xref: /linux/mm/slub.c (revision 45de28e31a6e250cd9e17c8b9f9db5a439fb39b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120 #else
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122 #endif
123 #endif
124 
125 static inline bool kmem_cache_debug(struct kmem_cache *s)
126 {
127 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128 }
129 
130 void *fixup_red_left(struct kmem_cache *s, void *p)
131 {
132 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
133 		p += s->red_left_pad;
134 
135 	return p;
136 }
137 
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 {
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 	return !kmem_cache_debug(s);
142 #else
143 	return false;
144 #endif
145 }
146 
147 /*
148  * Issues still to be resolved:
149  *
150  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151  *
152  * - Variable sizing of the per node arrays
153  */
154 
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
157 
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
160 
161 /*
162  * Mininum number of partial slabs. These will be left on the partial
163  * lists even if they are empty. kmem_cache_shrink may reclaim them.
164  */
165 #define MIN_PARTIAL 5
166 
167 /*
168  * Maximum number of desirable partial slabs.
169  * The existence of more partial slabs makes kmem_cache_shrink
170  * sort the partial list by the number of objects in use.
171  */
172 #define MAX_PARTIAL 10
173 
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 				SLAB_POISON | SLAB_STORE_USER)
176 
177 /*
178  * These debug flags cannot use CMPXCHG because there might be consistency
179  * issues when checking or reading debug information
180  */
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 				SLAB_TRACE)
183 
184 
185 /*
186  * Debugging flags that require metadata to be stored in the slab.  These get
187  * disabled when slub_debug=O is used and a cache's min order increases with
188  * metadata.
189  */
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 
192 #define OO_SHIFT	16
193 #define OO_MASK		((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
195 
196 /* Internal SLUB flags */
197 /* Poison object */
198 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
201 
202 /*
203  * Tracking user of a slab.
204  */
205 #define TRACK_ADDRS_COUNT 16
206 struct track {
207 	unsigned long addr;	/* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
210 #endif
211 	int cpu;		/* Was running on cpu */
212 	int pid;		/* Pid context */
213 	unsigned long when;	/* When did the operation occur */
214 };
215 
216 enum track_item { TRACK_ALLOC, TRACK_FREE };
217 
218 #ifdef CONFIG_SYSFS
219 static int sysfs_slab_add(struct kmem_cache *);
220 static int sysfs_slab_alias(struct kmem_cache *, const char *);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	return freelist_dereference(s, object + s->offset);
279 }
280 
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 	prefetch(object + s->offset);
284 }
285 
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 	unsigned long freepointer_addr;
289 	void *p;
290 
291 	if (!debug_pagealloc_enabled_static())
292 		return get_freepointer(s, object);
293 
294 	freepointer_addr = (unsigned long)object + s->offset;
295 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
296 	return freelist_ptr(s, p, freepointer_addr);
297 }
298 
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
302 
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 	BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306 
307 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309 
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 	for (__p = fixup_red_left(__s, __addr); \
313 		__p < (__addr) + (__objects) * (__s)->size; \
314 		__p += (__s)->size)
315 
316 static inline unsigned int order_objects(unsigned int order, unsigned int size)
317 {
318 	return ((unsigned int)PAGE_SIZE << order) / size;
319 }
320 
321 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
322 		unsigned int size)
323 {
324 	struct kmem_cache_order_objects x = {
325 		(order << OO_SHIFT) + order_objects(order, size)
326 	};
327 
328 	return x;
329 }
330 
331 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
332 {
333 	return x.x >> OO_SHIFT;
334 }
335 
336 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
337 {
