id()); 1715 debug_check_no_locks_freed(object, c->objsize); 1716 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1717 debug_check_no_obj_freed(object, s->objsize); 1718 if (likely(page == c->page && c->node >= 0)) { 1719 object[c->offset] = c->freelist; 1720 c->freelist = object; 1721 stat(c, FREE_FASTPATH); 1722 } else 1723 __slab_free(s, page, x, addr, c->offset); 1724 1725 local_irq_restore(flags); 1726 } 1727 1728 void kmem_cache_free(struct kmem_cache *s, void *x) 1729 { 1730 struct page *page; 1731 1732 page = virt_to_head_page(x); 1733 1734 slab_free(s, page, x, __builtin_return_address(0)); 1735 } 1736 EXPORT_SYMBOL(kmem_cache_free); 1737 1738 /* Figure out on which slab object the object resides */ 1739 static struct page *get_object_page(const void *x) 1740 { 1741 struct page *page = virt_to_head_page(x); 1742 1743 if (!PageSlab(page)) 1744 return NULL; 1745 1746 return page; 1747 } 1748 1749 /* 1750 * Object placement in a slab is made very easy because we always start at 1751 * offset 0. If we tune the size of the object to the alignment then we can 1752 * get the required alignment by putting one properly sized object after 1753 * another. 1754 * 1755 * Notice that the allocation order determines the sizes of the per cpu 1756 * caches. Each processor has always one slab available for allocations. 1757 * Increasing the allocation order reduces the number of times that slabs 1758 * must be moved on and off the partial lists and is therefore a factor in 1759 * locking overhead. 1760 */ 1761 1762 /* 1763 * Mininum / Maximum order of slab pages. This influences locking overhead 1764 * and slab fragmentation. A higher order reduces the number of partial slabs 1765 * and increases the number of allocations possible without having to 1766 * take the list_lock. 1767 */ 1768 static int slub_min_order; 1769 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1770 static int slub_min_objects; 1771 1772 /* 1773 * Merge control. If this is set then no merging of slab caches will occur. 1774 * (Could be removed. This was introduced to pacify the merge skeptics.) 1775 */ 1776 static int slub_nomerge; 1777 1778 /* 1779 * Calculate the order of allocation given an slab object size. 1780 * 1781 * The order of allocation has significant impact on performance and other 1782 * system components. Generally order 0 allocations should be preferred since 1783 * order 0 does not cause fragmentation in the page allocator. Larger objects 1784 * be problematic to put into order 0 slabs because there may be too much 1785 * unused space left. We go to a higher order if more than 1/16th of the slab 1786 * would be wasted. 1787 * 1788 * In order to reach satisfactory performance we must ensure that a minimum 1789 * number of objects is in one slab. Otherwise we may generate too much 1790 * activity on the partial lists which requires taking the list_lock. This is 1791 * less a concern for large slabs though which are rarely used. 1792 * 1793 * slub_max_order specifies the order where we begin to stop considering the 1794 * number of objects in a slab as critical. If we reach slub_max_order then 1795 * we try to keep the page order as low as possible. So we accept more waste 1796 * of space in favor of a small page order. 1797 * 1798 * Higher order allocations also allow the placement of more objects in a 1799 * slab and thereby reduce object handling overhead. If the user has 1800 * requested a higher mininum order then we start with that one instead of 1801 * the smallest order which will fit the object. 1802 */ 1803 static inline int slab_order(int size, int min_objects, 1804 int max_order, int fract_leftover) 1805 { 1806 int order; 1807 int rem; 1808 int min_order = slub_min_order; 1809 1810 if ((PAGE_SIZE << min_order) / size > 65535) 1811 return get_order(size * 65535) - 1; 1812 1813 for (order = max(min_order, 1814 fls(min_objects * size - 1) - PAGE_SHIFT); 1815 order <= max_order; order++) { 1816 1817 unsigned long slab_size = PAGE_SIZE << order; 1818 1819 if (slab_size < min_objects * size) 1820 continue; 1821 1822 rem = slab_size % size; 1823 1824 if (rem <= slab_size / fract_leftover) 1825 break; 1826 1827 } 1828 1829 return order; 1830 } 1831 1832 static inline int calculate_order(int size) 1833 { 1834 int order; 1835 int min_objects; 1836 int fraction; 1837 1838 /* 1839 * Attempt to find best configuration for a slab. This 1840 * works by first attempting to generate a layout with 1841 * the best configuration and backing off gradually. 1842 * 1843 * First we reduce the acceptable waste in a slab. Then 1844 * we reduce the minimum objects required in a slab. 1845 */ 1846 min_objects = slub_min_objects; 1847 if (!min_objects) 1848 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1849 while (min_objects > 1) { 1850 fraction = 16; 1851 while (fraction >= 4) { 1852 order = slab_order(size, min_objects, 1853 slub_max_order, fraction); 1854 if (order <= slub_max_order) 1855 return order; 1856 fraction /= 2; 1857 } 1858 min_objects /= 2; 1859 } 1860 1861 /* 1862 * We were unable to place multiple objects in a slab. Now 1863 * lets see if we can place a single object there. 1864 */ 1865 order = slab_order(size, 1, slub_max_order, 1); 1866 if (order <= slub_max_order) 1867 return order; 1868 1869 /* 1870 * Doh this slab cannot be placed using slub_max_order. 1871 */ 1872 order = slab_order(size, 1, MAX_ORDER, 1); 1873 if (order <= MAX_ORDER) 1874 return order; 1875 return -ENOSYS; 1876 } 1877 1878 /* 1879 * Figure out what the alignment of the objects will be. 1880 */ 1881 static unsigned long calculate_alignment(unsigned long flags, 1882 unsigned long align, unsigned long size) 1883 { 1884 /* 1885 * If the user wants hardware cache aligned objects then follow that 1886 * suggestion if the object is sufficiently large. 1887 * 1888 * The hardware cache alignment cannot override the specified 1889 * alignment though. If that is greater then use it. 1890 */ 1891 if (flags & SLAB_HWCACHE_ALIGN) { 1892 unsigned long ralign = cache_line_size(); 1893 while (size <= ralign / 2) 1894 ralign /= 2; 1895 align = max(align, ralign); 1896 } 1897 1898 if (align < ARCH_SLAB_MINALIGN) 1899 align = ARCH_SLAB_MINALIGN; 1900 1901 return ALIGN(align, sizeof(void *)); 1902 } 1903 1904 static void init_kmem_cache_cpu(struct kmem_cache *s, 1905 struct kmem_cache_cpu *c) 1906 { 1907 c->page = NULL; 1908 c->freelist = NULL; 1909 c->node = 0; 1910 c->offset = s->offset / sizeof(void *); 1911 c->objsize = s->objsize; 1912 #ifdef CONFIG_SLUB_STATS 1913 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); 1914 #endif 1915 } 1916 1917 static void 1918 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 1919 { 1920 n->nr_partial = 0; 1921 1922 /* 1923 * The larger the object size is, the more pages we want on the partial 1924 * list to avoid pounding the page allocator excessively. 1925 */ 1926 n->min_partial = ilog2(s->size); 1927 if (n->min_partial < MIN_PARTIAL) 1928 n->min_partial = MIN_PARTIAL; 1929 else if (n->min_partial > MAX_PARTIAL) 1930 n->min_partial = MAX_PARTIAL; 1931 1932 spin_lock_init(&n->list_lock); 1933 INIT_LIST_HEAD(&n->partial); 1934 #ifdef CONFIG_SLUB_DEBUG 1935 atomic_long_set(&n->nr_slabs, 0); 1936 atomic_long_set(&n->total_objects, 0); 1937 INIT_LIST_HEAD(&n->full); 1938 #endif 1939 } 1940 1941 #ifdef CONFIG_SMP 1942 /* 1943 * Per cpu array for per cpu structures. 1944 * 1945 * The per cpu array places all kmem_cache_cpu structures from one processor 1946 * close together meaning that it becomes possible that multiple per cpu 1947 * structures are contained in one cacheline. This may be particularly 1948 * beneficial for the kmalloc caches. 1949 * 1950 * A desktop system typically has around 60-80 slabs. With 100 here we are 1951 * likely able to get per cpu structures for all caches from the array defined 1952 * here. We must be able to cover all kmalloc caches during bootstrap. 1953 * 1954 * If the per cpu array is exhausted then fall back to kmalloc 1955 * of individual cachelines. No sharing is possible then. 1956 */ 1957 #define NR_KMEM_CACHE_CPU 100 1958 1959 static DEFINE_PER_CPU(struct kmem_cache_cpu, 1960 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 1961 1962 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 1963 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; 1964 1965 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 1966 int cpu, gfp_t flags) 1967 { 1968 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 1969 1970 if (c) 1971 per_cpu(kmem_cache_cpu_free, cpu) = 1972 (void *)c->freelist; 1973 else { 1974 /* Table overflow: So allocate ourselves */ 1975 c = kmalloc_node( 1976 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 1977 flags, cpu_to_node(cpu)); 1978 if (!c) 1979 return NULL; 1980 } 1981 1982 init_kmem_cache_cpu(s, c); 1983 return c; 1984 } 1985 1986 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 1987 { 1988 if (c < per_cpu(kmem_cache_cpu, cpu) || 1989 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 1990 kfree(c); 1991 return; 1992 } 1993 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 1994 per_cpu(kmem_cache_cpu_free, cpu) = c; 1995 } 1996 1997 static void free_kmem_cache_cpus(struct kmem_cache *s) 1998 { 1999 int cpu; 2000 2001 for_each_online_cpu(cpu) { 2002 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2003 2004 if (c) { 2005 s->cpu_slab[cpu] = NULL; 2006 free_kmem_cache_cpu(c, cpu); 2007 } 2008 } 2009 } 2010 2011 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2012 { 2013 int cpu; 2014 2015 for_each_online_cpu(cpu) { 2016 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2017 2018 if (c) 2019 continue; 2020 2021 c = alloc_kmem_cache_cpu(s, cpu, flags); 2022 if (!c) { 2023 free_kmem_cache_cpus(s); 2024 return 0; 2025 } 2026 s->cpu_slab[cpu] = c; 2027 } 2028 return 1; 2029 } 2030 2031 /* 2032 * Initialize the per cpu array. 