xref: /linux/mm/slub.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 void *fixup_red_left(struct kmem_cache *s, void *p)
127 {
128 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 		p += s->red_left_pad;
130 
131 	return p;
132 }
133 
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135 {
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 	return !kmem_cache_debug(s);
138 #else
139 	return false;
140 #endif
141 }
142 
143 /*
144  * Issues still to be resolved:
145  *
146  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147  *
148  * - Variable sizing of the per node arrays
149  */
150 
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153 
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
156 
157 /*
158  * Mininum number of partial slabs. These will be left on the partial
159  * lists even if they are empty. kmem_cache_shrink may reclaim them.
160  */
161 #define MIN_PARTIAL 5
162 
163 /*
164  * Maximum number of desirable partial slabs.
165  * The existence of more partial slabs makes kmem_cache_shrink
166  * sort the partial list by the number of objects in use.
167  */
168 #define MAX_PARTIAL 10
169 
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 				SLAB_POISON | SLAB_STORE_USER)
172 
173 /*
174  * These debug flags cannot use CMPXCHG because there might be consistency
175  * issues when checking or reading debug information
176  */
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 				SLAB_TRACE)
179 
180 
181 /*
182  * Debugging flags that require metadata to be stored in the slab.  These get
183  * disabled when slub_debug=O is used and a cache's min order increases with
184  * metadata.
185  */
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187 
188 #define OO_SHIFT	16
189 #define OO_MASK		((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
191 
192 /* Internal SLUB flags */
193 /* Poison object */
194 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
197 
198 /*
199  * Tracking user of a slab.
200  */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 	unsigned long addr;	/* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
206 #endif
207 	int cpu;		/* Was running on cpu */
208 	int pid;		/* Pid context */
209 	unsigned long when;	/* When did the operation occur */
210 };
211 
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213 
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 							{ return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	return freelist_dereference(s, object + s->offset);
279 }
280 
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 	prefetch(object + s->offset);
284 }
285 
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 	unsigned long freepointer_addr;
289 	void *p;
290 
291 	if (!debug_pagealloc_enabled())
292 		return get_freepointer(s, object);
293 
294 	freepointer_addr = (unsigned long)object + s->offset;
295 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 	return freelist_ptr(s, p, freepointer_addr);
297 }
298 
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
302 
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 	BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306 
307 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309 
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 	for (__p = fixup_red_left(__s, __addr); \
313 		__p < (__addr) + (__objects) * (__s)->size; \
314 		__p += (__s)->size)
315 
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318 {
319 	return (kasan_reset_tag(p) - addr) / s->size;
320 }
321 
322 static inline unsigned int order_objects(unsigned int order, unsigned int size)
323 {
324 	return ((unsigned int)PAGE_SIZE << order) / size;
325 }
326 
327 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328 		unsigned int size)
329 {
330 	struct kmem_cache_order_objects x = {
331 		(order << OO_SHIFT) + order_objects(order, size)
332 	};
333 
334 	return x;
335 }
336 
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338 {
339 	return x.x >> OO_SHIFT;
340 }
341 
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343 {
344 	return x.x & OO_MASK;
345 }
346 
347 /*
348  * Per slab locking using the pagelock
349  */
350 static __always_inline void slab_lock(struct page *page)
351 {
352 	VM_BUG_ON_PAGE(PageTail(page), page);
353 	bit_spin_lock(PG_locked, &page->flags);
354 }
355 
356 static __always_inline void slab_unlock(struct page *page)
357 {
358 	VM_BUG_ON_PAGE(PageTail(page), page);
359 	__bit_spin_unlock(PG_locked, &page->flags);
360 }
361 
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 		void *freelist_old, unsigned long counters_old,
365 		void *freelist_new, unsigned long counters_new,
366 		const char *n)
367 {
368 	VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 	if (s->flags & __CMPXCHG_DOUBLE) {
372 		if (cmpxchg_double(&page->freelist, &page->counters,
373 				   freelist_old, counters_old,
374 				   freelist_new, counters_new))
375 			return true;
376 	} else
377 #endif
378 	{
379 		slab_lock(page);
380 		if (page->freelist == freelist_old &&
381 					page->counters == counters_old) {
382 			page->freelist = freelist_new;
383 			page->counters = counters_new;
384 			slab_unlock(page);
385 			return true;
386 		}
387 		slab_unlock(page);
388 	}
389 
390 	cpu_relax();
391 	stat(s, CMPXCHG_DOUBLE_FAIL);
392 
393 #ifdef SLUB_DEBUG_CMPXCHG
394 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 #endif
396 
397 	return false;
398 }
399 
400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 		void *freelist_old, unsigned long counters_old,
402 		void *freelist_new, unsigned long counters_new,
403 		const char *n)
404 {
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 	if (s->flags & __CMPXCHG_DOUBLE) {
408 		if (cmpxchg_double(&page->freelist, &page->counters,
409 				   freelist_old, counters_old,
410 				   freelist_new, counters_new))
411 			return true;
412 	} else
413 #endif
414 	{
415 		unsigned long flags;
416 
417 		local_irq_save(flags);
418 		slab_lock(page);
419 		if (page->freelist == freelist_old &&
420 					page->counters == counters_old) {
421 			page->freelist = freelist_new;
422 			page->counters = counters_new;
423 			slab_unlock(page);
424 			local_irq_restore(flags);
425 			return true;
426 		}
427 		slab_unlock(page);
428 		local_irq_restore(flags);
429 	}
430 
431 	cpu_relax();
432 	stat(s, CMPXCHG_DOUBLE_FAIL);
433 
434 #ifdef SLUB_DEBUG_CMPXCHG
435 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 #endif
437 
438 	return false;
439 }
440 
441 #ifdef CONFIG_SLUB_DEBUG
442 /*
443  * Determine a map of object in use on a page.
444  *
445  * Node listlock must be held to guarantee that the page does
446  * not vanish from under us.
447  */
448 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
449 {
450 	void *p;
451 	void *addr = page_address(page);
452 
453 	for (p = page->freelist; p; p = get_freepointer(s, p))
454 		set_bit(slab_index(p, s, addr), map);
455 }
456 
457 static inline unsigned int size_from_object(struct kmem_cache *s)
458 {
459 	if (s->flags & SLAB_RED_ZONE)
460 		return s->size - s->red_left_pad;
461 
462 	return s->size;
463 }
464 
465 static inline void *restore_red_left(struct kmem_cache *s, void *p)
466 {
467 	if (s->flags & SLAB_RED_ZONE)
468 		p -= s->red_left_pad;
469 
470 	return p;
471 }
472 
473 /*
474  * Debug settings:
475  */
476 #if defined(CONFIG_SLUB_DEBUG_ON)
477 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
478 #else
479 static slab_flags_t slub_debug;
480 #endif
481 
482 static char *slub_debug_slabs;
483 static int disable_higher_order_debug;
484 
485 /*
486  * slub is about to manipulate internal object metadata.  This memory lies
487  * outside the range of the allocated object, so accessing it would normally
488  * be reported by kasan as a bounds error.  metadata_access_enable() is used
489  * to tell kasan that these accesses are OK.
490  */
491 static inline void metadata_access_enable(void)
492 {
493 	kasan_disable_current();
494 }
495 
496 static inline void metadata_access_disable(void)
497 {
498 	kasan_enable_current();
499 }
500 
501 /*
502  * Object debugging
503  */
504 
505 /* Verify that a pointer has an address that is valid within a slab page */
506 static inline int check_valid_pointer(struct kmem_cache *s,
507 				struct page *page, void *object)
508 {
509 	void *base;
510 
511 	if (!object)
512 		return 1;
513 
514 	base = page_address(page);
515 	object = kasan_reset_tag(object);
516 	object = restore_red_left(s, object);
517 	if (object < base || object >= base + page->objects * s->size ||
518 		(object - base) % s->size) {
519 		return 0;
520 	}
521 
522 	return 1;
523 }
524 
525 static void print_section(char *level, char *text, u8 *addr,
526 			  unsigned int length)
527 {
528 	metadata_access_enable();
529 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
530 			length, 1);
531 	metadata_access_disable();
532 }
533 
534 static struct track *get_track(struct kmem_cache *s, void *object,
535 	enum track_item alloc)
536 {
537 	struct track *p;
538 
539 	if (s->offset)
540 		p = object + s->offset + sizeof(void *);
541 	else
542 		p = object + s->inuse;
543 
544 	return p + alloc;
545 }
546 
547 static void set_track(struct kmem_cache *s, void *object,
548 			enum track_item alloc, unsigned long addr)
549 {
550 	struct track *p = get_track(s, object, alloc);
551 
552 	if (addr) {
553 #ifdef CONFIG_STACKTRACE
554 		unsigned int nr_entries;
555 
556 		metadata_access_enable();
557 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
558 		metadata_access_disable();
559 
560 		if (nr_entries < TRACK_ADDRS_COUNT)
561 			p->addrs[nr_entries] = 0;
562 #endif
563 		p->addr = addr;
564 		p->cpu = smp_processor_id();
565 		p->pid = current->pid;
566 		p->when = jiffies;
567 	} else {
568 		memset(p, 0, sizeof(struct track));
569 	}
570 }
571 
572 static void init_tracking(struct kmem_cache *s, void *object)
573 {
574 	if (!(s->flags & SLAB_STORE_USER))
575 		return;
576 
577 	set_track(s, object, TRACK_FREE, 0UL);
578 	set_track(s, object, TRACK_ALLOC, 0UL);
579 }
580 
581 static void print_track(const char *s, struct track *t, unsigned long pr_time)
582 {
583 	if (!t->addr)
584 		return;
585 
586 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
587 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
588 #ifdef CONFIG_STACKTRACE
589 	{
590 		int i;
591 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
592 			if (t->addrs[i])
593 				pr_err("\t%pS\n", (void *)t->addrs[i]);
594 			else
595 				break;
596 	}
597 #endif
598 }
599 
600 static void print_tracking(struct kmem_cache *s, void *object)
601 {
602 	unsigned long pr_time = jiffies;
603 	if (!(s->flags & SLAB_STORE_USER))
604 		return;
605 
606 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
607 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
608 }
609 
610 static void print_page_info(struct page *page)
611 {
612 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
613 	       page, page->objects, page->inuse, page->freelist, page->flags);
614 
615 }
616 
617 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
618 {
619 	struct va_format vaf;
620 	va_list args;
621 
622 	va_start(args, fmt);
623 	vaf.fmt = fmt;
624 	vaf.va = &args;
625 	pr_err("=============================================================================\n");
626 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
627 	pr_err("-----------------------------------------------------------------------------\n\n");
628 
629 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
630 	va_end(args);
631 }
632 
633 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
634 {
635 	struct va_format vaf;
636 	va_list args;
637 
638 	va_start(args, fmt);
639 	vaf.fmt = fmt;
640 	vaf.va = &args;
641 	pr_err("FIX %s: %pV\n", s->name, &vaf);
642 	va_end(args);
643 }
644 
645 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
646 {
647 	unsigned int off;	/* Offset of last byte */
648 	u8 *addr = page_address(page);
649 
650 	print_tracking(s, p);
651 
652 	print_page_info(page);
653 
654 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
655 	       p, p - addr, get_freepointer(s, p));
656 
657 	if (s->flags & SLAB_RED_ZONE)
658 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
659 			      s->red_left_pad);
660 	else if (p > addr + 16)
661 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
662 
663 	print_section(KERN_ERR, "Object ", p,
664 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
665 	if (s->flags & SLAB_RED_ZONE)
666 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
667 			s->inuse - s->object_size);
668 
669 	if (s->offset)
670 		off = s->offset + sizeof(void *);
671 	else
672 		off = s->inuse;
673 
674 	if (s->flags & SLAB_STORE_USER)
675 		off += 2 * sizeof(struct track);
676 
677 	off += kasan_metadata_size(s);
678 
679 	if (off != size_from_object(s))
680 		/* Beginning of the filler is the free pointer */
681 		print_section(KERN_ERR, "Padding ", p + off,
682 			      size_from_object(s) - off);
683 
684 	dump_stack();
685 }
686 
687 void object_err(struct kmem_cache *s, struct page *page,
688 			u8 *object, char *reason)
689 {
690 	slab_bug(s, "%s", reason);
691 	print_trailer(s, page, object);
692 }
693 
694 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
695 			const char *fmt, ...)
696 {
697 	va_list args;
698 	char buf[100];
699 
700 	va_start(args, fmt);
701 	vsnprintf(buf, sizeof(buf), fmt, args);
702 	va_end(args);
703 	slab_bug(s, "%s", buf);
704 	print_page_info(page);
705 	dump_stack();
706 }
707 
708 static void init_object(struct kmem_cache *s, void *object, u8 val)
709 {
710 	u8 *p = object;
711 
712 	if (s->flags & SLAB_RED_ZONE)
713 		memset(p - s->red_left_pad, val, s->red_left_pad);
714 
715 	if (s->flags & __OBJECT_POISON) {
716 		memset(p, POISON_FREE, s->object_size - 1);
717 		p[s->object_size - 1] = POISON_END;
718 	}
719 
720 	if (s->flags & SLAB_RED_ZONE)
721 		memset(p + s->object_size, val, s->inuse - s->object_size);
722 }
723 
724 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
725 						void *from, void *to)
726 {
727 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
728 	memset(from, data, to - from);
729 }
730 
731 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
732 			u8 *object, char *what,
733 			u8 *start, unsigned int value, unsigned int bytes)
734 {
735 	u8 *fault;
736 	u8 *end;
737 	u8 *addr = page_address(page);
738 
739 	metadata_access_enable();
740 	fault = memchr_inv(start, value, bytes);
741 	metadata_access_disable();
742 	if (!fault)
743 		return 1;
744 
745 	end = start + bytes;
746 	while (end > fault && end[-1] == value)
747 		end--;
748 
749 	slab_bug(s, "%s overwritten", what);
750 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
751 					fault, end - 1, fault - addr,
752 					fault[0], value);
753 	print_trailer(s, page, object);
754 
755 	restore_bytes(s, what, value, fault, end);
756 	return 0;
757 }
758 
759 /*
760  * Object layout:
761  *
762  * object address
763  * 	Bytes of the object to be managed.
764  * 	If the freepointer may overlay the object then the free
765  * 	pointer is the first word of the object.
766  *
767  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
768  * 	0xa5 (POISON_END)
769  *
770  * object + s->object_size
771  * 	Padding to reach word boundary. This is also used for Redzoning.
772  * 	Padding is extended by another word if Redzoning is enabled and
773  * 	object_size == inuse.
774  *
775  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776  * 	0xcc (RED_ACTIVE) for objects in use.
777  *
778  * object + s->inuse
779  * 	Meta data starts here.
780  *
781  * 	A. Free pointer (if we cannot overwrite object on free)
782  * 	B. Tracking data for SLAB_STORE_USER
783  * 	C. Padding to reach required alignment boundary or at mininum
784  * 		one word if debugging is on to be able to detect writes
785  * 		before the word boundary.
786  *
787  *	Padding is done using 0x5a (POISON_INUSE)
788  *
789  * object + s->size
790  * 	Nothing is used beyond s->size.
791  *
792  * If slabcaches are merged then the object_size and inuse boundaries are mostly
793  * ignored. And therefore no slab options that rely on these boundaries
794  * may be used with merged slabcaches.
795  */
796 
797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 {
799 	unsigned long off = s->inuse;	/* The end of info */
800 
801 	if (s->offset)
802 		/* Freepointer is placed after the object. */
803 		off += sizeof(void *);
804 
805 	if (s->flags & SLAB_STORE_USER)
806 		/* We also have user information there */
807 		off += 2 * sizeof(struct track);
808 
809 	off += kasan_metadata_size(s);
810 
811 	if (size_from_object(s) == off)
812 		return 1;
813 
814 	return check_bytes_and_report(s, page, p, "Object padding",
815 			p + off, POISON_INUSE, size_from_object(s) - off);
816 }
817 
818 /* Check the pad bytes at the end of a slab page */
819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
820 {
821 	u8 *start;
822 	u8 *fault;
823 	u8 *end;
824 	u8 *pad;
825 	int length;
826 	int remainder;
827 
828 	if (!(s->flags & SLAB_POISON))
829 		return 1;
830 
831 	start = page_address(page);
832 	length = page_size(page);
833 	end = start + length;
834 	remainder = length % s->size;
835 	if (!remainder)
836 		return 1;
837 
838 	pad = end - remainder;
839 	metadata_access_enable();
840 	fault = memchr_inv(pad, POISON_INUSE, remainder);
841 	metadata_access_disable();
842 	if (!fault)
843 		return 1;
844 	while (end > fault && end[-1] == POISON_INUSE)
845 		end--;
846 
847 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
848 			fault, end - 1, fault - start);
849 	print_section(KERN_ERR, "Padding ", pad, remainder);
850 
851 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
852 	return 0;
853 }
854 
855 static int check_object(struct kmem_cache *s, struct page *page,
856 					void *object, u8 val)
857 {
858 	u8 *p = object;
859 	u8 *endobject = object + s->object_size;
860 
861 	if (s->flags & SLAB_RED_ZONE) {
862 		if (!check_bytes_and_report(s, page, object, "Redzone",
863 			object - s->red_left_pad, val, s->red_left_pad))
864 			return 0;
865 
866 		if (!check_bytes_and_report(s, page, object, "Redzone",
867 			endobject, val, s->inuse - s->object_size))
868 			return 0;
869 	} else {
870 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
871 			check_bytes_and_report(s, page, p, "Alignment padding",
872 				endobject, POISON_INUSE,
873 				s->inuse - s->object_size);
874 		}
875 	}
876 
877 	if (s->flags & SLAB_POISON) {
878 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
879 			(!check_bytes_and_report(s, page, p, "Poison", p,
880 					POISON_FREE, s->object_size - 1) ||
881 			 !check_bytes_and_report(s, page, p, "Poison",
882 				p + s->object_size - 1, POISON_END, 1)))
883 			return 0;
884 		/*
885 		 * check_pad_bytes cleans up on its own.
886 		 */
887 		check_pad_bytes(s, page, p);
888 	}
889 
890 	if (!s->offset && val == SLUB_RED_ACTIVE)
891 		/*
892 		 * Object and freepointer overlap. Cannot check
893 		 * freepointer while object is allocated.
894 		 */
895 		return 1;
896 
897 	/* Check free pointer validity */
898 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
899 		object_err(s, page, p, "Freepointer corrupt");
900 		/*
901 		 * No choice but to zap it and thus lose the remainder
902 		 * of the free objects in this slab. May cause
903 		 * another error because the object count is now wrong.
904 		 */
905 		set_freepointer(s, p, NULL);
906 		return 0;
907 	}
908 	return 1;
909 }
910 
911 static int check_slab(struct kmem_cache *s, struct page *page)
912 {
913 	int maxobj;
914 
915 	VM_BUG_ON(!irqs_disabled());
916 
917 	if (!PageSlab(page)) {
918 		slab_err(s, page, "Not a valid slab page");
919 		return 0;
920 	}
921 
922 	maxobj = order_objects(compound_order(page), s->size);
923 	if (page->objects > maxobj) {
924 		slab_err(s, page, "objects %u > max %u",
925 			page->objects, maxobj);
926 		return 0;
927 	}
928 	if (page->inuse > page->objects) {
929 		slab_err(s, page, "inuse %u > max %u",
930 			page->inuse, page->objects);
931 		return 0;
932 	}
933 	/* Slab_pad_check fixes things up after itself */
934 	slab_pad_check(s, page);
935 	return 1;
936 }
937 
938 /*
939  * Determine if a certain object on a page is on the freelist. Must hold the
940  * slab lock to guarantee that the chains are in a consistent state.
941  */
942 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
943 {
944 	int nr = 0;
945 	void *fp;
946 	void *object = NULL;
947 	int max_objects;
948 
949 	fp = page->freelist;
950 	while (fp && nr <= page->objects) {
951 		if (fp == search)
952 			return 1;
953 		if (!check_valid_pointer(s, page, fp)) {
954 			if (object) {
955 				object_err(s, page, object,
956 					"Freechain corrupt");
957 				set_freepointer(s, object, NULL);
958 			} else {
959 				slab_err(s, page, "Freepointer corrupt");
960 				page->freelist = NULL;
961 				page->inuse = page->objects;
962 				slab_fix(s, "Freelist cleared");
963 				return 0;
964 			}
965 			break;
966 		}
967 		object = fp;
968 		fp = get_freepointer(s, object);
969 		nr++;
970 	}
971 
972 	max_objects = order_objects(compound_order(page), s->size);
973 	if (max_objects > MAX_OBJS_PER_PAGE)
974 		max_objects = MAX_OBJS_PER_PAGE;
975 
976 	if (page->objects != max_objects) {
977 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
978 			 page->objects, max_objects);
979 		page->objects = max_objects;
980 		slab_fix(s, "Number of objects adjusted.");
981 	}
982 	if (page->inuse != page->objects - nr) {
983 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
984 			 page->inuse, page->objects - nr);
985 		page->inuse = page->objects - nr;
986 		slab_fix(s, "Object count adjusted.");
987 	}
988 	return search == NULL;
989 }
990 
991 static void trace(struct kmem_cache *s, struct page *page, void *object,
992 								int alloc)
993 {
994 	if (s->flags & SLAB_TRACE) {
995 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
996 			s->name,
997 			alloc ? "alloc" : "free",
998 			object, page->inuse,
999 			page->freelist);
1000 
1001 		if (!alloc)
1002 			print_section(KERN_INFO, "Object ", (void *)object,
1003 					s->object_size);
1004 
1005 		dump_stack();
1006 	}
1007 }
1008 
1009 /*
1010  * Tracking of fully allocated slabs for debugging purposes.
