1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 /* Poison object */ 195 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 196 /* Use cmpxchg_double */ 197 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 198 199 /* 200 * Tracking user of a slab. 201 */ 202 #define TRACK_ADDRS_COUNT 16 203 struct track { 204 unsigned long addr; /* Called from address */ 205 #ifdef CONFIG_STACKTRACE 206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 207 #endif 208 int cpu; /* Was running on cpu */ 209 int pid; /* Pid context */ 210 unsigned long when; /* When did the operation occur */ 211 }; 212 213 enum track_item { TRACK_ALLOC, TRACK_FREE }; 214 215 #ifdef CONFIG_SYSFS 216 static int sysfs_slab_add(struct kmem_cache *); 217 static int sysfs_slab_alias(struct kmem_cache *, const char *); 218 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 219 static void sysfs_slab_remove(struct kmem_cache *s); 220 #else 221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 223 { return 0; } 224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 225 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /******************************************************************** 240 * Core slab cache functions 241 *******************************************************************/ 242 243 /* 244 * Returns freelist pointer (ptr). With hardening, this is obfuscated 245 * with an XOR of the address where the pointer is held and a per-cache 246 * random number. 247 */ 248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 249 unsigned long ptr_addr) 250 { 251 #ifdef CONFIG_SLAB_FREELIST_HARDENED 252 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); 253 #else 254 return ptr; 255 #endif 256 } 257 258 /* Returns the freelist pointer recorded at location ptr_addr. */ 259 static inline void *freelist_dereference(const struct kmem_cache *s, 260 void *ptr_addr) 261 { 262 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 263 (unsigned long)ptr_addr); 264 } 265 266 static inline void *get_freepointer(struct kmem_cache *s, void *object) 267 { 268 return freelist_dereference(s, object + s->offset); 269 } 270 271 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 272 { 273 prefetch(object + s->offset); 274 } 275 276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 277 { 278 unsigned long freepointer_addr; 279 void *p; 280 281 if (!debug_pagealloc_enabled()) 282 return get_freepointer(s, object); 283 284 freepointer_addr = (unsigned long)object + s->offset; 285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 286 return freelist_ptr(s, p, freepointer_addr); 287 } 288 289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 290 { 291 unsigned long freeptr_addr = (unsigned long)object + s->offset; 292 293 #ifdef CONFIG_SLAB_FREELIST_HARDENED 294 BUG_ON(object == fp); /* naive detection of double free or corruption */ 295 #endif 296 297 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 298 } 299 300 /* Loop over all objects in a slab */ 301 #define for_each_object(__p, __s, __addr, __objects) \ 302 for (__p = fixup_red_left(__s, __addr); \ 303 __p < (__addr) + (__objects) * (__s)->size; \ 304 __p += (__s)->size) 305 306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 308 __idx <= __objects; \ 309 __p += (__s)->size, __idx++) 310 311 /* Determine object index from a given position */ 312 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 313 { 314 return (p - addr) / s->size; 315 } 316 317 static inline unsigned int order_objects(unsigned int order, unsigned int size) 318 { 319 return ((unsigned int)PAGE_SIZE << order) / size; 320 } 321 322 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 323 unsigned int size) 324 { 325 struct kmem_cache_order_objects x = { 326 (order << OO_SHIFT) + order_objects(order, size) 327 }; 328 329 return x; 330 } 331 332 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 333 { 334 return x.x >> OO_SHIFT; 335 } 336 337 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 338 { 339 return x.x & OO_MASK; 340 } 341 342 /* 343 * Per slab locking using the pagelock 344 */ 345 static __always_inline void slab_lock(struct page *page) 346 { 347 VM_BUG_ON_PAGE(PageTail(page), page); 348 bit_spin_lock(PG_locked, &page->flags); 349 } 350 351 static __always_inline void slab_unlock(struct page *page) 352 { 353 VM_BUG_ON_PAGE(PageTail(page), page); 354 __bit_spin_unlock(PG_locked, &page->flags); 355 } 356 357 /* Interrupts must be disabled (for the fallback code to work right) */ 358 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 359 void *freelist_old, unsigned long counters_old, 360 void *freelist_new, unsigned long counters_new, 361 const char *n) 362 { 363 VM_BUG_ON(!irqs_disabled()); 364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 365 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 366 if (s->flags & __CMPXCHG_DOUBLE) { 367 if (cmpxchg_double(&page->freelist, &page->counters, 368 freelist_old, counters_old, 369 freelist_new, counters_new)) 370 return true; 371 } else 372 #endif 373 { 374 slab_lock(page); 375 if (page->freelist == freelist_old && 376 page->counters == counters_old) { 377 page->freelist = freelist_new; 378 page->counters = counters_new; 379 slab_unlock(page); 380 return true; 381 } 382 slab_unlock(page); 383 } 384 385 cpu_relax(); 386 stat(s, CMPXCHG_DOUBLE_FAIL); 387 388 #ifdef SLUB_DEBUG_CMPXCHG 389 pr_info("%s %s: cmpxchg double redo ", n, s->name); 390 #endif 391 392 return false; 393 } 394 395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 396 void *freelist_old, unsigned long counters_old, 397 void *freelist_new, unsigned long counters_new, 398 const char *n) 399 { 400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 402 if (s->flags & __CMPXCHG_DOUBLE) { 403 if (cmpxchg_double(&page->freelist, &page->counters, 404 freelist_old, counters_old, 405 freelist_new, counters_new)) 406 return true; 407 } else 408 #endif 409 { 410 unsigned long flags; 411 412 local_irq_save(flags); 413 slab_lock(page); 414 if (page->freelist == freelist_old && 415 page->counters == counters_old) { 416 page->freelist = freelist_new; 417 page->counters = counters_new; 418 slab_unlock(page); 419 local_irq_restore(flags); 420 return true; 421 } 422 slab_unlock(page); 423 local_irq_restore(flags); 424 } 425 426 cpu_relax(); 427 stat(s, CMPXCHG_DOUBLE_FAIL); 428 429 #ifdef SLUB_DEBUG_CMPXCHG 430 pr_info("%s %s: cmpxchg double redo ", n, s->name); 431 #endif 432 433 return false; 434 } 435 436 #ifdef CONFIG_SLUB_DEBUG 437 /* 438 * Determine a map of object in use on a page. 439 * 440 * Node listlock must be held to guarantee that the page does 441 * not vanish from under us. 442 */ 443 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 444 { 445 void *p; 446 void *addr = page_address(page); 447 448 for (p = page->freelist; p; p = get_freepointer(s, p)) 449 set_bit(slab_index(p, s, addr), map); 450 } 451 452 static inline unsigned int size_from_object(struct kmem_cache *s) 453 { 454 if (s->flags & SLAB_RED_ZONE) 455 return s->size - s->red_left_pad; 456 457 return s->size; 458 } 459 460 static inline void *restore_red_left(struct kmem_cache *s, void *p) 461 { 462 if (s->flags & SLAB_RED_ZONE) 463 p -= s->red_left_pad; 464 465 return p; 466 } 467 468 /* 469 * Debug settings: 470 */ 471 #if defined(CONFIG_SLUB_DEBUG_ON) 472 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 473 #else 474 static slab_flags_t slub_debug; 475 #endif 476 477 static char *slub_debug_slabs; 478 static int disable_higher_order_debug; 479 480 /* 481 * slub is about to manipulate internal object metadata. This memory lies 482 * outside the range of the allocated object, so accessing it would normally 483 * be reported by kasan as a bounds error. metadata_access_enable() is used 484 * to tell kasan that these accesses are OK. 485 */ 486 static inline void metadata_access_enable(void) 487 { 488 kasan_disable_current(); 489 } 490 491 static inline void metadata_access_disable(void) 492 { 493 kasan_enable_current(); 494 } 495 496 /* 497 * Object debugging 498 */ 499 500 /* Verify that a pointer has an address that is valid within a slab page */ 501 static inline int check_valid_pointer(struct kmem_cache *s, 502 struct page *page, void *object) 503 { 504 void *base; 505 506 if (!object) 507 return 1; 508 509 base = page_address(page); 510 object = restore_red_left(s, object); 511 if (object < base || object >= base + page->objects * s->size || 512 (object - base) % s->size) { 513 return 0; 514 } 515 516 return 1; 517 } 518 519 static void print_section(char *level, char *text, u8 *addr, 520 unsigned int length) 521 { 522 metadata_access_enable(); 523 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 524 length, 1); 525 metadata_access_disable(); 526 } 527 528 static struct track *get_track(struct kmem_cache *s, void *object, 529 enum track_item alloc) 530 { 531 struct track *p; 532 533 if (s->offset) 534 p = object + s->offset + sizeof(void *); 535 else 536 p = object + s->inuse; 537 538 return p + alloc; 539 } 540 541 static void set_track(struct kmem_cache *s, void *object, 542 enum track_item alloc, unsigned long addr) 543 { 544 struct track *p = get_track(s, object, alloc); 545 546 if (addr) { 547 #ifdef CONFIG_STACKTRACE 548 struct stack_trace trace; 549 int i; 550 551 trace.nr_entries = 0; 552 trace.max_entries = TRACK_ADDRS_COUNT; 553 trace.entries = p->addrs; 554 trace.skip = 3; 555 metadata_access_enable(); 556 save_stack_trace(&trace); 557 metadata_access_disable(); 558 559 /* See rant in lockdep.c */ 560 if (trace.nr_entries != 0 && 561 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 562 trace.nr_entries--; 563 564 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 565 p->addrs[i] = 0; 566 #endif 567 p->addr = addr; 568 p->cpu = smp_processor_id(); 569 p->pid = current->pid; 570 p->when = jiffies; 571 } else 572 memset(p, 0, sizeof(struct track)); 573 } 574 575 static void init_tracking(struct kmem_cache *s, void *object) 576 { 577 if (!(s->flags & SLAB_STORE_USER)) 578 return; 579 580 set_track(s, object, TRACK_FREE, 0UL); 581 set_track(s, object, TRACK_ALLOC, 0UL); 582 } 583 584 static void print_track(const char *s, struct track *t, unsigned long pr_time) 585 { 586 if (!t->addr) 587 return; 588 589 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 590 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 591 #ifdef CONFIG_STACKTRACE 592 { 593 int i; 594 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 595 if (t->addrs[i]) 596 pr_err("\t%pS\n", (void *)t->addrs[i]); 597 else 598 break; 599 } 600 #endif 601 } 602 603 static void print_tracking(struct kmem_cache *s, void *object) 604 { 605 unsigned long pr_time = jiffies; 606 if (!(s->flags & SLAB_STORE_USER)) 607 return; 608 609 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 610 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 611 } 612 613 static void print_page_info(struct page *page) 614 { 615 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 616 page, page->objects, page->inuse, page->freelist, page->flags); 617 618 } 619 620 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 621 { 622 struct va_format vaf; 623 va_list args; 624 625 va_start(args, fmt); 626 vaf.fmt = fmt; 627 vaf.va = &args; 628 pr_err("=============================================================================\n"); 629 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 630 pr_err("-----------------------------------------------------------------------------\n\n"); 631 632 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 633 va_end(args); 634 } 635 636 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 637 { 638 struct va_format vaf; 639 va_list args; 640 641 va_start(args, fmt); 642 vaf.fmt = fmt; 643 vaf.va = &args; 644 pr_err("FIX %s: %pV\n", s->name, &vaf); 645 va_end(args); 646 } 647 648 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 649 { 650 unsigned int off; /* Offset of last byte */ 651 u8 *addr = page_address(page); 652 653 print_tracking(s, p); 654 655 print_page_info(page); 656 657 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 658 p, p - addr, get_freepointer(s, p)); 659 660 if (s->flags & SLAB_RED_ZONE) 661 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 662 s->red_left_pad); 663 else if (p > addr + 16) 664 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 665 666 print_section(KERN_ERR, "Object ", p, 667 min_t(unsigned int, s->object_size, PAGE_SIZE)); 668 if (s->flags & SLAB_RED_ZONE) 669 print_section(KERN_ERR, "Redzone ", p + s->object_size, 670 s->inuse - s->object_size); 671 672 if (s->offset) 673 off = s->offset + sizeof(void *); 674 else 675 off = s->inuse; 676 677 if (s->flags & SLAB_STORE_USER) 678 off += 2 * sizeof(struct track); 679 680 off += kasan_metadata_size(s); 681 682 if (off != size_from_object(s)) 683 /* Beginning of the filler is the free pointer */ 684 print_section(KERN_ERR, "Padding ", p + off, 685 size_from_object(s) - off); 686 687 dump_stack(); 688 } 689 690 void object_err(struct kmem_cache *s, struct page *page, 691 u8 *object, char *reason) 692 { 693 slab_bug(s, "%s", reason); 694 print_trailer(s, page, object); 695 } 696 697 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 698 const char *fmt, ...) 699 { 700 va_list args; 701 char buf[100]; 702 703 va_start(args, fmt); 704 vsnprintf(buf, sizeof(buf), fmt, args); 705 va_end(args); 706 slab_bug(s, "%s", buf); 707 print_page_info(page); 708 dump_stack(); 709 } 710 711 static void init_object(struct kmem_cache *s, void *object, u8 val) 712 { 713 u8 *p = object; 714 715 if (s->flags & SLAB_RED_ZONE) 716 memset(p - s->red_left_pad, val, s->red_left_pad); 717 718 if (s->flags & __OBJECT_POISON) { 719 memset(p, POISON_FREE, s->object_size - 1); 720 p[s->object_size - 1] = POISON_END; 721 } 722 723 if (s->flags & SLAB_RED_ZONE) 724 memset(p + s->object_size, val, s->inuse - s->object_size); 725 } 726 727 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 728 void *from, void *to) 729 { 730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 731 memset(from, data, to - from); 732 } 733 734 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 735 u8 *object, char *what, 736 u8 *start, unsigned int value, unsigned int bytes) 737 { 738 u8 *fault; 739 u8 *end; 740 741 metadata_access_enable(); 742 fault = memchr_inv(start, value, bytes); 743 metadata_access_disable(); 744 if (!fault) 745 return 1; 746 747 end = start + bytes; 748 while (end > fault && end[-1] == value) 749 end--; 750 751 slab_bug(s, "%s overwritten", what); 752 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 753 fault, end - 1, fault[0], value); 754 print_trailer(s, page, object); 755 756 restore_bytes(s, what, value, fault, end); 757 return 0; 758 } 759 760 /* 761 * Object layout: 762 * 763 * object address 764 * Bytes of the object to be managed. 765 * If the freepointer may overlay the object then the free 766 * pointer is the first word of the object. 767 * 768 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 769 * 0xa5 (POISON_END) 770 * 771 * object + s->object_size 772 * Padding to reach word boundary. This is also used for Redzoning. 773 * Padding is extended by another word if Redzoning is enabled and 774 * object_size == inuse. 775 * 776 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 777 * 0xcc (RED_ACTIVE) for objects in use. 778 * 779 * object + s->inuse 780 * Meta data starts here. 781 * 782 * A. Free pointer (if we cannot overwrite object on free) 783 * B. Tracking data for SLAB_STORE_USER 784 * C. Padding to reach required alignment boundary or at mininum 785 * one word if debugging is on to be able to detect writes 786 * before the word boundary. 787 * 788 * Padding is done using 0x5a (POISON_INUSE) 789 * 790 * object + s->size 791 * Nothing is used beyond s->size. 792 * 793 * If slabcaches are merged then the object_size and inuse boundaries are mostly 794 * ignored. And therefore no slab options that rely on these boundaries 795 * may be used with merged slabcaches. 796 */ 797 798 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 799 { 800 unsigned long off = s->inuse; /* The end of info */ 801 802 if (s->offset) 803 /* Freepointer is placed after the object. */ 804 off += sizeof(void *); 805 806 if (s->flags & SLAB_STORE_USER) 807 /* We also have user information there */ 808 off += 2 * sizeof(struct track); 809 810 off += kasan_metadata_size(s); 811 812 if (size_from_object(s) == off) 813 return 1; 814 815 return check_bytes_and_report(s, page, p, "Object padding", 816 p + off, POISON_INUSE, size_from_object(s) - off); 817 } 818 819 /* Check the pad bytes at the end of a slab page */ 820 static int slab_pad_check(struct kmem_cache *s, struct page *page) 821 { 822 u8 *start; 823 u8 *fault; 824 u8 *end; 825 u8 *pad; 826 int length; 827 int remainder; 828 829 if (!(s->flags & SLAB_POISON)) 830 return 1; 831 832 start = page_address(page); 833 length = PAGE_SIZE << compound_order(page); 834 end = start + length; 835 remainder = length % s->size; 836 if (!remainder) 837 return 1; 838 839 pad = end - remainder; 840 metadata_access_enable(); 841 fault = memchr_inv(pad, POISON_INUSE, remainder); 842 metadata_access_disable(); 843 if (!fault) 844 return 1; 845 while (end > fault && end[-1] == POISON_INUSE) 846 end--; 847 848 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 849 print_section(KERN_ERR, "Padding ", pad, remainder); 850 851 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 852 return 0; 853 } 854 855 static int check_object(struct kmem_cache *s, struct page *page, 856 void *object, u8 val) 857 { 858 u8 *p = object; 859 u8 *endobject = object + s->object_size; 860 861 if (s->flags & SLAB_RED_ZONE) { 862 if (!check_bytes_and_report(s, page, object, "Redzone", 863 object - s->red_left_pad, val, s->red_left_pad)) 864 return 0; 865 866 if (!check_bytes_and_report(s, page, object, "Redzone", 867 endobject, val, s->inuse - s->object_size)) 868 return 0; 869 } else { 870 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 871 check_bytes_and_report(s, page, p, "Alignment padding", 872 endobject, POISON_INUSE, 873 s->inuse - s->object_size); 874 } 875 } 876 877 if (s->flags & SLAB_POISON) { 878 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 879 (!check_bytes_and_report(s, page, p, "Poison", p, 880 POISON_FREE, s->object_size - 1) || 881 !check_bytes_and_report(s, page, p, "Poison", 882 p + s->object_size - 1, POISON_END, 1))) 883 return 0; 884 /* 885 * check_pad_bytes cleans up on its own. 886 */ 887 check_pad_bytes(s, page, p); 888 } 889 890 if (!s->offset && val == SLUB_RED_ACTIVE) 891 /* 892 * Object and freepointer overlap. Cannot check 893 * freepointer while object is allocated. 894 */ 895 return 1; 896 897 /* Check free pointer validity */ 898 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 899 object_err(s, page, p, "Freepointer corrupt"); 900 /* 901 * No choice but to zap it and thus lose the remainder 902 * of the free objects in this slab. May cause 903 * another error because the object count is now wrong. 