xref: /linux/mm/slub.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 
32 /*
33  * Lock order:
34  *   1. slab_lock(page)
35  *   2. slab->list_lock
36  *
37  *   The slab_lock protects operations on the object of a particular
38  *   slab and its metadata in the page struct. If the slab lock
39  *   has been taken then no allocations nor frees can be performed
40  *   on the objects in the slab nor can the slab be added or removed
41  *   from the partial or full lists since this would mean modifying
42  *   the page_struct of the slab.
43  *
44  *   The list_lock protects the partial and full list on each node and
45  *   the partial slab counter. If taken then no new slabs may be added or
46  *   removed from the lists nor make the number of partial slabs be modified.
47  *   (Note that the total number of slabs is an atomic value that may be
48  *   modified without taking the list lock).
49  *
50  *   The list_lock is a centralized lock and thus we avoid taking it as
51  *   much as possible. As long as SLUB does not have to handle partial
52  *   slabs, operations can continue without any centralized lock. F.e.
53  *   allocating a long series of objects that fill up slabs does not require
54  *   the list lock.
55  *
56  *   The lock order is sometimes inverted when we are trying to get a slab
57  *   off a list. We take the list_lock and then look for a page on the list
58  *   to use. While we do that objects in the slabs may be freed. We can
59  *   only operate on the slab if we have also taken the slab_lock. So we use
60  *   a slab_trylock() on the slab. If trylock was successful then no frees
61  *   can occur anymore and we can use the slab for allocations etc. If the
62  *   slab_trylock() does not succeed then frees are in progress in the slab and
63  *   we must stay away from it for a while since we may cause a bouncing
64  *   cacheline if we try to acquire the lock. So go onto the next slab.
65  *   If all pages are busy then we may allocate a new slab instead of reusing
66  *   a partial slab. A new slab has noone operating on it and thus there is
67  *   no danger of cacheline contention.
68  *
69  *   Interrupts are disabled during allocation and deallocation in order to
70  *   make the slab allocator safe to use in the context of an irq. In addition
71  *   interrupts are disabled to ensure that the processor does not change
72  *   while handling per_cpu slabs, due to kernel preemption.
73  *
74  * SLUB assigns one slab for allocation to each processor.
75  * Allocations only occur from these slabs called cpu slabs.
76  *
77  * Slabs with free elements are kept on a partial list and during regular
78  * operations no list for full slabs is used. If an object in a full slab is
79  * freed then the slab will show up again on the partial lists.
80  * We track full slabs for debugging purposes though because otherwise we
81  * cannot scan all objects.
82  *
83  * Slabs are freed when they become empty. Teardown and setup is
84  * minimal so we rely on the page allocators per cpu caches for
85  * fast frees and allocs.
86  *
87  * Overloading of page flags that are otherwise used for LRU management.
88  *
89  * PageActive 		The slab is frozen and exempt from list processing.
90  * 			This means that the slab is dedicated to a purpose
91  * 			such as satisfying allocations for a specific
92  * 			processor. Objects may be freed in the slab while
93  * 			it is frozen but slab_free will then skip the usual
94  * 			list operations. It is up to the processor holding
95  * 			the slab to integrate the slab into the slab lists
96  * 			when the slab is no longer needed.
97  *
98  * 			One use of this flag is to mark slabs that are
99  * 			used for allocations. Then such a slab becomes a cpu
100  * 			slab. The cpu slab may be equipped with an additional
101  * 			freelist that allows lockless access to
102  * 			free objects in addition to the regular freelist
103  * 			that requires the slab lock.
104  *
105  * PageError		Slab requires special handling due to debug
106  * 			options set. This moves	slab handling out of
107  * 			the fast path and disables lockless freelists.
108  */
109 
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115 
116 /*
117  * Issues still to be resolved:
118  *
119  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120  *
121  * - Variable sizing of the per node arrays
122  */
123 
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126 
127 /*
128  * Mininum number of partial slabs. These will be left on the partial
129  * lists even if they are empty. kmem_cache_shrink may reclaim them.
130  */
131 #define MIN_PARTIAL 5
132 
133 /*
134  * Maximum number of desirable partial slabs.
135  * The existence of more partial slabs makes kmem_cache_shrink
136  * sort the partial list by the number of objects in the.
137  */
138 #define MAX_PARTIAL 10
139 
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 				SLAB_POISON | SLAB_STORE_USER)
142 
143 /*
144  * Set of flags that will prevent slab merging
145  */
146 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
147 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
148 
149 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 		SLAB_CACHE_DMA | SLAB_NOTRACK)
151 
152 #ifndef ARCH_KMALLOC_MINALIGN
153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
154 #endif
155 
156 #ifndef ARCH_SLAB_MINALIGN
157 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
158 #endif
159 
160 #define OO_SHIFT	16
161 #define OO_MASK		((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
163 
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON		0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
167 
168 static int kmem_size = sizeof(struct kmem_cache);
169 
170 #ifdef CONFIG_SMP
171 static struct notifier_block slab_notifier;
172 #endif
173 
174 static enum {
175 	DOWN,		/* No slab functionality available */
176 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
177 	UP,		/* Everything works but does not show up in sysfs */
178 	SYSFS		/* Sysfs up */
179 } slab_state = DOWN;
180 
181 /* A list of all slab caches on the system */
182 static DECLARE_RWSEM(slub_lock);
183 static LIST_HEAD(slab_caches);
184 
185 /*
186  * Tracking user of a slab.
187  */
188 struct track {
189 	unsigned long addr;	/* Called from address */
190 	int cpu;		/* Was running on cpu */
191 	int pid;		/* Pid context */
192 	unsigned long when;	/* When did the operation occur */
193 };
194 
195 enum track_item { TRACK_ALLOC, TRACK_FREE };
196 
197 #ifdef CONFIG_SLUB_DEBUG
198 static int sysfs_slab_add(struct kmem_cache *);
199 static int sysfs_slab_alias(struct kmem_cache *, const char *);
200 static void sysfs_slab_remove(struct kmem_cache *);
201 
202 #else
203 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
204 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
205 							{ return 0; }
206 static inline void sysfs_slab_remove(struct kmem_cache *s)
207 {
208 	kfree(s);
209 }
210 
211 #endif
212 
213 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
214 {
215 #ifdef CONFIG_SLUB_STATS
216 	c->stat[si]++;
217 #endif
218 }
219 
220 /********************************************************************
221  * 			Core slab cache functions
222  *******************************************************************/
223 
224 int slab_is_available(void)
225 {
226 	return slab_state >= UP;
227 }
228 
229 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
230 {
231 #ifdef CONFIG_NUMA
232 	return s->node[node];
233 #else
234 	return &s->local_node;
235 #endif
236 }
237 
238 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
239 {
240 #ifdef CONFIG_SMP
241 	return s->cpu_slab[cpu];
242 #else
243 	return &s->cpu_slab;
244 #endif
245 }
246 
247 /* Verify that a pointer has an address that is valid within a slab page */
248 static inline int check_valid_pointer(struct kmem_cache *s,
249 				struct page *page, const void *object)
250 {
251 	void *base;
252 
253 	if (!object)
254 		return 1;
255 
256 	base = page_address(page);
257 	if (object < base || object >= base + page->objects * s->size ||
258 		(object - base) % s->size) {
259 		return 0;
260 	}
261 
262 	return 1;
263 }
264 
265 /*
266  * Slow version of get and set free pointer.
267  *
268  * This version requires touching the cache lines of kmem_cache which
269  * we avoid to do in the fast alloc free paths. There we obtain the offset
270  * from the page struct.
271  */
272 static inline void *get_freepointer(struct kmem_cache *s, void *object)
273 {
274 	return *(void **)(object + s->offset);
275 }
276 
277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278 {
279 	*(void **)(object + s->offset) = fp;
280 }
281 
282 /* Loop over all objects in a slab */
283 #define for_each_object(__p, __s, __addr, __objects) \
284 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
285 			__p += (__s)->size)
286 
287 /* Scan freelist */
288 #define for_each_free_object(__p, __s, __free) \
289 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
290 
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293 {
294 	return (p - addr) / s->size;
295 }
296 
297 static inline struct kmem_cache_order_objects oo_make(int order,
298 						unsigned long size)
299 {
300 	struct kmem_cache_order_objects x = {
301 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
302 	};
303 
304 	return x;
305 }
306 
307 static inline int oo_order(struct kmem_cache_order_objects x)
308 {
309 	return x.x >> OO_SHIFT;
310 }
311 
312 static inline int oo_objects(struct kmem_cache_order_objects x)
313 {
314 	return x.x & OO_MASK;
315 }
316 
317 #ifdef CONFIG_SLUB_DEBUG
318 /*
319  * Debug settings:
320  */
321 #ifdef CONFIG_SLUB_DEBUG_ON
322 static int slub_debug = DEBUG_DEFAULT_FLAGS;
323 #else
324 static int slub_debug;
325 #endif
326 
327 static char *slub_debug_slabs;
328 
329 /*
330  * Object debugging
331  */
332 static void print_section(char *text, u8 *addr, unsigned int length)
333 {
334 	int i, offset;
335 	int newline = 1;
336 	char ascii[17];
337 
338 	ascii[16] = 0;
339 
340 	for (i = 0; i < length; i++) {
341 		if (newline) {
342 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
343 			newline = 0;
344 		}
345 		printk(KERN_CONT " %02x", addr[i]);
346 		offset = i % 16;
347 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
348 		if (offset == 15) {
349 			printk(KERN_CONT " %s\n", ascii);
350 			newline = 1;
351 		}
352 	}
353 	if (!newline) {
354 		i %= 16;
355 		while (i < 16) {
356 			printk(KERN_CONT "   ");
357 			ascii[i] = ' ';
358 			i++;
359 		}
360 		printk(KERN_CONT " %s\n", ascii);
361 	}
362 }
363 
364 static struct track *get_track(struct kmem_cache *s, void *object,
365 	enum track_item alloc)
366 {
367 	struct track *p;
368 
369 	if (s->offset)
370 		p = object + s->offset + sizeof(void *);
371 	else
372 		p = object + s->inuse;
373 
374 	return p + alloc;
375 }
376 
377 static void set_track(struct kmem_cache *s, void *object,
378 			enum track_item alloc, unsigned long addr)
379 {
380 	struct track *p = get_track(s, object, alloc);
381 
382 	if (addr) {
383 		p->addr = addr;
384 		p->cpu = smp_processor_id();
385 		p->pid = current->pid;
386 		p->when = jiffies;
387 	} else
388 		memset(p, 0, sizeof(struct track));
389 }
390 
391 static void init_tracking(struct kmem_cache *s, void *object)
392 {
393 	if (!(s->flags & SLAB_STORE_USER))
394 		return;
395 
396 	set_track(s, object, TRACK_FREE, 0UL);
397 	set_track(s, object, TRACK_ALLOC, 0UL);
398 }
399 
400 static void print_track(const char *s, struct track *t)
401 {
402 	if (!t->addr)
403 		return;
404 
405 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
406 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
407 }
408 
409 static void print_tracking(struct kmem_cache *s, void *object)
410 {
411 	if (!(s->flags & SLAB_STORE_USER))
412 		return;
413 
414 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
415 	print_track("Freed", get_track(s, object, TRACK_FREE));
416 }
417 
418 static void print_page_info(struct page *page)
419 {
420 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
421 		page, page->objects, page->inuse, page->freelist, page->flags);
422 
423 }
424 
425 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
426 {
427 	va_list args;
428 	char buf[100];
429 
430 	va_start(args, fmt);
431 	vsnprintf(buf, sizeof(buf), fmt, args);
432 	va_end(args);
433 	printk(KERN_ERR "========================================"
434 			"=====================================\n");
435 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
436 	printk(KERN_ERR "----------------------------------------"
437 			"-------------------------------------\n\n");
438 }
439 
440 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
441 {
442 	va_list args;
443 	char buf[100];
444 
445 	va_start(args, fmt);
446 	vsnprintf(buf, sizeof(buf), fmt, args);
447 	va_end(args);
448 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
449 }
450 
451 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
452 {
453 	unsigned int off;	/* Offset of last byte */
454 	u8 *addr = page_address(page);
455 
456 	print_tracking(s, p);
457 
458 	print_page_info(page);
459 
460 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
461 			p, p - addr, get_freepointer(s, p));
462 
463 	if (p > addr + 16)
464 		print_section("Bytes b4", p - 16, 16);
465 
466 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
467 
468 	if (s->flags & SLAB_RED_ZONE)
469 		print_section("Redzone", p + s->objsize,
470 			s->inuse - s->objsize);
471 
472 	if (s->offset)
473 		off = s->offset + sizeof(void *);
474 	else
475 		off = s->inuse;
476 
477 	if (s->flags & SLAB_STORE_USER)
478 		off += 2 * sizeof(struct track);
479 
480 	if (off != s->size)
481 		/* Beginning of the filler is the free pointer */
482 		print_section("Padding", p + off, s->size - off);
483 
484 	dump_stack();
485 }
486 
487 static void object_err(struct kmem_cache *s, struct page *page,
488 			u8 *object, char *reason)
489 {
490 	slab_bug(s, "%s", reason);
491 	print_trailer(s, page, object);
492 }
493 
494 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
495 {
496 	va_list args;
497 	char buf[100];
498 
499 	va_start(args, fmt);
500 	vsnprintf(buf, sizeof(buf), fmt, args);
501 	va_end(args);
502 	slab_bug(s, "%s", buf);
503 	print_page_info(page);
504 	dump_stack();
505 }
506 
507 static void init_object(struct kmem_cache *s, void *object, int active)
508 {
509 	u8 *p = object;
510 
511 	if (s->flags & __OBJECT_POISON) {
512 		memset(p, POISON_FREE, s->objsize - 1);
513 		p[s->objsize - 1] = POISON_END;
514 	}
515 
516 	if (s->flags & SLAB_RED_ZONE)
517 		memset(p + s->objsize,
518 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
519 			s->inuse - s->objsize);
520 }
521 
522 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
523 {
524 	while (bytes) {
525 		if (*start != (u8)value)
526 			return start;
527 		start++;
528 		bytes--;
529 	}
530 	return NULL;
531 }
532 
533 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
534 						void *from, void *to)
535 {
536 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
537 	memset(from, data, to - from);
538 }
539 
540 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
541 			u8 *object, char *what,
542 			u8 *start, unsigned int value, unsigned int bytes)
543 {
544 	u8 *fault;
545 	u8 *end;
546 
547 	fault = check_bytes(start, value, bytes);
548 	if (!fault)
549 		return 1;
550 
551 	end = start + bytes;
552 	while (end > fault && end[-1] == value)
553 		end--;
554 
555 	slab_bug(s, "%s overwritten", what);
556 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
557 					fault, end - 1, fault[0], value);
558 	print_trailer(s, page, object);
559 
560 	restore_bytes(s, what, value, fault, end);
561 	return 0;
562 }
563 
564 /*
565  * Object layout:
566  *
567  * object address
568  * 	Bytes of the object to be managed.
569  * 	If the freepointer may overlay the object then the free
570  * 	pointer is the first word of the object.
571  *
572  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
573  * 	0xa5 (POISON_END)
574  *
575  * object + s->objsize
576  * 	Padding to reach word boundary. This is also used for Redzoning.
577  * 	Padding is extended by another word if Redzoning is enabled and
578  * 	objsize == inuse.
579  *
580  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
581  * 	0xcc (RED_ACTIVE) for objects in use.
582  *
583  * object + s->inuse
584  * 	Meta data starts here.
585  *
586  * 	A. Free pointer (if we cannot overwrite object on free)
587  * 	B. Tracking data for SLAB_STORE_USER
588  * 	C. Padding to reach required alignment boundary or at mininum
589  * 		one word if debugging is on to be able to detect writes
590  * 		before the word boundary.
591  *
592  *	Padding is done using 0x5a (POISON_INUSE)
593  *
594  * object + s->size
595  * 	Nothing is used beyond s->size.
596  *
597  * If slabcaches are merged then the objsize and inuse boundaries are mostly
598  * ignored. And therefore no slab options that rely on these boundaries
599  * may be used with merged slabcaches.
600  */
601 
602 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
603 {
604 	unsigned long off = s->inuse;	/* The end of info */
605 
606 	if (s->offset)
607 		/* Freepointer is placed after the object. */
608 		off += sizeof(void *);
609 
610 	if (s->flags & SLAB_STORE_USER)
611 		/* We also have user information there */
612 		off += 2 * sizeof(struct track);
613 
614 	if (s->size == off)
615 		return 1;
616 
617 	return check_bytes_and_report(s, page, p, "Object padding",
618 				p + off, POISON_INUSE, s->size - off);
619 }
620 
621 /* Check the pad bytes at the end of a slab page */
622 static int slab_pad_check(struct kmem_cache *s, struct page *page)
623 {
624 	u8 *start;
625 	u8 *fault;
626 	u8 *end;
627 	int length;
628 	int remainder;
629 
630 	if (!(s->flags & SLAB_POISON))
631 		return 1;
632 
633 	start = page_address(page);
634 	length = (PAGE_SIZE << compound_order(page));
635 	end = start + length;
636 	remainder = length % s->size;
637 	if (!remainder)
638 		return 1;
639 
640 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
641 	if (!fault)
642 		return 1;
643 	while (end > fault && end[-1] == POISON_INUSE)
644 		end--;
645 
646 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
647 	print_section("Padding", end - remainder, remainder);
648 
649 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
650 	return 0;
651 }
652 
653 static int check_object(struct kmem_cache *s, struct page *page,
654 					void *object, int active)
655 {
656 	u8 *p = object;
657 	u8 *endobject = object + s->objsize;
658 
659 	if (s->flags & SLAB_RED_ZONE) {
660 		unsigned int red =
661 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
662 
663 		if (!check_bytes_and_report(s, page, object, "Redzone",
664 			endobject, red, s->inuse - s->objsize))
665 			return 0;
666 	} else {
667 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
668 			check_bytes_and_report(s, page, p, "Alignment padding",
669 				endobject, POISON_INUSE, s->inuse - s->objsize);
670 		}
671 	}
672 
673 	if (s->flags & SLAB_POISON) {
674 		if (!active && (s->flags & __OBJECT_POISON) &&
675 			(!check_bytes_and_report(s, page, p, "Poison", p,
676 					POISON_FREE, s->objsize - 1) ||
677 			 !check_bytes_and_report(s, page, p, "Poison",
678 				p + s->objsize - 1, POISON_END, 1)))
679 			return 0;
680 		/*
681 		 * check_pad_bytes cleans up on its own.
