xref: /linux/mm/slub.c (revision 5294bac97e12bdabbb97e9adf44d388612a700b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120 #else
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122 #endif
123 #endif
124 
125 static inline bool kmem_cache_debug(struct kmem_cache *s)
126 {
127 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128 }
129 
130 void *fixup_red_left(struct kmem_cache *s, void *p)
131 {
132 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
133 		p += s->red_left_pad;
134 
135 	return p;
136 }
137 
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 {
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 	return !kmem_cache_debug(s);
142 #else
143 	return false;
144 #endif
145 }
146 
147 /*
148  * Issues still to be resolved:
149  *
150  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151  *
152  * - Variable sizing of the per node arrays
153  */
154 
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
157 
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
160 
161 /*
162  * Mininum number of partial slabs. These will be left on the partial
163  * lists even if they are empty. kmem_cache_shrink may reclaim them.
164  */
165 #define MIN_PARTIAL 5
166 
167 /*
168  * Maximum number of desirable partial slabs.
169  * The existence of more partial slabs makes kmem_cache_shrink
170  * sort the partial list by the number of objects in use.
171  */
172 #define MAX_PARTIAL 10
173 
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 				SLAB_POISON | SLAB_STORE_USER)
176 
177 /*
178  * These debug flags cannot use CMPXCHG because there might be consistency
179  * issues when checking or reading debug information
180  */
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 				SLAB_TRACE)
183 
184 
185 /*
186  * Debugging flags that require metadata to be stored in the slab.  These get
187  * disabled when slub_debug=O is used and a cache's min order increases with
188  * metadata.
189  */
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 
192 #define OO_SHIFT	16
193 #define OO_MASK		((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
195 
196 /* Internal SLUB flags */
197 /* Poison object */
198 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
201 
202 /*
203  * Tracking user of a slab.
204  */
205 #define TRACK_ADDRS_COUNT 16
206 struct track {
207 	unsigned long addr;	/* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
210 #endif
211 	int cpu;		/* Was running on cpu */
212 	int pid;		/* Pid context */
213 	unsigned long when;	/* When did the operation occur */
214 };
215 
216 enum track_item { TRACK_ALLOC, TRACK_FREE };
217 
218 #ifdef CONFIG_SYSFS
219 static int sysfs_slab_add(struct kmem_cache *);
220 static int sysfs_slab_alias(struct kmem_cache *, const char *);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	return freelist_dereference(s, object + s->offset);
279 }
280 
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 	prefetch(object + s->offset);
284 }
285 
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 	unsigned long freepointer_addr;
289 	void *p;
290 
291 	if (!debug_pagealloc_enabled_static())
292 		return get_freepointer(s, object);
293 
294 	freepointer_addr = (unsigned long)object + s->offset;
295 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
296 	return freelist_ptr(s, p, freepointer_addr);
297 }
298 
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
302 
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 	BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306 
307 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309 
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 	for (__p = fixup_red_left(__s, __addr); \
313 		__p < (__addr) + (__objects) * (__s)->size; \
314 		__p += (__s)->size)
315 
316 static inline unsigned int order_objects(unsigned int order, unsigned int size)
317 {
318 	return ((unsigned int)PAGE_SIZE << order) / size;
319 }
320 
321 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
322 		unsigned int size)
323 {
324 	struct kmem_cache_order_objects x = {
325 		(order << OO_SHIFT) + order_objects(order, size)
326 	};
327 
328 	return x;
329 }
330 
331 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
332 {
333 	return x.x >> OO_SHIFT;
334 }
335 
336 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
337 {
338 	return x.x & OO_MASK;
339 }
340 
341 /*
342  * Per slab locking using the pagelock
343  */
344 static __always_inline void slab_lock(struct page *page)
345 {
346 	VM_BUG_ON_PAGE(PageTail(page), page);
347 	bit_spin_lock(PG_locked, &page->flags);
348 }
349 
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 	VM_BUG_ON_PAGE(PageTail(page), page);
353 	__bit_spin_unlock(PG_locked, &page->flags);
354 }
355 
356 /* Interrupts must be disabled (for the fallback code to work right) */
357 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 		void *freelist_old, unsigned long counters_old,
359 		void *freelist_new, unsigned long counters_new,
360 		const char *n)
361 {
362 	VM_BUG_ON(!irqs_disabled());
363 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
364     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
365 	if (s->flags & __CMPXCHG_DOUBLE) {
366 		if (cmpxchg_double(&page->freelist, &page->counters,
367 				   freelist_old, counters_old,
368 				   freelist_new, counters_new))
369 			return true;
370 	} else
371 #endif
372 	{
373 		slab_lock(page);
374 		if (page->freelist == freelist_old &&
375 					page->counters == counters_old) {
376 			page->freelist = freelist_new;
377 			page->counters = counters_new;
378 			slab_unlock(page);
379 			return true;
380 		}
381 		slab_unlock(page);
382 	}
383 
384 	cpu_relax();
385 	stat(s, CMPXCHG_DOUBLE_FAIL);
386 
387 #ifdef SLUB_DEBUG_CMPXCHG
388 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
389 #endif
390 
391 	return false;
392 }
393 
394 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 		void *freelist_old, unsigned long counters_old,
396 		void *freelist_new, unsigned long counters_new,
397 		const char *n)
398 {
399 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
401 	if (s->flags & __CMPXCHG_DOUBLE) {
402 		if (cmpxchg_double(&page->freelist, &page->counters,
403 				   freelist_old, counters_old,
404 				   freelist_new, counters_new))
405 			return true;
406 	} else
407 #endif
408 	{
409 		unsigned long flags;
410 
411 		local_irq_save(flags);
412 		slab_lock(page);
413 		if (page->freelist == freelist_old &&
414 					page->counters == counters_old) {
415 			page->freelist = freelist_new;
416 			page->counters = counters_new;
417 			slab_unlock(page);
418 			local_irq_restore(flags);
419 			return true;
420 		}
421 		slab_unlock(page);
422 		local_irq_restore(flags);
423 	}
424 
425 	cpu_relax();
426 	stat(s, CMPXCHG_DOUBLE_FAIL);
427 
428 #ifdef SLUB_DEBUG_CMPXCHG
429 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
430 #endif
431 
432 	return false;
433 }
434 
435 #ifdef CONFIG_SLUB_DEBUG
436 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
437 static DEFINE_SPINLOCK(object_map_lock);
438 
439 /*
440  * Determine a map of object in use on a page.
441  *
442  * Node listlock must be held to guarantee that the page does
443  * not vanish from under us.
444  */
445 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
446 	__acquires(&object_map_lock)
447 {
448 	void *p;
449 	void *addr = page_address(page);
450 
451 	VM_BUG_ON(!irqs_disabled());
452 
453 	spin_lock(&object_map_lock);
454 
455 	bitmap_zero(object_map, page->objects);
456 
457 	for (p = page->freelist; p; p = get_freepointer(s, p))
458 		set_bit(__obj_to_index(s, addr, p), object_map);
459 
460 	return object_map;
461 }
462 
463 static void put_map(unsigned long *map) __releases(&object_map_lock)
464 {
465 	VM_BUG_ON(map != object_map);
466 	spin_unlock(&object_map_lock);
467 }
468 
469 static inline unsigned int size_from_object(struct kmem_cache *s)
470 {
471 	if (s->flags & SLAB_RED_ZONE)
472 		return s->size - s->red_left_pad;
473 
474 	return s->size;
475 }
476 
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 	if (s->flags & SLAB_RED_ZONE)
480 		p -= s->red_left_pad;
481 
482 	return p;
483 }
484 
485 /*
486  * Debug settings:
487  */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493 
494 static char *slub_debug_string;
495 static int disable_higher_order_debug;
496 
497 /*
498  * slub is about to manipulate internal object metadata.  This memory lies
499  * outside the range of the allocated object, so accessing it would normally
500  * be reported by kasan as a bounds error.  metadata_access_enable() is used
501  * to tell kasan that these accesses are OK.
502  */
503 static inline void metadata_access_enable(void)
504 {
505 	kasan_disable_current();
506 }
507 
508 static inline void metadata_access_disable(void)
509 {
510 	kasan_enable_current();
511 }
512 
513 /*
514  * Object debugging
515  */
516 
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 				struct page *page, void *object)
520 {
521 	void *base;
522 
523 	if (!object)
524 		return 1;
525 
526 	base = page_address(page);
527 	object = kasan_reset_tag(object);
528 	object = restore_red_left(s, object);
529 	if (object < base || object >= base + page->objects * s->size ||
530 		(object - base) % s->size) {
531 		return 0;
532 	}
533 
534 	return 1;
535 }
536 
537 static void print_section(char *level, char *text, u8 *addr,
538 			  unsigned int length)
539 {
540 	metadata_access_enable();
541 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
542 			length, 1);
543 	metadata_access_disable();
544 }
545 
546 /*
547  * See comment in calculate_sizes().
548  */
549 static inline bool freeptr_outside_object(struct kmem_cache *s)
550 {
551 	return s->offset >= s->inuse;
552 }
553 
554 /*
555  * Return offset of the end of info block which is inuse + free pointer if
556  * not overlapping with object.
557  */
558 static inline unsigned int get_info_end(struct kmem_cache *s)
559 {
560 	if (freeptr_outside_object(s))
561 		return s->inuse + sizeof(void *);
562 	else
563 		return s->inuse;
564 }
565 
566 static struct track *get_track(struct kmem_cache *s, void *object,
567 	enum track_item alloc)
568 {
569 	struct track *p;
570 
571 	p = object + get_info_end(s);
572 
573 	return p + alloc;
574 }
575 
576 static void set_track(struct kmem_cache *s, void *object,
577 			enum track_item alloc, unsigned long addr)
578 {
579 	struct track *p = get_track(s, object, alloc);
580 
581 	if (addr) {
582 #ifdef CONFIG_STACKTRACE
583 		unsigned int nr_entries;
584 
585 		metadata_access_enable();
586 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
587 		metadata_access_disable();
588 
589 		if (nr_entries < TRACK_ADDRS_COUNT)
590 			p->addrs[nr_entries] = 0;
591 #endif
592 		p->addr = addr;
593 		p->cpu = smp_processor_id();
594 		p->pid = current->pid;
595 		p->when = jiffies;
596 	} else {
597 		memset(p, 0, sizeof(struct track));
598 	}
599 }
600 
601 static void init_tracking(struct kmem_cache *s, void *object)
602 {
603 	if (!(s->flags & SLAB_STORE_USER))
604 		return;
605 
606 	set_track(s, object, TRACK_FREE, 0UL);
607 	set_track(s, object, TRACK_ALLOC, 0UL);
608 }
609 
610 static void print_track(const char *s, struct track *t, unsigned long pr_time)
611 {
612 	if (!t->addr)
613 		return;
614 
615 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
616 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
617 #ifdef CONFIG_STACKTRACE
618 	{
619 		int i;
620 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
621 			if (t->addrs[i])
622 				pr_err("\t%pS\n", (void *)t->addrs[i]);
623 			else
624 				break;
625 	}
626 #endif
627 }
628 
629 void print_tracking(struct kmem_cache *s, void *object)
630 {
631 	unsigned long pr_time = jiffies;
632 	if (!(s->flags & SLAB_STORE_USER))
633 		return;
634 
635 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
636 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
637 }
638 
639 static void print_page_info(struct page *page)
640 {
641 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
642 	       page, page->objects, page->inuse, page->freelist, page->flags);
643 
644 }
645 
646 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
647 {
648 	struct va_format vaf;
649 	va_list args;
650 
651 	va_start(args, fmt);
652 	vaf.fmt = fmt;
653 	vaf.va = &args;
654 	pr_err("=============================================================================\n");
655 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
656 	pr_err("-----------------------------------------------------------------------------\n\n");
657 
658 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
659 	va_end(args);
660 }
661 
662 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
663 {
664 	struct va_format vaf;
665 	va_list args;
666 
667 	va_start(args, fmt);
668 	vaf.fmt = fmt;
669 	vaf.va = &args;
670 	pr_err("FIX %s: %pV\n", s->name, &vaf);
671 	va_end(args);
672 }
673 
674 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
675 			       void **freelist, void *nextfree)
676 {
677 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
678 	    !check_valid_pointer(s, page, nextfree) && freelist) {
679 		object_err(s, page, *freelist, "Freechain corrupt");
680 		*freelist = NULL;
681 		slab_fix(s, "Isolate corrupted freechain");
682 		return true;
683 	}
684 
685 	return false;
686 }
687 
688 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
689 {
690 	unsigned int off;	/* Offset of last byte */
691 	u8 *addr = page_address(page);
692 
693 	print_tracking(s, p);
694 
695 	print_page_info(page);
696 
697 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
698 	       p, p - addr, get_freepointer(s, p));
699 
700 	if (s->flags & SLAB_RED_ZONE)
701 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
702 			      s->red_left_pad);
703 	else if (p > addr + 16)
704 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
705 
706 	print_section(KERN_ERR, "Object ", p,
707 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
708 	if (s->flags & SLAB_RED_ZONE)
709 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
710 			s->inuse - s->object_size);
711 
712 	off = get_info_end(s);
713 
714 	if (s->flags & SLAB_STORE_USER)
715 		off += 2 * sizeof(struct track);
716 
717 	off += kasan_metadata_size(s);
718 
719 	if (off != size_from_object(s))
720 		/* Beginning of the filler is the free pointer */
721 		print_section(KERN_ERR, "Padding ", p + off,
722 			      size_from_object(s) - off);
723 
724 	dump_stack();
725 }
726 
727 void object_err(struct kmem_cache *s, struct page *page,
728 			u8 *object, char *reason)
729 {
730 	slab_bug(s, "%s", reason);
731 	print_trailer(s, page, object);
732 }
733 
734 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
735 			const char *fmt, ...)
736 {
737 	va_list args;
738 	char buf[100];
739 
740 	va_start(args, fmt);
741 	vsnprintf(buf, sizeof(buf), fmt, args);
742 	va_end(args);
743 	slab_bug(s, "%s", buf);
744 	print_page_info(page);
745 	dump_stack();
746 }
747 
748 static void init_object(struct kmem_cache *s, void *object, u8 val)
749 {
750 	u8 *p = object;
751 
752 	if (s->flags & SLAB_RED_ZONE)
753 		memset(p - s->red_left_pad, val, s->red_left_pad);
754 
755 	if (s->flags & __OBJECT_POISON) {
756 		memset(p, POISON_FREE, s->object_size - 1);
757 		p[s->object_size - 1] = POISON_END;
758 	}
759 
760 	if (s->flags & SLAB_RED_ZONE)
761 		memset(p + s->object_size, val, s->inuse - s->object_size);
762 }
763 
764 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
765 						void *from, void *to)
766 {
767 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
768 	memset(from, data, to - from);
769 }
770 
771 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
772 			u8 *object, char *what,
773 			u8 *start, unsigned int value, unsigned int bytes)
774 {
775 	u8 *fault;
776 	u8 *end;
777 	u8 *addr = page_address(page);
778 
779 	metadata_access_enable();
780 	fault = memchr_inv(start, value, bytes);
781 	metadata_access_disable();
782 	if (!fault)
783 		return 1;
784 
785 	end = start + bytes;
786 	while (end > fault && end[-1] == value)
787 		end--;
788 
789 	slab_bug(s, "%s overwritten", what);
790 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
791 					fault, end - 1, fault - addr,
792 					fault[0], value);
793 	print_trailer(s, page, object);
794 
795 	restore_bytes(s, what, value, fault, end);
796 	return 0;
797 }
798 
799 /*
800  * Object layout:
801  *
802  * object address
803  * 	Bytes of the object to be managed.
804  * 	If the freepointer may overlay the object then the free
805  *	pointer is at the middle of the object.
806  *
807  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
808  * 	0xa5 (POISON_END)
809  *
810  * object + s->object_size
811  * 	Padding to reach word boundary. This is also used for Redzoning.
812  * 	Padding is extended by another word if Redzoning is enabled and
813  * 	object_size == inuse.
814  *
815  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
816  * 	0xcc (RED_ACTIVE) for objects in use.
817  *
818  * object + s->inuse
819  * 	Meta data starts here.
820  *
821  * 	A. Free pointer (if we cannot overwrite object on free)
822  * 	B. Tracking data for SLAB_STORE_USER
823  * 	C. Padding to reach required alignment boundary or at mininum
824  * 		one word if debugging is on to be able to detect writes
825  * 		before the word boundary.
826  *
827  *	Padding is done using 0x5a (POISON_INUSE)
828  *
829  * object + s->size
830  * 	Nothing is used beyond s->size.
831  *
832  * If slabcaches are merged then the object_size and inuse boundaries are mostly
833  * ignored. And therefore no slab options that rely on these boundaries
834  * may be used with merged slabcaches.
835  */
836 
837 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
838 {
839 	unsigned long off = get_info_end(s);	/* The end of info */
840 
841 	if (s->flags & SLAB_STORE_USER)
842 		/* We also have user information there */
843 		off += 2 * sizeof(struct track);
844 
845 	off += kasan_metadata_size(s);
846 
847 	if (size_from_object(s) == off)
848 		return 1;
849 
850 	return check_bytes_and_report(s, page, p, "Object padding",
851 			p + off, POISON_INUSE, size_from_object(s) - off);
852 }
853 
854 /* Check the pad bytes at the end of a slab page */
855 static int slab_pad_check(struct kmem_cache *s, struct page *page)
856 {
857 	u8 *start;
858 	u8 *fault;
859 	u8 *end;
860 	u8 *pad;
861 	int length;
862 	int remainder;
863 
864 	if (!(s->flags & SLAB_POISON))
865 		return 1;
866 
867 	start = page_address(page);
868 	length = page_size(page);
869 	end = start + length;
870 	remainder = length % s->size;
871 	if (!remainder)
872 		return 1;
873 
874 	pad = end - remainder;
875 	metadata_access_enable();
876 	fault = memchr_inv(pad, POISON_INUSE, remainder);
877 	metadata_access_disable();
878 	if (!fault)
879 		return 1;
880 	while (end > fault && end[-1] == POISON_INUSE)
881 		end--;
882 
883 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
884 			fault, end - 1, fault - start);
885 	print_section(KERN_ERR, "Padding ", pad, remainder);
886 
887 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
888 	return 0;
889 }
890 
891 static int check_object(struct kmem_cache *s, struct page *page,
892 					void *object, u8 val)
893 {
894 	u8 *p = object;
895 	u8 *endobject = object + s->object_size;
896 
897 	if (s->flags & SLAB_RED_ZONE) {
898 		if (!check_bytes_and_report(s, page, object, "Redzone",
899 			object - s->red_left_pad, val, s->red_left_pad))
900 			return 0;
901 
902 		if (!check_bytes_and_report(s, page, object, "Redzone",
903 			endobject, val, s->inuse - s->object_size))
904 			return 0;
905 	} else {
906 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
907 			check_bytes_and_report(s, page, p, "Alignment padding",
908 				endobject, POISON_INUSE,
909 				s->inuse - s->object_size);
910 		}
911 	}
912 
913 	if (s->flags & SLAB_POISON) {
914 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
915 			(!check_bytes_and_report(s, page, p, "Poison", p,
916 					POISON_FREE, s->object_size - 1) ||
917 			 !check_bytes_and_report(s, page, p, "Poison",
918 				p + s->object_size - 1, POISON_END, 1)))
919 			return 0;
920 		/*
921 		 * check_pad_bytes cleans up on its own.
922 		 */
923 		check_pad_bytes(s, page, p);
924 	}
925 
926 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
927 		/*
928 		 * Object and freepointer overlap. Cannot check
929 		 * freepointer while object is allocated.
930 		 */
931 		return 1;
932 
933 	/* Check free pointer validity */
934 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
935 		object_err(s, page, p, "Freepointer corrupt");
936 		/*
937 		 * No choice but to zap it and thus lose the remainder
938 		 * of the free objects in this slab. May cause
939 		 * another error because the object count is now wrong.
940 		 */
941 		set_freepointer(s, p, NULL);
942 		return 0;
943 	}
944 	return 1;
945 }
946 
947 static int check_slab(struct kmem_cache *s, struct page *page)
948 {
949 	int maxobj;
950 
951 	VM_BUG_ON(!irqs_disabled());
952 
953 	if (!PageSlab(page)) {
954 		slab_err(s, page, "Not a valid slab page");
955 		return 0;
956 	}
957 
958 	maxobj = order_objects(compound_order(page), s->size);
959 	if (page->objects > maxobj) {
960 		slab_err(s, page, "objects %u > max %u",
961 			page->objects, maxobj);
962 		return 0;
963 	}
964 	if (page->inuse > page->objects) {
965 		slab_err(s, page, "inuse %u > max %u",
966 			page->inuse, page->objects);
967 		return 0;
968 	}
969 	/* Slab_pad_check fixes things up after itself */
970 	slab_pad_check(s, page);
971 	return 1;
972 }
973 
974 /*
975  * Determine if a certain object on a page is on the freelist. Must hold the
976  * slab lock to guarantee that the chains are in a consistent state.