904 */ 905 set_freepointer(s, p, NULL); 906 return 0; 907 } 908 return 1; 909 } 910 911 static int check_slab(struct kmem_cache *s, struct page *page) 912 { 913 int maxobj; 914 915 VM_BUG_ON(!irqs_disabled()); 916 917 if (!PageSlab(page)) { 918 slab_err(s, page, "Not a valid slab page"); 919 return 0; 920 } 921 922 maxobj = order_objects(compound_order(page), s->size); 923 if (page->objects > maxobj) { 924 slab_err(s, page, "objects %u > max %u", 925 page->objects, maxobj); 926 return 0; 927 } 928 if (page->inuse > page->objects) { 929 slab_err(s, page, "inuse %u > max %u", 930 page->inuse, page->objects); 931 return 0; 932 } 933 /* Slab_pad_check fixes things up after itself */ 934 slab_pad_check(s, page); 935 return 1; 936 } 937 938 /* 939 * Determine if a certain object on a page is on the freelist. Must hold the 940 * slab lock to guarantee that the chains are in a consistent state. 941 */ 942 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 943 { 944 int nr = 0; 945 void *fp; 946 void *object = NULL; 947 int max_objects; 948 949 fp = page->freelist; 950 while (fp && nr <= page->objects) { 951 if (fp == search) 952 return 1; 953 if (!check_valid_pointer(s, page, fp)) { 954 if (object) { 955 object_err(s, page, object, 956 "Freechain corrupt"); 957 set_freepointer(s, object, NULL); 958 } else { 959 slab_err(s, page, "Freepointer corrupt"); 960 page->freelist = NULL; 961 page->inuse = page->objects; 962 slab_fix(s, "Freelist cleared"); 963 return 0; 964 } 965 break; 966 } 967 object = fp; 968 fp = get_freepointer(s, object); 969 nr++; 970 } 971 972 max_objects = order_objects(compound_order(page), s->size); 973 if (max_objects > MAX_OBJS_PER_PAGE) 974 max_objects = MAX_OBJS_PER_PAGE; 975 976 if (page->objects != max_objects) { 977 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 978 page->objects, max_objects); 979 page->objects = max_objects; 980 slab_fix(s, "Number of objects adjusted."); 981 } 982 if (page->inuse != page->objects - nr) { 983 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 984 page->inuse, page->objects - nr); 985 page->inuse = page->objects - nr; 986 slab_fix(s, "Object count adjusted."); 987 } 988 return search == NULL; 989 } 990 991 static void trace(struct kmem_cache *s, struct page *page, void *object, 992 int alloc) 993 { 994 if (s->flags & SLAB_TRACE) { 995 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 996 s->name, 997 alloc ? "alloc" : "free", 998 object, page->inuse, 999 page->freelist); 1000 1001 if (!alloc) 1002 print_section(KERN_INFO, "Object ", (void *)object, 1003 s->object_size); 1004 1005 dump_stack(); 1006 } 1007 } 1008 1009 /* 1010 * Tracking of fully allocated slabs for debugging purposes. 1011 */ 1012 static void add_full(struct kmem_cache *s, 1013 struct kmem_cache_node *n, struct page *page) 1014 { 1015 if (!(s->flags & SLAB_STORE_USER)) 1016 return; 1017 1018 lockdep_assert_held(&n->list_lock); 1019 list_add(&page->lru, &n->full); 1020 } 1021 1022 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1023 { 1024 if (!(s->flags & SLAB_STORE_USER)) 1025 return; 1026 1027 lockdep_assert_held(&n->list_lock); 1028 list_del(&page->lru); 1029 } 1030 1031 /* Tracking of the number of slabs for debugging purposes */ 1032 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1033 { 1034 struct kmem_cache_node *n = get_node(s, node); 1035 1036 return atomic_long_read(&n->nr_slabs); 1037 } 1038 1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1040 { 1041 return atomic_long_read(&n->nr_slabs); 1042 } 1043 1044 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1045 { 1046 struct kmem_cache_node *n = get_node(s, node); 1047 1048 /* 1049 * May be called early in order to allocate a slab for the 1050 * kmem_cache_node structure. Solve the chicken-egg 1051 * dilemma by deferring the increment of the count during 1052 * bootstrap (see early_kmem_cache_node_alloc). 1053 */ 1054 if (likely(n)) { 1055 atomic_long_inc(&n->nr_slabs); 1056 atomic_long_add(objects, &n->total_objects); 1057 } 1058 } 1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1060 { 1061 struct kmem_cache_node *n = get_node(s, node); 1062 1063 atomic_long_dec(&n->nr_slabs); 1064 atomic_long_sub(objects, &n->total_objects); 1065 } 1066 1067 /* Object debug checks for alloc/free paths */ 1068 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1069 void *object) 1070 { 1071 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1072 return; 1073 1074 init_object(s, object, SLUB_RED_INACTIVE); 1075 init_tracking(s, object); 1076 } 1077 1078 static inline int alloc_consistency_checks(struct kmem_cache *s, 1079 struct page *page, 1080 void *object, unsigned long addr) 1081 { 1082 if (!check_slab(s, page)) 1083 return 0; 1084 1085 if (!check_valid_pointer(s, page, object)) { 1086 object_err(s, page, object, "Freelist Pointer check fails"); 1087 return 0; 1088 } 1089 1090 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1091 return 0; 1092 1093 return 1; 1094 } 1095 1096 static noinline int alloc_debug_processing(struct kmem_cache *s, 1097 struct page *page, 1098 void *object, unsigned long addr) 1099 { 1100 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1101 if (!alloc_consistency_checks(s, page, object, addr)) 1102 goto bad; 1103 } 1104 1105 /* Success perform special debug activities for allocs */ 1106 if (s->flags & SLAB_STORE_USER) 1107 set_track(s, object, TRACK_ALLOC, addr); 1108 trace(s, page, object, 1); 1109 init_object(s, object, SLUB_RED_ACTIVE); 1110 return 1; 1111 1112 bad: 1113 if (PageSlab(page)) { 1114 /* 1115 * If this is a slab page then lets do the best we can 1116 * to avoid issues in the future. Marking all objects 1117 * as used avoids touching the remaining objects. 1118 */ 1119 slab_fix(s, "Marking all objects used"); 1120 page->inuse = page->objects; 1121 page->freelist = NULL; 1122 } 1123 return 0; 1124 } 1125 1126 static inline int free_consistency_checks(struct kmem_cache *s, 1127 struct page *page, void *object, unsigned long addr) 1128 { 1129 if (!check_valid_pointer(s, page, object)) { 1130 slab_err(s, page, "Invalid object pointer 0x%p", object); 1131 return 0; 1132 } 1133 1134 if (on_freelist(s, page, object)) { 1135 object_err(s, page, object, "Object already free"); 1136 return 0; 1137 } 1138 1139 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1140 return 0; 1141 1142 if (unlikely(s != page->slab_cache)) { 1143 if (!PageSlab(page)) { 1144 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1145 object); 1146 } else if (!page->slab_cache) { 1147 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1148 object); 1149 dump_stack(); 1150 } else 1151 object_err(s, page, object, 1152 "page slab pointer corrupt."); 1153 return 0; 1154 } 1155 return 1; 1156 } 1157 1158 /* Supports checking bulk free of a constructed freelist */ 1159 static noinline int free_debug_processing( 1160 struct kmem_cache *s, struct page *page, 1161 void *head, void *tail, int bulk_cnt, 1162 unsigned long addr) 1163 { 1164 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1165 void *object = head; 1166 int cnt = 0; 1167 unsigned long uninitialized_var(flags); 1168 int ret = 0; 1169 1170 spin_lock_irqsave(&n->list_lock, flags); 1171 slab_lock(page); 1172 1173 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1174 if (!check_slab(s, page)) 1175 goto out; 1176 } 1177 1178 next_object: 1179 cnt++; 1180 1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1182 if (!free_consistency_checks(s, page, object, addr)) 1183 goto out; 1184 } 1185 1186 if (s->flags & SLAB_STORE_USER) 1187 set_track(s, object, TRACK_FREE, addr); 1188 trace(s, page, object, 0); 1189 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1190 init_object(s, object, SLUB_RED_INACTIVE); 1191 1192 /* Reached end of constructed freelist yet? */ 1193 if (object != tail) { 1194 object = get_freepointer(s, object); 1195 goto next_object; 1196 } 1197 ret = 1; 1198 1199 out: 1200 if (cnt != bulk_cnt) 1201 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1202 bulk_cnt, cnt); 1203 1204 slab_unlock(page); 1205 spin_unlock_irqrestore(&n->list_lock, flags); 1206 if (!ret) 1207 slab_fix(s, "Object at 0x%p not freed", object); 1208 return ret; 1209 } 1210 1211 static int __init setup_slub_debug(char *str) 1212 { 1213 slub_debug = DEBUG_DEFAULT_FLAGS; 1214 if (*str++ != '=' || !*str) 1215 /* 1216 * No options specified. Switch on full debugging. 1217 */ 1218 goto out; 1219 1220 if (*str == ',') 1221 /* 1222 * No options but restriction on slabs. This means full 1223 * debugging for slabs matching a pattern. 1224 */ 1225 goto check_slabs; 1226 1227 slub_debug = 0; 1228 if (*str == '-') 1229 /* 1230 * Switch off all debugging measures. 1231 */ 1232 goto out; 1233 1234 /* 1235 * Determine which debug features should be switched on 1236 */ 1237 for (; *str && *str != ','; str++) { 1238 switch (tolower(*str)) { 1239 case 'f': 1240 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1241 break; 1242 case 'z': 1243 slub_debug |= SLAB_RED_ZONE; 1244 break; 1245 case 'p': 1246 slub_debug |= SLAB_POISON; 1247 break; 1248 case 'u': 1249 slub_debug |= SLAB_STORE_USER; 1250 break; 1251 case 't': 1252 slub_debug |= SLAB_TRACE; 1253 break; 1254 case 'a': 1255 slub_debug |= SLAB_FAILSLAB; 1256 break; 1257 case 'o': 1258 /* 1259 * Avoid enabling debugging on caches if its minimum 1260 * order would increase as a result. 1261 */ 1262 disable_higher_order_debug = 1; 1263 break; 1264 default: 1265 pr_err("slub_debug option '%c' unknown. skipped\n", 1266 *str); 1267 } 1268 } 1269 1270 check_slabs: 1271 if (*str == ',') 1272 slub_debug_slabs = str + 1; 1273 out: 1274 return 1; 1275 } 1276 1277 __setup("slub_debug", setup_slub_debug); 1278 1279 slab_flags_t kmem_cache_flags(unsigned int object_size, 1280 slab_flags_t flags, const char *name, 1281 void (*ctor)(void *)) 1282 { 1283 /* 1284 * Enable debugging if selected on the kernel commandline. 1285 */ 1286 if (slub_debug && (!slub_debug_slabs || (name && 1287 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1288 flags |= slub_debug; 1289 1290 return flags; 1291 } 1292 #else /* !CONFIG_SLUB_DEBUG */ 1293 static inline void setup_object_debug(struct kmem_cache *s, 1294 struct page *page, void *object) {} 1295 1296 static inline int alloc_debug_processing(struct kmem_cache *s, 1297 struct page *page, void *object, unsigned long addr) { return 0; } 1298 1299 static inline int free_debug_processing( 1300 struct kmem_cache *s, struct page *page, 1301 void *head, void *tail, int bulk_cnt, 1302 unsigned long addr) { return 0; } 1303 1304 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1305 { return 1; } 1306 static inline int check_object(struct kmem_cache *s, struct page *page, 1307 void *object, u8 val) { return 1; } 1308 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1309 struct page *page) {} 1310 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1311 struct page *page) {} 1312 slab_flags_t kmem_cache_flags(unsigned int object_size, 1313 slab_flags_t flags, const char *name, 1314 void (*ctor)(void *)) 1315 { 1316 return flags; 1317 } 1318 #define slub_debug 0 1319 1320 #define disable_higher_order_debug 0 1321 1322 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1323 { return 0; } 1324 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1325 { return 0; } 1326 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1327 int objects) {} 1328 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1329 int objects) {} 1330 1331 #endif /* CONFIG_SLUB_DEBUG */ 1332 1333 /* 1334 * Hooks for other subsystems that check memory allocations. In a typical 1335 * production configuration these hooks all should produce no code at all. 1336 */ 1337 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1338 { 1339 kmemleak_alloc(ptr, size, 1, flags); 1340 kasan_kmalloc_large(ptr, size, flags); 1341 } 1342 1343 static __always_inline void kfree_hook(void *x) 1344 { 1345 kmemleak_free(x); 1346 kasan_kfree_large(x, _RET_IP_); 1347 } 1348 1349 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1350 { 1351 kmemleak_free_recursive(x, s->flags); 1352 1353 /* 1354 * Trouble is that we may no longer disable interrupts in the fast path 1355 * So in order to make the debug calls that expect irqs to be 1356 * disabled we need to disable interrupts temporarily. 1357 */ 1358 #ifdef CONFIG_LOCKDEP 1359 { 1360 unsigned long flags; 1361 1362 local_irq_save(flags); 1363 debug_check_no_locks_freed(x, s->object_size); 1364 local_irq_restore(flags); 1365 } 1366 #endif 1367 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1368 debug_check_no_obj_freed(x, s->object_size); 1369 1370 /* KASAN might put x into memory quarantine, delaying its reuse */ 1371 return kasan_slab_free(s, x, _RET_IP_); 1372 } 1373 1374 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1375 void **head, void **tail) 1376 { 1377 /* 1378 * Compiler cannot detect this function can be removed if slab_free_hook() 1379 * evaluates to nothing. Thus, catch all relevant config debug options here. 1380 */ 1381 #if defined(CONFIG_LOCKDEP) || \ 1382 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1383 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1384 defined(CONFIG_KASAN) 1385 1386 void *object; 1387 void *next = *head; 1388 void *old_tail = *tail ? *tail : *head; 1389 1390 /* Head and tail of the reconstructed freelist */ 1391 *head = NULL; 1392 *tail = NULL; 1393 1394 do { 1395 object = next; 1396 next = get_freepointer(s, object); 1397 /* If object's reuse doesn't have to be delayed */ 1398 if (!slab_free_hook(s, object)) { 1399 /* Move object to the new freelist */ 1400 set_freepointer(s, object, *head); 1401 *head = object; 1402 if (!*tail) 1403 *tail = object; 1404 } 1405 } while (object != old_tail); 1406 1407 if (*head == *tail) 1408 *tail = NULL; 1409 1410 return *head != NULL; 1411 #else 1412 return true; 1413 #endif 1414 } 1415 1416 static void setup_object(struct kmem_cache *s, struct page *page, 1417 void *object) 1418 { 1419 setup_object_debug(s, page, object); 1420 kasan_init_slab_obj(s, object); 1421 if (unlikely(s->ctor)) { 1422 kasan_unpoison_object_data(s, object); 1423 s->ctor(object); 1424 kasan_poison_object_data(s, object); 1425 } 1426 } 1427 1428 /* 1429 * Slab allocation and freeing 1430 */ 1431 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1432 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1433 { 1434 struct page *page; 1435 unsigned int order = oo_order(oo); 1436 1437 if (node == NUMA_NO_NODE) 1438 page = alloc_pages(flags, order); 1439 else 1440 page = __alloc_pages_node(node, flags, order); 1441 1442 if (page && memcg_charge_slab(page, flags, order, s)) { 1443 __free_pages(page, order); 1444 page = NULL; 1445 } 1446 1447 return page; 1448 } 1449 1450 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1451 /* Pre-initialize the random sequence cache */ 1452 static int init_cache_random_seq(struct kmem_cache *s) 1453 { 1454 unsigned int count = oo_objects(s->oo); 1455 int err; 1456 1457 /* Bailout if already initialised */ 1458 if (s->random_seq) 1459 return 0; 1460 1461 err = cache_random_seq_create(s, count, GFP_KERNEL); 1462 if (err) { 1463 pr_err("SLUB: Unable to initialize free list for %s\n", 1464 s->name); 1465 return err; 1466 } 1467 1468 /* Transform to an offset on the set of pages */ 1469 if (s->random_seq) { 1470 unsigned int i; 1471 1472 for (i = 0; i < count; i++) 1473 s->random_seq[i] *= s->size; 1474 } 1475 return 0; 1476 } 1477 1478 /* Initialize each random sequence freelist per cache */ 1479 static void __init init_freelist_randomization(void) 1480 { 1481 struct kmem_cache *s; 1482 1483 mutex_lock(&slab_mutex); 1484 1485 list_for_each_entry(s, &slab_caches, list) 1486 init_cache_random_seq(s); 1487 1488 mutex_unlock(&slab_mutex); 1489 } 1490 1491 /* Get the next entry on the pre-computed freelist randomized */ 1492 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1493 unsigned long *pos, void *start, 1494 unsigned long page_limit, 1495 unsigned long freelist_count) 1496 { 1497 unsigned int idx; 1498 1499 /* 1500 * If the target page allocation failed, the number of objects on the 1501 * page might be smaller than the usual size defined by the cache. 1502 */ 1503 do { 1504 idx = s->random_seq[*pos]; 1505 *pos += 1; 1506 if (*pos >= freelist_count) 1507 *pos = 0; 1508 } while (unlikely(idx >= page_limit)); 1509 1510 return (char *)start + idx; 1511 } 1512 1513 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1514 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1515 { 1516 void *start; 1517 void *cur; 1518 void *next; 1519 unsigned long idx, pos, page_limit, freelist_count; 1520 1521 if (page->objects < 2 || !s->random_seq) 1522 return false; 1523 1524 freelist_count = oo_objects(s->oo); 1525 pos = get_random_int() % freelist_count; 1526 1527 page_limit = page->objects * s->size; 1528 start = fixup_red_left(s, page_address(page)); 1529 1530 /* First entry is used as the base of the freelist */ 1531 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1532 freelist_count); 1533 page->freelist = cur; 1534 1535 for (idx = 1; idx < page->objects; idx++) { 1536 setup_object(s, page, cur); 1537 next = next_freelist_entry(s, page, &pos, start, page_limit, 1538 freelist_count); 1539 set_freepointer(s, cur, next); 1540 cur = next; 1541 } 1542 setup_object(s, page, cur); 1543 set_freepointer(s, cur, NULL); 1544 1545 return true; 1546 } 1547 #else 1548 static inline int init_cache_random_seq(struct kmem_cache *s) 1549 { 1550 return 0; 1551 } 1552 static inline void init_freelist_randomization(void) { } 1553 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1554 { 1555 return false; 1556 } 1557 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1558 1559 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1560 { 1561 struct page *page; 1562 struct kmem_cache_order_objects oo = s->oo; 1563 gfp_t alloc_gfp; 1564 void *start, *p; 1565 int idx, order; 1566 bool shuffle; 1567 1568 flags &= gfp_allowed_mask; 1569 1570 if (gfpflags_allow_blocking(flags)) 1571 local_irq_enable(); 1572 1573 flags |= s->allocflags; 1574 1575 /* 1576 * Let the initial higher-order allocation fail under memory pressure 1577 * so we fall-back to the minimum order allocation. 1578 */ 1579 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1580 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1581 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1582 1583 page = alloc_slab_page(s, alloc_gfp, node, oo); 1584 if (unlikely(!page)) { 1585 oo = s->min; 1586 alloc_gfp = flags; 1587 /* 1588 * Allocation may have failed due to fragmentation. 