1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 /* Structure holding parameters for get_partial() call chain */ 222 struct partial_context { 223 gfp_t flags; 224 unsigned int orig_size; 225 void *object; 226 }; 227 228 static inline bool kmem_cache_debug(struct kmem_cache *s) 229 { 230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 231 } 232 233 static inline bool slub_debug_orig_size(struct kmem_cache *s) 234 { 235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 236 (s->flags & SLAB_KMALLOC)); 237 } 238 239 void *fixup_red_left(struct kmem_cache *s, void *p) 240 { 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 242 p += s->red_left_pad; 243 244 return p; 245 } 246 247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 248 { 249 #ifdef CONFIG_SLUB_CPU_PARTIAL 250 return !kmem_cache_debug(s); 251 #else 252 return false; 253 #endif 254 } 255 256 /* 257 * Issues still to be resolved: 258 * 259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 260 * 261 * - Variable sizing of the per node arrays 262 */ 263 264 /* Enable to log cmpxchg failures */ 265 #undef SLUB_DEBUG_CMPXCHG 266 267 #ifndef CONFIG_SLUB_TINY 268 /* 269 * Minimum number of partial slabs. These will be left on the partial 270 * lists even if they are empty. kmem_cache_shrink may reclaim them. 271 */ 272 #define MIN_PARTIAL 5 273 274 /* 275 * Maximum number of desirable partial slabs. 276 * The existence of more partial slabs makes kmem_cache_shrink 277 * sort the partial list by the number of objects in use. 278 */ 279 #define MAX_PARTIAL 10 280 #else 281 #define MIN_PARTIAL 0 282 #define MAX_PARTIAL 0 283 #endif 284 285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 286 SLAB_POISON | SLAB_STORE_USER) 287 288 /* 289 * These debug flags cannot use CMPXCHG because there might be consistency 290 * issues when checking or reading debug information 291 */ 292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 293 SLAB_TRACE) 294 295 296 /* 297 * Debugging flags that require metadata to be stored in the slab. These get 298 * disabled when slab_debug=O is used and a cache's min order increases with 299 * metadata. 300 */ 301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 302 303 #define OO_SHIFT 16 304 #define OO_MASK ((1 << OO_SHIFT) - 1) 305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 306 307 /* Internal SLUB flags */ 308 /* Poison object */ 309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 310 /* Use cmpxchg_double */ 311 312 #ifdef system_has_freelist_aba 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 314 #else 315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 316 #endif 317 318 /* 319 * Tracking user of a slab. 320 */ 321 #define TRACK_ADDRS_COUNT 16 322 struct track { 323 unsigned long addr; /* Called from address */ 324 #ifdef CONFIG_STACKDEPOT 325 depot_stack_handle_t handle; 326 #endif 327 int cpu; /* Was running on cpu */ 328 int pid; /* Pid context */ 329 unsigned long when; /* When did the operation occur */ 330 }; 331 332 enum track_item { TRACK_ALLOC, TRACK_FREE }; 333 334 #ifdef SLAB_SUPPORTS_SYSFS 335 static int sysfs_slab_add(struct kmem_cache *); 336 static int sysfs_slab_alias(struct kmem_cache *, const char *); 337 #else 338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 340 { return 0; } 341 #endif 342 343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 344 static void debugfs_slab_add(struct kmem_cache *); 345 #else 346 static inline void debugfs_slab_add(struct kmem_cache *s) { } 347 #endif 348 349 enum stat_item { 350 ALLOC_FASTPATH, /* Allocation from cpu slab */ 351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 352 FREE_FASTPATH, /* Free to cpu slab */ 353 FREE_SLOWPATH, /* Freeing not to cpu slab */ 354 FREE_FROZEN, /* Freeing to frozen slab */ 355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 361 FREE_SLAB, /* Slab freed to the page allocator */ 362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 368 DEACTIVATE_BYPASS, /* Implicit deactivation */ 369 ORDER_FALLBACK, /* Number of times fallback was necessary */ 370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 376 NR_SLUB_STAT_ITEMS 377 }; 378 379 #ifndef CONFIG_SLUB_TINY 380 /* 381 * When changing the layout, make sure freelist and tid are still compatible 382 * with this_cpu_cmpxchg_double() alignment requirements. 383 */ 384 struct kmem_cache_cpu { 385 union { 386 struct { 387 void **freelist; /* Pointer to next available object */ 388 unsigned long tid; /* Globally unique transaction id */ 389 }; 390 freelist_aba_t freelist_tid; 391 }; 392 struct slab *slab; /* The slab from which we are allocating */ 393 #ifdef CONFIG_SLUB_CPU_PARTIAL 394 struct slab *partial; /* Partially allocated slabs */ 395 #endif 396 local_lock_t lock; /* Protects the fields above */ 397 #ifdef CONFIG_SLUB_STATS 398 unsigned int stat[NR_SLUB_STAT_ITEMS]; 399 #endif 400 }; 401 #endif /* CONFIG_SLUB_TINY */ 402 403 static inline void stat(const struct kmem_cache *s, enum stat_item si) 404 { 405 #ifdef CONFIG_SLUB_STATS 406 /* 407 * The rmw is racy on a preemptible kernel but this is acceptable, so 408 * avoid this_cpu_add()'s irq-disable overhead. 409 */ 410 raw_cpu_inc(s->cpu_slab->stat[si]); 411 #endif 412 } 413 414 static inline 415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 416 { 417 #ifdef CONFIG_SLUB_STATS 418 raw_cpu_add(s->cpu_slab->stat[si], v); 419 #endif 420 } 421 422 /* 423 * The slab lists for all objects. 424 */ 425 struct kmem_cache_node { 426 spinlock_t list_lock; 427 unsigned long nr_partial; 428 struct list_head partial; 429 #ifdef CONFIG_SLUB_DEBUG 430 atomic_long_t nr_slabs; 431 atomic_long_t total_objects; 432 struct list_head full; 433 #endif 434 }; 435 436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 437 { 438 return s->node[node]; 439 } 440 441 /* 442 * Iterator over all nodes. The body will be executed for each node that has 443 * a kmem_cache_node structure allocated (which is true for all online nodes) 444 */ 445 #define for_each_kmem_cache_node(__s, __node, __n) \ 446 for (__node = 0; __node < nr_node_ids; __node++) \ 447 if ((__n = get_node(__s, __node))) 448 449 /* 450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 452 * differ during memory hotplug/hotremove operations. 453 * Protected by slab_mutex. 454 */ 455 static nodemask_t slab_nodes; 456 457 #ifndef CONFIG_SLUB_TINY 458 /* 459 * Workqueue used for flush_cpu_slab(). 460 */ 461 static struct workqueue_struct *flushwq; 462 #endif 463 464 /******************************************************************** 465 * Core slab cache functions 466 *******************************************************************/ 467 468 /* 469 * freeptr_t represents a SLUB freelist pointer, which might be encoded 470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 471 */ 472 typedef struct { unsigned long v; } freeptr_t; 473 474 /* 475 * Returns freelist pointer (ptr). With hardening, this is obfuscated 476 * with an XOR of the address where the pointer is held and a per-cache 477 * random number. 478 */ 479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 480 void *ptr, unsigned long ptr_addr) 481 { 482 unsigned long encoded; 483 484 #ifdef CONFIG_SLAB_FREELIST_HARDENED 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 486 #else 487 encoded = (unsigned long)ptr; 488 #endif 489 return (freeptr_t){.v = encoded}; 490 } 491 492 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 493 freeptr_t ptr, unsigned long ptr_addr) 494 { 495 void *decoded; 496 497 #ifdef CONFIG_SLAB_FREELIST_HARDENED 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 499 #else 500 decoded = (void *)ptr.v; 501 #endif 502 return decoded; 503 } 504 505 static inline void *get_freepointer(struct kmem_cache *s, void *object) 506 { 507 unsigned long ptr_addr; 508 freeptr_t p; 509 510 object = kasan_reset_tag(object); 511 ptr_addr = (unsigned long)object + s->offset; 512 p = *(freeptr_t *)(ptr_addr); 513 return freelist_ptr_decode(s, p, ptr_addr); 514 } 515 516 #ifndef CONFIG_SLUB_TINY 517 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 518 { 519 prefetchw(object + s->offset); 520 } 521 #endif 522 523 /* 524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 525 * pointer value in the case the current thread loses the race for the next 526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 528 * KMSAN will still check all arguments of cmpxchg because of imperfect 529 * handling of inline assembly. 530 * To work around this problem, we apply __no_kmsan_checks to ensure that 531 * get_freepointer_safe() returns initialized memory. 532 */ 533 __no_kmsan_checks 534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 535 { 536 unsigned long freepointer_addr; 537 freeptr_t p; 538 539 if (!debug_pagealloc_enabled_static()) 540 return get_freepointer(s, object); 541 542 object = kasan_reset_tag(object); 543 freepointer_addr = (unsigned long)object + s->offset; 544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 545 return freelist_ptr_decode(s, p, freepointer_addr); 546 } 547 548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 549 { 550 unsigned long freeptr_addr = (unsigned long)object + s->offset; 551 552 #ifdef CONFIG_SLAB_FREELIST_HARDENED 553 BUG_ON(object == fp); /* naive detection of double free or corruption */ 554 #endif 555 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 558 } 559 560 /* 561 * See comment in calculate_sizes(). 562 */ 563 static inline bool freeptr_outside_object(struct kmem_cache *s) 564 { 565 return s->offset >= s->inuse; 566 } 567 568 /* 569 * Return offset of the end of info block which is inuse + free pointer if 570 * not overlapping with object. 571 */ 572 static inline unsigned int get_info_end(struct kmem_cache *s) 573 { 574 if (freeptr_outside_object(s)) 575 return s->inuse + sizeof(void *); 576 else 577 return s->inuse; 578 } 579 580 /* Loop over all objects in a slab */ 581 #define for_each_object(__p, __s, __addr, __objects) \ 582 for (__p = fixup_red_left(__s, __addr); \ 583 __p < (__addr) + (__objects) * (__s)->size; \ 584 __p += (__s)->size) 585 586 static inline unsigned int order_objects(unsigned int order, unsigned int size) 587 { 588 return ((unsigned int)PAGE_SIZE << order) / size; 589 } 590 591 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 592 unsigned int size) 593 { 594 struct kmem_cache_order_objects x = { 595 (order << OO_SHIFT) + order_objects(order, size) 596 }; 597 598 return x; 599 } 600 601 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 602 { 603 return x.x >> OO_SHIFT; 604 } 605 606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 607 { 608 return x.x & OO_MASK; 609 } 610 611 #ifdef CONFIG_SLUB_CPU_PARTIAL 612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 613 { 614 unsigned int nr_slabs; 615 616 s->cpu_partial = nr_objects; 617 618 /* 619 * We take the number of objects but actually limit the number of 620 * slabs on the per cpu partial list, in order to limit excessive 621 * growth of the list. For simplicity we assume that the slabs will 622 * be half-full. 623 */ 624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 625 s->cpu_partial_slabs = nr_slabs; 626 } 627 628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 629 { 630 return s->cpu_partial_slabs; 631 } 632 #else 633 static inline void 634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 635 { 636 } 637 638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 639 { 640 return 0; 641 } 642 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 643 644 /* 645 * Per slab locking using the pagelock 646 */ 647 static __always_inline void slab_lock(struct slab *slab) 648 { 649 bit_spin_lock(PG_locked, &slab->__page_flags); 650 } 651 652 static __always_inline void slab_unlock(struct slab *slab) 653 { 654 bit_spin_unlock(PG_locked, &slab->__page_flags); 655 } 656 657 static inline bool 658 __update_freelist_fast(struct slab *slab, 659 void *freelist_old, unsigned long counters_old, 660 void *freelist_new, unsigned long counters_new) 661 { 662 #ifdef system_has_freelist_aba 663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 665 666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 667 #else 668 return false; 669 #endif 670 } 671 672 static inline bool 673 __update_freelist_slow(struct slab *slab, 674 void *freelist_old, unsigned long counters_old, 675 void *freelist_new, unsigned long counters_new) 676 { 677 bool ret = false; 678 679 slab_lock(slab); 680 if (slab->freelist == freelist_old && 681 slab->counters == counters_old) { 682 slab->freelist = freelist_new; 683 slab->counters = counters_new; 684 ret = true; 685 } 686 slab_unlock(slab); 687 688 return ret; 689 } 690 691 /* 692 * Interrupts must be disabled (for the fallback code to work right), typically 693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 695 * allocation/ free operation in hardirq context. Therefore nothing can 696 * interrupt the operation. 697 */ 698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 699 void *freelist_old, unsigned long counters_old, 700 void *freelist_new, unsigned long counters_new, 701 const char *n) 702 { 703 bool ret; 704 705 if (USE_LOCKLESS_FAST_PATH()) 706 lockdep_assert_irqs_disabled(); 707 708 if (s->flags & __CMPXCHG_DOUBLE) { 709 ret = __update_freelist_fast(slab, freelist_old, counters_old, 710 freelist_new, counters_new); 711 } else { 712 ret = __update_freelist_slow(slab, freelist_old, counters_old, 713 freelist_new, counters_new); 714 } 715 if (likely(ret)) 716 return true; 717 718 cpu_relax(); 719 stat(s, CMPXCHG_DOUBLE_FAIL); 720 721 #ifdef SLUB_DEBUG_CMPXCHG 722 pr_info("%s %s: cmpxchg double redo ", n, s->name); 723 #endif 724 725 return false; 726 } 727 728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 729 void *freelist_old, unsigned long counters_old, 730 void *freelist_new, unsigned long counters_new, 731 const char *n) 732 { 733 bool ret; 734 735 if (s->flags & __CMPXCHG_DOUBLE) { 736 ret = __update_freelist_fast(slab, freelist_old, counters_old, 737 freelist_new, counters_new); 738 } else { 739 unsigned long flags; 740 741 local_irq_save(flags); 742 ret = __update_freelist_slow(slab, freelist_old, counters_old, 743 freelist_new, counters_new); 744 local_irq_restore(flags); 745 } 746 if (likely(ret)) 747 return true; 748 749 cpu_relax(); 750 stat(s, CMPXCHG_DOUBLE_FAIL); 751 752 #ifdef SLUB_DEBUG_CMPXCHG 753 pr_info("%s %s: cmpxchg double redo ", n, s->name); 754 #endif 755 756 return false; 757 } 758 759 #ifdef CONFIG_SLUB_DEBUG 760 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 761 static DEFINE_SPINLOCK(object_map_lock); 762 763 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 764 struct slab *slab) 765 { 766 void *addr = slab_address(slab); 767 void *p; 768 769 bitmap_zero(obj_map, slab->objects); 770 771 for (p = slab->freelist; p; p = get_freepointer(s, p)) 772 set_bit(__obj_to_index(s, addr, p), obj_map); 773 } 774 775 #if IS_ENABLED(CONFIG_KUNIT) 776 static bool slab_add_kunit_errors(void) 777 { 778 struct kunit_resource *resource; 779 780 if (!kunit_get_current_test()) 781 return false; 782 783 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 784 if (!resource) 785 return false; 786 787 (*(int *)resource->data)++; 788 kunit_put_resource(resource); 789 return true; 790 } 791 792 static bool slab_in_kunit_test(void) 793 { 794 struct kunit_resource *resource; 795 796 if (!kunit_get_current_test()) 797 return false; 798 799 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 800 if (!resource) 801 return false; 802 803 kunit_put_resource(resource); 804 return true; 805 } 806 #else 807 static inline bool slab_add_kunit_errors(void) { return false; } 808 static inline bool slab_in_kunit_test(void) { return false; } 809 #endif 810 811 static inline unsigned int size_from_object(struct kmem_cache *s) 812 { 813 if (s->flags & SLAB_RED_ZONE) 814 return s->size - s->red_left_pad; 815 816 return s->size; 817 } 818 819 static inline void *restore_red_left(struct kmem_cache *s, void *p) 820 { 821 if (s->flags & SLAB_RED_ZONE) 822 p -= s->red_left_pad; 823 824 return p; 825 } 826 827 /* 828 * Debug settings: 829 */ 830 #if defined(CONFIG_SLUB_DEBUG_ON) 831 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 832 #else 833 static slab_flags_t slub_debug; 834 #endif 835 836 static char *slub_debug_string; 837 static int disable_higher_order_debug; 838 839 /* 840 * slub is about to manipulate internal object metadata. This memory lies 841 * outside the range of the allocated object, so accessing it would normally 842 * be reported by kasan as a bounds error. metadata_access_enable() is used 843 * to tell kasan that these accesses are OK. 844 */ 845 static inline void metadata_access_enable(void) 846 { 847 kasan_disable_current(); 848 } 849 850 static inline void metadata_access_disable(void) 851 { 852 kasan_enable_current(); 853 } 854 855 /* 856 * Object debugging 857 */ 858 859 /* Verify that a pointer has an address that is valid within a slab page */ 860 static inline int check_valid_pointer(struct kmem_cache *s, 861 struct slab *slab, void *object) 862 { 863 void *base; 864 865 if (!object) 866 return 1; 867 868 base = slab_address(slab); 869 object = kasan_reset_tag(object); 870 object = restore_red_left(s, object); 871 if (object < base || object >= base + slab->objects * s->size || 872 (object - base) % s->size) { 873 return 0; 874 } 875 876 return 1; 877 } 878 879 static void print_section(char *level, char *text, u8 *addr, 880 unsigned int length) 881 { 882 metadata_access_enable(); 883 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 884 16, 1, kasan_reset_tag((void *)addr), length, 1); 885 metadata_access_disable(); 886 } 887 888 static struct track *get_track(struct kmem_cache *s, void *object, 889 enum track_item alloc) 890 { 891 struct track *p; 892 893 p = object + get_info_end(s); 894 895 return kasan_reset_tag(p + alloc); 896 } 897 898 #ifdef CONFIG_STACKDEPOT 899 static noinline depot_stack_handle_t set_track_prepare(void) 900 { 901 depot_stack_handle_t handle; 902 unsigned long entries[TRACK_ADDRS_COUNT]; 903 unsigned int nr_entries; 904 905 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 906 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 907 908 return handle; 909 } 910 #else 911 static inline depot_stack_handle_t set_track_prepare(void) 912 { 913 return 0; 914 } 915 #endif 916 917 static void set_track_update(struct kmem_cache *s, void *object, 918 enum track_item alloc, unsigned long addr, 919 depot_stack_handle_t handle) 920 { 921 struct track *p = get_track(s, object, alloc); 922 923 #ifdef CONFIG_STACKDEPOT 924 p->handle = handle; 925 #endif 926 p->addr = addr; 927 p->cpu = smp_processor_id(); 928 p->pid = current->pid; 929 p->when = jiffies; 930 } 931 932 static __always_inline void set_track(struct kmem_cache *s, void *object, 933 enum track_item alloc, unsigned long addr) 934 { 935 depot_stack_handle_t handle = set_track_prepare(); 936 937 set_track_update(s, object, alloc, addr, handle); 938 } 939 940 static void init_tracking(struct kmem_cache *s, void *object) 941 { 942 struct track *p; 943 944 if (!(s->flags & SLAB_STORE_USER)) 945 return; 946 947 p = get_track(s, object, TRACK_ALLOC); 948 memset(p, 0, 2*sizeof(struct track)); 949 } 950 951 static void print_track(const char *s, struct track *t, unsigned long pr_time) 952 { 953 depot_stack_handle_t handle __maybe_unused; 954 955 if (!t->addr) 956 return; 957 958 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 959 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 960 #ifdef CONFIG_STACKDEPOT 961 handle = READ_ONCE(t->handle); 962 if (handle) 963 stack_depot_print(handle); 964 else 965 pr_err("object allocation/free stack trace missing\n"); 966 #endif 967 } 968 969 void print_tracking(struct kmem_cache *s, void *object) 970 { 971 unsigned long pr_time = jiffies; 972 if (!(s->flags & SLAB_STORE_USER)) 973 return; 974 975 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 976 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 977 } 978 979 static void print_slab_info(const struct slab *slab) 980 { 981 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 982 slab, slab->objects, slab->inuse, slab->freelist, 983 &slab->__page_flags); 984 } 985 986 /* 987 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 988 * family will round up the real request size to these fixed ones, so 989 * there could be an extra area than what is requested. Save the original 990 * request size in the meta data area, for better debug and sanity check. 991 */ 992 static inline void set_orig_size(struct kmem_cache *s, 993 void *object, unsigned int orig_size) 994 { 995 void *p = kasan_reset_tag(object); 996 unsigned int kasan_meta_size; 997 998 if (!slub_debug_orig_size(s)) 999 return; 1000 1001 /* 1002 * KASAN can save its free meta data inside of the object at offset 0. 1003 * If this meta data size is larger than 'orig_size', it will overlap 1004 * the data redzone in [orig_size+1, object_size]. Thus, we adjust 1005 * 'orig_size' to be as at least as big as KASAN's meta data. 1006 */ 1007 kasan_meta_size = kasan_metadata_size(s, true); 1008 if (kasan_meta_size > orig_size) 1009 orig_size = kasan_meta_size; 1010 1011 p += get_info_end(s); 1012 p += sizeof(struct track) * 2; 1013 1014 *(unsigned int *)p = orig_size; 1015 } 1016 1017 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 1018 { 1019 void *p = kasan_reset_tag(object); 1020 1021 if (!slub_debug_orig_size(s)) 1022 return s->object_size; 1023 1024 p += get_info_end(s); 1025 p += sizeof(struct track) * 2; 1026 1027 return *(unsigned int *)p; 1028 } 1029 1030 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1031 { 1032 set_orig_size(s, (void *)object, s->object_size); 1033 } 1034 1035 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1036 { 1037 struct va_format vaf; 1038 va_list args; 1039 1040 va_start(args, fmt); 1041 vaf.fmt = fmt; 1042 vaf.va = &args; 1043 pr_err("=============================================================================\n"); 1044 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1045 pr_err("-----------------------------------------------------------------------------\n\n"); 1046 va_end(args); 1047 } 1048 1049 __printf(2, 3) 1050 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1051 { 1052 struct va_format vaf; 1053 va_list args; 1054 1055 if (slab_add_kunit_errors()) 1056 return; 1057 1058 va_start(args, fmt); 1059 vaf.fmt = fmt; 1060 vaf.va = &args; 1061 pr_err("FIX %s: %pV\n", s->name, &vaf); 1062 va_end(args); 1063 } 1064 1065 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1066 { 1067 unsigned int off; /* Offset of last byte */ 1068 u8 *addr = slab_address(slab); 1069 1070 print_tracking(s, p); 1071 1072 print_slab_info(slab); 1073 1074 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1075 p, p - addr, get_freepointer(s, p)); 1076 1077 if (s->flags & SLAB_RED_ZONE) 1078 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1079 s->red_left_pad); 1080 else if (p > addr + 16) 1081 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1082 1083 print_section(KERN_ERR, "Object ", p, 1084 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1085 if (s->flags & SLAB_RED_ZONE) 1086 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1087 s->inuse - s->object_size); 1088 1089 off = get_info_end(s); 1090 1091 if (s->flags & SLAB_STORE_USER) 1092 off += 2 * sizeof(struct track); 1093 1094 if (slub_debug_orig_size(s)) 1095 off += sizeof(unsigned int); 1096 1097 off += kasan_metadata_size(s, false); 1098 1099 if (off != size_from_object(s)) 1100 /* Beginning of the filler is the free pointer */ 1101 print_section(KERN_ERR, "Padding ", p + off, 1102 size_from_object(s) - off); 1103 1104 dump_stack(); 1105 } 1106 1107 static void object_err(struct kmem_cache *s, struct slab *slab, 1108 u8 *object, char *reason) 1109 { 1110 if (slab_add_kunit_errors()) 1111 return; 1112 1113 slab_bug(s, "%s", reason); 1114 print_trailer(s, slab, object); 1115 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1116 } 1117 1118 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1119 void **freelist, void *nextfree) 1120 { 1121 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1122 !check_valid_pointer(s, slab, nextfree) && freelist) { 1123 object_err(s, slab, *freelist, "Freechain corrupt"); 1124 *freelist = NULL; 1125 slab_fix(s, "Isolate corrupted freechain"); 1126 return true; 1127 } 1128 1129 return false; 1130 } 1131 1132 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1133 const char *fmt, ...) 