1011  */
1012 static void add_full(struct kmem_cache *s,
1013 	struct kmem_cache_node *n, struct page *page)
1014 {
1015 	if (!(s->flags & SLAB_STORE_USER))
1016 		return;
1017 
1018 	lockdep_assert_held(&n->list_lock);
1019 	list_add(&page->slab_list, &n->full);
1020 }
1021 
1022 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1023 {
1024 	if (!(s->flags & SLAB_STORE_USER))
1025 		return;
1026 
1027 	lockdep_assert_held(&n->list_lock);
1028 	list_del(&page->slab_list);
1029 }
1030 
1031 /* Tracking of the number of slabs for debugging purposes */
1032 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1033 {
1034 	struct kmem_cache_node *n = get_node(s, node);
1035 
1036 	return atomic_long_read(&n->nr_slabs);
1037 }
1038 
1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1040 {
1041 	return atomic_long_read(&n->nr_slabs);
1042 }
1043 
1044 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1045 {
1046 	struct kmem_cache_node *n = get_node(s, node);
1047 
1048 	/*
1049 	 * May be called early in order to allocate a slab for the
1050 	 * kmem_cache_node structure. Solve the chicken-egg
1051 	 * dilemma by deferring the increment of the count during
1052 	 * bootstrap (see early_kmem_cache_node_alloc).
1053 	 */
1054 	if (likely(n)) {
1055 		atomic_long_inc(&n->nr_slabs);
1056 		atomic_long_add(objects, &n->total_objects);
1057 	}
1058 }
1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1060 {
1061 	struct kmem_cache_node *n = get_node(s, node);
1062 
1063 	atomic_long_dec(&n->nr_slabs);
1064 	atomic_long_sub(objects, &n->total_objects);
1065 }
1066 
1067 /* Object debug checks for alloc/free paths */
1068 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1069 								void *object)
1070 {
1071 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1072 		return;
1073 
1074 	init_object(s, object, SLUB_RED_INACTIVE);
1075 	init_tracking(s, object);
1076 }
1077 
1078 static
1079 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1080 {
1081 	if (!(s->flags & SLAB_POISON))
1082 		return;
1083 
1084 	metadata_access_enable();
1085 	memset(addr, POISON_INUSE, page_size(page));
1086 	metadata_access_disable();
1087 }
1088 
1089 static inline int alloc_consistency_checks(struct kmem_cache *s,
1090 					struct page *page, void *object)
1091 {
1092 	if (!check_slab(s, page))
1093 		return 0;
1094 
1095 	if (!check_valid_pointer(s, page, object)) {
1096 		object_err(s, page, object, "Freelist Pointer check fails");
1097 		return 0;
1098 	}
1099 
1100 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1101 		return 0;
1102 
1103 	return 1;
1104 }
1105 
1106 static noinline int alloc_debug_processing(struct kmem_cache *s,
1107 					struct page *page,
1108 					void *object, unsigned long addr)
1109 {
1110 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1111 		if (!alloc_consistency_checks(s, page, object))
1112 			goto bad;
1113 	}
1114 
1115 	/* Success perform special debug activities for allocs */
1116 	if (s->flags & SLAB_STORE_USER)
1117 		set_track(s, object, TRACK_ALLOC, addr);
1118 	trace(s, page, object, 1);
1119 	init_object(s, object, SLUB_RED_ACTIVE);
1120 	return 1;
1121 
1122 bad:
1123 	if (PageSlab(page)) {
1124 		/*
1125 		 * If this is a slab page then lets do the best we can
1126 		 * to avoid issues in the future. Marking all objects
1127 		 * as used avoids touching the remaining objects.
1128 		 */
1129 		slab_fix(s, "Marking all objects used");
1130 		page->inuse = page->objects;
1131 		page->freelist = NULL;
1132 	}
1133 	return 0;
1134 }
1135 
1136 static inline int free_consistency_checks(struct kmem_cache *s,
1137 		struct page *page, void *object, unsigned long addr)
1138 {
1139 	if (!check_valid_pointer(s, page, object)) {
1140 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1141 		return 0;
1142 	}
1143 
1144 	if (on_freelist(s, page, object)) {
1145 		object_err(s, page, object, "Object already free");
1146 		return 0;
1147 	}
1148 
1149 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1150 		return 0;
1151 
1152 	if (unlikely(s != page->slab_cache)) {
1153 		if (!PageSlab(page)) {
1154 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1155 				 object);
1156 		} else if (!page->slab_cache) {
1157 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1158 			       object);
1159 			dump_stack();
1160 		} else
1161 			object_err(s, page, object,
1162 					"page slab pointer corrupt.");
1163 		return 0;
1164 	}
1165 	return 1;
1166 }
1167 
1168 /* Supports checking bulk free of a constructed freelist */
1169 static noinline int free_debug_processing(
1170 	struct kmem_cache *s, struct page *page,
1171 	void *head, void *tail, int bulk_cnt,
1172 	unsigned long addr)
1173 {
1174 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1175 	void *object = head;
1176 	int cnt = 0;
1177 	unsigned long uninitialized_var(flags);
1178 	int ret = 0;
1179 
1180 	spin_lock_irqsave(&n->list_lock, flags);
1181 	slab_lock(page);
1182 
1183 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1184 		if (!check_slab(s, page))
1185 			goto out;
1186 	}
1187 
1188 next_object:
1189 	cnt++;
1190 
1191 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1192 		if (!free_consistency_checks(s, page, object, addr))
1193 			goto out;
1194 	}
1195 
1196 	if (s->flags & SLAB_STORE_USER)
1197 		set_track(s, object, TRACK_FREE, addr);
1198 	trace(s, page, object, 0);
1199 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1200 	init_object(s, object, SLUB_RED_INACTIVE);
1201 
1202 	/* Reached end of constructed freelist yet? */
1203 	if (object != tail) {
1204 		object = get_freepointer(s, object);
1205 		goto next_object;
1206 	}
1207 	ret = 1;
1208 
1209 out:
1210 	if (cnt != bulk_cnt)
1211 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1212 			 bulk_cnt, cnt);
1213 
1214 	slab_unlock(page);
1215 	spin_unlock_irqrestore(&n->list_lock, flags);
1216 	if (!ret)
1217 		slab_fix(s, "Object at 0x%p not freed", object);
1218 	return ret;
1219 }
1220 
1221 static int __init setup_slub_debug(char *str)
1222 {
1223 	slub_debug = DEBUG_DEFAULT_FLAGS;
1224 	if (*str++ != '=' || !*str)
1225 		/*
1226 		 * No options specified. Switch on full debugging.
1227 		 */
1228 		goto out;
1229 
1230 	if (*str == ',')
1231 		/*
1232 		 * No options but restriction on slabs. This means full
1233 		 * debugging for slabs matching a pattern.
1234 		 */
1235 		goto check_slabs;
1236 
1237 	slub_debug = 0;
1238 	if (*str == '-')
1239 		/*
1240 		 * Switch off all debugging measures.
1241 		 */
1242 		goto out;
1243 
1244 	/*
1245 	 * Determine which debug features should be switched on
1246 	 */
1247 	for (; *str && *str != ','; str++) {
1248 		switch (tolower(*str)) {
1249 		case 'f':
1250 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1251 			break;
1252 		case 'z':
1253 			slub_debug |= SLAB_RED_ZONE;
1254 			break;
1255 		case 'p':
1256 			slub_debug |= SLAB_POISON;
1257 			break;
1258 		case 'u':
1259 			slub_debug |= SLAB_STORE_USER;
1260 			break;
1261 		case 't':
1262 			slub_debug |= SLAB_TRACE;
1263 			break;
1264 		case 'a':
1265 			slub_debug |= SLAB_FAILSLAB;
1266 			break;
1267 		case 'o':
1268 			/*
1269 			 * Avoid enabling debugging on caches if its minimum
1270 			 * order would increase as a result.
1271 			 */
1272 			disable_higher_order_debug = 1;
1273 			break;
1274 		default:
1275 			pr_err("slub_debug option '%c' unknown. skipped\n",
1276 			       *str);
1277 		}
1278 	}
1279 
1280 check_slabs:
1281 	if (*str == ',')
1282 		slub_debug_slabs = str + 1;
1283 out:
1284 	if ((static_branch_unlikely(&init_on_alloc) ||
1285 	     static_branch_unlikely(&init_on_free)) &&
1286 	    (slub_debug & SLAB_POISON))
1287 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1288 	return 1;
1289 }
1290 
1291 __setup("slub_debug", setup_slub_debug);
1292 
1293 /*
1294  * kmem_cache_flags - apply debugging options to the cache
1295  * @object_size:	the size of an object without meta data
1296  * @flags:		flags to set
1297  * @name:		name of the cache
1298  * @ctor:		constructor function
1299  *
1300  * Debug option(s) are applied to @flags. In addition to the debug
1301  * option(s), if a slab name (or multiple) is specified i.e.
1302  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1303  * then only the select slabs will receive the debug option(s).
1304  */
1305 slab_flags_t kmem_cache_flags(unsigned int object_size,
1306 	slab_flags_t flags, const char *name,
1307 	void (*ctor)(void *))
1308 {
1309 	char *iter;
1310 	size_t len;
1311 
1312 	/* If slub_debug = 0, it folds into the if conditional. */
1313 	if (!slub_debug_slabs)
1314 		return flags | slub_debug;
1315 
1316 	len = strlen(name);
1317 	iter = slub_debug_slabs;
1318 	while (*iter) {
1319 		char *end, *glob;
1320 		size_t cmplen;
1321 
1322 		end = strchrnul(iter, ',');
1323 
1324 		glob = strnchr(iter, end - iter, '*');
1325 		if (glob)
1326 			cmplen = glob - iter;
1327 		else
1328 			cmplen = max_t(size_t, len, (end - iter));
1329 
1330 		if (!strncmp(name, iter, cmplen)) {
1331 			flags |= slub_debug;
1332 			break;
1333 		}
1334 
1335 		if (!*end)
1336 			break;
1337 		iter = end + 1;
1338 	}
1339 
1340 	return flags;
1341 }
1342 #else /* !CONFIG_SLUB_DEBUG */
1343 static inline void setup_object_debug(struct kmem_cache *s,
1344 			struct page *page, void *object) {}
1345 static inline
1346 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1347 
1348 static inline int alloc_debug_processing(struct kmem_cache *s,
1349 	struct page *page, void *object, unsigned long addr) { return 0; }
1350 
1351 static inline int free_debug_processing(
1352 	struct kmem_cache *s, struct page *page,
1353 	void *head, void *tail, int bulk_cnt,
1354 	unsigned long addr) { return 0; }
1355 
1356 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1357 			{ return 1; }
1358 static inline int check_object(struct kmem_cache *s, struct page *page,
1359 			void *object, u8 val) { return 1; }
1360 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1361 					struct page *page) {}
1362 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1363 					struct page *page) {}
1364 slab_flags_t kmem_cache_flags(unsigned int object_size,
1365 	slab_flags_t flags, const char *name,
1366 	void (*ctor)(void *))
1367 {
1368 	return flags;
1369 }
1370 #define slub_debug 0
1371 
1372 #define disable_higher_order_debug 0
1373 
1374 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1375 							{ return 0; }
1376 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1377 							{ return 0; }
1378 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1379 							int objects) {}
1380 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1381 							int objects) {}
1382 
1383 #endif /* CONFIG_SLUB_DEBUG */
1384 
1385 /*
1386  * Hooks for other subsystems that check memory allocations. In a typical
1387  * production configuration these hooks all should produce no code at all.
1388  */
1389 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1390 {
1391 	ptr = kasan_kmalloc_large(ptr, size, flags);
1392 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1393 	kmemleak_alloc(ptr, size, 1, flags);
1394 	return ptr;
1395 }
1396 
1397 static __always_inline void kfree_hook(void *x)
1398 {
1399 	kmemleak_free(x);
1400 	kasan_kfree_large(x, _RET_IP_);
1401 }
1402 
1403 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1404 {
1405 	kmemleak_free_recursive(x, s->flags);
1406 
1407 	/*
1408 	 * Trouble is that we may no longer disable interrupts in the fast path
1409 	 * So in order to make the debug calls that expect irqs to be
1410 	 * disabled we need to disable interrupts temporarily.
1411 	 */
1412 #ifdef CONFIG_LOCKDEP
1413 	{
1414 		unsigned long flags;
1415 
1416 		local_irq_save(flags);
1417 		debug_check_no_locks_freed(x, s->object_size);
1418 		local_irq_restore(flags);
1419 	}
1420 #endif
1421 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1422 		debug_check_no_obj_freed(x, s->object_size);
1423 
1424 	/* KASAN might put x into memory quarantine, delaying its reuse */
1425 	return kasan_slab_free(s, x, _RET_IP_);
1426 }
1427 
1428 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1429 					   void **head, void **tail)
1430 {
1431 
1432 	void *object;
1433 	void *next = *head;
1434 	void *old_tail = *tail ? *tail : *head;
1435 	int rsize;
1436 
1437 	/* Head and tail of the reconstructed freelist */
1438 	*head = NULL;
1439 	*tail = NULL;
1440 
1441 	do {
1442 		object = next;
1443 		next = get_freepointer(s, object);
1444 
1445 		if (slab_want_init_on_free(s)) {
1446 			/*
1447 			 * Clear the object and the metadata, but don't touch
1448 			 * the redzone.
1449 			 */
1450 			memset(object, 0, s->object_size);
1451 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1452 							   : 0;
1453 			memset((char *)object + s->inuse, 0,
1454 			       s->size - s->inuse - rsize);
1455 
1456 		}
1457 		/* If object's reuse doesn't have to be delayed */
1458 		if (!slab_free_hook(s, object)) {
1459 			/* Move object to the new freelist */
1460 			set_freepointer(s, object, *head);
1461 			*head = object;
1462 			if (!*tail)
1463 				*tail = object;
1464 		}
1465 	} while (object != old_tail);
1466 
1467 	if (*head == *tail)
1468 		*tail = NULL;
1469 
1470 	return *head != NULL;
1471 }
1472 
1473 static void *setup_object(struct kmem_cache *s, struct page *page,
1474 				void *object)
1475 {
1476 	setup_object_debug(s, page, object);
1477 	object = kasan_init_slab_obj(s, object);
1478 	if (unlikely(s->ctor)) {
1479 		kasan_unpoison_object_data(s, object);
1480 		s->ctor(object);
1481 		kasan_poison_object_data(s, object);
1482 	}
1483 	return object;
1484 }
1485 
1486 /*
1487  * Slab allocation and freeing
1488  */
1489 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1490 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1491 {
1492 	struct page *page;
1493 	unsigned int order = oo_order(oo);
1494 
1495 	if (node == NUMA_NO_NODE)
1496 		page = alloc_pages(flags, order);
1497 	else
1498 		page = __alloc_pages_node(node, flags, order);
1499 
1500 	if (page && charge_slab_page(page, flags, order, s)) {
1501 		__free_pages(page, order);
1502 		page = NULL;
1503 	}
1504 
1505 	return page;
1506 }
1507 
1508 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1509 /* Pre-initialize the random sequence cache */
1510 static int init_cache_random_seq(struct kmem_cache *s)
1511 {
1512 	unsigned int count = oo_objects(s->oo);
1513 	int err;
1514 
1515 	/* Bailout if already initialised */
1516 	if (s->random_seq)
1517 		return 0;
1518 
1519 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1520 	if (err) {
1521 		pr_err("SLUB: Unable to initialize free list for %s\n",
1522 			s->name);
1523 		return err;
1524 	}
1525 
1526 	/* Transform to an offset on the set of pages */
1527 	if (s->random_seq) {
1528 		unsigned int i;
1529 
1530 		for (i = 0; i < count; i++)
1531 			s->random_seq[i] *= s->size;
1532 	}
1533 	return 0;
1534 }
1535 
1536 /* Initialize each random sequence freelist per cache */
1537 static void __init init_freelist_randomization(void)
1538 {
1539 	struct kmem_cache *s;
1540 
1541 	mutex_lock(&slab_mutex);
1542 
1543 	list_for_each_entry(s, &slab_caches, list)
1544 		init_cache_random_seq(s);
1545 
1546 	mutex_unlock(&slab_mutex);
1547 }
1548 
1549 /* Get the next entry on the pre-computed freelist randomized */
1550 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1551 				unsigned long *pos, void *start,
1552 				unsigned long page_limit,
1553 				unsigned long freelist_count)
1554 {
1555 	unsigned int idx;
1556 
1557 	/*
1558 	 * If the target page allocation failed, the number of objects on the
1559 	 * page might be smaller than the usual size defined by the cache.
1560 	 */
1561 	do {
1562 		idx = s->random_seq[*pos];
1563 		*pos += 1;
1564 		if (*pos >= freelist_count)
1565 			*pos = 0;
1566 	} while (unlikely(idx >= page_limit));
1567 
1568 	return (char *)start + idx;
1569 }
1570 
1571 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1572 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1573 {
1574 	void *start;
1575 	void *cur;
1576 	void *next;
1577 	unsigned long idx, pos, page_limit, freelist_count;
1578 
1579 	if (page->objects < 2 || !s->random_seq)
1580 		return false;
1581 
1582 	freelist_count = oo_objects(s->oo);
1583 	pos = get_random_int() % freelist_count;
1584 
1585 	page_limit = page->objects * s->size;
1586 	start = fixup_red_left(s, page_address(page));
1587 
1588 	/* First entry is used as the base of the freelist */
1589 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1590 				freelist_count);
1591 	cur = setup_object(s, page, cur);
1592 	page->freelist = cur;
1593 
1594 	for (idx = 1; idx < page->objects; idx++) {
1595 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1596 			freelist_count);
1597 		next = setup_object(s, page, next);
1598 		set_freepointer(s, cur, next);
1599 		cur = next;
1600 	}
1601 	set_freepointer(s, cur, NULL);
1602 
1603 	return true;
1604 }
1605 #else
1606 static inline int init_cache_random_seq(struct kmem_cache *s)
1607 {
1608 	return 0;
1609 }
1610 static inline void init_freelist_randomization(void) { }
1611 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1612 {
1613 	return false;
1614 }
1615 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1616 
1617 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1618 {
1619 	struct page *page;
1620 	struct kmem_cache_order_objects oo = s->oo;
1621 	gfp_t alloc_gfp;
1622 	void *start, *p, *next;
1623 	int idx;
1624 	bool shuffle;
1625 
1626 	flags &= gfp_allowed_mask;
1627 
1628 	if (gfpflags_allow_blocking(flags))
1629 		local_irq_enable();
1630 
1631 	flags |= s->allocflags;
1632 
1633 	/*
1634 	 * Let the initial higher-order allocation fail under memory pressure
1635 	 * so we fall-back to the minimum order allocation.
1636 	 */
1637 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1638 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1639 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1640 
1641 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1642 	if (unlikely(!page)) {
1643 		oo = s->min;
1644 		alloc_gfp = flags;
1645 		/*
1646 		 * Allocation may have failed due to fragmentation.
1647 		 * Try a lower order alloc if possible
1648 		 */
1649 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1650 		if (unlikely(!page))
1651 			goto out;
1652 		stat(s, ORDER_FALLBACK);
1653 	}
1654 
1655 	page->objects = oo_objects(oo);
1656 
1657 	page->slab_cache = s;
1658 	__SetPageSlab(page);
1659 	if (page_is_pfmemalloc(page))
1660 		SetPageSlabPfmemalloc(page);
1661 
1662 	kasan_poison_slab(page);
1663 
1664 	start = page_address(page);
1665 
1666 	setup_page_debug(s, page, start);
1667 
1668 	shuffle = shuffle_freelist(s, page);
1669 
1670 	if (!shuffle) {
1671 		start = fixup_red_left(s, start);
1672 		start = setup_object(s, page, start);
1673 		page->freelist = start;
1674 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1675 			next = p + s->size;
1676 			next = setup_object(s, page, next);
1677 			set_freepointer(s, p, next);
1678 			p = next;
1679 		}
1680 		set_freepointer(s, p, NULL);
1681 	}
1682 
1683 	page->inuse = page->objects;
1684 	page->frozen = 1;
1685 
1686 out:
1687 	if (gfpflags_allow_blocking(flags))
1688 		local_irq_disable();
1689 	if (!page)
1690 		return NULL;
1691 
1692 	inc_slabs_node(s, page_to_nid(page), page->objects);
1693 
1694 	return page;
1695 }
1696 
1697 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1698 {
1699 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1700 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1701 		flags &= ~GFP_SLAB_BUG_MASK;
1702 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1703 				invalid_mask, &invalid_mask, flags, &flags);
1704 		dump_stack();
1705 	}
1706 
1707 	return allocate_slab(s,
1708 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1709 }
1710 
1711 static void __free_slab(struct kmem_cache *s, struct page *page)
1712 {
1713 	int order = compound_order(page);
1714 	int pages = 1 << order;
1715 
1716 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1717 		void *p;
1718 
1719 		slab_pad_check(s, page);
1720 		for_each_object(p, s, page_address(page),
1721 						page->objects)
1722 			check_object(s, page, p, SLUB_RED_INACTIVE);
1723 	}
1724 
1725 	__ClearPageSlabPfmemalloc(page);
1726 	__ClearPageSlab(page);
1727 
1728 	page->mapping = NULL;
1729 	if (current->reclaim_state)
1730 		current->reclaim_state->reclaimed_slab += pages;
1731 	uncharge_slab_page(page, order, s);
1732 	__free_pages(page, order);
1733 }
1734 
1735 static void rcu_free_slab(struct rcu_head *h)
1736 {
1737 	struct page *page = container_of(h, struct page, rcu_head);
1738 
1739 	__free_slab(page->slab_cache, page);
1740 }
1741 
1742 static void free_slab(struct kmem_cache *s, struct page *page)
1743 {
1744 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1745 		call_rcu(&page->rcu_head, rcu_free_slab);
1746 	} else
1747 		__free_slab(s, page);
1748 }
1749 
1750 static void discard_slab(struct kmem_cache *s, struct page *page)
1751 {
1752 	dec_slabs_node(s, page_to_nid(page), page->objects);
1753 	free_slab(s, page);
1754 }
1755 
1756 /*
1757  * Management of partially allocated slabs.