338 	return x.x & OO_MASK;
339 }
340 
341 /*
342  * Per slab locking using the pagelock
343  */
344 static __always_inline void slab_lock(struct page *page)
345 {
346 	VM_BUG_ON_PAGE(PageTail(page), page);
347 	bit_spin_lock(PG_locked, &page->flags);
348 }
349 
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 	VM_BUG_ON_PAGE(PageTail(page), page);
353 	__bit_spin_unlock(PG_locked, &page->flags);
354 }
355 
356 /* Interrupts must be disabled (for the fallback code to work right) */
357 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 		void *freelist_old, unsigned long counters_old,
359 		void *freelist_new, unsigned long counters_new,
360 		const char *n)
361 {
362 	VM_BUG_ON(!irqs_disabled());
363 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
364     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
365 	if (s->flags & __CMPXCHG_DOUBLE) {
366 		if (cmpxchg_double(&page->freelist, &page->counters,
367 				   freelist_old, counters_old,
368 				   freelist_new, counters_new))
369 			return true;
370 	} else
371 #endif
372 	{
373 		slab_lock(page);
374 		if (page->freelist == freelist_old &&
375 					page->counters == counters_old) {
376 			page->freelist = freelist_new;
377 			page->counters = counters_new;
378 			slab_unlock(page);
379 			return true;
380 		}
381 		slab_unlock(page);
382 	}
383 
384 	cpu_relax();
385 	stat(s, CMPXCHG_DOUBLE_FAIL);
386 
387 #ifdef SLUB_DEBUG_CMPXCHG
388 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
389 #endif
390 
391 	return false;
392 }
393 
394 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 		void *freelist_old, unsigned long counters_old,
396 		void *freelist_new, unsigned long counters_new,
397 		const char *n)
398 {
399 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
401 	if (s->flags & __CMPXCHG_DOUBLE) {
402 		if (cmpxchg_double(&page->freelist, &page->counters,
403 				   freelist_old, counters_old,
404 				   freelist_new, counters_new))
405 			return true;
406 	} else
407 #endif
408 	{
409 		unsigned long flags;
410 
411 		local_irq_save(flags);
412 		slab_lock(page);
413 		if (page->freelist == freelist_old &&
414 					page->counters == counters_old) {
415 			page->freelist = freelist_new;
416 			page->counters = counters_new;
417 			slab_unlock(page);
418 			local_irq_restore(flags);
419 			return true;
420 		}
421 		slab_unlock(page);
422 		local_irq_restore(flags);
423 	}
424 
425 	cpu_relax();
426 	stat(s, CMPXCHG_DOUBLE_FAIL);
427 
428 #ifdef SLUB_DEBUG_CMPXCHG
429 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
430 #endif
431 
432 	return false;
433 }
434 
435 #ifdef CONFIG_SLUB_DEBUG
436 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
437 static DEFINE_SPINLOCK(object_map_lock);
438 
439 /*
440  * Determine a map of object in use on a page.
441  *
442  * Node listlock must be held to guarantee that the page does
443  * not vanish from under us.
444  */
445 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
446 	__acquires(&object_map_lock)
447 {
448 	void *p;
449 	void *addr = page_address(page);
450 
451 	VM_BUG_ON(!irqs_disabled());
452 
453 	spin_lock(&object_map_lock);
454 
455 	bitmap_zero(object_map, page->objects);
456 
457 	for (p = page->freelist; p; p = get_freepointer(s, p))
458 		set_bit(__obj_to_index(s, addr, p), object_map);
459 
460 	return object_map;
461 }
462 
463 static void put_map(unsigned long *map) __releases(&object_map_lock)
464 {
465 	VM_BUG_ON(map != object_map);
466 	spin_unlock(&object_map_lock);
467 }
468 
469 static inline unsigned int size_from_object(struct kmem_cache *s)
470 {
471 	if (s->flags & SLAB_RED_ZONE)
472 		return s->size - s->red_left_pad;
473 
474 	return s->size;
475 }
476 
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 	if (s->flags & SLAB_RED_ZONE)
480 		p -= s->red_left_pad;
481 
482 	return p;
483 }
484 
485 /*
486  * Debug settings:
487  */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493 
494 static char *slub_debug_string;
495 static int disable_higher_order_debug;
496 
497 /*
498  * slub is about to manipulate internal object metadata.  This memory lies
499  * outside the range of the allocated object, so accessing it would normally
500  * be reported by kasan as a bounds error.  metadata_access_enable() is used
501  * to tell kasan that these accesses are OK.
