xref: /linux/mm/slub.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 		p += s->red_left_pad;
131 
132 	return p;
133 }
134 
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 	return !kmem_cache_debug(s);
139 #else
140 	return false;
141 #endif
142 }
143 
144 /*
145  * Issues still to be resolved:
146  *
147  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148  *
149  * - Variable sizing of the per node arrays
150  */
151 
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154 
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157 
158 /*
159  * Mininum number of partial slabs. These will be left on the partial
160  * lists even if they are empty. kmem_cache_shrink may reclaim them.
161  */
162 #define MIN_PARTIAL 5
163 
164 /*
165  * Maximum number of desirable partial slabs.
166  * The existence of more partial slabs makes kmem_cache_shrink
167  * sort the partial list by the number of objects in use.
168  */
169 #define MAX_PARTIAL 10
170 
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 				SLAB_POISON | SLAB_STORE_USER)
173 
174 /*
175  * These debug flags cannot use CMPXCHG because there might be consistency
176  * issues when checking or reading debug information
177  */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 				SLAB_TRACE)
180 
181 
182 /*
183  * Debugging flags that require metadata to be stored in the slab.  These get
184  * disabled when slub_debug=O is used and a cache's min order increases with
185  * metadata.
186  */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188 
189 #define OO_SHIFT	16
190 #define OO_MASK		((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192 
193 /* Internal SLUB flags */
194 /* Poison object */
195 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
196 /* Use cmpxchg_double */
197 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
198 
199 /*
200  * Tracking user of a slab.
201  */
202 #define TRACK_ADDRS_COUNT 16
203 struct track {
204 	unsigned long addr;	/* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
207 #endif
208 	int cpu;		/* Was running on cpu */
209 	int pid;		/* Pid context */
210 	unsigned long when;	/* When did the operation occur */
211 };
212 
213 enum track_item { TRACK_ALLOC, TRACK_FREE };
214 
215 #ifdef CONFIG_SYSFS
216 static int sysfs_slab_add(struct kmem_cache *);
217 static int sysfs_slab_alias(struct kmem_cache *, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219 static void sysfs_slab_remove(struct kmem_cache *s);
220 #else
221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 							{ return 0; }
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /********************************************************************
240  * 			Core slab cache functions
241  *******************************************************************/
242 
243 /*
244  * Returns freelist pointer (ptr). With hardening, this is obfuscated
245  * with an XOR of the address where the pointer is held and a per-cache
246  * random number.
247  */
248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 				 unsigned long ptr_addr)
250 {
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
253 #else
254 	return ptr;
255 #endif
256 }
257 
258 /* Returns the freelist pointer recorded at location ptr_addr. */
259 static inline void *freelist_dereference(const struct kmem_cache *s,
260 					 void *ptr_addr)
261 {
262 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
263 			    (unsigned long)ptr_addr);
264 }
265 
266 static inline void *get_freepointer(struct kmem_cache *s, void *object)
267 {
268 	return freelist_dereference(s, object + s->offset);
269 }
270 
271 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
272 {
273 	prefetch(object + s->offset);
274 }
275 
276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
277 {
278 	unsigned long freepointer_addr;
279 	void *p;
280 
281 	if (!debug_pagealloc_enabled())
282 		return get_freepointer(s, object);
283 
284 	freepointer_addr = (unsigned long)object + s->offset;
285 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
286 	return freelist_ptr(s, p, freepointer_addr);
287 }
288 
289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290 {
291 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
292 
293 #ifdef CONFIG_SLAB_FREELIST_HARDENED
294 	BUG_ON(object == fp); /* naive detection of double free or corruption */
295 #endif
296 
297 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
298 }
299 
300 /* Loop over all objects in a slab */
301 #define for_each_object(__p, __s, __addr, __objects) \
302 	for (__p = fixup_red_left(__s, __addr); \
303 		__p < (__addr) + (__objects) * (__s)->size; \
304 		__p += (__s)->size)
305 
306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
307 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 		__idx <= __objects; \
309 		__p += (__s)->size, __idx++)
310 
311 /* Determine object index from a given position */
312 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
313 {
314 	return (p - addr) / s->size;
315 }
316 
317 static inline unsigned int order_objects(unsigned int order, unsigned int size)
318 {
319 	return ((unsigned int)PAGE_SIZE << order) / size;
320 }
321 
322 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
323 		unsigned int size)
324 {
325 	struct kmem_cache_order_objects x = {
326 		(order << OO_SHIFT) + order_objects(order, size)
327 	};
328 
329 	return x;
330 }
331 
332 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
333 {
334 	return x.x >> OO_SHIFT;
335 }
336 
337 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
338 {
339 	return x.x & OO_MASK;
340 }
341 
342 /*
343  * Per slab locking using the pagelock
344  */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 	VM_BUG_ON_PAGE(PageTail(page), page);
348 	bit_spin_lock(PG_locked, &page->flags);
349 }
350 
351 static __always_inline void slab_unlock(struct page *page)
352 {
353 	VM_BUG_ON_PAGE(PageTail(page), page);
354 	__bit_spin_unlock(PG_locked, &page->flags);
355 }
356 
357 /* Interrupts must be disabled (for the fallback code to work right) */
358 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
359 		void *freelist_old, unsigned long counters_old,
360 		void *freelist_new, unsigned long counters_new,
361 		const char *n)
362 {
363 	VM_BUG_ON(!irqs_disabled());
364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
365     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
366 	if (s->flags & __CMPXCHG_DOUBLE) {
367 		if (cmpxchg_double(&page->freelist, &page->counters,
368 				   freelist_old, counters_old,
369 				   freelist_new, counters_new))
370 			return true;
371 	} else
372 #endif
373 	{
374 		slab_lock(page);
375 		if (page->freelist == freelist_old &&
376 					page->counters == counters_old) {
377 			page->freelist = freelist_new;
378 			page->counters = counters_new;
379 			slab_unlock(page);
380 			return true;
381 		}
382 		slab_unlock(page);
383 	}
384 
385 	cpu_relax();
386 	stat(s, CMPXCHG_DOUBLE_FAIL);
387 
388 #ifdef SLUB_DEBUG_CMPXCHG
389 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
390 #endif
391 
392 	return false;
393 }
394 
395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
396 		void *freelist_old, unsigned long counters_old,
397 		void *freelist_new, unsigned long counters_new,
398 		const char *n)
399 {
400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402 	if (s->flags & __CMPXCHG_DOUBLE) {
403 		if (cmpxchg_double(&page->freelist, &page->counters,
404 				   freelist_old, counters_old,
405 				   freelist_new, counters_new))
406 			return true;
407 	} else
408 #endif
409 	{
410 		unsigned long flags;
411 
412 		local_irq_save(flags);
413 		slab_lock(page);
414 		if (page->freelist == freelist_old &&
415 					page->counters == counters_old) {
416 			page->freelist = freelist_new;
417 			page->counters = counters_new;
418 			slab_unlock(page);
419 			local_irq_restore(flags);
420 			return true;
421 		}
422 		slab_unlock(page);
423 		local_irq_restore(flags);
424 	}
425 
426 	cpu_relax();
427 	stat(s, CMPXCHG_DOUBLE_FAIL);
428 
429 #ifdef SLUB_DEBUG_CMPXCHG
430 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
431 #endif
432 
433 	return false;
434 }
435 
436 #ifdef CONFIG_SLUB_DEBUG
437 /*
438  * Determine a map of object in use on a page.
439  *
440  * Node listlock must be held to guarantee that the page does
441  * not vanish from under us.
442  */
443 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
444 {
445 	void *p;
446 	void *addr = page_address(page);
447 
448 	for (p = page->freelist; p; p = get_freepointer(s, p))
449 		set_bit(slab_index(p, s, addr), map);
450 }
451 
452 static inline unsigned int size_from_object(struct kmem_cache *s)
453 {
454 	if (s->flags & SLAB_RED_ZONE)
455 		return s->size - s->red_left_pad;
456 
457 	return s->size;
458 }
459 
460 static inline void *restore_red_left(struct kmem_cache *s, void *p)
461 {
462 	if (s->flags & SLAB_RED_ZONE)
463 		p -= s->red_left_pad;
464 
465 	return p;
466 }
467 
468 /*
469  * Debug settings:
470  */
471 #if defined(CONFIG_SLUB_DEBUG_ON)
472 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static slab_flags_t slub_debug;
475 #endif
476 
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479 
480 /*
481  * slub is about to manipulate internal object metadata.  This memory lies
482  * outside the range of the allocated object, so accessing it would normally
483  * be reported by kasan as a bounds error.  metadata_access_enable() is used
484  * to tell kasan that these accesses are OK.
485  */
486 static inline void metadata_access_enable(void)
487 {
488 	kasan_disable_current();
489 }
490 
491 static inline void metadata_access_disable(void)
492 {
493 	kasan_enable_current();
494 }
495 
496 /*
497  * Object debugging
498  */
499 
500 /* Verify that a pointer has an address that is valid within a slab page */
501 static inline int check_valid_pointer(struct kmem_cache *s,
502 				struct page *page, void *object)
503 {
504 	void *base;
505 
506 	if (!object)
507 		return 1;
508 
509 	base = page_address(page);
510 	object = restore_red_left(s, object);
511 	if (object < base || object >= base + page->objects * s->size ||
512 		(object - base) % s->size) {
513 		return 0;
514 	}
515 
516 	return 1;
517 }
518 
519 static void print_section(char *level, char *text, u8 *addr,
520 			  unsigned int length)
521 {
522 	metadata_access_enable();
523 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
524 			length, 1);
525 	metadata_access_disable();
526 }
527 
528 static struct track *get_track(struct kmem_cache *s, void *object,
529 	enum track_item alloc)
530 {
531 	struct track *p;
532 
533 	if (s->offset)
534 		p = object + s->offset + sizeof(void *);
535 	else
536 		p = object + s->inuse;
537 
538 	return p + alloc;
539 }
540 
541 static void set_track(struct kmem_cache *s, void *object,
542 			enum track_item alloc, unsigned long addr)
543 {
544 	struct track *p = get_track(s, object, alloc);
545 
546 	if (addr) {
547 #ifdef CONFIG_STACKTRACE
548 		struct stack_trace trace;
549 		int i;
550 
551 		trace.nr_entries = 0;
552 		trace.max_entries = TRACK_ADDRS_COUNT;
553 		trace.entries = p->addrs;
554 		trace.skip = 3;
555 		metadata_access_enable();
556 		save_stack_trace(&trace);
557 		metadata_access_disable();
558 
559 		/* See rant in lockdep.c */
560 		if (trace.nr_entries != 0 &&
561 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
562 			trace.nr_entries--;
563 
564 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
565 			p->addrs[i] = 0;
566 #endif
567 		p->addr = addr;
568 		p->cpu = smp_processor_id();
569 		p->pid = current->pid;
570 		p->when = jiffies;
571 	} else
572 		memset(p, 0, sizeof(struct track));
573 }
574 
575 static void init_tracking(struct kmem_cache *s, void *object)
576 {
577 	if (!(s->flags & SLAB_STORE_USER))
578 		return;
579 
580 	set_track(s, object, TRACK_FREE, 0UL);
581 	set_track(s, object, TRACK_ALLOC, 0UL);
582 }
583 
584 static void print_track(const char *s, struct track *t, unsigned long pr_time)
585 {
586 	if (!t->addr)
587 		return;
588 
589 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
590 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
591 #ifdef CONFIG_STACKTRACE
592 	{
593 		int i;
594 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
595 			if (t->addrs[i])
596 				pr_err("\t%pS\n", (void *)t->addrs[i]);
597 			else
598 				break;
599 	}
600 #endif
601 }
602 
603 static void print_tracking(struct kmem_cache *s, void *object)
604 {
605 	unsigned long pr_time = jiffies;
606 	if (!(s->flags & SLAB_STORE_USER))
607 		return;
608 
609 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
610 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
611 }
612 
613 static void print_page_info(struct page *page)
614 {
615 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
616 	       page, page->objects, page->inuse, page->freelist, page->flags);
617 
618 }
619 
620 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
621 {
622 	struct va_format vaf;
623 	va_list args;
624 
625 	va_start(args, fmt);
626 	vaf.fmt = fmt;
627 	vaf.va = &args;
628 	pr_err("=============================================================================\n");
629 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
630 	pr_err("-----------------------------------------------------------------------------\n\n");
631 
632 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
633 	va_end(args);
634 }
635 
636 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
637 {
638 	struct va_format vaf;
639 	va_list args;
640 
641 	va_start(args, fmt);
642 	vaf.fmt = fmt;
643 	vaf.va = &args;
644 	pr_err("FIX %s: %pV\n", s->name, &vaf);
645 	va_end(args);
646 }
647 
648 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
649 {
650 	unsigned int off;	/* Offset of last byte */
651 	u8 *addr = page_address(page);
652 
653 	print_tracking(s, p);
654 
655 	print_page_info(page);
656 
657 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
658 	       p, p - addr, get_freepointer(s, p));
659 
660 	if (s->flags & SLAB_RED_ZONE)
661 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
662 			      s->red_left_pad);
663 	else if (p > addr + 16)
664 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
665 
666 	print_section(KERN_ERR, "Object ", p,
667 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
668 	if (s->flags & SLAB_RED_ZONE)
669 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
670 			s->inuse - s->object_size);
671 
672 	if (s->offset)
673 		off = s->offset + sizeof(void *);
674 	else
675 		off = s->inuse;
676 
677 	if (s->flags & SLAB_STORE_USER)
678 		off += 2 * sizeof(struct track);
679 
680 	off += kasan_metadata_size(s);
681 
682 	if (off != size_from_object(s))
683 		/* Beginning of the filler is the free pointer */
684 		print_section(KERN_ERR, "Padding ", p + off,
685 			      size_from_object(s) - off);
686 
687 	dump_stack();
688 }
689 
690 void object_err(struct kmem_cache *s, struct page *page,
691 			u8 *object, char *reason)
692 {
693 	slab_bug(s, "%s", reason);
694 	print_trailer(s, page, object);
695 }
696 
697 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
698 			const char *fmt, ...)
699 {
700 	va_list args;
701 	char buf[100];
702 
703 	va_start(args, fmt);
704 	vsnprintf(buf, sizeof(buf), fmt, args);
705 	va_end(args);
706 	slab_bug(s, "%s", buf);
707 	print_page_info(page);
708 	dump_stack();
709 }
710 
711 static void init_object(struct kmem_cache *s, void *object, u8 val)
712 {
713 	u8 *p = object;
714 
715 	if (s->flags & SLAB_RED_ZONE)
716 		memset(p - s->red_left_pad, val, s->red_left_pad);
717 
718 	if (s->flags & __OBJECT_POISON) {
719 		memset(p, POISON_FREE, s->object_size - 1);
720 		p[s->object_size - 1] = POISON_END;
721 	}
722 
723 	if (s->flags & SLAB_RED_ZONE)
724 		memset(p + s->object_size, val, s->inuse - s->object_size);
725 }
726 
727 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 						void *from, void *to)
729 {
730 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 	memset(from, data, to - from);
732 }
733 
734 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 			u8 *object, char *what,
736 			u8 *start, unsigned int value, unsigned int bytes)
737 {
738 	u8 *fault;
739 	u8 *end;
740 
741 	metadata_access_enable();
742 	fault = memchr_inv(start, value, bytes);
743 	metadata_access_disable();
744 	if (!fault)
745 		return 1;
746 
747 	end = start + bytes;
748 	while (end > fault && end[-1] == value)
749 		end--;
750 
751 	slab_bug(s, "%s overwritten", what);
752 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
753 					fault, end - 1, fault[0], value);
754 	print_trailer(s, page, object);
755 
756 	restore_bytes(s, what, value, fault, end);
757 	return 0;
758 }
759 
760 /*
761  * Object layout:
762  *
763  * object address
764  * 	Bytes of the object to be managed.
765  * 	If the freepointer may overlay the object then the free
766  * 	pointer is the first word of the object.
767  *
768  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
769  * 	0xa5 (POISON_END)
770  *
771  * object + s->object_size
772  * 	Padding to reach word boundary. This is also used for Redzoning.
773  * 	Padding is extended by another word if Redzoning is enabled and
774  * 	object_size == inuse.
775  *
776  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
777  * 	0xcc (RED_ACTIVE) for objects in use.
778  *
779  * object + s->inuse
780  * 	Meta data starts here.
781  *
782  * 	A. Free pointer (if we cannot overwrite object on free)
783  * 	B. Tracking data for SLAB_STORE_USER
784  * 	C. Padding to reach required alignment boundary or at mininum
785  * 		one word if debugging is on to be able to detect writes
786  * 		before the word boundary.
787  *
788  *	Padding is done using 0x5a (POISON_INUSE)
789  *
790  * object + s->size
791  * 	Nothing is used beyond s->size.
792  *
793  * If slabcaches are merged then the object_size and inuse boundaries are mostly
794  * ignored. And therefore no slab options that rely on these boundaries
795  * may be used with merged slabcaches.
796  */
797 
798 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
799 {
800 	unsigned long off = s->inuse;	/* The end of info */
801 
802 	if (s->offset)
803 		/* Freepointer is placed after the object. */
804 		off += sizeof(void *);
805 
806 	if (s->flags & SLAB_STORE_USER)
807 		/* We also have user information there */
808 		off += 2 * sizeof(struct track);
809 
810 	off += kasan_metadata_size(s);
811 
812 	if (size_from_object(s) == off)
813 		return 1;
814 
815 	return check_bytes_and_report(s, page, p, "Object padding",
816 			p + off, POISON_INUSE, size_from_object(s) - off);
817 }
818 
819 /* Check the pad bytes at the end of a slab page */
820 static int slab_pad_check(struct kmem_cache *s, struct page *page)
821 {
822 	u8 *start;
823 	u8 *fault;
824 	u8 *end;
825 	u8 *pad;
826 	int length;
827 	int remainder;
828 
829 	if (!(s->flags & SLAB_POISON))
830 		return 1;
831 
832 	start = page_address(page);
833 	length = PAGE_SIZE << compound_order(page);
834 	end = start + length;
835 	remainder = length % s->size;
836 	if (!remainder)
837 		return 1;
838 
839 	pad = end - remainder;
840 	metadata_access_enable();
841 	fault = memchr_inv(pad, POISON_INUSE, remainder);
842 	metadata_access_disable();
843 	if (!fault)
844 		return 1;
845 	while (end > fault && end[-1] == POISON_INUSE)
846 		end--;
847 
848 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
849 	print_section(KERN_ERR, "Padding ", pad, remainder);
850 
851 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
852 	return 0;
853 }
854 
855 static int check_object(struct kmem_cache *s, struct page *page,
856 					void *object, u8 val)
857 {
858 	u8 *p = object;
859 	u8 *endobject = object + s->object_size;
860 
861 	if (s->flags & SLAB_RED_ZONE) {
862 		if (!check_bytes_and_report(s, page, object, "Redzone",
863 			object - s->red_left_pad, val, s->red_left_pad))
864 			return 0;
865 
866 		if (!check_bytes_and_report(s, page, object, "Redzone",
867 			endobject, val, s->inuse - s->object_size))
868 			return 0;
869 	} else {
870 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
871 			check_bytes_and_report(s, page, p, "Alignment padding",
872 				endobject, POISON_INUSE,
873 				s->inuse - s->object_size);
874 		}
875 	}
876 
877 	if (s->flags & SLAB_POISON) {
878 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
879 			(!check_bytes_and_report(s, page, p, "Poison", p,
880 					POISON_FREE, s->object_size - 1) ||
881 			 !check_bytes_and_report(s, page, p, "Poison",
882 				p + s->object_size - 1, POISON_END, 1)))
883 			return 0;
884 		/*
885 		 * check_pad_bytes cleans up on its own.
886 		 */
887 		check_pad_bytes(s, page, p);
888 	}
889 
890 	if (!s->offset && val == SLUB_RED_ACTIVE)
891 		/*
892 		 * Object and freepointer overlap. Cannot check
893 		 * freepointer while object is allocated.
894 		 */
895 		return 1;
896 
897 	/* Check free pointer validity */
898 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
899 		object_err(s, page, p, "Freepointer corrupt");
900 		/*
901 		 * No choice but to zap it and thus lose the remainder
902 		 * of the free objects in this slab. May cause
903 		 * another error because the object count is now wrong.
904 		 */
905 		set_freepointer(s, p, NULL);
906 		return 0;
907 	}
908 	return 1;
909 }
910 
911 static int check_slab(struct kmem_cache *s, struct page *page)
912 {
913 	int maxobj;
914 
915 	VM_BUG_ON(!irqs_disabled());
916 
917 	if (!PageSlab(page)) {
918 		slab_err(s, page, "Not a valid slab page");
919 		return 0;
920 	}
921 
922 	maxobj = order_objects(compound_order(page), s->size);
923 	if (page->objects > maxobj) {
924 		slab_err(s, page, "objects %u > max %u",
925 			page->objects, maxobj);
926 		return 0;
927 	}
928 	if (page->inuse > page->objects) {
929 		slab_err(s, page, "inuse %u > max %u",
930 			page->inuse, page->objects);
931 		return 0;
932 	}
933 	/* Slab_pad_check fixes things up after itself */
934 	slab_pad_check(s, page);
935 	return 1;
936 }
937 
938 /*
939  * Determine if a certain object on a page is on the freelist. Must hold the
940  * slab lock to guarantee that the chains are in a consistent state.
