1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/kfence.h> 32 #include <linux/memory.h> 33 #include <linux/math64.h> 34 #include <linux/fault-inject.h> 35 #include <linux/stacktrace.h> 36 #include <linux/prefetch.h> 37 #include <linux/memcontrol.h> 38 #include <linux/random.h> 39 #include <kunit/test.h> 40 41 #include <linux/debugfs.h> 42 #include <trace/events/kmem.h> 43 44 #include "internal.h" 45 46 /* 47 * Lock order: 48 * 1. slab_mutex (Global Mutex) 49 * 2. node->list_lock (Spinlock) 50 * 3. kmem_cache->cpu_slab->lock (Local lock) 51 * 4. slab_lock(page) (Only on some arches or for debugging) 52 * 5. object_map_lock (Only for debugging) 53 * 54 * slab_mutex 55 * 56 * The role of the slab_mutex is to protect the list of all the slabs 57 * and to synchronize major metadata changes to slab cache structures. 58 * Also synchronizes memory hotplug callbacks. 59 * 60 * slab_lock 61 * 62 * The slab_lock is a wrapper around the page lock, thus it is a bit 63 * spinlock. 64 * 65 * The slab_lock is only used for debugging and on arches that do not 66 * have the ability to do a cmpxchg_double. It only protects: 67 * A. page->freelist -> List of object free in a page 68 * B. page->inuse -> Number of objects in use 69 * C. page->objects -> Number of objects in page 70 * D. page->frozen -> frozen state 71 * 72 * Frozen slabs 73 * 74 * If a slab is frozen then it is exempt from list management. It is not 75 * on any list except per cpu partial list. The processor that froze the 76 * slab is the one who can perform list operations on the page. Other 77 * processors may put objects onto the freelist but the processor that 78 * froze the slab is the only one that can retrieve the objects from the 79 * page's freelist. 80 * 81 * list_lock 82 * 83 * The list_lock protects the partial and full list on each node and 84 * the partial slab counter. If taken then no new slabs may be added or 85 * removed from the lists nor make the number of partial slabs be modified. 86 * (Note that the total number of slabs is an atomic value that may be 87 * modified without taking the list lock). 88 * 89 * The list_lock is a centralized lock and thus we avoid taking it as 90 * much as possible. As long as SLUB does not have to handle partial 91 * slabs, operations can continue without any centralized lock. F.e. 92 * allocating a long series of objects that fill up slabs does not require 93 * the list lock. 94 * 95 * cpu_slab->lock local lock 96 * 97 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 98 * except the stat counters. This is a percpu structure manipulated only by 99 * the local cpu, so the lock protects against being preempted or interrupted 100 * by an irq. Fast path operations rely on lockless operations instead. 101 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus 102 * prevent the lockless operations), so fastpath operations also need to take 103 * the lock and are no longer lockless. 104 * 105 * lockless fastpaths 106 * 107 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 108 * are fully lockless when satisfied from the percpu slab (and when 109 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 110 * They also don't disable preemption or migration or irqs. They rely on 111 * the transaction id (tid) field to detect being preempted or moved to 112 * another cpu. 113 * 114 * irq, preemption, migration considerations 115 * 116 * Interrupts are disabled as part of list_lock or local_lock operations, or 117 * around the slab_lock operation, in order to make the slab allocator safe 118 * to use in the context of an irq. 119 * 120 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 121 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 122 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 123 * doesn't have to be revalidated in each section protected by the local lock. 124 * 125 * SLUB assigns one slab for allocation to each processor. 126 * Allocations only occur from these slabs called cpu slabs. 127 * 128 * Slabs with free elements are kept on a partial list and during regular 129 * operations no list for full slabs is used. If an object in a full slab is 130 * freed then the slab will show up again on the partial lists. 131 * We track full slabs for debugging purposes though because otherwise we 132 * cannot scan all objects. 133 * 134 * Slabs are freed when they become empty. Teardown and setup is 135 * minimal so we rely on the page allocators per cpu caches for 136 * fast frees and allocs. 137 * 138 * page->frozen The slab is frozen and exempt from list processing. 139 * This means that the slab is dedicated to a purpose 140 * such as satisfying allocations for a specific 141 * processor. Objects may be freed in the slab while 142 * it is frozen but slab_free will then skip the usual 143 * list operations. It is up to the processor holding 144 * the slab to integrate the slab into the slab lists 145 * when the slab is no longer needed. 146 * 147 * One use of this flag is to mark slabs that are 148 * used for allocations. Then such a slab becomes a cpu 149 * slab. The cpu slab may be equipped with an additional 150 * freelist that allows lockless access to 151 * free objects in addition to the regular freelist 152 * that requires the slab lock. 153 * 154 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 155 * options set. This moves slab handling out of 156 * the fast path and disables lockless freelists. 157 */ 158 159 /* 160 * We could simply use migrate_disable()/enable() but as long as it's a 161 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 162 */ 163 #ifndef CONFIG_PREEMPT_RT 164 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 165 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 166 #else 167 #define slub_get_cpu_ptr(var) \ 168 ({ \ 169 migrate_disable(); \ 170 this_cpu_ptr(var); \ 171 }) 172 #define slub_put_cpu_ptr(var) \ 173 do { \ 174 (void)(var); \ 175 migrate_enable(); \ 176 } while (0) 177 #endif 178 179 #ifdef CONFIG_SLUB_DEBUG 180 #ifdef CONFIG_SLUB_DEBUG_ON 181 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 182 #else 183 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 184 #endif 185 #endif /* CONFIG_SLUB_DEBUG */ 186 187 static inline bool kmem_cache_debug(struct kmem_cache *s) 188 { 189 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 190 } 191 192 void *fixup_red_left(struct kmem_cache *s, void *p) 193 { 194 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 195 p += s->red_left_pad; 196 197 return p; 198 } 199 200 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 201 { 202 #ifdef CONFIG_SLUB_CPU_PARTIAL 203 return !kmem_cache_debug(s); 204 #else 205 return false; 206 #endif 207 } 208 209 /* 210 * Issues still to be resolved: 211 * 212 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 213 * 214 * - Variable sizing of the per node arrays 215 */ 216 217 /* Enable to log cmpxchg failures */ 218 #undef SLUB_DEBUG_CMPXCHG 219 220 /* 221 * Minimum number of partial slabs. These will be left on the partial 222 * lists even if they are empty. kmem_cache_shrink may reclaim them. 223 */ 224 #define MIN_PARTIAL 5 225 226 /* 227 * Maximum number of desirable partial slabs. 228 * The existence of more partial slabs makes kmem_cache_shrink 229 * sort the partial list by the number of objects in use. 230 */ 231 #define MAX_PARTIAL 10 232 233 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 234 SLAB_POISON | SLAB_STORE_USER) 235 236 /* 237 * These debug flags cannot use CMPXCHG because there might be consistency 238 * issues when checking or reading debug information 239 */ 240 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 241 SLAB_TRACE) 242 243 244 /* 245 * Debugging flags that require metadata to be stored in the slab. These get 246 * disabled when slub_debug=O is used and a cache's min order increases with 247 * metadata. 248 */ 249 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 250 251 #define OO_SHIFT 16 252 #define OO_MASK ((1 << OO_SHIFT) - 1) 253 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 254 255 /* Internal SLUB flags */ 256 /* Poison object */ 257 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 258 /* Use cmpxchg_double */ 259 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 260 261 /* 262 * Tracking user of a slab. 263 */ 264 #define TRACK_ADDRS_COUNT 16 265 struct track { 266 unsigned long addr; /* Called from address */ 267 #ifdef CONFIG_STACKTRACE 268 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 269 #endif 270 int cpu; /* Was running on cpu */ 271 int pid; /* Pid context */ 272 unsigned long when; /* When did the operation occur */ 273 }; 274 275 enum track_item { TRACK_ALLOC, TRACK_FREE }; 276 277 #ifdef CONFIG_SYSFS 278 static int sysfs_slab_add(struct kmem_cache *); 279 static int sysfs_slab_alias(struct kmem_cache *, const char *); 280 #else 281 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 282 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 283 { return 0; } 284 #endif 285 286 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 287 static void debugfs_slab_add(struct kmem_cache *); 288 #else 289 static inline void debugfs_slab_add(struct kmem_cache *s) { } 290 #endif 291 292 static inline void stat(const struct kmem_cache *s, enum stat_item si) 293 { 294 #ifdef CONFIG_SLUB_STATS 295 /* 296 * The rmw is racy on a preemptible kernel but this is acceptable, so 297 * avoid this_cpu_add()'s irq-disable overhead. 298 */ 299 raw_cpu_inc(s->cpu_slab->stat[si]); 300 #endif 301 } 302 303 /* 304 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 305 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 306 * differ during memory hotplug/hotremove operations. 307 * Protected by slab_mutex. 308 */ 309 static nodemask_t slab_nodes; 310 311 /******************************************************************** 312 * Core slab cache functions 313 *******************************************************************/ 314 315 /* 316 * Returns freelist pointer (ptr). With hardening, this is obfuscated 317 * with an XOR of the address where the pointer is held and a per-cache 318 * random number. 319 */ 320 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 321 unsigned long ptr_addr) 322 { 323 #ifdef CONFIG_SLAB_FREELIST_HARDENED 324 /* 325 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 326 * Normally, this doesn't cause any issues, as both set_freepointer() 327 * and get_freepointer() are called with a pointer with the same tag. 328 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 329 * example, when __free_slub() iterates over objects in a cache, it 330 * passes untagged pointers to check_object(). check_object() in turns 331 * calls get_freepointer() with an untagged pointer, which causes the 332 * freepointer to be restored incorrectly. 333 */ 334 return (void *)((unsigned long)ptr ^ s->random ^ 335 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 336 #else 337 return ptr; 338 #endif 339 } 340 341 /* Returns the freelist pointer recorded at location ptr_addr. */ 342 static inline void *freelist_dereference(const struct kmem_cache *s, 343 void *ptr_addr) 344 { 345 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 346 (unsigned long)ptr_addr); 347 } 348 349 static inline void *get_freepointer(struct kmem_cache *s, void *object) 350 { 351 object = kasan_reset_tag(object); 352 return freelist_dereference(s, object + s->offset); 353 } 354 355 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 356 { 357 prefetch(object + s->offset); 358 } 359 360 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 361 { 362 unsigned long freepointer_addr; 363 void *p; 364 365 if (!debug_pagealloc_enabled_static()) 366 return get_freepointer(s, object); 367 368 object = kasan_reset_tag(object); 369 freepointer_addr = (unsigned long)object + s->offset; 370 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 371 return freelist_ptr(s, p, freepointer_addr); 372 } 373 374 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 375 { 376 unsigned long freeptr_addr = (unsigned long)object + s->offset; 377 378 #ifdef CONFIG_SLAB_FREELIST_HARDENED 379 BUG_ON(object == fp); /* naive detection of double free or corruption */ 380 #endif 381 382 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 383 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 384 } 385 386 /* Loop over all objects in a slab */ 387 #define for_each_object(__p, __s, __addr, __objects) \ 388 for (__p = fixup_red_left(__s, __addr); \ 389 __p < (__addr) + (__objects) * (__s)->size; \ 390 __p += (__s)->size) 391 392 static inline unsigned int order_objects(unsigned int order, unsigned int size) 393 { 394 return ((unsigned int)PAGE_SIZE << order) / size; 395 } 396 397 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 398 unsigned int size) 399 { 400 struct kmem_cache_order_objects x = { 401 (order << OO_SHIFT) + order_objects(order, size) 402 }; 403 404 return x; 405 } 406 407 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 408 { 409 return x.x >> OO_SHIFT; 410 } 411 412 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 413 { 414 return x.x & OO_MASK; 415 } 416 417 /* 418 * Per slab locking using the pagelock 419 */ 420 static __always_inline void __slab_lock(struct page *page) 421 { 422 VM_BUG_ON_PAGE(PageTail(page), page); 423 bit_spin_lock(PG_locked, &page->flags); 424 } 425 426 static __always_inline void __slab_unlock(struct page *page) 427 { 428 VM_BUG_ON_PAGE(PageTail(page), page); 429 __bit_spin_unlock(PG_locked, &page->flags); 430 } 431 432 static __always_inline void slab_lock(struct page *page, unsigned long *flags) 433 { 434 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 435 local_irq_save(*flags); 436 __slab_lock(page); 437 } 438 439 static __always_inline void slab_unlock(struct page *page, unsigned long *flags) 440 { 441 __slab_unlock(page); 442 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 443 local_irq_restore(*flags); 444 } 445 446 /* 447 * Interrupts must be disabled (for the fallback code to work right), typically 448 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different 449 * so we disable interrupts as part of slab_[un]lock(). 450 */ 451 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 452 void *freelist_old, unsigned long counters_old, 453 void *freelist_new, unsigned long counters_new, 454 const char *n) 455 { 456 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 457 lockdep_assert_irqs_disabled(); 458 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 459 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 460 if (s->flags & __CMPXCHG_DOUBLE) { 461 if (cmpxchg_double(&page->freelist, &page->counters, 462 freelist_old, counters_old, 463 freelist_new, counters_new)) 464 return true; 465 } else 466 #endif 467 { 468 /* init to 0 to prevent spurious warnings */ 469 unsigned long flags = 0; 470 471 slab_lock(page, &flags); 472 if (page->freelist == freelist_old && 473 page->counters == counters_old) { 474 page->freelist = freelist_new; 475 page->counters = counters_new; 476 slab_unlock(page, &flags); 477 return true; 478 } 479 slab_unlock(page, &flags); 480 } 481 482 cpu_relax(); 483 stat(s, CMPXCHG_DOUBLE_FAIL); 484 485 #ifdef SLUB_DEBUG_CMPXCHG 486 pr_info("%s %s: cmpxchg double redo ", n, s->name); 487 #endif 488 489 return false; 490 } 491 492 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 493 void *freelist_old, unsigned long counters_old, 494 void *freelist_new, unsigned long counters_new, 495 const char *n) 496 { 497 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 498 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 499 if (s->flags & __CMPXCHG_DOUBLE) { 500 if (cmpxchg_double(&page->freelist, &page->counters, 501 freelist_old, counters_old, 502 freelist_new, counters_new)) 503 return true; 504 } else 505 #endif 506 { 507 unsigned long flags; 508 509 local_irq_save(flags); 510 __slab_lock(page); 511 if (page->freelist == freelist_old && 512 page->counters == counters_old) { 513 page->freelist = freelist_new; 514 page->counters = counters_new; 515 __slab_unlock(page); 516 local_irq_restore(flags); 517 return true; 518 } 519 __slab_unlock(page); 520 local_irq_restore(flags); 521 } 522 523 cpu_relax(); 524 stat(s, CMPXCHG_DOUBLE_FAIL); 525 526 #ifdef SLUB_DEBUG_CMPXCHG 527 pr_info("%s %s: cmpxchg double redo ", n, s->name); 528 #endif 529 530 return false; 531 } 532 533 #ifdef CONFIG_SLUB_DEBUG 534 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 535 static DEFINE_RAW_SPINLOCK(object_map_lock); 536 537 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 538 struct page *page) 539 { 540 void *addr = page_address(page); 541 void *p; 542 543 bitmap_zero(obj_map, page->objects); 544 545 for (p = page->freelist; p; p = get_freepointer(s, p)) 546 set_bit(__obj_to_index(s, addr, p), obj_map); 547 } 548 549 #if IS_ENABLED(CONFIG_KUNIT) 550 static bool slab_add_kunit_errors(void) 551 { 552 struct kunit_resource *resource; 553 554 if (likely(!current->kunit_test)) 555 return false; 556 557 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 558 if (!resource) 559 return false; 560 561 (*(int *)resource->data)++; 562 kunit_put_resource(resource); 563 return true; 564 } 565 #else 566 static inline bool slab_add_kunit_errors(void) { return false; } 567 #endif 568 569 /* 570 * Determine a map of object in use on a page. 571 * 572 * Node listlock must be held to guarantee that the page does 573 * not vanish from under us. 574 */ 575 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 576 __acquires(&object_map_lock) 577 { 578 VM_BUG_ON(!irqs_disabled()); 579 580 raw_spin_lock(&object_map_lock); 581 582 __fill_map(object_map, s, page); 583 584 return object_map; 585 } 586 587 static void put_map(unsigned long *map) __releases(&object_map_lock) 588 { 589 VM_BUG_ON(map != object_map); 590 raw_spin_unlock(&object_map_lock); 591 } 592 593 static inline unsigned int size_from_object(struct kmem_cache *s) 594 { 595 if (s->flags & SLAB_RED_ZONE) 596 return s->size - s->red_left_pad; 597 598 return s->size; 599 } 600 601 static inline void *restore_red_left(struct kmem_cache *s, void *p) 602 { 603 if (s->flags & SLAB_RED_ZONE) 604 p -= s->red_left_pad; 605 606 return p; 607 } 608 609 /* 610 * Debug settings: 611 */ 612 #if defined(CONFIG_SLUB_DEBUG_ON) 613 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 614 #else 615 static slab_flags_t slub_debug; 616 #endif 617 618 static char *slub_debug_string; 619 static int disable_higher_order_debug; 620 621 /* 622 * slub is about to manipulate internal object metadata. This memory lies 623 * outside the range of the allocated object, so accessing it would normally 624 * be reported by kasan as a bounds error. metadata_access_enable() is used 625 * to tell kasan that these accesses are OK. 626 */ 627 static inline void metadata_access_enable(void) 628 { 629 kasan_disable_current(); 630 } 631 632 static inline void metadata_access_disable(void) 633 { 634 kasan_enable_current(); 635 } 636 637 /* 638 * Object debugging 639 */ 640 641 /* Verify that a pointer has an address that is valid within a slab page */ 642 static inline int check_valid_pointer(struct kmem_cache *s, 643 struct page *page, void *object) 644 { 645 void *base; 646 647 if (!object) 648 return 1; 649 650 base = page_address(page); 651 object = kasan_reset_tag(object); 652 object = restore_red_left(s, object); 653 if (object < base || object >= base + page->objects * s->size || 654 (object - base) % s->size) { 655 return 0; 656 } 657 658 return 1; 659 } 660 661 static void print_section(char *level, char *text, u8 *addr, 662 unsigned int length) 663 { 664 metadata_access_enable(); 665 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 666 16, 1, kasan_reset_tag((void *)addr), length, 1); 667 metadata_access_disable(); 668 } 669 670 /* 671 * See comment in calculate_sizes(). 672 */ 673 static inline bool freeptr_outside_object(struct kmem_cache *s) 674 { 675 return s->offset >= s->inuse; 676 } 677 678 /* 679 * Return offset of the end of info block which is inuse + free pointer if 680 * not overlapping with object. 681 */ 682 static inline unsigned int get_info_end(struct kmem_cache *s) 683 { 684 if (freeptr_outside_object(s)) 685 return s->inuse + sizeof(void *); 686 else 687 return s->inuse; 688 } 689 690 static struct track *get_track(struct kmem_cache *s, void *object, 691 enum track_item alloc) 692 { 693 struct track *p; 694 695 p = object + get_info_end(s); 696 697 return kasan_reset_tag(p + alloc); 698 } 699 700 static void set_track(struct kmem_cache *s, void *object, 701 enum track_item alloc, unsigned long addr) 702 { 703 struct track *p = get_track(s, object, alloc); 704 705 if (addr) { 706 #ifdef CONFIG_STACKTRACE 707 unsigned int nr_entries; 708 709 metadata_access_enable(); 710 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), 711 TRACK_ADDRS_COUNT, 3); 712 metadata_access_disable(); 713 714 if (nr_entries < TRACK_ADDRS_COUNT) 715 p->addrs[nr_entries] = 0; 716 #endif 717 p->addr = addr; 718 p->cpu = smp_processor_id(); 719 p->pid = current->pid; 720 p->when = jiffies; 721 } else { 722 memset(p, 0, sizeof(struct track)); 723 } 724 } 725 726 static void init_tracking(struct kmem_cache *s, void *object) 727 { 728 if (!(s->flags & SLAB_STORE_USER)) 729 return; 730 731 set_track(s, object, TRACK_FREE, 0UL); 732 set_track(s, object, TRACK_ALLOC, 0UL); 733 } 734 735 static void print_track(const char *s, struct track *t, unsigned long pr_time) 736 { 737 if (!t->addr) 738 return; 739 740 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 741 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 742 #ifdef CONFIG_STACKTRACE 743 { 744 int i; 745 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 746 if (t->addrs[i]) 747 pr_err("\t%pS\n", (void *)t->addrs[i]); 748 else 749 break; 750 } 751 #endif 752 } 753 754 void print_tracking(struct kmem_cache *s, void *object) 755 { 756 unsigned long pr_time = jiffies; 757 if (!