xref: /linux/mm/slub.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	/*
254 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 	 * Normally, this doesn't cause any issues, as both set_freepointer()
256 	 * and get_freepointer() are called with a pointer with the same tag.
257 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 	 * example, when __free_slub() iterates over objects in a cache, it
259 	 * passes untagged pointers to check_object(). check_object() in turns
260 	 * calls get_freepointer() with an untagged pointer, which causes the
261 	 * freepointer to be restored incorrectly.
262 	 */
263 	return (void *)((unsigned long)ptr ^ s->random ^
264 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
265 #else
266 	return ptr;
267 #endif
268 }
269 
270 /* Returns the freelist pointer recorded at location ptr_addr. */
271 static inline void *freelist_dereference(const struct kmem_cache *s,
272 					 void *ptr_addr)
273 {
274 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 			    (unsigned long)ptr_addr);
276 }
277 
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 	return freelist_dereference(s, object + s->offset);
281 }
282 
283 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284 {
285 	prefetch(object + s->offset);
286 }
287 
288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289 {
290 	unsigned long freepointer_addr;
291 	void *p;
292 
293 	if (!debug_pagealloc_enabled())
294 		return get_freepointer(s, object);
295 
296 	freepointer_addr = (unsigned long)object + s->offset;
297 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 	return freelist_ptr(s, p, freepointer_addr);
299 }
300 
301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302 {
303 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
304 
305 #ifdef CONFIG_SLAB_FREELIST_HARDENED
306 	BUG_ON(object == fp); /* naive detection of double free or corruption */
307 #endif
308 
309 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311 
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 	for (__p = fixup_red_left(__s, __addr); \
315 		__p < (__addr) + (__objects) * (__s)->size; \
316 		__p += (__s)->size)
317 
318 /* Determine object index from a given position */
319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320 {
321 	return (kasan_reset_tag(p) - addr) / s->size;
322 }
323 
324 static inline unsigned int order_objects(unsigned int order, unsigned int size)
325 {
326 	return ((unsigned int)PAGE_SIZE << order) / size;
327 }
328 
329 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 		unsigned int size)
331 {
332 	struct kmem_cache_order_objects x = {
333 		(order << OO_SHIFT) + order_objects(order, size)
334 	};
335 
336 	return x;
337 }
338 
339 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340 {
341 	return x.x >> OO_SHIFT;
342 }
343 
344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345 {
346 	return x.x & OO_MASK;
347 }
348 
349 /*
350  * Per slab locking using the pagelock
351  */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	bit_spin_lock(PG_locked, &page->flags);
356 }
357 
358 static __always_inline void slab_unlock(struct page *page)
359 {
360 	VM_BUG_ON_PAGE(PageTail(page), page);
361 	__bit_spin_unlock(PG_locked, &page->flags);
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return true;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			page->counters = counters_new;
386 			slab_unlock(page);
387 			return true;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return false;
400 }
401 
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return true;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			page->counters = counters_new;
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return true;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return false;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
459 static inline unsigned int size_from_object(struct kmem_cache *s)
460 {
461 	if (s->flags & SLAB_RED_ZONE)
462 		return s->size - s->red_left_pad;
463 
464 	return s->size;
465 }
466 
467 static inline void *restore_red_left(struct kmem_cache *s, void *p)
468 {
469 	if (s->flags & SLAB_RED_ZONE)
470 		p -= s->red_left_pad;
471 
472 	return p;
473 }
474 
475 /*
476  * Debug settings:
477  */
478 #if defined(CONFIG_SLUB_DEBUG_ON)
479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480 #else
481 static slab_flags_t slub_debug;
482 #endif
483 
484 static char *slub_debug_slabs;
485 static int disable_higher_order_debug;
486 
487 /*
488  * slub is about to manipulate internal object metadata.  This memory lies
489  * outside the range of the allocated object, so accessing it would normally
490  * be reported by kasan as a bounds error.  metadata_access_enable() is used
491  * to tell kasan that these accesses are OK.
492  */
493 static inline void metadata_access_enable(void)
494 {
495 	kasan_disable_current();
496 }
497 
498 static inline void metadata_access_disable(void)
499 {
500 	kasan_enable_current();
501 }
502 
503 /*
504  * Object debugging
505  */
506 
507 /* Verify that a pointer has an address that is valid within a slab page */
508 static inline int check_valid_pointer(struct kmem_cache *s,
509 				struct page *page, void *object)
510 {
511 	void *base;
512 
513 	if (!object)
514 		return 1;
515 
516 	base = page_address(page);
517 	object = kasan_reset_tag(object);
518 	object = restore_red_left(s, object);
519 	if (object < base || object >= base + page->objects * s->size ||
520 		(object - base) % s->size) {
521 		return 0;
522 	}
523 
524 	return 1;
525 }
526 
527 static void print_section(char *level, char *text, u8 *addr,
528 			  unsigned int length)
529 {
530 	metadata_access_enable();
531 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532 			length, 1);
533 	metadata_access_disable();
534 }
535 
536 static struct track *get_track(struct kmem_cache *s, void *object,
537 	enum track_item alloc)
538 {
539 	struct track *p;
540 
541 	if (s->offset)
542 		p = object + s->offset + sizeof(void *);
543 	else
544 		p = object + s->inuse;
545 
546 	return p + alloc;
547 }
548 
549 static void set_track(struct kmem_cache *s, void *object,
550 			enum track_item alloc, unsigned long addr)
551 {
552 	struct track *p = get_track(s, object, alloc);
553 
554 	if (addr) {
555 #ifdef CONFIG_STACKTRACE
556 		unsigned int nr_entries;
557 
558 		metadata_access_enable();
559 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560 		metadata_access_disable();
561 
562 		if (nr_entries < TRACK_ADDRS_COUNT)
563 			p->addrs[nr_entries] = 0;
564 #endif
565 		p->addr = addr;
566 		p->cpu = smp_processor_id();
567 		p->pid = current->pid;
568 		p->when = jiffies;
569 	} else {
570 		memset(p, 0, sizeof(struct track));
571 	}
572 }
573 
574 static void init_tracking(struct kmem_cache *s, void *object)
575 {
576 	if (!(s->flags & SLAB_STORE_USER))
577 		return;
578 
579 	set_track(s, object, TRACK_FREE, 0UL);
580 	set_track(s, object, TRACK_ALLOC, 0UL);
581 }
582 
583 static void print_track(const char *s, struct track *t, unsigned long pr_time)
584 {
585 	if (!t->addr)
586 		return;
587 
588 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590 #ifdef CONFIG_STACKTRACE
591 	{
592 		int i;
593 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 			if (t->addrs[i])
595 				pr_err("\t%pS\n", (void *)t->addrs[i]);
596 			else
597 				break;
598 	}
599 #endif
600 }
601 
602 static void print_tracking(struct kmem_cache *s, void *object)
603 {
604 	unsigned long pr_time = jiffies;
605 	if (!(s->flags & SLAB_STORE_USER))
606 		return;
607 
608 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 }
611 
612 static void print_page_info(struct page *page)
613 {
614 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 	       page, page->objects, page->inuse, page->freelist, page->flags);
616 
617 }
618 
619 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620 {
621 	struct va_format vaf;
622 	va_list args;
623 
624 	va_start(args, fmt);
625 	vaf.fmt = fmt;
626 	vaf.va = &args;
627 	pr_err("=============================================================================\n");
628 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 	pr_err("-----------------------------------------------------------------------------\n\n");
630 
631 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 	va_end(args);
633 }
634 
635 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636 {
637 	struct va_format vaf;
638 	va_list args;
639 
640 	va_start(args, fmt);
641 	vaf.fmt = fmt;
642 	vaf.va = &args;
643 	pr_err("FIX %s: %pV\n", s->name, &vaf);
644 	va_end(args);
645 }
646 
647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648 {
649 	unsigned int off;	/* Offset of last byte */
650 	u8 *addr = page_address(page);
651 
652 	print_tracking(s, p);
653 
654 	print_page_info(page);
655 
656 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 	       p, p - addr, get_freepointer(s, p));
658 
659 	if (s->flags & SLAB_RED_ZONE)
660 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 			      s->red_left_pad);
662 	else if (p > addr + 16)
663 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
664 
665 	print_section(KERN_ERR, "Object ", p,
666 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
667 	if (s->flags & SLAB_RED_ZONE)
668 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
669 			s->inuse - s->object_size);
670 
671 	if (s->offset)
672 		off = s->offset + sizeof(void *);
673 	else
674 		off = s->inuse;
675 
676 	if (s->flags & SLAB_STORE_USER)
677 		off += 2 * sizeof(struct track);
678 
679 	off += kasan_metadata_size(s);
680 
681 	if (off != size_from_object(s))
682 		/* Beginning of the filler is the free pointer */
683 		print_section(KERN_ERR, "Padding ", p + off,
684 			      size_from_object(s) - off);
685 
686 	dump_stack();
687 }
688 
689 void object_err(struct kmem_cache *s, struct page *page,
690 			u8 *object, char *reason)
691 {
692 	slab_bug(s, "%s", reason);
693 	print_trailer(s, page, object);
694 }
695 
696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697 			const char *fmt, ...)
698 {
699 	va_list args;
700 	char buf[100];
701 
702 	va_start(args, fmt);
703 	vsnprintf(buf, sizeof(buf), fmt, args);
704 	va_end(args);
705 	slab_bug(s, "%s", buf);
706 	print_page_info(page);
707 	dump_stack();
708 }
709 
710 static void init_object(struct kmem_cache *s, void *object, u8 val)
711 {
712 	u8 *p = object;
713 
714 	if (s->flags & SLAB_RED_ZONE)
715 		memset(p - s->red_left_pad, val, s->red_left_pad);
716 
717 	if (s->flags & __OBJECT_POISON) {
718 		memset(p, POISON_FREE, s->object_size - 1);
719 		p[s->object_size - 1] = POISON_END;
720 	}
721 
722 	if (s->flags & SLAB_RED_ZONE)
723 		memset(p + s->object_size, val, s->inuse - s->object_size);
724 }
725 
726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 						void *from, void *to)
728 {
729 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 	memset(from, data, to - from);
731 }
732 
733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 			u8 *object, char *what,
735 			u8 *start, unsigned int value, unsigned int bytes)
736 {
737 	u8 *fault;
738 	u8 *end;
739 
740 	metadata_access_enable();
741 	fault = memchr_inv(start, value, bytes);
742 	metadata_access_disable();
743 	if (!fault)
744 		return 1;
745 
746 	end = start + bytes;
747 	while (end > fault && end[-1] == value)
748 		end--;
749 
750 	slab_bug(s, "%s overwritten", what);
751 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 					fault, end - 1, fault[0], value);
753 	print_trailer(s, page, object);
754 
755 	restore_bytes(s, what, value, fault, end);
756 	return 0;
757 }
758 
759 /*
760  * Object layout:
761  *
762  * object address
763  * 	Bytes of the object to be managed.
764  * 	If the freepointer may overlay the object then the free
765  * 	pointer is the first word of the object.
766  *
767  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
768  * 	0xa5 (POISON_END)
769  *
770  * object + s->object_size
771  * 	Padding to reach word boundary. This is also used for Redzoning.
772  * 	Padding is extended by another word if Redzoning is enabled and
773  * 	object_size == inuse.
774  *
775  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776  * 	0xcc (RED_ACTIVE) for objects in use.
777  *
778  * object + s->inuse
779  * 	Meta data starts here.
780  *
781  * 	A. Free pointer (if we cannot overwrite object on free)
782  * 	B. Tracking data for SLAB_STORE_USER
783  * 	C. Padding to reach required alignment boundary or at mininum
784  * 		one word if debugging is on to be able to detect writes
785  * 		before the word boundary.
786  *
787  *	Padding is done using 0x5a (POISON_INUSE)
788  *
789  * object + s->size
790  * 	Nothing is used beyond s->size.
791  *
792  * If slabcaches are merged then the object_size and inuse boundaries are mostly
793  * ignored. And therefore no slab options that rely on these boundaries
794  * may be used with merged slabcaches.
795  */
796 
797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 {
799 	unsigned long off = s->inuse;	/* The end of info */
800 
801 	if (s->offset)
802 		/* Freepointer is placed after the object. */
803 		off += sizeof(void *);
804 
805 	if (s->flags & SLAB_STORE_USER)
806 		/* We also have user information there */
807 		off += 2 * sizeof(struct track);
808 
809 	off += kasan_metadata_size(s);
810 
811 	if (size_from_object(s) == off)
812 		return 1;
813 
814 	return check_bytes_and_report(s, page, p, "Object padding",
815 			p + off, POISON_INUSE, size_from_object(s) - off);
816 }
817 
818 /* Check the pad bytes at the end of a slab page */
819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
820 {
821 	u8 *start;
822 	u8 *fault;
823 	u8 *end;
824 	u8 *pad;
825 	int length;
826 	int remainder;
827 
828 	if (!(s->flags & SLAB_POISON))
829 		return 1;
830 
831 	start = page_address(page);
832 	length = PAGE_SIZE << compound_order(page);
833 	end = start + length;
834 	remainder = length % s->size;
835 	if (!remainder)
836 		return 1;
837 
838 	pad = end - remainder;
839 	metadata_access_enable();
840 	fault = memchr_inv(pad, POISON_INUSE, remainder);
841 	metadata_access_disable();
842 	if (!fault)
843 		return 1;
844 	while (end > fault && end[-1] == POISON_INUSE)
845 		end--;
846 
847 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848 	print_section(KERN_ERR, "Padding ", pad, remainder);
849 
850 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851 	return 0;
852 }
853 
854 static int check_object(struct kmem_cache *s, struct page *page,
855 					void *object, u8 val)
856 {
857 	u8 *p = object;
858 	u8 *endobject = object + s->object_size;
859 
860 	if (s->flags & SLAB_RED_ZONE) {
861 		if (!check_bytes_and_report(s, page, object, "Redzone",
862 			object - s->red_left_pad, val, s->red_left_pad))
863 			return 0;
864 
865 		if (!check_bytes_and_report(s, page, object, "Redzone",
866 			endobject, val, s->inuse - s->object_size))
867 			return 0;
868 	} else {
869 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
870 			check_bytes_and_report(s, page, p, "Alignment padding",
871 				endobject, POISON_INUSE,
872 				s->inuse - s->object_size);
873 		}
874 	}
875 
876 	if (s->flags & SLAB_POISON) {
877 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878 			(!check_bytes_and_report(s, page, p, "Poison", p,
879 					POISON_FREE, s->object_size - 1) ||
880 			 !check_bytes_and_report(s, page, p, "Poison",
881 				p + s->object_size - 1, POISON_END, 1)))
882 			return 0;
883 		/*
884 		 * check_pad_bytes cleans up on its own.
885 		 */
886 		check_pad_bytes(s, page, p);
887 	}
888 
889 	if (!s->offset && val == SLUB_RED_ACTIVE)
890 		/*
891 		 * Object and freepointer overlap. Cannot check
892 		 * freepointer while object is allocated.
893 		 */
894 		return 1;
895 
896 	/* Check free pointer validity */
897 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 		object_err(s, page, p, "Freepointer corrupt");
899 		/*
900 		 * No choice but to zap it and thus lose the remainder
901 		 * of the free objects in this slab. May cause
902 		 * another error because the object count is now wrong.
903 		 */
904 		set_freepointer(s, p, NULL);
905 		return 0;
906 	}
907 	return 1;
908 }
909 
910 static int check_slab(struct kmem_cache *s, struct page *page)
911 {
912 	int maxobj;
913 
914 	VM_BUG_ON(!irqs_disabled());
915 
916 	if (!PageSlab(page)) {
917 		slab_err(s, page, "Not a valid slab page");
918 		return 0;
919 	}
920 
921 	maxobj = order_objects(compound_order(page), s->size);
922 	if (page->objects > maxobj) {
923 		slab_err(s, page, "objects %u > max %u",
924 			page->objects, maxobj);
925 		return 0;
926 	}
927 	if (page->inuse > page->objects) {
928 		slab_err(s, page, "inuse %u > max %u",
929 			page->inuse, page->objects);
930 		return 0;
931 	}
932 	/* Slab_pad_check fixes things up after itself */
933 	slab_pad_check(s, page);
934 	return 1;
935 }
936 
937 /*
938  * Determine if a certain object on a page is on the freelist. Must hold the
939  * slab lock to guarantee that the chains are in a consistent state.
940  */
941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942 {
943 	int nr = 0;
944 	void *fp;
945 	void *object = NULL;
946 	int max_objects;
947 
948 	fp = page->freelist;
949 	while (fp && nr <= page->objects) {
950 		if (fp == search)
951 			return 1;
952 		if (!check_valid_pointer(s, page, fp)) {
953 			if (object) {
954 				object_err(s, page, object,
955 					"Freechain corrupt");
956 				set_freepointer(s, object, NULL);
957 			} else {
958 				slab_err(s, page, "Freepointer corrupt");
959 				page->freelist = NULL;
960 				page->inuse = page->objects;
961 				slab_fix(s, "Freelist cleared");
962 				return 0;
963 			}
964 			break;
965 		}
966 		object = fp;
967 		fp = get_freepointer(s, object);
968 		nr++;
969 	}
970 
971 	max_objects = order_objects(compound_order(page), s->size);
972 	if (max_objects > MAX_OBJS_PER_PAGE)
973 		max_objects = MAX_OBJS_PER_PAGE;
974 
975 	if (page->objects != max_objects) {
976 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 			 page->objects, max_objects);
978 		page->objects = max_objects;
979 		slab_fix(s, "Number of objects adjusted.");
980 	}
981 	if (page->inuse != page->objects - nr) {
982 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 			 page->inuse, page->objects - nr);
984 		page->inuse = page->objects - nr;
985 		slab_fix(s, "Object count adjusted.");
986 	}
987 	return search == NULL;
988 }
989 
990 static void trace(struct kmem_cache *s, struct page *page, void *object,
991 								int alloc)
992 {
993 	if (s->flags & SLAB_TRACE) {
994 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
995 			s->name,
996 			alloc ? "alloc" : "free",
997 			object, page->inuse,
998 			page->freelist);
999 
1000 		if (!alloc)
1001 			print_section(KERN_INFO, "Object ", (void *)object,
1002 					s->object_size);
1003 
1004 		dump_stack();
1005 	}
1006 }
1007 
1008 /*
1009  * Tracking of fully allocated slabs for debugging purposes.
1010  */
1011 static void add_full(struct kmem_cache *s,
1012 	struct kmem_cache_node *n, struct page *page)
1013 {
1014 	if (!(s->flags & SLAB_STORE_USER))
1015 		return;
1016 
1017 	lockdep_assert_held(&n->list_lock);
1018 	list_add(&page->slab_list, &n->full);
1019 }
1020 
1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022 {
1023 	if (!(s->flags & SLAB_STORE_USER))
1024 		return;
1025 
1026 	lockdep_assert_held(&n->list_lock);
1027 	list_del(&page->slab_list);
1028 }
1029 
1030 /* Tracking of the number of slabs for debugging purposes */
1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032 {
1033 	struct kmem_cache_node *n = get_node(s, node);
1034 
1035 	return atomic_long_read(&n->nr_slabs);
1036 }
1037 
1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039 {
1040 	return atomic_long_read(&n->nr_slabs);
1041 }
1042 
1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044 {
1045 	struct kmem_cache_node *n = get_node(s, node);
1046 
1047 	/*
1048 	 * May be called early in order to allocate a slab for the
1049 	 * kmem_cache_node structure. Solve the chicken-egg
1050 	 * dilemma by deferring the increment of the count during
1051 	 * bootstrap (see early_kmem_cache_node_alloc).
1052 	 */
1053 	if (likely(n)) {
1054 		atomic_long_inc(&n->nr_slabs);
1055 		atomic_long_add(objects, &n->total_objects);
1056 	}
1057 }
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 	struct kmem_cache_node *n = get_node(s, node);
1061 
1062 	atomic_long_dec(&n->nr_slabs);
1063 	atomic_long_sub(objects, &n->total_objects);
1064 }
1065 
1066 /* Object debug checks for alloc/free paths */
1067 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 								void *object)
1069 {
1070 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 		return;
1072 
1073 	init_object(s, object, SLUB_RED_INACTIVE);
1074 	init_tracking(s, object);
1075 }
1076 
1077 static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1078 {
1079 	if (!(s->flags & SLAB_POISON))
1080 		return;
1081 
1082 	metadata_access_enable();
1083 	memset(addr, POISON_INUSE, PAGE_SIZE << order);
1084 	metadata_access_disable();
1085 }
1086 
1087 static inline int alloc_consistency_checks(struct kmem_cache *s,
1088 					struct page *page, void *object)
1089 {
1090 	if (!check_slab(s, page))
1091 		return 0;
1092 
1093 	if (!check_valid_pointer(s, page, object)) {
1094 		object_err(s, page, object, "Freelist Pointer check fails");
1095 		return 0;
1096 	}
1097 
1098 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1099 		return 0;
1100 
1101 	return 1;
1102 }
1103 
1104 static noinline int alloc_debug_processing(struct kmem_cache *s,
1105 					struct page *page,
1106 					void *object, unsigned long addr)
1107 {
1108 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1109 		if (!alloc_consistency_checks(s, page, object))
1110 			goto bad;
1111 	}
1112 
1113 	/* Success perform special debug activities for allocs */
1114 	if (s->flags & SLAB_STORE_USER)
1115 		set_track(s, object, TRACK_ALLOC, addr);
1116 	trace(s, page, object, 1);
1117 	init_object(s, object, SLUB_RED_ACTIVE);
1118 	return 1;
1119 
1120 bad:
1121 	if (PageSlab(page)) {
1122 		/*
1123 		 * If this is a slab page then lets do the best we can
1124 		 * to avoid issues in the future. Marking all objects
1125 		 * as used avoids touching the remaining objects.
