1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 /* Structure holding parameters for get_partial() call chain */ 222 struct partial_context { 223 gfp_t flags; 224 unsigned int orig_size; 225 void *object; 226 }; 227 228 static inline bool kmem_cache_debug(struct kmem_cache *s) 229 { 230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 231 } 232 233 static inline bool slub_debug_orig_size(struct kmem_cache *s) 234 { 235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 236 (s->flags & SLAB_KMALLOC)); 237 } 238 239 void *fixup_red_left(struct kmem_cache *s, void *p) 240 { 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 242 p += s->red_left_pad; 243 244 return p; 245 } 246 247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 248 { 249 #ifdef CONFIG_SLUB_CPU_PARTIAL 250 return !kmem_cache_debug(s); 251 #else 252 return false; 253 #endif 254 } 255 256 /* 257 * Issues still to be resolved: 258 * 259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 260 * 261 * - Variable sizing of the per node arrays 262 */ 263 264 /* Enable to log cmpxchg failures */ 265 #undef SLUB_DEBUG_CMPXCHG 266 267 #ifndef CONFIG_SLUB_TINY 268 /* 269 * Minimum number of partial slabs. These will be left on the partial 270 * lists even if they are empty. kmem_cache_shrink may reclaim them. 271 */ 272 #define MIN_PARTIAL 5 273 274 /* 275 * Maximum number of desirable partial slabs. 276 * The existence of more partial slabs makes kmem_cache_shrink 277 * sort the partial list by the number of objects in use. 278 */ 279 #define MAX_PARTIAL 10 280 #else 281 #define MIN_PARTIAL 0 282 #define MAX_PARTIAL 0 283 #endif 284 285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 286 SLAB_POISON | SLAB_STORE_USER) 287 288 /* 289 * These debug flags cannot use CMPXCHG because there might be consistency 290 * issues when checking or reading debug information 291 */ 292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 293 SLAB_TRACE) 294 295 296 /* 297 * Debugging flags that require metadata to be stored in the slab. These get 298 * disabled when slab_debug=O is used and a cache's min order increases with 299 * metadata. 300 */ 301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 302 303 #define OO_SHIFT 16 304 #define OO_MASK ((1 << OO_SHIFT) - 1) 305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 306 307 /* Internal SLUB flags */ 308 /* Poison object */ 309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 310 /* Use cmpxchg_double */ 311 312 #ifdef system_has_freelist_aba 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 314 #else 315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 316 #endif 317 318 /* 319 * Tracking user of a slab. 320 */ 321 #define TRACK_ADDRS_COUNT 16 322 struct track { 323 unsigned long addr; /* Called from address */ 324 #ifdef CONFIG_STACKDEPOT 325 depot_stack_handle_t handle; 326 #endif 327 int cpu; /* Was running on cpu */ 328 int pid; /* Pid context */ 329 unsigned long when; /* When did the operation occur */ 330 }; 331 332 enum track_item { TRACK_ALLOC, TRACK_FREE }; 333 334 #ifdef SLAB_SUPPORTS_SYSFS 335 static int sysfs_slab_add(struct kmem_cache *); 336 static int sysfs_slab_alias(struct kmem_cache *, const char *); 337 #else 338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 340 { return 0; } 341 #endif 342 343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 344 static void debugfs_slab_add(struct kmem_cache *); 345 #else 346 static inline void debugfs_slab_add(struct kmem_cache *s) { } 347 #endif 348 349 enum stat_item { 350 ALLOC_FASTPATH, /* Allocation from cpu slab */ 351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 352 FREE_FASTPATH, /* Free to cpu slab */ 353 FREE_SLOWPATH, /* Freeing not to cpu slab */ 354 FREE_FROZEN, /* Freeing to frozen slab */ 355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 361 FREE_SLAB, /* Slab freed to the page allocator */ 362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 368 DEACTIVATE_BYPASS, /* Implicit deactivation */ 369 ORDER_FALLBACK, /* Number of times fallback was necessary */ 370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 376 NR_SLUB_STAT_ITEMS 377 }; 378 379 #ifndef CONFIG_SLUB_TINY 380 /* 381 * When changing the layout, make sure freelist and tid are still compatible 382 * with this_cpu_cmpxchg_double() alignment requirements. 383 */ 384 struct kmem_cache_cpu { 385 union { 386 struct { 387 void **freelist; /* Pointer to next available object */ 388 unsigned long tid; /* Globally unique transaction id */ 389 }; 390 freelist_aba_t freelist_tid; 391 }; 392 struct slab *slab; /* The slab from which we are allocating */ 393 #ifdef CONFIG_SLUB_CPU_PARTIAL 394 struct slab *partial; /* Partially allocated slabs */ 395 #endif 396 local_lock_t lock; /* Protects the fields above */ 397 #ifdef CONFIG_SLUB_STATS 398 unsigned int stat[NR_SLUB_STAT_ITEMS]; 399 #endif 400 }; 401 #endif /* CONFIG_SLUB_TINY */ 402 403 static inline void stat(const struct kmem_cache *s, enum stat_item si) 404 { 405 #ifdef CONFIG_SLUB_STATS 406 /* 407 * The rmw is racy on a preemptible kernel but this is acceptable, so 408 * avoid this_cpu_add()'s irq-disable overhead. 409 */ 410 raw_cpu_inc(s->cpu_slab->stat[si]); 411 #endif 412 } 413 414 static inline 415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 416 { 417 #ifdef CONFIG_SLUB_STATS 418 raw_cpu_add(s->cpu_slab->stat[si], v); 419 #endif 420 } 421 422 /* 423 * The slab lists for all objects. 424 */ 425 struct kmem_cache_node { 426 spinlock_t list_lock; 427 unsigned long nr_partial; 428 struct list_head partial; 429 #ifdef CONFIG_SLUB_DEBUG 430 atomic_long_t nr_slabs; 431 atomic_long_t total_objects; 432 struct list_head full; 433 #endif 434 }; 435 436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 437 { 438 return s->node[node]; 439 } 440 441 /* 442 * Iterator over all nodes. The body will be executed for each node that has 443 * a kmem_cache_node structure allocated (which is true for all online nodes) 444 */ 445 #define for_each_kmem_cache_node(__s, __node, __n) \ 446 for (__node = 0; __node < nr_node_ids; __node++) \ 447 if ((__n = get_node(__s, __node))) 448 449 /* 450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 452 * differ during memory hotplug/hotremove operations. 453 * Protected by slab_mutex. 454 */ 455 static nodemask_t slab_nodes; 456 457 #ifndef CONFIG_SLUB_TINY 458 /* 459 * Workqueue used for flush_cpu_slab(). 460 */ 461 static struct workqueue_struct *flushwq; 462 #endif 463 464 /******************************************************************** 465 * Core slab cache functions 466 *******************************************************************/ 467 468 /* 469 * freeptr_t represents a SLUB freelist pointer, which might be encoded 470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 471 */ 472 typedef struct { unsigned long v; } freeptr_t; 473 474 /* 475 * Returns freelist pointer (ptr). With hardening, this is obfuscated 476 * with an XOR of the address where the pointer is held and a per-cache 477 * random number. 478 */ 479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 480 void *ptr, unsigned long ptr_addr) 481 { 482 unsigned long encoded; 483 484 #ifdef CONFIG_SLAB_FREELIST_HARDENED 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 486 #else 487 encoded = (unsigned long)ptr; 488 #endif 489 return (freeptr_t){.v = encoded}; 490 } 491 492 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 493 freeptr_t ptr, unsigned long ptr_addr) 494 { 495 void *decoded; 496 497 #ifdef CONFIG_SLAB_FREELIST_HARDENED 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 499 #else 500 decoded = (void *)ptr.v; 501 #endif 502 return decoded; 503 } 504 505 static inline void *get_freepointer(struct kmem_cache *s, void *object) 506 { 507 unsigned long ptr_addr; 508 freeptr_t p; 509 510 object = kasan_reset_tag(object); 511 ptr_addr = (unsigned long)object + s->offset; 512 p = *(freeptr_t *)(ptr_addr); 513 return freelist_ptr_decode(s, p, ptr_addr); 514 } 515 516 #ifndef CONFIG_SLUB_TINY 517 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 518 { 519 prefetchw(object + s->offset); 520 } 521 #endif 522 523 /* 524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 525 * pointer value in the case the current thread loses the race for the next 526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 528 * KMSAN will still check all arguments of cmpxchg because of imperfect 529 * handling of inline assembly. 530 * To work around this problem, we apply __no_kmsan_checks to ensure that 531 * get_freepointer_safe() returns initialized memory. 532 */ 533 __no_kmsan_checks 534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 535 { 536 unsigned long freepointer_addr; 537 freeptr_t p; 538 539 if (!debug_pagealloc_enabled_static()) 540 return get_freepointer(s, object); 541 542 object = kasan_reset_tag(object); 543 freepointer_addr = (unsigned long)object + s->offset; 544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 545 return freelist_ptr_decode(s, p, freepointer_addr); 546 } 547 548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 549 { 550 unsigned long freeptr_addr = (unsigned long)object + s->offset; 551 552 #ifdef CONFIG_SLAB_FREELIST_HARDENED 553 BUG_ON(object == fp); /* naive detection of double free or corruption */ 554 #endif 555 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 558 } 559 560 /* Loop over all objects in a slab */ 561 #define for_each_object(__p, __s, __addr, __objects) \ 562 for (__p = fixup_red_left(__s, __addr); \ 563 __p < (__addr) + (__objects) * (__s)->size; \ 564 __p += (__s)->size) 565 566 static inline unsigned int order_objects(unsigned int order, unsigned int size) 567 { 568 return ((unsigned int)PAGE_SIZE << order) / size; 569 } 570 571 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 572 unsigned int size) 573 { 574 struct kmem_cache_order_objects x = { 575 (order << OO_SHIFT) + order_objects(order, size) 576 }; 577 578 return x; 579 } 580 581 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 582 { 583 return x.x >> OO_SHIFT; 584 } 585 586 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 587 { 588 return x.x & OO_MASK; 589 } 590 591 #ifdef CONFIG_SLUB_CPU_PARTIAL 592 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 593 { 594 unsigned int nr_slabs; 595 596 s->cpu_partial = nr_objects; 597 598 /* 599 * We take the number of objects but actually limit the number of 600 * slabs on the per cpu partial list, in order to limit excessive 601 * growth of the list. For simplicity we assume that the slabs will 602 * be half-full. 603 */ 604 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 605 s->cpu_partial_slabs = nr_slabs; 606 } 607 #else 608 static inline void 609 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 610 { 611 } 612 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 613 614 /* 615 * Per slab locking using the pagelock 616 */ 617 static __always_inline void slab_lock(struct slab *slab) 618 { 619 struct page *page = slab_page(slab); 620 621 VM_BUG_ON_PAGE(PageTail(page), page); 622 bit_spin_lock(PG_locked, &page->flags); 623 } 624 625 static __always_inline void slab_unlock(struct slab *slab) 626 { 627 struct page *page = slab_page(slab); 628 629 VM_BUG_ON_PAGE(PageTail(page), page); 630 bit_spin_unlock(PG_locked, &page->flags); 631 } 632 633 static inline bool 634 __update_freelist_fast(struct slab *slab, 635 void *freelist_old, unsigned long counters_old, 636 void *freelist_new, unsigned long counters_new) 637 { 638 #ifdef system_has_freelist_aba 639 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 640 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 641 642 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 643 #else 644 return false; 645 #endif 646 } 647 648 static inline bool 649 __update_freelist_slow(struct slab *slab, 650 void *freelist_old, unsigned long counters_old, 651 void *freelist_new, unsigned long counters_new) 652 { 653 bool ret = false; 654 655 slab_lock(slab); 656 if (slab->freelist == freelist_old && 657 slab->counters == counters_old) { 658 slab->freelist = freelist_new; 659 slab->counters = counters_new; 660 ret = true; 661 } 662 slab_unlock(slab); 663 664 return ret; 665 } 666 667 /* 668 * Interrupts must be disabled (for the fallback code to work right), typically 669 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 670 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 671 * allocation/ free operation in hardirq context. Therefore nothing can 672 * interrupt the operation. 673 */ 674 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 675 void *freelist_old, unsigned long counters_old, 676 void *freelist_new, unsigned long counters_new, 677 const char *n) 678 { 679 bool ret; 680 681 if (USE_LOCKLESS_FAST_PATH()) 682 lockdep_assert_irqs_disabled(); 683 684 if (s->flags & __CMPXCHG_DOUBLE) { 685 ret = __update_freelist_fast(slab, freelist_old, counters_old, 686 freelist_new, counters_new); 687 } else { 688 ret = __update_freelist_slow(slab, freelist_old, counters_old, 689 freelist_new, counters_new); 690 } 691 if (likely(ret)) 692 return true; 693 694 cpu_relax(); 695 stat(s, CMPXCHG_DOUBLE_FAIL); 696 697 #ifdef SLUB_DEBUG_CMPXCHG 698 pr_info("%s %s: cmpxchg double redo ", n, s->name); 699 #endif 700 701 return false; 702 } 703 704 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 705 void *freelist_old, unsigned long counters_old, 706 void *freelist_new, unsigned long counters_new, 707 const char *n) 708 { 709 bool ret; 710 711 if (s->flags & __CMPXCHG_DOUBLE) { 712 ret = __update_freelist_fast(slab, freelist_old, counters_old, 713 freelist_new, counters_new); 714 } else { 715 unsigned long flags; 716 717 local_irq_save(flags); 718 ret = __update_freelist_slow(slab, freelist_old, counters_old, 719 freelist_new, counters_new); 720 local_irq_restore(flags); 721 } 722 if (likely(ret)) 723 return true; 724 725 cpu_relax(); 726 stat(s, CMPXCHG_DOUBLE_FAIL); 727 728 #ifdef SLUB_DEBUG_CMPXCHG 729 pr_info("%s %s: cmpxchg double redo ", n, s->name); 730 #endif 731 732 return false; 733 } 734 735 #ifdef CONFIG_SLUB_DEBUG 736 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 737 static DEFINE_SPINLOCK(object_map_lock); 738 739 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 740 struct slab *slab) 741 { 742 void *addr = slab_address(slab); 743 void *p; 744 745 bitmap_zero(obj_map, slab->objects); 746 747 for (p = slab->freelist; p; p = get_freepointer(s, p)) 748 set_bit(__obj_to_index(s, addr, p), obj_map); 749 } 750 751 #if IS_ENABLED(CONFIG_KUNIT) 752 static bool slab_add_kunit_errors(void) 753 { 754 struct kunit_resource *resource; 755 756 if (!kunit_get_current_test()) 757 return false; 758 759 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 760 if (!resource) 761 return false; 762 763 (*(int *)resource->data)++; 764 kunit_put_resource(resource); 765 return true; 766 } 767 #else 768 static inline bool slab_add_kunit_errors(void) { return false; } 769 #endif 770 771 static inline unsigned int size_from_object(struct kmem_cache *s) 772 { 773 if (s->flags & SLAB_RED_ZONE) 774 return s->size - s->red_left_pad; 775 776 return s->size; 777 } 778 779 static inline void *restore_red_left(struct kmem_cache *s, void *p) 780 { 781 if (s->flags & SLAB_RED_ZONE) 782 p -= s->red_left_pad; 783 784 return p; 785 } 786 787 /* 788 * Debug settings: 789 */ 790 #if defined(CONFIG_SLUB_DEBUG_ON) 791 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 792 #else 793 static slab_flags_t slub_debug; 794 #endif 795 796 static char *slub_debug_string; 797 static int disable_higher_order_debug; 798 799 /* 800 * slub is about to manipulate internal object metadata. This memory lies 801 * outside the range of the allocated object, so accessing it would normally 802 * be reported by kasan as a bounds error. metadata_access_enable() is used 803 * to tell kasan that these accesses are OK. 804 */ 805 static inline void metadata_access_enable(void) 806 { 807 kasan_disable_current(); 808 } 809 810 static inline void metadata_access_disable(void) 811 { 812 kasan_enable_current(); 813 } 814 815 /* 816 * Object debugging 817 */ 818 819 /* Verify that a pointer has an address that is valid within a slab page */ 820 static inline int check_valid_pointer(struct kmem_cache *s, 821 struct slab *slab, void *object) 822 { 823 void *base; 824 825 if (!object) 826 return 1; 827 828 base = slab_address(slab); 829 object = kasan_reset_tag(object); 830 object = restore_red_left(s, object); 831 if (object < base || object >= base + slab->objects * s->size || 832 (object - base) % s->size) { 833 return 0; 834 } 835 836 return 1; 837 } 838 839 static void print_section(char *level, char *text, u8 *addr, 840 unsigned int length) 841 { 842 metadata_access_enable(); 843 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 844 16, 1, kasan_reset_tag((void *)addr), length, 1); 845 metadata_access_disable(); 846 } 847 848 /* 849 * See comment in calculate_sizes(). 850 */ 851 static inline bool freeptr_outside_object(struct kmem_cache *s) 852 { 853 return s->offset >= s->inuse; 854 } 855 856 /* 857 * Return offset of the end of info block which is inuse + free pointer if 858 * not overlapping with object. 859 */ 860 static inline unsigned int get_info_end(struct kmem_cache *s) 861 { 862 if (freeptr_outside_object(s)) 863 return s->inuse + sizeof(void *); 864 else 865 return s->inuse; 866 } 867 868 static struct track *get_track(struct kmem_cache *s, void *object, 869 enum track_item alloc) 870 { 871 struct track *p; 872 873 p = object + get_info_end(s); 874 875 return kasan_reset_tag(p + alloc); 876 } 877 878 #ifdef CONFIG_STACKDEPOT 879 static noinline depot_stack_handle_t set_track_prepare(void) 880 { 881 depot_stack_handle_t handle; 882 unsigned long entries[TRACK_ADDRS_COUNT]; 883 unsigned int nr_entries; 884 885 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 886 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 887 888 return handle; 889 } 890 #else 891 static inline depot_stack_handle_t set_track_prepare(void) 892 { 893 return 0; 894 } 895 #endif 896 897 static void set_track_update(struct kmem_cache *s, void *object, 898 enum track_item alloc, unsigned long addr, 899 depot_stack_handle_t handle) 900 { 901 struct track *p = get_track(s, object, alloc); 902 903 #ifdef CONFIG_STACKDEPOT 904 p->handle = handle; 905 #endif 906 p->addr = addr; 907 p->cpu = smp_processor_id(); 908 p->pid = current->pid; 909 p->when = jiffies; 910 } 911 912 static __always_inline void set_track(struct kmem_cache *s, void *object, 913 enum track_item alloc, unsigned long addr) 914 { 915 depot_stack_handle_t handle = set_track_prepare(); 916 917 set_track_update(s, object, alloc, addr, handle); 918 } 919 920 static void init_tracking(struct kmem_cache *s, void *object) 921 { 922 struct track *p; 923 924 if (!(s->flags & SLAB_STORE_USER)) 925 return; 926 927 p = get_track(s, object, TRACK_ALLOC); 928 memset(p, 0, 2*sizeof(struct track)); 929 } 930 931 static void print_track(const char *s, struct track *t, unsigned long pr_time) 932 { 933 depot_stack_handle_t handle __maybe_unused; 934 935 if (!t->addr) 936 return; 937 938 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 939 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 940 #ifdef CONFIG_STACKDEPOT 941 handle = READ_ONCE(t->handle); 942 if (handle) 943 stack_depot_print(handle); 944 else 945 pr_err("object allocation/free stack trace missing\n"); 946 #endif 947 } 948 949 void print_tracking(struct kmem_cache *s, void *object) 950 { 951 unsigned long pr_time = jiffies; 952 if (!(s->flags & SLAB_STORE_USER)) 953 return; 954 955 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 956 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 957 } 958 959 static void print_slab_info(const struct slab *slab) 960 { 961 struct folio *folio = (struct folio *)slab_folio(slab); 962 963 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 964 slab, slab->objects, slab->inuse, slab->freelist, 965 folio_flags(folio, 0)); 966 } 967 968 /* 969 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 970 * family will round up the real request size to these fixed ones, so 971 * there could be an extra area than what is requested. Save the original 972 * request size in the meta data area, for better debug and sanity check. 973 */ 974 static inline void set_orig_size(struct kmem_cache *s, 975 void *object, unsigned int orig_size) 976 { 977 void *p = kasan_reset_tag(object); 978 unsigned int kasan_meta_size; 979 980 if (!slub_debug_orig_size(s)) 981 return; 982 983 /* 984 * KASAN can save its free meta data inside of the object at offset 0. 985 * If this meta data size is larger than 'orig_size', it will overlap 986 * the data redzone in [orig_size+1, object_size]. Thus, we adjust 987 * 'orig_size' to be as at least as big as KASAN's meta data. 988 */ 989 kasan_meta_size = kasan_metadata_size(s, true); 990 if (kasan_meta_size > orig_size) 991 orig_size = kasan_meta_size; 992 993 p += get_info_end(s); 994 p += sizeof(struct track) * 2; 995 996 *(unsigned int *)p = orig_size; 997 } 998 999 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 1000 { 1001 void *p = kasan_reset_tag(object); 1002 1003 if (!slub_debug_orig_size(s)) 1004 return s->object_size; 1005 1006 p += get_info_end(s); 1007 p += sizeof(struct track) * 2; 1008 1009 return *(unsigned int *)p; 1010 } 1011 1012 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1013 { 1014 set_orig_size(s, (void *)object, s->object_size); 1015 } 1016 1017 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1018 { 1019 struct va_format vaf; 1020 va_list args; 1021 1022 va_start(args, fmt); 1023 vaf.fmt = fmt; 1024 vaf.va = &args; 1025 pr_err("=============================================================================\n"); 1026 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1027 pr_err("-----------------------------------------------------------------------------\n\n"); 1028 va_end(args); 1029 } 1030 1031 __printf(2, 3) 1032 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1033 { 1034 struct va_format vaf; 1035 va_list args; 1036 1037 if (slab_add_kunit_errors()) 1038 return; 1039 1040 va_start(args, fmt); 1041 vaf.fmt = fmt; 1042 vaf.va = &args; 1043 pr_err("FIX %s: %pV\n", s->name, &vaf); 1044 va_end(args); 1045 } 1046 1047 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1048 { 1049 unsigned int off; /* Offset of last byte */ 1050 u8 *addr = slab_address(slab); 1051 1052 print_tracking(s, p); 1053 1054 print_slab_info(slab); 1055 1056 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1057 p, p - addr, get_freepointer(s, p)); 1058 1059 if (s->flags & SLAB_RED_ZONE) 1060 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1061 s->red_left_pad); 1062 else if (p > addr + 16) 1063 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1064 1065 print_section(KERN_ERR, "Object ", p, 1066 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1067 if (s->flags & SLAB_RED_ZONE) 1068 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1069 s->inuse - s->object_size); 1070 1071 off = get_info_end(s); 1072 1073 if (s->flags & SLAB_STORE_USER) 1074 off += 2 * sizeof(struct track); 1075 1076 if (slub_debug_orig_size(s)) 1077 off += sizeof(unsigned int); 1078 1079 off += kasan_metadata_size(s, false); 1080 1081 if (off != size_from_object(s)) 1082 /* Beginning of the filler is the free pointer */ 1083 print_section(KERN_ERR, "Padding ", p + off, 1084 size_from_object(s) - off); 1085 1086 dump_stack(); 1087 } 1088 1089 static void object_err(struct kmem_cache *s, struct slab *slab, 1090 u8 *object, char *reason) 1091 { 1092 if (slab_add_kunit_errors()) 1093 return; 1094 1095 slab_bug(s, "%s", reason); 1096 print_trailer(s, slab, object); 1097 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1098 } 1099 1100 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1101 void **freelist, void *nextfree) 1102 { 1103 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1104 !check_valid_pointer(s, slab, nextfree) && freelist) { 1105 object_err(s, slab, *freelist, "Freechain corrupt"); 1106 *freelist = NULL; 1107 slab_fix(s, "Isolate corrupted freechain"); 1108 return true; 1109 } 1110 1111 return false; 1112 } 1113 1114 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1115 const char *fmt, ...) 