977  */
978 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
979 {
980 	int nr = 0;
981 	void *fp;
982 	void *object = NULL;
983 	int max_objects;
984 
985 	fp = page->freelist;
986 	while (fp && nr <= page->objects) {
987 		if (fp == search)
988 			return 1;
989 		if (!check_valid_pointer(s, page, fp)) {
990 			if (object) {
991 				object_err(s, page, object,
992 					"Freechain corrupt");
993 				set_freepointer(s, object, NULL);
994 			} else {
995 				slab_err(s, page, "Freepointer corrupt");
996 				page->freelist = NULL;
997 				page->inuse = page->objects;
998 				slab_fix(s, "Freelist cleared");
999 				return 0;
1000 			}
1001 			break;
1002 		}
1003 		object = fp;
1004 		fp = get_freepointer(s, object);
1005 		nr++;
1006 	}
1007 
1008 	max_objects = order_objects(compound_order(page), s->size);
1009 	if (max_objects > MAX_OBJS_PER_PAGE)
1010 		max_objects = MAX_OBJS_PER_PAGE;
1011 
1012 	if (page->objects != max_objects) {
1013 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1014 			 page->objects, max_objects);
1015 		page->objects = max_objects;
1016 		slab_fix(s, "Number of objects adjusted.");
1017 	}
1018 	if (page->inuse != page->objects - nr) {
1019 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1020 			 page->inuse, page->objects - nr);
1021 		page->inuse = page->objects - nr;
1022 		slab_fix(s, "Object count adjusted.");
1023 	}
1024 	return search == NULL;
1025 }
1026 
1027 static void trace(struct kmem_cache *s, struct page *page, void *object,
1028 								int alloc)
1029 {
1030 	if (s->flags & SLAB_TRACE) {
1031 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1032 			s->name,
1033 			alloc ? "alloc" : "free",
1034 			object, page->inuse,
1035 			page->freelist);
1036 
1037 		if (!alloc)
1038 			print_section(KERN_INFO, "Object ", (void *)object,
1039 					s->object_size);
1040 
1041 		dump_stack();
1042 	}
1043 }
1044 
1045 /*
1046  * Tracking of fully allocated slabs for debugging purposes.
1047  */
1048 static void add_full(struct kmem_cache *s,
1049 	struct kmem_cache_node *n, struct page *page)
1050 {
1051 	if (!(s->flags & SLAB_STORE_USER))
1052 		return;
1053 
1054 	lockdep_assert_held(&n->list_lock);
1055 	list_add(&page->slab_list, &n->full);
1056 }
1057 
1058 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1059 {
1060 	if (!(s->flags & SLAB_STORE_USER))
1061 		return;
1062 
1063 	lockdep_assert_held(&n->list_lock);
1064 	list_del(&page->slab_list);
1065 }
1066 
1067 /* Tracking of the number of slabs for debugging purposes */
1068 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1069 {
1070 	struct kmem_cache_node *n = get_node(s, node);
1071 
1072 	return atomic_long_read(&n->nr_slabs);
1073 }
1074 
1075 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1076 {
1077 	return atomic_long_read(&n->nr_slabs);
1078 }
1079 
1080 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1081 {
1082 	struct kmem_cache_node *n = get_node(s, node);
1083 
1084 	/*
1085 	 * May be called early in order to allocate a slab for the
1086 	 * kmem_cache_node structure. Solve the chicken-egg
1087 	 * dilemma by deferring the increment of the count during
1088 	 * bootstrap (see early_kmem_cache_node_alloc).
1089 	 */
1090 	if (likely(n)) {
1091 		atomic_long_inc(&n->nr_slabs);
1092 		atomic_long_add(objects, &n->total_objects);
1093 	}
1094 }
1095 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1096 {
1097 	struct kmem_cache_node *n = get_node(s, node);
1098 
1099 	atomic_long_dec(&n->nr_slabs);
1100 	atomic_long_sub(objects, &n->total_objects);
1101 }
1102 
1103 /* Object debug checks for alloc/free paths */
1104 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1105 								void *object)
1106 {
1107 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1108 		return;
1109 
1110 	init_object(s, object, SLUB_RED_INACTIVE);
1111 	init_tracking(s, object);
1112 }
1113 
1114 static
1115 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1116 {
1117 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1118 		return;
1119 
1120 	metadata_access_enable();
1121 	memset(addr, POISON_INUSE, page_size(page));
1122 	metadata_access_disable();
1123 }
1124 
1125 static inline int alloc_consistency_checks(struct kmem_cache *s,
1126 					struct page *page, void *object)
1127 {
1128 	if (!check_slab(s, page))
1129 		return 0;
1130 
1131 	if (!check_valid_pointer(s, page, object)) {
1132 		object_err(s, page, object, "Freelist Pointer check fails");
1133 		return 0;
1134 	}
1135 
1136 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1137 		return 0;
1138 
1139 	return 1;
1140 }
1141 
1142 static noinline int alloc_debug_processing(struct kmem_cache *s,
1143 					struct page *page,
1144 					void *object, unsigned long addr)
1145 {
1146 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1147 		if (!alloc_consistency_checks(s, page, object))
1148 			goto bad;
1149 	}
1150 
1151 	/* Success perform special debug activities for allocs */
1152 	if (s->flags & SLAB_STORE_USER)
1153 		set_track(s, object, TRACK_ALLOC, addr);
1154 	trace(s, page, object, 1);
1155 	init_object(s, object, SLUB_RED_ACTIVE);
1156 	return 1;
1157 
1158 bad:
1159 	if (PageSlab(page)) {
1160 		/*
1161 		 * If this is a slab page then lets do the best we can
1162 		 * to avoid issues in the future. Marking all objects
1163 		 * as used avoids touching the remaining objects.
1164 		 */
1165 		slab_fix(s, "Marking all objects used");
1166 		page->inuse = page->objects;
1167 		page->freelist = NULL;
1168 	}
1169 	return 0;
1170 }
1171 
1172 static inline int free_consistency_checks(struct kmem_cache *s,
1173 		struct page *page, void *object, unsigned long addr)
1174 {
1175 	if (!check_valid_pointer(s, page, object)) {
1176 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1177 		return 0;
1178 	}
1179 
1180 	if (on_freelist(s, page, object)) {
1181 		object_err(s, page, object, "Object already free");
1182 		return 0;
1183 	}
1184 
1185 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1186 		return 0;
1187 
1188 	if (unlikely(s != page->slab_cache)) {
1189 		if (!PageSlab(page)) {
1190 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1191 				 object);
1192 		} else if (!page->slab_cache) {
1193 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1194 			       object);
1195 			dump_stack();
1196 		} else
1197 			object_err(s, page, object,
1198 					"page slab pointer corrupt.");
1199 		return 0;
1200 	}
1201 	return 1;
1202 }
1203 
1204 /* Supports checking bulk free of a constructed freelist */
1205 static noinline int free_debug_processing(
1206 	struct kmem_cache *s, struct page *page,
1207 	void *head, void *tail, int bulk_cnt,
1208 	unsigned long addr)
1209 {
1210 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1211 	void *object = head;
1212 	int cnt = 0;
1213 	unsigned long flags;
1214 	int ret = 0;
1215 
1216 	spin_lock_irqsave(&n->list_lock, flags);
1217 	slab_lock(page);
1218 
1219 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1220 		if (!check_slab(s, page))
1221 			goto out;
1222 	}
1223 
1224 next_object:
1225 	cnt++;
1226 
1227 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 		if (!free_consistency_checks(s, page, object, addr))
1229 			goto out;
1230 	}
1231 
1232 	if (s->flags & SLAB_STORE_USER)
1233 		set_track(s, object, TRACK_FREE, addr);
1234 	trace(s, page, object, 0);
1235 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1236 	init_object(s, object, SLUB_RED_INACTIVE);
1237 
1238 	/* Reached end of constructed freelist yet? */
1239 	if (object != tail) {
1240 		object = get_freepointer(s, object);
1241 		goto next_object;
1242 	}
1243 	ret = 1;
1244 
1245 out:
1246 	if (cnt != bulk_cnt)
1247 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1248 			 bulk_cnt, cnt);
1249 
1250 	slab_unlock(page);
1251 	spin_unlock_irqrestore(&n->list_lock, flags);
1252 	if (!ret)
1253 		slab_fix(s, "Object at 0x%p not freed", object);
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Parse a block of slub_debug options. Blocks are delimited by ';'
1259  *
1260  * @str:    start of block
1261  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1262  * @slabs:  return start of list of slabs, or NULL when there's no list
1263  * @init:   assume this is initial parsing and not per-kmem-create parsing
1264  *
1265  * returns the start of next block if there's any, or NULL
1266  */
1267 static char *
1268 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1269 {
1270 	bool higher_order_disable = false;
1271 
1272 	/* Skip any completely empty blocks */
1273 	while (*str && *str == ';')
1274 		str++;
1275 
1276 	if (*str == ',') {
1277 		/*
1278 		 * No options but restriction on slabs. This means full
1279 		 * debugging for slabs matching a pattern.
1280 		 */
1281 		*flags = DEBUG_DEFAULT_FLAGS;
1282 		goto check_slabs;
1283 	}
1284 	*flags = 0;
1285 
1286 	/* Determine which debug features should be switched on */
1287 	for (; *str && *str != ',' && *str != ';'; str++) {
1288 		switch (tolower(*str)) {
1289 		case '-':
1290 			*flags = 0;
1291 			break;
1292 		case 'f':
1293 			*flags |= SLAB_CONSISTENCY_CHECKS;
1294 			break;
1295 		case 'z':
1296 			*flags |= SLAB_RED_ZONE;
1297 			break;
1298 		case 'p':
1299 			*flags |= SLAB_POISON;
1300 			break;
1301 		case 'u':
1302 			*flags |= SLAB_STORE_USER;
1303 			break;
1304 		case 't':
1305 			*flags |= SLAB_TRACE;
1306 			break;
1307 		case 'a':
1308 			*flags |= SLAB_FAILSLAB;
1309 			break;
1310 		case 'o':
1311 			/*
1312 			 * Avoid enabling debugging on caches if its minimum
1313 			 * order would increase as a result.
1314 			 */
1315 			higher_order_disable = true;
1316 			break;
1317 		default:
1318 			if (init)
1319 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1320 		}
1321 	}
1322 check_slabs:
1323 	if (*str == ',')
1324 		*slabs = ++str;
1325 	else
1326 		*slabs = NULL;
1327 
1328 	/* Skip over the slab list */
1329 	while (*str && *str != ';')
1330 		str++;
1331 
1332 	/* Skip any completely empty blocks */
1333 	while (*str && *str == ';')
1334 		str++;
1335 
1336 	if (init && higher_order_disable)
1337 		disable_higher_order_debug = 1;
1338 
1339 	if (*str)
1340 		return str;
1341 	else
1342 		return NULL;
1343 }
1344 
1345 static int __init setup_slub_debug(char *str)
1346 {
1347 	slab_flags_t flags;
1348 	char *saved_str;
1349 	char *slab_list;
1350 	bool global_slub_debug_changed = false;
1351 	bool slab_list_specified = false;
1352 
1353 	slub_debug = DEBUG_DEFAULT_FLAGS;
1354 	if (*str++ != '=' || !*str)
1355 		/*
1356 		 * No options specified. Switch on full debugging.
1357 		 */
1358 		goto out;
1359 
1360 	saved_str = str;
1361 	while (str) {
1362 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1363 
1364 		if (!slab_list) {
1365 			slub_debug = flags;
1366 			global_slub_debug_changed = true;
1367 		} else {
1368 			slab_list_specified = true;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * For backwards compatibility, a single list of flags with list of
1374 	 * slabs means debugging is only enabled for those slabs, so the global
1375 	 * slub_debug should be 0. We can extended that to multiple lists as
1376 	 * long as there is no option specifying flags without a slab list.
1377 	 */
1378 	if (slab_list_specified) {
1379 		if (!global_slub_debug_changed)
1380 			slub_debug = 0;
1381 		slub_debug_string = saved_str;
1382 	}
1383 out:
1384 	if (slub_debug != 0 || slub_debug_string)
1385 		static_branch_enable(&slub_debug_enabled);
1386 	if ((static_branch_unlikely(&init_on_alloc) ||
1387 	     static_branch_unlikely(&init_on_free)) &&
1388 	    (slub_debug & SLAB_POISON))
1389 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1390 	return 1;
1391 }
1392 
1393 __setup("slub_debug", setup_slub_debug);
1394 
1395 /*
1396  * kmem_cache_flags - apply debugging options to the cache
1397  * @object_size:	the size of an object without meta data
1398  * @flags:		flags to set
1399  * @name:		name of the cache
1400  * @ctor:		constructor function
1401  *
1402  * Debug option(s) are applied to @flags. In addition to the debug
1403  * option(s), if a slab name (or multiple) is specified i.e.
1404  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1405  * then only the select slabs will receive the debug option(s).
1406  */
1407 slab_flags_t kmem_cache_flags(unsigned int object_size,
1408 	slab_flags_t flags, const char *name,
1409 	void (*ctor)(void *))
1410 {
1411 	char *iter;
1412 	size_t len;
1413 	char *next_block;
1414 	slab_flags_t block_flags;
1415 
1416 	len = strlen(name);
1417 	next_block = slub_debug_string;
1418 	/* Go through all blocks of debug options, see if any matches our slab's name */
1419 	while (next_block) {
1420 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1421 		if (!iter)
1422 			continue;
1423 		/* Found a block that has a slab list, search it */
1424 		while (*iter) {
1425 			char *end, *glob;
1426 			size_t cmplen;
1427 
1428 			end = strchrnul(iter, ',');
1429 			if (next_block && next_block < end)
1430 				end = next_block - 1;
1431 
1432 			glob = strnchr(iter, end - iter, '*');
1433 			if (glob)
1434 				cmplen = glob - iter;
1435 			else
1436 				cmplen = max_t(size_t, len, (end - iter));
1437 
1438 			if (!strncmp(name, iter, cmplen)) {
1439 				flags |= block_flags;
1440 				return flags;
1441 			}
1442 
1443 			if (!*end || *end == ';')
1444 				break;
1445 			iter = end + 1;
1446 		}
1447 	}
1448 
1449 	return flags | slub_debug;
1450 }
1451 #else /* !CONFIG_SLUB_DEBUG */
1452 static inline void setup_object_debug(struct kmem_cache *s,
1453 			struct page *page, void *object) {}
1454 static inline
1455 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1456 
1457 static inline int alloc_debug_processing(struct kmem_cache *s,
1458 	struct page *page, void *object, unsigned long addr) { return 0; }
1459 
1460 static inline int free_debug_processing(
1461 	struct kmem_cache *s, struct page *page,
1462 	void *head, void *tail, int bulk_cnt,
1463 	unsigned long addr) { return 0; }
1464 
1465 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1466 			{ return 1; }
1467 static inline int check_object(struct kmem_cache *s, struct page *page,
1468 			void *object, u8 val) { return 1; }
1469 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1470 					struct page *page) {}
1471 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1472 					struct page *page) {}
1473 slab_flags_t kmem_cache_flags(unsigned int object_size,
1474 	slab_flags_t flags, const char *name,
1475 	void (*ctor)(void *))
1476 {
1477 	return flags;
1478 }
1479 #define slub_debug 0
1480 
1481 #define disable_higher_order_debug 0
1482 
1483 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1484 							{ return 0; }
1485 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1486 							{ return 0; }
1487 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1488 							int objects) {}
1489 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1490 							int objects) {}
1491 
1492 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1493 			       void **freelist, void *nextfree)
1494 {
1495 	return false;
1496 }
1497 #endif /* CONFIG_SLUB_DEBUG */
1498 
1499 /*
1500  * Hooks for other subsystems that check memory allocations. In a typical
1501  * production configuration these hooks all should produce no code at all.
1502  */
1503 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1504 {
1505 	ptr = kasan_kmalloc_large(ptr, size, flags);
1506 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1507 	kmemleak_alloc(ptr, size, 1, flags);
1508 	return ptr;
1509 }
1510 
1511 static __always_inline void kfree_hook(void *x)
1512 {
1513 	kmemleak_free(x);
1514 	kasan_kfree_large(x, _RET_IP_);
1515 }
1516 
1517 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1518 {
1519 	kmemleak_free_recursive(x, s->flags);
1520 
1521 	/*
1522 	 * Trouble is that we may no longer disable interrupts in the fast path
1523 	 * So in order to make the debug calls that expect irqs to be
1524 	 * disabled we need to disable interrupts temporarily.
1525 	 */
1526 #ifdef CONFIG_LOCKDEP
1527 	{
1528 		unsigned long flags;
1529 
1530 		local_irq_save(flags);
1531 		debug_check_no_locks_freed(x, s->object_size);
1532 		local_irq_restore(flags);
1533 	}
1534 #endif
1535 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1536 		debug_check_no_obj_freed(x, s->object_size);
1537 
1538 	/* Use KCSAN to help debug racy use-after-free. */
1539 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1540 		__kcsan_check_access(x, s->object_size,
1541 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1542 
1543 	/* KASAN might put x into memory quarantine, delaying its reuse */
1544 	return kasan_slab_free(s, x, _RET_IP_);
1545 }
1546 
1547 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1548 					   void **head, void **tail)
1549 {
1550 
1551 	void *object;
1552 	void *next = *head;
1553 	void *old_tail = *tail ? *tail : *head;
1554 	int rsize;
1555 
1556 	/* Head and tail of the reconstructed freelist */
1557 	*head = NULL;
1558 	*tail = NULL;
1559 
1560 	do {
1561 		object = next;
1562 		next = get_freepointer(s, object);
1563 
1564 		if (slab_want_init_on_free(s)) {
1565 			/*
1566 			 * Clear the object and the metadata, but don't touch
1567 			 * the redzone.
1568 			 */
1569 			memset(object, 0, s->object_size);
1570 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1571 							   : 0;
1572 			memset((char *)object + s->inuse, 0,
1573 			       s->size - s->inuse - rsize);
1574 
1575 		}
1576 		/* If object's reuse doesn't have to be delayed */
1577 		if (!slab_free_hook(s, object)) {
1578 			/* Move object to the new freelist */
1579 			set_freepointer(s, object, *head);
1580 			*head = object;
1581 			if (!*tail)
1582 				*tail = object;
1583 		}
1584 	} while (object != old_tail);
1585 
1586 	if (*head == *tail)
1587 		*tail = NULL;
1588 
1589 	return *head != NULL;
1590 }
1591 
1592 static void *setup_object(struct kmem_cache *s, struct page *page,
1593 				void *object)
1594 {
1595 	setup_object_debug(s, page, object);
1596 	object = kasan_init_slab_obj(s, object);
1597 	if (unlikely(s->ctor)) {
1598 		kasan_unpoison_object_data(s, object);
1599 		s->ctor(object);
1600 		kasan_poison_object_data(s, object);
1601 	}
1602 	return object;
1603 }
1604 
1605 /*
1606  * Slab allocation and freeing
1607  */
1608 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1609 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1610 {
1611 	struct page *page;
1612 	unsigned int order = oo_order(oo);
1613 
1614 	if (node == NUMA_NO_NODE)
1615 		page = alloc_pages(flags, order);
1616 	else
1617 		page = __alloc_pages_node(node, flags, order);
1618 
1619 	if (page)
1620 		account_slab_page(page, order, s);
1621 
1622 	return page;
1623 }
1624 
1625 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1626 /* Pre-initialize the random sequence cache */
1627 static int init_cache_random_seq(struct kmem_cache *s)
1628 {
1629 	unsigned int count = oo_objects(s->oo);
1630 	int err;
1631 
1632 	/* Bailout if already initialised */
1633 	if (s->random_seq)
1634 		return 0;
1635 
1636 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1637 	if (err) {
1638 		pr_err("SLUB: Unable to initialize free list for %s\n",
1639 			s->name);
1640 		return err;
1641 	}
1642 
1643 	/* Transform to an offset on the set of pages */
1644 	if (s->random_seq) {
1645 		unsigned int i;
1646 
1647 		for (i = 0; i < count; i++)
1648 			s->random_seq[i] *= s->size;
1649 	}
1650 	return 0;
1651 }
1652 
1653 /* Initialize each random sequence freelist per cache */
1654 static void __init init_freelist_randomization(void)
1655 {
1656 	struct kmem_cache *s;
1657 
1658 	mutex_lock(&slab_mutex);
1659 
1660 	list_for_each_entry(s, &slab_caches, list)
1661 		init_cache_random_seq(s);
1662 
1663 	mutex_unlock(&slab_mutex);
1664 }
1665 
1666 /* Get the next entry on the pre-computed freelist randomized */
1667 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1668 				unsigned long *pos, void *start,
1669 				unsigned long page_limit,
1670 				unsigned long freelist_count)
1671 {
1672 	unsigned int idx;
1673 
1674 	/*
1675 	 * If the target page allocation failed, the number of objects on the
1676 	 * page might be smaller than the usual size defined by the cache.
