1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 /* Structure holding parameters for get_partial() call chain */ 222 struct partial_context { 223 gfp_t flags; 224 unsigned int orig_size; 225 void *object; 226 }; 227 228 static inline bool kmem_cache_debug(struct kmem_cache *s) 229 { 230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 231 } 232 233 static inline bool slub_debug_orig_size(struct kmem_cache *s) 234 { 235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 236 (s->flags & SLAB_KMALLOC)); 237 } 238 239 void *fixup_red_left(struct kmem_cache *s, void *p) 240 { 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 242 p += s->red_left_pad; 243 244 return p; 245 } 246 247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 248 { 249 #ifdef CONFIG_SLUB_CPU_PARTIAL 250 return !kmem_cache_debug(s); 251 #else 252 return false; 253 #endif 254 } 255 256 /* 257 * Issues still to be resolved: 258 * 259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 260 * 261 * - Variable sizing of the per node arrays 262 */ 263 264 /* Enable to log cmpxchg failures */ 265 #undef SLUB_DEBUG_CMPXCHG 266 267 #ifndef CONFIG_SLUB_TINY 268 /* 269 * Minimum number of partial slabs. These will be left on the partial 270 * lists even if they are empty. kmem_cache_shrink may reclaim them. 271 */ 272 #define MIN_PARTIAL 5 273 274 /* 275 * Maximum number of desirable partial slabs. 276 * The existence of more partial slabs makes kmem_cache_shrink 277 * sort the partial list by the number of objects in use. 278 */ 279 #define MAX_PARTIAL 10 280 #else 281 #define MIN_PARTIAL 0 282 #define MAX_PARTIAL 0 283 #endif 284 285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 286 SLAB_POISON | SLAB_STORE_USER) 287 288 /* 289 * These debug flags cannot use CMPXCHG because there might be consistency 290 * issues when checking or reading debug information 291 */ 292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 293 SLAB_TRACE) 294 295 296 /* 297 * Debugging flags that require metadata to be stored in the slab. These get 298 * disabled when slab_debug=O is used and a cache's min order increases with 299 * metadata. 300 */ 301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 302 303 #define OO_SHIFT 16 304 #define OO_MASK ((1 << OO_SHIFT) - 1) 305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 306 307 /* Internal SLUB flags */ 308 /* Poison object */ 309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 310 /* Use cmpxchg_double */ 311 312 #ifdef system_has_freelist_aba 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 314 #else 315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 316 #endif 317 318 /* 319 * Tracking user of a slab. 320 */ 321 #define TRACK_ADDRS_COUNT 16 322 struct track { 323 unsigned long addr; /* Called from address */ 324 #ifdef CONFIG_STACKDEPOT 325 depot_stack_handle_t handle; 326 #endif 327 int cpu; /* Was running on cpu */ 328 int pid; /* Pid context */ 329 unsigned long when; /* When did the operation occur */ 330 }; 331 332 enum track_item { TRACK_ALLOC, TRACK_FREE }; 333 334 #ifdef SLAB_SUPPORTS_SYSFS 335 static int sysfs_slab_add(struct kmem_cache *); 336 static int sysfs_slab_alias(struct kmem_cache *, const char *); 337 #else 338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 340 { return 0; } 341 #endif 342 343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 344 static void debugfs_slab_add(struct kmem_cache *); 345 #else 346 static inline void debugfs_slab_add(struct kmem_cache *s) { } 347 #endif 348 349 enum stat_item { 350 ALLOC_FASTPATH, /* Allocation from cpu slab */ 351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 352 FREE_FASTPATH, /* Free to cpu slab */ 353 FREE_SLOWPATH, /* Freeing not to cpu slab */ 354 FREE_FROZEN, /* Freeing to frozen slab */ 355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 361 FREE_SLAB, /* Slab freed to the page allocator */ 362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 368 DEACTIVATE_BYPASS, /* Implicit deactivation */ 369 ORDER_FALLBACK, /* Number of times fallback was necessary */ 370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 376 NR_SLUB_STAT_ITEMS 377 }; 378 379 #ifndef CONFIG_SLUB_TINY 380 /* 381 * When changing the layout, make sure freelist and tid are still compatible 382 * with this_cpu_cmpxchg_double() alignment requirements. 383 */ 384 struct kmem_cache_cpu { 385 union { 386 struct { 387 void **freelist; /* Pointer to next available object */ 388 unsigned long tid; /* Globally unique transaction id */ 389 }; 390 freelist_aba_t freelist_tid; 391 }; 392 struct slab *slab; /* The slab from which we are allocating */ 393 #ifdef CONFIG_SLUB_CPU_PARTIAL 394 struct slab *partial; /* Partially allocated slabs */ 395 #endif 396 local_lock_t lock; /* Protects the fields above */ 397 #ifdef CONFIG_SLUB_STATS 398 unsigned int stat[NR_SLUB_STAT_ITEMS]; 399 #endif 400 }; 401 #endif /* CONFIG_SLUB_TINY */ 402 403 static inline void stat(const struct kmem_cache *s, enum stat_item si) 404 { 405 #ifdef CONFIG_SLUB_STATS 406 /* 407 * The rmw is racy on a preemptible kernel but this is acceptable, so 408 * avoid this_cpu_add()'s irq-disable overhead. 409 */ 410 raw_cpu_inc(s->cpu_slab->stat[si]); 411 #endif 412 } 413 414 static inline 415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 416 { 417 #ifdef CONFIG_SLUB_STATS 418 raw_cpu_add(s->cpu_slab->stat[si], v); 419 #endif 420 } 421 422 /* 423 * The slab lists for all objects. 424 */ 425 struct kmem_cache_node { 426 spinlock_t list_lock; 427 unsigned long nr_partial; 428 struct list_head partial; 429 #ifdef CONFIG_SLUB_DEBUG 430 atomic_long_t nr_slabs; 431 atomic_long_t total_objects; 432 struct list_head full; 433 #endif 434 }; 435 436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 437 { 438 return s->node[node]; 439 } 440 441 /* 442 * Iterator over all nodes. The body will be executed for each node that has 443 * a kmem_cache_node structure allocated (which is true for all online nodes) 444 */ 445 #define for_each_kmem_cache_node(__s, __node, __n) \ 446 for (__node = 0; __node < nr_node_ids; __node++) \ 447 if ((__n = get_node(__s, __node))) 448 449 /* 450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 452 * differ during memory hotplug/hotremove operations. 453 * Protected by slab_mutex. 454 */ 455 static nodemask_t slab_nodes; 456 457 #ifndef CONFIG_SLUB_TINY 458 /* 459 * Workqueue used for flush_cpu_slab(). 460 */ 461 static struct workqueue_struct *flushwq; 462 #endif 463 464 /******************************************************************** 465 * Core slab cache functions 466 *******************************************************************/ 467 468 /* 469 * freeptr_t represents a SLUB freelist pointer, which might be encoded 470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 471 */ 472 typedef struct { unsigned long v; } freeptr_t; 473 474 /* 475 * Returns freelist pointer (ptr). With hardening, this is obfuscated 476 * with an XOR of the address where the pointer is held and a per-cache 477 * random number. 478 */ 479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 480 void *ptr, unsigned long ptr_addr) 481 { 482 unsigned long encoded; 483 484 #ifdef CONFIG_SLAB_FREELIST_HARDENED 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 486 #else 487 encoded = (unsigned long)ptr; 488 #endif 489 return (freeptr_t){.v = encoded}; 490 } 491 492 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 493 freeptr_t ptr, unsigned long ptr_addr) 494 { 495 void *decoded; 496 497 #ifdef CONFIG_SLAB_FREELIST_HARDENED 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 499 #else 500 decoded = (void *)ptr.v; 501 #endif 502 return decoded; 503 } 504 505 static inline void *get_freepointer(struct kmem_cache *s, void *object) 506 { 507 unsigned long ptr_addr; 508 freeptr_t p; 509 510 object = kasan_reset_tag(object); 511 ptr_addr = (unsigned long)object + s->offset; 512 p = *(freeptr_t *)(ptr_addr); 513 return freelist_ptr_decode(s, p, ptr_addr); 514 } 515 516 #ifndef CONFIG_SLUB_TINY 517 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 518 { 519 prefetchw(object + s->offset); 520 } 521 #endif 522 523 /* 524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 525 * pointer value in the case the current thread loses the race for the next 526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 528 * KMSAN will still check all arguments of cmpxchg because of imperfect 529 * handling of inline assembly. 530 * To work around this problem, we apply __no_kmsan_checks to ensure that 531 * get_freepointer_safe() returns initialized memory. 532 */ 533 __no_kmsan_checks 534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 535 { 536 unsigned long freepointer_addr; 537 freeptr_t p; 538 539 if (!debug_pagealloc_enabled_static()) 540 return get_freepointer(s, object); 541 542 object = kasan_reset_tag(object); 543 freepointer_addr = (unsigned long)object + s->offset; 544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 545 return freelist_ptr_decode(s, p, freepointer_addr); 546 } 547 548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 549 { 550 unsigned long freeptr_addr = (unsigned long)object + s->offset; 551 552 #ifdef CONFIG_SLAB_FREELIST_HARDENED 553 BUG_ON(object == fp); /* naive detection of double free or corruption */ 554 #endif 555 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 558 } 559 560 /* 561 * See comment in calculate_sizes(). 562 */ 563 static inline bool freeptr_outside_object(struct kmem_cache *s) 564 { 565 return s->offset >= s->inuse; 566 } 567 568 /* 569 * Return offset of the end of info block which is inuse + free pointer if 570 * not overlapping with object. 571 */ 572 static inline unsigned int get_info_end(struct kmem_cache *s) 573 { 574 if (freeptr_outside_object(s)) 575 return s->inuse + sizeof(void *); 576 else 577 return s->inuse; 578 } 579 580 /* Loop over all objects in a slab */ 581 #define for_each_object(__p, __s, __addr, __objects) \ 582 for (__p = fixup_red_left(__s, __addr); \ 583 __p < (__addr) + (__objects) * (__s)->size; \ 584 __p += (__s)->size) 585 586 static inline unsigned int order_objects(unsigned int order, unsigned int size) 587 { 588 return ((unsigned int)PAGE_SIZE << order) / size; 589 } 590 591 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 592 unsigned int size) 593 { 594 struct kmem_cache_order_objects x = { 595 (order << OO_SHIFT) + order_objects(order, size) 596 }; 597 598 return x; 599 } 600 601 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 602 { 603 return x.x >> OO_SHIFT; 604 } 605 606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 607 { 608 return x.x & OO_MASK; 609 } 610 611 #ifdef CONFIG_SLUB_CPU_PARTIAL 612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 613 { 614 unsigned int nr_slabs; 615 616 s->cpu_partial = nr_objects; 617 618 /* 619 * We take the number of objects but actually limit the number of 620 * slabs on the per cpu partial list, in order to limit excessive 621 * growth of the list. For simplicity we assume that the slabs will 622 * be half-full. 623 */ 624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 625 s->cpu_partial_slabs = nr_slabs; 626 } 627 #else 628 static inline void 629 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 630 { 631 } 632 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 633 634 /* 635 * Per slab locking using the pagelock 636 */ 637 static __always_inline void slab_lock(struct slab *slab) 638 { 639 struct page *page = slab_page(slab); 640 641 VM_BUG_ON_PAGE(PageTail(page), page); 642 bit_spin_lock(PG_locked, &page->flags); 643 } 644 645 static __always_inline void slab_unlock(struct slab *slab) 646 { 647 struct page *page = slab_page(slab); 648 649 VM_BUG_ON_PAGE(PageTail(page), page); 650 bit_spin_unlock(PG_locked, &page->flags); 651 } 652 653 static inline bool 654 __update_freelist_fast(struct slab *slab, 655 void *freelist_old, unsigned long counters_old, 656 void *freelist_new, unsigned long counters_new) 657 { 658 #ifdef system_has_freelist_aba 659 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 660 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 661 662 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 663 #else 664 return false; 665 #endif 666 } 667 668 static inline bool 669 __update_freelist_slow(struct slab *slab, 670 void *freelist_old, unsigned long counters_old, 671 void *freelist_new, unsigned long counters_new) 672 { 673 bool ret = false; 674 675 slab_lock(slab); 676 if (slab->freelist == freelist_old && 677 slab->counters == counters_old) { 678 slab->freelist = freelist_new; 679 slab->counters = counters_new; 680 ret = true; 681 } 682 slab_unlock(slab); 683 684 return ret; 685 } 686 687 /* 688 * Interrupts must be disabled (for the fallback code to work right), typically 689 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 690 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 691 * allocation/ free operation in hardirq context. Therefore nothing can 692 * interrupt the operation. 693 */ 694 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 695 void *freelist_old, unsigned long counters_old, 696 void *freelist_new, unsigned long counters_new, 697 const char *n) 698 { 699 bool ret; 700 701 if (USE_LOCKLESS_FAST_PATH()) 702 lockdep_assert_irqs_disabled(); 703 704 if (s->flags & __CMPXCHG_DOUBLE) { 705 ret = __update_freelist_fast(slab, freelist_old, counters_old, 706 freelist_new, counters_new); 707 } else { 708 ret = __update_freelist_slow(slab, freelist_old, counters_old, 709 freelist_new, counters_new); 710 } 711 if (likely(ret)) 712 return true; 713 714 cpu_relax(); 715 stat(s, CMPXCHG_DOUBLE_FAIL); 716 717 #ifdef SLUB_DEBUG_CMPXCHG 718 pr_info("%s %s: cmpxchg double redo ", n, s->name); 719 #endif 720 721 return false; 722 } 723 724 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 725 void *freelist_old, unsigned long counters_old, 726 void *freelist_new, unsigned long counters_new, 727 const char *n) 728 { 729 bool ret; 730 731 if (s->flags & __CMPXCHG_DOUBLE) { 732 ret = __update_freelist_fast(slab, freelist_old, counters_old, 733 freelist_new, counters_new); 734 } else { 735 unsigned long flags; 736 737 local_irq_save(flags); 738 ret = __update_freelist_slow(slab, freelist_old, counters_old, 739 freelist_new, counters_new); 740 local_irq_restore(flags); 741 } 742 if (likely(ret)) 743 return true; 744 745 cpu_relax(); 746 stat(s, CMPXCHG_DOUBLE_FAIL); 747 748 #ifdef SLUB_DEBUG_CMPXCHG 749 pr_info("%s %s: cmpxchg double redo ", n, s->name); 750 #endif 751 752 return false; 753 } 754 755 #ifdef CONFIG_SLUB_DEBUG 756 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 757 static DEFINE_SPINLOCK(object_map_lock); 758 759 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 760 struct slab *slab) 761 { 762 void *addr = slab_address(slab); 763 void *p; 764 765 bitmap_zero(obj_map, slab->objects); 766 767 for (p = slab->freelist; p; p = get_freepointer(s, p)) 768 set_bit(__obj_to_index(s, addr, p), obj_map); 769 } 770 771 #if IS_ENABLED(CONFIG_KUNIT) 772 static bool slab_add_kunit_errors(void) 773 { 774 struct kunit_resource *resource; 775 776 if (!kunit_get_current_test()) 777 return false; 778 779 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 780 if (!resource) 781 return false; 782 783 (*(int *)resource->data)++; 784 kunit_put_resource(resource); 785 return true; 786 } 787 #else 788 static inline bool slab_add_kunit_errors(void) { return false; } 789 #endif 790 791 static inline unsigned int size_from_object(struct kmem_cache *s) 792 { 793 if (s->flags & SLAB_RED_ZONE) 794 return s->size - s->red_left_pad; 795 796 return s->size; 797 } 798 799 static inline void *restore_red_left(struct kmem_cache *s, void *p) 800 { 801 if (s->flags & SLAB_RED_ZONE) 802 p -= s->red_left_pad; 803 804 return p; 805 } 806 807 /* 808 * Debug settings: 809 */ 810 #if defined(CONFIG_SLUB_DEBUG_ON) 811 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 812 #else 813 static slab_flags_t slub_debug; 814 #endif 815 816 static char *slub_debug_string; 817 static int disable_higher_order_debug; 818 819 /* 820 * slub is about to manipulate internal object metadata. This memory lies 821 * outside the range of the allocated object, so accessing it would normally 822 * be reported by kasan as a bounds error. metadata_access_enable() is used 823 * to tell kasan that these accesses are OK. 824 */ 825 static inline void metadata_access_enable(void) 826 { 827 kasan_disable_current(); 828 } 829 830 static inline void metadata_access_disable(void) 831 { 832 kasan_enable_current(); 833 } 834 835 /* 836 * Object debugging 837 */ 838 839 /* Verify that a pointer has an address that is valid within a slab page */ 840 static inline int check_valid_pointer(struct kmem_cache *s, 841 struct slab *slab, void *object) 842 { 843 void *base; 844 845 if (!object) 846 return 1; 847 848 base = slab_address(slab); 849 object = kasan_reset_tag(object); 850 object = restore_red_left(s, object); 851 if (object < base || object >= base + slab->objects * s->size || 852 (object - base) % s->size) { 853 return 0; 854 } 855 856 return 1; 857 } 858 859 static void print_section(char *level, char *text, u8 *addr, 860 unsigned int length) 861 { 862 metadata_access_enable(); 863 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 864 16, 1, kasan_reset_tag((void *)addr), length, 1); 865 metadata_access_disable(); 866 } 867 868 static struct track *get_track(struct kmem_cache *s, void *object, 869 enum track_item alloc) 870 { 871 struct track *p; 872 873 p = object + get_info_end(s); 874 875 return kasan_reset_tag(p + alloc); 876 } 877 878 #ifdef CONFIG_STACKDEPOT 879 static noinline depot_stack_handle_t set_track_prepare(void) 880 { 881 depot_stack_handle_t handle; 882 unsigned long entries[TRACK_ADDRS_COUNT]; 883 unsigned int nr_entries; 884 885 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 886 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 887 888 return handle; 889 } 890 #else 891 static inline depot_stack_handle_t set_track_prepare(void) 892 { 893 return 0; 894 } 895 #endif 896 897 static void set_track_update(struct kmem_cache *s, void *object, 898 enum track_item alloc, unsigned long addr, 899 depot_stack_handle_t handle) 900 { 901 struct track *p = get_track(s, object, alloc); 902 903 #ifdef CONFIG_STACKDEPOT 904 p->handle = handle; 905 #endif 906 p->addr = addr; 907 p->cpu = smp_processor_id(); 908 p->pid = current->pid; 909 p->when = jiffies; 910 } 911 912 static __always_inline void set_track(struct kmem_cache *s, void *object, 913 enum track_item alloc, unsigned long addr) 914 { 915 depot_stack_handle_t handle = set_track_prepare(); 916 917 set_track_update(s, object, alloc, addr, handle); 918 } 919 920 static void init_tracking(struct kmem_cache *s, void *object) 921 { 922 struct track *p; 923 924 if (!(s->flags & SLAB_STORE_USER)) 925 return; 926 927 p = get_track(s, object, TRACK_ALLOC); 928 memset(p, 0, 2*sizeof(struct track)); 929 } 930 931 static void print_track(const char *s, struct track *t, unsigned long pr_time) 932 { 933 depot_stack_handle_t handle __maybe_unused; 934 935 if (!t->addr) 936 return; 937 938 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 939 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 940 #ifdef CONFIG_STACKDEPOT 941 handle = READ_ONCE(t->handle); 942 if (handle) 943 stack_depot_print(handle); 944 else 945 pr_err("object allocation/free stack trace missing\n"); 946 #endif 947 } 948 949 void print_tracking(struct kmem_cache *s, void *object) 950 { 951 unsigned long pr_time = jiffies; 952 if (!(s->flags & SLAB_STORE_USER)) 953 return; 954 955 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 956 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 957 } 958 959 static void print_slab_info(const struct slab *slab) 960 { 961 struct folio *folio = (struct folio *)slab_folio(slab); 962 963 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 964 slab, slab->objects, slab->inuse, slab->freelist, 965 folio_flags(folio, 0)); 966 } 967 968 /* 969 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 970 * family will round up the real request size to these fixed ones, so 971 * there could be an extra area than what is requested. Save the original 972 * request size in the meta data area, for better debug and sanity check. 973 */ 974 static inline void set_orig_size(struct kmem_cache *s, 975 void *object, unsigned int orig_size) 976 { 977 void *p = kasan_reset_tag(object); 978 unsigned int kasan_meta_size; 979 980 if (!slub_debug_orig_size(s)) 981 return; 982 983 /* 984 * KASAN can save its free meta data inside of the object at offset 0. 985 * If this meta data size is larger than 'orig_size', it will overlap 986 * the data redzone in [orig_size+1, object_size]. Thus, we adjust 987 * 'orig_size' to be as at least as big as KASAN's meta data. 988 */ 989 kasan_meta_size = kasan_metadata_size(s, true); 990 if (kasan_meta_size > orig_size) 991 orig_size = kasan_meta_size; 992 993 p += get_info_end(s); 994 p += sizeof(struct track) * 2; 995 996 *(unsigned int *)p = orig_size; 997 } 998 999 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 1000 { 1001 void *p = kasan_reset_tag(object); 1002 1003 if (!slub_debug_orig_size(s)) 1004 return s->object_size; 1005 1006 p += get_info_end(s); 1007 p += sizeof(struct track) * 2; 1008 1009 return *(unsigned int *)p; 1010 } 1011 1012 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1013 { 1014 set_orig_size(s, (void *)object, s->object_size); 1015 } 1016 1017 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1018 { 1019 struct va_format vaf; 1020 va_list args; 1021 1022 va_start(args, fmt); 1023 vaf.fmt = fmt; 1024 vaf.va = &args; 1025 pr_err("=============================================================================\n"); 1026 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1027 pr_err("-----------------------------------------------------------------------------\n\n"); 1028 va_end(args); 1029 } 1030 1031 __printf(2, 3) 1032 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1033 { 1034 struct va_format vaf; 1035 va_list args; 1036 1037 if (slab_add_kunit_errors()) 1038 return; 1039 1040 va_start(args, fmt); 1041 vaf.fmt = fmt; 1042 vaf.va = &args; 1043 pr_err("FIX %s: %pV\n", s->name, &vaf); 1044 va_end(args); 1045 } 1046 1047 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1048 { 1049 unsigned int off; /* Offset of last byte */ 1050 u8 *addr = slab_address(slab); 1051 1052 print_tracking(s, p); 1053 1054 print_slab_info(slab); 1055 1056 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1057 p, p - addr, get_freepointer(s, p)); 1058 1059 if (s->flags & SLAB_RED_ZONE) 1060 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1061 s->red_left_pad); 1062 else if (p > addr + 16) 1063 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1064 1065 print_section(KERN_ERR, "Object ", p, 1066 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1067 if (s->flags & SLAB_RED_ZONE) 1068 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1069 s->inuse - s->object_size); 1070 1071 off = get_info_end(s); 1072 1073 if (s->flags & SLAB_STORE_USER) 1074 off += 2 * sizeof(struct track); 1075 1076 if (slub_debug_orig_size(s)) 1077 off += sizeof(unsigned int); 1078 1079 off += kasan_metadata_size(s, false); 1080 1081 if (off != size_from_object(s)) 1082 /* Beginning of the filler is the free pointer */ 1083 print_section(KERN_ERR, "Padding ", p + off, 1084 size_from_object(s) - off); 1085 1086 dump_stack(); 1087 } 1088 1089 static void object_err(struct kmem_cache *s, struct slab *slab, 1090 u8 *object, char *reason) 1091 { 1092 if (slab_add_kunit_errors()) 1093 return; 1094 1095 slab_bug(s, "%s", reason); 1096 print_trailer(s, slab, object); 1097 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1098 } 1099 1100 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1101 void **freelist, void *nextfree) 1102 { 1103 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1104 !check_valid_pointer(s, slab, nextfree) && freelist) { 1105 object_err(s, slab, *freelist, "Freechain corrupt"); 1106 *freelist = NULL; 1107 slab_fix(s, "Isolate corrupted freechain"); 1108 return true; 1109 } 1110 1111 return false; 1112 } 1113 1114 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1115 const char *fmt, ...) 