941  */
942 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
943 {
944 	int nr = 0;
945 	void *fp;
946 	void *object = NULL;
947 	int max_objects;
948 
949 	fp = page->freelist;
950 	while (fp && nr <= page->objects) {
951 		if (fp == search)
952 			return 1;
953 		if (!check_valid_pointer(s, page, fp)) {
954 			if (object) {
955 				object_err(s, page, object,
956 					"Freechain corrupt");
957 				set_freepointer(s, object, NULL);
958 			} else {
959 				slab_err(s, page, "Freepointer corrupt");
960 				page->freelist = NULL;
961 				page->inuse = page->objects;
962 				slab_fix(s, "Freelist cleared");
963 				return 0;
964 			}
965 			break;
966 		}
967 		object = fp;
968 		fp = get_freepointer(s, object);
969 		nr++;
970 	}
971 
972 	max_objects = order_objects(compound_order(page), s->size);
973 	if (max_objects > MAX_OBJS_PER_PAGE)
974 		max_objects = MAX_OBJS_PER_PAGE;
975 
976 	if (page->objects != max_objects) {
977 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
978 			 page->objects, max_objects);
979 		page->objects = max_objects;
980 		slab_fix(s, "Number of objects adjusted.");
981 	}
982 	if (page->inuse != page->objects - nr) {
983 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
984 			 page->inuse, page->objects - nr);
985 		page->inuse = page->objects - nr;
986 		slab_fix(s, "Object count adjusted.");
987 	}
988 	return search == NULL;
989 }
990 
991 static void trace(struct kmem_cache *s, struct page *page, void *object,
992 								int alloc)
993 {
994 	if (s->flags & SLAB_TRACE) {
995 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
996 			s->name,
997 			alloc ? "alloc" : "free",
998 			object, page->inuse,
999 			page->freelist);
1000 
1001 		if (!alloc)
1002 			print_section(KERN_INFO, "Object ", (void *)object,
1003 					s->object_size);
1004 
1005 		dump_stack();
1006 	}
1007 }
1008 
1009 /*
1010  * Tracking of fully allocated slabs for debugging purposes.
1011  */
1012 static void add_full(struct kmem_cache *s,
1013 	struct kmem_cache_node *n, struct page *page)
1014 {
1015 	if (!(s->flags & SLAB_STORE_USER))
1016 		return;
1017 
1018 	lockdep_assert_held(&n->list_lock);
1019 	list_add(&page->lru, &n->full);
1020 }
1021 
1022 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1023 {
1024 	if (!(s->flags & SLAB_STORE_USER))
1025 		return;
1026 
1027 	lockdep_assert_held(&n->list_lock);
1028 	list_del(&page->lru);
1029 }
1030 
1031 /* Tracking of the number of slabs for debugging purposes */
1032 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1033 {
1034 	struct kmem_cache_node *n = get_node(s, node);
1035 
1036 	return atomic_long_read(&n->nr_slabs);
1037 }
1038 
1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1040 {
1041 	return atomic_long_read(&n->nr_slabs);
1042 }
1043 
1044 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1045 {
1046 	struct kmem_cache_node *n = get_node(s, node);
1047 
1048 	/*
1049 	 * May be called early in order to allocate a slab for the
1050 	 * kmem_cache_node structure. Solve the chicken-egg
1051 	 * dilemma by deferring the increment of the count during
1052 	 * bootstrap (see early_kmem_cache_node_alloc).
1053 	 */
1054 	if (likely(n)) {
1055 		atomic_long_inc(&n->nr_slabs);
1056 		atomic_long_add(objects, &n->total_objects);
1057 	}
1058 }
1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1060 {
1061 	struct kmem_cache_node *n = get_node(s, node);
1062 
1063 	atomic_long_dec(&n->nr_slabs);
1064 	atomic_long_sub(objects, &n->total_objects);
1065 }
1066 
1067 /* Object debug checks for alloc/free paths */
1068 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1069 								void *object)
1070 {
1071 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1072 		return;
1073 
1074 	init_object(s, object, SLUB_RED_INACTIVE);
1075 	init_tracking(s, object);
1076 }
1077 
1078 static inline int alloc_consistency_checks(struct kmem_cache *s,
1079 					struct page *page,
1080 					void *object, unsigned long addr)
1081 {
1082 	if (!check_slab(s, page))
1083 		return 0;
1084 
1085 	if (!check_valid_pointer(s, page, object)) {
1086 		object_err(s, page, object, "Freelist Pointer check fails");
1087 		return 0;
1088 	}
1089 
1090 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1091 		return 0;
1092 
1093 	return 1;
1094 }
1095 
1096 static noinline int alloc_debug_processing(struct kmem_cache *s,
1097 					struct page *page,
1098 					void *object, unsigned long addr)
1099 {
1100 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1101 		if (!alloc_consistency_checks(s, page, object, addr))
1102 			goto bad;
1103 	}
1104 
1105 	/* Success perform special debug activities for allocs */
1106 	if (s->flags & SLAB_STORE_USER)
1107 		set_track(s, object, TRACK_ALLOC, addr);
1108 	trace(s, page, object, 1);
1109 	init_object(s, object, SLUB_RED_ACTIVE);
1110 	return 1;
1111 
1112 bad:
1113 	if (PageSlab(page)) {
1114 		/*
1115 		 * If this is a slab page then lets do the best we can
1116 		 * to avoid issues in the future. Marking all objects
1117 		 * as used avoids touching the remaining objects.
1118 		 */
1119 		slab_fix(s, "Marking all objects used");
1120 		page->inuse = page->objects;
1121 		page->freelist = NULL;
1122 	}
1123 	return 0;
1124 }
1125 
1126 static inline int free_consistency_checks(struct kmem_cache *s,
1127 		struct page *page, void *object, unsigned long addr)
1128 {
1129 	if (!check_valid_pointer(s, page, object)) {
1130 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1131 		return 0;
1132 	}
1133 
1134 	if (on_freelist(s, page, object)) {
1135 		object_err(s, page, object, "Object already free");
1136 		return 0;
1137 	}
1138 
1139 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1140 		return 0;
1141 
1142 	if (unlikely(s != page->slab_cache)) {
1143 		if (!PageSlab(page)) {
1144 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1145 				 object);
1146 		} else if (!page->slab_cache) {
1147 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1148 			       object);
1149 			dump_stack();
1150 		} else
1151 			object_err(s, page, object,
1152 					"page slab pointer corrupt.");
1153 		return 0;
1154 	}
1155 	return 1;
1156 }
1157 
1158 /* Supports checking bulk free of a constructed freelist */
1159 static noinline int free_debug_processing(
1160 	struct kmem_cache *s, struct page *page,
1161 	void *head, void *tail, int bulk_cnt,
1162 	unsigned long addr)
1163 {
1164 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1165 	void *object = head;
1166 	int cnt = 0;
1167 	unsigned long uninitialized_var(flags);
1168 	int ret = 0;
1169 
1170 	spin_lock_irqsave(&n->list_lock, flags);
1171 	slab_lock(page);
1172 
1173 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1174 		if (!check_slab(s, page))
1175 			goto out;
1176 	}
1177 
1178 next_object:
1179 	cnt++;
1180 
1181 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 		if (!free_consistency_checks(s, page, object, addr))
1183 			goto out;
1184 	}
1185 
1186 	if (s->flags & SLAB_STORE_USER)
1187 		set_track(s, object, TRACK_FREE, addr);
1188 	trace(s, page, object, 0);
1189 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1190 	init_object(s, object, SLUB_RED_INACTIVE);
1191 
1192 	/* Reached end of constructed freelist yet? */
1193 	if (object != tail) {
1194 		object = get_freepointer(s, object);
1195 		goto next_object;
1196 	}
1197 	ret = 1;
1198 
1199 out:
1200 	if (cnt != bulk_cnt)
1201 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1202 			 bulk_cnt, cnt);
1203 
1204 	slab_unlock(page);
1205 	spin_unlock_irqrestore(&n->list_lock, flags);
1206 	if (!ret)
1207 		slab_fix(s, "Object at 0x%p not freed", object);
1208 	return ret;
1209 }
1210 
1211 static int __init setup_slub_debug(char *str)
1212 {
1213 	slub_debug = DEBUG_DEFAULT_FLAGS;
1214 	if (*str++ != '=' || !*str)
1215 		/*
1216 		 * No options specified. Switch on full debugging.
1217 		 */
1218 		goto out;
1219 
1220 	if (*str == ',')
1221 		/*
1222 		 * No options but restriction on slabs. This means full
1223 		 * debugging for slabs matching a pattern.
1224 		 */
1225 		goto check_slabs;
1226 
1227 	slub_debug = 0;
1228 	if (*str == '-')
1229 		/*
1230 		 * Switch off all debugging measures.
1231 		 */
1232 		goto out;
1233 
1234 	/*
1235 	 * Determine which debug features should be switched on
1236 	 */
1237 	for (; *str && *str != ','; str++) {
1238 		switch (tolower(*str)) {
1239 		case 'f':
1240 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1241 			break;
1242 		case 'z':
1243 			slub_debug |= SLAB_RED_ZONE;
1244 			break;
1245 		case 'p':
1246 			slub_debug |= SLAB_POISON;
1247 			break;
1248 		case 'u':
1249 			slub_debug |= SLAB_STORE_USER;
1250 			break;
1251 		case 't':
1252 			slub_debug |= SLAB_TRACE;
1253 			break;
1254 		case 'a':
1255 			slub_debug |= SLAB_FAILSLAB;
1256 			break;
1257 		case 'o':
1258 			/*
1259 			 * Avoid enabling debugging on caches if its minimum
1260 			 * order would increase as a result.
1261 			 */
1262 			disable_higher_order_debug = 1;
1263 			break;
1264 		default:
1265 			pr_err("slub_debug option '%c' unknown. skipped\n",
1266 			       *str);
1267 		}
1268 	}
1269 
1270 check_slabs:
1271 	if (*str == ',')
1272 		slub_debug_slabs = str + 1;
1273 out:
1274 	return 1;
1275 }
1276 
1277 __setup("slub_debug", setup_slub_debug);
1278 
1279 slab_flags_t kmem_cache_flags(unsigned int object_size,
1280 	slab_flags_t flags, const char *name,
1281 	void (*ctor)(void *))
1282 {
1283 	/*
1284 	 * Enable debugging if selected on the kernel commandline.
1285 	 */
1286 	if (slub_debug && (!slub_debug_slabs || (name &&
1287 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1288 		flags |= slub_debug;
1289 
1290 	return flags;
1291 }
1292 #else /* !CONFIG_SLUB_DEBUG */
1293 static inline void setup_object_debug(struct kmem_cache *s,
1294 			struct page *page, void *object) {}
1295 
1296 static inline int alloc_debug_processing(struct kmem_cache *s,
1297 	struct page *page, void *object, unsigned long addr) { return 0; }
1298 
1299 static inline int free_debug_processing(
1300 	struct kmem_cache *s, struct page *page,
1301 	void *head, void *tail, int bulk_cnt,
1302 	unsigned long addr) { return 0; }
1303 
1304 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1305 			{ return 1; }
1306 static inline int check_object(struct kmem_cache *s, struct page *page,
1307 			void *object, u8 val) { return 1; }
1308 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1309 					struct page *page) {}
1310 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1311 					struct page *page) {}
1312 slab_flags_t kmem_cache_flags(unsigned int object_size,
1313 	slab_flags_t flags, const char *name,
1314 	void (*ctor)(void *))
1315 {
1316 	return flags;
1317 }
1318 #define slub_debug 0
1319 
1320 #define disable_higher_order_debug 0
1321 
1322 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1323 							{ return 0; }
1324 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1325 							{ return 0; }
1326 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1327 							int objects) {}
1328 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1329 							int objects) {}
1330 
1331 #endif /* CONFIG_SLUB_DEBUG */
1332 
1333 /*
1334  * Hooks for other subsystems that check memory allocations. In a typical
1335  * production configuration these hooks all should produce no code at all.
1336  */
1337 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1338 {
1339 	kmemleak_alloc(ptr, size, 1, flags);
1340 	kasan_kmalloc_large(ptr, size, flags);
1341 }
1342 
1343 static __always_inline void kfree_hook(void *x)
1344 {
1345 	kmemleak_free(x);
1346 	kasan_kfree_large(x, _RET_IP_);
1347 }
1348 
1349 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1350 {
1351 	kmemleak_free_recursive(x, s->flags);
1352 
1353 	/*
1354 	 * Trouble is that we may no longer disable interrupts in the fast path
1355 	 * So in order to make the debug calls that expect irqs to be
1356 	 * disabled we need to disable interrupts temporarily.
1357 	 */
1358 #ifdef CONFIG_LOCKDEP
1359 	{
1360 		unsigned long flags;
1361 
1362 		local_irq_save(flags);
1363 		debug_check_no_locks_freed(x, s->object_size);
1364 		local_irq_restore(flags);
1365 	}
1366 #endif
1367 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1368 		debug_check_no_obj_freed(x, s->object_size);
1369 
1370 	/* KASAN might put x into memory quarantine, delaying its reuse */
1371 	return kasan_slab_free(s, x, _RET_IP_);
1372 }
1373 
1374 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1375 					   void **head, void **tail)
1376 {
1377 /*
1378  * Compiler cannot detect this function can be removed if slab_free_hook()
1379  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1380  */
1381 #if defined(CONFIG_LOCKDEP)	||		\
1382 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1383 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1384 	defined(CONFIG_KASAN)
1385 
1386 	void *object;
1387 	void *next = *head;
1388 	void *old_tail = *tail ? *tail : *head;
1389 
1390 	/* Head and tail of the reconstructed freelist */
1391 	*head = NULL;
1392 	*tail = NULL;
1393 
1394 	do {
1395 		object = next;
1396 		next = get_freepointer(s, object);
1397 		/* If object's reuse doesn't have to be delayed */
1398 		if (!slab_free_hook(s, object)) {
1399 			/* Move object to the new freelist */
1400 			set_freepointer(s, object, *head);
1401 			*head = object;
1402 			if (!*tail)
1403 				*tail = object;
1404 		}
1405 	} while (object != old_tail);
1406 
1407 	if (*head == *tail)
1408 		*tail = NULL;
1409 
1410 	return *head != NULL;
1411 #else
1412 	return true;
1413 #endif
1414 }
1415 
1416 static void setup_object(struct kmem_cache *s, struct page *page,
1417 				void *object)
1418 {
1419 	setup_object_debug(s, page, object);
1420 	kasan_init_slab_obj(s, object);
1421 	if (unlikely(s->ctor)) {
1422 		kasan_unpoison_object_data(s, object);
1423 		s->ctor(object);
1424 		kasan_poison_object_data(s, object);
1425 	}
1426 }
1427 
1428 /*
1429  * Slab allocation and freeing
1430  */
1431 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1432 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1433 {
1434 	struct page *page;
1435 	unsigned int order = oo_order(oo);
1436 
1437 	if (node == NUMA_NO_NODE)
1438 		page = alloc_pages(flags, order);
1439 	else
1440 		page = __alloc_pages_node(node, flags, order);
1441 
1442 	if (page && memcg_charge_slab(page, flags, order, s)) {
1443 		__free_pages(page, order);
1444 		page = NULL;
1445 	}
1446 
1447 	return page;
1448 }
1449 
1450 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1451 /* Pre-initialize the random sequence cache */
1452 static int init_cache_random_seq(struct kmem_cache *s)
1453 {
1454 	unsigned int count = oo_objects(s->oo);
1455 	int err;
1456 
1457 	/* Bailout if already initialised */
1458 	if (s->random_seq)
1459 		return 0;
1460 
1461 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1462 	if (err) {
1463 		pr_err("SLUB: Unable to initialize free list for %s\n",
1464 			s->name);
1465 		return err;
1466 	}
1467 
1468 	/* Transform to an offset on the set of pages */
1469 	if (s->random_seq) {
1470 		unsigned int i;
1471 
1472 		for (i = 0; i < count; i++)
1473 			s->random_seq[i] *= s->size;
1474 	}
1475 	return 0;
1476 }
1477 
1478 /* Initialize each random sequence freelist per cache */
1479 static void __init init_freelist_randomization(void)
1480 {
1481 	struct kmem_cache *s;
1482 
1483 	mutex_lock(&slab_mutex);
1484 
1485 	list_for_each_entry(s, &slab_caches, list)
1486 		init_cache_random_seq(s);
1487 
1488 	mutex_unlock(&slab_mutex);
1489 }
1490 
1491 /* Get the next entry on the pre-computed freelist randomized */
1492 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1493 				unsigned long *pos, void *start,
1494 				unsigned long page_limit,
1495 				unsigned long freelist_count)
1496 {
1497 	unsigned int idx;
1498 
1499 	/*
1500 	 * If the target page allocation failed, the number of objects on the
1501 	 * page might be smaller than the usual size defined by the cache.
1502 	 */
1503 	do {
1504 		idx = s->random_seq[*pos];
1505 		*pos += 1;
1506 		if (*pos >= freelist_count)
1507 			*pos = 0;
1508 	} while (unlikely(idx >= page_limit));
1509 
1510 	return (char *)start + idx;
1511 }
1512 
1513 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1514 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1515 {
1516 	void *start;
1517 	void *cur;
1518 	void *next;
1519 	unsigned long idx, pos, page_limit, freelist_count;
1520 
1521 	if (page->objects < 2 || !s->random_seq)
1522 		return false;
1523 
1524 	freelist_count = oo_objects(s->oo);
1525 	pos = get_random_int() % freelist_count;
1526 
1527 	page_limit = page->objects * s->size;
1528 	start = fixup_red_left(s, page_address(page));
1529 
1530 	/* First entry is used as the base of the freelist */
1531 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1532 				freelist_count);
1533 	page->freelist = cur;
1534 
1535 	for (idx = 1; idx < page->objects; idx++) {
1536 		setup_object(s, page, cur);
1537 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1538 			freelist_count);
1539 		set_freepointer(s, cur, next);
1540 		cur = next;
1541 	}
1542 	setup_object(s, page, cur);
1543 	set_freepointer(s, cur, NULL);
1544 
1545 	return true;
1546 }
1547 #else
1548 static inline int init_cache_random_seq(struct kmem_cache *s)
1549 {
1550 	return 0;
1551 }
1552 static inline void init_freelist_randomization(void) { }
1553 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1554 {
1555 	return false;
1556 }
1557 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1558 
1559 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1560 {
1561 	struct page *page;
1562 	struct kmem_cache_order_objects oo = s->oo;
1563 	gfp_t alloc_gfp;
1564 	void *start, *p;
1565 	int idx, order;
1566 	bool shuffle;
1567 
1568 	flags &= gfp_allowed_mask;
1569 
1570 	if (gfpflags_allow_blocking(flags))
1571 		local_irq_enable();
1572 
1573 	flags |= s->allocflags;
1574 
1575 	/*
1576 	 * Let the initial higher-order allocation fail under memory pressure
1577 	 * so we fall-back to the minimum order allocation.
1578 	 */
1579 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1580 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1581 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1582 
1583 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1584 	if (unlikely(!page)) {
1585 		oo = s->min;
1586 		alloc_gfp = flags;
1587 		/*
1588 		 * Allocation may have failed due to fragmentation.
1589 		 * Try a lower order alloc if possible
1590 		 */
1591 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1592 		if (unlikely(!page))
1593 			goto out;
1594 		stat(s, ORDER_FALLBACK);
1595 	}
1596 
1597 	page->objects = oo_objects(oo);
1598 
1599 	order = compound_order(page);
1600 	page->slab_cache = s;
1601 	__SetPageSlab(page);
1602 	if (page_is_pfmemalloc(page))
1603 		SetPageSlabPfmemalloc(page);
1604 
1605 	start = page_address(page);
1606 
1607 	if (unlikely(s->flags & SLAB_POISON))
1608 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1609 
1610 	kasan_poison_slab(page);
1611 
1612 	shuffle = shuffle_freelist(s, page);
1613 
1614 	if (!shuffle) {
1615 		for_each_object_idx(p, idx, s, start, page->objects) {
1616 			setup_object(s, page, p);
1617 			if (likely(idx < page->objects))
1618 				set_freepointer(s, p, p + s->size);
1619 			else
1620 				set_freepointer(s, p, NULL);
1621 		}
1622 		page->freelist = fixup_red_left(s, start);
1623 	}
1624 
1625 	page->inuse = page->objects;
1626 	page->frozen = 1;
1627 
1628 out:
1629 	if (gfpflags_allow_blocking(flags))
1630 		local_irq_disable();
1631 	if (!page)
1632 		return NULL;
1633 
1634 	mod_lruvec_page_state(page,
1635 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1636 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1637 		1 << oo_order(oo));
1638 
1639 	inc_slabs_node(s, page_to_nid(page), page->objects);
1640 
1641 	return page;
1642 }
1643 
1644 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1645 {
1646 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1647 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1648 		flags &= ~GFP_SLAB_BUG_MASK;
1649 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1650 				invalid_mask, &invalid_mask, flags, &flags);
1651 		dump_stack();
1652 	}
1653 
1654 	return allocate_slab(s,
1655 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1656 }
1657 
1658 static void __free_slab(struct kmem_cache *s, struct page *page)
1659 {
1660 	int order = compound_order(page);
1661 	int pages = 1 << order;
1662 
1663 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1664 		void *p;
1665 
1666 		slab_pad_check(s, page);
1667 		for_each_object(p, s, page_address(page),
1668 						page->objects)
1669 			check_object(s, page, p, SLUB_RED_INACTIVE);
1670 	}
1671 
1672 	mod_lruvec_page_state(page,
1673 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1674 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1675 		-pages);
1676 
1677 	__ClearPageSlabPfmemalloc(page);
1678 	__ClearPageSlab(page);
1679 
1680 	page->mapping = NULL;
1681 	if (current->reclaim_state)
1682 		current->reclaim_state->reclaimed_slab += pages;
1683 	memcg_uncharge_slab(page, order, s);
1684 	__free_pages(page, order);
1685 }
1686 
1687 static void rcu_free_slab(struct rcu_head *h)
1688 {
1689 	struct page *page = container_of(h, struct page, rcu_head);
1690 
1691 	__free_slab(page->slab_cache, page);
1692 }
1693 
1694 static void free_slab(struct kmem_cache *s, struct page *page)
1695 {
1696 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1697 		call_rcu(&page->rcu_head, rcu_free_slab);
1698 	} else
1699 		__free_slab(s, page);
1700 }
1701 
1702 static void discard_slab(struct kmem_cache *s, struct page *page)
1703 {
1704 	dec_slabs_node(s, page_to_nid(page), page->objects);
1705 	free_slab(s, page);
1706 }
1707 
1708 /*
1709  * Management of partially allocated slabs.