682 		 */
683 		check_pad_bytes(s, page, p);
684 	}
685 
686 	if (!s->offset && active)
687 		/*
688 		 * Object and freepointer overlap. Cannot check
689 		 * freepointer while object is allocated.
690 		 */
691 		return 1;
692 
693 	/* Check free pointer validity */
694 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
695 		object_err(s, page, p, "Freepointer corrupt");
696 		/*
697 		 * No choice but to zap it and thus lose the remainder
698 		 * of the free objects in this slab. May cause
699 		 * another error because the object count is now wrong.
700 		 */
701 		set_freepointer(s, p, NULL);
702 		return 0;
703 	}
704 	return 1;
705 }
706 
707 static int check_slab(struct kmem_cache *s, struct page *page)
708 {
709 	int maxobj;
710 
711 	VM_BUG_ON(!irqs_disabled());
712 
713 	if (!PageSlab(page)) {
714 		slab_err(s, page, "Not a valid slab page");
715 		return 0;
716 	}
717 
718 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
719 	if (page->objects > maxobj) {
720 		slab_err(s, page, "objects %u > max %u",
721 			s->name, page->objects, maxobj);
722 		return 0;
723 	}
724 	if (page->inuse > page->objects) {
725 		slab_err(s, page, "inuse %u > max %u",
726 			s->name, page->inuse, page->objects);
727 		return 0;
728 	}
729 	/* Slab_pad_check fixes things up after itself */
730 	slab_pad_check(s, page);
731 	return 1;
732 }
733 
734 /*
735  * Determine if a certain object on a page is on the freelist. Must hold the
736  * slab lock to guarantee that the chains are in a consistent state.
737  */
738 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
739 {
740 	int nr = 0;
741 	void *fp = page->freelist;
742 	void *object = NULL;
743 	unsigned long max_objects;
744 
745 	while (fp && nr <= page->objects) {
746 		if (fp == search)
747 			return 1;
748 		if (!check_valid_pointer(s, page, fp)) {
749 			if (object) {
750 				object_err(s, page, object,
751 					"Freechain corrupt");
752 				set_freepointer(s, object, NULL);
753 				break;
754 			} else {
755 				slab_err(s, page, "Freepointer corrupt");
756 				page->freelist = NULL;
757 				page->inuse = page->objects;
758 				slab_fix(s, "Freelist cleared");
759 				return 0;
760 			}
761 			break;
762 		}
763 		object = fp;
764 		fp = get_freepointer(s, object);
765 		nr++;
766 	}
767 
768 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
769 	if (max_objects > MAX_OBJS_PER_PAGE)
770 		max_objects = MAX_OBJS_PER_PAGE;
771 
772 	if (page->objects != max_objects) {
773 		slab_err(s, page, "Wrong number of objects. Found %d but "
774 			"should be %d", page->objects, max_objects);
775 		page->objects = max_objects;
776 		slab_fix(s, "Number of objects adjusted.");
777 	}
778 	if (page->inuse != page->objects - nr) {
779 		slab_err(s, page, "Wrong object count. Counter is %d but "
780 			"counted were %d", page->inuse, page->objects - nr);
781 		page->inuse = page->objects - nr;
782 		slab_fix(s, "Object count adjusted.");
783 	}
784 	return search == NULL;
785 }
786 
787 static void trace(struct kmem_cache *s, struct page *page, void *object,
788 								int alloc)
789 {
790 	if (s->flags & SLAB_TRACE) {
791 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
792 			s->name,
793 			alloc ? "alloc" : "free",
794 			object, page->inuse,
795 			page->freelist);
796 
797 		if (!alloc)
798 			print_section("Object", (void *)object, s->objsize);
799 
800 		dump_stack();
801 	}
802 }
803 
804 /*
805  * Tracking of fully allocated slabs for debugging purposes.
806  */
807 static void add_full(struct kmem_cache_node *n, struct page *page)
808 {
809 	spin_lock(&n->list_lock);
810 	list_add(&page->lru, &n->full);
811 	spin_unlock(&n->list_lock);
812 }
813 
814 static void remove_full(struct kmem_cache *s, struct page *page)
815 {
816 	struct kmem_cache_node *n;
817 
818 	if (!(s->flags & SLAB_STORE_USER))
819 		return;
820 
821 	n = get_node(s, page_to_nid(page));
822 
823 	spin_lock(&n->list_lock);
824 	list_del(&page->lru);
825 	spin_unlock(&n->list_lock);
826 }
827 
828 /* Tracking of the number of slabs for debugging purposes */
829 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
830 {
831 	struct kmem_cache_node *n = get_node(s, node);
832 
833 	return atomic_long_read(&n->nr_slabs);
834 }
835 
836 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
837 {
838 	return atomic_long_read(&n->nr_slabs);
839 }
840 
841 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
842 {
843 	struct kmem_cache_node *n = get_node(s, node);
844 
845 	/*
846 	 * May be called early in order to allocate a slab for the
847 	 * kmem_cache_node structure. Solve the chicken-egg
848 	 * dilemma by deferring the increment of the count during
849 	 * bootstrap (see early_kmem_cache_node_alloc).
850 	 */
851 	if (!NUMA_BUILD || n) {
852 		atomic_long_inc(&n->nr_slabs);
853 		atomic_long_add(objects, &n->total_objects);
854 	}
855 }
856 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
857 {
858 	struct kmem_cache_node *n = get_node(s, node);
859 
860 	atomic_long_dec(&n->nr_slabs);
861 	atomic_long_sub(objects, &n->total_objects);
862 }
863 
864 /* Object debug checks for alloc/free paths */
865 static void setup_object_debug(struct kmem_cache *s, struct page *page,
866 								void *object)
867 {
868 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
869 		return;
870 
871 	init_object(s, object, 0);
872 	init_tracking(s, object);
873 }
874 
875 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
876 					void *object, unsigned long addr)
877 {
878 	if (!check_slab(s, page))
879 		goto bad;
880 
881 	if (!on_freelist(s, page, object)) {
882 		object_err(s, page, object, "Object already allocated");
883 		goto bad;
884 	}
885 
886 	if (!check_valid_pointer(s, page, object)) {
887 		object_err(s, page, object, "Freelist Pointer check fails");
888 		goto bad;
889 	}
890 
891 	if (!check_object(s, page, object, 0))
892 		goto bad;
893 
894 	/* Success perform special debug activities for allocs */
895 	if (s->flags & SLAB_STORE_USER)
896 		set_track(s, object, TRACK_ALLOC, addr);
897 	trace(s, page, object, 1);
898 	init_object(s, object, 1);
899 	return 1;
900 
901 bad:
902 	if (PageSlab(page)) {
903 		/*
904 		 * If this is a slab page then lets do the best we can
905 		 * to avoid issues in the future. Marking all objects
906 		 * as used avoids touching the remaining objects.
907 		 */
908 		slab_fix(s, "Marking all objects used");
909 		page->inuse = page->objects;
910 		page->freelist = NULL;
911 	}
912 	return 0;
913 }
914 
915 static int free_debug_processing(struct kmem_cache *s, struct page *page,
916 					void *object, unsigned long addr)
917 {
918 	if (!check_slab(s, page))
919 		goto fail;
920 
921 	if (!check_valid_pointer(s, page, object)) {
922 		slab_err(s, page, "Invalid object pointer 0x%p", object);
923 		goto fail;
924 	}
925 
926 	if (on_freelist(s, page, object)) {
927 		object_err(s, page, object, "Object already free");
928 		goto fail;
929 	}
930 
931 	if (!check_object(s, page, object, 1))
932 		return 0;
933 
934 	if (unlikely(s != page->slab)) {
935 		if (!PageSlab(page)) {
936 			slab_err(s, page, "Attempt to free object(0x%p) "
937 				"outside of slab", object);
938 		} else if (!page->slab) {
939 			printk(KERN_ERR
940 				"SLUB <none>: no slab for object 0x%p.\n",
941 						object);
942 			dump_stack();
943 		} else
944 			object_err(s, page, object,
945 					"page slab pointer corrupt.");
946 		goto fail;
947 	}
948 
949 	/* Special debug activities for freeing objects */
950 	if (!PageSlubFrozen(page) && !page->freelist)
951 		remove_full(s, page);
952 	if (s->flags & SLAB_STORE_USER)
953 		set_track(s, object, TRACK_FREE, addr);
954 	trace(s, page, object, 0);
955 	init_object(s, object, 0);
956 	return 1;
957 
958 fail:
959 	slab_fix(s, "Object at 0x%p not freed", object);
960 	return 0;
961 }
962 
963 static int __init setup_slub_debug(char *str)
964 {
965 	slub_debug = DEBUG_DEFAULT_FLAGS;
966 	if (*str++ != '=' || !*str)
967 		/*
968 		 * No options specified. Switch on full debugging.
969 		 */
970 		goto out;
971 
972 	if (*str == ',')
973 		/*
974 		 * No options but restriction on slabs. This means full
975 		 * debugging for slabs matching a pattern.
976 		 */
977 		goto check_slabs;
978 
979 	slub_debug = 0;
980 	if (*str == '-')
981 		/*
982 		 * Switch off all debugging measures.
983 		 */
984 		goto out;
985 
986 	/*
987 	 * Determine which debug features should be switched on
988 	 */
989 	for (; *str && *str != ','; str++) {
990 		switch (tolower(*str)) {
991 		case 'f':
992 			slub_debug |= SLAB_DEBUG_FREE;
993 			break;
994 		case 'z':
995 			slub_debug |= SLAB_RED_ZONE;
996 			break;
997 		case 'p':
998 			slub_debug |= SLAB_POISON;
999 			break;
1000 		case 'u':
1001 			slub_debug |= SLAB_STORE_USER;
1002 			break;
1003 		case 't':
1004 			slub_debug |= SLAB_TRACE;
1005 			break;
1006 		default:
1007 			printk(KERN_ERR "slub_debug option '%c' "
1008 				"unknown. skipped\n", *str);
1009 		}
1010 	}
1011 
1012 check_slabs:
1013 	if (*str == ',')
1014 		slub_debug_slabs = str + 1;
1015 out:
1016 	return 1;
1017 }
1018 
1019 __setup("slub_debug", setup_slub_debug);
1020 
1021 static unsigned long kmem_cache_flags(unsigned long objsize,
1022 	unsigned long flags, const char *name,
1023 	void (*ctor)(void *))
1024 {
1025 	/*
1026 	 * Enable debugging if selected on the kernel commandline.
1027 	 */
1028 	if (slub_debug && (!slub_debug_slabs ||
1029 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1030 			flags |= slub_debug;
1031 
1032 	return flags;
1033 }
1034 #else
1035 static inline void setup_object_debug(struct kmem_cache *s,
1036 			struct page *page, void *object) {}
1037 
1038 static inline int alloc_debug_processing(struct kmem_cache *s,
1039 	struct page *page, void *object, unsigned long addr) { return 0; }
1040 
1041 static inline int free_debug_processing(struct kmem_cache *s,
1042 	struct page *page, void *object, unsigned long addr) { return 0; }
1043 
1044 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1045 			{ return 1; }
1046 static inline int check_object(struct kmem_cache *s, struct page *page,
1047 			void *object, int active) { return 1; }
1048 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1049 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1050 	unsigned long flags, const char *name,
1051 	void (*ctor)(void *))
1052 {
1053 	return flags;
1054 }
1055 #define slub_debug 0
1056 
1057 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1058 							{ return 0; }
1059 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1060 							{ return 0; }
1061 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1062 							int objects) {}
1063 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1064 							int objects) {}
1065 #endif
1066 
1067 /*
1068  * Slab allocation and freeing
1069  */
1070 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1071 					struct kmem_cache_order_objects oo)
1072 {
1073 	int order = oo_order(oo);
1074 
1075 	flags |= __GFP_NOTRACK;
1076 
1077 	if (node == -1)
1078 		return alloc_pages(flags, order);
1079 	else
1080 		return alloc_pages_node(node, flags, order);
1081 }
1082 
1083 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1084 {
1085 	struct page *page;
1086 	struct kmem_cache_order_objects oo = s->oo;
1087 	gfp_t alloc_gfp;
1088 
1089 	flags |= s->allocflags;
1090 
1091 	/*
1092 	 * Let the initial higher-order allocation fail under memory pressure
1093 	 * so we fall-back to the minimum order allocation.
1094 	 */
1095 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1096 
1097 	page = alloc_slab_page(alloc_gfp, node, oo);
1098 	if (unlikely(!page)) {
1099 		oo = s->min;
1100 		/*
1101 		 * Allocation may have failed due to fragmentation.
1102 		 * Try a lower order alloc if possible
1103 		 */
1104 		page = alloc_slab_page(flags, node, oo);
1105 		if (!page)
1106 			return NULL;
1107 
1108 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1109 	}
1110 
1111 	if (kmemcheck_enabled
1112 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1113 	{
1114 		int pages = 1 << oo_order(oo);
1115 
1116 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1117 
1118 		/*
1119 		 * Objects from caches that have a constructor don't get
1120 		 * cleared when they're allocated, so we need to do it here.
1121 		 */
1122 		if (s->ctor)
1123 			kmemcheck_mark_uninitialized_pages(page, pages);
1124 		else
1125 			kmemcheck_mark_unallocated_pages(page, pages);
1126 	}
1127 
1128 	page->objects = oo_objects(oo);
1129 	mod_zone_page_state(page_zone(page),
1130 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1131 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1132 		1 << oo_order(oo));
1133 
1134 	return page;
1135 }
1136 
1137 static void setup_object(struct kmem_cache *s, struct page *page,
1138 				void *object)
1139 {
1140 	setup_object_debug(s, page, object);
1141 	if (unlikely(s->ctor))
1142 		s->ctor(object);
1143 }
1144 
1145 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1146 {
1147 	struct page *page;
1148 	void *start;
1149 	void *last;
1150 	void *p;
1151 
1152 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1153 
1154 	page = allocate_slab(s,
1155 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1156 	if (!page)
1157 		goto out;
1158 
1159 	inc_slabs_node(s, page_to_nid(page), page->objects);
1160 	page->slab = s;
1161 	page->flags |= 1 << PG_slab;
1162 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1163 			SLAB_STORE_USER | SLAB_TRACE))
1164 		__SetPageSlubDebug(page);
1165 
1166 	start = page_address(page);
1167 
1168 	if (unlikely(s->flags & SLAB_POISON))
1169 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1170 
1171 	last = start;
1172 	for_each_object(p, s, start, page->objects) {
1173 		setup_object(s, page, last);
1174 		set_freepointer(s, last, p);
1175 		last = p;
1176 	}
1177 	setup_object(s, page, last);
1178 	set_freepointer(s, last, NULL);
1179 
1180 	page->freelist = start;
1181 	page->inuse = 0;
1182 out:
1183 	return page;
1184 }
1185 
1186 static void __free_slab(struct kmem_cache *s, struct page *page)
1187 {
1188 	int order = compound_order(page);
1189 	int pages = 1 << order;
1190 
1191 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1192 		void *p;
1193 
1194 		slab_pad_check(s, page);
1195 		for_each_object(p, s, page_address(page),
1196 						page->objects)
1197 			check_object(s, page, p, 0);
1198 		__ClearPageSlubDebug(page);
1199 	}
1200 
1201 	kmemcheck_free_shadow(page, compound_order(page));
1202 
1203 	mod_zone_page_state(page_zone(page),
1204 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1205 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1206 		-pages);
1207 
1208 	__ClearPageSlab(page);
1209 	reset_page_mapcount(page);
1210 	if (current->reclaim_state)
1211 		current->reclaim_state->reclaimed_slab += pages;
1212 	__free_pages(page, order);
1213 }
1214 
1215 static void rcu_free_slab(struct rcu_head *h)
1216 {
1217 	struct page *page;
1218 
1219 	page = container_of((struct list_head *)h, struct page, lru);
1220 	__free_slab(page->slab, page);
1221 }
1222 
1223 static void free_slab(struct kmem_cache *s, struct page *page)
1224 {
1225 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1226 		/*
1227 		 * RCU free overloads the RCU head over the LRU
1228 		 */
1229 		struct rcu_head *head = (void *)&page->lru;
1230 
1231 		call_rcu(head, rcu_free_slab);
1232 	} else
1233 		__free_slab(s, page);
1234 }
1235 
1236 static void discard_slab(struct kmem_cache *s, struct page *page)
1237 {
1238 	dec_slabs_node(s, page_to_nid(page), page->objects);
1239 	free_slab(s, page);
1240 }
1241 
1242 /*
1243  * Per slab locking using the pagelock
1244  */
1245 static __always_inline void slab_lock(struct page *page)
1246 {
1247 	bit_spin_lock(PG_locked, &page->flags);
1248 }
1249 
1250 static __always_inline void slab_unlock(struct page *page)
1251 {
1252 	__bit_spin_unlock(PG_locked, &page->flags);
1253 }
1254 
1255 static __always_inline int slab_trylock(struct page *page)
1256 {
1257 	int rc = 1;
1258 
1259 	rc = bit_spin_trylock(PG_locked, &page->flags);
1260 	return rc;
1261 }
1262 
1263 /*
1264  * Management of partially allocated slabs
1265  */
1266 static void add_partial(struct kmem_cache_node *n,
1267 				struct page *page, int tail)
1268 {
1269 	spin_lock(&n->list_lock);
1270 	n->nr_partial++;
1271 	if (tail)
1272 		list_add_tail(&page->lru, &n->partial);
1273 	else
1274 		list_add(&page->lru, &n->partial);
1275 	spin_unlock(&n->list_lock);
1276 }
1277 
1278 static void remove_partial(struct kmem_cache *s, struct page *page)
1279 {
1280 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1281 
1282 	spin_lock(&n->list_lock);
1283 	list_del(&page->lru);
1284 	n->nr_partial--;
1285 	spin_unlock(&n->list_lock);
1286 }
1287 
1288 /*
1289  * Lock slab and remove from the partial list.
