1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * page->frozen The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 void *fixup_red_left(struct kmem_cache *s, void *p) 127 { 128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 129 p += s->red_left_pad; 130 131 return p; 132 } 133 134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 135 { 136 #ifdef CONFIG_SLUB_CPU_PARTIAL 137 return !kmem_cache_debug(s); 138 #else 139 return false; 140 #endif 141 } 142 143 /* 144 * Issues still to be resolved: 145 * 146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 147 * 148 * - Variable sizing of the per node arrays 149 */ 150 151 /* Enable to test recovery from slab corruption on boot */ 152 #undef SLUB_RESILIENCY_TEST 153 154 /* Enable to log cmpxchg failures */ 155 #undef SLUB_DEBUG_CMPXCHG 156 157 /* 158 * Mininum number of partial slabs. These will be left on the partial 159 * lists even if they are empty. kmem_cache_shrink may reclaim them. 160 */ 161 #define MIN_PARTIAL 5 162 163 /* 164 * Maximum number of desirable partial slabs. 165 * The existence of more partial slabs makes kmem_cache_shrink 166 * sort the partial list by the number of objects in use. 167 */ 168 #define MAX_PARTIAL 10 169 170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 171 SLAB_POISON | SLAB_STORE_USER) 172 173 /* 174 * These debug flags cannot use CMPXCHG because there might be consistency 175 * issues when checking or reading debug information 176 */ 177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 178 SLAB_TRACE) 179 180 181 /* 182 * Debugging flags that require metadata to be stored in the slab. These get 183 * disabled when slub_debug=O is used and a cache's min order increases with 184 * metadata. 185 */ 186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 187 188 #define OO_SHIFT 16 189 #define OO_MASK ((1 << OO_SHIFT) - 1) 190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 191 192 /* Internal SLUB flags */ 193 /* Poison object */ 194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 195 /* Use cmpxchg_double */ 196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 197 198 /* 199 * Tracking user of a slab. 200 */ 201 #define TRACK_ADDRS_COUNT 16 202 struct track { 203 unsigned long addr; /* Called from address */ 204 #ifdef CONFIG_STACKTRACE 205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 206 #endif 207 int cpu; /* Was running on cpu */ 208 int pid; /* Pid context */ 209 unsigned long when; /* When did the operation occur */ 210 }; 211 212 enum track_item { TRACK_ALLOC, TRACK_FREE }; 213 214 #ifdef CONFIG_SYSFS 215 static int sysfs_slab_add(struct kmem_cache *); 216 static int sysfs_slab_alias(struct kmem_cache *, const char *); 217 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 218 static void sysfs_slab_remove(struct kmem_cache *s); 219 #else 220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 222 { return 0; } 223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 224 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 /* 252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 253 * Normally, this doesn't cause any issues, as both set_freepointer() 254 * and get_freepointer() are called with a pointer with the same tag. 255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 256 * example, when __free_slub() iterates over objects in a cache, it 257 * passes untagged pointers to check_object(). check_object() in turns 258 * calls get_freepointer() with an untagged pointer, which causes the 259 * freepointer to be restored incorrectly. 260 */ 261 return (void *)((unsigned long)ptr ^ s->random ^ 262 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 263 #else 264 return ptr; 265 #endif 266 } 267 268 /* Returns the freelist pointer recorded at location ptr_addr. */ 269 static inline void *freelist_dereference(const struct kmem_cache *s, 270 void *ptr_addr) 271 { 272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 273 (unsigned long)ptr_addr); 274 } 275 276 static inline void *get_freepointer(struct kmem_cache *s, void *object) 277 { 278 return freelist_dereference(s, object + s->offset); 279 } 280 281 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 282 { 283 prefetch(object + s->offset); 284 } 285 286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 287 { 288 unsigned long freepointer_addr; 289 void *p; 290 291 if (!debug_pagealloc_enabled()) 292 return get_freepointer(s, object); 293 294 freepointer_addr = (unsigned long)object + s->offset; 295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 296 return freelist_ptr(s, p, freepointer_addr); 297 } 298 299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 300 { 301 unsigned long freeptr_addr = (unsigned long)object + s->offset; 302 303 #ifdef CONFIG_SLAB_FREELIST_HARDENED 304 BUG_ON(object == fp); /* naive detection of double free or corruption */ 305 #endif 306 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 308 } 309 310 /* Loop over all objects in a slab */ 311 #define for_each_object(__p, __s, __addr, __objects) \ 312 for (__p = fixup_red_left(__s, __addr); \ 313 __p < (__addr) + (__objects) * (__s)->size; \ 314 __p += (__s)->size) 315 316 /* Determine object index from a given position */ 317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 318 { 319 return (kasan_reset_tag(p) - addr) / s->size; 320 } 321 322 static inline unsigned int order_objects(unsigned int order, unsigned int size) 323 { 324 return ((unsigned int)PAGE_SIZE << order) / size; 325 } 326 327 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 328 unsigned int size) 329 { 330 struct kmem_cache_order_objects x = { 331 (order << OO_SHIFT) + order_objects(order, size) 332 }; 333 334 return x; 335 } 336 337 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 338 { 339 return x.x >> OO_SHIFT; 340 } 341 342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 343 { 344 return x.x & OO_MASK; 345 } 346 347 /* 348 * Per slab locking using the pagelock 349 */ 350 static __always_inline void slab_lock(struct page *page) 351 { 352 VM_BUG_ON_PAGE(PageTail(page), page); 353 bit_spin_lock(PG_locked, &page->flags); 354 } 355 356 static __always_inline void slab_unlock(struct page *page) 357 { 358 VM_BUG_ON_PAGE(PageTail(page), page); 359 __bit_spin_unlock(PG_locked, &page->flags); 360 } 361 362 /* Interrupts must be disabled (for the fallback code to work right) */ 363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 364 void *freelist_old, unsigned long counters_old, 365 void *freelist_new, unsigned long counters_new, 366 const char *n) 367 { 368 VM_BUG_ON(!irqs_disabled()); 369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 371 if (s->flags & __CMPXCHG_DOUBLE) { 372 if (cmpxchg_double(&page->freelist, &page->counters, 373 freelist_old, counters_old, 374 freelist_new, counters_new)) 375 return true; 376 } else 377 #endif 378 { 379 slab_lock(page); 380 if (page->freelist == freelist_old && 381 page->counters == counters_old) { 382 page->freelist = freelist_new; 383 page->counters = counters_new; 384 slab_unlock(page); 385 return true; 386 } 387 slab_unlock(page); 388 } 389 390 cpu_relax(); 391 stat(s, CMPXCHG_DOUBLE_FAIL); 392 393 #ifdef SLUB_DEBUG_CMPXCHG 394 pr_info("%s %s: cmpxchg double redo ", n, s->name); 395 #endif 396 397 return false; 398 } 399 400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 401 void *freelist_old, unsigned long counters_old, 402 void *freelist_new, unsigned long counters_new, 403 const char *n) 404 { 405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 407 if (s->flags & __CMPXCHG_DOUBLE) { 408 if (cmpxchg_double(&page->freelist, &page->counters, 409 freelist_old, counters_old, 410 freelist_new, counters_new)) 411 return true; 412 } else 413 #endif 414 { 415 unsigned long flags; 416 417 local_irq_save(flags); 418 slab_lock(page); 419 if (page->freelist == freelist_old && 420 page->counters == counters_old) { 421 page->freelist = freelist_new; 422 page->counters = counters_new; 423 slab_unlock(page); 424 local_irq_restore(flags); 425 return true; 426 } 427 slab_unlock(page); 428 local_irq_restore(flags); 429 } 430 431 cpu_relax(); 432 stat(s, CMPXCHG_DOUBLE_FAIL); 433 434 #ifdef SLUB_DEBUG_CMPXCHG 435 pr_info("%s %s: cmpxchg double redo ", n, s->name); 436 #endif 437 438 return false; 439 } 440 441 #ifdef CONFIG_SLUB_DEBUG 442 /* 443 * Determine a map of object in use on a page. 444 * 445 * Node listlock must be held to guarantee that the page does 446 * not vanish from under us. 447 */ 448 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 449 { 450 void *p; 451 void *addr = page_address(page); 452 453 for (p = page->freelist; p; p = get_freepointer(s, p)) 454 set_bit(slab_index(p, s, addr), map); 455 } 456 457 static inline unsigned int size_from_object(struct kmem_cache *s) 458 { 459 if (s->flags & SLAB_RED_ZONE) 460 return s->size - s->red_left_pad; 461 462 return s->size; 463 } 464 465 static inline void *restore_red_left(struct kmem_cache *s, void *p) 466 { 467 if (s->flags & SLAB_RED_ZONE) 468 p -= s->red_left_pad; 469 470 return p; 471 } 472 473 /* 474 * Debug settings: 475 */ 476 #if defined(CONFIG_SLUB_DEBUG_ON) 477 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 478 #else 479 static slab_flags_t slub_debug; 480 #endif 481 482 static char *slub_debug_slabs; 483 static int disable_higher_order_debug; 484 485 /* 486 * slub is about to manipulate internal object metadata. This memory lies 487 * outside the range of the allocated object, so accessing it would normally 488 * be reported by kasan as a bounds error. metadata_access_enable() is used 489 * to tell kasan that these accesses are OK. 490 */ 491 static inline void metadata_access_enable(void) 492 { 493 kasan_disable_current(); 494 } 495 496 static inline void metadata_access_disable(void) 497 { 498 kasan_enable_current(); 499 } 500 501 /* 502 * Object debugging 503 */ 504 505 /* Verify that a pointer has an address that is valid within a slab page */ 506 static inline int check_valid_pointer(struct kmem_cache *s, 507 struct page *page, void *object) 508 { 509 void *base; 510 511 if (!object) 512 return 1; 513 514 base = page_address(page); 515 object = kasan_reset_tag(object); 516 object = restore_red_left(s, object); 517 if (object < base || object >= base + page->objects * s->size || 518 (object - base) % s->size) { 519 return 0; 520 } 521 522 return 1; 523 } 524 525 static void print_section(char *level, char *text, u8 *addr, 526 unsigned int length) 527 { 528 metadata_access_enable(); 529 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 530 length, 1); 531 metadata_access_disable(); 532 } 533 534 static struct track *get_track(struct kmem_cache *s, void *object, 535 enum track_item alloc) 536 { 537 struct track *p; 538 539 if (s->offset) 540 p = object + s->offset + sizeof(void *); 541 else 542 p = object + s->inuse; 543 544 return p + alloc; 545 } 546 547 static void set_track(struct kmem_cache *s, void *object, 548 enum track_item alloc, unsigned long addr) 549 { 550 struct track *p = get_track(s, object, alloc); 551 552 if (addr) { 553 #ifdef CONFIG_STACKTRACE 554 unsigned int nr_entries; 555 556 metadata_access_enable(); 557 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 558 metadata_access_disable(); 559 560 if (nr_entries < TRACK_ADDRS_COUNT) 561 p->addrs[nr_entries] = 0; 562 #endif 563 p->addr = addr; 564 p->cpu = smp_processor_id(); 565 p->pid = current->pid; 566 p->when = jiffies; 567 } else { 568 memset(p, 0, sizeof(struct track)); 569 } 570 } 571 572 static void init_tracking(struct kmem_cache *s, void *object) 573 { 574 if (!(s->flags & SLAB_STORE_USER)) 575 return; 576 577 set_track(s, object, TRACK_FREE, 0UL); 578 set_track(s, object, TRACK_ALLOC, 0UL); 579 } 580 581 static void print_track(const char *s, struct track *t, unsigned long pr_time) 582 { 583 if (!t->addr) 584 return; 585 586 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 587 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 588 #ifdef CONFIG_STACKTRACE 589 { 590 int i; 591 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 592 if (t->addrs[i]) 593 pr_err("\t%pS\n", (void *)t->addrs[i]); 594 else 595 break; 596 } 597 #endif 598 } 599 600 static void print_tracking(struct kmem_cache *s, void *object) 601 { 602 unsigned long pr_time = jiffies; 603 if (!(s->flags & SLAB_STORE_USER)) 604 return; 605 606 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 607 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 608 } 609 610 static void print_page_info(struct page *page) 611 { 612 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 613 page, page->objects, page->inuse, page->freelist, page->flags); 614 615 } 616 617 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 618 { 619 struct va_format vaf; 620 va_list args; 621 622 va_start(args, fmt); 623 vaf.fmt = fmt; 624 vaf.va = &args; 625 pr_err("=============================================================================\n"); 626 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 627 pr_err("-----------------------------------------------------------------------------\n\n"); 628 629 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 630 va_end(args); 631 } 632 633 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 634 { 635 struct va_format vaf; 636 va_list args; 637 638 va_start(args, fmt); 639 vaf.fmt = fmt; 640 vaf.va = &args; 641 pr_err("FIX %s: %pV\n", s->name, &vaf); 642 va_end(args); 643 } 644 645 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 646 { 647 unsigned int off; /* Offset of last byte */ 648 u8 *addr = page_address(page); 649 650 print_tracking(s, p); 651 652 print_page_info(page); 653 654 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 655 p, p - addr, get_freepointer(s, p)); 656 657 if (s->flags & SLAB_RED_ZONE) 658 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 659 s->red_left_pad); 660 else if (p > addr + 16) 661 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 662 663 print_section(KERN_ERR, "Object ", p, 664 min_t(unsigned int, s->object_size, PAGE_SIZE)); 665 if (s->flags & SLAB_RED_ZONE) 666 print_section(KERN_ERR, "Redzone ", p + s->object_size, 667 s->inuse - s->object_size); 668 669 if (s->offset) 670 off = s->offset + sizeof(void *); 671 else 672 off = s->inuse; 673 674 if (s->flags & SLAB_STORE_USER) 675 off += 2 * sizeof(struct track); 676 677 off += kasan_metadata_size(s); 678 679 if (off != size_from_object(s)) 680 /* Beginning of the filler is the free pointer */ 681 print_section(KERN_ERR, "Padding ", p + off, 682 size_from_object(s) - off); 683 684 dump_stack(); 685 } 686 687 void object_err(struct kmem_cache *s, struct page *page, 688 u8 *object, char *reason) 689 { 690 slab_bug(s, "%s", reason); 691 print_trailer(s, page, object); 692 } 693 694 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 695 const char *fmt, ...) 696 { 697 va_list args; 698 char buf[100]; 699 700 va_start(args, fmt); 701 vsnprintf(buf, sizeof(buf), fmt, args); 702 va_end(args); 703 slab_bug(s, "%s", buf); 704 print_page_info(page); 705 dump_stack(); 706 } 707 708 static void init_object(struct kmem_cache *s, void *object, u8 val) 709 { 710 u8 *p = object; 711 712 if (s->flags & SLAB_RED_ZONE) 713 memset(p - s->red_left_pad, val, s->red_left_pad); 714 715 if (s->flags & __OBJECT_POISON) { 716 memset(p, POISON_FREE, s->object_size - 1); 717 p[s->object_size - 1] = POISON_END; 718 } 719 720 if (s->flags & SLAB_RED_ZONE) 721 memset(p + s->object_size, val, s->inuse - s->object_size); 722 } 723 724 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 725 void *from, void *to) 726 { 727 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 728 memset(from, data, to - from); 729 } 730 731 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 732 u8 *object, char *what, 733 u8 *start, unsigned int value, unsigned int bytes) 734 { 735 u8 *fault; 736 u8 *end; 737 u8 *addr = page_address(page); 738 739 metadata_access_enable(); 740 fault = memchr_inv(start, value, bytes); 741 metadata_access_disable(); 742 if (!fault) 743 return 1; 744 745 end = start + bytes; 746 while (end > fault && end[-1] == value) 747 end--; 748 749 slab_bug(s, "%s overwritten", what); 750 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 751 fault, end - 1, fault - addr, 752 fault[0], value); 753 print_trailer(s, page, object); 754 755 restore_bytes(s, what, value, fault, end); 756 return 0; 757 } 758 759 /* 760 * Object layout: 761 * 762 * object address 763 * Bytes of the object to be managed. 764 * If the freepointer may overlay the object then the free 765 * pointer is the first word of the object. 766 * 767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 768 * 0xa5 (POISON_END) 769 * 770 * object + s->object_size 771 * Padding to reach word boundary. This is also used for Redzoning. 772 * Padding is extended by another word if Redzoning is enabled and 773 * object_size == inuse. 774 * 775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 776 * 0xcc (RED_ACTIVE) for objects in use. 777 * 778 * object + s->inuse 779 * Meta data starts here. 780 * 781 * A. Free pointer (if we cannot overwrite object on free) 782 * B. Tracking data for SLAB_STORE_USER 783 * C. Padding to reach required alignment boundary or at mininum 784 * one word if debugging is on to be able to detect writes 785 * before the word boundary. 786 * 787 * Padding is done using 0x5a (POISON_INUSE) 788 * 789 * object + s->size 790 * Nothing is used beyond s->size. 791 * 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly 793 * ignored. And therefore no slab options that rely on these boundaries 794 * may be used with merged slabcaches. 795 */ 796 797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 798 { 799 unsigned long off = s->inuse; /* The end of info */ 800 801 if (s->offset) 802 /* Freepointer is placed after the object. */ 803 off += sizeof(void *); 804 805 if (s->flags & SLAB_STORE_USER) 806 /* We also have user information there */ 807 off += 2 * sizeof(struct track); 808 809 off += kasan_metadata_size(s); 810 811 if (size_from_object(s) == off) 812 return 1; 813 814 return check_bytes_and_report(s, page, p, "Object padding", 815 p + off, POISON_INUSE, size_from_object(s) - off); 816 } 817 818 /* Check the pad bytes at the end of a slab page */ 819 static int slab_pad_check(struct kmem_cache *s, struct page *page) 820 { 821 u8 *start; 822 u8 *fault; 823 u8 *end; 824 u8 *pad; 825 int length; 826 int remainder; 827 828 if (!(s->flags & SLAB_POISON)) 829 return 1; 830 831 start = page_address(page); 832 length = page_size(page); 833 end = start + length; 834 remainder = length % s->size; 835 if (!remainder) 836 return 1; 837 838 pad = end - remainder; 839 metadata_access_enable(); 840 fault = memchr_inv(pad, POISON_INUSE, remainder); 841 metadata_access_disable(); 842 if (!fault) 843 return 1; 844 while (end > fault && end[-1] == POISON_INUSE) 845 end--; 846 847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 848 fault, end - 1, fault - start); 849 print_section(KERN_ERR, "Padding ", pad, remainder); 850 851 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 852 return 0; 853 } 854 855 static int check_object(struct kmem_cache *s, struct page *page, 856 void *object, u8 val) 857 { 858 u8 *p = object; 859 u8 *endobject = object + s->object_size; 860 861 if (s->flags & SLAB_RED_ZONE) { 862 if (!check_bytes_and_report(s, page, object, "Redzone", 863 object - s->red_left_pad, val, s->red_left_pad)) 864 return 0; 865 866 if (!check_bytes_and_report(s, page, object, "Redzone", 867 endobject, val, s->inuse - s->object_size)) 868 return 0; 869 } else { 870 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 871 check_bytes_and_report(s, page, p, "Alignment padding", 872 endobject, POISON_INUSE, 873 s->inuse - s->object_size); 874 } 875 } 876 877 if (s->flags & SLAB_POISON) { 878 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 879 (!check_bytes_and_report(s, page, p, "Poison", p, 880 POISON_FREE, s->object_size - 1) || 881 !check_bytes_and_report(s, page, p, "Poison", 882 p + s->object_size - 1, POISON_END, 1))) 883 return 0; 884 /* 885 * check_pad_bytes cleans up on its own. 886 */ 887 check_pad_bytes(s, page, p); 888 } 889 890 if (!s->offset && val == SLUB_RED_ACTIVE) 891 /* 892 * Object and freepointer overlap. Cannot check 893 * freepointer while object is allocated. 