1589 * Try a lower order alloc if possible 1590 */ 1591 page = alloc_slab_page(s, alloc_gfp, node, oo); 1592 if (unlikely(!page)) 1593 goto out; 1594 stat(s, ORDER_FALLBACK); 1595 } 1596 1597 page->objects = oo_objects(oo); 1598 1599 order = compound_order(page); 1600 page->slab_cache = s; 1601 __SetPageSlab(page); 1602 if (page_is_pfmemalloc(page)) 1603 SetPageSlabPfmemalloc(page); 1604 1605 start = page_address(page); 1606 1607 if (unlikely(s->flags & SLAB_POISON)) 1608 memset(start, POISON_INUSE, PAGE_SIZE << order); 1609 1610 kasan_poison_slab(page); 1611 1612 shuffle = shuffle_freelist(s, page); 1613 1614 if (!shuffle) { 1615 for_each_object_idx(p, idx, s, start, page->objects) { 1616 setup_object(s, page, p); 1617 if (likely(idx < page->objects)) 1618 set_freepointer(s, p, p + s->size); 1619 else 1620 set_freepointer(s, p, NULL); 1621 } 1622 page->freelist = fixup_red_left(s, start); 1623 } 1624 1625 page->inuse = page->objects; 1626 page->frozen = 1; 1627 1628 out: 1629 if (gfpflags_allow_blocking(flags)) 1630 local_irq_disable(); 1631 if (!page) 1632 return NULL; 1633 1634 mod_lruvec_page_state(page, 1635 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1636 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1637 1 << oo_order(oo)); 1638 1639 inc_slabs_node(s, page_to_nid(page), page->objects); 1640 1641 return page; 1642 } 1643 1644 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1645 { 1646 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1647 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1648 flags &= ~GFP_SLAB_BUG_MASK; 1649 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1650 invalid_mask, &invalid_mask, flags, &flags); 1651 dump_stack(); 1652 } 1653 1654 return allocate_slab(s, 1655 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1656 } 1657 1658 static void __free_slab(struct kmem_cache *s, struct page *page) 1659 { 1660 int order = compound_order(page); 1661 int pages = 1 << order; 1662 1663 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1664 void *p; 1665 1666 slab_pad_check(s, page); 1667 for_each_object(p, s, page_address(page), 1668 page->objects) 1669 check_object(s, page, p, SLUB_RED_INACTIVE); 1670 } 1671 1672 mod_lruvec_page_state(page, 1673 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1674 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1675 -pages); 1676 1677 __ClearPageSlabPfmemalloc(page); 1678 __ClearPageSlab(page); 1679 1680 page->mapping = NULL; 1681 if (current->reclaim_state) 1682 current->reclaim_state->reclaimed_slab += pages; 1683 memcg_uncharge_slab(page, order, s); 1684 __free_pages(page, order); 1685 } 1686 1687 static void rcu_free_slab(struct rcu_head *h) 1688 { 1689 struct page *page = container_of(h, struct page, rcu_head); 1690 1691 __free_slab(page->slab_cache, page); 1692 } 1693 1694 static void free_slab(struct kmem_cache *s, struct page *page) 1695 { 1696 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1697 call_rcu(&page->rcu_head, rcu_free_slab); 1698 } else 1699 __free_slab(s, page); 1700 } 1701 1702 static void discard_slab(struct kmem_cache *s, struct page *page) 1703 { 1704 dec_slabs_node(s, page_to_nid(page), page->objects); 1705 free_slab(s, page); 1706 } 1707 1708 /* 1709 * Management of partially allocated slabs. 1710 */ 1711 static inline void 1712 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1713 { 1714 n->nr_partial++; 1715 if (tail == DEACTIVATE_TO_TAIL) 1716 list_add_tail(&page->lru, &n->partial); 1717 else 1718 list_add(&page->lru, &n->partial); 1719 } 1720 1721 static inline void add_partial(struct kmem_cache_node *n, 1722 struct page *page, int tail) 1723 { 1724 lockdep_assert_held(&n->list_lock); 1725 __add_partial(n, page, tail); 1726 } 1727 1728 static inline void remove_partial(struct kmem_cache_node *n, 1729 struct page *page) 1730 { 1731 lockdep_assert_held(&n->list_lock); 1732 list_del(&page->lru); 1733 n->nr_partial--; 1734 } 1735 1736 /* 1737 * Remove slab from the partial list, freeze it and 1738 * return the pointer to the freelist. 1739 * 1740 * Returns a list of objects or NULL if it fails. 1741 */ 1742 static inline void *acquire_slab(struct kmem_cache *s, 1743 struct kmem_cache_node *n, struct page *page, 1744 int mode, int *objects) 1745 { 1746 void *freelist; 1747 unsigned long counters; 1748 struct page new; 1749 1750 lockdep_assert_held(&n->list_lock); 1751 1752 /* 1753 * Zap the freelist and set the frozen bit. 1754 * The old freelist is the list of objects for the 1755 * per cpu allocation list. 1756 */ 1757 freelist = page->freelist; 1758 counters = page->counters; 1759 new.counters = counters; 1760 *objects = new.objects - new.inuse; 1761 if (mode) { 1762 new.inuse = page->objects; 1763 new.freelist = NULL; 1764 } else { 1765 new.freelist = freelist; 1766 } 1767 1768 VM_BUG_ON(new.frozen); 1769 new.frozen = 1; 1770 1771 if (!__cmpxchg_double_slab(s, page, 1772 freelist, counters, 1773 new.freelist, new.counters, 1774 "acquire_slab")) 1775 return NULL; 1776 1777 remove_partial(n, page); 1778 WARN_ON(!freelist); 1779 return freelist; 1780 } 1781 1782 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1783 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1784 1785 /* 1786 * Try to allocate a partial slab from a specific node. 1787 */ 1788 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1789 struct kmem_cache_cpu *c, gfp_t flags) 1790 { 1791 struct page *page, *page2; 1792 void *object = NULL; 1793 unsigned int available = 0; 1794 int objects; 1795 1796 /* 1797 * Racy check. If we mistakenly see no partial slabs then we 1798 * just allocate an empty slab. If we mistakenly try to get a 1799 * partial slab and there is none available then get_partials() 1800 * will return NULL. 1801 */ 1802 if (!n || !n->nr_partial) 1803 return NULL; 1804 1805 spin_lock(&n->list_lock); 1806 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1807 void *t; 1808 1809 if (!pfmemalloc_match(page, flags)) 1810 continue; 1811 1812 t = acquire_slab(s, n, page, object == NULL, &objects); 1813 if (!t) 1814 break; 1815 1816 available += objects; 1817 if (!object) { 1818 c->page = page; 1819 stat(s, ALLOC_FROM_PARTIAL); 1820 object = t; 1821 } else { 1822 put_cpu_partial(s, page, 0); 1823 stat(s, CPU_PARTIAL_NODE); 1824 } 1825 if (!kmem_cache_has_cpu_partial(s) 1826 || available > slub_cpu_partial(s) / 2) 1827 break; 1828 1829 } 1830 spin_unlock(&n->list_lock); 1831 return object; 1832 } 1833 1834 /* 1835 * Get a page from somewhere. Search in increasing NUMA distances. 1836 */ 1837 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1838 struct kmem_cache_cpu *c) 1839 { 1840 #ifdef CONFIG_NUMA 1841 struct zonelist *zonelist; 1842 struct zoneref *z; 1843 struct zone *zone; 1844 enum zone_type high_zoneidx = gfp_zone(flags); 1845 void *object; 1846 unsigned int cpuset_mems_cookie; 1847 1848 /* 1849 * The defrag ratio allows a configuration of the tradeoffs between 1850 * inter node defragmentation and node local allocations. A lower 1851 * defrag_ratio increases the tendency to do local allocations 1852 * instead of attempting to obtain partial slabs from other nodes. 1853 * 1854 * If the defrag_ratio is set to 0 then kmalloc() always 1855 * returns node local objects. If the ratio is higher then kmalloc() 1856 * may return off node objects because partial slabs are obtained 1857 * from other nodes and filled up. 1858 * 1859 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1860 * (which makes defrag_ratio = 1000) then every (well almost) 1861 * allocation will first attempt to defrag slab caches on other nodes. 1862 * This means scanning over all nodes to look for partial slabs which 1863 * may be expensive if we do it every time we are trying to find a slab 1864 * with available objects. 1865 */ 1866 if (!s->remote_node_defrag_ratio || 1867 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1868 return NULL; 1869 1870 do { 1871 cpuset_mems_cookie = read_mems_allowed_begin(); 1872 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1873 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1874 struct kmem_cache_node *n; 1875 1876 n = get_node(s, zone_to_nid(zone)); 1877 1878 if (n && cpuset_zone_allowed(zone, flags) && 1879 n->nr_partial > s->min_partial) { 1880 object = get_partial_node(s, n, c, flags); 1881 if (object) { 1882 /* 1883 * Don't check read_mems_allowed_retry() 1884 * here - if mems_allowed was updated in 1885 * parallel, that was a harmless race 1886 * between allocation and the cpuset 1887 * update 1888 */ 1889 return object; 1890 } 1891 } 1892 } 1893 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1894 #endif 1895 return NULL; 1896 } 1897 1898 /* 1899 * Get a partial page, lock it and return it. 1900 */ 1901 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1902 struct kmem_cache_cpu *c) 1903 { 1904 void *object; 1905 int searchnode = node; 1906 1907 if (node == NUMA_NO_NODE) 1908 searchnode = numa_mem_id(); 1909 else if (!node_present_pages(node)) 1910 searchnode = node_to_mem_node(node); 1911 1912 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1913 if (object || node != NUMA_NO_NODE) 1914 return object; 1915 1916 return get_any_partial(s, flags, c); 1917 } 1918 1919 #ifdef CONFIG_PREEMPT 1920 /* 1921 * Calculate the next globally unique transaction for disambiguiation 1922 * during cmpxchg. The transactions start with the cpu number and are then 1923 * incremented by CONFIG_NR_CPUS. 1924 */ 1925 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1926 #else 1927 /* 1928 * No preemption supported therefore also no need to check for 1929 * different cpus. 1930 */ 1931 #define TID_STEP 1 1932 #endif 1933 1934 static inline unsigned long next_tid(unsigned long tid) 1935 { 1936 return tid + TID_STEP; 1937 } 1938 1939 static inline unsigned int tid_to_cpu(unsigned long tid) 1940 { 1941 return tid % TID_STEP; 1942 } 1943 1944 static inline unsigned long tid_to_event(unsigned long tid) 1945 { 1946 return tid / TID_STEP; 1947 } 1948 1949 static inline unsigned int init_tid(int cpu) 1950 { 1951 return cpu; 1952 } 1953 1954 static inline void note_cmpxchg_failure(const char *n, 1955 const struct kmem_cache *s, unsigned long tid) 1956 { 1957 #ifdef SLUB_DEBUG_CMPXCHG 1958 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1959 1960 pr_info("%s %s: cmpxchg redo ", n, s->name); 1961 1962 #ifdef CONFIG_PREEMPT 1963 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1964 pr_warn("due to cpu change %d -> %d\n", 1965 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1966 else 1967 #endif 1968 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1969 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1970 tid_to_event(tid), tid_to_event(actual_tid)); 1971 else 1972 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1973 actual_tid, tid, next_tid(tid)); 1974 #endif 1975 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1976 } 1977 1978 static void init_kmem_cache_cpus(struct kmem_cache *s) 1979 { 1980 int cpu; 1981 1982 for_each_possible_cpu(cpu) 1983 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1984 } 1985 1986 /* 1987 * Remove the cpu slab 1988 */ 1989 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1990 void *freelist, struct kmem_cache_cpu *c) 1991 { 1992 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1993 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1994 int lock = 0; 1995 enum slab_modes l = M_NONE, m = M_NONE; 1996 void *nextfree; 1997 int tail = DEACTIVATE_TO_HEAD; 1998 struct page new; 1999 struct page old; 2000 2001 if (page->freelist) { 2002 stat(s, DEACTIVATE_REMOTE_FREES); 2003 tail = DEACTIVATE_TO_TAIL; 2004 } 2005 2006 /* 2007 * Stage one: Free all available per cpu objects back 2008 * to the page freelist while it is still frozen. Leave the 2009 * last one. 2010 * 2011 * There is no need to take the list->lock because the page 2012 * is still frozen. 2013 */ 2014 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2015 void *prior; 2016 unsigned long counters; 2017 2018 do { 2019 prior = page->freelist; 2020 counters = page->counters; 2021 set_freepointer(s, freelist, prior); 2022 new.counters = counters; 2023 new.inuse--; 2024 VM_BUG_ON(!new.frozen); 2025 2026 } while (!__cmpxchg_double_slab(s, page, 2027 prior, counters, 2028 freelist, new.counters, 2029 "drain percpu freelist")); 2030 2031 freelist = nextfree; 2032 } 2033 2034 /* 2035 * Stage two: Ensure that the page is unfrozen while the 2036 * list presence reflects the actual number of objects 2037 * during unfreeze. 2038 * 2039 * We setup the list membership and then perform a cmpxchg 2040 * with the count. If there is a mismatch then the page 2041 * is not unfrozen but the page is on the wrong list. 2042 * 2043 * Then we restart the process which may have to remove 2044 * the page from the list that we just put it on again 2045 * because the number of objects in the slab may have 2046 * changed. 2047 */ 2048 redo: 2049 2050 old.freelist = page->freelist; 2051 old.counters = page->counters; 2052 VM_BUG_ON(!old.frozen); 2053 2054 /* Determine target state of the slab */ 2055 new.counters = old.counters; 2056 if (freelist) { 2057 new.inuse--; 2058 set_freepointer(s, freelist, old.freelist); 2059 new.freelist = freelist; 2060 } else 2061 new.freelist = old.freelist; 2062 2063 new.frozen = 0; 2064 2065 if (!new.inuse && n->nr_partial >= s->min_partial) 2066 m = M_FREE; 2067 else if (new.freelist) { 2068 m = M_PARTIAL; 2069 if (!lock) { 2070 lock = 1; 2071 /* 2072 * Taking the spinlock removes the possiblity 2073 * that acquire_slab() will see a slab page that 2074 * is frozen 2075 */ 2076 spin_lock(&n->list_lock); 2077 } 2078 } else { 2079 m = M_FULL; 2080 if (kmem_cache_debug(s) && !lock) { 2081 lock = 1; 2082 /* 2083 * This also ensures that the scanning of full 2084 * slabs from diagnostic functions will not see 2085 * any frozen slabs. 2086 */ 2087 spin_lock(&n->list_lock); 2088 } 2089 } 2090 2091 if (l != m) { 2092 2093 if (l == M_PARTIAL) 2094 2095 remove_partial(n, page); 2096 2097 else if (l == M_FULL) 2098 2099 remove_full(s, n, page); 2100 2101 if (m == M_PARTIAL) { 2102 2103 add_partial(n, page, tail); 2104 stat(s, tail); 2105 2106 } else if (m == M_FULL) { 2107 2108 stat(s, DEACTIVATE_FULL); 2109 add_full(s, n, page); 2110 2111 } 2112 } 2113 2114 l = m; 2115 if (!__cmpxchg_double_slab(s, page, 2116 old.freelist, old.counters, 2117 new.freelist, new.counters, 2118 "unfreezing slab")) 2119 goto redo; 2120 2121 if (lock) 2122 spin_unlock(&n->list_lock); 2123 2124 if (m == M_FREE) { 2125 stat(s, DEACTIVATE_EMPTY); 2126 discard_slab(s, page); 2127 stat(s, FREE_SLAB); 2128 } 2129 2130 c->page = NULL; 2131 c->freelist = NULL; 2132 } 2133 2134 /* 2135 * Unfreeze all the cpu partial slabs. 2136 * 2137 * This function must be called with interrupts disabled 2138 * for the cpu using c (or some other guarantee must be there 2139 * to guarantee no concurrent accesses). 2140 */ 2141 static void unfreeze_partials(struct kmem_cache *s, 2142 struct kmem_cache_cpu *c) 2143 { 2144 #ifdef CONFIG_SLUB_CPU_PARTIAL 2145 struct kmem_cache_node *n = NULL, *n2 = NULL; 2146 struct page *page, *discard_page = NULL; 2147 2148 while ((page = c->partial)) { 2149 struct page new; 2150 struct page old; 2151 2152 c->partial = page->next; 2153 2154 n2 = get_node(s, page_to_nid(page)); 2155 if (n != n2) { 2156 if (n) 2157 spin_unlock(&n->list_lock); 2158 2159 n = n2; 2160 spin_lock(&n->list_lock); 2161 } 2162 2163 do { 2164 2165 old.freelist = page->freelist; 2166 old.counters = page->counters; 2167 VM_BUG_ON(!old.frozen); 2168 2169 new.counters = old.counters; 2170 new.freelist = old.freelist; 2171 2172 new.frozen = 0; 2173 2174 } while (!__cmpxchg_double_slab(s, page, 2175 old.freelist, old.counters, 2176 new.freelist, new.counters, 2177 "unfreezing slab")); 2178 2179 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2180 page->next = discard_page; 2181 discard_page = page; 2182 } else { 2183 add_partial(n, page, DEACTIVATE_TO_TAIL); 2184 stat(s, FREE_ADD_PARTIAL); 2185 } 2186 } 2187 2188 if (n) 2189 spin_unlock(&n->list_lock); 2190 2191 while (discard_page) { 2192 page = discard_page; 2193 discard_page = discard_page->next; 2194 2195 stat(s, DEACTIVATE_EMPTY); 2196 discard_slab(s, page); 2197 stat(s, FREE_SLAB); 2198 } 2199 #endif 2200 } 2201 2202 /* 2203 * Put a page that was just frozen (in __slab_free) into a partial page 2204 * slot if available. 2205 * 2206 * If we did not find a slot then simply move all the partials to the 2207 * per node partial list. 2208 */ 2209 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2210 { 2211 #ifdef CONFIG_SLUB_CPU_PARTIAL 2212 struct page *oldpage; 2213 int pages; 2214 int pobjects; 2215 2216 preempt_disable(); 2217 do { 2218 pages = 0; 2219 pobjects = 0; 2220 oldpage = this_cpu_read(s->cpu_slab->partial); 2221 2222 if (oldpage) { 2223 pobjects = oldpage->pobjects; 2224 pages = oldpage->pages; 2225 if (drain && pobjects > s->cpu_partial) { 2226 unsigned long flags; 2227 /* 2228 * partial array is full. Move the existing 2229 * set to the per node partial list. 2230 */ 2231 local_irq_save(flags); 2232 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2233 local_irq_restore(flags); 2234 oldpage = NULL; 2235 pobjects = 0; 2236 pages = 0; 2237 stat(s, CPU_PARTIAL_DRAIN); 2238 } 2239 } 2240 2241 pages++; 2242 pobjects += page->objects - page->inuse; 2243 2244 page->pages = pages; 2245 page->pobjects = pobjects; 2246 page->next = oldpage; 2247 2248 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2249 != oldpage); 2250 if (unlikely(!s->cpu_partial)) { 2251 unsigned long flags; 2252 2253 local_irq_save(flags); 2254 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2255 local_irq_restore(flags); 2256 } 2257 preempt_enable(); 2258 #endif 2259 } 2260 2261 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2262 { 2263 stat(s, CPUSLAB_FLUSH); 2264 deactivate_slab(s, c->page, c->freelist, c); 2265 2266 c->tid = next_tid(c->tid); 2267 } 2268 2269 /* 2270 * Flush cpu slab. 2271 * 2272 * Called from IPI handler with interrupts disabled. 2273 */ 2274 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2275 { 2276 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2277 2278 if (likely(c)) { 2279 if (c->page) 2280 flush_slab(s, c); 2281 2282 unfreeze_partials(s, c); 2283 } 2284 } 2285 2286 static void flush_cpu_slab(void *d) 2287 { 2288 struct kmem_cache *s = d; 2289 2290 __flush_cpu_slab(s, smp_processor_id()); 2291 } 2292 2293 static bool has_cpu_slab(int cpu, void *info) 2294 { 2295 struct kmem_cache *s = info; 2296 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2297 2298 return c->page || slub_percpu_partial(c); 2299 } 2300 2301 static void flush_all(struct kmem_cache *s) 2302 { 2303 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2304 } 2305 2306 /* 2307 * Use the cpu notifier to insure that the cpu slabs are flushed when 2308 * necessary. 2309 */ 2310 static int slub_cpu_dead(unsigned int cpu) 2311 { 2312 struct kmem_cache *s; 2313 unsigned long flags; 2314 2315 mutex_lock(&slab_mutex); 2316 list_for_each_entry(s, &slab_caches, list) { 2317 local_irq_save(flags); 2318 __flush_cpu_slab(s, cpu); 2319 local_irq_restore(flags); 2320 } 2321 mutex_unlock(&slab_mutex); 2322 return 0; 2323 } 2324 2325 /* 2326 * Check if the objects in a per cpu structure fit numa 2327 * locality expectations. 