(s->flags & SLAB_STORE_USER)) 758 return; 759 760 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 761 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 762 } 763 764 static void print_page_info(struct page *page) 765 { 766 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n", 767 page, page->objects, page->inuse, page->freelist, 768 page->flags, &page->flags); 769 770 } 771 772 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 773 { 774 struct va_format vaf; 775 va_list args; 776 777 va_start(args, fmt); 778 vaf.fmt = fmt; 779 vaf.va = &args; 780 pr_err("=============================================================================\n"); 781 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 782 pr_err("-----------------------------------------------------------------------------\n\n"); 783 va_end(args); 784 } 785 786 __printf(2, 3) 787 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 788 { 789 struct va_format vaf; 790 va_list args; 791 792 if (slab_add_kunit_errors()) 793 return; 794 795 va_start(args, fmt); 796 vaf.fmt = fmt; 797 vaf.va = &args; 798 pr_err("FIX %s: %pV\n", s->name, &vaf); 799 va_end(args); 800 } 801 802 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 803 void **freelist, void *nextfree) 804 { 805 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 806 !check_valid_pointer(s, page, nextfree) && freelist) { 807 object_err(s, page, *freelist, "Freechain corrupt"); 808 *freelist = NULL; 809 slab_fix(s, "Isolate corrupted freechain"); 810 return true; 811 } 812 813 return false; 814 } 815 816 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 817 { 818 unsigned int off; /* Offset of last byte */ 819 u8 *addr = page_address(page); 820 821 print_tracking(s, p); 822 823 print_page_info(page); 824 825 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 826 p, p - addr, get_freepointer(s, p)); 827 828 if (s->flags & SLAB_RED_ZONE) 829 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 830 s->red_left_pad); 831 else if (p > addr + 16) 832 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 833 834 print_section(KERN_ERR, "Object ", p, 835 min_t(unsigned int, s->object_size, PAGE_SIZE)); 836 if (s->flags & SLAB_RED_ZONE) 837 print_section(KERN_ERR, "Redzone ", p + s->object_size, 838 s->inuse - s->object_size); 839 840 off = get_info_end(s); 841 842 if (s->flags & SLAB_STORE_USER) 843 off += 2 * sizeof(struct track); 844 845 off += kasan_metadata_size(s); 846 847 if (off != size_from_object(s)) 848 /* Beginning of the filler is the free pointer */ 849 print_section(KERN_ERR, "Padding ", p + off, 850 size_from_object(s) - off); 851 852 dump_stack(); 853 } 854 855 void object_err(struct kmem_cache *s, struct page *page, 856 u8 *object, char *reason) 857 { 858 if (slab_add_kunit_errors()) 859 return; 860 861 slab_bug(s, "%s", reason); 862 print_trailer(s, page, object); 863 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 864 } 865 866 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 867 const char *fmt, ...) 868 { 869 va_list args; 870 char buf[100]; 871 872 if (slab_add_kunit_errors()) 873 return; 874 875 va_start(args, fmt); 876 vsnprintf(buf, sizeof(buf), fmt, args); 877 va_end(args); 878 slab_bug(s, "%s", buf); 879 print_page_info(page); 880 dump_stack(); 881 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 882 } 883 884 static void init_object(struct kmem_cache *s, void *object, u8 val) 885 { 886 u8 *p = kasan_reset_tag(object); 887 888 if (s->flags & SLAB_RED_ZONE) 889 memset(p - s->red_left_pad, val, s->red_left_pad); 890 891 if (s->flags & __OBJECT_POISON) { 892 memset(p, POISON_FREE, s->object_size - 1); 893 p[s->object_size - 1] = POISON_END; 894 } 895 896 if (s->flags & SLAB_RED_ZONE) 897 memset(p + s->object_size, val, s->inuse - s->object_size); 898 } 899 900 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 901 void *from, void *to) 902 { 903 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 904 memset(from, data, to - from); 905 } 906 907 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 908 u8 *object, char *what, 909 u8 *start, unsigned int value, unsigned int bytes) 910 { 911 u8 *fault; 912 u8 *end; 913 u8 *addr = page_address(page); 914 915 metadata_access_enable(); 916 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 917 metadata_access_disable(); 918 if (!fault) 919 return 1; 920 921 end = start + bytes; 922 while (end > fault && end[-1] == value) 923 end--; 924 925 if (slab_add_kunit_errors()) 926 goto skip_bug_print; 927 928 slab_bug(s, "%s overwritten", what); 929 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 930 fault, end - 1, fault - addr, 931 fault[0], value); 932 print_trailer(s, page, object); 933 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 934 935 skip_bug_print: 936 restore_bytes(s, what, value, fault, end); 937 return 0; 938 } 939 940 /* 941 * Object layout: 942 * 943 * object address 944 * Bytes of the object to be managed. 945 * If the freepointer may overlay the object then the free 946 * pointer is at the middle of the object. 947 * 948 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 949 * 0xa5 (POISON_END) 950 * 951 * object + s->object_size 952 * Padding to reach word boundary. This is also used for Redzoning. 953 * Padding is extended by another word if Redzoning is enabled and 954 * object_size == inuse. 955 * 956 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 957 * 0xcc (RED_ACTIVE) for objects in use. 958 * 959 * object + s->inuse 960 * Meta data starts here. 961 * 962 * A. Free pointer (if we cannot overwrite object on free) 963 * B. Tracking data for SLAB_STORE_USER 964 * C. Padding to reach required alignment boundary or at minimum 965 * one word if debugging is on to be able to detect writes 966 * before the word boundary. 967 * 968 * Padding is done using 0x5a (POISON_INUSE) 969 * 970 * object + s->size 971 * Nothing is used beyond s->size. 972 * 973 * If slabcaches are merged then the object_size and inuse boundaries are mostly 974 * ignored. And therefore no slab options that rely on these boundaries 975 * may be used with merged slabcaches. 976 */ 977 978 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 979 { 980 unsigned long off = get_info_end(s); /* The end of info */ 981 982 if (s->flags & SLAB_STORE_USER) 983 /* We also have user information there */ 984 off += 2 * sizeof(struct track); 985 986 off += kasan_metadata_size(s); 987 988 if (size_from_object(s) == off) 989 return 1; 990 991 return check_bytes_and_report(s, page, p, "Object padding", 992 p + off, POISON_INUSE, size_from_object(s) - off); 993 } 994 995 /* Check the pad bytes at the end of a slab page */ 996 static int slab_pad_check(struct kmem_cache *s, struct page *page) 997 { 998 u8 *start; 999 u8 *fault; 1000 u8 *end; 1001 u8 *pad; 1002 int length; 1003 int remainder; 1004 1005 if (!(s->flags & SLAB_POISON)) 1006 return 1; 1007 1008 start = page_address(page); 1009 length = page_size(page); 1010 end = start + length; 1011 remainder = length % s->size; 1012 if (!remainder) 1013 return 1; 1014 1015 pad = end - remainder; 1016 metadata_access_enable(); 1017 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1018 metadata_access_disable(); 1019 if (!fault) 1020 return 1; 1021 while (end > fault && end[-1] == POISON_INUSE) 1022 end--; 1023 1024 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1025 fault, end - 1, fault - start); 1026 print_section(KERN_ERR, "Padding ", pad, remainder); 1027 1028 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1029 return 0; 1030 } 1031 1032 static int check_object(struct kmem_cache *s, struct page *page, 1033 void *object, u8 val) 1034 { 1035 u8 *p = object; 1036 u8 *endobject = object + s->object_size; 1037 1038 if (s->flags & SLAB_RED_ZONE) { 1039 if (!check_bytes_and_report(s, page, object, "Left Redzone", 1040 object - s->red_left_pad, val, s->red_left_pad)) 1041 return 0; 1042 1043 if (!check_bytes_and_report(s, page, object, "Right Redzone", 1044 endobject, val, s->inuse - s->object_size)) 1045 return 0; 1046 } else { 1047 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1048 check_bytes_and_report(s, page, p, "Alignment padding", 1049 endobject, POISON_INUSE, 1050 s->inuse - s->object_size); 1051 } 1052 } 1053 1054 if (s->flags & SLAB_POISON) { 1055 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1056 (!check_bytes_and_report(s, page, p, "Poison", p, 1057 POISON_FREE, s->object_size - 1) || 1058 !check_bytes_and_report(s, page, p, "End Poison", 1059 p + s->object_size - 1, POISON_END, 1))) 1060 return 0; 1061 /* 1062 * check_pad_bytes cleans up on its own. 1063 */ 1064 check_pad_bytes(s, page, p); 1065 } 1066 1067 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1068 /* 1069 * Object and freepointer overlap. Cannot check 1070 * freepointer while object is allocated. 1071 */ 1072 return 1; 1073 1074 /* Check free pointer validity */ 1075 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 1076 object_err(s, page, p, "Freepointer corrupt"); 1077 /* 1078 * No choice but to zap it and thus lose the remainder 1079 * of the free objects in this slab. May cause 1080 * another error because the object count is now wrong. 1081 */ 1082 set_freepointer(s, p, NULL); 1083 return 0; 1084 } 1085 return 1; 1086 } 1087 1088 static int check_slab(struct kmem_cache *s, struct page *page) 1089 { 1090 int maxobj; 1091 1092 if (!PageSlab(page)) { 1093 slab_err(s, page, "Not a valid slab page"); 1094 return 0; 1095 } 1096 1097 maxobj = order_objects(compound_order(page), s->size); 1098 if (page->objects > maxobj) { 1099 slab_err(s, page, "objects %u > max %u", 1100 page->objects, maxobj); 1101 return 0; 1102 } 1103 if (page->inuse > page->objects) { 1104 slab_err(s, page, "inuse %u > max %u", 1105 page->inuse, page->objects); 1106 return 0; 1107 } 1108 /* Slab_pad_check fixes things up after itself */ 1109 slab_pad_check(s, page); 1110 return 1; 1111 } 1112 1113 /* 1114 * Determine if a certain object on a page is on the freelist. Must hold the 1115 * slab lock to guarantee that the chains are in a consistent state. 1116 */ 1117 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 1118 { 1119 int nr = 0; 1120 void *fp; 1121 void *object = NULL; 1122 int max_objects; 1123 1124 fp = page->freelist; 1125 while (fp && nr <= page->objects) { 1126 if (fp == search) 1127 return 1; 1128 if (!check_valid_pointer(s, page, fp)) { 1129 if (object) { 1130 object_err(s, page, object, 1131 "Freechain corrupt"); 1132 set_freepointer(s, object, NULL); 1133 } else { 1134 slab_err(s, page, "Freepointer corrupt"); 1135 page->freelist = NULL; 1136 page->inuse = page->objects; 1137 slab_fix(s, "Freelist cleared"); 1138 return 0; 1139 } 1140 break; 1141 } 1142 object = fp; 1143 fp = get_freepointer(s, object); 1144 nr++; 1145 } 1146 1147 max_objects = order_objects(compound_order(page), s->size); 1148 if (max_objects > MAX_OBJS_PER_PAGE) 1149 max_objects = MAX_OBJS_PER_PAGE; 1150 1151 if (page->objects != max_objects) { 1152 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 1153 page->objects, max_objects); 1154 page->objects = max_objects; 1155 slab_fix(s, "Number of objects adjusted"); 1156 } 1157 if (page->inuse != page->objects - nr) { 1158 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1159 page->inuse, page->objects - nr); 1160 page->inuse = page->objects - nr; 1161 slab_fix(s, "Object count adjusted"); 1162 } 1163 return search == NULL; 1164 } 1165 1166 static void trace(struct kmem_cache *s, struct page *page, void *object, 1167 int alloc) 1168 { 1169 if (s->flags & SLAB_TRACE) { 1170 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1171 s->name, 1172 alloc ? "alloc" : "free", 1173 object, page->inuse, 1174 page->freelist); 1175 1176 if (!alloc) 1177 print_section(KERN_INFO, "Object ", (void *)object, 1178 s->object_size); 1179 1180 dump_stack(); 1181 } 1182 } 1183 1184 /* 1185 * Tracking of fully allocated slabs for debugging purposes. 1186 */ 1187 static void add_full(struct kmem_cache *s, 1188 struct kmem_cache_node *n, struct page *page) 1189 { 1190 if (!(s->flags & SLAB_STORE_USER)) 1191 return; 1192 1193 lockdep_assert_held(&n->list_lock); 1194 list_add(&page->slab_list, &n->full); 1195 } 1196 1197 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1198 { 1199 if (!(s->flags & SLAB_STORE_USER)) 1200 return; 1201 1202 lockdep_assert_held(&n->list_lock); 1203 list_del(&page->slab_list); 1204 } 1205 1206 /* Tracking of the number of slabs for debugging purposes */ 1207 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1208 { 1209 struct kmem_cache_node *n = get_node(s, node); 1210 1211 return atomic_long_read(&n->nr_slabs); 1212 } 1213 1214 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1215 { 1216 return atomic_long_read(&n->nr_slabs); 1217 } 1218 1219 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1220 { 1221 struct kmem_cache_node *n = get_node(s, node); 1222 1223 /* 1224 * May be called early in order to allocate a slab for the 1225 * kmem_cache_node structure. Solve the chicken-egg 1226 * dilemma by deferring the increment of the count during 1227 * bootstrap (see early_kmem_cache_node_alloc). 1228 */ 1229 if (likely(n)) { 1230 atomic_long_inc(&n->nr_slabs); 1231 atomic_long_add(objects, &n->total_objects); 1232 } 1233 } 1234 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1235 { 1236 struct kmem_cache_node *n = get_node(s, node); 1237 1238 atomic_long_dec(&n->nr_slabs); 1239 atomic_long_sub(objects, &n->total_objects); 1240 } 1241 1242 /* Object debug checks for alloc/free paths */ 1243 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1244 void *object) 1245 { 1246 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1247 return; 1248 1249 init_object(s, object, SLUB_RED_INACTIVE); 1250 init_tracking(s, object); 1251 } 1252 1253 static 1254 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1255 { 1256 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1257 return; 1258 1259 metadata_access_enable(); 1260 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page)); 1261 metadata_access_disable(); 1262 } 1263 1264 static inline int alloc_consistency_checks(struct kmem_cache *s, 1265 struct page *page, void *object) 1266 { 1267 if (!check_slab(s, page)) 1268 return 0; 1269 1270 if (!check_valid_pointer(s, page, object)) { 1271 object_err(s, page, object, "Freelist Pointer check fails"); 1272 return 0; 1273 } 1274 1275 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1276 return 0; 1277 1278 return 1; 1279 } 1280 1281 static noinline int alloc_debug_processing(struct kmem_cache *s, 1282 struct page *page, 1283 void *object, unsigned long addr) 1284 { 1285 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1286 if (!alloc_consistency_checks(s, page, object)) 1287 goto bad; 1288 } 1289 1290 /* Success perform special debug activities for allocs */ 1291 if (s->flags & SLAB_STORE_USER) 1292 set_track(s, object, TRACK_ALLOC, addr); 1293 trace(s, page, object, 1); 1294 init_object(s, object, SLUB_RED_ACTIVE); 1295 return 1; 1296 1297 bad: 1298 if (PageSlab(page)) { 1299 /* 1300 * If this is a slab page then lets do the best we can 1301 * to avoid issues in the future. Marking all objects 1302 * as used avoids touching the remaining objects. 1303 */ 1304 slab_fix(s, "Marking all objects used"); 1305 page->inuse = page->objects; 1306 page->freelist = NULL; 1307 } 1308 return 0; 1309 } 1310 1311 static inline int free_consistency_checks(struct kmem_cache *s, 1312 struct page *page, void *object, unsigned long addr) 1313 { 1314 if (!check_valid_pointer(s, page, object)) { 1315 slab_err(s, page, "Invalid object pointer 0x%p", object); 1316 return 0; 1317 } 1318 1319 if (on_freelist(s, page, object)) { 1320 object_err(s, page, object, "Object already free"); 1321 return 0; 1322 } 1323 1324 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1325 return 0; 1326 1327 if (unlikely(s != page->slab_cache)) { 1328 if (!PageSlab(page)) { 1329 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1330 object); 1331 } else if (!page->slab_cache) { 1332 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1333 object); 1334 dump_stack(); 1335 } else 1336 object_err(s, page, object, 1337 "page slab pointer corrupt."); 1338 return 0; 1339 } 1340 return 1; 1341 } 1342 1343 /* Supports checking bulk free of a constructed freelist */ 1344 static noinline int free_debug_processing( 1345 struct kmem_cache *s, struct page *page, 1346 void *head, void *tail, int bulk_cnt, 1347 unsigned long addr) 1348 { 1349 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1350 void *object = head; 1351 int cnt = 0; 1352 unsigned long flags, flags2; 1353 int ret = 0; 1354 1355 spin_lock_irqsave(&n->list_lock, flags); 1356 slab_lock(page, &flags2); 1357 1358 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1359 if (!check_slab(s, page)) 1360 goto out; 1361 } 1362 1363 next_object: 1364 cnt++; 1365 1366 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1367 if (!free_consistency_checks(s, page, object, addr)) 1368 goto out; 1369 } 1370 1371 if (s->flags & SLAB_STORE_USER) 1372 set_track(s, object, TRACK_FREE, addr); 1373 trace(s, page, object, 0); 1374 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1375 init_object(s, object, SLUB_RED_INACTIVE); 1376 1377 /* Reached end of constructed freelist yet? */ 1378 if (object != tail) { 1379 object = get_freepointer(s, object); 1380 goto next_object; 1381 } 1382 ret = 1; 1383 1384 out: 1385 if (cnt != bulk_cnt) 1386 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1387 bulk_cnt, cnt); 1388 1389 slab_unlock(page, &flags2); 1390 spin_unlock_irqrestore(&n->list_lock, flags); 1391 if (!ret) 1392 slab_fix(s, "Object at 0x%p not freed", object); 1393 return ret; 1394 } 1395 1396 /* 1397 * Parse a block of slub_debug options. Blocks are delimited by ';' 1398 * 1399 * @str: start of block 1400 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1401 * @slabs: return start of list of slabs, or NULL when there's no list 1402 * @init: assume this is initial parsing and not per-kmem-create parsing 1403 * 1404 * returns the start of next block if there's any, or NULL 1405 */ 1406 static char * 1407 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1408 { 1409 bool higher_order_disable = false; 1410 1411 /* Skip any completely empty blocks */ 1412 while (*str && *str == ';') 1413 str++; 1414 1415 if (*str == ',') { 1416 /* 1417 * No options but restriction on slabs. This means full 1418 * debugging for slabs matching a pattern. 1419 */ 1420 *flags = DEBUG_DEFAULT_FLAGS; 1421 goto check_slabs; 1422 } 1423 *flags = 0; 1424 1425 /* Determine which debug features should be switched on */ 1426 for (; *str && *str != ',' && *str != ';'; str++) { 1427 switch (tolower(*str)) { 1428 case '-': 1429 *flags = 0; 1430 break; 1431 case 'f': 1432 *flags |= SLAB_CONSISTENCY_CHECKS; 1433 break; 1434 case 'z': 1435 *flags |= SLAB_RED_ZONE; 1436 break; 1437 case 'p': 1438 *flags |= SLAB_POISON; 1439 break; 1440 case 'u': 1441 *flags |= SLAB_STORE_USER; 1442 break; 1443 case 't': 1444 *flags |= SLAB_TRACE; 1445 break; 1446 case 'a': 1447 *flags |= SLAB_FAILSLAB; 1448 break; 1449 case 'o': 1450 /* 1451 * Avoid enabling debugging on caches if its minimum 1452 * order would increase as a result. 1453 */ 1454 higher_order_disable = true; 1455 break; 1456 default: 1457 if (init) 1458 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1459 } 1460 } 1461 check_slabs: 1462 if (*str == ',') 1463 *slabs = ++str; 1464 else 1465 *slabs = NULL; 1466 1467 /* Skip over the slab list */ 1468 while (*str && *str != ';') 1469 str++; 1470 1471 /* Skip any completely empty blocks */ 1472 while (*str && *str == ';') 1473 str++; 1474 1475 if (init && higher_order_disable) 1476 disable_higher_order_debug = 1; 1477 1478 if (*str) 1479 return str; 1480 else 1481 return NULL; 1482 } 1483 1484 static int __init setup_slub_debug(char *str) 1485 { 1486 slab_flags_t flags; 1487 slab_flags_t global_flags; 1488 char *saved_str; 1489 char *slab_list; 1490 bool global_slub_debug_changed = false; 1491 bool slab_list_specified = false; 1492 1493 global_flags = DEBUG_DEFAULT_FLAGS; 1494 if (*str++ != '=' || !*str) 1495 /* 1496 * No options specified. Switch on full debugging. 1497 */ 1498 goto out; 1499 1500 saved_str = str; 1501 while (str) { 1502 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1503 1504 if (!slab_list) { 1505 global_flags = flags; 1506 global_slub_debug_changed = true; 1507 } else { 1508 slab_list_specified = true; 1509 } 1510 } 1511 1512 /* 1513 * For backwards compatibility, a single list of flags with list of 1514 * slabs means debugging is only changed for those slabs, so the global 1515 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1516 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1517 * long as there is no option specifying flags without a slab list. 1518 */ 1519 if (slab_list_specified) { 1520 if (!global_slub_debug_changed) 1521 global_flags = slub_debug; 1522 slub_debug_string = saved_str; 1523 } 1524 out: 1525 slub_debug = global_flags; 1526 if (slub_debug != 0 || slub_debug_string) 1527 static_branch_enable(&slub_debug_enabled); 1528 else 1529 static_branch_disable(&slub_debug_enabled); 1530 if ((static_branch_unlikely(&init_on_alloc) || 1531 static_branch_unlikely(&init_on_free)) && 1532 (slub_debug & SLAB_POISON)) 1533 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1534 return 1; 1535 } 1536 1537 __setup("slub_debug", setup_slub_debug); 1538 1539 /* 1540 * kmem_cache_flags - apply debugging options to the cache 1541 * @object_size: the size of an object without meta data 1542 * @flags: flags to set 1543 * @name: name of the cache 1544 * 1545 * Debug option(s) are applied to @flags. In addition to the debug 1546 * option(s), if a slab name (or multiple) is specified i.e. 1547 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1548 * then only the select slabs will receive the debug option(s). 