1677 	 */
1678 	do {
1679 		idx = s->random_seq[*pos];
1680 		*pos += 1;
1681 		if (*pos >= freelist_count)
1682 			*pos = 0;
1683 	} while (unlikely(idx >= page_limit));
1684 
1685 	return (char *)start + idx;
1686 }
1687 
1688 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1689 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1690 {
1691 	void *start;
1692 	void *cur;
1693 	void *next;
1694 	unsigned long idx, pos, page_limit, freelist_count;
1695 
1696 	if (page->objects < 2 || !s->random_seq)
1697 		return false;
1698 
1699 	freelist_count = oo_objects(s->oo);
1700 	pos = get_random_int() % freelist_count;
1701 
1702 	page_limit = page->objects * s->size;
1703 	start = fixup_red_left(s, page_address(page));
1704 
1705 	/* First entry is used as the base of the freelist */
1706 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1707 				freelist_count);
1708 	cur = setup_object(s, page, cur);
1709 	page->freelist = cur;
1710 
1711 	for (idx = 1; idx < page->objects; idx++) {
1712 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1713 			freelist_count);
1714 		next = setup_object(s, page, next);
1715 		set_freepointer(s, cur, next);
1716 		cur = next;
1717 	}
1718 	set_freepointer(s, cur, NULL);
1719 
1720 	return true;
1721 }
1722 #else
1723 static inline int init_cache_random_seq(struct kmem_cache *s)
1724 {
1725 	return 0;
1726 }
1727 static inline void init_freelist_randomization(void) { }
1728 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1729 {
1730 	return false;
1731 }
1732 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1733 
1734 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1735 {
1736 	struct page *page;
1737 	struct kmem_cache_order_objects oo = s->oo;
1738 	gfp_t alloc_gfp;
1739 	void *start, *p, *next;
1740 	int idx;
1741 	bool shuffle;
1742 
1743 	flags &= gfp_allowed_mask;
1744 
1745 	if (gfpflags_allow_blocking(flags))
1746 		local_irq_enable();
1747 
1748 	flags |= s->allocflags;
1749 
1750 	/*
1751 	 * Let the initial higher-order allocation fail under memory pressure
1752 	 * so we fall-back to the minimum order allocation.
1753 	 */
1754 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1755 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1756 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1757 
1758 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1759 	if (unlikely(!page)) {
1760 		oo = s->min;
1761 		alloc_gfp = flags;
1762 		/*
1763 		 * Allocation may have failed due to fragmentation.
1764 		 * Try a lower order alloc if possible
1765 		 */
1766 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1767 		if (unlikely(!page))
1768 			goto out;
1769 		stat(s, ORDER_FALLBACK);
1770 	}
1771 
1772 	page->objects = oo_objects(oo);
1773 
1774 	page->slab_cache = s;
1775 	__SetPageSlab(page);
1776 	if (page_is_pfmemalloc(page))
1777 		SetPageSlabPfmemalloc(page);
1778 
1779 	kasan_poison_slab(page);
1780 
1781 	start = page_address(page);
1782 
1783 	setup_page_debug(s, page, start);
1784 
1785 	shuffle = shuffle_freelist(s, page);
1786 
1787 	if (!shuffle) {
1788 		start = fixup_red_left(s, start);
1789 		start = setup_object(s, page, start);
1790 		page->freelist = start;
1791 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1792 			next = p + s->size;
1793 			next = setup_object(s, page, next);
1794 			set_freepointer(s, p, next);
1795 			p = next;
1796 		}
1797 		set_freepointer(s, p, NULL);
1798 	}
1799 
1800 	page->inuse = page->objects;
1801 	page->frozen = 1;
1802 
1803 out:
1804 	if (gfpflags_allow_blocking(flags))
1805 		local_irq_disable();
1806 	if (!page)
1807 		return NULL;
1808 
1809 	inc_slabs_node(s, page_to_nid(page), page->objects);
1810 
1811 	return page;
1812 }
1813 
1814 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1815 {
1816 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1817 		flags = kmalloc_fix_flags(flags);
1818 
1819 	return allocate_slab(s,
1820 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1821 }
1822 
1823 static void __free_slab(struct kmem_cache *s, struct page *page)
1824 {
1825 	int order = compound_order(page);
1826 	int pages = 1 << order;
1827 
1828 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1829 		void *p;
1830 
1831 		slab_pad_check(s, page);
1832 		for_each_object(p, s, page_address(page),
1833 						page->objects)
1834 			check_object(s, page, p, SLUB_RED_INACTIVE);
1835 	}
1836 
1837 	__ClearPageSlabPfmemalloc(page);
1838 	__ClearPageSlab(page);
1839 
1840 	page->mapping = NULL;
1841 	if (current->reclaim_state)
1842 		current->reclaim_state->reclaimed_slab += pages;
1843 	unaccount_slab_page(page, order, s);
1844 	__free_pages(page, order);
1845 }
1846 
1847 static void rcu_free_slab(struct rcu_head *h)
1848 {
1849 	struct page *page = container_of(h, struct page, rcu_head);
1850 
1851 	__free_slab(page->slab_cache, page);
1852 }
1853 
1854 static void free_slab(struct kmem_cache *s, struct page *page)
1855 {
1856 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1857 		call_rcu(&page->rcu_head, rcu_free_slab);
1858 	} else
1859 		__free_slab(s, page);
1860 }
1861 
1862 static void discard_slab(struct kmem_cache *s, struct page *page)
1863 {
1864 	dec_slabs_node(s, page_to_nid(page), page->objects);
1865 	free_slab(s, page);
1866 }
1867 
1868 /*
1869  * Management of partially allocated slabs.
1870  */
1871 static inline void
1872 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1873 {
1874 	n->nr_partial++;
1875 	if (tail == DEACTIVATE_TO_TAIL)
1876 		list_add_tail(&page->slab_list, &n->partial);
1877 	else
1878 		list_add(&page->slab_list, &n->partial);
1879 }
1880 
1881 static inline void add_partial(struct kmem_cache_node *n,
1882 				struct page *page, int tail)
1883 {
1884 	lockdep_assert_held(&n->list_lock);
1885 	__add_partial(n, page, tail);
1886 }
1887 
1888 static inline void remove_partial(struct kmem_cache_node *n,
1889 					struct page *page)
1890 {
1891 	lockdep_assert_held(&n->list_lock);
1892 	list_del(&page->slab_list);
1893 	n->nr_partial--;
1894 }
1895 
1896 /*
1897  * Remove slab from the partial list, freeze it and
1898  * return the pointer to the freelist.
1899  *
1900  * Returns a list of objects or NULL if it fails.
1901  */
1902 static inline void *acquire_slab(struct kmem_cache *s,
1903 		struct kmem_cache_node *n, struct page *page,
1904 		int mode, int *objects)
1905 {
1906 	void *freelist;
1907 	unsigned long counters;
1908 	struct page new;
1909 
1910 	lockdep_assert_held(&n->list_lock);
1911 
1912 	/*
1913 	 * Zap the freelist and set the frozen bit.
1914 	 * The old freelist is the list of objects for the
1915 	 * per cpu allocation list.
1916 	 */
1917 	freelist = page->freelist;
1918 	counters = page->counters;
1919 	new.counters = counters;
1920 	*objects = new.objects - new.inuse;
1921 	if (mode) {
1922 		new.inuse = page->objects;
1923 		new.freelist = NULL;
1924 	} else {
1925 		new.freelist = freelist;
1926 	}
1927 
1928 	VM_BUG_ON(new.frozen);
1929 	new.frozen = 1;
1930 
1931 	if (!__cmpxchg_double_slab(s, page,
1932 			freelist, counters,
1933 			new.freelist, new.counters,
1934 			"acquire_slab"))
1935 		return NULL;
1936 
1937 	remove_partial(n, page);
1938 	WARN_ON(!freelist);
1939 	return freelist;
1940 }
1941 
1942 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1943 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1944 
1945 /*
1946  * Try to allocate a partial slab from a specific node.
1947  */
1948 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1949 				struct kmem_cache_cpu *c, gfp_t flags)
1950 {
1951 	struct page *page, *page2;
1952 	void *object = NULL;
1953 	unsigned int available = 0;
1954 	int objects;
1955 
1956 	/*
1957 	 * Racy check. If we mistakenly see no partial slabs then we
1958 	 * just allocate an empty slab. If we mistakenly try to get a
1959 	 * partial slab and there is none available then get_partials()
1960 	 * will return NULL.
1961 	 */
1962 	if (!n || !n->nr_partial)
1963 		return NULL;
1964 
1965 	spin_lock(&n->list_lock);
1966 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1967 		void *t;
1968 
1969 		if (!pfmemalloc_match(page, flags))
1970 			continue;
1971 
1972 		t = acquire_slab(s, n, page, object == NULL, &objects);
1973 		if (!t)
1974 			break;
1975 
1976 		available += objects;
1977 		if (!object) {
1978 			c->page = page;
1979 			stat(s, ALLOC_FROM_PARTIAL);
1980 			object = t;
1981 		} else {
1982 			put_cpu_partial(s, page, 0);
1983 			stat(s, CPU_PARTIAL_NODE);
1984 		}
1985 		if (!kmem_cache_has_cpu_partial(s)
1986 			|| available > slub_cpu_partial(s) / 2)
1987 			break;
1988 
1989 	}
1990 	spin_unlock(&n->list_lock);
1991 	return object;
1992 }
1993 
1994 /*
1995  * Get a page from somewhere. Search in increasing NUMA distances.
1996  */
1997 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1998 		struct kmem_cache_cpu *c)
1999 {
2000 #ifdef CONFIG_NUMA
2001 	struct zonelist *zonelist;
2002 	struct zoneref *z;
2003 	struct zone *zone;
2004 	enum zone_type highest_zoneidx = gfp_zone(flags);
2005 	void *object;
2006 	unsigned int cpuset_mems_cookie;
2007 
2008 	/*
2009 	 * The defrag ratio allows a configuration of the tradeoffs between
2010 	 * inter node defragmentation and node local allocations. A lower
2011 	 * defrag_ratio increases the tendency to do local allocations
2012 	 * instead of attempting to obtain partial slabs from other nodes.
2013 	 *
2014 	 * If the defrag_ratio is set to 0 then kmalloc() always
2015 	 * returns node local objects. If the ratio is higher then kmalloc()
2016 	 * may return off node objects because partial slabs are obtained
2017 	 * from other nodes and filled up.
2018 	 *
2019 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2020 	 * (which makes defrag_ratio = 1000) then every (well almost)
2021 	 * allocation will first attempt to defrag slab caches on other nodes.
2022 	 * This means scanning over all nodes to look for partial slabs which
2023 	 * may be expensive if we do it every time we are trying to find a slab
2024 	 * with available objects.
2025 	 */
2026 	if (!s->remote_node_defrag_ratio ||
2027 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2028 		return NULL;
2029 
2030 	do {
2031 		cpuset_mems_cookie = read_mems_allowed_begin();
2032 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2033 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2034 			struct kmem_cache_node *n;
2035 
2036 			n = get_node(s, zone_to_nid(zone));
2037 
2038 			if (n && cpuset_zone_allowed(zone, flags) &&
2039 					n->nr_partial > s->min_partial) {
2040 				object = get_partial_node(s, n, c, flags);
2041 				if (object) {
2042 					/*
2043 					 * Don't check read_mems_allowed_retry()
2044 					 * here - if mems_allowed was updated in
2045 					 * parallel, that was a harmless race
2046 					 * between allocation and the cpuset
2047 					 * update
2048 					 */
2049 					return object;
2050 				}
2051 			}
2052 		}
2053 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2054 #endif	/* CONFIG_NUMA */
2055 	return NULL;
2056 }
2057 
2058 /*
2059  * Get a partial page, lock it and return it.
2060  */
2061 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2062 		struct kmem_cache_cpu *c)
2063 {
2064 	void *object;
2065 	int searchnode = node;
2066 
2067 	if (node == NUMA_NO_NODE)
2068 		searchnode = numa_mem_id();
2069 
2070 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2071 	if (object || node != NUMA_NO_NODE)
2072 		return object;
2073 
2074 	return get_any_partial(s, flags, c);
2075 }
2076 
2077 #ifdef CONFIG_PREEMPTION
2078 /*
2079  * Calculate the next globally unique transaction for disambiguation
2080  * during cmpxchg. The transactions start with the cpu number and are then
2081  * incremented by CONFIG_NR_CPUS.
2082  */
2083 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2084 #else
2085 /*
2086  * No preemption supported therefore also no need to check for
2087  * different cpus.
2088  */
2089 #define TID_STEP 1
2090 #endif
2091 
2092 static inline unsigned long next_tid(unsigned long tid)
2093 {
2094 	return tid + TID_STEP;
2095 }
2096 
2097 #ifdef SLUB_DEBUG_CMPXCHG
2098 static inline unsigned int tid_to_cpu(unsigned long tid)
2099 {
2100 	return tid % TID_STEP;
2101 }
2102 
2103 static inline unsigned long tid_to_event(unsigned long tid)
2104 {
2105 	return tid / TID_STEP;
2106 }
2107 #endif
2108 
2109 static inline unsigned int init_tid(int cpu)
2110 {
2111 	return cpu;
2112 }
2113 
2114 static inline void note_cmpxchg_failure(const char *n,
2115 		const struct kmem_cache *s, unsigned long tid)
2116 {
2117 #ifdef SLUB_DEBUG_CMPXCHG
2118 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2119 
2120 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2121 
2122 #ifdef CONFIG_PREEMPTION
2123 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2124 		pr_warn("due to cpu change %d -> %d\n",
2125 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2126 	else
2127 #endif
2128 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2129 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2130 			tid_to_event(tid), tid_to_event(actual_tid));
2131 	else
2132 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2133 			actual_tid, tid, next_tid(tid));
2134 #endif
2135 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2136 }
2137 
2138 static void init_kmem_cache_cpus(struct kmem_cache *s)
2139 {
2140 	int cpu;
2141 
2142 	for_each_possible_cpu(cpu)
2143 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2144 }
2145 
2146 /*
2147  * Remove the cpu slab
2148  */
2149 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2150 				void *freelist, struct kmem_cache_cpu *c)
2151 {
2152 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2153 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2154 	int lock = 0;
2155 	enum slab_modes l = M_NONE, m = M_NONE;
2156 	void *nextfree;
2157 	int tail = DEACTIVATE_TO_HEAD;
2158 	struct page new;
2159 	struct page old;
2160 
2161 	if (page->freelist) {
2162 		stat(s, DEACTIVATE_REMOTE_FREES);
2163 		tail = DEACTIVATE_TO_TAIL;
2164 	}
2165 
2166 	/*
2167 	 * Stage one: Free all available per cpu objects back
2168 	 * to the page freelist while it is still frozen. Leave the
2169 	 * last one.
2170 	 *
2171 	 * There is no need to take the list->lock because the page
2172 	 * is still frozen.
2173 	 */
2174 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2175 		void *prior;
2176 		unsigned long counters;
2177 
2178 		/*
2179 		 * If 'nextfree' is invalid, it is possible that the object at
2180 		 * 'freelist' is already corrupted.  So isolate all objects
2181 		 * starting at 'freelist'.
2182 		 */
2183 		if (freelist_corrupted(s, page, &freelist, nextfree))
2184 			break;
2185 
2186 		do {
2187 			prior = page->freelist;
2188 			counters = page->counters;
2189 			set_freepointer(s, freelist, prior);
2190 			new.counters = counters;
2191 			new.inuse--;
2192 			VM_BUG_ON(!new.frozen);
2193 
2194 		} while (!__cmpxchg_double_slab(s, page,
2195 			prior, counters,
2196 			freelist, new.counters,
2197 			"drain percpu freelist"));
2198 
2199 		freelist = nextfree;
2200 	}
2201 
2202 	/*
2203 	 * Stage two: Ensure that the page is unfrozen while the
2204 	 * list presence reflects the actual number of objects
2205 	 * during unfreeze.
2206 	 *
2207 	 * We setup the list membership and then perform a cmpxchg
2208 	 * with the count. If there is a mismatch then the page
2209 	 * is not unfrozen but the page is on the wrong list.
2210 	 *
2211 	 * Then we restart the process which may have to remove
2212 	 * the page from the list that we just put it on again
2213 	 * because the number of objects in the slab may have
2214 	 * changed.
2215 	 */
2216 redo:
2217 
2218 	old.freelist = page->freelist;
2219 	old.counters = page->counters;
2220 	VM_BUG_ON(!old.frozen);
2221 
2222 	/* Determine target state of the slab */
2223 	new.counters = old.counters;
2224 	if (freelist) {
2225 		new.inuse--;
2226 		set_freepointer(s, freelist, old.freelist);
2227 		new.freelist = freelist;
2228 	} else
2229 		new.freelist = old.freelist;
2230 
2231 	new.frozen = 0;
2232 
2233 	if (!new.inuse && n->nr_partial >= s->min_partial)
2234 		m = M_FREE;
2235 	else if (new.freelist) {
2236 		m = M_PARTIAL;
2237 		if (!lock) {
2238 			lock = 1;
2239 			/*
2240 			 * Taking the spinlock removes the possibility
2241 			 * that acquire_slab() will see a slab page that
2242 			 * is frozen
2243 			 */
2244 			spin_lock(&n->list_lock);
2245 		}
2246 	} else {
2247 		m = M_FULL;
2248 		if (kmem_cache_debug(s) && !lock) {
2249 			lock = 1;
2250 			/*
2251 			 * This also ensures that the scanning of full
2252 			 * slabs from diagnostic functions will not see
2253 			 * any frozen slabs.
2254 			 */
2255 			spin_lock(&n->list_lock);
2256 		}
2257 	}
2258 
2259 	if (l != m) {
2260 		if (l == M_PARTIAL)
2261 			remove_partial(n, page);
2262 		else if (l == M_FULL)
2263 			remove_full(s, n, page);
2264 
2265 		if (m == M_PARTIAL)
2266 			add_partial(n, page, tail);
2267 		else if (m == M_FULL)
2268 			add_full(s, n, page);
2269 	}
2270 
2271 	l = m;
2272 	if (!__cmpxchg_double_slab(s, page,
2273 				old.freelist, old.counters,
2274 				new.freelist, new.counters,
2275 				"unfreezing slab"))
2276 		goto redo;
2277 
2278 	if (lock)
2279 		spin_unlock(&n->list_lock);
2280 
2281 	if (m == M_PARTIAL)
2282 		stat(s, tail);
2283 	else if (m == M_FULL)
2284 		stat(s, DEACTIVATE_FULL);
2285 	else if (m == M_FREE) {
2286 		stat(s, DEACTIVATE_EMPTY);
2287 		discard_slab(s, page);
2288 		stat(s, FREE_SLAB);
2289 	}
2290 
2291 	c->page = NULL;
2292 	c->freelist = NULL;
2293 }
2294 
2295 /*
2296  * Unfreeze all the cpu partial slabs.
2297  *
2298  * This function must be called with interrupts disabled
2299  * for the cpu using c (or some other guarantee must be there
2300  * to guarantee no concurrent accesses).
2301  */
2302 static void unfreeze_partials(struct kmem_cache *s,
2303 		struct kmem_cache_cpu *c)
2304 {
2305 #ifdef CONFIG_SLUB_CPU_PARTIAL
2306 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2307 	struct page *page, *discard_page = NULL;
2308 
2309 	while ((page = slub_percpu_partial(c))) {
2310 		struct page new;
2311 		struct page old;
2312 
2313 		slub_set_percpu_partial(c, page);
2314 
2315 		n2 = get_node(s, page_to_nid(page));
2316 		if (n != n2) {
2317 			if (n)
2318 				spin_unlock(&n->list_lock);
2319 
2320 			n = n2;
2321 			spin_lock(&n->list_lock);
2322 		}
2323 
2324 		do {
2325 
2326 			old.freelist = page->freelist;
2327 			old.counters = page->counters;
2328 			VM_BUG_ON(!old.frozen);
2329 
2330 			new.counters = old.counters;
2331 			new.freelist = old.freelist;
2332 
2333 			new.frozen = 0;
2334 
2335 		} while (!__cmpxchg_double_slab(s, page,
2336 				old.freelist, old.counters,
2337 				new.freelist, new.counters,
2338 				"unfreezing slab"));
2339 
2340 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2341 			page->next = discard_page;
2342 			discard_page = page;
2343 		} else {
2344 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2345 			stat(s, FREE_ADD_PARTIAL);
2346 		}
2347 	}
2348 
2349 	if (n)
2350 		spin_unlock(&n->list_lock);
2351 
2352 	while (discard_page) {
2353 		page = discard_page;
2354 		discard_page = discard_page->next;
2355 
2356 		stat(s, DEACTIVATE_EMPTY);
2357 		discard_slab(s, page);
2358 		stat(s, FREE_SLAB);
2359 	}
2360 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2361 }
2362 
2363 /*
2364  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2365  * partial page slot if available.
