xref: /linux/mm/slub.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 #ifdef CONFIG_NUMA
222 static DEFINE_STATIC_KEY_FALSE(strict_numa);
223 #endif
224 
225 /* Structure holding parameters for get_partial() call chain */
226 struct partial_context {
227 	gfp_t flags;
228 	unsigned int orig_size;
229 	void *object;
230 };
231 
232 static inline bool kmem_cache_debug(struct kmem_cache *s)
233 {
234 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
235 }
236 
237 void *fixup_red_left(struct kmem_cache *s, void *p)
238 {
239 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
240 		p += s->red_left_pad;
241 
242 	return p;
243 }
244 
245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
246 {
247 #ifdef CONFIG_SLUB_CPU_PARTIAL
248 	return !kmem_cache_debug(s);
249 #else
250 	return false;
251 #endif
252 }
253 
254 /*
255  * Issues still to be resolved:
256  *
257  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
258  *
259  * - Variable sizing of the per node arrays
260  */
261 
262 /* Enable to log cmpxchg failures */
263 #undef SLUB_DEBUG_CMPXCHG
264 
265 #ifndef CONFIG_SLUB_TINY
266 /*
267  * Minimum number of partial slabs. These will be left on the partial
268  * lists even if they are empty. kmem_cache_shrink may reclaim them.
269  */
270 #define MIN_PARTIAL 5
271 
272 /*
273  * Maximum number of desirable partial slabs.
274  * The existence of more partial slabs makes kmem_cache_shrink
275  * sort the partial list by the number of objects in use.
276  */
277 #define MAX_PARTIAL 10
278 #else
279 #define MIN_PARTIAL 0
280 #define MAX_PARTIAL 0
281 #endif
282 
283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
284 				SLAB_POISON | SLAB_STORE_USER)
285 
286 /*
287  * These debug flags cannot use CMPXCHG because there might be consistency
288  * issues when checking or reading debug information
289  */
290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
291 				SLAB_TRACE)
292 
293 
294 /*
295  * Debugging flags that require metadata to be stored in the slab.  These get
296  * disabled when slab_debug=O is used and a cache's min order increases with
297  * metadata.
298  */
299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
300 
301 #define OO_SHIFT	16
302 #define OO_MASK		((1 << OO_SHIFT) - 1)
303 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
304 
305 /* Internal SLUB flags */
306 /* Poison object */
307 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
308 /* Use cmpxchg_double */
309 
310 #ifdef system_has_freelist_aba
311 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
312 #else
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
314 #endif
315 
316 /*
317  * Tracking user of a slab.
318  */
319 #define TRACK_ADDRS_COUNT 16
320 struct track {
321 	unsigned long addr;	/* Called from address */
322 #ifdef CONFIG_STACKDEPOT
323 	depot_stack_handle_t handle;
324 #endif
325 	int cpu;		/* Was running on cpu */
326 	int pid;		/* Pid context */
327 	unsigned long when;	/* When did the operation occur */
328 };
329 
330 enum track_item { TRACK_ALLOC, TRACK_FREE };
331 
332 #ifdef SLAB_SUPPORTS_SYSFS
333 static int sysfs_slab_add(struct kmem_cache *);
334 static int sysfs_slab_alias(struct kmem_cache *, const char *);
335 #else
336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
338 							{ return 0; }
339 #endif
340 
341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
342 static void debugfs_slab_add(struct kmem_cache *);
343 #else
344 static inline void debugfs_slab_add(struct kmem_cache *s) { }
345 #endif
346 
347 enum stat_item {
348 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
349 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
350 	FREE_FASTPATH,		/* Free to cpu slab */
351 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
352 	FREE_FROZEN,		/* Freeing to frozen slab */
353 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
354 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
355 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
356 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
357 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
358 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
359 	FREE_SLAB,		/* Slab freed to the page allocator */
360 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
361 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
362 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
363 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
364 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
365 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
366 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
367 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
368 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
369 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
370 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
371 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
372 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
373 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
374 	NR_SLUB_STAT_ITEMS
375 };
376 
377 #ifndef CONFIG_SLUB_TINY
378 /*
379  * When changing the layout, make sure freelist and tid are still compatible
380  * with this_cpu_cmpxchg_double() alignment requirements.
381  */
382 struct kmem_cache_cpu {
383 	union {
384 		struct {
385 			void **freelist;	/* Pointer to next available object */
386 			unsigned long tid;	/* Globally unique transaction id */
387 		};
388 		freelist_aba_t freelist_tid;
389 	};
390 	struct slab *slab;	/* The slab from which we are allocating */
391 #ifdef CONFIG_SLUB_CPU_PARTIAL
392 	struct slab *partial;	/* Partially allocated slabs */
393 #endif
394 	local_lock_t lock;	/* Protects the fields above */
395 #ifdef CONFIG_SLUB_STATS
396 	unsigned int stat[NR_SLUB_STAT_ITEMS];
397 #endif
398 };
399 #endif /* CONFIG_SLUB_TINY */
400 
401 static inline void stat(const struct kmem_cache *s, enum stat_item si)
402 {
403 #ifdef CONFIG_SLUB_STATS
404 	/*
405 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
406 	 * avoid this_cpu_add()'s irq-disable overhead.
407 	 */
408 	raw_cpu_inc(s->cpu_slab->stat[si]);
409 #endif
410 }
411 
412 static inline
413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
414 {
415 #ifdef CONFIG_SLUB_STATS
416 	raw_cpu_add(s->cpu_slab->stat[si], v);
417 #endif
418 }
419 
420 /*
421  * The slab lists for all objects.
422  */
423 struct kmem_cache_node {
424 	spinlock_t list_lock;
425 	unsigned long nr_partial;
426 	struct list_head partial;
427 #ifdef CONFIG_SLUB_DEBUG
428 	atomic_long_t nr_slabs;
429 	atomic_long_t total_objects;
430 	struct list_head full;
431 #endif
432 };
433 
434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
435 {
436 	return s->node[node];
437 }
438 
439 /*
440  * Iterator over all nodes. The body will be executed for each node that has
441  * a kmem_cache_node structure allocated (which is true for all online nodes)
442  */
443 #define for_each_kmem_cache_node(__s, __node, __n) \
444 	for (__node = 0; __node < nr_node_ids; __node++) \
445 		 if ((__n = get_node(__s, __node)))
446 
447 /*
448  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
449  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
450  * differ during memory hotplug/hotremove operations.
451  * Protected by slab_mutex.
452  */
453 static nodemask_t slab_nodes;
454 
455 #ifndef CONFIG_SLUB_TINY
456 /*
457  * Workqueue used for flush_cpu_slab().
458  */
459 static struct workqueue_struct *flushwq;
460 #endif
461 
462 /********************************************************************
463  * 			Core slab cache functions
464  *******************************************************************/
465 
466 /*
467  * Returns freelist pointer (ptr). With hardening, this is obfuscated
468  * with an XOR of the address where the pointer is held and a per-cache
469  * random number.
470  */
471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
472 					    void *ptr, unsigned long ptr_addr)
473 {
474 	unsigned long encoded;
475 
476 #ifdef CONFIG_SLAB_FREELIST_HARDENED
477 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
478 #else
479 	encoded = (unsigned long)ptr;
480 #endif
481 	return (freeptr_t){.v = encoded};
482 }
483 
484 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
485 					freeptr_t ptr, unsigned long ptr_addr)
486 {
487 	void *decoded;
488 
489 #ifdef CONFIG_SLAB_FREELIST_HARDENED
490 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
491 #else
492 	decoded = (void *)ptr.v;
493 #endif
494 	return decoded;
495 }
496 
497 static inline void *get_freepointer(struct kmem_cache *s, void *object)
498 {
499 	unsigned long ptr_addr;
500 	freeptr_t p;
501 
502 	object = kasan_reset_tag(object);
503 	ptr_addr = (unsigned long)object + s->offset;
504 	p = *(freeptr_t *)(ptr_addr);
505 	return freelist_ptr_decode(s, p, ptr_addr);
506 }
507 
508 #ifndef CONFIG_SLUB_TINY
509 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
510 {
511 	prefetchw(object + s->offset);
512 }
513 #endif
514 
515 /*
516  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
517  * pointer value in the case the current thread loses the race for the next
518  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
519  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
520  * KMSAN will still check all arguments of cmpxchg because of imperfect
521  * handling of inline assembly.
522  * To work around this problem, we apply __no_kmsan_checks to ensure that
523  * get_freepointer_safe() returns initialized memory.
524  */
525 __no_kmsan_checks
526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
527 {
528 	unsigned long freepointer_addr;
529 	freeptr_t p;
530 
531 	if (!debug_pagealloc_enabled_static())
532 		return get_freepointer(s, object);
533 
534 	object = kasan_reset_tag(object);
535 	freepointer_addr = (unsigned long)object + s->offset;
536 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
537 	return freelist_ptr_decode(s, p, freepointer_addr);
538 }
539 
540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
541 {
542 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
543 
544 #ifdef CONFIG_SLAB_FREELIST_HARDENED
545 	BUG_ON(object == fp); /* naive detection of double free or corruption */
546 #endif
547 
548 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
549 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
550 }
551 
552 /*
553  * See comment in calculate_sizes().
554  */
555 static inline bool freeptr_outside_object(struct kmem_cache *s)
556 {
557 	return s->offset >= s->inuse;
558 }
559 
560 /*
561  * Return offset of the end of info block which is inuse + free pointer if
562  * not overlapping with object.
563  */
564 static inline unsigned int get_info_end(struct kmem_cache *s)
565 {
566 	if (freeptr_outside_object(s))
567 		return s->inuse + sizeof(void *);
568 	else
569 		return s->inuse;
570 }
571 
572 /* Loop over all objects in a slab */
573 #define for_each_object(__p, __s, __addr, __objects) \
574 	for (__p = fixup_red_left(__s, __addr); \
575 		__p < (__addr) + (__objects) * (__s)->size; \
576 		__p += (__s)->size)
577 
578 static inline unsigned int order_objects(unsigned int order, unsigned int size)
579 {
580 	return ((unsigned int)PAGE_SIZE << order) / size;
581 }
582 
583 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
584 		unsigned int size)
585 {
586 	struct kmem_cache_order_objects x = {
587 		(order << OO_SHIFT) + order_objects(order, size)
588 	};
589 
590 	return x;
591 }
592 
593 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
594 {
595 	return x.x >> OO_SHIFT;
596 }
597 
598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
599 {
600 	return x.x & OO_MASK;
601 }
602 
603 #ifdef CONFIG_SLUB_CPU_PARTIAL
604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
605 {
606 	unsigned int nr_slabs;
607 
608 	s->cpu_partial = nr_objects;
609 
610 	/*
611 	 * We take the number of objects but actually limit the number of
612 	 * slabs on the per cpu partial list, in order to limit excessive
613 	 * growth of the list. For simplicity we assume that the slabs will
614 	 * be half-full.
615 	 */
616 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
617 	s->cpu_partial_slabs = nr_slabs;
618 }
619 
620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
621 {
622 	return s->cpu_partial_slabs;
623 }
624 #else
625 static inline void
626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
627 {
628 }
629 
630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
631 {
632 	return 0;
633 }
634 #endif /* CONFIG_SLUB_CPU_PARTIAL */
635 
636 /*
637  * Per slab locking using the pagelock
638  */
639 static __always_inline void slab_lock(struct slab *slab)
640 {
641 	bit_spin_lock(PG_locked, &slab->__page_flags);
642 }
643 
644 static __always_inline void slab_unlock(struct slab *slab)
645 {
646 	bit_spin_unlock(PG_locked, &slab->__page_flags);
647 }
648 
649 static inline bool
650 __update_freelist_fast(struct slab *slab,
651 		      void *freelist_old, unsigned long counters_old,
652 		      void *freelist_new, unsigned long counters_new)
653 {
654 #ifdef system_has_freelist_aba
655 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
656 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
657 
658 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
659 #else
660 	return false;
661 #endif
662 }
663 
664 static inline bool
665 __update_freelist_slow(struct slab *slab,
666 		      void *freelist_old, unsigned long counters_old,
667 		      void *freelist_new, unsigned long counters_new)
668 {
669 	bool ret = false;
670 
671 	slab_lock(slab);
672 	if (slab->freelist == freelist_old &&
673 	    slab->counters == counters_old) {
674 		slab->freelist = freelist_new;
675 		slab->counters = counters_new;
676 		ret = true;
677 	}
678 	slab_unlock(slab);
679 
680 	return ret;
681 }
682 
683 /*
684  * Interrupts must be disabled (for the fallback code to work right), typically
685  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
686  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
687  * allocation/ free operation in hardirq context. Therefore nothing can
688  * interrupt the operation.
689  */
690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
691 		void *freelist_old, unsigned long counters_old,
692 		void *freelist_new, unsigned long counters_new,
693 		const char *n)
694 {
695 	bool ret;
696 
697 	if (USE_LOCKLESS_FAST_PATH())
698 		lockdep_assert_irqs_disabled();
699 
700 	if (s->flags & __CMPXCHG_DOUBLE) {
701 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
702 				            freelist_new, counters_new);
703 	} else {
704 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
705 				            freelist_new, counters_new);
706 	}
707 	if (likely(ret))
708 		return true;
709 
710 	cpu_relax();
711 	stat(s, CMPXCHG_DOUBLE_FAIL);
712 
713 #ifdef SLUB_DEBUG_CMPXCHG
714 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
715 #endif
716 
717 	return false;
718 }
719 
720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
721 		void *freelist_old, unsigned long counters_old,
722 		void *freelist_new, unsigned long counters_new,
723 		const char *n)
724 {
725 	bool ret;
726 
727 	if (s->flags & __CMPXCHG_DOUBLE) {
728 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
729 				            freelist_new, counters_new);
730 	} else {
731 		unsigned long flags;
732 
733 		local_irq_save(flags);
734 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
735 				            freelist_new, counters_new);
736 		local_irq_restore(flags);
737 	}
738 	if (likely(ret))
739 		return true;
740 
741 	cpu_relax();
742 	stat(s, CMPXCHG_DOUBLE_FAIL);
743 
744 #ifdef SLUB_DEBUG_CMPXCHG
745 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
746 #endif
747 
748 	return false;
749 }
750 
751 /*
752  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
753  * family will round up the real request size to these fixed ones, so
754  * there could be an extra area than what is requested. Save the original
755  * request size in the meta data area, for better debug and sanity check.
756  */
757 static inline void set_orig_size(struct kmem_cache *s,
758 				void *object, unsigned int orig_size)
759 {
760 	void *p = kasan_reset_tag(object);
761 
762 	if (!slub_debug_orig_size(s))
763 		return;
764 
765 	p += get_info_end(s);
766 	p += sizeof(struct track) * 2;
767 
768 	*(unsigned int *)p = orig_size;
769 }
770 
771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
772 {
773 	void *p = kasan_reset_tag(object);
774 
775 	if (is_kfence_address(object))
776 		return kfence_ksize(object);
777 
778 	if (!slub_debug_orig_size(s))
779 		return s->object_size;
780 
781 	p += get_info_end(s);
782 	p += sizeof(struct track) * 2;
783 
784 	return *(unsigned int *)p;
785 }
786 
787 #ifdef CONFIG_SLUB_DEBUG
788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
789 static DEFINE_SPINLOCK(object_map_lock);
790 
791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
792 		       struct slab *slab)
793 {
794 	void *addr = slab_address(slab);
795 	void *p;
796 
797 	bitmap_zero(obj_map, slab->objects);
798 
799 	for (p = slab->freelist; p; p = get_freepointer(s, p))
800 		set_bit(__obj_to_index(s, addr, p), obj_map);
801 }
802 
803 #if IS_ENABLED(CONFIG_KUNIT)
804 static bool slab_add_kunit_errors(void)
805 {
806 	struct kunit_resource *resource;
807 
808 	if (!kunit_get_current_test())
809 		return false;
810 
811 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
812 	if (!resource)
813 		return false;
814 
815 	(*(int *)resource->data)++;
816 	kunit_put_resource(resource);
817 	return true;
818 }
819 
820 bool slab_in_kunit_test(void)
821 {
822 	struct kunit_resource *resource;
823 
824 	if (!kunit_get_current_test())
825 		return false;
826 
827 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
828 	if (!resource)
829 		return false;
830 
831 	kunit_put_resource(resource);
832 	return true;
833 }
834 #else
835 static inline bool slab_add_kunit_errors(void) { return false; }
836 #endif
837 
838 static inline unsigned int size_from_object(struct kmem_cache *s)
839 {
840 	if (s->flags & SLAB_RED_ZONE)
841 		return s->size - s->red_left_pad;
842 
843 	return s->size;
844 }
845 
846 static inline void *restore_red_left(struct kmem_cache *s, void *p)
847 {
848 	if (s->flags & SLAB_RED_ZONE)
849 		p -= s->red_left_pad;
850 
851 	return p;
852 }
853 
854 /*
855  * Debug settings:
856  */
857 #if defined(CONFIG_SLUB_DEBUG_ON)
858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
859 #else
860 static slab_flags_t slub_debug;
861 #endif
862 
863 static char *slub_debug_string;
864 static int disable_higher_order_debug;
865 
866 /*
867  * slub is about to manipulate internal object metadata.  This memory lies
868  * outside the range of the allocated object, so accessing it would normally
869  * be reported by kasan as a bounds error.  metadata_access_enable() is used
870  * to tell kasan that these accesses are OK.
871  */
872 static inline void metadata_access_enable(void)
873 {
874 	kasan_disable_current();
875 	kmsan_disable_current();
876 }
877 
878 static inline void metadata_access_disable(void)
879 {
880 	kmsan_enable_current();
881 	kasan_enable_current();
882 }
883 
884 /*
885  * Object debugging
886  */
887 
888 /* Verify that a pointer has an address that is valid within a slab page */
889 static inline int check_valid_pointer(struct kmem_cache *s,
890 				struct slab *slab, void *object)
891 {
892 	void *base;
893 
894 	if (!object)
895 		return 1;
896 
897 	base = slab_address(slab);
898 	object = kasan_reset_tag(object);
899 	object = restore_red_left(s, object);
900 	if (object < base || object >= base + slab->objects * s->size ||
901 		(object - base) % s->size) {
902 		return 0;
903 	}
904 
905 	return 1;
906 }
907 
908 static void print_section(char *level, char *text, u8 *addr,
909 			  unsigned int length)
910 {
911 	metadata_access_enable();
912 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
913 			16, 1, kasan_reset_tag((void *)addr), length, 1);
914 	metadata_access_disable();
915 }
916 
917 static struct track *get_track(struct kmem_cache *s, void *object,
918 	enum track_item alloc)
919 {
920 	struct track *p;
921 
922 	p = object + get_info_end(s);
923 
924 	return kasan_reset_tag(p + alloc);
925 }
926 
927 #ifdef CONFIG_STACKDEPOT
928 static noinline depot_stack_handle_t set_track_prepare(void)
929 {
930 	depot_stack_handle_t handle;
931 	unsigned long entries[TRACK_ADDRS_COUNT];
932 	unsigned int nr_entries;
933 
934 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
935 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
936 
937 	return handle;
938 }
939 #else
940 static inline depot_stack_handle_t set_track_prepare(void)
941 {
942 	return 0;
943 }
944 #endif
945 
946 static void set_track_update(struct kmem_cache *s, void *object,
947 			     enum track_item alloc, unsigned long addr,
948 			     depot_stack_handle_t handle)
949 {
950 	struct track *p = get_track(s, object, alloc);
951 
952 #ifdef CONFIG_STACKDEPOT
953 	p->handle = handle;
954 #endif
955 	p->addr = addr;
956 	p->cpu = smp_processor_id();
957 	p->pid = current->pid;
958 	p->when = jiffies;
959 }
960 
961 static __always_inline void set_track(struct kmem_cache *s, void *object,
962 				      enum track_item alloc, unsigned long addr)
963 {
964 	depot_stack_handle_t handle = set_track_prepare();
965 
966 	set_track_update(s, object, alloc, addr, handle);
967 }
968 
969 static void init_tracking(struct kmem_cache *s, void *object)
970 {
971 	struct track *p;
972 
973 	if (!(s->flags & SLAB_STORE_USER))
974 		return;
975 
976 	p = get_track(s, object, TRACK_ALLOC);
977 	memset(p, 0, 2*sizeof(struct track));
978 }
979 
980 static void print_track(const char *s, struct track *t, unsigned long pr_time)
981 {
982 	depot_stack_handle_t handle __maybe_unused;
983 
984 	if (!t->addr)
985 		return;
986 
987 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
988 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
989 #ifdef CONFIG_STACKDEPOT
990 	handle = READ_ONCE(t->handle);
991 	if (handle)
992 		stack_depot_print(handle);
993 	else
994 		pr_err("object allocation/free stack trace missing\n");
995 #endif
996 }
997 
998 void print_tracking(struct kmem_cache *s, void *object)
999 {
1000 	unsigned long pr_time = jiffies;
1001 	if (!(s->flags & SLAB_STORE_USER))
1002 		return;
1003 
1004 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1005 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1006 }
1007 
1008 static void print_slab_info(const struct slab *slab)
1009 {
1010 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1011 	       slab, slab->objects, slab->inuse, slab->freelist,
1012 	       &slab->__page_flags);
1013 }
1014 
1015 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1016 {
1017 	set_orig_size(s, (void *)object, s->object_size);
1018 }
1019 
1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1021 {
1022 	struct va_format vaf;
1023 	va_list args;
1024 
1025 	va_start(args, fmt);
1026 	vaf.fmt = fmt;
1027 	vaf.va = &args;
1028 	pr_err("=============================================================================\n");
1029 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1030 	pr_err("-----------------------------------------------------------------------------\n\n");
1031 	va_end(args);
1032 }
1033 
1034 __printf(2, 3)
1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1036 {
1037 	struct va_format vaf;
1038 	va_list args;
1039 
1040 	if (slab_add_kunit_errors())
1041 		return;
1042 
1043 	va_start(args, fmt);
1044 	vaf.fmt = fmt;
1045 	vaf.va = &args;
1046 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1047 	va_end(args);
1048 }
1049 
1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1051 {
1052 	unsigned int off;	/* Offset of last byte */
1053 	u8 *addr = slab_address(slab);
1054 
1055 	print_tracking(s, p);
1056 
1057 	print_slab_info(slab);
1058 
1059 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1060 	       p, p - addr, get_freepointer(s, p));
1061 
1062 	if (s->flags & SLAB_RED_ZONE)
1063 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1064 			      s->red_left_pad);
1065 	else if (p > addr + 16)
1066 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1067 
1068 	print_section(KERN_ERR,         "Object   ", p,
1069 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1070 	if (s->flags & SLAB_RED_ZONE)
1071 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1072 			s->inuse - s->object_size);
1073 
1074 	off = get_info_end(s);
1075 
1076 	if (s->flags & SLAB_STORE_USER)
1077 		off += 2 * sizeof(struct track);
1078 
1079 	if (slub_debug_orig_size(s))
1080 		off += sizeof(unsigned int);
1081 
1082 	off += kasan_metadata_size(s, false);
1083 
1084 	if (off != size_from_object(s))
1085 		/* Beginning of the filler is the free pointer */
1086 		print_section(KERN_ERR, "Padding  ", p + off,
1087 			      size_from_object(s) - off);
1088 
1089 	dump_stack();
1090 }
1091 
1092 static void object_err(struct kmem_cache *s, struct slab *slab,
1093 			u8 *object, char *reason)
1094 {
1095 	if (slab_add_kunit_errors())
1096 		return;
1097 
1098 	slab_bug(s, "%s", reason);
1099 	print_trailer(s, slab, object);
1100 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1101 }
1102 
1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1104 			       void **freelist, void *nextfree)
1105 {
1106 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1107 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1108 		object_err(s, slab, *freelist, "Freechain corrupt");
1109 		*freelist = NULL;
1110 		slab_fix(s, "Isolate corrupted freechain");
1111 		return true;
1112 	}
1113 
1114 	return false;
1115 }
1116 
1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1118 			const char *fmt, ...)
1119 {
1120 	va_list args;
1121 	char buf[100];
1122 
1123 	if (slab_add_kunit_errors())
1124 		return;
1125 
1126 	va_start(args, fmt);
1127 	vsnprintf(buf, sizeof(buf), fmt, args);
1128 	va_end(args);
1129 	slab_bug(s, "%s", buf);
1130 	print_slab_info(slab);
1131 	dump_stack();
1132 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1133 }
1134 
1135 static void init_object(struct kmem_cache *s, void *object, u8 val)
1136 {
1137 	u8 *p = kasan_reset_tag(object);
1138 	unsigned int poison_size = s->object_size;
1139 
1140 	if (s->flags & SLAB_RED_ZONE) {
1141 		/*
1142 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1143 		 * the shadow makes it possible to distinguish uninit-value
1144 		 * from use-after-free.
1145 		 */
1146 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1147 					  s->red_left_pad);
1148 
1149 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1150 			/*
1151 			 * Redzone the extra allocated space by kmalloc than
1152 			 * requested, and the poison size will be limited to
1153 			 * the original request size accordingly.
1154 			 */
1155 			poison_size = get_orig_size(s, object);
1156 		}
1157 	}
1158 
1159 	if (s->flags & __OBJECT_POISON) {
1160 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1161 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1162 	}
1163 
1164 	if (s->flags & SLAB_RED_ZONE)
1165 		memset_no_sanitize_memory(p + poison_size, val,
1166 					  s->inuse - poison_size);
1167 }
1168 
1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1170 						void *from, void *to)
1171 {
1172 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1173 	memset(from, data, to - from);
1174 }
1175 
1176 #ifdef CONFIG_KMSAN
1177 #define pad_check_attributes noinline __no_kmsan_checks
1178 #else
1179 #define pad_check_attributes
1180 #endif
1181 
1182 static pad_check_attributes int
1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1184 		       u8 *object, char *what,
1185 		       u8 *start, unsigned int value, unsigned int bytes)
1186 {
1187 	u8 *fault;
1188 	u8 *end;
1189 	u8 *addr = slab_address(slab);
1190 
1191 	metadata_access_enable();
1192 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1193 	metadata_access_disable();
1194 	if (!fault)
1195 		return 1;
1196 
1197 	end = start + bytes;
1198 	while (end > fault && end[-1] == value)
1199 		end--;
1200 
1201 	if (slab_add_kunit_errors())
1202 		goto skip_bug_print;
1203 
1204 	slab_bug(s, "%s overwritten", what);
1205 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1206 					fault, end - 1, fault - addr,
1207 					fault[0], value);
1208 
1209 skip_bug_print:
1210 	restore_bytes(s, what, value, fault, end);
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Object layout:
1216  *
1217  * object address
1218  * 	Bytes of the object to be managed.
1219  * 	If the freepointer may overlay the object then the free
1220  *	pointer is at the middle of the object.
1221  *
1222  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1223  * 	0xa5 (POISON_END)
1224  *
1225  * object + s->object_size
1226  * 	Padding to reach word boundary. This is also used for Redzoning.
1227  * 	Padding is extended by another word if Redzoning is enabled and
1228  * 	object_size == inuse.
1229  *
1230  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1231  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1232  *
1233  * object + s->inuse
1234  * 	Meta data starts here.
1235  *
1236  * 	A. Free pointer (if we cannot overwrite object on free)
1237  * 	B. Tracking data for SLAB_STORE_USER
1238  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1239  *	D. Padding to reach required alignment boundary or at minimum
1240  * 		one word if debugging is on to be able to detect writes
1241  * 		before the word boundary.