1116 { 1117 va_list args; 1118 char buf[100]; 1119 1120 if (slab_add_kunit_errors()) 1121 return; 1122 1123 va_start(args, fmt); 1124 vsnprintf(buf, sizeof(buf), fmt, args); 1125 va_end(args); 1126 slab_bug(s, "%s", buf); 1127 print_slab_info(slab); 1128 dump_stack(); 1129 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1130 } 1131 1132 static void init_object(struct kmem_cache *s, void *object, u8 val) 1133 { 1134 u8 *p = kasan_reset_tag(object); 1135 unsigned int poison_size = s->object_size; 1136 1137 if (s->flags & SLAB_RED_ZONE) { 1138 memset(p - s->red_left_pad, val, s->red_left_pad); 1139 1140 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1141 /* 1142 * Redzone the extra allocated space by kmalloc than 1143 * requested, and the poison size will be limited to 1144 * the original request size accordingly. 1145 */ 1146 poison_size = get_orig_size(s, object); 1147 } 1148 } 1149 1150 if (s->flags & __OBJECT_POISON) { 1151 memset(p, POISON_FREE, poison_size - 1); 1152 p[poison_size - 1] = POISON_END; 1153 } 1154 1155 if (s->flags & SLAB_RED_ZONE) 1156 memset(p + poison_size, val, s->inuse - poison_size); 1157 } 1158 1159 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1160 void *from, void *to) 1161 { 1162 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1163 memset(from, data, to - from); 1164 } 1165 1166 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1167 u8 *object, char *what, 1168 u8 *start, unsigned int value, unsigned int bytes) 1169 { 1170 u8 *fault; 1171 u8 *end; 1172 u8 *addr = slab_address(slab); 1173 1174 metadata_access_enable(); 1175 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1176 metadata_access_disable(); 1177 if (!fault) 1178 return 1; 1179 1180 end = start + bytes; 1181 while (end > fault && end[-1] == value) 1182 end--; 1183 1184 if (slab_add_kunit_errors()) 1185 goto skip_bug_print; 1186 1187 slab_bug(s, "%s overwritten", what); 1188 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1189 fault, end - 1, fault - addr, 1190 fault[0], value); 1191 print_trailer(s, slab, object); 1192 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1193 1194 skip_bug_print: 1195 restore_bytes(s, what, value, fault, end); 1196 return 0; 1197 } 1198 1199 /* 1200 * Object layout: 1201 * 1202 * object address 1203 * Bytes of the object to be managed. 1204 * If the freepointer may overlay the object then the free 1205 * pointer is at the middle of the object. 1206 * 1207 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1208 * 0xa5 (POISON_END) 1209 * 1210 * object + s->object_size 1211 * Padding to reach word boundary. This is also used for Redzoning. 1212 * Padding is extended by another word if Redzoning is enabled and 1213 * object_size == inuse. 1214 * 1215 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1216 * 0xcc (RED_ACTIVE) for objects in use. 1217 * 1218 * object + s->inuse 1219 * Meta data starts here. 1220 * 1221 * A. Free pointer (if we cannot overwrite object on free) 1222 * B. Tracking data for SLAB_STORE_USER 1223 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1224 * D. Padding to reach required alignment boundary or at minimum 1225 * one word if debugging is on to be able to detect writes 1226 * before the word boundary. 1227 * 1228 * Padding is done using 0x5a (POISON_INUSE) 1229 * 1230 * object + s->size 1231 * Nothing is used beyond s->size. 1232 * 1233 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1234 * ignored. And therefore no slab options that rely on these boundaries 1235 * may be used with merged slabcaches. 1236 */ 1237 1238 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1239 { 1240 unsigned long off = get_info_end(s); /* The end of info */ 1241 1242 if (s->flags & SLAB_STORE_USER) { 1243 /* We also have user information there */ 1244 off += 2 * sizeof(struct track); 1245 1246 if (s->flags & SLAB_KMALLOC) 1247 off += sizeof(unsigned int); 1248 } 1249 1250 off += kasan_metadata_size(s, false); 1251 1252 if (size_from_object(s) == off) 1253 return 1; 1254 1255 return check_bytes_and_report(s, slab, p, "Object padding", 1256 p + off, POISON_INUSE, size_from_object(s) - off); 1257 } 1258 1259 /* Check the pad bytes at the end of a slab page */ 1260 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1261 { 1262 u8 *start; 1263 u8 *fault; 1264 u8 *end; 1265 u8 *pad; 1266 int length; 1267 int remainder; 1268 1269 if (!(s->flags & SLAB_POISON)) 1270 return; 1271 1272 start = slab_address(slab); 1273 length = slab_size(slab); 1274 end = start + length; 1275 remainder = length % s->size; 1276 if (!remainder) 1277 return; 1278 1279 pad = end - remainder; 1280 metadata_access_enable(); 1281 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1282 metadata_access_disable(); 1283 if (!fault) 1284 return; 1285 while (end > fault && end[-1] == POISON_INUSE) 1286 end--; 1287 1288 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1289 fault, end - 1, fault - start); 1290 print_section(KERN_ERR, "Padding ", pad, remainder); 1291 1292 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1293 } 1294 1295 static int check_object(struct kmem_cache *s, struct slab *slab, 1296 void *object, u8 val) 1297 { 1298 u8 *p = object; 1299 u8 *endobject = object + s->object_size; 1300 unsigned int orig_size, kasan_meta_size; 1301 1302 if (s->flags & SLAB_RED_ZONE) { 1303 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1304 object - s->red_left_pad, val, s->red_left_pad)) 1305 return 0; 1306 1307 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1308 endobject, val, s->inuse - s->object_size)) 1309 return 0; 1310 1311 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1312 orig_size = get_orig_size(s, object); 1313 1314 if (s->object_size > orig_size && 1315 !check_bytes_and_report(s, slab, object, 1316 "kmalloc Redzone", p + orig_size, 1317 val, s->object_size - orig_size)) { 1318 return 0; 1319 } 1320 } 1321 } else { 1322 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1323 check_bytes_and_report(s, slab, p, "Alignment padding", 1324 endobject, POISON_INUSE, 1325 s->inuse - s->object_size); 1326 } 1327 } 1328 1329 if (s->flags & SLAB_POISON) { 1330 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1331 /* 1332 * KASAN can save its free meta data inside of the 1333 * object at offset 0. Thus, skip checking the part of 1334 * the redzone that overlaps with the meta data. 1335 */ 1336 kasan_meta_size = kasan_metadata_size(s, true); 1337 if (kasan_meta_size < s->object_size - 1 && 1338 !check_bytes_and_report(s, slab, p, "Poison", 1339 p + kasan_meta_size, POISON_FREE, 1340 s->object_size - kasan_meta_size - 1)) 1341 return 0; 1342 if (kasan_meta_size < s->object_size && 1343 !check_bytes_and_report(s, slab, p, "End Poison", 1344 p + s->object_size - 1, POISON_END, 1)) 1345 return 0; 1346 } 1347 /* 1348 * check_pad_bytes cleans up on its own. 1349 */ 1350 check_pad_bytes(s, slab, p); 1351 } 1352 1353 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1354 /* 1355 * Object and freepointer overlap. Cannot check 1356 * freepointer while object is allocated. 1357 */ 1358 return 1; 1359 1360 /* Check free pointer validity */ 1361 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1362 object_err(s, slab, p, "Freepointer corrupt"); 1363 /* 1364 * No choice but to zap it and thus lose the remainder 1365 * of the free objects in this slab. May cause 1366 * another error because the object count is now wrong. 1367 */ 1368 set_freepointer(s, p, NULL); 1369 return 0; 1370 } 1371 return 1; 1372 } 1373 1374 static int check_slab(struct kmem_cache *s, struct slab *slab) 1375 { 1376 int maxobj; 1377 1378 if (!folio_test_slab(slab_folio(slab))) { 1379 slab_err(s, slab, "Not a valid slab page"); 1380 return 0; 1381 } 1382 1383 maxobj = order_objects(slab_order(slab), s->size); 1384 if (slab->objects > maxobj) { 1385 slab_err(s, slab, "objects %u > max %u", 1386 slab->objects, maxobj); 1387 return 0; 1388 } 1389 if (slab->inuse > slab->objects) { 1390 slab_err(s, slab, "inuse %u > max %u", 1391 slab->inuse, slab->objects); 1392 return 0; 1393 } 1394 /* Slab_pad_check fixes things up after itself */ 1395 slab_pad_check(s, slab); 1396 return 1; 1397 } 1398 1399 /* 1400 * Determine if a certain object in a slab is on the freelist. Must hold the 1401 * slab lock to guarantee that the chains are in a consistent state. 1402 */ 1403 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1404 { 1405 int nr = 0; 1406 void *fp; 1407 void *object = NULL; 1408 int max_objects; 1409 1410 fp = slab->freelist; 1411 while (fp && nr <= slab->objects) { 1412 if (fp == search) 1413 return 1; 1414 if (!check_valid_pointer(s, slab, fp)) { 1415 if (object) { 1416 object_err(s, slab, object, 1417 "Freechain corrupt"); 1418 set_freepointer(s, object, NULL); 1419 } else { 1420 slab_err(s, slab, "Freepointer corrupt"); 1421 slab->freelist = NULL; 1422 slab->inuse = slab->objects; 1423 slab_fix(s, "Freelist cleared"); 1424 return 0; 1425 } 1426 break; 1427 } 1428 object = fp; 1429 fp = get_freepointer(s, object); 1430 nr++; 1431 } 1432 1433 max_objects = order_objects(slab_order(slab), s->size); 1434 if (max_objects > MAX_OBJS_PER_PAGE) 1435 max_objects = MAX_OBJS_PER_PAGE; 1436 1437 if (slab->objects != max_objects) { 1438 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1439 slab->objects, max_objects); 1440 slab->objects = max_objects; 1441 slab_fix(s, "Number of objects adjusted"); 1442 } 1443 if (slab->inuse != slab->objects - nr) { 1444 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1445 slab->inuse, slab->objects - nr); 1446 slab->inuse = slab->objects - nr; 1447 slab_fix(s, "Object count adjusted"); 1448 } 1449 return search == NULL; 1450 } 1451 1452 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1453 int alloc) 1454 { 1455 if (s->flags & SLAB_TRACE) { 1456 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1457 s->name, 1458 alloc ? "alloc" : "free", 1459 object, slab->inuse, 1460 slab->freelist); 1461 1462 if (!alloc) 1463 print_section(KERN_INFO, "Object ", (void *)object, 1464 s->object_size); 1465 1466 dump_stack(); 1467 } 1468 } 1469 1470 /* 1471 * Tracking of fully allocated slabs for debugging purposes. 1472 */ 1473 static void add_full(struct kmem_cache *s, 1474 struct kmem_cache_node *n, struct slab *slab) 1475 { 1476 if (!(s->flags & SLAB_STORE_USER)) 1477 return; 1478 1479 lockdep_assert_held(&n->list_lock); 1480 list_add(&slab->slab_list, &n->full); 1481 } 1482 1483 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1484 { 1485 if (!(s->flags & SLAB_STORE_USER)) 1486 return; 1487 1488 lockdep_assert_held(&n->list_lock); 1489 list_del(&slab->slab_list); 1490 } 1491 1492 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1493 { 1494 return atomic_long_read(&n->nr_slabs); 1495 } 1496 1497 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1498 { 1499 struct kmem_cache_node *n = get_node(s, node); 1500 1501 atomic_long_inc(&n->nr_slabs); 1502 atomic_long_add(objects, &n->total_objects); 1503 } 1504 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1505 { 1506 struct kmem_cache_node *n = get_node(s, node); 1507 1508 atomic_long_dec(&n->nr_slabs); 1509 atomic_long_sub(objects, &n->total_objects); 1510 } 1511 1512 /* Object debug checks for alloc/free paths */ 1513 static void setup_object_debug(struct kmem_cache *s, void *object) 1514 { 1515 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1516 return; 1517 1518 init_object(s, object, SLUB_RED_INACTIVE); 1519 init_tracking(s, object); 1520 } 1521 1522 static 1523 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1524 { 1525 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1526 return; 1527 1528 metadata_access_enable(); 1529 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1530 metadata_access_disable(); 1531 } 1532 1533 static inline int alloc_consistency_checks(struct kmem_cache *s, 1534 struct slab *slab, void *object) 1535 { 1536 if (!check_slab(s, slab)) 1537 return 0; 1538 1539 if (!check_valid_pointer(s, slab, object)) { 1540 object_err(s, slab, object, "Freelist Pointer check fails"); 1541 return 0; 1542 } 1543 1544 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1545 return 0; 1546 1547 return 1; 1548 } 1549 1550 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1551 struct slab *slab, void *object, int orig_size) 1552 { 1553 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1554 if (!alloc_consistency_checks(s, slab, object)) 1555 goto bad; 1556 } 1557 1558 /* Success. Perform special debug activities for allocs */ 1559 trace(s, slab, object, 1); 1560 set_orig_size(s, object, orig_size); 1561 init_object(s, object, SLUB_RED_ACTIVE); 1562 return true; 1563 1564 bad: 1565 if (folio_test_slab(slab_folio(slab))) { 1566 /* 1567 * If this is a slab page then lets do the best we can 1568 * to avoid issues in the future. Marking all objects 1569 * as used avoids touching the remaining objects. 1570 */ 1571 slab_fix(s, "Marking all objects used"); 1572 slab->inuse = slab->objects; 1573 slab->freelist = NULL; 1574 } 1575 return false; 1576 } 1577 1578 static inline int free_consistency_checks(struct kmem_cache *s, 1579 struct slab *slab, void *object, unsigned long addr) 1580 { 1581 if (!check_valid_pointer(s, slab, object)) { 1582 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1583 return 0; 1584 } 1585 1586 if (on_freelist(s, slab, object)) { 1587 object_err(s, slab, object, "Object already free"); 1588 return 0; 1589 } 1590 1591 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1592 return 0; 1593 1594 if (unlikely(s != slab->slab_cache)) { 1595 if (!folio_test_slab(slab_folio(slab))) { 1596 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1597 object); 1598 } else if (!slab->slab_cache) { 1599 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1600 object); 1601 dump_stack(); 1602 } else 1603 object_err(s, slab, object, 1604 "page slab pointer corrupt."); 1605 return 0; 1606 } 1607 return 1; 1608 } 1609 1610 /* 1611 * Parse a block of slab_debug options. Blocks are delimited by ';' 1612 * 1613 * @str: start of block 1614 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1615 * @slabs: return start of list of slabs, or NULL when there's no list 1616 * @init: assume this is initial parsing and not per-kmem-create parsing 1617 * 1618 * returns the start of next block if there's any, or NULL 1619 */ 1620 static char * 1621 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1622 { 1623 bool higher_order_disable = false; 1624 1625 /* Skip any completely empty blocks */ 1626 while (*str && *str == ';') 1627 str++; 1628 1629 if (*str == ',') { 1630 /* 1631 * No options but restriction on slabs. This means full 1632 * debugging for slabs matching a pattern. 1633 */ 1634 *flags = DEBUG_DEFAULT_FLAGS; 1635 goto check_slabs; 1636 } 1637 *flags = 0; 1638 1639 /* Determine which debug features should be switched on */ 1640 for (; *str && *str != ',' && *str != ';'; str++) { 1641 switch (tolower(*str)) { 1642 case '-': 1643 *flags = 0; 1644 break; 1645 case 'f': 1646 *flags |= SLAB_CONSISTENCY_CHECKS; 1647 break; 1648 case 'z': 1649 *flags |= SLAB_RED_ZONE; 1650 break; 1651 case 'p': 1652 *flags |= SLAB_POISON; 1653 break; 1654 case 'u': 1655 *flags |= SLAB_STORE_USER; 1656 break; 1657 case 't': 1658 *flags |= SLAB_TRACE; 1659 break; 1660 case 'a': 1661 *flags |= SLAB_FAILSLAB; 1662 break; 1663 case 'o': 1664 /* 1665 * Avoid enabling debugging on caches if its minimum 1666 * order would increase as a result. 1667 */ 1668 higher_order_disable = true; 1669 break; 1670 default: 1671 if (init) 1672 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1673 } 1674 } 1675 check_slabs: 1676 if (*str == ',') 1677 *slabs = ++str; 1678 else 1679 *slabs = NULL; 1680 1681 /* Skip over the slab list */ 1682 while (*str && *str != ';') 1683 str++; 1684 1685 /* Skip any completely empty blocks */ 1686 while (*str && *str == ';') 1687 str++; 1688 1689 if (init && higher_order_disable) 1690 disable_higher_order_debug = 1; 1691 1692 if (*str) 1693 return str; 1694 else 1695 return NULL; 1696 } 1697 1698 static int __init setup_slub_debug(char *str) 1699 { 1700 slab_flags_t flags; 1701 slab_flags_t global_flags; 1702 char *saved_str; 1703 char *slab_list; 1704 bool global_slub_debug_changed = false; 1705 bool slab_list_specified = false; 1706 1707 global_flags = DEBUG_DEFAULT_FLAGS; 1708 if (*str++ != '=' || !*str) 1709 /* 1710 * No options specified. Switch on full debugging. 1711 */ 1712 goto out; 1713 1714 saved_str = str; 1715 while (str) { 1716 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1717 1718 if (!slab_list) { 1719 global_flags = flags; 1720 global_slub_debug_changed = true; 1721 } else { 1722 slab_list_specified = true; 1723 if (flags & SLAB_STORE_USER) 1724 stack_depot_request_early_init(); 1725 } 1726 } 1727 1728 /* 1729 * For backwards compatibility, a single list of flags with list of 1730 * slabs means debugging is only changed for those slabs, so the global 1731 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1732 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1733 * long as there is no option specifying flags without a slab list. 1734 */ 1735 if (slab_list_specified) { 1736 if (!global_slub_debug_changed) 1737 global_flags = slub_debug; 1738 slub_debug_string = saved_str; 1739 } 1740 out: 1741 slub_debug = global_flags; 1742 if (slub_debug & SLAB_STORE_USER) 1743 stack_depot_request_early_init(); 1744 if (slub_debug != 0 || slub_debug_string) 1745 static_branch_enable(&slub_debug_enabled); 1746 else 1747 static_branch_disable(&slub_debug_enabled); 1748 if ((static_branch_unlikely(&init_on_alloc) || 1749 static_branch_unlikely(&init_on_free)) && 1750 (slub_debug & SLAB_POISON)) 1751 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1752 return 1; 1753 } 1754 1755 __setup("slab_debug", setup_slub_debug); 1756 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1757 1758 /* 1759 * kmem_cache_flags - apply debugging options to the cache 1760 * @flags: flags to set 1761 * @name: name of the cache 1762 * 1763 * Debug option(s) are applied to @flags. In addition to the debug 1764 * option(s), if a slab name (or multiple) is specified i.e. 1765 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1766 * then only the select slabs will receive the debug option(s). 1767 */ 1768 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1769 { 1770 char *iter; 1771 size_t len; 1772 char *next_block; 1773 slab_flags_t block_flags; 1774 slab_flags_t slub_debug_local = slub_debug; 1775 1776 if (flags & SLAB_NO_USER_FLAGS) 1777 return flags; 1778 1779 /* 1780 * If the slab cache is for debugging (e.g. kmemleak) then 1781 * don't store user (stack trace) information by default, 1782 * but let the user enable it via the command line below. 1783 */ 1784 if (flags & SLAB_NOLEAKTRACE) 1785 slub_debug_local &= ~SLAB_STORE_USER; 1786 1787 len = strlen(name); 1788 next_block = slub_debug_string; 1789 /* Go through all blocks of debug options, see if any matches our slab's name */ 1790 while (next_block) { 1791 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1792 if (!iter) 1793 continue; 1794 /* Found a block that has a slab list, search it */ 1795 while (*iter) { 1796 char *end, *glob; 1797 size_t cmplen; 1798 1799 end = strchrnul(iter, ','); 1800 if (next_block && next_block < end) 1801 end = next_block - 1; 1802 1803 glob = strnchr(iter, end - iter, '*'); 1804 if (glob) 1805 cmplen = glob - iter; 1806 else 1807 cmplen = max_t(size_t, len, (end - iter)); 1808 1809 if (!strncmp(name, iter, cmplen)) { 1810 flags |= block_flags; 1811 return flags; 1812 } 1813 1814 if (!*end || *end == ';') 1815 break; 1816 iter = end + 1; 1817 } 1818 } 1819 1820 return flags | slub_debug_local; 1821 } 1822 #else /* !CONFIG_SLUB_DEBUG */ 1823 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1824 static inline 1825 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1826 1827 static inline bool alloc_debug_processing(struct kmem_cache *s, 1828 struct slab *slab, void *object, int orig_size) { return true; } 1829 1830 static inline bool free_debug_processing(struct kmem_cache *s, 1831 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1832 unsigned long addr, depot_stack_handle_t handle) { return true; } 1833 1834 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1835 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1836 void *object, u8 val) { return 1; } 1837 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1838 static inline void set_track(struct kmem_cache *s, void *object, 1839 enum track_item alloc, unsigned long addr) {} 1840 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1841 struct slab *slab) {} 1842 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1843 struct slab *slab) {} 1844 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1845 { 1846 return flags; 1847 } 1848 #define slub_debug 0 1849 1850 #define disable_higher_order_debug 0 1851 1852 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1853 { return 0; } 1854 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1855 int objects) {} 1856 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1857 int objects) {} 1858 1859 #ifndef CONFIG_SLUB_TINY 1860 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1861 void **freelist, void *nextfree) 1862 { 1863 return false; 1864 } 1865 #endif 1866 #endif /* CONFIG_SLUB_DEBUG */ 1867 1868 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) 1869 { 1870 return (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1871 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; 1872 } 1873 1874 #ifdef CONFIG_MEMCG_KMEM 1875 static inline void memcg_free_slab_cgroups(struct slab *slab) 1876 { 1877 kfree(slab_objcgs(slab)); 1878 slab->memcg_data = 0; 1879 } 1880 1881 static inline size_t obj_full_size(struct kmem_cache *s) 1882 { 1883 /* 1884 * For each accounted object there is an extra space which is used 1885 * to store obj_cgroup membership. Charge it too. 1886 */ 1887 return s->size + sizeof(struct obj_cgroup *); 1888 } 1889 1890 /* 1891 * Returns false if the allocation should fail. 1892 */ 1893 static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s, 1894 struct list_lru *lru, 1895 struct obj_cgroup **objcgp, 1896 size_t objects, gfp_t flags) 1897 { 1898 /* 1899 * The obtained objcg pointer is safe to use within the current scope, 1900 * defined by current task or set_active_memcg() pair. 1901 * obj_cgroup_get() is used to get a permanent reference. 