1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kmemtrace.h> 21 #include <linux/kmemcheck.h> 22 #include <linux/cpu.h> 23 #include <linux/cpuset.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 32 /* 33 * Lock order: 34 * 1. slab_lock(page) 35 * 2. slab->list_lock 36 * 37 * The slab_lock protects operations on the object of a particular 38 * slab and its metadata in the page struct. If the slab lock 39 * has been taken then no allocations nor frees can be performed 40 * on the objects in the slab nor can the slab be added or removed 41 * from the partial or full lists since this would mean modifying 42 * the page_struct of the slab. 43 * 44 * The list_lock protects the partial and full list on each node and 45 * the partial slab counter. If taken then no new slabs may be added or 46 * removed from the lists nor make the number of partial slabs be modified. 47 * (Note that the total number of slabs is an atomic value that may be 48 * modified without taking the list lock). 49 * 50 * The list_lock is a centralized lock and thus we avoid taking it as 51 * much as possible. As long as SLUB does not have to handle partial 52 * slabs, operations can continue without any centralized lock. F.e. 53 * allocating a long series of objects that fill up slabs does not require 54 * the list lock. 55 * 56 * The lock order is sometimes inverted when we are trying to get a slab 57 * off a list. We take the list_lock and then look for a page on the list 58 * to use. While we do that objects in the slabs may be freed. We can 59 * only operate on the slab if we have also taken the slab_lock. So we use 60 * a slab_trylock() on the slab. If trylock was successful then no frees 61 * can occur anymore and we can use the slab for allocations etc. If the 62 * slab_trylock() does not succeed then frees are in progress in the slab and 63 * we must stay away from it for a while since we may cause a bouncing 64 * cacheline if we try to acquire the lock. So go onto the next slab. 65 * If all pages are busy then we may allocate a new slab instead of reusing 66 * a partial slab. A new slab has noone operating on it and thus there is 67 * no danger of cacheline contention. 68 * 69 * Interrupts are disabled during allocation and deallocation in order to 70 * make the slab allocator safe to use in the context of an irq. In addition 71 * interrupts are disabled to ensure that the processor does not change 72 * while handling per_cpu slabs, due to kernel preemption. 73 * 74 * SLUB assigns one slab for allocation to each processor. 75 * Allocations only occur from these slabs called cpu slabs. 76 * 77 * Slabs with free elements are kept on a partial list and during regular 78 * operations no list for full slabs is used. If an object in a full slab is 79 * freed then the slab will show up again on the partial lists. 80 * We track full slabs for debugging purposes though because otherwise we 81 * cannot scan all objects. 82 * 83 * Slabs are freed when they become empty. Teardown and setup is 84 * minimal so we rely on the page allocators per cpu caches for 85 * fast frees and allocs. 86 * 87 * Overloading of page flags that are otherwise used for LRU management. 88 * 89 * PageActive The slab is frozen and exempt from list processing. 90 * This means that the slab is dedicated to a purpose 91 * such as satisfying allocations for a specific 92 * processor. Objects may be freed in the slab while 93 * it is frozen but slab_free will then skip the usual 94 * list operations. It is up to the processor holding 95 * the slab to integrate the slab into the slab lists 96 * when the slab is no longer needed. 97 * 98 * One use of this flag is to mark slabs that are 99 * used for allocations. Then such a slab becomes a cpu 100 * slab. The cpu slab may be equipped with an additional 101 * freelist that allows lockless access to 102 * free objects in addition to the regular freelist 103 * that requires the slab lock. 104 * 105 * PageError Slab requires special handling due to debug 106 * options set. This moves slab handling out of 107 * the fast path and disables lockless freelists. 108 */ 109 110 #ifdef CONFIG_SLUB_DEBUG 111 #define SLABDEBUG 1 112 #else 113 #define SLABDEBUG 0 114 #endif 115 116 /* 117 * Issues still to be resolved: 118 * 119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 120 * 121 * - Variable sizing of the per node arrays 122 */ 123 124 /* Enable to test recovery from slab corruption on boot */ 125 #undef SLUB_RESILIENCY_TEST 126 127 /* 128 * Mininum number of partial slabs. These will be left on the partial 129 * lists even if they are empty. kmem_cache_shrink may reclaim them. 130 */ 131 #define MIN_PARTIAL 5 132 133 /* 134 * Maximum number of desirable partial slabs. 135 * The existence of more partial slabs makes kmem_cache_shrink 136 * sort the partial list by the number of objects in the. 137 */ 138 #define MAX_PARTIAL 10 139 140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 141 SLAB_POISON | SLAB_STORE_USER) 142 143 /* 144 * Debugging flags that require metadata to be stored in the slab. These get 145 * disabled when slub_debug=O is used and a cache's min order increases with 146 * metadata. 147 */ 148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 149 150 /* 151 * Set of flags that will prevent slab merging 152 */ 153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 155 SLAB_FAILSLAB) 156 157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 158 SLAB_CACHE_DMA | SLAB_NOTRACK) 159 160 #ifndef ARCH_KMALLOC_MINALIGN 161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 162 #endif 163 164 #ifndef ARCH_SLAB_MINALIGN 165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 166 #endif 167 168 #define OO_SHIFT 16 169 #define OO_MASK ((1 << OO_SHIFT) - 1) 170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 171 172 /* Internal SLUB flags */ 173 #define __OBJECT_POISON 0x80000000 /* Poison object */ 174 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 175 176 static int kmem_size = sizeof(struct kmem_cache); 177 178 #ifdef CONFIG_SMP 179 static struct notifier_block slab_notifier; 180 #endif 181 182 static enum { 183 DOWN, /* No slab functionality available */ 184 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 185 UP, /* Everything works but does not show up in sysfs */ 186 SYSFS /* Sysfs up */ 187 } slab_state = DOWN; 188 189 /* A list of all slab caches on the system */ 190 static DECLARE_RWSEM(slub_lock); 191 static LIST_HEAD(slab_caches); 192 193 /* 194 * Tracking user of a slab. 195 */ 196 struct track { 197 unsigned long addr; /* Called from address */ 198 int cpu; /* Was running on cpu */ 199 int pid; /* Pid context */ 200 unsigned long when; /* When did the operation occur */ 201 }; 202 203 enum track_item { TRACK_ALLOC, TRACK_FREE }; 204 205 #ifdef CONFIG_SLUB_DEBUG 206 static int sysfs_slab_add(struct kmem_cache *); 207 static int sysfs_slab_alias(struct kmem_cache *, const char *); 208 static void sysfs_slab_remove(struct kmem_cache *); 209 210 #else 211 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 212 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 213 { return 0; } 214 static inline void sysfs_slab_remove(struct kmem_cache *s) 215 { 216 kfree(s); 217 } 218 219 #endif 220 221 static inline void stat(struct kmem_cache *s, enum stat_item si) 222 { 223 #ifdef CONFIG_SLUB_STATS 224 __this_cpu_inc(s->cpu_slab->stat[si]); 225 #endif 226 } 227 228 /******************************************************************** 229 * Core slab cache functions 230 *******************************************************************/ 231 232 int slab_is_available(void) 233 { 234 return slab_state >= UP; 235 } 236 237 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 238 { 239 #ifdef CONFIG_NUMA 240 return s->node[node]; 241 #else 242 return &s->local_node; 243 #endif 244 } 245 246 /* Verify that a pointer has an address that is valid within a slab page */ 247 static inline int check_valid_pointer(struct kmem_cache *s, 248 struct page *page, const void *object) 249 { 250 void *base; 251 252 if (!object) 253 return 1; 254 255 base = page_address(page); 256 if (object < base || object >= base + page->objects * s->size || 257 (object - base) % s->size) { 258 return 0; 259 } 260 261 return 1; 262 } 263 264 static inline void *get_freepointer(struct kmem_cache *s, void *object) 265 { 266 return *(void **)(object + s->offset); 267 } 268 269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 270 { 271 *(void **)(object + s->offset) = fp; 272 } 273 274 /* Loop over all objects in a slab */ 275 #define for_each_object(__p, __s, __addr, __objects) \ 276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 277 __p += (__s)->size) 278 279 /* Scan freelist */ 280 #define for_each_free_object(__p, __s, __free) \ 281 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 282 283 /* Determine object index from a given position */ 284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 285 { 286 return (p - addr) / s->size; 287 } 288 289 static inline struct kmem_cache_order_objects oo_make(int order, 290 unsigned long size) 291 { 292 struct kmem_cache_order_objects x = { 293 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 294 }; 295 296 return x; 297 } 298 299 static inline int oo_order(struct kmem_cache_order_objects x) 300 { 301 return x.x >> OO_SHIFT; 302 } 303 304 static inline int oo_objects(struct kmem_cache_order_objects x) 305 { 306 return x.x & OO_MASK; 307 } 308 309 #ifdef CONFIG_SLUB_DEBUG 310 /* 311 * Debug settings: 312 */ 313 #ifdef CONFIG_SLUB_DEBUG_ON 314 static int slub_debug = DEBUG_DEFAULT_FLAGS; 315 #else 316 static int slub_debug; 317 #endif 318 319 static char *slub_debug_slabs; 320 static int disable_higher_order_debug; 321 322 /* 323 * Object debugging 324 */ 325 static void print_section(char *text, u8 *addr, unsigned int length) 326 { 327 int i, offset; 328 int newline = 1; 329 char ascii[17]; 330 331 ascii[16] = 0; 332 333 for (i = 0; i < length; i++) { 334 if (newline) { 335 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 336 newline = 0; 337 } 338 printk(KERN_CONT " %02x", addr[i]); 339 offset = i % 16; 340 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 341 if (offset == 15) { 342 printk(KERN_CONT " %s\n", ascii); 343 newline = 1; 344 } 345 } 346 if (!newline) { 347 i %= 16; 348 while (i < 16) { 349 printk(KERN_CONT " "); 350 ascii[i] = ' '; 351 i++; 352 } 353 printk(KERN_CONT " %s\n", ascii); 354 } 355 } 356 357 static struct track *get_track(struct kmem_cache *s, void *object, 358 enum track_item alloc) 359 { 360 struct track *p; 361 362 if (s->offset) 363 p = object + s->offset + sizeof(void *); 364 else 365 p = object + s->inuse; 366 367 return p + alloc; 368 } 369 370 static void set_track(struct kmem_cache *s, void *object, 371 enum track_item alloc, unsigned long addr) 372 { 373 struct track *p = get_track(s, object, alloc); 374 375 if (addr) { 376 p->addr = addr; 377 p->cpu = smp_processor_id(); 378 p->pid = current->pid; 379 p->when = jiffies; 380 } else 381 memset(p, 0, sizeof(struct track)); 382 } 383 384 static void init_tracking(struct kmem_cache *s, void *object) 385 { 386 if (!(s->flags & SLAB_STORE_USER)) 387 return; 388 389 set_track(s, object, TRACK_FREE, 0UL); 390 set_track(s, object, TRACK_ALLOC, 0UL); 391 } 392 393 static void print_track(const char *s, struct track *t) 394 { 395 if (!t->addr) 396 return; 397 398 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 399 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 400 } 401 402 static void print_tracking(struct kmem_cache *s, void *object) 403 { 404 if (!(s->flags & SLAB_STORE_USER)) 405 return; 406 407 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 408 print_track("Freed", get_track(s, object, TRACK_FREE)); 409 } 410 411 static void print_page_info(struct page *page) 412 { 413 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 414 page, page->objects, page->inuse, page->freelist, page->flags); 415 416 } 417 418 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 419 { 420 va_list args; 421 char buf[100]; 422 423 va_start(args, fmt); 424 vsnprintf(buf, sizeof(buf), fmt, args); 425 va_end(args); 426 printk(KERN_ERR "========================================" 427 "=====================================\n"); 428 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 429 printk(KERN_ERR "----------------------------------------" 430 "-------------------------------------\n\n"); 431 } 432 433 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 434 { 435 va_list args; 436 char buf[100]; 437 438 va_start(args, fmt); 439 vsnprintf(buf, sizeof(buf), fmt, args); 440 va_end(args); 441 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 442 } 443 444 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 445 { 446 unsigned int off; /* Offset of last byte */ 447 u8 *addr = page_address(page); 448 449 print_tracking(s, p); 450 451 print_page_info(page); 452 453 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 454 p, p - addr, get_freepointer(s, p)); 455 456 if (p > addr + 16) 457 print_section("Bytes b4", p - 16, 16); 458 459 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 460 461 if (s->flags & SLAB_RED_ZONE) 462 print_section("Redzone", p + s->objsize, 463 s->inuse - s->objsize); 464 465 if (s->offset) 466 off = s->offset + sizeof(void *); 467 else 468 off = s->inuse; 469 470 if (s->flags & SLAB_STORE_USER) 471 off += 2 * sizeof(struct track); 472 473 if (off != s->size) 474 /* Beginning of the filler is the free pointer */ 475 print_section("Padding", p + off, s->size - off); 476 477 dump_stack(); 478 } 479 480 static void object_err(struct kmem_cache *s, struct page *page, 481 u8 *object, char *reason) 482 { 483 slab_bug(s, "%s", reason); 484 print_trailer(s, page, object); 485 } 486 487 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 488 { 489 va_list args; 490 char buf[100]; 491 492 va_start(args, fmt); 493 vsnprintf(buf, sizeof(buf), fmt, args); 494 va_end(args); 495 slab_bug(s, "%s", buf); 496 print_page_info(page); 497 dump_stack(); 498 } 499 500 static void init_object(struct kmem_cache *s, void *object, int active) 501 { 502 u8 *p = object; 503 504 if (s->flags & __OBJECT_POISON) { 505 memset(p, POISON_FREE, s->objsize - 1); 506 p[s->objsize - 1] = POISON_END; 507 } 508 509 if (s->flags & SLAB_RED_ZONE) 510 memset(p + s->objsize, 511 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 512 s->inuse - s->objsize); 513 } 514 515 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 516 { 517 while (bytes) { 518 if (*start != (u8)value) 519 return start; 520 start++; 521 bytes--; 522 } 523 return NULL; 524 } 525 526 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 527 void *from, void *to) 528 { 529 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 530 memset(from, data, to - from); 531 } 532 533 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 534 u8 *object, char *what, 535 u8 *start, unsigned int value, unsigned int bytes) 536 { 537 u8 *fault; 538 u8 *end; 539 540 fault = check_bytes(start, value, bytes); 541 if (!fault) 542 return 1; 543 544 end = start + bytes; 545 while (end > fault && end[-1] == value) 546 end--; 547 548 slab_bug(s, "%s overwritten", what); 549 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 550 fault, end - 1, fault[0], value); 551 print_trailer(s, page, object); 552 553 restore_bytes(s, what, value, fault, end); 554 return 0; 555 } 556 557 /* 558 * Object layout: 559 * 560 * object address 561 * Bytes of the object to be managed. 562 * If the freepointer may overlay the object then the free 563 * pointer is the first word of the object. 