xref: /linux/mm/slub.c (revision 6fa4bf3dce0668a96faca0024e382f4489a9cc9b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * freeptr_t represents a SLUB freelist pointer, which might be encoded
470  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471  */
472 typedef struct { unsigned long v; } freeptr_t;
473 
474 /*
475  * Returns freelist pointer (ptr). With hardening, this is obfuscated
476  * with an XOR of the address where the pointer is held and a per-cache
477  * random number.
478  */
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 					    void *ptr, unsigned long ptr_addr)
481 {
482 	unsigned long encoded;
483 
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486 #else
487 	encoded = (unsigned long)ptr;
488 #endif
489 	return (freeptr_t){.v = encoded};
490 }
491 
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 					freeptr_t ptr, unsigned long ptr_addr)
494 {
495 	void *decoded;
496 
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499 #else
500 	decoded = (void *)ptr.v;
501 #endif
502 	return decoded;
503 }
504 
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
506 {
507 	unsigned long ptr_addr;
508 	freeptr_t p;
509 
510 	object = kasan_reset_tag(object);
511 	ptr_addr = (unsigned long)object + s->offset;
512 	p = *(freeptr_t *)(ptr_addr);
513 	return freelist_ptr_decode(s, p, ptr_addr);
514 }
515 
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518 {
519 	prefetchw(object + s->offset);
520 }
521 #endif
522 
523 /*
524  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525  * pointer value in the case the current thread loses the race for the next
526  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528  * KMSAN will still check all arguments of cmpxchg because of imperfect
529  * handling of inline assembly.
530  * To work around this problem, we apply __no_kmsan_checks to ensure that
531  * get_freepointer_safe() returns initialized memory.
532  */
533 __no_kmsan_checks
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535 {
536 	unsigned long freepointer_addr;
537 	freeptr_t p;
538 
539 	if (!debug_pagealloc_enabled_static())
540 		return get_freepointer(s, object);
541 
542 	object = kasan_reset_tag(object);
543 	freepointer_addr = (unsigned long)object + s->offset;
544 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 	return freelist_ptr_decode(s, p, freepointer_addr);
546 }
547 
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549 {
550 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
551 
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 	BUG_ON(object == fp); /* naive detection of double free or corruption */
554 #endif
555 
556 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558 }
559 
560 /*
561  * See comment in calculate_sizes().
562  */
563 static inline bool freeptr_outside_object(struct kmem_cache *s)
564 {
565 	return s->offset >= s->inuse;
566 }
567 
568 /*
569  * Return offset of the end of info block which is inuse + free pointer if
570  * not overlapping with object.
571  */
572 static inline unsigned int get_info_end(struct kmem_cache *s)
573 {
574 	if (freeptr_outside_object(s))
575 		return s->inuse + sizeof(void *);
576 	else
577 		return s->inuse;
578 }
579 
580 /* Loop over all objects in a slab */
581 #define for_each_object(__p, __s, __addr, __objects) \
582 	for (__p = fixup_red_left(__s, __addr); \
583 		__p < (__addr) + (__objects) * (__s)->size; \
584 		__p += (__s)->size)
585 
586 static inline unsigned int order_objects(unsigned int order, unsigned int size)
587 {
588 	return ((unsigned int)PAGE_SIZE << order) / size;
589 }
590 
591 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
592 		unsigned int size)
593 {
594 	struct kmem_cache_order_objects x = {
595 		(order << OO_SHIFT) + order_objects(order, size)
596 	};
597 
598 	return x;
599 }
600 
601 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
602 {
603 	return x.x >> OO_SHIFT;
604 }
605 
606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
607 {
608 	return x.x & OO_MASK;
609 }
610 
611 #ifdef CONFIG_SLUB_CPU_PARTIAL
612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613 {
614 	unsigned int nr_slabs;
615 
616 	s->cpu_partial = nr_objects;
617 
618 	/*
619 	 * We take the number of objects but actually limit the number of
620 	 * slabs on the per cpu partial list, in order to limit excessive
621 	 * growth of the list. For simplicity we assume that the slabs will
622 	 * be half-full.
623 	 */
624 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 	s->cpu_partial_slabs = nr_slabs;
626 }
627 
628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629 {
630 	return s->cpu_partial_slabs;
631 }
632 #else
633 static inline void
634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635 {
636 }
637 
638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639 {
640 	return 0;
641 }
642 #endif /* CONFIG_SLUB_CPU_PARTIAL */
643 
644 /*
645  * Per slab locking using the pagelock
646  */
647 static __always_inline void slab_lock(struct slab *slab)
648 {
649 	bit_spin_lock(PG_locked, &slab->__page_flags);
650 }
651 
652 static __always_inline void slab_unlock(struct slab *slab)
653 {
654 	bit_spin_unlock(PG_locked, &slab->__page_flags);
655 }
656 
657 static inline bool
658 __update_freelist_fast(struct slab *slab,
659 		      void *freelist_old, unsigned long counters_old,
660 		      void *freelist_new, unsigned long counters_new)
661 {
662 #ifdef system_has_freelist_aba
663 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
665 
666 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667 #else
668 	return false;
669 #endif
670 }
671 
672 static inline bool
673 __update_freelist_slow(struct slab *slab,
674 		      void *freelist_old, unsigned long counters_old,
675 		      void *freelist_new, unsigned long counters_new)
676 {
677 	bool ret = false;
678 
679 	slab_lock(slab);
680 	if (slab->freelist == freelist_old &&
681 	    slab->counters == counters_old) {
682 		slab->freelist = freelist_new;
683 		slab->counters = counters_new;
684 		ret = true;
685 	}
686 	slab_unlock(slab);
687 
688 	return ret;
689 }
690 
691 /*
692  * Interrupts must be disabled (for the fallback code to work right), typically
693  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695  * allocation/ free operation in hardirq context. Therefore nothing can
696  * interrupt the operation.
697  */
698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
699 		void *freelist_old, unsigned long counters_old,
700 		void *freelist_new, unsigned long counters_new,
701 		const char *n)
702 {
703 	bool ret;
704 
705 	if (USE_LOCKLESS_FAST_PATH())
706 		lockdep_assert_irqs_disabled();
707 
708 	if (s->flags & __CMPXCHG_DOUBLE) {
709 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 				            freelist_new, counters_new);
711 	} else {
712 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 				            freelist_new, counters_new);
714 	}
715 	if (likely(ret))
716 		return true;
717 
718 	cpu_relax();
719 	stat(s, CMPXCHG_DOUBLE_FAIL);
720 
721 #ifdef SLUB_DEBUG_CMPXCHG
722 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
723 #endif
724 
725 	return false;
726 }
727 
728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
729 		void *freelist_old, unsigned long counters_old,
730 		void *freelist_new, unsigned long counters_new,
731 		const char *n)
732 {
733 	bool ret;
734 
735 	if (s->flags & __CMPXCHG_DOUBLE) {
736 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 				            freelist_new, counters_new);
738 	} else {
739 		unsigned long flags;
740 
741 		local_irq_save(flags);
742 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 				            freelist_new, counters_new);
744 		local_irq_restore(flags);
745 	}
746 	if (likely(ret))
747 		return true;
748 
749 	cpu_relax();
750 	stat(s, CMPXCHG_DOUBLE_FAIL);
751 
752 #ifdef SLUB_DEBUG_CMPXCHG
753 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
754 #endif
755 
756 	return false;
757 }
758 
759 #ifdef CONFIG_SLUB_DEBUG
760 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
761 static DEFINE_SPINLOCK(object_map_lock);
762 
763 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
764 		       struct slab *slab)
765 {
766 	void *addr = slab_address(slab);
767 	void *p;
768 
769 	bitmap_zero(obj_map, slab->objects);
770 
771 	for (p = slab->freelist; p; p = get_freepointer(s, p))
772 		set_bit(__obj_to_index(s, addr, p), obj_map);
773 }
774 
775 #if IS_ENABLED(CONFIG_KUNIT)
776 static bool slab_add_kunit_errors(void)
777 {
778 	struct kunit_resource *resource;
779 
780 	if (!kunit_get_current_test())
781 		return false;
782 
783 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
784 	if (!resource)
785 		return false;
786 
787 	(*(int *)resource->data)++;
788 	kunit_put_resource(resource);
789 	return true;
790 }
791 #else
792 static inline bool slab_add_kunit_errors(void) { return false; }
793 #endif
794 
795 static inline unsigned int size_from_object(struct kmem_cache *s)
796 {
797 	if (s->flags & SLAB_RED_ZONE)
798 		return s->size - s->red_left_pad;
799 
800 	return s->size;
801 }
802 
803 static inline void *restore_red_left(struct kmem_cache *s, void *p)
804 {
805 	if (s->flags & SLAB_RED_ZONE)
806 		p -= s->red_left_pad;
807 
808 	return p;
809 }
810 
811 /*
812  * Debug settings:
813  */
814 #if defined(CONFIG_SLUB_DEBUG_ON)
815 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
816 #else
817 static slab_flags_t slub_debug;
818 #endif
819 
820 static char *slub_debug_string;
821 static int disable_higher_order_debug;
822 
823 /*
824  * slub is about to manipulate internal object metadata.  This memory lies
825  * outside the range of the allocated object, so accessing it would normally
826  * be reported by kasan as a bounds error.  metadata_access_enable() is used
827  * to tell kasan that these accesses are OK.
828  */
829 static inline void metadata_access_enable(void)
830 {
831 	kasan_disable_current();
832 }
833 
834 static inline void metadata_access_disable(void)
835 {
836 	kasan_enable_current();
837 }
838 
839 /*
840  * Object debugging
841  */
842 
843 /* Verify that a pointer has an address that is valid within a slab page */
844 static inline int check_valid_pointer(struct kmem_cache *s,
845 				struct slab *slab, void *object)
846 {
847 	void *base;
848 
849 	if (!object)
850 		return 1;
851 
852 	base = slab_address(slab);
853 	object = kasan_reset_tag(object);
854 	object = restore_red_left(s, object);
855 	if (object < base || object >= base + slab->objects * s->size ||
856 		(object - base) % s->size) {
857 		return 0;
858 	}
859 
860 	return 1;
861 }
862 
863 static void print_section(char *level, char *text, u8 *addr,
864 			  unsigned int length)
865 {
866 	metadata_access_enable();
867 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
868 			16, 1, kasan_reset_tag((void *)addr), length, 1);
869 	metadata_access_disable();
870 }
871 
872 static struct track *get_track(struct kmem_cache *s, void *object,
873 	enum track_item alloc)
874 {
875 	struct track *p;
876 
877 	p = object + get_info_end(s);
878 
879 	return kasan_reset_tag(p + alloc);
880 }
881 
882 #ifdef CONFIG_STACKDEPOT
883 static noinline depot_stack_handle_t set_track_prepare(void)
884 {
885 	depot_stack_handle_t handle;
886 	unsigned long entries[TRACK_ADDRS_COUNT];
887 	unsigned int nr_entries;
888 
889 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
890 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
891 
892 	return handle;
893 }
894 #else
895 static inline depot_stack_handle_t set_track_prepare(void)
896 {
897 	return 0;
898 }
899 #endif
900 
901 static void set_track_update(struct kmem_cache *s, void *object,
902 			     enum track_item alloc, unsigned long addr,
903 			     depot_stack_handle_t handle)
904 {
905 	struct track *p = get_track(s, object, alloc);
906 
907 #ifdef CONFIG_STACKDEPOT
908 	p->handle = handle;
909 #endif
910 	p->addr = addr;
911 	p->cpu = smp_processor_id();
912 	p->pid = current->pid;
913 	p->when = jiffies;
914 }
915 
916 static __always_inline void set_track(struct kmem_cache *s, void *object,
917 				      enum track_item alloc, unsigned long addr)
918 {
919 	depot_stack_handle_t handle = set_track_prepare();
920 
921 	set_track_update(s, object, alloc, addr, handle);
922 }
923 
924 static void init_tracking(struct kmem_cache *s, void *object)
925 {
926 	struct track *p;
927 
928 	if (!(s->flags & SLAB_STORE_USER))
929 		return;
930 
931 	p = get_track(s, object, TRACK_ALLOC);
932 	memset(p, 0, 2*sizeof(struct track));
933 }
934 
935 static void print_track(const char *s, struct track *t, unsigned long pr_time)
936 {
937 	depot_stack_handle_t handle __maybe_unused;
938 
939 	if (!t->addr)
940 		return;
941 
942 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
943 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
944 #ifdef CONFIG_STACKDEPOT
945 	handle = READ_ONCE(t->handle);
946 	if (handle)
947 		stack_depot_print(handle);
948 	else
949 		pr_err("object allocation/free stack trace missing\n");
950 #endif
951 }
952 
953 void print_tracking(struct kmem_cache *s, void *object)
954 {
955 	unsigned long pr_time = jiffies;
956 	if (!(s->flags & SLAB_STORE_USER))
957 		return;
958 
959 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
960 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
961 }
962 
963 static void print_slab_info(const struct slab *slab)
964 {
965 	struct folio *folio = (struct folio *)slab_folio(slab);
966 
967 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
968 	       slab, slab->objects, slab->inuse, slab->freelist,
969 	       folio_flags(folio, 0));
970 }
971 
972 /*
973  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
974  * family will round up the real request size to these fixed ones, so
975  * there could be an extra area than what is requested. Save the original
976  * request size in the meta data area, for better debug and sanity check.
977  */
978 static inline void set_orig_size(struct kmem_cache *s,
979 				void *object, unsigned int orig_size)
980 {
981 	void *p = kasan_reset_tag(object);
982 	unsigned int kasan_meta_size;
983 
984 	if (!slub_debug_orig_size(s))
985 		return;
986 
987 	/*
988 	 * KASAN can save its free meta data inside of the object at offset 0.
989 	 * If this meta data size is larger than 'orig_size', it will overlap
990 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
991 	 * 'orig_size' to be as at least as big as KASAN's meta data.
992 	 */
993 	kasan_meta_size = kasan_metadata_size(s, true);
994 	if (kasan_meta_size > orig_size)
995 		orig_size = kasan_meta_size;
996 
997 	p += get_info_end(s);
998 	p += sizeof(struct track) * 2;
999 
1000 	*(unsigned int *)p = orig_size;
1001 }
1002 
1003 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1004 {
1005 	void *p = kasan_reset_tag(object);
1006 
1007 	if (!slub_debug_orig_size(s))
1008 		return s->object_size;
1009 
1010 	p += get_info_end(s);
1011 	p += sizeof(struct track) * 2;
1012 
1013 	return *(unsigned int *)p;
1014 }
1015 
1016 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017 {
1018 	set_orig_size(s, (void *)object, s->object_size);
1019 }
1020 
1021 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1022 {
1023 	struct va_format vaf;
1024 	va_list args;
1025 
1026 	va_start(args, fmt);
1027 	vaf.fmt = fmt;
1028 	vaf.va = &args;
1029 	pr_err("=============================================================================\n");
1030 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1031 	pr_err("-----------------------------------------------------------------------------\n\n");
1032 	va_end(args);
1033 }
1034 
1035 __printf(2, 3)
1036 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1037 {
1038 	struct va_format vaf;
1039 	va_list args;
1040 
1041 	if (slab_add_kunit_errors())
1042 		return;
1043 
1044 	va_start(args, fmt);
1045 	vaf.fmt = fmt;
1046 	vaf.va = &args;
1047 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1048 	va_end(args);
1049 }
1050 
1051 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1052 {
1053 	unsigned int off;	/* Offset of last byte */
1054 	u8 *addr = slab_address(slab);
1055 
1056 	print_tracking(s, p);
1057 
1058 	print_slab_info(slab);
1059 
1060 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1061 	       p, p - addr, get_freepointer(s, p));
1062 
1063 	if (s->flags & SLAB_RED_ZONE)
1064 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1065 			      s->red_left_pad);
1066 	else if (p > addr + 16)
1067 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1068 
1069 	print_section(KERN_ERR,         "Object   ", p,
1070 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1071 	if (s->flags & SLAB_RED_ZONE)
1072 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1073 			s->inuse - s->object_size);
1074 
1075 	off = get_info_end(s);
1076 
1077 	if (s->flags & SLAB_STORE_USER)
1078 		off += 2 * sizeof(struct track);
1079 
1080 	if (slub_debug_orig_size(s))
1081 		off += sizeof(unsigned int);
1082 
1083 	off += kasan_metadata_size(s, false);
1084 
1085 	if (off != size_from_object(s))
1086 		/* Beginning of the filler is the free pointer */
1087 		print_section(KERN_ERR, "Padding  ", p + off,
1088 			      size_from_object(s) - off);
1089 
1090 	dump_stack();
1091 }
1092 
1093 static void object_err(struct kmem_cache *s, struct slab *slab,
1094 			u8 *object, char *reason)
1095 {
1096 	if (slab_add_kunit_errors())
1097 		return;
1098 
1099 	slab_bug(s, "%s", reason);
1100 	print_trailer(s, slab, object);
1101 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1102 }
1103 
1104 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1105 			       void **freelist, void *nextfree)
1106 {
1107 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1108 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1109 		object_err(s, slab, *freelist, "Freechain corrupt");
1110 		*freelist = NULL;
1111 		slab_fix(s, "Isolate corrupted freechain");
1112 		return true;
1113 	}
1114 
1115 	return false;
1116 }
1117 
1118 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1119 			const char *fmt, ...)
1120 {
1121 	va_list args;
1122 	char buf[100];
1123 
1124 	if (slab_add_kunit_errors())
1125 		return;
1126 
1127 	va_start(args, fmt);
1128 	vsnprintf(buf, sizeof(buf), fmt, args);
1129 	va_end(args);
1130 	slab_bug(s, "%s", buf);
1131 	print_slab_info(slab);
1132 	dump_stack();
1133 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1134 }
1135 
1136 static void init_object(struct kmem_cache *s, void *object, u8 val)
1137 {
1138 	u8 *p = kasan_reset_tag(object);
1139 	unsigned int poison_size = s->object_size;
1140 
1141 	if (s->flags & SLAB_RED_ZONE) {
1142 		memset(p - s->red_left_pad, val, s->red_left_pad);
1143 
1144 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1145 			/*
1146 			 * Redzone the extra allocated space by kmalloc than
1147 			 * requested, and the poison size will be limited to
1148 			 * the original request size accordingly.
1149 			 */
1150 			poison_size = get_orig_size(s, object);
1151 		}
1152 	}
1153 
1154 	if (s->flags & __OBJECT_POISON) {
1155 		memset(p, POISON_FREE, poison_size - 1);
1156 		p[poison_size - 1] = POISON_END;
1157 	}
1158 
1159 	if (s->flags & SLAB_RED_ZONE)
1160 		memset(p + poison_size, val, s->inuse - poison_size);
1161 }
1162 
1163 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1164 						void *from, void *to)
1165 {
1166 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1167 	memset(from, data, to - from);
1168 }
1169 
1170 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1171 			u8 *object, char *what,
1172 			u8 *start, unsigned int value, unsigned int bytes)
1173 {
1174 	u8 *fault;
1175 	u8 *end;
1176 	u8 *addr = slab_address(slab);
1177 
1178 	metadata_access_enable();
1179 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1180 	metadata_access_disable();
1181 	if (!fault)
1182 		return 1;
1183 
1184 	end = start + bytes;
1185 	while (end > fault && end[-1] == value)
1186 		end--;
1187 
1188 	if (slab_add_kunit_errors())
1189 		goto skip_bug_print;
1190 
1191 	slab_bug(s, "%s overwritten", what);
1192 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1193 					fault, end - 1, fault - addr,
1194 					fault[0], value);
1195 	print_trailer(s, slab, object);
1196 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1197 
1198 skip_bug_print:
1199 	restore_bytes(s, what, value, fault, end);
1200 	return 0;
1201 }
1202 
1203 /*
1204  * Object layout:
1205  *
1206  * object address
1207  * 	Bytes of the object to be managed.
1208  * 	If the freepointer may overlay the object then the free
1209  *	pointer is at the middle of the object.
1210  *
1211  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1212  * 	0xa5 (POISON_END)
1213  *
1214  * object + s->object_size
1215  * 	Padding to reach word boundary. This is also used for Redzoning.
1216  * 	Padding is extended by another word if Redzoning is enabled and
1217  * 	object_size == inuse.
1218  *
1219  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1220  * 	0xcc (RED_ACTIVE) for objects in use.
1221  *
1222  * object + s->inuse
1223  * 	Meta data starts here.
1224  *
1225  * 	A. Free pointer (if we cannot overwrite object on free)
1226  * 	B. Tracking data for SLAB_STORE_USER
1227  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1228  *	D. Padding to reach required alignment boundary or at minimum
1229  * 		one word if debugging is on to be able to detect writes
1230  * 		before the word boundary.
1231  *
1232  *	Padding is done using 0x5a (POISON_INUSE)
1233  *
1234  * object + s->size
1235  * 	Nothing is used beyond s->size.
1236  *
1237  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1238  * ignored. And therefore no slab options that rely on these boundaries
1239  * may be used with merged slabcaches.
1240  */
1241 
1242 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1243 {
1244 	unsigned long off = get_info_end(s);	/* The end of info */
1245 
1246 	if (s->flags & SLAB_STORE_USER) {
1247 		/* We also have user information there */
1248 		off += 2 * sizeof(struct track);
1249 
1250 		if (s->flags & SLAB_KMALLOC)
1251 			off += sizeof(unsigned int);
1252 	}
1253 
1254 	off += kasan_metadata_size(s, false);
1255 
1256 	if (size_from_object(s) == off)
1257 		return 1;
1258 
1259 	return check_bytes_and_report(s, slab, p, "Object padding",
1260 			p + off, POISON_INUSE, size_from_object(s) - off);
1261 }
1262 
1263 /* Check the pad bytes at the end of a slab page */
1264 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1265 {
1266 	u8 *start;
1267 	u8 *fault;
1268 	u8 *end;
1269 	u8 *pad;
1270 	int length;
1271 	int remainder;
1272 
1273 	if (!(s->flags & SLAB_POISON))
1274 		return;
1275 
1276 	start = slab_address(slab);
1277 	length = slab_size(slab);
1278 	end = start + length;
1279 	remainder = length % s->size;
1280 	if (!remainder)
1281 		return;
1282 
1283 	pad = end - remainder;
1284 	metadata_access_enable();
1285 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1286 	metadata_access_disable();
1287 	if (!fault)
1288 		return;
1289 	while (end > fault && end[-1] == POISON_INUSE)
1290 		end--;
1291 
1292 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1293 			fault, end - 1, fault - start);
1294 	print_section(KERN_ERR, "Padding ", pad, remainder);
1295 
1296 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1297 }
1298 
1299 static int check_object(struct kmem_cache *s, struct slab *slab,
1300 					void *object, u8 val)
1301 {
1302 	u8 *p = object;
1303 	u8 *endobject = object + s->object_size;
1304 	unsigned int orig_size, kasan_meta_size;
1305 
1306 	if (s->flags & SLAB_RED_ZONE) {
1307 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1308 			object - s->red_left_pad, val, s->red_left_pad))
1309 			return 0;
1310 
1311 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1312 			endobject, val, s->inuse - s->object_size))
1313 			return 0;
1314 
1315 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1316 			orig_size = get_orig_size(s, object);
1317 
1318 			if (s->object_size > orig_size  &&
1319 				!check_bytes_and_report(s, slab, object,
1320 					"kmalloc Redzone", p + orig_size,
1321 					val, s->object_size - orig_size)) {
1322 				return 0;
1323 			}
1324 		}
1325 	} else {
1326 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1327 			check_bytes_and_report(s, slab, p, "Alignment padding",
1328 				endobject, POISON_INUSE,
1329 				s->inuse - s->object_size);
1330 		}
1331 	}
1332 
1333 	if (s->flags & SLAB_POISON) {
1334 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1335 			/*
1336 			 * KASAN can save its free meta data inside of the
1337 			 * object at offset 0. Thus, skip checking the part of
1338 			 * the redzone that overlaps with the meta data.
1339 			 */
1340 			kasan_meta_size = kasan_metadata_size(s, true);
1341 			if (kasan_meta_size < s->object_size - 1 &&
1342 			    !check_bytes_and_report(s, slab, p, "Poison",
1343 					p + kasan_meta_size, POISON_FREE,
1344 					s->object_size - kasan_meta_size - 1))
1345 				return 0;
1346 			if (kasan_meta_size < s->object_size &&
1347 			    !check_bytes_and_report(s, slab, p, "End Poison",
1348 					p + s->object_size - 1, POISON_END, 1))
1349 				return 0;
1350 		}
1351 		/*
1352 		 * check_pad_bytes cleans up on its own.
1353 		 */
1354 		check_pad_bytes(s, slab, p);
1355 	}
1356 
1357 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1358 		/*
1359 		 * Object and freepointer overlap. Cannot check
1360 		 * freepointer while object is allocated.
1361 		 */
1362 		return 1;
1363 
1364 	/* Check free pointer validity */
1365 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1366 		object_err(s, slab, p, "Freepointer corrupt");
1367 		/*
1368 		 * No choice but to zap it and thus lose the remainder
1369 		 * of the free objects in this slab. May cause
1370 		 * another error because the object count is now wrong.