1242  *
1243  *	Padding is done using 0x5a (POISON_INUSE)
1244  *
1245  * object + s->size
1246  * 	Nothing is used beyond s->size.
1247  *
1248  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1249  * ignored. And therefore no slab options that rely on these boundaries
1250  * may be used with merged slabcaches.
1251  */
1252 
1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1254 {
1255 	unsigned long off = get_info_end(s);	/* The end of info */
1256 
1257 	if (s->flags & SLAB_STORE_USER) {
1258 		/* We also have user information there */
1259 		off += 2 * sizeof(struct track);
1260 
1261 		if (s->flags & SLAB_KMALLOC)
1262 			off += sizeof(unsigned int);
1263 	}
1264 
1265 	off += kasan_metadata_size(s, false);
1266 
1267 	if (size_from_object(s) == off)
1268 		return 1;
1269 
1270 	return check_bytes_and_report(s, slab, p, "Object padding",
1271 			p + off, POISON_INUSE, size_from_object(s) - off);
1272 }
1273 
1274 /* Check the pad bytes at the end of a slab page */
1275 static pad_check_attributes void
1276 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1277 {
1278 	u8 *start;
1279 	u8 *fault;
1280 	u8 *end;
1281 	u8 *pad;
1282 	int length;
1283 	int remainder;
1284 
1285 	if (!(s->flags & SLAB_POISON))
1286 		return;
1287 
1288 	start = slab_address(slab);
1289 	length = slab_size(slab);
1290 	end = start + length;
1291 	remainder = length % s->size;
1292 	if (!remainder)
1293 		return;
1294 
1295 	pad = end - remainder;
1296 	metadata_access_enable();
1297 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1298 	metadata_access_disable();
1299 	if (!fault)
1300 		return;
1301 	while (end > fault && end[-1] == POISON_INUSE)
1302 		end--;
1303 
1304 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1305 			fault, end - 1, fault - start);
1306 	print_section(KERN_ERR, "Padding ", pad, remainder);
1307 
1308 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1309 }
1310 
1311 static int check_object(struct kmem_cache *s, struct slab *slab,
1312 					void *object, u8 val)
1313 {
1314 	u8 *p = object;
1315 	u8 *endobject = object + s->object_size;
1316 	unsigned int orig_size, kasan_meta_size;
1317 	int ret = 1;
1318 
1319 	if (s->flags & SLAB_RED_ZONE) {
1320 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1321 			object - s->red_left_pad, val, s->red_left_pad))
1322 			ret = 0;
1323 
1324 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1325 			endobject, val, s->inuse - s->object_size))
1326 			ret = 0;
1327 
1328 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1329 			orig_size = get_orig_size(s, object);
1330 
1331 			if (s->object_size > orig_size  &&
1332 				!check_bytes_and_report(s, slab, object,
1333 					"kmalloc Redzone", p + orig_size,
1334 					val, s->object_size - orig_size)) {
1335 				ret = 0;
1336 			}
1337 		}
1338 	} else {
1339 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1340 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1341 				endobject, POISON_INUSE,
1342 				s->inuse - s->object_size))
1343 				ret = 0;
1344 		}
1345 	}
1346 
1347 	if (s->flags & SLAB_POISON) {
1348 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1349 			/*
1350 			 * KASAN can save its free meta data inside of the
1351 			 * object at offset 0. Thus, skip checking the part of
1352 			 * the redzone that overlaps with the meta data.
1353 			 */
1354 			kasan_meta_size = kasan_metadata_size(s, true);
1355 			if (kasan_meta_size < s->object_size - 1 &&
1356 			    !check_bytes_and_report(s, slab, p, "Poison",
1357 					p + kasan_meta_size, POISON_FREE,
1358 					s->object_size - kasan_meta_size - 1))
1359 				ret = 0;
1360 			if (kasan_meta_size < s->object_size &&
1361 			    !check_bytes_and_report(s, slab, p, "End Poison",
1362 					p + s->object_size - 1, POISON_END, 1))
1363 				ret = 0;
1364 		}
1365 		/*
1366 		 * check_pad_bytes cleans up on its own.
1367 		 */
1368 		if (!check_pad_bytes(s, slab, p))
1369 			ret = 0;
1370 	}
1371 
1372 	/*
1373 	 * Cannot check freepointer while object is allocated if
1374 	 * object and freepointer overlap.
1375 	 */
1376 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1377 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1378 		object_err(s, slab, p, "Freepointer corrupt");
1379 		/*
1380 		 * No choice but to zap it and thus lose the remainder
1381 		 * of the free objects in this slab. May cause
1382 		 * another error because the object count is now wrong.
1383 		 */
1384 		set_freepointer(s, p, NULL);
1385 		ret = 0;
1386 	}
1387 
1388 	if (!ret && !slab_in_kunit_test()) {
1389 		print_trailer(s, slab, object);
1390 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1391 	}
1392 
1393 	return ret;
1394 }
1395 
1396 static int check_slab(struct kmem_cache *s, struct slab *slab)
1397 {
1398 	int maxobj;
1399 
1400 	if (!folio_test_slab(slab_folio(slab))) {
1401 		slab_err(s, slab, "Not a valid slab page");
1402 		return 0;
1403 	}
1404 
1405 	maxobj = order_objects(slab_order(slab), s->size);
1406 	if (slab->objects > maxobj) {
1407 		slab_err(s, slab, "objects %u > max %u",
1408 			slab->objects, maxobj);
1409 		return 0;
1410 	}
1411 	if (slab->inuse > slab->objects) {
1412 		slab_err(s, slab, "inuse %u > max %u",
1413 			slab->inuse, slab->objects);
1414 		return 0;
1415 	}
1416 	if (slab->frozen) {
1417 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1418 		return 0;
1419 	}
1420 
1421 	/* Slab_pad_check fixes things up after itself */
1422 	slab_pad_check(s, slab);
1423 	return 1;
1424 }
1425 
1426 /*
1427  * Determine if a certain object in a slab is on the freelist. Must hold the
1428  * slab lock to guarantee that the chains are in a consistent state.
1429  */
1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1431 {
1432 	int nr = 0;
1433 	void *fp;
1434 	void *object = NULL;
1435 	int max_objects;
1436 
1437 	fp = slab->freelist;
1438 	while (fp && nr <= slab->objects) {
1439 		if (fp == search)
1440 			return 1;
1441 		if (!check_valid_pointer(s, slab, fp)) {
1442 			if (object) {
1443 				object_err(s, slab, object,
1444 					"Freechain corrupt");
1445 				set_freepointer(s, object, NULL);
1446 			} else {
1447 				slab_err(s, slab, "Freepointer corrupt");
1448 				slab->freelist = NULL;
1449 				slab->inuse = slab->objects;
1450 				slab_fix(s, "Freelist cleared");
1451 				return 0;
1452 			}
1453 			break;
1454 		}
1455 		object = fp;
1456 		fp = get_freepointer(s, object);
1457 		nr++;
1458 	}
1459 
1460 	max_objects = order_objects(slab_order(slab), s->size);
1461 	if (max_objects > MAX_OBJS_PER_PAGE)
1462 		max_objects = MAX_OBJS_PER_PAGE;
1463 
1464 	if (slab->objects != max_objects) {
1465 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1466 			 slab->objects, max_objects);
1467 		slab->objects = max_objects;
1468 		slab_fix(s, "Number of objects adjusted");
1469 	}
1470 	if (slab->inuse != slab->objects - nr) {
1471 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1472 			 slab->inuse, slab->objects - nr);
1473 		slab->inuse = slab->objects - nr;
1474 		slab_fix(s, "Object count adjusted");
1475 	}
1476 	return search == NULL;
1477 }
1478 
1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1480 								int alloc)
1481 {
1482 	if (s->flags & SLAB_TRACE) {
1483 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1484 			s->name,
1485 			alloc ? "alloc" : "free",
1486 			object, slab->inuse,
1487 			slab->freelist);
1488 
1489 		if (!alloc)
1490 			print_section(KERN_INFO, "Object ", (void *)object,
1491 					s->object_size);
1492 
1493 		dump_stack();
1494 	}
1495 }
1496 
1497 /*
1498  * Tracking of fully allocated slabs for debugging purposes.
1499  */
1500 static void add_full(struct kmem_cache *s,
1501 	struct kmem_cache_node *n, struct slab *slab)
1502 {
1503 	if (!(s->flags & SLAB_STORE_USER))
1504 		return;
1505 
1506 	lockdep_assert_held(&n->list_lock);
1507 	list_add(&slab->slab_list, &n->full);
1508 }
1509 
1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1511 {
1512 	if (!(s->flags & SLAB_STORE_USER))
1513 		return;
1514 
1515 	lockdep_assert_held(&n->list_lock);
1516 	list_del(&slab->slab_list);
1517 }
1518 
1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1520 {
1521 	return atomic_long_read(&n->nr_slabs);
1522 }
1523 
1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1525 {
1526 	struct kmem_cache_node *n = get_node(s, node);
1527 
1528 	atomic_long_inc(&n->nr_slabs);
1529 	atomic_long_add(objects, &n->total_objects);
1530 }
1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1532 {
1533 	struct kmem_cache_node *n = get_node(s, node);
1534 
1535 	atomic_long_dec(&n->nr_slabs);
1536 	atomic_long_sub(objects, &n->total_objects);
1537 }
1538 
1539 /* Object debug checks for alloc/free paths */
1540 static void setup_object_debug(struct kmem_cache *s, void *object)
1541 {
1542 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1543 		return;
1544 
1545 	init_object(s, object, SLUB_RED_INACTIVE);
1546 	init_tracking(s, object);
1547 }
1548 
1549 static
1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1551 {
1552 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1553 		return;
1554 
1555 	metadata_access_enable();
1556 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1557 	metadata_access_disable();
1558 }
1559 
1560 static inline int alloc_consistency_checks(struct kmem_cache *s,
1561 					struct slab *slab, void *object)
1562 {
1563 	if (!check_slab(s, slab))
1564 		return 0;
1565 
1566 	if (!check_valid_pointer(s, slab, object)) {
1567 		object_err(s, slab, object, "Freelist Pointer check fails");
1568 		return 0;
1569 	}
1570 
1571 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1572 		return 0;
1573 
1574 	return 1;
1575 }
1576 
1577 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1578 			struct slab *slab, void *object, int orig_size)
1579 {
1580 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1581 		if (!alloc_consistency_checks(s, slab, object))
1582 			goto bad;
1583 	}
1584 
1585 	/* Success. Perform special debug activities for allocs */
1586 	trace(s, slab, object, 1);
1587 	set_orig_size(s, object, orig_size);
1588 	init_object(s, object, SLUB_RED_ACTIVE);
1589 	return true;
1590 
1591 bad:
1592 	if (folio_test_slab(slab_folio(slab))) {
1593 		/*
1594 		 * If this is a slab page then lets do the best we can
1595 		 * to avoid issues in the future. Marking all objects
1596 		 * as used avoids touching the remaining objects.
1597 		 */
1598 		slab_fix(s, "Marking all objects used");
1599 		slab->inuse = slab->objects;
1600 		slab->freelist = NULL;
1601 		slab->frozen = 1; /* mark consistency-failed slab as frozen */
1602 	}
1603 	return false;
1604 }
1605 
1606 static inline int free_consistency_checks(struct kmem_cache *s,
1607 		struct slab *slab, void *object, unsigned long addr)
1608 {
1609 	if (!check_valid_pointer(s, slab, object)) {
1610 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1611 		return 0;
1612 	}
1613 
1614 	if (on_freelist(s, slab, object)) {
1615 		object_err(s, slab, object, "Object already free");
1616 		return 0;
1617 	}
1618 
1619 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1620 		return 0;
1621 
1622 	if (unlikely(s != slab->slab_cache)) {
1623 		if (!folio_test_slab(slab_folio(slab))) {
1624 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1625 				 object);
1626 		} else if (!slab->slab_cache) {
1627 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1628 			       object);
1629 			dump_stack();
1630 		} else
1631 			object_err(s, slab, object,
1632 					"page slab pointer corrupt.");
1633 		return 0;
1634 	}
1635 	return 1;
1636 }
1637 
1638 /*
1639  * Parse a block of slab_debug options. Blocks are delimited by ';'
1640  *
1641  * @str:    start of block
1642  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1643  * @slabs:  return start of list of slabs, or NULL when there's no list
1644  * @init:   assume this is initial parsing and not per-kmem-create parsing
1645  *
1646  * returns the start of next block if there's any, or NULL
1647  */
1648 static char *
1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1650 {
1651 	bool higher_order_disable = false;
1652 
1653 	/* Skip any completely empty blocks */
1654 	while (*str && *str == ';')
1655 		str++;
1656 
1657 	if (*str == ',') {
1658 		/*
1659 		 * No options but restriction on slabs. This means full
1660 		 * debugging for slabs matching a pattern.
1661 		 */
1662 		*flags = DEBUG_DEFAULT_FLAGS;
1663 		goto check_slabs;
1664 	}
1665 	*flags = 0;
1666 
1667 	/* Determine which debug features should be switched on */
1668 	for (; *str && *str != ',' && *str != ';'; str++) {
1669 		switch (tolower(*str)) {
1670 		case '-':
1671 			*flags = 0;
1672 			break;
1673 		case 'f':
1674 			*flags |= SLAB_CONSISTENCY_CHECKS;
1675 			break;
1676 		case 'z':
1677 			*flags |= SLAB_RED_ZONE;
1678 			break;
1679 		case 'p':
1680 			*flags |= SLAB_POISON;
1681 			break;
1682 		case 'u':
1683 			*flags |= SLAB_STORE_USER;
1684 			break;
1685 		case 't':
1686 			*flags |= SLAB_TRACE;
1687 			break;
1688 		case 'a':
1689 			*flags |= SLAB_FAILSLAB;
1690 			break;
1691 		case 'o':
1692 			/*
1693 			 * Avoid enabling debugging on caches if its minimum
1694 			 * order would increase as a result.
1695 			 */
1696 			higher_order_disable = true;
1697 			break;
1698 		default:
1699 			if (init)
1700 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1701 		}
1702 	}
1703 check_slabs:
1704 	if (*str == ',')
1705 		*slabs = ++str;
1706 	else
1707 		*slabs = NULL;
1708 
1709 	/* Skip over the slab list */
1710 	while (*str && *str != ';')
1711 		str++;
1712 
1713 	/* Skip any completely empty blocks */
1714 	while (*str && *str == ';')
1715 		str++;
1716 
1717 	if (init && higher_order_disable)
1718 		disable_higher_order_debug = 1;
1719 
1720 	if (*str)
1721 		return str;
1722 	else
1723 		return NULL;
1724 }
1725 
1726 static int __init setup_slub_debug(char *str)
1727 {
1728 	slab_flags_t flags;
1729 	slab_flags_t global_flags;
1730 	char *saved_str;
1731 	char *slab_list;
1732 	bool global_slub_debug_changed = false;
1733 	bool slab_list_specified = false;
1734 
1735 	global_flags = DEBUG_DEFAULT_FLAGS;
1736 	if (*str++ != '=' || !*str)
1737 		/*
1738 		 * No options specified. Switch on full debugging.
1739 		 */
1740 		goto out;
1741 
1742 	saved_str = str;
1743 	while (str) {
1744 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1745 
1746 		if (!slab_list) {
1747 			global_flags = flags;
1748 			global_slub_debug_changed = true;
1749 		} else {
1750 			slab_list_specified = true;
1751 			if (flags & SLAB_STORE_USER)
1752 				stack_depot_request_early_init();
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * For backwards compatibility, a single list of flags with list of
1758 	 * slabs means debugging is only changed for those slabs, so the global
1759 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1760 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1761 	 * long as there is no option specifying flags without a slab list.
1762 	 */
1763 	if (slab_list_specified) {
1764 		if (!global_slub_debug_changed)
1765 			global_flags = slub_debug;
1766 		slub_debug_string = saved_str;
1767 	}
1768 out:
1769 	slub_debug = global_flags;
1770 	if (slub_debug & SLAB_STORE_USER)
1771 		stack_depot_request_early_init();
1772 	if (slub_debug != 0 || slub_debug_string)
1773 		static_branch_enable(&slub_debug_enabled);
1774 	else
1775 		static_branch_disable(&slub_debug_enabled);
1776 	if ((static_branch_unlikely(&init_on_alloc) ||
1777 	     static_branch_unlikely(&init_on_free)) &&
1778 	    (slub_debug & SLAB_POISON))
1779 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1780 	return 1;
1781 }
1782 
1783 __setup("slab_debug", setup_slub_debug);
1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1785 
1786 /*
1787  * kmem_cache_flags - apply debugging options to the cache
1788  * @flags:		flags to set
1789  * @name:		name of the cache
1790  *
1791  * Debug option(s) are applied to @flags. In addition to the debug
1792  * option(s), if a slab name (or multiple) is specified i.e.
1793  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1794  * then only the select slabs will receive the debug option(s).
1795  */
1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1797 {
1798 	char *iter;
1799 	size_t len;
1800 	char *next_block;
1801 	slab_flags_t block_flags;
1802 	slab_flags_t slub_debug_local = slub_debug;
1803 
1804 	if (flags & SLAB_NO_USER_FLAGS)
1805 		return flags;
1806 
1807 	/*
1808 	 * If the slab cache is for debugging (e.g. kmemleak) then
1809 	 * don't store user (stack trace) information by default,
1810 	 * but let the user enable it via the command line below.
1811 	 */
1812 	if (flags & SLAB_NOLEAKTRACE)
1813 		slub_debug_local &= ~SLAB_STORE_USER;
1814 
1815 	len = strlen(name);
1816 	next_block = slub_debug_string;
1817 	/* Go through all blocks of debug options, see if any matches our slab's name */
1818 	while (next_block) {
1819 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1820 		if (!iter)
1821 			continue;
1822 		/* Found a block that has a slab list, search it */
1823 		while (*iter) {
1824 			char *end, *glob;
1825 			size_t cmplen;
1826 
1827 			end = strchrnul(iter, ',');
1828 			if (next_block && next_block < end)
1829 				end = next_block - 1;
1830 
1831 			glob = strnchr(iter, end - iter, '*');
1832 			if (glob)
1833 				cmplen = glob - iter;
1834 			else
1835 				cmplen = max_t(size_t, len, (end - iter));
1836 
1837 			if (!strncmp(name, iter, cmplen)) {
1838 				flags |= block_flags;
1839 				return flags;
1840 			}
1841 
1842 			if (!*end || *end == ';')
1843 				break;
1844 			iter = end + 1;
1845 		}
1846 	}
1847 
1848 	return flags | slub_debug_local;
1849 }
1850 #else /* !CONFIG_SLUB_DEBUG */
1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1852 static inline
1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1854 
1855 static inline bool alloc_debug_processing(struct kmem_cache *s,
1856 	struct slab *slab, void *object, int orig_size) { return true; }
1857 
1858 static inline bool free_debug_processing(struct kmem_cache *s,
1859 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1860 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1861 
1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1863 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1864 			void *object, u8 val) { return 1; }
1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1866 static inline void set_track(struct kmem_cache *s, void *object,
1867 			     enum track_item alloc, unsigned long addr) {}
1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1869 					struct slab *slab) {}
1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1871 					struct slab *slab) {}
1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1873 {
1874 	return flags;
1875 }
1876 #define slub_debug 0
1877 
1878 #define disable_higher_order_debug 0
1879 
1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1881 							{ return 0; }
1882 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1883 							int objects) {}
1884 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1885 							int objects) {}
1886 #ifndef CONFIG_SLUB_TINY
1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1888 			       void **freelist, void *nextfree)
1889 {
1890 	return false;
1891 }
1892 #endif
1893 #endif /* CONFIG_SLUB_DEBUG */
1894 
1895 #ifdef CONFIG_SLAB_OBJ_EXT
1896 
1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1898 
1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1900 {
1901 	struct slabobj_ext *slab_exts;
1902 	struct slab *obj_exts_slab;
1903 
1904 	obj_exts_slab = virt_to_slab(obj_exts);
1905 	slab_exts = slab_obj_exts(obj_exts_slab);
1906 	if (slab_exts) {
1907 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1908 						 obj_exts_slab, obj_exts);
1909 		/* codetag should be NULL */
1910 		WARN_ON(slab_exts[offs].ref.ct);
1911 		set_codetag_empty(&slab_exts[offs].ref);
1912 	}
1913 }
1914 
1915 static inline void mark_failed_objexts_alloc(struct slab *slab)
1916 {
1917 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1918 }
1919 
1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1921 			struct slabobj_ext *vec, unsigned int objects)
1922 {
1923 	/*
1924 	 * If vector previously failed to allocate then we have live
1925 	 * objects with no tag reference. Mark all references in this
1926 	 * vector as empty to avoid warnings later on.
1927 	 */
1928 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1929 		unsigned int i;
1930 
1931 		for (i = 0; i < objects; i++)
1932 			set_codetag_empty(&vec[i].ref);
1933 	}
1934 }
1935 
1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1937 
1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1941 			struct slabobj_ext *vec, unsigned int objects) {}
1942 
1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1944 
1945 /*
1946  * The allocated objcg pointers array is not accounted directly.
1947  * Moreover, it should not come from DMA buffer and is not readily
1948  * reclaimable. So those GFP bits should be masked off.
1949  */
1950 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1951 				__GFP_ACCOUNT | __GFP_NOFAIL)
1952 
1953 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1954 		        gfp_t gfp, bool new_slab)
1955 {
1956 	unsigned int objects = objs_per_slab(s, slab);
1957 	unsigned long new_exts;
1958 	unsigned long old_exts;
1959 	struct slabobj_ext *vec;
1960 
1961 	gfp &= ~OBJCGS_CLEAR_MASK;
1962 	/* Prevent recursive extension vector allocation */
1963 	gfp |= __GFP_NO_OBJ_EXT;
1964 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1965 			   slab_nid(slab));
1966 	if (!vec) {
1967 		/* Mark vectors which failed to allocate */
1968 		if (new_slab)
1969 			mark_failed_objexts_alloc(slab);
1970 
1971 		return -ENOMEM;
1972 	}
1973 
1974 	new_exts = (unsigned long)vec;
1975 #ifdef CONFIG_MEMCG
1976 	new_exts |= MEMCG_DATA_OBJEXTS;
1977 #endif
1978 	old_exts = READ_ONCE(slab->obj_exts);
1979 	handle_failed_objexts_alloc(old_exts, vec, objects);
1980 	if (new_slab) {
1981 		/*
1982 		 * If the slab is brand new and nobody can yet access its
1983 		 * obj_exts, no synchronization is required and obj_exts can
1984 		 * be simply assigned.
1985 		 */
1986 		slab->obj_exts = new_exts;
1987 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1988 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1989 		/*
1990 		 * If the slab is already in use, somebody can allocate and
1991 		 * assign slabobj_exts in parallel. In this case the existing
1992 		 * objcg vector should be reused.
1993 		 */
1994 		mark_objexts_empty(vec);
1995 		kfree(vec);
1996 		return 0;
1997 	}
1998 
1999 	kmemleak_not_leak(vec);
2000 	return 0;
2001 }
2002 
2003 static inline void free_slab_obj_exts(struct slab *slab)
2004 {
2005 	struct slabobj_ext *obj_exts;
2006 
2007 	obj_exts = slab_obj_exts(slab);
2008 	if (!obj_exts)
2009 		return;
2010 
2011 	/*
2012 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2013 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2014 	 * warning if slab has extensions but the extension of an object is
2015 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2016 	 * the extension for obj_exts is expected to be NULL.
2017 	 */
2018 	mark_objexts_empty(obj_exts);
2019 	kfree(obj_exts);
2020 	slab->obj_exts = 0;
2021 }
2022 
2023 static inline bool need_slab_obj_ext(void)
2024 {
2025 	if (mem_alloc_profiling_enabled())
2026 		return true;
2027 
2028 	/*
2029 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2030 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2031 	 */
2032 	return false;
2033 }
2034 
2035 #else /* CONFIG_SLAB_OBJ_EXT */
2036 
2037 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2038 			       gfp_t gfp, bool new_slab)
2039 {
2040 	return 0;
2041 }
2042 
2043 static inline void free_slab_obj_exts(struct slab *slab)
2044 {
2045 }
2046 
2047 static inline bool need_slab_obj_ext(void)
2048 {
2049 	return false;
2050 }
2051 
2052 #endif /* CONFIG_SLAB_OBJ_EXT */
2053 
2054 #ifdef CONFIG_MEM_ALLOC_PROFILING
2055 
2056 static inline struct slabobj_ext *
2057 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2058 {
2059 	struct slab *slab;
2060 
2061 	if (!p)
2062 		return NULL;
2063 
2064 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2065 		return NULL;
2066 
2067 	if (flags & __GFP_NO_OBJ_EXT)
2068 		return NULL;
2069 
2070 	slab = virt_to_slab(p);
2071 	if (!slab_obj_exts(slab) &&
2072 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2073 		 "%s, %s: Failed to create slab extension vector!\n",
2074 		 __func__, s->name))
2075 		return NULL;
2076 
2077 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2078 }
2079 
2080 static inline void
2081 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2082 {
2083 	if (need_slab_obj_ext()) {
2084 		struct slabobj_ext *obj_exts;
2085 
2086 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2087 		/*
2088 		 * Currently obj_exts is used only for allocation profiling.
2089 		 * If other users appear then mem_alloc_profiling_enabled()
2090 		 * check should be added before alloc_tag_add().
2091 		 */
2092 		if (likely(obj_exts))
2093 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2094 	}
2095 }
2096 
2097 static inline void
2098 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2099 			     int objects)
2100 {
2101 	struct slabobj_ext *obj_exts;
2102 	int i;
2103 
2104 	if (!mem_alloc_profiling_enabled())
2105 		return;
2106 
2107 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2108 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2109 		return;
2110 
2111 	obj_exts = slab_obj_exts(slab);
2112 	if (!obj_exts)
2113 		return;
2114 
2115 	for (i = 0; i < objects; i++) {
2116 		unsigned int off = obj_to_index(s, slab, p[i]);
2117 
2118 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2119 	}
2120 }
2121 
2122 #else /* CONFIG_MEM_ALLOC_PROFILING */
2123 
2124 static inline void
2125 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2126 {
2127 }
2128 
2129 static inline void
2130 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2131 			     int objects)
2132 {
2133 }
2134 
2135 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2136 
2137 
2138 #ifdef CONFIG_MEMCG
2139 
2140 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2141 
2142 static __fastpath_inline
2143 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2144 				gfp_t flags, size_t size, void **p)
2145 {
2146 	if (likely(!memcg_kmem_online()))
2147 		return true;
2148 
2149 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2150 		return true;
2151 
2152 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2153 		return true;
2154 
2155 	if (likely(size == 1)) {
2156 		memcg_alloc_abort_single(s, *p);
2157 		*p = NULL;
2158 	} else {
2159 		kmem_cache_free_bulk(s, size, p);
2160 	}
2161 
2162 	return false;
2163 }
2164 
2165 static __fastpath_inline
2166 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2167 			  int objects)
2168 {
2169 	struct slabobj_ext *obj_exts;
2170 
2171 	if (!memcg_kmem_online())
2172 		return;
2173 
2174 	obj_exts = slab_obj_exts(slab);
2175 	if (likely(!obj_exts))
2176 		return;
2177 
2178 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2179 }
2180 
2181 static __fastpath_inline
2182 bool memcg_slab_post_charge(void *p, gfp_t flags)
2183 {
2184 	struct slabobj_ext *slab_exts;
2185 	struct kmem_cache *s;
2186 	struct folio *folio;
2187 	struct slab *slab;
2188 	unsigned long off;
2189 
2190 	folio = virt_to_folio(p);
2191 	if (!folio_test_slab(folio)) {
2192 		int size;
2193 
2194 		if (folio_memcg_kmem(folio))
2195 			return true;
2196 
2197 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2198 					     folio_order(folio)))
2199 			return false;
2200 
2201 		/*
2202 		 * This folio has already been accounted in the global stats but
2203 		 * not in the memcg stats. So, subtract from the global and use
2204 		 * the interface which adds to both global and memcg stats.
