xref: /linux/mm/slub.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * Returns freelist pointer (ptr). With hardening, this is obfuscated
470  * with an XOR of the address where the pointer is held and a per-cache
471  * random number.
472  */
473 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
474 					    void *ptr, unsigned long ptr_addr)
475 {
476 	unsigned long encoded;
477 
478 #ifdef CONFIG_SLAB_FREELIST_HARDENED
479 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
480 #else
481 	encoded = (unsigned long)ptr;
482 #endif
483 	return (freeptr_t){.v = encoded};
484 }
485 
486 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
487 					freeptr_t ptr, unsigned long ptr_addr)
488 {
489 	void *decoded;
490 
491 #ifdef CONFIG_SLAB_FREELIST_HARDENED
492 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
493 #else
494 	decoded = (void *)ptr.v;
495 #endif
496 	return decoded;
497 }
498 
499 static inline void *get_freepointer(struct kmem_cache *s, void *object)
500 {
501 	unsigned long ptr_addr;
502 	freeptr_t p;
503 
504 	object = kasan_reset_tag(object);
505 	ptr_addr = (unsigned long)object + s->offset;
506 	p = *(freeptr_t *)(ptr_addr);
507 	return freelist_ptr_decode(s, p, ptr_addr);
508 }
509 
510 #ifndef CONFIG_SLUB_TINY
511 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
512 {
513 	prefetchw(object + s->offset);
514 }
515 #endif
516 
517 /*
518  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
519  * pointer value in the case the current thread loses the race for the next
520  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
521  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
522  * KMSAN will still check all arguments of cmpxchg because of imperfect
523  * handling of inline assembly.
524  * To work around this problem, we apply __no_kmsan_checks to ensure that
525  * get_freepointer_safe() returns initialized memory.
526  */
527 __no_kmsan_checks
528 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
529 {
530 	unsigned long freepointer_addr;
531 	freeptr_t p;
532 
533 	if (!debug_pagealloc_enabled_static())
534 		return get_freepointer(s, object);
535 
536 	object = kasan_reset_tag(object);
537 	freepointer_addr = (unsigned long)object + s->offset;
538 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
539 	return freelist_ptr_decode(s, p, freepointer_addr);
540 }
541 
542 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
543 {
544 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
545 
546 #ifdef CONFIG_SLAB_FREELIST_HARDENED
547 	BUG_ON(object == fp); /* naive detection of double free or corruption */
548 #endif
549 
550 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
551 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
552 }
553 
554 /*
555  * See comment in calculate_sizes().
556  */
557 static inline bool freeptr_outside_object(struct kmem_cache *s)
558 {
559 	return s->offset >= s->inuse;
560 }
561 
562 /*
563  * Return offset of the end of info block which is inuse + free pointer if
564  * not overlapping with object.
565  */
566 static inline unsigned int get_info_end(struct kmem_cache *s)
567 {
568 	if (freeptr_outside_object(s))
569 		return s->inuse + sizeof(void *);
570 	else
571 		return s->inuse;
572 }
573 
574 /* Loop over all objects in a slab */
575 #define for_each_object(__p, __s, __addr, __objects) \
576 	for (__p = fixup_red_left(__s, __addr); \
577 		__p < (__addr) + (__objects) * (__s)->size; \
578 		__p += (__s)->size)
579 
580 static inline unsigned int order_objects(unsigned int order, unsigned int size)
581 {
582 	return ((unsigned int)PAGE_SIZE << order) / size;
583 }
584 
585 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
586 		unsigned int size)
587 {
588 	struct kmem_cache_order_objects x = {
589 		(order << OO_SHIFT) + order_objects(order, size)
590 	};
591 
592 	return x;
593 }
594 
595 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
596 {
597 	return x.x >> OO_SHIFT;
598 }
599 
600 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
601 {
602 	return x.x & OO_MASK;
603 }
604 
605 #ifdef CONFIG_SLUB_CPU_PARTIAL
606 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
607 {
608 	unsigned int nr_slabs;
609 
610 	s->cpu_partial = nr_objects;
611 
612 	/*
613 	 * We take the number of objects but actually limit the number of
614 	 * slabs on the per cpu partial list, in order to limit excessive
615 	 * growth of the list. For simplicity we assume that the slabs will
616 	 * be half-full.
617 	 */
618 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
619 	s->cpu_partial_slabs = nr_slabs;
620 }
621 
622 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
623 {
624 	return s->cpu_partial_slabs;
625 }
626 #else
627 static inline void
628 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
629 {
630 }
631 
632 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
633 {
634 	return 0;
635 }
636 #endif /* CONFIG_SLUB_CPU_PARTIAL */
637 
638 /*
639  * Per slab locking using the pagelock
640  */
641 static __always_inline void slab_lock(struct slab *slab)
642 {
643 	bit_spin_lock(PG_locked, &slab->__page_flags);
644 }
645 
646 static __always_inline void slab_unlock(struct slab *slab)
647 {
648 	bit_spin_unlock(PG_locked, &slab->__page_flags);
649 }
650 
651 static inline bool
652 __update_freelist_fast(struct slab *slab,
653 		      void *freelist_old, unsigned long counters_old,
654 		      void *freelist_new, unsigned long counters_new)
655 {
656 #ifdef system_has_freelist_aba
657 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
658 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
659 
660 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
661 #else
662 	return false;
663 #endif
664 }
665 
666 static inline bool
667 __update_freelist_slow(struct slab *slab,
668 		      void *freelist_old, unsigned long counters_old,
669 		      void *freelist_new, unsigned long counters_new)
670 {
671 	bool ret = false;
672 
673 	slab_lock(slab);
674 	if (slab->freelist == freelist_old &&
675 	    slab->counters == counters_old) {
676 		slab->freelist = freelist_new;
677 		slab->counters = counters_new;
678 		ret = true;
679 	}
680 	slab_unlock(slab);
681 
682 	return ret;
683 }
684 
685 /*
686  * Interrupts must be disabled (for the fallback code to work right), typically
687  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
688  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
689  * allocation/ free operation in hardirq context. Therefore nothing can
690  * interrupt the operation.
691  */
692 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
693 		void *freelist_old, unsigned long counters_old,
694 		void *freelist_new, unsigned long counters_new,
695 		const char *n)
696 {
697 	bool ret;
698 
699 	if (USE_LOCKLESS_FAST_PATH())
700 		lockdep_assert_irqs_disabled();
701 
702 	if (s->flags & __CMPXCHG_DOUBLE) {
703 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
704 				            freelist_new, counters_new);
705 	} else {
706 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
707 				            freelist_new, counters_new);
708 	}
709 	if (likely(ret))
710 		return true;
711 
712 	cpu_relax();
713 	stat(s, CMPXCHG_DOUBLE_FAIL);
714 
715 #ifdef SLUB_DEBUG_CMPXCHG
716 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
717 #endif
718 
719 	return false;
720 }
721 
722 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
723 		void *freelist_old, unsigned long counters_old,
724 		void *freelist_new, unsigned long counters_new,
725 		const char *n)
726 {
727 	bool ret;
728 
729 	if (s->flags & __CMPXCHG_DOUBLE) {
730 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
731 				            freelist_new, counters_new);
732 	} else {
733 		unsigned long flags;
734 
735 		local_irq_save(flags);
736 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
737 				            freelist_new, counters_new);
738 		local_irq_restore(flags);
739 	}
740 	if (likely(ret))
741 		return true;
742 
743 	cpu_relax();
744 	stat(s, CMPXCHG_DOUBLE_FAIL);
745 
746 #ifdef SLUB_DEBUG_CMPXCHG
747 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
748 #endif
749 
750 	return false;
751 }
752 
753 /*
754  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
755  * family will round up the real request size to these fixed ones, so
756  * there could be an extra area than what is requested. Save the original
757  * request size in the meta data area, for better debug and sanity check.
758  */
759 static inline void set_orig_size(struct kmem_cache *s,
760 				void *object, unsigned int orig_size)
761 {
762 	void *p = kasan_reset_tag(object);
763 	unsigned int kasan_meta_size;
764 
765 	if (!slub_debug_orig_size(s))
766 		return;
767 
768 	/*
769 	 * KASAN can save its free meta data inside of the object at offset 0.
770 	 * If this meta data size is larger than 'orig_size', it will overlap
771 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
772 	 * 'orig_size' to be as at least as big as KASAN's meta data.
773 	 */
774 	kasan_meta_size = kasan_metadata_size(s, true);
775 	if (kasan_meta_size > orig_size)
776 		orig_size = kasan_meta_size;
777 
778 	p += get_info_end(s);
779 	p += sizeof(struct track) * 2;
780 
781 	*(unsigned int *)p = orig_size;
782 }
783 
784 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
785 {
786 	void *p = kasan_reset_tag(object);
787 
788 	if (!slub_debug_orig_size(s))
789 		return s->object_size;
790 
791 	p += get_info_end(s);
792 	p += sizeof(struct track) * 2;
793 
794 	return *(unsigned int *)p;
795 }
796 
797 #ifdef CONFIG_SLUB_DEBUG
798 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
799 static DEFINE_SPINLOCK(object_map_lock);
800 
801 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
802 		       struct slab *slab)
803 {
804 	void *addr = slab_address(slab);
805 	void *p;
806 
807 	bitmap_zero(obj_map, slab->objects);
808 
809 	for (p = slab->freelist; p; p = get_freepointer(s, p))
810 		set_bit(__obj_to_index(s, addr, p), obj_map);
811 }
812 
813 #if IS_ENABLED(CONFIG_KUNIT)
814 static bool slab_add_kunit_errors(void)
815 {
816 	struct kunit_resource *resource;
817 
818 	if (!kunit_get_current_test())
819 		return false;
820 
821 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
822 	if (!resource)
823 		return false;
824 
825 	(*(int *)resource->data)++;
826 	kunit_put_resource(resource);
827 	return true;
828 }
829 
830 static bool slab_in_kunit_test(void)
831 {
832 	struct kunit_resource *resource;
833 
834 	if (!kunit_get_current_test())
835 		return false;
836 
837 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
838 	if (!resource)
839 		return false;
840 
841 	kunit_put_resource(resource);
842 	return true;
843 }
844 #else
845 static inline bool slab_add_kunit_errors(void) { return false; }
846 static inline bool slab_in_kunit_test(void) { return false; }
847 #endif
848 
849 static inline unsigned int size_from_object(struct kmem_cache *s)
850 {
851 	if (s->flags & SLAB_RED_ZONE)
852 		return s->size - s->red_left_pad;
853 
854 	return s->size;
855 }
856 
857 static inline void *restore_red_left(struct kmem_cache *s, void *p)
858 {
859 	if (s->flags & SLAB_RED_ZONE)
860 		p -= s->red_left_pad;
861 
862 	return p;
863 }
864 
865 /*
866  * Debug settings:
867  */
868 #if defined(CONFIG_SLUB_DEBUG_ON)
869 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
870 #else
871 static slab_flags_t slub_debug;
872 #endif
873 
874 static char *slub_debug_string;
875 static int disable_higher_order_debug;
876 
877 /*
878  * slub is about to manipulate internal object metadata.  This memory lies
879  * outside the range of the allocated object, so accessing it would normally
880  * be reported by kasan as a bounds error.  metadata_access_enable() is used
881  * to tell kasan that these accesses are OK.
882  */
883 static inline void metadata_access_enable(void)
884 {
885 	kasan_disable_current();
886 	kmsan_disable_current();
887 }
888 
889 static inline void metadata_access_disable(void)
890 {
891 	kmsan_enable_current();
892 	kasan_enable_current();
893 }
894 
895 /*
896  * Object debugging
897  */
898 
899 /* Verify that a pointer has an address that is valid within a slab page */
900 static inline int check_valid_pointer(struct kmem_cache *s,
901 				struct slab *slab, void *object)
902 {
903 	void *base;
904 
905 	if (!object)
906 		return 1;
907 
908 	base = slab_address(slab);
909 	object = kasan_reset_tag(object);
910 	object = restore_red_left(s, object);
911 	if (object < base || object >= base + slab->objects * s->size ||
912 		(object - base) % s->size) {
913 		return 0;
914 	}
915 
916 	return 1;
917 }
918 
919 static void print_section(char *level, char *text, u8 *addr,
920 			  unsigned int length)
921 {
922 	metadata_access_enable();
923 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
924 			16, 1, kasan_reset_tag((void *)addr), length, 1);
925 	metadata_access_disable();
926 }
927 
928 static struct track *get_track(struct kmem_cache *s, void *object,
929 	enum track_item alloc)
930 {
931 	struct track *p;
932 
933 	p = object + get_info_end(s);
934 
935 	return kasan_reset_tag(p + alloc);
936 }
937 
938 #ifdef CONFIG_STACKDEPOT
939 static noinline depot_stack_handle_t set_track_prepare(void)
940 {
941 	depot_stack_handle_t handle;
942 	unsigned long entries[TRACK_ADDRS_COUNT];
943 	unsigned int nr_entries;
944 
945 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
946 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
947 
948 	return handle;
949 }
950 #else
951 static inline depot_stack_handle_t set_track_prepare(void)
952 {
953 	return 0;
954 }
955 #endif
956 
957 static void set_track_update(struct kmem_cache *s, void *object,
958 			     enum track_item alloc, unsigned long addr,
959 			     depot_stack_handle_t handle)
960 {
961 	struct track *p = get_track(s, object, alloc);
962 
963 #ifdef CONFIG_STACKDEPOT
964 	p->handle = handle;
965 #endif
966 	p->addr = addr;
967 	p->cpu = smp_processor_id();
968 	p->pid = current->pid;
969 	p->when = jiffies;
970 }
971 
972 static __always_inline void set_track(struct kmem_cache *s, void *object,
973 				      enum track_item alloc, unsigned long addr)
974 {
975 	depot_stack_handle_t handle = set_track_prepare();
976 
977 	set_track_update(s, object, alloc, addr, handle);
978 }
979 
980 static void init_tracking(struct kmem_cache *s, void *object)
981 {
982 	struct track *p;
983 
984 	if (!(s->flags & SLAB_STORE_USER))
985 		return;
986 
987 	p = get_track(s, object, TRACK_ALLOC);
988 	memset(p, 0, 2*sizeof(struct track));
989 }
990 
991 static void print_track(const char *s, struct track *t, unsigned long pr_time)
992 {
993 	depot_stack_handle_t handle __maybe_unused;
994 
995 	if (!t->addr)
996 		return;
997 
998 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
999 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1000 #ifdef CONFIG_STACKDEPOT
1001 	handle = READ_ONCE(t->handle);
1002 	if (handle)
1003 		stack_depot_print(handle);
1004 	else
1005 		pr_err("object allocation/free stack trace missing\n");
1006 #endif
1007 }
1008 
1009 void print_tracking(struct kmem_cache *s, void *object)
1010 {
1011 	unsigned long pr_time = jiffies;
1012 	if (!(s->flags & SLAB_STORE_USER))
1013 		return;
1014 
1015 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1016 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1017 }
1018 
1019 static void print_slab_info(const struct slab *slab)
1020 {
1021 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1022 	       slab, slab->objects, slab->inuse, slab->freelist,
1023 	       &slab->__page_flags);
1024 }
1025 
1026 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1027 {
1028 	set_orig_size(s, (void *)object, s->object_size);
1029 }
1030 
1031 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1032 {
1033 	struct va_format vaf;
1034 	va_list args;
1035 
1036 	va_start(args, fmt);
1037 	vaf.fmt = fmt;
1038 	vaf.va = &args;
1039 	pr_err("=============================================================================\n");
1040 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1041 	pr_err("-----------------------------------------------------------------------------\n\n");
1042 	va_end(args);
1043 }
1044 
1045 __printf(2, 3)
1046 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1047 {
1048 	struct va_format vaf;
1049 	va_list args;
1050 
1051 	if (slab_add_kunit_errors())
1052 		return;
1053 
1054 	va_start(args, fmt);
1055 	vaf.fmt = fmt;
1056 	vaf.va = &args;
1057 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1058 	va_end(args);
1059 }
1060 
1061 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1062 {
1063 	unsigned int off;	/* Offset of last byte */
1064 	u8 *addr = slab_address(slab);
1065 
1066 	print_tracking(s, p);
1067 
1068 	print_slab_info(slab);
1069 
1070 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1071 	       p, p - addr, get_freepointer(s, p));
1072 
1073 	if (s->flags & SLAB_RED_ZONE)
1074 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1075 			      s->red_left_pad);
1076 	else if (p > addr + 16)
1077 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1078 
1079 	print_section(KERN_ERR,         "Object   ", p,
1080 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1081 	if (s->flags & SLAB_RED_ZONE)
1082 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1083 			s->inuse - s->object_size);
1084 
1085 	off = get_info_end(s);
1086 
1087 	if (s->flags & SLAB_STORE_USER)
1088 		off += 2 * sizeof(struct track);
1089 
1090 	if (slub_debug_orig_size(s))
1091 		off += sizeof(unsigned int);
1092 
1093 	off += kasan_metadata_size(s, false);
1094 
1095 	if (off != size_from_object(s))
1096 		/* Beginning of the filler is the free pointer */
1097 		print_section(KERN_ERR, "Padding  ", p + off,
1098 			      size_from_object(s) - off);
1099 
1100 	dump_stack();
1101 }
1102 
1103 static void object_err(struct kmem_cache *s, struct slab *slab,
1104 			u8 *object, char *reason)
1105 {
1106 	if (slab_add_kunit_errors())
1107 		return;
1108 
1109 	slab_bug(s, "%s", reason);
1110 	print_trailer(s, slab, object);
1111 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1112 }
1113 
1114 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1115 			       void **freelist, void *nextfree)
1116 {
1117 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1118 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1119 		object_err(s, slab, *freelist, "Freechain corrupt");
1120 		*freelist = NULL;
1121 		slab_fix(s, "Isolate corrupted freechain");
1122 		return true;
1123 	}
1124 
1125 	return false;
1126 }
1127 
1128 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1129 			const char *fmt, ...)
1130 {
1131 	va_list args;
1132 	char buf[100];
1133 
1134 	if (slab_add_kunit_errors())
1135 		return;
1136 
1137 	va_start(args, fmt);
1138 	vsnprintf(buf, sizeof(buf), fmt, args);
1139 	va_end(args);
1140 	slab_bug(s, "%s", buf);
1141 	print_slab_info(slab);
1142 	dump_stack();
1143 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1144 }
1145 
1146 static void init_object(struct kmem_cache *s, void *object, u8 val)
1147 {
1148 	u8 *p = kasan_reset_tag(object);
1149 	unsigned int poison_size = s->object_size;
1150 
1151 	if (s->flags & SLAB_RED_ZONE) {
1152 		/*
1153 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1154 		 * the shadow makes it possible to distinguish uninit-value
1155 		 * from use-after-free.
1156 		 */
1157 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1158 					  s->red_left_pad);
1159 
1160 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1161 			/*
1162 			 * Redzone the extra allocated space by kmalloc than
1163 			 * requested, and the poison size will be limited to
1164 			 * the original request size accordingly.
1165 			 */
1166 			poison_size = get_orig_size(s, object);
1167 		}
1168 	}
1169 
1170 	if (s->flags & __OBJECT_POISON) {
1171 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1172 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1173 	}
1174 
1175 	if (s->flags & SLAB_RED_ZONE)
1176 		memset_no_sanitize_memory(p + poison_size, val,
1177 					  s->inuse - poison_size);
1178 }
1179 
1180 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1181 						void *from, void *to)
1182 {
1183 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1184 	memset(from, data, to - from);
1185 }
1186 
1187 #ifdef CONFIG_KMSAN
1188 #define pad_check_attributes noinline __no_kmsan_checks
1189 #else
1190 #define pad_check_attributes
1191 #endif
1192 
1193 static pad_check_attributes int
1194 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1195 		       u8 *object, char *what,
1196 		       u8 *start, unsigned int value, unsigned int bytes)
1197 {
1198 	u8 *fault;
1199 	u8 *end;
1200 	u8 *addr = slab_address(slab);
1201 
1202 	metadata_access_enable();
1203 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1204 	metadata_access_disable();
1205 	if (!fault)
1206 		return 1;
1207 
1208 	end = start + bytes;
1209 	while (end > fault && end[-1] == value)
1210 		end--;
1211 
1212 	if (slab_add_kunit_errors())
1213 		goto skip_bug_print;
1214 
1215 	slab_bug(s, "%s overwritten", what);
1216 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1217 					fault, end - 1, fault - addr,
1218 					fault[0], value);
1219 
1220 skip_bug_print:
1221 	restore_bytes(s, what, value, fault, end);
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Object layout:
1227  *
1228  * object address
1229  * 	Bytes of the object to be managed.
1230  * 	If the freepointer may overlay the object then the free
1231  *	pointer is at the middle of the object.
1232  *
1233  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1234  * 	0xa5 (POISON_END)
1235  *
1236  * object + s->object_size
1237  * 	Padding to reach word boundary. This is also used for Redzoning.
1238  * 	Padding is extended by another word if Redzoning is enabled and
1239  * 	object_size == inuse.
1240  *
1241  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1242  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1243  *
1244  * object + s->inuse
1245  * 	Meta data starts here.
1246  *
1247  * 	A. Free pointer (if we cannot overwrite object on free)
1248  * 	B. Tracking data for SLAB_STORE_USER
1249  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1250  *	D. Padding to reach required alignment boundary or at minimum
1251  * 		one word if debugging is on to be able to detect writes
1252  * 		before the word boundary.
1253  *
1254  *	Padding is done using 0x5a (POISON_INUSE)
1255  *
1256  * object + s->size
1257  * 	Nothing is used beyond s->size.
1258  *
1259  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1260  * ignored. And therefore no slab options that rely on these boundaries
1261  * may be used with merged slabcaches.
1262  */
1263 
1264 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1265 {
1266 	unsigned long off = get_info_end(s);	/* The end of info */
1267 
1268 	if (s->flags & SLAB_STORE_USER) {
1269 		/* We also have user information there */
1270 		off += 2 * sizeof(struct track);
1271 
1272 		if (s->flags & SLAB_KMALLOC)
1273 			off += sizeof(unsigned int);
1274 	}
1275 
1276 	off += kasan_metadata_size(s, false);
1277 
1278 	if (size_from_object(s) == off)
1279 		return 1;
1280 
1281 	return check_bytes_and_report(s, slab, p, "Object padding",
1282 			p + off, POISON_INUSE, size_from_object(s) - off);
1283 }
1284 
1285 /* Check the pad bytes at the end of a slab page */
1286 static pad_check_attributes void
1287 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1288 {
1289 	u8 *start;
1290 	u8 *fault;
1291 	u8 *end;
1292 	u8 *pad;
1293 	int length;
1294 	int remainder;
1295 
1296 	if (!(s->flags & SLAB_POISON))
1297 		return;
1298 
1299 	start = slab_address(slab);
1300 	length = slab_size(slab);
1301 	end = start + length;
1302 	remainder = length % s->size;
1303 	if (!remainder)
1304 		return;
1305 
1306 	pad = end - remainder;
1307 	metadata_access_enable();
1308 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1309 	metadata_access_disable();
1310 	if (!fault)
1311 		return;
1312 	while (end > fault && end[-1] == POISON_INUSE)
1313 		end--;
1314 
1315 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1316 			fault, end - 1, fault - start);
1317 	print_section(KERN_ERR, "Padding ", pad, remainder);
1318 
1319 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1320 }
1321 
1322 static int check_object(struct kmem_cache *s, struct slab *slab,
1323 					void *object, u8 val)
1324 {
1325 	u8 *p = object;
1326 	u8 *endobject = object + s->object_size;
1327 	unsigned int orig_size, kasan_meta_size;
1328 	int ret = 1;
1329 
1330 	if (s->flags & SLAB_RED_ZONE) {
1331 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1332 			object - s->red_left_pad, val, s->red_left_pad))
1333 			ret = 0;
1334 
1335 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1336 			endobject, val, s->inuse - s->object_size))
1337 			ret = 0;
1338 
1339 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1340 			orig_size = get_orig_size(s, object);
1341 
1342 			if (s->object_size > orig_size  &&
1343 				!check_bytes_and_report(s, slab, object,
1344 					"kmalloc Redzone", p + orig_size,
1345 					val, s->object_size - orig_size)) {
1346 				ret = 0;
1347 			}
1348 		}
1349 	} else {
1350 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1351 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1352 				endobject, POISON_INUSE,
1353 				s->inuse - s->object_size))
1354 				ret = 0;
1355 		}
1356 	}
1357 
1358 	if (s->flags & SLAB_POISON) {
1359 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1360 			/*
1361 			 * KASAN can save its free meta data inside of the
1362 			 * object at offset 0. Thus, skip checking the part of
1363 			 * the redzone that overlaps with the meta data.
1364 			 */
1365 			kasan_meta_size = kasan_metadata_size(s, true);
1366 			if (kasan_meta_size < s->object_size - 1 &&
1367 			    !check_bytes_and_report(s, slab, p, "Poison",
1368 					p + kasan_meta_size, POISON_FREE,
1369 					s->object_size - kasan_meta_size - 1))
1370 				ret = 0;
1371 			if (kasan_meta_size < s->object_size &&
1372 			    !check_bytes_and_report(s, slab, p, "End Poison",
1373 					p + s->object_size - 1, POISON_END, 1))
1374 				ret = 0;
1375 		}
1376 		/*
1377 		 * check_pad_bytes cleans up on its own.
1378 		 */
1379 		if (!check_pad_bytes(s, slab, p))
1380 			ret = 0;
1381 	}
1382 
1383 	/*
1384 	 * Cannot check freepointer while object is allocated if
1385 	 * object and freepointer overlap.
1386 	 */
1387 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1388 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1389 		object_err(s, slab, p, "Freepointer corrupt");
1390 		/*
1391 		 * No choice but to zap it and thus lose the remainder
1392 		 * of the free objects in this slab. May cause
1393 		 * another error because the object count is now wrong.