564 * 565 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 566 * 0xa5 (POISON_END) 567 * 568 * object + s->objsize 569 * Padding to reach word boundary. This is also used for Redzoning. 570 * Padding is extended by another word if Redzoning is enabled and 571 * objsize == inuse. 572 * 573 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 574 * 0xcc (RED_ACTIVE) for objects in use. 575 * 576 * object + s->inuse 577 * Meta data starts here. 578 * 579 * A. Free pointer (if we cannot overwrite object on free) 580 * B. Tracking data for SLAB_STORE_USER 581 * C. Padding to reach required alignment boundary or at mininum 582 * one word if debugging is on to be able to detect writes 583 * before the word boundary. 584 * 585 * Padding is done using 0x5a (POISON_INUSE) 586 * 587 * object + s->size 588 * Nothing is used beyond s->size. 589 * 590 * If slabcaches are merged then the objsize and inuse boundaries are mostly 591 * ignored. And therefore no slab options that rely on these boundaries 592 * may be used with merged slabcaches. 593 */ 594 595 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 596 { 597 unsigned long off = s->inuse; /* The end of info */ 598 599 if (s->offset) 600 /* Freepointer is placed after the object. */ 601 off += sizeof(void *); 602 603 if (s->flags & SLAB_STORE_USER) 604 /* We also have user information there */ 605 off += 2 * sizeof(struct track); 606 607 if (s->size == off) 608 return 1; 609 610 return check_bytes_and_report(s, page, p, "Object padding", 611 p + off, POISON_INUSE, s->size - off); 612 } 613 614 /* Check the pad bytes at the end of a slab page */ 615 static int slab_pad_check(struct kmem_cache *s, struct page *page) 616 { 617 u8 *start; 618 u8 *fault; 619 u8 *end; 620 int length; 621 int remainder; 622 623 if (!(s->flags & SLAB_POISON)) 624 return 1; 625 626 start = page_address(page); 627 length = (PAGE_SIZE << compound_order(page)); 628 end = start + length; 629 remainder = length % s->size; 630 if (!remainder) 631 return 1; 632 633 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 634 if (!fault) 635 return 1; 636 while (end > fault && end[-1] == POISON_INUSE) 637 end--; 638 639 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 640 print_section("Padding", end - remainder, remainder); 641 642 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 643 return 0; 644 } 645 646 static int check_object(struct kmem_cache *s, struct page *page, 647 void *object, int active) 648 { 649 u8 *p = object; 650 u8 *endobject = object + s->objsize; 651 652 if (s->flags & SLAB_RED_ZONE) { 653 unsigned int red = 654 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 655 656 if (!check_bytes_and_report(s, page, object, "Redzone", 657 endobject, red, s->inuse - s->objsize)) 658 return 0; 659 } else { 660 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 661 check_bytes_and_report(s, page, p, "Alignment padding", 662 endobject, POISON_INUSE, s->inuse - s->objsize); 663 } 664 } 665 666 if (s->flags & SLAB_POISON) { 667 if (!active && (s->flags & __OBJECT_POISON) && 668 (!check_bytes_and_report(s, page, p, "Poison", p, 669 POISON_FREE, s->objsize - 1) || 670 !check_bytes_and_report(s, page, p, "Poison", 671 p + s->objsize - 1, POISON_END, 1))) 672 return 0; 673 /* 674 * check_pad_bytes cleans up on its own. 675 */ 676 check_pad_bytes(s, page, p); 677 } 678 679 if (!s->offset && active) 680 /* 681 * Object and freepointer overlap. Cannot check 682 * freepointer while object is allocated. 683 */ 684 return 1; 685 686 /* Check free pointer validity */ 687 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 688 object_err(s, page, p, "Freepointer corrupt"); 689 /* 690 * No choice but to zap it and thus lose the remainder 691 * of the free objects in this slab. May cause 692 * another error because the object count is now wrong. 693 */ 694 set_freepointer(s, p, NULL); 695 return 0; 696 } 697 return 1; 698 } 699 700 static int check_slab(struct kmem_cache *s, struct page *page) 701 { 702 int maxobj; 703 704 VM_BUG_ON(!irqs_disabled()); 705 706 if (!PageSlab(page)) { 707 slab_err(s, page, "Not a valid slab page"); 708 return 0; 709 } 710 711 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 712 if (page->objects > maxobj) { 713 slab_err(s, page, "objects %u > max %u", 714 s->name, page->objects, maxobj); 715 return 0; 716 } 717 if (page->inuse > page->objects) { 718 slab_err(s, page, "inuse %u > max %u", 719 s->name, page->inuse, page->objects); 720 return 0; 721 } 722 /* Slab_pad_check fixes things up after itself */ 723 slab_pad_check(s, page); 724 return 1; 725 } 726 727 /* 728 * Determine if a certain object on a page is on the freelist. Must hold the 729 * slab lock to guarantee that the chains are in a consistent state. 730 */ 731 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 732 { 733 int nr = 0; 734 void *fp = page->freelist; 735 void *object = NULL; 736 unsigned long max_objects; 737 738 while (fp && nr <= page->objects) { 739 if (fp == search) 740 return 1; 741 if (!check_valid_pointer(s, page, fp)) { 742 if (object) { 743 object_err(s, page, object, 744 "Freechain corrupt"); 745 set_freepointer(s, object, NULL); 746 break; 747 } else { 748 slab_err(s, page, "Freepointer corrupt"); 749 page->freelist = NULL; 750 page->inuse = page->objects; 751 slab_fix(s, "Freelist cleared"); 752 return 0; 753 } 754 break; 755 } 756 object = fp; 757 fp = get_freepointer(s, object); 758 nr++; 759 } 760 761 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 762 if (max_objects > MAX_OBJS_PER_PAGE) 763 max_objects = MAX_OBJS_PER_PAGE; 764 765 if (page->objects != max_objects) { 766 slab_err(s, page, "Wrong number of objects. Found %d but " 767 "should be %d", page->objects, max_objects); 768 page->objects = max_objects; 769 slab_fix(s, "Number of objects adjusted."); 770 } 771 if (page->inuse != page->objects - nr) { 772 slab_err(s, page, "Wrong object count. Counter is %d but " 773 "counted were %d", page->inuse, page->objects - nr); 774 page->inuse = page->objects - nr; 775 slab_fix(s, "Object count adjusted."); 776 } 777 return search == NULL; 778 } 779 780 static void trace(struct kmem_cache *s, struct page *page, void *object, 781 int alloc) 782 { 783 if (s->flags & SLAB_TRACE) { 784 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 785 s->name, 786 alloc ? "alloc" : "free", 787 object, page->inuse, 788 page->freelist); 789 790 if (!alloc) 791 print_section("Object", (void *)object, s->objsize); 792 793 dump_stack(); 794 } 795 } 796 797 /* 798 * Tracking of fully allocated slabs for debugging purposes. 799 */ 800 static void add_full(struct kmem_cache_node *n, struct page *page) 801 { 802 spin_lock(&n->list_lock); 803 list_add(&page->lru, &n->full); 804 spin_unlock(&n->list_lock); 805 } 806 807 static void remove_full(struct kmem_cache *s, struct page *page) 808 { 809 struct kmem_cache_node *n; 810 811 if (!(s->flags & SLAB_STORE_USER)) 812 return; 813 814 n = get_node(s, page_to_nid(page)); 815 816 spin_lock(&n->list_lock); 817 list_del(&page->lru); 818 spin_unlock(&n->list_lock); 819 } 820 821 /* Tracking of the number of slabs for debugging purposes */ 822 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 823 { 824 struct kmem_cache_node *n = get_node(s, node); 825 826 return atomic_long_read(&n->nr_slabs); 827 } 828 829 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 830 { 831 return atomic_long_read(&n->nr_slabs); 832 } 833 834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 835 { 836 struct kmem_cache_node *n = get_node(s, node); 837 838 /* 839 * May be called early in order to allocate a slab for the 840 * kmem_cache_node structure. Solve the chicken-egg 841 * dilemma by deferring the increment of the count during 842 * bootstrap (see early_kmem_cache_node_alloc). 843 */ 844 if (!NUMA_BUILD || n) { 845 atomic_long_inc(&n->nr_slabs); 846 atomic_long_add(objects, &n->total_objects); 847 } 848 } 849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 850 { 851 struct kmem_cache_node *n = get_node(s, node); 852 853 atomic_long_dec(&n->nr_slabs); 854 atomic_long_sub(objects, &n->total_objects); 855 } 856 857 /* Object debug checks for alloc/free paths */ 858 static void setup_object_debug(struct kmem_cache *s, struct page *page, 859 void *object) 860 { 861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 862 return; 863 864 init_object(s, object, 0); 865 init_tracking(s, object); 866 } 867 868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 869 void *object, unsigned long addr) 870 { 871 if (!check_slab(s, page)) 872 goto bad; 873 874 if (!on_freelist(s, page, object)) { 875 object_err(s, page, object, "Object already allocated"); 876 goto bad; 877 } 878 879 if (!check_valid_pointer(s, page, object)) { 880 object_err(s, page, object, "Freelist Pointer check fails"); 881 goto bad; 882 } 883 884 if (!check_object(s, page, object, 0)) 885 goto bad; 886 887 /* Success perform special debug activities for allocs */ 888 if (s->flags & SLAB_STORE_USER) 889 set_track(s, object, TRACK_ALLOC, addr); 890 trace(s, page, object, 1); 891 init_object(s, object, 1); 892 return 1; 893 894 bad: 895 if (PageSlab(page)) { 896 /* 897 * If this is a slab page then lets do the best we can 898 * to avoid issues in the future. Marking all objects 899 * as used avoids touching the remaining objects. 900 */ 901 slab_fix(s, "Marking all objects used"); 902 page->inuse = page->objects; 903 page->freelist = NULL; 904 } 905 return 0; 906 } 907 908 static int free_debug_processing(struct kmem_cache *s, struct page *page, 909 void *object, unsigned long addr) 910 { 911 if (!check_slab(s, page)) 912 goto fail; 913 914 if (!check_valid_pointer(s, page, object)) { 915 slab_err(s, page, "Invalid object pointer 0x%p", object); 916 goto fail; 917 } 918 919 if (on_freelist(s, page, object)) { 920 object_err(s, page, object, "Object already free"); 921 goto fail; 922 } 923 924 if (!check_object(s, page, object, 1)) 925 return 0; 926 927 if (unlikely(s != page->slab)) { 928 if (!PageSlab(page)) { 929 slab_err(s, page, "Attempt to free object(0x%p) " 930 "outside of slab", object); 931 } else if (!page->slab) { 932 printk(KERN_ERR 933 "SLUB <none>: no slab for object 0x%p.\n", 934 object); 935 dump_stack(); 936 } else 937 object_err(s, page, object, 938 "page slab pointer corrupt."); 939 goto fail; 940 } 941 942 /* Special debug activities for freeing objects */ 943 if (!PageSlubFrozen(page) && !page->freelist) 944 remove_full(s, page); 945 if (s->flags & SLAB_STORE_USER) 946 set_track(s, object, TRACK_FREE, addr); 947 trace(s, page, object, 0); 948 init_object(s, object, 0); 949 return 1; 950 951 fail: 952 slab_fix(s, "Object at 0x%p not freed", object); 953 return 0; 954 } 955 956 static int __init setup_slub_debug(char *str) 957 { 958 slub_debug = DEBUG_DEFAULT_FLAGS; 959 if (*str++ != '=' || !*str) 960 /* 961 * No options specified. Switch on full debugging. 962 */ 963 goto out; 964 965 if (*str == ',') 966 /* 967 * No options but restriction on slabs. This means full 968 * debugging for slabs matching a pattern. 969 */ 970 goto check_slabs; 971 972 if (tolower(*str) == 'o') { 973 /* 974 * Avoid enabling debugging on caches if its minimum order 975 * would increase as a result. 976 */ 977 disable_higher_order_debug = 1; 978 goto out; 979 } 980 981 slub_debug = 0; 982 if (*str == '-') 983 /* 984 * Switch off all debugging measures. 985 */ 986 goto out; 987 988 /* 989 * Determine which debug features should be switched on 990 */ 991 for (; *str && *str != ','; str++) { 992 switch (tolower(*str)) { 993 case 'f': 994 slub_debug |= SLAB_DEBUG_FREE; 995 break; 996 case 'z': 997 slub_debug |= SLAB_RED_ZONE; 998 break; 999 case 'p': 1000 slub_debug |= SLAB_POISON; 1001 break; 1002 case 'u': 1003 slub_debug |= SLAB_STORE_USER; 1004 break; 1005 case 't': 1006 slub_debug |= SLAB_TRACE; 1007 break; 1008 case 'a': 1009 slub_debug |= SLAB_FAILSLAB; 1010 break; 1011 default: 1012 printk(KERN_ERR "slub_debug option '%c' " 1013 "unknown. skipped\n", *str); 1014 } 1015 } 1016 1017 check_slabs: 1018 if (*str == ',') 1019 slub_debug_slabs = str + 1; 1020 out: 1021 return 1; 1022 } 1023 1024 __setup("slub_debug", setup_slub_debug); 1025 1026 static unsigned long kmem_cache_flags(unsigned long objsize, 1027 unsigned long flags, const char *name, 1028 void (*ctor)(void *)) 1029 { 1030 /* 1031 * Enable debugging if selected on the kernel commandline. 1032 */ 1033 if (slub_debug && (!slub_debug_slabs || 1034 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1035 flags |= slub_debug; 1036 1037 return flags; 1038 } 1039 #else 1040 static inline void setup_object_debug(struct kmem_cache *s, 1041 struct page *page, void *object) {} 1042 1043 static inline int alloc_debug_processing(struct kmem_cache *s, 1044 struct page *page, void *object, unsigned long addr) { return 0; } 1045 1046 static inline int free_debug_processing(struct kmem_cache *s, 1047 struct page *page, void *object, unsigned long addr) { return 0; } 1048 1049 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1050 { return 1; } 1051 static inline int check_object(struct kmem_cache *s, struct page *page, 1052 void *object, int active) { return 1; } 1053 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1054 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1055 unsigned long flags, const char *name, 1056 void (*ctor)(void *)) 1057 { 1058 return flags; 1059 } 1060 #define slub_debug 0 1061 1062 #define disable_higher_order_debug 0 1063 1064 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1065 { return 0; } 1066 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1067 { return 0; } 1068 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1069 int objects) {} 1070 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1071 int objects) {} 1072 #endif 1073 1074 /* 1075 * Slab allocation and freeing 1076 */ 1077 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1078 struct kmem_cache_order_objects oo) 1079 { 1080 int order = oo_order(oo); 1081 1082 flags |= __GFP_NOTRACK; 1083 1084 if (node == -1) 1085 return alloc_pages(flags, order); 1086 else 1087 return alloc_pages_node(node, flags, order); 1088 } 1089 1090 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1091 { 1092 struct page *page; 1093 struct kmem_cache_order_objects oo = s->oo; 1094 gfp_t alloc_gfp; 1095 1096 flags |= s->allocflags; 1097 1098 /* 1099 * Let the initial higher-order allocation fail under memory pressure 1100 * so we fall-back to the minimum order allocation. 1101 */ 1102 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1103 1104 page = alloc_slab_page(alloc_gfp, node, oo); 1105 if (unlikely(!page)) { 1106 oo = s->min; 1107 /* 1108 * Allocation may have failed due to fragmentation. 