1126 		 */
1127 		slab_fix(s, "Marking all objects used");
1128 		page->inuse = page->objects;
1129 		page->freelist = NULL;
1130 	}
1131 	return 0;
1132 }
1133 
1134 static inline int free_consistency_checks(struct kmem_cache *s,
1135 		struct page *page, void *object, unsigned long addr)
1136 {
1137 	if (!check_valid_pointer(s, page, object)) {
1138 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1139 		return 0;
1140 	}
1141 
1142 	if (on_freelist(s, page, object)) {
1143 		object_err(s, page, object, "Object already free");
1144 		return 0;
1145 	}
1146 
1147 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1148 		return 0;
1149 
1150 	if (unlikely(s != page->slab_cache)) {
1151 		if (!PageSlab(page)) {
1152 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1153 				 object);
1154 		} else if (!page->slab_cache) {
1155 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1156 			       object);
1157 			dump_stack();
1158 		} else
1159 			object_err(s, page, object,
1160 					"page slab pointer corrupt.");
1161 		return 0;
1162 	}
1163 	return 1;
1164 }
1165 
1166 /* Supports checking bulk free of a constructed freelist */
1167 static noinline int free_debug_processing(
1168 	struct kmem_cache *s, struct page *page,
1169 	void *head, void *tail, int bulk_cnt,
1170 	unsigned long addr)
1171 {
1172 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173 	void *object = head;
1174 	int cnt = 0;
1175 	unsigned long uninitialized_var(flags);
1176 	int ret = 0;
1177 
1178 	spin_lock_irqsave(&n->list_lock, flags);
1179 	slab_lock(page);
1180 
1181 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 		if (!check_slab(s, page))
1183 			goto out;
1184 	}
1185 
1186 next_object:
1187 	cnt++;
1188 
1189 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 		if (!free_consistency_checks(s, page, object, addr))
1191 			goto out;
1192 	}
1193 
1194 	if (s->flags & SLAB_STORE_USER)
1195 		set_track(s, object, TRACK_FREE, addr);
1196 	trace(s, page, object, 0);
1197 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1198 	init_object(s, object, SLUB_RED_INACTIVE);
1199 
1200 	/* Reached end of constructed freelist yet? */
1201 	if (object != tail) {
1202 		object = get_freepointer(s, object);
1203 		goto next_object;
1204 	}
1205 	ret = 1;
1206 
1207 out:
1208 	if (cnt != bulk_cnt)
1209 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1210 			 bulk_cnt, cnt);
1211 
1212 	slab_unlock(page);
1213 	spin_unlock_irqrestore(&n->list_lock, flags);
1214 	if (!ret)
1215 		slab_fix(s, "Object at 0x%p not freed", object);
1216 	return ret;
1217 }
1218 
1219 static int __init setup_slub_debug(char *str)
1220 {
1221 	slub_debug = DEBUG_DEFAULT_FLAGS;
1222 	if (*str++ != '=' || !*str)
1223 		/*
1224 		 * No options specified. Switch on full debugging.
1225 		 */
1226 		goto out;
1227 
1228 	if (*str == ',')
1229 		/*
1230 		 * No options but restriction on slabs. This means full
1231 		 * debugging for slabs matching a pattern.
1232 		 */
1233 		goto check_slabs;
1234 
1235 	slub_debug = 0;
1236 	if (*str == '-')
1237 		/*
1238 		 * Switch off all debugging measures.
1239 		 */
1240 		goto out;
1241 
1242 	/*
1243 	 * Determine which debug features should be switched on
1244 	 */
1245 	for (; *str && *str != ','; str++) {
1246 		switch (tolower(*str)) {
1247 		case 'f':
1248 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1249 			break;
1250 		case 'z':
1251 			slub_debug |= SLAB_RED_ZONE;
1252 			break;
1253 		case 'p':
1254 			slub_debug |= SLAB_POISON;
1255 			break;
1256 		case 'u':
1257 			slub_debug |= SLAB_STORE_USER;
1258 			break;
1259 		case 't':
1260 			slub_debug |= SLAB_TRACE;
1261 			break;
1262 		case 'a':
1263 			slub_debug |= SLAB_FAILSLAB;
1264 			break;
1265 		case 'o':
1266 			/*
1267 			 * Avoid enabling debugging on caches if its minimum
1268 			 * order would increase as a result.
1269 			 */
1270 			disable_higher_order_debug = 1;
1271 			break;
1272 		default:
1273 			pr_err("slub_debug option '%c' unknown. skipped\n",
1274 			       *str);
1275 		}
1276 	}
1277 
1278 check_slabs:
1279 	if (*str == ',')
1280 		slub_debug_slabs = str + 1;
1281 out:
1282 	if ((static_branch_unlikely(&init_on_alloc) ||
1283 	     static_branch_unlikely(&init_on_free)) &&
1284 	    (slub_debug & SLAB_POISON))
1285 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1286 	return 1;
1287 }
1288 
1289 __setup("slub_debug", setup_slub_debug);
1290 
1291 /*
1292  * kmem_cache_flags - apply debugging options to the cache
1293  * @object_size:	the size of an object without meta data
1294  * @flags:		flags to set
1295  * @name:		name of the cache
1296  * @ctor:		constructor function
1297  *
1298  * Debug option(s) are applied to @flags. In addition to the debug
1299  * option(s), if a slab name (or multiple) is specified i.e.
1300  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1301  * then only the select slabs will receive the debug option(s).
1302  */
1303 slab_flags_t kmem_cache_flags(unsigned int object_size,
1304 	slab_flags_t flags, const char *name,
1305 	void (*ctor)(void *))
1306 {
1307 	char *iter;
1308 	size_t len;
1309 
1310 	/* If slub_debug = 0, it folds into the if conditional. */
1311 	if (!slub_debug_slabs)
1312 		return flags | slub_debug;
1313 
1314 	len = strlen(name);
1315 	iter = slub_debug_slabs;
1316 	while (*iter) {
1317 		char *end, *glob;
1318 		size_t cmplen;
1319 
1320 		end = strchrnul(iter, ',');
1321 
1322 		glob = strnchr(iter, end - iter, '*');
1323 		if (glob)
1324 			cmplen = glob - iter;
1325 		else
1326 			cmplen = max_t(size_t, len, (end - iter));
1327 
1328 		if (!strncmp(name, iter, cmplen)) {
1329 			flags |= slub_debug;
1330 			break;
1331 		}
1332 
1333 		if (!*end)
1334 			break;
1335 		iter = end + 1;
1336 	}
1337 
1338 	return flags;
1339 }
1340 #else /* !CONFIG_SLUB_DEBUG */
1341 static inline void setup_object_debug(struct kmem_cache *s,
1342 			struct page *page, void *object) {}
1343 static inline void setup_page_debug(struct kmem_cache *s,
1344 			void *addr, int order) {}
1345 
1346 static inline int alloc_debug_processing(struct kmem_cache *s,
1347 	struct page *page, void *object, unsigned long addr) { return 0; }
1348 
1349 static inline int free_debug_processing(
1350 	struct kmem_cache *s, struct page *page,
1351 	void *head, void *tail, int bulk_cnt,
1352 	unsigned long addr) { return 0; }
1353 
1354 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1355 			{ return 1; }
1356 static inline int check_object(struct kmem_cache *s, struct page *page,
1357 			void *object, u8 val) { return 1; }
1358 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1359 					struct page *page) {}
1360 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1361 					struct page *page) {}
1362 slab_flags_t kmem_cache_flags(unsigned int object_size,
1363 	slab_flags_t flags, const char *name,
1364 	void (*ctor)(void *))
1365 {
1366 	return flags;
1367 }
1368 #define slub_debug 0
1369 
1370 #define disable_higher_order_debug 0
1371 
1372 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1373 							{ return 0; }
1374 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1375 							{ return 0; }
1376 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1377 							int objects) {}
1378 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1379 							int objects) {}
1380 
1381 #endif /* CONFIG_SLUB_DEBUG */
1382 
1383 /*
1384  * Hooks for other subsystems that check memory allocations. In a typical
1385  * production configuration these hooks all should produce no code at all.
1386  */
1387 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1388 {
1389 	ptr = kasan_kmalloc_large(ptr, size, flags);
1390 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1391 	kmemleak_alloc(ptr, size, 1, flags);
1392 	return ptr;
1393 }
1394 
1395 static __always_inline void kfree_hook(void *x)
1396 {
1397 	kmemleak_free(x);
1398 	kasan_kfree_large(x, _RET_IP_);
1399 }
1400 
1401 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1402 {
1403 	kmemleak_free_recursive(x, s->flags);
1404 
1405 	/*
1406 	 * Trouble is that we may no longer disable interrupts in the fast path
1407 	 * So in order to make the debug calls that expect irqs to be
1408 	 * disabled we need to disable interrupts temporarily.
1409 	 */
1410 #ifdef CONFIG_LOCKDEP
1411 	{
1412 		unsigned long flags;
1413 
1414 		local_irq_save(flags);
1415 		debug_check_no_locks_freed(x, s->object_size);
1416 		local_irq_restore(flags);
1417 	}
1418 #endif
1419 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1420 		debug_check_no_obj_freed(x, s->object_size);
1421 
1422 	/* KASAN might put x into memory quarantine, delaying its reuse */
1423 	return kasan_slab_free(s, x, _RET_IP_);
1424 }
1425 
1426 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1427 					   void **head, void **tail)
1428 {
1429 
1430 	void *object;
1431 	void *next = *head;
1432 	void *old_tail = *tail ? *tail : *head;
1433 	int rsize;
1434 
1435 	if (slab_want_init_on_free(s))
1436 		do {
1437 			object = next;
1438 			next = get_freepointer(s, object);
1439 			/*
1440 			 * Clear the object and the metadata, but don't touch
1441 			 * the redzone.
1442 			 */
1443 			memset(object, 0, s->object_size);
1444 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1445 							   : 0;
1446 			memset((char *)object + s->inuse, 0,
1447 			       s->size - s->inuse - rsize);
1448 			set_freepointer(s, object, next);
1449 		} while (object != old_tail);
1450 
1451 /*
1452  * Compiler cannot detect this function can be removed if slab_free_hook()
1453  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1454  */
1455 #if defined(CONFIG_LOCKDEP)	||		\
1456 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1457 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1458 	defined(CONFIG_KASAN)
1459 
1460 	next = *head;
1461 
1462 	/* Head and tail of the reconstructed freelist */
1463 	*head = NULL;
1464 	*tail = NULL;
1465 
1466 	do {
1467 		object = next;
1468 		next = get_freepointer(s, object);
1469 		/* If object's reuse doesn't have to be delayed */
1470 		if (!slab_free_hook(s, object)) {
1471 			/* Move object to the new freelist */
1472 			set_freepointer(s, object, *head);
1473 			*head = object;
1474 			if (!*tail)
1475 				*tail = object;
1476 		}
1477 	} while (object != old_tail);
1478 
1479 	if (*head == *tail)
1480 		*tail = NULL;
1481 
1482 	return *head != NULL;
1483 #else
1484 	return true;
1485 #endif
1486 }
1487 
1488 static void *setup_object(struct kmem_cache *s, struct page *page,
1489 				void *object)
1490 {
1491 	setup_object_debug(s, page, object);
1492 	object = kasan_init_slab_obj(s, object);
1493 	if (unlikely(s->ctor)) {
1494 		kasan_unpoison_object_data(s, object);
1495 		s->ctor(object);
1496 		kasan_poison_object_data(s, object);
1497 	}
1498 	return object;
1499 }
1500 
1501 /*
1502  * Slab allocation and freeing
1503  */
1504 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1505 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1506 {
1507 	struct page *page;
1508 	unsigned int order = oo_order(oo);
1509 
1510 	if (node == NUMA_NO_NODE)
1511 		page = alloc_pages(flags, order);
1512 	else
1513 		page = __alloc_pages_node(node, flags, order);
1514 
1515 	if (page && charge_slab_page(page, flags, order, s)) {
1516 		__free_pages(page, order);
1517 		page = NULL;
1518 	}
1519 
1520 	return page;
1521 }
1522 
1523 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1524 /* Pre-initialize the random sequence cache */
1525 static int init_cache_random_seq(struct kmem_cache *s)
1526 {
1527 	unsigned int count = oo_objects(s->oo);
1528 	int err;
1529 
1530 	/* Bailout if already initialised */
1531 	if (s->random_seq)
1532 		return 0;
1533 
1534 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1535 	if (err) {
1536 		pr_err("SLUB: Unable to initialize free list for %s\n",
1537 			s->name);
1538 		return err;
1539 	}
1540 
1541 	/* Transform to an offset on the set of pages */
1542 	if (s->random_seq) {
1543 		unsigned int i;
1544 
1545 		for (i = 0; i < count; i++)
1546 			s->random_seq[i] *= s->size;
1547 	}
1548 	return 0;
1549 }
1550 
1551 /* Initialize each random sequence freelist per cache */
1552 static void __init init_freelist_randomization(void)
1553 {
1554 	struct kmem_cache *s;
1555 
1556 	mutex_lock(&slab_mutex);
1557 
1558 	list_for_each_entry(s, &slab_caches, list)
1559 		init_cache_random_seq(s);
1560 
1561 	mutex_unlock(&slab_mutex);
1562 }
1563 
1564 /* Get the next entry on the pre-computed freelist randomized */
1565 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1566 				unsigned long *pos, void *start,
1567 				unsigned long page_limit,
1568 				unsigned long freelist_count)
1569 {
1570 	unsigned int idx;
1571 
1572 	/*
1573 	 * If the target page allocation failed, the number of objects on the
1574 	 * page might be smaller than the usual size defined by the cache.
1575 	 */
1576 	do {
1577 		idx = s->random_seq[*pos];
1578 		*pos += 1;
1579 		if (*pos >= freelist_count)
1580 			*pos = 0;
1581 	} while (unlikely(idx >= page_limit));
1582 
1583 	return (char *)start + idx;
1584 }
1585 
1586 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1587 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1588 {
1589 	void *start;
1590 	void *cur;
1591 	void *next;
1592 	unsigned long idx, pos, page_limit, freelist_count;
1593 
1594 	if (page->objects < 2 || !s->random_seq)
1595 		return false;
1596 
1597 	freelist_count = oo_objects(s->oo);
1598 	pos = get_random_int() % freelist_count;
1599 
1600 	page_limit = page->objects * s->size;
1601 	start = fixup_red_left(s, page_address(page));
1602 
1603 	/* First entry is used as the base of the freelist */
1604 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1605 				freelist_count);
1606 	cur = setup_object(s, page, cur);
1607 	page->freelist = cur;
1608 
1609 	for (idx = 1; idx < page->objects; idx++) {
1610 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1611 			freelist_count);
1612 		next = setup_object(s, page, next);
1613 		set_freepointer(s, cur, next);
1614 		cur = next;
1615 	}
1616 	set_freepointer(s, cur, NULL);
1617 
1618 	return true;
1619 }
1620 #else
1621 static inline int init_cache_random_seq(struct kmem_cache *s)
1622 {
1623 	return 0;
1624 }
1625 static inline void init_freelist_randomization(void) { }
1626 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1627 {
1628 	return false;
1629 }
1630 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1631 
1632 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1633 {
1634 	struct page *page;
1635 	struct kmem_cache_order_objects oo = s->oo;
1636 	gfp_t alloc_gfp;
1637 	void *start, *p, *next;
1638 	int idx, order;
1639 	bool shuffle;
1640 
1641 	flags &= gfp_allowed_mask;
1642 
1643 	if (gfpflags_allow_blocking(flags))
1644 		local_irq_enable();
1645 
1646 	flags |= s->allocflags;
1647 
1648 	/*
1649 	 * Let the initial higher-order allocation fail under memory pressure
1650 	 * so we fall-back to the minimum order allocation.
1651 	 */
1652 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1653 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1654 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1655 
1656 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1657 	if (unlikely(!page)) {
1658 		oo = s->min;
1659 		alloc_gfp = flags;
1660 		/*
1661 		 * Allocation may have failed due to fragmentation.
1662 		 * Try a lower order alloc if possible
1663 		 */
1664 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1665 		if (unlikely(!page))
1666 			goto out;
1667 		stat(s, ORDER_FALLBACK);
1668 	}
1669 
1670 	page->objects = oo_objects(oo);
1671 
1672 	order = compound_order(page);
1673 	page->slab_cache = s;
1674 	__SetPageSlab(page);
1675 	if (page_is_pfmemalloc(page))
1676 		SetPageSlabPfmemalloc(page);
1677 
1678 	kasan_poison_slab(page);
1679 
1680 	start = page_address(page);
1681 
1682 	setup_page_debug(s, start, order);
1683 
1684 	shuffle = shuffle_freelist(s, page);
1685 
1686 	if (!shuffle) {
1687 		start = fixup_red_left(s, start);
1688 		start = setup_object(s, page, start);
1689 		page->freelist = start;
1690 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1691 			next = p + s->size;
1692 			next = setup_object(s, page, next);
1693 			set_freepointer(s, p, next);
1694 			p = next;
1695 		}
1696 		set_freepointer(s, p, NULL);
1697 	}
1698 
1699 	page->inuse = page->objects;
1700 	page->frozen = 1;
1701 
1702 out:
1703 	if (gfpflags_allow_blocking(flags))
1704 		local_irq_disable();
1705 	if (!page)
1706 		return NULL;
1707 
1708 	inc_slabs_node(s, page_to_nid(page), page->objects);
1709 
1710 	return page;
1711 }
1712 
1713 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1714 {
1715 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1716 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1717 		flags &= ~GFP_SLAB_BUG_MASK;
1718 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1719 				invalid_mask, &invalid_mask, flags, &flags);
1720 		dump_stack();
1721 	}
1722 
1723 	return allocate_slab(s,
1724 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1725 }
1726 
1727 static void __free_slab(struct kmem_cache *s, struct page *page)
1728 {
1729 	int order = compound_order(page);
1730 	int pages = 1 << order;
1731 
1732 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1733 		void *p;
1734 
1735 		slab_pad_check(s, page);
1736 		for_each_object(p, s, page_address(page),
1737 						page->objects)
1738 			check_object(s, page, p, SLUB_RED_INACTIVE);
1739 	}
1740 
1741 	__ClearPageSlabPfmemalloc(page);
1742 	__ClearPageSlab(page);
1743 
1744 	page->mapping = NULL;
1745 	if (current->reclaim_state)
1746 		current->reclaim_state->reclaimed_slab += pages;
1747 	uncharge_slab_page(page, order, s);
1748 	__free_pages(page, order);
1749 }
1750 
1751 static void rcu_free_slab(struct rcu_head *h)
1752 {
1753 	struct page *page = container_of(h, struct page, rcu_head);
1754 
1755 	__free_slab(page->slab_cache, page);
1756 }
1757 
1758 static void free_slab(struct kmem_cache *s, struct page *page)
1759 {
1760 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1761 		call_rcu(&page->rcu_head, rcu_free_slab);
1762 	} else
1763 		__free_slab(s, page);
1764 }
1765 
1766 static void discard_slab(struct kmem_cache *s, struct page *page)
1767 {
1768 	dec_slabs_node(s, page_to_nid(page), page->objects);
1769 	free_slab(s, page);
1770 }
1771 
1772 /*
1773  * Management of partially allocated slabs.
1774  */
1775 static inline void
1776 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1777 {
1778 	n->nr_partial++;
1779 	if (tail == DEACTIVATE_TO_TAIL)
1780 		list_add_tail(&page->slab_list, &n->partial);
1781 	else
1782 		list_add(&page->slab_list, &n->partial);
1783 }
1784 
1785 static inline void add_partial(struct kmem_cache_node *n,
1786 				struct page *page, int tail)
1787 {
1788 	lockdep_assert_held(&n->list_lock);
1789 	__add_partial(n, page, tail);
1790 }
1791 
1792 static inline void remove_partial(struct kmem_cache_node *n,
1793 					struct page *page)
1794 {
1795 	lockdep_assert_held(&n->list_lock);
1796 	list_del(&page->slab_list);
1797 	n->nr_partial--;
1798 }
1799 
1800 /*
1801  * Remove slab from the partial list, freeze it and
1802  * return the pointer to the freelist.