1116 { 1117 va_list args; 1118 char buf[100]; 1119 1120 if (slab_add_kunit_errors()) 1121 return; 1122 1123 va_start(args, fmt); 1124 vsnprintf(buf, sizeof(buf), fmt, args); 1125 va_end(args); 1126 slab_bug(s, "%s", buf); 1127 print_slab_info(slab); 1128 dump_stack(); 1129 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1130 } 1131 1132 static void init_object(struct kmem_cache *s, void *object, u8 val) 1133 { 1134 u8 *p = kasan_reset_tag(object); 1135 unsigned int poison_size = s->object_size; 1136 1137 if (s->flags & SLAB_RED_ZONE) { 1138 memset(p - s->red_left_pad, val, s->red_left_pad); 1139 1140 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1141 /* 1142 * Redzone the extra allocated space by kmalloc than 1143 * requested, and the poison size will be limited to 1144 * the original request size accordingly. 1145 */ 1146 poison_size = get_orig_size(s, object); 1147 } 1148 } 1149 1150 if (s->flags & __OBJECT_POISON) { 1151 memset(p, POISON_FREE, poison_size - 1); 1152 p[poison_size - 1] = POISON_END; 1153 } 1154 1155 if (s->flags & SLAB_RED_ZONE) 1156 memset(p + poison_size, val, s->inuse - poison_size); 1157 } 1158 1159 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1160 void *from, void *to) 1161 { 1162 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1163 memset(from, data, to - from); 1164 } 1165 1166 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1167 u8 *object, char *what, 1168 u8 *start, unsigned int value, unsigned int bytes) 1169 { 1170 u8 *fault; 1171 u8 *end; 1172 u8 *addr = slab_address(slab); 1173 1174 metadata_access_enable(); 1175 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1176 metadata_access_disable(); 1177 if (!fault) 1178 return 1; 1179 1180 end = start + bytes; 1181 while (end > fault && end[-1] == value) 1182 end--; 1183 1184 if (slab_add_kunit_errors()) 1185 goto skip_bug_print; 1186 1187 slab_bug(s, "%s overwritten", what); 1188 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1189 fault, end - 1, fault - addr, 1190 fault[0], value); 1191 print_trailer(s, slab, object); 1192 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1193 1194 skip_bug_print: 1195 restore_bytes(s, what, value, fault, end); 1196 return 0; 1197 } 1198 1199 /* 1200 * Object layout: 1201 * 1202 * object address 1203 * Bytes of the object to be managed. 1204 * If the freepointer may overlay the object then the free 1205 * pointer is at the middle of the object. 1206 * 1207 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1208 * 0xa5 (POISON_END) 1209 * 1210 * object + s->object_size 1211 * Padding to reach word boundary. This is also used for Redzoning. 1212 * Padding is extended by another word if Redzoning is enabled and 1213 * object_size == inuse. 1214 * 1215 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1216 * 0xcc (RED_ACTIVE) for objects in use. 1217 * 1218 * object + s->inuse 1219 * Meta data starts here. 1220 * 1221 * A. Free pointer (if we cannot overwrite object on free) 1222 * B. Tracking data for SLAB_STORE_USER 1223 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1224 * D. Padding to reach required alignment boundary or at minimum 1225 * one word if debugging is on to be able to detect writes 1226 * before the word boundary. 1227 * 1228 * Padding is done using 0x5a (POISON_INUSE) 1229 * 1230 * object + s->size 1231 * Nothing is used beyond s->size. 1232 * 1233 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1234 * ignored. And therefore no slab options that rely on these boundaries 1235 * may be used with merged slabcaches. 1236 */ 1237 1238 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1239 { 1240 unsigned long off = get_info_end(s); /* The end of info */ 1241 1242 if (s->flags & SLAB_STORE_USER) { 1243 /* We also have user information there */ 1244 off += 2 * sizeof(struct track); 1245 1246 if (s->flags & SLAB_KMALLOC) 1247 off += sizeof(unsigned int); 1248 } 1249 1250 off += kasan_metadata_size(s, false); 1251 1252 if (size_from_object(s) == off) 1253 return 1; 1254 1255 return check_bytes_and_report(s, slab, p, "Object padding", 1256 p + off, POISON_INUSE, size_from_object(s) - off); 1257 } 1258 1259 /* Check the pad bytes at the end of a slab page */ 1260 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1261 { 1262 u8 *start; 1263 u8 *fault; 1264 u8 *end; 1265 u8 *pad; 1266 int length; 1267 int remainder; 1268 1269 if (!(s->flags & SLAB_POISON)) 1270 return; 1271 1272 start = slab_address(slab); 1273 length = slab_size(slab); 1274 end = start + length; 1275 remainder = length % s->size; 1276 if (!remainder) 1277 return; 1278 1279 pad = end - remainder; 1280 metadata_access_enable(); 1281 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1282 metadata_access_disable(); 1283 if (!fault) 1284 return; 1285 while (end > fault && end[-1] == POISON_INUSE) 1286 end--; 1287 1288 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1289 fault, end - 1, fault - start); 1290 print_section(KERN_ERR, "Padding ", pad, remainder); 1291 1292 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1293 } 1294 1295 static int check_object(struct kmem_cache *s, struct slab *slab, 1296 void *object, u8 val) 1297 { 1298 u8 *p = object; 1299 u8 *endobject = object + s->object_size; 1300 unsigned int orig_size, kasan_meta_size; 1301 1302 if (s->flags & SLAB_RED_ZONE) { 1303 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1304 object - s->red_left_pad, val, s->red_left_pad)) 1305 return 0; 1306 1307 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1308 endobject, val, s->inuse - s->object_size)) 1309 return 0; 1310 1311 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1312 orig_size = get_orig_size(s, object); 1313 1314 if (s->object_size > orig_size && 1315 !check_bytes_and_report(s, slab, object, 1316 "kmalloc Redzone", p + orig_size, 1317 val, s->object_size - orig_size)) { 1318 return 0; 1319 } 1320 } 1321 } else { 1322 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1323 check_bytes_and_report(s, slab, p, "Alignment padding", 1324 endobject, POISON_INUSE, 1325 s->inuse - s->object_size); 1326 } 1327 } 1328 1329 if (s->flags & SLAB_POISON) { 1330 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1331 /* 1332 * KASAN can save its free meta data inside of the 1333 * object at offset 0. Thus, skip checking the part of 1334 * the redzone that overlaps with the meta data. 1335 */ 1336 kasan_meta_size = kasan_metadata_size(s, true); 1337 if (kasan_meta_size < s->object_size - 1 && 1338 !check_bytes_and_report(s, slab, p, "Poison", 1339 p + kasan_meta_size, POISON_FREE, 1340 s->object_size - kasan_meta_size - 1)) 1341 return 0; 1342 if (kasan_meta_size < s->object_size && 1343 !check_bytes_and_report(s, slab, p, "End Poison", 1344 p + s->object_size - 1, POISON_END, 1)) 1345 return 0; 1346 } 1347 /* 1348 * check_pad_bytes cleans up on its own. 1349 */ 1350 check_pad_bytes(s, slab, p); 1351 } 1352 1353 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1354 /* 1355 * Object and freepointer overlap. Cannot check 1356 * freepointer while object is allocated. 1357 */ 1358 return 1; 1359 1360 /* Check free pointer validity */ 1361 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1362 object_err(s, slab, p, "Freepointer corrupt"); 1363 /* 1364 * No choice but to zap it and thus lose the remainder 1365 * of the free objects in this slab. May cause 1366 * another error because the object count is now wrong. 1367 */ 1368 set_freepointer(s, p, NULL); 1369 return 0; 1370 } 1371 return 1; 1372 } 1373 1374 static int check_slab(struct kmem_cache *s, struct slab *slab) 1375 { 1376 int maxobj; 1377 1378 if (!folio_test_slab(slab_folio(slab))) { 1379 slab_err(s, slab, "Not a valid slab page"); 1380 return 0; 1381 } 1382 1383 maxobj = order_objects(slab_order(slab), s->size); 1384 if (slab->objects > maxobj) { 1385 slab_err(s, slab, "objects %u > max %u", 1386 slab->objects, maxobj); 1387 return 0; 1388 } 1389 if (slab->inuse > slab->objects) { 1390 slab_err(s, slab, "inuse %u > max %u", 1391 slab->inuse, slab->objects); 1392 return 0; 1393 } 1394 /* Slab_pad_check fixes things up after itself */ 1395 slab_pad_check(s, slab); 1396 return 1; 1397 } 1398 1399 /* 1400 * Determine if a certain object in a slab is on the freelist. Must hold the 1401 * slab lock to guarantee that the chains are in a consistent state. 1402 */ 1403 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1404 { 1405 int nr = 0; 1406 void *fp; 1407 void *object = NULL; 1408 int max_objects; 1409 1410 fp = slab->freelist; 1411 while (fp && nr <= slab->objects) { 1412 if (fp == search) 1413 return 1; 1414 if (!check_valid_pointer(s, slab, fp)) { 1415 if (object) { 1416 object_err(s, slab, object, 1417 "Freechain corrupt"); 1418 set_freepointer(s, object, NULL); 1419 } else { 1420 slab_err(s, slab, "Freepointer corrupt"); 1421 slab->freelist = NULL; 1422 slab->inuse = slab->objects; 1423 slab_fix(s, "Freelist cleared"); 1424 return 0; 1425 } 1426 break; 1427 } 1428 object = fp; 1429 fp = get_freepointer(s, object); 1430 nr++; 1431 } 1432 1433 max_objects = order_objects(slab_order(slab), s->size); 1434 if (max_objects > MAX_OBJS_PER_PAGE) 1435 max_objects = MAX_OBJS_PER_PAGE; 1436 1437 if (slab->objects != max_objects) { 1438 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1439 slab->objects, max_objects); 1440 slab->objects = max_objects; 1441 slab_fix(s, "Number of objects adjusted"); 1442 } 1443 if (slab->inuse != slab->objects - nr) { 1444 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1445 slab->inuse, slab->objects - nr); 1446 slab->inuse = slab->objects - nr; 1447 slab_fix(s, "Object count adjusted"); 1448 } 1449 return search == NULL; 1450 } 1451 1452 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1453 int alloc) 1454 { 1455 if (s->flags & SLAB_TRACE) { 1456 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1457 s->name, 1458 alloc ? "alloc" : "free", 1459 object, slab->inuse, 1460 slab->freelist); 1461 1462 if (!alloc) 1463 print_section(KERN_INFO, "Object ", (void *)object, 1464 s->object_size); 1465 1466 dump_stack(); 1467 } 1468 } 1469 1470 /* 1471 * Tracking of fully allocated slabs for debugging purposes. 1472 */ 1473 static void add_full(struct kmem_cache *s, 1474 struct kmem_cache_node *n, struct slab *slab) 1475 { 1476 if (!(s->flags & SLAB_STORE_USER)) 1477 return; 1478 1479 lockdep_assert_held(&n->list_lock); 1480 list_add(&slab->slab_list, &n->full); 1481 } 1482 1483 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1484 { 1485 if (!(s->flags & SLAB_STORE_USER)) 1486 return; 1487 1488 lockdep_assert_held(&n->list_lock); 1489 list_del(&slab->slab_list); 1490 } 1491 1492 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1493 { 1494 return atomic_long_read(&n->nr_slabs); 1495 } 1496 1497 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1498 { 1499 struct kmem_cache_node *n = get_node(s, node); 1500 1501 atomic_long_inc(&n->nr_slabs); 1502 atomic_long_add(objects, &n->total_objects); 1503 } 1504 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1505 { 1506 struct kmem_cache_node *n = get_node(s, node); 1507 1508 atomic_long_dec(&n->nr_slabs); 1509 atomic_long_sub(objects, &n->total_objects); 1510 } 1511 1512 /* Object debug checks for alloc/free paths */ 1513 static void setup_object_debug(struct kmem_cache *s, void *object) 1514 { 1515 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1516 return; 1517 1518 init_object(s, object, SLUB_RED_INACTIVE); 1519 init_tracking(s, object); 1520 } 1521 1522 static 1523 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1524 { 1525 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1526 return; 1527 1528 metadata_access_enable(); 1529 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1530 metadata_access_disable(); 1531 } 1532 1533 static inline int alloc_consistency_checks(struct kmem_cache *s, 1534 struct slab *slab, void *object) 1535 { 1536 if (!check_slab(s, slab)) 1537 return 0; 1538 1539 if (!check_valid_pointer(s, slab, object)) { 1540 object_err(s, slab, object, "Freelist Pointer check fails"); 1541 return 0; 1542 } 1543 1544 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1545 return 0; 1546 1547 return 1; 1548 } 1549 1550 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1551 struct slab *slab, void *object, int orig_size) 1552 { 1553 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1554 if (!alloc_consistency_checks(s, slab, object)) 1555 goto bad; 1556 } 1557 1558 /* Success. Perform special debug activities for allocs */ 1559 trace(s, slab, object, 1); 1560 set_orig_size(s, object, orig_size); 1561 init_object(s, object, SLUB_RED_ACTIVE); 1562 return true; 1563 1564 bad: 1565 if (folio_test_slab(slab_folio(slab))) { 1566 /* 1567 * If this is a slab page then lets do the best we can 1568 * to avoid issues in the future. Marking all objects 1569 * as used avoids touching the remaining objects. 1570 */ 1571 slab_fix(s, "Marking all objects used"); 1572 slab->inuse = slab->objects; 1573 slab->freelist = NULL; 1574 } 1575 return false; 1576 } 1577 1578 static inline int free_consistency_checks(struct kmem_cache *s, 1579 struct slab *slab, void *object, unsigned long addr) 1580 { 1581 if (!check_valid_pointer(s, slab, object)) { 1582 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1583 return 0; 1584 } 1585 1586 if (on_freelist(s, slab, object)) { 1587 object_err(s, slab, object, "Object already free"); 1588 return 0; 1589 } 1590 1591 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1592 return 0; 1593 1594 if (unlikely(s != slab->slab_cache)) { 1595 if (!folio_test_slab(slab_folio(slab))) { 1596 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1597 object); 1598 } else if (!slab->slab_cache) { 1599 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1600 object); 1601 dump_stack(); 1602 } else 1603 object_err(s, slab, object, 1604 "page slab pointer corrupt."); 1605 return 0; 1606 } 1607 return 1; 1608 } 1609 1610 /* 1611 * Parse a block of slab_debug options. Blocks are delimited by ';' 1612 * 1613 * @str: start of block 1614 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1615 * @slabs: return start of list of slabs, or NULL when there's no list 1616 * @init: assume this is initial parsing and not per-kmem-create parsing 1617 * 1618 * returns the start of next block if there's any, or NULL 1619 */ 1620 static char * 1621 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1622 { 1623 bool higher_order_disable = false; 1624 1625 /* Skip any completely empty blocks */ 1626 while (*str && *str == ';') 1627 str++; 1628 1629 if (*str == ',') { 1630 /* 1631 * No options but restriction on slabs. This means full 1632 * debugging for slabs matching a pattern. 1633 */ 1634 *flags = DEBUG_DEFAULT_FLAGS; 1635 goto check_slabs; 1636 } 1637 *flags = 0; 1638 1639 /* Determine which debug features should be switched on */ 1640 for (; *str && *str != ',' && *str != ';'; str++) { 1641 switch (tolower(*str)) { 1642 case '-': 1643 *flags = 0; 1644 break; 1645 case 'f': 1646 *flags |= SLAB_CONSISTENCY_CHECKS; 1647 break; 1648 case 'z': 1649 *flags |= SLAB_RED_ZONE; 1650 break; 1651 case 'p': 1652 *flags |= SLAB_POISON; 1653 break; 1654 case 'u': 1655 *flags |= SLAB_STORE_USER; 1656 break; 1657 case 't': 1658 *flags |= SLAB_TRACE; 1659 break; 1660 case 'a': 1661 *flags |= SLAB_FAILSLAB; 1662 break; 1663 case 'o': 1664 /* 1665 * Avoid enabling debugging on caches if its minimum 1666 * order would increase as a result. 1667 */ 1668 higher_order_disable = true; 1669 break; 1670 default: 1671 if (init) 1672 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1673 } 1674 } 1675 check_slabs: 1676 if (*str == ',') 1677 *slabs = ++str; 1678 else 1679 *slabs = NULL; 1680 1681 /* Skip over the slab list */ 1682 while (*str && *str != ';') 1683 str++; 1684 1685 /* Skip any completely empty blocks */ 1686 while (*str && *str == ';') 1687 str++; 1688 1689 if (init && higher_order_disable) 1690 disable_higher_order_debug = 1; 1691 1692 if (*str) 1693 return str; 1694 else 1695 return NULL; 1696 } 1697 1698 static int __init setup_slub_debug(char *str) 1699 { 1700 slab_flags_t flags; 1701 slab_flags_t global_flags; 1702 char *saved_str; 1703 char *slab_list; 1704 bool global_slub_debug_changed = false; 1705 bool slab_list_specified = false; 1706 1707 global_flags = DEBUG_DEFAULT_FLAGS; 1708 if (*str++ != '=' || !*str) 1709 /* 1710 * No options specified. Switch on full debugging. 1711 */ 1712 goto out; 1713 1714 saved_str = str; 1715 while (str) { 1716 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1717 1718 if (!slab_list) { 1719 global_flags = flags; 1720 global_slub_debug_changed = true; 1721 } else { 1722 slab_list_specified = true; 1723 if (flags & SLAB_STORE_USER) 1724 stack_depot_request_early_init(); 1725 } 1726 } 1727 1728 /* 1729 * For backwards compatibility, a single list of flags with list of 1730 * slabs means debugging is only changed for those slabs, so the global 1731 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1732 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1733 * long as there is no option specifying flags without a slab list. 1734 */ 1735 if (slab_list_specified) { 1736 if (!global_slub_debug_changed) 1737 global_flags = slub_debug; 1738 slub_debug_string = saved_str; 1739 } 1740 out: 1741 slub_debug = global_flags; 1742 if (slub_debug & SLAB_STORE_USER) 1743 stack_depot_request_early_init(); 1744 if (slub_debug != 0 || slub_debug_string) 1745 static_branch_enable(&slub_debug_enabled); 1746 else 1747 static_branch_disable(&slub_debug_enabled); 1748 if ((static_branch_unlikely(&init_on_alloc) || 1749 static_branch_unlikely(&init_on_free)) && 1750 (slub_debug & SLAB_POISON)) 1751 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1752 return 1; 1753 } 1754 1755 __setup("slab_debug", setup_slub_debug); 1756 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1757 1758 /* 1759 * kmem_cache_flags - apply debugging options to the cache 1760 * @flags: flags to set 1761 * @name: name of the cache 1762 * 1763 * Debug option(s) are applied to @flags. In addition to the debug 1764 * option(s), if a slab name (or multiple) is specified i.e. 1765 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1766 * then only the select slabs will receive the debug option(s). 1767 */ 1768 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1769 { 1770 char *iter; 1771 size_t len; 1772 char *next_block; 1773 slab_flags_t block_flags; 1774 slab_flags_t slub_debug_local = slub_debug; 1775 1776 if (flags & SLAB_NO_USER_FLAGS) 1777 return flags; 1778 1779 /* 1780 * If the slab cache is for debugging (e.g. kmemleak) then 1781 * don't store user (stack trace) information by default, 1782 * but let the user enable it via the command line below. 1783 */ 1784 if (flags & SLAB_NOLEAKTRACE) 1785 slub_debug_local &= ~SLAB_STORE_USER; 1786 1787 len = strlen(name); 1788 next_block = slub_debug_string; 1789 /* Go through all blocks of debug options, see if any matches our slab's name */ 1790 while (next_block) { 1791 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1792 if (!iter) 1793 continue; 1794 /* Found a block that has a slab list, search it */ 1795 while (*iter) { 1796 char *end, *glob; 1797 size_t cmplen; 1798 1799 end = strchrnul(iter, ','); 1800 if (next_block && next_block < end) 1801 end = next_block - 1; 1802 1803 glob = strnchr(iter, end - iter, '*'); 1804 if (glob) 1805 cmplen = glob - iter; 1806 else 1807 cmplen = max_t(size_t, len, (end - iter)); 1808 1809 if (!strncmp(name, iter, cmplen)) { 1810 flags |= block_flags; 1811 return flags; 1812 } 1813 1814 if (!*end || *end == ';') 1815 break; 1816 iter = end + 1; 1817 } 1818 } 1819 1820 return flags | slub_debug_local; 1821 } 1822 #else /* !CONFIG_SLUB_DEBUG */ 1823 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1824 static inline 1825 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1826 1827 static inline bool alloc_debug_processing(struct kmem_cache *s, 1828 struct slab *slab, void *object, int orig_size) { return true; } 1829 1830 static inline bool free_debug_processing(struct kmem_cache *s, 1831 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1832 unsigned long addr, depot_stack_handle_t handle) { return true; } 1833 1834 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1835 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1836 void *object, u8 val) { return 1; } 1837 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1838 static inline void set_track(struct kmem_cache *s, void *object, 1839 enum track_item alloc, unsigned long addr) {} 1840 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1841 struct slab *slab) {} 1842 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1843 struct slab *slab) {} 1844 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1845 { 1846 return flags; 1847 } 1848 #define slub_debug 0 1849 1850 #define disable_higher_order_debug 0 1851 1852 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1853 { return 0; } 1854 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1855 int objects) {} 1856 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1857 int objects) {} 1858 1859 #ifndef CONFIG_SLUB_TINY 1860 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1861 void **freelist, void *nextfree) 1862 { 1863 return false; 1864 } 1865 #endif 1866 #endif /* CONFIG_SLUB_DEBUG */ 1867 1868 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) 1869 { 1870 return (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1871 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; 1872 } 1873 1874 #ifdef CONFIG_MEMCG_KMEM 1875 static inline void memcg_free_slab_cgroups(struct slab *slab) 1876 { 1877 kfree(slab_objcgs(slab)); 1878 slab->memcg_data = 0; 1879 } 1880 1881 static inline size_t obj_full_size(struct kmem_cache *s) 1882 { 1883 /* 1884 * For each accounted object there is an extra space which is used 1885 * to store obj_cgroup membership. Charge it too. 1886 */ 1887 return s->size + sizeof(struct obj_cgroup *); 1888 } 1889 1890 /* 1891 * Returns false if the allocation should fail. 1892 */ 1893 static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s, 1894 struct list_lru *lru, 1895 struct obj_cgroup **objcgp, 1896 size_t objects, gfp_t flags) 1897 { 1898 /* 1899 * The obtained objcg pointer is safe to use within the current scope, 1900 * defined by current task or set_active_memcg() pair. 1901 * obj_cgroup_get() is used to get a permanent reference. 