2205 		 */
2206 		size = folio_size(folio);
2207 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2208 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2209 		return true;
2210 	}
2211 
2212 	slab = folio_slab(folio);
2213 	s = slab->slab_cache;
2214 
2215 	/*
2216 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2217 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2218 	 * becoming effectively unfreeable.
2219 	 */
2220 	if (is_kmalloc_normal(s))
2221 		return true;
2222 
2223 	/* Ignore already charged objects. */
2224 	slab_exts = slab_obj_exts(slab);
2225 	if (slab_exts) {
2226 		off = obj_to_index(s, slab, p);
2227 		if (unlikely(slab_exts[off].objcg))
2228 			return true;
2229 	}
2230 
2231 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2232 }
2233 
2234 #else /* CONFIG_MEMCG */
2235 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2236 					      struct list_lru *lru,
2237 					      gfp_t flags, size_t size,
2238 					      void **p)
2239 {
2240 	return true;
2241 }
2242 
2243 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2244 					void **p, int objects)
2245 {
2246 }
2247 
2248 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2249 {
2250 	return true;
2251 }
2252 #endif /* CONFIG_MEMCG */
2253 
2254 #ifdef CONFIG_SLUB_RCU_DEBUG
2255 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2256 
2257 struct rcu_delayed_free {
2258 	struct rcu_head head;
2259 	void *object;
2260 };
2261 #endif
2262 
2263 /*
2264  * Hooks for other subsystems that check memory allocations. In a typical
2265  * production configuration these hooks all should produce no code at all.
2266  *
2267  * Returns true if freeing of the object can proceed, false if its reuse
2268  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2269  * to KFENCE.
2270  */
2271 static __always_inline
2272 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2273 		    bool after_rcu_delay)
2274 {
2275 	/* Are the object contents still accessible? */
2276 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2277 
2278 	kmemleak_free_recursive(x, s->flags);
2279 	kmsan_slab_free(s, x);
2280 
2281 	debug_check_no_locks_freed(x, s->object_size);
2282 
2283 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2284 		debug_check_no_obj_freed(x, s->object_size);
2285 
2286 	/* Use KCSAN to help debug racy use-after-free. */
2287 	if (!still_accessible)
2288 		__kcsan_check_access(x, s->object_size,
2289 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2290 
2291 	if (kfence_free(x))
2292 		return false;
2293 
2294 	/*
2295 	 * Give KASAN a chance to notice an invalid free operation before we
2296 	 * modify the object.
2297 	 */
2298 	if (kasan_slab_pre_free(s, x))
2299 		return false;
2300 
2301 #ifdef CONFIG_SLUB_RCU_DEBUG
2302 	if (still_accessible) {
2303 		struct rcu_delayed_free *delayed_free;
2304 
2305 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2306 		if (delayed_free) {
2307 			/*
2308 			 * Let KASAN track our call stack as a "related work
2309 			 * creation", just like if the object had been freed
2310 			 * normally via kfree_rcu().
2311 			 * We have to do this manually because the rcu_head is
2312 			 * not located inside the object.
2313 			 */
2314 			kasan_record_aux_stack_noalloc(x);
2315 
2316 			delayed_free->object = x;
2317 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2318 			return false;
2319 		}
2320 	}
2321 #endif /* CONFIG_SLUB_RCU_DEBUG */
2322 
2323 	/*
2324 	 * As memory initialization might be integrated into KASAN,
2325 	 * kasan_slab_free and initialization memset's must be
2326 	 * kept together to avoid discrepancies in behavior.
2327 	 *
2328 	 * The initialization memset's clear the object and the metadata,
2329 	 * but don't touch the SLAB redzone.
2330 	 *
2331 	 * The object's freepointer is also avoided if stored outside the
2332 	 * object.
2333 	 */
2334 	if (unlikely(init)) {
2335 		int rsize;
2336 		unsigned int inuse, orig_size;
2337 
2338 		inuse = get_info_end(s);
2339 		orig_size = get_orig_size(s, x);
2340 		if (!kasan_has_integrated_init())
2341 			memset(kasan_reset_tag(x), 0, orig_size);
2342 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2343 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2344 		       s->size - inuse - rsize);
2345 		/*
2346 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2347 		 * would be reported
2348 		 */
2349 		set_orig_size(s, x, orig_size);
2350 
2351 	}
2352 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2353 	return !kasan_slab_free(s, x, init, still_accessible);
2354 }
2355 
2356 static __fastpath_inline
2357 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2358 			     int *cnt)
2359 {
2360 
2361 	void *object;
2362 	void *next = *head;
2363 	void *old_tail = *tail;
2364 	bool init;
2365 
2366 	if (is_kfence_address(next)) {
2367 		slab_free_hook(s, next, false, false);
2368 		return false;
2369 	}
2370 
2371 	/* Head and tail of the reconstructed freelist */
2372 	*head = NULL;
2373 	*tail = NULL;
2374 
2375 	init = slab_want_init_on_free(s);
2376 
2377 	do {
2378 		object = next;
2379 		next = get_freepointer(s, object);
2380 
2381 		/* If object's reuse doesn't have to be delayed */
2382 		if (likely(slab_free_hook(s, object, init, false))) {
2383 			/* Move object to the new freelist */
2384 			set_freepointer(s, object, *head);
2385 			*head = object;
2386 			if (!*tail)
2387 				*tail = object;
2388 		} else {
2389 			/*
2390 			 * Adjust the reconstructed freelist depth
2391 			 * accordingly if object's reuse is delayed.
2392 			 */
2393 			--(*cnt);
2394 		}
2395 	} while (object != old_tail);
2396 
2397 	return *head != NULL;
2398 }
2399 
2400 static void *setup_object(struct kmem_cache *s, void *object)
2401 {
2402 	setup_object_debug(s, object);
2403 	object = kasan_init_slab_obj(s, object);
2404 	if (unlikely(s->ctor)) {
2405 		kasan_unpoison_new_object(s, object);
2406 		s->ctor(object);
2407 		kasan_poison_new_object(s, object);
2408 	}
2409 	return object;
2410 }
2411 
2412 /*
2413  * Slab allocation and freeing
2414  */
2415 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2416 		struct kmem_cache_order_objects oo)
2417 {
2418 	struct folio *folio;
2419 	struct slab *slab;
2420 	unsigned int order = oo_order(oo);
2421 
2422 	if (node == NUMA_NO_NODE)
2423 		folio = (struct folio *)alloc_pages(flags, order);
2424 	else
2425 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
2426 
2427 	if (!folio)
2428 		return NULL;
2429 
2430 	slab = folio_slab(folio);
2431 	__folio_set_slab(folio);
2432 	/* Make the flag visible before any changes to folio->mapping */
2433 	smp_wmb();
2434 	if (folio_is_pfmemalloc(folio))
2435 		slab_set_pfmemalloc(slab);
2436 
2437 	return slab;
2438 }
2439 
2440 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2441 /* Pre-initialize the random sequence cache */
2442 static int init_cache_random_seq(struct kmem_cache *s)
2443 {
2444 	unsigned int count = oo_objects(s->oo);
2445 	int err;
2446 
2447 	/* Bailout if already initialised */
2448 	if (s->random_seq)
2449 		return 0;
2450 
2451 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2452 	if (err) {
2453 		pr_err("SLUB: Unable to initialize free list for %s\n",
2454 			s->name);
2455 		return err;
2456 	}
2457 
2458 	/* Transform to an offset on the set of pages */
2459 	if (s->random_seq) {
2460 		unsigned int i;
2461 
2462 		for (i = 0; i < count; i++)
2463 			s->random_seq[i] *= s->size;
2464 	}
2465 	return 0;
2466 }
2467 
2468 /* Initialize each random sequence freelist per cache */
2469 static void __init init_freelist_randomization(void)
2470 {
2471 	struct kmem_cache *s;
2472 
2473 	mutex_lock(&slab_mutex);
2474 
2475 	list_for_each_entry(s, &slab_caches, list)
2476 		init_cache_random_seq(s);
2477 
2478 	mutex_unlock(&slab_mutex);
2479 }
2480 
2481 /* Get the next entry on the pre-computed freelist randomized */
2482 static void *next_freelist_entry(struct kmem_cache *s,
2483 				unsigned long *pos, void *start,
2484 				unsigned long page_limit,
2485 				unsigned long freelist_count)
2486 {
2487 	unsigned int idx;
2488 
2489 	/*
2490 	 * If the target page allocation failed, the number of objects on the
2491 	 * page might be smaller than the usual size defined by the cache.
2492 	 */
2493 	do {
2494 		idx = s->random_seq[*pos];
2495 		*pos += 1;
2496 		if (*pos >= freelist_count)
2497 			*pos = 0;
2498 	} while (unlikely(idx >= page_limit));
2499 
2500 	return (char *)start + idx;
2501 }
2502 
2503 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2504 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2505 {
2506 	void *start;
2507 	void *cur;
2508 	void *next;
2509 	unsigned long idx, pos, page_limit, freelist_count;
2510 
2511 	if (slab->objects < 2 || !s->random_seq)
2512 		return false;
2513 
2514 	freelist_count = oo_objects(s->oo);
2515 	pos = get_random_u32_below(freelist_count);
2516 
2517 	page_limit = slab->objects * s->size;
2518 	start = fixup_red_left(s, slab_address(slab));
2519 
2520 	/* First entry is used as the base of the freelist */
2521 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2522 	cur = setup_object(s, cur);
2523 	slab->freelist = cur;
2524 
2525 	for (idx = 1; idx < slab->objects; idx++) {
2526 		next = next_freelist_entry(s, &pos, start, page_limit,
2527 			freelist_count);
2528 		next = setup_object(s, next);
2529 		set_freepointer(s, cur, next);
2530 		cur = next;
2531 	}
2532 	set_freepointer(s, cur, NULL);
2533 
2534 	return true;
2535 }
2536 #else
2537 static inline int init_cache_random_seq(struct kmem_cache *s)
2538 {
2539 	return 0;
2540 }
2541 static inline void init_freelist_randomization(void) { }
2542 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2543 {
2544 	return false;
2545 }
2546 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2547 
2548 static __always_inline void account_slab(struct slab *slab, int order,
2549 					 struct kmem_cache *s, gfp_t gfp)
2550 {
2551 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2552 		alloc_slab_obj_exts(slab, s, gfp, true);
2553 
2554 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2555 			    PAGE_SIZE << order);
2556 }
2557 
2558 static __always_inline void unaccount_slab(struct slab *slab, int order,
2559 					   struct kmem_cache *s)
2560 {
2561 	if (memcg_kmem_online() || need_slab_obj_ext())
2562 		free_slab_obj_exts(slab);
2563 
2564 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2565 			    -(PAGE_SIZE << order));
2566 }
2567 
2568 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2569 {
2570 	struct slab *slab;
2571 	struct kmem_cache_order_objects oo = s->oo;
2572 	gfp_t alloc_gfp;
2573 	void *start, *p, *next;
2574 	int idx;
2575 	bool shuffle;
2576 
2577 	flags &= gfp_allowed_mask;
2578 
2579 	flags |= s->allocflags;
2580 
2581 	/*
2582 	 * Let the initial higher-order allocation fail under memory pressure
2583 	 * so we fall-back to the minimum order allocation.
2584 	 */
2585 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2586 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2587 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2588 
2589 	slab = alloc_slab_page(alloc_gfp, node, oo);
2590 	if (unlikely(!slab)) {
2591 		oo = s->min;
2592 		alloc_gfp = flags;
2593 		/*
2594 		 * Allocation may have failed due to fragmentation.
2595 		 * Try a lower order alloc if possible
2596 		 */
2597 		slab = alloc_slab_page(alloc_gfp, node, oo);
2598 		if (unlikely(!slab))
2599 			return NULL;
2600 		stat(s, ORDER_FALLBACK);
2601 	}
2602 
2603 	slab->objects = oo_objects(oo);
2604 	slab->inuse = 0;
2605 	slab->frozen = 0;
2606 
2607 	account_slab(slab, oo_order(oo), s, flags);
2608 
2609 	slab->slab_cache = s;
2610 
2611 	kasan_poison_slab(slab);
2612 
2613 	start = slab_address(slab);
2614 
2615 	setup_slab_debug(s, slab, start);
2616 
2617 	shuffle = shuffle_freelist(s, slab);
2618 
2619 	if (!shuffle) {
2620 		start = fixup_red_left(s, start);
2621 		start = setup_object(s, start);
2622 		slab->freelist = start;
2623 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2624 			next = p + s->size;
2625 			next = setup_object(s, next);
2626 			set_freepointer(s, p, next);
2627 			p = next;
2628 		}
2629 		set_freepointer(s, p, NULL);
2630 	}
2631 
2632 	return slab;
2633 }
2634 
2635 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2636 {
2637 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2638 		flags = kmalloc_fix_flags(flags);
2639 
2640 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2641 
2642 	return allocate_slab(s,
2643 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2644 }
2645 
2646 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2647 {
2648 	struct folio *folio = slab_folio(slab);
2649 	int order = folio_order(folio);
2650 	int pages = 1 << order;
2651 
2652 	__slab_clear_pfmemalloc(slab);
2653 	folio->mapping = NULL;
2654 	/* Make the mapping reset visible before clearing the flag */
2655 	smp_wmb();
2656 	__folio_clear_slab(folio);
2657 	mm_account_reclaimed_pages(pages);
2658 	unaccount_slab(slab, order, s);
2659 	__free_pages(&folio->page, order);
2660 }
2661 
2662 static void rcu_free_slab(struct rcu_head *h)
2663 {
2664 	struct slab *slab = container_of(h, struct slab, rcu_head);
2665 
2666 	__free_slab(slab->slab_cache, slab);
2667 }
2668 
2669 static void free_slab(struct kmem_cache *s, struct slab *slab)
2670 {
2671 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2672 		void *p;
2673 
2674 		slab_pad_check(s, slab);
2675 		for_each_object(p, s, slab_address(slab), slab->objects)
2676 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2677 	}
2678 
2679 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2680 		call_rcu(&slab->rcu_head, rcu_free_slab);
2681 	else
2682 		__free_slab(s, slab);
2683 }
2684 
2685 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2686 {
2687 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2688 	free_slab(s, slab);
2689 }
2690 
2691 /*
2692  * SLUB reuses PG_workingset bit to keep track of whether it's on
2693  * the per-node partial list.
2694  */
2695 static inline bool slab_test_node_partial(const struct slab *slab)
2696 {
2697 	return folio_test_workingset(slab_folio(slab));
2698 }
2699 
2700 static inline void slab_set_node_partial(struct slab *slab)
2701 {
2702 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2703 }
2704 
2705 static inline void slab_clear_node_partial(struct slab *slab)
2706 {
2707 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2708 }
2709 
2710 /*
2711  * Management of partially allocated slabs.
2712  */
2713 static inline void
2714 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2715 {
2716 	n->nr_partial++;
2717 	if (tail == DEACTIVATE_TO_TAIL)
2718 		list_add_tail(&slab->slab_list, &n->partial);
2719 	else
2720 		list_add(&slab->slab_list, &n->partial);
2721 	slab_set_node_partial(slab);
2722 }
2723 
2724 static inline void add_partial(struct kmem_cache_node *n,
2725 				struct slab *slab, int tail)
2726 {
2727 	lockdep_assert_held(&n->list_lock);
2728 	__add_partial(n, slab, tail);
2729 }
2730 
2731 static inline void remove_partial(struct kmem_cache_node *n,
2732 					struct slab *slab)
2733 {
2734 	lockdep_assert_held(&n->list_lock);
2735 	list_del(&slab->slab_list);
2736 	slab_clear_node_partial(slab);
2737 	n->nr_partial--;
2738 }
2739 
2740 /*
2741  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2742  * slab from the n->partial list. Remove only a single object from the slab, do
2743  * the alloc_debug_processing() checks and leave the slab on the list, or move
2744  * it to full list if it was the last free object.
2745  */
2746 static void *alloc_single_from_partial(struct kmem_cache *s,
2747 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2748 {
2749 	void *object;
2750 
2751 	lockdep_assert_held(&n->list_lock);
2752 
2753 	object = slab->freelist;
2754 	slab->freelist = get_freepointer(s, object);
2755 	slab->inuse++;
2756 
2757 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2758 		if (folio_test_slab(slab_folio(slab)))
2759 			remove_partial(n, slab);
2760 		return NULL;
2761 	}
2762 
2763 	if (slab->inuse == slab->objects) {
2764 		remove_partial(n, slab);
2765 		add_full(s, n, slab);
2766 	}
2767 
2768 	return object;
2769 }
2770 
2771 /*
2772  * Called only for kmem_cache_debug() caches to allocate from a freshly
2773  * allocated slab. Allocate a single object instead of whole freelist
2774  * and put the slab to the partial (or full) list.
2775  */
2776 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2777 					struct slab *slab, int orig_size)
2778 {
2779 	int nid = slab_nid(slab);
2780 	struct kmem_cache_node *n = get_node(s, nid);
2781 	unsigned long flags;
2782 	void *object;
2783 
2784 
2785 	object = slab->freelist;
2786 	slab->freelist = get_freepointer(s, object);
2787 	slab->inuse = 1;
2788 
2789 	if (!alloc_debug_processing(s, slab, object, orig_size))
2790 		/*
2791 		 * It's not really expected that this would fail on a
2792 		 * freshly allocated slab, but a concurrent memory
2793 		 * corruption in theory could cause that.
2794 		 */
2795 		return NULL;
2796 
2797 	spin_lock_irqsave(&n->list_lock, flags);
2798 
2799 	if (slab->inuse == slab->objects)
2800 		add_full(s, n, slab);
2801 	else
2802 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2803 
2804 	inc_slabs_node(s, nid, slab->objects);
2805 	spin_unlock_irqrestore(&n->list_lock, flags);
2806 
2807 	return object;
2808 }
2809 
2810 #ifdef CONFIG_SLUB_CPU_PARTIAL
2811 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2812 #else
2813 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2814 				   int drain) { }
2815 #endif
2816 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2817 
2818 /*
2819  * Try to allocate a partial slab from a specific node.
2820  */
2821 static struct slab *get_partial_node(struct kmem_cache *s,
2822 				     struct kmem_cache_node *n,
2823 				     struct partial_context *pc)
2824 {
2825 	struct slab *slab, *slab2, *partial = NULL;
2826 	unsigned long flags;
2827 	unsigned int partial_slabs = 0;
2828 
2829 	/*
2830 	 * Racy check. If we mistakenly see no partial slabs then we
2831 	 * just allocate an empty slab. If we mistakenly try to get a
2832 	 * partial slab and there is none available then get_partial()
2833 	 * will return NULL.
2834 	 */
2835 	if (!n || !n->nr_partial)
2836 		return NULL;
2837 
2838 	spin_lock_irqsave(&n->list_lock, flags);
2839 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2840 		if (!pfmemalloc_match(slab, pc->flags))
2841 			continue;
2842 
2843 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2844 			void *object = alloc_single_from_partial(s, n, slab,
2845 							pc->orig_size);
2846 			if (object) {
2847 				partial = slab;
2848 				pc->object = object;
2849 				break;
2850 			}
2851 			continue;
2852 		}
2853 
2854 		remove_partial(n, slab);
2855 
2856 		if (!partial) {
2857 			partial = slab;
2858 			stat(s, ALLOC_FROM_PARTIAL);
2859 
2860 			if ((slub_get_cpu_partial(s) == 0)) {
2861 				break;
2862 			}
2863 		} else {
2864 			put_cpu_partial(s, slab, 0);
2865 			stat(s, CPU_PARTIAL_NODE);
2866 
2867 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2868 				break;
2869 			}
2870 		}
2871 	}
2872 	spin_unlock_irqrestore(&n->list_lock, flags);
2873 	return partial;
2874 }
2875 
2876 /*
2877  * Get a slab from somewhere. Search in increasing NUMA distances.
2878  */
2879 static struct slab *get_any_partial(struct kmem_cache *s,
2880 				    struct partial_context *pc)
2881 {
2882 #ifdef CONFIG_NUMA
2883 	struct zonelist *zonelist;
2884 	struct zoneref *z;
2885 	struct zone *zone;
2886 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2887 	struct slab *slab;
2888 	unsigned int cpuset_mems_cookie;
2889 
2890 	/*
2891 	 * The defrag ratio allows a configuration of the tradeoffs between
2892 	 * inter node defragmentation and node local allocations. A lower
2893 	 * defrag_ratio increases the tendency to do local allocations
2894 	 * instead of attempting to obtain partial slabs from other nodes.
2895 	 *
2896 	 * If the defrag_ratio is set to 0 then kmalloc() always
2897 	 * returns node local objects. If the ratio is higher then kmalloc()
2898 	 * may return off node objects because partial slabs are obtained
2899 	 * from other nodes and filled up.
2900 	 *
2901 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2902 	 * (which makes defrag_ratio = 1000) then every (well almost)
2903 	 * allocation will first attempt to defrag slab caches on other nodes.
2904 	 * This means scanning over all nodes to look for partial slabs which
2905 	 * may be expensive if we do it every time we are trying to find a slab
2906 	 * with available objects.
2907 	 */
2908 	if (!s->remote_node_defrag_ratio ||
2909 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2910 		return NULL;
2911 
2912 	do {
2913 		cpuset_mems_cookie = read_mems_allowed_begin();
2914 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2915 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2916 			struct kmem_cache_node *n;
2917 
2918 			n = get_node(s, zone_to_nid(zone));
2919 
2920 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2921 					n->nr_partial > s->min_partial) {
2922 				slab = get_partial_node(s, n, pc);
2923 				if (slab) {
2924 					/*
2925 					 * Don't check read_mems_allowed_retry()
2926 					 * here - if mems_allowed was updated in
2927 					 * parallel, that was a harmless race
2928 					 * between allocation and the cpuset
2929 					 * update
2930 					 */
2931 					return slab;
2932 				}
2933 			}
2934 		}
2935 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2936 #endif	/* CONFIG_NUMA */
2937 	return NULL;
2938 }
2939 
2940 /*
2941  * Get a partial slab, lock it and return it.
2942  */
2943 static struct slab *get_partial(struct kmem_cache *s, int node,
2944 				struct partial_context *pc)
2945 {
2946 	struct slab *slab;
2947 	int searchnode = node;
2948 
2949 	if (node == NUMA_NO_NODE)
2950 		searchnode = numa_mem_id();
2951 
2952 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2953 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2954 		return slab;
2955 
2956 	return get_any_partial(s, pc);
2957 }
2958 
2959 #ifndef CONFIG_SLUB_TINY
2960 
2961 #ifdef CONFIG_PREEMPTION
2962 /*
2963  * Calculate the next globally unique transaction for disambiguation
2964  * during cmpxchg. The transactions start with the cpu number and are then
2965  * incremented by CONFIG_NR_CPUS.
2966  */
2967 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2968 #else
2969 /*
2970  * No preemption supported therefore also no need to check for
2971  * different cpus.
2972  */
2973 #define TID_STEP 1
2974 #endif /* CONFIG_PREEMPTION */
2975 
2976 static inline unsigned long next_tid(unsigned long tid)
2977 {
2978 	return tid + TID_STEP;
2979 }
2980 
2981 #ifdef SLUB_DEBUG_CMPXCHG
2982 static inline unsigned int tid_to_cpu(unsigned long tid)
2983 {
2984 	return tid % TID_STEP;
2985 }
2986 
2987 static inline unsigned long tid_to_event(unsigned long tid)
2988 {
2989 	return tid / TID_STEP;
2990 }
2991 #endif
2992 
2993 static inline unsigned int init_tid(int cpu)
2994 {
2995 	return cpu;
2996 }
2997 
2998 static inline void note_cmpxchg_failure(const char *n,
2999 		const struct kmem_cache *s, unsigned long tid)
3000 {
3001 #ifdef SLUB_DEBUG_CMPXCHG
3002 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3003 
3004 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3005 
3006 #ifdef CONFIG_PREEMPTION
3007 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3008 		pr_warn("due to cpu change %d -> %d\n",
3009 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3010 	else
3011 #endif
3012 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3013 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3014 			tid_to_event(tid), tid_to_event(actual_tid));
3015 	else
3016 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3017 			actual_tid, tid, next_tid(tid));
3018 #endif
3019 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3020 }
3021 
3022 static void init_kmem_cache_cpus(struct kmem_cache *s)
3023 {
3024 	int cpu;
3025 	struct kmem_cache_cpu *c;
3026 
3027 	for_each_possible_cpu(cpu) {
3028 		c = per_cpu_ptr(s->cpu_slab, cpu);
3029 		local_lock_init(&c->lock);
3030 		c->tid = init_tid(cpu);
3031 	}
3032 }
3033 
3034 /*
3035  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3036  * unfreezes the slabs and puts it on the proper list.
3037  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3038  * by the caller.
3039  */
3040 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3041 			    void *freelist)
3042 {
3043 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3044 	int free_delta = 0;
3045 	void *nextfree, *freelist_iter, *freelist_tail;
3046 	int tail = DEACTIVATE_TO_HEAD;
3047 	unsigned long flags = 0;
3048 	struct slab new;
3049 	struct slab old;
3050 
3051 	if (READ_ONCE(slab->freelist)) {
3052 		stat(s, DEACTIVATE_REMOTE_FREES);
3053 		tail = DEACTIVATE_TO_TAIL;
3054 	}
3055 
3056 	/*
3057 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3058 	 * remember the last object in freelist_tail for later splicing.
3059 	 */
3060 	freelist_tail = NULL;
3061 	freelist_iter = freelist;
3062 	while (freelist_iter) {
3063 		nextfree = get_freepointer(s, freelist_iter);
3064 
3065 		/*
3066 		 * If 'nextfree' is invalid, it is possible that the object at
3067 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3068 		 * starting at 'freelist_iter' by skipping them.
3069 		 */
3070 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3071 			break;
3072 
3073 		freelist_tail = freelist_iter;
3074 		free_delta++;
3075 
3076 		freelist_iter = nextfree;
3077 	}
3078 
3079 	/*
3080 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3081 	 * freelist to the head of slab's freelist.
3082 	 */
3083 	do {
3084 		old.freelist = READ_ONCE(slab->freelist);
3085 		old.counters = READ_ONCE(slab->counters);
3086 		VM_BUG_ON(!old.frozen);
3087 
3088 		/* Determine target state of the slab */
3089 		new.counters = old.counters;
3090 		new.frozen = 0;
3091 		if (freelist_tail) {
3092 			new.inuse -= free_delta;
3093 			set_freepointer(s, freelist_tail, old.freelist);
3094 			new.freelist = freelist;
3095 		} else {
3096 			new.freelist = old.freelist;
3097 		}
3098 	} while (!slab_update_freelist(s, slab,
3099 		old.freelist, old.counters,
3100 		new.freelist, new.counters,
3101 		"unfreezing slab"));
3102 
3103 	/*
3104 	 * Stage three: Manipulate the slab list based on the updated state.