502  */
503 static inline void metadata_access_enable(void)
504 {
505 	kasan_disable_current();
506 }
507 
508 static inline void metadata_access_disable(void)
509 {
510 	kasan_enable_current();
511 }
512 
513 /*
514  * Object debugging
515  */
516 
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 				struct page *page, void *object)
520 {
521 	void *base;
522 
523 	if (!object)
524 		return 1;
525 
526 	base = page_address(page);
527 	object = kasan_reset_tag(object);
528 	object = restore_red_left(s, object);
529 	if (object < base || object >= base + page->objects * s->size ||
530 		(object - base) % s->size) {
531 		return 0;
532 	}
533 
534 	return 1;
535 }
536 
537 static void print_section(char *level, char *text, u8 *addr,
538 			  unsigned int length)
539 {
540 	metadata_access_enable();
541 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
542 			length, 1);
543 	metadata_access_disable();
544 }
545 
546 /*
547  * See comment in calculate_sizes().
548  */
549 static inline bool freeptr_outside_object(struct kmem_cache *s)
550 {
551 	return s->offset >= s->inuse;
552 }
553 
554 /*
555  * Return offset of the end of info block which is inuse + free pointer if
556  * not overlapping with object.
557  */
558 static inline unsigned int get_info_end(struct kmem_cache *s)
559 {
560 	if (freeptr_outside_object(s))
561 		return s->inuse + sizeof(void *);
562 	else
563 		return s->inuse;
564 }
565 
566 static struct track *get_track(struct kmem_cache *s, void *object,
567 	enum track_item alloc)
568 {
569 	struct track *p;
570 
571 	p = object + get_info_end(s);
572 
573 	return p + alloc;
574 }
575 
576 static void set_track(struct kmem_cache *s, void *object,
577 			enum track_item alloc, unsigned long addr)
578 {
579 	struct track *p = get_track(s, object, alloc);
580 
581 	if (addr) {
582 #ifdef CONFIG_STACKTRACE
583 		unsigned int nr_entries;
584 
585 		metadata_access_enable();
586 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
587 		metadata_access_disable();
588 
589 		if (nr_entries < TRACK_ADDRS_COUNT)
590 			p->addrs[nr_entries] = 0;
591 #endif
592 		p->addr = addr;
593 		p->cpu = smp_processor_id();
594 		p->pid = current->pid;
595 		p->when = jiffies;
596 	} else {
597 		memset(p, 0, sizeof(struct track));
598 	}
599 }
600 
601 static void init_tracking(struct kmem_cache *s, void *object)
602 {
603 	if (!(s->flags & SLAB_STORE_USER))
604 		return;
605 
606 	set_track(s, object, TRACK_FREE, 0UL);
607 	set_track(s, object, TRACK_ALLOC, 0UL);
608 }
609 
610 static void print_track(const char *s, struct track *t, unsigned long pr_time)
611 {
612 	if (!t->addr)
613 		return;
614 
615 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
616 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
617 #ifdef CONFIG_STACKTRACE
618 	{
619 		int i;
620 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
621 			if (t->addrs[i])
622 				pr_err("\t%pS\n", (void *)t->addrs[i]);
623 			else
624 				break;
625 	}
626 #endif
627 }
628 
629 void print_tracking(struct kmem_cache *s, void *object)
630 {
631 	unsigned long pr_time = jiffies;
632 	if (!(s->flags & SLAB_STORE_USER))
633 		return;
634 
635 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
636 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
637 }
638 
639 static void print_page_info(struct page *page)
640 {
641 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
642 	       page, page->objects, page->inuse, page->freelist, page->flags);
643 
644 }
645 
646 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
647 {
648 	struct va_format vaf;
649 	va_list args;
650 
651 	va_start(args, fmt);
652 	vaf.fmt = fmt;
653 	vaf.va = &args;
654 	pr_err("=============================================================================\n");
655 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
656 	pr_err("-----------------------------------------------------------------------------\n\n");
657 
658 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
659 	va_end(args);
660 }
661 
662 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