1710  */
1711 static inline void
1712 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1713 {
1714 	n->nr_partial++;
1715 	if (tail == DEACTIVATE_TO_TAIL)
1716 		list_add_tail(&page->lru, &n->partial);
1717 	else
1718 		list_add(&page->lru, &n->partial);
1719 }
1720 
1721 static inline void add_partial(struct kmem_cache_node *n,
1722 				struct page *page, int tail)
1723 {
1724 	lockdep_assert_held(&n->list_lock);
1725 	__add_partial(n, page, tail);
1726 }
1727 
1728 static inline void remove_partial(struct kmem_cache_node *n,
1729 					struct page *page)
1730 {
1731 	lockdep_assert_held(&n->list_lock);
1732 	list_del(&page->lru);
1733 	n->nr_partial--;
1734 }
1735 
1736 /*
1737  * Remove slab from the partial list, freeze it and
1738  * return the pointer to the freelist.
1739  *
1740  * Returns a list of objects or NULL if it fails.
1741  */
1742 static inline void *acquire_slab(struct kmem_cache *s,
1743 		struct kmem_cache_node *n, struct page *page,
1744 		int mode, int *objects)
1745 {
1746 	void *freelist;
1747 	unsigned long counters;
1748 	struct page new;
1749 
1750 	lockdep_assert_held(&n->list_lock);
1751 
1752 	/*
1753 	 * Zap the freelist and set the frozen bit.
1754 	 * The old freelist is the list of objects for the
1755 	 * per cpu allocation list.
1756 	 */
1757 	freelist = page->freelist;
1758 	counters = page->counters;
1759 	new.counters = counters;
1760 	*objects = new.objects - new.inuse;
1761 	if (mode) {
1762 		new.inuse = page->objects;
1763 		new.freelist = NULL;
1764 	} else {
1765 		new.freelist = freelist;
1766 	}
1767 
1768 	VM_BUG_ON(new.frozen);
1769 	new.frozen = 1;
1770 
1771 	if (!__cmpxchg_double_slab(s, page,
1772 			freelist, counters,
1773 			new.freelist, new.counters,
1774 			"acquire_slab"))
1775 		return NULL;
1776 
1777 	remove_partial(n, page);
1778 	WARN_ON(!freelist);
1779 	return freelist;
1780 }
1781 
1782 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1783 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1784 
1785 /*
1786  * Try to allocate a partial slab from a specific node.
1787  */
1788 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1789 				struct kmem_cache_cpu *c, gfp_t flags)
1790 {
1791 	struct page *page, *page2;
1792 	void *object = NULL;
1793 	unsigned int available = 0;
1794 	int objects;
1795 
1796 	/*
1797 	 * Racy check. If we mistakenly see no partial slabs then we
1798 	 * just allocate an empty slab. If we mistakenly try to get a
1799 	 * partial slab and there is none available then get_partials()
1800 	 * will return NULL.
1801 	 */
1802 	if (!n || !n->nr_partial)
1803 		return NULL;
1804 
1805 	spin_lock(&n->list_lock);
1806 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1807 		void *t;
1808 
1809 		if (!pfmemalloc_match(page, flags))
1810 			continue;
1811 
1812 		t = acquire_slab(s, n, page, object == NULL, &objects);
1813 		if (!t)
1814 			break;
1815 
1816 		available += objects;
1817 		if (!object) {
1818 			c->page = page;
1819 			stat(s, ALLOC_FROM_PARTIAL);
1820 			object = t;
1821 		} else {
1822 			put_cpu_partial(s, page, 0);
1823 			stat(s, CPU_PARTIAL_NODE);
1824 		}
1825 		if (!kmem_cache_has_cpu_partial(s)
1826 			|| available > slub_cpu_partial(s) / 2)
1827 			break;
1828 
1829 	}
1830 	spin_unlock(&n->list_lock);
1831 	return object;
1832 }
1833 
1834 /*
1835  * Get a page from somewhere. Search in increasing NUMA distances.
1836  */
1837 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1838 		struct kmem_cache_cpu *c)
1839 {
1840 #ifdef CONFIG_NUMA
1841 	struct zonelist *zonelist;
1842 	struct zoneref *z;
1843 	struct zone *zone;
1844 	enum zone_type high_zoneidx = gfp_zone(flags);
1845 	void *object;
1846 	unsigned int cpuset_mems_cookie;
1847 
1848 	/*
1849 	 * The defrag ratio allows a configuration of the tradeoffs between
1850 	 * inter node defragmentation and node local allocations. A lower
1851 	 * defrag_ratio increases the tendency to do local allocations
1852 	 * instead of attempting to obtain partial slabs from other nodes.
1853 	 *
1854 	 * If the defrag_ratio is set to 0 then kmalloc() always
1855 	 * returns node local objects. If the ratio is higher then kmalloc()
1856 	 * may return off node objects because partial slabs are obtained
1857 	 * from other nodes and filled up.
1858 	 *
1859 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1860 	 * (which makes defrag_ratio = 1000) then every (well almost)
1861 	 * allocation will first attempt to defrag slab caches on other nodes.
1862 	 * This means scanning over all nodes to look for partial slabs which
1863 	 * may be expensive if we do it every time we are trying to find a slab
1864 	 * with available objects.
1865 	 */
1866 	if (!s->remote_node_defrag_ratio ||
1867 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1868 		return NULL;
1869 
1870 	do {
1871 		cpuset_mems_cookie = read_mems_allowed_begin();
1872 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1873 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1874 			struct kmem_cache_node *n;
1875 
1876 			n = get_node(s, zone_to_nid(zone));
1877 
1878 			if (n && cpuset_zone_allowed(zone, flags) &&
1879 					n->nr_partial > s->min_partial) {
1880 				object = get_partial_node(s, n, c, flags);
1881 				if (object) {
1882 					/*
1883 					 * Don't check read_mems_allowed_retry()
1884 					 * here - if mems_allowed was updated in
1885 					 * parallel, that was a harmless race
1886 					 * between allocation and the cpuset
1887 					 * update
1888 					 */
1889 					return object;
1890 				}
1891 			}
1892 		}
1893 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1894 #endif
1895 	return NULL;
1896 }
1897 
1898 /*
1899  * Get a partial page, lock it and return it.
1900  */
1901 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1902 		struct kmem_cache_cpu *c)
1903 {
1904 	void *object;
1905 	int searchnode = node;
1906 
1907 	if (node == NUMA_NO_NODE)
1908 		searchnode = numa_mem_id();
1909 	else if (!node_present_pages(node))
1910 		searchnode = node_to_mem_node(node);
1911 
1912 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1913 	if (object || node != NUMA_NO_NODE)
1914 		return object;
1915 
1916 	return get_any_partial(s, flags, c);
1917 }
1918 
1919 #ifdef CONFIG_PREEMPT
1920 /*
1921  * Calculate the next globally unique transaction for disambiguiation
1922  * during cmpxchg. The transactions start with the cpu number and are then
1923  * incremented by CONFIG_NR_CPUS.
1924  */
1925 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1926 #else
1927 /*
1928  * No preemption supported therefore also no need to check for
1929  * different cpus.
1930  */
1931 #define TID_STEP 1
1932 #endif
1933 
1934 static inline unsigned long next_tid(unsigned long tid)
1935 {
1936 	return tid + TID_STEP;
1937 }
1938 
1939 static inline unsigned int tid_to_cpu(unsigned long tid)
1940 {
1941 	return tid % TID_STEP;
1942 }
1943 
1944 static inline unsigned long tid_to_event(unsigned long tid)
1945 {
1946 	return tid / TID_STEP;
1947 }
1948 
1949 static inline unsigned int init_tid(int cpu)
1950 {
1951 	return cpu;
1952 }
1953 
1954 static inline void note_cmpxchg_failure(const char *n,
1955 		const struct kmem_cache *s, unsigned long tid)
1956 {
1957 #ifdef SLUB_DEBUG_CMPXCHG
1958 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1959 
1960 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1961 
1962 #ifdef CONFIG_PREEMPT
1963 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1964 		pr_warn("due to cpu change %d -> %d\n",
1965 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1966 	else
1967 #endif
1968 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1969 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1970 			tid_to_event(tid), tid_to_event(actual_tid));
1971 	else
1972 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1973 			actual_tid, tid, next_tid(tid));
1974 #endif
1975 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1976 }
1977 
1978 static void init_kmem_cache_cpus(struct kmem_cache *s)
1979 {
1980 	int cpu;
1981 
1982 	for_each_possible_cpu(cpu)
1983 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1984 }
1985 
1986 /*
1987  * Remove the cpu slab
1988  */
1989 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1990 				void *freelist, struct kmem_cache_cpu *c)
1991 {
1992 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1993 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1994 	int lock = 0;
1995 	enum slab_modes l = M_NONE, m = M_NONE;
1996 	void *nextfree;
1997 	int tail = DEACTIVATE_TO_HEAD;
1998 	struct page new;
1999 	struct page old;
2000 
2001 	if (page->freelist) {
2002 		stat(s, DEACTIVATE_REMOTE_FREES);
2003 		tail = DEACTIVATE_TO_TAIL;
2004 	}
2005 
2006 	/*
2007 	 * Stage one: Free all available per cpu objects back
2008 	 * to the page freelist while it is still frozen. Leave the
2009 	 * last one.
2010 	 *
2011 	 * There is no need to take the list->lock because the page
2012 	 * is still frozen.
2013 	 */
2014 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2015 		void *prior;
2016 		unsigned long counters;
2017 
2018 		do {
2019 			prior = page->freelist;
2020 			counters = page->counters;
2021 			set_freepointer(s, freelist, prior);
2022 			new.counters = counters;
2023 			new.inuse--;
2024 			VM_BUG_ON(!new.frozen);
2025 
2026 		} while (!__cmpxchg_double_slab(s, page,
2027 			prior, counters,
2028 			freelist, new.counters,
2029 			"drain percpu freelist"));
2030 
2031 		freelist = nextfree;
2032 	}
2033 
2034 	/*
2035 	 * Stage two: Ensure that the page is unfrozen while the
2036 	 * list presence reflects the actual number of objects
2037 	 * during unfreeze.
2038 	 *
2039 	 * We setup the list membership and then perform a cmpxchg
2040 	 * with the count. If there is a mismatch then the page
2041 	 * is not unfrozen but the page is on the wrong list.
2042 	 *
2043 	 * Then we restart the process which may have to remove
2044 	 * the page from the list that we just put it on again
2045 	 * because the number of objects in the slab may have
2046 	 * changed.
2047 	 */
2048 redo:
2049 
2050 	old.freelist = page->freelist;
2051 	old.counters = page->counters;
2052 	VM_BUG_ON(!old.frozen);
2053 
2054 	/* Determine target state of the slab */
2055 	new.counters = old.counters;
2056 	if (freelist) {
2057 		new.inuse--;
2058 		set_freepointer(s, freelist, old.freelist);
2059 		new.freelist = freelist;
2060 	} else
2061 		new.freelist = old.freelist;
2062 
2063 	new.frozen = 0;
2064 
2065 	if (!new.inuse && n->nr_partial >= s->min_partial)
2066 		m = M_FREE;
2067 	else if (new.freelist) {
2068 		m = M_PARTIAL;
2069 		if (!lock) {
2070 			lock = 1;
2071 			/*
2072 			 * Taking the spinlock removes the possiblity
2073 			 * that acquire_slab() will see a slab page that
2074 			 * is frozen
2075 			 */
2076 			spin_lock(&n->list_lock);
2077 		}
2078 	} else {
2079 		m = M_FULL;
2080 		if (kmem_cache_debug(s) && !lock) {
2081 			lock = 1;
2082 			/*
2083 			 * This also ensures that the scanning of full
2084 			 * slabs from diagnostic functions will not see
2085 			 * any frozen slabs.
2086 			 */
2087 			spin_lock(&n->list_lock);
2088 		}
2089 	}
2090 
2091 	if (l != m) {
2092 
2093 		if (l == M_PARTIAL)
2094 
2095 			remove_partial(n, page);
2096 
2097 		else if (l == M_FULL)
2098 
2099 			remove_full(s, n, page);
2100 
2101 		if (m == M_PARTIAL) {
2102 
2103 			add_partial(n, page, tail);
2104 			stat(s, tail);
2105 
2106 		} else if (m == M_FULL) {
2107 
2108 			stat(s, DEACTIVATE_FULL);
2109 			add_full(s, n, page);
2110 
2111 		}
2112 	}
2113 
2114 	l = m;
2115 	if (!__cmpxchg_double_slab(s, page,
2116 				old.freelist, old.counters,
2117 				new.freelist, new.counters,
2118 				"unfreezing slab"))
2119 		goto redo;
2120 
2121 	if (lock)
2122 		spin_unlock(&n->list_lock);
2123 
2124 	if (m == M_FREE) {
2125 		stat(s, DEACTIVATE_EMPTY);
2126 		discard_slab(s, page);
2127 		stat(s, FREE_SLAB);
2128 	}
2129 
2130 	c->page = NULL;
2131 	c->freelist = NULL;
2132 }
2133 
2134 /*
2135  * Unfreeze all the cpu partial slabs.
2136  *
2137  * This function must be called with interrupts disabled
2138  * for the cpu using c (or some other guarantee must be there
2139  * to guarantee no concurrent accesses).
2140  */
2141 static void unfreeze_partials(struct kmem_cache *s,
2142 		struct kmem_cache_cpu *c)
2143 {
2144 #ifdef CONFIG_SLUB_CPU_PARTIAL
2145 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2146 	struct page *page, *discard_page = NULL;
2147 
2148 	while ((page = c->partial)) {
2149 		struct page new;
2150 		struct page old;
2151 
2152 		c->partial = page->next;
2153 
2154 		n2 = get_node(s, page_to_nid(page));
2155 		if (n != n2) {
2156 			if (n)
2157 				spin_unlock(&n->list_lock);
2158 
2159 			n = n2;
2160 			spin_lock(&n->list_lock);
2161 		}
2162 
2163 		do {
2164 
2165 			old.freelist = page->freelist;
2166 			old.counters = page->counters;
2167 			VM_BUG_ON(!old.frozen);
2168 
2169 			new.counters = old.counters;
2170 			new.freelist = old.freelist;
2171 
2172 			new.frozen = 0;
2173 
2174 		} while (!__cmpxchg_double_slab(s, page,
2175 				old.freelist, old.counters,
2176 				new.freelist, new.counters,
2177 				"unfreezing slab"));
2178 
2179 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2180 			page->next = discard_page;
2181 			discard_page = page;
2182 		} else {
2183 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2184 			stat(s, FREE_ADD_PARTIAL);
2185 		}
2186 	}
2187 
2188 	if (n)
2189 		spin_unlock(&n->list_lock);
2190 
2191 	while (discard_page) {
2192 		page = discard_page;
2193 		discard_page = discard_page->next;
2194 
2195 		stat(s, DEACTIVATE_EMPTY);
2196 		discard_slab(s, page);
2197 		stat(s, FREE_SLAB);
2198 	}
2199 #endif
2200 }
2201 
2202 /*
2203  * Put a page that was just frozen (in __slab_free) into a partial page
2204  * slot if available.
2205  *
2206  * If we did not find a slot then simply move all the partials to the
2207  * per node partial list.
2208  */
2209 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2210 {
2211 #ifdef CONFIG_SLUB_CPU_PARTIAL
2212 	struct page *oldpage;
2213 	int pages;
2214 	int pobjects;
2215 
2216 	preempt_disable();
2217 	do {
2218 		pages = 0;
2219 		pobjects = 0;
2220 		oldpage = this_cpu_read(s->cpu_slab->partial);
2221 
2222 		if (oldpage) {
2223 			pobjects = oldpage->pobjects;
2224 			pages = oldpage->pages;
2225 			if (drain && pobjects > s->cpu_partial) {
2226 				unsigned long flags;
2227 				/*
2228 				 * partial array is full. Move the existing
2229 				 * set to the per node partial list.
2230 				 */
2231 				local_irq_save(flags);
2232 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2233 				local_irq_restore(flags);
2234 				oldpage = NULL;
2235 				pobjects = 0;
2236 				pages = 0;
2237 				stat(s, CPU_PARTIAL_DRAIN);
2238 			}
2239 		}
2240 
2241 		pages++;
2242 		pobjects += page->objects - page->inuse;
2243 
2244 		page->pages = pages;
2245 		page->pobjects = pobjects;
2246 		page->next = oldpage;
2247 
2248 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2249 								!= oldpage);
2250 	if (unlikely(!s->cpu_partial)) {
2251 		unsigned long flags;
2252 
2253 		local_irq_save(flags);
2254 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2255 		local_irq_restore(flags);
2256 	}
2257 	preempt_enable();
2258 #endif
2259 }
2260 
2261 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2262 {
2263 	stat(s, CPUSLAB_FLUSH);
2264 	deactivate_slab(s, c->page, c->freelist, c);
2265 
2266 	c->tid = next_tid(c->tid);
2267 }
2268 
2269 /*
2270  * Flush cpu slab.
2271  *
2272  * Called from IPI handler with interrupts disabled.
2273  */
2274 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2275 {
2276 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2277 
2278 	if (likely(c)) {
2279 		if (c->page)
2280 			flush_slab(s, c);
2281 
2282 		unfreeze_partials(s, c);
2283 	}
2284 }
2285 
2286 static void flush_cpu_slab(void *d)
2287 {
2288 	struct kmem_cache *s = d;
2289 
2290 	__flush_cpu_slab(s, smp_processor_id());
2291 }
2292 
2293 static bool has_cpu_slab(int cpu, void *info)
2294 {
2295 	struct kmem_cache *s = info;
2296 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2297 
2298 	return c->page || slub_percpu_partial(c);
2299 }
2300 
2301 static void flush_all(struct kmem_cache *s)
2302 {
2303 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2304 }
2305 
2306 /*
2307  * Use the cpu notifier to insure that the cpu slabs are flushed when
2308  * necessary.
2309  */
2310 static int slub_cpu_dead(unsigned int cpu)
2311 {
2312 	struct kmem_cache *s;
2313 	unsigned long flags;
2314 
2315 	mutex_lock(&slab_mutex);
2316 	list_for_each_entry(s, &slab_caches, list) {
2317 		local_irq_save(flags);
2318 		__flush_cpu_slab(s, cpu);
2319 		local_irq_restore(flags);
2320 	}
2321 	mutex_unlock(&slab_mutex);
2322 	return 0;
2323 }
2324 
2325 /*
2326  * Check if the objects in a per cpu structure fit numa
2327  * locality expectations.