3105 	 */
3106 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3107 		stat(s, DEACTIVATE_EMPTY);
3108 		discard_slab(s, slab);
3109 		stat(s, FREE_SLAB);
3110 	} else if (new.freelist) {
3111 		spin_lock_irqsave(&n->list_lock, flags);
3112 		add_partial(n, slab, tail);
3113 		spin_unlock_irqrestore(&n->list_lock, flags);
3114 		stat(s, tail);
3115 	} else {
3116 		stat(s, DEACTIVATE_FULL);
3117 	}
3118 }
3119 
3120 #ifdef CONFIG_SLUB_CPU_PARTIAL
3121 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3122 {
3123 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3124 	struct slab *slab, *slab_to_discard = NULL;
3125 	unsigned long flags = 0;
3126 
3127 	while (partial_slab) {
3128 		slab = partial_slab;
3129 		partial_slab = slab->next;
3130 
3131 		n2 = get_node(s, slab_nid(slab));
3132 		if (n != n2) {
3133 			if (n)
3134 				spin_unlock_irqrestore(&n->list_lock, flags);
3135 
3136 			n = n2;
3137 			spin_lock_irqsave(&n->list_lock, flags);
3138 		}
3139 
3140 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3141 			slab->next = slab_to_discard;
3142 			slab_to_discard = slab;
3143 		} else {
3144 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3145 			stat(s, FREE_ADD_PARTIAL);
3146 		}
3147 	}
3148 
3149 	if (n)
3150 		spin_unlock_irqrestore(&n->list_lock, flags);
3151 
3152 	while (slab_to_discard) {
3153 		slab = slab_to_discard;
3154 		slab_to_discard = slab_to_discard->next;
3155 
3156 		stat(s, DEACTIVATE_EMPTY);
3157 		discard_slab(s, slab);
3158 		stat(s, FREE_SLAB);
3159 	}
3160 }
3161 
3162 /*
3163  * Put all the cpu partial slabs to the node partial list.
3164  */
3165 static void put_partials(struct kmem_cache *s)
3166 {
3167 	struct slab *partial_slab;
3168 	unsigned long flags;
3169 
3170 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3171 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3172 	this_cpu_write(s->cpu_slab->partial, NULL);
3173 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3174 
3175 	if (partial_slab)
3176 		__put_partials(s, partial_slab);
3177 }
3178 
3179 static void put_partials_cpu(struct kmem_cache *s,
3180 			     struct kmem_cache_cpu *c)
3181 {
3182 	struct slab *partial_slab;
3183 
3184 	partial_slab = slub_percpu_partial(c);
3185 	c->partial = NULL;
3186 
3187 	if (partial_slab)
3188 		__put_partials(s, partial_slab);
3189 }
3190 
3191 /*
3192  * Put a slab into a partial slab slot if available.
3193  *
3194  * If we did not find a slot then simply move all the partials to the
3195  * per node partial list.
3196  */
3197 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3198 {
3199 	struct slab *oldslab;
3200 	struct slab *slab_to_put = NULL;
3201 	unsigned long flags;
3202 	int slabs = 0;
3203 
3204 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3205 
3206 	oldslab = this_cpu_read(s->cpu_slab->partial);
3207 
3208 	if (oldslab) {
3209 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3210 			/*
3211 			 * Partial array is full. Move the existing set to the
3212 			 * per node partial list. Postpone the actual unfreezing
3213 			 * outside of the critical section.
3214 			 */
3215 			slab_to_put = oldslab;
3216 			oldslab = NULL;
3217 		} else {
3218 			slabs = oldslab->slabs;
3219 		}
3220 	}
3221 
3222 	slabs++;
3223 
3224 	slab->slabs = slabs;
3225 	slab->next = oldslab;
3226 
3227 	this_cpu_write(s->cpu_slab->partial, slab);
3228 
3229 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3230 
3231 	if (slab_to_put) {
3232 		__put_partials(s, slab_to_put);
3233 		stat(s, CPU_PARTIAL_DRAIN);
3234 	}
3235 }
3236 
3237 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3238 
3239 static inline void put_partials(struct kmem_cache *s) { }
3240 static inline void put_partials_cpu(struct kmem_cache *s,
3241 				    struct kmem_cache_cpu *c) { }
3242 
3243 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3244 
3245 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3246 {
3247 	unsigned long flags;
3248 	struct slab *slab;
3249 	void *freelist;
3250 
3251 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3252 
3253 	slab = c->slab;
3254 	freelist = c->freelist;
3255 
3256 	c->slab = NULL;
3257 	c->freelist = NULL;
3258 	c->tid = next_tid(c->tid);
3259 
3260 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3261 
3262 	if (slab) {
3263 		deactivate_slab(s, slab, freelist);
3264 		stat(s, CPUSLAB_FLUSH);
3265 	}
3266 }
3267 
3268 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3269 {
3270 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3271 	void *freelist = c->freelist;
3272 	struct slab *slab = c->slab;
3273 
3274 	c->slab = NULL;
3275 	c->freelist = NULL;
3276 	c->tid = next_tid(c->tid);
3277 
3278 	if (slab) {
3279 		deactivate_slab(s, slab, freelist);
3280 		stat(s, CPUSLAB_FLUSH);
3281 	}
3282 
3283 	put_partials_cpu(s, c);
3284 }
3285 
3286 struct slub_flush_work {
3287 	struct work_struct work;
3288 	struct kmem_cache *s;
3289 	bool skip;
3290 };
3291 
3292 /*
3293  * Flush cpu slab.
3294  *
3295  * Called from CPU work handler with migration disabled.
3296  */
3297 static void flush_cpu_slab(struct work_struct *w)
3298 {
3299 	struct kmem_cache *s;
3300 	struct kmem_cache_cpu *c;
3301 	struct slub_flush_work *sfw;
3302 
3303 	sfw = container_of(w, struct slub_flush_work, work);
3304 
3305 	s = sfw->s;
3306 	c = this_cpu_ptr(s->cpu_slab);
3307 
3308 	if (c->slab)
3309 		flush_slab(s, c);
3310 
3311 	put_partials(s);
3312 }
3313 
3314 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3315 {
3316 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3317 
3318 	return c->slab || slub_percpu_partial(c);
3319 }
3320 
3321 static DEFINE_MUTEX(flush_lock);
3322 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3323 
3324 static void flush_all_cpus_locked(struct kmem_cache *s)
3325 {
3326 	struct slub_flush_work *sfw;
3327 	unsigned int cpu;
3328 
3329 	lockdep_assert_cpus_held();
3330 	mutex_lock(&flush_lock);
3331 
3332 	for_each_online_cpu(cpu) {
3333 		sfw = &per_cpu(slub_flush, cpu);
3334 		if (!has_cpu_slab(cpu, s)) {
3335 			sfw->skip = true;
3336 			continue;
3337 		}
3338 		INIT_WORK(&sfw->work, flush_cpu_slab);
3339 		sfw->skip = false;
3340 		sfw->s = s;
3341 		queue_work_on(cpu, flushwq, &sfw->work);
3342 	}
3343 
3344 	for_each_online_cpu(cpu) {
3345 		sfw = &per_cpu(slub_flush, cpu);
3346 		if (sfw->skip)
3347 			continue;
3348 		flush_work(&sfw->work);
3349 	}
3350 
3351 	mutex_unlock(&flush_lock);
3352 }
3353 
3354 static void flush_all(struct kmem_cache *s)
3355 {
3356 	cpus_read_lock();
3357 	flush_all_cpus_locked(s);
3358 	cpus_read_unlock();
3359 }
3360 
3361 /*
3362  * Use the cpu notifier to insure that the cpu slabs are flushed when
3363  * necessary.
3364  */
3365 static int slub_cpu_dead(unsigned int cpu)
3366 {
3367 	struct kmem_cache *s;
3368 
3369 	mutex_lock(&slab_mutex);
3370 	list_for_each_entry(s, &slab_caches, list)
3371 		__flush_cpu_slab(s, cpu);
3372 	mutex_unlock(&slab_mutex);
3373 	return 0;
3374 }
3375 
3376 #else /* CONFIG_SLUB_TINY */
3377 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3378 static inline void flush_all(struct kmem_cache *s) { }
3379 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3380 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3381 #endif /* CONFIG_SLUB_TINY */
3382 
3383 /*
3384  * Check if the objects in a per cpu structure fit numa
3385  * locality expectations.
3386  */
3387 static inline int node_match(struct slab *slab, int node)
3388 {
3389 #ifdef CONFIG_NUMA
3390 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3391 		return 0;
3392 #endif
3393 	return 1;
3394 }
3395 
3396 #ifdef CONFIG_SLUB_DEBUG
3397 static int count_free(struct slab *slab)
3398 {
3399 	return slab->objects - slab->inuse;
3400 }
3401 
3402 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3403 {
3404 	return atomic_long_read(&n->total_objects);
3405 }
3406 
3407 /* Supports checking bulk free of a constructed freelist */
3408 static inline bool free_debug_processing(struct kmem_cache *s,
3409 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3410 	unsigned long addr, depot_stack_handle_t handle)
3411 {
3412 	bool checks_ok = false;
3413 	void *object = head;
3414 	int cnt = 0;
3415 
3416 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3417 		if (!check_slab(s, slab))
3418 			goto out;
3419 	}
3420 
3421 	if (slab->inuse < *bulk_cnt) {
3422 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3423 			 slab->inuse, *bulk_cnt);
3424 		goto out;
3425 	}
3426 
3427 next_object:
3428 
3429 	if (++cnt > *bulk_cnt)
3430 		goto out_cnt;
3431 
3432 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3433 		if (!free_consistency_checks(s, slab, object, addr))
3434 			goto out;
3435 	}
3436 
3437 	if (s->flags & SLAB_STORE_USER)
3438 		set_track_update(s, object, TRACK_FREE, addr, handle);
3439 	trace(s, slab, object, 0);
3440 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3441 	init_object(s, object, SLUB_RED_INACTIVE);
3442 
3443 	/* Reached end of constructed freelist yet? */
3444 	if (object != tail) {
3445 		object = get_freepointer(s, object);
3446 		goto next_object;
3447 	}
3448 	checks_ok = true;
3449 
3450 out_cnt:
3451 	if (cnt != *bulk_cnt) {
3452 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3453 			 *bulk_cnt, cnt);
3454 		*bulk_cnt = cnt;
3455 	}
3456 
3457 out:
3458 
3459 	if (!checks_ok)
3460 		slab_fix(s, "Object at 0x%p not freed", object);
3461 
3462 	return checks_ok;
3463 }
3464 #endif /* CONFIG_SLUB_DEBUG */
3465 
3466 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3467 static unsigned long count_partial(struct kmem_cache_node *n,
3468 					int (*get_count)(struct slab *))
3469 {
3470 	unsigned long flags;
3471 	unsigned long x = 0;
3472 	struct slab *slab;
3473 
3474 	spin_lock_irqsave(&n->list_lock, flags);
3475 	list_for_each_entry(slab, &n->partial, slab_list)
3476 		x += get_count(slab);
3477 	spin_unlock_irqrestore(&n->list_lock, flags);
3478 	return x;
3479 }
3480 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3481 
3482 #ifdef CONFIG_SLUB_DEBUG
3483 #define MAX_PARTIAL_TO_SCAN 10000
3484 
3485 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3486 {
3487 	unsigned long flags;
3488 	unsigned long x = 0;
3489 	struct slab *slab;
3490 
3491 	spin_lock_irqsave(&n->list_lock, flags);
3492 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3493 		list_for_each_entry(slab, &n->partial, slab_list)
3494 			x += slab->objects - slab->inuse;
3495 	} else {
3496 		/*
3497 		 * For a long list, approximate the total count of objects in
3498 		 * it to meet the limit on the number of slabs to scan.
3499 		 * Scan from both the list's head and tail for better accuracy.
3500 		 */
3501 		unsigned long scanned = 0;
3502 
3503 		list_for_each_entry(slab, &n->partial, slab_list) {
3504 			x += slab->objects - slab->inuse;
3505 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3506 				break;
3507 		}
3508 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3509 			x += slab->objects - slab->inuse;
3510 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3511 				break;
3512 		}
3513 		x = mult_frac(x, n->nr_partial, scanned);
3514 		x = min(x, node_nr_objs(n));
3515 	}
3516 	spin_unlock_irqrestore(&n->list_lock, flags);
3517 	return x;
3518 }
3519 
3520 static noinline void
3521 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3522 {
3523 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3524 				      DEFAULT_RATELIMIT_BURST);
3525 	int cpu = raw_smp_processor_id();
3526 	int node;
3527 	struct kmem_cache_node *n;
3528 
3529 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3530 		return;
3531 
3532 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3533 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3534 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3535 		s->name, s->object_size, s->size, oo_order(s->oo),
3536 		oo_order(s->min));
3537 
3538 	if (oo_order(s->min) > get_order(s->object_size))
3539 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3540 			s->name);
3541 
3542 	for_each_kmem_cache_node(s, node, n) {
3543 		unsigned long nr_slabs;
3544 		unsigned long nr_objs;
3545 		unsigned long nr_free;
3546 
3547 		nr_free  = count_partial_free_approx(n);
3548 		nr_slabs = node_nr_slabs(n);
3549 		nr_objs  = node_nr_objs(n);
3550 
3551 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3552 			node, nr_slabs, nr_objs, nr_free);
3553 	}
3554 }
3555 #else /* CONFIG_SLUB_DEBUG */
3556 static inline void
3557 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3558 #endif
3559 
3560 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3561 {
3562 	if (unlikely(slab_test_pfmemalloc(slab)))
3563 		return gfp_pfmemalloc_allowed(gfpflags);
3564 
3565 	return true;
3566 }
3567 
3568 #ifndef CONFIG_SLUB_TINY
3569 static inline bool
3570 __update_cpu_freelist_fast(struct kmem_cache *s,
3571 			   void *freelist_old, void *freelist_new,
3572 			   unsigned long tid)
3573 {
3574 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3575 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3576 
3577 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3578 					     &old.full, new.full);
3579 }
3580 
3581 /*
3582  * Check the slab->freelist and either transfer the freelist to the
3583  * per cpu freelist or deactivate the slab.
3584  *
3585  * The slab is still frozen if the return value is not NULL.
3586  *
3587  * If this function returns NULL then the slab has been unfrozen.
3588  */
3589 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3590 {
3591 	struct slab new;
3592 	unsigned long counters;
3593 	void *freelist;
3594 
3595 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3596 
3597 	do {
3598 		freelist = slab->freelist;
3599 		counters = slab->counters;
3600 
3601 		new.counters = counters;
3602 
3603 		new.inuse = slab->objects;
3604 		new.frozen = freelist != NULL;
3605 
3606 	} while (!__slab_update_freelist(s, slab,
3607 		freelist, counters,
3608 		NULL, new.counters,
3609 		"get_freelist"));
3610 
3611 	return freelist;
3612 }
3613 
3614 /*
3615  * Freeze the partial slab and return the pointer to the freelist.
3616  */
3617 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3618 {
3619 	struct slab new;
3620 	unsigned long counters;
3621 	void *freelist;
3622 
3623 	do {
3624 		freelist = slab->freelist;
3625 		counters = slab->counters;
3626 
3627 		new.counters = counters;
3628 		VM_BUG_ON(new.frozen);
3629 
3630 		new.inuse = slab->objects;
3631 		new.frozen = 1;
3632 
3633 	} while (!slab_update_freelist(s, slab,
3634 		freelist, counters,
3635 		NULL, new.counters,
3636 		"freeze_slab"));
3637 
3638 	return freelist;
3639 }
3640 
3641 /*
3642  * Slow path. The lockless freelist is empty or we need to perform
3643  * debugging duties.
3644  *
3645  * Processing is still very fast if new objects have been freed to the
3646  * regular freelist. In that case we simply take over the regular freelist
3647  * as the lockless freelist and zap the regular freelist.
3648  *
3649  * If that is not working then we fall back to the partial lists. We take the
3650  * first element of the freelist as the object to allocate now and move the
3651  * rest of the freelist to the lockless freelist.
3652  *
3653  * And if we were unable to get a new slab from the partial slab lists then
3654  * we need to allocate a new slab. This is the slowest path since it involves
3655  * a call to the page allocator and the setup of a new slab.
3656  *
3657  * Version of __slab_alloc to use when we know that preemption is
3658  * already disabled (which is the case for bulk allocation).
3659  */
3660 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3661 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3662 {
3663 	void *freelist;
3664 	struct slab *slab;
3665 	unsigned long flags;
3666 	struct partial_context pc;
3667 	bool try_thisnode = true;
3668 
3669 	stat(s, ALLOC_SLOWPATH);
3670 
3671 reread_slab:
3672 
3673 	slab = READ_ONCE(c->slab);
3674 	if (!slab) {
3675 		/*
3676 		 * if the node is not online or has no normal memory, just
3677 		 * ignore the node constraint
3678 		 */
3679 		if (unlikely(node != NUMA_NO_NODE &&
3680 			     !node_isset(node, slab_nodes)))
3681 			node = NUMA_NO_NODE;
3682 		goto new_slab;
3683 	}
3684 
3685 	if (unlikely(!node_match(slab, node))) {
3686 		/*
3687 		 * same as above but node_match() being false already
3688 		 * implies node != NUMA_NO_NODE
3689 		 */
3690 		if (!node_isset(node, slab_nodes)) {
3691 			node = NUMA_NO_NODE;
3692 		} else {
3693 			stat(s, ALLOC_NODE_MISMATCH);
3694 			goto deactivate_slab;
3695 		}
3696 	}
3697 
3698 	/*
3699 	 * By rights, we should be searching for a slab page that was
3700 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3701 	 * information when the page leaves the per-cpu allocator
3702 	 */
3703 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3704 		goto deactivate_slab;
3705 
3706 	/* must check again c->slab in case we got preempted and it changed */
3707 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3708 	if (unlikely(slab != c->slab)) {
3709 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3710 		goto reread_slab;
3711 	}
3712 	freelist = c->freelist;
3713 	if (freelist)
3714 		goto load_freelist;
3715 
3716 	freelist = get_freelist(s, slab);
3717 
3718 	if (!freelist) {
3719 		c->slab = NULL;
3720 		c->tid = next_tid(c->tid);
3721 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3722 		stat(s, DEACTIVATE_BYPASS);
3723 		goto new_slab;
3724 	}
3725 
3726 	stat(s, ALLOC_REFILL);
3727 
3728 load_freelist:
3729 
3730 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3731 
3732 	/*
3733 	 * freelist is pointing to the list of objects to be used.
3734 	 * slab is pointing to the slab from which the objects are obtained.
3735 	 * That slab must be frozen for per cpu allocations to work.
3736 	 */
3737 	VM_BUG_ON(!c->slab->frozen);
3738 	c->freelist = get_freepointer(s, freelist);
3739 	c->tid = next_tid(c->tid);
3740 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3741 	return freelist;
3742 
3743 deactivate_slab:
3744 
3745 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3746 	if (slab != c->slab) {
3747 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3748 		goto reread_slab;
3749 	}
3750 	freelist = c->freelist;
3751 	c->slab = NULL;
3752 	c->freelist = NULL;
3753 	c->tid = next_tid(c->tid);
3754 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3755 	deactivate_slab(s, slab, freelist);
3756 
3757 new_slab:
3758 
3759 #ifdef CONFIG_SLUB_CPU_PARTIAL
3760 	while (slub_percpu_partial(c)) {
3761 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3762 		if (unlikely(c->slab)) {
3763 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3764 			goto reread_slab;
3765 		}
3766 		if (unlikely(!slub_percpu_partial(c))) {
3767 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3768 			/* we were preempted and partial list got empty */
3769 			goto new_objects;
3770 		}
3771 
3772 		slab = slub_percpu_partial(c);
3773 		slub_set_percpu_partial(c, slab);
3774 
3775 		if (likely(node_match(slab, node) &&
3776 			   pfmemalloc_match(slab, gfpflags))) {
3777 			c->slab = slab;
3778 			freelist = get_freelist(s, slab);
3779 			VM_BUG_ON(!freelist);
3780 			stat(s, CPU_PARTIAL_ALLOC);
3781 			goto load_freelist;
3782 		}
3783 
3784 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3785 
3786 		slab->next = NULL;
3787 		__put_partials(s, slab);
3788 	}
3789 #endif
3790 
3791 new_objects:
3792 
3793 	pc.flags = gfpflags;
3794 	/*
3795 	 * When a preferred node is indicated but no __GFP_THISNODE
3796 	 *
3797 	 * 1) try to get a partial slab from target node only by having
3798 	 *    __GFP_THISNODE in pc.flags for get_partial()
3799 	 * 2) if 1) failed, try to allocate a new slab from target node with
3800 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3801 	 * 3) if 2) failed, retry with original gfpflags which will allow
3802 	 *    get_partial() try partial lists of other nodes before potentially
3803 	 *    allocating new page from other nodes
3804 	 */
3805 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3806 		     && try_thisnode))
3807 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3808 
3809 	pc.orig_size = orig_size;
3810 	slab = get_partial(s, node, &pc);
3811 	if (slab) {
3812 		if (kmem_cache_debug(s)) {
3813 			freelist = pc.object;
3814 			/*
3815 			 * For debug caches here we had to go through
3816 			 * alloc_single_from_partial() so just store the
3817 			 * tracking info and return the object.
3818 			 */
3819 			if (s->flags & SLAB_STORE_USER)
3820 				set_track(s, freelist, TRACK_ALLOC, addr);
3821 
3822 			return freelist;
3823 		}
3824 
3825 		freelist = freeze_slab(s, slab);
3826 		goto retry_load_slab;
3827 	}
3828 
3829 	slub_put_cpu_ptr(s->cpu_slab);
3830 	slab = new_slab(s, pc.flags, node);
3831 	c = slub_get_cpu_ptr(s->cpu_slab);
3832 
3833 	if (unlikely(!slab)) {
3834 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3835 		    && try_thisnode) {
3836 			try_thisnode = false;
3837 			goto new_objects;
3838 		}
3839 		slab_out_of_memory(s, gfpflags, node);
3840 		return NULL;
3841 	}
3842 
3843 	stat(s, ALLOC_SLAB);
3844 
3845 	if (kmem_cache_debug(s)) {
3846 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3847 
3848 		if (unlikely(!freelist))
3849 			goto new_objects;
3850 
3851 		if (s->flags & SLAB_STORE_USER)
3852 			set_track(s, freelist, TRACK_ALLOC, addr);
3853 
3854 		return freelist;
3855 	}
3856 
3857 	/*
3858 	 * No other reference to the slab yet so we can
3859 	 * muck around with it freely without cmpxchg
3860 	 */
3861 	freelist = slab->freelist;
3862 	slab->freelist = NULL;
3863 	slab->inuse = slab->objects;
3864 	slab->frozen = 1;
3865 
3866 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3867 
3868 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3869 		/*
3870 		 * For !pfmemalloc_match() case we don't load freelist so that
3871 		 * we don't make further mismatched allocations easier.
3872 		 */
3873 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3874 		return freelist;
3875 	}
3876 
3877 retry_load_slab:
3878 
3879 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3880 	if (unlikely(c->slab)) {
3881 		void *flush_freelist = c->freelist;
3882 		struct slab *flush_slab = c->slab;
3883 
3884 		c->slab = NULL;
3885 		c->freelist = NULL;
3886 		c->tid = next_tid(c->tid);
3887 
3888 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3889 
3890 		deactivate_slab(s, flush_slab, flush_freelist);
3891 
3892 		stat(s, CPUSLAB_FLUSH);
3893 
3894 		goto retry_load_slab;
3895 	}
3896 	c->slab = slab;
3897 
3898 	goto load_freelist;
3899 }
3900 
3901 /*
3902  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3903  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3904  * pointer.
3905  */
3906 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3907 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3908 {
3909 	void *p;
3910 
3911 #ifdef CONFIG_PREEMPT_COUNT
3912 	/*
3913 	 * We may have been preempted and rescheduled on a different
3914 	 * cpu before disabling preemption. Need to reload cpu area
3915 	 * pointer.
3916 	 */
3917 	c = slub_get_cpu_ptr(s->cpu_slab);
3918 #endif
3919 
3920 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3921 #ifdef CONFIG_PREEMPT_COUNT
3922 	slub_put_cpu_ptr(s->cpu_slab);
3923 #endif
3924 	return p;
3925 }
3926 
3927 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3928 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3929 {
3930 	struct kmem_cache_cpu *c;
3931 	struct slab *slab;
3932 	unsigned long tid;
3933 	void *object;
3934 
3935 redo:
3936 	/*
3937 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3938 	 * enabled. We may switch back and forth between cpus while
3939 	 * reading from one cpu area. That does not matter as long
3940 	 * as we end up on the original cpu again when doing the cmpxchg.
3941 	 *
3942 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3943 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3944 	 * the tid. If we are preempted and switched to another cpu between the
3945 	 * two reads, it's OK as the two are still associated with the same cpu
3946 	 * and cmpxchg later will validate the cpu.
3947 	 */
3948 	c = raw_cpu_ptr(s->cpu_slab);
3949 	tid = READ_ONCE(c->tid);
3950 
3951 	/*
3952 	 * Irqless object alloc/free algorithm used here depends on sequence
3953 	 * of fetching cpu_slab's data. tid should be fetched before anything
3954 	 * on c to guarantee that object and slab associated with previous tid
3955 	 * won't be used with current tid. If we fetch tid first, object and
3956 	 * slab could be one associated with next tid and our alloc/free
3957 	 * request will be failed. In this case, we will retry. So, no problem.
3958 	 */
3959 	barrier();
3960 
3961 	/*
3962 	 * The transaction ids are globally unique per cpu and per operation on
3963 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3964 	 * occurs on the right processor and that there was no operation on the
3965 	 * linked list in between.
3966 	 */
3967 
3968 	object = c->freelist;
3969 	slab = c->slab;
3970 
3971 #ifdef CONFIG_NUMA
3972 	if (static_branch_unlikely(&strict_numa) &&
3973 			node == NUMA_NO_NODE) {
3974 
3975 		struct mempolicy *mpol = current->mempolicy;
3976 
3977 		if (mpol) {
3978 			/*
3979 			 * Special BIND rule support. If existing slab
3980 			 * is in permitted set then do not redirect
3981 			 * to a particular node.
3982 			 * Otherwise we apply the memory policy to get
3983 			 * the node we need to allocate on.
3984 			 */
3985 			if (mpol->mode != MPOL_BIND || !slab ||
3986 					!node_isset(slab_nid(slab), mpol->nodes))
3987 
3988 				node = mempolicy_slab_node();
3989 		}
3990 	}
3991 #endif
3992 
3993 	if (!USE_LOCKLESS_FAST_PATH() ||
3994 	    unlikely(!object || !slab || !node_match(slab, node))) {
3995 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3996 	} else {
3997 		void *next_object = get_freepointer_safe(s, object);
3998 
3999 		/*
4000 		 * The cmpxchg will only match if there was no additional
4001 		 * operation and if we are on the right processor.
4002 		 *
4003 		 * The cmpxchg does the following atomically (without lock
4004 		 * semantics!)
4005 		 * 1. Relocate first pointer to the current per cpu area.