1902 */ 1903 struct obj_cgroup *objcg = current_obj_cgroup(); 1904 if (!objcg) 1905 return true; 1906 1907 if (lru) { 1908 int ret; 1909 struct mem_cgroup *memcg; 1910 1911 memcg = get_mem_cgroup_from_objcg(objcg); 1912 ret = memcg_list_lru_alloc(memcg, lru, flags); 1913 css_put(&memcg->css); 1914 1915 if (ret) 1916 return false; 1917 } 1918 1919 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) 1920 return false; 1921 1922 *objcgp = objcg; 1923 return true; 1924 } 1925 1926 /* 1927 * Returns false if the allocation should fail. 1928 */ 1929 static __fastpath_inline 1930 bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 1931 struct obj_cgroup **objcgp, size_t objects, 1932 gfp_t flags) 1933 { 1934 if (!memcg_kmem_online()) 1935 return true; 1936 1937 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 1938 return true; 1939 1940 return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects, 1941 flags)); 1942 } 1943 1944 static void __memcg_slab_post_alloc_hook(struct kmem_cache *s, 1945 struct obj_cgroup *objcg, 1946 gfp_t flags, size_t size, 1947 void **p) 1948 { 1949 struct slab *slab; 1950 unsigned long off; 1951 size_t i; 1952 1953 flags &= gfp_allowed_mask; 1954 1955 for (i = 0; i < size; i++) { 1956 if (likely(p[i])) { 1957 slab = virt_to_slab(p[i]); 1958 1959 if (!slab_objcgs(slab) && 1960 memcg_alloc_slab_cgroups(slab, s, flags, false)) { 1961 obj_cgroup_uncharge(objcg, obj_full_size(s)); 1962 continue; 1963 } 1964 1965 off = obj_to_index(s, slab, p[i]); 1966 obj_cgroup_get(objcg); 1967 slab_objcgs(slab)[off] = objcg; 1968 mod_objcg_state(objcg, slab_pgdat(slab), 1969 cache_vmstat_idx(s), obj_full_size(s)); 1970 } else { 1971 obj_cgroup_uncharge(objcg, obj_full_size(s)); 1972 } 1973 } 1974 } 1975 1976 static __fastpath_inline 1977 void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, 1978 gfp_t flags, size_t size, void **p) 1979 { 1980 if (likely(!memcg_kmem_online() || !objcg)) 1981 return; 1982 1983 return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p); 1984 } 1985 1986 static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 1987 void **p, int objects, 1988 struct obj_cgroup **objcgs) 1989 { 1990 for (int i = 0; i < objects; i++) { 1991 struct obj_cgroup *objcg; 1992 unsigned int off; 1993 1994 off = obj_to_index(s, slab, p[i]); 1995 objcg = objcgs[off]; 1996 if (!objcg) 1997 continue; 1998 1999 objcgs[off] = NULL; 2000 obj_cgroup_uncharge(objcg, obj_full_size(s)); 2001 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 2002 -obj_full_size(s)); 2003 obj_cgroup_put(objcg); 2004 } 2005 } 2006 2007 static __fastpath_inline 2008 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2009 int objects) 2010 { 2011 struct obj_cgroup **objcgs; 2012 2013 if (!memcg_kmem_online()) 2014 return; 2015 2016 objcgs = slab_objcgs(slab); 2017 if (likely(!objcgs)) 2018 return; 2019 2020 __memcg_slab_free_hook(s, slab, p, objects, objcgs); 2021 } 2022 2023 static inline 2024 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, 2025 struct obj_cgroup *objcg) 2026 { 2027 if (objcg) 2028 obj_cgroup_uncharge(objcg, objects * obj_full_size(s)); 2029 } 2030 #else /* CONFIG_MEMCG_KMEM */ 2031 static inline void memcg_free_slab_cgroups(struct slab *slab) 2032 { 2033 } 2034 2035 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, 2036 struct list_lru *lru, 2037 struct obj_cgroup **objcgp, 2038 size_t objects, gfp_t flags) 2039 { 2040 return true; 2041 } 2042 2043 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, 2044 struct obj_cgroup *objcg, 2045 gfp_t flags, size_t size, 2046 void **p) 2047 { 2048 } 2049 2050 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2051 void **p, int objects) 2052 { 2053 } 2054 2055 static inline 2056 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, 2057 struct obj_cgroup *objcg) 2058 { 2059 } 2060 #endif /* CONFIG_MEMCG_KMEM */ 2061 2062 /* 2063 * Hooks for other subsystems that check memory allocations. In a typical 2064 * production configuration these hooks all should produce no code at all. 2065 * 2066 * Returns true if freeing of the object can proceed, false if its reuse 2067 * was delayed by KASAN quarantine, or it was returned to KFENCE. 2068 */ 2069 static __always_inline 2070 bool slab_free_hook(struct kmem_cache *s, void *x, bool init) 2071 { 2072 kmemleak_free_recursive(x, s->flags); 2073 kmsan_slab_free(s, x); 2074 2075 debug_check_no_locks_freed(x, s->object_size); 2076 2077 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2078 debug_check_no_obj_freed(x, s->object_size); 2079 2080 /* Use KCSAN to help debug racy use-after-free. */ 2081 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 2082 __kcsan_check_access(x, s->object_size, 2083 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2084 2085 if (kfence_free(x)) 2086 return false; 2087 2088 /* 2089 * As memory initialization might be integrated into KASAN, 2090 * kasan_slab_free and initialization memset's must be 2091 * kept together to avoid discrepancies in behavior. 2092 * 2093 * The initialization memset's clear the object and the metadata, 2094 * but don't touch the SLAB redzone. 2095 */ 2096 if (unlikely(init)) { 2097 int rsize; 2098 2099 if (!kasan_has_integrated_init()) 2100 memset(kasan_reset_tag(x), 0, s->object_size); 2101 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2102 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 2103 s->size - s->inuse - rsize); 2104 } 2105 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2106 return !kasan_slab_free(s, x, init); 2107 } 2108 2109 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 2110 void **head, void **tail, 2111 int *cnt) 2112 { 2113 2114 void *object; 2115 void *next = *head; 2116 void *old_tail = *tail; 2117 bool init; 2118 2119 if (is_kfence_address(next)) { 2120 slab_free_hook(s, next, false); 2121 return false; 2122 } 2123 2124 /* Head and tail of the reconstructed freelist */ 2125 *head = NULL; 2126 *tail = NULL; 2127 2128 init = slab_want_init_on_free(s); 2129 2130 do { 2131 object = next; 2132 next = get_freepointer(s, object); 2133 2134 /* If object's reuse doesn't have to be delayed */ 2135 if (likely(slab_free_hook(s, object, init))) { 2136 /* Move object to the new freelist */ 2137 set_freepointer(s, object, *head); 2138 *head = object; 2139 if (!*tail) 2140 *tail = object; 2141 } else { 2142 /* 2143 * Adjust the reconstructed freelist depth 2144 * accordingly if object's reuse is delayed. 2145 */ 2146 --(*cnt); 2147 } 2148 } while (object != old_tail); 2149 2150 return *head != NULL; 2151 } 2152 2153 static void *setup_object(struct kmem_cache *s, void *object) 2154 { 2155 setup_object_debug(s, object); 2156 object = kasan_init_slab_obj(s, object); 2157 if (unlikely(s->ctor)) { 2158 kasan_unpoison_new_object(s, object); 2159 s->ctor(object); 2160 kasan_poison_new_object(s, object); 2161 } 2162 return object; 2163 } 2164 2165 /* 2166 * Slab allocation and freeing 2167 */ 2168 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2169 struct kmem_cache_order_objects oo) 2170 { 2171 struct folio *folio; 2172 struct slab *slab; 2173 unsigned int order = oo_order(oo); 2174 2175 folio = (struct folio *)alloc_pages_node(node, flags, order); 2176 if (!folio) 2177 return NULL; 2178 2179 slab = folio_slab(folio); 2180 __folio_set_slab(folio); 2181 /* Make the flag visible before any changes to folio->mapping */ 2182 smp_wmb(); 2183 if (folio_is_pfmemalloc(folio)) 2184 slab_set_pfmemalloc(slab); 2185 2186 return slab; 2187 } 2188 2189 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2190 /* Pre-initialize the random sequence cache */ 2191 static int init_cache_random_seq(struct kmem_cache *s) 2192 { 2193 unsigned int count = oo_objects(s->oo); 2194 int err; 2195 2196 /* Bailout if already initialised */ 2197 if (s->random_seq) 2198 return 0; 2199 2200 err = cache_random_seq_create(s, count, GFP_KERNEL); 2201 if (err) { 2202 pr_err("SLUB: Unable to initialize free list for %s\n", 2203 s->name); 2204 return err; 2205 } 2206 2207 /* Transform to an offset on the set of pages */ 2208 if (s->random_seq) { 2209 unsigned int i; 2210 2211 for (i = 0; i < count; i++) 2212 s->random_seq[i] *= s->size; 2213 } 2214 return 0; 2215 } 2216 2217 /* Initialize each random sequence freelist per cache */ 2218 static void __init init_freelist_randomization(void) 2219 { 2220 struct kmem_cache *s; 2221 2222 mutex_lock(&slab_mutex); 2223 2224 list_for_each_entry(s, &slab_caches, list) 2225 init_cache_random_seq(s); 2226 2227 mutex_unlock(&slab_mutex); 2228 } 2229 2230 /* Get the next entry on the pre-computed freelist randomized */ 2231 static void *next_freelist_entry(struct kmem_cache *s, 2232 unsigned long *pos, void *start, 2233 unsigned long page_limit, 2234 unsigned long freelist_count) 2235 { 2236 unsigned int idx; 2237 2238 /* 2239 * If the target page allocation failed, the number of objects on the 2240 * page might be smaller than the usual size defined by the cache. 2241 */ 2242 do { 2243 idx = s->random_seq[*pos]; 2244 *pos += 1; 2245 if (*pos >= freelist_count) 2246 *pos = 0; 2247 } while (unlikely(idx >= page_limit)); 2248 2249 return (char *)start + idx; 2250 } 2251 2252 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2253 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2254 { 2255 void *start; 2256 void *cur; 2257 void *next; 2258 unsigned long idx, pos, page_limit, freelist_count; 2259 2260 if (slab->objects < 2 || !s->random_seq) 2261 return false; 2262 2263 freelist_count = oo_objects(s->oo); 2264 pos = get_random_u32_below(freelist_count); 2265 2266 page_limit = slab->objects * s->size; 2267 start = fixup_red_left(s, slab_address(slab)); 2268 2269 /* First entry is used as the base of the freelist */ 2270 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2271 cur = setup_object(s, cur); 2272 slab->freelist = cur; 2273 2274 for (idx = 1; idx < slab->objects; idx++) { 2275 next = next_freelist_entry(s, &pos, start, page_limit, 2276 freelist_count); 2277 next = setup_object(s, next); 2278 set_freepointer(s, cur, next); 2279 cur = next; 2280 } 2281 set_freepointer(s, cur, NULL); 2282 2283 return true; 2284 } 2285 #else 2286 static inline int init_cache_random_seq(struct kmem_cache *s) 2287 { 2288 return 0; 2289 } 2290 static inline void init_freelist_randomization(void) { } 2291 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2292 { 2293 return false; 2294 } 2295 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2296 2297 static __always_inline void account_slab(struct slab *slab, int order, 2298 struct kmem_cache *s, gfp_t gfp) 2299 { 2300 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2301 memcg_alloc_slab_cgroups(slab, s, gfp, true); 2302 2303 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2304 PAGE_SIZE << order); 2305 } 2306 2307 static __always_inline void unaccount_slab(struct slab *slab, int order, 2308 struct kmem_cache *s) 2309 { 2310 if (memcg_kmem_online()) 2311 memcg_free_slab_cgroups(slab); 2312 2313 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2314 -(PAGE_SIZE << order)); 2315 } 2316 2317 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2318 { 2319 struct slab *slab; 2320 struct kmem_cache_order_objects oo = s->oo; 2321 gfp_t alloc_gfp; 2322 void *start, *p, *next; 2323 int idx; 2324 bool shuffle; 2325 2326 flags &= gfp_allowed_mask; 2327 2328 flags |= s->allocflags; 2329 2330 /* 2331 * Let the initial higher-order allocation fail under memory pressure 2332 * so we fall-back to the minimum order allocation. 2333 */ 2334 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2335 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2336 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2337 2338 slab = alloc_slab_page(alloc_gfp, node, oo); 2339 if (unlikely(!slab)) { 2340 oo = s->min; 2341 alloc_gfp = flags; 2342 /* 2343 * Allocation may have failed due to fragmentation. 2344 * Try a lower order alloc if possible 2345 */ 2346 slab = alloc_slab_page(alloc_gfp, node, oo); 2347 if (unlikely(!slab)) 2348 return NULL; 2349 stat(s, ORDER_FALLBACK); 2350 } 2351 2352 slab->objects = oo_objects(oo); 2353 slab->inuse = 0; 2354 slab->frozen = 0; 2355 2356 account_slab(slab, oo_order(oo), s, flags); 2357 2358 slab->slab_cache = s; 2359 2360 kasan_poison_slab(slab); 2361 2362 start = slab_address(slab); 2363 2364 setup_slab_debug(s, slab, start); 2365 2366 shuffle = shuffle_freelist(s, slab); 2367 2368 if (!shuffle) { 2369 start = fixup_red_left(s, start); 2370 start = setup_object(s, start); 2371 slab->freelist = start; 2372 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2373 next = p + s->size; 2374 next = setup_object(s, next); 2375 set_freepointer(s, p, next); 2376 p = next; 2377 } 2378 set_freepointer(s, p, NULL); 2379 } 2380 2381 return slab; 2382 } 2383 2384 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2385 { 2386 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2387 flags = kmalloc_fix_flags(flags); 2388 2389 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2390 2391 return allocate_slab(s, 2392 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2393 } 2394 2395 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2396 { 2397 struct folio *folio = slab_folio(slab); 2398 int order = folio_order(folio); 2399 int pages = 1 << order; 2400 2401 __slab_clear_pfmemalloc(slab); 2402 folio->mapping = NULL; 2403 /* Make the mapping reset visible before clearing the flag */ 2404 smp_wmb(); 2405 __folio_clear_slab(folio); 2406 mm_account_reclaimed_pages(pages); 2407 unaccount_slab(slab, order, s); 2408 __free_pages(&folio->page, order); 2409 } 2410 2411 static void rcu_free_slab(struct rcu_head *h) 2412 { 2413 struct slab *slab = container_of(h, struct slab, rcu_head); 2414 2415 __free_slab(slab->slab_cache, slab); 2416 } 2417 2418 static void free_slab(struct kmem_cache *s, struct slab *slab) 2419 { 2420 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2421 void *p; 2422 2423 slab_pad_check(s, slab); 2424 for_each_object(p, s, slab_address(slab), slab->objects) 2425 check_object(s, slab, p, SLUB_RED_INACTIVE); 2426 } 2427 2428 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2429 call_rcu(&slab->rcu_head, rcu_free_slab); 2430 else 2431 __free_slab(s, slab); 2432 } 2433 2434 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2435 { 2436 dec_slabs_node(s, slab_nid(slab), slab->objects); 2437 free_slab(s, slab); 2438 } 2439 2440 /* 2441 * SLUB reuses PG_workingset bit to keep track of whether it's on 2442 * the per-node partial list. 2443 */ 2444 static inline bool slab_test_node_partial(const struct slab *slab) 2445 { 2446 return folio_test_workingset((struct folio *)slab_folio(slab)); 2447 } 2448 2449 static inline void slab_set_node_partial(struct slab *slab) 2450 { 2451 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2452 } 2453 2454 static inline void slab_clear_node_partial(struct slab *slab) 2455 { 2456 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2457 } 2458 2459 /* 2460 * Management of partially allocated slabs. 2461 */ 2462 static inline void 2463 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2464 { 2465 n->nr_partial++; 2466 if (tail == DEACTIVATE_TO_TAIL) 2467 list_add_tail(&slab->slab_list, &n->partial); 2468 else 2469 list_add(&slab->slab_list, &n->partial); 2470 slab_set_node_partial(slab); 2471 } 2472 2473 static inline void add_partial(struct kmem_cache_node *n, 2474 struct slab *slab, int tail) 2475 { 2476 lockdep_assert_held(&n->list_lock); 2477 __add_partial(n, slab, tail); 2478 } 2479 2480 static inline void remove_partial(struct kmem_cache_node *n, 2481 struct slab *slab) 2482 { 2483 lockdep_assert_held(&n->list_lock); 2484 list_del(&slab->slab_list); 2485 slab_clear_node_partial(slab); 2486 n->nr_partial--; 2487 } 2488 2489 /* 2490 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2491 * slab from the n->partial list. Remove only a single object from the slab, do 2492 * the alloc_debug_processing() checks and leave the slab on the list, or move 2493 * it to full list if it was the last free object. 2494 */ 2495 static void *alloc_single_from_partial(struct kmem_cache *s, 2496 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2497 { 2498 void *object; 2499 2500 lockdep_assert_held(&n->list_lock); 2501 2502 object = slab->freelist; 2503 slab->freelist = get_freepointer(s, object); 2504 slab->inuse++; 2505 2506 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2507 remove_partial(n, slab); 2508 return NULL; 2509 } 2510 2511 if (slab->inuse == slab->objects) { 2512 remove_partial(n, slab); 2513 add_full(s, n, slab); 2514 } 2515 2516 return object; 2517 } 2518 2519 /* 2520 * Called only for kmem_cache_debug() caches to allocate from a freshly 2521 * allocated slab. Allocate a single object instead of whole freelist 2522 * and put the slab to the partial (or full) list. 2523 */ 2524 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2525 struct slab *slab, int orig_size) 2526 { 2527 int nid = slab_nid(slab); 2528 struct kmem_cache_node *n = get_node(s, nid); 2529 unsigned long flags; 2530 void *object; 2531 2532 2533 object = slab->freelist; 2534 slab->freelist = get_freepointer(s, object); 2535 slab->inuse = 1; 2536 2537 if (!alloc_debug_processing(s, slab, object, orig_size)) 2538 /* 2539 * It's not really expected that this would fail on a 2540 * freshly allocated slab, but a concurrent memory 2541 * corruption in theory could cause that. 2542 */ 2543 return NULL; 2544 2545 spin_lock_irqsave(&n->list_lock, flags); 2546 2547 if (slab->inuse == slab->objects) 2548 add_full(s, n, slab); 2549 else 2550 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2551 2552 inc_slabs_node(s, nid, slab->objects); 2553 spin_unlock_irqrestore(&n->list_lock, flags); 2554 2555 return object; 2556 } 2557 2558 #ifdef CONFIG_SLUB_CPU_PARTIAL 2559 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2560 #else 2561 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2562 int drain) { } 2563 #endif 2564 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2565 2566 /* 2567 * Try to allocate a partial slab from a specific node. 2568 */ 2569 static struct slab *get_partial_node(struct kmem_cache *s, 2570 struct kmem_cache_node *n, 2571 struct partial_context *pc) 2572 { 2573 struct slab *slab, *slab2, *partial = NULL; 2574 unsigned long flags; 2575 unsigned int partial_slabs = 0; 2576 2577 /* 2578 * Racy check. If we mistakenly see no partial slabs then we 2579 * just allocate an empty slab. If we mistakenly try to get a 2580 * partial slab and there is none available then get_partial() 2581 * will return NULL. 2582 */ 2583 if (!n || !n->nr_partial) 2584 return NULL; 2585 2586 spin_lock_irqsave(&n->list_lock, flags); 2587 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2588 if (!pfmemalloc_match(slab, pc->flags)) 2589 continue; 2590 2591 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2592 void *object = alloc_single_from_partial(s, n, slab, 2593 pc->orig_size); 2594 if (object) { 2595 partial = slab; 2596 pc->object = object; 2597 break; 2598 } 2599 continue; 2600 } 2601 2602 remove_partial(n, slab); 2603 2604 if (!partial) { 2605 partial = slab; 2606 stat(s, ALLOC_FROM_PARTIAL); 2607 } else { 2608 put_cpu_partial(s, slab, 0); 2609 stat(s, CPU_PARTIAL_NODE); 2610 partial_slabs++; 2611 } 2612 #ifdef CONFIG_SLUB_CPU_PARTIAL 2613 if (!kmem_cache_has_cpu_partial(s) 2614 || partial_slabs > s->cpu_partial_slabs / 2) 2615 break; 2616 #else 2617 break; 2618 #endif 2619 2620 } 2621 spin_unlock_irqrestore(&n->list_lock, flags); 2622 return partial; 2623 } 2624 2625 /* 2626 * Get a slab from somewhere. Search in increasing NUMA distances. 2627 */ 2628 static struct slab *get_any_partial(struct kmem_cache *s, 2629 struct partial_context *pc) 2630 { 2631 #ifdef CONFIG_NUMA 2632 struct zonelist *zonelist; 2633 struct zoneref *z; 2634 struct zone *zone; 2635 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2636 struct slab *slab; 2637 unsigned int cpuset_mems_cookie; 2638 2639 /* 2640 * The defrag ratio allows a configuration of the tradeoffs between 2641 * inter node defragmentation and node local allocations. A lower 2642 * defrag_ratio increases the tendency to do local allocations 2643 * instead of attempting to obtain partial slabs from other nodes. 2644 * 2645 * If the defrag_ratio is set to 0 then kmalloc() always 2646 * returns node local objects. If the ratio is higher then kmalloc() 2647 * may return off node objects because partial slabs are obtained 2648 * from other nodes and filled up. 2649 * 2650 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2651 * (which makes defrag_ratio = 1000) then every (well almost) 2652 * allocation will first attempt to defrag slab caches on other nodes. 2653 * This means scanning over all nodes to look for partial slabs which 2654 * may be expensive if we do it every time we are trying to find a slab 2655 * with available objects. 2656 */ 2657 if (!s->remote_node_defrag_ratio || 2658 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2659 return NULL; 2660 2661 do { 2662 cpuset_mems_cookie = read_mems_allowed_begin(); 2663 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2664 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2665 struct kmem_cache_node *n; 2666 2667 n = get_node(s, zone_to_nid(zone)); 2668 2669 if (n && cpuset_zone_allowed(zone, pc->flags) && 2670 n->nr_partial > s->min_partial) { 2671 slab = get_partial_node(s, n, pc); 2672 if (slab) { 2673 /* 2674 * Don't check read_mems_allowed_retry() 2675 * here - if mems_allowed was updated in 2676 * parallel, that was a harmless race 2677 * between allocation and the cpuset 2678 * update 2679 */ 2680 return slab; 2681 } 2682 } 2683 } 2684 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2685 #endif /* CONFIG_NUMA */ 2686 return NULL; 2687 } 2688 2689 /* 2690 * Get a partial slab, lock it and return it. 2691 */ 2692 static struct slab *get_partial(struct kmem_cache *s, int node, 2693 struct partial_context *pc) 2694 { 2695 struct slab *slab; 2696 int searchnode = node; 2697 2698 if (node == NUMA_NO_NODE) 2699 searchnode = numa_mem_id(); 2700 2701 slab = get_partial_node(s, get_node(s, searchnode), pc); 2702 if (slab || node != NUMA_NO_NODE) 2703 return slab; 2704 2705 return get_any_partial(s, pc); 2706 } 2707 2708 #ifndef CONFIG_SLUB_TINY 2709 2710 #ifdef CONFIG_PREEMPTION 2711 /* 2712 * Calculate the next globally unique transaction for disambiguation 2713 * during cmpxchg. The transactions start with the cpu number and are then 2714 * incremented by CONFIG_NR_CPUS. 2715 */ 2716 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2717 #else 2718 /* 2719 * No preemption supported therefore also no need to check for 2720 * different cpus. 2721 */ 2722 #define TID_STEP 1 2723 #endif /* CONFIG_PREEMPTION */ 2724 2725 static inline unsigned long next_tid(unsigned long tid) 2726 { 2727 return tid + TID_STEP; 2728 } 2729 2730 #ifdef SLUB_DEBUG_CMPXCHG 2731 static inline unsigned int tid_to_cpu(unsigned long tid) 2732 { 2733 return tid % TID_STEP; 2734 } 2735 2736 static inline unsigned long tid_to_event(unsigned long tid) 2737 { 2738 return tid / TID_STEP; 2739 } 2740 #endif 2741 2742 static inline unsigned int init_tid(int cpu) 2743 { 2744 return cpu; 2745 } 2746 2747 static inline void note_cmpxchg_failure(const char *n, 2748 const struct kmem_cache *s, unsigned long tid) 2749 { 2750 #ifdef SLUB_DEBUG_CMPXCHG 2751 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2752 2753 pr_info("%s %s: cmpxchg redo ", n, s->name); 2754 2755 #ifdef CONFIG_PREEMPTION 2756 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2757 pr_warn("due to cpu change %d -> %d\n", 2758 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2759 else 2760 #endif 2761 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2762 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2763 tid_to_event(tid), tid_to_event(actual_tid)); 2764 else 2765 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2766 actual_tid, tid, next_tid(tid)); 2767 #endif 2768 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2769 } 2770 2771 static void init_kmem_cache_cpus(struct kmem_cache *s) 2772 { 2773 int cpu; 2774 struct kmem_cache_cpu *c; 2775 2776 for_each_possible_cpu(cpu) { 2777 c = per_cpu_ptr(s->cpu_slab, cpu); 2778 local_lock_init(&c->lock); 2779 c->tid = init_tid(cpu); 2780 } 2781 } 2782 2783 /* 2784 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2785 * unfreezes the slabs and puts it on the proper list. 2786 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2787 * by the caller. 2788 */ 2789 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2790 void *freelist) 2791 { 2792 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2793 int free_delta = 0; 2794 void *nextfree, *freelist_iter, *freelist_tail; 2795 int tail = DEACTIVATE_TO_HEAD; 2796 unsigned long flags = 0; 2797 struct slab new; 2798 struct slab old; 2799 2800 if (slab->freelist) { 2801 stat(s, DEACTIVATE_REMOTE_FREES); 2802 tail = DEACTIVATE_TO_TAIL; 2803 } 2804 2805 /* 2806 * Stage one: Count the objects on cpu's freelist as free_delta and 2807 * remember the last object in freelist_tail for later splicing. 