1394 		 */
1395 		set_freepointer(s, p, NULL);
1396 		ret = 0;
1397 	}
1398 
1399 	if (!ret && !slab_in_kunit_test()) {
1400 		print_trailer(s, slab, object);
1401 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 static int check_slab(struct kmem_cache *s, struct slab *slab)
1408 {
1409 	int maxobj;
1410 
1411 	if (!folio_test_slab(slab_folio(slab))) {
1412 		slab_err(s, slab, "Not a valid slab page");
1413 		return 0;
1414 	}
1415 
1416 	maxobj = order_objects(slab_order(slab), s->size);
1417 	if (slab->objects > maxobj) {
1418 		slab_err(s, slab, "objects %u > max %u",
1419 			slab->objects, maxobj);
1420 		return 0;
1421 	}
1422 	if (slab->inuse > slab->objects) {
1423 		slab_err(s, slab, "inuse %u > max %u",
1424 			slab->inuse, slab->objects);
1425 		return 0;
1426 	}
1427 	/* Slab_pad_check fixes things up after itself */
1428 	slab_pad_check(s, slab);
1429 	return 1;
1430 }
1431 
1432 /*
1433  * Determine if a certain object in a slab is on the freelist. Must hold the
1434  * slab lock to guarantee that the chains are in a consistent state.
1435  */
1436 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1437 {
1438 	int nr = 0;
1439 	void *fp;
1440 	void *object = NULL;
1441 	int max_objects;
1442 
1443 	fp = slab->freelist;
1444 	while (fp && nr <= slab->objects) {
1445 		if (fp == search)
1446 			return 1;
1447 		if (!check_valid_pointer(s, slab, fp)) {
1448 			if (object) {
1449 				object_err(s, slab, object,
1450 					"Freechain corrupt");
1451 				set_freepointer(s, object, NULL);
1452 			} else {
1453 				slab_err(s, slab, "Freepointer corrupt");
1454 				slab->freelist = NULL;
1455 				slab->inuse = slab->objects;
1456 				slab_fix(s, "Freelist cleared");
1457 				return 0;
1458 			}
1459 			break;
1460 		}
1461 		object = fp;
1462 		fp = get_freepointer(s, object);
1463 		nr++;
1464 	}
1465 
1466 	max_objects = order_objects(slab_order(slab), s->size);
1467 	if (max_objects > MAX_OBJS_PER_PAGE)
1468 		max_objects = MAX_OBJS_PER_PAGE;
1469 
1470 	if (slab->objects != max_objects) {
1471 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1472 			 slab->objects, max_objects);
1473 		slab->objects = max_objects;
1474 		slab_fix(s, "Number of objects adjusted");
1475 	}
1476 	if (slab->inuse != slab->objects - nr) {
1477 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1478 			 slab->inuse, slab->objects - nr);
1479 		slab->inuse = slab->objects - nr;
1480 		slab_fix(s, "Object count adjusted");
1481 	}
1482 	return search == NULL;
1483 }
1484 
1485 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1486 								int alloc)
1487 {
1488 	if (s->flags & SLAB_TRACE) {
1489 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1490 			s->name,
1491 			alloc ? "alloc" : "free",
1492 			object, slab->inuse,
1493 			slab->freelist);
1494 
1495 		if (!alloc)
1496 			print_section(KERN_INFO, "Object ", (void *)object,
1497 					s->object_size);
1498 
1499 		dump_stack();
1500 	}
1501 }
1502 
1503 /*
1504  * Tracking of fully allocated slabs for debugging purposes.
1505  */
1506 static void add_full(struct kmem_cache *s,
1507 	struct kmem_cache_node *n, struct slab *slab)
1508 {
1509 	if (!(s->flags & SLAB_STORE_USER))
1510 		return;
1511 
1512 	lockdep_assert_held(&n->list_lock);
1513 	list_add(&slab->slab_list, &n->full);
1514 }
1515 
1516 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1517 {
1518 	if (!(s->flags & SLAB_STORE_USER))
1519 		return;
1520 
1521 	lockdep_assert_held(&n->list_lock);
1522 	list_del(&slab->slab_list);
1523 }
1524 
1525 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1526 {
1527 	return atomic_long_read(&n->nr_slabs);
1528 }
1529 
1530 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1531 {
1532 	struct kmem_cache_node *n = get_node(s, node);
1533 
1534 	atomic_long_inc(&n->nr_slabs);
1535 	atomic_long_add(objects, &n->total_objects);
1536 }
1537 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1538 {
1539 	struct kmem_cache_node *n = get_node(s, node);
1540 
1541 	atomic_long_dec(&n->nr_slabs);
1542 	atomic_long_sub(objects, &n->total_objects);
1543 }
1544 
1545 /* Object debug checks for alloc/free paths */
1546 static void setup_object_debug(struct kmem_cache *s, void *object)
1547 {
1548 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1549 		return;
1550 
1551 	init_object(s, object, SLUB_RED_INACTIVE);
1552 	init_tracking(s, object);
1553 }
1554 
1555 static
1556 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1557 {
1558 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1559 		return;
1560 
1561 	metadata_access_enable();
1562 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1563 	metadata_access_disable();
1564 }
1565 
1566 static inline int alloc_consistency_checks(struct kmem_cache *s,
1567 					struct slab *slab, void *object)
1568 {
1569 	if (!check_slab(s, slab))
1570 		return 0;
1571 
1572 	if (!check_valid_pointer(s, slab, object)) {
1573 		object_err(s, slab, object, "Freelist Pointer check fails");
1574 		return 0;
1575 	}
1576 
1577 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1578 		return 0;
1579 
1580 	return 1;
1581 }
1582 
1583 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1584 			struct slab *slab, void *object, int orig_size)
1585 {
1586 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1587 		if (!alloc_consistency_checks(s, slab, object))
1588 			goto bad;
1589 	}
1590 
1591 	/* Success. Perform special debug activities for allocs */
1592 	trace(s, slab, object, 1);
1593 	set_orig_size(s, object, orig_size);
1594 	init_object(s, object, SLUB_RED_ACTIVE);
1595 	return true;
1596 
1597 bad:
1598 	if (folio_test_slab(slab_folio(slab))) {
1599 		/*
1600 		 * If this is a slab page then lets do the best we can
1601 		 * to avoid issues in the future. Marking all objects
1602 		 * as used avoids touching the remaining objects.
1603 		 */
1604 		slab_fix(s, "Marking all objects used");
1605 		slab->inuse = slab->objects;
1606 		slab->freelist = NULL;
1607 	}
1608 	return false;
1609 }
1610 
1611 static inline int free_consistency_checks(struct kmem_cache *s,
1612 		struct slab *slab, void *object, unsigned long addr)
1613 {
1614 	if (!check_valid_pointer(s, slab, object)) {
1615 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1616 		return 0;
1617 	}
1618 
1619 	if (on_freelist(s, slab, object)) {
1620 		object_err(s, slab, object, "Object already free");
1621 		return 0;
1622 	}
1623 
1624 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1625 		return 0;
1626 
1627 	if (unlikely(s != slab->slab_cache)) {
1628 		if (!folio_test_slab(slab_folio(slab))) {
1629 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1630 				 object);
1631 		} else if (!slab->slab_cache) {
1632 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1633 			       object);
1634 			dump_stack();
1635 		} else
1636 			object_err(s, slab, object,
1637 					"page slab pointer corrupt.");
1638 		return 0;
1639 	}
1640 	return 1;
1641 }
1642 
1643 /*
1644  * Parse a block of slab_debug options. Blocks are delimited by ';'
1645  *
1646  * @str:    start of block
1647  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1648  * @slabs:  return start of list of slabs, or NULL when there's no list
1649  * @init:   assume this is initial parsing and not per-kmem-create parsing
1650  *
1651  * returns the start of next block if there's any, or NULL
1652  */
1653 static char *
1654 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1655 {
1656 	bool higher_order_disable = false;
1657 
1658 	/* Skip any completely empty blocks */
1659 	while (*str && *str == ';')
1660 		str++;
1661 
1662 	if (*str == ',') {
1663 		/*
1664 		 * No options but restriction on slabs. This means full
1665 		 * debugging for slabs matching a pattern.
1666 		 */
1667 		*flags = DEBUG_DEFAULT_FLAGS;
1668 		goto check_slabs;
1669 	}
1670 	*flags = 0;
1671 
1672 	/* Determine which debug features should be switched on */
1673 	for (; *str && *str != ',' && *str != ';'; str++) {
1674 		switch (tolower(*str)) {
1675 		case '-':
1676 			*flags = 0;
1677 			break;
1678 		case 'f':
1679 			*flags |= SLAB_CONSISTENCY_CHECKS;
1680 			break;
1681 		case 'z':
1682 			*flags |= SLAB_RED_ZONE;
1683 			break;
1684 		case 'p':
1685 			*flags |= SLAB_POISON;
1686 			break;
1687 		case 'u':
1688 			*flags |= SLAB_STORE_USER;
1689 			break;
1690 		case 't':
1691 			*flags |= SLAB_TRACE;
1692 			break;
1693 		case 'a':
1694 			*flags |= SLAB_FAILSLAB;
1695 			break;
1696 		case 'o':
1697 			/*
1698 			 * Avoid enabling debugging on caches if its minimum
1699 			 * order would increase as a result.
1700 			 */
1701 			higher_order_disable = true;
1702 			break;
1703 		default:
1704 			if (init)
1705 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1706 		}
1707 	}
1708 check_slabs:
1709 	if (*str == ',')
1710 		*slabs = ++str;
1711 	else
1712 		*slabs = NULL;
1713 
1714 	/* Skip over the slab list */
1715 	while (*str && *str != ';')
1716 		str++;
1717 
1718 	/* Skip any completely empty blocks */
1719 	while (*str && *str == ';')
1720 		str++;
1721 
1722 	if (init && higher_order_disable)
1723 		disable_higher_order_debug = 1;
1724 
1725 	if (*str)
1726 		return str;
1727 	else
1728 		return NULL;
1729 }
1730 
1731 static int __init setup_slub_debug(char *str)
1732 {
1733 	slab_flags_t flags;
1734 	slab_flags_t global_flags;
1735 	char *saved_str;
1736 	char *slab_list;
1737 	bool global_slub_debug_changed = false;
1738 	bool slab_list_specified = false;
1739 
1740 	global_flags = DEBUG_DEFAULT_FLAGS;
1741 	if (*str++ != '=' || !*str)
1742 		/*
1743 		 * No options specified. Switch on full debugging.
1744 		 */
1745 		goto out;
1746 
1747 	saved_str = str;
1748 	while (str) {
1749 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1750 
1751 		if (!slab_list) {
1752 			global_flags = flags;
1753 			global_slub_debug_changed = true;
1754 		} else {
1755 			slab_list_specified = true;
1756 			if (flags & SLAB_STORE_USER)
1757 				stack_depot_request_early_init();
1758 		}
1759 	}
1760 
1761 	/*
1762 	 * For backwards compatibility, a single list of flags with list of
1763 	 * slabs means debugging is only changed for those slabs, so the global
1764 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1765 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1766 	 * long as there is no option specifying flags without a slab list.
1767 	 */
1768 	if (slab_list_specified) {
1769 		if (!global_slub_debug_changed)
1770 			global_flags = slub_debug;
1771 		slub_debug_string = saved_str;
1772 	}
1773 out:
1774 	slub_debug = global_flags;
1775 	if (slub_debug & SLAB_STORE_USER)
1776 		stack_depot_request_early_init();
1777 	if (slub_debug != 0 || slub_debug_string)
1778 		static_branch_enable(&slub_debug_enabled);
1779 	else
1780 		static_branch_disable(&slub_debug_enabled);
1781 	if ((static_branch_unlikely(&init_on_alloc) ||
1782 	     static_branch_unlikely(&init_on_free)) &&
1783 	    (slub_debug & SLAB_POISON))
1784 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1785 	return 1;
1786 }
1787 
1788 __setup("slab_debug", setup_slub_debug);
1789 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1790 
1791 /*
1792  * kmem_cache_flags - apply debugging options to the cache
1793  * @flags:		flags to set
1794  * @name:		name of the cache
1795  *
1796  * Debug option(s) are applied to @flags. In addition to the debug
1797  * option(s), if a slab name (or multiple) is specified i.e.
1798  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1799  * then only the select slabs will receive the debug option(s).
1800  */
1801 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1802 {
1803 	char *iter;
1804 	size_t len;
1805 	char *next_block;
1806 	slab_flags_t block_flags;
1807 	slab_flags_t slub_debug_local = slub_debug;
1808 
1809 	if (flags & SLAB_NO_USER_FLAGS)
1810 		return flags;
1811 
1812 	/*
1813 	 * If the slab cache is for debugging (e.g. kmemleak) then
1814 	 * don't store user (stack trace) information by default,
1815 	 * but let the user enable it via the command line below.
1816 	 */
1817 	if (flags & SLAB_NOLEAKTRACE)
1818 		slub_debug_local &= ~SLAB_STORE_USER;
1819 
1820 	len = strlen(name);
1821 	next_block = slub_debug_string;
1822 	/* Go through all blocks of debug options, see if any matches our slab's name */
1823 	while (next_block) {
1824 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1825 		if (!iter)
1826 			continue;
1827 		/* Found a block that has a slab list, search it */
1828 		while (*iter) {
1829 			char *end, *glob;
1830 			size_t cmplen;
1831 
1832 			end = strchrnul(iter, ',');
1833 			if (next_block && next_block < end)
1834 				end = next_block - 1;
1835 
1836 			glob = strnchr(iter, end - iter, '*');
1837 			if (glob)
1838 				cmplen = glob - iter;
1839 			else
1840 				cmplen = max_t(size_t, len, (end - iter));
1841 
1842 			if (!strncmp(name, iter, cmplen)) {
1843 				flags |= block_flags;
1844 				return flags;
1845 			}
1846 
1847 			if (!*end || *end == ';')
1848 				break;
1849 			iter = end + 1;
1850 		}
1851 	}
1852 
1853 	return flags | slub_debug_local;
1854 }
1855 #else /* !CONFIG_SLUB_DEBUG */
1856 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1857 static inline
1858 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1859 
1860 static inline bool alloc_debug_processing(struct kmem_cache *s,
1861 	struct slab *slab, void *object, int orig_size) { return true; }
1862 
1863 static inline bool free_debug_processing(struct kmem_cache *s,
1864 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1865 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1866 
1867 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1868 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1869 			void *object, u8 val) { return 1; }
1870 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1871 static inline void set_track(struct kmem_cache *s, void *object,
1872 			     enum track_item alloc, unsigned long addr) {}
1873 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1874 					struct slab *slab) {}
1875 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1876 					struct slab *slab) {}
1877 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1878 {
1879 	return flags;
1880 }
1881 #define slub_debug 0
1882 
1883 #define disable_higher_order_debug 0
1884 
1885 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1886 							{ return 0; }
1887 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1888 							int objects) {}
1889 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1890 							int objects) {}
1891 #ifndef CONFIG_SLUB_TINY
1892 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1893 			       void **freelist, void *nextfree)
1894 {
1895 	return false;
1896 }
1897 #endif
1898 #endif /* CONFIG_SLUB_DEBUG */
1899 
1900 #ifdef CONFIG_SLAB_OBJ_EXT
1901 
1902 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1903 
1904 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1905 {
1906 	struct slabobj_ext *slab_exts;
1907 	struct slab *obj_exts_slab;
1908 
1909 	obj_exts_slab = virt_to_slab(obj_exts);
1910 	slab_exts = slab_obj_exts(obj_exts_slab);
1911 	if (slab_exts) {
1912 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1913 						 obj_exts_slab, obj_exts);
1914 		/* codetag should be NULL */
1915 		WARN_ON(slab_exts[offs].ref.ct);
1916 		set_codetag_empty(&slab_exts[offs].ref);
1917 	}
1918 }
1919 
1920 static inline void mark_failed_objexts_alloc(struct slab *slab)
1921 {
1922 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1923 }
1924 
1925 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1926 			struct slabobj_ext *vec, unsigned int objects)
1927 {
1928 	/*
1929 	 * If vector previously failed to allocate then we have live
1930 	 * objects with no tag reference. Mark all references in this
1931 	 * vector as empty to avoid warnings later on.
1932 	 */
1933 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1934 		unsigned int i;
1935 
1936 		for (i = 0; i < objects; i++)
1937 			set_codetag_empty(&vec[i].ref);
1938 	}
1939 }
1940 
1941 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1942 
1943 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1944 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1945 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1946 			struct slabobj_ext *vec, unsigned int objects) {}
1947 
1948 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1949 
1950 /*
1951  * The allocated objcg pointers array is not accounted directly.
1952  * Moreover, it should not come from DMA buffer and is not readily
1953  * reclaimable. So those GFP bits should be masked off.
1954  */
1955 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1956 				__GFP_ACCOUNT | __GFP_NOFAIL)
1957 
1958 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1959 		        gfp_t gfp, bool new_slab)
1960 {
1961 	unsigned int objects = objs_per_slab(s, slab);
1962 	unsigned long new_exts;
1963 	unsigned long old_exts;
1964 	struct slabobj_ext *vec;
1965 
1966 	gfp &= ~OBJCGS_CLEAR_MASK;
1967 	/* Prevent recursive extension vector allocation */
1968 	gfp |= __GFP_NO_OBJ_EXT;
1969 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1970 			   slab_nid(slab));
1971 	if (!vec) {
1972 		/* Mark vectors which failed to allocate */
1973 		if (new_slab)
1974 			mark_failed_objexts_alloc(slab);
1975 
1976 		return -ENOMEM;
1977 	}
1978 
1979 	new_exts = (unsigned long)vec;
1980 #ifdef CONFIG_MEMCG
1981 	new_exts |= MEMCG_DATA_OBJEXTS;
1982 #endif
1983 	old_exts = READ_ONCE(slab->obj_exts);
1984 	handle_failed_objexts_alloc(old_exts, vec, objects);
1985 	if (new_slab) {
1986 		/*
1987 		 * If the slab is brand new and nobody can yet access its
1988 		 * obj_exts, no synchronization is required and obj_exts can
1989 		 * be simply assigned.
1990 		 */
1991 		slab->obj_exts = new_exts;
1992 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1993 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1994 		/*
1995 		 * If the slab is already in use, somebody can allocate and
1996 		 * assign slabobj_exts in parallel. In this case the existing
1997 		 * objcg vector should be reused.
1998 		 */
1999 		mark_objexts_empty(vec);
2000 		kfree(vec);
2001 		return 0;
2002 	}
2003 
2004 	kmemleak_not_leak(vec);
2005 	return 0;
2006 }
2007 
2008 static inline void free_slab_obj_exts(struct slab *slab)
2009 {
2010 	struct slabobj_ext *obj_exts;
2011 
2012 	obj_exts = slab_obj_exts(slab);
2013 	if (!obj_exts)
2014 		return;
2015 
2016 	/*
2017 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2018 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2019 	 * warning if slab has extensions but the extension of an object is
2020 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2021 	 * the extension for obj_exts is expected to be NULL.
2022 	 */
2023 	mark_objexts_empty(obj_exts);
2024 	kfree(obj_exts);
2025 	slab->obj_exts = 0;
2026 }
2027 
2028 static inline bool need_slab_obj_ext(void)
2029 {
2030 	if (mem_alloc_profiling_enabled())
2031 		return true;
2032 
2033 	/*
2034 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2035 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2036 	 */
2037 	return false;
2038 }
2039 
2040 #else /* CONFIG_SLAB_OBJ_EXT */
2041 
2042 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2043 			       gfp_t gfp, bool new_slab)
2044 {
2045 	return 0;
2046 }
2047 
2048 static inline void free_slab_obj_exts(struct slab *slab)
2049 {
2050 }
2051 
2052 static inline bool need_slab_obj_ext(void)
2053 {
2054 	return false;
2055 }
2056 
2057 #endif /* CONFIG_SLAB_OBJ_EXT */
2058 
2059 #ifdef CONFIG_MEM_ALLOC_PROFILING
2060 
2061 static inline struct slabobj_ext *
2062 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2063 {
2064 	struct slab *slab;
2065 
2066 	if (!p)
2067 		return NULL;
2068 
2069 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2070 		return NULL;
2071 
2072 	if (flags & __GFP_NO_OBJ_EXT)
2073 		return NULL;
2074 
2075 	slab = virt_to_slab(p);
2076 	if (!slab_obj_exts(slab) &&
2077 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2078 		 "%s, %s: Failed to create slab extension vector!\n",
2079 		 __func__, s->name))
2080 		return NULL;
2081 
2082 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2083 }
2084 
2085 static inline void
2086 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2087 {
2088 	if (need_slab_obj_ext()) {
2089 		struct slabobj_ext *obj_exts;
2090 
2091 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2092 		/*
2093 		 * Currently obj_exts is used only for allocation profiling.
2094 		 * If other users appear then mem_alloc_profiling_enabled()
2095 		 * check should be added before alloc_tag_add().
2096 		 */
2097 		if (likely(obj_exts))
2098 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2099 	}
2100 }
2101 
2102 static inline void
2103 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2104 			     int objects)
2105 {
2106 	struct slabobj_ext *obj_exts;
2107 	int i;
2108 
2109 	if (!mem_alloc_profiling_enabled())
2110 		return;
2111 
2112 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2113 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2114 		return;
2115 
2116 	obj_exts = slab_obj_exts(slab);
2117 	if (!obj_exts)
2118 		return;
2119 
2120 	for (i = 0; i < objects; i++) {
2121 		unsigned int off = obj_to_index(s, slab, p[i]);
2122 
2123 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2124 	}
2125 }
2126 
2127 #else /* CONFIG_MEM_ALLOC_PROFILING */
2128 
2129 static inline void
2130 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2131 {
2132 }
2133 
2134 static inline void
2135 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2136 			     int objects)
2137 {
2138 }
2139 
2140 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2141 
2142 
2143 #ifdef CONFIG_MEMCG
2144 
2145 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2146 
2147 static __fastpath_inline
2148 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2149 				gfp_t flags, size_t size, void **p)
2150 {
2151 	if (likely(!memcg_kmem_online()))
2152 		return true;
2153 
2154 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2155 		return true;
2156 
2157 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2158 		return true;
2159 
2160 	if (likely(size == 1)) {
2161 		memcg_alloc_abort_single(s, *p);
2162 		*p = NULL;
2163 	} else {
2164 		kmem_cache_free_bulk(s, size, p);
2165 	}
2166 
2167 	return false;
2168 }
2169 
2170 static __fastpath_inline
2171 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2172 			  int objects)
2173 {
2174 	struct slabobj_ext *obj_exts;
2175 
2176 	if (!memcg_kmem_online())
2177 		return;
2178 
2179 	obj_exts = slab_obj_exts(slab);
2180 	if (likely(!obj_exts))
2181 		return;
2182 
2183 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2184 }
2185 
2186 static __fastpath_inline
2187 bool memcg_slab_post_charge(void *p, gfp_t flags)
2188 {
2189 	struct slabobj_ext *slab_exts;
2190 	struct kmem_cache *s;
2191 	struct folio *folio;
2192 	struct slab *slab;
2193 	unsigned long off;
2194 
2195 	folio = virt_to_folio(p);
2196 	if (!folio_test_slab(folio)) {
2197 		return folio_memcg_kmem(folio) ||
2198 			(__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2199 						  folio_order(folio)) == 0);
2200 	}
2201 
2202 	slab = folio_slab(folio);
2203 	s = slab->slab_cache;
2204 
2205 	/*
2206 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2207 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2208 	 * becoming effectively unfreeable.
2209 	 */
2210 	if (is_kmalloc_normal(s))
2211 		return true;
2212 
2213 	/* Ignore already charged objects. */
2214 	slab_exts = slab_obj_exts(slab);
2215 	if (slab_exts) {
2216 		off = obj_to_index(s, slab, p);
2217 		if (unlikely(slab_exts[off].objcg))
2218 			return true;
2219 	}
2220 
2221 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2222 }
2223 
2224 #else /* CONFIG_MEMCG */
2225 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2226 					      struct list_lru *lru,
2227 					      gfp_t flags, size_t size,
2228 					      void **p)
2229 {
2230 	return true;
2231 }
2232 
2233 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2234 					void **p, int objects)
2235 {
2236 }
2237 
2238 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2239 {
2240 	return true;
2241 }
2242 #endif /* CONFIG_MEMCG */
2243 
2244 #ifdef CONFIG_SLUB_RCU_DEBUG
2245 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2246 
2247 struct rcu_delayed_free {
2248 	struct rcu_head head;
2249 	void *object;
2250 };
2251 #endif
2252 
2253 /*
2254  * Hooks for other subsystems that check memory allocations. In a typical
2255  * production configuration these hooks all should produce no code at all.
2256  *
2257  * Returns true if freeing of the object can proceed, false if its reuse
2258  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2259  * to KFENCE.
2260  */
2261 static __always_inline
2262 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2263 		    bool after_rcu_delay)
2264 {
2265 	/* Are the object contents still accessible? */
2266 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2267 
2268 	kmemleak_free_recursive(x, s->flags);
2269 	kmsan_slab_free(s, x);
2270 
2271 	debug_check_no_locks_freed(x, s->object_size);
2272 
2273 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2274 		debug_check_no_obj_freed(x, s->object_size);
2275 
2276 	/* Use KCSAN to help debug racy use-after-free. */
2277 	if (!still_accessible)
2278 		__kcsan_check_access(x, s->object_size,
2279 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2280 
2281 	if (kfence_free(x))
2282 		return false;
2283 
2284 	/*
2285 	 * Give KASAN a chance to notice an invalid free operation before we
2286 	 * modify the object.
2287 	 */
2288 	if (kasan_slab_pre_free(s, x))
2289 		return false;
2290 
2291 #ifdef CONFIG_SLUB_RCU_DEBUG
2292 	if (still_accessible) {
2293 		struct rcu_delayed_free *delayed_free;
2294 
2295 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2296 		if (delayed_free) {
2297 			/*
2298 			 * Let KASAN track our call stack as a "related work
2299 			 * creation", just like if the object had been freed
2300 			 * normally via kfree_rcu().