894 */ 895 return 1; 896 897 /* Check free pointer validity */ 898 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 899 object_err(s, page, p, "Freepointer corrupt"); 900 /* 901 * No choice but to zap it and thus lose the remainder 902 * of the free objects in this slab. May cause 903 * another error because the object count is now wrong. 904 */ 905 set_freepointer(s, p, NULL); 906 return 0; 907 } 908 return 1; 909 } 910 911 static int check_slab(struct kmem_cache *s, struct page *page) 912 { 913 int maxobj; 914 915 VM_BUG_ON(!irqs_disabled()); 916 917 if (!PageSlab(page)) { 918 slab_err(s, page, "Not a valid slab page"); 919 return 0; 920 } 921 922 maxobj = order_objects(compound_order(page), s->size); 923 if (page->objects > maxobj) { 924 slab_err(s, page, "objects %u > max %u", 925 page->objects, maxobj); 926 return 0; 927 } 928 if (page->inuse > page->objects) { 929 slab_err(s, page, "inuse %u > max %u", 930 page->inuse, page->objects); 931 return 0; 932 } 933 /* Slab_pad_check fixes things up after itself */ 934 slab_pad_check(s, page); 935 return 1; 936 } 937 938 /* 939 * Determine if a certain object on a page is on the freelist. Must hold the 940 * slab lock to guarantee that the chains are in a consistent state. 941 */ 942 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 943 { 944 int nr = 0; 945 void *fp; 946 void *object = NULL; 947 int max_objects; 948 949 fp = page->freelist; 950 while (fp && nr <= page->objects) { 951 if (fp == search) 952 return 1; 953 if (!check_valid_pointer(s, page, fp)) { 954 if (object) { 955 object_err(s, page, object, 956 "Freechain corrupt"); 957 set_freepointer(s, object, NULL); 958 } else { 959 slab_err(s, page, "Freepointer corrupt"); 960 page->freelist = NULL; 961 page->inuse = page->objects; 962 slab_fix(s, "Freelist cleared"); 963 return 0; 964 } 965 break; 966 } 967 object = fp; 968 fp = get_freepointer(s, object); 969 nr++; 970 } 971 972 max_objects = order_objects(compound_order(page), s->size); 973 if (max_objects > MAX_OBJS_PER_PAGE) 974 max_objects = MAX_OBJS_PER_PAGE; 975 976 if (page->objects != max_objects) { 977 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 978 page->objects, max_objects); 979 page->objects = max_objects; 980 slab_fix(s, "Number of objects adjusted."); 981 } 982 if (page->inuse != page->objects - nr) { 983 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 984 page->inuse, page->objects - nr); 985 page->inuse = page->objects - nr; 986 slab_fix(s, "Object count adjusted."); 987 } 988 return search == NULL; 989 } 990 991 static void trace(struct kmem_cache *s, struct page *page, void *object, 992 int alloc) 993 { 994 if (s->flags & SLAB_TRACE) { 995 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 996 s->name, 997 alloc ? "alloc" : "free", 998 object, page->inuse, 999 page->freelist); 1000 1001 if (!alloc) 1002 print_section(KERN_INFO, "Object ", (void *)object, 1003 s->object_size); 1004 1005 dump_stack(); 1006 } 1007 } 1008 1009 /* 1010 * Tracking of fully allocated slabs for debugging purposes. 1011 */ 1012 static void add_full(struct kmem_cache *s, 1013 struct kmem_cache_node *n, struct page *page) 1014 { 1015 if (!(s->flags & SLAB_STORE_USER)) 1016 return; 1017 1018 lockdep_assert_held(&n->list_lock); 1019 list_add(&page->slab_list, &n->full); 1020 } 1021 1022 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1023 { 1024 if (!(s->flags & SLAB_STORE_USER)) 1025 return; 1026 1027 lockdep_assert_held(&n->list_lock); 1028 list_del(&page->slab_list); 1029 } 1030 1031 /* Tracking of the number of slabs for debugging purposes */ 1032 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1033 { 1034 struct kmem_cache_node *n = get_node(s, node); 1035 1036 return atomic_long_read(&n->nr_slabs); 1037 } 1038 1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1040 { 1041 return atomic_long_read(&n->nr_slabs); 1042 } 1043 1044 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1045 { 1046 struct kmem_cache_node *n = get_node(s, node); 1047 1048 /* 1049 * May be called early in order to allocate a slab for the 1050 * kmem_cache_node structure. Solve the chicken-egg 1051 * dilemma by deferring the increment of the count during 1052 * bootstrap (see early_kmem_cache_node_alloc). 1053 */ 1054 if (likely(n)) { 1055 atomic_long_inc(&n->nr_slabs); 1056 atomic_long_add(objects, &n->total_objects); 1057 } 1058 } 1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1060 { 1061 struct kmem_cache_node *n = get_node(s, node); 1062 1063 atomic_long_dec(&n->nr_slabs); 1064 atomic_long_sub(objects, &n->total_objects); 1065 } 1066 1067 /* Object debug checks for alloc/free paths */ 1068 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1069 void *object) 1070 { 1071 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1072 return; 1073 1074 init_object(s, object, SLUB_RED_INACTIVE); 1075 init_tracking(s, object); 1076 } 1077 1078 static 1079 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1080 { 1081 if (!(s->flags & SLAB_POISON)) 1082 return; 1083 1084 metadata_access_enable(); 1085 memset(addr, POISON_INUSE, page_size(page)); 1086 metadata_access_disable(); 1087 } 1088 1089 static inline int alloc_consistency_checks(struct kmem_cache *s, 1090 struct page *page, void *object) 1091 { 1092 if (!check_slab(s, page)) 1093 return 0; 1094 1095 if (!check_valid_pointer(s, page, object)) { 1096 object_err(s, page, object, "Freelist Pointer check fails"); 1097 return 0; 1098 } 1099 1100 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1101 return 0; 1102 1103 return 1; 1104 } 1105 1106 static noinline int alloc_debug_processing(struct kmem_cache *s, 1107 struct page *page, 1108 void *object, unsigned long addr) 1109 { 1110 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1111 if (!alloc_consistency_checks(s, page, object)) 1112 goto bad; 1113 } 1114 1115 /* Success perform special debug activities for allocs */ 1116 if (s->flags & SLAB_STORE_USER) 1117 set_track(s, object, TRACK_ALLOC, addr); 1118 trace(s, page, object, 1); 1119 init_object(s, object, SLUB_RED_ACTIVE); 1120 return 1; 1121 1122 bad: 1123 if (PageSlab(page)) { 1124 /* 1125 * If this is a slab page then lets do the best we can 1126 * to avoid issues in the future. Marking all objects 1127 * as used avoids touching the remaining objects. 1128 */ 1129 slab_fix(s, "Marking all objects used"); 1130 page->inuse = page->objects; 1131 page->freelist = NULL; 1132 } 1133 return 0; 1134 } 1135 1136 static inline int free_consistency_checks(struct kmem_cache *s, 1137 struct page *page, void *object, unsigned long addr) 1138 { 1139 if (!check_valid_pointer(s, page, object)) { 1140 slab_err(s, page, "Invalid object pointer 0x%p", object); 1141 return 0; 1142 } 1143 1144 if (on_freelist(s, page, object)) { 1145 object_err(s, page, object, "Object already free"); 1146 return 0; 1147 } 1148 1149 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1150 return 0; 1151 1152 if (unlikely(s != page->slab_cache)) { 1153 if (!PageSlab(page)) { 1154 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1155 object); 1156 } else if (!page->slab_cache) { 1157 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1158 object); 1159 dump_stack(); 1160 } else 1161 object_err(s, page, object, 1162 "page slab pointer corrupt."); 1163 return 0; 1164 } 1165 return 1; 1166 } 1167 1168 /* Supports checking bulk free of a constructed freelist */ 1169 static noinline int free_debug_processing( 1170 struct kmem_cache *s, struct page *page, 1171 void *head, void *tail, int bulk_cnt, 1172 unsigned long addr) 1173 { 1174 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1175 void *object = head; 1176 int cnt = 0; 1177 unsigned long uninitialized_var(flags); 1178 int ret = 0; 1179 1180 spin_lock_irqsave(&n->list_lock, flags); 1181 slab_lock(page); 1182 1183 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1184 if (!check_slab(s, page)) 1185 goto out; 1186 } 1187 1188 next_object: 1189 cnt++; 1190 1191 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1192 if (!free_consistency_checks(s, page, object, addr)) 1193 goto out; 1194 } 1195 1196 if (s->flags & SLAB_STORE_USER) 1197 set_track(s, object, TRACK_FREE, addr); 1198 trace(s, page, object, 0); 1199 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1200 init_object(s, object, SLUB_RED_INACTIVE); 1201 1202 /* Reached end of constructed freelist yet? */ 1203 if (object != tail) { 1204 object = get_freepointer(s, object); 1205 goto next_object; 1206 } 1207 ret = 1; 1208 1209 out: 1210 if (cnt != bulk_cnt) 1211 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1212 bulk_cnt, cnt); 1213 1214 slab_unlock(page); 1215 spin_unlock_irqrestore(&n->list_lock, flags); 1216 if (!ret) 1217 slab_fix(s, "Object at 0x%p not freed", object); 1218 return ret; 1219 } 1220 1221 static int __init setup_slub_debug(char *str) 1222 { 1223 slub_debug = DEBUG_DEFAULT_FLAGS; 1224 if (*str++ != '=' || !*str) 1225 /* 1226 * No options specified. Switch on full debugging. 1227 */ 1228 goto out; 1229 1230 if (*str == ',') 1231 /* 1232 * No options but restriction on slabs. This means full 1233 * debugging for slabs matching a pattern. 1234 */ 1235 goto check_slabs; 1236 1237 slub_debug = 0; 1238 if (*str == '-') 1239 /* 1240 * Switch off all debugging measures. 1241 */ 1242 goto out; 1243 1244 /* 1245 * Determine which debug features should be switched on 1246 */ 1247 for (; *str && *str != ','; str++) { 1248 switch (tolower(*str)) { 1249 case 'f': 1250 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1251 break; 1252 case 'z': 1253 slub_debug |= SLAB_RED_ZONE; 1254 break; 1255 case 'p': 1256 slub_debug |= SLAB_POISON; 1257 break; 1258 case 'u': 1259 slub_debug |= SLAB_STORE_USER; 1260 break; 1261 case 't': 1262 slub_debug |= SLAB_TRACE; 1263 break; 1264 case 'a': 1265 slub_debug |= SLAB_FAILSLAB; 1266 break; 1267 case 'o': 1268 /* 1269 * Avoid enabling debugging on caches if its minimum 1270 * order would increase as a result. 1271 */ 1272 disable_higher_order_debug = 1; 1273 break; 1274 default: 1275 pr_err("slub_debug option '%c' unknown. skipped\n", 1276 *str); 1277 } 1278 } 1279 1280 check_slabs: 1281 if (*str == ',') 1282 slub_debug_slabs = str + 1; 1283 out: 1284 if ((static_branch_unlikely(&init_on_alloc) || 1285 static_branch_unlikely(&init_on_free)) && 1286 (slub_debug & SLAB_POISON)) 1287 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1288 return 1; 1289 } 1290 1291 __setup("slub_debug", setup_slub_debug); 1292 1293 /* 1294 * kmem_cache_flags - apply debugging options to the cache 1295 * @object_size: the size of an object without meta data 1296 * @flags: flags to set 1297 * @name: name of the cache 1298 * @ctor: constructor function 1299 * 1300 * Debug option(s) are applied to @flags. In addition to the debug 1301 * option(s), if a slab name (or multiple) is specified i.e. 1302 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1303 * then only the select slabs will receive the debug option(s). 1304 */ 1305 slab_flags_t kmem_cache_flags(unsigned int object_size, 1306 slab_flags_t flags, const char *name, 1307 void (*ctor)(void *)) 1308 { 1309 char *iter; 1310 size_t len; 1311 1312 /* If slub_debug = 0, it folds into the if conditional. */ 1313 if (!slub_debug_slabs) 1314 return flags | slub_debug; 1315 1316 len = strlen(name); 1317 iter = slub_debug_slabs; 1318 while (*iter) { 1319 char *end, *glob; 1320 size_t cmplen; 1321 1322 end = strchrnul(iter, ','); 1323 1324 glob = strnchr(iter, end - iter, '*'); 1325 if (glob) 1326 cmplen = glob - iter; 1327 else 1328 cmplen = max_t(size_t, len, (end - iter)); 1329 1330 if (!strncmp(name, iter, cmplen)) { 1331 flags |= slub_debug; 1332 break; 1333 } 1334 1335 if (!*end) 1336 break; 1337 iter = end + 1; 1338 } 1339 1340 return flags; 1341 } 1342 #else /* !CONFIG_SLUB_DEBUG */ 1343 static inline void setup_object_debug(struct kmem_cache *s, 1344 struct page *page, void *object) {} 1345 static inline 1346 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1347 1348 static inline int alloc_debug_processing(struct kmem_cache *s, 1349 struct page *page, void *object, unsigned long addr) { return 0; } 1350 1351 static inline int free_debug_processing( 1352 struct kmem_cache *s, struct page *page, 1353 void *head, void *tail, int bulk_cnt, 1354 unsigned long addr) { return 0; } 1355 1356 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1357 { return 1; } 1358 static inline int check_object(struct kmem_cache *s, struct page *page, 1359 void *object, u8 val) { return 1; } 1360 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1361 struct page *page) {} 1362 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1363 struct page *page) {} 1364 slab_flags_t kmem_cache_flags(unsigned int object_size, 1365 slab_flags_t flags, const char *name, 1366 void (*ctor)(void *)) 1367 { 1368 return flags; 1369 } 1370 #define slub_debug 0 1371 1372 #define disable_higher_order_debug 0 1373 1374 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1375 { return 0; } 1376 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1377 { return 0; } 1378 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1379 int objects) {} 1380 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1381 int objects) {} 1382 1383 #endif /* CONFIG_SLUB_DEBUG */ 1384 1385 /* 1386 * Hooks for other subsystems that check memory allocations. In a typical 1387 * production configuration these hooks all should produce no code at all. 1388 */ 1389 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1390 { 1391 ptr = kasan_kmalloc_large(ptr, size, flags); 1392 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1393 kmemleak_alloc(ptr, size, 1, flags); 1394 return ptr; 1395 } 1396 1397 static __always_inline void kfree_hook(void *x) 1398 { 1399 kmemleak_free(x); 1400 kasan_kfree_large(x, _RET_IP_); 1401 } 1402 1403 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1404 { 1405 kmemleak_free_recursive(x, s->flags); 1406 1407 /* 1408 * Trouble is that we may no longer disable interrupts in the fast path 1409 * So in order to make the debug calls that expect irqs to be 1410 * disabled we need to disable interrupts temporarily. 1411 */ 1412 #ifdef CONFIG_LOCKDEP 1413 { 1414 unsigned long flags; 1415 1416 local_irq_save(flags); 1417 debug_check_no_locks_freed(x, s->object_size); 1418 local_irq_restore(flags); 1419 } 1420 #endif 1421 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1422 debug_check_no_obj_freed(x, s->object_size); 1423 1424 /* KASAN might put x into memory quarantine, delaying its reuse */ 1425 return kasan_slab_free(s, x, _RET_IP_); 1426 } 1427 1428 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1429 void **head, void **tail) 1430 { 1431 1432 void *object; 1433 void *next = *head; 1434 void *old_tail = *tail ? *tail : *head; 1435 int rsize; 1436 1437 /* Head and tail of the reconstructed freelist */ 1438 *head = NULL; 1439 *tail = NULL; 1440 1441 do { 1442 object = next; 1443 next = get_freepointer(s, object); 1444 1445 if (slab_want_init_on_free(s)) { 1446 /* 1447 * Clear the object and the metadata, but don't touch 1448 * the redzone. 1449 */ 1450 memset(object, 0, s->object_size); 1451 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1452 : 0; 1453 memset((char *)object + s->inuse, 0, 1454 s->size - s->inuse - rsize); 1455 1456 } 1457 /* If object's reuse doesn't have to be delayed */ 1458 if (!slab_free_hook(s, object)) { 1459 /* Move object to the new freelist */ 1460 set_freepointer(s, object, *head); 1461 *head = object; 1462 if (!*tail) 1463 *tail = object; 1464 } 1465 } while (object != old_tail); 1466 1467 if (*head == *tail) 1468 *tail = NULL; 1469 1470 return *head != NULL; 1471 } 1472 1473 static void *setup_object(struct kmem_cache *s, struct page *page, 1474 void *object) 1475 { 1476 setup_object_debug(s, page, object); 1477 object = kasan_init_slab_obj(s, object); 1478 if (unlikely(s->ctor)) { 1479 kasan_unpoison_object_data(s, object); 1480 s->ctor(object); 1481 kasan_poison_object_data(s, object); 1482 } 1483 return object; 1484 } 1485 1486 /* 1487 * Slab allocation and freeing 1488 */ 1489 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1490 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1491 { 1492 struct page *page; 1493 unsigned int order = oo_order(oo); 1494 1495 if (node == NUMA_NO_NODE) 1496 page = alloc_pages(flags, order); 1497 else 1498 page = __alloc_pages_node(node, flags, order); 1499 1500 if (page && charge_slab_page(page, flags, order, s)) { 1501 __free_pages(page, order); 1502 page = NULL; 1503 } 1504 1505 return page; 1506 } 1507 1508 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1509 /* Pre-initialize the random sequence cache */ 1510 static int init_cache_random_seq(struct kmem_cache *s) 1511 { 1512 unsigned int count = oo_objects(s->oo); 1513 int err; 1514 1515 /* Bailout if already initialised */ 1516 if (s->random_seq) 1517 return 0; 1518 1519 err = cache_random_seq_create(s, count, GFP_KERNEL); 1520 if (err) { 1521 pr_err("SLUB: Unable to initialize free list for %s\n", 1522 s->name); 1523 return err; 1524 } 1525 1526 /* Transform to an offset on the set of pages */ 1527 if (s->random_seq) { 1528 unsigned int i; 1529 1530 for (i = 0; i < count; i++) 1531 s->random_seq[i] *= s->size; 1532 } 1533 return 0; 1534 } 1535 1536 /* Initialize each random sequence freelist per cache */ 1537 static void __init init_freelist_randomization(void) 1538 { 1539 struct kmem_cache *s; 1540 1541 mutex_lock(&slab_mutex); 1542 1543 list_for_each_entry(s, &slab_caches, list) 1544 init_cache_random_seq(s); 1545 1546 mutex_unlock(&slab_mutex); 1547 } 1548 1549 /* Get the next entry on the pre-computed freelist randomized */ 1550 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1551 unsigned long *pos, void *start, 1552 unsigned long page_limit, 1553 unsigned long freelist_count) 1554 { 1555 unsigned int idx; 1556 1557 /* 1558 * If the target page allocation failed, the number of objects on the 1559 * page might be smaller than the usual size defined by the cache. 1560 */ 1561 do { 1562 idx = s->random_seq[*pos]; 1563 *pos += 1; 1564 if (*pos >= freelist_count) 1565 *pos = 0; 1566 } while (unlikely(idx >= page_limit)); 1567 1568 return (char *)start + idx; 1569 } 1570 1571 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1572 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1573 { 1574 void *start; 1575 void *cur; 1576 void *next; 1577 unsigned long idx, pos, page_limit, freelist_count; 1578 1579 if (page->objects < 2 || !s->random_seq) 1580 return false; 1581 1582 freelist_count = oo_objects(s->oo); 1583 pos = get_random_int() % freelist_count; 1584 1585 page_limit = page->objects * s->size; 1586 start = fixup_red_left(s, page_address(page)); 1587 1588 /* First entry is used as the base of the freelist */ 1589 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1590 freelist_count); 1591 cur = setup_object(s, page, cur); 1592 page->freelist = cur; 1593 1594 for (idx = 1; idx < page->objects; idx++) { 1595 next = next_freelist_entry(s, page, &pos, start, page_limit, 1596 freelist_count); 1597 next = setup_object(s, page, next); 1598 set_freepointer(s, cur, next); 1599 cur = next; 1600 } 1601 set_freepointer(s, cur, NULL); 1602 1603 return true; 1604 } 1605 #else 1606 static inline int init_cache_random_seq(struct kmem_cache *s) 1607 { 1608 return 0; 1609 } 1610 static inline void init_freelist_randomization(void) { } 1611 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1612 { 1613 return false; 1614 } 1615 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1616 1617 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1618 { 1619 struct page *page; 1620 struct kmem_cache_order_objects oo = s->oo; 1621 gfp_t alloc_gfp; 1622 void *start, *p, *next; 1623 int idx; 1624 bool shuffle; 1625 1626 flags &= gfp_allowed_mask; 1627 1628 if (gfpflags_allow_blocking(flags)) 1629 local_irq_enable(); 1630 1631 flags |= s->allocflags; 1632 1633 /* 1634 * Let the initial higher-order allocation fail under memory pressure 1635 * so we fall-back to the minimum order allocation. 