2033 */ 2034 static void init_alloc_cpu_cpu(int cpu) 2035 { 2036 int i; 2037 2038 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) 2039 return; 2040 2041 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 2042 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 2043 2044 cpu_set(cpu, kmem_cach_cpu_free_init_once); 2045 } 2046 2047 static void __init init_alloc_cpu(void) 2048 { 2049 int cpu; 2050 2051 for_each_online_cpu(cpu) 2052 init_alloc_cpu_cpu(cpu); 2053 } 2054 2055 #else 2056 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 2057 static inline void init_alloc_cpu(void) {} 2058 2059 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2060 { 2061 init_kmem_cache_cpu(s, &s->cpu_slab); 2062 return 1; 2063 } 2064 #endif 2065 2066 #ifdef CONFIG_NUMA 2067 /* 2068 * No kmalloc_node yet so do it by hand. We know that this is the first 2069 * slab on the node for this slabcache. There are no concurrent accesses 2070 * possible. 2071 * 2072 * Note that this function only works on the kmalloc_node_cache 2073 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2074 * memory on a fresh node that has no slab structures yet. 2075 */ 2076 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, 2077 int node) 2078 { 2079 struct page *page; 2080 struct kmem_cache_node *n; 2081 unsigned long flags; 2082 2083 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2084 2085 page = new_slab(kmalloc_caches, gfpflags, node); 2086 2087 BUG_ON(!page); 2088 if (page_to_nid(page) != node) { 2089 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2090 "node %d\n", node); 2091 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2092 "in order to be able to continue\n"); 2093 } 2094 2095 n = page->freelist; 2096 BUG_ON(!n); 2097 page->freelist = get_freepointer(kmalloc_caches, n); 2098 page->inuse++; 2099 kmalloc_caches->node[node] = n; 2100 #ifdef CONFIG_SLUB_DEBUG 2101 init_object(kmalloc_caches, n, 1); 2102 init_tracking(kmalloc_caches, n); 2103 #endif 2104 init_kmem_cache_node(n, kmalloc_caches); 2105 inc_slabs_node(kmalloc_caches, node, page->objects); 2106 2107 /* 2108 * lockdep requires consistent irq usage for each lock 2109 * so even though there cannot be a race this early in 2110 * the boot sequence, we still disable irqs. 2111 */ 2112 local_irq_save(flags); 2113 add_partial(n, page, 0); 2114 local_irq_restore(flags); 2115 return n; 2116 } 2117 2118 static void free_kmem_cache_nodes(struct kmem_cache *s) 2119 { 2120 int node; 2121 2122 for_each_node_state(node, N_NORMAL_MEMORY) { 2123 struct kmem_cache_node *n = s->node[node]; 2124 if (n && n != &s->local_node) 2125 kmem_cache_free(kmalloc_caches, n); 2126 s->node[node] = NULL; 2127 } 2128 } 2129 2130 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2131 { 2132 int node; 2133 int local_node; 2134 2135 if (slab_state >= UP) 2136 local_node = page_to_nid(virt_to_page(s)); 2137 else 2138 local_node = 0; 2139 2140 for_each_node_state(node, N_NORMAL_MEMORY) { 2141 struct kmem_cache_node *n; 2142 2143 if (local_node == node) 2144 n = &s->local_node; 2145 else { 2146 if (slab_state == DOWN) { 2147 n = early_kmem_cache_node_alloc(gfpflags, 2148 node); 2149 continue; 2150 } 2151 n = kmem_cache_alloc_node(kmalloc_caches, 2152 gfpflags, node); 2153 2154 if (!n) { 2155 free_kmem_cache_nodes(s); 2156 return 0; 2157 } 2158 2159 } 2160 s->node[node] = n; 2161 init_kmem_cache_node(n, s); 2162 } 2163 return 1; 2164 } 2165 #else 2166 static void free_kmem_cache_nodes(struct kmem_cache *s) 2167 { 2168 } 2169 2170 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2171 { 2172 init_kmem_cache_node(&s->local_node, s); 2173 return 1; 2174 } 2175 #endif 2176 2177 /* 2178 * calculate_sizes() determines the order and the distribution of data within 2179 * a slab object. 2180 */ 2181 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2182 { 2183 unsigned long flags = s->flags; 2184 unsigned long size = s->objsize; 2185 unsigned long align = s->align; 2186 int order; 2187 2188 /* 2189 * Round up object size to the next word boundary. We can only 2190 * place the free pointer at word boundaries and this determines 2191 * the possible location of the free pointer. 2192 */ 2193 size = ALIGN(size, sizeof(void *)); 2194 2195 #ifdef CONFIG_SLUB_DEBUG 2196 /* 2197 * Determine if we can poison the object itself. If the user of 2198 * the slab may touch the object after free or before allocation 2199 * then we should never poison the object itself. 2200 */ 2201 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2202 !s->ctor) 2203 s->flags |= __OBJECT_POISON; 2204 else 2205 s->flags &= ~__OBJECT_POISON; 2206 2207 2208 /* 2209 * If we are Redzoning then check if there is some space between the 2210 * end of the object and the free pointer. If not then add an 2211 * additional word to have some bytes to store Redzone information. 2212 */ 2213 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2214 size += sizeof(void *); 2215 #endif 2216 2217 /* 2218 * With that we have determined the number of bytes in actual use 2219 * by the object. This is the potential offset to the free pointer. 2220 */ 2221 s->inuse = size; 2222 2223 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2224 s->ctor)) { 2225 /* 2226 * Relocate free pointer after the object if it is not 2227 * permitted to overwrite the first word of the object on 2228 * kmem_cache_free. 2229 * 2230 * This is the case if we do RCU, have a constructor or 2231 * destructor or are poisoning the objects. 2232 */ 2233 s->offset = size; 2234 size += sizeof(void *); 2235 } 2236 2237 #ifdef CONFIG_SLUB_DEBUG 2238 if (flags & SLAB_STORE_USER) 2239 /* 2240 * Need to store information about allocs and frees after 2241 * the object. 2242 */ 2243 size += 2 * sizeof(struct track); 2244 2245 if (flags & SLAB_RED_ZONE) 2246 /* 2247 * Add some empty padding so that we can catch 2248 * overwrites from earlier objects rather than let 2249 * tracking information or the free pointer be 2250 * corrupted if an user writes before the start 2251 * of the object. 2252 */ 2253 size += sizeof(void *); 2254 #endif 2255 2256 /* 2257 * Determine the alignment based on various parameters that the 2258 * user specified and the dynamic determination of cache line size 2259 * on bootup. 2260 */ 2261 align = calculate_alignment(flags, align, s->objsize); 2262 2263 /* 2264 * SLUB stores one object immediately after another beginning from 2265 * offset 0. In order to align the objects we have to simply size 2266 * each object to conform to the alignment. 2267 */ 2268 size = ALIGN(size, align); 2269 s->size = size; 2270 if (forced_order >= 0) 2271 order = forced_order; 2272 else 2273 order = calculate_order(size); 2274 2275 if (order < 0) 2276 return 0; 2277 2278 s->allocflags = 0; 2279 if (order) 2280 s->allocflags |= __GFP_COMP; 2281 2282 if (s->flags & SLAB_CACHE_DMA) 2283 s->allocflags |= SLUB_DMA; 2284 2285 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2286 s->allocflags |= __GFP_RECLAIMABLE; 2287 2288 /* 2289 * Determine the number of objects per slab 2290 */ 2291 s->oo = oo_make(order, size); 2292 s->min = oo_make(get_order(size), size); 2293 if (oo_objects(s->oo) > oo_objects(s->max)) 2294 s->max = s->oo; 2295 2296 return !!oo_objects(s->oo); 2297 2298 } 2299 2300 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2301 const char *name, size_t size, 2302 size_t align, unsigned long flags, 2303 void (*ctor)(void *)) 2304 { 2305 memset(s, 0, kmem_size); 2306 s->name = name; 2307 s->ctor = ctor; 2308 s->objsize = size; 2309 s->align = align; 2310 s->flags = kmem_cache_flags(size, flags, name, ctor); 2311 2312 if (!calculate_sizes(s, -1)) 2313 goto error; 2314 2315 s->refcount = 1; 2316 #ifdef CONFIG_NUMA 2317 s->remote_node_defrag_ratio = 1000; 2318 #endif 2319 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2320 goto error; 2321 2322 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2323 return 1; 2324 free_kmem_cache_nodes(s); 2325 error: 2326 if (flags & SLAB_PANIC) 2327 panic("Cannot create slab %s size=%lu realsize=%u " 2328 "order=%u offset=%u flags=%lx\n", 2329 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2330 s->offset, flags); 2331 return 0; 2332 } 2333 2334 /* 2335 * Check if a given pointer is valid 2336 */ 2337 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2338 { 2339 struct page *page; 2340 2341 page = get_object_page(object); 2342 2343 if (!page || s != page->slab) 2344 /* No slab or wrong slab */ 2345 return 0; 2346 2347 if (!check_valid_pointer(s, page, object)) 2348 return 0; 2349 2350 /* 2351 * We could also check if the object is on the slabs freelist. 