1803  *
1804  * Returns a list of objects or NULL if it fails.
1805  */
1806 static inline void *acquire_slab(struct kmem_cache *s,
1807 		struct kmem_cache_node *n, struct page *page,
1808 		int mode, int *objects)
1809 {
1810 	void *freelist;
1811 	unsigned long counters;
1812 	struct page new;
1813 
1814 	lockdep_assert_held(&n->list_lock);
1815 
1816 	/*
1817 	 * Zap the freelist and set the frozen bit.
1818 	 * The old freelist is the list of objects for the
1819 	 * per cpu allocation list.
1820 	 */
1821 	freelist = page->freelist;
1822 	counters = page->counters;
1823 	new.counters = counters;
1824 	*objects = new.objects - new.inuse;
1825 	if (mode) {
1826 		new.inuse = page->objects;
1827 		new.freelist = NULL;
1828 	} else {
1829 		new.freelist = freelist;
1830 	}
1831 
1832 	VM_BUG_ON(new.frozen);
1833 	new.frozen = 1;
1834 
1835 	if (!__cmpxchg_double_slab(s, page,
1836 			freelist, counters,
1837 			new.freelist, new.counters,
1838 			"acquire_slab"))
1839 		return NULL;
1840 
1841 	remove_partial(n, page);
1842 	WARN_ON(!freelist);
1843 	return freelist;
1844 }
1845 
1846 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1847 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1848 
1849 /*
1850  * Try to allocate a partial slab from a specific node.
1851  */
1852 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1853 				struct kmem_cache_cpu *c, gfp_t flags)
1854 {
1855 	struct page *page, *page2;
1856 	void *object = NULL;
1857 	unsigned int available = 0;
1858 	int objects;
1859 
1860 	/*
1861 	 * Racy check. If we mistakenly see no partial slabs then we
1862 	 * just allocate an empty slab. If we mistakenly try to get a
1863 	 * partial slab and there is none available then get_partials()
1864 	 * will return NULL.
1865 	 */
1866 	if (!n || !n->nr_partial)
1867 		return NULL;
1868 
1869 	spin_lock(&n->list_lock);
1870 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1871 		void *t;
1872 
1873 		if (!pfmemalloc_match(page, flags))
1874 			continue;
1875 
1876 		t = acquire_slab(s, n, page, object == NULL, &objects);
1877 		if (!t)
1878 			break;
1879 
1880 		available += objects;
1881 		if (!object) {
1882 			c->page = page;
1883 			stat(s, ALLOC_FROM_PARTIAL);
1884 			object = t;
1885 		} else {
1886 			put_cpu_partial(s, page, 0);
1887 			stat(s, CPU_PARTIAL_NODE);
1888 		}
1889 		if (!kmem_cache_has_cpu_partial(s)
1890 			|| available > slub_cpu_partial(s) / 2)
1891 			break;
1892 
1893 	}
1894 	spin_unlock(&n->list_lock);
1895 	return object;
1896 }
1897 
1898 /*
1899  * Get a page from somewhere. Search in increasing NUMA distances.
1900  */
1901 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1902 		struct kmem_cache_cpu *c)
1903 {
1904 #ifdef CONFIG_NUMA
1905 	struct zonelist *zonelist;
1906 	struct zoneref *z;
1907 	struct zone *zone;
1908 	enum zone_type high_zoneidx = gfp_zone(flags);
1909 	void *object;
1910 	unsigned int cpuset_mems_cookie;
1911 
1912 	/*
1913 	 * The defrag ratio allows a configuration of the tradeoffs between
1914 	 * inter node defragmentation and node local allocations. A lower
1915 	 * defrag_ratio increases the tendency to do local allocations
1916 	 * instead of attempting to obtain partial slabs from other nodes.
1917 	 *
1918 	 * If the defrag_ratio is set to 0 then kmalloc() always
1919 	 * returns node local objects. If the ratio is higher then kmalloc()
1920 	 * may return off node objects because partial slabs are obtained
1921 	 * from other nodes and filled up.
1922 	 *
1923 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1924 	 * (which makes defrag_ratio = 1000) then every (well almost)
1925 	 * allocation will first attempt to defrag slab caches on other nodes.
1926 	 * This means scanning over all nodes to look for partial slabs which
1927 	 * may be expensive if we do it every time we are trying to find a slab
1928 	 * with available objects.
1929 	 */
1930 	if (!s->remote_node_defrag_ratio ||
1931 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1932 		return NULL;
1933 
1934 	do {
1935 		cpuset_mems_cookie = read_mems_allowed_begin();
1936 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1937 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1938 			struct kmem_cache_node *n;
1939 
1940 			n = get_node(s, zone_to_nid(zone));
1941 
1942 			if (n && cpuset_zone_allowed(zone, flags) &&
1943 					n->nr_partial > s->min_partial) {
1944 				object = get_partial_node(s, n, c, flags);
1945 				if (object) {
1946 					/*
1947 					 * Don't check read_mems_allowed_retry()
1948 					 * here - if mems_allowed was updated in
1949 					 * parallel, that was a harmless race
1950 					 * between allocation and the cpuset
1951 					 * update
1952 					 */
1953 					return object;
1954 				}
1955 			}
1956 		}
1957 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1958 #endif	/* CONFIG_NUMA */
1959 	return NULL;
1960 }
1961 
1962 /*
1963  * Get a partial page, lock it and return it.
1964  */
1965 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1966 		struct kmem_cache_cpu *c)
1967 {
1968 	void *object;
1969 	int searchnode = node;
1970 
1971 	if (node == NUMA_NO_NODE)
1972 		searchnode = numa_mem_id();
1973 	else if (!node_present_pages(node))
1974 		searchnode = node_to_mem_node(node);
1975 
1976 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1977 	if (object || node != NUMA_NO_NODE)
1978 		return object;
1979 
1980 	return get_any_partial(s, flags, c);
1981 }
1982 
1983 #ifdef CONFIG_PREEMPT
1984 /*
1985  * Calculate the next globally unique transaction for disambiguiation
1986  * during cmpxchg. The transactions start with the cpu number and are then
1987  * incremented by CONFIG_NR_CPUS.
1988  */
1989 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1990 #else
1991 /*
1992  * No preemption supported therefore also no need to check for
1993  * different cpus.
1994  */
1995 #define TID_STEP 1
1996 #endif
1997 
1998 static inline unsigned long next_tid(unsigned long tid)
1999 {
2000 	return tid + TID_STEP;
2001 }
2002 
2003 static inline unsigned int tid_to_cpu(unsigned long tid)
2004 {
2005 	return tid % TID_STEP;
2006 }
2007 
2008 static inline unsigned long tid_to_event(unsigned long tid)
2009 {
2010 	return tid / TID_STEP;
2011 }
2012 
2013 static inline unsigned int init_tid(int cpu)
2014 {
2015 	return cpu;
2016 }
2017 
2018 static inline void note_cmpxchg_failure(const char *n,
2019 		const struct kmem_cache *s, unsigned long tid)
2020 {
2021 #ifdef SLUB_DEBUG_CMPXCHG
2022 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2023 
2024 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2025 
2026 #ifdef CONFIG_PREEMPT
2027 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2028 		pr_warn("due to cpu change %d -> %d\n",
2029 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2030 	else
2031 #endif
2032 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2033 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2034 			tid_to_event(tid), tid_to_event(actual_tid));
2035 	else
2036 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2037 			actual_tid, tid, next_tid(tid));
2038 #endif
2039 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2040 }
2041 
2042 static void init_kmem_cache_cpus(struct kmem_cache *s)
2043 {
2044 	int cpu;
2045 
2046 	for_each_possible_cpu(cpu)
2047 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2048 }
2049 
2050 /*
2051  * Remove the cpu slab
2052  */
2053 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2054 				void *freelist, struct kmem_cache_cpu *c)
2055 {
2056 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2057 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2058 	int lock = 0;
2059 	enum slab_modes l = M_NONE, m = M_NONE;
2060 	void *nextfree;
2061 	int tail = DEACTIVATE_TO_HEAD;
2062 	struct page new;
2063 	struct page old;
2064 
2065 	if (page->freelist) {
2066 		stat(s, DEACTIVATE_REMOTE_FREES);
2067 		tail = DEACTIVATE_TO_TAIL;
2068 	}
2069 
2070 	/*
2071 	 * Stage one: Free all available per cpu objects back
2072 	 * to the page freelist while it is still frozen. Leave the
2073 	 * last one.
2074 	 *
2075 	 * There is no need to take the list->lock because the page
2076 	 * is still frozen.
2077 	 */
2078 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2079 		void *prior;
2080 		unsigned long counters;
2081 
2082 		do {
2083 			prior = page->freelist;
2084 			counters = page->counters;
2085 			set_freepointer(s, freelist, prior);
2086 			new.counters = counters;
2087 			new.inuse--;
2088 			VM_BUG_ON(!new.frozen);
2089 
2090 		} while (!__cmpxchg_double_slab(s, page,
2091 			prior, counters,
2092 			freelist, new.counters,
2093 			"drain percpu freelist"));
2094 
2095 		freelist = nextfree;
2096 	}
2097 
2098 	/*
2099 	 * Stage two: Ensure that the page is unfrozen while the
2100 	 * list presence reflects the actual number of objects
2101 	 * during unfreeze.
2102 	 *
2103 	 * We setup the list membership and then perform a cmpxchg
2104 	 * with the count. If there is a mismatch then the page
2105 	 * is not unfrozen but the page is on the wrong list.
2106 	 *
2107 	 * Then we restart the process which may have to remove
2108 	 * the page from the list that we just put it on again
2109 	 * because the number of objects in the slab may have
2110 	 * changed.
2111 	 */
2112 redo:
2113 
2114 	old.freelist = page->freelist;
2115 	old.counters = page->counters;
2116 	VM_BUG_ON(!old.frozen);
2117 
2118 	/* Determine target state of the slab */
2119 	new.counters = old.counters;
2120 	if (freelist) {
2121 		new.inuse--;
2122 		set_freepointer(s, freelist, old.freelist);
2123 		new.freelist = freelist;
2124 	} else
2125 		new.freelist = old.freelist;
2126 
2127 	new.frozen = 0;
2128 
2129 	if (!new.inuse && n->nr_partial >= s->min_partial)
2130 		m = M_FREE;
2131 	else if (new.freelist) {
2132 		m = M_PARTIAL;
2133 		if (!lock) {
2134 			lock = 1;
2135 			/*
2136 			 * Taking the spinlock removes the possibility
2137 			 * that acquire_slab() will see a slab page that
2138 			 * is frozen
2139 			 */
2140 			spin_lock(&n->list_lock);
2141 		}
2142 	} else {
2143 		m = M_FULL;
2144 		if (kmem_cache_debug(s) && !lock) {
2145 			lock = 1;
2146 			/*
2147 			 * This also ensures that the scanning of full
2148 			 * slabs from diagnostic functions will not see
2149 			 * any frozen slabs.
2150 			 */
2151 			spin_lock(&n->list_lock);
2152 		}
2153 	}
2154 
2155 	if (l != m) {
2156 		if (l == M_PARTIAL)
2157 			remove_partial(n, page);
2158 		else if (l == M_FULL)
2159 			remove_full(s, n, page);
2160 
2161 		if (m == M_PARTIAL)
2162 			add_partial(n, page, tail);
2163 		else if (m == M_FULL)
2164 			add_full(s, n, page);
2165 	}
2166 
2167 	l = m;
2168 	if (!__cmpxchg_double_slab(s, page,
2169 				old.freelist, old.counters,
2170 				new.freelist, new.counters,
2171 				"unfreezing slab"))
2172 		goto redo;
2173 
2174 	if (lock)
2175 		spin_unlock(&n->list_lock);
2176 
2177 	if (m == M_PARTIAL)
2178 		stat(s, tail);
2179 	else if (m == M_FULL)
2180 		stat(s, DEACTIVATE_FULL);
2181 	else if (m == M_FREE) {
2182 		stat(s, DEACTIVATE_EMPTY);
2183 		discard_slab(s, page);
2184 		stat(s, FREE_SLAB);
2185 	}
2186 
2187 	c->page = NULL;
2188 	c->freelist = NULL;
2189 }
2190 
2191 /*
2192  * Unfreeze all the cpu partial slabs.
2193  *
2194  * This function must be called with interrupts disabled
2195  * for the cpu using c (or some other guarantee must be there
2196  * to guarantee no concurrent accesses).
2197  */
2198 static void unfreeze_partials(struct kmem_cache *s,
2199 		struct kmem_cache_cpu *c)
2200 {
2201 #ifdef CONFIG_SLUB_CPU_PARTIAL
2202 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2203 	struct page *page, *discard_page = NULL;
2204 
2205 	while ((page = c->partial)) {
2206 		struct page new;
2207 		struct page old;
2208 
2209 		c->partial = page->next;
2210 
2211 		n2 = get_node(s, page_to_nid(page));
2212 		if (n != n2) {
2213 			if (n)
2214 				spin_unlock(&n->list_lock);
2215 
2216 			n = n2;
2217 			spin_lock(&n->list_lock);
2218 		}
2219 
2220 		do {
2221 
2222 			old.freelist = page->freelist;
2223 			old.counters = page->counters;
2224 			VM_BUG_ON(!old.frozen);
2225 
2226 			new.counters = old.counters;
2227 			new.freelist = old.freelist;
2228 
2229 			new.frozen = 0;
2230 
2231 		} while (!__cmpxchg_double_slab(s, page,
2232 				old.freelist, old.counters,
2233 				new.freelist, new.counters,
2234 				"unfreezing slab"));
2235 
2236 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2237 			page->next = discard_page;
2238 			discard_page = page;
2239 		} else {
2240 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2241 			stat(s, FREE_ADD_PARTIAL);
2242 		}
2243 	}
2244 
2245 	if (n)
2246 		spin_unlock(&n->list_lock);
2247 
2248 	while (discard_page) {
2249 		page = discard_page;
2250 		discard_page = discard_page->next;
2251 
2252 		stat(s, DEACTIVATE_EMPTY);
2253 		discard_slab(s, page);
2254 		stat(s, FREE_SLAB);
2255 	}
2256 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2257 }
2258 
2259 /*
2260  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2261  * partial page slot if available.
2262  *
2263  * If we did not find a slot then simply move all the partials to the
2264  * per node partial list.
2265  */
2266 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2267 {
2268 #ifdef CONFIG_SLUB_CPU_PARTIAL
2269 	struct page *oldpage;
2270 	int pages;
2271 	int pobjects;
2272 
2273 	preempt_disable();
2274 	do {
2275 		pages = 0;
2276 		pobjects = 0;
2277 		oldpage = this_cpu_read(s->cpu_slab->partial);
2278 
2279 		if (oldpage) {
2280 			pobjects = oldpage->pobjects;
2281 			pages = oldpage->pages;
2282 			if (drain && pobjects > s->cpu_partial) {
2283 				unsigned long flags;
2284 				/*
2285 				 * partial array is full. Move the existing
2286 				 * set to the per node partial list.
2287 				 */
2288 				local_irq_save(flags);
2289 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2290 				local_irq_restore(flags);
2291 				oldpage = NULL;
2292 				pobjects = 0;
2293 				pages = 0;
2294 				stat(s, CPU_PARTIAL_DRAIN);
2295 			}
2296 		}
2297 
2298 		pages++;
2299 		pobjects += page->objects - page->inuse;
2300 
2301 		page->pages = pages;
2302 		page->pobjects = pobjects;
2303 		page->next = oldpage;
2304 
2305 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2306 								!= oldpage);
2307 	if (unlikely(!s->cpu_partial)) {
2308 		unsigned long flags;
2309 
2310 		local_irq_save(flags);
2311 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2312 		local_irq_restore(flags);
2313 	}
2314 	preempt_enable();
2315 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2316 }
2317 
2318 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2319 {
2320 	stat(s, CPUSLAB_FLUSH);
2321 	deactivate_slab(s, c->page, c->freelist, c);
2322 
2323 	c->tid = next_tid(c->tid);
2324 }
2325 
2326 /*
2327  * Flush cpu slab.
2328  *
2329  * Called from IPI handler with interrupts disabled.
2330  */
2331 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2332 {
2333 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2334 
2335 	if (c->page)
2336 		flush_slab(s, c);
2337 
2338 	unfreeze_partials(s, c);
2339 }
2340 
2341 static void flush_cpu_slab(void *d)
2342 {
2343 	struct kmem_cache *s = d;
2344 
2345 	__flush_cpu_slab(s, smp_processor_id());
2346 }
2347 
2348 static bool has_cpu_slab(int cpu, void *info)
2349 {
2350 	struct kmem_cache *s = info;
2351 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2352 
2353 	return c->page || slub_percpu_partial(c);
2354 }
2355 
2356 static void flush_all(struct kmem_cache *s)
2357 {
2358 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2359 }
2360 
2361 /*
2362  * Use the cpu notifier to insure that the cpu slabs are flushed when
2363  * necessary.
2364  */
2365 static int slub_cpu_dead(unsigned int cpu)
2366 {
2367 	struct kmem_cache *s;
2368 	unsigned long flags;
2369 
2370 	mutex_lock(&slab_mutex);
2371 	list_for_each_entry(s, &slab_caches, list) {
2372 		local_irq_save(flags);
2373 		__flush_cpu_slab(s, cpu);
2374 		local_irq_restore(flags);
2375 	}
2376 	mutex_unlock(&slab_mutex);
2377 	return 0;
2378 }
2379 
2380 /*
2381  * Check if the objects in a per cpu structure fit numa
2382  * locality expectations.
2383  */
2384 static inline int node_match(struct page *page, int node)
2385 {
2386 #ifdef CONFIG_NUMA
2387 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2388 		return 0;
2389 #endif
2390 	return 1;
2391 }
2392 
2393 #ifdef CONFIG_SLUB_DEBUG
2394 static int count_free(struct page *page)
2395 {
2396 	return page->objects - page->inuse;
2397 }
2398 
2399 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2400 {
2401 	return atomic_long_read(&n->total_objects);
2402 }
2403 #endif /* CONFIG_SLUB_DEBUG */
2404 
2405 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2406 static unsigned long count_partial(struct kmem_cache_node *n,
2407 					int (*get_count)(struct page *))
2408 {
2409 	unsigned long flags;
2410 	unsigned long x = 0;
2411 	struct page *page;
2412 
2413 	spin_lock_irqsave(&n->list_lock, flags);
2414 	list_for_each_entry(page, &n->partial, slab_list)
2415 		x += get_count(page);
2416 	spin_unlock_irqrestore(&n->list_lock, flags);
2417 	return x;
2418 }
2419 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2420 
2421 static noinline void
2422 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2423 {
2424 #ifdef CONFIG_SLUB_DEBUG
2425 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2426 				      DEFAULT_RATELIMIT_BURST);
2427 	int node;
2428 	struct kmem_cache_node *n;
2429 
2430 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2431 		return;
2432 
2433 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2434 		nid, gfpflags, &gfpflags);
2435 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2436 		s->name, s->object_size, s->size, oo_order(s->oo),
2437 		oo_order(s->min));
2438 
2439 	if (oo_order(s->min) > get_order(s->object_size))
2440 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2441 			s->name);
2442 
2443 	for_each_kmem_cache_node(s, node, n) {
2444 		unsigned long nr_slabs;
2445 		unsigned long nr_objs;
2446 		unsigned long nr_free;
2447 
2448 		nr_free  = count_partial(n, count_free);
2449 		nr_slabs = node_nr_slabs(n);
2450 		nr_objs  = node_nr_objs(n);
2451 
2452 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2453 			node, nr_slabs, nr_objs, nr_free);
2454 	}
2455 #endif
2456 }
2457 
2458 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2459 			int node, struct kmem_cache_cpu **pc)
2460 {
2461 	void *freelist;
2462 	struct kmem_cache_cpu *c = *pc;
2463 	struct page *page;
2464 
2465 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2466 
2467 	freelist = get_partial(s, flags, node, c);
2468 
2469 	if (freelist)
2470 		return freelist;
2471 
2472 	page = new_slab(s, flags, node);
2473 	if (page) {
2474 		c = raw_cpu_ptr(s->cpu_slab);
2475 		if (c->page)
2476 			flush_slab(s, c);
2477 
2478 		/*
2479 		 * No other reference to the page yet so we can
2480 		 * muck around with it freely without cmpxchg
2481 		 */
2482 		freelist = page->freelist;
2483 		page->freelist = NULL;
2484 
2485 		stat(s, ALLOC_SLAB);
2486 		c->page = page;
2487 		*pc = c;
2488 	}
2489 
2490 	return freelist;
2491 }
2492 
2493 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2494 {
2495 	if (unlikely(PageSlabPfmemalloc(page)))
2496 		return gfp_pfmemalloc_allowed(gfpflags);
2497 
2498 	return true;
2499 }
2500 
2501 /*
2502  * Check the page->freelist of a page and either transfer the freelist to the
2503  * per cpu freelist or deactivate the page.