1134 { 1135 va_list args; 1136 char buf[100]; 1137 1138 if (slab_add_kunit_errors()) 1139 return; 1140 1141 va_start(args, fmt); 1142 vsnprintf(buf, sizeof(buf), fmt, args); 1143 va_end(args); 1144 slab_bug(s, "%s", buf); 1145 print_slab_info(slab); 1146 dump_stack(); 1147 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1148 } 1149 1150 static void init_object(struct kmem_cache *s, void *object, u8 val) 1151 { 1152 u8 *p = kasan_reset_tag(object); 1153 unsigned int poison_size = s->object_size; 1154 1155 if (s->flags & SLAB_RED_ZONE) { 1156 memset(p - s->red_left_pad, val, s->red_left_pad); 1157 1158 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1159 /* 1160 * Redzone the extra allocated space by kmalloc than 1161 * requested, and the poison size will be limited to 1162 * the original request size accordingly. 1163 */ 1164 poison_size = get_orig_size(s, object); 1165 } 1166 } 1167 1168 if (s->flags & __OBJECT_POISON) { 1169 memset(p, POISON_FREE, poison_size - 1); 1170 p[poison_size - 1] = POISON_END; 1171 } 1172 1173 if (s->flags & SLAB_RED_ZONE) 1174 memset(p + poison_size, val, s->inuse - poison_size); 1175 } 1176 1177 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1178 void *from, void *to) 1179 { 1180 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1181 memset(from, data, to - from); 1182 } 1183 1184 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1185 u8 *object, char *what, 1186 u8 *start, unsigned int value, unsigned int bytes) 1187 { 1188 u8 *fault; 1189 u8 *end; 1190 u8 *addr = slab_address(slab); 1191 1192 metadata_access_enable(); 1193 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1194 metadata_access_disable(); 1195 if (!fault) 1196 return 1; 1197 1198 end = start + bytes; 1199 while (end > fault && end[-1] == value) 1200 end--; 1201 1202 if (slab_add_kunit_errors()) 1203 goto skip_bug_print; 1204 1205 slab_bug(s, "%s overwritten", what); 1206 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1207 fault, end - 1, fault - addr, 1208 fault[0], value); 1209 1210 skip_bug_print: 1211 restore_bytes(s, what, value, fault, end); 1212 return 0; 1213 } 1214 1215 /* 1216 * Object layout: 1217 * 1218 * object address 1219 * Bytes of the object to be managed. 1220 * If the freepointer may overlay the object then the free 1221 * pointer is at the middle of the object. 1222 * 1223 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1224 * 0xa5 (POISON_END) 1225 * 1226 * object + s->object_size 1227 * Padding to reach word boundary. This is also used for Redzoning. 1228 * Padding is extended by another word if Redzoning is enabled and 1229 * object_size == inuse. 1230 * 1231 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1232 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1233 * 1234 * object + s->inuse 1235 * Meta data starts here. 1236 * 1237 * A. Free pointer (if we cannot overwrite object on free) 1238 * B. Tracking data for SLAB_STORE_USER 1239 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1240 * D. Padding to reach required alignment boundary or at minimum 1241 * one word if debugging is on to be able to detect writes 1242 * before the word boundary. 1243 * 1244 * Padding is done using 0x5a (POISON_INUSE) 1245 * 1246 * object + s->size 1247 * Nothing is used beyond s->size. 1248 * 1249 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1250 * ignored. And therefore no slab options that rely on these boundaries 1251 * may be used with merged slabcaches. 1252 */ 1253 1254 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1255 { 1256 unsigned long off = get_info_end(s); /* The end of info */ 1257 1258 if (s->flags & SLAB_STORE_USER) { 1259 /* We also have user information there */ 1260 off += 2 * sizeof(struct track); 1261 1262 if (s->flags & SLAB_KMALLOC) 1263 off += sizeof(unsigned int); 1264 } 1265 1266 off += kasan_metadata_size(s, false); 1267 1268 if (size_from_object(s) == off) 1269 return 1; 1270 1271 return check_bytes_and_report(s, slab, p, "Object padding", 1272 p + off, POISON_INUSE, size_from_object(s) - off); 1273 } 1274 1275 /* Check the pad bytes at the end of a slab page */ 1276 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1277 { 1278 u8 *start; 1279 u8 *fault; 1280 u8 *end; 1281 u8 *pad; 1282 int length; 1283 int remainder; 1284 1285 if (!(s->flags & SLAB_POISON)) 1286 return; 1287 1288 start = slab_address(slab); 1289 length = slab_size(slab); 1290 end = start + length; 1291 remainder = length % s->size; 1292 if (!remainder) 1293 return; 1294 1295 pad = end - remainder; 1296 metadata_access_enable(); 1297 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1298 metadata_access_disable(); 1299 if (!fault) 1300 return; 1301 while (end > fault && end[-1] == POISON_INUSE) 1302 end--; 1303 1304 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1305 fault, end - 1, fault - start); 1306 print_section(KERN_ERR, "Padding ", pad, remainder); 1307 1308 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1309 } 1310 1311 static int check_object(struct kmem_cache *s, struct slab *slab, 1312 void *object, u8 val) 1313 { 1314 u8 *p = object; 1315 u8 *endobject = object + s->object_size; 1316 unsigned int orig_size, kasan_meta_size; 1317 int ret = 1; 1318 1319 if (s->flags & SLAB_RED_ZONE) { 1320 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1321 object - s->red_left_pad, val, s->red_left_pad)) 1322 ret = 0; 1323 1324 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1325 endobject, val, s->inuse - s->object_size)) 1326 ret = 0; 1327 1328 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1329 orig_size = get_orig_size(s, object); 1330 1331 if (s->object_size > orig_size && 1332 !check_bytes_and_report(s, slab, object, 1333 "kmalloc Redzone", p + orig_size, 1334 val, s->object_size - orig_size)) { 1335 ret = 0; 1336 } 1337 } 1338 } else { 1339 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1340 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1341 endobject, POISON_INUSE, 1342 s->inuse - s->object_size)) 1343 ret = 0; 1344 } 1345 } 1346 1347 if (s->flags & SLAB_POISON) { 1348 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1349 /* 1350 * KASAN can save its free meta data inside of the 1351 * object at offset 0. Thus, skip checking the part of 1352 * the redzone that overlaps with the meta data. 1353 */ 1354 kasan_meta_size = kasan_metadata_size(s, true); 1355 if (kasan_meta_size < s->object_size - 1 && 1356 !check_bytes_and_report(s, slab, p, "Poison", 1357 p + kasan_meta_size, POISON_FREE, 1358 s->object_size - kasan_meta_size - 1)) 1359 ret = 0; 1360 if (kasan_meta_size < s->object_size && 1361 !check_bytes_and_report(s, slab, p, "End Poison", 1362 p + s->object_size - 1, POISON_END, 1)) 1363 ret = 0; 1364 } 1365 /* 1366 * check_pad_bytes cleans up on its own. 1367 */ 1368 if (!check_pad_bytes(s, slab, p)) 1369 ret = 0; 1370 } 1371 1372 /* 1373 * Cannot check freepointer while object is allocated if 1374 * object and freepointer overlap. 1375 */ 1376 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1377 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1378 object_err(s, slab, p, "Freepointer corrupt"); 1379 /* 1380 * No choice but to zap it and thus lose the remainder 1381 * of the free objects in this slab. May cause 1382 * another error because the object count is now wrong. 1383 */ 1384 set_freepointer(s, p, NULL); 1385 ret = 0; 1386 } 1387 1388 if (!ret && !slab_in_kunit_test()) { 1389 print_trailer(s, slab, object); 1390 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1391 } 1392 1393 return ret; 1394 } 1395 1396 static int check_slab(struct kmem_cache *s, struct slab *slab) 1397 { 1398 int maxobj; 1399 1400 if (!folio_test_slab(slab_folio(slab))) { 1401 slab_err(s, slab, "Not a valid slab page"); 1402 return 0; 1403 } 1404 1405 maxobj = order_objects(slab_order(slab), s->size); 1406 if (slab->objects > maxobj) { 1407 slab_err(s, slab, "objects %u > max %u", 1408 slab->objects, maxobj); 1409 return 0; 1410 } 1411 if (slab->inuse > slab->objects) { 1412 slab_err(s, slab, "inuse %u > max %u", 1413 slab->inuse, slab->objects); 1414 return 0; 1415 } 1416 /* Slab_pad_check fixes things up after itself */ 1417 slab_pad_check(s, slab); 1418 return 1; 1419 } 1420 1421 /* 1422 * Determine if a certain object in a slab is on the freelist. Must hold the 1423 * slab lock to guarantee that the chains are in a consistent state. 1424 */ 1425 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1426 { 1427 int nr = 0; 1428 void *fp; 1429 void *object = NULL; 1430 int max_objects; 1431 1432 fp = slab->freelist; 1433 while (fp && nr <= slab->objects) { 1434 if (fp == search) 1435 return 1; 1436 if (!check_valid_pointer(s, slab, fp)) { 1437 if (object) { 1438 object_err(s, slab, object, 1439 "Freechain corrupt"); 1440 set_freepointer(s, object, NULL); 1441 } else { 1442 slab_err(s, slab, "Freepointer corrupt"); 1443 slab->freelist = NULL; 1444 slab->inuse = slab->objects; 1445 slab_fix(s, "Freelist cleared"); 1446 return 0; 1447 } 1448 break; 1449 } 1450 object = fp; 1451 fp = get_freepointer(s, object); 1452 nr++; 1453 } 1454 1455 max_objects = order_objects(slab_order(slab), s->size); 1456 if (max_objects > MAX_OBJS_PER_PAGE) 1457 max_objects = MAX_OBJS_PER_PAGE; 1458 1459 if (slab->objects != max_objects) { 1460 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1461 slab->objects, max_objects); 1462 slab->objects = max_objects; 1463 slab_fix(s, "Number of objects adjusted"); 1464 } 1465 if (slab->inuse != slab->objects - nr) { 1466 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1467 slab->inuse, slab->objects - nr); 1468 slab->inuse = slab->objects - nr; 1469 slab_fix(s, "Object count adjusted"); 1470 } 1471 return search == NULL; 1472 } 1473 1474 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1475 int alloc) 1476 { 1477 if (s->flags & SLAB_TRACE) { 1478 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1479 s->name, 1480 alloc ? "alloc" : "free", 1481 object, slab->inuse, 1482 slab->freelist); 1483 1484 if (!alloc) 1485 print_section(KERN_INFO, "Object ", (void *)object, 1486 s->object_size); 1487 1488 dump_stack(); 1489 } 1490 } 1491 1492 /* 1493 * Tracking of fully allocated slabs for debugging purposes. 1494 */ 1495 static void add_full(struct kmem_cache *s, 1496 struct kmem_cache_node *n, struct slab *slab) 1497 { 1498 if (!(s->flags & SLAB_STORE_USER)) 1499 return; 1500 1501 lockdep_assert_held(&n->list_lock); 1502 list_add(&slab->slab_list, &n->full); 1503 } 1504 1505 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1506 { 1507 if (!(s->flags & SLAB_STORE_USER)) 1508 return; 1509 1510 lockdep_assert_held(&n->list_lock); 1511 list_del(&slab->slab_list); 1512 } 1513 1514 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1515 { 1516 return atomic_long_read(&n->nr_slabs); 1517 } 1518 1519 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1520 { 1521 struct kmem_cache_node *n = get_node(s, node); 1522 1523 atomic_long_inc(&n->nr_slabs); 1524 atomic_long_add(objects, &n->total_objects); 1525 } 1526 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1527 { 1528 struct kmem_cache_node *n = get_node(s, node); 1529 1530 atomic_long_dec(&n->nr_slabs); 1531 atomic_long_sub(objects, &n->total_objects); 1532 } 1533 1534 /* Object debug checks for alloc/free paths */ 1535 static void setup_object_debug(struct kmem_cache *s, void *object) 1536 { 1537 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1538 return; 1539 1540 init_object(s, object, SLUB_RED_INACTIVE); 1541 init_tracking(s, object); 1542 } 1543 1544 static 1545 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1546 { 1547 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1548 return; 1549 1550 metadata_access_enable(); 1551 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1552 metadata_access_disable(); 1553 } 1554 1555 static inline int alloc_consistency_checks(struct kmem_cache *s, 1556 struct slab *slab, void *object) 1557 { 1558 if (!check_slab(s, slab)) 1559 return 0; 1560 1561 if (!check_valid_pointer(s, slab, object)) { 1562 object_err(s, slab, object, "Freelist Pointer check fails"); 1563 return 0; 1564 } 1565 1566 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1567 return 0; 1568 1569 return 1; 1570 } 1571 1572 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1573 struct slab *slab, void *object, int orig_size) 1574 { 1575 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1576 if (!alloc_consistency_checks(s, slab, object)) 1577 goto bad; 1578 } 1579 1580 /* Success. Perform special debug activities for allocs */ 1581 trace(s, slab, object, 1); 1582 set_orig_size(s, object, orig_size); 1583 init_object(s, object, SLUB_RED_ACTIVE); 1584 return true; 1585 1586 bad: 1587 if (folio_test_slab(slab_folio(slab))) { 1588 /* 1589 * If this is a slab page then lets do the best we can 1590 * to avoid issues in the future. Marking all objects 1591 * as used avoids touching the remaining objects. 1592 */ 1593 slab_fix(s, "Marking all objects used"); 1594 slab->inuse = slab->objects; 1595 slab->freelist = NULL; 1596 } 1597 return false; 1598 } 1599 1600 static inline int free_consistency_checks(struct kmem_cache *s, 1601 struct slab *slab, void *object, unsigned long addr) 1602 { 1603 if (!check_valid_pointer(s, slab, object)) { 1604 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1605 return 0; 1606 } 1607 1608 if (on_freelist(s, slab, object)) { 1609 object_err(s, slab, object, "Object already free"); 1610 return 0; 1611 } 1612 1613 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1614 return 0; 1615 1616 if (unlikely(s != slab->slab_cache)) { 1617 if (!folio_test_slab(slab_folio(slab))) { 1618 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1619 object); 1620 } else if (!slab->slab_cache) { 1621 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1622 object); 1623 dump_stack(); 1624 } else 1625 object_err(s, slab, object, 1626 "page slab pointer corrupt."); 1627 return 0; 1628 } 1629 return 1; 1630 } 1631 1632 /* 1633 * Parse a block of slab_debug options. Blocks are delimited by ';' 1634 * 1635 * @str: start of block 1636 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1637 * @slabs: return start of list of slabs, or NULL when there's no list 1638 * @init: assume this is initial parsing and not per-kmem-create parsing 1639 * 1640 * returns the start of next block if there's any, or NULL 1641 */ 1642 static char * 1643 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1644 { 1645 bool higher_order_disable = false; 1646 1647 /* Skip any completely empty blocks */ 1648 while (*str && *str == ';') 1649 str++; 1650 1651 if (*str == ',') { 1652 /* 1653 * No options but restriction on slabs. This means full 1654 * debugging for slabs matching a pattern. 1655 */ 1656 *flags = DEBUG_DEFAULT_FLAGS; 1657 goto check_slabs; 1658 } 1659 *flags = 0; 1660 1661 /* Determine which debug features should be switched on */ 1662 for (; *str && *str != ',' && *str != ';'; str++) { 1663 switch (tolower(*str)) { 1664 case '-': 1665 *flags = 0; 1666 break; 1667 case 'f': 1668 *flags |= SLAB_CONSISTENCY_CHECKS; 1669 break; 1670 case 'z': 1671 *flags |= SLAB_RED_ZONE; 1672 break; 1673 case 'p': 1674 *flags |= SLAB_POISON; 1675 break; 1676 case 'u': 1677 *flags |= SLAB_STORE_USER; 1678 break; 1679 case 't': 1680 *flags |= SLAB_TRACE; 1681 break; 1682 case 'a': 1683 *flags |= SLAB_FAILSLAB; 1684 break; 1685 case 'o': 1686 /* 1687 * Avoid enabling debugging on caches if its minimum 1688 * order would increase as a result. 1689 */ 1690 higher_order_disable = true; 1691 break; 1692 default: 1693 if (init) 1694 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1695 } 1696 } 1697 check_slabs: 1698 if (*str == ',') 1699 *slabs = ++str; 1700 else 1701 *slabs = NULL; 1702 1703 /* Skip over the slab list */ 1704 while (*str && *str != ';') 1705 str++; 1706 1707 /* Skip any completely empty blocks */ 1708 while (*str && *str == ';') 1709 str++; 1710 1711 if (init && higher_order_disable) 1712 disable_higher_order_debug = 1; 1713 1714 if (*str) 1715 return str; 1716 else 1717 return NULL; 1718 } 1719 1720 static int __init setup_slub_debug(char *str) 1721 { 1722 slab_flags_t flags; 1723 slab_flags_t global_flags; 1724 char *saved_str; 1725 char *slab_list; 1726 bool global_slub_debug_changed = false; 1727 bool slab_list_specified = false; 1728 1729 global_flags = DEBUG_DEFAULT_FLAGS; 1730 if (*str++ != '=' || !*str) 1731 /* 1732 * No options specified. Switch on full debugging. 1733 */ 1734 goto out; 1735 1736 saved_str = str; 1737 while (str) { 1738 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1739 1740 if (!slab_list) { 1741 global_flags = flags; 1742 global_slub_debug_changed = true; 1743 } else { 1744 slab_list_specified = true; 1745 if (flags & SLAB_STORE_USER) 1746 stack_depot_request_early_init(); 1747 } 1748 } 1749 1750 /* 1751 * For backwards compatibility, a single list of flags with list of 1752 * slabs means debugging is only changed for those slabs, so the global 1753 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1754 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1755 * long as there is no option specifying flags without a slab list. 1756 */ 1757 if (slab_list_specified) { 1758 if (!global_slub_debug_changed) 1759 global_flags = slub_debug; 1760 slub_debug_string = saved_str; 1761 } 1762 out: 1763 slub_debug = global_flags; 1764 if (slub_debug & SLAB_STORE_USER) 1765 stack_depot_request_early_init(); 1766 if (slub_debug != 0 || slub_debug_string) 1767 static_branch_enable(&slub_debug_enabled); 1768 else 1769 static_branch_disable(&slub_debug_enabled); 1770 if ((static_branch_unlikely(&init_on_alloc) || 1771 static_branch_unlikely(&init_on_free)) && 1772 (slub_debug & SLAB_POISON)) 1773 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1774 return 1; 1775 } 1776 1777 __setup("slab_debug", setup_slub_debug); 1778 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1779 1780 /* 1781 * kmem_cache_flags - apply debugging options to the cache 1782 * @flags: flags to set 1783 * @name: name of the cache 1784 * 1785 * Debug option(s) are applied to @flags. In addition to the debug 1786 * option(s), if a slab name (or multiple) is specified i.e. 1787 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1788 * then only the select slabs will receive the debug option(s). 1789 */ 1790 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1791 { 1792 char *iter; 1793 size_t len; 1794 char *next_block; 1795 slab_flags_t block_flags; 1796 slab_flags_t slub_debug_local = slub_debug; 1797 1798 if (flags & SLAB_NO_USER_FLAGS) 1799 return flags; 1800 1801 /* 1802 * If the slab cache is for debugging (e.g. kmemleak) then 1803 * don't store user (stack trace) information by default, 1804 * but let the user enable it via the command line below. 1805 */ 1806 if (flags & SLAB_NOLEAKTRACE) 1807 slub_debug_local &= ~SLAB_STORE_USER; 1808 1809 len = strlen(name); 1810 next_block = slub_debug_string; 1811 /* Go through all blocks of debug options, see if any matches our slab's name */ 1812 while (next_block) { 1813 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1814 if (!iter) 1815 continue; 1816 /* Found a block that has a slab list, search it */ 1817 while (*iter) { 1818 char *end, *glob; 1819 size_t cmplen; 1820 1821 end = strchrnul(iter, ','); 1822 if (next_block && next_block < end) 1823 end = next_block - 1; 1824 1825 glob = strnchr(iter, end - iter, '*'); 1826 if (glob) 1827 cmplen = glob - iter; 1828 else 1829 cmplen = max_t(size_t, len, (end - iter)); 1830 1831 if (!strncmp(name, iter, cmplen)) { 1832 flags |= block_flags; 1833 return flags; 1834 } 1835 1836 if (!*end || *end == ';') 1837 break; 1838 iter = end + 1; 1839 } 1840 } 1841 1842 return flags | slub_debug_local; 1843 } 1844 #else /* !CONFIG_SLUB_DEBUG */ 1845 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1846 static inline 1847 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1848 1849 static inline bool alloc_debug_processing(struct kmem_cache *s, 1850 struct slab *slab, void *object, int orig_size) { return true; } 1851 1852 static inline bool free_debug_processing(struct kmem_cache *s, 1853 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1854 unsigned long addr, depot_stack_handle_t handle) { return true; } 1855 1856 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1857 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1858 void *object, u8 val) { return 1; } 1859 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1860 static inline void set_track(struct kmem_cache *s, void *object, 1861 enum track_item alloc, unsigned long addr) {} 1862 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1863 struct slab *slab) {} 1864 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1865 struct slab *slab) {} 1866 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1867 { 1868 return flags; 1869 } 1870 #define slub_debug 0 1871 1872 #define disable_higher_order_debug 0 1873 1874 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1875 { return 0; } 1876 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1877 int objects) {} 1878 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1879 int objects) {} 1880 1881 #ifndef CONFIG_SLUB_TINY 1882 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1883 void **freelist, void *nextfree) 1884 { 1885 return false; 1886 } 1887 #endif 1888 #endif /* CONFIG_SLUB_DEBUG */ 1889 1890 #ifdef CONFIG_SLAB_OBJ_EXT 1891 1892 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1893 1894 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1895 { 1896 struct slabobj_ext *slab_exts; 1897 struct slab *obj_exts_slab; 1898 1899 obj_exts_slab = virt_to_slab(obj_exts); 1900 slab_exts = slab_obj_exts(obj_exts_slab); 1901 if (slab_exts) { 1902 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1903 obj_exts_slab, obj_exts); 1904 /* codetag should be NULL */ 1905 WARN_ON(slab_exts[offs].ref.ct); 1906 set_codetag_empty(&slab_exts[offs].ref); 1907 } 1908 } 1909 1910 static inline void mark_failed_objexts_alloc(struct slab *slab) 1911 { 1912 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1913 } 1914 1915 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1916 struct slabobj_ext *vec, unsigned int objects) 1917 { 1918 /* 1919 * If vector previously failed to allocate then we have live 1920 * objects with no tag reference. Mark all references in this 1921 * vector as empty to avoid warnings later on. 1922 */ 1923 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1924 unsigned int i; 1925 1926 for (i = 0; i < objects; i++) 1927 set_codetag_empty(&vec[i].ref); 1928 } 1929 } 1930 1931 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1932 1933 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1934 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1935 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1936 struct slabobj_ext *vec, unsigned int objects) {} 1937 1938 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1939 1940 /* 1941 * The allocated objcg pointers array is not accounted directly. 1942 * Moreover, it should not come from DMA buffer and is not readily 1943 * reclaimable. So those GFP bits should be masked off. 1944 */ 1945 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1946 __GFP_ACCOUNT | __GFP_NOFAIL) 1947 1948 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1949 gfp_t gfp, bool new_slab) 1950 { 1951 unsigned int objects = objs_per_slab(s, slab); 1952 unsigned long new_exts; 1953 unsigned long old_exts; 1954 struct slabobj_ext *vec; 1955 1956 gfp &= ~OBJCGS_CLEAR_MASK; 1957 /* Prevent recursive extension vector allocation */ 1958 gfp |= __GFP_NO_OBJ_EXT; 1959 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1960 slab_nid(slab)); 1961 if (!vec) { 1962 /* Mark vectors which failed to allocate */ 1963 if (new_slab) 1964 mark_failed_objexts_alloc(slab); 1965 1966 return -ENOMEM; 1967 } 1968 1969 new_exts = (unsigned long)vec; 1970 #ifdef CONFIG_MEMCG 1971 new_exts |= MEMCG_DATA_OBJEXTS; 1972 #endif 1973 old_exts = slab->obj_exts; 1974 handle_failed_objexts_alloc(old_exts, vec, objects); 1975 if (new_slab) { 1976 /* 1977 * If the slab is brand new and nobody can yet access its 1978 * obj_exts, no synchronization is required and obj_exts can 1979 * be simply assigned. 1980 */ 1981 slab->obj_exts = new_exts; 1982 } else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 1983 /* 1984 * If the slab is already in use, somebody can allocate and 1985 * assign slabobj_exts in parallel. In this case the existing 1986 * objcg vector should be reused. 