1549 */ 1550 slab_flags_t kmem_cache_flags(unsigned int object_size, 1551 slab_flags_t flags, const char *name) 1552 { 1553 char *iter; 1554 size_t len; 1555 char *next_block; 1556 slab_flags_t block_flags; 1557 slab_flags_t slub_debug_local = slub_debug; 1558 1559 /* 1560 * If the slab cache is for debugging (e.g. kmemleak) then 1561 * don't store user (stack trace) information by default, 1562 * but let the user enable it via the command line below. 1563 */ 1564 if (flags & SLAB_NOLEAKTRACE) 1565 slub_debug_local &= ~SLAB_STORE_USER; 1566 1567 len = strlen(name); 1568 next_block = slub_debug_string; 1569 /* Go through all blocks of debug options, see if any matches our slab's name */ 1570 while (next_block) { 1571 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1572 if (!iter) 1573 continue; 1574 /* Found a block that has a slab list, search it */ 1575 while (*iter) { 1576 char *end, *glob; 1577 size_t cmplen; 1578 1579 end = strchrnul(iter, ','); 1580 if (next_block && next_block < end) 1581 end = next_block - 1; 1582 1583 glob = strnchr(iter, end - iter, '*'); 1584 if (glob) 1585 cmplen = glob - iter; 1586 else 1587 cmplen = max_t(size_t, len, (end - iter)); 1588 1589 if (!strncmp(name, iter, cmplen)) { 1590 flags |= block_flags; 1591 return flags; 1592 } 1593 1594 if (!*end || *end == ';') 1595 break; 1596 iter = end + 1; 1597 } 1598 } 1599 1600 return flags | slub_debug_local; 1601 } 1602 #else /* !CONFIG_SLUB_DEBUG */ 1603 static inline void setup_object_debug(struct kmem_cache *s, 1604 struct page *page, void *object) {} 1605 static inline 1606 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1607 1608 static inline int alloc_debug_processing(struct kmem_cache *s, 1609 struct page *page, void *object, unsigned long addr) { return 0; } 1610 1611 static inline int free_debug_processing( 1612 struct kmem_cache *s, struct page *page, 1613 void *head, void *tail, int bulk_cnt, 1614 unsigned long addr) { return 0; } 1615 1616 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1617 { return 1; } 1618 static inline int check_object(struct kmem_cache *s, struct page *page, 1619 void *object, u8 val) { return 1; } 1620 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1621 struct page *page) {} 1622 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1623 struct page *page) {} 1624 slab_flags_t kmem_cache_flags(unsigned int object_size, 1625 slab_flags_t flags, const char *name) 1626 { 1627 return flags; 1628 } 1629 #define slub_debug 0 1630 1631 #define disable_higher_order_debug 0 1632 1633 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1634 { return 0; } 1635 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1636 { return 0; } 1637 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1638 int objects) {} 1639 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1640 int objects) {} 1641 1642 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 1643 void **freelist, void *nextfree) 1644 { 1645 return false; 1646 } 1647 #endif /* CONFIG_SLUB_DEBUG */ 1648 1649 /* 1650 * Hooks for other subsystems that check memory allocations. In a typical 1651 * production configuration these hooks all should produce no code at all. 1652 */ 1653 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1654 { 1655 ptr = kasan_kmalloc_large(ptr, size, flags); 1656 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1657 kmemleak_alloc(ptr, size, 1, flags); 1658 return ptr; 1659 } 1660 1661 static __always_inline void kfree_hook(void *x) 1662 { 1663 kmemleak_free(x); 1664 kasan_kfree_large(x); 1665 } 1666 1667 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1668 void *x, bool init) 1669 { 1670 kmemleak_free_recursive(x, s->flags); 1671 1672 debug_check_no_locks_freed(x, s->object_size); 1673 1674 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1675 debug_check_no_obj_freed(x, s->object_size); 1676 1677 /* Use KCSAN to help debug racy use-after-free. */ 1678 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1679 __kcsan_check_access(x, s->object_size, 1680 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1681 1682 /* 1683 * As memory initialization might be integrated into KASAN, 1684 * kasan_slab_free and initialization memset's must be 1685 * kept together to avoid discrepancies in behavior. 1686 * 1687 * The initialization memset's clear the object and the metadata, 1688 * but don't touch the SLAB redzone. 1689 */ 1690 if (init) { 1691 int rsize; 1692 1693 if (!kasan_has_integrated_init()) 1694 memset(kasan_reset_tag(x), 0, s->object_size); 1695 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1696 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1697 s->size - s->inuse - rsize); 1698 } 1699 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1700 return kasan_slab_free(s, x, init); 1701 } 1702 1703 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1704 void **head, void **tail, 1705 int *cnt) 1706 { 1707 1708 void *object; 1709 void *next = *head; 1710 void *old_tail = *tail ? *tail : *head; 1711 1712 if (is_kfence_address(next)) { 1713 slab_free_hook(s, next, false); 1714 return true; 1715 } 1716 1717 /* Head and tail of the reconstructed freelist */ 1718 *head = NULL; 1719 *tail = NULL; 1720 1721 do { 1722 object = next; 1723 next = get_freepointer(s, object); 1724 1725 /* If object's reuse doesn't have to be delayed */ 1726 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1727 /* Move object to the new freelist */ 1728 set_freepointer(s, object, *head); 1729 *head = object; 1730 if (!*tail) 1731 *tail = object; 1732 } else { 1733 /* 1734 * Adjust the reconstructed freelist depth 1735 * accordingly if object's reuse is delayed. 1736 */ 1737 --(*cnt); 1738 } 1739 } while (object != old_tail); 1740 1741 if (*head == *tail) 1742 *tail = NULL; 1743 1744 return *head != NULL; 1745 } 1746 1747 static void *setup_object(struct kmem_cache *s, struct page *page, 1748 void *object) 1749 { 1750 setup_object_debug(s, page, object); 1751 object = kasan_init_slab_obj(s, object); 1752 if (unlikely(s->ctor)) { 1753 kasan_unpoison_object_data(s, object); 1754 s->ctor(object); 1755 kasan_poison_object_data(s, object); 1756 } 1757 return object; 1758 } 1759 1760 /* 1761 * Slab allocation and freeing 1762 */ 1763 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1764 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1765 { 1766 struct page *page; 1767 unsigned int order = oo_order(oo); 1768 1769 if (node == NUMA_NO_NODE) 1770 page = alloc_pages(flags, order); 1771 else 1772 page = __alloc_pages_node(node, flags, order); 1773 1774 return page; 1775 } 1776 1777 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1778 /* Pre-initialize the random sequence cache */ 1779 static int init_cache_random_seq(struct kmem_cache *s) 1780 { 1781 unsigned int count = oo_objects(s->oo); 1782 int err; 1783 1784 /* Bailout if already initialised */ 1785 if (s->random_seq) 1786 return 0; 1787 1788 err = cache_random_seq_create(s, count, GFP_KERNEL); 1789 if (err) { 1790 pr_err("SLUB: Unable to initialize free list for %s\n", 1791 s->name); 1792 return err; 1793 } 1794 1795 /* Transform to an offset on the set of pages */ 1796 if (s->random_seq) { 1797 unsigned int i; 1798 1799 for (i = 0; i < count; i++) 1800 s->random_seq[i] *= s->size; 1801 } 1802 return 0; 1803 } 1804 1805 /* Initialize each random sequence freelist per cache */ 1806 static void __init init_freelist_randomization(void) 1807 { 1808 struct kmem_cache *s; 1809 1810 mutex_lock(&slab_mutex); 1811 1812 list_for_each_entry(s, &slab_caches, list) 1813 init_cache_random_seq(s); 1814 1815 mutex_unlock(&slab_mutex); 1816 } 1817 1818 /* Get the next entry on the pre-computed freelist randomized */ 1819 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1820 unsigned long *pos, void *start, 1821 unsigned long page_limit, 1822 unsigned long freelist_count) 1823 { 1824 unsigned int idx; 1825 1826 /* 1827 * If the target page allocation failed, the number of objects on the 1828 * page might be smaller than the usual size defined by the cache. 1829 */ 1830 do { 1831 idx = s->random_seq[*pos]; 1832 *pos += 1; 1833 if (*pos >= freelist_count) 1834 *pos = 0; 1835 } while (unlikely(idx >= page_limit)); 1836 1837 return (char *)start + idx; 1838 } 1839 1840 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1841 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1842 { 1843 void *start; 1844 void *cur; 1845 void *next; 1846 unsigned long idx, pos, page_limit, freelist_count; 1847 1848 if (page->objects < 2 || !s->random_seq) 1849 return false; 1850 1851 freelist_count = oo_objects(s->oo); 1852 pos = get_random_int() % freelist_count; 1853 1854 page_limit = page->objects * s->size; 1855 start = fixup_red_left(s, page_address(page)); 1856 1857 /* First entry is used as the base of the freelist */ 1858 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1859 freelist_count); 1860 cur = setup_object(s, page, cur); 1861 page->freelist = cur; 1862 1863 for (idx = 1; idx < page->objects; idx++) { 1864 next = next_freelist_entry(s, page, &pos, start, page_limit, 1865 freelist_count); 1866 next = setup_object(s, page, next); 1867 set_freepointer(s, cur, next); 1868 cur = next; 1869 } 1870 set_freepointer(s, cur, NULL); 1871 1872 return true; 1873 } 1874 #else 1875 static inline int init_cache_random_seq(struct kmem_cache *s) 1876 { 1877 return 0; 1878 } 1879 static inline void init_freelist_randomization(void) { } 1880 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1881 { 1882 return false; 1883 } 1884 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1885 1886 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1887 { 1888 struct page *page; 1889 struct kmem_cache_order_objects oo = s->oo; 1890 gfp_t alloc_gfp; 1891 void *start, *p, *next; 1892 int idx; 1893 bool shuffle; 1894 1895 flags &= gfp_allowed_mask; 1896 1897 flags |= s->allocflags; 1898 1899 /* 1900 * Let the initial higher-order allocation fail under memory pressure 1901 * so we fall-back to the minimum order allocation. 1902 */ 1903 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1904 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1905 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1906 1907 page = alloc_slab_page(s, alloc_gfp, node, oo); 1908 if (unlikely(!page)) { 1909 oo = s->min; 1910 alloc_gfp = flags; 1911 /* 1912 * Allocation may have failed due to fragmentation. 1913 * Try a lower order alloc if possible 1914 */ 1915 page = alloc_slab_page(s, alloc_gfp, node, oo); 1916 if (unlikely(!page)) 1917 goto out; 1918 stat(s, ORDER_FALLBACK); 1919 } 1920 1921 page->objects = oo_objects(oo); 1922 1923 account_slab_page(page, oo_order(oo), s, flags); 1924 1925 page->slab_cache = s; 1926 __SetPageSlab(page); 1927 if (page_is_pfmemalloc(page)) 1928 SetPageSlabPfmemalloc(page); 1929 1930 kasan_poison_slab(page); 1931 1932 start = page_address(page); 1933 1934 setup_page_debug(s, page, start); 1935 1936 shuffle = shuffle_freelist(s, page); 1937 1938 if (!shuffle) { 1939 start = fixup_red_left(s, start); 1940 start = setup_object(s, page, start); 1941 page->freelist = start; 1942 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1943 next = p + s->size; 1944 next = setup_object(s, page, next); 1945 set_freepointer(s, p, next); 1946 p = next; 1947 } 1948 set_freepointer(s, p, NULL); 1949 } 1950 1951 page->inuse = page->objects; 1952 page->frozen = 1; 1953 1954 out: 1955 if (!page) 1956 return NULL; 1957 1958 inc_slabs_node(s, page_to_nid(page), page->objects); 1959 1960 return page; 1961 } 1962 1963 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1964 { 1965 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 1966 flags = kmalloc_fix_flags(flags); 1967 1968 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 1969 1970 return allocate_slab(s, 1971 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1972 } 1973 1974 static void __free_slab(struct kmem_cache *s, struct page *page) 1975 { 1976 int order = compound_order(page); 1977 int pages = 1 << order; 1978 1979 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 1980 void *p; 1981 1982 slab_pad_check(s, page); 1983 for_each_object(p, s, page_address(page), 1984 page->objects) 1985 check_object(s, page, p, SLUB_RED_INACTIVE); 1986 } 1987 1988 __ClearPageSlabPfmemalloc(page); 1989 __ClearPageSlab(page); 1990 /* In union with page->mapping where page allocator expects NULL */ 1991 page->slab_cache = NULL; 1992 if (current->reclaim_state) 1993 current->reclaim_state->reclaimed_slab += pages; 1994 unaccount_slab_page(page, order, s); 1995 __free_pages(page, order); 1996 } 1997 1998 static void rcu_free_slab(struct rcu_head *h) 1999 { 2000 struct page *page = container_of(h, struct page, rcu_head); 2001 2002 __free_slab(page->slab_cache, page); 2003 } 2004 2005 static void free_slab(struct kmem_cache *s, struct page *page) 2006 { 2007 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 2008 call_rcu(&page->rcu_head, rcu_free_slab); 2009 } else 2010 __free_slab(s, page); 2011 } 2012 2013 static void discard_slab(struct kmem_cache *s, struct page *page) 2014 { 2015 dec_slabs_node(s, page_to_nid(page), page->objects); 2016 free_slab(s, page); 2017 } 2018 2019 /* 2020 * Management of partially allocated slabs. 2021 */ 2022 static inline void 2023 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 2024 { 2025 n->nr_partial++; 2026 if (tail == DEACTIVATE_TO_TAIL) 2027 list_add_tail(&page->slab_list, &n->partial); 2028 else 2029 list_add(&page->slab_list, &n->partial); 2030 } 2031 2032 static inline void add_partial(struct kmem_cache_node *n, 2033 struct page *page, int tail) 2034 { 2035 lockdep_assert_held(&n->list_lock); 2036 __add_partial(n, page, tail); 2037 } 2038 2039 static inline void remove_partial(struct kmem_cache_node *n, 2040 struct page *page) 2041 { 2042 lockdep_assert_held(&n->list_lock); 2043 list_del(&page->slab_list); 2044 n->nr_partial--; 2045 } 2046 2047 /* 2048 * Remove slab from the partial list, freeze it and 2049 * return the pointer to the freelist. 2050 * 2051 * Returns a list of objects or NULL if it fails. 2052 */ 2053 static inline void *acquire_slab(struct kmem_cache *s, 2054 struct kmem_cache_node *n, struct page *page, 2055 int mode, int *objects) 2056 { 2057 void *freelist; 2058 unsigned long counters; 2059 struct page new; 2060 2061 lockdep_assert_held(&n->list_lock); 2062 2063 /* 2064 * Zap the freelist and set the frozen bit. 2065 * The old freelist is the list of objects for the 2066 * per cpu allocation list. 2067 */ 2068 freelist = page->freelist; 2069 counters = page->counters; 2070 new.counters = counters; 2071 *objects = new.objects - new.inuse; 2072 if (mode) { 2073 new.inuse = page->objects; 2074 new.freelist = NULL; 2075 } else { 2076 new.freelist = freelist; 2077 } 2078 2079 VM_BUG_ON(new.frozen); 2080 new.frozen = 1; 2081 2082 if (!__cmpxchg_double_slab(s, page, 2083 freelist, counters, 2084 new.freelist, new.counters, 2085 "acquire_slab")) 2086 return NULL; 2087 2088 remove_partial(n, page); 2089 WARN_ON(!freelist); 2090 return freelist; 2091 } 2092 2093 #ifdef CONFIG_SLUB_CPU_PARTIAL 2094 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 2095 #else 2096 static inline void put_cpu_partial(struct kmem_cache *s, struct page *page, 2097 int drain) { } 2098 #endif 2099 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 2100 2101 /* 2102 * Try to allocate a partial slab from a specific node. 2103 */ 2104 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2105 struct page **ret_page, gfp_t gfpflags) 2106 { 2107 struct page *page, *page2; 2108 void *object = NULL; 2109 unsigned int available = 0; 2110 unsigned long flags; 2111 int objects; 2112 2113 /* 2114 * Racy check. If we mistakenly see no partial slabs then we 2115 * just allocate an empty slab. If we mistakenly try to get a 2116 * partial slab and there is none available then get_partial() 2117 * will return NULL. 2118 */ 2119 if (!n || !n->nr_partial) 2120 return NULL; 2121 2122 spin_lock_irqsave(&n->list_lock, flags); 2123 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 2124 void *t; 2125 2126 if (!pfmemalloc_match(page, gfpflags)) 2127 continue; 2128 2129 t = acquire_slab(s, n, page, object == NULL, &objects); 2130 if (!t) 2131 break; 2132 2133 available += objects; 2134 if (!object) { 2135 *ret_page = page; 2136 stat(s, ALLOC_FROM_PARTIAL); 2137 object = t; 2138 } else { 2139 put_cpu_partial(s, page, 0); 2140 stat(s, CPU_PARTIAL_NODE); 2141 } 2142 if (!kmem_cache_has_cpu_partial(s) 2143 || available > slub_cpu_partial(s) / 2) 2144 break; 2145 2146 } 2147 spin_unlock_irqrestore(&n->list_lock, flags); 2148 return object; 2149 } 2150 2151 /* 2152 * Get a page from somewhere. Search in increasing NUMA distances. 2153 */ 2154 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2155 struct page **ret_page) 2156 { 2157 #ifdef CONFIG_NUMA 2158 struct zonelist *zonelist; 2159 struct zoneref *z; 2160 struct zone *zone; 2161 enum zone_type highest_zoneidx = gfp_zone(flags); 2162 void *object; 2163 unsigned int cpuset_mems_cookie; 2164 2165 /* 2166 * The defrag ratio allows a configuration of the tradeoffs between 2167 * inter node defragmentation and node local allocations. A lower 2168 * defrag_ratio increases the tendency to do local allocations 2169 * instead of attempting to obtain partial slabs from other nodes. 2170 * 2171 * If the defrag_ratio is set to 0 then kmalloc() always 2172 * returns node local objects. If the ratio is higher then kmalloc() 2173 * may return off node objects because partial slabs are obtained 2174 * from other nodes and filled up. 2175 * 2176 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2177 * (which makes defrag_ratio = 1000) then every (well almost) 2178 * allocation will first attempt to defrag slab caches on other nodes. 2179 * This means scanning over all nodes to look for partial slabs which 2180 * may be expensive if we do it every time we are trying to find a slab 2181 * with available objects. 2182 */ 2183 if (!s->remote_node_defrag_ratio || 2184 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2185 return NULL; 2186 2187 do { 2188 cpuset_mems_cookie = read_mems_allowed_begin(); 2189 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2190 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2191 struct kmem_cache_node *n; 2192 2193 n = get_node(s, zone_to_nid(zone)); 2194 2195 if (n && cpuset_zone_allowed(zone, flags) && 2196 n->nr_partial > s->min_partial) { 2197 object = get_partial_node(s, n, ret_page, flags); 2198 if (object) { 2199 /* 2200 * Don't check read_mems_allowed_retry() 2201 * here - if mems_allowed was updated in 2202 * parallel, that was a harmless race 2203 * between allocation and the cpuset 2204 * update 2205 */ 2206 return object; 2207 } 2208 } 2209 } 2210 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2211 #endif /* CONFIG_NUMA */ 2212 return NULL; 2213 } 2214 2215 /* 2216 * Get a partial page, lock it and return it. 2217 */ 2218 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2219 struct page **ret_page) 2220 { 2221 void *object; 2222 int searchnode = node; 2223 2224 if (node == NUMA_NO_NODE) 2225 searchnode = numa_mem_id(); 2226 2227 object = get_partial_node(s, get_node(s, searchnode), ret_page, flags); 2228 if (object || node != NUMA_NO_NODE) 2229 return object; 2230 2231 return get_any_partial(s, flags, ret_page); 2232 } 2233 2234 #ifdef CONFIG_PREEMPTION 2235 /* 2236 * Calculate the next globally unique transaction for disambiguation 2237 * during cmpxchg. The transactions start with the cpu number and are then 2238 * incremented by CONFIG_NR_CPUS. 2239 */ 2240 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2241 #else 2242 /* 2243 * No preemption supported therefore also no need to check for 2244 * different cpus. 2245 */ 2246 #define TID_STEP 1 2247 #endif 2248 2249 static inline unsigned long next_tid(unsigned long tid) 2250 { 2251 return tid + TID_STEP; 2252 } 2253 2254 #ifdef SLUB_DEBUG_CMPXCHG 2255 static inline unsigned int tid_to_cpu(unsigned long tid) 2256 { 2257 return tid % TID_STEP; 2258 } 2259 2260 static inline unsigned long tid_to_event(unsigned long tid) 2261 { 2262 return tid / TID_STEP; 2263 } 2264 #endif 2265 2266 static inline unsigned int init_tid(int cpu) 2267 { 2268 return cpu; 2269 } 2270 2271 static inline void note_cmpxchg_failure(const char *n, 2272 const struct kmem_cache *s, unsigned long tid) 2273 { 2274 #ifdef SLUB_DEBUG_CMPXCHG 2275 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2276 2277 pr_info("%s %s: cmpxchg redo ", n, s->name); 2278 2279 #ifdef CONFIG_PREEMPTION 2280 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2281 pr_warn("due to cpu change %d -> %d\n", 2282 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2283 else 2284 #endif 2285 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2286 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2287 tid_to_event(tid), tid_to_event(actual_tid)); 2288 else 2289 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2290 actual_tid, tid, next_tid(tid)); 2291 #endif 2292 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2293 } 2294 2295 static void init_kmem_cache_cpus(struct kmem_cache *s) 2296 { 2297 int cpu; 2298 struct kmem_cache_cpu *c; 2299 2300 for_each_possible_cpu(cpu) { 2301 c = per_cpu_ptr(s->cpu_slab, cpu); 2302 local_lock_init(&c->lock); 2303 c->tid = init_tid(cpu); 2304 } 2305 } 2306 2307 /* 2308 * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist, 2309 * unfreezes the slabs and puts it on the proper list. 2310 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2311 * by the caller. 