1902 */ 1903 struct obj_cgroup *objcg = current_obj_cgroup(); 1904 if (!objcg) 1905 return true; 1906 1907 if (lru) { 1908 int ret; 1909 struct mem_cgroup *memcg; 1910 1911 memcg = get_mem_cgroup_from_objcg(objcg); 1912 ret = memcg_list_lru_alloc(memcg, lru, flags); 1913 css_put(&memcg->css); 1914 1915 if (ret) 1916 return false; 1917 } 1918 1919 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) 1920 return false; 1921 1922 *objcgp = objcg; 1923 return true; 1924 } 1925 1926 /* 1927 * Returns false if the allocation should fail. 1928 */ 1929 static __fastpath_inline 1930 bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 1931 struct obj_cgroup **objcgp, size_t objects, 1932 gfp_t flags) 1933 { 1934 if (!memcg_kmem_online()) 1935 return true; 1936 1937 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 1938 return true; 1939 1940 return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects, 1941 flags)); 1942 } 1943 1944 static void __memcg_slab_post_alloc_hook(struct kmem_cache *s, 1945 struct obj_cgroup *objcg, 1946 gfp_t flags, size_t size, 1947 void **p) 1948 { 1949 struct slab *slab; 1950 unsigned long off; 1951 size_t i; 1952 1953 flags &= gfp_allowed_mask; 1954 1955 for (i = 0; i < size; i++) { 1956 if (likely(p[i])) { 1957 slab = virt_to_slab(p[i]); 1958 1959 if (!slab_objcgs(slab) && 1960 memcg_alloc_slab_cgroups(slab, s, flags, false)) { 1961 obj_cgroup_uncharge(objcg, obj_full_size(s)); 1962 continue; 1963 } 1964 1965 off = obj_to_index(s, slab, p[i]); 1966 obj_cgroup_get(objcg); 1967 slab_objcgs(slab)[off] = objcg; 1968 mod_objcg_state(objcg, slab_pgdat(slab), 1969 cache_vmstat_idx(s), obj_full_size(s)); 1970 } else { 1971 obj_cgroup_uncharge(objcg, obj_full_size(s)); 1972 } 1973 } 1974 } 1975 1976 static __fastpath_inline 1977 void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, 1978 gfp_t flags, size_t size, void **p) 1979 { 1980 if (likely(!memcg_kmem_online() || !objcg)) 1981 return; 1982 1983 return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p); 1984 } 1985 1986 static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 1987 void **p, int objects, 1988 struct obj_cgroup **objcgs) 1989 { 1990 for (int i = 0; i < objects; i++) { 1991 struct obj_cgroup *objcg; 1992 unsigned int off; 1993 1994 off = obj_to_index(s, slab, p[i]); 1995 objcg = objcgs[off]; 1996 if (!objcg) 1997 continue; 1998 1999 objcgs[off] = NULL; 2000 obj_cgroup_uncharge(objcg, obj_full_size(s)); 2001 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 2002 -obj_full_size(s)); 2003 obj_cgroup_put(objcg); 2004 } 2005 } 2006 2007 static __fastpath_inline 2008 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2009 int objects) 2010 { 2011 struct obj_cgroup **objcgs; 2012 2013 if (!memcg_kmem_online()) 2014 return; 2015 2016 objcgs = slab_objcgs(slab); 2017 if (likely(!objcgs)) 2018 return; 2019 2020 __memcg_slab_free_hook(s, slab, p, objects, objcgs); 2021 } 2022 2023 static inline 2024 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, 2025 struct obj_cgroup *objcg) 2026 { 2027 if (objcg) 2028 obj_cgroup_uncharge(objcg, objects * obj_full_size(s)); 2029 } 2030 #else /* CONFIG_MEMCG_KMEM */ 2031 static inline void memcg_free_slab_cgroups(struct slab *slab) 2032 { 2033 } 2034 2035 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, 2036 struct list_lru *lru, 2037 struct obj_cgroup **objcgp, 2038 size_t objects, gfp_t flags) 2039 { 2040 return true; 2041 } 2042 2043 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, 2044 struct obj_cgroup *objcg, 2045 gfp_t flags, size_t size, 2046 void **p) 2047 { 2048 } 2049 2050 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2051 void **p, int objects) 2052 { 2053 } 2054 2055 static inline 2056 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, 2057 struct obj_cgroup *objcg) 2058 { 2059 } 2060 #endif /* CONFIG_MEMCG_KMEM */ 2061 2062 /* 2063 * Hooks for other subsystems that check memory allocations. In a typical 2064 * production configuration these hooks all should produce no code at all. 2065 * 2066 * Returns true if freeing of the object can proceed, false if its reuse 2067 * was delayed by KASAN quarantine, or it was returned to KFENCE. 2068 */ 2069 static __always_inline 2070 bool slab_free_hook(struct kmem_cache *s, void *x, bool init) 2071 { 2072 kmemleak_free_recursive(x, s->flags); 2073 kmsan_slab_free(s, x); 2074 2075 debug_check_no_locks_freed(x, s->object_size); 2076 2077 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2078 debug_check_no_obj_freed(x, s->object_size); 2079 2080 /* Use KCSAN to help debug racy use-after-free. */ 2081 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 2082 __kcsan_check_access(x, s->object_size, 2083 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2084 2085 if (kfence_free(x)) 2086 return false; 2087 2088 /* 2089 * As memory initialization might be integrated into KASAN, 2090 * kasan_slab_free and initialization memset's must be 2091 * kept together to avoid discrepancies in behavior. 2092 * 2093 * The initialization memset's clear the object and the metadata, 2094 * but don't touch the SLAB redzone. 2095 * 2096 * The object's freepointer is also avoided if stored outside the 2097 * object. 2098 */ 2099 if (unlikely(init)) { 2100 int rsize; 2101 unsigned int inuse; 2102 2103 inuse = get_info_end(s); 2104 if (!kasan_has_integrated_init()) 2105 memset(kasan_reset_tag(x), 0, s->object_size); 2106 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2107 memset((char *)kasan_reset_tag(x) + inuse, 0, 2108 s->size - inuse - rsize); 2109 } 2110 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2111 return !kasan_slab_free(s, x, init); 2112 } 2113 2114 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 2115 void **head, void **tail, 2116 int *cnt) 2117 { 2118 2119 void *object; 2120 void *next = *head; 2121 void *old_tail = *tail; 2122 bool init; 2123 2124 if (is_kfence_address(next)) { 2125 slab_free_hook(s, next, false); 2126 return false; 2127 } 2128 2129 /* Head and tail of the reconstructed freelist */ 2130 *head = NULL; 2131 *tail = NULL; 2132 2133 init = slab_want_init_on_free(s); 2134 2135 do { 2136 object = next; 2137 next = get_freepointer(s, object); 2138 2139 /* If object's reuse doesn't have to be delayed */ 2140 if (likely(slab_free_hook(s, object, init))) { 2141 /* Move object to the new freelist */ 2142 set_freepointer(s, object, *head); 2143 *head = object; 2144 if (!*tail) 2145 *tail = object; 2146 } else { 2147 /* 2148 * Adjust the reconstructed freelist depth 2149 * accordingly if object's reuse is delayed. 2150 */ 2151 --(*cnt); 2152 } 2153 } while (object != old_tail); 2154 2155 return *head != NULL; 2156 } 2157 2158 static void *setup_object(struct kmem_cache *s, void *object) 2159 { 2160 setup_object_debug(s, object); 2161 object = kasan_init_slab_obj(s, object); 2162 if (unlikely(s->ctor)) { 2163 kasan_unpoison_new_object(s, object); 2164 s->ctor(object); 2165 kasan_poison_new_object(s, object); 2166 } 2167 return object; 2168 } 2169 2170 /* 2171 * Slab allocation and freeing 2172 */ 2173 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2174 struct kmem_cache_order_objects oo) 2175 { 2176 struct folio *folio; 2177 struct slab *slab; 2178 unsigned int order = oo_order(oo); 2179 2180 folio = (struct folio *)alloc_pages_node(node, flags, order); 2181 if (!folio) 2182 return NULL; 2183 2184 slab = folio_slab(folio); 2185 __folio_set_slab(folio); 2186 /* Make the flag visible before any changes to folio->mapping */ 2187 smp_wmb(); 2188 if (folio_is_pfmemalloc(folio)) 2189 slab_set_pfmemalloc(slab); 2190 2191 return slab; 2192 } 2193 2194 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2195 /* Pre-initialize the random sequence cache */ 2196 static int init_cache_random_seq(struct kmem_cache *s) 2197 { 2198 unsigned int count = oo_objects(s->oo); 2199 int err; 2200 2201 /* Bailout if already initialised */ 2202 if (s->random_seq) 2203 return 0; 2204 2205 err = cache_random_seq_create(s, count, GFP_KERNEL); 2206 if (err) { 2207 pr_err("SLUB: Unable to initialize free list for %s\n", 2208 s->name); 2209 return err; 2210 } 2211 2212 /* Transform to an offset on the set of pages */ 2213 if (s->random_seq) { 2214 unsigned int i; 2215 2216 for (i = 0; i < count; i++) 2217 s->random_seq[i] *= s->size; 2218 } 2219 return 0; 2220 } 2221 2222 /* Initialize each random sequence freelist per cache */ 2223 static void __init init_freelist_randomization(void) 2224 { 2225 struct kmem_cache *s; 2226 2227 mutex_lock(&slab_mutex); 2228 2229 list_for_each_entry(s, &slab_caches, list) 2230 init_cache_random_seq(s); 2231 2232 mutex_unlock(&slab_mutex); 2233 } 2234 2235 /* Get the next entry on the pre-computed freelist randomized */ 2236 static void *next_freelist_entry(struct kmem_cache *s, 2237 unsigned long *pos, void *start, 2238 unsigned long page_limit, 2239 unsigned long freelist_count) 2240 { 2241 unsigned int idx; 2242 2243 /* 2244 * If the target page allocation failed, the number of objects on the 2245 * page might be smaller than the usual size defined by the cache. 2246 */ 2247 do { 2248 idx = s->random_seq[*pos]; 2249 *pos += 1; 2250 if (*pos >= freelist_count) 2251 *pos = 0; 2252 } while (unlikely(idx >= page_limit)); 2253 2254 return (char *)start + idx; 2255 } 2256 2257 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2258 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2259 { 2260 void *start; 2261 void *cur; 2262 void *next; 2263 unsigned long idx, pos, page_limit, freelist_count; 2264 2265 if (slab->objects < 2 || !s->random_seq) 2266 return false; 2267 2268 freelist_count = oo_objects(s->oo); 2269 pos = get_random_u32_below(freelist_count); 2270 2271 page_limit = slab->objects * s->size; 2272 start = fixup_red_left(s, slab_address(slab)); 2273 2274 /* First entry is used as the base of the freelist */ 2275 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2276 cur = setup_object(s, cur); 2277 slab->freelist = cur; 2278 2279 for (idx = 1; idx < slab->objects; idx++) { 2280 next = next_freelist_entry(s, &pos, start, page_limit, 2281 freelist_count); 2282 next = setup_object(s, next); 2283 set_freepointer(s, cur, next); 2284 cur = next; 2285 } 2286 set_freepointer(s, cur, NULL); 2287 2288 return true; 2289 } 2290 #else 2291 static inline int init_cache_random_seq(struct kmem_cache *s) 2292 { 2293 return 0; 2294 } 2295 static inline void init_freelist_randomization(void) { } 2296 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2297 { 2298 return false; 2299 } 2300 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2301 2302 static __always_inline void account_slab(struct slab *slab, int order, 2303 struct kmem_cache *s, gfp_t gfp) 2304 { 2305 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2306 memcg_alloc_slab_cgroups(slab, s, gfp, true); 2307 2308 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2309 PAGE_SIZE << order); 2310 } 2311 2312 static __always_inline void unaccount_slab(struct slab *slab, int order, 2313 struct kmem_cache *s) 2314 { 2315 if (memcg_kmem_online()) 2316 memcg_free_slab_cgroups(slab); 2317 2318 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2319 -(PAGE_SIZE << order)); 2320 } 2321 2322 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2323 { 2324 struct slab *slab; 2325 struct kmem_cache_order_objects oo = s->oo; 2326 gfp_t alloc_gfp; 2327 void *start, *p, *next; 2328 int idx; 2329 bool shuffle; 2330 2331 flags &= gfp_allowed_mask; 2332 2333 flags |= s->allocflags; 2334 2335 /* 2336 * Let the initial higher-order allocation fail under memory pressure 2337 * so we fall-back to the minimum order allocation. 2338 */ 2339 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2340 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2341 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2342 2343 slab = alloc_slab_page(alloc_gfp, node, oo); 2344 if (unlikely(!slab)) { 2345 oo = s->min; 2346 alloc_gfp = flags; 2347 /* 2348 * Allocation may have failed due to fragmentation. 2349 * Try a lower order alloc if possible 2350 */ 2351 slab = alloc_slab_page(alloc_gfp, node, oo); 2352 if (unlikely(!slab)) 2353 return NULL; 2354 stat(s, ORDER_FALLBACK); 2355 } 2356 2357 slab->objects = oo_objects(oo); 2358 slab->inuse = 0; 2359 slab->frozen = 0; 2360 2361 account_slab(slab, oo_order(oo), s, flags); 2362 2363 slab->slab_cache = s; 2364 2365 kasan_poison_slab(slab); 2366 2367 start = slab_address(slab); 2368 2369 setup_slab_debug(s, slab, start); 2370 2371 shuffle = shuffle_freelist(s, slab); 2372 2373 if (!shuffle) { 2374 start = fixup_red_left(s, start); 2375 start = setup_object(s, start); 2376 slab->freelist = start; 2377 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2378 next = p + s->size; 2379 next = setup_object(s, next); 2380 set_freepointer(s, p, next); 2381 p = next; 2382 } 2383 set_freepointer(s, p, NULL); 2384 } 2385 2386 return slab; 2387 } 2388 2389 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2390 { 2391 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2392 flags = kmalloc_fix_flags(flags); 2393 2394 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2395 2396 return allocate_slab(s, 2397 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2398 } 2399 2400 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2401 { 2402 struct folio *folio = slab_folio(slab); 2403 int order = folio_order(folio); 2404 int pages = 1 << order; 2405 2406 __slab_clear_pfmemalloc(slab); 2407 folio->mapping = NULL; 2408 /* Make the mapping reset visible before clearing the flag */ 2409 smp_wmb(); 2410 __folio_clear_slab(folio); 2411 mm_account_reclaimed_pages(pages); 2412 unaccount_slab(slab, order, s); 2413 __free_pages(&folio->page, order); 2414 } 2415 2416 static void rcu_free_slab(struct rcu_head *h) 2417 { 2418 struct slab *slab = container_of(h, struct slab, rcu_head); 2419 2420 __free_slab(slab->slab_cache, slab); 2421 } 2422 2423 static void free_slab(struct kmem_cache *s, struct slab *slab) 2424 { 2425 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2426 void *p; 2427 2428 slab_pad_check(s, slab); 2429 for_each_object(p, s, slab_address(slab), slab->objects) 2430 check_object(s, slab, p, SLUB_RED_INACTIVE); 2431 } 2432 2433 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2434 call_rcu(&slab->rcu_head, rcu_free_slab); 2435 else 2436 __free_slab(s, slab); 2437 } 2438 2439 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2440 { 2441 dec_slabs_node(s, slab_nid(slab), slab->objects); 2442 free_slab(s, slab); 2443 } 2444 2445 /* 2446 * SLUB reuses PG_workingset bit to keep track of whether it's on 2447 * the per-node partial list. 2448 */ 2449 static inline bool slab_test_node_partial(const struct slab *slab) 2450 { 2451 return folio_test_workingset((struct folio *)slab_folio(slab)); 2452 } 2453 2454 static inline void slab_set_node_partial(struct slab *slab) 2455 { 2456 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2457 } 2458 2459 static inline void slab_clear_node_partial(struct slab *slab) 2460 { 2461 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2462 } 2463 2464 /* 2465 * Management of partially allocated slabs. 2466 */ 2467 static inline void 2468 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2469 { 2470 n->nr_partial++; 2471 if (tail == DEACTIVATE_TO_TAIL) 2472 list_add_tail(&slab->slab_list, &n->partial); 2473 else 2474 list_add(&slab->slab_list, &n->partial); 2475 slab_set_node_partial(slab); 2476 } 2477 2478 static inline void add_partial(struct kmem_cache_node *n, 2479 struct slab *slab, int tail) 2480 { 2481 lockdep_assert_held(&n->list_lock); 2482 __add_partial(n, slab, tail); 2483 } 2484 2485 static inline void remove_partial(struct kmem_cache_node *n, 2486 struct slab *slab) 2487 { 2488 lockdep_assert_held(&n->list_lock); 2489 list_del(&slab->slab_list); 2490 slab_clear_node_partial(slab); 2491 n->nr_partial--; 2492 } 2493 2494 /* 2495 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2496 * slab from the n->partial list. Remove only a single object from the slab, do 2497 * the alloc_debug_processing() checks and leave the slab on the list, or move 2498 * it to full list if it was the last free object. 2499 */ 2500 static void *alloc_single_from_partial(struct kmem_cache *s, 2501 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2502 { 2503 void *object; 2504 2505 lockdep_assert_held(&n->list_lock); 2506 2507 object = slab->freelist; 2508 slab->freelist = get_freepointer(s, object); 2509 slab->inuse++; 2510 2511 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2512 remove_partial(n, slab); 2513 return NULL; 2514 } 2515 2516 if (slab->inuse == slab->objects) { 2517 remove_partial(n, slab); 2518 add_full(s, n, slab); 2519 } 2520 2521 return object; 2522 } 2523 2524 /* 2525 * Called only for kmem_cache_debug() caches to allocate from a freshly 2526 * allocated slab. Allocate a single object instead of whole freelist 2527 * and put the slab to the partial (or full) list. 2528 */ 2529 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2530 struct slab *slab, int orig_size) 2531 { 2532 int nid = slab_nid(slab); 2533 struct kmem_cache_node *n = get_node(s, nid); 2534 unsigned long flags; 2535 void *object; 2536 2537 2538 object = slab->freelist; 2539 slab->freelist = get_freepointer(s, object); 2540 slab->inuse = 1; 2541 2542 if (!alloc_debug_processing(s, slab, object, orig_size)) 2543 /* 2544 * It's not really expected that this would fail on a 2545 * freshly allocated slab, but a concurrent memory 2546 * corruption in theory could cause that. 2547 */ 2548 return NULL; 2549 2550 spin_lock_irqsave(&n->list_lock, flags); 2551 2552 if (slab->inuse == slab->objects) 2553 add_full(s, n, slab); 2554 else 2555 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2556 2557 inc_slabs_node(s, nid, slab->objects); 2558 spin_unlock_irqrestore(&n->list_lock, flags); 2559 2560 return object; 2561 } 2562 2563 #ifdef CONFIG_SLUB_CPU_PARTIAL 2564 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2565 #else 2566 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2567 int drain) { } 2568 #endif 2569 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2570 2571 /* 2572 * Try to allocate a partial slab from a specific node. 2573 */ 2574 static struct slab *get_partial_node(struct kmem_cache *s, 2575 struct kmem_cache_node *n, 2576 struct partial_context *pc) 2577 { 2578 struct slab *slab, *slab2, *partial = NULL; 2579 unsigned long flags; 2580 unsigned int partial_slabs = 0; 2581 2582 /* 2583 * Racy check. If we mistakenly see no partial slabs then we 2584 * just allocate an empty slab. If we mistakenly try to get a 2585 * partial slab and there is none available then get_partial() 2586 * will return NULL. 2587 */ 2588 if (!n || !n->nr_partial) 2589 return NULL; 2590 2591 spin_lock_irqsave(&n->list_lock, flags); 2592 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2593 if (!pfmemalloc_match(slab, pc->flags)) 2594 continue; 2595 2596 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2597 void *object = alloc_single_from_partial(s, n, slab, 2598 pc->orig_size); 2599 if (object) { 2600 partial = slab; 2601 pc->object = object; 2602 break; 2603 } 2604 continue; 2605 } 2606 2607 remove_partial(n, slab); 2608 2609 if (!partial) { 2610 partial = slab; 2611 stat(s, ALLOC_FROM_PARTIAL); 2612 } else { 2613 put_cpu_partial(s, slab, 0); 2614 stat(s, CPU_PARTIAL_NODE); 2615 partial_slabs++; 2616 } 2617 #ifdef CONFIG_SLUB_CPU_PARTIAL 2618 if (!kmem_cache_has_cpu_partial(s) 2619 || partial_slabs > s->cpu_partial_slabs / 2) 2620 break; 2621 #else 2622 break; 2623 #endif 2624 2625 } 2626 spin_unlock_irqrestore(&n->list_lock, flags); 2627 return partial; 2628 } 2629 2630 /* 2631 * Get a slab from somewhere. Search in increasing NUMA distances. 2632 */ 2633 static struct slab *get_any_partial(struct kmem_cache *s, 2634 struct partial_context *pc) 2635 { 2636 #ifdef CONFIG_NUMA 2637 struct zonelist *zonelist; 2638 struct zoneref *z; 2639 struct zone *zone; 2640 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2641 struct slab *slab; 2642 unsigned int cpuset_mems_cookie; 2643 2644 /* 2645 * The defrag ratio allows a configuration of the tradeoffs between 2646 * inter node defragmentation and node local allocations. A lower 2647 * defrag_ratio increases the tendency to do local allocations 2648 * instead of attempting to obtain partial slabs from other nodes. 2649 * 2650 * If the defrag_ratio is set to 0 then kmalloc() always 2651 * returns node local objects. If the ratio is higher then kmalloc() 2652 * may return off node objects because partial slabs are obtained 2653 * from other nodes and filled up. 2654 * 2655 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2656 * (which makes defrag_ratio = 1000) then every (well almost) 2657 * allocation will first attempt to defrag slab caches on other nodes. 2658 * This means scanning over all nodes to look for partial slabs which 2659 * may be expensive if we do it every time we are trying to find a slab 2660 * with available objects. 2661 */ 2662 if (!s->remote_node_defrag_ratio || 2663 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2664 return NULL; 2665 2666 do { 2667 cpuset_mems_cookie = read_mems_allowed_begin(); 2668 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2669 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2670 struct kmem_cache_node *n; 2671 2672 n = get_node(s, zone_to_nid(zone)); 2673 2674 if (n && cpuset_zone_allowed(zone, pc->flags) && 2675 n->nr_partial > s->min_partial) { 2676 slab = get_partial_node(s, n, pc); 2677 if (slab) { 2678 /* 2679 * Don't check read_mems_allowed_retry() 2680 * here - if mems_allowed was updated in 2681 * parallel, that was a harmless race 2682 * between allocation and the cpuset 2683 * update 2684 */ 2685 return slab; 2686 } 2687 } 2688 } 2689 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2690 #endif /* CONFIG_NUMA */ 2691 return NULL; 2692 } 2693 2694 /* 2695 * Get a partial slab, lock it and return it. 2696 */ 2697 static struct slab *get_partial(struct kmem_cache *s, int node, 2698 struct partial_context *pc) 2699 { 2700 struct slab *slab; 2701 int searchnode = node; 2702 2703 if (node == NUMA_NO_NODE) 2704 searchnode = numa_mem_id(); 2705 2706 slab = get_partial_node(s, get_node(s, searchnode), pc); 2707 if (slab || node != NUMA_NO_NODE) 2708 return slab; 2709 2710 return get_any_partial(s, pc); 2711 } 2712 2713 #ifndef CONFIG_SLUB_TINY 2714 2715 #ifdef CONFIG_PREEMPTION 2716 /* 2717 * Calculate the next globally unique transaction for disambiguation 2718 * during cmpxchg. The transactions start with the cpu number and are then 2719 * incremented by CONFIG_NR_CPUS. 2720 */ 2721 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2722 #else 2723 /* 2724 * No preemption supported therefore also no need to check for 2725 * different cpus. 2726 */ 2727 #define TID_STEP 1 2728 #endif /* CONFIG_PREEMPTION */ 2729 2730 static inline unsigned long next_tid(unsigned long tid) 2731 { 2732 return tid + TID_STEP; 2733 } 2734 2735 #ifdef SLUB_DEBUG_CMPXCHG 2736 static inline unsigned int tid_to_cpu(unsigned long tid) 2737 { 2738 return tid % TID_STEP; 2739 } 2740 2741 static inline unsigned long tid_to_event(unsigned long tid) 2742 { 2743 return tid / TID_STEP; 2744 } 2745 #endif 2746 2747 static inline unsigned int init_tid(int cpu) 2748 { 2749 return cpu; 2750 } 2751 2752 static inline void note_cmpxchg_failure(const char *n, 2753 const struct kmem_cache *s, unsigned long tid) 2754 { 2755 #ifdef SLUB_DEBUG_CMPXCHG 2756 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2757 2758 pr_info("%s %s: cmpxchg redo ", n, s->name); 2759 2760 #ifdef CONFIG_PREEMPTION 2761 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2762 pr_warn("due to cpu change %d -> %d\n", 2763 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2764 else 2765 #endif 2766 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2767 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2768 tid_to_event(tid), tid_to_event(actual_tid)); 2769 else 2770 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2771 actual_tid, tid, next_tid(tid)); 2772 #endif 2773 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2774 } 2775 2776 static void init_kmem_cache_cpus(struct kmem_cache *s) 2777 { 2778 int cpu; 2779 struct kmem_cache_cpu *c; 2780 2781 for_each_possible_cpu(cpu) { 2782 c = per_cpu_ptr(s->cpu_slab, cpu); 2783 local_lock_init(&c->lock); 2784 c->tid = init_tid(cpu); 2785 } 2786 } 2787 2788 /* 2789 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2790 * unfreezes the slabs and puts it on the proper list. 2791 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2792 * by the caller. 