2328 */ 2329 static inline int node_match(struct page *page, int node) 2330 { 2331 #ifdef CONFIG_NUMA 2332 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2333 return 0; 2334 #endif 2335 return 1; 2336 } 2337 2338 #ifdef CONFIG_SLUB_DEBUG 2339 static int count_free(struct page *page) 2340 { 2341 return page->objects - page->inuse; 2342 } 2343 2344 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2345 { 2346 return atomic_long_read(&n->total_objects); 2347 } 2348 #endif /* CONFIG_SLUB_DEBUG */ 2349 2350 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2351 static unsigned long count_partial(struct kmem_cache_node *n, 2352 int (*get_count)(struct page *)) 2353 { 2354 unsigned long flags; 2355 unsigned long x = 0; 2356 struct page *page; 2357 2358 spin_lock_irqsave(&n->list_lock, flags); 2359 list_for_each_entry(page, &n->partial, lru) 2360 x += get_count(page); 2361 spin_unlock_irqrestore(&n->list_lock, flags); 2362 return x; 2363 } 2364 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2365 2366 static noinline void 2367 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2368 { 2369 #ifdef CONFIG_SLUB_DEBUG 2370 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2371 DEFAULT_RATELIMIT_BURST); 2372 int node; 2373 struct kmem_cache_node *n; 2374 2375 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2376 return; 2377 2378 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2379 nid, gfpflags, &gfpflags); 2380 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2381 s->name, s->object_size, s->size, oo_order(s->oo), 2382 oo_order(s->min)); 2383 2384 if (oo_order(s->min) > get_order(s->object_size)) 2385 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2386 s->name); 2387 2388 for_each_kmem_cache_node(s, node, n) { 2389 unsigned long nr_slabs; 2390 unsigned long nr_objs; 2391 unsigned long nr_free; 2392 2393 nr_free = count_partial(n, count_free); 2394 nr_slabs = node_nr_slabs(n); 2395 nr_objs = node_nr_objs(n); 2396 2397 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2398 node, nr_slabs, nr_objs, nr_free); 2399 } 2400 #endif 2401 } 2402 2403 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2404 int node, struct kmem_cache_cpu **pc) 2405 { 2406 void *freelist; 2407 struct kmem_cache_cpu *c = *pc; 2408 struct page *page; 2409 2410 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2411 2412 freelist = get_partial(s, flags, node, c); 2413 2414 if (freelist) 2415 return freelist; 2416 2417 page = new_slab(s, flags, node); 2418 if (page) { 2419 c = raw_cpu_ptr(s->cpu_slab); 2420 if (c->page) 2421 flush_slab(s, c); 2422 2423 /* 2424 * No other reference to the page yet so we can 2425 * muck around with it freely without cmpxchg 2426 */ 2427 freelist = page->freelist; 2428 page->freelist = NULL; 2429 2430 stat(s, ALLOC_SLAB); 2431 c->page = page; 2432 *pc = c; 2433 } else 2434 freelist = NULL; 2435 2436 return freelist; 2437 } 2438 2439 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2440 { 2441 if (unlikely(PageSlabPfmemalloc(page))) 2442 return gfp_pfmemalloc_allowed(gfpflags); 2443 2444 return true; 2445 } 2446 2447 /* 2448 * Check the page->freelist of a page and either transfer the freelist to the 2449 * per cpu freelist or deactivate the page. 2450 * 2451 * The page is still frozen if the return value is not NULL. 2452 * 2453 * If this function returns NULL then the page has been unfrozen. 2454 * 2455 * This function must be called with interrupt disabled. 2456 */ 2457 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2458 { 2459 struct page new; 2460 unsigned long counters; 2461 void *freelist; 2462 2463 do { 2464 freelist = page->freelist; 2465 counters = page->counters; 2466 2467 new.counters = counters; 2468 VM_BUG_ON(!new.frozen); 2469 2470 new.inuse = page->objects; 2471 new.frozen = freelist != NULL; 2472 2473 } while (!__cmpxchg_double_slab(s, page, 2474 freelist, counters, 2475 NULL, new.counters, 2476 "get_freelist")); 2477 2478 return freelist; 2479 } 2480 2481 /* 2482 * Slow path. The lockless freelist is empty or we need to perform 2483 * debugging duties. 2484 * 2485 * Processing is still very fast if new objects have been freed to the 2486 * regular freelist. In that case we simply take over the regular freelist 2487 * as the lockless freelist and zap the regular freelist. 2488 * 2489 * If that is not working then we fall back to the partial lists. We take the 2490 * first element of the freelist as the object to allocate now and move the 2491 * rest of the freelist to the lockless freelist. 2492 * 2493 * And if we were unable to get a new slab from the partial slab lists then 2494 * we need to allocate a new slab. This is the slowest path since it involves 2495 * a call to the page allocator and the setup of a new slab. 2496 * 2497 * Version of __slab_alloc to use when we know that interrupts are 2498 * already disabled (which is the case for bulk allocation). 2499 */ 2500 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2501 unsigned long addr, struct kmem_cache_cpu *c) 2502 { 2503 void *freelist; 2504 struct page *page; 2505 2506 page = c->page; 2507 if (!page) 2508 goto new_slab; 2509 redo: 2510 2511 if (unlikely(!node_match(page, node))) { 2512 int searchnode = node; 2513 2514 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2515 searchnode = node_to_mem_node(node); 2516 2517 if (unlikely(!node_match(page, searchnode))) { 2518 stat(s, ALLOC_NODE_MISMATCH); 2519 deactivate_slab(s, page, c->freelist, c); 2520 goto new_slab; 2521 } 2522 } 2523 2524 /* 2525 * By rights, we should be searching for a slab page that was 2526 * PFMEMALLOC but right now, we are losing the pfmemalloc 2527 * information when the page leaves the per-cpu allocator 2528 */ 2529 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2530 deactivate_slab(s, page, c->freelist, c); 2531 goto new_slab; 2532 } 2533 2534 /* must check again c->freelist in case of cpu migration or IRQ */ 2535 freelist = c->freelist; 2536 if (freelist) 2537 goto load_freelist; 2538 2539 freelist = get_freelist(s, page); 2540 2541 if (!freelist) { 2542 c->page = NULL; 2543 stat(s, DEACTIVATE_BYPASS); 2544 goto new_slab; 2545 } 2546 2547 stat(s, ALLOC_REFILL); 2548 2549 load_freelist: 2550 /* 2551 * freelist is pointing to the list of objects to be used. 2552 * page is pointing to the page from which the objects are obtained. 2553 * That page must be frozen for per cpu allocations to work. 2554 */ 2555 VM_BUG_ON(!c->page->frozen); 2556 c->freelist = get_freepointer(s, freelist); 2557 c->tid = next_tid(c->tid); 2558 return freelist; 2559 2560 new_slab: 2561 2562 if (slub_percpu_partial(c)) { 2563 page = c->page = slub_percpu_partial(c); 2564 slub_set_percpu_partial(c, page); 2565 stat(s, CPU_PARTIAL_ALLOC); 2566 goto redo; 2567 } 2568 2569 freelist = new_slab_objects(s, gfpflags, node, &c); 2570 2571 if (unlikely(!freelist)) { 2572 slab_out_of_memory(s, gfpflags, node); 2573 return NULL; 2574 } 2575 2576 page = c->page; 2577 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2578 goto load_freelist; 2579 2580 /* Only entered in the debug case */ 2581 if (kmem_cache_debug(s) && 2582 !alloc_debug_processing(s, page, freelist, addr)) 2583 goto new_slab; /* Slab failed checks. Next slab needed */ 2584 2585 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2586 return freelist; 2587 } 2588 2589 /* 2590 * Another one that disabled interrupt and compensates for possible 2591 * cpu changes by refetching the per cpu area pointer. 2592 */ 2593 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2594 unsigned long addr, struct kmem_cache_cpu *c) 2595 { 2596 void *p; 2597 unsigned long flags; 2598 2599 local_irq_save(flags); 2600 #ifdef CONFIG_PREEMPT 2601 /* 2602 * We may have been preempted and rescheduled on a different 2603 * cpu before disabling interrupts. Need to reload cpu area 2604 * pointer. 2605 */ 2606 c = this_cpu_ptr(s->cpu_slab); 2607 #endif 2608 2609 p = ___slab_alloc(s, gfpflags, node, addr, c); 2610 local_irq_restore(flags); 2611 return p; 2612 } 2613 2614 /* 2615 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2616 * have the fastpath folded into their functions. So no function call 2617 * overhead for requests that can be satisfied on the fastpath. 2618 * 2619 * The fastpath works by first checking if the lockless freelist can be used. 2620 * If not then __slab_alloc is called for slow processing. 2621 * 2622 * Otherwise we can simply pick the next object from the lockless free list. 2623 */ 2624 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2625 gfp_t gfpflags, int node, unsigned long addr) 2626 { 2627 void *object; 2628 struct kmem_cache_cpu *c; 2629 struct page *page; 2630 unsigned long tid; 2631 2632 s = slab_pre_alloc_hook(s, gfpflags); 2633 if (!s) 2634 return NULL; 2635 redo: 2636 /* 2637 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2638 * enabled. We may switch back and forth between cpus while 2639 * reading from one cpu area. That does not matter as long 2640 * as we end up on the original cpu again when doing the cmpxchg. 2641 * 2642 * We should guarantee that tid and kmem_cache are retrieved on 2643 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2644 * to check if it is matched or not. 2645 */ 2646 do { 2647 tid = this_cpu_read(s->cpu_slab->tid); 2648 c = raw_cpu_ptr(s->cpu_slab); 2649 } while (IS_ENABLED(CONFIG_PREEMPT) && 2650 unlikely(tid != READ_ONCE(c->tid))); 2651 2652 /* 2653 * Irqless object alloc/free algorithm used here depends on sequence 2654 * of fetching cpu_slab's data. tid should be fetched before anything 2655 * on c to guarantee that object and page associated with previous tid 2656 * won't be used with current tid. If we fetch tid first, object and 2657 * page could be one associated with next tid and our alloc/free 2658 * request will be failed. In this case, we will retry. So, no problem. 2659 */ 2660 barrier(); 2661 2662 /* 2663 * The transaction ids are globally unique per cpu and per operation on 2664 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2665 * occurs on the right processor and that there was no operation on the 2666 * linked list in between. 2667 */ 2668 2669 object = c->freelist; 2670 page = c->page; 2671 if (unlikely(!object || !node_match(page, node))) { 2672 object = __slab_alloc(s, gfpflags, node, addr, c); 2673 stat(s, ALLOC_SLOWPATH); 2674 } else { 2675 void *next_object = get_freepointer_safe(s, object); 2676 2677 /* 2678 * The cmpxchg will only match if there was no additional 2679 * operation and if we are on the right processor. 2680 * 2681 * The cmpxchg does the following atomically (without lock 2682 * semantics!) 2683 * 1. Relocate first pointer to the current per cpu area. 2684 * 2. Verify that tid and freelist have not been changed 2685 * 3. If they were not changed replace tid and freelist 2686 * 2687 * Since this is without lock semantics the protection is only 2688 * against code executing on this cpu *not* from access by 2689 * other cpus. 2690 */ 2691 if (unlikely(!this_cpu_cmpxchg_double( 2692 s->cpu_slab->freelist, s->cpu_slab->tid, 2693 object, tid, 2694 next_object, next_tid(tid)))) { 2695 2696 note_cmpxchg_failure("slab_alloc", s, tid); 2697 goto redo; 2698 } 2699 prefetch_freepointer(s, next_object); 2700 stat(s, ALLOC_FASTPATH); 2701 } 2702 2703 if (unlikely(gfpflags & __GFP_ZERO) && object) 2704 memset(object, 0, s->object_size); 2705 2706 slab_post_alloc_hook(s, gfpflags, 1, &object); 2707 2708 return object; 2709 } 2710 2711 static __always_inline void *slab_alloc(struct kmem_cache *s, 2712 gfp_t gfpflags, unsigned long addr) 2713 { 2714 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2715 } 2716 2717 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2718 { 2719 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2720 2721 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2722 s->size, gfpflags); 2723 2724 return ret; 2725 } 2726 EXPORT_SYMBOL(kmem_cache_alloc); 2727 2728 #ifdef CONFIG_TRACING 2729 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2730 { 2731 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2732 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2733 kasan_kmalloc(s, ret, size, gfpflags); 2734 return ret; 2735 } 2736 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2737 #endif 2738 2739 #ifdef CONFIG_NUMA 2740 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2741 { 2742 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2743 2744 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2745 s->object_size, s->size, gfpflags, node); 2746 2747 return ret; 2748 } 2749 EXPORT_SYMBOL(kmem_cache_alloc_node); 2750 2751 #ifdef CONFIG_TRACING 2752 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2753 gfp_t gfpflags, 2754 int node, size_t size) 2755 { 2756 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2757 2758 trace_kmalloc_node(_RET_IP_, ret, 2759 size, s->size, gfpflags, node); 2760 2761 kasan_kmalloc(s, ret, size, gfpflags); 2762 return ret; 2763 } 2764 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2765 #endif 2766 #endif 2767 2768 /* 2769 * Slow path handling. This may still be called frequently since objects 2770 * have a longer lifetime than the cpu slabs in most processing loads. 2771 * 2772 * So we still attempt to reduce cache line usage. Just take the slab 2773 * lock and free the item. If there is no additional partial page 2774 * handling required then we can return immediately. 2775 */ 2776 static void __slab_free(struct kmem_cache *s, struct page *page, 2777 void *head, void *tail, int cnt, 2778 unsigned long addr) 2779 2780 { 2781 void *prior; 2782 int was_frozen; 2783 struct page new; 2784 unsigned long counters; 2785 struct kmem_cache_node *n = NULL; 2786 unsigned long uninitialized_var(flags); 2787 2788 stat(s, FREE_SLOWPATH); 2789 2790 if (kmem_cache_debug(s) && 2791 !free_debug_processing(s, page, head, tail, cnt, addr)) 2792 return; 2793 2794 do { 2795 if (unlikely(n)) { 2796 spin_unlock_irqrestore(&n->list_lock, flags); 2797 n = NULL; 2798 } 2799 prior = page->freelist; 2800 counters = page->counters; 2801 set_freepointer(s, tail, prior); 2802 new.counters = counters; 2803 was_frozen = new.frozen; 2804 new.inuse -= cnt; 2805 if ((!new.inuse || !prior) && !was_frozen) { 2806 2807 if (kmem_cache_has_cpu_partial(s) && !prior) { 2808 2809 /* 2810 * Slab was on no list before and will be 2811 * partially empty 2812 * We can defer the list move and instead 2813 * freeze it. 2814 */ 2815 new.frozen = 1; 2816 2817 } else { /* Needs to be taken off a list */ 2818 2819 n = get_node(s, page_to_nid(page)); 2820 /* 2821 * Speculatively acquire the list_lock. 2822 * If the cmpxchg does not succeed then we may 2823 * drop the list_lock without any processing. 2824 * 2825 * Otherwise the list_lock will synchronize with 2826 * other processors updating the list of slabs. 2827 */ 2828 spin_lock_irqsave(&n->list_lock, flags); 2829 2830 } 2831 } 2832 2833 } while (!cmpxchg_double_slab(s, page, 2834 prior, counters, 2835 head, new.counters, 2836 "__slab_free")); 2837 2838 if (likely(!n)) { 2839 2840 /* 2841 * If we just froze the page then put it onto the 2842 * per cpu partial list. 2843 */ 2844 if (new.frozen && !was_frozen) { 2845 put_cpu_partial(s, page, 1); 2846 stat(s, CPU_PARTIAL_FREE); 2847 } 2848 /* 2849 * The list lock was not taken therefore no list 2850 * activity can be necessary. 2851 */ 2852 if (was_frozen) 2853 stat(s, FREE_FROZEN); 2854 return; 2855 } 2856 2857 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2858 goto slab_empty; 2859 2860 /* 2861 * Objects left in the slab. If it was not on the partial list before 2862 * then add it. 2863 */ 2864 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2865 if (kmem_cache_debug(s)) 2866 remove_full(s, n, page); 2867 add_partial(n, page, DEACTIVATE_TO_TAIL); 2868 stat(s, FREE_ADD_PARTIAL); 2869 } 2870 spin_unlock_irqrestore(&n->list_lock, flags); 2871 return; 2872 2873 slab_empty: 2874 if (prior) { 2875 /* 2876 * Slab on the partial list. 2877 */ 2878 remove_partial(n, page); 2879 stat(s, FREE_REMOVE_PARTIAL); 2880 } else { 2881 /* Slab must be on the full list */ 2882 remove_full(s, n, page); 2883 } 2884 2885 spin_unlock_irqrestore(&n->list_lock, flags); 2886 stat(s, FREE_SLAB); 2887 discard_slab(s, page); 2888 } 2889 2890 /* 2891 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2892 * can perform fastpath freeing without additional function calls. 2893 * 2894 * The fastpath is only possible if we are freeing to the current cpu slab 2895 * of this processor. This typically the case if we have just allocated 2896 * the item before. 2897 * 2898 * If fastpath is not possible then fall back to __slab_free where we deal 2899 * with all sorts of special processing. 2900 * 2901 * Bulk free of a freelist with several objects (all pointing to the 2902 * same page) possible by specifying head and tail ptr, plus objects 2903 * count (cnt). Bulk free indicated by tail pointer being set. 2904 */ 2905 static __always_inline void do_slab_free(struct kmem_cache *s, 2906 struct page *page, void *head, void *tail, 2907 int cnt, unsigned long addr) 2908 { 2909 void *tail_obj = tail ? : head; 2910 struct kmem_cache_cpu *c; 2911 unsigned long tid; 2912 redo: 2913 /* 2914 * Determine the currently cpus per cpu slab. 2915 * The cpu may change afterward. However that does not matter since 2916 * data is retrieved via this pointer. If we are on the same cpu 2917 * during the cmpxchg then the free will succeed. 2918 */ 2919 do { 2920 tid = this_cpu_read(s->cpu_slab->tid); 2921 c = raw_cpu_ptr(s->cpu_slab); 2922 } while (IS_ENABLED(CONFIG_PREEMPT) && 2923 unlikely(tid != READ_ONCE(c->tid))); 2924 2925 /* Same with comment on barrier() in slab_alloc_node() */ 2926 barrier(); 2927 2928 if (likely(page == c->page)) { 2929 set_freepointer(s, tail_obj, c->freelist); 2930 2931 if (unlikely(!this_cpu_cmpxchg_double( 2932 s->cpu_slab->freelist, s->cpu_slab->tid, 2933 c->freelist, tid, 2934 head, next_tid(tid)))) { 2935 2936 note_cmpxchg_failure("slab_free", s, tid); 2937 goto redo; 2938 } 2939 stat(s, FREE_FASTPATH); 2940 } else 2941 __slab_free(s, page, head, tail_obj, cnt, addr); 2942 2943 } 2944 2945 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2946 void *head, void *tail, int cnt, 2947 unsigned long addr) 2948 { 2949 /* 2950 * With KASAN enabled slab_free_freelist_hook modifies the freelist 2951 * to remove objects, whose reuse must be delayed. 2952 */ 2953 if (slab_free_freelist_hook(s, &head, &tail)) 2954 do_slab_free(s, page, head, tail, cnt, addr); 2955 } 2956 2957 #ifdef CONFIG_KASAN 2958 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2959 { 2960 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2961 } 2962 #endif 2963 2964 void kmem_cache_free(struct kmem_cache *s, void *x) 2965 { 2966 s = cache_from_obj(s, x); 2967 if (!s) 2968 return; 2969 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2970 trace_kmem_cache_free(_RET_IP_, x); 2971 } 2972 EXPORT_SYMBOL(kmem_cache_free); 2973 2974 struct detached_freelist { 2975 struct page *page; 2976 void *tail; 2977 void *freelist; 2978 int cnt; 2979 struct kmem_cache *s; 2980 }; 2981 2982 /* 2983 * This function progressively scans the array with free objects (with 2984 * a limited look ahead) and extract objects belonging to the same 2985 * page. It builds a detached freelist directly within the given 2986 * page/objects. This can happen without any need for 2987 * synchronization, because the objects are owned by running process. 2988 * The freelist is build up as a single linked list in the objects. 2989 * The idea is, that this detached freelist can then be bulk 2990 * transferred to the real freelist(s), but only requiring a single 2991 * synchronization primitive. Look ahead in the array is limited due 2992 * to performance reasons. 