2301 			 * We have to do this manually because the rcu_head is
2302 			 * not located inside the object.
2303 			 */
2304 			kasan_record_aux_stack_noalloc(x);
2305 
2306 			delayed_free->object = x;
2307 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2308 			return false;
2309 		}
2310 	}
2311 #endif /* CONFIG_SLUB_RCU_DEBUG */
2312 
2313 	/*
2314 	 * As memory initialization might be integrated into KASAN,
2315 	 * kasan_slab_free and initialization memset's must be
2316 	 * kept together to avoid discrepancies in behavior.
2317 	 *
2318 	 * The initialization memset's clear the object and the metadata,
2319 	 * but don't touch the SLAB redzone.
2320 	 *
2321 	 * The object's freepointer is also avoided if stored outside the
2322 	 * object.
2323 	 */
2324 	if (unlikely(init)) {
2325 		int rsize;
2326 		unsigned int inuse, orig_size;
2327 
2328 		inuse = get_info_end(s);
2329 		orig_size = get_orig_size(s, x);
2330 		if (!kasan_has_integrated_init())
2331 			memset(kasan_reset_tag(x), 0, orig_size);
2332 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2333 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2334 		       s->size - inuse - rsize);
2335 		/*
2336 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2337 		 * would be reported
2338 		 */
2339 		set_orig_size(s, x, orig_size);
2340 
2341 	}
2342 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2343 	return !kasan_slab_free(s, x, init, still_accessible);
2344 }
2345 
2346 static __fastpath_inline
2347 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2348 			     int *cnt)
2349 {
2350 
2351 	void *object;
2352 	void *next = *head;
2353 	void *old_tail = *tail;
2354 	bool init;
2355 
2356 	if (is_kfence_address(next)) {
2357 		slab_free_hook(s, next, false, false);
2358 		return false;
2359 	}
2360 
2361 	/* Head and tail of the reconstructed freelist */
2362 	*head = NULL;
2363 	*tail = NULL;
2364 
2365 	init = slab_want_init_on_free(s);
2366 
2367 	do {
2368 		object = next;
2369 		next = get_freepointer(s, object);
2370 
2371 		/* If object's reuse doesn't have to be delayed */
2372 		if (likely(slab_free_hook(s, object, init, false))) {
2373 			/* Move object to the new freelist */
2374 			set_freepointer(s, object, *head);
2375 			*head = object;
2376 			if (!*tail)
2377 				*tail = object;
2378 		} else {
2379 			/*
2380 			 * Adjust the reconstructed freelist depth
2381 			 * accordingly if object's reuse is delayed.
2382 			 */
2383 			--(*cnt);
2384 		}
2385 	} while (object != old_tail);
2386 
2387 	return *head != NULL;
2388 }
2389 
2390 static void *setup_object(struct kmem_cache *s, void *object)
2391 {
2392 	setup_object_debug(s, object);
2393 	object = kasan_init_slab_obj(s, object);
2394 	if (unlikely(s->ctor)) {
2395 		kasan_unpoison_new_object(s, object);
2396 		s->ctor(object);
2397 		kasan_poison_new_object(s, object);
2398 	}
2399 	return object;
2400 }
2401 
2402 /*
2403  * Slab allocation and freeing
2404  */
2405 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2406 		struct kmem_cache_order_objects oo)
2407 {
2408 	struct folio *folio;
2409 	struct slab *slab;
2410 	unsigned int order = oo_order(oo);
2411 
2412 	if (node == NUMA_NO_NODE)
2413 		folio = (struct folio *)alloc_pages(flags, order);
2414 	else
2415 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
2416 
2417 	if (!folio)
2418 		return NULL;
2419 
2420 	slab = folio_slab(folio);
2421 	__folio_set_slab(folio);
2422 	/* Make the flag visible before any changes to folio->mapping */
2423 	smp_wmb();
2424 	if (folio_is_pfmemalloc(folio))
2425 		slab_set_pfmemalloc(slab);
2426 
2427 	return slab;
2428 }
2429 
2430 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2431 /* Pre-initialize the random sequence cache */
2432 static int init_cache_random_seq(struct kmem_cache *s)
2433 {
2434 	unsigned int count = oo_objects(s->oo);
2435 	int err;
2436 
2437 	/* Bailout if already initialised */
2438 	if (s->random_seq)
2439 		return 0;
2440 
2441 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2442 	if (err) {
2443 		pr_err("SLUB: Unable to initialize free list for %s\n",
2444 			s->name);
2445 		return err;
2446 	}
2447 
2448 	/* Transform to an offset on the set of pages */
2449 	if (s->random_seq) {
2450 		unsigned int i;
2451 
2452 		for (i = 0; i < count; i++)
2453 			s->random_seq[i] *= s->size;
2454 	}
2455 	return 0;
2456 }
2457 
2458 /* Initialize each random sequence freelist per cache */
2459 static void __init init_freelist_randomization(void)
2460 {
2461 	struct kmem_cache *s;
2462 
2463 	mutex_lock(&slab_mutex);
2464 
2465 	list_for_each_entry(s, &slab_caches, list)
2466 		init_cache_random_seq(s);
2467 
2468 	mutex_unlock(&slab_mutex);
2469 }
2470 
2471 /* Get the next entry on the pre-computed freelist randomized */
2472 static void *next_freelist_entry(struct kmem_cache *s,
2473 				unsigned long *pos, void *start,
2474 				unsigned long page_limit,
2475 				unsigned long freelist_count)
2476 {
2477 	unsigned int idx;
2478 
2479 	/*
2480 	 * If the target page allocation failed, the number of objects on the
2481 	 * page might be smaller than the usual size defined by the cache.
2482 	 */
2483 	do {
2484 		idx = s->random_seq[*pos];
2485 		*pos += 1;
2486 		if (*pos >= freelist_count)
2487 			*pos = 0;
2488 	} while (unlikely(idx >= page_limit));
2489 
2490 	return (char *)start + idx;
2491 }
2492 
2493 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2494 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2495 {
2496 	void *start;
2497 	void *cur;
2498 	void *next;
2499 	unsigned long idx, pos, page_limit, freelist_count;
2500 
2501 	if (slab->objects < 2 || !s->random_seq)
2502 		return false;
2503 
2504 	freelist_count = oo_objects(s->oo);
2505 	pos = get_random_u32_below(freelist_count);
2506 
2507 	page_limit = slab->objects * s->size;
2508 	start = fixup_red_left(s, slab_address(slab));
2509 
2510 	/* First entry is used as the base of the freelist */
2511 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2512 	cur = setup_object(s, cur);
2513 	slab->freelist = cur;
2514 
2515 	for (idx = 1; idx < slab->objects; idx++) {
2516 		next = next_freelist_entry(s, &pos, start, page_limit,
2517 			freelist_count);
2518 		next = setup_object(s, next);
2519 		set_freepointer(s, cur, next);
2520 		cur = next;
2521 	}
2522 	set_freepointer(s, cur, NULL);
2523 
2524 	return true;
2525 }
2526 #else
2527 static inline int init_cache_random_seq(struct kmem_cache *s)
2528 {
2529 	return 0;
2530 }
2531 static inline void init_freelist_randomization(void) { }
2532 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2533 {
2534 	return false;
2535 }
2536 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2537 
2538 static __always_inline void account_slab(struct slab *slab, int order,
2539 					 struct kmem_cache *s, gfp_t gfp)
2540 {
2541 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2542 		alloc_slab_obj_exts(slab, s, gfp, true);
2543 
2544 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2545 			    PAGE_SIZE << order);
2546 }
2547 
2548 static __always_inline void unaccount_slab(struct slab *slab, int order,
2549 					   struct kmem_cache *s)
2550 {
2551 	if (memcg_kmem_online() || need_slab_obj_ext())
2552 		free_slab_obj_exts(slab);
2553 
2554 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2555 			    -(PAGE_SIZE << order));
2556 }
2557 
2558 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2559 {
2560 	struct slab *slab;
2561 	struct kmem_cache_order_objects oo = s->oo;
2562 	gfp_t alloc_gfp;
2563 	void *start, *p, *next;
2564 	int idx;
2565 	bool shuffle;
2566 
2567 	flags &= gfp_allowed_mask;
2568 
2569 	flags |= s->allocflags;
2570 
2571 	/*
2572 	 * Let the initial higher-order allocation fail under memory pressure
2573 	 * so we fall-back to the minimum order allocation.
2574 	 */
2575 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2576 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2577 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2578 
2579 	slab = alloc_slab_page(alloc_gfp, node, oo);
2580 	if (unlikely(!slab)) {
2581 		oo = s->min;
2582 		alloc_gfp = flags;
2583 		/*
2584 		 * Allocation may have failed due to fragmentation.
2585 		 * Try a lower order alloc if possible
2586 		 */
2587 		slab = alloc_slab_page(alloc_gfp, node, oo);
2588 		if (unlikely(!slab))
2589 			return NULL;
2590 		stat(s, ORDER_FALLBACK);
2591 	}
2592 
2593 	slab->objects = oo_objects(oo);
2594 	slab->inuse = 0;
2595 	slab->frozen = 0;
2596 
2597 	account_slab(slab, oo_order(oo), s, flags);
2598 
2599 	slab->slab_cache = s;
2600 
2601 	kasan_poison_slab(slab);
2602 
2603 	start = slab_address(slab);
2604 
2605 	setup_slab_debug(s, slab, start);
2606 
2607 	shuffle = shuffle_freelist(s, slab);
2608 
2609 	if (!shuffle) {
2610 		start = fixup_red_left(s, start);
2611 		start = setup_object(s, start);
2612 		slab->freelist = start;
2613 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2614 			next = p + s->size;
2615 			next = setup_object(s, next);
2616 			set_freepointer(s, p, next);
2617 			p = next;
2618 		}
2619 		set_freepointer(s, p, NULL);
2620 	}
2621 
2622 	return slab;
2623 }
2624 
2625 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2626 {
2627 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2628 		flags = kmalloc_fix_flags(flags);
2629 
2630 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2631 
2632 	return allocate_slab(s,
2633 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2634 }
2635 
2636 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2637 {
2638 	struct folio *folio = slab_folio(slab);
2639 	int order = folio_order(folio);
2640 	int pages = 1 << order;
2641 
2642 	__slab_clear_pfmemalloc(slab);
2643 	folio->mapping = NULL;
2644 	/* Make the mapping reset visible before clearing the flag */
2645 	smp_wmb();
2646 	__folio_clear_slab(folio);
2647 	mm_account_reclaimed_pages(pages);
2648 	unaccount_slab(slab, order, s);
2649 	__free_pages(&folio->page, order);
2650 }
2651 
2652 static void rcu_free_slab(struct rcu_head *h)
2653 {
2654 	struct slab *slab = container_of(h, struct slab, rcu_head);
2655 
2656 	__free_slab(slab->slab_cache, slab);
2657 }
2658 
2659 static void free_slab(struct kmem_cache *s, struct slab *slab)
2660 {
2661 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2662 		void *p;
2663 
2664 		slab_pad_check(s, slab);
2665 		for_each_object(p, s, slab_address(slab), slab->objects)
2666 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2667 	}
2668 
2669 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2670 		call_rcu(&slab->rcu_head, rcu_free_slab);
2671 	else
2672 		__free_slab(s, slab);
2673 }
2674 
2675 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2676 {
2677 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2678 	free_slab(s, slab);
2679 }
2680 
2681 /*
2682  * SLUB reuses PG_workingset bit to keep track of whether it's on
2683  * the per-node partial list.
2684  */
2685 static inline bool slab_test_node_partial(const struct slab *slab)
2686 {
2687 	return folio_test_workingset(slab_folio(slab));
2688 }
2689 
2690 static inline void slab_set_node_partial(struct slab *slab)
2691 {
2692 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2693 }
2694 
2695 static inline void slab_clear_node_partial(struct slab *slab)
2696 {
2697 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2698 }
2699 
2700 /*
2701  * Management of partially allocated slabs.
2702  */
2703 static inline void
2704 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2705 {
2706 	n->nr_partial++;
2707 	if (tail == DEACTIVATE_TO_TAIL)
2708 		list_add_tail(&slab->slab_list, &n->partial);
2709 	else
2710 		list_add(&slab->slab_list, &n->partial);
2711 	slab_set_node_partial(slab);
2712 }
2713 
2714 static inline void add_partial(struct kmem_cache_node *n,
2715 				struct slab *slab, int tail)
2716 {
2717 	lockdep_assert_held(&n->list_lock);
2718 	__add_partial(n, slab, tail);
2719 }
2720 
2721 static inline void remove_partial(struct kmem_cache_node *n,
2722 					struct slab *slab)
2723 {
2724 	lockdep_assert_held(&n->list_lock);
2725 	list_del(&slab->slab_list);
2726 	slab_clear_node_partial(slab);
2727 	n->nr_partial--;
2728 }
2729 
2730 /*
2731  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2732  * slab from the n->partial list. Remove only a single object from the slab, do
2733  * the alloc_debug_processing() checks and leave the slab on the list, or move
2734  * it to full list if it was the last free object.
2735  */
2736 static void *alloc_single_from_partial(struct kmem_cache *s,
2737 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2738 {
2739 	void *object;
2740 
2741 	lockdep_assert_held(&n->list_lock);
2742 
2743 	object = slab->freelist;
2744 	slab->freelist = get_freepointer(s, object);
2745 	slab->inuse++;
2746 
2747 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2748 		remove_partial(n, slab);
2749 		return NULL;
2750 	}
2751 
2752 	if (slab->inuse == slab->objects) {
2753 		remove_partial(n, slab);
2754 		add_full(s, n, slab);
2755 	}
2756 
2757 	return object;
2758 }
2759 
2760 /*
2761  * Called only for kmem_cache_debug() caches to allocate from a freshly
2762  * allocated slab. Allocate a single object instead of whole freelist
2763  * and put the slab to the partial (or full) list.
2764  */
2765 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2766 					struct slab *slab, int orig_size)
2767 {
2768 	int nid = slab_nid(slab);
2769 	struct kmem_cache_node *n = get_node(s, nid);
2770 	unsigned long flags;
2771 	void *object;
2772 
2773 
2774 	object = slab->freelist;
2775 	slab->freelist = get_freepointer(s, object);
2776 	slab->inuse = 1;
2777 
2778 	if (!alloc_debug_processing(s, slab, object, orig_size))
2779 		/*
2780 		 * It's not really expected that this would fail on a
2781 		 * freshly allocated slab, but a concurrent memory
2782 		 * corruption in theory could cause that.
2783 		 */
2784 		return NULL;
2785 
2786 	spin_lock_irqsave(&n->list_lock, flags);
2787 
2788 	if (slab->inuse == slab->objects)
2789 		add_full(s, n, slab);
2790 	else
2791 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2792 
2793 	inc_slabs_node(s, nid, slab->objects);
2794 	spin_unlock_irqrestore(&n->list_lock, flags);
2795 
2796 	return object;
2797 }
2798 
2799 #ifdef CONFIG_SLUB_CPU_PARTIAL
2800 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2801 #else
2802 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2803 				   int drain) { }
2804 #endif
2805 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2806 
2807 /*
2808  * Try to allocate a partial slab from a specific node.
2809  */
2810 static struct slab *get_partial_node(struct kmem_cache *s,
2811 				     struct kmem_cache_node *n,
2812 				     struct partial_context *pc)
2813 {
2814 	struct slab *slab, *slab2, *partial = NULL;
2815 	unsigned long flags;
2816 	unsigned int partial_slabs = 0;
2817 
2818 	/*
2819 	 * Racy check. If we mistakenly see no partial slabs then we
2820 	 * just allocate an empty slab. If we mistakenly try to get a
2821 	 * partial slab and there is none available then get_partial()
2822 	 * will return NULL.
2823 	 */
2824 	if (!n || !n->nr_partial)
2825 		return NULL;
2826 
2827 	spin_lock_irqsave(&n->list_lock, flags);
2828 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2829 		if (!pfmemalloc_match(slab, pc->flags))
2830 			continue;
2831 
2832 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2833 			void *object = alloc_single_from_partial(s, n, slab,
2834 							pc->orig_size);
2835 			if (object) {
2836 				partial = slab;
2837 				pc->object = object;
2838 				break;
2839 			}
2840 			continue;
2841 		}
2842 
2843 		remove_partial(n, slab);
2844 
2845 		if (!partial) {
2846 			partial = slab;
2847 			stat(s, ALLOC_FROM_PARTIAL);
2848 
2849 			if ((slub_get_cpu_partial(s) == 0)) {
2850 				break;
2851 			}
2852 		} else {
2853 			put_cpu_partial(s, slab, 0);
2854 			stat(s, CPU_PARTIAL_NODE);
2855 
2856 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2857 				break;
2858 			}
2859 		}
2860 	}
2861 	spin_unlock_irqrestore(&n->list_lock, flags);
2862 	return partial;
2863 }
2864 
2865 /*
2866  * Get a slab from somewhere. Search in increasing NUMA distances.
2867  */
2868 static struct slab *get_any_partial(struct kmem_cache *s,
2869 				    struct partial_context *pc)
2870 {
2871 #ifdef CONFIG_NUMA
2872 	struct zonelist *zonelist;
2873 	struct zoneref *z;
2874 	struct zone *zone;
2875 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2876 	struct slab *slab;
2877 	unsigned int cpuset_mems_cookie;
2878 
2879 	/*
2880 	 * The defrag ratio allows a configuration of the tradeoffs between
2881 	 * inter node defragmentation and node local allocations. A lower
2882 	 * defrag_ratio increases the tendency to do local allocations
2883 	 * instead of attempting to obtain partial slabs from other nodes.
2884 	 *
2885 	 * If the defrag_ratio is set to 0 then kmalloc() always
2886 	 * returns node local objects. If the ratio is higher then kmalloc()
2887 	 * may return off node objects because partial slabs are obtained
2888 	 * from other nodes and filled up.
2889 	 *
2890 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2891 	 * (which makes defrag_ratio = 1000) then every (well almost)
2892 	 * allocation will first attempt to defrag slab caches on other nodes.
2893 	 * This means scanning over all nodes to look for partial slabs which
2894 	 * may be expensive if we do it every time we are trying to find a slab
2895 	 * with available objects.
2896 	 */
2897 	if (!s->remote_node_defrag_ratio ||
2898 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2899 		return NULL;
2900 
2901 	do {
2902 		cpuset_mems_cookie = read_mems_allowed_begin();
2903 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2904 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2905 			struct kmem_cache_node *n;
2906 
2907 			n = get_node(s, zone_to_nid(zone));
2908 
2909 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2910 					n->nr_partial > s->min_partial) {
2911 				slab = get_partial_node(s, n, pc);
2912 				if (slab) {
2913 					/*
2914 					 * Don't check read_mems_allowed_retry()
2915 					 * here - if mems_allowed was updated in
2916 					 * parallel, that was a harmless race
2917 					 * between allocation and the cpuset
2918 					 * update
2919 					 */
2920 					return slab;
2921 				}
2922 			}
2923 		}
2924 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2925 #endif	/* CONFIG_NUMA */
2926 	return NULL;
2927 }
2928 
2929 /*
2930  * Get a partial slab, lock it and return it.
2931  */
2932 static struct slab *get_partial(struct kmem_cache *s, int node,
2933 				struct partial_context *pc)
2934 {
2935 	struct slab *slab;
2936 	int searchnode = node;
2937 
2938 	if (node == NUMA_NO_NODE)
2939 		searchnode = numa_mem_id();
2940 
2941 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2942 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2943 		return slab;
2944 
2945 	return get_any_partial(s, pc);
2946 }
2947 
2948 #ifndef CONFIG_SLUB_TINY
2949 
2950 #ifdef CONFIG_PREEMPTION
2951 /*
2952  * Calculate the next globally unique transaction for disambiguation
2953  * during cmpxchg. The transactions start with the cpu number and are then
2954  * incremented by CONFIG_NR_CPUS.
2955  */
2956 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2957 #else
2958 /*
2959  * No preemption supported therefore also no need to check for
2960  * different cpus.
2961  */
2962 #define TID_STEP 1
2963 #endif /* CONFIG_PREEMPTION */
2964 
2965 static inline unsigned long next_tid(unsigned long tid)
2966 {
2967 	return tid + TID_STEP;
2968 }
2969 
2970 #ifdef SLUB_DEBUG_CMPXCHG
2971 static inline unsigned int tid_to_cpu(unsigned long tid)
2972 {
2973 	return tid % TID_STEP;
2974 }
2975 
2976 static inline unsigned long tid_to_event(unsigned long tid)
2977 {
2978 	return tid / TID_STEP;
2979 }
2980 #endif
2981 
2982 static inline unsigned int init_tid(int cpu)
2983 {
2984 	return cpu;
2985 }
2986 
2987 static inline void note_cmpxchg_failure(const char *n,
2988 		const struct kmem_cache *s, unsigned long tid)
2989 {
2990 #ifdef SLUB_DEBUG_CMPXCHG
2991 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2992 
2993 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2994 
2995 #ifdef CONFIG_PREEMPTION
2996 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2997 		pr_warn("due to cpu change %d -> %d\n",
2998 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2999 	else
3000 #endif
3001 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3002 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3003 			tid_to_event(tid), tid_to_event(actual_tid));
3004 	else
3005 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3006 			actual_tid, tid, next_tid(tid));
3007 #endif
3008 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3009 }
3010 
3011 static void init_kmem_cache_cpus(struct kmem_cache *s)
3012 {
3013 	int cpu;
3014 	struct kmem_cache_cpu *c;
3015 
3016 	for_each_possible_cpu(cpu) {
3017 		c = per_cpu_ptr(s->cpu_slab, cpu);
3018 		local_lock_init(&c->lock);
3019 		c->tid = init_tid(cpu);
3020 	}
3021 }
3022 
3023 /*
3024  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3025  * unfreezes the slabs and puts it on the proper list.
3026  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3027  * by the caller.
3028  */
3029 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3030 			    void *freelist)
3031 {
3032 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3033 	int free_delta = 0;
3034 	void *nextfree, *freelist_iter, *freelist_tail;
3035 	int tail = DEACTIVATE_TO_HEAD;
3036 	unsigned long flags = 0;
3037 	struct slab new;
3038 	struct slab old;
3039 
3040 	if (READ_ONCE(slab->freelist)) {
3041 		stat(s, DEACTIVATE_REMOTE_FREES);
3042 		tail = DEACTIVATE_TO_TAIL;
3043 	}
3044 
3045 	/*
3046 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3047 	 * remember the last object in freelist_tail for later splicing.
3048 	 */
3049 	freelist_tail = NULL;
3050 	freelist_iter = freelist;
3051 	while (freelist_iter) {
3052 		nextfree = get_freepointer(s, freelist_iter);
3053 
3054 		/*
3055 		 * If 'nextfree' is invalid, it is possible that the object at
3056 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3057 		 * starting at 'freelist_iter' by skipping them.
3058 		 */
3059 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3060 			break;
3061 
3062 		freelist_tail = freelist_iter;
3063 		free_delta++;
3064 
3065 		freelist_iter = nextfree;
3066 	}
3067 
3068 	/*
3069 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3070 	 * freelist to the head of slab's freelist.
3071 	 */
3072 	do {
3073 		old.freelist = READ_ONCE(slab->freelist);
3074 		old.counters = READ_ONCE(slab->counters);
3075 		VM_BUG_ON(!old.frozen);
3076 
3077 		/* Determine target state of the slab */
3078 		new.counters = old.counters;
3079 		new.frozen = 0;
3080 		if (freelist_tail) {
3081 			new.inuse -= free_delta;
3082 			set_freepointer(s, freelist_tail, old.freelist);
3083 			new.freelist = freelist;
3084 		} else {
3085 			new.freelist = old.freelist;
3086 		}
3087 	} while (!slab_update_freelist(s, slab,
3088 		old.freelist, old.counters,
3089 		new.freelist, new.counters,
3090 		"unfreezing slab"));
3091 
3092 	/*
3093 	 * Stage three: Manipulate the slab list based on the updated state.
3094 	 */
3095 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3096 		stat(s, DEACTIVATE_EMPTY);
3097 		discard_slab(s, slab);
3098 		stat(s, FREE_SLAB);
3099 	} else if (new.freelist) {
3100 		spin_lock_irqsave(&n->list_lock, flags);
3101 		add_partial(n, slab, tail);
3102 		spin_unlock_irqrestore(&n->list_lock, flags);
3103 		stat(s, tail);
3104 	} else {
3105 		stat(s, DEACTIVATE_FULL);
3106 	}
3107 }
3108 
3109 #ifdef CONFIG_SLUB_CPU_PARTIAL
3110 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3111 {
3112 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3113 	struct slab *slab, *slab_to_discard = NULL;
3114 	unsigned long flags = 0;
3115 
3116 	while (partial_slab) {
3117 		slab = partial_slab;
3118 		partial_slab = slab->next;
3119 
3120 		n2 = get_node(s, slab_nid(slab));
3121 		if (n != n2) {
3122 			if (n)
3123 				spin_unlock_irqrestore(&n->list_lock, flags);
3124 
3125 			n = n2;
3126 			spin_lock_irqsave(&n->list_lock, flags);
3127 		}
3128 
3129 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3130 			slab->next = slab_to_discard;
3131 			slab_to_discard = slab;
3132 		} else {
3133 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3134 			stat(s, FREE_ADD_PARTIAL);
3135 		}
3136 	}
3137 
3138 	if (n)
3139 		spin_unlock_irqrestore(&n->list_lock, flags);
3140 
3141 	while (slab_to_discard) {
3142 		slab = slab_to_discard;
3143 		slab_to_discard = slab_to_discard->next;
3144 
3145 		stat(s, DEACTIVATE_EMPTY);
3146 		discard_slab(s, slab);
3147 		stat(s, FREE_SLAB);
3148 	}
3149 }
3150 
3151 /*
3152  * Put all the cpu partial slabs to the node partial list.