2808 */ 2809 freelist_tail = NULL; 2810 freelist_iter = freelist; 2811 while (freelist_iter) { 2812 nextfree = get_freepointer(s, freelist_iter); 2813 2814 /* 2815 * If 'nextfree' is invalid, it is possible that the object at 2816 * 'freelist_iter' is already corrupted. So isolate all objects 2817 * starting at 'freelist_iter' by skipping them. 2818 */ 2819 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2820 break; 2821 2822 freelist_tail = freelist_iter; 2823 free_delta++; 2824 2825 freelist_iter = nextfree; 2826 } 2827 2828 /* 2829 * Stage two: Unfreeze the slab while splicing the per-cpu 2830 * freelist to the head of slab's freelist. 2831 */ 2832 do { 2833 old.freelist = READ_ONCE(slab->freelist); 2834 old.counters = READ_ONCE(slab->counters); 2835 VM_BUG_ON(!old.frozen); 2836 2837 /* Determine target state of the slab */ 2838 new.counters = old.counters; 2839 new.frozen = 0; 2840 if (freelist_tail) { 2841 new.inuse -= free_delta; 2842 set_freepointer(s, freelist_tail, old.freelist); 2843 new.freelist = freelist; 2844 } else { 2845 new.freelist = old.freelist; 2846 } 2847 } while (!slab_update_freelist(s, slab, 2848 old.freelist, old.counters, 2849 new.freelist, new.counters, 2850 "unfreezing slab")); 2851 2852 /* 2853 * Stage three: Manipulate the slab list based on the updated state. 2854 */ 2855 if (!new.inuse && n->nr_partial >= s->min_partial) { 2856 stat(s, DEACTIVATE_EMPTY); 2857 discard_slab(s, slab); 2858 stat(s, FREE_SLAB); 2859 } else if (new.freelist) { 2860 spin_lock_irqsave(&n->list_lock, flags); 2861 add_partial(n, slab, tail); 2862 spin_unlock_irqrestore(&n->list_lock, flags); 2863 stat(s, tail); 2864 } else { 2865 stat(s, DEACTIVATE_FULL); 2866 } 2867 } 2868 2869 #ifdef CONFIG_SLUB_CPU_PARTIAL 2870 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 2871 { 2872 struct kmem_cache_node *n = NULL, *n2 = NULL; 2873 struct slab *slab, *slab_to_discard = NULL; 2874 unsigned long flags = 0; 2875 2876 while (partial_slab) { 2877 slab = partial_slab; 2878 partial_slab = slab->next; 2879 2880 n2 = get_node(s, slab_nid(slab)); 2881 if (n != n2) { 2882 if (n) 2883 spin_unlock_irqrestore(&n->list_lock, flags); 2884 2885 n = n2; 2886 spin_lock_irqsave(&n->list_lock, flags); 2887 } 2888 2889 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 2890 slab->next = slab_to_discard; 2891 slab_to_discard = slab; 2892 } else { 2893 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2894 stat(s, FREE_ADD_PARTIAL); 2895 } 2896 } 2897 2898 if (n) 2899 spin_unlock_irqrestore(&n->list_lock, flags); 2900 2901 while (slab_to_discard) { 2902 slab = slab_to_discard; 2903 slab_to_discard = slab_to_discard->next; 2904 2905 stat(s, DEACTIVATE_EMPTY); 2906 discard_slab(s, slab); 2907 stat(s, FREE_SLAB); 2908 } 2909 } 2910 2911 /* 2912 * Put all the cpu partial slabs to the node partial list. 2913 */ 2914 static void put_partials(struct kmem_cache *s) 2915 { 2916 struct slab *partial_slab; 2917 unsigned long flags; 2918 2919 local_lock_irqsave(&s->cpu_slab->lock, flags); 2920 partial_slab = this_cpu_read(s->cpu_slab->partial); 2921 this_cpu_write(s->cpu_slab->partial, NULL); 2922 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2923 2924 if (partial_slab) 2925 __put_partials(s, partial_slab); 2926 } 2927 2928 static void put_partials_cpu(struct kmem_cache *s, 2929 struct kmem_cache_cpu *c) 2930 { 2931 struct slab *partial_slab; 2932 2933 partial_slab = slub_percpu_partial(c); 2934 c->partial = NULL; 2935 2936 if (partial_slab) 2937 __put_partials(s, partial_slab); 2938 } 2939 2940 /* 2941 * Put a slab into a partial slab slot if available. 2942 * 2943 * If we did not find a slot then simply move all the partials to the 2944 * per node partial list. 2945 */ 2946 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2947 { 2948 struct slab *oldslab; 2949 struct slab *slab_to_put = NULL; 2950 unsigned long flags; 2951 int slabs = 0; 2952 2953 local_lock_irqsave(&s->cpu_slab->lock, flags); 2954 2955 oldslab = this_cpu_read(s->cpu_slab->partial); 2956 2957 if (oldslab) { 2958 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2959 /* 2960 * Partial array is full. Move the existing set to the 2961 * per node partial list. Postpone the actual unfreezing 2962 * outside of the critical section. 2963 */ 2964 slab_to_put = oldslab; 2965 oldslab = NULL; 2966 } else { 2967 slabs = oldslab->slabs; 2968 } 2969 } 2970 2971 slabs++; 2972 2973 slab->slabs = slabs; 2974 slab->next = oldslab; 2975 2976 this_cpu_write(s->cpu_slab->partial, slab); 2977 2978 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2979 2980 if (slab_to_put) { 2981 __put_partials(s, slab_to_put); 2982 stat(s, CPU_PARTIAL_DRAIN); 2983 } 2984 } 2985 2986 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2987 2988 static inline void put_partials(struct kmem_cache *s) { } 2989 static inline void put_partials_cpu(struct kmem_cache *s, 2990 struct kmem_cache_cpu *c) { } 2991 2992 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2993 2994 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2995 { 2996 unsigned long flags; 2997 struct slab *slab; 2998 void *freelist; 2999 3000 local_lock_irqsave(&s->cpu_slab->lock, flags); 3001 3002 slab = c->slab; 3003 freelist = c->freelist; 3004 3005 c->slab = NULL; 3006 c->freelist = NULL; 3007 c->tid = next_tid(c->tid); 3008 3009 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3010 3011 if (slab) { 3012 deactivate_slab(s, slab, freelist); 3013 stat(s, CPUSLAB_FLUSH); 3014 } 3015 } 3016 3017 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3018 { 3019 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3020 void *freelist = c->freelist; 3021 struct slab *slab = c->slab; 3022 3023 c->slab = NULL; 3024 c->freelist = NULL; 3025 c->tid = next_tid(c->tid); 3026 3027 if (slab) { 3028 deactivate_slab(s, slab, freelist); 3029 stat(s, CPUSLAB_FLUSH); 3030 } 3031 3032 put_partials_cpu(s, c); 3033 } 3034 3035 struct slub_flush_work { 3036 struct work_struct work; 3037 struct kmem_cache *s; 3038 bool skip; 3039 }; 3040 3041 /* 3042 * Flush cpu slab. 3043 * 3044 * Called from CPU work handler with migration disabled. 3045 */ 3046 static void flush_cpu_slab(struct work_struct *w) 3047 { 3048 struct kmem_cache *s; 3049 struct kmem_cache_cpu *c; 3050 struct slub_flush_work *sfw; 3051 3052 sfw = container_of(w, struct slub_flush_work, work); 3053 3054 s = sfw->s; 3055 c = this_cpu_ptr(s->cpu_slab); 3056 3057 if (c->slab) 3058 flush_slab(s, c); 3059 3060 put_partials(s); 3061 } 3062 3063 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3064 { 3065 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3066 3067 return c->slab || slub_percpu_partial(c); 3068 } 3069 3070 static DEFINE_MUTEX(flush_lock); 3071 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3072 3073 static void flush_all_cpus_locked(struct kmem_cache *s) 3074 { 3075 struct slub_flush_work *sfw; 3076 unsigned int cpu; 3077 3078 lockdep_assert_cpus_held(); 3079 mutex_lock(&flush_lock); 3080 3081 for_each_online_cpu(cpu) { 3082 sfw = &per_cpu(slub_flush, cpu); 3083 if (!has_cpu_slab(cpu, s)) { 3084 sfw->skip = true; 3085 continue; 3086 } 3087 INIT_WORK(&sfw->work, flush_cpu_slab); 3088 sfw->skip = false; 3089 sfw->s = s; 3090 queue_work_on(cpu, flushwq, &sfw->work); 3091 } 3092 3093 for_each_online_cpu(cpu) { 3094 sfw = &per_cpu(slub_flush, cpu); 3095 if (sfw->skip) 3096 continue; 3097 flush_work(&sfw->work); 3098 } 3099 3100 mutex_unlock(&flush_lock); 3101 } 3102 3103 static void flush_all(struct kmem_cache *s) 3104 { 3105 cpus_read_lock(); 3106 flush_all_cpus_locked(s); 3107 cpus_read_unlock(); 3108 } 3109 3110 /* 3111 * Use the cpu notifier to insure that the cpu slabs are flushed when 3112 * necessary. 3113 */ 3114 static int slub_cpu_dead(unsigned int cpu) 3115 { 3116 struct kmem_cache *s; 3117 3118 mutex_lock(&slab_mutex); 3119 list_for_each_entry(s, &slab_caches, list) 3120 __flush_cpu_slab(s, cpu); 3121 mutex_unlock(&slab_mutex); 3122 return 0; 3123 } 3124 3125 #else /* CONFIG_SLUB_TINY */ 3126 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3127 static inline void flush_all(struct kmem_cache *s) { } 3128 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3129 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3130 #endif /* CONFIG_SLUB_TINY */ 3131 3132 /* 3133 * Check if the objects in a per cpu structure fit numa 3134 * locality expectations. 3135 */ 3136 static inline int node_match(struct slab *slab, int node) 3137 { 3138 #ifdef CONFIG_NUMA 3139 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3140 return 0; 3141 #endif 3142 return 1; 3143 } 3144 3145 #ifdef CONFIG_SLUB_DEBUG 3146 static int count_free(struct slab *slab) 3147 { 3148 return slab->objects - slab->inuse; 3149 } 3150 3151 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3152 { 3153 return atomic_long_read(&n->total_objects); 3154 } 3155 3156 /* Supports checking bulk free of a constructed freelist */ 3157 static inline bool free_debug_processing(struct kmem_cache *s, 3158 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3159 unsigned long addr, depot_stack_handle_t handle) 3160 { 3161 bool checks_ok = false; 3162 void *object = head; 3163 int cnt = 0; 3164 3165 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3166 if (!check_slab(s, slab)) 3167 goto out; 3168 } 3169 3170 if (slab->inuse < *bulk_cnt) { 3171 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3172 slab->inuse, *bulk_cnt); 3173 goto out; 3174 } 3175 3176 next_object: 3177 3178 if (++cnt > *bulk_cnt) 3179 goto out_cnt; 3180 3181 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3182 if (!free_consistency_checks(s, slab, object, addr)) 3183 goto out; 3184 } 3185 3186 if (s->flags & SLAB_STORE_USER) 3187 set_track_update(s, object, TRACK_FREE, addr, handle); 3188 trace(s, slab, object, 0); 3189 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3190 init_object(s, object, SLUB_RED_INACTIVE); 3191 3192 /* Reached end of constructed freelist yet? */ 3193 if (object != tail) { 3194 object = get_freepointer(s, object); 3195 goto next_object; 3196 } 3197 checks_ok = true; 3198 3199 out_cnt: 3200 if (cnt != *bulk_cnt) { 3201 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3202 *bulk_cnt, cnt); 3203 *bulk_cnt = cnt; 3204 } 3205 3206 out: 3207 3208 if (!checks_ok) 3209 slab_fix(s, "Object at 0x%p not freed", object); 3210 3211 return checks_ok; 3212 } 3213 #endif /* CONFIG_SLUB_DEBUG */ 3214 3215 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3216 static unsigned long count_partial(struct kmem_cache_node *n, 3217 int (*get_count)(struct slab *)) 3218 { 3219 unsigned long flags; 3220 unsigned long x = 0; 3221 struct slab *slab; 3222 3223 spin_lock_irqsave(&n->list_lock, flags); 3224 list_for_each_entry(slab, &n->partial, slab_list) 3225 x += get_count(slab); 3226 spin_unlock_irqrestore(&n->list_lock, flags); 3227 return x; 3228 } 3229 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3230 3231 #ifdef CONFIG_SLUB_DEBUG 3232 static noinline void 3233 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3234 { 3235 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3236 DEFAULT_RATELIMIT_BURST); 3237 int node; 3238 struct kmem_cache_node *n; 3239 3240 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3241 return; 3242 3243 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 3244 nid, gfpflags, &gfpflags); 3245 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3246 s->name, s->object_size, s->size, oo_order(s->oo), 3247 oo_order(s->min)); 3248 3249 if (oo_order(s->min) > get_order(s->object_size)) 3250 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3251 s->name); 3252 3253 for_each_kmem_cache_node(s, node, n) { 3254 unsigned long nr_slabs; 3255 unsigned long nr_objs; 3256 unsigned long nr_free; 3257 3258 nr_free = count_partial(n, count_free); 3259 nr_slabs = node_nr_slabs(n); 3260 nr_objs = node_nr_objs(n); 3261 3262 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3263 node, nr_slabs, nr_objs, nr_free); 3264 } 3265 } 3266 #else /* CONFIG_SLUB_DEBUG */ 3267 static inline void 3268 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3269 #endif 3270 3271 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3272 { 3273 if (unlikely(slab_test_pfmemalloc(slab))) 3274 return gfp_pfmemalloc_allowed(gfpflags); 3275 3276 return true; 3277 } 3278 3279 #ifndef CONFIG_SLUB_TINY 3280 static inline bool 3281 __update_cpu_freelist_fast(struct kmem_cache *s, 3282 void *freelist_old, void *freelist_new, 3283 unsigned long tid) 3284 { 3285 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3286 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3287 3288 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3289 &old.full, new.full); 3290 } 3291 3292 /* 3293 * Check the slab->freelist and either transfer the freelist to the 3294 * per cpu freelist or deactivate the slab. 3295 * 3296 * The slab is still frozen if the return value is not NULL. 3297 * 3298 * If this function returns NULL then the slab has been unfrozen. 3299 */ 3300 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3301 { 3302 struct slab new; 3303 unsigned long counters; 3304 void *freelist; 3305 3306 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3307 3308 do { 3309 freelist = slab->freelist; 3310 counters = slab->counters; 3311 3312 new.counters = counters; 3313 3314 new.inuse = slab->objects; 3315 new.frozen = freelist != NULL; 3316 3317 } while (!__slab_update_freelist(s, slab, 3318 freelist, counters, 3319 NULL, new.counters, 3320 "get_freelist")); 3321 3322 return freelist; 3323 } 3324 3325 /* 3326 * Freeze the partial slab and return the pointer to the freelist. 3327 */ 3328 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3329 { 3330 struct slab new; 3331 unsigned long counters; 3332 void *freelist; 3333 3334 do { 3335 freelist = slab->freelist; 3336 counters = slab->counters; 3337 3338 new.counters = counters; 3339 VM_BUG_ON(new.frozen); 3340 3341 new.inuse = slab->objects; 3342 new.frozen = 1; 3343 3344 } while (!slab_update_freelist(s, slab, 3345 freelist, counters, 3346 NULL, new.counters, 3347 "freeze_slab")); 3348 3349 return freelist; 3350 } 3351 3352 /* 3353 * Slow path. The lockless freelist is empty or we need to perform 3354 * debugging duties. 3355 * 3356 * Processing is still very fast if new objects have been freed to the 3357 * regular freelist. In that case we simply take over the regular freelist 3358 * as the lockless freelist and zap the regular freelist. 3359 * 3360 * If that is not working then we fall back to the partial lists. We take the 3361 * first element of the freelist as the object to allocate now and move the 3362 * rest of the freelist to the lockless freelist. 3363 * 3364 * And if we were unable to get a new slab from the partial slab lists then 3365 * we need to allocate a new slab. This is the slowest path since it involves 3366 * a call to the page allocator and the setup of a new slab. 3367 * 3368 * Version of __slab_alloc to use when we know that preemption is 3369 * already disabled (which is the case for bulk allocation). 3370 */ 3371 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3372 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3373 { 3374 void *freelist; 3375 struct slab *slab; 3376 unsigned long flags; 3377 struct partial_context pc; 3378 3379 stat(s, ALLOC_SLOWPATH); 3380 3381 reread_slab: 3382 3383 slab = READ_ONCE(c->slab); 3384 if (!slab) { 3385 /* 3386 * if the node is not online or has no normal memory, just 3387 * ignore the node constraint 3388 */ 3389 if (unlikely(node != NUMA_NO_NODE && 3390 !node_isset(node, slab_nodes))) 3391 node = NUMA_NO_NODE; 3392 goto new_slab; 3393 } 3394 3395 if (unlikely(!node_match(slab, node))) { 3396 /* 3397 * same as above but node_match() being false already 3398 * implies node != NUMA_NO_NODE 3399 */ 3400 if (!node_isset(node, slab_nodes)) { 3401 node = NUMA_NO_NODE; 3402 } else { 3403 stat(s, ALLOC_NODE_MISMATCH); 3404 goto deactivate_slab; 3405 } 3406 } 3407 3408 /* 3409 * By rights, we should be searching for a slab page that was 3410 * PFMEMALLOC but right now, we are losing the pfmemalloc 3411 * information when the page leaves the per-cpu allocator 3412 */ 3413 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3414 goto deactivate_slab; 3415 3416 /* must check again c->slab in case we got preempted and it changed */ 3417 local_lock_irqsave(&s->cpu_slab->lock, flags); 3418 if (unlikely(slab != c->slab)) { 3419 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3420 goto reread_slab; 3421 } 3422 freelist = c->freelist; 3423 if (freelist) 3424 goto load_freelist; 3425 3426 freelist = get_freelist(s, slab); 3427 3428 if (!freelist) { 3429 c->slab = NULL; 3430 c->tid = next_tid(c->tid); 3431 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3432 stat(s, DEACTIVATE_BYPASS); 3433 goto new_slab; 3434 } 3435 3436 stat(s, ALLOC_REFILL); 3437 3438 load_freelist: 3439 3440 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3441 3442 /* 3443 * freelist is pointing to the list of objects to be used. 3444 * slab is pointing to the slab from which the objects are obtained. 3445 * That slab must be frozen for per cpu allocations to work. 3446 */ 3447 VM_BUG_ON(!c->slab->frozen); 3448 c->freelist = get_freepointer(s, freelist); 3449 c->tid = next_tid(c->tid); 3450 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3451 return freelist; 3452 3453 deactivate_slab: 3454 3455 local_lock_irqsave(&s->cpu_slab->lock, flags); 3456 if (slab != c->slab) { 3457 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3458 goto reread_slab; 3459 } 3460 freelist = c->freelist; 3461 c->slab = NULL; 3462 c->freelist = NULL; 3463 c->tid = next_tid(c->tid); 3464 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3465 deactivate_slab(s, slab, freelist); 3466 3467 new_slab: 3468 3469 #ifdef CONFIG_SLUB_CPU_PARTIAL 3470 while (slub_percpu_partial(c)) { 3471 local_lock_irqsave(&s->cpu_slab->lock, flags); 3472 if (unlikely(c->slab)) { 3473 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3474 goto reread_slab; 3475 } 3476 if (unlikely(!slub_percpu_partial(c))) { 3477 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3478 /* we were preempted and partial list got empty */ 3479 goto new_objects; 3480 } 3481 3482 slab = slub_percpu_partial(c); 3483 slub_set_percpu_partial(c, slab); 3484 3485 if (likely(node_match(slab, node) && 3486 pfmemalloc_match(slab, gfpflags))) { 3487 c->slab = slab; 3488 freelist = get_freelist(s, slab); 3489 VM_BUG_ON(!freelist); 3490 stat(s, CPU_PARTIAL_ALLOC); 3491 goto load_freelist; 3492 } 3493 3494 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3495 3496 slab->next = NULL; 3497 __put_partials(s, slab); 3498 } 3499 #endif 3500 3501 new_objects: 3502 3503 pc.flags = gfpflags; 3504 pc.orig_size = orig_size; 3505 slab = get_partial(s, node, &pc); 3506 if (slab) { 3507 if (kmem_cache_debug(s)) { 3508 freelist = pc.object; 3509 /* 3510 * For debug caches here we had to go through 3511 * alloc_single_from_partial() so just store the 3512 * tracking info and return the object. 3513 */ 3514 if (s->flags & SLAB_STORE_USER) 3515 set_track(s, freelist, TRACK_ALLOC, addr); 3516 3517 return freelist; 3518 } 3519 3520 freelist = freeze_slab(s, slab); 3521 goto retry_load_slab; 3522 } 3523 3524 slub_put_cpu_ptr(s->cpu_slab); 3525 slab = new_slab(s, gfpflags, node); 3526 c = slub_get_cpu_ptr(s->cpu_slab); 3527 3528 if (unlikely(!slab)) { 3529 slab_out_of_memory(s, gfpflags, node); 3530 return NULL; 3531 } 3532 3533 stat(s, ALLOC_SLAB); 3534 3535 if (kmem_cache_debug(s)) { 3536 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3537 3538 if (unlikely(!freelist)) 3539 goto new_objects; 3540 3541 if (s->flags & SLAB_STORE_USER) 3542 set_track(s, freelist, TRACK_ALLOC, addr); 3543 3544 return freelist; 3545 } 3546 3547 /* 3548 * No other reference to the slab yet so we can 3549 * muck around with it freely without cmpxchg 3550 */ 3551 freelist = slab->freelist; 3552 slab->freelist = NULL; 3553 slab->inuse = slab->objects; 3554 slab->frozen = 1; 3555 3556 inc_slabs_node(s, slab_nid(slab), slab->objects); 3557 3558 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3559 /* 3560 * For !pfmemalloc_match() case we don't load freelist so that 3561 * we don't make further mismatched allocations easier. 3562 */ 3563 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3564 return freelist; 3565 } 3566 3567 retry_load_slab: 3568 3569 local_lock_irqsave(&s->cpu_slab->lock, flags); 3570 if (unlikely(c->slab)) { 3571 void *flush_freelist = c->freelist; 3572 struct slab *flush_slab = c->slab; 3573 3574 c->slab = NULL; 3575 c->freelist = NULL; 3576 c->tid = next_tid(c->tid); 3577 3578 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3579 3580 deactivate_slab(s, flush_slab, flush_freelist); 3581 3582 stat(s, CPUSLAB_FLUSH); 3583 3584 goto retry_load_slab; 3585 } 3586 c->slab = slab; 3587 3588 goto load_freelist; 3589 } 3590 3591 /* 3592 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3593 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3594 * pointer. 3595 */ 3596 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3597 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3598 { 3599 void *p; 3600 3601 #ifdef CONFIG_PREEMPT_COUNT 3602 /* 3603 * We may have been preempted and rescheduled on a different 3604 * cpu before disabling preemption. Need to reload cpu area 3605 * pointer. 3606 */ 3607 c = slub_get_cpu_ptr(s->cpu_slab); 3608 #endif 3609 3610 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3611 #ifdef CONFIG_PREEMPT_COUNT 3612 slub_put_cpu_ptr(s->cpu_slab); 3613 #endif 3614 return p; 3615 } 3616 3617 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3618 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3619 { 3620 struct kmem_cache_cpu *c; 3621 struct slab *slab; 3622 unsigned long tid; 3623 void *object; 3624 3625 redo: 3626 /* 3627 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3628 * enabled. We may switch back and forth between cpus while 3629 * reading from one cpu area. That does not matter as long 3630 * as we end up on the original cpu again when doing the cmpxchg. 3631 * 3632 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3633 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3634 * the tid. If we are preempted and switched to another cpu between the 3635 * two reads, it's OK as the two are still associated with the same cpu 3636 * and cmpxchg later will validate the cpu. 3637 */ 3638 c = raw_cpu_ptr(s->cpu_slab); 3639 tid = READ_ONCE(c->tid); 3640 3641 /* 3642 * Irqless object alloc/free algorithm used here depends on sequence 3643 * of fetching cpu_slab's data. tid should be fetched before anything 3644 * on c to guarantee that object and slab associated with previous tid 3645 * won't be used with current tid. If we fetch tid first, object and 3646 * slab could be one associated with next tid and our alloc/free 3647 * request will be failed. In this case, we will retry. So, no problem. 3648 */ 3649 barrier(); 3650 3651 /* 3652 * The transaction ids are globally unique per cpu and per operation on 3653 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3654 * occurs on the right processor and that there was no operation on the 3655 * linked list in between. 3656 */ 3657 3658 object = c->freelist; 3659 slab = c->slab; 3660 3661 if (!USE_LOCKLESS_FAST_PATH() || 3662 unlikely(!object || !slab || !node_match(slab, node))) { 3663 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3664 } else { 3665 void *next_object = get_freepointer_safe(s, object); 3666 3667 /* 3668 * The cmpxchg will only match if there was no additional 3669 * operation and if we are on the right processor. 