1758  */
1759 static inline void
1760 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1761 {
1762 	n->nr_partial++;
1763 	if (tail == DEACTIVATE_TO_TAIL)
1764 		list_add_tail(&page->slab_list, &n->partial);
1765 	else
1766 		list_add(&page->slab_list, &n->partial);
1767 }
1768 
1769 static inline void add_partial(struct kmem_cache_node *n,
1770 				struct page *page, int tail)
1771 {
1772 	lockdep_assert_held(&n->list_lock);
1773 	__add_partial(n, page, tail);
1774 }
1775 
1776 static inline void remove_partial(struct kmem_cache_node *n,
1777 					struct page *page)
1778 {
1779 	lockdep_assert_held(&n->list_lock);
1780 	list_del(&page->slab_list);
1781 	n->nr_partial--;
1782 }
1783 
1784 /*
1785  * Remove slab from the partial list, freeze it and
1786  * return the pointer to the freelist.
1787  *
1788  * Returns a list of objects or NULL if it fails.
1789  */
1790 static inline void *acquire_slab(struct kmem_cache *s,
1791 		struct kmem_cache_node *n, struct page *page,
1792 		int mode, int *objects)
1793 {
1794 	void *freelist;
1795 	unsigned long counters;
1796 	struct page new;
1797 
1798 	lockdep_assert_held(&n->list_lock);
1799 
1800 	/*
1801 	 * Zap the freelist and set the frozen bit.
1802 	 * The old freelist is the list of objects for the
1803 	 * per cpu allocation list.
1804 	 */
1805 	freelist = page->freelist;
1806 	counters = page->counters;
1807 	new.counters = counters;
1808 	*objects = new.objects - new.inuse;
1809 	if (mode) {
1810 		new.inuse = page->objects;
1811 		new.freelist = NULL;
1812 	} else {
1813 		new.freelist = freelist;
1814 	}
1815 
1816 	VM_BUG_ON(new.frozen);
1817 	new.frozen = 1;
1818 
1819 	if (!__cmpxchg_double_slab(s, page,
1820 			freelist, counters,
1821 			new.freelist, new.counters,
1822 			"acquire_slab"))
1823 		return NULL;
1824 
1825 	remove_partial(n, page);
1826 	WARN_ON(!freelist);
1827 	return freelist;
1828 }
1829 
1830 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1831 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1832 
1833 /*
1834  * Try to allocate a partial slab from a specific node.
1835  */
1836 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1837 				struct kmem_cache_cpu *c, gfp_t flags)
1838 {
1839 	struct page *page, *page2;
1840 	void *object = NULL;
1841 	unsigned int available = 0;
1842 	int objects;
1843 
1844 	/*
1845 	 * Racy check. If we mistakenly see no partial slabs then we
1846 	 * just allocate an empty slab. If we mistakenly try to get a
1847 	 * partial slab and there is none available then get_partials()
1848 	 * will return NULL.
1849 	 */
1850 	if (!n || !n->nr_partial)
1851 		return NULL;
1852 
1853 	spin_lock(&n->list_lock);
1854 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1855 		void *t;
1856 
1857 		if (!pfmemalloc_match(page, flags))
1858 			continue;
1859 
1860 		t = acquire_slab(s, n, page, object == NULL, &objects);
1861 		if (!t)
1862 			break;
1863 
1864 		available += objects;
1865 		if (!object) {
1866 			c->page = page;
1867 			stat(s, ALLOC_FROM_PARTIAL);
1868 			object = t;
1869 		} else {
1870 			put_cpu_partial(s, page, 0);
1871 			stat(s, CPU_PARTIAL_NODE);
1872 		}
1873 		if (!kmem_cache_has_cpu_partial(s)
1874 			|| available > slub_cpu_partial(s) / 2)
1875 			break;
1876 
1877 	}
1878 	spin_unlock(&n->list_lock);
1879 	return object;
1880 }
1881 
1882 /*
1883  * Get a page from somewhere. Search in increasing NUMA distances.
1884  */
1885 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1886 		struct kmem_cache_cpu *c)
1887 {
1888 #ifdef CONFIG_NUMA
1889 	struct zonelist *zonelist;
1890 	struct zoneref *z;
1891 	struct zone *zone;
1892 	enum zone_type high_zoneidx = gfp_zone(flags);
1893 	void *object;
1894 	unsigned int cpuset_mems_cookie;
1895 
1896 	/*
1897 	 * The defrag ratio allows a configuration of the tradeoffs between
1898 	 * inter node defragmentation and node local allocations. A lower
1899 	 * defrag_ratio increases the tendency to do local allocations
1900 	 * instead of attempting to obtain partial slabs from other nodes.
1901 	 *
1902 	 * If the defrag_ratio is set to 0 then kmalloc() always
1903 	 * returns node local objects. If the ratio is higher then kmalloc()
1904 	 * may return off node objects because partial slabs are obtained
1905 	 * from other nodes and filled up.
1906 	 *
1907 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1908 	 * (which makes defrag_ratio = 1000) then every (well almost)
1909 	 * allocation will first attempt to defrag slab caches on other nodes.
1910 	 * This means scanning over all nodes to look for partial slabs which
1911 	 * may be expensive if we do it every time we are trying to find a slab
1912 	 * with available objects.
1913 	 */
1914 	if (!s->remote_node_defrag_ratio ||
1915 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1916 		return NULL;
1917 
1918 	do {
1919 		cpuset_mems_cookie = read_mems_allowed_begin();
1920 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1921 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1922 			struct kmem_cache_node *n;
1923 
1924 			n = get_node(s, zone_to_nid(zone));
1925 
1926 			if (n && cpuset_zone_allowed(zone, flags) &&
1927 					n->nr_partial > s->min_partial) {
1928 				object = get_partial_node(s, n, c, flags);
1929 				if (object) {
1930 					/*
1931 					 * Don't check read_mems_allowed_retry()
1932 					 * here - if mems_allowed was updated in
1933 					 * parallel, that was a harmless race
1934 					 * between allocation and the cpuset
1935 					 * update
1936 					 */
1937 					return object;
1938 				}
1939 			}
1940 		}
1941 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1942 #endif	/* CONFIG_NUMA */
1943 	return NULL;
1944 }
1945 
1946 /*
1947  * Get a partial page, lock it and return it.
1948  */
1949 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1950 		struct kmem_cache_cpu *c)
1951 {
1952 	void *object;
1953 	int searchnode = node;
1954 
1955 	if (node == NUMA_NO_NODE)
1956 		searchnode = numa_mem_id();
1957 	else if (!node_present_pages(node))
1958 		searchnode = node_to_mem_node(node);
1959 
1960 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1961 	if (object || node != NUMA_NO_NODE)
1962 		return object;
1963 
1964 	return get_any_partial(s, flags, c);
1965 }
1966 
1967 #ifdef CONFIG_PREEMPT
1968 /*
1969  * Calculate the next globally unique transaction for disambiguiation
1970  * during cmpxchg. The transactions start with the cpu number and are then
1971  * incremented by CONFIG_NR_CPUS.
1972  */
1973 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1974 #else
1975 /*
1976  * No preemption supported therefore also no need to check for
1977  * different cpus.
1978  */
1979 #define TID_STEP 1
1980 #endif
1981 
1982 static inline unsigned long next_tid(unsigned long tid)
1983 {
1984 	return tid + TID_STEP;
1985 }
1986 
1987 #ifdef SLUB_DEBUG_CMPXCHG
1988 static inline unsigned int tid_to_cpu(unsigned long tid)
1989 {
1990 	return tid % TID_STEP;
1991 }
1992 
1993 static inline unsigned long tid_to_event(unsigned long tid)
1994 {
1995 	return tid / TID_STEP;
1996 }
1997 #endif
1998 
1999 static inline unsigned int init_tid(int cpu)
2000 {
2001 	return cpu;
2002 }
2003 
2004 static inline void note_cmpxchg_failure(const char *n,
2005 		const struct kmem_cache *s, unsigned long tid)
2006 {
2007 #ifdef SLUB_DEBUG_CMPXCHG
2008 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2009 
2010 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2011 
2012 #ifdef CONFIG_PREEMPT
2013 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2014 		pr_warn("due to cpu change %d -> %d\n",
2015 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2016 	else
2017 #endif
2018 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2019 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2020 			tid_to_event(tid), tid_to_event(actual_tid));
2021 	else
2022 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2023 			actual_tid, tid, next_tid(tid));
2024 #endif
2025 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2026 }
2027 
2028 static void init_kmem_cache_cpus(struct kmem_cache *s)
2029 {
2030 	int cpu;
2031 
2032 	for_each_possible_cpu(cpu)
2033 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2034 }
2035 
2036 /*
2037  * Remove the cpu slab
2038  */
2039 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2040 				void *freelist, struct kmem_cache_cpu *c)
2041 {
2042 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2043 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2044 	int lock = 0;
2045 	enum slab_modes l = M_NONE, m = M_NONE;
2046 	void *nextfree;
2047 	int tail = DEACTIVATE_TO_HEAD;
2048 	struct page new;
2049 	struct page old;
2050 
2051 	if (page->freelist) {
2052 		stat(s, DEACTIVATE_REMOTE_FREES);
2053 		tail = DEACTIVATE_TO_TAIL;
2054 	}
2055 
2056 	/*
2057 	 * Stage one: Free all available per cpu objects back
2058 	 * to the page freelist while it is still frozen. Leave the
2059 	 * last one.
2060 	 *
2061 	 * There is no need to take the list->lock because the page
2062 	 * is still frozen.
2063 	 */
2064 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2065 		void *prior;
2066 		unsigned long counters;
2067 
2068 		do {
2069 			prior = page->freelist;
2070 			counters = page->counters;
2071 			set_freepointer(s, freelist, prior);
2072 			new.counters = counters;
2073 			new.inuse--;
2074 			VM_BUG_ON(!new.frozen);
2075 
2076 		} while (!__cmpxchg_double_slab(s, page,
2077 			prior, counters,
2078 			freelist, new.counters,
2079 			"drain percpu freelist"));
2080 
2081 		freelist = nextfree;
2082 	}
2083 
2084 	/*
2085 	 * Stage two: Ensure that the page is unfrozen while the
2086 	 * list presence reflects the actual number of objects
2087 	 * during unfreeze.
2088 	 *
2089 	 * We setup the list membership and then perform a cmpxchg
2090 	 * with the count. If there is a mismatch then the page
2091 	 * is not unfrozen but the page is on the wrong list.
2092 	 *
2093 	 * Then we restart the process which may have to remove
2094 	 * the page from the list that we just put it on again
2095 	 * because the number of objects in the slab may have
2096 	 * changed.
2097 	 */
2098 redo:
2099 
2100 	old.freelist = page->freelist;
2101 	old.counters = page->counters;
2102 	VM_BUG_ON(!old.frozen);
2103 
2104 	/* Determine target state of the slab */
2105 	new.counters = old.counters;
2106 	if (freelist) {
2107 		new.inuse--;
2108 		set_freepointer(s, freelist, old.freelist);
2109 		new.freelist = freelist;
2110 	} else
2111 		new.freelist = old.freelist;
2112 
2113 	new.frozen = 0;
2114 
2115 	if (!new.inuse && n->nr_partial >= s->min_partial)
2116 		m = M_FREE;
2117 	else if (new.freelist) {
2118 		m = M_PARTIAL;
2119 		if (!lock) {
2120 			lock = 1;
2121 			/*
2122 			 * Taking the spinlock removes the possibility
2123 			 * that acquire_slab() will see a slab page that
2124 			 * is frozen
2125 			 */
2126 			spin_lock(&n->list_lock);
2127 		}
2128 	} else {
2129 		m = M_FULL;
2130 		if (kmem_cache_debug(s) && !lock) {
2131 			lock = 1;
2132 			/*
2133 			 * This also ensures that the scanning of full
2134 			 * slabs from diagnostic functions will not see
2135 			 * any frozen slabs.
2136 			 */
2137 			spin_lock(&n->list_lock);
2138 		}
2139 	}
2140 
2141 	if (l != m) {
2142 		if (l == M_PARTIAL)
2143 			remove_partial(n, page);
2144 		else if (l == M_FULL)
2145 			remove_full(s, n, page);
2146 
2147 		if (m == M_PARTIAL)
2148 			add_partial(n, page, tail);
2149 		else if (m == M_FULL)
2150 			add_full(s, n, page);
2151 	}
2152 
2153 	l = m;
2154 	if (!__cmpxchg_double_slab(s, page,
2155 				old.freelist, old.counters,
2156 				new.freelist, new.counters,
2157 				"unfreezing slab"))
2158 		goto redo;
2159 
2160 	if (lock)
2161 		spin_unlock(&n->list_lock);
2162 
2163 	if (m == M_PARTIAL)
2164 		stat(s, tail);
2165 	else if (m == M_FULL)
2166 		stat(s, DEACTIVATE_FULL);
2167 	else if (m == M_FREE) {
2168 		stat(s, DEACTIVATE_EMPTY);
2169 		discard_slab(s, page);
2170 		stat(s, FREE_SLAB);
2171 	}
2172 
2173 	c->page = NULL;
2174 	c->freelist = NULL;
2175 }
2176 
2177 /*
2178  * Unfreeze all the cpu partial slabs.
2179  *
2180  * This function must be called with interrupts disabled
2181  * for the cpu using c (or some other guarantee must be there
2182  * to guarantee no concurrent accesses).
2183  */
2184 static void unfreeze_partials(struct kmem_cache *s,
2185 		struct kmem_cache_cpu *c)
2186 {
2187 #ifdef CONFIG_SLUB_CPU_PARTIAL
2188 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2189 	struct page *page, *discard_page = NULL;
2190 
2191 	while ((page = c->partial)) {
2192 		struct page new;
2193 		struct page old;
2194 
2195 		c->partial = page->next;
2196 
2197 		n2 = get_node(s, page_to_nid(page));
2198 		if (n != n2) {
2199 			if (n)
2200 				spin_unlock(&n->list_lock);
2201 
2202 			n = n2;
2203 			spin_lock(&n->list_lock);
2204 		}
2205 
2206 		do {
2207 
2208 			old.freelist = page->freelist;
2209 			old.counters = page->counters;
2210 			VM_BUG_ON(!old.frozen);
2211 
2212 			new.counters = old.counters;
2213 			new.freelist = old.freelist;
2214 
2215 			new.frozen = 0;
2216 
2217 		} while (!__cmpxchg_double_slab(s, page,
2218 				old.freelist, old.counters,
2219 				new.freelist, new.counters,
2220 				"unfreezing slab"));
2221 
2222 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2223 			page->next = discard_page;
2224 			discard_page = page;
2225 		} else {
2226 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2227 			stat(s, FREE_ADD_PARTIAL);
2228 		}
2229 	}
2230 
2231 	if (n)
2232 		spin_unlock(&n->list_lock);
2233 
2234 	while (discard_page) {
2235 		page = discard_page;
2236 		discard_page = discard_page->next;
2237 
2238 		stat(s, DEACTIVATE_EMPTY);
2239 		discard_slab(s, page);
2240 		stat(s, FREE_SLAB);
2241 	}
2242 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2243 }
2244 
2245 /*
2246  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2247  * partial page slot if available.
2248  *
2249  * If we did not find a slot then simply move all the partials to the
2250  * per node partial list.
2251  */
2252 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2253 {
2254 #ifdef CONFIG_SLUB_CPU_PARTIAL
2255 	struct page *oldpage;
2256 	int pages;
2257 	int pobjects;
2258 
2259 	preempt_disable();
2260 	do {
2261 		pages = 0;
2262 		pobjects = 0;
2263 		oldpage = this_cpu_read(s->cpu_slab->partial);
2264 
2265 		if (oldpage) {
2266 			pobjects = oldpage->pobjects;
2267 			pages = oldpage->pages;
2268 			if (drain && pobjects > s->cpu_partial) {
2269 				unsigned long flags;
2270 				/*
2271 				 * partial array is full. Move the existing
2272 				 * set to the per node partial list.
2273 				 */
2274 				local_irq_save(flags);
2275 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2276 				local_irq_restore(flags);
2277 				oldpage = NULL;
2278 				pobjects = 0;
2279 				pages = 0;
2280 				stat(s, CPU_PARTIAL_DRAIN);
2281 			}
2282 		}
2283 
2284 		pages++;
2285 		pobjects += page->objects - page->inuse;
2286 
2287 		page->pages = pages;
2288 		page->pobjects = pobjects;
2289 		page->next = oldpage;
2290 
2291 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2292 								!= oldpage);
2293 	if (unlikely(!s->cpu_partial)) {
2294 		unsigned long flags;
2295 
2296 		local_irq_save(flags);
2297 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2298 		local_irq_restore(flags);
2299 	}
2300 	preempt_enable();
2301 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2302 }
2303 
2304 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2305 {
2306 	stat(s, CPUSLAB_FLUSH);
2307 	deactivate_slab(s, c->page, c->freelist, c);
2308 
2309 	c->tid = next_tid(c->tid);
2310 }
2311 
2312 /*
2313  * Flush cpu slab.
2314  *
2315  * Called from IPI handler with interrupts disabled.
2316  */
2317 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2318 {
2319 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2320 
2321 	if (c->page)
2322 		flush_slab(s, c);
2323 
2324 	unfreeze_partials(s, c);
2325 }
2326 
2327 static void flush_cpu_slab(void *d)
2328 {
2329 	struct kmem_cache *s = d;
2330 
2331 	__flush_cpu_slab(s, smp_processor_id());
2332 }
2333 
2334 static bool has_cpu_slab(int cpu, void *info)
2335 {
2336 	struct kmem_cache *s = info;
2337 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2338 
2339 	return c->page || slub_percpu_partial(c);
2340 }
2341 
2342 static void flush_all(struct kmem_cache *s)
2343 {
2344 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2345 }
2346 
2347 /*
2348  * Use the cpu notifier to insure that the cpu slabs are flushed when
2349  * necessary.
2350  */
2351 static int slub_cpu_dead(unsigned int cpu)
2352 {
2353 	struct kmem_cache *s;
2354 	unsigned long flags;
2355 
2356 	mutex_lock(&slab_mutex);
2357 	list_for_each_entry(s, &slab_caches, list) {
2358 		local_irq_save(flags);
2359 		__flush_cpu_slab(s, cpu);
2360 		local_irq_restore(flags);
2361 	}
2362 	mutex_unlock(&slab_mutex);
2363 	return 0;
2364 }
2365 
2366 /*
2367  * Check if the objects in a per cpu structure fit numa
2368  * locality expectations.
