1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kmemtrace.h> 21 #include <linux/kmemcheck.h> 22 #include <linux/cpu.h> 23 #include <linux/cpuset.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 32 /* 33 * Lock order: 34 * 1. slab_lock(page) 35 * 2. slab->list_lock 36 * 37 * The slab_lock protects operations on the object of a particular 38 * slab and its metadata in the page struct. If the slab lock 39 * has been taken then no allocations nor frees can be performed 40 * on the objects in the slab nor can the slab be added or removed 41 * from the partial or full lists since this would mean modifying 42 * the page_struct of the slab. 43 * 44 * The list_lock protects the partial and full list on each node and 45 * the partial slab counter. If taken then no new slabs may be added or 46 * removed from the lists nor make the number of partial slabs be modified. 47 * (Note that the total number of slabs is an atomic value that may be 48 * modified without taking the list lock). 49 * 50 * The list_lock is a centralized lock and thus we avoid taking it as 51 * much as possible. As long as SLUB does not have to handle partial 52 * slabs, operations can continue without any centralized lock. F.e. 53 * allocating a long series of objects that fill up slabs does not require 54 * the list lock. 55 * 56 * The lock order is sometimes inverted when we are trying to get a slab 57 * off a list. We take the list_lock and then look for a page on the list 58 * to use. While we do that objects in the slabs may be freed. We can 59 * only operate on the slab if we have also taken the slab_lock. So we use 60 * a slab_trylock() on the slab. If trylock was successful then no frees 61 * can occur anymore and we can use the slab for allocations etc. If the 62 * slab_trylock() does not succeed then frees are in progress in the slab and 63 * we must stay away from it for a while since we may cause a bouncing 64 * cacheline if we try to acquire the lock. So go onto the next slab. 65 * If all pages are busy then we may allocate a new slab instead of reusing 66 * a partial slab. A new slab has noone operating on it and thus there is 67 * no danger of cacheline contention. 68 * 69 * Interrupts are disabled during allocation and deallocation in order to 70 * make the slab allocator safe to use in the context of an irq. In addition 71 * interrupts are disabled to ensure that the processor does not change 72 * while handling per_cpu slabs, due to kernel preemption. 73 * 74 * SLUB assigns one slab for allocation to each processor. 75 * Allocations only occur from these slabs called cpu slabs. 76 * 77 * Slabs with free elements are kept on a partial list and during regular 78 * operations no list for full slabs is used. If an object in a full slab is 79 * freed then the slab will show up again on the partial lists. 80 * We track full slabs for debugging purposes though because otherwise we 81 * cannot scan all objects. 82 * 83 * Slabs are freed when they become empty. Teardown and setup is 84 * minimal so we rely on the page allocators per cpu caches for 85 * fast frees and allocs. 86 * 87 * Overloading of page flags that are otherwise used for LRU management. 88 * 89 * PageActive The slab is frozen and exempt from list processing. 90 * This means that the slab is dedicated to a purpose 91 * such as satisfying allocations for a specific 92 * processor. Objects may be freed in the slab while 93 * it is frozen but slab_free will then skip the usual 94 * list operations. It is up to the processor holding 95 * the slab to integrate the slab into the slab lists 96 * when the slab is no longer needed. 97 * 98 * One use of this flag is to mark slabs that are 99 * used for allocations. Then such a slab becomes a cpu 100 * slab. The cpu slab may be equipped with an additional 101 * freelist that allows lockless access to 102 * free objects in addition to the regular freelist 103 * that requires the slab lock. 104 * 105 * PageError Slab requires special handling due to debug 106 * options set. This moves slab handling out of 107 * the fast path and disables lockless freelists. 108 */ 109 110 #ifdef CONFIG_SLUB_DEBUG 111 #define SLABDEBUG 1 112 #else 113 #define SLABDEBUG 0 114 #endif 115 116 /* 117 * Issues still to be resolved: 118 * 119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 120 * 121 * - Variable sizing of the per node arrays 122 */ 123 124 /* Enable to test recovery from slab corruption on boot */ 125 #undef SLUB_RESILIENCY_TEST 126 127 /* 128 * Mininum number of partial slabs. These will be left on the partial 129 * lists even if they are empty. kmem_cache_shrink may reclaim them. 130 */ 131 #define MIN_PARTIAL 5 132 133 /* 134 * Maximum number of desirable partial slabs. 135 * The existence of more partial slabs makes kmem_cache_shrink 136 * sort the partial list by the number of objects in the. 137 */ 138 #define MAX_PARTIAL 10 139 140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 141 SLAB_POISON | SLAB_STORE_USER) 142 143 /* 144 * Set of flags that will prevent slab merging 145 */ 146 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 147 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE) 148 149 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 150 SLAB_CACHE_DMA | SLAB_NOTRACK) 151 152 #ifndef ARCH_KMALLOC_MINALIGN 153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 154 #endif 155 156 #ifndef ARCH_SLAB_MINALIGN 157 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 158 #endif 159 160 #define OO_SHIFT 16 161 #define OO_MASK ((1 << OO_SHIFT) - 1) 162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 163 164 /* Internal SLUB flags */ 165 #define __OBJECT_POISON 0x80000000 /* Poison object */ 166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 167 168 static int kmem_size = sizeof(struct kmem_cache); 169 170 #ifdef CONFIG_SMP 171 static struct notifier_block slab_notifier; 172 #endif 173 174 static enum { 175 DOWN, /* No slab functionality available */ 176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 177 UP, /* Everything works but does not show up in sysfs */ 178 SYSFS /* Sysfs up */ 179 } slab_state = DOWN; 180 181 /* A list of all slab caches on the system */ 182 static DECLARE_RWSEM(slub_lock); 183 static LIST_HEAD(slab_caches); 184 185 /* 186 * Tracking user of a slab. 187 */ 188 struct track { 189 unsigned long addr; /* Called from address */ 190 int cpu; /* Was running on cpu */ 191 int pid; /* Pid context */ 192 unsigned long when; /* When did the operation occur */ 193 }; 194 195 enum track_item { TRACK_ALLOC, TRACK_FREE }; 196 197 #ifdef CONFIG_SLUB_DEBUG 198 static int sysfs_slab_add(struct kmem_cache *); 199 static int sysfs_slab_alias(struct kmem_cache *, const char *); 200 static void sysfs_slab_remove(struct kmem_cache *); 201 202 #else 203 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 204 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 205 { return 0; } 206 static inline void sysfs_slab_remove(struct kmem_cache *s) 207 { 208 kfree(s); 209 } 210 211 #endif 212 213 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) 214 { 215 #ifdef CONFIG_SLUB_STATS 216 c->stat[si]++; 217 #endif 218 } 219 220 /******************************************************************** 221 * Core slab cache functions 222 *******************************************************************/ 223 224 int slab_is_available(void) 225 { 226 return slab_state >= UP; 227 } 228 229 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 230 { 231 #ifdef CONFIG_NUMA 232 return s->node[node]; 233 #else 234 return &s->local_node; 235 #endif 236 } 237 238 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 239 { 240 #ifdef CONFIG_SMP 241 return s->cpu_slab[cpu]; 242 #else 243 return &s->cpu_slab; 244 #endif 245 } 246 247 /* Verify that a pointer has an address that is valid within a slab page */ 248 static inline int check_valid_pointer(struct kmem_cache *s, 249 struct page *page, const void *object) 250 { 251 void *base; 252 253 if (!object) 254 return 1; 255 256 base = page_address(page); 257 if (object < base || object >= base + page->objects * s->size || 258 (object - base) % s->size) { 259 return 0; 260 } 261 262 return 1; 263 } 264 265 /* 266 * Slow version of get and set free pointer. 267 * 268 * This version requires touching the cache lines of kmem_cache which 269 * we avoid to do in the fast alloc free paths. There we obtain the offset 270 * from the page struct. 271 */ 272 static inline void *get_freepointer(struct kmem_cache *s, void *object) 273 { 274 return *(void **)(object + s->offset); 275 } 276 277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 278 { 279 *(void **)(object + s->offset) = fp; 280 } 281 282 /* Loop over all objects in a slab */ 283 #define for_each_object(__p, __s, __addr, __objects) \ 284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 285 __p += (__s)->size) 286 287 /* Scan freelist */ 288 #define for_each_free_object(__p, __s, __free) \ 289 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 290 291 /* Determine object index from a given position */ 292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 293 { 294 return (p - addr) / s->size; 295 } 296 297 static inline struct kmem_cache_order_objects oo_make(int order, 298 unsigned long size) 299 { 300 struct kmem_cache_order_objects x = { 301 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 302 }; 303 304 return x; 305 } 306 307 static inline int oo_order(struct kmem_cache_order_objects x) 308 { 309 return x.x >> OO_SHIFT; 310 } 311 312 static inline int oo_objects(struct kmem_cache_order_objects x) 313 { 314 return x.x & OO_MASK; 315 } 316 317 #ifdef CONFIG_SLUB_DEBUG 318 /* 319 * Debug settings: 320 */ 321 #ifdef CONFIG_SLUB_DEBUG_ON 322 static int slub_debug = DEBUG_DEFAULT_FLAGS; 323 #else 324 static int slub_debug; 325 #endif 326 327 static char *slub_debug_slabs; 328 329 /* 330 * Object debugging 331 */ 332 static void print_section(char *text, u8 *addr, unsigned int length) 333 { 334 int i, offset; 335 int newline = 1; 336 char ascii[17]; 337 338 ascii[16] = 0; 339 340 for (i = 0; i < length; i++) { 341 if (newline) { 342 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 343 newline = 0; 344 } 345 printk(KERN_CONT " %02x", addr[i]); 346 offset = i % 16; 347 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 348 if (offset == 15) { 349 printk(KERN_CONT " %s\n", ascii); 350 newline = 1; 351 } 352 } 353 if (!newline) { 354 i %= 16; 355 while (i < 16) { 356 printk(KERN_CONT " "); 357 ascii[i] = ' '; 358 i++; 359 } 360 printk(KERN_CONT " %s\n", ascii); 361 } 362 } 363 364 static struct track *get_track(struct kmem_cache *s, void *object, 365 enum track_item alloc) 366 { 367 struct track *p; 368 369 if (s->offset) 370 p = object + s->offset + sizeof(void *); 371 else 372 p = object + s->inuse; 373 374 return p + alloc; 375 } 376 377 static void set_track(struct kmem_cache *s, void *object, 378 enum track_item alloc, unsigned long addr) 379 { 380 struct track *p = get_track(s, object, alloc); 381 382 if (addr) { 383 p->addr = addr; 384 p->cpu = smp_processor_id(); 385 p->pid = current->pid; 386 p->when = jiffies; 387 } else 388 memset(p, 0, sizeof(struct track)); 389 } 390 391 static void init_tracking(struct kmem_cache *s, void *object) 392 { 393 if (!(s->flags & SLAB_STORE_USER)) 394 return; 395 396 set_track(s, object, TRACK_FREE, 0UL); 397 set_track(s, object, TRACK_ALLOC, 0UL); 398 } 399 400 static void print_track(const char *s, struct track *t) 401 { 402 if (!t->addr) 403 return; 404 405 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 406 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 407 } 408 409 static void print_tracking(struct kmem_cache *s, void *object) 410 { 411 if (!(s->flags & SLAB_STORE_USER)) 412 return; 413 414 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 415 print_track("Freed", get_track(s, object, TRACK_FREE)); 416 } 417 418 static void print_page_info(struct page *page) 419 { 420 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 421 page, page->objects, page->inuse, page->freelist, page->flags); 422 423 } 424 425 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 426 { 427 va_list args; 428 char buf[100]; 429 430 va_start(args, fmt); 431 vsnprintf(buf, sizeof(buf), fmt, args); 432 va_end(args); 433 printk(KERN_ERR "========================================" 434 "=====================================\n"); 435 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 436 printk(KERN_ERR "----------------------------------------" 437 "-------------------------------------\n\n"); 438 } 439 440 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 441 { 442 va_list args; 443 char buf[100]; 444 445 va_start(args, fmt); 446 vsnprintf(buf, sizeof(buf), fmt, args); 447 va_end(args); 448 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 449 } 450 451 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 452 { 453 unsigned int off; /* Offset of last byte */ 454 u8 *addr = page_address(page); 455 456 print_tracking(s, p); 457 458 print_page_info(page); 459 460 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 461 p, p - addr, get_freepointer(s, p)); 462 463 if (p > addr + 16) 464 print_section("Bytes b4", p - 16, 16); 465 466 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 467 468 if (s->flags & SLAB_RED_ZONE) 469 print_section("Redzone", p + s->objsize, 470 s->inuse - s->objsize); 471 472 if (s->offset) 473 off = s->offset + sizeof(void *); 474 else 475 off = s->inuse; 476 477 if (s->flags & SLAB_STORE_USER) 478 off += 2 * sizeof(struct track); 479 480 if (off != s->size) 481 /* Beginning of the filler is the free pointer */ 482 print_section("Padding", p + off, s->size - off); 483 484 dump_stack(); 485 } 486 487 static void object_err(struct kmem_cache *s, struct page *page, 488 u8 *object, char *reason) 489 { 490 slab_bug(s, "%s", reason); 491 print_trailer(s, page, object); 492 } 493 494 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 495 { 496 va_list args; 497 char buf[100]; 498 499 va_start(args, fmt); 500 vsnprintf(buf, sizeof(buf), fmt, args); 501 va_end(args); 502 slab_bug(s, "%s", buf); 503 print_page_info(page); 504 dump_stack(); 505 } 506 507 static void init_object(struct kmem_cache *s, void *object, int active) 508 { 509 u8 *p = object; 510 511 if (s->flags & __OBJECT_POISON) { 512 memset(p, POISON_FREE, s->objsize - 1); 513 p[s->objsize - 1] = POISON_END; 514 } 515 516 if (s->flags & SLAB_RED_ZONE) 517 memset(p + s->objsize, 518 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 519 s->inuse - s->objsize); 520 } 521 522 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 523 { 524 while (bytes) { 525 if (*start != (u8)value) 526 return start; 527 start++; 528 bytes--; 529 } 530 return NULL; 531 } 532 533 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 534 void *from, void *to) 535 { 536 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 537 memset(from, data, to - from); 538 } 539 540 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 541 u8 *object, char *what, 542 u8 *start, unsigned int value, unsigned int bytes) 543 { 544 u8 *fault; 545 u8 *end; 546 547 fault = check_bytes(start, value, bytes); 548 if (!fault) 549 return 1; 550 551 end = start + bytes; 552 while (end > fault && end[-1] == value) 553 end--; 554 555 slab_bug(s, "%s overwritten", what); 556 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 557 fault, end - 1, fault[0], value); 558 print_trailer(s, page, object); 559 560 restore_bytes(s, what, value, fault, end); 561 return 0; 562 } 563 564 /* 565 * Object layout: 566 * 567 * object address 568 * Bytes of the object to be managed. 569 * If the freepointer may overlay the object then the free 570 * pointer is the first word of the object. 571 * 572 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 573 * 0xa5 (POISON_END) 574 * 575 * object + s->objsize 576 * Padding to reach word boundary. This is also used for Redzoning. 