2312 */ 2313 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2314 void *freelist) 2315 { 2316 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2317 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2318 int lock = 0, free_delta = 0; 2319 enum slab_modes l = M_NONE, m = M_NONE; 2320 void *nextfree, *freelist_iter, *freelist_tail; 2321 int tail = DEACTIVATE_TO_HEAD; 2322 unsigned long flags = 0; 2323 struct page new; 2324 struct page old; 2325 2326 if (page->freelist) { 2327 stat(s, DEACTIVATE_REMOTE_FREES); 2328 tail = DEACTIVATE_TO_TAIL; 2329 } 2330 2331 /* 2332 * Stage one: Count the objects on cpu's freelist as free_delta and 2333 * remember the last object in freelist_tail for later splicing. 2334 */ 2335 freelist_tail = NULL; 2336 freelist_iter = freelist; 2337 while (freelist_iter) { 2338 nextfree = get_freepointer(s, freelist_iter); 2339 2340 /* 2341 * If 'nextfree' is invalid, it is possible that the object at 2342 * 'freelist_iter' is already corrupted. So isolate all objects 2343 * starting at 'freelist_iter' by skipping them. 2344 */ 2345 if (freelist_corrupted(s, page, &freelist_iter, nextfree)) 2346 break; 2347 2348 freelist_tail = freelist_iter; 2349 free_delta++; 2350 2351 freelist_iter = nextfree; 2352 } 2353 2354 /* 2355 * Stage two: Unfreeze the page while splicing the per-cpu 2356 * freelist to the head of page's freelist. 2357 * 2358 * Ensure that the page is unfrozen while the list presence 2359 * reflects the actual number of objects during unfreeze. 2360 * 2361 * We setup the list membership and then perform a cmpxchg 2362 * with the count. If there is a mismatch then the page 2363 * is not unfrozen but the page is on the wrong list. 2364 * 2365 * Then we restart the process which may have to remove 2366 * the page from the list that we just put it on again 2367 * because the number of objects in the slab may have 2368 * changed. 2369 */ 2370 redo: 2371 2372 old.freelist = READ_ONCE(page->freelist); 2373 old.counters = READ_ONCE(page->counters); 2374 VM_BUG_ON(!old.frozen); 2375 2376 /* Determine target state of the slab */ 2377 new.counters = old.counters; 2378 if (freelist_tail) { 2379 new.inuse -= free_delta; 2380 set_freepointer(s, freelist_tail, old.freelist); 2381 new.freelist = freelist; 2382 } else 2383 new.freelist = old.freelist; 2384 2385 new.frozen = 0; 2386 2387 if (!new.inuse && n->nr_partial >= s->min_partial) 2388 m = M_FREE; 2389 else if (new.freelist) { 2390 m = M_PARTIAL; 2391 if (!lock) { 2392 lock = 1; 2393 /* 2394 * Taking the spinlock removes the possibility 2395 * that acquire_slab() will see a slab page that 2396 * is frozen 2397 */ 2398 spin_lock_irqsave(&n->list_lock, flags); 2399 } 2400 } else { 2401 m = M_FULL; 2402 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { 2403 lock = 1; 2404 /* 2405 * This also ensures that the scanning of full 2406 * slabs from diagnostic functions will not see 2407 * any frozen slabs. 2408 */ 2409 spin_lock_irqsave(&n->list_lock, flags); 2410 } 2411 } 2412 2413 if (l != m) { 2414 if (l == M_PARTIAL) 2415 remove_partial(n, page); 2416 else if (l == M_FULL) 2417 remove_full(s, n, page); 2418 2419 if (m == M_PARTIAL) 2420 add_partial(n, page, tail); 2421 else if (m == M_FULL) 2422 add_full(s, n, page); 2423 } 2424 2425 l = m; 2426 if (!cmpxchg_double_slab(s, page, 2427 old.freelist, old.counters, 2428 new.freelist, new.counters, 2429 "unfreezing slab")) 2430 goto redo; 2431 2432 if (lock) 2433 spin_unlock_irqrestore(&n->list_lock, flags); 2434 2435 if (m == M_PARTIAL) 2436 stat(s, tail); 2437 else if (m == M_FULL) 2438 stat(s, DEACTIVATE_FULL); 2439 else if (m == M_FREE) { 2440 stat(s, DEACTIVATE_EMPTY); 2441 discard_slab(s, page); 2442 stat(s, FREE_SLAB); 2443 } 2444 } 2445 2446 #ifdef CONFIG_SLUB_CPU_PARTIAL 2447 static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page) 2448 { 2449 struct kmem_cache_node *n = NULL, *n2 = NULL; 2450 struct page *page, *discard_page = NULL; 2451 unsigned long flags = 0; 2452 2453 while (partial_page) { 2454 struct page new; 2455 struct page old; 2456 2457 page = partial_page; 2458 partial_page = page->next; 2459 2460 n2 = get_node(s, page_to_nid(page)); 2461 if (n != n2) { 2462 if (n) 2463 spin_unlock_irqrestore(&n->list_lock, flags); 2464 2465 n = n2; 2466 spin_lock_irqsave(&n->list_lock, flags); 2467 } 2468 2469 do { 2470 2471 old.freelist = page->freelist; 2472 old.counters = page->counters; 2473 VM_BUG_ON(!old.frozen); 2474 2475 new.counters = old.counters; 2476 new.freelist = old.freelist; 2477 2478 new.frozen = 0; 2479 2480 } while (!__cmpxchg_double_slab(s, page, 2481 old.freelist, old.counters, 2482 new.freelist, new.counters, 2483 "unfreezing slab")); 2484 2485 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2486 page->next = discard_page; 2487 discard_page = page; 2488 } else { 2489 add_partial(n, page, DEACTIVATE_TO_TAIL); 2490 stat(s, FREE_ADD_PARTIAL); 2491 } 2492 } 2493 2494 if (n) 2495 spin_unlock_irqrestore(&n->list_lock, flags); 2496 2497 while (discard_page) { 2498 page = discard_page; 2499 discard_page = discard_page->next; 2500 2501 stat(s, DEACTIVATE_EMPTY); 2502 discard_slab(s, page); 2503 stat(s, FREE_SLAB); 2504 } 2505 } 2506 2507 /* 2508 * Unfreeze all the cpu partial slabs. 2509 */ 2510 static void unfreeze_partials(struct kmem_cache *s) 2511 { 2512 struct page *partial_page; 2513 unsigned long flags; 2514 2515 local_lock_irqsave(&s->cpu_slab->lock, flags); 2516 partial_page = this_cpu_read(s->cpu_slab->partial); 2517 this_cpu_write(s->cpu_slab->partial, NULL); 2518 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2519 2520 if (partial_page) 2521 __unfreeze_partials(s, partial_page); 2522 } 2523 2524 static void unfreeze_partials_cpu(struct kmem_cache *s, 2525 struct kmem_cache_cpu *c) 2526 { 2527 struct page *partial_page; 2528 2529 partial_page = slub_percpu_partial(c); 2530 c->partial = NULL; 2531 2532 if (partial_page) 2533 __unfreeze_partials(s, partial_page); 2534 } 2535 2536 /* 2537 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2538 * partial page slot if available. 2539 * 2540 * If we did not find a slot then simply move all the partials to the 2541 * per node partial list. 2542 */ 2543 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2544 { 2545 struct page *oldpage; 2546 struct page *page_to_unfreeze = NULL; 2547 unsigned long flags; 2548 int pages = 0; 2549 int pobjects = 0; 2550 2551 local_lock_irqsave(&s->cpu_slab->lock, flags); 2552 2553 oldpage = this_cpu_read(s->cpu_slab->partial); 2554 2555 if (oldpage) { 2556 if (drain && oldpage->pobjects > slub_cpu_partial(s)) { 2557 /* 2558 * Partial array is full. Move the existing set to the 2559 * per node partial list. Postpone the actual unfreezing 2560 * outside of the critical section. 2561 */ 2562 page_to_unfreeze = oldpage; 2563 oldpage = NULL; 2564 } else { 2565 pobjects = oldpage->pobjects; 2566 pages = oldpage->pages; 2567 } 2568 } 2569 2570 pages++; 2571 pobjects += page->objects - page->inuse; 2572 2573 page->pages = pages; 2574 page->pobjects = pobjects; 2575 page->next = oldpage; 2576 2577 this_cpu_write(s->cpu_slab->partial, page); 2578 2579 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2580 2581 if (page_to_unfreeze) { 2582 __unfreeze_partials(s, page_to_unfreeze); 2583 stat(s, CPU_PARTIAL_DRAIN); 2584 } 2585 } 2586 2587 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2588 2589 static inline void unfreeze_partials(struct kmem_cache *s) { } 2590 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2591 struct kmem_cache_cpu *c) { } 2592 2593 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2594 2595 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2596 { 2597 unsigned long flags; 2598 struct page *page; 2599 void *freelist; 2600 2601 local_lock_irqsave(&s->cpu_slab->lock, flags); 2602 2603 page = c->page; 2604 freelist = c->freelist; 2605 2606 c->page = NULL; 2607 c->freelist = NULL; 2608 c->tid = next_tid(c->tid); 2609 2610 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2611 2612 if (page) { 2613 deactivate_slab(s, page, freelist); 2614 stat(s, CPUSLAB_FLUSH); 2615 } 2616 } 2617 2618 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2619 { 2620 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2621 void *freelist = c->freelist; 2622 struct page *page = c->page; 2623 2624 c->page = NULL; 2625 c->freelist = NULL; 2626 c->tid = next_tid(c->tid); 2627 2628 if (page) { 2629 deactivate_slab(s, page, freelist); 2630 stat(s, CPUSLAB_FLUSH); 2631 } 2632 2633 unfreeze_partials_cpu(s, c); 2634 } 2635 2636 struct slub_flush_work { 2637 struct work_struct work; 2638 struct kmem_cache *s; 2639 bool skip; 2640 }; 2641 2642 /* 2643 * Flush cpu slab. 2644 * 2645 * Called from CPU work handler with migration disabled. 2646 */ 2647 static void flush_cpu_slab(struct work_struct *w) 2648 { 2649 struct kmem_cache *s; 2650 struct kmem_cache_cpu *c; 2651 struct slub_flush_work *sfw; 2652 2653 sfw = container_of(w, struct slub_flush_work, work); 2654 2655 s = sfw->s; 2656 c = this_cpu_ptr(s->cpu_slab); 2657 2658 if (c->page) 2659 flush_slab(s, c); 2660 2661 unfreeze_partials(s); 2662 } 2663 2664 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2665 { 2666 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2667 2668 return c->page || slub_percpu_partial(c); 2669 } 2670 2671 static DEFINE_MUTEX(flush_lock); 2672 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2673 2674 static void flush_all_cpus_locked(struct kmem_cache *s) 2675 { 2676 struct slub_flush_work *sfw; 2677 unsigned int cpu; 2678 2679 lockdep_assert_cpus_held(); 2680 mutex_lock(&flush_lock); 2681 2682 for_each_online_cpu(cpu) { 2683 sfw = &per_cpu(slub_flush, cpu); 2684 if (!has_cpu_slab(cpu, s)) { 2685 sfw->skip = true; 2686 continue; 2687 } 2688 INIT_WORK(&sfw->work, flush_cpu_slab); 2689 sfw->skip = false; 2690 sfw->s = s; 2691 schedule_work_on(cpu, &sfw->work); 2692 } 2693 2694 for_each_online_cpu(cpu) { 2695 sfw = &per_cpu(slub_flush, cpu); 2696 if (sfw->skip) 2697 continue; 2698 flush_work(&sfw->work); 2699 } 2700 2701 mutex_unlock(&flush_lock); 2702 } 2703 2704 static void flush_all(struct kmem_cache *s) 2705 { 2706 cpus_read_lock(); 2707 flush_all_cpus_locked(s); 2708 cpus_read_unlock(); 2709 } 2710 2711 /* 2712 * Use the cpu notifier to insure that the cpu slabs are flushed when 2713 * necessary. 2714 */ 2715 static int slub_cpu_dead(unsigned int cpu) 2716 { 2717 struct kmem_cache *s; 2718 2719 mutex_lock(&slab_mutex); 2720 list_for_each_entry(s, &slab_caches, list) 2721 __flush_cpu_slab(s, cpu); 2722 mutex_unlock(&slab_mutex); 2723 return 0; 2724 } 2725 2726 /* 2727 * Check if the objects in a per cpu structure fit numa 2728 * locality expectations. 2729 */ 2730 static inline int node_match(struct page *page, int node) 2731 { 2732 #ifdef CONFIG_NUMA 2733 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2734 return 0; 2735 #endif 2736 return 1; 2737 } 2738 2739 #ifdef CONFIG_SLUB_DEBUG 2740 static int count_free(struct page *page) 2741 { 2742 return page->objects - page->inuse; 2743 } 2744 2745 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2746 { 2747 return atomic_long_read(&n->total_objects); 2748 } 2749 #endif /* CONFIG_SLUB_DEBUG */ 2750 2751 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2752 static unsigned long count_partial(struct kmem_cache_node *n, 2753 int (*get_count)(struct page *)) 2754 { 2755 unsigned long flags; 2756 unsigned long x = 0; 2757 struct page *page; 2758 2759 spin_lock_irqsave(&n->list_lock, flags); 2760 list_for_each_entry(page, &n->partial, slab_list) 2761 x += get_count(page); 2762 spin_unlock_irqrestore(&n->list_lock, flags); 2763 return x; 2764 } 2765 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2766 2767 static noinline void 2768 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2769 { 2770 #ifdef CONFIG_SLUB_DEBUG 2771 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2772 DEFAULT_RATELIMIT_BURST); 2773 int node; 2774 struct kmem_cache_node *n; 2775 2776 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2777 return; 2778 2779 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2780 nid, gfpflags, &gfpflags); 2781 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2782 s->name, s->object_size, s->size, oo_order(s->oo), 2783 oo_order(s->min)); 2784 2785 if (oo_order(s->min) > get_order(s->object_size)) 2786 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2787 s->name); 2788 2789 for_each_kmem_cache_node(s, node, n) { 2790 unsigned long nr_slabs; 2791 unsigned long nr_objs; 2792 unsigned long nr_free; 2793 2794 nr_free = count_partial(n, count_free); 2795 nr_slabs = node_nr_slabs(n); 2796 nr_objs = node_nr_objs(n); 2797 2798 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2799 node, nr_slabs, nr_objs, nr_free); 2800 } 2801 #endif 2802 } 2803 2804 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2805 { 2806 if (unlikely(PageSlabPfmemalloc(page))) 2807 return gfp_pfmemalloc_allowed(gfpflags); 2808 2809 return true; 2810 } 2811 2812 /* 2813 * A variant of pfmemalloc_match() that tests page flags without asserting 2814 * PageSlab. Intended for opportunistic checks before taking a lock and 2815 * rechecking that nobody else freed the page under us. 2816 */ 2817 static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags) 2818 { 2819 if (unlikely(__PageSlabPfmemalloc(page))) 2820 return gfp_pfmemalloc_allowed(gfpflags); 2821 2822 return true; 2823 } 2824 2825 /* 2826 * Check the page->freelist of a page and either transfer the freelist to the 2827 * per cpu freelist or deactivate the page. 2828 * 2829 * The page is still frozen if the return value is not NULL. 2830 * 2831 * If this function returns NULL then the page has been unfrozen. 2832 */ 2833 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2834 { 2835 struct page new; 2836 unsigned long counters; 2837 void *freelist; 2838 2839 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2840 2841 do { 2842 freelist = page->freelist; 2843 counters = page->counters; 2844 2845 new.counters = counters; 2846 VM_BUG_ON(!new.frozen); 2847 2848 new.inuse = page->objects; 2849 new.frozen = freelist != NULL; 2850 2851 } while (!__cmpxchg_double_slab(s, page, 2852 freelist, counters, 2853 NULL, new.counters, 2854 "get_freelist")); 2855 2856 return freelist; 2857 } 2858 2859 /* 2860 * Slow path. The lockless freelist is empty or we need to perform 2861 * debugging duties. 2862 * 2863 * Processing is still very fast if new objects have been freed to the 2864 * regular freelist. In that case we simply take over the regular freelist 2865 * as the lockless freelist and zap the regular freelist. 2866 * 2867 * If that is not working then we fall back to the partial lists. We take the 2868 * first element of the freelist as the object to allocate now and move the 2869 * rest of the freelist to the lockless freelist. 2870 * 2871 * And if we were unable to get a new slab from the partial slab lists then 2872 * we need to allocate a new slab. This is the slowest path since it involves 2873 * a call to the page allocator and the setup of a new slab. 2874 * 2875 * Version of __slab_alloc to use when we know that preemption is 2876 * already disabled (which is the case for bulk allocation). 2877 */ 2878 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2879 unsigned long addr, struct kmem_cache_cpu *c) 2880 { 2881 void *freelist; 2882 struct page *page; 2883 unsigned long flags; 2884 2885 stat(s, ALLOC_SLOWPATH); 2886 2887 reread_page: 2888 2889 page = READ_ONCE(c->page); 2890 if (!page) { 2891 /* 2892 * if the node is not online or has no normal memory, just 2893 * ignore the node constraint 2894 */ 2895 if (unlikely(node != NUMA_NO_NODE && 2896 !node_isset(node, slab_nodes))) 2897 node = NUMA_NO_NODE; 2898 goto new_slab; 2899 } 2900 redo: 2901 2902 if (unlikely(!node_match(page, node))) { 2903 /* 2904 * same as above but node_match() being false already 2905 * implies node != NUMA_NO_NODE 2906 */ 2907 if (!node_isset(node, slab_nodes)) { 2908 node = NUMA_NO_NODE; 2909 goto redo; 2910 } else { 2911 stat(s, ALLOC_NODE_MISMATCH); 2912 goto deactivate_slab; 2913 } 2914 } 2915 2916 /* 2917 * By rights, we should be searching for a slab page that was 2918 * PFMEMALLOC but right now, we are losing the pfmemalloc 2919 * information when the page leaves the per-cpu allocator 2920 */ 2921 if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags))) 2922 goto deactivate_slab; 2923 2924 /* must check again c->page in case we got preempted and it changed */ 2925 local_lock_irqsave(&s->cpu_slab->lock, flags); 2926 if (unlikely(page != c->page)) { 2927 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2928 goto reread_page; 2929 } 2930 freelist = c->freelist; 2931 if (freelist) 2932 goto load_freelist; 2933 2934 freelist = get_freelist(s, page); 2935 2936 if (!freelist) { 2937 c->page = NULL; 2938 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2939 stat(s, DEACTIVATE_BYPASS); 2940 goto new_slab; 2941 } 2942 2943 stat(s, ALLOC_REFILL); 2944 2945 load_freelist: 2946 2947 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2948 2949 /* 2950 * freelist is pointing to the list of objects to be used. 2951 * page is pointing to the page from which the objects are obtained. 2952 * That page must be frozen for per cpu allocations to work. 2953 */ 2954 VM_BUG_ON(!c->page->frozen); 2955 c->freelist = get_freepointer(s, freelist); 2956 c->tid = next_tid(c->tid); 2957 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2958 return freelist; 2959 2960 deactivate_slab: 2961 2962 local_lock_irqsave(&s->cpu_slab->lock, flags); 2963 if (page != c->page) { 2964 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2965 goto reread_page; 2966 } 2967 freelist = c->freelist; 2968 c->page = NULL; 2969 c->freelist = NULL; 2970 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2971 deactivate_slab(s, page, freelist); 2972 2973 new_slab: 2974 2975 if (slub_percpu_partial(c)) { 2976 local_lock_irqsave(&s->cpu_slab->lock, flags); 2977 if (unlikely(c->page)) { 2978 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2979 goto reread_page; 2980 } 2981 if (unlikely(!slub_percpu_partial(c))) { 2982 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2983 /* we were preempted and partial list got empty */ 2984 goto new_objects; 2985 } 2986 2987 page = c->page = slub_percpu_partial(c); 2988 slub_set_percpu_partial(c, page); 2989 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2990 stat(s, CPU_PARTIAL_ALLOC); 2991 goto redo; 2992 } 2993 2994 new_objects: 2995 2996 freelist = get_partial(s, gfpflags, node, &page); 2997 if (freelist) 2998 goto check_new_page; 2999 3000 slub_put_cpu_ptr(s->cpu_slab); 3001 page = new_slab(s, gfpflags, node); 3002 c = slub_get_cpu_ptr(s->cpu_slab); 3003 3004 if (unlikely(!page)) { 3005 slab_out_of_memory(s, gfpflags, node); 3006 return NULL; 3007 } 3008 3009 /* 3010 * No other reference to the page yet so we can 3011 * muck around with it freely without cmpxchg 3012 */ 3013 freelist = page->freelist; 3014 page->freelist = NULL; 3015 3016 stat(s, ALLOC_SLAB); 3017 3018 check_new_page: 3019 3020 if (kmem_cache_debug(s)) { 3021 if (!alloc_debug_processing(s, page, freelist, addr)) { 3022 /* Slab failed checks. Next slab needed */ 3023 goto new_slab; 3024 } else { 3025 /* 3026 * For debug case, we don't load freelist so that all 3027 * allocations go through alloc_debug_processing() 3028 */ 3029 goto return_single; 3030 } 3031 } 3032 3033 if (unlikely(!pfmemalloc_match(page, gfpflags))) 3034 /* 3035 * For !pfmemalloc_match() case we don't load freelist so that 3036 * we don't make further mismatched allocations easier. 3037 */ 3038 goto return_single; 3039 3040 retry_load_page: 3041 3042 local_lock_irqsave(&s->cpu_slab->lock, flags); 3043 if (unlikely(c->page)) { 3044 void *flush_freelist = c->freelist; 3045 struct page *flush_page = c->page; 3046 3047 c->page = NULL; 3048 c->freelist = NULL; 3049 c->tid = next_tid(c->tid); 3050 3051 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3052 3053 deactivate_slab(s, flush_page, flush_freelist); 3054 3055 stat(s, CPUSLAB_FLUSH); 3056 3057 goto retry_load_page; 3058 } 3059 c->page = page; 3060 3061 goto load_freelist; 3062 3063 return_single: 3064 3065 deactivate_slab(s, page, get_freepointer(s, freelist)); 3066 return freelist; 3067 } 3068 3069 /* 3070 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3071 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3072 * pointer. 3073 */ 3074 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3075 unsigned long addr, struct kmem_cache_cpu *c) 3076 { 3077 void *p; 3078 3079 #ifdef CONFIG_PREEMPT_COUNT 3080 /* 3081 * We may have been preempted and rescheduled on a different 3082 * cpu before disabling preemption. Need to reload cpu area 3083 * pointer. 3084 */ 3085 c = slub_get_cpu_ptr(s->cpu_slab); 3086 #endif 3087 3088 p = ___slab_alloc(s, gfpflags, node, addr, c); 3089 #ifdef CONFIG_PREEMPT_COUNT 3090 slub_put_cpu_ptr(s->cpu_slab); 3091 #endif 3092 return p; 3093 } 3094 3095 /* 3096 * If the object has been wiped upon free, make sure it's fully initialized by 3097 * zeroing out freelist pointer. 