1371 		 */
1372 		set_freepointer(s, p, NULL);
1373 		return 0;
1374 	}
1375 	return 1;
1376 }
1377 
1378 static int check_slab(struct kmem_cache *s, struct slab *slab)
1379 {
1380 	int maxobj;
1381 
1382 	if (!folio_test_slab(slab_folio(slab))) {
1383 		slab_err(s, slab, "Not a valid slab page");
1384 		return 0;
1385 	}
1386 
1387 	maxobj = order_objects(slab_order(slab), s->size);
1388 	if (slab->objects > maxobj) {
1389 		slab_err(s, slab, "objects %u > max %u",
1390 			slab->objects, maxobj);
1391 		return 0;
1392 	}
1393 	if (slab->inuse > slab->objects) {
1394 		slab_err(s, slab, "inuse %u > max %u",
1395 			slab->inuse, slab->objects);
1396 		return 0;
1397 	}
1398 	/* Slab_pad_check fixes things up after itself */
1399 	slab_pad_check(s, slab);
1400 	return 1;
1401 }
1402 
1403 /*
1404  * Determine if a certain object in a slab is on the freelist. Must hold the
1405  * slab lock to guarantee that the chains are in a consistent state.
1406  */
1407 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1408 {
1409 	int nr = 0;
1410 	void *fp;
1411 	void *object = NULL;
1412 	int max_objects;
1413 
1414 	fp = slab->freelist;
1415 	while (fp && nr <= slab->objects) {
1416 		if (fp == search)
1417 			return 1;
1418 		if (!check_valid_pointer(s, slab, fp)) {
1419 			if (object) {
1420 				object_err(s, slab, object,
1421 					"Freechain corrupt");
1422 				set_freepointer(s, object, NULL);
1423 			} else {
1424 				slab_err(s, slab, "Freepointer corrupt");
1425 				slab->freelist = NULL;
1426 				slab->inuse = slab->objects;
1427 				slab_fix(s, "Freelist cleared");
1428 				return 0;
1429 			}
1430 			break;
1431 		}
1432 		object = fp;
1433 		fp = get_freepointer(s, object);
1434 		nr++;
1435 	}
1436 
1437 	max_objects = order_objects(slab_order(slab), s->size);
1438 	if (max_objects > MAX_OBJS_PER_PAGE)
1439 		max_objects = MAX_OBJS_PER_PAGE;
1440 
1441 	if (slab->objects != max_objects) {
1442 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1443 			 slab->objects, max_objects);
1444 		slab->objects = max_objects;
1445 		slab_fix(s, "Number of objects adjusted");
1446 	}
1447 	if (slab->inuse != slab->objects - nr) {
1448 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1449 			 slab->inuse, slab->objects - nr);
1450 		slab->inuse = slab->objects - nr;
1451 		slab_fix(s, "Object count adjusted");
1452 	}
1453 	return search == NULL;
1454 }
1455 
1456 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1457 								int alloc)
1458 {
1459 	if (s->flags & SLAB_TRACE) {
1460 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1461 			s->name,
1462 			alloc ? "alloc" : "free",
1463 			object, slab->inuse,
1464 			slab->freelist);
1465 
1466 		if (!alloc)
1467 			print_section(KERN_INFO, "Object ", (void *)object,
1468 					s->object_size);
1469 
1470 		dump_stack();
1471 	}
1472 }
1473 
1474 /*
1475  * Tracking of fully allocated slabs for debugging purposes.
1476  */
1477 static void add_full(struct kmem_cache *s,
1478 	struct kmem_cache_node *n, struct slab *slab)
1479 {
1480 	if (!(s->flags & SLAB_STORE_USER))
1481 		return;
1482 
1483 	lockdep_assert_held(&n->list_lock);
1484 	list_add(&slab->slab_list, &n->full);
1485 }
1486 
1487 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1488 {
1489 	if (!(s->flags & SLAB_STORE_USER))
1490 		return;
1491 
1492 	lockdep_assert_held(&n->list_lock);
1493 	list_del(&slab->slab_list);
1494 }
1495 
1496 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1497 {
1498 	return atomic_long_read(&n->nr_slabs);
1499 }
1500 
1501 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1502 {
1503 	struct kmem_cache_node *n = get_node(s, node);
1504 
1505 	atomic_long_inc(&n->nr_slabs);
1506 	atomic_long_add(objects, &n->total_objects);
1507 }
1508 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1509 {
1510 	struct kmem_cache_node *n = get_node(s, node);
1511 
1512 	atomic_long_dec(&n->nr_slabs);
1513 	atomic_long_sub(objects, &n->total_objects);
1514 }
1515 
1516 /* Object debug checks for alloc/free paths */
1517 static void setup_object_debug(struct kmem_cache *s, void *object)
1518 {
1519 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1520 		return;
1521 
1522 	init_object(s, object, SLUB_RED_INACTIVE);
1523 	init_tracking(s, object);
1524 }
1525 
1526 static
1527 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1528 {
1529 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1530 		return;
1531 
1532 	metadata_access_enable();
1533 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1534 	metadata_access_disable();
1535 }
1536 
1537 static inline int alloc_consistency_checks(struct kmem_cache *s,
1538 					struct slab *slab, void *object)
1539 {
1540 	if (!check_slab(s, slab))
1541 		return 0;
1542 
1543 	if (!check_valid_pointer(s, slab, object)) {
1544 		object_err(s, slab, object, "Freelist Pointer check fails");
1545 		return 0;
1546 	}
1547 
1548 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1549 		return 0;
1550 
1551 	return 1;
1552 }
1553 
1554 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1555 			struct slab *slab, void *object, int orig_size)
1556 {
1557 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1558 		if (!alloc_consistency_checks(s, slab, object))
1559 			goto bad;
1560 	}
1561 
1562 	/* Success. Perform special debug activities for allocs */
1563 	trace(s, slab, object, 1);
1564 	set_orig_size(s, object, orig_size);
1565 	init_object(s, object, SLUB_RED_ACTIVE);
1566 	return true;
1567 
1568 bad:
1569 	if (folio_test_slab(slab_folio(slab))) {
1570 		/*
1571 		 * If this is a slab page then lets do the best we can
1572 		 * to avoid issues in the future. Marking all objects
1573 		 * as used avoids touching the remaining objects.
1574 		 */
1575 		slab_fix(s, "Marking all objects used");
1576 		slab->inuse = slab->objects;
1577 		slab->freelist = NULL;
1578 	}
1579 	return false;
1580 }
1581 
1582 static inline int free_consistency_checks(struct kmem_cache *s,
1583 		struct slab *slab, void *object, unsigned long addr)
1584 {
1585 	if (!check_valid_pointer(s, slab, object)) {
1586 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1587 		return 0;
1588 	}
1589 
1590 	if (on_freelist(s, slab, object)) {
1591 		object_err(s, slab, object, "Object already free");
1592 		return 0;
1593 	}
1594 
1595 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1596 		return 0;
1597 
1598 	if (unlikely(s != slab->slab_cache)) {
1599 		if (!folio_test_slab(slab_folio(slab))) {
1600 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1601 				 object);
1602 		} else if (!slab->slab_cache) {
1603 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1604 			       object);
1605 			dump_stack();
1606 		} else
1607 			object_err(s, slab, object,
1608 					"page slab pointer corrupt.");
1609 		return 0;
1610 	}
1611 	return 1;
1612 }
1613 
1614 /*
1615  * Parse a block of slab_debug options. Blocks are delimited by ';'
1616  *
1617  * @str:    start of block
1618  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1619  * @slabs:  return start of list of slabs, or NULL when there's no list
1620  * @init:   assume this is initial parsing and not per-kmem-create parsing
1621  *
1622  * returns the start of next block if there's any, or NULL
1623  */
1624 static char *
1625 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1626 {
1627 	bool higher_order_disable = false;
1628 
1629 	/* Skip any completely empty blocks */
1630 	while (*str && *str == ';')
1631 		str++;
1632 
1633 	if (*str == ',') {
1634 		/*
1635 		 * No options but restriction on slabs. This means full
1636 		 * debugging for slabs matching a pattern.
1637 		 */
1638 		*flags = DEBUG_DEFAULT_FLAGS;
1639 		goto check_slabs;
1640 	}
1641 	*flags = 0;
1642 
1643 	/* Determine which debug features should be switched on */
1644 	for (; *str && *str != ',' && *str != ';'; str++) {
1645 		switch (tolower(*str)) {
1646 		case '-':
1647 			*flags = 0;
1648 			break;
1649 		case 'f':
1650 			*flags |= SLAB_CONSISTENCY_CHECKS;
1651 			break;
1652 		case 'z':
1653 			*flags |= SLAB_RED_ZONE;
1654 			break;
1655 		case 'p':
1656 			*flags |= SLAB_POISON;
1657 			break;
1658 		case 'u':
1659 			*flags |= SLAB_STORE_USER;
1660 			break;
1661 		case 't':
1662 			*flags |= SLAB_TRACE;
1663 			break;
1664 		case 'a':
1665 			*flags |= SLAB_FAILSLAB;
1666 			break;
1667 		case 'o':
1668 			/*
1669 			 * Avoid enabling debugging on caches if its minimum
1670 			 * order would increase as a result.
1671 			 */
1672 			higher_order_disable = true;
1673 			break;
1674 		default:
1675 			if (init)
1676 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1677 		}
1678 	}
1679 check_slabs:
1680 	if (*str == ',')
1681 		*slabs = ++str;
1682 	else
1683 		*slabs = NULL;
1684 
1685 	/* Skip over the slab list */
1686 	while (*str && *str != ';')
1687 		str++;
1688 
1689 	/* Skip any completely empty blocks */
1690 	while (*str && *str == ';')
1691 		str++;
1692 
1693 	if (init && higher_order_disable)
1694 		disable_higher_order_debug = 1;
1695 
1696 	if (*str)
1697 		return str;
1698 	else
1699 		return NULL;
1700 }
1701 
1702 static int __init setup_slub_debug(char *str)
1703 {
1704 	slab_flags_t flags;
1705 	slab_flags_t global_flags;
1706 	char *saved_str;
1707 	char *slab_list;
1708 	bool global_slub_debug_changed = false;
1709 	bool slab_list_specified = false;
1710 
1711 	global_flags = DEBUG_DEFAULT_FLAGS;
1712 	if (*str++ != '=' || !*str)
1713 		/*
1714 		 * No options specified. Switch on full debugging.
1715 		 */
1716 		goto out;
1717 
1718 	saved_str = str;
1719 	while (str) {
1720 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1721 
1722 		if (!slab_list) {
1723 			global_flags = flags;
1724 			global_slub_debug_changed = true;
1725 		} else {
1726 			slab_list_specified = true;
1727 			if (flags & SLAB_STORE_USER)
1728 				stack_depot_request_early_init();
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * For backwards compatibility, a single list of flags with list of
1734 	 * slabs means debugging is only changed for those slabs, so the global
1735 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1736 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1737 	 * long as there is no option specifying flags without a slab list.
1738 	 */
1739 	if (slab_list_specified) {
1740 		if (!global_slub_debug_changed)
1741 			global_flags = slub_debug;
1742 		slub_debug_string = saved_str;
1743 	}
1744 out:
1745 	slub_debug = global_flags;
1746 	if (slub_debug & SLAB_STORE_USER)
1747 		stack_depot_request_early_init();
1748 	if (slub_debug != 0 || slub_debug_string)
1749 		static_branch_enable(&slub_debug_enabled);
1750 	else
1751 		static_branch_disable(&slub_debug_enabled);
1752 	if ((static_branch_unlikely(&init_on_alloc) ||
1753 	     static_branch_unlikely(&init_on_free)) &&
1754 	    (slub_debug & SLAB_POISON))
1755 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1756 	return 1;
1757 }
1758 
1759 __setup("slab_debug", setup_slub_debug);
1760 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1761 
1762 /*
1763  * kmem_cache_flags - apply debugging options to the cache
1764  * @flags:		flags to set
1765  * @name:		name of the cache
1766  *
1767  * Debug option(s) are applied to @flags. In addition to the debug
1768  * option(s), if a slab name (or multiple) is specified i.e.
1769  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1770  * then only the select slabs will receive the debug option(s).
1771  */
1772 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1773 {
1774 	char *iter;
1775 	size_t len;
1776 	char *next_block;
1777 	slab_flags_t block_flags;
1778 	slab_flags_t slub_debug_local = slub_debug;
1779 
1780 	if (flags & SLAB_NO_USER_FLAGS)
1781 		return flags;
1782 
1783 	/*
1784 	 * If the slab cache is for debugging (e.g. kmemleak) then
1785 	 * don't store user (stack trace) information by default,
1786 	 * but let the user enable it via the command line below.
1787 	 */
1788 	if (flags & SLAB_NOLEAKTRACE)
1789 		slub_debug_local &= ~SLAB_STORE_USER;
1790 
1791 	len = strlen(name);
1792 	next_block = slub_debug_string;
1793 	/* Go through all blocks of debug options, see if any matches our slab's name */
1794 	while (next_block) {
1795 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1796 		if (!iter)
1797 			continue;
1798 		/* Found a block that has a slab list, search it */
1799 		while (*iter) {
1800 			char *end, *glob;
1801 			size_t cmplen;
1802 
1803 			end = strchrnul(iter, ',');
1804 			if (next_block && next_block < end)
1805 				end = next_block - 1;
1806 
1807 			glob = strnchr(iter, end - iter, '*');
1808 			if (glob)
1809 				cmplen = glob - iter;
1810 			else
1811 				cmplen = max_t(size_t, len, (end - iter));
1812 
1813 			if (!strncmp(name, iter, cmplen)) {
1814 				flags |= block_flags;
1815 				return flags;
1816 			}
1817 
1818 			if (!*end || *end == ';')
1819 				break;
1820 			iter = end + 1;
1821 		}
1822 	}
1823 
1824 	return flags | slub_debug_local;
1825 }
1826 #else /* !CONFIG_SLUB_DEBUG */
1827 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1828 static inline
1829 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1830 
1831 static inline bool alloc_debug_processing(struct kmem_cache *s,
1832 	struct slab *slab, void *object, int orig_size) { return true; }
1833 
1834 static inline bool free_debug_processing(struct kmem_cache *s,
1835 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1836 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1837 
1838 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1839 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1840 			void *object, u8 val) { return 1; }
1841 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1842 static inline void set_track(struct kmem_cache *s, void *object,
1843 			     enum track_item alloc, unsigned long addr) {}
1844 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1845 					struct slab *slab) {}
1846 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1847 					struct slab *slab) {}
1848 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1849 {
1850 	return flags;
1851 }
1852 #define slub_debug 0
1853 
1854 #define disable_higher_order_debug 0
1855 
1856 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1857 							{ return 0; }
1858 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1859 							int objects) {}
1860 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1861 							int objects) {}
1862 
1863 #ifndef CONFIG_SLUB_TINY
1864 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1865 			       void **freelist, void *nextfree)
1866 {
1867 	return false;
1868 }
1869 #endif
1870 #endif /* CONFIG_SLUB_DEBUG */
1871 
1872 #ifdef CONFIG_SLAB_OBJ_EXT
1873 
1874 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1875 
1876 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1877 {
1878 	struct slabobj_ext *slab_exts;
1879 	struct slab *obj_exts_slab;
1880 
1881 	obj_exts_slab = virt_to_slab(obj_exts);
1882 	slab_exts = slab_obj_exts(obj_exts_slab);
1883 	if (slab_exts) {
1884 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1885 						 obj_exts_slab, obj_exts);
1886 		/* codetag should be NULL */
1887 		WARN_ON(slab_exts[offs].ref.ct);
1888 		set_codetag_empty(&slab_exts[offs].ref);
1889 	}
1890 }
1891 
1892 static inline void mark_failed_objexts_alloc(struct slab *slab)
1893 {
1894 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1895 }
1896 
1897 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1898 			struct slabobj_ext *vec, unsigned int objects)
1899 {
1900 	/*
1901 	 * If vector previously failed to allocate then we have live
1902 	 * objects with no tag reference. Mark all references in this
1903 	 * vector as empty to avoid warnings later on.
1904 	 */
1905 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1906 		unsigned int i;
1907 
1908 		for (i = 0; i < objects; i++)
1909 			set_codetag_empty(&vec[i].ref);
1910 	}
1911 }
1912 
1913 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1914 
1915 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1916 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1917 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1918 			struct slabobj_ext *vec, unsigned int objects) {}
1919 
1920 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1921 
1922 /*
1923  * The allocated objcg pointers array is not accounted directly.
1924  * Moreover, it should not come from DMA buffer and is not readily
1925  * reclaimable. So those GFP bits should be masked off.
1926  */
1927 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1928 				__GFP_ACCOUNT | __GFP_NOFAIL)
1929 
1930 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1931 		        gfp_t gfp, bool new_slab)
1932 {
1933 	unsigned int objects = objs_per_slab(s, slab);
1934 	unsigned long new_exts;
1935 	unsigned long old_exts;
1936 	struct slabobj_ext *vec;
1937 
1938 	gfp &= ~OBJCGS_CLEAR_MASK;
1939 	/* Prevent recursive extension vector allocation */
1940 	gfp |= __GFP_NO_OBJ_EXT;
1941 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1942 			   slab_nid(slab));
1943 	if (!vec) {
1944 		/* Mark vectors which failed to allocate */
1945 		if (new_slab)
1946 			mark_failed_objexts_alloc(slab);
1947 
1948 		return -ENOMEM;
1949 	}
1950 
1951 	new_exts = (unsigned long)vec;
1952 #ifdef CONFIG_MEMCG
1953 	new_exts |= MEMCG_DATA_OBJEXTS;
1954 #endif
1955 	old_exts = READ_ONCE(slab->obj_exts);
1956 	handle_failed_objexts_alloc(old_exts, vec, objects);
1957 	if (new_slab) {
1958 		/*
1959 		 * If the slab is brand new and nobody can yet access its
1960 		 * obj_exts, no synchronization is required and obj_exts can
1961 		 * be simply assigned.
1962 		 */
1963 		slab->obj_exts = new_exts;
1964 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1965 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1966 		/*
1967 		 * If the slab is already in use, somebody can allocate and
1968 		 * assign slabobj_exts in parallel. In this case the existing
1969 		 * objcg vector should be reused.
1970 		 */
1971 		mark_objexts_empty(vec);
1972 		kfree(vec);
1973 		return 0;
1974 	}
1975 
1976 	kmemleak_not_leak(vec);
1977 	return 0;
1978 }
1979 
1980 static inline void free_slab_obj_exts(struct slab *slab)
1981 {
1982 	struct slabobj_ext *obj_exts;
1983 
1984 	obj_exts = slab_obj_exts(slab);
1985 	if (!obj_exts)
1986 		return;
1987 
1988 	/*
1989 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
1990 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
1991 	 * warning if slab has extensions but the extension of an object is
1992 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
1993 	 * the extension for obj_exts is expected to be NULL.
1994 	 */
1995 	mark_objexts_empty(obj_exts);
1996 	kfree(obj_exts);
1997 	slab->obj_exts = 0;
1998 }
1999 
2000 static inline bool need_slab_obj_ext(void)
2001 {
2002 	if (mem_alloc_profiling_enabled())
2003 		return true;
2004 
2005 	/*
2006 	 * CONFIG_MEMCG_KMEM creates vector of obj_cgroup objects conditionally
2007 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2008 	 */
2009 	return false;
2010 }
2011 
2012 static inline struct slabobj_ext *
2013 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2014 {
2015 	struct slab *slab;
2016 
2017 	if (!p)
2018 		return NULL;
2019 
2020 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2021 		return NULL;
2022 
2023 	if (flags & __GFP_NO_OBJ_EXT)
2024 		return NULL;
2025 
2026 	slab = virt_to_slab(p);
2027 	if (!slab_obj_exts(slab) &&
2028 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2029 		 "%s, %s: Failed to create slab extension vector!\n",
2030 		 __func__, s->name))
2031 		return NULL;
2032 
2033 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2034 }
2035 
2036 static inline void
2037 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2038 			     int objects)
2039 {
2040 #ifdef CONFIG_MEM_ALLOC_PROFILING
2041 	struct slabobj_ext *obj_exts;
2042 	int i;
2043 
2044 	if (!mem_alloc_profiling_enabled())
2045 		return;
2046 
2047 	obj_exts = slab_obj_exts(slab);
2048 	if (!obj_exts)
2049 		return;
2050 
2051 	for (i = 0; i < objects; i++) {
2052 		unsigned int off = obj_to_index(s, slab, p[i]);
2053 
2054 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2055 	}
2056 #endif
2057 }
2058 
2059 #else /* CONFIG_SLAB_OBJ_EXT */
2060 
2061 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2062 			       gfp_t gfp, bool new_slab)
2063 {
2064 	return 0;
2065 }
2066 
2067 static inline void free_slab_obj_exts(struct slab *slab)
2068 {
2069 }
2070 
2071 static inline bool need_slab_obj_ext(void)
2072 {
2073 	return false;
2074 }
2075 
2076 static inline struct slabobj_ext *
2077 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2078 {
2079 	return NULL;
2080 }
2081 
2082 static inline void
2083 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2084 			     int objects)
2085 {
2086 }
2087 
2088 #endif /* CONFIG_SLAB_OBJ_EXT */
2089 
2090 #ifdef CONFIG_MEMCG_KMEM
2091 
2092 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2093 
2094 static __fastpath_inline
2095 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2096 				gfp_t flags, size_t size, void **p)
2097 {
2098 	if (likely(!memcg_kmem_online()))
2099 		return true;
2100 
2101 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2102 		return true;
2103 
2104 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2105 		return true;
2106 
2107 	if (likely(size == 1)) {
2108 		memcg_alloc_abort_single(s, *p);
2109 		*p = NULL;
2110 	} else {
2111 		kmem_cache_free_bulk(s, size, p);
2112 	}
2113 
2114 	return false;
2115 }
2116 
2117 static __fastpath_inline
2118 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2119 			  int objects)
2120 {
2121 	struct slabobj_ext *obj_exts;
2122 
2123 	if (!memcg_kmem_online())
2124 		return;
2125 
2126 	obj_exts = slab_obj_exts(slab);
2127 	if (likely(!obj_exts))
2128 		return;
2129 
2130 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2131 }
2132 #else /* CONFIG_MEMCG_KMEM */
2133 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2134 					      struct list_lru *lru,
2135 					      gfp_t flags, size_t size,
2136 					      void **p)
2137 {
2138 	return true;
2139 }
2140 
2141 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2142 					void **p, int objects)
2143 {
2144 }
2145 #endif /* CONFIG_MEMCG_KMEM */
2146 
2147 /*
2148  * Hooks for other subsystems that check memory allocations. In a typical
2149  * production configuration these hooks all should produce no code at all.
2150  *
2151  * Returns true if freeing of the object can proceed, false if its reuse
2152  * was delayed by KASAN quarantine, or it was returned to KFENCE.
2153  */
2154 static __always_inline
2155 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2156 {
2157 	kmemleak_free_recursive(x, s->flags);
2158 	kmsan_slab_free(s, x);
2159 
2160 	debug_check_no_locks_freed(x, s->object_size);
2161 
2162 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2163 		debug_check_no_obj_freed(x, s->object_size);
2164 
2165 	/* Use KCSAN to help debug racy use-after-free. */
2166 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2167 		__kcsan_check_access(x, s->object_size,
2168 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2169 
2170 	if (kfence_free(x))
2171 		return false;
2172 
2173 	/*
2174 	 * As memory initialization might be integrated into KASAN,
2175 	 * kasan_slab_free and initialization memset's must be
2176 	 * kept together to avoid discrepancies in behavior.
2177 	 *
2178 	 * The initialization memset's clear the object and the metadata,
2179 	 * but don't touch the SLAB redzone.
2180 	 *
2181 	 * The object's freepointer is also avoided if stored outside the
2182 	 * object.
2183 	 */
2184 	if (unlikely(init)) {
2185 		int rsize;
2186 		unsigned int inuse;
2187 
2188 		inuse = get_info_end(s);
2189 		if (!kasan_has_integrated_init())
2190 			memset(kasan_reset_tag(x), 0, s->object_size);
2191 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2192 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2193 		       s->size - inuse - rsize);
2194 	}
2195 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2196 	return !kasan_slab_free(s, x, init);
2197 }
2198 
2199 static __fastpath_inline
2200 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2201 			     int *cnt)
2202 {
2203 
2204 	void *object;
2205 	void *next = *head;
2206 	void *old_tail = *tail;
2207 	bool init;
2208 
2209 	if (is_kfence_address(next)) {
2210 		slab_free_hook(s, next, false);
2211 		return false;
2212 	}
2213 
2214 	/* Head and tail of the reconstructed freelist */
2215 	*head = NULL;
2216 	*tail = NULL;
2217 
2218 	init = slab_want_init_on_free(s);
2219 
2220 	do {
2221 		object = next;
2222 		next = get_freepointer(s, object);
2223 
2224 		/* If object's reuse doesn't have to be delayed */
2225 		if (likely(slab_free_hook(s, object, init))) {
2226 			/* Move object to the new freelist */
2227 			set_freepointer(s, object, *head);
2228 			*head = object;
2229 			if (!*tail)
2230 				*tail = object;
2231 		} else {
2232 			/*
2233 			 * Adjust the reconstructed freelist depth
2234 			 * accordingly if object's reuse is delayed.