3670 * 3671 * The cmpxchg does the following atomically (without lock 3672 * semantics!) 3673 * 1. Relocate first pointer to the current per cpu area. 3674 * 2. Verify that tid and freelist have not been changed 3675 * 3. If they were not changed replace tid and freelist 3676 * 3677 * Since this is without lock semantics the protection is only 3678 * against code executing on this cpu *not* from access by 3679 * other cpus. 3680 */ 3681 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3682 note_cmpxchg_failure("slab_alloc", s, tid); 3683 goto redo; 3684 } 3685 prefetch_freepointer(s, next_object); 3686 stat(s, ALLOC_FASTPATH); 3687 } 3688 3689 return object; 3690 } 3691 #else /* CONFIG_SLUB_TINY */ 3692 static void *__slab_alloc_node(struct kmem_cache *s, 3693 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3694 { 3695 struct partial_context pc; 3696 struct slab *slab; 3697 void *object; 3698 3699 pc.flags = gfpflags; 3700 pc.orig_size = orig_size; 3701 slab = get_partial(s, node, &pc); 3702 3703 if (slab) 3704 return pc.object; 3705 3706 slab = new_slab(s, gfpflags, node); 3707 if (unlikely(!slab)) { 3708 slab_out_of_memory(s, gfpflags, node); 3709 return NULL; 3710 } 3711 3712 object = alloc_single_from_new_slab(s, slab, orig_size); 3713 3714 return object; 3715 } 3716 #endif /* CONFIG_SLUB_TINY */ 3717 3718 /* 3719 * If the object has been wiped upon free, make sure it's fully initialized by 3720 * zeroing out freelist pointer. 3721 */ 3722 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3723 void *obj) 3724 { 3725 if (unlikely(slab_want_init_on_free(s)) && obj) 3726 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3727 0, sizeof(void *)); 3728 } 3729 3730 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 3731 { 3732 if (__should_failslab(s, gfpflags)) 3733 return -ENOMEM; 3734 return 0; 3735 } 3736 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 3737 3738 static __fastpath_inline 3739 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 3740 struct list_lru *lru, 3741 struct obj_cgroup **objcgp, 3742 size_t size, gfp_t flags) 3743 { 3744 flags &= gfp_allowed_mask; 3745 3746 might_alloc(flags); 3747 3748 if (unlikely(should_failslab(s, flags))) 3749 return NULL; 3750 3751 if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))) 3752 return NULL; 3753 3754 return s; 3755 } 3756 3757 static __fastpath_inline 3758 void slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, 3759 gfp_t flags, size_t size, void **p, bool init, 3760 unsigned int orig_size) 3761 { 3762 unsigned int zero_size = s->object_size; 3763 bool kasan_init = init; 3764 size_t i; 3765 gfp_t init_flags = flags & gfp_allowed_mask; 3766 3767 /* 3768 * For kmalloc object, the allocated memory size(object_size) is likely 3769 * larger than the requested size(orig_size). If redzone check is 3770 * enabled for the extra space, don't zero it, as it will be redzoned 3771 * soon. The redzone operation for this extra space could be seen as a 3772 * replacement of current poisoning under certain debug option, and 3773 * won't break other sanity checks. 3774 */ 3775 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 3776 (s->flags & SLAB_KMALLOC)) 3777 zero_size = orig_size; 3778 3779 /* 3780 * When slab_debug is enabled, avoid memory initialization integrated 3781 * into KASAN and instead zero out the memory via the memset below with 3782 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 3783 * cause false-positive reports. This does not lead to a performance 3784 * penalty on production builds, as slab_debug is not intended to be 3785 * enabled there. 3786 */ 3787 if (__slub_debug_enabled()) 3788 kasan_init = false; 3789 3790 /* 3791 * As memory initialization might be integrated into KASAN, 3792 * kasan_slab_alloc and initialization memset must be 3793 * kept together to avoid discrepancies in behavior. 3794 * 3795 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 3796 */ 3797 for (i = 0; i < size; i++) { 3798 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 3799 if (p[i] && init && (!kasan_init || 3800 !kasan_has_integrated_init())) 3801 memset(p[i], 0, zero_size); 3802 kmemleak_alloc_recursive(p[i], s->object_size, 1, 3803 s->flags, init_flags); 3804 kmsan_slab_alloc(s, p[i], init_flags); 3805 } 3806 3807 memcg_slab_post_alloc_hook(s, objcg, flags, size, p); 3808 } 3809 3810 /* 3811 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3812 * have the fastpath folded into their functions. So no function call 3813 * overhead for requests that can be satisfied on the fastpath. 3814 * 3815 * The fastpath works by first checking if the lockless freelist can be used. 3816 * If not then __slab_alloc is called for slow processing. 3817 * 3818 * Otherwise we can simply pick the next object from the lockless free list. 3819 */ 3820 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3821 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3822 { 3823 void *object; 3824 struct obj_cgroup *objcg = NULL; 3825 bool init = false; 3826 3827 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3828 if (unlikely(!s)) 3829 return NULL; 3830 3831 object = kfence_alloc(s, orig_size, gfpflags); 3832 if (unlikely(object)) 3833 goto out; 3834 3835 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 3836 3837 maybe_wipe_obj_freeptr(s, object); 3838 init = slab_want_init_on_alloc(gfpflags, s); 3839 3840 out: 3841 /* 3842 * When init equals 'true', like for kzalloc() family, only 3843 * @orig_size bytes might be zeroed instead of s->object_size 3844 */ 3845 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); 3846 3847 return object; 3848 } 3849 3850 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3851 { 3852 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 3853 s->object_size); 3854 3855 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3856 3857 return ret; 3858 } 3859 EXPORT_SYMBOL(kmem_cache_alloc); 3860 3861 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3862 gfp_t gfpflags) 3863 { 3864 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 3865 s->object_size); 3866 3867 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3868 3869 return ret; 3870 } 3871 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3872 3873 /** 3874 * kmem_cache_alloc_node - Allocate an object on the specified node 3875 * @s: The cache to allocate from. 3876 * @gfpflags: See kmalloc(). 3877 * @node: node number of the target node. 3878 * 3879 * Identical to kmem_cache_alloc but it will allocate memory on the given 3880 * node, which can improve the performance for cpu bound structures. 3881 * 3882 * Fallback to other node is possible if __GFP_THISNODE is not set. 3883 * 3884 * Return: pointer to the new object or %NULL in case of error 3885 */ 3886 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3887 { 3888 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3889 3890 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 3891 3892 return ret; 3893 } 3894 EXPORT_SYMBOL(kmem_cache_alloc_node); 3895 3896 /* 3897 * To avoid unnecessary overhead, we pass through large allocation requests 3898 * directly to the page allocator. We use __GFP_COMP, because we will need to 3899 * know the allocation order to free the pages properly in kfree. 3900 */ 3901 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node) 3902 { 3903 struct folio *folio; 3904 void *ptr = NULL; 3905 unsigned int order = get_order(size); 3906 3907 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 3908 flags = kmalloc_fix_flags(flags); 3909 3910 flags |= __GFP_COMP; 3911 folio = (struct folio *)alloc_pages_node(node, flags, order); 3912 if (folio) { 3913 ptr = folio_address(folio); 3914 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 3915 PAGE_SIZE << order); 3916 } 3917 3918 ptr = kasan_kmalloc_large(ptr, size, flags); 3919 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 3920 kmemleak_alloc(ptr, size, 1, flags); 3921 kmsan_kmalloc_large(ptr, size, flags); 3922 3923 return ptr; 3924 } 3925 3926 void *kmalloc_large(size_t size, gfp_t flags) 3927 { 3928 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE); 3929 3930 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 3931 flags, NUMA_NO_NODE); 3932 return ret; 3933 } 3934 EXPORT_SYMBOL(kmalloc_large); 3935 3936 void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3937 { 3938 void *ret = __kmalloc_large_node(size, flags, node); 3939 3940 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 3941 flags, node); 3942 return ret; 3943 } 3944 EXPORT_SYMBOL(kmalloc_large_node); 3945 3946 static __always_inline 3947 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, 3948 unsigned long caller) 3949 { 3950 struct kmem_cache *s; 3951 void *ret; 3952 3953 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3954 ret = __kmalloc_large_node(size, flags, node); 3955 trace_kmalloc(caller, ret, size, 3956 PAGE_SIZE << get_order(size), flags, node); 3957 return ret; 3958 } 3959 3960 if (unlikely(!size)) 3961 return ZERO_SIZE_PTR; 3962 3963 s = kmalloc_slab(size, flags, caller); 3964 3965 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 3966 ret = kasan_kmalloc(s, ret, size, flags); 3967 trace_kmalloc(caller, ret, size, s->size, flags, node); 3968 return ret; 3969 } 3970 3971 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3972 { 3973 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3974 } 3975 EXPORT_SYMBOL(__kmalloc_node); 3976 3977 void *__kmalloc(size_t size, gfp_t flags) 3978 { 3979 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_); 3980 } 3981 EXPORT_SYMBOL(__kmalloc); 3982 3983 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3984 int node, unsigned long caller) 3985 { 3986 return __do_kmalloc_node(size, flags, node, caller); 3987 } 3988 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3989 3990 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3991 { 3992 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 3993 _RET_IP_, size); 3994 3995 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 3996 3997 ret = kasan_kmalloc(s, ret, size, gfpflags); 3998 return ret; 3999 } 4000 EXPORT_SYMBOL(kmalloc_trace); 4001 4002 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 4003 int node, size_t size) 4004 { 4005 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4006 4007 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4008 4009 ret = kasan_kmalloc(s, ret, size, gfpflags); 4010 return ret; 4011 } 4012 EXPORT_SYMBOL(kmalloc_node_trace); 4013 4014 static noinline void free_to_partial_list( 4015 struct kmem_cache *s, struct slab *slab, 4016 void *head, void *tail, int bulk_cnt, 4017 unsigned long addr) 4018 { 4019 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4020 struct slab *slab_free = NULL; 4021 int cnt = bulk_cnt; 4022 unsigned long flags; 4023 depot_stack_handle_t handle = 0; 4024 4025 if (s->flags & SLAB_STORE_USER) 4026 handle = set_track_prepare(); 4027 4028 spin_lock_irqsave(&n->list_lock, flags); 4029 4030 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4031 void *prior = slab->freelist; 4032 4033 /* Perform the actual freeing while we still hold the locks */ 4034 slab->inuse -= cnt; 4035 set_freepointer(s, tail, prior); 4036 slab->freelist = head; 4037 4038 /* 4039 * If the slab is empty, and node's partial list is full, 4040 * it should be discarded anyway no matter it's on full or 4041 * partial list. 4042 */ 4043 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4044 slab_free = slab; 4045 4046 if (!prior) { 4047 /* was on full list */ 4048 remove_full(s, n, slab); 4049 if (!slab_free) { 4050 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4051 stat(s, FREE_ADD_PARTIAL); 4052 } 4053 } else if (slab_free) { 4054 remove_partial(n, slab); 4055 stat(s, FREE_REMOVE_PARTIAL); 4056 } 4057 } 4058 4059 if (slab_free) { 4060 /* 4061 * Update the counters while still holding n->list_lock to 4062 * prevent spurious validation warnings 4063 */ 4064 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4065 } 4066 4067 spin_unlock_irqrestore(&n->list_lock, flags); 4068 4069 if (slab_free) { 4070 stat(s, FREE_SLAB); 4071 free_slab(s, slab_free); 4072 } 4073 } 4074 4075 /* 4076 * Slow path handling. This may still be called frequently since objects 4077 * have a longer lifetime than the cpu slabs in most processing loads. 4078 * 4079 * So we still attempt to reduce cache line usage. Just take the slab 4080 * lock and free the item. If there is no additional partial slab 4081 * handling required then we can return immediately. 4082 */ 4083 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4084 void *head, void *tail, int cnt, 4085 unsigned long addr) 4086 4087 { 4088 void *prior; 4089 int was_frozen; 4090 struct slab new; 4091 unsigned long counters; 4092 struct kmem_cache_node *n = NULL; 4093 unsigned long flags; 4094 bool on_node_partial; 4095 4096 stat(s, FREE_SLOWPATH); 4097 4098 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4099 free_to_partial_list(s, slab, head, tail, cnt, addr); 4100 return; 4101 } 4102 4103 do { 4104 if (unlikely(n)) { 4105 spin_unlock_irqrestore(&n->list_lock, flags); 4106 n = NULL; 4107 } 4108 prior = slab->freelist; 4109 counters = slab->counters; 4110 set_freepointer(s, tail, prior); 4111 new.counters = counters; 4112 was_frozen = new.frozen; 4113 new.inuse -= cnt; 4114 if ((!new.inuse || !prior) && !was_frozen) { 4115 /* Needs to be taken off a list */ 4116 if (!kmem_cache_has_cpu_partial(s) || prior) { 4117 4118 n = get_node(s, slab_nid(slab)); 4119 /* 4120 * Speculatively acquire the list_lock. 4121 * If the cmpxchg does not succeed then we may 4122 * drop the list_lock without any processing. 4123 * 4124 * Otherwise the list_lock will synchronize with 4125 * other processors updating the list of slabs. 4126 */ 4127 spin_lock_irqsave(&n->list_lock, flags); 4128 4129 on_node_partial = slab_test_node_partial(slab); 4130 } 4131 } 4132 4133 } while (!slab_update_freelist(s, slab, 4134 prior, counters, 4135 head, new.counters, 4136 "__slab_free")); 4137 4138 if (likely(!n)) { 4139 4140 if (likely(was_frozen)) { 4141 /* 4142 * The list lock was not taken therefore no list 4143 * activity can be necessary. 4144 */ 4145 stat(s, FREE_FROZEN); 4146 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4147 /* 4148 * If we started with a full slab then put it onto the 4149 * per cpu partial list. 4150 */ 4151 put_cpu_partial(s, slab, 1); 4152 stat(s, CPU_PARTIAL_FREE); 4153 } 4154 4155 return; 4156 } 4157 4158 /* 4159 * This slab was partially empty but not on the per-node partial list, 4160 * in which case we shouldn't manipulate its list, just return. 4161 */ 4162 if (prior && !on_node_partial) { 4163 spin_unlock_irqrestore(&n->list_lock, flags); 4164 return; 4165 } 4166 4167 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4168 goto slab_empty; 4169 4170 /* 4171 * Objects left in the slab. If it was not on the partial list before 4172 * then add it. 4173 */ 4174 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4175 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4176 stat(s, FREE_ADD_PARTIAL); 4177 } 4178 spin_unlock_irqrestore(&n->list_lock, flags); 4179 return; 4180 4181 slab_empty: 4182 if (prior) { 4183 /* 4184 * Slab on the partial list. 4185 */ 4186 remove_partial(n, slab); 4187 stat(s, FREE_REMOVE_PARTIAL); 4188 } 4189 4190 spin_unlock_irqrestore(&n->list_lock, flags); 4191 stat(s, FREE_SLAB); 4192 discard_slab(s, slab); 4193 } 4194 4195 #ifndef CONFIG_SLUB_TINY 4196 /* 4197 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4198 * can perform fastpath freeing without additional function calls. 4199 * 4200 * The fastpath is only possible if we are freeing to the current cpu slab 4201 * of this processor. This typically the case if we have just allocated 4202 * the item before. 4203 * 4204 * If fastpath is not possible then fall back to __slab_free where we deal 4205 * with all sorts of special processing. 4206 * 4207 * Bulk free of a freelist with several objects (all pointing to the 4208 * same slab) possible by specifying head and tail ptr, plus objects 4209 * count (cnt). Bulk free indicated by tail pointer being set. 4210 */ 4211 static __always_inline void do_slab_free(struct kmem_cache *s, 4212 struct slab *slab, void *head, void *tail, 4213 int cnt, unsigned long addr) 4214 { 4215 struct kmem_cache_cpu *c; 4216 unsigned long tid; 4217 void **freelist; 4218 4219 redo: 4220 /* 4221 * Determine the currently cpus per cpu slab. 4222 * The cpu may change afterward. However that does not matter since 4223 * data is retrieved via this pointer. If we are on the same cpu 4224 * during the cmpxchg then the free will succeed. 4225 */ 4226 c = raw_cpu_ptr(s->cpu_slab); 4227 tid = READ_ONCE(c->tid); 4228 4229 /* Same with comment on barrier() in slab_alloc_node() */ 4230 barrier(); 4231 4232 if (unlikely(slab != c->slab)) { 4233 __slab_free(s, slab, head, tail, cnt, addr); 4234 return; 4235 } 4236 4237 if (USE_LOCKLESS_FAST_PATH()) { 4238 freelist = READ_ONCE(c->freelist); 4239 4240 set_freepointer(s, tail, freelist); 4241 4242 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4243 note_cmpxchg_failure("slab_free", s, tid); 4244 goto redo; 4245 } 4246 } else { 4247 /* Update the free list under the local lock */ 4248 local_lock(&s->cpu_slab->lock); 4249 c = this_cpu_ptr(s->cpu_slab); 4250 if (unlikely(slab != c->slab)) { 4251 local_unlock(&s->cpu_slab->lock); 4252 goto redo; 4253 } 4254 tid = c->tid; 4255 freelist = c->freelist; 4256 4257 set_freepointer(s, tail, freelist); 4258 c->freelist = head; 4259 c->tid = next_tid(tid); 4260 4261 local_unlock(&s->cpu_slab->lock); 4262 } 4263 stat_add(s, FREE_FASTPATH, cnt); 4264 } 4265 #else /* CONFIG_SLUB_TINY */ 4266 static void do_slab_free(struct kmem_cache *s, 4267 struct slab *slab, void *head, void *tail, 4268 int cnt, unsigned long addr) 4269 { 4270 __slab_free(s, slab, head, tail, cnt, addr); 4271 } 4272 #endif /* CONFIG_SLUB_TINY */ 4273 4274 static __fastpath_inline 4275 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4276 unsigned long addr) 4277 { 4278 memcg_slab_free_hook(s, slab, &object, 1); 4279 4280 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4281 do_slab_free(s, slab, object, object, 1, addr); 4282 } 4283 4284 static __fastpath_inline 4285 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4286 void *tail, void **p, int cnt, unsigned long addr) 4287 { 4288 memcg_slab_free_hook(s, slab, p, cnt); 4289 /* 4290 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4291 * to remove objects, whose reuse must be delayed. 4292 */ 4293 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4294 do_slab_free(s, slab, head, tail, cnt, addr); 4295 } 4296 4297 #ifdef CONFIG_KASAN_GENERIC 4298 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4299 { 4300 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4301 } 4302 #endif 4303 4304 static inline struct kmem_cache *virt_to_cache(const void *obj) 4305 { 4306 struct slab *slab; 4307 4308 slab = virt_to_slab(obj); 4309 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4310 return NULL; 4311 return slab->slab_cache; 4312 } 4313 4314 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4315 { 4316 struct kmem_cache *cachep; 4317 4318 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4319 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4320 return s; 4321 4322 cachep = virt_to_cache(x); 4323 if (WARN(cachep && cachep != s, 4324 "%s: Wrong slab cache. %s but object is from %s\n", 4325 __func__, s->name, cachep->name)) 4326 print_tracking(cachep, x); 4327 return cachep; 4328 } 4329 4330 /** 4331 * kmem_cache_free - Deallocate an object 4332 * @s: The cache the allocation was from. 4333 * @x: The previously allocated object. 4334 * 4335 * Free an object which was previously allocated from this 4336 * cache. 4337 */ 4338 void kmem_cache_free(struct kmem_cache *s, void *x) 4339 { 4340 s = cache_from_obj(s, x); 4341 if (!s) 4342 return; 4343 trace_kmem_cache_free(_RET_IP_, x, s); 4344 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4345 } 4346 EXPORT_SYMBOL(kmem_cache_free); 4347 4348 static void free_large_kmalloc(struct folio *folio, void *object) 4349 { 4350 unsigned int order = folio_order(folio); 4351 4352 if (WARN_ON_ONCE(order == 0)) 4353 pr_warn_once("object pointer: 0x%p\n", object); 4354 4355 kmemleak_free(object); 4356 kasan_kfree_large(object); 4357 kmsan_kfree_large(object); 4358 4359 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4360 -(PAGE_SIZE << order)); 4361 folio_put(folio); 4362 } 4363 4364 /** 4365 * kfree - free previously allocated memory 4366 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4367 * 4368 * If @object is NULL, no operation is performed. 4369 */ 4370 void kfree(const void *object) 4371 { 4372 struct folio *folio; 4373 struct slab *slab; 4374 struct kmem_cache *s; 4375 void *x = (void *)object; 4376 4377 trace_kfree(_RET_IP_, object); 4378 4379 if (unlikely(ZERO_OR_NULL_PTR(object))) 4380 return; 4381 4382 folio = virt_to_folio(object); 4383 if (unlikely(!folio_test_slab(folio))) { 4384 free_large_kmalloc(folio, (void *)object); 4385 return; 4386 } 4387 4388 slab = folio_slab(folio); 4389 s = slab->slab_cache; 4390 slab_free(s, slab, x, _RET_IP_); 4391 } 4392 EXPORT_SYMBOL(kfree); 4393 4394 struct detached_freelist { 4395 struct slab *slab; 4396 void *tail; 4397 void *freelist; 4398 int cnt; 4399 struct kmem_cache *s; 4400 }; 4401 4402 /* 4403 * This function progressively scans the array with free objects (with 4404 * a limited look ahead) and extract objects belonging to the same 4405 * slab. It builds a detached freelist directly within the given 4406 * slab/objects. This can happen without any need for 4407 * synchronization, because the objects are owned by running process. 4408 * The freelist is build up as a single linked list in the objects. 4409 * The idea is, that this detached freelist can then be bulk 4410 * transferred to the real freelist(s), but only requiring a single 4411 * synchronization primitive. Look ahead in the array is limited due 4412 * to performance reasons. 4413 */ 4414 static inline 4415 int build_detached_freelist(struct kmem_cache *s, size_t size, 4416 void **p, struct detached_freelist *df) 4417 { 4418 int lookahead = 3; 4419 void *object; 4420 struct folio *folio; 4421 size_t same; 4422 4423 object = p[--size]; 4424 folio = virt_to_folio(object); 4425 if (!s) { 4426 /* Handle kalloc'ed objects */ 4427 if (unlikely(!folio_test_slab(folio))) { 4428 free_large_kmalloc(folio, object); 4429 df->slab = NULL; 4430 return size; 4431 } 4432 /* Derive kmem_cache from object */ 4433 df->slab = folio_slab(folio); 4434 df->s = df->slab->slab_cache; 4435 } else { 4436 df->slab = folio_slab(folio); 4437 df->s = cache_from_obj(s, object); /* Support for memcg */ 4438 } 4439 4440 /* Start new detached freelist */ 4441 df->tail = object; 4442 df->freelist = object; 4443 df->cnt = 1; 4444 4445 if (is_kfence_address(object)) 4446 return size; 4447 4448 set_freepointer(df->s, object, NULL); 4449 4450 same = size; 4451 while (size) { 4452 object = p[--size]; 4453 /* df->slab is always set at this point */ 4454 if (df->slab == virt_to_slab(object)) { 4455 /* Opportunity build freelist */ 4456 set_freepointer(df->s, object, df->freelist); 4457 df->freelist = object; 4458 df->cnt++; 4459 same--; 4460 if (size != same) 4461 swap(p[size], p[same]); 4462 continue; 4463 } 4464 4465 /* Limit look ahead search */ 4466 if (!