663 {
664 	struct va_format vaf;
665 	va_list args;
666 
667 	va_start(args, fmt);
668 	vaf.fmt = fmt;
669 	vaf.va = &args;
670 	pr_err("FIX %s: %pV\n", s->name, &vaf);
671 	va_end(args);
672 }
673 
674 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
675 			       void *freelist, void *nextfree)
676 {
677 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
678 	    !check_valid_pointer(s, page, nextfree)) {
679 		object_err(s, page, freelist, "Freechain corrupt");
680 		freelist = NULL;
681 		slab_fix(s, "Isolate corrupted freechain");
682 		return true;
683 	}
684 
685 	return false;
686 }
687 
688 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
689 {
690 	unsigned int off;	/* Offset of last byte */
691 	u8 *addr = page_address(page);
692 
693 	print_tracking(s, p);
694 
695 	print_page_info(page);
696 
697 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
698 	       p, p - addr, get_freepointer(s, p));
699 
700 	if (s->flags & SLAB_RED_ZONE)
701 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
702 			      s->red_left_pad);
703 	else if (p > addr + 16)
704 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
705 
706 	print_section(KERN_ERR, "Object ", p,
707 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
708 	if (s->flags & SLAB_RED_ZONE)
709 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
710 			s->inuse - s->object_size);
711 
712 	off = get_info_end(s);
713 
714 	if (s->flags & SLAB_STORE_USER)
715 		off += 2 * sizeof(struct track);
716 
717 	off += kasan_metadata_size(s);
718 
719 	if (off != size_from_object(s))
720 		/* Beginning of the filler is the free pointer */
721 		print_section(KERN_ERR, "Padding ", p + off,
722 			      size_from_object(s) - off);
723 
724 	dump_stack();
725 }
726 
727 void object_err(struct kmem_cache *s, struct page *page,
728 			u8 *object, char *reason)
729 {
730 	slab_bug(s, "%s", reason);
731 	print_trailer(s, page, object);
732 }
733 
734 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
735 			const char *fmt, ...)
736 {
737 	va_list args;
738 	char buf[100];
739 
740 	va_start(args, fmt);
741 	vsnprintf(buf, sizeof(buf), fmt, args);
742 	va_end(args);
743 	slab_bug(s, "%s", buf);
744 	print_page_info(page);
745 	dump_stack();
746 }
747 
748 static void init_object(struct kmem_cache *s, void *object, u8 val)
749 {
750 	u8 *p = object;
751 
752 	if (s->flags & SLAB_RED_ZONE)
753 		memset(p - s->red_left_pad, val, s->red_left_pad);
754 
755 	if (s->flags & __OBJECT_POISON) {
756 		memset(p, POISON_FREE, s->object_size - 1);
757 		p[s->object_size - 1] = POISON_END;
758 	}
759 
760 	if (s->flags & SLAB_RED_ZONE)
761 		memset(p + s->object_size, val, s->inuse - s->object_size);
762 }
763 
764 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
765 						void *from, void *to)
766 {
767 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
768 	memset(from, data, to - from);
769 }
770 
771 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
772 			u8 *object, char *what,
773 			u8 *start, unsigned int value, unsigned int bytes)
774 {
775 	u8 *fault;
776 	u8 *end;
777 	u8 *addr = page_address(page);
778 
779 	metadata_access_enable();
780 	fault = memchr_inv(start, value, bytes);
781 	metadata_access_disable();
782 	if (!fault)
783 		return 1;
784 
785 	end = start + bytes;
786 	while (end > fault && end[-1] == value)
787 		end--;
788 
789 	slab_bug(s, "%s overwritten", what);
790 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
791 					fault, end - 1, fault - addr,
792 					fault[0], value);
793 	print_trailer(s, page, object);
794 
795 	restore_bytes(s, what, value, fault, end);
796 	return 0;
797 }
798 
799 /*
800  * Object layout:
801  *
802  * object address
803  * 	Bytes of the object to be managed.
804  * 	If the freepointer may overlay the object then the free
805  *	pointer is at the middle of the object.
806  *
807  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
808  * 	0xa5 (POISON_END)
809  *
810  * object + s->object_size
811  * 	Padding to reach word boundary. This is also used for Redzoning.