2235 			 */
2236 			--(*cnt);
2237 		}
2238 	} while (object != old_tail);
2239 
2240 	return *head != NULL;
2241 }
2242 
2243 static void *setup_object(struct kmem_cache *s, void *object)
2244 {
2245 	setup_object_debug(s, object);
2246 	object = kasan_init_slab_obj(s, object);
2247 	if (unlikely(s->ctor)) {
2248 		kasan_unpoison_new_object(s, object);
2249 		s->ctor(object);
2250 		kasan_poison_new_object(s, object);
2251 	}
2252 	return object;
2253 }
2254 
2255 /*
2256  * Slab allocation and freeing
2257  */
2258 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2259 		struct kmem_cache_order_objects oo)
2260 {
2261 	struct folio *folio;
2262 	struct slab *slab;
2263 	unsigned int order = oo_order(oo);
2264 
2265 	folio = (struct folio *)alloc_pages_node(node, flags, order);
2266 	if (!folio)
2267 		return NULL;
2268 
2269 	slab = folio_slab(folio);
2270 	__folio_set_slab(folio);
2271 	/* Make the flag visible before any changes to folio->mapping */
2272 	smp_wmb();
2273 	if (folio_is_pfmemalloc(folio))
2274 		slab_set_pfmemalloc(slab);
2275 
2276 	return slab;
2277 }
2278 
2279 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2280 /* Pre-initialize the random sequence cache */
2281 static int init_cache_random_seq(struct kmem_cache *s)
2282 {
2283 	unsigned int count = oo_objects(s->oo);
2284 	int err;
2285 
2286 	/* Bailout if already initialised */
2287 	if (s->random_seq)
2288 		return 0;
2289 
2290 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2291 	if (err) {
2292 		pr_err("SLUB: Unable to initialize free list for %s\n",
2293 			s->name);
2294 		return err;
2295 	}
2296 
2297 	/* Transform to an offset on the set of pages */
2298 	if (s->random_seq) {
2299 		unsigned int i;
2300 
2301 		for (i = 0; i < count; i++)
2302 			s->random_seq[i] *= s->size;
2303 	}
2304 	return 0;
2305 }
2306 
2307 /* Initialize each random sequence freelist per cache */
2308 static void __init init_freelist_randomization(void)
2309 {
2310 	struct kmem_cache *s;
2311 
2312 	mutex_lock(&slab_mutex);
2313 
2314 	list_for_each_entry(s, &slab_caches, list)
2315 		init_cache_random_seq(s);
2316 
2317 	mutex_unlock(&slab_mutex);
2318 }
2319 
2320 /* Get the next entry on the pre-computed freelist randomized */
2321 static void *next_freelist_entry(struct kmem_cache *s,
2322 				unsigned long *pos, void *start,
2323 				unsigned long page_limit,
2324 				unsigned long freelist_count)
2325 {
2326 	unsigned int idx;
2327 
2328 	/*
2329 	 * If the target page allocation failed, the number of objects on the
2330 	 * page might be smaller than the usual size defined by the cache.
2331 	 */
2332 	do {
2333 		idx = s->random_seq[*pos];
2334 		*pos += 1;
2335 		if (*pos >= freelist_count)
2336 			*pos = 0;
2337 	} while (unlikely(idx >= page_limit));
2338 
2339 	return (char *)start + idx;
2340 }
2341 
2342 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2343 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2344 {
2345 	void *start;
2346 	void *cur;
2347 	void *next;
2348 	unsigned long idx, pos, page_limit, freelist_count;
2349 
2350 	if (slab->objects < 2 || !s->random_seq)
2351 		return false;
2352 
2353 	freelist_count = oo_objects(s->oo);
2354 	pos = get_random_u32_below(freelist_count);
2355 
2356 	page_limit = slab->objects * s->size;
2357 	start = fixup_red_left(s, slab_address(slab));
2358 
2359 	/* First entry is used as the base of the freelist */
2360 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2361 	cur = setup_object(s, cur);
2362 	slab->freelist = cur;
2363 
2364 	for (idx = 1; idx < slab->objects; idx++) {
2365 		next = next_freelist_entry(s, &pos, start, page_limit,
2366 			freelist_count);
2367 		next = setup_object(s, next);
2368 		set_freepointer(s, cur, next);
2369 		cur = next;
2370 	}
2371 	set_freepointer(s, cur, NULL);
2372 
2373 	return true;
2374 }
2375 #else
2376 static inline int init_cache_random_seq(struct kmem_cache *s)
2377 {
2378 	return 0;
2379 }
2380 static inline void init_freelist_randomization(void) { }
2381 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2382 {
2383 	return false;
2384 }
2385 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2386 
2387 static __always_inline void account_slab(struct slab *slab, int order,
2388 					 struct kmem_cache *s, gfp_t gfp)
2389 {
2390 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2391 		alloc_slab_obj_exts(slab, s, gfp, true);
2392 
2393 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2394 			    PAGE_SIZE << order);
2395 }
2396 
2397 static __always_inline void unaccount_slab(struct slab *slab, int order,
2398 					   struct kmem_cache *s)
2399 {
2400 	if (memcg_kmem_online() || need_slab_obj_ext())
2401 		free_slab_obj_exts(slab);
2402 
2403 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2404 			    -(PAGE_SIZE << order));
2405 }
2406 
2407 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2408 {
2409 	struct slab *slab;
2410 	struct kmem_cache_order_objects oo = s->oo;
2411 	gfp_t alloc_gfp;
2412 	void *start, *p, *next;
2413 	int idx;
2414 	bool shuffle;
2415 
2416 	flags &= gfp_allowed_mask;
2417 
2418 	flags |= s->allocflags;
2419 
2420 	/*
2421 	 * Let the initial higher-order allocation fail under memory pressure
2422 	 * so we fall-back to the minimum order allocation.
2423 	 */
2424 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2425 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2426 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2427 
2428 	slab = alloc_slab_page(alloc_gfp, node, oo);
2429 	if (unlikely(!slab)) {
2430 		oo = s->min;
2431 		alloc_gfp = flags;
2432 		/*
2433 		 * Allocation may have failed due to fragmentation.
2434 		 * Try a lower order alloc if possible
2435 		 */
2436 		slab = alloc_slab_page(alloc_gfp, node, oo);
2437 		if (unlikely(!slab))
2438 			return NULL;
2439 		stat(s, ORDER_FALLBACK);
2440 	}
2441 
2442 	slab->objects = oo_objects(oo);
2443 	slab->inuse = 0;
2444 	slab->frozen = 0;
2445 
2446 	account_slab(slab, oo_order(oo), s, flags);
2447 
2448 	slab->slab_cache = s;
2449 
2450 	kasan_poison_slab(slab);
2451 
2452 	start = slab_address(slab);
2453 
2454 	setup_slab_debug(s, slab, start);
2455 
2456 	shuffle = shuffle_freelist(s, slab);
2457 
2458 	if (!shuffle) {
2459 		start = fixup_red_left(s, start);
2460 		start = setup_object(s, start);
2461 		slab->freelist = start;
2462 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2463 			next = p + s->size;
2464 			next = setup_object(s, next);
2465 			set_freepointer(s, p, next);
2466 			p = next;
2467 		}
2468 		set_freepointer(s, p, NULL);
2469 	}
2470 
2471 	return slab;
2472 }
2473 
2474 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2475 {
2476 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2477 		flags = kmalloc_fix_flags(flags);
2478 
2479 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2480 
2481 	return allocate_slab(s,
2482 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2483 }
2484 
2485 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2486 {
2487 	struct folio *folio = slab_folio(slab);
2488 	int order = folio_order(folio);
2489 	int pages = 1 << order;
2490 
2491 	__slab_clear_pfmemalloc(slab);
2492 	folio->mapping = NULL;
2493 	/* Make the mapping reset visible before clearing the flag */
2494 	smp_wmb();
2495 	__folio_clear_slab(folio);
2496 	mm_account_reclaimed_pages(pages);
2497 	unaccount_slab(slab, order, s);
2498 	__free_pages(&folio->page, order);
2499 }
2500 
2501 static void rcu_free_slab(struct rcu_head *h)
2502 {
2503 	struct slab *slab = container_of(h, struct slab, rcu_head);
2504 
2505 	__free_slab(slab->slab_cache, slab);
2506 }
2507 
2508 static void free_slab(struct kmem_cache *s, struct slab *slab)
2509 {
2510 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2511 		void *p;
2512 
2513 		slab_pad_check(s, slab);
2514 		for_each_object(p, s, slab_address(slab), slab->objects)
2515 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2516 	}
2517 
2518 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2519 		call_rcu(&slab->rcu_head, rcu_free_slab);
2520 	else
2521 		__free_slab(s, slab);
2522 }
2523 
2524 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2525 {
2526 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2527 	free_slab(s, slab);
2528 }
2529 
2530 /*
2531  * SLUB reuses PG_workingset bit to keep track of whether it's on
2532  * the per-node partial list.
2533  */
2534 static inline bool slab_test_node_partial(const struct slab *slab)
2535 {
2536 	return folio_test_workingset((struct folio *)slab_folio(slab));
2537 }
2538 
2539 static inline void slab_set_node_partial(struct slab *slab)
2540 {
2541 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2542 }
2543 
2544 static inline void slab_clear_node_partial(struct slab *slab)
2545 {
2546 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2547 }
2548 
2549 /*
2550  * Management of partially allocated slabs.
2551  */
2552 static inline void
2553 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2554 {
2555 	n->nr_partial++;
2556 	if (tail == DEACTIVATE_TO_TAIL)
2557 		list_add_tail(&slab->slab_list, &n->partial);
2558 	else
2559 		list_add(&slab->slab_list, &n->partial);
2560 	slab_set_node_partial(slab);
2561 }
2562 
2563 static inline void add_partial(struct kmem_cache_node *n,
2564 				struct slab *slab, int tail)
2565 {
2566 	lockdep_assert_held(&n->list_lock);
2567 	__add_partial(n, slab, tail);
2568 }
2569 
2570 static inline void remove_partial(struct kmem_cache_node *n,
2571 					struct slab *slab)
2572 {
2573 	lockdep_assert_held(&n->list_lock);
2574 	list_del(&slab->slab_list);
2575 	slab_clear_node_partial(slab);
2576 	n->nr_partial--;
2577 }
2578 
2579 /*
2580  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2581  * slab from the n->partial list. Remove only a single object from the slab, do
2582  * the alloc_debug_processing() checks and leave the slab on the list, or move
2583  * it to full list if it was the last free object.
2584  */
2585 static void *alloc_single_from_partial(struct kmem_cache *s,
2586 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2587 {
2588 	void *object;
2589 
2590 	lockdep_assert_held(&n->list_lock);
2591 
2592 	object = slab->freelist;
2593 	slab->freelist = get_freepointer(s, object);
2594 	slab->inuse++;
2595 
2596 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2597 		remove_partial(n, slab);
2598 		return NULL;
2599 	}
2600 
2601 	if (slab->inuse == slab->objects) {
2602 		remove_partial(n, slab);
2603 		add_full(s, n, slab);
2604 	}
2605 
2606 	return object;
2607 }
2608 
2609 /*
2610  * Called only for kmem_cache_debug() caches to allocate from a freshly
2611  * allocated slab. Allocate a single object instead of whole freelist
2612  * and put the slab to the partial (or full) list.
2613  */
2614 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2615 					struct slab *slab, int orig_size)
2616 {
2617 	int nid = slab_nid(slab);
2618 	struct kmem_cache_node *n = get_node(s, nid);
2619 	unsigned long flags;
2620 	void *object;
2621 
2622 
2623 	object = slab->freelist;
2624 	slab->freelist = get_freepointer(s, object);
2625 	slab->inuse = 1;
2626 
2627 	if (!alloc_debug_processing(s, slab, object, orig_size))
2628 		/*
2629 		 * It's not really expected that this would fail on a
2630 		 * freshly allocated slab, but a concurrent memory
2631 		 * corruption in theory could cause that.
2632 		 */
2633 		return NULL;
2634 
2635 	spin_lock_irqsave(&n->list_lock, flags);
2636 
2637 	if (slab->inuse == slab->objects)
2638 		add_full(s, n, slab);
2639 	else
2640 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2641 
2642 	inc_slabs_node(s, nid, slab->objects);
2643 	spin_unlock_irqrestore(&n->list_lock, flags);
2644 
2645 	return object;
2646 }
2647 
2648 #ifdef CONFIG_SLUB_CPU_PARTIAL
2649 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2650 #else
2651 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2652 				   int drain) { }
2653 #endif
2654 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2655 
2656 /*
2657  * Try to allocate a partial slab from a specific node.
2658  */
2659 static struct slab *get_partial_node(struct kmem_cache *s,
2660 				     struct kmem_cache_node *n,
2661 				     struct partial_context *pc)
2662 {
2663 	struct slab *slab, *slab2, *partial = NULL;
2664 	unsigned long flags;
2665 	unsigned int partial_slabs = 0;
2666 
2667 	/*
2668 	 * Racy check. If we mistakenly see no partial slabs then we
2669 	 * just allocate an empty slab. If we mistakenly try to get a
2670 	 * partial slab and there is none available then get_partial()
2671 	 * will return NULL.
2672 	 */
2673 	if (!n || !n->nr_partial)
2674 		return NULL;
2675 
2676 	spin_lock_irqsave(&n->list_lock, flags);
2677 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2678 		if (!pfmemalloc_match(slab, pc->flags))
2679 			continue;
2680 
2681 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2682 			void *object = alloc_single_from_partial(s, n, slab,
2683 							pc->orig_size);
2684 			if (object) {
2685 				partial = slab;
2686 				pc->object = object;
2687 				break;
2688 			}
2689 			continue;
2690 		}
2691 
2692 		remove_partial(n, slab);
2693 
2694 		if (!partial) {
2695 			partial = slab;
2696 			stat(s, ALLOC_FROM_PARTIAL);
2697 
2698 			if ((slub_get_cpu_partial(s) == 0)) {
2699 				break;
2700 			}
2701 		} else {
2702 			put_cpu_partial(s, slab, 0);
2703 			stat(s, CPU_PARTIAL_NODE);
2704 
2705 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2706 				break;
2707 			}
2708 		}
2709 	}
2710 	spin_unlock_irqrestore(&n->list_lock, flags);
2711 	return partial;
2712 }
2713 
2714 /*
2715  * Get a slab from somewhere. Search in increasing NUMA distances.
2716  */
2717 static struct slab *get_any_partial(struct kmem_cache *s,
2718 				    struct partial_context *pc)
2719 {
2720 #ifdef CONFIG_NUMA
2721 	struct zonelist *zonelist;
2722 	struct zoneref *z;
2723 	struct zone *zone;
2724 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2725 	struct slab *slab;
2726 	unsigned int cpuset_mems_cookie;
2727 
2728 	/*
2729 	 * The defrag ratio allows a configuration of the tradeoffs between
2730 	 * inter node defragmentation and node local allocations. A lower
2731 	 * defrag_ratio increases the tendency to do local allocations
2732 	 * instead of attempting to obtain partial slabs from other nodes.
2733 	 *
2734 	 * If the defrag_ratio is set to 0 then kmalloc() always
2735 	 * returns node local objects. If the ratio is higher then kmalloc()
2736 	 * may return off node objects because partial slabs are obtained
2737 	 * from other nodes and filled up.
2738 	 *
2739 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2740 	 * (which makes defrag_ratio = 1000) then every (well almost)
2741 	 * allocation will first attempt to defrag slab caches on other nodes.
2742 	 * This means scanning over all nodes to look for partial slabs which
2743 	 * may be expensive if we do it every time we are trying to find a slab
2744 	 * with available objects.
2745 	 */
2746 	if (!s->remote_node_defrag_ratio ||
2747 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2748 		return NULL;
2749 
2750 	do {
2751 		cpuset_mems_cookie = read_mems_allowed_begin();
2752 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2753 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2754 			struct kmem_cache_node *n;
2755 
2756 			n = get_node(s, zone_to_nid(zone));
2757 
2758 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2759 					n->nr_partial > s->min_partial) {
2760 				slab = get_partial_node(s, n, pc);
2761 				if (slab) {
2762 					/*
2763 					 * Don't check read_mems_allowed_retry()
2764 					 * here - if mems_allowed was updated in
2765 					 * parallel, that was a harmless race
2766 					 * between allocation and the cpuset
2767 					 * update
2768 					 */
2769 					return slab;
2770 				}
2771 			}
2772 		}
2773 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2774 #endif	/* CONFIG_NUMA */
2775 	return NULL;
2776 }
2777 
2778 /*
2779  * Get a partial slab, lock it and return it.
2780  */
2781 static struct slab *get_partial(struct kmem_cache *s, int node,
2782 				struct partial_context *pc)
2783 {
2784 	struct slab *slab;
2785 	int searchnode = node;
2786 
2787 	if (node == NUMA_NO_NODE)
2788 		searchnode = numa_mem_id();
2789 
2790 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2791 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2792 		return slab;
2793 
2794 	return get_any_partial(s, pc);
2795 }
2796 
2797 #ifndef CONFIG_SLUB_TINY
2798 
2799 #ifdef CONFIG_PREEMPTION
2800 /*
2801  * Calculate the next globally unique transaction for disambiguation
2802  * during cmpxchg. The transactions start with the cpu number and are then
2803  * incremented by CONFIG_NR_CPUS.
2804  */
2805 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2806 #else
2807 /*
2808  * No preemption supported therefore also no need to check for
2809  * different cpus.
2810  */
2811 #define TID_STEP 1
2812 #endif /* CONFIG_PREEMPTION */
2813 
2814 static inline unsigned long next_tid(unsigned long tid)
2815 {
2816 	return tid + TID_STEP;
2817 }
2818 
2819 #ifdef SLUB_DEBUG_CMPXCHG
2820 static inline unsigned int tid_to_cpu(unsigned long tid)
2821 {
2822 	return tid % TID_STEP;
2823 }
2824 
2825 static inline unsigned long tid_to_event(unsigned long tid)
2826 {
2827 	return tid / TID_STEP;
2828 }
2829 #endif
2830 
2831 static inline unsigned int init_tid(int cpu)
2832 {
2833 	return cpu;
2834 }
2835 
2836 static inline void note_cmpxchg_failure(const char *n,
2837 		const struct kmem_cache *s, unsigned long tid)
2838 {
2839 #ifdef SLUB_DEBUG_CMPXCHG
2840 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2841 
2842 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2843 
2844 #ifdef CONFIG_PREEMPTION
2845 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2846 		pr_warn("due to cpu change %d -> %d\n",
2847 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2848 	else
2849 #endif
2850 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2851 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2852 			tid_to_event(tid), tid_to_event(actual_tid));
2853 	else
2854 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2855 			actual_tid, tid, next_tid(tid));
2856 #endif
2857 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2858 }
2859 
2860 static void init_kmem_cache_cpus(struct kmem_cache *s)
2861 {
2862 	int cpu;
2863 	struct kmem_cache_cpu *c;
2864 
2865 	for_each_possible_cpu(cpu) {
2866 		c = per_cpu_ptr(s->cpu_slab, cpu);
2867 		local_lock_init(&c->lock);
2868 		c->tid = init_tid(cpu);
2869 	}
2870 }
2871 
2872 /*
2873  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2874  * unfreezes the slabs and puts it on the proper list.
2875  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2876  * by the caller.
2877  */
2878 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2879 			    void *freelist)
2880 {
2881 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2882 	int free_delta = 0;
2883 	void *nextfree, *freelist_iter, *freelist_tail;
2884 	int tail = DEACTIVATE_TO_HEAD;
2885 	unsigned long flags = 0;
2886 	struct slab new;
2887 	struct slab old;
2888 
2889 	if (READ_ONCE(slab->freelist)) {
2890 		stat(s, DEACTIVATE_REMOTE_FREES);
2891 		tail = DEACTIVATE_TO_TAIL;
2892 	}
2893 
2894 	/*
2895 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2896 	 * remember the last object in freelist_tail for later splicing.
2897 	 */
2898 	freelist_tail = NULL;
2899 	freelist_iter = freelist;
2900 	while (freelist_iter) {
2901 		nextfree = get_freepointer(s, freelist_iter);
2902 
2903 		/*
2904 		 * If 'nextfree' is invalid, it is possible that the object at
2905 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2906 		 * starting at 'freelist_iter' by skipping them.
2907 		 */
2908 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2909 			break;
2910 
2911 		freelist_tail = freelist_iter;
2912 		free_delta++;
2913 
2914 		freelist_iter = nextfree;
2915 	}
2916 
2917 	/*
2918 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2919 	 * freelist to the head of slab's freelist.
2920 	 */
2921 	do {
2922 		old.freelist = READ_ONCE(slab->freelist);
2923 		old.counters = READ_ONCE(slab->counters);
2924 		VM_BUG_ON(!old.frozen);
2925 
2926 		/* Determine target state of the slab */
2927 		new.counters = old.counters;
2928 		new.frozen = 0;
2929 		if (freelist_tail) {
2930 			new.inuse -= free_delta;
2931 			set_freepointer(s, freelist_tail, old.freelist);
2932 			new.freelist = freelist;
2933 		} else {
2934 			new.freelist = old.freelist;
2935 		}
2936 	} while (!slab_update_freelist(s, slab,
2937 		old.freelist, old.counters,
2938 		new.freelist, new.counters,
2939 		"unfreezing slab"));
2940 
2941 	/*
2942 	 * Stage three: Manipulate the slab list based on the updated state.
2943 	 */
2944 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2945 		stat(s, DEACTIVATE_EMPTY);
2946 		discard_slab(s, slab);
2947 		stat(s, FREE_SLAB);
2948 	} else if (new.freelist) {
2949 		spin_lock_irqsave(&n->list_lock, flags);
2950 		add_partial(n, slab, tail);
2951 		spin_unlock_irqrestore(&n->list_lock, flags);
2952 		stat(s, tail);
2953 	} else {
2954 		stat(s, DEACTIVATE_FULL);
2955 	}
2956 }
2957 
2958 #ifdef CONFIG_SLUB_CPU_PARTIAL
2959 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
2960 {
2961 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2962 	struct slab *slab, *slab_to_discard = NULL;
2963 	unsigned long flags = 0;
2964 
2965 	while (partial_slab) {
2966 		slab = partial_slab;
2967 		partial_slab = slab->next;
2968 
2969 		n2 = get_node(s, slab_nid(slab));
2970 		if (n != n2) {
2971 			if (n)
2972 				spin_unlock_irqrestore(&n->list_lock, flags);
2973 
2974 			n = n2;
2975 			spin_lock_irqsave(&n->list_lock, flags);
2976 		}
2977 
2978 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
2979 			slab->next = slab_to_discard;
2980 			slab_to_discard = slab;
2981 		} else {
2982 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2983 			stat(s, FREE_ADD_PARTIAL);
2984 		}
2985 	}
2986 
2987 	if (n)
2988 		spin_unlock_irqrestore(&n->list_lock, flags);
2989 
2990 	while (slab_to_discard) {
2991 		slab = slab_to_discard;
2992 		slab_to_discard = slab_to_discard->next;
2993 
2994 		stat(s, DEACTIVATE_EMPTY);
2995 		discard_slab(s, slab);
2996 		stat(s, FREE_SLAB);
2997 	}
2998 }
2999 
3000 /*
3001  * Put all the cpu partial slabs to the node partial list.
3002  */
3003 static void put_partials(struct kmem_cache *s)
3004 {
3005 	struct slab *partial_slab;
3006 	unsigned long flags;
3007 
3008 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3009 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3010 	this_cpu_write(s->cpu_slab->partial, NULL);
3011 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3012 
3013 	if (partial_slab)
3014 		__put_partials(s, partial_slab);
3015 }
3016 
3017 static void put_partials_cpu(struct kmem_cache *s,
3018 			     struct kmem_cache_cpu *c)
3019 {
3020 	struct slab *partial_slab;
3021 
3022 	partial_slab = slub_percpu_partial(c);
3023 	c->partial = NULL;
3024 
3025 	if (partial_slab)
3026 		__put_partials(s, partial_slab);
3027 }
3028 
3029 /*
3030  * Put a slab into a partial slab slot if available.
3031  *
3032  * If we did not find a slot then simply move all the partials to the
3033  * per node partial list.
3034  */
3035 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3036 {
3037 	struct slab *oldslab;
3038 	struct slab *slab_to_put = NULL;
3039 	unsigned long flags;
3040 	int slabs = 0;
3041 
3042 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3043 
3044 	oldslab = this_cpu_read(s->cpu_slab->partial);
3045 
3046 	if (oldslab) {
3047 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3048 			/*
3049 			 * Partial array is full. Move the existing set to the
3050 			 * per node partial list. Postpone the actual unfreezing
3051 			 * outside of the critical section.