1987 */ 1988 mark_objexts_empty(vec); 1989 kfree(vec); 1990 return 0; 1991 } 1992 1993 kmemleak_not_leak(vec); 1994 return 0; 1995 } 1996 1997 static inline void free_slab_obj_exts(struct slab *slab) 1998 { 1999 struct slabobj_ext *obj_exts; 2000 2001 obj_exts = slab_obj_exts(slab); 2002 if (!obj_exts) 2003 return; 2004 2005 /* 2006 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2007 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2008 * warning if slab has extensions but the extension of an object is 2009 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2010 * the extension for obj_exts is expected to be NULL. 2011 */ 2012 mark_objexts_empty(obj_exts); 2013 kfree(obj_exts); 2014 slab->obj_exts = 0; 2015 } 2016 2017 static inline bool need_slab_obj_ext(void) 2018 { 2019 if (mem_alloc_profiling_enabled()) 2020 return true; 2021 2022 /* 2023 * CONFIG_MEMCG_KMEM creates vector of obj_cgroup objects conditionally 2024 * inside memcg_slab_post_alloc_hook. No other users for now. 2025 */ 2026 return false; 2027 } 2028 2029 static inline struct slabobj_ext * 2030 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2031 { 2032 struct slab *slab; 2033 2034 if (!p) 2035 return NULL; 2036 2037 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2038 return NULL; 2039 2040 if (flags & __GFP_NO_OBJ_EXT) 2041 return NULL; 2042 2043 slab = virt_to_slab(p); 2044 if (!slab_obj_exts(slab) && 2045 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2046 "%s, %s: Failed to create slab extension vector!\n", 2047 __func__, s->name)) 2048 return NULL; 2049 2050 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2051 } 2052 2053 static inline void 2054 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2055 int objects) 2056 { 2057 #ifdef CONFIG_MEM_ALLOC_PROFILING 2058 struct slabobj_ext *obj_exts; 2059 int i; 2060 2061 if (!mem_alloc_profiling_enabled()) 2062 return; 2063 2064 obj_exts = slab_obj_exts(slab); 2065 if (!obj_exts) 2066 return; 2067 2068 for (i = 0; i < objects; i++) { 2069 unsigned int off = obj_to_index(s, slab, p[i]); 2070 2071 alloc_tag_sub(&obj_exts[off].ref, s->size); 2072 } 2073 #endif 2074 } 2075 2076 #else /* CONFIG_SLAB_OBJ_EXT */ 2077 2078 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2079 gfp_t gfp, bool new_slab) 2080 { 2081 return 0; 2082 } 2083 2084 static inline void free_slab_obj_exts(struct slab *slab) 2085 { 2086 } 2087 2088 static inline bool need_slab_obj_ext(void) 2089 { 2090 return false; 2091 } 2092 2093 static inline struct slabobj_ext * 2094 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2095 { 2096 return NULL; 2097 } 2098 2099 static inline void 2100 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2101 int objects) 2102 { 2103 } 2104 2105 #endif /* CONFIG_SLAB_OBJ_EXT */ 2106 2107 #ifdef CONFIG_MEMCG_KMEM 2108 2109 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2110 2111 static __fastpath_inline 2112 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2113 gfp_t flags, size_t size, void **p) 2114 { 2115 if (likely(!memcg_kmem_online())) 2116 return true; 2117 2118 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2119 return true; 2120 2121 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2122 return true; 2123 2124 if (likely(size == 1)) { 2125 memcg_alloc_abort_single(s, *p); 2126 *p = NULL; 2127 } else { 2128 kmem_cache_free_bulk(s, size, p); 2129 } 2130 2131 return false; 2132 } 2133 2134 static __fastpath_inline 2135 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2136 int objects) 2137 { 2138 struct slabobj_ext *obj_exts; 2139 2140 if (!memcg_kmem_online()) 2141 return; 2142 2143 obj_exts = slab_obj_exts(slab); 2144 if (likely(!obj_exts)) 2145 return; 2146 2147 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2148 } 2149 #else /* CONFIG_MEMCG_KMEM */ 2150 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2151 struct list_lru *lru, 2152 gfp_t flags, size_t size, 2153 void **p) 2154 { 2155 return true; 2156 } 2157 2158 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2159 void **p, int objects) 2160 { 2161 } 2162 #endif /* CONFIG_MEMCG_KMEM */ 2163 2164 /* 2165 * Hooks for other subsystems that check memory allocations. In a typical 2166 * production configuration these hooks all should produce no code at all. 2167 * 2168 * Returns true if freeing of the object can proceed, false if its reuse 2169 * was delayed by KASAN quarantine, or it was returned to KFENCE. 2170 */ 2171 static __always_inline 2172 bool slab_free_hook(struct kmem_cache *s, void *x, bool init) 2173 { 2174 kmemleak_free_recursive(x, s->flags); 2175 kmsan_slab_free(s, x); 2176 2177 debug_check_no_locks_freed(x, s->object_size); 2178 2179 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2180 debug_check_no_obj_freed(x, s->object_size); 2181 2182 /* Use KCSAN to help debug racy use-after-free. */ 2183 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 2184 __kcsan_check_access(x, s->object_size, 2185 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2186 2187 if (kfence_free(x)) 2188 return false; 2189 2190 /* 2191 * As memory initialization might be integrated into KASAN, 2192 * kasan_slab_free and initialization memset's must be 2193 * kept together to avoid discrepancies in behavior. 2194 * 2195 * The initialization memset's clear the object and the metadata, 2196 * but don't touch the SLAB redzone. 2197 * 2198 * The object's freepointer is also avoided if stored outside the 2199 * object. 2200 */ 2201 if (unlikely(init)) { 2202 int rsize; 2203 unsigned int inuse; 2204 2205 inuse = get_info_end(s); 2206 if (!kasan_has_integrated_init()) 2207 memset(kasan_reset_tag(x), 0, s->object_size); 2208 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2209 memset((char *)kasan_reset_tag(x) + inuse, 0, 2210 s->size - inuse - rsize); 2211 } 2212 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2213 return !kasan_slab_free(s, x, init); 2214 } 2215 2216 static __fastpath_inline 2217 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2218 int *cnt) 2219 { 2220 2221 void *object; 2222 void *next = *head; 2223 void *old_tail = *tail; 2224 bool init; 2225 2226 if (is_kfence_address(next)) { 2227 slab_free_hook(s, next, false); 2228 return false; 2229 } 2230 2231 /* Head and tail of the reconstructed freelist */ 2232 *head = NULL; 2233 *tail = NULL; 2234 2235 init = slab_want_init_on_free(s); 2236 2237 do { 2238 object = next; 2239 next = get_freepointer(s, object); 2240 2241 /* If object's reuse doesn't have to be delayed */ 2242 if (likely(slab_free_hook(s, object, init))) { 2243 /* Move object to the new freelist */ 2244 set_freepointer(s, object, *head); 2245 *head = object; 2246 if (!*tail) 2247 *tail = object; 2248 } else { 2249 /* 2250 * Adjust the reconstructed freelist depth 2251 * accordingly if object's reuse is delayed. 2252 */ 2253 --(*cnt); 2254 } 2255 } while (object != old_tail); 2256 2257 return *head != NULL; 2258 } 2259 2260 static void *setup_object(struct kmem_cache *s, void *object) 2261 { 2262 setup_object_debug(s, object); 2263 object = kasan_init_slab_obj(s, object); 2264 if (unlikely(s->ctor)) { 2265 kasan_unpoison_new_object(s, object); 2266 s->ctor(object); 2267 kasan_poison_new_object(s, object); 2268 } 2269 return object; 2270 } 2271 2272 /* 2273 * Slab allocation and freeing 2274 */ 2275 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2276 struct kmem_cache_order_objects oo) 2277 { 2278 struct folio *folio; 2279 struct slab *slab; 2280 unsigned int order = oo_order(oo); 2281 2282 folio = (struct folio *)alloc_pages_node(node, flags, order); 2283 if (!folio) 2284 return NULL; 2285 2286 slab = folio_slab(folio); 2287 __folio_set_slab(folio); 2288 /* Make the flag visible before any changes to folio->mapping */ 2289 smp_wmb(); 2290 if (folio_is_pfmemalloc(folio)) 2291 slab_set_pfmemalloc(slab); 2292 2293 return slab; 2294 } 2295 2296 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2297 /* Pre-initialize the random sequence cache */ 2298 static int init_cache_random_seq(struct kmem_cache *s) 2299 { 2300 unsigned int count = oo_objects(s->oo); 2301 int err; 2302 2303 /* Bailout if already initialised */ 2304 if (s->random_seq) 2305 return 0; 2306 2307 err = cache_random_seq_create(s, count, GFP_KERNEL); 2308 if (err) { 2309 pr_err("SLUB: Unable to initialize free list for %s\n", 2310 s->name); 2311 return err; 2312 } 2313 2314 /* Transform to an offset on the set of pages */ 2315 if (s->random_seq) { 2316 unsigned int i; 2317 2318 for (i = 0; i < count; i++) 2319 s->random_seq[i] *= s->size; 2320 } 2321 return 0; 2322 } 2323 2324 /* Initialize each random sequence freelist per cache */ 2325 static void __init init_freelist_randomization(void) 2326 { 2327 struct kmem_cache *s; 2328 2329 mutex_lock(&slab_mutex); 2330 2331 list_for_each_entry(s, &slab_caches, list) 2332 init_cache_random_seq(s); 2333 2334 mutex_unlock(&slab_mutex); 2335 } 2336 2337 /* Get the next entry on the pre-computed freelist randomized */ 2338 static void *next_freelist_entry(struct kmem_cache *s, 2339 unsigned long *pos, void *start, 2340 unsigned long page_limit, 2341 unsigned long freelist_count) 2342 { 2343 unsigned int idx; 2344 2345 /* 2346 * If the target page allocation failed, the number of objects on the 2347 * page might be smaller than the usual size defined by the cache. 2348 */ 2349 do { 2350 idx = s->random_seq[*pos]; 2351 *pos += 1; 2352 if (*pos >= freelist_count) 2353 *pos = 0; 2354 } while (unlikely(idx >= page_limit)); 2355 2356 return (char *)start + idx; 2357 } 2358 2359 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2360 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2361 { 2362 void *start; 2363 void *cur; 2364 void *next; 2365 unsigned long idx, pos, page_limit, freelist_count; 2366 2367 if (slab->objects < 2 || !s->random_seq) 2368 return false; 2369 2370 freelist_count = oo_objects(s->oo); 2371 pos = get_random_u32_below(freelist_count); 2372 2373 page_limit = slab->objects * s->size; 2374 start = fixup_red_left(s, slab_address(slab)); 2375 2376 /* First entry is used as the base of the freelist */ 2377 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2378 cur = setup_object(s, cur); 2379 slab->freelist = cur; 2380 2381 for (idx = 1; idx < slab->objects; idx++) { 2382 next = next_freelist_entry(s, &pos, start, page_limit, 2383 freelist_count); 2384 next = setup_object(s, next); 2385 set_freepointer(s, cur, next); 2386 cur = next; 2387 } 2388 set_freepointer(s, cur, NULL); 2389 2390 return true; 2391 } 2392 #else 2393 static inline int init_cache_random_seq(struct kmem_cache *s) 2394 { 2395 return 0; 2396 } 2397 static inline void init_freelist_randomization(void) { } 2398 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2399 { 2400 return false; 2401 } 2402 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2403 2404 static __always_inline void account_slab(struct slab *slab, int order, 2405 struct kmem_cache *s, gfp_t gfp) 2406 { 2407 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2408 alloc_slab_obj_exts(slab, s, gfp, true); 2409 2410 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2411 PAGE_SIZE << order); 2412 } 2413 2414 static __always_inline void unaccount_slab(struct slab *slab, int order, 2415 struct kmem_cache *s) 2416 { 2417 if (memcg_kmem_online() || need_slab_obj_ext()) 2418 free_slab_obj_exts(slab); 2419 2420 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2421 -(PAGE_SIZE << order)); 2422 } 2423 2424 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2425 { 2426 struct slab *slab; 2427 struct kmem_cache_order_objects oo = s->oo; 2428 gfp_t alloc_gfp; 2429 void *start, *p, *next; 2430 int idx; 2431 bool shuffle; 2432 2433 flags &= gfp_allowed_mask; 2434 2435 flags |= s->allocflags; 2436 2437 /* 2438 * Let the initial higher-order allocation fail under memory pressure 2439 * so we fall-back to the minimum order allocation. 2440 */ 2441 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2442 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2443 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2444 2445 slab = alloc_slab_page(alloc_gfp, node, oo); 2446 if (unlikely(!slab)) { 2447 oo = s->min; 2448 alloc_gfp = flags; 2449 /* 2450 * Allocation may have failed due to fragmentation. 2451 * Try a lower order alloc if possible 2452 */ 2453 slab = alloc_slab_page(alloc_gfp, node, oo); 2454 if (unlikely(!slab)) 2455 return NULL; 2456 stat(s, ORDER_FALLBACK); 2457 } 2458 2459 slab->objects = oo_objects(oo); 2460 slab->inuse = 0; 2461 slab->frozen = 0; 2462 2463 account_slab(slab, oo_order(oo), s, flags); 2464 2465 slab->slab_cache = s; 2466 2467 kasan_poison_slab(slab); 2468 2469 start = slab_address(slab); 2470 2471 setup_slab_debug(s, slab, start); 2472 2473 shuffle = shuffle_freelist(s, slab); 2474 2475 if (!shuffle) { 2476 start = fixup_red_left(s, start); 2477 start = setup_object(s, start); 2478 slab->freelist = start; 2479 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2480 next = p + s->size; 2481 next = setup_object(s, next); 2482 set_freepointer(s, p, next); 2483 p = next; 2484 } 2485 set_freepointer(s, p, NULL); 2486 } 2487 2488 return slab; 2489 } 2490 2491 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2492 { 2493 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2494 flags = kmalloc_fix_flags(flags); 2495 2496 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2497 2498 return allocate_slab(s, 2499 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2500 } 2501 2502 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2503 { 2504 struct folio *folio = slab_folio(slab); 2505 int order = folio_order(folio); 2506 int pages = 1 << order; 2507 2508 __slab_clear_pfmemalloc(slab); 2509 folio->mapping = NULL; 2510 /* Make the mapping reset visible before clearing the flag */ 2511 smp_wmb(); 2512 __folio_clear_slab(folio); 2513 mm_account_reclaimed_pages(pages); 2514 unaccount_slab(slab, order, s); 2515 __free_pages(&folio->page, order); 2516 } 2517 2518 static void rcu_free_slab(struct rcu_head *h) 2519 { 2520 struct slab *slab = container_of(h, struct slab, rcu_head); 2521 2522 __free_slab(slab->slab_cache, slab); 2523 } 2524 2525 static void free_slab(struct kmem_cache *s, struct slab *slab) 2526 { 2527 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2528 void *p; 2529 2530 slab_pad_check(s, slab); 2531 for_each_object(p, s, slab_address(slab), slab->objects) 2532 check_object(s, slab, p, SLUB_RED_INACTIVE); 2533 } 2534 2535 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2536 call_rcu(&slab->rcu_head, rcu_free_slab); 2537 else 2538 __free_slab(s, slab); 2539 } 2540 2541 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2542 { 2543 dec_slabs_node(s, slab_nid(slab), slab->objects); 2544 free_slab(s, slab); 2545 } 2546 2547 /* 2548 * SLUB reuses PG_workingset bit to keep track of whether it's on 2549 * the per-node partial list. 2550 */ 2551 static inline bool slab_test_node_partial(const struct slab *slab) 2552 { 2553 return folio_test_workingset(slab_folio(slab)); 2554 } 2555 2556 static inline void slab_set_node_partial(struct slab *slab) 2557 { 2558 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2559 } 2560 2561 static inline void slab_clear_node_partial(struct slab *slab) 2562 { 2563 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2564 } 2565 2566 /* 2567 * Management of partially allocated slabs. 2568 */ 2569 static inline void 2570 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2571 { 2572 n->nr_partial++; 2573 if (tail == DEACTIVATE_TO_TAIL) 2574 list_add_tail(&slab->slab_list, &n->partial); 2575 else 2576 list_add(&slab->slab_list, &n->partial); 2577 slab_set_node_partial(slab); 2578 } 2579 2580 static inline void add_partial(struct kmem_cache_node *n, 2581 struct slab *slab, int tail) 2582 { 2583 lockdep_assert_held(&n->list_lock); 2584 __add_partial(n, slab, tail); 2585 } 2586 2587 static inline void remove_partial(struct kmem_cache_node *n, 2588 struct slab *slab) 2589 { 2590 lockdep_assert_held(&n->list_lock); 2591 list_del(&slab->slab_list); 2592 slab_clear_node_partial(slab); 2593 n->nr_partial--; 2594 } 2595 2596 /* 2597 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2598 * slab from the n->partial list. Remove only a single object from the slab, do 2599 * the alloc_debug_processing() checks and leave the slab on the list, or move 2600 * it to full list if it was the last free object. 2601 */ 2602 static void *alloc_single_from_partial(struct kmem_cache *s, 2603 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2604 { 2605 void *object; 2606 2607 lockdep_assert_held(&n->list_lock); 2608 2609 object = slab->freelist; 2610 slab->freelist = get_freepointer(s, object); 2611 slab->inuse++; 2612 2613 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2614 remove_partial(n, slab); 2615 return NULL; 2616 } 2617 2618 if (slab->inuse == slab->objects) { 2619 remove_partial(n, slab); 2620 add_full(s, n, slab); 2621 } 2622 2623 return object; 2624 } 2625 2626 /* 2627 * Called only for kmem_cache_debug() caches to allocate from a freshly 2628 * allocated slab. Allocate a single object instead of whole freelist 2629 * and put the slab to the partial (or full) list. 2630 */ 2631 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2632 struct slab *slab, int orig_size) 2633 { 2634 int nid = slab_nid(slab); 2635 struct kmem_cache_node *n = get_node(s, nid); 2636 unsigned long flags; 2637 void *object; 2638 2639 2640 object = slab->freelist; 2641 slab->freelist = get_freepointer(s, object); 2642 slab->inuse = 1; 2643 2644 if (!alloc_debug_processing(s, slab, object, orig_size)) 2645 /* 2646 * It's not really expected that this would fail on a 2647 * freshly allocated slab, but a concurrent memory 2648 * corruption in theory could cause that. 2649 */ 2650 return NULL; 2651 2652 spin_lock_irqsave(&n->list_lock, flags); 2653 2654 if (slab->inuse == slab->objects) 2655 add_full(s, n, slab); 2656 else 2657 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2658 2659 inc_slabs_node(s, nid, slab->objects); 2660 spin_unlock_irqrestore(&n->list_lock, flags); 2661 2662 return object; 2663 } 2664 2665 #ifdef CONFIG_SLUB_CPU_PARTIAL 2666 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2667 #else 2668 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2669 int drain) { } 2670 #endif 2671 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2672 2673 /* 2674 * Try to allocate a partial slab from a specific node. 2675 */ 2676 static struct slab *get_partial_node(struct kmem_cache *s, 2677 struct kmem_cache_node *n, 2678 struct partial_context *pc) 2679 { 2680 struct slab *slab, *slab2, *partial = NULL; 2681 unsigned long flags; 2682 unsigned int partial_slabs = 0; 2683 2684 /* 2685 * Racy check. If we mistakenly see no partial slabs then we 2686 * just allocate an empty slab. If we mistakenly try to get a 2687 * partial slab and there is none available then get_partial() 2688 * will return NULL. 2689 */ 2690 if (!n || !n->nr_partial) 2691 return NULL; 2692 2693 spin_lock_irqsave(&n->list_lock, flags); 2694 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2695 if (!pfmemalloc_match(slab, pc->flags)) 2696 continue; 2697 2698 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2699 void *object = alloc_single_from_partial(s, n, slab, 2700 pc->orig_size); 2701 if (object) { 2702 partial = slab; 2703 pc->object = object; 2704 break; 2705 } 2706 continue; 2707 } 2708 2709 remove_partial(n, slab); 2710 2711 if (!partial) { 2712 partial = slab; 2713 stat(s, ALLOC_FROM_PARTIAL); 2714 2715 if ((slub_get_cpu_partial(s) == 0)) { 2716 break; 2717 } 2718 } else { 2719 put_cpu_partial(s, slab, 0); 2720 stat(s, CPU_PARTIAL_NODE); 2721 2722 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2723 break; 2724 } 2725 } 2726 } 2727 spin_unlock_irqrestore(&n->list_lock, flags); 2728 return partial; 2729 } 2730 2731 /* 2732 * Get a slab from somewhere. Search in increasing NUMA distances. 2733 */ 2734 static struct slab *get_any_partial(struct kmem_cache *s, 2735 struct partial_context *pc) 2736 { 2737 #ifdef CONFIG_NUMA 2738 struct zonelist *zonelist; 2739 struct zoneref *z; 2740 struct zone *zone; 2741 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2742 struct slab *slab; 2743 unsigned int cpuset_mems_cookie; 2744 2745 /* 2746 * The defrag ratio allows a configuration of the tradeoffs between 2747 * inter node defragmentation and node local allocations. A lower 2748 * defrag_ratio increases the tendency to do local allocations 2749 * instead of attempting to obtain partial slabs from other nodes. 2750 * 2751 * If the defrag_ratio is set to 0 then kmalloc() always 2752 * returns node local objects. If the ratio is higher then kmalloc() 2753 * may return off node objects because partial slabs are obtained 2754 * from other nodes and filled up. 2755 * 2756 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2757 * (which makes defrag_ratio = 1000) then every (well almost) 2758 * allocation will first attempt to defrag slab caches on other nodes. 2759 * This means scanning over all nodes to look for partial slabs which 2760 * may be expensive if we do it every time we are trying to find a slab 2761 * with available objects. 2762 */ 2763 if (!s->remote_node_defrag_ratio || 2764 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2765 return NULL; 2766 2767 do { 2768 cpuset_mems_cookie = read_mems_allowed_begin(); 2769 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2770 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2771 struct kmem_cache_node *n; 2772 2773 n = get_node(s, zone_to_nid(zone)); 2774 2775 if (n && cpuset_zone_allowed(zone, pc->flags) && 2776 n->nr_partial > s->min_partial) { 2777 slab = get_partial_node(s, n, pc); 2778 if (slab) { 2779 /* 2780 * Don't check read_mems_allowed_retry() 2781 * here - if mems_allowed was updated in 2782 * parallel, that was a harmless race 2783 * between allocation and the cpuset 2784 * update 2785 */ 2786 return slab; 2787 } 2788 } 2789 } 2790 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2791 #endif /* CONFIG_NUMA */ 2792 return NULL; 2793 } 2794 2795 /* 2796 * Get a partial slab, lock it and return it. 2797 */ 2798 static struct slab *get_partial(struct kmem_cache *s, int node, 2799 struct partial_context *pc) 2800 { 2801 struct slab *slab; 2802 int searchnode = node; 2803 2804 if (node == NUMA_NO_NODE) 2805 searchnode = numa_mem_id(); 2806 2807 slab = get_partial_node(s, get_node(s, searchnode), pc); 2808 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2809 return slab; 2810 2811 return get_any_partial(s, pc); 2812 } 2813 2814 #ifndef CONFIG_SLUB_TINY 2815 2816 #ifdef CONFIG_PREEMPTION 2817 /* 2818 * Calculate the next globally unique transaction for disambiguation 2819 * during cmpxchg. The transactions start with the cpu number and are then 2820 * incremented by CONFIG_NR_CPUS. 2821 */ 2822 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2823 #else 2824 /* 2825 * No preemption supported therefore also no need to check for 2826 * different cpus. 2827 */ 2828 #define TID_STEP 1 2829 #endif /* CONFIG_PREEMPTION */ 2830 2831 static inline unsigned long next_tid(unsigned long tid) 2832 { 2833 return tid + TID_STEP; 2834 } 2835 2836 #ifdef SLUB_DEBUG_CMPXCHG 2837 static inline unsigned int tid_to_cpu(unsigned long tid) 2838 { 2839 return tid % TID_STEP; 2840 } 2841 2842 static inline unsigned long tid_to_event(unsigned long tid) 2843 { 2844 return tid / TID_STEP; 2845 } 2846 #endif 2847 2848 static inline unsigned int init_tid(int cpu) 2849 { 2850 return cpu; 2851 } 2852 2853 static inline void note_cmpxchg_failure(const char *n, 2854 const struct kmem_cache *s, unsigned long tid) 2855 { 2856 #ifdef SLUB_DEBUG_CMPXCHG 2857 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2858 2859 pr_info("%s %s: cmpxchg redo ", n, s->name); 2860 2861 #ifdef CONFIG_PREEMPTION 2862 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2863 pr_warn("due to cpu change %d -> %d\n", 2864 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2865 else 2866 #endif 2867 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2868 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2869 tid_to_event(tid), tid_to_event(actual_tid)); 2870 else 2871 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2872 actual_tid, tid, next_tid(tid)); 2873 #endif 2874 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2875 } 2876 2877 static void init_kmem_cache_cpus(struct kmem_cache *s) 2878 { 2879 int cpu; 2880 struct kmem_cache_cpu *c; 2881 2882 for_each_possible_cpu(cpu) { 2883 c = per_cpu_ptr(s->cpu_slab, cpu); 2884 local_lock_init(&c->lock); 2885 c->tid = init_tid(cpu); 2886 } 2887 } 2888 2889 /* 2890 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2891 * unfreezes the slabs and puts it on the proper list. 2892 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2893 * by the caller. 