812  * 	Padding is extended by another word if Redzoning is enabled and
813  * 	object_size == inuse.
814  *
815  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
816  * 	0xcc (RED_ACTIVE) for objects in use.
817  *
818  * object + s->inuse
819  * 	Meta data starts here.
820  *
821  * 	A. Free pointer (if we cannot overwrite object on free)
822  * 	B. Tracking data for SLAB_STORE_USER
823  * 	C. Padding to reach required alignment boundary or at mininum
824  * 		one word if debugging is on to be able to detect writes
825  * 		before the word boundary.
826  *
827  *	Padding is done using 0x5a (POISON_INUSE)
828  *
829  * object + s->size
830  * 	Nothing is used beyond s->size.
831  *
832  * If slabcaches are merged then the object_size and inuse boundaries are mostly
833  * ignored. And therefore no slab options that rely on these boundaries
834  * may be used with merged slabcaches.
835  */
836 
837 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
838 {
839 	unsigned long off = get_info_end(s);	/* The end of info */
840 
841 	if (s->flags & SLAB_STORE_USER)
842 		/* We also have user information there */
843 		off += 2 * sizeof(struct track);
844 
845 	off += kasan_metadata_size(s);
846 
847 	if (size_from_object(s) == off)
848 		return 1;
849 
850 	return check_bytes_and_report(s, page, p, "Object padding",
851 			p + off, POISON_INUSE, size_from_object(s) - off);
852 }
853 
854 /* Check the pad bytes at the end of a slab page */
855 static int slab_pad_check(struct kmem_cache *s, struct page *page)
856 {
857 	u8 *start;
858 	u8 *fault;
859 	u8 *end;
860 	u8 *pad;
861 	int length;
862 	int remainder;
863 
864 	if (!(s->flags & SLAB_POISON))
865 		return 1;
866 
867 	start = page_address(page);
868 	length = page_size(page);
869 	end = start + length;
870 	remainder = length % s->size;
871 	if (!remainder)
872 		return 1;
873 
874 	pad = end - remainder;
875 	metadata_access_enable();
876 	fault = memchr_inv(pad, POISON_INUSE, remainder);
877 	metadata_access_disable();
878 	if (!fault)
879 		return 1;
880 	while (end > fault && end[-1] == POISON_INUSE)
881 		end--;
882 
883 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
884 			fault, end - 1, fault - start);
885 	print_section(KERN_ERR, "Padding ", pad, remainder);
886 
887 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
888 	return 0;
889 }
890 
891 static int check_object(struct kmem_cache *s, struct page *page,
892 					void *object, u8 val)
893 {
894 	u8 *p = object;
895 	u8 *endobject = object + s->object_size;
896 
897 	if (s->flags & SLAB_RED_ZONE) {
898 		if (!check_bytes_and_report(s, page, object, "Redzone",
899 			object - s->red_left_pad, val, s->red_left_pad))
900 			return 0;
901 
902 		if (!check_bytes_and_report(s, page, object, "Redzone",
903 			endobject, val, s->inuse - s->object_size))
904 			return 0;
905 	} else {
906 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
907 			check_bytes_and_report(s, page, p, "Alignment padding",
908 				endobject, POISON_INUSE,
909 				s->inuse - s->object_size);
910 		}
911 	}
912 
913 	if (s->flags & SLAB_POISON) {
914 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
915 			(!check_bytes_and_report(s, page, p, "Poison", p,
916 					POISON_FREE, s->object_size - 1) ||
917 			 !check_bytes_and_report(s, page, p, "Poison",
918 				p + s->object_size - 1, POISON_END, 1)))
919 			return 0;
920 		/*
921 		 * check_pad_bytes cleans up on its own.
922 		 */
923 		check_pad_bytes(s, page, p);
924 	}
925 
926 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
927 		/*
928 		 * Object and freepointer overlap. Cannot check
929 		 * freepointer while object is allocated.
930 		 */
931 		return 1;
932 
933 	/* Check free pointer validity */
934 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
935 		object_err(s, page, p, "Freepointer corrupt");
936 		/*
937 		 * No choice but to zap it and thus lose the remainder
938 		 * of the free objects in this slab. May cause
939 		 * another error because the object count is now wrong.