2993 */ 2994 static inline 2995 int build_detached_freelist(struct kmem_cache *s, size_t size, 2996 void **p, struct detached_freelist *df) 2997 { 2998 size_t first_skipped_index = 0; 2999 int lookahead = 3; 3000 void *object; 3001 struct page *page; 3002 3003 /* Always re-init detached_freelist */ 3004 df->page = NULL; 3005 3006 do { 3007 object = p[--size]; 3008 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3009 } while (!object && size); 3010 3011 if (!object) 3012 return 0; 3013 3014 page = virt_to_head_page(object); 3015 if (!s) { 3016 /* Handle kalloc'ed objects */ 3017 if (unlikely(!PageSlab(page))) { 3018 BUG_ON(!PageCompound(page)); 3019 kfree_hook(object); 3020 __free_pages(page, compound_order(page)); 3021 p[size] = NULL; /* mark object processed */ 3022 return size; 3023 } 3024 /* Derive kmem_cache from object */ 3025 df->s = page->slab_cache; 3026 } else { 3027 df->s = cache_from_obj(s, object); /* Support for memcg */ 3028 } 3029 3030 /* Start new detached freelist */ 3031 df->page = page; 3032 set_freepointer(df->s, object, NULL); 3033 df->tail = object; 3034 df->freelist = object; 3035 p[size] = NULL; /* mark object processed */ 3036 df->cnt = 1; 3037 3038 while (size) { 3039 object = p[--size]; 3040 if (!object) 3041 continue; /* Skip processed objects */ 3042 3043 /* df->page is always set at this point */ 3044 if (df->page == virt_to_head_page(object)) { 3045 /* Opportunity build freelist */ 3046 set_freepointer(df->s, object, df->freelist); 3047 df->freelist = object; 3048 df->cnt++; 3049 p[size] = NULL; /* mark object processed */ 3050 3051 continue; 3052 } 3053 3054 /* Limit look ahead search */ 3055 if (!--lookahead) 3056 break; 3057 3058 if (!first_skipped_index) 3059 first_skipped_index = size + 1; 3060 } 3061 3062 return first_skipped_index; 3063 } 3064 3065 /* Note that interrupts must be enabled when calling this function. */ 3066 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3067 { 3068 if (WARN_ON(!size)) 3069 return; 3070 3071 do { 3072 struct detached_freelist df; 3073 3074 size = build_detached_freelist(s, size, p, &df); 3075 if (!df.page) 3076 continue; 3077 3078 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3079 } while (likely(size)); 3080 } 3081 EXPORT_SYMBOL(kmem_cache_free_bulk); 3082 3083 /* Note that interrupts must be enabled when calling this function. */ 3084 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3085 void **p) 3086 { 3087 struct kmem_cache_cpu *c; 3088 int i; 3089 3090 /* memcg and kmem_cache debug support */ 3091 s = slab_pre_alloc_hook(s, flags); 3092 if (unlikely(!s)) 3093 return false; 3094 /* 3095 * Drain objects in the per cpu slab, while disabling local 3096 * IRQs, which protects against PREEMPT and interrupts 3097 * handlers invoking normal fastpath. 3098 */ 3099 local_irq_disable(); 3100 c = this_cpu_ptr(s->cpu_slab); 3101 3102 for (i = 0; i < size; i++) { 3103 void *object = c->freelist; 3104 3105 if (unlikely(!object)) { 3106 /* 3107 * Invoking slow path likely have side-effect 3108 * of re-populating per CPU c->freelist 3109 */ 3110 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3111 _RET_IP_, c); 3112 if (unlikely(!p[i])) 3113 goto error; 3114 3115 c = this_cpu_ptr(s->cpu_slab); 3116 continue; /* goto for-loop */ 3117 } 3118 c->freelist = get_freepointer(s, object); 3119 p[i] = object; 3120 } 3121 c->tid = next_tid(c->tid); 3122 local_irq_enable(); 3123 3124 /* Clear memory outside IRQ disabled fastpath loop */ 3125 if (unlikely(flags & __GFP_ZERO)) { 3126 int j; 3127 3128 for (j = 0; j < i; j++) 3129 memset(p[j], 0, s->object_size); 3130 } 3131 3132 /* memcg and kmem_cache debug support */ 3133 slab_post_alloc_hook(s, flags, size, p); 3134 return i; 3135 error: 3136 local_irq_enable(); 3137 slab_post_alloc_hook(s, flags, i, p); 3138 __kmem_cache_free_bulk(s, i, p); 3139 return 0; 3140 } 3141 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3142 3143 3144 /* 3145 * Object placement in a slab is made very easy because we always start at 3146 * offset 0. If we tune the size of the object to the alignment then we can 3147 * get the required alignment by putting one properly sized object after 3148 * another. 3149 * 3150 * Notice that the allocation order determines the sizes of the per cpu 3151 * caches. Each processor has always one slab available for allocations. 3152 * Increasing the allocation order reduces the number of times that slabs 3153 * must be moved on and off the partial lists and is therefore a factor in 3154 * locking overhead. 3155 */ 3156 3157 /* 3158 * Mininum / Maximum order of slab pages. This influences locking overhead 3159 * and slab fragmentation. A higher order reduces the number of partial slabs 3160 * and increases the number of allocations possible without having to 3161 * take the list_lock. 3162 */ 3163 static unsigned int slub_min_order; 3164 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3165 static unsigned int slub_min_objects; 3166 3167 /* 3168 * Calculate the order of allocation given an slab object size. 3169 * 3170 * The order of allocation has significant impact on performance and other 3171 * system components. Generally order 0 allocations should be preferred since 3172 * order 0 does not cause fragmentation in the page allocator. Larger objects 3173 * be problematic to put into order 0 slabs because there may be too much 3174 * unused space left. We go to a higher order if more than 1/16th of the slab 3175 * would be wasted. 3176 * 3177 * In order to reach satisfactory performance we must ensure that a minimum 3178 * number of objects is in one slab. Otherwise we may generate too much 3179 * activity on the partial lists which requires taking the list_lock. This is 3180 * less a concern for large slabs though which are rarely used. 3181 * 3182 * slub_max_order specifies the order where we begin to stop considering the 3183 * number of objects in a slab as critical. If we reach slub_max_order then 3184 * we try to keep the page order as low as possible. So we accept more waste 3185 * of space in favor of a small page order. 3186 * 3187 * Higher order allocations also allow the placement of more objects in a 3188 * slab and thereby reduce object handling overhead. If the user has 3189 * requested a higher mininum order then we start with that one instead of 3190 * the smallest order which will fit the object. 3191 */ 3192 static inline unsigned int slab_order(unsigned int size, 3193 unsigned int min_objects, unsigned int max_order, 3194 unsigned int fract_leftover) 3195 { 3196 unsigned int min_order = slub_min_order; 3197 unsigned int order; 3198 3199 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3200 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3201 3202 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3203 order <= max_order; order++) { 3204 3205 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3206 unsigned int rem; 3207 3208 rem = slab_size % size; 3209 3210 if (rem <= slab_size / fract_leftover) 3211 break; 3212 } 3213 3214 return order; 3215 } 3216 3217 static inline int calculate_order(unsigned int size) 3218 { 3219 unsigned int order; 3220 unsigned int min_objects; 3221 unsigned int max_objects; 3222 3223 /* 3224 * Attempt to find best configuration for a slab. This 3225 * works by first attempting to generate a layout with 3226 * the best configuration and backing off gradually. 3227 * 3228 * First we increase the acceptable waste in a slab. Then 3229 * we reduce the minimum objects required in a slab. 3230 */ 3231 min_objects = slub_min_objects; 3232 if (!min_objects) 3233 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3234 max_objects = order_objects(slub_max_order, size); 3235 min_objects = min(min_objects, max_objects); 3236 3237 while (min_objects > 1) { 3238 unsigned int fraction; 3239 3240 fraction = 16; 3241 while (fraction >= 4) { 3242 order = slab_order(size, min_objects, 3243 slub_max_order, fraction); 3244 if (order <= slub_max_order) 3245 return order; 3246 fraction /= 2; 3247 } 3248 min_objects--; 3249 } 3250 3251 /* 3252 * We were unable to place multiple objects in a slab. Now 3253 * lets see if we can place a single object there. 3254 */ 3255 order = slab_order(size, 1, slub_max_order, 1); 3256 if (order <= slub_max_order) 3257 return order; 3258 3259 /* 3260 * Doh this slab cannot be placed using slub_max_order. 3261 */ 3262 order = slab_order(size, 1, MAX_ORDER, 1); 3263 if (order < MAX_ORDER) 3264 return order; 3265 return -ENOSYS; 3266 } 3267 3268 static void 3269 init_kmem_cache_node(struct kmem_cache_node *n) 3270 { 3271 n->nr_partial = 0; 3272 spin_lock_init(&n->list_lock); 3273 INIT_LIST_HEAD(&n->partial); 3274 #ifdef CONFIG_SLUB_DEBUG 3275 atomic_long_set(&n->nr_slabs, 0); 3276 atomic_long_set(&n->total_objects, 0); 3277 INIT_LIST_HEAD(&n->full); 3278 #endif 3279 } 3280 3281 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3282 { 3283 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3284 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3285 3286 /* 3287 * Must align to double word boundary for the double cmpxchg 3288 * instructions to work; see __pcpu_double_call_return_bool(). 3289 */ 3290 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3291 2 * sizeof(void *)); 3292 3293 if (!s->cpu_slab) 3294 return 0; 3295 3296 init_kmem_cache_cpus(s); 3297 3298 return 1; 3299 } 3300 3301 static struct kmem_cache *kmem_cache_node; 3302 3303 /* 3304 * No kmalloc_node yet so do it by hand. We know that this is the first 3305 * slab on the node for this slabcache. There are no concurrent accesses 3306 * possible. 3307 * 3308 * Note that this function only works on the kmem_cache_node 3309 * when allocating for the kmem_cache_node. This is used for bootstrapping 3310 * memory on a fresh node that has no slab structures yet. 3311 */ 3312 static void early_kmem_cache_node_alloc(int node) 3313 { 3314 struct page *page; 3315 struct kmem_cache_node *n; 3316 3317 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3318 3319 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3320 3321 BUG_ON(!page); 3322 if (page_to_nid(page) != node) { 3323 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3324 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3325 } 3326 3327 n = page->freelist; 3328 BUG_ON(!n); 3329 page->freelist = get_freepointer(kmem_cache_node, n); 3330 page->inuse = 1; 3331 page->frozen = 0; 3332 kmem_cache_node->node[node] = n; 3333 #ifdef CONFIG_SLUB_DEBUG 3334 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3335 init_tracking(kmem_cache_node, n); 3336 #endif 3337 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3338 GFP_KERNEL); 3339 init_kmem_cache_node(n); 3340 inc_slabs_node(kmem_cache_node, node, page->objects); 3341 3342 /* 3343 * No locks need to be taken here as it has just been 3344 * initialized and there is no concurrent access. 3345 */ 3346 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3347 } 3348 3349 static void free_kmem_cache_nodes(struct kmem_cache *s) 3350 { 3351 int node; 3352 struct kmem_cache_node *n; 3353 3354 for_each_kmem_cache_node(s, node, n) { 3355 s->node[node] = NULL; 3356 kmem_cache_free(kmem_cache_node, n); 3357 } 3358 } 3359 3360 void __kmem_cache_release(struct kmem_cache *s) 3361 { 3362 cache_random_seq_destroy(s); 3363 free_percpu(s->cpu_slab); 3364 free_kmem_cache_nodes(s); 3365 } 3366 3367 static int init_kmem_cache_nodes(struct kmem_cache *s) 3368 { 3369 int node; 3370 3371 for_each_node_state(node, N_NORMAL_MEMORY) { 3372 struct kmem_cache_node *n; 3373 3374 if (slab_state == DOWN) { 3375 early_kmem_cache_node_alloc(node); 3376 continue; 3377 } 3378 n = kmem_cache_alloc_node(kmem_cache_node, 3379 GFP_KERNEL, node); 3380 3381 if (!n) { 3382 free_kmem_cache_nodes(s); 3383 return 0; 3384 } 3385 3386 init_kmem_cache_node(n); 3387 s->node[node] = n; 3388 } 3389 return 1; 3390 } 3391 3392 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3393 { 3394 if (min < MIN_PARTIAL) 3395 min = MIN_PARTIAL; 3396 else if (min > MAX_PARTIAL) 3397 min = MAX_PARTIAL; 3398 s->min_partial = min; 3399 } 3400 3401 static void set_cpu_partial(struct kmem_cache *s) 3402 { 3403 #ifdef CONFIG_SLUB_CPU_PARTIAL 3404 /* 3405 * cpu_partial determined the maximum number of objects kept in the 3406 * per cpu partial lists of a processor. 3407 * 3408 * Per cpu partial lists mainly contain slabs that just have one 3409 * object freed. If they are used for allocation then they can be 3410 * filled up again with minimal effort. The slab will never hit the 3411 * per node partial lists and therefore no locking will be required. 3412 * 3413 * This setting also determines 3414 * 3415 * A) The number of objects from per cpu partial slabs dumped to the 3416 * per node list when we reach the limit. 3417 * B) The number of objects in cpu partial slabs to extract from the 3418 * per node list when we run out of per cpu objects. We only fetch 3419 * 50% to keep some capacity around for frees. 3420 */ 3421 if (!kmem_cache_has_cpu_partial(s)) 3422 s->cpu_partial = 0; 3423 else if (s->size >= PAGE_SIZE) 3424 s->cpu_partial = 2; 3425 else if (s->size >= 1024) 3426 s->cpu_partial = 6; 3427 else if (s->size >= 256) 3428 s->cpu_partial = 13; 3429 else 3430 s->cpu_partial = 30; 3431 #endif 3432 } 3433 3434 /* 3435 * calculate_sizes() determines the order and the distribution of data within 3436 * a slab object. 3437 */ 3438 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3439 { 3440 slab_flags_t flags = s->flags; 3441 unsigned int size = s->object_size; 3442 unsigned int order; 3443 3444 /* 3445 * Round up object size to the next word boundary. We can only 3446 * place the free pointer at word boundaries and this determines 3447 * the possible location of the free pointer. 3448 */ 3449 size = ALIGN(size, sizeof(void *)); 3450 3451 #ifdef CONFIG_SLUB_DEBUG 3452 /* 3453 * Determine if we can poison the object itself. If the user of 3454 * the slab may touch the object after free or before allocation 3455 * then we should never poison the object itself. 3456 */ 3457 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3458 !s->ctor) 3459 s->flags |= __OBJECT_POISON; 3460 else 3461 s->flags &= ~__OBJECT_POISON; 3462 3463 3464 /* 3465 * If we are Redzoning then check if there is some space between the 3466 * end of the object and the free pointer. If not then add an 3467 * additional word to have some bytes to store Redzone information. 3468 */ 3469 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3470 size += sizeof(void *); 3471 #endif 3472 3473 /* 3474 * With that we have determined the number of bytes in actual use 3475 * by the object. This is the potential offset to the free pointer. 3476 */ 3477 s->inuse = size; 3478 3479 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3480 s->ctor)) { 3481 /* 3482 * Relocate free pointer after the object if it is not 3483 * permitted to overwrite the first word of the object on 3484 * kmem_cache_free. 3485 * 3486 * This is the case if we do RCU, have a constructor or 3487 * destructor or are poisoning the objects. 3488 */ 3489 s->offset = size; 3490 size += sizeof(void *); 3491 } 3492 3493 #ifdef CONFIG_SLUB_DEBUG 3494 if (flags & SLAB_STORE_USER) 3495 /* 3496 * Need to store information about allocs and frees after 3497 * the object. 3498 */ 3499 size += 2 * sizeof(struct track); 3500 #endif 3501 3502 kasan_cache_create(s, &size, &s->flags); 3503 #ifdef CONFIG_SLUB_DEBUG 3504 if (flags & SLAB_RED_ZONE) { 3505 /* 3506 * Add some empty padding so that we can catch 3507 * overwrites from earlier objects rather than let 3508 * tracking information or the free pointer be 3509 * corrupted if a user writes before the start 3510 * of the object. 3511 */ 3512 size += sizeof(void *); 3513 3514 s->red_left_pad = sizeof(void *); 3515 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3516 size += s->red_left_pad; 3517 } 3518 #endif 3519 3520 /* 3521 * SLUB stores one object immediately after another beginning from 3522 * offset 0. In order to align the objects we have to simply size 3523 * each object to conform to the alignment. 3524 */ 3525 size = ALIGN(size, s->align); 3526 s->size = size; 3527 if (forced_order >= 0) 3528 order = forced_order; 3529 else 3530 order = calculate_order(size); 3531 3532 if ((int)order < 0) 3533 return 0; 3534 3535 s->allocflags = 0; 3536 if (order) 3537 s->allocflags |= __GFP_COMP; 3538 3539 if (s->flags & SLAB_CACHE_DMA) 3540 s->allocflags |= GFP_DMA; 3541 3542 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3543 s->allocflags |= __GFP_RECLAIMABLE; 3544 3545 /* 3546 * Determine the number of objects per slab 3547 */ 3548 s->oo = oo_make(order, size); 3549 s->min = oo_make(get_order(size), size); 3550 if (oo_objects(s->oo) > oo_objects(s->max)) 3551 s->max = s->oo; 3552 3553 return !!oo_objects(s->oo); 3554 } 3555 3556 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3557 { 3558 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3559 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3560 s->random = get_random_long(); 3561 #endif 3562 3563 if (!calculate_sizes(s, -1)) 3564 goto error; 3565 if (disable_higher_order_debug) { 3566 /* 3567 * Disable debugging flags that store metadata if the min slab 3568 * order increased. 3569 */ 3570 if (get_order(s->size) > get_order(s->object_size)) { 3571 s->flags &= ~DEBUG_METADATA_FLAGS; 3572 s->offset = 0; 3573 if (!calculate_sizes(s, -1)) 3574 goto error; 3575 } 3576 } 3577 3578 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3579 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3580 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3581 /* Enable fast mode */ 3582 s->flags |= __CMPXCHG_DOUBLE; 3583 #endif 3584 3585 /* 3586 * The larger the object size is, the more pages we want on the partial 3587 * list to avoid pounding the page allocator excessively. 3588 */ 3589 set_min_partial(s, ilog2(s->size) / 2); 3590 3591 set_cpu_partial(s); 3592 3593 #ifdef CONFIG_NUMA 3594 s->remote_node_defrag_ratio = 1000; 3595 #endif 3596 3597 /* Initialize the pre-computed randomized freelist if slab is up */ 3598 if (slab_state >= UP) { 3599 if (init_cache_random_seq(s)) 3600 goto error; 3601 } 3602 3603 if (!init_kmem_cache_nodes(s)) 3604 goto error; 3605 3606 if (alloc_kmem_cache_cpus(s)) 3607 return 0; 3608 3609 free_kmem_cache_nodes(s); 3610 error: 3611 if (flags & SLAB_PANIC) 3612 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", 3613 s->name, s->size, s->size, 3614 oo_order(s->oo), s->offset, (unsigned long)flags); 3615 return -EINVAL; 3616 } 3617 3618 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3619 const char *text) 3620 { 3621 #ifdef CONFIG_SLUB_DEBUG 3622 void *addr = page_address(page); 3623 void *p; 3624 unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects), 3625 sizeof(long), 3626 GFP_ATOMIC); 3627 if (!map) 3628 return; 3629 slab_err(s, page, text, s->name); 3630 slab_lock(page); 3631 3632 get_map(s, page, map); 3633 for_each_object(p, s, addr, page->objects) { 3634 3635 if (!test_bit(slab_index(p, s, addr), map)) { 3636 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3637 print_tracking(s, p); 3638 } 3639 } 3640 slab_unlock(page); 3641 kfree(map); 3642 #endif 3643 } 3644 3645 /* 3646 * Attempt to free all partial slabs on a node. 3647 * This is called from __kmem_cache_shutdown(). We must take list_lock 3648 * because sysfs file might still access partial list after the shutdowning. 