2328  */
2329 static inline int node_match(struct page *page, int node)
2330 {
2331 #ifdef CONFIG_NUMA
2332 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2333 		return 0;
2334 #endif
2335 	return 1;
2336 }
2337 
2338 #ifdef CONFIG_SLUB_DEBUG
2339 static int count_free(struct page *page)
2340 {
2341 	return page->objects - page->inuse;
2342 }
2343 
2344 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2345 {
2346 	return atomic_long_read(&n->total_objects);
2347 }
2348 #endif /* CONFIG_SLUB_DEBUG */
2349 
2350 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2351 static unsigned long count_partial(struct kmem_cache_node *n,
2352 					int (*get_count)(struct page *))
2353 {
2354 	unsigned long flags;
2355 	unsigned long x = 0;
2356 	struct page *page;
2357 
2358 	spin_lock_irqsave(&n->list_lock, flags);
2359 	list_for_each_entry(page, &n->partial, lru)
2360 		x += get_count(page);
2361 	spin_unlock_irqrestore(&n->list_lock, flags);
2362 	return x;
2363 }
2364 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2365 
2366 static noinline void
2367 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2368 {
2369 #ifdef CONFIG_SLUB_DEBUG
2370 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2371 				      DEFAULT_RATELIMIT_BURST);
2372 	int node;
2373 	struct kmem_cache_node *n;
2374 
2375 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2376 		return;
2377 
2378 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2379 		nid, gfpflags, &gfpflags);
2380 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2381 		s->name, s->object_size, s->size, oo_order(s->oo),
2382 		oo_order(s->min));
2383 
2384 	if (oo_order(s->min) > get_order(s->object_size))
2385 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2386 			s->name);
2387 
2388 	for_each_kmem_cache_node(s, node, n) {
2389 		unsigned long nr_slabs;
2390 		unsigned long nr_objs;
2391 		unsigned long nr_free;
2392 
2393 		nr_free  = count_partial(n, count_free);
2394 		nr_slabs = node_nr_slabs(n);
2395 		nr_objs  = node_nr_objs(n);
2396 
2397 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2398 			node, nr_slabs, nr_objs, nr_free);
2399 	}
2400 #endif
2401 }
2402 
2403 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2404 			int node, struct kmem_cache_cpu **pc)
2405 {
2406 	void *freelist;
2407 	struct kmem_cache_cpu *c = *pc;
2408 	struct page *page;
2409 
2410 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2411 
2412 	freelist = get_partial(s, flags, node, c);
2413 
2414 	if (freelist)
2415 		return freelist;
2416 
2417 	page = new_slab(s, flags, node);
2418 	if (page) {
2419 		c = raw_cpu_ptr(s->cpu_slab);
2420 		if (c->page)
2421 			flush_slab(s, c);
2422 
2423 		/*
2424 		 * No other reference to the page yet so we can
2425 		 * muck around with it freely without cmpxchg
2426 		 */
2427 		freelist = page->freelist;
2428 		page->freelist = NULL;
2429 
2430 		stat(s, ALLOC_SLAB);
2431 		c->page = page;
2432 		*pc = c;
2433 	} else
2434 		freelist = NULL;
2435 
2436 	return freelist;
2437 }
2438 
2439 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2440 {
2441 	if (unlikely(PageSlabPfmemalloc(page)))
2442 		return gfp_pfmemalloc_allowed(gfpflags);
2443 
2444 	return true;
2445 }
2446 
2447 /*
2448  * Check the page->freelist of a page and either transfer the freelist to the
2449  * per cpu freelist or deactivate the page.
2450  *
2451  * The page is still frozen if the return value is not NULL.
2452  *
2453  * If this function returns NULL then the page has been unfrozen.
2454  *
2455  * This function must be called with interrupt disabled.
2456  */
2457 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2458 {
2459 	struct page new;
2460 	unsigned long counters;
2461 	void *freelist;
2462 
2463 	do {
2464 		freelist = page->freelist;
2465 		counters = page->counters;
2466 
2467 		new.counters = counters;
2468 		VM_BUG_ON(!new.frozen);
2469 
2470 		new.inuse = page->objects;
2471 		new.frozen = freelist != NULL;
2472 
2473 	} while (!__cmpxchg_double_slab(s, page,
2474 		freelist, counters,
2475 		NULL, new.counters,
2476 		"get_freelist"));
2477 
2478 	return freelist;
2479 }
2480 
2481 /*
2482  * Slow path. The lockless freelist is empty or we need to perform
2483  * debugging duties.
2484  *
2485  * Processing is still very fast if new objects have been freed to the
2486  * regular freelist. In that case we simply take over the regular freelist
2487  * as the lockless freelist and zap the regular freelist.
2488  *
2489  * If that is not working then we fall back to the partial lists. We take the
2490  * first element of the freelist as the object to allocate now and move the
2491  * rest of the freelist to the lockless freelist.
2492  *
2493  * And if we were unable to get a new slab from the partial slab lists then
2494  * we need to allocate a new slab. This is the slowest path since it involves
2495  * a call to the page allocator and the setup of a new slab.
2496  *
2497  * Version of __slab_alloc to use when we know that interrupts are
2498  * already disabled (which is the case for bulk allocation).
2499  */
2500 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2501 			  unsigned long addr, struct kmem_cache_cpu *c)
2502 {
2503 	void *freelist;
2504 	struct page *page;
2505 
2506 	page = c->page;
2507 	if (!page)
2508 		goto new_slab;
2509 redo:
2510 
2511 	if (unlikely(!node_match(page, node))) {
2512 		int searchnode = node;
2513 
2514 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2515 			searchnode = node_to_mem_node(node);
2516 
2517 		if (unlikely(!node_match(page, searchnode))) {
2518 			stat(s, ALLOC_NODE_MISMATCH);
2519 			deactivate_slab(s, page, c->freelist, c);
2520 			goto new_slab;
2521 		}
2522 	}
2523 
2524 	/*
2525 	 * By rights, we should be searching for a slab page that was
2526 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2527 	 * information when the page leaves the per-cpu allocator
2528 	 */
2529 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2530 		deactivate_slab(s, page, c->freelist, c);
2531 		goto new_slab;
2532 	}
2533 
2534 	/* must check again c->freelist in case of cpu migration or IRQ */
2535 	freelist = c->freelist;
2536 	if (freelist)
2537 		goto load_freelist;
2538 
2539 	freelist = get_freelist(s, page);
2540 
2541 	if (!freelist) {
2542 		c->page = NULL;
2543 		stat(s, DEACTIVATE_BYPASS);
2544 		goto new_slab;
2545 	}
2546 
2547 	stat(s, ALLOC_REFILL);
2548 
2549 load_freelist:
2550 	/*
2551 	 * freelist is pointing to the list of objects to be used.
2552 	 * page is pointing to the page from which the objects are obtained.
2553 	 * That page must be frozen for per cpu allocations to work.
2554 	 */
2555 	VM_BUG_ON(!c->page->frozen);
2556 	c->freelist = get_freepointer(s, freelist);
2557 	c->tid = next_tid(c->tid);
2558 	return freelist;
2559 
2560 new_slab:
2561 
2562 	if (slub_percpu_partial(c)) {
2563 		page = c->page = slub_percpu_partial(c);
2564 		slub_set_percpu_partial(c, page);
2565 		stat(s, CPU_PARTIAL_ALLOC);
2566 		goto redo;
2567 	}
2568 
2569 	freelist = new_slab_objects(s, gfpflags, node, &c);
2570 
2571 	if (unlikely(!freelist)) {
2572 		slab_out_of_memory(s, gfpflags, node);
2573 		return NULL;
2574 	}
2575 
2576 	page = c->page;
2577 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2578 		goto load_freelist;
2579 
2580 	/* Only entered in the debug case */
2581 	if (kmem_cache_debug(s) &&
2582 			!alloc_debug_processing(s, page, freelist, addr))
2583 		goto new_slab;	/* Slab failed checks. Next slab needed */
2584 
2585 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2586 	return freelist;
2587 }
2588 
2589 /*
2590  * Another one that disabled interrupt and compensates for possible
2591  * cpu changes by refetching the per cpu area pointer.
2592  */
2593 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2594 			  unsigned long addr, struct kmem_cache_cpu *c)
2595 {
2596 	void *p;
2597 	unsigned long flags;
2598 
2599 	local_irq_save(flags);
2600 #ifdef CONFIG_PREEMPT
2601 	/*
2602 	 * We may have been preempted and rescheduled on a different
2603 	 * cpu before disabling interrupts. Need to reload cpu area
2604 	 * pointer.
2605 	 */
2606 	c = this_cpu_ptr(s->cpu_slab);
2607 #endif
2608 
2609 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2610 	local_irq_restore(flags);
2611 	return p;
2612 }
2613 
2614 /*
2615  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2616  * have the fastpath folded into their functions. So no function call
2617  * overhead for requests that can be satisfied on the fastpath.
2618  *
2619  * The fastpath works by first checking if the lockless freelist can be used.
2620  * If not then __slab_alloc is called for slow processing.
2621  *
2622  * Otherwise we can simply pick the next object from the lockless free list.
2623  */
2624 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2625 		gfp_t gfpflags, int node, unsigned long addr)
2626 {
2627 	void *object;
2628 	struct kmem_cache_cpu *c;
2629 	struct page *page;
2630 	unsigned long tid;
2631 
2632 	s = slab_pre_alloc_hook(s, gfpflags);
2633 	if (!s)
2634 		return NULL;
2635 redo:
2636 	/*
2637 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2638 	 * enabled. We may switch back and forth between cpus while
2639 	 * reading from one cpu area. That does not matter as long
2640 	 * as we end up on the original cpu again when doing the cmpxchg.
2641 	 *
2642 	 * We should guarantee that tid and kmem_cache are retrieved on
2643 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2644 	 * to check if it is matched or not.
2645 	 */
2646 	do {
2647 		tid = this_cpu_read(s->cpu_slab->tid);
2648 		c = raw_cpu_ptr(s->cpu_slab);
2649 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2650 		 unlikely(tid != READ_ONCE(c->tid)));
2651 
2652 	/*
2653 	 * Irqless object alloc/free algorithm used here depends on sequence
2654 	 * of fetching cpu_slab's data. tid should be fetched before anything
2655 	 * on c to guarantee that object and page associated with previous tid
2656 	 * won't be used with current tid. If we fetch tid first, object and
2657 	 * page could be one associated with next tid and our alloc/free
2658 	 * request will be failed. In this case, we will retry. So, no problem.
2659 	 */
2660 	barrier();
2661 
2662 	/*
2663 	 * The transaction ids are globally unique per cpu and per operation on
2664 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2665 	 * occurs on the right processor and that there was no operation on the
2666 	 * linked list in between.
2667 	 */
2668 
2669 	object = c->freelist;
2670 	page = c->page;
2671 	if (unlikely(!object || !node_match(page, node))) {
2672 		object = __slab_alloc(s, gfpflags, node, addr, c);
2673 		stat(s, ALLOC_SLOWPATH);
2674 	} else {
2675 		void *next_object = get_freepointer_safe(s, object);
2676 
2677 		/*
2678 		 * The cmpxchg will only match if there was no additional
2679 		 * operation and if we are on the right processor.
2680 		 *
2681 		 * The cmpxchg does the following atomically (without lock
2682 		 * semantics!)
2683 		 * 1. Relocate first pointer to the current per cpu area.
2684 		 * 2. Verify that tid and freelist have not been changed
2685 		 * 3. If they were not changed replace tid and freelist
2686 		 *
2687 		 * Since this is without lock semantics the protection is only
2688 		 * against code executing on this cpu *not* from access by
2689 		 * other cpus.
2690 		 */
2691 		if (unlikely(!this_cpu_cmpxchg_double(
2692 				s->cpu_slab->freelist, s->cpu_slab->tid,
2693 				object, tid,
2694 				next_object, next_tid(tid)))) {
2695 
2696 			note_cmpxchg_failure("slab_alloc", s, tid);
2697 			goto redo;
2698 		}
2699 		prefetch_freepointer(s, next_object);
2700 		stat(s, ALLOC_FASTPATH);
2701 	}
2702 
2703 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2704 		memset(object, 0, s->object_size);
2705 
2706 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2707 
2708 	return object;
2709 }
2710 
2711 static __always_inline void *slab_alloc(struct kmem_cache *s,
2712 		gfp_t gfpflags, unsigned long addr)
2713 {
2714 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2715 }
2716 
2717 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2718 {
2719 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2720 
2721 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2722 				s->size, gfpflags);
2723 
2724 	return ret;
2725 }
2726 EXPORT_SYMBOL(kmem_cache_alloc);
2727 
2728 #ifdef CONFIG_TRACING
2729 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2730 {
2731 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2732 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2733 	kasan_kmalloc(s, ret, size, gfpflags);
2734 	return ret;
2735 }
2736 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2737 #endif
2738 
2739 #ifdef CONFIG_NUMA
2740 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2741 {
2742 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2743 
2744 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2745 				    s->object_size, s->size, gfpflags, node);
2746 
2747 	return ret;
2748 }
2749 EXPORT_SYMBOL(kmem_cache_alloc_node);
2750 
2751 #ifdef CONFIG_TRACING
2752 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2753 				    gfp_t gfpflags,
2754 				    int node, size_t size)
2755 {
2756 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2757 
2758 	trace_kmalloc_node(_RET_IP_, ret,
2759 			   size, s->size, gfpflags, node);
2760 
2761 	kasan_kmalloc(s, ret, size, gfpflags);
2762 	return ret;
2763 }
2764 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2765 #endif
2766 #endif
2767 
2768 /*
2769  * Slow path handling. This may still be called frequently since objects
2770  * have a longer lifetime than the cpu slabs in most processing loads.
2771  *
2772  * So we still attempt to reduce cache line usage. Just take the slab
2773  * lock and free the item. If there is no additional partial page
2774  * handling required then we can return immediately.
2775  */
2776 static void __slab_free(struct kmem_cache *s, struct page *page,
2777 			void *head, void *tail, int cnt,
2778 			unsigned long addr)
2779 
2780 {
2781 	void *prior;
2782 	int was_frozen;
2783 	struct page new;
2784 	unsigned long counters;
2785 	struct kmem_cache_node *n = NULL;
2786 	unsigned long uninitialized_var(flags);
2787 
2788 	stat(s, FREE_SLOWPATH);
2789 
2790 	if (kmem_cache_debug(s) &&
2791 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2792 		return;
2793 
2794 	do {
2795 		if (unlikely(n)) {
2796 			spin_unlock_irqrestore(&n->list_lock, flags);
2797 			n = NULL;
2798 		}
2799 		prior = page->freelist;
2800 		counters = page->counters;
2801 		set_freepointer(s, tail, prior);
2802 		new.counters = counters;
2803 		was_frozen = new.frozen;
2804 		new.inuse -= cnt;
2805 		if ((!new.inuse || !prior) && !was_frozen) {
2806 
2807 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2808 
2809 				/*
2810 				 * Slab was on no list before and will be
2811 				 * partially empty
2812 				 * We can defer the list move and instead
2813 				 * freeze it.
2814 				 */
2815 				new.frozen = 1;
2816 
2817 			} else { /* Needs to be taken off a list */
2818 
2819 				n = get_node(s, page_to_nid(page));
2820 				/*
2821 				 * Speculatively acquire the list_lock.
2822 				 * If the cmpxchg does not succeed then we may
2823 				 * drop the list_lock without any processing.
2824 				 *
2825 				 * Otherwise the list_lock will synchronize with
2826 				 * other processors updating the list of slabs.
2827 				 */
2828 				spin_lock_irqsave(&n->list_lock, flags);
2829 
2830 			}
2831 		}
2832 
2833 	} while (!cmpxchg_double_slab(s, page,
2834 		prior, counters,
2835 		head, new.counters,
2836 		"__slab_free"));
2837 
2838 	if (likely(!n)) {
2839 
2840 		/*
2841 		 * If we just froze the page then put it onto the
2842 		 * per cpu partial list.
2843 		 */
2844 		if (new.frozen && !was_frozen) {
2845 			put_cpu_partial(s, page, 1);
2846 			stat(s, CPU_PARTIAL_FREE);
2847 		}
2848 		/*
2849 		 * The list lock was not taken therefore no list
2850 		 * activity can be necessary.
2851 		 */
2852 		if (was_frozen)
2853 			stat(s, FREE_FROZEN);
2854 		return;
2855 	}
2856 
2857 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2858 		goto slab_empty;
2859 
2860 	/*
2861 	 * Objects left in the slab. If it was not on the partial list before
2862 	 * then add it.
2863 	 */
2864 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2865 		if (kmem_cache_debug(s))
2866 			remove_full(s, n, page);
2867 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2868 		stat(s, FREE_ADD_PARTIAL);
2869 	}
2870 	spin_unlock_irqrestore(&n->list_lock, flags);
2871 	return;
2872 
2873 slab_empty:
2874 	if (prior) {
2875 		/*
2876 		 * Slab on the partial list.
2877 		 */
2878 		remove_partial(n, page);
2879 		stat(s, FREE_REMOVE_PARTIAL);
2880 	} else {
2881 		/* Slab must be on the full list */
2882 		remove_full(s, n, page);
2883 	}
2884 
2885 	spin_unlock_irqrestore(&n->list_lock, flags);
2886 	stat(s, FREE_SLAB);
2887 	discard_slab(s, page);
2888 }
2889 
2890 /*
2891  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2892  * can perform fastpath freeing without additional function calls.
2893  *
2894  * The fastpath is only possible if we are freeing to the current cpu slab
2895  * of this processor. This typically the case if we have just allocated
2896  * the item before.
2897  *
2898  * If fastpath is not possible then fall back to __slab_free where we deal
2899  * with all sorts of special processing.
2900  *
2901  * Bulk free of a freelist with several objects (all pointing to the
2902  * same page) possible by specifying head and tail ptr, plus objects
2903  * count (cnt). Bulk free indicated by tail pointer being set.
2904  */
2905 static __always_inline void do_slab_free(struct kmem_cache *s,
2906 				struct page *page, void *head, void *tail,
2907 				int cnt, unsigned long addr)
2908 {
2909 	void *tail_obj = tail ? : head;
2910 	struct kmem_cache_cpu *c;
2911 	unsigned long tid;
2912 redo:
2913 	/*
2914 	 * Determine the currently cpus per cpu slab.
2915 	 * The cpu may change afterward. However that does not matter since
2916 	 * data is retrieved via this pointer. If we are on the same cpu
2917 	 * during the cmpxchg then the free will succeed.
2918 	 */
2919 	do {
2920 		tid = this_cpu_read(s->cpu_slab->tid);
2921 		c = raw_cpu_ptr(s->cpu_slab);
2922 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2923 		 unlikely(tid != READ_ONCE(c->tid)));
2924 
2925 	/* Same with comment on barrier() in slab_alloc_node() */
2926 	barrier();
2927 
2928 	if (likely(page == c->page)) {
2929 		set_freepointer(s, tail_obj, c->freelist);
2930 
2931 		if (unlikely(!this_cpu_cmpxchg_double(
2932 				s->cpu_slab->freelist, s->cpu_slab->tid,
2933 				c->freelist, tid,
2934 				head, next_tid(tid)))) {
2935 
2936 			note_cmpxchg_failure("slab_free", s, tid);
2937 			goto redo;
2938 		}
2939 		stat(s, FREE_FASTPATH);
2940 	} else
2941 		__slab_free(s, page, head, tail_obj, cnt, addr);
2942 
2943 }
2944 
2945 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2946 				      void *head, void *tail, int cnt,
2947 				      unsigned long addr)
2948 {
2949 	/*
2950 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2951 	 * to remove objects, whose reuse must be delayed.
2952 	 */
2953 	if (slab_free_freelist_hook(s, &head, &tail))
2954 		do_slab_free(s, page, head, tail, cnt, addr);
2955 }
2956 
2957 #ifdef CONFIG_KASAN
2958 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2959 {
2960 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2961 }
2962 #endif
2963 
2964 void kmem_cache_free(struct kmem_cache *s, void *x)
2965 {
2966 	s = cache_from_obj(s, x);
2967 	if (!s)
2968 		return;
2969 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2970 	trace_kmem_cache_free(_RET_IP_, x);
2971 }
2972 EXPORT_SYMBOL(kmem_cache_free);
2973 
2974 struct detached_freelist {
2975 	struct page *page;
2976 	void *tail;
2977 	void *freelist;
2978 	int cnt;
2979 	struct kmem_cache *s;
2980 };
2981 
2982 /*
2983  * This function progressively scans the array with free objects (with
2984  * a limited look ahead) and extract objects belonging to the same
2985  * page.  It builds a detached freelist directly within the given
2986  * page/objects.  This can happen without any need for
2987  * synchronization, because the objects are owned by running process.
2988  * The freelist is build up as a single linked list in the objects.
2989  * The idea is, that this detached freelist can then be bulk
2990  * transferred to the real freelist(s), but only requiring a single
2991  * synchronization primitive.  Look ahead in the array is limited due
2992  * to performance reasons.
2993  */
2994 static inline
2995 int build_detached_freelist(struct kmem_cache *s, size_t size,
2996 			    void **p, struct detached_freelist *df)
2997 {
2998 	size_t first_skipped_index = 0;
2999 	int lookahead = 3;
3000 	void *object;
3001 	struct page *page;
3002 
3003 	/* Always re-init detached_freelist */
3004 	df->page = NULL;
3005 
3006 	do {
3007 		object = p[--size];
3008 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3009 	} while (!object && size);
3010 
3011 	if (!object)
3012 		return 0;
3013 
3014 	page = virt_to_head_page(object);
3015 	if (!s) {
3016 		/* Handle kalloc'ed objects */
3017 		if (unlikely(!PageSlab(page))) {
3018 			BUG_ON(!PageCompound(page));
3019 			kfree_hook(object);
3020 			__free_pages(page, compound_order(page));
3021 			p[size] = NULL; /* mark object processed */
3022 			return size;
3023 		}
3024 		/* Derive kmem_cache from object */
3025 		df->s = page->slab_cache;
3026 	} else {
3027 		df->s = cache_from_obj(s, object); /* Support for memcg */
3028 	}
3029 
3030 	/* Start new detached freelist */
3031 	df->page = page;
3032 	set_freepointer(df->s, object, NULL);
3033 	df->tail = object;
3034 	df->freelist = object;
3035 	p[size] = NULL; /* mark object processed */
3036 	df->cnt = 1;
3037 
3038 	while (size) {
3039 		object = p[--size];
3040 		if (!object)
3041 			continue; /* Skip processed objects */
3042 
3043 		/* df->page is always set at this point */
3044 		if (df->page == virt_to_head_page(object)) {
3045 			/* Opportunity build freelist */
3046 			set_freepointer(df->s, object, df->freelist);
3047 			df->freelist = object;
3048 			df->cnt++;
3049 			p[size] = NULL; /* mark object processed */
3050 
3051 			continue;
3052 		}
3053 
3054 		/* Limit look ahead search */
3055 		if (!--lookahead)
3056 			break;
3057 
3058 		if (!first_skipped_index)
3059 			first_skipped_index = size + 1;
3060 	}
3061 
3062 	return first_skipped_index;
3063 }
3064 
3065 /* Note that interrupts must be enabled when calling this function. */
3066 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3067 {
3068 	if (WARN_ON(!size))
3069 		return;
3070 
3071 	do {
3072 		struct detached_freelist df;
3073 
3074 		size = build_detached_freelist(s, size, p, &df);
3075 		if (!df.page)
3076 			continue;
3077 
3078 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3079 	} while (likely(size));
3080 }
3081 EXPORT_SYMBOL(kmem_cache_free_bulk);
3082 
3083 /* Note that interrupts must be enabled when calling this function. */
3084 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3085 			  void **p)
3086 {
3087 	struct kmem_cache_cpu *c;
3088 	int i;
3089 
3090 	/* memcg and kmem_cache debug support */
3091 	s = slab_pre_alloc_hook(s, flags);
3092 	if (unlikely(!s))
3093 		return false;
3094 	/*
3095 	 * Drain objects in the per cpu slab, while disabling local
3096 	 * IRQs, which protects against PREEMPT and interrupts
3097 	 * handlers invoking normal fastpath.