1290  *
1291  * Must hold list_lock.
1292  */
1293 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1294 							struct page *page)
1295 {
1296 	if (slab_trylock(page)) {
1297 		list_del(&page->lru);
1298 		n->nr_partial--;
1299 		__SetPageSlubFrozen(page);
1300 		return 1;
1301 	}
1302 	return 0;
1303 }
1304 
1305 /*
1306  * Try to allocate a partial slab from a specific node.
1307  */
1308 static struct page *get_partial_node(struct kmem_cache_node *n)
1309 {
1310 	struct page *page;
1311 
1312 	/*
1313 	 * Racy check. If we mistakenly see no partial slabs then we
1314 	 * just allocate an empty slab. If we mistakenly try to get a
1315 	 * partial slab and there is none available then get_partials()
1316 	 * will return NULL.
1317 	 */
1318 	if (!n || !n->nr_partial)
1319 		return NULL;
1320 
1321 	spin_lock(&n->list_lock);
1322 	list_for_each_entry(page, &n->partial, lru)
1323 		if (lock_and_freeze_slab(n, page))
1324 			goto out;
1325 	page = NULL;
1326 out:
1327 	spin_unlock(&n->list_lock);
1328 	return page;
1329 }
1330 
1331 /*
1332  * Get a page from somewhere. Search in increasing NUMA distances.
1333  */
1334 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1335 {
1336 #ifdef CONFIG_NUMA
1337 	struct zonelist *zonelist;
1338 	struct zoneref *z;
1339 	struct zone *zone;
1340 	enum zone_type high_zoneidx = gfp_zone(flags);
1341 	struct page *page;
1342 
1343 	/*
1344 	 * The defrag ratio allows a configuration of the tradeoffs between
1345 	 * inter node defragmentation and node local allocations. A lower
1346 	 * defrag_ratio increases the tendency to do local allocations
1347 	 * instead of attempting to obtain partial slabs from other nodes.
1348 	 *
1349 	 * If the defrag_ratio is set to 0 then kmalloc() always
1350 	 * returns node local objects. If the ratio is higher then kmalloc()
1351 	 * may return off node objects because partial slabs are obtained
1352 	 * from other nodes and filled up.
1353 	 *
1354 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1355 	 * defrag_ratio = 1000) then every (well almost) allocation will
1356 	 * first attempt to defrag slab caches on other nodes. This means
1357 	 * scanning over all nodes to look for partial slabs which may be
1358 	 * expensive if we do it every time we are trying to find a slab
1359 	 * with available objects.
1360 	 */
1361 	if (!s->remote_node_defrag_ratio ||
1362 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1363 		return NULL;
1364 
1365 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1366 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1367 		struct kmem_cache_node *n;
1368 
1369 		n = get_node(s, zone_to_nid(zone));
1370 
1371 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1372 				n->nr_partial > s->min_partial) {
1373 			page = get_partial_node(n);
1374 			if (page)
1375 				return page;
1376 		}
1377 	}
1378 #endif
1379 	return NULL;
1380 }
1381 
1382 /*
1383  * Get a partial page, lock it and return it.
1384  */
1385 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1386 {
1387 	struct page *page;
1388 	int searchnode = (node == -1) ? numa_node_id() : node;
1389 
1390 	page = get_partial_node(get_node(s, searchnode));
1391 	if (page || (flags & __GFP_THISNODE))
1392 		return page;
1393 
1394 	return get_any_partial(s, flags);
1395 }
1396 
1397 /*
1398  * Move a page back to the lists.
1399  *
1400  * Must be called with the slab lock held.
1401  *
1402  * On exit the slab lock will have been dropped.
1403  */
1404 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1405 {
1406 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1407 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1408 
1409 	__ClearPageSlubFrozen(page);
1410 	if (page->inuse) {
1411 
1412 		if (page->freelist) {
1413 			add_partial(n, page, tail);
1414 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1415 		} else {
1416 			stat(c, DEACTIVATE_FULL);
1417 			if (SLABDEBUG && PageSlubDebug(page) &&
1418 						(s->flags & SLAB_STORE_USER))
1419 				add_full(n, page);
1420 		}
1421 		slab_unlock(page);
1422 	} else {
1423 		stat(c, DEACTIVATE_EMPTY);
1424 		if (n->nr_partial < s->min_partial) {
1425 			/*
1426 			 * Adding an empty slab to the partial slabs in order
1427 			 * to avoid page allocator overhead. This slab needs
1428 			 * to come after the other slabs with objects in
1429 			 * so that the others get filled first. That way the
1430 			 * size of the partial list stays small.
1431 			 *
1432 			 * kmem_cache_shrink can reclaim any empty slabs from
1433 			 * the partial list.
1434 			 */
1435 			add_partial(n, page, 1);
1436 			slab_unlock(page);
1437 		} else {
1438 			slab_unlock(page);
1439 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1440 			discard_slab(s, page);
1441 		}
1442 	}
1443 }
1444 
1445 /*
1446  * Remove the cpu slab
1447  */
1448 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1449 {
1450 	struct page *page = c->page;
1451 	int tail = 1;
1452 
1453 	if (page->freelist)
1454 		stat(c, DEACTIVATE_REMOTE_FREES);
1455 	/*
1456 	 * Merge cpu freelist into slab freelist. Typically we get here
1457 	 * because both freelists are empty. So this is unlikely
1458 	 * to occur.
1459 	 */
1460 	while (unlikely(c->freelist)) {
1461 		void **object;
1462 
1463 		tail = 0;	/* Hot objects. Put the slab first */
1464 
1465 		/* Retrieve object from cpu_freelist */
1466 		object = c->freelist;
1467 		c->freelist = c->freelist[c->offset];
1468 
1469 		/* And put onto the regular freelist */
1470 		object[c->offset] = page->freelist;
1471 		page->freelist = object;
1472 		page->inuse--;
1473 	}
1474 	c->page = NULL;
1475 	unfreeze_slab(s, page, tail);
1476 }
1477 
1478 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1479 {
1480 	stat(c, CPUSLAB_FLUSH);
1481 	slab_lock(c->page);
1482 	deactivate_slab(s, c);
1483 }
1484 
1485 /*
1486  * Flush cpu slab.
1487  *
1488  * Called from IPI handler with interrupts disabled.
1489  */
1490 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1491 {
1492 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1493 
1494 	if (likely(c && c->page))
1495 		flush_slab(s, c);
1496 }
1497 
1498 static void flush_cpu_slab(void *d)
1499 {
1500 	struct kmem_cache *s = d;
1501 
1502 	__flush_cpu_slab(s, smp_processor_id());
1503 }
1504 
1505 static void flush_all(struct kmem_cache *s)
1506 {
1507 	on_each_cpu(flush_cpu_slab, s, 1);
1508 }
1509 
1510 /*
1511  * Check if the objects in a per cpu structure fit numa
1512  * locality expectations.
1513  */
1514 static inline int node_match(struct kmem_cache_cpu *c, int node)
1515 {
1516 #ifdef CONFIG_NUMA
1517 	if (node != -1 && c->node != node)
1518 		return 0;
1519 #endif
1520 	return 1;
1521 }
1522 
1523 static int count_free(struct page *page)
1524 {
1525 	return page->objects - page->inuse;
1526 }
1527 
1528 static unsigned long count_partial(struct kmem_cache_node *n,
1529 					int (*get_count)(struct page *))
1530 {
1531 	unsigned long flags;
1532 	unsigned long x = 0;
1533 	struct page *page;
1534 
1535 	spin_lock_irqsave(&n->list_lock, flags);
1536 	list_for_each_entry(page, &n->partial, lru)
1537 		x += get_count(page);
1538 	spin_unlock_irqrestore(&n->list_lock, flags);
1539 	return x;
1540 }
1541 
1542 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1543 {
1544 #ifdef CONFIG_SLUB_DEBUG
1545 	return atomic_long_read(&n->total_objects);
1546 #else
1547 	return 0;
1548 #endif
1549 }
1550 
1551 static noinline void
1552 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1553 {
1554 	int node;
1555 
1556 	printk(KERN_WARNING
1557 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1558 		nid, gfpflags);
1559 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1560 		"default order: %d, min order: %d\n", s->name, s->objsize,
1561 		s->size, oo_order(s->oo), oo_order(s->min));
1562 
1563 	for_each_online_node(node) {
1564 		struct kmem_cache_node *n = get_node(s, node);
1565 		unsigned long nr_slabs;
1566 		unsigned long nr_objs;
1567 		unsigned long nr_free;
1568 
1569 		if (!n)
1570 			continue;
1571 
1572 		nr_free  = count_partial(n, count_free);
1573 		nr_slabs = node_nr_slabs(n);
1574 		nr_objs  = node_nr_objs(n);
1575 
1576 		printk(KERN_WARNING
1577 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1578 			node, nr_slabs, nr_objs, nr_free);
1579 	}
1580 }
1581 
1582 /*
1583  * Slow path. The lockless freelist is empty or we need to perform
1584  * debugging duties.
1585  *
1586  * Interrupts are disabled.
1587  *
1588  * Processing is still very fast if new objects have been freed to the
1589  * regular freelist. In that case we simply take over the regular freelist
1590  * as the lockless freelist and zap the regular freelist.
1591  *
1592  * If that is not working then we fall back to the partial lists. We take the
1593  * first element of the freelist as the object to allocate now and move the
1594  * rest of the freelist to the lockless freelist.
1595  *
1596  * And if we were unable to get a new slab from the partial slab lists then
1597  * we need to allocate a new slab. This is the slowest path since it involves
1598  * a call to the page allocator and the setup of a new slab.
1599  */
1600 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1601 			  unsigned long addr, struct kmem_cache_cpu *c)
1602 {
1603 	void **object;
1604 	struct page *new;
1605 
1606 	/* We handle __GFP_ZERO in the caller */
1607 	gfpflags &= ~__GFP_ZERO;
1608 
1609 	if (!c->page)
1610 		goto new_slab;
1611 
1612 	slab_lock(c->page);
1613 	if (unlikely(!node_match(c, node)))
1614 		goto another_slab;
1615 
1616 	stat(c, ALLOC_REFILL);
1617 
1618 load_freelist:
1619 	object = c->page->freelist;
1620 	if (unlikely(!object))
1621 		goto another_slab;
1622 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1623 		goto debug;
1624 
1625 	c->freelist = object[c->offset];
1626 	c->page->inuse = c->page->objects;
1627 	c->page->freelist = NULL;
1628 	c->node = page_to_nid(c->page);
1629 unlock_out:
1630 	slab_unlock(c->page);
1631 	stat(c, ALLOC_SLOWPATH);
1632 	return object;
1633 
1634 another_slab:
1635 	deactivate_slab(s, c);
1636 
1637 new_slab:
1638 	new = get_partial(s, gfpflags, node);
1639 	if (new) {
1640 		c->page = new;
1641 		stat(c, ALLOC_FROM_PARTIAL);
1642 		goto load_freelist;
1643 	}
1644 
1645 	if (gfpflags & __GFP_WAIT)
1646 		local_irq_enable();
1647 
1648 	new = new_slab(s, gfpflags, node);
1649 
1650 	if (gfpflags & __GFP_WAIT)
1651 		local_irq_disable();
1652 
1653 	if (new) {
1654 		c = get_cpu_slab(s, smp_processor_id());
1655 		stat(c, ALLOC_SLAB);
1656 		if (c->page)
1657 			flush_slab(s, c);
1658 		slab_lock(new);
1659 		__SetPageSlubFrozen(new);
1660 		c->page = new;
1661 		goto load_freelist;
1662 	}
1663 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1664 		slab_out_of_memory(s, gfpflags, node);
1665 	return NULL;
1666 debug:
1667 	if (!alloc_debug_processing(s, c->page, object, addr))
1668 		goto another_slab;
1669 
1670 	c->page->inuse++;
1671 	c->page->freelist = object[c->offset];
1672 	c->node = -1;
1673 	goto unlock_out;
1674 }
1675 
1676 /*
1677  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1678  * have the fastpath folded into their functions. So no function call
1679  * overhead for requests that can be satisfied on the fastpath.
1680  *
1681  * The fastpath works by first checking if the lockless freelist can be used.
1682  * If not then __slab_alloc is called for slow processing.
1683  *
1684  * Otherwise we can simply pick the next object from the lockless free list.
1685  */
1686 static __always_inline void *slab_alloc(struct kmem_cache *s,
1687 		gfp_t gfpflags, int node, unsigned long addr)
1688 {
1689 	void **object;
1690 	struct kmem_cache_cpu *c;
1691 	unsigned long flags;
1692 	unsigned int objsize;
1693 
1694 	gfpflags &= gfp_allowed_mask;
1695 
1696 	lockdep_trace_alloc(gfpflags);
1697 	might_sleep_if(gfpflags & __GFP_WAIT);
1698 
1699 	if (should_failslab(s->objsize, gfpflags))
1700 		return NULL;
1701 
1702 	local_irq_save(flags);
1703 	c = get_cpu_slab(s, smp_processor_id());
1704 	objsize = c->objsize;
1705 	if (unlikely(!c->freelist || !node_match(c, node)))
1706 
1707 		object = __slab_alloc(s, gfpflags, node, addr, c);
1708 
1709 	else {
1710 		object = c->freelist;
1711 		c->freelist = object[c->offset];
1712 		stat(c, ALLOC_FASTPATH);
1713 	}
1714 	local_irq_restore(flags);
1715 
1716 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1717 		memset(object, 0, objsize);
1718 
1719 	kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1720 	kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1721 
1722 	return object;
1723 }
1724 
1725 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1726 {
1727 	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1728 
1729 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1730 
1731 	return ret;
1732 }
1733 EXPORT_SYMBOL(kmem_cache_alloc);
1734 
1735 #ifdef CONFIG_KMEMTRACE
1736 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1737 {
1738 	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1739 }
1740 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1741 #endif
1742 
1743 #ifdef CONFIG_NUMA
1744 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1745 {
1746 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1747 
1748 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1749 				    s->objsize, s->size, gfpflags, node);
1750 
1751 	return ret;
1752 }
1753 EXPORT_SYMBOL(kmem_cache_alloc_node);
1754 #endif
1755 
1756 #ifdef CONFIG_KMEMTRACE
1757 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1758 				    gfp_t gfpflags,
1759 				    int node)
1760 {
1761 	return slab_alloc(s, gfpflags, node, _RET_IP_);
1762 }
1763 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1764 #endif
1765 
1766 /*
1767  * Slow patch handling. This may still be called frequently since objects
1768  * have a longer lifetime than the cpu slabs in most processing loads.
1769  *
1770  * So we still attempt to reduce cache line usage. Just take the slab
1771  * lock and free the item. If there is no additional partial page
1772  * handling required then we can return immediately.
1773  */
1774 static void __slab_free(struct kmem_cache *s, struct page *page,
1775 			void *x, unsigned long addr, unsigned int offset)
1776 {
1777 	void *prior;
1778 	void **object = (void *)x;
1779 	struct kmem_cache_cpu *c;
1780 
1781 	c = get_cpu_slab(s, raw_smp_processor_id());
1782 	stat(c, FREE_SLOWPATH);
1783 	slab_lock(page);
1784 
1785 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1786 		goto debug;
1787 
1788 checks_ok:
1789 	prior = object[offset] = page->freelist;
1790 	page->freelist = object;
1791 	page->inuse--;
1792 
1793 	if (unlikely(PageSlubFrozen(page))) {
1794 		stat(c, FREE_FROZEN);
1795 		goto out_unlock;
1796 	}
1797 
1798 	if (unlikely(!page->inuse))
1799 		goto slab_empty;
1800 
1801 	/*
1802 	 * Objects left in the slab. If it was not on the partial list before
1803 	 * then add it.
1804 	 */
1805 	if (unlikely(!prior)) {
1806 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1807 		stat(c, FREE_ADD_PARTIAL);
1808 	}
1809 
1810 out_unlock:
1811 	slab_unlock(page);
1812 	return;
1813 
1814 slab_empty:
1815 	if (prior) {
1816 		/*
1817 		 * Slab still on the partial list.