2352 * But this would be too expensive and it seems that the main 2353 * purpose of kmem_ptr_valid() is to check if the object belongs 2354 * to a certain slab. 2355 */ 2356 return 1; 2357 } 2358 EXPORT_SYMBOL(kmem_ptr_validate); 2359 2360 /* 2361 * Determine the size of a slab object 2362 */ 2363 unsigned int kmem_cache_size(struct kmem_cache *s) 2364 { 2365 return s->objsize; 2366 } 2367 EXPORT_SYMBOL(kmem_cache_size); 2368 2369 const char *kmem_cache_name(struct kmem_cache *s) 2370 { 2371 return s->name; 2372 } 2373 EXPORT_SYMBOL(kmem_cache_name); 2374 2375 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2376 const char *text) 2377 { 2378 #ifdef CONFIG_SLUB_DEBUG 2379 void *addr = page_address(page); 2380 void *p; 2381 DECLARE_BITMAP(map, page->objects); 2382 2383 bitmap_zero(map, page->objects); 2384 slab_err(s, page, "%s", text); 2385 slab_lock(page); 2386 for_each_free_object(p, s, page->freelist) 2387 set_bit(slab_index(p, s, addr), map); 2388 2389 for_each_object(p, s, addr, page->objects) { 2390 2391 if (!test_bit(slab_index(p, s, addr), map)) { 2392 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2393 p, p - addr); 2394 print_tracking(s, p); 2395 } 2396 } 2397 slab_unlock(page); 2398 #endif 2399 } 2400 2401 /* 2402 * Attempt to free all partial slabs on a node. 2403 */ 2404 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2405 { 2406 unsigned long flags; 2407 struct page *page, *h; 2408 2409 spin_lock_irqsave(&n->list_lock, flags); 2410 list_for_each_entry_safe(page, h, &n->partial, lru) { 2411 if (!page->inuse) { 2412 list_del(&page->lru); 2413 discard_slab(s, page); 2414 n->nr_partial--; 2415 } else { 2416 list_slab_objects(s, page, 2417 "Objects remaining on kmem_cache_close()"); 2418 } 2419 } 2420 spin_unlock_irqrestore(&n->list_lock, flags); 2421 } 2422 2423 /* 2424 * Release all resources used by a slab cache. 2425 */ 2426 static inline int kmem_cache_close(struct kmem_cache *s) 2427 { 2428 int node; 2429 2430 flush_all(s); 2431 2432 /* Attempt to free all objects */ 2433 free_kmem_cache_cpus(s); 2434 for_each_node_state(node, N_NORMAL_MEMORY) { 2435 struct kmem_cache_node *n = get_node(s, node); 2436 2437 free_partial(s, n); 2438 if (n->nr_partial || slabs_node(s, node)) 2439 return 1; 2440 } 2441 free_kmem_cache_nodes(s); 2442 return 0; 2443 } 2444 2445 /* 2446 * Close a cache and release the kmem_cache structure 2447 * (must be used for caches created using kmem_cache_create) 2448 */ 2449 void kmem_cache_destroy(struct kmem_cache *s) 2450 { 2451 down_write(&slub_lock); 2452 s->refcount--; 2453 if (!s->refcount) { 2454 list_del(&s->list); 2455 up_write(&slub_lock); 2456 if (kmem_cache_close(s)) { 2457 printk(KERN_ERR "SLUB %s: %s called for cache that " 2458 "still has objects.\n", s->name, __func__); 2459 dump_stack(); 2460 } 2461 sysfs_slab_remove(s); 2462 } else 2463 up_write(&slub_lock); 2464 } 2465 EXPORT_SYMBOL(kmem_cache_destroy); 2466 2467 /******************************************************************** 2468 * Kmalloc subsystem 2469 *******************************************************************/ 2470 2471 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; 2472 EXPORT_SYMBOL(kmalloc_caches); 2473 2474 static int __init setup_slub_min_order(char *str) 2475 { 2476 get_option(&str, &slub_min_order); 2477 2478 return 1; 2479 } 2480 2481 __setup("slub_min_order=", setup_slub_min_order); 2482 2483 static int __init setup_slub_max_order(char *str) 2484 { 2485 get_option(&str, &slub_max_order); 2486 2487 return 1; 2488 } 2489 2490 __setup("slub_max_order=", setup_slub_max_order); 2491 2492 static int __init setup_slub_min_objects(char *str) 2493 { 2494 get_option(&str, &slub_min_objects); 2495 2496 return 1; 2497 } 2498 2499 __setup("slub_min_objects=", setup_slub_min_objects); 2500 2501 static int __init setup_slub_nomerge(char *str) 2502 { 2503 slub_nomerge = 1; 2504 return 1; 2505 } 2506 2507 __setup("slub_nomerge", setup_slub_nomerge); 2508 2509 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2510 const char *name, int size, gfp_t gfp_flags) 2511 { 2512 unsigned int flags = 0; 2513 2514 if (gfp_flags & SLUB_DMA) 2515 flags = SLAB_CACHE_DMA; 2516 2517 down_write(&slub_lock); 2518 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2519 flags, NULL)) 2520 goto panic; 2521 2522 list_add(&s->list, &slab_caches); 2523 up_write(&slub_lock); 2524 if (sysfs_slab_add(s)) 2525 goto panic; 2526 return s; 2527 2528 panic: 2529 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2530 } 2531 2532 #ifdef CONFIG_ZONE_DMA 2533 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; 2534 2535 static void sysfs_add_func(struct work_struct *w) 2536 { 2537 struct kmem_cache *s; 2538 2539 down_write(&slub_lock); 2540 list_for_each_entry(s, &slab_caches, list) { 2541 if (s->flags & __SYSFS_ADD_DEFERRED) { 2542 s->flags &= ~__SYSFS_ADD_DEFERRED; 2543 sysfs_slab_add(s); 2544 } 2545 } 2546 up_write(&slub_lock); 2547 } 2548 2549 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2550 2551 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2552 { 2553 struct kmem_cache *s; 2554 char *text; 2555 size_t realsize; 2556 2557 s = kmalloc_caches_dma[index]; 2558 if (s) 2559 return s; 2560 2561 /* Dynamically create dma cache */ 2562 if (flags & __GFP_WAIT) 2563 down_write(&slub_lock); 2564 else { 2565 if (!down_write_trylock(&slub_lock)) 2566 goto out; 2567 } 2568 2569 if (kmalloc_caches_dma[index]) 2570 goto unlock_out; 2571 2572 realsize = kmalloc_caches[index].objsize; 2573 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2574 (unsigned int)realsize); 2575 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2576 2577 if (!s || !text || !kmem_cache_open(s, flags, text, 2578 realsize, ARCH_KMALLOC_MINALIGN, 2579 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2580 kfree(s); 2581 kfree(text); 2582 goto unlock_out; 2583 } 2584 2585 list_add(&s->list, &slab_caches); 2586 kmalloc_caches_dma[index] = s; 2587 2588 schedule_work(&sysfs_add_work); 2589 2590 unlock_out: 2591 up_write(&slub_lock); 2592 out: 2593 return kmalloc_caches_dma[index]; 2594 } 2595 #endif 2596 2597 /* 2598 * Conversion table for small slabs sizes / 8 to the index in the 2599 * kmalloc array. This is necessary for slabs < 192 since we have non power 2600 * of two cache sizes there. The size of larger slabs can be determined using 2601 * fls. 2602 */ 2603 static s8 size_index[24] = { 2604 3, /* 8 */ 2605 4, /* 16 */ 2606 5, /* 24 */ 2607 5, /* 32 */ 2608 6, /* 40 */ 2609 6, /* 48 */ 2610 6, /* 56 */ 2611 6, /* 64 */ 2612 1, /* 72 */ 2613 1, /* 80 */ 2614 1, /* 88 */ 2615 1, /* 96 */ 2616 7, /* 104 */ 2617 7, /* 112 */ 2618 7, /* 120 */ 2619 7, /* 128 */ 2620 2, /* 136 */ 2621 2, /* 144 */ 2622 2, /* 152 */ 2623 2, /* 160 */ 2624 2, /* 168 */ 2625 2, /* 176 */ 2626 2, /* 184 */ 2627 2 /* 192 */ 2628 }; 2629 2630 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2631 { 2632 int index; 2633 2634 if (size <= 192) { 2635 if (!size) 2636 return ZERO_SIZE_PTR; 2637 2638 index = size_index[(size - 1) / 8]; 2639 } else 2640 index = fls(size - 1); 2641 2642 #ifdef CONFIG_ZONE_DMA 2643 if (unlikely((flags & SLUB_DMA))) 2644 return dma_kmalloc_cache(index, flags); 2645 2646 #endif 2647 return &kmalloc_caches[index]; 2648 } 2649 2650 void *__kmalloc(size_t size, gfp_t flags) 2651 { 2652 struct kmem_cache *s; 2653 2654 if (unlikely(size > PAGE_SIZE)) 2655 return kmalloc_large(size, flags); 2656 2657 s = get_slab(size, flags); 2658 2659 if (unlikely(ZERO_OR_NULL_PTR(s))) 2660 return s; 2661 2662 return slab_alloc(s, flags, -1, __builtin_return_address(0)); 2663 } 2664 EXPORT_SYMBOL(__kmalloc); 2665 2666 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2667 { 2668 struct page *page = alloc_pages_node(node, flags | __GFP_COMP, 2669 get_order(size)); 2670 2671 if (page) 2672 return page_address(page); 2673 else 2674 return NULL; 2675 } 2676 2677 #ifdef CONFIG_NUMA 2678 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2679 { 2680 struct kmem_cache *s; 2681 2682 if (unlikely(size > PAGE_SIZE)) 2683 return kmalloc_large_node(size, flags, node); 2684 2685 s = get_slab(size, flags); 2686 2687 if (unlikely(ZERO_OR_NULL_PTR(s))) 2688 return s; 2689 2690 return slab_alloc(s, flags, node, __builtin_return_address(0)); 2691 } 2692 EXPORT_SYMBOL(__kmalloc_node); 2693 #endif 2694 2695 size_t ksize(const void *object) 2696 { 2697 struct page *page; 2698 struct kmem_cache *s; 2699 2700 if (unlikely(object == ZERO_SIZE_PTR)) 2701 return 0; 2702 2703 page = virt_to_head_page(object); 2704 2705 if (unlikely(!PageSlab(page))) { 2706 WARN_ON(!PageCompound(page)); 2707 return PAGE_SIZE << compound_order(page); 2708 } 2709 s = page->slab; 2710 2711 #ifdef CONFIG_SLUB_DEBUG 2712 /* 2713 * Debugging requires use of the padding between object 2714 * and whatever may come after it. 2715 */ 2716 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2717 return s->objsize; 2718 2719 #endif 2720 /* 2721 * If we have the need to store the freelist pointer 2722 * back there or track user information then we can 2723 * only use the space before that information. 