2366  *
2367  * If we did not find a slot then simply move all the partials to the
2368  * per node partial list.
2369  */
2370 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2371 {
2372 #ifdef CONFIG_SLUB_CPU_PARTIAL
2373 	struct page *oldpage;
2374 	int pages;
2375 	int pobjects;
2376 
2377 	preempt_disable();
2378 	do {
2379 		pages = 0;
2380 		pobjects = 0;
2381 		oldpage = this_cpu_read(s->cpu_slab->partial);
2382 
2383 		if (oldpage) {
2384 			pobjects = oldpage->pobjects;
2385 			pages = oldpage->pages;
2386 			if (drain && pobjects > slub_cpu_partial(s)) {
2387 				unsigned long flags;
2388 				/*
2389 				 * partial array is full. Move the existing
2390 				 * set to the per node partial list.
2391 				 */
2392 				local_irq_save(flags);
2393 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2394 				local_irq_restore(flags);
2395 				oldpage = NULL;
2396 				pobjects = 0;
2397 				pages = 0;
2398 				stat(s, CPU_PARTIAL_DRAIN);
2399 			}
2400 		}
2401 
2402 		pages++;
2403 		pobjects += page->objects - page->inuse;
2404 
2405 		page->pages = pages;
2406 		page->pobjects = pobjects;
2407 		page->next = oldpage;
2408 
2409 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2410 								!= oldpage);
2411 	if (unlikely(!slub_cpu_partial(s))) {
2412 		unsigned long flags;
2413 
2414 		local_irq_save(flags);
2415 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2416 		local_irq_restore(flags);
2417 	}
2418 	preempt_enable();
2419 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2420 }
2421 
2422 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2423 {
2424 	stat(s, CPUSLAB_FLUSH);
2425 	deactivate_slab(s, c->page, c->freelist, c);
2426 
2427 	c->tid = next_tid(c->tid);
2428 }
2429 
2430 /*
2431  * Flush cpu slab.
2432  *
2433  * Called from IPI handler with interrupts disabled.
2434  */
2435 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2436 {
2437 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2438 
2439 	if (c->page)
2440 		flush_slab(s, c);
2441 
2442 	unfreeze_partials(s, c);
2443 }
2444 
2445 static void flush_cpu_slab(void *d)
2446 {
2447 	struct kmem_cache *s = d;
2448 
2449 	__flush_cpu_slab(s, smp_processor_id());
2450 }
2451 
2452 static bool has_cpu_slab(int cpu, void *info)
2453 {
2454 	struct kmem_cache *s = info;
2455 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2456 
2457 	return c->page || slub_percpu_partial(c);
2458 }
2459 
2460 static void flush_all(struct kmem_cache *s)
2461 {
2462 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2463 }
2464 
2465 /*
2466  * Use the cpu notifier to insure that the cpu slabs are flushed when
2467  * necessary.
2468  */
2469 static int slub_cpu_dead(unsigned int cpu)
2470 {
2471 	struct kmem_cache *s;
2472 	unsigned long flags;
2473 
2474 	mutex_lock(&slab_mutex);
2475 	list_for_each_entry(s, &slab_caches, list) {
2476 		local_irq_save(flags);
2477 		__flush_cpu_slab(s, cpu);
2478 		local_irq_restore(flags);
2479 	}
2480 	mutex_unlock(&slab_mutex);
2481 	return 0;
2482 }
2483 
2484 /*
2485  * Check if the objects in a per cpu structure fit numa
2486  * locality expectations.
2487  */
2488 static inline int node_match(struct page *page, int node)
2489 {
2490 #ifdef CONFIG_NUMA
2491 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2492 		return 0;
2493 #endif
2494 	return 1;
2495 }
2496 
2497 #ifdef CONFIG_SLUB_DEBUG
2498 static int count_free(struct page *page)
2499 {
2500 	return page->objects - page->inuse;
2501 }
2502 
2503 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2504 {
2505 	return atomic_long_read(&n->total_objects);
2506 }
2507 #endif /* CONFIG_SLUB_DEBUG */
2508 
2509 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2510 static unsigned long count_partial(struct kmem_cache_node *n,
2511 					int (*get_count)(struct page *))
2512 {
2513 	unsigned long flags;
2514 	unsigned long x = 0;
2515 	struct page *page;
2516 
2517 	spin_lock_irqsave(&n->list_lock, flags);
2518 	list_for_each_entry(page, &n->partial, slab_list)
2519 		x += get_count(page);
2520 	spin_unlock_irqrestore(&n->list_lock, flags);
2521 	return x;
2522 }
2523 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2524 
2525 static noinline void
2526 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2527 {
2528 #ifdef CONFIG_SLUB_DEBUG
2529 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2530 				      DEFAULT_RATELIMIT_BURST);
2531 	int node;
2532 	struct kmem_cache_node *n;
2533 
2534 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2535 		return;
2536 
2537 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2538 		nid, gfpflags, &gfpflags);
2539 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2540 		s->name, s->object_size, s->size, oo_order(s->oo),
2541 		oo_order(s->min));
2542 
2543 	if (oo_order(s->min) > get_order(s->object_size))
2544 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2545 			s->name);
2546 
2547 	for_each_kmem_cache_node(s, node, n) {
2548 		unsigned long nr_slabs;
2549 		unsigned long nr_objs;
2550 		unsigned long nr_free;
2551 
2552 		nr_free  = count_partial(n, count_free);
2553 		nr_slabs = node_nr_slabs(n);
2554 		nr_objs  = node_nr_objs(n);
2555 
2556 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2557 			node, nr_slabs, nr_objs, nr_free);
2558 	}
2559 #endif
2560 }
2561 
2562 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2563 			int node, struct kmem_cache_cpu **pc)
2564 {
2565 	void *freelist;
2566 	struct kmem_cache_cpu *c = *pc;
2567 	struct page *page;
2568 
2569 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2570 
2571 	freelist = get_partial(s, flags, node, c);
2572 
2573 	if (freelist)
2574 		return freelist;
2575 
2576 	page = new_slab(s, flags, node);
2577 	if (page) {
2578 		c = raw_cpu_ptr(s->cpu_slab);
2579 		if (c->page)
2580 			flush_slab(s, c);
2581 
2582 		/*
2583 		 * No other reference to the page yet so we can
2584 		 * muck around with it freely without cmpxchg
2585 		 */
2586 		freelist = page->freelist;
2587 		page->freelist = NULL;
2588 
2589 		stat(s, ALLOC_SLAB);
2590 		c->page = page;
2591 		*pc = c;
2592 	}
2593 
2594 	return freelist;
2595 }
2596 
2597 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2598 {
2599 	if (unlikely(PageSlabPfmemalloc(page)))
2600 		return gfp_pfmemalloc_allowed(gfpflags);
2601 
2602 	return true;
2603 }
2604 
2605 /*
2606  * Check the page->freelist of a page and either transfer the freelist to the
2607  * per cpu freelist or deactivate the page.
2608  *
2609  * The page is still frozen if the return value is not NULL.
2610  *
2611  * If this function returns NULL then the page has been unfrozen.
2612  *
2613  * This function must be called with interrupt disabled.
2614  */
2615 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2616 {
2617 	struct page new;
2618 	unsigned long counters;
2619 	void *freelist;
2620 
2621 	do {
2622 		freelist = page->freelist;
2623 		counters = page->counters;
2624 
2625 		new.counters = counters;
2626 		VM_BUG_ON(!new.frozen);
2627 
2628 		new.inuse = page->objects;
2629 		new.frozen = freelist != NULL;
2630 
2631 	} while (!__cmpxchg_double_slab(s, page,
2632 		freelist, counters,
2633 		NULL, new.counters,
2634 		"get_freelist"));
2635 
2636 	return freelist;
2637 }
2638 
2639 /*
2640  * Slow path. The lockless freelist is empty or we need to perform
2641  * debugging duties.
2642  *
2643  * Processing is still very fast if new objects have been freed to the
2644  * regular freelist. In that case we simply take over the regular freelist
2645  * as the lockless freelist and zap the regular freelist.
2646  *
2647  * If that is not working then we fall back to the partial lists. We take the
2648  * first element of the freelist as the object to allocate now and move the
2649  * rest of the freelist to the lockless freelist.
2650  *
2651  * And if we were unable to get a new slab from the partial slab lists then
2652  * we need to allocate a new slab. This is the slowest path since it involves
2653  * a call to the page allocator and the setup of a new slab.
2654  *
2655  * Version of __slab_alloc to use when we know that interrupts are
2656  * already disabled (which is the case for bulk allocation).
2657  */
2658 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2659 			  unsigned long addr, struct kmem_cache_cpu *c)
2660 {
2661 	void *freelist;
2662 	struct page *page;
2663 
2664 	page = c->page;
2665 	if (!page) {
2666 		/*
2667 		 * if the node is not online or has no normal memory, just
2668 		 * ignore the node constraint
2669 		 */
2670 		if (unlikely(node != NUMA_NO_NODE &&
2671 			     !node_state(node, N_NORMAL_MEMORY)))
2672 			node = NUMA_NO_NODE;
2673 		goto new_slab;
2674 	}
2675 redo:
2676 
2677 	if (unlikely(!node_match(page, node))) {
2678 		/*
2679 		 * same as above but node_match() being false already
2680 		 * implies node != NUMA_NO_NODE
2681 		 */
2682 		if (!node_state(node, N_NORMAL_MEMORY)) {
2683 			node = NUMA_NO_NODE;
2684 			goto redo;
2685 		} else {
2686 			stat(s, ALLOC_NODE_MISMATCH);
2687 			deactivate_slab(s, page, c->freelist, c);
2688 			goto new_slab;
2689 		}
2690 	}
2691 
2692 	/*
2693 	 * By rights, we should be searching for a slab page that was
2694 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2695 	 * information when the page leaves the per-cpu allocator
2696 	 */
2697 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2698 		deactivate_slab(s, page, c->freelist, c);
2699 		goto new_slab;
2700 	}
2701 
2702 	/* must check again c->freelist in case of cpu migration or IRQ */
2703 	freelist = c->freelist;
2704 	if (freelist)
2705 		goto load_freelist;
2706 
2707 	freelist = get_freelist(s, page);
2708 
2709 	if (!freelist) {
2710 		c->page = NULL;
2711 		stat(s, DEACTIVATE_BYPASS);
2712 		goto new_slab;
2713 	}
2714 
2715 	stat(s, ALLOC_REFILL);
2716 
2717 load_freelist:
2718 	/*
2719 	 * freelist is pointing to the list of objects to be used.
2720 	 * page is pointing to the page from which the objects are obtained.
2721 	 * That page must be frozen for per cpu allocations to work.
2722 	 */
2723 	VM_BUG_ON(!c->page->frozen);
2724 	c->freelist = get_freepointer(s, freelist);
2725 	c->tid = next_tid(c->tid);
2726 	return freelist;
2727 
2728 new_slab:
2729 
2730 	if (slub_percpu_partial(c)) {
2731 		page = c->page = slub_percpu_partial(c);
2732 		slub_set_percpu_partial(c, page);
2733 		stat(s, CPU_PARTIAL_ALLOC);
2734 		goto redo;
2735 	}
2736 
2737 	freelist = new_slab_objects(s, gfpflags, node, &c);
2738 
2739 	if (unlikely(!freelist)) {
2740 		slab_out_of_memory(s, gfpflags, node);
2741 		return NULL;
2742 	}
2743 
2744 	page = c->page;
2745 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2746 		goto load_freelist;
2747 
2748 	/* Only entered in the debug case */
2749 	if (kmem_cache_debug(s) &&
2750 			!alloc_debug_processing(s, page, freelist, addr))
2751 		goto new_slab;	/* Slab failed checks. Next slab needed */
2752 
2753 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2754 	return freelist;
2755 }
2756 
2757 /*
2758  * Another one that disabled interrupt and compensates for possible
2759  * cpu changes by refetching the per cpu area pointer.
2760  */
2761 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2762 			  unsigned long addr, struct kmem_cache_cpu *c)
2763 {
2764 	void *p;
2765 	unsigned long flags;
2766 
2767 	local_irq_save(flags);
2768 #ifdef CONFIG_PREEMPTION
2769 	/*
2770 	 * We may have been preempted and rescheduled on a different
2771 	 * cpu before disabling interrupts. Need to reload cpu area
2772 	 * pointer.
2773 	 */
2774 	c = this_cpu_ptr(s->cpu_slab);
2775 #endif
2776 
2777 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2778 	local_irq_restore(flags);
2779 	return p;
2780 }
2781 
2782 /*
2783  * If the object has been wiped upon free, make sure it's fully initialized by
2784  * zeroing out freelist pointer.
2785  */
2786 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2787 						   void *obj)
2788 {
2789 	if (unlikely(slab_want_init_on_free(s)) && obj)
2790 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2791 }
2792 
2793 /*
2794  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2795  * have the fastpath folded into their functions. So no function call
2796  * overhead for requests that can be satisfied on the fastpath.
2797  *
2798  * The fastpath works by first checking if the lockless freelist can be used.
2799  * If not then __slab_alloc is called for slow processing.
2800  *
2801  * Otherwise we can simply pick the next object from the lockless free list.
2802  */
2803 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2804 		gfp_t gfpflags, int node, unsigned long addr)
2805 {
2806 	void *object;
2807 	struct kmem_cache_cpu *c;
2808 	struct page *page;
2809 	unsigned long tid;
2810 	struct obj_cgroup *objcg = NULL;
2811 
2812 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2813 	if (!s)
2814 		return NULL;
2815 redo:
2816 	/*
2817 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2818 	 * enabled. We may switch back and forth between cpus while
2819 	 * reading from one cpu area. That does not matter as long
2820 	 * as we end up on the original cpu again when doing the cmpxchg.
2821 	 *
2822 	 * We should guarantee that tid and kmem_cache are retrieved on
2823 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2824 	 * to check if it is matched or not.
2825 	 */
2826 	do {
2827 		tid = this_cpu_read(s->cpu_slab->tid);
2828 		c = raw_cpu_ptr(s->cpu_slab);
2829 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2830 		 unlikely(tid != READ_ONCE(c->tid)));
2831 
2832 	/*
2833 	 * Irqless object alloc/free algorithm used here depends on sequence
2834 	 * of fetching cpu_slab's data. tid should be fetched before anything
2835 	 * on c to guarantee that object and page associated with previous tid
2836 	 * won't be used with current tid. If we fetch tid first, object and
2837 	 * page could be one associated with next tid and our alloc/free
2838 	 * request will be failed. In this case, we will retry. So, no problem.
2839 	 */
2840 	barrier();
2841 
2842 	/*
2843 	 * The transaction ids are globally unique per cpu and per operation on
2844 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2845 	 * occurs on the right processor and that there was no operation on the
2846 	 * linked list in between.
2847 	 */
2848 
2849 	object = c->freelist;
2850 	page = c->page;
2851 	if (unlikely(!object || !node_match(page, node))) {
2852 		object = __slab_alloc(s, gfpflags, node, addr, c);
2853 		stat(s, ALLOC_SLOWPATH);
2854 	} else {
2855 		void *next_object = get_freepointer_safe(s, object);
2856 
2857 		/*
2858 		 * The cmpxchg will only match if there was no additional
2859 		 * operation and if we are on the right processor.
2860 		 *
2861 		 * The cmpxchg does the following atomically (without lock
2862 		 * semantics!)
2863 		 * 1. Relocate first pointer to the current per cpu area.
2864 		 * 2. Verify that tid and freelist have not been changed
2865 		 * 3. If they were not changed replace tid and freelist
2866 		 *
2867 		 * Since this is without lock semantics the protection is only
2868 		 * against code executing on this cpu *not* from access by
2869 		 * other cpus.
2870 		 */
2871 		if (unlikely(!this_cpu_cmpxchg_double(
2872 				s->cpu_slab->freelist, s->cpu_slab->tid,
2873 				object, tid,
2874 				next_object, next_tid(tid)))) {
2875 
2876 			note_cmpxchg_failure("slab_alloc", s, tid);
2877 			goto redo;
2878 		}
2879 		prefetch_freepointer(s, next_object);
2880 		stat(s, ALLOC_FASTPATH);
2881 	}
2882 
2883 	maybe_wipe_obj_freeptr(s, object);
2884 
2885 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2886 		memset(object, 0, s->object_size);
2887 
2888 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2889 
2890 	return object;
2891 }
2892 
2893 static __always_inline void *slab_alloc(struct kmem_cache *s,
2894 		gfp_t gfpflags, unsigned long addr)
2895 {
2896 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2897 }
2898 
2899 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2900 {
2901 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2902 
2903 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2904 				s->size, gfpflags);
2905 
2906 	return ret;
2907 }
2908 EXPORT_SYMBOL(kmem_cache_alloc);
2909 
2910 #ifdef CONFIG_TRACING
2911 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2912 {
2913 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2914 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2915 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2916 	return ret;
2917 }
2918 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2919 #endif
2920 
2921 #ifdef CONFIG_NUMA
2922 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2923 {
2924 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2925 
2926 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2927 				    s->object_size, s->size, gfpflags, node);
2928 
2929 	return ret;
2930 }
2931 EXPORT_SYMBOL(kmem_cache_alloc_node);
2932 
2933 #ifdef CONFIG_TRACING
2934 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2935 				    gfp_t gfpflags,
2936 				    int node, size_t size)
2937 {
2938 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2939 
2940 	trace_kmalloc_node(_RET_IP_, ret,
2941 			   size, s->size, gfpflags, node);
2942 
2943 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2944 	return ret;
2945 }
2946 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2947 #endif
2948 #endif	/* CONFIG_NUMA */
2949 
2950 /*
2951  * Slow path handling. This may still be called frequently since objects
2952  * have a longer lifetime than the cpu slabs in most processing loads.
2953  *
2954  * So we still attempt to reduce cache line usage. Just take the slab
2955  * lock and free the item. If there is no additional partial page
2956  * handling required then we can return immediately.
2957  */
2958 static void __slab_free(struct kmem_cache *s, struct page *page,
2959 			void *head, void *tail, int cnt,
2960 			unsigned long addr)
2961 
2962 {
2963 	void *prior;
2964 	int was_frozen;
2965 	struct page new;
2966 	unsigned long counters;
2967 	struct kmem_cache_node *n = NULL;
2968 	unsigned long flags;
2969 
2970 	stat(s, FREE_SLOWPATH);
2971 
2972 	if (kmem_cache_debug(s) &&
2973 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2974 		return;
2975 
2976 	do {
2977 		if (unlikely(n)) {
2978 			spin_unlock_irqrestore(&n->list_lock, flags);
2979 			n = NULL;
2980 		}
2981 		prior = page->freelist;
2982 		counters = page->counters;
2983 		set_freepointer(s, tail, prior);
2984 		new.counters = counters;
2985 		was_frozen = new.frozen;
2986 		new.inuse -= cnt;
2987 		if ((!new.inuse || !prior) && !was_frozen) {
2988 
2989 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2990 
2991 				/*
2992 				 * Slab was on no list before and will be
2993 				 * partially empty
2994 				 * We can defer the list move and instead
2995 				 * freeze it.
2996 				 */
2997 				new.frozen = 1;
2998 
2999 			} else { /* Needs to be taken off a list */
3000 
3001 				n = get_node(s, page_to_nid(page));
3002 				/*
3003 				 * Speculatively acquire the list_lock.
3004 				 * If the cmpxchg does not succeed then we may
3005 				 * drop the list_lock without any processing.
3006 				 *
3007 				 * Otherwise the list_lock will synchronize with
3008 				 * other processors updating the list of slabs.
3009 				 */
3010 				spin_lock_irqsave(&n->list_lock, flags);
3011 
3012 			}
3013 		}
3014 
3015 	} while (!cmpxchg_double_slab(s, page,
3016 		prior, counters,
3017 		head, new.counters,
3018 		"__slab_free"));
3019 
3020 	if (likely(!n)) {
3021 
3022 		/*
3023 		 * If we just froze the page then put it onto the
3024 		 * per cpu partial list.
3025 		 */
3026 		if (new.frozen && !was_frozen) {
3027 			put_cpu_partial(s, page, 1);
3028 			stat(s, CPU_PARTIAL_FREE);
3029 		}
3030 		/*
3031 		 * The list lock was not taken therefore no list
3032 		 * activity can be necessary.