3052 			 */
3053 			slab_to_put = oldslab;
3054 			oldslab = NULL;
3055 		} else {
3056 			slabs = oldslab->slabs;
3057 		}
3058 	}
3059 
3060 	slabs++;
3061 
3062 	slab->slabs = slabs;
3063 	slab->next = oldslab;
3064 
3065 	this_cpu_write(s->cpu_slab->partial, slab);
3066 
3067 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3068 
3069 	if (slab_to_put) {
3070 		__put_partials(s, slab_to_put);
3071 		stat(s, CPU_PARTIAL_DRAIN);
3072 	}
3073 }
3074 
3075 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3076 
3077 static inline void put_partials(struct kmem_cache *s) { }
3078 static inline void put_partials_cpu(struct kmem_cache *s,
3079 				    struct kmem_cache_cpu *c) { }
3080 
3081 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3082 
3083 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3084 {
3085 	unsigned long flags;
3086 	struct slab *slab;
3087 	void *freelist;
3088 
3089 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3090 
3091 	slab = c->slab;
3092 	freelist = c->freelist;
3093 
3094 	c->slab = NULL;
3095 	c->freelist = NULL;
3096 	c->tid = next_tid(c->tid);
3097 
3098 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3099 
3100 	if (slab) {
3101 		deactivate_slab(s, slab, freelist);
3102 		stat(s, CPUSLAB_FLUSH);
3103 	}
3104 }
3105 
3106 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3107 {
3108 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3109 	void *freelist = c->freelist;
3110 	struct slab *slab = c->slab;
3111 
3112 	c->slab = NULL;
3113 	c->freelist = NULL;
3114 	c->tid = next_tid(c->tid);
3115 
3116 	if (slab) {
3117 		deactivate_slab(s, slab, freelist);
3118 		stat(s, CPUSLAB_FLUSH);
3119 	}
3120 
3121 	put_partials_cpu(s, c);
3122 }
3123 
3124 struct slub_flush_work {
3125 	struct work_struct work;
3126 	struct kmem_cache *s;
3127 	bool skip;
3128 };
3129 
3130 /*
3131  * Flush cpu slab.
3132  *
3133  * Called from CPU work handler with migration disabled.
3134  */
3135 static void flush_cpu_slab(struct work_struct *w)
3136 {
3137 	struct kmem_cache *s;
3138 	struct kmem_cache_cpu *c;
3139 	struct slub_flush_work *sfw;
3140 
3141 	sfw = container_of(w, struct slub_flush_work, work);
3142 
3143 	s = sfw->s;
3144 	c = this_cpu_ptr(s->cpu_slab);
3145 
3146 	if (c->slab)
3147 		flush_slab(s, c);
3148 
3149 	put_partials(s);
3150 }
3151 
3152 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3153 {
3154 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3155 
3156 	return c->slab || slub_percpu_partial(c);
3157 }
3158 
3159 static DEFINE_MUTEX(flush_lock);
3160 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3161 
3162 static void flush_all_cpus_locked(struct kmem_cache *s)
3163 {
3164 	struct slub_flush_work *sfw;
3165 	unsigned int cpu;
3166 
3167 	lockdep_assert_cpus_held();
3168 	mutex_lock(&flush_lock);
3169 
3170 	for_each_online_cpu(cpu) {
3171 		sfw = &per_cpu(slub_flush, cpu);
3172 		if (!has_cpu_slab(cpu, s)) {
3173 			sfw->skip = true;
3174 			continue;
3175 		}
3176 		INIT_WORK(&sfw->work, flush_cpu_slab);
3177 		sfw->skip = false;
3178 		sfw->s = s;
3179 		queue_work_on(cpu, flushwq, &sfw->work);
3180 	}
3181 
3182 	for_each_online_cpu(cpu) {
3183 		sfw = &per_cpu(slub_flush, cpu);
3184 		if (sfw->skip)
3185 			continue;
3186 		flush_work(&sfw->work);
3187 	}
3188 
3189 	mutex_unlock(&flush_lock);
3190 }
3191 
3192 static void flush_all(struct kmem_cache *s)
3193 {
3194 	cpus_read_lock();
3195 	flush_all_cpus_locked(s);
3196 	cpus_read_unlock();
3197 }
3198 
3199 /*
3200  * Use the cpu notifier to insure that the cpu slabs are flushed when
3201  * necessary.
3202  */
3203 static int slub_cpu_dead(unsigned int cpu)
3204 {
3205 	struct kmem_cache *s;
3206 
3207 	mutex_lock(&slab_mutex);
3208 	list_for_each_entry(s, &slab_caches, list)
3209 		__flush_cpu_slab(s, cpu);
3210 	mutex_unlock(&slab_mutex);
3211 	return 0;
3212 }
3213 
3214 #else /* CONFIG_SLUB_TINY */
3215 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3216 static inline void flush_all(struct kmem_cache *s) { }
3217 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3218 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3219 #endif /* CONFIG_SLUB_TINY */
3220 
3221 /*
3222  * Check if the objects in a per cpu structure fit numa
3223  * locality expectations.
3224  */
3225 static inline int node_match(struct slab *slab, int node)
3226 {
3227 #ifdef CONFIG_NUMA
3228 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3229 		return 0;
3230 #endif
3231 	return 1;
3232 }
3233 
3234 #ifdef CONFIG_SLUB_DEBUG
3235 static int count_free(struct slab *slab)
3236 {
3237 	return slab->objects - slab->inuse;
3238 }
3239 
3240 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3241 {
3242 	return atomic_long_read(&n->total_objects);
3243 }
3244 
3245 /* Supports checking bulk free of a constructed freelist */
3246 static inline bool free_debug_processing(struct kmem_cache *s,
3247 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3248 	unsigned long addr, depot_stack_handle_t handle)
3249 {
3250 	bool checks_ok = false;
3251 	void *object = head;
3252 	int cnt = 0;
3253 
3254 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3255 		if (!check_slab(s, slab))
3256 			goto out;
3257 	}
3258 
3259 	if (slab->inuse < *bulk_cnt) {
3260 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3261 			 slab->inuse, *bulk_cnt);
3262 		goto out;
3263 	}
3264 
3265 next_object:
3266 
3267 	if (++cnt > *bulk_cnt)
3268 		goto out_cnt;
3269 
3270 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3271 		if (!free_consistency_checks(s, slab, object, addr))
3272 			goto out;
3273 	}
3274 
3275 	if (s->flags & SLAB_STORE_USER)
3276 		set_track_update(s, object, TRACK_FREE, addr, handle);
3277 	trace(s, slab, object, 0);
3278 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3279 	init_object(s, object, SLUB_RED_INACTIVE);
3280 
3281 	/* Reached end of constructed freelist yet? */
3282 	if (object != tail) {
3283 		object = get_freepointer(s, object);
3284 		goto next_object;
3285 	}
3286 	checks_ok = true;
3287 
3288 out_cnt:
3289 	if (cnt != *bulk_cnt) {
3290 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3291 			 *bulk_cnt, cnt);
3292 		*bulk_cnt = cnt;
3293 	}
3294 
3295 out:
3296 
3297 	if (!checks_ok)
3298 		slab_fix(s, "Object at 0x%p not freed", object);
3299 
3300 	return checks_ok;
3301 }
3302 #endif /* CONFIG_SLUB_DEBUG */
3303 
3304 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3305 static unsigned long count_partial(struct kmem_cache_node *n,
3306 					int (*get_count)(struct slab *))
3307 {
3308 	unsigned long flags;
3309 	unsigned long x = 0;
3310 	struct slab *slab;
3311 
3312 	spin_lock_irqsave(&n->list_lock, flags);
3313 	list_for_each_entry(slab, &n->partial, slab_list)
3314 		x += get_count(slab);
3315 	spin_unlock_irqrestore(&n->list_lock, flags);
3316 	return x;
3317 }
3318 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3319 
3320 #ifdef CONFIG_SLUB_DEBUG
3321 #define MAX_PARTIAL_TO_SCAN 10000
3322 
3323 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3324 {
3325 	unsigned long flags;
3326 	unsigned long x = 0;
3327 	struct slab *slab;
3328 
3329 	spin_lock_irqsave(&n->list_lock, flags);
3330 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3331 		list_for_each_entry(slab, &n->partial, slab_list)
3332 			x += slab->objects - slab->inuse;
3333 	} else {
3334 		/*
3335 		 * For a long list, approximate the total count of objects in
3336 		 * it to meet the limit on the number of slabs to scan.
3337 		 * Scan from both the list's head and tail for better accuracy.
3338 		 */
3339 		unsigned long scanned = 0;
3340 
3341 		list_for_each_entry(slab, &n->partial, slab_list) {
3342 			x += slab->objects - slab->inuse;
3343 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3344 				break;
3345 		}
3346 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3347 			x += slab->objects - slab->inuse;
3348 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3349 				break;
3350 		}
3351 		x = mult_frac(x, n->nr_partial, scanned);
3352 		x = min(x, node_nr_objs(n));
3353 	}
3354 	spin_unlock_irqrestore(&n->list_lock, flags);
3355 	return x;
3356 }
3357 
3358 static noinline void
3359 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3360 {
3361 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3362 				      DEFAULT_RATELIMIT_BURST);
3363 	int node;
3364 	struct kmem_cache_node *n;
3365 
3366 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3367 		return;
3368 
3369 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3370 		nid, gfpflags, &gfpflags);
3371 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3372 		s->name, s->object_size, s->size, oo_order(s->oo),
3373 		oo_order(s->min));
3374 
3375 	if (oo_order(s->min) > get_order(s->object_size))
3376 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3377 			s->name);
3378 
3379 	for_each_kmem_cache_node(s, node, n) {
3380 		unsigned long nr_slabs;
3381 		unsigned long nr_objs;
3382 		unsigned long nr_free;
3383 
3384 		nr_free  = count_partial_free_approx(n);
3385 		nr_slabs = node_nr_slabs(n);
3386 		nr_objs  = node_nr_objs(n);
3387 
3388 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3389 			node, nr_slabs, nr_objs, nr_free);
3390 	}
3391 }
3392 #else /* CONFIG_SLUB_DEBUG */
3393 static inline void
3394 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3395 #endif
3396 
3397 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3398 {
3399 	if (unlikely(slab_test_pfmemalloc(slab)))
3400 		return gfp_pfmemalloc_allowed(gfpflags);
3401 
3402 	return true;
3403 }
3404 
3405 #ifndef CONFIG_SLUB_TINY
3406 static inline bool
3407 __update_cpu_freelist_fast(struct kmem_cache *s,
3408 			   void *freelist_old, void *freelist_new,
3409 			   unsigned long tid)
3410 {
3411 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3412 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3413 
3414 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3415 					     &old.full, new.full);
3416 }
3417 
3418 /*
3419  * Check the slab->freelist and either transfer the freelist to the
3420  * per cpu freelist or deactivate the slab.
3421  *
3422  * The slab is still frozen if the return value is not NULL.
3423  *
3424  * If this function returns NULL then the slab has been unfrozen.
3425  */
3426 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3427 {
3428 	struct slab new;
3429 	unsigned long counters;
3430 	void *freelist;
3431 
3432 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3433 
3434 	do {
3435 		freelist = slab->freelist;
3436 		counters = slab->counters;
3437 
3438 		new.counters = counters;
3439 
3440 		new.inuse = slab->objects;
3441 		new.frozen = freelist != NULL;
3442 
3443 	} while (!__slab_update_freelist(s, slab,
3444 		freelist, counters,
3445 		NULL, new.counters,
3446 		"get_freelist"));
3447 
3448 	return freelist;
3449 }
3450 
3451 /*
3452  * Freeze the partial slab and return the pointer to the freelist.
3453  */
3454 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3455 {
3456 	struct slab new;
3457 	unsigned long counters;
3458 	void *freelist;
3459 
3460 	do {
3461 		freelist = slab->freelist;
3462 		counters = slab->counters;
3463 
3464 		new.counters = counters;
3465 		VM_BUG_ON(new.frozen);
3466 
3467 		new.inuse = slab->objects;
3468 		new.frozen = 1;
3469 
3470 	} while (!slab_update_freelist(s, slab,
3471 		freelist, counters,
3472 		NULL, new.counters,
3473 		"freeze_slab"));
3474 
3475 	return freelist;
3476 }
3477 
3478 /*
3479  * Slow path. The lockless freelist is empty or we need to perform
3480  * debugging duties.
3481  *
3482  * Processing is still very fast if new objects have been freed to the
3483  * regular freelist. In that case we simply take over the regular freelist
3484  * as the lockless freelist and zap the regular freelist.
3485  *
3486  * If that is not working then we fall back to the partial lists. We take the
3487  * first element of the freelist as the object to allocate now and move the
3488  * rest of the freelist to the lockless freelist.
3489  *
3490  * And if we were unable to get a new slab from the partial slab lists then
3491  * we need to allocate a new slab. This is the slowest path since it involves
3492  * a call to the page allocator and the setup of a new slab.
3493  *
3494  * Version of __slab_alloc to use when we know that preemption is
3495  * already disabled (which is the case for bulk allocation).
3496  */
3497 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3498 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3499 {
3500 	void *freelist;
3501 	struct slab *slab;
3502 	unsigned long flags;
3503 	struct partial_context pc;
3504 	bool try_thisnode = true;
3505 
3506 	stat(s, ALLOC_SLOWPATH);
3507 
3508 reread_slab:
3509 
3510 	slab = READ_ONCE(c->slab);
3511 	if (!slab) {
3512 		/*
3513 		 * if the node is not online or has no normal memory, just
3514 		 * ignore the node constraint
3515 		 */
3516 		if (unlikely(node != NUMA_NO_NODE &&
3517 			     !node_isset(node, slab_nodes)))
3518 			node = NUMA_NO_NODE;
3519 		goto new_slab;
3520 	}
3521 
3522 	if (unlikely(!node_match(slab, node))) {
3523 		/*
3524 		 * same as above but node_match() being false already
3525 		 * implies node != NUMA_NO_NODE
3526 		 */
3527 		if (!node_isset(node, slab_nodes)) {
3528 			node = NUMA_NO_NODE;
3529 		} else {
3530 			stat(s, ALLOC_NODE_MISMATCH);
3531 			goto deactivate_slab;
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * By rights, we should be searching for a slab page that was
3537 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3538 	 * information when the page leaves the per-cpu allocator
3539 	 */
3540 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3541 		goto deactivate_slab;
3542 
3543 	/* must check again c->slab in case we got preempted and it changed */
3544 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3545 	if (unlikely(slab != c->slab)) {
3546 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3547 		goto reread_slab;
3548 	}
3549 	freelist = c->freelist;
3550 	if (freelist)
3551 		goto load_freelist;
3552 
3553 	freelist = get_freelist(s, slab);
3554 
3555 	if (!freelist) {
3556 		c->slab = NULL;
3557 		c->tid = next_tid(c->tid);
3558 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3559 		stat(s, DEACTIVATE_BYPASS);
3560 		goto new_slab;
3561 	}
3562 
3563 	stat(s, ALLOC_REFILL);
3564 
3565 load_freelist:
3566 
3567 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3568 
3569 	/*
3570 	 * freelist is pointing to the list of objects to be used.
3571 	 * slab is pointing to the slab from which the objects are obtained.
3572 	 * That slab must be frozen for per cpu allocations to work.
3573 	 */
3574 	VM_BUG_ON(!c->slab->frozen);
3575 	c->freelist = get_freepointer(s, freelist);
3576 	c->tid = next_tid(c->tid);
3577 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3578 	return freelist;
3579 
3580 deactivate_slab:
3581 
3582 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3583 	if (slab != c->slab) {
3584 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3585 		goto reread_slab;
3586 	}
3587 	freelist = c->freelist;
3588 	c->slab = NULL;
3589 	c->freelist = NULL;
3590 	c->tid = next_tid(c->tid);
3591 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3592 	deactivate_slab(s, slab, freelist);
3593 
3594 new_slab:
3595 
3596 #ifdef CONFIG_SLUB_CPU_PARTIAL
3597 	while (slub_percpu_partial(c)) {
3598 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3599 		if (unlikely(c->slab)) {
3600 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3601 			goto reread_slab;
3602 		}
3603 		if (unlikely(!slub_percpu_partial(c))) {
3604 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3605 			/* we were preempted and partial list got empty */
3606 			goto new_objects;
3607 		}
3608 
3609 		slab = slub_percpu_partial(c);
3610 		slub_set_percpu_partial(c, slab);
3611 
3612 		if (likely(node_match(slab, node) &&
3613 			   pfmemalloc_match(slab, gfpflags))) {
3614 			c->slab = slab;
3615 			freelist = get_freelist(s, slab);
3616 			VM_BUG_ON(!freelist);
3617 			stat(s, CPU_PARTIAL_ALLOC);
3618 			goto load_freelist;
3619 		}
3620 
3621 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3622 
3623 		slab->next = NULL;
3624 		__put_partials(s, slab);
3625 	}
3626 #endif
3627 
3628 new_objects:
3629 
3630 	pc.flags = gfpflags;
3631 	/*
3632 	 * When a preferred node is indicated but no __GFP_THISNODE
3633 	 *
3634 	 * 1) try to get a partial slab from target node only by having
3635 	 *    __GFP_THISNODE in pc.flags for get_partial()
3636 	 * 2) if 1) failed, try to allocate a new slab from target node with
3637 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3638 	 * 3) if 2) failed, retry with original gfpflags which will allow
3639 	 *    get_partial() try partial lists of other nodes before potentially
3640 	 *    allocating new page from other nodes
3641 	 */
3642 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3643 		     && try_thisnode))
3644 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3645 
3646 	pc.orig_size = orig_size;
3647 	slab = get_partial(s, node, &pc);
3648 	if (slab) {
3649 		if (kmem_cache_debug(s)) {
3650 			freelist = pc.object;
3651 			/*
3652 			 * For debug caches here we had to go through
3653 			 * alloc_single_from_partial() so just store the
3654 			 * tracking info and return the object.
3655 			 */
3656 			if (s->flags & SLAB_STORE_USER)
3657 				set_track(s, freelist, TRACK_ALLOC, addr);
3658 
3659 			return freelist;
3660 		}
3661 
3662 		freelist = freeze_slab(s, slab);
3663 		goto retry_load_slab;
3664 	}
3665 
3666 	slub_put_cpu_ptr(s->cpu_slab);
3667 	slab = new_slab(s, pc.flags, node);
3668 	c = slub_get_cpu_ptr(s->cpu_slab);
3669 
3670 	if (unlikely(!slab)) {
3671 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3672 		    && try_thisnode) {
3673 			try_thisnode = false;
3674 			goto new_objects;
3675 		}
3676 		slab_out_of_memory(s, gfpflags, node);
3677 		return NULL;
3678 	}
3679 
3680 	stat(s, ALLOC_SLAB);
3681 
3682 	if (kmem_cache_debug(s)) {
3683 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3684 
3685 		if (unlikely(!freelist))
3686 			goto new_objects;
3687 
3688 		if (s->flags & SLAB_STORE_USER)
3689 			set_track(s, freelist, TRACK_ALLOC, addr);
3690 
3691 		return freelist;
3692 	}
3693 
3694 	/*
3695 	 * No other reference to the slab yet so we can
3696 	 * muck around with it freely without cmpxchg
3697 	 */
3698 	freelist = slab->freelist;
3699 	slab->freelist = NULL;
3700 	slab->inuse = slab->objects;
3701 	slab->frozen = 1;
3702 
3703 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3704 
3705 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3706 		/*
3707 		 * For !pfmemalloc_match() case we don't load freelist so that
3708 		 * we don't make further mismatched allocations easier.
3709 		 */
3710 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3711 		return freelist;
3712 	}
3713 
3714 retry_load_slab:
3715 
3716 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3717 	if (unlikely(c->slab)) {
3718 		void *flush_freelist = c->freelist;
3719 		struct slab *flush_slab = c->slab;
3720 
3721 		c->slab = NULL;
3722 		c->freelist = NULL;
3723 		c->tid = next_tid(c->tid);
3724 
3725 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3726 
3727 		deactivate_slab(s, flush_slab, flush_freelist);
3728 
3729 		stat(s, CPUSLAB_FLUSH);
3730 
3731 		goto retry_load_slab;
3732 	}
3733 	c->slab = slab;
3734 
3735 	goto load_freelist;
3736 }
3737 
3738 /*
3739  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3740  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3741  * pointer.
3742  */
3743 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3744 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3745 {
3746 	void *p;
3747 
3748 #ifdef CONFIG_PREEMPT_COUNT
3749 	/*
3750 	 * We may have been preempted and rescheduled on a different
3751 	 * cpu before disabling preemption. Need to reload cpu area
3752 	 * pointer.
3753 	 */
3754 	c = slub_get_cpu_ptr(s->cpu_slab);
3755 #endif
3756 
3757 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3758 #ifdef CONFIG_PREEMPT_COUNT
3759 	slub_put_cpu_ptr(s->cpu_slab);
3760 #endif
3761 	return p;
3762 }
3763 
3764 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3765 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3766 {
3767 	struct kmem_cache_cpu *c;
3768 	struct slab *slab;
3769 	unsigned long tid;
3770 	void *object;
3771 
3772 redo:
3773 	/*
3774 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3775 	 * enabled. We may switch back and forth between cpus while
3776 	 * reading from one cpu area. That does not matter as long
3777 	 * as we end up on the original cpu again when doing the cmpxchg.
3778 	 *
3779 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3780 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3781 	 * the tid. If we are preempted and switched to another cpu between the
3782 	 * two reads, it's OK as the two are still associated with the same cpu
3783 	 * and cmpxchg later will validate the cpu.
3784 	 */
3785 	c = raw_cpu_ptr(s->cpu_slab);
3786 	tid = READ_ONCE(c->tid);
3787 
3788 	/*
3789 	 * Irqless object alloc/free algorithm used here depends on sequence
3790 	 * of fetching cpu_slab's data. tid should be fetched before anything
3791 	 * on c to guarantee that object and slab associated with previous tid
3792 	 * won't be used with current tid. If we fetch tid first, object and
3793 	 * slab could be one associated with next tid and our alloc/free
3794 	 * request will be failed. In this case, we will retry. So, no problem.
3795 	 */
3796 	barrier();
3797 
3798 	/*
3799 	 * The transaction ids are globally unique per cpu and per operation on
3800 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3801 	 * occurs on the right processor and that there was no operation on the
3802 	 * linked list in between.
3803 	 */
3804 
3805 	object = c->freelist;
3806 	slab = c->slab;
3807 
3808 	if (!USE_LOCKLESS_FAST_PATH() ||
3809 	    unlikely(!object || !slab || !node_match(slab, node))) {
3810 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3811 	} else {
3812 		void *next_object = get_freepointer_safe(s, object);
3813 
3814 		/*
3815 		 * The cmpxchg will only match if there was no additional
3816 		 * operation and if we are on the right processor.
3817 		 *
3818 		 * The cmpxchg does the following atomically (without lock
3819 		 * semantics!)
3820 		 * 1. Relocate first pointer to the current per cpu area.
3821 		 * 2. Verify that tid and freelist have not been changed
3822 		 * 3. If they were not changed replace tid and freelist
3823 		 *
3824 		 * Since this is without lock semantics the protection is only
3825 		 * against code executing on this cpu *not* from access by
3826 		 * other cpus.
3827 		 */
3828 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3829 			note_cmpxchg_failure("slab_alloc", s, tid);
3830 			goto redo;
3831 		}
3832 		prefetch_freepointer(s, next_object);
3833 		stat(s, ALLOC_FASTPATH);
3834 	}
3835 
3836 	return object;
3837 }
3838 #else /* CONFIG_SLUB_TINY */
3839 static void *__slab_alloc_node(struct kmem_cache *s,
3840 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3841 {
3842 	struct partial_context pc;
3843 	struct slab *slab;
3844 	void *object;
3845 
3846 	pc.flags = gfpflags;
3847 	pc.orig_size = orig_size;
3848 	slab = get_partial(s, node, &pc);
3849 
3850 	if (slab)
3851 		return pc.object;
3852 
3853 	slab = new_slab(s, gfpflags, node);
3854 	if (unlikely(!slab)) {
3855 		slab_out_of_memory(s, gfpflags, node);
3856 		return NULL;
3857 	}
3858 
3859 	object = alloc_single_from_new_slab(s, slab, orig_size);
3860 
3861 	return object;
3862 }
3863 #endif /* CONFIG_SLUB_TINY */
3864 
3865 /*
3866  * If the object has been wiped upon free, make sure it's fully initialized by
3867  * zeroing out freelist pointer.
3868  */
3869 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3870 						   void *obj)
3871 {
3872 	if (unlikely(slab_want_init_on_free(s)) && obj &&
3873 	    !freeptr_outside_object(s))
3874 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3875 			0, sizeof(void *));
3876 }
3877 
3878 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3879 {
3880 	if (__should_failslab(s, gfpflags))
3881 		return -ENOMEM;
3882 	return 0;
3883 }
3884 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3885 
3886 static __fastpath_inline
3887 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
3888 {
3889 	flags &= gfp_allowed_mask;
3890 
3891 	might_alloc(flags);
3892 
3893 	if (unlikely(should_failslab(s, flags)))
3894 		return NULL;
3895 
3896 	return s;
3897 }
3898 
3899 static __fastpath_inline
3900 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3901 			  gfp_t flags, size_t size, void **p, bool init,
3902 			  unsigned int orig_size)
3903 {
3904 	unsigned int zero_size = s->object_size;
3905 	bool kasan_init = init;
3906 	size_t i;
3907 	gfp_t init_flags = flags & gfp_allowed_mask;
3908 
3909 	/*
3910 	 * For kmalloc object, the allocated memory size(object_size) is likely
3911 	 * larger than the requested size(orig_size). If redzone check is
3912 	 * enabled for the extra space, don't zero it, as it will be redzoned
3913 	 * soon. The redzone operation for this extra space could be seen as a
3914 	 * replacement of current poisoning under certain debug option, and
3915 	 * won't break other sanity checks.
3916 	 */
3917 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3918 	    (s->flags & SLAB_KMALLOC))
3919 		zero_size = orig_size;
3920 
3921 	/*
3922 	 * When slab_debug is enabled, avoid memory initialization integrated
3923 	 * into KASAN and instead zero out the memory via the memset below with
3924 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3925 	 * cause false-positive reports. This does not lead to a performance
3926 	 * penalty on production builds, as slab_debug is not intended to be
3927 	 * enabled there.