2793 */ 2794 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2795 void *freelist) 2796 { 2797 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2798 int free_delta = 0; 2799 void *nextfree, *freelist_iter, *freelist_tail; 2800 int tail = DEACTIVATE_TO_HEAD; 2801 unsigned long flags = 0; 2802 struct slab new; 2803 struct slab old; 2804 2805 if (slab->freelist) { 2806 stat(s, DEACTIVATE_REMOTE_FREES); 2807 tail = DEACTIVATE_TO_TAIL; 2808 } 2809 2810 /* 2811 * Stage one: Count the objects on cpu's freelist as free_delta and 2812 * remember the last object in freelist_tail for later splicing. 2813 */ 2814 freelist_tail = NULL; 2815 freelist_iter = freelist; 2816 while (freelist_iter) { 2817 nextfree = get_freepointer(s, freelist_iter); 2818 2819 /* 2820 * If 'nextfree' is invalid, it is possible that the object at 2821 * 'freelist_iter' is already corrupted. So isolate all objects 2822 * starting at 'freelist_iter' by skipping them. 2823 */ 2824 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2825 break; 2826 2827 freelist_tail = freelist_iter; 2828 free_delta++; 2829 2830 freelist_iter = nextfree; 2831 } 2832 2833 /* 2834 * Stage two: Unfreeze the slab while splicing the per-cpu 2835 * freelist to the head of slab's freelist. 2836 */ 2837 do { 2838 old.freelist = READ_ONCE(slab->freelist); 2839 old.counters = READ_ONCE(slab->counters); 2840 VM_BUG_ON(!old.frozen); 2841 2842 /* Determine target state of the slab */ 2843 new.counters = old.counters; 2844 new.frozen = 0; 2845 if (freelist_tail) { 2846 new.inuse -= free_delta; 2847 set_freepointer(s, freelist_tail, old.freelist); 2848 new.freelist = freelist; 2849 } else { 2850 new.freelist = old.freelist; 2851 } 2852 } while (!slab_update_freelist(s, slab, 2853 old.freelist, old.counters, 2854 new.freelist, new.counters, 2855 "unfreezing slab")); 2856 2857 /* 2858 * Stage three: Manipulate the slab list based on the updated state. 2859 */ 2860 if (!new.inuse && n->nr_partial >= s->min_partial) { 2861 stat(s, DEACTIVATE_EMPTY); 2862 discard_slab(s, slab); 2863 stat(s, FREE_SLAB); 2864 } else if (new.freelist) { 2865 spin_lock_irqsave(&n->list_lock, flags); 2866 add_partial(n, slab, tail); 2867 spin_unlock_irqrestore(&n->list_lock, flags); 2868 stat(s, tail); 2869 } else { 2870 stat(s, DEACTIVATE_FULL); 2871 } 2872 } 2873 2874 #ifdef CONFIG_SLUB_CPU_PARTIAL 2875 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 2876 { 2877 struct kmem_cache_node *n = NULL, *n2 = NULL; 2878 struct slab *slab, *slab_to_discard = NULL; 2879 unsigned long flags = 0; 2880 2881 while (partial_slab) { 2882 slab = partial_slab; 2883 partial_slab = slab->next; 2884 2885 n2 = get_node(s, slab_nid(slab)); 2886 if (n != n2) { 2887 if (n) 2888 spin_unlock_irqrestore(&n->list_lock, flags); 2889 2890 n = n2; 2891 spin_lock_irqsave(&n->list_lock, flags); 2892 } 2893 2894 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 2895 slab->next = slab_to_discard; 2896 slab_to_discard = slab; 2897 } else { 2898 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2899 stat(s, FREE_ADD_PARTIAL); 2900 } 2901 } 2902 2903 if (n) 2904 spin_unlock_irqrestore(&n->list_lock, flags); 2905 2906 while (slab_to_discard) { 2907 slab = slab_to_discard; 2908 slab_to_discard = slab_to_discard->next; 2909 2910 stat(s, DEACTIVATE_EMPTY); 2911 discard_slab(s, slab); 2912 stat(s, FREE_SLAB); 2913 } 2914 } 2915 2916 /* 2917 * Put all the cpu partial slabs to the node partial list. 2918 */ 2919 static void put_partials(struct kmem_cache *s) 2920 { 2921 struct slab *partial_slab; 2922 unsigned long flags; 2923 2924 local_lock_irqsave(&s->cpu_slab->lock, flags); 2925 partial_slab = this_cpu_read(s->cpu_slab->partial); 2926 this_cpu_write(s->cpu_slab->partial, NULL); 2927 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2928 2929 if (partial_slab) 2930 __put_partials(s, partial_slab); 2931 } 2932 2933 static void put_partials_cpu(struct kmem_cache *s, 2934 struct kmem_cache_cpu *c) 2935 { 2936 struct slab *partial_slab; 2937 2938 partial_slab = slub_percpu_partial(c); 2939 c->partial = NULL; 2940 2941 if (partial_slab) 2942 __put_partials(s, partial_slab); 2943 } 2944 2945 /* 2946 * Put a slab into a partial slab slot if available. 2947 * 2948 * If we did not find a slot then simply move all the partials to the 2949 * per node partial list. 2950 */ 2951 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2952 { 2953 struct slab *oldslab; 2954 struct slab *slab_to_put = NULL; 2955 unsigned long flags; 2956 int slabs = 0; 2957 2958 local_lock_irqsave(&s->cpu_slab->lock, flags); 2959 2960 oldslab = this_cpu_read(s->cpu_slab->partial); 2961 2962 if (oldslab) { 2963 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2964 /* 2965 * Partial array is full. Move the existing set to the 2966 * per node partial list. Postpone the actual unfreezing 2967 * outside of the critical section. 2968 */ 2969 slab_to_put = oldslab; 2970 oldslab = NULL; 2971 } else { 2972 slabs = oldslab->slabs; 2973 } 2974 } 2975 2976 slabs++; 2977 2978 slab->slabs = slabs; 2979 slab->next = oldslab; 2980 2981 this_cpu_write(s->cpu_slab->partial, slab); 2982 2983 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2984 2985 if (slab_to_put) { 2986 __put_partials(s, slab_to_put); 2987 stat(s, CPU_PARTIAL_DRAIN); 2988 } 2989 } 2990 2991 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2992 2993 static inline void put_partials(struct kmem_cache *s) { } 2994 static inline void put_partials_cpu(struct kmem_cache *s, 2995 struct kmem_cache_cpu *c) { } 2996 2997 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2998 2999 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3000 { 3001 unsigned long flags; 3002 struct slab *slab; 3003 void *freelist; 3004 3005 local_lock_irqsave(&s->cpu_slab->lock, flags); 3006 3007 slab = c->slab; 3008 freelist = c->freelist; 3009 3010 c->slab = NULL; 3011 c->freelist = NULL; 3012 c->tid = next_tid(c->tid); 3013 3014 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3015 3016 if (slab) { 3017 deactivate_slab(s, slab, freelist); 3018 stat(s, CPUSLAB_FLUSH); 3019 } 3020 } 3021 3022 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3023 { 3024 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3025 void *freelist = c->freelist; 3026 struct slab *slab = c->slab; 3027 3028 c->slab = NULL; 3029 c->freelist = NULL; 3030 c->tid = next_tid(c->tid); 3031 3032 if (slab) { 3033 deactivate_slab(s, slab, freelist); 3034 stat(s, CPUSLAB_FLUSH); 3035 } 3036 3037 put_partials_cpu(s, c); 3038 } 3039 3040 struct slub_flush_work { 3041 struct work_struct work; 3042 struct kmem_cache *s; 3043 bool skip; 3044 }; 3045 3046 /* 3047 * Flush cpu slab. 3048 * 3049 * Called from CPU work handler with migration disabled. 3050 */ 3051 static void flush_cpu_slab(struct work_struct *w) 3052 { 3053 struct kmem_cache *s; 3054 struct kmem_cache_cpu *c; 3055 struct slub_flush_work *sfw; 3056 3057 sfw = container_of(w, struct slub_flush_work, work); 3058 3059 s = sfw->s; 3060 c = this_cpu_ptr(s->cpu_slab); 3061 3062 if (c->slab) 3063 flush_slab(s, c); 3064 3065 put_partials(s); 3066 } 3067 3068 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3069 { 3070 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3071 3072 return c->slab || slub_percpu_partial(c); 3073 } 3074 3075 static DEFINE_MUTEX(flush_lock); 3076 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3077 3078 static void flush_all_cpus_locked(struct kmem_cache *s) 3079 { 3080 struct slub_flush_work *sfw; 3081 unsigned int cpu; 3082 3083 lockdep_assert_cpus_held(); 3084 mutex_lock(&flush_lock); 3085 3086 for_each_online_cpu(cpu) { 3087 sfw = &per_cpu(slub_flush, cpu); 3088 if (!has_cpu_slab(cpu, s)) { 3089 sfw->skip = true; 3090 continue; 3091 } 3092 INIT_WORK(&sfw->work, flush_cpu_slab); 3093 sfw->skip = false; 3094 sfw->s = s; 3095 queue_work_on(cpu, flushwq, &sfw->work); 3096 } 3097 3098 for_each_online_cpu(cpu) { 3099 sfw = &per_cpu(slub_flush, cpu); 3100 if (sfw->skip) 3101 continue; 3102 flush_work(&sfw->work); 3103 } 3104 3105 mutex_unlock(&flush_lock); 3106 } 3107 3108 static void flush_all(struct kmem_cache *s) 3109 { 3110 cpus_read_lock(); 3111 flush_all_cpus_locked(s); 3112 cpus_read_unlock(); 3113 } 3114 3115 /* 3116 * Use the cpu notifier to insure that the cpu slabs are flushed when 3117 * necessary. 3118 */ 3119 static int slub_cpu_dead(unsigned int cpu) 3120 { 3121 struct kmem_cache *s; 3122 3123 mutex_lock(&slab_mutex); 3124 list_for_each_entry(s, &slab_caches, list) 3125 __flush_cpu_slab(s, cpu); 3126 mutex_unlock(&slab_mutex); 3127 return 0; 3128 } 3129 3130 #else /* CONFIG_SLUB_TINY */ 3131 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3132 static inline void flush_all(struct kmem_cache *s) { } 3133 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3134 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3135 #endif /* CONFIG_SLUB_TINY */ 3136 3137 /* 3138 * Check if the objects in a per cpu structure fit numa 3139 * locality expectations. 3140 */ 3141 static inline int node_match(struct slab *slab, int node) 3142 { 3143 #ifdef CONFIG_NUMA 3144 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3145 return 0; 3146 #endif 3147 return 1; 3148 } 3149 3150 #ifdef CONFIG_SLUB_DEBUG 3151 static int count_free(struct slab *slab) 3152 { 3153 return slab->objects - slab->inuse; 3154 } 3155 3156 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3157 { 3158 return atomic_long_read(&n->total_objects); 3159 } 3160 3161 /* Supports checking bulk free of a constructed freelist */ 3162 static inline bool free_debug_processing(struct kmem_cache *s, 3163 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3164 unsigned long addr, depot_stack_handle_t handle) 3165 { 3166 bool checks_ok = false; 3167 void *object = head; 3168 int cnt = 0; 3169 3170 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3171 if (!check_slab(s, slab)) 3172 goto out; 3173 } 3174 3175 if (slab->inuse < *bulk_cnt) { 3176 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3177 slab->inuse, *bulk_cnt); 3178 goto out; 3179 } 3180 3181 next_object: 3182 3183 if (++cnt > *bulk_cnt) 3184 goto out_cnt; 3185 3186 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3187 if (!free_consistency_checks(s, slab, object, addr)) 3188 goto out; 3189 } 3190 3191 if (s->flags & SLAB_STORE_USER) 3192 set_track_update(s, object, TRACK_FREE, addr, handle); 3193 trace(s, slab, object, 0); 3194 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3195 init_object(s, object, SLUB_RED_INACTIVE); 3196 3197 /* Reached end of constructed freelist yet? */ 3198 if (object != tail) { 3199 object = get_freepointer(s, object); 3200 goto next_object; 3201 } 3202 checks_ok = true; 3203 3204 out_cnt: 3205 if (cnt != *bulk_cnt) { 3206 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3207 *bulk_cnt, cnt); 3208 *bulk_cnt = cnt; 3209 } 3210 3211 out: 3212 3213 if (!checks_ok) 3214 slab_fix(s, "Object at 0x%p not freed", object); 3215 3216 return checks_ok; 3217 } 3218 #endif /* CONFIG_SLUB_DEBUG */ 3219 3220 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3221 static unsigned long count_partial(struct kmem_cache_node *n, 3222 int (*get_count)(struct slab *)) 3223 { 3224 unsigned long flags; 3225 unsigned long x = 0; 3226 struct slab *slab; 3227 3228 spin_lock_irqsave(&n->list_lock, flags); 3229 list_for_each_entry(slab, &n->partial, slab_list) 3230 x += get_count(slab); 3231 spin_unlock_irqrestore(&n->list_lock, flags); 3232 return x; 3233 } 3234 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3235 3236 #ifdef CONFIG_SLUB_DEBUG 3237 static noinline void 3238 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3239 { 3240 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3241 DEFAULT_RATELIMIT_BURST); 3242 int node; 3243 struct kmem_cache_node *n; 3244 3245 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3246 return; 3247 3248 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 3249 nid, gfpflags, &gfpflags); 3250 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3251 s->name, s->object_size, s->size, oo_order(s->oo), 3252 oo_order(s->min)); 3253 3254 if (oo_order(s->min) > get_order(s->object_size)) 3255 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3256 s->name); 3257 3258 for_each_kmem_cache_node(s, node, n) { 3259 unsigned long nr_slabs; 3260 unsigned long nr_objs; 3261 unsigned long nr_free; 3262 3263 nr_free = count_partial(n, count_free); 3264 nr_slabs = node_nr_slabs(n); 3265 nr_objs = node_nr_objs(n); 3266 3267 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3268 node, nr_slabs, nr_objs, nr_free); 3269 } 3270 } 3271 #else /* CONFIG_SLUB_DEBUG */ 3272 static inline void 3273 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3274 #endif 3275 3276 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3277 { 3278 if (unlikely(slab_test_pfmemalloc(slab))) 3279 return gfp_pfmemalloc_allowed(gfpflags); 3280 3281 return true; 3282 } 3283 3284 #ifndef CONFIG_SLUB_TINY 3285 static inline bool 3286 __update_cpu_freelist_fast(struct kmem_cache *s, 3287 void *freelist_old, void *freelist_new, 3288 unsigned long tid) 3289 { 3290 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3291 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3292 3293 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3294 &old.full, new.full); 3295 } 3296 3297 /* 3298 * Check the slab->freelist and either transfer the freelist to the 3299 * per cpu freelist or deactivate the slab. 3300 * 3301 * The slab is still frozen if the return value is not NULL. 3302 * 3303 * If this function returns NULL then the slab has been unfrozen. 3304 */ 3305 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3306 { 3307 struct slab new; 3308 unsigned long counters; 3309 void *freelist; 3310 3311 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3312 3313 do { 3314 freelist = slab->freelist; 3315 counters = slab->counters; 3316 3317 new.counters = counters; 3318 3319 new.inuse = slab->objects; 3320 new.frozen = freelist != NULL; 3321 3322 } while (!__slab_update_freelist(s, slab, 3323 freelist, counters, 3324 NULL, new.counters, 3325 "get_freelist")); 3326 3327 return freelist; 3328 } 3329 3330 /* 3331 * Freeze the partial slab and return the pointer to the freelist. 3332 */ 3333 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3334 { 3335 struct slab new; 3336 unsigned long counters; 3337 void *freelist; 3338 3339 do { 3340 freelist = slab->freelist; 3341 counters = slab->counters; 3342 3343 new.counters = counters; 3344 VM_BUG_ON(new.frozen); 3345 3346 new.inuse = slab->objects; 3347 new.frozen = 1; 3348 3349 } while (!slab_update_freelist(s, slab, 3350 freelist, counters, 3351 NULL, new.counters, 3352 "freeze_slab")); 3353 3354 return freelist; 3355 } 3356 3357 /* 3358 * Slow path. The lockless freelist is empty or we need to perform 3359 * debugging duties. 3360 * 3361 * Processing is still very fast if new objects have been freed to the 3362 * regular freelist. In that case we simply take over the regular freelist 3363 * as the lockless freelist and zap the regular freelist. 3364 * 3365 * If that is not working then we fall back to the partial lists. We take the 3366 * first element of the freelist as the object to allocate now and move the 3367 * rest of the freelist to the lockless freelist. 3368 * 3369 * And if we were unable to get a new slab from the partial slab lists then 3370 * we need to allocate a new slab. This is the slowest path since it involves 3371 * a call to the page allocator and the setup of a new slab. 3372 * 3373 * Version of __slab_alloc to use when we know that preemption is 3374 * already disabled (which is the case for bulk allocation). 3375 */ 3376 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3377 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3378 { 3379 void *freelist; 3380 struct slab *slab; 3381 unsigned long flags; 3382 struct partial_context pc; 3383 3384 stat(s, ALLOC_SLOWPATH); 3385 3386 reread_slab: 3387 3388 slab = READ_ONCE(c->slab); 3389 if (!slab) { 3390 /* 3391 * if the node is not online or has no normal memory, just 3392 * ignore the node constraint 3393 */ 3394 if (unlikely(node != NUMA_NO_NODE && 3395 !node_isset(node, slab_nodes))) 3396 node = NUMA_NO_NODE; 3397 goto new_slab; 3398 } 3399 3400 if (unlikely(!node_match(slab, node))) { 3401 /* 3402 * same as above but node_match() being false already 3403 * implies node != NUMA_NO_NODE 3404 */ 3405 if (!node_isset(node, slab_nodes)) { 3406 node = NUMA_NO_NODE; 3407 } else { 3408 stat(s, ALLOC_NODE_MISMATCH); 3409 goto deactivate_slab; 3410 } 3411 } 3412 3413 /* 3414 * By rights, we should be searching for a slab page that was 3415 * PFMEMALLOC but right now, we are losing the pfmemalloc 3416 * information when the page leaves the per-cpu allocator 3417 */ 3418 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3419 goto deactivate_slab; 3420 3421 /* must check again c->slab in case we got preempted and it changed */ 3422 local_lock_irqsave(&s->cpu_slab->lock, flags); 3423 if (unlikely(slab != c->slab)) { 3424 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3425 goto reread_slab; 3426 } 3427 freelist = c->freelist; 3428 if (freelist) 3429 goto load_freelist; 3430 3431 freelist = get_freelist(s, slab); 3432 3433 if (!freelist) { 3434 c->slab = NULL; 3435 c->tid = next_tid(c->tid); 3436 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3437 stat(s, DEACTIVATE_BYPASS); 3438 goto new_slab; 3439 } 3440 3441 stat(s, ALLOC_REFILL); 3442 3443 load_freelist: 3444 3445 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3446 3447 /* 3448 * freelist is pointing to the list of objects to be used. 3449 * slab is pointing to the slab from which the objects are obtained. 3450 * That slab must be frozen for per cpu allocations to work. 3451 */ 3452 VM_BUG_ON(!c->slab->frozen); 3453 c->freelist = get_freepointer(s, freelist); 3454 c->tid = next_tid(c->tid); 3455 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3456 return freelist; 3457 3458 deactivate_slab: 3459 3460 local_lock_irqsave(&s->cpu_slab->lock, flags); 3461 if (slab != c->slab) { 3462 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3463 goto reread_slab; 3464 } 3465 freelist = c->freelist; 3466 c->slab = NULL; 3467 c->freelist = NULL; 3468 c->tid = next_tid(c->tid); 3469 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3470 deactivate_slab(s, slab, freelist); 3471 3472 new_slab: 3473 3474 #ifdef CONFIG_SLUB_CPU_PARTIAL 3475 while (slub_percpu_partial(c)) { 3476 local_lock_irqsave(&s->cpu_slab->lock, flags); 3477 if (unlikely(c->slab)) { 3478 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3479 goto reread_slab; 3480 } 3481 if (unlikely(!slub_percpu_partial(c))) { 3482 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3483 /* we were preempted and partial list got empty */ 3484 goto new_objects; 3485 } 3486 3487 slab = slub_percpu_partial(c); 3488 slub_set_percpu_partial(c, slab); 3489 3490 if (likely(node_match(slab, node) && 3491 pfmemalloc_match(slab, gfpflags))) { 3492 c->slab = slab; 3493 freelist = get_freelist(s, slab); 3494 VM_BUG_ON(!freelist); 3495 stat(s, CPU_PARTIAL_ALLOC); 3496 goto load_freelist; 3497 } 3498 3499 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3500 3501 slab->next = NULL; 3502 __put_partials(s, slab); 3503 } 3504 #endif 3505 3506 new_objects: 3507 3508 pc.flags = gfpflags; 3509 pc.orig_size = orig_size; 3510 slab = get_partial(s, node, &pc); 3511 if (slab) { 3512 if (kmem_cache_debug(s)) { 3513 freelist = pc.object; 3514 /* 3515 * For debug caches here we had to go through 3516 * alloc_single_from_partial() so just store the 3517 * tracking info and return the object. 3518 */ 3519 if (s->flags & SLAB_STORE_USER) 3520 set_track(s, freelist, TRACK_ALLOC, addr); 3521 3522 return freelist; 3523 } 3524 3525 freelist = freeze_slab(s, slab); 3526 goto retry_load_slab; 3527 } 3528 3529 slub_put_cpu_ptr(s->cpu_slab); 3530 slab = new_slab(s, gfpflags, node); 3531 c = slub_get_cpu_ptr(s->cpu_slab); 3532 3533 if (unlikely(!slab)) { 3534 slab_out_of_memory(s, gfpflags, node); 3535 return NULL; 3536 } 3537 3538 stat(s, ALLOC_SLAB); 3539 3540 if (kmem_cache_debug(s)) { 3541 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3542 3543 if (unlikely(!freelist)) 3544 goto new_objects; 3545 3546 if (s->flags & SLAB_STORE_USER) 3547 set_track(s, freelist, TRACK_ALLOC, addr); 3548 3549 return freelist; 3550 } 3551 3552 /* 3553 * No other reference to the slab yet so we can 3554 * muck around with it freely without cmpxchg 3555 */ 3556 freelist = slab->freelist; 3557 slab->freelist = NULL; 3558 slab->inuse = slab->objects; 3559 slab->frozen = 1; 3560 3561 inc_slabs_node(s, slab_nid(slab), slab->objects); 3562 3563 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3564 /* 3565 * For !pfmemalloc_match() case we don't load freelist so that 3566 * we don't make further mismatched allocations easier. 3567 */ 3568 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3569 return freelist; 3570 } 3571 3572 retry_load_slab: 3573 3574 local_lock_irqsave(&s->cpu_slab->lock, flags); 3575 if (unlikely(c->slab)) { 3576 void *flush_freelist = c->freelist; 3577 struct slab *flush_slab = c->slab; 3578 3579 c->slab = NULL; 3580 c->freelist = NULL; 3581 c->tid = next_tid(c->tid); 3582 3583 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3584 3585 deactivate_slab(s, flush_slab, flush_freelist); 3586 3587 stat(s, CPUSLAB_FLUSH); 3588 3589 goto retry_load_slab; 3590 } 3591 c->slab = slab; 3592 3593 goto load_freelist; 3594 } 3595 3596 /* 3597 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3598 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3599 * pointer. 3600 */ 3601 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3602 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3603 { 3604 void *p; 3605 3606 #ifdef CONFIG_PREEMPT_COUNT 3607 /* 3608 * We may have been preempted and rescheduled on a different 3609 * cpu before disabling preemption. Need to reload cpu area 3610 * pointer. 3611 */ 3612 c = slub_get_cpu_ptr(s->cpu_slab); 3613 #endif 3614 3615 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3616 #ifdef CONFIG_PREEMPT_COUNT 3617 slub_put_cpu_ptr(s->cpu_slab); 3618 #endif 3619 return p; 3620 } 3621 3622 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3623 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3624 { 3625 struct kmem_cache_cpu *c; 3626 struct slab *slab; 3627 unsigned long tid; 3628 void *object; 3629 3630 redo: 3631 /* 3632 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3633 * enabled. We may switch back and forth between cpus while 3634 * reading from one cpu area. That does not matter as long 3635 * as we end up on the original cpu again when doing the cmpxchg. 3636 * 3637 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3638 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3639 * the tid. If we are preempted and switched to another cpu between the 3640 * two reads, it's OK as the two are still associated with the same cpu 3641 * and cmpxchg later will validate the cpu. 3642 */ 3643 c = raw_cpu_ptr(s->cpu_slab); 3644 tid = READ_ONCE(c->tid); 3645 3646 /* 3647 * Irqless object alloc/free algorithm used here depends on sequence 3648 * of fetching cpu_slab's data. tid should be fetched before anything 3649 * on c to guarantee that object and slab associated with previous tid 3650 * won't be used with current tid. If we fetch tid first, object and 3651 * slab could be one associated with next tid and our alloc/free 3652 * request will be failed. In this case, we will retry. So, no problem. 3653 */ 3654 barrier(); 3655 3656 /* 3657 * The transaction ids are globally unique per cpu and per operation on 3658 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3659 * occurs on the right processor and that there was no operation on the 3660 * linked list in between. 3661 */ 3662 3663 object = c->freelist; 3664 slab = c->slab; 3665 3666 if (!USE_LOCKLESS_FAST_PATH() || 3667 unlikely(!object || !slab || !node_match(slab, node))) { 3668 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3669 } else { 3670 void *next_object = get_freepointer_safe(s, object); 3671 3672 /* 3673 * The cmpxchg will only match if there was no additional 3674 * operation and if we are on the right processor. 