1636 */ 1637 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1638 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1639 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1640 1641 page = alloc_slab_page(s, alloc_gfp, node, oo); 1642 if (unlikely(!page)) { 1643 oo = s->min; 1644 alloc_gfp = flags; 1645 /* 1646 * Allocation may have failed due to fragmentation. 1647 * Try a lower order alloc if possible 1648 */ 1649 page = alloc_slab_page(s, alloc_gfp, node, oo); 1650 if (unlikely(!page)) 1651 goto out; 1652 stat(s, ORDER_FALLBACK); 1653 } 1654 1655 page->objects = oo_objects(oo); 1656 1657 page->slab_cache = s; 1658 __SetPageSlab(page); 1659 if (page_is_pfmemalloc(page)) 1660 SetPageSlabPfmemalloc(page); 1661 1662 kasan_poison_slab(page); 1663 1664 start = page_address(page); 1665 1666 setup_page_debug(s, page, start); 1667 1668 shuffle = shuffle_freelist(s, page); 1669 1670 if (!shuffle) { 1671 start = fixup_red_left(s, start); 1672 start = setup_object(s, page, start); 1673 page->freelist = start; 1674 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1675 next = p + s->size; 1676 next = setup_object(s, page, next); 1677 set_freepointer(s, p, next); 1678 p = next; 1679 } 1680 set_freepointer(s, p, NULL); 1681 } 1682 1683 page->inuse = page->objects; 1684 page->frozen = 1; 1685 1686 out: 1687 if (gfpflags_allow_blocking(flags)) 1688 local_irq_disable(); 1689 if (!page) 1690 return NULL; 1691 1692 inc_slabs_node(s, page_to_nid(page), page->objects); 1693 1694 return page; 1695 } 1696 1697 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1698 { 1699 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1700 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1701 flags &= ~GFP_SLAB_BUG_MASK; 1702 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1703 invalid_mask, &invalid_mask, flags, &flags); 1704 dump_stack(); 1705 } 1706 1707 return allocate_slab(s, 1708 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1709 } 1710 1711 static void __free_slab(struct kmem_cache *s, struct page *page) 1712 { 1713 int order = compound_order(page); 1714 int pages = 1 << order; 1715 1716 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1717 void *p; 1718 1719 slab_pad_check(s, page); 1720 for_each_object(p, s, page_address(page), 1721 page->objects) 1722 check_object(s, page, p, SLUB_RED_INACTIVE); 1723 } 1724 1725 __ClearPageSlabPfmemalloc(page); 1726 __ClearPageSlab(page); 1727 1728 page->mapping = NULL; 1729 if (current->reclaim_state) 1730 current->reclaim_state->reclaimed_slab += pages; 1731 uncharge_slab_page(page, order, s); 1732 __free_pages(page, order); 1733 } 1734 1735 static void rcu_free_slab(struct rcu_head *h) 1736 { 1737 struct page *page = container_of(h, struct page, rcu_head); 1738 1739 __free_slab(page->slab_cache, page); 1740 } 1741 1742 static void free_slab(struct kmem_cache *s, struct page *page) 1743 { 1744 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1745 call_rcu(&page->rcu_head, rcu_free_slab); 1746 } else 1747 __free_slab(s, page); 1748 } 1749 1750 static void discard_slab(struct kmem_cache *s, struct page *page) 1751 { 1752 dec_slabs_node(s, page_to_nid(page), page->objects); 1753 free_slab(s, page); 1754 } 1755 1756 /* 1757 * Management of partially allocated slabs. 1758 */ 1759 static inline void 1760 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1761 { 1762 n->nr_partial++; 1763 if (tail == DEACTIVATE_TO_TAIL) 1764 list_add_tail(&page->slab_list, &n->partial); 1765 else 1766 list_add(&page->slab_list, &n->partial); 1767 } 1768 1769 static inline void add_partial(struct kmem_cache_node *n, 1770 struct page *page, int tail) 1771 { 1772 lockdep_assert_held(&n->list_lock); 1773 __add_partial(n, page, tail); 1774 } 1775 1776 static inline void remove_partial(struct kmem_cache_node *n, 1777 struct page *page) 1778 { 1779 lockdep_assert_held(&n->list_lock); 1780 list_del(&page->slab_list); 1781 n->nr_partial--; 1782 } 1783 1784 /* 1785 * Remove slab from the partial list, freeze it and 1786 * return the pointer to the freelist. 1787 * 1788 * Returns a list of objects or NULL if it fails. 1789 */ 1790 static inline void *acquire_slab(struct kmem_cache *s, 1791 struct kmem_cache_node *n, struct page *page, 1792 int mode, int *objects) 1793 { 1794 void *freelist; 1795 unsigned long counters; 1796 struct page new; 1797 1798 lockdep_assert_held(&n->list_lock); 1799 1800 /* 1801 * Zap the freelist and set the frozen bit. 1802 * The old freelist is the list of objects for the 1803 * per cpu allocation list. 1804 */ 1805 freelist = page->freelist; 1806 counters = page->counters; 1807 new.counters = counters; 1808 *objects = new.objects - new.inuse; 1809 if (mode) { 1810 new.inuse = page->objects; 1811 new.freelist = NULL; 1812 } else { 1813 new.freelist = freelist; 1814 } 1815 1816 VM_BUG_ON(new.frozen); 1817 new.frozen = 1; 1818 1819 if (!__cmpxchg_double_slab(s, page, 1820 freelist, counters, 1821 new.freelist, new.counters, 1822 "acquire_slab")) 1823 return NULL; 1824 1825 remove_partial(n, page); 1826 WARN_ON(!freelist); 1827 return freelist; 1828 } 1829 1830 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1831 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1832 1833 /* 1834 * Try to allocate a partial slab from a specific node. 1835 */ 1836 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1837 struct kmem_cache_cpu *c, gfp_t flags) 1838 { 1839 struct page *page, *page2; 1840 void *object = NULL; 1841 unsigned int available = 0; 1842 int objects; 1843 1844 /* 1845 * Racy check. If we mistakenly see no partial slabs then we 1846 * just allocate an empty slab. If we mistakenly try to get a 1847 * partial slab and there is none available then get_partials() 1848 * will return NULL. 1849 */ 1850 if (!n || !n->nr_partial) 1851 return NULL; 1852 1853 spin_lock(&n->list_lock); 1854 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1855 void *t; 1856 1857 if (!pfmemalloc_match(page, flags)) 1858 continue; 1859 1860 t = acquire_slab(s, n, page, object == NULL, &objects); 1861 if (!t) 1862 break; 1863 1864 available += objects; 1865 if (!object) { 1866 c->page = page; 1867 stat(s, ALLOC_FROM_PARTIAL); 1868 object = t; 1869 } else { 1870 put_cpu_partial(s, page, 0); 1871 stat(s, CPU_PARTIAL_NODE); 1872 } 1873 if (!kmem_cache_has_cpu_partial(s) 1874 || available > slub_cpu_partial(s) / 2) 1875 break; 1876 1877 } 1878 spin_unlock(&n->list_lock); 1879 return object; 1880 } 1881 1882 /* 1883 * Get a page from somewhere. Search in increasing NUMA distances. 1884 */ 1885 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1886 struct kmem_cache_cpu *c) 1887 { 1888 #ifdef CONFIG_NUMA 1889 struct zonelist *zonelist; 1890 struct zoneref *z; 1891 struct zone *zone; 1892 enum zone_type high_zoneidx = gfp_zone(flags); 1893 void *object; 1894 unsigned int cpuset_mems_cookie; 1895 1896 /* 1897 * The defrag ratio allows a configuration of the tradeoffs between 1898 * inter node defragmentation and node local allocations. A lower 1899 * defrag_ratio increases the tendency to do local allocations 1900 * instead of attempting to obtain partial slabs from other nodes. 1901 * 1902 * If the defrag_ratio is set to 0 then kmalloc() always 1903 * returns node local objects. If the ratio is higher then kmalloc() 1904 * may return off node objects because partial slabs are obtained 1905 * from other nodes and filled up. 1906 * 1907 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1908 * (which makes defrag_ratio = 1000) then every (well almost) 1909 * allocation will first attempt to defrag slab caches on other nodes. 1910 * This means scanning over all nodes to look for partial slabs which 1911 * may be expensive if we do it every time we are trying to find a slab 1912 * with available objects. 1913 */ 1914 if (!s->remote_node_defrag_ratio || 1915 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1916 return NULL; 1917 1918 do { 1919 cpuset_mems_cookie = read_mems_allowed_begin(); 1920 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1921 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1922 struct kmem_cache_node *n; 1923 1924 n = get_node(s, zone_to_nid(zone)); 1925 1926 if (n && cpuset_zone_allowed(zone, flags) && 1927 n->nr_partial > s->min_partial) { 1928 object = get_partial_node(s, n, c, flags); 1929 if (object) { 1930 /* 1931 * Don't check read_mems_allowed_retry() 1932 * here - if mems_allowed was updated in 1933 * parallel, that was a harmless race 1934 * between allocation and the cpuset 1935 * update 1936 */ 1937 return object; 1938 } 1939 } 1940 } 1941 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1942 #endif /* CONFIG_NUMA */ 1943 return NULL; 1944 } 1945 1946 /* 1947 * Get a partial page, lock it and return it. 1948 */ 1949 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1950 struct kmem_cache_cpu *c) 1951 { 1952 void *object; 1953 int searchnode = node; 1954 1955 if (node == NUMA_NO_NODE) 1956 searchnode = numa_mem_id(); 1957 else if (!node_present_pages(node)) 1958 searchnode = node_to_mem_node(node); 1959 1960 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1961 if (object || node != NUMA_NO_NODE) 1962 return object; 1963 1964 return get_any_partial(s, flags, c); 1965 } 1966 1967 #ifdef CONFIG_PREEMPT 1968 /* 1969 * Calculate the next globally unique transaction for disambiguiation 1970 * during cmpxchg. The transactions start with the cpu number and are then 1971 * incremented by CONFIG_NR_CPUS. 1972 */ 1973 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1974 #else 1975 /* 1976 * No preemption supported therefore also no need to check for 1977 * different cpus. 1978 */ 1979 #define TID_STEP 1 1980 #endif 1981 1982 static inline unsigned long next_tid(unsigned long tid) 1983 { 1984 return tid + TID_STEP; 1985 } 1986 1987 #ifdef SLUB_DEBUG_CMPXCHG 1988 static inline unsigned int tid_to_cpu(unsigned long tid) 1989 { 1990 return tid % TID_STEP; 1991 } 1992 1993 static inline unsigned long tid_to_event(unsigned long tid) 1994 { 1995 return tid / TID_STEP; 1996 } 1997 #endif 1998 1999 static inline unsigned int init_tid(int cpu) 2000 { 2001 return cpu; 2002 } 2003 2004 static inline void note_cmpxchg_failure(const char *n, 2005 const struct kmem_cache *s, unsigned long tid) 2006 { 2007 #ifdef SLUB_DEBUG_CMPXCHG 2008 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2009 2010 pr_info("%s %s: cmpxchg redo ", n, s->name); 2011 2012 #ifdef CONFIG_PREEMPT 2013 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2014 pr_warn("due to cpu change %d -> %d\n", 2015 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2016 else 2017 #endif 2018 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2019 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2020 tid_to_event(tid), tid_to_event(actual_tid)); 2021 else 2022 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2023 actual_tid, tid, next_tid(tid)); 2024 #endif 2025 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2026 } 2027 2028 static void init_kmem_cache_cpus(struct kmem_cache *s) 2029 { 2030 int cpu; 2031 2032 for_each_possible_cpu(cpu) 2033 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2034 } 2035 2036 /* 2037 * Remove the cpu slab 2038 */ 2039 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2040 void *freelist, struct kmem_cache_cpu *c) 2041 { 2042 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2043 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2044 int lock = 0; 2045 enum slab_modes l = M_NONE, m = M_NONE; 2046 void *nextfree; 2047 int tail = DEACTIVATE_TO_HEAD; 2048 struct page new; 2049 struct page old; 2050 2051 if (page->freelist) { 2052 stat(s, DEACTIVATE_REMOTE_FREES); 2053 tail = DEACTIVATE_TO_TAIL; 2054 } 2055 2056 /* 2057 * Stage one: Free all available per cpu objects back 2058 * to the page freelist while it is still frozen. Leave the 2059 * last one. 2060 * 2061 * There is no need to take the list->lock because the page 2062 * is still frozen. 2063 */ 2064 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2065 void *prior; 2066 unsigned long counters; 2067 2068 do { 2069 prior = page->freelist; 2070 counters = page->counters; 2071 set_freepointer(s, freelist, prior); 2072 new.counters = counters; 2073 new.inuse--; 2074 VM_BUG_ON(!new.frozen); 2075 2076 } while (!__cmpxchg_double_slab(s, page, 2077 prior, counters, 2078 freelist, new.counters, 2079 "drain percpu freelist")); 2080 2081 freelist = nextfree; 2082 } 2083 2084 /* 2085 * Stage two: Ensure that the page is unfrozen while the 2086 * list presence reflects the actual number of objects 2087 * during unfreeze. 2088 * 2089 * We setup the list membership and then perform a cmpxchg 2090 * with the count. If there is a mismatch then the page 2091 * is not unfrozen but the page is on the wrong list. 2092 * 2093 * Then we restart the process which may have to remove 2094 * the page from the list that we just put it on again 2095 * because the number of objects in the slab may have 2096 * changed. 2097 */ 2098 redo: 2099 2100 old.freelist = page->freelist; 2101 old.counters = page->counters; 2102 VM_BUG_ON(!old.frozen); 2103 2104 /* Determine target state of the slab */ 2105 new.counters = old.counters; 2106 if (freelist) { 2107 new.inuse--; 2108 set_freepointer(s, freelist, old.freelist); 2109 new.freelist = freelist; 2110 } else 2111 new.freelist = old.freelist; 2112 2113 new.frozen = 0; 2114 2115 if (!new.inuse && n->nr_partial >= s->min_partial) 2116 m = M_FREE; 2117 else if (new.freelist) { 2118 m = M_PARTIAL; 2119 if (!lock) { 2120 lock = 1; 2121 /* 2122 * Taking the spinlock removes the possibility 2123 * that acquire_slab() will see a slab page that 2124 * is frozen 2125 */ 2126 spin_lock(&n->list_lock); 2127 } 2128 } else { 2129 m = M_FULL; 2130 if (kmem_cache_debug(s) && !lock) { 2131 lock = 1; 2132 /* 2133 * This also ensures that the scanning of full 2134 * slabs from diagnostic functions will not see 2135 * any frozen slabs. 2136 */ 2137 spin_lock(&n->list_lock); 2138 } 2139 } 2140 2141 if (l != m) { 2142 if (l == M_PARTIAL) 2143 remove_partial(n, page); 2144 else if (l == M_FULL) 2145 remove_full(s, n, page); 2146 2147 if (m == M_PARTIAL) 2148 add_partial(n, page, tail); 2149 else if (m == M_FULL) 2150 add_full(s, n, page); 2151 } 2152 2153 l = m; 2154 if (!__cmpxchg_double_slab(s, page, 2155 old.freelist, old.counters, 2156 new.freelist, new.counters, 2157 "unfreezing slab")) 2158 goto redo; 2159 2160 if (lock) 2161 spin_unlock(&n->list_lock); 2162 2163 if (m == M_PARTIAL) 2164 stat(s, tail); 2165 else if (m == M_FULL) 2166 stat(s, DEACTIVATE_FULL); 2167 else if (m == M_FREE) { 2168 stat(s, DEACTIVATE_EMPTY); 2169 discard_slab(s, page); 2170 stat(s, FREE_SLAB); 2171 } 2172 2173 c->page = NULL; 2174 c->freelist = NULL; 2175 } 2176 2177 /* 2178 * Unfreeze all the cpu partial slabs. 2179 * 2180 * This function must be called with interrupts disabled 2181 * for the cpu using c (or some other guarantee must be there 2182 * to guarantee no concurrent accesses). 2183 */ 2184 static void unfreeze_partials(struct kmem_cache *s, 2185 struct kmem_cache_cpu *c) 2186 { 2187 #ifdef CONFIG_SLUB_CPU_PARTIAL 2188 struct kmem_cache_node *n = NULL, *n2 = NULL; 2189 struct page *page, *discard_page = NULL; 2190 2191 while ((page = c->partial)) { 2192 struct page new; 2193 struct page old; 2194 2195 c->partial = page->next; 2196 2197 n2 = get_node(s, page_to_nid(page)); 2198 if (n != n2) { 2199 if (n) 2200 spin_unlock(&n->list_lock); 2201 2202 n = n2; 2203 spin_lock(&n->list_lock); 2204 } 2205 2206 do { 2207 2208 old.freelist = page->freelist; 2209 old.counters = page->counters; 2210 VM_BUG_ON(!old.frozen); 2211 2212 new.counters = old.counters; 2213 new.freelist = old.freelist; 2214 2215 new.frozen = 0; 2216 2217 } while (!__cmpxchg_double_slab(s, page, 2218 old.freelist, old.counters, 2219 new.freelist, new.counters, 2220 "unfreezing slab")); 2221 2222 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2223 page->next = discard_page; 2224 discard_page = page; 2225 } else { 2226 add_partial(n, page, DEACTIVATE_TO_TAIL); 2227 stat(s, FREE_ADD_PARTIAL); 2228 } 2229 } 2230 2231 if (n) 2232 spin_unlock(&n->list_lock); 2233 2234 while (discard_page) { 2235 page = discard_page; 2236 discard_page = discard_page->next; 2237 2238 stat(s, DEACTIVATE_EMPTY); 2239 discard_slab(s, page); 2240 stat(s, FREE_SLAB); 2241 } 2242 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2243 } 2244 2245 /* 2246 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2247 * partial page slot if available. 2248 * 2249 * If we did not find a slot then simply move all the partials to the 2250 * per node partial list. 2251 */ 2252 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2253 { 2254 #ifdef CONFIG_SLUB_CPU_PARTIAL 2255 struct page *oldpage; 2256 int pages; 2257 int pobjects; 2258 2259 preempt_disable(); 2260 do { 2261 pages = 0; 2262 pobjects = 0; 2263 oldpage = this_cpu_read(s->cpu_slab->partial); 2264 2265 if (oldpage) { 2266 pobjects = oldpage->pobjects; 2267 pages = oldpage->pages; 2268 if (drain && pobjects > s->cpu_partial) { 2269 unsigned long flags; 2270 /* 2271 * partial array is full. Move the existing 2272 * set to the per node partial list. 2273 */ 2274 local_irq_save(flags); 2275 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2276 local_irq_restore(flags); 2277 oldpage = NULL; 2278 pobjects = 0; 2279 pages = 0; 2280 stat(s, CPU_PARTIAL_DRAIN); 2281 } 2282 } 2283 2284 pages++; 2285 pobjects += page->objects - page->inuse; 2286 2287 page->pages = pages; 2288 page->pobjects = pobjects; 2289 page->next = oldpage; 2290 2291 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2292 != oldpage); 2293 if (unlikely(!s->cpu_partial)) { 2294 unsigned long flags; 2295 2296 local_irq_save(flags); 2297 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2298 local_irq_restore(flags); 2299 } 2300 preempt_enable(); 2301 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2302 } 2303 2304 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2305 { 2306 stat(s, CPUSLAB_FLUSH); 2307 deactivate_slab(s, c->page, c->freelist, c); 2308 2309 c->tid = next_tid(c->tid); 2310 } 2311 2312 /* 2313 * Flush cpu slab. 2314 * 2315 * Called from IPI handler with interrupts disabled. 2316 */ 2317 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2318 { 2319 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2320 2321 if (c->page) 2322 flush_slab(s, c); 2323 2324 unfreeze_partials(s, c); 2325 } 2326 2327 static void flush_cpu_slab(void *d) 2328 { 2329 struct kmem_cache *s = d; 2330 2331 __flush_cpu_slab(s, smp_processor_id()); 2332 } 2333 2334 static bool has_cpu_slab(int cpu, void *info) 2335 { 2336 struct kmem_cache *s = info; 2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2338 2339 return c->page || slub_percpu_partial(c); 2340 } 2341 2342 static void flush_all(struct kmem_cache *s) 2343 { 2344 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2345 } 2346 2347 /* 2348 * Use the cpu notifier to insure that the cpu slabs are flushed when 2349 * necessary. 