1109 * Try a lower order alloc if possible 1110 */ 1111 page = alloc_slab_page(flags, node, oo); 1112 if (!page) 1113 return NULL; 1114 1115 stat(s, ORDER_FALLBACK); 1116 } 1117 1118 if (kmemcheck_enabled 1119 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1120 int pages = 1 << oo_order(oo); 1121 1122 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1123 1124 /* 1125 * Objects from caches that have a constructor don't get 1126 * cleared when they're allocated, so we need to do it here. 1127 */ 1128 if (s->ctor) 1129 kmemcheck_mark_uninitialized_pages(page, pages); 1130 else 1131 kmemcheck_mark_unallocated_pages(page, pages); 1132 } 1133 1134 page->objects = oo_objects(oo); 1135 mod_zone_page_state(page_zone(page), 1136 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1137 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1138 1 << oo_order(oo)); 1139 1140 return page; 1141 } 1142 1143 static void setup_object(struct kmem_cache *s, struct page *page, 1144 void *object) 1145 { 1146 setup_object_debug(s, page, object); 1147 if (unlikely(s->ctor)) 1148 s->ctor(object); 1149 } 1150 1151 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1152 { 1153 struct page *page; 1154 void *start; 1155 void *last; 1156 void *p; 1157 1158 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1159 1160 page = allocate_slab(s, 1161 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1162 if (!page) 1163 goto out; 1164 1165 inc_slabs_node(s, page_to_nid(page), page->objects); 1166 page->slab = s; 1167 page->flags |= 1 << PG_slab; 1168 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1169 SLAB_STORE_USER | SLAB_TRACE)) 1170 __SetPageSlubDebug(page); 1171 1172 start = page_address(page); 1173 1174 if (unlikely(s->flags & SLAB_POISON)) 1175 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1176 1177 last = start; 1178 for_each_object(p, s, start, page->objects) { 1179 setup_object(s, page, last); 1180 set_freepointer(s, last, p); 1181 last = p; 1182 } 1183 setup_object(s, page, last); 1184 set_freepointer(s, last, NULL); 1185 1186 page->freelist = start; 1187 page->inuse = 0; 1188 out: 1189 return page; 1190 } 1191 1192 static void __free_slab(struct kmem_cache *s, struct page *page) 1193 { 1194 int order = compound_order(page); 1195 int pages = 1 << order; 1196 1197 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1198 void *p; 1199 1200 slab_pad_check(s, page); 1201 for_each_object(p, s, page_address(page), 1202 page->objects) 1203 check_object(s, page, p, 0); 1204 __ClearPageSlubDebug(page); 1205 } 1206 1207 kmemcheck_free_shadow(page, compound_order(page)); 1208 1209 mod_zone_page_state(page_zone(page), 1210 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1211 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1212 -pages); 1213 1214 __ClearPageSlab(page); 1215 reset_page_mapcount(page); 1216 if (current->reclaim_state) 1217 current->reclaim_state->reclaimed_slab += pages; 1218 __free_pages(page, order); 1219 } 1220 1221 static void rcu_free_slab(struct rcu_head *h) 1222 { 1223 struct page *page; 1224 1225 page = container_of((struct list_head *)h, struct page, lru); 1226 __free_slab(page->slab, page); 1227 } 1228 1229 static void free_slab(struct kmem_cache *s, struct page *page) 1230 { 1231 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1232 /* 1233 * RCU free overloads the RCU head over the LRU 1234 */ 1235 struct rcu_head *head = (void *)&page->lru; 1236 1237 call_rcu(head, rcu_free_slab); 1238 } else 1239 __free_slab(s, page); 1240 } 1241 1242 static void discard_slab(struct kmem_cache *s, struct page *page) 1243 { 1244 dec_slabs_node(s, page_to_nid(page), page->objects); 1245 free_slab(s, page); 1246 } 1247 1248 /* 1249 * Per slab locking using the pagelock 1250 */ 1251 static __always_inline void slab_lock(struct page *page) 1252 { 1253 bit_spin_lock(PG_locked, &page->flags); 1254 } 1255 1256 static __always_inline void slab_unlock(struct page *page) 1257 { 1258 __bit_spin_unlock(PG_locked, &page->flags); 1259 } 1260 1261 static __always_inline int slab_trylock(struct page *page) 1262 { 1263 int rc = 1; 1264 1265 rc = bit_spin_trylock(PG_locked, &page->flags); 1266 return rc; 1267 } 1268 1269 /* 1270 * Management of partially allocated slabs 1271 */ 1272 static void add_partial(struct kmem_cache_node *n, 1273 struct page *page, int tail) 1274 { 1275 spin_lock(&n->list_lock); 1276 n->nr_partial++; 1277 if (tail) 1278 list_add_tail(&page->lru, &n->partial); 1279 else 1280 list_add(&page->lru, &n->partial); 1281 spin_unlock(&n->list_lock); 1282 } 1283 1284 static void remove_partial(struct kmem_cache *s, struct page *page) 1285 { 1286 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1287 1288 spin_lock(&n->list_lock); 1289 list_del(&page->lru); 1290 n->nr_partial--; 1291 spin_unlock(&n->list_lock); 1292 } 1293 1294 /* 1295 * Lock slab and remove from the partial list. 1296 * 1297 * Must hold list_lock. 1298 */ 1299 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1300 struct page *page) 1301 { 1302 if (slab_trylock(page)) { 1303 list_del(&page->lru); 1304 n->nr_partial--; 1305 __SetPageSlubFrozen(page); 1306 return 1; 1307 } 1308 return 0; 1309 } 1310 1311 /* 1312 * Try to allocate a partial slab from a specific node. 1313 */ 1314 static struct page *get_partial_node(struct kmem_cache_node *n) 1315 { 1316 struct page *page; 1317 1318 /* 1319 * Racy check. If we mistakenly see no partial slabs then we 1320 * just allocate an empty slab. If we mistakenly try to get a 1321 * partial slab and there is none available then get_partials() 1322 * will return NULL. 1323 */ 1324 if (!n || !n->nr_partial) 1325 return NULL; 1326 1327 spin_lock(&n->list_lock); 1328 list_for_each_entry(page, &n->partial, lru) 1329 if (lock_and_freeze_slab(n, page)) 1330 goto out; 1331 page = NULL; 1332 out: 1333 spin_unlock(&n->list_lock); 1334 return page; 1335 } 1336 1337 /* 1338 * Get a page from somewhere. Search in increasing NUMA distances. 1339 */ 1340 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1341 { 1342 #ifdef CONFIG_NUMA 1343 struct zonelist *zonelist; 1344 struct zoneref *z; 1345 struct zone *zone; 1346 enum zone_type high_zoneidx = gfp_zone(flags); 1347 struct page *page; 1348 1349 /* 1350 * The defrag ratio allows a configuration of the tradeoffs between 1351 * inter node defragmentation and node local allocations. A lower 1352 * defrag_ratio increases the tendency to do local allocations 1353 * instead of attempting to obtain partial slabs from other nodes. 1354 * 1355 * If the defrag_ratio is set to 0 then kmalloc() always 1356 * returns node local objects. If the ratio is higher then kmalloc() 1357 * may return off node objects because partial slabs are obtained 1358 * from other nodes and filled up. 1359 * 1360 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1361 * defrag_ratio = 1000) then every (well almost) allocation will 1362 * first attempt to defrag slab caches on other nodes. This means 1363 * scanning over all nodes to look for partial slabs which may be 1364 * expensive if we do it every time we are trying to find a slab 1365 * with available objects. 1366 */ 1367 if (!s->remote_node_defrag_ratio || 1368 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1369 return NULL; 1370 1371 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1372 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1373 struct kmem_cache_node *n; 1374 1375 n = get_node(s, zone_to_nid(zone)); 1376 1377 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1378 n->nr_partial > s->min_partial) { 1379 page = get_partial_node(n); 1380 if (page) 1381 return page; 1382 } 1383 } 1384 #endif 1385 return NULL; 1386 } 1387 1388 /* 1389 * Get a partial page, lock it and return it. 1390 */ 1391 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1392 { 1393 struct page *page; 1394 int searchnode = (node == -1) ? numa_node_id() : node; 1395 1396 page = get_partial_node(get_node(s, searchnode)); 1397 if (page || (flags & __GFP_THISNODE)) 1398 return page; 1399 1400 return get_any_partial(s, flags); 1401 } 1402 1403 /* 1404 * Move a page back to the lists. 1405 * 1406 * Must be called with the slab lock held. 1407 * 1408 * On exit the slab lock will have been dropped. 1409 */ 1410 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1411 { 1412 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1413 1414 __ClearPageSlubFrozen(page); 1415 if (page->inuse) { 1416 1417 if (page->freelist) { 1418 add_partial(n, page, tail); 1419 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1420 } else { 1421 stat(s, DEACTIVATE_FULL); 1422 if (SLABDEBUG && PageSlubDebug(page) && 1423 (s->flags & SLAB_STORE_USER)) 1424 add_full(n, page); 1425 } 1426 slab_unlock(page); 1427 } else { 1428 stat(s, DEACTIVATE_EMPTY); 1429 if (n->nr_partial < s->min_partial) { 1430 /* 1431 * Adding an empty slab to the partial slabs in order 1432 * to avoid page allocator overhead. This slab needs 1433 * to come after the other slabs with objects in 1434 * so that the others get filled first. That way the 1435 * size of the partial list stays small. 1436 * 1437 * kmem_cache_shrink can reclaim any empty slabs from 1438 * the partial list. 1439 */ 1440 add_partial(n, page, 1); 1441 slab_unlock(page); 1442 } else { 1443 slab_unlock(page); 1444 stat(s, FREE_SLAB); 1445 discard_slab(s, page); 1446 } 1447 } 1448 } 1449 1450 /* 1451 * Remove the cpu slab 1452 */ 1453 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1454 { 1455 struct page *page = c->page; 1456 int tail = 1; 1457 1458 if (page->freelist) 1459 stat(s, DEACTIVATE_REMOTE_FREES); 1460 /* 1461 * Merge cpu freelist into slab freelist. Typically we get here 1462 * because both freelists are empty. So this is unlikely 1463 * to occur. 1464 */ 1465 while (unlikely(c->freelist)) { 1466 void **object; 1467 1468 tail = 0; /* Hot objects. Put the slab first */ 1469 1470 /* Retrieve object from cpu_freelist */ 1471 object = c->freelist; 1472 c->freelist = get_freepointer(s, c->freelist); 1473 1474 /* And put onto the regular freelist */ 1475 set_freepointer(s, object, page->freelist); 1476 page->freelist = object; 1477 page->inuse--; 1478 } 1479 c->page = NULL; 1480 unfreeze_slab(s, page, tail); 1481 } 1482 1483 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1484 { 1485 stat(s, CPUSLAB_FLUSH); 1486 slab_lock(c->page); 1487 deactivate_slab(s, c); 1488 } 1489 1490 /* 1491 * Flush cpu slab. 1492 * 1493 * Called from IPI handler with interrupts disabled. 1494 */ 1495 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1496 { 1497 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 1498 1499 if (likely(c && c->page)) 1500 flush_slab(s, c); 1501 } 1502 1503 static void flush_cpu_slab(void *d) 1504 { 1505 struct kmem_cache *s = d; 1506 1507 __flush_cpu_slab(s, smp_processor_id()); 1508 } 1509 1510 static void flush_all(struct kmem_cache *s) 1511 { 1512 on_each_cpu(flush_cpu_slab, s, 1); 1513 } 1514 1515 /* 1516 * Check if the objects in a per cpu structure fit numa 1517 * locality expectations. 1518 */ 1519 static inline int node_match(struct kmem_cache_cpu *c, int node) 1520 { 1521 #ifdef CONFIG_NUMA 1522 if (node != -1 && c->node != node) 1523 return 0; 1524 #endif 1525 return 1; 1526 } 1527 1528 static int count_free(struct page *page) 1529 { 1530 return page->objects - page->inuse; 1531 } 1532 1533 static unsigned long count_partial(struct kmem_cache_node *n, 1534 int (*get_count)(struct page *)) 1535 { 1536 unsigned long flags; 1537 unsigned long x = 0; 1538 struct page *page; 1539 1540 spin_lock_irqsave(&n->list_lock, flags); 1541 list_for_each_entry(page, &n->partial, lru) 1542 x += get_count(page); 1543 spin_unlock_irqrestore(&n->list_lock, flags); 1544 return x; 1545 } 1546 1547 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 1548 { 1549 #ifdef CONFIG_SLUB_DEBUG 1550 return atomic_long_read(&n->total_objects); 1551 #else 1552 return 0; 1553 #endif 1554 } 1555 1556 static noinline void 1557 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 1558 { 1559 int node; 1560 1561 printk(KERN_WARNING 1562 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1563 nid, gfpflags); 1564 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 1565 "default order: %d, min order: %d\n", s->name, s->objsize, 1566 s->size, oo_order(s->oo), oo_order(s->min)); 1567 1568 if (oo_order(s->min) > get_order(s->objsize)) 1569 printk(KERN_WARNING " %s debugging increased min order, use " 1570 "slub_debug=O to disable.\n", s->name); 1571 1572 for_each_online_node(node) { 1573 struct kmem_cache_node *n = get_node(s, node); 1574 unsigned long nr_slabs; 1575 unsigned long nr_objs; 1576 unsigned long nr_free; 1577 1578 if (!n) 1579 continue; 1580 1581 nr_free = count_partial(n, count_free); 1582 nr_slabs = node_nr_slabs(n); 1583 nr_objs = node_nr_objs(n); 1584 1585 printk(KERN_WARNING 1586 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 1587 node, nr_slabs, nr_objs, nr_free); 1588 } 1589 } 1590 1591 /* 1592 * Slow path. The lockless freelist is empty or we need to perform 1593 * debugging duties. 1594 * 1595 * Interrupts are disabled. 1596 * 1597 * Processing is still very fast if new objects have been freed to the 1598 * regular freelist. In that case we simply take over the regular freelist 1599 * as the lockless freelist and zap the regular freelist. 1600 * 1601 * If that is not working then we fall back to the partial lists. We take the 1602 * first element of the freelist as the object to allocate now and move the 1603 * rest of the freelist to the lockless freelist. 1604 * 1605 * And if we were unable to get a new slab from the partial slab lists then 1606 * we need to allocate a new slab. This is the slowest path since it involves 1607 * a call to the page allocator and the setup of a new slab. 1608 */ 1609 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1610 unsigned long addr, struct kmem_cache_cpu *c) 1611 { 1612 void **object; 1613 struct page *new; 1614 1615 /* We handle __GFP_ZERO in the caller */ 1616 gfpflags &= ~__GFP_ZERO; 1617 1618 if (!c->page) 1619 goto new_slab; 1620 1621 slab_lock(c->page); 1622 if (unlikely(!node_match(c, node))) 1623 goto another_slab; 1624 1625 stat(s, ALLOC_REFILL); 1626 1627 load_freelist: 1628 object = c->page->freelist; 1629 if (unlikely(!object)) 1630 goto another_slab; 1631 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1632 goto debug; 1633 1634 c->freelist = get_freepointer(s, object); 1635 c->page->inuse = c->page->objects; 1636 c->page->freelist = NULL; 1637 c->node = page_to_nid(c->page); 1638 unlock_out: 1639 slab_unlock(c->page); 1640 stat(s, ALLOC_SLOWPATH); 1641 return object; 1642 1643 another_slab: 1644 deactivate_slab(s, c); 1645 1646 new_slab: 1647 new = get_partial(s, gfpflags, node); 1648 if (new) { 1649 c->page = new; 1650 stat(s, ALLOC_FROM_PARTIAL); 1651 goto load_freelist; 1652 } 1653 1654 if (gfpflags & __GFP_WAIT) 1655 local_irq_enable(); 1656 1657 new = new_slab(s, gfpflags, node); 1658 1659 if (gfpflags & __GFP_WAIT) 1660 local_irq_disable(); 1661 1662 if (new) { 1663 c = __this_cpu_ptr(s->cpu_slab); 1664 stat(s, ALLOC_SLAB); 1665 if (c->page) 1666 flush_slab(s, c); 1667 slab_lock(new); 1668 __SetPageSlubFrozen(new); 1669 c->page = new; 1670 goto load_freelist; 1671 } 1672 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 1673 slab_out_of_memory(s, gfpflags, node); 1674 return NULL; 1675 debug: 1676 if (!alloc_debug_processing(s, c->page, object, addr)) 1677 goto another_slab; 1678 1679 c->page->inuse++; 1680 c->page->freelist = get_freepointer(s, object); 1681 c->node = -1; 1682 goto unlock_out; 1683 } 1684 1685 /* 1686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1687 * have the fastpath folded into their functions. So no function call 1688 * overhead for requests that can be satisfied on the fastpath. 1689 * 1690 * The fastpath works by first checking if the lockless freelist can be used. 1691 * If not then __slab_alloc is called for slow processing. 