3675 * 3676 * The cmpxchg does the following atomically (without lock 3677 * semantics!) 3678 * 1. Relocate first pointer to the current per cpu area. 3679 * 2. Verify that tid and freelist have not been changed 3680 * 3. If they were not changed replace tid and freelist 3681 * 3682 * Since this is without lock semantics the protection is only 3683 * against code executing on this cpu *not* from access by 3684 * other cpus. 3685 */ 3686 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3687 note_cmpxchg_failure("slab_alloc", s, tid); 3688 goto redo; 3689 } 3690 prefetch_freepointer(s, next_object); 3691 stat(s, ALLOC_FASTPATH); 3692 } 3693 3694 return object; 3695 } 3696 #else /* CONFIG_SLUB_TINY */ 3697 static void *__slab_alloc_node(struct kmem_cache *s, 3698 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3699 { 3700 struct partial_context pc; 3701 struct slab *slab; 3702 void *object; 3703 3704 pc.flags = gfpflags; 3705 pc.orig_size = orig_size; 3706 slab = get_partial(s, node, &pc); 3707 3708 if (slab) 3709 return pc.object; 3710 3711 slab = new_slab(s, gfpflags, node); 3712 if (unlikely(!slab)) { 3713 slab_out_of_memory(s, gfpflags, node); 3714 return NULL; 3715 } 3716 3717 object = alloc_single_from_new_slab(s, slab, orig_size); 3718 3719 return object; 3720 } 3721 #endif /* CONFIG_SLUB_TINY */ 3722 3723 /* 3724 * If the object has been wiped upon free, make sure it's fully initialized by 3725 * zeroing out freelist pointer. 3726 */ 3727 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3728 void *obj) 3729 { 3730 if (unlikely(slab_want_init_on_free(s)) && obj && 3731 !freeptr_outside_object(s)) 3732 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3733 0, sizeof(void *)); 3734 } 3735 3736 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 3737 { 3738 if (__should_failslab(s, gfpflags)) 3739 return -ENOMEM; 3740 return 0; 3741 } 3742 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 3743 3744 static __fastpath_inline 3745 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 3746 struct list_lru *lru, 3747 struct obj_cgroup **objcgp, 3748 size_t size, gfp_t flags) 3749 { 3750 flags &= gfp_allowed_mask; 3751 3752 might_alloc(flags); 3753 3754 if (unlikely(should_failslab(s, flags))) 3755 return NULL; 3756 3757 if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))) 3758 return NULL; 3759 3760 return s; 3761 } 3762 3763 static __fastpath_inline 3764 void slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, 3765 gfp_t flags, size_t size, void **p, bool init, 3766 unsigned int orig_size) 3767 { 3768 unsigned int zero_size = s->object_size; 3769 bool kasan_init = init; 3770 size_t i; 3771 gfp_t init_flags = flags & gfp_allowed_mask; 3772 3773 /* 3774 * For kmalloc object, the allocated memory size(object_size) is likely 3775 * larger than the requested size(orig_size). If redzone check is 3776 * enabled for the extra space, don't zero it, as it will be redzoned 3777 * soon. The redzone operation for this extra space could be seen as a 3778 * replacement of current poisoning under certain debug option, and 3779 * won't break other sanity checks. 3780 */ 3781 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 3782 (s->flags & SLAB_KMALLOC)) 3783 zero_size = orig_size; 3784 3785 /* 3786 * When slab_debug is enabled, avoid memory initialization integrated 3787 * into KASAN and instead zero out the memory via the memset below with 3788 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 3789 * cause false-positive reports. This does not lead to a performance 3790 * penalty on production builds, as slab_debug is not intended to be 3791 * enabled there. 3792 */ 3793 if (__slub_debug_enabled()) 3794 kasan_init = false; 3795 3796 /* 3797 * As memory initialization might be integrated into KASAN, 3798 * kasan_slab_alloc and initialization memset must be 3799 * kept together to avoid discrepancies in behavior. 3800 * 3801 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 3802 */ 3803 for (i = 0; i < size; i++) { 3804 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 3805 if (p[i] && init && (!kasan_init || 3806 !kasan_has_integrated_init())) 3807 memset(p[i], 0, zero_size); 3808 kmemleak_alloc_recursive(p[i], s->object_size, 1, 3809 s->flags, init_flags); 3810 kmsan_slab_alloc(s, p[i], init_flags); 3811 } 3812 3813 memcg_slab_post_alloc_hook(s, objcg, flags, size, p); 3814 } 3815 3816 /* 3817 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3818 * have the fastpath folded into their functions. So no function call 3819 * overhead for requests that can be satisfied on the fastpath. 3820 * 3821 * The fastpath works by first checking if the lockless freelist can be used. 3822 * If not then __slab_alloc is called for slow processing. 3823 * 3824 * Otherwise we can simply pick the next object from the lockless free list. 3825 */ 3826 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3827 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3828 { 3829 void *object; 3830 struct obj_cgroup *objcg = NULL; 3831 bool init = false; 3832 3833 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3834 if (unlikely(!s)) 3835 return NULL; 3836 3837 object = kfence_alloc(s, orig_size, gfpflags); 3838 if (unlikely(object)) 3839 goto out; 3840 3841 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 3842 3843 maybe_wipe_obj_freeptr(s, object); 3844 init = slab_want_init_on_alloc(gfpflags, s); 3845 3846 out: 3847 /* 3848 * When init equals 'true', like for kzalloc() family, only 3849 * @orig_size bytes might be zeroed instead of s->object_size 3850 */ 3851 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); 3852 3853 return object; 3854 } 3855 3856 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3857 { 3858 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 3859 s->object_size); 3860 3861 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3862 3863 return ret; 3864 } 3865 EXPORT_SYMBOL(kmem_cache_alloc); 3866 3867 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3868 gfp_t gfpflags) 3869 { 3870 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 3871 s->object_size); 3872 3873 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3874 3875 return ret; 3876 } 3877 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3878 3879 /** 3880 * kmem_cache_alloc_node - Allocate an object on the specified node 3881 * @s: The cache to allocate from. 3882 * @gfpflags: See kmalloc(). 3883 * @node: node number of the target node. 3884 * 3885 * Identical to kmem_cache_alloc but it will allocate memory on the given 3886 * node, which can improve the performance for cpu bound structures. 3887 * 3888 * Fallback to other node is possible if __GFP_THISNODE is not set. 3889 * 3890 * Return: pointer to the new object or %NULL in case of error 3891 */ 3892 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3893 { 3894 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3895 3896 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 3897 3898 return ret; 3899 } 3900 EXPORT_SYMBOL(kmem_cache_alloc_node); 3901 3902 /* 3903 * To avoid unnecessary overhead, we pass through large allocation requests 3904 * directly to the page allocator. We use __GFP_COMP, because we will need to 3905 * know the allocation order to free the pages properly in kfree. 3906 */ 3907 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node) 3908 { 3909 struct folio *folio; 3910 void *ptr = NULL; 3911 unsigned int order = get_order(size); 3912 3913 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 3914 flags = kmalloc_fix_flags(flags); 3915 3916 flags |= __GFP_COMP; 3917 folio = (struct folio *)alloc_pages_node(node, flags, order); 3918 if (folio) { 3919 ptr = folio_address(folio); 3920 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 3921 PAGE_SIZE << order); 3922 } 3923 3924 ptr = kasan_kmalloc_large(ptr, size, flags); 3925 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 3926 kmemleak_alloc(ptr, size, 1, flags); 3927 kmsan_kmalloc_large(ptr, size, flags); 3928 3929 return ptr; 3930 } 3931 3932 void *kmalloc_large(size_t size, gfp_t flags) 3933 { 3934 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE); 3935 3936 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 3937 flags, NUMA_NO_NODE); 3938 return ret; 3939 } 3940 EXPORT_SYMBOL(kmalloc_large); 3941 3942 void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3943 { 3944 void *ret = __kmalloc_large_node(size, flags, node); 3945 3946 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 3947 flags, node); 3948 return ret; 3949 } 3950 EXPORT_SYMBOL(kmalloc_large_node); 3951 3952 static __always_inline 3953 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, 3954 unsigned long caller) 3955 { 3956 struct kmem_cache *s; 3957 void *ret; 3958 3959 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3960 ret = __kmalloc_large_node(size, flags, node); 3961 trace_kmalloc(caller, ret, size, 3962 PAGE_SIZE << get_order(size), flags, node); 3963 return ret; 3964 } 3965 3966 if (unlikely(!size)) 3967 return ZERO_SIZE_PTR; 3968 3969 s = kmalloc_slab(size, flags, caller); 3970 3971 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 3972 ret = kasan_kmalloc(s, ret, size, flags); 3973 trace_kmalloc(caller, ret, size, s->size, flags, node); 3974 return ret; 3975 } 3976 3977 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3978 { 3979 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3980 } 3981 EXPORT_SYMBOL(__kmalloc_node); 3982 3983 void *__kmalloc(size_t size, gfp_t flags) 3984 { 3985 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_); 3986 } 3987 EXPORT_SYMBOL(__kmalloc); 3988 3989 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3990 int node, unsigned long caller) 3991 { 3992 return __do_kmalloc_node(size, flags, node, caller); 3993 } 3994 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3995 3996 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3997 { 3998 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 3999 _RET_IP_, size); 4000 4001 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4002 4003 ret = kasan_kmalloc(s, ret, size, gfpflags); 4004 return ret; 4005 } 4006 EXPORT_SYMBOL(kmalloc_trace); 4007 4008 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 4009 int node, size_t size) 4010 { 4011 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4012 4013 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4014 4015 ret = kasan_kmalloc(s, ret, size, gfpflags); 4016 return ret; 4017 } 4018 EXPORT_SYMBOL(kmalloc_node_trace); 4019 4020 static noinline void free_to_partial_list( 4021 struct kmem_cache *s, struct slab *slab, 4022 void *head, void *tail, int bulk_cnt, 4023 unsigned long addr) 4024 { 4025 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4026 struct slab *slab_free = NULL; 4027 int cnt = bulk_cnt; 4028 unsigned long flags; 4029 depot_stack_handle_t handle = 0; 4030 4031 if (s->flags & SLAB_STORE_USER) 4032 handle = set_track_prepare(); 4033 4034 spin_lock_irqsave(&n->list_lock, flags); 4035 4036 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4037 void *prior = slab->freelist; 4038 4039 /* Perform the actual freeing while we still hold the locks */ 4040 slab->inuse -= cnt; 4041 set_freepointer(s, tail, prior); 4042 slab->freelist = head; 4043 4044 /* 4045 * If the slab is empty, and node's partial list is full, 4046 * it should be discarded anyway no matter it's on full or 4047 * partial list. 4048 */ 4049 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4050 slab_free = slab; 4051 4052 if (!prior) { 4053 /* was on full list */ 4054 remove_full(s, n, slab); 4055 if (!slab_free) { 4056 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4057 stat(s, FREE_ADD_PARTIAL); 4058 } 4059 } else if (slab_free) { 4060 remove_partial(n, slab); 4061 stat(s, FREE_REMOVE_PARTIAL); 4062 } 4063 } 4064 4065 if (slab_free) { 4066 /* 4067 * Update the counters while still holding n->list_lock to 4068 * prevent spurious validation warnings 4069 */ 4070 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4071 } 4072 4073 spin_unlock_irqrestore(&n->list_lock, flags); 4074 4075 if (slab_free) { 4076 stat(s, FREE_SLAB); 4077 free_slab(s, slab_free); 4078 } 4079 } 4080 4081 /* 4082 * Slow path handling. This may still be called frequently since objects 4083 * have a longer lifetime than the cpu slabs in most processing loads. 4084 * 4085 * So we still attempt to reduce cache line usage. Just take the slab 4086 * lock and free the item. If there is no additional partial slab 4087 * handling required then we can return immediately. 4088 */ 4089 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4090 void *head, void *tail, int cnt, 4091 unsigned long addr) 4092 4093 { 4094 void *prior; 4095 int was_frozen; 4096 struct slab new; 4097 unsigned long counters; 4098 struct kmem_cache_node *n = NULL; 4099 unsigned long flags; 4100 bool on_node_partial; 4101 4102 stat(s, FREE_SLOWPATH); 4103 4104 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4105 free_to_partial_list(s, slab, head, tail, cnt, addr); 4106 return; 4107 } 4108 4109 do { 4110 if (unlikely(n)) { 4111 spin_unlock_irqrestore(&n->list_lock, flags); 4112 n = NULL; 4113 } 4114 prior = slab->freelist; 4115 counters = slab->counters; 4116 set_freepointer(s, tail, prior); 4117 new.counters = counters; 4118 was_frozen = new.frozen; 4119 new.inuse -= cnt; 4120 if ((!new.inuse || !prior) && !was_frozen) { 4121 /* Needs to be taken off a list */ 4122 if (!kmem_cache_has_cpu_partial(s) || prior) { 4123 4124 n = get_node(s, slab_nid(slab)); 4125 /* 4126 * Speculatively acquire the list_lock. 4127 * If the cmpxchg does not succeed then we may 4128 * drop the list_lock without any processing. 4129 * 4130 * Otherwise the list_lock will synchronize with 4131 * other processors updating the list of slabs. 4132 */ 4133 spin_lock_irqsave(&n->list_lock, flags); 4134 4135 on_node_partial = slab_test_node_partial(slab); 4136 } 4137 } 4138 4139 } while (!slab_update_freelist(s, slab, 4140 prior, counters, 4141 head, new.counters, 4142 "__slab_free")); 4143 4144 if (likely(!n)) { 4145 4146 if (likely(was_frozen)) { 4147 /* 4148 * The list lock was not taken therefore no list 4149 * activity can be necessary. 4150 */ 4151 stat(s, FREE_FROZEN); 4152 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4153 /* 4154 * If we started with a full slab then put it onto the 4155 * per cpu partial list. 4156 */ 4157 put_cpu_partial(s, slab, 1); 4158 stat(s, CPU_PARTIAL_FREE); 4159 } 4160 4161 return; 4162 } 4163 4164 /* 4165 * This slab was partially empty but not on the per-node partial list, 4166 * in which case we shouldn't manipulate its list, just return. 4167 */ 4168 if (prior && !on_node_partial) { 4169 spin_unlock_irqrestore(&n->list_lock, flags); 4170 return; 4171 } 4172 4173 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4174 goto slab_empty; 4175 4176 /* 4177 * Objects left in the slab. If it was not on the partial list before 4178 * then add it. 4179 */ 4180 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4181 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4182 stat(s, FREE_ADD_PARTIAL); 4183 } 4184 spin_unlock_irqrestore(&n->list_lock, flags); 4185 return; 4186 4187 slab_empty: 4188 if (prior) { 4189 /* 4190 * Slab on the partial list. 4191 */ 4192 remove_partial(n, slab); 4193 stat(s, FREE_REMOVE_PARTIAL); 4194 } 4195 4196 spin_unlock_irqrestore(&n->list_lock, flags); 4197 stat(s, FREE_SLAB); 4198 discard_slab(s, slab); 4199 } 4200 4201 #ifndef CONFIG_SLUB_TINY 4202 /* 4203 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4204 * can perform fastpath freeing without additional function calls. 4205 * 4206 * The fastpath is only possible if we are freeing to the current cpu slab 4207 * of this processor. This typically the case if we have just allocated 4208 * the item before. 4209 * 4210 * If fastpath is not possible then fall back to __slab_free where we deal 4211 * with all sorts of special processing. 4212 * 4213 * Bulk free of a freelist with several objects (all pointing to the 4214 * same slab) possible by specifying head and tail ptr, plus objects 4215 * count (cnt). Bulk free indicated by tail pointer being set. 4216 */ 4217 static __always_inline void do_slab_free(struct kmem_cache *s, 4218 struct slab *slab, void *head, void *tail, 4219 int cnt, unsigned long addr) 4220 { 4221 struct kmem_cache_cpu *c; 4222 unsigned long tid; 4223 void **freelist; 4224 4225 redo: 4226 /* 4227 * Determine the currently cpus per cpu slab. 4228 * The cpu may change afterward. However that does not matter since 4229 * data is retrieved via this pointer. If we are on the same cpu 4230 * during the cmpxchg then the free will succeed. 4231 */ 4232 c = raw_cpu_ptr(s->cpu_slab); 4233 tid = READ_ONCE(c->tid); 4234 4235 /* Same with comment on barrier() in slab_alloc_node() */ 4236 barrier(); 4237 4238 if (unlikely(slab != c->slab)) { 4239 __slab_free(s, slab, head, tail, cnt, addr); 4240 return; 4241 } 4242 4243 if (USE_LOCKLESS_FAST_PATH()) { 4244 freelist = READ_ONCE(c->freelist); 4245 4246 set_freepointer(s, tail, freelist); 4247 4248 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4249 note_cmpxchg_failure("slab_free", s, tid); 4250 goto redo; 4251 } 4252 } else { 4253 /* Update the free list under the local lock */ 4254 local_lock(&s->cpu_slab->lock); 4255 c = this_cpu_ptr(s->cpu_slab); 4256 if (unlikely(slab != c->slab)) { 4257 local_unlock(&s->cpu_slab->lock); 4258 goto redo; 4259 } 4260 tid = c->tid; 4261 freelist = c->freelist; 4262 4263 set_freepointer(s, tail, freelist); 4264 c->freelist = head; 4265 c->tid = next_tid(tid); 4266 4267 local_unlock(&s->cpu_slab->lock); 4268 } 4269 stat_add(s, FREE_FASTPATH, cnt); 4270 } 4271 #else /* CONFIG_SLUB_TINY */ 4272 static void do_slab_free(struct kmem_cache *s, 4273 struct slab *slab, void *head, void *tail, 4274 int cnt, unsigned long addr) 4275 { 4276 __slab_free(s, slab, head, tail, cnt, addr); 4277 } 4278 #endif /* CONFIG_SLUB_TINY */ 4279 4280 static __fastpath_inline 4281 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4282 unsigned long addr) 4283 { 4284 memcg_slab_free_hook(s, slab, &object, 1); 4285 4286 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4287 do_slab_free(s, slab, object, object, 1, addr); 4288 } 4289 4290 static __fastpath_inline 4291 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4292 void *tail, void **p, int cnt, unsigned long addr) 4293 { 4294 memcg_slab_free_hook(s, slab, p, cnt); 4295 /* 4296 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4297 * to remove objects, whose reuse must be delayed. 4298 */ 4299 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4300 do_slab_free(s, slab, head, tail, cnt, addr); 4301 } 4302 4303 #ifdef CONFIG_KASAN_GENERIC 4304 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4305 { 4306 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4307 } 4308 #endif 4309 4310 static inline struct kmem_cache *virt_to_cache(const void *obj) 4311 { 4312 struct slab *slab; 4313 4314 slab = virt_to_slab(obj); 4315 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4316 return NULL; 4317 return slab->slab_cache; 4318 } 4319 4320 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4321 { 4322 struct kmem_cache *cachep; 4323 4324 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4325 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4326 return s; 4327 4328 cachep = virt_to_cache(x); 4329 if (WARN(cachep && cachep != s, 4330 "%s: Wrong slab cache. %s but object is from %s\n", 4331 __func__, s->name, cachep->name)) 4332 print_tracking(cachep, x); 4333 return cachep; 4334 } 4335 4336 /** 4337 * kmem_cache_free - Deallocate an object 4338 * @s: The cache the allocation was from. 4339 * @x: The previously allocated object. 4340 * 4341 * Free an object which was previously allocated from this 4342 * cache. 4343 */ 4344 void kmem_cache_free(struct kmem_cache *s, void *x) 4345 { 4346 s = cache_from_obj(s, x); 4347 if (!s) 4348 return; 4349 trace_kmem_cache_free(_RET_IP_, x, s); 4350 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4351 } 4352 EXPORT_SYMBOL(kmem_cache_free); 4353 4354 static void free_large_kmalloc(struct folio *folio, void *object) 4355 { 4356 unsigned int order = folio_order(folio); 4357 4358 if (WARN_ON_ONCE(order == 0)) 4359 pr_warn_once("object pointer: 0x%p\n", object); 4360 4361 kmemleak_free(object); 4362 kasan_kfree_large(object); 4363 kmsan_kfree_large(object); 4364 4365 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4366 -(PAGE_SIZE << order)); 4367 folio_put(folio); 4368 } 4369 4370 /** 4371 * kfree - free previously allocated memory 4372 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4373 * 4374 * If @object is NULL, no operation is performed. 4375 */ 4376 void kfree(const void *object) 4377 { 4378 struct folio *folio; 4379 struct slab *slab; 4380 struct kmem_cache *s; 4381 void *x = (void *)object; 4382 4383 trace_kfree(_RET_IP_, object); 4384 4385 if (unlikely(ZERO_OR_NULL_PTR(object))) 4386 return; 4387 4388 folio = virt_to_folio(object); 4389 if (unlikely(!folio_test_slab(folio))) { 4390 free_large_kmalloc(folio, (void *)object); 4391 return; 4392 } 4393 4394 slab = folio_slab(folio); 4395 s = slab->slab_cache; 4396 slab_free(s, slab, x, _RET_IP_); 4397 } 4398 EXPORT_SYMBOL(kfree); 4399 4400 struct detached_freelist { 4401 struct slab *slab; 4402 void *tail; 4403 void *freelist; 4404 int cnt; 4405 struct kmem_cache *s; 4406 }; 4407 4408 /* 4409 * This function progressively scans the array with free objects (with 4410 * a limited look ahead) and extract objects belonging to the same 4411 * slab. It builds a detached freelist directly within the given 4412 * slab/objects. This can happen without any need for 4413 * synchronization, because the objects are owned by running process. 4414 * The freelist is build up as a single linked list in the objects. 4415 * The idea is, that this detached freelist can then be bulk 4416 * transferred to the real freelist(s), but only requiring a single 4417 * synchronization primitive. Look ahead in the array is limited due 4418 * to performance reasons. 4419 */ 4420 static inline 4421 int build_detached_freelist(struct kmem_cache *s, size_t size, 4422 void **p, struct detached_freelist *df) 4423 { 4424 int lookahead = 3; 4425 void *object; 4426 struct folio *folio; 4427 size_t same; 4428 4429 object = p[--size]; 4430 folio = virt_to_folio(object); 4431 if (!s) { 4432 /* Handle kalloc'ed objects */ 4433 if (unlikely(!folio_test_slab(folio))) { 4434 free_large_kmalloc(folio, object); 4435 df->slab = NULL; 4436 return size; 4437 } 4438 /* Derive kmem_cache from object */ 4439 df->slab = folio_slab(folio); 4440 df->s = df->slab->slab_cache; 4441 } else { 4442 df->slab = folio_slab(folio); 4443 df->s = cache_from_obj(s, object); /* Support for memcg */ 4444 } 4445 4446 /* Start new detached freelist */ 4447 df->tail = object; 4448 df->freelist = object; 4449 df->cnt = 1; 4450 4451 if (is_kfence_address(object)) 4452 return size; 4453 4454 set_freepointer(df->s, object, NULL); 4455 4456 same = size; 4457 while (size) { 4458 object = p[--size]; 4459 /* df->slab is always set at this point */ 4460 if (df->slab == virt_to_slab(object)) { 4461 /* Opportunity build freelist */ 4462 set_freepointer(df->s, object, df->freelist); 4463 df->freelist = object; 4464 df->cnt++; 4465 same--; 4466 if (size != same) 4467 swap(p[size], p[same]); 4468 continue; 4469 } 4470 4471 /* Limit look ahead search */ 4472 if (!