2724 */ 2725 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2726 return s->inuse; 2727 /* 2728 * Else we can use all the padding etc for the allocation 2729 */ 2730 return s->size; 2731 } 2732 2733 void kfree(const void *x) 2734 { 2735 struct page *page; 2736 void *object = (void *)x; 2737 2738 if (unlikely(ZERO_OR_NULL_PTR(x))) 2739 return; 2740 2741 page = virt_to_head_page(x); 2742 if (unlikely(!PageSlab(page))) { 2743 BUG_ON(!PageCompound(page)); 2744 put_page(page); 2745 return; 2746 } 2747 slab_free(page->slab, page, object, __builtin_return_address(0)); 2748 } 2749 EXPORT_SYMBOL(kfree); 2750 2751 /* 2752 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2753 * the remaining slabs by the number of items in use. The slabs with the 2754 * most items in use come first. New allocations will then fill those up 2755 * and thus they can be removed from the partial lists. 2756 * 2757 * The slabs with the least items are placed last. This results in them 2758 * being allocated from last increasing the chance that the last objects 2759 * are freed in them. 2760 */ 2761 int kmem_cache_shrink(struct kmem_cache *s) 2762 { 2763 int node; 2764 int i; 2765 struct kmem_cache_node *n; 2766 struct page *page; 2767 struct page *t; 2768 int objects = oo_objects(s->max); 2769 struct list_head *slabs_by_inuse = 2770 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2771 unsigned long flags; 2772 2773 if (!slabs_by_inuse) 2774 return -ENOMEM; 2775 2776 flush_all(s); 2777 for_each_node_state(node, N_NORMAL_MEMORY) { 2778 n = get_node(s, node); 2779 2780 if (!n->nr_partial) 2781 continue; 2782 2783 for (i = 0; i < objects; i++) 2784 INIT_LIST_HEAD(slabs_by_inuse + i); 2785 2786 spin_lock_irqsave(&n->list_lock, flags); 2787 2788 /* 2789 * Build lists indexed by the items in use in each slab. 2790 * 2791 * Note that concurrent frees may occur while we hold the 2792 * list_lock. page->inuse here is the upper limit. 2793 */ 2794 list_for_each_entry_safe(page, t, &n->partial, lru) { 2795 if (!page->inuse && slab_trylock(page)) { 2796 /* 2797 * Must hold slab lock here because slab_free 2798 * may have freed the last object and be 2799 * waiting to release the slab. 2800 */ 2801 list_del(&page->lru); 2802 n->nr_partial--; 2803 slab_unlock(page); 2804 discard_slab(s, page); 2805 } else { 2806 list_move(&page->lru, 2807 slabs_by_inuse + page->inuse); 2808 } 2809 } 2810 2811 /* 2812 * Rebuild the partial list with the slabs filled up most 2813 * first and the least used slabs at the end. 2814 */ 2815 for (i = objects - 1; i >= 0; i--) 2816 list_splice(slabs_by_inuse + i, n->partial.prev); 2817 2818 spin_unlock_irqrestore(&n->list_lock, flags); 2819 } 2820 2821 kfree(slabs_by_inuse); 2822 return 0; 2823 } 2824 EXPORT_SYMBOL(kmem_cache_shrink); 2825 2826 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2827 static int slab_mem_going_offline_callback(void *arg) 2828 { 2829 struct kmem_cache *s; 2830 2831 down_read(&slub_lock); 2832 list_for_each_entry(s, &slab_caches, list) 2833 kmem_cache_shrink(s); 2834 up_read(&slub_lock); 2835 2836 return 0; 2837 } 2838 2839 static void slab_mem_offline_callback(void *arg) 2840 { 2841 struct kmem_cache_node *n; 2842 struct kmem_cache *s; 2843 struct memory_notify *marg = arg; 2844 int offline_node; 2845 2846 offline_node = marg->status_change_nid; 2847 2848 /* 2849 * If the node still has available memory. we need kmem_cache_node 2850 * for it yet. 2851 */ 2852 if (offline_node < 0) 2853 return; 2854 2855 down_read(&slub_lock); 2856 list_for_each_entry(s, &slab_caches, list) { 2857 n = get_node(s, offline_node); 2858 if (n) { 2859 /* 2860 * if n->nr_slabs > 0, slabs still exist on the node 2861 * that is going down. We were unable to free them, 2862 * and offline_pages() function shoudn't call this 2863 * callback. So, we must fail. 2864 */ 2865 BUG_ON(slabs_node(s, offline_node)); 2866 2867 s->node[offline_node] = NULL; 2868 kmem_cache_free(kmalloc_caches, n); 2869 } 2870 } 2871 up_read(&slub_lock); 2872 } 2873 2874 static int slab_mem_going_online_callback(void *arg) 2875 { 2876 struct kmem_cache_node *n; 2877 struct kmem_cache *s; 2878 struct memory_notify *marg = arg; 2879 int nid = marg->status_change_nid; 2880 int ret = 0; 2881 2882 /* 2883 * If the node's memory is already available, then kmem_cache_node is 2884 * already created. Nothing to do. 2885 */ 2886 if (nid < 0) 2887 return 0; 2888 2889 /* 2890 * We are bringing a node online. No memory is available yet. We must 2891 * allocate a kmem_cache_node structure in order to bring the node 2892 * online. 2893 */ 2894 down_read(&slub_lock); 2895 list_for_each_entry(s, &slab_caches, list) { 2896 /* 2897 * XXX: kmem_cache_alloc_node will fallback to other nodes 2898 * since memory is not yet available from the node that 2899 * is brought up. 2900 */ 2901 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2902 if (!n) { 2903 ret = -ENOMEM; 2904 goto out; 2905 } 2906 init_kmem_cache_node(n, s); 2907 s->node[nid] = n; 2908 } 2909 out: 2910 up_read(&slub_lock); 2911 return ret; 2912 } 2913 2914 static int slab_memory_callback(struct notifier_block *self, 2915 unsigned long action, void *arg) 2916 { 2917 int ret = 0; 2918 2919 switch (action) { 2920 case MEM_GOING_ONLINE: 2921 ret = slab_mem_going_online_callback(arg); 2922 break; 2923 case MEM_GOING_OFFLINE: 2924 ret = slab_mem_going_offline_callback(arg); 2925 break; 2926 case MEM_OFFLINE: 2927 case MEM_CANCEL_ONLINE: 2928 slab_mem_offline_callback(arg); 2929 break; 2930 case MEM_ONLINE: 2931 case MEM_CANCEL_OFFLINE: 2932 break; 2933 } 2934 if (ret) 2935 ret = notifier_from_errno(ret); 2936 else 2937 ret = NOTIFY_OK; 2938 return ret; 2939 } 2940 2941 #endif /* CONFIG_MEMORY_HOTPLUG */ 2942 2943 /******************************************************************** 2944 * Basic setup of slabs 2945 *******************************************************************/ 2946 2947 void __init kmem_cache_init(void) 2948 { 2949 int i; 2950 int caches = 0; 2951 2952 init_alloc_cpu(); 2953 2954 #ifdef CONFIG_NUMA 2955 /* 2956 * Must first have the slab cache available for the allocations of the 2957 * struct kmem_cache_node's. There is special bootstrap code in 2958 * kmem_cache_open for slab_state == DOWN. 2959 */ 2960 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 2961 sizeof(struct kmem_cache_node), GFP_KERNEL); 2962 kmalloc_caches[0].refcount = -1; 2963 caches++; 2964 2965 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 2966 #endif 2967 2968 /* Able to allocate the per node structures */ 2969 slab_state = PARTIAL; 2970 2971 /* Caches that are not of the two-to-the-power-of size */ 2972 if (KMALLOC_MIN_SIZE <= 64) { 2973 create_kmalloc_cache(&kmalloc_caches[1], 2974 "kmalloc-96", 96, GFP_KERNEL); 2975 caches++; 2976 create_kmalloc_cache(&kmalloc_caches[2], 2977 "kmalloc-192", 192, GFP_KERNEL); 2978 caches++; 2979 } 2980 2981 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { 2982 create_kmalloc_cache(&kmalloc_caches[i], 2983 "kmalloc", 1 << i, GFP_KERNEL); 2984 caches++; 2985 } 2986 2987 2988 /* 2989 * Patch up the size_index table if we have strange large alignment 2990 * requirements for the kmalloc array. This is only the case for 2991 * MIPS it seems. The standard arches will not generate any code here. 2992 * 2993 * Largest permitted alignment is 256 bytes due to the way we 2994 * handle the index determination for the smaller caches. 2995 * 2996 * Make sure that nothing crazy happens if someone starts tinkering 2997 * around with ARCH_KMALLOC_MINALIGN 2998 */ 2999 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3000 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3001 3002 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 3003 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 3004 3005 if (KMALLOC_MIN_SIZE == 128) { 3006 /* 3007 * The 192 byte sized cache is not used if the alignment 3008 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3009 * instead. 3010 */ 3011 for (i = 128 + 8; i <= 192; i += 8) 3012 size_index[(i - 1) / 8] = 8; 3013 } 3014 3015 slab_state = UP; 3016 3017 /* Provide the correct kmalloc names now that the caches are up */ 3018 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) 3019 kmalloc_caches[i]. name = 3020 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 3021 3022 #ifdef CONFIG_SMP 3023 register_cpu_notifier(&slab_notifier); 3024 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 3025 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 3026 #else 3027 kmem_size = sizeof(struct kmem_cache); 3028 #endif 3029 3030 printk(KERN_INFO 3031 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3032 " CPUs=%d, Nodes=%d\n", 3033 caches, cache_line_size(), 3034 slub_min_order, slub_max_order, slub_min_objects, 3035 nr_cpu_ids, nr_node_ids); 3036 } 3037 3038 /* 3039 * Find a mergeable slab cache 3040 */ 3041 static int slab_unmergeable(struct kmem_cache *s) 3042 { 3043 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3044 return 1; 3045 3046 if (s->ctor) 3047 return 1; 3048 3049 /* 3050 * We may have set a slab to be unmergeable during bootstrap. 