3928 	 */
3929 	if (__slub_debug_enabled())
3930 		kasan_init = false;
3931 
3932 	/*
3933 	 * As memory initialization might be integrated into KASAN,
3934 	 * kasan_slab_alloc and initialization memset must be
3935 	 * kept together to avoid discrepancies in behavior.
3936 	 *
3937 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3938 	 */
3939 	for (i = 0; i < size; i++) {
3940 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3941 		if (p[i] && init && (!kasan_init ||
3942 				     !kasan_has_integrated_init()))
3943 			memset(p[i], 0, zero_size);
3944 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3945 					 s->flags, init_flags);
3946 		kmsan_slab_alloc(s, p[i], init_flags);
3947 #ifdef CONFIG_MEM_ALLOC_PROFILING
3948 		if (need_slab_obj_ext()) {
3949 			struct slabobj_ext *obj_exts;
3950 
3951 			obj_exts = prepare_slab_obj_exts_hook(s, flags, p[i]);
3952 			/*
3953 			 * Currently obj_exts is used only for allocation profiling.
3954 			 * If other users appear then mem_alloc_profiling_enabled()
3955 			 * check should be added before alloc_tag_add().
3956 			 */
3957 			if (likely(obj_exts))
3958 				alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
3959 		}
3960 #endif
3961 	}
3962 
3963 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
3964 }
3965 
3966 /*
3967  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3968  * have the fastpath folded into their functions. So no function call
3969  * overhead for requests that can be satisfied on the fastpath.
3970  *
3971  * The fastpath works by first checking if the lockless freelist can be used.
3972  * If not then __slab_alloc is called for slow processing.
3973  *
3974  * Otherwise we can simply pick the next object from the lockless free list.
3975  */
3976 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3977 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3978 {
3979 	void *object;
3980 	bool init = false;
3981 
3982 	s = slab_pre_alloc_hook(s, gfpflags);
3983 	if (unlikely(!s))
3984 		return NULL;
3985 
3986 	object = kfence_alloc(s, orig_size, gfpflags);
3987 	if (unlikely(object))
3988 		goto out;
3989 
3990 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3991 
3992 	maybe_wipe_obj_freeptr(s, object);
3993 	init = slab_want_init_on_alloc(gfpflags, s);
3994 
3995 out:
3996 	/*
3997 	 * When init equals 'true', like for kzalloc() family, only
3998 	 * @orig_size bytes might be zeroed instead of s->object_size
3999 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4000 	 * object is set to NULL
4001 	 */
4002 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4003 
4004 	return object;
4005 }
4006 
4007 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4008 {
4009 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4010 				    s->object_size);
4011 
4012 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4013 
4014 	return ret;
4015 }
4016 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4017 
4018 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4019 			   gfp_t gfpflags)
4020 {
4021 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4022 				    s->object_size);
4023 
4024 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4025 
4026 	return ret;
4027 }
4028 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4029 
4030 /**
4031  * kmem_cache_alloc_node - Allocate an object on the specified node
4032  * @s: The cache to allocate from.
4033  * @gfpflags: See kmalloc().
4034  * @node: node number of the target node.
4035  *
4036  * Identical to kmem_cache_alloc but it will allocate memory on the given
4037  * node, which can improve the performance for cpu bound structures.
4038  *
4039  * Fallback to other node is possible if __GFP_THISNODE is not set.
4040  *
4041  * Return: pointer to the new object or %NULL in case of error
4042  */
4043 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4044 {
4045 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4046 
4047 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4048 
4049 	return ret;
4050 }
4051 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4052 
4053 /*
4054  * To avoid unnecessary overhead, we pass through large allocation requests
4055  * directly to the page allocator. We use __GFP_COMP, because we will need to
4056  * know the allocation order to free the pages properly in kfree.
4057  */
4058 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
4059 {
4060 	struct folio *folio;
4061 	void *ptr = NULL;
4062 	unsigned int order = get_order(size);
4063 
4064 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4065 		flags = kmalloc_fix_flags(flags);
4066 
4067 	flags |= __GFP_COMP;
4068 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4069 	if (folio) {
4070 		ptr = folio_address(folio);
4071 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4072 				      PAGE_SIZE << order);
4073 	}
4074 
4075 	ptr = kasan_kmalloc_large(ptr, size, flags);
4076 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4077 	kmemleak_alloc(ptr, size, 1, flags);
4078 	kmsan_kmalloc_large(ptr, size, flags);
4079 
4080 	return ptr;
4081 }
4082 
4083 void *kmalloc_large_noprof(size_t size, gfp_t flags)
4084 {
4085 	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
4086 
4087 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4088 		      flags, NUMA_NO_NODE);
4089 	return ret;
4090 }
4091 EXPORT_SYMBOL(kmalloc_large_noprof);
4092 
4093 void *kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4094 {
4095 	void *ret = __kmalloc_large_node(size, flags, node);
4096 
4097 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4098 		      flags, node);
4099 	return ret;
4100 }
4101 EXPORT_SYMBOL(kmalloc_large_node_noprof);
4102 
4103 static __always_inline
4104 void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
4105 			unsigned long caller)
4106 {
4107 	struct kmem_cache *s;
4108 	void *ret;
4109 
4110 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4111 		ret = __kmalloc_large_node(size, flags, node);
4112 		trace_kmalloc(caller, ret, size,
4113 			      PAGE_SIZE << get_order(size), flags, node);
4114 		return ret;
4115 	}
4116 
4117 	if (unlikely(!size))
4118 		return ZERO_SIZE_PTR;
4119 
4120 	s = kmalloc_slab(size, flags, caller);
4121 
4122 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4123 	ret = kasan_kmalloc(s, ret, size, flags);
4124 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4125 	return ret;
4126 }
4127 
4128 void *__kmalloc_node_noprof(size_t size, gfp_t flags, int node)
4129 {
4130 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
4131 }
4132 EXPORT_SYMBOL(__kmalloc_node_noprof);
4133 
4134 void *__kmalloc_noprof(size_t size, gfp_t flags)
4135 {
4136 	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
4137 }
4138 EXPORT_SYMBOL(__kmalloc_noprof);
4139 
4140 void *kmalloc_node_track_caller_noprof(size_t size, gfp_t flags,
4141 				       int node, unsigned long caller)
4142 {
4143 	return __do_kmalloc_node(size, flags, node, caller);
4144 }
4145 EXPORT_SYMBOL(kmalloc_node_track_caller_noprof);
4146 
4147 void *kmalloc_trace_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4148 {
4149 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4150 					    _RET_IP_, size);
4151 
4152 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4153 
4154 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4155 	return ret;
4156 }
4157 EXPORT_SYMBOL(kmalloc_trace_noprof);
4158 
4159 void *kmalloc_node_trace_noprof(struct kmem_cache *s, gfp_t gfpflags,
4160 			 int node, size_t size)
4161 {
4162 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4163 
4164 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4165 
4166 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4167 	return ret;
4168 }
4169 EXPORT_SYMBOL(kmalloc_node_trace_noprof);
4170 
4171 static noinline void free_to_partial_list(
4172 	struct kmem_cache *s, struct slab *slab,
4173 	void *head, void *tail, int bulk_cnt,
4174 	unsigned long addr)
4175 {
4176 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4177 	struct slab *slab_free = NULL;
4178 	int cnt = bulk_cnt;
4179 	unsigned long flags;
4180 	depot_stack_handle_t handle = 0;
4181 
4182 	if (s->flags & SLAB_STORE_USER)
4183 		handle = set_track_prepare();
4184 
4185 	spin_lock_irqsave(&n->list_lock, flags);
4186 
4187 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4188 		void *prior = slab->freelist;
4189 
4190 		/* Perform the actual freeing while we still hold the locks */
4191 		slab->inuse -= cnt;
4192 		set_freepointer(s, tail, prior);
4193 		slab->freelist = head;
4194 
4195 		/*
4196 		 * If the slab is empty, and node's partial list is full,
4197 		 * it should be discarded anyway no matter it's on full or
4198 		 * partial list.
4199 		 */
4200 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4201 			slab_free = slab;
4202 
4203 		if (!prior) {
4204 			/* was on full list */
4205 			remove_full(s, n, slab);
4206 			if (!slab_free) {
4207 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4208 				stat(s, FREE_ADD_PARTIAL);
4209 			}
4210 		} else if (slab_free) {
4211 			remove_partial(n, slab);
4212 			stat(s, FREE_REMOVE_PARTIAL);
4213 		}
4214 	}
4215 
4216 	if (slab_free) {
4217 		/*
4218 		 * Update the counters while still holding n->list_lock to
4219 		 * prevent spurious validation warnings
4220 		 */
4221 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4222 	}
4223 
4224 	spin_unlock_irqrestore(&n->list_lock, flags);
4225 
4226 	if (slab_free) {
4227 		stat(s, FREE_SLAB);
4228 		free_slab(s, slab_free);
4229 	}
4230 }
4231 
4232 /*
4233  * Slow path handling. This may still be called frequently since objects
4234  * have a longer lifetime than the cpu slabs in most processing loads.
4235  *
4236  * So we still attempt to reduce cache line usage. Just take the slab
4237  * lock and free the item. If there is no additional partial slab
4238  * handling required then we can return immediately.
4239  */
4240 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4241 			void *head, void *tail, int cnt,
4242 			unsigned long addr)
4243 
4244 {
4245 	void *prior;
4246 	int was_frozen;
4247 	struct slab new;
4248 	unsigned long counters;
4249 	struct kmem_cache_node *n = NULL;
4250 	unsigned long flags;
4251 	bool on_node_partial;
4252 
4253 	stat(s, FREE_SLOWPATH);
4254 
4255 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4256 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4257 		return;
4258 	}
4259 
4260 	do {
4261 		if (unlikely(n)) {
4262 			spin_unlock_irqrestore(&n->list_lock, flags);
4263 			n = NULL;
4264 		}
4265 		prior = slab->freelist;
4266 		counters = slab->counters;
4267 		set_freepointer(s, tail, prior);
4268 		new.counters = counters;
4269 		was_frozen = new.frozen;
4270 		new.inuse -= cnt;
4271 		if ((!new.inuse || !prior) && !was_frozen) {
4272 			/* Needs to be taken off a list */
4273 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4274 
4275 				n = get_node(s, slab_nid(slab));
4276 				/*
4277 				 * Speculatively acquire the list_lock.
4278 				 * If the cmpxchg does not succeed then we may
4279 				 * drop the list_lock without any processing.
4280 				 *
4281 				 * Otherwise the list_lock will synchronize with
4282 				 * other processors updating the list of slabs.
4283 				 */
4284 				spin_lock_irqsave(&n->list_lock, flags);
4285 
4286 				on_node_partial = slab_test_node_partial(slab);
4287 			}
4288 		}
4289 
4290 	} while (!slab_update_freelist(s, slab,
4291 		prior, counters,
4292 		head, new.counters,
4293 		"__slab_free"));
4294 
4295 	if (likely(!n)) {
4296 
4297 		if (likely(was_frozen)) {
4298 			/*
4299 			 * The list lock was not taken therefore no list
4300 			 * activity can be necessary.
4301 			 */
4302 			stat(s, FREE_FROZEN);
4303 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4304 			/*
4305 			 * If we started with a full slab then put it onto the
4306 			 * per cpu partial list.
4307 			 */
4308 			put_cpu_partial(s, slab, 1);
4309 			stat(s, CPU_PARTIAL_FREE);
4310 		}
4311 
4312 		return;
4313 	}
4314 
4315 	/*
4316 	 * This slab was partially empty but not on the per-node partial list,
4317 	 * in which case we shouldn't manipulate its list, just return.
4318 	 */
4319 	if (prior && !on_node_partial) {
4320 		spin_unlock_irqrestore(&n->list_lock, flags);
4321 		return;
4322 	}
4323 
4324 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4325 		goto slab_empty;
4326 
4327 	/*
4328 	 * Objects left in the slab. If it was not on the partial list before
4329 	 * then add it.
4330 	 */
4331 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4332 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4333 		stat(s, FREE_ADD_PARTIAL);
4334 	}
4335 	spin_unlock_irqrestore(&n->list_lock, flags);
4336 	return;
4337 
4338 slab_empty:
4339 	if (prior) {
4340 		/*
4341 		 * Slab on the partial list.
4342 		 */
4343 		remove_partial(n, slab);
4344 		stat(s, FREE_REMOVE_PARTIAL);
4345 	}
4346 
4347 	spin_unlock_irqrestore(&n->list_lock, flags);
4348 	stat(s, FREE_SLAB);
4349 	discard_slab(s, slab);
4350 }
4351 
4352 #ifndef CONFIG_SLUB_TINY
4353 /*
4354  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4355  * can perform fastpath freeing without additional function calls.
4356  *
4357  * The fastpath is only possible if we are freeing to the current cpu slab
4358  * of this processor. This typically the case if we have just allocated
4359  * the item before.
4360  *
4361  * If fastpath is not possible then fall back to __slab_free where we deal
4362  * with all sorts of special processing.
4363  *
4364  * Bulk free of a freelist with several objects (all pointing to the
4365  * same slab) possible by specifying head and tail ptr, plus objects
4366  * count (cnt). Bulk free indicated by tail pointer being set.
4367  */
4368 static __always_inline void do_slab_free(struct kmem_cache *s,
4369 				struct slab *slab, void *head, void *tail,
4370 				int cnt, unsigned long addr)
4371 {
4372 	struct kmem_cache_cpu *c;
4373 	unsigned long tid;
4374 	void **freelist;
4375 
4376 redo:
4377 	/*
4378 	 * Determine the currently cpus per cpu slab.
4379 	 * The cpu may change afterward. However that does not matter since
4380 	 * data is retrieved via this pointer. If we are on the same cpu
4381 	 * during the cmpxchg then the free will succeed.
4382 	 */
4383 	c = raw_cpu_ptr(s->cpu_slab);
4384 	tid = READ_ONCE(c->tid);
4385 
4386 	/* Same with comment on barrier() in __slab_alloc_node() */
4387 	barrier();
4388 
4389 	if (unlikely(slab != c->slab)) {
4390 		__slab_free(s, slab, head, tail, cnt, addr);
4391 		return;
4392 	}
4393 
4394 	if (USE_LOCKLESS_FAST_PATH()) {
4395 		freelist = READ_ONCE(c->freelist);
4396 
4397 		set_freepointer(s, tail, freelist);
4398 
4399 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4400 			note_cmpxchg_failure("slab_free", s, tid);
4401 			goto redo;
4402 		}
4403 	} else {
4404 		/* Update the free list under the local lock */
4405 		local_lock(&s->cpu_slab->lock);
4406 		c = this_cpu_ptr(s->cpu_slab);
4407 		if (unlikely(slab != c->slab)) {
4408 			local_unlock(&s->cpu_slab->lock);
4409 			goto redo;
4410 		}
4411 		tid = c->tid;
4412 		freelist = c->freelist;
4413 
4414 		set_freepointer(s, tail, freelist);
4415 		c->freelist = head;
4416 		c->tid = next_tid(tid);
4417 
4418 		local_unlock(&s->cpu_slab->lock);
4419 	}
4420 	stat_add(s, FREE_FASTPATH, cnt);
4421 }
4422 #else /* CONFIG_SLUB_TINY */
4423 static void do_slab_free(struct kmem_cache *s,
4424 				struct slab *slab, void *head, void *tail,
4425 				int cnt, unsigned long addr)
4426 {
4427 	__slab_free(s, slab, head, tail, cnt, addr);
4428 }
4429 #endif /* CONFIG_SLUB_TINY */
4430 
4431 static __fastpath_inline
4432 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4433 	       unsigned long addr)
4434 {
4435 	memcg_slab_free_hook(s, slab, &object, 1);
4436 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4437 
4438 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4439 		do_slab_free(s, slab, object, object, 1, addr);
4440 }
4441 
4442 #ifdef CONFIG_MEMCG_KMEM
4443 /* Do not inline the rare memcg charging failed path into the allocation path */
4444 static noinline
4445 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4446 {
4447 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4448 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4449 }
4450 #endif
4451 
4452 static __fastpath_inline
4453 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4454 		    void *tail, void **p, int cnt, unsigned long addr)
4455 {
4456 	memcg_slab_free_hook(s, slab, p, cnt);
4457 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4458 	/*
4459 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4460 	 * to remove objects, whose reuse must be delayed.
4461 	 */
4462 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4463 		do_slab_free(s, slab, head, tail, cnt, addr);
4464 }
4465 
4466 #ifdef CONFIG_KASAN_GENERIC
4467 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4468 {
4469 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4470 }
4471 #endif
4472 
4473 static inline struct kmem_cache *virt_to_cache(const void *obj)
4474 {
4475 	struct slab *slab;
4476 
4477 	slab = virt_to_slab(obj);
4478 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4479 		return NULL;
4480 	return slab->slab_cache;
4481 }
4482 
4483 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4484 {
4485 	struct kmem_cache *cachep;
4486 
4487 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4488 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4489 		return s;
4490 
4491 	cachep = virt_to_cache(x);
4492 	if (WARN(cachep && cachep != s,
4493 		 "%s: Wrong slab cache. %s but object is from %s\n",
4494 		 __func__, s->name, cachep->name))
4495 		print_tracking(cachep, x);
4496 	return cachep;
4497 }
4498 
4499 /**
4500  * kmem_cache_free - Deallocate an object
4501  * @s: The cache the allocation was from.
4502  * @x: The previously allocated object.
4503  *
4504  * Free an object which was previously allocated from this
4505  * cache.
4506  */
4507 void kmem_cache_free(struct kmem_cache *s, void *x)
4508 {
4509 	s = cache_from_obj(s, x);
4510 	if (!s)
4511 		return;
4512 	trace_kmem_cache_free(_RET_IP_, x, s);
4513 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4514 }
4515 EXPORT_SYMBOL(kmem_cache_free);
4516 
4517 static void free_large_kmalloc(struct folio *folio, void *object)
4518 {
4519 	unsigned int order = folio_order(folio);
4520 
4521 	if (WARN_ON_ONCE(order == 0))
4522 		pr_warn_once("object pointer: 0x%p\n", object);
4523 
4524 	kmemleak_free(object);
4525 	kasan_kfree_large(object);
4526 	kmsan_kfree_large(object);
4527 
4528 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4529 			      -(PAGE_SIZE << order));
4530 	folio_put(folio);
4531 }
4532 
4533 /**
4534  * kfree - free previously allocated memory
4535  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4536  *
4537  * If @object is NULL, no operation is performed.
4538  */
4539 void kfree(const void *object)
4540 {
4541 	struct folio *folio;
4542 	struct slab *slab;
4543 	struct kmem_cache *s;
4544 	void *x = (void *)object;
4545 
4546 	trace_kfree(_RET_IP_, object);
4547 
4548 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4549 		return;
4550 
4551 	folio = virt_to_folio(object);
4552 	if (unlikely(!folio_test_slab(folio))) {
4553 		free_large_kmalloc(folio, (void *)object);
4554 		return;
4555 	}
4556 
4557 	slab = folio_slab(folio);
4558 	s = slab->slab_cache;
4559 	slab_free(s, slab, x, _RET_IP_);
4560 }
4561 EXPORT_SYMBOL(kfree);
4562 
4563 struct detached_freelist {
4564 	struct slab *slab;
4565 	void *tail;
4566 	void *freelist;
4567 	int cnt;
4568 	struct kmem_cache *s;
4569 };
4570 
4571 /*
4572  * This function progressively scans the array with free objects (with
4573  * a limited look ahead) and extract objects belonging to the same
4574  * slab.  It builds a detached freelist directly within the given
4575  * slab/objects.  This can happen without any need for
4576  * synchronization, because the objects are owned by running process.
4577  * The freelist is build up as a single linked list in the objects.
4578  * The idea is, that this detached freelist can then be bulk
4579  * transferred to the real freelist(s), but only requiring a single
4580  * synchronization primitive.  Look ahead in the array is limited due
4581  * to performance reasons.
4582  */
4583 static inline
4584 int build_detached_freelist(struct kmem_cache *s, size_t size,
4585 			    void **p, struct detached_freelist *df)
4586 {
4587 	int lookahead = 3;
4588 	void *object;
4589 	struct folio *folio;
4590 	size_t same;
4591 
4592 	object = p[--size];
4593 	folio = virt_to_folio(object);
4594 	if (!s) {
4595 		/* Handle kalloc'ed objects */
4596 		if (unlikely(!folio_test_slab(folio))) {
4597 			free_large_kmalloc(folio, object);
4598 			df->slab = NULL;
4599 			return size;
4600 		}
4601 		/* Derive kmem_cache from object */
4602 		df->slab = folio_slab(folio);
4603 		df->s = df->slab->slab_cache;
4604 	} else {
4605 		df->slab = folio_slab(folio);
4606 		df->s = cache_from_obj(s, object); /* Support for memcg */
4607 	}
4608 
4609 	/* Start new detached freelist */
4610 	df->tail = object;
4611 	df->freelist = object;
4612 	df->cnt = 1;
4613 
4614 	if (is_kfence_address(object))
4615 		return size;
4616 
4617 	set_freepointer(df->s, object, NULL);
4618 
4619 	same = size;
4620 	while (size) {
4621 		object = p[--size];
4622 		/* df->slab is always set at this point */
4623 		if (df->slab == virt_to_slab(object)) {
4624 			/* Opportunity build freelist */
4625 			set_freepointer(df->s, object, df->freelist);
4626 			df->freelist = object;
4627 			df->cnt++;
4628 			same--;
4629 			if (size != same)
4630 				swap(p[size], p[same]);
4631 			continue;
4632 		}
4633 
4634 		/* Limit look ahead search */
4635 		if (!--lookahead)
4636 			break;
4637 	}
4638 
4639 	return same;
4640 }
4641 
4642 /*
4643  * Internal bulk free of objects that were not initialised by the post alloc
4644  * hooks and thus should not be processed by the free hooks
4645  */
4646 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4647 {
4648 	if (!size)
4649 		return;
4650 
4651 	do {
4652 		struct detached_freelist df;
4653 
4654 		size = build_detached_freelist(s, size, p, &df);
4655 		if (!df.slab)
4656 			continue;
4657 
4658 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4659 			     _RET_IP_);
4660 	} while (likely(size));
4661 }
4662 
4663 /* Note that interrupts must be enabled when calling this function. */
4664 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4665 {
4666 	if (!size)
4667 		return;
4668 
4669 	do {
4670 		struct detached_freelist df;
4671 
4672 		size = build_detached_freelist(s, size, p, &df);
4673 		if (!df.slab)
4674 			continue;
4675 
4676 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4677 			       df.cnt, _RET_IP_);
4678 	} while (likely(size));
4679 }
4680 EXPORT_SYMBOL(kmem_cache_free_bulk);
4681 
4682 #ifndef CONFIG_SLUB_TINY
4683 static inline
4684 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4685 			    void **p)
4686 {
4687 	struct kmem_cache_cpu *c;
4688 	unsigned long irqflags;
4689 	int i;
4690 
4691 	/*
4692 	 * Drain objects in the per cpu slab, while disabling local
4693 	 * IRQs, which protects against PREEMPT and interrupts
4694 	 * handlers invoking normal fastpath.
4695 	 */
4696 	c = slub_get_cpu_ptr(s->cpu_slab);
4697 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4698 
4699 	for (i = 0; i < size; i++) {
4700 		void *object = kfence_alloc(s, s->object_size, flags);
4701 
4702 		if (unlikely(object)) {
4703 			p[i] = object;
4704 			continue;
4705 		}
4706 
4707 		object = c->freelist;
4708 		if (unlikely(!object)) {
4709 			/*
4710 			 * We may have removed an object from c->freelist using
4711 			 * the fastpath in the previous iteration; in that case,
4712 			 * c->tid has not been bumped yet.
4713 			 * Since ___slab_alloc() may reenable interrupts while
4714 			 * allocating memory, we should bump c->tid now.
4715 			 */
4716 			c->tid = next_tid(c->tid);
4717 
4718 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4719 
4720 			/*
4721 			 * Invoking slow path likely have side-effect
4722 			 * of re-populating per CPU c->freelist
4723 			 */
4724 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4725 					    _RET_IP_, c, s->object_size);
4726 			if (unlikely(!p[i]))
4727 				goto error;
4728 
4729 			c = this_cpu_ptr(s->cpu_slab);
4730 			maybe_wipe_obj_freeptr(s, p[i]);
4731 
4732 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4733 
4734 			continue; /* goto for-loop */
4735 		}
4736 		c->freelist = get_freepointer(s, object);
4737 		p[i] = object;
4738 		maybe_wipe_obj_freeptr(s, p[i]);
4739 		stat(s, ALLOC_FASTPATH);
4740 	}
4741 	c->tid = next_tid(c->tid);
4742 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4743 	slub_put_cpu_ptr(s->cpu_slab);
4744 
4745 	return i;
4746 
4747 error:
4748 	slub_put_cpu_ptr(s->cpu_slab);
4749 	__kmem_cache_free_bulk(s, i, p);
4750 	return 0;
4751 
4752 }
4753 #else /* CONFIG_SLUB_TINY */
4754 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4755 				   size_t size, void **p)
4756 {
4757 	int i;
4758 
4759 	for (i = 0; i < size; i++) {
4760 		void *object = kfence_alloc(s, s->object_size, flags);
4761 
4762 		if (unlikely(object)) {
4763 			p[i] = object;
4764 			continue;
4765 		}
4766 
4767 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4768 					 _RET_IP_, s->object_size);
4769 		if (unlikely(!p[i]))
4770 			goto error;
4771 
4772 		maybe_wipe_obj_freeptr(s, p[i]);
4773 	}
4774 
4775 	return i;
4776 
4777 error:
4778 	__kmem_cache_free_bulk(s, i, p);
4779 	return 0;
4780 }
4781 #endif /* CONFIG_SLUB_TINY */
4782 
4783 /* Note that interrupts must be enabled when calling this function. */
4784 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4785 				 void **p)
4786 {
4787 	int i;
4788 
4789 	if (!size)
4790 		return 0;
4791 
4792 	s = slab_pre_alloc_hook(s, flags);
4793 	if (unlikely(!s))
4794 		return 0;
4795 
4796 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4797 	if (unlikely(i == 0))
4798 		return 0;
4799 
4800 	/*
4801 	 * memcg and kmem_cache debug support and memory initialization.