1818 		 */
1819 		remove_partial(s, page);
1820 		stat(c, FREE_REMOVE_PARTIAL);
1821 	}
1822 	slab_unlock(page);
1823 	stat(c, FREE_SLAB);
1824 	discard_slab(s, page);
1825 	return;
1826 
1827 debug:
1828 	if (!free_debug_processing(s, page, x, addr))
1829 		goto out_unlock;
1830 	goto checks_ok;
1831 }
1832 
1833 /*
1834  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1835  * can perform fastpath freeing without additional function calls.
1836  *
1837  * The fastpath is only possible if we are freeing to the current cpu slab
1838  * of this processor. This typically the case if we have just allocated
1839  * the item before.
1840  *
1841  * If fastpath is not possible then fall back to __slab_free where we deal
1842  * with all sorts of special processing.
1843  */
1844 static __always_inline void slab_free(struct kmem_cache *s,
1845 			struct page *page, void *x, unsigned long addr)
1846 {
1847 	void **object = (void *)x;
1848 	struct kmem_cache_cpu *c;
1849 	unsigned long flags;
1850 
1851 	kmemleak_free_recursive(x, s->flags);
1852 	local_irq_save(flags);
1853 	c = get_cpu_slab(s, smp_processor_id());
1854 	kmemcheck_slab_free(s, object, c->objsize);
1855 	debug_check_no_locks_freed(object, c->objsize);
1856 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1857 		debug_check_no_obj_freed(object, c->objsize);
1858 	if (likely(page == c->page && c->node >= 0)) {
1859 		object[c->offset] = c->freelist;
1860 		c->freelist = object;
1861 		stat(c, FREE_FASTPATH);
1862 	} else
1863 		__slab_free(s, page, x, addr, c->offset);
1864 
1865 	local_irq_restore(flags);
1866 }
1867 
1868 void kmem_cache_free(struct kmem_cache *s, void *x)
1869 {
1870 	struct page *page;
1871 
1872 	page = virt_to_head_page(x);
1873 
1874 	slab_free(s, page, x, _RET_IP_);
1875 
1876 	trace_kmem_cache_free(_RET_IP_, x);
1877 }
1878 EXPORT_SYMBOL(kmem_cache_free);
1879 
1880 /* Figure out on which slab page the object resides */
1881 static struct page *get_object_page(const void *x)
1882 {
1883 	struct page *page = virt_to_head_page(x);
1884 
1885 	if (!PageSlab(page))
1886 		return NULL;
1887 
1888 	return page;
1889 }
1890 
1891 /*
1892  * Object placement in a slab is made very easy because we always start at
1893  * offset 0. If we tune the size of the object to the alignment then we can
1894  * get the required alignment by putting one properly sized object after
1895  * another.
1896  *
1897  * Notice that the allocation order determines the sizes of the per cpu
1898  * caches. Each processor has always one slab available for allocations.
1899  * Increasing the allocation order reduces the number of times that slabs
1900  * must be moved on and off the partial lists and is therefore a factor in
1901  * locking overhead.
1902  */
1903 
1904 /*
1905  * Mininum / Maximum order of slab pages. This influences locking overhead
1906  * and slab fragmentation. A higher order reduces the number of partial slabs
1907  * and increases the number of allocations possible without having to
1908  * take the list_lock.
1909  */
1910 static int slub_min_order;
1911 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1912 static int slub_min_objects;
1913 
1914 /*
1915  * Merge control. If this is set then no merging of slab caches will occur.
1916  * (Could be removed. This was introduced to pacify the merge skeptics.)
1917  */
1918 static int slub_nomerge;
1919 
1920 /*
1921  * Calculate the order of allocation given an slab object size.
1922  *
1923  * The order of allocation has significant impact on performance and other
1924  * system components. Generally order 0 allocations should be preferred since
1925  * order 0 does not cause fragmentation in the page allocator. Larger objects
1926  * be problematic to put into order 0 slabs because there may be too much
1927  * unused space left. We go to a higher order if more than 1/16th of the slab
1928  * would be wasted.
1929  *
1930  * In order to reach satisfactory performance we must ensure that a minimum
1931  * number of objects is in one slab. Otherwise we may generate too much
1932  * activity on the partial lists which requires taking the list_lock. This is
1933  * less a concern for large slabs though which are rarely used.
1934  *
1935  * slub_max_order specifies the order where we begin to stop considering the
1936  * number of objects in a slab as critical. If we reach slub_max_order then
1937  * we try to keep the page order as low as possible. So we accept more waste
1938  * of space in favor of a small page order.
1939  *
1940  * Higher order allocations also allow the placement of more objects in a
1941  * slab and thereby reduce object handling overhead. If the user has
1942  * requested a higher mininum order then we start with that one instead of
1943  * the smallest order which will fit the object.
1944  */
1945 static inline int slab_order(int size, int min_objects,
1946 				int max_order, int fract_leftover)
1947 {
1948 	int order;
1949 	int rem;
1950 	int min_order = slub_min_order;
1951 
1952 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1953 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1954 
1955 	for (order = max(min_order,
1956 				fls(min_objects * size - 1) - PAGE_SHIFT);
1957 			order <= max_order; order++) {
1958 
1959 		unsigned long slab_size = PAGE_SIZE << order;
1960 
1961 		if (slab_size < min_objects * size)
1962 			continue;
1963 
1964 		rem = slab_size % size;
1965 
1966 		if (rem <= slab_size / fract_leftover)
1967 			break;
1968 
1969 	}
1970 
1971 	return order;
1972 }
1973 
1974 static inline int calculate_order(int size)
1975 {
1976 	int order;
1977 	int min_objects;
1978 	int fraction;
1979 	int max_objects;
1980 
1981 	/*
1982 	 * Attempt to find best configuration for a slab. This
1983 	 * works by first attempting to generate a layout with
1984 	 * the best configuration and backing off gradually.
1985 	 *
1986 	 * First we reduce the acceptable waste in a slab. Then
1987 	 * we reduce the minimum objects required in a slab.
1988 	 */
1989 	min_objects = slub_min_objects;
1990 	if (!min_objects)
1991 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1992 	max_objects = (PAGE_SIZE << slub_max_order)/size;
1993 	min_objects = min(min_objects, max_objects);
1994 
1995 	while (min_objects > 1) {
1996 		fraction = 16;
1997 		while (fraction >= 4) {
1998 			order = slab_order(size, min_objects,
1999 						slub_max_order, fraction);
2000 			if (order <= slub_max_order)
2001 				return order;
2002 			fraction /= 2;
2003 		}
2004 		min_objects --;
2005 	}
2006 
2007 	/*
2008 	 * We were unable to place multiple objects in a slab. Now
2009 	 * lets see if we can place a single object there.
2010 	 */
2011 	order = slab_order(size, 1, slub_max_order, 1);
2012 	if (order <= slub_max_order)
2013 		return order;
2014 
2015 	/*
2016 	 * Doh this slab cannot be placed using slub_max_order.
2017 	 */
2018 	order = slab_order(size, 1, MAX_ORDER, 1);
2019 	if (order < MAX_ORDER)
2020 		return order;
2021 	return -ENOSYS;
2022 }
2023 
2024 /*
2025  * Figure out what the alignment of the objects will be.
2026  */
2027 static unsigned long calculate_alignment(unsigned long flags,
2028 		unsigned long align, unsigned long size)
2029 {
2030 	/*
2031 	 * If the user wants hardware cache aligned objects then follow that
2032 	 * suggestion if the object is sufficiently large.
2033 	 *
2034 	 * The hardware cache alignment cannot override the specified
2035 	 * alignment though. If that is greater then use it.
2036 	 */
2037 	if (flags & SLAB_HWCACHE_ALIGN) {
2038 		unsigned long ralign = cache_line_size();
2039 		while (size <= ralign / 2)
2040 			ralign /= 2;
2041 		align = max(align, ralign);
2042 	}
2043 
2044 	if (align < ARCH_SLAB_MINALIGN)
2045 		align = ARCH_SLAB_MINALIGN;
2046 
2047 	return ALIGN(align, sizeof(void *));
2048 }
2049 
2050 static void init_kmem_cache_cpu(struct kmem_cache *s,
2051 			struct kmem_cache_cpu *c)
2052 {
2053 	c->page = NULL;
2054 	c->freelist = NULL;
2055 	c->node = 0;
2056 	c->offset = s->offset / sizeof(void *);
2057 	c->objsize = s->objsize;
2058 #ifdef CONFIG_SLUB_STATS
2059 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2060 #endif
2061 }
2062 
2063 static void
2064 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2065 {
2066 	n->nr_partial = 0;
2067 	spin_lock_init(&n->list_lock);
2068 	INIT_LIST_HEAD(&n->partial);
2069 #ifdef CONFIG_SLUB_DEBUG
2070 	atomic_long_set(&n->nr_slabs, 0);
2071 	atomic_long_set(&n->total_objects, 0);
2072 	INIT_LIST_HEAD(&n->full);
2073 #endif
2074 }
2075 
2076 #ifdef CONFIG_SMP
2077 /*
2078  * Per cpu array for per cpu structures.
2079  *
2080  * The per cpu array places all kmem_cache_cpu structures from one processor
2081  * close together meaning that it becomes possible that multiple per cpu
2082  * structures are contained in one cacheline. This may be particularly
2083  * beneficial for the kmalloc caches.
2084  *
2085  * A desktop system typically has around 60-80 slabs. With 100 here we are
2086  * likely able to get per cpu structures for all caches from the array defined
2087  * here. We must be able to cover all kmalloc caches during bootstrap.
2088  *
2089  * If the per cpu array is exhausted then fall back to kmalloc
2090  * of individual cachelines. No sharing is possible then.
2091  */
2092 #define NR_KMEM_CACHE_CPU 100
2093 
2094 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2095 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2096 
2097 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2098 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2099 
2100 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2101 							int cpu, gfp_t flags)
2102 {
2103 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2104 
2105 	if (c)
2106 		per_cpu(kmem_cache_cpu_free, cpu) =
2107 				(void *)c->freelist;
2108 	else {
2109 		/* Table overflow: So allocate ourselves */
2110 		c = kmalloc_node(
2111 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2112 			flags, cpu_to_node(cpu));
2113 		if (!c)
2114 			return NULL;
2115 	}
2116 
2117 	init_kmem_cache_cpu(s, c);
2118 	return c;
2119 }
2120 
2121 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2122 {
2123 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2124 			c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2125 		kfree(c);
2126 		return;
2127 	}
2128 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2129 	per_cpu(kmem_cache_cpu_free, cpu) = c;
2130 }
2131 
2132 static void free_kmem_cache_cpus(struct kmem_cache *s)
2133 {
2134 	int cpu;
2135 
2136 	for_each_online_cpu(cpu) {
2137 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2138 
2139 		if (c) {
2140 			s->cpu_slab[cpu] = NULL;
2141 			free_kmem_cache_cpu(c, cpu);
2142 		}
2143 	}
2144 }
2145 
2146 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2147 {
2148 	int cpu;
2149 
2150 	for_each_online_cpu(cpu) {
2151 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2152 
2153 		if (c)
2154 			continue;
2155 
2156 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2157 		if (!c) {
2158 			free_kmem_cache_cpus(s);
2159 			return 0;
2160 		}
2161 		s->cpu_slab[cpu] = c;
2162 	}
2163 	return 1;
2164 }
2165 
2166 /*
2167  * Initialize the per cpu array.
2168  */
2169 static void init_alloc_cpu_cpu(int cpu)
2170 {
2171 	int i;
2172 
2173 	if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2174 		return;
2175 
2176 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2177 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2178 
2179 	cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2180 }
2181 
2182 static void __init init_alloc_cpu(void)
2183 {
2184 	int cpu;
2185 
2186 	for_each_online_cpu(cpu)
2187 		init_alloc_cpu_cpu(cpu);
2188   }
2189 
2190 #else
2191 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2192 static inline void init_alloc_cpu(void) {}
2193 
2194 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2195 {
2196 	init_kmem_cache_cpu(s, &s->cpu_slab);
2197 	return 1;
2198 }
2199 #endif
2200 
2201 #ifdef CONFIG_NUMA
2202 /*
2203  * No kmalloc_node yet so do it by hand. We know that this is the first
2204  * slab on the node for this slabcache. There are no concurrent accesses
2205  * possible.
2206  *
2207  * Note that this function only works on the kmalloc_node_cache
2208  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2209  * memory on a fresh node that has no slab structures yet.
2210  */
2211 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2212 {
2213 	struct page *page;
2214 	struct kmem_cache_node *n;
2215 	unsigned long flags;
2216 
2217 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2218 
2219 	page = new_slab(kmalloc_caches, gfpflags, node);
2220 
2221 	BUG_ON(!page);
2222 	if (page_to_nid(page) != node) {
2223 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2224 				"node %d\n", node);
2225 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2226 				"in order to be able to continue\n");
2227 	}
2228 
2229 	n = page->freelist;
2230 	BUG_ON(!n);
2231 	page->freelist = get_freepointer(kmalloc_caches, n);
2232 	page->inuse++;
2233 	kmalloc_caches->node[node] = n;
2234 #ifdef CONFIG_SLUB_DEBUG
2235 	init_object(kmalloc_caches, n, 1);
2236 	init_tracking(kmalloc_caches, n);
2237 #endif
2238 	init_kmem_cache_node(n, kmalloc_caches);
2239 	inc_slabs_node(kmalloc_caches, node, page->objects);
2240 
2241 	/*
2242 	 * lockdep requires consistent irq usage for each lock
2243 	 * so even though there cannot be a race this early in
2244 	 * the boot sequence, we still disable irqs.
2245 	 */
2246 	local_irq_save(flags);
2247 	add_partial(n, page, 0);
2248 	local_irq_restore(flags);
2249 }
2250 
2251 static void free_kmem_cache_nodes(struct kmem_cache *s)
2252 {
2253 	int node;
2254 
2255 	for_each_node_state(node, N_NORMAL_MEMORY) {
2256 		struct kmem_cache_node *n = s->node[node];
2257 		if (n && n != &s->local_node)
2258 			kmem_cache_free(kmalloc_caches, n);
2259 		s->node[node] = NULL;
2260 	}
2261 }
2262 
2263 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2264 {
2265 	int node;
2266 	int local_node;
2267 
2268 	if (slab_state >= UP)
2269 		local_node = page_to_nid(virt_to_page(s));
2270 	else
2271 		local_node = 0;
2272 
2273 	for_each_node_state(node, N_NORMAL_MEMORY) {
2274 		struct kmem_cache_node *n;
2275 
2276 		if (local_node == node)
2277 			n = &s->local_node;
2278 		else {
2279 			if (slab_state == DOWN) {
2280 				early_kmem_cache_node_alloc(gfpflags, node);
2281 				continue;
2282 			}
2283 			n = kmem_cache_alloc_node(kmalloc_caches,
2284 							gfpflags, node);
2285 
2286 			if (!n) {
2287 				free_kmem_cache_nodes(s);
2288 				return 0;
2289 			}
2290 
2291 		}
2292 		s->node[node] = n;
2293 		init_kmem_cache_node(n, s);
2294 	}
2295 	return 1;
2296 }
2297 #else
2298 static void free_kmem_cache_nodes(struct kmem_cache *s)
2299 {
2300 }
2301 
2302 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2303 {
2304 	init_kmem_cache_node(&s->local_node, s);
2305 	return 1;
2306 }
2307 #endif
2308 
2309 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2310 {
2311 	if (min < MIN_PARTIAL)
2312 		min = MIN_PARTIAL;
2313 	else if (min > MAX_PARTIAL)
2314 		min = MAX_PARTIAL;
2315 	s->min_partial = min;
2316 }
2317 
2318 /*
2319  * calculate_sizes() determines the order and the distribution of data within
2320  * a slab object.
2321  */
2322 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2323 {
2324 	unsigned long flags = s->flags;
2325 	unsigned long size = s->objsize;
2326 	unsigned long align = s->align;
2327 	int order;
2328 
2329 	/*
2330 	 * Round up object size to the next word boundary. We can only
2331 	 * place the free pointer at word boundaries and this determines
2332 	 * the possible location of the free pointer.
2333 	 */
2334 	size = ALIGN(size, sizeof(void *));
2335 
2336 #ifdef CONFIG_SLUB_DEBUG
2337 	/*
2338 	 * Determine if we can poison the object itself. If the user of
2339 	 * the slab may touch the object after free or before allocation
2340 	 * then we should never poison the object itself.
2341 	 */
2342 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2343 			!s->ctor)
2344 		s->flags |= __OBJECT_POISON;
2345 	else
2346 		s->flags &= ~__OBJECT_POISON;
2347 
2348 
2349 	/*
2350 	 * If we are Redzoning then check if there is some space between the
2351 	 * end of the object and the free pointer. If not then add an
2352 	 * additional word to have some bytes to store Redzone information.
2353 	 */
2354 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2355 		size += sizeof(void *);
2356 #endif
2357 
2358 	/*
2359 	 * With that we have determined the number of bytes in actual use
2360 	 * by the object. This is the potential offset to the free pointer.
2361 	 */
2362 	s->inuse = size;
2363 
2364 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2365 		s->ctor)) {
2366 		/*
2367 		 * Relocate free pointer after the object if it is not
2368 		 * permitted to overwrite the first word of the object on
2369 		 * kmem_cache_free.
2370 		 *
2371 		 * This is the case if we do RCU, have a constructor or
2372 		 * destructor or are poisoning the objects.
2373 		 */
2374 		s->offset = size;
2375 		size += sizeof(void *);
2376 	}
2377 
2378 #ifdef CONFIG_SLUB_DEBUG
2379 	if (flags & SLAB_STORE_USER)
2380 		/*
2381 		 * Need to store information about allocs and frees after
2382 		 * the object.