2504  *
2505  * The page is still frozen if the return value is not NULL.
2506  *
2507  * If this function returns NULL then the page has been unfrozen.
2508  *
2509  * This function must be called with interrupt disabled.
2510  */
2511 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2512 {
2513 	struct page new;
2514 	unsigned long counters;
2515 	void *freelist;
2516 
2517 	do {
2518 		freelist = page->freelist;
2519 		counters = page->counters;
2520 
2521 		new.counters = counters;
2522 		VM_BUG_ON(!new.frozen);
2523 
2524 		new.inuse = page->objects;
2525 		new.frozen = freelist != NULL;
2526 
2527 	} while (!__cmpxchg_double_slab(s, page,
2528 		freelist, counters,
2529 		NULL, new.counters,
2530 		"get_freelist"));
2531 
2532 	return freelist;
2533 }
2534 
2535 /*
2536  * Slow path. The lockless freelist is empty or we need to perform
2537  * debugging duties.
2538  *
2539  * Processing is still very fast if new objects have been freed to the
2540  * regular freelist. In that case we simply take over the regular freelist
2541  * as the lockless freelist and zap the regular freelist.
2542  *
2543  * If that is not working then we fall back to the partial lists. We take the
2544  * first element of the freelist as the object to allocate now and move the
2545  * rest of the freelist to the lockless freelist.
2546  *
2547  * And if we were unable to get a new slab from the partial slab lists then
2548  * we need to allocate a new slab. This is the slowest path since it involves
2549  * a call to the page allocator and the setup of a new slab.
2550  *
2551  * Version of __slab_alloc to use when we know that interrupts are
2552  * already disabled (which is the case for bulk allocation).
2553  */
2554 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2555 			  unsigned long addr, struct kmem_cache_cpu *c)
2556 {
2557 	void *freelist;
2558 	struct page *page;
2559 
2560 	page = c->page;
2561 	if (!page)
2562 		goto new_slab;
2563 redo:
2564 
2565 	if (unlikely(!node_match(page, node))) {
2566 		int searchnode = node;
2567 
2568 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2569 			searchnode = node_to_mem_node(node);
2570 
2571 		if (unlikely(!node_match(page, searchnode))) {
2572 			stat(s, ALLOC_NODE_MISMATCH);
2573 			deactivate_slab(s, page, c->freelist, c);
2574 			goto new_slab;
2575 		}
2576 	}
2577 
2578 	/*
2579 	 * By rights, we should be searching for a slab page that was
2580 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2581 	 * information when the page leaves the per-cpu allocator
2582 	 */
2583 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2584 		deactivate_slab(s, page, c->freelist, c);
2585 		goto new_slab;
2586 	}
2587 
2588 	/* must check again c->freelist in case of cpu migration or IRQ */
2589 	freelist = c->freelist;
2590 	if (freelist)
2591 		goto load_freelist;
2592 
2593 	freelist = get_freelist(s, page);
2594 
2595 	if (!freelist) {
2596 		c->page = NULL;
2597 		stat(s, DEACTIVATE_BYPASS);
2598 		goto new_slab;
2599 	}
2600 
2601 	stat(s, ALLOC_REFILL);
2602 
2603 load_freelist:
2604 	/*
2605 	 * freelist is pointing to the list of objects to be used.
2606 	 * page is pointing to the page from which the objects are obtained.
2607 	 * That page must be frozen for per cpu allocations to work.
2608 	 */
2609 	VM_BUG_ON(!c->page->frozen);
2610 	c->freelist = get_freepointer(s, freelist);
2611 	c->tid = next_tid(c->tid);
2612 	return freelist;
2613 
2614 new_slab:
2615 
2616 	if (slub_percpu_partial(c)) {
2617 		page = c->page = slub_percpu_partial(c);
2618 		slub_set_percpu_partial(c, page);
2619 		stat(s, CPU_PARTIAL_ALLOC);
2620 		goto redo;
2621 	}
2622 
2623 	freelist = new_slab_objects(s, gfpflags, node, &c);
2624 
2625 	if (unlikely(!freelist)) {
2626 		slab_out_of_memory(s, gfpflags, node);
2627 		return NULL;
2628 	}
2629 
2630 	page = c->page;
2631 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2632 		goto load_freelist;
2633 
2634 	/* Only entered in the debug case */
2635 	if (kmem_cache_debug(s) &&
2636 			!alloc_debug_processing(s, page, freelist, addr))
2637 		goto new_slab;	/* Slab failed checks. Next slab needed */
2638 
2639 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2640 	return freelist;
2641 }
2642 
2643 /*
2644  * Another one that disabled interrupt and compensates for possible
2645  * cpu changes by refetching the per cpu area pointer.
2646  */
2647 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2648 			  unsigned long addr, struct kmem_cache_cpu *c)
2649 {
2650 	void *p;
2651 	unsigned long flags;
2652 
2653 	local_irq_save(flags);
2654 #ifdef CONFIG_PREEMPT
2655 	/*
2656 	 * We may have been preempted and rescheduled on a different
2657 	 * cpu before disabling interrupts. Need to reload cpu area
2658 	 * pointer.
2659 	 */
2660 	c = this_cpu_ptr(s->cpu_slab);
2661 #endif
2662 
2663 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2664 	local_irq_restore(flags);
2665 	return p;
2666 }
2667 
2668 /*
2669  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2670  * have the fastpath folded into their functions. So no function call
2671  * overhead for requests that can be satisfied on the fastpath.
2672  *
2673  * The fastpath works by first checking if the lockless freelist can be used.
2674  * If not then __slab_alloc is called for slow processing.
2675  *
2676  * Otherwise we can simply pick the next object from the lockless free list.
2677  */
2678 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2679 		gfp_t gfpflags, int node, unsigned long addr)
2680 {
2681 	void *object;
2682 	struct kmem_cache_cpu *c;
2683 	struct page *page;
2684 	unsigned long tid;
2685 
2686 	s = slab_pre_alloc_hook(s, gfpflags);
2687 	if (!s)
2688 		return NULL;
2689 redo:
2690 	/*
2691 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2692 	 * enabled. We may switch back and forth between cpus while
2693 	 * reading from one cpu area. That does not matter as long
2694 	 * as we end up on the original cpu again when doing the cmpxchg.
2695 	 *
2696 	 * We should guarantee that tid and kmem_cache are retrieved on
2697 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2698 	 * to check if it is matched or not.
2699 	 */
2700 	do {
2701 		tid = this_cpu_read(s->cpu_slab->tid);
2702 		c = raw_cpu_ptr(s->cpu_slab);
2703 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2704 		 unlikely(tid != READ_ONCE(c->tid)));
2705 
2706 	/*
2707 	 * Irqless object alloc/free algorithm used here depends on sequence
2708 	 * of fetching cpu_slab's data. tid should be fetched before anything
2709 	 * on c to guarantee that object and page associated with previous tid
2710 	 * won't be used with current tid. If we fetch tid first, object and
2711 	 * page could be one associated with next tid and our alloc/free
2712 	 * request will be failed. In this case, we will retry. So, no problem.
2713 	 */
2714 	barrier();
2715 
2716 	/*
2717 	 * The transaction ids are globally unique per cpu and per operation on
2718 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2719 	 * occurs on the right processor and that there was no operation on the
2720 	 * linked list in between.
2721 	 */
2722 
2723 	object = c->freelist;
2724 	page = c->page;
2725 	if (unlikely(!object || !node_match(page, node))) {
2726 		object = __slab_alloc(s, gfpflags, node, addr, c);
2727 		stat(s, ALLOC_SLOWPATH);
2728 	} else {
2729 		void *next_object = get_freepointer_safe(s, object);
2730 
2731 		/*
2732 		 * The cmpxchg will only match if there was no additional
2733 		 * operation and if we are on the right processor.
2734 		 *
2735 		 * The cmpxchg does the following atomically (without lock
2736 		 * semantics!)
2737 		 * 1. Relocate first pointer to the current per cpu area.
2738 		 * 2. Verify that tid and freelist have not been changed
2739 		 * 3. If they were not changed replace tid and freelist
2740 		 *
2741 		 * Since this is without lock semantics the protection is only
2742 		 * against code executing on this cpu *not* from access by
2743 		 * other cpus.
2744 		 */
2745 		if (unlikely(!this_cpu_cmpxchg_double(
2746 				s->cpu_slab->freelist, s->cpu_slab->tid,
2747 				object, tid,
2748 				next_object, next_tid(tid)))) {
2749 
2750 			note_cmpxchg_failure("slab_alloc", s, tid);
2751 			goto redo;
2752 		}
2753 		prefetch_freepointer(s, next_object);
2754 		stat(s, ALLOC_FASTPATH);
2755 	}
2756 	/*
2757 	 * If the object has been wiped upon free, make sure it's fully
2758 	 * initialized by zeroing out freelist pointer.
2759 	 */
2760 	if (unlikely(slab_want_init_on_free(s)) && object)
2761 		memset(object + s->offset, 0, sizeof(void *));
2762 
2763 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2764 		memset(object, 0, s->object_size);
2765 
2766 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2767 
2768 	return object;
2769 }
2770 
2771 static __always_inline void *slab_alloc(struct kmem_cache *s,
2772 		gfp_t gfpflags, unsigned long addr)
2773 {
2774 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2775 }
2776 
2777 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2778 {
2779 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2780 
2781 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2782 				s->size, gfpflags);
2783 
2784 	return ret;
2785 }
2786 EXPORT_SYMBOL(kmem_cache_alloc);
2787 
2788 #ifdef CONFIG_TRACING
2789 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2790 {
2791 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2792 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2793 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2794 	return ret;
2795 }
2796 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2797 #endif
2798 
2799 #ifdef CONFIG_NUMA
2800 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2801 {
2802 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2803 
2804 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2805 				    s->object_size, s->size, gfpflags, node);
2806 
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL(kmem_cache_alloc_node);
2810 
2811 #ifdef CONFIG_TRACING
2812 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2813 				    gfp_t gfpflags,
2814 				    int node, size_t size)
2815 {
2816 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2817 
2818 	trace_kmalloc_node(_RET_IP_, ret,
2819 			   size, s->size, gfpflags, node);
2820 
2821 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2822 	return ret;
2823 }
2824 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2825 #endif
2826 #endif	/* CONFIG_NUMA */
2827 
2828 /*
2829  * Slow path handling. This may still be called frequently since objects
2830  * have a longer lifetime than the cpu slabs in most processing loads.
2831  *
2832  * So we still attempt to reduce cache line usage. Just take the slab
2833  * lock and free the item. If there is no additional partial page
2834  * handling required then we can return immediately.
2835  */
2836 static void __slab_free(struct kmem_cache *s, struct page *page,
2837 			void *head, void *tail, int cnt,
2838 			unsigned long addr)
2839 
2840 {
2841 	void *prior;
2842 	int was_frozen;
2843 	struct page new;
2844 	unsigned long counters;
2845 	struct kmem_cache_node *n = NULL;
2846 	unsigned long uninitialized_var(flags);
2847 
2848 	stat(s, FREE_SLOWPATH);
2849 
2850 	if (kmem_cache_debug(s) &&
2851 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2852 		return;
2853 
2854 	do {
2855 		if (unlikely(n)) {
2856 			spin_unlock_irqrestore(&n->list_lock, flags);
2857 			n = NULL;
2858 		}
2859 		prior = page->freelist;
2860 		counters = page->counters;
2861 		set_freepointer(s, tail, prior);
2862 		new.counters = counters;
2863 		was_frozen = new.frozen;
2864 		new.inuse -= cnt;
2865 		if ((!new.inuse || !prior) && !was_frozen) {
2866 
2867 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2868 
2869 				/*
2870 				 * Slab was on no list before and will be
2871 				 * partially empty
2872 				 * We can defer the list move and instead
2873 				 * freeze it.
2874 				 */
2875 				new.frozen = 1;
2876 
2877 			} else { /* Needs to be taken off a list */
2878 
2879 				n = get_node(s, page_to_nid(page));
2880 				/*
2881 				 * Speculatively acquire the list_lock.
2882 				 * If the cmpxchg does not succeed then we may
2883 				 * drop the list_lock without any processing.
2884 				 *
2885 				 * Otherwise the list_lock will synchronize with
2886 				 * other processors updating the list of slabs.
2887 				 */
2888 				spin_lock_irqsave(&n->list_lock, flags);
2889 
2890 			}
2891 		}
2892 
2893 	} while (!cmpxchg_double_slab(s, page,
2894 		prior, counters,
2895 		head, new.counters,
2896 		"__slab_free"));
2897 
2898 	if (likely(!n)) {
2899 
2900 		/*
2901 		 * If we just froze the page then put it onto the
2902 		 * per cpu partial list.
2903 		 */
2904 		if (new.frozen && !was_frozen) {
2905 			put_cpu_partial(s, page, 1);
2906 			stat(s, CPU_PARTIAL_FREE);
2907 		}
2908 		/*
2909 		 * The list lock was not taken therefore no list
2910 		 * activity can be necessary.
2911 		 */
2912 		if (was_frozen)
2913 			stat(s, FREE_FROZEN);
2914 		return;
2915 	}
2916 
2917 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2918 		goto slab_empty;
2919 
2920 	/*
2921 	 * Objects left in the slab. If it was not on the partial list before
2922 	 * then add it.
2923 	 */
2924 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2925 		remove_full(s, n, page);
2926 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2927 		stat(s, FREE_ADD_PARTIAL);
2928 	}
2929 	spin_unlock_irqrestore(&n->list_lock, flags);
2930 	return;
2931 
2932 slab_empty:
2933 	if (prior) {
2934 		/*
2935 		 * Slab on the partial list.
2936 		 */
2937 		remove_partial(n, page);
2938 		stat(s, FREE_REMOVE_PARTIAL);
2939 	} else {
2940 		/* Slab must be on the full list */
2941 		remove_full(s, n, page);
2942 	}
2943 
2944 	spin_unlock_irqrestore(&n->list_lock, flags);
2945 	stat(s, FREE_SLAB);
2946 	discard_slab(s, page);
2947 }
2948 
2949 /*
2950  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2951  * can perform fastpath freeing without additional function calls.
2952  *
2953  * The fastpath is only possible if we are freeing to the current cpu slab
2954  * of this processor. This typically the case if we have just allocated
2955  * the item before.
2956  *
2957  * If fastpath is not possible then fall back to __slab_free where we deal
2958  * with all sorts of special processing.
2959  *
2960  * Bulk free of a freelist with several objects (all pointing to the
2961  * same page) possible by specifying head and tail ptr, plus objects
2962  * count (cnt). Bulk free indicated by tail pointer being set.
2963  */
2964 static __always_inline void do_slab_free(struct kmem_cache *s,
2965 				struct page *page, void *head, void *tail,
2966 				int cnt, unsigned long addr)
2967 {
2968 	void *tail_obj = tail ? : head;
2969 	struct kmem_cache_cpu *c;
2970 	unsigned long tid;
2971 redo:
2972 	/*
2973 	 * Determine the currently cpus per cpu slab.
2974 	 * The cpu may change afterward. However that does not matter since
2975 	 * data is retrieved via this pointer. If we are on the same cpu
2976 	 * during the cmpxchg then the free will succeed.
2977 	 */
2978 	do {
2979 		tid = this_cpu_read(s->cpu_slab->tid);
2980 		c = raw_cpu_ptr(s->cpu_slab);
2981 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2982 		 unlikely(tid != READ_ONCE(c->tid)));
2983 
2984 	/* Same with comment on barrier() in slab_alloc_node() */
2985 	barrier();
2986 
2987 	if (likely(page == c->page)) {
2988 		set_freepointer(s, tail_obj, c->freelist);
2989 
2990 		if (unlikely(!this_cpu_cmpxchg_double(
2991 				s->cpu_slab->freelist, s->cpu_slab->tid,
2992 				c->freelist, tid,
2993 				head, next_tid(tid)))) {
2994 
2995 			note_cmpxchg_failure("slab_free", s, tid);
2996 			goto redo;
2997 		}
2998 		stat(s, FREE_FASTPATH);
2999 	} else
3000 		__slab_free(s, page, head, tail_obj, cnt, addr);
3001 
3002 }
3003 
3004 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3005 				      void *head, void *tail, int cnt,
3006 				      unsigned long addr)
3007 {
3008 	/*
3009 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3010 	 * to remove objects, whose reuse must be delayed.
3011 	 */
3012 	if (slab_free_freelist_hook(s, &head, &tail))
3013 		do_slab_free(s, page, head, tail, cnt, addr);
3014 }
3015 
3016 #ifdef CONFIG_KASAN_GENERIC
3017 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3018 {
3019 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3020 }
3021 #endif
3022 
3023 void kmem_cache_free(struct kmem_cache *s, void *x)
3024 {
3025 	s = cache_from_obj(s, x);
3026 	if (!s)
3027 		return;
3028 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3029 	trace_kmem_cache_free(_RET_IP_, x);
3030 }
3031 EXPORT_SYMBOL(kmem_cache_free);
3032 
3033 struct detached_freelist {
3034 	struct page *page;
3035 	void *tail;
3036 	void *freelist;
3037 	int cnt;
3038 	struct kmem_cache *s;
3039 };
3040 
3041 /*
3042  * This function progressively scans the array with free objects (with
3043  * a limited look ahead) and extract objects belonging to the same
3044  * page.  It builds a detached freelist directly within the given
3045  * page/objects.  This can happen without any need for
3046  * synchronization, because the objects are owned by running process.
3047  * The freelist is build up as a single linked list in the objects.
3048  * The idea is, that this detached freelist can then be bulk
3049  * transferred to the real freelist(s), but only requiring a single
3050  * synchronization primitive.  Look ahead in the array is limited due
3051  * to performance reasons.
3052  */
3053 static inline
3054 int build_detached_freelist(struct kmem_cache *s, size_t size,
3055 			    void **p, struct detached_freelist *df)
3056 {
3057 	size_t first_skipped_index = 0;
3058 	int lookahead = 3;
3059 	void *object;
3060 	struct page *page;
3061 
3062 	/* Always re-init detached_freelist */
3063 	df->page = NULL;
3064 
3065 	do {
3066 		object = p[--size];
3067 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3068 	} while (!object && size);
3069 
3070 	if (!object)
3071 		return 0;
3072 
3073 	page = virt_to_head_page(object);
3074 	if (!s) {
3075 		/* Handle kalloc'ed objects */
3076 		if (unlikely(!PageSlab(page))) {
3077 			BUG_ON(!PageCompound(page));
3078 			kfree_hook(object);
3079 			__free_pages(page, compound_order(page));
3080 			p[size] = NULL; /* mark object processed */
3081 			return size;
3082 		}
3083 		/* Derive kmem_cache from object */
3084 		df->s = page->slab_cache;
3085 	} else {
3086 		df->s = cache_from_obj(s, object); /* Support for memcg */
3087 	}
3088 
3089 	/* Start new detached freelist */
3090 	df->page = page;
3091 	set_freepointer(df->s, object, NULL);
3092 	df->tail = object;
3093 	df->freelist = object;
3094 	p[size] = NULL; /* mark object processed */
3095 	df->cnt = 1;
3096 
3097 	while (size) {
3098 		object = p[--size];
3099 		if (!object)
3100 			continue; /* Skip processed objects */
3101 
3102 		/* df->page is always set at this point */
3103 		if (df->page == virt_to_head_page(object)) {
3104 			/* Opportunity build freelist */
3105 			set_freepointer(df->s, object, df->freelist);
3106 			df->freelist = object;
3107 			df->cnt++;
3108 			p[size] = NULL; /* mark object processed */
3109 
3110 			continue;
3111 		}
3112 
3113 		/* Limit look ahead search */
3114 		if (!--lookahead)
3115 			break;
3116 
3117 		if (!first_skipped_index)
3118 			first_skipped_index = size + 1;
3119 	}
3120 
3121 	return first_skipped_index;
3122 }
3123 
3124 /* Note that interrupts must be enabled when calling this function. */
3125 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3126 {
3127 	if (WARN_ON(!size))
3128 		return;
3129 
3130 	do {
3131 		struct detached_freelist df;
3132 
3133 		size = build_detached_freelist(s, size, p, &df);
3134 		if (!df.page)
3135 			continue;
3136 
3137 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3138 	} while (likely(size));
3139 }
3140 EXPORT_SYMBOL(kmem_cache_free_bulk);
3141 
3142 /* Note that interrupts must be enabled when calling this function. */
3143 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3144 			  void **p)
3145 {
3146 	struct kmem_cache_cpu *c;
3147 	int i;
3148 
3149 	/* memcg and kmem_cache debug support */
3150 	s = slab_pre_alloc_hook(s, flags);
3151 	if (unlikely(!s))
3152 		return false;
3153 	/*
3154 	 * Drain objects in the per cpu slab, while disabling local
3155 	 * IRQs, which protects against PREEMPT and interrupts
3156 	 * handlers invoking normal fastpath.