3153  */
3154 static void put_partials(struct kmem_cache *s)
3155 {
3156 	struct slab *partial_slab;
3157 	unsigned long flags;
3158 
3159 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3160 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3161 	this_cpu_write(s->cpu_slab->partial, NULL);
3162 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3163 
3164 	if (partial_slab)
3165 		__put_partials(s, partial_slab);
3166 }
3167 
3168 static void put_partials_cpu(struct kmem_cache *s,
3169 			     struct kmem_cache_cpu *c)
3170 {
3171 	struct slab *partial_slab;
3172 
3173 	partial_slab = slub_percpu_partial(c);
3174 	c->partial = NULL;
3175 
3176 	if (partial_slab)
3177 		__put_partials(s, partial_slab);
3178 }
3179 
3180 /*
3181  * Put a slab into a partial slab slot if available.
3182  *
3183  * If we did not find a slot then simply move all the partials to the
3184  * per node partial list.
3185  */
3186 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3187 {
3188 	struct slab *oldslab;
3189 	struct slab *slab_to_put = NULL;
3190 	unsigned long flags;
3191 	int slabs = 0;
3192 
3193 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3194 
3195 	oldslab = this_cpu_read(s->cpu_slab->partial);
3196 
3197 	if (oldslab) {
3198 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3199 			/*
3200 			 * Partial array is full. Move the existing set to the
3201 			 * per node partial list. Postpone the actual unfreezing
3202 			 * outside of the critical section.
3203 			 */
3204 			slab_to_put = oldslab;
3205 			oldslab = NULL;
3206 		} else {
3207 			slabs = oldslab->slabs;
3208 		}
3209 	}
3210 
3211 	slabs++;
3212 
3213 	slab->slabs = slabs;
3214 	slab->next = oldslab;
3215 
3216 	this_cpu_write(s->cpu_slab->partial, slab);
3217 
3218 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3219 
3220 	if (slab_to_put) {
3221 		__put_partials(s, slab_to_put);
3222 		stat(s, CPU_PARTIAL_DRAIN);
3223 	}
3224 }
3225 
3226 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3227 
3228 static inline void put_partials(struct kmem_cache *s) { }
3229 static inline void put_partials_cpu(struct kmem_cache *s,
3230 				    struct kmem_cache_cpu *c) { }
3231 
3232 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3233 
3234 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3235 {
3236 	unsigned long flags;
3237 	struct slab *slab;
3238 	void *freelist;
3239 
3240 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3241 
3242 	slab = c->slab;
3243 	freelist = c->freelist;
3244 
3245 	c->slab = NULL;
3246 	c->freelist = NULL;
3247 	c->tid = next_tid(c->tid);
3248 
3249 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3250 
3251 	if (slab) {
3252 		deactivate_slab(s, slab, freelist);
3253 		stat(s, CPUSLAB_FLUSH);
3254 	}
3255 }
3256 
3257 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3258 {
3259 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3260 	void *freelist = c->freelist;
3261 	struct slab *slab = c->slab;
3262 
3263 	c->slab = NULL;
3264 	c->freelist = NULL;
3265 	c->tid = next_tid(c->tid);
3266 
3267 	if (slab) {
3268 		deactivate_slab(s, slab, freelist);
3269 		stat(s, CPUSLAB_FLUSH);
3270 	}
3271 
3272 	put_partials_cpu(s, c);
3273 }
3274 
3275 struct slub_flush_work {
3276 	struct work_struct work;
3277 	struct kmem_cache *s;
3278 	bool skip;
3279 };
3280 
3281 /*
3282  * Flush cpu slab.
3283  *
3284  * Called from CPU work handler with migration disabled.
3285  */
3286 static void flush_cpu_slab(struct work_struct *w)
3287 {
3288 	struct kmem_cache *s;
3289 	struct kmem_cache_cpu *c;
3290 	struct slub_flush_work *sfw;
3291 
3292 	sfw = container_of(w, struct slub_flush_work, work);
3293 
3294 	s = sfw->s;
3295 	c = this_cpu_ptr(s->cpu_slab);
3296 
3297 	if (c->slab)
3298 		flush_slab(s, c);
3299 
3300 	put_partials(s);
3301 }
3302 
3303 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3304 {
3305 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3306 
3307 	return c->slab || slub_percpu_partial(c);
3308 }
3309 
3310 static DEFINE_MUTEX(flush_lock);
3311 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3312 
3313 static void flush_all_cpus_locked(struct kmem_cache *s)
3314 {
3315 	struct slub_flush_work *sfw;
3316 	unsigned int cpu;
3317 
3318 	lockdep_assert_cpus_held();
3319 	mutex_lock(&flush_lock);
3320 
3321 	for_each_online_cpu(cpu) {
3322 		sfw = &per_cpu(slub_flush, cpu);
3323 		if (!has_cpu_slab(cpu, s)) {
3324 			sfw->skip = true;
3325 			continue;
3326 		}
3327 		INIT_WORK(&sfw->work, flush_cpu_slab);
3328 		sfw->skip = false;
3329 		sfw->s = s;
3330 		queue_work_on(cpu, flushwq, &sfw->work);
3331 	}
3332 
3333 	for_each_online_cpu(cpu) {
3334 		sfw = &per_cpu(slub_flush, cpu);
3335 		if (sfw->skip)
3336 			continue;
3337 		flush_work(&sfw->work);
3338 	}
3339 
3340 	mutex_unlock(&flush_lock);
3341 }
3342 
3343 static void flush_all(struct kmem_cache *s)
3344 {
3345 	cpus_read_lock();
3346 	flush_all_cpus_locked(s);
3347 	cpus_read_unlock();
3348 }
3349 
3350 /*
3351  * Use the cpu notifier to insure that the cpu slabs are flushed when
3352  * necessary.
3353  */
3354 static int slub_cpu_dead(unsigned int cpu)
3355 {
3356 	struct kmem_cache *s;
3357 
3358 	mutex_lock(&slab_mutex);
3359 	list_for_each_entry(s, &slab_caches, list)
3360 		__flush_cpu_slab(s, cpu);
3361 	mutex_unlock(&slab_mutex);
3362 	return 0;
3363 }
3364 
3365 #else /* CONFIG_SLUB_TINY */
3366 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3367 static inline void flush_all(struct kmem_cache *s) { }
3368 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3369 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3370 #endif /* CONFIG_SLUB_TINY */
3371 
3372 /*
3373  * Check if the objects in a per cpu structure fit numa
3374  * locality expectations.
3375  */
3376 static inline int node_match(struct slab *slab, int node)
3377 {
3378 #ifdef CONFIG_NUMA
3379 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3380 		return 0;
3381 #endif
3382 	return 1;
3383 }
3384 
3385 #ifdef CONFIG_SLUB_DEBUG
3386 static int count_free(struct slab *slab)
3387 {
3388 	return slab->objects - slab->inuse;
3389 }
3390 
3391 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3392 {
3393 	return atomic_long_read(&n->total_objects);
3394 }
3395 
3396 /* Supports checking bulk free of a constructed freelist */
3397 static inline bool free_debug_processing(struct kmem_cache *s,
3398 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3399 	unsigned long addr, depot_stack_handle_t handle)
3400 {
3401 	bool checks_ok = false;
3402 	void *object = head;
3403 	int cnt = 0;
3404 
3405 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3406 		if (!check_slab(s, slab))
3407 			goto out;
3408 	}
3409 
3410 	if (slab->inuse < *bulk_cnt) {
3411 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3412 			 slab->inuse, *bulk_cnt);
3413 		goto out;
3414 	}
3415 
3416 next_object:
3417 
3418 	if (++cnt > *bulk_cnt)
3419 		goto out_cnt;
3420 
3421 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3422 		if (!free_consistency_checks(s, slab, object, addr))
3423 			goto out;
3424 	}
3425 
3426 	if (s->flags & SLAB_STORE_USER)
3427 		set_track_update(s, object, TRACK_FREE, addr, handle);
3428 	trace(s, slab, object, 0);
3429 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3430 	init_object(s, object, SLUB_RED_INACTIVE);
3431 
3432 	/* Reached end of constructed freelist yet? */
3433 	if (object != tail) {
3434 		object = get_freepointer(s, object);
3435 		goto next_object;
3436 	}
3437 	checks_ok = true;
3438 
3439 out_cnt:
3440 	if (cnt != *bulk_cnt) {
3441 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3442 			 *bulk_cnt, cnt);
3443 		*bulk_cnt = cnt;
3444 	}
3445 
3446 out:
3447 
3448 	if (!checks_ok)
3449 		slab_fix(s, "Object at 0x%p not freed", object);
3450 
3451 	return checks_ok;
3452 }
3453 #endif /* CONFIG_SLUB_DEBUG */
3454 
3455 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3456 static unsigned long count_partial(struct kmem_cache_node *n,
3457 					int (*get_count)(struct slab *))
3458 {
3459 	unsigned long flags;
3460 	unsigned long x = 0;
3461 	struct slab *slab;
3462 
3463 	spin_lock_irqsave(&n->list_lock, flags);
3464 	list_for_each_entry(slab, &n->partial, slab_list)
3465 		x += get_count(slab);
3466 	spin_unlock_irqrestore(&n->list_lock, flags);
3467 	return x;
3468 }
3469 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3470 
3471 #ifdef CONFIG_SLUB_DEBUG
3472 #define MAX_PARTIAL_TO_SCAN 10000
3473 
3474 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3475 {
3476 	unsigned long flags;
3477 	unsigned long x = 0;
3478 	struct slab *slab;
3479 
3480 	spin_lock_irqsave(&n->list_lock, flags);
3481 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3482 		list_for_each_entry(slab, &n->partial, slab_list)
3483 			x += slab->objects - slab->inuse;
3484 	} else {
3485 		/*
3486 		 * For a long list, approximate the total count of objects in
3487 		 * it to meet the limit on the number of slabs to scan.
3488 		 * Scan from both the list's head and tail for better accuracy.
3489 		 */
3490 		unsigned long scanned = 0;
3491 
3492 		list_for_each_entry(slab, &n->partial, slab_list) {
3493 			x += slab->objects - slab->inuse;
3494 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3495 				break;
3496 		}
3497 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3498 			x += slab->objects - slab->inuse;
3499 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3500 				break;
3501 		}
3502 		x = mult_frac(x, n->nr_partial, scanned);
3503 		x = min(x, node_nr_objs(n));
3504 	}
3505 	spin_unlock_irqrestore(&n->list_lock, flags);
3506 	return x;
3507 }
3508 
3509 static noinline void
3510 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3511 {
3512 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3513 				      DEFAULT_RATELIMIT_BURST);
3514 	int cpu = raw_smp_processor_id();
3515 	int node;
3516 	struct kmem_cache_node *n;
3517 
3518 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3519 		return;
3520 
3521 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3522 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3523 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3524 		s->name, s->object_size, s->size, oo_order(s->oo),
3525 		oo_order(s->min));
3526 
3527 	if (oo_order(s->min) > get_order(s->object_size))
3528 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3529 			s->name);
3530 
3531 	for_each_kmem_cache_node(s, node, n) {
3532 		unsigned long nr_slabs;
3533 		unsigned long nr_objs;
3534 		unsigned long nr_free;
3535 
3536 		nr_free  = count_partial_free_approx(n);
3537 		nr_slabs = node_nr_slabs(n);
3538 		nr_objs  = node_nr_objs(n);
3539 
3540 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3541 			node, nr_slabs, nr_objs, nr_free);
3542 	}
3543 }
3544 #else /* CONFIG_SLUB_DEBUG */
3545 static inline void
3546 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3547 #endif
3548 
3549 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3550 {
3551 	if (unlikely(slab_test_pfmemalloc(slab)))
3552 		return gfp_pfmemalloc_allowed(gfpflags);
3553 
3554 	return true;
3555 }
3556 
3557 #ifndef CONFIG_SLUB_TINY
3558 static inline bool
3559 __update_cpu_freelist_fast(struct kmem_cache *s,
3560 			   void *freelist_old, void *freelist_new,
3561 			   unsigned long tid)
3562 {
3563 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3564 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3565 
3566 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3567 					     &old.full, new.full);
3568 }
3569 
3570 /*
3571  * Check the slab->freelist and either transfer the freelist to the
3572  * per cpu freelist or deactivate the slab.
3573  *
3574  * The slab is still frozen if the return value is not NULL.
3575  *
3576  * If this function returns NULL then the slab has been unfrozen.
3577  */
3578 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3579 {
3580 	struct slab new;
3581 	unsigned long counters;
3582 	void *freelist;
3583 
3584 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3585 
3586 	do {
3587 		freelist = slab->freelist;
3588 		counters = slab->counters;
3589 
3590 		new.counters = counters;
3591 
3592 		new.inuse = slab->objects;
3593 		new.frozen = freelist != NULL;
3594 
3595 	} while (!__slab_update_freelist(s, slab,
3596 		freelist, counters,
3597 		NULL, new.counters,
3598 		"get_freelist"));
3599 
3600 	return freelist;
3601 }
3602 
3603 /*
3604  * Freeze the partial slab and return the pointer to the freelist.
3605  */
3606 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3607 {
3608 	struct slab new;
3609 	unsigned long counters;
3610 	void *freelist;
3611 
3612 	do {
3613 		freelist = slab->freelist;
3614 		counters = slab->counters;
3615 
3616 		new.counters = counters;
3617 		VM_BUG_ON(new.frozen);
3618 
3619 		new.inuse = slab->objects;
3620 		new.frozen = 1;
3621 
3622 	} while (!slab_update_freelist(s, slab,
3623 		freelist, counters,
3624 		NULL, new.counters,
3625 		"freeze_slab"));
3626 
3627 	return freelist;
3628 }
3629 
3630 /*
3631  * Slow path. The lockless freelist is empty or we need to perform
3632  * debugging duties.
3633  *
3634  * Processing is still very fast if new objects have been freed to the
3635  * regular freelist. In that case we simply take over the regular freelist
3636  * as the lockless freelist and zap the regular freelist.
3637  *
3638  * If that is not working then we fall back to the partial lists. We take the
3639  * first element of the freelist as the object to allocate now and move the
3640  * rest of the freelist to the lockless freelist.
3641  *
3642  * And if we were unable to get a new slab from the partial slab lists then
3643  * we need to allocate a new slab. This is the slowest path since it involves
3644  * a call to the page allocator and the setup of a new slab.
3645  *
3646  * Version of __slab_alloc to use when we know that preemption is
3647  * already disabled (which is the case for bulk allocation).
3648  */
3649 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3650 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3651 {
3652 	void *freelist;
3653 	struct slab *slab;
3654 	unsigned long flags;
3655 	struct partial_context pc;
3656 	bool try_thisnode = true;
3657 
3658 	stat(s, ALLOC_SLOWPATH);
3659 
3660 reread_slab:
3661 
3662 	slab = READ_ONCE(c->slab);
3663 	if (!slab) {
3664 		/*
3665 		 * if the node is not online or has no normal memory, just
3666 		 * ignore the node constraint
3667 		 */
3668 		if (unlikely(node != NUMA_NO_NODE &&
3669 			     !node_isset(node, slab_nodes)))
3670 			node = NUMA_NO_NODE;
3671 		goto new_slab;
3672 	}
3673 
3674 	if (unlikely(!node_match(slab, node))) {
3675 		/*
3676 		 * same as above but node_match() being false already
3677 		 * implies node != NUMA_NO_NODE
3678 		 */
3679 		if (!node_isset(node, slab_nodes)) {
3680 			node = NUMA_NO_NODE;
3681 		} else {
3682 			stat(s, ALLOC_NODE_MISMATCH);
3683 			goto deactivate_slab;
3684 		}
3685 	}
3686 
3687 	/*
3688 	 * By rights, we should be searching for a slab page that was
3689 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3690 	 * information when the page leaves the per-cpu allocator
3691 	 */
3692 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3693 		goto deactivate_slab;
3694 
3695 	/* must check again c->slab in case we got preempted and it changed */
3696 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3697 	if (unlikely(slab != c->slab)) {
3698 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3699 		goto reread_slab;
3700 	}
3701 	freelist = c->freelist;
3702 	if (freelist)
3703 		goto load_freelist;
3704 
3705 	freelist = get_freelist(s, slab);
3706 
3707 	if (!freelist) {
3708 		c->slab = NULL;
3709 		c->tid = next_tid(c->tid);
3710 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3711 		stat(s, DEACTIVATE_BYPASS);
3712 		goto new_slab;
3713 	}
3714 
3715 	stat(s, ALLOC_REFILL);
3716 
3717 load_freelist:
3718 
3719 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3720 
3721 	/*
3722 	 * freelist is pointing to the list of objects to be used.
3723 	 * slab is pointing to the slab from which the objects are obtained.
3724 	 * That slab must be frozen for per cpu allocations to work.
3725 	 */
3726 	VM_BUG_ON(!c->slab->frozen);
3727 	c->freelist = get_freepointer(s, freelist);
3728 	c->tid = next_tid(c->tid);
3729 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3730 	return freelist;
3731 
3732 deactivate_slab:
3733 
3734 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3735 	if (slab != c->slab) {
3736 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3737 		goto reread_slab;
3738 	}
3739 	freelist = c->freelist;
3740 	c->slab = NULL;
3741 	c->freelist = NULL;
3742 	c->tid = next_tid(c->tid);
3743 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3744 	deactivate_slab(s, slab, freelist);
3745 
3746 new_slab:
3747 
3748 #ifdef CONFIG_SLUB_CPU_PARTIAL
3749 	while (slub_percpu_partial(c)) {
3750 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3751 		if (unlikely(c->slab)) {
3752 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3753 			goto reread_slab;
3754 		}
3755 		if (unlikely(!slub_percpu_partial(c))) {
3756 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3757 			/* we were preempted and partial list got empty */
3758 			goto new_objects;
3759 		}
3760 
3761 		slab = slub_percpu_partial(c);
3762 		slub_set_percpu_partial(c, slab);
3763 
3764 		if (likely(node_match(slab, node) &&
3765 			   pfmemalloc_match(slab, gfpflags))) {
3766 			c->slab = slab;
3767 			freelist = get_freelist(s, slab);
3768 			VM_BUG_ON(!freelist);
3769 			stat(s, CPU_PARTIAL_ALLOC);
3770 			goto load_freelist;
3771 		}
3772 
3773 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3774 
3775 		slab->next = NULL;
3776 		__put_partials(s, slab);
3777 	}
3778 #endif
3779 
3780 new_objects:
3781 
3782 	pc.flags = gfpflags;
3783 	/*
3784 	 * When a preferred node is indicated but no __GFP_THISNODE
3785 	 *
3786 	 * 1) try to get a partial slab from target node only by having
3787 	 *    __GFP_THISNODE in pc.flags for get_partial()
3788 	 * 2) if 1) failed, try to allocate a new slab from target node with
3789 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3790 	 * 3) if 2) failed, retry with original gfpflags which will allow
3791 	 *    get_partial() try partial lists of other nodes before potentially
3792 	 *    allocating new page from other nodes
3793 	 */
3794 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3795 		     && try_thisnode))
3796 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3797 
3798 	pc.orig_size = orig_size;
3799 	slab = get_partial(s, node, &pc);
3800 	if (slab) {
3801 		if (kmem_cache_debug(s)) {
3802 			freelist = pc.object;
3803 			/*
3804 			 * For debug caches here we had to go through
3805 			 * alloc_single_from_partial() so just store the
3806 			 * tracking info and return the object.
3807 			 */
3808 			if (s->flags & SLAB_STORE_USER)
3809 				set_track(s, freelist, TRACK_ALLOC, addr);
3810 
3811 			return freelist;
3812 		}
3813 
3814 		freelist = freeze_slab(s, slab);
3815 		goto retry_load_slab;
3816 	}
3817 
3818 	slub_put_cpu_ptr(s->cpu_slab);
3819 	slab = new_slab(s, pc.flags, node);
3820 	c = slub_get_cpu_ptr(s->cpu_slab);
3821 
3822 	if (unlikely(!slab)) {
3823 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3824 		    && try_thisnode) {
3825 			try_thisnode = false;
3826 			goto new_objects;
3827 		}
3828 		slab_out_of_memory(s, gfpflags, node);
3829 		return NULL;
3830 	}
3831 
3832 	stat(s, ALLOC_SLAB);
3833 
3834 	if (kmem_cache_debug(s)) {
3835 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3836 
3837 		if (unlikely(!freelist))
3838 			goto new_objects;
3839 
3840 		if (s->flags & SLAB_STORE_USER)
3841 			set_track(s, freelist, TRACK_ALLOC, addr);
3842 
3843 		return freelist;
3844 	}
3845 
3846 	/*
3847 	 * No other reference to the slab yet so we can
3848 	 * muck around with it freely without cmpxchg
3849 	 */
3850 	freelist = slab->freelist;
3851 	slab->freelist = NULL;
3852 	slab->inuse = slab->objects;
3853 	slab->frozen = 1;
3854 
3855 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3856 
3857 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3858 		/*
3859 		 * For !pfmemalloc_match() case we don't load freelist so that
3860 		 * we don't make further mismatched allocations easier.
3861 		 */
3862 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3863 		return freelist;
3864 	}
3865 
3866 retry_load_slab:
3867 
3868 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3869 	if (unlikely(c->slab)) {
3870 		void *flush_freelist = c->freelist;
3871 		struct slab *flush_slab = c->slab;
3872 
3873 		c->slab = NULL;
3874 		c->freelist = NULL;
3875 		c->tid = next_tid(c->tid);
3876 
3877 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3878 
3879 		deactivate_slab(s, flush_slab, flush_freelist);
3880 
3881 		stat(s, CPUSLAB_FLUSH);
3882 
3883 		goto retry_load_slab;
3884 	}
3885 	c->slab = slab;
3886 
3887 	goto load_freelist;
3888 }
3889 
3890 /*
3891  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3892  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3893  * pointer.
3894  */
3895 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3896 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3897 {
3898 	void *p;
3899 
3900 #ifdef CONFIG_PREEMPT_COUNT
3901 	/*
3902 	 * We may have been preempted and rescheduled on a different
3903 	 * cpu before disabling preemption. Need to reload cpu area
3904 	 * pointer.
3905 	 */
3906 	c = slub_get_cpu_ptr(s->cpu_slab);
3907 #endif
3908 
3909 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3910 #ifdef CONFIG_PREEMPT_COUNT
3911 	slub_put_cpu_ptr(s->cpu_slab);
3912 #endif
3913 	return p;
3914 }
3915 
3916 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3917 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3918 {
3919 	struct kmem_cache_cpu *c;
3920 	struct slab *slab;
3921 	unsigned long tid;
3922 	void *object;
3923 
3924 redo:
3925 	/*
3926 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3927 	 * enabled. We may switch back and forth between cpus while
3928 	 * reading from one cpu area. That does not matter as long
3929 	 * as we end up on the original cpu again when doing the cmpxchg.
3930 	 *
3931 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3932 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3933 	 * the tid. If we are preempted and switched to another cpu between the
3934 	 * two reads, it's OK as the two are still associated with the same cpu
3935 	 * and cmpxchg later will validate the cpu.
3936 	 */
3937 	c = raw_cpu_ptr(s->cpu_slab);
3938 	tid = READ_ONCE(c->tid);
3939 
3940 	/*
3941 	 * Irqless object alloc/free algorithm used here depends on sequence
3942 	 * of fetching cpu_slab's data. tid should be fetched before anything
3943 	 * on c to guarantee that object and slab associated with previous tid
3944 	 * won't be used with current tid. If we fetch tid first, object and
3945 	 * slab could be one associated with next tid and our alloc/free
3946 	 * request will be failed. In this case, we will retry. So, no problem.
3947 	 */
3948 	barrier();
3949 
3950 	/*
3951 	 * The transaction ids are globally unique per cpu and per operation on
3952 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3953 	 * occurs on the right processor and that there was no operation on the
3954 	 * linked list in between.
3955 	 */
3956 
3957 	object = c->freelist;
3958 	slab = c->slab;
3959 
3960 	if (!USE_LOCKLESS_FAST_PATH() ||
3961 	    unlikely(!object || !slab || !node_match(slab, node))) {
3962 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3963 	} else {
3964 		void *next_object = get_freepointer_safe(s, object);
3965 
3966 		/*
3967 		 * The cmpxchg will only match if there was no additional
3968 		 * operation and if we are on the right processor.
3969 		 *
3970 		 * The cmpxchg does the following atomically (without lock
3971 		 * semantics!)
3972 		 * 1. Relocate first pointer to the current per cpu area.
3973 		 * 2. Verify that tid and freelist have not been changed
3974 		 * 3. If they were not changed replace tid and freelist
3975 		 *
3976 		 * Since this is without lock semantics the protection is only
3977 		 * against code executing on this cpu *not* from access by
3978 		 * other cpus.
3979 		 */
3980 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3981 			note_cmpxchg_failure("slab_alloc", s, tid);
3982 			goto redo;
3983 		}
3984 		prefetch_freepointer(s, next_object);
3985 		stat(s, ALLOC_FASTPATH);
3986 	}
3987 
3988 	return object;
3989 }
3990 #else /* CONFIG_SLUB_TINY */
3991 static void *__slab_alloc_node(struct kmem_cache *s,
3992 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3993 {
3994 	struct partial_context pc;
3995 	struct slab *slab;
3996 	void *object;
3997 
3998 	pc.flags = gfpflags;
3999 	pc.orig_size = orig_size;
4000 	slab = get_partial(s, node, &pc);
4001 
4002 	if (slab)
4003 		return pc.object;
4004 
4005 	slab = new_slab(s, gfpflags, node);
4006 	if (unlikely(!slab)) {
4007 		slab_out_of_memory(s, gfpflags, node);
4008 		return NULL;
4009 	}
4010 
4011 	object = alloc_single_from_new_slab(s, slab, orig_size);
4012 
4013 	return object;
4014 }
4015 #endif /* CONFIG_SLUB_TINY */
4016 
4017 /*
4018  * If the object has been wiped upon free, make sure it's fully initialized by
4019  * zeroing out freelist pointer.