4802 	 * Done outside of the IRQ disabled fastpath loop.
4803 	 */
4804 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4805 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
4806 		return 0;
4807 	}
4808 	return i;
4809 }
4810 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4811 
4812 
4813 /*
4814  * Object placement in a slab is made very easy because we always start at
4815  * offset 0. If we tune the size of the object to the alignment then we can
4816  * get the required alignment by putting one properly sized object after
4817  * another.
4818  *
4819  * Notice that the allocation order determines the sizes of the per cpu
4820  * caches. Each processor has always one slab available for allocations.
4821  * Increasing the allocation order reduces the number of times that slabs
4822  * must be moved on and off the partial lists and is therefore a factor in
4823  * locking overhead.
4824  */
4825 
4826 /*
4827  * Minimum / Maximum order of slab pages. This influences locking overhead
4828  * and slab fragmentation. A higher order reduces the number of partial slabs
4829  * and increases the number of allocations possible without having to
4830  * take the list_lock.
4831  */
4832 static unsigned int slub_min_order;
4833 static unsigned int slub_max_order =
4834 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4835 static unsigned int slub_min_objects;
4836 
4837 /*
4838  * Calculate the order of allocation given an slab object size.
4839  *
4840  * The order of allocation has significant impact on performance and other
4841  * system components. Generally order 0 allocations should be preferred since
4842  * order 0 does not cause fragmentation in the page allocator. Larger objects
4843  * be problematic to put into order 0 slabs because there may be too much
4844  * unused space left. We go to a higher order if more than 1/16th of the slab
4845  * would be wasted.
4846  *
4847  * In order to reach satisfactory performance we must ensure that a minimum
4848  * number of objects is in one slab. Otherwise we may generate too much
4849  * activity on the partial lists which requires taking the list_lock. This is
4850  * less a concern for large slabs though which are rarely used.
4851  *
4852  * slab_max_order specifies the order where we begin to stop considering the
4853  * number of objects in a slab as critical. If we reach slab_max_order then
4854  * we try to keep the page order as low as possible. So we accept more waste
4855  * of space in favor of a small page order.
4856  *
4857  * Higher order allocations also allow the placement of more objects in a
4858  * slab and thereby reduce object handling overhead. If the user has
4859  * requested a higher minimum order then we start with that one instead of
4860  * the smallest order which will fit the object.
4861  */
4862 static inline unsigned int calc_slab_order(unsigned int size,
4863 		unsigned int min_order, unsigned int max_order,
4864 		unsigned int fract_leftover)
4865 {
4866 	unsigned int order;
4867 
4868 	for (order = min_order; order <= max_order; order++) {
4869 
4870 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4871 		unsigned int rem;
4872 
4873 		rem = slab_size % size;
4874 
4875 		if (rem <= slab_size / fract_leftover)
4876 			break;
4877 	}
4878 
4879 	return order;
4880 }
4881 
4882 static inline int calculate_order(unsigned int size)
4883 {
4884 	unsigned int order;
4885 	unsigned int min_objects;
4886 	unsigned int max_objects;
4887 	unsigned int min_order;
4888 
4889 	min_objects = slub_min_objects;
4890 	if (!min_objects) {
4891 		/*
4892 		 * Some architectures will only update present cpus when
4893 		 * onlining them, so don't trust the number if it's just 1. But
4894 		 * we also don't want to use nr_cpu_ids always, as on some other
4895 		 * architectures, there can be many possible cpus, but never
4896 		 * onlined. Here we compromise between trying to avoid too high
4897 		 * order on systems that appear larger than they are, and too
4898 		 * low order on systems that appear smaller than they are.
4899 		 */
4900 		unsigned int nr_cpus = num_present_cpus();
4901 		if (nr_cpus <= 1)
4902 			nr_cpus = nr_cpu_ids;
4903 		min_objects = 4 * (fls(nr_cpus) + 1);
4904 	}
4905 	/* min_objects can't be 0 because get_order(0) is undefined */
4906 	max_objects = max(order_objects(slub_max_order, size), 1U);
4907 	min_objects = min(min_objects, max_objects);
4908 
4909 	min_order = max_t(unsigned int, slub_min_order,
4910 			  get_order(min_objects * size));
4911 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4912 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4913 
4914 	/*
4915 	 * Attempt to find best configuration for a slab. This works by first
4916 	 * attempting to generate a layout with the best possible configuration
4917 	 * and backing off gradually.
4918 	 *
4919 	 * We start with accepting at most 1/16 waste and try to find the
4920 	 * smallest order from min_objects-derived/slab_min_order up to
4921 	 * slab_max_order that will satisfy the constraint. Note that increasing
4922 	 * the order can only result in same or less fractional waste, not more.
4923 	 *
4924 	 * If that fails, we increase the acceptable fraction of waste and try
4925 	 * again. The last iteration with fraction of 1/2 would effectively
4926 	 * accept any waste and give us the order determined by min_objects, as
4927 	 * long as at least single object fits within slab_max_order.
4928 	 */
4929 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4930 		order = calc_slab_order(size, min_order, slub_max_order,
4931 					fraction);
4932 		if (order <= slub_max_order)
4933 			return order;
4934 	}
4935 
4936 	/*
4937 	 * Doh this slab cannot be placed using slab_max_order.
4938 	 */
4939 	order = get_order(size);
4940 	if (order <= MAX_PAGE_ORDER)
4941 		return order;
4942 	return -ENOSYS;
4943 }
4944 
4945 static void
4946 init_kmem_cache_node(struct kmem_cache_node *n)
4947 {
4948 	n->nr_partial = 0;
4949 	spin_lock_init(&n->list_lock);
4950 	INIT_LIST_HEAD(&n->partial);
4951 #ifdef CONFIG_SLUB_DEBUG
4952 	atomic_long_set(&n->nr_slabs, 0);
4953 	atomic_long_set(&n->total_objects, 0);
4954 	INIT_LIST_HEAD(&n->full);
4955 #endif
4956 }
4957 
4958 #ifndef CONFIG_SLUB_TINY
4959 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4960 {
4961 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4962 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4963 			sizeof(struct kmem_cache_cpu));
4964 
4965 	/*
4966 	 * Must align to double word boundary for the double cmpxchg
4967 	 * instructions to work; see __pcpu_double_call_return_bool().
4968 	 */
4969 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4970 				     2 * sizeof(void *));
4971 
4972 	if (!s->cpu_slab)
4973 		return 0;
4974 
4975 	init_kmem_cache_cpus(s);
4976 
4977 	return 1;
4978 }
4979 #else
4980 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4981 {
4982 	return 1;
4983 }
4984 #endif /* CONFIG_SLUB_TINY */
4985 
4986 static struct kmem_cache *kmem_cache_node;
4987 
4988 /*
4989  * No kmalloc_node yet so do it by hand. We know that this is the first
4990  * slab on the node for this slabcache. There are no concurrent accesses
4991  * possible.
4992  *
4993  * Note that this function only works on the kmem_cache_node
4994  * when allocating for the kmem_cache_node. This is used for bootstrapping
4995  * memory on a fresh node that has no slab structures yet.
4996  */
4997 static void early_kmem_cache_node_alloc(int node)
4998 {
4999 	struct slab *slab;
5000 	struct kmem_cache_node *n;
5001 
5002 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5003 
5004 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5005 
5006 	BUG_ON(!slab);
5007 	if (slab_nid(slab) != node) {
5008 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5009 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5010 	}
5011 
5012 	n = slab->freelist;
5013 	BUG_ON(!n);
5014 #ifdef CONFIG_SLUB_DEBUG
5015 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5016 #endif
5017 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5018 	slab->freelist = get_freepointer(kmem_cache_node, n);
5019 	slab->inuse = 1;
5020 	kmem_cache_node->node[node] = n;
5021 	init_kmem_cache_node(n);
5022 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5023 
5024 	/*
5025 	 * No locks need to be taken here as it has just been
5026 	 * initialized and there is no concurrent access.
5027 	 */
5028 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5029 }
5030 
5031 static void free_kmem_cache_nodes(struct kmem_cache *s)
5032 {
5033 	int node;
5034 	struct kmem_cache_node *n;
5035 
5036 	for_each_kmem_cache_node(s, node, n) {
5037 		s->node[node] = NULL;
5038 		kmem_cache_free(kmem_cache_node, n);
5039 	}
5040 }
5041 
5042 void __kmem_cache_release(struct kmem_cache *s)
5043 {
5044 	cache_random_seq_destroy(s);
5045 #ifndef CONFIG_SLUB_TINY
5046 	free_percpu(s->cpu_slab);
5047 #endif
5048 	free_kmem_cache_nodes(s);
5049 }
5050 
5051 static int init_kmem_cache_nodes(struct kmem_cache *s)
5052 {
5053 	int node;
5054 
5055 	for_each_node_mask(node, slab_nodes) {
5056 		struct kmem_cache_node *n;
5057 
5058 		if (slab_state == DOWN) {
5059 			early_kmem_cache_node_alloc(node);
5060 			continue;
5061 		}
5062 		n = kmem_cache_alloc_node(kmem_cache_node,
5063 						GFP_KERNEL, node);
5064 
5065 		if (!n) {
5066 			free_kmem_cache_nodes(s);
5067 			return 0;
5068 		}
5069 
5070 		init_kmem_cache_node(n);
5071 		s->node[node] = n;
5072 	}
5073 	return 1;
5074 }
5075 
5076 static void set_cpu_partial(struct kmem_cache *s)
5077 {
5078 #ifdef CONFIG_SLUB_CPU_PARTIAL
5079 	unsigned int nr_objects;
5080 
5081 	/*
5082 	 * cpu_partial determined the maximum number of objects kept in the
5083 	 * per cpu partial lists of a processor.
5084 	 *
5085 	 * Per cpu partial lists mainly contain slabs that just have one
5086 	 * object freed. If they are used for allocation then they can be
5087 	 * filled up again with minimal effort. The slab will never hit the
5088 	 * per node partial lists and therefore no locking will be required.
5089 	 *
5090 	 * For backwards compatibility reasons, this is determined as number
5091 	 * of objects, even though we now limit maximum number of pages, see
5092 	 * slub_set_cpu_partial()
5093 	 */
5094 	if (!kmem_cache_has_cpu_partial(s))
5095 		nr_objects = 0;
5096 	else if (s->size >= PAGE_SIZE)
5097 		nr_objects = 6;
5098 	else if (s->size >= 1024)
5099 		nr_objects = 24;
5100 	else if (s->size >= 256)
5101 		nr_objects = 52;
5102 	else
5103 		nr_objects = 120;
5104 
5105 	slub_set_cpu_partial(s, nr_objects);
5106 #endif
5107 }
5108 
5109 /*
5110  * calculate_sizes() determines the order and the distribution of data within
5111  * a slab object.
5112  */
5113 static int calculate_sizes(struct kmem_cache *s)
5114 {
5115 	slab_flags_t flags = s->flags;
5116 	unsigned int size = s->object_size;
5117 	unsigned int order;
5118 
5119 	/*
5120 	 * Round up object size to the next word boundary. We can only
5121 	 * place the free pointer at word boundaries and this determines
5122 	 * the possible location of the free pointer.
5123 	 */
5124 	size = ALIGN(size, sizeof(void *));
5125 
5126 #ifdef CONFIG_SLUB_DEBUG
5127 	/*
5128 	 * Determine if we can poison the object itself. If the user of
5129 	 * the slab may touch the object after free or before allocation
5130 	 * then we should never poison the object itself.
5131 	 */
5132 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5133 			!s->ctor)
5134 		s->flags |= __OBJECT_POISON;
5135 	else
5136 		s->flags &= ~__OBJECT_POISON;
5137 
5138 
5139 	/*
5140 	 * If we are Redzoning then check if there is some space between the
5141 	 * end of the object and the free pointer. If not then add an
5142 	 * additional word to have some bytes to store Redzone information.
5143 	 */
5144 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5145 		size += sizeof(void *);
5146 #endif
5147 
5148 	/*
5149 	 * With that we have determined the number of bytes in actual use
5150 	 * by the object and redzoning.
5151 	 */
5152 	s->inuse = size;
5153 
5154 	if (slub_debug_orig_size(s) ||
5155 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
5156 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
5157 	    s->ctor) {
5158 		/*
5159 		 * Relocate free pointer after the object if it is not
5160 		 * permitted to overwrite the first word of the object on
5161 		 * kmem_cache_free.
5162 		 *
5163 		 * This is the case if we do RCU, have a constructor or
5164 		 * destructor, are poisoning the objects, or are
5165 		 * redzoning an object smaller than sizeof(void *).
5166 		 *
5167 		 * The assumption that s->offset >= s->inuse means free
5168 		 * pointer is outside of the object is used in the
5169 		 * freeptr_outside_object() function. If that is no
5170 		 * longer true, the function needs to be modified.
5171 		 */
5172 		s->offset = size;
5173 		size += sizeof(void *);
5174 	} else {
5175 		/*
5176 		 * Store freelist pointer near middle of object to keep
5177 		 * it away from the edges of the object to avoid small
5178 		 * sized over/underflows from neighboring allocations.
5179 		 */
5180 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5181 	}
5182 
5183 #ifdef CONFIG_SLUB_DEBUG
5184 	if (flags & SLAB_STORE_USER) {
5185 		/*
5186 		 * Need to store information about allocs and frees after
5187 		 * the object.
5188 		 */
5189 		size += 2 * sizeof(struct track);
5190 
5191 		/* Save the original kmalloc request size */
5192 		if (flags & SLAB_KMALLOC)
5193 			size += sizeof(unsigned int);
5194 	}
5195 #endif
5196 
5197 	kasan_cache_create(s, &size, &s->flags);
5198 #ifdef CONFIG_SLUB_DEBUG
5199 	if (flags & SLAB_RED_ZONE) {
5200 		/*
5201 		 * Add some empty padding so that we can catch
5202 		 * overwrites from earlier objects rather than let
5203 		 * tracking information or the free pointer be
5204 		 * corrupted if a user writes before the start
5205 		 * of the object.
5206 		 */
5207 		size += sizeof(void *);
5208 
5209 		s->red_left_pad = sizeof(void *);
5210 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5211 		size += s->red_left_pad;
5212 	}
5213 #endif
5214 
5215 	/*
5216 	 * SLUB stores one object immediately after another beginning from
5217 	 * offset 0. In order to align the objects we have to simply size
5218 	 * each object to conform to the alignment.
5219 	 */
5220 	size = ALIGN(size, s->align);
5221 	s->size = size;
5222 	s->reciprocal_size = reciprocal_value(size);
5223 	order = calculate_order(size);
5224 
5225 	if ((int)order < 0)
5226 		return 0;
5227 
5228 	s->allocflags = __GFP_COMP;
5229 
5230 	if (s->flags & SLAB_CACHE_DMA)
5231 		s->allocflags |= GFP_DMA;
5232 
5233 	if (s->flags & SLAB_CACHE_DMA32)
5234 		s->allocflags |= GFP_DMA32;
5235 
5236 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5237 		s->allocflags |= __GFP_RECLAIMABLE;
5238 
5239 	/*
5240 	 * Determine the number of objects per slab
5241 	 */
5242 	s->oo = oo_make(order, size);
5243 	s->min = oo_make(get_order(size), size);
5244 
5245 	return !!oo_objects(s->oo);
5246 }
5247 
5248 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5249 {
5250 	s->flags = kmem_cache_flags(flags, s->name);
5251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5252 	s->random = get_random_long();
5253 #endif
5254 
5255 	if (!calculate_sizes(s))
5256 		goto error;
5257 	if (disable_higher_order_debug) {
5258 		/*
5259 		 * Disable debugging flags that store metadata if the min slab
5260 		 * order increased.
5261 		 */
5262 		if (get_order(s->size) > get_order(s->object_size)) {
5263 			s->flags &= ~DEBUG_METADATA_FLAGS;
5264 			s->offset = 0;
5265 			if (!calculate_sizes(s))
5266 				goto error;
5267 		}
5268 	}
5269 
5270 #ifdef system_has_freelist_aba
5271 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5272 		/* Enable fast mode */
5273 		s->flags |= __CMPXCHG_DOUBLE;
5274 	}
5275 #endif
5276 
5277 	/*
5278 	 * The larger the object size is, the more slabs we want on the partial
5279 	 * list to avoid pounding the page allocator excessively.
5280 	 */
5281 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5282 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5283 
5284 	set_cpu_partial(s);
5285 
5286 #ifdef CONFIG_NUMA
5287 	s->remote_node_defrag_ratio = 1000;
5288 #endif
5289 
5290 	/* Initialize the pre-computed randomized freelist if slab is up */
5291 	if (slab_state >= UP) {
5292 		if (init_cache_random_seq(s))
5293 			goto error;
5294 	}
5295 
5296 	if (!init_kmem_cache_nodes(s))
5297 		goto error;
5298 
5299 	if (alloc_kmem_cache_cpus(s))
5300 		return 0;
5301 
5302 error:
5303 	__kmem_cache_release(s);
5304 	return -EINVAL;
5305 }
5306 
5307 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5308 			      const char *text)
5309 {
5310 #ifdef CONFIG_SLUB_DEBUG
5311 	void *addr = slab_address(slab);
5312 	void *p;
5313 
5314 	slab_err(s, slab, text, s->name);
5315 
5316 	spin_lock(&object_map_lock);
5317 	__fill_map(object_map, s, slab);
5318 
5319 	for_each_object(p, s, addr, slab->objects) {
5320 
5321 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5322 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5323 			print_tracking(s, p);
5324 		}
5325 	}
5326 	spin_unlock(&object_map_lock);
5327 #endif
5328 }
5329 
5330 /*
5331  * Attempt to free all partial slabs on a node.
5332  * This is called from __kmem_cache_shutdown(). We must take list_lock
5333  * because sysfs file might still access partial list after the shutdowning.
5334  */
5335 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5336 {
5337 	LIST_HEAD(discard);
5338 	struct slab *slab, *h;
5339 
5340 	BUG_ON(irqs_disabled());
5341 	spin_lock_irq(&n->list_lock);
5342 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5343 		if (!slab->inuse) {
5344 			remove_partial(n, slab);
5345 			list_add(&slab->slab_list, &discard);
5346 		} else {
5347 			list_slab_objects(s, slab,
5348 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5349 		}
5350 	}
5351 	spin_unlock_irq(&n->list_lock);
5352 
5353 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5354 		discard_slab(s, slab);
5355 }
5356 
5357 bool __kmem_cache_empty(struct kmem_cache *s)
5358 {
5359 	int node;
5360 	struct kmem_cache_node *n;
5361 
5362 	for_each_kmem_cache_node(s, node, n)
5363 		if (n->nr_partial || node_nr_slabs(n))
5364 			return false;
5365 	return true;
5366 }
5367 
5368 /*
5369  * Release all resources used by a slab cache.
5370  */
5371 int __kmem_cache_shutdown(struct kmem_cache *s)
5372 {
5373 	int node;
5374 	struct kmem_cache_node *n;
5375 
5376 	flush_all_cpus_locked(s);
5377 	/* Attempt to free all objects */
5378 	for_each_kmem_cache_node(s, node, n) {
5379 		free_partial(s, n);
5380 		if (n->nr_partial || node_nr_slabs(n))
5381 			return 1;
5382 	}
5383 	return 0;
5384 }
5385 
5386 #ifdef CONFIG_PRINTK
5387 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5388 {
5389 	void *base;
5390 	int __maybe_unused i;
5391 	unsigned int objnr;
5392 	void *objp;
5393 	void *objp0;
5394 	struct kmem_cache *s = slab->slab_cache;
5395 	struct track __maybe_unused *trackp;
5396 
5397 	kpp->kp_ptr = object;
5398 	kpp->kp_slab = slab;
5399 	kpp->kp_slab_cache = s;
5400 	base = slab_address(slab);
5401 	objp0 = kasan_reset_tag(object);
5402 #ifdef CONFIG_SLUB_DEBUG
5403 	objp = restore_red_left(s, objp0);
5404 #else
5405 	objp = objp0;
5406 #endif
5407 	objnr = obj_to_index(s, slab, objp);
5408 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5409 	objp = base + s->size * objnr;
5410 	kpp->kp_objp = objp;
5411 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5412 			 || (objp - base) % s->size) ||
5413 	    !(s->flags & SLAB_STORE_USER))
5414 		return;
5415 #ifdef CONFIG_SLUB_DEBUG
5416 	objp = fixup_red_left(s, objp);
5417 	trackp = get_track(s, objp, TRACK_ALLOC);
5418 	kpp->kp_ret = (void *)trackp->addr;
5419 #ifdef CONFIG_STACKDEPOT
5420 	{
5421 		depot_stack_handle_t handle;
5422 		unsigned long *entries;
5423 		unsigned int nr_entries;
5424 
5425 		handle = READ_ONCE(trackp->handle);
5426 		if (handle) {
5427 			nr_entries = stack_depot_fetch(handle, &entries);
5428 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5429 				kpp->kp_stack[i] = (void *)entries[i];
5430 		}
5431 
5432 		trackp = get_track(s, objp, TRACK_FREE);
5433 		handle = READ_ONCE(trackp->handle);
5434 		if (handle) {
5435 			nr_entries = stack_depot_fetch(handle, &entries);
5436 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5437 				kpp->kp_free_stack[i] = (void *)entries[i];
5438 		}
5439 	}
5440 #endif
5441 #endif
5442 }
5443 #endif
5444 
5445 /********************************************************************
5446  *		Kmalloc subsystem
5447  *******************************************************************/
5448 
5449 static int __init setup_slub_min_order(char *str)
5450 {
5451 	get_option(&str, (int *)&slub_min_order);
5452 
5453 	if (slub_min_order > slub_max_order)
5454 		slub_max_order = slub_min_order;
5455 
5456 	return 1;
5457 }
5458 
5459 __setup("slab_min_order=", setup_slub_min_order);
5460 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5461 
5462 
5463 static int __init setup_slub_max_order(char *str)
5464 {
5465 	get_option(&str, (int *)&slub_max_order);
5466 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5467 
5468 	if (slub_min_order > slub_max_order)
5469 		slub_min_order = slub_max_order;
5470 
5471 	return 1;
5472 }
5473 
5474 __setup("slab_max_order=", setup_slub_max_order);
5475 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5476 
5477 static int __init setup_slub_min_objects(char *str)
5478 {
5479 	get_option(&str, (int *)&slub_min_objects);
5480 
5481 	return 1;
5482 }
5483 
5484 __setup("slab_min_objects=", setup_slub_min_objects);
5485 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5486 
5487 #ifdef CONFIG_HARDENED_USERCOPY
5488 /*
5489  * Rejects incorrectly sized objects and objects that are to be copied
5490  * to/from userspace but do not fall entirely within the containing slab
5491  * cache's usercopy region.
5492  *
5493  * Returns NULL if check passes, otherwise const char * to name of cache
5494  * to indicate an error.
5495  */
5496 void __check_heap_object(const void *ptr, unsigned long n,
5497 			 const struct slab *slab, bool to_user)
5498 {
5499 	struct kmem_cache *s;
5500 	unsigned int offset;
5501 	bool is_kfence = is_kfence_address(ptr);
5502 
5503 	ptr = kasan_reset_tag(ptr);
5504 
5505 	/* Find object and usable object size. */
5506 	s = slab->slab_cache;
5507 
5508 	/* Reject impossible pointers. */
5509 	if (ptr < slab_address(slab))
5510 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5511 			       to_user, 0, n);
5512 
5513 	/* Find offset within object. */
5514 	if (is_kfence)
5515 		offset = ptr - kfence_object_start(ptr);
5516 	else
5517 		offset = (ptr - slab_address(slab)) % s->size;
5518 
5519 	/* Adjust for redzone and reject if within the redzone. */
5520 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5521 		if (offset < s->red_left_pad)
5522 			usercopy_abort("SLUB object in left red zone",
5523 				       s->name, to_user, offset, n);
5524 		offset -= s->red_left_pad;
5525 	}
5526 
5527 	/* Allow address range falling entirely within usercopy region. */
5528 	if (offset >= s->useroffset &&
5529 	    offset - s->useroffset <= s->usersize &&
5530 	    n <= s->useroffset - offset + s->usersize)
5531 		return;
5532 
5533 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5534 }
5535 #endif /* CONFIG_HARDENED_USERCOPY */
5536 
5537 #define SHRINK_PROMOTE_MAX 32
5538 
5539 /*
5540  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5541  * up most to the head of the partial lists. New allocations will then
5542  * fill those up and thus they can be removed from the partial lists.