3051 */ 3052 if (s->refcount < 0) 3053 return 1; 3054 3055 return 0; 3056 } 3057 3058 static struct kmem_cache *find_mergeable(size_t size, 3059 size_t align, unsigned long flags, const char *name, 3060 void (*ctor)(void *)) 3061 { 3062 struct kmem_cache *s; 3063 3064 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3065 return NULL; 3066 3067 if (ctor) 3068 return NULL; 3069 3070 size = ALIGN(size, sizeof(void *)); 3071 align = calculate_alignment(flags, align, size); 3072 size = ALIGN(size, align); 3073 flags = kmem_cache_flags(size, flags, name, NULL); 3074 3075 list_for_each_entry(s, &slab_caches, list) { 3076 if (slab_unmergeable(s)) 3077 continue; 3078 3079 if (size > s->size) 3080 continue; 3081 3082 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3083 continue; 3084 /* 3085 * Check if alignment is compatible. 3086 * Courtesy of Adrian Drzewiecki 3087 */ 3088 if ((s->size & ~(align - 1)) != s->size) 3089 continue; 3090 3091 if (s->size - size >= sizeof(void *)) 3092 continue; 3093 3094 return s; 3095 } 3096 return NULL; 3097 } 3098 3099 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3100 size_t align, unsigned long flags, void (*ctor)(void *)) 3101 { 3102 struct kmem_cache *s; 3103 3104 down_write(&slub_lock); 3105 s = find_mergeable(size, align, flags, name, ctor); 3106 if (s) { 3107 int cpu; 3108 3109 s->refcount++; 3110 /* 3111 * Adjust the object sizes so that we clear 3112 * the complete object on kzalloc. 3113 */ 3114 s->objsize = max(s->objsize, (int)size); 3115 3116 /* 3117 * And then we need to update the object size in the 3118 * per cpu structures 3119 */ 3120 for_each_online_cpu(cpu) 3121 get_cpu_slab(s, cpu)->objsize = s->objsize; 3122 3123 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3124 up_write(&slub_lock); 3125 3126 if (sysfs_slab_alias(s, name)) 3127 goto err; 3128 return s; 3129 } 3130 3131 s = kmalloc(kmem_size, GFP_KERNEL); 3132 if (s) { 3133 if (kmem_cache_open(s, GFP_KERNEL, name, 3134 size, align, flags, ctor)) { 3135 list_add(&s->list, &slab_caches); 3136 up_write(&slub_lock); 3137 if (sysfs_slab_add(s)) 3138 goto err; 3139 return s; 3140 } 3141 kfree(s); 3142 } 3143 up_write(&slub_lock); 3144 3145 err: 3146 if (flags & SLAB_PANIC) 3147 panic("Cannot create slabcache %s\n", name); 3148 else 3149 s = NULL; 3150 return s; 3151 } 3152 EXPORT_SYMBOL(kmem_cache_create); 3153 3154 #ifdef CONFIG_SMP 3155 /* 3156 * Use the cpu notifier to insure that the cpu slabs are flushed when 3157 * necessary. 3158 */ 3159 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3160 unsigned long action, void *hcpu) 3161 { 3162 long cpu = (long)hcpu; 3163 struct kmem_cache *s; 3164 unsigned long flags; 3165 3166 switch (action) { 3167 case CPU_UP_PREPARE: 3168 case CPU_UP_PREPARE_FROZEN: 3169 init_alloc_cpu_cpu(cpu); 3170 down_read(&slub_lock); 3171 list_for_each_entry(s, &slab_caches, list) 3172 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3173 GFP_KERNEL); 3174 up_read(&slub_lock); 3175 break; 3176 3177 case CPU_UP_CANCELED: 3178 case CPU_UP_CANCELED_FROZEN: 3179 case CPU_DEAD: 3180 case CPU_DEAD_FROZEN: 3181 down_read(&slub_lock); 3182 list_for_each_entry(s, &slab_caches, list) { 3183 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3184 3185 local_irq_save(flags); 3186 __flush_cpu_slab(s, cpu); 3187 local_irq_restore(flags); 3188 free_kmem_cache_cpu(c, cpu); 3189 s->cpu_slab[cpu] = NULL; 3190 } 3191 up_read(&slub_lock); 3192 break; 3193 default: 3194 break; 3195 } 3196 return NOTIFY_OK; 3197 } 3198 3199 static struct notifier_block __cpuinitdata slab_notifier = { 3200 .notifier_call = slab_cpuup_callback 3201 }; 3202 3203 #endif 3204 3205 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) 3206 { 3207 struct kmem_cache *s; 3208 3209 if (unlikely(size > PAGE_SIZE)) 3210 return kmalloc_large(size, gfpflags); 3211 3212 s = get_slab(size, gfpflags); 3213 3214 if (unlikely(ZERO_OR_NULL_PTR(s))) 3215 return s; 3216 3217 return slab_alloc(s, gfpflags, -1, caller); 3218 } 3219 3220 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3221 int node, void *caller) 3222 { 3223 struct kmem_cache *s; 3224 3225 if (unlikely(size > PAGE_SIZE)) 3226 return kmalloc_large_node(size, gfpflags, node); 3227 3228 s = get_slab(size, gfpflags); 3229 3230 if (unlikely(ZERO_OR_NULL_PTR(s))) 3231 return s; 3232 3233 return slab_alloc(s, gfpflags, node, caller); 3234 } 3235 3236 #ifdef CONFIG_SLUB_DEBUG 3237 static unsigned long count_partial(struct kmem_cache_node *n, 3238 int (*get_count)(struct page *)) 3239 { 3240 unsigned long flags; 3241 unsigned long x = 0; 3242 struct page *page; 3243 3244 spin_lock_irqsave(&n->list_lock, flags); 3245 list_for_each_entry(page, &n->partial, lru) 3246 x += get_count(page); 3247 spin_unlock_irqrestore(&n->list_lock, flags); 3248 return x; 3249 } 3250 3251 static int count_inuse(struct page *page) 3252 { 3253 return page->inuse; 3254 } 3255 3256 static int count_total(struct page *page) 3257 { 3258 return page->objects; 3259 } 3260 3261 static int count_free(struct page *page) 3262 { 3263 return page->objects - page->inuse; 3264 } 3265 3266 static int validate_slab(struct kmem_cache *s, struct page *page, 3267 unsigned long *map) 3268 { 3269 void *p; 3270 void *addr = page_address(page); 3271 3272 if (!check_slab(s, page) || 3273 !on_freelist(s, page, NULL)) 3274 return 0; 3275 3276 /* Now we know that a valid freelist exists */ 3277 bitmap_zero(map, page->objects); 3278 3279 for_each_free_object(p, s, page->freelist) { 3280 set_bit(slab_index(p, s, addr), map); 3281 if (!check_object(s, page, p, 0)) 3282 return 0; 3283 } 3284 3285 for_each_object(p, s, addr, page->objects) 3286 if (!test_bit(slab_index(p, s, addr), map)) 3287 if (!check_object(s, page, p, 1)) 3288 return 0; 3289 return 1; 3290 } 3291 3292 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3293 unsigned long *map) 3294 { 3295 if (slab_trylock(page)) { 3296 validate_slab(s, page, map); 3297 slab_unlock(page); 3298 } else 3299 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3300 s->name, page); 3301 3302 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3303 if (!PageSlubDebug(page)) 3304 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3305 "on slab 0x%p\n", s->name, page); 3306 } else { 3307 if (PageSlubDebug(page)) 3308 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3309 "slab 0x%p\n", s->name, page); 3310 } 3311 } 3312 3313 static int validate_slab_node(struct kmem_cache *s, 3314 struct kmem_cache_node *n, unsigned long *map) 3315 { 3316 unsigned long count = 0; 3317 struct page *page; 3318 unsigned long flags; 3319 3320 spin_lock_irqsave(&n->list_lock, flags); 3321 3322 list_for_each_entry(page, &n->partial, lru) { 3323 validate_slab_slab(s, page, map); 3324 count++; 3325 } 3326 if (count != n->nr_partial) 3327 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3328 "counter=%ld\n", s->name, count, n->nr_partial); 3329 3330 if (!(s->flags & SLAB_STORE_USER)) 3331 goto out; 3332 3333 list_for_each_entry(page, &n->full, lru) { 3334 validate_slab_slab(s, page, map); 3335 count++; 3336 } 3337 if (count != atomic_long_read(&n->nr_slabs)) 3338 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3339 "counter=%ld\n", s->name, count, 3340 atomic_long_read(&n->nr_slabs)); 3341 3342 out: 3343 spin_unlock_irqrestore(&n->list_lock, flags); 3344 return count; 3345 } 3346 3347 static long validate_slab_cache(struct kmem_cache *s) 3348 { 3349 int node; 3350 unsigned long count = 0; 3351 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3352 sizeof(unsigned long), GFP_KERNEL); 3353 3354 if (!map) 3355 return -ENOMEM; 3356 3357 flush_all(s); 3358 for_each_node_state(node, N_NORMAL_MEMORY) { 3359 struct kmem_cache_node *n = get_node(s, node); 3360 3361 count += validate_slab_node(s, n, map); 3362 } 3363 kfree(map); 3364 return count; 3365 } 3366 3367 #ifdef SLUB_RESILIENCY_TEST 3368 static void resiliency_test(void) 3369 { 3370 u8 *p; 3371 3372 printk(KERN_ERR "SLUB resiliency testing\n"); 3373 printk(KERN_ERR "-----------------------\n"); 3374 printk(KERN_ERR "A. Corruption after allocation\n"); 3375 3376 p = kzalloc(16, GFP_KERNEL); 3377 p[16] = 0x12; 3378 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3379 " 0x12->0x%p\n\n", p + 16); 3380 3381 validate_slab_cache(kmalloc_caches + 4); 3382 3383 /* Hmmm... The next two are dangerous */ 3384 p = kzalloc(32, GFP_KERNEL); 3385 p[32 + sizeof(void *)] = 0x34; 3386 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3387 " 0x34 -> -0x%p\n", p); 3388 printk(KERN_ERR 3389 "If allocated object is overwritten then not detectable\n\n"); 3390 3391 validate_slab_cache(kmalloc_caches + 5); 3392 p = kzalloc(64, GFP_KERNEL); 3393 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3394 *p = 0x56; 3395 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3396 p); 3397 printk(KERN_ERR 3398 "If allocated object is overwritten then not detectable\n\n"); 3399 validate_slab_cache(kmalloc_caches + 6); 3400 3401 printk(KERN_ERR "\nB. Corruption after free\n"); 3402 p = kzalloc(128, GFP_KERNEL); 3403 kfree(p); 3404 *p = 0x78; 3405 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3406 validate_slab_cache(kmalloc_caches + 7); 3407 3408 p = kzalloc(256, GFP_KERNEL); 3409 kfree(p); 3410 p[50] = 0x9a; 3411 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3412 p); 3413 validate_slab_cache(kmalloc_caches + 8); 3414 3415 p = kzalloc(512, GFP_KERNEL); 3416 kfree(p); 3417 p[512] = 0xab; 3418 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3419 validate_slab_cache(kmalloc_caches + 9); 3420 } 3421 #else 3422 static void resiliency_test(void) {}; 3423 #endif 3424 3425 /* 3426 * Generate lists of code addresses where slabcache objects are allocated 3427 * and freed. 