2369  */
2370 static inline int node_match(struct page *page, int node)
2371 {
2372 #ifdef CONFIG_NUMA
2373 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2374 		return 0;
2375 #endif
2376 	return 1;
2377 }
2378 
2379 #ifdef CONFIG_SLUB_DEBUG
2380 static int count_free(struct page *page)
2381 {
2382 	return page->objects - page->inuse;
2383 }
2384 
2385 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2386 {
2387 	return atomic_long_read(&n->total_objects);
2388 }
2389 #endif /* CONFIG_SLUB_DEBUG */
2390 
2391 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2392 static unsigned long count_partial(struct kmem_cache_node *n,
2393 					int (*get_count)(struct page *))
2394 {
2395 	unsigned long flags;
2396 	unsigned long x = 0;
2397 	struct page *page;
2398 
2399 	spin_lock_irqsave(&n->list_lock, flags);
2400 	list_for_each_entry(page, &n->partial, slab_list)
2401 		x += get_count(page);
2402 	spin_unlock_irqrestore(&n->list_lock, flags);
2403 	return x;
2404 }
2405 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2406 
2407 static noinline void
2408 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2409 {
2410 #ifdef CONFIG_SLUB_DEBUG
2411 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2412 				      DEFAULT_RATELIMIT_BURST);
2413 	int node;
2414 	struct kmem_cache_node *n;
2415 
2416 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2417 		return;
2418 
2419 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2420 		nid, gfpflags, &gfpflags);
2421 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2422 		s->name, s->object_size, s->size, oo_order(s->oo),
2423 		oo_order(s->min));
2424 
2425 	if (oo_order(s->min) > get_order(s->object_size))
2426 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2427 			s->name);
2428 
2429 	for_each_kmem_cache_node(s, node, n) {
2430 		unsigned long nr_slabs;
2431 		unsigned long nr_objs;
2432 		unsigned long nr_free;
2433 
2434 		nr_free  = count_partial(n, count_free);
2435 		nr_slabs = node_nr_slabs(n);
2436 		nr_objs  = node_nr_objs(n);
2437 
2438 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2439 			node, nr_slabs, nr_objs, nr_free);
2440 	}
2441 #endif
2442 }
2443 
2444 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2445 			int node, struct kmem_cache_cpu **pc)
2446 {
2447 	void *freelist;
2448 	struct kmem_cache_cpu *c = *pc;
2449 	struct page *page;
2450 
2451 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2452 
2453 	freelist = get_partial(s, flags, node, c);
2454 
2455 	if (freelist)
2456 		return freelist;
2457 
2458 	page = new_slab(s, flags, node);
2459 	if (page) {
2460 		c = raw_cpu_ptr(s->cpu_slab);
2461 		if (c->page)
2462 			flush_slab(s, c);
2463 
2464 		/*
2465 		 * No other reference to the page yet so we can
2466 		 * muck around with it freely without cmpxchg
2467 		 */
2468 		freelist = page->freelist;
2469 		page->freelist = NULL;
2470 
2471 		stat(s, ALLOC_SLAB);
2472 		c->page = page;
2473 		*pc = c;
2474 	}
2475 
2476 	return freelist;
2477 }
2478 
2479 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2480 {
2481 	if (unlikely(PageSlabPfmemalloc(page)))
2482 		return gfp_pfmemalloc_allowed(gfpflags);
2483 
2484 	return true;
2485 }
2486 
2487 /*
2488  * Check the page->freelist of a page and either transfer the freelist to the
2489  * per cpu freelist or deactivate the page.
2490  *
2491  * The page is still frozen if the return value is not NULL.
2492  *
2493  * If this function returns NULL then the page has been unfrozen.
2494  *
2495  * This function must be called with interrupt disabled.
2496  */
2497 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2498 {
2499 	struct page new;
2500 	unsigned long counters;
2501 	void *freelist;
2502 
2503 	do {
2504 		freelist = page->freelist;
2505 		counters = page->counters;
2506 
2507 		new.counters = counters;
2508 		VM_BUG_ON(!new.frozen);
2509 
2510 		new.inuse = page->objects;
2511 		new.frozen = freelist != NULL;
2512 
2513 	} while (!__cmpxchg_double_slab(s, page,
2514 		freelist, counters,
2515 		NULL, new.counters,
2516 		"get_freelist"));
2517 
2518 	return freelist;
2519 }
2520 
2521 /*
2522  * Slow path. The lockless freelist is empty or we need to perform
2523  * debugging duties.
2524  *
2525  * Processing is still very fast if new objects have been freed to the
2526  * regular freelist. In that case we simply take over the regular freelist
2527  * as the lockless freelist and zap the regular freelist.
2528  *
2529  * If that is not working then we fall back to the partial lists. We take the
2530  * first element of the freelist as the object to allocate now and move the
2531  * rest of the freelist to the lockless freelist.
2532  *
2533  * And if we were unable to get a new slab from the partial slab lists then
2534  * we need to allocate a new slab. This is the slowest path since it involves
2535  * a call to the page allocator and the setup of a new slab.
2536  *
2537  * Version of __slab_alloc to use when we know that interrupts are
2538  * already disabled (which is the case for bulk allocation).
2539  */
2540 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2541 			  unsigned long addr, struct kmem_cache_cpu *c)
2542 {
2543 	void *freelist;
2544 	struct page *page;
2545 
2546 	page = c->page;
2547 	if (!page)
2548 		goto new_slab;
2549 redo:
2550 
2551 	if (unlikely(!node_match(page, node))) {
2552 		int searchnode = node;
2553 
2554 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2555 			searchnode = node_to_mem_node(node);
2556 
2557 		if (unlikely(!node_match(page, searchnode))) {
2558 			stat(s, ALLOC_NODE_MISMATCH);
2559 			deactivate_slab(s, page, c->freelist, c);
2560 			goto new_slab;
2561 		}
2562 	}
2563 
2564 	/*
2565 	 * By rights, we should be searching for a slab page that was
2566 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2567 	 * information when the page leaves the per-cpu allocator
2568 	 */
2569 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2570 		deactivate_slab(s, page, c->freelist, c);
2571 		goto new_slab;
2572 	}
2573 
2574 	/* must check again c->freelist in case of cpu migration or IRQ */
2575 	freelist = c->freelist;
2576 	if (freelist)
2577 		goto load_freelist;
2578 
2579 	freelist = get_freelist(s, page);
2580 
2581 	if (!freelist) {
2582 		c->page = NULL;
2583 		stat(s, DEACTIVATE_BYPASS);
2584 		goto new_slab;
2585 	}
2586 
2587 	stat(s, ALLOC_REFILL);
2588 
2589 load_freelist:
2590 	/*
2591 	 * freelist is pointing to the list of objects to be used.
2592 	 * page is pointing to the page from which the objects are obtained.
2593 	 * That page must be frozen for per cpu allocations to work.
2594 	 */
2595 	VM_BUG_ON(!c->page->frozen);
2596 	c->freelist = get_freepointer(s, freelist);
2597 	c->tid = next_tid(c->tid);
2598 	return freelist;
2599 
2600 new_slab:
2601 
2602 	if (slub_percpu_partial(c)) {
2603 		page = c->page = slub_percpu_partial(c);
2604 		slub_set_percpu_partial(c, page);
2605 		stat(s, CPU_PARTIAL_ALLOC);
2606 		goto redo;
2607 	}
2608 
2609 	freelist = new_slab_objects(s, gfpflags, node, &c);
2610 
2611 	if (unlikely(!freelist)) {
2612 		slab_out_of_memory(s, gfpflags, node);
2613 		return NULL;
2614 	}
2615 
2616 	page = c->page;
2617 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2618 		goto load_freelist;
2619 
2620 	/* Only entered in the debug case */
2621 	if (kmem_cache_debug(s) &&
2622 			!alloc_debug_processing(s, page, freelist, addr))
2623 		goto new_slab;	/* Slab failed checks. Next slab needed */
2624 
2625 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2626 	return freelist;
2627 }
2628 
2629 /*
2630  * Another one that disabled interrupt and compensates for possible
2631  * cpu changes by refetching the per cpu area pointer.
2632  */
2633 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2634 			  unsigned long addr, struct kmem_cache_cpu *c)
2635 {
2636 	void *p;
2637 	unsigned long flags;
2638 
2639 	local_irq_save(flags);
2640 #ifdef CONFIG_PREEMPT
2641 	/*
2642 	 * We may have been preempted and rescheduled on a different
2643 	 * cpu before disabling interrupts. Need to reload cpu area
2644 	 * pointer.
2645 	 */
2646 	c = this_cpu_ptr(s->cpu_slab);
2647 #endif
2648 
2649 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2650 	local_irq_restore(flags);
2651 	return p;
2652 }
2653 
2654 /*
2655  * If the object has been wiped upon free, make sure it's fully initialized by
2656  * zeroing out freelist pointer.
2657  */
2658 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2659 						   void *obj)
2660 {
2661 	if (unlikely(slab_want_init_on_free(s)) && obj)
2662 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2663 }
2664 
2665 /*
2666  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2667  * have the fastpath folded into their functions. So no function call
2668  * overhead for requests that can be satisfied on the fastpath.
2669  *
2670  * The fastpath works by first checking if the lockless freelist can be used.
2671  * If not then __slab_alloc is called for slow processing.
2672  *
2673  * Otherwise we can simply pick the next object from the lockless free list.
2674  */
2675 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2676 		gfp_t gfpflags, int node, unsigned long addr)
2677 {
2678 	void *object;
2679 	struct kmem_cache_cpu *c;
2680 	struct page *page;
2681 	unsigned long tid;
2682 
2683 	s = slab_pre_alloc_hook(s, gfpflags);
2684 	if (!s)
2685 		return NULL;
2686 redo:
2687 	/*
2688 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2689 	 * enabled. We may switch back and forth between cpus while
2690 	 * reading from one cpu area. That does not matter as long
2691 	 * as we end up on the original cpu again when doing the cmpxchg.
2692 	 *
2693 	 * We should guarantee that tid and kmem_cache are retrieved on
2694 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2695 	 * to check if it is matched or not.
2696 	 */
2697 	do {
2698 		tid = this_cpu_read(s->cpu_slab->tid);
2699 		c = raw_cpu_ptr(s->cpu_slab);
2700 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2701 		 unlikely(tid != READ_ONCE(c->tid)));
2702 
2703 	/*
2704 	 * Irqless object alloc/free algorithm used here depends on sequence
2705 	 * of fetching cpu_slab's data. tid should be fetched before anything
2706 	 * on c to guarantee that object and page associated with previous tid
2707 	 * won't be used with current tid. If we fetch tid first, object and
2708 	 * page could be one associated with next tid and our alloc/free
2709 	 * request will be failed. In this case, we will retry. So, no problem.
2710 	 */
2711 	barrier();
2712 
2713 	/*
2714 	 * The transaction ids are globally unique per cpu and per operation on
2715 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2716 	 * occurs on the right processor and that there was no operation on the
2717 	 * linked list in between.
2718 	 */
2719 
2720 	object = c->freelist;
2721 	page = c->page;
2722 	if (unlikely(!object || !node_match(page, node))) {
2723 		object = __slab_alloc(s, gfpflags, node, addr, c);
2724 		stat(s, ALLOC_SLOWPATH);
2725 	} else {
2726 		void *next_object = get_freepointer_safe(s, object);
2727 
2728 		/*
2729 		 * The cmpxchg will only match if there was no additional
2730 		 * operation and if we are on the right processor.
2731 		 *
2732 		 * The cmpxchg does the following atomically (without lock
2733 		 * semantics!)
2734 		 * 1. Relocate first pointer to the current per cpu area.
2735 		 * 2. Verify that tid and freelist have not been changed
2736 		 * 3. If they were not changed replace tid and freelist
2737 		 *
2738 		 * Since this is without lock semantics the protection is only
2739 		 * against code executing on this cpu *not* from access by
2740 		 * other cpus.
2741 		 */
2742 		if (unlikely(!this_cpu_cmpxchg_double(
2743 				s->cpu_slab->freelist, s->cpu_slab->tid,
2744 				object, tid,
2745 				next_object, next_tid(tid)))) {
2746 
2747 			note_cmpxchg_failure("slab_alloc", s, tid);
2748 			goto redo;
2749 		}
2750 		prefetch_freepointer(s, next_object);
2751 		stat(s, ALLOC_FASTPATH);
2752 	}
2753 
2754 	maybe_wipe_obj_freeptr(s, object);
2755 
2756 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2757 		memset(object, 0, s->object_size);
2758 
2759 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2760 
2761 	return object;
2762 }
2763 
2764 static __always_inline void *slab_alloc(struct kmem_cache *s,
2765 		gfp_t gfpflags, unsigned long addr)
2766 {
2767 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2768 }
2769 
2770 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2771 {
2772 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2773 
2774 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2775 				s->size, gfpflags);
2776 
2777 	return ret;
2778 }
2779 EXPORT_SYMBOL(kmem_cache_alloc);
2780 
2781 #ifdef CONFIG_TRACING
2782 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2783 {
2784 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2785 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2786 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2787 	return ret;
2788 }
2789 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2790 #endif
2791 
2792 #ifdef CONFIG_NUMA
2793 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2794 {
2795 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2796 
2797 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2798 				    s->object_size, s->size, gfpflags, node);
2799 
2800 	return ret;
2801 }
2802 EXPORT_SYMBOL(kmem_cache_alloc_node);
2803 
2804 #ifdef CONFIG_TRACING
2805 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2806 				    gfp_t gfpflags,
2807 				    int node, size_t size)
2808 {
2809 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2810 
2811 	trace_kmalloc_node(_RET_IP_, ret,
2812 			   size, s->size, gfpflags, node);
2813 
2814 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2818 #endif
2819 #endif	/* CONFIG_NUMA */
2820 
2821 /*
2822  * Slow path handling. This may still be called frequently since objects
2823  * have a longer lifetime than the cpu slabs in most processing loads.
2824  *
2825  * So we still attempt to reduce cache line usage. Just take the slab
2826  * lock and free the item. If there is no additional partial page
2827  * handling required then we can return immediately.
2828  */
2829 static void __slab_free(struct kmem_cache *s, struct page *page,
2830 			void *head, void *tail, int cnt,
2831 			unsigned long addr)
2832 
2833 {
2834 	void *prior;
2835 	int was_frozen;
2836 	struct page new;
2837 	unsigned long counters;
2838 	struct kmem_cache_node *n = NULL;
2839 	unsigned long uninitialized_var(flags);
2840 
2841 	stat(s, FREE_SLOWPATH);
2842 
2843 	if (kmem_cache_debug(s) &&
2844 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2845 		return;
2846 
2847 	do {
2848 		if (unlikely(n)) {
2849 			spin_unlock_irqrestore(&n->list_lock, flags);
2850 			n = NULL;
2851 		}
2852 		prior = page->freelist;
2853 		counters = page->counters;
2854 		set_freepointer(s, tail, prior);
2855 		new.counters = counters;
2856 		was_frozen = new.frozen;
2857 		new.inuse -= cnt;
2858 		if ((!new.inuse || !prior) && !was_frozen) {
2859 
2860 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2861 
2862 				/*
2863 				 * Slab was on no list before and will be
2864 				 * partially empty
2865 				 * We can defer the list move and instead
2866 				 * freeze it.
2867 				 */
2868 				new.frozen = 1;
2869 
2870 			} else { /* Needs to be taken off a list */
2871 
2872 				n = get_node(s, page_to_nid(page));
2873 				/*
2874 				 * Speculatively acquire the list_lock.
2875 				 * If the cmpxchg does not succeed then we may
2876 				 * drop the list_lock without any processing.
2877 				 *
2878 				 * Otherwise the list_lock will synchronize with
2879 				 * other processors updating the list of slabs.
2880 				 */
2881 				spin_lock_irqsave(&n->list_lock, flags);
2882 
2883 			}
2884 		}
2885 
2886 	} while (!cmpxchg_double_slab(s, page,
2887 		prior, counters,
2888 		head, new.counters,
2889 		"__slab_free"));
2890 
2891 	if (likely(!n)) {
2892 
2893 		/*
2894 		 * If we just froze the page then put it onto the
2895 		 * per cpu partial list.
2896 		 */
2897 		if (new.frozen && !was_frozen) {
2898 			put_cpu_partial(s, page, 1);
2899 			stat(s, CPU_PARTIAL_FREE);
2900 		}
2901 		/*
2902 		 * The list lock was not taken therefore no list
2903 		 * activity can be necessary.
2904 		 */
2905 		if (was_frozen)
2906 			stat(s, FREE_FROZEN);
2907 		return;
2908 	}
2909 
2910 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2911 		goto slab_empty;
2912 
2913 	/*
2914 	 * Objects left in the slab. If it was not on the partial list before
2915 	 * then add it.
2916 	 */
2917 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2918 		remove_full(s, n, page);
2919 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2920 		stat(s, FREE_ADD_PARTIAL);
2921 	}
2922 	spin_unlock_irqrestore(&n->list_lock, flags);
2923 	return;
2924 
2925 slab_empty:
2926 	if (prior) {
2927 		/*
2928 		 * Slab on the partial list.
2929 		 */
2930 		remove_partial(n, page);
2931 		stat(s, FREE_REMOVE_PARTIAL);
2932 	} else {
2933 		/* Slab must be on the full list */
2934 		remove_full(s, n, page);
2935 	}
2936 
2937 	spin_unlock_irqrestore(&n->list_lock, flags);
2938 	stat(s, FREE_SLAB);
2939 	discard_slab(s, page);
2940 }
2941 
2942 /*
2943  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2944  * can perform fastpath freeing without additional function calls.
2945  *
2946  * The fastpath is only possible if we are freeing to the current cpu slab
2947  * of this processor. This typically the case if we have just allocated
2948  * the item before.
2949  *
2950  * If fastpath is not possible then fall back to __slab_free where we deal
2951  * with all sorts of special processing.
2952  *
2953  * Bulk free of a freelist with several objects (all pointing to the
2954  * same page) possible by specifying head and tail ptr, plus objects
2955  * count (cnt). Bulk free indicated by tail pointer being set.
2956  */
2957 static __always_inline void do_slab_free(struct kmem_cache *s,
2958 				struct page *page, void *head, void *tail,
2959 				int cnt, unsigned long addr)
2960 {
2961 	void *tail_obj = tail ? : head;
2962 	struct kmem_cache_cpu *c;
2963 	unsigned long tid;
2964 redo:
2965 	/*
2966 	 * Determine the currently cpus per cpu slab.
2967 	 * The cpu may change afterward. However that does not matter since
2968 	 * data is retrieved via this pointer. If we are on the same cpu
2969 	 * during the cmpxchg then the free will succeed.
2970 	 */
2971 	do {
2972 		tid = this_cpu_read(s->cpu_slab->tid);
2973 		c = raw_cpu_ptr(s->cpu_slab);
2974 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2975 		 unlikely(tid != READ_ONCE(c->tid)));
2976 
2977 	/* Same with comment on barrier() in slab_alloc_node() */
2978 	barrier();
2979 
2980 	if (likely(page == c->page)) {
2981 		set_freepointer(s, tail_obj, c->freelist);
2982 
2983 		if (unlikely(!this_cpu_cmpxchg_double(
2984 				s->cpu_slab->freelist, s->cpu_slab->tid,
2985 				c->freelist, tid,
2986 				head, next_tid(tid)))) {
2987 
2988 			note_cmpxchg_failure("slab_free", s, tid);
2989 			goto redo;
2990 		}
2991 		stat(s, FREE_FASTPATH);
2992 	} else
2993 		__slab_free(s, page, head, tail_obj, cnt, addr);
2994 
2995 }
2996 
2997 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2998 				      void *head, void *tail, int cnt,
2999 				      unsigned long addr)
3000 {
3001 	/*
3002 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3003 	 * to remove objects, whose reuse must be delayed.
3004 	 */
3005 	if (slab_free_freelist_hook(s, &head, &tail))
3006 		do_slab_free(s, page, head, tail, cnt, addr);
3007 }
3008 
3009 #ifdef CONFIG_KASAN_GENERIC
3010 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3011 {
3012 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3013 }
3014 #endif
3015 
3016 void kmem_cache_free(struct kmem_cache *s, void *x)
3017 {
3018 	s = cache_from_obj(s, x);
3019 	if (!s)
3020 		return;
3021 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3022 	trace_kmem_cache_free(_RET_IP_, x);
3023 }
3024 EXPORT_SYMBOL(kmem_cache_free);
3025 
3026 struct detached_freelist {
3027 	struct page *page;
3028 	void *tail;
3029 	void *freelist;
3030 	int cnt;
3031 	struct kmem_cache *s;
3032 };
3033 
3034 /*
3035  * This function progressively scans the array with free objects (with
3036  * a limited look ahead) and extract objects belonging to the same
3037  * page.  It builds a detached freelist directly within the given
3038  * page/objects.  This can happen without any need for
3039  * synchronization, because the objects are owned by running process.
3040  * The freelist is build up as a single linked list in the objects.
3041  * The idea is, that this detached freelist can then be bulk
3042  * transferred to the real freelist(s), but only requiring a single
3043  * synchronization primitive.  Look ahead in the array is limited due
3044  * to performance reasons.
3045  */
3046 static inline
3047 int build_detached_freelist(struct kmem_cache *s, size_t size,
3048 			    void **p, struct detached_freelist *df)
3049 {
3050 	size_t first_skipped_index = 0;
3051 	int lookahead = 3;
3052 	void *object;
3053 	struct page *page;
3054 
3055 	/* Always re-init detached_freelist */
3056 	df->page = NULL;
3057 
3058 	do {
3059 		object = p[--size];
3060 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3061 	} while (!object && size);
3062 
3063 	if (!object)
3064 		return 0;
3065 
3066 	page = virt_to_head_page(object);
3067 	if (!s) {
3068 		/* Handle kalloc'ed objects */
3069 		if (unlikely(!PageSlab(page))) {
3070 			BUG_ON(!PageCompound(page));
3071 			kfree_hook(object);
3072 			__free_pages(page, compound_order(page));
3073 			p[size] = NULL; /* mark object processed */
3074 			return size;
3075 		}
3076 		/* Derive kmem_cache from object */
3077 		df->s = page->slab_cache;
3078 	} else {
3079 		df->s = cache_from_obj(s, object); /* Support for memcg */
3080 	}
3081 
3082 	/* Start new detached freelist */
3083 	df->page = page;
3084 	set_freepointer(df->s, object, NULL);
3085 	df->tail = object;
3086 	df->freelist = object;
3087 	p[size] = NULL; /* mark object processed */
3088 	df->cnt = 1;
3089 
3090 	while (size) {
3091 		object = p[--size];
3092 		if (!object)
3093 			continue; /* Skip processed objects */
3094 
3095 		/* df->page is always set at this point */
3096 		if (df->page == virt_to_head_page(object)) {
3097 			/* Opportunity build freelist */
3098 			set_freepointer(df->s, object, df->freelist);
3099 			df->freelist = object;
3100 			df->cnt++;
3101 			p[size] = NULL; /* mark object processed */
3102 
3103 			continue;
3104 		}
3105 
3106 		/* Limit look ahead search */
3107 		if (!--lookahead)
3108 			break;
3109 
3110 		if (!first_skipped_index)
3111 			first_skipped_index = size + 1;
3112 	}
3113 
3114 	return first_skipped_index;
3115 }
3116 
3117 /* Note that interrupts must be enabled when calling this function. */
3118 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3119 {
3120 	if (WARN_ON(!size))
3121 		return;
3122 
3123 	do {
3124 		struct detached_freelist df;
3125 
3126 		size = build_detached_freelist(s, size, p, &df);
3127 		if (!df.page)
3128 			continue;
3129 
3130 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3131 	} while (likely(size));
3132 }
3133 EXPORT_SYMBOL(kmem_cache_free_bulk);
3134 
3135 /* Note that interrupts must be enabled when calling this function. */
3136 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3137 			  void **p)
3138 {
3139 	struct kmem_cache_cpu *c;
3140 	int i;
3141 
3142 	/* memcg and kmem_cache debug support */
3143 	s = slab_pre_alloc_hook(s, flags);
3144 	if (unlikely(!s))
3145 		return false;
3146 	/*
3147 	 * Drain objects in the per cpu slab, while disabling local
3148 	 * IRQs, which protects against PREEMPT and interrupts
3149 	 * handlers invoking normal fastpath.