3033 		 */
3034 		if (was_frozen)
3035 			stat(s, FREE_FROZEN);
3036 		return;
3037 	}
3038 
3039 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3040 		goto slab_empty;
3041 
3042 	/*
3043 	 * Objects left in the slab. If it was not on the partial list before
3044 	 * then add it.
3045 	 */
3046 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3047 		remove_full(s, n, page);
3048 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3049 		stat(s, FREE_ADD_PARTIAL);
3050 	}
3051 	spin_unlock_irqrestore(&n->list_lock, flags);
3052 	return;
3053 
3054 slab_empty:
3055 	if (prior) {
3056 		/*
3057 		 * Slab on the partial list.
3058 		 */
3059 		remove_partial(n, page);
3060 		stat(s, FREE_REMOVE_PARTIAL);
3061 	} else {
3062 		/* Slab must be on the full list */
3063 		remove_full(s, n, page);
3064 	}
3065 
3066 	spin_unlock_irqrestore(&n->list_lock, flags);
3067 	stat(s, FREE_SLAB);
3068 	discard_slab(s, page);
3069 }
3070 
3071 /*
3072  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3073  * can perform fastpath freeing without additional function calls.
3074  *
3075  * The fastpath is only possible if we are freeing to the current cpu slab
3076  * of this processor. This typically the case if we have just allocated
3077  * the item before.
3078  *
3079  * If fastpath is not possible then fall back to __slab_free where we deal
3080  * with all sorts of special processing.
3081  *
3082  * Bulk free of a freelist with several objects (all pointing to the
3083  * same page) possible by specifying head and tail ptr, plus objects
3084  * count (cnt). Bulk free indicated by tail pointer being set.
3085  */
3086 static __always_inline void do_slab_free(struct kmem_cache *s,
3087 				struct page *page, void *head, void *tail,
3088 				int cnt, unsigned long addr)
3089 {
3090 	void *tail_obj = tail ? : head;
3091 	struct kmem_cache_cpu *c;
3092 	unsigned long tid;
3093 
3094 	memcg_slab_free_hook(s, page, head);
3095 redo:
3096 	/*
3097 	 * Determine the currently cpus per cpu slab.
3098 	 * The cpu may change afterward. However that does not matter since
3099 	 * data is retrieved via this pointer. If we are on the same cpu
3100 	 * during the cmpxchg then the free will succeed.
3101 	 */
3102 	do {
3103 		tid = this_cpu_read(s->cpu_slab->tid);
3104 		c = raw_cpu_ptr(s->cpu_slab);
3105 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3106 		 unlikely(tid != READ_ONCE(c->tid)));
3107 
3108 	/* Same with comment on barrier() in slab_alloc_node() */
3109 	barrier();
3110 
3111 	if (likely(page == c->page)) {
3112 		void **freelist = READ_ONCE(c->freelist);
3113 
3114 		set_freepointer(s, tail_obj, freelist);
3115 
3116 		if (unlikely(!this_cpu_cmpxchg_double(
3117 				s->cpu_slab->freelist, s->cpu_slab->tid,
3118 				freelist, tid,
3119 				head, next_tid(tid)))) {
3120 
3121 			note_cmpxchg_failure("slab_free", s, tid);
3122 			goto redo;
3123 		}
3124 		stat(s, FREE_FASTPATH);
3125 	} else
3126 		__slab_free(s, page, head, tail_obj, cnt, addr);
3127 
3128 }
3129 
3130 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3131 				      void *head, void *tail, int cnt,
3132 				      unsigned long addr)
3133 {
3134 	/*
3135 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3136 	 * to remove objects, whose reuse must be delayed.
3137 	 */
3138 	if (slab_free_freelist_hook(s, &head, &tail))
3139 		do_slab_free(s, page, head, tail, cnt, addr);
3140 }
3141 
3142 #ifdef CONFIG_KASAN_GENERIC
3143 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3144 {
3145 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3146 }
3147 #endif
3148 
3149 void kmem_cache_free(struct kmem_cache *s, void *x)
3150 {
3151 	s = cache_from_obj(s, x);
3152 	if (!s)
3153 		return;
3154 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3155 	trace_kmem_cache_free(_RET_IP_, x);
3156 }
3157 EXPORT_SYMBOL(kmem_cache_free);
3158 
3159 struct detached_freelist {
3160 	struct page *page;
3161 	void *tail;
3162 	void *freelist;
3163 	int cnt;
3164 	struct kmem_cache *s;
3165 };
3166 
3167 /*
3168  * This function progressively scans the array with free objects (with
3169  * a limited look ahead) and extract objects belonging to the same
3170  * page.  It builds a detached freelist directly within the given
3171  * page/objects.  This can happen without any need for
3172  * synchronization, because the objects are owned by running process.
3173  * The freelist is build up as a single linked list in the objects.
3174  * The idea is, that this detached freelist can then be bulk
3175  * transferred to the real freelist(s), but only requiring a single
3176  * synchronization primitive.  Look ahead in the array is limited due
3177  * to performance reasons.
3178  */
3179 static inline
3180 int build_detached_freelist(struct kmem_cache *s, size_t size,
3181 			    void **p, struct detached_freelist *df)
3182 {
3183 	size_t first_skipped_index = 0;
3184 	int lookahead = 3;
3185 	void *object;
3186 	struct page *page;
3187 
3188 	/* Always re-init detached_freelist */
3189 	df->page = NULL;
3190 
3191 	do {
3192 		object = p[--size];
3193 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3194 	} while (!object && size);
3195 
3196 	if (!object)
3197 		return 0;
3198 
3199 	page = virt_to_head_page(object);
3200 	if (!s) {
3201 		/* Handle kalloc'ed objects */
3202 		if (unlikely(!PageSlab(page))) {
3203 			BUG_ON(!PageCompound(page));
3204 			kfree_hook(object);
3205 			__free_pages(page, compound_order(page));
3206 			p[size] = NULL; /* mark object processed */
3207 			return size;
3208 		}
3209 		/* Derive kmem_cache from object */
3210 		df->s = page->slab_cache;
3211 	} else {
3212 		df->s = cache_from_obj(s, object); /* Support for memcg */
3213 	}
3214 
3215 	/* Start new detached freelist */
3216 	df->page = page;
3217 	set_freepointer(df->s, object, NULL);
3218 	df->tail = object;
3219 	df->freelist = object;
3220 	p[size] = NULL; /* mark object processed */
3221 	df->cnt = 1;
3222 
3223 	while (size) {
3224 		object = p[--size];
3225 		if (!object)
3226 			continue; /* Skip processed objects */
3227 
3228 		/* df->page is always set at this point */
3229 		if (df->page == virt_to_head_page(object)) {
3230 			/* Opportunity build freelist */
3231 			set_freepointer(df->s, object, df->freelist);
3232 			df->freelist = object;
3233 			df->cnt++;
3234 			p[size] = NULL; /* mark object processed */
3235 
3236 			continue;
3237 		}
3238 
3239 		/* Limit look ahead search */
3240 		if (!--lookahead)
3241 			break;
3242 
3243 		if (!first_skipped_index)
3244 			first_skipped_index = size + 1;
3245 	}
3246 
3247 	return first_skipped_index;
3248 }
3249 
3250 /* Note that interrupts must be enabled when calling this function. */
3251 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3252 {
3253 	if (WARN_ON(!size))
3254 		return;
3255 
3256 	do {
3257 		struct detached_freelist df;
3258 
3259 		size = build_detached_freelist(s, size, p, &df);
3260 		if (!df.page)
3261 			continue;
3262 
3263 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3264 	} while (likely(size));
3265 }
3266 EXPORT_SYMBOL(kmem_cache_free_bulk);
3267 
3268 /* Note that interrupts must be enabled when calling this function. */
3269 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3270 			  void **p)
3271 {
3272 	struct kmem_cache_cpu *c;
3273 	int i;
3274 	struct obj_cgroup *objcg = NULL;
3275 
3276 	/* memcg and kmem_cache debug support */
3277 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3278 	if (unlikely(!s))
3279 		return false;
3280 	/*
3281 	 * Drain objects in the per cpu slab, while disabling local
3282 	 * IRQs, which protects against PREEMPT and interrupts
3283 	 * handlers invoking normal fastpath.
3284 	 */
3285 	local_irq_disable();
3286 	c = this_cpu_ptr(s->cpu_slab);
3287 
3288 	for (i = 0; i < size; i++) {
3289 		void *object = c->freelist;
3290 
3291 		if (unlikely(!object)) {
3292 			/*
3293 			 * We may have removed an object from c->freelist using
3294 			 * the fastpath in the previous iteration; in that case,
3295 			 * c->tid has not been bumped yet.
3296 			 * Since ___slab_alloc() may reenable interrupts while
3297 			 * allocating memory, we should bump c->tid now.
3298 			 */
3299 			c->tid = next_tid(c->tid);
3300 
3301 			/*
3302 			 * Invoking slow path likely have side-effect
3303 			 * of re-populating per CPU c->freelist
3304 			 */
3305 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3306 					    _RET_IP_, c);
3307 			if (unlikely(!p[i]))
3308 				goto error;
3309 
3310 			c = this_cpu_ptr(s->cpu_slab);
3311 			maybe_wipe_obj_freeptr(s, p[i]);
3312 
3313 			continue; /* goto for-loop */
3314 		}
3315 		c->freelist = get_freepointer(s, object);
3316 		p[i] = object;
3317 		maybe_wipe_obj_freeptr(s, p[i]);
3318 	}
3319 	c->tid = next_tid(c->tid);
3320 	local_irq_enable();
3321 
3322 	/* Clear memory outside IRQ disabled fastpath loop */
3323 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3324 		int j;
3325 
3326 		for (j = 0; j < i; j++)
3327 			memset(p[j], 0, s->object_size);
3328 	}
3329 
3330 	/* memcg and kmem_cache debug support */
3331 	slab_post_alloc_hook(s, objcg, flags, size, p);
3332 	return i;
3333 error:
3334 	local_irq_enable();
3335 	slab_post_alloc_hook(s, objcg, flags, i, p);
3336 	__kmem_cache_free_bulk(s, i, p);
3337 	return 0;
3338 }
3339 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3340 
3341 
3342 /*
3343  * Object placement in a slab is made very easy because we always start at
3344  * offset 0. If we tune the size of the object to the alignment then we can
3345  * get the required alignment by putting one properly sized object after
3346  * another.
3347  *
3348  * Notice that the allocation order determines the sizes of the per cpu
3349  * caches. Each processor has always one slab available for allocations.
3350  * Increasing the allocation order reduces the number of times that slabs
3351  * must be moved on and off the partial lists and is therefore a factor in
3352  * locking overhead.
3353  */
3354 
3355 /*
3356  * Mininum / Maximum order of slab pages. This influences locking overhead
3357  * and slab fragmentation. A higher order reduces the number of partial slabs
3358  * and increases the number of allocations possible without having to
3359  * take the list_lock.
3360  */
3361 static unsigned int slub_min_order;
3362 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3363 static unsigned int slub_min_objects;
3364 
3365 /*
3366  * Calculate the order of allocation given an slab object size.
3367  *
3368  * The order of allocation has significant impact on performance and other
3369  * system components. Generally order 0 allocations should be preferred since
3370  * order 0 does not cause fragmentation in the page allocator. Larger objects
3371  * be problematic to put into order 0 slabs because there may be too much
3372  * unused space left. We go to a higher order if more than 1/16th of the slab
3373  * would be wasted.
3374  *
3375  * In order to reach satisfactory performance we must ensure that a minimum
3376  * number of objects is in one slab. Otherwise we may generate too much
3377  * activity on the partial lists which requires taking the list_lock. This is
3378  * less a concern for large slabs though which are rarely used.
3379  *
3380  * slub_max_order specifies the order where we begin to stop considering the
3381  * number of objects in a slab as critical. If we reach slub_max_order then
3382  * we try to keep the page order as low as possible. So we accept more waste
3383  * of space in favor of a small page order.
3384  *
3385  * Higher order allocations also allow the placement of more objects in a
3386  * slab and thereby reduce object handling overhead. If the user has
3387  * requested a higher mininum order then we start with that one instead of
3388  * the smallest order which will fit the object.
3389  */
3390 static inline unsigned int slab_order(unsigned int size,
3391 		unsigned int min_objects, unsigned int max_order,
3392 		unsigned int fract_leftover)
3393 {
3394 	unsigned int min_order = slub_min_order;
3395 	unsigned int order;
3396 
3397 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3398 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3399 
3400 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3401 			order <= max_order; order++) {
3402 
3403 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3404 		unsigned int rem;
3405 
3406 		rem = slab_size % size;
3407 
3408 		if (rem <= slab_size / fract_leftover)
3409 			break;
3410 	}
3411 
3412 	return order;
3413 }
3414 
3415 static inline int calculate_order(unsigned int size)
3416 {
3417 	unsigned int order;
3418 	unsigned int min_objects;
3419 	unsigned int max_objects;
3420 
3421 	/*
3422 	 * Attempt to find best configuration for a slab. This
3423 	 * works by first attempting to generate a layout with
3424 	 * the best configuration and backing off gradually.
3425 	 *
3426 	 * First we increase the acceptable waste in a slab. Then
3427 	 * we reduce the minimum objects required in a slab.
3428 	 */
3429 	min_objects = slub_min_objects;
3430 	if (!min_objects)
3431 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3432 	max_objects = order_objects(slub_max_order, size);
3433 	min_objects = min(min_objects, max_objects);
3434 
3435 	while (min_objects > 1) {
3436 		unsigned int fraction;
3437 
3438 		fraction = 16;
3439 		while (fraction >= 4) {
3440 			order = slab_order(size, min_objects,
3441 					slub_max_order, fraction);
3442 			if (order <= slub_max_order)
3443 				return order;
3444 			fraction /= 2;
3445 		}
3446 		min_objects--;
3447 	}
3448 
3449 	/*
3450 	 * We were unable to place multiple objects in a slab. Now
3451 	 * lets see if we can place a single object there.
3452 	 */
3453 	order = slab_order(size, 1, slub_max_order, 1);
3454 	if (order <= slub_max_order)
3455 		return order;
3456 
3457 	/*
3458 	 * Doh this slab cannot be placed using slub_max_order.
3459 	 */
3460 	order = slab_order(size, 1, MAX_ORDER, 1);
3461 	if (order < MAX_ORDER)
3462 		return order;
3463 	return -ENOSYS;
3464 }
3465 
3466 static void
3467 init_kmem_cache_node(struct kmem_cache_node *n)
3468 {
3469 	n->nr_partial = 0;
3470 	spin_lock_init(&n->list_lock);
3471 	INIT_LIST_HEAD(&n->partial);
3472 #ifdef CONFIG_SLUB_DEBUG
3473 	atomic_long_set(&n->nr_slabs, 0);
3474 	atomic_long_set(&n->total_objects, 0);
3475 	INIT_LIST_HEAD(&n->full);
3476 #endif
3477 }
3478 
3479 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3480 {
3481 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3482 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3483 
3484 	/*
3485 	 * Must align to double word boundary for the double cmpxchg
3486 	 * instructions to work; see __pcpu_double_call_return_bool().
3487 	 */
3488 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3489 				     2 * sizeof(void *));
3490 
3491 	if (!s->cpu_slab)
3492 		return 0;
3493 
3494 	init_kmem_cache_cpus(s);
3495 
3496 	return 1;
3497 }
3498 
3499 static struct kmem_cache *kmem_cache_node;
3500 
3501 /*
3502  * No kmalloc_node yet so do it by hand. We know that this is the first
3503  * slab on the node for this slabcache. There are no concurrent accesses
3504  * possible.
3505  *
3506  * Note that this function only works on the kmem_cache_node
3507  * when allocating for the kmem_cache_node. This is used for bootstrapping
3508  * memory on a fresh node that has no slab structures yet.
3509  */
3510 static void early_kmem_cache_node_alloc(int node)
3511 {
3512 	struct page *page;
3513 	struct kmem_cache_node *n;
3514 
3515 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3516 
3517 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3518 
3519 	BUG_ON(!page);
3520 	if (page_to_nid(page) != node) {
3521 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3522 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3523 	}
3524 
3525 	n = page->freelist;
3526 	BUG_ON(!n);
3527 #ifdef CONFIG_SLUB_DEBUG
3528 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3529 	init_tracking(kmem_cache_node, n);
3530 #endif
3531 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3532 		      GFP_KERNEL);
3533 	page->freelist = get_freepointer(kmem_cache_node, n);
3534 	page->inuse = 1;
3535 	page->frozen = 0;
3536 	kmem_cache_node->node[node] = n;
3537 	init_kmem_cache_node(n);
3538 	inc_slabs_node(kmem_cache_node, node, page->objects);
3539 
3540 	/*
3541 	 * No locks need to be taken here as it has just been
3542 	 * initialized and there is no concurrent access.
3543 	 */
3544 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3545 }
3546 
3547 static void free_kmem_cache_nodes(struct kmem_cache *s)
3548 {
3549 	int node;
3550 	struct kmem_cache_node *n;
3551 
3552 	for_each_kmem_cache_node(s, node, n) {
3553 		s->node[node] = NULL;
3554 		kmem_cache_free(kmem_cache_node, n);
3555 	}
3556 }
3557 
3558 void __kmem_cache_release(struct kmem_cache *s)
3559 {
3560 	cache_random_seq_destroy(s);
3561 	free_percpu(s->cpu_slab);
3562 	free_kmem_cache_nodes(s);
3563 }
3564 
3565 static int init_kmem_cache_nodes(struct kmem_cache *s)
3566 {
3567 	int node;
3568 
3569 	for_each_node_state(node, N_NORMAL_MEMORY) {
3570 		struct kmem_cache_node *n;
3571 
3572 		if (slab_state == DOWN) {
3573 			early_kmem_cache_node_alloc(node);
3574 			continue;
3575 		}
3576 		n = kmem_cache_alloc_node(kmem_cache_node,
3577 						GFP_KERNEL, node);
3578 
3579 		if (!n) {
3580 			free_kmem_cache_nodes(s);
3581 			return 0;
3582 		}
3583 
3584 		init_kmem_cache_node(n);
3585 		s->node[node] = n;
3586 	}
3587 	return 1;
3588 }
3589 
3590 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3591 {
3592 	if (min < MIN_PARTIAL)
3593 		min = MIN_PARTIAL;
3594 	else if (min > MAX_PARTIAL)
3595 		min = MAX_PARTIAL;
3596 	s->min_partial = min;
3597 }
3598 
3599 static void set_cpu_partial(struct kmem_cache *s)
3600 {
3601 #ifdef CONFIG_SLUB_CPU_PARTIAL
3602 	/*
3603 	 * cpu_partial determined the maximum number of objects kept in the
3604 	 * per cpu partial lists of a processor.
3605 	 *
3606 	 * Per cpu partial lists mainly contain slabs that just have one
3607 	 * object freed. If they are used for allocation then they can be
3608 	 * filled up again with minimal effort. The slab will never hit the
3609 	 * per node partial lists and therefore no locking will be required.
3610 	 *
3611 	 * This setting also determines
3612 	 *
3613 	 * A) The number of objects from per cpu partial slabs dumped to the
3614 	 *    per node list when we reach the limit.
3615 	 * B) The number of objects in cpu partial slabs to extract from the
3616 	 *    per node list when we run out of per cpu objects. We only fetch
3617 	 *    50% to keep some capacity around for frees.
3618 	 */
3619 	if (!kmem_cache_has_cpu_partial(s))
3620 		slub_set_cpu_partial(s, 0);
3621 	else if (s->size >= PAGE_SIZE)
3622 		slub_set_cpu_partial(s, 2);
3623 	else if (s->size >= 1024)
3624 		slub_set_cpu_partial(s, 6);
3625 	else if (s->size >= 256)
3626 		slub_set_cpu_partial(s, 13);
3627 	else
3628 		slub_set_cpu_partial(s, 30);
3629 #endif
3630 }
3631 
3632 /*
3633  * calculate_sizes() determines the order and the distribution of data within
3634  * a slab object.
3635  */
3636 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3637 {
3638 	slab_flags_t flags = s->flags;
3639 	unsigned int size = s->object_size;
3640 	unsigned int freepointer_area;
3641 	unsigned int order;
3642 
3643 	/*
3644 	 * Round up object size to the next word boundary. We can only
3645 	 * place the free pointer at word boundaries and this determines
3646 	 * the possible location of the free pointer.
3647 	 */
3648 	size = ALIGN(size, sizeof(void *));
3649 	/*
3650 	 * This is the area of the object where a freepointer can be
3651 	 * safely written. If redzoning adds more to the inuse size, we
3652 	 * can't use that portion for writing the freepointer, so
3653 	 * s->offset must be limited within this for the general case.
3654 	 */
3655 	freepointer_area = size;
3656 
3657 #ifdef CONFIG_SLUB_DEBUG
3658 	/*
3659 	 * Determine if we can poison the object itself. If the user of
3660 	 * the slab may touch the object after free or before allocation
3661 	 * then we should never poison the object itself.