2894 */ 2895 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2896 void *freelist) 2897 { 2898 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2899 int free_delta = 0; 2900 void *nextfree, *freelist_iter, *freelist_tail; 2901 int tail = DEACTIVATE_TO_HEAD; 2902 unsigned long flags = 0; 2903 struct slab new; 2904 struct slab old; 2905 2906 if (READ_ONCE(slab->freelist)) { 2907 stat(s, DEACTIVATE_REMOTE_FREES); 2908 tail = DEACTIVATE_TO_TAIL; 2909 } 2910 2911 /* 2912 * Stage one: Count the objects on cpu's freelist as free_delta and 2913 * remember the last object in freelist_tail for later splicing. 2914 */ 2915 freelist_tail = NULL; 2916 freelist_iter = freelist; 2917 while (freelist_iter) { 2918 nextfree = get_freepointer(s, freelist_iter); 2919 2920 /* 2921 * If 'nextfree' is invalid, it is possible that the object at 2922 * 'freelist_iter' is already corrupted. So isolate all objects 2923 * starting at 'freelist_iter' by skipping them. 2924 */ 2925 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2926 break; 2927 2928 freelist_tail = freelist_iter; 2929 free_delta++; 2930 2931 freelist_iter = nextfree; 2932 } 2933 2934 /* 2935 * Stage two: Unfreeze the slab while splicing the per-cpu 2936 * freelist to the head of slab's freelist. 2937 */ 2938 do { 2939 old.freelist = READ_ONCE(slab->freelist); 2940 old.counters = READ_ONCE(slab->counters); 2941 VM_BUG_ON(!old.frozen); 2942 2943 /* Determine target state of the slab */ 2944 new.counters = old.counters; 2945 new.frozen = 0; 2946 if (freelist_tail) { 2947 new.inuse -= free_delta; 2948 set_freepointer(s, freelist_tail, old.freelist); 2949 new.freelist = freelist; 2950 } else { 2951 new.freelist = old.freelist; 2952 } 2953 } while (!slab_update_freelist(s, slab, 2954 old.freelist, old.counters, 2955 new.freelist, new.counters, 2956 "unfreezing slab")); 2957 2958 /* 2959 * Stage three: Manipulate the slab list based on the updated state. 2960 */ 2961 if (!new.inuse && n->nr_partial >= s->min_partial) { 2962 stat(s, DEACTIVATE_EMPTY); 2963 discard_slab(s, slab); 2964 stat(s, FREE_SLAB); 2965 } else if (new.freelist) { 2966 spin_lock_irqsave(&n->list_lock, flags); 2967 add_partial(n, slab, tail); 2968 spin_unlock_irqrestore(&n->list_lock, flags); 2969 stat(s, tail); 2970 } else { 2971 stat(s, DEACTIVATE_FULL); 2972 } 2973 } 2974 2975 #ifdef CONFIG_SLUB_CPU_PARTIAL 2976 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 2977 { 2978 struct kmem_cache_node *n = NULL, *n2 = NULL; 2979 struct slab *slab, *slab_to_discard = NULL; 2980 unsigned long flags = 0; 2981 2982 while (partial_slab) { 2983 slab = partial_slab; 2984 partial_slab = slab->next; 2985 2986 n2 = get_node(s, slab_nid(slab)); 2987 if (n != n2) { 2988 if (n) 2989 spin_unlock_irqrestore(&n->list_lock, flags); 2990 2991 n = n2; 2992 spin_lock_irqsave(&n->list_lock, flags); 2993 } 2994 2995 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 2996 slab->next = slab_to_discard; 2997 slab_to_discard = slab; 2998 } else { 2999 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3000 stat(s, FREE_ADD_PARTIAL); 3001 } 3002 } 3003 3004 if (n) 3005 spin_unlock_irqrestore(&n->list_lock, flags); 3006 3007 while (slab_to_discard) { 3008 slab = slab_to_discard; 3009 slab_to_discard = slab_to_discard->next; 3010 3011 stat(s, DEACTIVATE_EMPTY); 3012 discard_slab(s, slab); 3013 stat(s, FREE_SLAB); 3014 } 3015 } 3016 3017 /* 3018 * Put all the cpu partial slabs to the node partial list. 3019 */ 3020 static void put_partials(struct kmem_cache *s) 3021 { 3022 struct slab *partial_slab; 3023 unsigned long flags; 3024 3025 local_lock_irqsave(&s->cpu_slab->lock, flags); 3026 partial_slab = this_cpu_read(s->cpu_slab->partial); 3027 this_cpu_write(s->cpu_slab->partial, NULL); 3028 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3029 3030 if (partial_slab) 3031 __put_partials(s, partial_slab); 3032 } 3033 3034 static void put_partials_cpu(struct kmem_cache *s, 3035 struct kmem_cache_cpu *c) 3036 { 3037 struct slab *partial_slab; 3038 3039 partial_slab = slub_percpu_partial(c); 3040 c->partial = NULL; 3041 3042 if (partial_slab) 3043 __put_partials(s, partial_slab); 3044 } 3045 3046 /* 3047 * Put a slab into a partial slab slot if available. 3048 * 3049 * If we did not find a slot then simply move all the partials to the 3050 * per node partial list. 3051 */ 3052 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3053 { 3054 struct slab *oldslab; 3055 struct slab *slab_to_put = NULL; 3056 unsigned long flags; 3057 int slabs = 0; 3058 3059 local_lock_irqsave(&s->cpu_slab->lock, flags); 3060 3061 oldslab = this_cpu_read(s->cpu_slab->partial); 3062 3063 if (oldslab) { 3064 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3065 /* 3066 * Partial array is full. Move the existing set to the 3067 * per node partial list. Postpone the actual unfreezing 3068 * outside of the critical section. 3069 */ 3070 slab_to_put = oldslab; 3071 oldslab = NULL; 3072 } else { 3073 slabs = oldslab->slabs; 3074 } 3075 } 3076 3077 slabs++; 3078 3079 slab->slabs = slabs; 3080 slab->next = oldslab; 3081 3082 this_cpu_write(s->cpu_slab->partial, slab); 3083 3084 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3085 3086 if (slab_to_put) { 3087 __put_partials(s, slab_to_put); 3088 stat(s, CPU_PARTIAL_DRAIN); 3089 } 3090 } 3091 3092 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3093 3094 static inline void put_partials(struct kmem_cache *s) { } 3095 static inline void put_partials_cpu(struct kmem_cache *s, 3096 struct kmem_cache_cpu *c) { } 3097 3098 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3099 3100 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3101 { 3102 unsigned long flags; 3103 struct slab *slab; 3104 void *freelist; 3105 3106 local_lock_irqsave(&s->cpu_slab->lock, flags); 3107 3108 slab = c->slab; 3109 freelist = c->freelist; 3110 3111 c->slab = NULL; 3112 c->freelist = NULL; 3113 c->tid = next_tid(c->tid); 3114 3115 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3116 3117 if (slab) { 3118 deactivate_slab(s, slab, freelist); 3119 stat(s, CPUSLAB_FLUSH); 3120 } 3121 } 3122 3123 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3124 { 3125 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3126 void *freelist = c->freelist; 3127 struct slab *slab = c->slab; 3128 3129 c->slab = NULL; 3130 c->freelist = NULL; 3131 c->tid = next_tid(c->tid); 3132 3133 if (slab) { 3134 deactivate_slab(s, slab, freelist); 3135 stat(s, CPUSLAB_FLUSH); 3136 } 3137 3138 put_partials_cpu(s, c); 3139 } 3140 3141 struct slub_flush_work { 3142 struct work_struct work; 3143 struct kmem_cache *s; 3144 bool skip; 3145 }; 3146 3147 /* 3148 * Flush cpu slab. 3149 * 3150 * Called from CPU work handler with migration disabled. 3151 */ 3152 static void flush_cpu_slab(struct work_struct *w) 3153 { 3154 struct kmem_cache *s; 3155 struct kmem_cache_cpu *c; 3156 struct slub_flush_work *sfw; 3157 3158 sfw = container_of(w, struct slub_flush_work, work); 3159 3160 s = sfw->s; 3161 c = this_cpu_ptr(s->cpu_slab); 3162 3163 if (c->slab) 3164 flush_slab(s, c); 3165 3166 put_partials(s); 3167 } 3168 3169 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3170 { 3171 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3172 3173 return c->slab || slub_percpu_partial(c); 3174 } 3175 3176 static DEFINE_MUTEX(flush_lock); 3177 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3178 3179 static void flush_all_cpus_locked(struct kmem_cache *s) 3180 { 3181 struct slub_flush_work *sfw; 3182 unsigned int cpu; 3183 3184 lockdep_assert_cpus_held(); 3185 mutex_lock(&flush_lock); 3186 3187 for_each_online_cpu(cpu) { 3188 sfw = &per_cpu(slub_flush, cpu); 3189 if (!has_cpu_slab(cpu, s)) { 3190 sfw->skip = true; 3191 continue; 3192 } 3193 INIT_WORK(&sfw->work, flush_cpu_slab); 3194 sfw->skip = false; 3195 sfw->s = s; 3196 queue_work_on(cpu, flushwq, &sfw->work); 3197 } 3198 3199 for_each_online_cpu(cpu) { 3200 sfw = &per_cpu(slub_flush, cpu); 3201 if (sfw->skip) 3202 continue; 3203 flush_work(&sfw->work); 3204 } 3205 3206 mutex_unlock(&flush_lock); 3207 } 3208 3209 static void flush_all(struct kmem_cache *s) 3210 { 3211 cpus_read_lock(); 3212 flush_all_cpus_locked(s); 3213 cpus_read_unlock(); 3214 } 3215 3216 /* 3217 * Use the cpu notifier to insure that the cpu slabs are flushed when 3218 * necessary. 3219 */ 3220 static int slub_cpu_dead(unsigned int cpu) 3221 { 3222 struct kmem_cache *s; 3223 3224 mutex_lock(&slab_mutex); 3225 list_for_each_entry(s, &slab_caches, list) 3226 __flush_cpu_slab(s, cpu); 3227 mutex_unlock(&slab_mutex); 3228 return 0; 3229 } 3230 3231 #else /* CONFIG_SLUB_TINY */ 3232 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3233 static inline void flush_all(struct kmem_cache *s) { } 3234 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3235 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3236 #endif /* CONFIG_SLUB_TINY */ 3237 3238 /* 3239 * Check if the objects in a per cpu structure fit numa 3240 * locality expectations. 3241 */ 3242 static inline int node_match(struct slab *slab, int node) 3243 { 3244 #ifdef CONFIG_NUMA 3245 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3246 return 0; 3247 #endif 3248 return 1; 3249 } 3250 3251 #ifdef CONFIG_SLUB_DEBUG 3252 static int count_free(struct slab *slab) 3253 { 3254 return slab->objects - slab->inuse; 3255 } 3256 3257 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3258 { 3259 return atomic_long_read(&n->total_objects); 3260 } 3261 3262 /* Supports checking bulk free of a constructed freelist */ 3263 static inline bool free_debug_processing(struct kmem_cache *s, 3264 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3265 unsigned long addr, depot_stack_handle_t handle) 3266 { 3267 bool checks_ok = false; 3268 void *object = head; 3269 int cnt = 0; 3270 3271 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3272 if (!check_slab(s, slab)) 3273 goto out; 3274 } 3275 3276 if (slab->inuse < *bulk_cnt) { 3277 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3278 slab->inuse, *bulk_cnt); 3279 goto out; 3280 } 3281 3282 next_object: 3283 3284 if (++cnt > *bulk_cnt) 3285 goto out_cnt; 3286 3287 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3288 if (!free_consistency_checks(s, slab, object, addr)) 3289 goto out; 3290 } 3291 3292 if (s->flags & SLAB_STORE_USER) 3293 set_track_update(s, object, TRACK_FREE, addr, handle); 3294 trace(s, slab, object, 0); 3295 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3296 init_object(s, object, SLUB_RED_INACTIVE); 3297 3298 /* Reached end of constructed freelist yet? */ 3299 if (object != tail) { 3300 object = get_freepointer(s, object); 3301 goto next_object; 3302 } 3303 checks_ok = true; 3304 3305 out_cnt: 3306 if (cnt != *bulk_cnt) { 3307 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3308 *bulk_cnt, cnt); 3309 *bulk_cnt = cnt; 3310 } 3311 3312 out: 3313 3314 if (!checks_ok) 3315 slab_fix(s, "Object at 0x%p not freed", object); 3316 3317 return checks_ok; 3318 } 3319 #endif /* CONFIG_SLUB_DEBUG */ 3320 3321 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3322 static unsigned long count_partial(struct kmem_cache_node *n, 3323 int (*get_count)(struct slab *)) 3324 { 3325 unsigned long flags; 3326 unsigned long x = 0; 3327 struct slab *slab; 3328 3329 spin_lock_irqsave(&n->list_lock, flags); 3330 list_for_each_entry(slab, &n->partial, slab_list) 3331 x += get_count(slab); 3332 spin_unlock_irqrestore(&n->list_lock, flags); 3333 return x; 3334 } 3335 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3336 3337 #ifdef CONFIG_SLUB_DEBUG 3338 #define MAX_PARTIAL_TO_SCAN 10000 3339 3340 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3341 { 3342 unsigned long flags; 3343 unsigned long x = 0; 3344 struct slab *slab; 3345 3346 spin_lock_irqsave(&n->list_lock, flags); 3347 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3348 list_for_each_entry(slab, &n->partial, slab_list) 3349 x += slab->objects - slab->inuse; 3350 } else { 3351 /* 3352 * For a long list, approximate the total count of objects in 3353 * it to meet the limit on the number of slabs to scan. 3354 * Scan from both the list's head and tail for better accuracy. 3355 */ 3356 unsigned long scanned = 0; 3357 3358 list_for_each_entry(slab, &n->partial, slab_list) { 3359 x += slab->objects - slab->inuse; 3360 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3361 break; 3362 } 3363 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3364 x += slab->objects - slab->inuse; 3365 if (++scanned == MAX_PARTIAL_TO_SCAN) 3366 break; 3367 } 3368 x = mult_frac(x, n->nr_partial, scanned); 3369 x = min(x, node_nr_objs(n)); 3370 } 3371 spin_unlock_irqrestore(&n->list_lock, flags); 3372 return x; 3373 } 3374 3375 static noinline void 3376 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3377 { 3378 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3379 DEFAULT_RATELIMIT_BURST); 3380 int node; 3381 struct kmem_cache_node *n; 3382 3383 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3384 return; 3385 3386 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 3387 nid, gfpflags, &gfpflags); 3388 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3389 s->name, s->object_size, s->size, oo_order(s->oo), 3390 oo_order(s->min)); 3391 3392 if (oo_order(s->min) > get_order(s->object_size)) 3393 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3394 s->name); 3395 3396 for_each_kmem_cache_node(s, node, n) { 3397 unsigned long nr_slabs; 3398 unsigned long nr_objs; 3399 unsigned long nr_free; 3400 3401 nr_free = count_partial_free_approx(n); 3402 nr_slabs = node_nr_slabs(n); 3403 nr_objs = node_nr_objs(n); 3404 3405 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3406 node, nr_slabs, nr_objs, nr_free); 3407 } 3408 } 3409 #else /* CONFIG_SLUB_DEBUG */ 3410 static inline void 3411 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3412 #endif 3413 3414 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3415 { 3416 if (unlikely(slab_test_pfmemalloc(slab))) 3417 return gfp_pfmemalloc_allowed(gfpflags); 3418 3419 return true; 3420 } 3421 3422 #ifndef CONFIG_SLUB_TINY 3423 static inline bool 3424 __update_cpu_freelist_fast(struct kmem_cache *s, 3425 void *freelist_old, void *freelist_new, 3426 unsigned long tid) 3427 { 3428 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3429 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3430 3431 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3432 &old.full, new.full); 3433 } 3434 3435 /* 3436 * Check the slab->freelist and either transfer the freelist to the 3437 * per cpu freelist or deactivate the slab. 3438 * 3439 * The slab is still frozen if the return value is not NULL. 3440 * 3441 * If this function returns NULL then the slab has been unfrozen. 3442 */ 3443 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3444 { 3445 struct slab new; 3446 unsigned long counters; 3447 void *freelist; 3448 3449 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3450 3451 do { 3452 freelist = slab->freelist; 3453 counters = slab->counters; 3454 3455 new.counters = counters; 3456 3457 new.inuse = slab->objects; 3458 new.frozen = freelist != NULL; 3459 3460 } while (!__slab_update_freelist(s, slab, 3461 freelist, counters, 3462 NULL, new.counters, 3463 "get_freelist")); 3464 3465 return freelist; 3466 } 3467 3468 /* 3469 * Freeze the partial slab and return the pointer to the freelist. 3470 */ 3471 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3472 { 3473 struct slab new; 3474 unsigned long counters; 3475 void *freelist; 3476 3477 do { 3478 freelist = slab->freelist; 3479 counters = slab->counters; 3480 3481 new.counters = counters; 3482 VM_BUG_ON(new.frozen); 3483 3484 new.inuse = slab->objects; 3485 new.frozen = 1; 3486 3487 } while (!slab_update_freelist(s, slab, 3488 freelist, counters, 3489 NULL, new.counters, 3490 "freeze_slab")); 3491 3492 return freelist; 3493 } 3494 3495 /* 3496 * Slow path. The lockless freelist is empty or we need to perform 3497 * debugging duties. 3498 * 3499 * Processing is still very fast if new objects have been freed to the 3500 * regular freelist. In that case we simply take over the regular freelist 3501 * as the lockless freelist and zap the regular freelist. 3502 * 3503 * If that is not working then we fall back to the partial lists. We take the 3504 * first element of the freelist as the object to allocate now and move the 3505 * rest of the freelist to the lockless freelist. 3506 * 3507 * And if we were unable to get a new slab from the partial slab lists then 3508 * we need to allocate a new slab. This is the slowest path since it involves 3509 * a call to the page allocator and the setup of a new slab. 3510 * 3511 * Version of __slab_alloc to use when we know that preemption is 3512 * already disabled (which is the case for bulk allocation). 3513 */ 3514 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3515 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3516 { 3517 void *freelist; 3518 struct slab *slab; 3519 unsigned long flags; 3520 struct partial_context pc; 3521 bool try_thisnode = true; 3522 3523 stat(s, ALLOC_SLOWPATH); 3524 3525 reread_slab: 3526 3527 slab = READ_ONCE(c->slab); 3528 if (!slab) { 3529 /* 3530 * if the node is not online or has no normal memory, just 3531 * ignore the node constraint 3532 */ 3533 if (unlikely(node != NUMA_NO_NODE && 3534 !node_isset(node, slab_nodes))) 3535 node = NUMA_NO_NODE; 3536 goto new_slab; 3537 } 3538 3539 if (unlikely(!node_match(slab, node))) { 3540 /* 3541 * same as above but node_match() being false already 3542 * implies node != NUMA_NO_NODE 3543 */ 3544 if (!node_isset(node, slab_nodes)) { 3545 node = NUMA_NO_NODE; 3546 } else { 3547 stat(s, ALLOC_NODE_MISMATCH); 3548 goto deactivate_slab; 3549 } 3550 } 3551 3552 /* 3553 * By rights, we should be searching for a slab page that was 3554 * PFMEMALLOC but right now, we are losing the pfmemalloc 3555 * information when the page leaves the per-cpu allocator 3556 */ 3557 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3558 goto deactivate_slab; 3559 3560 /* must check again c->slab in case we got preempted and it changed */ 3561 local_lock_irqsave(&s->cpu_slab->lock, flags); 3562 if (unlikely(slab != c->slab)) { 3563 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3564 goto reread_slab; 3565 } 3566 freelist = c->freelist; 3567 if (freelist) 3568 goto load_freelist; 3569 3570 freelist = get_freelist(s, slab); 3571 3572 if (!freelist) { 3573 c->slab = NULL; 3574 c->tid = next_tid(c->tid); 3575 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3576 stat(s, DEACTIVATE_BYPASS); 3577 goto new_slab; 3578 } 3579 3580 stat(s, ALLOC_REFILL); 3581 3582 load_freelist: 3583 3584 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3585 3586 /* 3587 * freelist is pointing to the list of objects to be used. 3588 * slab is pointing to the slab from which the objects are obtained. 3589 * That slab must be frozen for per cpu allocations to work. 3590 */ 3591 VM_BUG_ON(!c->slab->frozen); 3592 c->freelist = get_freepointer(s, freelist); 3593 c->tid = next_tid(c->tid); 3594 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3595 return freelist; 3596 3597 deactivate_slab: 3598 3599 local_lock_irqsave(&s->cpu_slab->lock, flags); 3600 if (slab != c->slab) { 3601 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3602 goto reread_slab; 3603 } 3604 freelist = c->freelist; 3605 c->slab = NULL; 3606 c->freelist = NULL; 3607 c->tid = next_tid(c->tid); 3608 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3609 deactivate_slab(s, slab, freelist); 3610 3611 new_slab: 3612 3613 #ifdef CONFIG_SLUB_CPU_PARTIAL 3614 while (slub_percpu_partial(c)) { 3615 local_lock_irqsave(&s->cpu_slab->lock, flags); 3616 if (unlikely(c->slab)) { 3617 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3618 goto reread_slab; 3619 } 3620 if (unlikely(!slub_percpu_partial(c))) { 3621 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3622 /* we were preempted and partial list got empty */ 3623 goto new_objects; 3624 } 3625 3626 slab = slub_percpu_partial(c); 3627 slub_set_percpu_partial(c, slab); 3628 3629 if (likely(node_match(slab, node) && 3630 pfmemalloc_match(slab, gfpflags))) { 3631 c->slab = slab; 3632 freelist = get_freelist(s, slab); 3633 VM_BUG_ON(!freelist); 3634 stat(s, CPU_PARTIAL_ALLOC); 3635 goto load_freelist; 3636 } 3637 3638 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3639 3640 slab->next = NULL; 3641 __put_partials(s, slab); 3642 } 3643 #endif 3644 3645 new_objects: 3646 3647 pc.flags = gfpflags; 3648 /* 3649 * When a preferred node is indicated but no __GFP_THISNODE 3650 * 3651 * 1) try to get a partial slab from target node only by having 3652 * __GFP_THISNODE in pc.flags for get_partial() 3653 * 2) if 1) failed, try to allocate a new slab from target node with 3654 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3655 * 3) if 2) failed, retry with original gfpflags which will allow 3656 * get_partial() try partial lists of other nodes before potentially 3657 * allocating new page from other nodes 3658 */ 3659 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3660 && try_thisnode)) 3661 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3662 3663 pc.orig_size = orig_size; 3664 slab = get_partial(s, node, &pc); 3665 if (slab) { 3666 if (kmem_cache_debug(s)) { 3667 freelist = pc.object; 3668 /* 3669 * For debug caches here we had to go through 3670 * alloc_single_from_partial() so just store the 3671 * tracking info and return the object. 3672 */ 3673 if (s->flags & SLAB_STORE_USER) 3674 set_track(s, freelist, TRACK_ALLOC, addr); 3675 3676 return freelist; 3677 } 3678 3679 freelist = freeze_slab(s, slab); 3680 goto retry_load_slab; 3681 } 3682 3683 slub_put_cpu_ptr(s->cpu_slab); 3684 slab = new_slab(s, pc.flags, node); 3685 c = slub_get_cpu_ptr(s->cpu_slab); 3686 3687 if (unlikely(!slab)) { 3688 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3689 && try_thisnode) { 3690 try_thisnode = false; 3691 goto new_objects; 3692 } 3693 slab_out_of_memory(s, gfpflags, node); 3694 return NULL; 3695 } 3696 3697 stat(s, ALLOC_SLAB); 3698 3699 if (kmem_cache_debug(s)) { 3700 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3701 3702 if (unlikely(!freelist)) 3703 goto new_objects; 3704 3705 if (s->flags & SLAB_STORE_USER) 3706 set_track(s, freelist, TRACK_ALLOC, addr); 3707 3708 return freelist; 3709 } 3710 3711 /* 3712 * No other reference to the slab yet so we can 3713 * muck around with it freely without cmpxchg 3714 */ 3715 freelist = slab->freelist; 3716 slab->freelist = NULL; 3717 slab->inuse = slab->objects; 3718 slab->frozen = 1; 3719 3720 inc_slabs_node(s, slab_nid(slab), slab->objects); 3721 3722 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3723 /* 3724 * For !pfmemalloc_match() case we don't load freelist so that 3725 * we don't make further mismatched allocations easier. 3726 */ 3727 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3728 return freelist; 3729 } 3730 3731 retry_load_slab: 3732 3733 local_lock_irqsave(&s->cpu_slab->lock, flags); 3734 if (unlikely(c->slab)) { 3735 void *flush_freelist = c->freelist; 3736 struct slab *flush_slab = c->slab; 3737 3738 c->slab = NULL; 3739 c->freelist = NULL; 3740 c->tid = next_tid(c->tid); 3741 3742 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3743 3744 deactivate_slab(s, flush_slab, flush_freelist); 3745 3746 stat(s, CPUSLAB_FLUSH); 3747 3748 goto retry_load_slab; 3749 } 3750 c->slab = slab; 3751 3752 goto load_freelist; 3753 } 3754 3755 /* 3756 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3757 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3758 * pointer. 3759 */ 3760 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3761 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3762 { 3763 void *p; 3764 3765 #ifdef CONFIG_PREEMPT_COUNT 3766 /* 3767 * We may have been preempted and rescheduled on a different 3768 * cpu before disabling preemption. Need to reload cpu area 3769 * pointer. 