3098 	 */
3099 	local_irq_disable();
3100 	c = this_cpu_ptr(s->cpu_slab);
3101 
3102 	for (i = 0; i < size; i++) {
3103 		void *object = c->freelist;
3104 
3105 		if (unlikely(!object)) {
3106 			/*
3107 			 * Invoking slow path likely have side-effect
3108 			 * of re-populating per CPU c->freelist
3109 			 */
3110 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3111 					    _RET_IP_, c);
3112 			if (unlikely(!p[i]))
3113 				goto error;
3114 
3115 			c = this_cpu_ptr(s->cpu_slab);
3116 			continue; /* goto for-loop */
3117 		}
3118 		c->freelist = get_freepointer(s, object);
3119 		p[i] = object;
3120 	}
3121 	c->tid = next_tid(c->tid);
3122 	local_irq_enable();
3123 
3124 	/* Clear memory outside IRQ disabled fastpath loop */
3125 	if (unlikely(flags & __GFP_ZERO)) {
3126 		int j;
3127 
3128 		for (j = 0; j < i; j++)
3129 			memset(p[j], 0, s->object_size);
3130 	}
3131 
3132 	/* memcg and kmem_cache debug support */
3133 	slab_post_alloc_hook(s, flags, size, p);
3134 	return i;
3135 error:
3136 	local_irq_enable();
3137 	slab_post_alloc_hook(s, flags, i, p);
3138 	__kmem_cache_free_bulk(s, i, p);
3139 	return 0;
3140 }
3141 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3142 
3143 
3144 /*
3145  * Object placement in a slab is made very easy because we always start at
3146  * offset 0. If we tune the size of the object to the alignment then we can
3147  * get the required alignment by putting one properly sized object after
3148  * another.
3149  *
3150  * Notice that the allocation order determines the sizes of the per cpu
3151  * caches. Each processor has always one slab available for allocations.
3152  * Increasing the allocation order reduces the number of times that slabs
3153  * must be moved on and off the partial lists and is therefore a factor in
3154  * locking overhead.
3155  */
3156 
3157 /*
3158  * Mininum / Maximum order of slab pages. This influences locking overhead
3159  * and slab fragmentation. A higher order reduces the number of partial slabs
3160  * and increases the number of allocations possible without having to
3161  * take the list_lock.
3162  */
3163 static unsigned int slub_min_order;
3164 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3165 static unsigned int slub_min_objects;
3166 
3167 /*
3168  * Calculate the order of allocation given an slab object size.
3169  *
3170  * The order of allocation has significant impact on performance and other
3171  * system components. Generally order 0 allocations should be preferred since
3172  * order 0 does not cause fragmentation in the page allocator. Larger objects
3173  * be problematic to put into order 0 slabs because there may be too much
3174  * unused space left. We go to a higher order if more than 1/16th of the slab
3175  * would be wasted.
3176  *
3177  * In order to reach satisfactory performance we must ensure that a minimum
3178  * number of objects is in one slab. Otherwise we may generate too much
3179  * activity on the partial lists which requires taking the list_lock. This is
3180  * less a concern for large slabs though which are rarely used.
3181  *
3182  * slub_max_order specifies the order where we begin to stop considering the
3183  * number of objects in a slab as critical. If we reach slub_max_order then
3184  * we try to keep the page order as low as possible. So we accept more waste
3185  * of space in favor of a small page order.
3186  *
3187  * Higher order allocations also allow the placement of more objects in a
3188  * slab and thereby reduce object handling overhead. If the user has
3189  * requested a higher mininum order then we start with that one instead of
3190  * the smallest order which will fit the object.
3191  */
3192 static inline unsigned int slab_order(unsigned int size,
3193 		unsigned int min_objects, unsigned int max_order,
3194 		unsigned int fract_leftover)
3195 {
3196 	unsigned int min_order = slub_min_order;
3197 	unsigned int order;
3198 
3199 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3200 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3201 
3202 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3203 			order <= max_order; order++) {
3204 
3205 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3206 		unsigned int rem;
3207 
3208 		rem = slab_size % size;
3209 
3210 		if (rem <= slab_size / fract_leftover)
3211 			break;
3212 	}
3213 
3214 	return order;
3215 }
3216 
3217 static inline int calculate_order(unsigned int size)
3218 {
3219 	unsigned int order;
3220 	unsigned int min_objects;
3221 	unsigned int max_objects;
3222 
3223 	/*
3224 	 * Attempt to find best configuration for a slab. This
3225 	 * works by first attempting to generate a layout with
3226 	 * the best configuration and backing off gradually.
3227 	 *
3228 	 * First we increase the acceptable waste in a slab. Then
3229 	 * we reduce the minimum objects required in a slab.
3230 	 */
3231 	min_objects = slub_min_objects;
3232 	if (!min_objects)
3233 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3234 	max_objects = order_objects(slub_max_order, size);
3235 	min_objects = min(min_objects, max_objects);
3236 
3237 	while (min_objects > 1) {
3238 		unsigned int fraction;
3239 
3240 		fraction = 16;
3241 		while (fraction >= 4) {
3242 			order = slab_order(size, min_objects,
3243 					slub_max_order, fraction);
3244 			if (order <= slub_max_order)
3245 				return order;
3246 			fraction /= 2;
3247 		}
3248 		min_objects--;
3249 	}
3250 
3251 	/*
3252 	 * We were unable to place multiple objects in a slab. Now
3253 	 * lets see if we can place a single object there.
3254 	 */
3255 	order = slab_order(size, 1, slub_max_order, 1);
3256 	if (order <= slub_max_order)
3257 		return order;
3258 
3259 	/*
3260 	 * Doh this slab cannot be placed using slub_max_order.
3261 	 */
3262 	order = slab_order(size, 1, MAX_ORDER, 1);
3263 	if (order < MAX_ORDER)
3264 		return order;
3265 	return -ENOSYS;
3266 }
3267 
3268 static void
3269 init_kmem_cache_node(struct kmem_cache_node *n)
3270 {
3271 	n->nr_partial = 0;
3272 	spin_lock_init(&n->list_lock);
3273 	INIT_LIST_HEAD(&n->partial);
3274 #ifdef CONFIG_SLUB_DEBUG
3275 	atomic_long_set(&n->nr_slabs, 0);
3276 	atomic_long_set(&n->total_objects, 0);
3277 	INIT_LIST_HEAD(&n->full);
3278 #endif
3279 }
3280 
3281 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3282 {
3283 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3284 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3285 
3286 	/*
3287 	 * Must align to double word boundary for the double cmpxchg
3288 	 * instructions to work; see __pcpu_double_call_return_bool().
3289 	 */
3290 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3291 				     2 * sizeof(void *));
3292 
3293 	if (!s->cpu_slab)
3294 		return 0;
3295 
3296 	init_kmem_cache_cpus(s);
3297 
3298 	return 1;
3299 }
3300 
3301 static struct kmem_cache *kmem_cache_node;
3302 
3303 /*
3304  * No kmalloc_node yet so do it by hand. We know that this is the first
3305  * slab on the node for this slabcache. There are no concurrent accesses
3306  * possible.
3307  *
3308  * Note that this function only works on the kmem_cache_node
3309  * when allocating for the kmem_cache_node. This is used for bootstrapping
3310  * memory on a fresh node that has no slab structures yet.
3311  */
3312 static void early_kmem_cache_node_alloc(int node)
3313 {
3314 	struct page *page;
3315 	struct kmem_cache_node *n;
3316 
3317 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3318 
3319 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3320 
3321 	BUG_ON(!page);
3322 	if (page_to_nid(page) != node) {
3323 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3324 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3325 	}
3326 
3327 	n = page->freelist;
3328 	BUG_ON(!n);
3329 	page->freelist = get_freepointer(kmem_cache_node, n);
3330 	page->inuse = 1;
3331 	page->frozen = 0;
3332 	kmem_cache_node->node[node] = n;
3333 #ifdef CONFIG_SLUB_DEBUG
3334 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3335 	init_tracking(kmem_cache_node, n);
3336 #endif
3337 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3338 		      GFP_KERNEL);
3339 	init_kmem_cache_node(n);
3340 	inc_slabs_node(kmem_cache_node, node, page->objects);
3341 
3342 	/*
3343 	 * No locks need to be taken here as it has just been
3344 	 * initialized and there is no concurrent access.
3345 	 */
3346 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3347 }
3348 
3349 static void free_kmem_cache_nodes(struct kmem_cache *s)
3350 {
3351 	int node;
3352 	struct kmem_cache_node *n;
3353 
3354 	for_each_kmem_cache_node(s, node, n) {
3355 		s->node[node] = NULL;
3356 		kmem_cache_free(kmem_cache_node, n);
3357 	}
3358 }
3359 
3360 void __kmem_cache_release(struct kmem_cache *s)
3361 {
3362 	cache_random_seq_destroy(s);
3363 	free_percpu(s->cpu_slab);
3364 	free_kmem_cache_nodes(s);
3365 }
3366 
3367 static int init_kmem_cache_nodes(struct kmem_cache *s)
3368 {
3369 	int node;
3370 
3371 	for_each_node_state(node, N_NORMAL_MEMORY) {
3372 		struct kmem_cache_node *n;
3373 
3374 		if (slab_state == DOWN) {
3375 			early_kmem_cache_node_alloc(node);
3376 			continue;
3377 		}
3378 		n = kmem_cache_alloc_node(kmem_cache_node,
3379 						GFP_KERNEL, node);
3380 
3381 		if (!n) {
3382 			free_kmem_cache_nodes(s);
3383 			return 0;
3384 		}
3385 
3386 		init_kmem_cache_node(n);
3387 		s->node[node] = n;
3388 	}
3389 	return 1;
3390 }
3391 
3392 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3393 {
3394 	if (min < MIN_PARTIAL)
3395 		min = MIN_PARTIAL;
3396 	else if (min > MAX_PARTIAL)
3397 		min = MAX_PARTIAL;
3398 	s->min_partial = min;
3399 }
3400 
3401 static void set_cpu_partial(struct kmem_cache *s)
3402 {
3403 #ifdef CONFIG_SLUB_CPU_PARTIAL
3404 	/*
3405 	 * cpu_partial determined the maximum number of objects kept in the
3406 	 * per cpu partial lists of a processor.
3407 	 *
3408 	 * Per cpu partial lists mainly contain slabs that just have one
3409 	 * object freed. If they are used for allocation then they can be
3410 	 * filled up again with minimal effort. The slab will never hit the
3411 	 * per node partial lists and therefore no locking will be required.
3412 	 *
3413 	 * This setting also determines
3414 	 *
3415 	 * A) The number of objects from per cpu partial slabs dumped to the
3416 	 *    per node list when we reach the limit.
3417 	 * B) The number of objects in cpu partial slabs to extract from the
3418 	 *    per node list when we run out of per cpu objects. We only fetch
3419 	 *    50% to keep some capacity around for frees.
3420 	 */
3421 	if (!kmem_cache_has_cpu_partial(s))
3422 		s->cpu_partial = 0;
3423 	else if (s->size >= PAGE_SIZE)
3424 		s->cpu_partial = 2;
3425 	else if (s->size >= 1024)
3426 		s->cpu_partial = 6;
3427 	else if (s->size >= 256)
3428 		s->cpu_partial = 13;
3429 	else
3430 		s->cpu_partial = 30;
3431 #endif
3432 }
3433 
3434 /*
3435  * calculate_sizes() determines the order and the distribution of data within
3436  * a slab object.
3437  */
3438 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3439 {
3440 	slab_flags_t flags = s->flags;
3441 	unsigned int size = s->object_size;
3442 	unsigned int order;
3443 
3444 	/*
3445 	 * Round up object size to the next word boundary. We can only
3446 	 * place the free pointer at word boundaries and this determines
3447 	 * the possible location of the free pointer.
3448 	 */
3449 	size = ALIGN(size, sizeof(void *));
3450 
3451 #ifdef CONFIG_SLUB_DEBUG
3452 	/*
3453 	 * Determine if we can poison the object itself. If the user of
3454 	 * the slab may touch the object after free or before allocation
3455 	 * then we should never poison the object itself.
3456 	 */
3457 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3458 			!s->ctor)
3459 		s->flags |= __OBJECT_POISON;
3460 	else
3461 		s->flags &= ~__OBJECT_POISON;
3462 
3463 
3464 	/*
3465 	 * If we are Redzoning then check if there is some space between the
3466 	 * end of the object and the free pointer. If not then add an
3467 	 * additional word to have some bytes to store Redzone information.
3468 	 */
3469 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3470 		size += sizeof(void *);
3471 #endif
3472 
3473 	/*
3474 	 * With that we have determined the number of bytes in actual use
3475 	 * by the object. This is the potential offset to the free pointer.
3476 	 */
3477 	s->inuse = size;
3478 
3479 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3480 		s->ctor)) {
3481 		/*
3482 		 * Relocate free pointer after the object if it is not
3483 		 * permitted to overwrite the first word of the object on
3484 		 * kmem_cache_free.
3485 		 *
3486 		 * This is the case if we do RCU, have a constructor or
3487 		 * destructor or are poisoning the objects.
3488 		 */
3489 		s->offset = size;
3490 		size += sizeof(void *);
3491 	}
3492 
3493 #ifdef CONFIG_SLUB_DEBUG
3494 	if (flags & SLAB_STORE_USER)
3495 		/*
3496 		 * Need to store information about allocs and frees after
3497 		 * the object.
3498 		 */
3499 		size += 2 * sizeof(struct track);
3500 #endif
3501 
3502 	kasan_cache_create(s, &size, &s->flags);
3503 #ifdef CONFIG_SLUB_DEBUG
3504 	if (flags & SLAB_RED_ZONE) {
3505 		/*
3506 		 * Add some empty padding so that we can catch
3507 		 * overwrites from earlier objects rather than let
3508 		 * tracking information or the free pointer be
3509 		 * corrupted if a user writes before the start
3510 		 * of the object.
3511 		 */
3512 		size += sizeof(void *);
3513 
3514 		s->red_left_pad = sizeof(void *);
3515 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3516 		size += s->red_left_pad;
3517 	}
3518 #endif
3519 
3520 	/*
3521 	 * SLUB stores one object immediately after another beginning from
3522 	 * offset 0. In order to align the objects we have to simply size
3523 	 * each object to conform to the alignment.
3524 	 */
3525 	size = ALIGN(size, s->align);
3526 	s->size = size;
3527 	if (forced_order >= 0)
3528 		order = forced_order;
3529 	else
3530 		order = calculate_order(size);
3531 
3532 	if ((int)order < 0)
3533 		return 0;
3534 
3535 	s->allocflags = 0;
3536 	if (order)
3537 		s->allocflags |= __GFP_COMP;
3538 
3539 	if (s->flags & SLAB_CACHE_DMA)
3540 		s->allocflags |= GFP_DMA;
3541 
3542 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3543 		s->allocflags |= __GFP_RECLAIMABLE;
3544 
3545 	/*
3546 	 * Determine the number of objects per slab
3547 	 */
3548 	s->oo = oo_make(order, size);
3549 	s->min = oo_make(get_order(size), size);
3550 	if (oo_objects(s->oo) > oo_objects(s->max))
3551 		s->max = s->oo;
3552 
3553 	return !!oo_objects(s->oo);
3554 }
3555 
3556 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3557 {
3558 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3559 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3560 	s->random = get_random_long();
3561 #endif
3562 
3563 	if (!calculate_sizes(s, -1))
3564 		goto error;
3565 	if (disable_higher_order_debug) {
3566 		/*
3567 		 * Disable debugging flags that store metadata if the min slab
3568 		 * order increased.
3569 		 */
3570 		if (get_order(s->size) > get_order(s->object_size)) {
3571 			s->flags &= ~DEBUG_METADATA_FLAGS;
3572 			s->offset = 0;
3573 			if (!calculate_sizes(s, -1))
3574 				goto error;
3575 		}
3576 	}
3577 
3578 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3579     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3580 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3581 		/* Enable fast mode */
3582 		s->flags |= __CMPXCHG_DOUBLE;
3583 #endif
3584 
3585 	/*
3586 	 * The larger the object size is, the more pages we want on the partial
3587 	 * list to avoid pounding the page allocator excessively.
3588 	 */
3589 	set_min_partial(s, ilog2(s->size) / 2);
3590 
3591 	set_cpu_partial(s);
3592 
3593 #ifdef CONFIG_NUMA
3594 	s->remote_node_defrag_ratio = 1000;
3595 #endif
3596 
3597 	/* Initialize the pre-computed randomized freelist if slab is up */
3598 	if (slab_state >= UP) {
3599 		if (init_cache_random_seq(s))
3600 			goto error;
3601 	}
3602 
3603 	if (!init_kmem_cache_nodes(s))
3604 		goto error;
3605 
3606 	if (alloc_kmem_cache_cpus(s))
3607 		return 0;
3608 
3609 	free_kmem_cache_nodes(s);
3610 error:
3611 	if (flags & SLAB_PANIC)
3612 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3613 		      s->name, s->size, s->size,
3614 		      oo_order(s->oo), s->offset, (unsigned long)flags);
3615 	return -EINVAL;
3616 }
3617 
3618 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3619 							const char *text)
3620 {
3621 #ifdef CONFIG_SLUB_DEBUG
3622 	void *addr = page_address(page);
3623 	void *p;
3624 	unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects),
3625 				     sizeof(long),
3626 				     GFP_ATOMIC);
3627 	if (!map)
3628 		return;
3629 	slab_err(s, page, text, s->name);
3630 	slab_lock(page);
3631 
3632 	get_map(s, page, map);
3633 	for_each_object(p, s, addr, page->objects) {
3634 
3635 		if (!test_bit(slab_index(p, s, addr), map)) {
3636 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3637 			print_tracking(s, p);
3638 		}
3639 	}
3640 	slab_unlock(page);
3641 	kfree(map);
3642 #endif
3643 }
3644 
3645 /*
3646  * Attempt to free all partial slabs on a node.
3647  * This is called from __kmem_cache_shutdown(). We must take list_lock
3648  * because sysfs file might still access partial list after the shutdowning.
3649  */
3650 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3651 {
3652 	LIST_HEAD(discard);
3653 	struct page *page, *h;
3654 
3655 	BUG_ON(irqs_disabled());
3656 	spin_lock_irq(&n->list_lock);
3657 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3658 		if (!page->inuse) {
3659 			remove_partial(n, page);
3660 			list_add(&page->lru, &discard);
3661 		} else {
3662 			list_slab_objects(s, page,
3663 			"Objects remaining in %s on __kmem_cache_shutdown()");
3664 		}
3665 	}
3666 	spin_unlock_irq(&n->list_lock);
3667 
3668 	list_for_each_entry_safe(page, h, &discard, lru)
3669 		discard_slab(s, page);
3670 }
3671 
3672 bool __kmem_cache_empty(struct kmem_cache *s)
3673 {
3674 	int node;
3675 	struct kmem_cache_node *n;
3676 
3677 	for_each_kmem_cache_node(s, node, n)
3678 		if (n->nr_partial || slabs_node(s, node))
3679 			return false;
3680 	return true;
3681 }
3682 
3683 /*
3684  * Release all resources used by a slab cache.