1692 * 1693 * Otherwise we can simply pick the next object from the lockless free list. 1694 */ 1695 static __always_inline void *slab_alloc(struct kmem_cache *s, 1696 gfp_t gfpflags, int node, unsigned long addr) 1697 { 1698 void **object; 1699 struct kmem_cache_cpu *c; 1700 unsigned long flags; 1701 1702 gfpflags &= gfp_allowed_mask; 1703 1704 lockdep_trace_alloc(gfpflags); 1705 might_sleep_if(gfpflags & __GFP_WAIT); 1706 1707 if (should_failslab(s->objsize, gfpflags, s->flags)) 1708 return NULL; 1709 1710 local_irq_save(flags); 1711 c = __this_cpu_ptr(s->cpu_slab); 1712 object = c->freelist; 1713 if (unlikely(!object || !node_match(c, node))) 1714 1715 object = __slab_alloc(s, gfpflags, node, addr, c); 1716 1717 else { 1718 c->freelist = get_freepointer(s, object); 1719 stat(s, ALLOC_FASTPATH); 1720 } 1721 local_irq_restore(flags); 1722 1723 if (unlikely(gfpflags & __GFP_ZERO) && object) 1724 memset(object, 0, s->objsize); 1725 1726 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize); 1727 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags); 1728 1729 return object; 1730 } 1731 1732 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1733 { 1734 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); 1735 1736 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1737 1738 return ret; 1739 } 1740 EXPORT_SYMBOL(kmem_cache_alloc); 1741 1742 #ifdef CONFIG_TRACING 1743 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1744 { 1745 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1746 } 1747 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1748 #endif 1749 1750 #ifdef CONFIG_NUMA 1751 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1752 { 1753 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1754 1755 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1756 s->objsize, s->size, gfpflags, node); 1757 1758 return ret; 1759 } 1760 EXPORT_SYMBOL(kmem_cache_alloc_node); 1761 #endif 1762 1763 #ifdef CONFIG_TRACING 1764 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1765 gfp_t gfpflags, 1766 int node) 1767 { 1768 return slab_alloc(s, gfpflags, node, _RET_IP_); 1769 } 1770 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1771 #endif 1772 1773 /* 1774 * Slow patch handling. This may still be called frequently since objects 1775 * have a longer lifetime than the cpu slabs in most processing loads. 1776 * 1777 * So we still attempt to reduce cache line usage. Just take the slab 1778 * lock and free the item. If there is no additional partial page 1779 * handling required then we can return immediately. 1780 */ 1781 static void __slab_free(struct kmem_cache *s, struct page *page, 1782 void *x, unsigned long addr) 1783 { 1784 void *prior; 1785 void **object = (void *)x; 1786 1787 stat(s, FREE_SLOWPATH); 1788 slab_lock(page); 1789 1790 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1791 goto debug; 1792 1793 checks_ok: 1794 prior = page->freelist; 1795 set_freepointer(s, object, prior); 1796 page->freelist = object; 1797 page->inuse--; 1798 1799 if (unlikely(PageSlubFrozen(page))) { 1800 stat(s, FREE_FROZEN); 1801 goto out_unlock; 1802 } 1803 1804 if (unlikely(!page->inuse)) 1805 goto slab_empty; 1806 1807 /* 1808 * Objects left in the slab. If it was not on the partial list before 1809 * then add it. 1810 */ 1811 if (unlikely(!prior)) { 1812 add_partial(get_node(s, page_to_nid(page)), page, 1); 1813 stat(s, FREE_ADD_PARTIAL); 1814 } 1815 1816 out_unlock: 1817 slab_unlock(page); 1818 return; 1819 1820 slab_empty: 1821 if (prior) { 1822 /* 1823 * Slab still on the partial list. 1824 */ 1825 remove_partial(s, page); 1826 stat(s, FREE_REMOVE_PARTIAL); 1827 } 1828 slab_unlock(page); 1829 stat(s, FREE_SLAB); 1830 discard_slab(s, page); 1831 return; 1832 1833 debug: 1834 if (!free_debug_processing(s, page, x, addr)) 1835 goto out_unlock; 1836 goto checks_ok; 1837 } 1838 1839 /* 1840 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1841 * can perform fastpath freeing without additional function calls. 1842 * 1843 * The fastpath is only possible if we are freeing to the current cpu slab 1844 * of this processor. This typically the case if we have just allocated 1845 * the item before. 1846 * 1847 * If fastpath is not possible then fall back to __slab_free where we deal 1848 * with all sorts of special processing. 1849 */ 1850 static __always_inline void slab_free(struct kmem_cache *s, 1851 struct page *page, void *x, unsigned long addr) 1852 { 1853 void **object = (void *)x; 1854 struct kmem_cache_cpu *c; 1855 unsigned long flags; 1856 1857 kmemleak_free_recursive(x, s->flags); 1858 local_irq_save(flags); 1859 c = __this_cpu_ptr(s->cpu_slab); 1860 kmemcheck_slab_free(s, object, s->objsize); 1861 debug_check_no_locks_freed(object, s->objsize); 1862 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1863 debug_check_no_obj_freed(object, s->objsize); 1864 if (likely(page == c->page && c->node >= 0)) { 1865 set_freepointer(s, object, c->freelist); 1866 c->freelist = object; 1867 stat(s, FREE_FASTPATH); 1868 } else 1869 __slab_free(s, page, x, addr); 1870 1871 local_irq_restore(flags); 1872 } 1873 1874 void kmem_cache_free(struct kmem_cache *s, void *x) 1875 { 1876 struct page *page; 1877 1878 page = virt_to_head_page(x); 1879 1880 slab_free(s, page, x, _RET_IP_); 1881 1882 trace_kmem_cache_free(_RET_IP_, x); 1883 } 1884 EXPORT_SYMBOL(kmem_cache_free); 1885 1886 /* Figure out on which slab page the object resides */ 1887 static struct page *get_object_page(const void *x) 1888 { 1889 struct page *page = virt_to_head_page(x); 1890 1891 if (!PageSlab(page)) 1892 return NULL; 1893 1894 return page; 1895 } 1896 1897 /* 1898 * Object placement in a slab is made very easy because we always start at 1899 * offset 0. If we tune the size of the object to the alignment then we can 1900 * get the required alignment by putting one properly sized object after 1901 * another. 1902 * 1903 * Notice that the allocation order determines the sizes of the per cpu 1904 * caches. Each processor has always one slab available for allocations. 1905 * Increasing the allocation order reduces the number of times that slabs 1906 * must be moved on and off the partial lists and is therefore a factor in 1907 * locking overhead. 1908 */ 1909 1910 /* 1911 * Mininum / Maximum order of slab pages. This influences locking overhead 1912 * and slab fragmentation. A higher order reduces the number of partial slabs 1913 * and increases the number of allocations possible without having to 1914 * take the list_lock. 1915 */ 1916 static int slub_min_order; 1917 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1918 static int slub_min_objects; 1919 1920 /* 1921 * Merge control. If this is set then no merging of slab caches will occur. 1922 * (Could be removed. This was introduced to pacify the merge skeptics.) 1923 */ 1924 static int slub_nomerge; 1925 1926 /* 1927 * Calculate the order of allocation given an slab object size. 1928 * 1929 * The order of allocation has significant impact on performance and other 1930 * system components. Generally order 0 allocations should be preferred since 1931 * order 0 does not cause fragmentation in the page allocator. Larger objects 1932 * be problematic to put into order 0 slabs because there may be too much 1933 * unused space left. We go to a higher order if more than 1/16th of the slab 1934 * would be wasted. 1935 * 1936 * In order to reach satisfactory performance we must ensure that a minimum 1937 * number of objects is in one slab. Otherwise we may generate too much 1938 * activity on the partial lists which requires taking the list_lock. This is 1939 * less a concern for large slabs though which are rarely used. 1940 * 1941 * slub_max_order specifies the order where we begin to stop considering the 1942 * number of objects in a slab as critical. If we reach slub_max_order then 1943 * we try to keep the page order as low as possible. So we accept more waste 1944 * of space in favor of a small page order. 1945 * 1946 * Higher order allocations also allow the placement of more objects in a 1947 * slab and thereby reduce object handling overhead. If the user has 1948 * requested a higher mininum order then we start with that one instead of 1949 * the smallest order which will fit the object. 1950 */ 1951 static inline int slab_order(int size, int min_objects, 1952 int max_order, int fract_leftover) 1953 { 1954 int order; 1955 int rem; 1956 int min_order = slub_min_order; 1957 1958 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1959 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1960 1961 for (order = max(min_order, 1962 fls(min_objects * size - 1) - PAGE_SHIFT); 1963 order <= max_order; order++) { 1964 1965 unsigned long slab_size = PAGE_SIZE << order; 1966 1967 if (slab_size < min_objects * size) 1968 continue; 1969 1970 rem = slab_size % size; 1971 1972 if (rem <= slab_size / fract_leftover) 1973 break; 1974 1975 } 1976 1977 return order; 1978 } 1979 1980 static inline int calculate_order(int size) 1981 { 1982 int order; 1983 int min_objects; 1984 int fraction; 1985 int max_objects; 1986 1987 /* 1988 * Attempt to find best configuration for a slab. This 1989 * works by first attempting to generate a layout with 1990 * the best configuration and backing off gradually. 1991 * 1992 * First we reduce the acceptable waste in a slab. Then 1993 * we reduce the minimum objects required in a slab. 1994 */ 1995 min_objects = slub_min_objects; 1996 if (!min_objects) 1997 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1998 max_objects = (PAGE_SIZE << slub_max_order)/size; 1999 min_objects = min(min_objects, max_objects); 2000 2001 while (min_objects > 1) { 2002 fraction = 16; 2003 while (fraction >= 4) { 2004 order = slab_order(size, min_objects, 2005 slub_max_order, fraction); 2006 if (order <= slub_max_order) 2007 return order; 2008 fraction /= 2; 2009 } 2010 min_objects--; 2011 } 2012 2013 /* 2014 * We were unable to place multiple objects in a slab. Now 2015 * lets see if we can place a single object there. 2016 */ 2017 order = slab_order(size, 1, slub_max_order, 1); 2018 if (order <= slub_max_order) 2019 return order; 2020 2021 /* 2022 * Doh this slab cannot be placed using slub_max_order. 2023 */ 2024 order = slab_order(size, 1, MAX_ORDER, 1); 2025 if (order < MAX_ORDER) 2026 return order; 2027 return -ENOSYS; 2028 } 2029 2030 /* 2031 * Figure out what the alignment of the objects will be. 2032 */ 2033 static unsigned long calculate_alignment(unsigned long flags, 2034 unsigned long align, unsigned long size) 2035 { 2036 /* 2037 * If the user wants hardware cache aligned objects then follow that 2038 * suggestion if the object is sufficiently large. 2039 * 2040 * The hardware cache alignment cannot override the specified 2041 * alignment though. If that is greater then use it. 2042 */ 2043 if (flags & SLAB_HWCACHE_ALIGN) { 2044 unsigned long ralign = cache_line_size(); 2045 while (size <= ralign / 2) 2046 ralign /= 2; 2047 align = max(align, ralign); 2048 } 2049 2050 if (align < ARCH_SLAB_MINALIGN) 2051 align = ARCH_SLAB_MINALIGN; 2052 2053 return ALIGN(align, sizeof(void *)); 2054 } 2055 2056 static void 2057 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2058 { 2059 n->nr_partial = 0; 2060 spin_lock_init(&n->list_lock); 2061 INIT_LIST_HEAD(&n->partial); 2062 #ifdef CONFIG_SLUB_DEBUG 2063 atomic_long_set(&n->nr_slabs, 0); 2064 atomic_long_set(&n->total_objects, 0); 2065 INIT_LIST_HEAD(&n->full); 2066 #endif 2067 } 2068 2069 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]); 2070 2071 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2072 { 2073 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches) 2074 /* 2075 * Boot time creation of the kmalloc array. Use static per cpu data 2076 * since the per cpu allocator is not available yet. 2077 */ 2078 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches); 2079 else 2080 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu); 2081 2082 if (!s->cpu_slab) 2083 return 0; 2084 2085 return 1; 2086 } 2087 2088 #ifdef CONFIG_NUMA 2089 /* 2090 * No kmalloc_node yet so do it by hand. We know that this is the first 2091 * slab on the node for this slabcache. There are no concurrent accesses 2092 * possible. 2093 * 2094 * Note that this function only works on the kmalloc_node_cache 2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2096 * memory on a fresh node that has no slab structures yet. 2097 */ 2098 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2099 { 2100 struct page *page; 2101 struct kmem_cache_node *n; 2102 unsigned long flags; 2103 2104 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2105 2106 page = new_slab(kmalloc_caches, gfpflags, node); 2107 2108 BUG_ON(!page); 2109 if (page_to_nid(page) != node) { 2110 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2111 "node %d\n", node); 2112 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2113 "in order to be able to continue\n"); 2114 } 2115 2116 n = page->freelist; 2117 BUG_ON(!n); 2118 page->freelist = get_freepointer(kmalloc_caches, n); 2119 page->inuse++; 2120 kmalloc_caches->node[node] = n; 2121 #ifdef CONFIG_SLUB_DEBUG 2122 init_object(kmalloc_caches, n, 1); 2123 init_tracking(kmalloc_caches, n); 2124 #endif 2125 init_kmem_cache_node(n, kmalloc_caches); 2126 inc_slabs_node(kmalloc_caches, node, page->objects); 2127 2128 /* 2129 * lockdep requires consistent irq usage for each lock 2130 * so even though there cannot be a race this early in 2131 * the boot sequence, we still disable irqs. 2132 */ 2133 local_irq_save(flags); 2134 add_partial(n, page, 0); 2135 local_irq_restore(flags); 2136 } 2137 2138 static void free_kmem_cache_nodes(struct kmem_cache *s) 2139 { 2140 int node; 2141 2142 for_each_node_state(node, N_NORMAL_MEMORY) { 2143 struct kmem_cache_node *n = s->node[node]; 2144 if (n && n != &s->local_node) 2145 kmem_cache_free(kmalloc_caches, n); 2146 s->node[node] = NULL; 2147 } 2148 } 2149 2150 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2151 { 2152 int node; 2153 int local_node; 2154 2155 if (slab_state >= UP && (s < kmalloc_caches || 2156 s > kmalloc_caches + KMALLOC_CACHES)) 2157 local_node = page_to_nid(virt_to_page(s)); 2158 else 2159 local_node = 0; 2160 2161 for_each_node_state(node, N_NORMAL_MEMORY) { 2162 struct kmem_cache_node *n; 2163 2164 if (local_node == node) 2165 n = &s->local_node; 2166 else { 2167 if (slab_state == DOWN) { 2168 early_kmem_cache_node_alloc(gfpflags, node); 2169 continue; 2170 } 2171 n = kmem_cache_alloc_node(kmalloc_caches, 2172 gfpflags, node); 2173 2174 if (!n) { 2175 free_kmem_cache_nodes(s); 2176 return 0; 2177 } 2178 2179 } 2180 s->node[node] = n; 2181 init_kmem_cache_node(n, s); 2182 } 2183 return 1; 2184 } 2185 #else 2186 static void free_kmem_cache_nodes(struct kmem_cache *s) 2187 { 2188 } 2189 2190 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2191 { 2192 init_kmem_cache_node(&s->local_node, s); 2193 return 1; 2194 } 2195 #endif 2196 2197 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2198 { 2199 if (min < MIN_PARTIAL) 2200 min = MIN_PARTIAL; 2201 else if (min > MAX_PARTIAL) 2202 min = MAX_PARTIAL; 2203 s->min_partial = min; 2204 } 2205 2206 /* 2207 * calculate_sizes() determines the order and the distribution of data within 2208 * a slab object. 2209 */ 2210 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2211 { 2212 unsigned long flags = s->flags; 2213 unsigned long size = s->objsize; 2214 unsigned long align = s->align; 2215 int order; 2216 2217 /* 2218 * Round up object size to the next word boundary. We can only 2219 * place the free pointer at word boundaries and this determines 2220 * the possible location of the free pointer. 2221 */ 2222 size = ALIGN(size, sizeof(void *)); 2223 2224 #ifdef CONFIG_SLUB_DEBUG 2225 /* 2226 * Determine if we can poison the object itself. If the user of 2227 * the slab may touch the object after free or before allocation 2228 * then we should never poison the object itself. 2229 */ 2230 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2231 !s->ctor) 2232 s->flags |= __OBJECT_POISON; 2233 else 2234 s->flags &= ~__OBJECT_POISON; 2235 2236 2237 /* 2238 * If we are Redzoning then check if there is some space between the 2239 * end of the object and the free pointer. If not then add an 2240 * additional word to have some bytes to store Redzone information. 