5543  *
5544  * The slabs with the least items are placed last. This results in them
5545  * being allocated from last increasing the chance that the last objects
5546  * are freed in them.
5547  */
5548 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5549 {
5550 	int node;
5551 	int i;
5552 	struct kmem_cache_node *n;
5553 	struct slab *slab;
5554 	struct slab *t;
5555 	struct list_head discard;
5556 	struct list_head promote[SHRINK_PROMOTE_MAX];
5557 	unsigned long flags;
5558 	int ret = 0;
5559 
5560 	for_each_kmem_cache_node(s, node, n) {
5561 		INIT_LIST_HEAD(&discard);
5562 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5563 			INIT_LIST_HEAD(promote + i);
5564 
5565 		spin_lock_irqsave(&n->list_lock, flags);
5566 
5567 		/*
5568 		 * Build lists of slabs to discard or promote.
5569 		 *
5570 		 * Note that concurrent frees may occur while we hold the
5571 		 * list_lock. slab->inuse here is the upper limit.
5572 		 */
5573 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5574 			int free = slab->objects - slab->inuse;
5575 
5576 			/* Do not reread slab->inuse */
5577 			barrier();
5578 
5579 			/* We do not keep full slabs on the list */
5580 			BUG_ON(free <= 0);
5581 
5582 			if (free == slab->objects) {
5583 				list_move(&slab->slab_list, &discard);
5584 				slab_clear_node_partial(slab);
5585 				n->nr_partial--;
5586 				dec_slabs_node(s, node, slab->objects);
5587 			} else if (free <= SHRINK_PROMOTE_MAX)
5588 				list_move(&slab->slab_list, promote + free - 1);
5589 		}
5590 
5591 		/*
5592 		 * Promote the slabs filled up most to the head of the
5593 		 * partial list.
5594 		 */
5595 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5596 			list_splice(promote + i, &n->partial);
5597 
5598 		spin_unlock_irqrestore(&n->list_lock, flags);
5599 
5600 		/* Release empty slabs */
5601 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5602 			free_slab(s, slab);
5603 
5604 		if (node_nr_slabs(n))
5605 			ret = 1;
5606 	}
5607 
5608 	return ret;
5609 }
5610 
5611 int __kmem_cache_shrink(struct kmem_cache *s)
5612 {
5613 	flush_all(s);
5614 	return __kmem_cache_do_shrink(s);
5615 }
5616 
5617 static int slab_mem_going_offline_callback(void *arg)
5618 {
5619 	struct kmem_cache *s;
5620 
5621 	mutex_lock(&slab_mutex);
5622 	list_for_each_entry(s, &slab_caches, list) {
5623 		flush_all_cpus_locked(s);
5624 		__kmem_cache_do_shrink(s);
5625 	}
5626 	mutex_unlock(&slab_mutex);
5627 
5628 	return 0;
5629 }
5630 
5631 static void slab_mem_offline_callback(void *arg)
5632 {
5633 	struct memory_notify *marg = arg;
5634 	int offline_node;
5635 
5636 	offline_node = marg->status_change_nid_normal;
5637 
5638 	/*
5639 	 * If the node still has available memory. we need kmem_cache_node
5640 	 * for it yet.
5641 	 */
5642 	if (offline_node < 0)
5643 		return;
5644 
5645 	mutex_lock(&slab_mutex);
5646 	node_clear(offline_node, slab_nodes);
5647 	/*
5648 	 * We no longer free kmem_cache_node structures here, as it would be
5649 	 * racy with all get_node() users, and infeasible to protect them with
5650 	 * slab_mutex.
5651 	 */
5652 	mutex_unlock(&slab_mutex);
5653 }
5654 
5655 static int slab_mem_going_online_callback(void *arg)
5656 {
5657 	struct kmem_cache_node *n;
5658 	struct kmem_cache *s;
5659 	struct memory_notify *marg = arg;
5660 	int nid = marg->status_change_nid_normal;
5661 	int ret = 0;
5662 
5663 	/*
5664 	 * If the node's memory is already available, then kmem_cache_node is
5665 	 * already created. Nothing to do.
5666 	 */
5667 	if (nid < 0)
5668 		return 0;
5669 
5670 	/*
5671 	 * We are bringing a node online. No memory is available yet. We must
5672 	 * allocate a kmem_cache_node structure in order to bring the node
5673 	 * online.
5674 	 */
5675 	mutex_lock(&slab_mutex);
5676 	list_for_each_entry(s, &slab_caches, list) {
5677 		/*
5678 		 * The structure may already exist if the node was previously
5679 		 * onlined and offlined.
5680 		 */
5681 		if (get_node(s, nid))
5682 			continue;
5683 		/*
5684 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5685 		 *      since memory is not yet available from the node that
5686 		 *      is brought up.
5687 		 */
5688 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5689 		if (!n) {
5690 			ret = -ENOMEM;
5691 			goto out;
5692 		}
5693 		init_kmem_cache_node(n);
5694 		s->node[nid] = n;
5695 	}
5696 	/*
5697 	 * Any cache created after this point will also have kmem_cache_node
5698 	 * initialized for the new node.
5699 	 */
5700 	node_set(nid, slab_nodes);
5701 out:
5702 	mutex_unlock(&slab_mutex);
5703 	return ret;
5704 }
5705 
5706 static int slab_memory_callback(struct notifier_block *self,
5707 				unsigned long action, void *arg)
5708 {
5709 	int ret = 0;
5710 
5711 	switch (action) {
5712 	case MEM_GOING_ONLINE:
5713 		ret = slab_mem_going_online_callback(arg);
5714 		break;
5715 	case MEM_GOING_OFFLINE:
5716 		ret = slab_mem_going_offline_callback(arg);
5717 		break;
5718 	case MEM_OFFLINE:
5719 	case MEM_CANCEL_ONLINE:
5720 		slab_mem_offline_callback(arg);
5721 		break;
5722 	case MEM_ONLINE:
5723 	case MEM_CANCEL_OFFLINE:
5724 		break;
5725 	}
5726 	if (ret)
5727 		ret = notifier_from_errno(ret);
5728 	else
5729 		ret = NOTIFY_OK;
5730 	return ret;
5731 }
5732 
5733 /********************************************************************
5734  *			Basic setup of slabs
5735  *******************************************************************/
5736 
5737 /*
5738  * Used for early kmem_cache structures that were allocated using
5739  * the page allocator. Allocate them properly then fix up the pointers
5740  * that may be pointing to the wrong kmem_cache structure.
5741  */
5742 
5743 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5744 {
5745 	int node;
5746 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5747 	struct kmem_cache_node *n;
5748 
5749 	memcpy(s, static_cache, kmem_cache->object_size);
5750 
5751 	/*
5752 	 * This runs very early, and only the boot processor is supposed to be
5753 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5754 	 * IPIs around.
5755 	 */
5756 	__flush_cpu_slab(s, smp_processor_id());
5757 	for_each_kmem_cache_node(s, node, n) {
5758 		struct slab *p;
5759 
5760 		list_for_each_entry(p, &n->partial, slab_list)
5761 			p->slab_cache = s;
5762 
5763 #ifdef CONFIG_SLUB_DEBUG
5764 		list_for_each_entry(p, &n->full, slab_list)
5765 			p->slab_cache = s;
5766 #endif
5767 	}
5768 	list_add(&s->list, &slab_caches);
5769 	return s;
5770 }
5771 
5772 void __init kmem_cache_init(void)
5773 {
5774 	static __initdata struct kmem_cache boot_kmem_cache,
5775 		boot_kmem_cache_node;
5776 	int node;
5777 
5778 	if (debug_guardpage_minorder())
5779 		slub_max_order = 0;
5780 
5781 	/* Print slub debugging pointers without hashing */
5782 	if (__slub_debug_enabled())
5783 		no_hash_pointers_enable(NULL);
5784 
5785 	kmem_cache_node = &boot_kmem_cache_node;
5786 	kmem_cache = &boot_kmem_cache;
5787 
5788 	/*
5789 	 * Initialize the nodemask for which we will allocate per node
5790 	 * structures. Here we don't need taking slab_mutex yet.
5791 	 */
5792 	for_each_node_state(node, N_NORMAL_MEMORY)
5793 		node_set(node, slab_nodes);
5794 
5795 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5796 			sizeof(struct kmem_cache_node),
5797 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5798 
5799 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5800 
5801 	/* Able to allocate the per node structures */
5802 	slab_state = PARTIAL;
5803 
5804 	create_boot_cache(kmem_cache, "kmem_cache",
5805 			offsetof(struct kmem_cache, node) +
5806 				nr_node_ids * sizeof(struct kmem_cache_node *),
5807 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5808 
5809 	kmem_cache = bootstrap(&boot_kmem_cache);
5810 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5811 
5812 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5813 	setup_kmalloc_cache_index_table();
5814 	create_kmalloc_caches();
5815 
5816 	/* Setup random freelists for each cache */
5817 	init_freelist_randomization();
5818 
5819 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5820 				  slub_cpu_dead);
5821 
5822 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5823 		cache_line_size(),
5824 		slub_min_order, slub_max_order, slub_min_objects,
5825 		nr_cpu_ids, nr_node_ids);
5826 }
5827 
5828 void __init kmem_cache_init_late(void)
5829 {
5830 #ifndef CONFIG_SLUB_TINY
5831 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5832 	WARN_ON(!flushwq);
5833 #endif
5834 }
5835 
5836 struct kmem_cache *
5837 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5838 		   slab_flags_t flags, void (*ctor)(void *))
5839 {
5840 	struct kmem_cache *s;
5841 
5842 	s = find_mergeable(size, align, flags, name, ctor);
5843 	if (s) {
5844 		if (sysfs_slab_alias(s, name))
5845 			return NULL;
5846 
5847 		s->refcount++;
5848 
5849 		/*
5850 		 * Adjust the object sizes so that we clear
5851 		 * the complete object on kzalloc.
5852 		 */
5853 		s->object_size = max(s->object_size, size);
5854 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5855 	}
5856 
5857 	return s;
5858 }
5859 
5860 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5861 {
5862 	int err;
5863 
5864 	err = kmem_cache_open(s, flags);
5865 	if (err)
5866 		return err;
5867 
5868 	/* Mutex is not taken during early boot */
5869 	if (slab_state <= UP)
5870 		return 0;
5871 
5872 	err = sysfs_slab_add(s);
5873 	if (err) {
5874 		__kmem_cache_release(s);
5875 		return err;
5876 	}
5877 
5878 	if (s->flags & SLAB_STORE_USER)
5879 		debugfs_slab_add(s);
5880 
5881 	return 0;
5882 }
5883 
5884 #ifdef SLAB_SUPPORTS_SYSFS
5885 static int count_inuse(struct slab *slab)
5886 {
5887 	return slab->inuse;
5888 }
5889 
5890 static int count_total(struct slab *slab)
5891 {
5892 	return slab->objects;
5893 }
5894 #endif
5895 
5896 #ifdef CONFIG_SLUB_DEBUG
5897 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5898 			  unsigned long *obj_map)
5899 {
5900 	void *p;
5901 	void *addr = slab_address(slab);
5902 
5903 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5904 		return;
5905 
5906 	/* Now we know that a valid freelist exists */
5907 	__fill_map(obj_map, s, slab);
5908 	for_each_object(p, s, addr, slab->objects) {
5909 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5910 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5911 
5912 		if (!check_object(s, slab, p, val))
5913 			break;
5914 	}
5915 }
5916 
5917 static int validate_slab_node(struct kmem_cache *s,
5918 		struct kmem_cache_node *n, unsigned long *obj_map)
5919 {
5920 	unsigned long count = 0;
5921 	struct slab *slab;
5922 	unsigned long flags;
5923 
5924 	spin_lock_irqsave(&n->list_lock, flags);
5925 
5926 	list_for_each_entry(slab, &n->partial, slab_list) {
5927 		validate_slab(s, slab, obj_map);
5928 		count++;
5929 	}
5930 	if (count != n->nr_partial) {
5931 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5932 		       s->name, count, n->nr_partial);
5933 		slab_add_kunit_errors();
5934 	}
5935 
5936 	if (!(s->flags & SLAB_STORE_USER))
5937 		goto out;
5938 
5939 	list_for_each_entry(slab, &n->full, slab_list) {
5940 		validate_slab(s, slab, obj_map);
5941 		count++;
5942 	}
5943 	if (count != node_nr_slabs(n)) {
5944 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5945 		       s->name, count, node_nr_slabs(n));
5946 		slab_add_kunit_errors();
5947 	}
5948 
5949 out:
5950 	spin_unlock_irqrestore(&n->list_lock, flags);
5951 	return count;
5952 }
5953 
5954 long validate_slab_cache(struct kmem_cache *s)
5955 {
5956 	int node;
5957 	unsigned long count = 0;
5958 	struct kmem_cache_node *n;
5959 	unsigned long *obj_map;
5960 
5961 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5962 	if (!obj_map)
5963 		return -ENOMEM;
5964 
5965 	flush_all(s);
5966 	for_each_kmem_cache_node(s, node, n)
5967 		count += validate_slab_node(s, n, obj_map);
5968 
5969 	bitmap_free(obj_map);
5970 
5971 	return count;
5972 }
5973 EXPORT_SYMBOL(validate_slab_cache);
5974 
5975 #ifdef CONFIG_DEBUG_FS
5976 /*
5977  * Generate lists of code addresses where slabcache objects are allocated
5978  * and freed.
5979  */
5980 
5981 struct location {
5982 	depot_stack_handle_t handle;
5983 	unsigned long count;
5984 	unsigned long addr;
5985 	unsigned long waste;
5986 	long long sum_time;
5987 	long min_time;
5988 	long max_time;
5989 	long min_pid;
5990 	long max_pid;
5991 	DECLARE_BITMAP(cpus, NR_CPUS);
5992 	nodemask_t nodes;
5993 };
5994 
5995 struct loc_track {
5996 	unsigned long max;
5997 	unsigned long count;
5998 	struct location *loc;
5999 	loff_t idx;
6000 };
6001 
6002 static struct dentry *slab_debugfs_root;
6003 
6004 static void free_loc_track(struct loc_track *t)
6005 {
6006 	if (t->max)
6007 		free_pages((unsigned long)t->loc,
6008 			get_order(sizeof(struct location) * t->max));
6009 }
6010 
6011 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6012 {
6013 	struct location *l;
6014 	int order;
6015 
6016 	order = get_order(sizeof(struct location) * max);
6017 
6018 	l = (void *)__get_free_pages(flags, order);
6019 	if (!l)
6020 		return 0;
6021 
6022 	if (t->count) {
6023 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6024 		free_loc_track(t);
6025 	}
6026 	t->max = max;
6027 	t->loc = l;
6028 	return 1;
6029 }
6030 
6031 static int add_location(struct loc_track *t, struct kmem_cache *s,
6032 				const struct track *track,
6033 				unsigned int orig_size)
6034 {
6035 	long start, end, pos;
6036 	struct location *l;
6037 	unsigned long caddr, chandle, cwaste;
6038 	unsigned long age = jiffies - track->when;
6039 	depot_stack_handle_t handle = 0;
6040 	unsigned int waste = s->object_size - orig_size;
6041 
6042 #ifdef CONFIG_STACKDEPOT
6043 	handle = READ_ONCE(track->handle);
6044 #endif
6045 	start = -1;
6046 	end = t->count;
6047 
6048 	for ( ; ; ) {
6049 		pos = start + (end - start + 1) / 2;
6050 
6051 		/*
6052 		 * There is nothing at "end". If we end up there
6053 		 * we need to add something to before end.
6054 		 */
6055 		if (pos == end)
6056 			break;
6057 
6058 		l = &t->loc[pos];
6059 		caddr = l->addr;
6060 		chandle = l->handle;
6061 		cwaste = l->waste;
6062 		if ((track->addr == caddr) && (handle == chandle) &&
6063 			(waste == cwaste)) {
6064 
6065 			l->count++;
6066 			if (track->when) {
6067 				l->sum_time += age;
6068 				if (age < l->min_time)
6069 					l->min_time = age;
6070 				if (age > l->max_time)
6071 					l->max_time = age;
6072 
6073 				if (track->pid < l->min_pid)
6074 					l->min_pid = track->pid;
6075 				if (track->pid > l->max_pid)
6076 					l->max_pid = track->pid;
6077 
6078 				cpumask_set_cpu(track->cpu,
6079 						to_cpumask(l->cpus));
6080 			}
6081 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6082 			return 1;
6083 		}
6084 
6085 		if (track->addr < caddr)
6086 			end = pos;
6087 		else if (track->addr == caddr && handle < chandle)
6088 			end = pos;
6089 		else if (track->addr == caddr && handle == chandle &&
6090 				waste < cwaste)
6091 			end = pos;
6092 		else
6093 			start = pos;
6094 	}
6095 
6096 	/*
6097 	 * Not found. Insert new tracking element.
6098 	 */
6099 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6100 		return 0;
6101 
6102 	l = t->loc + pos;
6103 	if (pos < t->count)
6104 		memmove(l + 1, l,
6105 			(t->count - pos) * sizeof(struct location));
6106 	t->count++;
6107 	l->count = 1;
6108 	l->addr = track->addr;
6109 	l->sum_time = age;
6110 	l->min_time = age;
6111 	l->max_time = age;
6112 	l->min_pid = track->pid;
6113 	l->max_pid = track->pid;
6114 	l->handle = handle;
6115 	l->waste = waste;
6116 	cpumask_clear(to_cpumask(l->cpus));
6117 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6118 	nodes_clear(l->nodes);
6119 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6120 	return 1;
6121 }
6122 
6123 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6124 		struct slab *slab, enum track_item alloc,
6125 		unsigned long *obj_map)
6126 {
6127 	void *addr = slab_address(slab);
6128 	bool is_alloc = (alloc == TRACK_ALLOC);
6129 	void *p;
6130 
6131 	__fill_map(obj_map, s, slab);
6132 
6133 	for_each_object(p, s, addr, slab->objects)
6134 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6135 			add_location(t, s, get_track(s, p, alloc),
6136 				     is_alloc ? get_orig_size(s, p) :
6137 						s->object_size);
6138 }
6139 #endif  /* CONFIG_DEBUG_FS   */
6140 #endif	/* CONFIG_SLUB_DEBUG */
6141 
6142 #ifdef SLAB_SUPPORTS_SYSFS
6143 enum slab_stat_type {
6144 	SL_ALL,			/* All slabs */
6145 	SL_PARTIAL,		/* Only partially allocated slabs */
6146 	SL_CPU,			/* Only slabs used for cpu caches */
6147 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6148 	SL_TOTAL		/* Determine object capacity not slabs */
6149 };
6150 
6151 #define SO_ALL		(1 << SL_ALL)
6152 #define SO_PARTIAL	(1 << SL_PARTIAL)
6153 #define SO_CPU		(1 << SL_CPU)
6154 #define SO_OBJECTS	(1 << SL_OBJECTS)
6155 #define SO_TOTAL	(1 << SL_TOTAL)
6156 
6157 static ssize_t show_slab_objects(struct kmem_cache *s,
6158 				 char *buf, unsigned long flags)
6159 {
6160 	unsigned long total = 0;
6161 	int node;
6162 	int x;
6163 	unsigned long *nodes;
6164 	int len = 0;
6165 
6166 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6167 	if (!nodes)
6168 		return -ENOMEM;
6169 
6170 	if (flags & SO_CPU) {
6171 		int cpu;
6172 
6173 		for_each_possible_cpu(cpu) {
6174 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6175 							       cpu);
6176 			int node;
6177 			struct slab *slab;
6178 
6179 			slab = READ_ONCE(c->slab);
6180 			if (!slab)
6181 				continue;
6182 
6183 			node = slab_nid(slab);
6184 			if (flags & SO_TOTAL)
6185 				x = slab->objects;
6186 			else if (flags & SO_OBJECTS)
6187 				x = slab->inuse;
6188 			else
6189 				x = 1;
6190 
6191 			total += x;
6192 			nodes[node] += x;
6193 
6194 #ifdef CONFIG_SLUB_CPU_PARTIAL
6195 			slab = slub_percpu_partial_read_once(c);
6196 			if (slab) {
6197 				node = slab_nid(slab);
6198 				if (flags & SO_TOTAL)
6199 					WARN_ON_ONCE(1);
6200 				else if (flags & SO_OBJECTS)
6201 					WARN_ON_ONCE(1);
6202 				else
6203 					x = data_race(slab->slabs);
6204 				total += x;
6205 				nodes[node] += x;
6206 			}
6207 #endif
6208 		}
6209 	}
6210 
6211 	/*
6212 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6213 	 * already held which will conflict with an existing lock order:
6214 	 *
6215 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6216 	 *
6217 	 * We don't really need mem_hotplug_lock (to hold off
6218 	 * slab_mem_going_offline_callback) here because slab's memory hot
6219 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6220 	 */
6221 
6222 #ifdef CONFIG_SLUB_DEBUG
6223 	if (flags & SO_ALL) {
6224 		struct kmem_cache_node *n;
6225 
6226 		for_each_kmem_cache_node(s, node, n) {
6227 
6228 			if (flags & SO_TOTAL)
6229 				x = node_nr_objs(n);
6230 			else if (flags & SO_OBJECTS)
6231 				x = node_nr_objs(n) - count_partial(n, count_free);
6232 			else
6233 				x = node_nr_slabs(n);
6234 			total += x;
6235 			nodes[node] += x;
6236 		}
6237 
6238 	} else
6239 #endif
6240 	if (flags & SO_PARTIAL) {
6241 		struct kmem_cache_node *n;
6242 
6243 		for_each_kmem_cache_node(s, node, n) {
6244 			if (flags & SO_TOTAL)
6245 				x = count_partial(n, count_total);
6246 			else if (flags & SO_OBJECTS)
6247 				x = count_partial(n, count_inuse);
6248 			else
6249 				x = n->nr_partial;
6250 			total += x;
6251 			nodes[node] += x;
6252 		}
6253 	}
6254 
6255 	len += sysfs_emit_at(buf, len, "%lu", total);
6256 #ifdef CONFIG_NUMA
6257 	for (node = 0; node < nr_node_ids; node++) {
6258 		if (nodes[node])
6259 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6260 					     node, nodes[node]);
6261 	}
6262 #endif
6263 	len += sysfs_emit_at(buf, len, "\n");
6264 	kfree(nodes);
6265 
6266 	return len;
6267 }
6268 
6269 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6270 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6271 
6272 struct slab_attribute {
6273 	struct attribute attr;
6274 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6275 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6276 };
6277 
6278 #define SLAB_ATTR_RO(_name) \
6279 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6280 
6281 #define SLAB_ATTR(_name) \
6282 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6283 
6284 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6285 {
6286 	return sysfs_emit(buf, "%u\n", s->size);
6287 }
6288 SLAB_ATTR_RO(slab_size);
6289 
6290 static ssize_t align_show(struct kmem_cache *s, char *buf)
6291 {
6292 	return sysfs_emit(buf, "%u\n", s->align);
6293 }
6294 SLAB_ATTR_RO(align);
6295 
6296 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6297 {
6298 	return sysfs_emit(buf, "%u\n", s->object_size);
6299 }
6300 SLAB_ATTR_RO(object_size);
6301 
6302 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6303 {
6304 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6305 }
6306 SLAB_ATTR_RO(objs_per_slab);
6307 
6308 static ssize_t order_show(struct kmem_cache *s, char *buf)
6309 {
6310 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6311 }
6312 SLAB_ATTR_RO(order);
6313 
6314 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6315 {
6316 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6317 }
6318 
6319 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6320 				 size_t length)
6321 {
6322 	unsigned long min;
6323 	int err;
6324 
6325 	err = kstrtoul(buf, 10, &min);
6326 	if (err)
6327 		return err;
6328 
6329 	s->min_partial = min;
6330 	return length;
6331 }
6332 SLAB_ATTR(min_partial);
6333 
6334 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6335 {
6336 	unsigned int nr_partial = 0;
6337 #ifdef CONFIG_SLUB_CPU_PARTIAL
6338 	nr_partial = s->cpu_partial;
6339 #endif
6340 
6341 	return sysfs_emit(buf, "%u\n", nr_partial);
6342 }
6343 
6344 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6345 				 size_t length)
6346 {
6347 	unsigned int objects;
6348 	int err;
6349 
6350 	err = kstrtouint(buf, 10, &objects);
6351 	if (err)
6352 		return err;
6353 	if (objects && !kmem_cache_has_cpu_partial(s))
6354 		return -EINVAL;
6355 
6356 	slub_set_cpu_partial(s, objects);
6357 	flush_all(s);
6358 	return length;
6359 }
6360 SLAB_ATTR(cpu_partial);
6361 
6362 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6363 {
6364 	if (!s->ctor)
6365 		return 0;
6366 	return sysfs_emit(buf, "%pS\n", s->ctor);
6367 }
6368 SLAB_ATTR_RO(ctor);
6369 
6370 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6371 {
6372 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6373 }
6374 SLAB_ATTR_RO(aliases);
6375 
6376 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6377 {
6378 	return show_slab_objects(s, buf, SO_PARTIAL);
6379 }
6380 SLAB_ATTR_RO(partial);
6381 
6382 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6383 {
6384 	return show_slab_objects(s, buf, SO_CPU);
6385 }
6386 SLAB_ATTR_RO(cpu_slabs);
6387 
6388 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6389 {
6390 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6391 }
6392 SLAB_ATTR_RO(objects_partial);
6393 
6394 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6395 {
6396 	int objects = 0;
6397 	int slabs = 0;
6398 	int cpu __maybe_unused;
6399 	int len = 0;
6400 
6401 #ifdef CONFIG_SLUB_CPU_PARTIAL
6402 	for_each_online_cpu(cpu) {