3157 	 */
3158 	local_irq_disable();
3159 	c = this_cpu_ptr(s->cpu_slab);
3160 
3161 	for (i = 0; i < size; i++) {
3162 		void *object = c->freelist;
3163 
3164 		if (unlikely(!object)) {
3165 			/*
3166 			 * Invoking slow path likely have side-effect
3167 			 * of re-populating per CPU c->freelist
3168 			 */
3169 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3170 					    _RET_IP_, c);
3171 			if (unlikely(!p[i]))
3172 				goto error;
3173 
3174 			c = this_cpu_ptr(s->cpu_slab);
3175 			continue; /* goto for-loop */
3176 		}
3177 		c->freelist = get_freepointer(s, object);
3178 		p[i] = object;
3179 	}
3180 	c->tid = next_tid(c->tid);
3181 	local_irq_enable();
3182 
3183 	/* Clear memory outside IRQ disabled fastpath loop */
3184 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3185 		int j;
3186 
3187 		for (j = 0; j < i; j++)
3188 			memset(p[j], 0, s->object_size);
3189 	}
3190 
3191 	/* memcg and kmem_cache debug support */
3192 	slab_post_alloc_hook(s, flags, size, p);
3193 	return i;
3194 error:
3195 	local_irq_enable();
3196 	slab_post_alloc_hook(s, flags, i, p);
3197 	__kmem_cache_free_bulk(s, i, p);
3198 	return 0;
3199 }
3200 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3201 
3202 
3203 /*
3204  * Object placement in a slab is made very easy because we always start at
3205  * offset 0. If we tune the size of the object to the alignment then we can
3206  * get the required alignment by putting one properly sized object after
3207  * another.
3208  *
3209  * Notice that the allocation order determines the sizes of the per cpu
3210  * caches. Each processor has always one slab available for allocations.
3211  * Increasing the allocation order reduces the number of times that slabs
3212  * must be moved on and off the partial lists and is therefore a factor in
3213  * locking overhead.
3214  */
3215 
3216 /*
3217  * Mininum / Maximum order of slab pages. This influences locking overhead
3218  * and slab fragmentation. A higher order reduces the number of partial slabs
3219  * and increases the number of allocations possible without having to
3220  * take the list_lock.
3221  */
3222 static unsigned int slub_min_order;
3223 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3224 static unsigned int slub_min_objects;
3225 
3226 /*
3227  * Calculate the order of allocation given an slab object size.
3228  *
3229  * The order of allocation has significant impact on performance and other
3230  * system components. Generally order 0 allocations should be preferred since
3231  * order 0 does not cause fragmentation in the page allocator. Larger objects
3232  * be problematic to put into order 0 slabs because there may be too much
3233  * unused space left. We go to a higher order if more than 1/16th of the slab
3234  * would be wasted.
3235  *
3236  * In order to reach satisfactory performance we must ensure that a minimum
3237  * number of objects is in one slab. Otherwise we may generate too much
3238  * activity on the partial lists which requires taking the list_lock. This is
3239  * less a concern for large slabs though which are rarely used.
3240  *
3241  * slub_max_order specifies the order where we begin to stop considering the
3242  * number of objects in a slab as critical. If we reach slub_max_order then
3243  * we try to keep the page order as low as possible. So we accept more waste
3244  * of space in favor of a small page order.
3245  *
3246  * Higher order allocations also allow the placement of more objects in a
3247  * slab and thereby reduce object handling overhead. If the user has
3248  * requested a higher mininum order then we start with that one instead of
3249  * the smallest order which will fit the object.
3250  */
3251 static inline unsigned int slab_order(unsigned int size,
3252 		unsigned int min_objects, unsigned int max_order,
3253 		unsigned int fract_leftover)
3254 {
3255 	unsigned int min_order = slub_min_order;
3256 	unsigned int order;
3257 
3258 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3259 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3260 
3261 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3262 			order <= max_order; order++) {
3263 
3264 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3265 		unsigned int rem;
3266 
3267 		rem = slab_size % size;
3268 
3269 		if (rem <= slab_size / fract_leftover)
3270 			break;
3271 	}
3272 
3273 	return order;
3274 }
3275 
3276 static inline int calculate_order(unsigned int size)
3277 {
3278 	unsigned int order;
3279 	unsigned int min_objects;
3280 	unsigned int max_objects;
3281 
3282 	/*
3283 	 * Attempt to find best configuration for a slab. This
3284 	 * works by first attempting to generate a layout with
3285 	 * the best configuration and backing off gradually.
3286 	 *
3287 	 * First we increase the acceptable waste in a slab. Then
3288 	 * we reduce the minimum objects required in a slab.
3289 	 */
3290 	min_objects = slub_min_objects;
3291 	if (!min_objects)
3292 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3293 	max_objects = order_objects(slub_max_order, size);
3294 	min_objects = min(min_objects, max_objects);
3295 
3296 	while (min_objects > 1) {
3297 		unsigned int fraction;
3298 
3299 		fraction = 16;
3300 		while (fraction >= 4) {
3301 			order = slab_order(size, min_objects,
3302 					slub_max_order, fraction);
3303 			if (order <= slub_max_order)
3304 				return order;
3305 			fraction /= 2;
3306 		}
3307 		min_objects--;
3308 	}
3309 
3310 	/*
3311 	 * We were unable to place multiple objects in a slab. Now
3312 	 * lets see if we can place a single object there.
3313 	 */
3314 	order = slab_order(size, 1, slub_max_order, 1);
3315 	if (order <= slub_max_order)
3316 		return order;
3317 
3318 	/*
3319 	 * Doh this slab cannot be placed using slub_max_order.
3320 	 */
3321 	order = slab_order(size, 1, MAX_ORDER, 1);
3322 	if (order < MAX_ORDER)
3323 		return order;
3324 	return -ENOSYS;
3325 }
3326 
3327 static void
3328 init_kmem_cache_node(struct kmem_cache_node *n)
3329 {
3330 	n->nr_partial = 0;
3331 	spin_lock_init(&n->list_lock);
3332 	INIT_LIST_HEAD(&n->partial);
3333 #ifdef CONFIG_SLUB_DEBUG
3334 	atomic_long_set(&n->nr_slabs, 0);
3335 	atomic_long_set(&n->total_objects, 0);
3336 	INIT_LIST_HEAD(&n->full);
3337 #endif
3338 }
3339 
3340 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3341 {
3342 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3343 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3344 
3345 	/*
3346 	 * Must align to double word boundary for the double cmpxchg
3347 	 * instructions to work; see __pcpu_double_call_return_bool().
3348 	 */
3349 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3350 				     2 * sizeof(void *));
3351 
3352 	if (!s->cpu_slab)
3353 		return 0;
3354 
3355 	init_kmem_cache_cpus(s);
3356 
3357 	return 1;
3358 }
3359 
3360 static struct kmem_cache *kmem_cache_node;
3361 
3362 /*
3363  * No kmalloc_node yet so do it by hand. We know that this is the first
3364  * slab on the node for this slabcache. There are no concurrent accesses
3365  * possible.
3366  *
3367  * Note that this function only works on the kmem_cache_node
3368  * when allocating for the kmem_cache_node. This is used for bootstrapping
3369  * memory on a fresh node that has no slab structures yet.
3370  */
3371 static void early_kmem_cache_node_alloc(int node)
3372 {
3373 	struct page *page;
3374 	struct kmem_cache_node *n;
3375 
3376 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3377 
3378 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3379 
3380 	BUG_ON(!page);
3381 	if (page_to_nid(page) != node) {
3382 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3383 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3384 	}
3385 
3386 	n = page->freelist;
3387 	BUG_ON(!n);
3388 #ifdef CONFIG_SLUB_DEBUG
3389 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3390 	init_tracking(kmem_cache_node, n);
3391 #endif
3392 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3393 		      GFP_KERNEL);
3394 	page->freelist = get_freepointer(kmem_cache_node, n);
3395 	page->inuse = 1;
3396 	page->frozen = 0;
3397 	kmem_cache_node->node[node] = n;
3398 	init_kmem_cache_node(n);
3399 	inc_slabs_node(kmem_cache_node, node, page->objects);
3400 
3401 	/*
3402 	 * No locks need to be taken here as it has just been
3403 	 * initialized and there is no concurrent access.
3404 	 */
3405 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3406 }
3407 
3408 static void free_kmem_cache_nodes(struct kmem_cache *s)
3409 {
3410 	int node;
3411 	struct kmem_cache_node *n;
3412 
3413 	for_each_kmem_cache_node(s, node, n) {
3414 		s->node[node] = NULL;
3415 		kmem_cache_free(kmem_cache_node, n);
3416 	}
3417 }
3418 
3419 void __kmem_cache_release(struct kmem_cache *s)
3420 {
3421 	cache_random_seq_destroy(s);
3422 	free_percpu(s->cpu_slab);
3423 	free_kmem_cache_nodes(s);
3424 }
3425 
3426 static int init_kmem_cache_nodes(struct kmem_cache *s)
3427 {
3428 	int node;
3429 
3430 	for_each_node_state(node, N_NORMAL_MEMORY) {
3431 		struct kmem_cache_node *n;
3432 
3433 		if (slab_state == DOWN) {
3434 			early_kmem_cache_node_alloc(node);
3435 			continue;
3436 		}
3437 		n = kmem_cache_alloc_node(kmem_cache_node,
3438 						GFP_KERNEL, node);
3439 
3440 		if (!n) {
3441 			free_kmem_cache_nodes(s);
3442 			return 0;
3443 		}
3444 
3445 		init_kmem_cache_node(n);
3446 		s->node[node] = n;
3447 	}
3448 	return 1;
3449 }
3450 
3451 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3452 {
3453 	if (min < MIN_PARTIAL)
3454 		min = MIN_PARTIAL;
3455 	else if (min > MAX_PARTIAL)
3456 		min = MAX_PARTIAL;
3457 	s->min_partial = min;
3458 }
3459 
3460 static void set_cpu_partial(struct kmem_cache *s)
3461 {
3462 #ifdef CONFIG_SLUB_CPU_PARTIAL
3463 	/*
3464 	 * cpu_partial determined the maximum number of objects kept in the
3465 	 * per cpu partial lists of a processor.
3466 	 *
3467 	 * Per cpu partial lists mainly contain slabs that just have one
3468 	 * object freed. If they are used for allocation then they can be
3469 	 * filled up again with minimal effort. The slab will never hit the
3470 	 * per node partial lists and therefore no locking will be required.
3471 	 *
3472 	 * This setting also determines
3473 	 *
3474 	 * A) The number of objects from per cpu partial slabs dumped to the
3475 	 *    per node list when we reach the limit.
3476 	 * B) The number of objects in cpu partial slabs to extract from the
3477 	 *    per node list when we run out of per cpu objects. We only fetch
3478 	 *    50% to keep some capacity around for frees.
3479 	 */
3480 	if (!kmem_cache_has_cpu_partial(s))
3481 		s->cpu_partial = 0;
3482 	else if (s->size >= PAGE_SIZE)
3483 		s->cpu_partial = 2;
3484 	else if (s->size >= 1024)
3485 		s->cpu_partial = 6;
3486 	else if (s->size >= 256)
3487 		s->cpu_partial = 13;
3488 	else
3489 		s->cpu_partial = 30;
3490 #endif
3491 }
3492 
3493 /*
3494  * calculate_sizes() determines the order and the distribution of data within
3495  * a slab object.
3496  */
3497 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3498 {
3499 	slab_flags_t flags = s->flags;
3500 	unsigned int size = s->object_size;
3501 	unsigned int order;
3502 
3503 	/*
3504 	 * Round up object size to the next word boundary. We can only
3505 	 * place the free pointer at word boundaries and this determines
3506 	 * the possible location of the free pointer.
3507 	 */
3508 	size = ALIGN(size, sizeof(void *));
3509 
3510 #ifdef CONFIG_SLUB_DEBUG
3511 	/*
3512 	 * Determine if we can poison the object itself. If the user of
3513 	 * the slab may touch the object after free or before allocation
3514 	 * then we should never poison the object itself.
3515 	 */
3516 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3517 			!s->ctor)
3518 		s->flags |= __OBJECT_POISON;
3519 	else
3520 		s->flags &= ~__OBJECT_POISON;
3521 
3522 
3523 	/*
3524 	 * If we are Redzoning then check if there is some space between the
3525 	 * end of the object and the free pointer. If not then add an
3526 	 * additional word to have some bytes to store Redzone information.
3527 	 */
3528 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3529 		size += sizeof(void *);
3530 #endif
3531 
3532 	/*
3533 	 * With that we have determined the number of bytes in actual use
3534 	 * by the object. This is the potential offset to the free pointer.
3535 	 */
3536 	s->inuse = size;
3537 
3538 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3539 		s->ctor)) {
3540 		/*
3541 		 * Relocate free pointer after the object if it is not
3542 		 * permitted to overwrite the first word of the object on
3543 		 * kmem_cache_free.
3544 		 *
3545 		 * This is the case if we do RCU, have a constructor or
3546 		 * destructor or are poisoning the objects.
3547 		 */
3548 		s->offset = size;
3549 		size += sizeof(void *);
3550 	}
3551 
3552 #ifdef CONFIG_SLUB_DEBUG
3553 	if (flags & SLAB_STORE_USER)
3554 		/*
3555 		 * Need to store information about allocs and frees after
3556 		 * the object.
3557 		 */
3558 		size += 2 * sizeof(struct track);
3559 #endif
3560 
3561 	kasan_cache_create(s, &size, &s->flags);
3562 #ifdef CONFIG_SLUB_DEBUG
3563 	if (flags & SLAB_RED_ZONE) {
3564 		/*
3565 		 * Add some empty padding so that we can catch
3566 		 * overwrites from earlier objects rather than let
3567 		 * tracking information or the free pointer be
3568 		 * corrupted if a user writes before the start
3569 		 * of the object.
3570 		 */
3571 		size += sizeof(void *);
3572 
3573 		s->red_left_pad = sizeof(void *);
3574 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3575 		size += s->red_left_pad;
3576 	}
3577 #endif
3578 
3579 	/*
3580 	 * SLUB stores one object immediately after another beginning from
3581 	 * offset 0. In order to align the objects we have to simply size
3582 	 * each object to conform to the alignment.
3583 	 */
3584 	size = ALIGN(size, s->align);
3585 	s->size = size;
3586 	if (forced_order >= 0)
3587 		order = forced_order;
3588 	else
3589 		order = calculate_order(size);
3590 
3591 	if ((int)order < 0)
3592 		return 0;
3593 
3594 	s->allocflags = 0;
3595 	if (order)
3596 		s->allocflags |= __GFP_COMP;
3597 
3598 	if (s->flags & SLAB_CACHE_DMA)
3599 		s->allocflags |= GFP_DMA;
3600 
3601 	if (s->flags & SLAB_CACHE_DMA32)
3602 		s->allocflags |= GFP_DMA32;
3603 
3604 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3605 		s->allocflags |= __GFP_RECLAIMABLE;
3606 
3607 	/*
3608 	 * Determine the number of objects per slab
3609 	 */
3610 	s->oo = oo_make(order, size);
3611 	s->min = oo_make(get_order(size), size);
3612 	if (oo_objects(s->oo) > oo_objects(s->max))
3613 		s->max = s->oo;
3614 
3615 	return !!oo_objects(s->oo);
3616 }
3617 
3618 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3619 {
3620 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3621 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3622 	s->random = get_random_long();
3623 #endif
3624 
3625 	if (!calculate_sizes(s, -1))
3626 		goto error;
3627 	if (disable_higher_order_debug) {
3628 		/*
3629 		 * Disable debugging flags that store metadata if the min slab
3630 		 * order increased.
3631 		 */
3632 		if (get_order(s->size) > get_order(s->object_size)) {
3633 			s->flags &= ~DEBUG_METADATA_FLAGS;
3634 			s->offset = 0;
3635 			if (!calculate_sizes(s, -1))
3636 				goto error;
3637 		}
3638 	}
3639 
3640 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3641     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3642 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3643 		/* Enable fast mode */
3644 		s->flags |= __CMPXCHG_DOUBLE;
3645 #endif
3646 
3647 	/*
3648 	 * The larger the object size is, the more pages we want on the partial
3649 	 * list to avoid pounding the page allocator excessively.
3650 	 */
3651 	set_min_partial(s, ilog2(s->size) / 2);
3652 
3653 	set_cpu_partial(s);
3654 
3655 #ifdef CONFIG_NUMA
3656 	s->remote_node_defrag_ratio = 1000;
3657 #endif
3658 
3659 	/* Initialize the pre-computed randomized freelist if slab is up */
3660 	if (slab_state >= UP) {
3661 		if (init_cache_random_seq(s))
3662 			goto error;
3663 	}
3664 
3665 	if (!init_kmem_cache_nodes(s))
3666 		goto error;
3667 
3668 	if (alloc_kmem_cache_cpus(s))
3669 		return 0;
3670 
3671 	free_kmem_cache_nodes(s);
3672 error:
3673 	return -EINVAL;
3674 }
3675 
3676 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3677 							const char *text)
3678 {
3679 #ifdef CONFIG_SLUB_DEBUG
3680 	void *addr = page_address(page);
3681 	void *p;
3682 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3683 	if (!map)
3684 		return;
3685 	slab_err(s, page, text, s->name);
3686 	slab_lock(page);
3687 
3688 	get_map(s, page, map);
3689 	for_each_object(p, s, addr, page->objects) {
3690 
3691 		if (!test_bit(slab_index(p, s, addr), map)) {
3692 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3693 			print_tracking(s, p);
3694 		}
3695 	}
3696 	slab_unlock(page);
3697 	bitmap_free(map);
3698 #endif
3699 }
3700 
3701 /*
3702  * Attempt to free all partial slabs on a node.
3703  * This is called from __kmem_cache_shutdown(). We must take list_lock
3704  * because sysfs file might still access partial list after the shutdowning.
3705  */
3706 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3707 {
3708 	LIST_HEAD(discard);
3709 	struct page *page, *h;
3710 
3711 	BUG_ON(irqs_disabled());
3712 	spin_lock_irq(&n->list_lock);
3713 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3714 		if (!page->inuse) {
3715 			remove_partial(n, page);
3716 			list_add(&page->slab_list, &discard);
3717 		} else {
3718 			list_slab_objects(s, page,
3719 			"Objects remaining in %s on __kmem_cache_shutdown()");
3720 		}
3721 	}
3722 	spin_unlock_irq(&n->list_lock);
3723 
3724 	list_for_each_entry_safe(page, h, &discard, slab_list)
3725 		discard_slab(s, page);
3726 }
3727 
3728 bool __kmem_cache_empty(struct kmem_cache *s)
3729 {
3730 	int node;
3731 	struct kmem_cache_node *n;
3732 
3733 	for_each_kmem_cache_node(s, node, n)
3734 		if (n->nr_partial || slabs_node(s, node))
3735 			return false;
3736 	return true;
3737 }
3738 
3739 /*
3740  * Release all resources used by a slab cache.
3741  */
3742 int __kmem_cache_shutdown(struct kmem_cache *s)
3743 {
3744 	int node;
3745 	struct kmem_cache_node *n;
3746 
3747 	flush_all(s);
3748 	/* Attempt to free all objects */
3749 	for_each_kmem_cache_node(s, node, n) {
3750 		free_partial(s, n);
3751 		if (n->nr_partial || slabs_node(s, node))
3752 			return 1;
3753 	}
3754 	sysfs_slab_remove(s);
3755 	return 0;
3756 }
3757 
3758 /********************************************************************
3759  *		Kmalloc subsystem
3760  *******************************************************************/
3761 
3762 static int __init setup_slub_min_order(char *str)
3763 {
3764 	get_option(&str, (int *)&slub_min_order);
3765 
3766 	return 1;
3767 }
3768 
3769 __setup("slub_min_order=", setup_slub_min_order);
3770 
3771 static int __init setup_slub_max_order(char *str)
3772 {
3773 	get_option(&str, (int *)&slub_max_order);
3774 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3775 
3776 	return 1;
3777 }
3778 
3779 __setup("slub_max_order=", setup_slub_max_order);
3780 
3781 static int __init setup_slub_min_objects(char *str)
3782 {
3783 	get_option(&str, (int *)&slub_min_objects);
3784 
3785 	return 1;
3786 }
3787 
3788 __setup("slub_min_objects=", setup_slub_min_objects);
3789 
3790 void *__kmalloc(size_t size, gfp_t flags)
3791 {
3792 	struct kmem_cache *s;
3793 	void *ret;
3794 
3795 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3796 		return kmalloc_large(size, flags);
3797 
3798 	s = kmalloc_slab(size, flags);
3799 
3800 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3801 		return s;
3802 
3803 	ret = slab_alloc(s, flags, _RET_IP_);
3804 
3805 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3806 
3807 	ret = kasan_kmalloc(s, ret, size, flags);
3808 
3809 	return ret;
3810 }
3811 EXPORT_SYMBOL(__kmalloc);
3812 
3813 #ifdef CONFIG_NUMA
3814 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3815 {
3816 	struct page *page;
3817 	void *ptr = NULL;
3818 
3819 	flags |= __GFP_COMP;
3820 	page = alloc_pages_node(node, flags, get_order(size));
3821 	if (page)
3822 		ptr = page_address(page);
3823 
3824 	return kmalloc_large_node_hook(ptr, size, flags);
3825 }
3826 
3827 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3828 {
3829 	struct kmem_cache *s;
3830 	void *ret;
3831 
3832 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3833 		ret = kmalloc_large_node(size, flags, node);
3834 
3835 		trace_kmalloc_node(_RET_IP_, ret,
3836 				   size, PAGE_SIZE << get_order(size),
3837 				   flags, node);
3838 
3839 		return ret;
3840 	}
3841 
3842 	s = kmalloc_slab(size, flags);
3843 
3844 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3845 		return s;
3846 
3847 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3848 
3849 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3850 
3851 	ret = kasan_kmalloc(s, ret, size, flags);
3852 
3853 	return ret;
3854 }
3855 EXPORT_SYMBOL(__kmalloc_node);
3856 #endif	/* CONFIG_NUMA */
3857 
3858 #ifdef CONFIG_HARDENED_USERCOPY
3859 /*
3860  * Rejects incorrectly sized objects and objects that are to be copied
3861  * to/from userspace but do not fall entirely within the containing slab
3862  * cache's usercopy region.