3662 	 */
3663 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3664 			!s->ctor)
3665 		s->flags |= __OBJECT_POISON;
3666 	else
3667 		s->flags &= ~__OBJECT_POISON;
3668 
3669 
3670 	/*
3671 	 * If we are Redzoning then check if there is some space between the
3672 	 * end of the object and the free pointer. If not then add an
3673 	 * additional word to have some bytes to store Redzone information.
3674 	 */
3675 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3676 		size += sizeof(void *);
3677 #endif
3678 
3679 	/*
3680 	 * With that we have determined the number of bytes in actual use
3681 	 * by the object. This is the potential offset to the free pointer.
3682 	 */
3683 	s->inuse = size;
3684 
3685 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3686 		s->ctor)) {
3687 		/*
3688 		 * Relocate free pointer after the object if it is not
3689 		 * permitted to overwrite the first word of the object on
3690 		 * kmem_cache_free.
3691 		 *
3692 		 * This is the case if we do RCU, have a constructor or
3693 		 * destructor or are poisoning the objects.
3694 		 *
3695 		 * The assumption that s->offset >= s->inuse means free
3696 		 * pointer is outside of the object is used in the
3697 		 * freeptr_outside_object() function. If that is no
3698 		 * longer true, the function needs to be modified.
3699 		 */
3700 		s->offset = size;
3701 		size += sizeof(void *);
3702 	} else if (freepointer_area > sizeof(void *)) {
3703 		/*
3704 		 * Store freelist pointer near middle of object to keep
3705 		 * it away from the edges of the object to avoid small
3706 		 * sized over/underflows from neighboring allocations.
3707 		 */
3708 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3709 	}
3710 
3711 #ifdef CONFIG_SLUB_DEBUG
3712 	if (flags & SLAB_STORE_USER)
3713 		/*
3714 		 * Need to store information about allocs and frees after
3715 		 * the object.
3716 		 */
3717 		size += 2 * sizeof(struct track);
3718 #endif
3719 
3720 	kasan_cache_create(s, &size, &s->flags);
3721 #ifdef CONFIG_SLUB_DEBUG
3722 	if (flags & SLAB_RED_ZONE) {
3723 		/*
3724 		 * Add some empty padding so that we can catch
3725 		 * overwrites from earlier objects rather than let
3726 		 * tracking information or the free pointer be
3727 		 * corrupted if a user writes before the start
3728 		 * of the object.
3729 		 */
3730 		size += sizeof(void *);
3731 
3732 		s->red_left_pad = sizeof(void *);
3733 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3734 		size += s->red_left_pad;
3735 	}
3736 #endif
3737 
3738 	/*
3739 	 * SLUB stores one object immediately after another beginning from
3740 	 * offset 0. In order to align the objects we have to simply size
3741 	 * each object to conform to the alignment.
3742 	 */
3743 	size = ALIGN(size, s->align);
3744 	s->size = size;
3745 	s->reciprocal_size = reciprocal_value(size);
3746 	if (forced_order >= 0)
3747 		order = forced_order;
3748 	else
3749 		order = calculate_order(size);
3750 
3751 	if ((int)order < 0)
3752 		return 0;
3753 
3754 	s->allocflags = 0;
3755 	if (order)
3756 		s->allocflags |= __GFP_COMP;
3757 
3758 	if (s->flags & SLAB_CACHE_DMA)
3759 		s->allocflags |= GFP_DMA;
3760 
3761 	if (s->flags & SLAB_CACHE_DMA32)
3762 		s->allocflags |= GFP_DMA32;
3763 
3764 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3765 		s->allocflags |= __GFP_RECLAIMABLE;
3766 
3767 	/*
3768 	 * Determine the number of objects per slab
3769 	 */
3770 	s->oo = oo_make(order, size);
3771 	s->min = oo_make(get_order(size), size);
3772 	if (oo_objects(s->oo) > oo_objects(s->max))
3773 		s->max = s->oo;
3774 
3775 	return !!oo_objects(s->oo);
3776 }
3777 
3778 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3779 {
3780 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3781 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3782 	s->random = get_random_long();
3783 #endif
3784 
3785 	if (!calculate_sizes(s, -1))
3786 		goto error;
3787 	if (disable_higher_order_debug) {
3788 		/*
3789 		 * Disable debugging flags that store metadata if the min slab
3790 		 * order increased.
3791 		 */
3792 		if (get_order(s->size) > get_order(s->object_size)) {
3793 			s->flags &= ~DEBUG_METADATA_FLAGS;
3794 			s->offset = 0;
3795 			if (!calculate_sizes(s, -1))
3796 				goto error;
3797 		}
3798 	}
3799 
3800 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3801     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3802 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3803 		/* Enable fast mode */
3804 		s->flags |= __CMPXCHG_DOUBLE;
3805 #endif
3806 
3807 	/*
3808 	 * The larger the object size is, the more pages we want on the partial
3809 	 * list to avoid pounding the page allocator excessively.
3810 	 */
3811 	set_min_partial(s, ilog2(s->size) / 2);
3812 
3813 	set_cpu_partial(s);
3814 
3815 #ifdef CONFIG_NUMA
3816 	s->remote_node_defrag_ratio = 1000;
3817 #endif
3818 
3819 	/* Initialize the pre-computed randomized freelist if slab is up */
3820 	if (slab_state >= UP) {
3821 		if (init_cache_random_seq(s))
3822 			goto error;
3823 	}
3824 
3825 	if (!init_kmem_cache_nodes(s))
3826 		goto error;
3827 
3828 	if (alloc_kmem_cache_cpus(s))
3829 		return 0;
3830 
3831 	free_kmem_cache_nodes(s);
3832 error:
3833 	return -EINVAL;
3834 }
3835 
3836 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3837 			      const char *text)
3838 {
3839 #ifdef CONFIG_SLUB_DEBUG
3840 	void *addr = page_address(page);
3841 	unsigned long *map;
3842 	void *p;
3843 
3844 	slab_err(s, page, text, s->name);
3845 	slab_lock(page);
3846 
3847 	map = get_map(s, page);
3848 	for_each_object(p, s, addr, page->objects) {
3849 
3850 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3851 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3852 			print_tracking(s, p);
3853 		}
3854 	}
3855 	put_map(map);
3856 	slab_unlock(page);
3857 #endif
3858 }
3859 
3860 /*
3861  * Attempt to free all partial slabs on a node.
3862  * This is called from __kmem_cache_shutdown(). We must take list_lock
3863  * because sysfs file might still access partial list after the shutdowning.
3864  */
3865 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3866 {
3867 	LIST_HEAD(discard);
3868 	struct page *page, *h;
3869 
3870 	BUG_ON(irqs_disabled());
3871 	spin_lock_irq(&n->list_lock);
3872 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3873 		if (!page->inuse) {
3874 			remove_partial(n, page);
3875 			list_add(&page->slab_list, &discard);
3876 		} else {
3877 			list_slab_objects(s, page,
3878 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3879 		}
3880 	}
3881 	spin_unlock_irq(&n->list_lock);
3882 
3883 	list_for_each_entry_safe(page, h, &discard, slab_list)
3884 		discard_slab(s, page);
3885 }
3886 
3887 bool __kmem_cache_empty(struct kmem_cache *s)
3888 {
3889 	int node;
3890 	struct kmem_cache_node *n;
3891 
3892 	for_each_kmem_cache_node(s, node, n)
3893 		if (n->nr_partial || slabs_node(s, node))
3894 			return false;
3895 	return true;
3896 }
3897 
3898 /*
3899  * Release all resources used by a slab cache.
3900  */
3901 int __kmem_cache_shutdown(struct kmem_cache *s)
3902 {
3903 	int node;
3904 	struct kmem_cache_node *n;
3905 
3906 	flush_all(s);
3907 	/* Attempt to free all objects */
3908 	for_each_kmem_cache_node(s, node, n) {
3909 		free_partial(s, n);
3910 		if (n->nr_partial || slabs_node(s, node))
3911 			return 1;
3912 	}
3913 	return 0;
3914 }
3915 
3916 /********************************************************************
3917  *		Kmalloc subsystem
3918  *******************************************************************/
3919 
3920 static int __init setup_slub_min_order(char *str)
3921 {
3922 	get_option(&str, (int *)&slub_min_order);
3923 
3924 	return 1;
3925 }
3926 
3927 __setup("slub_min_order=", setup_slub_min_order);
3928 
3929 static int __init setup_slub_max_order(char *str)
3930 {
3931 	get_option(&str, (int *)&slub_max_order);
3932 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3933 
3934 	return 1;
3935 }
3936 
3937 __setup("slub_max_order=", setup_slub_max_order);
3938 
3939 static int __init setup_slub_min_objects(char *str)
3940 {
3941 	get_option(&str, (int *)&slub_min_objects);
3942 
3943 	return 1;
3944 }
3945 
3946 __setup("slub_min_objects=", setup_slub_min_objects);
3947 
3948 void *__kmalloc(size_t size, gfp_t flags)
3949 {
3950 	struct kmem_cache *s;
3951 	void *ret;
3952 
3953 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3954 		return kmalloc_large(size, flags);
3955 
3956 	s = kmalloc_slab(size, flags);
3957 
3958 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3959 		return s;
3960 
3961 	ret = slab_alloc(s, flags, _RET_IP_);
3962 
3963 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3964 
3965 	ret = kasan_kmalloc(s, ret, size, flags);
3966 
3967 	return ret;
3968 }
3969 EXPORT_SYMBOL(__kmalloc);
3970 
3971 #ifdef CONFIG_NUMA
3972 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3973 {
3974 	struct page *page;
3975 	void *ptr = NULL;
3976 	unsigned int order = get_order(size);
3977 
3978 	flags |= __GFP_COMP;
3979 	page = alloc_pages_node(node, flags, order);
3980 	if (page) {
3981 		ptr = page_address(page);
3982 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3983 				    PAGE_SIZE << order);
3984 	}
3985 
3986 	return kmalloc_large_node_hook(ptr, size, flags);
3987 }
3988 
3989 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3990 {
3991 	struct kmem_cache *s;
3992 	void *ret;
3993 
3994 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3995 		ret = kmalloc_large_node(size, flags, node);
3996 
3997 		trace_kmalloc_node(_RET_IP_, ret,
3998 				   size, PAGE_SIZE << get_order(size),
3999 				   flags, node);
4000 
4001 		return ret;
4002 	}
4003 
4004 	s = kmalloc_slab(size, flags);
4005 
4006 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4007 		return s;
4008 
4009 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
4010 
4011 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4012 
4013 	ret = kasan_kmalloc(s, ret, size, flags);
4014 
4015 	return ret;
4016 }
4017 EXPORT_SYMBOL(__kmalloc_node);
4018 #endif	/* CONFIG_NUMA */
4019 
4020 #ifdef CONFIG_HARDENED_USERCOPY
4021 /*
4022  * Rejects incorrectly sized objects and objects that are to be copied
4023  * to/from userspace but do not fall entirely within the containing slab
4024  * cache's usercopy region.
4025  *
4026  * Returns NULL if check passes, otherwise const char * to name of cache
4027  * to indicate an error.
4028  */
4029 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4030 			 bool to_user)
4031 {
4032 	struct kmem_cache *s;
4033 	unsigned int offset;
4034 	size_t object_size;
4035 
4036 	ptr = kasan_reset_tag(ptr);
4037 
4038 	/* Find object and usable object size. */
4039 	s = page->slab_cache;
4040 
4041 	/* Reject impossible pointers. */
4042 	if (ptr < page_address(page))
4043 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4044 			       to_user, 0, n);
4045 
4046 	/* Find offset within object. */
4047 	offset = (ptr - page_address(page)) % s->size;
4048 
4049 	/* Adjust for redzone and reject if within the redzone. */
4050 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4051 		if (offset < s->red_left_pad)
4052 			usercopy_abort("SLUB object in left red zone",
4053 				       s->name, to_user, offset, n);
4054 		offset -= s->red_left_pad;
4055 	}
4056 
4057 	/* Allow address range falling entirely within usercopy region. */
4058 	if (offset >= s->useroffset &&
4059 	    offset - s->useroffset <= s->usersize &&
4060 	    n <= s->useroffset - offset + s->usersize)
4061 		return;
4062 
4063 	/*
4064 	 * If the copy is still within the allocated object, produce
4065 	 * a warning instead of rejecting the copy. This is intended
4066 	 * to be a temporary method to find any missing usercopy
4067 	 * whitelists.
4068 	 */
4069 	object_size = slab_ksize(s);
4070 	if (usercopy_fallback &&
4071 	    offset <= object_size && n <= object_size - offset) {
4072 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4073 		return;
4074 	}
4075 
4076 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4077 }
4078 #endif /* CONFIG_HARDENED_USERCOPY */
4079 
4080 size_t __ksize(const void *object)
4081 {
4082 	struct page *page;
4083 
4084 	if (unlikely(object == ZERO_SIZE_PTR))
4085 		return 0;
4086 
4087 	page = virt_to_head_page(object);
4088 
4089 	if (unlikely(!PageSlab(page))) {
4090 		WARN_ON(!PageCompound(page));
4091 		return page_size(page);
4092 	}
4093 
4094 	return slab_ksize(page->slab_cache);
4095 }
4096 EXPORT_SYMBOL(__ksize);
4097 
4098 void kfree(const void *x)
4099 {
4100 	struct page *page;
4101 	void *object = (void *)x;
4102 
4103 	trace_kfree(_RET_IP_, x);
4104 
4105 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4106 		return;
4107 
4108 	page = virt_to_head_page(x);
4109 	if (unlikely(!PageSlab(page))) {
4110 		unsigned int order = compound_order(page);
4111 
4112 		BUG_ON(!PageCompound(page));
4113 		kfree_hook(object);
4114 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4115 				    -(PAGE_SIZE << order));
4116 		__free_pages(page, order);
4117 		return;
4118 	}
4119 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4120 }
4121 EXPORT_SYMBOL(kfree);
4122 
4123 #define SHRINK_PROMOTE_MAX 32
4124 
4125 /*
4126  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4127  * up most to the head of the partial lists. New allocations will then
4128  * fill those up and thus they can be removed from the partial lists.
4129  *
4130  * The slabs with the least items are placed last. This results in them
4131  * being allocated from last increasing the chance that the last objects
4132  * are freed in them.
4133  */
4134 int __kmem_cache_shrink(struct kmem_cache *s)
4135 {
4136 	int node;
4137 	int i;
4138 	struct kmem_cache_node *n;
4139 	struct page *page;
4140 	struct page *t;
4141 	struct list_head discard;
4142 	struct list_head promote[SHRINK_PROMOTE_MAX];
4143 	unsigned long flags;
4144 	int ret = 0;
4145 
4146 	flush_all(s);
4147 	for_each_kmem_cache_node(s, node, n) {
4148 		INIT_LIST_HEAD(&discard);
4149 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4150 			INIT_LIST_HEAD(promote + i);
4151 
4152 		spin_lock_irqsave(&n->list_lock, flags);
4153 
4154 		/*
4155 		 * Build lists of slabs to discard or promote.
4156 		 *
4157 		 * Note that concurrent frees may occur while we hold the
4158 		 * list_lock. page->inuse here is the upper limit.
4159 		 */
4160 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4161 			int free = page->objects - page->inuse;
4162 
4163 			/* Do not reread page->inuse */
4164 			barrier();
4165 
4166 			/* We do not keep full slabs on the list */
4167 			BUG_ON(free <= 0);
4168 
4169 			if (free == page->objects) {
4170 				list_move(&page->slab_list, &discard);
4171 				n->nr_partial--;
4172 			} else if (free <= SHRINK_PROMOTE_MAX)
4173 				list_move(&page->slab_list, promote + free - 1);
4174 		}
4175 
4176 		/*
4177 		 * Promote the slabs filled up most to the head of the
4178 		 * partial list.
4179 		 */
4180 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4181 			list_splice(promote + i, &n->partial);
4182 
4183 		spin_unlock_irqrestore(&n->list_lock, flags);
4184 
4185 		/* Release empty slabs */
4186 		list_for_each_entry_safe(page, t, &discard, slab_list)
4187 			discard_slab(s, page);
4188 
4189 		if (slabs_node(s, node))
4190 			ret = 1;
4191 	}
4192 
4193 	return ret;
4194 }
4195 
4196 static int slab_mem_going_offline_callback(void *arg)
4197 {
4198 	struct kmem_cache *s;
4199 
4200 	mutex_lock(&slab_mutex);
4201 	list_for_each_entry(s, &slab_caches, list)
4202 		__kmem_cache_shrink(s);
4203 	mutex_unlock(&slab_mutex);
4204 
4205 	return 0;
4206 }
4207 
4208 static void slab_mem_offline_callback(void *arg)
4209 {
4210 	struct kmem_cache_node *n;
4211 	struct kmem_cache *s;
4212 	struct memory_notify *marg = arg;
4213 	int offline_node;
4214 
4215 	offline_node = marg->status_change_nid_normal;
4216 
4217 	/*
4218 	 * If the node still has available memory. we need kmem_cache_node
4219 	 * for it yet.
4220 	 */
4221 	if (offline_node < 0)
4222 		return;
4223 
4224 	mutex_lock(&slab_mutex);
4225 	list_for_each_entry(s, &slab_caches, list) {
4226 		n = get_node(s, offline_node);
4227 		if (n) {
4228 			/*
4229 			 * if n->nr_slabs > 0, slabs still exist on the node
4230 			 * that is going down. We were unable to free them,
4231 			 * and offline_pages() function shouldn't call this
4232 			 * callback. So, we must fail.
4233 			 */
4234 			BUG_ON(slabs_node(s, offline_node));
4235 
4236 			s->node[offline_node] = NULL;
4237 			kmem_cache_free(kmem_cache_node, n);
4238 		}
4239 	}
4240 	mutex_unlock(&slab_mutex);
4241 }
4242 
4243 static int slab_mem_going_online_callback(void *arg)
4244 {
4245 	struct kmem_cache_node *n;
4246 	struct kmem_cache *s;
4247 	struct memory_notify *marg = arg;
4248 	int nid = marg->status_change_nid_normal;
4249 	int ret = 0;
4250 
4251 	/*
4252 	 * If the node's memory is already available, then kmem_cache_node is
4253 	 * already created. Nothing to do.
4254 	 */
4255 	if (nid < 0)
4256 		return 0;
4257 
4258 	/*
4259 	 * We are bringing a node online. No memory is available yet. We must
4260 	 * allocate a kmem_cache_node structure in order to bring the node
4261 	 * online.
4262 	 */
4263 	mutex_lock(&slab_mutex);
4264 	list_for_each_entry(s, &slab_caches, list) {
4265 		/*
4266 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4267 		 *      since memory is not yet available from the node that
4268 		 *      is brought up.
4269 		 */
4270 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4271 		if (!n) {
4272 			ret = -ENOMEM;
4273 			goto out;
4274 		}
4275 		init_kmem_cache_node(n);
4276 		s->node[nid] = n;
4277 	}
4278 out:
4279 	mutex_unlock(&slab_mutex);
4280 	return ret;
4281 }
4282 
4283 static int slab_memory_callback(struct notifier_block *self,
4284 				unsigned long action, void *arg)
4285 {
4286 	int ret = 0;
4287 
4288 	switch (action) {
4289 	case MEM_GOING_ONLINE:
4290 		ret = slab_mem_going_online_callback(arg);
4291 		break;
4292 	case MEM_GOING_OFFLINE:
4293 		ret = slab_mem_going_offline_callback(arg);
4294 		break;
4295 	case MEM_OFFLINE:
4296 	case MEM_CANCEL_ONLINE:
4297 		slab_mem_offline_callback(arg);
4298 		break;
4299 	case MEM_ONLINE:
4300 	case MEM_CANCEL_OFFLINE:
4301 		break;
4302 	}
4303 	if (ret)
4304 		ret = notifier_from_errno(ret);
4305 	else
4306 		ret = NOTIFY_OK;
4307 	return ret;
4308 }
4309 
4310 static struct notifier_block slab_memory_callback_nb = {
4311 	.notifier_call = slab_memory_callback,
4312 	.priority = SLAB_CALLBACK_PRI,
4313 };
4314 
4315 /********************************************************************
4316  *			Basic setup of slabs
4317  *******************************************************************/
4318 
4319 /*
4320  * Used for early kmem_cache structures that were allocated using
4321  * the page allocator. Allocate them properly then fix up the pointers
4322  * that may be pointing to the wrong kmem_cache structure.
4323  */
4324 
4325 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4326 {
4327 	int node;
4328 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4329 	struct kmem_cache_node *n;
4330 
4331 	memcpy(s, static_cache, kmem_cache->object_size);
4332 
4333 	/*
4334 	 * This runs very early, and only the boot processor is supposed to be
4335 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4336 	 * IPIs around.