2383 		 */
2384 		size += 2 * sizeof(struct track);
2385 
2386 	if (flags & SLAB_RED_ZONE)
2387 		/*
2388 		 * Add some empty padding so that we can catch
2389 		 * overwrites from earlier objects rather than let
2390 		 * tracking information or the free pointer be
2391 		 * corrupted if a user writes before the start
2392 		 * of the object.
2393 		 */
2394 		size += sizeof(void *);
2395 #endif
2396 
2397 	/*
2398 	 * Determine the alignment based on various parameters that the
2399 	 * user specified and the dynamic determination of cache line size
2400 	 * on bootup.
2401 	 */
2402 	align = calculate_alignment(flags, align, s->objsize);
2403 
2404 	/*
2405 	 * SLUB stores one object immediately after another beginning from
2406 	 * offset 0. In order to align the objects we have to simply size
2407 	 * each object to conform to the alignment.
2408 	 */
2409 	size = ALIGN(size, align);
2410 	s->size = size;
2411 	if (forced_order >= 0)
2412 		order = forced_order;
2413 	else
2414 		order = calculate_order(size);
2415 
2416 	if (order < 0)
2417 		return 0;
2418 
2419 	s->allocflags = 0;
2420 	if (order)
2421 		s->allocflags |= __GFP_COMP;
2422 
2423 	if (s->flags & SLAB_CACHE_DMA)
2424 		s->allocflags |= SLUB_DMA;
2425 
2426 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2427 		s->allocflags |= __GFP_RECLAIMABLE;
2428 
2429 	/*
2430 	 * Determine the number of objects per slab
2431 	 */
2432 	s->oo = oo_make(order, size);
2433 	s->min = oo_make(get_order(size), size);
2434 	if (oo_objects(s->oo) > oo_objects(s->max))
2435 		s->max = s->oo;
2436 
2437 	return !!oo_objects(s->oo);
2438 
2439 }
2440 
2441 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2442 		const char *name, size_t size,
2443 		size_t align, unsigned long flags,
2444 		void (*ctor)(void *))
2445 {
2446 	memset(s, 0, kmem_size);
2447 	s->name = name;
2448 	s->ctor = ctor;
2449 	s->objsize = size;
2450 	s->align = align;
2451 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2452 
2453 	if (!calculate_sizes(s, -1))
2454 		goto error;
2455 
2456 	/*
2457 	 * The larger the object size is, the more pages we want on the partial
2458 	 * list to avoid pounding the page allocator excessively.
2459 	 */
2460 	set_min_partial(s, ilog2(s->size));
2461 	s->refcount = 1;
2462 #ifdef CONFIG_NUMA
2463 	s->remote_node_defrag_ratio = 1000;
2464 #endif
2465 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2466 		goto error;
2467 
2468 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2469 		return 1;
2470 	free_kmem_cache_nodes(s);
2471 error:
2472 	if (flags & SLAB_PANIC)
2473 		panic("Cannot create slab %s size=%lu realsize=%u "
2474 			"order=%u offset=%u flags=%lx\n",
2475 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2476 			s->offset, flags);
2477 	return 0;
2478 }
2479 
2480 /*
2481  * Check if a given pointer is valid
2482  */
2483 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2484 {
2485 	struct page *page;
2486 
2487 	page = get_object_page(object);
2488 
2489 	if (!page || s != page->slab)
2490 		/* No slab or wrong slab */
2491 		return 0;
2492 
2493 	if (!check_valid_pointer(s, page, object))
2494 		return 0;
2495 
2496 	/*
2497 	 * We could also check if the object is on the slabs freelist.
2498 	 * But this would be too expensive and it seems that the main
2499 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2500 	 * to a certain slab.
2501 	 */
2502 	return 1;
2503 }
2504 EXPORT_SYMBOL(kmem_ptr_validate);
2505 
2506 /*
2507  * Determine the size of a slab object
2508  */
2509 unsigned int kmem_cache_size(struct kmem_cache *s)
2510 {
2511 	return s->objsize;
2512 }
2513 EXPORT_SYMBOL(kmem_cache_size);
2514 
2515 const char *kmem_cache_name(struct kmem_cache *s)
2516 {
2517 	return s->name;
2518 }
2519 EXPORT_SYMBOL(kmem_cache_name);
2520 
2521 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2522 							const char *text)
2523 {
2524 #ifdef CONFIG_SLUB_DEBUG
2525 	void *addr = page_address(page);
2526 	void *p;
2527 	DECLARE_BITMAP(map, page->objects);
2528 
2529 	bitmap_zero(map, page->objects);
2530 	slab_err(s, page, "%s", text);
2531 	slab_lock(page);
2532 	for_each_free_object(p, s, page->freelist)
2533 		set_bit(slab_index(p, s, addr), map);
2534 
2535 	for_each_object(p, s, addr, page->objects) {
2536 
2537 		if (!test_bit(slab_index(p, s, addr), map)) {
2538 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2539 							p, p - addr);
2540 			print_tracking(s, p);
2541 		}
2542 	}
2543 	slab_unlock(page);
2544 #endif
2545 }
2546 
2547 /*
2548  * Attempt to free all partial slabs on a node.
2549  */
2550 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2551 {
2552 	unsigned long flags;
2553 	struct page *page, *h;
2554 
2555 	spin_lock_irqsave(&n->list_lock, flags);
2556 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2557 		if (!page->inuse) {
2558 			list_del(&page->lru);
2559 			discard_slab(s, page);
2560 			n->nr_partial--;
2561 		} else {
2562 			list_slab_objects(s, page,
2563 				"Objects remaining on kmem_cache_close()");
2564 		}
2565 	}
2566 	spin_unlock_irqrestore(&n->list_lock, flags);
2567 }
2568 
2569 /*
2570  * Release all resources used by a slab cache.
2571  */
2572 static inline int kmem_cache_close(struct kmem_cache *s)
2573 {
2574 	int node;
2575 
2576 	flush_all(s);
2577 
2578 	/* Attempt to free all objects */
2579 	free_kmem_cache_cpus(s);
2580 	for_each_node_state(node, N_NORMAL_MEMORY) {
2581 		struct kmem_cache_node *n = get_node(s, node);
2582 
2583 		free_partial(s, n);
2584 		if (n->nr_partial || slabs_node(s, node))
2585 			return 1;
2586 	}
2587 	free_kmem_cache_nodes(s);
2588 	return 0;
2589 }
2590 
2591 /*
2592  * Close a cache and release the kmem_cache structure
2593  * (must be used for caches created using kmem_cache_create)
2594  */
2595 void kmem_cache_destroy(struct kmem_cache *s)
2596 {
2597 	if (s->flags & SLAB_DESTROY_BY_RCU)
2598 		rcu_barrier();
2599 	down_write(&slub_lock);
2600 	s->refcount--;
2601 	if (!s->refcount) {
2602 		list_del(&s->list);
2603 		up_write(&slub_lock);
2604 		if (kmem_cache_close(s)) {
2605 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2606 				"still has objects.\n", s->name, __func__);
2607 			dump_stack();
2608 		}
2609 		sysfs_slab_remove(s);
2610 	} else
2611 		up_write(&slub_lock);
2612 }
2613 EXPORT_SYMBOL(kmem_cache_destroy);
2614 
2615 /********************************************************************
2616  *		Kmalloc subsystem
2617  *******************************************************************/
2618 
2619 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2620 EXPORT_SYMBOL(kmalloc_caches);
2621 
2622 static int __init setup_slub_min_order(char *str)
2623 {
2624 	get_option(&str, &slub_min_order);
2625 
2626 	return 1;
2627 }
2628 
2629 __setup("slub_min_order=", setup_slub_min_order);
2630 
2631 static int __init setup_slub_max_order(char *str)
2632 {
2633 	get_option(&str, &slub_max_order);
2634 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2635 
2636 	return 1;
2637 }
2638 
2639 __setup("slub_max_order=", setup_slub_max_order);
2640 
2641 static int __init setup_slub_min_objects(char *str)
2642 {
2643 	get_option(&str, &slub_min_objects);
2644 
2645 	return 1;
2646 }
2647 
2648 __setup("slub_min_objects=", setup_slub_min_objects);
2649 
2650 static int __init setup_slub_nomerge(char *str)
2651 {
2652 	slub_nomerge = 1;
2653 	return 1;
2654 }
2655 
2656 __setup("slub_nomerge", setup_slub_nomerge);
2657 
2658 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2659 		const char *name, int size, gfp_t gfp_flags)
2660 {
2661 	unsigned int flags = 0;
2662 
2663 	if (gfp_flags & SLUB_DMA)
2664 		flags = SLAB_CACHE_DMA;
2665 
2666 	/*
2667 	 * This function is called with IRQs disabled during early-boot on
2668 	 * single CPU so there's no need to take slub_lock here.
2669 	 */
2670 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2671 								flags, NULL))
2672 		goto panic;
2673 
2674 	list_add(&s->list, &slab_caches);
2675 
2676 	if (sysfs_slab_add(s))
2677 		goto panic;
2678 	return s;
2679 
2680 panic:
2681 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2682 }
2683 
2684 #ifdef CONFIG_ZONE_DMA
2685 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2686 
2687 static void sysfs_add_func(struct work_struct *w)
2688 {
2689 	struct kmem_cache *s;
2690 
2691 	down_write(&slub_lock);
2692 	list_for_each_entry(s, &slab_caches, list) {
2693 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2694 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2695 			sysfs_slab_add(s);
2696 		}
2697 	}
2698 	up_write(&slub_lock);
2699 }
2700 
2701 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2702 
2703 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2704 {
2705 	struct kmem_cache *s;
2706 	char *text;
2707 	size_t realsize;
2708 	unsigned long slabflags;
2709 
2710 	s = kmalloc_caches_dma[index];
2711 	if (s)
2712 		return s;
2713 
2714 	/* Dynamically create dma cache */
2715 	if (flags & __GFP_WAIT)
2716 		down_write(&slub_lock);
2717 	else {
2718 		if (!down_write_trylock(&slub_lock))
2719 			goto out;
2720 	}
2721 
2722 	if (kmalloc_caches_dma[index])
2723 		goto unlock_out;
2724 
2725 	realsize = kmalloc_caches[index].objsize;
2726 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2727 			 (unsigned int)realsize);
2728 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2729 
2730 	/*
2731 	 * Must defer sysfs creation to a workqueue because we don't know
2732 	 * what context we are called from. Before sysfs comes up, we don't
2733 	 * need to do anything because our sysfs initcall will start by
2734 	 * adding all existing slabs to sysfs.
2735 	 */
2736 	slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2737 	if (slab_state >= SYSFS)
2738 		slabflags |= __SYSFS_ADD_DEFERRED;
2739 
2740 	if (!s || !text || !kmem_cache_open(s, flags, text,
2741 			realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2742 		kfree(s);
2743 		kfree(text);
2744 		goto unlock_out;
2745 	}
2746 
2747 	list_add(&s->list, &slab_caches);
2748 	kmalloc_caches_dma[index] = s;
2749 
2750 	if (slab_state >= SYSFS)
2751 		schedule_work(&sysfs_add_work);
2752 
2753 unlock_out:
2754 	up_write(&slub_lock);
2755 out:
2756 	return kmalloc_caches_dma[index];
2757 }
2758 #endif
2759 
2760 /*
2761  * Conversion table for small slabs sizes / 8 to the index in the
2762  * kmalloc array. This is necessary for slabs < 192 since we have non power
2763  * of two cache sizes there. The size of larger slabs can be determined using
2764  * fls.
2765  */
2766 static s8 size_index[24] = {
2767 	3,	/* 8 */
2768 	4,	/* 16 */
2769 	5,	/* 24 */
2770 	5,	/* 32 */
2771 	6,	/* 40 */
2772 	6,	/* 48 */
2773 	6,	/* 56 */
2774 	6,	/* 64 */
2775 	1,	/* 72 */
2776 	1,	/* 80 */
2777 	1,	/* 88 */
2778 	1,	/* 96 */
2779 	7,	/* 104 */
2780 	7,	/* 112 */
2781 	7,	/* 120 */
2782 	7,	/* 128 */
2783 	2,	/* 136 */
2784 	2,	/* 144 */
2785 	2,	/* 152 */
2786 	2,	/* 160 */
2787 	2,	/* 168 */
2788 	2,	/* 176 */
2789 	2,	/* 184 */
2790 	2	/* 192 */
2791 };
2792 
2793 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2794 {
2795 	int index;
2796 
2797 	if (size <= 192) {
2798 		if (!size)
2799 			return ZERO_SIZE_PTR;
2800 
2801 		index = size_index[(size - 1) / 8];
2802 	} else
2803 		index = fls(size - 1);
2804 
2805 #ifdef CONFIG_ZONE_DMA
2806 	if (unlikely((flags & SLUB_DMA)))
2807 		return dma_kmalloc_cache(index, flags);
2808 
2809 #endif
2810 	return &kmalloc_caches[index];
2811 }
2812 
2813 void *__kmalloc(size_t size, gfp_t flags)
2814 {
2815 	struct kmem_cache *s;
2816 	void *ret;
2817 
2818 	if (unlikely(size > SLUB_MAX_SIZE))
2819 		return kmalloc_large(size, flags);
2820 
2821 	s = get_slab(size, flags);
2822 
2823 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2824 		return s;
2825 
2826 	ret = slab_alloc(s, flags, -1, _RET_IP_);
2827 
2828 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2829 
2830 	return ret;
2831 }
2832 EXPORT_SYMBOL(__kmalloc);
2833 
2834 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2835 {
2836 	struct page *page;
2837 	void *ptr = NULL;
2838 
2839 	flags |= __GFP_COMP | __GFP_NOTRACK;
2840 	page = alloc_pages_node(node, flags, get_order(size));
2841 	if (page)
2842 		ptr = page_address(page);
2843 
2844 	kmemleak_alloc(ptr, size, 1, flags);
2845 	return ptr;
2846 }
2847 
2848 #ifdef CONFIG_NUMA
2849 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2850 {
2851 	struct kmem_cache *s;
2852 	void *ret;
2853 
2854 	if (unlikely(size > SLUB_MAX_SIZE)) {
2855 		ret = kmalloc_large_node(size, flags, node);
2856 
2857 		trace_kmalloc_node(_RET_IP_, ret,
2858 				   size, PAGE_SIZE << get_order(size),
2859 				   flags, node);
2860 
2861 		return ret;
2862 	}
2863 
2864 	s = get_slab(size, flags);
2865 
2866 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2867 		return s;
2868 
2869 	ret = slab_alloc(s, flags, node, _RET_IP_);
2870 
2871 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2872 
2873 	return ret;
2874 }
2875 EXPORT_SYMBOL(__kmalloc_node);
2876 #endif
2877 
2878 size_t ksize(const void *object)
2879 {
2880 	struct page *page;
2881 	struct kmem_cache *s;
2882 
2883 	if (unlikely(object == ZERO_SIZE_PTR))
2884 		return 0;
2885 
2886 	page = virt_to_head_page(object);
2887 
2888 	if (unlikely(!PageSlab(page))) {
2889 		WARN_ON(!PageCompound(page));
2890 		return PAGE_SIZE << compound_order(page);
2891 	}
2892 	s = page->slab;
2893 
2894 #ifdef CONFIG_SLUB_DEBUG
2895 	/*
2896 	 * Debugging requires use of the padding between object
2897 	 * and whatever may come after it.
2898 	 */
2899 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2900 		return s->objsize;
2901 
2902 #endif
2903 	/*
2904 	 * If we have the need to store the freelist pointer
2905 	 * back there or track user information then we can
2906 	 * only use the space before that information.
2907 	 */
2908 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2909 		return s->inuse;
2910 	/*
2911 	 * Else we can use all the padding etc for the allocation
2912 	 */
2913 	return s->size;
2914 }
2915 EXPORT_SYMBOL(ksize);
2916 
2917 void kfree(const void *x)
2918 {
2919 	struct page *page;
2920 	void *object = (void *)x;
2921 
2922 	trace_kfree(_RET_IP_, x);
2923 
2924 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2925 		return;
2926 
2927 	page = virt_to_head_page(x);
2928 	if (unlikely(!PageSlab(page))) {
2929 		BUG_ON(!PageCompound(page));
2930 		kmemleak_free(x);
2931 		put_page(page);
2932 		return;
2933 	}
2934 	slab_free(page->slab, page, object, _RET_IP_);
2935 }
2936 EXPORT_SYMBOL(kfree);
2937 
2938 /*
2939  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2940  * the remaining slabs by the number of items in use. The slabs with the
2941  * most items in use come first. New allocations will then fill those up
2942  * and thus they can be removed from the partial lists.
2943  *
2944  * The slabs with the least items are placed last. This results in them
2945  * being allocated from last increasing the chance that the last objects
2946  * are freed in them.
2947  */
2948 int kmem_cache_shrink(struct kmem_cache *s)
2949 {
2950 	int node;
2951 	int i;
2952 	struct kmem_cache_node *n;
2953 	struct page *page;
2954 	struct page *t;
2955 	int objects = oo_objects(s->max);
2956 	struct list_head *slabs_by_inuse =
2957 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2958 	unsigned long flags;
2959 
2960 	if (!slabs_by_inuse)
2961 		return -ENOMEM;
2962 
2963 	flush_all(s);
2964 	for_each_node_state(node, N_NORMAL_MEMORY) {
2965 		n = get_node(s, node);
2966 
2967 		if (!n->nr_partial)
2968 			continue;
2969 
2970 		for (i = 0; i < objects; i++)
2971 			INIT_LIST_HEAD(slabs_by_inuse + i);
2972 
2973 		spin_lock_irqsave(&n->list_lock, flags);
2974 
2975 		/*
2976 		 * Build lists indexed by the items in use in each slab.