3428 */ 3429 3430 struct location { 3431 unsigned long count; 3432 void *addr; 3433 long long sum_time; 3434 long min_time; 3435 long max_time; 3436 long min_pid; 3437 long max_pid; 3438 cpumask_t cpus; 3439 nodemask_t nodes; 3440 }; 3441 3442 struct loc_track { 3443 unsigned long max; 3444 unsigned long count; 3445 struct location *loc; 3446 }; 3447 3448 static void free_loc_track(struct loc_track *t) 3449 { 3450 if (t->max) 3451 free_pages((unsigned long)t->loc, 3452 get_order(sizeof(struct location) * t->max)); 3453 } 3454 3455 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3456 { 3457 struct location *l; 3458 int order; 3459 3460 order = get_order(sizeof(struct location) * max); 3461 3462 l = (void *)__get_free_pages(flags, order); 3463 if (!l) 3464 return 0; 3465 3466 if (t->count) { 3467 memcpy(l, t->loc, sizeof(struct location) * t->count); 3468 free_loc_track(t); 3469 } 3470 t->max = max; 3471 t->loc = l; 3472 return 1; 3473 } 3474 3475 static int add_location(struct loc_track *t, struct kmem_cache *s, 3476 const struct track *track) 3477 { 3478 long start, end, pos; 3479 struct location *l; 3480 void *caddr; 3481 unsigned long age = jiffies - track->when; 3482 3483 start = -1; 3484 end = t->count; 3485 3486 for ( ; ; ) { 3487 pos = start + (end - start + 1) / 2; 3488 3489 /* 3490 * There is nothing at "end". If we end up there 3491 * we need to add something to before end. 3492 */ 3493 if (pos == end) 3494 break; 3495 3496 caddr = t->loc[pos].addr; 3497 if (track->addr == caddr) { 3498 3499 l = &t->loc[pos]; 3500 l->count++; 3501 if (track->when) { 3502 l->sum_time += age; 3503 if (age < l->min_time) 3504 l->min_time = age; 3505 if (age > l->max_time) 3506 l->max_time = age; 3507 3508 if (track->pid < l->min_pid) 3509 l->min_pid = track->pid; 3510 if (track->pid > l->max_pid) 3511 l->max_pid = track->pid; 3512 3513 cpu_set(track->cpu, l->cpus); 3514 } 3515 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3516 return 1; 3517 } 3518 3519 if (track->addr < caddr) 3520 end = pos; 3521 else 3522 start = pos; 3523 } 3524 3525 /* 3526 * Not found. Insert new tracking element. 3527 */ 3528 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3529 return 0; 3530 3531 l = t->loc + pos; 3532 if (pos < t->count) 3533 memmove(l + 1, l, 3534 (t->count - pos) * sizeof(struct location)); 3535 t->count++; 3536 l->count = 1; 3537 l->addr = track->addr; 3538 l->sum_time = age; 3539 l->min_time = age; 3540 l->max_time = age; 3541 l->min_pid = track->pid; 3542 l->max_pid = track->pid; 3543 cpus_clear(l->cpus); 3544 cpu_set(track->cpu, l->cpus); 3545 nodes_clear(l->nodes); 3546 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3547 return 1; 3548 } 3549 3550 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3551 struct page *page, enum track_item alloc) 3552 { 3553 void *addr = page_address(page); 3554 DECLARE_BITMAP(map, page->objects); 3555 void *p; 3556 3557 bitmap_zero(map, page->objects); 3558 for_each_free_object(p, s, page->freelist) 3559 set_bit(slab_index(p, s, addr), map); 3560 3561 for_each_object(p, s, addr, page->objects) 3562 if (!test_bit(slab_index(p, s, addr), map)) 3563 add_location(t, s, get_track(s, p, alloc)); 3564 } 3565 3566 static int list_locations(struct kmem_cache *s, char *buf, 3567 enum track_item alloc) 3568 { 3569 int len = 0; 3570 unsigned long i; 3571 struct loc_track t = { 0, 0, NULL }; 3572 int node; 3573 3574 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3575 GFP_TEMPORARY)) 3576 return sprintf(buf, "Out of memory\n"); 3577 3578 /* Push back cpu slabs */ 3579 flush_all(s); 3580 3581 for_each_node_state(node, N_NORMAL_MEMORY) { 3582 struct kmem_cache_node *n = get_node(s, node); 3583 unsigned long flags; 3584 struct page *page; 3585 3586 if (!atomic_long_read(&n->nr_slabs)) 3587 continue; 3588 3589 spin_lock_irqsave(&n->list_lock, flags); 3590 list_for_each_entry(page, &n->partial, lru) 3591 process_slab(&t, s, page, alloc); 3592 list_for_each_entry(page, &n->full, lru) 3593 process_slab(&t, s, page, alloc); 3594 spin_unlock_irqrestore(&n->list_lock, flags); 3595 } 3596 3597 for (i = 0; i < t.count; i++) { 3598 struct location *l = &t.loc[i]; 3599 3600 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3601 break; 3602 len += sprintf(buf + len, "%7ld ", l->count); 3603 3604 if (l->addr) 3605 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3606 else 3607 len += sprintf(buf + len, "<not-available>"); 3608 3609 if (l->sum_time != l->min_time) { 3610 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3611 l->min_time, 3612 (long)div_u64(l->sum_time, l->count), 3613 l->max_time); 3614 } else 3615 len += sprintf(buf + len, " age=%ld", 3616 l->min_time); 3617 3618 if (l->min_pid != l->max_pid) 3619 len += sprintf(buf + len, " pid=%ld-%ld", 3620 l->min_pid, l->max_pid); 3621 else 3622 len += sprintf(buf + len, " pid=%ld", 3623 l->min_pid); 3624 3625 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && 3626 len < PAGE_SIZE - 60) { 3627 len += sprintf(buf + len, " cpus="); 3628 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3629 l->cpus); 3630 } 3631 3632 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3633 len < PAGE_SIZE - 60) { 3634 len += sprintf(buf + len, " nodes="); 3635 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3636 l->nodes); 3637 } 3638 3639 len += sprintf(buf + len, "\n"); 3640 } 3641 3642 free_loc_track(&t); 3643 if (!t.count) 3644 len += sprintf(buf, "No data\n"); 3645 return len; 3646 } 3647 3648 enum slab_stat_type { 3649 SL_ALL, /* All slabs */ 3650 SL_PARTIAL, /* Only partially allocated slabs */ 3651 SL_CPU, /* Only slabs used for cpu caches */ 3652 SL_OBJECTS, /* Determine allocated objects not slabs */ 3653 SL_TOTAL /* Determine object capacity not slabs */ 3654 }; 3655 3656 #define SO_ALL (1 << SL_ALL) 3657 #define SO_PARTIAL (1 << SL_PARTIAL) 3658 #define SO_CPU (1 << SL_CPU) 3659 #define SO_OBJECTS (1 << SL_OBJECTS) 3660 #define SO_TOTAL (1 << SL_TOTAL) 3661 3662 static ssize_t show_slab_objects(struct kmem_cache *s, 3663 char *buf, unsigned long flags) 3664 { 3665 unsigned long total = 0; 3666 int node; 3667 int x; 3668 unsigned long *nodes; 3669 unsigned long *per_cpu; 3670 3671 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3672 if (!nodes) 3673 return -ENOMEM; 3674 per_cpu = nodes + nr_node_ids; 3675 3676 if (flags & SO_CPU) { 3677 int cpu; 3678 3679 for_each_possible_cpu(cpu) { 3680 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3681 3682 if (!c || c->node < 0) 3683 continue; 3684 3685 if (c->page) { 3686 if (flags & SO_TOTAL) 3687 x = c->page->objects; 3688 else if (flags & SO_OBJECTS) 3689 x = c->page->inuse; 3690 else 3691 x = 1; 3692 3693 total += x; 3694 nodes[c->node] += x; 3695 } 3696 per_cpu[c->node]++; 3697 } 3698 } 3699 3700 if (flags & SO_ALL) { 3701 for_each_node_state(node, N_NORMAL_MEMORY) { 3702 struct kmem_cache_node *n = get_node(s, node); 3703 3704 if (flags & SO_TOTAL) 3705 x = atomic_long_read(&n->total_objects); 3706 else if (flags & SO_OBJECTS) 3707 x = atomic_long_read(&n->total_objects) - 3708 count_partial(n, count_free); 3709 3710 else 3711 x = atomic_long_read(&n->nr_slabs); 3712 total += x; 3713 nodes[node] += x; 3714 } 3715 3716 } else if (flags & SO_PARTIAL) { 3717 for_each_node_state(node, N_NORMAL_MEMORY) { 3718 struct kmem_cache_node *n = get_node(s, node); 3719 3720 if (flags & SO_TOTAL) 3721 x = count_partial(n, count_total); 3722 else if (flags & SO_OBJECTS) 3723 x = count_partial(n, count_inuse); 3724 else 3725 x = n->nr_partial; 3726 total += x; 3727 nodes[node] += x; 3728 } 3729 } 3730 x = sprintf(buf, "%lu", total); 3731 #ifdef CONFIG_NUMA 3732 for_each_node_state(node, N_NORMAL_MEMORY) 3733 if (nodes[node]) 3734 x += sprintf(buf + x, " N%d=%lu", 3735 node, nodes[node]); 3736 #endif 3737 kfree(nodes); 3738 return x + sprintf(buf + x, "\n"); 3739 } 3740 3741 static int any_slab_objects(struct kmem_cache *s) 3742 { 3743 int node; 3744 3745 for_each_online_node(node) { 3746 struct kmem_cache_node *n = get_node(s, node); 3747 3748 if (!n) 3749 continue; 3750 3751 if (atomic_long_read(&n->total_objects)) 3752 return 1; 3753 } 3754 return 0; 3755 } 3756 3757 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3758 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3759 3760 struct slab_attribute { 3761 struct attribute attr; 3762 ssize_t (*show)(struct kmem_cache *s, char *buf); 3763 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3764 }; 3765 3766 #define SLAB_ATTR_RO(_name) \ 3767 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3768 3769 #define SLAB_ATTR(_name) \ 3770 static struct slab_attribute _name##_attr = \ 3771 __ATTR(_name, 0644, _name##_show, _name##_store) 3772 3773 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3774 { 3775 return sprintf(buf, "%d\n", s->size); 3776 } 3777 SLAB_ATTR_RO(slab_size); 3778 3779 static ssize_t align_show(struct kmem_cache *s, char *buf) 3780 { 3781 return sprintf(buf, "%d\n", s->align); 3782 } 3783 SLAB_ATTR_RO(align); 3784 3785 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3786 { 3787 return sprintf(buf, "%d\n", s->objsize); 3788 } 3789 