3863  *
3864  * Returns NULL if check passes, otherwise const char * to name of cache
3865  * to indicate an error.
3866  */
3867 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3868 			 bool to_user)
3869 {
3870 	struct kmem_cache *s;
3871 	unsigned int offset;
3872 	size_t object_size;
3873 
3874 	ptr = kasan_reset_tag(ptr);
3875 
3876 	/* Find object and usable object size. */
3877 	s = page->slab_cache;
3878 
3879 	/* Reject impossible pointers. */
3880 	if (ptr < page_address(page))
3881 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3882 			       to_user, 0, n);
3883 
3884 	/* Find offset within object. */
3885 	offset = (ptr - page_address(page)) % s->size;
3886 
3887 	/* Adjust for redzone and reject if within the redzone. */
3888 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3889 		if (offset < s->red_left_pad)
3890 			usercopy_abort("SLUB object in left red zone",
3891 				       s->name, to_user, offset, n);
3892 		offset -= s->red_left_pad;
3893 	}
3894 
3895 	/* Allow address range falling entirely within usercopy region. */
3896 	if (offset >= s->useroffset &&
3897 	    offset - s->useroffset <= s->usersize &&
3898 	    n <= s->useroffset - offset + s->usersize)
3899 		return;
3900 
3901 	/*
3902 	 * If the copy is still within the allocated object, produce
3903 	 * a warning instead of rejecting the copy. This is intended
3904 	 * to be a temporary method to find any missing usercopy
3905 	 * whitelists.
3906 	 */
3907 	object_size = slab_ksize(s);
3908 	if (usercopy_fallback &&
3909 	    offset <= object_size && n <= object_size - offset) {
3910 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3911 		return;
3912 	}
3913 
3914 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3915 }
3916 #endif /* CONFIG_HARDENED_USERCOPY */
3917 
3918 size_t __ksize(const void *object)
3919 {
3920 	struct page *page;
3921 
3922 	if (unlikely(object == ZERO_SIZE_PTR))
3923 		return 0;
3924 
3925 	page = virt_to_head_page(object);
3926 
3927 	if (unlikely(!PageSlab(page))) {
3928 		WARN_ON(!PageCompound(page));
3929 		return PAGE_SIZE << compound_order(page);
3930 	}
3931 
3932 	return slab_ksize(page->slab_cache);
3933 }
3934 EXPORT_SYMBOL(__ksize);
3935 
3936 void kfree(const void *x)
3937 {
3938 	struct page *page;
3939 	void *object = (void *)x;
3940 
3941 	trace_kfree(_RET_IP_, x);
3942 
3943 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3944 		return;
3945 
3946 	page = virt_to_head_page(x);
3947 	if (unlikely(!PageSlab(page))) {
3948 		BUG_ON(!PageCompound(page));
3949 		kfree_hook(object);
3950 		__free_pages(page, compound_order(page));
3951 		return;
3952 	}
3953 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3954 }
3955 EXPORT_SYMBOL(kfree);
3956 
3957 #define SHRINK_PROMOTE_MAX 32
3958 
3959 /*
3960  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3961  * up most to the head of the partial lists. New allocations will then
3962  * fill those up and thus they can be removed from the partial lists.
3963  *
3964  * The slabs with the least items are placed last. This results in them
3965  * being allocated from last increasing the chance that the last objects
3966  * are freed in them.
3967  */
3968 int __kmem_cache_shrink(struct kmem_cache *s)
3969 {
3970 	int node;
3971 	int i;
3972 	struct kmem_cache_node *n;
3973 	struct page *page;
3974 	struct page *t;
3975 	struct list_head discard;
3976 	struct list_head promote[SHRINK_PROMOTE_MAX];
3977 	unsigned long flags;
3978 	int ret = 0;
3979 
3980 	flush_all(s);
3981 	for_each_kmem_cache_node(s, node, n) {
3982 		INIT_LIST_HEAD(&discard);
3983 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3984 			INIT_LIST_HEAD(promote + i);
3985 
3986 		spin_lock_irqsave(&n->list_lock, flags);
3987 
3988 		/*
3989 		 * Build lists of slabs to discard or promote.
3990 		 *
3991 		 * Note that concurrent frees may occur while we hold the
3992 		 * list_lock. page->inuse here is the upper limit.
3993 		 */
3994 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3995 			int free = page->objects - page->inuse;
3996 
3997 			/* Do not reread page->inuse */
3998 			barrier();
3999 
4000 			/* We do not keep full slabs on the list */
4001 			BUG_ON(free <= 0);
4002 
4003 			if (free == page->objects) {
4004 				list_move(&page->slab_list, &discard);
4005 				n->nr_partial--;
4006 			} else if (free <= SHRINK_PROMOTE_MAX)
4007 				list_move(&page->slab_list, promote + free - 1);
4008 		}
4009 
4010 		/*
4011 		 * Promote the slabs filled up most to the head of the
4012 		 * partial list.
4013 		 */
4014 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4015 			list_splice(promote + i, &n->partial);
4016 
4017 		spin_unlock_irqrestore(&n->list_lock, flags);
4018 
4019 		/* Release empty slabs */
4020 		list_for_each_entry_safe(page, t, &discard, slab_list)
4021 			discard_slab(s, page);
4022 
4023 		if (slabs_node(s, node))
4024 			ret = 1;
4025 	}
4026 
4027 	return ret;
4028 }
4029 
4030 #ifdef CONFIG_MEMCG
4031 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4032 {
4033 	/*
4034 	 * Called with all the locks held after a sched RCU grace period.
4035 	 * Even if @s becomes empty after shrinking, we can't know that @s
4036 	 * doesn't have allocations already in-flight and thus can't
4037 	 * destroy @s until the associated memcg is released.
4038 	 *
4039 	 * However, let's remove the sysfs files for empty caches here.
4040 	 * Each cache has a lot of interface files which aren't
4041 	 * particularly useful for empty draining caches; otherwise, we can
4042 	 * easily end up with millions of unnecessary sysfs files on
4043 	 * systems which have a lot of memory and transient cgroups.
4044 	 */
4045 	if (!__kmem_cache_shrink(s))
4046 		sysfs_slab_remove(s);
4047 }
4048 
4049 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4050 {
4051 	/*
4052 	 * Disable empty slabs caching. Used to avoid pinning offline
4053 	 * memory cgroups by kmem pages that can be freed.
4054 	 */
4055 	slub_set_cpu_partial(s, 0);
4056 	s->min_partial = 0;
4057 }
4058 #endif	/* CONFIG_MEMCG */
4059 
4060 static int slab_mem_going_offline_callback(void *arg)
4061 {
4062 	struct kmem_cache *s;
4063 
4064 	mutex_lock(&slab_mutex);
4065 	list_for_each_entry(s, &slab_caches, list)
4066 		__kmem_cache_shrink(s);
4067 	mutex_unlock(&slab_mutex);
4068 
4069 	return 0;
4070 }
4071 
4072 static void slab_mem_offline_callback(void *arg)
4073 {
4074 	struct kmem_cache_node *n;
4075 	struct kmem_cache *s;
4076 	struct memory_notify *marg = arg;
4077 	int offline_node;
4078 
4079 	offline_node = marg->status_change_nid_normal;
4080 
4081 	/*
4082 	 * If the node still has available memory. we need kmem_cache_node
4083 	 * for it yet.
4084 	 */
4085 	if (offline_node < 0)
4086 		return;
4087 
4088 	mutex_lock(&slab_mutex);
4089 	list_for_each_entry(s, &slab_caches, list) {
4090 		n = get_node(s, offline_node);
4091 		if (n) {
4092 			/*
4093 			 * if n->nr_slabs > 0, slabs still exist on the node
4094 			 * that is going down. We were unable to free them,
4095 			 * and offline_pages() function shouldn't call this
4096 			 * callback. So, we must fail.
4097 			 */
4098 			BUG_ON(slabs_node(s, offline_node));
4099 
4100 			s->node[offline_node] = NULL;
4101 			kmem_cache_free(kmem_cache_node, n);
4102 		}
4103 	}
4104 	mutex_unlock(&slab_mutex);
4105 }
4106 
4107 static int slab_mem_going_online_callback(void *arg)
4108 {
4109 	struct kmem_cache_node *n;
4110 	struct kmem_cache *s;
4111 	struct memory_notify *marg = arg;
4112 	int nid = marg->status_change_nid_normal;
4113 	int ret = 0;
4114 
4115 	/*
4116 	 * If the node's memory is already available, then kmem_cache_node is
4117 	 * already created. Nothing to do.
4118 	 */
4119 	if (nid < 0)
4120 		return 0;
4121 
4122 	/*
4123 	 * We are bringing a node online. No memory is available yet. We must
4124 	 * allocate a kmem_cache_node structure in order to bring the node
4125 	 * online.
4126 	 */
4127 	mutex_lock(&slab_mutex);
4128 	list_for_each_entry(s, &slab_caches, list) {
4129 		/*
4130 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4131 		 *      since memory is not yet available from the node that
4132 		 *      is brought up.
4133 		 */
4134 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4135 		if (!n) {
4136 			ret = -ENOMEM;
4137 			goto out;
4138 		}
4139 		init_kmem_cache_node(n);
4140 		s->node[nid] = n;
4141 	}
4142 out:
4143 	mutex_unlock(&slab_mutex);
4144 	return ret;
4145 }
4146 
4147 static int slab_memory_callback(struct notifier_block *self,
4148 				unsigned long action, void *arg)
4149 {
4150 	int ret = 0;
4151 
4152 	switch (action) {
4153 	case MEM_GOING_ONLINE:
4154 		ret = slab_mem_going_online_callback(arg);
4155 		break;
4156 	case MEM_GOING_OFFLINE:
4157 		ret = slab_mem_going_offline_callback(arg);
4158 		break;
4159 	case MEM_OFFLINE:
4160 	case MEM_CANCEL_ONLINE:
4161 		slab_mem_offline_callback(arg);
4162 		break;
4163 	case MEM_ONLINE:
4164 	case MEM_CANCEL_OFFLINE:
4165 		break;
4166 	}
4167 	if (ret)
4168 		ret = notifier_from_errno(ret);
4169 	else
4170 		ret = NOTIFY_OK;
4171 	return ret;
4172 }
4173 
4174 static struct notifier_block slab_memory_callback_nb = {
4175 	.notifier_call = slab_memory_callback,
4176 	.priority = SLAB_CALLBACK_PRI,
4177 };
4178 
4179 /********************************************************************
4180  *			Basic setup of slabs
4181  *******************************************************************/
4182 
4183 /*
4184  * Used for early kmem_cache structures that were allocated using
4185  * the page allocator. Allocate them properly then fix up the pointers
4186  * that may be pointing to the wrong kmem_cache structure.
4187  */
4188 
4189 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4190 {
4191 	int node;
4192 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4193 	struct kmem_cache_node *n;
4194 
4195 	memcpy(s, static_cache, kmem_cache->object_size);
4196 
4197 	/*
4198 	 * This runs very early, and only the boot processor is supposed to be
4199 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4200 	 * IPIs around.
4201 	 */
4202 	__flush_cpu_slab(s, smp_processor_id());
4203 	for_each_kmem_cache_node(s, node, n) {
4204 		struct page *p;
4205 
4206 		list_for_each_entry(p, &n->partial, slab_list)
4207 			p->slab_cache = s;
4208 
4209 #ifdef CONFIG_SLUB_DEBUG
4210 		list_for_each_entry(p, &n->full, slab_list)
4211 			p->slab_cache = s;
4212 #endif
4213 	}
4214 	slab_init_memcg_params(s);
4215 	list_add(&s->list, &slab_caches);
4216 	memcg_link_cache(s, NULL);
4217 	return s;
4218 }
4219 
4220 void __init kmem_cache_init(void)
4221 {
4222 	static __initdata struct kmem_cache boot_kmem_cache,
4223 		boot_kmem_cache_node;
4224 
4225 	if (debug_guardpage_minorder())
4226 		slub_max_order = 0;
4227 
4228 	kmem_cache_node = &boot_kmem_cache_node;
4229 	kmem_cache = &boot_kmem_cache;
4230 
4231 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4232 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4233 
4234 	register_hotmemory_notifier(&slab_memory_callback_nb);
4235 
4236 	/* Able to allocate the per node structures */
4237 	slab_state = PARTIAL;
4238 
4239 	create_boot_cache(kmem_cache, "kmem_cache",
4240 			offsetof(struct kmem_cache, node) +
4241 				nr_node_ids * sizeof(struct kmem_cache_node *),
4242 		       SLAB_HWCACHE_ALIGN, 0, 0);
4243 
4244 	kmem_cache = bootstrap(&boot_kmem_cache);
4245 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4246 
4247 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4248 	setup_kmalloc_cache_index_table();
4249 	create_kmalloc_caches(0);
4250 
4251 	/* Setup random freelists for each cache */
4252 	init_freelist_randomization();
4253 
4254 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4255 				  slub_cpu_dead);
4256 
4257 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4258 		cache_line_size(),
4259 		slub_min_order, slub_max_order, slub_min_objects,
4260 		nr_cpu_ids, nr_node_ids);
4261 }
4262 
4263 void __init kmem_cache_init_late(void)
4264 {
4265 }
4266 
4267 struct kmem_cache *
4268 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4269 		   slab_flags_t flags, void (*ctor)(void *))
4270 {
4271 	struct kmem_cache *s, *c;
4272 
4273 	s = find_mergeable(size, align, flags, name, ctor);
4274 	if (s) {
4275 		s->refcount++;
4276 
4277 		/*
4278 		 * Adjust the object sizes so that we clear
4279 		 * the complete object on kzalloc.
4280 		 */
4281 		s->object_size = max(s->object_size, size);
4282 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4283 
4284 		for_each_memcg_cache(c, s) {
4285 			c->object_size = s->object_size;
4286 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4287 		}
4288 
4289 		if (sysfs_slab_alias(s, name)) {
4290 			s->refcount--;
4291 			s = NULL;
4292 		}
4293 	}
4294 
4295 	return s;
4296 }
4297 
4298 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4299 {
4300 	int err;
4301 
4302 	err = kmem_cache_open(s, flags);
4303 	if (err)
4304 		return err;
4305 
4306 	/* Mutex is not taken during early boot */
4307 	if (slab_state <= UP)
4308 		return 0;
4309 
4310 	memcg_propagate_slab_attrs(s);
4311 	err = sysfs_slab_add(s);
4312 	if (err)
4313 		__kmem_cache_release(s);
4314 
4315 	return err;
4316 }
4317 
4318 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4319 {
4320 	struct kmem_cache *s;
4321 	void *ret;
4322 
4323 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4324 		return kmalloc_large(size, gfpflags);
4325 
4326 	s = kmalloc_slab(size, gfpflags);
4327 
4328 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4329 		return s;
4330 
4331 	ret = slab_alloc(s, gfpflags, caller);
4332 
4333 	/* Honor the call site pointer we received. */
4334 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4335 
4336 	return ret;
4337 }
4338 
4339 #ifdef CONFIG_NUMA
4340 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4341 					int node, unsigned long caller)
4342 {
4343 	struct kmem_cache *s;
4344 	void *ret;
4345 
4346 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4347 		ret = kmalloc_large_node(size, gfpflags, node);
4348 
4349 		trace_kmalloc_node(caller, ret,
4350 				   size, PAGE_SIZE << get_order(size),
4351 				   gfpflags, node);
4352 
4353 		return ret;
4354 	}
4355 
4356 	s = kmalloc_slab(size, gfpflags);
4357 
4358 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4359 		return s;
4360 
4361 	ret = slab_alloc_node(s, gfpflags, node, caller);
4362 
4363 	/* Honor the call site pointer we received. */
4364 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4365 
4366 	return ret;
4367 }
4368 #endif
4369 
4370 #ifdef CONFIG_SYSFS
4371 static int count_inuse(struct page *page)
4372 {
4373 	return page->inuse;
4374 }
4375 
4376 static int count_total(struct page *page)
4377 {
4378 	return page->objects;
4379 }
4380 #endif
4381 
4382 #ifdef CONFIG_SLUB_DEBUG
4383 static int validate_slab(struct kmem_cache *s, struct page *page,
4384 						unsigned long *map)
4385 {
4386 	void *p;
4387 	void *addr = page_address(page);
4388 
4389 	if (!check_slab(s, page) ||
4390 			!on_freelist(s, page, NULL))
4391 		return 0;
4392 
4393 	/* Now we know that a valid freelist exists */
4394 	bitmap_zero(map, page->objects);
4395 
4396 	get_map(s, page, map);
4397 	for_each_object(p, s, addr, page->objects) {
4398 		if (test_bit(slab_index(p, s, addr), map))
4399 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4400 				return 0;
4401 	}
4402 
4403 	for_each_object(p, s, addr, page->objects)
4404 		if (!test_bit(slab_index(p, s, addr), map))
4405 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4406 				return 0;
4407 	return 1;
4408 }
4409 
4410 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4411 						unsigned long *map)
4412 {
4413 	slab_lock(page);
4414 	validate_slab(s, page, map);
4415 	slab_unlock(page);
4416 }
4417 
4418 static int validate_slab_node(struct kmem_cache *s,
4419 		struct kmem_cache_node *n, unsigned long *map)
4420 {
4421 	unsigned long count = 0;
4422 	struct page *page;
4423 	unsigned long flags;
4424 
4425 	spin_lock_irqsave(&n->list_lock, flags);
4426 
4427 	list_for_each_entry(page, &n->partial, slab_list) {
4428 		validate_slab_slab(s, page, map);
4429 		count++;
4430 	}
4431 	if (count != n->nr_partial)
4432 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4433 		       s->name, count, n->nr_partial);
4434 
4435 	if (!(s->flags & SLAB_STORE_USER))
4436 		goto out;
4437 
4438 	list_for_each_entry(page, &n->full, slab_list) {
4439 		validate_slab_slab(s, page, map);
4440 		count++;
4441 	}
4442 	if (count != atomic_long_read(&n->nr_slabs))
4443 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4444 		       s->name, count, atomic_long_read(&n->nr_slabs));
4445 
4446 out:
4447 	spin_unlock_irqrestore(&n->list_lock, flags);
4448 	return count;
4449 }
4450 
4451 static long validate_slab_cache(struct kmem_cache *s)
4452 {
4453 	int node;
4454 	unsigned long count = 0;
4455 	struct kmem_cache_node *n;
4456 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4457 
4458 	if (!map)
4459 		return -ENOMEM;
4460 
4461 	flush_all(s);
4462 	for_each_kmem_cache_node(s, node, n)
4463 		count += validate_slab_node(s, n, map);
4464 	bitmap_free(map);
4465 	return count;
4466 }
4467 /*
4468  * Generate lists of code addresses where slabcache objects are allocated
4469  * and freed.