4020  *
4021  * Note that we also wipe custom freelist pointers.
4022  */
4023 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4024 						   void *obj)
4025 {
4026 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4027 	    !freeptr_outside_object(s))
4028 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4029 			0, sizeof(void *));
4030 }
4031 
4032 static __fastpath_inline
4033 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4034 {
4035 	flags &= gfp_allowed_mask;
4036 
4037 	might_alloc(flags);
4038 
4039 	if (unlikely(should_failslab(s, flags)))
4040 		return NULL;
4041 
4042 	return s;
4043 }
4044 
4045 static __fastpath_inline
4046 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4047 			  gfp_t flags, size_t size, void **p, bool init,
4048 			  unsigned int orig_size)
4049 {
4050 	unsigned int zero_size = s->object_size;
4051 	bool kasan_init = init;
4052 	size_t i;
4053 	gfp_t init_flags = flags & gfp_allowed_mask;
4054 
4055 	/*
4056 	 * For kmalloc object, the allocated memory size(object_size) is likely
4057 	 * larger than the requested size(orig_size). If redzone check is
4058 	 * enabled for the extra space, don't zero it, as it will be redzoned
4059 	 * soon. The redzone operation for this extra space could be seen as a
4060 	 * replacement of current poisoning under certain debug option, and
4061 	 * won't break other sanity checks.
4062 	 */
4063 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4064 	    (s->flags & SLAB_KMALLOC))
4065 		zero_size = orig_size;
4066 
4067 	/*
4068 	 * When slab_debug is enabled, avoid memory initialization integrated
4069 	 * into KASAN and instead zero out the memory via the memset below with
4070 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4071 	 * cause false-positive reports. This does not lead to a performance
4072 	 * penalty on production builds, as slab_debug is not intended to be
4073 	 * enabled there.
4074 	 */
4075 	if (__slub_debug_enabled())
4076 		kasan_init = false;
4077 
4078 	/*
4079 	 * As memory initialization might be integrated into KASAN,
4080 	 * kasan_slab_alloc and initialization memset must be
4081 	 * kept together to avoid discrepancies in behavior.
4082 	 *
4083 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4084 	 */
4085 	for (i = 0; i < size; i++) {
4086 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4087 		if (p[i] && init && (!kasan_init ||
4088 				     !kasan_has_integrated_init()))
4089 			memset(p[i], 0, zero_size);
4090 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4091 					 s->flags, init_flags);
4092 		kmsan_slab_alloc(s, p[i], init_flags);
4093 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4094 	}
4095 
4096 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4097 }
4098 
4099 /*
4100  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4101  * have the fastpath folded into their functions. So no function call
4102  * overhead for requests that can be satisfied on the fastpath.
4103  *
4104  * The fastpath works by first checking if the lockless freelist can be used.
4105  * If not then __slab_alloc is called for slow processing.
4106  *
4107  * Otherwise we can simply pick the next object from the lockless free list.
4108  */
4109 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4110 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4111 {
4112 	void *object;
4113 	bool init = false;
4114 
4115 	s = slab_pre_alloc_hook(s, gfpflags);
4116 	if (unlikely(!s))
4117 		return NULL;
4118 
4119 	object = kfence_alloc(s, orig_size, gfpflags);
4120 	if (unlikely(object))
4121 		goto out;
4122 
4123 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4124 
4125 	maybe_wipe_obj_freeptr(s, object);
4126 	init = slab_want_init_on_alloc(gfpflags, s);
4127 
4128 out:
4129 	/*
4130 	 * When init equals 'true', like for kzalloc() family, only
4131 	 * @orig_size bytes might be zeroed instead of s->object_size
4132 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4133 	 * object is set to NULL
4134 	 */
4135 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4136 
4137 	return object;
4138 }
4139 
4140 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4141 {
4142 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4143 				    s->object_size);
4144 
4145 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4146 
4147 	return ret;
4148 }
4149 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4150 
4151 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4152 			   gfp_t gfpflags)
4153 {
4154 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4155 				    s->object_size);
4156 
4157 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4158 
4159 	return ret;
4160 }
4161 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4162 
4163 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4164 {
4165 	if (!memcg_kmem_online())
4166 		return true;
4167 
4168 	return memcg_slab_post_charge(objp, gfpflags);
4169 }
4170 EXPORT_SYMBOL(kmem_cache_charge);
4171 
4172 /**
4173  * kmem_cache_alloc_node - Allocate an object on the specified node
4174  * @s: The cache to allocate from.
4175  * @gfpflags: See kmalloc().
4176  * @node: node number of the target node.
4177  *
4178  * Identical to kmem_cache_alloc but it will allocate memory on the given
4179  * node, which can improve the performance for cpu bound structures.
4180  *
4181  * Fallback to other node is possible if __GFP_THISNODE is not set.
4182  *
4183  * Return: pointer to the new object or %NULL in case of error
4184  */
4185 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4186 {
4187 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4188 
4189 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4190 
4191 	return ret;
4192 }
4193 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4194 
4195 /*
4196  * To avoid unnecessary overhead, we pass through large allocation requests
4197  * directly to the page allocator. We use __GFP_COMP, because we will need to
4198  * know the allocation order to free the pages properly in kfree.
4199  */
4200 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4201 {
4202 	struct folio *folio;
4203 	void *ptr = NULL;
4204 	unsigned int order = get_order(size);
4205 
4206 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4207 		flags = kmalloc_fix_flags(flags);
4208 
4209 	flags |= __GFP_COMP;
4210 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4211 	if (folio) {
4212 		ptr = folio_address(folio);
4213 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4214 				      PAGE_SIZE << order);
4215 	}
4216 
4217 	ptr = kasan_kmalloc_large(ptr, size, flags);
4218 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4219 	kmemleak_alloc(ptr, size, 1, flags);
4220 	kmsan_kmalloc_large(ptr, size, flags);
4221 
4222 	return ptr;
4223 }
4224 
4225 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4226 {
4227 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4228 
4229 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4230 		      flags, NUMA_NO_NODE);
4231 	return ret;
4232 }
4233 EXPORT_SYMBOL(__kmalloc_large_noprof);
4234 
4235 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4236 {
4237 	void *ret = ___kmalloc_large_node(size, flags, node);
4238 
4239 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4240 		      flags, node);
4241 	return ret;
4242 }
4243 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4244 
4245 static __always_inline
4246 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4247 			unsigned long caller)
4248 {
4249 	struct kmem_cache *s;
4250 	void *ret;
4251 
4252 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4253 		ret = __kmalloc_large_node_noprof(size, flags, node);
4254 		trace_kmalloc(caller, ret, size,
4255 			      PAGE_SIZE << get_order(size), flags, node);
4256 		return ret;
4257 	}
4258 
4259 	if (unlikely(!size))
4260 		return ZERO_SIZE_PTR;
4261 
4262 	s = kmalloc_slab(size, b, flags, caller);
4263 
4264 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4265 	ret = kasan_kmalloc(s, ret, size, flags);
4266 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4267 	return ret;
4268 }
4269 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4270 {
4271 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4272 }
4273 EXPORT_SYMBOL(__kmalloc_node_noprof);
4274 
4275 void *__kmalloc_noprof(size_t size, gfp_t flags)
4276 {
4277 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4278 }
4279 EXPORT_SYMBOL(__kmalloc_noprof);
4280 
4281 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4282 					 int node, unsigned long caller)
4283 {
4284 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4285 
4286 }
4287 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4288 
4289 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4290 {
4291 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4292 					    _RET_IP_, size);
4293 
4294 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4295 
4296 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4297 	return ret;
4298 }
4299 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4300 
4301 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4302 				  int node, size_t size)
4303 {
4304 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4305 
4306 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4307 
4308 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4309 	return ret;
4310 }
4311 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4312 
4313 static noinline void free_to_partial_list(
4314 	struct kmem_cache *s, struct slab *slab,
4315 	void *head, void *tail, int bulk_cnt,
4316 	unsigned long addr)
4317 {
4318 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4319 	struct slab *slab_free = NULL;
4320 	int cnt = bulk_cnt;
4321 	unsigned long flags;
4322 	depot_stack_handle_t handle = 0;
4323 
4324 	if (s->flags & SLAB_STORE_USER)
4325 		handle = set_track_prepare();
4326 
4327 	spin_lock_irqsave(&n->list_lock, flags);
4328 
4329 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4330 		void *prior = slab->freelist;
4331 
4332 		/* Perform the actual freeing while we still hold the locks */
4333 		slab->inuse -= cnt;
4334 		set_freepointer(s, tail, prior);
4335 		slab->freelist = head;
4336 
4337 		/*
4338 		 * If the slab is empty, and node's partial list is full,
4339 		 * it should be discarded anyway no matter it's on full or
4340 		 * partial list.
4341 		 */
4342 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4343 			slab_free = slab;
4344 
4345 		if (!prior) {
4346 			/* was on full list */
4347 			remove_full(s, n, slab);
4348 			if (!slab_free) {
4349 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4350 				stat(s, FREE_ADD_PARTIAL);
4351 			}
4352 		} else if (slab_free) {
4353 			remove_partial(n, slab);
4354 			stat(s, FREE_REMOVE_PARTIAL);
4355 		}
4356 	}
4357 
4358 	if (slab_free) {
4359 		/*
4360 		 * Update the counters while still holding n->list_lock to
4361 		 * prevent spurious validation warnings
4362 		 */
4363 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4364 	}
4365 
4366 	spin_unlock_irqrestore(&n->list_lock, flags);
4367 
4368 	if (slab_free) {
4369 		stat(s, FREE_SLAB);
4370 		free_slab(s, slab_free);
4371 	}
4372 }
4373 
4374 /*
4375  * Slow path handling. This may still be called frequently since objects
4376  * have a longer lifetime than the cpu slabs in most processing loads.
4377  *
4378  * So we still attempt to reduce cache line usage. Just take the slab
4379  * lock and free the item. If there is no additional partial slab
4380  * handling required then we can return immediately.
4381  */
4382 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4383 			void *head, void *tail, int cnt,
4384 			unsigned long addr)
4385 
4386 {
4387 	void *prior;
4388 	int was_frozen;
4389 	struct slab new;
4390 	unsigned long counters;
4391 	struct kmem_cache_node *n = NULL;
4392 	unsigned long flags;
4393 	bool on_node_partial;
4394 
4395 	stat(s, FREE_SLOWPATH);
4396 
4397 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4398 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4399 		return;
4400 	}
4401 
4402 	do {
4403 		if (unlikely(n)) {
4404 			spin_unlock_irqrestore(&n->list_lock, flags);
4405 			n = NULL;
4406 		}
4407 		prior = slab->freelist;
4408 		counters = slab->counters;
4409 		set_freepointer(s, tail, prior);
4410 		new.counters = counters;
4411 		was_frozen = new.frozen;
4412 		new.inuse -= cnt;
4413 		if ((!new.inuse || !prior) && !was_frozen) {
4414 			/* Needs to be taken off a list */
4415 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4416 
4417 				n = get_node(s, slab_nid(slab));
4418 				/*
4419 				 * Speculatively acquire the list_lock.
4420 				 * If the cmpxchg does not succeed then we may
4421 				 * drop the list_lock without any processing.
4422 				 *
4423 				 * Otherwise the list_lock will synchronize with
4424 				 * other processors updating the list of slabs.
4425 				 */
4426 				spin_lock_irqsave(&n->list_lock, flags);
4427 
4428 				on_node_partial = slab_test_node_partial(slab);
4429 			}
4430 		}
4431 
4432 	} while (!slab_update_freelist(s, slab,
4433 		prior, counters,
4434 		head, new.counters,
4435 		"__slab_free"));
4436 
4437 	if (likely(!n)) {
4438 
4439 		if (likely(was_frozen)) {
4440 			/*
4441 			 * The list lock was not taken therefore no list
4442 			 * activity can be necessary.
4443 			 */
4444 			stat(s, FREE_FROZEN);
4445 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4446 			/*
4447 			 * If we started with a full slab then put it onto the
4448 			 * per cpu partial list.
4449 			 */
4450 			put_cpu_partial(s, slab, 1);
4451 			stat(s, CPU_PARTIAL_FREE);
4452 		}
4453 
4454 		return;
4455 	}
4456 
4457 	/*
4458 	 * This slab was partially empty but not on the per-node partial list,
4459 	 * in which case we shouldn't manipulate its list, just return.
4460 	 */
4461 	if (prior && !on_node_partial) {
4462 		spin_unlock_irqrestore(&n->list_lock, flags);
4463 		return;
4464 	}
4465 
4466 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4467 		goto slab_empty;
4468 
4469 	/*
4470 	 * Objects left in the slab. If it was not on the partial list before
4471 	 * then add it.
4472 	 */
4473 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4474 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4475 		stat(s, FREE_ADD_PARTIAL);
4476 	}
4477 	spin_unlock_irqrestore(&n->list_lock, flags);
4478 	return;
4479 
4480 slab_empty:
4481 	if (prior) {
4482 		/*
4483 		 * Slab on the partial list.
4484 		 */
4485 		remove_partial(n, slab);
4486 		stat(s, FREE_REMOVE_PARTIAL);
4487 	}
4488 
4489 	spin_unlock_irqrestore(&n->list_lock, flags);
4490 	stat(s, FREE_SLAB);
4491 	discard_slab(s, slab);
4492 }
4493 
4494 #ifndef CONFIG_SLUB_TINY
4495 /*
4496  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4497  * can perform fastpath freeing without additional function calls.
4498  *
4499  * The fastpath is only possible if we are freeing to the current cpu slab
4500  * of this processor. This typically the case if we have just allocated
4501  * the item before.
4502  *
4503  * If fastpath is not possible then fall back to __slab_free where we deal
4504  * with all sorts of special processing.
4505  *
4506  * Bulk free of a freelist with several objects (all pointing to the
4507  * same slab) possible by specifying head and tail ptr, plus objects
4508  * count (cnt). Bulk free indicated by tail pointer being set.
4509  */
4510 static __always_inline void do_slab_free(struct kmem_cache *s,
4511 				struct slab *slab, void *head, void *tail,
4512 				int cnt, unsigned long addr)
4513 {
4514 	struct kmem_cache_cpu *c;
4515 	unsigned long tid;
4516 	void **freelist;
4517 
4518 redo:
4519 	/*
4520 	 * Determine the currently cpus per cpu slab.
4521 	 * The cpu may change afterward. However that does not matter since
4522 	 * data is retrieved via this pointer. If we are on the same cpu
4523 	 * during the cmpxchg then the free will succeed.
4524 	 */
4525 	c = raw_cpu_ptr(s->cpu_slab);
4526 	tid = READ_ONCE(c->tid);
4527 
4528 	/* Same with comment on barrier() in __slab_alloc_node() */
4529 	barrier();
4530 
4531 	if (unlikely(slab != c->slab)) {
4532 		__slab_free(s, slab, head, tail, cnt, addr);
4533 		return;
4534 	}
4535 
4536 	if (USE_LOCKLESS_FAST_PATH()) {
4537 		freelist = READ_ONCE(c->freelist);
4538 
4539 		set_freepointer(s, tail, freelist);
4540 
4541 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4542 			note_cmpxchg_failure("slab_free", s, tid);
4543 			goto redo;
4544 		}
4545 	} else {
4546 		/* Update the free list under the local lock */
4547 		local_lock(&s->cpu_slab->lock);
4548 		c = this_cpu_ptr(s->cpu_slab);
4549 		if (unlikely(slab != c->slab)) {
4550 			local_unlock(&s->cpu_slab->lock);
4551 			goto redo;
4552 		}
4553 		tid = c->tid;
4554 		freelist = c->freelist;
4555 
4556 		set_freepointer(s, tail, freelist);
4557 		c->freelist = head;
4558 		c->tid = next_tid(tid);
4559 
4560 		local_unlock(&s->cpu_slab->lock);
4561 	}
4562 	stat_add(s, FREE_FASTPATH, cnt);
4563 }
4564 #else /* CONFIG_SLUB_TINY */
4565 static void do_slab_free(struct kmem_cache *s,
4566 				struct slab *slab, void *head, void *tail,
4567 				int cnt, unsigned long addr)
4568 {
4569 	__slab_free(s, slab, head, tail, cnt, addr);
4570 }
4571 #endif /* CONFIG_SLUB_TINY */
4572 
4573 static __fastpath_inline
4574 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4575 	       unsigned long addr)
4576 {
4577 	memcg_slab_free_hook(s, slab, &object, 1);
4578 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4579 
4580 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4581 		do_slab_free(s, slab, object, object, 1, addr);
4582 }
4583 
4584 #ifdef CONFIG_MEMCG
4585 /* Do not inline the rare memcg charging failed path into the allocation path */
4586 static noinline
4587 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4588 {
4589 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4590 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4591 }
4592 #endif
4593 
4594 static __fastpath_inline
4595 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4596 		    void *tail, void **p, int cnt, unsigned long addr)
4597 {
4598 	memcg_slab_free_hook(s, slab, p, cnt);
4599 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4600 	/*
4601 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4602 	 * to remove objects, whose reuse must be delayed.
4603 	 */
4604 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4605 		do_slab_free(s, slab, head, tail, cnt, addr);
4606 }
4607 
4608 #ifdef CONFIG_SLUB_RCU_DEBUG
4609 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4610 {
4611 	struct rcu_delayed_free *delayed_free =
4612 			container_of(rcu_head, struct rcu_delayed_free, head);
4613 	void *object = delayed_free->object;
4614 	struct slab *slab = virt_to_slab(object);
4615 	struct kmem_cache *s;
4616 
4617 	kfree(delayed_free);
4618 
4619 	if (WARN_ON(is_kfence_address(object)))
4620 		return;
4621 
4622 	/* find the object and the cache again */
4623 	if (WARN_ON(!slab))
4624 		return;
4625 	s = slab->slab_cache;
4626 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4627 		return;
4628 
4629 	/* resume freeing */
4630 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4631 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4632 }
4633 #endif /* CONFIG_SLUB_RCU_DEBUG */
4634 
4635 #ifdef CONFIG_KASAN_GENERIC
4636 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4637 {
4638 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4639 }
4640 #endif
4641 
4642 static inline struct kmem_cache *virt_to_cache(const void *obj)
4643 {
4644 	struct slab *slab;
4645 
4646 	slab = virt_to_slab(obj);
4647 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4648 		return NULL;
4649 	return slab->slab_cache;
4650 }
4651 
4652 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4653 {
4654 	struct kmem_cache *cachep;
4655 
4656 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4657 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4658 		return s;
4659 
4660 	cachep = virt_to_cache(x);
4661 	if (WARN(cachep && cachep != s,
4662 		 "%s: Wrong slab cache. %s but object is from %s\n",
4663 		 __func__, s->name, cachep->name))
4664 		print_tracking(cachep, x);
4665 	return cachep;
4666 }
4667 
4668 /**
4669  * kmem_cache_free - Deallocate an object
4670  * @s: The cache the allocation was from.
4671  * @x: The previously allocated object.
4672  *
4673  * Free an object which was previously allocated from this
4674  * cache.
4675  */
4676 void kmem_cache_free(struct kmem_cache *s, void *x)
4677 {
4678 	s = cache_from_obj(s, x);
4679 	if (!s)
4680 		return;
4681 	trace_kmem_cache_free(_RET_IP_, x, s);
4682 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4683 }
4684 EXPORT_SYMBOL(kmem_cache_free);
4685 
4686 static void free_large_kmalloc(struct folio *folio, void *object)
4687 {
4688 	unsigned int order = folio_order(folio);
4689 
4690 	if (WARN_ON_ONCE(order == 0))
4691 		pr_warn_once("object pointer: 0x%p\n", object);
4692 
4693 	kmemleak_free(object);
4694 	kasan_kfree_large(object);
4695 	kmsan_kfree_large(object);
4696 
4697 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4698 			      -(PAGE_SIZE << order));
4699 	folio_put(folio);
4700 }
4701 
4702 /**
4703  * kfree - free previously allocated memory
4704  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4705  *
4706  * If @object is NULL, no operation is performed.
4707  */
4708 void kfree(const void *object)
4709 {
4710 	struct folio *folio;
4711 	struct slab *slab;
4712 	struct kmem_cache *s;
4713 	void *x = (void *)object;
4714 
4715 	trace_kfree(_RET_IP_, object);
4716 
4717 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4718 		return;
4719 
4720 	folio = virt_to_folio(object);
4721 	if (unlikely(!folio_test_slab(folio))) {
4722 		free_large_kmalloc(folio, (void *)object);
4723 		return;
4724 	}
4725 
4726 	slab = folio_slab(folio);
4727 	s = slab->slab_cache;
4728 	slab_free(s, slab, x, _RET_IP_);
4729 }
4730 EXPORT_SYMBOL(kfree);
4731 
4732 struct detached_freelist {
4733 	struct slab *slab;
4734 	void *tail;
4735 	void *freelist;
4736 	int cnt;
4737 	struct kmem_cache *s;
4738 };
4739 
4740 /*
4741  * This function progressively scans the array with free objects (with
4742  * a limited look ahead) and extract objects belonging to the same
4743  * slab.  It builds a detached freelist directly within the given
4744  * slab/objects.  This can happen without any need for
4745  * synchronization, because the objects are owned by running process.
4746  * The freelist is build up as a single linked list in the objects.
4747  * The idea is, that this detached freelist can then be bulk
4748  * transferred to the real freelist(s), but only requiring a single
4749  * synchronization primitive.  Look ahead in the array is limited due
4750  * to performance reasons.
4751  */
4752 static inline
4753 int build_detached_freelist(struct kmem_cache *s, size_t size,
4754 			    void **p, struct detached_freelist *df)
4755 {
4756 	int lookahead = 3;
4757 	void *object;
4758 	struct folio *folio;
4759 	size_t same;
4760 
4761 	object = p[--size];
4762 	folio = virt_to_folio(object);
4763 	if (!s) {
4764 		/* Handle kalloc'ed objects */
4765 		if (unlikely(!folio_test_slab(folio))) {
4766 			free_large_kmalloc(folio, object);
4767 			df->slab = NULL;
4768 			return size;
4769 		}
4770 		/* Derive kmem_cache from object */
4771 		df->slab = folio_slab(folio);
4772 		df->s = df->slab->slab_cache;
4773 	} else {
4774 		df->slab = folio_slab(folio);
4775 		df->s = cache_from_obj(s, object); /* Support for memcg */
4776 	}
4777 
4778 	/* Start new detached freelist */
4779 	df->tail = object;
4780 	df->freelist = object;
4781 	df->cnt = 1;
4782 
4783 	if (is_kfence_address(object))
4784 		return size;
4785 
4786 	set_freepointer(df->s, object, NULL);
4787 
4788 	same = size;
4789 	while (size) {
4790 		object = p[--size];
4791 		/* df->slab is always set at this point */
4792 		if (df->slab == virt_to_slab(object)) {
4793 			/* Opportunity build freelist */
4794 			set_freepointer(df->s, object, df->freelist);
4795 			df->freelist = object;
4796 			df->cnt++;
4797 			same--;
4798 			if (size != same)
4799 				swap(p[size], p[same]);
4800 			continue;
4801 		}
4802 
4803 		/* Limit look ahead search */
4804 		if (!--lookahead)
4805 			break;
4806 	}
4807 
4808 	return same;
4809 }
4810 
4811 /*
4812  * Internal bulk free of objects that were not initialised by the post alloc
4813  * hooks and thus should not be processed by the free hooks
4814  */
4815 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4816 {
4817 	if (!size)
4818 		return;
4819 
4820 	do {
4821 		struct detached_freelist df;
4822 
4823 		size = build_detached_freelist(s, size, p, &df);
4824 		if (!df.slab)
4825 			continue;
4826 
4827 		if (kfence_free(df.freelist))
4828 			continue;
4829 
4830 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4831 			     _RET_IP_);
4832 	} while (likely(size));
4833 }
4834 
4835 /* Note that interrupts must be enabled when calling this function. */
4836 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4837 {
4838 	if (!size)
4839 		return;
4840 
4841 	do {
4842 		struct detached_freelist df;
4843 
4844 		size = build_detached_freelist(s, size, p, &df);
4845 		if (!df.slab)
4846 			continue;
4847 
4848 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4849 			       df.cnt, _RET_IP_);
4850 	} while (likely(size));
4851 }
4852 EXPORT_SYMBOL(kmem_cache_free_bulk);
4853 
4854 #ifndef CONFIG_SLUB_TINY
4855 static inline
4856 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4857 			    void **p)
4858 {
4859 	struct kmem_cache_cpu *c;
4860 	unsigned long irqflags;
4861 	int i;
4862 
4863 	/*
4864 	 * Drain objects in the per cpu slab, while disabling local
4865 	 * IRQs, which protects against PREEMPT and interrupts
4866 	 * handlers invoking normal fastpath.
4867 	 */
4868 	c = slub_get_cpu_ptr(s->cpu_slab);
4869 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4870 
4871 	for (i = 0; i < size; i++) {
4872 		void *object = kfence_alloc(s, s->object_size, flags);
4873 
4874 		if (unlikely(object)) {
4875 			p[i] = object;
4876 			continue;
4877 		}
4878 
4879 		object = c->freelist;
4880 		if (unlikely(!object)) {
4881 			/*
4882 			 * We may have removed an object from c->freelist using
4883 			 * the fastpath in the previous iteration; in that case,
4884 			 * c->tid has not been bumped yet.
4885 			 * Since ___slab_alloc() may reenable interrupts while
4886 			 * allocating memory, we should bump c->tid now.