4006 		 * 2. Verify that tid and freelist have not been changed
4007 		 * 3. If they were not changed replace tid and freelist
4008 		 *
4009 		 * Since this is without lock semantics the protection is only
4010 		 * against code executing on this cpu *not* from access by
4011 		 * other cpus.
4012 		 */
4013 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4014 			note_cmpxchg_failure("slab_alloc", s, tid);
4015 			goto redo;
4016 		}
4017 		prefetch_freepointer(s, next_object);
4018 		stat(s, ALLOC_FASTPATH);
4019 	}
4020 
4021 	return object;
4022 }
4023 #else /* CONFIG_SLUB_TINY */
4024 static void *__slab_alloc_node(struct kmem_cache *s,
4025 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4026 {
4027 	struct partial_context pc;
4028 	struct slab *slab;
4029 	void *object;
4030 
4031 	pc.flags = gfpflags;
4032 	pc.orig_size = orig_size;
4033 	slab = get_partial(s, node, &pc);
4034 
4035 	if (slab)
4036 		return pc.object;
4037 
4038 	slab = new_slab(s, gfpflags, node);
4039 	if (unlikely(!slab)) {
4040 		slab_out_of_memory(s, gfpflags, node);
4041 		return NULL;
4042 	}
4043 
4044 	object = alloc_single_from_new_slab(s, slab, orig_size);
4045 
4046 	return object;
4047 }
4048 #endif /* CONFIG_SLUB_TINY */
4049 
4050 /*
4051  * If the object has been wiped upon free, make sure it's fully initialized by
4052  * zeroing out freelist pointer.
4053  *
4054  * Note that we also wipe custom freelist pointers.
4055  */
4056 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4057 						   void *obj)
4058 {
4059 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4060 	    !freeptr_outside_object(s))
4061 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4062 			0, sizeof(void *));
4063 }
4064 
4065 static __fastpath_inline
4066 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4067 {
4068 	flags &= gfp_allowed_mask;
4069 
4070 	might_alloc(flags);
4071 
4072 	if (unlikely(should_failslab(s, flags)))
4073 		return NULL;
4074 
4075 	return s;
4076 }
4077 
4078 static __fastpath_inline
4079 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4080 			  gfp_t flags, size_t size, void **p, bool init,
4081 			  unsigned int orig_size)
4082 {
4083 	unsigned int zero_size = s->object_size;
4084 	bool kasan_init = init;
4085 	size_t i;
4086 	gfp_t init_flags = flags & gfp_allowed_mask;
4087 
4088 	/*
4089 	 * For kmalloc object, the allocated memory size(object_size) is likely
4090 	 * larger than the requested size(orig_size). If redzone check is
4091 	 * enabled for the extra space, don't zero it, as it will be redzoned
4092 	 * soon. The redzone operation for this extra space could be seen as a
4093 	 * replacement of current poisoning under certain debug option, and
4094 	 * won't break other sanity checks.
4095 	 */
4096 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4097 	    (s->flags & SLAB_KMALLOC))
4098 		zero_size = orig_size;
4099 
4100 	/*
4101 	 * When slab_debug is enabled, avoid memory initialization integrated
4102 	 * into KASAN and instead zero out the memory via the memset below with
4103 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4104 	 * cause false-positive reports. This does not lead to a performance
4105 	 * penalty on production builds, as slab_debug is not intended to be
4106 	 * enabled there.
4107 	 */
4108 	if (__slub_debug_enabled())
4109 		kasan_init = false;
4110 
4111 	/*
4112 	 * As memory initialization might be integrated into KASAN,
4113 	 * kasan_slab_alloc and initialization memset must be
4114 	 * kept together to avoid discrepancies in behavior.
4115 	 *
4116 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4117 	 */
4118 	for (i = 0; i < size; i++) {
4119 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4120 		if (p[i] && init && (!kasan_init ||
4121 				     !kasan_has_integrated_init()))
4122 			memset(p[i], 0, zero_size);
4123 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4124 					 s->flags, init_flags);
4125 		kmsan_slab_alloc(s, p[i], init_flags);
4126 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4127 	}
4128 
4129 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4130 }
4131 
4132 /*
4133  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4134  * have the fastpath folded into their functions. So no function call
4135  * overhead for requests that can be satisfied on the fastpath.
4136  *
4137  * The fastpath works by first checking if the lockless freelist can be used.
4138  * If not then __slab_alloc is called for slow processing.
4139  *
4140  * Otherwise we can simply pick the next object from the lockless free list.
4141  */
4142 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4143 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4144 {
4145 	void *object;
4146 	bool init = false;
4147 
4148 	s = slab_pre_alloc_hook(s, gfpflags);
4149 	if (unlikely(!s))
4150 		return NULL;
4151 
4152 	object = kfence_alloc(s, orig_size, gfpflags);
4153 	if (unlikely(object))
4154 		goto out;
4155 
4156 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4157 
4158 	maybe_wipe_obj_freeptr(s, object);
4159 	init = slab_want_init_on_alloc(gfpflags, s);
4160 
4161 out:
4162 	/*
4163 	 * When init equals 'true', like for kzalloc() family, only
4164 	 * @orig_size bytes might be zeroed instead of s->object_size
4165 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4166 	 * object is set to NULL
4167 	 */
4168 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4169 
4170 	return object;
4171 }
4172 
4173 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4174 {
4175 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4176 				    s->object_size);
4177 
4178 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4179 
4180 	return ret;
4181 }
4182 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4183 
4184 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4185 			   gfp_t gfpflags)
4186 {
4187 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4188 				    s->object_size);
4189 
4190 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4191 
4192 	return ret;
4193 }
4194 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4195 
4196 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4197 {
4198 	if (!memcg_kmem_online())
4199 		return true;
4200 
4201 	return memcg_slab_post_charge(objp, gfpflags);
4202 }
4203 EXPORT_SYMBOL(kmem_cache_charge);
4204 
4205 /**
4206  * kmem_cache_alloc_node - Allocate an object on the specified node
4207  * @s: The cache to allocate from.
4208  * @gfpflags: See kmalloc().
4209  * @node: node number of the target node.
4210  *
4211  * Identical to kmem_cache_alloc but it will allocate memory on the given
4212  * node, which can improve the performance for cpu bound structures.
4213  *
4214  * Fallback to other node is possible if __GFP_THISNODE is not set.
4215  *
4216  * Return: pointer to the new object or %NULL in case of error
4217  */
4218 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4219 {
4220 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4221 
4222 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4223 
4224 	return ret;
4225 }
4226 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4227 
4228 /*
4229  * To avoid unnecessary overhead, we pass through large allocation requests
4230  * directly to the page allocator. We use __GFP_COMP, because we will need to
4231  * know the allocation order to free the pages properly in kfree.
4232  */
4233 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4234 {
4235 	struct folio *folio;
4236 	void *ptr = NULL;
4237 	unsigned int order = get_order(size);
4238 
4239 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4240 		flags = kmalloc_fix_flags(flags);
4241 
4242 	flags |= __GFP_COMP;
4243 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4244 	if (folio) {
4245 		ptr = folio_address(folio);
4246 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4247 				      PAGE_SIZE << order);
4248 	}
4249 
4250 	ptr = kasan_kmalloc_large(ptr, size, flags);
4251 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4252 	kmemleak_alloc(ptr, size, 1, flags);
4253 	kmsan_kmalloc_large(ptr, size, flags);
4254 
4255 	return ptr;
4256 }
4257 
4258 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4259 {
4260 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4261 
4262 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4263 		      flags, NUMA_NO_NODE);
4264 	return ret;
4265 }
4266 EXPORT_SYMBOL(__kmalloc_large_noprof);
4267 
4268 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4269 {
4270 	void *ret = ___kmalloc_large_node(size, flags, node);
4271 
4272 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4273 		      flags, node);
4274 	return ret;
4275 }
4276 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4277 
4278 static __always_inline
4279 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4280 			unsigned long caller)
4281 {
4282 	struct kmem_cache *s;
4283 	void *ret;
4284 
4285 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4286 		ret = __kmalloc_large_node_noprof(size, flags, node);
4287 		trace_kmalloc(caller, ret, size,
4288 			      PAGE_SIZE << get_order(size), flags, node);
4289 		return ret;
4290 	}
4291 
4292 	if (unlikely(!size))
4293 		return ZERO_SIZE_PTR;
4294 
4295 	s = kmalloc_slab(size, b, flags, caller);
4296 
4297 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4298 	ret = kasan_kmalloc(s, ret, size, flags);
4299 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4300 	return ret;
4301 }
4302 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4303 {
4304 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4305 }
4306 EXPORT_SYMBOL(__kmalloc_node_noprof);
4307 
4308 void *__kmalloc_noprof(size_t size, gfp_t flags)
4309 {
4310 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4311 }
4312 EXPORT_SYMBOL(__kmalloc_noprof);
4313 
4314 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4315 					 int node, unsigned long caller)
4316 {
4317 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4318 
4319 }
4320 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4321 
4322 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4323 {
4324 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4325 					    _RET_IP_, size);
4326 
4327 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4328 
4329 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4330 	return ret;
4331 }
4332 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4333 
4334 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4335 				  int node, size_t size)
4336 {
4337 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4338 
4339 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4340 
4341 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4342 	return ret;
4343 }
4344 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4345 
4346 static noinline void free_to_partial_list(
4347 	struct kmem_cache *s, struct slab *slab,
4348 	void *head, void *tail, int bulk_cnt,
4349 	unsigned long addr)
4350 {
4351 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4352 	struct slab *slab_free = NULL;
4353 	int cnt = bulk_cnt;
4354 	unsigned long flags;
4355 	depot_stack_handle_t handle = 0;
4356 
4357 	if (s->flags & SLAB_STORE_USER)
4358 		handle = set_track_prepare();
4359 
4360 	spin_lock_irqsave(&n->list_lock, flags);
4361 
4362 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4363 		void *prior = slab->freelist;
4364 
4365 		/* Perform the actual freeing while we still hold the locks */
4366 		slab->inuse -= cnt;
4367 		set_freepointer(s, tail, prior);
4368 		slab->freelist = head;
4369 
4370 		/*
4371 		 * If the slab is empty, and node's partial list is full,
4372 		 * it should be discarded anyway no matter it's on full or
4373 		 * partial list.
4374 		 */
4375 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4376 			slab_free = slab;
4377 
4378 		if (!prior) {
4379 			/* was on full list */
4380 			remove_full(s, n, slab);
4381 			if (!slab_free) {
4382 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4383 				stat(s, FREE_ADD_PARTIAL);
4384 			}
4385 		} else if (slab_free) {
4386 			remove_partial(n, slab);
4387 			stat(s, FREE_REMOVE_PARTIAL);
4388 		}
4389 	}
4390 
4391 	if (slab_free) {
4392 		/*
4393 		 * Update the counters while still holding n->list_lock to
4394 		 * prevent spurious validation warnings
4395 		 */
4396 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4397 	}
4398 
4399 	spin_unlock_irqrestore(&n->list_lock, flags);
4400 
4401 	if (slab_free) {
4402 		stat(s, FREE_SLAB);
4403 		free_slab(s, slab_free);
4404 	}
4405 }
4406 
4407 /*
4408  * Slow path handling. This may still be called frequently since objects
4409  * have a longer lifetime than the cpu slabs in most processing loads.
4410  *
4411  * So we still attempt to reduce cache line usage. Just take the slab
4412  * lock and free the item. If there is no additional partial slab
4413  * handling required then we can return immediately.
4414  */
4415 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4416 			void *head, void *tail, int cnt,
4417 			unsigned long addr)
4418 
4419 {
4420 	void *prior;
4421 	int was_frozen;
4422 	struct slab new;
4423 	unsigned long counters;
4424 	struct kmem_cache_node *n = NULL;
4425 	unsigned long flags;
4426 	bool on_node_partial;
4427 
4428 	stat(s, FREE_SLOWPATH);
4429 
4430 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4431 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4432 		return;
4433 	}
4434 
4435 	do {
4436 		if (unlikely(n)) {
4437 			spin_unlock_irqrestore(&n->list_lock, flags);
4438 			n = NULL;
4439 		}
4440 		prior = slab->freelist;
4441 		counters = slab->counters;
4442 		set_freepointer(s, tail, prior);
4443 		new.counters = counters;
4444 		was_frozen = new.frozen;
4445 		new.inuse -= cnt;
4446 		if ((!new.inuse || !prior) && !was_frozen) {
4447 			/* Needs to be taken off a list */
4448 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4449 
4450 				n = get_node(s, slab_nid(slab));
4451 				/*
4452 				 * Speculatively acquire the list_lock.
4453 				 * If the cmpxchg does not succeed then we may
4454 				 * drop the list_lock without any processing.
4455 				 *
4456 				 * Otherwise the list_lock will synchronize with
4457 				 * other processors updating the list of slabs.
4458 				 */
4459 				spin_lock_irqsave(&n->list_lock, flags);
4460 
4461 				on_node_partial = slab_test_node_partial(slab);
4462 			}
4463 		}
4464 
4465 	} while (!slab_update_freelist(s, slab,
4466 		prior, counters,
4467 		head, new.counters,
4468 		"__slab_free"));
4469 
4470 	if (likely(!n)) {
4471 
4472 		if (likely(was_frozen)) {
4473 			/*
4474 			 * The list lock was not taken therefore no list
4475 			 * activity can be necessary.
4476 			 */
4477 			stat(s, FREE_FROZEN);
4478 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4479 			/*
4480 			 * If we started with a full slab then put it onto the
4481 			 * per cpu partial list.
4482 			 */
4483 			put_cpu_partial(s, slab, 1);
4484 			stat(s, CPU_PARTIAL_FREE);
4485 		}
4486 
4487 		return;
4488 	}
4489 
4490 	/*
4491 	 * This slab was partially empty but not on the per-node partial list,
4492 	 * in which case we shouldn't manipulate its list, just return.
4493 	 */
4494 	if (prior && !on_node_partial) {
4495 		spin_unlock_irqrestore(&n->list_lock, flags);
4496 		return;
4497 	}
4498 
4499 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4500 		goto slab_empty;
4501 
4502 	/*
4503 	 * Objects left in the slab. If it was not on the partial list before
4504 	 * then add it.
4505 	 */
4506 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4507 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4508 		stat(s, FREE_ADD_PARTIAL);
4509 	}
4510 	spin_unlock_irqrestore(&n->list_lock, flags);
4511 	return;
4512 
4513 slab_empty:
4514 	if (prior) {
4515 		/*
4516 		 * Slab on the partial list.
4517 		 */
4518 		remove_partial(n, slab);
4519 		stat(s, FREE_REMOVE_PARTIAL);
4520 	}
4521 
4522 	spin_unlock_irqrestore(&n->list_lock, flags);
4523 	stat(s, FREE_SLAB);
4524 	discard_slab(s, slab);
4525 }
4526 
4527 #ifndef CONFIG_SLUB_TINY
4528 /*
4529  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4530  * can perform fastpath freeing without additional function calls.
4531  *
4532  * The fastpath is only possible if we are freeing to the current cpu slab
4533  * of this processor. This typically the case if we have just allocated
4534  * the item before.
4535  *
4536  * If fastpath is not possible then fall back to __slab_free where we deal
4537  * with all sorts of special processing.
4538  *
4539  * Bulk free of a freelist with several objects (all pointing to the
4540  * same slab) possible by specifying head and tail ptr, plus objects
4541  * count (cnt). Bulk free indicated by tail pointer being set.
4542  */
4543 static __always_inline void do_slab_free(struct kmem_cache *s,
4544 				struct slab *slab, void *head, void *tail,
4545 				int cnt, unsigned long addr)
4546 {
4547 	struct kmem_cache_cpu *c;
4548 	unsigned long tid;
4549 	void **freelist;
4550 
4551 redo:
4552 	/*
4553 	 * Determine the currently cpus per cpu slab.
4554 	 * The cpu may change afterward. However that does not matter since
4555 	 * data is retrieved via this pointer. If we are on the same cpu
4556 	 * during the cmpxchg then the free will succeed.
4557 	 */
4558 	c = raw_cpu_ptr(s->cpu_slab);
4559 	tid = READ_ONCE(c->tid);
4560 
4561 	/* Same with comment on barrier() in __slab_alloc_node() */
4562 	barrier();
4563 
4564 	if (unlikely(slab != c->slab)) {
4565 		__slab_free(s, slab, head, tail, cnt, addr);
4566 		return;
4567 	}
4568 
4569 	if (USE_LOCKLESS_FAST_PATH()) {
4570 		freelist = READ_ONCE(c->freelist);
4571 
4572 		set_freepointer(s, tail, freelist);
4573 
4574 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4575 			note_cmpxchg_failure("slab_free", s, tid);
4576 			goto redo;
4577 		}
4578 	} else {
4579 		/* Update the free list under the local lock */
4580 		local_lock(&s->cpu_slab->lock);
4581 		c = this_cpu_ptr(s->cpu_slab);
4582 		if (unlikely(slab != c->slab)) {
4583 			local_unlock(&s->cpu_slab->lock);
4584 			goto redo;
4585 		}
4586 		tid = c->tid;
4587 		freelist = c->freelist;
4588 
4589 		set_freepointer(s, tail, freelist);
4590 		c->freelist = head;
4591 		c->tid = next_tid(tid);
4592 
4593 		local_unlock(&s->cpu_slab->lock);
4594 	}
4595 	stat_add(s, FREE_FASTPATH, cnt);
4596 }
4597 #else /* CONFIG_SLUB_TINY */
4598 static void do_slab_free(struct kmem_cache *s,
4599 				struct slab *slab, void *head, void *tail,
4600 				int cnt, unsigned long addr)
4601 {
4602 	__slab_free(s, slab, head, tail, cnt, addr);
4603 }
4604 #endif /* CONFIG_SLUB_TINY */
4605 
4606 static __fastpath_inline
4607 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4608 	       unsigned long addr)
4609 {
4610 	memcg_slab_free_hook(s, slab, &object, 1);
4611 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4612 
4613 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4614 		do_slab_free(s, slab, object, object, 1, addr);
4615 }
4616 
4617 #ifdef CONFIG_MEMCG
4618 /* Do not inline the rare memcg charging failed path into the allocation path */
4619 static noinline
4620 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4621 {
4622 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4623 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4624 }
4625 #endif
4626 
4627 static __fastpath_inline
4628 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4629 		    void *tail, void **p, int cnt, unsigned long addr)
4630 {
4631 	memcg_slab_free_hook(s, slab, p, cnt);
4632 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4633 	/*
4634 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4635 	 * to remove objects, whose reuse must be delayed.
4636 	 */
4637 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4638 		do_slab_free(s, slab, head, tail, cnt, addr);
4639 }
4640 
4641 #ifdef CONFIG_SLUB_RCU_DEBUG
4642 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4643 {
4644 	struct rcu_delayed_free *delayed_free =
4645 			container_of(rcu_head, struct rcu_delayed_free, head);
4646 	void *object = delayed_free->object;
4647 	struct slab *slab = virt_to_slab(object);
4648 	struct kmem_cache *s;
4649 
4650 	kfree(delayed_free);
4651 
4652 	if (WARN_ON(is_kfence_address(object)))
4653 		return;
4654 
4655 	/* find the object and the cache again */
4656 	if (WARN_ON(!slab))
4657 		return;
4658 	s = slab->slab_cache;
4659 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4660 		return;
4661 
4662 	/* resume freeing */
4663 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4664 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4665 }
4666 #endif /* CONFIG_SLUB_RCU_DEBUG */
4667 
4668 #ifdef CONFIG_KASAN_GENERIC
4669 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4670 {
4671 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4672 }
4673 #endif
4674 
4675 static inline struct kmem_cache *virt_to_cache(const void *obj)
4676 {
4677 	struct slab *slab;
4678 
4679 	slab = virt_to_slab(obj);
4680 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4681 		return NULL;
4682 	return slab->slab_cache;
4683 }
4684 
4685 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4686 {
4687 	struct kmem_cache *cachep;
4688 
4689 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4690 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4691 		return s;
4692 
4693 	cachep = virt_to_cache(x);
4694 	if (WARN(cachep && cachep != s,
4695 		 "%s: Wrong slab cache. %s but object is from %s\n",
4696 		 __func__, s->name, cachep->name))
4697 		print_tracking(cachep, x);
4698 	return cachep;
4699 }
4700 
4701 /**
4702  * kmem_cache_free - Deallocate an object
4703  * @s: The cache the allocation was from.
4704  * @x: The previously allocated object.
4705  *
4706  * Free an object which was previously allocated from this
4707  * cache.
4708  */
4709 void kmem_cache_free(struct kmem_cache *s, void *x)
4710 {
4711 	s = cache_from_obj(s, x);
4712 	if (!s)
4713 		return;
4714 	trace_kmem_cache_free(_RET_IP_, x, s);
4715 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4716 }
4717 EXPORT_SYMBOL(kmem_cache_free);
4718 
4719 static void free_large_kmalloc(struct folio *folio, void *object)
4720 {
4721 	unsigned int order = folio_order(folio);
4722 
4723 	if (WARN_ON_ONCE(order == 0))
4724 		pr_warn_once("object pointer: 0x%p\n", object);
4725 
4726 	kmemleak_free(object);
4727 	kasan_kfree_large(object);
4728 	kmsan_kfree_large(object);
4729 
4730 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4731 			      -(PAGE_SIZE << order));
4732 	folio_put(folio);
4733 }
4734 
4735 /**
4736  * kfree - free previously allocated memory
4737  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4738  *
4739  * If @object is NULL, no operation is performed.
4740  */
4741 void kfree(const void *object)
4742 {
4743 	struct folio *folio;
4744 	struct slab *slab;
4745 	struct kmem_cache *s;
4746 	void *x = (void *)object;
4747 
4748 	trace_kfree(_RET_IP_, object);
4749 
4750 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4751 		return;
4752 
4753 	folio = virt_to_folio(object);
4754 	if (unlikely(!folio_test_slab(folio))) {
4755 		free_large_kmalloc(folio, (void *)object);
4756 		return;
4757 	}
4758 
4759 	slab = folio_slab(folio);
4760 	s = slab->slab_cache;
4761 	slab_free(s, slab, x, _RET_IP_);
4762 }
4763 EXPORT_SYMBOL(kfree);
4764 
4765 static __always_inline __realloc_size(2) void *
4766 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4767 {
4768 	void *ret;
4769 	size_t ks = 0;
4770 	int orig_size = 0;
4771 	struct kmem_cache *s = NULL;
4772 
4773 	if (unlikely(ZERO_OR_NULL_PTR(p)))
4774 		goto alloc_new;
4775 
4776 	/* Check for double-free. */
4777 	if (!kasan_check_byte(p))
4778 		return NULL;
4779 
4780 	if (is_kfence_address(p)) {
4781 		ks = orig_size = kfence_ksize(p);
4782 	} else {
4783 		struct folio *folio;
4784 
4785 		folio = virt_to_folio(p);
4786 		if (unlikely(!folio_test_slab(folio))) {
4787 			/* Big kmalloc object */
4788 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4789 			WARN_ON(p != folio_address(folio));
4790 			ks = folio_size(folio);
4791 		} else {
4792 			s = folio_slab(folio)->slab_cache;
4793 			orig_size = get_orig_size(s, (void *)p);
4794 			ks = s->object_size;
4795 		}
4796 	}
4797 
4798 	/* If the old object doesn't fit, allocate a bigger one */
4799 	if (new_size > ks)
4800 		goto alloc_new;
4801 
4802 	/* Zero out spare memory. */
4803 	if (want_init_on_alloc(flags)) {
4804 		kasan_disable_current();
4805 		if (orig_size && orig_size < new_size)
4806 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4807 		else
4808 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4809 		kasan_enable_current();
4810 	}
4811 
4812 	/* Setup kmalloc redzone when needed */
4813 	if (s && slub_debug_orig_size(s)) {
4814 		set_orig_size(s, (void *)p, new_size);
4815 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
4816 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4817 						SLUB_RED_ACTIVE, ks - new_size);
4818 	}
4819 
4820 	p = kasan_krealloc(p, new_size, flags);
4821 	return (void *)p;
4822 
4823 alloc_new:
4824 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4825 	if (ret && p) {
4826 		/* Disable KASAN checks as the object's redzone is accessed. */
4827 		kasan_disable_current();
4828 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4829 		kasan_enable_current();
4830 	}
4831 
4832 	return ret;
4833 }
4834 
4835 /**
4836  * krealloc - reallocate memory. The contents will remain unchanged.
4837  * @p: object to reallocate memory for.
4838  * @new_size: how many bytes of memory are required.
4839  * @flags: the type of memory to allocate.
4840  *
4841  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
4842  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4843  *
4844  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4845  * initial memory allocation, every subsequent call to this API for the same
4846  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4847  * __GFP_ZERO is not fully honored by this API.
4848  *
4849  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4850  * size of an allocation (but not the exact size it was allocated with) and
4851  * hence implements the following semantics for shrinking and growing buffers
4852  * with __GFP_ZERO.
4853  *
4854  *         new             bucket
4855  * 0       size             size
4856  * |--------|----------------|
4857  * |  keep  |      zero      |
4858  *
4859  * Otherwise, the original allocation size 'orig_size' could be used to
4860  * precisely clear the requested size, and the new size will also be stored
4861  * as the new 'orig_size'.
4862  *
4863  * In any case, the contents of the object pointed to are preserved up to the
4864  * lesser of the new and old sizes.
4865  *
4866  * Return: pointer to the allocated memory or %NULL in case of error
4867  */
4868 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4869 {
4870 	void *ret;
4871 
4872 	if (unlikely(!new_size)) {
4873 		kfree(p);
4874 		return ZERO_SIZE_PTR;
4875 	}
4876 
4877 	ret = __do_krealloc(p, new_size, flags);
4878 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4879 		kfree(p);
4880 
4881 	return ret;
4882 }
4883 EXPORT_SYMBOL(krealloc_noprof);
4884 
4885 struct detached_freelist {
4886 	struct slab *slab;
4887 	void *tail;
4888 	void *freelist;
4889 	int cnt;
4890 	struct kmem_cache *s;
4891 };
4892 
4893 /*
4894  * This function progressively scans the array with free objects (with
4895  * a limited look ahead) and extract objects belonging to the same
4896  * slab.  It builds a detached freelist directly within the given
4897  * slab/objects.  This can happen without any need for
4898  * synchronization, because the objects are owned by running process.
4899  * The freelist is build up as a single linked list in the objects.
4900  * The idea is, that this detached freelist can then be bulk
4901  * transferred to the real freelist(s), but only requiring a single
4902  * synchronization primitive.  Look ahead in the array is limited due
4903  * to performance reasons.