3150 	 */
3151 	local_irq_disable();
3152 	c = this_cpu_ptr(s->cpu_slab);
3153 
3154 	for (i = 0; i < size; i++) {
3155 		void *object = c->freelist;
3156 
3157 		if (unlikely(!object)) {
3158 			/*
3159 			 * Invoking slow path likely have side-effect
3160 			 * of re-populating per CPU c->freelist
3161 			 */
3162 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3163 					    _RET_IP_, c);
3164 			if (unlikely(!p[i]))
3165 				goto error;
3166 
3167 			c = this_cpu_ptr(s->cpu_slab);
3168 			maybe_wipe_obj_freeptr(s, p[i]);
3169 
3170 			continue; /* goto for-loop */
3171 		}
3172 		c->freelist = get_freepointer(s, object);
3173 		p[i] = object;
3174 		maybe_wipe_obj_freeptr(s, p[i]);
3175 	}
3176 	c->tid = next_tid(c->tid);
3177 	local_irq_enable();
3178 
3179 	/* Clear memory outside IRQ disabled fastpath loop */
3180 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3181 		int j;
3182 
3183 		for (j = 0; j < i; j++)
3184 			memset(p[j], 0, s->object_size);
3185 	}
3186 
3187 	/* memcg and kmem_cache debug support */
3188 	slab_post_alloc_hook(s, flags, size, p);
3189 	return i;
3190 error:
3191 	local_irq_enable();
3192 	slab_post_alloc_hook(s, flags, i, p);
3193 	__kmem_cache_free_bulk(s, i, p);
3194 	return 0;
3195 }
3196 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3197 
3198 
3199 /*
3200  * Object placement in a slab is made very easy because we always start at
3201  * offset 0. If we tune the size of the object to the alignment then we can
3202  * get the required alignment by putting one properly sized object after
3203  * another.
3204  *
3205  * Notice that the allocation order determines the sizes of the per cpu
3206  * caches. Each processor has always one slab available for allocations.
3207  * Increasing the allocation order reduces the number of times that slabs
3208  * must be moved on and off the partial lists and is therefore a factor in
3209  * locking overhead.
3210  */
3211 
3212 /*
3213  * Mininum / Maximum order of slab pages. This influences locking overhead
3214  * and slab fragmentation. A higher order reduces the number of partial slabs
3215  * and increases the number of allocations possible without having to
3216  * take the list_lock.
3217  */
3218 static unsigned int slub_min_order;
3219 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3220 static unsigned int slub_min_objects;
3221 
3222 /*
3223  * Calculate the order of allocation given an slab object size.
3224  *
3225  * The order of allocation has significant impact on performance and other
3226  * system components. Generally order 0 allocations should be preferred since
3227  * order 0 does not cause fragmentation in the page allocator. Larger objects
3228  * be problematic to put into order 0 slabs because there may be too much
3229  * unused space left. We go to a higher order if more than 1/16th of the slab
3230  * would be wasted.
3231  *
3232  * In order to reach satisfactory performance we must ensure that a minimum
3233  * number of objects is in one slab. Otherwise we may generate too much
3234  * activity on the partial lists which requires taking the list_lock. This is
3235  * less a concern for large slabs though which are rarely used.
3236  *
3237  * slub_max_order specifies the order where we begin to stop considering the
3238  * number of objects in a slab as critical. If we reach slub_max_order then
3239  * we try to keep the page order as low as possible. So we accept more waste
3240  * of space in favor of a small page order.
3241  *
3242  * Higher order allocations also allow the placement of more objects in a
3243  * slab and thereby reduce object handling overhead. If the user has
3244  * requested a higher mininum order then we start with that one instead of
3245  * the smallest order which will fit the object.
3246  */
3247 static inline unsigned int slab_order(unsigned int size,
3248 		unsigned int min_objects, unsigned int max_order,
3249 		unsigned int fract_leftover)
3250 {
3251 	unsigned int min_order = slub_min_order;
3252 	unsigned int order;
3253 
3254 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3255 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3256 
3257 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3258 			order <= max_order; order++) {
3259 
3260 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3261 		unsigned int rem;
3262 
3263 		rem = slab_size % size;
3264 
3265 		if (rem <= slab_size / fract_leftover)
3266 			break;
3267 	}
3268 
3269 	return order;
3270 }
3271 
3272 static inline int calculate_order(unsigned int size)
3273 {
3274 	unsigned int order;
3275 	unsigned int min_objects;
3276 	unsigned int max_objects;
3277 
3278 	/*
3279 	 * Attempt to find best configuration for a slab. This
3280 	 * works by first attempting to generate a layout with
3281 	 * the best configuration and backing off gradually.
3282 	 *
3283 	 * First we increase the acceptable waste in a slab. Then
3284 	 * we reduce the minimum objects required in a slab.
3285 	 */
3286 	min_objects = slub_min_objects;
3287 	if (!min_objects)
3288 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3289 	max_objects = order_objects(slub_max_order, size);
3290 	min_objects = min(min_objects, max_objects);
3291 
3292 	while (min_objects > 1) {
3293 		unsigned int fraction;
3294 
3295 		fraction = 16;
3296 		while (fraction >= 4) {
3297 			order = slab_order(size, min_objects,
3298 					slub_max_order, fraction);
3299 			if (order <= slub_max_order)
3300 				return order;
3301 			fraction /= 2;
3302 		}
3303 		min_objects--;
3304 	}
3305 
3306 	/*
3307 	 * We were unable to place multiple objects in a slab. Now
3308 	 * lets see if we can place a single object there.
3309 	 */
3310 	order = slab_order(size, 1, slub_max_order, 1);
3311 	if (order <= slub_max_order)
3312 		return order;
3313 
3314 	/*
3315 	 * Doh this slab cannot be placed using slub_max_order.
3316 	 */
3317 	order = slab_order(size, 1, MAX_ORDER, 1);
3318 	if (order < MAX_ORDER)
3319 		return order;
3320 	return -ENOSYS;
3321 }
3322 
3323 static void
3324 init_kmem_cache_node(struct kmem_cache_node *n)
3325 {
3326 	n->nr_partial = 0;
3327 	spin_lock_init(&n->list_lock);
3328 	INIT_LIST_HEAD(&n->partial);
3329 #ifdef CONFIG_SLUB_DEBUG
3330 	atomic_long_set(&n->nr_slabs, 0);
3331 	atomic_long_set(&n->total_objects, 0);
3332 	INIT_LIST_HEAD(&n->full);
3333 #endif
3334 }
3335 
3336 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3337 {
3338 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3339 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3340 
3341 	/*
3342 	 * Must align to double word boundary for the double cmpxchg
3343 	 * instructions to work; see __pcpu_double_call_return_bool().
3344 	 */
3345 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3346 				     2 * sizeof(void *));
3347 
3348 	if (!s->cpu_slab)
3349 		return 0;
3350 
3351 	init_kmem_cache_cpus(s);
3352 
3353 	return 1;
3354 }
3355 
3356 static struct kmem_cache *kmem_cache_node;
3357 
3358 /*
3359  * No kmalloc_node yet so do it by hand. We know that this is the first
3360  * slab on the node for this slabcache. There are no concurrent accesses
3361  * possible.
3362  *
3363  * Note that this function only works on the kmem_cache_node
3364  * when allocating for the kmem_cache_node. This is used for bootstrapping
3365  * memory on a fresh node that has no slab structures yet.
3366  */
3367 static void early_kmem_cache_node_alloc(int node)
3368 {
3369 	struct page *page;
3370 	struct kmem_cache_node *n;
3371 
3372 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3373 
3374 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3375 
3376 	BUG_ON(!page);
3377 	if (page_to_nid(page) != node) {
3378 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3379 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3380 	}
3381 
3382 	n = page->freelist;
3383 	BUG_ON(!n);
3384 #ifdef CONFIG_SLUB_DEBUG
3385 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3386 	init_tracking(kmem_cache_node, n);
3387 #endif
3388 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3389 		      GFP_KERNEL);
3390 	page->freelist = get_freepointer(kmem_cache_node, n);
3391 	page->inuse = 1;
3392 	page->frozen = 0;
3393 	kmem_cache_node->node[node] = n;
3394 	init_kmem_cache_node(n);
3395 	inc_slabs_node(kmem_cache_node, node, page->objects);
3396 
3397 	/*
3398 	 * No locks need to be taken here as it has just been
3399 	 * initialized and there is no concurrent access.
3400 	 */
3401 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3402 }
3403 
3404 static void free_kmem_cache_nodes(struct kmem_cache *s)
3405 {
3406 	int node;
3407 	struct kmem_cache_node *n;
3408 
3409 	for_each_kmem_cache_node(s, node, n) {
3410 		s->node[node] = NULL;
3411 		kmem_cache_free(kmem_cache_node, n);
3412 	}
3413 }
3414 
3415 void __kmem_cache_release(struct kmem_cache *s)
3416 {
3417 	cache_random_seq_destroy(s);
3418 	free_percpu(s->cpu_slab);
3419 	free_kmem_cache_nodes(s);
3420 }
3421 
3422 static int init_kmem_cache_nodes(struct kmem_cache *s)
3423 {
3424 	int node;
3425 
3426 	for_each_node_state(node, N_NORMAL_MEMORY) {
3427 		struct kmem_cache_node *n;
3428 
3429 		if (slab_state == DOWN) {
3430 			early_kmem_cache_node_alloc(node);
3431 			continue;
3432 		}
3433 		n = kmem_cache_alloc_node(kmem_cache_node,
3434 						GFP_KERNEL, node);
3435 
3436 		if (!n) {
3437 			free_kmem_cache_nodes(s);
3438 			return 0;
3439 		}
3440 
3441 		init_kmem_cache_node(n);
3442 		s->node[node] = n;
3443 	}
3444 	return 1;
3445 }
3446 
3447 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3448 {
3449 	if (min < MIN_PARTIAL)
3450 		min = MIN_PARTIAL;
3451 	else if (min > MAX_PARTIAL)
3452 		min = MAX_PARTIAL;
3453 	s->min_partial = min;
3454 }
3455 
3456 static void set_cpu_partial(struct kmem_cache *s)
3457 {
3458 #ifdef CONFIG_SLUB_CPU_PARTIAL
3459 	/*
3460 	 * cpu_partial determined the maximum number of objects kept in the
3461 	 * per cpu partial lists of a processor.
3462 	 *
3463 	 * Per cpu partial lists mainly contain slabs that just have one
3464 	 * object freed. If they are used for allocation then they can be
3465 	 * filled up again with minimal effort. The slab will never hit the
3466 	 * per node partial lists and therefore no locking will be required.
3467 	 *
3468 	 * This setting also determines
3469 	 *
3470 	 * A) The number of objects from per cpu partial slabs dumped to the
3471 	 *    per node list when we reach the limit.
3472 	 * B) The number of objects in cpu partial slabs to extract from the
3473 	 *    per node list when we run out of per cpu objects. We only fetch
3474 	 *    50% to keep some capacity around for frees.
3475 	 */
3476 	if (!kmem_cache_has_cpu_partial(s))
3477 		s->cpu_partial = 0;
3478 	else if (s->size >= PAGE_SIZE)
3479 		s->cpu_partial = 2;
3480 	else if (s->size >= 1024)
3481 		s->cpu_partial = 6;
3482 	else if (s->size >= 256)
3483 		s->cpu_partial = 13;
3484 	else
3485 		s->cpu_partial = 30;
3486 #endif
3487 }
3488 
3489 /*
3490  * calculate_sizes() determines the order and the distribution of data within
3491  * a slab object.
3492  */
3493 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3494 {
3495 	slab_flags_t flags = s->flags;
3496 	unsigned int size = s->object_size;
3497 	unsigned int order;
3498 
3499 	/*
3500 	 * Round up object size to the next word boundary. We can only
3501 	 * place the free pointer at word boundaries and this determines
3502 	 * the possible location of the free pointer.
3503 	 */
3504 	size = ALIGN(size, sizeof(void *));
3505 
3506 #ifdef CONFIG_SLUB_DEBUG
3507 	/*
3508 	 * Determine if we can poison the object itself. If the user of
3509 	 * the slab may touch the object after free or before allocation
3510 	 * then we should never poison the object itself.
3511 	 */
3512 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3513 			!s->ctor)
3514 		s->flags |= __OBJECT_POISON;
3515 	else
3516 		s->flags &= ~__OBJECT_POISON;
3517 
3518 
3519 	/*
3520 	 * If we are Redzoning then check if there is some space between the
3521 	 * end of the object and the free pointer. If not then add an
3522 	 * additional word to have some bytes to store Redzone information.
3523 	 */
3524 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3525 		size += sizeof(void *);
3526 #endif
3527 
3528 	/*
3529 	 * With that we have determined the number of bytes in actual use
3530 	 * by the object. This is the potential offset to the free pointer.
3531 	 */
3532 	s->inuse = size;
3533 
3534 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3535 		s->ctor)) {
3536 		/*
3537 		 * Relocate free pointer after the object if it is not
3538 		 * permitted to overwrite the first word of the object on
3539 		 * kmem_cache_free.
3540 		 *
3541 		 * This is the case if we do RCU, have a constructor or
3542 		 * destructor or are poisoning the objects.
3543 		 */
3544 		s->offset = size;
3545 		size += sizeof(void *);
3546 	}
3547 
3548 #ifdef CONFIG_SLUB_DEBUG
3549 	if (flags & SLAB_STORE_USER)
3550 		/*
3551 		 * Need to store information about allocs and frees after
3552 		 * the object.
3553 		 */
3554 		size += 2 * sizeof(struct track);
3555 #endif
3556 
3557 	kasan_cache_create(s, &size, &s->flags);
3558 #ifdef CONFIG_SLUB_DEBUG
3559 	if (flags & SLAB_RED_ZONE) {
3560 		/*
3561 		 * Add some empty padding so that we can catch
3562 		 * overwrites from earlier objects rather than let
3563 		 * tracking information or the free pointer be
3564 		 * corrupted if a user writes before the start
3565 		 * of the object.
3566 		 */
3567 		size += sizeof(void *);
3568 
3569 		s->red_left_pad = sizeof(void *);
3570 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3571 		size += s->red_left_pad;
3572 	}
3573 #endif
3574 
3575 	/*
3576 	 * SLUB stores one object immediately after another beginning from
3577 	 * offset 0. In order to align the objects we have to simply size
3578 	 * each object to conform to the alignment.
3579 	 */
3580 	size = ALIGN(size, s->align);
3581 	s->size = size;
3582 	if (forced_order >= 0)
3583 		order = forced_order;
3584 	else
3585 		order = calculate_order(size);
3586 
3587 	if ((int)order < 0)
3588 		return 0;
3589 
3590 	s->allocflags = 0;
3591 	if (order)
3592 		s->allocflags |= __GFP_COMP;
3593 
3594 	if (s->flags & SLAB_CACHE_DMA)
3595 		s->allocflags |= GFP_DMA;
3596 
3597 	if (s->flags & SLAB_CACHE_DMA32)
3598 		s->allocflags |= GFP_DMA32;
3599 
3600 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3601 		s->allocflags |= __GFP_RECLAIMABLE;
3602 
3603 	/*
3604 	 * Determine the number of objects per slab
3605 	 */
3606 	s->oo = oo_make(order, size);
3607 	s->min = oo_make(get_order(size), size);
3608 	if (oo_objects(s->oo) > oo_objects(s->max))
3609 		s->max = s->oo;
3610 
3611 	return !!oo_objects(s->oo);
3612 }
3613 
3614 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3615 {
3616 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3617 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3618 	s->random = get_random_long();
3619 #endif
3620 
3621 	if (!calculate_sizes(s, -1))
3622 		goto error;
3623 	if (disable_higher_order_debug) {
3624 		/*
3625 		 * Disable debugging flags that store metadata if the min slab
3626 		 * order increased.
3627 		 */
3628 		if (get_order(s->size) > get_order(s->object_size)) {
3629 			s->flags &= ~DEBUG_METADATA_FLAGS;
3630 			s->offset = 0;
3631 			if (!calculate_sizes(s, -1))
3632 				goto error;
3633 		}
3634 	}
3635 
3636 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3637     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3638 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3639 		/* Enable fast mode */
3640 		s->flags |= __CMPXCHG_DOUBLE;
3641 #endif
3642 
3643 	/*
3644 	 * The larger the object size is, the more pages we want on the partial
3645 	 * list to avoid pounding the page allocator excessively.
3646 	 */
3647 	set_min_partial(s, ilog2(s->size) / 2);
3648 
3649 	set_cpu_partial(s);
3650 
3651 #ifdef CONFIG_NUMA
3652 	s->remote_node_defrag_ratio = 1000;
3653 #endif
3654 
3655 	/* Initialize the pre-computed randomized freelist if slab is up */
3656 	if (slab_state >= UP) {
3657 		if (init_cache_random_seq(s))
3658 			goto error;
3659 	}
3660 
3661 	if (!init_kmem_cache_nodes(s))
3662 		goto error;
3663 
3664 	if (alloc_kmem_cache_cpus(s))
3665 		return 0;
3666 
3667 	free_kmem_cache_nodes(s);
3668 error:
3669 	return -EINVAL;
3670 }
3671 
3672 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3673 							const char *text)
3674 {
3675 #ifdef CONFIG_SLUB_DEBUG
3676 	void *addr = page_address(page);
3677 	void *p;
3678 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3679 	if (!map)
3680 		return;
3681 	slab_err(s, page, text, s->name);
3682 	slab_lock(page);
3683 
3684 	get_map(s, page, map);
3685 	for_each_object(p, s, addr, page->objects) {
3686 
3687 		if (!test_bit(slab_index(p, s, addr), map)) {
3688 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3689 			print_tracking(s, p);
3690 		}
3691 	}
3692 	slab_unlock(page);
3693 	bitmap_free(map);
3694 #endif
3695 }
3696 
3697 /*
3698  * Attempt to free all partial slabs on a node.
3699  * This is called from __kmem_cache_shutdown(). We must take list_lock
3700  * because sysfs file might still access partial list after the shutdowning.
3701  */
3702 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3703 {
3704 	LIST_HEAD(discard);
3705 	struct page *page, *h;
3706 
3707 	BUG_ON(irqs_disabled());
3708 	spin_lock_irq(&n->list_lock);
3709 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3710 		if (!page->inuse) {
3711 			remove_partial(n, page);
3712 			list_add(&page->slab_list, &discard);
3713 		} else {
3714 			list_slab_objects(s, page,
3715 			"Objects remaining in %s on __kmem_cache_shutdown()");
3716 		}
3717 	}
3718 	spin_unlock_irq(&n->list_lock);
3719 
3720 	list_for_each_entry_safe(page, h, &discard, slab_list)
3721 		discard_slab(s, page);
3722 }
3723 
3724 bool __kmem_cache_empty(struct kmem_cache *s)
3725 {
3726 	int node;
3727 	struct kmem_cache_node *n;
3728 
3729 	for_each_kmem_cache_node(s, node, n)
3730 		if (n->nr_partial || slabs_node(s, node))
3731 			return false;
3732 	return true;
3733 }
3734 
3735 /*
3736  * Release all resources used by a slab cache.