940 		 */
941 		set_freepointer(s, p, NULL);
942 		return 0;
943 	}
944 	return 1;
945 }
946 
947 static int check_slab(struct kmem_cache *s, struct page *page)
948 {
949 	int maxobj;
950 
951 	VM_BUG_ON(!irqs_disabled());
952 
953 	if (!PageSlab(page)) {
954 		slab_err(s, page, "Not a valid slab page");
955 		return 0;
956 	}
957 
958 	maxobj = order_objects(compound_order(page), s->size);
959 	if (page->objects > maxobj) {
960 		slab_err(s, page, "objects %u > max %u",
961 			page->objects, maxobj);
962 		return 0;
963 	}
964 	if (page->inuse > page->objects) {
965 		slab_err(s, page, "inuse %u > max %u",
966 			page->inuse, page->objects);
967 		return 0;
968 	}
969 	/* Slab_pad_check fixes things up after itself */
970 	slab_pad_check(s, page);
971 	return 1;
972 }
973 
974 /*
975  * Determine if a certain object on a page is on the freelist. Must hold the
976  * slab lock to guarantee that the chains are in a consistent state.
977  */
978 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
979 {
980 	int nr = 0;
981 	void *fp;
982 	void *object = NULL;
983 	int max_objects;
984 
985 	fp = page->freelist;
986 	while (fp && nr <= page->objects) {
987 		if (fp == search)
988 			return 1;
989 		if (!check_valid_pointer(s, page, fp)) {
990 			if (object) {
991 				object_err(s, page, object,
992 					"Freechain corrupt");
993 				set_freepointer(s, object, NULL);
994 			} else {
995 				slab_err(s, page, "Freepointer corrupt");
996 				page->freelist = NULL;
997 				page->inuse = page->objects;
998 				slab_fix(s, "Freelist cleared");
999 				return 0;
1000 			}
1001 			break;
1002 		}
1003 		object = fp;
1004 		fp = get_freepointer(s, object);
1005 		nr++;
1006 	}
1007 
1008 	max_objects = order_objects(compound_order(page), s->size);
1009 	if (max_objects > MAX_OBJS_PER_PAGE)
1010 		max_objects = MAX_OBJS_PER_PAGE;
1011 
1012 	if (page->objects != max_objects) {
1013 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1014 			 page->objects, max_objects);
1015 		page->objects = max_objects;
1016 		slab_fix(s, "Number of objects adjusted.");
1017 	}
1018 	if (page->inuse != page->objects - nr) {
1019 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1020 			 page->inuse, page->objects - nr);
1021 		page->inuse = page->objects - nr;
1022 		slab_fix(s, "Object count adjusted.");
1023 	}
1024 	return search == NULL;
1025 }
1026 
1027 static void trace(struct kmem_cache *s, struct page *page, void *object,
1028 								int alloc)
1029 {
1030 	if (s->flags & SLAB_TRACE) {
1031 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1032 			s->name,
1033 			alloc ? "alloc" : "free",
1034 			object, page->inuse,
1035 			page->freelist);
1036 
1037 		if (!alloc)
1038 			print_section(KERN_INFO, "Object ", (void *)object,
1039 					s->object_size);
1040 
1041 		dump_stack();
1042 	}
1043 }
1044 
1045 /*
1046  * Tracking of fully allocated slabs for debugging purposes.