2241 */ 2242 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2243 size += sizeof(void *); 2244 #endif 2245 2246 /* 2247 * With that we have determined the number of bytes in actual use 2248 * by the object. This is the potential offset to the free pointer. 2249 */ 2250 s->inuse = size; 2251 2252 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2253 s->ctor)) { 2254 /* 2255 * Relocate free pointer after the object if it is not 2256 * permitted to overwrite the first word of the object on 2257 * kmem_cache_free. 2258 * 2259 * This is the case if we do RCU, have a constructor or 2260 * destructor or are poisoning the objects. 2261 */ 2262 s->offset = size; 2263 size += sizeof(void *); 2264 } 2265 2266 #ifdef CONFIG_SLUB_DEBUG 2267 if (flags & SLAB_STORE_USER) 2268 /* 2269 * Need to store information about allocs and frees after 2270 * the object. 2271 */ 2272 size += 2 * sizeof(struct track); 2273 2274 if (flags & SLAB_RED_ZONE) 2275 /* 2276 * Add some empty padding so that we can catch 2277 * overwrites from earlier objects rather than let 2278 * tracking information or the free pointer be 2279 * corrupted if a user writes before the start 2280 * of the object. 2281 */ 2282 size += sizeof(void *); 2283 #endif 2284 2285 /* 2286 * Determine the alignment based on various parameters that the 2287 * user specified and the dynamic determination of cache line size 2288 * on bootup. 2289 */ 2290 align = calculate_alignment(flags, align, s->objsize); 2291 s->align = align; 2292 2293 /* 2294 * SLUB stores one object immediately after another beginning from 2295 * offset 0. In order to align the objects we have to simply size 2296 * each object to conform to the alignment. 2297 */ 2298 size = ALIGN(size, align); 2299 s->size = size; 2300 if (forced_order >= 0) 2301 order = forced_order; 2302 else 2303 order = calculate_order(size); 2304 2305 if (order < 0) 2306 return 0; 2307 2308 s->allocflags = 0; 2309 if (order) 2310 s->allocflags |= __GFP_COMP; 2311 2312 if (s->flags & SLAB_CACHE_DMA) 2313 s->allocflags |= SLUB_DMA; 2314 2315 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2316 s->allocflags |= __GFP_RECLAIMABLE; 2317 2318 /* 2319 * Determine the number of objects per slab 2320 */ 2321 s->oo = oo_make(order, size); 2322 s->min = oo_make(get_order(size), size); 2323 if (oo_objects(s->oo) > oo_objects(s->max)) 2324 s->max = s->oo; 2325 2326 return !!oo_objects(s->oo); 2327 2328 } 2329 2330 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2331 const char *name, size_t size, 2332 size_t align, unsigned long flags, 2333 void (*ctor)(void *)) 2334 { 2335 memset(s, 0, kmem_size); 2336 s->name = name; 2337 s->ctor = ctor; 2338 s->objsize = size; 2339 s->align = align; 2340 s->flags = kmem_cache_flags(size, flags, name, ctor); 2341 2342 if (!calculate_sizes(s, -1)) 2343 goto error; 2344 if (disable_higher_order_debug) { 2345 /* 2346 * Disable debugging flags that store metadata if the min slab 2347 * order increased. 2348 */ 2349 if (get_order(s->size) > get_order(s->objsize)) { 2350 s->flags &= ~DEBUG_METADATA_FLAGS; 2351 s->offset = 0; 2352 if (!calculate_sizes(s, -1)) 2353 goto error; 2354 } 2355 } 2356 2357 /* 2358 * The larger the object size is, the more pages we want on the partial 2359 * list to avoid pounding the page allocator excessively. 2360 */ 2361 set_min_partial(s, ilog2(s->size)); 2362 s->refcount = 1; 2363 #ifdef CONFIG_NUMA 2364 s->remote_node_defrag_ratio = 1000; 2365 #endif 2366 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2367 goto error; 2368 2369 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2370 return 1; 2371 2372 free_kmem_cache_nodes(s); 2373 error: 2374 if (flags & SLAB_PANIC) 2375 panic("Cannot create slab %s size=%lu realsize=%u " 2376 "order=%u offset=%u flags=%lx\n", 2377 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2378 s->offset, flags); 2379 return 0; 2380 } 2381 2382 /* 2383 * Check if a given pointer is valid 2384 */ 2385 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2386 { 2387 struct page *page; 2388 2389 page = get_object_page(object); 2390 2391 if (!page || s != page->slab) 2392 /* No slab or wrong slab */ 2393 return 0; 2394 2395 if (!check_valid_pointer(s, page, object)) 2396 return 0; 2397 2398 /* 2399 * We could also check if the object is on the slabs freelist. 2400 * But this would be too expensive and it seems that the main 2401 * purpose of kmem_ptr_valid() is to check if the object belongs 2402 * to a certain slab. 2403 */ 2404 return 1; 2405 } 2406 EXPORT_SYMBOL(kmem_ptr_validate); 2407 2408 /* 2409 * Determine the size of a slab object 2410 */ 2411 unsigned int kmem_cache_size(struct kmem_cache *s) 2412 { 2413 return s->objsize; 2414 } 2415 EXPORT_SYMBOL(kmem_cache_size); 2416 2417 const char *kmem_cache_name(struct kmem_cache *s) 2418 { 2419 return s->name; 2420 } 2421 EXPORT_SYMBOL(kmem_cache_name); 2422 2423 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2424 const char *text) 2425 { 2426 #ifdef CONFIG_SLUB_DEBUG 2427 void *addr = page_address(page); 2428 void *p; 2429 DECLARE_BITMAP(map, page->objects); 2430 2431 bitmap_zero(map, page->objects); 2432 slab_err(s, page, "%s", text); 2433 slab_lock(page); 2434 for_each_free_object(p, s, page->freelist) 2435 set_bit(slab_index(p, s, addr), map); 2436 2437 for_each_object(p, s, addr, page->objects) { 2438 2439 if (!test_bit(slab_index(p, s, addr), map)) { 2440 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2441 p, p - addr); 2442 print_tracking(s, p); 2443 } 2444 } 2445 slab_unlock(page); 2446 #endif 2447 } 2448 2449 /* 2450 * Attempt to free all partial slabs on a node. 2451 */ 2452 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2453 { 2454 unsigned long flags; 2455 struct page *page, *h; 2456 2457 spin_lock_irqsave(&n->list_lock, flags); 2458 list_for_each_entry_safe(page, h, &n->partial, lru) { 2459 if (!page->inuse) { 2460 list_del(&page->lru); 2461 discard_slab(s, page); 2462 n->nr_partial--; 2463 } else { 2464 list_slab_objects(s, page, 2465 "Objects remaining on kmem_cache_close()"); 2466 } 2467 } 2468 spin_unlock_irqrestore(&n->list_lock, flags); 2469 } 2470 2471 /* 2472 * Release all resources used by a slab cache. 2473 */ 2474 static inline int kmem_cache_close(struct kmem_cache *s) 2475 { 2476 int node; 2477 2478 flush_all(s); 2479 free_percpu(s->cpu_slab); 2480 /* Attempt to free all objects */ 2481 for_each_node_state(node, N_NORMAL_MEMORY) { 2482 struct kmem_cache_node *n = get_node(s, node); 2483 2484 free_partial(s, n); 2485 if (n->nr_partial || slabs_node(s, node)) 2486 return 1; 2487 } 2488 free_kmem_cache_nodes(s); 2489 return 0; 2490 } 2491 2492 /* 2493 * Close a cache and release the kmem_cache structure 2494 * (must be used for caches created using kmem_cache_create) 2495 */ 2496 void kmem_cache_destroy(struct kmem_cache *s) 2497 { 2498 down_write(&slub_lock); 2499 s->refcount--; 2500 if (!s->refcount) { 2501 list_del(&s->list); 2502 up_write(&slub_lock); 2503 if (kmem_cache_close(s)) { 2504 printk(KERN_ERR "SLUB %s: %s called for cache that " 2505 "still has objects.\n", s->name, __func__); 2506 dump_stack(); 2507 } 2508 if (s->flags & SLAB_DESTROY_BY_RCU) 2509 rcu_barrier(); 2510 sysfs_slab_remove(s); 2511 } else 2512 up_write(&slub_lock); 2513 } 2514 EXPORT_SYMBOL(kmem_cache_destroy); 2515 2516 /******************************************************************** 2517 * Kmalloc subsystem 2518 *******************************************************************/ 2519 2520 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned; 2521 EXPORT_SYMBOL(kmalloc_caches); 2522 2523 static int __init setup_slub_min_order(char *str) 2524 { 2525 get_option(&str, &slub_min_order); 2526 2527 return 1; 2528 } 2529 2530 __setup("slub_min_order=", setup_slub_min_order); 2531 2532 static int __init setup_slub_max_order(char *str) 2533 { 2534 get_option(&str, &slub_max_order); 2535 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2536 2537 return 1; 2538 } 2539 2540 __setup("slub_max_order=", setup_slub_max_order); 2541 2542 static int __init setup_slub_min_objects(char *str) 2543 { 2544 get_option(&str, &slub_min_objects); 2545 2546 return 1; 2547 } 2548 2549 __setup("slub_min_objects=", setup_slub_min_objects); 2550 2551 static int __init setup_slub_nomerge(char *str) 2552 { 2553 slub_nomerge = 1; 2554 return 1; 2555 } 2556 2557 __setup("slub_nomerge", setup_slub_nomerge); 2558 2559 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2560 const char *name, int size, gfp_t gfp_flags) 2561 { 2562 unsigned int flags = 0; 2563 2564 if (gfp_flags & SLUB_DMA) 2565 flags = SLAB_CACHE_DMA; 2566 2567 /* 2568 * This function is called with IRQs disabled during early-boot on 2569 * single CPU so there's no need to take slub_lock here. 2570 */ 2571 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2572 flags, NULL)) 2573 goto panic; 2574 2575 list_add(&s->list, &slab_caches); 2576 2577 if (sysfs_slab_add(s)) 2578 goto panic; 2579 return s; 2580 2581 panic: 2582 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2583 } 2584 2585 #ifdef CONFIG_ZONE_DMA 2586 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2587 2588 static void sysfs_add_func(struct work_struct *w) 2589 { 2590 struct kmem_cache *s; 2591 2592 down_write(&slub_lock); 2593 list_for_each_entry(s, &slab_caches, list) { 2594 if (s->flags & __SYSFS_ADD_DEFERRED) { 2595 s->flags &= ~__SYSFS_ADD_DEFERRED; 2596 sysfs_slab_add(s); 2597 } 2598 } 2599 up_write(&slub_lock); 2600 } 2601 2602 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2603 2604 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2605 { 2606 struct kmem_cache *s; 2607 char *text; 2608 size_t realsize; 2609 unsigned long slabflags; 2610 int i; 2611 2612 s = kmalloc_caches_dma[index]; 2613 if (s) 2614 return s; 2615 2616 /* Dynamically create dma cache */ 2617 if (flags & __GFP_WAIT) 2618 down_write(&slub_lock); 2619 else { 2620 if (!down_write_trylock(&slub_lock)) 2621 goto out; 2622 } 2623 2624 if (kmalloc_caches_dma[index]) 2625 goto unlock_out; 2626 2627 realsize = kmalloc_caches[index].objsize; 2628 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2629 (unsigned int)realsize); 2630 2631 s = NULL; 2632 for (i = 0; i < KMALLOC_CACHES; i++) 2633 if (!kmalloc_caches[i].size) 2634 break; 2635 2636 BUG_ON(i >= KMALLOC_CACHES); 2637 s = kmalloc_caches + i; 2638 2639 /* 2640 * Must defer sysfs creation to a workqueue because we don't know 2641 * what context we are called from. Before sysfs comes up, we don't 2642 * need to do anything because our sysfs initcall will start by 2643 * adding all existing slabs to sysfs. 2644 */ 2645 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK; 2646 if (slab_state >= SYSFS) 2647 slabflags |= __SYSFS_ADD_DEFERRED; 2648 2649 if (!text || !kmem_cache_open(s, flags, text, 2650 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) { 2651 s->size = 0; 2652 kfree(text); 2653 goto unlock_out; 2654 } 2655 2656 list_add(&s->list, &slab_caches); 2657 kmalloc_caches_dma[index] = s; 2658 2659 if (slab_state >= SYSFS) 2660 schedule_work(&sysfs_add_work); 2661 2662 unlock_out: 2663 up_write(&slub_lock); 2664 out: 2665 return kmalloc_caches_dma[index]; 2666 } 2667 #endif 2668 2669 /* 2670 * Conversion table for small slabs sizes / 8 to the index in the 2671 * kmalloc array. This is necessary for slabs < 192 since we have non power 2672 * of two cache sizes there. The size of larger slabs can be determined using 2673 * fls. 2674 */ 2675 static s8 size_index[24] = { 2676 3, /* 8 */ 2677 4, /* 16 */ 2678 5, /* 24 */ 2679 5, /* 32 */ 2680 6, /* 40 */ 2681 6, /* 48 */ 2682 6, /* 56 */ 2683 6, /* 64 */ 2684 1, /* 72 */ 2685 1, /* 80 */ 2686 1, /* 88 */ 2687 1, /* 96 */ 2688 7, /* 104 */ 2689 7, /* 112 */ 2690 7, /* 120 */ 2691 7, /* 128 */ 2692 2, /* 136 */ 2693 2, /* 144 */ 2694 2, /* 152 */ 2695 2, /* 160 */ 2696 2, /* 168 */ 2697 2, /* 176 */ 2698 2, /* 184 */ 2699 2 /* 192 */ 2700 }; 2701 2702 static inline int size_index_elem(size_t bytes) 2703 { 2704 return (bytes - 1) / 8; 2705 } 2706 2707 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2708 { 2709 int index; 2710 2711 if (size <= 192) { 2712 if (!size) 2713 return ZERO_SIZE_PTR; 2714 2715 index = size_index[size_index_elem(size)]; 2716 } else 2717 index = fls(size - 1); 2718 2719 #ifdef CONFIG_ZONE_DMA 2720 if (unlikely((flags & SLUB_DMA))) 2721 return dma_kmalloc_cache(index, flags); 2722 2723 #endif 2724 return &kmalloc_caches[index]; 2725 } 2726 2727 void *__kmalloc(size_t size, gfp_t flags) 2728 { 2729 struct kmem_cache *s; 2730 void *ret; 2731 2732 if (unlikely(size > SLUB_MAX_SIZE)) 2733 return kmalloc_large(size, flags); 2734 2735 s = get_slab(size, flags); 2736 2737 if (unlikely(ZERO_OR_NULL_PTR(s))) 2738 return s; 2739 2740 ret = slab_alloc(s, flags, -1, _RET_IP_); 2741 2742 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2743 2744 return ret; 2745 } 2746 EXPORT_SYMBOL(__kmalloc); 2747 2748 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2749 { 2750 struct page *page; 2751 void *ptr = NULL; 2752 2753 flags |= __GFP_COMP | __GFP_NOTRACK; 2754 page = alloc_pages_node(node, flags, get_order(size)); 2755 if (page) 2756 ptr = page_address(page); 2757 2758 kmemleak_alloc(ptr, size, 1, flags); 2759 return ptr; 2760 } 2761 2762 #ifdef CONFIG_NUMA 2763 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2764 { 2765 struct kmem_cache *s; 2766 void *ret; 2767 2768 if (unlikely(size > SLUB_MAX_SIZE)) { 2769 ret = kmalloc_large_node(size, flags, node); 2770 2771 trace_kmalloc_node(_RET_IP_, ret, 2772 size, PAGE_SIZE << get_order(size), 2773 flags, node); 2774 2775 return ret; 2776 } 2777 2778 s = get_slab(size, flags); 2779 2780 if (unlikely(ZERO_OR_NULL_PTR(s))) 2781 return s; 2782 2783 ret = slab_alloc(s, flags, node, _RET_IP_); 2784 2785 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2786 2787 return ret; 2788 } 2789 EXPORT_SYMBOL(__kmalloc_node); 2790 #endif 2791 2792 size_t ksize(const void *object) 2793 { 2794 struct page *page; 2795 struct kmem_cache *s; 2796 2797 if (unlikely(object == ZERO_SIZE_PTR)) 2798 return 0; 2799 2800 page = virt_to_head_page(object); 2801 2802 if (unlikely(!PageSlab(page))) { 2803 WARN_ON(!PageCompound(page)); 2804 return PAGE_SIZE << compound_order(page); 2805 } 2806 s = page->slab; 2807 2808 #ifdef CONFIG_SLUB_DEBUG 2809 /* 2810 * Debugging requires use of the padding between object 2811 * and whatever may come after it. 2812 */ 2813 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2814 return s->objsize; 2815 2816 #endif 2817 /* 2818 * If we have the need to store the freelist pointer 2819 * back there or track user information then we can 2820 * only use the space before that information. 2821 */ 2822 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2823 return s->inuse; 2824 /* 2825 * Else we can use all the padding etc for the allocation 2826 */ 2827 return s->size; 2828 } 2829 EXPORT_SYMBOL(ksize); 2830 2831 void kfree(const void *x) 2832 { 2833 struct page *page; 2834 void *object = (void *)x; 2835 2836 trace_kfree(_RET_IP_, x); 2837 2838 if (unlikely(ZERO_OR_NULL_PTR(x))) 2839 return; 2840 2841 page = virt_to_head_page(x); 2842 if (unlikely(!PageSlab(page))) { 2843 BUG_ON(!PageCompound(page)); 2844 kmemleak_free(x); 2845 put_page(page); 2846 return; 2847 } 2848 slab_free(page->slab, page, object, _RET_IP_); 2849 } 2850 EXPORT_SYMBOL(kfree); 2851 2852 /* 2853 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2854 * the remaining slabs by the number of items in use. The slabs with the 2855 * most items in use come first. New allocations will then fill those up 2856 * and thus they can be removed from the partial lists. 