2350 */ 2351 static int slub_cpu_dead(unsigned int cpu) 2352 { 2353 struct kmem_cache *s; 2354 unsigned long flags; 2355 2356 mutex_lock(&slab_mutex); 2357 list_for_each_entry(s, &slab_caches, list) { 2358 local_irq_save(flags); 2359 __flush_cpu_slab(s, cpu); 2360 local_irq_restore(flags); 2361 } 2362 mutex_unlock(&slab_mutex); 2363 return 0; 2364 } 2365 2366 /* 2367 * Check if the objects in a per cpu structure fit numa 2368 * locality expectations. 2369 */ 2370 static inline int node_match(struct page *page, int node) 2371 { 2372 #ifdef CONFIG_NUMA 2373 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2374 return 0; 2375 #endif 2376 return 1; 2377 } 2378 2379 #ifdef CONFIG_SLUB_DEBUG 2380 static int count_free(struct page *page) 2381 { 2382 return page->objects - page->inuse; 2383 } 2384 2385 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2386 { 2387 return atomic_long_read(&n->total_objects); 2388 } 2389 #endif /* CONFIG_SLUB_DEBUG */ 2390 2391 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2392 static unsigned long count_partial(struct kmem_cache_node *n, 2393 int (*get_count)(struct page *)) 2394 { 2395 unsigned long flags; 2396 unsigned long x = 0; 2397 struct page *page; 2398 2399 spin_lock_irqsave(&n->list_lock, flags); 2400 list_for_each_entry(page, &n->partial, slab_list) 2401 x += get_count(page); 2402 spin_unlock_irqrestore(&n->list_lock, flags); 2403 return x; 2404 } 2405 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2406 2407 static noinline void 2408 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2409 { 2410 #ifdef CONFIG_SLUB_DEBUG 2411 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2412 DEFAULT_RATELIMIT_BURST); 2413 int node; 2414 struct kmem_cache_node *n; 2415 2416 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2417 return; 2418 2419 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2420 nid, gfpflags, &gfpflags); 2421 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2422 s->name, s->object_size, s->size, oo_order(s->oo), 2423 oo_order(s->min)); 2424 2425 if (oo_order(s->min) > get_order(s->object_size)) 2426 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2427 s->name); 2428 2429 for_each_kmem_cache_node(s, node, n) { 2430 unsigned long nr_slabs; 2431 unsigned long nr_objs; 2432 unsigned long nr_free; 2433 2434 nr_free = count_partial(n, count_free); 2435 nr_slabs = node_nr_slabs(n); 2436 nr_objs = node_nr_objs(n); 2437 2438 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2439 node, nr_slabs, nr_objs, nr_free); 2440 } 2441 #endif 2442 } 2443 2444 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2445 int node, struct kmem_cache_cpu **pc) 2446 { 2447 void *freelist; 2448 struct kmem_cache_cpu *c = *pc; 2449 struct page *page; 2450 2451 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2452 2453 freelist = get_partial(s, flags, node, c); 2454 2455 if (freelist) 2456 return freelist; 2457 2458 page = new_slab(s, flags, node); 2459 if (page) { 2460 c = raw_cpu_ptr(s->cpu_slab); 2461 if (c->page) 2462 flush_slab(s, c); 2463 2464 /* 2465 * No other reference to the page yet so we can 2466 * muck around with it freely without cmpxchg 2467 */ 2468 freelist = page->freelist; 2469 page->freelist = NULL; 2470 2471 stat(s, ALLOC_SLAB); 2472 c->page = page; 2473 *pc = c; 2474 } 2475 2476 return freelist; 2477 } 2478 2479 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2480 { 2481 if (unlikely(PageSlabPfmemalloc(page))) 2482 return gfp_pfmemalloc_allowed(gfpflags); 2483 2484 return true; 2485 } 2486 2487 /* 2488 * Check the page->freelist of a page and either transfer the freelist to the 2489 * per cpu freelist or deactivate the page. 2490 * 2491 * The page is still frozen if the return value is not NULL. 2492 * 2493 * If this function returns NULL then the page has been unfrozen. 2494 * 2495 * This function must be called with interrupt disabled. 2496 */ 2497 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2498 { 2499 struct page new; 2500 unsigned long counters; 2501 void *freelist; 2502 2503 do { 2504 freelist = page->freelist; 2505 counters = page->counters; 2506 2507 new.counters = counters; 2508 VM_BUG_ON(!new.frozen); 2509 2510 new.inuse = page->objects; 2511 new.frozen = freelist != NULL; 2512 2513 } while (!__cmpxchg_double_slab(s, page, 2514 freelist, counters, 2515 NULL, new.counters, 2516 "get_freelist")); 2517 2518 return freelist; 2519 } 2520 2521 /* 2522 * Slow path. The lockless freelist is empty or we need to perform 2523 * debugging duties. 2524 * 2525 * Processing is still very fast if new objects have been freed to the 2526 * regular freelist. In that case we simply take over the regular freelist 2527 * as the lockless freelist and zap the regular freelist. 2528 * 2529 * If that is not working then we fall back to the partial lists. We take the 2530 * first element of the freelist as the object to allocate now and move the 2531 * rest of the freelist to the lockless freelist. 2532 * 2533 * And if we were unable to get a new slab from the partial slab lists then 2534 * we need to allocate a new slab. This is the slowest path since it involves 2535 * a call to the page allocator and the setup of a new slab. 2536 * 2537 * Version of __slab_alloc to use when we know that interrupts are 2538 * already disabled (which is the case for bulk allocation). 2539 */ 2540 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2541 unsigned long addr, struct kmem_cache_cpu *c) 2542 { 2543 void *freelist; 2544 struct page *page; 2545 2546 page = c->page; 2547 if (!page) 2548 goto new_slab; 2549 redo: 2550 2551 if (unlikely(!node_match(page, node))) { 2552 int searchnode = node; 2553 2554 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2555 searchnode = node_to_mem_node(node); 2556 2557 if (unlikely(!node_match(page, searchnode))) { 2558 stat(s, ALLOC_NODE_MISMATCH); 2559 deactivate_slab(s, page, c->freelist, c); 2560 goto new_slab; 2561 } 2562 } 2563 2564 /* 2565 * By rights, we should be searching for a slab page that was 2566 * PFMEMALLOC but right now, we are losing the pfmemalloc 2567 * information when the page leaves the per-cpu allocator 2568 */ 2569 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2570 deactivate_slab(s, page, c->freelist, c); 2571 goto new_slab; 2572 } 2573 2574 /* must check again c->freelist in case of cpu migration or IRQ */ 2575 freelist = c->freelist; 2576 if (freelist) 2577 goto load_freelist; 2578 2579 freelist = get_freelist(s, page); 2580 2581 if (!freelist) { 2582 c->page = NULL; 2583 stat(s, DEACTIVATE_BYPASS); 2584 goto new_slab; 2585 } 2586 2587 stat(s, ALLOC_REFILL); 2588 2589 load_freelist: 2590 /* 2591 * freelist is pointing to the list of objects to be used. 2592 * page is pointing to the page from which the objects are obtained. 2593 * That page must be frozen for per cpu allocations to work. 2594 */ 2595 VM_BUG_ON(!c->page->frozen); 2596 c->freelist = get_freepointer(s, freelist); 2597 c->tid = next_tid(c->tid); 2598 return freelist; 2599 2600 new_slab: 2601 2602 if (slub_percpu_partial(c)) { 2603 page = c->page = slub_percpu_partial(c); 2604 slub_set_percpu_partial(c, page); 2605 stat(s, CPU_PARTIAL_ALLOC); 2606 goto redo; 2607 } 2608 2609 freelist = new_slab_objects(s, gfpflags, node, &c); 2610 2611 if (unlikely(!freelist)) { 2612 slab_out_of_memory(s, gfpflags, node); 2613 return NULL; 2614 } 2615 2616 page = c->page; 2617 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2618 goto load_freelist; 2619 2620 /* Only entered in the debug case */ 2621 if (kmem_cache_debug(s) && 2622 !alloc_debug_processing(s, page, freelist, addr)) 2623 goto new_slab; /* Slab failed checks. Next slab needed */ 2624 2625 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2626 return freelist; 2627 } 2628 2629 /* 2630 * Another one that disabled interrupt and compensates for possible 2631 * cpu changes by refetching the per cpu area pointer. 2632 */ 2633 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2634 unsigned long addr, struct kmem_cache_cpu *c) 2635 { 2636 void *p; 2637 unsigned long flags; 2638 2639 local_irq_save(flags); 2640 #ifdef CONFIG_PREEMPT 2641 /* 2642 * We may have been preempted and rescheduled on a different 2643 * cpu before disabling interrupts. Need to reload cpu area 2644 * pointer. 2645 */ 2646 c = this_cpu_ptr(s->cpu_slab); 2647 #endif 2648 2649 p = ___slab_alloc(s, gfpflags, node, addr, c); 2650 local_irq_restore(flags); 2651 return p; 2652 } 2653 2654 /* 2655 * If the object has been wiped upon free, make sure it's fully initialized by 2656 * zeroing out freelist pointer. 2657 */ 2658 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2659 void *obj) 2660 { 2661 if (unlikely(slab_want_init_on_free(s)) && obj) 2662 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2663 } 2664 2665 /* 2666 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2667 * have the fastpath folded into their functions. So no function call 2668 * overhead for requests that can be satisfied on the fastpath. 2669 * 2670 * The fastpath works by first checking if the lockless freelist can be used. 2671 * If not then __slab_alloc is called for slow processing. 2672 * 2673 * Otherwise we can simply pick the next object from the lockless free list. 2674 */ 2675 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2676 gfp_t gfpflags, int node, unsigned long addr) 2677 { 2678 void *object; 2679 struct kmem_cache_cpu *c; 2680 struct page *page; 2681 unsigned long tid; 2682 2683 s = slab_pre_alloc_hook(s, gfpflags); 2684 if (!s) 2685 return NULL; 2686 redo: 2687 /* 2688 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2689 * enabled. We may switch back and forth between cpus while 2690 * reading from one cpu area. That does not matter as long 2691 * as we end up on the original cpu again when doing the cmpxchg. 2692 * 2693 * We should guarantee that tid and kmem_cache are retrieved on 2694 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2695 * to check if it is matched or not. 2696 */ 2697 do { 2698 tid = this_cpu_read(s->cpu_slab->tid); 2699 c = raw_cpu_ptr(s->cpu_slab); 2700 } while (IS_ENABLED(CONFIG_PREEMPT) && 2701 unlikely(tid != READ_ONCE(c->tid))); 2702 2703 /* 2704 * Irqless object alloc/free algorithm used here depends on sequence 2705 * of fetching cpu_slab's data. tid should be fetched before anything 2706 * on c to guarantee that object and page associated with previous tid 2707 * won't be used with current tid. If we fetch tid first, object and 2708 * page could be one associated with next tid and our alloc/free 2709 * request will be failed. In this case, we will retry. So, no problem. 2710 */ 2711 barrier(); 2712 2713 /* 2714 * The transaction ids are globally unique per cpu and per operation on 2715 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2716 * occurs on the right processor and that there was no operation on the 2717 * linked list in between. 2718 */ 2719 2720 object = c->freelist; 2721 page = c->page; 2722 if (unlikely(!object || !node_match(page, node))) { 2723 object = __slab_alloc(s, gfpflags, node, addr, c); 2724 stat(s, ALLOC_SLOWPATH); 2725 } else { 2726 void *next_object = get_freepointer_safe(s, object); 2727 2728 /* 2729 * The cmpxchg will only match if there was no additional 2730 * operation and if we are on the right processor. 2731 * 2732 * The cmpxchg does the following atomically (without lock 2733 * semantics!) 2734 * 1. Relocate first pointer to the current per cpu area. 2735 * 2. Verify that tid and freelist have not been changed 2736 * 3. If they were not changed replace tid and freelist 2737 * 2738 * Since this is without lock semantics the protection is only 2739 * against code executing on this cpu *not* from access by 2740 * other cpus. 2741 */ 2742 if (unlikely(!this_cpu_cmpxchg_double( 2743 s->cpu_slab->freelist, s->cpu_slab->tid, 2744 object, tid, 2745 next_object, next_tid(tid)))) { 2746 2747 note_cmpxchg_failure("slab_alloc", s, tid); 2748 goto redo; 2749 } 2750 prefetch_freepointer(s, next_object); 2751 stat(s, ALLOC_FASTPATH); 2752 } 2753 2754 maybe_wipe_obj_freeptr(s, object); 2755 2756 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2757 memset(object, 0, s->object_size); 2758 2759 slab_post_alloc_hook(s, gfpflags, 1, &object); 2760 2761 return object; 2762 } 2763 2764 static __always_inline void *slab_alloc(struct kmem_cache *s, 2765 gfp_t gfpflags, unsigned long addr) 2766 { 2767 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2768 } 2769 2770 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2771 { 2772 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2773 2774 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2775 s->size, gfpflags); 2776 2777 return ret; 2778 } 2779 EXPORT_SYMBOL(kmem_cache_alloc); 2780 2781 #ifdef CONFIG_TRACING 2782 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2783 { 2784 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2785 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2786 ret = kasan_kmalloc(s, ret, size, gfpflags); 2787 return ret; 2788 } 2789 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2790 #endif 2791 2792 #ifdef CONFIG_NUMA 2793 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2794 { 2795 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2796 2797 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2798 s->object_size, s->size, gfpflags, node); 2799 2800 return ret; 2801 } 2802 EXPORT_SYMBOL(kmem_cache_alloc_node); 2803 2804 #ifdef CONFIG_TRACING 2805 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2806 gfp_t gfpflags, 2807 int node, size_t size) 2808 { 2809 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2810 2811 trace_kmalloc_node(_RET_IP_, ret, 2812 size, s->size, gfpflags, node); 2813 2814 ret = kasan_kmalloc(s, ret, size, gfpflags); 2815 return ret; 2816 } 2817 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2818 #endif 2819 #endif /* CONFIG_NUMA */ 2820 2821 /* 2822 * Slow path handling. This may still be called frequently since objects 2823 * have a longer lifetime than the cpu slabs in most processing loads. 2824 * 2825 * So we still attempt to reduce cache line usage. Just take the slab 2826 * lock and free the item. If there is no additional partial page 2827 * handling required then we can return immediately. 2828 */ 2829 static void __slab_free(struct kmem_cache *s, struct page *page, 2830 void *head, void *tail, int cnt, 2831 unsigned long addr) 2832 2833 { 2834 void *prior; 2835 int was_frozen; 2836 struct page new; 2837 unsigned long counters; 2838 struct kmem_cache_node *n = NULL; 2839 unsigned long uninitialized_var(flags); 2840 2841 stat(s, FREE_SLOWPATH); 2842 2843 if (kmem_cache_debug(s) && 2844 !free_debug_processing(s, page, head, tail, cnt, addr)) 2845 return; 2846 2847 do { 2848 if (unlikely(n)) { 2849 spin_unlock_irqrestore(&n->list_lock, flags); 2850 n = NULL; 2851 } 2852 prior = page->freelist; 2853 counters = page->counters; 2854 set_freepointer(s, tail, prior); 2855 new.counters = counters; 2856 was_frozen = new.frozen; 2857 new.inuse -= cnt; 2858 if ((!new.inuse || !prior) && !was_frozen) { 2859 2860 if (kmem_cache_has_cpu_partial(s) && !prior) { 2861 2862 /* 2863 * Slab was on no list before and will be 2864 * partially empty 2865 * We can defer the list move and instead 2866 * freeze it. 2867 */ 2868 new.frozen = 1; 2869 2870 } else { /* Needs to be taken off a list */ 2871 2872 n = get_node(s, page_to_nid(page)); 2873 /* 2874 * Speculatively acquire the list_lock. 2875 * If the cmpxchg does not succeed then we may 2876 * drop the list_lock without any processing. 2877 * 2878 * Otherwise the list_lock will synchronize with 2879 * other processors updating the list of slabs. 2880 */ 2881 spin_lock_irqsave(&n->list_lock, flags); 2882 2883 } 2884 } 2885 2886 } while (!cmpxchg_double_slab(s, page, 2887 prior, counters, 2888 head, new.counters, 2889 "__slab_free")); 2890 2891 if (likely(!n)) { 2892 2893 /* 2894 * If we just froze the page then put it onto the 2895 * per cpu partial list. 2896 */ 2897 if (new.frozen && !was_frozen) { 2898 put_cpu_partial(s, page, 1); 2899 stat(s, CPU_PARTIAL_FREE); 2900 } 2901 /* 2902 * The list lock was not taken therefore no list 2903 * activity can be necessary. 2904 */ 2905 if (was_frozen) 2906 stat(s, FREE_FROZEN); 2907 return; 2908 } 2909 2910 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2911 goto slab_empty; 2912 2913 /* 2914 * Objects left in the slab. If it was not on the partial list before 2915 * then add it. 2916 */ 2917 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2918 remove_full(s, n, page); 2919 add_partial(n, page, DEACTIVATE_TO_TAIL); 2920 stat(s, FREE_ADD_PARTIAL); 2921 } 2922 spin_unlock_irqrestore(&n->list_lock, flags); 2923 return; 2924 2925 slab_empty: 2926 if (prior) { 2927 /* 2928 * Slab on the partial list. 2929 */ 2930 remove_partial(n, page); 2931 stat(s, FREE_REMOVE_PARTIAL); 2932 } else { 2933 /* Slab must be on the full list */ 2934 remove_full(s, n, page); 2935 } 2936 2937 spin_unlock_irqrestore(&n->list_lock, flags); 2938 stat(s, FREE_SLAB); 2939 discard_slab(s, page); 2940 } 2941 2942 /* 2943 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2944 * can perform fastpath freeing without additional function calls. 2945 * 2946 * The fastpath is only possible if we are freeing to the current cpu slab 2947 * of this processor. This typically the case if we have just allocated 2948 * the item before. 2949 * 2950 * If fastpath is not possible then fall back to __slab_free where we deal 2951 * with all sorts of special processing. 2952 * 2953 * Bulk free of a freelist with several objects (all pointing to the 2954 * same page) possible by specifying head and tail ptr, plus objects 2955 * count (cnt). Bulk free indicated by tail pointer being set. 2956 */ 2957 static __always_inline void do_slab_free(struct kmem_cache *s, 2958 struct page *page, void *head, void *tail, 2959 int cnt, unsigned long addr) 2960 { 2961 void *tail_obj = tail ? : head; 2962 struct kmem_cache_cpu *c; 2963 unsigned long tid; 2964 redo: 2965 /* 2966 * Determine the currently cpus per cpu slab. 2967 * The cpu may change afterward. However that does not matter since 2968 * data is retrieved via this pointer. If we are on the same cpu 2969 * during the cmpxchg then the free will succeed. 2970 */ 2971 do { 2972 tid = this_cpu_read(s->cpu_slab->tid); 2973 c = raw_cpu_ptr(s->cpu_slab); 2974 } while (IS_ENABLED(CONFIG_PREEMPT) && 2975 unlikely(tid != READ_ONCE(c->tid))); 2976 2977 /* Same with comment on barrier() in slab_alloc_node() */ 2978 barrier(); 2979 2980 if (likely(page == c->page)) { 2981 set_freepointer(s, tail_obj, c->freelist); 2982 2983 if (unlikely(!this_cpu_cmpxchg_double( 2984 s->cpu_slab->freelist, s->cpu_slab->tid, 2985 c->freelist, tid, 2986 head, next_tid(tid)))) { 2987 2988 note_cmpxchg_failure("slab_free", s, tid); 2989 goto redo; 2990 } 2991 stat(s, FREE_FASTPATH); 2992 } else 2993 __slab_free(s, page, head, tail_obj, cnt, addr); 2994 2995 } 2996 2997 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2998 void *head, void *tail, int cnt, 2999 unsigned long addr) 3000 { 3001 /* 3002 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3003 * to remove objects, whose reuse must be delayed. 