3685  */
3686 int __kmem_cache_shutdown(struct kmem_cache *s)
3687 {
3688 	int node;
3689 	struct kmem_cache_node *n;
3690 
3691 	flush_all(s);
3692 	/* Attempt to free all objects */
3693 	for_each_kmem_cache_node(s, node, n) {
3694 		free_partial(s, n);
3695 		if (n->nr_partial || slabs_node(s, node))
3696 			return 1;
3697 	}
3698 	sysfs_slab_remove(s);
3699 	return 0;
3700 }
3701 
3702 /********************************************************************
3703  *		Kmalloc subsystem
3704  *******************************************************************/
3705 
3706 static int __init setup_slub_min_order(char *str)
3707 {
3708 	get_option(&str, (int *)&slub_min_order);
3709 
3710 	return 1;
3711 }
3712 
3713 __setup("slub_min_order=", setup_slub_min_order);
3714 
3715 static int __init setup_slub_max_order(char *str)
3716 {
3717 	get_option(&str, (int *)&slub_max_order);
3718 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3719 
3720 	return 1;
3721 }
3722 
3723 __setup("slub_max_order=", setup_slub_max_order);
3724 
3725 static int __init setup_slub_min_objects(char *str)
3726 {
3727 	get_option(&str, (int *)&slub_min_objects);
3728 
3729 	return 1;
3730 }
3731 
3732 __setup("slub_min_objects=", setup_slub_min_objects);
3733 
3734 void *__kmalloc(size_t size, gfp_t flags)
3735 {
3736 	struct kmem_cache *s;
3737 	void *ret;
3738 
3739 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3740 		return kmalloc_large(size, flags);
3741 
3742 	s = kmalloc_slab(size, flags);
3743 
3744 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3745 		return s;
3746 
3747 	ret = slab_alloc(s, flags, _RET_IP_);
3748 
3749 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3750 
3751 	kasan_kmalloc(s, ret, size, flags);
3752 
3753 	return ret;
3754 }
3755 EXPORT_SYMBOL(__kmalloc);
3756 
3757 #ifdef CONFIG_NUMA
3758 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3759 {
3760 	struct page *page;
3761 	void *ptr = NULL;
3762 
3763 	flags |= __GFP_COMP;
3764 	page = alloc_pages_node(node, flags, get_order(size));
3765 	if (page)
3766 		ptr = page_address(page);
3767 
3768 	kmalloc_large_node_hook(ptr, size, flags);
3769 	return ptr;
3770 }
3771 
3772 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3773 {
3774 	struct kmem_cache *s;
3775 	void *ret;
3776 
3777 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3778 		ret = kmalloc_large_node(size, flags, node);
3779 
3780 		trace_kmalloc_node(_RET_IP_, ret,
3781 				   size, PAGE_SIZE << get_order(size),
3782 				   flags, node);
3783 
3784 		return ret;
3785 	}
3786 
3787 	s = kmalloc_slab(size, flags);
3788 
3789 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3790 		return s;
3791 
3792 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3793 
3794 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3795 
3796 	kasan_kmalloc(s, ret, size, flags);
3797 
3798 	return ret;
3799 }
3800 EXPORT_SYMBOL(__kmalloc_node);
3801 #endif
3802 
3803 #ifdef CONFIG_HARDENED_USERCOPY
3804 /*
3805  * Rejects incorrectly sized objects and objects that are to be copied
3806  * to/from userspace but do not fall entirely within the containing slab
3807  * cache's usercopy region.
3808  *
3809  * Returns NULL if check passes, otherwise const char * to name of cache
3810  * to indicate an error.
3811  */
3812 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3813 			 bool to_user)
3814 {
3815 	struct kmem_cache *s;
3816 	unsigned int offset;
3817 	size_t object_size;
3818 
3819 	/* Find object and usable object size. */
3820 	s = page->slab_cache;
3821 
3822 	/* Reject impossible pointers. */
3823 	if (ptr < page_address(page))
3824 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3825 			       to_user, 0, n);
3826 
3827 	/* Find offset within object. */
3828 	offset = (ptr - page_address(page)) % s->size;
3829 
3830 	/* Adjust for redzone and reject if within the redzone. */
3831 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3832 		if (offset < s->red_left_pad)
3833 			usercopy_abort("SLUB object in left red zone",
3834 				       s->name, to_user, offset, n);
3835 		offset -= s->red_left_pad;
3836 	}
3837 
3838 	/* Allow address range falling entirely within usercopy region. */
3839 	if (offset >= s->useroffset &&
3840 	    offset - s->useroffset <= s->usersize &&
3841 	    n <= s->useroffset - offset + s->usersize)
3842 		return;
3843 
3844 	/*
3845 	 * If the copy is still within the allocated object, produce
3846 	 * a warning instead of rejecting the copy. This is intended
3847 	 * to be a temporary method to find any missing usercopy
3848 	 * whitelists.
3849 	 */
3850 	object_size = slab_ksize(s);
3851 	if (usercopy_fallback &&
3852 	    offset <= object_size && n <= object_size - offset) {
3853 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3854 		return;
3855 	}
3856 
3857 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3858 }
3859 #endif /* CONFIG_HARDENED_USERCOPY */
3860 
3861 static size_t __ksize(const void *object)
3862 {
3863 	struct page *page;
3864 
3865 	if (unlikely(object == ZERO_SIZE_PTR))
3866 		return 0;
3867 
3868 	page = virt_to_head_page(object);
3869 
3870 	if (unlikely(!PageSlab(page))) {
3871 		WARN_ON(!PageCompound(page));
3872 		return PAGE_SIZE << compound_order(page);
3873 	}
3874 
3875 	return slab_ksize(page->slab_cache);
3876 }
3877 
3878 size_t ksize(const void *object)
3879 {
3880 	size_t size = __ksize(object);
3881 	/* We assume that ksize callers could use whole allocated area,
3882 	 * so we need to unpoison this area.
3883 	 */
3884 	kasan_unpoison_shadow(object, size);
3885 	return size;
3886 }
3887 EXPORT_SYMBOL(ksize);
3888 
3889 void kfree(const void *x)
3890 {
3891 	struct page *page;
3892 	void *object = (void *)x;
3893 
3894 	trace_kfree(_RET_IP_, x);
3895 
3896 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3897 		return;
3898 
3899 	page = virt_to_head_page(x);
3900 	if (unlikely(!PageSlab(page))) {
3901 		BUG_ON(!PageCompound(page));
3902 		kfree_hook(object);
3903 		__free_pages(page, compound_order(page));
3904 		return;
3905 	}
3906 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3907 }
3908 EXPORT_SYMBOL(kfree);
3909 
3910 #define SHRINK_PROMOTE_MAX 32
3911 
3912 /*
3913  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3914  * up most to the head of the partial lists. New allocations will then
3915  * fill those up and thus they can be removed from the partial lists.
3916  *
3917  * The slabs with the least items are placed last. This results in them
3918  * being allocated from last increasing the chance that the last objects
3919  * are freed in them.
3920  */
3921 int __kmem_cache_shrink(struct kmem_cache *s)
3922 {
3923 	int node;
3924 	int i;
3925 	struct kmem_cache_node *n;
3926 	struct page *page;
3927 	struct page *t;
3928 	struct list_head discard;
3929 	struct list_head promote[SHRINK_PROMOTE_MAX];
3930 	unsigned long flags;
3931 	int ret = 0;
3932 
3933 	flush_all(s);
3934 	for_each_kmem_cache_node(s, node, n) {
3935 		INIT_LIST_HEAD(&discard);
3936 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3937 			INIT_LIST_HEAD(promote + i);
3938 
3939 		spin_lock_irqsave(&n->list_lock, flags);
3940 
3941 		/*
3942 		 * Build lists of slabs to discard or promote.
3943 		 *
3944 		 * Note that concurrent frees may occur while we hold the
3945 		 * list_lock. page->inuse here is the upper limit.
3946 		 */
3947 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3948 			int free = page->objects - page->inuse;
3949 
3950 			/* Do not reread page->inuse */
3951 			barrier();
3952 
3953 			/* We do not keep full slabs on the list */
3954 			BUG_ON(free <= 0);
3955 
3956 			if (free == page->objects) {
3957 				list_move(&page->lru, &discard);
3958 				n->nr_partial--;
3959 			} else if (free <= SHRINK_PROMOTE_MAX)
3960 				list_move(&page->lru, promote + free - 1);
3961 		}
3962 
3963 		/*
3964 		 * Promote the slabs filled up most to the head of the
3965 		 * partial list.
3966 		 */
3967 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3968 			list_splice(promote + i, &n->partial);
3969 
3970 		spin_unlock_irqrestore(&n->list_lock, flags);
3971 
3972 		/* Release empty slabs */
3973 		list_for_each_entry_safe(page, t, &discard, lru)
3974 			discard_slab(s, page);
3975 
3976 		if (slabs_node(s, node))
3977 			ret = 1;
3978 	}
3979 
3980 	return ret;
3981 }
3982 
3983 #ifdef CONFIG_MEMCG
3984 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3985 {
3986 	/*
3987 	 * Called with all the locks held after a sched RCU grace period.
3988 	 * Even if @s becomes empty after shrinking, we can't know that @s
3989 	 * doesn't have allocations already in-flight and thus can't
3990 	 * destroy @s until the associated memcg is released.
3991 	 *
3992 	 * However, let's remove the sysfs files for empty caches here.
3993 	 * Each cache has a lot of interface files which aren't
3994 	 * particularly useful for empty draining caches; otherwise, we can
3995 	 * easily end up with millions of unnecessary sysfs files on
3996 	 * systems which have a lot of memory and transient cgroups.
3997 	 */
3998 	if (!__kmem_cache_shrink(s))
3999 		sysfs_slab_remove(s);
4000 }
4001 
4002 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4003 {
4004 	/*
4005 	 * Disable empty slabs caching. Used to avoid pinning offline
4006 	 * memory cgroups by kmem pages that can be freed.
4007 	 */
4008 	slub_set_cpu_partial(s, 0);
4009 	s->min_partial = 0;
4010 
4011 	/*
4012 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4013 	 * we have to make sure the change is visible before shrinking.
4014 	 */
4015 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4016 }
4017 #endif
4018 
4019 static int slab_mem_going_offline_callback(void *arg)
4020 {
4021 	struct kmem_cache *s;
4022 
4023 	mutex_lock(&slab_mutex);
4024 	list_for_each_entry(s, &slab_caches, list)
4025 		__kmem_cache_shrink(s);
4026 	mutex_unlock(&slab_mutex);
4027 
4028 	return 0;
4029 }
4030 
4031 static void slab_mem_offline_callback(void *arg)
4032 {
4033 	struct kmem_cache_node *n;
4034 	struct kmem_cache *s;
4035 	struct memory_notify *marg = arg;
4036 	int offline_node;
4037 
4038 	offline_node = marg->status_change_nid_normal;
4039 
4040 	/*
4041 	 * If the node still has available memory. we need kmem_cache_node
4042 	 * for it yet.
4043 	 */
4044 	if (offline_node < 0)
4045 		return;
4046 
4047 	mutex_lock(&slab_mutex);
4048 	list_for_each_entry(s, &slab_caches, list) {
4049 		n = get_node(s, offline_node);
4050 		if (n) {
4051 			/*
4052 			 * if n->nr_slabs > 0, slabs still exist on the node
4053 			 * that is going down. We were unable to free them,
4054 			 * and offline_pages() function shouldn't call this
4055 			 * callback. So, we must fail.
4056 			 */
4057 			BUG_ON(slabs_node(s, offline_node));
4058 
4059 			s->node[offline_node] = NULL;
4060 			kmem_cache_free(kmem_cache_node, n);
4061 		}
4062 	}
4063 	mutex_unlock(&slab_mutex);
4064 }
4065 
4066 static int slab_mem_going_online_callback(void *arg)
4067 {
4068 	struct kmem_cache_node *n;
4069 	struct kmem_cache *s;
4070 	struct memory_notify *marg = arg;
4071 	int nid = marg->status_change_nid_normal;
4072 	int ret = 0;
4073 
4074 	/*
4075 	 * If the node's memory is already available, then kmem_cache_node is
4076 	 * already created. Nothing to do.
4077 	 */
4078 	if (nid < 0)
4079 		return 0;
4080 
4081 	/*
4082 	 * We are bringing a node online. No memory is available yet. We must
4083 	 * allocate a kmem_cache_node structure in order to bring the node
4084 	 * online.
4085 	 */
4086 	mutex_lock(&slab_mutex);
4087 	list_for_each_entry(s, &slab_caches, list) {
4088 		/*
4089 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4090 		 *      since memory is not yet available from the node that
4091 		 *      is brought up.
4092 		 */
4093 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4094 		if (!n) {
4095 			ret = -ENOMEM;
4096 			goto out;
4097 		}
4098 		init_kmem_cache_node(n);
4099 		s->node[nid] = n;
4100 	}
4101 out:
4102 	mutex_unlock(&slab_mutex);
4103 	return ret;
4104 }
4105 
4106 static int slab_memory_callback(struct notifier_block *self,
4107 				unsigned long action, void *arg)
4108 {
4109 	int ret = 0;
4110 
4111 	switch (action) {
4112 	case MEM_GOING_ONLINE:
4113 		ret = slab_mem_going_online_callback(arg);
4114 		break;
4115 	case MEM_GOING_OFFLINE:
4116 		ret = slab_mem_going_offline_callback(arg);
4117 		break;
4118 	case MEM_OFFLINE:
4119 	case MEM_CANCEL_ONLINE:
4120 		slab_mem_offline_callback(arg);
4121 		break;
4122 	case MEM_ONLINE:
4123 	case MEM_CANCEL_OFFLINE:
4124 		break;
4125 	}
4126 	if (ret)
4127 		ret = notifier_from_errno(ret);
4128 	else
4129 		ret = NOTIFY_OK;
4130 	return ret;
4131 }
4132 
4133 static struct notifier_block slab_memory_callback_nb = {
4134 	.notifier_call = slab_memory_callback,
4135 	.priority = SLAB_CALLBACK_PRI,
4136 };
4137 
4138 /********************************************************************
4139  *			Basic setup of slabs
4140  *******************************************************************/
4141 
4142 /*
4143  * Used for early kmem_cache structures that were allocated using
4144  * the page allocator. Allocate them properly then fix up the pointers
4145  * that may be pointing to the wrong kmem_cache structure.
4146  */
4147 
4148 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4149 {
4150 	int node;
4151 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4152 	struct kmem_cache_node *n;
4153 
4154 	memcpy(s, static_cache, kmem_cache->object_size);
4155 
4156 	/*
4157 	 * This runs very early, and only the boot processor is supposed to be
4158 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4159 	 * IPIs around.
4160 	 */
4161 	__flush_cpu_slab(s, smp_processor_id());
4162 	for_each_kmem_cache_node(s, node, n) {
4163 		struct page *p;
4164 
4165 		list_for_each_entry(p, &n->partial, lru)
4166 			p->slab_cache = s;
4167 
4168 #ifdef CONFIG_SLUB_DEBUG
4169 		list_for_each_entry(p, &n->full, lru)
4170 			p->slab_cache = s;
4171 #endif
4172 	}
4173 	slab_init_memcg_params(s);
4174 	list_add(&s->list, &slab_caches);
4175 	memcg_link_cache(s);
4176 	return s;
4177 }
4178 
4179 void __init kmem_cache_init(void)
4180 {
4181 	static __initdata struct kmem_cache boot_kmem_cache,
4182 		boot_kmem_cache_node;
4183 
4184 	if (debug_guardpage_minorder())
4185 		slub_max_order = 0;
4186 
4187 	kmem_cache_node = &boot_kmem_cache_node;
4188 	kmem_cache = &boot_kmem_cache;
4189 
4190 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4191 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4192 
4193 	register_hotmemory_notifier(&slab_memory_callback_nb);
4194 
4195 	/* Able to allocate the per node structures */
4196 	slab_state = PARTIAL;
4197 
4198 	create_boot_cache(kmem_cache, "kmem_cache",
4199 			offsetof(struct kmem_cache, node) +
4200 				nr_node_ids * sizeof(struct kmem_cache_node *),
4201 		       SLAB_HWCACHE_ALIGN, 0, 0);
4202 
4203 	kmem_cache = bootstrap(&boot_kmem_cache);
4204 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4205 
4206 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4207 	setup_kmalloc_cache_index_table();
4208 	create_kmalloc_caches(0);
4209 
4210 	/* Setup random freelists for each cache */
4211 	init_freelist_randomization();
4212 
4213 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4214 				  slub_cpu_dead);
4215 
4216 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4217 		cache_line_size(),
4218 		slub_min_order, slub_max_order, slub_min_objects,
4219 		nr_cpu_ids, nr_node_ids);
4220 }
4221 
4222 void __init kmem_cache_init_late(void)
4223 {
4224 }
4225 
4226 struct kmem_cache *
4227 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4228 		   slab_flags_t flags, void (*ctor)(void *))
4229 {
4230 	struct kmem_cache *s, *c;
4231 
4232 	s = find_mergeable(size, align, flags, name, ctor);
4233 	if (s) {
4234 		s->refcount++;
4235 
4236 		/*
4237 		 * Adjust the object sizes so that we clear
4238 		 * the complete object on kzalloc.
4239 		 */
4240 		s->object_size = max(s->object_size, size);
4241 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4242 
4243 		for_each_memcg_cache(c, s) {
4244 			c->object_size = s->object_size;
4245 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4246 		}
4247 
4248 		if (sysfs_slab_alias(s, name)) {
4249 			s->refcount--;
4250 			s = NULL;
4251 		}
4252 	}
4253 
4254 	return s;
4255 }
4256 
4257 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4258 {
4259 	int err;
4260 
4261 	err = kmem_cache_open(s, flags);
4262 	if (err)
4263 		return err;
4264 
4265 	/* Mutex is not taken during early boot */
4266 	if (slab_state <= UP)
4267 		return 0;
4268 
4269 	memcg_propagate_slab_attrs(s);
4270 	err = sysfs_slab_add(s);
4271 	if (err)
4272 		__kmem_cache_release(s);
4273 
4274 	return err;
4275 }
4276 
4277 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4278 {
4279 	struct kmem_cache *s;
4280 	void *ret;
4281 
4282 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4283 		return kmalloc_large(size, gfpflags);
4284 
4285 	s = kmalloc_slab(size, gfpflags);
4286 
4287 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4288 		return s;
4289 
4290 	ret = slab_alloc(s, gfpflags, caller);
4291 
4292 	/* Honor the call site pointer we received. */
4293 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4294 
4295 	return ret;
4296 }
4297 
4298 #ifdef CONFIG_NUMA
4299 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4300 					int node, unsigned long caller)
4301 {
4302 	struct kmem_cache *s;
4303 	void *ret;
4304 
4305 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4306 		ret = kmalloc_large_node(size, gfpflags, node);
4307 
4308 		trace_kmalloc_node(caller, ret,
4309 				   size, PAGE_SIZE << get_order(size),
4310 				   gfpflags, node);
4311 
4312 		return ret;
4313 	}
4314 
4315 	s = kmalloc_slab(size, gfpflags);
4316 
4317 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4318 		return s;
4319 
4320 	ret = slab_alloc_node(s, gfpflags, node, caller);
4321 
4322 	/* Honor the call site pointer we received. */
4323 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4324 
4325 	return ret;
4326 }
4327 #endif
4328 
4329 #ifdef CONFIG_SYSFS
4330 static int count_inuse(struct page *page)
4331 {
4332 	return page->inuse;
4333 }
4334 
4335 static int count_total(struct page *page)
4336 {
4337 	return page->objects;
4338 }
4339 #endif
4340 
4341 #ifdef CONFIG_SLUB_DEBUG
4342 static int validate_slab(struct kmem_cache *s, struct page *page,
4343 						unsigned long *map)
4344 {
4345 	void *p;
4346 	void *addr = page_address(page);
4347 
4348 	if (!check_slab(s, page) ||
4349 			!on_freelist(s, page, NULL))
4350 		return 0;
4351 
4352 	/* Now we know that a valid freelist exists */
4353 	bitmap_zero(map, page->objects);
4354 
4355 	get_map(s, page, map);
4356 	for_each_object(p, s, addr, page->objects) {
4357 		if (test_bit(slab_index(p, s, addr), map))
4358 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4359 				return 0;
4360 	}
4361 
4362 	for_each_object(p, s, addr, page->objects)
4363 		if (!test_bit(slab_index(p, s, addr), map))
4364 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4365 				return 0;
4366 	return 1;
4367 }
4368 
4369 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4370 						unsigned long *map)
4371 {
4372 	slab_lock(page);
4373 	validate_slab(s, page, map);
4374 	slab_unlock(page);
4375 }
4376 
4377 static int validate_slab_node(struct kmem_cache *s,
4378 		struct kmem_cache_node *n, unsigned long *map)
4379 {
4380 	unsigned long count = 0;
4381 	struct page *page;
4382 	unsigned long flags;
4383 
4384 	spin_lock_irqsave(&n->list_lock, flags);
4385 
4386 	list_for_each_entry(page, &n->partial, lru) {
4387 		validate_slab_slab(s, page, map);
4388 		count++;
4389 	}
4390 	if (count != n->nr_partial)
4391 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4392 		       s->name, count, n->nr_partial);
4393 
4394 	if (!(s->flags & SLAB_STORE_USER))
4395 		goto out;
4396 
4397 	list_for_each_entry(page, &n->full, lru) {
4398 		validate_slab_slab(s, page, map);
4399 		count++;
4400 	}
4401 	if (count != atomic_long_read(&n->nr_slabs))
4402 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4403 		       s->name, count, atomic_long_read(&n->nr_slabs));
4404 
4405 out:
4406 	spin_unlock_irqrestore(&n->list_lock, flags);
4407 	return count;
4408 }
4409 
4410 static long validate_slab_cache(struct kmem_cache *s)
4411 {
4412 	int node;
4413 	unsigned long count = 0;
4414 	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4415 					   sizeof(unsigned long),
4416 					   GFP_KERNEL);
4417 	struct kmem_cache_node *n;
4418 
4419 	if (!map)
4420 		return -ENOMEM;
4421 
4422 	flush_all(s);
4423 	for_each_kmem_cache_node(s, node, n)
4424 		count += validate_slab_node(s, n, map);
4425 	kfree(map);
4426 	return count;
4427 }
4428 /*
4429  * Generate lists of code addresses where slabcache objects are allocated
4430  * and freed.