3770 */ 3771 c = slub_get_cpu_ptr(s->cpu_slab); 3772 #endif 3773 3774 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3775 #ifdef CONFIG_PREEMPT_COUNT 3776 slub_put_cpu_ptr(s->cpu_slab); 3777 #endif 3778 return p; 3779 } 3780 3781 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3782 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3783 { 3784 struct kmem_cache_cpu *c; 3785 struct slab *slab; 3786 unsigned long tid; 3787 void *object; 3788 3789 redo: 3790 /* 3791 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3792 * enabled. We may switch back and forth between cpus while 3793 * reading from one cpu area. That does not matter as long 3794 * as we end up on the original cpu again when doing the cmpxchg. 3795 * 3796 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3797 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3798 * the tid. If we are preempted and switched to another cpu between the 3799 * two reads, it's OK as the two are still associated with the same cpu 3800 * and cmpxchg later will validate the cpu. 3801 */ 3802 c = raw_cpu_ptr(s->cpu_slab); 3803 tid = READ_ONCE(c->tid); 3804 3805 /* 3806 * Irqless object alloc/free algorithm used here depends on sequence 3807 * of fetching cpu_slab's data. tid should be fetched before anything 3808 * on c to guarantee that object and slab associated with previous tid 3809 * won't be used with current tid. If we fetch tid first, object and 3810 * slab could be one associated with next tid and our alloc/free 3811 * request will be failed. In this case, we will retry. So, no problem. 3812 */ 3813 barrier(); 3814 3815 /* 3816 * The transaction ids are globally unique per cpu and per operation on 3817 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3818 * occurs on the right processor and that there was no operation on the 3819 * linked list in between. 3820 */ 3821 3822 object = c->freelist; 3823 slab = c->slab; 3824 3825 if (!USE_LOCKLESS_FAST_PATH() || 3826 unlikely(!object || !slab || !node_match(slab, node))) { 3827 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3828 } else { 3829 void *next_object = get_freepointer_safe(s, object); 3830 3831 /* 3832 * The cmpxchg will only match if there was no additional 3833 * operation and if we are on the right processor. 3834 * 3835 * The cmpxchg does the following atomically (without lock 3836 * semantics!) 3837 * 1. Relocate first pointer to the current per cpu area. 3838 * 2. Verify that tid and freelist have not been changed 3839 * 3. If they were not changed replace tid and freelist 3840 * 3841 * Since this is without lock semantics the protection is only 3842 * against code executing on this cpu *not* from access by 3843 * other cpus. 3844 */ 3845 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3846 note_cmpxchg_failure("slab_alloc", s, tid); 3847 goto redo; 3848 } 3849 prefetch_freepointer(s, next_object); 3850 stat(s, ALLOC_FASTPATH); 3851 } 3852 3853 return object; 3854 } 3855 #else /* CONFIG_SLUB_TINY */ 3856 static void *__slab_alloc_node(struct kmem_cache *s, 3857 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3858 { 3859 struct partial_context pc; 3860 struct slab *slab; 3861 void *object; 3862 3863 pc.flags = gfpflags; 3864 pc.orig_size = orig_size; 3865 slab = get_partial(s, node, &pc); 3866 3867 if (slab) 3868 return pc.object; 3869 3870 slab = new_slab(s, gfpflags, node); 3871 if (unlikely(!slab)) { 3872 slab_out_of_memory(s, gfpflags, node); 3873 return NULL; 3874 } 3875 3876 object = alloc_single_from_new_slab(s, slab, orig_size); 3877 3878 return object; 3879 } 3880 #endif /* CONFIG_SLUB_TINY */ 3881 3882 /* 3883 * If the object has been wiped upon free, make sure it's fully initialized by 3884 * zeroing out freelist pointer. 3885 */ 3886 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3887 void *obj) 3888 { 3889 if (unlikely(slab_want_init_on_free(s)) && obj && 3890 !freeptr_outside_object(s)) 3891 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3892 0, sizeof(void *)); 3893 } 3894 3895 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 3896 { 3897 if (__should_failslab(s, gfpflags)) 3898 return -ENOMEM; 3899 return 0; 3900 } 3901 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 3902 3903 static __fastpath_inline 3904 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 3905 { 3906 flags &= gfp_allowed_mask; 3907 3908 might_alloc(flags); 3909 3910 if (unlikely(should_failslab(s, flags))) 3911 return NULL; 3912 3913 return s; 3914 } 3915 3916 static __fastpath_inline 3917 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3918 gfp_t flags, size_t size, void **p, bool init, 3919 unsigned int orig_size) 3920 { 3921 unsigned int zero_size = s->object_size; 3922 struct slabobj_ext *obj_exts; 3923 bool kasan_init = init; 3924 size_t i; 3925 gfp_t init_flags = flags & gfp_allowed_mask; 3926 3927 /* 3928 * For kmalloc object, the allocated memory size(object_size) is likely 3929 * larger than the requested size(orig_size). If redzone check is 3930 * enabled for the extra space, don't zero it, as it will be redzoned 3931 * soon. The redzone operation for this extra space could be seen as a 3932 * replacement of current poisoning under certain debug option, and 3933 * won't break other sanity checks. 3934 */ 3935 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 3936 (s->flags & SLAB_KMALLOC)) 3937 zero_size = orig_size; 3938 3939 /* 3940 * When slab_debug is enabled, avoid memory initialization integrated 3941 * into KASAN and instead zero out the memory via the memset below with 3942 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 3943 * cause false-positive reports. This does not lead to a performance 3944 * penalty on production builds, as slab_debug is not intended to be 3945 * enabled there. 3946 */ 3947 if (__slub_debug_enabled()) 3948 kasan_init = false; 3949 3950 /* 3951 * As memory initialization might be integrated into KASAN, 3952 * kasan_slab_alloc and initialization memset must be 3953 * kept together to avoid discrepancies in behavior. 3954 * 3955 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 3956 */ 3957 for (i = 0; i < size; i++) { 3958 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 3959 if (p[i] && init && (!kasan_init || 3960 !kasan_has_integrated_init())) 3961 memset(p[i], 0, zero_size); 3962 kmemleak_alloc_recursive(p[i], s->object_size, 1, 3963 s->flags, init_flags); 3964 kmsan_slab_alloc(s, p[i], init_flags); 3965 if (need_slab_obj_ext()) { 3966 obj_exts = prepare_slab_obj_exts_hook(s, flags, p[i]); 3967 #ifdef CONFIG_MEM_ALLOC_PROFILING 3968 /* 3969 * Currently obj_exts is used only for allocation profiling. 3970 * If other users appear then mem_alloc_profiling_enabled() 3971 * check should be added before alloc_tag_add(). 3972 */ 3973 if (likely(obj_exts)) 3974 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 3975 #endif 3976 } 3977 } 3978 3979 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 3980 } 3981 3982 /* 3983 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3984 * have the fastpath folded into their functions. So no function call 3985 * overhead for requests that can be satisfied on the fastpath. 3986 * 3987 * The fastpath works by first checking if the lockless freelist can be used. 3988 * If not then __slab_alloc is called for slow processing. 3989 * 3990 * Otherwise we can simply pick the next object from the lockless free list. 3991 */ 3992 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3993 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3994 { 3995 void *object; 3996 bool init = false; 3997 3998 s = slab_pre_alloc_hook(s, gfpflags); 3999 if (unlikely(!s)) 4000 return NULL; 4001 4002 object = kfence_alloc(s, orig_size, gfpflags); 4003 if (unlikely(object)) 4004 goto out; 4005 4006 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4007 4008 maybe_wipe_obj_freeptr(s, object); 4009 init = slab_want_init_on_alloc(gfpflags, s); 4010 4011 out: 4012 /* 4013 * When init equals 'true', like for kzalloc() family, only 4014 * @orig_size bytes might be zeroed instead of s->object_size 4015 * In case this fails due to memcg_slab_post_alloc_hook(), 4016 * object is set to NULL 4017 */ 4018 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4019 4020 return object; 4021 } 4022 4023 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4024 { 4025 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4026 s->object_size); 4027 4028 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4029 4030 return ret; 4031 } 4032 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4033 4034 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4035 gfp_t gfpflags) 4036 { 4037 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4038 s->object_size); 4039 4040 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4041 4042 return ret; 4043 } 4044 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4045 4046 /** 4047 * kmem_cache_alloc_node - Allocate an object on the specified node 4048 * @s: The cache to allocate from. 4049 * @gfpflags: See kmalloc(). 4050 * @node: node number of the target node. 4051 * 4052 * Identical to kmem_cache_alloc but it will allocate memory on the given 4053 * node, which can improve the performance for cpu bound structures. 4054 * 4055 * Fallback to other node is possible if __GFP_THISNODE is not set. 4056 * 4057 * Return: pointer to the new object or %NULL in case of error 4058 */ 4059 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4060 { 4061 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4062 4063 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4064 4065 return ret; 4066 } 4067 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4068 4069 /* 4070 * To avoid unnecessary overhead, we pass through large allocation requests 4071 * directly to the page allocator. We use __GFP_COMP, because we will need to 4072 * know the allocation order to free the pages properly in kfree. 4073 */ 4074 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4075 { 4076 struct folio *folio; 4077 void *ptr = NULL; 4078 unsigned int order = get_order(size); 4079 4080 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4081 flags = kmalloc_fix_flags(flags); 4082 4083 flags |= __GFP_COMP; 4084 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4085 if (folio) { 4086 ptr = folio_address(folio); 4087 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4088 PAGE_SIZE << order); 4089 } 4090 4091 ptr = kasan_kmalloc_large(ptr, size, flags); 4092 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4093 kmemleak_alloc(ptr, size, 1, flags); 4094 kmsan_kmalloc_large(ptr, size, flags); 4095 4096 return ptr; 4097 } 4098 4099 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4100 { 4101 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4102 4103 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4104 flags, NUMA_NO_NODE); 4105 return ret; 4106 } 4107 EXPORT_SYMBOL(__kmalloc_large_noprof); 4108 4109 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4110 { 4111 void *ret = ___kmalloc_large_node(size, flags, node); 4112 4113 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4114 flags, node); 4115 return ret; 4116 } 4117 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4118 4119 static __always_inline 4120 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4121 unsigned long caller) 4122 { 4123 struct kmem_cache *s; 4124 void *ret; 4125 4126 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4127 ret = __kmalloc_large_node_noprof(size, flags, node); 4128 trace_kmalloc(caller, ret, size, 4129 PAGE_SIZE << get_order(size), flags, node); 4130 return ret; 4131 } 4132 4133 if (unlikely(!size)) 4134 return ZERO_SIZE_PTR; 4135 4136 s = kmalloc_slab(size, b, flags, caller); 4137 4138 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4139 ret = kasan_kmalloc(s, ret, size, flags); 4140 trace_kmalloc(caller, ret, size, s->size, flags, node); 4141 return ret; 4142 } 4143 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4144 { 4145 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4146 } 4147 EXPORT_SYMBOL(__kmalloc_node_noprof); 4148 4149 void *__kmalloc_noprof(size_t size, gfp_t flags) 4150 { 4151 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4152 } 4153 EXPORT_SYMBOL(__kmalloc_noprof); 4154 4155 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4156 int node, unsigned long caller) 4157 { 4158 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4159 4160 } 4161 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4162 4163 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4164 { 4165 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4166 _RET_IP_, size); 4167 4168 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4169 4170 ret = kasan_kmalloc(s, ret, size, gfpflags); 4171 return ret; 4172 } 4173 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4174 4175 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4176 int node, size_t size) 4177 { 4178 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4179 4180 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4181 4182 ret = kasan_kmalloc(s, ret, size, gfpflags); 4183 return ret; 4184 } 4185 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4186 4187 static noinline void free_to_partial_list( 4188 struct kmem_cache *s, struct slab *slab, 4189 void *head, void *tail, int bulk_cnt, 4190 unsigned long addr) 4191 { 4192 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4193 struct slab *slab_free = NULL; 4194 int cnt = bulk_cnt; 4195 unsigned long flags; 4196 depot_stack_handle_t handle = 0; 4197 4198 if (s->flags & SLAB_STORE_USER) 4199 handle = set_track_prepare(); 4200 4201 spin_lock_irqsave(&n->list_lock, flags); 4202 4203 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4204 void *prior = slab->freelist; 4205 4206 /* Perform the actual freeing while we still hold the locks */ 4207 slab->inuse -= cnt; 4208 set_freepointer(s, tail, prior); 4209 slab->freelist = head; 4210 4211 /* 4212 * If the slab is empty, and node's partial list is full, 4213 * it should be discarded anyway no matter it's on full or 4214 * partial list. 4215 */ 4216 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4217 slab_free = slab; 4218 4219 if (!prior) { 4220 /* was on full list */ 4221 remove_full(s, n, slab); 4222 if (!slab_free) { 4223 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4224 stat(s, FREE_ADD_PARTIAL); 4225 } 4226 } else if (slab_free) { 4227 remove_partial(n, slab); 4228 stat(s, FREE_REMOVE_PARTIAL); 4229 } 4230 } 4231 4232 if (slab_free) { 4233 /* 4234 * Update the counters while still holding n->list_lock to 4235 * prevent spurious validation warnings 4236 */ 4237 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4238 } 4239 4240 spin_unlock_irqrestore(&n->list_lock, flags); 4241 4242 if (slab_free) { 4243 stat(s, FREE_SLAB); 4244 free_slab(s, slab_free); 4245 } 4246 } 4247 4248 /* 4249 * Slow path handling. This may still be called frequently since objects 4250 * have a longer lifetime than the cpu slabs in most processing loads. 4251 * 4252 * So we still attempt to reduce cache line usage. Just take the slab 4253 * lock and free the item. If there is no additional partial slab 4254 * handling required then we can return immediately. 4255 */ 4256 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4257 void *head, void *tail, int cnt, 4258 unsigned long addr) 4259 4260 { 4261 void *prior; 4262 int was_frozen; 4263 struct slab new; 4264 unsigned long counters; 4265 struct kmem_cache_node *n = NULL; 4266 unsigned long flags; 4267 bool on_node_partial; 4268 4269 stat(s, FREE_SLOWPATH); 4270 4271 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4272 free_to_partial_list(s, slab, head, tail, cnt, addr); 4273 return; 4274 } 4275 4276 do { 4277 if (unlikely(n)) { 4278 spin_unlock_irqrestore(&n->list_lock, flags); 4279 n = NULL; 4280 } 4281 prior = slab->freelist; 4282 counters = slab->counters; 4283 set_freepointer(s, tail, prior); 4284 new.counters = counters; 4285 was_frozen = new.frozen; 4286 new.inuse -= cnt; 4287 if ((!new.inuse || !prior) && !was_frozen) { 4288 /* Needs to be taken off a list */ 4289 if (!kmem_cache_has_cpu_partial(s) || prior) { 4290 4291 n = get_node(s, slab_nid(slab)); 4292 /* 4293 * Speculatively acquire the list_lock. 4294 * If the cmpxchg does not succeed then we may 4295 * drop the list_lock without any processing. 4296 * 4297 * Otherwise the list_lock will synchronize with 4298 * other processors updating the list of slabs. 4299 */ 4300 spin_lock_irqsave(&n->list_lock, flags); 4301 4302 on_node_partial = slab_test_node_partial(slab); 4303 } 4304 } 4305 4306 } while (!slab_update_freelist(s, slab, 4307 prior, counters, 4308 head, new.counters, 4309 "__slab_free")); 4310 4311 if (likely(!n)) { 4312 4313 if (likely(was_frozen)) { 4314 /* 4315 * The list lock was not taken therefore no list 4316 * activity can be necessary. 4317 */ 4318 stat(s, FREE_FROZEN); 4319 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4320 /* 4321 * If we started with a full slab then put it onto the 4322 * per cpu partial list. 4323 */ 4324 put_cpu_partial(s, slab, 1); 4325 stat(s, CPU_PARTIAL_FREE); 4326 } 4327 4328 return; 4329 } 4330 4331 /* 4332 * This slab was partially empty but not on the per-node partial list, 4333 * in which case we shouldn't manipulate its list, just return. 4334 */ 4335 if (prior && !on_node_partial) { 4336 spin_unlock_irqrestore(&n->list_lock, flags); 4337 return; 4338 } 4339 4340 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4341 goto slab_empty; 4342 4343 /* 4344 * Objects left in the slab. If it was not on the partial list before 4345 * then add it. 4346 */ 4347 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4348 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4349 stat(s, FREE_ADD_PARTIAL); 4350 } 4351 spin_unlock_irqrestore(&n->list_lock, flags); 4352 return; 4353 4354 slab_empty: 4355 if (prior) { 4356 /* 4357 * Slab on the partial list. 4358 */ 4359 remove_partial(n, slab); 4360 stat(s, FREE_REMOVE_PARTIAL); 4361 } 4362 4363 spin_unlock_irqrestore(&n->list_lock, flags); 4364 stat(s, FREE_SLAB); 4365 discard_slab(s, slab); 4366 } 4367 4368 #ifndef CONFIG_SLUB_TINY 4369 /* 4370 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4371 * can perform fastpath freeing without additional function calls. 4372 * 4373 * The fastpath is only possible if we are freeing to the current cpu slab 4374 * of this processor. This typically the case if we have just allocated 4375 * the item before. 4376 * 4377 * If fastpath is not possible then fall back to __slab_free where we deal 4378 * with all sorts of special processing. 4379 * 4380 * Bulk free of a freelist with several objects (all pointing to the 4381 * same slab) possible by specifying head and tail ptr, plus objects 4382 * count (cnt). Bulk free indicated by tail pointer being set. 4383 */ 4384 static __always_inline void do_slab_free(struct kmem_cache *s, 4385 struct slab *slab, void *head, void *tail, 4386 int cnt, unsigned long addr) 4387 { 4388 struct kmem_cache_cpu *c; 4389 unsigned long tid; 4390 void **freelist; 4391 4392 redo: 4393 /* 4394 * Determine the currently cpus per cpu slab. 4395 * The cpu may change afterward. However that does not matter since 4396 * data is retrieved via this pointer. If we are on the same cpu 4397 * during the cmpxchg then the free will succeed. 4398 */ 4399 c = raw_cpu_ptr(s->cpu_slab); 4400 tid = READ_ONCE(c->tid); 4401 4402 /* Same with comment on barrier() in __slab_alloc_node() */ 4403 barrier(); 4404 4405 if (unlikely(slab != c->slab)) { 4406 __slab_free(s, slab, head, tail, cnt, addr); 4407 return; 4408 } 4409 4410 if (USE_LOCKLESS_FAST_PATH()) { 4411 freelist = READ_ONCE(c->freelist); 4412 4413 set_freepointer(s, tail, freelist); 4414 4415 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4416 note_cmpxchg_failure("slab_free", s, tid); 4417 goto redo; 4418 } 4419 } else { 4420 /* Update the free list under the local lock */ 4421 local_lock(&s->cpu_slab->lock); 4422 c = this_cpu_ptr(s->cpu_slab); 4423 if (unlikely(slab != c->slab)) { 4424 local_unlock(&s->cpu_slab->lock); 4425 goto redo; 4426 } 4427 tid = c->tid; 4428 freelist = c->freelist; 4429 4430 set_freepointer(s, tail, freelist); 4431 c->freelist = head; 4432 c->tid = next_tid(tid); 4433 4434 local_unlock(&s->cpu_slab->lock); 4435 } 4436 stat_add(s, FREE_FASTPATH, cnt); 4437 } 4438 #else /* CONFIG_SLUB_TINY */ 4439 static void do_slab_free(struct kmem_cache *s, 4440 struct slab *slab, void *head, void *tail, 4441 int cnt, unsigned long addr) 4442 { 4443 __slab_free(s, slab, head, tail, cnt, addr); 4444 } 4445 #endif /* CONFIG_SLUB_TINY */ 4446 4447 static __fastpath_inline 4448 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4449 unsigned long addr) 4450 { 4451 memcg_slab_free_hook(s, slab, &object, 1); 4452 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4453 4454 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4455 do_slab_free(s, slab, object, object, 1, addr); 4456 } 4457 4458 #ifdef CONFIG_MEMCG_KMEM 4459 /* Do not inline the rare memcg charging failed path into the allocation path */ 4460 static noinline 4461 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4462 { 4463 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4464 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4465 } 4466 #endif 4467 4468 static __fastpath_inline 4469 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4470 void *tail, void **p, int cnt, unsigned long addr) 4471 { 4472 memcg_slab_free_hook(s, slab, p, cnt); 4473 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4474 /* 4475 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4476 * to remove objects, whose reuse must be delayed. 4477 */ 4478 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4479 do_slab_free(s, slab, head, tail, cnt, addr); 4480 } 4481 4482 #ifdef CONFIG_KASAN_GENERIC 4483 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4484 { 4485 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4486 } 4487 #endif 4488 4489 static inline struct kmem_cache *virt_to_cache(const void *obj) 4490 { 4491 struct slab *slab; 4492 4493 slab = virt_to_slab(obj); 4494 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4495 return NULL; 4496 return slab->slab_cache; 4497 } 4498 4499 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4500 { 4501 struct kmem_cache *cachep; 4502 4503 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4504 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4505 return s; 4506 4507 cachep = virt_to_cache(x); 4508 if (WARN(cachep && cachep != s, 4509 "%s: Wrong slab cache. %s but object is from %s\n", 4510 __func__, s->name, cachep->name)) 4511 print_tracking(cachep, x); 4512 return cachep; 4513 } 4514 4515 /** 4516 * kmem_cache_free - Deallocate an object 4517 * @s: The cache the allocation was from. 4518 * @x: The previously allocated object. 4519 * 4520 * Free an object which was previously allocated from this 4521 * cache. 4522 */ 4523 void kmem_cache_free(struct kmem_cache *s, void *x) 4524 { 4525 s = cache_from_obj(s, x); 4526 if (!s) 4527 return; 4528 trace_kmem_cache_free(_RET_IP_, x, s); 4529 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4530 } 4531 EXPORT_SYMBOL(kmem_cache_free); 4532 4533 static void free_large_kmalloc(struct folio *folio, void *object) 4534 { 4535 unsigned int order = folio_order(folio); 4536 4537 if (WARN_ON_ONCE(order == 0)) 4538 pr_warn_once("object pointer: 0x%p\n", object); 4539 4540 kmemleak_free(object); 4541 kasan_kfree_large(object); 4542 kmsan_kfree_large(object); 4543 4544 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4545 -(PAGE_SIZE << order)); 4546 folio_put(folio); 4547 } 4548 4549 /** 4550 * kfree - free previously allocated memory 4551 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4552 * 4553 * If @object is NULL, no operation is performed. 4554 */ 4555 void kfree(const void *object) 4556 { 4557 struct folio *folio; 4558 struct slab *slab; 4559 struct kmem_cache *s; 4560 void *x = (void *)object; 4561 4562 trace_kfree(_RET_IP_, object); 4563 4564 if (unlikely(ZERO_OR_NULL_PTR(object))) 4565 return; 4566 4567 folio = virt_to_folio(object); 4568 if (unlikely(!folio_test_slab(folio))) { 4569 free_large_kmalloc(folio, (void *)object); 4570 return; 4571 } 4572 4573 slab = folio_slab(folio); 4574 s = slab->slab_cache; 4575 slab_free(s, slab, x, _RET_IP_); 4576 } 4577 EXPORT_SYMBOL(kfree); 4578 4579 struct detached_freelist { 4580 struct slab *slab; 4581 void *tail; 4582 void *freelist; 4583 int cnt; 4584 struct kmem_cache *s; 4585 }; 4586 4587 /* 4588 * This function progressively scans the array with free objects (with 4589 * a limited look ahead) and extract objects belonging to the same 4590 * slab. It builds a detached freelist directly within the given 4591 * slab/objects. This can happen without any need for 4592 * synchronization, because the objects are owned by running process. 