4904  */
4905 static inline
4906 int build_detached_freelist(struct kmem_cache *s, size_t size,
4907 			    void **p, struct detached_freelist *df)
4908 {
4909 	int lookahead = 3;
4910 	void *object;
4911 	struct folio *folio;
4912 	size_t same;
4913 
4914 	object = p[--size];
4915 	folio = virt_to_folio(object);
4916 	if (!s) {
4917 		/* Handle kalloc'ed objects */
4918 		if (unlikely(!folio_test_slab(folio))) {
4919 			free_large_kmalloc(folio, object);
4920 			df->slab = NULL;
4921 			return size;
4922 		}
4923 		/* Derive kmem_cache from object */
4924 		df->slab = folio_slab(folio);
4925 		df->s = df->slab->slab_cache;
4926 	} else {
4927 		df->slab = folio_slab(folio);
4928 		df->s = cache_from_obj(s, object); /* Support for memcg */
4929 	}
4930 
4931 	/* Start new detached freelist */
4932 	df->tail = object;
4933 	df->freelist = object;
4934 	df->cnt = 1;
4935 
4936 	if (is_kfence_address(object))
4937 		return size;
4938 
4939 	set_freepointer(df->s, object, NULL);
4940 
4941 	same = size;
4942 	while (size) {
4943 		object = p[--size];
4944 		/* df->slab is always set at this point */
4945 		if (df->slab == virt_to_slab(object)) {
4946 			/* Opportunity build freelist */
4947 			set_freepointer(df->s, object, df->freelist);
4948 			df->freelist = object;
4949 			df->cnt++;
4950 			same--;
4951 			if (size != same)
4952 				swap(p[size], p[same]);
4953 			continue;
4954 		}
4955 
4956 		/* Limit look ahead search */
4957 		if (!--lookahead)
4958 			break;
4959 	}
4960 
4961 	return same;
4962 }
4963 
4964 /*
4965  * Internal bulk free of objects that were not initialised by the post alloc
4966  * hooks and thus should not be processed by the free hooks
4967  */
4968 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4969 {
4970 	if (!size)
4971 		return;
4972 
4973 	do {
4974 		struct detached_freelist df;
4975 
4976 		size = build_detached_freelist(s, size, p, &df);
4977 		if (!df.slab)
4978 			continue;
4979 
4980 		if (kfence_free(df.freelist))
4981 			continue;
4982 
4983 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4984 			     _RET_IP_);
4985 	} while (likely(size));
4986 }
4987 
4988 /* Note that interrupts must be enabled when calling this function. */
4989 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4990 {
4991 	if (!size)
4992 		return;
4993 
4994 	do {
4995 		struct detached_freelist df;
4996 
4997 		size = build_detached_freelist(s, size, p, &df);
4998 		if (!df.slab)
4999 			continue;
5000 
5001 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5002 			       df.cnt, _RET_IP_);
5003 	} while (likely(size));
5004 }
5005 EXPORT_SYMBOL(kmem_cache_free_bulk);
5006 
5007 #ifndef CONFIG_SLUB_TINY
5008 static inline
5009 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5010 			    void **p)
5011 {
5012 	struct kmem_cache_cpu *c;
5013 	unsigned long irqflags;
5014 	int i;
5015 
5016 	/*
5017 	 * Drain objects in the per cpu slab, while disabling local
5018 	 * IRQs, which protects against PREEMPT and interrupts
5019 	 * handlers invoking normal fastpath.
5020 	 */
5021 	c = slub_get_cpu_ptr(s->cpu_slab);
5022 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5023 
5024 	for (i = 0; i < size; i++) {
5025 		void *object = kfence_alloc(s, s->object_size, flags);
5026 
5027 		if (unlikely(object)) {
5028 			p[i] = object;
5029 			continue;
5030 		}
5031 
5032 		object = c->freelist;
5033 		if (unlikely(!object)) {
5034 			/*
5035 			 * We may have removed an object from c->freelist using
5036 			 * the fastpath in the previous iteration; in that case,
5037 			 * c->tid has not been bumped yet.
5038 			 * Since ___slab_alloc() may reenable interrupts while
5039 			 * allocating memory, we should bump c->tid now.
5040 			 */
5041 			c->tid = next_tid(c->tid);
5042 
5043 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5044 
5045 			/*
5046 			 * Invoking slow path likely have side-effect
5047 			 * of re-populating per CPU c->freelist
5048 			 */
5049 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5050 					    _RET_IP_, c, s->object_size);
5051 			if (unlikely(!p[i]))
5052 				goto error;
5053 
5054 			c = this_cpu_ptr(s->cpu_slab);
5055 			maybe_wipe_obj_freeptr(s, p[i]);
5056 
5057 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5058 
5059 			continue; /* goto for-loop */
5060 		}
5061 		c->freelist = get_freepointer(s, object);
5062 		p[i] = object;
5063 		maybe_wipe_obj_freeptr(s, p[i]);
5064 		stat(s, ALLOC_FASTPATH);
5065 	}
5066 	c->tid = next_tid(c->tid);
5067 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5068 	slub_put_cpu_ptr(s->cpu_slab);
5069 
5070 	return i;
5071 
5072 error:
5073 	slub_put_cpu_ptr(s->cpu_slab);
5074 	__kmem_cache_free_bulk(s, i, p);
5075 	return 0;
5076 
5077 }
5078 #else /* CONFIG_SLUB_TINY */
5079 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5080 				   size_t size, void **p)
5081 {
5082 	int i;
5083 
5084 	for (i = 0; i < size; i++) {
5085 		void *object = kfence_alloc(s, s->object_size, flags);
5086 
5087 		if (unlikely(object)) {
5088 			p[i] = object;
5089 			continue;
5090 		}
5091 
5092 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5093 					 _RET_IP_, s->object_size);
5094 		if (unlikely(!p[i]))
5095 			goto error;
5096 
5097 		maybe_wipe_obj_freeptr(s, p[i]);
5098 	}
5099 
5100 	return i;
5101 
5102 error:
5103 	__kmem_cache_free_bulk(s, i, p);
5104 	return 0;
5105 }
5106 #endif /* CONFIG_SLUB_TINY */
5107 
5108 /* Note that interrupts must be enabled when calling this function. */
5109 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5110 				 void **p)
5111 {
5112 	int i;
5113 
5114 	if (!size)
5115 		return 0;
5116 
5117 	s = slab_pre_alloc_hook(s, flags);
5118 	if (unlikely(!s))
5119 		return 0;
5120 
5121 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
5122 	if (unlikely(i == 0))
5123 		return 0;
5124 
5125 	/*
5126 	 * memcg and kmem_cache debug support and memory initialization.
5127 	 * Done outside of the IRQ disabled fastpath loop.
5128 	 */
5129 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5130 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
5131 		return 0;
5132 	}
5133 	return i;
5134 }
5135 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5136 
5137 
5138 /*
5139  * Object placement in a slab is made very easy because we always start at
5140  * offset 0. If we tune the size of the object to the alignment then we can
5141  * get the required alignment by putting one properly sized object after
5142  * another.
5143  *
5144  * Notice that the allocation order determines the sizes of the per cpu
5145  * caches. Each processor has always one slab available for allocations.
5146  * Increasing the allocation order reduces the number of times that slabs
5147  * must be moved on and off the partial lists and is therefore a factor in
5148  * locking overhead.
5149  */
5150 
5151 /*
5152  * Minimum / Maximum order of slab pages. This influences locking overhead
5153  * and slab fragmentation. A higher order reduces the number of partial slabs
5154  * and increases the number of allocations possible without having to
5155  * take the list_lock.
5156  */
5157 static unsigned int slub_min_order;
5158 static unsigned int slub_max_order =
5159 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5160 static unsigned int slub_min_objects;
5161 
5162 /*
5163  * Calculate the order of allocation given an slab object size.
5164  *
5165  * The order of allocation has significant impact on performance and other
5166  * system components. Generally order 0 allocations should be preferred since
5167  * order 0 does not cause fragmentation in the page allocator. Larger objects
5168  * be problematic to put into order 0 slabs because there may be too much
5169  * unused space left. We go to a higher order if more than 1/16th of the slab
5170  * would be wasted.
5171  *
5172  * In order to reach satisfactory performance we must ensure that a minimum
5173  * number of objects is in one slab. Otherwise we may generate too much
5174  * activity on the partial lists which requires taking the list_lock. This is
5175  * less a concern for large slabs though which are rarely used.
5176  *
5177  * slab_max_order specifies the order where we begin to stop considering the
5178  * number of objects in a slab as critical. If we reach slab_max_order then
5179  * we try to keep the page order as low as possible. So we accept more waste
5180  * of space in favor of a small page order.
5181  *
5182  * Higher order allocations also allow the placement of more objects in a
5183  * slab and thereby reduce object handling overhead. If the user has
5184  * requested a higher minimum order then we start with that one instead of
5185  * the smallest order which will fit the object.
5186  */
5187 static inline unsigned int calc_slab_order(unsigned int size,
5188 		unsigned int min_order, unsigned int max_order,
5189 		unsigned int fract_leftover)
5190 {
5191 	unsigned int order;
5192 
5193 	for (order = min_order; order <= max_order; order++) {
5194 
5195 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5196 		unsigned int rem;
5197 
5198 		rem = slab_size % size;
5199 
5200 		if (rem <= slab_size / fract_leftover)
5201 			break;
5202 	}
5203 
5204 	return order;
5205 }
5206 
5207 static inline int calculate_order(unsigned int size)
5208 {
5209 	unsigned int order;
5210 	unsigned int min_objects;
5211 	unsigned int max_objects;
5212 	unsigned int min_order;
5213 
5214 	min_objects = slub_min_objects;
5215 	if (!min_objects) {
5216 		/*
5217 		 * Some architectures will only update present cpus when
5218 		 * onlining them, so don't trust the number if it's just 1. But
5219 		 * we also don't want to use nr_cpu_ids always, as on some other
5220 		 * architectures, there can be many possible cpus, but never
5221 		 * onlined. Here we compromise between trying to avoid too high
5222 		 * order on systems that appear larger than they are, and too
5223 		 * low order on systems that appear smaller than they are.
5224 		 */
5225 		unsigned int nr_cpus = num_present_cpus();
5226 		if (nr_cpus <= 1)
5227 			nr_cpus = nr_cpu_ids;
5228 		min_objects = 4 * (fls(nr_cpus) + 1);
5229 	}
5230 	/* min_objects can't be 0 because get_order(0) is undefined */
5231 	max_objects = max(order_objects(slub_max_order, size), 1U);
5232 	min_objects = min(min_objects, max_objects);
5233 
5234 	min_order = max_t(unsigned int, slub_min_order,
5235 			  get_order(min_objects * size));
5236 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5237 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5238 
5239 	/*
5240 	 * Attempt to find best configuration for a slab. This works by first
5241 	 * attempting to generate a layout with the best possible configuration
5242 	 * and backing off gradually.
5243 	 *
5244 	 * We start with accepting at most 1/16 waste and try to find the
5245 	 * smallest order from min_objects-derived/slab_min_order up to
5246 	 * slab_max_order that will satisfy the constraint. Note that increasing
5247 	 * the order can only result in same or less fractional waste, not more.
5248 	 *
5249 	 * If that fails, we increase the acceptable fraction of waste and try
5250 	 * again. The last iteration with fraction of 1/2 would effectively
5251 	 * accept any waste and give us the order determined by min_objects, as
5252 	 * long as at least single object fits within slab_max_order.
5253 	 */
5254 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5255 		order = calc_slab_order(size, min_order, slub_max_order,
5256 					fraction);
5257 		if (order <= slub_max_order)
5258 			return order;
5259 	}
5260 
5261 	/*
5262 	 * Doh this slab cannot be placed using slab_max_order.
5263 	 */
5264 	order = get_order(size);
5265 	if (order <= MAX_PAGE_ORDER)
5266 		return order;
5267 	return -ENOSYS;
5268 }
5269 
5270 static void
5271 init_kmem_cache_node(struct kmem_cache_node *n)
5272 {
5273 	n->nr_partial = 0;
5274 	spin_lock_init(&n->list_lock);
5275 	INIT_LIST_HEAD(&n->partial);
5276 #ifdef CONFIG_SLUB_DEBUG
5277 	atomic_long_set(&n->nr_slabs, 0);
5278 	atomic_long_set(&n->total_objects, 0);
5279 	INIT_LIST_HEAD(&n->full);
5280 #endif
5281 }
5282 
5283 #ifndef CONFIG_SLUB_TINY
5284 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5285 {
5286 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5287 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5288 			sizeof(struct kmem_cache_cpu));
5289 
5290 	/*
5291 	 * Must align to double word boundary for the double cmpxchg
5292 	 * instructions to work; see __pcpu_double_call_return_bool().
5293 	 */
5294 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5295 				     2 * sizeof(void *));
5296 
5297 	if (!s->cpu_slab)
5298 		return 0;
5299 
5300 	init_kmem_cache_cpus(s);
5301 
5302 	return 1;
5303 }
5304 #else
5305 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5306 {
5307 	return 1;
5308 }
5309 #endif /* CONFIG_SLUB_TINY */
5310 
5311 static struct kmem_cache *kmem_cache_node;
5312 
5313 /*
5314  * No kmalloc_node yet so do it by hand. We know that this is the first
5315  * slab on the node for this slabcache. There are no concurrent accesses
5316  * possible.
5317  *
5318  * Note that this function only works on the kmem_cache_node
5319  * when allocating for the kmem_cache_node. This is used for bootstrapping
5320  * memory on a fresh node that has no slab structures yet.
5321  */
5322 static void early_kmem_cache_node_alloc(int node)
5323 {
5324 	struct slab *slab;
5325 	struct kmem_cache_node *n;
5326 
5327 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5328 
5329 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5330 
5331 	BUG_ON(!slab);
5332 	if (slab_nid(slab) != node) {
5333 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5334 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5335 	}
5336 
5337 	n = slab->freelist;
5338 	BUG_ON(!n);
5339 #ifdef CONFIG_SLUB_DEBUG
5340 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5341 #endif
5342 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5343 	slab->freelist = get_freepointer(kmem_cache_node, n);
5344 	slab->inuse = 1;
5345 	kmem_cache_node->node[node] = n;
5346 	init_kmem_cache_node(n);
5347 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5348 
5349 	/*
5350 	 * No locks need to be taken here as it has just been
5351 	 * initialized and there is no concurrent access.
5352 	 */
5353 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5354 }
5355 
5356 static void free_kmem_cache_nodes(struct kmem_cache *s)
5357 {
5358 	int node;
5359 	struct kmem_cache_node *n;
5360 
5361 	for_each_kmem_cache_node(s, node, n) {
5362 		s->node[node] = NULL;
5363 		kmem_cache_free(kmem_cache_node, n);
5364 	}
5365 }
5366 
5367 void __kmem_cache_release(struct kmem_cache *s)
5368 {
5369 	cache_random_seq_destroy(s);
5370 #ifndef CONFIG_SLUB_TINY
5371 	free_percpu(s->cpu_slab);
5372 #endif
5373 	free_kmem_cache_nodes(s);
5374 }
5375 
5376 static int init_kmem_cache_nodes(struct kmem_cache *s)
5377 {
5378 	int node;
5379 
5380 	for_each_node_mask(node, slab_nodes) {
5381 		struct kmem_cache_node *n;
5382 
5383 		if (slab_state == DOWN) {
5384 			early_kmem_cache_node_alloc(node);
5385 			continue;
5386 		}
5387 		n = kmem_cache_alloc_node(kmem_cache_node,
5388 						GFP_KERNEL, node);
5389 
5390 		if (!n) {
5391 			free_kmem_cache_nodes(s);
5392 			return 0;
5393 		}
5394 
5395 		init_kmem_cache_node(n);
5396 		s->node[node] = n;
5397 	}
5398 	return 1;
5399 }
5400 
5401 static void set_cpu_partial(struct kmem_cache *s)
5402 {
5403 #ifdef CONFIG_SLUB_CPU_PARTIAL
5404 	unsigned int nr_objects;
5405 
5406 	/*
5407 	 * cpu_partial determined the maximum number of objects kept in the
5408 	 * per cpu partial lists of a processor.
5409 	 *
5410 	 * Per cpu partial lists mainly contain slabs that just have one
5411 	 * object freed. If they are used for allocation then they can be
5412 	 * filled up again with minimal effort. The slab will never hit the
5413 	 * per node partial lists and therefore no locking will be required.
5414 	 *
5415 	 * For backwards compatibility reasons, this is determined as number
5416 	 * of objects, even though we now limit maximum number of pages, see
5417 	 * slub_set_cpu_partial()
5418 	 */
5419 	if (!kmem_cache_has_cpu_partial(s))
5420 		nr_objects = 0;
5421 	else if (s->size >= PAGE_SIZE)
5422 		nr_objects = 6;
5423 	else if (s->size >= 1024)
5424 		nr_objects = 24;
5425 	else if (s->size >= 256)
5426 		nr_objects = 52;
5427 	else
5428 		nr_objects = 120;
5429 
5430 	slub_set_cpu_partial(s, nr_objects);
5431 #endif
5432 }
5433 
5434 /*
5435  * calculate_sizes() determines the order and the distribution of data within
5436  * a slab object.
5437  */
5438 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5439 {
5440 	slab_flags_t flags = s->flags;
5441 	unsigned int size = s->object_size;
5442 	unsigned int order;
5443 
5444 	/*
5445 	 * Round up object size to the next word boundary. We can only
5446 	 * place the free pointer at word boundaries and this determines
5447 	 * the possible location of the free pointer.
5448 	 */
5449 	size = ALIGN(size, sizeof(void *));
5450 
5451 #ifdef CONFIG_SLUB_DEBUG
5452 	/*
5453 	 * Determine if we can poison the object itself. If the user of
5454 	 * the slab may touch the object after free or before allocation
5455 	 * then we should never poison the object itself.
5456 	 */
5457 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5458 			!s->ctor)
5459 		s->flags |= __OBJECT_POISON;
5460 	else
5461 		s->flags &= ~__OBJECT_POISON;
5462 
5463 
5464 	/*
5465 	 * If we are Redzoning then check if there is some space between the
5466 	 * end of the object and the free pointer. If not then add an
5467 	 * additional word to have some bytes to store Redzone information.
5468 	 */
5469 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5470 		size += sizeof(void *);
5471 #endif
5472 
5473 	/*
5474 	 * With that we have determined the number of bytes in actual use
5475 	 * by the object and redzoning.
5476 	 */
5477 	s->inuse = size;
5478 
5479 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5480 	    (flags & SLAB_POISON) || s->ctor ||
5481 	    ((flags & SLAB_RED_ZONE) &&
5482 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5483 		/*
5484 		 * Relocate free pointer after the object if it is not
5485 		 * permitted to overwrite the first word of the object on
5486 		 * kmem_cache_free.
5487 		 *
5488 		 * This is the case if we do RCU, have a constructor or
5489 		 * destructor, are poisoning the objects, or are
5490 		 * redzoning an object smaller than sizeof(void *) or are
5491 		 * redzoning an object with slub_debug_orig_size() enabled,
5492 		 * in which case the right redzone may be extended.
5493 		 *
5494 		 * The assumption that s->offset >= s->inuse means free
5495 		 * pointer is outside of the object is used in the
5496 		 * freeptr_outside_object() function. If that is no
5497 		 * longer true, the function needs to be modified.
5498 		 */
5499 		s->offset = size;
5500 		size += sizeof(void *);
5501 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5502 		s->offset = args->freeptr_offset;
5503 	} else {
5504 		/*
5505 		 * Store freelist pointer near middle of object to keep
5506 		 * it away from the edges of the object to avoid small
5507 		 * sized over/underflows from neighboring allocations.
5508 		 */
5509 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5510 	}
5511 
5512 #ifdef CONFIG_SLUB_DEBUG
5513 	if (flags & SLAB_STORE_USER) {
5514 		/*
5515 		 * Need to store information about allocs and frees after
5516 		 * the object.
5517 		 */
5518 		size += 2 * sizeof(struct track);
5519 
5520 		/* Save the original kmalloc request size */
5521 		if (flags & SLAB_KMALLOC)
5522 			size += sizeof(unsigned int);
5523 	}
5524 #endif
5525 
5526 	kasan_cache_create(s, &size, &s->flags);
5527 #ifdef CONFIG_SLUB_DEBUG
5528 	if (flags & SLAB_RED_ZONE) {
5529 		/*
5530 		 * Add some empty padding so that we can catch
5531 		 * overwrites from earlier objects rather than let
5532 		 * tracking information or the free pointer be
5533 		 * corrupted if a user writes before the start
5534 		 * of the object.
5535 		 */
5536 		size += sizeof(void *);
5537 
5538 		s->red_left_pad = sizeof(void *);
5539 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5540 		size += s->red_left_pad;
5541 	}
5542 #endif
5543 
5544 	/*
5545 	 * SLUB stores one object immediately after another beginning from
5546 	 * offset 0. In order to align the objects we have to simply size
5547 	 * each object to conform to the alignment.
5548 	 */
5549 	size = ALIGN(size, s->align);
5550 	s->size = size;
5551 	s->reciprocal_size = reciprocal_value(size);
5552 	order = calculate_order(size);
5553 
5554 	if ((int)order < 0)
5555 		return 0;
5556 
5557 	s->allocflags = __GFP_COMP;
5558 
5559 	if (s->flags & SLAB_CACHE_DMA)
5560 		s->allocflags |= GFP_DMA;
5561 
5562 	if (s->flags & SLAB_CACHE_DMA32)
5563 		s->allocflags |= GFP_DMA32;
5564 
5565 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5566 		s->allocflags |= __GFP_RECLAIMABLE;
5567 
5568 	/*
5569 	 * Determine the number of objects per slab
5570 	 */
5571 	s->oo = oo_make(order, size);
5572 	s->min = oo_make(get_order(size), size);
5573 
5574 	return !!oo_objects(s->oo);
5575 }
5576 
5577 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5578 			      const char *text)
5579 {
5580 #ifdef CONFIG_SLUB_DEBUG
5581 	void *addr = slab_address(slab);
5582 	void *p;
5583 
5584 	slab_err(s, slab, text, s->name);
5585 
5586 	spin_lock(&object_map_lock);
5587 	__fill_map(object_map, s, slab);
5588 
5589 	for_each_object(p, s, addr, slab->objects) {
5590 
5591 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5592 			if (slab_add_kunit_errors())
5593 				continue;
5594 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5595 			print_tracking(s, p);
5596 		}
5597 	}
5598 	spin_unlock(&object_map_lock);
5599 #endif
5600 }
5601 
5602 /*
5603  * Attempt to free all partial slabs on a node.
5604  * This is called from __kmem_cache_shutdown(). We must take list_lock
5605  * because sysfs file might still access partial list after the shutdowning.
5606  */
5607 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5608 {
5609 	LIST_HEAD(discard);
5610 	struct slab *slab, *h;
5611 
5612 	BUG_ON(irqs_disabled());
5613 	spin_lock_irq(&n->list_lock);
5614 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5615 		if (!slab->inuse) {
5616 			remove_partial(n, slab);
5617 			list_add(&slab->slab_list, &discard);
5618 		} else {
5619 			list_slab_objects(s, slab,
5620 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5621 		}
5622 	}
5623 	spin_unlock_irq(&n->list_lock);
5624 
5625 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5626 		discard_slab(s, slab);
5627 }
5628 
5629 bool __kmem_cache_empty(struct kmem_cache *s)
5630 {
5631 	int node;
5632 	struct kmem_cache_node *n;
5633 
5634 	for_each_kmem_cache_node(s, node, n)
5635 		if (n->nr_partial || node_nr_slabs(n))
5636 			return false;
5637 	return true;
5638 }
5639 
5640 /*
5641  * Release all resources used by a slab cache.
5642  */
5643 int __kmem_cache_shutdown(struct kmem_cache *s)
5644 {
5645 	int node;
5646 	struct kmem_cache_node *n;
5647 
5648 	flush_all_cpus_locked(s);
5649 	/* Attempt to free all objects */
5650 	for_each_kmem_cache_node(s, node, n) {
5651 		free_partial(s, n);
5652 		if (n->nr_partial || node_nr_slabs(n))
5653 			return 1;
5654 	}
5655 	return 0;
5656 }
5657 
5658 #ifdef CONFIG_PRINTK
5659 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5660 {
5661 	void *base;
5662 	int __maybe_unused i;
5663 	unsigned int objnr;
5664 	void *objp;
5665 	void *objp0;
5666 	struct kmem_cache *s = slab->slab_cache;
5667 	struct track __maybe_unused *trackp;
5668 
5669 	kpp->kp_ptr = object;
5670 	kpp->kp_slab = slab;
5671 	kpp->kp_slab_cache = s;
5672 	base = slab_address(slab);
5673 	objp0 = kasan_reset_tag(object);
5674 #ifdef CONFIG_SLUB_DEBUG
5675 	objp = restore_red_left(s, objp0);
5676 #else
5677 	objp = objp0;
5678 #endif
5679 	objnr = obj_to_index(s, slab, objp);
5680 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5681 	objp = base + s->size * objnr;
5682 	kpp->kp_objp = objp;
5683 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5684 			 || (objp - base) % s->size) ||
5685 	    !(s->flags & SLAB_STORE_USER))
5686 		return;
5687 #ifdef CONFIG_SLUB_DEBUG
5688 	objp = fixup_red_left(s, objp);
5689 	trackp = get_track(s, objp, TRACK_ALLOC);
5690 	kpp->kp_ret = (void *)trackp->addr;
5691 #ifdef CONFIG_STACKDEPOT
5692 	{
5693 		depot_stack_handle_t handle;
5694 		unsigned long *entries;
5695 		unsigned int nr_entries;
5696 
5697 		handle = READ_ONCE(trackp->handle);
5698 		if (handle) {
5699 			nr_entries = stack_depot_fetch(handle, &entries);
5700 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5701 				kpp->kp_stack[i] = (void *)entries[i];
5702 		}
5703 
5704 		trackp = get_track(s, objp, TRACK_FREE);
5705 		handle = READ_ONCE(trackp->handle);
5706 		if (handle) {
5707 			nr_entries = stack_depot_fetch(handle, &entries);
5708 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5709 				kpp->kp_free_stack[i] = (void *)entries[i];
5710 		}
5711 	}
5712 #endif
5713 #endif
5714 }
5715 #endif
5716 
5717 /********************************************************************
5718  *		Kmalloc subsystem
5719  *******************************************************************/
5720 
5721 static int __init setup_slub_min_order(char *str)
5722 {
5723 	get_option(&str, (int *)&slub_min_order);
5724 
5725 	if (slub_min_order > slub_max_order)
5726 		slub_max_order = slub_min_order;
5727 
5728 	return 1;
5729 }
5730 
5731 __setup("slab_min_order=", setup_slub_min_order);
5732 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5733 
5734 
5735 static int __init setup_slub_max_order(char *str)
5736 {
5737 	get_option(&str, (int *)&slub_max_order);
5738 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5739 
5740 	if (slub_min_order > slub_max_order)
5741 		slub_min_order = slub_max_order;
5742 
5743 	return 1;
5744 }
5745 
5746 __setup("slab_max_order=", setup_slub_max_order);
5747 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5748 
5749 static int __init setup_slub_min_objects(char *str)
5750 {
5751 	get_option(&str, (int *)&slub_min_objects);
5752 
5753 	return 1;
5754 }
5755 
5756 __setup("slab_min_objects=", setup_slub_min_objects);
5757 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5758 
5759 #ifdef CONFIG_NUMA
5760 static int __init setup_slab_strict_numa(char *str)
5761 {
5762 	if (nr_node_ids > 1) {
5763 		static_branch_enable(&strict_numa);
5764 		pr_info("SLUB: Strict NUMA enabled.\n");
5765 	} else {
5766 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
5767 	}
5768 
5769 	return 1;
5770 }
5771 
5772 __setup("slab_strict_numa", setup_slab_strict_numa);
5773 #endif
5774 
5775 
5776 #ifdef CONFIG_HARDENED_USERCOPY
5777 /*
5778  * Rejects incorrectly sized objects and objects that are to be copied
5779  * to/from userspace but do not fall entirely within the containing slab
5780  * cache's usercopy region.