3098 */ 3099 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3100 void *obj) 3101 { 3102 if (unlikely(slab_want_init_on_free(s)) && obj) 3103 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3104 0, sizeof(void *)); 3105 } 3106 3107 /* 3108 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3109 * have the fastpath folded into their functions. So no function call 3110 * overhead for requests that can be satisfied on the fastpath. 3111 * 3112 * The fastpath works by first checking if the lockless freelist can be used. 3113 * If not then __slab_alloc is called for slow processing. 3114 * 3115 * Otherwise we can simply pick the next object from the lockless free list. 3116 */ 3117 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 3118 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3119 { 3120 void *object; 3121 struct kmem_cache_cpu *c; 3122 struct page *page; 3123 unsigned long tid; 3124 struct obj_cgroup *objcg = NULL; 3125 bool init = false; 3126 3127 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); 3128 if (!s) 3129 return NULL; 3130 3131 object = kfence_alloc(s, orig_size, gfpflags); 3132 if (unlikely(object)) 3133 goto out; 3134 3135 redo: 3136 /* 3137 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3138 * enabled. We may switch back and forth between cpus while 3139 * reading from one cpu area. That does not matter as long 3140 * as we end up on the original cpu again when doing the cmpxchg. 3141 * 3142 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3143 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3144 * the tid. If we are preempted and switched to another cpu between the 3145 * two reads, it's OK as the two are still associated with the same cpu 3146 * and cmpxchg later will validate the cpu. 3147 */ 3148 c = raw_cpu_ptr(s->cpu_slab); 3149 tid = READ_ONCE(c->tid); 3150 3151 /* 3152 * Irqless object alloc/free algorithm used here depends on sequence 3153 * of fetching cpu_slab's data. tid should be fetched before anything 3154 * on c to guarantee that object and page associated with previous tid 3155 * won't be used with current tid. If we fetch tid first, object and 3156 * page could be one associated with next tid and our alloc/free 3157 * request will be failed. In this case, we will retry. So, no problem. 3158 */ 3159 barrier(); 3160 3161 /* 3162 * The transaction ids are globally unique per cpu and per operation on 3163 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3164 * occurs on the right processor and that there was no operation on the 3165 * linked list in between. 3166 */ 3167 3168 object = c->freelist; 3169 page = c->page; 3170 /* 3171 * We cannot use the lockless fastpath on PREEMPT_RT because if a 3172 * slowpath has taken the local_lock_irqsave(), it is not protected 3173 * against a fast path operation in an irq handler. So we need to take 3174 * the slow path which uses local_lock. It is still relatively fast if 3175 * there is a suitable cpu freelist. 3176 */ 3177 if (IS_ENABLED(CONFIG_PREEMPT_RT) || 3178 unlikely(!object || !page || !node_match(page, node))) { 3179 object = __slab_alloc(s, gfpflags, node, addr, c); 3180 } else { 3181 void *next_object = get_freepointer_safe(s, object); 3182 3183 /* 3184 * The cmpxchg will only match if there was no additional 3185 * operation and if we are on the right processor. 3186 * 3187 * The cmpxchg does the following atomically (without lock 3188 * semantics!) 3189 * 1. Relocate first pointer to the current per cpu area. 3190 * 2. Verify that tid and freelist have not been changed 3191 * 3. If they were not changed replace tid and freelist 3192 * 3193 * Since this is without lock semantics the protection is only 3194 * against code executing on this cpu *not* from access by 3195 * other cpus. 3196 */ 3197 if (unlikely(!this_cpu_cmpxchg_double( 3198 s->cpu_slab->freelist, s->cpu_slab->tid, 3199 object, tid, 3200 next_object, next_tid(tid)))) { 3201 3202 note_cmpxchg_failure("slab_alloc", s, tid); 3203 goto redo; 3204 } 3205 prefetch_freepointer(s, next_object); 3206 stat(s, ALLOC_FASTPATH); 3207 } 3208 3209 maybe_wipe_obj_freeptr(s, object); 3210 init = slab_want_init_on_alloc(gfpflags, s); 3211 3212 out: 3213 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 3214 3215 return object; 3216 } 3217 3218 static __always_inline void *slab_alloc(struct kmem_cache *s, 3219 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3220 { 3221 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size); 3222 } 3223 3224 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3225 { 3226 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size); 3227 3228 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 3229 s->size, gfpflags); 3230 3231 return ret; 3232 } 3233 EXPORT_SYMBOL(kmem_cache_alloc); 3234 3235 #ifdef CONFIG_TRACING 3236 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3237 { 3238 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size); 3239 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 3240 ret = kasan_kmalloc(s, ret, size, gfpflags); 3241 return ret; 3242 } 3243 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3244 #endif 3245 3246 #ifdef CONFIG_NUMA 3247 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3248 { 3249 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size); 3250 3251 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3252 s->object_size, s->size, gfpflags, node); 3253 3254 return ret; 3255 } 3256 EXPORT_SYMBOL(kmem_cache_alloc_node); 3257 3258 #ifdef CONFIG_TRACING 3259 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 3260 gfp_t gfpflags, 3261 int node, size_t size) 3262 { 3263 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size); 3264 3265 trace_kmalloc_node(_RET_IP_, ret, 3266 size, s->size, gfpflags, node); 3267 3268 ret = kasan_kmalloc(s, ret, size, gfpflags); 3269 return ret; 3270 } 3271 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3272 #endif 3273 #endif /* CONFIG_NUMA */ 3274 3275 /* 3276 * Slow path handling. This may still be called frequently since objects 3277 * have a longer lifetime than the cpu slabs in most processing loads. 3278 * 3279 * So we still attempt to reduce cache line usage. Just take the slab 3280 * lock and free the item. If there is no additional partial page 3281 * handling required then we can return immediately. 3282 */ 3283 static void __slab_free(struct kmem_cache *s, struct page *page, 3284 void *head, void *tail, int cnt, 3285 unsigned long addr) 3286 3287 { 3288 void *prior; 3289 int was_frozen; 3290 struct page new; 3291 unsigned long counters; 3292 struct kmem_cache_node *n = NULL; 3293 unsigned long flags; 3294 3295 stat(s, FREE_SLOWPATH); 3296 3297 if (kfence_free(head)) 3298 return; 3299 3300 if (kmem_cache_debug(s) && 3301 !free_debug_processing(s, page, head, tail, cnt, addr)) 3302 return; 3303 3304 do { 3305 if (unlikely(n)) { 3306 spin_unlock_irqrestore(&n->list_lock, flags); 3307 n = NULL; 3308 } 3309 prior = page->freelist; 3310 counters = page->counters; 3311 set_freepointer(s, tail, prior); 3312 new.counters = counters; 3313 was_frozen = new.frozen; 3314 new.inuse -= cnt; 3315 if ((!new.inuse || !prior) && !was_frozen) { 3316 3317 if (kmem_cache_has_cpu_partial(s) && !prior) { 3318 3319 /* 3320 * Slab was on no list before and will be 3321 * partially empty 3322 * We can defer the list move and instead 3323 * freeze it. 3324 */ 3325 new.frozen = 1; 3326 3327 } else { /* Needs to be taken off a list */ 3328 3329 n = get_node(s, page_to_nid(page)); 3330 /* 3331 * Speculatively acquire the list_lock. 3332 * If the cmpxchg does not succeed then we may 3333 * drop the list_lock without any processing. 3334 * 3335 * Otherwise the list_lock will synchronize with 3336 * other processors updating the list of slabs. 3337 */ 3338 spin_lock_irqsave(&n->list_lock, flags); 3339 3340 } 3341 } 3342 3343 } while (!cmpxchg_double_slab(s, page, 3344 prior, counters, 3345 head, new.counters, 3346 "__slab_free")); 3347 3348 if (likely(!n)) { 3349 3350 if (likely(was_frozen)) { 3351 /* 3352 * The list lock was not taken therefore no list 3353 * activity can be necessary. 3354 */ 3355 stat(s, FREE_FROZEN); 3356 } else if (new.frozen) { 3357 /* 3358 * If we just froze the page then put it onto the 3359 * per cpu partial list. 3360 */ 3361 put_cpu_partial(s, page, 1); 3362 stat(s, CPU_PARTIAL_FREE); 3363 } 3364 3365 return; 3366 } 3367 3368 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3369 goto slab_empty; 3370 3371 /* 3372 * Objects left in the slab. If it was not on the partial list before 3373 * then add it. 3374 */ 3375 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3376 remove_full(s, n, page); 3377 add_partial(n, page, DEACTIVATE_TO_TAIL); 3378 stat(s, FREE_ADD_PARTIAL); 3379 } 3380 spin_unlock_irqrestore(&n->list_lock, flags); 3381 return; 3382 3383 slab_empty: 3384 if (prior) { 3385 /* 3386 * Slab on the partial list. 3387 */ 3388 remove_partial(n, page); 3389 stat(s, FREE_REMOVE_PARTIAL); 3390 } else { 3391 /* Slab must be on the full list */ 3392 remove_full(s, n, page); 3393 } 3394 3395 spin_unlock_irqrestore(&n->list_lock, flags); 3396 stat(s, FREE_SLAB); 3397 discard_slab(s, page); 3398 } 3399 3400 /* 3401 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3402 * can perform fastpath freeing without additional function calls. 3403 * 3404 * The fastpath is only possible if we are freeing to the current cpu slab 3405 * of this processor. This typically the case if we have just allocated 3406 * the item before. 3407 * 3408 * If fastpath is not possible then fall back to __slab_free where we deal 3409 * with all sorts of special processing. 3410 * 3411 * Bulk free of a freelist with several objects (all pointing to the 3412 * same page) possible by specifying head and tail ptr, plus objects 3413 * count (cnt). Bulk free indicated by tail pointer being set. 3414 */ 3415 static __always_inline void do_slab_free(struct kmem_cache *s, 3416 struct page *page, void *head, void *tail, 3417 int cnt, unsigned long addr) 3418 { 3419 void *tail_obj = tail ? : head; 3420 struct kmem_cache_cpu *c; 3421 unsigned long tid; 3422 3423 /* memcg_slab_free_hook() is already called for bulk free. */ 3424 if (!tail) 3425 memcg_slab_free_hook(s, &head, 1); 3426 redo: 3427 /* 3428 * Determine the currently cpus per cpu slab. 3429 * The cpu may change afterward. However that does not matter since 3430 * data is retrieved via this pointer. If we are on the same cpu 3431 * during the cmpxchg then the free will succeed. 3432 */ 3433 c = raw_cpu_ptr(s->cpu_slab); 3434 tid = READ_ONCE(c->tid); 3435 3436 /* Same with comment on barrier() in slab_alloc_node() */ 3437 barrier(); 3438 3439 if (likely(page == c->page)) { 3440 #ifndef CONFIG_PREEMPT_RT 3441 void **freelist = READ_ONCE(c->freelist); 3442 3443 set_freepointer(s, tail_obj, freelist); 3444 3445 if (unlikely(!this_cpu_cmpxchg_double( 3446 s->cpu_slab->freelist, s->cpu_slab->tid, 3447 freelist, tid, 3448 head, next_tid(tid)))) { 3449 3450 note_cmpxchg_failure("slab_free", s, tid); 3451 goto redo; 3452 } 3453 #else /* CONFIG_PREEMPT_RT */ 3454 /* 3455 * We cannot use the lockless fastpath on PREEMPT_RT because if 3456 * a slowpath has taken the local_lock_irqsave(), it is not 3457 * protected against a fast path operation in an irq handler. So 3458 * we need to take the local_lock. We shouldn't simply defer to 3459 * __slab_free() as that wouldn't use the cpu freelist at all. 3460 */ 3461 void **freelist; 3462 3463 local_lock(&s->cpu_slab->lock); 3464 c = this_cpu_ptr(s->cpu_slab); 3465 if (unlikely(page != c->page)) { 3466 local_unlock(&s->cpu_slab->lock); 3467 goto redo; 3468 } 3469 tid = c->tid; 3470 freelist = c->freelist; 3471 3472 set_freepointer(s, tail_obj, freelist); 3473 c->freelist = head; 3474 c->tid = next_tid(tid); 3475 3476 local_unlock(&s->cpu_slab->lock); 3477 #endif 3478 stat(s, FREE_FASTPATH); 3479 } else 3480 __slab_free(s, page, head, tail_obj, cnt, addr); 3481 3482 } 3483 3484 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3485 void *head, void *tail, int cnt, 3486 unsigned long addr) 3487 { 3488 /* 3489 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3490 * to remove objects, whose reuse must be delayed. 3491 */ 3492 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3493 do_slab_free(s, page, head, tail, cnt, addr); 3494 } 3495 3496 #ifdef CONFIG_KASAN_GENERIC 3497 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3498 { 3499 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3500 } 3501 #endif 3502 3503 void kmem_cache_free(struct kmem_cache *s, void *x) 3504 { 3505 s = cache_from_obj(s, x); 3506 if (!s) 3507 return; 3508 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3509 trace_kmem_cache_free(_RET_IP_, x, s->name); 3510 } 3511 EXPORT_SYMBOL(kmem_cache_free); 3512 3513 struct detached_freelist { 3514 struct page *page; 3515 void *tail; 3516 void *freelist; 3517 int cnt; 3518 struct kmem_cache *s; 3519 }; 3520 3521 static inline void free_nonslab_page(struct page *page, void *object) 3522 { 3523 unsigned int order = compound_order(page); 3524 3525 VM_BUG_ON_PAGE(!PageCompound(page), page); 3526 kfree_hook(object); 3527 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order)); 3528 __free_pages(page, order); 3529 } 3530 3531 /* 3532 * This function progressively scans the array with free objects (with 3533 * a limited look ahead) and extract objects belonging to the same 3534 * page. It builds a detached freelist directly within the given 3535 * page/objects. This can happen without any need for 3536 * synchronization, because the objects are owned by running process. 3537 * The freelist is build up as a single linked list in the objects. 3538 * The idea is, that this detached freelist can then be bulk 3539 * transferred to the real freelist(s), but only requiring a single 3540 * synchronization primitive. Look ahead in the array is limited due 3541 * to performance reasons. 3542 */ 3543 static inline 3544 int build_detached_freelist(struct kmem_cache *s, size_t size, 3545 void **p, struct detached_freelist *df) 3546 { 3547 size_t first_skipped_index = 0; 3548 int lookahead = 3; 3549 void *object; 3550 struct page *page; 3551 3552 /* Always re-init detached_freelist */ 3553 df->page = NULL; 3554 3555 do { 3556 object = p[--size]; 3557 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3558 } while (!object && size); 3559 3560 if (!object) 3561 return 0; 3562 3563 page = virt_to_head_page(object); 3564 if (!s) { 3565 /* Handle kalloc'ed objects */ 3566 if (unlikely(!PageSlab(page))) { 3567 free_nonslab_page(page, object); 3568 p[size] = NULL; /* mark object processed */ 3569 return size; 3570 } 3571 /* Derive kmem_cache from object */ 3572 df->s = page->slab_cache; 3573 } else { 3574 df->s = cache_from_obj(s, object); /* Support for memcg */ 3575 } 3576 3577 if (is_kfence_address(object)) { 3578 slab_free_hook(df->s, object, false); 3579 __kfence_free(object); 3580 p[size] = NULL; /* mark object processed */ 3581 return size; 3582 } 3583 3584 /* Start new detached freelist */ 3585 df->page = page; 3586 set_freepointer(df->s, object, NULL); 3587 df->tail = object; 3588 df->freelist = object; 3589 p[size] = NULL; /* mark object processed */ 3590 df->cnt = 1; 3591 3592 while (size) { 3593 object = p[--size]; 3594 if (!object) 3595 continue; /* Skip processed objects */ 3596 3597 /* df->page is always set at this point */ 3598 if (df->page == virt_to_head_page(object)) { 3599 /* Opportunity build freelist */ 3600 set_freepointer(df->s, object, df->freelist); 3601 df->freelist = object; 3602 df->cnt++; 3603 p[size] = NULL; /* mark object processed */ 3604 3605 continue; 3606 } 3607 3608 /* Limit look ahead search */ 3609 if (!--lookahead) 3610 break; 3611 3612 if (!first_skipped_index) 3613 first_skipped_index = size + 1; 3614 } 3615 3616 return first_skipped_index; 3617 } 3618 3619 /* Note that interrupts must be enabled when calling this function. */ 3620 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3621 { 3622 if (WARN_ON(!size)) 3623 return; 3624 3625 memcg_slab_free_hook(s, p, size); 3626 do { 3627 struct detached_freelist df; 3628 3629 size = build_detached_freelist(s, size, p, &df); 3630 if (!df.page) 3631 continue; 3632 3633 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); 3634 } while (likely(size)); 3635 } 3636 EXPORT_SYMBOL(kmem_cache_free_bulk); 3637 3638 /* Note that interrupts must be enabled when calling this function. */ 3639 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3640 void **p) 3641 { 3642 struct kmem_cache_cpu *c; 3643 int i; 3644 struct obj_cgroup *objcg = NULL; 3645 3646 /* memcg and kmem_cache debug support */ 3647 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3648 if (unlikely(!s)) 3649 return false; 3650 /* 3651 * Drain objects in the per cpu slab, while disabling local 3652 * IRQs, which protects against PREEMPT and interrupts 3653 * handlers invoking normal fastpath. 3654 */ 3655 c = slub_get_cpu_ptr(s->cpu_slab); 3656 local_lock_irq(&s->cpu_slab->lock); 3657 3658 for (i = 0; i < size; i++) { 3659 void *object = kfence_alloc(s, s->object_size, flags); 3660 3661 if (unlikely(object)) { 3662 p[i] = object; 3663 continue; 3664 } 3665 3666 object = c->freelist; 3667 if (unlikely(!object)) { 3668 /* 3669 * We may have removed an object from c->freelist using 3670 * the fastpath in the previous iteration; in that case, 3671 * c->tid has not been bumped yet. 3672 * Since ___slab_alloc() may reenable interrupts while 3673 * allocating memory, we should bump c->tid now. 3674 */ 3675 c->tid = next_tid(c->tid); 3676 3677 local_unlock_irq(&s->cpu_slab->lock); 3678 3679 /* 3680 * Invoking slow path likely have side-effect 3681 * of re-populating per CPU c->freelist 3682 */ 3683 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3684 _RET_IP_, c); 3685 if (unlikely(!p[i])) 3686 goto error; 3687 3688 c = this_cpu_ptr(s->cpu_slab); 3689 maybe_wipe_obj_freeptr(s, p[i]); 3690 3691 local_lock_irq(&s->cpu_slab->lock); 3692 3693 continue; /* goto for-loop */ 3694 } 3695 c->freelist = get_freepointer(s, object); 3696 p[i] = object; 3697 maybe_wipe_obj_freeptr(s, p[i]); 3698 } 3699 c->tid = next_tid(c->tid); 3700 local_unlock_irq(&s->cpu_slab->lock); 3701 slub_put_cpu_ptr(s->cpu_slab); 3702 3703 /* 3704 * memcg and kmem_cache debug support and memory initialization. 3705 * Done outside of the IRQ disabled fastpath loop. 3706 */ 3707 slab_post_alloc_hook(s, objcg, flags, size, p, 3708 slab_want_init_on_alloc(flags, s)); 3709 return i; 3710 error: 3711 slub_put_cpu_ptr(s->cpu_slab); 3712 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3713 __kmem_cache_free_bulk(s, i, p); 3714 return 0; 3715 } 3716 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3717 3718 3719 /* 3720 * Object placement in a slab is made very easy because we always start at 3721 * offset 0. If we tune the size of the object to the alignment then we can 3722 * get the required alignment by putting one properly sized object after 3723 * another. 3724 * 3725 * Notice that the allocation order determines the sizes of the per cpu 3726 * caches. Each processor has always one slab available for allocations. 3727 * Increasing the allocation order reduces the number of times that slabs 3728 * must be moved on and off the partial lists and is therefore a factor in 3729 * locking overhead. 3730 */ 3731 3732 /* 3733 * Minimum / Maximum order of slab pages. This influences locking overhead 3734 * and slab fragmentation. A higher order reduces the number of partial slabs 3735 * and increases the number of allocations possible without having to 3736 * take the list_lock. 3737 */ 3738 static unsigned int slub_min_order; 3739 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3740 static unsigned int slub_min_objects; 3741 3742 /* 3743 * Calculate the order of allocation given an slab object size. 3744 * 3745 * The order of allocation has significant impact on performance and other 3746 * system components. Generally order 0 allocations should be preferred since 3747 * order 0 does not cause fragmentation in the page allocator. Larger objects 3748 * be problematic to put into order 0 slabs because there may be too much 3749 * unused space left. We go to a higher order if more than 1/16th of the slab 3750 * would be wasted. 3751 * 3752 * In order to reach satisfactory performance we must ensure that a minimum 3753 * number of objects is in one slab. Otherwise we may generate too much 3754 * activity on the partial lists which requires taking the list_lock. This is 3755 * less a concern for large slabs though which are rarely used. 3756 * 3757 * slub_max_order specifies the order where we begin to stop considering the 3758 * number of objects in a slab as critical. If we reach slub_max_order then 3759 * we try to keep the page order as low as possible. So we accept more waste 3760 * of space in favor of a small page order. 3761 * 3762 * Higher order allocations also allow the placement of more objects in a 3763 * slab and thereby reduce object handling overhead. If the user has 3764 * requested a higher minimum order then we start with that one instead of 3765 * the smallest order which will fit the object. 3766 */ 3767 static inline unsigned int slab_order(unsigned int size, 3768 unsigned int min_objects, unsigned int max_order, 3769 unsigned int fract_leftover) 3770 { 3771 unsigned int min_order = slub_min_order; 3772 unsigned int order; 3773 3774 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3775 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3776 3777 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3778 order <= max_order; order++) { 3779 3780 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3781 unsigned int rem; 3782 3783 rem = slab_size % size; 3784 3785 if (rem <= slab_size / fract_leftover) 3786 break; 3787 } 3788 3789 return order; 3790 } 3791 3792 static inline int calculate_order(unsigned int size) 3793 { 3794 unsigned int order; 3795 unsigned int min_objects; 3796 unsigned int max_objects; 3797 unsigned int nr_cpus; 3798 3799 /* 3800 * Attempt to find best configuration for a slab. This 3801 * works by first attempting to generate a layout with 3802 * the best configuration and backing off gradually. 