--lookahead) 4467 break; 4468 } 4469 4470 return same; 4471 } 4472 4473 /* 4474 * Internal bulk free of objects that were not initialised by the post alloc 4475 * hooks and thus should not be processed by the free hooks 4476 */ 4477 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4478 { 4479 if (!size) 4480 return; 4481 4482 do { 4483 struct detached_freelist df; 4484 4485 size = build_detached_freelist(s, size, p, &df); 4486 if (!df.slab) 4487 continue; 4488 4489 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4490 _RET_IP_); 4491 } while (likely(size)); 4492 } 4493 4494 /* Note that interrupts must be enabled when calling this function. */ 4495 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4496 { 4497 if (!size) 4498 return; 4499 4500 do { 4501 struct detached_freelist df; 4502 4503 size = build_detached_freelist(s, size, p, &df); 4504 if (!df.slab) 4505 continue; 4506 4507 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4508 df.cnt, _RET_IP_); 4509 } while (likely(size)); 4510 } 4511 EXPORT_SYMBOL(kmem_cache_free_bulk); 4512 4513 #ifndef CONFIG_SLUB_TINY 4514 static inline 4515 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4516 void **p) 4517 { 4518 struct kmem_cache_cpu *c; 4519 unsigned long irqflags; 4520 int i; 4521 4522 /* 4523 * Drain objects in the per cpu slab, while disabling local 4524 * IRQs, which protects against PREEMPT and interrupts 4525 * handlers invoking normal fastpath. 4526 */ 4527 c = slub_get_cpu_ptr(s->cpu_slab); 4528 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4529 4530 for (i = 0; i < size; i++) { 4531 void *object = kfence_alloc(s, s->object_size, flags); 4532 4533 if (unlikely(object)) { 4534 p[i] = object; 4535 continue; 4536 } 4537 4538 object = c->freelist; 4539 if (unlikely(!object)) { 4540 /* 4541 * We may have removed an object from c->freelist using 4542 * the fastpath in the previous iteration; in that case, 4543 * c->tid has not been bumped yet. 4544 * Since ___slab_alloc() may reenable interrupts while 4545 * allocating memory, we should bump c->tid now. 4546 */ 4547 c->tid = next_tid(c->tid); 4548 4549 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4550 4551 /* 4552 * Invoking slow path likely have side-effect 4553 * of re-populating per CPU c->freelist 4554 */ 4555 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 4556 _RET_IP_, c, s->object_size); 4557 if (unlikely(!p[i])) 4558 goto error; 4559 4560 c = this_cpu_ptr(s->cpu_slab); 4561 maybe_wipe_obj_freeptr(s, p[i]); 4562 4563 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4564 4565 continue; /* goto for-loop */ 4566 } 4567 c->freelist = get_freepointer(s, object); 4568 p[i] = object; 4569 maybe_wipe_obj_freeptr(s, p[i]); 4570 stat(s, ALLOC_FASTPATH); 4571 } 4572 c->tid = next_tid(c->tid); 4573 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4574 slub_put_cpu_ptr(s->cpu_slab); 4575 4576 return i; 4577 4578 error: 4579 slub_put_cpu_ptr(s->cpu_slab); 4580 __kmem_cache_free_bulk(s, i, p); 4581 return 0; 4582 4583 } 4584 #else /* CONFIG_SLUB_TINY */ 4585 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4586 size_t size, void **p) 4587 { 4588 int i; 4589 4590 for (i = 0; i < size; i++) { 4591 void *object = kfence_alloc(s, s->object_size, flags); 4592 4593 if (unlikely(object)) { 4594 p[i] = object; 4595 continue; 4596 } 4597 4598 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4599 _RET_IP_, s->object_size); 4600 if (unlikely(!p[i])) 4601 goto error; 4602 4603 maybe_wipe_obj_freeptr(s, p[i]); 4604 } 4605 4606 return i; 4607 4608 error: 4609 __kmem_cache_free_bulk(s, i, p); 4610 return 0; 4611 } 4612 #endif /* CONFIG_SLUB_TINY */ 4613 4614 /* Note that interrupts must be enabled when calling this function. */ 4615 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4616 void **p) 4617 { 4618 int i; 4619 struct obj_cgroup *objcg = NULL; 4620 4621 if (!size) 4622 return 0; 4623 4624 /* memcg and kmem_cache debug support */ 4625 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 4626 if (unlikely(!s)) 4627 return 0; 4628 4629 i = __kmem_cache_alloc_bulk(s, flags, size, p); 4630 4631 /* 4632 * memcg and kmem_cache debug support and memory initialization. 4633 * Done outside of the IRQ disabled fastpath loop. 4634 */ 4635 if (likely(i != 0)) { 4636 slab_post_alloc_hook(s, objcg, flags, size, p, 4637 slab_want_init_on_alloc(flags, s), s->object_size); 4638 } else { 4639 memcg_slab_alloc_error_hook(s, size, objcg); 4640 } 4641 4642 return i; 4643 } 4644 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 4645 4646 4647 /* 4648 * Object placement in a slab is made very easy because we always start at 4649 * offset 0. If we tune the size of the object to the alignment then we can 4650 * get the required alignment by putting one properly sized object after 4651 * another. 4652 * 4653 * Notice that the allocation order determines the sizes of the per cpu 4654 * caches. Each processor has always one slab available for allocations. 4655 * Increasing the allocation order reduces the number of times that slabs 4656 * must be moved on and off the partial lists and is therefore a factor in 4657 * locking overhead. 4658 */ 4659 4660 /* 4661 * Minimum / Maximum order of slab pages. This influences locking overhead 4662 * and slab fragmentation. A higher order reduces the number of partial slabs 4663 * and increases the number of allocations possible without having to 4664 * take the list_lock. 4665 */ 4666 static unsigned int slub_min_order; 4667 static unsigned int slub_max_order = 4668 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4669 static unsigned int slub_min_objects; 4670 4671 /* 4672 * Calculate the order of allocation given an slab object size. 4673 * 4674 * The order of allocation has significant impact on performance and other 4675 * system components. Generally order 0 allocations should be preferred since 4676 * order 0 does not cause fragmentation in the page allocator. Larger objects 4677 * be problematic to put into order 0 slabs because there may be too much 4678 * unused space left. We go to a higher order if more than 1/16th of the slab 4679 * would be wasted. 4680 * 4681 * In order to reach satisfactory performance we must ensure that a minimum 4682 * number of objects is in one slab. Otherwise we may generate too much 4683 * activity on the partial lists which requires taking the list_lock. This is 4684 * less a concern for large slabs though which are rarely used. 4685 * 4686 * slab_max_order specifies the order where we begin to stop considering the 4687 * number of objects in a slab as critical. If we reach slab_max_order then 4688 * we try to keep the page order as low as possible. So we accept more waste 4689 * of space in favor of a small page order. 4690 * 4691 * Higher order allocations also allow the placement of more objects in a 4692 * slab and thereby reduce object handling overhead. If the user has 4693 * requested a higher minimum order then we start with that one instead of 4694 * the smallest order which will fit the object. 4695 */ 4696 static inline unsigned int calc_slab_order(unsigned int size, 4697 unsigned int min_order, unsigned int max_order, 4698 unsigned int fract_leftover) 4699 { 4700 unsigned int order; 4701 4702 for (order = min_order; order <= max_order; order++) { 4703 4704 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4705 unsigned int rem; 4706 4707 rem = slab_size % size; 4708 4709 if (rem <= slab_size / fract_leftover) 4710 break; 4711 } 4712 4713 return order; 4714 } 4715 4716 static inline int calculate_order(unsigned int size) 4717 { 4718 unsigned int order; 4719 unsigned int min_objects; 4720 unsigned int max_objects; 4721 unsigned int min_order; 4722 4723 min_objects = slub_min_objects; 4724 if (!min_objects) { 4725 /* 4726 * Some architectures will only update present cpus when 4727 * onlining them, so don't trust the number if it's just 1. But 4728 * we also don't want to use nr_cpu_ids always, as on some other 4729 * architectures, there can be many possible cpus, but never 4730 * onlined. Here we compromise between trying to avoid too high 4731 * order on systems that appear larger than they are, and too 4732 * low order on systems that appear smaller than they are. 4733 */ 4734 unsigned int nr_cpus = num_present_cpus(); 4735 if (nr_cpus <= 1) 4736 nr_cpus = nr_cpu_ids; 4737 min_objects = 4 * (fls(nr_cpus) + 1); 4738 } 4739 /* min_objects can't be 0 because get_order(0) is undefined */ 4740 max_objects = max(order_objects(slub_max_order, size), 1U); 4741 min_objects = min(min_objects, max_objects); 4742 4743 min_order = max_t(unsigned int, slub_min_order, 4744 get_order(min_objects * size)); 4745 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4746 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4747 4748 /* 4749 * Attempt to find best configuration for a slab. This works by first 4750 * attempting to generate a layout with the best possible configuration 4751 * and backing off gradually. 4752 * 4753 * We start with accepting at most 1/16 waste and try to find the 4754 * smallest order from min_objects-derived/slab_min_order up to 4755 * slab_max_order that will satisfy the constraint. Note that increasing 4756 * the order can only result in same or less fractional waste, not more. 4757 * 4758 * If that fails, we increase the acceptable fraction of waste and try 4759 * again. The last iteration with fraction of 1/2 would effectively 4760 * accept any waste and give us the order determined by min_objects, as 4761 * long as at least single object fits within slab_max_order. 4762 */ 4763 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 4764 order = calc_slab_order(size, min_order, slub_max_order, 4765 fraction); 4766 if (order <= slub_max_order) 4767 return order; 4768 } 4769 4770 /* 4771 * Doh this slab cannot be placed using slab_max_order. 4772 */ 4773 order = get_order(size); 4774 if (order <= MAX_PAGE_ORDER) 4775 return order; 4776 return -ENOSYS; 4777 } 4778 4779 static void 4780 init_kmem_cache_node(struct kmem_cache_node *n) 4781 { 4782 n->nr_partial = 0; 4783 spin_lock_init(&n->list_lock); 4784 INIT_LIST_HEAD(&n->partial); 4785 #ifdef CONFIG_SLUB_DEBUG 4786 atomic_long_set(&n->nr_slabs, 0); 4787 atomic_long_set(&n->total_objects, 0); 4788 INIT_LIST_HEAD(&n->full); 4789 #endif 4790 } 4791 4792 #ifndef CONFIG_SLUB_TINY 4793 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4794 { 4795 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4796 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4797 sizeof(struct kmem_cache_cpu)); 4798 4799 /* 4800 * Must align to double word boundary for the double cmpxchg 4801 * instructions to work; see __pcpu_double_call_return_bool(). 4802 */ 4803 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4804 2 * sizeof(void *)); 4805 4806 if (!s->cpu_slab) 4807 return 0; 4808 4809 init_kmem_cache_cpus(s); 4810 4811 return 1; 4812 } 4813 #else 4814 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4815 { 4816 return 1; 4817 } 4818 #endif /* CONFIG_SLUB_TINY */ 4819 4820 static struct kmem_cache *kmem_cache_node; 4821 4822 /* 4823 * No kmalloc_node yet so do it by hand. We know that this is the first 4824 * slab on the node for this slabcache. There are no concurrent accesses 4825 * possible. 4826 * 4827 * Note that this function only works on the kmem_cache_node 4828 * when allocating for the kmem_cache_node. This is used for bootstrapping 4829 * memory on a fresh node that has no slab structures yet. 4830 */ 4831 static void early_kmem_cache_node_alloc(int node) 4832 { 4833 struct slab *slab; 4834 struct kmem_cache_node *n; 4835 4836 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 4837 4838 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 4839 4840 BUG_ON(!slab); 4841 if (slab_nid(slab) != node) { 4842 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 4843 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 4844 } 4845 4846 n = slab->freelist; 4847 BUG_ON(!n); 4848 #ifdef CONFIG_SLUB_DEBUG 4849 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 4850 init_tracking(kmem_cache_node, n); 4851 #endif 4852 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 4853 slab->freelist = get_freepointer(kmem_cache_node, n); 4854 slab->inuse = 1; 4855 kmem_cache_node->node[node] = n; 4856 init_kmem_cache_node(n); 4857 inc_slabs_node(kmem_cache_node, node, slab->objects); 4858 4859 /* 4860 * No locks need to be taken here as it has just been 4861 * initialized and there is no concurrent access. 4862 */ 4863 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 4864 } 4865 4866 static void free_kmem_cache_nodes(struct kmem_cache *s) 4867 { 4868 int node; 4869 struct kmem_cache_node *n; 4870 4871 for_each_kmem_cache_node(s, node, n) { 4872 s->node[node] = NULL; 4873 kmem_cache_free(kmem_cache_node, n); 4874 } 4875 } 4876 4877 void __kmem_cache_release(struct kmem_cache *s) 4878 { 4879 cache_random_seq_destroy(s); 4880 #ifndef CONFIG_SLUB_TINY 4881 free_percpu(s->cpu_slab); 4882 #endif 4883 free_kmem_cache_nodes(s); 4884 } 4885 4886 static int init_kmem_cache_nodes(struct kmem_cache *s) 4887 { 4888 int node; 4889 4890 for_each_node_mask(node, slab_nodes) { 4891 struct kmem_cache_node *n; 4892 4893 if (slab_state == DOWN) { 4894 early_kmem_cache_node_alloc(node); 4895 continue; 4896 } 4897 n = kmem_cache_alloc_node(kmem_cache_node, 4898 GFP_KERNEL, node); 4899 4900 if (!n) { 4901 free_kmem_cache_nodes(s); 4902 return 0; 4903 } 4904 4905 init_kmem_cache_node(n); 4906 s->node[node] = n; 4907 } 4908 return 1; 4909 } 4910 4911 static void set_cpu_partial(struct kmem_cache *s) 4912 { 4913 #ifdef CONFIG_SLUB_CPU_PARTIAL 4914 unsigned int nr_objects; 4915 4916 /* 4917 * cpu_partial determined the maximum number of objects kept in the 4918 * per cpu partial lists of a processor. 4919 * 4920 * Per cpu partial lists mainly contain slabs that just have one 4921 * object freed. If they are used for allocation then they can be 4922 * filled up again with minimal effort. The slab will never hit the 4923 * per node partial lists and therefore no locking will be required. 4924 * 4925 * For backwards compatibility reasons, this is determined as number 4926 * of objects, even though we now limit maximum number of pages, see 4927 * slub_set_cpu_partial() 4928 */ 4929 if (!kmem_cache_has_cpu_partial(s)) 4930 nr_objects = 0; 4931 else if (s->size >= PAGE_SIZE) 4932 nr_objects = 6; 4933 else if (s->size >= 1024) 4934 nr_objects = 24; 4935 else if (s->size >= 256) 4936 nr_objects = 52; 4937 else 4938 nr_objects = 120; 4939 4940 slub_set_cpu_partial(s, nr_objects); 4941 #endif 4942 } 4943 4944 /* 4945 * calculate_sizes() determines the order and the distribution of data within 4946 * a slab object. 4947 */ 4948 static int calculate_sizes(struct kmem_cache *s) 4949 { 4950 slab_flags_t flags = s->flags; 4951 unsigned int size = s->object_size; 4952 unsigned int order; 4953 4954 /* 4955 * Round up object size to the next word boundary. We can only 4956 * place the free pointer at word boundaries and this determines 4957 * the possible location of the free pointer. 4958 */ 4959 size = ALIGN(size, sizeof(void *)); 4960 4961 #ifdef CONFIG_SLUB_DEBUG 4962 /* 4963 * Determine if we can poison the object itself. If the user of 4964 * the slab may touch the object after free or before allocation 4965 * then we should never poison the object itself. 4966 */ 4967 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4968 !s->ctor) 4969 s->flags |= __OBJECT_POISON; 4970 else 4971 s->flags &= ~__OBJECT_POISON; 4972 4973 4974 /* 4975 * If we are Redzoning then check if there is some space between the 4976 * end of the object and the free pointer. If not then add an 4977 * additional word to have some bytes to store Redzone information. 4978 */ 4979 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4980 size += sizeof(void *); 4981 #endif 4982 4983 /* 4984 * With that we have determined the number of bytes in actual use 4985 * by the object and redzoning. 4986 */ 4987 s->inuse = size; 4988 4989 if (slub_debug_orig_size(s) || 4990 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4991 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4992 s->ctor) { 4993 /* 4994 * Relocate free pointer after the object if it is not 4995 * permitted to overwrite the first word of the object on 4996 * kmem_cache_free. 4997 * 4998 * This is the case if we do RCU, have a constructor or 4999 * destructor, are poisoning the objects, or are 5000 * redzoning an object smaller than sizeof(void *). 5001 * 5002 * The assumption that s->offset >= s->inuse means free 5003 * pointer is outside of the object is used in the 5004 * freeptr_outside_object() function. If that is no 5005 * longer true, the function needs to be modified. 5006 */ 5007 s->offset = size; 5008 size += sizeof(void *); 5009 } else { 5010 /* 5011 * Store freelist pointer near middle of object to keep 5012 * it away from the edges of the object to avoid small 5013 * sized over/underflows from neighboring allocations. 5014 */ 5015 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5016 } 5017 5018 #ifdef CONFIG_SLUB_DEBUG 5019 if (flags & SLAB_STORE_USER) { 5020 /* 5021 * Need to store information about allocs and frees after 5022 * the object. 5023 */ 5024 size += 2 * sizeof(struct track); 5025 5026 /* Save the original kmalloc request size */ 5027 if (flags & SLAB_KMALLOC) 5028 size += sizeof(unsigned int); 5029 } 5030 #endif 5031 5032 kasan_cache_create(s, &size, &s->flags); 5033 #ifdef CONFIG_SLUB_DEBUG 5034 if (flags & SLAB_RED_ZONE) { 5035 /* 5036 * Add some empty padding so that we can catch 5037 * overwrites from earlier objects rather than let 5038 * tracking information or the free pointer be 5039 * corrupted if a user writes before the start 5040 * of the object. 5041 */ 5042 size += sizeof(void *); 5043 5044 s->red_left_pad = sizeof(void *); 5045 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5046 size += s->red_left_pad; 5047 } 5048 #endif 5049 5050 /* 5051 * SLUB stores one object immediately after another beginning from 5052 * offset 0. In order to align the objects we have to simply size 5053 * each object to conform to the alignment. 5054 */ 5055 size = ALIGN(size, s->align); 5056 s->size = size; 5057 s->reciprocal_size = reciprocal_value(size); 5058 order = calculate_order(size); 5059 5060 if ((int)order < 0) 5061 return 0; 5062 5063 s->allocflags = 0; 5064 if (order) 5065 s->allocflags |= __GFP_COMP; 5066 5067 if (s->flags & SLAB_CACHE_DMA) 5068 s->allocflags |= GFP_DMA; 5069 5070 if (s->flags & SLAB_CACHE_DMA32) 5071 s->allocflags |= GFP_DMA32; 5072 5073 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5074 s->allocflags |= __GFP_RECLAIMABLE; 5075 5076 /* 5077 * Determine the number of objects per slab 5078 */ 5079 s->oo = oo_make(order, size); 5080 s->min = oo_make(get_order(size), size); 5081 5082 return !!oo_objects(s->oo); 5083 } 5084 5085 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 5086 { 5087 s->flags = kmem_cache_flags(flags, s->name); 5088 #ifdef CONFIG_SLAB_FREELIST_HARDENED 5089 s->random = get_random_long(); 5090 #endif 5091 5092 if (!calculate_sizes(s)) 5093 goto error; 5094 if (disable_higher_order_debug) { 5095 /* 5096 * Disable debugging flags that store metadata if the min slab 5097 * order increased. 5098 */ 5099 if (get_order(s->size) > get_order(s->object_size)) { 5100 s->flags &= ~DEBUG_METADATA_FLAGS; 5101 s->offset = 0; 5102 if (!calculate_sizes(s)) 5103 goto error; 5104 } 5105 } 5106 5107 #ifdef system_has_freelist_aba 5108 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 5109 /* Enable fast mode */ 5110 s->flags |= __CMPXCHG_DOUBLE; 5111 } 5112 #endif 5113 5114 /* 5115 * The larger the object size is, the more slabs we want on the partial 5116 * list to avoid pounding the page allocator excessively. 5117 */ 5118 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 5119 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 5120 5121 set_cpu_partial(s); 5122 5123 #ifdef CONFIG_NUMA 5124 s->remote_node_defrag_ratio = 1000; 5125 #endif 5126 5127 /* Initialize the pre-computed randomized freelist if slab is up */ 5128 if (slab_state >= UP) { 5129 if (init_cache_random_seq(s)) 5130 goto error; 5131 } 5132 5133 if (!init_kmem_cache_nodes(s)) 5134 goto error; 5135 5136 if (alloc_kmem_cache_cpus(s)) 5137 return 0; 5138 5139 error: 5140 __kmem_cache_release(s); 5141 return -EINVAL; 5142 } 5143 5144 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5145 const char *text) 5146 { 5147 #ifdef CONFIG_SLUB_DEBUG 5148 void *addr = slab_address(slab); 5149 void *p; 5150 5151 slab_err(s, slab, text, s->name); 5152 5153 spin_lock(&object_map_lock); 5154 __fill_map(object_map, s, slab); 5155 5156 for_each_object(p, s, addr, slab->objects) { 5157 5158 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5159 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5160 print_tracking(s, p); 5161 } 5162 } 5163 spin_unlock(&object_map_lock); 5164 #endif 5165 } 5166 5167 /* 5168 * Attempt to free all partial slabs on a node. 5169 * This is called from __kmem_cache_shutdown(). We must take list_lock 5170 * because sysfs file might still access partial list after the shutdowning. 5171 */ 5172 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5173 { 5174 LIST_HEAD(discard); 5175 struct slab *slab, *h; 5176 5177 BUG_ON(irqs_disabled()); 5178 spin_lock_irq(&n->list_lock); 5179 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5180 if (!slab->inuse) { 5181 remove_partial(n, slab); 5182 list_add(&slab->slab_list, &discard); 5183 } else { 5184 list_slab_objects(s, slab, 5185 "Objects remaining in %s on __kmem_cache_shutdown()"); 5186 } 5187 } 5188 spin_unlock_irq(&n->list_lock); 5189 5190 list_for_each_entry_safe(slab, h, &discard, slab_list) 5191 discard_slab(s, slab); 5192 } 5193 5194 bool __kmem_cache_empty(struct kmem_cache *s) 5195 { 5196 int node; 5197 struct kmem_cache_node *n; 5198 5199 for_each_kmem_cache_node(s, node, n) 5200 if (n->nr_partial || node_nr_slabs(n)) 5201 return false; 5202 return true; 5203 } 5204 5205 /* 5206 * Release all resources used by a slab cache. 5207 */ 5208 int __kmem_cache_shutdown(struct kmem_cache *s) 5209 { 5210 int node; 5211 struct kmem_cache_node *n; 5212 5213 flush_all_cpus_locked(s); 5214 /* Attempt to free all objects */ 5215 for_each_kmem_cache_node(s, node, n) { 5216 free_partial(s, n); 5217 if (n->nr_partial || node_nr_slabs(n)) 5218 return 1; 5219 } 5220 return 0; 5221 } 5222 5223 #ifdef CONFIG_PRINTK 5224 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5225 { 5226 void *base; 5227 int __maybe_unused i; 5228 unsigned int objnr; 5229 void *objp; 5230 void *objp0; 5231 struct kmem_cache *s = slab->slab_cache; 5232 struct track __maybe_unused *trackp; 5233 5234 kpp->kp_ptr = object; 5235 kpp->kp_slab = slab; 5236 kpp->kp_slab_cache = s; 5237 base = slab_address(slab); 5238 objp0 = kasan_reset_tag(object); 5239 #ifdef CONFIG_SLUB_DEBUG 5240 objp = restore_red_left(s, objp0); 5241 #else 5242 objp = objp0; 5243 #endif 5244 objnr = obj_to_index(s, slab, objp); 5245 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5246 objp = base + s->size * objnr; 5247 kpp->kp_objp = objp; 5248 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5249 || (objp - base) % s->size) || 5250 !