4470  */
4471 
4472 struct location {
4473 	unsigned long count;
4474 	unsigned long addr;
4475 	long long sum_time;
4476 	long min_time;
4477 	long max_time;
4478 	long min_pid;
4479 	long max_pid;
4480 	DECLARE_BITMAP(cpus, NR_CPUS);
4481 	nodemask_t nodes;
4482 };
4483 
4484 struct loc_track {
4485 	unsigned long max;
4486 	unsigned long count;
4487 	struct location *loc;
4488 };
4489 
4490 static void free_loc_track(struct loc_track *t)
4491 {
4492 	if (t->max)
4493 		free_pages((unsigned long)t->loc,
4494 			get_order(sizeof(struct location) * t->max));
4495 }
4496 
4497 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4498 {
4499 	struct location *l;
4500 	int order;
4501 
4502 	order = get_order(sizeof(struct location) * max);
4503 
4504 	l = (void *)__get_free_pages(flags, order);
4505 	if (!l)
4506 		return 0;
4507 
4508 	if (t->count) {
4509 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4510 		free_loc_track(t);
4511 	}
4512 	t->max = max;
4513 	t->loc = l;
4514 	return 1;
4515 }
4516 
4517 static int add_location(struct loc_track *t, struct kmem_cache *s,
4518 				const struct track *track)
4519 {
4520 	long start, end, pos;
4521 	struct location *l;
4522 	unsigned long caddr;
4523 	unsigned long age = jiffies - track->when;
4524 
4525 	start = -1;
4526 	end = t->count;
4527 
4528 	for ( ; ; ) {
4529 		pos = start + (end - start + 1) / 2;
4530 
4531 		/*
4532 		 * There is nothing at "end". If we end up there
4533 		 * we need to add something to before end.
4534 		 */
4535 		if (pos == end)
4536 			break;
4537 
4538 		caddr = t->loc[pos].addr;
4539 		if (track->addr == caddr) {
4540 
4541 			l = &t->loc[pos];
4542 			l->count++;
4543 			if (track->when) {
4544 				l->sum_time += age;
4545 				if (age < l->min_time)
4546 					l->min_time = age;
4547 				if (age > l->max_time)
4548 					l->max_time = age;
4549 
4550 				if (track->pid < l->min_pid)
4551 					l->min_pid = track->pid;
4552 				if (track->pid > l->max_pid)
4553 					l->max_pid = track->pid;
4554 
4555 				cpumask_set_cpu(track->cpu,
4556 						to_cpumask(l->cpus));
4557 			}
4558 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4559 			return 1;
4560 		}
4561 
4562 		if (track->addr < caddr)
4563 			end = pos;
4564 		else
4565 			start = pos;
4566 	}
4567 
4568 	/*
4569 	 * Not found. Insert new tracking element.
4570 	 */
4571 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4572 		return 0;
4573 
4574 	l = t->loc + pos;
4575 	if (pos < t->count)
4576 		memmove(l + 1, l,
4577 			(t->count - pos) * sizeof(struct location));
4578 	t->count++;
4579 	l->count = 1;
4580 	l->addr = track->addr;
4581 	l->sum_time = age;
4582 	l->min_time = age;
4583 	l->max_time = age;
4584 	l->min_pid = track->pid;
4585 	l->max_pid = track->pid;
4586 	cpumask_clear(to_cpumask(l->cpus));
4587 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4588 	nodes_clear(l->nodes);
4589 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4590 	return 1;
4591 }
4592 
4593 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4594 		struct page *page, enum track_item alloc,
4595 		unsigned long *map)
4596 {
4597 	void *addr = page_address(page);
4598 	void *p;
4599 
4600 	bitmap_zero(map, page->objects);
4601 	get_map(s, page, map);
4602 
4603 	for_each_object(p, s, addr, page->objects)
4604 		if (!test_bit(slab_index(p, s, addr), map))
4605 			add_location(t, s, get_track(s, p, alloc));
4606 }
4607 
4608 static int list_locations(struct kmem_cache *s, char *buf,
4609 					enum track_item alloc)
4610 {
4611 	int len = 0;
4612 	unsigned long i;
4613 	struct loc_track t = { 0, 0, NULL };
4614 	int node;
4615 	struct kmem_cache_node *n;
4616 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4617 
4618 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4619 				     GFP_KERNEL)) {
4620 		bitmap_free(map);
4621 		return sprintf(buf, "Out of memory\n");
4622 	}
4623 	/* Push back cpu slabs */
4624 	flush_all(s);
4625 
4626 	for_each_kmem_cache_node(s, node, n) {
4627 		unsigned long flags;
4628 		struct page *page;
4629 
4630 		if (!atomic_long_read(&n->nr_slabs))
4631 			continue;
4632 
4633 		spin_lock_irqsave(&n->list_lock, flags);
4634 		list_for_each_entry(page, &n->partial, slab_list)
4635 			process_slab(&t, s, page, alloc, map);
4636 		list_for_each_entry(page, &n->full, slab_list)
4637 			process_slab(&t, s, page, alloc, map);
4638 		spin_unlock_irqrestore(&n->list_lock, flags);
4639 	}
4640 
4641 	for (i = 0; i < t.count; i++) {
4642 		struct location *l = &t.loc[i];
4643 
4644 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4645 			break;
4646 		len += sprintf(buf + len, "%7ld ", l->count);
4647 
4648 		if (l->addr)
4649 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4650 		else
4651 			len += sprintf(buf + len, "<not-available>");
4652 
4653 		if (l->sum_time != l->min_time) {
4654 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4655 				l->min_time,
4656 				(long)div_u64(l->sum_time, l->count),
4657 				l->max_time);
4658 		} else
4659 			len += sprintf(buf + len, " age=%ld",
4660 				l->min_time);
4661 
4662 		if (l->min_pid != l->max_pid)
4663 			len += sprintf(buf + len, " pid=%ld-%ld",
4664 				l->min_pid, l->max_pid);
4665 		else
4666 			len += sprintf(buf + len, " pid=%ld",
4667 				l->min_pid);
4668 
4669 		if (num_online_cpus() > 1 &&
4670 				!cpumask_empty(to_cpumask(l->cpus)) &&
4671 				len < PAGE_SIZE - 60)
4672 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4673 					 " cpus=%*pbl",
4674 					 cpumask_pr_args(to_cpumask(l->cpus)));
4675 
4676 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4677 				len < PAGE_SIZE - 60)
4678 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4679 					 " nodes=%*pbl",
4680 					 nodemask_pr_args(&l->nodes));
4681 
4682 		len += sprintf(buf + len, "\n");
4683 	}
4684 
4685 	free_loc_track(&t);
4686 	bitmap_free(map);
4687 	if (!t.count)
4688 		len += sprintf(buf, "No data\n");
4689 	return len;
4690 }
4691 #endif	/* CONFIG_SLUB_DEBUG */
4692 
4693 #ifdef SLUB_RESILIENCY_TEST
4694 static void __init resiliency_test(void)
4695 {
4696 	u8 *p;
4697 	int type = KMALLOC_NORMAL;
4698 
4699 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4700 
4701 	pr_err("SLUB resiliency testing\n");
4702 	pr_err("-----------------------\n");
4703 	pr_err("A. Corruption after allocation\n");
4704 
4705 	p = kzalloc(16, GFP_KERNEL);
4706 	p[16] = 0x12;
4707 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4708 	       p + 16);
4709 
4710 	validate_slab_cache(kmalloc_caches[type][4]);
4711 
4712 	/* Hmmm... The next two are dangerous */
4713 	p = kzalloc(32, GFP_KERNEL);
4714 	p[32 + sizeof(void *)] = 0x34;
4715 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4716 	       p);
4717 	pr_err("If allocated object is overwritten then not detectable\n\n");
4718 
4719 	validate_slab_cache(kmalloc_caches[type][5]);
4720 	p = kzalloc(64, GFP_KERNEL);
4721 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4722 	*p = 0x56;
4723 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4724 	       p);
4725 	pr_err("If allocated object is overwritten then not detectable\n\n");
4726 	validate_slab_cache(kmalloc_caches[type][6]);
4727 
4728 	pr_err("\nB. Corruption after free\n");
4729 	p = kzalloc(128, GFP_KERNEL);
4730 	kfree(p);
4731 	*p = 0x78;
4732 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4733 	validate_slab_cache(kmalloc_caches[type][7]);
4734 
4735 	p = kzalloc(256, GFP_KERNEL);
4736 	kfree(p);
4737 	p[50] = 0x9a;
4738 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4739 	validate_slab_cache(kmalloc_caches[type][8]);
4740 
4741 	p = kzalloc(512, GFP_KERNEL);
4742 	kfree(p);
4743 	p[512] = 0xab;
4744 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4745 	validate_slab_cache(kmalloc_caches[type][9]);
4746 }
4747 #else
4748 #ifdef CONFIG_SYSFS
4749 static void resiliency_test(void) {};
4750 #endif
4751 #endif	/* SLUB_RESILIENCY_TEST */
4752 
4753 #ifdef CONFIG_SYSFS
4754 enum slab_stat_type {
4755 	SL_ALL,			/* All slabs */
4756 	SL_PARTIAL,		/* Only partially allocated slabs */
4757 	SL_CPU,			/* Only slabs used for cpu caches */
4758 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4759 	SL_TOTAL		/* Determine object capacity not slabs */
4760 };
4761 
4762 #define SO_ALL		(1 << SL_ALL)
4763 #define SO_PARTIAL	(1 << SL_PARTIAL)
4764 #define SO_CPU		(1 << SL_CPU)
4765 #define SO_OBJECTS	(1 << SL_OBJECTS)
4766 #define SO_TOTAL	(1 << SL_TOTAL)
4767 
4768 #ifdef CONFIG_MEMCG
4769 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4770 
4771 static int __init setup_slub_memcg_sysfs(char *str)
4772 {
4773 	int v;
4774 
4775 	if (get_option(&str, &v) > 0)
4776 		memcg_sysfs_enabled = v;
4777 
4778 	return 1;
4779 }
4780 
4781 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4782 #endif
4783 
4784 static ssize_t show_slab_objects(struct kmem_cache *s,
4785 			    char *buf, unsigned long flags)
4786 {
4787 	unsigned long total = 0;
4788 	int node;
4789 	int x;
4790 	unsigned long *nodes;
4791 
4792 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4793 	if (!nodes)
4794 		return -ENOMEM;
4795 
4796 	if (flags & SO_CPU) {
4797 		int cpu;
4798 
4799 		for_each_possible_cpu(cpu) {
4800 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4801 							       cpu);
4802 			int node;
4803 			struct page *page;
4804 
4805 			page = READ_ONCE(c->page);
4806 			if (!page)
4807 				continue;
4808 
4809 			node = page_to_nid(page);
4810 			if (flags & SO_TOTAL)
4811 				x = page->objects;
4812 			else if (flags & SO_OBJECTS)
4813 				x = page->inuse;
4814 			else
4815 				x = 1;
4816 
4817 			total += x;
4818 			nodes[node] += x;
4819 
4820 			page = slub_percpu_partial_read_once(c);
4821 			if (page) {
4822 				node = page_to_nid(page);
4823 				if (flags & SO_TOTAL)
4824 					WARN_ON_ONCE(1);
4825 				else if (flags & SO_OBJECTS)
4826 					WARN_ON_ONCE(1);
4827 				else
4828 					x = page->pages;
4829 				total += x;
4830 				nodes[node] += x;
4831 			}
4832 		}
4833 	}
4834 
4835 	get_online_mems();
4836 #ifdef CONFIG_SLUB_DEBUG
4837 	if (flags & SO_ALL) {
4838 		struct kmem_cache_node *n;
4839 
4840 		for_each_kmem_cache_node(s, node, n) {
4841 
4842 			if (flags & SO_TOTAL)
4843 				x = atomic_long_read(&n->total_objects);
4844 			else if (flags & SO_OBJECTS)
4845 				x = atomic_long_read(&n->total_objects) -
4846 					count_partial(n, count_free);
4847 			else
4848 				x = atomic_long_read(&n->nr_slabs);
4849 			total += x;
4850 			nodes[node] += x;
4851 		}
4852 
4853 	} else
4854 #endif
4855 	if (flags & SO_PARTIAL) {
4856 		struct kmem_cache_node *n;
4857 
4858 		for_each_kmem_cache_node(s, node, n) {
4859 			if (flags & SO_TOTAL)
4860 				x = count_partial(n, count_total);
4861 			else if (flags & SO_OBJECTS)
4862 				x = count_partial(n, count_inuse);
4863 			else
4864 				x = n->nr_partial;
4865 			total += x;
4866 			nodes[node] += x;
4867 		}
4868 	}
4869 	x = sprintf(buf, "%lu", total);
4870 #ifdef CONFIG_NUMA
4871 	for (node = 0; node < nr_node_ids; node++)
4872 		if (nodes[node])
4873 			x += sprintf(buf + x, " N%d=%lu",
4874 					node, nodes[node]);
4875 #endif
4876 	put_online_mems();
4877 	kfree(nodes);
4878 	return x + sprintf(buf + x, "\n");
4879 }
4880 
4881 #ifdef CONFIG_SLUB_DEBUG
4882 static int any_slab_objects(struct kmem_cache *s)
4883 {
4884 	int node;
4885 	struct kmem_cache_node *n;
4886 
4887 	for_each_kmem_cache_node(s, node, n)
4888 		if (atomic_long_read(&n->total_objects))
4889 			return 1;
4890 
4891 	return 0;
4892 }
4893 #endif
4894 
4895 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4896 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4897 
4898 struct slab_attribute {
4899 	struct attribute attr;
4900 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4901 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4902 };
4903 
4904 #define SLAB_ATTR_RO(_name) \
4905 	static struct slab_attribute _name##_attr = \
4906 	__ATTR(_name, 0400, _name##_show, NULL)
4907 
4908 #define SLAB_ATTR(_name) \
4909 	static struct slab_attribute _name##_attr =  \
4910 	__ATTR(_name, 0600, _name##_show, _name##_store)
4911 
4912 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4913 {
4914 	return sprintf(buf, "%u\n", s->size);
4915 }
4916 SLAB_ATTR_RO(slab_size);
4917 
4918 static ssize_t align_show(struct kmem_cache *s, char *buf)
4919 {
4920 	return sprintf(buf, "%u\n", s->align);
4921 }
4922 SLAB_ATTR_RO(align);
4923 
4924 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4925 {
4926 	return sprintf(buf, "%u\n", s->object_size);
4927 }
4928 SLAB_ATTR_RO(object_size);
4929 
4930 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4931 {
4932 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4933 }
4934 SLAB_ATTR_RO(objs_per_slab);
4935 
4936 static ssize_t order_store(struct kmem_cache *s,
4937 				const char *buf, size_t length)
4938 {
4939 	unsigned int order;
4940 	int err;
4941 
4942 	err = kstrtouint(buf, 10, &order);
4943 	if (err)
4944 		return err;
4945 
4946 	if (order > slub_max_order || order < slub_min_order)
4947 		return -EINVAL;
4948 
4949 	calculate_sizes(s, order);
4950 	return length;
4951 }
4952 
4953 static ssize_t order_show(struct kmem_cache *s, char *buf)
4954 {
4955 	return sprintf(buf, "%u\n", oo_order(s->oo));
4956 }
4957 SLAB_ATTR(order);
4958 
4959 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4960 {
4961 	return sprintf(buf, "%lu\n", s->min_partial);
4962 }
4963 
4964 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4965 				 size_t length)
4966 {
4967 	unsigned long min;
4968 	int err;
4969 
4970 	err = kstrtoul(buf, 10, &min);
4971 	if (err)
4972 		return err;
4973 
4974 	set_min_partial(s, min);
4975 	return length;
4976 }
4977 SLAB_ATTR(min_partial);
4978 
4979 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4980 {
4981 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4982 }
4983 
4984 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4985 				 size_t length)
4986 {
4987 	unsigned int objects;
4988 	int err;
4989 
4990 	err = kstrtouint(buf, 10, &objects);
4991 	if (err)
4992 		return err;
4993 	if (objects && !kmem_cache_has_cpu_partial(s))
4994 		return -EINVAL;
4995 
4996 	slub_set_cpu_partial(s, objects);
4997 	flush_all(s);
4998 	return length;
4999 }
5000 SLAB_ATTR(cpu_partial);
5001 
5002 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5003 {
5004 	if (!s->ctor)
5005 		return 0;
5006 	return sprintf(buf, "%pS\n", s->ctor);
5007 }
5008 SLAB_ATTR_RO(ctor);
5009 
5010 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5011 {
5012 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5013 }
5014 SLAB_ATTR_RO(aliases);
5015 
5016 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5017 {
5018 	return show_slab_objects(s, buf, SO_PARTIAL);
5019 }
5020 SLAB_ATTR_RO(partial);
5021 
5022 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5023 {
5024 	return show_slab_objects(s, buf, SO_CPU);
5025 }
5026 SLAB_ATTR_RO(cpu_slabs);
5027 
5028 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5029 {
5030 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5031 }
5032 SLAB_ATTR_RO(objects);
5033 
5034 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5035 {
5036 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5037 }
5038 SLAB_ATTR_RO(objects_partial);
5039 
5040 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5041 {
5042 	int objects = 0;
5043 	int pages = 0;
5044 	int cpu;
5045 	int len;
5046 
5047 	for_each_online_cpu(cpu) {
5048 		struct page *page;
5049 
5050 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5051 
5052 		if (page) {
5053 			pages += page->pages;
5054 			objects += page->pobjects;
5055 		}
5056 	}
5057 
5058 	len = sprintf(buf, "%d(%d)", objects, pages);
5059 
5060 #ifdef CONFIG_SMP
5061 	for_each_online_cpu(cpu) {
5062 		struct page *page;
5063 
5064 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5065 
5066 		if (page && len < PAGE_SIZE - 20)
5067 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5068 				page->pobjects, page->pages);
5069 	}
5070 #endif
5071 	return len + sprintf(buf + len, "\n");
5072 }
5073 SLAB_ATTR_RO(slabs_cpu_partial);
5074 
5075 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5076 {
5077 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5078 }
5079 
5080 static ssize_t reclaim_account_store(struct kmem_cache *s,
5081 				const char *buf, size_t length)
5082 {
5083 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5084 	if (buf[0] == '1')
5085 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5086 	return length;
5087 }
5088 SLAB_ATTR(reclaim_account);
5089 
5090 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5091 {
5092 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5093 }
5094 SLAB_ATTR_RO(hwcache_align);
5095 
5096 #ifdef CONFIG_ZONE_DMA
5097 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5098 {
5099 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5100 }
5101 SLAB_ATTR_RO(cache_dma);
5102 #endif
5103 
5104 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5105 {
5106 	return sprintf(buf, "%u\n", s->usersize);
5107 }
5108 SLAB_ATTR_RO(usersize);
5109 
5110 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5111 {
5112 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5113 }
5114 SLAB_ATTR_RO(destroy_by_rcu);
5115 
5116 #ifdef CONFIG_SLUB_DEBUG
5117 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5118 {
5119 	return show_slab_objects(s, buf, SO_ALL);
5120 }
5121 SLAB_ATTR_RO(slabs);
5122 
5123 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5124 {
5125 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5126 }
5127 SLAB_ATTR_RO(total_objects);
5128 
5129 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5130 {
5131 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5132 }
5133 
5134 static ssize_t sanity_checks_store(struct kmem_cache *s,
5135 				const char *buf, size_t length)
5136 {
5137 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5138 	if (buf[0] == '1') {
5139 		s->flags &= ~__CMPXCHG_DOUBLE;
5140 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5141 	}
5142 	return length;
5143 }
5144 SLAB_ATTR(sanity_checks);
5145 
5146 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5147 {
5148 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5149 }
5150 
5151 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5152 							size_t length)
5153 {
5154 	/*
5155 	 * Tracing a merged cache is going to give confusing results
5156 	 * as well as cause other issues like converting a mergeable
5157 	 * cache into an umergeable one.