4887 			 */
4888 			c->tid = next_tid(c->tid);
4889 
4890 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4891 
4892 			/*
4893 			 * Invoking slow path likely have side-effect
4894 			 * of re-populating per CPU c->freelist
4895 			 */
4896 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4897 					    _RET_IP_, c, s->object_size);
4898 			if (unlikely(!p[i]))
4899 				goto error;
4900 
4901 			c = this_cpu_ptr(s->cpu_slab);
4902 			maybe_wipe_obj_freeptr(s, p[i]);
4903 
4904 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4905 
4906 			continue; /* goto for-loop */
4907 		}
4908 		c->freelist = get_freepointer(s, object);
4909 		p[i] = object;
4910 		maybe_wipe_obj_freeptr(s, p[i]);
4911 		stat(s, ALLOC_FASTPATH);
4912 	}
4913 	c->tid = next_tid(c->tid);
4914 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4915 	slub_put_cpu_ptr(s->cpu_slab);
4916 
4917 	return i;
4918 
4919 error:
4920 	slub_put_cpu_ptr(s->cpu_slab);
4921 	__kmem_cache_free_bulk(s, i, p);
4922 	return 0;
4923 
4924 }
4925 #else /* CONFIG_SLUB_TINY */
4926 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4927 				   size_t size, void **p)
4928 {
4929 	int i;
4930 
4931 	for (i = 0; i < size; i++) {
4932 		void *object = kfence_alloc(s, s->object_size, flags);
4933 
4934 		if (unlikely(object)) {
4935 			p[i] = object;
4936 			continue;
4937 		}
4938 
4939 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4940 					 _RET_IP_, s->object_size);
4941 		if (unlikely(!p[i]))
4942 			goto error;
4943 
4944 		maybe_wipe_obj_freeptr(s, p[i]);
4945 	}
4946 
4947 	return i;
4948 
4949 error:
4950 	__kmem_cache_free_bulk(s, i, p);
4951 	return 0;
4952 }
4953 #endif /* CONFIG_SLUB_TINY */
4954 
4955 /* Note that interrupts must be enabled when calling this function. */
4956 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4957 				 void **p)
4958 {
4959 	int i;
4960 
4961 	if (!size)
4962 		return 0;
4963 
4964 	s = slab_pre_alloc_hook(s, flags);
4965 	if (unlikely(!s))
4966 		return 0;
4967 
4968 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4969 	if (unlikely(i == 0))
4970 		return 0;
4971 
4972 	/*
4973 	 * memcg and kmem_cache debug support and memory initialization.
4974 	 * Done outside of the IRQ disabled fastpath loop.
4975 	 */
4976 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4977 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
4978 		return 0;
4979 	}
4980 	return i;
4981 }
4982 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4983 
4984 
4985 /*
4986  * Object placement in a slab is made very easy because we always start at
4987  * offset 0. If we tune the size of the object to the alignment then we can
4988  * get the required alignment by putting one properly sized object after
4989  * another.
4990  *
4991  * Notice that the allocation order determines the sizes of the per cpu
4992  * caches. Each processor has always one slab available for allocations.
4993  * Increasing the allocation order reduces the number of times that slabs
4994  * must be moved on and off the partial lists and is therefore a factor in
4995  * locking overhead.
4996  */
4997 
4998 /*
4999  * Minimum / Maximum order of slab pages. This influences locking overhead
5000  * and slab fragmentation. A higher order reduces the number of partial slabs
5001  * and increases the number of allocations possible without having to
5002  * take the list_lock.
5003  */
5004 static unsigned int slub_min_order;
5005 static unsigned int slub_max_order =
5006 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5007 static unsigned int slub_min_objects;
5008 
5009 /*
5010  * Calculate the order of allocation given an slab object size.
5011  *
5012  * The order of allocation has significant impact on performance and other
5013  * system components. Generally order 0 allocations should be preferred since
5014  * order 0 does not cause fragmentation in the page allocator. Larger objects
5015  * be problematic to put into order 0 slabs because there may be too much
5016  * unused space left. We go to a higher order if more than 1/16th of the slab
5017  * would be wasted.
5018  *
5019  * In order to reach satisfactory performance we must ensure that a minimum
5020  * number of objects is in one slab. Otherwise we may generate too much
5021  * activity on the partial lists which requires taking the list_lock. This is
5022  * less a concern for large slabs though which are rarely used.
5023  *
5024  * slab_max_order specifies the order where we begin to stop considering the
5025  * number of objects in a slab as critical. If we reach slab_max_order then
5026  * we try to keep the page order as low as possible. So we accept more waste
5027  * of space in favor of a small page order.
5028  *
5029  * Higher order allocations also allow the placement of more objects in a
5030  * slab and thereby reduce object handling overhead. If the user has
5031  * requested a higher minimum order then we start with that one instead of
5032  * the smallest order which will fit the object.
5033  */
5034 static inline unsigned int calc_slab_order(unsigned int size,
5035 		unsigned int min_order, unsigned int max_order,
5036 		unsigned int fract_leftover)
5037 {
5038 	unsigned int order;
5039 
5040 	for (order = min_order; order <= max_order; order++) {
5041 
5042 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5043 		unsigned int rem;
5044 
5045 		rem = slab_size % size;
5046 
5047 		if (rem <= slab_size / fract_leftover)
5048 			break;
5049 	}
5050 
5051 	return order;
5052 }
5053 
5054 static inline int calculate_order(unsigned int size)
5055 {
5056 	unsigned int order;
5057 	unsigned int min_objects;
5058 	unsigned int max_objects;
5059 	unsigned int min_order;
5060 
5061 	min_objects = slub_min_objects;
5062 	if (!min_objects) {
5063 		/*
5064 		 * Some architectures will only update present cpus when
5065 		 * onlining them, so don't trust the number if it's just 1. But
5066 		 * we also don't want to use nr_cpu_ids always, as on some other
5067 		 * architectures, there can be many possible cpus, but never
5068 		 * onlined. Here we compromise between trying to avoid too high
5069 		 * order on systems that appear larger than they are, and too
5070 		 * low order on systems that appear smaller than they are.
5071 		 */
5072 		unsigned int nr_cpus = num_present_cpus();
5073 		if (nr_cpus <= 1)
5074 			nr_cpus = nr_cpu_ids;
5075 		min_objects = 4 * (fls(nr_cpus) + 1);
5076 	}
5077 	/* min_objects can't be 0 because get_order(0) is undefined */
5078 	max_objects = max(order_objects(slub_max_order, size), 1U);
5079 	min_objects = min(min_objects, max_objects);
5080 
5081 	min_order = max_t(unsigned int, slub_min_order,
5082 			  get_order(min_objects * size));
5083 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5084 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5085 
5086 	/*
5087 	 * Attempt to find best configuration for a slab. This works by first
5088 	 * attempting to generate a layout with the best possible configuration
5089 	 * and backing off gradually.
5090 	 *
5091 	 * We start with accepting at most 1/16 waste and try to find the
5092 	 * smallest order from min_objects-derived/slab_min_order up to
5093 	 * slab_max_order that will satisfy the constraint. Note that increasing
5094 	 * the order can only result in same or less fractional waste, not more.
5095 	 *
5096 	 * If that fails, we increase the acceptable fraction of waste and try
5097 	 * again. The last iteration with fraction of 1/2 would effectively
5098 	 * accept any waste and give us the order determined by min_objects, as
5099 	 * long as at least single object fits within slab_max_order.
5100 	 */
5101 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5102 		order = calc_slab_order(size, min_order, slub_max_order,
5103 					fraction);
5104 		if (order <= slub_max_order)
5105 			return order;
5106 	}
5107 
5108 	/*
5109 	 * Doh this slab cannot be placed using slab_max_order.
5110 	 */
5111 	order = get_order(size);
5112 	if (order <= MAX_PAGE_ORDER)
5113 		return order;
5114 	return -ENOSYS;
5115 }
5116 
5117 static void
5118 init_kmem_cache_node(struct kmem_cache_node *n)
5119 {
5120 	n->nr_partial = 0;
5121 	spin_lock_init(&n->list_lock);
5122 	INIT_LIST_HEAD(&n->partial);
5123 #ifdef CONFIG_SLUB_DEBUG
5124 	atomic_long_set(&n->nr_slabs, 0);
5125 	atomic_long_set(&n->total_objects, 0);
5126 	INIT_LIST_HEAD(&n->full);
5127 #endif
5128 }
5129 
5130 #ifndef CONFIG_SLUB_TINY
5131 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5132 {
5133 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5134 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5135 			sizeof(struct kmem_cache_cpu));
5136 
5137 	/*
5138 	 * Must align to double word boundary for the double cmpxchg
5139 	 * instructions to work; see __pcpu_double_call_return_bool().
5140 	 */
5141 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5142 				     2 * sizeof(void *));
5143 
5144 	if (!s->cpu_slab)
5145 		return 0;
5146 
5147 	init_kmem_cache_cpus(s);
5148 
5149 	return 1;
5150 }
5151 #else
5152 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5153 {
5154 	return 1;
5155 }
5156 #endif /* CONFIG_SLUB_TINY */
5157 
5158 static struct kmem_cache *kmem_cache_node;
5159 
5160 /*
5161  * No kmalloc_node yet so do it by hand. We know that this is the first
5162  * slab on the node for this slabcache. There are no concurrent accesses
5163  * possible.
5164  *
5165  * Note that this function only works on the kmem_cache_node
5166  * when allocating for the kmem_cache_node. This is used for bootstrapping
5167  * memory on a fresh node that has no slab structures yet.
5168  */
5169 static void early_kmem_cache_node_alloc(int node)
5170 {
5171 	struct slab *slab;
5172 	struct kmem_cache_node *n;
5173 
5174 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5175 
5176 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5177 
5178 	BUG_ON(!slab);
5179 	if (slab_nid(slab) != node) {
5180 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5181 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5182 	}
5183 
5184 	n = slab->freelist;
5185 	BUG_ON(!n);
5186 #ifdef CONFIG_SLUB_DEBUG
5187 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5188 #endif
5189 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5190 	slab->freelist = get_freepointer(kmem_cache_node, n);
5191 	slab->inuse = 1;
5192 	kmem_cache_node->node[node] = n;
5193 	init_kmem_cache_node(n);
5194 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5195 
5196 	/*
5197 	 * No locks need to be taken here as it has just been
5198 	 * initialized and there is no concurrent access.
5199 	 */
5200 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5201 }
5202 
5203 static void free_kmem_cache_nodes(struct kmem_cache *s)
5204 {
5205 	int node;
5206 	struct kmem_cache_node *n;
5207 
5208 	for_each_kmem_cache_node(s, node, n) {
5209 		s->node[node] = NULL;
5210 		kmem_cache_free(kmem_cache_node, n);
5211 	}
5212 }
5213 
5214 void __kmem_cache_release(struct kmem_cache *s)
5215 {
5216 	cache_random_seq_destroy(s);
5217 #ifndef CONFIG_SLUB_TINY
5218 	free_percpu(s->cpu_slab);
5219 #endif
5220 	free_kmem_cache_nodes(s);
5221 }
5222 
5223 static int init_kmem_cache_nodes(struct kmem_cache *s)
5224 {
5225 	int node;
5226 
5227 	for_each_node_mask(node, slab_nodes) {
5228 		struct kmem_cache_node *n;
5229 
5230 		if (slab_state == DOWN) {
5231 			early_kmem_cache_node_alloc(node);
5232 			continue;
5233 		}
5234 		n = kmem_cache_alloc_node(kmem_cache_node,
5235 						GFP_KERNEL, node);
5236 
5237 		if (!n) {
5238 			free_kmem_cache_nodes(s);
5239 			return 0;
5240 		}
5241 
5242 		init_kmem_cache_node(n);
5243 		s->node[node] = n;
5244 	}
5245 	return 1;
5246 }
5247 
5248 static void set_cpu_partial(struct kmem_cache *s)
5249 {
5250 #ifdef CONFIG_SLUB_CPU_PARTIAL
5251 	unsigned int nr_objects;
5252 
5253 	/*
5254 	 * cpu_partial determined the maximum number of objects kept in the
5255 	 * per cpu partial lists of a processor.
5256 	 *
5257 	 * Per cpu partial lists mainly contain slabs that just have one
5258 	 * object freed. If they are used for allocation then they can be
5259 	 * filled up again with minimal effort. The slab will never hit the
5260 	 * per node partial lists and therefore no locking will be required.
5261 	 *
5262 	 * For backwards compatibility reasons, this is determined as number
5263 	 * of objects, even though we now limit maximum number of pages, see
5264 	 * slub_set_cpu_partial()
5265 	 */
5266 	if (!kmem_cache_has_cpu_partial(s))
5267 		nr_objects = 0;
5268 	else if (s->size >= PAGE_SIZE)
5269 		nr_objects = 6;
5270 	else if (s->size >= 1024)
5271 		nr_objects = 24;
5272 	else if (s->size >= 256)
5273 		nr_objects = 52;
5274 	else
5275 		nr_objects = 120;
5276 
5277 	slub_set_cpu_partial(s, nr_objects);
5278 #endif
5279 }
5280 
5281 /*
5282  * calculate_sizes() determines the order and the distribution of data within
5283  * a slab object.
5284  */
5285 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5286 {
5287 	slab_flags_t flags = s->flags;
5288 	unsigned int size = s->object_size;
5289 	unsigned int order;
5290 
5291 	/*
5292 	 * Round up object size to the next word boundary. We can only
5293 	 * place the free pointer at word boundaries and this determines
5294 	 * the possible location of the free pointer.
5295 	 */
5296 	size = ALIGN(size, sizeof(void *));
5297 
5298 #ifdef CONFIG_SLUB_DEBUG
5299 	/*
5300 	 * Determine if we can poison the object itself. If the user of
5301 	 * the slab may touch the object after free or before allocation
5302 	 * then we should never poison the object itself.
5303 	 */
5304 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5305 			!s->ctor)
5306 		s->flags |= __OBJECT_POISON;
5307 	else
5308 		s->flags &= ~__OBJECT_POISON;
5309 
5310 
5311 	/*
5312 	 * If we are Redzoning then check if there is some space between the
5313 	 * end of the object and the free pointer. If not then add an
5314 	 * additional word to have some bytes to store Redzone information.
5315 	 */
5316 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5317 		size += sizeof(void *);
5318 #endif
5319 
5320 	/*
5321 	 * With that we have determined the number of bytes in actual use
5322 	 * by the object and redzoning.
5323 	 */
5324 	s->inuse = size;
5325 
5326 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5327 	    (flags & SLAB_POISON) || s->ctor ||
5328 	    ((flags & SLAB_RED_ZONE) &&
5329 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5330 		/*
5331 		 * Relocate free pointer after the object if it is not
5332 		 * permitted to overwrite the first word of the object on
5333 		 * kmem_cache_free.
5334 		 *
5335 		 * This is the case if we do RCU, have a constructor or
5336 		 * destructor, are poisoning the objects, or are
5337 		 * redzoning an object smaller than sizeof(void *) or are
5338 		 * redzoning an object with slub_debug_orig_size() enabled,
5339 		 * in which case the right redzone may be extended.
5340 		 *
5341 		 * The assumption that s->offset >= s->inuse means free
5342 		 * pointer is outside of the object is used in the
5343 		 * freeptr_outside_object() function. If that is no
5344 		 * longer true, the function needs to be modified.
5345 		 */
5346 		s->offset = size;
5347 		size += sizeof(void *);
5348 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5349 		s->offset = args->freeptr_offset;
5350 	} else {
5351 		/*
5352 		 * Store freelist pointer near middle of object to keep
5353 		 * it away from the edges of the object to avoid small
5354 		 * sized over/underflows from neighboring allocations.
5355 		 */
5356 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5357 	}
5358 
5359 #ifdef CONFIG_SLUB_DEBUG
5360 	if (flags & SLAB_STORE_USER) {
5361 		/*
5362 		 * Need to store information about allocs and frees after
5363 		 * the object.
5364 		 */
5365 		size += 2 * sizeof(struct track);
5366 
5367 		/* Save the original kmalloc request size */
5368 		if (flags & SLAB_KMALLOC)
5369 			size += sizeof(unsigned int);
5370 	}
5371 #endif
5372 
5373 	kasan_cache_create(s, &size, &s->flags);
5374 #ifdef CONFIG_SLUB_DEBUG
5375 	if (flags & SLAB_RED_ZONE) {
5376 		/*
5377 		 * Add some empty padding so that we can catch
5378 		 * overwrites from earlier objects rather than let
5379 		 * tracking information or the free pointer be
5380 		 * corrupted if a user writes before the start
5381 		 * of the object.
5382 		 */
5383 		size += sizeof(void *);
5384 
5385 		s->red_left_pad = sizeof(void *);
5386 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5387 		size += s->red_left_pad;
5388 	}
5389 #endif
5390 
5391 	/*
5392 	 * SLUB stores one object immediately after another beginning from
5393 	 * offset 0. In order to align the objects we have to simply size
5394 	 * each object to conform to the alignment.
5395 	 */
5396 	size = ALIGN(size, s->align);
5397 	s->size = size;
5398 	s->reciprocal_size = reciprocal_value(size);
5399 	order = calculate_order(size);
5400 
5401 	if ((int)order < 0)
5402 		return 0;
5403 
5404 	s->allocflags = __GFP_COMP;
5405 
5406 	if (s->flags & SLAB_CACHE_DMA)
5407 		s->allocflags |= GFP_DMA;
5408 
5409 	if (s->flags & SLAB_CACHE_DMA32)
5410 		s->allocflags |= GFP_DMA32;
5411 
5412 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5413 		s->allocflags |= __GFP_RECLAIMABLE;
5414 
5415 	/*
5416 	 * Determine the number of objects per slab
5417 	 */
5418 	s->oo = oo_make(order, size);
5419 	s->min = oo_make(get_order(size), size);
5420 
5421 	return !!oo_objects(s->oo);
5422 }
5423 
5424 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5425 			      const char *text)
5426 {
5427 #ifdef CONFIG_SLUB_DEBUG
5428 	void *addr = slab_address(slab);
5429 	void *p;
5430 
5431 	slab_err(s, slab, text, s->name);
5432 
5433 	spin_lock(&object_map_lock);
5434 	__fill_map(object_map, s, slab);
5435 
5436 	for_each_object(p, s, addr, slab->objects) {
5437 
5438 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5439 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5440 			print_tracking(s, p);
5441 		}
5442 	}
5443 	spin_unlock(&object_map_lock);
5444 #endif
5445 }
5446 
5447 /*
5448  * Attempt to free all partial slabs on a node.
5449  * This is called from __kmem_cache_shutdown(). We must take list_lock
5450  * because sysfs file might still access partial list after the shutdowning.
5451  */
5452 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5453 {
5454 	LIST_HEAD(discard);
5455 	struct slab *slab, *h;
5456 
5457 	BUG_ON(irqs_disabled());
5458 	spin_lock_irq(&n->list_lock);
5459 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5460 		if (!slab->inuse) {
5461 			remove_partial(n, slab);
5462 			list_add(&slab->slab_list, &discard);
5463 		} else {
5464 			list_slab_objects(s, slab,
5465 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5466 		}
5467 	}
5468 	spin_unlock_irq(&n->list_lock);
5469 
5470 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5471 		discard_slab(s, slab);
5472 }
5473 
5474 bool __kmem_cache_empty(struct kmem_cache *s)
5475 {
5476 	int node;
5477 	struct kmem_cache_node *n;
5478 
5479 	for_each_kmem_cache_node(s, node, n)
5480 		if (n->nr_partial || node_nr_slabs(n))
5481 			return false;
5482 	return true;
5483 }
5484 
5485 /*
5486  * Release all resources used by a slab cache.
5487  */
5488 int __kmem_cache_shutdown(struct kmem_cache *s)
5489 {
5490 	int node;
5491 	struct kmem_cache_node *n;
5492 
5493 	flush_all_cpus_locked(s);
5494 	/* Attempt to free all objects */
5495 	for_each_kmem_cache_node(s, node, n) {
5496 		free_partial(s, n);
5497 		if (n->nr_partial || node_nr_slabs(n))
5498 			return 1;
5499 	}
5500 	return 0;
5501 }
5502 
5503 #ifdef CONFIG_PRINTK
5504 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5505 {
5506 	void *base;
5507 	int __maybe_unused i;
5508 	unsigned int objnr;
5509 	void *objp;
5510 	void *objp0;
5511 	struct kmem_cache *s = slab->slab_cache;
5512 	struct track __maybe_unused *trackp;
5513 
5514 	kpp->kp_ptr = object;
5515 	kpp->kp_slab = slab;
5516 	kpp->kp_slab_cache = s;
5517 	base = slab_address(slab);
5518 	objp0 = kasan_reset_tag(object);
5519 #ifdef CONFIG_SLUB_DEBUG
5520 	objp = restore_red_left(s, objp0);
5521 #else
5522 	objp = objp0;
5523 #endif
5524 	objnr = obj_to_index(s, slab, objp);
5525 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5526 	objp = base + s->size * objnr;
5527 	kpp->kp_objp = objp;
5528 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5529 			 || (objp - base) % s->size) ||
5530 	    !(s->flags & SLAB_STORE_USER))
5531 		return;
5532 #ifdef CONFIG_SLUB_DEBUG
5533 	objp = fixup_red_left(s, objp);
5534 	trackp = get_track(s, objp, TRACK_ALLOC);
5535 	kpp->kp_ret = (void *)trackp->addr;
5536 #ifdef CONFIG_STACKDEPOT
5537 	{
5538 		depot_stack_handle_t handle;
5539 		unsigned long *entries;
5540 		unsigned int nr_entries;
5541 
5542 		handle = READ_ONCE(trackp->handle);
5543 		if (handle) {
5544 			nr_entries = stack_depot_fetch(handle, &entries);
5545 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5546 				kpp->kp_stack[i] = (void *)entries[i];
5547 		}
5548 
5549 		trackp = get_track(s, objp, TRACK_FREE);
5550 		handle = READ_ONCE(trackp->handle);
5551 		if (handle) {
5552 			nr_entries = stack_depot_fetch(handle, &entries);
5553 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5554 				kpp->kp_free_stack[i] = (void *)entries[i];
5555 		}
5556 	}
5557 #endif
5558 #endif
5559 }
5560 #endif
5561 
5562 /********************************************************************
5563  *		Kmalloc subsystem
5564  *******************************************************************/
5565 
5566 static int __init setup_slub_min_order(char *str)
5567 {
5568 	get_option(&str, (int *)&slub_min_order);
5569 
5570 	if (slub_min_order > slub_max_order)
5571 		slub_max_order = slub_min_order;
5572 
5573 	return 1;
5574 }
5575 
5576 __setup("slab_min_order=", setup_slub_min_order);
5577 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5578 
5579 
5580 static int __init setup_slub_max_order(char *str)
5581 {
5582 	get_option(&str, (int *)&slub_max_order);
5583 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5584 
5585 	if (slub_min_order > slub_max_order)
5586 		slub_min_order = slub_max_order;
5587 
5588 	return 1;
5589 }
5590 
5591 __setup("slab_max_order=", setup_slub_max_order);
5592 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5593 
5594 static int __init setup_slub_min_objects(char *str)
5595 {
5596 	get_option(&str, (int *)&slub_min_objects);
5597 
5598 	return 1;
5599 }
5600 
5601 __setup("slab_min_objects=", setup_slub_min_objects);
5602 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5603 
5604 #ifdef CONFIG_HARDENED_USERCOPY
5605 /*
5606  * Rejects incorrectly sized objects and objects that are to be copied
5607  * to/from userspace but do not fall entirely within the containing slab
5608  * cache's usercopy region.
5609  *
5610  * Returns NULL if check passes, otherwise const char * to name of cache
5611  * to indicate an error.
5612  */
5613 void __check_heap_object(const void *ptr, unsigned long n,
5614 			 const struct slab *slab, bool to_user)
5615 {
5616 	struct kmem_cache *s;
5617 	unsigned int offset;
5618 	bool is_kfence = is_kfence_address(ptr);
5619 
5620 	ptr = kasan_reset_tag(ptr);
5621 
5622 	/* Find object and usable object size. */
5623 	s = slab->slab_cache;
5624 
5625 	/* Reject impossible pointers. */
5626 	if (ptr < slab_address(slab))
5627 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5628 			       to_user, 0, n);
5629 
5630 	/* Find offset within object. */
5631 	if (is_kfence)
5632 		offset = ptr - kfence_object_start(ptr);
5633 	else
5634 		offset = (ptr - slab_address(slab)) % s->size;
5635 
5636 	/* Adjust for redzone and reject if within the redzone. */
5637 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5638 		if (offset < s->red_left_pad)
5639 			usercopy_abort("SLUB object in left red zone",
5640 				       s->name, to_user, offset, n);
5641 		offset -= s->red_left_pad;
5642 	}
5643 
5644 	/* Allow address range falling entirely within usercopy region. */
5645 	if (offset >= s->useroffset &&
5646 	    offset - s->useroffset <= s->usersize &&
5647 	    n <= s->useroffset - offset + s->usersize)
5648 		return;
5649 
5650 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5651 }
5652 #endif /* CONFIG_HARDENED_USERCOPY */
5653 
5654 #define SHRINK_PROMOTE_MAX 32
5655 
5656 /*
5657  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5658  * up most to the head of the partial lists. New allocations will then
5659  * fill those up and thus they can be removed from the partial lists.
5660  *
5661  * The slabs with the least items are placed last. This results in them
5662  * being allocated from last increasing the chance that the last objects
5663  * are freed in them.
5664  */
5665 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5666 {
5667 	int node;
5668 	int i;
5669 	struct kmem_cache_node *n;
5670 	struct slab *slab;
5671 	struct slab *t;
5672 	struct list_head discard;
5673 	struct list_head promote[SHRINK_PROMOTE_MAX];
5674 	unsigned long flags;
5675 	int ret = 0;
5676 
5677 	for_each_kmem_cache_node(s, node, n) {
5678 		INIT_LIST_HEAD(&discard);
5679 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5680 			INIT_LIST_HEAD(promote + i);
5681 
5682 		spin_lock_irqsave(&n->list_lock, flags);
5683 
5684 		/*
5685 		 * Build lists of slabs to discard or promote.