2977 		 *
2978 		 * Note that concurrent frees may occur while we hold the
2979 		 * list_lock. page->inuse here is the upper limit.
2980 		 */
2981 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2982 			if (!page->inuse && slab_trylock(page)) {
2983 				/*
2984 				 * Must hold slab lock here because slab_free
2985 				 * may have freed the last object and be
2986 				 * waiting to release the slab.
2987 				 */
2988 				list_del(&page->lru);
2989 				n->nr_partial--;
2990 				slab_unlock(page);
2991 				discard_slab(s, page);
2992 			} else {
2993 				list_move(&page->lru,
2994 				slabs_by_inuse + page->inuse);
2995 			}
2996 		}
2997 
2998 		/*
2999 		 * Rebuild the partial list with the slabs filled up most
3000 		 * first and the least used slabs at the end.
3001 		 */
3002 		for (i = objects - 1; i >= 0; i--)
3003 			list_splice(slabs_by_inuse + i, n->partial.prev);
3004 
3005 		spin_unlock_irqrestore(&n->list_lock, flags);
3006 	}
3007 
3008 	kfree(slabs_by_inuse);
3009 	return 0;
3010 }
3011 EXPORT_SYMBOL(kmem_cache_shrink);
3012 
3013 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3014 static int slab_mem_going_offline_callback(void *arg)
3015 {
3016 	struct kmem_cache *s;
3017 
3018 	down_read(&slub_lock);
3019 	list_for_each_entry(s, &slab_caches, list)
3020 		kmem_cache_shrink(s);
3021 	up_read(&slub_lock);
3022 
3023 	return 0;
3024 }
3025 
3026 static void slab_mem_offline_callback(void *arg)
3027 {
3028 	struct kmem_cache_node *n;
3029 	struct kmem_cache *s;
3030 	struct memory_notify *marg = arg;
3031 	int offline_node;
3032 
3033 	offline_node = marg->status_change_nid;
3034 
3035 	/*
3036 	 * If the node still has available memory. we need kmem_cache_node
3037 	 * for it yet.
3038 	 */
3039 	if (offline_node < 0)
3040 		return;
3041 
3042 	down_read(&slub_lock);
3043 	list_for_each_entry(s, &slab_caches, list) {
3044 		n = get_node(s, offline_node);
3045 		if (n) {
3046 			/*
3047 			 * if n->nr_slabs > 0, slabs still exist on the node
3048 			 * that is going down. We were unable to free them,
3049 			 * and offline_pages() function shoudn't call this
3050 			 * callback. So, we must fail.
3051 			 */
3052 			BUG_ON(slabs_node(s, offline_node));
3053 
3054 			s->node[offline_node] = NULL;
3055 			kmem_cache_free(kmalloc_caches, n);
3056 		}
3057 	}
3058 	up_read(&slub_lock);
3059 }
3060 
3061 static int slab_mem_going_online_callback(void *arg)
3062 {
3063 	struct kmem_cache_node *n;
3064 	struct kmem_cache *s;
3065 	struct memory_notify *marg = arg;
3066 	int nid = marg->status_change_nid;
3067 	int ret = 0;
3068 
3069 	/*
3070 	 * If the node's memory is already available, then kmem_cache_node is
3071 	 * already created. Nothing to do.
3072 	 */
3073 	if (nid < 0)
3074 		return 0;
3075 
3076 	/*
3077 	 * We are bringing a node online. No memory is available yet. We must
3078 	 * allocate a kmem_cache_node structure in order to bring the node
3079 	 * online.
3080 	 */
3081 	down_read(&slub_lock);
3082 	list_for_each_entry(s, &slab_caches, list) {
3083 		/*
3084 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3085 		 *      since memory is not yet available from the node that
3086 		 *      is brought up.
3087 		 */
3088 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3089 		if (!n) {
3090 			ret = -ENOMEM;
3091 			goto out;
3092 		}
3093 		init_kmem_cache_node(n, s);
3094 		s->node[nid] = n;
3095 	}
3096 out:
3097 	up_read(&slub_lock);
3098 	return ret;
3099 }
3100 
3101 static int slab_memory_callback(struct notifier_block *self,
3102 				unsigned long action, void *arg)
3103 {
3104 	int ret = 0;
3105 
3106 	switch (action) {
3107 	case MEM_GOING_ONLINE:
3108 		ret = slab_mem_going_online_callback(arg);
3109 		break;
3110 	case MEM_GOING_OFFLINE:
3111 		ret = slab_mem_going_offline_callback(arg);
3112 		break;
3113 	case MEM_OFFLINE:
3114 	case MEM_CANCEL_ONLINE:
3115 		slab_mem_offline_callback(arg);
3116 		break;
3117 	case MEM_ONLINE:
3118 	case MEM_CANCEL_OFFLINE:
3119 		break;
3120 	}
3121 	if (ret)
3122 		ret = notifier_from_errno(ret);
3123 	else
3124 		ret = NOTIFY_OK;
3125 	return ret;
3126 }
3127 
3128 #endif /* CONFIG_MEMORY_HOTPLUG */
3129 
3130 /********************************************************************
3131  *			Basic setup of slabs
3132  *******************************************************************/
3133 
3134 void __init kmem_cache_init(void)
3135 {
3136 	int i;
3137 	int caches = 0;
3138 
3139 	init_alloc_cpu();
3140 
3141 #ifdef CONFIG_NUMA
3142 	/*
3143 	 * Must first have the slab cache available for the allocations of the
3144 	 * struct kmem_cache_node's. There is special bootstrap code in
3145 	 * kmem_cache_open for slab_state == DOWN.
3146 	 */
3147 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3148 		sizeof(struct kmem_cache_node), GFP_NOWAIT);
3149 	kmalloc_caches[0].refcount = -1;
3150 	caches++;
3151 
3152 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3153 #endif
3154 
3155 	/* Able to allocate the per node structures */
3156 	slab_state = PARTIAL;
3157 
3158 	/* Caches that are not of the two-to-the-power-of size */
3159 	if (KMALLOC_MIN_SIZE <= 64) {
3160 		create_kmalloc_cache(&kmalloc_caches[1],
3161 				"kmalloc-96", 96, GFP_NOWAIT);
3162 		caches++;
3163 		create_kmalloc_cache(&kmalloc_caches[2],
3164 				"kmalloc-192", 192, GFP_NOWAIT);
3165 		caches++;
3166 	}
3167 
3168 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3169 		create_kmalloc_cache(&kmalloc_caches[i],
3170 			"kmalloc", 1 << i, GFP_NOWAIT);
3171 		caches++;
3172 	}
3173 
3174 
3175 	/*
3176 	 * Patch up the size_index table if we have strange large alignment
3177 	 * requirements for the kmalloc array. This is only the case for
3178 	 * MIPS it seems. The standard arches will not generate any code here.
3179 	 *
3180 	 * Largest permitted alignment is 256 bytes due to the way we
3181 	 * handle the index determination for the smaller caches.
3182 	 *
3183 	 * Make sure that nothing crazy happens if someone starts tinkering
3184 	 * around with ARCH_KMALLOC_MINALIGN
3185 	 */
3186 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3187 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3188 
3189 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3190 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3191 
3192 	if (KMALLOC_MIN_SIZE == 128) {
3193 		/*
3194 		 * The 192 byte sized cache is not used if the alignment
3195 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3196 		 * instead.
3197 		 */
3198 		for (i = 128 + 8; i <= 192; i += 8)
3199 			size_index[(i - 1) / 8] = 8;
3200 	}
3201 
3202 	slab_state = UP;
3203 
3204 	/* Provide the correct kmalloc names now that the caches are up */
3205 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3206 		kmalloc_caches[i]. name =
3207 			kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3208 
3209 #ifdef CONFIG_SMP
3210 	register_cpu_notifier(&slab_notifier);
3211 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3212 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3213 #else
3214 	kmem_size = sizeof(struct kmem_cache);
3215 #endif
3216 
3217 	printk(KERN_INFO
3218 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3219 		" CPUs=%d, Nodes=%d\n",
3220 		caches, cache_line_size(),
3221 		slub_min_order, slub_max_order, slub_min_objects,
3222 		nr_cpu_ids, nr_node_ids);
3223 }
3224 
3225 void __init kmem_cache_init_late(void)
3226 {
3227 }
3228 
3229 /*
3230  * Find a mergeable slab cache
3231  */
3232 static int slab_unmergeable(struct kmem_cache *s)
3233 {
3234 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3235 		return 1;
3236 
3237 	if (s->ctor)
3238 		return 1;
3239 
3240 	/*
3241 	 * We may have set a slab to be unmergeable during bootstrap.
3242 	 */
3243 	if (s->refcount < 0)
3244 		return 1;
3245 
3246 	return 0;
3247 }
3248 
3249 static struct kmem_cache *find_mergeable(size_t size,
3250 		size_t align, unsigned long flags, const char *name,
3251 		void (*ctor)(void *))
3252 {
3253 	struct kmem_cache *s;
3254 
3255 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3256 		return NULL;
3257 
3258 	if (ctor)
3259 		return NULL;
3260 
3261 	size = ALIGN(size, sizeof(void *));
3262 	align = calculate_alignment(flags, align, size);
3263 	size = ALIGN(size, align);
3264 	flags = kmem_cache_flags(size, flags, name, NULL);
3265 
3266 	list_for_each_entry(s, &slab_caches, list) {
3267 		if (slab_unmergeable(s))
3268 			continue;
3269 
3270 		if (size > s->size)
3271 			continue;
3272 
3273 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3274 				continue;
3275 		/*
3276 		 * Check if alignment is compatible.
3277 		 * Courtesy of Adrian Drzewiecki
3278 		 */
3279 		if ((s->size & ~(align - 1)) != s->size)
3280 			continue;
3281 
3282 		if (s->size - size >= sizeof(void *))
3283 			continue;
3284 
3285 		return s;
3286 	}
3287 	return NULL;
3288 }
3289 
3290 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3291 		size_t align, unsigned long flags, void (*ctor)(void *))
3292 {
3293 	struct kmem_cache *s;
3294 
3295 	down_write(&slub_lock);
3296 	s = find_mergeable(size, align, flags, name, ctor);
3297 	if (s) {
3298 		int cpu;
3299 
3300 		s->refcount++;
3301 		/*
3302 		 * Adjust the object sizes so that we clear
3303 		 * the complete object on kzalloc.
3304 		 */
3305 		s->objsize = max(s->objsize, (int)size);
3306 
3307 		/*
3308 		 * And then we need to update the object size in the
3309 		 * per cpu structures
3310 		 */
3311 		for_each_online_cpu(cpu)
3312 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3313 
3314 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3315 		up_write(&slub_lock);
3316 
3317 		if (sysfs_slab_alias(s, name)) {
3318 			down_write(&slub_lock);
3319 			s->refcount--;
3320 			up_write(&slub_lock);
3321 			goto err;
3322 		}
3323 		return s;
3324 	}
3325 
3326 	s = kmalloc(kmem_size, GFP_KERNEL);
3327 	if (s) {
3328 		if (kmem_cache_open(s, GFP_KERNEL, name,
3329 				size, align, flags, ctor)) {
3330 			list_add(&s->list, &slab_caches);
3331 			up_write(&slub_lock);
3332 			if (sysfs_slab_add(s)) {
3333 				down_write(&slub_lock);
3334 				list_del(&s->list);
3335 				up_write(&slub_lock);
3336 				kfree(s);
3337 				goto err;
3338 			}
3339 			return s;
3340 		}
3341 		kfree(s);
3342 	}
3343 	up_write(&slub_lock);
3344 
3345 err:
3346 	if (flags & SLAB_PANIC)
3347 		panic("Cannot create slabcache %s\n", name);
3348 	else
3349 		s = NULL;
3350 	return s;
3351 }
3352 EXPORT_SYMBOL(kmem_cache_create);
3353 
3354 #ifdef CONFIG_SMP
3355 /*
3356  * Use the cpu notifier to insure that the cpu slabs are flushed when
3357  * necessary.
3358  */
3359 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3360 		unsigned long action, void *hcpu)
3361 {
3362 	long cpu = (long)hcpu;
3363 	struct kmem_cache *s;
3364 	unsigned long flags;
3365 
3366 	switch (action) {
3367 	case CPU_UP_PREPARE:
3368 	case CPU_UP_PREPARE_FROZEN:
3369 		init_alloc_cpu_cpu(cpu);
3370 		down_read(&slub_lock);
3371 		list_for_each_entry(s, &slab_caches, list)
3372 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3373 							GFP_KERNEL);
3374 		up_read(&slub_lock);
3375 		break;
3376 
3377 	case CPU_UP_CANCELED:
3378 	case CPU_UP_CANCELED_FROZEN:
3379 	case CPU_DEAD:
3380 	case CPU_DEAD_FROZEN:
3381 		down_read(&slub_lock);
3382 		list_for_each_entry(s, &slab_caches, list) {
3383 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3384 
3385 			local_irq_save(flags);
3386 			__flush_cpu_slab(s, cpu);
3387 			local_irq_restore(flags);
3388 			free_kmem_cache_cpu(c, cpu);
3389 			s->cpu_slab[cpu] = NULL;
3390 		}
3391 		up_read(&slub_lock);
3392 		break;
3393 	default:
3394 		break;
3395 	}
3396 	return NOTIFY_OK;
3397 }
3398 
3399 static struct notifier_block __cpuinitdata slab_notifier = {
3400 	.notifier_call = slab_cpuup_callback
3401 };
3402 
3403 #endif
3404 
3405 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3406 {
3407 	struct kmem_cache *s;
3408 	void *ret;
3409 
3410 	if (unlikely(size > SLUB_MAX_SIZE))
3411 		return kmalloc_large(size, gfpflags);
3412 
3413 	s = get_slab(size, gfpflags);
3414 
3415 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3416 		return s;
3417 
3418 	ret = slab_alloc(s, gfpflags, -1, caller);
3419 
3420 	/* Honor the call site pointer we recieved. */
3421 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3422 
3423 	return ret;
3424 }
3425 
3426 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3427 					int node, unsigned long caller)
3428 {
3429 	struct kmem_cache *s;
3430 	void *ret;
3431 
3432 	if (unlikely(size > SLUB_MAX_SIZE))
3433 		return kmalloc_large_node(size, gfpflags, node);
3434 
3435 	s = get_slab(size, gfpflags);
3436 
3437 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3438 		return s;
3439 
3440 	ret = slab_alloc(s, gfpflags, node, caller);
3441 
3442 	/* Honor the call site pointer we recieved. */
3443 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3444 
3445 	return ret;
3446 }
3447 
3448 #ifdef CONFIG_SLUB_DEBUG
3449 static int count_inuse(struct page *page)
3450 {
3451 	return page->inuse;
3452 }
3453 
3454 static int count_total(struct page *page)
3455 {
3456 	return page->objects;
3457 }
3458 
3459 static int validate_slab(struct kmem_cache *s, struct page *page,
3460 						unsigned long *map)
3461 {
3462 	void *p;
3463 	void *addr = page_address(page);
3464 
3465 	if (!check_slab(s, page) ||
3466 			!on_freelist(s, page, NULL))
3467 		return 0;
3468 
3469 	/* Now we know that a valid freelist exists */
3470 	bitmap_zero(map, page->objects);
3471 
3472 	for_each_free_object(p, s, page->freelist) {
3473 		set_bit(slab_index(p, s, addr), map);
3474 		if (!check_object(s, page, p, 0))
3475 			return 0;
3476 	}
3477 
3478 	for_each_object(p, s, addr, page->objects)
3479 		if (!test_bit(slab_index(p, s, addr), map))
3480 			if (!check_object(s, page, p, 1))
3481 				return 0;
3482 	return 1;
3483 }
3484 
3485 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3486 						unsigned long *map)
3487 {
3488 	if (slab_trylock(page)) {
3489 		validate_slab(s, page, map);
3490 		slab_unlock(page);
3491 	} else
3492 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3493 			s->name, page);
3494 
3495 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3496 		if (!PageSlubDebug(page))
3497 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3498 				"on slab 0x%p\n", s->name, page);
3499 	} else {
3500 		if (PageSlubDebug(page))
3501 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3502 				"slab 0x%p\n", s->name, page);
3503 	}
3504 }
3505 
3506 static int validate_slab_node(struct kmem_cache *s,
3507 		struct kmem_cache_node *n, unsigned long *map)
3508 {
3509 	unsigned long count = 0;
3510 	struct page *page;
3511 	unsigned long flags;
3512 
3513 	spin_lock_irqsave(&n->list_lock, flags);
3514 
3515 	list_for_each_entry(page, &n->partial, lru) {
3516 		validate_slab_slab(s, page, map);
3517 		count++;
3518 	}
3519 	if (count != n->nr_partial)
3520 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3521 			"counter=%ld\n", s->name, count, n->nr_partial);
3522 
3523 	if (!(s->flags & SLAB_STORE_USER))
3524 		goto out;
3525 
3526 	list_for_each_entry(page, &n->full, lru) {
3527 		validate_slab_slab(s, page, map);
3528 		count++;
3529 	}
3530 	if (count != atomic_long_read(&n->nr_slabs))
3531 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3532 			"counter=%ld\n", s->name, count,
3533 			atomic_long_read(&n->nr_slabs));
3534 
3535 out:
3536 	spin_unlock_irqrestore(&n->list_lock, flags);
3537 	return count;
3538 }
3539 
3540 static long validate_slab_cache(struct kmem_cache *s)
3541 {
3542 	int node;
3543 	unsigned long count = 0;
3544 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3545 				sizeof(unsigned long), GFP_KERNEL);
3546 
3547 	if (!map)
3548 		return -ENOMEM;
3549 
3550 	flush_all(s);
3551 	for_each_node_state(node, N_NORMAL_MEMORY) {
3552 		struct kmem_cache_node *n = get_node(s, node);
3553 
3554 		count += validate_slab_node(s, n, map);
3555 	}
3556 	kfree(map);
3557 	return count;
3558 }
3559 
3560 #ifdef SLUB_RESILIENCY_TEST
3561 static void resiliency_test(void)
3562 {
3563 	u8 *p;
3564 
3565 	printk(KERN_ERR "SLUB resiliency testing\n");
3566 	printk(KERN_ERR "-----------------------\n");
3567 	printk(KERN_ERR "A. Corruption after allocation\n");
3568 
3569 	p = kzalloc(16, GFP_KERNEL);
3570 	p[16] = 0x12;
3571 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3572 			" 0x12->0x%p\n\n", p + 16);
3573 
3574 	validate_slab_cache(kmalloc_caches + 4);
3575 
3576 	/* Hmmm... The next two are dangerous */
3577 	p = kzalloc(32, GFP_KERNEL);
3578 	p[32 + sizeof(void *)] = 0x34;
3579 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3580 			" 0x34 -> -0x%p\n", p);
3581 	printk(KERN_ERR
3582 		"If allocated object is overwritten then not detectable\n\n");
3583 
3584 	validate_slab_cache(kmalloc_caches + 5);
3585 	p = kzalloc(64, GFP_KERNEL);
3586 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3587 	*p = 0x56;
3588 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3589 									p);
3590 	printk(KERN_ERR
3591 		"If allocated object is overwritten then not detectable\n\n");
3592 	validate_slab_cache(kmalloc_caches + 6);
3593 
3594 	printk(KERN_ERR "\nB. Corruption after free\n");
3595 	p = kzalloc(128, GFP_KERNEL);
3596 	kfree(p);
3597 	*p = 0x78;
3598 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3599 	validate_slab_cache(kmalloc_caches + 7);
3600 
3601 	p = kzalloc(256, GFP_KERNEL);
3602 	kfree(p);
3603 	p[50] = 0x9a;
3604 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3605 			p);
3606 	validate_slab_cache(kmalloc_caches + 8);
3607 
3608 	p = kzalloc(512, GFP_KERNEL);
3609 	kfree(p);
3610 	p[512] = 0xab;
3611 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3612 	validate_slab_cache(kmalloc_caches + 9);
3613 }
3614 #else
3615 static void resiliency_test(void) {};
3616 #endif
3617 
3618 /*
3619  * Generate lists of code addresses where slabcache objects are allocated
3620  * and freed.