4337 	 */
4338 	__flush_cpu_slab(s, smp_processor_id());
4339 	for_each_kmem_cache_node(s, node, n) {
4340 		struct page *p;
4341 
4342 		list_for_each_entry(p, &n->partial, slab_list)
4343 			p->slab_cache = s;
4344 
4345 #ifdef CONFIG_SLUB_DEBUG
4346 		list_for_each_entry(p, &n->full, slab_list)
4347 			p->slab_cache = s;
4348 #endif
4349 	}
4350 	list_add(&s->list, &slab_caches);
4351 	return s;
4352 }
4353 
4354 void __init kmem_cache_init(void)
4355 {
4356 	static __initdata struct kmem_cache boot_kmem_cache,
4357 		boot_kmem_cache_node;
4358 
4359 	if (debug_guardpage_minorder())
4360 		slub_max_order = 0;
4361 
4362 	kmem_cache_node = &boot_kmem_cache_node;
4363 	kmem_cache = &boot_kmem_cache;
4364 
4365 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4366 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4367 
4368 	register_hotmemory_notifier(&slab_memory_callback_nb);
4369 
4370 	/* Able to allocate the per node structures */
4371 	slab_state = PARTIAL;
4372 
4373 	create_boot_cache(kmem_cache, "kmem_cache",
4374 			offsetof(struct kmem_cache, node) +
4375 				nr_node_ids * sizeof(struct kmem_cache_node *),
4376 		       SLAB_HWCACHE_ALIGN, 0, 0);
4377 
4378 	kmem_cache = bootstrap(&boot_kmem_cache);
4379 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4380 
4381 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4382 	setup_kmalloc_cache_index_table();
4383 	create_kmalloc_caches(0);
4384 
4385 	/* Setup random freelists for each cache */
4386 	init_freelist_randomization();
4387 
4388 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4389 				  slub_cpu_dead);
4390 
4391 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4392 		cache_line_size(),
4393 		slub_min_order, slub_max_order, slub_min_objects,
4394 		nr_cpu_ids, nr_node_ids);
4395 }
4396 
4397 void __init kmem_cache_init_late(void)
4398 {
4399 }
4400 
4401 struct kmem_cache *
4402 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4403 		   slab_flags_t flags, void (*ctor)(void *))
4404 {
4405 	struct kmem_cache *s;
4406 
4407 	s = find_mergeable(size, align, flags, name, ctor);
4408 	if (s) {
4409 		s->refcount++;
4410 
4411 		/*
4412 		 * Adjust the object sizes so that we clear
4413 		 * the complete object on kzalloc.
4414 		 */
4415 		s->object_size = max(s->object_size, size);
4416 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4417 
4418 		if (sysfs_slab_alias(s, name)) {
4419 			s->refcount--;
4420 			s = NULL;
4421 		}
4422 	}
4423 
4424 	return s;
4425 }
4426 
4427 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4428 {
4429 	int err;
4430 
4431 	err = kmem_cache_open(s, flags);
4432 	if (err)
4433 		return err;
4434 
4435 	/* Mutex is not taken during early boot */
4436 	if (slab_state <= UP)
4437 		return 0;
4438 
4439 	err = sysfs_slab_add(s);
4440 	if (err)
4441 		__kmem_cache_release(s);
4442 
4443 	return err;
4444 }
4445 
4446 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4447 {
4448 	struct kmem_cache *s;
4449 	void *ret;
4450 
4451 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4452 		return kmalloc_large(size, gfpflags);
4453 
4454 	s = kmalloc_slab(size, gfpflags);
4455 
4456 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4457 		return s;
4458 
4459 	ret = slab_alloc(s, gfpflags, caller);
4460 
4461 	/* Honor the call site pointer we received. */
4462 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4463 
4464 	return ret;
4465 }
4466 EXPORT_SYMBOL(__kmalloc_track_caller);
4467 
4468 #ifdef CONFIG_NUMA
4469 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4470 					int node, unsigned long caller)
4471 {
4472 	struct kmem_cache *s;
4473 	void *ret;
4474 
4475 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4476 		ret = kmalloc_large_node(size, gfpflags, node);
4477 
4478 		trace_kmalloc_node(caller, ret,
4479 				   size, PAGE_SIZE << get_order(size),
4480 				   gfpflags, node);
4481 
4482 		return ret;
4483 	}
4484 
4485 	s = kmalloc_slab(size, gfpflags);
4486 
4487 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4488 		return s;
4489 
4490 	ret = slab_alloc_node(s, gfpflags, node, caller);
4491 
4492 	/* Honor the call site pointer we received. */
4493 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4494 
4495 	return ret;
4496 }
4497 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4498 #endif
4499 
4500 #ifdef CONFIG_SYSFS
4501 static int count_inuse(struct page *page)
4502 {
4503 	return page->inuse;
4504 }
4505 
4506 static int count_total(struct page *page)
4507 {
4508 	return page->objects;
4509 }
4510 #endif
4511 
4512 #ifdef CONFIG_SLUB_DEBUG
4513 static void validate_slab(struct kmem_cache *s, struct page *page)
4514 {
4515 	void *p;
4516 	void *addr = page_address(page);
4517 	unsigned long *map;
4518 
4519 	slab_lock(page);
4520 
4521 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4522 		goto unlock;
4523 
4524 	/* Now we know that a valid freelist exists */
4525 	map = get_map(s, page);
4526 	for_each_object(p, s, addr, page->objects) {
4527 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4528 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4529 
4530 		if (!check_object(s, page, p, val))
4531 			break;
4532 	}
4533 	put_map(map);
4534 unlock:
4535 	slab_unlock(page);
4536 }
4537 
4538 static int validate_slab_node(struct kmem_cache *s,
4539 		struct kmem_cache_node *n)
4540 {
4541 	unsigned long count = 0;
4542 	struct page *page;
4543 	unsigned long flags;
4544 
4545 	spin_lock_irqsave(&n->list_lock, flags);
4546 
4547 	list_for_each_entry(page, &n->partial, slab_list) {
4548 		validate_slab(s, page);
4549 		count++;
4550 	}
4551 	if (count != n->nr_partial)
4552 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4553 		       s->name, count, n->nr_partial);
4554 
4555 	if (!(s->flags & SLAB_STORE_USER))
4556 		goto out;
4557 
4558 	list_for_each_entry(page, &n->full, slab_list) {
4559 		validate_slab(s, page);
4560 		count++;
4561 	}
4562 	if (count != atomic_long_read(&n->nr_slabs))
4563 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4564 		       s->name, count, atomic_long_read(&n->nr_slabs));
4565 
4566 out:
4567 	spin_unlock_irqrestore(&n->list_lock, flags);
4568 	return count;
4569 }
4570 
4571 static long validate_slab_cache(struct kmem_cache *s)
4572 {
4573 	int node;
4574 	unsigned long count = 0;
4575 	struct kmem_cache_node *n;
4576 
4577 	flush_all(s);
4578 	for_each_kmem_cache_node(s, node, n)
4579 		count += validate_slab_node(s, n);
4580 
4581 	return count;
4582 }
4583 /*
4584  * Generate lists of code addresses where slabcache objects are allocated
4585  * and freed.
4586  */
4587 
4588 struct location {
4589 	unsigned long count;
4590 	unsigned long addr;
4591 	long long sum_time;
4592 	long min_time;
4593 	long max_time;
4594 	long min_pid;
4595 	long max_pid;
4596 	DECLARE_BITMAP(cpus, NR_CPUS);
4597 	nodemask_t nodes;
4598 };
4599 
4600 struct loc_track {
4601 	unsigned long max;
4602 	unsigned long count;
4603 	struct location *loc;
4604 };
4605 
4606 static void free_loc_track(struct loc_track *t)
4607 {
4608 	if (t->max)
4609 		free_pages((unsigned long)t->loc,
4610 			get_order(sizeof(struct location) * t->max));
4611 }
4612 
4613 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4614 {
4615 	struct location *l;
4616 	int order;
4617 
4618 	order = get_order(sizeof(struct location) * max);
4619 
4620 	l = (void *)__get_free_pages(flags, order);
4621 	if (!l)
4622 		return 0;
4623 
4624 	if (t->count) {
4625 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4626 		free_loc_track(t);
4627 	}
4628 	t->max = max;
4629 	t->loc = l;
4630 	return 1;
4631 }
4632 
4633 static int add_location(struct loc_track *t, struct kmem_cache *s,
4634 				const struct track *track)
4635 {
4636 	long start, end, pos;
4637 	struct location *l;
4638 	unsigned long caddr;
4639 	unsigned long age = jiffies - track->when;
4640 
4641 	start = -1;
4642 	end = t->count;
4643 
4644 	for ( ; ; ) {
4645 		pos = start + (end - start + 1) / 2;
4646 
4647 		/*
4648 		 * There is nothing at "end". If we end up there
4649 		 * we need to add something to before end.
4650 		 */
4651 		if (pos == end)
4652 			break;
4653 
4654 		caddr = t->loc[pos].addr;
4655 		if (track->addr == caddr) {
4656 
4657 			l = &t->loc[pos];
4658 			l->count++;
4659 			if (track->when) {
4660 				l->sum_time += age;
4661 				if (age < l->min_time)
4662 					l->min_time = age;
4663 				if (age > l->max_time)
4664 					l->max_time = age;
4665 
4666 				if (track->pid < l->min_pid)
4667 					l->min_pid = track->pid;
4668 				if (track->pid > l->max_pid)
4669 					l->max_pid = track->pid;
4670 
4671 				cpumask_set_cpu(track->cpu,
4672 						to_cpumask(l->cpus));
4673 			}
4674 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4675 			return 1;
4676 		}
4677 
4678 		if (track->addr < caddr)
4679 			end = pos;
4680 		else
4681 			start = pos;
4682 	}
4683 
4684 	/*
4685 	 * Not found. Insert new tracking element.
4686 	 */
4687 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4688 		return 0;
4689 
4690 	l = t->loc + pos;
4691 	if (pos < t->count)
4692 		memmove(l + 1, l,
4693 			(t->count - pos) * sizeof(struct location));
4694 	t->count++;
4695 	l->count = 1;
4696 	l->addr = track->addr;
4697 	l->sum_time = age;
4698 	l->min_time = age;
4699 	l->max_time = age;
4700 	l->min_pid = track->pid;
4701 	l->max_pid = track->pid;
4702 	cpumask_clear(to_cpumask(l->cpus));
4703 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4704 	nodes_clear(l->nodes);
4705 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4706 	return 1;
4707 }
4708 
4709 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4710 		struct page *page, enum track_item alloc)
4711 {
4712 	void *addr = page_address(page);
4713 	void *p;
4714 	unsigned long *map;
4715 
4716 	map = get_map(s, page);
4717 	for_each_object(p, s, addr, page->objects)
4718 		if (!test_bit(__obj_to_index(s, addr, p), map))
4719 			add_location(t, s, get_track(s, p, alloc));
4720 	put_map(map);
4721 }
4722 
4723 static int list_locations(struct kmem_cache *s, char *buf,
4724 					enum track_item alloc)
4725 {
4726 	int len = 0;
4727 	unsigned long i;
4728 	struct loc_track t = { 0, 0, NULL };
4729 	int node;
4730 	struct kmem_cache_node *n;
4731 
4732 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4733 			     GFP_KERNEL)) {
4734 		return sprintf(buf, "Out of memory\n");
4735 	}
4736 	/* Push back cpu slabs */
4737 	flush_all(s);
4738 
4739 	for_each_kmem_cache_node(s, node, n) {
4740 		unsigned long flags;
4741 		struct page *page;
4742 
4743 		if (!atomic_long_read(&n->nr_slabs))
4744 			continue;
4745 
4746 		spin_lock_irqsave(&n->list_lock, flags);
4747 		list_for_each_entry(page, &n->partial, slab_list)
4748 			process_slab(&t, s, page, alloc);
4749 		list_for_each_entry(page, &n->full, slab_list)
4750 			process_slab(&t, s, page, alloc);
4751 		spin_unlock_irqrestore(&n->list_lock, flags);
4752 	}
4753 
4754 	for (i = 0; i < t.count; i++) {
4755 		struct location *l = &t.loc[i];
4756 
4757 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4758 			break;
4759 		len += sprintf(buf + len, "%7ld ", l->count);
4760 
4761 		if (l->addr)
4762 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4763 		else
4764 			len += sprintf(buf + len, "<not-available>");
4765 
4766 		if (l->sum_time != l->min_time) {
4767 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4768 				l->min_time,
4769 				(long)div_u64(l->sum_time, l->count),
4770 				l->max_time);
4771 		} else
4772 			len += sprintf(buf + len, " age=%ld",
4773 				l->min_time);
4774 
4775 		if (l->min_pid != l->max_pid)
4776 			len += sprintf(buf + len, " pid=%ld-%ld",
4777 				l->min_pid, l->max_pid);
4778 		else
4779 			len += sprintf(buf + len, " pid=%ld",
4780 				l->min_pid);
4781 
4782 		if (num_online_cpus() > 1 &&
4783 				!cpumask_empty(to_cpumask(l->cpus)) &&
4784 				len < PAGE_SIZE - 60)
4785 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4786 					 " cpus=%*pbl",
4787 					 cpumask_pr_args(to_cpumask(l->cpus)));
4788 
4789 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4790 				len < PAGE_SIZE - 60)
4791 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4792 					 " nodes=%*pbl",
4793 					 nodemask_pr_args(&l->nodes));
4794 
4795 		len += sprintf(buf + len, "\n");
4796 	}
4797 
4798 	free_loc_track(&t);
4799 	if (!t.count)
4800 		len += sprintf(buf, "No data\n");
4801 	return len;
4802 }
4803 #endif	/* CONFIG_SLUB_DEBUG */
4804 
4805 #ifdef SLUB_RESILIENCY_TEST
4806 static void __init resiliency_test(void)
4807 {
4808 	u8 *p;
4809 	int type = KMALLOC_NORMAL;
4810 
4811 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4812 
4813 	pr_err("SLUB resiliency testing\n");
4814 	pr_err("-----------------------\n");
4815 	pr_err("A. Corruption after allocation\n");
4816 
4817 	p = kzalloc(16, GFP_KERNEL);
4818 	p[16] = 0x12;
4819 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4820 	       p + 16);
4821 
4822 	validate_slab_cache(kmalloc_caches[type][4]);
4823 
4824 	/* Hmmm... The next two are dangerous */
4825 	p = kzalloc(32, GFP_KERNEL);
4826 	p[32 + sizeof(void *)] = 0x34;
4827 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4828 	       p);
4829 	pr_err("If allocated object is overwritten then not detectable\n\n");
4830 
4831 	validate_slab_cache(kmalloc_caches[type][5]);
4832 	p = kzalloc(64, GFP_KERNEL);
4833 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4834 	*p = 0x56;
4835 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4836 	       p);
4837 	pr_err("If allocated object is overwritten then not detectable\n\n");
4838 	validate_slab_cache(kmalloc_caches[type][6]);
4839 
4840 	pr_err("\nB. Corruption after free\n");
4841 	p = kzalloc(128, GFP_KERNEL);
4842 	kfree(p);
4843 	*p = 0x78;
4844 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4845 	validate_slab_cache(kmalloc_caches[type][7]);
4846 
4847 	p = kzalloc(256, GFP_KERNEL);
4848 	kfree(p);
4849 	p[50] = 0x9a;
4850 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4851 	validate_slab_cache(kmalloc_caches[type][8]);
4852 
4853 	p = kzalloc(512, GFP_KERNEL);
4854 	kfree(p);
4855 	p[512] = 0xab;
4856 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4857 	validate_slab_cache(kmalloc_caches[type][9]);
4858 }
4859 #else
4860 #ifdef CONFIG_SYSFS
4861 static void resiliency_test(void) {};
4862 #endif
4863 #endif	/* SLUB_RESILIENCY_TEST */
4864 
4865 #ifdef CONFIG_SYSFS
4866 enum slab_stat_type {
4867 	SL_ALL,			/* All slabs */
4868 	SL_PARTIAL,		/* Only partially allocated slabs */
4869 	SL_CPU,			/* Only slabs used for cpu caches */
4870 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4871 	SL_TOTAL		/* Determine object capacity not slabs */
4872 };
4873 
4874 #define SO_ALL		(1 << SL_ALL)
4875 #define SO_PARTIAL	(1 << SL_PARTIAL)
4876 #define SO_CPU		(1 << SL_CPU)
4877 #define SO_OBJECTS	(1 << SL_OBJECTS)
4878 #define SO_TOTAL	(1 << SL_TOTAL)
4879 
4880 #ifdef CONFIG_MEMCG
4881 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4882 
4883 static int __init setup_slub_memcg_sysfs(char *str)
4884 {
4885 	int v;
4886 
4887 	if (get_option(&str, &v) > 0)
4888 		memcg_sysfs_enabled = v;
4889 
4890 	return 1;
4891 }
4892 
4893 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4894 #endif
4895 
4896 static ssize_t show_slab_objects(struct kmem_cache *s,
4897 			    char *buf, unsigned long flags)
4898 {
4899 	unsigned long total = 0;
4900 	int node;
4901 	int x;
4902 	unsigned long *nodes;
4903 
4904 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4905 	if (!nodes)
4906 		return -ENOMEM;
4907 
4908 	if (flags & SO_CPU) {
4909 		int cpu;
4910 
4911 		for_each_possible_cpu(cpu) {
4912 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4913 							       cpu);
4914 			int node;
4915 			struct page *page;
4916 
4917 			page = READ_ONCE(c->page);
4918 			if (!page)
4919 				continue;
4920 
4921 			node = page_to_nid(page);
4922 			if (flags & SO_TOTAL)
4923 				x = page->objects;
4924 			else if (flags & SO_OBJECTS)
4925 				x = page->inuse;
4926 			else
4927 				x = 1;
4928 
4929 			total += x;
4930 			nodes[node] += x;
4931 
4932 			page = slub_percpu_partial_read_once(c);
4933 			if (page) {
4934 				node = page_to_nid(page);
4935 				if (flags & SO_TOTAL)
4936 					WARN_ON_ONCE(1);
4937 				else if (flags & SO_OBJECTS)
4938 					WARN_ON_ONCE(1);
4939 				else
4940 					x = page->pages;
4941 				total += x;
4942 				nodes[node] += x;
4943 			}
4944 		}
4945 	}
4946 
4947 	/*
4948 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4949 	 * already held which will conflict with an existing lock order:
4950 	 *
4951 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4952 	 *
4953 	 * We don't really need mem_hotplug_lock (to hold off
4954 	 * slab_mem_going_offline_callback) here because slab's memory hot
4955 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4956 	 */
4957 
4958 #ifdef CONFIG_SLUB_DEBUG
4959 	if (flags & SO_ALL) {
4960 		struct kmem_cache_node *n;
4961 
4962 		for_each_kmem_cache_node(s, node, n) {
4963 
4964 			if (flags & SO_TOTAL)
4965 				x = atomic_long_read(&n->total_objects);
4966 			else if (flags & SO_OBJECTS)
4967 				x = atomic_long_read(&n->total_objects) -
4968 					count_partial(n, count_free);
4969 			else
4970 				x = atomic_long_read(&n->nr_slabs);
4971 			total += x;
4972 			nodes[node] += x;
4973 		}
4974 
4975 	} else
4976 #endif
4977 	if (flags & SO_PARTIAL) {
4978 		struct kmem_cache_node *n;
4979 
4980 		for_each_kmem_cache_node(s, node, n) {
4981 			if (flags & SO_TOTAL)
4982 				x = count_partial(n, count_total);
4983 			else if (flags & SO_OBJECTS)
4984 				x = count_partial(n, count_inuse);
4985 			else
4986 				x = n->nr_partial;
4987 			total += x;
4988 			nodes[node] += x;
4989 		}
4990 	}
4991 	x = sprintf(buf, "%lu", total);
4992 #ifdef CONFIG_NUMA
4993 	for (node = 0; node < nr_node_ids; node++)
4994 		if (nodes[node])
4995 			x += sprintf(buf + x, " N%d=%lu",
4996 					node, nodes[node]);
4997 #endif
4998 	kfree(nodes);
4999 	return x + sprintf(buf + x, "\n");
5000 }
5001 
5002 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5003 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5004 
5005 struct slab_attribute {
5006 	struct attribute attr;
5007 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5008 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5009 };
5010 
5011 #define SLAB_ATTR_RO(_name) \
5012 	static struct slab_attribute _name##_attr = \
5013 	__ATTR(_name, 0400, _name##_show, NULL)
5014 
5015 #define SLAB_ATTR(_name) \
5016 	static struct slab_attribute _name##_attr =  \
5017 	__ATTR(_name, 0600, _name##_show, _name##_store)
5018 
5019 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5020 {
5021 	return sprintf(buf, "%u\n", s->size);
5022 }
5023 SLAB_ATTR_RO(slab_size);
5024 
5025 static ssize_t align_show(struct kmem_cache *s, char *buf)
5026 {
5027 	return sprintf(buf, "%u\n", s->align);
5028 }
5029 SLAB_ATTR_RO(align);
5030 
5031 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5032 {
5033 	return sprintf(buf, "%u\n", s->object_size);
5034 }
5035 SLAB_ATTR_RO(object_size);
5036 
5037 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5038 {
5039 	return sprintf(buf, "%u\n", oo_objects(s->oo));