2857 * 2858 * The slabs with the least items are placed last. This results in them 2859 * being allocated from last increasing the chance that the last objects 2860 * are freed in them. 2861 */ 2862 int kmem_cache_shrink(struct kmem_cache *s) 2863 { 2864 int node; 2865 int i; 2866 struct kmem_cache_node *n; 2867 struct page *page; 2868 struct page *t; 2869 int objects = oo_objects(s->max); 2870 struct list_head *slabs_by_inuse = 2871 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2872 unsigned long flags; 2873 2874 if (!slabs_by_inuse) 2875 return -ENOMEM; 2876 2877 flush_all(s); 2878 for_each_node_state(node, N_NORMAL_MEMORY) { 2879 n = get_node(s, node); 2880 2881 if (!n->nr_partial) 2882 continue; 2883 2884 for (i = 0; i < objects; i++) 2885 INIT_LIST_HEAD(slabs_by_inuse + i); 2886 2887 spin_lock_irqsave(&n->list_lock, flags); 2888 2889 /* 2890 * Build lists indexed by the items in use in each slab. 2891 * 2892 * Note that concurrent frees may occur while we hold the 2893 * list_lock. page->inuse here is the upper limit. 2894 */ 2895 list_for_each_entry_safe(page, t, &n->partial, lru) { 2896 if (!page->inuse && slab_trylock(page)) { 2897 /* 2898 * Must hold slab lock here because slab_free 2899 * may have freed the last object and be 2900 * waiting to release the slab. 2901 */ 2902 list_del(&page->lru); 2903 n->nr_partial--; 2904 slab_unlock(page); 2905 discard_slab(s, page); 2906 } else { 2907 list_move(&page->lru, 2908 slabs_by_inuse + page->inuse); 2909 } 2910 } 2911 2912 /* 2913 * Rebuild the partial list with the slabs filled up most 2914 * first and the least used slabs at the end. 2915 */ 2916 for (i = objects - 1; i >= 0; i--) 2917 list_splice(slabs_by_inuse + i, n->partial.prev); 2918 2919 spin_unlock_irqrestore(&n->list_lock, flags); 2920 } 2921 2922 kfree(slabs_by_inuse); 2923 return 0; 2924 } 2925 EXPORT_SYMBOL(kmem_cache_shrink); 2926 2927 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2928 static int slab_mem_going_offline_callback(void *arg) 2929 { 2930 struct kmem_cache *s; 2931 2932 down_read(&slub_lock); 2933 list_for_each_entry(s, &slab_caches, list) 2934 kmem_cache_shrink(s); 2935 up_read(&slub_lock); 2936 2937 return 0; 2938 } 2939 2940 static void slab_mem_offline_callback(void *arg) 2941 { 2942 struct kmem_cache_node *n; 2943 struct kmem_cache *s; 2944 struct memory_notify *marg = arg; 2945 int offline_node; 2946 2947 offline_node = marg->status_change_nid; 2948 2949 /* 2950 * If the node still has available memory. we need kmem_cache_node 2951 * for it yet. 2952 */ 2953 if (offline_node < 0) 2954 return; 2955 2956 down_read(&slub_lock); 2957 list_for_each_entry(s, &slab_caches, list) { 2958 n = get_node(s, offline_node); 2959 if (n) { 2960 /* 2961 * if n->nr_slabs > 0, slabs still exist on the node 2962 * that is going down. We were unable to free them, 2963 * and offline_pages() function shoudn't call this 2964 * callback. So, we must fail. 2965 */ 2966 BUG_ON(slabs_node(s, offline_node)); 2967 2968 s->node[offline_node] = NULL; 2969 kmem_cache_free(kmalloc_caches, n); 2970 } 2971 } 2972 up_read(&slub_lock); 2973 } 2974 2975 static int slab_mem_going_online_callback(void *arg) 2976 { 2977 struct kmem_cache_node *n; 2978 struct kmem_cache *s; 2979 struct memory_notify *marg = arg; 2980 int nid = marg->status_change_nid; 2981 int ret = 0; 2982 2983 /* 2984 * If the node's memory is already available, then kmem_cache_node is 2985 * already created. Nothing to do. 2986 */ 2987 if (nid < 0) 2988 return 0; 2989 2990 /* 2991 * We are bringing a node online. No memory is available yet. We must 2992 * allocate a kmem_cache_node structure in order to bring the node 2993 * online. 2994 */ 2995 down_read(&slub_lock); 2996 list_for_each_entry(s, &slab_caches, list) { 2997 /* 2998 * XXX: kmem_cache_alloc_node will fallback to other nodes 2999 * since memory is not yet available from the node that 3000 * is brought up. 3001 */ 3002 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 3003 if (!n) { 3004 ret = -ENOMEM; 3005 goto out; 3006 } 3007 init_kmem_cache_node(n, s); 3008 s->node[nid] = n; 3009 } 3010 out: 3011 up_read(&slub_lock); 3012 return ret; 3013 } 3014 3015 static int slab_memory_callback(struct notifier_block *self, 3016 unsigned long action, void *arg) 3017 { 3018 int ret = 0; 3019 3020 switch (action) { 3021 case MEM_GOING_ONLINE: 3022 ret = slab_mem_going_online_callback(arg); 3023 break; 3024 case MEM_GOING_OFFLINE: 3025 ret = slab_mem_going_offline_callback(arg); 3026 break; 3027 case MEM_OFFLINE: 3028 case MEM_CANCEL_ONLINE: 3029 slab_mem_offline_callback(arg); 3030 break; 3031 case MEM_ONLINE: 3032 case MEM_CANCEL_OFFLINE: 3033 break; 3034 } 3035 if (ret) 3036 ret = notifier_from_errno(ret); 3037 else 3038 ret = NOTIFY_OK; 3039 return ret; 3040 } 3041 3042 #endif /* CONFIG_MEMORY_HOTPLUG */ 3043 3044 /******************************************************************** 3045 * Basic setup of slabs 3046 *******************************************************************/ 3047 3048 void __init kmem_cache_init(void) 3049 { 3050 int i; 3051 int caches = 0; 3052 3053 #ifdef CONFIG_NUMA 3054 /* 3055 * Must first have the slab cache available for the allocations of the 3056 * struct kmem_cache_node's. There is special bootstrap code in 3057 * kmem_cache_open for slab_state == DOWN. 3058 */ 3059 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3060 sizeof(struct kmem_cache_node), GFP_NOWAIT); 3061 kmalloc_caches[0].refcount = -1; 3062 caches++; 3063 3064 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3065 #endif 3066 3067 /* Able to allocate the per node structures */ 3068 slab_state = PARTIAL; 3069 3070 /* Caches that are not of the two-to-the-power-of size */ 3071 if (KMALLOC_MIN_SIZE <= 32) { 3072 create_kmalloc_cache(&kmalloc_caches[1], 3073 "kmalloc-96", 96, GFP_NOWAIT); 3074 caches++; 3075 } 3076 if (KMALLOC_MIN_SIZE <= 64) { 3077 create_kmalloc_cache(&kmalloc_caches[2], 3078 "kmalloc-192", 192, GFP_NOWAIT); 3079 caches++; 3080 } 3081 3082 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3083 create_kmalloc_cache(&kmalloc_caches[i], 3084 "kmalloc", 1 << i, GFP_NOWAIT); 3085 caches++; 3086 } 3087 3088 3089 /* 3090 * Patch up the size_index table if we have strange large alignment 3091 * requirements for the kmalloc array. This is only the case for 3092 * MIPS it seems. The standard arches will not generate any code here. 3093 * 3094 * Largest permitted alignment is 256 bytes due to the way we 3095 * handle the index determination for the smaller caches. 3096 * 3097 * Make sure that nothing crazy happens if someone starts tinkering 3098 * around with ARCH_KMALLOC_MINALIGN 3099 */ 3100 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3101 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3102 3103 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3104 int elem = size_index_elem(i); 3105 if (elem >= ARRAY_SIZE(size_index)) 3106 break; 3107 size_index[elem] = KMALLOC_SHIFT_LOW; 3108 } 3109 3110 if (KMALLOC_MIN_SIZE == 64) { 3111 /* 3112 * The 96 byte size cache is not used if the alignment 3113 * is 64 byte. 3114 */ 3115 for (i = 64 + 8; i <= 96; i += 8) 3116 size_index[size_index_elem(i)] = 7; 3117 } else if (KMALLOC_MIN_SIZE == 128) { 3118 /* 3119 * The 192 byte sized cache is not used if the alignment 3120 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3121 * instead. 3122 */ 3123 for (i = 128 + 8; i <= 192; i += 8) 3124 size_index[size_index_elem(i)] = 8; 3125 } 3126 3127 slab_state = UP; 3128 3129 /* Provide the correct kmalloc names now that the caches are up */ 3130 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) 3131 kmalloc_caches[i]. name = 3132 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3133 3134 #ifdef CONFIG_SMP 3135 register_cpu_notifier(&slab_notifier); 3136 #endif 3137 #ifdef CONFIG_NUMA 3138 kmem_size = offsetof(struct kmem_cache, node) + 3139 nr_node_ids * sizeof(struct kmem_cache_node *); 3140 #else 3141 kmem_size = sizeof(struct kmem_cache); 3142 #endif 3143 3144 printk(KERN_INFO 3145 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3146 " CPUs=%d, Nodes=%d\n", 3147 caches, cache_line_size(), 3148 slub_min_order, slub_max_order, slub_min_objects, 3149 nr_cpu_ids, nr_node_ids); 3150 } 3151 3152 void __init kmem_cache_init_late(void) 3153 { 3154 } 3155 3156 /* 3157 * Find a mergeable slab cache 3158 */ 3159 static int slab_unmergeable(struct kmem_cache *s) 3160 { 3161 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3162 return 1; 3163 3164 if (s->ctor) 3165 return 1; 3166 3167 /* 3168 * We may have set a slab to be unmergeable during bootstrap. 3169 */ 3170 if (s->refcount < 0) 3171 return 1; 3172 3173 return 0; 3174 } 3175 3176 static struct kmem_cache *find_mergeable(size_t size, 3177 size_t align, unsigned long flags, const char *name, 3178 void (*ctor)(void *)) 3179 { 3180 struct kmem_cache *s; 3181 3182 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3183 return NULL; 3184 3185 if (ctor) 3186 return NULL; 3187 3188 size = ALIGN(size, sizeof(void *)); 3189 align = calculate_alignment(flags, align, size); 3190 size = ALIGN(size, align); 3191 flags = kmem_cache_flags(size, flags, name, NULL); 3192 3193 list_for_each_entry(s, &slab_caches, list) { 3194 if (slab_unmergeable(s)) 3195 continue; 3196 3197 if (size > s->size) 3198 continue; 3199 3200 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3201 continue; 3202 /* 3203 * Check if alignment is compatible. 3204 * Courtesy of Adrian Drzewiecki 3205 */ 3206 if ((s->size & ~(align - 1)) != s->size) 3207 continue; 3208 3209 if (s->size - size >= sizeof(void *)) 3210 continue; 3211 3212 return s; 3213 } 3214 return NULL; 3215 } 3216 3217 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3218 size_t align, unsigned long flags, void (*ctor)(void *)) 3219 { 3220 struct kmem_cache *s; 3221 3222 if (WARN_ON(!name)) 3223 return NULL; 3224 3225 down_write(&slub_lock); 3226 s = find_mergeable(size, align, flags, name, ctor); 3227 if (s) { 3228 s->refcount++; 3229 /* 3230 * Adjust the object sizes so that we clear 3231 * the complete object on kzalloc. 3232 */ 3233 s->objsize = max(s->objsize, (int)size); 3234 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3235 up_write(&slub_lock); 3236 3237 if (sysfs_slab_alias(s, name)) { 3238 down_write(&slub_lock); 3239 s->refcount--; 3240 up_write(&slub_lock); 3241 goto err; 3242 } 3243 return s; 3244 } 3245 3246 s = kmalloc(kmem_size, GFP_KERNEL); 3247 if (s) { 3248 if (kmem_cache_open(s, GFP_KERNEL, name, 3249 size, align, flags, ctor)) { 3250 list_add(&s->list, &slab_caches); 3251 up_write(&slub_lock); 3252 if (sysfs_slab_add(s)) { 3253 down_write(&slub_lock); 3254 list_del(&s->list); 3255 up_write(&slub_lock); 3256 kfree(s); 3257 goto err; 3258 } 3259 return s; 3260 } 3261 kfree(s); 3262 } 3263 up_write(&slub_lock); 3264 3265 err: 3266 if (flags & SLAB_PANIC) 3267 panic("Cannot create slabcache %s\n", name); 3268 else 3269 s = NULL; 3270 return s; 3271 } 3272 EXPORT_SYMBOL(kmem_cache_create); 3273 3274 #ifdef CONFIG_SMP 3275 /* 3276 * Use the cpu notifier to insure that the cpu slabs are flushed when 3277 * necessary. 3278 */ 3279 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3280 unsigned long action, void *hcpu) 3281 { 3282 long cpu = (long)hcpu; 3283 struct kmem_cache *s; 3284 unsigned long flags; 3285 3286 switch (action) { 3287 case CPU_UP_CANCELED: 3288 case CPU_UP_CANCELED_FROZEN: 3289 case CPU_DEAD: 3290 case CPU_DEAD_FROZEN: 3291 down_read(&slub_lock); 3292 list_for_each_entry(s, &slab_caches, list) { 3293 local_irq_save(flags); 3294 __flush_cpu_slab(s, cpu); 3295 local_irq_restore(flags); 3296 } 3297 up_read(&slub_lock); 3298 break; 3299 default: 3300 break; 3301 } 3302 return NOTIFY_OK; 3303 } 3304 3305 static struct notifier_block __cpuinitdata slab_notifier = { 3306 .notifier_call = slab_cpuup_callback 3307 }; 3308 3309 #endif 3310 3311 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3312 { 3313 struct kmem_cache *s; 3314 void *ret; 3315 3316 if (unlikely(size > SLUB_MAX_SIZE)) 3317 return kmalloc_large(size, gfpflags); 3318 3319 s = get_slab(size, gfpflags); 3320 3321 if (unlikely(ZERO_OR_NULL_PTR(s))) 3322 return s; 3323 3324 ret = slab_alloc(s, gfpflags, -1, caller); 3325 3326 /* Honor the call site pointer we recieved. */ 3327 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3328 3329 return ret; 3330 } 3331 3332 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3333 int node, unsigned long caller) 3334 { 3335 struct kmem_cache *s; 3336 void *ret; 3337 3338 if (unlikely(size > SLUB_MAX_SIZE)) 3339 return kmalloc_large_node(size, gfpflags, node); 3340 3341 s = get_slab(size, gfpflags); 3342 3343 if (unlikely(ZERO_OR_NULL_PTR(s))) 3344 return s; 3345 3346 ret = slab_alloc(s, gfpflags, node, caller); 3347 3348 /* Honor the call site pointer we recieved. */ 3349 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3350 3351 return ret; 3352 } 3353 3354 #ifdef CONFIG_SLUB_DEBUG 3355 static int count_inuse(struct page *page) 3356 { 3357 return page->inuse; 3358 } 3359 3360 static int count_total(struct page *page) 3361 { 3362 return page->objects; 3363 } 3364 3365 static int validate_slab(struct kmem_cache *s, struct page *page, 3366 unsigned long *map) 3367 { 3368 void *p; 3369 void *addr = page_address(page); 3370 3371 if (!check_slab(s, page) || 3372 !on_freelist(s, page, NULL)) 3373 return 0; 3374 3375 /* Now we know that a valid freelist exists */ 3376 bitmap_zero(map, page->objects); 3377 3378 for_each_free_object(p, s, page->freelist) { 3379 set_bit(slab_index(p, s, addr), map); 3380 if (!check_object(s, page, p, 0)) 3381 return 0; 3382 } 3383 3384 for_each_object(p, s, addr, page->objects) 3385 if (!test_bit(slab_index(p, s, addr), map)) 3386 if (!check_object(s, page, p, 1)) 3387 return 0; 3388 return 1; 3389 } 3390 3391 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3392 unsigned long *map) 3393 { 3394 if (slab_trylock(page)) { 3395 validate_slab(s, page, map); 3396 slab_unlock(page); 3397 } else 3398 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3399 s->name, page); 3400 3401 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3402 if (!PageSlubDebug(page)) 3403 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3404 "on slab 0x%p\n", s->name, page); 3405 } else { 3406 if (PageSlubDebug(page)) 3407 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3408 "slab 0x%p\n", s->name, page); 3409 } 3410 } 3411 3412 static int validate_slab_node(struct kmem_cache *s, 3413 struct kmem_cache_node *n, unsigned long *map) 3414 { 3415 unsigned long count = 0; 3416 struct page *page; 3417 unsigned long flags; 3418 3419 spin_lock_irqsave(&n->list_lock, flags); 3420 3421 list_for_each_entry(page, &n->partial, lru) { 3422 validate_slab_slab(s, page, map); 3423 count++; 3424 } 3425 if (count != n->nr_partial) 3426 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3427 "counter=%ld\n", s->name, count, n->nr_partial); 3428 3429 if (!