3803 * 3804 * First we increase the acceptable waste in a slab. Then 3805 * we reduce the minimum objects required in a slab. 3806 */ 3807 min_objects = slub_min_objects; 3808 if (!min_objects) { 3809 /* 3810 * Some architectures will only update present cpus when 3811 * onlining them, so don't trust the number if it's just 1. But 3812 * we also don't want to use nr_cpu_ids always, as on some other 3813 * architectures, there can be many possible cpus, but never 3814 * onlined. Here we compromise between trying to avoid too high 3815 * order on systems that appear larger than they are, and too 3816 * low order on systems that appear smaller than they are. 3817 */ 3818 nr_cpus = num_present_cpus(); 3819 if (nr_cpus <= 1) 3820 nr_cpus = nr_cpu_ids; 3821 min_objects = 4 * (fls(nr_cpus) + 1); 3822 } 3823 max_objects = order_objects(slub_max_order, size); 3824 min_objects = min(min_objects, max_objects); 3825 3826 while (min_objects > 1) { 3827 unsigned int fraction; 3828 3829 fraction = 16; 3830 while (fraction >= 4) { 3831 order = slab_order(size, min_objects, 3832 slub_max_order, fraction); 3833 if (order <= slub_max_order) 3834 return order; 3835 fraction /= 2; 3836 } 3837 min_objects--; 3838 } 3839 3840 /* 3841 * We were unable to place multiple objects in a slab. Now 3842 * lets see if we can place a single object there. 3843 */ 3844 order = slab_order(size, 1, slub_max_order, 1); 3845 if (order <= slub_max_order) 3846 return order; 3847 3848 /* 3849 * Doh this slab cannot be placed using slub_max_order. 3850 */ 3851 order = slab_order(size, 1, MAX_ORDER, 1); 3852 if (order < MAX_ORDER) 3853 return order; 3854 return -ENOSYS; 3855 } 3856 3857 static void 3858 init_kmem_cache_node(struct kmem_cache_node *n) 3859 { 3860 n->nr_partial = 0; 3861 spin_lock_init(&n->list_lock); 3862 INIT_LIST_HEAD(&n->partial); 3863 #ifdef CONFIG_SLUB_DEBUG 3864 atomic_long_set(&n->nr_slabs, 0); 3865 atomic_long_set(&n->total_objects, 0); 3866 INIT_LIST_HEAD(&n->full); 3867 #endif 3868 } 3869 3870 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3871 { 3872 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3873 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3874 3875 /* 3876 * Must align to double word boundary for the double cmpxchg 3877 * instructions to work; see __pcpu_double_call_return_bool(). 3878 */ 3879 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3880 2 * sizeof(void *)); 3881 3882 if (!s->cpu_slab) 3883 return 0; 3884 3885 init_kmem_cache_cpus(s); 3886 3887 return 1; 3888 } 3889 3890 static struct kmem_cache *kmem_cache_node; 3891 3892 /* 3893 * No kmalloc_node yet so do it by hand. We know that this is the first 3894 * slab on the node for this slabcache. There are no concurrent accesses 3895 * possible. 3896 * 3897 * Note that this function only works on the kmem_cache_node 3898 * when allocating for the kmem_cache_node. This is used for bootstrapping 3899 * memory on a fresh node that has no slab structures yet. 3900 */ 3901 static void early_kmem_cache_node_alloc(int node) 3902 { 3903 struct page *page; 3904 struct kmem_cache_node *n; 3905 3906 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3907 3908 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3909 3910 BUG_ON(!page); 3911 if (page_to_nid(page) != node) { 3912 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3913 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3914 } 3915 3916 n = page->freelist; 3917 BUG_ON(!n); 3918 #ifdef CONFIG_SLUB_DEBUG 3919 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3920 init_tracking(kmem_cache_node, n); 3921 #endif 3922 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3923 page->freelist = get_freepointer(kmem_cache_node, n); 3924 page->inuse = 1; 3925 page->frozen = 0; 3926 kmem_cache_node->node[node] = n; 3927 init_kmem_cache_node(n); 3928 inc_slabs_node(kmem_cache_node, node, page->objects); 3929 3930 /* 3931 * No locks need to be taken here as it has just been 3932 * initialized and there is no concurrent access. 3933 */ 3934 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3935 } 3936 3937 static void free_kmem_cache_nodes(struct kmem_cache *s) 3938 { 3939 int node; 3940 struct kmem_cache_node *n; 3941 3942 for_each_kmem_cache_node(s, node, n) { 3943 s->node[node] = NULL; 3944 kmem_cache_free(kmem_cache_node, n); 3945 } 3946 } 3947 3948 void __kmem_cache_release(struct kmem_cache *s) 3949 { 3950 cache_random_seq_destroy(s); 3951 free_percpu(s->cpu_slab); 3952 free_kmem_cache_nodes(s); 3953 } 3954 3955 static int init_kmem_cache_nodes(struct kmem_cache *s) 3956 { 3957 int node; 3958 3959 for_each_node_mask(node, slab_nodes) { 3960 struct kmem_cache_node *n; 3961 3962 if (slab_state == DOWN) { 3963 early_kmem_cache_node_alloc(node); 3964 continue; 3965 } 3966 n = kmem_cache_alloc_node(kmem_cache_node, 3967 GFP_KERNEL, node); 3968 3969 if (!n) { 3970 free_kmem_cache_nodes(s); 3971 return 0; 3972 } 3973 3974 init_kmem_cache_node(n); 3975 s->node[node] = n; 3976 } 3977 return 1; 3978 } 3979 3980 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3981 { 3982 if (min < MIN_PARTIAL) 3983 min = MIN_PARTIAL; 3984 else if (min > MAX_PARTIAL) 3985 min = MAX_PARTIAL; 3986 s->min_partial = min; 3987 } 3988 3989 static void set_cpu_partial(struct kmem_cache *s) 3990 { 3991 #ifdef CONFIG_SLUB_CPU_PARTIAL 3992 /* 3993 * cpu_partial determined the maximum number of objects kept in the 3994 * per cpu partial lists of a processor. 3995 * 3996 * Per cpu partial lists mainly contain slabs that just have one 3997 * object freed. If they are used for allocation then they can be 3998 * filled up again with minimal effort. The slab will never hit the 3999 * per node partial lists and therefore no locking will be required. 4000 * 4001 * This setting also determines 4002 * 4003 * A) The number of objects from per cpu partial slabs dumped to the 4004 * per node list when we reach the limit. 4005 * B) The number of objects in cpu partial slabs to extract from the 4006 * per node list when we run out of per cpu objects. We only fetch 4007 * 50% to keep some capacity around for frees. 4008 */ 4009 if (!kmem_cache_has_cpu_partial(s)) 4010 slub_set_cpu_partial(s, 0); 4011 else if (s->size >= PAGE_SIZE) 4012 slub_set_cpu_partial(s, 2); 4013 else if (s->size >= 1024) 4014 slub_set_cpu_partial(s, 6); 4015 else if (s->size >= 256) 4016 slub_set_cpu_partial(s, 13); 4017 else 4018 slub_set_cpu_partial(s, 30); 4019 #endif 4020 } 4021 4022 /* 4023 * calculate_sizes() determines the order and the distribution of data within 4024 * a slab object. 4025 */ 4026 static int calculate_sizes(struct kmem_cache *s, int forced_order) 4027 { 4028 slab_flags_t flags = s->flags; 4029 unsigned int size = s->object_size; 4030 unsigned int order; 4031 4032 /* 4033 * Round up object size to the next word boundary. We can only 4034 * place the free pointer at word boundaries and this determines 4035 * the possible location of the free pointer. 4036 */ 4037 size = ALIGN(size, sizeof(void *)); 4038 4039 #ifdef CONFIG_SLUB_DEBUG 4040 /* 4041 * Determine if we can poison the object itself. If the user of 4042 * the slab may touch the object after free or before allocation 4043 * then we should never poison the object itself. 4044 */ 4045 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4046 !s->ctor) 4047 s->flags |= __OBJECT_POISON; 4048 else 4049 s->flags &= ~__OBJECT_POISON; 4050 4051 4052 /* 4053 * If we are Redzoning then check if there is some space between the 4054 * end of the object and the free pointer. If not then add an 4055 * additional word to have some bytes to store Redzone information. 4056 */ 4057 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4058 size += sizeof(void *); 4059 #endif 4060 4061 /* 4062 * With that we have determined the number of bytes in actual use 4063 * by the object and redzoning. 4064 */ 4065 s->inuse = size; 4066 4067 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4068 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4069 s->ctor) { 4070 /* 4071 * Relocate free pointer after the object if it is not 4072 * permitted to overwrite the first word of the object on 4073 * kmem_cache_free. 4074 * 4075 * This is the case if we do RCU, have a constructor or 4076 * destructor, are poisoning the objects, or are 4077 * redzoning an object smaller than sizeof(void *). 4078 * 4079 * The assumption that s->offset >= s->inuse means free 4080 * pointer is outside of the object is used in the 4081 * freeptr_outside_object() function. If that is no 4082 * longer true, the function needs to be modified. 4083 */ 4084 s->offset = size; 4085 size += sizeof(void *); 4086 } else { 4087 /* 4088 * Store freelist pointer near middle of object to keep 4089 * it away from the edges of the object to avoid small 4090 * sized over/underflows from neighboring allocations. 4091 */ 4092 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4093 } 4094 4095 #ifdef CONFIG_SLUB_DEBUG 4096 if (flags & SLAB_STORE_USER) 4097 /* 4098 * Need to store information about allocs and frees after 4099 * the object. 4100 */ 4101 size += 2 * sizeof(struct track); 4102 #endif 4103 4104 kasan_cache_create(s, &size, &s->flags); 4105 #ifdef CONFIG_SLUB_DEBUG 4106 if (flags & SLAB_RED_ZONE) { 4107 /* 4108 * Add some empty padding so that we can catch 4109 * overwrites from earlier objects rather than let 4110 * tracking information or the free pointer be 4111 * corrupted if a user writes before the start 4112 * of the object. 4113 */ 4114 size += sizeof(void *); 4115 4116 s->red_left_pad = sizeof(void *); 4117 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4118 size += s->red_left_pad; 4119 } 4120 #endif 4121 4122 /* 4123 * SLUB stores one object immediately after another beginning from 4124 * offset 0. In order to align the objects we have to simply size 4125 * each object to conform to the alignment. 4126 */ 4127 size = ALIGN(size, s->align); 4128 s->size = size; 4129 s->reciprocal_size = reciprocal_value(size); 4130 if (forced_order >= 0) 4131 order = forced_order; 4132 else 4133 order = calculate_order(size); 4134 4135 if ((int)order < 0) 4136 return 0; 4137 4138 s->allocflags = 0; 4139 if (order) 4140 s->allocflags |= __GFP_COMP; 4141 4142 if (s->flags & SLAB_CACHE_DMA) 4143 s->allocflags |= GFP_DMA; 4144 4145 if (s->flags & SLAB_CACHE_DMA32) 4146 s->allocflags |= GFP_DMA32; 4147 4148 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4149 s->allocflags |= __GFP_RECLAIMABLE; 4150 4151 /* 4152 * Determine the number of objects per slab 4153 */ 4154 s->oo = oo_make(order, size); 4155 s->min = oo_make(get_order(size), size); 4156 if (oo_objects(s->oo) > oo_objects(s->max)) 4157 s->max = s->oo; 4158 4159 return !!oo_objects(s->oo); 4160 } 4161 4162 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4163 { 4164 s->flags = kmem_cache_flags(s->size, flags, s->name); 4165 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4166 s->random = get_random_long(); 4167 #endif 4168 4169 if (!calculate_sizes(s, -1)) 4170 goto error; 4171 if (disable_higher_order_debug) { 4172 /* 4173 * Disable debugging flags that store metadata if the min slab 4174 * order increased. 4175 */ 4176 if (get_order(s->size) > get_order(s->object_size)) { 4177 s->flags &= ~DEBUG_METADATA_FLAGS; 4178 s->offset = 0; 4179 if (!calculate_sizes(s, -1)) 4180 goto error; 4181 } 4182 } 4183 4184 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4185 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4186 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4187 /* Enable fast mode */ 4188 s->flags |= __CMPXCHG_DOUBLE; 4189 #endif 4190 4191 /* 4192 * The larger the object size is, the more pages we want on the partial 4193 * list to avoid pounding the page allocator excessively. 4194 */ 4195 set_min_partial(s, ilog2(s->size) / 2); 4196 4197 set_cpu_partial(s); 4198 4199 #ifdef CONFIG_NUMA 4200 s->remote_node_defrag_ratio = 1000; 4201 #endif 4202 4203 /* Initialize the pre-computed randomized freelist if slab is up */ 4204 if (slab_state >= UP) { 4205 if (init_cache_random_seq(s)) 4206 goto error; 4207 } 4208 4209 if (!init_kmem_cache_nodes(s)) 4210 goto error; 4211 4212 if (alloc_kmem_cache_cpus(s)) 4213 return 0; 4214 4215 error: 4216 __kmem_cache_release(s); 4217 return -EINVAL; 4218 } 4219 4220 static void list_slab_objects(struct kmem_cache *s, struct page *page, 4221 const char *text) 4222 { 4223 #ifdef CONFIG_SLUB_DEBUG 4224 void *addr = page_address(page); 4225 unsigned long flags; 4226 unsigned long *map; 4227 void *p; 4228 4229 slab_err(s, page, text, s->name); 4230 slab_lock(page, &flags); 4231 4232 map = get_map(s, page); 4233 for_each_object(p, s, addr, page->objects) { 4234 4235 if (!test_bit(__obj_to_index(s, addr, p), map)) { 4236 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4237 print_tracking(s, p); 4238 } 4239 } 4240 put_map(map); 4241 slab_unlock(page, &flags); 4242 #endif 4243 } 4244 4245 /* 4246 * Attempt to free all partial slabs on a node. 4247 * This is called from __kmem_cache_shutdown(). We must take list_lock 4248 * because sysfs file might still access partial list after the shutdowning. 4249 */ 4250 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4251 { 4252 LIST_HEAD(discard); 4253 struct page *page, *h; 4254 4255 BUG_ON(irqs_disabled()); 4256 spin_lock_irq(&n->list_lock); 4257 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 4258 if (!page->inuse) { 4259 remove_partial(n, page); 4260 list_add(&page->slab_list, &discard); 4261 } else { 4262 list_slab_objects(s, page, 4263 "Objects remaining in %s on __kmem_cache_shutdown()"); 4264 } 4265 } 4266 spin_unlock_irq(&n->list_lock); 4267 4268 list_for_each_entry_safe(page, h, &discard, slab_list) 4269 discard_slab(s, page); 4270 } 4271 4272 bool __kmem_cache_empty(struct kmem_cache *s) 4273 { 4274 int node; 4275 struct kmem_cache_node *n; 4276 4277 for_each_kmem_cache_node(s, node, n) 4278 if (n->nr_partial || slabs_node(s, node)) 4279 return false; 4280 return true; 4281 } 4282 4283 /* 4284 * Release all resources used by a slab cache. 4285 */ 4286 int __kmem_cache_shutdown(struct kmem_cache *s) 4287 { 4288 int node; 4289 struct kmem_cache_node *n; 4290 4291 flush_all_cpus_locked(s); 4292 /* Attempt to free all objects */ 4293 for_each_kmem_cache_node(s, node, n) { 4294 free_partial(s, n); 4295 if (n->nr_partial || slabs_node(s, node)) 4296 return 1; 4297 } 4298 return 0; 4299 } 4300 4301 #ifdef CONFIG_PRINTK 4302 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page) 4303 { 4304 void *base; 4305 int __maybe_unused i; 4306 unsigned int objnr; 4307 void *objp; 4308 void *objp0; 4309 struct kmem_cache *s = page->slab_cache; 4310 struct track __maybe_unused *trackp; 4311 4312 kpp->kp_ptr = object; 4313 kpp->kp_page = page; 4314 kpp->kp_slab_cache = s; 4315 base = page_address(page); 4316 objp0 = kasan_reset_tag(object); 4317 #ifdef CONFIG_SLUB_DEBUG 4318 objp = restore_red_left(s, objp0); 4319 #else 4320 objp = objp0; 4321 #endif 4322 objnr = obj_to_index(s, page, objp); 4323 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4324 objp = base + s->size * objnr; 4325 kpp->kp_objp = objp; 4326 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) || 4327 !(s->flags & SLAB_STORE_USER)) 4328 return; 4329 #ifdef CONFIG_SLUB_DEBUG 4330 objp = fixup_red_left(s, objp); 4331 trackp = get_track(s, objp, TRACK_ALLOC); 4332 kpp->kp_ret = (void *)trackp->addr; 4333 #ifdef CONFIG_STACKTRACE 4334 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 4335 kpp->kp_stack[i] = (void *)trackp->addrs[i]; 4336 if (!kpp->kp_stack[i]) 4337 break; 4338 } 4339 4340 trackp = get_track(s, objp, TRACK_FREE); 4341 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 4342 kpp->kp_free_stack[i] = (void *)trackp->addrs[i]; 4343 if (!kpp->kp_free_stack[i]) 4344 break; 4345 } 4346 #endif 4347 #endif 4348 } 4349 #endif 4350 4351 /******************************************************************** 4352 * Kmalloc subsystem 4353 *******************************************************************/ 4354 4355 static int __init setup_slub_min_order(char *str) 4356 { 4357 get_option(&str, (int *)&slub_min_order); 4358 4359 return 1; 4360 } 4361 4362 __setup("slub_min_order=", setup_slub_min_order); 4363 4364 static int __init setup_slub_max_order(char *str) 4365 { 4366 get_option(&str, (int *)&slub_max_order); 4367 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4368 4369 return 1; 4370 } 4371 4372 __setup("slub_max_order=", setup_slub_max_order); 4373 4374 static int __init setup_slub_min_objects(char *str) 4375 { 4376 get_option(&str, (int *)&slub_min_objects); 4377 4378 return 1; 4379 } 4380 4381 __setup("slub_min_objects=", setup_slub_min_objects); 4382 4383 void *__kmalloc(size_t size, gfp_t flags) 4384 { 4385 struct kmem_cache *s; 4386 void *ret; 4387 4388 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4389 return kmalloc_large(size, flags); 4390 4391 s = kmalloc_slab(size, flags); 4392 4393 if (unlikely(ZERO_OR_NULL_PTR(s))) 4394 return s; 4395 4396 ret = slab_alloc(s, flags, _RET_IP_, size); 4397 4398 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 4399 4400 ret = kasan_kmalloc(s, ret, size, flags); 4401 4402 return ret; 4403 } 4404 EXPORT_SYMBOL(__kmalloc); 4405 4406 #ifdef CONFIG_NUMA 4407 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4408 { 4409 struct page *page; 4410 void *ptr = NULL; 4411 unsigned int order = get_order(size); 4412 4413 flags |= __GFP_COMP; 4414 page = alloc_pages_node(node, flags, order); 4415 if (page) { 4416 ptr = page_address(page); 4417 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4418 PAGE_SIZE << order); 4419 } 4420 4421 return kmalloc_large_node_hook(ptr, size, flags); 4422 } 4423 4424 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4425 { 4426 struct kmem_cache *s; 4427 void *ret; 4428 4429 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4430 ret = kmalloc_large_node(size, flags, node); 4431 4432 trace_kmalloc_node(_RET_IP_, ret, 4433 size, PAGE_SIZE << get_order(size), 4434 flags, node); 4435 4436 return ret; 4437 } 4438 4439 s = kmalloc_slab(size, flags); 4440 4441 if (unlikely(ZERO_OR_NULL_PTR(s))) 4442 return s; 4443 4444 ret = slab_alloc_node(s, flags, node, _RET_IP_, size); 4445 4446 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4447 4448 ret = kasan_kmalloc(s, ret, size, flags); 4449 4450 return ret; 4451 } 4452 EXPORT_SYMBOL(__kmalloc_node); 4453 #endif /* CONFIG_NUMA */ 4454 4455 #ifdef CONFIG_HARDENED_USERCOPY 4456 /* 4457 * Rejects incorrectly sized objects and objects that are to be copied 4458 * to/from userspace but do not fall entirely within the containing slab 4459 * cache's usercopy region. 4460 * 4461 * Returns NULL if check passes, otherwise const char * to name of cache 4462 * to indicate an error. 4463 */ 4464 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4465 bool to_user) 4466 { 4467 struct kmem_cache *s; 4468 unsigned int offset; 4469 size_t object_size; 4470 bool is_kfence = is_kfence_address(ptr); 4471 4472 ptr = kasan_reset_tag(ptr); 4473 4474 /* Find object and usable object size. */ 4475 s = page->slab_cache; 4476 4477 /* Reject impossible pointers. */ 4478 if (ptr < page_address(page)) 4479 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4480 to_user, 0, n); 4481 4482 /* Find offset within object. */ 4483 if (is_kfence) 4484 offset = ptr - kfence_object_start(ptr); 4485 else 4486 offset = (ptr - page_address(page)) % s->size; 4487 4488 /* Adjust for redzone and reject if within the redzone. */ 4489 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4490 if (offset < s->red_left_pad) 4491 usercopy_abort("SLUB object in left red zone", 4492 s->name, to_user, offset, n); 4493 offset -= s->red_left_pad; 4494 } 4495 4496 /* Allow address range falling entirely within usercopy region. */ 4497 if (offset >= s->useroffset && 4498 offset - s->useroffset <= s->usersize && 4499 n <= s->useroffset - offset + s->usersize) 4500 return; 4501 4502 /* 4503 * If the copy is still within the allocated object, produce 4504 * a warning instead of rejecting the copy. This is intended 4505 * to be a temporary method to find any missing usercopy 4506 * whitelists. 4507 */ 4508 object_size = slab_ksize(s); 4509 if (usercopy_fallback && 4510 offset <= object_size && n <= object_size - offset) { 4511 usercopy_warn("SLUB object", s->name, to_user, offset, n); 4512 return; 4513 } 4514 4515 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4516 } 4517 #endif /* CONFIG_HARDENED_USERCOPY */ 4518 4519 size_t __ksize(const void *object) 4520 { 4521 struct page *page; 4522 4523 if (unlikely(object == ZERO_SIZE_PTR)) 4524 return 0; 4525 4526 page = virt_to_head_page(object); 4527 4528 if (unlikely(!PageSlab(page))) { 4529 WARN_ON(!PageCompound(page)); 4530 return page_size(page); 4531 } 4532 4533 return slab_ksize(page->slab_cache); 4534 } 4535 EXPORT_SYMBOL(__ksize); 4536 4537 void kfree(const void *x) 4538 { 4539 struct page *page; 4540 void *object = (void *)x; 4541 4542 trace_kfree(_RET_IP_, x); 4543 4544 if (unlikely(ZERO_OR_NULL_PTR(x))) 4545 return; 4546 4547 page = virt_to_head_page(x); 4548 if (unlikely(!PageSlab(page))) { 4549 free_nonslab_page(page, object); 4550 return; 4551 } 4552 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4553 } 4554 EXPORT_SYMBOL(kfree); 4555 4556 #define SHRINK_PROMOTE_MAX 32 4557 4558 /* 4559 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4560 * up most to the head of the partial lists. New allocations will then 4561 * fill those up and thus they can be removed from the partial lists. 