5040 }
5041 SLAB_ATTR_RO(objs_per_slab);
5042 
5043 static ssize_t order_show(struct kmem_cache *s, char *buf)
5044 {
5045 	return sprintf(buf, "%u\n", oo_order(s->oo));
5046 }
5047 SLAB_ATTR_RO(order);
5048 
5049 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5050 {
5051 	return sprintf(buf, "%lu\n", s->min_partial);
5052 }
5053 
5054 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5055 				 size_t length)
5056 {
5057 	unsigned long min;
5058 	int err;
5059 
5060 	err = kstrtoul(buf, 10, &min);
5061 	if (err)
5062 		return err;
5063 
5064 	set_min_partial(s, min);
5065 	return length;
5066 }
5067 SLAB_ATTR(min_partial);
5068 
5069 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5070 {
5071 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5072 }
5073 
5074 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5075 				 size_t length)
5076 {
5077 	unsigned int objects;
5078 	int err;
5079 
5080 	err = kstrtouint(buf, 10, &objects);
5081 	if (err)
5082 		return err;
5083 	if (objects && !kmem_cache_has_cpu_partial(s))
5084 		return -EINVAL;
5085 
5086 	slub_set_cpu_partial(s, objects);
5087 	flush_all(s);
5088 	return length;
5089 }
5090 SLAB_ATTR(cpu_partial);
5091 
5092 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5093 {
5094 	if (!s->ctor)
5095 		return 0;
5096 	return sprintf(buf, "%pS\n", s->ctor);
5097 }
5098 SLAB_ATTR_RO(ctor);
5099 
5100 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5101 {
5102 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5103 }
5104 SLAB_ATTR_RO(aliases);
5105 
5106 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5107 {
5108 	return show_slab_objects(s, buf, SO_PARTIAL);
5109 }
5110 SLAB_ATTR_RO(partial);
5111 
5112 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5113 {
5114 	return show_slab_objects(s, buf, SO_CPU);
5115 }
5116 SLAB_ATTR_RO(cpu_slabs);
5117 
5118 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5119 {
5120 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5121 }
5122 SLAB_ATTR_RO(objects);
5123 
5124 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5125 {
5126 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5127 }
5128 SLAB_ATTR_RO(objects_partial);
5129 
5130 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5131 {
5132 	int objects = 0;
5133 	int pages = 0;
5134 	int cpu;
5135 	int len;
5136 
5137 	for_each_online_cpu(cpu) {
5138 		struct page *page;
5139 
5140 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5141 
5142 		if (page) {
5143 			pages += page->pages;
5144 			objects += page->pobjects;
5145 		}
5146 	}
5147 
5148 	len = sprintf(buf, "%d(%d)", objects, pages);
5149 
5150 #ifdef CONFIG_SMP
5151 	for_each_online_cpu(cpu) {
5152 		struct page *page;
5153 
5154 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5155 
5156 		if (page && len < PAGE_SIZE - 20)
5157 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5158 				page->pobjects, page->pages);
5159 	}
5160 #endif
5161 	return len + sprintf(buf + len, "\n");
5162 }
5163 SLAB_ATTR_RO(slabs_cpu_partial);
5164 
5165 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5166 {
5167 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5168 }
5169 SLAB_ATTR_RO(reclaim_account);
5170 
5171 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5172 {
5173 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5174 }
5175 SLAB_ATTR_RO(hwcache_align);
5176 
5177 #ifdef CONFIG_ZONE_DMA
5178 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5179 {
5180 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5181 }
5182 SLAB_ATTR_RO(cache_dma);
5183 #endif
5184 
5185 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5186 {
5187 	return sprintf(buf, "%u\n", s->usersize);
5188 }
5189 SLAB_ATTR_RO(usersize);
5190 
5191 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5192 {
5193 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5194 }
5195 SLAB_ATTR_RO(destroy_by_rcu);
5196 
5197 #ifdef CONFIG_SLUB_DEBUG
5198 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5199 {
5200 	return show_slab_objects(s, buf, SO_ALL);
5201 }
5202 SLAB_ATTR_RO(slabs);
5203 
5204 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5205 {
5206 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5207 }
5208 SLAB_ATTR_RO(total_objects);
5209 
5210 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5211 {
5212 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5213 }
5214 SLAB_ATTR_RO(sanity_checks);
5215 
5216 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5217 {
5218 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5219 }
5220 SLAB_ATTR_RO(trace);
5221 
5222 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5223 {
5224 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5225 }
5226 
5227 SLAB_ATTR_RO(red_zone);
5228 
5229 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5230 {
5231 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5232 }
5233 
5234 SLAB_ATTR_RO(poison);
5235 
5236 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5237 {
5238 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5239 }
5240 
5241 SLAB_ATTR_RO(store_user);
5242 
5243 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5244 {
5245 	return 0;
5246 }
5247 
5248 static ssize_t validate_store(struct kmem_cache *s,
5249 			const char *buf, size_t length)
5250 {
5251 	int ret = -EINVAL;
5252 
5253 	if (buf[0] == '1') {
5254 		ret = validate_slab_cache(s);
5255 		if (ret >= 0)
5256 			ret = length;
5257 	}
5258 	return ret;
5259 }
5260 SLAB_ATTR(validate);
5261 
5262 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5263 {
5264 	if (!(s->flags & SLAB_STORE_USER))
5265 		return -ENOSYS;
5266 	return list_locations(s, buf, TRACK_ALLOC);
5267 }
5268 SLAB_ATTR_RO(alloc_calls);
5269 
5270 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5271 {
5272 	if (!(s->flags & SLAB_STORE_USER))
5273 		return -ENOSYS;
5274 	return list_locations(s, buf, TRACK_FREE);
5275 }
5276 SLAB_ATTR_RO(free_calls);
5277 #endif /* CONFIG_SLUB_DEBUG */
5278 
5279 #ifdef CONFIG_FAILSLAB
5280 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5281 {
5282 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5283 }
5284 SLAB_ATTR_RO(failslab);
5285 #endif
5286 
5287 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5288 {
5289 	return 0;
5290 }
5291 
5292 static ssize_t shrink_store(struct kmem_cache *s,
5293 			const char *buf, size_t length)
5294 {
5295 	if (buf[0] == '1')
5296 		kmem_cache_shrink(s);
5297 	else
5298 		return -EINVAL;
5299 	return length;
5300 }
5301 SLAB_ATTR(shrink);
5302 
5303 #ifdef CONFIG_NUMA
5304 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5305 {
5306 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5307 }
5308 
5309 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5310 				const char *buf, size_t length)
5311 {
5312 	unsigned int ratio;
5313 	int err;
5314 
5315 	err = kstrtouint(buf, 10, &ratio);
5316 	if (err)
5317 		return err;
5318 	if (ratio > 100)
5319 		return -ERANGE;
5320 
5321 	s->remote_node_defrag_ratio = ratio * 10;
5322 
5323 	return length;
5324 }
5325 SLAB_ATTR(remote_node_defrag_ratio);
5326 #endif
5327 
5328 #ifdef CONFIG_SLUB_STATS
5329 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5330 {
5331 	unsigned long sum  = 0;
5332 	int cpu;
5333 	int len;
5334 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5335 
5336 	if (!data)
5337 		return -ENOMEM;
5338 
5339 	for_each_online_cpu(cpu) {
5340 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5341 
5342 		data[cpu] = x;
5343 		sum += x;
5344 	}
5345 
5346 	len = sprintf(buf, "%lu", sum);
5347 
5348 #ifdef CONFIG_SMP
5349 	for_each_online_cpu(cpu) {
5350 		if (data[cpu] && len < PAGE_SIZE - 20)
5351 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5352 	}
5353 #endif
5354 	kfree(data);
5355 	return len + sprintf(buf + len, "\n");
5356 }
5357 
5358 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5359 {
5360 	int cpu;
5361 
5362 	for_each_online_cpu(cpu)
5363 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5364 }
5365 
5366 #define STAT_ATTR(si, text) 					\
5367 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5368 {								\
5369 	return show_stat(s, buf, si);				\
5370 }								\
5371 static ssize_t text##_store(struct kmem_cache *s,		\
5372 				const char *buf, size_t length)	\
5373 {								\
5374 	if (buf[0] != '0')					\
5375 		return -EINVAL;					\
5376 	clear_stat(s, si);					\
5377 	return length;						\
5378 }								\
5379 SLAB_ATTR(text);						\
5380 
5381 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5382 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5383 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5384 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5385 STAT_ATTR(FREE_FROZEN, free_frozen);
5386 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5387 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5388 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5389 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5390 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5391 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5392 STAT_ATTR(FREE_SLAB, free_slab);
5393 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5394 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5395 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5396 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5397 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5398 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5399 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5400 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5401 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5402 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5403 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5404 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5405 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5406 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5407 #endif	/* CONFIG_SLUB_STATS */
5408 
5409 static struct attribute *slab_attrs[] = {
5410 	&slab_size_attr.attr,
5411 	&object_size_attr.attr,
5412 	&objs_per_slab_attr.attr,
5413 	&order_attr.attr,
5414 	&min_partial_attr.attr,
5415 	&cpu_partial_attr.attr,
5416 	&objects_attr.attr,
5417 	&objects_partial_attr.attr,
5418 	&partial_attr.attr,
5419 	&cpu_slabs_attr.attr,
5420 	&ctor_attr.attr,
5421 	&aliases_attr.attr,
5422 	&align_attr.attr,
5423 	&hwcache_align_attr.attr,
5424 	&reclaim_account_attr.attr,
5425 	&destroy_by_rcu_attr.attr,
5426 	&shrink_attr.attr,
5427 	&slabs_cpu_partial_attr.attr,
5428 #ifdef CONFIG_SLUB_DEBUG
5429 	&total_objects_attr.attr,
5430 	&slabs_attr.attr,
5431 	&sanity_checks_attr.attr,
5432 	&trace_attr.attr,
5433 	&red_zone_attr.attr,
5434 	&poison_attr.attr,
5435 	&store_user_attr.attr,
5436 	&validate_attr.attr,
5437 	&alloc_calls_attr.attr,
5438 	&free_calls_attr.attr,
5439 #endif
5440 #ifdef CONFIG_ZONE_DMA
5441 	&cache_dma_attr.attr,
5442 #endif
5443 #ifdef CONFIG_NUMA
5444 	&remote_node_defrag_ratio_attr.attr,
5445 #endif
5446 #ifdef CONFIG_SLUB_STATS
5447 	&alloc_fastpath_attr.attr,
5448 	&alloc_slowpath_attr.attr,
5449 	&free_fastpath_attr.attr,
5450 	&free_slowpath_attr.attr,
5451 	&free_frozen_attr.attr,
5452 	&free_add_partial_attr.attr,
5453 	&free_remove_partial_attr.attr,
5454 	&alloc_from_partial_attr.attr,
5455 	&alloc_slab_attr.attr,
5456 	&alloc_refill_attr.attr,
5457 	&alloc_node_mismatch_attr.attr,
5458 	&free_slab_attr.attr,
5459 	&cpuslab_flush_attr.attr,
5460 	&deactivate_full_attr.attr,
5461 	&deactivate_empty_attr.attr,
5462 	&deactivate_to_head_attr.attr,
5463 	&deactivate_to_tail_attr.attr,
5464 	&deactivate_remote_frees_attr.attr,
5465 	&deactivate_bypass_attr.attr,
5466 	&order_fallback_attr.attr,
5467 	&cmpxchg_double_fail_attr.attr,
5468 	&cmpxchg_double_cpu_fail_attr.attr,
5469 	&cpu_partial_alloc_attr.attr,
5470 	&cpu_partial_free_attr.attr,
5471 	&cpu_partial_node_attr.attr,
5472 	&cpu_partial_drain_attr.attr,
5473 #endif
5474 #ifdef CONFIG_FAILSLAB
5475 	&failslab_attr.attr,
5476 #endif
5477 	&usersize_attr.attr,
5478 
5479 	NULL
5480 };
5481 
5482 static const struct attribute_group slab_attr_group = {
5483 	.attrs = slab_attrs,
5484 };
5485 
5486 static ssize_t slab_attr_show(struct kobject *kobj,
5487 				struct attribute *attr,
5488 				char *buf)
5489 {
5490 	struct slab_attribute *attribute;
5491 	struct kmem_cache *s;
5492 	int err;
5493 
5494 	attribute = to_slab_attr(attr);
5495 	s = to_slab(kobj);
5496 
5497 	if (!attribute->show)
5498 		return -EIO;
5499 
5500 	err = attribute->show(s, buf);
5501 
5502 	return err;
5503 }
5504 
5505 static ssize_t slab_attr_store(struct kobject *kobj,
5506 				struct attribute *attr,
5507 				const char *buf, size_t len)
5508 {
5509 	struct slab_attribute *attribute;
5510 	struct kmem_cache *s;
5511 	int err;
5512 
5513 	attribute = to_slab_attr(attr);
5514 	s = to_slab(kobj);
5515 
5516 	if (!attribute->store)
5517 		return -EIO;
5518 
5519 	err = attribute->store(s, buf, len);
5520 	return err;
5521 }
5522 
5523 static void kmem_cache_release(struct kobject *k)
5524 {
5525 	slab_kmem_cache_release(to_slab(k));
5526 }
5527 
5528 static const struct sysfs_ops slab_sysfs_ops = {
5529 	.show = slab_attr_show,
5530 	.store = slab_attr_store,
5531 };
5532 
5533 static struct kobj_type slab_ktype = {
5534 	.sysfs_ops = &slab_sysfs_ops,
5535 	.release = kmem_cache_release,
5536 };
5537 
5538 static struct kset *slab_kset;
5539 
5540 static inline struct kset *cache_kset(struct kmem_cache *s)
5541 {
5542 	return slab_kset;
5543 }
5544 
5545 #define ID_STR_LENGTH 64
5546 
5547 /* Create a unique string id for a slab cache:
5548  *
5549  * Format	:[flags-]size
5550  */
5551 static char *create_unique_id(struct kmem_cache *s)
5552 {
5553 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5554 	char *p = name;
5555 
5556 	BUG_ON(!name);
5557 
5558 	*p++ = ':';
5559 	/*
5560 	 * First flags affecting slabcache operations. We will only
5561 	 * get here for aliasable slabs so we do not need to support
5562 	 * too many flags. The flags here must cover all flags that
5563 	 * are matched during merging to guarantee that the id is
5564 	 * unique.
5565 	 */
5566 	if (s->flags & SLAB_CACHE_DMA)
5567 		*p++ = 'd';
5568 	if (s->flags & SLAB_CACHE_DMA32)
5569 		*p++ = 'D';
5570 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5571 		*p++ = 'a';
5572 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5573 		*p++ = 'F';
5574 	if (s->flags & SLAB_ACCOUNT)
5575 		*p++ = 'A';
5576 	if (p != name + 1)
5577 		*p++ = '-';
5578 	p += sprintf(p, "%07u", s->size);
5579 
5580 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5581 	return name;
5582 }
5583 
5584 static int sysfs_slab_add(struct kmem_cache *s)
5585 {
5586 	int err;
5587 	const char *name;
5588 	struct kset *kset = cache_kset(s);
5589 	int unmergeable = slab_unmergeable(s);
5590 
5591 	if (!kset) {
5592 		kobject_init(&s->kobj, &slab_ktype);
5593 		return 0;
5594 	}
5595 
5596 	if (!unmergeable && disable_higher_order_debug &&
5597 			(slub_debug & DEBUG_METADATA_FLAGS))
5598 		unmergeable = 1;
5599 
5600 	if (unmergeable) {
5601 		/*
5602 		 * Slabcache can never be merged so we can use the name proper.
5603 		 * This is typically the case for debug situations. In that
5604 		 * case we can catch duplicate names easily.
5605 		 */
5606 		sysfs_remove_link(&slab_kset->kobj, s->name);
5607 		name = s->name;
5608 	} else {
5609 		/*
5610 		 * Create a unique name for the slab as a target
5611 		 * for the symlinks.
5612 		 */
5613 		name = create_unique_id(s);
5614 	}
5615 
5616 	s->kobj.kset = kset;
5617 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5618 	if (err) {
5619 		kobject_put(&s->kobj);
5620 		goto out;
5621 	}
5622 
5623 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5624 	if (err)
5625 		goto out_del_kobj;
5626 
5627 	if (!unmergeable) {
5628 		/* Setup first alias */
5629 		sysfs_slab_alias(s, s->name);
5630 	}
5631 out:
5632 	if (!unmergeable)
5633 		kfree(name);
5634 	return err;
5635 out_del_kobj:
5636 	kobject_del(&s->kobj);
5637 	goto out;
5638 }
5639 
5640 void sysfs_slab_unlink(struct kmem_cache *s)
5641 {
5642 	if (slab_state >= FULL)
5643 		kobject_del(&s->kobj);
5644 }
5645 
5646 void sysfs_slab_release(struct kmem_cache *s)
5647 {
5648 	if (slab_state >= FULL)
5649 		kobject_put(&s->kobj);
5650 }
5651 
5652 /*
5653  * Need to buffer aliases during bootup until sysfs becomes
5654  * available lest we lose that information.
5655  */
5656 struct saved_alias {
5657 	struct kmem_cache *s;
5658 	const char *name;
5659 	struct saved_alias *next;
5660 };
5661 
5662 static struct saved_alias *alias_list;
5663 
5664 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5665 {
5666 	struct saved_alias *al;
5667 
5668 	if (slab_state == FULL) {
5669 		/*
5670 		 * If we have a leftover link then remove it.
5671 		 */
5672 		sysfs_remove_link(&slab_kset->kobj, name);
5673 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5674 	}
5675 
5676 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5677 	if (!al)
5678 		return -ENOMEM;
5679 
5680 	al->s = s;
5681 	al->name = name;
5682 	al->next = alias_list;
5683 	alias_list = al;
5684 	return 0;
5685 }
5686 
5687 static int __init slab_sysfs_init(void)
5688 {
5689 	struct kmem_cache *s;
5690 	int err;
5691 
5692 	mutex_lock(&slab_mutex);
5693 
5694 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5695 	if (!slab_kset) {
5696 		mutex_unlock(&slab_mutex);
5697 		pr_err("Cannot register slab subsystem.\n");
5698 		return -ENOSYS;
5699 	}
5700 
5701 	slab_state = FULL;
5702 
5703 	list_for_each_entry(s, &slab_caches, list) {
5704 		err = sysfs_slab_add(s);
5705 		if (err)
5706 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5707 			       s->name);
5708 	}
5709 
5710 	while (alias_list) {
5711 		struct saved_alias *al = alias_list;
5712 
5713 		alias_list = alias_list->next;
5714 		err = sysfs_slab_alias(al->s, al->name);
5715 		if (err)
5716 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5717 			       al->name);
5718 		kfree(al);
5719 	}
5720 
5721 	mutex_unlock(&slab_mutex);
5722 	resiliency_test();
5723 	return 0;
5724 }
5725 
5726 __initcall(slab_sysfs_init);
5727 #endif /* CONFIG_SYSFS */
5728 
5729 /*
5730  * The /proc/slabinfo ABI
5731  */
5732 #ifdef CONFIG_SLUB_DEBUG
5733 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5734 {
5735 	unsigned long nr_slabs = 0;
5736 	unsigned long nr_objs = 0;
5737 	unsigned long nr_free = 0;
5738 	int node;
5739 	struct kmem_cache_node *n;
5740 
5741 	for_each_kmem_cache_node(s, node, n) {
5742 		nr_slabs += node_nr_slabs(n);
5743 		nr_objs += node_nr_objs(n);
5744 		nr_free += count_partial(n, count_free);
5745 	}
5746 
5747 	sinfo->active_objs = nr_objs - nr_free;
5748 	sinfo->num_objs = nr_objs;
5749 	sinfo->active_slabs = nr_slabs;
5750 	sinfo->num_slabs = nr_slabs;
5751 	sinfo->objects_per_slab = oo_objects(s->oo);
5752 	sinfo->cache_order = oo_order(s->oo);
5753 }
5754 
5755 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5756 {
5757 }
5758 
5759 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5760 		       size_t count, loff_t *ppos)
5761 {
5762 	return -EIO;
5763 }
5764 #endif /* CONFIG_SLUB_DEBUG */
5765