(s->flags & SLAB_STORE_USER)) 3430 goto out; 3431 3432 list_for_each_entry(page, &n->full, lru) { 3433 validate_slab_slab(s, page, map); 3434 count++; 3435 } 3436 if (count != atomic_long_read(&n->nr_slabs)) 3437 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3438 "counter=%ld\n", s->name, count, 3439 atomic_long_read(&n->nr_slabs)); 3440 3441 out: 3442 spin_unlock_irqrestore(&n->list_lock, flags); 3443 return count; 3444 } 3445 3446 static long validate_slab_cache(struct kmem_cache *s) 3447 { 3448 int node; 3449 unsigned long count = 0; 3450 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3451 sizeof(unsigned long), GFP_KERNEL); 3452 3453 if (!map) 3454 return -ENOMEM; 3455 3456 flush_all(s); 3457 for_each_node_state(node, N_NORMAL_MEMORY) { 3458 struct kmem_cache_node *n = get_node(s, node); 3459 3460 count += validate_slab_node(s, n, map); 3461 } 3462 kfree(map); 3463 return count; 3464 } 3465 3466 #ifdef SLUB_RESILIENCY_TEST 3467 static void resiliency_test(void) 3468 { 3469 u8 *p; 3470 3471 printk(KERN_ERR "SLUB resiliency testing\n"); 3472 printk(KERN_ERR "-----------------------\n"); 3473 printk(KERN_ERR "A. Corruption after allocation\n"); 3474 3475 p = kzalloc(16, GFP_KERNEL); 3476 p[16] = 0x12; 3477 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3478 " 0x12->0x%p\n\n", p + 16); 3479 3480 validate_slab_cache(kmalloc_caches + 4); 3481 3482 /* Hmmm... The next two are dangerous */ 3483 p = kzalloc(32, GFP_KERNEL); 3484 p[32 + sizeof(void *)] = 0x34; 3485 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3486 " 0x34 -> -0x%p\n", p); 3487 printk(KERN_ERR 3488 "If allocated object is overwritten then not detectable\n\n"); 3489 3490 validate_slab_cache(kmalloc_caches + 5); 3491 p = kzalloc(64, GFP_KERNEL); 3492 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3493 *p = 0x56; 3494 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3495 p); 3496 printk(KERN_ERR 3497 "If allocated object is overwritten then not detectable\n\n"); 3498 validate_slab_cache(kmalloc_caches + 6); 3499 3500 printk(KERN_ERR "\nB. Corruption after free\n"); 3501 p = kzalloc(128, GFP_KERNEL); 3502 kfree(p); 3503 *p = 0x78; 3504 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3505 validate_slab_cache(kmalloc_caches + 7); 3506 3507 p = kzalloc(256, GFP_KERNEL); 3508 kfree(p); 3509 p[50] = 0x9a; 3510 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3511 p); 3512 validate_slab_cache(kmalloc_caches + 8); 3513 3514 p = kzalloc(512, GFP_KERNEL); 3515 kfree(p); 3516 p[512] = 0xab; 3517 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3518 validate_slab_cache(kmalloc_caches + 9); 3519 } 3520 #else 3521 static void resiliency_test(void) {}; 3522 #endif 3523 3524 /* 3525 * Generate lists of code addresses where slabcache objects are allocated 3526 * and freed. 3527 */ 3528 3529 struct location { 3530 unsigned long count; 3531 unsigned long addr; 3532 long long sum_time; 3533 long min_time; 3534 long max_time; 3535 long min_pid; 3536 long max_pid; 3537 DECLARE_BITMAP(cpus, NR_CPUS); 3538 nodemask_t nodes; 3539 }; 3540 3541 struct loc_track { 3542 unsigned long max; 3543 unsigned long count; 3544 struct location *loc; 3545 }; 3546 3547 static void free_loc_track(struct loc_track *t) 3548 { 3549 if (t->max) 3550 free_pages((unsigned long)t->loc, 3551 get_order(sizeof(struct location) * t->max)); 3552 } 3553 3554 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3555 { 3556 struct location *l; 3557 int order; 3558 3559 order = get_order(sizeof(struct location) * max); 3560 3561 l = (void *)__get_free_pages(flags, order); 3562 if (!l) 3563 return 0; 3564 3565 if (t->count) { 3566 memcpy(l, t->loc, sizeof(struct location) * t->count); 3567 free_loc_track(t); 3568 } 3569 t->max = max; 3570 t->loc = l; 3571 return 1; 3572 } 3573 3574 static int add_location(struct loc_track *t, struct kmem_cache *s, 3575 const struct track *track) 3576 { 3577 long start, end, pos; 3578 struct location *l; 3579 unsigned long caddr; 3580 unsigned long age = jiffies - track->when; 3581 3582 start = -1; 3583 end = t->count; 3584 3585 for ( ; ; ) { 3586 pos = start + (end - start + 1) / 2; 3587 3588 /* 3589 * There is nothing at "end". If we end up there 3590 * we need to add something to before end. 3591 */ 3592 if (pos == end) 3593 break; 3594 3595 caddr = t->loc[pos].addr; 3596 if (track->addr == caddr) { 3597 3598 l = &t->loc[pos]; 3599 l->count++; 3600 if (track->when) { 3601 l->sum_time += age; 3602 if (age < l->min_time) 3603 l->min_time = age; 3604 if (age > l->max_time) 3605 l->max_time = age; 3606 3607 if (track->pid < l->min_pid) 3608 l->min_pid = track->pid; 3609 if (track->pid > l->max_pid) 3610 l->max_pid = track->pid; 3611 3612 cpumask_set_cpu(track->cpu, 3613 to_cpumask(l->cpus)); 3614 } 3615 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3616 return 1; 3617 } 3618 3619 if (track->addr < caddr) 3620 end = pos; 3621 else 3622 start = pos; 3623 } 3624 3625 /* 3626 * Not found. Insert new tracking element. 3627 */ 3628 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3629 return 0; 3630 3631 l = t->loc + pos; 3632 if (pos < t->count) 3633 memmove(l + 1, l, 3634 (t->count - pos) * sizeof(struct location)); 3635 t->count++; 3636 l->count = 1; 3637 l->addr = track->addr; 3638 l->sum_time = age; 3639 l->min_time = age; 3640 l->max_time = age; 3641 l->min_pid = track->pid; 3642 l->max_pid = track->pid; 3643 cpumask_clear(to_cpumask(l->cpus)); 3644 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3645 nodes_clear(l->nodes); 3646 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3647 return 1; 3648 } 3649 3650 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3651 struct page *page, enum track_item alloc) 3652 { 3653 void *addr = page_address(page); 3654 DECLARE_BITMAP(map, page->objects); 3655 void *p; 3656 3657 bitmap_zero(map, page->objects); 3658 for_each_free_object(p, s, page->freelist) 3659 set_bit(slab_index(p, s, addr), map); 3660 3661 for_each_object(p, s, addr, page->objects) 3662 if (!test_bit(slab_index(p, s, addr), map)) 3663 add_location(t, s, get_track(s, p, alloc)); 3664 } 3665 3666 static int list_locations(struct kmem_cache *s, char *buf, 3667 enum track_item alloc) 3668 { 3669 int len = 0; 3670 unsigned long i; 3671 struct loc_track t = { 0, 0, NULL }; 3672 int node; 3673 3674 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3675 GFP_TEMPORARY)) 3676 return sprintf(buf, "Out of memory\n"); 3677 3678 /* Push back cpu slabs */ 3679 flush_all(s); 3680 3681 for_each_node_state(node, N_NORMAL_MEMORY) { 3682 struct kmem_cache_node *n = get_node(s, node); 3683 unsigned long flags; 3684 struct page *page; 3685 3686 if (!atomic_long_read(&n->nr_slabs)) 3687 continue; 3688 3689 spin_lock_irqsave(&n->list_lock, flags); 3690 list_for_each_entry(page, &n->partial, lru) 3691 process_slab(&t, s, page, alloc); 3692 list_for_each_entry(page, &n->full, lru) 3693 process_slab(&t, s, page, alloc); 3694 spin_unlock_irqrestore(&n->list_lock, flags); 3695 } 3696 3697 for (i = 0; i < t.count; i++) { 3698 struct location *l = &t.loc[i]; 3699 3700 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3701 break; 3702 len += sprintf(buf + len, "%7ld ", l->count); 3703 3704 if (l->addr) 3705 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3706 else 3707 len += sprintf(buf + len, "<not-available>"); 3708 3709 if (l->sum_time != l->min_time) { 3710 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3711 l->min_time, 3712 (long)div_u64(l->sum_time, l->count), 3713 l->max_time); 3714 } else 3715 len += sprintf(buf + len, " age=%ld", 3716 l->min_time); 3717 3718 if (l->min_pid != l->max_pid) 3719 len += sprintf(buf + len, " pid=%ld-%ld", 3720 l->min_pid, l->max_pid); 3721 else 3722 len += sprintf(buf + len, " pid=%ld", 3723 l->min_pid); 3724 3725 if (num_online_cpus() > 1 && 3726 !cpumask_empty(to_cpumask(l->cpus)) && 3727 len < PAGE_SIZE - 60) { 3728 len += sprintf(buf + len, " cpus="); 3729 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3730 to_cpumask(l->cpus)); 3731 } 3732 3733 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 3734 len < PAGE_SIZE - 60) { 3735 len += sprintf(buf + len, " nodes="); 3736 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3737 l->nodes); 3738 } 3739 3740 len += sprintf(buf + len, "\n"); 3741 } 3742 3743 free_loc_track(&t); 3744 if (!t.count) 3745 len += sprintf(buf, "No data\n"); 3746 return len; 3747 } 3748 3749 enum slab_stat_type { 3750 SL_ALL, /* All slabs */ 3751 SL_PARTIAL, /* Only partially allocated slabs */ 3752 SL_CPU, /* Only slabs used for cpu caches */ 3753 SL_OBJECTS, /* Determine allocated objects not slabs */ 3754 SL_TOTAL /* Determine object capacity not slabs */ 3755 }; 3756 3757 #define SO_ALL (1 << SL_ALL) 3758 #define SO_PARTIAL (1 << SL_PARTIAL) 3759 #define SO_CPU (1 << SL_CPU) 3760 #define SO_OBJECTS (1 << SL_OBJECTS) 3761 #define SO_TOTAL (1 << SL_TOTAL) 3762 3763 static ssize_t show_slab_objects(struct kmem_cache *s, 3764 char *buf, unsigned long flags) 3765 { 3766 unsigned long total = 0; 3767 int node; 3768 int x; 3769 unsigned long *nodes; 3770 unsigned long *per_cpu; 3771 3772 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3773 if (!nodes) 3774 return -ENOMEM; 3775 per_cpu = nodes + nr_node_ids; 3776 3777 if (flags & SO_CPU) { 3778 int cpu; 3779 3780 for_each_possible_cpu(cpu) { 3781 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3782 3783 if (!c || c->node < 0) 3784 continue; 3785 3786 if (c->page) { 3787 if (flags & SO_TOTAL) 3788 x = c->page->objects; 3789 else if (flags & SO_OBJECTS) 3790 x = c->page->inuse; 3791 else 3792 x = 1; 3793 3794 total += x; 3795 nodes[c->node] += x; 3796 } 3797 per_cpu[c->node]++; 3798 } 3799 } 3800 3801 if (flags & SO_ALL) { 3802 for_each_node_state(node, N_NORMAL_MEMORY) { 3803 struct kmem_cache_node *n = get_node(s, node); 3804 3805 if (flags & SO_TOTAL) 3806 x = atomic_long_read(&n->total_objects); 3807 else if (flags & SO_OBJECTS) 3808 x = atomic_long_read(&n->total_objects) - 3809 count_partial(n, count_free); 3810 3811 else 3812 x = atomic_long_read(&n->nr_slabs); 3813 total += x; 3814 nodes[node] += x; 3815 } 3816 3817 } else if (flags & SO_PARTIAL) { 3818 for_each_node_state(node, N_NORMAL_MEMORY) { 3819 struct kmem_cache_node *n = get_node(s, node); 3820 3821 if (flags & SO_TOTAL) 3822 x = count_partial(n, count_total); 3823 else if (flags & SO_OBJECTS) 3824 x = count_partial(n, count_inuse); 3825 else 3826 x = n->nr_partial; 3827 total += x; 3828 nodes[node] += x; 3829 } 3830 } 3831 x = sprintf(buf, "%lu", total); 3832 #ifdef CONFIG_NUMA 3833 for_each_node_state(node, N_NORMAL_MEMORY) 3834 if (nodes[node]) 3835 x += sprintf(buf + x, " N%d=%lu", 3836 node, nodes[node]); 3837 #endif 3838 kfree(nodes); 3839 return x + sprintf(buf + x, "\n"); 3840 } 3841 3842 static int any_slab_objects(struct kmem_cache *s) 3843 { 3844 int node; 3845 3846 for_each_online_node(node) { 3847 struct kmem_cache_node *n = get_node(s, node); 3848 3849 if (!n) 3850 continue; 3851 3852 if (atomic_long_read(&n->total_objects)) 3853 return 1; 3854 } 3855 return 0; 3856 } 3857 3858 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3859 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3860 3861 struct slab_attribute { 3862 struct attribute attr; 3863 ssize_t (*show)(struct kmem_cache *s, char *buf); 3864 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3865 }; 3866 3867 #define SLAB_ATTR_RO(_name) \ 3868 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3869 3870 #define SLAB_ATTR(_name) \ 3871 static struct slab_attribute _name##_attr = \ 3872 __ATTR(_name, 0644, _name##_show, _name##_store) 3873 3874 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3875 { 3876 return sprintf(buf, "%d\n", s->size); 3877 } 3878 SLAB_ATTR_RO(slab_size); 3879 3880 static ssize_t align_show(struct kmem_cache *s, char *buf) 3881 { 3882 return sprintf(buf, "%d\n", s->align); 3883 } 3884 SLAB_ATTR_RO(align); 3885 3886 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3887 { 3888 return sprintf(buf, "%d\n", s->objsize); 3889 } 3890 SLAB_ATTR_RO(object_size); 3891 3892 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3893 { 3894 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3895 } 3896 SLAB_ATTR_RO(objs_per_slab); 3897 3898 static ssize_t order_store(struct kmem_cache *s, 3899 const char *buf, size_t length) 3900 { 3901 unsigned long order; 3902 int err; 3903 3904 err = strict_strtoul(buf, 10, &order); 3905 if (err) 3906 return err; 3907 3908 if (order > slub_max_order || order < slub_min_order) 3909 return -EINVAL; 3910 3911 calculate_sizes(s, order); 3912 return length; 3913 } 3914 3915 static ssize_t order_show(struct kmem_cache *s, char *buf) 3916 { 3917 return sprintf(buf, "%d\n", oo_order(s->oo)); 3918 } 3919 SLAB_ATTR(order); 3920 3921 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 3922 { 3923 return sprintf(buf, "%lu\n", s->min_partial); 3924 } 3925 3926 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 3927 size_t length) 3928 { 3929 unsigned long min; 3930 int err; 3931 3932 err = strict_strtoul(buf, 10, &min); 3933 if (err) 3934 return err; 3935 3936 set_min_partial(s, min); 3937 return length; 3938 } 3939 SLAB_ATTR(min_partial); 3940 3941 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3942 { 3943 if (s->ctor) { 3944 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3945 3946 return n + sprintf(buf + n, "\n"); 3947 } 3948 return 0; 3949 } 3950 SLAB_ATTR_RO(ctor); 3951 3952 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3953 { 3954 return sprintf(buf, "%d\n", s->refcount - 1); 3955 } 3956 SLAB_ATTR_RO(aliases); 3957 3958 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3959 { 3960 return show_slab_objects(s, buf, SO_ALL); 3961 } 3962 SLAB_ATTR_RO(slabs); 3963 3964 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3965 { 3966 return show_slab_objects(s, buf, SO_PARTIAL); 3967 } 3968 SLAB_ATTR_RO(partial); 3969 3970 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3971 { 3972 return show_slab_objects(s, buf, SO_CPU); 3973 } 3974 SLAB_ATTR_RO(cpu_slabs); 3975 3976 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3977 { 3978 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3979 } 3980 SLAB_ATTR_RO(objects); 3981 3982 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3983 { 3984 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3985 } 3986 SLAB_ATTR_RO(objects_partial); 3987 3988 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3989 { 3990 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3991 } 3992 SLAB_ATTR_RO(total_objects); 3993 3994 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3995 { 3996 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3997 } 3998 3999 static ssize_t sanity_checks_store(struct kmem_cache *s, 4000 const char *buf, size_t length) 4001 { 4002 s->flags &= ~SLAB_DEBUG_FREE; 4003 if (buf[0] == '1') 4004 s->flags |= SLAB_DEBUG_FREE; 4005 return length; 4006 } 4007 SLAB_ATTR(sanity_checks); 4008 4009 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4010 { 4011 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4012 } 4013 4014 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4015 size_t length) 4016 { 4017 s->flags &= ~SLAB_TRACE; 4018 if (buf[0] == '1') 4019 s->flags |= SLAB_TRACE; 4020 return length; 4021 } 4022 SLAB_ATTR(trace); 4023 4024 #ifdef CONFIG_FAILSLAB 4025 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4026 { 4027 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4028 } 4029 4030 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4031 size_t length) 4032 { 4033 s->flags &= ~SLAB_FAILSLAB; 4034 if (buf[0] == '1') 4035 s->flags |= SLAB_FAILSLAB; 4036 return length; 4037 } 4038 SLAB_ATTR(failslab); 4039 #endif 4040 4041 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4042 { 4043 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4044 } 4045 4046 static ssize_t reclaim_account_store(struct kmem_cache *s, 4047 const char *buf, size_t length) 4048 { 4049 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4050 if (buf[0] == '1') 4051 s->flags |= SLAB_RECLAIM_ACCOUNT; 4052 return length; 4053 } 4054 SLAB_ATTR(reclaim_account); 4055 4056 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4057 { 4058 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4059 } 4060 SLAB_ATTR_RO(hwcache_align); 4061 4062 #ifdef