3649 */ 3650 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3651 { 3652 LIST_HEAD(discard); 3653 struct page *page, *h; 3654 3655 BUG_ON(irqs_disabled()); 3656 spin_lock_irq(&n->list_lock); 3657 list_for_each_entry_safe(page, h, &n->partial, lru) { 3658 if (!page->inuse) { 3659 remove_partial(n, page); 3660 list_add(&page->lru, &discard); 3661 } else { 3662 list_slab_objects(s, page, 3663 "Objects remaining in %s on __kmem_cache_shutdown()"); 3664 } 3665 } 3666 spin_unlock_irq(&n->list_lock); 3667 3668 list_for_each_entry_safe(page, h, &discard, lru) 3669 discard_slab(s, page); 3670 } 3671 3672 bool __kmem_cache_empty(struct kmem_cache *s) 3673 { 3674 int node; 3675 struct kmem_cache_node *n; 3676 3677 for_each_kmem_cache_node(s, node, n) 3678 if (n->nr_partial || slabs_node(s, node)) 3679 return false; 3680 return true; 3681 } 3682 3683 /* 3684 * Release all resources used by a slab cache. 3685 */ 3686 int __kmem_cache_shutdown(struct kmem_cache *s) 3687 { 3688 int node; 3689 struct kmem_cache_node *n; 3690 3691 flush_all(s); 3692 /* Attempt to free all objects */ 3693 for_each_kmem_cache_node(s, node, n) { 3694 free_partial(s, n); 3695 if (n->nr_partial || slabs_node(s, node)) 3696 return 1; 3697 } 3698 sysfs_slab_remove(s); 3699 return 0; 3700 } 3701 3702 /******************************************************************** 3703 * Kmalloc subsystem 3704 *******************************************************************/ 3705 3706 static int __init setup_slub_min_order(char *str) 3707 { 3708 get_option(&str, (int *)&slub_min_order); 3709 3710 return 1; 3711 } 3712 3713 __setup("slub_min_order=", setup_slub_min_order); 3714 3715 static int __init setup_slub_max_order(char *str) 3716 { 3717 get_option(&str, (int *)&slub_max_order); 3718 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3719 3720 return 1; 3721 } 3722 3723 __setup("slub_max_order=", setup_slub_max_order); 3724 3725 static int __init setup_slub_min_objects(char *str) 3726 { 3727 get_option(&str, (int *)&slub_min_objects); 3728 3729 return 1; 3730 } 3731 3732 __setup("slub_min_objects=", setup_slub_min_objects); 3733 3734 void *__kmalloc(size_t size, gfp_t flags) 3735 { 3736 struct kmem_cache *s; 3737 void *ret; 3738 3739 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3740 return kmalloc_large(size, flags); 3741 3742 s = kmalloc_slab(size, flags); 3743 3744 if (unlikely(ZERO_OR_NULL_PTR(s))) 3745 return s; 3746 3747 ret = slab_alloc(s, flags, _RET_IP_); 3748 3749 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3750 3751 kasan_kmalloc(s, ret, size, flags); 3752 3753 return ret; 3754 } 3755 EXPORT_SYMBOL(__kmalloc); 3756 3757 #ifdef CONFIG_NUMA 3758 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3759 { 3760 struct page *page; 3761 void *ptr = NULL; 3762 3763 flags |= __GFP_COMP; 3764 page = alloc_pages_node(node, flags, get_order(size)); 3765 if (page) 3766 ptr = page_address(page); 3767 3768 kmalloc_large_node_hook(ptr, size, flags); 3769 return ptr; 3770 } 3771 3772 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3773 { 3774 struct kmem_cache *s; 3775 void *ret; 3776 3777 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3778 ret = kmalloc_large_node(size, flags, node); 3779 3780 trace_kmalloc_node(_RET_IP_, ret, 3781 size, PAGE_SIZE << get_order(size), 3782 flags, node); 3783 3784 return ret; 3785 } 3786 3787 s = kmalloc_slab(size, flags); 3788 3789 if (unlikely(ZERO_OR_NULL_PTR(s))) 3790 return s; 3791 3792 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3793 3794 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3795 3796 kasan_kmalloc(s, ret, size, flags); 3797 3798 return ret; 3799 } 3800 EXPORT_SYMBOL(__kmalloc_node); 3801 #endif 3802 3803 #ifdef CONFIG_HARDENED_USERCOPY 3804 /* 3805 * Rejects incorrectly sized objects and objects that are to be copied 3806 * to/from userspace but do not fall entirely within the containing slab 3807 * cache's usercopy region. 3808 * 3809 * Returns NULL if check passes, otherwise const char * to name of cache 3810 * to indicate an error. 3811 */ 3812 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3813 bool to_user) 3814 { 3815 struct kmem_cache *s; 3816 unsigned int offset; 3817 size_t object_size; 3818 3819 /* Find object and usable object size. */ 3820 s = page->slab_cache; 3821 3822 /* Reject impossible pointers. */ 3823 if (ptr < page_address(page)) 3824 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3825 to_user, 0, n); 3826 3827 /* Find offset within object. */ 3828 offset = (ptr - page_address(page)) % s->size; 3829 3830 /* Adjust for redzone and reject if within the redzone. */ 3831 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3832 if (offset < s->red_left_pad) 3833 usercopy_abort("SLUB object in left red zone", 3834 s->name, to_user, offset, n); 3835 offset -= s->red_left_pad; 3836 } 3837 3838 /* Allow address range falling entirely within usercopy region. */ 3839 if (offset >= s->useroffset && 3840 offset - s->useroffset <= s->usersize && 3841 n <= s->useroffset - offset + s->usersize) 3842 return; 3843 3844 /* 3845 * If the copy is still within the allocated object, produce 3846 * a warning instead of rejecting the copy. This is intended 3847 * to be a temporary method to find any missing usercopy 3848 * whitelists. 3849 */ 3850 object_size = slab_ksize(s); 3851 if (usercopy_fallback && 3852 offset <= object_size && n <= object_size - offset) { 3853 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3854 return; 3855 } 3856 3857 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3858 } 3859 #endif /* CONFIG_HARDENED_USERCOPY */ 3860 3861 static size_t __ksize(const void *object) 3862 { 3863 struct page *page; 3864 3865 if (unlikely(object == ZERO_SIZE_PTR)) 3866 return 0; 3867 3868 page = virt_to_head_page(object); 3869 3870 if (unlikely(!PageSlab(page))) { 3871 WARN_ON(!PageCompound(page)); 3872 return PAGE_SIZE << compound_order(page); 3873 } 3874 3875 return slab_ksize(page->slab_cache); 3876 } 3877 3878 size_t ksize(const void *object) 3879 { 3880 size_t size = __ksize(object); 3881 /* We assume that ksize callers could use whole allocated area, 3882 * so we need to unpoison this area. 3883 */ 3884 kasan_unpoison_shadow(object, size); 3885 return size; 3886 } 3887 EXPORT_SYMBOL(ksize); 3888 3889 void kfree(const void *x) 3890 { 3891 struct page *page; 3892 void *object = (void *)x; 3893 3894 trace_kfree(_RET_IP_, x); 3895 3896 if (unlikely(ZERO_OR_NULL_PTR(x))) 3897 return; 3898 3899 page = virt_to_head_page(x); 3900 if (unlikely(!PageSlab(page))) { 3901 BUG_ON(!PageCompound(page)); 3902 kfree_hook(object); 3903 __free_pages(page, compound_order(page)); 3904 return; 3905 } 3906 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3907 } 3908 EXPORT_SYMBOL(kfree); 3909 3910 #define SHRINK_PROMOTE_MAX 32 3911 3912 /* 3913 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3914 * up most to the head of the partial lists. New allocations will then 3915 * fill those up and thus they can be removed from the partial lists. 3916 * 3917 * The slabs with the least items are placed last. This results in them 3918 * being allocated from last increasing the chance that the last objects 3919 * are freed in them. 3920 */ 3921 int __kmem_cache_shrink(struct kmem_cache *s) 3922 { 3923 int node; 3924 int i; 3925 struct kmem_cache_node *n; 3926 struct page *page; 3927 struct page *t; 3928 struct list_head discard; 3929 struct list_head promote[SHRINK_PROMOTE_MAX]; 3930 unsigned long flags; 3931 int ret = 0; 3932 3933 flush_all(s); 3934 for_each_kmem_cache_node(s, node, n) { 3935 INIT_LIST_HEAD(&discard); 3936 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3937 INIT_LIST_HEAD(promote + i); 3938 3939 spin_lock_irqsave(&n->list_lock, flags); 3940 3941 /* 3942 * Build lists of slabs to discard or promote. 3943 * 3944 * Note that concurrent frees may occur while we hold the 3945 * list_lock. page->inuse here is the upper limit. 3946 */ 3947 list_for_each_entry_safe(page, t, &n->partial, lru) { 3948 int free = page->objects - page->inuse; 3949 3950 /* Do not reread page->inuse */ 3951 barrier(); 3952 3953 /* We do not keep full slabs on the list */ 3954 BUG_ON(free <= 0); 3955 3956 if (free == page->objects) { 3957 list_move(&page->lru, &discard); 3958 n->nr_partial--; 3959 } else if (free <= SHRINK_PROMOTE_MAX) 3960 list_move(&page->lru, promote + free - 1); 3961 } 3962 3963 /* 3964 * Promote the slabs filled up most to the head of the 3965 * partial list. 3966 */ 3967 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3968 list_splice(promote + i, &n->partial); 3969 3970 spin_unlock_irqrestore(&n->list_lock, flags); 3971 3972 /* Release empty slabs */ 3973 list_for_each_entry_safe(page, t, &discard, lru) 3974 discard_slab(s, page); 3975 3976 if (slabs_node(s, node)) 3977 ret = 1; 3978 } 3979 3980 return ret; 3981 } 3982 3983 #ifdef CONFIG_MEMCG 3984 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 3985 { 3986 /* 3987 * Called with all the locks held after a sched RCU grace period. 3988 * Even if @s becomes empty after shrinking, we can't know that @s 3989 * doesn't have allocations already in-flight and thus can't 3990 * destroy @s until the associated memcg is released. 3991 * 3992 * However, let's remove the sysfs files for empty caches here. 3993 * Each cache has a lot of interface files which aren't 3994 * particularly useful for empty draining caches; otherwise, we can 3995 * easily end up with millions of unnecessary sysfs files on 3996 * systems which have a lot of memory and transient cgroups. 3997 */ 3998 if (!__kmem_cache_shrink(s)) 3999 sysfs_slab_remove(s); 4000 } 4001 4002 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4003 { 4004 /* 4005 * Disable empty slabs caching. Used to avoid pinning offline 4006 * memory cgroups by kmem pages that can be freed. 4007 */ 4008 slub_set_cpu_partial(s, 0); 4009 s->min_partial = 0; 4010 4011 /* 4012 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4013 * we have to make sure the change is visible before shrinking. 4014 */ 4015 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4016 } 4017 #endif 4018 4019 static int slab_mem_going_offline_callback(void *arg) 4020 { 4021 struct kmem_cache *s; 4022 4023 mutex_lock(&slab_mutex); 4024 list_for_each_entry(s, &slab_caches, list) 4025 __kmem_cache_shrink(s); 4026 mutex_unlock(&slab_mutex); 4027 4028 return 0; 4029 } 4030 4031 static void slab_mem_offline_callback(void *arg) 4032 { 4033 struct kmem_cache_node *n; 4034 struct kmem_cache *s; 4035 struct memory_notify *marg = arg; 4036 int offline_node; 4037 4038 offline_node = marg->status_change_nid_normal; 4039 4040 /* 4041 * If the node still has available memory. we need kmem_cache_node 4042 * for it yet. 4043 */ 4044 if (offline_node < 0) 4045 return; 4046 4047 mutex_lock(&slab_mutex); 4048 list_for_each_entry(s, &slab_caches, list) { 4049 n = get_node(s, offline_node); 4050 if (n) { 4051 /* 4052 * if n->nr_slabs > 0, slabs still exist on the node 4053 * that is going down. We were unable to free them, 4054 * and offline_pages() function shouldn't call this 4055 * callback. So, we must fail. 4056 */ 4057 BUG_ON(slabs_node(s, offline_node)); 4058 4059 s->node[offline_node] = NULL; 4060 kmem_cache_free(kmem_cache_node, n); 4061 } 4062 } 4063 mutex_unlock(&slab_mutex); 4064 } 4065 4066 static int slab_mem_going_online_callback(void *arg) 4067 { 4068 struct kmem_cache_node *n; 4069 struct kmem_cache *s; 4070 struct memory_notify *marg = arg; 4071 int nid = marg->status_change_nid_normal; 4072 int ret = 0; 4073 4074 /* 4075 * If the node's memory is already available, then kmem_cache_node is 4076 * already created. Nothing to do. 4077 */ 4078 if (nid < 0) 4079 return 0; 4080 4081 /* 4082 * We are bringing a node online. No memory is available yet. We must 4083 * allocate a kmem_cache_node structure in order to bring the node 4084 * online. 4085 */ 4086 mutex_lock(&slab_mutex); 4087 list_for_each_entry(s, &slab_caches, list) { 4088 /* 4089 * XXX: kmem_cache_alloc_node will fallback to other nodes 4090 * since memory is not yet available from the node that 4091 * is brought up. 4092 */ 4093 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4094 if (!n) { 4095 ret = -ENOMEM; 4096 goto out; 4097 } 4098 init_kmem_cache_node(n); 4099 s->node[nid] = n; 4100 } 4101 out: 4102 mutex_unlock(&slab_mutex); 4103 return ret; 4104 } 4105 4106 static int slab_memory_callback(struct notifier_block *self, 4107 unsigned long action, void *arg) 4108 { 4109 int ret = 0; 4110 4111 switch (action) { 4112 case MEM_GOING_ONLINE: 4113 ret = slab_mem_going_online_callback(arg); 4114 break; 4115 case MEM_GOING_OFFLINE: 4116 ret = slab_mem_going_offline_callback(arg); 4117 break; 4118 case MEM_OFFLINE: 4119 case MEM_CANCEL_ONLINE: 4120 slab_mem_offline_callback(arg); 4121 break; 4122 case MEM_ONLINE: 4123 case MEM_CANCEL_OFFLINE: 4124 break; 4125 } 4126 if (ret) 4127 ret = notifier_from_errno(ret); 4128 else 4129 ret = NOTIFY_OK; 4130 return ret; 4131 } 4132 4133 static struct notifier_block slab_memory_callback_nb = { 4134 .notifier_call = slab_memory_callback, 4135 .priority = SLAB_CALLBACK_PRI, 4136 }; 4137 4138 /******************************************************************** 4139 * Basic setup of slabs 4140 *******************************************************************/ 4141 4142 /* 4143 * Used for early kmem_cache structures that were allocated using 4144 * the page allocator. Allocate them properly then fix up the pointers 4145 * that may be pointing to the wrong kmem_cache structure. 4146 */ 4147 4148 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4149 { 4150 int node; 4151 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4152 struct kmem_cache_node *n; 4153 4154 memcpy(s, static_cache, kmem_cache->object_size); 4155 4156 /* 4157 * This runs very early, and only the boot processor is supposed to be 4158 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4159 * IPIs around. 4160 */ 4161 __flush_cpu_slab(s, smp_processor_id()); 4162 for_each_kmem_cache_node(s, node, n) { 4163 struct page *p; 4164 4165 list_for_each_entry(p, &n->partial, lru) 4166 p->slab_cache = s; 4167 4168 #ifdef CONFIG_SLUB_DEBUG 4169 list_for_each_entry(p, &n->full, lru) 4170 p->slab_cache = s; 4171 #endif 4172 } 4173 slab_init_memcg_params(s); 4174 list_add(&s->list, &slab_caches); 4175 memcg_link_cache(s); 4176 return s; 4177 } 4178 4179 void __init kmem_cache_init(void) 4180 { 4181 static __initdata struct kmem_cache boot_kmem_cache, 4182 boot_kmem_cache_node; 4183 4184 if (debug_guardpage_minorder()) 4185 slub_max_order = 0; 4186 4187 kmem_cache_node = &boot_kmem_cache_node; 4188 kmem_cache = &boot_kmem_cache; 4189 4190 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4191 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4192 4193 register_hotmemory_notifier(&slab_memory_callback_nb); 4194 4195 /* Able to allocate the per node structures */ 4196 slab_state = PARTIAL; 4197 4198 create_boot_cache(kmem_cache, "kmem_cache", 4199 offsetof(struct kmem_cache, node) + 4200 nr_node_ids * sizeof(struct kmem_cache_node *), 4201 SLAB_HWCACHE_ALIGN, 0, 0); 4202 4203 kmem_cache = bootstrap(&boot_kmem_cache); 4204 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4205 4206 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4207 setup_kmalloc_cache_index_table(); 4208 create_kmalloc_caches(0); 4209 4210 /* Setup random freelists for each cache */ 4211 init_freelist_randomization(); 4212 4213 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4214 slub_cpu_dead); 4215 4216 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", 4217 cache_line_size(), 4218 slub_min_order, slub_max_order, slub_min_objects, 4219 nr_cpu_ids, nr_node_ids); 4220 } 4221 4222 void __init kmem_cache_init_late(void) 4223 { 4224 } 4225 4226 struct kmem_cache * 4227 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4228 slab_flags_t flags, void (*ctor)(void *)) 4229 { 4230 struct kmem_cache *s, *c; 4231 4232 s = find_mergeable(size, align, flags, name, ctor); 4233 if (s) { 4234 s->refcount++; 4235 4236 /* 4237 * Adjust the object sizes so that we clear 4238 * the complete object on kzalloc. 4239 */ 4240 s->object_size = max(s->object_size, size); 4241 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4242 4243 for_each_memcg_cache(c, s) { 4244 c->object_size = s->object_size; 4245 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4246 } 4247 4248 if (sysfs_slab_alias(s, name)) { 4249 s->refcount--; 4250 s = NULL; 4251 } 4252 } 4253 4254 return s; 4255 } 4256 4257 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4258 { 4259 int err; 4260 4261 err = kmem_cache_open(s, flags); 4262 if (err) 4263 return err; 4264 4265 /* Mutex is not taken during early boot */ 4266 if (slab_state <= UP) 4267 return 0; 4268 4269 memcg_propagate_slab_attrs(s); 4270 err = sysfs_slab_add(s); 4271 if (err) 4272 __kmem_cache_release(s); 4273 4274 return err; 4275 } 4276 4277 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4278 { 4279 struct kmem_cache *s; 4280 void *ret; 4281 4282 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4283 return kmalloc_large(size, gfpflags); 4284 4285 s = kmalloc_slab(size, gfpflags); 4286 4287 if (unlikely(ZERO_OR_NULL_PTR(s))) 4288 return s; 4289 4290 ret = slab_alloc(s, gfpflags, caller); 4291 4292 /* Honor the call site pointer we received. */ 4293 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4294 4295 return ret; 4296 } 4297 4298 #ifdef CONFIG_NUMA 4299 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4300 int node, unsigned long caller) 4301 { 4302 struct kmem_cache *s; 4303 void *ret; 4304 4305 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4306 ret = kmalloc_large_node(size, gfpflags, node); 4307 4308 trace_kmalloc_node(caller, ret, 4309 size, PAGE_SIZE << get_order(size), 4310 gfpflags, node); 4311 4312 return ret; 4313 } 4314 4315 s = kmalloc_slab(size, gfpflags); 4316 4317 if (unlikely(ZERO_OR_NULL_PTR(s))) 4318 return s; 4319 4320 ret = slab_alloc_node(s, gfpflags, node, caller); 4321 4322 /* Honor the call site pointer we received. */ 4323 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4324 4325 return ret; 4326 } 4327 #endif 4328 4329 #ifdef CONFIG_SYSFS 4330 static int count_inuse(struct page *page) 4331 { 4332 return page->inuse; 4333 } 4334 4335 static int count_total(struct page *page) 4336 { 4337 return page->objects; 4338 } 4339 #endif 4340 4341 #ifdef CONFIG_SLUB_DEBUG 4342 static int validate_slab(struct kmem_cache *s, struct page *page, 4343 unsigned long *map) 4344 { 4345 void *p; 4346 void *addr = page_address(page); 4347 4348 if (!check_slab(s, page) || 4349 !on_freelist(s, page, NULL)) 4350 return 0; 4351 4352 /* Now we know that a valid freelist exists */ 4353 bitmap_zero(map, page->objects); 4354 4355 get_map(s, page, map); 4356 for_each_object(p, s, addr, page->objects) { 4357 if (test_bit(slab_index(p, s, addr), map)) 4358 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4359 return 0; 4360 } 4361 4362 for_each_object(p, s, addr, page->objects) 4363 if (!test_bit(slab_index(p, s, addr), map)) 4364 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4365 return 0; 4366 return 1; 4367 } 4368 4369 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4370 unsigned long *map) 4371 { 4372 slab_lock(page); 4373 validate_slab(s, page, map); 4374 slab_unlock(page); 4375 } 4376 4377 static int validate_slab_node(struct kmem_cache *s, 4378 struct kmem_cache_node *n, unsigned long *map) 4379 { 4380 unsigned long count = 0; 4381 struct page *page; 4382 unsigned long flags; 4383 4384 spin_lock_irqsave(&n->list_lock, flags); 4385 4386 list_for_each_entry(page, &n->partial, lru) { 4387 validate_slab_slab(s, page, map); 4388 count++; 4389 } 4390 if (count != n->nr_partial) 4391 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4392 s->name, count, n->nr_partial); 4393 4394 if (!