4431  */
4432 
4433 struct location {
4434 	unsigned long count;
4435 	unsigned long addr;
4436 	long long sum_time;
4437 	long min_time;
4438 	long max_time;
4439 	long min_pid;
4440 	long max_pid;
4441 	DECLARE_BITMAP(cpus, NR_CPUS);
4442 	nodemask_t nodes;
4443 };
4444 
4445 struct loc_track {
4446 	unsigned long max;
4447 	unsigned long count;
4448 	struct location *loc;
4449 };
4450 
4451 static void free_loc_track(struct loc_track *t)
4452 {
4453 	if (t->max)
4454 		free_pages((unsigned long)t->loc,
4455 			get_order(sizeof(struct location) * t->max));
4456 }
4457 
4458 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4459 {
4460 	struct location *l;
4461 	int order;
4462 
4463 	order = get_order(sizeof(struct location) * max);
4464 
4465 	l = (void *)__get_free_pages(flags, order);
4466 	if (!l)
4467 		return 0;
4468 
4469 	if (t->count) {
4470 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4471 		free_loc_track(t);
4472 	}
4473 	t->max = max;
4474 	t->loc = l;
4475 	return 1;
4476 }
4477 
4478 static int add_location(struct loc_track *t, struct kmem_cache *s,
4479 				const struct track *track)
4480 {
4481 	long start, end, pos;
4482 	struct location *l;
4483 	unsigned long caddr;
4484 	unsigned long age = jiffies - track->when;
4485 
4486 	start = -1;
4487 	end = t->count;
4488 
4489 	for ( ; ; ) {
4490 		pos = start + (end - start + 1) / 2;
4491 
4492 		/*
4493 		 * There is nothing at "end". If we end up there
4494 		 * we need to add something to before end.
4495 		 */
4496 		if (pos == end)
4497 			break;
4498 
4499 		caddr = t->loc[pos].addr;
4500 		if (track->addr == caddr) {
4501 
4502 			l = &t->loc[pos];
4503 			l->count++;
4504 			if (track->when) {
4505 				l->sum_time += age;
4506 				if (age < l->min_time)
4507 					l->min_time = age;
4508 				if (age > l->max_time)
4509 					l->max_time = age;
4510 
4511 				if (track->pid < l->min_pid)
4512 					l->min_pid = track->pid;
4513 				if (track->pid > l->max_pid)
4514 					l->max_pid = track->pid;
4515 
4516 				cpumask_set_cpu(track->cpu,
4517 						to_cpumask(l->cpus));
4518 			}
4519 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4520 			return 1;
4521 		}
4522 
4523 		if (track->addr < caddr)
4524 			end = pos;
4525 		else
4526 			start = pos;
4527 	}
4528 
4529 	/*
4530 	 * Not found. Insert new tracking element.
4531 	 */
4532 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4533 		return 0;
4534 
4535 	l = t->loc + pos;
4536 	if (pos < t->count)
4537 		memmove(l + 1, l,
4538 			(t->count - pos) * sizeof(struct location));
4539 	t->count++;
4540 	l->count = 1;
4541 	l->addr = track->addr;
4542 	l->sum_time = age;
4543 	l->min_time = age;
4544 	l->max_time = age;
4545 	l->min_pid = track->pid;
4546 	l->max_pid = track->pid;
4547 	cpumask_clear(to_cpumask(l->cpus));
4548 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4549 	nodes_clear(l->nodes);
4550 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4551 	return 1;
4552 }
4553 
4554 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4555 		struct page *page, enum track_item alloc,
4556 		unsigned long *map)
4557 {
4558 	void *addr = page_address(page);
4559 	void *p;
4560 
4561 	bitmap_zero(map, page->objects);
4562 	get_map(s, page, map);
4563 
4564 	for_each_object(p, s, addr, page->objects)
4565 		if (!test_bit(slab_index(p, s, addr), map))
4566 			add_location(t, s, get_track(s, p, alloc));
4567 }
4568 
4569 static int list_locations(struct kmem_cache *s, char *buf,
4570 					enum track_item alloc)
4571 {
4572 	int len = 0;
4573 	unsigned long i;
4574 	struct loc_track t = { 0, 0, NULL };
4575 	int node;
4576 	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4577 					   sizeof(unsigned long),
4578 					   GFP_KERNEL);
4579 	struct kmem_cache_node *n;
4580 
4581 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4582 				     GFP_KERNEL)) {
4583 		kfree(map);
4584 		return sprintf(buf, "Out of memory\n");
4585 	}
4586 	/* Push back cpu slabs */
4587 	flush_all(s);
4588 
4589 	for_each_kmem_cache_node(s, node, n) {
4590 		unsigned long flags;
4591 		struct page *page;
4592 
4593 		if (!atomic_long_read(&n->nr_slabs))
4594 			continue;
4595 
4596 		spin_lock_irqsave(&n->list_lock, flags);
4597 		list_for_each_entry(page, &n->partial, lru)
4598 			process_slab(&t, s, page, alloc, map);
4599 		list_for_each_entry(page, &n->full, lru)
4600 			process_slab(&t, s, page, alloc, map);
4601 		spin_unlock_irqrestore(&n->list_lock, flags);
4602 	}
4603 
4604 	for (i = 0; i < t.count; i++) {
4605 		struct location *l = &t.loc[i];
4606 
4607 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4608 			break;
4609 		len += sprintf(buf + len, "%7ld ", l->count);
4610 
4611 		if (l->addr)
4612 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4613 		else
4614 			len += sprintf(buf + len, "<not-available>");
4615 
4616 		if (l->sum_time != l->min_time) {
4617 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4618 				l->min_time,
4619 				(long)div_u64(l->sum_time, l->count),
4620 				l->max_time);
4621 		} else
4622 			len += sprintf(buf + len, " age=%ld",
4623 				l->min_time);
4624 
4625 		if (l->min_pid != l->max_pid)
4626 			len += sprintf(buf + len, " pid=%ld-%ld",
4627 				l->min_pid, l->max_pid);
4628 		else
4629 			len += sprintf(buf + len, " pid=%ld",
4630 				l->min_pid);
4631 
4632 		if (num_online_cpus() > 1 &&
4633 				!cpumask_empty(to_cpumask(l->cpus)) &&
4634 				len < PAGE_SIZE - 60)
4635 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4636 					 " cpus=%*pbl",
4637 					 cpumask_pr_args(to_cpumask(l->cpus)));
4638 
4639 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4640 				len < PAGE_SIZE - 60)
4641 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4642 					 " nodes=%*pbl",
4643 					 nodemask_pr_args(&l->nodes));
4644 
4645 		len += sprintf(buf + len, "\n");
4646 	}
4647 
4648 	free_loc_track(&t);
4649 	kfree(map);
4650 	if (!t.count)
4651 		len += sprintf(buf, "No data\n");
4652 	return len;
4653 }
4654 #endif
4655 
4656 #ifdef SLUB_RESILIENCY_TEST
4657 static void __init resiliency_test(void)
4658 {
4659 	u8 *p;
4660 
4661 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4662 
4663 	pr_err("SLUB resiliency testing\n");
4664 	pr_err("-----------------------\n");
4665 	pr_err("A. Corruption after allocation\n");
4666 
4667 	p = kzalloc(16, GFP_KERNEL);
4668 	p[16] = 0x12;
4669 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4670 	       p + 16);
4671 
4672 	validate_slab_cache(kmalloc_caches[4]);
4673 
4674 	/* Hmmm... The next two are dangerous */
4675 	p = kzalloc(32, GFP_KERNEL);
4676 	p[32 + sizeof(void *)] = 0x34;
4677 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4678 	       p);
4679 	pr_err("If allocated object is overwritten then not detectable\n\n");
4680 
4681 	validate_slab_cache(kmalloc_caches[5]);
4682 	p = kzalloc(64, GFP_KERNEL);
4683 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4684 	*p = 0x56;
4685 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4686 	       p);
4687 	pr_err("If allocated object is overwritten then not detectable\n\n");
4688 	validate_slab_cache(kmalloc_caches[6]);
4689 
4690 	pr_err("\nB. Corruption after free\n");
4691 	p = kzalloc(128, GFP_KERNEL);
4692 	kfree(p);
4693 	*p = 0x78;
4694 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4695 	validate_slab_cache(kmalloc_caches[7]);
4696 
4697 	p = kzalloc(256, GFP_KERNEL);
4698 	kfree(p);
4699 	p[50] = 0x9a;
4700 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4701 	validate_slab_cache(kmalloc_caches[8]);
4702 
4703 	p = kzalloc(512, GFP_KERNEL);
4704 	kfree(p);
4705 	p[512] = 0xab;
4706 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4707 	validate_slab_cache(kmalloc_caches[9]);
4708 }
4709 #else
4710 #ifdef CONFIG_SYSFS
4711 static void resiliency_test(void) {};
4712 #endif
4713 #endif
4714 
4715 #ifdef CONFIG_SYSFS
4716 enum slab_stat_type {
4717 	SL_ALL,			/* All slabs */
4718 	SL_PARTIAL,		/* Only partially allocated slabs */
4719 	SL_CPU,			/* Only slabs used for cpu caches */
4720 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4721 	SL_TOTAL		/* Determine object capacity not slabs */
4722 };
4723 
4724 #define SO_ALL		(1 << SL_ALL)
4725 #define SO_PARTIAL	(1 << SL_PARTIAL)
4726 #define SO_CPU		(1 << SL_CPU)
4727 #define SO_OBJECTS	(1 << SL_OBJECTS)
4728 #define SO_TOTAL	(1 << SL_TOTAL)
4729 
4730 #ifdef CONFIG_MEMCG
4731 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4732 
4733 static int __init setup_slub_memcg_sysfs(char *str)
4734 {
4735 	int v;
4736 
4737 	if (get_option(&str, &v) > 0)
4738 		memcg_sysfs_enabled = v;
4739 
4740 	return 1;
4741 }
4742 
4743 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4744 #endif
4745 
4746 static ssize_t show_slab_objects(struct kmem_cache *s,
4747 			    char *buf, unsigned long flags)
4748 {
4749 	unsigned long total = 0;
4750 	int node;
4751 	int x;
4752 	unsigned long *nodes;
4753 
4754 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4755 	if (!nodes)
4756 		return -ENOMEM;
4757 
4758 	if (flags & SO_CPU) {
4759 		int cpu;
4760 
4761 		for_each_possible_cpu(cpu) {
4762 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4763 							       cpu);
4764 			int node;
4765 			struct page *page;
4766 
4767 			page = READ_ONCE(c->page);
4768 			if (!page)
4769 				continue;
4770 
4771 			node = page_to_nid(page);
4772 			if (flags & SO_TOTAL)
4773 				x = page->objects;
4774 			else if (flags & SO_OBJECTS)
4775 				x = page->inuse;
4776 			else
4777 				x = 1;
4778 
4779 			total += x;
4780 			nodes[node] += x;
4781 
4782 			page = slub_percpu_partial_read_once(c);
4783 			if (page) {
4784 				node = page_to_nid(page);
4785 				if (flags & SO_TOTAL)
4786 					WARN_ON_ONCE(1);
4787 				else if (flags & SO_OBJECTS)
4788 					WARN_ON_ONCE(1);
4789 				else
4790 					x = page->pages;
4791 				total += x;
4792 				nodes[node] += x;
4793 			}
4794 		}
4795 	}
4796 
4797 	get_online_mems();
4798 #ifdef CONFIG_SLUB_DEBUG
4799 	if (flags & SO_ALL) {
4800 		struct kmem_cache_node *n;
4801 
4802 		for_each_kmem_cache_node(s, node, n) {
4803 
4804 			if (flags & SO_TOTAL)
4805 				x = atomic_long_read(&n->total_objects);
4806 			else if (flags & SO_OBJECTS)
4807 				x = atomic_long_read(&n->total_objects) -
4808 					count_partial(n, count_free);
4809 			else
4810 				x = atomic_long_read(&n->nr_slabs);
4811 			total += x;
4812 			nodes[node] += x;
4813 		}
4814 
4815 	} else
4816 #endif
4817 	if (flags & SO_PARTIAL) {
4818 		struct kmem_cache_node *n;
4819 
4820 		for_each_kmem_cache_node(s, node, n) {
4821 			if (flags & SO_TOTAL)
4822 				x = count_partial(n, count_total);
4823 			else if (flags & SO_OBJECTS)
4824 				x = count_partial(n, count_inuse);
4825 			else
4826 				x = n->nr_partial;
4827 			total += x;
4828 			nodes[node] += x;
4829 		}
4830 	}
4831 	x = sprintf(buf, "%lu", total);
4832 #ifdef CONFIG_NUMA
4833 	for (node = 0; node < nr_node_ids; node++)
4834 		if (nodes[node])
4835 			x += sprintf(buf + x, " N%d=%lu",
4836 					node, nodes[node]);
4837 #endif
4838 	put_online_mems();
4839 	kfree(nodes);
4840 	return x + sprintf(buf + x, "\n");
4841 }
4842 
4843 #ifdef CONFIG_SLUB_DEBUG
4844 static int any_slab_objects(struct kmem_cache *s)
4845 {
4846 	int node;
4847 	struct kmem_cache_node *n;
4848 
4849 	for_each_kmem_cache_node(s, node, n)
4850 		if (atomic_long_read(&n->total_objects))
4851 			return 1;
4852 
4853 	return 0;
4854 }
4855 #endif
4856 
4857 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4858 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4859 
4860 struct slab_attribute {
4861 	struct attribute attr;
4862 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4863 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4864 };
4865 
4866 #define SLAB_ATTR_RO(_name) \
4867 	static struct slab_attribute _name##_attr = \
4868 	__ATTR(_name, 0400, _name##_show, NULL)
4869 
4870 #define SLAB_ATTR(_name) \
4871 	static struct slab_attribute _name##_attr =  \
4872 	__ATTR(_name, 0600, _name##_show, _name##_store)
4873 
4874 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4875 {
4876 	return sprintf(buf, "%u\n", s->size);
4877 }
4878 SLAB_ATTR_RO(slab_size);
4879 
4880 static ssize_t align_show(struct kmem_cache *s, char *buf)
4881 {
4882 	return sprintf(buf, "%u\n", s->align);
4883 }
4884 SLAB_ATTR_RO(align);
4885 
4886 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4887 {
4888 	return sprintf(buf, "%u\n", s->object_size);
4889 }
4890 SLAB_ATTR_RO(object_size);
4891 
4892 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4893 {
4894 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4895 }
4896 SLAB_ATTR_RO(objs_per_slab);
4897 
4898 static ssize_t order_store(struct kmem_cache *s,
4899 				const char *buf, size_t length)
4900 {
4901 	unsigned int order;
4902 	int err;
4903 
4904 	err = kstrtouint(buf, 10, &order);
4905 	if (err)
4906 		return err;
4907 
4908 	if (order > slub_max_order || order < slub_min_order)
4909 		return -EINVAL;
4910 
4911 	calculate_sizes(s, order);
4912 	return length;
4913 }
4914 
4915 static ssize_t order_show(struct kmem_cache *s, char *buf)
4916 {
4917 	return sprintf(buf, "%u\n", oo_order(s->oo));
4918 }
4919 SLAB_ATTR(order);
4920 
4921 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4922 {
4923 	return sprintf(buf, "%lu\n", s->min_partial);
4924 }
4925 
4926 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4927 				 size_t length)
4928 {
4929 	unsigned long min;
4930 	int err;
4931 
4932 	err = kstrtoul(buf, 10, &min);
4933 	if (err)
4934 		return err;
4935 
4936 	set_min_partial(s, min);
4937 	return length;
4938 }
4939 SLAB_ATTR(min_partial);
4940 
4941 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4942 {
4943 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4944 }
4945 
4946 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4947 				 size_t length)
4948 {
4949 	unsigned int objects;
4950 	int err;
4951 
4952 	err = kstrtouint(buf, 10, &objects);
4953 	if (err)
4954 		return err;
4955 	if (objects && !kmem_cache_has_cpu_partial(s))
4956 		return -EINVAL;
4957 
4958 	slub_set_cpu_partial(s, objects);
4959 	flush_all(s);
4960 	return length;
4961 }
4962 SLAB_ATTR(cpu_partial);
4963 
4964 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4965 {
4966 	if (!s->ctor)
4967 		return 0;
4968 	return sprintf(buf, "%pS\n", s->ctor);
4969 }
4970 SLAB_ATTR_RO(ctor);
4971 
4972 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4973 {
4974 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4975 }
4976 SLAB_ATTR_RO(aliases);
4977 
4978 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4979 {
4980 	return show_slab_objects(s, buf, SO_PARTIAL);
4981 }
4982 SLAB_ATTR_RO(partial);
4983 
4984 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4985 {
4986 	return show_slab_objects(s, buf, SO_CPU);
4987 }
4988 SLAB_ATTR_RO(cpu_slabs);
4989 
4990 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4991 {
4992 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4993 }
4994 SLAB_ATTR_RO(objects);
4995 
4996 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4997 {
4998 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4999 }
5000 SLAB_ATTR_RO(objects_partial);
5001 
5002 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5003 {
5004 	int objects = 0;
5005 	int pages = 0;
5006 	int cpu;
5007 	int len;
5008 
5009 	for_each_online_cpu(cpu) {
5010 		struct page *page;
5011 
5012 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5013 
5014 		if (page) {
5015 			pages += page->pages;
5016 			objects += page->pobjects;
5017 		}
5018 	}
5019 
5020 	len = sprintf(buf, "%d(%d)", objects, pages);
5021 
5022 #ifdef CONFIG_SMP
5023 	for_each_online_cpu(cpu) {
5024 		struct page *page;
5025 
5026 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5027 
5028 		if (page && len < PAGE_SIZE - 20)
5029 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5030 				page->pobjects, page->pages);
5031 	}
5032 #endif
5033 	return len + sprintf(buf + len, "\n");
5034 }
5035 SLAB_ATTR_RO(slabs_cpu_partial);
5036 
5037 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5038 {
5039 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5040 }
5041 
5042 static ssize_t reclaim_account_store(struct kmem_cache *s,
5043 				const char *buf, size_t length)
5044 {
5045 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5046 	if (buf[0] == '1')
5047 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5048 	return length;
5049 }
5050 SLAB_ATTR(reclaim_account);
5051 
5052 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5053 {
5054 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5055 }
5056 SLAB_ATTR_RO(hwcache_align);
5057 
5058 #ifdef CONFIG_ZONE_DMA
5059 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5060 {
5061 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5062 }
5063 SLAB_ATTR_RO(cache_dma);
5064 #endif
5065 
5066 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5067 {
5068 	return sprintf(buf, "%u\n", s->usersize);
5069 }
5070 SLAB_ATTR_RO(usersize);
5071 
5072 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5073 {
5074 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5075 }
5076 SLAB_ATTR_RO(destroy_by_rcu);
5077 
5078 #ifdef CONFIG_SLUB_DEBUG
5079 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5080 {
5081 	return show_slab_objects(s, buf, SO_ALL);
5082 }
5083 SLAB_ATTR_RO(slabs);
5084 
5085 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5086 {
5087 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5088 }
5089 SLAB_ATTR_RO(total_objects);
5090 
5091 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5092 {
5093 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5094 }
5095 
5096 static ssize_t sanity_checks_store(struct kmem_cache *s,
5097 				const char *buf, size_t length)
5098 {
5099 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5100 	if (buf[0] == '1') {
5101 		s->flags &= ~__CMPXCHG_DOUBLE;
5102 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5103 	}
5104 	return length;
5105 }
5106 SLAB_ATTR(sanity_checks);
5107 
5108 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5109 {
5110 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5111 }
5112 
5113 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5114 							size_t length)
5115 {
5116 	/*
5117 	 * Tracing a merged cache is going to give confusing results
5118 	 * as well as cause other issues like converting a mergeable
5119 	 * cache into an umergeable one.