4562 * 4563 * The slabs with the least items are placed last. This results in them 4564 * being allocated from last increasing the chance that the last objects 4565 * are freed in them. 4566 */ 4567 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4568 { 4569 int node; 4570 int i; 4571 struct kmem_cache_node *n; 4572 struct page *page; 4573 struct page *t; 4574 struct list_head discard; 4575 struct list_head promote[SHRINK_PROMOTE_MAX]; 4576 unsigned long flags; 4577 int ret = 0; 4578 4579 for_each_kmem_cache_node(s, node, n) { 4580 INIT_LIST_HEAD(&discard); 4581 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4582 INIT_LIST_HEAD(promote + i); 4583 4584 spin_lock_irqsave(&n->list_lock, flags); 4585 4586 /* 4587 * Build lists of slabs to discard or promote. 4588 * 4589 * Note that concurrent frees may occur while we hold the 4590 * list_lock. page->inuse here is the upper limit. 4591 */ 4592 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4593 int free = page->objects - page->inuse; 4594 4595 /* Do not reread page->inuse */ 4596 barrier(); 4597 4598 /* We do not keep full slabs on the list */ 4599 BUG_ON(free <= 0); 4600 4601 if (free == page->objects) { 4602 list_move(&page->slab_list, &discard); 4603 n->nr_partial--; 4604 } else if (free <= SHRINK_PROMOTE_MAX) 4605 list_move(&page->slab_list, promote + free - 1); 4606 } 4607 4608 /* 4609 * Promote the slabs filled up most to the head of the 4610 * partial list. 4611 */ 4612 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4613 list_splice(promote + i, &n->partial); 4614 4615 spin_unlock_irqrestore(&n->list_lock, flags); 4616 4617 /* Release empty slabs */ 4618 list_for_each_entry_safe(page, t, &discard, slab_list) 4619 discard_slab(s, page); 4620 4621 if (slabs_node(s, node)) 4622 ret = 1; 4623 } 4624 4625 return ret; 4626 } 4627 4628 int __kmem_cache_shrink(struct kmem_cache *s) 4629 { 4630 flush_all(s); 4631 return __kmem_cache_do_shrink(s); 4632 } 4633 4634 static int slab_mem_going_offline_callback(void *arg) 4635 { 4636 struct kmem_cache *s; 4637 4638 mutex_lock(&slab_mutex); 4639 list_for_each_entry(s, &slab_caches, list) { 4640 flush_all_cpus_locked(s); 4641 __kmem_cache_do_shrink(s); 4642 } 4643 mutex_unlock(&slab_mutex); 4644 4645 return 0; 4646 } 4647 4648 static void slab_mem_offline_callback(void *arg) 4649 { 4650 struct memory_notify *marg = arg; 4651 int offline_node; 4652 4653 offline_node = marg->status_change_nid_normal; 4654 4655 /* 4656 * If the node still has available memory. we need kmem_cache_node 4657 * for it yet. 4658 */ 4659 if (offline_node < 0) 4660 return; 4661 4662 mutex_lock(&slab_mutex); 4663 node_clear(offline_node, slab_nodes); 4664 /* 4665 * We no longer free kmem_cache_node structures here, as it would be 4666 * racy with all get_node() users, and infeasible to protect them with 4667 * slab_mutex. 4668 */ 4669 mutex_unlock(&slab_mutex); 4670 } 4671 4672 static int slab_mem_going_online_callback(void *arg) 4673 { 4674 struct kmem_cache_node *n; 4675 struct kmem_cache *s; 4676 struct memory_notify *marg = arg; 4677 int nid = marg->status_change_nid_normal; 4678 int ret = 0; 4679 4680 /* 4681 * If the node's memory is already available, then kmem_cache_node is 4682 * already created. Nothing to do. 4683 */ 4684 if (nid < 0) 4685 return 0; 4686 4687 /* 4688 * We are bringing a node online. No memory is available yet. We must 4689 * allocate a kmem_cache_node structure in order to bring the node 4690 * online. 4691 */ 4692 mutex_lock(&slab_mutex); 4693 list_for_each_entry(s, &slab_caches, list) { 4694 /* 4695 * The structure may already exist if the node was previously 4696 * onlined and offlined. 4697 */ 4698 if (get_node(s, nid)) 4699 continue; 4700 /* 4701 * XXX: kmem_cache_alloc_node will fallback to other nodes 4702 * since memory is not yet available from the node that 4703 * is brought up. 4704 */ 4705 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4706 if (!n) { 4707 ret = -ENOMEM; 4708 goto out; 4709 } 4710 init_kmem_cache_node(n); 4711 s->node[nid] = n; 4712 } 4713 /* 4714 * Any cache created after this point will also have kmem_cache_node 4715 * initialized for the new node. 4716 */ 4717 node_set(nid, slab_nodes); 4718 out: 4719 mutex_unlock(&slab_mutex); 4720 return ret; 4721 } 4722 4723 static int slab_memory_callback(struct notifier_block *self, 4724 unsigned long action, void *arg) 4725 { 4726 int ret = 0; 4727 4728 switch (action) { 4729 case MEM_GOING_ONLINE: 4730 ret = slab_mem_going_online_callback(arg); 4731 break; 4732 case MEM_GOING_OFFLINE: 4733 ret = slab_mem_going_offline_callback(arg); 4734 break; 4735 case MEM_OFFLINE: 4736 case MEM_CANCEL_ONLINE: 4737 slab_mem_offline_callback(arg); 4738 break; 4739 case MEM_ONLINE: 4740 case MEM_CANCEL_OFFLINE: 4741 break; 4742 } 4743 if (ret) 4744 ret = notifier_from_errno(ret); 4745 else 4746 ret = NOTIFY_OK; 4747 return ret; 4748 } 4749 4750 static struct notifier_block slab_memory_callback_nb = { 4751 .notifier_call = slab_memory_callback, 4752 .priority = SLAB_CALLBACK_PRI, 4753 }; 4754 4755 /******************************************************************** 4756 * Basic setup of slabs 4757 *******************************************************************/ 4758 4759 /* 4760 * Used for early kmem_cache structures that were allocated using 4761 * the page allocator. Allocate them properly then fix up the pointers 4762 * that may be pointing to the wrong kmem_cache structure. 4763 */ 4764 4765 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4766 { 4767 int node; 4768 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4769 struct kmem_cache_node *n; 4770 4771 memcpy(s, static_cache, kmem_cache->object_size); 4772 4773 /* 4774 * This runs very early, and only the boot processor is supposed to be 4775 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4776 * IPIs around. 4777 */ 4778 __flush_cpu_slab(s, smp_processor_id()); 4779 for_each_kmem_cache_node(s, node, n) { 4780 struct page *p; 4781 4782 list_for_each_entry(p, &n->partial, slab_list) 4783 p->slab_cache = s; 4784 4785 #ifdef CONFIG_SLUB_DEBUG 4786 list_for_each_entry(p, &n->full, slab_list) 4787 p->slab_cache = s; 4788 #endif 4789 } 4790 list_add(&s->list, &slab_caches); 4791 return s; 4792 } 4793 4794 void __init kmem_cache_init(void) 4795 { 4796 static __initdata struct kmem_cache boot_kmem_cache, 4797 boot_kmem_cache_node; 4798 int node; 4799 4800 if (debug_guardpage_minorder()) 4801 slub_max_order = 0; 4802 4803 /* Print slub debugging pointers without hashing */ 4804 if (__slub_debug_enabled()) 4805 no_hash_pointers_enable(NULL); 4806 4807 kmem_cache_node = &boot_kmem_cache_node; 4808 kmem_cache = &boot_kmem_cache; 4809 4810 /* 4811 * Initialize the nodemask for which we will allocate per node 4812 * structures. Here we don't need taking slab_mutex yet. 4813 */ 4814 for_each_node_state(node, N_NORMAL_MEMORY) 4815 node_set(node, slab_nodes); 4816 4817 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4818 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4819 4820 register_hotmemory_notifier(&slab_memory_callback_nb); 4821 4822 /* Able to allocate the per node structures */ 4823 slab_state = PARTIAL; 4824 4825 create_boot_cache(kmem_cache, "kmem_cache", 4826 offsetof(struct kmem_cache, node) + 4827 nr_node_ids * sizeof(struct kmem_cache_node *), 4828 SLAB_HWCACHE_ALIGN, 0, 0); 4829 4830 kmem_cache = bootstrap(&boot_kmem_cache); 4831 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4832 4833 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4834 setup_kmalloc_cache_index_table(); 4835 create_kmalloc_caches(0); 4836 4837 /* Setup random freelists for each cache */ 4838 init_freelist_randomization(); 4839 4840 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4841 slub_cpu_dead); 4842 4843 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4844 cache_line_size(), 4845 slub_min_order, slub_max_order, slub_min_objects, 4846 nr_cpu_ids, nr_node_ids); 4847 } 4848 4849 void __init kmem_cache_init_late(void) 4850 { 4851 } 4852 4853 struct kmem_cache * 4854 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4855 slab_flags_t flags, void (*ctor)(void *)) 4856 { 4857 struct kmem_cache *s; 4858 4859 s = find_mergeable(size, align, flags, name, ctor); 4860 if (s) { 4861 s->refcount++; 4862 4863 /* 4864 * Adjust the object sizes so that we clear 4865 * the complete object on kzalloc. 4866 */ 4867 s->object_size = max(s->object_size, size); 4868 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4869 4870 if (sysfs_slab_alias(s, name)) { 4871 s->refcount--; 4872 s = NULL; 4873 } 4874 } 4875 4876 return s; 4877 } 4878 4879 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4880 { 4881 int err; 4882 4883 err = kmem_cache_open(s, flags); 4884 if (err) 4885 return err; 4886 4887 /* Mutex is not taken during early boot */ 4888 if (slab_state <= UP) 4889 return 0; 4890 4891 err = sysfs_slab_add(s); 4892 if (err) { 4893 __kmem_cache_release(s); 4894 return err; 4895 } 4896 4897 if (s->flags & SLAB_STORE_USER) 4898 debugfs_slab_add(s); 4899 4900 return 0; 4901 } 4902 4903 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4904 { 4905 struct kmem_cache *s; 4906 void *ret; 4907 4908 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4909 return kmalloc_large(size, gfpflags); 4910 4911 s = kmalloc_slab(size, gfpflags); 4912 4913 if (unlikely(ZERO_OR_NULL_PTR(s))) 4914 return s; 4915 4916 ret = slab_alloc(s, gfpflags, caller, size); 4917 4918 /* Honor the call site pointer we received. */ 4919 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4920 4921 return ret; 4922 } 4923 EXPORT_SYMBOL(__kmalloc_track_caller); 4924 4925 #ifdef CONFIG_NUMA 4926 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4927 int node, unsigned long caller) 4928 { 4929 struct kmem_cache *s; 4930 void *ret; 4931 4932 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4933 ret = kmalloc_large_node(size, gfpflags, node); 4934 4935 trace_kmalloc_node(caller, ret, 4936 size, PAGE_SIZE << get_order(size), 4937 gfpflags, node); 4938 4939 return ret; 4940 } 4941 4942 s = kmalloc_slab(size, gfpflags); 4943 4944 if (unlikely(ZERO_OR_NULL_PTR(s))) 4945 return s; 4946 4947 ret = slab_alloc_node(s, gfpflags, node, caller, size); 4948 4949 /* Honor the call site pointer we received. */ 4950 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4951 4952 return ret; 4953 } 4954 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4955 #endif 4956 4957 #ifdef CONFIG_SYSFS 4958 static int count_inuse(struct page *page) 4959 { 4960 return page->inuse; 4961 } 4962 4963 static int count_total(struct page *page) 4964 { 4965 return page->objects; 4966 } 4967 #endif 4968 4969 #ifdef CONFIG_SLUB_DEBUG 4970 static void validate_slab(struct kmem_cache *s, struct page *page, 4971 unsigned long *obj_map) 4972 { 4973 void *p; 4974 void *addr = page_address(page); 4975 unsigned long flags; 4976 4977 slab_lock(page, &flags); 4978 4979 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4980 goto unlock; 4981 4982 /* Now we know that a valid freelist exists */ 4983 __fill_map(obj_map, s, page); 4984 for_each_object(p, s, addr, page->objects) { 4985 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 4986 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4987 4988 if (!check_object(s, page, p, val)) 4989 break; 4990 } 4991 unlock: 4992 slab_unlock(page, &flags); 4993 } 4994 4995 static int validate_slab_node(struct kmem_cache *s, 4996 struct kmem_cache_node *n, unsigned long *obj_map) 4997 { 4998 unsigned long count = 0; 4999 struct page *page; 5000 unsigned long flags; 5001 5002 spin_lock_irqsave(&n->list_lock, flags); 5003 5004 list_for_each_entry(page, &n->partial, slab_list) { 5005 validate_slab(s, page, obj_map); 5006 count++; 5007 } 5008 if (count != n->nr_partial) { 5009 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5010 s->name, count, n->nr_partial); 5011 slab_add_kunit_errors(); 5012 } 5013 5014 if (!(s->flags & SLAB_STORE_USER)) 5015 goto out; 5016 5017 list_for_each_entry(page, &n->full, slab_list) { 5018 validate_slab(s, page, obj_map); 5019 count++; 5020 } 5021 if (count != atomic_long_read(&n->nr_slabs)) { 5022 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5023 s->name, count, atomic_long_read(&n->nr_slabs)); 5024 slab_add_kunit_errors(); 5025 } 5026 5027 out: 5028 spin_unlock_irqrestore(&n->list_lock, flags); 5029 return count; 5030 } 5031 5032 long validate_slab_cache(struct kmem_cache *s) 5033 { 5034 int node; 5035 unsigned long count = 0; 5036 struct kmem_cache_node *n; 5037 unsigned long *obj_map; 5038 5039 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5040 if (!obj_map) 5041 return -ENOMEM; 5042 5043 flush_all(s); 5044 for_each_kmem_cache_node(s, node, n) 5045 count += validate_slab_node(s, n, obj_map); 5046 5047 bitmap_free(obj_map); 5048 5049 return count; 5050 } 5051 EXPORT_SYMBOL(validate_slab_cache); 5052 5053 #ifdef CONFIG_DEBUG_FS 5054 /* 5055 * Generate lists of code addresses where slabcache objects are allocated 5056 * and freed. 5057 */ 5058 5059 struct location { 5060 unsigned long count; 5061 unsigned long addr; 5062 long long sum_time; 5063 long min_time; 5064 long max_time; 5065 long min_pid; 5066 long max_pid; 5067 DECLARE_BITMAP(cpus, NR_CPUS); 5068 nodemask_t nodes; 5069 }; 5070 5071 struct loc_track { 5072 unsigned long max; 5073 unsigned long count; 5074 struct location *loc; 5075 }; 5076 5077 static struct dentry *slab_debugfs_root; 5078 5079 static void free_loc_track(struct loc_track *t) 5080 { 5081 if (t->max) 5082 free_pages((unsigned long)t->loc, 5083 get_order(sizeof(struct location) * t->max)); 5084 } 5085 5086 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5087 { 5088 struct location *l; 5089 int order; 5090 5091 order = get_order(sizeof(struct location) * max); 5092 5093 l = (void *)__get_free_pages(flags, order); 5094 if (!l) 5095 return 0; 5096 5097 if (t->count) { 5098 memcpy(l, t->loc, sizeof(struct location) * t->count); 5099 free_loc_track(t); 5100 } 5101 t->max = max; 5102 t->loc = l; 5103 return 1; 5104 } 5105 5106 static int add_location(struct loc_track *t, struct kmem_cache *s, 5107 const struct track *track) 5108 { 5109 long start, end, pos; 5110 struct location *l; 5111 unsigned long caddr; 5112 unsigned long age = jiffies - track->when; 5113 5114 start = -1; 5115 end = t->count; 5116 5117 for ( ; ; ) { 5118 pos = start + (end - start + 1) / 2; 5119 5120 /* 5121 * There is nothing at "end". If we end up there 5122 * we need to add something to before end. 5123 */ 5124 if (pos == end) 5125 break; 5126 5127 caddr = t->loc[pos].addr; 5128 if (track->addr == caddr) { 5129 5130 l = &t->loc[pos]; 5131 l->count++; 5132 if (track->when) { 5133 l->sum_time += age; 5134 if (age < l->min_time) 5135 l->min_time = age; 5136 if (age > l->max_time) 5137 l->max_time = age; 5138 5139 if (track->pid < l->min_pid) 5140 l->min_pid = track->pid; 5141 if (track->pid > l->max_pid) 5142 l->max_pid = track->pid; 5143 5144 cpumask_set_cpu(track->cpu, 5145 to_cpumask(l->cpus)); 5146 } 5147 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5148 return 1; 5149 } 5150 5151 if (track->addr < caddr) 5152 end = pos; 5153 else 5154 start = pos; 5155 } 5156 5157 /* 5158 * Not found. Insert new tracking element. 5159 */ 5160 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5161 return 0; 5162 5163 l = t->loc + pos; 5164 if (pos < t->count) 5165 memmove(l + 1, l, 5166 (t->count - pos) * sizeof(struct location)); 5167 t->count++; 5168 l->count = 1; 5169 l->addr = track->addr; 5170 l->sum_time = age; 5171 l->min_time = age; 5172 l->max_time = age; 5173 l->min_pid = track->pid; 5174 l->max_pid = track->pid; 5175 cpumask_clear(to_cpumask(l->cpus)); 5176 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5177 nodes_clear(l->nodes); 5178 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5179 return 1; 5180 } 5181 5182 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5183 struct page *page, enum track_item alloc, 5184 unsigned long *obj_map) 5185 { 5186 void *addr = page_address(page); 5187 void *p; 5188 5189 __fill_map(obj_map, s, page); 5190 5191 for_each_object(p, s, addr, page->objects) 5192 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5193 add_location(t, s, get_track(s, p, alloc)); 5194 } 5195 #endif /* CONFIG_DEBUG_FS */ 5196 #endif /* CONFIG_SLUB_DEBUG */ 5197 5198 #ifdef CONFIG_SYSFS 5199 enum slab_stat_type { 5200 SL_ALL, /* All slabs */ 5201 SL_PARTIAL, /* Only partially allocated slabs */ 5202 SL_CPU, /* Only slabs used for cpu caches */ 5203 SL_OBJECTS, /* Determine allocated objects not slabs */ 5204 SL_TOTAL /* Determine object capacity not slabs */ 5205 }; 5206 5207 #define SO_ALL (1 << SL_ALL) 5208 #define SO_PARTIAL (1 << SL_PARTIAL) 5209 #define SO_CPU (1 << SL_CPU) 5210 #define SO_OBJECTS (1 << SL_OBJECTS) 5211 #define SO_TOTAL (1 << SL_TOTAL) 5212 5213 static ssize_t show_slab_objects(struct kmem_cache *s, 5214 char *buf, unsigned long flags) 5215 { 5216 unsigned long total = 0; 5217 int node; 5218 int x; 5219 unsigned long *nodes; 5220 int len = 0; 5221 5222 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5223 if (!nodes) 5224 return -ENOMEM; 5225 5226 if (flags & SO_CPU) { 5227 int cpu; 5228 5229 for_each_possible_cpu(cpu) { 5230 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5231 cpu); 5232 int node; 5233 struct page *page; 5234 5235 page = READ_ONCE(c->page); 5236 if (!page) 5237 continue; 5238 5239 node = page_to_nid(page); 5240 if (flags & SO_TOTAL) 5241 x = page->objects; 5242 else if (flags & SO_OBJECTS) 5243 x = page->inuse; 5244 else 5245 x = 1; 5246 5247 total += x; 5248 nodes[node] += x; 5249 5250 page = slub_percpu_partial_read_once(c); 5251 if (page) { 5252 node = page_to_nid(page); 5253 if (flags & SO_TOTAL) 5254 WARN_ON_ONCE(1); 5255 else if (flags & SO_OBJECTS) 5256 WARN_ON_ONCE(1); 5257 else 5258 x = page->pages; 5259 total += x; 5260 nodes[node] += x; 5261 } 5262 } 5263 } 5264 5265 /* 5266 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5267 * already held which will conflict with an existing lock order: 5268 * 5269 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5270 * 5271 * We don't really need mem_hotplug_lock (to hold off 5272 * slab_mem_going_offline_callback) here because slab's memory hot 5273 * unplug code doesn't destroy the kmem_cache->node[] data. 5274 */ 5275 5276 #ifdef CONFIG_SLUB_DEBUG 5277 if (flags & SO_ALL) { 5278 struct kmem_cache_node *n; 5279 5280 for_each_kmem_cache_node(s, node, n) { 5281 5282 if (flags & SO_TOTAL) 5283 x = atomic_long_read(&n->total_objects); 5284 else if (flags & SO_OBJECTS) 5285 x = atomic_long_read(&n->total_objects) - 5286 count_partial(n, count_free); 5287 else 5288 x = atomic_long_read(&n->nr_slabs); 5289 total += x; 5290 nodes[node] += x; 5291 } 5292 5293 } else 5294 #endif 5295 if (flags & SO_PARTIAL) { 5296 struct kmem_cache_node *n; 5297 5298 for_each_kmem_cache_node(s, node, n) { 5299 if (flags & SO_TOTAL) 5300 x = count_partial(n, count_total); 5301 else if (flags & SO_OBJECTS) 5302 x = count_partial(n, count_inuse); 5303 else 5304 x = n->nr_partial; 5305 total += x; 5306 nodes[node] += x; 5307 } 5308 } 5309 5310 len += sysfs_emit_at(buf, len, "%lu", total); 5311 #ifdef CONFIG_NUMA 5312 for (node = 0; node < nr_node_ids; node++) { 5313 if (nodes[node]) 5314 len += sysfs_emit_at(buf, len, " N%d=%lu", 5315 node, nodes[node]); 5316 } 5317 #endif 5318 len += sysfs_emit_at(buf, len, "\n"); 5319 kfree(nodes); 5320 5321 return len; 5322 } 5323 5324 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5325 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5326 5327 struct slab_attribute { 5328 struct attribute attr; 5329 ssize_t (*show)(struct kmem_cache *s, char *buf); 5330 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5331 }; 5332 5333 #define SLAB_ATTR_RO(_name) \ 5334 static struct slab_attribute _name##_attr = \ 5335 __ATTR(_name, 0400, _name##_show, NULL) 5336 5337 #define SLAB_ATTR(_name) \ 5338 static struct slab_attribute _name##_attr = \ 5339 __ATTR(_name, 0600, _name##_show, _name##_store) 5340 5341 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5342 { 5343 return sysfs_emit(buf, "%u\n", s->size); 5344 } 5345 SLAB_ATTR_RO(slab_size); 5346 5347 static ssize_t align_show(struct kmem_cache *s, char *buf) 5348 { 5349 return sysfs_emit(buf, "%u\n", s->align); 5350 } 5351 SLAB_ATTR_RO(align); 5352 5353 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5354 { 5355 return sysfs_emit(buf, "%u\n", s->object_size); 5356 } 5357 SLAB_ATTR_RO(object_size); 5358 5359 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5360 { 5361 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5362 } 5363 SLAB_ATTR_RO(objs_per_slab); 5364 5365 static ssize_t order_show(struct kmem_cache *s, char *buf) 5366 { 5367 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5368 } 5369 SLAB_ATTR_RO(order); 5370 5371 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5372 { 5373 return sysfs_emit(buf, "%lu\n", s->min_partial); 5374 } 5375 5376 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5377 size_t length) 5378 { 5379 unsigned long min; 5380 int err; 5381 5382 err = kstrtoul(buf, 10, &min); 5383 if (err) 5384 return err; 5385 5386 set_min_partial(s, min); 5387 return length; 5388 } 5389 SLAB_ATTR(min_partial); 5390 5391 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5392 { 5393 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s)); 5394 } 5395 5396 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5397 size_t length) 5398 { 5399 unsigned int objects; 