3621  */
3622 
3623 struct location {
3624 	unsigned long count;
3625 	unsigned long addr;
3626 	long long sum_time;
3627 	long min_time;
3628 	long max_time;
3629 	long min_pid;
3630 	long max_pid;
3631 	DECLARE_BITMAP(cpus, NR_CPUS);
3632 	nodemask_t nodes;
3633 };
3634 
3635 struct loc_track {
3636 	unsigned long max;
3637 	unsigned long count;
3638 	struct location *loc;
3639 };
3640 
3641 static void free_loc_track(struct loc_track *t)
3642 {
3643 	if (t->max)
3644 		free_pages((unsigned long)t->loc,
3645 			get_order(sizeof(struct location) * t->max));
3646 }
3647 
3648 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3649 {
3650 	struct location *l;
3651 	int order;
3652 
3653 	order = get_order(sizeof(struct location) * max);
3654 
3655 	l = (void *)__get_free_pages(flags, order);
3656 	if (!l)
3657 		return 0;
3658 
3659 	if (t->count) {
3660 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3661 		free_loc_track(t);
3662 	}
3663 	t->max = max;
3664 	t->loc = l;
3665 	return 1;
3666 }
3667 
3668 static int add_location(struct loc_track *t, struct kmem_cache *s,
3669 				const struct track *track)
3670 {
3671 	long start, end, pos;
3672 	struct location *l;
3673 	unsigned long caddr;
3674 	unsigned long age = jiffies - track->when;
3675 
3676 	start = -1;
3677 	end = t->count;
3678 
3679 	for ( ; ; ) {
3680 		pos = start + (end - start + 1) / 2;
3681 
3682 		/*
3683 		 * There is nothing at "end". If we end up there
3684 		 * we need to add something to before end.
3685 		 */
3686 		if (pos == end)
3687 			break;
3688 
3689 		caddr = t->loc[pos].addr;
3690 		if (track->addr == caddr) {
3691 
3692 			l = &t->loc[pos];
3693 			l->count++;
3694 			if (track->when) {
3695 				l->sum_time += age;
3696 				if (age < l->min_time)
3697 					l->min_time = age;
3698 				if (age > l->max_time)
3699 					l->max_time = age;
3700 
3701 				if (track->pid < l->min_pid)
3702 					l->min_pid = track->pid;
3703 				if (track->pid > l->max_pid)
3704 					l->max_pid = track->pid;
3705 
3706 				cpumask_set_cpu(track->cpu,
3707 						to_cpumask(l->cpus));
3708 			}
3709 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3710 			return 1;
3711 		}
3712 
3713 		if (track->addr < caddr)
3714 			end = pos;
3715 		else
3716 			start = pos;
3717 	}
3718 
3719 	/*
3720 	 * Not found. Insert new tracking element.
3721 	 */
3722 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3723 		return 0;
3724 
3725 	l = t->loc + pos;
3726 	if (pos < t->count)
3727 		memmove(l + 1, l,
3728 			(t->count - pos) * sizeof(struct location));
3729 	t->count++;
3730 	l->count = 1;
3731 	l->addr = track->addr;
3732 	l->sum_time = age;
3733 	l->min_time = age;
3734 	l->max_time = age;
3735 	l->min_pid = track->pid;
3736 	l->max_pid = track->pid;
3737 	cpumask_clear(to_cpumask(l->cpus));
3738 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3739 	nodes_clear(l->nodes);
3740 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3741 	return 1;
3742 }
3743 
3744 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3745 		struct page *page, enum track_item alloc)
3746 {
3747 	void *addr = page_address(page);
3748 	DECLARE_BITMAP(map, page->objects);
3749 	void *p;
3750 
3751 	bitmap_zero(map, page->objects);
3752 	for_each_free_object(p, s, page->freelist)
3753 		set_bit(slab_index(p, s, addr), map);
3754 
3755 	for_each_object(p, s, addr, page->objects)
3756 		if (!test_bit(slab_index(p, s, addr), map))
3757 			add_location(t, s, get_track(s, p, alloc));
3758 }
3759 
3760 static int list_locations(struct kmem_cache *s, char *buf,
3761 					enum track_item alloc)
3762 {
3763 	int len = 0;
3764 	unsigned long i;
3765 	struct loc_track t = { 0, 0, NULL };
3766 	int node;
3767 
3768 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3769 			GFP_TEMPORARY))
3770 		return sprintf(buf, "Out of memory\n");
3771 
3772 	/* Push back cpu slabs */
3773 	flush_all(s);
3774 
3775 	for_each_node_state(node, N_NORMAL_MEMORY) {
3776 		struct kmem_cache_node *n = get_node(s, node);
3777 		unsigned long flags;
3778 		struct page *page;
3779 
3780 		if (!atomic_long_read(&n->nr_slabs))
3781 			continue;
3782 
3783 		spin_lock_irqsave(&n->list_lock, flags);
3784 		list_for_each_entry(page, &n->partial, lru)
3785 			process_slab(&t, s, page, alloc);
3786 		list_for_each_entry(page, &n->full, lru)
3787 			process_slab(&t, s, page, alloc);
3788 		spin_unlock_irqrestore(&n->list_lock, flags);
3789 	}
3790 
3791 	for (i = 0; i < t.count; i++) {
3792 		struct location *l = &t.loc[i];
3793 
3794 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3795 			break;
3796 		len += sprintf(buf + len, "%7ld ", l->count);
3797 
3798 		if (l->addr)
3799 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3800 		else
3801 			len += sprintf(buf + len, "<not-available>");
3802 
3803 		if (l->sum_time != l->min_time) {
3804 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3805 				l->min_time,
3806 				(long)div_u64(l->sum_time, l->count),
3807 				l->max_time);
3808 		} else
3809 			len += sprintf(buf + len, " age=%ld",
3810 				l->min_time);
3811 
3812 		if (l->min_pid != l->max_pid)
3813 			len += sprintf(buf + len, " pid=%ld-%ld",
3814 				l->min_pid, l->max_pid);
3815 		else
3816 			len += sprintf(buf + len, " pid=%ld",
3817 				l->min_pid);
3818 
3819 		if (num_online_cpus() > 1 &&
3820 				!cpumask_empty(to_cpumask(l->cpus)) &&
3821 				len < PAGE_SIZE - 60) {
3822 			len += sprintf(buf + len, " cpus=");
3823 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3824 						 to_cpumask(l->cpus));
3825 		}
3826 
3827 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3828 				len < PAGE_SIZE - 60) {
3829 			len += sprintf(buf + len, " nodes=");
3830 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3831 					l->nodes);
3832 		}
3833 
3834 		len += sprintf(buf + len, "\n");
3835 	}
3836 
3837 	free_loc_track(&t);
3838 	if (!t.count)
3839 		len += sprintf(buf, "No data\n");
3840 	return len;
3841 }
3842 
3843 enum slab_stat_type {
3844 	SL_ALL,			/* All slabs */
3845 	SL_PARTIAL,		/* Only partially allocated slabs */
3846 	SL_CPU,			/* Only slabs used for cpu caches */
3847 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3848 	SL_TOTAL		/* Determine object capacity not slabs */
3849 };
3850 
3851 #define SO_ALL		(1 << SL_ALL)
3852 #define SO_PARTIAL	(1 << SL_PARTIAL)
3853 #define SO_CPU		(1 << SL_CPU)
3854 #define SO_OBJECTS	(1 << SL_OBJECTS)
3855 #define SO_TOTAL	(1 << SL_TOTAL)
3856 
3857 static ssize_t show_slab_objects(struct kmem_cache *s,
3858 			    char *buf, unsigned long flags)
3859 {
3860 	unsigned long total = 0;
3861 	int node;
3862 	int x;
3863 	unsigned long *nodes;
3864 	unsigned long *per_cpu;
3865 
3866 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3867 	if (!nodes)
3868 		return -ENOMEM;
3869 	per_cpu = nodes + nr_node_ids;
3870 
3871 	if (flags & SO_CPU) {
3872 		int cpu;
3873 
3874 		for_each_possible_cpu(cpu) {
3875 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3876 
3877 			if (!c || c->node < 0)
3878 				continue;
3879 
3880 			if (c->page) {
3881 					if (flags & SO_TOTAL)
3882 						x = c->page->objects;
3883 				else if (flags & SO_OBJECTS)
3884 					x = c->page->inuse;
3885 				else
3886 					x = 1;
3887 
3888 				total += x;
3889 				nodes[c->node] += x;
3890 			}
3891 			per_cpu[c->node]++;
3892 		}
3893 	}
3894 
3895 	if (flags & SO_ALL) {
3896 		for_each_node_state(node, N_NORMAL_MEMORY) {
3897 			struct kmem_cache_node *n = get_node(s, node);
3898 
3899 		if (flags & SO_TOTAL)
3900 			x = atomic_long_read(&n->total_objects);
3901 		else if (flags & SO_OBJECTS)
3902 			x = atomic_long_read(&n->total_objects) -
3903 				count_partial(n, count_free);
3904 
3905 			else
3906 				x = atomic_long_read(&n->nr_slabs);
3907 			total += x;
3908 			nodes[node] += x;
3909 		}
3910 
3911 	} else if (flags & SO_PARTIAL) {
3912 		for_each_node_state(node, N_NORMAL_MEMORY) {
3913 			struct kmem_cache_node *n = get_node(s, node);
3914 
3915 			if (flags & SO_TOTAL)
3916 				x = count_partial(n, count_total);
3917 			else if (flags & SO_OBJECTS)
3918 				x = count_partial(n, count_inuse);
3919 			else
3920 				x = n->nr_partial;
3921 			total += x;
3922 			nodes[node] += x;
3923 		}
3924 	}
3925 	x = sprintf(buf, "%lu", total);
3926 #ifdef CONFIG_NUMA
3927 	for_each_node_state(node, N_NORMAL_MEMORY)
3928 		if (nodes[node])
3929 			x += sprintf(buf + x, " N%d=%lu",
3930 					node, nodes[node]);
3931 #endif
3932 	kfree(nodes);
3933 	return x + sprintf(buf + x, "\n");
3934 }
3935 
3936 static int any_slab_objects(struct kmem_cache *s)
3937 {
3938 	int node;
3939 
3940 	for_each_online_node(node) {
3941 		struct kmem_cache_node *n = get_node(s, node);
3942 
3943 		if (!n)
3944 			continue;
3945 
3946 		if (atomic_long_read(&n->total_objects))
3947 			return 1;
3948 	}
3949 	return 0;
3950 }
3951 
3952 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3953 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3954 
3955 struct slab_attribute {
3956 	struct attribute attr;
3957 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3958 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3959 };
3960 
3961 #define SLAB_ATTR_RO(_name) \
3962 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3963 
3964 #define SLAB_ATTR(_name) \
3965 	static struct slab_attribute _name##_attr =  \
3966 	__ATTR(_name, 0644, _name##_show, _name##_store)
3967 
3968 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3969 {
3970 	return sprintf(buf, "%d\n", s->size);
3971 }
3972 SLAB_ATTR_RO(slab_size);
3973 
3974 static ssize_t align_show(struct kmem_cache *s, char *buf)
3975 {
3976 	return sprintf(buf, "%d\n", s->align);
3977 }
3978 SLAB_ATTR_RO(align);
3979 
3980 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3981 {
3982 	return sprintf(buf, "%d\n", s->objsize);
3983 }
3984 SLAB_ATTR_RO(object_size);
3985 
3986 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3987 {
3988 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3989 }
3990 SLAB_ATTR_RO(objs_per_slab);
3991 
3992 static ssize_t order_store(struct kmem_cache *s,
3993 				const char *buf, size_t length)
3994 {
3995 	unsigned long order;
3996 	int err;
3997 
3998 	err = strict_strtoul(buf, 10, &order);
3999 	if (err)
4000 		return err;
4001 
4002 	if (order > slub_max_order || order < slub_min_order)
4003 		return -EINVAL;
4004 
4005 	calculate_sizes(s, order);
4006 	return length;
4007 }
4008 
4009 static ssize_t order_show(struct kmem_cache *s, char *buf)
4010 {
4011 	return sprintf(buf, "%d\n", oo_order(s->oo));
4012 }
4013 SLAB_ATTR(order);
4014 
4015 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4016 {
4017 	return sprintf(buf, "%lu\n", s->min_partial);
4018 }
4019 
4020 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4021 				 size_t length)
4022 {
4023 	unsigned long min;
4024 	int err;
4025 
4026 	err = strict_strtoul(buf, 10, &min);
4027 	if (err)
4028 		return err;
4029 
4030 	set_min_partial(s, min);
4031 	return length;
4032 }
4033 SLAB_ATTR(min_partial);
4034 
4035 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4036 {
4037 	if (s->ctor) {
4038 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
4039 
4040 		return n + sprintf(buf + n, "\n");
4041 	}
4042 	return 0;
4043 }
4044 SLAB_ATTR_RO(ctor);
4045 
4046 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4047 {
4048 	return sprintf(buf, "%d\n", s->refcount - 1);
4049 }
4050 SLAB_ATTR_RO(aliases);
4051 
4052 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4053 {
4054 	return show_slab_objects(s, buf, SO_ALL);
4055 }
4056 SLAB_ATTR_RO(slabs);
4057 
4058 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4059 {
4060 	return show_slab_objects(s, buf, SO_PARTIAL);
4061 }
4062 SLAB_ATTR_RO(partial);
4063 
4064 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4065 {
4066 	return show_slab_objects(s, buf, SO_CPU);
4067 }
4068 SLAB_ATTR_RO(cpu_slabs);
4069 
4070 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4071 {
4072 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4073 }
4074 SLAB_ATTR_RO(objects);
4075 
4076 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4077 {
4078 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4079 }
4080 SLAB_ATTR_RO(objects_partial);
4081 
4082 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4083 {
4084 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4085 }
4086 SLAB_ATTR_RO(total_objects);
4087 
4088 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4089 {
4090 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4091 }
4092 
4093 static ssize_t sanity_checks_store(struct kmem_cache *s,
4094 				const char *buf, size_t length)
4095 {
4096 	s->flags &= ~SLAB_DEBUG_FREE;
4097 	if (buf[0] == '1')
4098 		s->flags |= SLAB_DEBUG_FREE;
4099 	return length;
4100 }
4101 SLAB_ATTR(sanity_checks);
4102 
4103 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4104 {
4105 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4106 }
4107 
4108 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4109 							size_t length)
4110 {
4111 	s->flags &= ~SLAB_TRACE;
4112 	if (buf[0] == '1')
4113 		s->flags |= SLAB_TRACE;
4114 	return length;
4115 }
4116 SLAB_ATTR(trace);
4117 
4118 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4119 {
4120 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4121 }
4122 
4123 static ssize_t reclaim_account_store(struct kmem_cache *s,
4124 				const char *buf, size_t length)
4125 {
4126 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4127 	if (buf[0] == '1')
4128 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4129 	return length;
4130 }
4131 SLAB_ATTR(reclaim_account);
4132 
4133 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4134 {
4135 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4136 }
4137 SLAB_ATTR_RO(hwcache_align);
4138 
4139 #ifdef CONFIG_ZONE_DMA
4140 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4141 {
4142 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4143 }
4144 SLAB_ATTR_RO(cache_dma);
4145 #endif
4146 
4147 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4148 {
4149 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4150 }
4151 SLAB_ATTR_RO(destroy_by_rcu);
4152 
4153 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4154 {
4155 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4156 }
4157 
4158 static ssize_t red_zone_store(struct kmem_cache *s,
4159 				const char *buf, size_t length)
4160 {
4161 	if (any_slab_objects(s))
4162 		return -EBUSY;
4163 
4164 	s->flags &= ~SLAB_RED_ZONE;
4165 	if (buf[0] == '1')
4166 		s->flags |= SLAB_RED_ZONE;
4167 	calculate_sizes(s, -1);
4168 	return length;
4169 }
4170 SLAB_ATTR(red_zone);
4171 
4172 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4173 {