CONFIG_ZONE_DMA 4063 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4064 { 4065 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4066 } 4067 SLAB_ATTR_RO(cache_dma); 4068 #endif 4069 4070 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4071 { 4072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4073 } 4074 SLAB_ATTR_RO(destroy_by_rcu); 4075 4076 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4077 { 4078 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4079 } 4080 4081 static ssize_t red_zone_store(struct kmem_cache *s, 4082 const char *buf, size_t length) 4083 { 4084 if (any_slab_objects(s)) 4085 return -EBUSY; 4086 4087 s->flags &= ~SLAB_RED_ZONE; 4088 if (buf[0] == '1') 4089 s->flags |= SLAB_RED_ZONE; 4090 calculate_sizes(s, -1); 4091 return length; 4092 } 4093 SLAB_ATTR(red_zone); 4094 4095 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4096 { 4097 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4098 } 4099 4100 static ssize_t poison_store(struct kmem_cache *s, 4101 const char *buf, size_t length) 4102 { 4103 if (any_slab_objects(s)) 4104 return -EBUSY; 4105 4106 s->flags &= ~SLAB_POISON; 4107 if (buf[0] == '1') 4108 s->flags |= SLAB_POISON; 4109 calculate_sizes(s, -1); 4110 return length; 4111 } 4112 SLAB_ATTR(poison); 4113 4114 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4115 { 4116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4117 } 4118 4119 static ssize_t store_user_store(struct kmem_cache *s, 4120 const char *buf, size_t length) 4121 { 4122 if (any_slab_objects(s)) 4123 return -EBUSY; 4124 4125 s->flags &= ~SLAB_STORE_USER; 4126 if (buf[0] == '1') 4127 s->flags |= SLAB_STORE_USER; 4128 calculate_sizes(s, -1); 4129 return length; 4130 } 4131 SLAB_ATTR(store_user); 4132 4133 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4134 { 4135 return 0; 4136 } 4137 4138 static ssize_t validate_store(struct kmem_cache *s, 4139 const char *buf, size_t length) 4140 { 4141 int ret = -EINVAL; 4142 4143 if (buf[0] == '1') { 4144 ret = validate_slab_cache(s); 4145 if (ret >= 0) 4146 ret = length; 4147 } 4148 return ret; 4149 } 4150 SLAB_ATTR(validate); 4151 4152 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4153 { 4154 return 0; 4155 } 4156 4157 static ssize_t shrink_store(struct kmem_cache *s, 4158 const char *buf, size_t length) 4159 { 4160 if (buf[0] == '1') { 4161 int rc = kmem_cache_shrink(s); 4162 4163 if (rc) 4164 return rc; 4165 } else 4166 return -EINVAL; 4167 return length; 4168 } 4169 SLAB_ATTR(shrink); 4170 4171 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4172 { 4173 if (!(s->flags & SLAB_STORE_USER)) 4174 return -ENOSYS; 4175 return list_locations(s, buf, TRACK_ALLOC); 4176 } 4177 SLAB_ATTR_RO(alloc_calls); 4178 4179 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4180 { 4181 if (!(s->flags & SLAB_STORE_USER)) 4182 return -ENOSYS; 4183 return list_locations(s, buf, TRACK_FREE); 4184 } 4185 SLAB_ATTR_RO(free_calls); 4186 4187 #ifdef CONFIG_NUMA 4188 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4189 { 4190 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4191 } 4192 4193 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4194 const char *buf, size_t length) 4195 { 4196 unsigned long ratio; 4197 int err; 4198 4199 err = strict_strtoul(buf, 10, &ratio); 4200 if (err) 4201 return err; 4202 4203 if (ratio <= 100) 4204 s->remote_node_defrag_ratio = ratio * 10; 4205 4206 return length; 4207 } 4208 SLAB_ATTR(remote_node_defrag_ratio); 4209 #endif 4210 4211 #ifdef CONFIG_SLUB_STATS 4212 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4213 { 4214 unsigned long sum = 0; 4215 int cpu; 4216 int len; 4217 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4218 4219 if (!data) 4220 return -ENOMEM; 4221 4222 for_each_online_cpu(cpu) { 4223 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4224 4225 data[cpu] = x; 4226 sum += x; 4227 } 4228 4229 len = sprintf(buf, "%lu", sum); 4230 4231 #ifdef CONFIG_SMP 4232 for_each_online_cpu(cpu) { 4233 if (data[cpu] && len < PAGE_SIZE - 20) 4234 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4235 } 4236 #endif 4237 kfree(data); 4238 return len + sprintf(buf + len, "\n"); 4239 } 4240 4241 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4242 { 4243 int cpu; 4244 4245 for_each_online_cpu(cpu) 4246 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4247 } 4248 4249 #define STAT_ATTR(si, text) \ 4250 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4251 { \ 4252 return show_stat(s, buf, si); \ 4253 } \ 4254 static ssize_t text##_store(struct kmem_cache *s, \ 4255 const char *buf, size_t length) \ 4256 { \ 4257 if (buf[0] != '0') \ 4258 return -EINVAL; \ 4259 clear_stat(s, si); \ 4260 return length; \ 4261 } \ 4262 SLAB_ATTR(text); \ 4263 4264 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4265 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4266 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4267 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4268 STAT_ATTR(FREE_FROZEN, free_frozen); 4269 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4270 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4271 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4272 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4273 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4274 STAT_ATTR(FREE_SLAB, free_slab); 4275 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4276 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4277 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4278 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4279 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4280 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4281 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4282 #endif 4283 4284 static struct attribute *slab_attrs[] = { 4285 &slab_size_attr.attr, 4286 &object_size_attr.attr, 4287 &objs_per_slab_attr.attr, 4288 &order_attr.attr, 4289 &min_partial_attr.attr, 4290 &objects_attr.attr, 4291 &objects_partial_attr.attr, 4292 &total_objects_attr.attr, 4293 &slabs_attr.attr, 4294 &partial_attr.attr, 4295 &cpu_slabs_attr.attr, 4296 &ctor_attr.attr, 4297 &aliases_attr.attr, 4298 &align_attr.attr, 4299 &sanity_checks_attr.attr, 4300 &trace_attr.attr, 4301 &hwcache_align_attr.attr, 4302 &reclaim_account_attr.attr, 4303 &destroy_by_rcu_attr.attr, 4304 &red_zone_attr.attr, 4305 &poison_attr.attr, 4306 &store_user_attr.attr, 4307 &validate_attr.attr, 4308 &shrink_attr.attr, 4309 &alloc_calls_attr.attr, 4310 &free_calls_attr.attr, 4311 #ifdef CONFIG_ZONE_DMA 4312 &cache_dma_attr.attr, 4313 #endif 4314 #ifdef CONFIG_NUMA 4315 &remote_node_defrag_ratio_attr.attr, 4316 #endif 4317 #ifdef CONFIG_SLUB_STATS 4318 &alloc_fastpath_attr.attr, 4319 &alloc_slowpath_attr.attr, 4320 &free_fastpath_attr.attr, 4321 &free_slowpath_attr.attr, 4322 &free_frozen_attr.attr, 4323 &free_add_partial_attr.attr, 4324 &free_remove_partial_attr.attr, 4325 &alloc_from_partial_attr.attr, 4326 &alloc_slab_attr.attr, 4327 &alloc_refill_attr.attr, 4328 &free_slab_attr.attr, 4329 &cpuslab_flush_attr.attr, 4330 &deactivate_full_attr.attr, 4331 &deactivate_empty_attr.attr, 4332 &deactivate_to_head_attr.attr, 4333 &deactivate_to_tail_attr.attr, 4334 &deactivate_remote_frees_attr.attr, 4335 &order_fallback_attr.attr, 4336 #endif 4337 #ifdef CONFIG_FAILSLAB 4338 &failslab_attr.attr, 4339 #endif 4340 4341 NULL 4342 }; 4343 4344 static struct attribute_group slab_attr_group = { 4345 .attrs = slab_attrs, 4346 }; 4347 4348 static ssize_t slab_attr_show(struct kobject *kobj, 4349 struct attribute *attr, 4350 char *buf) 4351 { 4352 struct slab_attribute *attribute; 4353 struct kmem_cache *s; 4354 int err; 4355 4356 attribute = to_slab_attr(attr); 4357 s = to_slab(kobj); 4358 4359 if (!attribute->show) 4360 return -EIO; 4361 4362 err = attribute->show(s, buf); 4363 4364 return err; 4365 } 4366 4367 static ssize_t slab_attr_store(struct kobject *kobj, 4368 struct attribute *attr, 4369 const char *buf, size_t len) 4370 { 4371 struct slab_attribute *attribute; 4372 struct kmem_cache *s; 4373 int err; 4374 4375 attribute = to_slab_attr(attr); 4376 s = to_slab(kobj); 4377 4378 if (!attribute->store) 4379 return -EIO; 4380 4381 err = attribute->store(s, buf, len); 4382 4383 return err; 4384 } 4385 4386 static void kmem_cache_release(struct kobject *kobj) 4387 { 4388 struct kmem_cache *s = to_slab(kobj); 4389 4390 kfree(s); 4391 } 4392 4393 static const struct sysfs_ops slab_sysfs_ops = { 4394 .show = slab_attr_show, 4395 .store = slab_attr_store, 4396 }; 4397 4398 static struct kobj_type slab_ktype = { 4399 .sysfs_ops = &slab_sysfs_ops, 4400 .release = kmem_cache_release 4401 }; 4402 4403 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4404 { 4405 struct kobj_type *ktype = get_ktype(kobj); 4406 4407 if (ktype == &slab_ktype) 4408 return 1; 4409 return 0; 4410 } 4411 4412 static const struct kset_uevent_ops slab_uevent_ops = { 4413 .filter = uevent_filter, 4414 }; 4415 4416 static struct kset *slab_kset; 4417 4418 #define ID_STR_LENGTH 64 4419 4420 /* Create a unique string id for a slab cache: 4421 * 4422 * Format :[flags-]size 4423 */ 4424 static char *create_unique_id(struct kmem_cache *s) 4425 { 4426 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4427 char *p = name; 4428 4429 BUG_ON(!name); 4430 4431 *p++ = ':'; 4432 /* 4433 * First flags affecting slabcache operations. We will only 4434 * get here for aliasable slabs so we do not need to support 4435 * too many flags. The flags here must cover all flags that 4436 * are matched during merging to guarantee that the id is 4437 * unique. 4438 */ 4439 if (s->flags & SLAB_CACHE_DMA) 4440 *p++ = 'd'; 4441 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4442 *p++ = 'a'; 4443 if (s->flags & SLAB_DEBUG_FREE) 4444 *p++ = 'F'; 4445 if (!(s->flags & SLAB_NOTRACK)) 4446 *p++ = 't'; 4447 if (p != name + 1) 4448 *p++ = '-'; 4449 p += sprintf(p, "%07d", s->size); 4450 BUG_ON(p > name + ID_STR_LENGTH - 1); 4451 return name; 4452 } 4453 4454 static int sysfs_slab_add(struct kmem_cache *s) 4455 { 4456 int err; 4457 const char *name; 4458 int unmergeable; 4459 4460 if (slab_state < SYSFS) 4461 /* Defer until later */ 4462 return 0; 4463 4464 unmergeable = slab_unmergeable(s); 4465 if (unmergeable) { 4466 /* 4467 * Slabcache can never be merged so we can use the name proper. 4468 * This is typically the case for debug situations. In that 4469 * case we can catch duplicate names easily. 4470 */ 4471 sysfs_remove_link(&slab_kset->kobj, s->name); 4472 name = s->name; 4473 } else { 4474 /* 4475 * Create a unique name for the slab as a target 4476 * for the symlinks. 4477 */ 4478 name = create_unique_id(s); 4479 } 4480 4481 s->kobj.kset = slab_kset; 4482 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4483 if (err) { 4484 kobject_put(&s->kobj); 4485 return err; 4486 } 4487 4488 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4489 if (err) { 4490 kobject_del(&s->kobj); 4491 kobject_put(&s->kobj); 4492 return err; 4493 } 4494 kobject_uevent(&s->kobj, KOBJ_ADD); 4495 if (!unmergeable) { 4496 /* Setup first alias */ 4497 sysfs_slab_alias(s, s->name); 4498 kfree(name); 4499 } 4500 return 0; 4501 } 4502 4503 static void sysfs_slab_remove(struct kmem_cache *s) 4504 { 4505 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4506 kobject_del(&s->kobj); 4507 kobject_put(&s->kobj); 4508 } 4509 4510 /* 4511 * Need to buffer aliases during bootup until sysfs becomes 4512 * available lest we lose that information. 4513 */ 4514 struct saved_alias { 4515 struct kmem_cache *s; 4516 const char *name; 4517 struct saved_alias *next; 4518 }; 4519 4520 static struct saved_alias *alias_list; 4521 4522 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4523 { 4524 struct saved_alias *al; 4525 4526 if (slab_state == SYSFS) { 4527 /* 4528 * If we have a leftover link then remove it. 4529 */ 4530 sysfs_remove_link(&slab_kset->kobj, name); 4531 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4532 } 4533 4534 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4535 if (!al) 4536 return -ENOMEM; 4537 4538 al->s = s; 4539 al->name = name; 4540 al->next = alias_list; 4541 alias_list = al; 4542 return 0; 4543 } 4544 4545 static int __init slab_sysfs_init(void) 4546 { 4547 struct kmem_cache *s; 4548 int err; 4549 4550 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4551 if (!slab_kset) { 4552 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4553 return -ENOSYS; 4554 } 4555 4556 slab_state = SYSFS; 4557 4558 list_for_each_entry(s, &slab_caches, list) { 4559 err = sysfs_slab_add(s); 4560 if (err) 4561 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4562 " to sysfs\n", s->name); 4563 } 4564 4565 while (alias_list) { 4566 struct saved_alias *al = alias_list; 4567 4568 alias_list = alias_list->next; 4569 err = sysfs_slab_alias(al->s, al->name); 4570 if (err) 4571 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4572 " %s to sysfs\n", s->name); 4573 kfree(al); 4574 } 4575 4576 resiliency_test(); 4577 return 0; 4578 } 4579 4580 __initcall(slab_sysfs_init); 4581 #endif 4582 4583 /* 4584 * The /proc/slabinfo ABI 4585 */ 4586 #ifdef CONFIG_SLABINFO 4587 static void print_slabinfo_header(struct seq_file *m) 4588 { 4589 seq_puts(m, "slabinfo - version: 2.1\n"); 4590 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4591 "<objperslab> <pagesperslab>"); 4592 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4593 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4594 seq_putc(m, '\n'); 4595 } 4596 4597 static void *s_start(struct seq_file *m, loff_t *pos) 4598 { 4599 loff_t n = *pos; 4600 4601 down_read(&slub_lock); 4602 if (!n) 4603 print_slabinfo_header(m); 4604 4605 return seq_list_start(&slab_caches, *pos); 4606 } 4607 4608 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4609 { 4610 return seq_list_next(p, &slab_caches, pos); 4611 } 4612 4613 static void s_stop(struct seq_file *m, void *p) 4614 { 4615 up_read(&slub_lock); 4616 } 4617 4618 static int s_show(struct seq_file *m, void *p) 4619 { 4620 unsigned long nr_partials = 0; 4621 unsigned long nr_slabs = 0; 4622 unsigned long nr_inuse = 0; 4623 unsigned long nr_objs = 0; 4624 unsigned long nr_free = 0; 4625 struct kmem_cache *s; 4626 int node; 4627 4628 s = list_entry(p, struct kmem_cache, list); 4629 4630 for_each_online_node(node) { 4631 struct kmem_cache_node *n = get_node(s, node); 4632 4633 if (!n) 4634 continue; 4635 4636 nr_partials += n->nr_partial; 4637 nr_slabs += atomic_long_read(&n->nr_slabs); 4638 nr_objs += atomic_long_read(&n->total_objects); 4639 nr_free += count_partial(n, count_free); 4640 } 4641 4642 nr_inuse = nr_objs - nr_free; 4643 4644 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4645 nr_objs, s->size, oo_objects(s->oo), 4646 (1 << oo_order(s->oo))); 4647 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4648 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4649 0UL); 4650 seq_putc(m, '\n'); 4651 return 0; 4652 } 4653 4654 static const struct seq_operations slabinfo_op = { 4655 .start = s_start, 4656 .next = s_next, 4657 .stop = s_stop, 4658 .show = s_show, 4659 }; 4660 4661 static int slabinfo_open(struct inode *inode, struct file *file) 4662 { 4663 return seq_open(file, &slabinfo_op); 4664 } 4665 4666 static const struct file_operations proc_slabinfo_operations = { 4667 .open = slabinfo_open, 4668 .read = seq_read, 4669 .llseek = seq_lseek, 4670 .release = seq_release, 4671 }; 4672 4673 static int __init slab_proc_init(void) 4674 { 4675 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); 4676 return 0; 4677 } 4678 module_init(slab_proc_init); 4679 #endif /* CONFIG_SLABINFO */ 4680