577 * Padding is extended by another word if Redzoning is enabled and 578 * objsize == inuse. 579 * 580 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 581 * 0xcc (RED_ACTIVE) for objects in use. 582 * 583 * object + s->inuse 584 * Meta data starts here. 585 * 586 * A. Free pointer (if we cannot overwrite object on free) 587 * B. Tracking data for SLAB_STORE_USER 588 * C. Padding to reach required alignment boundary or at mininum 589 * one word if debugging is on to be able to detect writes 590 * before the word boundary. 591 * 592 * Padding is done using 0x5a (POISON_INUSE) 593 * 594 * object + s->size 595 * Nothing is used beyond s->size. 596 * 597 * If slabcaches are merged then the objsize and inuse boundaries are mostly 598 * ignored. And therefore no slab options that rely on these boundaries 599 * may be used with merged slabcaches. 600 */ 601 602 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 603 { 604 unsigned long off = s->inuse; /* The end of info */ 605 606 if (s->offset) 607 /* Freepointer is placed after the object. */ 608 off += sizeof(void *); 609 610 if (s->flags & SLAB_STORE_USER) 611 /* We also have user information there */ 612 off += 2 * sizeof(struct track); 613 614 if (s->size == off) 615 return 1; 616 617 return check_bytes_and_report(s, page, p, "Object padding", 618 p + off, POISON_INUSE, s->size - off); 619 } 620 621 /* Check the pad bytes at the end of a slab page */ 622 static int slab_pad_check(struct kmem_cache *s, struct page *page) 623 { 624 u8 *start; 625 u8 *fault; 626 u8 *end; 627 int length; 628 int remainder; 629 630 if (!(s->flags & SLAB_POISON)) 631 return 1; 632 633 start = page_address(page); 634 length = (PAGE_SIZE << compound_order(page)); 635 end = start + length; 636 remainder = length % s->size; 637 if (!remainder) 638 return 1; 639 640 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 641 if (!fault) 642 return 1; 643 while (end > fault && end[-1] == POISON_INUSE) 644 end--; 645 646 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 647 print_section("Padding", end - remainder, remainder); 648 649 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 650 return 0; 651 } 652 653 static int check_object(struct kmem_cache *s, struct page *page, 654 void *object, int active) 655 { 656 u8 *p = object; 657 u8 *endobject = object + s->objsize; 658 659 if (s->flags & SLAB_RED_ZONE) { 660 unsigned int red = 661 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 662 663 if (!check_bytes_and_report(s, page, object, "Redzone", 664 endobject, red, s->inuse - s->objsize)) 665 return 0; 666 } else { 667 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 668 check_bytes_and_report(s, page, p, "Alignment padding", 669 endobject, POISON_INUSE, s->inuse - s->objsize); 670 } 671 } 672 673 if (s->flags & SLAB_POISON) { 674 if (!active && (s->flags & __OBJECT_POISON) && 675 (!check_bytes_and_report(s, page, p, "Poison", p, 676 POISON_FREE, s->objsize - 1) || 677 !check_bytes_and_report(s, page, p, "Poison", 678 p + s->objsize - 1, POISON_END, 1))) 679 return 0; 680 /* 681 * check_pad_bytes cleans up on its own. 682 */ 683 check_pad_bytes(s, page, p); 684 } 685 686 if (!s->offset && active) 687 /* 688 * Object and freepointer overlap. Cannot check 689 * freepointer while object is allocated. 690 */ 691 return 1; 692 693 /* Check free pointer validity */ 694 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 695 object_err(s, page, p, "Freepointer corrupt"); 696 /* 697 * No choice but to zap it and thus lose the remainder 698 * of the free objects in this slab. May cause 699 * another error because the object count is now wrong. 700 */ 701 set_freepointer(s, p, NULL); 702 return 0; 703 } 704 return 1; 705 } 706 707 static int check_slab(struct kmem_cache *s, struct page *page) 708 { 709 int maxobj; 710 711 VM_BUG_ON(!irqs_disabled()); 712 713 if (!PageSlab(page)) { 714 slab_err(s, page, "Not a valid slab page"); 715 return 0; 716 } 717 718 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 719 if (page->objects > maxobj) { 720 slab_err(s, page, "objects %u > max %u", 721 s->name, page->objects, maxobj); 722 return 0; 723 } 724 if (page->inuse > page->objects) { 725 slab_err(s, page, "inuse %u > max %u", 726 s->name, page->inuse, page->objects); 727 return 0; 728 } 729 /* Slab_pad_check fixes things up after itself */ 730 slab_pad_check(s, page); 731 return 1; 732 } 733 734 /* 735 * Determine if a certain object on a page is on the freelist. Must hold the 736 * slab lock to guarantee that the chains are in a consistent state. 737 */ 738 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 739 { 740 int nr = 0; 741 void *fp = page->freelist; 742 void *object = NULL; 743 unsigned long max_objects; 744 745 while (fp && nr <= page->objects) { 746 if (fp == search) 747 return 1; 748 if (!check_valid_pointer(s, page, fp)) { 749 if (object) { 750 object_err(s, page, object, 751 "Freechain corrupt"); 752 set_freepointer(s, object, NULL); 753 break; 754 } else { 755 slab_err(s, page, "Freepointer corrupt"); 756 page->freelist = NULL; 757 page->inuse = page->objects; 758 slab_fix(s, "Freelist cleared"); 759 return 0; 760 } 761 break; 762 } 763 object = fp; 764 fp = get_freepointer(s, object); 765 nr++; 766 } 767 768 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 769 if (max_objects > MAX_OBJS_PER_PAGE) 770 max_objects = MAX_OBJS_PER_PAGE; 771 772 if (page->objects != max_objects) { 773 slab_err(s, page, "Wrong number of objects. Found %d but " 774 "should be %d", page->objects, max_objects); 775 page->objects = max_objects; 776 slab_fix(s, "Number of objects adjusted."); 777 } 778 if (page->inuse != page->objects - nr) { 779 slab_err(s, page, "Wrong object count. Counter is %d but " 780 "counted were %d", page->inuse, page->objects - nr); 781 page->inuse = page->objects - nr; 782 slab_fix(s, "Object count adjusted."); 783 } 784 return search == NULL; 785 } 786 787 static void trace(struct kmem_cache *s, struct page *page, void *object, 788 int alloc) 789 { 790 if (s->flags & SLAB_TRACE) { 791 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 792 s->name, 793 alloc ? "alloc" : "free", 794 object, page->inuse, 795 page->freelist); 796 797 if (!alloc) 798 print_section("Object", (void *)object, s->objsize); 799 800 dump_stack(); 801 } 802 } 803 804 /* 805 * Tracking of fully allocated slabs for debugging purposes. 806 */ 807 static void add_full(struct kmem_cache_node *n, struct page *page) 808 { 809 spin_lock(&n->list_lock); 810 list_add(&page->lru, &n->full); 811 spin_unlock(&n->list_lock); 812 } 813 814 static void remove_full(struct kmem_cache *s, struct page *page) 815 { 816 struct kmem_cache_node *n; 817 818 if (!(s->flags & SLAB_STORE_USER)) 819 return; 820 821 n = get_node(s, page_to_nid(page)); 822 823 spin_lock(&n->list_lock); 824 list_del(&page->lru); 825 spin_unlock(&n->list_lock); 826 } 827 828 /* Tracking of the number of slabs for debugging purposes */ 829 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 830 { 831 struct kmem_cache_node *n = get_node(s, node); 832 833 return atomic_long_read(&n->nr_slabs); 834 } 835 836 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 837 { 838 return atomic_long_read(&n->nr_slabs); 839 } 840 841 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 842 { 843 struct kmem_cache_node *n = get_node(s, node); 844 845 /* 846 * May be called early in order to allocate a slab for the 847 * kmem_cache_node structure. Solve the chicken-egg 848 * dilemma by deferring the increment of the count during 849 * bootstrap (see early_kmem_cache_node_alloc). 850 */ 851 if (!NUMA_BUILD || n) { 852 atomic_long_inc(&n->nr_slabs); 853 atomic_long_add(objects, &n->total_objects); 854 } 855 } 856 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 857 { 858 struct kmem_cache_node *n = get_node(s, node); 859 860 atomic_long_dec(&n->nr_slabs); 861 atomic_long_sub(objects, &n->total_objects); 862 } 863 864 /* Object debug checks for alloc/free paths */ 865 static void setup_object_debug(struct kmem_cache *s, struct page *page, 866 void *object) 867 { 868 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 869 return; 870 871 init_object(s, object, 0); 872 init_tracking(s, object); 873 } 874 875 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 876 void *object, unsigned long addr) 877 { 878 if (!check_slab(s, page)) 879 goto bad; 880 881 if (!on_freelist(s, page, object)) { 882 object_err(s, page, object, "Object already allocated"); 883 goto bad; 884 } 885 886 if (!check_valid_pointer(s, page, object)) { 887 object_err(s, page, object, "Freelist Pointer check fails"); 888 goto bad; 889 } 890 891 if (!check_object(s, page, object, 0)) 892 goto bad; 893 894 /* Success perform special debug activities for allocs */ 895 if (s->flags & SLAB_STORE_USER) 896 set_track(s, object, TRACK_ALLOC, addr); 897 trace(s, page, object, 1); 898 init_object(s, object, 1); 899 return 1; 900 901 bad: 902 if (PageSlab(page)) { 903 /* 904 * If this is a slab page then lets do the best we can 905 * to avoid issues in the future. Marking all objects 906 * as used avoids touching the remaining objects. 907 */ 908 slab_fix(s, "Marking all objects used"); 909 page->inuse = page->objects; 910 page->freelist = NULL; 911 } 912 return 0; 913 } 914 915 static int free_debug_processing(struct kmem_cache *s, struct page *page, 916 void *object, unsigned long addr) 917 { 918 if (!check_slab(s, page)) 919 goto fail; 920 921 if (!check_valid_pointer(s, page, object)) { 922 slab_err(s, page, "Invalid object pointer 0x%p", object); 923 goto fail; 924 } 925 926 if (on_freelist(s, page, object)) { 927 object_err(s, page, object, "Object already free"); 928 goto fail; 929 } 930 931 if (!check_object(s, page, object, 1)) 932 return 0; 933 934 if (unlikely(s != page->slab)) { 935 if (!PageSlab(page)) { 936 slab_err(s, page, "Attempt to free object(0x%p) " 937 "outside of slab", object); 938 } else if (!page->slab) { 939 printk(KERN_ERR 940 "SLUB <none>: no slab for object 0x%p.\n", 941 object); 942 dump_stack(); 943 } else 944 object_err(s, page, object, 945 "page slab pointer corrupt."); 946 goto fail; 947 } 948 949 /* Special debug activities for freeing objects */ 950 if (!PageSlubFrozen(page) && !page->freelist) 951 remove_full(s, page); 952 if (s->flags & SLAB_STORE_USER) 953 set_track(s, object, TRACK_FREE, addr); 954 trace(s, page, object, 0); 955 init_object(s, object, 0); 956 return 1; 957 958 fail: 959 slab_fix(s, "Object at 0x%p not freed", object); 960 return 0; 961 } 962 963 static int __init setup_slub_debug(char *str) 964 { 965 slub_debug = DEBUG_DEFAULT_FLAGS; 966 if (*str++ != '=' || !*str) 967 /* 968 * No options specified. Switch on full debugging. 969 */ 970 goto out; 971 972 if (*str == ',') 973 /* 974 * No options but restriction on slabs. This means full 975 * debugging for slabs matching a pattern. 976 */ 977 goto check_slabs; 978 979 slub_debug = 0; 980 if (*str == '-') 981 /* 982 * Switch off all debugging measures. 983 */ 984 goto out; 985 986 /* 987 * Determine which debug features should be switched on 988 */ 989 for (; *str && *str != ','; str++) { 990 switch (tolower(*str)) { 991 case 'f': 992 slub_debug |= SLAB_DEBUG_FREE; 993 break; 994 case 'z': 995 slub_debug |= SLAB_RED_ZONE; 996 break; 997 case 'p': 998 slub_debug |= SLAB_POISON; 999 break; 1000 case 'u': 1001 slub_debug |= SLAB_STORE_USER; 1002 break; 1003 case 't': 1004 slub_debug |= SLAB_TRACE; 1005 break; 1006 default: 1007 printk(KERN_ERR "slub_debug option '%c' " 1008 "unknown. skipped\n", *str); 1009 } 1010 } 1011 1012 check_slabs: 1013 if (*str == ',') 1014 slub_debug_slabs = str + 1; 1015 out: 1016 return 1; 1017 } 1018 1019 __setup("slub_debug", setup_slub_debug); 1020 1021 static unsigned long kmem_cache_flags(unsigned long objsize, 1022 unsigned long flags, const char *name, 1023 void (*ctor)(void *)) 1024 { 1025 /* 1026 * Enable debugging if selected on the kernel commandline. 1027 */ 1028 if (slub_debug && (!slub_debug_slabs || 1029 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) 1030 flags |= slub_debug; 1031 1032 return flags; 1033 } 1034 #else 1035 static inline void setup_object_debug(struct kmem_cache *s, 1036 struct page *page, void *object) {} 1037 1038 static inline int alloc_debug_processing(struct kmem_cache *s, 1039 struct page *page, void *object, unsigned long addr) { return 0; } 1040 1041 static inline int free_debug_processing(struct kmem_cache *s, 1042 struct page *page, void *object, unsigned long addr) { return 0; } 1043 1044 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1045 { return 1; } 1046 static inline int check_object(struct kmem_cache *s, struct page *page, 1047 void *object, int active) { return 1; } 1048 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1049 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1050 unsigned long flags, const char *name, 1051 void (*ctor)(void *)) 1052 { 1053 return flags; 1054 } 1055 #define slub_debug 0 1056 1057 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1058 { return 0; } 1059 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1060 { return 0; } 1061 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1062 int objects) {} 1063 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1064 int objects) {} 1065 #endif 1066 1067 /* 1068 * Slab allocation and freeing 1069 */ 1070 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1071 struct kmem_cache_order_objects oo) 1072 { 1073 int order = oo_order(oo); 1074 1075 flags |= __GFP_NOTRACK; 1076 1077 if (node == -1) 1078 return alloc_pages(flags, order); 1079 else 1080 return alloc_pages_node(node, flags, order); 1081 } 1082 1083 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1084 { 1085 struct page *page; 1086 struct kmem_cache_order_objects oo = s->oo; 1087 gfp_t alloc_gfp; 1088 1089 flags |= s->allocflags; 1090 1091 /* 1092 * Let the initial higher-order allocation fail under memory pressure 1093 * so we fall-back to the minimum order allocation. 1094 */ 1095 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1096 1097 page = alloc_slab_page(alloc_gfp, node, oo); 1098 if (unlikely(!page)) { 1099 oo = s->min; 1100 /* 1101 * Allocation may have failed due to fragmentation. 