3737  */
3738 int __kmem_cache_shutdown(struct kmem_cache *s)
3739 {
3740 	int node;
3741 	struct kmem_cache_node *n;
3742 
3743 	flush_all(s);
3744 	/* Attempt to free all objects */
3745 	for_each_kmem_cache_node(s, node, n) {
3746 		free_partial(s, n);
3747 		if (n->nr_partial || slabs_node(s, node))
3748 			return 1;
3749 	}
3750 	sysfs_slab_remove(s);
3751 	return 0;
3752 }
3753 
3754 /********************************************************************
3755  *		Kmalloc subsystem
3756  *******************************************************************/
3757 
3758 static int __init setup_slub_min_order(char *str)
3759 {
3760 	get_option(&str, (int *)&slub_min_order);
3761 
3762 	return 1;
3763 }
3764 
3765 __setup("slub_min_order=", setup_slub_min_order);
3766 
3767 static int __init setup_slub_max_order(char *str)
3768 {
3769 	get_option(&str, (int *)&slub_max_order);
3770 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3771 
3772 	return 1;
3773 }
3774 
3775 __setup("slub_max_order=", setup_slub_max_order);
3776 
3777 static int __init setup_slub_min_objects(char *str)
3778 {
3779 	get_option(&str, (int *)&slub_min_objects);
3780 
3781 	return 1;
3782 }
3783 
3784 __setup("slub_min_objects=", setup_slub_min_objects);
3785 
3786 void *__kmalloc(size_t size, gfp_t flags)
3787 {
3788 	struct kmem_cache *s;
3789 	void *ret;
3790 
3791 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3792 		return kmalloc_large(size, flags);
3793 
3794 	s = kmalloc_slab(size, flags);
3795 
3796 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3797 		return s;
3798 
3799 	ret = slab_alloc(s, flags, _RET_IP_);
3800 
3801 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3802 
3803 	ret = kasan_kmalloc(s, ret, size, flags);
3804 
3805 	return ret;
3806 }
3807 EXPORT_SYMBOL(__kmalloc);
3808 
3809 #ifdef CONFIG_NUMA
3810 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3811 {
3812 	struct page *page;
3813 	void *ptr = NULL;
3814 	unsigned int order = get_order(size);
3815 
3816 	flags |= __GFP_COMP;
3817 	page = alloc_pages_node(node, flags, order);
3818 	if (page) {
3819 		ptr = page_address(page);
3820 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3821 				    1 << order);
3822 	}
3823 
3824 	return kmalloc_large_node_hook(ptr, size, flags);
3825 }
3826 
3827 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3828 {
3829 	struct kmem_cache *s;
3830 	void *ret;
3831 
3832 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3833 		ret = kmalloc_large_node(size, flags, node);
3834 
3835 		trace_kmalloc_node(_RET_IP_, ret,
3836 				   size, PAGE_SIZE << get_order(size),
3837 				   flags, node);
3838 
3839 		return ret;
3840 	}
3841 
3842 	s = kmalloc_slab(size, flags);
3843 
3844 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3845 		return s;
3846 
3847 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3848 
3849 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3850 
3851 	ret = kasan_kmalloc(s, ret, size, flags);
3852 
3853 	return ret;
3854 }
3855 EXPORT_SYMBOL(__kmalloc_node);
3856 #endif	/* CONFIG_NUMA */
3857 
3858 #ifdef CONFIG_HARDENED_USERCOPY
3859 /*
3860  * Rejects incorrectly sized objects and objects that are to be copied
3861  * to/from userspace but do not fall entirely within the containing slab
3862  * cache's usercopy region.
3863  *
3864  * Returns NULL if check passes, otherwise const char * to name of cache
3865  * to indicate an error.
3866  */
3867 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3868 			 bool to_user)
3869 {
3870 	struct kmem_cache *s;
3871 	unsigned int offset;
3872 	size_t object_size;
3873 
3874 	ptr = kasan_reset_tag(ptr);
3875 
3876 	/* Find object and usable object size. */
3877 	s = page->slab_cache;
3878 
3879 	/* Reject impossible pointers. */
3880 	if (ptr < page_address(page))
3881 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3882 			       to_user, 0, n);
3883 
3884 	/* Find offset within object. */
3885 	offset = (ptr - page_address(page)) % s->size;
3886 
3887 	/* Adjust for redzone and reject if within the redzone. */
3888 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3889 		if (offset < s->red_left_pad)
3890 			usercopy_abort("SLUB object in left red zone",
3891 				       s->name, to_user, offset, n);
3892 		offset -= s->red_left_pad;
3893 	}
3894 
3895 	/* Allow address range falling entirely within usercopy region. */
3896 	if (offset >= s->useroffset &&
3897 	    offset - s->useroffset <= s->usersize &&
3898 	    n <= s->useroffset - offset + s->usersize)
3899 		return;
3900 
3901 	/*
3902 	 * If the copy is still within the allocated object, produce
3903 	 * a warning instead of rejecting the copy. This is intended
3904 	 * to be a temporary method to find any missing usercopy
3905 	 * whitelists.
3906 	 */
3907 	object_size = slab_ksize(s);
3908 	if (usercopy_fallback &&
3909 	    offset <= object_size && n <= object_size - offset) {
3910 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3911 		return;
3912 	}
3913 
3914 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3915 }
3916 #endif /* CONFIG_HARDENED_USERCOPY */
3917 
3918 size_t __ksize(const void *object)
3919 {
3920 	struct page *page;
3921 
3922 	if (unlikely(object == ZERO_SIZE_PTR))
3923 		return 0;
3924 
3925 	page = virt_to_head_page(object);
3926 
3927 	if (unlikely(!PageSlab(page))) {
3928 		WARN_ON(!PageCompound(page));
3929 		return page_size(page);
3930 	}
3931 
3932 	return slab_ksize(page->slab_cache);
3933 }
3934 EXPORT_SYMBOL(__ksize);
3935 
3936 void kfree(const void *x)
3937 {
3938 	struct page *page;
3939 	void *object = (void *)x;
3940 
3941 	trace_kfree(_RET_IP_, x);
3942 
3943 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3944 		return;
3945 
3946 	page = virt_to_head_page(x);
3947 	if (unlikely(!PageSlab(page))) {
3948 		unsigned int order = compound_order(page);
3949 
3950 		BUG_ON(!PageCompound(page));
3951 		kfree_hook(object);
3952 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3953 				    -(1 << order));
3954 		__free_pages(page, order);
3955 		return;
3956 	}
3957 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3958 }
3959 EXPORT_SYMBOL(kfree);
3960 
3961 #define SHRINK_PROMOTE_MAX 32
3962 
3963 /*
3964  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3965  * up most to the head of the partial lists. New allocations will then
3966  * fill those up and thus they can be removed from the partial lists.
3967  *
3968  * The slabs with the least items are placed last. This results in them
3969  * being allocated from last increasing the chance that the last objects
3970  * are freed in them.
3971  */
3972 int __kmem_cache_shrink(struct kmem_cache *s)
3973 {
3974 	int node;
3975 	int i;
3976 	struct kmem_cache_node *n;
3977 	struct page *page;
3978 	struct page *t;
3979 	struct list_head discard;
3980 	struct list_head promote[SHRINK_PROMOTE_MAX];
3981 	unsigned long flags;
3982 	int ret = 0;
3983 
3984 	flush_all(s);
3985 	for_each_kmem_cache_node(s, node, n) {
3986 		INIT_LIST_HEAD(&discard);
3987 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3988 			INIT_LIST_HEAD(promote + i);
3989 
3990 		spin_lock_irqsave(&n->list_lock, flags);
3991 
3992 		/*
3993 		 * Build lists of slabs to discard or promote.
3994 		 *
3995 		 * Note that concurrent frees may occur while we hold the
3996 		 * list_lock. page->inuse here is the upper limit.
3997 		 */
3998 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3999 			int free = page->objects - page->inuse;
4000 
4001 			/* Do not reread page->inuse */
4002 			barrier();
4003 
4004 			/* We do not keep full slabs on the list */
4005 			BUG_ON(free <= 0);
4006 
4007 			if (free == page->objects) {
4008 				list_move(&page->slab_list, &discard);
4009 				n->nr_partial--;
4010 			} else if (free <= SHRINK_PROMOTE_MAX)
4011 				list_move(&page->slab_list, promote + free - 1);
4012 		}
4013 
4014 		/*
4015 		 * Promote the slabs filled up most to the head of the
4016 		 * partial list.
4017 		 */
4018 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4019 			list_splice(promote + i, &n->partial);
4020 
4021 		spin_unlock_irqrestore(&n->list_lock, flags);
4022 
4023 		/* Release empty slabs */
4024 		list_for_each_entry_safe(page, t, &discard, slab_list)
4025 			discard_slab(s, page);
4026 
4027 		if (slabs_node(s, node))
4028 			ret = 1;
4029 	}
4030 
4031 	return ret;
4032 }
4033 
4034 #ifdef CONFIG_MEMCG
4035 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4036 {
4037 	/*
4038 	 * Called with all the locks held after a sched RCU grace period.
4039 	 * Even if @s becomes empty after shrinking, we can't know that @s
4040 	 * doesn't have allocations already in-flight and thus can't
4041 	 * destroy @s until the associated memcg is released.
4042 	 *
4043 	 * However, let's remove the sysfs files for empty caches here.
4044 	 * Each cache has a lot of interface files which aren't
4045 	 * particularly useful for empty draining caches; otherwise, we can
4046 	 * easily end up with millions of unnecessary sysfs files on
4047 	 * systems which have a lot of memory and transient cgroups.
4048 	 */
4049 	if (!__kmem_cache_shrink(s))
4050 		sysfs_slab_remove(s);
4051 }
4052 
4053 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4054 {
4055 	/*
4056 	 * Disable empty slabs caching. Used to avoid pinning offline
4057 	 * memory cgroups by kmem pages that can be freed.
4058 	 */
4059 	slub_set_cpu_partial(s, 0);
4060 	s->min_partial = 0;
4061 }
4062 #endif	/* CONFIG_MEMCG */
4063 
4064 static int slab_mem_going_offline_callback(void *arg)
4065 {
4066 	struct kmem_cache *s;
4067 
4068 	mutex_lock(&slab_mutex);
4069 	list_for_each_entry(s, &slab_caches, list)
4070 		__kmem_cache_shrink(s);
4071 	mutex_unlock(&slab_mutex);
4072 
4073 	return 0;
4074 }
4075 
4076 static void slab_mem_offline_callback(void *arg)
4077 {
4078 	struct kmem_cache_node *n;
4079 	struct kmem_cache *s;
4080 	struct memory_notify *marg = arg;
4081 	int offline_node;
4082 
4083 	offline_node = marg->status_change_nid_normal;
4084 
4085 	/*
4086 	 * If the node still has available memory. we need kmem_cache_node
4087 	 * for it yet.
4088 	 */
4089 	if (offline_node < 0)
4090 		return;
4091 
4092 	mutex_lock(&slab_mutex);
4093 	list_for_each_entry(s, &slab_caches, list) {
4094 		n = get_node(s, offline_node);
4095 		if (n) {
4096 			/*
4097 			 * if n->nr_slabs > 0, slabs still exist on the node
4098 			 * that is going down. We were unable to free them,
4099 			 * and offline_pages() function shouldn't call this
4100 			 * callback. So, we must fail.
4101 			 */
4102 			BUG_ON(slabs_node(s, offline_node));
4103 
4104 			s->node[offline_node] = NULL;
4105 			kmem_cache_free(kmem_cache_node, n);
4106 		}
4107 	}
4108 	mutex_unlock(&slab_mutex);
4109 }
4110 
4111 static int slab_mem_going_online_callback(void *arg)
4112 {
4113 	struct kmem_cache_node *n;
4114 	struct kmem_cache *s;
4115 	struct memory_notify *marg = arg;
4116 	int nid = marg->status_change_nid_normal;
4117 	int ret = 0;
4118 
4119 	/*
4120 	 * If the node's memory is already available, then kmem_cache_node is
4121 	 * already created. Nothing to do.
4122 	 */
4123 	if (nid < 0)
4124 		return 0;
4125 
4126 	/*
4127 	 * We are bringing a node online. No memory is available yet. We must
4128 	 * allocate a kmem_cache_node structure in order to bring the node
4129 	 * online.
4130 	 */
4131 	mutex_lock(&slab_mutex);
4132 	list_for_each_entry(s, &slab_caches, list) {
4133 		/*
4134 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4135 		 *      since memory is not yet available from the node that
4136 		 *      is brought up.
4137 		 */
4138 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4139 		if (!n) {
4140 			ret = -ENOMEM;
4141 			goto out;
4142 		}
4143 		init_kmem_cache_node(n);
4144 		s->node[nid] = n;
4145 	}
4146 out:
4147 	mutex_unlock(&slab_mutex);
4148 	return ret;
4149 }
4150 
4151 static int slab_memory_callback(struct notifier_block *self,
4152 				unsigned long action, void *arg)
4153 {
4154 	int ret = 0;
4155 
4156 	switch (action) {
4157 	case MEM_GOING_ONLINE:
4158 		ret = slab_mem_going_online_callback(arg);
4159 		break;
4160 	case MEM_GOING_OFFLINE:
4161 		ret = slab_mem_going_offline_callback(arg);
4162 		break;
4163 	case MEM_OFFLINE:
4164 	case MEM_CANCEL_ONLINE:
4165 		slab_mem_offline_callback(arg);
4166 		break;
4167 	case MEM_ONLINE:
4168 	case MEM_CANCEL_OFFLINE:
4169 		break;
4170 	}
4171 	if (ret)
4172 		ret = notifier_from_errno(ret);
4173 	else
4174 		ret = NOTIFY_OK;
4175 	return ret;
4176 }
4177 
4178 static struct notifier_block slab_memory_callback_nb = {
4179 	.notifier_call = slab_memory_callback,
4180 	.priority = SLAB_CALLBACK_PRI,
4181 };
4182 
4183 /********************************************************************
4184  *			Basic setup of slabs
4185  *******************************************************************/
4186 
4187 /*
4188  * Used for early kmem_cache structures that were allocated using
4189  * the page allocator. Allocate them properly then fix up the pointers
4190  * that may be pointing to the wrong kmem_cache structure.
4191  */
4192 
4193 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4194 {
4195 	int node;
4196 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4197 	struct kmem_cache_node *n;
4198 
4199 	memcpy(s, static_cache, kmem_cache->object_size);
4200 
4201 	/*
4202 	 * This runs very early, and only the boot processor is supposed to be
4203 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4204 	 * IPIs around.
4205 	 */
4206 	__flush_cpu_slab(s, smp_processor_id());
4207 	for_each_kmem_cache_node(s, node, n) {
4208 		struct page *p;
4209 
4210 		list_for_each_entry(p, &n->partial, slab_list)
4211 			p->slab_cache = s;
4212 
4213 #ifdef CONFIG_SLUB_DEBUG
4214 		list_for_each_entry(p, &n->full, slab_list)
4215 			p->slab_cache = s;
4216 #endif
4217 	}
4218 	slab_init_memcg_params(s);
4219 	list_add(&s->list, &slab_caches);
4220 	memcg_link_cache(s, NULL);
4221 	return s;
4222 }
4223 
4224 void __init kmem_cache_init(void)
4225 {
4226 	static __initdata struct kmem_cache boot_kmem_cache,
4227 		boot_kmem_cache_node;
4228 
4229 	if (debug_guardpage_minorder())
4230 		slub_max_order = 0;
4231 
4232 	kmem_cache_node = &boot_kmem_cache_node;
4233 	kmem_cache = &boot_kmem_cache;
4234 
4235 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4236 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4237 
4238 	register_hotmemory_notifier(&slab_memory_callback_nb);
4239 
4240 	/* Able to allocate the per node structures */
4241 	slab_state = PARTIAL;
4242 
4243 	create_boot_cache(kmem_cache, "kmem_cache",
4244 			offsetof(struct kmem_cache, node) +
4245 				nr_node_ids * sizeof(struct kmem_cache_node *),
4246 		       SLAB_HWCACHE_ALIGN, 0, 0);
4247 
4248 	kmem_cache = bootstrap(&boot_kmem_cache);
4249 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4250 
4251 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4252 	setup_kmalloc_cache_index_table();
4253 	create_kmalloc_caches(0);
4254 
4255 	/* Setup random freelists for each cache */
4256 	init_freelist_randomization();
4257 
4258 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4259 				  slub_cpu_dead);
4260 
4261 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4262 		cache_line_size(),
4263 		slub_min_order, slub_max_order, slub_min_objects,
4264 		nr_cpu_ids, nr_node_ids);
4265 }
4266 
4267 void __init kmem_cache_init_late(void)
4268 {
4269 }
4270 
4271 struct kmem_cache *
4272 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4273 		   slab_flags_t flags, void (*ctor)(void *))
4274 {
4275 	struct kmem_cache *s, *c;
4276 
4277 	s = find_mergeable(size, align, flags, name, ctor);
4278 	if (s) {
4279 		s->refcount++;
4280 
4281 		/*
4282 		 * Adjust the object sizes so that we clear
4283 		 * the complete object on kzalloc.
4284 		 */
4285 		s->object_size = max(s->object_size, size);
4286 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4287 
4288 		for_each_memcg_cache(c, s) {
4289 			c->object_size = s->object_size;
4290 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4291 		}
4292 
4293 		if (sysfs_slab_alias(s, name)) {
4294 			s->refcount--;
4295 			s = NULL;
4296 		}
4297 	}
4298 
4299 	return s;
4300 }
4301 
4302 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4303 {
4304 	int err;
4305 
4306 	err = kmem_cache_open(s, flags);
4307 	if (err)
4308 		return err;
4309 
4310 	/* Mutex is not taken during early boot */
4311 	if (slab_state <= UP)
4312 		return 0;
4313 
4314 	memcg_propagate_slab_attrs(s);
4315 	err = sysfs_slab_add(s);
4316 	if (err)
4317 		__kmem_cache_release(s);
4318 
4319 	return err;
4320 }
4321 
4322 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4323 {
4324 	struct kmem_cache *s;
4325 	void *ret;
4326 
4327 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4328 		return kmalloc_large(size, gfpflags);
4329 
4330 	s = kmalloc_slab(size, gfpflags);
4331 
4332 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4333 		return s;
4334 
4335 	ret = slab_alloc(s, gfpflags, caller);
4336 
4337 	/* Honor the call site pointer we received. */
4338 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4339 
4340 	return ret;
4341 }
4342 
4343 #ifdef CONFIG_NUMA
4344 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4345 					int node, unsigned long caller)
4346 {
4347 	struct kmem_cache *s;
4348 	void *ret;
4349 
4350 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4351 		ret = kmalloc_large_node(size, gfpflags, node);
4352 
4353 		trace_kmalloc_node(caller, ret,
4354 				   size, PAGE_SIZE << get_order(size),
4355 				   gfpflags, node);
4356 
4357 		return ret;
4358 	}
4359 
4360 	s = kmalloc_slab(size, gfpflags);
4361 
4362 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4363 		return s;
4364 
4365 	ret = slab_alloc_node(s, gfpflags, node, caller);
4366 
4367 	/* Honor the call site pointer we received. */
4368 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4369 
4370 	return ret;
4371 }
4372 #endif
4373 
4374 #ifdef CONFIG_SYSFS
4375 static int count_inuse(struct page *page)
4376 {
4377 	return page->inuse;
4378 }
4379 
4380 static int count_total(struct page *page)
4381 {
4382 	return page->objects;
4383 }
4384 #endif
4385 
4386 #ifdef CONFIG_SLUB_DEBUG
4387 static void validate_slab(struct kmem_cache *s, struct page *page,
4388 						unsigned long *map)
4389 {
4390 	void *p;
4391 	void *addr = page_address(page);
4392 
4393 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4394 		return;
4395 
4396 	/* Now we know that a valid freelist exists */
4397 	bitmap_zero(map, page->objects);
4398 
4399 	get_map(s, page, map);
4400 	for_each_object(p, s, addr, page->objects) {
4401 		u8 val = test_bit(slab_index(p, s, addr), map) ?
4402 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4403 
4404 		if (!check_object(s, page, p, val))
4405 			break;
4406 	}
4407 }
4408 
4409 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4410 						unsigned long *map)
4411 {
4412 	slab_lock(page);
4413 	validate_slab(s, page, map);
4414 	slab_unlock(page);
4415 }
4416 
4417 static int validate_slab_node(struct kmem_cache *s,
4418 		struct kmem_cache_node *n, unsigned long *map)
4419 {
4420 	unsigned long count = 0;
4421 	struct page *page;
4422 	unsigned long flags;
4423 
4424 	spin_lock_irqsave(&n->list_lock, flags);
4425 
4426 	list_for_each_entry(page, &n->partial, slab_list) {
4427 		validate_slab_slab(s, page, map);
4428 		count++;
4429 	}
4430 	if (count != n->nr_partial)
4431 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4432 		       s->name, count, n->nr_partial);
4433 
4434 	if (!(s->flags & SLAB_STORE_USER))
4435 		goto out;
4436 
4437 	list_for_each_entry(page, &n->full, slab_list) {
4438 		validate_slab_slab(s, page, map);
4439 		count++;
4440 	}
4441 	if (count != atomic_long_read(&n->nr_slabs))
4442 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4443 		       s->name, count, atomic_long_read(&n->nr_slabs));
4444 
4445 out:
4446 	spin_unlock_irqrestore(&n->list_lock, flags);
4447 	return count;
4448 }
4449 
4450 static long validate_slab_cache(struct kmem_cache *s)
4451 {
4452 	int node;
4453 	unsigned long count = 0;
4454 	struct kmem_cache_node *n;
4455 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4456 
4457 	if (!map)
4458 		return -ENOMEM;
4459 
4460 	flush_all(s);
4461 	for_each_kmem_cache_node(s, node, n)
4462 		count += validate_slab_node(s, n, map);
4463 	bitmap_free(map);
4464 	return count;
4465 }
4466 /*
4467  * Generate lists of code addresses where slabcache objects are allocated
4468  * and freed.