3004 */ 3005 if (slab_free_freelist_hook(s, &head, &tail)) 3006 do_slab_free(s, page, head, tail, cnt, addr); 3007 } 3008 3009 #ifdef CONFIG_KASAN_GENERIC 3010 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3011 { 3012 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3013 } 3014 #endif 3015 3016 void kmem_cache_free(struct kmem_cache *s, void *x) 3017 { 3018 s = cache_from_obj(s, x); 3019 if (!s) 3020 return; 3021 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3022 trace_kmem_cache_free(_RET_IP_, x); 3023 } 3024 EXPORT_SYMBOL(kmem_cache_free); 3025 3026 struct detached_freelist { 3027 struct page *page; 3028 void *tail; 3029 void *freelist; 3030 int cnt; 3031 struct kmem_cache *s; 3032 }; 3033 3034 /* 3035 * This function progressively scans the array with free objects (with 3036 * a limited look ahead) and extract objects belonging to the same 3037 * page. It builds a detached freelist directly within the given 3038 * page/objects. This can happen without any need for 3039 * synchronization, because the objects are owned by running process. 3040 * The freelist is build up as a single linked list in the objects. 3041 * The idea is, that this detached freelist can then be bulk 3042 * transferred to the real freelist(s), but only requiring a single 3043 * synchronization primitive. Look ahead in the array is limited due 3044 * to performance reasons. 3045 */ 3046 static inline 3047 int build_detached_freelist(struct kmem_cache *s, size_t size, 3048 void **p, struct detached_freelist *df) 3049 { 3050 size_t first_skipped_index = 0; 3051 int lookahead = 3; 3052 void *object; 3053 struct page *page; 3054 3055 /* Always re-init detached_freelist */ 3056 df->page = NULL; 3057 3058 do { 3059 object = p[--size]; 3060 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3061 } while (!object && size); 3062 3063 if (!object) 3064 return 0; 3065 3066 page = virt_to_head_page(object); 3067 if (!s) { 3068 /* Handle kalloc'ed objects */ 3069 if (unlikely(!PageSlab(page))) { 3070 BUG_ON(!PageCompound(page)); 3071 kfree_hook(object); 3072 __free_pages(page, compound_order(page)); 3073 p[size] = NULL; /* mark object processed */ 3074 return size; 3075 } 3076 /* Derive kmem_cache from object */ 3077 df->s = page->slab_cache; 3078 } else { 3079 df->s = cache_from_obj(s, object); /* Support for memcg */ 3080 } 3081 3082 /* Start new detached freelist */ 3083 df->page = page; 3084 set_freepointer(df->s, object, NULL); 3085 df->tail = object; 3086 df->freelist = object; 3087 p[size] = NULL; /* mark object processed */ 3088 df->cnt = 1; 3089 3090 while (size) { 3091 object = p[--size]; 3092 if (!object) 3093 continue; /* Skip processed objects */ 3094 3095 /* df->page is always set at this point */ 3096 if (df->page == virt_to_head_page(object)) { 3097 /* Opportunity build freelist */ 3098 set_freepointer(df->s, object, df->freelist); 3099 df->freelist = object; 3100 df->cnt++; 3101 p[size] = NULL; /* mark object processed */ 3102 3103 continue; 3104 } 3105 3106 /* Limit look ahead search */ 3107 if (!--lookahead) 3108 break; 3109 3110 if (!first_skipped_index) 3111 first_skipped_index = size + 1; 3112 } 3113 3114 return first_skipped_index; 3115 } 3116 3117 /* Note that interrupts must be enabled when calling this function. */ 3118 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3119 { 3120 if (WARN_ON(!size)) 3121 return; 3122 3123 do { 3124 struct detached_freelist df; 3125 3126 size = build_detached_freelist(s, size, p, &df); 3127 if (!df.page) 3128 continue; 3129 3130 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3131 } while (likely(size)); 3132 } 3133 EXPORT_SYMBOL(kmem_cache_free_bulk); 3134 3135 /* Note that interrupts must be enabled when calling this function. */ 3136 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3137 void **p) 3138 { 3139 struct kmem_cache_cpu *c; 3140 int i; 3141 3142 /* memcg and kmem_cache debug support */ 3143 s = slab_pre_alloc_hook(s, flags); 3144 if (unlikely(!s)) 3145 return false; 3146 /* 3147 * Drain objects in the per cpu slab, while disabling local 3148 * IRQs, which protects against PREEMPT and interrupts 3149 * handlers invoking normal fastpath. 3150 */ 3151 local_irq_disable(); 3152 c = this_cpu_ptr(s->cpu_slab); 3153 3154 for (i = 0; i < size; i++) { 3155 void *object = c->freelist; 3156 3157 if (unlikely(!object)) { 3158 /* 3159 * Invoking slow path likely have side-effect 3160 * of re-populating per CPU c->freelist 3161 */ 3162 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3163 _RET_IP_, c); 3164 if (unlikely(!p[i])) 3165 goto error; 3166 3167 c = this_cpu_ptr(s->cpu_slab); 3168 maybe_wipe_obj_freeptr(s, p[i]); 3169 3170 continue; /* goto for-loop */ 3171 } 3172 c->freelist = get_freepointer(s, object); 3173 p[i] = object; 3174 maybe_wipe_obj_freeptr(s, p[i]); 3175 } 3176 c->tid = next_tid(c->tid); 3177 local_irq_enable(); 3178 3179 /* Clear memory outside IRQ disabled fastpath loop */ 3180 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3181 int j; 3182 3183 for (j = 0; j < i; j++) 3184 memset(p[j], 0, s->object_size); 3185 } 3186 3187 /* memcg and kmem_cache debug support */ 3188 slab_post_alloc_hook(s, flags, size, p); 3189 return i; 3190 error: 3191 local_irq_enable(); 3192 slab_post_alloc_hook(s, flags, i, p); 3193 __kmem_cache_free_bulk(s, i, p); 3194 return 0; 3195 } 3196 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3197 3198 3199 /* 3200 * Object placement in a slab is made very easy because we always start at 3201 * offset 0. If we tune the size of the object to the alignment then we can 3202 * get the required alignment by putting one properly sized object after 3203 * another. 3204 * 3205 * Notice that the allocation order determines the sizes of the per cpu 3206 * caches. Each processor has always one slab available for allocations. 3207 * Increasing the allocation order reduces the number of times that slabs 3208 * must be moved on and off the partial lists and is therefore a factor in 3209 * locking overhead. 3210 */ 3211 3212 /* 3213 * Mininum / Maximum order of slab pages. This influences locking overhead 3214 * and slab fragmentation. A higher order reduces the number of partial slabs 3215 * and increases the number of allocations possible without having to 3216 * take the list_lock. 3217 */ 3218 static unsigned int slub_min_order; 3219 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3220 static unsigned int slub_min_objects; 3221 3222 /* 3223 * Calculate the order of allocation given an slab object size. 3224 * 3225 * The order of allocation has significant impact on performance and other 3226 * system components. Generally order 0 allocations should be preferred since 3227 * order 0 does not cause fragmentation in the page allocator. Larger objects 3228 * be problematic to put into order 0 slabs because there may be too much 3229 * unused space left. We go to a higher order if more than 1/16th of the slab 3230 * would be wasted. 3231 * 3232 * In order to reach satisfactory performance we must ensure that a minimum 3233 * number of objects is in one slab. Otherwise we may generate too much 3234 * activity on the partial lists which requires taking the list_lock. This is 3235 * less a concern for large slabs though which are rarely used. 3236 * 3237 * slub_max_order specifies the order where we begin to stop considering the 3238 * number of objects in a slab as critical. If we reach slub_max_order then 3239 * we try to keep the page order as low as possible. So we accept more waste 3240 * of space in favor of a small page order. 3241 * 3242 * Higher order allocations also allow the placement of more objects in a 3243 * slab and thereby reduce object handling overhead. If the user has 3244 * requested a higher mininum order then we start with that one instead of 3245 * the smallest order which will fit the object. 3246 */ 3247 static inline unsigned int slab_order(unsigned int size, 3248 unsigned int min_objects, unsigned int max_order, 3249 unsigned int fract_leftover) 3250 { 3251 unsigned int min_order = slub_min_order; 3252 unsigned int order; 3253 3254 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3255 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3256 3257 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3258 order <= max_order; order++) { 3259 3260 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3261 unsigned int rem; 3262 3263 rem = slab_size % size; 3264 3265 if (rem <= slab_size / fract_leftover) 3266 break; 3267 } 3268 3269 return order; 3270 } 3271 3272 static inline int calculate_order(unsigned int size) 3273 { 3274 unsigned int order; 3275 unsigned int min_objects; 3276 unsigned int max_objects; 3277 3278 /* 3279 * Attempt to find best configuration for a slab. This 3280 * works by first attempting to generate a layout with 3281 * the best configuration and backing off gradually. 3282 * 3283 * First we increase the acceptable waste in a slab. Then 3284 * we reduce the minimum objects required in a slab. 3285 */ 3286 min_objects = slub_min_objects; 3287 if (!min_objects) 3288 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3289 max_objects = order_objects(slub_max_order, size); 3290 min_objects = min(min_objects, max_objects); 3291 3292 while (min_objects > 1) { 3293 unsigned int fraction; 3294 3295 fraction = 16; 3296 while (fraction >= 4) { 3297 order = slab_order(size, min_objects, 3298 slub_max_order, fraction); 3299 if (order <= slub_max_order) 3300 return order; 3301 fraction /= 2; 3302 } 3303 min_objects--; 3304 } 3305 3306 /* 3307 * We were unable to place multiple objects in a slab. Now 3308 * lets see if we can place a single object there. 3309 */ 3310 order = slab_order(size, 1, slub_max_order, 1); 3311 if (order <= slub_max_order) 3312 return order; 3313 3314 /* 3315 * Doh this slab cannot be placed using slub_max_order. 3316 */ 3317 order = slab_order(size, 1, MAX_ORDER, 1); 3318 if (order < MAX_ORDER) 3319 return order; 3320 return -ENOSYS; 3321 } 3322 3323 static void 3324 init_kmem_cache_node(struct kmem_cache_node *n) 3325 { 3326 n->nr_partial = 0; 3327 spin_lock_init(&n->list_lock); 3328 INIT_LIST_HEAD(&n->partial); 3329 #ifdef CONFIG_SLUB_DEBUG 3330 atomic_long_set(&n->nr_slabs, 0); 3331 atomic_long_set(&n->total_objects, 0); 3332 INIT_LIST_HEAD(&n->full); 3333 #endif 3334 } 3335 3336 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3337 { 3338 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3339 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3340 3341 /* 3342 * Must align to double word boundary for the double cmpxchg 3343 * instructions to work; see __pcpu_double_call_return_bool(). 3344 */ 3345 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3346 2 * sizeof(void *)); 3347 3348 if (!s->cpu_slab) 3349 return 0; 3350 3351 init_kmem_cache_cpus(s); 3352 3353 return 1; 3354 } 3355 3356 static struct kmem_cache *kmem_cache_node; 3357 3358 /* 3359 * No kmalloc_node yet so do it by hand. We know that this is the first 3360 * slab on the node for this slabcache. There are no concurrent accesses 3361 * possible. 3362 * 3363 * Note that this function only works on the kmem_cache_node 3364 * when allocating for the kmem_cache_node. This is used for bootstrapping 3365 * memory on a fresh node that has no slab structures yet. 3366 */ 3367 static void early_kmem_cache_node_alloc(int node) 3368 { 3369 struct page *page; 3370 struct kmem_cache_node *n; 3371 3372 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3373 3374 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3375 3376 BUG_ON(!page); 3377 if (page_to_nid(page) != node) { 3378 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3379 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3380 } 3381 3382 n = page->freelist; 3383 BUG_ON(!n); 3384 #ifdef CONFIG_SLUB_DEBUG 3385 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3386 init_tracking(kmem_cache_node, n); 3387 #endif 3388 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3389 GFP_KERNEL); 3390 page->freelist = get_freepointer(kmem_cache_node, n); 3391 page->inuse = 1; 3392 page->frozen = 0; 3393 kmem_cache_node->node[node] = n; 3394 init_kmem_cache_node(n); 3395 inc_slabs_node(kmem_cache_node, node, page->objects); 3396 3397 /* 3398 * No locks need to be taken here as it has just been 3399 * initialized and there is no concurrent access. 3400 */ 3401 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3402 } 3403 3404 static void free_kmem_cache_nodes(struct kmem_cache *s) 3405 { 3406 int node; 3407 struct kmem_cache_node *n; 3408 3409 for_each_kmem_cache_node(s, node, n) { 3410 s->node[node] = NULL; 3411 kmem_cache_free(kmem_cache_node, n); 3412 } 3413 } 3414 3415 void __kmem_cache_release(struct kmem_cache *s) 3416 { 3417 cache_random_seq_destroy(s); 3418 free_percpu(s->cpu_slab); 3419 free_kmem_cache_nodes(s); 3420 } 3421 3422 static int init_kmem_cache_nodes(struct kmem_cache *s) 3423 { 3424 int node; 3425 3426 for_each_node_state(node, N_NORMAL_MEMORY) { 3427 struct kmem_cache_node *n; 3428 3429 if (slab_state == DOWN) { 3430 early_kmem_cache_node_alloc(node); 3431 continue; 3432 } 3433 n = kmem_cache_alloc_node(kmem_cache_node, 3434 GFP_KERNEL, node); 3435 3436 if (!n) { 3437 free_kmem_cache_nodes(s); 3438 return 0; 3439 } 3440 3441 init_kmem_cache_node(n); 3442 s->node[node] = n; 3443 } 3444 return 1; 3445 } 3446 3447 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3448 { 3449 if (min < MIN_PARTIAL) 3450 min = MIN_PARTIAL; 3451 else if (min > MAX_PARTIAL) 3452 min = MAX_PARTIAL; 3453 s->min_partial = min; 3454 } 3455 3456 static void set_cpu_partial(struct kmem_cache *s) 3457 { 3458 #ifdef CONFIG_SLUB_CPU_PARTIAL 3459 /* 3460 * cpu_partial determined the maximum number of objects kept in the 3461 * per cpu partial lists of a processor. 3462 * 3463 * Per cpu partial lists mainly contain slabs that just have one 3464 * object freed. If they are used for allocation then they can be 3465 * filled up again with minimal effort. The slab will never hit the 3466 * per node partial lists and therefore no locking will be required. 3467 * 3468 * This setting also determines 3469 * 3470 * A) The number of objects from per cpu partial slabs dumped to the 3471 * per node list when we reach the limit. 3472 * B) The number of objects in cpu partial slabs to extract from the 3473 * per node list when we run out of per cpu objects. We only fetch 3474 * 50% to keep some capacity around for frees. 3475 */ 3476 if (!kmem_cache_has_cpu_partial(s)) 3477 s->cpu_partial = 0; 3478 else if (s->size >= PAGE_SIZE) 3479 s->cpu_partial = 2; 3480 else if (s->size >= 1024) 3481 s->cpu_partial = 6; 3482 else if (s->size >= 256) 3483 s->cpu_partial = 13; 3484 else 3485 s->cpu_partial = 30; 3486 #endif 3487 } 3488 3489 /* 3490 * calculate_sizes() determines the order and the distribution of data within 3491 * a slab object. 3492 */ 3493 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3494 { 3495 slab_flags_t flags = s->flags; 3496 unsigned int size = s->object_size; 3497 unsigned int order; 3498 3499 /* 3500 * Round up object size to the next word boundary. We can only 3501 * place the free pointer at word boundaries and this determines 3502 * the possible location of the free pointer. 3503 */ 3504 size = ALIGN(size, sizeof(void *)); 3505 3506 #ifdef CONFIG_SLUB_DEBUG 3507 /* 3508 * Determine if we can poison the object itself. If the user of 3509 * the slab may touch the object after free or before allocation 3510 * then we should never poison the object itself. 3511 */ 3512 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3513 !s->ctor) 3514 s->flags |= __OBJECT_POISON; 3515 else 3516 s->flags &= ~__OBJECT_POISON; 3517 3518 3519 /* 3520 * If we are Redzoning then check if there is some space between the 3521 * end of the object and the free pointer. If not then add an 3522 * additional word to have some bytes to store Redzone information. 3523 */ 3524 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3525 size += sizeof(void *); 3526 #endif 3527 3528 /* 3529 * With that we have determined the number of bytes in actual use 3530 * by the object. This is the potential offset to the free pointer. 3531 */ 3532 s->inuse = size; 3533 3534 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3535 s->ctor)) { 3536 /* 3537 * Relocate free pointer after the object if it is not 3538 * permitted to overwrite the first word of the object on 3539 * kmem_cache_free. 3540 * 3541 * This is the case if we do RCU, have a constructor or 3542 * destructor or are poisoning the objects. 3543 */ 3544 s->offset = size; 3545 size += sizeof(void *); 3546 } 3547 3548 #ifdef CONFIG_SLUB_DEBUG 3549 if (flags & SLAB_STORE_USER) 3550 /* 3551 * Need to store information about allocs and frees after 3552 * the object. 3553 */ 3554 size += 2 * sizeof(struct track); 3555 #endif 3556 3557 kasan_cache_create(s, &size, &s->flags); 3558 #ifdef CONFIG_SLUB_DEBUG 3559 if (flags & SLAB_RED_ZONE) { 3560 /* 3561 * Add some empty padding so that we can catch 3562 * overwrites from earlier objects rather than let 3563 * tracking information or the free pointer be 3564 * corrupted if a user writes before the start 3565 * of the object. 3566 */ 3567 size += sizeof(void *); 3568 3569 s->red_left_pad = sizeof(void *); 3570 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3571 size += s->red_left_pad; 3572 } 3573 #endif 3574 3575 /* 3576 * SLUB stores one object immediately after another beginning from 3577 * offset 0. In order to align the objects we have to simply size 3578 * each object to conform to the alignment. 3579 */ 3580 size = ALIGN(size, s->align); 3581 s->size = size; 3582 if (forced_order >= 0) 3583 order = forced_order; 3584 else 3585 order = calculate_order(size); 3586 3587 if ((int)order < 0) 3588 return 0; 3589 3590 s->allocflags = 0; 3591 if (order) 3592 s->allocflags |= __GFP_COMP; 3593 3594 if (s->flags & SLAB_CACHE_DMA) 3595 s->allocflags |= GFP_DMA; 3596 3597 if (s->flags & SLAB_CACHE_DMA32) 3598 s->allocflags |= GFP_DMA32; 3599 3600 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3601 s->allocflags |= __GFP_RECLAIMABLE; 3602 3603 /* 3604 * Determine the number of objects per slab 3605 */ 3606 s->oo = oo_make(order, size); 3607 s->min = oo_make(get_order(size), size); 3608 if (oo_objects(s->oo) > oo_objects(s->max)) 3609 s->max = s->oo; 3610 3611 return !!oo_objects(s->oo); 3612 } 3613 3614 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3615 { 3616 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3617 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3618 s->random = get_random_long(); 3619 #endif 3620 3621 if (!calculate_sizes(s, -1)) 3622 goto error; 3623 if (disable_higher_order_debug) { 3624 /* 3625 * Disable debugging flags that store metadata if the min slab 3626 * order increased. 3627 */ 3628 if (get_order(s->size) > get_order(s->object_size)) { 3629 s->flags &= ~DEBUG_METADATA_FLAGS; 3630 s->offset = 0; 3631 if (!calculate_sizes(s, -1)) 3632 goto error; 3633 } 3634 } 3635 3636 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3637 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3638 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3639 /* Enable fast mode */ 3640 s->flags |= __CMPXCHG_DOUBLE; 3641 #endif 3642 3643 /* 3644 * The larger the object size is, the more pages we want on the partial 3645 * list to avoid pounding the page allocator excessively. 