1102 * Try a lower order alloc if possible 1103 */ 1104 page = alloc_slab_page(flags, node, oo); 1105 if (!page) 1106 return NULL; 1107 1108 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); 1109 } 1110 1111 if (kmemcheck_enabled 1112 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) 1113 { 1114 int pages = 1 << oo_order(oo); 1115 1116 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1117 1118 /* 1119 * Objects from caches that have a constructor don't get 1120 * cleared when they're allocated, so we need to do it here. 1121 */ 1122 if (s->ctor) 1123 kmemcheck_mark_uninitialized_pages(page, pages); 1124 else 1125 kmemcheck_mark_unallocated_pages(page, pages); 1126 } 1127 1128 page->objects = oo_objects(oo); 1129 mod_zone_page_state(page_zone(page), 1130 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1131 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1132 1 << oo_order(oo)); 1133 1134 return page; 1135 } 1136 1137 static void setup_object(struct kmem_cache *s, struct page *page, 1138 void *object) 1139 { 1140 setup_object_debug(s, page, object); 1141 if (unlikely(s->ctor)) 1142 s->ctor(object); 1143 } 1144 1145 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1146 { 1147 struct page *page; 1148 void *start; 1149 void *last; 1150 void *p; 1151 1152 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1153 1154 page = allocate_slab(s, 1155 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1156 if (!page) 1157 goto out; 1158 1159 inc_slabs_node(s, page_to_nid(page), page->objects); 1160 page->slab = s; 1161 page->flags |= 1 << PG_slab; 1162 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1163 SLAB_STORE_USER | SLAB_TRACE)) 1164 __SetPageSlubDebug(page); 1165 1166 start = page_address(page); 1167 1168 if (unlikely(s->flags & SLAB_POISON)) 1169 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1170 1171 last = start; 1172 for_each_object(p, s, start, page->objects) { 1173 setup_object(s, page, last); 1174 set_freepointer(s, last, p); 1175 last = p; 1176 } 1177 setup_object(s, page, last); 1178 set_freepointer(s, last, NULL); 1179 1180 page->freelist = start; 1181 page->inuse = 0; 1182 out: 1183 return page; 1184 } 1185 1186 static void __free_slab(struct kmem_cache *s, struct page *page) 1187 { 1188 int order = compound_order(page); 1189 int pages = 1 << order; 1190 1191 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1192 void *p; 1193 1194 slab_pad_check(s, page); 1195 for_each_object(p, s, page_address(page), 1196 page->objects) 1197 check_object(s, page, p, 0); 1198 __ClearPageSlubDebug(page); 1199 } 1200 1201 kmemcheck_free_shadow(page, compound_order(page)); 1202 1203 mod_zone_page_state(page_zone(page), 1204 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1205 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1206 -pages); 1207 1208 __ClearPageSlab(page); 1209 reset_page_mapcount(page); 1210 if (current->reclaim_state) 1211 current->reclaim_state->reclaimed_slab += pages; 1212 __free_pages(page, order); 1213 } 1214 1215 static void rcu_free_slab(struct rcu_head *h) 1216 { 1217 struct page *page; 1218 1219 page = container_of((struct list_head *)h, struct page, lru); 1220 __free_slab(page->slab, page); 1221 } 1222 1223 static void free_slab(struct kmem_cache *s, struct page *page) 1224 { 1225 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1226 /* 1227 * RCU free overloads the RCU head over the LRU 1228 */ 1229 struct rcu_head *head = (void *)&page->lru; 1230 1231 call_rcu(head, rcu_free_slab); 1232 } else 1233 __free_slab(s, page); 1234 } 1235 1236 static void discard_slab(struct kmem_cache *s, struct page *page) 1237 { 1238 dec_slabs_node(s, page_to_nid(page), page->objects); 1239 free_slab(s, page); 1240 } 1241 1242 /* 1243 * Per slab locking using the pagelock 1244 */ 1245 static __always_inline void slab_lock(struct page *page) 1246 { 1247 bit_spin_lock(PG_locked, &page->flags); 1248 } 1249 1250 static __always_inline void slab_unlock(struct page *page) 1251 { 1252 __bit_spin_unlock(PG_locked, &page->flags); 1253 } 1254 1255 static __always_inline int slab_trylock(struct page *page) 1256 { 1257 int rc = 1; 1258 1259 rc = bit_spin_trylock(PG_locked, &page->flags); 1260 return rc; 1261 } 1262 1263 /* 1264 * Management of partially allocated slabs 1265 */ 1266 static void add_partial(struct kmem_cache_node *n, 1267 struct page *page, int tail) 1268 { 1269 spin_lock(&n->list_lock); 1270 n->nr_partial++; 1271 if (tail) 1272 list_add_tail(&page->lru, &n->partial); 1273 else 1274 list_add(&page->lru, &n->partial); 1275 spin_unlock(&n->list_lock); 1276 } 1277 1278 static void remove_partial(struct kmem_cache *s, struct page *page) 1279 { 1280 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1281 1282 spin_lock(&n->list_lock); 1283 list_del(&page->lru); 1284 n->nr_partial--; 1285 spin_unlock(&n->list_lock); 1286 } 1287 1288 /* 1289 * Lock slab and remove from the partial list. 1290 * 1291 * Must hold list_lock. 1292 */ 1293 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1294 struct page *page) 1295 { 1296 if (slab_trylock(page)) { 1297 list_del(&page->lru); 1298 n->nr_partial--; 1299 __SetPageSlubFrozen(page); 1300 return 1; 1301 } 1302 return 0; 1303 } 1304 1305 /* 1306 * Try to allocate a partial slab from a specific node. 1307 */ 1308 static struct page *get_partial_node(struct kmem_cache_node *n) 1309 { 1310 struct page *page; 1311 1312 /* 1313 * Racy check. If we mistakenly see no partial slabs then we 1314 * just allocate an empty slab. If we mistakenly try to get a 1315 * partial slab and there is none available then get_partials() 1316 * will return NULL. 1317 */ 1318 if (!n || !n->nr_partial) 1319 return NULL; 1320 1321 spin_lock(&n->list_lock); 1322 list_for_each_entry(page, &n->partial, lru) 1323 if (lock_and_freeze_slab(n, page)) 1324 goto out; 1325 page = NULL; 1326 out: 1327 spin_unlock(&n->list_lock); 1328 return page; 1329 } 1330 1331 /* 1332 * Get a page from somewhere. Search in increasing NUMA distances. 1333 */ 1334 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1335 { 1336 #ifdef CONFIG_NUMA 1337 struct zonelist *zonelist; 1338 struct zoneref *z; 1339 struct zone *zone; 1340 enum zone_type high_zoneidx = gfp_zone(flags); 1341 struct page *page; 1342 1343 /* 1344 * The defrag ratio allows a configuration of the tradeoffs between 1345 * inter node defragmentation and node local allocations. A lower 1346 * defrag_ratio increases the tendency to do local allocations 1347 * instead of attempting to obtain partial slabs from other nodes. 1348 * 1349 * If the defrag_ratio is set to 0 then kmalloc() always 1350 * returns node local objects. If the ratio is higher then kmalloc() 1351 * may return off node objects because partial slabs are obtained 1352 * from other nodes and filled up. 1353 * 1354 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1355 * defrag_ratio = 1000) then every (well almost) allocation will 1356 * first attempt to defrag slab caches on other nodes. This means 1357 * scanning over all nodes to look for partial slabs which may be 1358 * expensive if we do it every time we are trying to find a slab 1359 * with available objects. 1360 */ 1361 if (!s->remote_node_defrag_ratio || 1362 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1363 return NULL; 1364 1365 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1366 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1367 struct kmem_cache_node *n; 1368 1369 n = get_node(s, zone_to_nid(zone)); 1370 1371 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1372 n->nr_partial > s->min_partial) { 1373 page = get_partial_node(n); 1374 if (page) 1375 return page; 1376 } 1377 } 1378 #endif 1379 return NULL; 1380 } 1381 1382 /* 1383 * Get a partial page, lock it and return it. 1384 */ 1385 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1386 { 1387 struct page *page; 1388 int searchnode = (node == -1) ? numa_node_id() : node; 1389 1390 page = get_partial_node(get_node(s, searchnode)); 1391 if (page || (flags & __GFP_THISNODE)) 1392 return page; 1393 1394 return get_any_partial(s, flags); 1395 } 1396 1397 /* 1398 * Move a page back to the lists. 1399 * 1400 * Must be called with the slab lock held. 1401 * 1402 * On exit the slab lock will have been dropped. 1403 */ 1404 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1405 { 1406 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1407 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); 1408 1409 __ClearPageSlubFrozen(page); 1410 if (page->inuse) { 1411 1412 if (page->freelist) { 1413 add_partial(n, page, tail); 1414 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1415 } else { 1416 stat(c, DEACTIVATE_FULL); 1417 if (SLABDEBUG && PageSlubDebug(page) && 1418 (s->flags & SLAB_STORE_USER)) 1419 add_full(n, page); 1420 } 1421 slab_unlock(page); 1422 } else { 1423 stat(c, DEACTIVATE_EMPTY); 1424 if (n->nr_partial < s->min_partial) { 1425 /* 1426 * Adding an empty slab to the partial slabs in order 1427 * to avoid page allocator overhead. This slab needs 1428 * to come after the other slabs with objects in 1429 * so that the others get filled first. That way the 1430 * size of the partial list stays small. 1431 * 1432 * kmem_cache_shrink can reclaim any empty slabs from 1433 * the partial list. 1434 */ 1435 add_partial(n, page, 1); 1436 slab_unlock(page); 1437 } else { 1438 slab_unlock(page); 1439 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); 1440 discard_slab(s, page); 1441 } 1442 } 1443 } 1444 1445 /* 1446 * Remove the cpu slab 1447 */ 1448 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1449 { 1450 struct page *page = c->page; 1451 int tail = 1; 1452 1453 if (page->freelist) 1454 stat(c, DEACTIVATE_REMOTE_FREES); 1455 /* 1456 * Merge cpu freelist into slab freelist. Typically we get here 1457 * because both freelists are empty. So this is unlikely 1458 * to occur. 1459 */ 1460 while (unlikely(c->freelist)) { 1461 void **object; 1462 1463 tail = 0; /* Hot objects. Put the slab first */ 1464 1465 /* Retrieve object from cpu_freelist */ 1466 object = c->freelist; 1467 c->freelist = c->freelist[c->offset]; 1468 1469 /* And put onto the regular freelist */ 1470 object[c->offset] = page->freelist; 1471 page->freelist = object; 1472 page->inuse--; 1473 } 1474 c->page = NULL; 1475 unfreeze_slab(s, page, tail); 1476 } 1477 1478 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1479 { 1480 stat(c, CPUSLAB_FLUSH); 1481 slab_lock(c->page); 1482 deactivate_slab(s, c); 1483 } 1484 1485 /* 1486 * Flush cpu slab. 1487 * 1488 * Called from IPI handler with interrupts disabled. 1489 */ 1490 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1491 { 1492 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1493 1494 if (likely(c && c->page)) 1495 flush_slab(s, c); 1496 } 1497 1498 static void flush_cpu_slab(void *d) 1499 { 1500 struct kmem_cache *s = d; 1501 1502 __flush_cpu_slab(s, smp_processor_id()); 1503 } 1504 1505 static void flush_all(struct kmem_cache *s) 1506 { 1507 on_each_cpu(flush_cpu_slab, s, 1); 1508 } 1509 1510 /* 1511 * Check if the objects in a per cpu structure fit numa 1512 * locality expectations. 1513 */ 1514 static inline int node_match(struct kmem_cache_cpu *c, int node) 1515 { 1516 #ifdef CONFIG_NUMA 1517 if (node != -1 && c->node != node) 1518 return 0; 1519 #endif 1520 return 1; 1521 } 1522 1523 static int count_free(struct page *page) 1524 { 1525 return page->objects - page->inuse; 1526 } 1527 1528 static unsigned long count_partial(struct kmem_cache_node *n, 1529 int (*get_count)(struct page *)) 1530 { 1531 unsigned long flags; 1532 unsigned long x = 0; 1533 struct page *page; 1534 1535 spin_lock_irqsave(&n->list_lock, flags); 1536 list_for_each_entry(page, &n->partial, lru) 1537 x += get_count(page); 1538 spin_unlock_irqrestore(&n->list_lock, flags); 1539 return x; 1540 } 1541 1542 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 1543 { 1544 #ifdef CONFIG_SLUB_DEBUG 1545 return atomic_long_read(&n->total_objects); 1546 #else 1547 return 0; 1548 #endif 1549 } 1550 1551 static noinline void 1552 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 1553 { 1554 int node; 1555 1556 printk(KERN_WARNING 1557 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1558 nid, gfpflags); 1559 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 1560 "default order: %d, min order: %d\n", s->name, s->objsize, 1561 s->size, oo_order(s->oo), oo_order(s->min)); 1562 1563 for_each_online_node(node) { 1564 struct kmem_cache_node *n = get_node(s, node); 1565 unsigned long nr_slabs; 1566 unsigned long nr_objs; 1567 unsigned long nr_free; 1568 1569 if (!n) 1570 continue; 1571 1572 nr_free = count_partial(n, count_free); 1573 nr_slabs = node_nr_slabs(n); 1574 nr_objs = node_nr_objs(n); 1575 1576 printk(KERN_WARNING 1577 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 1578 node, nr_slabs, nr_objs, nr_free); 1579 } 1580 } 1581 1582 /* 1583 * Slow path. The lockless freelist is empty or we need to perform 1584 * debugging duties. 1585 * 1586 * Interrupts are disabled. 1587 * 1588 * Processing is still very fast if new objects have been freed to the 1589 * regular freelist. In that case we simply take over the regular freelist 1590 * as the lockless freelist and zap the regular freelist. 1591 * 1592 * If that is not working then we fall back to the partial lists. We take the 1593 * first element of the freelist as the object to allocate now and move the 1594 * rest of the freelist to the lockless freelist. 1595 * 1596 * And if we were unable to get a new slab from the partial slab lists then 1597 * we need to allocate a new slab. This is the slowest path since it involves 1598 * a call to the page allocator and the setup of a new slab. 1599 */ 1600 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1601 unsigned long addr, struct kmem_cache_cpu *c) 1602 { 1603 void **object; 1604 struct page *new; 1605 1606 /* We handle __GFP_ZERO in the caller */ 1607 gfpflags &= ~__GFP_ZERO; 1608 1609 if (!c->page) 1610 goto new_slab; 1611 1612 slab_lock(c->page); 1613 if (unlikely(!node_match(c, node))) 1614 goto another_slab; 1615 1616 stat(c, ALLOC_REFILL); 1617 1618 load_freelist: 1619 object = c->page->freelist; 1620 if (unlikely(!object)) 1621 goto another_slab; 1622 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1623 goto debug; 1624 1625 c->freelist = object[c->offset]; 1626 c->page->inuse = c->page->objects; 1627 c->page->freelist = NULL; 1628 c->node = page_to_nid(c->page); 1629 unlock_out: 1630 slab_unlock(c->page); 1631 stat(c, ALLOC_SLOWPATH); 1632 return object; 1633 1634 another_slab: 1635 deactivate_slab(s, c); 1636 1637 new_slab: 1638 new = get_partial(s, gfpflags, node); 1639 if (new) { 1640 c->page = new; 1641 stat(c, ALLOC_FROM_PARTIAL); 1642 goto load_freelist; 1643 } 1644 1645 if (gfpflags & __GFP_WAIT) 1646 local_irq_enable(); 1647 1648 new = new_slab(s, gfpflags, node); 1649 1650 if (gfpflags & __GFP_WAIT) 1651 local_irq_disable(); 1652 1653 if (new) { 1654 c = get_cpu_slab(s, smp_processor_id()); 1655 stat(c, ALLOC_SLAB); 1656 if (c->page) 1657 flush_slab(s, c); 1658 slab_lock(new); 1659 __SetPageSlubFrozen(new); 1660 c->page = new; 1661 goto load_freelist; 1662 } 1663 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 1664 slab_out_of_memory(s, gfpflags, node); 1665 return NULL; 1666 debug: 1667 if (!alloc_debug_processing(s, c->page, object, addr)) 1668 goto another_slab; 1669 1670 c->page->inuse++; 1671 c->page->freelist = object[c->offset]; 1672 c->node = -1; 1673 goto unlock_out; 1674 } 1675 1676 /* 1677 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1678 * have the fastpath folded into their functions. So no function call 1679 * overhead for requests that can be satisfied on the fastpath. 1680 * 1681 * The fastpath works by first checking if the lockless freelist can be used. 1682 * If not then __slab_alloc is called for slow processing. 1683 * 1684 * Otherwise we can simply pick the next object from the lockless free list. 1685 */ 1686 static __always_inline void *slab_alloc(struct kmem_cache *s, 1687 gfp_t gfpflags, int node, unsigned long addr) 1688 { 1689 void **object; 1690 struct kmem_cache_cpu *c; 1691 unsigned long flags; 1692 unsigned int objsize; 1693 1694 gfpflags &= gfp_allowed_mask; 1695 1696 lockdep_trace_alloc(gfpflags); 1697 might_sleep_if(gfpflags & __GFP_WAIT); 1698 1699 if (should_failslab(s->objsize, gfpflags)) 1700 return NULL; 1701 1702 local_irq_save(flags); 1703 c = get_cpu_slab(s, smp_processor_id()); 1704 objsize = c->objsize; 1705 if (unlikely(!c->freelist || !node_match(c, node))) 1706 1707 object = __slab_alloc(s, gfpflags, node, addr, c); 1708 1709 else { 1710 object = c->freelist; 1711 c->freelist = object[c->offset]; 1712 stat(c, ALLOC_FASTPATH); 1713 } 1714 local_irq_restore(flags); 1715 1716 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1717 memset(object, 0, objsize); 1718 1719 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize); 1720 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags); 1721 1722 return object; 1723 } 1724 1725 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1726 { 1727 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); 1728 1729 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1730 1731 return ret; 1732 } 1733 EXPORT_SYMBOL(kmem_cache_alloc); 1734 1735 #ifdef CONFIG_KMEMTRACE 1736 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1737 { 1738 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1739 } 1740 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1741 #endif 1742 1743 #ifdef CONFIG_NUMA 1744 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1745 { 1746 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1747 1748 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1749 s->objsize, s->size, gfpflags, node); 1750 1751 return ret; 1752 } 1753 EXPORT_SYMBOL(kmem_cache_alloc_node); 1754 #endif 1755 1756 #ifdef CONFIG_KMEMTRACE 1757 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1758 gfp_t gfpflags, 1759 int node) 1760 { 1761 return slab_alloc(s, gfpflags, node, _RET_IP_); 1762 } 1763 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1764 #endif 1765 1766 /* 1767 * Slow patch handling. This may still be called frequently since objects 1768 * have a longer lifetime than the cpu slabs in most processing loads. 