4593 * The freelist is build up as a single linked list in the objects. 4594 * The idea is, that this detached freelist can then be bulk 4595 * transferred to the real freelist(s), but only requiring a single 4596 * synchronization primitive. Look ahead in the array is limited due 4597 * to performance reasons. 4598 */ 4599 static inline 4600 int build_detached_freelist(struct kmem_cache *s, size_t size, 4601 void **p, struct detached_freelist *df) 4602 { 4603 int lookahead = 3; 4604 void *object; 4605 struct folio *folio; 4606 size_t same; 4607 4608 object = p[--size]; 4609 folio = virt_to_folio(object); 4610 if (!s) { 4611 /* Handle kalloc'ed objects */ 4612 if (unlikely(!folio_test_slab(folio))) { 4613 free_large_kmalloc(folio, object); 4614 df->slab = NULL; 4615 return size; 4616 } 4617 /* Derive kmem_cache from object */ 4618 df->slab = folio_slab(folio); 4619 df->s = df->slab->slab_cache; 4620 } else { 4621 df->slab = folio_slab(folio); 4622 df->s = cache_from_obj(s, object); /* Support for memcg */ 4623 } 4624 4625 /* Start new detached freelist */ 4626 df->tail = object; 4627 df->freelist = object; 4628 df->cnt = 1; 4629 4630 if (is_kfence_address(object)) 4631 return size; 4632 4633 set_freepointer(df->s, object, NULL); 4634 4635 same = size; 4636 while (size) { 4637 object = p[--size]; 4638 /* df->slab is always set at this point */ 4639 if (df->slab == virt_to_slab(object)) { 4640 /* Opportunity build freelist */ 4641 set_freepointer(df->s, object, df->freelist); 4642 df->freelist = object; 4643 df->cnt++; 4644 same--; 4645 if (size != same) 4646 swap(p[size], p[same]); 4647 continue; 4648 } 4649 4650 /* Limit look ahead search */ 4651 if (!--lookahead) 4652 break; 4653 } 4654 4655 return same; 4656 } 4657 4658 /* 4659 * Internal bulk free of objects that were not initialised by the post alloc 4660 * hooks and thus should not be processed by the free hooks 4661 */ 4662 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4663 { 4664 if (!size) 4665 return; 4666 4667 do { 4668 struct detached_freelist df; 4669 4670 size = build_detached_freelist(s, size, p, &df); 4671 if (!df.slab) 4672 continue; 4673 4674 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4675 _RET_IP_); 4676 } while (likely(size)); 4677 } 4678 4679 /* Note that interrupts must be enabled when calling this function. */ 4680 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4681 { 4682 if (!size) 4683 return; 4684 4685 do { 4686 struct detached_freelist df; 4687 4688 size = build_detached_freelist(s, size, p, &df); 4689 if (!df.slab) 4690 continue; 4691 4692 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4693 df.cnt, _RET_IP_); 4694 } while (likely(size)); 4695 } 4696 EXPORT_SYMBOL(kmem_cache_free_bulk); 4697 4698 #ifndef CONFIG_SLUB_TINY 4699 static inline 4700 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4701 void **p) 4702 { 4703 struct kmem_cache_cpu *c; 4704 unsigned long irqflags; 4705 int i; 4706 4707 /* 4708 * Drain objects in the per cpu slab, while disabling local 4709 * IRQs, which protects against PREEMPT and interrupts 4710 * handlers invoking normal fastpath. 4711 */ 4712 c = slub_get_cpu_ptr(s->cpu_slab); 4713 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4714 4715 for (i = 0; i < size; i++) { 4716 void *object = kfence_alloc(s, s->object_size, flags); 4717 4718 if (unlikely(object)) { 4719 p[i] = object; 4720 continue; 4721 } 4722 4723 object = c->freelist; 4724 if (unlikely(!object)) { 4725 /* 4726 * We may have removed an object from c->freelist using 4727 * the fastpath in the previous iteration; in that case, 4728 * c->tid has not been bumped yet. 4729 * Since ___slab_alloc() may reenable interrupts while 4730 * allocating memory, we should bump c->tid now. 4731 */ 4732 c->tid = next_tid(c->tid); 4733 4734 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4735 4736 /* 4737 * Invoking slow path likely have side-effect 4738 * of re-populating per CPU c->freelist 4739 */ 4740 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 4741 _RET_IP_, c, s->object_size); 4742 if (unlikely(!p[i])) 4743 goto error; 4744 4745 c = this_cpu_ptr(s->cpu_slab); 4746 maybe_wipe_obj_freeptr(s, p[i]); 4747 4748 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4749 4750 continue; /* goto for-loop */ 4751 } 4752 c->freelist = get_freepointer(s, object); 4753 p[i] = object; 4754 maybe_wipe_obj_freeptr(s, p[i]); 4755 stat(s, ALLOC_FASTPATH); 4756 } 4757 c->tid = next_tid(c->tid); 4758 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4759 slub_put_cpu_ptr(s->cpu_slab); 4760 4761 return i; 4762 4763 error: 4764 slub_put_cpu_ptr(s->cpu_slab); 4765 __kmem_cache_free_bulk(s, i, p); 4766 return 0; 4767 4768 } 4769 #else /* CONFIG_SLUB_TINY */ 4770 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4771 size_t size, void **p) 4772 { 4773 int i; 4774 4775 for (i = 0; i < size; i++) { 4776 void *object = kfence_alloc(s, s->object_size, flags); 4777 4778 if (unlikely(object)) { 4779 p[i] = object; 4780 continue; 4781 } 4782 4783 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4784 _RET_IP_, s->object_size); 4785 if (unlikely(!p[i])) 4786 goto error; 4787 4788 maybe_wipe_obj_freeptr(s, p[i]); 4789 } 4790 4791 return i; 4792 4793 error: 4794 __kmem_cache_free_bulk(s, i, p); 4795 return 0; 4796 } 4797 #endif /* CONFIG_SLUB_TINY */ 4798 4799 /* Note that interrupts must be enabled when calling this function. */ 4800 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 4801 void **p) 4802 { 4803 int i; 4804 4805 if (!size) 4806 return 0; 4807 4808 s = slab_pre_alloc_hook(s, flags); 4809 if (unlikely(!s)) 4810 return 0; 4811 4812 i = __kmem_cache_alloc_bulk(s, flags, size, p); 4813 if (unlikely(i == 0)) 4814 return 0; 4815 4816 /* 4817 * memcg and kmem_cache debug support and memory initialization. 4818 * Done outside of the IRQ disabled fastpath loop. 4819 */ 4820 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 4821 slab_want_init_on_alloc(flags, s), s->object_size))) { 4822 return 0; 4823 } 4824 return i; 4825 } 4826 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 4827 4828 4829 /* 4830 * Object placement in a slab is made very easy because we always start at 4831 * offset 0. If we tune the size of the object to the alignment then we can 4832 * get the required alignment by putting one properly sized object after 4833 * another. 4834 * 4835 * Notice that the allocation order determines the sizes of the per cpu 4836 * caches. Each processor has always one slab available for allocations. 4837 * Increasing the allocation order reduces the number of times that slabs 4838 * must be moved on and off the partial lists and is therefore a factor in 4839 * locking overhead. 4840 */ 4841 4842 /* 4843 * Minimum / Maximum order of slab pages. This influences locking overhead 4844 * and slab fragmentation. A higher order reduces the number of partial slabs 4845 * and increases the number of allocations possible without having to 4846 * take the list_lock. 4847 */ 4848 static unsigned int slub_min_order; 4849 static unsigned int slub_max_order = 4850 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4851 static unsigned int slub_min_objects; 4852 4853 /* 4854 * Calculate the order of allocation given an slab object size. 4855 * 4856 * The order of allocation has significant impact on performance and other 4857 * system components. Generally order 0 allocations should be preferred since 4858 * order 0 does not cause fragmentation in the page allocator. Larger objects 4859 * be problematic to put into order 0 slabs because there may be too much 4860 * unused space left. We go to a higher order if more than 1/16th of the slab 4861 * would be wasted. 4862 * 4863 * In order to reach satisfactory performance we must ensure that a minimum 4864 * number of objects is in one slab. Otherwise we may generate too much 4865 * activity on the partial lists which requires taking the list_lock. This is 4866 * less a concern for large slabs though which are rarely used. 4867 * 4868 * slab_max_order specifies the order where we begin to stop considering the 4869 * number of objects in a slab as critical. If we reach slab_max_order then 4870 * we try to keep the page order as low as possible. So we accept more waste 4871 * of space in favor of a small page order. 4872 * 4873 * Higher order allocations also allow the placement of more objects in a 4874 * slab and thereby reduce object handling overhead. If the user has 4875 * requested a higher minimum order then we start with that one instead of 4876 * the smallest order which will fit the object. 4877 */ 4878 static inline unsigned int calc_slab_order(unsigned int size, 4879 unsigned int min_order, unsigned int max_order, 4880 unsigned int fract_leftover) 4881 { 4882 unsigned int order; 4883 4884 for (order = min_order; order <= max_order; order++) { 4885 4886 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4887 unsigned int rem; 4888 4889 rem = slab_size % size; 4890 4891 if (rem <= slab_size / fract_leftover) 4892 break; 4893 } 4894 4895 return order; 4896 } 4897 4898 static inline int calculate_order(unsigned int size) 4899 { 4900 unsigned int order; 4901 unsigned int min_objects; 4902 unsigned int max_objects; 4903 unsigned int min_order; 4904 4905 min_objects = slub_min_objects; 4906 if (!min_objects) { 4907 /* 4908 * Some architectures will only update present cpus when 4909 * onlining them, so don't trust the number if it's just 1. But 4910 * we also don't want to use nr_cpu_ids always, as on some other 4911 * architectures, there can be many possible cpus, but never 4912 * onlined. Here we compromise between trying to avoid too high 4913 * order on systems that appear larger than they are, and too 4914 * low order on systems that appear smaller than they are. 4915 */ 4916 unsigned int nr_cpus = num_present_cpus(); 4917 if (nr_cpus <= 1) 4918 nr_cpus = nr_cpu_ids; 4919 min_objects = 4 * (fls(nr_cpus) + 1); 4920 } 4921 /* min_objects can't be 0 because get_order(0) is undefined */ 4922 max_objects = max(order_objects(slub_max_order, size), 1U); 4923 min_objects = min(min_objects, max_objects); 4924 4925 min_order = max_t(unsigned int, slub_min_order, 4926 get_order(min_objects * size)); 4927 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4928 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4929 4930 /* 4931 * Attempt to find best configuration for a slab. This works by first 4932 * attempting to generate a layout with the best possible configuration 4933 * and backing off gradually. 4934 * 4935 * We start with accepting at most 1/16 waste and try to find the 4936 * smallest order from min_objects-derived/slab_min_order up to 4937 * slab_max_order that will satisfy the constraint. Note that increasing 4938 * the order can only result in same or less fractional waste, not more. 4939 * 4940 * If that fails, we increase the acceptable fraction of waste and try 4941 * again. The last iteration with fraction of 1/2 would effectively 4942 * accept any waste and give us the order determined by min_objects, as 4943 * long as at least single object fits within slab_max_order. 4944 */ 4945 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 4946 order = calc_slab_order(size, min_order, slub_max_order, 4947 fraction); 4948 if (order <= slub_max_order) 4949 return order; 4950 } 4951 4952 /* 4953 * Doh this slab cannot be placed using slab_max_order. 4954 */ 4955 order = get_order(size); 4956 if (order <= MAX_PAGE_ORDER) 4957 return order; 4958 return -ENOSYS; 4959 } 4960 4961 static void 4962 init_kmem_cache_node(struct kmem_cache_node *n) 4963 { 4964 n->nr_partial = 0; 4965 spin_lock_init(&n->list_lock); 4966 INIT_LIST_HEAD(&n->partial); 4967 #ifdef CONFIG_SLUB_DEBUG 4968 atomic_long_set(&n->nr_slabs, 0); 4969 atomic_long_set(&n->total_objects, 0); 4970 INIT_LIST_HEAD(&n->full); 4971 #endif 4972 } 4973 4974 #ifndef CONFIG_SLUB_TINY 4975 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4976 { 4977 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4978 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4979 sizeof(struct kmem_cache_cpu)); 4980 4981 /* 4982 * Must align to double word boundary for the double cmpxchg 4983 * instructions to work; see __pcpu_double_call_return_bool(). 4984 */ 4985 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4986 2 * sizeof(void *)); 4987 4988 if (!s->cpu_slab) 4989 return 0; 4990 4991 init_kmem_cache_cpus(s); 4992 4993 return 1; 4994 } 4995 #else 4996 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4997 { 4998 return 1; 4999 } 5000 #endif /* CONFIG_SLUB_TINY */ 5001 5002 static struct kmem_cache *kmem_cache_node; 5003 5004 /* 5005 * No kmalloc_node yet so do it by hand. We know that this is the first 5006 * slab on the node for this slabcache. There are no concurrent accesses 5007 * possible. 5008 * 5009 * Note that this function only works on the kmem_cache_node 5010 * when allocating for the kmem_cache_node. This is used for bootstrapping 5011 * memory on a fresh node that has no slab structures yet. 5012 */ 5013 static void early_kmem_cache_node_alloc(int node) 5014 { 5015 struct slab *slab; 5016 struct kmem_cache_node *n; 5017 5018 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5019 5020 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5021 5022 BUG_ON(!slab); 5023 if (slab_nid(slab) != node) { 5024 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5025 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5026 } 5027 5028 n = slab->freelist; 5029 BUG_ON(!n); 5030 #ifdef CONFIG_SLUB_DEBUG 5031 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5032 #endif 5033 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5034 slab->freelist = get_freepointer(kmem_cache_node, n); 5035 slab->inuse = 1; 5036 kmem_cache_node->node[node] = n; 5037 init_kmem_cache_node(n); 5038 inc_slabs_node(kmem_cache_node, node, slab->objects); 5039 5040 /* 5041 * No locks need to be taken here as it has just been 5042 * initialized and there is no concurrent access. 5043 */ 5044 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5045 } 5046 5047 static void free_kmem_cache_nodes(struct kmem_cache *s) 5048 { 5049 int node; 5050 struct kmem_cache_node *n; 5051 5052 for_each_kmem_cache_node(s, node, n) { 5053 s->node[node] = NULL; 5054 kmem_cache_free(kmem_cache_node, n); 5055 } 5056 } 5057 5058 void __kmem_cache_release(struct kmem_cache *s) 5059 { 5060 cache_random_seq_destroy(s); 5061 #ifndef CONFIG_SLUB_TINY 5062 free_percpu(s->cpu_slab); 5063 #endif 5064 free_kmem_cache_nodes(s); 5065 } 5066 5067 static int init_kmem_cache_nodes(struct kmem_cache *s) 5068 { 5069 int node; 5070 5071 for_each_node_mask(node, slab_nodes) { 5072 struct kmem_cache_node *n; 5073 5074 if (slab_state == DOWN) { 5075 early_kmem_cache_node_alloc(node); 5076 continue; 5077 } 5078 n = kmem_cache_alloc_node(kmem_cache_node, 5079 GFP_KERNEL, node); 5080 5081 if (!n) { 5082 free_kmem_cache_nodes(s); 5083 return 0; 5084 } 5085 5086 init_kmem_cache_node(n); 5087 s->node[node] = n; 5088 } 5089 return 1; 5090 } 5091 5092 static void set_cpu_partial(struct kmem_cache *s) 5093 { 5094 #ifdef CONFIG_SLUB_CPU_PARTIAL 5095 unsigned int nr_objects; 5096 5097 /* 5098 * cpu_partial determined the maximum number of objects kept in the 5099 * per cpu partial lists of a processor. 5100 * 5101 * Per cpu partial lists mainly contain slabs that just have one 5102 * object freed. If they are used for allocation then they can be 5103 * filled up again with minimal effort. The slab will never hit the 5104 * per node partial lists and therefore no locking will be required. 5105 * 5106 * For backwards compatibility reasons, this is determined as number 5107 * of objects, even though we now limit maximum number of pages, see 5108 * slub_set_cpu_partial() 5109 */ 5110 if (!kmem_cache_has_cpu_partial(s)) 5111 nr_objects = 0; 5112 else if (s->size >= PAGE_SIZE) 5113 nr_objects = 6; 5114 else if (s->size >= 1024) 5115 nr_objects = 24; 5116 else if (s->size >= 256) 5117 nr_objects = 52; 5118 else 5119 nr_objects = 120; 5120 5121 slub_set_cpu_partial(s, nr_objects); 5122 #endif 5123 } 5124 5125 /* 5126 * calculate_sizes() determines the order and the distribution of data within 5127 * a slab object. 5128 */ 5129 static int calculate_sizes(struct kmem_cache *s) 5130 { 5131 slab_flags_t flags = s->flags; 5132 unsigned int size = s->object_size; 5133 unsigned int order; 5134 5135 /* 5136 * Round up object size to the next word boundary. We can only 5137 * place the free pointer at word boundaries and this determines 5138 * the possible location of the free pointer. 5139 */ 5140 size = ALIGN(size, sizeof(void *)); 5141 5142 #ifdef CONFIG_SLUB_DEBUG 5143 /* 5144 * Determine if we can poison the object itself. If the user of 5145 * the slab may touch the object after free or before allocation 5146 * then we should never poison the object itself. 5147 */ 5148 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5149 !s->ctor) 5150 s->flags |= __OBJECT_POISON; 5151 else 5152 s->flags &= ~__OBJECT_POISON; 5153 5154 5155 /* 5156 * If we are Redzoning then check if there is some space between the 5157 * end of the object and the free pointer. If not then add an 5158 * additional word to have some bytes to store Redzone information. 5159 */ 5160 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5161 size += sizeof(void *); 5162 #endif 5163 5164 /* 5165 * With that we have determined the number of bytes in actual use 5166 * by the object and redzoning. 5167 */ 5168 s->inuse = size; 5169 5170 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor || 5171 ((flags & SLAB_RED_ZONE) && 5172 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5173 /* 5174 * Relocate free pointer after the object if it is not 5175 * permitted to overwrite the first word of the object on 5176 * kmem_cache_free. 5177 * 5178 * This is the case if we do RCU, have a constructor or 5179 * destructor, are poisoning the objects, or are 5180 * redzoning an object smaller than sizeof(void *) or are 5181 * redzoning an object with slub_debug_orig_size() enabled, 5182 * in which case the right redzone may be extended. 5183 * 5184 * The assumption that s->offset >= s->inuse means free 5185 * pointer is outside of the object is used in the 5186 * freeptr_outside_object() function. If that is no 5187 * longer true, the function needs to be modified. 5188 */ 5189 s->offset = size; 5190 size += sizeof(void *); 5191 } else { 5192 /* 5193 * Store freelist pointer near middle of object to keep 5194 * it away from the edges of the object to avoid small 5195 * sized over/underflows from neighboring allocations. 5196 */ 5197 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5198 } 5199 5200 #ifdef CONFIG_SLUB_DEBUG 5201 if (flags & SLAB_STORE_USER) { 5202 /* 5203 * Need to store information about allocs and frees after 5204 * the object. 5205 */ 5206 size += 2 * sizeof(struct track); 5207 5208 /* Save the original kmalloc request size */ 5209 if (flags & SLAB_KMALLOC) 5210 size += sizeof(unsigned int); 5211 } 5212 #endif 5213 5214 kasan_cache_create(s, &size, &s->flags); 5215 #ifdef CONFIG_SLUB_DEBUG 5216 if (flags & SLAB_RED_ZONE) { 5217 /* 5218 * Add some empty padding so that we can catch 5219 * overwrites from earlier objects rather than let 5220 * tracking information or the free pointer be 5221 * corrupted if a user writes before the start 5222 * of the object. 5223 */ 5224 size += sizeof(void *); 5225 5226 s->red_left_pad = sizeof(void *); 5227 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5228 size += s->red_left_pad; 5229 } 5230 #endif 5231 5232 /* 5233 * SLUB stores one object immediately after another beginning from 5234 * offset 0. In order to align the objects we have to simply size 5235 * each object to conform to the alignment. 5236 */ 5237 size = ALIGN(size, s->align); 5238 s->size = size; 5239 s->reciprocal_size = reciprocal_value(size); 5240 order = calculate_order(size); 5241 5242 if ((int)order < 0) 5243 return 0; 5244 5245 s->allocflags = __GFP_COMP; 5246 5247 if (s->flags & SLAB_CACHE_DMA) 5248 s->allocflags |= GFP_DMA; 5249 5250 if (s->flags & SLAB_CACHE_DMA32) 5251 s->allocflags |= GFP_DMA32; 5252 5253 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5254 s->allocflags |= __GFP_RECLAIMABLE; 5255 5256 /* 5257 * Determine the number of objects per slab 5258 */ 5259 s->oo = oo_make(order, size); 5260 s->min = oo_make(get_order(size), size); 5261 5262 return !!oo_objects(s->oo); 5263 } 5264 5265 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 5266 { 5267 s->flags = kmem_cache_flags(flags, s->name); 5268 #ifdef CONFIG_SLAB_FREELIST_HARDENED 5269 s->random = get_random_long(); 5270 #endif 5271 5272 if (!calculate_sizes(s)) 5273 goto error; 5274 if (disable_higher_order_debug) { 5275 /* 5276 * Disable debugging flags that store metadata if the min slab 5277 * order increased. 5278 */ 5279 if (get_order(s->size) > get_order(s->object_size)) { 5280 s->flags &= ~DEBUG_METADATA_FLAGS; 5281 s->offset = 0; 5282 if (!calculate_sizes(s)) 5283 goto error; 5284 } 5285 } 5286 5287 #ifdef system_has_freelist_aba 5288 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 5289 /* Enable fast mode */ 5290 s->flags |= __CMPXCHG_DOUBLE; 5291 } 5292 #endif 5293 5294 /* 5295 * The larger the object size is, the more slabs we want on the partial 5296 * list to avoid pounding the page allocator excessively. 5297 */ 5298 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 5299 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 5300 5301 set_cpu_partial(s); 5302 5303 #ifdef CONFIG_NUMA 5304 s->remote_node_defrag_ratio = 1000; 5305 #endif 5306 5307 /* Initialize the pre-computed randomized freelist if slab is up */ 5308 if (slab_state >= UP) { 5309 if (init_cache_random_seq(s)) 5310 goto error; 5311 } 5312 5313 if (!init_kmem_cache_nodes(s)) 5314 goto error; 5315 5316 if (alloc_kmem_cache_cpus(s)) 5317 return 0; 5318 5319 error: 5320 __kmem_cache_release(s); 5321 return -EINVAL; 5322 } 5323 5324 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5325 const char *text) 5326 { 5327 #ifdef CONFIG_SLUB_DEBUG 5328 void *addr = slab_address(slab); 5329 void *p; 5330 5331 slab_err(s, slab, text, s->name); 5332 5333 spin_lock(&object_map_lock); 5334 __fill_map(object_map, s, slab); 5335 5336 for_each_object(p, s, addr, slab->objects) { 5337 5338 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5339 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5340 print_tracking(s, p); 5341 } 5342 } 5343 spin_unlock(&object_map_lock); 5344 #endif 5345 } 5346 5347 /* 5348 * Attempt to free all partial slabs on a node. 5349 * This is called from __kmem_cache_shutdown(). We must take list_lock 5350 * because sysfs file might still access partial list after the shutdowning. 5351 */ 5352 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5353 { 5354 LIST_HEAD(discard); 5355 struct slab *slab, *h; 5356 5357 BUG_ON(irqs_disabled()); 5358 spin_lock_irq(&n->list_lock); 5359 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5360 if (!slab->inuse) { 5361 remove_partial(n, slab); 5362 list_add(&slab->slab_list, &discard); 5363 } else { 5364 list_slab_objects(s, slab, 5365 "Objects remaining in %s on __kmem_cache_shutdown()"); 5366 } 5367 } 5368 spin_unlock_irq(&n->list_lock); 5369 5370 list_for_each_entry_safe(slab, h, &discard, slab_list) 5371 discard_slab(s, slab); 5372 } 5373 5374 bool __kmem_cache_empty(struct kmem_cache *s) 5375 { 5376 int node; 5377 struct kmem_cache_node *n; 5378 5379 for_each_kmem_cache_node(s, node, n) 5380 if (n->nr_partial || node_nr_slabs(n)) 5381 return false; 5382 return true; 5383 } 5384 5385 /* 5386 * Release all resources used by a slab cache. 5387 */ 5388 int __kmem_cache_shutdown(struct kmem_cache *s) 5389 { 5390 int node; 5391 struct kmem_cache_node *n; 5392 5393 flush_all_cpus_locked(s); 5394 /* Attempt to free all objects */ 5395 for_each_kmem_cache_node(s, node, n) { 5396 free_partial(s, n); 5397 if (n->nr_partial || node_nr_slabs(n)) 5398 return 1; 5399 } 5400 return 0; 5401 } 5402 5403 #ifdef CONFIG_PRINTK 5404 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5405 { 5406 void *base; 5407 int __maybe_unused i; 5408 unsigned int objnr; 5409 void *objp; 5410 void *objp0; 5411 struct kmem_cache *s = slab->slab_cache; 5412 struct track __maybe_unused *trackp; 5413 5414 kpp->kp_ptr = object; 5415 kpp->kp_slab = slab; 5416 kpp->kp_slab_cache = s; 5417 base = slab_address(slab); 5418 objp0 = kasan_reset_tag(object); 5419 #ifdef CONFIG_SLUB_DEBUG 5420 objp = restore_red_left(s, objp0); 5421 #else 5422 objp = objp0; 5423 #endif 5424 objnr = obj_to_index(s, slab, objp); 5425 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5426 objp = base + s->size * objnr; 5427 kpp->kp_objp = objp; 5428 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5429 || (objp - base) % s->size) || 5430 !