5781  *
5782  * Returns NULL if check passes, otherwise const char * to name of cache
5783  * to indicate an error.
5784  */
5785 void __check_heap_object(const void *ptr, unsigned long n,
5786 			 const struct slab *slab, bool to_user)
5787 {
5788 	struct kmem_cache *s;
5789 	unsigned int offset;
5790 	bool is_kfence = is_kfence_address(ptr);
5791 
5792 	ptr = kasan_reset_tag(ptr);
5793 
5794 	/* Find object and usable object size. */
5795 	s = slab->slab_cache;
5796 
5797 	/* Reject impossible pointers. */
5798 	if (ptr < slab_address(slab))
5799 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5800 			       to_user, 0, n);
5801 
5802 	/* Find offset within object. */
5803 	if (is_kfence)
5804 		offset = ptr - kfence_object_start(ptr);
5805 	else
5806 		offset = (ptr - slab_address(slab)) % s->size;
5807 
5808 	/* Adjust for redzone and reject if within the redzone. */
5809 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5810 		if (offset < s->red_left_pad)
5811 			usercopy_abort("SLUB object in left red zone",
5812 				       s->name, to_user, offset, n);
5813 		offset -= s->red_left_pad;
5814 	}
5815 
5816 	/* Allow address range falling entirely within usercopy region. */
5817 	if (offset >= s->useroffset &&
5818 	    offset - s->useroffset <= s->usersize &&
5819 	    n <= s->useroffset - offset + s->usersize)
5820 		return;
5821 
5822 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5823 }
5824 #endif /* CONFIG_HARDENED_USERCOPY */
5825 
5826 #define SHRINK_PROMOTE_MAX 32
5827 
5828 /*
5829  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5830  * up most to the head of the partial lists. New allocations will then
5831  * fill those up and thus they can be removed from the partial lists.
5832  *
5833  * The slabs with the least items are placed last. This results in them
5834  * being allocated from last increasing the chance that the last objects
5835  * are freed in them.
5836  */
5837 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5838 {
5839 	int node;
5840 	int i;
5841 	struct kmem_cache_node *n;
5842 	struct slab *slab;
5843 	struct slab *t;
5844 	struct list_head discard;
5845 	struct list_head promote[SHRINK_PROMOTE_MAX];
5846 	unsigned long flags;
5847 	int ret = 0;
5848 
5849 	for_each_kmem_cache_node(s, node, n) {
5850 		INIT_LIST_HEAD(&discard);
5851 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5852 			INIT_LIST_HEAD(promote + i);
5853 
5854 		spin_lock_irqsave(&n->list_lock, flags);
5855 
5856 		/*
5857 		 * Build lists of slabs to discard or promote.
5858 		 *
5859 		 * Note that concurrent frees may occur while we hold the
5860 		 * list_lock. slab->inuse here is the upper limit.
5861 		 */
5862 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5863 			int free = slab->objects - slab->inuse;
5864 
5865 			/* Do not reread slab->inuse */
5866 			barrier();
5867 
5868 			/* We do not keep full slabs on the list */
5869 			BUG_ON(free <= 0);
5870 
5871 			if (free == slab->objects) {
5872 				list_move(&slab->slab_list, &discard);
5873 				slab_clear_node_partial(slab);
5874 				n->nr_partial--;
5875 				dec_slabs_node(s, node, slab->objects);
5876 			} else if (free <= SHRINK_PROMOTE_MAX)
5877 				list_move(&slab->slab_list, promote + free - 1);
5878 		}
5879 
5880 		/*
5881 		 * Promote the slabs filled up most to the head of the
5882 		 * partial list.
5883 		 */
5884 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5885 			list_splice(promote + i, &n->partial);
5886 
5887 		spin_unlock_irqrestore(&n->list_lock, flags);
5888 
5889 		/* Release empty slabs */
5890 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5891 			free_slab(s, slab);
5892 
5893 		if (node_nr_slabs(n))
5894 			ret = 1;
5895 	}
5896 
5897 	return ret;
5898 }
5899 
5900 int __kmem_cache_shrink(struct kmem_cache *s)
5901 {
5902 	flush_all(s);
5903 	return __kmem_cache_do_shrink(s);
5904 }
5905 
5906 static int slab_mem_going_offline_callback(void *arg)
5907 {
5908 	struct kmem_cache *s;
5909 
5910 	mutex_lock(&slab_mutex);
5911 	list_for_each_entry(s, &slab_caches, list) {
5912 		flush_all_cpus_locked(s);
5913 		__kmem_cache_do_shrink(s);
5914 	}
5915 	mutex_unlock(&slab_mutex);
5916 
5917 	return 0;
5918 }
5919 
5920 static void slab_mem_offline_callback(void *arg)
5921 {
5922 	struct memory_notify *marg = arg;
5923 	int offline_node;
5924 
5925 	offline_node = marg->status_change_nid_normal;
5926 
5927 	/*
5928 	 * If the node still has available memory. we need kmem_cache_node
5929 	 * for it yet.
5930 	 */
5931 	if (offline_node < 0)
5932 		return;
5933 
5934 	mutex_lock(&slab_mutex);
5935 	node_clear(offline_node, slab_nodes);
5936 	/*
5937 	 * We no longer free kmem_cache_node structures here, as it would be
5938 	 * racy with all get_node() users, and infeasible to protect them with
5939 	 * slab_mutex.
5940 	 */
5941 	mutex_unlock(&slab_mutex);
5942 }
5943 
5944 static int slab_mem_going_online_callback(void *arg)
5945 {
5946 	struct kmem_cache_node *n;
5947 	struct kmem_cache *s;
5948 	struct memory_notify *marg = arg;
5949 	int nid = marg->status_change_nid_normal;
5950 	int ret = 0;
5951 
5952 	/*
5953 	 * If the node's memory is already available, then kmem_cache_node is
5954 	 * already created. Nothing to do.
5955 	 */
5956 	if (nid < 0)
5957 		return 0;
5958 
5959 	/*
5960 	 * We are bringing a node online. No memory is available yet. We must
5961 	 * allocate a kmem_cache_node structure in order to bring the node
5962 	 * online.
5963 	 */
5964 	mutex_lock(&slab_mutex);
5965 	list_for_each_entry(s, &slab_caches, list) {
5966 		/*
5967 		 * The structure may already exist if the node was previously
5968 		 * onlined and offlined.
5969 		 */
5970 		if (get_node(s, nid))
5971 			continue;
5972 		/*
5973 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5974 		 *      since memory is not yet available from the node that
5975 		 *      is brought up.
5976 		 */
5977 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5978 		if (!n) {
5979 			ret = -ENOMEM;
5980 			goto out;
5981 		}
5982 		init_kmem_cache_node(n);
5983 		s->node[nid] = n;
5984 	}
5985 	/*
5986 	 * Any cache created after this point will also have kmem_cache_node
5987 	 * initialized for the new node.
5988 	 */
5989 	node_set(nid, slab_nodes);
5990 out:
5991 	mutex_unlock(&slab_mutex);
5992 	return ret;
5993 }
5994 
5995 static int slab_memory_callback(struct notifier_block *self,
5996 				unsigned long action, void *arg)
5997 {
5998 	int ret = 0;
5999 
6000 	switch (action) {
6001 	case MEM_GOING_ONLINE:
6002 		ret = slab_mem_going_online_callback(arg);
6003 		break;
6004 	case MEM_GOING_OFFLINE:
6005 		ret = slab_mem_going_offline_callback(arg);
6006 		break;
6007 	case MEM_OFFLINE:
6008 	case MEM_CANCEL_ONLINE:
6009 		slab_mem_offline_callback(arg);
6010 		break;
6011 	case MEM_ONLINE:
6012 	case MEM_CANCEL_OFFLINE:
6013 		break;
6014 	}
6015 	if (ret)
6016 		ret = notifier_from_errno(ret);
6017 	else
6018 		ret = NOTIFY_OK;
6019 	return ret;
6020 }
6021 
6022 /********************************************************************
6023  *			Basic setup of slabs
6024  *******************************************************************/
6025 
6026 /*
6027  * Used for early kmem_cache structures that were allocated using
6028  * the page allocator. Allocate them properly then fix up the pointers
6029  * that may be pointing to the wrong kmem_cache structure.
6030  */
6031 
6032 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6033 {
6034 	int node;
6035 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6036 	struct kmem_cache_node *n;
6037 
6038 	memcpy(s, static_cache, kmem_cache->object_size);
6039 
6040 	/*
6041 	 * This runs very early, and only the boot processor is supposed to be
6042 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
6043 	 * IPIs around.
6044 	 */
6045 	__flush_cpu_slab(s, smp_processor_id());
6046 	for_each_kmem_cache_node(s, node, n) {
6047 		struct slab *p;
6048 
6049 		list_for_each_entry(p, &n->partial, slab_list)
6050 			p->slab_cache = s;
6051 
6052 #ifdef CONFIG_SLUB_DEBUG
6053 		list_for_each_entry(p, &n->full, slab_list)
6054 			p->slab_cache = s;
6055 #endif
6056 	}
6057 	list_add(&s->list, &slab_caches);
6058 	return s;
6059 }
6060 
6061 void __init kmem_cache_init(void)
6062 {
6063 	static __initdata struct kmem_cache boot_kmem_cache,
6064 		boot_kmem_cache_node;
6065 	int node;
6066 
6067 	if (debug_guardpage_minorder())
6068 		slub_max_order = 0;
6069 
6070 	/* Print slub debugging pointers without hashing */
6071 	if (__slub_debug_enabled())
6072 		no_hash_pointers_enable(NULL);
6073 
6074 	kmem_cache_node = &boot_kmem_cache_node;
6075 	kmem_cache = &boot_kmem_cache;
6076 
6077 	/*
6078 	 * Initialize the nodemask for which we will allocate per node
6079 	 * structures. Here we don't need taking slab_mutex yet.
6080 	 */
6081 	for_each_node_state(node, N_NORMAL_MEMORY)
6082 		node_set(node, slab_nodes);
6083 
6084 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
6085 			sizeof(struct kmem_cache_node),
6086 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6087 
6088 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6089 
6090 	/* Able to allocate the per node structures */
6091 	slab_state = PARTIAL;
6092 
6093 	create_boot_cache(kmem_cache, "kmem_cache",
6094 			offsetof(struct kmem_cache, node) +
6095 				nr_node_ids * sizeof(struct kmem_cache_node *),
6096 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6097 
6098 	kmem_cache = bootstrap(&boot_kmem_cache);
6099 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6100 
6101 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
6102 	setup_kmalloc_cache_index_table();
6103 	create_kmalloc_caches();
6104 
6105 	/* Setup random freelists for each cache */
6106 	init_freelist_randomization();
6107 
6108 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6109 				  slub_cpu_dead);
6110 
6111 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6112 		cache_line_size(),
6113 		slub_min_order, slub_max_order, slub_min_objects,
6114 		nr_cpu_ids, nr_node_ids);
6115 }
6116 
6117 void __init kmem_cache_init_late(void)
6118 {
6119 #ifndef CONFIG_SLUB_TINY
6120 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6121 	WARN_ON(!flushwq);
6122 #endif
6123 }
6124 
6125 struct kmem_cache *
6126 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6127 		   slab_flags_t flags, void (*ctor)(void *))
6128 {
6129 	struct kmem_cache *s;
6130 
6131 	s = find_mergeable(size, align, flags, name, ctor);
6132 	if (s) {
6133 		if (sysfs_slab_alias(s, name))
6134 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6135 			       name);
6136 
6137 		s->refcount++;
6138 
6139 		/*
6140 		 * Adjust the object sizes so that we clear
6141 		 * the complete object on kzalloc.
6142 		 */
6143 		s->object_size = max(s->object_size, size);
6144 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6145 	}
6146 
6147 	return s;
6148 }
6149 
6150 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6151 			 unsigned int size, struct kmem_cache_args *args,
6152 			 slab_flags_t flags)
6153 {
6154 	int err = -EINVAL;
6155 
6156 	s->name = name;
6157 	s->size = s->object_size = size;
6158 
6159 	s->flags = kmem_cache_flags(flags, s->name);
6160 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6161 	s->random = get_random_long();
6162 #endif
6163 	s->align = args->align;
6164 	s->ctor = args->ctor;
6165 #ifdef CONFIG_HARDENED_USERCOPY
6166 	s->useroffset = args->useroffset;
6167 	s->usersize = args->usersize;
6168 #endif
6169 
6170 	if (!calculate_sizes(args, s))
6171 		goto out;
6172 	if (disable_higher_order_debug) {
6173 		/*
6174 		 * Disable debugging flags that store metadata if the min slab
6175 		 * order increased.
6176 		 */
6177 		if (get_order(s->size) > get_order(s->object_size)) {
6178 			s->flags &= ~DEBUG_METADATA_FLAGS;
6179 			s->offset = 0;
6180 			if (!calculate_sizes(args, s))
6181 				goto out;
6182 		}
6183 	}
6184 
6185 #ifdef system_has_freelist_aba
6186 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6187 		/* Enable fast mode */
6188 		s->flags |= __CMPXCHG_DOUBLE;
6189 	}
6190 #endif
6191 
6192 	/*
6193 	 * The larger the object size is, the more slabs we want on the partial
6194 	 * list to avoid pounding the page allocator excessively.
6195 	 */
6196 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6197 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6198 
6199 	set_cpu_partial(s);
6200 
6201 #ifdef CONFIG_NUMA
6202 	s->remote_node_defrag_ratio = 1000;
6203 #endif
6204 
6205 	/* Initialize the pre-computed randomized freelist if slab is up */
6206 	if (slab_state >= UP) {
6207 		if (init_cache_random_seq(s))
6208 			goto out;
6209 	}
6210 
6211 	if (!init_kmem_cache_nodes(s))
6212 		goto out;
6213 
6214 	if (!alloc_kmem_cache_cpus(s))
6215 		goto out;
6216 
6217 	err = 0;
6218 
6219 	/* Mutex is not taken during early boot */
6220 	if (slab_state <= UP)
6221 		goto out;
6222 
6223 	/*
6224 	 * Failing to create sysfs files is not critical to SLUB functionality.
6225 	 * If it fails, proceed with cache creation without these files.
6226 	 */
6227 	if (sysfs_slab_add(s))
6228 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6229 
6230 	if (s->flags & SLAB_STORE_USER)
6231 		debugfs_slab_add(s);
6232 
6233 out:
6234 	if (err)
6235 		__kmem_cache_release(s);
6236 	return err;
6237 }
6238 
6239 #ifdef SLAB_SUPPORTS_SYSFS
6240 static int count_inuse(struct slab *slab)
6241 {
6242 	return slab->inuse;
6243 }
6244 
6245 static int count_total(struct slab *slab)
6246 {
6247 	return slab->objects;
6248 }
6249 #endif
6250 
6251 #ifdef CONFIG_SLUB_DEBUG
6252 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6253 			  unsigned long *obj_map)
6254 {
6255 	void *p;
6256 	void *addr = slab_address(slab);
6257 
6258 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6259 		return;
6260 
6261 	/* Now we know that a valid freelist exists */
6262 	__fill_map(obj_map, s, slab);
6263 	for_each_object(p, s, addr, slab->objects) {
6264 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6265 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6266 
6267 		if (!check_object(s, slab, p, val))
6268 			break;
6269 	}
6270 }
6271 
6272 static int validate_slab_node(struct kmem_cache *s,
6273 		struct kmem_cache_node *n, unsigned long *obj_map)
6274 {
6275 	unsigned long count = 0;
6276 	struct slab *slab;
6277 	unsigned long flags;
6278 
6279 	spin_lock_irqsave(&n->list_lock, flags);
6280 
6281 	list_for_each_entry(slab, &n->partial, slab_list) {
6282 		validate_slab(s, slab, obj_map);
6283 		count++;
6284 	}
6285 	if (count != n->nr_partial) {
6286 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6287 		       s->name, count, n->nr_partial);
6288 		slab_add_kunit_errors();
6289 	}
6290 
6291 	if (!(s->flags & SLAB_STORE_USER))
6292 		goto out;
6293 
6294 	list_for_each_entry(slab, &n->full, slab_list) {
6295 		validate_slab(s, slab, obj_map);
6296 		count++;
6297 	}
6298 	if (count != node_nr_slabs(n)) {
6299 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6300 		       s->name, count, node_nr_slabs(n));
6301 		slab_add_kunit_errors();
6302 	}
6303 
6304 out:
6305 	spin_unlock_irqrestore(&n->list_lock, flags);
6306 	return count;
6307 }
6308 
6309 long validate_slab_cache(struct kmem_cache *s)
6310 {
6311 	int node;
6312 	unsigned long count = 0;
6313 	struct kmem_cache_node *n;
6314 	unsigned long *obj_map;
6315 
6316 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6317 	if (!obj_map)
6318 		return -ENOMEM;
6319 
6320 	flush_all(s);
6321 	for_each_kmem_cache_node(s, node, n)
6322 		count += validate_slab_node(s, n, obj_map);
6323 
6324 	bitmap_free(obj_map);
6325 
6326 	return count;
6327 }
6328 EXPORT_SYMBOL(validate_slab_cache);
6329 
6330 #ifdef CONFIG_DEBUG_FS
6331 /*
6332  * Generate lists of code addresses where slabcache objects are allocated
6333  * and freed.
6334  */
6335 
6336 struct location {
6337 	depot_stack_handle_t handle;
6338 	unsigned long count;
6339 	unsigned long addr;
6340 	unsigned long waste;
6341 	long long sum_time;
6342 	long min_time;
6343 	long max_time;
6344 	long min_pid;
6345 	long max_pid;
6346 	DECLARE_BITMAP(cpus, NR_CPUS);
6347 	nodemask_t nodes;
6348 };
6349 
6350 struct loc_track {
6351 	unsigned long max;
6352 	unsigned long count;
6353 	struct location *loc;
6354 	loff_t idx;
6355 };
6356 
6357 static struct dentry *slab_debugfs_root;
6358 
6359 static void free_loc_track(struct loc_track *t)
6360 {
6361 	if (t->max)
6362 		free_pages((unsigned long)t->loc,
6363 			get_order(sizeof(struct location) * t->max));
6364 }
6365 
6366 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6367 {
6368 	struct location *l;
6369 	int order;
6370 
6371 	order = get_order(sizeof(struct location) * max);
6372 
6373 	l = (void *)__get_free_pages(flags, order);
6374 	if (!l)
6375 		return 0;
6376 
6377 	if (t->count) {
6378 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6379 		free_loc_track(t);
6380 	}
6381 	t->max = max;
6382 	t->loc = l;
6383 	return 1;
6384 }
6385 
6386 static int add_location(struct loc_track *t, struct kmem_cache *s,
6387 				const struct track *track,
6388 				unsigned int orig_size)
6389 {
6390 	long start, end, pos;
6391 	struct location *l;
6392 	unsigned long caddr, chandle, cwaste;
6393 	unsigned long age = jiffies - track->when;
6394 	depot_stack_handle_t handle = 0;
6395 	unsigned int waste = s->object_size - orig_size;
6396 
6397 #ifdef CONFIG_STACKDEPOT
6398 	handle = READ_ONCE(track->handle);
6399 #endif
6400 	start = -1;
6401 	end = t->count;
6402 
6403 	for ( ; ; ) {
6404 		pos = start + (end - start + 1) / 2;
6405 
6406 		/*
6407 		 * There is nothing at "end". If we end up there
6408 		 * we need to add something to before end.
6409 		 */
6410 		if (pos == end)
6411 			break;
6412 
6413 		l = &t->loc[pos];
6414 		caddr = l->addr;
6415 		chandle = l->handle;
6416 		cwaste = l->waste;
6417 		if ((track->addr == caddr) && (handle == chandle) &&
6418 			(waste == cwaste)) {
6419 
6420 			l->count++;
6421 			if (track->when) {
6422 				l->sum_time += age;
6423 				if (age < l->min_time)
6424 					l->min_time = age;
6425 				if (age > l->max_time)
6426 					l->max_time = age;
6427 
6428 				if (track->pid < l->min_pid)
6429 					l->min_pid = track->pid;
6430 				if (track->pid > l->max_pid)
6431 					l->max_pid = track->pid;
6432 
6433 				cpumask_set_cpu(track->cpu,
6434 						to_cpumask(l->cpus));
6435 			}
6436 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6437 			return 1;
6438 		}
6439 
6440 		if (track->addr < caddr)
6441 			end = pos;
6442 		else if (track->addr == caddr && handle < chandle)
6443 			end = pos;
6444 		else if (track->addr == caddr && handle == chandle &&
6445 				waste < cwaste)
6446 			end = pos;
6447 		else
6448 			start = pos;
6449 	}
6450 
6451 	/*
6452 	 * Not found. Insert new tracking element.