4174 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4175 }
4176 
4177 static ssize_t poison_store(struct kmem_cache *s,
4178 				const char *buf, size_t length)
4179 {
4180 	if (any_slab_objects(s))
4181 		return -EBUSY;
4182 
4183 	s->flags &= ~SLAB_POISON;
4184 	if (buf[0] == '1')
4185 		s->flags |= SLAB_POISON;
4186 	calculate_sizes(s, -1);
4187 	return length;
4188 }
4189 SLAB_ATTR(poison);
4190 
4191 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4192 {
4193 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4194 }
4195 
4196 static ssize_t store_user_store(struct kmem_cache *s,
4197 				const char *buf, size_t length)
4198 {
4199 	if (any_slab_objects(s))
4200 		return -EBUSY;
4201 
4202 	s->flags &= ~SLAB_STORE_USER;
4203 	if (buf[0] == '1')
4204 		s->flags |= SLAB_STORE_USER;
4205 	calculate_sizes(s, -1);
4206 	return length;
4207 }
4208 SLAB_ATTR(store_user);
4209 
4210 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4211 {
4212 	return 0;
4213 }
4214 
4215 static ssize_t validate_store(struct kmem_cache *s,
4216 			const char *buf, size_t length)
4217 {
4218 	int ret = -EINVAL;
4219 
4220 	if (buf[0] == '1') {
4221 		ret = validate_slab_cache(s);
4222 		if (ret >= 0)
4223 			ret = length;
4224 	}
4225 	return ret;
4226 }
4227 SLAB_ATTR(validate);
4228 
4229 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4230 {
4231 	return 0;
4232 }
4233 
4234 static ssize_t shrink_store(struct kmem_cache *s,
4235 			const char *buf, size_t length)
4236 {
4237 	if (buf[0] == '1') {
4238 		int rc = kmem_cache_shrink(s);
4239 
4240 		if (rc)
4241 			return rc;
4242 	} else
4243 		return -EINVAL;
4244 	return length;
4245 }
4246 SLAB_ATTR(shrink);
4247 
4248 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4249 {
4250 	if (!(s->flags & SLAB_STORE_USER))
4251 		return -ENOSYS;
4252 	return list_locations(s, buf, TRACK_ALLOC);
4253 }
4254 SLAB_ATTR_RO(alloc_calls);
4255 
4256 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4257 {
4258 	if (!(s->flags & SLAB_STORE_USER))
4259 		return -ENOSYS;
4260 	return list_locations(s, buf, TRACK_FREE);
4261 }
4262 SLAB_ATTR_RO(free_calls);
4263 
4264 #ifdef CONFIG_NUMA
4265 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4266 {
4267 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4268 }
4269 
4270 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4271 				const char *buf, size_t length)
4272 {
4273 	unsigned long ratio;
4274 	int err;
4275 
4276 	err = strict_strtoul(buf, 10, &ratio);
4277 	if (err)
4278 		return err;
4279 
4280 	if (ratio <= 100)
4281 		s->remote_node_defrag_ratio = ratio * 10;
4282 
4283 	return length;
4284 }
4285 SLAB_ATTR(remote_node_defrag_ratio);
4286 #endif
4287 
4288 #ifdef CONFIG_SLUB_STATS
4289 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4290 {
4291 	unsigned long sum  = 0;
4292 	int cpu;
4293 	int len;
4294 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4295 
4296 	if (!data)
4297 		return -ENOMEM;
4298 
4299 	for_each_online_cpu(cpu) {
4300 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4301 
4302 		data[cpu] = x;
4303 		sum += x;
4304 	}
4305 
4306 	len = sprintf(buf, "%lu", sum);
4307 
4308 #ifdef CONFIG_SMP
4309 	for_each_online_cpu(cpu) {
4310 		if (data[cpu] && len < PAGE_SIZE - 20)
4311 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4312 	}
4313 #endif
4314 	kfree(data);
4315 	return len + sprintf(buf + len, "\n");
4316 }
4317 
4318 #define STAT_ATTR(si, text) 					\
4319 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4320 {								\
4321 	return show_stat(s, buf, si);				\
4322 }								\
4323 SLAB_ATTR_RO(text);						\
4324 
4325 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4326 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4327 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4328 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4329 STAT_ATTR(FREE_FROZEN, free_frozen);
4330 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4331 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4332 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4333 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4334 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4335 STAT_ATTR(FREE_SLAB, free_slab);
4336 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4337 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4338 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4339 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4340 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4341 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4342 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4343 #endif
4344 
4345 static struct attribute *slab_attrs[] = {
4346 	&slab_size_attr.attr,
4347 	&object_size_attr.attr,
4348 	&objs_per_slab_attr.attr,
4349 	&order_attr.attr,
4350 	&min_partial_attr.attr,
4351 	&objects_attr.attr,
4352 	&objects_partial_attr.attr,
4353 	&total_objects_attr.attr,
4354 	&slabs_attr.attr,
4355 	&partial_attr.attr,
4356 	&cpu_slabs_attr.attr,
4357 	&ctor_attr.attr,
4358 	&aliases_attr.attr,
4359 	&align_attr.attr,
4360 	&sanity_checks_attr.attr,
4361 	&trace_attr.attr,
4362 	&hwcache_align_attr.attr,
4363 	&reclaim_account_attr.attr,
4364 	&destroy_by_rcu_attr.attr,
4365 	&red_zone_attr.attr,
4366 	&poison_attr.attr,
4367 	&store_user_attr.attr,
4368 	&validate_attr.attr,
4369 	&shrink_attr.attr,
4370 	&alloc_calls_attr.attr,
4371 	&free_calls_attr.attr,
4372 #ifdef CONFIG_ZONE_DMA
4373 	&cache_dma_attr.attr,
4374 #endif
4375 #ifdef CONFIG_NUMA
4376 	&remote_node_defrag_ratio_attr.attr,
4377 #endif
4378 #ifdef CONFIG_SLUB_STATS
4379 	&alloc_fastpath_attr.attr,
4380 	&alloc_slowpath_attr.attr,
4381 	&free_fastpath_attr.attr,
4382 	&free_slowpath_attr.attr,
4383 	&free_frozen_attr.attr,
4384 	&free_add_partial_attr.attr,
4385 	&free_remove_partial_attr.attr,
4386 	&alloc_from_partial_attr.attr,
4387 	&alloc_slab_attr.attr,
4388 	&alloc_refill_attr.attr,
4389 	&free_slab_attr.attr,
4390 	&cpuslab_flush_attr.attr,
4391 	&deactivate_full_attr.attr,
4392 	&deactivate_empty_attr.attr,
4393 	&deactivate_to_head_attr.attr,
4394 	&deactivate_to_tail_attr.attr,
4395 	&deactivate_remote_frees_attr.attr,
4396 	&order_fallback_attr.attr,
4397 #endif
4398 	NULL
4399 };
4400 
4401 static struct attribute_group slab_attr_group = {
4402 	.attrs = slab_attrs,
4403 };
4404 
4405 static ssize_t slab_attr_show(struct kobject *kobj,
4406 				struct attribute *attr,
4407 				char *buf)
4408 {
4409 	struct slab_attribute *attribute;
4410 	struct kmem_cache *s;
4411 	int err;
4412 
4413 	attribute = to_slab_attr(attr);
4414 	s = to_slab(kobj);
4415 
4416 	if (!attribute->show)
4417 		return -EIO;
4418 
4419 	err = attribute->show(s, buf);
4420 
4421 	return err;
4422 }
4423 
4424 static ssize_t slab_attr_store(struct kobject *kobj,
4425 				struct attribute *attr,
4426 				const char *buf, size_t len)
4427 {
4428 	struct slab_attribute *attribute;
4429 	struct kmem_cache *s;
4430 	int err;
4431 
4432 	attribute = to_slab_attr(attr);
4433 	s = to_slab(kobj);
4434 
4435 	if (!attribute->store)
4436 		return -EIO;
4437 
4438 	err = attribute->store(s, buf, len);
4439 
4440 	return err;
4441 }
4442 
4443 static void kmem_cache_release(struct kobject *kobj)
4444 {
4445 	struct kmem_cache *s = to_slab(kobj);
4446 
4447 	kfree(s);
4448 }
4449 
4450 static struct sysfs_ops slab_sysfs_ops = {
4451 	.show = slab_attr_show,
4452 	.store = slab_attr_store,
4453 };
4454 
4455 static struct kobj_type slab_ktype = {
4456 	.sysfs_ops = &slab_sysfs_ops,
4457 	.release = kmem_cache_release
4458 };
4459 
4460 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4461 {
4462 	struct kobj_type *ktype = get_ktype(kobj);
4463 
4464 	if (ktype == &slab_ktype)
4465 		return 1;
4466 	return 0;
4467 }
4468 
4469 static struct kset_uevent_ops slab_uevent_ops = {
4470 	.filter = uevent_filter,
4471 };
4472 
4473 static struct kset *slab_kset;
4474 
4475 #define ID_STR_LENGTH 64
4476 
4477 /* Create a unique string id for a slab cache:
4478  *
4479  * Format	:[flags-]size
4480  */
4481 static char *create_unique_id(struct kmem_cache *s)
4482 {
4483 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4484 	char *p = name;
4485 
4486 	BUG_ON(!name);
4487 
4488 	*p++ = ':';
4489 	/*
4490 	 * First flags affecting slabcache operations. We will only
4491 	 * get here for aliasable slabs so we do not need to support
4492 	 * too many flags. The flags here must cover all flags that
4493 	 * are matched during merging to guarantee that the id is
4494 	 * unique.
4495 	 */
4496 	if (s->flags & SLAB_CACHE_DMA)
4497 		*p++ = 'd';
4498 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4499 		*p++ = 'a';
4500 	if (s->flags & SLAB_DEBUG_FREE)
4501 		*p++ = 'F';
4502 	if (!(s->flags & SLAB_NOTRACK))
4503 		*p++ = 't';
4504 	if (p != name + 1)
4505 		*p++ = '-';
4506 	p += sprintf(p, "%07d", s->size);
4507 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4508 	return name;
4509 }
4510 
4511 static int sysfs_slab_add(struct kmem_cache *s)
4512 {
4513 	int err;
4514 	const char *name;
4515 	int unmergeable;
4516 
4517 	if (slab_state < SYSFS)
4518 		/* Defer until later */
4519 		return 0;
4520 
4521 	unmergeable = slab_unmergeable(s);
4522 	if (unmergeable) {
4523 		/*
4524 		 * Slabcache can never be merged so we can use the name proper.
4525 		 * This is typically the case for debug situations. In that
4526 		 * case we can catch duplicate names easily.
4527 		 */
4528 		sysfs_remove_link(&slab_kset->kobj, s->name);
4529 		name = s->name;
4530 	} else {
4531 		/*
4532 		 * Create a unique name for the slab as a target
4533 		 * for the symlinks.
4534 		 */
4535 		name = create_unique_id(s);
4536 	}
4537 
4538 	s->kobj.kset = slab_kset;
4539 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4540 	if (err) {
4541 		kobject_put(&s->kobj);
4542 		return err;
4543 	}
4544 
4545 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4546 	if (err)
4547 		return err;
4548 	kobject_uevent(&s->kobj, KOBJ_ADD);
4549 	if (!unmergeable) {
4550 		/* Setup first alias */
4551 		sysfs_slab_alias(s, s->name);
4552 		kfree(name);
4553 	}
4554 	return 0;
4555 }
4556 
4557 static void sysfs_slab_remove(struct kmem_cache *s)
4558 {
4559 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4560 	kobject_del(&s->kobj);
4561 	kobject_put(&s->kobj);
4562 }
4563 
4564 /*
4565  * Need to buffer aliases during bootup until sysfs becomes
4566  * available lest we lose that information.
4567  */
4568 struct saved_alias {
4569 	struct kmem_cache *s;
4570 	const char *name;
4571 	struct saved_alias *next;
4572 };
4573 
4574 static struct saved_alias *alias_list;
4575 
4576 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4577 {
4578 	struct saved_alias *al;
4579 
4580 	if (slab_state == SYSFS) {
4581 		/*
4582 		 * If we have a leftover link then remove it.
4583 		 */
4584 		sysfs_remove_link(&slab_kset->kobj, name);
4585 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4586 	}
4587 
4588 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4589 	if (!al)
4590 		return -ENOMEM;
4591 
4592 	al->s = s;
4593 	al->name = name;
4594 	al->next = alias_list;
4595 	alias_list = al;
4596 	return 0;
4597 }
4598 
4599 static int __init slab_sysfs_init(void)
4600 {
4601 	struct kmem_cache *s;
4602 	int err;
4603 
4604 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4605 	if (!slab_kset) {
4606 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4607 		return -ENOSYS;
4608 	}
4609 
4610 	slab_state = SYSFS;
4611 
4612 	list_for_each_entry(s, &slab_caches, list) {
4613 		err = sysfs_slab_add(s);
4614 		if (err)
4615 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4616 						" to sysfs\n", s->name);
4617 	}
4618 
4619 	while (alias_list) {
4620 		struct saved_alias *al = alias_list;
4621 
4622 		alias_list = alias_list->next;
4623 		err = sysfs_slab_alias(al->s, al->name);
4624 		if (err)
4625 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4626 					" %s to sysfs\n", s->name);
4627 		kfree(al);
4628 	}
4629 
4630 	resiliency_test();
4631 	return 0;
4632 }
4633 
4634 __initcall(slab_sysfs_init);
4635 #endif
4636 
4637 /*
4638  * The /proc/slabinfo ABI
4639  */
4640 #ifdef CONFIG_SLABINFO
4641 static void print_slabinfo_header(struct seq_file *m)
4642 {
4643 	seq_puts(m, "slabinfo - version: 2.1\n");
4644 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4645 		 "<objperslab> <pagesperslab>");
4646 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4647 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4648 	seq_putc(m, '\n');
4649 }
4650 
4651 static void *s_start(struct seq_file *m, loff_t *pos)
4652 {
4653 	loff_t n = *pos;
4654 
4655 	down_read(&slub_lock);
4656 	if (!n)
4657 		print_slabinfo_header(m);
4658 
4659 	return seq_list_start(&slab_caches, *pos);
4660 }
4661 
4662 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4663 {
4664 	return seq_list_next(p, &slab_caches, pos);
4665 }
4666 
4667 static void s_stop(struct seq_file *m, void *p)
4668 {
4669 	up_read(&slub_lock);
4670 }
4671 
4672 static int s_show(struct seq_file *m, void *p)
4673 {
4674 	unsigned long nr_partials = 0;
4675 	unsigned long nr_slabs = 0;
4676 	unsigned long nr_inuse = 0;
4677 	unsigned long nr_objs = 0;
4678 	unsigned long nr_free = 0;
4679 	struct kmem_cache *s;
4680 	int node;
4681 
4682 	s = list_entry(p, struct kmem_cache, list);
4683 
4684 	for_each_online_node(node) {
4685 		struct kmem_cache_node *n = get_node(s, node);
4686 
4687 		if (!n)
4688 			continue;
4689 
4690 		nr_partials += n->nr_partial;
4691 		nr_slabs += atomic_long_read(&n->nr_slabs);
4692 		nr_objs += atomic_long_read(&n->total_objects);
4693 		nr_free += count_partial(n, count_free);
4694 	}
4695 
4696 	nr_inuse = nr_objs - nr_free;
4697 
4698 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4699 		   nr_objs, s->size, oo_objects(s->oo),
4700 		   (1 << oo_order(s->oo)));
4701 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4702 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4703 		   0UL);
4704 	seq_putc(m, '\n');
4705 	return 0;
4706 }
4707 
4708 static const struct seq_operations slabinfo_op = {
4709 	.start = s_start,
4710 	.next = s_next,
4711 	.stop = s_stop,
4712 	.show = s_show,
4713 };
4714 
4715 static int slabinfo_open(struct inode *inode, struct file *file)
4716 {
4717 	return seq_open(file, &slabinfo_op);
4718 }
4719 
4720 static const struct file_operations proc_slabinfo_operations = {
4721 	.open		= slabinfo_open,
4722 	.read		= seq_read,
4723 	.llseek		= seq_lseek,
4724 	.release	= seq_release,
4725 };
4726 
4727 static int __init slab_proc_init(void)
4728 {
4729 	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4730 	return 0;
4731 }
4732 module_init(slab_proc_init);
4733 #endif /* CONFIG_SLABINFO */
4734