5400 int err; 5401 5402 err = kstrtouint(buf, 10, &objects); 5403 if (err) 5404 return err; 5405 if (objects && !kmem_cache_has_cpu_partial(s)) 5406 return -EINVAL; 5407 5408 slub_set_cpu_partial(s, objects); 5409 flush_all(s); 5410 return length; 5411 } 5412 SLAB_ATTR(cpu_partial); 5413 5414 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5415 { 5416 if (!s->ctor) 5417 return 0; 5418 return sysfs_emit(buf, "%pS\n", s->ctor); 5419 } 5420 SLAB_ATTR_RO(ctor); 5421 5422 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5423 { 5424 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5425 } 5426 SLAB_ATTR_RO(aliases); 5427 5428 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5429 { 5430 return show_slab_objects(s, buf, SO_PARTIAL); 5431 } 5432 SLAB_ATTR_RO(partial); 5433 5434 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5435 { 5436 return show_slab_objects(s, buf, SO_CPU); 5437 } 5438 SLAB_ATTR_RO(cpu_slabs); 5439 5440 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5441 { 5442 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5443 } 5444 SLAB_ATTR_RO(objects); 5445 5446 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5447 { 5448 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5449 } 5450 SLAB_ATTR_RO(objects_partial); 5451 5452 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5453 { 5454 int objects = 0; 5455 int pages = 0; 5456 int cpu; 5457 int len = 0; 5458 5459 for_each_online_cpu(cpu) { 5460 struct page *page; 5461 5462 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5463 5464 if (page) { 5465 pages += page->pages; 5466 objects += page->pobjects; 5467 } 5468 } 5469 5470 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages); 5471 5472 #ifdef CONFIG_SMP 5473 for_each_online_cpu(cpu) { 5474 struct page *page; 5475 5476 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5477 if (page) 5478 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5479 cpu, page->pobjects, page->pages); 5480 } 5481 #endif 5482 len += sysfs_emit_at(buf, len, "\n"); 5483 5484 return len; 5485 } 5486 SLAB_ATTR_RO(slabs_cpu_partial); 5487 5488 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5489 { 5490 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5491 } 5492 SLAB_ATTR_RO(reclaim_account); 5493 5494 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5495 { 5496 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5497 } 5498 SLAB_ATTR_RO(hwcache_align); 5499 5500 #ifdef CONFIG_ZONE_DMA 5501 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5502 { 5503 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5504 } 5505 SLAB_ATTR_RO(cache_dma); 5506 #endif 5507 5508 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5509 { 5510 return sysfs_emit(buf, "%u\n", s->usersize); 5511 } 5512 SLAB_ATTR_RO(usersize); 5513 5514 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5515 { 5516 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5517 } 5518 SLAB_ATTR_RO(destroy_by_rcu); 5519 5520 #ifdef CONFIG_SLUB_DEBUG 5521 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5522 { 5523 return show_slab_objects(s, buf, SO_ALL); 5524 } 5525 SLAB_ATTR_RO(slabs); 5526 5527 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5528 { 5529 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5530 } 5531 SLAB_ATTR_RO(total_objects); 5532 5533 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5534 { 5535 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5536 } 5537 SLAB_ATTR_RO(sanity_checks); 5538 5539 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5540 { 5541 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5542 } 5543 SLAB_ATTR_RO(trace); 5544 5545 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5546 { 5547 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5548 } 5549 5550 SLAB_ATTR_RO(red_zone); 5551 5552 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5553 { 5554 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5555 } 5556 5557 SLAB_ATTR_RO(poison); 5558 5559 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5560 { 5561 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5562 } 5563 5564 SLAB_ATTR_RO(store_user); 5565 5566 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5567 { 5568 return 0; 5569 } 5570 5571 static ssize_t validate_store(struct kmem_cache *s, 5572 const char *buf, size_t length) 5573 { 5574 int ret = -EINVAL; 5575 5576 if (buf[0] == '1') { 5577 ret = validate_slab_cache(s); 5578 if (ret >= 0) 5579 ret = length; 5580 } 5581 return ret; 5582 } 5583 SLAB_ATTR(validate); 5584 5585 #endif /* CONFIG_SLUB_DEBUG */ 5586 5587 #ifdef CONFIG_FAILSLAB 5588 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5589 { 5590 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5591 } 5592 SLAB_ATTR_RO(failslab); 5593 #endif 5594 5595 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5596 { 5597 return 0; 5598 } 5599 5600 static ssize_t shrink_store(struct kmem_cache *s, 5601 const char *buf, size_t length) 5602 { 5603 if (buf[0] == '1') 5604 kmem_cache_shrink(s); 5605 else 5606 return -EINVAL; 5607 return length; 5608 } 5609 SLAB_ATTR(shrink); 5610 5611 #ifdef CONFIG_NUMA 5612 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5613 { 5614 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5615 } 5616 5617 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5618 const char *buf, size_t length) 5619 { 5620 unsigned int ratio; 5621 int err; 5622 5623 err = kstrtouint(buf, 10, &ratio); 5624 if (err) 5625 return err; 5626 if (ratio > 100) 5627 return -ERANGE; 5628 5629 s->remote_node_defrag_ratio = ratio * 10; 5630 5631 return length; 5632 } 5633 SLAB_ATTR(remote_node_defrag_ratio); 5634 #endif 5635 5636 #ifdef CONFIG_SLUB_STATS 5637 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5638 { 5639 unsigned long sum = 0; 5640 int cpu; 5641 int len = 0; 5642 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5643 5644 if (!data) 5645 return -ENOMEM; 5646 5647 for_each_online_cpu(cpu) { 5648 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5649 5650 data[cpu] = x; 5651 sum += x; 5652 } 5653 5654 len += sysfs_emit_at(buf, len, "%lu", sum); 5655 5656 #ifdef CONFIG_SMP 5657 for_each_online_cpu(cpu) { 5658 if (data[cpu]) 5659 len += sysfs_emit_at(buf, len, " C%d=%u", 5660 cpu, data[cpu]); 5661 } 5662 #endif 5663 kfree(data); 5664 len += sysfs_emit_at(buf, len, "\n"); 5665 5666 return len; 5667 } 5668 5669 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5670 { 5671 int cpu; 5672 5673 for_each_online_cpu(cpu) 5674 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5675 } 5676 5677 #define STAT_ATTR(si, text) \ 5678 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5679 { \ 5680 return show_stat(s, buf, si); \ 5681 } \ 5682 static ssize_t text##_store(struct kmem_cache *s, \ 5683 const char *buf, size_t length) \ 5684 { \ 5685 if (buf[0] != '0') \ 5686 return -EINVAL; \ 5687 clear_stat(s, si); \ 5688 return length; \ 5689 } \ 5690 SLAB_ATTR(text); \ 5691 5692 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5693 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5694 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5695 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5696 STAT_ATTR(FREE_FROZEN, free_frozen); 5697 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5698 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5699 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5700 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5701 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5702 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5703 STAT_ATTR(FREE_SLAB, free_slab); 5704 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5705 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5706 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5707 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5708 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5709 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5710 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5711 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5712 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5713 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5714 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5715 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5716 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5717 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5718 #endif /* CONFIG_SLUB_STATS */ 5719 5720 static struct attribute *slab_attrs[] = { 5721 &slab_size_attr.attr, 5722 &object_size_attr.attr, 5723 &objs_per_slab_attr.attr, 5724 &order_attr.attr, 5725 &min_partial_attr.attr, 5726 &cpu_partial_attr.attr, 5727 &objects_attr.attr, 5728 &objects_partial_attr.attr, 5729 &partial_attr.attr, 5730 &cpu_slabs_attr.attr, 5731 &ctor_attr.attr, 5732 &aliases_attr.attr, 5733 &align_attr.attr, 5734 &hwcache_align_attr.attr, 5735 &reclaim_account_attr.attr, 5736 &destroy_by_rcu_attr.attr, 5737 &shrink_attr.attr, 5738 &slabs_cpu_partial_attr.attr, 5739 #ifdef CONFIG_SLUB_DEBUG 5740 &total_objects_attr.attr, 5741 &slabs_attr.attr, 5742 &sanity_checks_attr.attr, 5743 &trace_attr.attr, 5744 &red_zone_attr.attr, 5745 &poison_attr.attr, 5746 &store_user_attr.attr, 5747 &validate_attr.attr, 5748 #endif 5749 #ifdef CONFIG_ZONE_DMA 5750 &cache_dma_attr.attr, 5751 #endif 5752 #ifdef CONFIG_NUMA 5753 &remote_node_defrag_ratio_attr.attr, 5754 #endif 5755 #ifdef CONFIG_SLUB_STATS 5756 &alloc_fastpath_attr.attr, 5757 &alloc_slowpath_attr.attr, 5758 &free_fastpath_attr.attr, 5759 &free_slowpath_attr.attr, 5760 &free_frozen_attr.attr, 5761 &free_add_partial_attr.attr, 5762 &free_remove_partial_attr.attr, 5763 &alloc_from_partial_attr.attr, 5764 &alloc_slab_attr.attr, 5765 &alloc_refill_attr.attr, 5766 &alloc_node_mismatch_attr.attr, 5767 &free_slab_attr.attr, 5768 &cpuslab_flush_attr.attr, 5769 &deactivate_full_attr.attr, 5770 &deactivate_empty_attr.attr, 5771 &deactivate_to_head_attr.attr, 5772 &deactivate_to_tail_attr.attr, 5773 &deactivate_remote_frees_attr.attr, 5774 &deactivate_bypass_attr.attr, 5775 &order_fallback_attr.attr, 5776 &cmpxchg_double_fail_attr.attr, 5777 &cmpxchg_double_cpu_fail_attr.attr, 5778 &cpu_partial_alloc_attr.attr, 5779 &cpu_partial_free_attr.attr, 5780 &cpu_partial_node_attr.attr, 5781 &cpu_partial_drain_attr.attr, 5782 #endif 5783 #ifdef CONFIG_FAILSLAB 5784 &failslab_attr.attr, 5785 #endif 5786 &usersize_attr.attr, 5787 5788 NULL 5789 }; 5790 5791 static const struct attribute_group slab_attr_group = { 5792 .attrs = slab_attrs, 5793 }; 5794 5795 static ssize_t slab_attr_show(struct kobject *kobj, 5796 struct attribute *attr, 5797 char *buf) 5798 { 5799 struct slab_attribute *attribute; 5800 struct kmem_cache *s; 5801 int err; 5802 5803 attribute = to_slab_attr(attr); 5804 s = to_slab(kobj); 5805 5806 if (!attribute->show) 5807 return -EIO; 5808 5809 err = attribute->show(s, buf); 5810 5811 return err; 5812 } 5813 5814 static ssize_t slab_attr_store(struct kobject *kobj, 5815 struct attribute *attr, 5816 const char *buf, size_t len) 5817 { 5818 struct slab_attribute *attribute; 5819 struct kmem_cache *s; 5820 int err; 5821 5822 attribute = to_slab_attr(attr); 5823 s = to_slab(kobj); 5824 5825 if (!attribute->store) 5826 return -EIO; 5827 5828 err = attribute->store(s, buf, len); 5829 return err; 5830 } 5831 5832 static void kmem_cache_release(struct kobject *k) 5833 { 5834 slab_kmem_cache_release(to_slab(k)); 5835 } 5836 5837 static const struct sysfs_ops slab_sysfs_ops = { 5838 .show = slab_attr_show, 5839 .store = slab_attr_store, 5840 }; 5841 5842 static struct kobj_type slab_ktype = { 5843 .sysfs_ops = &slab_sysfs_ops, 5844 .release = kmem_cache_release, 5845 }; 5846 5847 static struct kset *slab_kset; 5848 5849 static inline struct kset *cache_kset(struct kmem_cache *s) 5850 { 5851 return slab_kset; 5852 } 5853 5854 #define ID_STR_LENGTH 64 5855 5856 /* Create a unique string id for a slab cache: 5857 * 5858 * Format :[flags-]size 5859 */ 5860 static char *create_unique_id(struct kmem_cache *s) 5861 { 5862 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5863 char *p = name; 5864 5865 BUG_ON(!name); 5866 5867 *p++ = ':'; 5868 /* 5869 * First flags affecting slabcache operations. We will only 5870 * get here for aliasable slabs so we do not need to support 5871 * too many flags. The flags here must cover all flags that 5872 * are matched during merging to guarantee that the id is 5873 * unique. 5874 */ 5875 if (s->flags & SLAB_CACHE_DMA) 5876 *p++ = 'd'; 5877 if (s->flags & SLAB_CACHE_DMA32) 5878 *p++ = 'D'; 5879 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5880 *p++ = 'a'; 5881 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5882 *p++ = 'F'; 5883 if (s->flags & SLAB_ACCOUNT) 5884 *p++ = 'A'; 5885 if (p != name + 1) 5886 *p++ = '-'; 5887 p += sprintf(p, "%07u", s->size); 5888 5889 BUG_ON(p > name + ID_STR_LENGTH - 1); 5890 return name; 5891 } 5892 5893 static int sysfs_slab_add(struct kmem_cache *s) 5894 { 5895 int err; 5896 const char *name; 5897 struct kset *kset = cache_kset(s); 5898 int unmergeable = slab_unmergeable(s); 5899 5900 if (!kset) { 5901 kobject_init(&s->kobj, &slab_ktype); 5902 return 0; 5903 } 5904 5905 if (!unmergeable && disable_higher_order_debug && 5906 (slub_debug & DEBUG_METADATA_FLAGS)) 5907 unmergeable = 1; 5908 5909 if (unmergeable) { 5910 /* 5911 * Slabcache can never be merged so we can use the name proper. 5912 * This is typically the case for debug situations. In that 5913 * case we can catch duplicate names easily. 5914 */ 5915 sysfs_remove_link(&slab_kset->kobj, s->name); 5916 name = s->name; 5917 } else { 5918 /* 5919 * Create a unique name for the slab as a target 5920 * for the symlinks. 5921 */ 5922 name = create_unique_id(s); 5923 } 5924 5925 s->kobj.kset = kset; 5926 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5927 if (err) 5928 goto out; 5929 5930 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5931 if (err) 5932 goto out_del_kobj; 5933 5934 if (!unmergeable) { 5935 /* Setup first alias */ 5936 sysfs_slab_alias(s, s->name); 5937 } 5938 out: 5939 if (!unmergeable) 5940 kfree(name); 5941 return err; 5942 out_del_kobj: 5943 kobject_del(&s->kobj); 5944 goto out; 5945 } 5946 5947 void sysfs_slab_unlink(struct kmem_cache *s) 5948 { 5949 if (slab_state >= FULL) 5950 kobject_del(&s->kobj); 5951 } 5952 5953 void sysfs_slab_release(struct kmem_cache *s) 5954 { 5955 if (slab_state >= FULL) 5956 kobject_put(&s->kobj); 5957 } 5958 5959 /* 5960 * Need to buffer aliases during bootup until sysfs becomes 5961 * available lest we lose that information. 5962 */ 5963 struct saved_alias { 5964 struct kmem_cache *s; 5965 const char *name; 5966 struct saved_alias *next; 5967 }; 5968 5969 static struct saved_alias *alias_list; 5970 5971 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5972 { 5973 struct saved_alias *al; 5974 5975 if (slab_state == FULL) { 5976 /* 5977 * If we have a leftover link then remove it. 5978 */ 5979 sysfs_remove_link(&slab_kset->kobj, name); 5980 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5981 } 5982 5983 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5984 if (!al) 5985 return -ENOMEM; 5986 5987 al->s = s; 5988 al->name = name; 5989 al->next = alias_list; 5990 alias_list = al; 5991 return 0; 5992 } 5993 5994 static int __init slab_sysfs_init(void) 5995 { 5996 struct kmem_cache *s; 5997 int err; 5998 5999 mutex_lock(&slab_mutex); 6000 6001 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6002 if (!slab_kset) { 6003 mutex_unlock(&slab_mutex); 6004 pr_err("Cannot register slab subsystem.\n"); 6005 return -ENOSYS; 6006 } 6007 6008 slab_state = FULL; 6009 6010 list_for_each_entry(s, &slab_caches, list) { 6011 err = sysfs_slab_add(s); 6012 if (err) 6013 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6014 s->name); 6015 } 6016 6017 while (alias_list) { 6018 struct saved_alias *al = alias_list; 6019 6020 alias_list = alias_list->next; 6021 err = sysfs_slab_alias(al->s, al->name); 6022 if (err) 6023 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6024 al->name); 6025 kfree(al); 6026 } 6027 6028 mutex_unlock(&slab_mutex); 6029 return 0; 6030 } 6031 6032 __initcall(slab_sysfs_init); 6033 #endif /* CONFIG_SYSFS */ 6034 6035 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6036 static int slab_debugfs_show(struct seq_file *seq, void *v) 6037 { 6038 6039 struct location *l; 6040 unsigned int idx = *(unsigned int *)v; 6041 struct loc_track *t = seq->private; 6042 6043 if (idx < t->count) { 6044 l = &t->loc[idx]; 6045 6046 seq_printf(seq, "%7ld ", l->count); 6047 6048 if (l->addr) 6049 seq_printf(seq, "%pS", (void *)l->addr); 6050 else 6051 seq_puts(seq, "<not-available>"); 6052 6053 if (l->sum_time != l->min_time) { 6054 seq_printf(seq, " age=%ld/%llu/%ld", 6055 l->min_time, div_u64(l->sum_time, l->count), 6056 l->max_time); 6057 } else 6058 seq_printf(seq, " age=%ld", l->min_time); 6059 6060 if (l->min_pid != l->max_pid) 6061 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6062 else 6063 seq_printf(seq, " pid=%ld", 6064 l->min_pid); 6065 6066 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6067 seq_printf(seq, " cpus=%*pbl", 6068 cpumask_pr_args(to_cpumask(l->cpus))); 6069 6070 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6071 seq_printf(seq, " nodes=%*pbl", 6072 nodemask_pr_args(&l->nodes)); 6073 6074 seq_puts(seq, "\n"); 6075 } 6076 6077 if (!idx && !t->count) 6078 seq_puts(seq, "No data\n"); 6079 6080 return 0; 6081 } 6082 6083 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6084 { 6085 } 6086 6087 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6088 { 6089 struct loc_track *t = seq->private; 6090 6091 v = ppos; 6092 ++*ppos; 6093 if (*ppos <= t->count) 6094 return v; 6095 6096 return NULL; 6097 } 6098 6099 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6100 { 6101 return ppos; 6102 } 6103 6104 static const struct seq_operations slab_debugfs_sops = { 6105 .start = slab_debugfs_start, 6106 .next = slab_debugfs_next, 6107 .stop = slab_debugfs_stop, 6108 .show = slab_debugfs_show, 6109 }; 6110 6111 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6112 { 6113 6114 struct kmem_cache_node *n; 6115 enum track_item alloc; 6116 int node; 6117 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6118 sizeof(struct loc_track)); 6119 struct kmem_cache *s = file_inode(filep)->i_private; 6120 unsigned long *obj_map; 6121 6122 if (!t) 6123 return -ENOMEM; 6124 6125 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6126 if (!obj_map) { 6127 seq_release_private(inode, filep); 6128 return -ENOMEM; 6129 } 6130 6131 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6132 alloc = TRACK_ALLOC; 6133 else 6134 alloc = TRACK_FREE; 6135 6136 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6137 bitmap_free(obj_map); 6138 seq_release_private(inode, filep); 6139 return -ENOMEM; 6140 } 6141 6142 for_each_kmem_cache_node(s, node, n) { 6143 unsigned long flags; 6144 struct page *page; 6145 6146 if (!atomic_long_read(&n->nr_slabs)) 6147 continue; 6148 6149 spin_lock_irqsave(&n->list_lock, flags); 6150 list_for_each_entry(page, &n->partial, slab_list) 6151 process_slab(t, s, page, alloc, obj_map); 6152 list_for_each_entry(page, &n->full, slab_list) 6153 process_slab(t, s, page, alloc, obj_map); 6154 spin_unlock_irqrestore(&n->list_lock, flags); 6155 } 6156 6157 bitmap_free(obj_map); 6158 return 0; 6159 } 6160 6161 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6162 { 6163 struct seq_file *seq = file->private_data; 6164 struct loc_track *t = seq->private; 6165 6166 free_loc_track(t); 6167 return seq_release_private(inode, file); 6168 } 6169 6170 static const struct file_operations slab_debugfs_fops = { 6171 .open = slab_debug_trace_open, 6172 .read = seq_read, 6173 .llseek = seq_lseek, 6174 .release = slab_debug_trace_release, 6175 }; 6176 6177 static void debugfs_slab_add(struct kmem_cache *s) 6178 { 6179 struct dentry *slab_cache_dir; 6180 6181 if (unlikely(!slab_debugfs_root)) 6182 return; 6183 6184 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6185 6186 debugfs_create_file("alloc_traces", 0400, 6187 slab_cache_dir, s, &slab_debugfs_fops); 6188 6189 debugfs_create_file("free_traces", 0400, 6190 slab_cache_dir, s, &slab_debugfs_fops); 6191 } 6192 6193 void debugfs_slab_release(struct kmem_cache *s) 6194 { 6195 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 6196 } 6197 6198 static int __init slab_debugfs_init(void) 6199 { 6200 struct kmem_cache *s; 6201 6202 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6203 6204 list_for_each_entry(s, &slab_caches, list) 6205 if (s->flags & SLAB_STORE_USER) 6206 debugfs_slab_add(s); 6207 6208 return 0; 6209 6210 } 6211 __initcall(slab_debugfs_init); 6212 #endif 6213 /* 6214 * The /proc/slabinfo ABI 6215 */ 6216 #ifdef CONFIG_SLUB_DEBUG 6217 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6218 { 6219 unsigned long nr_slabs = 0; 6220 unsigned long nr_objs = 0; 6221 unsigned long nr_free = 0; 6222 int node; 6223 struct kmem_cache_node *n; 6224 6225 for_each_kmem_cache_node(s, node, n) { 6226 nr_slabs += node_nr_slabs(n); 6227 nr_objs += node_nr_objs(n); 6228 nr_free += count_partial(n, count_free); 6229 } 6230 6231 sinfo->active_objs = nr_objs - nr_free; 6232 sinfo->num_objs = nr_objs; 6233 sinfo->active_slabs = nr_slabs; 6234 sinfo->num_slabs = nr_slabs; 6235 sinfo->objects_per_slab = oo_objects(s->oo); 6236 sinfo->cache_order = oo_order(s->oo); 6237 } 6238 6239 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6240 { 6241 } 6242 6243 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6244 size_t count, loff_t *ppos) 6245 { 6246 return -EIO; 6247 } 6248 #endif /* CONFIG_SLUB_DEBUG */ 6249