SLAB_ATTR_RO(object_size); 3790 3791 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3792 { 3793 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3794 } 3795 SLAB_ATTR_RO(objs_per_slab); 3796 3797 static ssize_t order_store(struct kmem_cache *s, 3798 const char *buf, size_t length) 3799 { 3800 unsigned long order; 3801 int err; 3802 3803 err = strict_strtoul(buf, 10, &order); 3804 if (err) 3805 return err; 3806 3807 if (order > slub_max_order || order < slub_min_order) 3808 return -EINVAL; 3809 3810 calculate_sizes(s, order); 3811 return length; 3812 } 3813 3814 static ssize_t order_show(struct kmem_cache *s, char *buf) 3815 { 3816 return sprintf(buf, "%d\n", oo_order(s->oo)); 3817 } 3818 SLAB_ATTR(order); 3819 3820 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3821 { 3822 if (s->ctor) { 3823 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3824 3825 return n + sprintf(buf + n, "\n"); 3826 } 3827 return 0; 3828 } 3829 SLAB_ATTR_RO(ctor); 3830 3831 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3832 { 3833 return sprintf(buf, "%d\n", s->refcount - 1); 3834 } 3835 SLAB_ATTR_RO(aliases); 3836 3837 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3838 { 3839 return show_slab_objects(s, buf, SO_ALL); 3840 } 3841 SLAB_ATTR_RO(slabs); 3842 3843 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3844 { 3845 return show_slab_objects(s, buf, SO_PARTIAL); 3846 } 3847 SLAB_ATTR_RO(partial); 3848 3849 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3850 { 3851 return show_slab_objects(s, buf, SO_CPU); 3852 } 3853 SLAB_ATTR_RO(cpu_slabs); 3854 3855 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3856 { 3857 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3858 } 3859 SLAB_ATTR_RO(objects); 3860 3861 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3862 { 3863 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3864 } 3865 SLAB_ATTR_RO(objects_partial); 3866 3867 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3868 { 3869 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3870 } 3871 SLAB_ATTR_RO(total_objects); 3872 3873 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3874 { 3875 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3876 } 3877 3878 static ssize_t sanity_checks_store(struct kmem_cache *s, 3879 const char *buf, size_t length) 3880 { 3881 s->flags &= ~SLAB_DEBUG_FREE; 3882 if (buf[0] == '1') 3883 s->flags |= SLAB_DEBUG_FREE; 3884 return length; 3885 } 3886 SLAB_ATTR(sanity_checks); 3887 3888 static ssize_t trace_show(struct kmem_cache *s, char *buf) 3889 { 3890 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 3891 } 3892 3893 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 3894 size_t length) 3895 { 3896 s->flags &= ~SLAB_TRACE; 3897 if (buf[0] == '1') 3898 s->flags |= SLAB_TRACE; 3899 return length; 3900 } 3901 SLAB_ATTR(trace); 3902 3903 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 3904 { 3905 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 3906 } 3907 3908 static ssize_t reclaim_account_store(struct kmem_cache *s, 3909 const char *buf, size_t length) 3910 { 3911 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 3912 if (buf[0] == '1') 3913 s->flags |= SLAB_RECLAIM_ACCOUNT; 3914 return length; 3915 } 3916 SLAB_ATTR(reclaim_account); 3917 3918 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 3919 { 3920 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 3921 } 3922 SLAB_ATTR_RO(hwcache_align); 3923 3924 #ifdef CONFIG_ZONE_DMA 3925 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 3926 { 3927 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 3928 } 3929 SLAB_ATTR_RO(cache_dma); 3930 #endif 3931 3932 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 3933 { 3934 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 3935 } 3936 SLAB_ATTR_RO(destroy_by_rcu); 3937 3938 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 3939 { 3940 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 3941 } 3942 3943 static ssize_t red_zone_store(struct kmem_cache *s, 3944 const char *buf, size_t length) 3945 { 3946 if (any_slab_objects(s)) 3947 return -EBUSY; 3948 3949 s->flags &= ~SLAB_RED_ZONE; 3950 if (buf[0] == '1') 3951 s->flags |= SLAB_RED_ZONE; 3952 calculate_sizes(s, -1); 3953 return length; 3954 } 3955 SLAB_ATTR(red_zone); 3956 3957 static ssize_t poison_show(struct kmem_cache *s, char *buf) 3958 { 3959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 3960 } 3961 3962 static ssize_t poison_store(struct kmem_cache *s, 3963 const char *buf, size_t length) 3964 { 3965 if (any_slab_objects(s)) 3966 return -EBUSY; 3967 3968 s->flags &= ~SLAB_POISON; 3969 if (buf[0] == '1') 3970 s->flags |= SLAB_POISON; 3971 calculate_sizes(s, -1); 3972 return length; 3973 } 3974 SLAB_ATTR(poison); 3975 3976 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 3977 { 3978 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 3979 } 3980 3981 static ssize_t store_user_store(struct kmem_cache *s, 3982 const char *buf, size_t length) 3983 { 3984 if (any_slab_objects(s)) 3985 return -EBUSY; 3986 3987 s->flags &= ~SLAB_STORE_USER; 3988 if (buf[0] == '1') 3989 s->flags |= SLAB_STORE_USER; 3990 calculate_sizes(s, -1); 3991 return length; 3992 } 3993 SLAB_ATTR(store_user); 3994 3995 static ssize_t validate_show(struct kmem_cache *s, char *buf) 3996 { 3997 return 0; 3998 } 3999 4000 static ssize_t validate_store(struct kmem_cache *s, 4001 const char *buf, size_t length) 4002 { 4003 int ret = -EINVAL; 4004 4005 if (buf[0] == '1') { 4006 ret = validate_slab_cache(s); 4007 if (ret >= 0) 4008 ret = length; 4009 } 4010 return ret; 4011 } 4012 SLAB_ATTR(validate); 4013 4014 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4015 { 4016 return 0; 4017 } 4018 4019 static ssize_t shrink_store(struct kmem_cache *s, 4020 const char *buf, size_t length) 4021 { 4022 if (buf[0] == '1') { 4023 int rc = kmem_cache_shrink(s); 4024 4025 if (rc) 4026 return rc; 4027 } else 4028 return -EINVAL; 4029 return length; 4030 } 4031 SLAB_ATTR(shrink); 4032 4033 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4034 { 4035 if (!(s->flags & SLAB_STORE_USER)) 4036 return -ENOSYS; 4037 return list_locations(s, buf, TRACK_ALLOC); 4038 } 4039 SLAB_ATTR_RO(alloc_calls); 4040 4041 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4042 { 4043 if (!(s->flags & SLAB_STORE_USER)) 4044 return -ENOSYS; 4045 return list_locations(s, buf, TRACK_FREE); 4046 } 4047 SLAB_ATTR_RO(free_calls); 4048 4049 #ifdef CONFIG_NUMA 4050 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4051 { 4052 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4053 } 4054 4055 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4056 const char *buf, size_t length) 4057 { 4058 unsigned long ratio; 4059 int err; 4060 4061 err = strict_strtoul(buf, 10, &ratio); 4062 if (err) 4063 return err; 4064 4065 if (ratio <= 100) 4066 s->remote_node_defrag_ratio = ratio * 10; 4067 4068 return length; 4069 } 4070 SLAB_ATTR(remote_node_defrag_ratio); 4071 #endif 4072 4073 #ifdef CONFIG_SLUB_STATS 4074 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4075 { 4076 unsigned long sum = 0; 4077 int cpu; 4078 int len; 4079 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4080 4081 if (!data) 4082 return -ENOMEM; 4083 4084 for_each_online_cpu(cpu) { 4085 unsigned x = get_cpu_slab(s, cpu)->stat[si]; 4086 4087 data[cpu] = x; 4088 sum += x; 4089 } 4090 4091 len = sprintf(buf, "%lu", sum); 4092 4093 #ifdef CONFIG_SMP 4094 for_each_online_cpu(cpu) { 4095 if (data[cpu] && len < PAGE_SIZE - 20) 4096 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4097 } 4098 #endif 4099 kfree(data); 4100 return len + sprintf(buf + len, "\n"); 4101 } 4102 4103 #define STAT_ATTR(si, text) \ 4104 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4105 { \ 4106 return show_stat(s, buf, si); \ 4107 } \ 4108 SLAB_ATTR_RO(text); \ 4109 4110 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4111 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4112 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4113 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4114 STAT_ATTR(FREE_FROZEN, free_frozen); 4115 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4116 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4117 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4118 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4119 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4120 STAT_ATTR(FREE_SLAB, free_slab); 4121 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4122 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4123 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4124 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4125 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4126 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4127 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4128 #endif 4129 4130 static struct attribute *slab_attrs[] = { 4131 &slab_size_attr.attr, 4132 &object_size_attr.attr, 4133 &objs_per_slab_attr.attr, 4134 &order_attr.attr, 4135 &objects_attr.attr, 4136 &objects_partial_attr.attr, 4137 &total_objects_attr.attr, 4138 &slabs_attr.attr, 4139 &partial_attr.attr, 4140 &cpu_slabs_attr.attr, 4141 &ctor_attr.attr, 4142 &aliases_attr.attr, 4143 &align_attr.attr, 