3646 */ 3647 set_min_partial(s, ilog2(s->size) / 2); 3648 3649 set_cpu_partial(s); 3650 3651 #ifdef CONFIG_NUMA 3652 s->remote_node_defrag_ratio = 1000; 3653 #endif 3654 3655 /* Initialize the pre-computed randomized freelist if slab is up */ 3656 if (slab_state >= UP) { 3657 if (init_cache_random_seq(s)) 3658 goto error; 3659 } 3660 3661 if (!init_kmem_cache_nodes(s)) 3662 goto error; 3663 3664 if (alloc_kmem_cache_cpus(s)) 3665 return 0; 3666 3667 free_kmem_cache_nodes(s); 3668 error: 3669 return -EINVAL; 3670 } 3671 3672 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3673 const char *text) 3674 { 3675 #ifdef CONFIG_SLUB_DEBUG 3676 void *addr = page_address(page); 3677 void *p; 3678 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3679 if (!map) 3680 return; 3681 slab_err(s, page, text, s->name); 3682 slab_lock(page); 3683 3684 get_map(s, page, map); 3685 for_each_object(p, s, addr, page->objects) { 3686 3687 if (!test_bit(slab_index(p, s, addr), map)) { 3688 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3689 print_tracking(s, p); 3690 } 3691 } 3692 slab_unlock(page); 3693 bitmap_free(map); 3694 #endif 3695 } 3696 3697 /* 3698 * Attempt to free all partial slabs on a node. 3699 * This is called from __kmem_cache_shutdown(). We must take list_lock 3700 * because sysfs file might still access partial list after the shutdowning. 3701 */ 3702 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3703 { 3704 LIST_HEAD(discard); 3705 struct page *page, *h; 3706 3707 BUG_ON(irqs_disabled()); 3708 spin_lock_irq(&n->list_lock); 3709 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3710 if (!page->inuse) { 3711 remove_partial(n, page); 3712 list_add(&page->slab_list, &discard); 3713 } else { 3714 list_slab_objects(s, page, 3715 "Objects remaining in %s on __kmem_cache_shutdown()"); 3716 } 3717 } 3718 spin_unlock_irq(&n->list_lock); 3719 3720 list_for_each_entry_safe(page, h, &discard, slab_list) 3721 discard_slab(s, page); 3722 } 3723 3724 bool __kmem_cache_empty(struct kmem_cache *s) 3725 { 3726 int node; 3727 struct kmem_cache_node *n; 3728 3729 for_each_kmem_cache_node(s, node, n) 3730 if (n->nr_partial || slabs_node(s, node)) 3731 return false; 3732 return true; 3733 } 3734 3735 /* 3736 * Release all resources used by a slab cache. 3737 */ 3738 int __kmem_cache_shutdown(struct kmem_cache *s) 3739 { 3740 int node; 3741 struct kmem_cache_node *n; 3742 3743 flush_all(s); 3744 /* Attempt to free all objects */ 3745 for_each_kmem_cache_node(s, node, n) { 3746 free_partial(s, n); 3747 if (n->nr_partial || slabs_node(s, node)) 3748 return 1; 3749 } 3750 sysfs_slab_remove(s); 3751 return 0; 3752 } 3753 3754 /******************************************************************** 3755 * Kmalloc subsystem 3756 *******************************************************************/ 3757 3758 static int __init setup_slub_min_order(char *str) 3759 { 3760 get_option(&str, (int *)&slub_min_order); 3761 3762 return 1; 3763 } 3764 3765 __setup("slub_min_order=", setup_slub_min_order); 3766 3767 static int __init setup_slub_max_order(char *str) 3768 { 3769 get_option(&str, (int *)&slub_max_order); 3770 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3771 3772 return 1; 3773 } 3774 3775 __setup("slub_max_order=", setup_slub_max_order); 3776 3777 static int __init setup_slub_min_objects(char *str) 3778 { 3779 get_option(&str, (int *)&slub_min_objects); 3780 3781 return 1; 3782 } 3783 3784 __setup("slub_min_objects=", setup_slub_min_objects); 3785 3786 void *__kmalloc(size_t size, gfp_t flags) 3787 { 3788 struct kmem_cache *s; 3789 void *ret; 3790 3791 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3792 return kmalloc_large(size, flags); 3793 3794 s = kmalloc_slab(size, flags); 3795 3796 if (unlikely(ZERO_OR_NULL_PTR(s))) 3797 return s; 3798 3799 ret = slab_alloc(s, flags, _RET_IP_); 3800 3801 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3802 3803 ret = kasan_kmalloc(s, ret, size, flags); 3804 3805 return ret; 3806 } 3807 EXPORT_SYMBOL(__kmalloc); 3808 3809 #ifdef CONFIG_NUMA 3810 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3811 { 3812 struct page *page; 3813 void *ptr = NULL; 3814 unsigned int order = get_order(size); 3815 3816 flags |= __GFP_COMP; 3817 page = alloc_pages_node(node, flags, order); 3818 if (page) { 3819 ptr = page_address(page); 3820 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3821 1 << order); 3822 } 3823 3824 return kmalloc_large_node_hook(ptr, size, flags); 3825 } 3826 3827 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3828 { 3829 struct kmem_cache *s; 3830 void *ret; 3831 3832 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3833 ret = kmalloc_large_node(size, flags, node); 3834 3835 trace_kmalloc_node(_RET_IP_, ret, 3836 size, PAGE_SIZE << get_order(size), 3837 flags, node); 3838 3839 return ret; 3840 } 3841 3842 s = kmalloc_slab(size, flags); 3843 3844 if (unlikely(ZERO_OR_NULL_PTR(s))) 3845 return s; 3846 3847 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3848 3849 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3850 3851 ret = kasan_kmalloc(s, ret, size, flags); 3852 3853 return ret; 3854 } 3855 EXPORT_SYMBOL(__kmalloc_node); 3856 #endif /* CONFIG_NUMA */ 3857 3858 #ifdef CONFIG_HARDENED_USERCOPY 3859 /* 3860 * Rejects incorrectly sized objects and objects that are to be copied 3861 * to/from userspace but do not fall entirely within the containing slab 3862 * cache's usercopy region. 3863 * 3864 * Returns NULL if check passes, otherwise const char * to name of cache 3865 * to indicate an error. 3866 */ 3867 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3868 bool to_user) 3869 { 3870 struct kmem_cache *s; 3871 unsigned int offset; 3872 size_t object_size; 3873 3874 ptr = kasan_reset_tag(ptr); 3875 3876 /* Find object and usable object size. */ 3877 s = page->slab_cache; 3878 3879 /* Reject impossible pointers. */ 3880 if (ptr < page_address(page)) 3881 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3882 to_user, 0, n); 3883 3884 /* Find offset within object. */ 3885 offset = (ptr - page_address(page)) % s->size; 3886 3887 /* Adjust for redzone and reject if within the redzone. */ 3888 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3889 if (offset < s->red_left_pad) 3890 usercopy_abort("SLUB object in left red zone", 3891 s->name, to_user, offset, n); 3892 offset -= s->red_left_pad; 3893 } 3894 3895 /* Allow address range falling entirely within usercopy region. */ 3896 if (offset >= s->useroffset && 3897 offset - s->useroffset <= s->usersize && 3898 n <= s->useroffset - offset + s->usersize) 3899 return; 3900 3901 /* 3902 * If the copy is still within the allocated object, produce 3903 * a warning instead of rejecting the copy. This is intended 3904 * to be a temporary method to find any missing usercopy 3905 * whitelists. 3906 */ 3907 object_size = slab_ksize(s); 3908 if (usercopy_fallback && 3909 offset <= object_size && n <= object_size - offset) { 3910 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3911 return; 3912 } 3913 3914 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3915 } 3916 #endif /* CONFIG_HARDENED_USERCOPY */ 3917 3918 size_t __ksize(const void *object) 3919 { 3920 struct page *page; 3921 3922 if (unlikely(object == ZERO_SIZE_PTR)) 3923 return 0; 3924 3925 page = virt_to_head_page(object); 3926 3927 if (unlikely(!PageSlab(page))) { 3928 WARN_ON(!PageCompound(page)); 3929 return page_size(page); 3930 } 3931 3932 return slab_ksize(page->slab_cache); 3933 } 3934 EXPORT_SYMBOL(__ksize); 3935 3936 void kfree(const void *x) 3937 { 3938 struct page *page; 3939 void *object = (void *)x; 3940 3941 trace_kfree(_RET_IP_, x); 3942 3943 if (unlikely(ZERO_OR_NULL_PTR(x))) 3944 return; 3945 3946 page = virt_to_head_page(x); 3947 if (unlikely(!PageSlab(page))) { 3948 unsigned int order = compound_order(page); 3949 3950 BUG_ON(!PageCompound(page)); 3951 kfree_hook(object); 3952 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3953 -(1 << order)); 3954 __free_pages(page, order); 3955 return; 3956 } 3957 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3958 } 3959 EXPORT_SYMBOL(kfree); 3960 3961 #define SHRINK_PROMOTE_MAX 32 3962 3963 /* 3964 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3965 * up most to the head of the partial lists. New allocations will then 3966 * fill those up and thus they can be removed from the partial lists. 3967 * 3968 * The slabs with the least items are placed last. This results in them 3969 * being allocated from last increasing the chance that the last objects 3970 * are freed in them. 3971 */ 3972 int __kmem_cache_shrink(struct kmem_cache *s) 3973 { 3974 int node; 3975 int i; 3976 struct kmem_cache_node *n; 3977 struct page *page; 3978 struct page *t; 3979 struct list_head discard; 3980 struct list_head promote[SHRINK_PROMOTE_MAX]; 3981 unsigned long flags; 3982 int ret = 0; 3983 3984 flush_all(s); 3985 for_each_kmem_cache_node(s, node, n) { 3986 INIT_LIST_HEAD(&discard); 3987 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3988 INIT_LIST_HEAD(promote + i); 3989 3990 spin_lock_irqsave(&n->list_lock, flags); 3991 3992 /* 3993 * Build lists of slabs to discard or promote. 3994 * 3995 * Note that concurrent frees may occur while we hold the 3996 * list_lock. page->inuse here is the upper limit. 3997 */ 3998 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 3999 int free = page->objects - page->inuse; 4000 4001 /* Do not reread page->inuse */ 4002 barrier(); 4003 4004 /* We do not keep full slabs on the list */ 4005 BUG_ON(free <= 0); 4006 4007 if (free == page->objects) { 4008 list_move(&page->slab_list, &discard); 4009 n->nr_partial--; 4010 } else if (free <= SHRINK_PROMOTE_MAX) 4011 list_move(&page->slab_list, promote + free - 1); 4012 } 4013 4014 /* 4015 * Promote the slabs filled up most to the head of the 4016 * partial list. 4017 */ 4018 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4019 list_splice(promote + i, &n->partial); 4020 4021 spin_unlock_irqrestore(&n->list_lock, flags); 4022 4023 /* Release empty slabs */ 4024 list_for_each_entry_safe(page, t, &discard, slab_list) 4025 discard_slab(s, page); 4026 4027 if (slabs_node(s, node)) 4028 ret = 1; 4029 } 4030 4031 return ret; 4032 } 4033 4034 #ifdef CONFIG_MEMCG 4035 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4036 { 4037 /* 4038 * Called with all the locks held after a sched RCU grace period. 4039 * Even if @s becomes empty after shrinking, we can't know that @s 4040 * doesn't have allocations already in-flight and thus can't 4041 * destroy @s until the associated memcg is released. 4042 * 4043 * However, let's remove the sysfs files for empty caches here. 4044 * Each cache has a lot of interface files which aren't 4045 * particularly useful for empty draining caches; otherwise, we can 4046 * easily end up with millions of unnecessary sysfs files on 4047 * systems which have a lot of memory and transient cgroups. 4048 */ 4049 if (!__kmem_cache_shrink(s)) 4050 sysfs_slab_remove(s); 4051 } 4052 4053 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4054 { 4055 /* 4056 * Disable empty slabs caching. Used to avoid pinning offline 4057 * memory cgroups by kmem pages that can be freed. 4058 */ 4059 slub_set_cpu_partial(s, 0); 4060 s->min_partial = 0; 4061 } 4062 #endif /* CONFIG_MEMCG */ 4063 4064 static int slab_mem_going_offline_callback(void *arg) 4065 { 4066 struct kmem_cache *s; 4067 4068 mutex_lock(&slab_mutex); 4069 list_for_each_entry(s, &slab_caches, list) 4070 __kmem_cache_shrink(s); 4071 mutex_unlock(&slab_mutex); 4072 4073 return 0; 4074 } 4075 4076 static void slab_mem_offline_callback(void *arg) 4077 { 4078 struct kmem_cache_node *n; 4079 struct kmem_cache *s; 4080 struct memory_notify *marg = arg; 4081 int offline_node; 4082 4083 offline_node = marg->status_change_nid_normal; 4084 4085 /* 4086 * If the node still has available memory. we need kmem_cache_node 4087 * for it yet. 4088 */ 4089 if (offline_node < 0) 4090 return; 4091 4092 mutex_lock(&slab_mutex); 4093 list_for_each_entry(s, &slab_caches, list) { 4094 n = get_node(s, offline_node); 4095 if (n) { 4096 /* 4097 * if n->nr_slabs > 0, slabs still exist on the node 4098 * that is going down. We were unable to free them, 4099 * and offline_pages() function shouldn't call this 4100 * callback. So, we must fail. 4101 */ 4102 BUG_ON(slabs_node(s, offline_node)); 4103 4104 s->node[offline_node] = NULL; 4105 kmem_cache_free(kmem_cache_node, n); 4106 } 4107 } 4108 mutex_unlock(&slab_mutex); 4109 } 4110 4111 static int slab_mem_going_online_callback(void *arg) 4112 { 4113 struct kmem_cache_node *n; 4114 struct kmem_cache *s; 4115 struct memory_notify *marg = arg; 4116 int nid = marg->status_change_nid_normal; 4117 int ret = 0; 4118 4119 /* 4120 * If the node's memory is already available, then kmem_cache_node is 4121 * already created. Nothing to do. 4122 */ 4123 if (nid < 0) 4124 return 0; 4125 4126 /* 4127 * We are bringing a node online. No memory is available yet. We must 4128 * allocate a kmem_cache_node structure in order to bring the node 4129 * online. 4130 */ 4131 mutex_lock(&slab_mutex); 4132 list_for_each_entry(s, &slab_caches, list) { 4133 /* 4134 * XXX: kmem_cache_alloc_node will fallback to other nodes 4135 * since memory is not yet available from the node that 4136 * is brought up. 4137 */ 4138 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4139 if (!n) { 4140 ret = -ENOMEM; 4141 goto out; 4142 } 4143 init_kmem_cache_node(n); 4144 s->node[nid] = n; 4145 } 4146 out: 4147 mutex_unlock(&slab_mutex); 4148 return ret; 4149 } 4150 4151 static int slab_memory_callback(struct notifier_block *self, 4152 unsigned long action, void *arg) 4153 { 4154 int ret = 0; 4155 4156 switch (action) { 4157 case MEM_GOING_ONLINE: 4158 ret = slab_mem_going_online_callback(arg); 4159 break; 4160 case MEM_GOING_OFFLINE: 4161 ret = slab_mem_going_offline_callback(arg); 4162 break; 4163 case MEM_OFFLINE: 4164 case MEM_CANCEL_ONLINE: 4165 slab_mem_offline_callback(arg); 4166 break; 4167 case MEM_ONLINE: 4168 case MEM_CANCEL_OFFLINE: 4169 break; 4170 } 4171 if (ret) 4172 ret = notifier_from_errno(ret); 4173 else 4174 ret = NOTIFY_OK; 4175 return ret; 4176 } 4177 4178 static struct notifier_block slab_memory_callback_nb = { 4179 .notifier_call = slab_memory_callback, 4180 .priority = SLAB_CALLBACK_PRI, 4181 }; 4182 4183 /******************************************************************** 4184 * Basic setup of slabs 4185 *******************************************************************/ 4186 4187 /* 4188 * Used for early kmem_cache structures that were allocated using 4189 * the page allocator. Allocate them properly then fix up the pointers 4190 * that may be pointing to the wrong kmem_cache structure. 4191 */ 4192 4193 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4194 { 4195 int node; 4196 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4197 struct kmem_cache_node *n; 4198 4199 memcpy(s, static_cache, kmem_cache->object_size); 4200 4201 /* 4202 * This runs very early, and only the boot processor is supposed to be 4203 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4204 * IPIs around. 4205 */ 4206 __flush_cpu_slab(s, smp_processor_id()); 4207 for_each_kmem_cache_node(s, node, n) { 4208 struct page *p; 4209 4210 list_for_each_entry(p, &n->partial, slab_list) 4211 p->slab_cache = s; 4212 4213 #ifdef CONFIG_SLUB_DEBUG 4214 list_for_each_entry(p, &n->full, slab_list) 4215 p->slab_cache = s; 4216 #endif 4217 } 4218 slab_init_memcg_params(s); 4219 list_add(&s->list, &slab_caches); 4220 memcg_link_cache(s, NULL); 4221 return s; 4222 } 4223 4224 void __init kmem_cache_init(void) 4225 { 4226 static __initdata struct kmem_cache boot_kmem_cache, 4227 boot_kmem_cache_node; 4228 4229 if (debug_guardpage_minorder()) 4230 slub_max_order = 0; 4231 4232 kmem_cache_node = &boot_kmem_cache_node; 4233 kmem_cache = &boot_kmem_cache; 4234 4235 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4236 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4237 4238 register_hotmemory_notifier(&slab_memory_callback_nb); 4239 4240 /* Able to allocate the per node structures */ 4241 slab_state = PARTIAL; 4242 4243 create_boot_cache(kmem_cache, "kmem_cache", 4244 offsetof(struct kmem_cache, node) + 4245 nr_node_ids * sizeof(struct kmem_cache_node *), 4246 SLAB_HWCACHE_ALIGN, 0, 0); 4247 4248 kmem_cache = bootstrap(&boot_kmem_cache); 4249 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4250 4251 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4252 setup_kmalloc_cache_index_table(); 4253 create_kmalloc_caches(0); 4254 4255 /* Setup random freelists for each cache */ 4256 init_freelist_randomization(); 4257 4258 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4259 slub_cpu_dead); 4260 4261 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4262 cache_line_size(), 4263 slub_min_order, slub_max_order, slub_min_objects, 4264 nr_cpu_ids, nr_node_ids); 4265 } 4266 4267 void __init kmem_cache_init_late(void) 4268 { 4269 } 4270 4271 struct kmem_cache * 4272 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4273 slab_flags_t flags, void (*ctor)(void *)) 4274 { 4275 struct kmem_cache *s, *c; 4276 4277 s = find_mergeable(size, align, flags, name, ctor); 4278 if (s) { 4279 s->refcount++; 4280 4281 /* 4282 * Adjust the object sizes so that we clear 4283 * the complete object on kzalloc. 4284 */ 4285 s->object_size = max(s->object_size, size); 4286 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4287 4288 for_each_memcg_cache(c, s) { 4289 c->object_size = s->object_size; 4290 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4291 } 4292 4293 if (sysfs_slab_alias(s, name)) { 4294 s->refcount--; 4295 s = NULL; 4296 } 4297 } 4298 4299 return s; 4300 } 4301 4302 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4303 { 4304 int err; 4305 4306 err = kmem_cache_open(s, flags); 4307 if (err) 4308 return err; 4309 4310 /* Mutex is not taken during early boot */ 4311 if (slab_state <= UP) 4312 return 0; 4313 4314 memcg_propagate_slab_attrs(s); 4315 err = sysfs_slab_add(s); 4316 if (err) 4317 __kmem_cache_release(s); 4318 4319 return err; 4320 } 4321 4322 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4323 { 4324 struct kmem_cache *s; 4325 void *ret; 4326 4327 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4328 return kmalloc_large(size, gfpflags); 4329 4330 s = kmalloc_slab(size, gfpflags); 4331 4332 if (unlikely(ZERO_OR_NULL_PTR(s))) 4333 return s; 4334 4335 ret = slab_alloc(s, gfpflags, caller); 4336 4337 /* Honor the call site pointer we received. */ 4338 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4339 4340 return ret; 4341 } 4342 4343 #ifdef CONFIG_NUMA 4344 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4345 int node, unsigned long caller) 4346 { 4347 struct kmem_cache *s; 4348 void *ret; 4349 4350 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4351 ret = kmalloc_large_node(size, gfpflags, node); 4352 4353 trace_kmalloc_node(caller, ret, 4354 size, PAGE_SIZE << get_order(size), 4355 gfpflags, node); 4356 4357 return ret; 4358 } 4359 4360 s = kmalloc_slab(size, gfpflags); 4361 4362 if (unlikely(ZERO_OR_NULL_PTR(s))) 4363 return s; 4364 4365 ret = slab_alloc_node(s, gfpflags, node, caller); 4366 4367 /* Honor the call site pointer we received. */ 4368 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4369 4370 return ret; 4371 } 4372 #endif 4373 4374 #ifdef CONFIG_SYSFS 4375 static int count_inuse(struct page *page) 4376 { 4377 return page->inuse; 4378 } 4379 4380 static int count_total(struct page *page) 4381 { 4382 return page->objects; 4383 } 4384 #endif 4385 4386 #ifdef CONFIG_SLUB_DEBUG 4387 static void validate_slab(struct kmem_cache *s, struct page *page, 4388 unsigned long *map) 4389 { 4390 void *p; 4391 void *addr = page_address(page); 4392 4393 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4394 return; 4395 4396 /* Now we know that a valid freelist exists */ 4397 bitmap_zero(map, page->objects); 4398 4399 get_map(s, page, map); 4400 for_each_object(p, s, addr, page->objects) { 4401 u8 val = test_bit(slab_index(p, s, addr), map) ? 