1769 * 1770 * So we still attempt to reduce cache line usage. Just take the slab 1771 * lock and free the item. If there is no additional partial page 1772 * handling required then we can return immediately. 1773 */ 1774 static void __slab_free(struct kmem_cache *s, struct page *page, 1775 void *x, unsigned long addr, unsigned int offset) 1776 { 1777 void *prior; 1778 void **object = (void *)x; 1779 struct kmem_cache_cpu *c; 1780 1781 c = get_cpu_slab(s, raw_smp_processor_id()); 1782 stat(c, FREE_SLOWPATH); 1783 slab_lock(page); 1784 1785 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1786 goto debug; 1787 1788 checks_ok: 1789 prior = object[offset] = page->freelist; 1790 page->freelist = object; 1791 page->inuse--; 1792 1793 if (unlikely(PageSlubFrozen(page))) { 1794 stat(c, FREE_FROZEN); 1795 goto out_unlock; 1796 } 1797 1798 if (unlikely(!page->inuse)) 1799 goto slab_empty; 1800 1801 /* 1802 * Objects left in the slab. If it was not on the partial list before 1803 * then add it. 1804 */ 1805 if (unlikely(!prior)) { 1806 add_partial(get_node(s, page_to_nid(page)), page, 1); 1807 stat(c, FREE_ADD_PARTIAL); 1808 } 1809 1810 out_unlock: 1811 slab_unlock(page); 1812 return; 1813 1814 slab_empty: 1815 if (prior) { 1816 /* 1817 * Slab still on the partial list. 1818 */ 1819 remove_partial(s, page); 1820 stat(c, FREE_REMOVE_PARTIAL); 1821 } 1822 slab_unlock(page); 1823 stat(c, FREE_SLAB); 1824 discard_slab(s, page); 1825 return; 1826 1827 debug: 1828 if (!free_debug_processing(s, page, x, addr)) 1829 goto out_unlock; 1830 goto checks_ok; 1831 } 1832 1833 /* 1834 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1835 * can perform fastpath freeing without additional function calls. 1836 * 1837 * The fastpath is only possible if we are freeing to the current cpu slab 1838 * of this processor. This typically the case if we have just allocated 1839 * the item before. 1840 * 1841 * If fastpath is not possible then fall back to __slab_free where we deal 1842 * with all sorts of special processing. 1843 */ 1844 static __always_inline void slab_free(struct kmem_cache *s, 1845 struct page *page, void *x, unsigned long addr) 1846 { 1847 void **object = (void *)x; 1848 struct kmem_cache_cpu *c; 1849 unsigned long flags; 1850 1851 kmemleak_free_recursive(x, s->flags); 1852 local_irq_save(flags); 1853 c = get_cpu_slab(s, smp_processor_id()); 1854 kmemcheck_slab_free(s, object, c->objsize); 1855 debug_check_no_locks_freed(object, c->objsize); 1856 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1857 debug_check_no_obj_freed(object, c->objsize); 1858 if (likely(page == c->page && c->node >= 0)) { 1859 object[c->offset] = c->freelist; 1860 c->freelist = object; 1861 stat(c, FREE_FASTPATH); 1862 } else 1863 __slab_free(s, page, x, addr, c->offset); 1864 1865 local_irq_restore(flags); 1866 } 1867 1868 void kmem_cache_free(struct kmem_cache *s, void *x) 1869 { 1870 struct page *page; 1871 1872 page = virt_to_head_page(x); 1873 1874 slab_free(s, page, x, _RET_IP_); 1875 1876 trace_kmem_cache_free(_RET_IP_, x); 1877 } 1878 EXPORT_SYMBOL(kmem_cache_free); 1879 1880 /* Figure out on which slab page the object resides */ 1881 static struct page *get_object_page(const void *x) 1882 { 1883 struct page *page = virt_to_head_page(x); 1884 1885 if (!PageSlab(page)) 1886 return NULL; 1887 1888 return page; 1889 } 1890 1891 /* 1892 * Object placement in a slab is made very easy because we always start at 1893 * offset 0. If we tune the size of the object to the alignment then we can 1894 * get the required alignment by putting one properly sized object after 1895 * another. 1896 * 1897 * Notice that the allocation order determines the sizes of the per cpu 1898 * caches. Each processor has always one slab available for allocations. 1899 * Increasing the allocation order reduces the number of times that slabs 1900 * must be moved on and off the partial lists and is therefore a factor in 1901 * locking overhead. 1902 */ 1903 1904 /* 1905 * Mininum / Maximum order of slab pages. This influences locking overhead 1906 * and slab fragmentation. A higher order reduces the number of partial slabs 1907 * and increases the number of allocations possible without having to 1908 * take the list_lock. 1909 */ 1910 static int slub_min_order; 1911 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1912 static int slub_min_objects; 1913 1914 /* 1915 * Merge control. If this is set then no merging of slab caches will occur. 1916 * (Could be removed. This was introduced to pacify the merge skeptics.) 1917 */ 1918 static int slub_nomerge; 1919 1920 /* 1921 * Calculate the order of allocation given an slab object size. 1922 * 1923 * The order of allocation has significant impact on performance and other 1924 * system components. Generally order 0 allocations should be preferred since 1925 * order 0 does not cause fragmentation in the page allocator. Larger objects 1926 * be problematic to put into order 0 slabs because there may be too much 1927 * unused space left. We go to a higher order if more than 1/16th of the slab 1928 * would be wasted. 1929 * 1930 * In order to reach satisfactory performance we must ensure that a minimum 1931 * number of objects is in one slab. Otherwise we may generate too much 1932 * activity on the partial lists which requires taking the list_lock. This is 1933 * less a concern for large slabs though which are rarely used. 1934 * 1935 * slub_max_order specifies the order where we begin to stop considering the 1936 * number of objects in a slab as critical. If we reach slub_max_order then 1937 * we try to keep the page order as low as possible. So we accept more waste 1938 * of space in favor of a small page order. 1939 * 1940 * Higher order allocations also allow the placement of more objects in a 1941 * slab and thereby reduce object handling overhead. If the user has 1942 * requested a higher mininum order then we start with that one instead of 1943 * the smallest order which will fit the object. 1944 */ 1945 static inline int slab_order(int size, int min_objects, 1946 int max_order, int fract_leftover) 1947 { 1948 int order; 1949 int rem; 1950 int min_order = slub_min_order; 1951 1952 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1953 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1954 1955 for (order = max(min_order, 1956 fls(min_objects * size - 1) - PAGE_SHIFT); 1957 order <= max_order; order++) { 1958 1959 unsigned long slab_size = PAGE_SIZE << order; 1960 1961 if (slab_size < min_objects * size) 1962 continue; 1963 1964 rem = slab_size % size; 1965 1966 if (rem <= slab_size / fract_leftover) 1967 break; 1968 1969 } 1970 1971 return order; 1972 } 1973 1974 static inline int calculate_order(int size) 1975 { 1976 int order; 1977 int min_objects; 1978 int fraction; 1979 int max_objects; 1980 1981 /* 1982 * Attempt to find best configuration for a slab. This 1983 * works by first attempting to generate a layout with 1984 * the best configuration and backing off gradually. 1985 * 1986 * First we reduce the acceptable waste in a slab. Then 1987 * we reduce the minimum objects required in a slab. 1988 */ 1989 min_objects = slub_min_objects; 1990 if (!min_objects) 1991 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1992 max_objects = (PAGE_SIZE << slub_max_order)/size; 1993 min_objects = min(min_objects, max_objects); 1994 1995 while (min_objects > 1) { 1996 fraction = 16; 1997 while (fraction >= 4) { 1998 order = slab_order(size, min_objects, 1999 slub_max_order, fraction); 2000 if (order <= slub_max_order) 2001 return order; 2002 fraction /= 2; 2003 } 2004 min_objects --; 2005 } 2006 2007 /* 2008 * We were unable to place multiple objects in a slab. Now 2009 * lets see if we can place a single object there. 2010 */ 2011 order = slab_order(size, 1, slub_max_order, 1); 2012 if (order <= slub_max_order) 2013 return order; 2014 2015 /* 2016 * Doh this slab cannot be placed using slub_max_order. 2017 */ 2018 order = slab_order(size, 1, MAX_ORDER, 1); 2019 if (order < MAX_ORDER) 2020 return order; 2021 return -ENOSYS; 2022 } 2023 2024 /* 2025 * Figure out what the alignment of the objects will be. 2026 */ 2027 static unsigned long calculate_alignment(unsigned long flags, 2028 unsigned long align, unsigned long size) 2029 { 2030 /* 2031 * If the user wants hardware cache aligned objects then follow that 2032 * suggestion if the object is sufficiently large. 2033 * 2034 * The hardware cache alignment cannot override the specified 2035 * alignment though. If that is greater then use it. 2036 */ 2037 if (flags & SLAB_HWCACHE_ALIGN) { 2038 unsigned long ralign = cache_line_size(); 2039 while (size <= ralign / 2) 2040 ralign /= 2; 2041 align = max(align, ralign); 2042 } 2043 2044 if (align < ARCH_SLAB_MINALIGN) 2045 align = ARCH_SLAB_MINALIGN; 2046 2047 return ALIGN(align, sizeof(void *)); 2048 } 2049 2050 static void init_kmem_cache_cpu(struct kmem_cache *s, 2051 struct kmem_cache_cpu *c) 2052 { 2053 c->page = NULL; 2054 c->freelist = NULL; 2055 c->node = 0; 2056 c->offset = s->offset / sizeof(void *); 2057 c->objsize = s->objsize; 2058 #ifdef CONFIG_SLUB_STATS 2059 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); 2060 #endif 2061 } 2062 2063 static void 2064 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2065 { 2066 n->nr_partial = 0; 2067 spin_lock_init(&n->list_lock); 2068 INIT_LIST_HEAD(&n->partial); 2069 #ifdef CONFIG_SLUB_DEBUG 2070 atomic_long_set(&n->nr_slabs, 0); 2071 atomic_long_set(&n->total_objects, 0); 2072 INIT_LIST_HEAD(&n->full); 2073 #endif 2074 } 2075 2076 #ifdef CONFIG_SMP 2077 /* 2078 * Per cpu array for per cpu structures. 2079 * 2080 * The per cpu array places all kmem_cache_cpu structures from one processor 2081 * close together meaning that it becomes possible that multiple per cpu 2082 * structures are contained in one cacheline. This may be particularly 2083 * beneficial for the kmalloc caches. 2084 * 2085 * A desktop system typically has around 60-80 slabs. With 100 here we are 2086 * likely able to get per cpu structures for all caches from the array defined 2087 * here. We must be able to cover all kmalloc caches during bootstrap. 2088 * 2089 * If the per cpu array is exhausted then fall back to kmalloc 2090 * of individual cachelines. No sharing is possible then. 2091 */ 2092 #define NR_KMEM_CACHE_CPU 100 2093 2094 static DEFINE_PER_CPU(struct kmem_cache_cpu, 2095 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 2096 2097 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 2098 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); 2099 2100 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 2101 int cpu, gfp_t flags) 2102 { 2103 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 2104 2105 if (c) 2106 per_cpu(kmem_cache_cpu_free, cpu) = 2107 (void *)c->freelist; 2108 else { 2109 /* Table overflow: So allocate ourselves */ 2110 c = kmalloc_node( 2111 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 2112 flags, cpu_to_node(cpu)); 2113 if (!c) 2114 return NULL; 2115 } 2116 2117 init_kmem_cache_cpu(s, c); 2118 return c; 2119 } 2120 2121 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 2122 { 2123 if (c < per_cpu(kmem_cache_cpu, cpu) || 2124 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 2125 kfree(c); 2126 return; 2127 } 2128 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 2129 per_cpu(kmem_cache_cpu_free, cpu) = c; 2130 } 2131 2132 static void free_kmem_cache_cpus(struct kmem_cache *s) 2133 { 2134 int cpu; 2135 2136 for_each_online_cpu(cpu) { 2137 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2138 2139 if (c) { 2140 s->cpu_slab[cpu] = NULL; 2141 free_kmem_cache_cpu(c, cpu); 2142 } 2143 } 2144 } 2145 2146 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2147 { 2148 int cpu; 2149 2150 for_each_online_cpu(cpu) { 2151 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2152 2153 if (c) 2154 continue; 2155 2156 c = alloc_kmem_cache_cpu(s, cpu, flags); 2157 if (!c) { 2158 free_kmem_cache_cpus(s); 2159 return 0; 2160 } 2161 s->cpu_slab[cpu] = c; 2162 } 2163 return 1; 2164 } 2165 2166 /* 2167 * Initialize the per cpu array. 2168 */ 2169 static void init_alloc_cpu_cpu(int cpu) 2170 { 2171 int i; 2172 2173 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once))) 2174 return; 2175 2176 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 2177 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 2178 2179 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)); 2180 } 2181 2182 static void __init init_alloc_cpu(void) 2183 { 2184 int cpu; 2185 2186 for_each_online_cpu(cpu) 2187 init_alloc_cpu_cpu(cpu); 2188 } 2189 2190 #else 2191 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 2192 static inline void init_alloc_cpu(void) {} 2193 2194 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2195 { 2196 init_kmem_cache_cpu(s, &s->cpu_slab); 2197 return 1; 2198 } 2199 #endif 2200 2201 #ifdef CONFIG_NUMA 2202 /* 2203 * No kmalloc_node yet so do it by hand. We know that this is the first 2204 * slab on the node for this slabcache. There are no concurrent accesses 2205 * possible. 2206 * 2207 * Note that this function only works on the kmalloc_node_cache 2208 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2209 * memory on a fresh node that has no slab structures yet. 2210 */ 2211 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2212 { 2213 struct page *page; 2214 struct kmem_cache_node *n; 2215 unsigned long flags; 2216 2217 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2218 2219 page = new_slab(kmalloc_caches, gfpflags, node); 2220 2221 BUG_ON(!page); 2222 if (page_to_nid(page) != node) { 2223 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2224 "node %d\n", node); 2225 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2226 "in order to be able to continue\n"); 2227 } 2228 2229 n = page->freelist; 2230 BUG_ON(!n); 2231 page->freelist = get_freepointer(kmalloc_caches, n); 2232 page->inuse++; 2233 kmalloc_caches->node[node] = n; 2234 #ifdef CONFIG_SLUB_DEBUG 2235 init_object(kmalloc_caches, n, 1); 2236 init_tracking(kmalloc_caches, n); 2237 #endif 2238 init_kmem_cache_node(n, kmalloc_caches); 2239 inc_slabs_node(kmalloc_caches, node, page->objects); 2240 2241 /* 2242 * lockdep requires consistent irq usage for each lock 2243 * so even though there cannot be a race this early in 2244 * the boot sequence, we still disable irqs. 2245 */ 2246 local_irq_save(flags); 2247 add_partial(n, page, 0); 2248 local_irq_restore(flags); 2249 } 2250 2251 static void free_kmem_cache_nodes(struct kmem_cache *s) 2252 { 2253 int node; 2254 2255 for_each_node_state(node, N_NORMAL_MEMORY) { 2256 struct kmem_cache_node *n = s->node[node]; 2257 if (n && n != &s->local_node) 2258 kmem_cache_free(kmalloc_caches, n); 2259 s->node[node] = NULL; 2260 } 2261 } 2262 2263 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2264 { 2265 int node; 2266 int local_node; 2267 2268 if (slab_state >= UP) 2269 local_node = page_to_nid(virt_to_page(s)); 2270 else 2271 local_node = 0; 2272 2273 for_each_node_state(node, N_NORMAL_MEMORY) { 2274 struct kmem_cache_node *n; 2275 2276 if (local_node == node) 2277 n = &s->local_node; 2278 else { 2279 if (slab_state == DOWN) { 2280 early_kmem_cache_node_alloc(gfpflags, node); 2281 continue; 2282 } 2283 n = kmem_cache_alloc_node(kmalloc_caches, 2284 gfpflags, node); 2285 2286 if (!n) { 2287 free_kmem_cache_nodes(s); 2288 return 0; 2289 } 2290 2291 } 2292 s->node[node] = n; 2293 init_kmem_cache_node(n, s); 2294 } 2295 return 1; 2296 } 2297 #else 2298 static void free_kmem_cache_nodes(struct kmem_cache *s) 2299 { 2300 } 2301 2302 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2303 { 2304 init_kmem_cache_node(&s->local_node, s); 2305 return 1; 2306 } 2307 #endif 2308 2309 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2310 { 2311 if (min < MIN_PARTIAL) 2312 min = MIN_PARTIAL; 2313 else if (min > MAX_PARTIAL) 2314 min = MAX_PARTIAL; 2315 s->min_partial = min; 2316 } 2317 2318 /* 2319 * calculate_sizes() determines the order and the distribution of data within 2320 * a slab object. 