5120 	 */
5121 	if (s->refcount > 1)
5122 		return -EINVAL;
5123 
5124 	s->flags &= ~SLAB_TRACE;
5125 	if (buf[0] == '1') {
5126 		s->flags &= ~__CMPXCHG_DOUBLE;
5127 		s->flags |= SLAB_TRACE;
5128 	}
5129 	return length;
5130 }
5131 SLAB_ATTR(trace);
5132 
5133 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5134 {
5135 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5136 }
5137 
5138 static ssize_t red_zone_store(struct kmem_cache *s,
5139 				const char *buf, size_t length)
5140 {
5141 	if (any_slab_objects(s))
5142 		return -EBUSY;
5143 
5144 	s->flags &= ~SLAB_RED_ZONE;
5145 	if (buf[0] == '1') {
5146 		s->flags |= SLAB_RED_ZONE;
5147 	}
5148 	calculate_sizes(s, -1);
5149 	return length;
5150 }
5151 SLAB_ATTR(red_zone);
5152 
5153 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5154 {
5155 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5156 }
5157 
5158 static ssize_t poison_store(struct kmem_cache *s,
5159 				const char *buf, size_t length)
5160 {
5161 	if (any_slab_objects(s))
5162 		return -EBUSY;
5163 
5164 	s->flags &= ~SLAB_POISON;
5165 	if (buf[0] == '1') {
5166 		s->flags |= SLAB_POISON;
5167 	}
5168 	calculate_sizes(s, -1);
5169 	return length;
5170 }
5171 SLAB_ATTR(poison);
5172 
5173 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5174 {
5175 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5176 }
5177 
5178 static ssize_t store_user_store(struct kmem_cache *s,
5179 				const char *buf, size_t length)
5180 {
5181 	if (any_slab_objects(s))
5182 		return -EBUSY;
5183 
5184 	s->flags &= ~SLAB_STORE_USER;
5185 	if (buf[0] == '1') {
5186 		s->flags &= ~__CMPXCHG_DOUBLE;
5187 		s->flags |= SLAB_STORE_USER;
5188 	}
5189 	calculate_sizes(s, -1);
5190 	return length;
5191 }
5192 SLAB_ATTR(store_user);
5193 
5194 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5195 {
5196 	return 0;
5197 }
5198 
5199 static ssize_t validate_store(struct kmem_cache *s,
5200 			const char *buf, size_t length)
5201 {
5202 	int ret = -EINVAL;
5203 
5204 	if (buf[0] == '1') {
5205 		ret = validate_slab_cache(s);
5206 		if (ret >= 0)
5207 			ret = length;
5208 	}
5209 	return ret;
5210 }
5211 SLAB_ATTR(validate);
5212 
5213 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5214 {
5215 	if (!(s->flags & SLAB_STORE_USER))
5216 		return -ENOSYS;
5217 	return list_locations(s, buf, TRACK_ALLOC);
5218 }
5219 SLAB_ATTR_RO(alloc_calls);
5220 
5221 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5222 {
5223 	if (!(s->flags & SLAB_STORE_USER))
5224 		return -ENOSYS;
5225 	return list_locations(s, buf, TRACK_FREE);
5226 }
5227 SLAB_ATTR_RO(free_calls);
5228 #endif /* CONFIG_SLUB_DEBUG */
5229 
5230 #ifdef CONFIG_FAILSLAB
5231 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5232 {
5233 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5234 }
5235 
5236 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5237 							size_t length)
5238 {
5239 	if (s->refcount > 1)
5240 		return -EINVAL;
5241 
5242 	s->flags &= ~SLAB_FAILSLAB;
5243 	if (buf[0] == '1')
5244 		s->flags |= SLAB_FAILSLAB;
5245 	return length;
5246 }
5247 SLAB_ATTR(failslab);
5248 #endif
5249 
5250 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5251 {
5252 	return 0;
5253 }
5254 
5255 static ssize_t shrink_store(struct kmem_cache *s,
5256 			const char *buf, size_t length)
5257 {
5258 	if (buf[0] == '1')
5259 		kmem_cache_shrink(s);
5260 	else
5261 		return -EINVAL;
5262 	return length;
5263 }
5264 SLAB_ATTR(shrink);
5265 
5266 #ifdef CONFIG_NUMA
5267 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5268 {
5269 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5270 }
5271 
5272 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5273 				const char *buf, size_t length)
5274 {
5275 	unsigned int ratio;
5276 	int err;
5277 
5278 	err = kstrtouint(buf, 10, &ratio);
5279 	if (err)
5280 		return err;
5281 	if (ratio > 100)
5282 		return -ERANGE;
5283 
5284 	s->remote_node_defrag_ratio = ratio * 10;
5285 
5286 	return length;
5287 }
5288 SLAB_ATTR(remote_node_defrag_ratio);
5289 #endif
5290 
5291 #ifdef CONFIG_SLUB_STATS
5292 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5293 {
5294 	unsigned long sum  = 0;
5295 	int cpu;
5296 	int len;
5297 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5298 
5299 	if (!data)
5300 		return -ENOMEM;
5301 
5302 	for_each_online_cpu(cpu) {
5303 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5304 
5305 		data[cpu] = x;
5306 		sum += x;
5307 	}
5308 
5309 	len = sprintf(buf, "%lu", sum);
5310 
5311 #ifdef CONFIG_SMP
5312 	for_each_online_cpu(cpu) {
5313 		if (data[cpu] && len < PAGE_SIZE - 20)
5314 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5315 	}
5316 #endif
5317 	kfree(data);
5318 	return len + sprintf(buf + len, "\n");
5319 }
5320 
5321 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5322 {
5323 	int cpu;
5324 
5325 	for_each_online_cpu(cpu)
5326 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5327 }
5328 
5329 #define STAT_ATTR(si, text) 					\
5330 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5331 {								\
5332 	return show_stat(s, buf, si);				\
5333 }								\
5334 static ssize_t text##_store(struct kmem_cache *s,		\
5335 				const char *buf, size_t length)	\
5336 {								\
5337 	if (buf[0] != '0')					\
5338 		return -EINVAL;					\
5339 	clear_stat(s, si);					\
5340 	return length;						\
5341 }								\
5342 SLAB_ATTR(text);						\
5343 
5344 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5345 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5346 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5347 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5348 STAT_ATTR(FREE_FROZEN, free_frozen);
5349 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5350 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5351 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5352 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5353 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5354 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5355 STAT_ATTR(FREE_SLAB, free_slab);
5356 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5357 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5358 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5359 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5360 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5361 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5362 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5363 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5364 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5365 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5366 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5367 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5368 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5369 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5370 #endif
5371 
5372 static struct attribute *slab_attrs[] = {
5373 	&slab_size_attr.attr,
5374 	&object_size_attr.attr,
5375 	&objs_per_slab_attr.attr,
5376 	&order_attr.attr,
5377 	&min_partial_attr.attr,
5378 	&cpu_partial_attr.attr,
5379 	&objects_attr.attr,
5380 	&objects_partial_attr.attr,
5381 	&partial_attr.attr,
5382 	&cpu_slabs_attr.attr,
5383 	&ctor_attr.attr,
5384 	&aliases_attr.attr,
5385 	&align_attr.attr,
5386 	&hwcache_align_attr.attr,
5387 	&reclaim_account_attr.attr,
5388 	&destroy_by_rcu_attr.attr,
5389 	&shrink_attr.attr,
5390 	&slabs_cpu_partial_attr.attr,
5391 #ifdef CONFIG_SLUB_DEBUG
5392 	&total_objects_attr.attr,
5393 	&slabs_attr.attr,
5394 	&sanity_checks_attr.attr,
5395 	&trace_attr.attr,
5396 	&red_zone_attr.attr,
5397 	&poison_attr.attr,
5398 	&store_user_attr.attr,
5399 	&validate_attr.attr,
5400 	&alloc_calls_attr.attr,
5401 	&free_calls_attr.attr,
5402 #endif
5403 #ifdef CONFIG_ZONE_DMA
5404 	&cache_dma_attr.attr,
5405 #endif
5406 #ifdef CONFIG_NUMA
5407 	&remote_node_defrag_ratio_attr.attr,
5408 #endif
5409 #ifdef CONFIG_SLUB_STATS
5410 	&alloc_fastpath_attr.attr,
5411 	&alloc_slowpath_attr.attr,
5412 	&free_fastpath_attr.attr,
5413 	&free_slowpath_attr.attr,
5414 	&free_frozen_attr.attr,
5415 	&free_add_partial_attr.attr,
5416 	&free_remove_partial_attr.attr,
5417 	&alloc_from_partial_attr.attr,
5418 	&alloc_slab_attr.attr,
5419 	&alloc_refill_attr.attr,
5420 	&alloc_node_mismatch_attr.attr,
5421 	&free_slab_attr.attr,
5422 	&cpuslab_flush_attr.attr,
5423 	&deactivate_full_attr.attr,
5424 	&deactivate_empty_attr.attr,
5425 	&deactivate_to_head_attr.attr,
5426 	&deactivate_to_tail_attr.attr,
5427 	&deactivate_remote_frees_attr.attr,
5428 	&deactivate_bypass_attr.attr,
5429 	&order_fallback_attr.attr,
5430 	&cmpxchg_double_fail_attr.attr,
5431 	&cmpxchg_double_cpu_fail_attr.attr,
5432 	&cpu_partial_alloc_attr.attr,
5433 	&cpu_partial_free_attr.attr,
5434 	&cpu_partial_node_attr.attr,
5435 	&cpu_partial_drain_attr.attr,
5436 #endif
5437 #ifdef CONFIG_FAILSLAB
5438 	&failslab_attr.attr,
5439 #endif
5440 	&usersize_attr.attr,
5441 
5442 	NULL
5443 };
5444 
5445 static const struct attribute_group slab_attr_group = {
5446 	.attrs = slab_attrs,
5447 };
5448 
5449 static ssize_t slab_attr_show(struct kobject *kobj,
5450 				struct attribute *attr,
5451 				char *buf)
5452 {
5453 	struct slab_attribute *attribute;
5454 	struct kmem_cache *s;
5455 	int err;
5456 
5457 	attribute = to_slab_attr(attr);
5458 	s = to_slab(kobj);
5459 
5460 	if (!attribute->show)
5461 		return -EIO;
5462 
5463 	err = attribute->show(s, buf);
5464 
5465 	return err;
5466 }
5467 
5468 static ssize_t slab_attr_store(struct kobject *kobj,
5469 				struct attribute *attr,
5470 				const char *buf, size_t len)
5471 {
5472 	struct slab_attribute *attribute;
5473 	struct kmem_cache *s;
5474 	int err;
5475 
5476 	attribute = to_slab_attr(attr);
5477 	s = to_slab(kobj);
5478 
5479 	if (!attribute->store)
5480 		return -EIO;
5481 
5482 	err = attribute->store(s, buf, len);
5483 #ifdef CONFIG_MEMCG
5484 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5485 		struct kmem_cache *c;
5486 
5487 		mutex_lock(&slab_mutex);
5488 		if (s->max_attr_size < len)
5489 			s->max_attr_size = len;
5490 
5491 		/*
5492 		 * This is a best effort propagation, so this function's return
5493 		 * value will be determined by the parent cache only. This is
5494 		 * basically because not all attributes will have a well
5495 		 * defined semantics for rollbacks - most of the actions will
5496 		 * have permanent effects.
5497 		 *
5498 		 * Returning the error value of any of the children that fail
5499 		 * is not 100 % defined, in the sense that users seeing the
5500 		 * error code won't be able to know anything about the state of
5501 		 * the cache.
5502 		 *
5503 		 * Only returning the error code for the parent cache at least
5504 		 * has well defined semantics. The cache being written to
5505 		 * directly either failed or succeeded, in which case we loop
5506 		 * through the descendants with best-effort propagation.
5507 		 */
5508 		for_each_memcg_cache(c, s)
5509 			attribute->store(c, buf, len);
5510 		mutex_unlock(&slab_mutex);
5511 	}
5512 #endif
5513 	return err;
5514 }
5515 
5516 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5517 {
5518 #ifdef CONFIG_MEMCG
5519 	int i;
5520 	char *buffer = NULL;
5521 	struct kmem_cache *root_cache;
5522 
5523 	if (is_root_cache(s))
5524 		return;
5525 
5526 	root_cache = s->memcg_params.root_cache;
5527 
5528 	/*
5529 	 * This mean this cache had no attribute written. Therefore, no point
5530 	 * in copying default values around
5531 	 */
5532 	if (!root_cache->max_attr_size)
5533 		return;
5534 
5535 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5536 		char mbuf[64];
5537 		char *buf;
5538 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5539 		ssize_t len;
5540 
5541 		if (!attr || !attr->store || !attr->show)
5542 			continue;
5543 
5544 		/*
5545 		 * It is really bad that we have to allocate here, so we will
5546 		 * do it only as a fallback. If we actually allocate, though,
5547 		 * we can just use the allocated buffer until the end.
5548 		 *
5549 		 * Most of the slub attributes will tend to be very small in
5550 		 * size, but sysfs allows buffers up to a page, so they can
5551 		 * theoretically happen.
5552 		 */
5553 		if (buffer)
5554 			buf = buffer;
5555 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5556 			buf = mbuf;
5557 		else {
5558 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5559 			if (WARN_ON(!buffer))
5560 				continue;
5561 			buf = buffer;
5562 		}
5563 
5564 		len = attr->show(root_cache, buf);
5565 		if (len > 0)
5566 			attr->store(s, buf, len);
5567 	}
5568 
5569 	if (buffer)
5570 		free_page((unsigned long)buffer);
5571 #endif
5572 }
5573 
5574 static void kmem_cache_release(struct kobject *k)
5575 {
5576 	slab_kmem_cache_release(to_slab(k));
5577 }
5578 
5579 static const struct sysfs_ops slab_sysfs_ops = {
5580 	.show = slab_attr_show,
5581 	.store = slab_attr_store,
5582 };
5583 
5584 static struct kobj_type slab_ktype = {
5585 	.sysfs_ops = &slab_sysfs_ops,
5586 	.release = kmem_cache_release,
5587 };
5588 
5589 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5590 {
5591 	struct kobj_type *ktype = get_ktype(kobj);
5592 
5593 	if (ktype == &slab_ktype)
5594 		return 1;
5595 	return 0;
5596 }
5597 
5598 static const struct kset_uevent_ops slab_uevent_ops = {
5599 	.filter = uevent_filter,
5600 };
5601 
5602 static struct kset *slab_kset;
5603 
5604 static inline struct kset *cache_kset(struct kmem_cache *s)
5605 {
5606 #ifdef CONFIG_MEMCG
5607 	if (!is_root_cache(s))
5608 		return s->memcg_params.root_cache->memcg_kset;
5609 #endif
5610 	return slab_kset;
5611 }
5612 
5613 #define ID_STR_LENGTH 64
5614 
5615 /* Create a unique string id for a slab cache:
5616  *
5617  * Format	:[flags-]size
5618  */
5619 static char *create_unique_id(struct kmem_cache *s)
5620 {
5621 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5622 	char *p = name;
5623 
5624 	BUG_ON(!name);
5625 
5626 	*p++ = ':';
5627 	/*
5628 	 * First flags affecting slabcache operations. We will only
5629 	 * get here for aliasable slabs so we do not need to support
5630 	 * too many flags. The flags here must cover all flags that
5631 	 * are matched during merging to guarantee that the id is
5632 	 * unique.
5633 	 */
5634 	if (s->flags & SLAB_CACHE_DMA)
5635 		*p++ = 'd';
5636 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5637 		*p++ = 'a';
5638 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5639 		*p++ = 'F';
5640 	if (s->flags & SLAB_ACCOUNT)
5641 		*p++ = 'A';
5642 	if (p != name + 1)
5643 		*p++ = '-';
5644 	p += sprintf(p, "%07u", s->size);
5645 
5646 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5647 	return name;
5648 }
5649 
5650 static void sysfs_slab_remove_workfn(struct work_struct *work)
5651 {
5652 	struct kmem_cache *s =
5653 		container_of(work, struct kmem_cache, kobj_remove_work);
5654 
5655 	if (!s->kobj.state_in_sysfs)
5656 		/*
5657 		 * For a memcg cache, this may be called during
5658 		 * deactivation and again on shutdown.  Remove only once.
5659 		 * A cache is never shut down before deactivation is
5660 		 * complete, so no need to worry about synchronization.
5661 		 */
5662 		goto out;
5663 
5664 #ifdef CONFIG_MEMCG
5665 	kset_unregister(s->memcg_kset);
5666 #endif
5667 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5668 out:
5669 	kobject_put(&s->kobj);
5670 }
5671 
5672 static int sysfs_slab_add(struct kmem_cache *s)
5673 {
5674 	int err;
5675 	const char *name;
5676 	struct kset *kset = cache_kset(s);
5677 	int unmergeable = slab_unmergeable(s);
5678 
5679 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5680 
5681 	if (!kset) {
5682 		kobject_init(&s->kobj, &slab_ktype);
5683 		return 0;
5684 	}
5685 
5686 	if (!unmergeable && disable_higher_order_debug &&
5687 			(slub_debug & DEBUG_METADATA_FLAGS))
5688 		unmergeable = 1;
5689 
5690 	if (unmergeable) {
5691 		/*
5692 		 * Slabcache can never be merged so we can use the name proper.
5693 		 * This is typically the case for debug situations. In that
5694 		 * case we can catch duplicate names easily.
5695 		 */
5696 		sysfs_remove_link(&slab_kset->kobj, s->name);
5697 		name = s->name;
5698 	} else {
5699 		/*
5700 		 * Create a unique name for the slab as a target
5701 		 * for the symlinks.
5702 		 */
5703 		name = create_unique_id(s);
5704 	}
5705 
5706 	s->kobj.kset = kset;
5707 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5708 	if (err)
5709 		goto out;
5710 
5711 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5712 	if (err)
5713 		goto out_del_kobj;
5714 
5715 #ifdef CONFIG_MEMCG
5716 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5717 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5718 		if (!s->memcg_kset) {
5719 			err = -ENOMEM;
5720 			goto out_del_kobj;
5721 		}
5722 	}
5723 #endif
5724 
5725 	kobject_uevent(&s->kobj, KOBJ_ADD);
5726 	if (!unmergeable) {
5727 		/* Setup first alias */
5728 		sysfs_slab_alias(s, s->name);
5729 	}
5730 out:
5731 	if (!unmergeable)
5732 		kfree(name);
5733 	return err;
5734 out_del_kobj:
5735 	kobject_del(&s->kobj);
5736 	goto out;
5737 }
5738 
5739 static void sysfs_slab_remove(struct kmem_cache *s)
5740 {
5741 	if (slab_state < FULL)
5742 		/*
5743 		 * Sysfs has not been setup yet so no need to remove the
5744 		 * cache from sysfs.
5745 		 */
5746 		return;
5747 
5748 	kobject_get(&s->kobj);
5749 	schedule_work(&s->kobj_remove_work);
5750 }
5751 
5752 void sysfs_slab_unlink(struct kmem_cache *s)
5753 {
5754 	if (slab_state >= FULL)
5755 		kobject_del(&s->kobj);
5756 }
5757 
5758 void sysfs_slab_release(struct kmem_cache *s)
5759 {
5760 	if (slab_state >= FULL)
5761 		kobject_put(&s->kobj);
5762 }
5763 
5764 /*
5765  * Need to buffer aliases during bootup until sysfs becomes
5766  * available lest we lose that information.
5767  */
5768 struct saved_alias {
5769 	struct kmem_cache *s;
5770 	const char *name;
5771 	struct saved_alias *next;
5772 };
5773 
5774 static struct saved_alias *alias_list;
5775 
5776 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5777 {
5778 	struct saved_alias *al;
5779 
5780 	if (slab_state == FULL) {
5781 		/*
5782 		 * If we have a leftover link then remove it.
5783 		 */
5784 		sysfs_remove_link(&slab_kset->kobj, name);
5785 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5786 	}
5787 
5788 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5789 	if (!al)
5790 		return -ENOMEM;
5791 
5792 	al->s = s;
5793 	al->name = name;
5794 	al->next = alias_list;
5795 	alias_list = al;
5796 	return 0;
5797 }
5798 
5799 static int __init slab_sysfs_init(void)
5800 {
5801 	struct kmem_cache *s;
5802 	int err;
5803 
5804 	mutex_lock(&slab_mutex);
5805 
5806 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5807 	if (!slab_kset) {
5808 		mutex_unlock(&slab_mutex);
5809 		pr_err("Cannot register slab subsystem.\n");
5810 		return -ENOSYS;
5811 	}
5812 
5813 	slab_state = FULL;
5814 
5815 	list_for_each_entry(s, &slab_caches, list) {
5816 		err = sysfs_slab_add(s);
5817 		if (err)
5818 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5819 			       s->name);
5820 	}
5821 
5822 	while (alias_list) {
5823 		struct saved_alias *al = alias_list;
5824 
5825 		alias_list = alias_list->next;
5826 		err = sysfs_slab_alias(al->s, al->name);
5827 		if (err)
5828 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5829 			       al->name);
5830 		kfree(al);
5831 	}
5832 
5833 	mutex_unlock(&slab_mutex);
5834 	resiliency_test();
5835 	return 0;
5836 }
5837 
5838 __initcall(slab_sysfs_init);
5839 #endif /* CONFIG_SYSFS */
5840 
5841 /*
5842  * The /proc/slabinfo ABI
5843  */
5844 #ifdef CONFIG_SLUB_DEBUG
5845 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5846 {
5847 	unsigned long nr_slabs = 0;
5848 	unsigned long nr_objs = 0;
5849 	unsigned long nr_free = 0;
5850 	int node;
5851 	struct kmem_cache_node *n;
5852 
5853 	for_each_kmem_cache_node(s, node, n) {
5854 		nr_slabs += node_nr_slabs(n);
5855 		nr_objs += node_nr_objs(n);
5856 		nr_free += count_partial(n, count_free);
5857 	}
5858 
5859 	sinfo->active_objs = nr_objs - nr_free;
5860 	sinfo->num_objs = nr_objs;
5861 	sinfo->active_slabs = nr_slabs;
5862 	sinfo->num_slabs = nr_slabs;
5863 	sinfo->objects_per_slab = oo_objects(s->oo);
5864 	sinfo->cache_order = oo_order(s->oo);
5865 }
5866 
5867 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5868 {
5869 }
5870 
5871 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5872 		       size_t count, loff_t *ppos)
5873 {
5874 	return -EIO;
5875 }
5876 #endif /* CONFIG_SLUB_DEBUG */
5877