(s->flags & SLAB_STORE_USER)) 4395 goto out; 4396 4397 list_for_each_entry(page, &n->full, lru) { 4398 validate_slab_slab(s, page, map); 4399 count++; 4400 } 4401 if (count != atomic_long_read(&n->nr_slabs)) 4402 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4403 s->name, count, atomic_long_read(&n->nr_slabs)); 4404 4405 out: 4406 spin_unlock_irqrestore(&n->list_lock, flags); 4407 return count; 4408 } 4409 4410 static long validate_slab_cache(struct kmem_cache *s) 4411 { 4412 int node; 4413 unsigned long count = 0; 4414 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), 4415 sizeof(unsigned long), 4416 GFP_KERNEL); 4417 struct kmem_cache_node *n; 4418 4419 if (!map) 4420 return -ENOMEM; 4421 4422 flush_all(s); 4423 for_each_kmem_cache_node(s, node, n) 4424 count += validate_slab_node(s, n, map); 4425 kfree(map); 4426 return count; 4427 } 4428 /* 4429 * Generate lists of code addresses where slabcache objects are allocated 4430 * and freed. 4431 */ 4432 4433 struct location { 4434 unsigned long count; 4435 unsigned long addr; 4436 long long sum_time; 4437 long min_time; 4438 long max_time; 4439 long min_pid; 4440 long max_pid; 4441 DECLARE_BITMAP(cpus, NR_CPUS); 4442 nodemask_t nodes; 4443 }; 4444 4445 struct loc_track { 4446 unsigned long max; 4447 unsigned long count; 4448 struct location *loc; 4449 }; 4450 4451 static void free_loc_track(struct loc_track *t) 4452 { 4453 if (t->max) 4454 free_pages((unsigned long)t->loc, 4455 get_order(sizeof(struct location) * t->max)); 4456 } 4457 4458 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4459 { 4460 struct location *l; 4461 int order; 4462 4463 order = get_order(sizeof(struct location) * max); 4464 4465 l = (void *)__get_free_pages(flags, order); 4466 if (!l) 4467 return 0; 4468 4469 if (t->count) { 4470 memcpy(l, t->loc, sizeof(struct location) * t->count); 4471 free_loc_track(t); 4472 } 4473 t->max = max; 4474 t->loc = l; 4475 return 1; 4476 } 4477 4478 static int add_location(struct loc_track *t, struct kmem_cache *s, 4479 const struct track *track) 4480 { 4481 long start, end, pos; 4482 struct location *l; 4483 unsigned long caddr; 4484 unsigned long age = jiffies - track->when; 4485 4486 start = -1; 4487 end = t->count; 4488 4489 for ( ; ; ) { 4490 pos = start + (end - start + 1) / 2; 4491 4492 /* 4493 * There is nothing at "end". If we end up there 4494 * we need to add something to before end. 4495 */ 4496 if (pos == end) 4497 break; 4498 4499 caddr = t->loc[pos].addr; 4500 if (track->addr == caddr) { 4501 4502 l = &t->loc[pos]; 4503 l->count++; 4504 if (track->when) { 4505 l->sum_time += age; 4506 if (age < l->min_time) 4507 l->min_time = age; 4508 if (age > l->max_time) 4509 l->max_time = age; 4510 4511 if (track->pid < l->min_pid) 4512 l->min_pid = track->pid; 4513 if (track->pid > l->max_pid) 4514 l->max_pid = track->pid; 4515 4516 cpumask_set_cpu(track->cpu, 4517 to_cpumask(l->cpus)); 4518 } 4519 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4520 return 1; 4521 } 4522 4523 if (track->addr < caddr) 4524 end = pos; 4525 else 4526 start = pos; 4527 } 4528 4529 /* 4530 * Not found. Insert new tracking element. 4531 */ 4532 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4533 return 0; 4534 4535 l = t->loc + pos; 4536 if (pos < t->count) 4537 memmove(l + 1, l, 4538 (t->count - pos) * sizeof(struct location)); 4539 t->count++; 4540 l->count = 1; 4541 l->addr = track->addr; 4542 l->sum_time = age; 4543 l->min_time = age; 4544 l->max_time = age; 4545 l->min_pid = track->pid; 4546 l->max_pid = track->pid; 4547 cpumask_clear(to_cpumask(l->cpus)); 4548 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4549 nodes_clear(l->nodes); 4550 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4551 return 1; 4552 } 4553 4554 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4555 struct page *page, enum track_item alloc, 4556 unsigned long *map) 4557 { 4558 void *addr = page_address(page); 4559 void *p; 4560 4561 bitmap_zero(map, page->objects); 4562 get_map(s, page, map); 4563 4564 for_each_object(p, s, addr, page->objects) 4565 if (!test_bit(slab_index(p, s, addr), map)) 4566 add_location(t, s, get_track(s, p, alloc)); 4567 } 4568 4569 static int list_locations(struct kmem_cache *s, char *buf, 4570 enum track_item alloc) 4571 { 4572 int len = 0; 4573 unsigned long i; 4574 struct loc_track t = { 0, 0, NULL }; 4575 int node; 4576 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), 4577 sizeof(unsigned long), 4578 GFP_KERNEL); 4579 struct kmem_cache_node *n; 4580 4581 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4582 GFP_KERNEL)) { 4583 kfree(map); 4584 return sprintf(buf, "Out of memory\n"); 4585 } 4586 /* Push back cpu slabs */ 4587 flush_all(s); 4588 4589 for_each_kmem_cache_node(s, node, n) { 4590 unsigned long flags; 4591 struct page *page; 4592 4593 if (!atomic_long_read(&n->nr_slabs)) 4594 continue; 4595 4596 spin_lock_irqsave(&n->list_lock, flags); 4597 list_for_each_entry(page, &n->partial, lru) 4598 process_slab(&t, s, page, alloc, map); 4599 list_for_each_entry(page, &n->full, lru) 4600 process_slab(&t, s, page, alloc, map); 4601 spin_unlock_irqrestore(&n->list_lock, flags); 4602 } 4603 4604 for (i = 0; i < t.count; i++) { 4605 struct location *l = &t.loc[i]; 4606 4607 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4608 break; 4609 len += sprintf(buf + len, "%7ld ", l->count); 4610 4611 if (l->addr) 4612 len += sprintf(buf + len, "%pS", (void *)l->addr); 4613 else 4614 len += sprintf(buf + len, "<not-available>"); 4615 4616 if (l->sum_time != l->min_time) { 4617 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4618 l->min_time, 4619 (long)div_u64(l->sum_time, l->count), 4620 l->max_time); 4621 } else 4622 len += sprintf(buf + len, " age=%ld", 4623 l->min_time); 4624 4625 if (l->min_pid != l->max_pid) 4626 len += sprintf(buf + len, " pid=%ld-%ld", 4627 l->min_pid, l->max_pid); 4628 else 4629 len += sprintf(buf + len, " pid=%ld", 4630 l->min_pid); 4631 4632 if (num_online_cpus() > 1 && 4633 !cpumask_empty(to_cpumask(l->cpus)) && 4634 len < PAGE_SIZE - 60) 4635 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4636 " cpus=%*pbl", 4637 cpumask_pr_args(to_cpumask(l->cpus))); 4638 4639 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4640 len < PAGE_SIZE - 60) 4641 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4642 " nodes=%*pbl", 4643 nodemask_pr_args(&l->nodes)); 4644 4645 len += sprintf(buf + len, "\n"); 4646 } 4647 4648 free_loc_track(&t); 4649 kfree(map); 4650 if (!t.count) 4651 len += sprintf(buf, "No data\n"); 4652 return len; 4653 } 4654 #endif 4655 4656 #ifdef SLUB_RESILIENCY_TEST 4657 static void __init resiliency_test(void) 4658 { 4659 u8 *p; 4660 4661 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4662 4663 pr_err("SLUB resiliency testing\n"); 4664 pr_err("-----------------------\n"); 4665 pr_err("A. Corruption after allocation\n"); 4666 4667 p = kzalloc(16, GFP_KERNEL); 4668 p[16] = 0x12; 4669 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4670 p + 16); 4671 4672 validate_slab_cache(kmalloc_caches[4]); 4673 4674 /* Hmmm... The next two are dangerous */ 4675 p = kzalloc(32, GFP_KERNEL); 4676 p[32 + sizeof(void *)] = 0x34; 4677 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4678 p); 4679 pr_err("If allocated object is overwritten then not detectable\n\n"); 4680 4681 validate_slab_cache(kmalloc_caches[5]); 4682 p = kzalloc(64, GFP_KERNEL); 4683 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4684 *p = 0x56; 4685 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4686 p); 4687 pr_err("If allocated object is overwritten then not detectable\n\n"); 4688 validate_slab_cache(kmalloc_caches[6]); 4689 4690 pr_err("\nB. Corruption after free\n"); 4691 p = kzalloc(128, GFP_KERNEL); 4692 kfree(p); 4693 *p = 0x78; 4694 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4695 validate_slab_cache(kmalloc_caches[7]); 4696 4697 p = kzalloc(256, GFP_KERNEL); 4698 kfree(p); 4699 p[50] = 0x9a; 4700 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4701 validate_slab_cache(kmalloc_caches[8]); 4702 4703 p = kzalloc(512, GFP_KERNEL); 4704 kfree(p); 4705 p[512] = 0xab; 4706 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4707 validate_slab_cache(kmalloc_caches[9]); 4708 } 4709 #else 4710 #ifdef CONFIG_SYSFS 4711 static void resiliency_test(void) {}; 4712 #endif 4713 #endif 4714 4715 #ifdef CONFIG_SYSFS 4716 enum slab_stat_type { 4717 SL_ALL, /* All slabs */ 4718 SL_PARTIAL, /* Only partially allocated slabs */ 4719 SL_CPU, /* Only slabs used for cpu caches */ 4720 SL_OBJECTS, /* Determine allocated objects not slabs */ 4721 SL_TOTAL /* Determine object capacity not slabs */ 4722 }; 4723 4724 #define SO_ALL (1 << SL_ALL) 4725 #define SO_PARTIAL (1 << SL_PARTIAL) 4726 #define SO_CPU (1 << SL_CPU) 4727 #define SO_OBJECTS (1 << SL_OBJECTS) 4728 #define SO_TOTAL (1 << SL_TOTAL) 4729 4730 #ifdef CONFIG_MEMCG 4731 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4732 4733 static int __init setup_slub_memcg_sysfs(char *str) 4734 { 4735 int v; 4736 4737 if (get_option(&str, &v) > 0) 4738 memcg_sysfs_enabled = v; 4739 4740 return 1; 4741 } 4742 4743 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4744 #endif 4745 4746 static ssize_t show_slab_objects(struct kmem_cache *s, 4747 char *buf, unsigned long flags) 4748 { 4749 unsigned long total = 0; 4750 int node; 4751 int x; 4752 unsigned long *nodes; 4753 4754 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4755 if (!nodes) 4756 return -ENOMEM; 4757 4758 if (flags & SO_CPU) { 4759 int cpu; 4760 4761 for_each_possible_cpu(cpu) { 4762 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4763 cpu); 4764 int node; 4765 struct page *page; 4766 4767 page = READ_ONCE(c->page); 4768 if (!page) 4769 continue; 4770 4771 node = page_to_nid(page); 4772 if (flags & SO_TOTAL) 4773 x = page->objects; 4774 else if (flags & SO_OBJECTS) 4775 x = page->inuse; 4776 else 4777 x = 1; 4778 4779 total += x; 4780 nodes[node] += x; 4781 4782 page = slub_percpu_partial_read_once(c); 4783 if (page) { 4784 node = page_to_nid(page); 4785 if (flags & SO_TOTAL) 4786 WARN_ON_ONCE(1); 4787 else if (flags & SO_OBJECTS) 4788 WARN_ON_ONCE(1); 4789 else 4790 x = page->pages; 4791 total += x; 4792 nodes[node] += x; 4793 } 4794 } 4795 } 4796 4797 get_online_mems(); 4798 #ifdef CONFIG_SLUB_DEBUG 4799 if (flags & SO_ALL) { 4800 struct kmem_cache_node *n; 4801 4802 for_each_kmem_cache_node(s, node, n) { 4803 4804 if (flags & SO_TOTAL) 4805 x = atomic_long_read(&n->total_objects); 4806 else if (flags & SO_OBJECTS) 4807 x = atomic_long_read(&n->total_objects) - 4808 count_partial(n, count_free); 4809 else 4810 x = atomic_long_read(&n->nr_slabs); 4811 total += x; 4812 nodes[node] += x; 4813 } 4814 4815 } else 4816 #endif 4817 if (flags & SO_PARTIAL) { 4818 struct kmem_cache_node *n; 4819 4820 for_each_kmem_cache_node(s, node, n) { 4821 if (flags & SO_TOTAL) 4822 x = count_partial(n, count_total); 4823 else if (flags & SO_OBJECTS) 4824 x = count_partial(n, count_inuse); 4825 else 4826 x = n->nr_partial; 4827 total += x; 4828 nodes[node] += x; 4829 } 4830 } 4831 x = sprintf(buf, "%lu", total); 4832 #ifdef CONFIG_NUMA 4833 for (node = 0; node < nr_node_ids; node++) 4834 if (nodes[node]) 4835 x += sprintf(buf + x, " N%d=%lu", 4836 node, nodes[node]); 4837 #endif 4838 put_online_mems(); 4839 kfree(nodes); 4840 return x + sprintf(buf + x, "\n"); 4841 } 4842 4843 #ifdef CONFIG_SLUB_DEBUG 4844 static int any_slab_objects(struct kmem_cache *s) 4845 { 4846 int node; 4847 struct kmem_cache_node *n; 4848 4849 for_each_kmem_cache_node(s, node, n) 4850 if (atomic_long_read(&n->total_objects)) 4851 return 1; 4852 4853 return 0; 4854 } 4855 #endif 4856 4857 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4858 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4859 4860 struct slab_attribute { 4861 struct attribute attr; 4862 ssize_t (*show)(struct kmem_cache *s, char *buf); 4863 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4864 }; 4865 4866 #define SLAB_ATTR_RO(_name) \ 4867 static struct slab_attribute _name##_attr = \ 4868 __ATTR(_name, 0400, _name##_show, NULL) 4869 4870 #define SLAB_ATTR(_name) \ 4871 static struct slab_attribute _name##_attr = \ 4872 __ATTR(_name, 0600, _name##_show, _name##_store) 4873 4874 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4875 { 4876 return sprintf(buf, "%u\n", s->size); 4877 } 4878 SLAB_ATTR_RO(slab_size); 4879 4880 static ssize_t align_show(struct kmem_cache *s, char *buf) 4881 { 4882 return sprintf(buf, "%u\n", s->align); 4883 } 4884 SLAB_ATTR_RO(align); 4885 4886 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4887 { 4888 return sprintf(buf, "%u\n", s->object_size); 4889 } 4890 SLAB_ATTR_RO(object_size); 4891 4892 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4893 { 4894 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4895 } 4896 SLAB_ATTR_RO(objs_per_slab); 4897 4898 static ssize_t order_store(struct kmem_cache *s, 4899 const char *buf, size_t length) 4900 { 4901 unsigned int order; 4902 int err; 4903 4904 err = kstrtouint(buf, 10, &order); 4905 if (err) 4906 return err; 4907 4908 if (order > slub_max_order || order < slub_min_order) 4909 return -EINVAL; 4910 4911 calculate_sizes(s, order); 4912 return length; 4913 } 4914 4915 static ssize_t order_show(struct kmem_cache *s, char *buf) 4916 { 4917 return sprintf(buf, "%u\n", oo_order(s->oo)); 4918 } 4919 SLAB_ATTR(order); 4920 4921 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4922 { 4923 return sprintf(buf, "%lu\n", s->min_partial); 4924 } 4925 4926 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4927 size_t length) 4928 { 4929 unsigned long min; 4930 int err; 4931 4932 err = kstrtoul(buf, 10, &min); 4933 if (err) 4934 return err; 4935 4936 set_min_partial(s, min); 4937 return length; 4938 } 4939 SLAB_ATTR(min_partial); 4940 4941 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4942 { 4943 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4944 } 4945 4946 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4947 size_t length) 4948 { 4949 unsigned int objects; 4950 int err; 4951 4952 err = kstrtouint(buf, 10, &objects); 4953 if (err) 4954 return err; 4955 if (objects && !kmem_cache_has_cpu_partial(s)) 4956 return -EINVAL; 4957 4958 slub_set_cpu_partial(s, objects); 4959 flush_all(s); 4960 return length; 4961 } 4962 SLAB_ATTR(cpu_partial); 4963 4964 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4965 { 4966 if (!s->ctor) 4967 return 0; 4968 return sprintf(buf, "%pS\n", s->ctor); 4969 } 4970 SLAB_ATTR_RO(ctor); 4971 4972 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4973 { 4974 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4975 } 4976 SLAB_ATTR_RO(aliases); 4977 4978 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4979 { 4980 return show_slab_objects(s, buf, SO_PARTIAL); 4981 } 4982 SLAB_ATTR_RO(partial); 4983 4984 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4985 { 4986 return show_slab_objects(s, buf, SO_CPU); 4987 } 4988 SLAB_ATTR_RO(cpu_slabs); 4989 4990 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4991 { 4992 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4993 } 4994 SLAB_ATTR_RO(objects); 4995 4996 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4997 { 4998 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4999 } 5000 SLAB_ATTR_RO(objects_partial); 5001 5002 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5003 { 5004 int objects = 0; 5005 int pages = 0; 5006 int cpu; 5007 int len; 5008 5009 for_each_online_cpu(cpu) { 5010 struct page *page; 5011 5012 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5013 5014 if (page) { 5015 pages += page->pages; 5016 objects += page->pobjects; 5017 } 5018 } 5019 5020 len = sprintf(buf, "%d(%d)", objects, pages); 5021 5022 #ifdef CONFIG_SMP 5023 for_each_online_cpu(cpu) { 5024 struct page *page; 5025 5026 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5027 5028 if (page && len < PAGE_SIZE - 20) 5029 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5030 page->pobjects, page->pages); 5031 } 5032 #endif 5033 return len + sprintf(buf + len, "\n"); 5034 } 5035 SLAB_ATTR_RO(slabs_cpu_partial); 5036 5037 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5038 { 5039 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5040 } 5041 5042 static ssize_t reclaim_account_store(struct kmem_cache *s, 5043 const char *buf, size_t length) 5044 { 5045 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5046 if (buf[0] == '1') 5047 s->flags |= SLAB_RECLAIM_ACCOUNT; 5048 return length; 5049 } 5050 SLAB_ATTR(reclaim_account); 5051 5052 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5053 { 5054 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5055 } 5056 SLAB_ATTR_RO(hwcache_align); 5057 5058 #ifdef CONFIG_ZONE_DMA 5059 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5060 { 5061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5062 } 5063 SLAB_ATTR_RO(cache_dma); 5064 #endif 5065 5066 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5067 { 5068 return sprintf(buf, "%u\n", s->usersize); 5069 } 5070 SLAB_ATTR_RO(usersize); 5071 5072 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5073 { 5074 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5075 } 5076 SLAB_ATTR_RO(destroy_by_rcu); 5077 5078 #ifdef CONFIG_SLUB_DEBUG 5079 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5080 { 5081 return show_slab_objects(s, buf, SO_ALL); 5082 } 5083 SLAB_ATTR_RO(slabs); 5084 5085 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5086 { 5087 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5088 } 5089 SLAB_ATTR_RO(total_objects); 5090 5091 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5092 { 5093 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5094 } 5095 5096 static ssize_t sanity_checks_store(struct kmem_cache *s, 5097 const char *buf, size_t length) 5098 { 5099 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5100 if (buf[0] == '1') { 5101 s->flags &= ~__CMPXCHG_DOUBLE; 5102 s->flags |= SLAB_CONSISTENCY_CHECKS; 5103 } 5104 return length; 5105 } 5106 SLAB_ATTR(sanity_checks); 5107 5108 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5109 { 5110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5111 } 5112 5113 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5114 size_t length) 5115 { 5116 /* 5117 * Tracing a merged cache is going to give confusing results 5118 * as well as cause other issues like converting a mergeable 5119 * cache into an umergeable one. 5120 */ 5121 if (s->refcount > 1) 5122 return -EINVAL; 5123 5124 s->flags &= ~SLAB_TRACE; 5125 if (buf[0] == '1') { 5126 s->flags &= ~__CMPXCHG_DOUBLE; 5127 s->flags |= SLAB_TRACE; 5128 } 5129 return length; 5130 } 5131 SLAB_ATTR(trace); 5132 5133 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5134 { 5135 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5136 } 5137 5138 static ssize_t red_zone_store(struct kmem_cache *s, 5139 const char *buf, size_t length) 5140 { 5141 if (any_slab_objects(s)) 5142 return -EBUSY; 5143 5144 s->flags &= ~SLAB_RED_ZONE; 5145 if (buf[0] == '1') { 5146 s->flags |= SLAB_RED_ZONE; 5147 } 5148 calculate_sizes(s, -1); 5149 return length; 5150 } 5151 SLAB_ATTR(red_zone); 5152 5153 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5154 { 5155 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5156 } 5157 5158 static ssize_t poison_store(struct kmem_cache *s, 5159 const char *buf, size_t length) 5160 { 5161 if (any_slab_objects(s)) 5162 return -EBUSY; 5163 5164 s->flags &= ~SLAB_POISON; 5165 if (buf[0] == '1') { 5166 s->flags |= SLAB_POISON; 5167 } 5168 calculate_sizes(s, -1); 5169 return length; 5170 } 5171 SLAB_ATTR(poison); 5172 5173 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5174 { 5175 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5176 } 5177 5178 static ssize_t store_user_store(struct kmem_cache *s, 5179 const char *buf, size_t length) 5180 { 5181 if (any_slab_objects(s)) 5182 return -EBUSY; 5183 5184 s->flags &= ~SLAB_STORE_USER; 5185 if (buf[0] == '1') { 5186 s->flags &= ~__CMPXCHG_DOUBLE; 5187 s->flags |= SLAB_STORE_USER; 5188 } 5189 calculate_sizes(s, -1); 5190 return length; 5191 } 5192 SLAB_ATTR(store_user); 5193 5194 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5195 { 5196 return 0; 5197 } 5198 5199 static ssize_t validate_store(struct kmem_cache *s, 5200 const char *buf, size_t length) 5201 { 5202 int ret = -EINVAL; 5203 5204 if (buf[0] == '1') { 5205 ret = validate_slab_cache(s); 5206 if (ret >= 0) 5207 ret = length; 5208 } 5209 return ret; 5210 } 5211 SLAB_ATTR(validate); 5212 5213 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5214 { 5215 if (!