2321 */ 2322 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2323 { 2324 unsigned long flags = s->flags; 2325 unsigned long size = s->objsize; 2326 unsigned long align = s->align; 2327 int order; 2328 2329 /* 2330 * Round up object size to the next word boundary. We can only 2331 * place the free pointer at word boundaries and this determines 2332 * the possible location of the free pointer. 2333 */ 2334 size = ALIGN(size, sizeof(void *)); 2335 2336 #ifdef CONFIG_SLUB_DEBUG 2337 /* 2338 * Determine if we can poison the object itself. If the user of 2339 * the slab may touch the object after free or before allocation 2340 * then we should never poison the object itself. 2341 */ 2342 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2343 !s->ctor) 2344 s->flags |= __OBJECT_POISON; 2345 else 2346 s->flags &= ~__OBJECT_POISON; 2347 2348 2349 /* 2350 * If we are Redzoning then check if there is some space between the 2351 * end of the object and the free pointer. If not then add an 2352 * additional word to have some bytes to store Redzone information. 2353 */ 2354 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2355 size += sizeof(void *); 2356 #endif 2357 2358 /* 2359 * With that we have determined the number of bytes in actual use 2360 * by the object. This is the potential offset to the free pointer. 2361 */ 2362 s->inuse = size; 2363 2364 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2365 s->ctor)) { 2366 /* 2367 * Relocate free pointer after the object if it is not 2368 * permitted to overwrite the first word of the object on 2369 * kmem_cache_free. 2370 * 2371 * This is the case if we do RCU, have a constructor or 2372 * destructor or are poisoning the objects. 2373 */ 2374 s->offset = size; 2375 size += sizeof(void *); 2376 } 2377 2378 #ifdef CONFIG_SLUB_DEBUG 2379 if (flags & SLAB_STORE_USER) 2380 /* 2381 * Need to store information about allocs and frees after 2382 * the object. 2383 */ 2384 size += 2 * sizeof(struct track); 2385 2386 if (flags & SLAB_RED_ZONE) 2387 /* 2388 * Add some empty padding so that we can catch 2389 * overwrites from earlier objects rather than let 2390 * tracking information or the free pointer be 2391 * corrupted if a user writes before the start 2392 * of the object. 2393 */ 2394 size += sizeof(void *); 2395 #endif 2396 2397 /* 2398 * Determine the alignment based on various parameters that the 2399 * user specified and the dynamic determination of cache line size 2400 * on bootup. 2401 */ 2402 align = calculate_alignment(flags, align, s->objsize); 2403 2404 /* 2405 * SLUB stores one object immediately after another beginning from 2406 * offset 0. In order to align the objects we have to simply size 2407 * each object to conform to the alignment. 2408 */ 2409 size = ALIGN(size, align); 2410 s->size = size; 2411 if (forced_order >= 0) 2412 order = forced_order; 2413 else 2414 order = calculate_order(size); 2415 2416 if (order < 0) 2417 return 0; 2418 2419 s->allocflags = 0; 2420 if (order) 2421 s->allocflags |= __GFP_COMP; 2422 2423 if (s->flags & SLAB_CACHE_DMA) 2424 s->allocflags |= SLUB_DMA; 2425 2426 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2427 s->allocflags |= __GFP_RECLAIMABLE; 2428 2429 /* 2430 * Determine the number of objects per slab 2431 */ 2432 s->oo = oo_make(order, size); 2433 s->min = oo_make(get_order(size), size); 2434 if (oo_objects(s->oo) > oo_objects(s->max)) 2435 s->max = s->oo; 2436 2437 return !!oo_objects(s->oo); 2438 2439 } 2440 2441 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2442 const char *name, size_t size, 2443 size_t align, unsigned long flags, 2444 void (*ctor)(void *)) 2445 { 2446 memset(s, 0, kmem_size); 2447 s->name = name; 2448 s->ctor = ctor; 2449 s->objsize = size; 2450 s->align = align; 2451 s->flags = kmem_cache_flags(size, flags, name, ctor); 2452 2453 if (!calculate_sizes(s, -1)) 2454 goto error; 2455 2456 /* 2457 * The larger the object size is, the more pages we want on the partial 2458 * list to avoid pounding the page allocator excessively. 2459 */ 2460 set_min_partial(s, ilog2(s->size)); 2461 s->refcount = 1; 2462 #ifdef CONFIG_NUMA 2463 s->remote_node_defrag_ratio = 1000; 2464 #endif 2465 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2466 goto error; 2467 2468 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2469 return 1; 2470 free_kmem_cache_nodes(s); 2471 error: 2472 if (flags & SLAB_PANIC) 2473 panic("Cannot create slab %s size=%lu realsize=%u " 2474 "order=%u offset=%u flags=%lx\n", 2475 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2476 s->offset, flags); 2477 return 0; 2478 } 2479 2480 /* 2481 * Check if a given pointer is valid 2482 */ 2483 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2484 { 2485 struct page *page; 2486 2487 page = get_object_page(object); 2488 2489 if (!page || s != page->slab) 2490 /* No slab or wrong slab */ 2491 return 0; 2492 2493 if (!check_valid_pointer(s, page, object)) 2494 return 0; 2495 2496 /* 2497 * We could also check if the object is on the slabs freelist. 2498 * But this would be too expensive and it seems that the main 2499 * purpose of kmem_ptr_valid() is to check if the object belongs 2500 * to a certain slab. 2501 */ 2502 return 1; 2503 } 2504 EXPORT_SYMBOL(kmem_ptr_validate); 2505 2506 /* 2507 * Determine the size of a slab object 2508 */ 2509 unsigned int kmem_cache_size(struct kmem_cache *s) 2510 { 2511 return s->objsize; 2512 } 2513 EXPORT_SYMBOL(kmem_cache_size); 2514 2515 const char *kmem_cache_name(struct kmem_cache *s) 2516 { 2517 return s->name; 2518 } 2519 EXPORT_SYMBOL(kmem_cache_name); 2520 2521 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2522 const char *text) 2523 { 2524 #ifdef CONFIG_SLUB_DEBUG 2525 void *addr = page_address(page); 2526 void *p; 2527 DECLARE_BITMAP(map, page->objects); 2528 2529 bitmap_zero(map, page->objects); 2530 slab_err(s, page, "%s", text); 2531 slab_lock(page); 2532 for_each_free_object(p, s, page->freelist) 2533 set_bit(slab_index(p, s, addr), map); 2534 2535 for_each_object(p, s, addr, page->objects) { 2536 2537 if (!test_bit(slab_index(p, s, addr), map)) { 2538 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2539 p, p - addr); 2540 print_tracking(s, p); 2541 } 2542 } 2543 slab_unlock(page); 2544 #endif 2545 } 2546 2547 /* 2548 * Attempt to free all partial slabs on a node. 2549 */ 2550 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2551 { 2552 unsigned long flags; 2553 struct page *page, *h; 2554 2555 spin_lock_irqsave(&n->list_lock, flags); 2556 list_for_each_entry_safe(page, h, &n->partial, lru) { 2557 if (!page->inuse) { 2558 list_del(&page->lru); 2559 discard_slab(s, page); 2560 n->nr_partial--; 2561 } else { 2562 list_slab_objects(s, page, 2563 "Objects remaining on kmem_cache_close()"); 2564 } 2565 } 2566 spin_unlock_irqrestore(&n->list_lock, flags); 2567 } 2568 2569 /* 2570 * Release all resources used by a slab cache. 2571 */ 2572 static inline int kmem_cache_close(struct kmem_cache *s) 2573 { 2574 int node; 2575 2576 flush_all(s); 2577 2578 /* Attempt to free all objects */ 2579 free_kmem_cache_cpus(s); 2580 for_each_node_state(node, N_NORMAL_MEMORY) { 2581 struct kmem_cache_node *n = get_node(s, node); 2582 2583 free_partial(s, n); 2584 if (n->nr_partial || slabs_node(s, node)) 2585 return 1; 2586 } 2587 free_kmem_cache_nodes(s); 2588 return 0; 2589 } 2590 2591 /* 2592 * Close a cache and release the kmem_cache structure 2593 * (must be used for caches created using kmem_cache_create) 2594 */ 2595 void kmem_cache_destroy(struct kmem_cache *s) 2596 { 2597 if (s->flags & SLAB_DESTROY_BY_RCU) 2598 rcu_barrier(); 2599 down_write(&slub_lock); 2600 s->refcount--; 2601 if (!s->refcount) { 2602 list_del(&s->list); 2603 up_write(&slub_lock); 2604 if (kmem_cache_close(s)) { 2605 printk(KERN_ERR "SLUB %s: %s called for cache that " 2606 "still has objects.\n", s->name, __func__); 2607 dump_stack(); 2608 } 2609 sysfs_slab_remove(s); 2610 } else 2611 up_write(&slub_lock); 2612 } 2613 EXPORT_SYMBOL(kmem_cache_destroy); 2614 2615 /******************************************************************** 2616 * Kmalloc subsystem 2617 *******************************************************************/ 2618 2619 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; 2620 EXPORT_SYMBOL(kmalloc_caches); 2621 2622 static int __init setup_slub_min_order(char *str) 2623 { 2624 get_option(&str, &slub_min_order); 2625 2626 return 1; 2627 } 2628 2629 __setup("slub_min_order=", setup_slub_min_order); 2630 2631 static int __init setup_slub_max_order(char *str) 2632 { 2633 get_option(&str, &slub_max_order); 2634 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2635 2636 return 1; 2637 } 2638 2639 __setup("slub_max_order=", setup_slub_max_order); 2640 2641 static int __init setup_slub_min_objects(char *str) 2642 { 2643 get_option(&str, &slub_min_objects); 2644 2645 return 1; 2646 } 2647 2648 __setup("slub_min_objects=", setup_slub_min_objects); 2649 2650 static int __init setup_slub_nomerge(char *str) 2651 { 2652 slub_nomerge = 1; 2653 return 1; 2654 } 2655 2656 __setup("slub_nomerge", setup_slub_nomerge); 2657 2658 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2659 const char *name, int size, gfp_t gfp_flags) 2660 { 2661 unsigned int flags = 0; 2662 2663 if (gfp_flags & SLUB_DMA) 2664 flags = SLAB_CACHE_DMA; 2665 2666 /* 2667 * This function is called with IRQs disabled during early-boot on 2668 * single CPU so there's no need to take slub_lock here. 2669 */ 2670 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2671 flags, NULL)) 2672 goto panic; 2673 2674 list_add(&s->list, &slab_caches); 2675 2676 if (sysfs_slab_add(s)) 2677 goto panic; 2678 return s; 2679 2680 panic: 2681 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2682 } 2683 2684 #ifdef CONFIG_ZONE_DMA 2685 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2686 2687 static void sysfs_add_func(struct work_struct *w) 2688 { 2689 struct kmem_cache *s; 2690 2691 down_write(&slub_lock); 2692 list_for_each_entry(s, &slab_caches, list) { 2693 if (s->flags & __SYSFS_ADD_DEFERRED) { 2694 s->flags &= ~__SYSFS_ADD_DEFERRED; 2695 sysfs_slab_add(s); 2696 } 2697 } 2698 up_write(&slub_lock); 2699 } 2700 2701 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2702 2703 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2704 { 2705 struct kmem_cache *s; 2706 char *text; 2707 size_t realsize; 2708 unsigned long slabflags; 2709 2710 s = kmalloc_caches_dma[index]; 2711 if (s) 2712 return s; 2713 2714 /* Dynamically create dma cache */ 2715 if (flags & __GFP_WAIT) 2716 down_write(&slub_lock); 2717 else { 2718 if (!down_write_trylock(&slub_lock)) 2719 goto out; 2720 } 2721 2722 if (kmalloc_caches_dma[index]) 2723 goto unlock_out; 2724 2725 realsize = kmalloc_caches[index].objsize; 2726 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2727 (unsigned int)realsize); 2728 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2729 2730 /* 2731 * Must defer sysfs creation to a workqueue because we don't know 2732 * what context we are called from. Before sysfs comes up, we don't 2733 * need to do anything because our sysfs initcall will start by 2734 * adding all existing slabs to sysfs. 2735 */ 2736 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK; 2737 if (slab_state >= SYSFS) 2738 slabflags |= __SYSFS_ADD_DEFERRED; 2739 2740 if (!s || !text || !kmem_cache_open(s, flags, text, 2741 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) { 2742 kfree(s); 2743 kfree(text); 2744 goto unlock_out; 2745 } 2746 2747 list_add(&s->list, &slab_caches); 2748 kmalloc_caches_dma[index] = s; 2749 2750 if (slab_state >= SYSFS) 2751 schedule_work(&sysfs_add_work); 2752 2753 unlock_out: 2754 up_write(&slub_lock); 2755 out: 2756 return kmalloc_caches_dma[index]; 2757 } 2758 #endif 2759 2760 /* 2761 * Conversion table for small slabs sizes / 8 to the index in the 2762 * kmalloc array. This is necessary for slabs < 192 since we have non power 2763 * of two cache sizes there. The size of larger slabs can be determined using 2764 * fls. 2765 */ 2766 static s8 size_index[24] = { 2767 3, /* 8 */ 2768 4, /* 16 */ 2769 5, /* 24 */ 2770 5, /* 32 */ 2771 6, /* 40 */ 2772 6, /* 48 */ 2773 6, /* 56 */ 2774 6, /* 64 */ 2775 1, /* 72 */ 2776 1, /* 80 */ 2777 1, /* 88 */ 2778 1, /* 96 */ 2779 7, /* 104 */ 2780 7, /* 112 */ 2781 7, /* 120 */ 2782 7, /* 128 */ 2783 2, /* 136 */ 2784 2, /* 144 */ 2785 2, /* 152 */ 2786 2, /* 160 */ 2787 2, /* 168 */ 2788 2, /* 176 */ 2789 2, /* 184 */ 2790 2 /* 192 */ 2791 }; 2792 2793 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2794 { 2795 int index; 2796 2797 if (size <= 192) { 2798 if (!size) 2799 return ZERO_SIZE_PTR; 2800 2801 index = size_index[(size - 1) / 8]; 2802 } else 2803 index = fls(size - 1); 2804 2805 #ifdef CONFIG_ZONE_DMA 2806 if (unlikely((flags & SLUB_DMA))) 2807 return dma_kmalloc_cache(index, flags); 2808 2809 #endif 2810 return &kmalloc_caches[index]; 2811 } 2812 2813 void *__kmalloc(size_t size, gfp_t flags) 2814 { 2815 struct kmem_cache *s; 2816 void *ret; 2817 2818 if (unlikely(size > SLUB_MAX_SIZE)) 2819 return kmalloc_large(size, flags); 2820 2821 s = get_slab(size, flags); 2822 2823 if (unlikely(ZERO_OR_NULL_PTR(s))) 2824 return s; 2825 2826 ret = slab_alloc(s, flags, -1, _RET_IP_); 2827 2828 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2829 2830 return ret; 2831 } 2832 EXPORT_SYMBOL(__kmalloc); 2833 2834 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2835 { 2836 struct page *page; 2837 void *ptr = NULL; 2838 2839 flags |= __GFP_COMP | __GFP_NOTRACK; 2840 page = alloc_pages_node(node, flags, get_order(size)); 2841 if (page) 2842 ptr = page_address(page); 2843 2844 kmemleak_alloc(ptr, size, 1, flags); 2845 return ptr; 2846 } 2847 2848 #ifdef CONFIG_NUMA 2849 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2850 { 2851 struct kmem_cache *s; 2852 void *ret; 2853 2854 if (unlikely(size > SLUB_MAX_SIZE)) { 2855 ret = kmalloc_large_node(size, flags, node); 2856 2857 trace_kmalloc_node(_RET_IP_, ret, 2858 size, PAGE_SIZE << get_order(size), 2859 flags, node); 2860 2861 return ret; 2862 } 2863 2864 s = get_slab(size, flags); 2865 2866 if (unlikely(ZERO_OR_NULL_PTR(s))) 2867 return s; 2868 2869 ret = slab_alloc(s, flags, node, _RET_IP_); 2870 2871 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2872 2873 return ret; 2874 } 2875 EXPORT_SYMBOL(__kmalloc_node); 2876 #endif 2877 2878 size_t ksize(const void *object) 2879 { 2880 struct page *page; 2881 struct kmem_cache *s; 2882 2883 if (unlikely(object == ZERO_SIZE_PTR)) 2884 return 0; 2885 2886 page = virt_to_head_page(object); 2887 2888 if (unlikely(!PageSlab(page))) { 2889 WARN_ON(!PageCompound(page)); 2890 return PAGE_SIZE << compound_order(page); 2891 } 2892 s = page->slab; 2893 2894 #ifdef CONFIG_SLUB_DEBUG 2895 /* 2896 * Debugging requires use of the padding between object 2897 * and whatever may come after it. 2898 */ 2899 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2900 return s->objsize; 2901 2902 #endif 2903 /* 2904 * If we have the need to store the freelist pointer 2905 * back there or track user information then we can 2906 * only use the space before that information. 