6453 	 */
6454 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6455 		return 0;
6456 
6457 	l = t->loc + pos;
6458 	if (pos < t->count)
6459 		memmove(l + 1, l,
6460 			(t->count - pos) * sizeof(struct location));
6461 	t->count++;
6462 	l->count = 1;
6463 	l->addr = track->addr;
6464 	l->sum_time = age;
6465 	l->min_time = age;
6466 	l->max_time = age;
6467 	l->min_pid = track->pid;
6468 	l->max_pid = track->pid;
6469 	l->handle = handle;
6470 	l->waste = waste;
6471 	cpumask_clear(to_cpumask(l->cpus));
6472 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6473 	nodes_clear(l->nodes);
6474 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6475 	return 1;
6476 }
6477 
6478 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6479 		struct slab *slab, enum track_item alloc,
6480 		unsigned long *obj_map)
6481 {
6482 	void *addr = slab_address(slab);
6483 	bool is_alloc = (alloc == TRACK_ALLOC);
6484 	void *p;
6485 
6486 	__fill_map(obj_map, s, slab);
6487 
6488 	for_each_object(p, s, addr, slab->objects)
6489 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6490 			add_location(t, s, get_track(s, p, alloc),
6491 				     is_alloc ? get_orig_size(s, p) :
6492 						s->object_size);
6493 }
6494 #endif  /* CONFIG_DEBUG_FS   */
6495 #endif	/* CONFIG_SLUB_DEBUG */
6496 
6497 #ifdef SLAB_SUPPORTS_SYSFS
6498 enum slab_stat_type {
6499 	SL_ALL,			/* All slabs */
6500 	SL_PARTIAL,		/* Only partially allocated slabs */
6501 	SL_CPU,			/* Only slabs used for cpu caches */
6502 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6503 	SL_TOTAL		/* Determine object capacity not slabs */
6504 };
6505 
6506 #define SO_ALL		(1 << SL_ALL)
6507 #define SO_PARTIAL	(1 << SL_PARTIAL)
6508 #define SO_CPU		(1 << SL_CPU)
6509 #define SO_OBJECTS	(1 << SL_OBJECTS)
6510 #define SO_TOTAL	(1 << SL_TOTAL)
6511 
6512 static ssize_t show_slab_objects(struct kmem_cache *s,
6513 				 char *buf, unsigned long flags)
6514 {
6515 	unsigned long total = 0;
6516 	int node;
6517 	int x;
6518 	unsigned long *nodes;
6519 	int len = 0;
6520 
6521 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6522 	if (!nodes)
6523 		return -ENOMEM;
6524 
6525 	if (flags & SO_CPU) {
6526 		int cpu;
6527 
6528 		for_each_possible_cpu(cpu) {
6529 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6530 							       cpu);
6531 			int node;
6532 			struct slab *slab;
6533 
6534 			slab = READ_ONCE(c->slab);
6535 			if (!slab)
6536 				continue;
6537 
6538 			node = slab_nid(slab);
6539 			if (flags & SO_TOTAL)
6540 				x = slab->objects;
6541 			else if (flags & SO_OBJECTS)
6542 				x = slab->inuse;
6543 			else
6544 				x = 1;
6545 
6546 			total += x;
6547 			nodes[node] += x;
6548 
6549 #ifdef CONFIG_SLUB_CPU_PARTIAL
6550 			slab = slub_percpu_partial_read_once(c);
6551 			if (slab) {
6552 				node = slab_nid(slab);
6553 				if (flags & SO_TOTAL)
6554 					WARN_ON_ONCE(1);
6555 				else if (flags & SO_OBJECTS)
6556 					WARN_ON_ONCE(1);
6557 				else
6558 					x = data_race(slab->slabs);
6559 				total += x;
6560 				nodes[node] += x;
6561 			}
6562 #endif
6563 		}
6564 	}
6565 
6566 	/*
6567 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6568 	 * already held which will conflict with an existing lock order:
6569 	 *
6570 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6571 	 *
6572 	 * We don't really need mem_hotplug_lock (to hold off
6573 	 * slab_mem_going_offline_callback) here because slab's memory hot
6574 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6575 	 */
6576 
6577 #ifdef CONFIG_SLUB_DEBUG
6578 	if (flags & SO_ALL) {
6579 		struct kmem_cache_node *n;
6580 
6581 		for_each_kmem_cache_node(s, node, n) {
6582 
6583 			if (flags & SO_TOTAL)
6584 				x = node_nr_objs(n);
6585 			else if (flags & SO_OBJECTS)
6586 				x = node_nr_objs(n) - count_partial(n, count_free);
6587 			else
6588 				x = node_nr_slabs(n);
6589 			total += x;
6590 			nodes[node] += x;
6591 		}
6592 
6593 	} else
6594 #endif
6595 	if (flags & SO_PARTIAL) {
6596 		struct kmem_cache_node *n;
6597 
6598 		for_each_kmem_cache_node(s, node, n) {
6599 			if (flags & SO_TOTAL)
6600 				x = count_partial(n, count_total);
6601 			else if (flags & SO_OBJECTS)
6602 				x = count_partial(n, count_inuse);
6603 			else
6604 				x = n->nr_partial;
6605 			total += x;
6606 			nodes[node] += x;
6607 		}
6608 	}
6609 
6610 	len += sysfs_emit_at(buf, len, "%lu", total);
6611 #ifdef CONFIG_NUMA
6612 	for (node = 0; node < nr_node_ids; node++) {
6613 		if (nodes[node])
6614 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6615 					     node, nodes[node]);
6616 	}
6617 #endif
6618 	len += sysfs_emit_at(buf, len, "\n");
6619 	kfree(nodes);
6620 
6621 	return len;
6622 }
6623 
6624 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6625 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6626 
6627 struct slab_attribute {
6628 	struct attribute attr;
6629 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6630 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6631 };
6632 
6633 #define SLAB_ATTR_RO(_name) \
6634 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6635 
6636 #define SLAB_ATTR(_name) \
6637 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6638 
6639 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6640 {
6641 	return sysfs_emit(buf, "%u\n", s->size);
6642 }
6643 SLAB_ATTR_RO(slab_size);
6644 
6645 static ssize_t align_show(struct kmem_cache *s, char *buf)
6646 {
6647 	return sysfs_emit(buf, "%u\n", s->align);
6648 }
6649 SLAB_ATTR_RO(align);
6650 
6651 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6652 {
6653 	return sysfs_emit(buf, "%u\n", s->object_size);
6654 }
6655 SLAB_ATTR_RO(object_size);
6656 
6657 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6658 {
6659 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6660 }
6661 SLAB_ATTR_RO(objs_per_slab);
6662 
6663 static ssize_t order_show(struct kmem_cache *s, char *buf)
6664 {
6665 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6666 }
6667 SLAB_ATTR_RO(order);
6668 
6669 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6670 {
6671 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6672 }
6673 
6674 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6675 				 size_t length)
6676 {
6677 	unsigned long min;
6678 	int err;
6679 
6680 	err = kstrtoul(buf, 10, &min);
6681 	if (err)
6682 		return err;
6683 
6684 	s->min_partial = min;
6685 	return length;
6686 }
6687 SLAB_ATTR(min_partial);
6688 
6689 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6690 {
6691 	unsigned int nr_partial = 0;
6692 #ifdef CONFIG_SLUB_CPU_PARTIAL
6693 	nr_partial = s->cpu_partial;
6694 #endif
6695 
6696 	return sysfs_emit(buf, "%u\n", nr_partial);
6697 }
6698 
6699 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6700 				 size_t length)
6701 {
6702 	unsigned int objects;
6703 	int err;
6704 
6705 	err = kstrtouint(buf, 10, &objects);
6706 	if (err)
6707 		return err;
6708 	if (objects && !kmem_cache_has_cpu_partial(s))
6709 		return -EINVAL;
6710 
6711 	slub_set_cpu_partial(s, objects);
6712 	flush_all(s);
6713 	return length;
6714 }
6715 SLAB_ATTR(cpu_partial);
6716 
6717 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6718 {
6719 	if (!s->ctor)
6720 		return 0;
6721 	return sysfs_emit(buf, "%pS\n", s->ctor);
6722 }
6723 SLAB_ATTR_RO(ctor);
6724 
6725 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6726 {
6727 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6728 }
6729 SLAB_ATTR_RO(aliases);
6730 
6731 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6732 {
6733 	return show_slab_objects(s, buf, SO_PARTIAL);
6734 }
6735 SLAB_ATTR_RO(partial);
6736 
6737 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6738 {
6739 	return show_slab_objects(s, buf, SO_CPU);
6740 }
6741 SLAB_ATTR_RO(cpu_slabs);
6742 
6743 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6744 {
6745 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6746 }
6747 SLAB_ATTR_RO(objects_partial);
6748 
6749 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6750 {
6751 	int objects = 0;
6752 	int slabs = 0;
6753 	int cpu __maybe_unused;
6754 	int len = 0;
6755 
6756 #ifdef CONFIG_SLUB_CPU_PARTIAL
6757 	for_each_online_cpu(cpu) {
6758 		struct slab *slab;
6759 
6760 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6761 
6762 		if (slab)
6763 			slabs += data_race(slab->slabs);
6764 	}
6765 #endif
6766 
6767 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6768 	objects = (slabs * oo_objects(s->oo)) / 2;
6769 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6770 
6771 #ifdef CONFIG_SLUB_CPU_PARTIAL
6772 	for_each_online_cpu(cpu) {
6773 		struct slab *slab;
6774 
6775 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6776 		if (slab) {
6777 			slabs = data_race(slab->slabs);
6778 			objects = (slabs * oo_objects(s->oo)) / 2;
6779 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6780 					     cpu, objects, slabs);
6781 		}
6782 	}
6783 #endif
6784 	len += sysfs_emit_at(buf, len, "\n");
6785 
6786 	return len;
6787 }
6788 SLAB_ATTR_RO(slabs_cpu_partial);
6789 
6790 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6791 {
6792 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6793 }
6794 SLAB_ATTR_RO(reclaim_account);
6795 
6796 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6797 {
6798 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6799 }
6800 SLAB_ATTR_RO(hwcache_align);
6801 
6802 #ifdef CONFIG_ZONE_DMA
6803 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6804 {
6805 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6806 }
6807 SLAB_ATTR_RO(cache_dma);
6808 #endif
6809 
6810 #ifdef CONFIG_HARDENED_USERCOPY
6811 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6812 {
6813 	return sysfs_emit(buf, "%u\n", s->usersize);
6814 }
6815 SLAB_ATTR_RO(usersize);
6816 #endif
6817 
6818 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6819 {
6820 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6821 }
6822 SLAB_ATTR_RO(destroy_by_rcu);
6823 
6824 #ifdef CONFIG_SLUB_DEBUG
6825 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6826 {
6827 	return show_slab_objects(s, buf, SO_ALL);
6828 }
6829 SLAB_ATTR_RO(slabs);
6830 
6831 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6832 {
6833 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6834 }
6835 SLAB_ATTR_RO(total_objects);
6836 
6837 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6838 {
6839 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6840 }
6841 SLAB_ATTR_RO(objects);
6842 
6843 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6844 {
6845 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6846 }
6847 SLAB_ATTR_RO(sanity_checks);
6848 
6849 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6850 {
6851 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6852 }
6853 SLAB_ATTR_RO(trace);
6854 
6855 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6856 {
6857 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6858 }
6859 
6860 SLAB_ATTR_RO(red_zone);
6861 
6862 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6863 {
6864 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6865 }
6866 
6867 SLAB_ATTR_RO(poison);
6868 
6869 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6870 {
6871 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6872 }
6873 
6874 SLAB_ATTR_RO(store_user);
6875 
6876 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6877 {
6878 	return 0;
6879 }
6880 
6881 static ssize_t validate_store(struct kmem_cache *s,
6882 			const char *buf, size_t length)
6883 {
6884 	int ret = -EINVAL;
6885 
6886 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6887 		ret = validate_slab_cache(s);
6888 		if (ret >= 0)
6889 			ret = length;
6890 	}
6891 	return ret;
6892 }
6893 SLAB_ATTR(validate);
6894 
6895 #endif /* CONFIG_SLUB_DEBUG */
6896 
6897 #ifdef CONFIG_FAILSLAB
6898 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6899 {
6900 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6901 }
6902 
6903 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6904 				size_t length)
6905 {
6906 	if (s->refcount > 1)
6907 		return -EINVAL;
6908 
6909 	if (buf[0] == '1')
6910 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6911 	else
6912 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6913 
6914 	return length;
6915 }
6916 SLAB_ATTR(failslab);
6917 #endif
6918 
6919 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6920 {
6921 	return 0;
6922 }
6923 
6924 static ssize_t shrink_store(struct kmem_cache *s,
6925 			const char *buf, size_t length)
6926 {
6927 	if (buf[0] == '1')
6928 		kmem_cache_shrink(s);
6929 	else
6930 		return -EINVAL;
6931 	return length;
6932 }
6933 SLAB_ATTR(shrink);
6934 
6935 #ifdef CONFIG_NUMA
6936 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6937 {
6938 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6939 }
6940 
6941 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6942 				const char *buf, size_t length)
6943 {
6944 	unsigned int ratio;
6945 	int err;
6946 
6947 	err = kstrtouint(buf, 10, &ratio);
6948 	if (err)
6949 		return err;
6950 	if (ratio > 100)
6951 		return -ERANGE;
6952 
6953 	s->remote_node_defrag_ratio = ratio * 10;
6954 
6955 	return length;
6956 }
6957 SLAB_ATTR(remote_node_defrag_ratio);
6958 #endif
6959 
6960 #ifdef CONFIG_SLUB_STATS
6961 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6962 {
6963 	unsigned long sum  = 0;
6964 	int cpu;
6965 	int len = 0;
6966 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6967 
6968 	if (!data)
6969 		return -ENOMEM;
6970 
6971 	for_each_online_cpu(cpu) {
6972 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6973 
6974 		data[cpu] = x;
6975 		sum += x;
6976 	}
6977 
6978 	len += sysfs_emit_at(buf, len, "%lu", sum);
6979 
6980 #ifdef CONFIG_SMP
6981 	for_each_online_cpu(cpu) {
6982 		if (data[cpu])
6983 			len += sysfs_emit_at(buf, len, " C%d=%u",
6984 					     cpu, data[cpu]);
6985 	}
6986 #endif
6987 	kfree(data);
6988 	len += sysfs_emit_at(buf, len, "\n");
6989 
6990 	return len;
6991 }
6992 
6993 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6994 {
6995 	int cpu;
6996 
6997 	for_each_online_cpu(cpu)
6998 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6999 }
7000 
7001 #define STAT_ATTR(si, text) 					\
7002 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
7003 {								\
7004 	return show_stat(s, buf, si);				\
7005 }								\
7006 static ssize_t text##_store(struct kmem_cache *s,		\
7007 				const char *buf, size_t length)	\
7008 {								\
7009 	if (buf[0] != '0')					\
7010 		return -EINVAL;					\
7011 	clear_stat(s, si);					\
7012 	return length;						\
7013 }								\
7014 SLAB_ATTR(text);						\
7015 
7016 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7017 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7018 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7019 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7020 STAT_ATTR(FREE_FROZEN, free_frozen);
7021 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7022 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7023 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7024 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7025 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7026 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7027 STAT_ATTR(FREE_SLAB, free_slab);
7028 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7029 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7030 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7031 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7032 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7033 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7034 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7035 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7036 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7037 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7038 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7039 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7040 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7041 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7042 #endif	/* CONFIG_SLUB_STATS */
7043 
7044 #ifdef CONFIG_KFENCE
7045 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7046 {
7047 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7048 }
7049 
7050 static ssize_t skip_kfence_store(struct kmem_cache *s,
7051 			const char *buf, size_t length)
7052 {
7053 	int ret = length;
7054 
7055 	if (buf[0] == '0')
7056 		s->flags &= ~SLAB_SKIP_KFENCE;
7057 	else if (buf[0] == '1')
7058 		s->flags |= SLAB_SKIP_KFENCE;
7059 	else
7060 		ret = -EINVAL;
7061 
7062 	return ret;
7063 }
7064 SLAB_ATTR(skip_kfence);
7065 #endif
7066 
7067 static struct attribute *slab_attrs[] = {
7068 	&slab_size_attr.attr,
7069 	&object_size_attr.attr,
7070 	&objs_per_slab_attr.attr,
7071 	&order_attr.attr,
7072 	&min_partial_attr.attr,
7073 	&cpu_partial_attr.attr,
7074 	&objects_partial_attr.attr,
7075 	&partial_attr.attr,
7076 	&cpu_slabs_attr.attr,
7077 	&ctor_attr.attr,
7078 	&aliases_attr.attr,
7079 	&align_attr.attr,
7080 	&hwcache_align_attr.attr,
7081 	&reclaim_account_attr.attr,
7082 	&destroy_by_rcu_attr.attr,
7083 	&shrink_attr.attr,
7084 	&slabs_cpu_partial_attr.attr,
7085 #ifdef CONFIG_SLUB_DEBUG
7086 	&total_objects_attr.attr,
7087 	&objects_attr.attr,
7088 	&slabs_attr.attr,
7089 	&sanity_checks_attr.attr,
7090 	&trace_attr.attr,
7091 	&red_zone_attr.attr,
7092 	&poison_attr.attr,
7093 	&store_user_attr.attr,
7094 	&validate_attr.attr,
7095 #endif
7096 #ifdef CONFIG_ZONE_DMA
7097 	&cache_dma_attr.attr,
7098 #endif
7099 #ifdef CONFIG_NUMA
7100 	&remote_node_defrag_ratio_attr.attr,
7101 #endif
7102 #ifdef CONFIG_SLUB_STATS
7103 	&alloc_fastpath_attr.attr,
7104 	&alloc_slowpath_attr.attr,
7105 	&free_fastpath_attr.attr,
7106 	&free_slowpath_attr.attr,
7107 	&free_frozen_attr.attr,
7108 	&free_add_partial_attr.attr,
7109 	&free_remove_partial_attr.attr,
7110 	&alloc_from_partial_attr.attr,
7111 	&alloc_slab_attr.attr,
7112 	&alloc_refill_attr.attr,
7113 	&alloc_node_mismatch_attr.attr,
7114 	&free_slab_attr.attr,
7115 	&cpuslab_flush_attr.attr,
7116 	&deactivate_full_attr.attr,
7117 	&deactivate_empty_attr.attr,
7118 	&deactivate_to_head_attr.attr,
7119 	&deactivate_to_tail_attr.attr,
7120 	&deactivate_remote_frees_attr.attr,
7121 	&deactivate_bypass_attr.attr,
7122 	&order_fallback_attr.attr,
7123 	&cmpxchg_double_fail_attr.attr,
7124 	&cmpxchg_double_cpu_fail_attr.attr,
7125 	&cpu_partial_alloc_attr.attr,
7126 	&cpu_partial_free_attr.attr,
7127 	&cpu_partial_node_attr.attr,
7128 	&cpu_partial_drain_attr.attr,
7129 #endif
7130 #ifdef CONFIG_FAILSLAB
7131 	&failslab_attr.attr,
7132 #endif
7133 #ifdef CONFIG_HARDENED_USERCOPY
7134 	&usersize_attr.attr,
7135 #endif
7136 #ifdef CONFIG_KFENCE
7137 	&skip_kfence_attr.attr,
7138 #endif
7139 
7140 	NULL
7141 };
7142 
7143 static const struct attribute_group slab_attr_group = {
7144 	.attrs = slab_attrs,
7145 };
7146 
7147 static ssize_t slab_attr_show(struct kobject *kobj,
7148 				struct attribute *attr,
7149 				char *buf)
7150 {
7151 	struct slab_attribute *attribute;
7152 	struct kmem_cache *s;
7153 
7154 	attribute = to_slab_attr(attr);
7155 	s = to_slab(kobj);
7156 
7157 	if (!attribute->show)
7158 		return -EIO;
7159 
7160 	return attribute->show(s, buf);
7161 }
7162 
7163 static ssize_t slab_attr_store(struct kobject *kobj,
7164 				struct attribute *attr,
7165 				const char *buf, size_t len)
7166 {
7167 	struct slab_attribute *attribute;
7168 	struct kmem_cache *s;
7169 
7170 	attribute = to_slab_attr(attr);
7171 	s = to_slab(kobj);
7172 
7173 	if (!attribute->store)
7174 		return -EIO;
7175 
7176 	return attribute->store(s, buf, len);
7177 }
7178 
7179 static void kmem_cache_release(struct kobject *k)
7180 {
7181 	slab_kmem_cache_release(to_slab(k));
7182 }
7183 
7184 static const struct sysfs_ops slab_sysfs_ops = {
7185 	.show = slab_attr_show,
7186 	.store = slab_attr_store,
7187 };
7188 
7189 static const struct kobj_type slab_ktype = {
7190 	.sysfs_ops = &slab_sysfs_ops,
7191 	.release = kmem_cache_release,
7192 };
7193 
7194 static struct kset *slab_kset;
7195 
7196 static inline struct kset *cache_kset(struct kmem_cache *s)
7197 {
7198 	return slab_kset;
7199 }
7200 
7201 #define ID_STR_LENGTH 32
7202 
7203 /* Create a unique string id for a slab cache:
7204  *
7205  * Format	:[flags-]size
7206  */
7207 static char *create_unique_id(struct kmem_cache *s)
7208 {
7209 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7210 	char *p = name;
7211 
7212 	if (!name)
7213 		return ERR_PTR(-ENOMEM);
7214 
7215 	*p++ = ':';
7216 	/*
7217 	 * First flags affecting slabcache operations. We will only
7218 	 * get here for aliasable slabs so we do not need to support
7219 	 * too many flags. The flags here must cover all flags that
7220 	 * are matched during merging to guarantee that the id is
7221 	 * unique.
7222 	 */
7223 	if (s->flags & SLAB_CACHE_DMA)
7224 		*p++ = 'd';
7225 	if (s->flags & SLAB_CACHE_DMA32)
7226 		*p++ = 'D';
7227 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7228 		*p++ = 'a';
7229 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7230 		*p++ = 'F';
7231 	if (s->flags & SLAB_ACCOUNT)
7232 		*p++ = 'A';
7233 	if (p != name + 1)
7234 		*p++ = '-';
7235 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7236 
7237 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7238 		kfree(name);
7239 		return ERR_PTR(-EINVAL);
7240 	}
7241 	kmsan_unpoison_memory(name, p - name);
7242 	return name;
7243 }
7244 
7245 static int sysfs_slab_add(struct kmem_cache *s)
7246 {
7247 	int err;
7248 	const char *name;
7249 	struct kset *kset = cache_kset(s);
7250 	int unmergeable = slab_unmergeable(s);
7251 
7252 	if (!unmergeable && disable_higher_order_debug &&
7253 			(slub_debug & DEBUG_METADATA_FLAGS))
7254 		unmergeable = 1;
7255 
7256 	if (unmergeable) {
7257 		/*
7258 		 * Slabcache can never be merged so we can use the name proper.
7259 		 * This is typically the case for debug situations. In that
7260 		 * case we can catch duplicate names easily.
7261 		 */
7262 		sysfs_remove_link(&slab_kset->kobj, s->name);
7263 		name = s->name;
7264 	} else {
7265 		/*
7266 		 * Create a unique name for the slab as a target
7267 		 * for the symlinks.
7268 		 */
7269 		name = create_unique_id(s);
7270 		if (IS_ERR(name))
7271 			return PTR_ERR(name);
7272 	}
7273 
7274 	s->kobj.kset = kset;
7275 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7276 	if (err)
7277 		goto out;
7278 
7279 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7280 	if (err)
7281 		goto out_del_kobj;
7282 
7283 	if (!unmergeable) {
7284 		/* Setup first alias */
7285 		sysfs_slab_alias(s, s->name);
7286 	}
7287 out:
7288 	if (!unmergeable)
7289 		kfree(name);
7290 	return err;
7291 out_del_kobj:
7292 	kobject_del(&s->kobj);
7293 	goto out;
7294 }
7295 
7296 void sysfs_slab_unlink(struct kmem_cache *s)
7297 {
7298 	if (s->kobj.state_in_sysfs)
7299 		kobject_del(&s->kobj);
7300 }
7301 
7302 void sysfs_slab_release(struct kmem_cache *s)
7303 {
7304 	kobject_put(&s->kobj);
7305 }
7306 
7307 /*
7308  * Need to buffer aliases during bootup until sysfs becomes
7309  * available lest we lose that information.
7310  */
7311 struct saved_alias {
7312 	struct kmem_cache *s;
7313 	const char *name;
7314 	struct saved_alias *next;
7315 };
7316 
7317 static struct saved_alias *alias_list;
7318 
7319 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7320 {
7321 	struct saved_alias *al;
7322 
7323 	if (slab_state == FULL) {
7324 		/*
7325 		 * If we have a leftover link then remove it.
7326 		 */
7327 		sysfs_remove_link(&slab_kset->kobj, name);
7328 		/*
7329 		 * The original cache may have failed to generate sysfs file.
7330 		 * In that case, sysfs_create_link() returns -ENOENT and
7331 		 * symbolic link creation is skipped.
7332 		 */
7333 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7334 	}
7335 
7336 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7337 	if (!al)
7338 		return -ENOMEM;
7339 
7340 	al->s = s;
7341 	al->name = name;
7342 	al->next = alias_list;
7343 	alias_list = al;
7344 	kmsan_unpoison_memory(al, sizeof(*al));
7345 	return 0;
7346 }
7347 
7348 static int __init slab_sysfs_init(void)
7349 {
7350 	struct kmem_cache *s;
7351 	int err;
7352 
7353 	mutex_lock(&slab_mutex);
7354 
7355 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7356 	if (!slab_kset) {
7357 		mutex_unlock(&slab_mutex);
7358 		pr_err("Cannot register slab subsystem.\n");
7359 		return -ENOMEM;
7360 	}
7361 
7362 	slab_state = FULL;
7363 
7364 	list_for_each_entry(s, &slab_caches, list) {
7365 		err = sysfs_slab_add(s);
7366 		if (err)
7367 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7368 			       s->name);
7369 	}
7370 
7371 	while (alias_list) {
7372 		struct saved_alias *al = alias_list;
7373 
7374 		alias_list = alias_list->next;
7375 		err = sysfs_slab_alias(al->s, al->name);
7376 		if (err)
7377 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7378 			       al->name);
7379 		kfree(al);
7380 	}
7381 
7382 	mutex_unlock(&slab_mutex);
7383 	return 0;
7384 }
7385 late_initcall(slab_sysfs_init);
7386 #endif /* SLAB_SUPPORTS_SYSFS */
7387 
7388 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7389 static int slab_debugfs_show(struct seq_file *seq, void *v)
7390 {
7391 	struct loc_track *t = seq->private;
7392 	struct location *l;
7393 	unsigned long idx;
7394 
7395 	idx = (unsigned long) t->idx;
7396 	if (idx < t->count) {
7397 		l = &t->loc[idx];
7398 
7399 		seq_printf(seq, "%7ld ", l->count);
7400 
7401 		if (l->addr)
7402 			seq_printf(seq, "%pS", (void *)l->addr);
7403 		else
7404 			seq_puts(seq, "<not-available>");
7405 
7406 		if (l->waste)
7407 			seq_printf(seq, " waste=%lu/%lu",
7408 				l->count * l->waste, l->waste);
7409 
7410 		if (l->sum_time != l->min_time) {
7411 			seq_printf(seq, " age=%ld/%llu/%ld",
7412 				l->min_time, div_u64(l->sum_time, l->count),
7413 				l->max_time);
7414 		} else
7415 			seq_printf(seq, " age=%ld", l->min_time);
7416 
7417 		if (l->min_pid != l->max_pid)
7418 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7419 		else
7420 			seq_printf(seq, " pid=%ld",
7421 				l->min_pid);
7422 
7423 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7424 			seq_printf(seq, " cpus=%*pbl",
7425 				 cpumask_pr_args(to_cpumask(l->cpus)));
7426 
7427 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7428 			seq_printf(seq, " nodes=%*pbl",
7429 				 nodemask_pr_args(&l->nodes));
7430 
7431 #ifdef CONFIG_STACKDEPOT
7432 		{
7433 			depot_stack_handle_t handle;
7434 			unsigned long *entries;
7435 			unsigned int nr_entries, j;
7436 
7437 			handle = READ_ONCE(l->handle);
7438 			if (handle) {
7439 				nr_entries = stack_depot_fetch(handle, &entries);
7440 				seq_puts(seq, "\n");
7441 				for (j = 0; j < nr_entries; j++)
7442 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7443 			}
7444 		}
7445 #endif
7446 		seq_puts(seq, "\n");
7447 	}
7448 
7449 	if (!idx && !t->count)
7450 		seq_puts(seq, "No data\n");
7451 
7452 	return 0;
7453 }
7454 
7455 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7456 {
7457 }
7458 
7459 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7460 {
7461 	struct loc_track *t = seq->private;
7462 
7463 	t->idx = ++(*ppos);
7464 	if (*ppos <= t->count)
7465 		return ppos;
7466 
7467 	return NULL;
7468 }
7469 
7470 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7471 {
7472 	struct location *loc1 = (struct location *)a;
7473 	struct location *loc2 = (struct location *)b;
7474 
7475 	if (loc1->count > loc2->count)
7476 		return -1;
7477 	else
7478 		return 1;
7479 }
7480 
7481 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7482 {
7483 	struct loc_track *t = seq->private;
7484 
7485 	t->idx = *ppos;
7486 	return ppos;
7487 }
7488 
7489 static const struct seq_operations slab_debugfs_sops = {
7490 	.start  = slab_debugfs_start,
7491 	.next   = slab_debugfs_next,
7492 	.stop   = slab_debugfs_stop,
7493 	.show   = slab_debugfs_show,
7494 };
7495 
7496 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7497 {
7498 
7499 	struct kmem_cache_node *n;
7500 	enum track_item alloc;
7501 	int node;
7502 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7503 						sizeof(struct loc_track));
7504 	struct kmem_cache *s = file_inode(filep)->i_private;
7505 	unsigned long *obj_map;
7506 
7507 	if (!t)
7508 		return -ENOMEM;
7509 
7510 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7511 	if (!obj_map) {
7512 		seq_release_private(inode, filep);
7513 		return -ENOMEM;
7514 	}
7515 
7516 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7517 		alloc = TRACK_ALLOC;
7518 	else
7519 		alloc = TRACK_FREE;
7520 
7521 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7522 		bitmap_free(obj_map);
7523 		seq_release_private(inode, filep);
7524 		return -ENOMEM;
7525 	}
7526 
7527 	for_each_kmem_cache_node(s, node, n) {
7528 		unsigned long flags;
7529 		struct slab *slab;
7530 
7531 		if (!node_nr_slabs(n))
7532 			continue;
7533 
7534 		spin_lock_irqsave(&n->list_lock, flags);
7535 		list_for_each_entry(slab, &n->partial, slab_list)
7536 			process_slab(t, s, slab, alloc, obj_map);
7537 		list_for_each_entry(slab, &n->full, slab_list)
7538 			process_slab(t, s, slab, alloc, obj_map);
7539 		spin_unlock_irqrestore(&n->list_lock, flags);
7540 	}
7541 
7542 	/* Sort locations by count */
7543 	sort_r(t->loc, t->count, sizeof(struct location),
7544 		cmp_loc_by_count, NULL, NULL);
7545 
7546 	bitmap_free(obj_map);
7547 	return 0;
7548 }
7549 
7550 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7551 {
7552 	struct seq_file *seq = file->private_data;
7553 	struct loc_track *t = seq->private;
7554 
7555 	free_loc_track(t);
7556 	return seq_release_private(inode, file);
7557 }
7558 
7559 static const struct file_operations slab_debugfs_fops = {
7560 	.open    = slab_debug_trace_open,
7561 	.read    = seq_read,
7562 	.llseek  = seq_lseek,
7563 	.release = slab_debug_trace_release,
7564 };
7565 
7566 static void debugfs_slab_add(struct kmem_cache *s)
7567 {
7568 	struct dentry *slab_cache_dir;
7569 
7570 	if (unlikely(!slab_debugfs_root))
7571 		return;
7572 
7573 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7574 
7575 	debugfs_create_file("alloc_traces", 0400,
7576 		slab_cache_dir, s, &slab_debugfs_fops);
7577 
7578 	debugfs_create_file("free_traces", 0400,
7579 		slab_cache_dir, s, &slab_debugfs_fops);
7580 }
7581 
7582 void debugfs_slab_release(struct kmem_cache *s)
7583 {
7584 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7585 }
7586 
7587 static int __init slab_debugfs_init(void)
7588 {
7589 	struct kmem_cache *s;
7590 
7591 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7592 
7593 	list_for_each_entry(s, &slab_caches, list)
7594 		if (s->flags & SLAB_STORE_USER)
7595 			debugfs_slab_add(s);
7596 
7597 	return 0;
7598 
7599 }
7600 __initcall(slab_debugfs_init);
7601 #endif
7602 /*
7603  * The /proc/slabinfo ABI
7604  */
7605 #ifdef CONFIG_SLUB_DEBUG
7606 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7607 {
7608 	unsigned long nr_slabs = 0;
7609 	unsigned long nr_objs = 0;
7610 	unsigned long nr_free = 0;
7611 	int node;
7612 	struct kmem_cache_node *n;
7613 
7614 	for_each_kmem_cache_node(s, node, n) {
7615 		nr_slabs += node_nr_slabs(n);
7616 		nr_objs += node_nr_objs(n);
7617 		nr_free += count_partial_free_approx(n);
7618 	}
7619 
7620 	sinfo->active_objs = nr_objs - nr_free;
7621 	sinfo->num_objs = nr_objs;
7622 	sinfo->active_slabs = nr_slabs;
7623 	sinfo->num_slabs = nr_slabs;
7624 	sinfo->objects_per_slab = oo_objects(s->oo);
7625 	sinfo->cache_order = oo_order(s->oo);
7626 }
7627 #endif /* CONFIG_SLUB_DEBUG */
7628