5158 	 */
5159 	if (s->refcount > 1)
5160 		return -EINVAL;
5161 
5162 	s->flags &= ~SLAB_TRACE;
5163 	if (buf[0] == '1') {
5164 		s->flags &= ~__CMPXCHG_DOUBLE;
5165 		s->flags |= SLAB_TRACE;
5166 	}
5167 	return length;
5168 }
5169 SLAB_ATTR(trace);
5170 
5171 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5172 {
5173 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5174 }
5175 
5176 static ssize_t red_zone_store(struct kmem_cache *s,
5177 				const char *buf, size_t length)
5178 {
5179 	if (any_slab_objects(s))
5180 		return -EBUSY;
5181 
5182 	s->flags &= ~SLAB_RED_ZONE;
5183 	if (buf[0] == '1') {
5184 		s->flags |= SLAB_RED_ZONE;
5185 	}
5186 	calculate_sizes(s, -1);
5187 	return length;
5188 }
5189 SLAB_ATTR(red_zone);
5190 
5191 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5192 {
5193 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5194 }
5195 
5196 static ssize_t poison_store(struct kmem_cache *s,
5197 				const char *buf, size_t length)
5198 {
5199 	if (any_slab_objects(s))
5200 		return -EBUSY;
5201 
5202 	s->flags &= ~SLAB_POISON;
5203 	if (buf[0] == '1') {
5204 		s->flags |= SLAB_POISON;
5205 	}
5206 	calculate_sizes(s, -1);
5207 	return length;
5208 }
5209 SLAB_ATTR(poison);
5210 
5211 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5212 {
5213 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5214 }
5215 
5216 static ssize_t store_user_store(struct kmem_cache *s,
5217 				const char *buf, size_t length)
5218 {
5219 	if (any_slab_objects(s))
5220 		return -EBUSY;
5221 
5222 	s->flags &= ~SLAB_STORE_USER;
5223 	if (buf[0] == '1') {
5224 		s->flags &= ~__CMPXCHG_DOUBLE;
5225 		s->flags |= SLAB_STORE_USER;
5226 	}
5227 	calculate_sizes(s, -1);
5228 	return length;
5229 }
5230 SLAB_ATTR(store_user);
5231 
5232 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5233 {
5234 	return 0;
5235 }
5236 
5237 static ssize_t validate_store(struct kmem_cache *s,
5238 			const char *buf, size_t length)
5239 {
5240 	int ret = -EINVAL;
5241 
5242 	if (buf[0] == '1') {
5243 		ret = validate_slab_cache(s);
5244 		if (ret >= 0)
5245 			ret = length;
5246 	}
5247 	return ret;
5248 }
5249 SLAB_ATTR(validate);
5250 
5251 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5252 {
5253 	if (!(s->flags & SLAB_STORE_USER))
5254 		return -ENOSYS;
5255 	return list_locations(s, buf, TRACK_ALLOC);
5256 }
5257 SLAB_ATTR_RO(alloc_calls);
5258 
5259 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5260 {
5261 	if (!(s->flags & SLAB_STORE_USER))
5262 		return -ENOSYS;
5263 	return list_locations(s, buf, TRACK_FREE);
5264 }
5265 SLAB_ATTR_RO(free_calls);
5266 #endif /* CONFIG_SLUB_DEBUG */
5267 
5268 #ifdef CONFIG_FAILSLAB
5269 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5270 {
5271 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5272 }
5273 
5274 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5275 							size_t length)
5276 {
5277 	if (s->refcount > 1)
5278 		return -EINVAL;
5279 
5280 	s->flags &= ~SLAB_FAILSLAB;
5281 	if (buf[0] == '1')
5282 		s->flags |= SLAB_FAILSLAB;
5283 	return length;
5284 }
5285 SLAB_ATTR(failslab);
5286 #endif
5287 
5288 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5289 {
5290 	return 0;
5291 }
5292 
5293 static ssize_t shrink_store(struct kmem_cache *s,
5294 			const char *buf, size_t length)
5295 {
5296 	if (buf[0] == '1')
5297 		kmem_cache_shrink(s);
5298 	else
5299 		return -EINVAL;
5300 	return length;
5301 }
5302 SLAB_ATTR(shrink);
5303 
5304 #ifdef CONFIG_NUMA
5305 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5306 {
5307 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5308 }
5309 
5310 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5311 				const char *buf, size_t length)
5312 {
5313 	unsigned int ratio;
5314 	int err;
5315 
5316 	err = kstrtouint(buf, 10, &ratio);
5317 	if (err)
5318 		return err;
5319 	if (ratio > 100)
5320 		return -ERANGE;
5321 
5322 	s->remote_node_defrag_ratio = ratio * 10;
5323 
5324 	return length;
5325 }
5326 SLAB_ATTR(remote_node_defrag_ratio);
5327 #endif
5328 
5329 #ifdef CONFIG_SLUB_STATS
5330 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5331 {
5332 	unsigned long sum  = 0;
5333 	int cpu;
5334 	int len;
5335 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5336 
5337 	if (!data)
5338 		return -ENOMEM;
5339 
5340 	for_each_online_cpu(cpu) {
5341 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5342 
5343 		data[cpu] = x;
5344 		sum += x;
5345 	}
5346 
5347 	len = sprintf(buf, "%lu", sum);
5348 
5349 #ifdef CONFIG_SMP
5350 	for_each_online_cpu(cpu) {
5351 		if (data[cpu] && len < PAGE_SIZE - 20)
5352 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5353 	}
5354 #endif
5355 	kfree(data);
5356 	return len + sprintf(buf + len, "\n");
5357 }
5358 
5359 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5360 {
5361 	int cpu;
5362 
5363 	for_each_online_cpu(cpu)
5364 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5365 }
5366 
5367 #define STAT_ATTR(si, text) 					\
5368 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5369 {								\
5370 	return show_stat(s, buf, si);				\
5371 }								\
5372 static ssize_t text##_store(struct kmem_cache *s,		\
5373 				const char *buf, size_t length)	\
5374 {								\
5375 	if (buf[0] != '0')					\
5376 		return -EINVAL;					\
5377 	clear_stat(s, si);					\
5378 	return length;						\
5379 }								\
5380 SLAB_ATTR(text);						\
5381 
5382 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5383 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5384 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5385 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5386 STAT_ATTR(FREE_FROZEN, free_frozen);
5387 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5388 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5389 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5390 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5391 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5392 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5393 STAT_ATTR(FREE_SLAB, free_slab);
5394 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5395 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5396 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5397 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5398 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5399 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5400 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5401 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5402 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5403 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5404 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5405 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5406 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5407 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5408 #endif	/* CONFIG_SLUB_STATS */
5409 
5410 static struct attribute *slab_attrs[] = {
5411 	&slab_size_attr.attr,
5412 	&object_size_attr.attr,
5413 	&objs_per_slab_attr.attr,
5414 	&order_attr.attr,
5415 	&min_partial_attr.attr,
5416 	&cpu_partial_attr.attr,
5417 	&objects_attr.attr,
5418 	&objects_partial_attr.attr,
5419 	&partial_attr.attr,
5420 	&cpu_slabs_attr.attr,
5421 	&ctor_attr.attr,
5422 	&aliases_attr.attr,
5423 	&align_attr.attr,
5424 	&hwcache_align_attr.attr,
5425 	&reclaim_account_attr.attr,
5426 	&destroy_by_rcu_attr.attr,
5427 	&shrink_attr.attr,
5428 	&slabs_cpu_partial_attr.attr,
5429 #ifdef CONFIG_SLUB_DEBUG
5430 	&total_objects_attr.attr,
5431 	&slabs_attr.attr,
5432 	&sanity_checks_attr.attr,
5433 	&trace_attr.attr,
5434 	&red_zone_attr.attr,
5435 	&poison_attr.attr,
5436 	&store_user_attr.attr,
5437 	&validate_attr.attr,
5438 	&alloc_calls_attr.attr,
5439 	&free_calls_attr.attr,
5440 #endif
5441 #ifdef CONFIG_ZONE_DMA
5442 	&cache_dma_attr.attr,
5443 #endif
5444 #ifdef CONFIG_NUMA
5445 	&remote_node_defrag_ratio_attr.attr,
5446 #endif
5447 #ifdef CONFIG_SLUB_STATS
5448 	&alloc_fastpath_attr.attr,
5449 	&alloc_slowpath_attr.attr,
5450 	&free_fastpath_attr.attr,
5451 	&free_slowpath_attr.attr,
5452 	&free_frozen_attr.attr,
5453 	&free_add_partial_attr.attr,
5454 	&free_remove_partial_attr.attr,
5455 	&alloc_from_partial_attr.attr,
5456 	&alloc_slab_attr.attr,
5457 	&alloc_refill_attr.attr,
5458 	&alloc_node_mismatch_attr.attr,
5459 	&free_slab_attr.attr,
5460 	&cpuslab_flush_attr.attr,
5461 	&deactivate_full_attr.attr,
5462 	&deactivate_empty_attr.attr,
5463 	&deactivate_to_head_attr.attr,
5464 	&deactivate_to_tail_attr.attr,
5465 	&deactivate_remote_frees_attr.attr,
5466 	&deactivate_bypass_attr.attr,
5467 	&order_fallback_attr.attr,
5468 	&cmpxchg_double_fail_attr.attr,
5469 	&cmpxchg_double_cpu_fail_attr.attr,
5470 	&cpu_partial_alloc_attr.attr,
5471 	&cpu_partial_free_attr.attr,
5472 	&cpu_partial_node_attr.attr,
5473 	&cpu_partial_drain_attr.attr,
5474 #endif
5475 #ifdef CONFIG_FAILSLAB
5476 	&failslab_attr.attr,
5477 #endif
5478 	&usersize_attr.attr,
5479 
5480 	NULL
5481 };
5482 
5483 static const struct attribute_group slab_attr_group = {
5484 	.attrs = slab_attrs,
5485 };
5486 
5487 static ssize_t slab_attr_show(struct kobject *kobj,
5488 				struct attribute *attr,
5489 				char *buf)
5490 {
5491 	struct slab_attribute *attribute;
5492 	struct kmem_cache *s;
5493 	int err;
5494 
5495 	attribute = to_slab_attr(attr);
5496 	s = to_slab(kobj);
5497 
5498 	if (!attribute->show)
5499 		return -EIO;
5500 
5501 	err = attribute->show(s, buf);
5502 
5503 	return err;
5504 }
5505 
5506 static ssize_t slab_attr_store(struct kobject *kobj,
5507 				struct attribute *attr,
5508 				const char *buf, size_t len)
5509 {
5510 	struct slab_attribute *attribute;
5511 	struct kmem_cache *s;
5512 	int err;
5513 
5514 	attribute = to_slab_attr(attr);
5515 	s = to_slab(kobj);
5516 
5517 	if (!attribute->store)
5518 		return -EIO;
5519 
5520 	err = attribute->store(s, buf, len);
5521 #ifdef CONFIG_MEMCG
5522 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5523 		struct kmem_cache *c;
5524 
5525 		mutex_lock(&slab_mutex);
5526 		if (s->max_attr_size < len)
5527 			s->max_attr_size = len;
5528 
5529 		/*
5530 		 * This is a best effort propagation, so this function's return
5531 		 * value will be determined by the parent cache only. This is
5532 		 * basically because not all attributes will have a well
5533 		 * defined semantics for rollbacks - most of the actions will
5534 		 * have permanent effects.
5535 		 *
5536 		 * Returning the error value of any of the children that fail
5537 		 * is not 100 % defined, in the sense that users seeing the
5538 		 * error code won't be able to know anything about the state of
5539 		 * the cache.
5540 		 *
5541 		 * Only returning the error code for the parent cache at least
5542 		 * has well defined semantics. The cache being written to
5543 		 * directly either failed or succeeded, in which case we loop
5544 		 * through the descendants with best-effort propagation.
5545 		 */
5546 		for_each_memcg_cache(c, s)
5547 			attribute->store(c, buf, len);
5548 		mutex_unlock(&slab_mutex);
5549 	}
5550 #endif
5551 	return err;
5552 }
5553 
5554 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5555 {
5556 #ifdef CONFIG_MEMCG
5557 	int i;
5558 	char *buffer = NULL;
5559 	struct kmem_cache *root_cache;
5560 
5561 	if (is_root_cache(s))
5562 		return;
5563 
5564 	root_cache = s->memcg_params.root_cache;
5565 
5566 	/*
5567 	 * This mean this cache had no attribute written. Therefore, no point
5568 	 * in copying default values around
5569 	 */
5570 	if (!root_cache->max_attr_size)
5571 		return;
5572 
5573 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5574 		char mbuf[64];
5575 		char *buf;
5576 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5577 		ssize_t len;
5578 
5579 		if (!attr || !attr->store || !attr->show)
5580 			continue;
5581 
5582 		/*
5583 		 * It is really bad that we have to allocate here, so we will
5584 		 * do it only as a fallback. If we actually allocate, though,
5585 		 * we can just use the allocated buffer until the end.
5586 		 *
5587 		 * Most of the slub attributes will tend to be very small in
5588 		 * size, but sysfs allows buffers up to a page, so they can
5589 		 * theoretically happen.
5590 		 */
5591 		if (buffer)
5592 			buf = buffer;
5593 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5594 			buf = mbuf;
5595 		else {
5596 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5597 			if (WARN_ON(!buffer))
5598 				continue;
5599 			buf = buffer;
5600 		}
5601 
5602 		len = attr->show(root_cache, buf);
5603 		if (len > 0)
5604 			attr->store(s, buf, len);
5605 	}
5606 
5607 	if (buffer)
5608 		free_page((unsigned long)buffer);
5609 #endif	/* CONFIG_MEMCG */
5610 }
5611 
5612 static void kmem_cache_release(struct kobject *k)
5613 {
5614 	slab_kmem_cache_release(to_slab(k));
5615 }
5616 
5617 static const struct sysfs_ops slab_sysfs_ops = {
5618 	.show = slab_attr_show,
5619 	.store = slab_attr_store,
5620 };
5621 
5622 static struct kobj_type slab_ktype = {
5623 	.sysfs_ops = &slab_sysfs_ops,
5624 	.release = kmem_cache_release,
5625 };
5626 
5627 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5628 {
5629 	struct kobj_type *ktype = get_ktype(kobj);
5630 
5631 	if (ktype == &slab_ktype)
5632 		return 1;
5633 	return 0;
5634 }
5635 
5636 static const struct kset_uevent_ops slab_uevent_ops = {
5637 	.filter = uevent_filter,
5638 };
5639 
5640 static struct kset *slab_kset;
5641 
5642 static inline struct kset *cache_kset(struct kmem_cache *s)
5643 {
5644 #ifdef CONFIG_MEMCG
5645 	if (!is_root_cache(s))
5646 		return s->memcg_params.root_cache->memcg_kset;
5647 #endif
5648 	return slab_kset;
5649 }
5650 
5651 #define ID_STR_LENGTH 64
5652 
5653 /* Create a unique string id for a slab cache:
5654  *
5655  * Format	:[flags-]size
5656  */
5657 static char *create_unique_id(struct kmem_cache *s)
5658 {
5659 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5660 	char *p = name;
5661 
5662 	BUG_ON(!name);
5663 
5664 	*p++ = ':';
5665 	/*
5666 	 * First flags affecting slabcache operations. We will only
5667 	 * get here for aliasable slabs so we do not need to support
5668 	 * too many flags. The flags here must cover all flags that
5669 	 * are matched during merging to guarantee that the id is
5670 	 * unique.
5671 	 */
5672 	if (s->flags & SLAB_CACHE_DMA)
5673 		*p++ = 'd';
5674 	if (s->flags & SLAB_CACHE_DMA32)
5675 		*p++ = 'D';
5676 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5677 		*p++ = 'a';
5678 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5679 		*p++ = 'F';
5680 	if (s->flags & SLAB_ACCOUNT)
5681 		*p++ = 'A';
5682 	if (p != name + 1)
5683 		*p++ = '-';
5684 	p += sprintf(p, "%07u", s->size);
5685 
5686 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5687 	return name;
5688 }
5689 
5690 static void sysfs_slab_remove_workfn(struct work_struct *work)
5691 {
5692 	struct kmem_cache *s =
5693 		container_of(work, struct kmem_cache, kobj_remove_work);
5694 
5695 	if (!s->kobj.state_in_sysfs)
5696 		/*
5697 		 * For a memcg cache, this may be called during
5698 		 * deactivation and again on shutdown.  Remove only once.
5699 		 * A cache is never shut down before deactivation is
5700 		 * complete, so no need to worry about synchronization.
5701 		 */
5702 		goto out;
5703 
5704 #ifdef CONFIG_MEMCG
5705 	kset_unregister(s->memcg_kset);
5706 #endif
5707 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5708 out:
5709 	kobject_put(&s->kobj);
5710 }
5711 
5712 static int sysfs_slab_add(struct kmem_cache *s)
5713 {
5714 	int err;
5715 	const char *name;
5716 	struct kset *kset = cache_kset(s);
5717 	int unmergeable = slab_unmergeable(s);
5718 
5719 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5720 
5721 	if (!kset) {
5722 		kobject_init(&s->kobj, &slab_ktype);
5723 		return 0;
5724 	}
5725 
5726 	if (!unmergeable && disable_higher_order_debug &&
5727 			(slub_debug & DEBUG_METADATA_FLAGS))
5728 		unmergeable = 1;
5729 
5730 	if (unmergeable) {
5731 		/*
5732 		 * Slabcache can never be merged so we can use the name proper.
5733 		 * This is typically the case for debug situations. In that
5734 		 * case we can catch duplicate names easily.
5735 		 */
5736 		sysfs_remove_link(&slab_kset->kobj, s->name);
5737 		name = s->name;
5738 	} else {
5739 		/*
5740 		 * Create a unique name for the slab as a target
5741 		 * for the symlinks.
5742 		 */
5743 		name = create_unique_id(s);
5744 	}
5745 
5746 	s->kobj.kset = kset;
5747 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5748 	if (err)
5749 		goto out;
5750 
5751 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5752 	if (err)
5753 		goto out_del_kobj;
5754 
5755 #ifdef CONFIG_MEMCG
5756 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5757 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5758 		if (!s->memcg_kset) {
5759 			err = -ENOMEM;
5760 			goto out_del_kobj;
5761 		}
5762 	}
5763 #endif
5764 
5765 	kobject_uevent(&s->kobj, KOBJ_ADD);
5766 	if (!unmergeable) {
5767 		/* Setup first alias */
5768 		sysfs_slab_alias(s, s->name);
5769 	}
5770 out:
5771 	if (!unmergeable)
5772 		kfree(name);
5773 	return err;
5774 out_del_kobj:
5775 	kobject_del(&s->kobj);
5776 	goto out;
5777 }
5778 
5779 static void sysfs_slab_remove(struct kmem_cache *s)
5780 {
5781 	if (slab_state < FULL)
5782 		/*
5783 		 * Sysfs has not been setup yet so no need to remove the
5784 		 * cache from sysfs.
5785 		 */
5786 		return;
5787 
5788 	kobject_get(&s->kobj);
5789 	schedule_work(&s->kobj_remove_work);
5790 }
5791 
5792 void sysfs_slab_unlink(struct kmem_cache *s)
5793 {
5794 	if (slab_state >= FULL)
5795 		kobject_del(&s->kobj);
5796 }
5797 
5798 void sysfs_slab_release(struct kmem_cache *s)
5799 {
5800 	if (slab_state >= FULL)
5801 		kobject_put(&s->kobj);
5802 }
5803 
5804 /*
5805  * Need to buffer aliases during bootup until sysfs becomes
5806  * available lest we lose that information.
5807  */
5808 struct saved_alias {
5809 	struct kmem_cache *s;
5810 	const char *name;
5811 	struct saved_alias *next;
5812 };
5813 
5814 static struct saved_alias *alias_list;
5815 
5816 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5817 {
5818 	struct saved_alias *al;
5819 
5820 	if (slab_state == FULL) {
5821 		/*
5822 		 * If we have a leftover link then remove it.
5823 		 */
5824 		sysfs_remove_link(&slab_kset->kobj, name);
5825 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5826 	}
5827 
5828 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5829 	if (!al)
5830 		return -ENOMEM;
5831 
5832 	al->s = s;
5833 	al->name = name;
5834 	al->next = alias_list;
5835 	alias_list = al;
5836 	return 0;
5837 }
5838 
5839 static int __init slab_sysfs_init(void)
5840 {
5841 	struct kmem_cache *s;
5842 	int err;
5843 
5844 	mutex_lock(&slab_mutex);
5845 
5846 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5847 	if (!slab_kset) {
5848 		mutex_unlock(&slab_mutex);
5849 		pr_err("Cannot register slab subsystem.\n");
5850 		return -ENOSYS;
5851 	}
5852 
5853 	slab_state = FULL;
5854 
5855 	list_for_each_entry(s, &slab_caches, list) {
5856 		err = sysfs_slab_add(s);
5857 		if (err)
5858 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5859 			       s->name);
5860 	}
5861 
5862 	while (alias_list) {
5863 		struct saved_alias *al = alias_list;
5864 
5865 		alias_list = alias_list->next;
5866 		err = sysfs_slab_alias(al->s, al->name);
5867 		if (err)
5868 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5869 			       al->name);
5870 		kfree(al);
5871 	}
5872 
5873 	mutex_unlock(&slab_mutex);
5874 	resiliency_test();
5875 	return 0;
5876 }
5877 
5878 __initcall(slab_sysfs_init);
5879 #endif /* CONFIG_SYSFS */
5880 
5881 /*
5882  * The /proc/slabinfo ABI
5883  */
5884 #ifdef CONFIG_SLUB_DEBUG
5885 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5886 {
5887 	unsigned long nr_slabs = 0;
5888 	unsigned long nr_objs = 0;
5889 	unsigned long nr_free = 0;
5890 	int node;
5891 	struct kmem_cache_node *n;
5892 
5893 	for_each_kmem_cache_node(s, node, n) {
5894 		nr_slabs += node_nr_slabs(n);
5895 		nr_objs += node_nr_objs(n);
5896 		nr_free += count_partial(n, count_free);
5897 	}
5898 
5899 	sinfo->active_objs = nr_objs - nr_free;
5900 	sinfo->num_objs = nr_objs;
5901 	sinfo->active_slabs = nr_slabs;
5902 	sinfo->num_slabs = nr_slabs;
5903 	sinfo->objects_per_slab = oo_objects(s->oo);
5904 	sinfo->cache_order = oo_order(s->oo);
5905 }
5906 
5907 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5908 {
5909 }
5910 
5911 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5912 		       size_t count, loff_t *ppos)
5913 {
5914 	return -EIO;
5915 }
5916 #endif /* CONFIG_SLUB_DEBUG */
5917