2907 */ 2908 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2909 return s->inuse; 2910 /* 2911 * Else we can use all the padding etc for the allocation 2912 */ 2913 return s->size; 2914 } 2915 EXPORT_SYMBOL(ksize); 2916 2917 void kfree(const void *x) 2918 { 2919 struct page *page; 2920 void *object = (void *)x; 2921 2922 trace_kfree(_RET_IP_, x); 2923 2924 if (unlikely(ZERO_OR_NULL_PTR(x))) 2925 return; 2926 2927 page = virt_to_head_page(x); 2928 if (unlikely(!PageSlab(page))) { 2929 BUG_ON(!PageCompound(page)); 2930 kmemleak_free(x); 2931 put_page(page); 2932 return; 2933 } 2934 slab_free(page->slab, page, object, _RET_IP_); 2935 } 2936 EXPORT_SYMBOL(kfree); 2937 2938 /* 2939 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2940 * the remaining slabs by the number of items in use. The slabs with the 2941 * most items in use come first. New allocations will then fill those up 2942 * and thus they can be removed from the partial lists. 2943 * 2944 * The slabs with the least items are placed last. This results in them 2945 * being allocated from last increasing the chance that the last objects 2946 * are freed in them. 2947 */ 2948 int kmem_cache_shrink(struct kmem_cache *s) 2949 { 2950 int node; 2951 int i; 2952 struct kmem_cache_node *n; 2953 struct page *page; 2954 struct page *t; 2955 int objects = oo_objects(s->max); 2956 struct list_head *slabs_by_inuse = 2957 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2958 unsigned long flags; 2959 2960 if (!slabs_by_inuse) 2961 return -ENOMEM; 2962 2963 flush_all(s); 2964 for_each_node_state(node, N_NORMAL_MEMORY) { 2965 n = get_node(s, node); 2966 2967 if (!n->nr_partial) 2968 continue; 2969 2970 for (i = 0; i < objects; i++) 2971 INIT_LIST_HEAD(slabs_by_inuse + i); 2972 2973 spin_lock_irqsave(&n->list_lock, flags); 2974 2975 /* 2976 * Build lists indexed by the items in use in each slab. 2977 * 2978 * Note that concurrent frees may occur while we hold the 2979 * list_lock. page->inuse here is the upper limit. 2980 */ 2981 list_for_each_entry_safe(page, t, &n->partial, lru) { 2982 if (!page->inuse && slab_trylock(page)) { 2983 /* 2984 * Must hold slab lock here because slab_free 2985 * may have freed the last object and be 2986 * waiting to release the slab. 2987 */ 2988 list_del(&page->lru); 2989 n->nr_partial--; 2990 slab_unlock(page); 2991 discard_slab(s, page); 2992 } else { 2993 list_move(&page->lru, 2994 slabs_by_inuse + page->inuse); 2995 } 2996 } 2997 2998 /* 2999 * Rebuild the partial list with the slabs filled up most 3000 * first and the least used slabs at the end. 3001 */ 3002 for (i = objects - 1; i >= 0; i--) 3003 list_splice(slabs_by_inuse + i, n->partial.prev); 3004 3005 spin_unlock_irqrestore(&n->list_lock, flags); 3006 } 3007 3008 kfree(slabs_by_inuse); 3009 return 0; 3010 } 3011 EXPORT_SYMBOL(kmem_cache_shrink); 3012 3013 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 3014 static int slab_mem_going_offline_callback(void *arg) 3015 { 3016 struct kmem_cache *s; 3017 3018 down_read(&slub_lock); 3019 list_for_each_entry(s, &slab_caches, list) 3020 kmem_cache_shrink(s); 3021 up_read(&slub_lock); 3022 3023 return 0; 3024 } 3025 3026 static void slab_mem_offline_callback(void *arg) 3027 { 3028 struct kmem_cache_node *n; 3029 struct kmem_cache *s; 3030 struct memory_notify *marg = arg; 3031 int offline_node; 3032 3033 offline_node = marg->status_change_nid; 3034 3035 /* 3036 * If the node still has available memory. we need kmem_cache_node 3037 * for it yet. 3038 */ 3039 if (offline_node < 0) 3040 return; 3041 3042 down_read(&slub_lock); 3043 list_for_each_entry(s, &slab_caches, list) { 3044 n = get_node(s, offline_node); 3045 if (n) { 3046 /* 3047 * if n->nr_slabs > 0, slabs still exist on the node 3048 * that is going down. We were unable to free them, 3049 * and offline_pages() function shoudn't call this 3050 * callback. So, we must fail. 3051 */ 3052 BUG_ON(slabs_node(s, offline_node)); 3053 3054 s->node[offline_node] = NULL; 3055 kmem_cache_free(kmalloc_caches, n); 3056 } 3057 } 3058 up_read(&slub_lock); 3059 } 3060 3061 static int slab_mem_going_online_callback(void *arg) 3062 { 3063 struct kmem_cache_node *n; 3064 struct kmem_cache *s; 3065 struct memory_notify *marg = arg; 3066 int nid = marg->status_change_nid; 3067 int ret = 0; 3068 3069 /* 3070 * If the node's memory is already available, then kmem_cache_node is 3071 * already created. Nothing to do. 3072 */ 3073 if (nid < 0) 3074 return 0; 3075 3076 /* 3077 * We are bringing a node online. No memory is available yet. We must 3078 * allocate a kmem_cache_node structure in order to bring the node 3079 * online. 3080 */ 3081 down_read(&slub_lock); 3082 list_for_each_entry(s, &slab_caches, list) { 3083 /* 3084 * XXX: kmem_cache_alloc_node will fallback to other nodes 3085 * since memory is not yet available from the node that 3086 * is brought up. 3087 */ 3088 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 3089 if (!n) { 3090 ret = -ENOMEM; 3091 goto out; 3092 } 3093 init_kmem_cache_node(n, s); 3094 s->node[nid] = n; 3095 } 3096 out: 3097 up_read(&slub_lock); 3098 return ret; 3099 } 3100 3101 static int slab_memory_callback(struct notifier_block *self, 3102 unsigned long action, void *arg) 3103 { 3104 int ret = 0; 3105 3106 switch (action) { 3107 case MEM_GOING_ONLINE: 3108 ret = slab_mem_going_online_callback(arg); 3109 break; 3110 case MEM_GOING_OFFLINE: 3111 ret = slab_mem_going_offline_callback(arg); 3112 break; 3113 case MEM_OFFLINE: 3114 case MEM_CANCEL_ONLINE: 3115 slab_mem_offline_callback(arg); 3116 break; 3117 case MEM_ONLINE: 3118 case MEM_CANCEL_OFFLINE: 3119 break; 3120 } 3121 if (ret) 3122 ret = notifier_from_errno(ret); 3123 else 3124 ret = NOTIFY_OK; 3125 return ret; 3126 } 3127 3128 #endif /* CONFIG_MEMORY_HOTPLUG */ 3129 3130 /******************************************************************** 3131 * Basic setup of slabs 3132 *******************************************************************/ 3133 3134 void __init kmem_cache_init(void) 3135 { 3136 int i; 3137 int caches = 0; 3138 3139 init_alloc_cpu(); 3140 3141 #ifdef CONFIG_NUMA 3142 /* 3143 * Must first have the slab cache available for the allocations of the 3144 * struct kmem_cache_node's. There is special bootstrap code in 3145 * kmem_cache_open for slab_state == DOWN. 3146 */ 3147 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3148 sizeof(struct kmem_cache_node), GFP_NOWAIT); 3149 kmalloc_caches[0].refcount = -1; 3150 caches++; 3151 3152 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3153 #endif 3154 3155 /* Able to allocate the per node structures */ 3156 slab_state = PARTIAL; 3157 3158 /* Caches that are not of the two-to-the-power-of size */ 3159 if (KMALLOC_MIN_SIZE <= 64) { 3160 create_kmalloc_cache(&kmalloc_caches[1], 3161 "kmalloc-96", 96, GFP_NOWAIT); 3162 caches++; 3163 create_kmalloc_cache(&kmalloc_caches[2], 3164 "kmalloc-192", 192, GFP_NOWAIT); 3165 caches++; 3166 } 3167 3168 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3169 create_kmalloc_cache(&kmalloc_caches[i], 3170 "kmalloc", 1 << i, GFP_NOWAIT); 3171 caches++; 3172 } 3173 3174 3175 /* 3176 * Patch up the size_index table if we have strange large alignment 3177 * requirements for the kmalloc array. This is only the case for 3178 * MIPS it seems. The standard arches will not generate any code here. 3179 * 3180 * Largest permitted alignment is 256 bytes due to the way we 3181 * handle the index determination for the smaller caches. 3182 * 3183 * Make sure that nothing crazy happens if someone starts tinkering 3184 * around with ARCH_KMALLOC_MINALIGN 3185 */ 3186 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3187 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3188 3189 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 3190 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 3191 3192 if (KMALLOC_MIN_SIZE == 128) { 3193 /* 3194 * The 192 byte sized cache is not used if the alignment 3195 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3196 * instead. 3197 */ 3198 for (i = 128 + 8; i <= 192; i += 8) 3199 size_index[(i - 1) / 8] = 8; 3200 } 3201 3202 slab_state = UP; 3203 3204 /* Provide the correct kmalloc names now that the caches are up */ 3205 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) 3206 kmalloc_caches[i]. name = 3207 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3208 3209 #ifdef CONFIG_SMP 3210 register_cpu_notifier(&slab_notifier); 3211 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 3212 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 3213 #else 3214 kmem_size = sizeof(struct kmem_cache); 3215 #endif 3216 3217 printk(KERN_INFO 3218 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3219 " CPUs=%d, Nodes=%d\n", 3220 caches, cache_line_size(), 3221 slub_min_order, slub_max_order, slub_min_objects, 3222 nr_cpu_ids, nr_node_ids); 3223 } 3224 3225 void __init kmem_cache_init_late(void) 3226 { 3227 } 3228 3229 /* 3230 * Find a mergeable slab cache 3231 */ 3232 static int slab_unmergeable(struct kmem_cache *s) 3233 { 3234 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3235 return 1; 3236 3237 if (s->ctor) 3238 return 1; 3239 3240 /* 3241 * We may have set a slab to be unmergeable during bootstrap. 3242 */ 3243 if (s->refcount < 0) 3244 return 1; 3245 3246 return 0; 3247 } 3248 3249 static struct kmem_cache *find_mergeable(size_t size, 3250 size_t align, unsigned long flags, const char *name, 3251 void (*ctor)(void *)) 3252 { 3253 struct kmem_cache *s; 3254 3255 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3256 return NULL; 3257 3258 if (ctor) 3259 return NULL; 3260 3261 size = ALIGN(size, sizeof(void *)); 3262 align = calculate_alignment(flags, align, size); 3263 size = ALIGN(size, align); 3264 flags = kmem_cache_flags(size, flags, name, NULL); 3265 3266 list_for_each_entry(s, &slab_caches, list) { 3267 if (slab_unmergeable(s)) 3268 continue; 3269 3270 if (size > s->size) 3271 continue; 3272 3273 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3274 continue; 3275 /* 3276 * Check if alignment is compatible. 3277 * Courtesy of Adrian Drzewiecki 3278 */ 3279 if ((s->size & ~(align - 1)) != s->size) 3280 continue; 3281 3282 if (s->size - size >= sizeof(void *)) 3283 continue; 3284 3285 return s; 3286 } 3287 return NULL; 3288 } 3289 3290 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3291 size_t align, unsigned long flags, void (*ctor)(void *)) 3292 { 3293 struct kmem_cache *s; 3294 3295 down_write(&slub_lock); 3296 s = find_mergeable(size, align, flags, name, ctor); 3297 if (s) { 3298 int cpu; 3299 3300 s->refcount++; 3301 /* 3302 * Adjust the object sizes so that we clear 3303 * the complete object on kzalloc. 3304 */ 3305 s->objsize = max(s->objsize, (int)size); 3306 3307 /* 3308 * And then we need to update the object size in the 3309 * per cpu structures 3310 */ 3311 for_each_online_cpu(cpu) 3312 get_cpu_slab(s, cpu)->objsize = s->objsize; 3313 3314 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3315 up_write(&slub_lock); 3316 3317 if (sysfs_slab_alias(s, name)) { 3318 down_write(&slub_lock); 3319 s->refcount--; 3320 up_write(&slub_lock); 3321 goto err; 3322 } 3323 return s; 3324 } 3325 3326 s = kmalloc(kmem_size, GFP_KERNEL); 3327 if (s) { 3328 if (kmem_cache_open(s, GFP_KERNEL, name, 3329 size, align, flags, ctor)) { 3330 list_add(&s->list, &slab_caches); 3331 up_write(&slub_lock); 3332 if (sysfs_slab_add(s)) { 3333 down_write(&slub_lock); 3334 list_del(&s->list); 3335 up_write(&slub_lock); 3336 kfree(s); 3337 goto err; 3338 } 3339 return s; 3340 } 3341 kfree(s); 3342 } 3343 up_write(&slub_lock); 3344 3345 err: 3346 if (flags & SLAB_PANIC) 3347 panic("Cannot create slabcache %s\n", name); 3348 else 3349 s = NULL; 3350 return s; 3351 } 3352 EXPORT_SYMBOL(kmem_cache_create); 3353 3354 #ifdef CONFIG_SMP 3355 /* 3356 * Use the cpu notifier to insure that the cpu slabs are flushed when 3357 * necessary. 3358 */ 3359 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3360 unsigned long action, void *hcpu) 3361 { 3362 long cpu = (long)hcpu; 3363 struct kmem_cache *s; 3364 unsigned long flags; 3365 3366 switch (action) { 3367 case CPU_UP_PREPARE: 3368 case CPU_UP_PREPARE_FROZEN: 3369 init_alloc_cpu_cpu(cpu); 3370 down_read(&slub_lock); 3371 list_for_each_entry(s, &slab_caches, list) 3372 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3373 GFP_KERNEL); 3374 up_read(&slub_lock); 3375 break; 3376 3377 case CPU_UP_CANCELED: 3378 case CPU_UP_CANCELED_FROZEN: 3379 case CPU_DEAD: 3380 case CPU_DEAD_FROZEN: 3381 down_read(&slub_lock); 3382 list_for_each_entry(s, &slab_caches, list) { 3383 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3384 3385 local_irq_save(flags); 3386 __flush_cpu_slab(s, cpu); 3387 local_irq_restore(flags); 3388 free_kmem_cache_cpu(c, cpu); 3389 s->cpu_slab[cpu] = NULL; 3390 } 3391 up_read(&slub_lock); 3392 break; 3393 default: 3394 break; 3395 } 3396 return NOTIFY_OK; 3397 } 3398 3399 static struct notifier_block __cpuinitdata slab_notifier = { 3400 .notifier_call = slab_cpuup_callback 3401 }; 3402 3403 #endif 3404 3405 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3406 { 3407 struct kmem_cache *s; 3408 void *ret; 3409 3410 if (unlikely(size > SLUB_MAX_SIZE)) 3411 return kmalloc_large(size, gfpflags); 3412 3413 s = get_slab(size, gfpflags); 3414 3415 if (unlikely(ZERO_OR_NULL_PTR(s))) 3416 return s; 3417 3418 ret = slab_alloc(s, gfpflags, -1, caller); 3419 3420 /* Honor the call site pointer we recieved. */ 3421 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3422 3423 return ret; 3424 } 3425 3426 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3427 int node, unsigned long caller) 3428 { 3429 struct kmem_cache *s; 3430 void *ret; 3431 3432 if (unlikely(size > SLUB_MAX_SIZE)) 3433 return kmalloc_large_node(size, gfpflags, node); 3434 3435 s = get_slab(size, gfpflags); 3436 3437 if (unlikely(ZERO_OR_NULL_PTR(s))) 3438 return s; 3439 3440 ret = slab_alloc(s, gfpflags, node, caller); 3441 3442 /* Honor the call site pointer we recieved. */ 3443 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3444 3445 return ret; 3446 } 3447 3448 #ifdef CONFIG_SLUB_DEBUG 3449 static int count_inuse(struct page *page) 3450 { 3451 return page->inuse; 3452 } 3453 3454 static int count_total(struct page *page) 3455 { 3456 return page->objects; 3457 } 3458 3459 static int validate_slab(struct kmem_cache *s, struct page *page, 3460 unsigned long *map) 3461 { 3462 void *p; 3463 void *addr = page_address(page); 3464 3465 if (!check_slab(s, page) || 3466 !on_freelist(s, page, NULL)) 3467 return 0; 3468 3469 /* Now we know that a valid freelist exists */ 3470 bitmap_zero(map, page->objects); 3471 3472 for_each_free_object(p, s, page->freelist) { 3473 set_bit(slab_index(p, s, addr), map); 3474 if (!check_object(s, page, p, 0)) 3475 return 0; 3476 } 3477 3478 for_each_object(p, s, addr, page->objects) 3479 if (!test_bit(slab_index(p, s, addr), map)) 3480 if (!check_object(s, page, p, 1)) 3481 return 0; 3482 return 1; 3483 } 3484 3485 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3486 unsigned long *map) 3487 { 3488 if (slab_trylock(page)) { 3489 validate_slab(s, page, map); 3490 slab_unlock(page); 3491 } else 3492 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3493 s->name, page); 3494 3495 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3496 if (!PageSlubDebug(page)) 3497 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3498 "on slab 0x%p\n", s->name, page); 3499 } else { 3500 if (PageSlubDebug(page)) 3501 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3502 "slab 0x%p\n", s->name, page); 3503 } 3504 } 3505 3506 static int validate_slab_node(struct kmem_cache *s, 3507 struct kmem_cache_node *n, unsigned long *map) 3508 { 3509 unsigned long count = 0; 3510 struct page *page; 3511 unsigned long flags; 3512 3513 spin_lock_irqsave(&n->list_lock, flags); 3514 3515 list_for_each_entry(page, &n->partial, lru) { 3516 validate_slab_slab(s, page, map); 3517 count++; 3518 } 3519 if (count != n->nr_partial) 3520 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3521 "counter=%ld\n", s->name, count, n->nr_partial); 3522 3523 if (!