(s->flags & SLAB_STORE_USER)) 5251 return; 5252 #ifdef CONFIG_SLUB_DEBUG 5253 objp = fixup_red_left(s, objp); 5254 trackp = get_track(s, objp, TRACK_ALLOC); 5255 kpp->kp_ret = (void *)trackp->addr; 5256 #ifdef CONFIG_STACKDEPOT 5257 { 5258 depot_stack_handle_t handle; 5259 unsigned long *entries; 5260 unsigned int nr_entries; 5261 5262 handle = READ_ONCE(trackp->handle); 5263 if (handle) { 5264 nr_entries = stack_depot_fetch(handle, &entries); 5265 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5266 kpp->kp_stack[i] = (void *)entries[i]; 5267 } 5268 5269 trackp = get_track(s, objp, TRACK_FREE); 5270 handle = READ_ONCE(trackp->handle); 5271 if (handle) { 5272 nr_entries = stack_depot_fetch(handle, &entries); 5273 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5274 kpp->kp_free_stack[i] = (void *)entries[i]; 5275 } 5276 } 5277 #endif 5278 #endif 5279 } 5280 #endif 5281 5282 /******************************************************************** 5283 * Kmalloc subsystem 5284 *******************************************************************/ 5285 5286 static int __init setup_slub_min_order(char *str) 5287 { 5288 get_option(&str, (int *)&slub_min_order); 5289 5290 if (slub_min_order > slub_max_order) 5291 slub_max_order = slub_min_order; 5292 5293 return 1; 5294 } 5295 5296 __setup("slab_min_order=", setup_slub_min_order); 5297 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5298 5299 5300 static int __init setup_slub_max_order(char *str) 5301 { 5302 get_option(&str, (int *)&slub_max_order); 5303 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5304 5305 if (slub_min_order > slub_max_order) 5306 slub_min_order = slub_max_order; 5307 5308 return 1; 5309 } 5310 5311 __setup("slab_max_order=", setup_slub_max_order); 5312 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5313 5314 static int __init setup_slub_min_objects(char *str) 5315 { 5316 get_option(&str, (int *)&slub_min_objects); 5317 5318 return 1; 5319 } 5320 5321 __setup("slab_min_objects=", setup_slub_min_objects); 5322 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5323 5324 #ifdef CONFIG_HARDENED_USERCOPY 5325 /* 5326 * Rejects incorrectly sized objects and objects that are to be copied 5327 * to/from userspace but do not fall entirely within the containing slab 5328 * cache's usercopy region. 5329 * 5330 * Returns NULL if check passes, otherwise const char * to name of cache 5331 * to indicate an error. 5332 */ 5333 void __check_heap_object(const void *ptr, unsigned long n, 5334 const struct slab *slab, bool to_user) 5335 { 5336 struct kmem_cache *s; 5337 unsigned int offset; 5338 bool is_kfence = is_kfence_address(ptr); 5339 5340 ptr = kasan_reset_tag(ptr); 5341 5342 /* Find object and usable object size. */ 5343 s = slab->slab_cache; 5344 5345 /* Reject impossible pointers. */ 5346 if (ptr < slab_address(slab)) 5347 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5348 to_user, 0, n); 5349 5350 /* Find offset within object. */ 5351 if (is_kfence) 5352 offset = ptr - kfence_object_start(ptr); 5353 else 5354 offset = (ptr - slab_address(slab)) % s->size; 5355 5356 /* Adjust for redzone and reject if within the redzone. */ 5357 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5358 if (offset < s->red_left_pad) 5359 usercopy_abort("SLUB object in left red zone", 5360 s->name, to_user, offset, n); 5361 offset -= s->red_left_pad; 5362 } 5363 5364 /* Allow address range falling entirely within usercopy region. */ 5365 if (offset >= s->useroffset && 5366 offset - s->useroffset <= s->usersize && 5367 n <= s->useroffset - offset + s->usersize) 5368 return; 5369 5370 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5371 } 5372 #endif /* CONFIG_HARDENED_USERCOPY */ 5373 5374 #define SHRINK_PROMOTE_MAX 32 5375 5376 /* 5377 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5378 * up most to the head of the partial lists. New allocations will then 5379 * fill those up and thus they can be removed from the partial lists. 5380 * 5381 * The slabs with the least items are placed last. This results in them 5382 * being allocated from last increasing the chance that the last objects 5383 * are freed in them. 5384 */ 5385 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5386 { 5387 int node; 5388 int i; 5389 struct kmem_cache_node *n; 5390 struct slab *slab; 5391 struct slab *t; 5392 struct list_head discard; 5393 struct list_head promote[SHRINK_PROMOTE_MAX]; 5394 unsigned long flags; 5395 int ret = 0; 5396 5397 for_each_kmem_cache_node(s, node, n) { 5398 INIT_LIST_HEAD(&discard); 5399 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5400 INIT_LIST_HEAD(promote + i); 5401 5402 spin_lock_irqsave(&n->list_lock, flags); 5403 5404 /* 5405 * Build lists of slabs to discard or promote. 5406 * 5407 * Note that concurrent frees may occur while we hold the 5408 * list_lock. slab->inuse here is the upper limit. 5409 */ 5410 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5411 int free = slab->objects - slab->inuse; 5412 5413 /* Do not reread slab->inuse */ 5414 barrier(); 5415 5416 /* We do not keep full slabs on the list */ 5417 BUG_ON(free <= 0); 5418 5419 if (free == slab->objects) { 5420 list_move(&slab->slab_list, &discard); 5421 slab_clear_node_partial(slab); 5422 n->nr_partial--; 5423 dec_slabs_node(s, node, slab->objects); 5424 } else if (free <= SHRINK_PROMOTE_MAX) 5425 list_move(&slab->slab_list, promote + free - 1); 5426 } 5427 5428 /* 5429 * Promote the slabs filled up most to the head of the 5430 * partial list. 5431 */ 5432 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5433 list_splice(promote + i, &n->partial); 5434 5435 spin_unlock_irqrestore(&n->list_lock, flags); 5436 5437 /* Release empty slabs */ 5438 list_for_each_entry_safe(slab, t, &discard, slab_list) 5439 free_slab(s, slab); 5440 5441 if (node_nr_slabs(n)) 5442 ret = 1; 5443 } 5444 5445 return ret; 5446 } 5447 5448 int __kmem_cache_shrink(struct kmem_cache *s) 5449 { 5450 flush_all(s); 5451 return __kmem_cache_do_shrink(s); 5452 } 5453 5454 static int slab_mem_going_offline_callback(void *arg) 5455 { 5456 struct kmem_cache *s; 5457 5458 mutex_lock(&slab_mutex); 5459 list_for_each_entry(s, &slab_caches, list) { 5460 flush_all_cpus_locked(s); 5461 __kmem_cache_do_shrink(s); 5462 } 5463 mutex_unlock(&slab_mutex); 5464 5465 return 0; 5466 } 5467 5468 static void slab_mem_offline_callback(void *arg) 5469 { 5470 struct memory_notify *marg = arg; 5471 int offline_node; 5472 5473 offline_node = marg->status_change_nid_normal; 5474 5475 /* 5476 * If the node still has available memory. we need kmem_cache_node 5477 * for it yet. 5478 */ 5479 if (offline_node < 0) 5480 return; 5481 5482 mutex_lock(&slab_mutex); 5483 node_clear(offline_node, slab_nodes); 5484 /* 5485 * We no longer free kmem_cache_node structures here, as it would be 5486 * racy with all get_node() users, and infeasible to protect them with 5487 * slab_mutex. 5488 */ 5489 mutex_unlock(&slab_mutex); 5490 } 5491 5492 static int slab_mem_going_online_callback(void *arg) 5493 { 5494 struct kmem_cache_node *n; 5495 struct kmem_cache *s; 5496 struct memory_notify *marg = arg; 5497 int nid = marg->status_change_nid_normal; 5498 int ret = 0; 5499 5500 /* 5501 * If the node's memory is already available, then kmem_cache_node is 5502 * already created. Nothing to do. 5503 */ 5504 if (nid < 0) 5505 return 0; 5506 5507 /* 5508 * We are bringing a node online. No memory is available yet. We must 5509 * allocate a kmem_cache_node structure in order to bring the node 5510 * online. 5511 */ 5512 mutex_lock(&slab_mutex); 5513 list_for_each_entry(s, &slab_caches, list) { 5514 /* 5515 * The structure may already exist if the node was previously 5516 * onlined and offlined. 5517 */ 5518 if (get_node(s, nid)) 5519 continue; 5520 /* 5521 * XXX: kmem_cache_alloc_node will fallback to other nodes 5522 * since memory is not yet available from the node that 5523 * is brought up. 5524 */ 5525 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5526 if (!n) { 5527 ret = -ENOMEM; 5528 goto out; 5529 } 5530 init_kmem_cache_node(n); 5531 s->node[nid] = n; 5532 } 5533 /* 5534 * Any cache created after this point will also have kmem_cache_node 5535 * initialized for the new node. 5536 */ 5537 node_set(nid, slab_nodes); 5538 out: 5539 mutex_unlock(&slab_mutex); 5540 return ret; 5541 } 5542 5543 static int slab_memory_callback(struct notifier_block *self, 5544 unsigned long action, void *arg) 5545 { 5546 int ret = 0; 5547 5548 switch (action) { 5549 case MEM_GOING_ONLINE: 5550 ret = slab_mem_going_online_callback(arg); 5551 break; 5552 case MEM_GOING_OFFLINE: 5553 ret = slab_mem_going_offline_callback(arg); 5554 break; 5555 case MEM_OFFLINE: 5556 case MEM_CANCEL_ONLINE: 5557 slab_mem_offline_callback(arg); 5558 break; 5559 case MEM_ONLINE: 5560 case MEM_CANCEL_OFFLINE: 5561 break; 5562 } 5563 if (ret) 5564 ret = notifier_from_errno(ret); 5565 else 5566 ret = NOTIFY_OK; 5567 return ret; 5568 } 5569 5570 /******************************************************************** 5571 * Basic setup of slabs 5572 *******************************************************************/ 5573 5574 /* 5575 * Used for early kmem_cache structures that were allocated using 5576 * the page allocator. Allocate them properly then fix up the pointers 5577 * that may be pointing to the wrong kmem_cache structure. 5578 */ 5579 5580 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 5581 { 5582 int node; 5583 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5584 struct kmem_cache_node *n; 5585 5586 memcpy(s, static_cache, kmem_cache->object_size); 5587 5588 /* 5589 * This runs very early, and only the boot processor is supposed to be 5590 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5591 * IPIs around. 5592 */ 5593 __flush_cpu_slab(s, smp_processor_id()); 5594 for_each_kmem_cache_node(s, node, n) { 5595 struct slab *p; 5596 5597 list_for_each_entry(p, &n->partial, slab_list) 5598 p->slab_cache = s; 5599 5600 #ifdef CONFIG_SLUB_DEBUG 5601 list_for_each_entry(p, &n->full, slab_list) 5602 p->slab_cache = s; 5603 #endif 5604 } 5605 list_add(&s->list, &slab_caches); 5606 return s; 5607 } 5608 5609 void __init kmem_cache_init(void) 5610 { 5611 static __initdata struct kmem_cache boot_kmem_cache, 5612 boot_kmem_cache_node; 5613 int node; 5614 5615 if (debug_guardpage_minorder()) 5616 slub_max_order = 0; 5617 5618 /* Print slub debugging pointers without hashing */ 5619 if (__slub_debug_enabled()) 5620 no_hash_pointers_enable(NULL); 5621 5622 kmem_cache_node = &boot_kmem_cache_node; 5623 kmem_cache = &boot_kmem_cache; 5624 5625 /* 5626 * Initialize the nodemask for which we will allocate per node 5627 * structures. Here we don't need taking slab_mutex yet. 5628 */ 5629 for_each_node_state(node, N_NORMAL_MEMORY) 5630 node_set(node, slab_nodes); 5631 5632 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5633 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 5634 5635 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5636 5637 /* Able to allocate the per node structures */ 5638 slab_state = PARTIAL; 5639 5640 create_boot_cache(kmem_cache, "kmem_cache", 5641 offsetof(struct kmem_cache, node) + 5642 nr_node_ids * sizeof(struct kmem_cache_node *), 5643 SLAB_HWCACHE_ALIGN, 0, 0); 5644 5645 kmem_cache = bootstrap(&boot_kmem_cache); 5646 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5647 5648 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5649 setup_kmalloc_cache_index_table(); 5650 create_kmalloc_caches(); 5651 5652 /* Setup random freelists for each cache */ 5653 init_freelist_randomization(); 5654 5655 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5656 slub_cpu_dead); 5657 5658 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5659 cache_line_size(), 5660 slub_min_order, slub_max_order, slub_min_objects, 5661 nr_cpu_ids, nr_node_ids); 5662 } 5663 5664 void __init kmem_cache_init_late(void) 5665 { 5666 #ifndef CONFIG_SLUB_TINY 5667 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5668 WARN_ON(!flushwq); 5669 #endif 5670 } 5671 5672 struct kmem_cache * 5673 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5674 slab_flags_t flags, void (*ctor)(void *)) 5675 { 5676 struct kmem_cache *s; 5677 5678 s = find_mergeable(size, align, flags, name, ctor); 5679 if (s) { 5680 if (sysfs_slab_alias(s, name)) 5681 return NULL; 5682 5683 s->refcount++; 5684 5685 /* 5686 * Adjust the object sizes so that we clear 5687 * the complete object on kzalloc. 5688 */ 5689 s->object_size = max(s->object_size, size); 5690 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5691 } 5692 5693 return s; 5694 } 5695 5696 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5697 { 5698 int err; 5699 5700 err = kmem_cache_open(s, flags); 5701 if (err) 5702 return err; 5703 5704 /* Mutex is not taken during early boot */ 5705 if (slab_state <= UP) 5706 return 0; 5707 5708 err = sysfs_slab_add(s); 5709 if (err) { 5710 __kmem_cache_release(s); 5711 return err; 5712 } 5713 5714 if (s->flags & SLAB_STORE_USER) 5715 debugfs_slab_add(s); 5716 5717 return 0; 5718 } 5719 5720 #ifdef SLAB_SUPPORTS_SYSFS 5721 static int count_inuse(struct slab *slab) 5722 { 5723 return slab->inuse; 5724 } 5725 5726 static int count_total(struct slab *slab) 5727 { 5728 return slab->objects; 5729 } 5730 #endif 5731 5732 #ifdef CONFIG_SLUB_DEBUG 5733 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5734 unsigned long *obj_map) 5735 { 5736 void *p; 5737 void *addr = slab_address(slab); 5738 5739 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5740 return; 5741 5742 /* Now we know that a valid freelist exists */ 5743 __fill_map(obj_map, s, slab); 5744 for_each_object(p, s, addr, slab->objects) { 5745 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5746 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5747 5748 if (!check_object(s, slab, p, val)) 5749 break; 5750 } 5751 } 5752 5753 static int validate_slab_node(struct kmem_cache *s, 5754 struct kmem_cache_node *n, unsigned long *obj_map) 5755 { 5756 unsigned long count = 0; 5757 struct slab *slab; 5758 unsigned long flags; 5759 5760 spin_lock_irqsave(&n->list_lock, flags); 5761 5762 list_for_each_entry(slab, &n->partial, slab_list) { 5763 validate_slab(s, slab, obj_map); 5764 count++; 5765 } 5766 if (count != n->nr_partial) { 5767 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5768 s->name, count, n->nr_partial); 5769 slab_add_kunit_errors(); 5770 } 5771 5772 if (!(s->flags & SLAB_STORE_USER)) 5773 goto out; 5774 5775 list_for_each_entry(slab, &n->full, slab_list) { 5776 validate_slab(s, slab, obj_map); 5777 count++; 5778 } 5779 if (count != node_nr_slabs(n)) { 5780 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5781 s->name, count, node_nr_slabs(n)); 5782 slab_add_kunit_errors(); 5783 } 5784 5785 out: 5786 spin_unlock_irqrestore(&n->list_lock, flags); 5787 return count; 5788 } 5789 5790 long validate_slab_cache(struct kmem_cache *s) 5791 { 5792 int node; 5793 unsigned long count = 0; 5794 struct kmem_cache_node *n; 5795 unsigned long *obj_map; 5796 5797 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5798 if (!obj_map) 5799 return -ENOMEM; 5800 5801 flush_all(s); 5802 for_each_kmem_cache_node(s, node, n) 5803 count += validate_slab_node(s, n, obj_map); 5804 5805 bitmap_free(obj_map); 5806 5807 return count; 5808 } 5809 EXPORT_SYMBOL(validate_slab_cache); 5810 5811 #ifdef CONFIG_DEBUG_FS 5812 /* 5813 * Generate lists of code addresses where slabcache objects are allocated 5814 * and freed. 5815 */ 5816 5817 struct location { 5818 depot_stack_handle_t handle; 5819 unsigned long count; 5820 unsigned long addr; 5821 unsigned long waste; 5822 long long sum_time; 5823 long min_time; 5824 long max_time; 5825 long min_pid; 5826 long max_pid; 5827 DECLARE_BITMAP(cpus, NR_CPUS); 5828 nodemask_t nodes; 5829 }; 5830 5831 struct loc_track { 5832 unsigned long max; 5833 unsigned long count; 5834 struct location *loc; 5835 loff_t idx; 5836 }; 5837 5838 static struct dentry *slab_debugfs_root; 5839 5840 static void free_loc_track(struct loc_track *t) 5841 { 5842 if (t->max) 5843 free_pages((unsigned long)t->loc, 5844 get_order(sizeof(struct location) * t->max)); 5845 } 5846 5847 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5848 { 5849 struct location *l; 5850 int order; 5851 5852 order = get_order(sizeof(struct location) * max); 5853 5854 l = (void *)__get_free_pages(flags, order); 5855 if (!l) 5856 return 0; 5857 5858 if (t->count) { 5859 memcpy(l, t->loc, sizeof(struct location) * t->count); 5860 free_loc_track(t); 5861 } 5862 t->max = max; 5863 t->loc = l; 5864 return 1; 5865 } 5866 5867 static int add_location(struct loc_track *t, struct kmem_cache *s, 5868 const struct track *track, 5869 unsigned int orig_size) 5870 { 5871 long start, end, pos; 5872 struct location *l; 5873 unsigned long caddr, chandle, cwaste; 5874 unsigned long age = jiffies - track->when; 5875 depot_stack_handle_t handle = 0; 5876 unsigned int waste = s->object_size - orig_size; 5877 5878 #ifdef CONFIG_STACKDEPOT 5879 handle = READ_ONCE(track->handle); 5880 #endif 5881 start = -1; 5882 end = t->count; 5883 5884 for ( ; ; ) { 5885 pos = start + (end - start + 1) / 2; 5886 5887 /* 5888 * There is nothing at "end". If we end up there 5889 * we need to add something to before end. 5890 */ 5891 if (pos == end) 5892 break; 5893 5894 l = &t->loc[pos]; 5895 caddr = l->addr; 5896 chandle = l->handle; 5897 cwaste = l->waste; 5898 if ((track->addr == caddr) && (handle == chandle) && 5899 (waste == cwaste)) { 5900 5901 l->count++; 5902 if (track->when) { 5903 l->sum_time += age; 5904 if (age < l->min_time) 5905 l->min_time = age; 5906 if (age > l->max_time) 5907 l->max_time = age; 5908 5909 if (track->pid < l->min_pid) 5910 l->min_pid = track->pid; 5911 if (track->pid > l->max_pid) 5912 l->max_pid = track->pid; 5913 5914 cpumask_set_cpu(track->cpu, 5915 to_cpumask(l->cpus)); 5916 } 5917 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5918 return 1; 5919 } 5920 5921 if (track->addr < caddr) 5922 end = pos; 5923 else if (track->addr == caddr && handle < chandle) 5924 end = pos; 5925 else if (track->addr == caddr && handle == chandle && 5926 waste < cwaste) 5927 end = pos; 5928 else 5929 start = pos; 5930 } 5931 5932 /* 5933 * Not found. Insert new tracking element. 5934 */ 5935 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5936 return 0; 5937 5938 l = t->loc + pos; 5939 if (pos < t->count) 5940 memmove(l + 1, l, 5941 (t->count - pos) * sizeof(struct location)); 5942 t->count++; 5943 l->count = 1; 5944 l->addr = track->addr; 5945 l->sum_time = age; 5946 l->min_time = age; 5947 l->max_time = age; 5948 l->min_pid = track->pid; 5949 l->max_pid = track->pid; 5950 l->handle = handle; 5951 l->waste = waste; 5952 cpumask_clear(to_cpumask(l->cpus)); 5953 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5954 nodes_clear(l->nodes); 5955 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5956 return 1; 5957 } 5958 5959 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5960 struct slab *slab, enum track_item alloc, 5961 unsigned long *obj_map) 5962 { 5963 void *addr = slab_address(slab); 5964 bool is_alloc = (alloc == TRACK_ALLOC); 5965 void *p; 5966 5967 __fill_map(obj_map, s, slab); 5968 5969 for_each_object(p, s, addr, slab->objects) 5970 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5971 add_location(t, s, get_track(s, p, alloc), 5972 is_alloc ? get_orig_size(s, p) : 5973 s->object_size); 5974 } 5975 #endif /* CONFIG_DEBUG_FS */ 5976 #endif /* CONFIG_SLUB_DEBUG */ 5977 5978 #ifdef SLAB_SUPPORTS_SYSFS 5979 enum slab_stat_type { 5980 SL_ALL, /* All slabs */ 5981 SL_PARTIAL, /* Only partially allocated slabs */ 5982 SL_CPU, /* Only slabs used for cpu caches */ 5983 SL_OBJECTS, /* Determine allocated objects not slabs */ 5984 SL_TOTAL /* Determine object capacity not slabs */ 5985 }; 5986 5987 #define SO_ALL (1 << SL_ALL) 5988 #define SO_PARTIAL (1 << SL_PARTIAL) 5989 #define SO_CPU (1 << SL_CPU) 5990 #define SO_OBJECTS (1 << SL_OBJECTS) 5991 #define SO_TOTAL (1 << SL_TOTAL) 5992 5993 static ssize_t show_slab_objects(struct kmem_cache *s, 5994 char *buf, unsigned long flags) 5995 { 5996 unsigned long total = 0; 5997 int node; 5998 int x; 5999 unsigned long *nodes; 6000 int len = 0; 6001 6002 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6003 if (!nodes) 6004 return -ENOMEM; 6005 6006 if (flags & SO_CPU) { 6007 int cpu; 6008 6009 for_each_possible_cpu(cpu) { 6010 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6011 cpu); 6012 int node; 6013 struct slab *slab; 6014 6015 slab = READ_ONCE(c->slab); 6016 if (!slab) 6017 continue; 6018 6019 node = slab_nid(slab); 6020 if (flags & SO_TOTAL) 6021 x = slab->objects; 6022 else if (flags & SO_OBJECTS) 6023 x = slab->inuse; 6024 else 6025 x = 1; 6026 6027 total += x; 6028 nodes[node] += x; 6029 6030 #ifdef CONFIG_SLUB_CPU_PARTIAL 6031 slab = slub_percpu_partial_read_once(c); 6032 if (slab) { 6033 node = slab_nid(slab); 6034 if (flags & SO_TOTAL) 6035 WARN_ON_ONCE(1); 6036 else if (flags & SO_OBJECTS) 6037 WARN_ON_ONCE(1); 6038 else 6039 x = slab->slabs; 6040 total += x; 6041 nodes[node] += x; 6042 } 6043 #endif 6044 } 6045 } 6046 6047 /* 6048 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6049 * already held which will conflict with an existing lock order: 6050 * 6051 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6052 * 6053 * We don't really need mem_hotplug_lock (to hold off 6054 * slab_mem_going_offline_callback) here because slab's memory hot 6055 * unplug code doesn't destroy the kmem_cache->node[] data. 6056 */ 6057 6058 #ifdef CONFIG_SLUB_DEBUG 6059 if (flags & SO_ALL) { 6060 struct kmem_cache_node *n; 6061 6062 for_each_kmem_cache_node(s, node, n) { 6063 6064 if (flags & SO_TOTAL) 6065 x = node_nr_objs(n); 6066 else if (flags & SO_OBJECTS) 6067 x = node_nr_objs(n) - count_partial(n, count_free); 6068 else 6069 x = node_nr_slabs(n); 6070 total += x; 6071 nodes[node] += x; 6072 } 6073 6074 } else 6075 #endif 6076 if (flags & SO_PARTIAL) { 6077 struct kmem_cache_node *n; 6078 6079 for_each_kmem_cache_node(s, node, n) { 6080 if (flags & SO_TOTAL) 6081 x = count_partial(n, count_total); 6082 else if (flags & SO_OBJECTS) 6083 x = count_partial(n, count_inuse); 6084 else 6085 x = n->nr_partial; 6086 total += x; 6087 nodes[node] += x; 6088 } 6089 } 6090 6091 len += sysfs_emit_at(buf, len, "%lu", total); 6092 #ifdef CONFIG_NUMA 6093 for (node = 0; node < nr_node_ids; node++) { 6094 if (nodes[node]) 6095 len += sysfs_emit_at(buf, len, " N%d=%lu", 6096 node, nodes[node]); 6097 } 6098 #endif 6099 len += sysfs_emit_at(buf, len, "\n"); 6100 kfree(nodes); 6101 6102 return len; 6103 } 6104 6105 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6106 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6107 6108 struct slab_attribute { 6109 struct attribute attr; 6110 ssize_t (*show)(struct kmem_cache *s, char *buf); 6111 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6112 }; 6113 6114 #define SLAB_ATTR_RO(_name) \ 6115 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6116 6117 #define SLAB_ATTR(_name) \ 6118 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6119 6120 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6121 { 6122 return sysfs_emit(buf, "%u\n", s->size); 6123 } 6124 SLAB_ATTR_RO(slab_size); 6125 6126 static ssize_t align_show(struct kmem_cache *s, char *buf) 6127 { 6128 return sysfs_emit(buf, "%u\n", s->align); 6129 } 6130 SLAB_ATTR_RO(align); 6131 6132 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6133 { 6134 return sysfs_emit(buf, "%u\n", s->object_size); 6135 } 6136 SLAB_ATTR_RO(object_size); 6137 6138 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6139 { 6140 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6141 } 6142 SLAB_ATTR_RO(objs_per_slab); 6143 6144 static ssize_t order_show(struct kmem_cache *s, char *buf) 6145 { 6146 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6147 } 6148 SLAB_ATTR_RO(order); 6149 6150 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6151 { 6152 return sysfs_emit(buf, "%lu\n", s->min_partial); 6153 } 6154 6155 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6156 size_t length) 6157 { 6158 unsigned long min; 6159 int err; 6160 6161 err = kstrtoul(buf, 10, &min); 6162 if (err) 6163 return err; 6164 6165 s->min_partial = min; 6166 return length; 6167 } 6168 SLAB_ATTR(min_partial); 6169 6170 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6171 { 6172 unsigned int nr_partial = 0; 6173 #ifdef CONFIG_SLUB_CPU_PARTIAL 6174 nr_partial = s->cpu_partial; 6175 #endif 6176 6177 return sysfs_emit(buf, "%u\n", nr_partial); 6178 } 6179 6180 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6181 size_t length) 6182 { 6183 unsigned int objects; 6184 int err; 6185 6186 err = kstrtouint(buf, 