--lookahead) 4473 break; 4474 } 4475 4476 return same; 4477 } 4478 4479 /* 4480 * Internal bulk free of objects that were not initialised by the post alloc 4481 * hooks and thus should not be processed by the free hooks 4482 */ 4483 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4484 { 4485 if (!size) 4486 return; 4487 4488 do { 4489 struct detached_freelist df; 4490 4491 size = build_detached_freelist(s, size, p, &df); 4492 if (!df.slab) 4493 continue; 4494 4495 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4496 _RET_IP_); 4497 } while (likely(size)); 4498 } 4499 4500 /* Note that interrupts must be enabled when calling this function. */ 4501 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4502 { 4503 if (!size) 4504 return; 4505 4506 do { 4507 struct detached_freelist df; 4508 4509 size = build_detached_freelist(s, size, p, &df); 4510 if (!df.slab) 4511 continue; 4512 4513 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4514 df.cnt, _RET_IP_); 4515 } while (likely(size)); 4516 } 4517 EXPORT_SYMBOL(kmem_cache_free_bulk); 4518 4519 #ifndef CONFIG_SLUB_TINY 4520 static inline 4521 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4522 void **p) 4523 { 4524 struct kmem_cache_cpu *c; 4525 unsigned long irqflags; 4526 int i; 4527 4528 /* 4529 * Drain objects in the per cpu slab, while disabling local 4530 * IRQs, which protects against PREEMPT and interrupts 4531 * handlers invoking normal fastpath. 4532 */ 4533 c = slub_get_cpu_ptr(s->cpu_slab); 4534 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4535 4536 for (i = 0; i < size; i++) { 4537 void *object = kfence_alloc(s, s->object_size, flags); 4538 4539 if (unlikely(object)) { 4540 p[i] = object; 4541 continue; 4542 } 4543 4544 object = c->freelist; 4545 if (unlikely(!object)) { 4546 /* 4547 * We may have removed an object from c->freelist using 4548 * the fastpath in the previous iteration; in that case, 4549 * c->tid has not been bumped yet. 4550 * Since ___slab_alloc() may reenable interrupts while 4551 * allocating memory, we should bump c->tid now. 4552 */ 4553 c->tid = next_tid(c->tid); 4554 4555 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4556 4557 /* 4558 * Invoking slow path likely have side-effect 4559 * of re-populating per CPU c->freelist 4560 */ 4561 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 4562 _RET_IP_, c, s->object_size); 4563 if (unlikely(!p[i])) 4564 goto error; 4565 4566 c = this_cpu_ptr(s->cpu_slab); 4567 maybe_wipe_obj_freeptr(s, p[i]); 4568 4569 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4570 4571 continue; /* goto for-loop */ 4572 } 4573 c->freelist = get_freepointer(s, object); 4574 p[i] = object; 4575 maybe_wipe_obj_freeptr(s, p[i]); 4576 stat(s, ALLOC_FASTPATH); 4577 } 4578 c->tid = next_tid(c->tid); 4579 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4580 slub_put_cpu_ptr(s->cpu_slab); 4581 4582 return i; 4583 4584 error: 4585 slub_put_cpu_ptr(s->cpu_slab); 4586 __kmem_cache_free_bulk(s, i, p); 4587 return 0; 4588 4589 } 4590 #else /* CONFIG_SLUB_TINY */ 4591 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4592 size_t size, void **p) 4593 { 4594 int i; 4595 4596 for (i = 0; i < size; i++) { 4597 void *object = kfence_alloc(s, s->object_size, flags); 4598 4599 if (unlikely(object)) { 4600 p[i] = object; 4601 continue; 4602 } 4603 4604 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4605 _RET_IP_, s->object_size); 4606 if (unlikely(!p[i])) 4607 goto error; 4608 4609 maybe_wipe_obj_freeptr(s, p[i]); 4610 } 4611 4612 return i; 4613 4614 error: 4615 __kmem_cache_free_bulk(s, i, p); 4616 return 0; 4617 } 4618 #endif /* CONFIG_SLUB_TINY */ 4619 4620 /* Note that interrupts must be enabled when calling this function. */ 4621 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4622 void **p) 4623 { 4624 int i; 4625 struct obj_cgroup *objcg = NULL; 4626 4627 if (!size) 4628 return 0; 4629 4630 /* memcg and kmem_cache debug support */ 4631 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 4632 if (unlikely(!s)) 4633 return 0; 4634 4635 i = __kmem_cache_alloc_bulk(s, flags, size, p); 4636 4637 /* 4638 * memcg and kmem_cache debug support and memory initialization. 4639 * Done outside of the IRQ disabled fastpath loop. 4640 */ 4641 if (likely(i != 0)) { 4642 slab_post_alloc_hook(s, objcg, flags, size, p, 4643 slab_want_init_on_alloc(flags, s), s->object_size); 4644 } else { 4645 memcg_slab_alloc_error_hook(s, size, objcg); 4646 } 4647 4648 return i; 4649 } 4650 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 4651 4652 4653 /* 4654 * Object placement in a slab is made very easy because we always start at 4655 * offset 0. If we tune the size of the object to the alignment then we can 4656 * get the required alignment by putting one properly sized object after 4657 * another. 4658 * 4659 * Notice that the allocation order determines the sizes of the per cpu 4660 * caches. Each processor has always one slab available for allocations. 4661 * Increasing the allocation order reduces the number of times that slabs 4662 * must be moved on and off the partial lists and is therefore a factor in 4663 * locking overhead. 4664 */ 4665 4666 /* 4667 * Minimum / Maximum order of slab pages. This influences locking overhead 4668 * and slab fragmentation. A higher order reduces the number of partial slabs 4669 * and increases the number of allocations possible without having to 4670 * take the list_lock. 4671 */ 4672 static unsigned int slub_min_order; 4673 static unsigned int slub_max_order = 4674 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4675 static unsigned int slub_min_objects; 4676 4677 /* 4678 * Calculate the order of allocation given an slab object size. 4679 * 4680 * The order of allocation has significant impact on performance and other 4681 * system components. Generally order 0 allocations should be preferred since 4682 * order 0 does not cause fragmentation in the page allocator. Larger objects 4683 * be problematic to put into order 0 slabs because there may be too much 4684 * unused space left. We go to a higher order if more than 1/16th of the slab 4685 * would be wasted. 4686 * 4687 * In order to reach satisfactory performance we must ensure that a minimum 4688 * number of objects is in one slab. Otherwise we may generate too much 4689 * activity on the partial lists which requires taking the list_lock. This is 4690 * less a concern for large slabs though which are rarely used. 4691 * 4692 * slab_max_order specifies the order where we begin to stop considering the 4693 * number of objects in a slab as critical. If we reach slab_max_order then 4694 * we try to keep the page order as low as possible. So we accept more waste 4695 * of space in favor of a small page order. 4696 * 4697 * Higher order allocations also allow the placement of more objects in a 4698 * slab and thereby reduce object handling overhead. If the user has 4699 * requested a higher minimum order then we start with that one instead of 4700 * the smallest order which will fit the object. 4701 */ 4702 static inline unsigned int calc_slab_order(unsigned int size, 4703 unsigned int min_order, unsigned int max_order, 4704 unsigned int fract_leftover) 4705 { 4706 unsigned int order; 4707 4708 for (order = min_order; order <= max_order; order++) { 4709 4710 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4711 unsigned int rem; 4712 4713 rem = slab_size % size; 4714 4715 if (rem <= slab_size / fract_leftover) 4716 break; 4717 } 4718 4719 return order; 4720 } 4721 4722 static inline int calculate_order(unsigned int size) 4723 { 4724 unsigned int order; 4725 unsigned int min_objects; 4726 unsigned int max_objects; 4727 unsigned int min_order; 4728 4729 min_objects = slub_min_objects; 4730 if (!min_objects) { 4731 /* 4732 * Some architectures will only update present cpus when 4733 * onlining them, so don't trust the number if it's just 1. But 4734 * we also don't want to use nr_cpu_ids always, as on some other 4735 * architectures, there can be many possible cpus, but never 4736 * onlined. Here we compromise between trying to avoid too high 4737 * order on systems that appear larger than they are, and too 4738 * low order on systems that appear smaller than they are. 4739 */ 4740 unsigned int nr_cpus = num_present_cpus(); 4741 if (nr_cpus <= 1) 4742 nr_cpus = nr_cpu_ids; 4743 min_objects = 4 * (fls(nr_cpus) + 1); 4744 } 4745 /* min_objects can't be 0 because get_order(0) is undefined */ 4746 max_objects = max(order_objects(slub_max_order, size), 1U); 4747 min_objects = min(min_objects, max_objects); 4748 4749 min_order = max_t(unsigned int, slub_min_order, 4750 get_order(min_objects * size)); 4751 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4752 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4753 4754 /* 4755 * Attempt to find best configuration for a slab. This works by first 4756 * attempting to generate a layout with the best possible configuration 4757 * and backing off gradually. 4758 * 4759 * We start with accepting at most 1/16 waste and try to find the 4760 * smallest order from min_objects-derived/slab_min_order up to 4761 * slab_max_order that will satisfy the constraint. Note that increasing 4762 * the order can only result in same or less fractional waste, not more. 4763 * 4764 * If that fails, we increase the acceptable fraction of waste and try 4765 * again. The last iteration with fraction of 1/2 would effectively 4766 * accept any waste and give us the order determined by min_objects, as 4767 * long as at least single object fits within slab_max_order. 4768 */ 4769 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 4770 order = calc_slab_order(size, min_order, slub_max_order, 4771 fraction); 4772 if (order <= slub_max_order) 4773 return order; 4774 } 4775 4776 /* 4777 * Doh this slab cannot be placed using slab_max_order. 4778 */ 4779 order = get_order(size); 4780 if (order <= MAX_PAGE_ORDER) 4781 return order; 4782 return -ENOSYS; 4783 } 4784 4785 static void 4786 init_kmem_cache_node(struct kmem_cache_node *n) 4787 { 4788 n->nr_partial = 0; 4789 spin_lock_init(&n->list_lock); 4790 INIT_LIST_HEAD(&n->partial); 4791 #ifdef CONFIG_SLUB_DEBUG 4792 atomic_long_set(&n->nr_slabs, 0); 4793 atomic_long_set(&n->total_objects, 0); 4794 INIT_LIST_HEAD(&n->full); 4795 #endif 4796 } 4797 4798 #ifndef CONFIG_SLUB_TINY 4799 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4800 { 4801 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4802 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4803 sizeof(struct kmem_cache_cpu)); 4804 4805 /* 4806 * Must align to double word boundary for the double cmpxchg 4807 * instructions to work; see __pcpu_double_call_return_bool(). 4808 */ 4809 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4810 2 * sizeof(void *)); 4811 4812 if (!s->cpu_slab) 4813 return 0; 4814 4815 init_kmem_cache_cpus(s); 4816 4817 return 1; 4818 } 4819 #else 4820 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4821 { 4822 return 1; 4823 } 4824 #endif /* CONFIG_SLUB_TINY */ 4825 4826 static struct kmem_cache *kmem_cache_node; 4827 4828 /* 4829 * No kmalloc_node yet so do it by hand. We know that this is the first 4830 * slab on the node for this slabcache. There are no concurrent accesses 4831 * possible. 4832 * 4833 * Note that this function only works on the kmem_cache_node 4834 * when allocating for the kmem_cache_node. This is used for bootstrapping 4835 * memory on a fresh node that has no slab structures yet. 4836 */ 4837 static void early_kmem_cache_node_alloc(int node) 4838 { 4839 struct slab *slab; 4840 struct kmem_cache_node *n; 4841 4842 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 4843 4844 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 4845 4846 BUG_ON(!slab); 4847 if (slab_nid(slab) != node) { 4848 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 4849 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 4850 } 4851 4852 n = slab->freelist; 4853 BUG_ON(!n); 4854 #ifdef CONFIG_SLUB_DEBUG 4855 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 4856 init_tracking(kmem_cache_node, n); 4857 #endif 4858 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 4859 slab->freelist = get_freepointer(kmem_cache_node, n); 4860 slab->inuse = 1; 4861 kmem_cache_node->node[node] = n; 4862 init_kmem_cache_node(n); 4863 inc_slabs_node(kmem_cache_node, node, slab->objects); 4864 4865 /* 4866 * No locks need to be taken here as it has just been 4867 * initialized and there is no concurrent access. 4868 */ 4869 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 4870 } 4871 4872 static void free_kmem_cache_nodes(struct kmem_cache *s) 4873 { 4874 int node; 4875 struct kmem_cache_node *n; 4876 4877 for_each_kmem_cache_node(s, node, n) { 4878 s->node[node] = NULL; 4879 kmem_cache_free(kmem_cache_node, n); 4880 } 4881 } 4882 4883 void __kmem_cache_release(struct kmem_cache *s) 4884 { 4885 cache_random_seq_destroy(s); 4886 #ifndef CONFIG_SLUB_TINY 4887 free_percpu(s->cpu_slab); 4888 #endif 4889 free_kmem_cache_nodes(s); 4890 } 4891 4892 static int init_kmem_cache_nodes(struct kmem_cache *s) 4893 { 4894 int node; 4895 4896 for_each_node_mask(node, slab_nodes) { 4897 struct kmem_cache_node *n; 4898 4899 if (slab_state == DOWN) { 4900 early_kmem_cache_node_alloc(node); 4901 continue; 4902 } 4903 n = kmem_cache_alloc_node(kmem_cache_node, 4904 GFP_KERNEL, node); 4905 4906 if (!n) { 4907 free_kmem_cache_nodes(s); 4908 return 0; 4909 } 4910 4911 init_kmem_cache_node(n); 4912 s->node[node] = n; 4913 } 4914 return 1; 4915 } 4916 4917 static void set_cpu_partial(struct kmem_cache *s) 4918 { 4919 #ifdef CONFIG_SLUB_CPU_PARTIAL 4920 unsigned int nr_objects; 4921 4922 /* 4923 * cpu_partial determined the maximum number of objects kept in the 4924 * per cpu partial lists of a processor. 4925 * 4926 * Per cpu partial lists mainly contain slabs that just have one 4927 * object freed. If they are used for allocation then they can be 4928 * filled up again with minimal effort. The slab will never hit the 4929 * per node partial lists and therefore no locking will be required. 4930 * 4931 * For backwards compatibility reasons, this is determined as number 4932 * of objects, even though we now limit maximum number of pages, see 4933 * slub_set_cpu_partial() 4934 */ 4935 if (!kmem_cache_has_cpu_partial(s)) 4936 nr_objects = 0; 4937 else if (s->size >= PAGE_SIZE) 4938 nr_objects = 6; 4939 else if (s->size >= 1024) 4940 nr_objects = 24; 4941 else if (s->size >= 256) 4942 nr_objects = 52; 4943 else 4944 nr_objects = 120; 4945 4946 slub_set_cpu_partial(s, nr_objects); 4947 #endif 4948 } 4949 4950 /* 4951 * calculate_sizes() determines the order and the distribution of data within 4952 * a slab object. 4953 */ 4954 static int calculate_sizes(struct kmem_cache *s) 4955 { 4956 slab_flags_t flags = s->flags; 4957 unsigned int size = s->object_size; 4958 unsigned int order; 4959 4960 /* 4961 * Round up object size to the next word boundary. We can only 4962 * place the free pointer at word boundaries and this determines 4963 * the possible location of the free pointer. 4964 */ 4965 size = ALIGN(size, sizeof(void *)); 4966 4967 #ifdef CONFIG_SLUB_DEBUG 4968 /* 4969 * Determine if we can poison the object itself. If the user of 4970 * the slab may touch the object after free or before allocation 4971 * then we should never poison the object itself. 4972 */ 4973 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4974 !s->ctor) 4975 s->flags |= __OBJECT_POISON; 4976 else 4977 s->flags &= ~__OBJECT_POISON; 4978 4979 4980 /* 4981 * If we are Redzoning then check if there is some space between the 4982 * end of the object and the free pointer. If not then add an 4983 * additional word to have some bytes to store Redzone information. 4984 */ 4985 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4986 size += sizeof(void *); 4987 #endif 4988 4989 /* 4990 * With that we have determined the number of bytes in actual use 4991 * by the object and redzoning. 4992 */ 4993 s->inuse = size; 4994 4995 if (slub_debug_orig_size(s) || 4996 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4997 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4998 s->ctor) { 4999 /* 5000 * Relocate free pointer after the object if it is not 5001 * permitted to overwrite the first word of the object on 5002 * kmem_cache_free. 5003 * 5004 * This is the case if we do RCU, have a constructor or 5005 * destructor, are poisoning the objects, or are 5006 * redzoning an object smaller than sizeof(void *). 5007 * 5008 * The assumption that s->offset >= s->inuse means free 5009 * pointer is outside of the object is used in the 5010 * freeptr_outside_object() function. If that is no 5011 * longer true, the function needs to be modified. 5012 */ 5013 s->offset = size; 5014 size += sizeof(void *); 5015 } else { 5016 /* 5017 * Store freelist pointer near middle of object to keep 5018 * it away from the edges of the object to avoid small 5019 * sized over/underflows from neighboring allocations. 5020 */ 5021 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5022 } 5023 5024 #ifdef CONFIG_SLUB_DEBUG 5025 if (flags & SLAB_STORE_USER) { 5026 /* 5027 * Need to store information about allocs and frees after 5028 * the object. 5029 */ 5030 size += 2 * sizeof(struct track); 5031 5032 /* Save the original kmalloc request size */ 5033 if (flags & SLAB_KMALLOC) 5034 size += sizeof(unsigned int); 5035 } 5036 #endif 5037 5038 kasan_cache_create(s, &size, &s->flags); 5039 #ifdef CONFIG_SLUB_DEBUG 5040 if (flags & SLAB_RED_ZONE) { 5041 /* 5042 * Add some empty padding so that we can catch 5043 * overwrites from earlier objects rather than let 5044 * tracking information or the free pointer be 5045 * corrupted if a user writes before the start 5046 * of the object. 5047 */ 5048 size += sizeof(void *); 5049 5050 s->red_left_pad = sizeof(void *); 5051 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5052 size += s->red_left_pad; 5053 } 5054 #endif 5055 5056 /* 5057 * SLUB stores one object immediately after another beginning from 5058 * offset 0. In order to align the objects we have to simply size 5059 * each object to conform to the alignment. 5060 */ 5061 size = ALIGN(size, s->align); 5062 s->size = size; 5063 s->reciprocal_size = reciprocal_value(size); 5064 order = calculate_order(size); 5065 5066 if ((int)order < 0) 5067 return 0; 5068 5069 s->allocflags = 0; 5070 if (order) 5071 s->allocflags |= __GFP_COMP; 5072 5073 if (s->flags & SLAB_CACHE_DMA) 5074 s->allocflags |= GFP_DMA; 5075 5076 if (s->flags & SLAB_CACHE_DMA32) 5077 s->allocflags |= GFP_DMA32; 5078 5079 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5080 s->allocflags |= __GFP_RECLAIMABLE; 5081 5082 /* 5083 * Determine the number of objects per slab 5084 */ 5085 s->oo = oo_make(order, size); 5086 s->min = oo_make(get_order(size), size); 5087 5088 return !!oo_objects(s->oo); 5089 } 5090 5091 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 5092 { 5093 s->flags = kmem_cache_flags(flags, s->name); 5094 #ifdef CONFIG_SLAB_FREELIST_HARDENED 5095 s->random = get_random_long(); 5096 #endif 5097 5098 if (!calculate_sizes(s)) 5099 goto error; 5100 if (disable_higher_order_debug) { 5101 /* 5102 * Disable debugging flags that store metadata if the min slab 5103 * order increased. 5104 */ 5105 if (get_order(s->size) > get_order(s->object_size)) { 5106 s->flags &= ~DEBUG_METADATA_FLAGS; 5107 s->offset = 0; 5108 if (!calculate_sizes(s)) 5109 goto error; 5110 } 5111 } 5112 5113 #ifdef system_has_freelist_aba 5114 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 5115 /* Enable fast mode */ 5116 s->flags |= __CMPXCHG_DOUBLE; 5117 } 5118 #endif 5119 5120 /* 5121 * The larger the object size is, the more slabs we want on the partial 5122 * list to avoid pounding the page allocator excessively. 5123 */ 5124 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 5125 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 5126 5127 set_cpu_partial(s); 5128 5129 #ifdef CONFIG_NUMA 5130 s->remote_node_defrag_ratio = 1000; 5131 #endif 5132 5133 /* Initialize the pre-computed randomized freelist if slab is up */ 5134 if (slab_state >= UP) { 5135 if (init_cache_random_seq(s)) 5136 goto error; 5137 } 5138 5139 if (!init_kmem_cache_nodes(s)) 5140 goto error; 5141 5142 if (alloc_kmem_cache_cpus(s)) 5143 return 0; 5144 5145 error: 5146 __kmem_cache_release(s); 5147 return -EINVAL; 5148 } 5149 5150 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5151 const char *text) 5152 { 5153 #ifdef CONFIG_SLUB_DEBUG 5154 void *addr = slab_address(slab); 5155 void *p; 5156 5157 slab_err(s, slab, text, s->name); 5158 5159 spin_lock(&object_map_lock); 5160 __fill_map(object_map, s, slab); 5161 5162 for_each_object(p, s, addr, slab->objects) { 5163 5164 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5165 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5166 print_tracking(s, p); 5167 } 5168 } 5169 spin_unlock(&object_map_lock); 5170 #endif 5171 } 5172 5173 /* 5174 * Attempt to free all partial slabs on a node. 5175 * This is called from __kmem_cache_shutdown(). We must take list_lock 5176 * because sysfs file might still access partial list after the shutdowning. 5177 */ 5178 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5179 { 5180 LIST_HEAD(discard); 5181 struct slab *slab, *h; 5182 5183 BUG_ON(irqs_disabled()); 5184 spin_lock_irq(&n->list_lock); 5185 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5186 if (!slab->inuse) { 5187 remove_partial(n, slab); 5188 list_add(&slab->slab_list, &discard); 5189 } else { 5190 list_slab_objects(s, slab, 5191 "Objects remaining in %s on __kmem_cache_shutdown()"); 5192 } 5193 } 5194 spin_unlock_irq(&n->list_lock); 5195 5196 list_for_each_entry_safe(slab, h, &discard, slab_list) 5197 discard_slab(s, slab); 5198 } 5199 5200 bool __kmem_cache_empty(struct kmem_cache *s) 5201 { 5202 int node; 5203 struct kmem_cache_node *n; 5204 5205 for_each_kmem_cache_node(s, node, n) 5206 if (n->nr_partial || node_nr_slabs(n)) 5207 return false; 5208 return true; 5209 } 5210 5211 /* 5212 * Release all resources used by a slab cache. 5213 */ 5214 int __kmem_cache_shutdown(struct kmem_cache *s) 5215 { 5216 int node; 5217 struct kmem_cache_node *n; 5218 5219 flush_all_cpus_locked(s); 5220 /* Attempt to free all objects */ 5221 for_each_kmem_cache_node(s, node, n) { 5222 free_partial(s, n); 5223 if (n->nr_partial || node_nr_slabs(n)) 5224 return 1; 5225 } 5226 return 0; 5227 } 5228 5229 #ifdef CONFIG_PRINTK 5230 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5231 { 5232 void *base; 5233 int __maybe_unused i; 5234 unsigned int objnr; 5235 void *objp; 5236 void *objp0; 5237 struct kmem_cache *s = slab->slab_cache; 5238 struct track __maybe_unused *trackp; 5239 5240 kpp->kp_ptr = object; 5241 kpp->kp_slab = slab; 5242 kpp->kp_slab_cache = s; 5243 base = slab_address(slab); 5244 objp0 = kasan_reset_tag(object); 5245 #ifdef CONFIG_SLUB_DEBUG 5246 objp = restore_red_left(s, objp0); 5247 #else 5248 objp = objp0; 5249 #endif 5250 objnr = obj_to_index(s, slab, objp); 5251 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5252 objp = base + s->size * objnr; 5253 kpp->kp_objp = objp; 5254 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5255 || (objp - base) % s->size) || 5256 !