5686 		 *
5687 		 * Note that concurrent frees may occur while we hold the
5688 		 * list_lock. slab->inuse here is the upper limit.
5689 		 */
5690 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5691 			int free = slab->objects - slab->inuse;
5692 
5693 			/* Do not reread slab->inuse */
5694 			barrier();
5695 
5696 			/* We do not keep full slabs on the list */
5697 			BUG_ON(free <= 0);
5698 
5699 			if (free == slab->objects) {
5700 				list_move(&slab->slab_list, &discard);
5701 				slab_clear_node_partial(slab);
5702 				n->nr_partial--;
5703 				dec_slabs_node(s, node, slab->objects);
5704 			} else if (free <= SHRINK_PROMOTE_MAX)
5705 				list_move(&slab->slab_list, promote + free - 1);
5706 		}
5707 
5708 		/*
5709 		 * Promote the slabs filled up most to the head of the
5710 		 * partial list.
5711 		 */
5712 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5713 			list_splice(promote + i, &n->partial);
5714 
5715 		spin_unlock_irqrestore(&n->list_lock, flags);
5716 
5717 		/* Release empty slabs */
5718 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5719 			free_slab(s, slab);
5720 
5721 		if (node_nr_slabs(n))
5722 			ret = 1;
5723 	}
5724 
5725 	return ret;
5726 }
5727 
5728 int __kmem_cache_shrink(struct kmem_cache *s)
5729 {
5730 	flush_all(s);
5731 	return __kmem_cache_do_shrink(s);
5732 }
5733 
5734 static int slab_mem_going_offline_callback(void *arg)
5735 {
5736 	struct kmem_cache *s;
5737 
5738 	mutex_lock(&slab_mutex);
5739 	list_for_each_entry(s, &slab_caches, list) {
5740 		flush_all_cpus_locked(s);
5741 		__kmem_cache_do_shrink(s);
5742 	}
5743 	mutex_unlock(&slab_mutex);
5744 
5745 	return 0;
5746 }
5747 
5748 static void slab_mem_offline_callback(void *arg)
5749 {
5750 	struct memory_notify *marg = arg;
5751 	int offline_node;
5752 
5753 	offline_node = marg->status_change_nid_normal;
5754 
5755 	/*
5756 	 * If the node still has available memory. we need kmem_cache_node
5757 	 * for it yet.
5758 	 */
5759 	if (offline_node < 0)
5760 		return;
5761 
5762 	mutex_lock(&slab_mutex);
5763 	node_clear(offline_node, slab_nodes);
5764 	/*
5765 	 * We no longer free kmem_cache_node structures here, as it would be
5766 	 * racy with all get_node() users, and infeasible to protect them with
5767 	 * slab_mutex.
5768 	 */
5769 	mutex_unlock(&slab_mutex);
5770 }
5771 
5772 static int slab_mem_going_online_callback(void *arg)
5773 {
5774 	struct kmem_cache_node *n;
5775 	struct kmem_cache *s;
5776 	struct memory_notify *marg = arg;
5777 	int nid = marg->status_change_nid_normal;
5778 	int ret = 0;
5779 
5780 	/*
5781 	 * If the node's memory is already available, then kmem_cache_node is
5782 	 * already created. Nothing to do.
5783 	 */
5784 	if (nid < 0)
5785 		return 0;
5786 
5787 	/*
5788 	 * We are bringing a node online. No memory is available yet. We must
5789 	 * allocate a kmem_cache_node structure in order to bring the node
5790 	 * online.
5791 	 */
5792 	mutex_lock(&slab_mutex);
5793 	list_for_each_entry(s, &slab_caches, list) {
5794 		/*
5795 		 * The structure may already exist if the node was previously
5796 		 * onlined and offlined.
5797 		 */
5798 		if (get_node(s, nid))
5799 			continue;
5800 		/*
5801 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5802 		 *      since memory is not yet available from the node that
5803 		 *      is brought up.
5804 		 */
5805 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5806 		if (!n) {
5807 			ret = -ENOMEM;
5808 			goto out;
5809 		}
5810 		init_kmem_cache_node(n);
5811 		s->node[nid] = n;
5812 	}
5813 	/*
5814 	 * Any cache created after this point will also have kmem_cache_node
5815 	 * initialized for the new node.
5816 	 */
5817 	node_set(nid, slab_nodes);
5818 out:
5819 	mutex_unlock(&slab_mutex);
5820 	return ret;
5821 }
5822 
5823 static int slab_memory_callback(struct notifier_block *self,
5824 				unsigned long action, void *arg)
5825 {
5826 	int ret = 0;
5827 
5828 	switch (action) {
5829 	case MEM_GOING_ONLINE:
5830 		ret = slab_mem_going_online_callback(arg);
5831 		break;
5832 	case MEM_GOING_OFFLINE:
5833 		ret = slab_mem_going_offline_callback(arg);
5834 		break;
5835 	case MEM_OFFLINE:
5836 	case MEM_CANCEL_ONLINE:
5837 		slab_mem_offline_callback(arg);
5838 		break;
5839 	case MEM_ONLINE:
5840 	case MEM_CANCEL_OFFLINE:
5841 		break;
5842 	}
5843 	if (ret)
5844 		ret = notifier_from_errno(ret);
5845 	else
5846 		ret = NOTIFY_OK;
5847 	return ret;
5848 }
5849 
5850 /********************************************************************
5851  *			Basic setup of slabs
5852  *******************************************************************/
5853 
5854 /*
5855  * Used for early kmem_cache structures that were allocated using
5856  * the page allocator. Allocate them properly then fix up the pointers
5857  * that may be pointing to the wrong kmem_cache structure.
5858  */
5859 
5860 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5861 {
5862 	int node;
5863 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5864 	struct kmem_cache_node *n;
5865 
5866 	memcpy(s, static_cache, kmem_cache->object_size);
5867 
5868 	/*
5869 	 * This runs very early, and only the boot processor is supposed to be
5870 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5871 	 * IPIs around.
5872 	 */
5873 	__flush_cpu_slab(s, smp_processor_id());
5874 	for_each_kmem_cache_node(s, node, n) {
5875 		struct slab *p;
5876 
5877 		list_for_each_entry(p, &n->partial, slab_list)
5878 			p->slab_cache = s;
5879 
5880 #ifdef CONFIG_SLUB_DEBUG
5881 		list_for_each_entry(p, &n->full, slab_list)
5882 			p->slab_cache = s;
5883 #endif
5884 	}
5885 	list_add(&s->list, &slab_caches);
5886 	return s;
5887 }
5888 
5889 void __init kmem_cache_init(void)
5890 {
5891 	static __initdata struct kmem_cache boot_kmem_cache,
5892 		boot_kmem_cache_node;
5893 	int node;
5894 
5895 	if (debug_guardpage_minorder())
5896 		slub_max_order = 0;
5897 
5898 	/* Print slub debugging pointers without hashing */
5899 	if (__slub_debug_enabled())
5900 		no_hash_pointers_enable(NULL);
5901 
5902 	kmem_cache_node = &boot_kmem_cache_node;
5903 	kmem_cache = &boot_kmem_cache;
5904 
5905 	/*
5906 	 * Initialize the nodemask for which we will allocate per node
5907 	 * structures. Here we don't need taking slab_mutex yet.
5908 	 */
5909 	for_each_node_state(node, N_NORMAL_MEMORY)
5910 		node_set(node, slab_nodes);
5911 
5912 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5913 			sizeof(struct kmem_cache_node),
5914 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5915 
5916 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5917 
5918 	/* Able to allocate the per node structures */
5919 	slab_state = PARTIAL;
5920 
5921 	create_boot_cache(kmem_cache, "kmem_cache",
5922 			offsetof(struct kmem_cache, node) +
5923 				nr_node_ids * sizeof(struct kmem_cache_node *),
5924 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5925 
5926 	kmem_cache = bootstrap(&boot_kmem_cache);
5927 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5928 
5929 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5930 	setup_kmalloc_cache_index_table();
5931 	create_kmalloc_caches();
5932 
5933 	/* Setup random freelists for each cache */
5934 	init_freelist_randomization();
5935 
5936 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5937 				  slub_cpu_dead);
5938 
5939 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5940 		cache_line_size(),
5941 		slub_min_order, slub_max_order, slub_min_objects,
5942 		nr_cpu_ids, nr_node_ids);
5943 }
5944 
5945 void __init kmem_cache_init_late(void)
5946 {
5947 #ifndef CONFIG_SLUB_TINY
5948 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5949 	WARN_ON(!flushwq);
5950 #endif
5951 }
5952 
5953 struct kmem_cache *
5954 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5955 		   slab_flags_t flags, void (*ctor)(void *))
5956 {
5957 	struct kmem_cache *s;
5958 
5959 	s = find_mergeable(size, align, flags, name, ctor);
5960 	if (s) {
5961 		if (sysfs_slab_alias(s, name))
5962 			return NULL;
5963 
5964 		s->refcount++;
5965 
5966 		/*
5967 		 * Adjust the object sizes so that we clear
5968 		 * the complete object on kzalloc.
5969 		 */
5970 		s->object_size = max(s->object_size, size);
5971 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5972 	}
5973 
5974 	return s;
5975 }
5976 
5977 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
5978 			 unsigned int size, struct kmem_cache_args *args,
5979 			 slab_flags_t flags)
5980 {
5981 	int err = -EINVAL;
5982 
5983 	s->name = name;
5984 	s->size = s->object_size = size;
5985 
5986 	s->flags = kmem_cache_flags(flags, s->name);
5987 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5988 	s->random = get_random_long();
5989 #endif
5990 	s->align = args->align;
5991 	s->ctor = args->ctor;
5992 #ifdef CONFIG_HARDENED_USERCOPY
5993 	s->useroffset = args->useroffset;
5994 	s->usersize = args->usersize;
5995 #endif
5996 
5997 	if (!calculate_sizes(args, s))
5998 		goto out;
5999 	if (disable_higher_order_debug) {
6000 		/*
6001 		 * Disable debugging flags that store metadata if the min slab
6002 		 * order increased.
6003 		 */
6004 		if (get_order(s->size) > get_order(s->object_size)) {
6005 			s->flags &= ~DEBUG_METADATA_FLAGS;
6006 			s->offset = 0;
6007 			if (!calculate_sizes(args, s))
6008 				goto out;
6009 		}
6010 	}
6011 
6012 #ifdef system_has_freelist_aba
6013 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6014 		/* Enable fast mode */
6015 		s->flags |= __CMPXCHG_DOUBLE;
6016 	}
6017 #endif
6018 
6019 	/*
6020 	 * The larger the object size is, the more slabs we want on the partial
6021 	 * list to avoid pounding the page allocator excessively.
6022 	 */
6023 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6024 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6025 
6026 	set_cpu_partial(s);
6027 
6028 #ifdef CONFIG_NUMA
6029 	s->remote_node_defrag_ratio = 1000;
6030 #endif
6031 
6032 	/* Initialize the pre-computed randomized freelist if slab is up */
6033 	if (slab_state >= UP) {
6034 		if (init_cache_random_seq(s))
6035 			goto out;
6036 	}
6037 
6038 	if (!init_kmem_cache_nodes(s))
6039 		goto out;
6040 
6041 	if (!alloc_kmem_cache_cpus(s))
6042 		goto out;
6043 
6044 	/* Mutex is not taken during early boot */
6045 	if (slab_state <= UP) {
6046 		err = 0;
6047 		goto out;
6048 	}
6049 
6050 	err = sysfs_slab_add(s);
6051 	if (err)
6052 		goto out;
6053 
6054 	if (s->flags & SLAB_STORE_USER)
6055 		debugfs_slab_add(s);
6056 
6057 out:
6058 	if (err)
6059 		__kmem_cache_release(s);
6060 	return err;
6061 }
6062 
6063 #ifdef SLAB_SUPPORTS_SYSFS
6064 static int count_inuse(struct slab *slab)
6065 {
6066 	return slab->inuse;
6067 }
6068 
6069 static int count_total(struct slab *slab)
6070 {
6071 	return slab->objects;
6072 }
6073 #endif
6074 
6075 #ifdef CONFIG_SLUB_DEBUG
6076 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6077 			  unsigned long *obj_map)
6078 {
6079 	void *p;
6080 	void *addr = slab_address(slab);
6081 
6082 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6083 		return;
6084 
6085 	/* Now we know that a valid freelist exists */
6086 	__fill_map(obj_map, s, slab);
6087 	for_each_object(p, s, addr, slab->objects) {
6088 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6089 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6090 
6091 		if (!check_object(s, slab, p, val))
6092 			break;
6093 	}
6094 }
6095 
6096 static int validate_slab_node(struct kmem_cache *s,
6097 		struct kmem_cache_node *n, unsigned long *obj_map)
6098 {
6099 	unsigned long count = 0;
6100 	struct slab *slab;
6101 	unsigned long flags;
6102 
6103 	spin_lock_irqsave(&n->list_lock, flags);
6104 
6105 	list_for_each_entry(slab, &n->partial, slab_list) {
6106 		validate_slab(s, slab, obj_map);
6107 		count++;
6108 	}
6109 	if (count != n->nr_partial) {
6110 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6111 		       s->name, count, n->nr_partial);
6112 		slab_add_kunit_errors();
6113 	}
6114 
6115 	if (!(s->flags & SLAB_STORE_USER))
6116 		goto out;
6117 
6118 	list_for_each_entry(slab, &n->full, slab_list) {
6119 		validate_slab(s, slab, obj_map);
6120 		count++;
6121 	}
6122 	if (count != node_nr_slabs(n)) {
6123 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6124 		       s->name, count, node_nr_slabs(n));
6125 		slab_add_kunit_errors();
6126 	}
6127 
6128 out:
6129 	spin_unlock_irqrestore(&n->list_lock, flags);
6130 	return count;
6131 }
6132 
6133 long validate_slab_cache(struct kmem_cache *s)
6134 {
6135 	int node;
6136 	unsigned long count = 0;
6137 	struct kmem_cache_node *n;
6138 	unsigned long *obj_map;
6139 
6140 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6141 	if (!obj_map)
6142 		return -ENOMEM;
6143 
6144 	flush_all(s);
6145 	for_each_kmem_cache_node(s, node, n)
6146 		count += validate_slab_node(s, n, obj_map);
6147 
6148 	bitmap_free(obj_map);
6149 
6150 	return count;
6151 }
6152 EXPORT_SYMBOL(validate_slab_cache);
6153 
6154 #ifdef CONFIG_DEBUG_FS
6155 /*
6156  * Generate lists of code addresses where slabcache objects are allocated
6157  * and freed.
6158  */
6159 
6160 struct location {
6161 	depot_stack_handle_t handle;
6162 	unsigned long count;
6163 	unsigned long addr;
6164 	unsigned long waste;
6165 	long long sum_time;
6166 	long min_time;
6167 	long max_time;
6168 	long min_pid;
6169 	long max_pid;
6170 	DECLARE_BITMAP(cpus, NR_CPUS);
6171 	nodemask_t nodes;
6172 };
6173 
6174 struct loc_track {
6175 	unsigned long max;
6176 	unsigned long count;
6177 	struct location *loc;
6178 	loff_t idx;
6179 };
6180 
6181 static struct dentry *slab_debugfs_root;
6182 
6183 static void free_loc_track(struct loc_track *t)
6184 {
6185 	if (t->max)
6186 		free_pages((unsigned long)t->loc,
6187 			get_order(sizeof(struct location) * t->max));
6188 }
6189 
6190 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6191 {
6192 	struct location *l;
6193 	int order;
6194 
6195 	order = get_order(sizeof(struct location) * max);
6196 
6197 	l = (void *)__get_free_pages(flags, order);
6198 	if (!l)
6199 		return 0;
6200 
6201 	if (t->count) {
6202 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6203 		free_loc_track(t);
6204 	}
6205 	t->max = max;
6206 	t->loc = l;
6207 	return 1;
6208 }
6209 
6210 static int add_location(struct loc_track *t, struct kmem_cache *s,
6211 				const struct track *track,
6212 				unsigned int orig_size)
6213 {
6214 	long start, end, pos;
6215 	struct location *l;
6216 	unsigned long caddr, chandle, cwaste;
6217 	unsigned long age = jiffies - track->when;
6218 	depot_stack_handle_t handle = 0;
6219 	unsigned int waste = s->object_size - orig_size;
6220 
6221 #ifdef CONFIG_STACKDEPOT
6222 	handle = READ_ONCE(track->handle);
6223 #endif
6224 	start = -1;
6225 	end = t->count;
6226 
6227 	for ( ; ; ) {
6228 		pos = start + (end - start + 1) / 2;
6229 
6230 		/*
6231 		 * There is nothing at "end". If we end up there
6232 		 * we need to add something to before end.
6233 		 */
6234 		if (pos == end)
6235 			break;
6236 
6237 		l = &t->loc[pos];
6238 		caddr = l->addr;
6239 		chandle = l->handle;
6240 		cwaste = l->waste;
6241 		if ((track->addr == caddr) && (handle == chandle) &&
6242 			(waste == cwaste)) {
6243 
6244 			l->count++;
6245 			if (track->when) {
6246 				l->sum_time += age;
6247 				if (age < l->min_time)
6248 					l->min_time = age;
6249 				if (age > l->max_time)
6250 					l->max_time = age;
6251 
6252 				if (track->pid < l->min_pid)
6253 					l->min_pid = track->pid;
6254 				if (track->pid > l->max_pid)
6255 					l->max_pid = track->pid;
6256 
6257 				cpumask_set_cpu(track->cpu,
6258 						to_cpumask(l->cpus));
6259 			}
6260 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6261 			return 1;
6262 		}
6263 
6264 		if (track->addr < caddr)
6265 			end = pos;
6266 		else if (track->addr == caddr && handle < chandle)
6267 			end = pos;
6268 		else if (track->addr == caddr && handle == chandle &&
6269 				waste < cwaste)
6270 			end = pos;
6271 		else
6272 			start = pos;
6273 	}
6274 
6275 	/*
6276 	 * Not found. Insert new tracking element.
6277 	 */
6278 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6279 		return 0;
6280 
6281 	l = t->loc + pos;
6282 	if (pos < t->count)
6283 		memmove(l + 1, l,
6284 			(t->count - pos) * sizeof(struct location));
6285 	t->count++;
6286 	l->count = 1;
6287 	l->addr = track->addr;
6288 	l->sum_time = age;
6289 	l->min_time = age;
6290 	l->max_time = age;
6291 	l->min_pid = track->pid;
6292 	l->max_pid = track->pid;
6293 	l->handle = handle;
6294 	l->waste = waste;
6295 	cpumask_clear(to_cpumask(l->cpus));
6296 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6297 	nodes_clear(l->nodes);
6298 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6299 	return 1;
6300 }
6301 
6302 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6303 		struct slab *slab, enum track_item alloc,
6304 		unsigned long *obj_map)
6305 {
6306 	void *addr = slab_address(slab);
6307 	bool is_alloc = (alloc == TRACK_ALLOC);
6308 	void *p;
6309 
6310 	__fill_map(obj_map, s, slab);
6311 
6312 	for_each_object(p, s, addr, slab->objects)
6313 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6314 			add_location(t, s, get_track(s, p, alloc),
6315 				     is_alloc ? get_orig_size(s, p) :
6316 						s->object_size);
6317 }
6318 #endif  /* CONFIG_DEBUG_FS   */
6319 #endif	/* CONFIG_SLUB_DEBUG */
6320 
6321 #ifdef SLAB_SUPPORTS_SYSFS
6322 enum slab_stat_type {
6323 	SL_ALL,			/* All slabs */
6324 	SL_PARTIAL,		/* Only partially allocated slabs */
6325 	SL_CPU,			/* Only slabs used for cpu caches */
6326 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6327 	SL_TOTAL		/* Determine object capacity not slabs */
6328 };
6329 
6330 #define SO_ALL		(1 << SL_ALL)
6331 #define SO_PARTIAL	(1 << SL_PARTIAL)
6332 #define SO_CPU		(1 << SL_CPU)
6333 #define SO_OBJECTS	(1 << SL_OBJECTS)
6334 #define SO_TOTAL	(1 << SL_TOTAL)
6335 
6336 static ssize_t show_slab_objects(struct kmem_cache *s,
6337 				 char *buf, unsigned long flags)
6338 {
6339 	unsigned long total = 0;
6340 	int node;
6341 	int x;
6342 	unsigned long *nodes;
6343 	int len = 0;
6344 
6345 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6346 	if (!nodes)
6347 		return -ENOMEM;
6348 
6349 	if (flags & SO_CPU) {
6350 		int cpu;
6351 
6352 		for_each_possible_cpu(cpu) {
6353 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6354 							       cpu);
6355 			int node;
6356 			struct slab *slab;
6357 
6358 			slab = READ_ONCE(c->slab);
6359 			if (!slab)
6360 				continue;
6361 
6362 			node = slab_nid(slab);
6363 			if (flags & SO_TOTAL)
6364 				x = slab->objects;
6365 			else if (flags & SO_OBJECTS)
6366 				x = slab->inuse;
6367 			else
6368 				x = 1;
6369 
6370 			total += x;
6371 			nodes[node] += x;
6372 
6373 #ifdef CONFIG_SLUB_CPU_PARTIAL
6374 			slab = slub_percpu_partial_read_once(c);
6375 			if (slab) {
6376 				node = slab_nid(slab);
6377 				if (flags & SO_TOTAL)
6378 					WARN_ON_ONCE(1);
6379 				else if (flags & SO_OBJECTS)
6380 					WARN_ON_ONCE(1);
6381 				else
6382 					x = data_race(slab->slabs);
6383 				total += x;
6384 				nodes[node] += x;
6385 			}
6386 #endif
6387 		}
6388 	}
6389 
6390 	/*
6391 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6392 	 * already held which will conflict with an existing lock order:
6393 	 *
6394 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6395 	 *
6396 	 * We don't really need mem_hotplug_lock (to hold off
6397 	 * slab_mem_going_offline_callback) here because slab's memory hot
6398 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6399 	 */
6400 
6401 #ifdef CONFIG_SLUB_DEBUG
6402 	if (flags & SO_ALL) {
6403 		struct kmem_cache_node *n;
6404 
6405 		for_each_kmem_cache_node(s, node, n) {
6406 
6407 			if (flags & SO_TOTAL)
6408 				x = node_nr_objs(n);
6409 			else if (flags & SO_OBJECTS)
6410 				x = node_nr_objs(n) - count_partial(n, count_free);
6411 			else
6412 				x = node_nr_slabs(n);
6413 			total += x;
6414 			nodes[node] += x;
6415 		}
6416 
6417 	} else
6418 #endif
6419 	if (flags & SO_PARTIAL) {
6420 		struct kmem_cache_node *n;
6421 
6422 		for_each_kmem_cache_node(s, node, n) {
6423 			if (flags & SO_TOTAL)
6424 				x = count_partial(n, count_total);
6425 			else if (flags & SO_OBJECTS)
6426 				x = count_partial(n, count_inuse);
6427 			else
6428 				x = n->nr_partial;
6429 			total += x;
6430 			nodes[node] += x;
6431 		}
6432 	}
6433 
6434 	len += sysfs_emit_at(buf, len, "%lu", total);
6435 #ifdef CONFIG_NUMA
6436 	for (node = 0; node < nr_node_ids; node++) {
6437 		if (nodes[node])
6438 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6439 					     node, nodes[node]);
6440 	}
6441 #endif
6442 	len += sysfs_emit_at(buf, len, "\n");
6443 	kfree(nodes);
6444 
6445 	return len;
6446 }
6447 
6448 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6449 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6450 
6451 struct slab_attribute {
6452 	struct attribute attr;
6453 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6454 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6455 };
6456 
6457 #define SLAB_ATTR_RO(_name) \
6458 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6459 
6460 #define SLAB_ATTR(_name) \
6461 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6462 
6463 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6464 {
6465 	return sysfs_emit(buf, "%u\n", s->size);
6466 }
6467 SLAB_ATTR_RO(slab_size);
6468 
6469 static ssize_t align_show(struct kmem_cache *s, char *buf)
6470 {
6471 	return sysfs_emit(buf, "%u\n", s->align);
6472 }
6473 SLAB_ATTR_RO(align);
6474 
6475 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6476 {
6477 	return sysfs_emit(buf, "%u\n", s->object_size);
6478 }
6479 SLAB_ATTR_RO(object_size);
6480 
6481 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6482 {
6483 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6484 }
6485 SLAB_ATTR_RO(objs_per_slab);
6486 
6487 static ssize_t order_show(struct kmem_cache *s, char *buf)
6488 {
6489 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6490 }
6491 SLAB_ATTR_RO(order);
6492 
6493 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6494 {
6495 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6496 }
6497 
6498 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6499 				 size_t length)
6500 {
6501 	unsigned long min;
6502 	int err;
6503 
6504 	err = kstrtoul(buf, 10, &min);
6505 	if (err)
6506 		return err;
6507 
6508 	s->min_partial = min;
6509 	return length;
6510 }
6511 SLAB_ATTR(min_partial);
6512 
6513 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6514 {
6515 	unsigned int nr_partial = 0;
6516 #ifdef CONFIG_SLUB_CPU_PARTIAL
6517 	nr_partial = s->cpu_partial;
6518 #endif
6519 
6520 	return sysfs_emit(buf, "%u\n", nr_partial);
6521 }
6522 
6523 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6524 				 size_t length)
6525 {
6526 	unsigned int objects;
6527 	int err;
6528 
6529 	err = kstrtouint(buf, 10, &objects);
6530 	if (err)
6531 		return err;
6532 	if (objects && !kmem_cache_has_cpu_partial(s))
6533 		return -EINVAL;
6534 
6535 	slub_set_cpu_partial(s, objects);
6536 	flush_all(s);
6537 	return length;
6538 }
6539 SLAB_ATTR(cpu_partial);
6540 
6541 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6542 {
6543 	if (!s->ctor)
6544 		return 0;
6545 	return sysfs_emit(buf, "%pS\n", s->ctor);
6546 }
6547 SLAB_ATTR_RO(ctor);
6548 
6549 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6550 {
6551 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6552 }
6553 SLAB_ATTR_RO(aliases);
6554 
6555 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6556 {
6557 	return show_slab_objects(s, buf, SO_PARTIAL);
6558 }
6559 SLAB_ATTR_RO(partial);
6560 
6561 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6562 {