10, &objects); 6187 if (err) 6188 return err; 6189 if (objects && !kmem_cache_has_cpu_partial(s)) 6190 return -EINVAL; 6191 6192 slub_set_cpu_partial(s, objects); 6193 flush_all(s); 6194 return length; 6195 } 6196 SLAB_ATTR(cpu_partial); 6197 6198 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6199 { 6200 if (!s->ctor) 6201 return 0; 6202 return sysfs_emit(buf, "%pS\n", s->ctor); 6203 } 6204 SLAB_ATTR_RO(ctor); 6205 6206 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6207 { 6208 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6209 } 6210 SLAB_ATTR_RO(aliases); 6211 6212 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6213 { 6214 return show_slab_objects(s, buf, SO_PARTIAL); 6215 } 6216 SLAB_ATTR_RO(partial); 6217 6218 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6219 { 6220 return show_slab_objects(s, buf, SO_CPU); 6221 } 6222 SLAB_ATTR_RO(cpu_slabs); 6223 6224 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6225 { 6226 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6227 } 6228 SLAB_ATTR_RO(objects_partial); 6229 6230 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6231 { 6232 int objects = 0; 6233 int slabs = 0; 6234 int cpu __maybe_unused; 6235 int len = 0; 6236 6237 #ifdef CONFIG_SLUB_CPU_PARTIAL 6238 for_each_online_cpu(cpu) { 6239 struct slab *slab; 6240 6241 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6242 6243 if (slab) 6244 slabs += slab->slabs; 6245 } 6246 #endif 6247 6248 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6249 objects = (slabs * oo_objects(s->oo)) / 2; 6250 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6251 6252 #ifdef CONFIG_SLUB_CPU_PARTIAL 6253 for_each_online_cpu(cpu) { 6254 struct slab *slab; 6255 6256 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6257 if (slab) { 6258 slabs = READ_ONCE(slab->slabs); 6259 objects = (slabs * oo_objects(s->oo)) / 2; 6260 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6261 cpu, objects, slabs); 6262 } 6263 } 6264 #endif 6265 len += sysfs_emit_at(buf, len, "\n"); 6266 6267 return len; 6268 } 6269 SLAB_ATTR_RO(slabs_cpu_partial); 6270 6271 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6272 { 6273 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6274 } 6275 SLAB_ATTR_RO(reclaim_account); 6276 6277 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6278 { 6279 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6280 } 6281 SLAB_ATTR_RO(hwcache_align); 6282 6283 #ifdef CONFIG_ZONE_DMA 6284 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6285 { 6286 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6287 } 6288 SLAB_ATTR_RO(cache_dma); 6289 #endif 6290 6291 #ifdef CONFIG_HARDENED_USERCOPY 6292 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6293 { 6294 return sysfs_emit(buf, "%u\n", s->usersize); 6295 } 6296 SLAB_ATTR_RO(usersize); 6297 #endif 6298 6299 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6300 { 6301 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6302 } 6303 SLAB_ATTR_RO(destroy_by_rcu); 6304 6305 #ifdef CONFIG_SLUB_DEBUG 6306 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6307 { 6308 return show_slab_objects(s, buf, SO_ALL); 6309 } 6310 SLAB_ATTR_RO(slabs); 6311 6312 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6313 { 6314 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6315 } 6316 SLAB_ATTR_RO(total_objects); 6317 6318 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6319 { 6320 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6321 } 6322 SLAB_ATTR_RO(objects); 6323 6324 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6325 { 6326 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6327 } 6328 SLAB_ATTR_RO(sanity_checks); 6329 6330 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6331 { 6332 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6333 } 6334 SLAB_ATTR_RO(trace); 6335 6336 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6337 { 6338 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6339 } 6340 6341 SLAB_ATTR_RO(red_zone); 6342 6343 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6344 { 6345 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6346 } 6347 6348 SLAB_ATTR_RO(poison); 6349 6350 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6351 { 6352 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6353 } 6354 6355 SLAB_ATTR_RO(store_user); 6356 6357 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6358 { 6359 return 0; 6360 } 6361 6362 static ssize_t validate_store(struct kmem_cache *s, 6363 const char *buf, size_t length) 6364 { 6365 int ret = -EINVAL; 6366 6367 if (buf[0] == '1' && kmem_cache_debug(s)) { 6368 ret = validate_slab_cache(s); 6369 if (ret >= 0) 6370 ret = length; 6371 } 6372 return ret; 6373 } 6374 SLAB_ATTR(validate); 6375 6376 #endif /* CONFIG_SLUB_DEBUG */ 6377 6378 #ifdef CONFIG_FAILSLAB 6379 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6380 { 6381 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6382 } 6383 6384 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6385 size_t length) 6386 { 6387 if (s->refcount > 1) 6388 return -EINVAL; 6389 6390 if (buf[0] == '1') 6391 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6392 else 6393 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6394 6395 return length; 6396 } 6397 SLAB_ATTR(failslab); 6398 #endif 6399 6400 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6401 { 6402 return 0; 6403 } 6404 6405 static ssize_t shrink_store(struct kmem_cache *s, 6406 const char *buf, size_t length) 6407 { 6408 if (buf[0] == '1') 6409 kmem_cache_shrink(s); 6410 else 6411 return -EINVAL; 6412 return length; 6413 } 6414 SLAB_ATTR(shrink); 6415 6416 #ifdef CONFIG_NUMA 6417 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6418 { 6419 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6420 } 6421 6422 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6423 const char *buf, size_t length) 6424 { 6425 unsigned int ratio; 6426 int err; 6427 6428 err = kstrtouint(buf, 10, &ratio); 6429 if (err) 6430 return err; 6431 if (ratio > 100) 6432 return -ERANGE; 6433 6434 s->remote_node_defrag_ratio = ratio * 10; 6435 6436 return length; 6437 } 6438 SLAB_ATTR(remote_node_defrag_ratio); 6439 #endif 6440 6441 #ifdef CONFIG_SLUB_STATS 6442 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6443 { 6444 unsigned long sum = 0; 6445 int cpu; 6446 int len = 0; 6447 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6448 6449 if (!data) 6450 return -ENOMEM; 6451 6452 for_each_online_cpu(cpu) { 6453 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6454 6455 data[cpu] = x; 6456 sum += x; 6457 } 6458 6459 len += sysfs_emit_at(buf, len, "%lu", sum); 6460 6461 #ifdef CONFIG_SMP 6462 for_each_online_cpu(cpu) { 6463 if (data[cpu]) 6464 len += sysfs_emit_at(buf, len, " C%d=%u", 6465 cpu, data[cpu]); 6466 } 6467 #endif 6468 kfree(data); 6469 len += sysfs_emit_at(buf, len, "\n"); 6470 6471 return len; 6472 } 6473 6474 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6475 { 6476 int cpu; 6477 6478 for_each_online_cpu(cpu) 6479 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6480 } 6481 6482 #define STAT_ATTR(si, text) \ 6483 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6484 { \ 6485 return show_stat(s, buf, si); \ 6486 } \ 6487 static ssize_t text##_store(struct kmem_cache *s, \ 6488 const char *buf, size_t length) \ 6489 { \ 6490 if (buf[0] != '0') \ 6491 return -EINVAL; \ 6492 clear_stat(s, si); \ 6493 return length; \ 6494 } \ 6495 SLAB_ATTR(text); \ 6496 6497 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 6498 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 6499 STAT_ATTR(FREE_FASTPATH, free_fastpath); 6500 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 6501 STAT_ATTR(FREE_FROZEN, free_frozen); 6502 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 6503 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 6504 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 6505 STAT_ATTR(ALLOC_SLAB, alloc_slab); 6506 STAT_ATTR(ALLOC_REFILL, alloc_refill); 6507 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 6508 STAT_ATTR(FREE_SLAB, free_slab); 6509 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 6510 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 6511 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 6512 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 6513 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 6514 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 6515 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 6516 STAT_ATTR(ORDER_FALLBACK, order_fallback); 6517 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 6518 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 6519 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 6520 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 6521 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 6522 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 6523 #endif /* CONFIG_SLUB_STATS */ 6524 6525 #ifdef CONFIG_KFENCE 6526 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 6527 { 6528 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 6529 } 6530 6531 static ssize_t skip_kfence_store(struct kmem_cache *s, 6532 const char *buf, size_t length) 6533 { 6534 int ret = length; 6535 6536 if (buf[0] == '0') 6537 s->flags &= ~SLAB_SKIP_KFENCE; 6538 else if (buf[0] == '1') 6539 s->flags |= SLAB_SKIP_KFENCE; 6540 else 6541 ret = -EINVAL; 6542 6543 return ret; 6544 } 6545 SLAB_ATTR(skip_kfence); 6546 #endif 6547 6548 static struct attribute *slab_attrs[] = { 6549 &slab_size_attr.attr, 6550 &object_size_attr.attr, 6551 &objs_per_slab_attr.attr, 6552 &order_attr.attr, 6553 &min_partial_attr.attr, 6554 &cpu_partial_attr.attr, 6555 &objects_partial_attr.attr, 6556 &partial_attr.attr, 6557 &cpu_slabs_attr.attr, 6558 &ctor_attr.attr, 6559 &aliases_attr.attr, 6560 &align_attr.attr, 6561 &hwcache_align_attr.attr, 6562 &reclaim_account_attr.attr, 6563 &destroy_by_rcu_attr.attr, 6564 &shrink_attr.attr, 6565 &slabs_cpu_partial_attr.attr, 6566 #ifdef CONFIG_SLUB_DEBUG 6567 &total_objects_attr.attr, 6568 &objects_attr.attr, 6569 &slabs_attr.attr, 6570 &sanity_checks_attr.attr, 6571 &trace_attr.attr, 6572 &red_zone_attr.attr, 6573 &poison_attr.attr, 6574 &store_user_attr.attr, 6575 &validate_attr.attr, 6576 #endif 6577 #ifdef CONFIG_ZONE_DMA 6578 &cache_dma_attr.attr, 6579 #endif 6580 #ifdef CONFIG_NUMA 6581 &remote_node_defrag_ratio_attr.attr, 6582 #endif 6583 #ifdef CONFIG_SLUB_STATS 6584 &alloc_fastpath_attr.attr, 6585 &alloc_slowpath_attr.attr, 6586 &free_fastpath_attr.attr, 6587 &free_slowpath_attr.attr, 6588 &free_frozen_attr.attr, 6589 &free_add_partial_attr.attr, 6590 &free_remove_partial_attr.attr, 6591 &alloc_from_partial_attr.attr, 6592 &alloc_slab_attr.attr, 6593 &alloc_refill_attr.attr, 6594 &alloc_node_mismatch_attr.attr, 6595 &free_slab_attr.attr, 6596 &cpuslab_flush_attr.attr, 6597 &deactivate_full_attr.attr, 6598 &deactivate_empty_attr.attr, 6599 &deactivate_to_head_attr.attr, 6600 &deactivate_to_tail_attr.attr, 6601 &deactivate_remote_frees_attr.attr, 6602 &deactivate_bypass_attr.attr, 6603 &order_fallback_attr.attr, 6604 &cmpxchg_double_fail_attr.attr, 6605 &cmpxchg_double_cpu_fail_attr.attr, 6606 &cpu_partial_alloc_attr.attr, 6607 &cpu_partial_free_attr.attr, 6608 &cpu_partial_node_attr.attr, 6609 &cpu_partial_drain_attr.attr, 6610 #endif 6611 #ifdef CONFIG_FAILSLAB 6612 &failslab_attr.attr, 6613 #endif 6614 #ifdef CONFIG_HARDENED_USERCOPY 6615 &usersize_attr.attr, 6616 #endif 6617 #ifdef CONFIG_KFENCE 6618 &skip_kfence_attr.attr, 6619 #endif 6620 6621 NULL 6622 }; 6623 6624 static const struct attribute_group slab_attr_group = { 6625 .attrs = slab_attrs, 6626 }; 6627 6628 static ssize_t slab_attr_show(struct kobject *kobj, 6629 struct attribute *attr, 6630 char *buf) 6631 { 6632 struct slab_attribute *attribute; 6633 struct kmem_cache *s; 6634 6635 attribute = to_slab_attr(attr); 6636 s = to_slab(kobj); 6637 6638 if (!attribute->show) 6639 return -EIO; 6640 6641 return attribute->show(s, buf); 6642 } 6643 6644 static ssize_t slab_attr_store(struct kobject *kobj, 6645 struct attribute *attr, 6646 const char *buf, size_t len) 6647 { 6648 struct slab_attribute *attribute; 6649 struct kmem_cache *s; 6650 6651 attribute = to_slab_attr(attr); 6652 s = to_slab(kobj); 6653 6654 if (!attribute->store) 6655 return -EIO; 6656 6657 return attribute->store(s, buf, len); 6658 } 6659 6660 static void kmem_cache_release(struct kobject *k) 6661 { 6662 slab_kmem_cache_release(to_slab(k)); 6663 } 6664 6665 static const struct sysfs_ops slab_sysfs_ops = { 6666 .show = slab_attr_show, 6667 .store = slab_attr_store, 6668 }; 6669 6670 static const struct kobj_type slab_ktype = { 6671 .sysfs_ops = &slab_sysfs_ops, 6672 .release = kmem_cache_release, 6673 }; 6674 6675 static struct kset *slab_kset; 6676 6677 static inline struct kset *cache_kset(struct kmem_cache *s) 6678 { 6679 return slab_kset; 6680 } 6681 6682 #define ID_STR_LENGTH 32 6683 6684 /* Create a unique string id for a slab cache: 6685 * 6686 * Format :[flags-]size 6687 */ 6688 static char *create_unique_id(struct kmem_cache *s) 6689 { 6690 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6691 char *p = name; 6692 6693 if (!name) 6694 return ERR_PTR(-ENOMEM); 6695 6696 *p++ = ':'; 6697 /* 6698 * First flags affecting slabcache operations. We will only 6699 * get here for aliasable slabs so we do not need to support 6700 * too many flags. The flags here must cover all flags that 6701 * are matched during merging to guarantee that the id is 6702 * unique. 6703 */ 6704 if (s->flags & SLAB_CACHE_DMA) 6705 *p++ = 'd'; 6706 if (s->flags & SLAB_CACHE_DMA32) 6707 *p++ = 'D'; 6708 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6709 *p++ = 'a'; 6710 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6711 *p++ = 'F'; 6712 if (s->flags & SLAB_ACCOUNT) 6713 *p++ = 'A'; 6714 if (p != name + 1) 6715 *p++ = '-'; 6716 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6717 6718 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6719 kfree(name); 6720 return ERR_PTR(-EINVAL); 6721 } 6722 kmsan_unpoison_memory(name, p - name); 6723 return name; 6724 } 6725 6726 static int sysfs_slab_add(struct kmem_cache *s) 6727 { 6728 int err; 6729 const char *name; 6730 struct kset *kset = cache_kset(s); 6731 int unmergeable = slab_unmergeable(s); 6732 6733 if (!unmergeable && disable_higher_order_debug && 6734 (slub_debug & DEBUG_METADATA_FLAGS)) 6735 unmergeable = 1; 6736 6737 if (unmergeable) { 6738 /* 6739 * Slabcache can never be merged so we can use the name proper. 6740 * This is typically the case for debug situations. In that 6741 * case we can catch duplicate names easily. 6742 */ 6743 sysfs_remove_link(&slab_kset->kobj, s->name); 6744 name = s->name; 6745 } else { 6746 /* 6747 * Create a unique name for the slab as a target 6748 * for the symlinks. 6749 */ 6750 name = create_unique_id(s); 6751 if (IS_ERR(name)) 6752 return PTR_ERR(name); 6753 } 6754 6755 s->kobj.kset = kset; 6756 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6757 if (err) 6758 goto out; 6759 6760 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6761 if (err) 6762 goto out_del_kobj; 6763 6764 if (!unmergeable) { 6765 /* Setup first alias */ 6766 sysfs_slab_alias(s, s->name); 6767 } 6768 out: 6769 if (!unmergeable) 6770 kfree(name); 6771 return err; 6772 out_del_kobj: 6773 kobject_del(&s->kobj); 6774 goto out; 6775 } 6776 6777 void sysfs_slab_unlink(struct kmem_cache *s) 6778 { 6779 kobject_del(&s->kobj); 6780 } 6781 6782 void sysfs_slab_release(struct kmem_cache *s) 6783 { 6784 kobject_put(&s->kobj); 6785 } 6786 6787 /* 6788 * Need to buffer aliases during bootup until sysfs becomes 6789 * available lest we lose that information. 6790 */ 6791 struct saved_alias { 6792 struct kmem_cache *s; 6793 const char *name; 6794 struct saved_alias *next; 6795 }; 6796 6797 static struct saved_alias *alias_list; 6798 6799 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6800 { 6801 struct saved_alias *al; 6802 6803 if (slab_state == FULL) { 6804 /* 6805 * If we have a leftover link then remove it. 6806 */ 6807 sysfs_remove_link(&slab_kset->kobj, name); 6808 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6809 } 6810 6811 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6812 if (!al) 6813 return -ENOMEM; 6814 6815 al->s = s; 6816 al->name = name; 6817 al->next = alias_list; 6818 alias_list = al; 6819 kmsan_unpoison_memory(al, sizeof(*al)); 6820 return 0; 6821 } 6822 6823 static int __init slab_sysfs_init(void) 6824 { 6825 struct kmem_cache *s; 6826 int err; 6827 6828 mutex_lock(&slab_mutex); 6829 6830 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6831 if (!slab_kset) { 6832 mutex_unlock(&slab_mutex); 6833 pr_err("Cannot register slab subsystem.\n"); 6834 return -ENOMEM; 6835 } 6836 6837 slab_state = FULL; 6838 6839 list_for_each_entry(s, &slab_caches, list) { 6840 err = sysfs_slab_add(s); 6841 if (err) 6842 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6843 s->name); 6844 } 6845 6846 while (alias_list) { 6847 struct saved_alias *al = alias_list; 6848 6849 alias_list = alias_list->next; 6850 err = sysfs_slab_alias(al->s, al->name); 6851 if (err) 6852 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6853 al->name); 6854 kfree(al); 6855 } 6856 6857 mutex_unlock(&slab_mutex); 6858 return 0; 6859 } 6860 late_initcall(slab_sysfs_init); 6861 #endif /* SLAB_SUPPORTS_SYSFS */ 6862 6863 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6864 static int slab_debugfs_show(struct seq_file *seq, void *v) 6865 { 6866 struct loc_track *t = seq->private; 6867 struct location *l; 6868 unsigned long idx; 6869 6870 idx = (unsigned long) t->idx; 6871 if (idx < t->count) { 6872 l = &t->loc[idx]; 6873 6874 seq_printf(seq, "%7ld ", l->count); 6875 6876 if (l->addr) 6877 seq_printf(seq, "%pS", (void *)l->addr); 6878 else 6879 seq_puts(seq, "<not-available>"); 6880 6881 if (l->waste) 6882 seq_printf(seq, " waste=%lu/%lu", 6883 l->count * l->waste, l->waste); 6884 6885 if (l->sum_time != l->min_time) { 6886 seq_printf(seq, " age=%ld/%llu/%ld", 6887 l->min_time, div_u64(l->sum_time, l->count), 6888 l->max_time); 6889 } else 6890 seq_printf(seq, " age=%ld", l->min_time); 6891 6892 if (l->min_pid != l->max_pid) 6893 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6894 else 6895 seq_printf(seq, " pid=%ld", 6896 l->min_pid); 6897 6898 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6899 seq_printf(seq, " cpus=%*pbl", 6900 cpumask_pr_args(to_cpumask(l->cpus))); 6901 6902 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6903 seq_printf(seq, " nodes=%*pbl", 6904 nodemask_pr_args(&l->nodes)); 6905 6906 #ifdef CONFIG_STACKDEPOT 6907 { 6908 depot_stack_handle_t handle; 6909 unsigned long *entries; 6910 unsigned int nr_entries, j; 6911 6912 handle = READ_ONCE(l->handle); 6913 if (handle) { 6914 nr_entries = stack_depot_fetch(handle, &entries); 6915 seq_puts(seq, "\n"); 6916 for (j = 0; j < nr_entries; j++) 6917 seq_printf(seq, " %pS\n", (void *)entries[j]); 6918 } 6919 } 6920 #endif 6921 seq_puts(seq, "\n"); 6922 } 6923 6924 if (!idx && !t->count) 6925 seq_puts(seq, "No data\n"); 6926 6927 return 0; 6928 } 6929 6930 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6931 { 6932 } 6933 6934 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6935 { 6936 struct loc_track *t = seq->private; 6937 6938 t->idx = ++(*ppos); 6939 if (*ppos <= t->count) 6940 return ppos; 6941 6942 return NULL; 6943 } 6944 6945 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6946 { 6947 struct location *loc1 = (struct location *)a; 6948 struct location *loc2 = (struct location *)b; 6949 6950 if (loc1->count > loc2->count) 6951 return -1; 6952 else 6953 return 1; 6954 } 6955 6956 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6957 { 6958 struct loc_track *t = seq->private; 6959 6960 t->idx = *ppos; 6961 return ppos; 6962 } 6963 6964 static const struct seq_operations slab_debugfs_sops = { 6965 .start = slab_debugfs_start, 6966 .next = slab_debugfs_next, 6967 .stop = slab_debugfs_stop, 6968 .show = slab_debugfs_show, 6969 }; 6970 6971 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6972 { 6973 6974 struct kmem_cache_node *n; 6975 enum track_item alloc; 6976 int node; 6977 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6978 sizeof(struct loc_track)); 6979 struct kmem_cache *s = file_inode(filep)->i_private; 6980 unsigned long *obj_map; 6981 6982 if (!t) 6983 return -ENOMEM; 6984 6985 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6986 if (!obj_map) { 6987 seq_release_private(inode, filep); 6988 return -ENOMEM; 6989 } 6990 6991 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6992 alloc = TRACK_ALLOC; 6993 else 6994 alloc = TRACK_FREE; 6995 6996 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6997 bitmap_free(obj_map); 6998 seq_release_private(inode, filep); 6999 return -ENOMEM; 7000 } 7001 7002 for_each_kmem_cache_node(s, node, n) { 7003 unsigned long flags; 7004 struct slab *slab; 7005 7006 if (!node_nr_slabs(n)) 7007 continue; 7008 7009 spin_lock_irqsave(&n->list_lock, flags); 7010 list_for_each_entry(slab, &n->partial, slab_list) 7011 process_slab(t, s, slab, alloc, obj_map); 7012 list_for_each_entry(slab, &n->full, slab_list) 7013 process_slab(t, s, slab, alloc, obj_map); 7014 spin_unlock_irqrestore(&n->list_lock, flags); 7015 } 7016 7017 /* Sort locations by count */ 7018 sort_r(t->loc, t->count, sizeof(struct location), 7019 cmp_loc_by_count, NULL, NULL); 7020 7021 bitmap_free(obj_map); 7022 return 0; 7023 } 7024 7025 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7026 { 7027 struct seq_file *seq = file->private_data; 7028 struct loc_track *t = seq->private; 7029 7030 free_loc_track(t); 7031 return seq_release_private(inode, file); 7032 } 7033 7034 static const struct file_operations slab_debugfs_fops = { 7035 .open = slab_debug_trace_open, 7036 .read = seq_read, 7037 .llseek = seq_lseek, 7038 .release = slab_debug_trace_release, 7039 }; 7040 7041 static void debugfs_slab_add(struct kmem_cache *s) 7042 { 7043 struct dentry *slab_cache_dir; 7044 7045 if (unlikely(!slab_debugfs_root)) 7046 return; 7047 7048 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7049 7050 debugfs_create_file("alloc_traces", 0400, 7051 slab_cache_dir, s, &slab_debugfs_fops); 7052 7053 debugfs_create_file("free_traces", 0400, 7054 slab_cache_dir, s, &slab_debugfs_fops); 7055 } 7056 7057 void debugfs_slab_release(struct kmem_cache *s) 7058 { 7059 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7060 } 7061 7062 static int __init slab_debugfs_init(void) 7063 { 7064 struct kmem_cache *s; 7065 7066 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7067 7068 list_for_each_entry(s, &slab_caches, list) 7069 if (s->flags & SLAB_STORE_USER) 7070 debugfs_slab_add(s); 7071 7072 return 0; 7073 7074 } 7075 __initcall(slab_debugfs_init); 7076 #endif 7077 /* 7078 * The /proc/slabinfo ABI 7079 */ 7080 #ifdef CONFIG_SLUB_DEBUG 7081 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7082 { 7083 unsigned long nr_slabs = 0; 7084 unsigned long nr_objs = 0; 7085 unsigned long nr_free = 0; 7086 int node; 7087 struct kmem_cache_node *n; 7088 7089 for_each_kmem_cache_node(s, node, n) { 7090 nr_slabs += node_nr_slabs(n); 7091 nr_objs += node_nr_objs(n); 7092 nr_free += count_partial(n, count_free); 7093 } 7094 7095 sinfo->active_objs = nr_objs - nr_free; 7096 sinfo->num_objs = nr_objs; 7097 sinfo->active_slabs = nr_slabs; 7098 sinfo->num_slabs = nr_slabs; 7099 sinfo->objects_per_slab = oo_objects(s->oo); 7100 sinfo->cache_order = oo_order(s->oo); 7101 } 7102 7103 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 7104 { 7105 } 7106 7107 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 7108 size_t count, loff_t *ppos) 7109 { 7110 return -EIO; 7111 } 7112 #endif /* CONFIG_SLUB_DEBUG */ 7113