(s->flags & SLAB_STORE_USER)) 5257 return; 5258 #ifdef CONFIG_SLUB_DEBUG 5259 objp = fixup_red_left(s, objp); 5260 trackp = get_track(s, objp, TRACK_ALLOC); 5261 kpp->kp_ret = (void *)trackp->addr; 5262 #ifdef CONFIG_STACKDEPOT 5263 { 5264 depot_stack_handle_t handle; 5265 unsigned long *entries; 5266 unsigned int nr_entries; 5267 5268 handle = READ_ONCE(trackp->handle); 5269 if (handle) { 5270 nr_entries = stack_depot_fetch(handle, &entries); 5271 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5272 kpp->kp_stack[i] = (void *)entries[i]; 5273 } 5274 5275 trackp = get_track(s, objp, TRACK_FREE); 5276 handle = READ_ONCE(trackp->handle); 5277 if (handle) { 5278 nr_entries = stack_depot_fetch(handle, &entries); 5279 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5280 kpp->kp_free_stack[i] = (void *)entries[i]; 5281 } 5282 } 5283 #endif 5284 #endif 5285 } 5286 #endif 5287 5288 /******************************************************************** 5289 * Kmalloc subsystem 5290 *******************************************************************/ 5291 5292 static int __init setup_slub_min_order(char *str) 5293 { 5294 get_option(&str, (int *)&slub_min_order); 5295 5296 if (slub_min_order > slub_max_order) 5297 slub_max_order = slub_min_order; 5298 5299 return 1; 5300 } 5301 5302 __setup("slab_min_order=", setup_slub_min_order); 5303 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5304 5305 5306 static int __init setup_slub_max_order(char *str) 5307 { 5308 get_option(&str, (int *)&slub_max_order); 5309 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5310 5311 if (slub_min_order > slub_max_order) 5312 slub_min_order = slub_max_order; 5313 5314 return 1; 5315 } 5316 5317 __setup("slab_max_order=", setup_slub_max_order); 5318 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5319 5320 static int __init setup_slub_min_objects(char *str) 5321 { 5322 get_option(&str, (int *)&slub_min_objects); 5323 5324 return 1; 5325 } 5326 5327 __setup("slab_min_objects=", setup_slub_min_objects); 5328 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5329 5330 #ifdef CONFIG_HARDENED_USERCOPY 5331 /* 5332 * Rejects incorrectly sized objects and objects that are to be copied 5333 * to/from userspace but do not fall entirely within the containing slab 5334 * cache's usercopy region. 5335 * 5336 * Returns NULL if check passes, otherwise const char * to name of cache 5337 * to indicate an error. 5338 */ 5339 void __check_heap_object(const void *ptr, unsigned long n, 5340 const struct slab *slab, bool to_user) 5341 { 5342 struct kmem_cache *s; 5343 unsigned int offset; 5344 bool is_kfence = is_kfence_address(ptr); 5345 5346 ptr = kasan_reset_tag(ptr); 5347 5348 /* Find object and usable object size. */ 5349 s = slab->slab_cache; 5350 5351 /* Reject impossible pointers. */ 5352 if (ptr < slab_address(slab)) 5353 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5354 to_user, 0, n); 5355 5356 /* Find offset within object. */ 5357 if (is_kfence) 5358 offset = ptr - kfence_object_start(ptr); 5359 else 5360 offset = (ptr - slab_address(slab)) % s->size; 5361 5362 /* Adjust for redzone and reject if within the redzone. */ 5363 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5364 if (offset < s->red_left_pad) 5365 usercopy_abort("SLUB object in left red zone", 5366 s->name, to_user, offset, n); 5367 offset -= s->red_left_pad; 5368 } 5369 5370 /* Allow address range falling entirely within usercopy region. */ 5371 if (offset >= s->useroffset && 5372 offset - s->useroffset <= s->usersize && 5373 n <= s->useroffset - offset + s->usersize) 5374 return; 5375 5376 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5377 } 5378 #endif /* CONFIG_HARDENED_USERCOPY */ 5379 5380 #define SHRINK_PROMOTE_MAX 32 5381 5382 /* 5383 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5384 * up most to the head of the partial lists. New allocations will then 5385 * fill those up and thus they can be removed from the partial lists. 5386 * 5387 * The slabs with the least items are placed last. This results in them 5388 * being allocated from last increasing the chance that the last objects 5389 * are freed in them. 5390 */ 5391 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5392 { 5393 int node; 5394 int i; 5395 struct kmem_cache_node *n; 5396 struct slab *slab; 5397 struct slab *t; 5398 struct list_head discard; 5399 struct list_head promote[SHRINK_PROMOTE_MAX]; 5400 unsigned long flags; 5401 int ret = 0; 5402 5403 for_each_kmem_cache_node(s, node, n) { 5404 INIT_LIST_HEAD(&discard); 5405 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5406 INIT_LIST_HEAD(promote + i); 5407 5408 spin_lock_irqsave(&n->list_lock, flags); 5409 5410 /* 5411 * Build lists of slabs to discard or promote. 5412 * 5413 * Note that concurrent frees may occur while we hold the 5414 * list_lock. slab->inuse here is the upper limit. 5415 */ 5416 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5417 int free = slab->objects - slab->inuse; 5418 5419 /* Do not reread slab->inuse */ 5420 barrier(); 5421 5422 /* We do not keep full slabs on the list */ 5423 BUG_ON(free <= 0); 5424 5425 if (free == slab->objects) { 5426 list_move(&slab->slab_list, &discard); 5427 slab_clear_node_partial(slab); 5428 n->nr_partial--; 5429 dec_slabs_node(s, node, slab->objects); 5430 } else if (free <= SHRINK_PROMOTE_MAX) 5431 list_move(&slab->slab_list, promote + free - 1); 5432 } 5433 5434 /* 5435 * Promote the slabs filled up most to the head of the 5436 * partial list. 5437 */ 5438 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5439 list_splice(promote + i, &n->partial); 5440 5441 spin_unlock_irqrestore(&n->list_lock, flags); 5442 5443 /* Release empty slabs */ 5444 list_for_each_entry_safe(slab, t, &discard, slab_list) 5445 free_slab(s, slab); 5446 5447 if (node_nr_slabs(n)) 5448 ret = 1; 5449 } 5450 5451 return ret; 5452 } 5453 5454 int __kmem_cache_shrink(struct kmem_cache *s) 5455 { 5456 flush_all(s); 5457 return __kmem_cache_do_shrink(s); 5458 } 5459 5460 static int slab_mem_going_offline_callback(void *arg) 5461 { 5462 struct kmem_cache *s; 5463 5464 mutex_lock(&slab_mutex); 5465 list_for_each_entry(s, &slab_caches, list) { 5466 flush_all_cpus_locked(s); 5467 __kmem_cache_do_shrink(s); 5468 } 5469 mutex_unlock(&slab_mutex); 5470 5471 return 0; 5472 } 5473 5474 static void slab_mem_offline_callback(void *arg) 5475 { 5476 struct memory_notify *marg = arg; 5477 int offline_node; 5478 5479 offline_node = marg->status_change_nid_normal; 5480 5481 /* 5482 * If the node still has available memory. we need kmem_cache_node 5483 * for it yet. 5484 */ 5485 if (offline_node < 0) 5486 return; 5487 5488 mutex_lock(&slab_mutex); 5489 node_clear(offline_node, slab_nodes); 5490 /* 5491 * We no longer free kmem_cache_node structures here, as it would be 5492 * racy with all get_node() users, and infeasible to protect them with 5493 * slab_mutex. 5494 */ 5495 mutex_unlock(&slab_mutex); 5496 } 5497 5498 static int slab_mem_going_online_callback(void *arg) 5499 { 5500 struct kmem_cache_node *n; 5501 struct kmem_cache *s; 5502 struct memory_notify *marg = arg; 5503 int nid = marg->status_change_nid_normal; 5504 int ret = 0; 5505 5506 /* 5507 * If the node's memory is already available, then kmem_cache_node is 5508 * already created. Nothing to do. 5509 */ 5510 if (nid < 0) 5511 return 0; 5512 5513 /* 5514 * We are bringing a node online. No memory is available yet. We must 5515 * allocate a kmem_cache_node structure in order to bring the node 5516 * online. 5517 */ 5518 mutex_lock(&slab_mutex); 5519 list_for_each_entry(s, &slab_caches, list) { 5520 /* 5521 * The structure may already exist if the node was previously 5522 * onlined and offlined. 5523 */ 5524 if (get_node(s, nid)) 5525 continue; 5526 /* 5527 * XXX: kmem_cache_alloc_node will fallback to other nodes 5528 * since memory is not yet available from the node that 5529 * is brought up. 5530 */ 5531 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5532 if (!n) { 5533 ret = -ENOMEM; 5534 goto out; 5535 } 5536 init_kmem_cache_node(n); 5537 s->node[nid] = n; 5538 } 5539 /* 5540 * Any cache created after this point will also have kmem_cache_node 5541 * initialized for the new node. 5542 */ 5543 node_set(nid, slab_nodes); 5544 out: 5545 mutex_unlock(&slab_mutex); 5546 return ret; 5547 } 5548 5549 static int slab_memory_callback(struct notifier_block *self, 5550 unsigned long action, void *arg) 5551 { 5552 int ret = 0; 5553 5554 switch (action) { 5555 case MEM_GOING_ONLINE: 5556 ret = slab_mem_going_online_callback(arg); 5557 break; 5558 case MEM_GOING_OFFLINE: 5559 ret = slab_mem_going_offline_callback(arg); 5560 break; 5561 case MEM_OFFLINE: 5562 case MEM_CANCEL_ONLINE: 5563 slab_mem_offline_callback(arg); 5564 break; 5565 case MEM_ONLINE: 5566 case MEM_CANCEL_OFFLINE: 5567 break; 5568 } 5569 if (ret) 5570 ret = notifier_from_errno(ret); 5571 else 5572 ret = NOTIFY_OK; 5573 return ret; 5574 } 5575 5576 /******************************************************************** 5577 * Basic setup of slabs 5578 *******************************************************************/ 5579 5580 /* 5581 * Used for early kmem_cache structures that were allocated using 5582 * the page allocator. Allocate them properly then fix up the pointers 5583 * that may be pointing to the wrong kmem_cache structure. 5584 */ 5585 5586 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 5587 { 5588 int node; 5589 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5590 struct kmem_cache_node *n; 5591 5592 memcpy(s, static_cache, kmem_cache->object_size); 5593 5594 /* 5595 * This runs very early, and only the boot processor is supposed to be 5596 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5597 * IPIs around. 5598 */ 5599 __flush_cpu_slab(s, smp_processor_id()); 5600 for_each_kmem_cache_node(s, node, n) { 5601 struct slab *p; 5602 5603 list_for_each_entry(p, &n->partial, slab_list) 5604 p->slab_cache = s; 5605 5606 #ifdef CONFIG_SLUB_DEBUG 5607 list_for_each_entry(p, &n->full, slab_list) 5608 p->slab_cache = s; 5609 #endif 5610 } 5611 list_add(&s->list, &slab_caches); 5612 return s; 5613 } 5614 5615 void __init kmem_cache_init(void) 5616 { 5617 static __initdata struct kmem_cache boot_kmem_cache, 5618 boot_kmem_cache_node; 5619 int node; 5620 5621 if (debug_guardpage_minorder()) 5622 slub_max_order = 0; 5623 5624 /* Print slub debugging pointers without hashing */ 5625 if (__slub_debug_enabled()) 5626 no_hash_pointers_enable(NULL); 5627 5628 kmem_cache_node = &boot_kmem_cache_node; 5629 kmem_cache = &boot_kmem_cache; 5630 5631 /* 5632 * Initialize the nodemask for which we will allocate per node 5633 * structures. Here we don't need taking slab_mutex yet. 5634 */ 5635 for_each_node_state(node, N_NORMAL_MEMORY) 5636 node_set(node, slab_nodes); 5637 5638 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5639 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 5640 5641 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5642 5643 /* Able to allocate the per node structures */ 5644 slab_state = PARTIAL; 5645 5646 create_boot_cache(kmem_cache, "kmem_cache", 5647 offsetof(struct kmem_cache, node) + 5648 nr_node_ids * sizeof(struct kmem_cache_node *), 5649 SLAB_HWCACHE_ALIGN, 0, 0); 5650 5651 kmem_cache = bootstrap(&boot_kmem_cache); 5652 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5653 5654 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5655 setup_kmalloc_cache_index_table(); 5656 create_kmalloc_caches(); 5657 5658 /* Setup random freelists for each cache */ 5659 init_freelist_randomization(); 5660 5661 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5662 slub_cpu_dead); 5663 5664 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5665 cache_line_size(), 5666 slub_min_order, slub_max_order, slub_min_objects, 5667 nr_cpu_ids, nr_node_ids); 5668 } 5669 5670 void __init kmem_cache_init_late(void) 5671 { 5672 #ifndef CONFIG_SLUB_TINY 5673 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5674 WARN_ON(!flushwq); 5675 #endif 5676 } 5677 5678 struct kmem_cache * 5679 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5680 slab_flags_t flags, void (*ctor)(void *)) 5681 { 5682 struct kmem_cache *s; 5683 5684 s = find_mergeable(size, align, flags, name, ctor); 5685 if (s) { 5686 if (sysfs_slab_alias(s, name)) 5687 return NULL; 5688 5689 s->refcount++; 5690 5691 /* 5692 * Adjust the object sizes so that we clear 5693 * the complete object on kzalloc. 5694 */ 5695 s->object_size = max(s->object_size, size); 5696 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5697 } 5698 5699 return s; 5700 } 5701 5702 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5703 { 5704 int err; 5705 5706 err = kmem_cache_open(s, flags); 5707 if (err) 5708 return err; 5709 5710 /* Mutex is not taken during early boot */ 5711 if (slab_state <= UP) 5712 return 0; 5713 5714 err = sysfs_slab_add(s); 5715 if (err) { 5716 __kmem_cache_release(s); 5717 return err; 5718 } 5719 5720 if (s->flags & SLAB_STORE_USER) 5721 debugfs_slab_add(s); 5722 5723 return 0; 5724 } 5725 5726 #ifdef SLAB_SUPPORTS_SYSFS 5727 static int count_inuse(struct slab *slab) 5728 { 5729 return slab->inuse; 5730 } 5731 5732 static int count_total(struct slab *slab) 5733 { 5734 return slab->objects; 5735 } 5736 #endif 5737 5738 #ifdef CONFIG_SLUB_DEBUG 5739 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5740 unsigned long *obj_map) 5741 { 5742 void *p; 5743 void *addr = slab_address(slab); 5744 5745 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5746 return; 5747 5748 /* Now we know that a valid freelist exists */ 5749 __fill_map(obj_map, s, slab); 5750 for_each_object(p, s, addr, slab->objects) { 5751 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5752 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5753 5754 if (!check_object(s, slab, p, val)) 5755 break; 5756 } 5757 } 5758 5759 static int validate_slab_node(struct kmem_cache *s, 5760 struct kmem_cache_node *n, unsigned long *obj_map) 5761 { 5762 unsigned long count = 0; 5763 struct slab *slab; 5764 unsigned long flags; 5765 5766 spin_lock_irqsave(&n->list_lock, flags); 5767 5768 list_for_each_entry(slab, &n->partial, slab_list) { 5769 validate_slab(s, slab, obj_map); 5770 count++; 5771 } 5772 if (count != n->nr_partial) { 5773 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5774 s->name, count, n->nr_partial); 5775 slab_add_kunit_errors(); 5776 } 5777 5778 if (!(s->flags & SLAB_STORE_USER)) 5779 goto out; 5780 5781 list_for_each_entry(slab, &n->full, slab_list) { 5782 validate_slab(s, slab, obj_map); 5783 count++; 5784 } 5785 if (count != node_nr_slabs(n)) { 5786 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5787 s->name, count, node_nr_slabs(n)); 5788 slab_add_kunit_errors(); 5789 } 5790 5791 out: 5792 spin_unlock_irqrestore(&n->list_lock, flags); 5793 return count; 5794 } 5795 5796 long validate_slab_cache(struct kmem_cache *s) 5797 { 5798 int node; 5799 unsigned long count = 0; 5800 struct kmem_cache_node *n; 5801 unsigned long *obj_map; 5802 5803 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5804 if (!obj_map) 5805 return -ENOMEM; 5806 5807 flush_all(s); 5808 for_each_kmem_cache_node(s, node, n) 5809 count += validate_slab_node(s, n, obj_map); 5810 5811 bitmap_free(obj_map); 5812 5813 return count; 5814 } 5815 EXPORT_SYMBOL(validate_slab_cache); 5816 5817 #ifdef CONFIG_DEBUG_FS 5818 /* 5819 * Generate lists of code addresses where slabcache objects are allocated 5820 * and freed. 5821 */ 5822 5823 struct location { 5824 depot_stack_handle_t handle; 5825 unsigned long count; 5826 unsigned long addr; 5827 unsigned long waste; 5828 long long sum_time; 5829 long min_time; 5830 long max_time; 5831 long min_pid; 5832 long max_pid; 5833 DECLARE_BITMAP(cpus, NR_CPUS); 5834 nodemask_t nodes; 5835 }; 5836 5837 struct loc_track { 5838 unsigned long max; 5839 unsigned long count; 5840 struct location *loc; 5841 loff_t idx; 5842 }; 5843 5844 static struct dentry *slab_debugfs_root; 5845 5846 static void free_loc_track(struct loc_track *t) 5847 { 5848 if (t->max) 5849 free_pages((unsigned long)t->loc, 5850 get_order(sizeof(struct location) * t->max)); 5851 } 5852 5853 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5854 { 5855 struct location *l; 5856 int order; 5857 5858 order = get_order(sizeof(struct location) * max); 5859 5860 l = (void *)__get_free_pages(flags, order); 5861 if (!l) 5862 return 0; 5863 5864 if (t->count) { 5865 memcpy(l, t->loc, sizeof(struct location) * t->count); 5866 free_loc_track(t); 5867 } 5868 t->max = max; 5869 t->loc = l; 5870 return 1; 5871 } 5872 5873 static int add_location(struct loc_track *t, struct kmem_cache *s, 5874 const struct track *track, 5875 unsigned int orig_size) 5876 { 5877 long start, end, pos; 5878 struct location *l; 5879 unsigned long caddr, chandle, cwaste; 5880 unsigned long age = jiffies - track->when; 5881 depot_stack_handle_t handle = 0; 5882 unsigned int waste = s->object_size - orig_size; 5883 5884 #ifdef CONFIG_STACKDEPOT 5885 handle = READ_ONCE(track->handle); 5886 #endif 5887 start = -1; 5888 end = t->count; 5889 5890 for ( ; ; ) { 5891 pos = start + (end - start + 1) / 2; 5892 5893 /* 5894 * There is nothing at "end". If we end up there 5895 * we need to add something to before end. 5896 */ 5897 if (pos == end) 5898 break; 5899 5900 l = &t->loc[pos]; 5901 caddr = l->addr; 5902 chandle = l->handle; 5903 cwaste = l->waste; 5904 if ((track->addr == caddr) && (handle == chandle) && 5905 (waste == cwaste)) { 5906 5907 l->count++; 5908 if (track->when) { 5909 l->sum_time += age; 5910 if (age < l->min_time) 5911 l->min_time = age; 5912 if (age > l->max_time) 5913 l->max_time = age; 5914 5915 if (track->pid < l->min_pid) 5916 l->min_pid = track->pid; 5917 if (track->pid > l->max_pid) 5918 l->max_pid = track->pid; 5919 5920 cpumask_set_cpu(track->cpu, 5921 to_cpumask(l->cpus)); 5922 } 5923 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5924 return 1; 5925 } 5926 5927 if (track->addr < caddr) 5928 end = pos; 5929 else if (track->addr == caddr && handle < chandle) 5930 end = pos; 5931 else if (track->addr == caddr && handle == chandle && 5932 waste < cwaste) 5933 end = pos; 5934 else 5935 start = pos; 5936 } 5937 5938 /* 5939 * Not found. Insert new tracking element. 5940 */ 5941 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5942 return 0; 5943 5944 l = t->loc + pos; 5945 if (pos < t->count) 5946 memmove(l + 1, l, 5947 (t->count - pos) * sizeof(struct location)); 5948 t->count++; 5949 l->count = 1; 5950 l->addr = track->addr; 5951 l->sum_time = age; 5952 l->min_time = age; 5953 l->max_time = age; 5954 l->min_pid = track->pid; 5955 l->max_pid = track->pid; 5956 l->handle = handle; 5957 l->waste = waste; 5958 cpumask_clear(to_cpumask(l->cpus)); 5959 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5960 nodes_clear(l->nodes); 5961 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5962 return 1; 5963 } 5964 5965 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5966 struct slab *slab, enum track_item alloc, 5967 unsigned long *obj_map) 5968 { 5969 void *addr = slab_address(slab); 5970 bool is_alloc = (alloc == TRACK_ALLOC); 5971 void *p; 5972 5973 __fill_map(obj_map, s, slab); 5974 5975 for_each_object(p, s, addr, slab->objects) 5976 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5977 add_location(t, s, get_track(s, p, alloc), 5978 is_alloc ? get_orig_size(s, p) : 5979 s->object_size); 5980 } 5981 #endif /* CONFIG_DEBUG_FS */ 5982 #endif /* CONFIG_SLUB_DEBUG */ 5983 5984 #ifdef SLAB_SUPPORTS_SYSFS 5985 enum slab_stat_type { 5986 SL_ALL, /* All slabs */ 5987 SL_PARTIAL, /* Only partially allocated slabs */ 5988 SL_CPU, /* Only slabs used for cpu caches */ 5989 SL_OBJECTS, /* Determine allocated objects not slabs */ 5990 SL_TOTAL /* Determine object capacity not slabs */ 5991 }; 5992 5993 #define SO_ALL (1 << SL_ALL) 5994 #define SO_PARTIAL (1 << SL_PARTIAL) 5995 #define SO_CPU (1 << SL_CPU) 5996 #define SO_OBJECTS (1 << SL_OBJECTS) 5997 #define SO_TOTAL (1 << SL_TOTAL) 5998 5999 static ssize_t show_slab_objects(struct kmem_cache *s, 6000 char *buf, unsigned long flags) 6001 { 6002 unsigned long total = 0; 6003 int node; 6004 int x; 6005 unsigned long *nodes; 6006 int len = 0; 6007 6008 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6009 if (!nodes) 6010 return -ENOMEM; 6011 6012 if (flags & SO_CPU) { 6013 int cpu; 6014 6015 for_each_possible_cpu(cpu) { 6016 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6017 cpu); 6018 int node; 6019 struct slab *slab; 6020 6021 slab = READ_ONCE(c->slab); 6022 if (!slab) 6023 continue; 6024 6025 node = slab_nid(slab); 6026 if (flags & SO_TOTAL) 6027 x = slab->objects; 6028 else if (flags & SO_OBJECTS) 6029 x = slab->inuse; 6030 else 6031 x = 1; 6032 6033 total += x; 6034 nodes[node] += x; 6035 6036 #ifdef CONFIG_SLUB_CPU_PARTIAL 6037 slab = slub_percpu_partial_read_once(c); 6038 if (slab) { 6039 node = slab_nid(slab); 6040 if (flags & SO_TOTAL) 6041 WARN_ON_ONCE(1); 6042 else if (flags & SO_OBJECTS) 6043 WARN_ON_ONCE(1); 6044 else 6045 x = slab->slabs; 6046 total += x; 6047 nodes[node] += x; 6048 } 6049 #endif 6050 } 6051 } 6052 6053 /* 6054 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6055 * already held which will conflict with an existing lock order: 6056 * 6057 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6058 * 6059 * We don't really need mem_hotplug_lock (to hold off 6060 * slab_mem_going_offline_callback) here because slab's memory hot 6061 * unplug code doesn't destroy the kmem_cache->node[] data. 6062 */ 6063 6064 #ifdef CONFIG_SLUB_DEBUG 6065 if (flags & SO_ALL) { 6066 struct kmem_cache_node *n; 6067 6068 for_each_kmem_cache_node(s, node, n) { 6069 6070 if (flags & SO_TOTAL) 6071 x = node_nr_objs(n); 6072 else if (flags & SO_OBJECTS) 6073 x = node_nr_objs(n) - count_partial(n, count_free); 6074 else 6075 x = node_nr_slabs(n); 6076 total += x; 6077 nodes[node] += x; 6078 } 6079 6080 } else 6081 #endif 6082 if (flags & SO_PARTIAL) { 6083 struct kmem_cache_node *n; 6084 6085 for_each_kmem_cache_node(s, node, n) { 6086 if (flags & SO_TOTAL) 6087 x = count_partial(n, count_total); 6088 else if (flags & SO_OBJECTS) 6089 x = count_partial(n, count_inuse); 6090 else 6091 x = n->nr_partial; 6092 total += x; 6093 nodes[node] += x; 6094 } 6095 } 6096 6097 len += sysfs_emit_at(buf, len, "%lu", total); 6098 #ifdef CONFIG_NUMA 6099 for (node = 0; node < nr_node_ids; node++) { 6100 if (nodes[node]) 6101 len += sysfs_emit_at(buf, len, " N%d=%lu", 6102 node, nodes[node]); 6103 } 6104 #endif 6105 len += sysfs_emit_at(buf, len, "\n"); 6106 kfree(nodes); 6107 6108 return len; 6109 } 6110 6111 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6112 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6113 6114 struct slab_attribute { 6115 struct attribute attr; 6116 ssize_t (*show)(struct kmem_cache *s, char *buf); 6117 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6118 }; 6119 6120 #define SLAB_ATTR_RO(_name) \ 6121 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6122 6123 #define SLAB_ATTR(_name) \ 6124 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6125 6126 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6127 { 6128 return sysfs_emit(buf, "%u\n", s->size); 6129 } 6130 SLAB_ATTR_RO(slab_size); 6131 6132 static ssize_t align_show(struct kmem_cache *s, char *buf) 6133 { 6134 return sysfs_emit(buf, "%u\n", s->align); 6135 } 6136 SLAB_ATTR_RO(align); 6137 6138 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6139 { 6140 return sysfs_emit(buf, "%u\n", s->object_size); 6141 } 6142 SLAB_ATTR_RO(object_size); 6143 6144 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6145 { 6146 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6147 } 6148 SLAB_ATTR_RO(objs_per_slab); 6149 6150 static ssize_t order_show(struct kmem_cache *s, char *buf) 6151 { 6152 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6153 } 6154 SLAB_ATTR_RO(order); 6155 6156 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6157 { 6158 return sysfs_emit(buf, "%lu\n", s->min_partial); 6159 } 6160 6161 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6162 size_t length) 6163 { 6164 unsigned long min; 6165 int err; 6166 6167 err = kstrtoul(buf, 10, &min); 6168 if (err) 6169 return err; 6170 6171 s->min_partial = min; 6172 return length; 6173 } 6174 SLAB_ATTR(min_partial); 6175 6176 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6177 { 6178 unsigned int nr_partial = 0; 6179 #ifdef CONFIG_SLUB_CPU_PARTIAL 6180 nr_partial = s->cpu_partial; 6181 #endif 6182 6183 return sysfs_emit(buf, "%u\n", nr_partial); 6184 } 6185 6186 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6187 size_t length) 6188 { 6189 unsigned int objects; 6190 int err; 6191 6192 