6403 		struct slab *slab;
6404 
6405 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6406 
6407 		if (slab)
6408 			slabs += data_race(slab->slabs);
6409 	}
6410 #endif
6411 
6412 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6413 	objects = (slabs * oo_objects(s->oo)) / 2;
6414 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6415 
6416 #ifdef CONFIG_SLUB_CPU_PARTIAL
6417 	for_each_online_cpu(cpu) {
6418 		struct slab *slab;
6419 
6420 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6421 		if (slab) {
6422 			slabs = data_race(slab->slabs);
6423 			objects = (slabs * oo_objects(s->oo)) / 2;
6424 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6425 					     cpu, objects, slabs);
6426 		}
6427 	}
6428 #endif
6429 	len += sysfs_emit_at(buf, len, "\n");
6430 
6431 	return len;
6432 }
6433 SLAB_ATTR_RO(slabs_cpu_partial);
6434 
6435 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6436 {
6437 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6438 }
6439 SLAB_ATTR_RO(reclaim_account);
6440 
6441 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6442 {
6443 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6444 }
6445 SLAB_ATTR_RO(hwcache_align);
6446 
6447 #ifdef CONFIG_ZONE_DMA
6448 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6449 {
6450 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6451 }
6452 SLAB_ATTR_RO(cache_dma);
6453 #endif
6454 
6455 #ifdef CONFIG_HARDENED_USERCOPY
6456 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6457 {
6458 	return sysfs_emit(buf, "%u\n", s->usersize);
6459 }
6460 SLAB_ATTR_RO(usersize);
6461 #endif
6462 
6463 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6464 {
6465 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6466 }
6467 SLAB_ATTR_RO(destroy_by_rcu);
6468 
6469 #ifdef CONFIG_SLUB_DEBUG
6470 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6471 {
6472 	return show_slab_objects(s, buf, SO_ALL);
6473 }
6474 SLAB_ATTR_RO(slabs);
6475 
6476 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6477 {
6478 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6479 }
6480 SLAB_ATTR_RO(total_objects);
6481 
6482 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6483 {
6484 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6485 }
6486 SLAB_ATTR_RO(objects);
6487 
6488 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6489 {
6490 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6491 }
6492 SLAB_ATTR_RO(sanity_checks);
6493 
6494 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6495 {
6496 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6497 }
6498 SLAB_ATTR_RO(trace);
6499 
6500 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6501 {
6502 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6503 }
6504 
6505 SLAB_ATTR_RO(red_zone);
6506 
6507 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6508 {
6509 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6510 }
6511 
6512 SLAB_ATTR_RO(poison);
6513 
6514 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6515 {
6516 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6517 }
6518 
6519 SLAB_ATTR_RO(store_user);
6520 
6521 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6522 {
6523 	return 0;
6524 }
6525 
6526 static ssize_t validate_store(struct kmem_cache *s,
6527 			const char *buf, size_t length)
6528 {
6529 	int ret = -EINVAL;
6530 
6531 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6532 		ret = validate_slab_cache(s);
6533 		if (ret >= 0)
6534 			ret = length;
6535 	}
6536 	return ret;
6537 }
6538 SLAB_ATTR(validate);
6539 
6540 #endif /* CONFIG_SLUB_DEBUG */
6541 
6542 #ifdef CONFIG_FAILSLAB
6543 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6544 {
6545 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6546 }
6547 
6548 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6549 				size_t length)
6550 {
6551 	if (s->refcount > 1)
6552 		return -EINVAL;
6553 
6554 	if (buf[0] == '1')
6555 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6556 	else
6557 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6558 
6559 	return length;
6560 }
6561 SLAB_ATTR(failslab);
6562 #endif
6563 
6564 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6565 {
6566 	return 0;
6567 }
6568 
6569 static ssize_t shrink_store(struct kmem_cache *s,
6570 			const char *buf, size_t length)
6571 {
6572 	if (buf[0] == '1')
6573 		kmem_cache_shrink(s);
6574 	else
6575 		return -EINVAL;
6576 	return length;
6577 }
6578 SLAB_ATTR(shrink);
6579 
6580 #ifdef CONFIG_NUMA
6581 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6582 {
6583 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6584 }
6585 
6586 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6587 				const char *buf, size_t length)
6588 {
6589 	unsigned int ratio;
6590 	int err;
6591 
6592 	err = kstrtouint(buf, 10, &ratio);
6593 	if (err)
6594 		return err;
6595 	if (ratio > 100)
6596 		return -ERANGE;
6597 
6598 	s->remote_node_defrag_ratio = ratio * 10;
6599 
6600 	return length;
6601 }
6602 SLAB_ATTR(remote_node_defrag_ratio);
6603 #endif
6604 
6605 #ifdef CONFIG_SLUB_STATS
6606 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6607 {
6608 	unsigned long sum  = 0;
6609 	int cpu;
6610 	int len = 0;
6611 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6612 
6613 	if (!data)
6614 		return -ENOMEM;
6615 
6616 	for_each_online_cpu(cpu) {
6617 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6618 
6619 		data[cpu] = x;
6620 		sum += x;
6621 	}
6622 
6623 	len += sysfs_emit_at(buf, len, "%lu", sum);
6624 
6625 #ifdef CONFIG_SMP
6626 	for_each_online_cpu(cpu) {
6627 		if (data[cpu])
6628 			len += sysfs_emit_at(buf, len, " C%d=%u",
6629 					     cpu, data[cpu]);
6630 	}
6631 #endif
6632 	kfree(data);
6633 	len += sysfs_emit_at(buf, len, "\n");
6634 
6635 	return len;
6636 }
6637 
6638 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6639 {
6640 	int cpu;
6641 
6642 	for_each_online_cpu(cpu)
6643 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6644 }
6645 
6646 #define STAT_ATTR(si, text) 					\
6647 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6648 {								\
6649 	return show_stat(s, buf, si);				\
6650 }								\
6651 static ssize_t text##_store(struct kmem_cache *s,		\
6652 				const char *buf, size_t length)	\
6653 {								\
6654 	if (buf[0] != '0')					\
6655 		return -EINVAL;					\
6656 	clear_stat(s, si);					\
6657 	return length;						\
6658 }								\
6659 SLAB_ATTR(text);						\
6660 
6661 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6662 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6663 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6664 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6665 STAT_ATTR(FREE_FROZEN, free_frozen);
6666 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6667 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6668 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6669 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6670 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6671 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6672 STAT_ATTR(FREE_SLAB, free_slab);
6673 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6674 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6675 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6676 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6677 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6678 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6679 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6680 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6681 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6682 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6683 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6684 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6685 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6686 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6687 #endif	/* CONFIG_SLUB_STATS */
6688 
6689 #ifdef CONFIG_KFENCE
6690 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6691 {
6692 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6693 }
6694 
6695 static ssize_t skip_kfence_store(struct kmem_cache *s,
6696 			const char *buf, size_t length)
6697 {
6698 	int ret = length;
6699 
6700 	if (buf[0] == '0')
6701 		s->flags &= ~SLAB_SKIP_KFENCE;
6702 	else if (buf[0] == '1')
6703 		s->flags |= SLAB_SKIP_KFENCE;
6704 	else
6705 		ret = -EINVAL;
6706 
6707 	return ret;
6708 }
6709 SLAB_ATTR(skip_kfence);
6710 #endif
6711 
6712 static struct attribute *slab_attrs[] = {
6713 	&slab_size_attr.attr,
6714 	&object_size_attr.attr,
6715 	&objs_per_slab_attr.attr,
6716 	&order_attr.attr,
6717 	&min_partial_attr.attr,
6718 	&cpu_partial_attr.attr,
6719 	&objects_partial_attr.attr,
6720 	&partial_attr.attr,
6721 	&cpu_slabs_attr.attr,
6722 	&ctor_attr.attr,
6723 	&aliases_attr.attr,
6724 	&align_attr.attr,
6725 	&hwcache_align_attr.attr,
6726 	&reclaim_account_attr.attr,
6727 	&destroy_by_rcu_attr.attr,
6728 	&shrink_attr.attr,
6729 	&slabs_cpu_partial_attr.attr,
6730 #ifdef CONFIG_SLUB_DEBUG
6731 	&total_objects_attr.attr,
6732 	&objects_attr.attr,
6733 	&slabs_attr.attr,
6734 	&sanity_checks_attr.attr,
6735 	&trace_attr.attr,
6736 	&red_zone_attr.attr,
6737 	&poison_attr.attr,
6738 	&store_user_attr.attr,
6739 	&validate_attr.attr,
6740 #endif
6741 #ifdef CONFIG_ZONE_DMA
6742 	&cache_dma_attr.attr,
6743 #endif
6744 #ifdef CONFIG_NUMA
6745 	&remote_node_defrag_ratio_attr.attr,
6746 #endif
6747 #ifdef CONFIG_SLUB_STATS
6748 	&alloc_fastpath_attr.attr,
6749 	&alloc_slowpath_attr.attr,
6750 	&free_fastpath_attr.attr,
6751 	&free_slowpath_attr.attr,
6752 	&free_frozen_attr.attr,
6753 	&free_add_partial_attr.attr,
6754 	&free_remove_partial_attr.attr,
6755 	&alloc_from_partial_attr.attr,
6756 	&alloc_slab_attr.attr,
6757 	&alloc_refill_attr.attr,
6758 	&alloc_node_mismatch_attr.attr,
6759 	&free_slab_attr.attr,
6760 	&cpuslab_flush_attr.attr,
6761 	&deactivate_full_attr.attr,
6762 	&deactivate_empty_attr.attr,
6763 	&deactivate_to_head_attr.attr,
6764 	&deactivate_to_tail_attr.attr,
6765 	&deactivate_remote_frees_attr.attr,
6766 	&deactivate_bypass_attr.attr,
6767 	&order_fallback_attr.attr,
6768 	&cmpxchg_double_fail_attr.attr,
6769 	&cmpxchg_double_cpu_fail_attr.attr,
6770 	&cpu_partial_alloc_attr.attr,
6771 	&cpu_partial_free_attr.attr,
6772 	&cpu_partial_node_attr.attr,
6773 	&cpu_partial_drain_attr.attr,
6774 #endif
6775 #ifdef CONFIG_FAILSLAB
6776 	&failslab_attr.attr,
6777 #endif
6778 #ifdef CONFIG_HARDENED_USERCOPY
6779 	&usersize_attr.attr,
6780 #endif
6781 #ifdef CONFIG_KFENCE
6782 	&skip_kfence_attr.attr,
6783 #endif
6784 
6785 	NULL
6786 };
6787 
6788 static const struct attribute_group slab_attr_group = {
6789 	.attrs = slab_attrs,
6790 };
6791 
6792 static ssize_t slab_attr_show(struct kobject *kobj,
6793 				struct attribute *attr,
6794 				char *buf)
6795 {
6796 	struct slab_attribute *attribute;
6797 	struct kmem_cache *s;
6798 
6799 	attribute = to_slab_attr(attr);
6800 	s = to_slab(kobj);
6801 
6802 	if (!attribute->show)
6803 		return -EIO;
6804 
6805 	return attribute->show(s, buf);
6806 }
6807 
6808 static ssize_t slab_attr_store(struct kobject *kobj,
6809 				struct attribute *attr,
6810 				const char *buf, size_t len)
6811 {
6812 	struct slab_attribute *attribute;
6813 	struct kmem_cache *s;
6814 
6815 	attribute = to_slab_attr(attr);
6816 	s = to_slab(kobj);
6817 
6818 	if (!attribute->store)
6819 		return -EIO;
6820 
6821 	return attribute->store(s, buf, len);
6822 }
6823 
6824 static void kmem_cache_release(struct kobject *k)
6825 {
6826 	slab_kmem_cache_release(to_slab(k));
6827 }
6828 
6829 static const struct sysfs_ops slab_sysfs_ops = {
6830 	.show = slab_attr_show,
6831 	.store = slab_attr_store,
6832 };
6833 
6834 static const struct kobj_type slab_ktype = {
6835 	.sysfs_ops = &slab_sysfs_ops,
6836 	.release = kmem_cache_release,
6837 };
6838 
6839 static struct kset *slab_kset;
6840 
6841 static inline struct kset *cache_kset(struct kmem_cache *s)
6842 {
6843 	return slab_kset;
6844 }
6845 
6846 #define ID_STR_LENGTH 32
6847 
6848 /* Create a unique string id for a slab cache:
6849  *
6850  * Format	:[flags-]size
6851  */
6852 static char *create_unique_id(struct kmem_cache *s)
6853 {
6854 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6855 	char *p = name;
6856 
6857 	if (!name)
6858 		return ERR_PTR(-ENOMEM);
6859 
6860 	*p++ = ':';
6861 	/*
6862 	 * First flags affecting slabcache operations. We will only
6863 	 * get here for aliasable slabs so we do not need to support
6864 	 * too many flags. The flags here must cover all flags that
6865 	 * are matched during merging to guarantee that the id is
6866 	 * unique.
6867 	 */
6868 	if (s->flags & SLAB_CACHE_DMA)
6869 		*p++ = 'd';
6870 	if (s->flags & SLAB_CACHE_DMA32)
6871 		*p++ = 'D';
6872 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6873 		*p++ = 'a';
6874 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6875 		*p++ = 'F';
6876 	if (s->flags & SLAB_ACCOUNT)
6877 		*p++ = 'A';
6878 	if (p != name + 1)
6879 		*p++ = '-';
6880 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6881 
6882 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6883 		kfree(name);
6884 		return ERR_PTR(-EINVAL);
6885 	}
6886 	kmsan_unpoison_memory(name, p - name);
6887 	return name;
6888 }
6889 
6890 static int sysfs_slab_add(struct kmem_cache *s)
6891 {
6892 	int err;
6893 	const char *name;
6894 	struct kset *kset = cache_kset(s);
6895 	int unmergeable = slab_unmergeable(s);
6896 
6897 	if (!unmergeable && disable_higher_order_debug &&
6898 			(slub_debug & DEBUG_METADATA_FLAGS))
6899 		unmergeable = 1;
6900 
6901 	if (unmergeable) {
6902 		/*
6903 		 * Slabcache can never be merged so we can use the name proper.
6904 		 * This is typically the case for debug situations. In that
6905 		 * case we can catch duplicate names easily.
6906 		 */
6907 		sysfs_remove_link(&slab_kset->kobj, s->name);
6908 		name = s->name;
6909 	} else {
6910 		/*
6911 		 * Create a unique name for the slab as a target
6912 		 * for the symlinks.
6913 		 */
6914 		name = create_unique_id(s);
6915 		if (IS_ERR(name))
6916 			return PTR_ERR(name);
6917 	}
6918 
6919 	s->kobj.kset = kset;
6920 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6921 	if (err)
6922 		goto out;
6923 
6924 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6925 	if (err)
6926 		goto out_del_kobj;
6927 
6928 	if (!unmergeable) {
6929 		/* Setup first alias */
6930 		sysfs_slab_alias(s, s->name);
6931 	}
6932 out:
6933 	if (!unmergeable)
6934 		kfree(name);
6935 	return err;
6936 out_del_kobj:
6937 	kobject_del(&s->kobj);
6938 	goto out;
6939 }
6940 
6941 void sysfs_slab_unlink(struct kmem_cache *s)
6942 {
6943 	kobject_del(&s->kobj);
6944 }
6945 
6946 void sysfs_slab_release(struct kmem_cache *s)
6947 {
6948 	kobject_put(&s->kobj);
6949 }
6950 
6951 /*
6952  * Need to buffer aliases during bootup until sysfs becomes
6953  * available lest we lose that information.
6954  */
6955 struct saved_alias {
6956 	struct kmem_cache *s;
6957 	const char *name;
6958 	struct saved_alias *next;
6959 };
6960 
6961 static struct saved_alias *alias_list;
6962 
6963 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6964 {
6965 	struct saved_alias *al;
6966 
6967 	if (slab_state == FULL) {
6968 		/*
6969 		 * If we have a leftover link then remove it.
6970 		 */
6971 		sysfs_remove_link(&slab_kset->kobj, name);
6972 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6973 	}
6974 
6975 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6976 	if (!al)
6977 		return -ENOMEM;
6978 
6979 	al->s = s;
6980 	al->name = name;
6981 	al->next = alias_list;
6982 	alias_list = al;
6983 	kmsan_unpoison_memory(al, sizeof(*al));
6984 	return 0;
6985 }
6986 
6987 static int __init slab_sysfs_init(void)
6988 {
6989 	struct kmem_cache *s;
6990 	int err;
6991 
6992 	mutex_lock(&slab_mutex);
6993 
6994 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6995 	if (!slab_kset) {
6996 		mutex_unlock(&slab_mutex);
6997 		pr_err("Cannot register slab subsystem.\n");
6998 		return -ENOMEM;
6999 	}
7000 
7001 	slab_state = FULL;
7002 
7003 	list_for_each_entry(s, &slab_caches, list) {
7004 		err = sysfs_slab_add(s);
7005 		if (err)
7006 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7007 			       s->name);
7008 	}
7009 
7010 	while (alias_list) {
7011 		struct saved_alias *al = alias_list;
7012 
7013 		alias_list = alias_list->next;
7014 		err = sysfs_slab_alias(al->s, al->name);
7015 		if (err)
7016 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7017 			       al->name);
7018 		kfree(al);
7019 	}
7020 
7021 	mutex_unlock(&slab_mutex);
7022 	return 0;
7023 }
7024 late_initcall(slab_sysfs_init);
7025 #endif /* SLAB_SUPPORTS_SYSFS */
7026 
7027 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7028 static int slab_debugfs_show(struct seq_file *seq, void *v)
7029 {
7030 	struct loc_track *t = seq->private;
7031 	struct location *l;
7032 	unsigned long idx;
7033 
7034 	idx = (unsigned long) t->idx;
7035 	if (idx < t->count) {
7036 		l = &t->loc[idx];
7037 
7038 		seq_printf(seq, "%7ld ", l->count);
7039 
7040 		if (l->addr)
7041 			seq_printf(seq, "%pS", (void *)l->addr);
7042 		else
7043 			seq_puts(seq, "<not-available>");
7044 
7045 		if (l->waste)
7046 			seq_printf(seq, " waste=%lu/%lu",
7047 				l->count * l->waste, l->waste);
7048 
7049 		if (l->sum_time != l->min_time) {
7050 			seq_printf(seq, " age=%ld/%llu/%ld",
7051 				l->min_time, div_u64(l->sum_time, l->count),
7052 				l->max_time);
7053 		} else
7054 			seq_printf(seq, " age=%ld", l->min_time);
7055 
7056 		if (l->min_pid != l->max_pid)
7057 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7058 		else
7059 			seq_printf(seq, " pid=%ld",
7060 				l->min_pid);
7061 
7062 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7063 			seq_printf(seq, " cpus=%*pbl",
7064 				 cpumask_pr_args(to_cpumask(l->cpus)));
7065 
7066 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7067 			seq_printf(seq, " nodes=%*pbl",
7068 				 nodemask_pr_args(&l->nodes));
7069 
7070 #ifdef CONFIG_STACKDEPOT
7071 		{
7072 			depot_stack_handle_t handle;
7073 			unsigned long *entries;
7074 			unsigned int nr_entries, j;
7075 
7076 			handle = READ_ONCE(l->handle);
7077 			if (handle) {
7078 				nr_entries = stack_depot_fetch(handle, &entries);
7079 				seq_puts(seq, "\n");
7080 				for (j = 0; j < nr_entries; j++)
7081 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7082 			}
7083 		}
7084 #endif
7085 		seq_puts(seq, "\n");
7086 	}
7087 
7088 	if (!idx && !t->count)
7089 		seq_puts(seq, "No data\n");
7090 
7091 	return 0;
7092 }
7093 
7094 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7095 {
7096 }
7097 
7098 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7099 {
7100 	struct loc_track *t = seq->private;
7101 
7102 	t->idx = ++(*ppos);
7103 	if (*ppos <= t->count)
7104 		return ppos;
7105 
7106 	return NULL;
7107 }
7108 
7109 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7110 {
7111 	struct location *loc1 = (struct location *)a;
7112 	struct location *loc2 = (struct location *)b;
7113 
7114 	if (loc1->count > loc2->count)
7115 		return -1;
7116 	else
7117 		return 1;
7118 }
7119 
7120 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7121 {
7122 	struct loc_track *t = seq->private;
7123 
7124 	t->idx = *ppos;
7125 	return ppos;
7126 }
7127 
7128 static const struct seq_operations slab_debugfs_sops = {
7129 	.start  = slab_debugfs_start,
7130 	.next   = slab_debugfs_next,
7131 	.stop   = slab_debugfs_stop,
7132 	.show   = slab_debugfs_show,
7133 };
7134 
7135 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7136 {
7137 
7138 	struct kmem_cache_node *n;
7139 	enum track_item alloc;
7140 	int node;
7141 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7142 						sizeof(struct loc_track));
7143 	struct kmem_cache *s = file_inode(filep)->i_private;
7144 	unsigned long *obj_map;
7145 
7146 	if (!t)
7147 		return -ENOMEM;
7148 
7149 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7150 	if (!obj_map) {
7151 		seq_release_private(inode, filep);
7152 		return -ENOMEM;
7153 	}
7154 
7155 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7156 		alloc = TRACK_ALLOC;
7157 	else
7158 		alloc = TRACK_FREE;
7159 
7160 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7161 		bitmap_free(obj_map);
7162 		seq_release_private(inode, filep);
7163 		return -ENOMEM;
7164 	}
7165 
7166 	for_each_kmem_cache_node(s, node, n) {
7167 		unsigned long flags;
7168 		struct slab *slab;
7169 
7170 		if (!node_nr_slabs(n))
7171 			continue;
7172 
7173 		spin_lock_irqsave(&n->list_lock, flags);
7174 		list_for_each_entry(slab, &n->partial, slab_list)
7175 			process_slab(t, s, slab, alloc, obj_map);
7176 		list_for_each_entry(slab, &n->full, slab_list)
7177 			process_slab(t, s, slab, alloc, obj_map);
7178 		spin_unlock_irqrestore(&n->list_lock, flags);
7179 	}
7180 
7181 	/* Sort locations by count */
7182 	sort_r(t->loc, t->count, sizeof(struct location),
7183 		cmp_loc_by_count, NULL, NULL);
7184 
7185 	bitmap_free(obj_map);
7186 	return 0;
7187 }
7188 
7189 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7190 {
7191 	struct seq_file *seq = file->private_data;
7192 	struct loc_track *t = seq->private;
7193 
7194 	free_loc_track(t);
7195 	return seq_release_private(inode, file);
7196 }
7197 
7198 static const struct file_operations slab_debugfs_fops = {
7199 	.open    = slab_debug_trace_open,
7200 	.read    = seq_read,
7201 	.llseek  = seq_lseek,
7202 	.release = slab_debug_trace_release,
7203 };
7204 
7205 static void debugfs_slab_add(struct kmem_cache *s)
7206 {
7207 	struct dentry *slab_cache_dir;
7208 
7209 	if (unlikely(!slab_debugfs_root))
7210 		return;
7211 
7212 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7213 
7214 	debugfs_create_file("alloc_traces", 0400,
7215 		slab_cache_dir, s, &slab_debugfs_fops);
7216 
7217 	debugfs_create_file("free_traces", 0400,
7218 		slab_cache_dir, s, &slab_debugfs_fops);
7219 }
7220 
7221 void debugfs_slab_release(struct kmem_cache *s)
7222 {
7223 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7224 }
7225 
7226 static int __init slab_debugfs_init(void)
7227 {
7228 	struct kmem_cache *s;
7229 
7230 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7231 
7232 	list_for_each_entry(s, &slab_caches, list)
7233 		if (s->flags & SLAB_STORE_USER)
7234 			debugfs_slab_add(s);
7235 
7236 	return 0;
7237 
7238 }
7239 __initcall(slab_debugfs_init);
7240 #endif
7241 /*
7242  * The /proc/slabinfo ABI
7243  */
7244 #ifdef CONFIG_SLUB_DEBUG
7245 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7246 {
7247 	unsigned long nr_slabs = 0;
7248 	unsigned long nr_objs = 0;
7249 	unsigned long nr_free = 0;
7250 	int node;
7251 	struct kmem_cache_node *n;
7252 
7253 	for_each_kmem_cache_node(s, node, n) {
7254 		nr_slabs += node_nr_slabs(n);
7255 		nr_objs += node_nr_objs(n);
7256 		nr_free += count_partial_free_approx(n);
7257 	}
7258 
7259 	sinfo->active_objs = nr_objs - nr_free;
7260 	sinfo->num_objs = nr_objs;
7261 	sinfo->active_slabs = nr_slabs;
7262 	sinfo->num_slabs = nr_slabs;
7263 	sinfo->objects_per_slab = oo_objects(s->oo);
7264 	sinfo->cache_order = oo_order(s->oo);
7265 }
7266 #endif /* CONFIG_SLUB_DEBUG */
7267