(s->flags & SLAB_STORE_USER)) 5216 return -ENOSYS; 5217 return list_locations(s, buf, TRACK_ALLOC); 5218 } 5219 SLAB_ATTR_RO(alloc_calls); 5220 5221 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5222 { 5223 if (!(s->flags & SLAB_STORE_USER)) 5224 return -ENOSYS; 5225 return list_locations(s, buf, TRACK_FREE); 5226 } 5227 SLAB_ATTR_RO(free_calls); 5228 #endif /* CONFIG_SLUB_DEBUG */ 5229 5230 #ifdef CONFIG_FAILSLAB 5231 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5232 { 5233 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5234 } 5235 5236 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5237 size_t length) 5238 { 5239 if (s->refcount > 1) 5240 return -EINVAL; 5241 5242 s->flags &= ~SLAB_FAILSLAB; 5243 if (buf[0] == '1') 5244 s->flags |= SLAB_FAILSLAB; 5245 return length; 5246 } 5247 SLAB_ATTR(failslab); 5248 #endif 5249 5250 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5251 { 5252 return 0; 5253 } 5254 5255 static ssize_t shrink_store(struct kmem_cache *s, 5256 const char *buf, size_t length) 5257 { 5258 if (buf[0] == '1') 5259 kmem_cache_shrink(s); 5260 else 5261 return -EINVAL; 5262 return length; 5263 } 5264 SLAB_ATTR(shrink); 5265 5266 #ifdef CONFIG_NUMA 5267 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5268 { 5269 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5270 } 5271 5272 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5273 const char *buf, size_t length) 5274 { 5275 unsigned int ratio; 5276 int err; 5277 5278 err = kstrtouint(buf, 10, &ratio); 5279 if (err) 5280 return err; 5281 if (ratio > 100) 5282 return -ERANGE; 5283 5284 s->remote_node_defrag_ratio = ratio * 10; 5285 5286 return length; 5287 } 5288 SLAB_ATTR(remote_node_defrag_ratio); 5289 #endif 5290 5291 #ifdef CONFIG_SLUB_STATS 5292 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5293 { 5294 unsigned long sum = 0; 5295 int cpu; 5296 int len; 5297 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5298 5299 if (!data) 5300 return -ENOMEM; 5301 5302 for_each_online_cpu(cpu) { 5303 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5304 5305 data[cpu] = x; 5306 sum += x; 5307 } 5308 5309 len = sprintf(buf, "%lu", sum); 5310 5311 #ifdef CONFIG_SMP 5312 for_each_online_cpu(cpu) { 5313 if (data[cpu] && len < PAGE_SIZE - 20) 5314 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5315 } 5316 #endif 5317 kfree(data); 5318 return len + sprintf(buf + len, "\n"); 5319 } 5320 5321 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5322 { 5323 int cpu; 5324 5325 for_each_online_cpu(cpu) 5326 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5327 } 5328 5329 #define STAT_ATTR(si, text) \ 5330 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5331 { \ 5332 return show_stat(s, buf, si); \ 5333 } \ 5334 static ssize_t text##_store(struct kmem_cache *s, \ 5335 const char *buf, size_t length) \ 5336 { \ 5337 if (buf[0] != '0') \ 5338 return -EINVAL; \ 5339 clear_stat(s, si); \ 5340 return length; \ 5341 } \ 5342 SLAB_ATTR(text); \ 5343 5344 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5345 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5346 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5347 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5348 STAT_ATTR(FREE_FROZEN, free_frozen); 5349 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5350 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5351 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5352 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5353 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5354 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5355 STAT_ATTR(FREE_SLAB, free_slab); 5356 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5357 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5358 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5359 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5360 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5361 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5362 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5363 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5364 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5365 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5366 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5367 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5368 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5369 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5370 #endif 5371 5372 static struct attribute *slab_attrs[] = { 5373 &slab_size_attr.attr, 5374 &object_size_attr.attr, 5375 &objs_per_slab_attr.attr, 5376 &order_attr.attr, 5377 &min_partial_attr.attr, 5378 &cpu_partial_attr.attr, 5379 &objects_attr.attr, 5380 &objects_partial_attr.attr, 5381 &partial_attr.attr, 5382 &cpu_slabs_attr.attr, 5383 &ctor_attr.attr, 5384 &aliases_attr.attr, 5385 &align_attr.attr, 5386 &hwcache_align_attr.attr, 5387 &reclaim_account_attr.attr, 5388 &destroy_by_rcu_attr.attr, 5389 &shrink_attr.attr, 5390 &slabs_cpu_partial_attr.attr, 5391 #ifdef CONFIG_SLUB_DEBUG 5392 &total_objects_attr.attr, 5393 &slabs_attr.attr, 5394 &sanity_checks_attr.attr, 5395 &trace_attr.attr, 5396 &red_zone_attr.attr, 5397 &poison_attr.attr, 5398 &store_user_attr.attr, 5399 &validate_attr.attr, 5400 &alloc_calls_attr.attr, 5401 &free_calls_attr.attr, 5402 #endif 5403 #ifdef CONFIG_ZONE_DMA 5404 &cache_dma_attr.attr, 5405 #endif 5406 #ifdef CONFIG_NUMA 5407 &remote_node_defrag_ratio_attr.attr, 5408 #endif 5409 #ifdef CONFIG_SLUB_STATS 5410 &alloc_fastpath_attr.attr, 5411 &alloc_slowpath_attr.attr, 5412 &free_fastpath_attr.attr, 5413 &free_slowpath_attr.attr, 5414 &free_frozen_attr.attr, 5415 &free_add_partial_attr.attr, 5416 &free_remove_partial_attr.attr, 5417 &alloc_from_partial_attr.attr, 5418 &alloc_slab_attr.attr, 5419 &alloc_refill_attr.attr, 5420 &alloc_node_mismatch_attr.attr, 5421 &free_slab_attr.attr, 5422 &cpuslab_flush_attr.attr, 5423 &deactivate_full_attr.attr, 5424 &deactivate_empty_attr.attr, 5425 &deactivate_to_head_attr.attr, 5426 &deactivate_to_tail_attr.attr, 5427 &deactivate_remote_frees_attr.attr, 5428 &deactivate_bypass_attr.attr, 5429 &order_fallback_attr.attr, 5430 &cmpxchg_double_fail_attr.attr, 5431 &cmpxchg_double_cpu_fail_attr.attr, 5432 &cpu_partial_alloc_attr.attr, 5433 &cpu_partial_free_attr.attr, 5434 &cpu_partial_node_attr.attr, 5435 &cpu_partial_drain_attr.attr, 5436 #endif 5437 #ifdef CONFIG_FAILSLAB 5438 &failslab_attr.attr, 5439 #endif 5440 &usersize_attr.attr, 5441 5442 NULL 5443 }; 5444 5445 static const struct attribute_group slab_attr_group = { 5446 .attrs = slab_attrs, 5447 }; 5448 5449 static ssize_t slab_attr_show(struct kobject *kobj, 5450 struct attribute *attr, 5451 char *buf) 5452 { 5453 struct slab_attribute *attribute; 5454 struct kmem_cache *s; 5455 int err; 5456 5457 attribute = to_slab_attr(attr); 5458 s = to_slab(kobj); 5459 5460 if (!attribute->show) 5461 return -EIO; 5462 5463 err = attribute->show(s, buf); 5464 5465 return err; 5466 } 5467 5468 static ssize_t slab_attr_store(struct kobject *kobj, 5469 struct attribute *attr, 5470 const char *buf, size_t len) 5471 { 5472 struct slab_attribute *attribute; 5473 struct kmem_cache *s; 5474 int err; 5475 5476 attribute = to_slab_attr(attr); 5477 s = to_slab(kobj); 5478 5479 if (!attribute->store) 5480 return -EIO; 5481 5482 err = attribute->store(s, buf, len); 5483 #ifdef CONFIG_MEMCG 5484 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5485 struct kmem_cache *c; 5486 5487 mutex_lock(&slab_mutex); 5488 if (s->max_attr_size < len) 5489 s->max_attr_size = len; 5490 5491 /* 5492 * This is a best effort propagation, so this function's return 5493 * value will be determined by the parent cache only. This is 5494 * basically because not all attributes will have a well 5495 * defined semantics for rollbacks - most of the actions will 5496 * have permanent effects. 5497 * 5498 * Returning the error value of any of the children that fail 5499 * is not 100 % defined, in the sense that users seeing the 5500 * error code won't be able to know anything about the state of 5501 * the cache. 5502 * 5503 * Only returning the error code for the parent cache at least 5504 * has well defined semantics. The cache being written to 5505 * directly either failed or succeeded, in which case we loop 5506 * through the descendants with best-effort propagation. 5507 */ 5508 for_each_memcg_cache(c, s) 5509 attribute->store(c, buf, len); 5510 mutex_unlock(&slab_mutex); 5511 } 5512 #endif 5513 return err; 5514 } 5515 5516 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5517 { 5518 #ifdef CONFIG_MEMCG 5519 int i; 5520 char *buffer = NULL; 5521 struct kmem_cache *root_cache; 5522 5523 if (is_root_cache(s)) 5524 return; 5525 5526 root_cache = s->memcg_params.root_cache; 5527 5528 /* 5529 * This mean this cache had no attribute written. Therefore, no point 5530 * in copying default values around 5531 */ 5532 if (!root_cache->max_attr_size) 5533 return; 5534 5535 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5536 char mbuf[64]; 5537 char *buf; 5538 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5539 ssize_t len; 5540 5541 if (!attr || !attr->store || !attr->show) 5542 continue; 5543 5544 /* 5545 * It is really bad that we have to allocate here, so we will 5546 * do it only as a fallback. If we actually allocate, though, 5547 * we can just use the allocated buffer until the end. 5548 * 5549 * Most of the slub attributes will tend to be very small in 5550 * size, but sysfs allows buffers up to a page, so they can 5551 * theoretically happen. 5552 */ 5553 if (buffer) 5554 buf = buffer; 5555 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5556 buf = mbuf; 5557 else { 5558 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5559 if (WARN_ON(!buffer)) 5560 continue; 5561 buf = buffer; 5562 } 5563 5564 len = attr->show(root_cache, buf); 5565 if (len > 0) 5566 attr->store(s, buf, len); 5567 } 5568 5569 if (buffer) 5570 free_page((unsigned long)buffer); 5571 #endif 5572 } 5573 5574 static void kmem_cache_release(struct kobject *k) 5575 { 5576 slab_kmem_cache_release(to_slab(k)); 5577 } 5578 5579 static const struct sysfs_ops slab_sysfs_ops = { 5580 .show = slab_attr_show, 5581 .store = slab_attr_store, 5582 }; 5583 5584 static struct kobj_type slab_ktype = { 5585 .sysfs_ops = &slab_sysfs_ops, 5586 .release = kmem_cache_release, 5587 }; 5588 5589 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5590 { 5591 struct kobj_type *ktype = get_ktype(kobj); 5592 5593 if (ktype == &slab_ktype) 5594 return 1; 5595 return 0; 5596 } 5597 5598 static const struct kset_uevent_ops slab_uevent_ops = { 5599 .filter = uevent_filter, 5600 }; 5601 5602 static struct kset *slab_kset; 5603 5604 static inline struct kset *cache_kset(struct kmem_cache *s) 5605 { 5606 #ifdef CONFIG_MEMCG 5607 if (!is_root_cache(s)) 5608 return s->memcg_params.root_cache->memcg_kset; 5609 #endif 5610 return slab_kset; 5611 } 5612 5613 #define ID_STR_LENGTH 64 5614 5615 /* Create a unique string id for a slab cache: 5616 * 5617 * Format :[flags-]size 5618 */ 5619 static char *create_unique_id(struct kmem_cache *s) 5620 { 5621 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5622 char *p = name; 5623 5624 BUG_ON(!name); 5625 5626 *p++ = ':'; 5627 /* 5628 * First flags affecting slabcache operations. We will only 5629 * get here for aliasable slabs so we do not need to support 5630 * too many flags. The flags here must cover all flags that 5631 * are matched during merging to guarantee that the id is 5632 * unique. 5633 */ 5634 if (s->flags & SLAB_CACHE_DMA) 5635 *p++ = 'd'; 5636 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5637 *p++ = 'a'; 5638 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5639 *p++ = 'F'; 5640 if (s->flags & SLAB_ACCOUNT) 5641 *p++ = 'A'; 5642 if (p != name + 1) 5643 *p++ = '-'; 5644 p += sprintf(p, "%07u", s->size); 5645 5646 BUG_ON(p > name + ID_STR_LENGTH - 1); 5647 return name; 5648 } 5649 5650 static void sysfs_slab_remove_workfn(struct work_struct *work) 5651 { 5652 struct kmem_cache *s = 5653 container_of(work, struct kmem_cache, kobj_remove_work); 5654 5655 if (!s->kobj.state_in_sysfs) 5656 /* 5657 * For a memcg cache, this may be called during 5658 * deactivation and again on shutdown. Remove only once. 5659 * A cache is never shut down before deactivation is 5660 * complete, so no need to worry about synchronization. 5661 */ 5662 goto out; 5663 5664 #ifdef CONFIG_MEMCG 5665 kset_unregister(s->memcg_kset); 5666 #endif 5667 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5668 out: 5669 kobject_put(&s->kobj); 5670 } 5671 5672 static int sysfs_slab_add(struct kmem_cache *s) 5673 { 5674 int err; 5675 const char *name; 5676 struct kset *kset = cache_kset(s); 5677 int unmergeable = slab_unmergeable(s); 5678 5679 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5680 5681 if (!kset) { 5682 kobject_init(&s->kobj, &slab_ktype); 5683 return 0; 5684 } 5685 5686 if (!unmergeable && disable_higher_order_debug && 5687 (slub_debug & DEBUG_METADATA_FLAGS)) 5688 unmergeable = 1; 5689 5690 if (unmergeable) { 5691 /* 5692 * Slabcache can never be merged so we can use the name proper. 5693 * This is typically the case for debug situations. In that 5694 * case we can catch duplicate names easily. 5695 */ 5696 sysfs_remove_link(&slab_kset->kobj, s->name); 5697 name = s->name; 5698 } else { 5699 /* 5700 * Create a unique name for the slab as a target 5701 * for the symlinks. 5702 */ 5703 name = create_unique_id(s); 5704 } 5705 5706 s->kobj.kset = kset; 5707 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5708 if (err) 5709 goto out; 5710 5711 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5712 if (err) 5713 goto out_del_kobj; 5714 5715 #ifdef CONFIG_MEMCG 5716 if (is_root_cache(s) && memcg_sysfs_enabled) { 5717 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5718 if (!s->memcg_kset) { 5719 err = -ENOMEM; 5720 goto out_del_kobj; 5721 } 5722 } 5723 #endif 5724 5725 kobject_uevent(&s->kobj, KOBJ_ADD); 5726 if (!unmergeable) { 5727 /* Setup first alias */ 5728 sysfs_slab_alias(s, s->name); 5729 } 5730 out: 5731 if (!unmergeable) 5732 kfree(name); 5733 return err; 5734 out_del_kobj: 5735 kobject_del(&s->kobj); 5736 goto out; 5737 } 5738 5739 static void sysfs_slab_remove(struct kmem_cache *s) 5740 { 5741 if (slab_state < FULL) 5742 /* 5743 * Sysfs has not been setup yet so no need to remove the 5744 * cache from sysfs. 5745 */ 5746 return; 5747 5748 kobject_get(&s->kobj); 5749 schedule_work(&s->kobj_remove_work); 5750 } 5751 5752 void sysfs_slab_unlink(struct kmem_cache *s) 5753 { 5754 if (slab_state >= FULL) 5755 kobject_del(&s->kobj); 5756 } 5757 5758 void sysfs_slab_release(struct kmem_cache *s) 5759 { 5760 if (slab_state >= FULL) 5761 kobject_put(&s->kobj); 5762 } 5763 5764 /* 5765 * Need to buffer aliases during bootup until sysfs becomes 5766 * available lest we lose that information. 5767 */ 5768 struct saved_alias { 5769 struct kmem_cache *s; 5770 const char *name; 5771 struct saved_alias *next; 5772 }; 5773 5774 static struct saved_alias *alias_list; 5775 5776 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5777 { 5778 struct saved_alias *al; 5779 5780 if (slab_state == FULL) { 5781 /* 5782 * If we have a leftover link then remove it. 5783 */ 5784 sysfs_remove_link(&slab_kset->kobj, name); 5785 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5786 } 5787 5788 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5789 if (!al) 5790 return -ENOMEM; 5791 5792 al->s = s; 5793 al->name = name; 5794 al->next = alias_list; 5795 alias_list = al; 5796 return 0; 5797 } 5798 5799 static int __init slab_sysfs_init(void) 5800 { 5801 struct kmem_cache *s; 5802 int err; 5803 5804 mutex_lock(&slab_mutex); 5805 5806 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5807 if (!slab_kset) { 5808 mutex_unlock(&slab_mutex); 5809 pr_err("Cannot register slab subsystem.\n"); 5810 return -ENOSYS; 5811 } 5812 5813 slab_state = FULL; 5814 5815 list_for_each_entry(s, &slab_caches, list) { 5816 err = sysfs_slab_add(s); 5817 if (err) 5818 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5819 s->name); 5820 } 5821 5822 while (alias_list) { 5823 struct saved_alias *al = alias_list; 5824 5825 alias_list = alias_list->next; 5826 err = sysfs_slab_alias(al->s, al->name); 5827 if (err) 5828 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5829 al->name); 5830 kfree(al); 5831 } 5832 5833 mutex_unlock(&slab_mutex); 5834 resiliency_test(); 5835 return 0; 5836 } 5837 5838 __initcall(slab_sysfs_init); 5839 #endif /* CONFIG_SYSFS */ 5840 5841 /* 5842 * The /proc/slabinfo ABI 5843 */ 5844 #ifdef CONFIG_SLUB_DEBUG 5845 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5846 { 5847 unsigned long nr_slabs = 0; 5848 unsigned long nr_objs = 0; 5849 unsigned long nr_free = 0; 5850 int node; 5851 struct kmem_cache_node *n; 5852 5853 for_each_kmem_cache_node(s, node, n) { 5854 nr_slabs += node_nr_slabs(n); 5855 nr_objs += node_nr_objs(n); 5856 nr_free += count_partial(n, count_free); 5857 } 5858 5859 sinfo->active_objs = nr_objs - nr_free; 5860 sinfo->num_objs = nr_objs; 5861 sinfo->active_slabs = nr_slabs; 5862 sinfo->num_slabs = nr_slabs; 5863 sinfo->objects_per_slab = oo_objects(s->oo); 5864 sinfo->cache_order = oo_order(s->oo); 5865 } 5866 5867 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5868 { 5869 } 5870 5871 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5872 size_t count, loff_t *ppos) 5873 { 5874 return -EIO; 5875 } 5876 #endif /* CONFIG_SLUB_DEBUG */ 5877