(s->flags & SLAB_STORE_USER)) 3524 goto out; 3525 3526 list_for_each_entry(page, &n->full, lru) { 3527 validate_slab_slab(s, page, map); 3528 count++; 3529 } 3530 if (count != atomic_long_read(&n->nr_slabs)) 3531 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3532 "counter=%ld\n", s->name, count, 3533 atomic_long_read(&n->nr_slabs)); 3534 3535 out: 3536 spin_unlock_irqrestore(&n->list_lock, flags); 3537 return count; 3538 } 3539 3540 static long validate_slab_cache(struct kmem_cache *s) 3541 { 3542 int node; 3543 unsigned long count = 0; 3544 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3545 sizeof(unsigned long), GFP_KERNEL); 3546 3547 if (!map) 3548 return -ENOMEM; 3549 3550 flush_all(s); 3551 for_each_node_state(node, N_NORMAL_MEMORY) { 3552 struct kmem_cache_node *n = get_node(s, node); 3553 3554 count += validate_slab_node(s, n, map); 3555 } 3556 kfree(map); 3557 return count; 3558 } 3559 3560 #ifdef SLUB_RESILIENCY_TEST 3561 static void resiliency_test(void) 3562 { 3563 u8 *p; 3564 3565 printk(KERN_ERR "SLUB resiliency testing\n"); 3566 printk(KERN_ERR "-----------------------\n"); 3567 printk(KERN_ERR "A. Corruption after allocation\n"); 3568 3569 p = kzalloc(16, GFP_KERNEL); 3570 p[16] = 0x12; 3571 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3572 " 0x12->0x%p\n\n", p + 16); 3573 3574 validate_slab_cache(kmalloc_caches + 4); 3575 3576 /* Hmmm... The next two are dangerous */ 3577 p = kzalloc(32, GFP_KERNEL); 3578 p[32 + sizeof(void *)] = 0x34; 3579 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3580 " 0x34 -> -0x%p\n", p); 3581 printk(KERN_ERR 3582 "If allocated object is overwritten then not detectable\n\n"); 3583 3584 validate_slab_cache(kmalloc_caches + 5); 3585 p = kzalloc(64, GFP_KERNEL); 3586 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3587 *p = 0x56; 3588 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3589 p); 3590 printk(KERN_ERR 3591 "If allocated object is overwritten then not detectable\n\n"); 3592 validate_slab_cache(kmalloc_caches + 6); 3593 3594 printk(KERN_ERR "\nB. Corruption after free\n"); 3595 p = kzalloc(128, GFP_KERNEL); 3596 kfree(p); 3597 *p = 0x78; 3598 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3599 validate_slab_cache(kmalloc_caches + 7); 3600 3601 p = kzalloc(256, GFP_KERNEL); 3602 kfree(p); 3603 p[50] = 0x9a; 3604 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3605 p); 3606 validate_slab_cache(kmalloc_caches + 8); 3607 3608 p = kzalloc(512, GFP_KERNEL); 3609 kfree(p); 3610 p[512] = 0xab; 3611 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3612 validate_slab_cache(kmalloc_caches + 9); 3613 } 3614 #else 3615 static void resiliency_test(void) {}; 3616 #endif 3617 3618 /* 3619 * Generate lists of code addresses where slabcache objects are allocated 3620 * and freed. 3621 */ 3622 3623 struct location { 3624 unsigned long count; 3625 unsigned long addr; 3626 long long sum_time; 3627 long min_time; 3628 long max_time; 3629 long min_pid; 3630 long max_pid; 3631 DECLARE_BITMAP(cpus, NR_CPUS); 3632 nodemask_t nodes; 3633 }; 3634 3635 struct loc_track { 3636 unsigned long max; 3637 unsigned long count; 3638 struct location *loc; 3639 }; 3640 3641 static void free_loc_track(struct loc_track *t) 3642 { 3643 if (t->max) 3644 free_pages((unsigned long)t->loc, 3645 get_order(sizeof(struct location) * t->max)); 3646 } 3647 3648 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3649 { 3650 struct location *l; 3651 int order; 3652 3653 order = get_order(sizeof(struct location) * max); 3654 3655 l = (void *)__get_free_pages(flags, order); 3656 if (!l) 3657 return 0; 3658 3659 if (t->count) { 3660 memcpy(l, t->loc, sizeof(struct location) * t->count); 3661 free_loc_track(t); 3662 } 3663 t->max = max; 3664 t->loc = l; 3665 return 1; 3666 } 3667 3668 static int add_location(struct loc_track *t, struct kmem_cache *s, 3669 const struct track *track) 3670 { 3671 long start, end, pos; 3672 struct location *l; 3673 unsigned long caddr; 3674 unsigned long age = jiffies - track->when; 3675 3676 start = -1; 3677 end = t->count; 3678 3679 for ( ; ; ) { 3680 pos = start + (end - start + 1) / 2; 3681 3682 /* 3683 * There is nothing at "end". If we end up there 3684 * we need to add something to before end. 3685 */ 3686 if (pos == end) 3687 break; 3688 3689 caddr = t->loc[pos].addr; 3690 if (track->addr == caddr) { 3691 3692 l = &t->loc[pos]; 3693 l->count++; 3694 if (track->when) { 3695 l->sum_time += age; 3696 if (age < l->min_time) 3697 l->min_time = age; 3698 if (age > l->max_time) 3699 l->max_time = age; 3700 3701 if (track->pid < l->min_pid) 3702 l->min_pid = track->pid; 3703 if (track->pid > l->max_pid) 3704 l->max_pid = track->pid; 3705 3706 cpumask_set_cpu(track->cpu, 3707 to_cpumask(l->cpus)); 3708 } 3709 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3710 return 1; 3711 } 3712 3713 if (track->addr < caddr) 3714 end = pos; 3715 else 3716 start = pos; 3717 } 3718 3719 /* 3720 * Not found. Insert new tracking element. 3721 */ 3722 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3723 return 0; 3724 3725 l = t->loc + pos; 3726 if (pos < t->count) 3727 memmove(l + 1, l, 3728 (t->count - pos) * sizeof(struct location)); 3729 t->count++; 3730 l->count = 1; 3731 l->addr = track->addr; 3732 l->sum_time = age; 3733 l->min_time = age; 3734 l->max_time = age; 3735 l->min_pid = track->pid; 3736 l->max_pid = track->pid; 3737 cpumask_clear(to_cpumask(l->cpus)); 3738 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3739 nodes_clear(l->nodes); 3740 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3741 return 1; 3742 } 3743 3744 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3745 struct page *page, enum track_item alloc) 3746 { 3747 void *addr = page_address(page); 3748 DECLARE_BITMAP(map, page->objects); 3749 void *p; 3750 3751 bitmap_zero(map, page->objects); 3752 for_each_free_object(p, s, page->freelist) 3753 set_bit(slab_index(p, s, addr), map); 3754 3755 for_each_object(p, s, addr, page->objects) 3756 if (!test_bit(slab_index(p, s, addr), map)) 3757 add_location(t, s, get_track(s, p, alloc)); 3758 } 3759 3760 static int list_locations(struct kmem_cache *s, char *buf, 3761 enum track_item alloc) 3762 { 3763 int len = 0; 3764 unsigned long i; 3765 struct loc_track t = { 0, 0, NULL }; 3766 int node; 3767 3768 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3769 GFP_TEMPORARY)) 3770 return sprintf(buf, "Out of memory\n"); 3771 3772 /* Push back cpu slabs */ 3773 flush_all(s); 3774 3775 for_each_node_state(node, N_NORMAL_MEMORY) { 3776 struct kmem_cache_node *n = get_node(s, node); 3777 unsigned long flags; 3778 struct page *page; 3779 3780 if (!atomic_long_read(&n->nr_slabs)) 3781 continue; 3782 3783 spin_lock_irqsave(&n->list_lock, flags); 3784 list_for_each_entry(page, &n->partial, lru) 3785 process_slab(&t, s, page, alloc); 3786 list_for_each_entry(page, &n->full, lru) 3787 process_slab(&t, s, page, alloc); 3788 spin_unlock_irqrestore(&n->list_lock, flags); 3789 } 3790 3791 for (i = 0; i < t.count; i++) { 3792 struct location *l = &t.loc[i]; 3793 3794 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3795 break; 3796 len += sprintf(buf + len, "%7ld ", l->count); 3797 3798 if (l->addr) 3799 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3800 else 3801 len += sprintf(buf + len, "<not-available>"); 3802 3803 if (l->sum_time != l->min_time) { 3804 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3805 l->min_time, 3806 (long)div_u64(l->sum_time, l->count), 3807 l->max_time); 3808 } else 3809 len += sprintf(buf + len, " age=%ld", 3810 l->min_time); 3811 3812 if (l->min_pid != l->max_pid) 3813 len += sprintf(buf + len, " pid=%ld-%ld", 3814 l->min_pid, l->max_pid); 3815 else 3816 len += sprintf(buf + len, " pid=%ld", 3817 l->min_pid); 3818 3819 if (num_online_cpus() > 1 && 3820 !cpumask_empty(to_cpumask(l->cpus)) && 3821 len < PAGE_SIZE - 60) { 3822 len += sprintf(buf + len, " cpus="); 3823 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3824 to_cpumask(l->cpus)); 3825 } 3826 3827 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 3828 len < PAGE_SIZE - 60) { 3829 len += sprintf(buf + len, " nodes="); 3830 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3831 l->nodes); 3832 } 3833 3834 len += sprintf(buf + len, "\n"); 3835 } 3836 3837 free_loc_track(&t); 3838 if (!t.count) 3839 len += sprintf(buf, "No data\n"); 3840 return len; 3841 } 3842 3843 enum slab_stat_type { 3844 SL_ALL, /* All slabs */ 3845 SL_PARTIAL, /* Only partially allocated slabs */ 3846 SL_CPU, /* Only slabs used for cpu caches */ 3847 SL_OBJECTS, /* Determine allocated objects not slabs */ 3848 SL_TOTAL /* Determine object capacity not slabs */ 3849 }; 3850 3851 #define SO_ALL (1 << SL_ALL) 3852 #define SO_PARTIAL (1 << SL_PARTIAL) 3853 #define SO_CPU (1 << SL_CPU) 3854 #define SO_OBJECTS (1 << SL_OBJECTS) 3855 #define SO_TOTAL (1 << SL_TOTAL) 3856 3857 static ssize_t show_slab_objects(struct kmem_cache *s, 3858 char *buf, unsigned long flags) 3859 { 3860 unsigned long total = 0; 3861 int node; 3862 int x; 3863 unsigned long *nodes; 3864 unsigned long *per_cpu; 3865 3866 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3867 if (!nodes) 3868 return -ENOMEM; 3869 per_cpu = nodes + nr_node_ids; 3870 3871 if (flags & SO_CPU) { 3872 int cpu; 3873 3874 for_each_possible_cpu(cpu) { 3875 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3876 3877 if (!c || c->node < 0) 3878 continue; 3879 3880 if (c->page) { 3881 if (flags & SO_TOTAL) 3882 x = c->page->objects; 3883 else if (flags & SO_OBJECTS) 3884 x = c->page->inuse; 3885 else 3886 x = 1; 3887 3888 total += x; 3889 nodes[c->node] += x; 3890 } 3891 per_cpu[c->node]++; 3892 } 3893 } 3894 3895 if (flags & SO_ALL) { 3896 for_each_node_state(node, N_NORMAL_MEMORY) { 3897 struct kmem_cache_node *n = get_node(s, node); 3898 3899 if (flags & SO_TOTAL) 3900 x = atomic_long_read(&n->total_objects); 3901 else if (flags & SO_OBJECTS) 3902 x = atomic_long_read(&n->total_objects) - 3903 count_partial(n, count_free); 3904 3905 else 3906 x = atomic_long_read(&n->nr_slabs); 3907 total += x; 3908 nodes[node] += x; 3909 } 3910 3911 } else if (flags & SO_PARTIAL) { 3912 for_each_node_state(node, N_NORMAL_MEMORY) { 3913 struct kmem_cache_node *n = get_node(s, node); 3914 3915 if (flags & SO_TOTAL) 3916 x = count_partial(n, count_total); 3917 else if (flags & SO_OBJECTS) 3918 x = count_partial(n, count_inuse); 3919 else 3920 x = n->nr_partial; 3921 total += x; 3922 nodes[node] += x; 3923 } 3924 } 3925 x = sprintf(buf, "%lu", total); 3926 #ifdef CONFIG_NUMA 3927 for_each_node_state(node, N_NORMAL_MEMORY) 3928 if (nodes[node]) 3929 x += sprintf(buf + x, " N%d=%lu", 3930 node, nodes[node]); 3931 #endif 3932 kfree(nodes); 3933 return x + sprintf(buf + x, "\n"); 3934 } 3935 3936 static int any_slab_objects(struct kmem_cache *s) 3937 { 3938 int node; 3939 3940 for_each_online_node(node) { 3941 struct kmem_cache_node *n = get_node(s, node); 3942 3943 if (!n) 3944 continue; 3945 3946 if (atomic_long_read(&n->total_objects)) 3947 return 1; 3948 } 3949 return 0; 3950 } 3951 3952 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3953 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3954 3955 struct slab_attribute { 3956 struct attribute attr; 3957 ssize_t (*show)(struct kmem_cache *s, char *buf); 3958 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3959 }; 3960 3961 #define SLAB_ATTR_RO(_name) \ 3962 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3963 3964 #define SLAB_ATTR(_name) \ 3965 static struct slab_attribute _name##_attr = \ 3966 __ATTR(_name, 0644, _name##_show, _name##_store) 3967 3968 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3969 { 3970 return sprintf(buf, "%d\n", s->size); 3971 } 3972 SLAB_ATTR_RO(slab_size); 3973 3974 static ssize_t align_show(struct kmem_cache *s, char *buf) 3975 { 3976 return sprintf(buf, "%d\n", s->align); 3977 } 3978 SLAB_ATTR_RO(align); 3979 3980 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3981 { 3982 return sprintf(buf, "%d\n", s->objsize); 3983 } 3984 SLAB_ATTR_RO(object_size); 3985 3986 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3987 { 3988 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3989 } 3990 SLAB_ATTR_RO(objs_per_slab); 3991 3992 static ssize_t order_store(struct kmem_cache *s, 3993 const char *buf, size_t length) 3994 { 3995 unsigned long order; 3996 int err; 3997 3998 err = strict_strtoul(buf, 10, &order); 3999 if (err) 4000 return err; 4001 4002 if (order > slub_max_order || order < slub_min_order) 4003 return -EINVAL; 4004 4005 calculate_sizes(s, order); 4006 return length; 4007 } 4008 4009 static ssize_t order_show(struct kmem_cache *s, char *buf) 4010 { 4011 return sprintf(buf, "%d\n", oo_order(s->oo)); 4012 } 4013 SLAB_ATTR(order); 4014 4015 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4016 { 4017 return sprintf(buf, "%lu\n", s->min_partial); 4018 } 4019 4020 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4021 size_t length) 4022 { 4023 unsigned long min; 4024 int err; 4025 4026 err = strict_strtoul(buf, 10, &min); 4027 if (err) 4028 return err; 4029 4030 set_min_partial(s, min); 4031 return length; 4032 } 4033 SLAB_ATTR(min_partial); 4034 4035 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4036 { 4037 if (s->ctor) { 4038 int n = sprint_symbol(buf, (unsigned long)s->ctor); 4039 4040 return n + sprintf(buf + n, "\n"); 4041 } 4042 return 0; 4043 } 4044 SLAB_ATTR_RO(ctor); 4045 4046 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4047 { 4048 return sprintf(buf, "%d\n", s->refcount - 1); 4049 } 4050 SLAB_ATTR_RO(aliases); 4051 4052 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4053 { 4054 return show_slab_objects(s, buf, SO_ALL); 4055 } 4056 SLAB_ATTR_RO(slabs); 4057 4058 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4059 { 4060 return show_slab_objects(s, buf, SO_PARTIAL); 4061 } 4062 SLAB_ATTR_RO(partial); 4063 4064 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4065 { 4066 return show_slab_objects(s, buf, SO_CPU); 4067 } 4068 SLAB_ATTR_RO(cpu_slabs); 4069 4070 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4071 { 4072 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4073 } 4074 SLAB_ATTR_RO(objects); 4075 4076 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4077 { 4078 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4079 } 4080 SLAB_ATTR_RO(objects_partial); 4081 4082 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4083 { 4084 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4085 } 4086 SLAB_ATTR_RO(total_objects); 4087 4088 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4089 { 4090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4091 } 4092 4093 static ssize_t sanity_checks_store(struct kmem_cache *s, 4094 const char *buf, size_t length) 4095 { 4096 s->flags &= ~SLAB_DEBUG_FREE; 4097 if (buf[0] == '1') 4098 s->flags |= SLAB_DEBUG_FREE; 4099 return length; 4100 } 4101 SLAB_ATTR(sanity_checks); 4102 4103 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4104 { 4105 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4106 } 4107 4108 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4109 size_t