6563 	return show_slab_objects(s, buf, SO_CPU);
6564 }
6565 SLAB_ATTR_RO(cpu_slabs);
6566 
6567 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6568 {
6569 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6570 }
6571 SLAB_ATTR_RO(objects_partial);
6572 
6573 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6574 {
6575 	int objects = 0;
6576 	int slabs = 0;
6577 	int cpu __maybe_unused;
6578 	int len = 0;
6579 
6580 #ifdef CONFIG_SLUB_CPU_PARTIAL
6581 	for_each_online_cpu(cpu) {
6582 		struct slab *slab;
6583 
6584 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6585 
6586 		if (slab)
6587 			slabs += data_race(slab->slabs);
6588 	}
6589 #endif
6590 
6591 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6592 	objects = (slabs * oo_objects(s->oo)) / 2;
6593 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6594 
6595 #ifdef CONFIG_SLUB_CPU_PARTIAL
6596 	for_each_online_cpu(cpu) {
6597 		struct slab *slab;
6598 
6599 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6600 		if (slab) {
6601 			slabs = data_race(slab->slabs);
6602 			objects = (slabs * oo_objects(s->oo)) / 2;
6603 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6604 					     cpu, objects, slabs);
6605 		}
6606 	}
6607 #endif
6608 	len += sysfs_emit_at(buf, len, "\n");
6609 
6610 	return len;
6611 }
6612 SLAB_ATTR_RO(slabs_cpu_partial);
6613 
6614 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6615 {
6616 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6617 }
6618 SLAB_ATTR_RO(reclaim_account);
6619 
6620 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6621 {
6622 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6623 }
6624 SLAB_ATTR_RO(hwcache_align);
6625 
6626 #ifdef CONFIG_ZONE_DMA
6627 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6628 {
6629 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6630 }
6631 SLAB_ATTR_RO(cache_dma);
6632 #endif
6633 
6634 #ifdef CONFIG_HARDENED_USERCOPY
6635 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6636 {
6637 	return sysfs_emit(buf, "%u\n", s->usersize);
6638 }
6639 SLAB_ATTR_RO(usersize);
6640 #endif
6641 
6642 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6643 {
6644 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6645 }
6646 SLAB_ATTR_RO(destroy_by_rcu);
6647 
6648 #ifdef CONFIG_SLUB_DEBUG
6649 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6650 {
6651 	return show_slab_objects(s, buf, SO_ALL);
6652 }
6653 SLAB_ATTR_RO(slabs);
6654 
6655 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6656 {
6657 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6658 }
6659 SLAB_ATTR_RO(total_objects);
6660 
6661 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6662 {
6663 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6664 }
6665 SLAB_ATTR_RO(objects);
6666 
6667 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6668 {
6669 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6670 }
6671 SLAB_ATTR_RO(sanity_checks);
6672 
6673 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6674 {
6675 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6676 }
6677 SLAB_ATTR_RO(trace);
6678 
6679 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6680 {
6681 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6682 }
6683 
6684 SLAB_ATTR_RO(red_zone);
6685 
6686 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6687 {
6688 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6689 }
6690 
6691 SLAB_ATTR_RO(poison);
6692 
6693 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6694 {
6695 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6696 }
6697 
6698 SLAB_ATTR_RO(store_user);
6699 
6700 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6701 {
6702 	return 0;
6703 }
6704 
6705 static ssize_t validate_store(struct kmem_cache *s,
6706 			const char *buf, size_t length)
6707 {
6708 	int ret = -EINVAL;
6709 
6710 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6711 		ret = validate_slab_cache(s);
6712 		if (ret >= 0)
6713 			ret = length;
6714 	}
6715 	return ret;
6716 }
6717 SLAB_ATTR(validate);
6718 
6719 #endif /* CONFIG_SLUB_DEBUG */
6720 
6721 #ifdef CONFIG_FAILSLAB
6722 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6723 {
6724 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6725 }
6726 
6727 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6728 				size_t length)
6729 {
6730 	if (s->refcount > 1)
6731 		return -EINVAL;
6732 
6733 	if (buf[0] == '1')
6734 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6735 	else
6736 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6737 
6738 	return length;
6739 }
6740 SLAB_ATTR(failslab);
6741 #endif
6742 
6743 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6744 {
6745 	return 0;
6746 }
6747 
6748 static ssize_t shrink_store(struct kmem_cache *s,
6749 			const char *buf, size_t length)
6750 {
6751 	if (buf[0] == '1')
6752 		kmem_cache_shrink(s);
6753 	else
6754 		return -EINVAL;
6755 	return length;
6756 }
6757 SLAB_ATTR(shrink);
6758 
6759 #ifdef CONFIG_NUMA
6760 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6761 {
6762 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6763 }
6764 
6765 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6766 				const char *buf, size_t length)
6767 {
6768 	unsigned int ratio;
6769 	int err;
6770 
6771 	err = kstrtouint(buf, 10, &ratio);
6772 	if (err)
6773 		return err;
6774 	if (ratio > 100)
6775 		return -ERANGE;
6776 
6777 	s->remote_node_defrag_ratio = ratio * 10;
6778 
6779 	return length;
6780 }
6781 SLAB_ATTR(remote_node_defrag_ratio);
6782 #endif
6783 
6784 #ifdef CONFIG_SLUB_STATS
6785 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6786 {
6787 	unsigned long sum  = 0;
6788 	int cpu;
6789 	int len = 0;
6790 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6791 
6792 	if (!data)
6793 		return -ENOMEM;
6794 
6795 	for_each_online_cpu(cpu) {
6796 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6797 
6798 		data[cpu] = x;
6799 		sum += x;
6800 	}
6801 
6802 	len += sysfs_emit_at(buf, len, "%lu", sum);
6803 
6804 #ifdef CONFIG_SMP
6805 	for_each_online_cpu(cpu) {
6806 		if (data[cpu])
6807 			len += sysfs_emit_at(buf, len, " C%d=%u",
6808 					     cpu, data[cpu]);
6809 	}
6810 #endif
6811 	kfree(data);
6812 	len += sysfs_emit_at(buf, len, "\n");
6813 
6814 	return len;
6815 }
6816 
6817 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6818 {
6819 	int cpu;
6820 
6821 	for_each_online_cpu(cpu)
6822 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6823 }
6824 
6825 #define STAT_ATTR(si, text) 					\
6826 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6827 {								\
6828 	return show_stat(s, buf, si);				\
6829 }								\
6830 static ssize_t text##_store(struct kmem_cache *s,		\
6831 				const char *buf, size_t length)	\
6832 {								\
6833 	if (buf[0] != '0')					\
6834 		return -EINVAL;					\
6835 	clear_stat(s, si);					\
6836 	return length;						\
6837 }								\
6838 SLAB_ATTR(text);						\
6839 
6840 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6841 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6842 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6843 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6844 STAT_ATTR(FREE_FROZEN, free_frozen);
6845 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6846 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6847 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6848 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6849 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6850 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6851 STAT_ATTR(FREE_SLAB, free_slab);
6852 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6853 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6854 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6855 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6856 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6857 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6858 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6859 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6860 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6861 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6862 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6863 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6864 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6865 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6866 #endif	/* CONFIG_SLUB_STATS */
6867 
6868 #ifdef CONFIG_KFENCE
6869 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6870 {
6871 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6872 }
6873 
6874 static ssize_t skip_kfence_store(struct kmem_cache *s,
6875 			const char *buf, size_t length)
6876 {
6877 	int ret = length;
6878 
6879 	if (buf[0] == '0')
6880 		s->flags &= ~SLAB_SKIP_KFENCE;
6881 	else if (buf[0] == '1')
6882 		s->flags |= SLAB_SKIP_KFENCE;
6883 	else
6884 		ret = -EINVAL;
6885 
6886 	return ret;
6887 }
6888 SLAB_ATTR(skip_kfence);
6889 #endif
6890 
6891 static struct attribute *slab_attrs[] = {
6892 	&slab_size_attr.attr,
6893 	&object_size_attr.attr,
6894 	&objs_per_slab_attr.attr,
6895 	&order_attr.attr,
6896 	&min_partial_attr.attr,
6897 	&cpu_partial_attr.attr,
6898 	&objects_partial_attr.attr,
6899 	&partial_attr.attr,
6900 	&cpu_slabs_attr.attr,
6901 	&ctor_attr.attr,
6902 	&aliases_attr.attr,
6903 	&align_attr.attr,
6904 	&hwcache_align_attr.attr,
6905 	&reclaim_account_attr.attr,
6906 	&destroy_by_rcu_attr.attr,
6907 	&shrink_attr.attr,
6908 	&slabs_cpu_partial_attr.attr,
6909 #ifdef CONFIG_SLUB_DEBUG
6910 	&total_objects_attr.attr,
6911 	&objects_attr.attr,
6912 	&slabs_attr.attr,
6913 	&sanity_checks_attr.attr,
6914 	&trace_attr.attr,
6915 	&red_zone_attr.attr,
6916 	&poison_attr.attr,
6917 	&store_user_attr.attr,
6918 	&validate_attr.attr,
6919 #endif
6920 #ifdef CONFIG_ZONE_DMA
6921 	&cache_dma_attr.attr,
6922 #endif
6923 #ifdef CONFIG_NUMA
6924 	&remote_node_defrag_ratio_attr.attr,
6925 #endif
6926 #ifdef CONFIG_SLUB_STATS
6927 	&alloc_fastpath_attr.attr,
6928 	&alloc_slowpath_attr.attr,
6929 	&free_fastpath_attr.attr,
6930 	&free_slowpath_attr.attr,
6931 	&free_frozen_attr.attr,
6932 	&free_add_partial_attr.attr,
6933 	&free_remove_partial_attr.attr,
6934 	&alloc_from_partial_attr.attr,
6935 	&alloc_slab_attr.attr,
6936 	&alloc_refill_attr.attr,
6937 	&alloc_node_mismatch_attr.attr,
6938 	&free_slab_attr.attr,
6939 	&cpuslab_flush_attr.attr,
6940 	&deactivate_full_attr.attr,
6941 	&deactivate_empty_attr.attr,
6942 	&deactivate_to_head_attr.attr,
6943 	&deactivate_to_tail_attr.attr,
6944 	&deactivate_remote_frees_attr.attr,
6945 	&deactivate_bypass_attr.attr,
6946 	&order_fallback_attr.attr,
6947 	&cmpxchg_double_fail_attr.attr,
6948 	&cmpxchg_double_cpu_fail_attr.attr,
6949 	&cpu_partial_alloc_attr.attr,
6950 	&cpu_partial_free_attr.attr,
6951 	&cpu_partial_node_attr.attr,
6952 	&cpu_partial_drain_attr.attr,
6953 #endif
6954 #ifdef CONFIG_FAILSLAB
6955 	&failslab_attr.attr,
6956 #endif
6957 #ifdef CONFIG_HARDENED_USERCOPY
6958 	&usersize_attr.attr,
6959 #endif
6960 #ifdef CONFIG_KFENCE
6961 	&skip_kfence_attr.attr,
6962 #endif
6963 
6964 	NULL
6965 };
6966 
6967 static const struct attribute_group slab_attr_group = {
6968 	.attrs = slab_attrs,
6969 };
6970 
6971 static ssize_t slab_attr_show(struct kobject *kobj,
6972 				struct attribute *attr,
6973 				char *buf)
6974 {
6975 	struct slab_attribute *attribute;
6976 	struct kmem_cache *s;
6977 
6978 	attribute = to_slab_attr(attr);
6979 	s = to_slab(kobj);
6980 
6981 	if (!attribute->show)
6982 		return -EIO;
6983 
6984 	return attribute->show(s, buf);
6985 }
6986 
6987 static ssize_t slab_attr_store(struct kobject *kobj,
6988 				struct attribute *attr,
6989 				const char *buf, size_t len)
6990 {
6991 	struct slab_attribute *attribute;
6992 	struct kmem_cache *s;
6993 
6994 	attribute = to_slab_attr(attr);
6995 	s = to_slab(kobj);
6996 
6997 	if (!attribute->store)
6998 		return -EIO;
6999 
7000 	return attribute->store(s, buf, len);
7001 }
7002 
7003 static void kmem_cache_release(struct kobject *k)
7004 {
7005 	slab_kmem_cache_release(to_slab(k));
7006 }
7007 
7008 static const struct sysfs_ops slab_sysfs_ops = {
7009 	.show = slab_attr_show,
7010 	.store = slab_attr_store,
7011 };
7012 
7013 static const struct kobj_type slab_ktype = {
7014 	.sysfs_ops = &slab_sysfs_ops,
7015 	.release = kmem_cache_release,
7016 };
7017 
7018 static struct kset *slab_kset;
7019 
7020 static inline struct kset *cache_kset(struct kmem_cache *s)
7021 {
7022 	return slab_kset;
7023 }
7024 
7025 #define ID_STR_LENGTH 32
7026 
7027 /* Create a unique string id for a slab cache:
7028  *
7029  * Format	:[flags-]size
7030  */
7031 static char *create_unique_id(struct kmem_cache *s)
7032 {
7033 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7034 	char *p = name;
7035 
7036 	if (!name)
7037 		return ERR_PTR(-ENOMEM);
7038 
7039 	*p++ = ':';
7040 	/*
7041 	 * First flags affecting slabcache operations. We will only
7042 	 * get here for aliasable slabs so we do not need to support
7043 	 * too many flags. The flags here must cover all flags that
7044 	 * are matched during merging to guarantee that the id is
7045 	 * unique.
7046 	 */
7047 	if (s->flags & SLAB_CACHE_DMA)
7048 		*p++ = 'd';
7049 	if (s->flags & SLAB_CACHE_DMA32)
7050 		*p++ = 'D';
7051 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7052 		*p++ = 'a';
7053 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7054 		*p++ = 'F';
7055 	if (s->flags & SLAB_ACCOUNT)
7056 		*p++ = 'A';
7057 	if (p != name + 1)
7058 		*p++ = '-';
7059 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7060 
7061 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7062 		kfree(name);
7063 		return ERR_PTR(-EINVAL);
7064 	}
7065 	kmsan_unpoison_memory(name, p - name);
7066 	return name;
7067 }
7068 
7069 static int sysfs_slab_add(struct kmem_cache *s)
7070 {
7071 	int err;
7072 	const char *name;
7073 	struct kset *kset = cache_kset(s);
7074 	int unmergeable = slab_unmergeable(s);
7075 
7076 	if (!unmergeable && disable_higher_order_debug &&
7077 			(slub_debug & DEBUG_METADATA_FLAGS))
7078 		unmergeable = 1;
7079 
7080 	if (unmergeable) {
7081 		/*
7082 		 * Slabcache can never be merged so we can use the name proper.
7083 		 * This is typically the case for debug situations. In that
7084 		 * case we can catch duplicate names easily.
7085 		 */
7086 		sysfs_remove_link(&slab_kset->kobj, s->name);
7087 		name = s->name;
7088 	} else {
7089 		/*
7090 		 * Create a unique name for the slab as a target
7091 		 * for the symlinks.
7092 		 */
7093 		name = create_unique_id(s);
7094 		if (IS_ERR(name))
7095 			return PTR_ERR(name);
7096 	}
7097 
7098 	s->kobj.kset = kset;
7099 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7100 	if (err)
7101 		goto out;
7102 
7103 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7104 	if (err)
7105 		goto out_del_kobj;
7106 
7107 	if (!unmergeable) {
7108 		/* Setup first alias */
7109 		sysfs_slab_alias(s, s->name);
7110 	}
7111 out:
7112 	if (!unmergeable)
7113 		kfree(name);
7114 	return err;
7115 out_del_kobj:
7116 	kobject_del(&s->kobj);
7117 	goto out;
7118 }
7119 
7120 void sysfs_slab_unlink(struct kmem_cache *s)
7121 {
7122 	kobject_del(&s->kobj);
7123 }
7124 
7125 void sysfs_slab_release(struct kmem_cache *s)
7126 {
7127 	kobject_put(&s->kobj);
7128 }
7129 
7130 /*
7131  * Need to buffer aliases during bootup until sysfs becomes
7132  * available lest we lose that information.
7133  */
7134 struct saved_alias {
7135 	struct kmem_cache *s;
7136 	const char *name;
7137 	struct saved_alias *next;
7138 };
7139 
7140 static struct saved_alias *alias_list;
7141 
7142 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7143 {
7144 	struct saved_alias *al;
7145 
7146 	if (slab_state == FULL) {
7147 		/*
7148 		 * If we have a leftover link then remove it.
7149 		 */
7150 		sysfs_remove_link(&slab_kset->kobj, name);
7151 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7152 	}
7153 
7154 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7155 	if (!al)
7156 		return -ENOMEM;
7157 
7158 	al->s = s;
7159 	al->name = name;
7160 	al->next = alias_list;
7161 	alias_list = al;
7162 	kmsan_unpoison_memory(al, sizeof(*al));
7163 	return 0;
7164 }
7165 
7166 static int __init slab_sysfs_init(void)
7167 {
7168 	struct kmem_cache *s;
7169 	int err;
7170 
7171 	mutex_lock(&slab_mutex);
7172 
7173 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7174 	if (!slab_kset) {
7175 		mutex_unlock(&slab_mutex);
7176 		pr_err("Cannot register slab subsystem.\n");
7177 		return -ENOMEM;
7178 	}
7179 
7180 	slab_state = FULL;
7181 
7182 	list_for_each_entry(s, &slab_caches, list) {
7183 		err = sysfs_slab_add(s);
7184 		if (err)
7185 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7186 			       s->name);
7187 	}
7188 
7189 	while (alias_list) {
7190 		struct saved_alias *al = alias_list;
7191 
7192 		alias_list = alias_list->next;
7193 		err = sysfs_slab_alias(al->s, al->name);
7194 		if (err)
7195 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7196 			       al->name);
7197 		kfree(al);
7198 	}
7199 
7200 	mutex_unlock(&slab_mutex);
7201 	return 0;
7202 }
7203 late_initcall(slab_sysfs_init);
7204 #endif /* SLAB_SUPPORTS_SYSFS */
7205 
7206 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7207 static int slab_debugfs_show(struct seq_file *seq, void *v)
7208 {
7209 	struct loc_track *t = seq->private;
7210 	struct location *l;
7211 	unsigned long idx;
7212 
7213 	idx = (unsigned long) t->idx;
7214 	if (idx < t->count) {
7215 		l = &t->loc[idx];
7216 
7217 		seq_printf(seq, "%7ld ", l->count);
7218 
7219 		if (l->addr)
7220 			seq_printf(seq, "%pS", (void *)l->addr);
7221 		else
7222 			seq_puts(seq, "<not-available>");
7223 
7224 		if (l->waste)
7225 			seq_printf(seq, " waste=%lu/%lu",
7226 				l->count * l->waste, l->waste);
7227 
7228 		if (l->sum_time != l->min_time) {
7229 			seq_printf(seq, " age=%ld/%llu/%ld",
7230 				l->min_time, div_u64(l->sum_time, l->count),
7231 				l->max_time);
7232 		} else
7233 			seq_printf(seq, " age=%ld", l->min_time);
7234 
7235 		if (l->min_pid != l->max_pid)
7236 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7237 		else
7238 			seq_printf(seq, " pid=%ld",
7239 				l->min_pid);
7240 
7241 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7242 			seq_printf(seq, " cpus=%*pbl",
7243 				 cpumask_pr_args(to_cpumask(l->cpus)));
7244 
7245 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7246 			seq_printf(seq, " nodes=%*pbl",
7247 				 nodemask_pr_args(&l->nodes));
7248 
7249 #ifdef CONFIG_STACKDEPOT
7250 		{
7251 			depot_stack_handle_t handle;
7252 			unsigned long *entries;
7253 			unsigned int nr_entries, j;
7254 
7255 			handle = READ_ONCE(l->handle);
7256 			if (handle) {
7257 				nr_entries = stack_depot_fetch(handle, &entries);
7258 				seq_puts(seq, "\n");
7259 				for (j = 0; j < nr_entries; j++)
7260 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7261 			}
7262 		}
7263 #endif
7264 		seq_puts(seq, "\n");
7265 	}
7266 
7267 	if (!idx && !t->count)
7268 		seq_puts(seq, "No data\n");
7269 
7270 	return 0;
7271 }
7272 
7273 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7274 {
7275 }
7276 
7277 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7278 {
7279 	struct loc_track *t = seq->private;
7280 
7281 	t->idx = ++(*ppos);
7282 	if (*ppos <= t->count)
7283 		return ppos;
7284 
7285 	return NULL;
7286 }
7287 
7288 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7289 {
7290 	struct location *loc1 = (struct location *)a;
7291 	struct location *loc2 = (struct location *)b;
7292 
7293 	if (loc1->count > loc2->count)
7294 		return -1;
7295 	else
7296 		return 1;
7297 }
7298 
7299 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7300 {
7301 	struct loc_track *t = seq->private;
7302 
7303 	t->idx = *ppos;
7304 	return ppos;
7305 }
7306 
7307 static const struct seq_operations slab_debugfs_sops = {
7308 	.start  = slab_debugfs_start,
7309 	.next   = slab_debugfs_next,
7310 	.stop   = slab_debugfs_stop,
7311 	.show   = slab_debugfs_show,
7312 };
7313 
7314 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7315 {
7316 
7317 	struct kmem_cache_node *n;
7318 	enum track_item alloc;
7319 	int node;
7320 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7321 						sizeof(struct loc_track));
7322 	struct kmem_cache *s = file_inode(filep)->i_private;
7323 	unsigned long *obj_map;
7324 
7325 	if (!t)
7326 		return -ENOMEM;
7327 
7328 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7329 	if (!obj_map) {
7330 		seq_release_private(inode, filep);
7331 		return -ENOMEM;
7332 	}
7333 
7334 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7335 		alloc = TRACK_ALLOC;
7336 	else
7337 		alloc = TRACK_FREE;
7338 
7339 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7340 		bitmap_free(obj_map);
7341 		seq_release_private(inode, filep);
7342 		return -ENOMEM;
7343 	}
7344 
7345 	for_each_kmem_cache_node(s, node, n) {
7346 		unsigned long flags;
7347 		struct slab *slab;
7348 
7349 		if (!node_nr_slabs(n))
7350 			continue;
7351 
7352 		spin_lock_irqsave(&n->list_lock, flags);
7353 		list_for_each_entry(slab, &n->partial, slab_list)
7354 			process_slab(t, s, slab, alloc, obj_map);
7355 		list_for_each_entry(slab, &n->full, slab_list)
7356 			process_slab(t, s, slab, alloc, obj_map);
7357 		spin_unlock_irqrestore(&n->list_lock, flags);
7358 	}
7359 
7360 	/* Sort locations by count */
7361 	sort_r(t->loc, t->count, sizeof(struct location),
7362 		cmp_loc_by_count, NULL, NULL);
7363 
7364 	bitmap_free(obj_map);
7365 	return 0;
7366 }
7367 
7368 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7369 {
7370 	struct seq_file *seq = file->private_data;
7371 	struct loc_track *t = seq->private;
7372 
7373 	free_loc_track(t);
7374 	return seq_release_private(inode, file);
7375 }
7376 
7377 static const struct file_operations slab_debugfs_fops = {
7378 	.open    = slab_debug_trace_open,
7379 	.read    = seq_read,
7380 	.llseek  = seq_lseek,
7381 	.release = slab_debug_trace_release,
7382 };
7383 
7384 static void debugfs_slab_add(struct kmem_cache *s)
7385 {
7386 	struct dentry *slab_cache_dir;
7387 
7388 	if (unlikely(!slab_debugfs_root))
7389 		return;
7390 
7391 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7392 
7393 	debugfs_create_file("alloc_traces", 0400,
7394 		slab_cache_dir, s, &slab_debugfs_fops);
7395 
7396 	debugfs_create_file("free_traces", 0400,
7397 		slab_cache_dir, s, &slab_debugfs_fops);
7398 }
7399 
7400 void debugfs_slab_release(struct kmem_cache *s)
7401 {
7402 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7403 }
7404 
7405 static int __init slab_debugfs_init(void)
7406 {
7407 	struct kmem_cache *s;
7408 
7409 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7410 
7411 	list_for_each_entry(s, &slab_caches, list)
7412 		if (s->flags & SLAB_STORE_USER)
7413 			debugfs_slab_add(s);
7414 
7415 	return 0;
7416 
7417 }
7418 __initcall(slab_debugfs_init);
7419 #endif
7420 /*
7421  * The /proc/slabinfo ABI
7422  */
7423 #ifdef CONFIG_SLUB_DEBUG
7424 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7425 {
7426 	unsigned long nr_slabs = 0;
7427 	unsigned long nr_objs = 0;
7428 	unsigned long nr_free = 0;
7429 	int node;
7430 	struct kmem_cache_node *n;
7431 
7432 	for_each_kmem_cache_node(s, node, n) {
7433 		nr_slabs += node_nr_slabs(n);
7434 		nr_objs += node_nr_objs(n);
7435 		nr_free += count_partial_free_approx(n);
7436 	}
7437 
7438 	sinfo->active_objs = nr_objs - nr_free;
7439 	sinfo->num_objs = nr_objs;
7440 	sinfo->active_slabs = nr_slabs;
7441 	sinfo->num_slabs = nr_slabs;
7442 	sinfo->objects_per_slab = oo_objects(s->oo);
7443 	sinfo->cache_order = oo_order(s->oo);
7444 }
7445 #endif /* CONFIG_SLUB_DEBUG */
7446