err = kstrtouint(buf, 10, &objects); 6193 if (err) 6194 return err; 6195 if (objects && !kmem_cache_has_cpu_partial(s)) 6196 return -EINVAL; 6197 6198 slub_set_cpu_partial(s, objects); 6199 flush_all(s); 6200 return length; 6201 } 6202 SLAB_ATTR(cpu_partial); 6203 6204 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6205 { 6206 if (!s->ctor) 6207 return 0; 6208 return sysfs_emit(buf, "%pS\n", s->ctor); 6209 } 6210 SLAB_ATTR_RO(ctor); 6211 6212 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6213 { 6214 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6215 } 6216 SLAB_ATTR_RO(aliases); 6217 6218 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6219 { 6220 return show_slab_objects(s, buf, SO_PARTIAL); 6221 } 6222 SLAB_ATTR_RO(partial); 6223 6224 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6225 { 6226 return show_slab_objects(s, buf, SO_CPU); 6227 } 6228 SLAB_ATTR_RO(cpu_slabs); 6229 6230 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6231 { 6232 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6233 } 6234 SLAB_ATTR_RO(objects_partial); 6235 6236 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6237 { 6238 int objects = 0; 6239 int slabs = 0; 6240 int cpu __maybe_unused; 6241 int len = 0; 6242 6243 #ifdef CONFIG_SLUB_CPU_PARTIAL 6244 for_each_online_cpu(cpu) { 6245 struct slab *slab; 6246 6247 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6248 6249 if (slab) 6250 slabs += slab->slabs; 6251 } 6252 #endif 6253 6254 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6255 objects = (slabs * oo_objects(s->oo)) / 2; 6256 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6257 6258 #ifdef CONFIG_SLUB_CPU_PARTIAL 6259 for_each_online_cpu(cpu) { 6260 struct slab *slab; 6261 6262 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6263 if (slab) { 6264 slabs = READ_ONCE(slab->slabs); 6265 objects = (slabs * oo_objects(s->oo)) / 2; 6266 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6267 cpu, objects, slabs); 6268 } 6269 } 6270 #endif 6271 len += sysfs_emit_at(buf, len, "\n"); 6272 6273 return len; 6274 } 6275 SLAB_ATTR_RO(slabs_cpu_partial); 6276 6277 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6278 { 6279 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6280 } 6281 SLAB_ATTR_RO(reclaim_account); 6282 6283 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6284 { 6285 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6286 } 6287 SLAB_ATTR_RO(hwcache_align); 6288 6289 #ifdef CONFIG_ZONE_DMA 6290 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6291 { 6292 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6293 } 6294 SLAB_ATTR_RO(cache_dma); 6295 #endif 6296 6297 #ifdef CONFIG_HARDENED_USERCOPY 6298 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6299 { 6300 return sysfs_emit(buf, "%u\n", s->usersize); 6301 } 6302 SLAB_ATTR_RO(usersize); 6303 #endif 6304 6305 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6306 { 6307 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6308 } 6309 SLAB_ATTR_RO(destroy_by_rcu); 6310 6311 #ifdef CONFIG_SLUB_DEBUG 6312 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6313 { 6314 return show_slab_objects(s, buf, SO_ALL); 6315 } 6316 SLAB_ATTR_RO(slabs); 6317 6318 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6319 { 6320 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6321 } 6322 SLAB_ATTR_RO(total_objects); 6323 6324 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6325 { 6326 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6327 } 6328 SLAB_ATTR_RO(objects); 6329 6330 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6331 { 6332 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6333 } 6334 SLAB_ATTR_RO(sanity_checks); 6335 6336 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6337 { 6338 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6339 } 6340 SLAB_ATTR_RO(trace); 6341 6342 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6343 { 6344 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6345 } 6346 6347 SLAB_ATTR_RO(red_zone); 6348 6349 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6350 { 6351 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6352 } 6353 6354 SLAB_ATTR_RO(poison); 6355 6356 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6357 { 6358 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6359 } 6360 6361 SLAB_ATTR_RO(store_user); 6362 6363 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6364 { 6365 return 0; 6366 } 6367 6368 static ssize_t validate_store(struct kmem_cache *s, 6369 const char *buf, size_t length) 6370 { 6371 int ret = -EINVAL; 6372 6373 if (buf[0] == '1' && kmem_cache_debug(s)) { 6374 ret = validate_slab_cache(s); 6375 if (ret >= 0) 6376 ret = length; 6377 } 6378 return ret; 6379 } 6380 SLAB_ATTR(validate); 6381 6382 #endif /* CONFIG_SLUB_DEBUG */ 6383 6384 #ifdef CONFIG_FAILSLAB 6385 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6386 { 6387 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6388 } 6389 6390 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6391 size_t length) 6392 { 6393 if (s->refcount > 1) 6394 return -EINVAL; 6395 6396 if (buf[0] == '1') 6397 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6398 else 6399 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6400 6401 return length; 6402 } 6403 SLAB_ATTR(failslab); 6404 #endif 6405 6406 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6407 { 6408 return 0; 6409 } 6410 6411 static ssize_t shrink_store(struct kmem_cache *s, 6412 const char *buf, size_t length) 6413 { 6414 if (buf[0] == '1') 6415 kmem_cache_shrink(s); 6416 else 6417 return -EINVAL; 6418 return length; 6419 } 6420 SLAB_ATTR(shrink); 6421 6422 #ifdef CONFIG_NUMA 6423 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6424 { 6425 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6426 } 6427 6428 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6429 const char *buf, size_t length) 6430 { 6431 unsigned int ratio; 6432 int err; 6433 6434 err = kstrtouint(buf, 10, &ratio); 6435 if (err) 6436 return err; 6437 if (ratio > 100) 6438 return -ERANGE; 6439 6440 s->remote_node_defrag_ratio = ratio * 10; 6441 6442 return length; 6443 } 6444 SLAB_ATTR(remote_node_defrag_ratio); 6445 #endif 6446 6447 #ifdef CONFIG_SLUB_STATS 6448 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6449 { 6450 unsigned long sum = 0; 6451 int cpu; 6452 int len = 0; 6453 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6454 6455 if (!data) 6456 return -ENOMEM; 6457 6458 for_each_online_cpu(cpu) { 6459 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6460 6461 data[cpu] = x; 6462 sum += x; 6463 } 6464 6465 len += sysfs_emit_at(buf, len, "%lu", sum); 6466 6467 #ifdef CONFIG_SMP 6468 for_each_online_cpu(cpu) { 6469 if (data[cpu]) 6470 len += sysfs_emit_at(buf, len, " C%d=%u", 6471 cpu, data[cpu]); 6472 } 6473 #endif 6474 kfree(data); 6475 len += sysfs_emit_at(buf, len, "\n"); 6476 6477 return len; 6478 } 6479 6480 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6481 { 6482 int cpu; 6483 6484 for_each_online_cpu(cpu) 6485 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6486 } 6487 6488 #define STAT_ATTR(si, text) \ 6489 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6490 { \ 6491 return show_stat(s, buf, si); \ 6492 } \ 6493 static ssize_t text##_store(struct kmem_cache *s, \ 6494 const char *buf, size_t length) \ 6495 { \ 6496 if (buf[0] != '0') \ 6497 return -EINVAL; \ 6498 clear_stat(s, si); \ 6499 return length; \ 6500 } \ 6501 SLAB_ATTR(text); \ 6502 6503 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 6504 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 6505 STAT_ATTR(FREE_FASTPATH, free_fastpath); 6506 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 6507 STAT_ATTR(FREE_FROZEN, free_frozen); 6508 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 6509 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 6510 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 6511 STAT_ATTR(ALLOC_SLAB, alloc_slab); 6512 STAT_ATTR(ALLOC_REFILL, alloc_refill); 6513 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 6514 STAT_ATTR(FREE_SLAB, free_slab); 6515 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 6516 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 6517 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 6518 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 6519 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 6520 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 6521 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 6522 STAT_ATTR(ORDER_FALLBACK, order_fallback); 6523 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 6524 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 6525 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 6526 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 6527 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 6528 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 6529 #endif /* CONFIG_SLUB_STATS */ 6530 6531 #ifdef CONFIG_KFENCE 6532 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 6533 { 6534 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 6535 } 6536 6537 static ssize_t skip_kfence_store(struct kmem_cache *s, 6538 const char *buf, size_t length) 6539 { 6540 int ret = length; 6541 6542 if (buf[0] == '0') 6543 s->flags &= ~SLAB_SKIP_KFENCE; 6544 else if (buf[0] == '1') 6545 s->flags |= SLAB_SKIP_KFENCE; 6546 else 6547 ret = -EINVAL; 6548 6549 return ret; 6550 } 6551 SLAB_ATTR(skip_kfence); 6552 #endif 6553 6554 static struct attribute *slab_attrs[] = { 6555 &slab_size_attr.attr, 6556 &object_size_attr.attr, 6557 &objs_per_slab_attr.attr, 6558 &order_attr.attr, 6559 &min_partial_attr.attr, 6560 &cpu_partial_attr.attr, 6561 &objects_partial_attr.attr, 6562 &partial_attr.attr, 6563 &cpu_slabs_attr.attr, 6564 &ctor_attr.attr, 6565 &aliases_attr.attr, 6566 &align_attr.attr, 6567 &hwcache_align_attr.attr, 6568 &reclaim_account_attr.attr, 6569 &destroy_by_rcu_attr.attr, 6570 &shrink_attr.attr, 6571 &slabs_cpu_partial_attr.attr, 6572 #ifdef CONFIG_SLUB_DEBUG 6573 &total_objects_attr.attr, 6574 &objects_attr.attr, 6575 &slabs_attr.attr, 6576 &sanity_checks_attr.attr, 6577 &trace_attr.attr, 6578 &red_zone_attr.attr, 6579 &poison_attr.attr, 6580 &store_user_attr.attr, 6581 &validate_attr.attr, 6582 #endif 6583 #ifdef CONFIG_ZONE_DMA 6584 &cache_dma_attr.attr, 6585 #endif 6586 #ifdef CONFIG_NUMA 6587 &remote_node_defrag_ratio_attr.attr, 6588 #endif 6589 #ifdef CONFIG_SLUB_STATS 6590 &alloc_fastpath_attr.attr, 6591 &alloc_slowpath_attr.attr, 6592 &free_fastpath_attr.attr, 6593 &free_slowpath_attr.attr, 6594 &free_frozen_attr.attr, 6595 &free_add_partial_attr.attr, 6596 &free_remove_partial_attr.attr, 6597 &alloc_from_partial_attr.attr, 6598 &alloc_slab_attr.attr, 6599 &alloc_refill_attr.attr, 6600 &alloc_node_mismatch_attr.attr, 6601 &free_slab_attr.attr, 6602 &cpuslab_flush_attr.attr, 6603 &deactivate_full_attr.attr, 6604 &deactivate_empty_attr.attr, 6605 &deactivate_to_head_attr.attr, 6606 &deactivate_to_tail_attr.attr, 6607 &deactivate_remote_frees_attr.attr, 6608 &deactivate_bypass_attr.attr, 6609 &order_fallback_attr.attr, 6610 &cmpxchg_double_fail_attr.attr, 6611 &cmpxchg_double_cpu_fail_attr.attr, 6612 &cpu_partial_alloc_attr.attr, 6613 &cpu_partial_free_attr.attr, 6614 &cpu_partial_node_attr.attr, 6615 &cpu_partial_drain_attr.attr, 6616 #endif 6617 #ifdef CONFIG_FAILSLAB 6618 &failslab_attr.attr, 6619 #endif 6620 #ifdef CONFIG_HARDENED_USERCOPY 6621 &usersize_attr.attr, 6622 #endif 6623 #ifdef CONFIG_KFENCE 6624 &skip_kfence_attr.attr, 6625 #endif 6626 6627 NULL 6628 }; 6629 6630 static const struct attribute_group slab_attr_group = { 6631 .attrs = slab_attrs, 6632 }; 6633 6634 static ssize_t slab_attr_show(struct kobject *kobj, 6635 struct attribute *attr, 6636 char *buf) 6637 { 6638 struct slab_attribute *attribute; 6639 struct kmem_cache *s; 6640 6641 attribute = to_slab_attr(attr); 6642 s = to_slab(kobj); 6643 6644 if (!attribute->show) 6645 return -EIO; 6646 6647 return attribute->show(s, buf); 6648 } 6649 6650 static ssize_t slab_attr_store(struct kobject *kobj, 6651 struct attribute *attr, 6652 const char *buf, size_t len) 6653 { 6654 struct slab_attribute *attribute; 6655 struct kmem_cache *s; 6656 6657 attribute = to_slab_attr(attr); 6658 s = to_slab(kobj); 6659 6660 if (!attribute->store) 6661 return -EIO; 6662 6663 return attribute->store(s, buf, len); 6664 } 6665 6666 static void kmem_cache_release(struct kobject *k) 6667 { 6668 slab_kmem_cache_release(to_slab(k)); 6669 } 6670 6671 static const struct sysfs_ops slab_sysfs_ops = { 6672 .show = slab_attr_show, 6673 .store = slab_attr_store, 6674 }; 6675 6676 static const struct kobj_type slab_ktype = { 6677 .sysfs_ops = &slab_sysfs_ops, 6678 .release = kmem_cache_release, 6679 }; 6680 6681 static struct kset *slab_kset; 6682 6683 static inline struct kset *cache_kset(struct kmem_cache *s) 6684 { 6685 return slab_kset; 6686 } 6687 6688 #define ID_STR_LENGTH 32 6689 6690 /* Create a unique string id for a slab cache: 6691 * 6692 * Format :[flags-]size 6693 */ 6694 static char *create_unique_id(struct kmem_cache *s) 6695 { 6696 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6697 char *p = name; 6698 6699 if (!name) 6700 return ERR_PTR(-ENOMEM); 6701 6702 *p++ = ':'; 6703 /* 6704 * First flags affecting slabcache operations. We will only 6705 * get here for aliasable slabs so we do not need to support 6706 * too many flags. The flags here must cover all flags that 6707 * are matched during merging to guarantee that the id is 6708 * unique. 6709 */ 6710 if (s->flags & SLAB_CACHE_DMA) 6711 *p++ = 'd'; 6712 if (s->flags & SLAB_CACHE_DMA32) 6713 *p++ = 'D'; 6714 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6715 *p++ = 'a'; 6716 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6717 *p++ = 'F'; 6718 if (s->flags & SLAB_ACCOUNT) 6719 *p++ = 'A'; 6720 if (p != name + 1) 6721 *p++ = '-'; 6722 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6723 6724 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6725 kfree(name); 6726 return ERR_PTR(-EINVAL); 6727 } 6728 kmsan_unpoison_memory(name, p - name); 6729 return name; 6730 } 6731 6732 static int sysfs_slab_add(struct kmem_cache *s) 6733 { 6734 int err; 6735 const char *name; 6736 struct kset *kset = cache_kset(s); 6737 int unmergeable = slab_unmergeable(s); 6738 6739 if (!unmergeable && disable_higher_order_debug && 6740 (slub_debug & DEBUG_METADATA_FLAGS)) 6741 unmergeable = 1; 6742 6743 if (unmergeable) { 6744 /* 6745 * Slabcache can never be merged so we can use the name proper. 6746 * This is typically the case for debug situations. In that 6747 * case we can catch duplicate names easily. 6748 */ 6749 sysfs_remove_link(&slab_kset->kobj, s->name); 6750 name = s->name; 6751 } else { 6752 /* 6753 * Create a unique name for the slab as a target 6754 * for the symlinks. 6755 */ 6756 name = create_unique_id(s); 6757 if (IS_ERR(name)) 6758 return PTR_ERR(name); 6759 } 6760 6761 s->kobj.kset = kset; 6762 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6763 if (err) 6764 goto out; 6765 6766 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6767 if (err) 6768 goto out_del_kobj; 6769 6770 if (!unmergeable) { 6771 /* Setup first alias */ 6772 sysfs_slab_alias(s, s->name); 6773 } 6774 out: 6775 if (!unmergeable) 6776 kfree(name); 6777 return err; 6778 out_del_kobj: 6779 kobject_del(&s->kobj); 6780 goto out; 6781 } 6782 6783 void sysfs_slab_unlink(struct kmem_cache *s) 6784 { 6785 kobject_del(&s->kobj); 6786 } 6787 6788 void sysfs_slab_release(struct kmem_cache *s) 6789 { 6790 kobject_put(&s->kobj); 6791 } 6792 6793 /* 6794 * Need to buffer aliases during bootup until sysfs becomes 6795 * available lest we lose that information. 6796 */ 6797 struct saved_alias { 6798 struct kmem_cache *s; 6799 const char *name; 6800 struct saved_alias *next; 6801 }; 6802 6803 static struct saved_alias *alias_list; 6804 6805 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6806 { 6807 struct saved_alias *al; 6808 6809 if (slab_state == FULL) { 6810 /* 6811 * If we have a leftover link then remove it. 6812 */ 6813 sysfs_remove_link(&slab_kset->kobj, name); 6814 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6815 } 6816 6817 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6818 if (!al) 6819 return -ENOMEM; 6820 6821 al->s = s; 6822 al->name = name; 6823 al->next = alias_list; 6824 alias_list = al; 6825 kmsan_unpoison_memory(al, sizeof(*al)); 6826 return 0; 6827 } 6828 6829 static int __init slab_sysfs_init(void) 6830 { 6831 struct kmem_cache *s; 6832 int err; 6833 6834 mutex_lock(&slab_mutex); 6835 6836 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6837 if (!slab_kset) { 6838 mutex_unlock(&slab_mutex); 6839 pr_err("Cannot register slab subsystem.\n"); 6840 return -ENOMEM; 6841 } 6842 6843 slab_state = FULL; 6844 6845 list_for_each_entry(s, &slab_caches, list) { 6846 err = sysfs_slab_add(s); 6847 if (err) 6848 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6849 s->name); 6850 } 6851 6852 while (alias_list) { 6853 struct saved_alias *al = alias_list; 6854 6855 alias_list = alias_list->next; 6856 err = sysfs_slab_alias(al->s, al->name); 6857 if (err) 6858 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6859 al->name); 6860 kfree(al); 6861 } 6862 6863 mutex_unlock(&slab_mutex); 6864 return 0; 6865 } 6866 late_initcall(slab_sysfs_init); 6867 #endif /* SLAB_SUPPORTS_SYSFS */ 6868 6869 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6870 static int slab_debugfs_show(struct seq_file *seq, void *v) 6871 { 6872 struct loc_track *t = seq->private; 6873 struct location *l; 6874 unsigned long idx; 6875 6876 idx = (unsigned long) t->idx; 6877 if (idx < t->count) { 6878 l = &t->loc[idx]; 6879 6880 seq_printf(seq, "%7ld ", l->count); 6881 6882 if (l->addr) 6883 seq_printf(seq, "%pS", (void *)l->addr); 6884 else 6885 seq_puts(seq, "<not-available>"); 6886 6887 if (l->waste) 6888 seq_printf(seq, " waste=%lu/%lu", 6889 l->count * l->waste, l->waste); 6890 6891 if (l->sum_time != l->min_time) { 6892 seq_printf(seq, " age=%ld/%llu/%ld", 6893 l->min_time, div_u64(l->sum_time, l->count), 6894 l->max_time); 6895 } else 6896 seq_printf(seq, " age=%ld", l->min_time); 6897 6898 if (l->min_pid != l->max_pid) 6899 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6900 else 6901 seq_printf(seq, " pid=%ld", 6902 l->min_pid); 6903 6904 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6905 seq_printf(seq, " cpus=%*pbl", 6906 cpumask_pr_args(to_cpumask(l->cpus))); 6907 6908 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6909 seq_printf(seq, " nodes=%*pbl", 6910 nodemask_pr_args(&l->nodes)); 6911 6912 #ifdef CONFIG_STACKDEPOT 6913 { 6914 depot_stack_handle_t handle; 6915 unsigned long *entries; 6916 unsigned int nr_entries, j; 6917 6918 handle = READ_ONCE(l->handle); 6919 if (handle) { 6920 nr_entries = stack_depot_fetch(handle, &entries); 6921 seq_puts(seq, "\n"); 6922 for (j = 0; j < nr_entries; j++) 6923 seq_printf(seq, " %pS\n", (void *)entries[j]); 6924 } 6925 } 6926 #endif 6927 seq_puts(seq, "\n"); 6928 } 6929 6930 if (!idx && !t->count) 6931 seq_puts(seq, "No data\n"); 6932 6933 return 0; 6934 } 6935 6936 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6937 { 6938 } 6939 6940 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6941 { 6942 struct loc_track *t = seq->private; 6943 6944 t->idx = ++(*ppos); 6945 if (*ppos <= t->count) 6946 return ppos; 6947 6948 return NULL; 6949 } 6950 6951 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6952 { 6953 struct location *loc1 = (struct location *)a; 6954 struct location *loc2 = (struct location *)b; 6955 6956 if (loc1->count > loc2->count) 6957 return -1; 6958 else 6959 return 1; 6960 } 6961 6962 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6963 { 6964 struct loc_track *t = seq->private; 6965 6966 t->idx = *ppos; 6967 return ppos; 6968 } 6969 6970 static const struct seq_operations slab_debugfs_sops = { 6971 .start = slab_debugfs_start, 6972 .next = slab_debugfs_next, 6973 .stop = slab_debugfs_stop, 6974 .show = slab_debugfs_show, 6975 }; 6976 6977 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6978 { 6979 6980 struct kmem_cache_node *n; 6981 enum track_item alloc; 6982 int node; 6983 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6984 sizeof(struct loc_track)); 6985 struct kmem_cache *s = file_inode(filep)->i_private; 6986 unsigned long *obj_map; 6987 6988 if (!t) 6989 return -ENOMEM; 6990 6991 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6992 if (!obj_map) { 6993 seq_release_private(inode, filep); 6994 return -ENOMEM; 6995 } 6996 6997 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6998 alloc = TRACK_ALLOC; 6999 else 7000 alloc = TRACK_FREE; 7001 7002 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7003 bitmap_free(obj_map); 7004 seq_release_private(inode, filep); 7005 return -ENOMEM; 7006 } 7007 7008 for_each_kmem_cache_node(s, node, n) { 7009 unsigned long flags; 7010 struct slab *slab; 7011 7012 if (!node_nr_slabs(n)) 7013 continue; 7014 7015 spin_lock_irqsave(&n->list_lock, flags); 7016 list_for_each_entry(slab, &n->partial, slab_list) 7017 process_slab(t, s, slab, alloc, obj_map); 7018 list_for_each_entry(slab, &n->full, slab_list) 7019 process_slab(t, s, slab, alloc, obj_map); 7020 spin_unlock_irqrestore(&n->list_lock, flags); 7021 } 7022 7023 /* Sort locations by count */ 7024 sort_r(t->loc, t->count, sizeof(struct location), 7025 cmp_loc_by_count, NULL, NULL); 7026 7027 bitmap_free(obj_map); 7028 return 0; 7029 } 7030 7031 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7032 { 7033 struct seq_file *seq = file->private_data; 7034 struct loc_track *t = seq->private; 7035 7036 free_loc_track(t); 7037 return seq_release_private(inode, file); 7038 } 7039 7040 static const struct file_operations slab_debugfs_fops = { 7041 .open = slab_debug_trace_open, 7042 .read = seq_read, 7043 .llseek = seq_lseek, 7044 .release = slab_debug_trace_release, 7045 }; 7046 7047 static void debugfs_slab_add(struct kmem_cache *s) 7048 { 7049 struct dentry *slab_cache_dir; 7050 7051 if (unlikely(!slab_debugfs_root)) 7052 return; 7053 7054 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7055 7056 debugfs_create_file("alloc_traces", 0400, 7057 slab_cache_dir, s, &slab_debugfs_fops); 7058 7059 debugfs_create_file("free_traces", 0400, 7060 slab_cache_dir, s, &slab_debugfs_fops); 7061 } 7062 7063 void debugfs_slab_release(struct kmem_cache *s) 7064 { 7065 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7066 } 7067 7068 static int __init slab_debugfs_init(void) 7069 { 7070 struct kmem_cache *s; 7071 7072 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7073 7074 list_for_each_entry(s, &slab_caches, list) 7075 if (s->flags & SLAB_STORE_USER) 7076 debugfs_slab_add(s); 7077 7078 return 0; 7079 7080 } 7081 __initcall(slab_debugfs_init); 7082 #endif 7083 /* 7084 * The /proc/slabinfo ABI 7085 */ 7086 #ifdef CONFIG_SLUB_DEBUG 7087 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7088 { 7089 unsigned long nr_slabs = 0; 7090 unsigned long nr_objs = 0; 7091 unsigned long nr_free = 0; 7092 int node; 7093 struct kmem_cache_node *n; 7094 7095 for_each_kmem_cache_node(s, node, n) { 7096 nr_slabs += node_nr_slabs(n); 7097 nr_objs += node_nr_objs(n); 7098 nr_free += count_partial(n, count_free); 7099 } 7100 7101 sinfo->active_objs = nr_objs - nr_free; 7102 sinfo->num_objs = nr_objs; 7103 sinfo->active_slabs = nr_slabs; 7104 sinfo->num_slabs = nr_slabs; 7105 sinfo->objects_per_slab = oo_objects(s->oo); 7106 sinfo->cache_order = oo_order(s->oo); 7107 } 7108 7109 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 7110 { 7111 } 7112 7113 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 7114 size_t count, loff_t *ppos) 7115 { 7116 return -EIO; 7117 } 7118 #endif /* CONFIG_SLUB_DEBUG */ 7119