(s->flags & SLAB_STORE_USER)) 5431 return; 5432 #ifdef CONFIG_SLUB_DEBUG 5433 objp = fixup_red_left(s, objp); 5434 trackp = get_track(s, objp, TRACK_ALLOC); 5435 kpp->kp_ret = (void *)trackp->addr; 5436 #ifdef CONFIG_STACKDEPOT 5437 { 5438 depot_stack_handle_t handle; 5439 unsigned long *entries; 5440 unsigned int nr_entries; 5441 5442 handle = READ_ONCE(trackp->handle); 5443 if (handle) { 5444 nr_entries = stack_depot_fetch(handle, &entries); 5445 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5446 kpp->kp_stack[i] = (void *)entries[i]; 5447 } 5448 5449 trackp = get_track(s, objp, TRACK_FREE); 5450 handle = READ_ONCE(trackp->handle); 5451 if (handle) { 5452 nr_entries = stack_depot_fetch(handle, &entries); 5453 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5454 kpp->kp_free_stack[i] = (void *)entries[i]; 5455 } 5456 } 5457 #endif 5458 #endif 5459 } 5460 #endif 5461 5462 /******************************************************************** 5463 * Kmalloc subsystem 5464 *******************************************************************/ 5465 5466 static int __init setup_slub_min_order(char *str) 5467 { 5468 get_option(&str, (int *)&slub_min_order); 5469 5470 if (slub_min_order > slub_max_order) 5471 slub_max_order = slub_min_order; 5472 5473 return 1; 5474 } 5475 5476 __setup("slab_min_order=", setup_slub_min_order); 5477 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5478 5479 5480 static int __init setup_slub_max_order(char *str) 5481 { 5482 get_option(&str, (int *)&slub_max_order); 5483 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5484 5485 if (slub_min_order > slub_max_order) 5486 slub_min_order = slub_max_order; 5487 5488 return 1; 5489 } 5490 5491 __setup("slab_max_order=", setup_slub_max_order); 5492 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5493 5494 static int __init setup_slub_min_objects(char *str) 5495 { 5496 get_option(&str, (int *)&slub_min_objects); 5497 5498 return 1; 5499 } 5500 5501 __setup("slab_min_objects=", setup_slub_min_objects); 5502 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5503 5504 #ifdef CONFIG_HARDENED_USERCOPY 5505 /* 5506 * Rejects incorrectly sized objects and objects that are to be copied 5507 * to/from userspace but do not fall entirely within the containing slab 5508 * cache's usercopy region. 5509 * 5510 * Returns NULL if check passes, otherwise const char * to name of cache 5511 * to indicate an error. 5512 */ 5513 void __check_heap_object(const void *ptr, unsigned long n, 5514 const struct slab *slab, bool to_user) 5515 { 5516 struct kmem_cache *s; 5517 unsigned int offset; 5518 bool is_kfence = is_kfence_address(ptr); 5519 5520 ptr = kasan_reset_tag(ptr); 5521 5522 /* Find object and usable object size. */ 5523 s = slab->slab_cache; 5524 5525 /* Reject impossible pointers. */ 5526 if (ptr < slab_address(slab)) 5527 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5528 to_user, 0, n); 5529 5530 /* Find offset within object. */ 5531 if (is_kfence) 5532 offset = ptr - kfence_object_start(ptr); 5533 else 5534 offset = (ptr - slab_address(slab)) % s->size; 5535 5536 /* Adjust for redzone and reject if within the redzone. */ 5537 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5538 if (offset < s->red_left_pad) 5539 usercopy_abort("SLUB object in left red zone", 5540 s->name, to_user, offset, n); 5541 offset -= s->red_left_pad; 5542 } 5543 5544 /* Allow address range falling entirely within usercopy region. */ 5545 if (offset >= s->useroffset && 5546 offset - s->useroffset <= s->usersize && 5547 n <= s->useroffset - offset + s->usersize) 5548 return; 5549 5550 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5551 } 5552 #endif /* CONFIG_HARDENED_USERCOPY */ 5553 5554 #define SHRINK_PROMOTE_MAX 32 5555 5556 /* 5557 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5558 * up most to the head of the partial lists. New allocations will then 5559 * fill those up and thus they can be removed from the partial lists. 5560 * 5561 * The slabs with the least items are placed last. This results in them 5562 * being allocated from last increasing the chance that the last objects 5563 * are freed in them. 5564 */ 5565 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5566 { 5567 int node; 5568 int i; 5569 struct kmem_cache_node *n; 5570 struct slab *slab; 5571 struct slab *t; 5572 struct list_head discard; 5573 struct list_head promote[SHRINK_PROMOTE_MAX]; 5574 unsigned long flags; 5575 int ret = 0; 5576 5577 for_each_kmem_cache_node(s, node, n) { 5578 INIT_LIST_HEAD(&discard); 5579 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5580 INIT_LIST_HEAD(promote + i); 5581 5582 spin_lock_irqsave(&n->list_lock, flags); 5583 5584 /* 5585 * Build lists of slabs to discard or promote. 5586 * 5587 * Note that concurrent frees may occur while we hold the 5588 * list_lock. slab->inuse here is the upper limit. 5589 */ 5590 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5591 int free = slab->objects - slab->inuse; 5592 5593 /* Do not reread slab->inuse */ 5594 barrier(); 5595 5596 /* We do not keep full slabs on the list */ 5597 BUG_ON(free <= 0); 5598 5599 if (free == slab->objects) { 5600 list_move(&slab->slab_list, &discard); 5601 slab_clear_node_partial(slab); 5602 n->nr_partial--; 5603 dec_slabs_node(s, node, slab->objects); 5604 } else if (free <= SHRINK_PROMOTE_MAX) 5605 list_move(&slab->slab_list, promote + free - 1); 5606 } 5607 5608 /* 5609 * Promote the slabs filled up most to the head of the 5610 * partial list. 5611 */ 5612 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5613 list_splice(promote + i, &n->partial); 5614 5615 spin_unlock_irqrestore(&n->list_lock, flags); 5616 5617 /* Release empty slabs */ 5618 list_for_each_entry_safe(slab, t, &discard, slab_list) 5619 free_slab(s, slab); 5620 5621 if (node_nr_slabs(n)) 5622 ret = 1; 5623 } 5624 5625 return ret; 5626 } 5627 5628 int __kmem_cache_shrink(struct kmem_cache *s) 5629 { 5630 flush_all(s); 5631 return __kmem_cache_do_shrink(s); 5632 } 5633 5634 static int slab_mem_going_offline_callback(void *arg) 5635 { 5636 struct kmem_cache *s; 5637 5638 mutex_lock(&slab_mutex); 5639 list_for_each_entry(s, &slab_caches, list) { 5640 flush_all_cpus_locked(s); 5641 __kmem_cache_do_shrink(s); 5642 } 5643 mutex_unlock(&slab_mutex); 5644 5645 return 0; 5646 } 5647 5648 static void slab_mem_offline_callback(void *arg) 5649 { 5650 struct memory_notify *marg = arg; 5651 int offline_node; 5652 5653 offline_node = marg->status_change_nid_normal; 5654 5655 /* 5656 * If the node still has available memory. we need kmem_cache_node 5657 * for it yet. 5658 */ 5659 if (offline_node < 0) 5660 return; 5661 5662 mutex_lock(&slab_mutex); 5663 node_clear(offline_node, slab_nodes); 5664 /* 5665 * We no longer free kmem_cache_node structures here, as it would be 5666 * racy with all get_node() users, and infeasible to protect them with 5667 * slab_mutex. 5668 */ 5669 mutex_unlock(&slab_mutex); 5670 } 5671 5672 static int slab_mem_going_online_callback(void *arg) 5673 { 5674 struct kmem_cache_node *n; 5675 struct kmem_cache *s; 5676 struct memory_notify *marg = arg; 5677 int nid = marg->status_change_nid_normal; 5678 int ret = 0; 5679 5680 /* 5681 * If the node's memory is already available, then kmem_cache_node is 5682 * already created. Nothing to do. 5683 */ 5684 if (nid < 0) 5685 return 0; 5686 5687 /* 5688 * We are bringing a node online. No memory is available yet. We must 5689 * allocate a kmem_cache_node structure in order to bring the node 5690 * online. 5691 */ 5692 mutex_lock(&slab_mutex); 5693 list_for_each_entry(s, &slab_caches, list) { 5694 /* 5695 * The structure may already exist if the node was previously 5696 * onlined and offlined. 5697 */ 5698 if (get_node(s, nid)) 5699 continue; 5700 /* 5701 * XXX: kmem_cache_alloc_node will fallback to other nodes 5702 * since memory is not yet available from the node that 5703 * is brought up. 5704 */ 5705 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5706 if (!n) { 5707 ret = -ENOMEM; 5708 goto out; 5709 } 5710 init_kmem_cache_node(n); 5711 s->node[nid] = n; 5712 } 5713 /* 5714 * Any cache created after this point will also have kmem_cache_node 5715 * initialized for the new node. 5716 */ 5717 node_set(nid, slab_nodes); 5718 out: 5719 mutex_unlock(&slab_mutex); 5720 return ret; 5721 } 5722 5723 static int slab_memory_callback(struct notifier_block *self, 5724 unsigned long action, void *arg) 5725 { 5726 int ret = 0; 5727 5728 switch (action) { 5729 case MEM_GOING_ONLINE: 5730 ret = slab_mem_going_online_callback(arg); 5731 break; 5732 case MEM_GOING_OFFLINE: 5733 ret = slab_mem_going_offline_callback(arg); 5734 break; 5735 case MEM_OFFLINE: 5736 case MEM_CANCEL_ONLINE: 5737 slab_mem_offline_callback(arg); 5738 break; 5739 case MEM_ONLINE: 5740 case MEM_CANCEL_OFFLINE: 5741 break; 5742 } 5743 if (ret) 5744 ret = notifier_from_errno(ret); 5745 else 5746 ret = NOTIFY_OK; 5747 return ret; 5748 } 5749 5750 /******************************************************************** 5751 * Basic setup of slabs 5752 *******************************************************************/ 5753 5754 /* 5755 * Used for early kmem_cache structures that were allocated using 5756 * the page allocator. Allocate them properly then fix up the pointers 5757 * that may be pointing to the wrong kmem_cache structure. 5758 */ 5759 5760 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 5761 { 5762 int node; 5763 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5764 struct kmem_cache_node *n; 5765 5766 memcpy(s, static_cache, kmem_cache->object_size); 5767 5768 /* 5769 * This runs very early, and only the boot processor is supposed to be 5770 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5771 * IPIs around. 5772 */ 5773 __flush_cpu_slab(s, smp_processor_id()); 5774 for_each_kmem_cache_node(s, node, n) { 5775 struct slab *p; 5776 5777 list_for_each_entry(p, &n->partial, slab_list) 5778 p->slab_cache = s; 5779 5780 #ifdef CONFIG_SLUB_DEBUG 5781 list_for_each_entry(p, &n->full, slab_list) 5782 p->slab_cache = s; 5783 #endif 5784 } 5785 list_add(&s->list, &slab_caches); 5786 return s; 5787 } 5788 5789 void __init kmem_cache_init(void) 5790 { 5791 static __initdata struct kmem_cache boot_kmem_cache, 5792 boot_kmem_cache_node; 5793 int node; 5794 5795 if (debug_guardpage_minorder()) 5796 slub_max_order = 0; 5797 5798 /* Print slub debugging pointers without hashing */ 5799 if (__slub_debug_enabled()) 5800 no_hash_pointers_enable(NULL); 5801 5802 kmem_cache_node = &boot_kmem_cache_node; 5803 kmem_cache = &boot_kmem_cache; 5804 5805 /* 5806 * Initialize the nodemask for which we will allocate per node 5807 * structures. Here we don't need taking slab_mutex yet. 5808 */ 5809 for_each_node_state(node, N_NORMAL_MEMORY) 5810 node_set(node, slab_nodes); 5811 5812 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5813 sizeof(struct kmem_cache_node), 5814 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5815 5816 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5817 5818 /* Able to allocate the per node structures */ 5819 slab_state = PARTIAL; 5820 5821 create_boot_cache(kmem_cache, "kmem_cache", 5822 offsetof(struct kmem_cache, node) + 5823 nr_node_ids * sizeof(struct kmem_cache_node *), 5824 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5825 5826 kmem_cache = bootstrap(&boot_kmem_cache); 5827 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5828 5829 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5830 setup_kmalloc_cache_index_table(); 5831 create_kmalloc_caches(); 5832 5833 /* Setup random freelists for each cache */ 5834 init_freelist_randomization(); 5835 5836 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5837 slub_cpu_dead); 5838 5839 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5840 cache_line_size(), 5841 slub_min_order, slub_max_order, slub_min_objects, 5842 nr_cpu_ids, nr_node_ids); 5843 } 5844 5845 void __init kmem_cache_init_late(void) 5846 { 5847 #ifndef CONFIG_SLUB_TINY 5848 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5849 WARN_ON(!flushwq); 5850 #endif 5851 } 5852 5853 struct kmem_cache * 5854 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5855 slab_flags_t flags, void (*ctor)(void *)) 5856 { 5857 struct kmem_cache *s; 5858 5859 s = find_mergeable(size, align, flags, name, ctor); 5860 if (s) { 5861 if (sysfs_slab_alias(s, name)) 5862 return NULL; 5863 5864 s->refcount++; 5865 5866 /* 5867 * Adjust the object sizes so that we clear 5868 * the complete object on kzalloc. 5869 */ 5870 s->object_size = max(s->object_size, size); 5871 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5872 } 5873 5874 return s; 5875 } 5876 5877 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5878 { 5879 int err; 5880 5881 err = kmem_cache_open(s, flags); 5882 if (err) 5883 return err; 5884 5885 /* Mutex is not taken during early boot */ 5886 if (slab_state <= UP) 5887 return 0; 5888 5889 err = sysfs_slab_add(s); 5890 if (err) { 5891 __kmem_cache_release(s); 5892 return err; 5893 } 5894 5895 if (s->flags & SLAB_STORE_USER) 5896 debugfs_slab_add(s); 5897 5898 return 0; 5899 } 5900 5901 #ifdef SLAB_SUPPORTS_SYSFS 5902 static int count_inuse(struct slab *slab) 5903 { 5904 return slab->inuse; 5905 } 5906 5907 static int count_total(struct slab *slab) 5908 { 5909 return slab->objects; 5910 } 5911 #endif 5912 5913 #ifdef CONFIG_SLUB_DEBUG 5914 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5915 unsigned long *obj_map) 5916 { 5917 void *p; 5918 void *addr = slab_address(slab); 5919 5920 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5921 return; 5922 5923 /* Now we know that a valid freelist exists */ 5924 __fill_map(obj_map, s, slab); 5925 for_each_object(p, s, addr, slab->objects) { 5926 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5927 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5928 5929 if (!check_object(s, slab, p, val)) 5930 break; 5931 } 5932 } 5933 5934 static int validate_slab_node(struct kmem_cache *s, 5935 struct kmem_cache_node *n, unsigned long *obj_map) 5936 { 5937 unsigned long count = 0; 5938 struct slab *slab; 5939 unsigned long flags; 5940 5941 spin_lock_irqsave(&n->list_lock, flags); 5942 5943 list_for_each_entry(slab, &n->partial, slab_list) { 5944 validate_slab(s, slab, obj_map); 5945 count++; 5946 } 5947 if (count != n->nr_partial) { 5948 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5949 s->name, count, n->nr_partial); 5950 slab_add_kunit_errors(); 5951 } 5952 5953 if (!(s->flags & SLAB_STORE_USER)) 5954 goto out; 5955 5956 list_for_each_entry(slab, &n->full, slab_list) { 5957 validate_slab(s, slab, obj_map); 5958 count++; 5959 } 5960 if (count != node_nr_slabs(n)) { 5961 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5962 s->name, count, node_nr_slabs(n)); 5963 slab_add_kunit_errors(); 5964 } 5965 5966 out: 5967 spin_unlock_irqrestore(&n->list_lock, flags); 5968 return count; 5969 } 5970 5971 long validate_slab_cache(struct kmem_cache *s) 5972 { 5973 int node; 5974 unsigned long count = 0; 5975 struct kmem_cache_node *n; 5976 unsigned long *obj_map; 5977 5978 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5979 if (!obj_map) 5980 return -ENOMEM; 5981 5982 flush_all(s); 5983 for_each_kmem_cache_node(s, node, n) 5984 count += validate_slab_node(s, n, obj_map); 5985 5986 bitmap_free(obj_map); 5987 5988 return count; 5989 } 5990 EXPORT_SYMBOL(validate_slab_cache); 5991 5992 #ifdef CONFIG_DEBUG_FS 5993 /* 5994 * Generate lists of code addresses where slabcache objects are allocated 5995 * and freed. 5996 */ 5997 5998 struct location { 5999 depot_stack_handle_t handle; 6000 unsigned long count; 6001 unsigned long addr; 6002 unsigned long waste; 6003 long long sum_time; 6004 long min_time; 6005 long max_time; 6006 long min_pid; 6007 long max_pid; 6008 DECLARE_BITMAP(cpus, NR_CPUS); 6009 nodemask_t nodes; 6010 }; 6011 6012 struct loc_track { 6013 unsigned long max; 6014 unsigned long count; 6015 struct location *loc; 6016 loff_t idx; 6017 }; 6018 6019 static struct dentry *slab_debugfs_root; 6020 6021 static void free_loc_track(struct loc_track *t) 6022 { 6023 if (t->max) 6024 free_pages((unsigned long)t->loc, 6025 get_order(sizeof(struct location) * t->max)); 6026 } 6027 6028 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6029 { 6030 struct location *l; 6031 int order; 6032 6033 order = get_order(sizeof(struct location) * max); 6034 6035 l = (void *)__get_free_pages(flags, order); 6036 if (!l) 6037 return 0; 6038 6039 if (t->count) { 6040 memcpy(l, t->loc, sizeof(struct location) * t->count); 6041 free_loc_track(t); 6042 } 6043 t->max = max; 6044 t->loc = l; 6045 return 1; 6046 } 6047 6048 static int add_location(struct loc_track *t, struct kmem_cache *s, 6049 const struct track *track, 6050 unsigned int orig_size) 6051 { 6052 long start, end, pos; 6053 struct location *l; 6054 unsigned long caddr, chandle, cwaste; 6055 unsigned long age = jiffies - track->when; 6056 depot_stack_handle_t handle = 0; 6057 unsigned int waste = s->object_size - orig_size; 6058 6059 #ifdef CONFIG_STACKDEPOT 6060 handle = READ_ONCE(track->handle); 6061 #endif 6062 start = -1; 6063 end = t->count; 6064 6065 for ( ; ; ) { 6066 pos = start + (end - start + 1) / 2; 6067 6068 /* 6069 * There is nothing at "end". If we end up there 6070 * we need to add something to before end. 6071 */ 6072 if (pos == end) 6073 break; 6074 6075 l = &t->loc[pos]; 6076 caddr = l->addr; 6077 chandle = l->handle; 6078 cwaste = l->waste; 6079 if ((track->addr == caddr) && (handle == chandle) && 6080 (waste == cwaste)) { 6081 6082 l->count++; 6083 if (track->when) { 6084 l->sum_time += age; 6085 if (age < l->min_time) 6086 l->min_time = age; 6087 if (age > l->max_time) 6088 l->max_time = age; 6089 6090 if (track->pid < l->min_pid) 6091 l->min_pid = track->pid; 6092 if (track->pid > l->max_pid) 6093 l->max_pid = track->pid; 6094 6095 cpumask_set_cpu(track->cpu, 6096 to_cpumask(l->cpus)); 6097 } 6098 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6099 return 1; 6100 } 6101 6102 if (track->addr < caddr) 6103 end = pos; 6104 else if (track->addr == caddr && handle < chandle) 6105 end = pos; 6106 else if (track->addr == caddr && handle == chandle && 6107 waste < cwaste) 6108 end = pos; 6109 else 6110 start = pos; 6111 } 6112 6113 /* 6114 * Not found. Insert new tracking element. 6115 */ 6116 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6117 return 0; 6118 6119 l = t->loc + pos; 6120 if (pos < t->count) 6121 memmove(l + 1, l, 6122 (t->count - pos) * sizeof(struct location)); 6123 t->count++; 6124 l->count = 1; 6125 l->addr = track->addr; 6126 l->sum_time = age; 6127 l->min_time = age; 6128 l->max_time = age; 6129 l->min_pid = track->pid; 6130 l->max_pid = track->pid; 6131 l->handle = handle; 6132 l->waste = waste; 6133 cpumask_clear(to_cpumask(l->cpus)); 6134 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6135 nodes_clear(l->nodes); 6136 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6137 return 1; 6138 } 6139 6140 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6141 struct slab *slab, enum track_item alloc, 6142 unsigned long *obj_map) 6143 { 6144 void *addr = slab_address(slab); 6145 bool is_alloc = (alloc == TRACK_ALLOC); 6146 void *p; 6147 6148 __fill_map(obj_map, s, slab); 6149 6150 for_each_object(p, s, addr, slab->objects) 6151 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6152 add_location(t, s, get_track(s, p, alloc), 6153 is_alloc ? get_orig_size(s, p) : 6154 s->object_size); 6155 } 6156 #endif /* CONFIG_DEBUG_FS */ 6157 #endif /* CONFIG_SLUB_DEBUG */ 6158 6159 #ifdef SLAB_SUPPORTS_SYSFS 6160 enum slab_stat_type { 6161 SL_ALL, /* All slabs */ 6162 SL_PARTIAL, /* Only partially allocated slabs */ 6163 SL_CPU, /* Only slabs used for cpu caches */ 6164 SL_OBJECTS, /* Determine allocated objects not slabs */ 6165 SL_TOTAL /* Determine object capacity not slabs */ 6166 }; 6167 6168 #define SO_ALL (1 << SL_ALL) 6169 #define SO_PARTIAL (1 << SL_PARTIAL) 6170 #define SO_CPU (1 << SL_CPU) 6171 #define SO_OBJECTS (1 << SL_OBJECTS) 6172 #define SO_TOTAL (1 << SL_TOTAL) 6173 6174 static ssize_t show_slab_objects(struct kmem_cache *s, 6175 char *buf, unsigned long flags) 6176 { 6177 unsigned long total = 0; 6178 int node; 6179 int x; 6180 unsigned long *nodes; 6181 int len = 0; 6182 6183 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6184 if (!nodes) 6185 return -ENOMEM; 6186 6187 if (flags & SO_CPU) { 6188 int cpu; 6189 6190 for_each_possible_cpu(cpu) { 6191 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6192 cpu); 6193 int node; 6194 struct slab *slab; 6195 6196 slab = READ_ONCE(c->slab); 6197 if (!slab) 6198 continue; 6199 6200 node = slab_nid(slab); 6201 if (flags & SO_TOTAL) 6202 x = slab->objects; 6203 else if (flags & SO_OBJECTS) 6204 x = slab->inuse; 6205 else 6206 x = 1; 6207 6208 total += x; 6209 nodes[node] += x; 6210 6211 #ifdef CONFIG_SLUB_CPU_PARTIAL 6212 slab = slub_percpu_partial_read_once(c); 6213 if (slab) { 6214 node = slab_nid(slab); 6215 if (flags & SO_TOTAL) 6216 WARN_ON_ONCE(1); 6217 else if (flags & SO_OBJECTS) 6218 WARN_ON_ONCE(1); 6219 else 6220 x = data_race(slab->slabs); 6221 total += x; 6222 nodes[node] += x; 6223 } 6224 #endif 6225 } 6226 } 6227 6228 /* 6229 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6230 * already held which will conflict with an existing lock order: 6231 * 6232 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6233 * 6234 * We don't really need mem_hotplug_lock (to hold off 6235 * slab_mem_going_offline_callback) here because slab's memory hot 6236 * unplug code doesn't destroy the kmem_cache->node[] data. 6237 */ 6238 6239 #ifdef CONFIG_SLUB_DEBUG 6240 if (flags & SO_ALL) { 6241 struct kmem_cache_node *n; 6242 6243 for_each_kmem_cache_node(s, node, n) { 6244 6245 if (flags & SO_TOTAL) 6246 x = node_nr_objs(n); 6247 else if (flags & SO_OBJECTS) 6248 x = node_nr_objs(n) - count_partial(n, count_free); 6249 else 6250 x = node_nr_slabs(n); 6251 total += x; 6252 nodes[node] += x; 6253 } 6254 6255 } else 6256 #endif 6257 if (flags & SO_PARTIAL) { 6258 struct kmem_cache_node *n; 6259 6260 for_each_kmem_cache_node(s, node, n) { 6261 if (flags & SO_TOTAL) 6262 x = count_partial(n, count_total); 6263 else if (flags & SO_OBJECTS) 6264 x = count_partial(n, count_inuse); 6265 else 6266 x = n->nr_partial; 6267 total += x; 6268 nodes[node] += x; 6269 } 6270 } 6271 6272 len += sysfs_emit_at(buf, len, "%lu", total); 6273 #ifdef CONFIG_NUMA 6274 for (node = 0; node < nr_node_ids; node++) { 6275 if (nodes[node]) 6276 len += sysfs_emit_at(buf, len, " N%d=%lu", 6277 node, nodes[node]); 6278 } 6279 #endif 6280 len += sysfs_emit_at(buf, len, "\n"); 6281 kfree(nodes); 6282 6283 return len; 6284 } 6285 6286 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6287 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6288 6289 struct slab_attribute { 6290 struct attribute attr; 6291 ssize_t (*show)(struct kmem_cache *s, char *buf); 6292 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6293 }; 6294 6295 #define SLAB_ATTR_RO(_name) \ 6296 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6297 6298 #define SLAB_ATTR(_name) \ 6299 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6300 6301 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6302 { 6303 return sysfs_emit(buf, "%u\n", s->size); 6304 } 6305 SLAB_ATTR_RO(slab_size); 6306 6307 static ssize_t align_show(struct kmem_cache *s, char *buf) 6308 { 6309 return sysfs_emit(buf, "%u\n", s->align); 6310 } 6311 SLAB_ATTR_RO(align); 6312 6313 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6314 { 6315 return sysfs_emit(buf, "%u\n", s->object_size); 6316 } 6317 SLAB_ATTR_RO(object_size); 6318 6319 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6320 { 6321 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6322 } 6323 SLAB_ATTR_RO(objs_per_slab); 6324 6325 static ssize_t order_show(struct kmem_cache *s, char *buf) 6326 { 6327 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6328 } 6329 SLAB_ATTR_RO(order); 6330 6331 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6332 { 6333 return sysfs_emit(buf, "%lu\n", s->min_partial); 6334 } 6335 6336 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6337 size_t length) 6338 { 6339 unsigned long min; 6340 int err; 6341 6342 err = kstrtoul(buf, 10, &min); 6343 if (err) 6344 return err; 6345 6346 s->min_partial = min; 6347 return length; 6348 } 6349 SLAB_ATTR(min_partial); 6350 6351 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6352 { 6353 unsigned int nr_partial = 0; 6354 #ifdef CONFIG_SLUB_CPU_PARTIAL 6355 nr_partial = s->cpu_partial; 6356 #endif 6357 6358 return sysfs_emit(buf, "%u\n", nr_partial); 6359 } 6360 6361 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6362 size_t length) 6363 { 6364 unsigned int objects; 6365 int err; 6366 6367 err = kstrtouint(buf, 10, &objects); 6368 if (err) 6369 return err; 6370 if (objects && !kmem_cache_has_cpu_partial(s)) 6371 return -EINVAL; 6372 6373 slub_set_cpu_partial(s, objects); 6374 flush_all(s); 6375 return length; 6376 } 6377 SLAB_ATTR(cpu_partial); 6378 6379 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6380 { 6381 if (!s->ctor) 6382 return 0; 6383 return sysfs_emit(buf, "%pS\n", s->ctor); 6384 } 6385 SLAB_ATTR_RO(ctor); 6386 6387 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6388 { 6389 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6390 } 6391 SLAB_ATTR_RO(aliases); 6392 6393 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6394 { 6395 return show_slab_objects(s, buf, SO_PARTIAL); 6396 } 6397 SLAB_ATTR_RO(partial); 6398 6399 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6400 { 6401 return show_slab_objects(s, buf, SO_CPU); 6402 } 6403 SLAB_ATTR_RO(cpu_slabs); 6404 6405 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6406 { 6407 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6408 } 6409 SLAB_ATTR_RO(objects_partial); 6410 6411 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6412 { 6413 int objects = 0; 6414 int slabs = 0; 6415 int cpu __maybe_unused; 6416 int len = 0; 6417 6418 #ifdef CONFIG_SLUB_CPU_PARTIAL 6419 for_each_online_cpu(cpu) { 6420 struct slab *slab; 6421 6422 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6423 6424 if (slab) 6425 slabs += data_race(slab->slabs); 6426 } 6427 #endif 6428 6429 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6430 objects = (slabs * oo_objects(s->oo)) / 2; 6431 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6432 6433 #ifdef CONFIG_SLUB_CPU_PARTIAL 6434 for_each_online_cpu(cpu) { 6435 struct slab *slab; 6436 6437 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6438 if (slab) { 6439 slabs = data_race(slab->slabs); 6440 objects = (slabs * oo_objects(s->oo)) / 2; 6441 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6442 cpu, objects, slabs); 6443 } 6444 } 6445 #endif 6446 len += sysfs_emit_at(buf, len, "\n"); 6447 6448 return len; 6449 } 6450 SLAB_ATTR_RO(slabs_cpu_partial); 6451 6452 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6453 { 6454 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6455 } 6456 SLAB_ATTR_RO(reclaim_account); 6457 6458 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6459 { 6460 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6461 } 6462 SLAB_ATTR_RO(hwcache_align); 6463 6464 #ifdef CONFIG_ZONE_DMA 6465 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6466 { 6467 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6468 } 6469 SLAB_ATTR_RO(cache_dma); 6470 #endif 6471 6472 #ifdef CONFIG_HARDENED_USERCOPY 6473 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6474 { 6475 return sysfs_emit(buf, "%u\n", s->usersize); 6476 } 6477 SLAB_ATTR_RO(usersize); 6478 #endif 6479 6480 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6481 { 6482 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6483 } 6484 SLAB_ATTR_RO(destroy_by_rcu); 6485 6486 #ifdef CONFIG_SLUB_DEBUG 6487 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6488 { 6489 return show_slab_objects(s, buf, SO_ALL); 6490 } 6491 SLAB_ATTR_RO(slabs); 6492 6493 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6494 { 6495 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6496 } 6497 SLAB_ATTR_RO(total_objects); 6498 6499 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6500 { 6501 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6502 } 6503 SLAB_ATTR_RO(objects); 6504 6505 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6506 { 6507 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6508 } 6509 SLAB_ATTR_RO(sanity_checks); 6510 6511 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6512 { 6513 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6514 } 6515 SLAB_ATTR_RO(trace); 6516 6517 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6518 { 6519 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6520 } 6521 6522 SLAB_ATTR_RO(red_zone); 6523 6524 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6525 { 6526 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6527 } 6528 6529 SLAB_ATTR_RO(poison); 6530 6531 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6532 { 6533 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6534 } 6535 6536 SLAB_ATTR_RO(store_user); 6537 6538 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6539 { 6540 return 0; 6541 } 6542 6543 static ssize_t validate_store(struct kmem_cache *s, 6544 const char *buf, size_t length) 6545 { 6546 int ret = -EINVAL; 6547 6548 if (buf[0] == '1' && kmem_cache_debug(s)) { 6549 ret = validate_slab_cache(s); 6550 if (ret >= 0) 6551 ret = length; 6552 } 6553 return ret; 6554 } 6555 SLAB_ATTR(validate); 6556 6557 #endif /* CONFIG_SLUB_DEBUG */ 6558 6559 #ifdef CONFIG_FAILSLAB 6560 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6561 { 6562 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6563 } 6564 6565 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6566 size_t length) 6567 { 6568 if (s->refcount > 1) 6569 return -EINVAL; 6570 6571 if (buf[0] == '1') 6572 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6573 else 6574 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6575 6576 return length; 6577 } 6578 SLAB_ATTR(failslab); 6579 #endif 6580 6581 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6582 { 6583 return 0; 6584 } 6585 6586 static ssize_t shrink_store(struct kmem_cache *s, 6587 const char *buf, size_t length) 6588 { 6589 if (buf[0] == '1') 6590 kmem_cache_shrink(s); 6591 else 6592 return -EINVAL; 6593 return length; 6594 } 6595 SLAB_ATTR(shrink); 6596 6597 #ifdef CONFIG_NUMA 6598 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6599 { 6600 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6601 } 6602 6603 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6604 const char *buf, size_t length) 6605 { 6606 unsigned int ratio; 6607 int err; 6608 6609 err = kstrtouint(buf, 10, &ratio); 6610 if (err) 6611 return err; 6612 if (ratio > 100) 6613 return -ERANGE; 6614 6615 s->remote_node_defrag_ratio = ratio * 10; 6616 6617 return length; 6618 } 6619 SLAB_ATTR(remote_node_defrag_ratio); 6620 #endif 6621 6622 #ifdef CONFIG_SLUB_STATS 6623 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6624 { 6625 unsigned long sum = 0; 6626 int cpu; 6627 int len = 0; 6628 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6629 6630 if (!data) 6631 return -ENOMEM; 6632 6633 for_each_online_cpu(cpu) { 6634 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6635 6636 data[cpu] = x; 6637 sum += x; 6638 } 6639 6640 len += sysfs_emit_at(buf, len, "%lu", sum); 6641 6642 #ifdef CONFIG_SMP 6643 for_each_online_cpu(cpu) { 6644 if (data[cpu]) 6645 len += sysfs_emit_at(buf, len, " C%d=%u", 6646 cpu, data[cpu]); 6647 } 6648 #endif 6649 kfree(data); 6650 len += sysfs_emit_at(buf, len, "\n"); 6651 6652 return len; 6653 } 6654 6655 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6656 { 6657 int cpu; 6658 6659 for_each_online_cpu(cpu) 6660 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6661 } 6662 6663 #define STAT_ATTR(si, text) \ 6664 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6665 { \ 6666 return show_stat(s, buf, si); \ 6667 } \ 6668 static ssize_t text##_store(struct kmem_cache *s, \ 6669 const char *buf, size_t length) \ 6670 { \ 6671 if (buf[0] != '0') \ 6672 return -EINVAL; \ 6673 clear_stat(s, si); \ 6674 return length; \ 6675 } \ 6676 SLAB_ATTR(text); \ 6677 6678 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 6679 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 6680 STAT_ATTR(FREE_FASTPATH, free_fastpath); 6681 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 6682 STAT_ATTR(FREE_FROZEN, free_frozen); 6683 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 6684 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 6685 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 6686 STAT_ATTR(ALLOC_SLAB, alloc_slab); 6687 STAT_ATTR(ALLOC_REFILL, alloc_refill); 6688 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 6689 STAT_ATTR(FREE_SLAB, free_slab); 6690 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 6691 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 6692 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 6693 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 6694 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 6695 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 6696 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 6697 STAT_ATTR(ORDER_FALLBACK, order_fallback); 6698 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 6699 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 6700 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 6701 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 6702 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 6703 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 6704 #endif /* CONFIG_SLUB_STATS */ 6705 6706 #ifdef CONFIG_KFENCE 6707 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 6708 { 6709 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 6710 } 6711 6712 static ssize_t skip_kfence_store(struct kmem_cache *s, 6713 const char *buf, size_t length) 6714 { 6715 int ret = length; 6716 6717 if (buf[0] == '0') 6718 s->flags &= ~SLAB_SKIP_KFENCE; 6719 else if (buf[0] == '1') 6720 s->flags |= SLAB_SKIP_KFENCE; 6721 else 6722 ret = -EINVAL; 6723 6724 return ret; 6725 } 6726 SLAB_ATTR(skip_kfence); 6727 #endif 6728 6729 static struct attribute *slab_attrs[] = { 6730 &slab_size_attr.attr, 6731 &object_size_attr.attr, 6732 &objs_per_slab_attr.attr, 6733 &order_attr.attr, 6734 &min_partial_attr.attr, 6735 &cpu_partial_attr.attr, 6736 &objects_partial_attr.attr, 6737 &partial_attr.attr, 6738 &cpu_slabs_attr.attr, 6739 &ctor_attr.attr, 6740 &aliases_attr.attr, 6741 &align_attr.attr, 6742 &hwcache_align_attr.attr, 6743 &reclaim_account_attr.attr, 6744 &destroy_by_rcu_attr.attr, 6745 &shrink_attr.attr, 6746 &slabs_cpu_partial_attr.attr, 6747 #ifdef CONFIG_SLUB_DEBUG 6748 &total_objects_attr.attr, 6749 &objects_attr.attr, 6750 &slabs_attr.attr, 6751 &sanity_checks_attr.attr, 6752 &trace_attr.attr, 6753 &red_zone_attr.attr, 6754 &poison_attr.attr, 6755 &store_user_attr.attr, 6756 &validate_attr.attr, 6757 #endif 6758 #ifdef CONFIG_ZONE_DMA 6759 &cache_dma_attr.attr, 6760 #endif 6761 #ifdef CONFIG_NUMA 6762 &remote_node_defrag_ratio_attr.attr, 6763 #endif 6764 #ifdef CONFIG_SLUB_STATS 6765 &alloc_fastpath_attr.attr, 6766 &alloc_slowpath_attr.attr, 6767 &free_fastpath_attr.attr, 6768 &free_slowpath_attr.attr, 6769 &free_frozen_attr.attr, 6770 &free_add_partial_attr.attr, 6771 &free_remove_partial_attr.attr, 6772 &alloc_from_partial_attr.attr, 6773 &alloc_slab_attr.attr, 6774 &alloc_refill_attr.attr, 6775 &alloc_node_mismatch_attr.attr, 6776 &free_slab_attr.attr, 6777 &cpuslab_flush_attr.attr, 6778 &deactivate_full_attr.attr, 6779 &deactivate_empty_attr.attr, 6780 &deactivate_to_head_attr.attr, 6781 &deactivate_to_tail_attr.attr, 6782 &deactivate_remote_frees_attr.attr, 6783 &deactivate_bypass_attr.attr, 6784 &order_fallback_attr.attr, 6785 &cmpxchg_double_fail_attr.attr, 6786 &cmpxchg_double_cpu_fail_attr.attr, 6787 &cpu_partial_alloc_attr.attr, 6788 &cpu_partial_free_attr.attr, 6789 &cpu_partial_node_attr.attr, 6790 &cpu_partial_drain_attr.attr, 6791 #endif 6792 #ifdef CONFIG_FAILSLAB 6793 &failslab_attr.attr, 6794 #endif 6795 #ifdef CONFIG_HARDENED_USERCOPY 6796 &usersize_attr.attr, 6797 #endif 6798 #ifdef CONFIG_KFENCE 6799 &skip_kfence_attr.attr, 6800 #endif 6801 6802 NULL 6803 }; 6804 6805 static const struct attribute_group slab_attr_group = { 6806 .attrs = slab_attrs, 6807 }; 6808 6809 static ssize_t slab_attr_show(struct kobject *kobj, 6810 struct attribute *attr, 6811 char *buf) 6812 { 6813 struct slab_attribute *attribute; 6814 struct kmem_cache *s; 6815 6816 attribute = to_slab_attr(attr); 6817 s = to_slab(kobj); 6818 6819 if (!attribute->show) 6820 return -EIO; 6821 6822 return attribute->show(s, buf); 6823 } 6824 6825 static ssize_t slab_attr_store(struct kobject *kobj, 6826 struct attribute *attr, 6827 const char *buf, size_t len) 6828 { 6829 struct slab_attribute *attribute; 6830 struct kmem_cache *s; 6831 6832 attribute = to_slab_attr(attr); 6833 s = to_slab(kobj); 6834 6835 if (!attribute->store) 6836 return -EIO; 6837 6838 return attribute->store(s, buf, len); 6839 } 6840 6841 static void kmem_cache_release(struct kobject *k) 6842 { 6843 slab_kmem_cache_release(to_slab(k)); 6844 } 6845 6846 static const struct sysfs_ops slab_sysfs_ops = { 6847 .show = slab_attr_show, 6848 .store = slab_attr_store, 6849 }; 6850 6851 static const struct kobj_type slab_ktype = { 6852 .sysfs_ops = &slab_sysfs_ops, 6853 .release = kmem_cache_release, 6854 }; 6855 6856 static struct kset *slab_kset; 6857 6858 static inline struct kset *cache_kset(struct kmem_cache *s) 6859 { 6860 return slab_kset; 6861 } 6862 6863 #define ID_STR_LENGTH 32 6864 6865 /* Create a unique string id for a slab cache: 6866 * 6867 * Format :[flags-]size 6868 */ 6869 static char *create_unique_id(struct kmem_cache *s) 6870 { 6871 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6872 char *p = name; 6873 6874 if (!name) 6875 return ERR_PTR(-ENOMEM); 6876 6877 *p++ = ':'; 6878 /* 6879 * First flags affecting slabcache operations. We will only 6880 * get here for aliasable slabs so we do not need to support 6881 * too many flags. The flags here must cover all flags that 6882 * are matched during merging to guarantee that the id is 6883 * unique. 6884 */ 6885 if (s->flags & SLAB_CACHE_DMA) 6886 *p++ = 'd'; 6887 if (s->flags & SLAB_CACHE_DMA32) 6888 *p++ = 'D'; 6889 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6890 *p++ = 'a'; 6891 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6892 *p++ = 'F'; 6893 if (s->flags & SLAB_ACCOUNT) 6894 *p++ = 'A'; 6895 if (p != name + 1) 6896 *p++ = '-'; 6897 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6898 6899 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6900 kfree(name); 6901 return ERR_PTR(-EINVAL); 6902 } 6903 kmsan_unpoison_memory(name, p - name); 6904 return name; 6905 } 6906 6907 static int sysfs_slab_add(struct kmem_cache *s) 6908 { 6909 int err; 6910 const char *name; 6911 struct kset *kset = cache_kset(s); 6912 int unmergeable = slab_unmergeable(s); 6913 6914 if (!unmergeable && disable_higher_order_debug && 6915 (slub_debug & DEBUG_METADATA_FLAGS)) 6916 unmergeable = 1; 6917 6918 if (unmergeable) { 6919 /* 6920 * Slabcache can never be merged so we can use the name proper. 6921 * This is typically the case for debug situations. In that 6922 * case we can catch duplicate names easily. 6923 */ 6924 sysfs_remove_link(&slab_kset->kobj, s->name); 6925 name = s->name; 6926 } else { 6927 /* 6928 * Create a unique name for the slab as a target 6929 * for the symlinks. 6930 */ 6931 name = create_unique_id(s); 6932 if (IS_ERR(name)) 6933 return PTR_ERR(name); 6934 } 6935 6936 s->kobj.kset = kset; 6937 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6938 if (err) 6939 goto out; 6940 6941 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6942 if (err) 6943 goto out_del_kobj; 6944 6945 if (!unmergeable) { 6946 /* Setup first alias */ 6947 sysfs_slab_alias(s, s->name); 6948 } 6949 out: 6950 if (!unmergeable) 6951 kfree(name); 6952 return err; 6953 out_del_kobj: 6954 kobject_del(&s->kobj); 6955 goto out; 6956 } 6957 6958 void sysfs_slab_unlink(struct kmem_cache *s) 6959 { 6960 kobject_del(&s->kobj); 6961 } 6962 6963 void sysfs_slab_release(struct kmem_cache *s) 6964 { 6965 kobject_put(&s->kobj); 6966 } 6967 6968 /* 6969 * Need to buffer aliases during bootup until sysfs becomes 6970 * available lest we lose that information. 6971 */ 6972 struct saved_alias { 6973 struct kmem_cache *s; 6974 const char *name; 6975 struct saved_alias *next; 6976 }; 6977 6978 static struct saved_alias *alias_list; 6979 6980 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6981 { 6982 struct saved_alias *al; 6983 6984 if (slab_state == FULL) { 6985 /* 6986 * If we have a leftover link then remove it. 6987 */ 6988 sysfs_remove_link(&slab_kset->kobj, name); 6989 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6990 } 6991 6992 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6993 if (!al) 6994 return -ENOMEM; 6995 6996 al->s = s; 6997 al->name = name; 6998 al->next = alias_list; 6999 alias_list = al; 7000 kmsan_unpoison_memory(al, sizeof(*al)); 7001 return 0; 7002 } 7003 7004 static int __init slab_sysfs_init(void) 7005 { 7006 struct kmem_cache *s; 7007 int err; 7008 7009 mutex_lock(&slab_mutex); 7010 7011 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7012 if (!slab_kset) { 7013 mutex_unlock(&slab_mutex); 7014 pr_err("Cannot register slab subsystem.\n"); 7015 return -ENOMEM; 7016 } 7017 7018 slab_state = FULL; 7019 7020 list_for_each_entry(s, &slab_caches, list) { 7021 err = sysfs_slab_add(s); 7022 if (err) 7023 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7024 s->name); 7025 } 7026 7027 while (alias_list) { 7028 struct saved_alias *al = alias_list; 7029 7030 alias_list = alias_list->next; 7031 err = sysfs_slab_alias(al->s, al->name); 7032 if (err) 7033 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7034 al->name); 7035 kfree(al); 7036 } 7037 7038 mutex_unlock(&slab_mutex); 7039 return 0; 7040 } 7041 late_initcall(slab_sysfs_init); 7042 #endif /* SLAB_SUPPORTS_SYSFS */ 7043 7044 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7045 static int slab_debugfs_show(struct seq_file *seq, void *v) 7046 { 7047 struct loc_track *t = seq->private; 7048 struct location *l; 7049 unsigned long idx; 7050 7051 idx = (unsigned long) t->idx; 7052 if (idx < t->count) { 7053 l = &t->loc[idx]; 7054 7055 seq_printf(seq, "%7ld ", l->count); 7056 7057 if (l->addr) 7058 seq_printf(seq, "%pS", (void *)l->addr); 7059 else 7060 seq_puts(seq, "<not-available>"); 7061 7062 if (l->waste) 7063 seq_printf(seq, " waste=%lu/%lu", 7064 l->count * l->waste, l->waste); 7065 7066 if (l->sum_time != l->min_time) { 7067 seq_printf(seq, " age=%ld/%llu/%ld", 7068 l->min_time, div_u64(l->sum_time, l->count), 7069 l->max_time); 7070 } else 7071 seq_printf(seq, " age=%ld", l->min_time); 7072 7073 if (l->min_pid != l->max_pid) 7074 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7075 else 7076 seq_printf(seq, " pid=%ld", 7077 l->min_pid); 7078 7079 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7080 seq_printf(seq, " cpus=%*pbl", 7081 cpumask_pr_args(to_cpumask(l->cpus))); 7082 7083 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7084 seq_printf(seq, " nodes=%*pbl", 7085 nodemask_pr_args(&l->nodes)); 7086 7087 #ifdef CONFIG_STACKDEPOT 7088 { 7089 depot_stack_handle_t handle; 7090 unsigned long *entries; 7091 unsigned int nr_entries, j; 7092 7093 handle = READ_ONCE(l->handle); 7094 if (handle) { 7095 nr_entries = stack_depot_fetch(handle, &entries); 7096 seq_puts(seq, "\n"); 7097 for (j = 0; j < nr_entries; j++) 7098 seq_printf(seq, " %pS\n", (void *)entries[j]); 7099 } 7100 } 7101 #endif 7102 seq_puts(seq, "\n"); 7103 } 7104 7105 if (!idx && !t->count) 7106 seq_puts(seq, "No data\n"); 7107 7108 return 0; 7109 } 7110 7111 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7112 { 7113 } 7114 7115 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7116 { 7117 struct loc_track *t = seq->private; 7118 7119 t->idx = ++(*ppos); 7120 if (*ppos <= t->count) 7121 return ppos; 7122 7123 return NULL; 7124 } 7125 7126 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7127 { 7128 struct location *loc1 = (struct location *)a; 7129 struct location *loc2 = (struct location *)b; 7130 7131 if (loc1->count > loc2->count) 7132 return -1; 7133 else 7134 return 1; 7135 } 7136 7137 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7138 { 7139 struct loc_track *t = seq->private; 7140 7141 t->idx = *ppos; 7142 return ppos; 7143 } 7144 7145 static const struct seq_operations slab_debugfs_sops = { 7146 .start = slab_debugfs_start, 7147 .next = slab_debugfs_next, 7148 .stop = slab_debugfs_stop, 7149 .show = slab_debugfs_show, 7150 }; 7151 7152 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7153 { 7154 7155 struct kmem_cache_node *n; 7156 enum track_item alloc; 7157 int node; 7158 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7159 sizeof(struct loc_track)); 7160 struct kmem_cache *s = file_inode(filep)->i_private; 7161 unsigned long *obj_map; 7162 7163 if (!t) 7164 return -ENOMEM; 7165 7166 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7167 if (!obj_map) { 7168 seq_release_private(inode, filep); 7169 return -ENOMEM; 7170 } 7171 7172 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 7173 alloc = TRACK_ALLOC; 7174 else 7175 alloc = TRACK_FREE; 7176 7177 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7178 bitmap_free(obj_map); 7179 seq_release_private(inode, filep); 7180 return -ENOMEM; 7181 } 7182 7183 for_each_kmem_cache_node(s, node, n) { 7184 unsigned long flags; 7185 struct slab *slab; 7186 7187 if (!node_nr_slabs(n)) 7188 continue; 7189 7190 spin_lock_irqsave(&n->list_lock, flags); 7191 list_for_each_entry(slab, &n->partial, slab_list) 7192 process_slab(t, s, slab, alloc, obj_map); 7193 list_for_each_entry(slab, &n->full, slab_list) 7194 process_slab(t, s, slab, alloc, obj_map); 7195 spin_unlock_irqrestore(&n->list_lock, flags); 7196 } 7197 7198 /* Sort locations by count */ 7199 sort_r(t->loc, t->count, sizeof(struct location), 7200 cmp_loc_by_count, NULL, NULL); 7201 7202 bitmap_free(obj_map); 7203 return 0; 7204 } 7205 7206 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7207 { 7208 struct seq_file *seq = file->private_data; 7209 struct loc_track *t = seq->private; 7210 7211 free_loc_track(t); 7212 return seq_release_private(inode, file); 7213 } 7214 7215 static const struct file_operations slab_debugfs_fops = { 7216 .open = slab_debug_trace_open, 7217 .read = seq_read, 7218 .llseek = seq_lseek, 7219 .release = slab_debug_trace_release, 7220 }; 7221 7222 static void debugfs_slab_add(struct kmem_cache *s) 7223 { 7224 struct dentry *slab_cache_dir; 7225 7226 if (unlikely(!slab_debugfs_root)) 7227 return; 7228 7229 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7230 7231 debugfs_create_file("alloc_traces", 0400, 7232 slab_cache_dir, s, &slab_debugfs_fops); 7233 7234 debugfs_create_file("free_traces", 0400, 7235 slab_cache_dir, s, &slab_debugfs_fops); 7236 } 7237 7238 void debugfs_slab_release(struct kmem_cache *s) 7239 { 7240 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7241 } 7242 7243 static int __init slab_debugfs_init(void) 7244 { 7245 struct kmem_cache *s; 7246 7247 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7248 7249 list_for_each_entry(s, &slab_caches, list) 7250 if (s->flags & SLAB_STORE_USER) 7251 debugfs_slab_add(s); 7252 7253 return 0; 7254 7255 } 7256 __initcall(slab_debugfs_init); 7257 #endif 7258 /* 7259 * The /proc/slabinfo ABI 7260 */ 7261 #ifdef CONFIG_SLUB_DEBUG 7262 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7263 { 7264 unsigned long nr_slabs = 0; 7265 unsigned long nr_objs = 0; 7266 unsigned long nr_free = 0; 7267 int node; 7268 struct kmem_cache_node *n; 7269 7270 for_each_kmem_cache_node(s, node, n) { 7271 nr_slabs += node_nr_slabs(n); 7272 nr_objs += node_nr_objs(n); 7273 nr_free += count_partial_free_approx(n); 7274 } 7275 7276 sinfo->active_objs = nr_objs - nr_free; 7277 sinfo->num_objs = nr_objs; 7278 sinfo->active_slabs = nr_slabs; 7279 sinfo->num_slabs = nr_slabs; 7280 sinfo->objects_per_slab = oo_objects(s->oo); 7281 sinfo->cache_order = oo_order(s->oo); 7282 } 7283 #endif /* CONFIG_SLUB_DEBUG */ 7284