4144 &sanity_checks_attr.attr, 4145 &trace_attr.attr, 4146 &hwcache_align_attr.attr, 4147 &reclaim_account_attr.attr, 4148 &destroy_by_rcu_attr.attr, 4149 &red_zone_attr.attr, 4150 &poison_attr.attr, 4151 &store_user_attr.attr, 4152 &validate_attr.attr, 4153 &shrink_attr.attr, 4154 &alloc_calls_attr.attr, 4155 &free_calls_attr.attr, 4156 #ifdef CONFIG_ZONE_DMA 4157 &cache_dma_attr.attr, 4158 #endif 4159 #ifdef CONFIG_NUMA 4160 &remote_node_defrag_ratio_attr.attr, 4161 #endif 4162 #ifdef CONFIG_SLUB_STATS 4163 &alloc_fastpath_attr.attr, 4164 &alloc_slowpath_attr.attr, 4165 &free_fastpath_attr.attr, 4166 &free_slowpath_attr.attr, 4167 &free_frozen_attr.attr, 4168 &free_add_partial_attr.attr, 4169 &free_remove_partial_attr.attr, 4170 &alloc_from_partial_attr.attr, 4171 &alloc_slab_attr.attr, 4172 &alloc_refill_attr.attr, 4173 &free_slab_attr.attr, 4174 &cpuslab_flush_attr.attr, 4175 &deactivate_full_attr.attr, 4176 &deactivate_empty_attr.attr, 4177 &deactivate_to_head_attr.attr, 4178 &deactivate_to_tail_attr.attr, 4179 &deactivate_remote_frees_attr.attr, 4180 &order_fallback_attr.attr, 4181 #endif 4182 NULL 4183 }; 4184 4185 static struct attribute_group slab_attr_group = { 4186 .attrs = slab_attrs, 4187 }; 4188 4189 static ssize_t slab_attr_show(struct kobject *kobj, 4190 struct attribute *attr, 4191 char *buf) 4192 { 4193 struct slab_attribute *attribute; 4194 struct kmem_cache *s; 4195 int err; 4196 4197 attribute = to_slab_attr(attr); 4198 s = to_slab(kobj); 4199 4200 if (!attribute->show) 4201 return -EIO; 4202 4203 err = attribute->show(s, buf); 4204 4205 return err; 4206 } 4207 4208 static ssize_t slab_attr_store(struct kobject *kobj, 4209 struct attribute *attr, 4210 const char *buf, size_t len) 4211 { 4212 struct slab_attribute *attribute; 4213 struct kmem_cache *s; 4214 int err; 4215 4216 attribute = to_slab_attr(attr); 4217 s = to_slab(kobj); 4218 4219 if (!attribute->store) 4220 return -EIO; 4221 4222 err = attribute->store(s, buf, len); 4223 4224 return err; 4225 } 4226 4227 static void kmem_cache_release(struct kobject *kobj) 4228 { 4229 struct kmem_cache *s = to_slab(kobj); 4230 4231 kfree(s); 4232 } 4233 4234 static struct sysfs_ops slab_sysfs_ops = { 4235 .show = slab_attr_show, 4236 .store = slab_attr_store, 4237 }; 4238 4239 static struct kobj_type slab_ktype = { 4240 .sysfs_ops = &slab_sysfs_ops, 4241 .release = kmem_cache_release 4242 }; 4243 4244 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4245 { 4246 struct kobj_type *ktype = get_ktype(kobj); 4247 4248 if (ktype == &slab_ktype) 4249 return 1; 4250 return 0; 4251 } 4252 4253 static struct kset_uevent_ops slab_uevent_ops = { 4254 .filter = uevent_filter, 4255 }; 4256 4257 static struct kset *slab_kset; 4258 4259 #define ID_STR_LENGTH 64 4260 4261 /* Create a unique string id for a slab cache: 4262 * 4263 * Format :[flags-]size 4264 */ 4265 static char *create_unique_id(struct kmem_cache *s) 4266 { 4267 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4268 char *p = name; 4269 4270 BUG_ON(!name); 4271 4272 *p++ = ':'; 4273 /* 4274 * First flags affecting slabcache operations. We will only 4275 * get here for aliasable slabs so we do not need to support 4276 * too many flags. The flags here must cover all flags that 4277 * are matched during merging to guarantee that the id is 4278 * unique. 4279 */ 4280 if (s->flags & SLAB_CACHE_DMA) 4281 *p++ = 'd'; 4282 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4283 *p++ = 'a'; 4284 if (s->flags & SLAB_DEBUG_FREE) 4285 *p++ = 'F'; 4286 if (p != name + 1) 4287 *p++ = '-'; 4288 p += sprintf(p, "%07d", s->size); 4289 BUG_ON(p > name + ID_STR_LENGTH - 1); 4290 return name; 4291 } 4292 4293 static int sysfs_slab_add(struct kmem_cache *s) 4294 { 4295 int err; 4296 const char *name; 4297 int unmergeable; 4298 4299 if (slab_state < SYSFS) 4300 /* Defer until later */ 4301 return 0; 4302 4303 unmergeable = slab_unmergeable(s); 4304 if (unmergeable) { 4305 /* 4306 * Slabcache can never be merged so we can use the name proper. 4307 * This is typically the case for debug situations. In that 4308 * case we can catch duplicate names easily. 4309 */ 4310 sysfs_remove_link(&slab_kset->kobj, s->name); 4311 name = s->name; 4312 } else { 4313 /* 4314 * Create a unique name for the slab as a target 4315 * for the symlinks. 4316 */ 4317 name = create_unique_id(s); 4318 } 4319 4320 s->kobj.kset = slab_kset; 4321 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4322 if (err) { 4323 kobject_put(&s->kobj); 4324 return err; 4325 } 4326 4327 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4328 if (err) 4329 return err; 4330 kobject_uevent(&s->kobj, KOBJ_ADD); 4331 if (!unmergeable) { 4332 /* Setup first alias */ 4333 sysfs_slab_alias(s, s->name); 4334 kfree(name); 4335 } 4336 return 0; 4337 } 4338 4339 static void sysfs_slab_remove(struct kmem_cache *s) 4340 { 4341 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4342 kobject_del(&s->kobj); 4343 kobject_put(&s->kobj); 4344 } 4345 4346 /* 4347 * Need to buffer aliases during bootup until sysfs becomes 4348 * available lest we loose that information. 4349 */ 4350 struct saved_alias { 4351 struct kmem_cache *s; 4352 const char *name; 4353 struct saved_alias *next; 4354 }; 4355 4356 static struct saved_alias *alias_list; 4357 4358 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4359 { 4360 struct saved_alias *al; 4361 4362 if (slab_state == SYSFS) { 4363 /* 4364 * If we have a leftover link then remove it. 4365 */ 4366 sysfs_remove_link(&slab_kset->kobj, name); 4367 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4368 } 4369 4370 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4371 if (!al) 4372 return -ENOMEM; 4373 4374 al->s = s; 4375 al->name = name; 4376 al->next = alias_list; 4377 alias_list = al; 4378 return 0; 4379 } 4380 4381 static int __init slab_sysfs_init(void) 4382 { 4383 struct kmem_cache *s; 4384 int err; 4385 4386 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4387 if (!slab_kset) { 4388 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4389 return -ENOSYS; 4390 } 4391 4392 slab_state = SYSFS; 4393 4394 list_for_each_entry(s, &slab_caches, list) { 4395 err = sysfs_slab_add(s); 4396 if (err) 4397 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4398 " to sysfs\n", s->name); 4399 } 4400 4401 while (alias_list) { 4402 struct saved_alias *al = alias_list; 4403 4404 alias_list = alias_list->next; 4405 err = sysfs_slab_alias(al->s, al->name); 4406 if (err) 4407 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4408 " %s to sysfs\n", s->name); 4409 kfree(al); 4410 } 4411 4412 resiliency_test(); 4413 return 0; 4414 } 4415 4416 __initcall(slab_sysfs_init); 4417 #endif 4418 4419 /* 4420 * The /proc/slabinfo ABI 4421 */ 4422 #ifdef CONFIG_SLABINFO 4423 static void print_slabinfo_header(struct seq_file *m) 4424 { 4425 seq_puts(m, "slabinfo - version: 2.1\n"); 4426 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4427 "<objperslab> <pagesperslab>"); 4428 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4429 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4430 seq_putc(m, '\n'); 4431 } 4432 4433 static void *s_start(struct seq_file *m, loff_t *pos) 4434 { 4435 loff_t n = *pos; 4436 4437 down_read(&slub_lock); 4438 if (!n) 4439 print_slabinfo_header(m); 4440 4441 return seq_list_start(&slab_caches, *pos); 4442 } 4443 4444 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4445 { 4446 return seq_list_next(p, &slab_caches, pos); 4447 } 4448 4449 static void s_stop(struct seq_file *m, void *p) 4450 { 4451 up_read(&slub_lock); 4452 } 4453 4454 static int s_show(struct seq_file *m, void *p) 4455 { 4456 unsigned long nr_partials = 0; 4457 unsigned long nr_slabs = 0; 4458 unsigned long nr_inuse = 0; 4459 unsigned long nr_objs = 0; 4460 unsigned long nr_free = 0; 4461 struct kmem_cache *s; 4462 int node; 4463 4464 s = list_entry(p, struct kmem_cache, list); 4465 4466 for_each_online_node(node) { 4467 struct kmem_cache_node *n = get_node(s, node); 4468 4469 if (!n) 4470 continue; 4471 4472 nr_partials += n->nr_partial; 4473 nr_slabs += atomic_long_read(&n->nr_slabs); 4474 nr_objs += atomic_long_read(&n->total_objects); 4475 nr_free += count_partial(n, count_free); 4476 } 4477 4478 nr_inuse = nr_objs - nr_free; 4479 4480 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4481 nr_objs, s->size, oo_objects(s->oo), 4482 (1 << oo_order(s->oo))); 4483 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4484 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4485 0UL); 4486 seq_putc(m, '\n'); 4487 return 0; 4488 } 4489 4490 static const struct seq_operations slabinfo_op = { 4491 .start = s_start, 4492 .next = s_next, 4493 .stop = s_stop, 4494 .show = s_show, 4495 }; 4496 4497 static int slabinfo_open(struct inode *inode, struct file *file) 4498 { 4499 return seq_open(file, &slabinfo_op); 4500 } 4501 4502 static const struct file_operations proc_slabinfo_operations = { 4503 .open = slabinfo_open, 4504 .read = seq_read, 4505 .llseek = seq_lseek, 4506 .release = seq_release, 4507 }; 4508 4509 static int __init slab_proc_init(void) 4510 { 4511 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4512 return 0; 4513 } 4514 module_init(slab_proc_init); 4515 #endif /* CONFIG_SLABINFO */ 4516