4402 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4403 4404 if (!check_object(s, page, p, val)) 4405 break; 4406 } 4407 } 4408 4409 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4410 unsigned long *map) 4411 { 4412 slab_lock(page); 4413 validate_slab(s, page, map); 4414 slab_unlock(page); 4415 } 4416 4417 static int validate_slab_node(struct kmem_cache *s, 4418 struct kmem_cache_node *n, unsigned long *map) 4419 { 4420 unsigned long count = 0; 4421 struct page *page; 4422 unsigned long flags; 4423 4424 spin_lock_irqsave(&n->list_lock, flags); 4425 4426 list_for_each_entry(page, &n->partial, slab_list) { 4427 validate_slab_slab(s, page, map); 4428 count++; 4429 } 4430 if (count != n->nr_partial) 4431 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4432 s->name, count, n->nr_partial); 4433 4434 if (!(s->flags & SLAB_STORE_USER)) 4435 goto out; 4436 4437 list_for_each_entry(page, &n->full, slab_list) { 4438 validate_slab_slab(s, page, map); 4439 count++; 4440 } 4441 if (count != atomic_long_read(&n->nr_slabs)) 4442 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4443 s->name, count, atomic_long_read(&n->nr_slabs)); 4444 4445 out: 4446 spin_unlock_irqrestore(&n->list_lock, flags); 4447 return count; 4448 } 4449 4450 static long validate_slab_cache(struct kmem_cache *s) 4451 { 4452 int node; 4453 unsigned long count = 0; 4454 struct kmem_cache_node *n; 4455 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4456 4457 if (!map) 4458 return -ENOMEM; 4459 4460 flush_all(s); 4461 for_each_kmem_cache_node(s, node, n) 4462 count += validate_slab_node(s, n, map); 4463 bitmap_free(map); 4464 return count; 4465 } 4466 /* 4467 * Generate lists of code addresses where slabcache objects are allocated 4468 * and freed. 4469 */ 4470 4471 struct location { 4472 unsigned long count; 4473 unsigned long addr; 4474 long long sum_time; 4475 long min_time; 4476 long max_time; 4477 long min_pid; 4478 long max_pid; 4479 DECLARE_BITMAP(cpus, NR_CPUS); 4480 nodemask_t nodes; 4481 }; 4482 4483 struct loc_track { 4484 unsigned long max; 4485 unsigned long count; 4486 struct location *loc; 4487 }; 4488 4489 static void free_loc_track(struct loc_track *t) 4490 { 4491 if (t->max) 4492 free_pages((unsigned long)t->loc, 4493 get_order(sizeof(struct location) * t->max)); 4494 } 4495 4496 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4497 { 4498 struct location *l; 4499 int order; 4500 4501 order = get_order(sizeof(struct location) * max); 4502 4503 l = (void *)__get_free_pages(flags, order); 4504 if (!l) 4505 return 0; 4506 4507 if (t->count) { 4508 memcpy(l, t->loc, sizeof(struct location) * t->count); 4509 free_loc_track(t); 4510 } 4511 t->max = max; 4512 t->loc = l; 4513 return 1; 4514 } 4515 4516 static int add_location(struct loc_track *t, struct kmem_cache *s, 4517 const struct track *track) 4518 { 4519 long start, end, pos; 4520 struct location *l; 4521 unsigned long caddr; 4522 unsigned long age = jiffies - track->when; 4523 4524 start = -1; 4525 end = t->count; 4526 4527 for ( ; ; ) { 4528 pos = start + (end - start + 1) / 2; 4529 4530 /* 4531 * There is nothing at "end". If we end up there 4532 * we need to add something to before end. 4533 */ 4534 if (pos == end) 4535 break; 4536 4537 caddr = t->loc[pos].addr; 4538 if (track->addr == caddr) { 4539 4540 l = &t->loc[pos]; 4541 l->count++; 4542 if (track->when) { 4543 l->sum_time += age; 4544 if (age < l->min_time) 4545 l->min_time = age; 4546 if (age > l->max_time) 4547 l->max_time = age; 4548 4549 if (track->pid < l->min_pid) 4550 l->min_pid = track->pid; 4551 if (track->pid > l->max_pid) 4552 l->max_pid = track->pid; 4553 4554 cpumask_set_cpu(track->cpu, 4555 to_cpumask(l->cpus)); 4556 } 4557 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4558 return 1; 4559 } 4560 4561 if (track->addr < caddr) 4562 end = pos; 4563 else 4564 start = pos; 4565 } 4566 4567 /* 4568 * Not found. Insert new tracking element. 4569 */ 4570 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4571 return 0; 4572 4573 l = t->loc + pos; 4574 if (pos < t->count) 4575 memmove(l + 1, l, 4576 (t->count - pos) * sizeof(struct location)); 4577 t->count++; 4578 l->count = 1; 4579 l->addr = track->addr; 4580 l->sum_time = age; 4581 l->min_time = age; 4582 l->max_time = age; 4583 l->min_pid = track->pid; 4584 l->max_pid = track->pid; 4585 cpumask_clear(to_cpumask(l->cpus)); 4586 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4587 nodes_clear(l->nodes); 4588 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4589 return 1; 4590 } 4591 4592 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4593 struct page *page, enum track_item alloc, 4594 unsigned long *map) 4595 { 4596 void *addr = page_address(page); 4597 void *p; 4598 4599 bitmap_zero(map, page->objects); 4600 get_map(s, page, map); 4601 4602 for_each_object(p, s, addr, page->objects) 4603 if (!test_bit(slab_index(p, s, addr), map)) 4604 add_location(t, s, get_track(s, p, alloc)); 4605 } 4606 4607 static int list_locations(struct kmem_cache *s, char *buf, 4608 enum track_item alloc) 4609 { 4610 int len = 0; 4611 unsigned long i; 4612 struct loc_track t = { 0, 0, NULL }; 4613 int node; 4614 struct kmem_cache_node *n; 4615 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4616 4617 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4618 GFP_KERNEL)) { 4619 bitmap_free(map); 4620 return sprintf(buf, "Out of memory\n"); 4621 } 4622 /* Push back cpu slabs */ 4623 flush_all(s); 4624 4625 for_each_kmem_cache_node(s, node, n) { 4626 unsigned long flags; 4627 struct page *page; 4628 4629 if (!atomic_long_read(&n->nr_slabs)) 4630 continue; 4631 4632 spin_lock_irqsave(&n->list_lock, flags); 4633 list_for_each_entry(page, &n->partial, slab_list) 4634 process_slab(&t, s, page, alloc, map); 4635 list_for_each_entry(page, &n->full, slab_list) 4636 process_slab(&t, s, page, alloc, map); 4637 spin_unlock_irqrestore(&n->list_lock, flags); 4638 } 4639 4640 for (i = 0; i < t.count; i++) { 4641 struct location *l = &t.loc[i]; 4642 4643 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4644 break; 4645 len += sprintf(buf + len, "%7ld ", l->count); 4646 4647 if (l->addr) 4648 len += sprintf(buf + len, "%pS", (void *)l->addr); 4649 else 4650 len += sprintf(buf + len, "<not-available>"); 4651 4652 if (l->sum_time != l->min_time) { 4653 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4654 l->min_time, 4655 (long)div_u64(l->sum_time, l->count), 4656 l->max_time); 4657 } else 4658 len += sprintf(buf + len, " age=%ld", 4659 l->min_time); 4660 4661 if (l->min_pid != l->max_pid) 4662 len += sprintf(buf + len, " pid=%ld-%ld", 4663 l->min_pid, l->max_pid); 4664 else 4665 len += sprintf(buf + len, " pid=%ld", 4666 l->min_pid); 4667 4668 if (num_online_cpus() > 1 && 4669 !cpumask_empty(to_cpumask(l->cpus)) && 4670 len < PAGE_SIZE - 60) 4671 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4672 " cpus=%*pbl", 4673 cpumask_pr_args(to_cpumask(l->cpus))); 4674 4675 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4676 len < PAGE_SIZE - 60) 4677 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4678 " nodes=%*pbl", 4679 nodemask_pr_args(&l->nodes)); 4680 4681 len += sprintf(buf + len, "\n"); 4682 } 4683 4684 free_loc_track(&t); 4685 bitmap_free(map); 4686 if (!t.count) 4687 len += sprintf(buf, "No data\n"); 4688 return len; 4689 } 4690 #endif /* CONFIG_SLUB_DEBUG */ 4691 4692 #ifdef SLUB_RESILIENCY_TEST 4693 static void __init resiliency_test(void) 4694 { 4695 u8 *p; 4696 int type = KMALLOC_NORMAL; 4697 4698 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4699 4700 pr_err("SLUB resiliency testing\n"); 4701 pr_err("-----------------------\n"); 4702 pr_err("A. Corruption after allocation\n"); 4703 4704 p = kzalloc(16, GFP_KERNEL); 4705 p[16] = 0x12; 4706 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4707 p + 16); 4708 4709 validate_slab_cache(kmalloc_caches[type][4]); 4710 4711 /* Hmmm... The next two are dangerous */ 4712 p = kzalloc(32, GFP_KERNEL); 4713 p[32 + sizeof(void *)] = 0x34; 4714 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4715 p); 4716 pr_err("If allocated object is overwritten then not detectable\n\n"); 4717 4718 validate_slab_cache(kmalloc_caches[type][5]); 4719 p = kzalloc(64, GFP_KERNEL); 4720 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4721 *p = 0x56; 4722 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4723 p); 4724 pr_err("If allocated object is overwritten then not detectable\n\n"); 4725 validate_slab_cache(kmalloc_caches[type][6]); 4726 4727 pr_err("\nB. Corruption after free\n"); 4728 p = kzalloc(128, GFP_KERNEL); 4729 kfree(p); 4730 *p = 0x78; 4731 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4732 validate_slab_cache(kmalloc_caches[type][7]); 4733 4734 p = kzalloc(256, GFP_KERNEL); 4735 kfree(p); 4736 p[50] = 0x9a; 4737 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4738 validate_slab_cache(kmalloc_caches[type][8]); 4739 4740 p = kzalloc(512, GFP_KERNEL); 4741 kfree(p); 4742 p[512] = 0xab; 4743 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4744 validate_slab_cache(kmalloc_caches[type][9]); 4745 } 4746 #else 4747 #ifdef CONFIG_SYSFS 4748 static void resiliency_test(void) {}; 4749 #endif 4750 #endif /* SLUB_RESILIENCY_TEST */ 4751 4752 #ifdef CONFIG_SYSFS 4753 enum slab_stat_type { 4754 SL_ALL, /* All slabs */ 4755 SL_PARTIAL, /* Only partially allocated slabs */ 4756 SL_CPU, /* Only slabs used for cpu caches */ 4757 SL_OBJECTS, /* Determine allocated objects not slabs */ 4758 SL_TOTAL /* Determine object capacity not slabs */ 4759 }; 4760 4761 #define SO_ALL (1 << SL_ALL) 4762 #define SO_PARTIAL (1 << SL_PARTIAL) 4763 #define SO_CPU (1 << SL_CPU) 4764 #define SO_OBJECTS (1 << SL_OBJECTS) 4765 #define SO_TOTAL (1 << SL_TOTAL) 4766 4767 #ifdef CONFIG_MEMCG 4768 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4769 4770 static int __init setup_slub_memcg_sysfs(char *str) 4771 { 4772 int v; 4773 4774 if (get_option(&str, &v) > 0) 4775 memcg_sysfs_enabled = v; 4776 4777 return 1; 4778 } 4779 4780 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4781 #endif 4782 4783 static ssize_t show_slab_objects(struct kmem_cache *s, 4784 char *buf, unsigned long flags) 4785 { 4786 unsigned long total = 0; 4787 int node; 4788 int x; 4789 unsigned long *nodes; 4790 4791 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4792 if (!nodes) 4793 return -ENOMEM; 4794 4795 if (flags & SO_CPU) { 4796 int cpu; 4797 4798 for_each_possible_cpu(cpu) { 4799 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4800 cpu); 4801 int node; 4802 struct page *page; 4803 4804 page = READ_ONCE(c->page); 4805 if (!page) 4806 continue; 4807 4808 node = page_to_nid(page); 4809 if (flags & SO_TOTAL) 4810 x = page->objects; 4811 else if (flags & SO_OBJECTS) 4812 x = page->inuse; 4813 else 4814 x = 1; 4815 4816 total += x; 4817 nodes[node] += x; 4818 4819 page = slub_percpu_partial_read_once(c); 4820 if (page) { 4821 node = page_to_nid(page); 4822 if (flags & SO_TOTAL) 4823 WARN_ON_ONCE(1); 4824 else if (flags & SO_OBJECTS) 4825 WARN_ON_ONCE(1); 4826 else 4827 x = page->pages; 4828 total += x; 4829 nodes[node] += x; 4830 } 4831 } 4832 } 4833 4834 /* 4835 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4836 * already held which will conflict with an existing lock order: 4837 * 4838 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4839 * 4840 * We don't really need mem_hotplug_lock (to hold off 4841 * slab_mem_going_offline_callback) here because slab's memory hot 4842 * unplug code doesn't destroy the kmem_cache->node[] data. 4843 */ 4844 4845 #ifdef CONFIG_SLUB_DEBUG 4846 if (flags & SO_ALL) { 4847 struct kmem_cache_node *n; 4848 4849 for_each_kmem_cache_node(s, node, n) { 4850 4851 if (flags & SO_TOTAL) 4852 x = atomic_long_read(&n->total_objects); 4853 else if (flags & SO_OBJECTS) 4854 x = atomic_long_read(&n->total_objects) - 4855 count_partial(n, count_free); 4856 else 4857 x = atomic_long_read(&n->nr_slabs); 4858 total += x; 4859 nodes[node] += x; 4860 } 4861 4862 } else 4863 #endif 4864 if (flags & SO_PARTIAL) { 4865 struct kmem_cache_node *n; 4866 4867 for_each_kmem_cache_node(s, node, n) { 4868 if (flags & SO_TOTAL) 4869 x = count_partial(n, count_total); 4870 else if (flags & SO_OBJECTS) 4871 x = count_partial(n, count_inuse); 4872 else 4873 x = n->nr_partial; 4874 total += x; 4875 nodes[node] += x; 4876 } 4877 } 4878 x = sprintf(buf, "%lu", total); 4879 #ifdef CONFIG_NUMA 4880 for (node = 0; node < nr_node_ids; node++) 4881 if (nodes[node]) 4882 x += sprintf(buf + x, " N%d=%lu", 4883 node, nodes[node]); 4884 #endif 4885 kfree(nodes); 4886 return x + sprintf(buf + x, "\n"); 4887 } 4888 4889 #ifdef CONFIG_SLUB_DEBUG 4890 static int any_slab_objects(struct kmem_cache *s) 4891 { 4892 int node; 4893 struct kmem_cache_node *n; 4894 4895 for_each_kmem_cache_node(s, node, n) 4896 if (atomic_long_read(&n->total_objects)) 4897 return 1; 4898 4899 return 0; 4900 } 4901 #endif 4902 4903 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4904 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4905 4906 struct slab_attribute { 4907 struct attribute attr; 4908 ssize_t (*show)(struct kmem_cache *s, char *buf); 4909 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4910 }; 4911 4912 #define SLAB_ATTR_RO(_name) \ 4913 static struct slab_attribute _name##_attr = \ 4914 __ATTR(_name, 0400, _name##_show, NULL) 4915 4916 #define SLAB_ATTR(_name) \ 4917 static struct slab_attribute _name##_attr = \ 4918 __ATTR(_name, 0600, _name##_show, _name##_store) 4919 4920 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4921 { 4922 return sprintf(buf, "%u\n", s->size); 4923 } 4924 SLAB_ATTR_RO(slab_size); 4925 4926 static ssize_t align_show(struct kmem_cache *s, char *buf) 4927 { 4928 return sprintf(buf, "%u\n", s->align); 4929 } 4930 SLAB_ATTR_RO(align); 4931 4932 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4933 { 4934 return sprintf(buf, "%u\n", s->object_size); 4935 } 4936 SLAB_ATTR_RO(object_size); 4937 4938 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4939 { 4940 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4941 } 4942 SLAB_ATTR_RO(objs_per_slab); 4943 4944 static ssize_t order_store(struct kmem_cache *s, 4945 const char *buf, size_t length) 4946 { 4947 unsigned int order; 4948 int err; 4949 4950 err = kstrtouint(buf, 10, &order); 4951 if (err) 4952 return err; 4953 4954 if (order > slub_max_order || order < slub_min_order) 4955 return -EINVAL; 4956 4957 calculate_sizes(s, order); 4958 return length; 4959 } 4960 4961 static ssize_t order_show(struct kmem_cache *s, char *buf) 4962 { 4963 return sprintf(buf, "%u\n", oo_order(s->oo)); 4964 } 4965 SLAB_ATTR(order); 4966 4967 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4968 { 4969 return sprintf(buf, "%lu\n", s->min_partial); 4970 } 4971 4972 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4973 size_t length) 4974 { 4975 unsigned long min; 4976 int err; 4977 4978 err = kstrtoul(buf, 10, &min); 4979 if (err) 4980 return err; 4981 4982 set_min_partial(s, min); 4983 return length; 4984 } 4985 SLAB_ATTR(min_partial); 4986 4987 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4988 { 4989 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4990 } 4991 4992 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4993 size_t length) 4994 { 4995 unsigned int objects; 4996 int err; 4997 4998 err = kstrtouint(buf, 10, &objects); 4999 if (err) 5000 return err; 5001 if (objects && !kmem_cache_has_cpu_partial(s)) 5002 return -EINVAL; 5003 5004 slub_set_cpu_partial(s, objects); 5005 flush_all(s); 5006 return length; 5007 } 5008 SLAB_ATTR(cpu_partial); 5009 5010 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5011 { 5012 if (!s->ctor) 5013 return 0; 5014 return sprintf(buf, "%pS\n", s->ctor); 5015 } 5016 SLAB_ATTR_RO(ctor); 5017 5018 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5019 { 5020 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5021 } 5022 SLAB_ATTR_RO(aliases); 5023 5024 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5025 { 5026 return show_slab_objects(s, buf, SO_PARTIAL); 5027 } 5028 SLAB_ATTR_RO(partial); 5029 5030 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5031 { 5032 return show_slab_objects(s, buf, SO_CPU); 5033 } 5034 SLAB_ATTR_RO(cpu_slabs); 5035 5036 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5037 { 5038 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5039 } 5040 SLAB_ATTR_RO(objects); 5041 5042 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5043 { 5044 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5045 } 5046 SLAB_ATTR_RO(objects_partial); 5047 5048 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5049 { 5050 int objects = 0; 5051 int pages = 0; 5052 int cpu; 5053 int len; 5054 5055 for_each_online_cpu(cpu) { 5056 struct page *page; 5057 5058 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5059 5060 if (page) { 5061 pages += page->pages; 5062 objects += page->pobjects; 5063 } 5064 } 5065 5066 len = sprintf(buf, "%d(%d)", objects, pages); 5067 5068 #ifdef CONFIG_SMP 5069 for_each_online_cpu(cpu) { 5070 struct page *page; 5071 5072 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5073 5074 if (page && len < PAGE_SIZE - 20) 5075 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5076 page->pobjects, page->pages); 5077 } 5078 #endif 5079 return len + sprintf(buf + len, "\n"); 5080 } 5081 SLAB_ATTR_RO(slabs_cpu_partial); 5082 5083 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5084 { 5085 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5086 } 5087 5088 static ssize_t reclaim_account_store(struct kmem_cache *s, 5089 const char *buf, size_t length) 5090 { 5091 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5092 if (buf[0] == '1') 5093 s->flags |= SLAB_RECLAIM_ACCOUNT; 5094 return length; 5095 } 5096 SLAB_ATTR(reclaim_account); 5097 5098 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5099 { 5100 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5101 } 5102 SLAB_ATTR_RO(hwcache_align); 5103 5104 #ifdef CONFIG_ZONE_DMA 5105 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5106 { 5107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5108 } 5109 SLAB_ATTR_RO(cache_dma); 5110 #endif 5111 5112 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5113 { 5114 return sprintf(buf, "%u\n", s->usersize); 5115 } 5116 SLAB_ATTR_RO(usersize); 5117 5118 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5119 { 5120 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5121 } 5122 SLAB_ATTR_RO(destroy_by_rcu); 5123 5124 #ifdef CONFIG_SLUB_DEBUG 5125 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5126 { 5127 return show_slab_objects(s, buf, SO_ALL); 5128 } 5129 SLAB_ATTR_RO(slabs); 5130 5131 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5132 { 5133 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5134 } 5135 SLAB_ATTR_RO(total_objects); 5136 5137 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5138 { 5139 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5140 } 5141 5142 static ssize_t sanity_checks_store(struct kmem_cache *s, 5143 const char *buf, size_t length) 5144 { 5145 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5146 if (buf[0] == '1') { 5147 s->flags &= ~__CMPXCHG_DOUBLE; 5148 s->flags |= SLAB_CONSISTENCY_CHECKS; 5149 } 5150 return length; 5151 } 5152 SLAB_ATTR(sanity_checks); 5153 5154 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5155 { 5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5157 } 5158 5159 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5160 size_t length) 5161 { 5162 /* 5163 * Tracing a merged cache is going to give confusing results 5164 * as well as cause other issues like converting a mergeable 5165 * cache into an umergeable one. 5166 */ 5167 if (s->refcount > 1) 5168 return -EINVAL; 5169 5170 s->flags &= ~SLAB_TRACE; 5171 if (buf[0] == '1') { 5172 s->flags &= ~__CMPXCHG_DOUBLE; 5173 s->flags |= SLAB_TRACE; 5174 } 5175 return length; 5176 } 5177 SLAB_ATTR(trace); 5178 5179 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5180 { 5181 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5182 } 5183 5184 static ssize_t red_zone_store(struct kmem_cache *s, 5185 const char *buf, size_t length) 5186 { 5187 if (any_slab_objects(s)) 5188 return -EBUSY; 5189 5190 s->flags &= ~SLAB_RED_ZONE; 5191 if (buf[0] == '1') { 5192 s->flags |= SLAB_RED_ZONE; 5193 } 5194 calculate_sizes(s, -1); 5195 return length; 5196 } 5197 SLAB_ATTR(red_zone); 5198 5199 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5200 { 5201 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5202 } 5203 5204 static ssize_t poison_store(struct kmem_cache *s, 5205 const char *buf, size_t length) 5206 { 5207 if (any_slab_objects(s)) 5208 return -EBUSY; 5209 5210 s->flags &= ~SLAB_POISON; 5211 if (buf[0] == '1') { 5212 s->flags |= SLAB_POISON; 5213 } 5214 calculate_sizes(s, -1); 5215 return length; 5216 } 5217 SLAB_ATTR(poison); 5218 5219 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5220 { 5221 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5222 } 5223 5224 static ssize_t store_user_store(struct kmem_cache *s, 5225 const char *buf, size_t length) 5226 { 5227 if (any_slab_objects(s)) 5228 return -EBUSY; 5229 5230 s->flags &= ~SLAB_STORE_USER; 5231 if (buf[0] == '1') { 5232 s->flags &= ~__CMPXCHG_DOUBLE; 5233 s->flags |= SLAB_STORE_USER; 5234 } 5235 calculate_sizes(s, -1); 5236 return length; 5237 } 5238 SLAB_ATTR(store_user); 5239 5240 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5241 { 5242 return 0; 5243 } 5244 5245 static ssize_t validate_store(struct kmem_cache *s, 5246 const char *buf, size_t length) 5247 { 5248 int ret = -EINVAL; 5249 5250 if (buf[0] == '1') { 5251 ret = validate_slab_cache(s); 5252 if (ret >= 0) 5253 ret = length; 5254 } 5255 return ret; 5256 } 5257 SLAB_ATTR(validate); 5258 5259 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5260 { 5261 if (!