length) 4110 { 4111 s->flags &= ~SLAB_TRACE; 4112 if (buf[0] == '1') 4113 s->flags |= SLAB_TRACE; 4114 return length; 4115 } 4116 SLAB_ATTR(trace); 4117 4118 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4119 { 4120 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4121 } 4122 4123 static ssize_t reclaim_account_store(struct kmem_cache *s, 4124 const char *buf, size_t length) 4125 { 4126 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4127 if (buf[0] == '1') 4128 s->flags |= SLAB_RECLAIM_ACCOUNT; 4129 return length; 4130 } 4131 SLAB_ATTR(reclaim_account); 4132 4133 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4134 { 4135 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4136 } 4137 SLAB_ATTR_RO(hwcache_align); 4138 4139 #ifdef CONFIG_ZONE_DMA 4140 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4141 { 4142 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4143 } 4144 SLAB_ATTR_RO(cache_dma); 4145 #endif 4146 4147 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4148 { 4149 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4150 } 4151 SLAB_ATTR_RO(destroy_by_rcu); 4152 4153 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4154 { 4155 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4156 } 4157 4158 static ssize_t red_zone_store(struct kmem_cache *s, 4159 const char *buf, size_t length) 4160 { 4161 if (any_slab_objects(s)) 4162 return -EBUSY; 4163 4164 s->flags &= ~SLAB_RED_ZONE; 4165 if (buf[0] == '1') 4166 s->flags |= SLAB_RED_ZONE; 4167 calculate_sizes(s, -1); 4168 return length; 4169 } 4170 SLAB_ATTR(red_zone); 4171 4172 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4173 { 4174 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4175 } 4176 4177 static ssize_t poison_store(struct kmem_cache *s, 4178 const char *buf, size_t length) 4179 { 4180 if (any_slab_objects(s)) 4181 return -EBUSY; 4182 4183 s->flags &= ~SLAB_POISON; 4184 if (buf[0] == '1') 4185 s->flags |= SLAB_POISON; 4186 calculate_sizes(s, -1); 4187 return length; 4188 } 4189 SLAB_ATTR(poison); 4190 4191 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4192 { 4193 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4194 } 4195 4196 static ssize_t store_user_store(struct kmem_cache *s, 4197 const char *buf, size_t length) 4198 { 4199 if (any_slab_objects(s)) 4200 return -EBUSY; 4201 4202 s->flags &= ~SLAB_STORE_USER; 4203 if (buf[0] == '1') 4204 s->flags |= SLAB_STORE_USER; 4205 calculate_sizes(s, -1); 4206 return length; 4207 } 4208 SLAB_ATTR(store_user); 4209 4210 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4211 { 4212 return 0; 4213 } 4214 4215 static ssize_t validate_store(struct kmem_cache *s, 4216 const char *buf, size_t length) 4217 { 4218 int ret = -EINVAL; 4219 4220 if (buf[0] == '1') { 4221 ret = validate_slab_cache(s); 4222 if (ret >= 0) 4223 ret = length; 4224 } 4225 return ret; 4226 } 4227 SLAB_ATTR(validate); 4228 4229 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4230 { 4231 return 0; 4232 } 4233 4234 static ssize_t shrink_store(struct kmem_cache *s, 4235 const char *buf, size_t length) 4236 { 4237 if (buf[0] == '1') { 4238 int rc = kmem_cache_shrink(s); 4239 4240 if (rc) 4241 return rc; 4242 } else 4243 return -EINVAL; 4244 return length; 4245 } 4246 SLAB_ATTR(shrink); 4247 4248 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4249 { 4250 if (!(s->flags & SLAB_STORE_USER)) 4251 return -ENOSYS; 4252 return list_locations(s, buf, TRACK_ALLOC); 4253 } 4254 SLAB_ATTR_RO(alloc_calls); 4255 4256 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4257 { 4258 if (!(s->flags & SLAB_STORE_USER)) 4259 return -ENOSYS; 4260 return list_locations(s, buf, TRACK_FREE); 4261 } 4262 SLAB_ATTR_RO(free_calls); 4263 4264 #ifdef CONFIG_NUMA 4265 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4266 { 4267 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4268 } 4269 4270 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4271 const char *buf, size_t length) 4272 { 4273 unsigned long ratio; 4274 int err; 4275 4276 err = strict_strtoul(buf, 10, &ratio); 4277 if (err) 4278 return err; 4279 4280 if (ratio <= 100) 4281 s->remote_node_defrag_ratio = ratio * 10; 4282 4283 return length; 4284 } 4285 SLAB_ATTR(remote_node_defrag_ratio); 4286 #endif 4287 4288 #ifdef CONFIG_SLUB_STATS 4289 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4290 { 4291 unsigned long sum = 0; 4292 int cpu; 4293 int len; 4294 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4295 4296 if (!data) 4297 return -ENOMEM; 4298 4299 for_each_online_cpu(cpu) { 4300 unsigned x = get_cpu_slab(s, cpu)->stat[si]; 4301 4302 data[cpu] = x; 4303 sum += x; 4304 } 4305 4306 len = sprintf(buf, "%lu", sum); 4307 4308 #ifdef CONFIG_SMP 4309 for_each_online_cpu(cpu) { 4310 if (data[cpu] && len < PAGE_SIZE - 20) 4311 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4312 } 4313 #endif 4314 kfree(data); 4315 return len + sprintf(buf + len, "\n"); 4316 } 4317 4318 #define STAT_ATTR(si, text) \ 4319 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4320 { \ 4321 return show_stat(s, buf, si); \ 4322 } \ 4323 SLAB_ATTR_RO(text); \ 4324 4325 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4326 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4327 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4328 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4329 STAT_ATTR(FREE_FROZEN, free_frozen); 4330 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4331 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4332 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4333 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4334 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4335 STAT_ATTR(FREE_SLAB, free_slab); 4336 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4337 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4338 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4339 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4340 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4341 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4342 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4343 #endif 4344 4345 static struct attribute *slab_attrs[] = { 4346 &slab_size_attr.attr, 4347 &object_size_attr.attr, 4348 &objs_per_slab_attr.attr, 4349 &order_attr.attr, 4350 &min_partial_attr.attr, 4351 &objects_attr.attr, 4352 &objects_partial_attr.attr, 4353 &total_objects_attr.attr, 4354 &slabs_attr.attr, 4355 &partial_attr.attr, 4356 &cpu_slabs_attr.attr, 4357 &ctor_attr.attr, 4358 &aliases_attr.attr, 4359 &align_attr.attr, 4360 &sanity_checks_attr.attr, 4361 &trace_attr.attr, 4362 &hwcache_align_attr.attr, 4363 &reclaim_account_attr.attr, 4364 &destroy_by_rcu_attr.attr, 4365 &red_zone_attr.attr, 4366 &poison_attr.attr, 4367 &store_user_attr.attr, 4368 &validate_attr.attr, 4369 &shrink_attr.attr, 4370 &alloc_calls_attr.attr, 4371 &free_calls_attr.attr, 4372 #ifdef CONFIG_ZONE_DMA 4373 &cache_dma_attr.attr, 4374 #endif 4375 #ifdef CONFIG_NUMA 4376 &remote_node_defrag_ratio_attr.attr, 4377 #endif 4378 #ifdef CONFIG_SLUB_STATS 4379 &alloc_fastpath_attr.attr, 4380 &alloc_slowpath_attr.attr, 4381 &free_fastpath_attr.attr, 4382 &free_slowpath_attr.attr, 4383 &free_frozen_attr.attr, 4384 &free_add_partial_attr.attr, 4385 &free_remove_partial_attr.attr, 4386 &alloc_from_partial_attr.attr, 4387 &alloc_slab_attr.attr, 4388 &alloc_refill_attr.attr, 4389 &free_slab_attr.attr, 4390 &cpuslab_flush_attr.attr, 4391 &deactivate_full_attr.attr, 4392 &deactivate_empty_attr.attr, 4393 &deactivate_to_head_attr.attr, 4394 &deactivate_to_tail_attr.attr, 4395 &deactivate_remote_frees_attr.attr, 4396 &order_fallback_attr.attr, 4397 #endif 4398 NULL 4399 }; 4400 4401 static struct attribute_group slab_attr_group = { 4402 .attrs = slab_attrs, 4403 }; 4404 4405 static ssize_t slab_attr_show(struct kobject *kobj, 4406 struct attribute *attr, 4407 char *buf) 4408 { 4409 struct slab_attribute *attribute; 4410 struct kmem_cache *s; 4411 int err; 4412 4413 attribute = to_slab_attr(attr); 4414 s = to_slab(kobj); 4415 4416 if (!attribute->show) 4417 return -EIO; 4418 4419 err = attribute->show(s, buf); 4420 4421 return err; 4422 } 4423 4424 static ssize_t slab_attr_store(struct kobject *kobj, 4425 struct attribute *attr, 4426 const char *buf, size_t len) 4427 { 4428 struct slab_attribute *attribute; 4429 struct kmem_cache *s; 4430 int err; 4431 4432 attribute = to_slab_attr(attr); 4433 s = to_slab(kobj); 4434 4435 if (!attribute->store) 4436 return -EIO; 4437 4438 err = attribute->store(s, buf, len); 4439 4440 return err; 4441 } 4442 4443 static void kmem_cache_release(struct kobject *kobj) 4444 { 4445 struct kmem_cache *s = to_slab(kobj); 4446 4447 kfree(s); 4448 } 4449 4450 static struct sysfs_ops slab_sysfs_ops = { 4451 .show = slab_attr_show, 4452 .store = slab_attr_store, 4453 }; 4454 4455 static struct kobj_type slab_ktype = { 4456 .sysfs_ops = &slab_sysfs_ops, 4457 .release = kmem_cache_release 4458 }; 4459 4460 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4461 { 4462 struct kobj_type *ktype = get_ktype(kobj); 4463 4464 if (ktype == &slab_ktype) 4465 return 1; 4466 return 0; 4467 } 4468 4469 static struct kset_uevent_ops slab_uevent_ops = { 4470 .filter = uevent_filter, 4471 }; 4472 4473 static struct kset *slab_kset; 4474 4475 #define ID_STR_LENGTH 64 4476 4477 /* Create a unique string id for a slab cache: 4478 * 4479 * Format :[flags-]size 4480 */ 4481 static char *create_unique_id(struct kmem_cache *s) 4482 { 4483 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4484 char *p = name; 4485 4486 BUG_ON(!name); 4487 4488 *p++ = ':'; 4489 /* 4490 * First flags affecting slabcache operations. We will only 4491 * get here for aliasable slabs so we do not need to support 4492 * too many flags. The flags here must cover all flags that 4493 * are matched during merging to guarantee that the id is 4494 * unique. 4495 */ 4496 if (s->flags & SLAB_CACHE_DMA) 4497 *p++ = 'd'; 4498 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4499 *p++ = 'a'; 4500 if (s->flags & SLAB_DEBUG_FREE) 4501 *p++ = 'F'; 4502 if (!(s->flags & SLAB_NOTRACK)) 4503 *p++ = 't'; 4504 if (p != name + 1) 4505 *p++ = '-'; 4506 p += sprintf(p, "%07d", s->size); 4507 BUG_ON(p > name + ID_STR_LENGTH - 1); 4508 return name; 4509 } 4510 4511 static int sysfs_slab_add(struct kmem_cache *s) 4512 { 4513 int err; 4514 const char *name; 4515 int unmergeable; 4516 4517 if (slab_state < SYSFS) 4518 /* Defer until later */ 4519 return 0; 4520 4521 unmergeable = slab_unmergeable(s); 4522 if (unmergeable) { 4523 /* 4524 * Slabcache can never be merged so we can use the name proper. 4525 * This is typically the case for debug situations. In that 4526 * case we can catch duplicate names easily. 4527 */ 4528 sysfs_remove_link(&slab_kset->kobj, s->name); 4529 name = s->name; 4530 } else { 4531 /* 4532 * Create a unique name for the slab as a target 4533 * for the symlinks. 4534 */ 4535 name = create_unique_id(s); 4536 } 4537 4538 s->kobj.kset = slab_kset; 4539 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4540 if (err) { 4541 kobject_put(&s->kobj); 4542 return err; 4543 } 4544 4545 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4546 if (err) 4547 return err; 4548 kobject_uevent(&s->kobj, KOBJ_ADD); 4549 if (!unmergeable) { 4550 /* Setup first alias */ 4551 sysfs_slab_alias(s, s->name); 4552 kfree(name); 4553 } 4554 return 0; 4555 } 4556 4557 static void sysfs_slab_remove(struct kmem_cache *s) 4558 { 4559 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4560 kobject_del(&s->kobj); 4561 kobject_put(&s->kobj); 4562 } 4563 4564 /* 4565 * Need to buffer aliases during bootup until sysfs becomes 4566 * available lest we lose that information. 4567 */ 4568 struct saved_alias { 4569 struct kmem_cache *s; 4570 const char *name; 4571 struct saved_alias *next; 4572 }; 4573 4574 static struct saved_alias *alias_list; 4575 4576 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4577 { 4578 struct saved_alias *al; 4579 4580 if (slab_state == SYSFS) { 4581 /* 4582 * If we have a leftover link then remove it. 4583 */ 4584 sysfs_remove_link(&slab_kset->kobj, name); 4585 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4586 } 4587 4588 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4589 if (!al) 4590 return -ENOMEM; 4591 4592 al->s = s; 4593 al->name = name; 4594 al->next = alias_list; 4595 alias_list = al; 4596 return 0; 4597 } 4598 4599 static int __init slab_sysfs_init(void) 4600 { 4601 struct kmem_cache *s; 4602 int err; 4603 4604 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4605 if (!slab_kset) { 4606 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4607 return -ENOSYS; 4608 } 4609 4610 slab_state = SYSFS; 4611 4612 list_for_each_entry(s, &slab_caches, list) { 4613 err = sysfs_slab_add(s); 4614 if (err) 4615 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4616 " to sysfs\n", s->name); 4617 } 4618 4619 while (alias_list) { 4620 struct saved_alias *al = alias_list; 4621 4622 alias_list = alias_list->next; 4623 err = sysfs_slab_alias(al->s, al->name); 4624 if (err) 4625 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4626 " %s to sysfs\n", s->name); 4627 kfree(al); 4628 } 4629 4630 resiliency_test(); 4631 return 0; 4632 } 4633 4634 __initcall(slab_sysfs_init); 4635 #endif 4636 4637 /* 4638 * The /proc/slabinfo ABI 4639 */ 4640 #ifdef CONFIG_SLABINFO 4641 static void print_slabinfo_header(struct seq_file *m) 4642 { 4643 seq_puts(m, "slabinfo - version: 2.1\n"); 4644 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4645 "<objperslab> <pagesperslab>"); 4646 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4647 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4648 seq_putc(m, '\n'); 4649 } 4650 4651 static void *s_start(struct seq_file *m, loff_t *pos) 4652 { 4653 loff_t n = *pos; 4654 4655 down_read(&slub_lock); 4656 if (!n) 4657 print_slabinfo_header(m); 4658 4659 return seq_list_start(&slab_caches, *pos); 4660 } 4661 4662 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4663 { 4664 return seq_list_next(p, &slab_caches, pos); 4665 } 4666 4667 static void s_stop(struct seq_file *m, void *p) 4668 { 4669 up_read(&slub_lock); 4670 } 4671 4672 static int s_show(struct seq_file *m, void *p) 4673 { 4674 unsigned long nr_partials = 0; 4675 unsigned long nr_slabs = 0; 4676 unsigned long nr_inuse = 0; 4677 unsigned long nr_objs = 0; 4678 unsigned long nr_free = 0; 4679 struct kmem_cache *s; 4680 int node; 4681 4682 s = list_entry(p, struct kmem_cache, list); 4683 4684 for_each_online_node(node) { 4685 struct kmem_cache_node *n = get_node(s, node); 4686 4687 if (!n) 4688 continue; 4689 4690 nr_partials += n->nr_partial; 4691 nr_slabs += atomic_long_read(&n->nr_slabs); 4692 nr_objs += atomic_long_read(&n->total_objects); 4693 nr_free += count_partial(n, count_free); 4694 } 4695 4696 nr_inuse = nr_objs - nr_free; 4697 4698 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4699 nr_objs, s->size, oo_objects(s->oo), 4700 (1 << oo_order(s->oo))); 4701 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4702 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4703 0UL); 4704 seq_putc(m, '\n'); 4705 return 0; 4706 } 4707 4708 static const struct seq_operations slabinfo_op = { 4709 .start = s_start, 4710 .next = s_next, 4711 .stop = s_stop, 4712 .show = s_show, 4713 }; 4714 4715 static int slabinfo_open(struct inode *inode, struct file *file) 4716 { 4717 return seq_open(file, &slabinfo_op); 4718 } 4719 4720 static const struct file_operations proc_slabinfo_operations = { 4721 .open = slabinfo_open, 4722 .read = seq_read, 4723 .llseek = seq_lseek, 4724 .release = seq_release, 4725 }; 4726 4727 static int __init slab_proc_init(void) 4728 { 4729 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4730 return 0; 4731 } 4732 module_init(slab_proc_init); 4733 #endif /* CONFIG_SLABINFO */ 4734