4469  */
4470 
4471 struct location {
4472 	unsigned long count;
4473 	unsigned long addr;
4474 	long long sum_time;
4475 	long min_time;
4476 	long max_time;
4477 	long min_pid;
4478 	long max_pid;
4479 	DECLARE_BITMAP(cpus, NR_CPUS);
4480 	nodemask_t nodes;
4481 };
4482 
4483 struct loc_track {
4484 	unsigned long max;
4485 	unsigned long count;
4486 	struct location *loc;
4487 };
4488 
4489 static void free_loc_track(struct loc_track *t)
4490 {
4491 	if (t->max)
4492 		free_pages((unsigned long)t->loc,
4493 			get_order(sizeof(struct location) * t->max));
4494 }
4495 
4496 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4497 {
4498 	struct location *l;
4499 	int order;
4500 
4501 	order = get_order(sizeof(struct location) * max);
4502 
4503 	l = (void *)__get_free_pages(flags, order);
4504 	if (!l)
4505 		return 0;
4506 
4507 	if (t->count) {
4508 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4509 		free_loc_track(t);
4510 	}
4511 	t->max = max;
4512 	t->loc = l;
4513 	return 1;
4514 }
4515 
4516 static int add_location(struct loc_track *t, struct kmem_cache *s,
4517 				const struct track *track)
4518 {
4519 	long start, end, pos;
4520 	struct location *l;
4521 	unsigned long caddr;
4522 	unsigned long age = jiffies - track->when;
4523 
4524 	start = -1;
4525 	end = t->count;
4526 
4527 	for ( ; ; ) {
4528 		pos = start + (end - start + 1) / 2;
4529 
4530 		/*
4531 		 * There is nothing at "end". If we end up there
4532 		 * we need to add something to before end.
4533 		 */
4534 		if (pos == end)
4535 			break;
4536 
4537 		caddr = t->loc[pos].addr;
4538 		if (track->addr == caddr) {
4539 
4540 			l = &t->loc[pos];
4541 			l->count++;
4542 			if (track->when) {
4543 				l->sum_time += age;
4544 				if (age < l->min_time)
4545 					l->min_time = age;
4546 				if (age > l->max_time)
4547 					l->max_time = age;
4548 
4549 				if (track->pid < l->min_pid)
4550 					l->min_pid = track->pid;
4551 				if (track->pid > l->max_pid)
4552 					l->max_pid = track->pid;
4553 
4554 				cpumask_set_cpu(track->cpu,
4555 						to_cpumask(l->cpus));
4556 			}
4557 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4558 			return 1;
4559 		}
4560 
4561 		if (track->addr < caddr)
4562 			end = pos;
4563 		else
4564 			start = pos;
4565 	}
4566 
4567 	/*
4568 	 * Not found. Insert new tracking element.
4569 	 */
4570 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4571 		return 0;
4572 
4573 	l = t->loc + pos;
4574 	if (pos < t->count)
4575 		memmove(l + 1, l,
4576 			(t->count - pos) * sizeof(struct location));
4577 	t->count++;
4578 	l->count = 1;
4579 	l->addr = track->addr;
4580 	l->sum_time = age;
4581 	l->min_time = age;
4582 	l->max_time = age;
4583 	l->min_pid = track->pid;
4584 	l->max_pid = track->pid;
4585 	cpumask_clear(to_cpumask(l->cpus));
4586 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4587 	nodes_clear(l->nodes);
4588 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4589 	return 1;
4590 }
4591 
4592 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4593 		struct page *page, enum track_item alloc,
4594 		unsigned long *map)
4595 {
4596 	void *addr = page_address(page);
4597 	void *p;
4598 
4599 	bitmap_zero(map, page->objects);
4600 	get_map(s, page, map);
4601 
4602 	for_each_object(p, s, addr, page->objects)
4603 		if (!test_bit(slab_index(p, s, addr), map))
4604 			add_location(t, s, get_track(s, p, alloc));
4605 }
4606 
4607 static int list_locations(struct kmem_cache *s, char *buf,
4608 					enum track_item alloc)
4609 {
4610 	int len = 0;
4611 	unsigned long i;
4612 	struct loc_track t = { 0, 0, NULL };
4613 	int node;
4614 	struct kmem_cache_node *n;
4615 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4616 
4617 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4618 				     GFP_KERNEL)) {
4619 		bitmap_free(map);
4620 		return sprintf(buf, "Out of memory\n");
4621 	}
4622 	/* Push back cpu slabs */
4623 	flush_all(s);
4624 
4625 	for_each_kmem_cache_node(s, node, n) {
4626 		unsigned long flags;
4627 		struct page *page;
4628 
4629 		if (!atomic_long_read(&n->nr_slabs))
4630 			continue;
4631 
4632 		spin_lock_irqsave(&n->list_lock, flags);
4633 		list_for_each_entry(page, &n->partial, slab_list)
4634 			process_slab(&t, s, page, alloc, map);
4635 		list_for_each_entry(page, &n->full, slab_list)
4636 			process_slab(&t, s, page, alloc, map);
4637 		spin_unlock_irqrestore(&n->list_lock, flags);
4638 	}
4639 
4640 	for (i = 0; i < t.count; i++) {
4641 		struct location *l = &t.loc[i];
4642 
4643 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4644 			break;
4645 		len += sprintf(buf + len, "%7ld ", l->count);
4646 
4647 		if (l->addr)
4648 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4649 		else
4650 			len += sprintf(buf + len, "<not-available>");
4651 
4652 		if (l->sum_time != l->min_time) {
4653 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4654 				l->min_time,
4655 				(long)div_u64(l->sum_time, l->count),
4656 				l->max_time);
4657 		} else
4658 			len += sprintf(buf + len, " age=%ld",
4659 				l->min_time);
4660 
4661 		if (l->min_pid != l->max_pid)
4662 			len += sprintf(buf + len, " pid=%ld-%ld",
4663 				l->min_pid, l->max_pid);
4664 		else
4665 			len += sprintf(buf + len, " pid=%ld",
4666 				l->min_pid);
4667 
4668 		if (num_online_cpus() > 1 &&
4669 				!cpumask_empty(to_cpumask(l->cpus)) &&
4670 				len < PAGE_SIZE - 60)
4671 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4672 					 " cpus=%*pbl",
4673 					 cpumask_pr_args(to_cpumask(l->cpus)));
4674 
4675 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4676 				len < PAGE_SIZE - 60)
4677 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4678 					 " nodes=%*pbl",
4679 					 nodemask_pr_args(&l->nodes));
4680 
4681 		len += sprintf(buf + len, "\n");
4682 	}
4683 
4684 	free_loc_track(&t);
4685 	bitmap_free(map);
4686 	if (!t.count)
4687 		len += sprintf(buf, "No data\n");
4688 	return len;
4689 }
4690 #endif	/* CONFIG_SLUB_DEBUG */
4691 
4692 #ifdef SLUB_RESILIENCY_TEST
4693 static void __init resiliency_test(void)
4694 {
4695 	u8 *p;
4696 	int type = KMALLOC_NORMAL;
4697 
4698 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4699 
4700 	pr_err("SLUB resiliency testing\n");
4701 	pr_err("-----------------------\n");
4702 	pr_err("A. Corruption after allocation\n");
4703 
4704 	p = kzalloc(16, GFP_KERNEL);
4705 	p[16] = 0x12;
4706 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4707 	       p + 16);
4708 
4709 	validate_slab_cache(kmalloc_caches[type][4]);
4710 
4711 	/* Hmmm... The next two are dangerous */
4712 	p = kzalloc(32, GFP_KERNEL);
4713 	p[32 + sizeof(void *)] = 0x34;
4714 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4715 	       p);
4716 	pr_err("If allocated object is overwritten then not detectable\n\n");
4717 
4718 	validate_slab_cache(kmalloc_caches[type][5]);
4719 	p = kzalloc(64, GFP_KERNEL);
4720 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4721 	*p = 0x56;
4722 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4723 	       p);
4724 	pr_err("If allocated object is overwritten then not detectable\n\n");
4725 	validate_slab_cache(kmalloc_caches[type][6]);
4726 
4727 	pr_err("\nB. Corruption after free\n");
4728 	p = kzalloc(128, GFP_KERNEL);
4729 	kfree(p);
4730 	*p = 0x78;
4731 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4732 	validate_slab_cache(kmalloc_caches[type][7]);
4733 
4734 	p = kzalloc(256, GFP_KERNEL);
4735 	kfree(p);
4736 	p[50] = 0x9a;
4737 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4738 	validate_slab_cache(kmalloc_caches[type][8]);
4739 
4740 	p = kzalloc(512, GFP_KERNEL);
4741 	kfree(p);
4742 	p[512] = 0xab;
4743 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4744 	validate_slab_cache(kmalloc_caches[type][9]);
4745 }
4746 #else
4747 #ifdef CONFIG_SYSFS
4748 static void resiliency_test(void) {};
4749 #endif
4750 #endif	/* SLUB_RESILIENCY_TEST */
4751 
4752 #ifdef CONFIG_SYSFS
4753 enum slab_stat_type {
4754 	SL_ALL,			/* All slabs */
4755 	SL_PARTIAL,		/* Only partially allocated slabs */
4756 	SL_CPU,			/* Only slabs used for cpu caches */
4757 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4758 	SL_TOTAL		/* Determine object capacity not slabs */
4759 };
4760 
4761 #define SO_ALL		(1 << SL_ALL)
4762 #define SO_PARTIAL	(1 << SL_PARTIAL)
4763 #define SO_CPU		(1 << SL_CPU)
4764 #define SO_OBJECTS	(1 << SL_OBJECTS)
4765 #define SO_TOTAL	(1 << SL_TOTAL)
4766 
4767 #ifdef CONFIG_MEMCG
4768 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4769 
4770 static int __init setup_slub_memcg_sysfs(char *str)
4771 {
4772 	int v;
4773 
4774 	if (get_option(&str, &v) > 0)
4775 		memcg_sysfs_enabled = v;
4776 
4777 	return 1;
4778 }
4779 
4780 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4781 #endif
4782 
4783 static ssize_t show_slab_objects(struct kmem_cache *s,
4784 			    char *buf, unsigned long flags)
4785 {
4786 	unsigned long total = 0;
4787 	int node;
4788 	int x;
4789 	unsigned long *nodes;
4790 
4791 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4792 	if (!nodes)
4793 		return -ENOMEM;
4794 
4795 	if (flags & SO_CPU) {
4796 		int cpu;
4797 
4798 		for_each_possible_cpu(cpu) {
4799 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4800 							       cpu);
4801 			int node;
4802 			struct page *page;
4803 
4804 			page = READ_ONCE(c->page);
4805 			if (!page)
4806 				continue;
4807 
4808 			node = page_to_nid(page);
4809 			if (flags & SO_TOTAL)
4810 				x = page->objects;
4811 			else if (flags & SO_OBJECTS)
4812 				x = page->inuse;
4813 			else
4814 				x = 1;
4815 
4816 			total += x;
4817 			nodes[node] += x;
4818 
4819 			page = slub_percpu_partial_read_once(c);
4820 			if (page) {
4821 				node = page_to_nid(page);
4822 				if (flags & SO_TOTAL)
4823 					WARN_ON_ONCE(1);
4824 				else if (flags & SO_OBJECTS)
4825 					WARN_ON_ONCE(1);
4826 				else
4827 					x = page->pages;
4828 				total += x;
4829 				nodes[node] += x;
4830 			}
4831 		}
4832 	}
4833 
4834 	/*
4835 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4836 	 * already held which will conflict with an existing lock order:
4837 	 *
4838 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4839 	 *
4840 	 * We don't really need mem_hotplug_lock (to hold off
4841 	 * slab_mem_going_offline_callback) here because slab's memory hot
4842 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4843 	 */
4844 
4845 #ifdef CONFIG_SLUB_DEBUG
4846 	if (flags & SO_ALL) {
4847 		struct kmem_cache_node *n;
4848 
4849 		for_each_kmem_cache_node(s, node, n) {
4850 
4851 			if (flags & SO_TOTAL)
4852 				x = atomic_long_read(&n->total_objects);
4853 			else if (flags & SO_OBJECTS)
4854 				x = atomic_long_read(&n->total_objects) -
4855 					count_partial(n, count_free);
4856 			else
4857 				x = atomic_long_read(&n->nr_slabs);
4858 			total += x;
4859 			nodes[node] += x;
4860 		}
4861 
4862 	} else
4863 #endif
4864 	if (flags & SO_PARTIAL) {
4865 		struct kmem_cache_node *n;
4866 
4867 		for_each_kmem_cache_node(s, node, n) {
4868 			if (flags & SO_TOTAL)
4869 				x = count_partial(n, count_total);
4870 			else if (flags & SO_OBJECTS)
4871 				x = count_partial(n, count_inuse);
4872 			else
4873 				x = n->nr_partial;
4874 			total += x;
4875 			nodes[node] += x;
4876 		}
4877 	}
4878 	x = sprintf(buf, "%lu", total);
4879 #ifdef CONFIG_NUMA
4880 	for (node = 0; node < nr_node_ids; node++)
4881 		if (nodes[node])
4882 			x += sprintf(buf + x, " N%d=%lu",
4883 					node, nodes[node]);
4884 #endif
4885 	kfree(nodes);
4886 	return x + sprintf(buf + x, "\n");
4887 }
4888 
4889 #ifdef CONFIG_SLUB_DEBUG
4890 static int any_slab_objects(struct kmem_cache *s)
4891 {
4892 	int node;
4893 	struct kmem_cache_node *n;
4894 
4895 	for_each_kmem_cache_node(s, node, n)
4896 		if (atomic_long_read(&n->total_objects))
4897 			return 1;
4898 
4899 	return 0;
4900 }
4901 #endif
4902 
4903 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4904 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4905 
4906 struct slab_attribute {
4907 	struct attribute attr;
4908 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4909 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4910 };
4911 
4912 #define SLAB_ATTR_RO(_name) \
4913 	static struct slab_attribute _name##_attr = \
4914 	__ATTR(_name, 0400, _name##_show, NULL)
4915 
4916 #define SLAB_ATTR(_name) \
4917 	static struct slab_attribute _name##_attr =  \
4918 	__ATTR(_name, 0600, _name##_show, _name##_store)
4919 
4920 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4921 {
4922 	return sprintf(buf, "%u\n", s->size);
4923 }
4924 SLAB_ATTR_RO(slab_size);
4925 
4926 static ssize_t align_show(struct kmem_cache *s, char *buf)
4927 {
4928 	return sprintf(buf, "%u\n", s->align);
4929 }
4930 SLAB_ATTR_RO(align);
4931 
4932 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4933 {
4934 	return sprintf(buf, "%u\n", s->object_size);
4935 }
4936 SLAB_ATTR_RO(object_size);
4937 
4938 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4939 {
4940 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4941 }
4942 SLAB_ATTR_RO(objs_per_slab);
4943 
4944 static ssize_t order_store(struct kmem_cache *s,
4945 				const char *buf, size_t length)
4946 {
4947 	unsigned int order;
4948 	int err;
4949 
4950 	err = kstrtouint(buf, 10, &order);
4951 	if (err)
4952 		return err;
4953 
4954 	if (order > slub_max_order || order < slub_min_order)
4955 		return -EINVAL;
4956 
4957 	calculate_sizes(s, order);
4958 	return length;
4959 }
4960 
4961 static ssize_t order_show(struct kmem_cache *s, char *buf)
4962 {
4963 	return sprintf(buf, "%u\n", oo_order(s->oo));
4964 }
4965 SLAB_ATTR(order);
4966 
4967 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4968 {
4969 	return sprintf(buf, "%lu\n", s->min_partial);
4970 }
4971 
4972 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4973 				 size_t length)
4974 {
4975 	unsigned long min;
4976 	int err;
4977 
4978 	err = kstrtoul(buf, 10, &min);
4979 	if (err)
4980 		return err;
4981 
4982 	set_min_partial(s, min);
4983 	return length;
4984 }
4985 SLAB_ATTR(min_partial);
4986 
4987 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4988 {
4989 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4990 }
4991 
4992 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4993 				 size_t length)
4994 {
4995 	unsigned int objects;
4996 	int err;
4997 
4998 	err = kstrtouint(buf, 10, &objects);
4999 	if (err)
5000 		return err;
5001 	if (objects && !kmem_cache_has_cpu_partial(s))
5002 		return -EINVAL;
5003 
5004 	slub_set_cpu_partial(s, objects);
5005 	flush_all(s);
5006 	return length;
5007 }
5008 SLAB_ATTR(cpu_partial);
5009 
5010 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5011 {
5012 	if (!s->ctor)
5013 		return 0;
5014 	return sprintf(buf, "%pS\n", s->ctor);
5015 }
5016 SLAB_ATTR_RO(ctor);
5017 
5018 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5019 {
5020 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5021 }
5022 SLAB_ATTR_RO(aliases);
5023 
5024 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5025 {
5026 	return show_slab_objects(s, buf, SO_PARTIAL);
5027 }
5028 SLAB_ATTR_RO(partial);
5029 
5030 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5031 {
5032 	return show_slab_objects(s, buf, SO_CPU);
5033 }
5034 SLAB_ATTR_RO(cpu_slabs);
5035 
5036 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5037 {
5038 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5039 }
5040 SLAB_ATTR_RO(objects);
5041 
5042 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5043 {
5044 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5045 }
5046 SLAB_ATTR_RO(objects_partial);
5047 
5048 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5049 {
5050 	int objects = 0;
5051 	int pages = 0;
5052 	int cpu;
5053 	int len;
5054 
5055 	for_each_online_cpu(cpu) {
5056 		struct page *page;
5057 
5058 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5059 
5060 		if (page) {
5061 			pages += page->pages;
5062 			objects += page->pobjects;
5063 		}
5064 	}
5065 
5066 	len = sprintf(buf, "%d(%d)", objects, pages);
5067 
5068 #ifdef CONFIG_SMP
5069 	for_each_online_cpu(cpu) {
5070 		struct page *page;
5071 
5072 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5073 
5074 		if (page && len < PAGE_SIZE - 20)
5075 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5076 				page->pobjects, page->pages);
5077 	}
5078 #endif
5079 	return len + sprintf(buf + len, "\n");
5080 }
5081 SLAB_ATTR_RO(slabs_cpu_partial);
5082 
5083 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5084 {
5085 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5086 }
5087 
5088 static ssize_t reclaim_account_store(struct kmem_cache *s,
5089 				const char *buf, size_t length)
5090 {
5091 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5092 	if (buf[0] == '1')
5093 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5094 	return length;
5095 }
5096 SLAB_ATTR(reclaim_account);
5097 
5098 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5099 {
5100 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5101 }
5102 SLAB_ATTR_RO(hwcache_align);
5103 
5104 #ifdef CONFIG_ZONE_DMA
5105 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5106 {
5107 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5108 }
5109 SLAB_ATTR_RO(cache_dma);
5110 #endif
5111 
5112 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5113 {
5114 	return sprintf(buf, "%u\n", s->usersize);
5115 }
5116 SLAB_ATTR_RO(usersize);
5117 
5118 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5119 {
5120 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5121 }
5122 SLAB_ATTR_RO(destroy_by_rcu);
5123 
5124 #ifdef CONFIG_SLUB_DEBUG
5125 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5126 {
5127 	return show_slab_objects(s, buf, SO_ALL);
5128 }
5129 SLAB_ATTR_RO(slabs);
5130 
5131 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5132 {
5133 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5134 }
5135 SLAB_ATTR_RO(total_objects);
5136 
5137 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5138 {
5139 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5140 }
5141 
5142 static ssize_t sanity_checks_store(struct kmem_cache *s,
5143 				const char *buf, size_t length)
5144 {
5145 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5146 	if (buf[0] == '1') {
5147 		s->flags &= ~__CMPXCHG_DOUBLE;
5148 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5149 	}
5150 	return length;
5151 }
5152 SLAB_ATTR(sanity_checks);
5153 
5154 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5155 {
5156 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5157 }
5158 
5159 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5160 							size_t length)
5161 {
5162 	/*
5163 	 * Tracing a merged cache is going to give confusing results
5164 	 * as well as cause other issues like converting a mergeable
5165 	 * cache into an umergeable one.