(s->flags & SLAB_STORE_USER)) 5262 return -ENOSYS; 5263 return list_locations(s, buf, TRACK_ALLOC); 5264 } 5265 SLAB_ATTR_RO(alloc_calls); 5266 5267 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5268 { 5269 if (!(s->flags & SLAB_STORE_USER)) 5270 return -ENOSYS; 5271 return list_locations(s, buf, TRACK_FREE); 5272 } 5273 SLAB_ATTR_RO(free_calls); 5274 #endif /* CONFIG_SLUB_DEBUG */ 5275 5276 #ifdef CONFIG_FAILSLAB 5277 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5278 { 5279 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5280 } 5281 5282 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5283 size_t length) 5284 { 5285 if (s->refcount > 1) 5286 return -EINVAL; 5287 5288 s->flags &= ~SLAB_FAILSLAB; 5289 if (buf[0] == '1') 5290 s->flags |= SLAB_FAILSLAB; 5291 return length; 5292 } 5293 SLAB_ATTR(failslab); 5294 #endif 5295 5296 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5297 { 5298 return 0; 5299 } 5300 5301 static ssize_t shrink_store(struct kmem_cache *s, 5302 const char *buf, size_t length) 5303 { 5304 if (buf[0] == '1') 5305 kmem_cache_shrink_all(s); 5306 else 5307 return -EINVAL; 5308 return length; 5309 } 5310 SLAB_ATTR(shrink); 5311 5312 #ifdef CONFIG_NUMA 5313 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5314 { 5315 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5316 } 5317 5318 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5319 const char *buf, size_t length) 5320 { 5321 unsigned int ratio; 5322 int err; 5323 5324 err = kstrtouint(buf, 10, &ratio); 5325 if (err) 5326 return err; 5327 if (ratio > 100) 5328 return -ERANGE; 5329 5330 s->remote_node_defrag_ratio = ratio * 10; 5331 5332 return length; 5333 } 5334 SLAB_ATTR(remote_node_defrag_ratio); 5335 #endif 5336 5337 #ifdef CONFIG_SLUB_STATS 5338 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5339 { 5340 unsigned long sum = 0; 5341 int cpu; 5342 int len; 5343 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5344 5345 if (!data) 5346 return -ENOMEM; 5347 5348 for_each_online_cpu(cpu) { 5349 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5350 5351 data[cpu] = x; 5352 sum += x; 5353 } 5354 5355 len = sprintf(buf, "%lu", sum); 5356 5357 #ifdef CONFIG_SMP 5358 for_each_online_cpu(cpu) { 5359 if (data[cpu] && len < PAGE_SIZE - 20) 5360 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5361 } 5362 #endif 5363 kfree(data); 5364 return len + sprintf(buf + len, "\n"); 5365 } 5366 5367 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5368 { 5369 int cpu; 5370 5371 for_each_online_cpu(cpu) 5372 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5373 } 5374 5375 #define STAT_ATTR(si, text) \ 5376 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5377 { \ 5378 return show_stat(s, buf, si); \ 5379 } \ 5380 static ssize_t text##_store(struct kmem_cache *s, \ 5381 const char *buf, size_t length) \ 5382 { \ 5383 if (buf[0] != '0') \ 5384 return -EINVAL; \ 5385 clear_stat(s, si); \ 5386 return length; \ 5387 } \ 5388 SLAB_ATTR(text); \ 5389 5390 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5391 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5392 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5393 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5394 STAT_ATTR(FREE_FROZEN, free_frozen); 5395 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5396 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5397 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5398 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5399 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5400 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5401 STAT_ATTR(FREE_SLAB, free_slab); 5402 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5403 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5404 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5405 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5406 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5407 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5408 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5409 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5410 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5411 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5412 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5413 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5414 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5415 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5416 #endif /* CONFIG_SLUB_STATS */ 5417 5418 static struct attribute *slab_attrs[] = { 5419 &slab_size_attr.attr, 5420 &object_size_attr.attr, 5421 &objs_per_slab_attr.attr, 5422 &order_attr.attr, 5423 &min_partial_attr.attr, 5424 &cpu_partial_attr.attr, 5425 &objects_attr.attr, 5426 &objects_partial_attr.attr, 5427 &partial_attr.attr, 5428 &cpu_slabs_attr.attr, 5429 &ctor_attr.attr, 5430 &aliases_attr.attr, 5431 &align_attr.attr, 5432 &hwcache_align_attr.attr, 5433 &reclaim_account_attr.attr, 5434 &destroy_by_rcu_attr.attr, 5435 &shrink_attr.attr, 5436 &slabs_cpu_partial_attr.attr, 5437 #ifdef CONFIG_SLUB_DEBUG 5438 &total_objects_attr.attr, 5439 &slabs_attr.attr, 5440 &sanity_checks_attr.attr, 5441 &trace_attr.attr, 5442 &red_zone_attr.attr, 5443 &poison_attr.attr, 5444 &store_user_attr.attr, 5445 &validate_attr.attr, 5446 &alloc_calls_attr.attr, 5447 &free_calls_attr.attr, 5448 #endif 5449 #ifdef CONFIG_ZONE_DMA 5450 &cache_dma_attr.attr, 5451 #endif 5452 #ifdef CONFIG_NUMA 5453 &remote_node_defrag_ratio_attr.attr, 5454 #endif 5455 #ifdef CONFIG_SLUB_STATS 5456 &alloc_fastpath_attr.attr, 5457 &alloc_slowpath_attr.attr, 5458 &free_fastpath_attr.attr, 5459 &free_slowpath_attr.attr, 5460 &free_frozen_attr.attr, 5461 &free_add_partial_attr.attr, 5462 &free_remove_partial_attr.attr, 5463 &alloc_from_partial_attr.attr, 5464 &alloc_slab_attr.attr, 5465 &alloc_refill_attr.attr, 5466 &alloc_node_mismatch_attr.attr, 5467 &free_slab_attr.attr, 5468 &cpuslab_flush_attr.attr, 5469 &deactivate_full_attr.attr, 5470 &deactivate_empty_attr.attr, 5471 &deactivate_to_head_attr.attr, 5472 &deactivate_to_tail_attr.attr, 5473 &deactivate_remote_frees_attr.attr, 5474 &deactivate_bypass_attr.attr, 5475 &order_fallback_attr.attr, 5476 &cmpxchg_double_fail_attr.attr, 5477 &cmpxchg_double_cpu_fail_attr.attr, 5478 &cpu_partial_alloc_attr.attr, 5479 &cpu_partial_free_attr.attr, 5480 &cpu_partial_node_attr.attr, 5481 &cpu_partial_drain_attr.attr, 5482 #endif 5483 #ifdef CONFIG_FAILSLAB 5484 &failslab_attr.attr, 5485 #endif 5486 &usersize_attr.attr, 5487 5488 NULL 5489 }; 5490 5491 static const struct attribute_group slab_attr_group = { 5492 .attrs = slab_attrs, 5493 }; 5494 5495 static ssize_t slab_attr_show(struct kobject *kobj, 5496 struct attribute *attr, 5497 char *buf) 5498 { 5499 struct slab_attribute *attribute; 5500 struct kmem_cache *s; 5501 int err; 5502 5503 attribute = to_slab_attr(attr); 5504 s = to_slab(kobj); 5505 5506 if (!attribute->show) 5507 return -EIO; 5508 5509 err = attribute->show(s, buf); 5510 5511 return err; 5512 } 5513 5514 static ssize_t slab_attr_store(struct kobject *kobj, 5515 struct attribute *attr, 5516 const char *buf, size_t len) 5517 { 5518 struct slab_attribute *attribute; 5519 struct kmem_cache *s; 5520 int err; 5521 5522 attribute = to_slab_attr(attr); 5523 s = to_slab(kobj); 5524 5525 if (!attribute->store) 5526 return -EIO; 5527 5528 err = attribute->store(s, buf, len); 5529 #ifdef CONFIG_MEMCG 5530 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5531 struct kmem_cache *c; 5532 5533 mutex_lock(&slab_mutex); 5534 if (s->max_attr_size < len) 5535 s->max_attr_size = len; 5536 5537 /* 5538 * This is a best effort propagation, so this function's return 5539 * value will be determined by the parent cache only. This is 5540 * basically because not all attributes will have a well 5541 * defined semantics for rollbacks - most of the actions will 5542 * have permanent effects. 5543 * 5544 * Returning the error value of any of the children that fail 5545 * is not 100 % defined, in the sense that users seeing the 5546 * error code won't be able to know anything about the state of 5547 * the cache. 5548 * 5549 * Only returning the error code for the parent cache at least 5550 * has well defined semantics. The cache being written to 5551 * directly either failed or succeeded, in which case we loop 5552 * through the descendants with best-effort propagation. 5553 */ 5554 for_each_memcg_cache(c, s) 5555 attribute->store(c, buf, len); 5556 mutex_unlock(&slab_mutex); 5557 } 5558 #endif 5559 return err; 5560 } 5561 5562 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5563 { 5564 #ifdef CONFIG_MEMCG 5565 int i; 5566 char *buffer = NULL; 5567 struct kmem_cache *root_cache; 5568 5569 if (is_root_cache(s)) 5570 return; 5571 5572 root_cache = s->memcg_params.root_cache; 5573 5574 /* 5575 * This mean this cache had no attribute written. Therefore, no point 5576 * in copying default values around 5577 */ 5578 if (!root_cache->max_attr_size) 5579 return; 5580 5581 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5582 char mbuf[64]; 5583 char *buf; 5584 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5585 ssize_t len; 5586 5587 if (!attr || !attr->store || !attr->show) 5588 continue; 5589 5590 /* 5591 * It is really bad that we have to allocate here, so we will 5592 * do it only as a fallback. If we actually allocate, though, 5593 * we can just use the allocated buffer until the end. 5594 * 5595 * Most of the slub attributes will tend to be very small in 5596 * size, but sysfs allows buffers up to a page, so they can 5597 * theoretically happen. 5598 */ 5599 if (buffer) 5600 buf = buffer; 5601 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5602 buf = mbuf; 5603 else { 5604 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5605 if (WARN_ON(!buffer)) 5606 continue; 5607 buf = buffer; 5608 } 5609 5610 len = attr->show(root_cache, buf); 5611 if (len > 0) 5612 attr->store(s, buf, len); 5613 } 5614 5615 if (buffer) 5616 free_page((unsigned long)buffer); 5617 #endif /* CONFIG_MEMCG */ 5618 } 5619 5620 static void kmem_cache_release(struct kobject *k) 5621 { 5622 slab_kmem_cache_release(to_slab(k)); 5623 } 5624 5625 static const struct sysfs_ops slab_sysfs_ops = { 5626 .show = slab_attr_show, 5627 .store = slab_attr_store, 5628 }; 5629 5630 static struct kobj_type slab_ktype = { 5631 .sysfs_ops = &slab_sysfs_ops, 5632 .release = kmem_cache_release, 5633 }; 5634 5635 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5636 { 5637 struct kobj_type *ktype = get_ktype(kobj); 5638 5639 if (ktype == &slab_ktype) 5640 return 1; 5641 return 0; 5642 } 5643 5644 static const struct kset_uevent_ops slab_uevent_ops = { 5645 .filter = uevent_filter, 5646 }; 5647 5648 static struct kset *slab_kset; 5649 5650 static inline struct kset *cache_kset(struct kmem_cache *s) 5651 { 5652 #ifdef CONFIG_MEMCG 5653 if (!is_root_cache(s)) 5654 return s->memcg_params.root_cache->memcg_kset; 5655 #endif 5656 return slab_kset; 5657 } 5658 5659 #define ID_STR_LENGTH 64 5660 5661 /* Create a unique string id for a slab cache: 5662 * 5663 * Format :[flags-]size 5664 */ 5665 static char *create_unique_id(struct kmem_cache *s) 5666 { 5667 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5668 char *p = name; 5669 5670 BUG_ON(!name); 5671 5672 *p++ = ':'; 5673 /* 5674 * First flags affecting slabcache operations. We will only 5675 * get here for aliasable slabs so we do not need to support 5676 * too many flags. The flags here must cover all flags that 5677 * are matched during merging to guarantee that the id is 5678 * unique. 5679 */ 5680 if (s->flags & SLAB_CACHE_DMA) 5681 *p++ = 'd'; 5682 if (s->flags & SLAB_CACHE_DMA32) 5683 *p++ = 'D'; 5684 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5685 *p++ = 'a'; 5686 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5687 *p++ = 'F'; 5688 if (s->flags & SLAB_ACCOUNT) 5689 *p++ = 'A'; 5690 if (p != name + 1) 5691 *p++ = '-'; 5692 p += sprintf(p, "%07u", s->size); 5693 5694 BUG_ON(p > name + ID_STR_LENGTH - 1); 5695 return name; 5696 } 5697 5698 static void sysfs_slab_remove_workfn(struct work_struct *work) 5699 { 5700 struct kmem_cache *s = 5701 container_of(work, struct kmem_cache, kobj_remove_work); 5702 5703 if (!s->kobj.state_in_sysfs) 5704 /* 5705 * For a memcg cache, this may be called during 5706 * deactivation and again on shutdown. Remove only once. 5707 * A cache is never shut down before deactivation is 5708 * complete, so no need to worry about synchronization. 5709 */ 5710 goto out; 5711 5712 #ifdef CONFIG_MEMCG 5713 kset_unregister(s->memcg_kset); 5714 #endif 5715 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5716 out: 5717 kobject_put(&s->kobj); 5718 } 5719 5720 static int sysfs_slab_add(struct kmem_cache *s) 5721 { 5722 int err; 5723 const char *name; 5724 struct kset *kset = cache_kset(s); 5725 int unmergeable = slab_unmergeable(s); 5726 5727 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5728 5729 if (!kset) { 5730 kobject_init(&s->kobj, &slab_ktype); 5731 return 0; 5732 } 5733 5734 if (!unmergeable && disable_higher_order_debug && 5735 (slub_debug & DEBUG_METADATA_FLAGS)) 5736 unmergeable = 1; 5737 5738 if (unmergeable) { 5739 /* 5740 * Slabcache can never be merged so we can use the name proper. 5741 * This is typically the case for debug situations. In that 5742 * case we can catch duplicate names easily. 5743 */ 5744 sysfs_remove_link(&slab_kset->kobj, s->name); 5745 name = s->name; 5746 } else { 5747 /* 5748 * Create a unique name for the slab as a target 5749 * for the symlinks. 5750 */ 5751 name = create_unique_id(s); 5752 } 5753 5754 s->kobj.kset = kset; 5755 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5756 if (err) 5757 goto out; 5758 5759 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5760 if (err) 5761 goto out_del_kobj; 5762 5763 #ifdef CONFIG_MEMCG 5764 if (is_root_cache(s) && memcg_sysfs_enabled) { 5765 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5766 if (!s->memcg_kset) { 5767 err = -ENOMEM; 5768 goto out_del_kobj; 5769 } 5770 } 5771 #endif 5772 5773 kobject_uevent(&s->kobj, KOBJ_ADD); 5774 if (!unmergeable) { 5775 /* Setup first alias */ 5776 sysfs_slab_alias(s, s->name); 5777 } 5778 out: 5779 if (!unmergeable) 5780 kfree(name); 5781 return err; 5782 out_del_kobj: 5783 kobject_del(&s->kobj); 5784 goto out; 5785 } 5786 5787 static void sysfs_slab_remove(struct kmem_cache *s) 5788 { 5789 if (slab_state < FULL) 5790 /* 5791 * Sysfs has not been setup yet so no need to remove the 5792 * cache from sysfs. 5793 */ 5794 return; 5795 5796 kobject_get(&s->kobj); 5797 schedule_work(&s->kobj_remove_work); 5798 } 5799 5800 void sysfs_slab_unlink(struct kmem_cache *s) 5801 { 5802 if (slab_state >= FULL) 5803 kobject_del(&s->kobj); 5804 } 5805 5806 void sysfs_slab_release(struct kmem_cache *s) 5807 { 5808 if (slab_state >= FULL) 5809 kobject_put(&s->kobj); 5810 } 5811 5812 /* 5813 * Need to buffer aliases during bootup until sysfs becomes 5814 * available lest we lose that information. 5815 */ 5816 struct saved_alias { 5817 struct kmem_cache *s; 5818 const char *name; 5819 struct saved_alias *next; 5820 }; 5821 5822 static struct saved_alias *alias_list; 5823 5824 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5825 { 5826 struct saved_alias *al; 5827 5828 if (slab_state == FULL) { 5829 /* 5830 * If we have a leftover link then remove it. 5831 */ 5832 sysfs_remove_link(&slab_kset->kobj, name); 5833 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5834 } 5835 5836 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5837 if (!al) 5838 return -ENOMEM; 5839 5840 al->s = s; 5841 al->name = name; 5842 al->next = alias_list; 5843 alias_list = al; 5844 return 0; 5845 } 5846 5847 static int __init slab_sysfs_init(void) 5848 { 5849 struct kmem_cache *s; 5850 int err; 5851 5852 mutex_lock(&slab_mutex); 5853 5854 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5855 if (!slab_kset) { 5856 mutex_unlock(&slab_mutex); 5857 pr_err("Cannot register slab subsystem.\n"); 5858 return -ENOSYS; 5859 } 5860 5861 slab_state = FULL; 5862 5863 list_for_each_entry(s, &slab_caches, list) { 5864 err = sysfs_slab_add(s); 5865 if (err) 5866 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5867 s->name); 5868 } 5869 5870 while (alias_list) { 5871 struct saved_alias *al = alias_list; 5872 5873 alias_list = alias_list->next; 5874 err = sysfs_slab_alias(al->s, al->name); 5875 if (err) 5876 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5877 al->name); 5878 kfree(al); 5879 } 5880 5881 mutex_unlock(&slab_mutex); 5882 resiliency_test(); 5883 return 0; 5884 } 5885 5886 __initcall(slab_sysfs_init); 5887 #endif /* CONFIG_SYSFS */ 5888 5889 /* 5890 * The /proc/slabinfo ABI 5891 */ 5892 #ifdef CONFIG_SLUB_DEBUG 5893 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5894 { 5895 unsigned long nr_slabs = 0; 5896 unsigned long nr_objs = 0; 5897 unsigned long nr_free = 0; 5898 int node; 5899 struct kmem_cache_node *n; 5900 5901 for_each_kmem_cache_node(s, node, n) { 5902 nr_slabs += node_nr_slabs(n); 5903 nr_objs += node_nr_objs(n); 5904 nr_free += count_partial(n, count_free); 5905 } 5906 5907 sinfo->active_objs = nr_objs - nr_free; 5908 sinfo->num_objs = nr_objs; 5909 sinfo->active_slabs = nr_slabs; 5910 sinfo->num_slabs = nr_slabs; 5911 sinfo->objects_per_slab = oo_objects(s->oo); 5912 sinfo->cache_order = oo_order(s->oo); 5913 } 5914 5915 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5916 { 5917 } 5918 5919 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5920 size_t count, loff_t *ppos) 5921 { 5922 return -EIO; 5923 } 5924 #endif /* CONFIG_SLUB_DEBUG */ 5925