5166 	 */
5167 	if (s->refcount > 1)
5168 		return -EINVAL;
5169 
5170 	s->flags &= ~SLAB_TRACE;
5171 	if (buf[0] == '1') {
5172 		s->flags &= ~__CMPXCHG_DOUBLE;
5173 		s->flags |= SLAB_TRACE;
5174 	}
5175 	return length;
5176 }
5177 SLAB_ATTR(trace);
5178 
5179 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5180 {
5181 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5182 }
5183 
5184 static ssize_t red_zone_store(struct kmem_cache *s,
5185 				const char *buf, size_t length)
5186 {
5187 	if (any_slab_objects(s))
5188 		return -EBUSY;
5189 
5190 	s->flags &= ~SLAB_RED_ZONE;
5191 	if (buf[0] == '1') {
5192 		s->flags |= SLAB_RED_ZONE;
5193 	}
5194 	calculate_sizes(s, -1);
5195 	return length;
5196 }
5197 SLAB_ATTR(red_zone);
5198 
5199 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5200 {
5201 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5202 }
5203 
5204 static ssize_t poison_store(struct kmem_cache *s,
5205 				const char *buf, size_t length)
5206 {
5207 	if (any_slab_objects(s))
5208 		return -EBUSY;
5209 
5210 	s->flags &= ~SLAB_POISON;
5211 	if (buf[0] == '1') {
5212 		s->flags |= SLAB_POISON;
5213 	}
5214 	calculate_sizes(s, -1);
5215 	return length;
5216 }
5217 SLAB_ATTR(poison);
5218 
5219 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5220 {
5221 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5222 }
5223 
5224 static ssize_t store_user_store(struct kmem_cache *s,
5225 				const char *buf, size_t length)
5226 {
5227 	if (any_slab_objects(s))
5228 		return -EBUSY;
5229 
5230 	s->flags &= ~SLAB_STORE_USER;
5231 	if (buf[0] == '1') {
5232 		s->flags &= ~__CMPXCHG_DOUBLE;
5233 		s->flags |= SLAB_STORE_USER;
5234 	}
5235 	calculate_sizes(s, -1);
5236 	return length;
5237 }
5238 SLAB_ATTR(store_user);
5239 
5240 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5241 {
5242 	return 0;
5243 }
5244 
5245 static ssize_t validate_store(struct kmem_cache *s,
5246 			const char *buf, size_t length)
5247 {
5248 	int ret = -EINVAL;
5249 
5250 	if (buf[0] == '1') {
5251 		ret = validate_slab_cache(s);
5252 		if (ret >= 0)
5253 			ret = length;
5254 	}
5255 	return ret;
5256 }
5257 SLAB_ATTR(validate);
5258 
5259 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5260 {
5261 	if (!(s->flags & SLAB_STORE_USER))
5262 		return -ENOSYS;
5263 	return list_locations(s, buf, TRACK_ALLOC);
5264 }
5265 SLAB_ATTR_RO(alloc_calls);
5266 
5267 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5268 {
5269 	if (!(s->flags & SLAB_STORE_USER))
5270 		return -ENOSYS;
5271 	return list_locations(s, buf, TRACK_FREE);
5272 }
5273 SLAB_ATTR_RO(free_calls);
5274 #endif /* CONFIG_SLUB_DEBUG */
5275 
5276 #ifdef CONFIG_FAILSLAB
5277 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5278 {
5279 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5280 }
5281 
5282 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5283 							size_t length)
5284 {
5285 	if (s->refcount > 1)
5286 		return -EINVAL;
5287 
5288 	s->flags &= ~SLAB_FAILSLAB;
5289 	if (buf[0] == '1')
5290 		s->flags |= SLAB_FAILSLAB;
5291 	return length;
5292 }
5293 SLAB_ATTR(failslab);
5294 #endif
5295 
5296 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5297 {
5298 	return 0;
5299 }
5300 
5301 static ssize_t shrink_store(struct kmem_cache *s,
5302 			const char *buf, size_t length)
5303 {
5304 	if (buf[0] == '1')
5305 		kmem_cache_shrink_all(s);
5306 	else
5307 		return -EINVAL;
5308 	return length;
5309 }
5310 SLAB_ATTR(shrink);
5311 
5312 #ifdef CONFIG_NUMA
5313 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5314 {
5315 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5316 }
5317 
5318 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5319 				const char *buf, size_t length)
5320 {
5321 	unsigned int ratio;
5322 	int err;
5323 
5324 	err = kstrtouint(buf, 10, &ratio);
5325 	if (err)
5326 		return err;
5327 	if (ratio > 100)
5328 		return -ERANGE;
5329 
5330 	s->remote_node_defrag_ratio = ratio * 10;
5331 
5332 	return length;
5333 }
5334 SLAB_ATTR(remote_node_defrag_ratio);
5335 #endif
5336 
5337 #ifdef CONFIG_SLUB_STATS
5338 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5339 {
5340 	unsigned long sum  = 0;
5341 	int cpu;
5342 	int len;
5343 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5344 
5345 	if (!data)
5346 		return -ENOMEM;
5347 
5348 	for_each_online_cpu(cpu) {
5349 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5350 
5351 		data[cpu] = x;
5352 		sum += x;
5353 	}
5354 
5355 	len = sprintf(buf, "%lu", sum);
5356 
5357 #ifdef CONFIG_SMP
5358 	for_each_online_cpu(cpu) {
5359 		if (data[cpu] && len < PAGE_SIZE - 20)
5360 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5361 	}
5362 #endif
5363 	kfree(data);
5364 	return len + sprintf(buf + len, "\n");
5365 }
5366 
5367 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5368 {
5369 	int cpu;
5370 
5371 	for_each_online_cpu(cpu)
5372 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5373 }
5374 
5375 #define STAT_ATTR(si, text) 					\
5376 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5377 {								\
5378 	return show_stat(s, buf, si);				\
5379 }								\
5380 static ssize_t text##_store(struct kmem_cache *s,		\
5381 				const char *buf, size_t length)	\
5382 {								\
5383 	if (buf[0] != '0')					\
5384 		return -EINVAL;					\
5385 	clear_stat(s, si);					\
5386 	return length;						\
5387 }								\
5388 SLAB_ATTR(text);						\
5389 
5390 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5391 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5392 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5393 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5394 STAT_ATTR(FREE_FROZEN, free_frozen);
5395 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5396 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5397 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5398 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5399 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5400 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5401 STAT_ATTR(FREE_SLAB, free_slab);
5402 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5403 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5404 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5405 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5406 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5407 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5408 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5409 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5410 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5411 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5412 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5413 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5414 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5415 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5416 #endif	/* CONFIG_SLUB_STATS */
5417 
5418 static struct attribute *slab_attrs[] = {
5419 	&slab_size_attr.attr,
5420 	&object_size_attr.attr,
5421 	&objs_per_slab_attr.attr,
5422 	&order_attr.attr,
5423 	&min_partial_attr.attr,
5424 	&cpu_partial_attr.attr,
5425 	&objects_attr.attr,
5426 	&objects_partial_attr.attr,
5427 	&partial_attr.attr,
5428 	&cpu_slabs_attr.attr,
5429 	&ctor_attr.attr,
5430 	&aliases_attr.attr,
5431 	&align_attr.attr,
5432 	&hwcache_align_attr.attr,
5433 	&reclaim_account_attr.attr,
5434 	&destroy_by_rcu_attr.attr,
5435 	&shrink_attr.attr,
5436 	&slabs_cpu_partial_attr.attr,
5437 #ifdef CONFIG_SLUB_DEBUG
5438 	&total_objects_attr.attr,
5439 	&slabs_attr.attr,
5440 	&sanity_checks_attr.attr,
5441 	&trace_attr.attr,
5442 	&red_zone_attr.attr,
5443 	&poison_attr.attr,
5444 	&store_user_attr.attr,
5445 	&validate_attr.attr,
5446 	&alloc_calls_attr.attr,
5447 	&free_calls_attr.attr,
5448 #endif
5449 #ifdef CONFIG_ZONE_DMA
5450 	&cache_dma_attr.attr,
5451 #endif
5452 #ifdef CONFIG_NUMA
5453 	&remote_node_defrag_ratio_attr.attr,
5454 #endif
5455 #ifdef CONFIG_SLUB_STATS
5456 	&alloc_fastpath_attr.attr,
5457 	&alloc_slowpath_attr.attr,
5458 	&free_fastpath_attr.attr,
5459 	&free_slowpath_attr.attr,
5460 	&free_frozen_attr.attr,
5461 	&free_add_partial_attr.attr,
5462 	&free_remove_partial_attr.attr,
5463 	&alloc_from_partial_attr.attr,
5464 	&alloc_slab_attr.attr,
5465 	&alloc_refill_attr.attr,
5466 	&alloc_node_mismatch_attr.attr,
5467 	&free_slab_attr.attr,
5468 	&cpuslab_flush_attr.attr,
5469 	&deactivate_full_attr.attr,
5470 	&deactivate_empty_attr.attr,
5471 	&deactivate_to_head_attr.attr,
5472 	&deactivate_to_tail_attr.attr,
5473 	&deactivate_remote_frees_attr.attr,
5474 	&deactivate_bypass_attr.attr,
5475 	&order_fallback_attr.attr,
5476 	&cmpxchg_double_fail_attr.attr,
5477 	&cmpxchg_double_cpu_fail_attr.attr,
5478 	&cpu_partial_alloc_attr.attr,
5479 	&cpu_partial_free_attr.attr,
5480 	&cpu_partial_node_attr.attr,
5481 	&cpu_partial_drain_attr.attr,
5482 #endif
5483 #ifdef CONFIG_FAILSLAB
5484 	&failslab_attr.attr,
5485 #endif
5486 	&usersize_attr.attr,
5487 
5488 	NULL
5489 };
5490 
5491 static const struct attribute_group slab_attr_group = {
5492 	.attrs = slab_attrs,
5493 };
5494 
5495 static ssize_t slab_attr_show(struct kobject *kobj,
5496 				struct attribute *attr,
5497 				char *buf)
5498 {
5499 	struct slab_attribute *attribute;
5500 	struct kmem_cache *s;
5501 	int err;
5502 
5503 	attribute = to_slab_attr(attr);
5504 	s = to_slab(kobj);
5505 
5506 	if (!attribute->show)
5507 		return -EIO;
5508 
5509 	err = attribute->show(s, buf);
5510 
5511 	return err;
5512 }
5513 
5514 static ssize_t slab_attr_store(struct kobject *kobj,
5515 				struct attribute *attr,
5516 				const char *buf, size_t len)
5517 {
5518 	struct slab_attribute *attribute;
5519 	struct kmem_cache *s;
5520 	int err;
5521 
5522 	attribute = to_slab_attr(attr);
5523 	s = to_slab(kobj);
5524 
5525 	if (!attribute->store)
5526 		return -EIO;
5527 
5528 	err = attribute->store(s, buf, len);
5529 #ifdef CONFIG_MEMCG
5530 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5531 		struct kmem_cache *c;
5532 
5533 		mutex_lock(&slab_mutex);
5534 		if (s->max_attr_size < len)
5535 			s->max_attr_size = len;
5536 
5537 		/*
5538 		 * This is a best effort propagation, so this function's return
5539 		 * value will be determined by the parent cache only. This is
5540 		 * basically because not all attributes will have a well
5541 		 * defined semantics for rollbacks - most of the actions will
5542 		 * have permanent effects.
5543 		 *
5544 		 * Returning the error value of any of the children that fail
5545 		 * is not 100 % defined, in the sense that users seeing the
5546 		 * error code won't be able to know anything about the state of
5547 		 * the cache.
5548 		 *
5549 		 * Only returning the error code for the parent cache at least
5550 		 * has well defined semantics. The cache being written to
5551 		 * directly either failed or succeeded, in which case we loop
5552 		 * through the descendants with best-effort propagation.
5553 		 */
5554 		for_each_memcg_cache(c, s)
5555 			attribute->store(c, buf, len);
5556 		mutex_unlock(&slab_mutex);
5557 	}
5558 #endif
5559 	return err;
5560 }
5561 
5562 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5563 {
5564 #ifdef CONFIG_MEMCG
5565 	int i;
5566 	char *buffer = NULL;
5567 	struct kmem_cache *root_cache;
5568 
5569 	if (is_root_cache(s))
5570 		return;
5571 
5572 	root_cache = s->memcg_params.root_cache;
5573 
5574 	/*
5575 	 * This mean this cache had no attribute written. Therefore, no point
5576 	 * in copying default values around
5577 	 */
5578 	if (!root_cache->max_attr_size)
5579 		return;
5580 
5581 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5582 		char mbuf[64];
5583 		char *buf;
5584 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5585 		ssize_t len;
5586 
5587 		if (!attr || !attr->store || !attr->show)
5588 			continue;
5589 
5590 		/*
5591 		 * It is really bad that we have to allocate here, so we will
5592 		 * do it only as a fallback. If we actually allocate, though,
5593 		 * we can just use the allocated buffer until the end.
5594 		 *
5595 		 * Most of the slub attributes will tend to be very small in
5596 		 * size, but sysfs allows buffers up to a page, so they can
5597 		 * theoretically happen.
5598 		 */
5599 		if (buffer)
5600 			buf = buffer;
5601 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5602 			buf = mbuf;
5603 		else {
5604 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5605 			if (WARN_ON(!buffer))
5606 				continue;
5607 			buf = buffer;
5608 		}
5609 
5610 		len = attr->show(root_cache, buf);
5611 		if (len > 0)
5612 			attr->store(s, buf, len);
5613 	}
5614 
5615 	if (buffer)
5616 		free_page((unsigned long)buffer);
5617 #endif	/* CONFIG_MEMCG */
5618 }
5619 
5620 static void kmem_cache_release(struct kobject *k)
5621 {
5622 	slab_kmem_cache_release(to_slab(k));
5623 }
5624 
5625 static const struct sysfs_ops slab_sysfs_ops = {
5626 	.show = slab_attr_show,
5627 	.store = slab_attr_store,
5628 };
5629 
5630 static struct kobj_type slab_ktype = {
5631 	.sysfs_ops = &slab_sysfs_ops,
5632 	.release = kmem_cache_release,
5633 };
5634 
5635 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5636 {
5637 	struct kobj_type *ktype = get_ktype(kobj);
5638 
5639 	if (ktype == &slab_ktype)
5640 		return 1;
5641 	return 0;
5642 }
5643 
5644 static const struct kset_uevent_ops slab_uevent_ops = {
5645 	.filter = uevent_filter,
5646 };
5647 
5648 static struct kset *slab_kset;
5649 
5650 static inline struct kset *cache_kset(struct kmem_cache *s)
5651 {
5652 #ifdef CONFIG_MEMCG
5653 	if (!is_root_cache(s))
5654 		return s->memcg_params.root_cache->memcg_kset;
5655 #endif
5656 	return slab_kset;
5657 }
5658 
5659 #define ID_STR_LENGTH 64
5660 
5661 /* Create a unique string id for a slab cache:
5662  *
5663  * Format	:[flags-]size
5664  */
5665 static char *create_unique_id(struct kmem_cache *s)
5666 {
5667 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5668 	char *p = name;
5669 
5670 	BUG_ON(!name);
5671 
5672 	*p++ = ':';
5673 	/*
5674 	 * First flags affecting slabcache operations. We will only
5675 	 * get here for aliasable slabs so we do not need to support
5676 	 * too many flags. The flags here must cover all flags that
5677 	 * are matched during merging to guarantee that the id is
5678 	 * unique.
5679 	 */
5680 	if (s->flags & SLAB_CACHE_DMA)
5681 		*p++ = 'd';
5682 	if (s->flags & SLAB_CACHE_DMA32)
5683 		*p++ = 'D';
5684 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5685 		*p++ = 'a';
5686 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5687 		*p++ = 'F';
5688 	if (s->flags & SLAB_ACCOUNT)
5689 		*p++ = 'A';
5690 	if (p != name + 1)
5691 		*p++ = '-';
5692 	p += sprintf(p, "%07u", s->size);
5693 
5694 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5695 	return name;
5696 }
5697 
5698 static void sysfs_slab_remove_workfn(struct work_struct *work)
5699 {
5700 	struct kmem_cache *s =
5701 		container_of(work, struct kmem_cache, kobj_remove_work);
5702 
5703 	if (!s->kobj.state_in_sysfs)
5704 		/*
5705 		 * For a memcg cache, this may be called during
5706 		 * deactivation and again on shutdown.  Remove only once.
5707 		 * A cache is never shut down before deactivation is
5708 		 * complete, so no need to worry about synchronization.
5709 		 */
5710 		goto out;
5711 
5712 #ifdef CONFIG_MEMCG
5713 	kset_unregister(s->memcg_kset);
5714 #endif
5715 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5716 out:
5717 	kobject_put(&s->kobj);
5718 }
5719 
5720 static int sysfs_slab_add(struct kmem_cache *s)
5721 {
5722 	int err;
5723 	const char *name;
5724 	struct kset *kset = cache_kset(s);
5725 	int unmergeable = slab_unmergeable(s);
5726 
5727 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5728 
5729 	if (!kset) {
5730 		kobject_init(&s->kobj, &slab_ktype);
5731 		return 0;
5732 	}
5733 
5734 	if (!unmergeable && disable_higher_order_debug &&
5735 			(slub_debug & DEBUG_METADATA_FLAGS))
5736 		unmergeable = 1;
5737 
5738 	if (unmergeable) {
5739 		/*
5740 		 * Slabcache can never be merged so we can use the name proper.
5741 		 * This is typically the case for debug situations. In that
5742 		 * case we can catch duplicate names easily.
5743 		 */
5744 		sysfs_remove_link(&slab_kset->kobj, s->name);
5745 		name = s->name;
5746 	} else {
5747 		/*
5748 		 * Create a unique name for the slab as a target
5749 		 * for the symlinks.
5750 		 */
5751 		name = create_unique_id(s);
5752 	}
5753 
5754 	s->kobj.kset = kset;
5755 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5756 	if (err)
5757 		goto out;
5758 
5759 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5760 	if (err)
5761 		goto out_del_kobj;
5762 
5763 #ifdef CONFIG_MEMCG
5764 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5765 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5766 		if (!s->memcg_kset) {
5767 			err = -ENOMEM;
5768 			goto out_del_kobj;
5769 		}
5770 	}
5771 #endif
5772 
5773 	kobject_uevent(&s->kobj, KOBJ_ADD);
5774 	if (!unmergeable) {
5775 		/* Setup first alias */
5776 		sysfs_slab_alias(s, s->name);
5777 	}
5778 out:
5779 	if (!unmergeable)
5780 		kfree(name);
5781 	return err;
5782 out_del_kobj:
5783 	kobject_del(&s->kobj);
5784 	goto out;
5785 }
5786 
5787 static void sysfs_slab_remove(struct kmem_cache *s)
5788 {
5789 	if (slab_state < FULL)
5790 		/*
5791 		 * Sysfs has not been setup yet so no need to remove the
5792 		 * cache from sysfs.
5793 		 */
5794 		return;
5795 
5796 	kobject_get(&s->kobj);
5797 	schedule_work(&s->kobj_remove_work);
5798 }
5799 
5800 void sysfs_slab_unlink(struct kmem_cache *s)
5801 {
5802 	if (slab_state >= FULL)
5803 		kobject_del(&s->kobj);
5804 }
5805 
5806 void sysfs_slab_release(struct kmem_cache *s)
5807 {
5808 	if (slab_state >= FULL)
5809 		kobject_put(&s->kobj);
5810 }
5811 
5812 /*
5813  * Need to buffer aliases during bootup until sysfs becomes
5814  * available lest we lose that information.
5815  */
5816 struct saved_alias {
5817 	struct kmem_cache *s;
5818 	const char *name;
5819 	struct saved_alias *next;
5820 };
5821 
5822 static struct saved_alias *alias_list;
5823 
5824 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5825 {
5826 	struct saved_alias *al;
5827 
5828 	if (slab_state == FULL) {
5829 		/*
5830 		 * If we have a leftover link then remove it.
5831 		 */
5832 		sysfs_remove_link(&slab_kset->kobj, name);
5833 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5834 	}
5835 
5836 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5837 	if (!al)
5838 		return -ENOMEM;
5839 
5840 	al->s = s;
5841 	al->name = name;
5842 	al->next = alias_list;
5843 	alias_list = al;
5844 	return 0;
5845 }
5846 
5847 static int __init slab_sysfs_init(void)
5848 {
5849 	struct kmem_cache *s;
5850 	int err;
5851 
5852 	mutex_lock(&slab_mutex);
5853 
5854 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5855 	if (!slab_kset) {
5856 		mutex_unlock(&slab_mutex);
5857 		pr_err("Cannot register slab subsystem.\n");
5858 		return -ENOSYS;
5859 	}
5860 
5861 	slab_state = FULL;
5862 
5863 	list_for_each_entry(s, &slab_caches, list) {
5864 		err = sysfs_slab_add(s);
5865 		if (err)
5866 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5867 			       s->name);
5868 	}
5869 
5870 	while (alias_list) {
5871 		struct saved_alias *al = alias_list;
5872 
5873 		alias_list = alias_list->next;
5874 		err = sysfs_slab_alias(al->s, al->name);
5875 		if (err)
5876 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5877 			       al->name);
5878 		kfree(al);
5879 	}
5880 
5881 	mutex_unlock(&slab_mutex);
5882 	resiliency_test();
5883 	return 0;
5884 }
5885 
5886 __initcall(slab_sysfs_init);
5887 #endif /* CONFIG_SYSFS */
5888 
5889 /*
5890  * The /proc/slabinfo ABI
5891  */
5892 #ifdef CONFIG_SLUB_DEBUG
5893 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5894 {
5895 	unsigned long nr_slabs = 0;
5896 	unsigned long nr_objs = 0;
5897 	unsigned long nr_free = 0;
5898 	int node;
5899 	struct kmem_cache_node *n;
5900 
5901 	for_each_kmem_cache_node(s, node, n) {
5902 		nr_slabs += node_nr_slabs(n);
5903 		nr_objs += node_nr_objs(n);
5904 		nr_free += count_partial(n, count_free);
5905 	}
5906 
5907 	sinfo->active_objs = nr_objs - nr_free;
5908 	sinfo->num_objs = nr_objs;
5909 	sinfo->active_slabs = nr_slabs;
5910 	sinfo->num_slabs = nr_slabs;
5911 	sinfo->objects_per_slab = oo_objects(s->oo);
5912 	sinfo->cache_order = oo_order(s->oo);
5913 }
5914 
5915 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5916 {
5917 }
5918 
5919 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5920 		       size_t count, loff_t *ppos)
5921 {
5922 	return -EIO;
5923 }
5924 #endif /* CONFIG_SLUB_DEBUG */
5925