1047  */
1048 static void add_full(struct kmem_cache *s,
1049 	struct kmem_cache_node *n, struct page *page)
1050 {
1051 	if (!(s->flags & SLAB_STORE_USER))
1052 		return;
1053 
1054 	lockdep_assert_held(&n->list_lock);
1055 	list_add(&page->slab_list, &n->full);
1056 }
1057 
1058 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1059 {
1060 	if (!(s->flags & SLAB_STORE_USER))
1061 		return;
1062 
1063 	lockdep_assert_held(&n->list_lock);
1064 	list_del(&page->slab_list);
1065 }
1066 
1067 /* Tracking of the number of slabs for debugging purposes */
1068 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1069 {
1070 	struct kmem_cache_node *n = get_node(s, node);
1071 
1072 	return atomic_long_read(&n->nr_slabs);
1073 }
1074 
1075 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1076 {
1077 	return atomic_long_read(&n->nr_slabs);
1078 }
1079 
1080 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1081 {
1082 	struct kmem_cache_node *n = get_node(s, node);
1083 
1084 	/*
1085 	 * May be called early in order to allocate a slab for the
1086 	 * kmem_cache_node structure. Solve the chicken-egg
1087 	 * dilemma by deferring the increment of the count during
1088 	 * bootstrap (see early_kmem_cache_node_alloc).
1089 	 */
1090 	if (likely(n)) {
1091 		atomic_long_inc(&n->nr_slabs);
1092 		atomic_long_add(objects, &n->total_objects);
1093 	}
1094 }
1095 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1096 {
1097 	struct kmem_cache_node *n = get_node(s, node);
1098 
1099 	atomic_long_dec(&n->nr_slabs);
1100 	atomic_long_sub(objects, &n->total_objects);
1101 }
1102 
1103 /* Object debug checks for alloc/free paths */
1104 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1105 								void *object)
1106 {
1107 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1108 		return;
1109 
1110 	init_object(s, object, SLUB_RED_INACTIVE);
1111 	init_tracking(s, object);
1112 }
1113 
1114 static
1115 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1116 {
1117 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1118 		return;
1119 
1120 	metadata_access_enable();
1121 	memset(addr, POISON_INUSE, page_size(page));
1122 	metadata_access_disable();
1123 }
1124 
1125 static inline int alloc_consistency_checks(struct kmem_cache *s,
1126 					struct page *page, void *object)
1127 {
1128 	if (!check_slab(s, page))
1129 		return 0;
1130 
1131 	if (!check_valid_pointer(s, page, object)) {
1132 		object_err(s, page, object, "Freelist Pointer check fails");
1133 		return 0;
1134 	}
1135 
1136 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1137 		return 0;
1138 
1139 	return 1;
1140 }
1141 
1142 static noinline int alloc_debug_processing(struct kmem_cache *s,
1143 					struct page *page,
1144 					void *object, unsigned long addr)
1145 {
1146 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1147 		if (!alloc_consistency_checks(s, page, object))
1148 			goto bad;
1149 	}
1150 
1151 	/* Success perform special debug activities for allocs */
1152 	if (s->flags & SLAB_STORE_USER)
1153 		set_track(s, object, TRACK_ALLOC, addr);
1154 	trace(s, page, object, 1);
1155 	init_object(s, object, SLUB_RED_ACTIVE);
1156 	return 1;
1157 
1158 bad:
1159 	if (PageSlab(page)) {
1160 		/*
1161 		 * If this is a slab page then lets do the best we can
1162 		 * to avoid issues in the future. Marking all objects
1163 		 * as used avoids touching the remaining objects.
1164 		 */
1165 		slab_fix(s, "Marking all objects used");
1166 		page->inuse = page->objects;
1167 		page->freelist = NULL;
1168 	}
1169 	return 0;
1170 }
1171 
1172 static inline int free_consistency_checks(struct kmem_cache *s,
1173 		struct page *page, void *object, unsigned long addr)
1174 {
1175 	if (!check_valid_pointer(s, page, object)) {
1176 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1177 		return 0;
1178 	}
1179 
1180 	if (on_freelist(s, page, object)) {
1181 		object_err(s, page, object, "Object already free");
1182 		return 0;
1183 	}
1184 
1185 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1186 		return 0;
1187 
1188 	if (unlikely(s != page->slab_cache)) {
1189 		if (!PageSlab(page)) {
1190 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1191 				 object);
1192 		} else if (!page->slab_cache) {
1193 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1194 			       object);
1195 			dump_stack();
1196 		} else
1197 			object_err(s, page, object,
1198 					"page slab pointer corrupt.");
1199 		return 0;
1200 	}
1201 	return 1;
1202 }
1203 
1204 /* Supports checking bulk free of a constructed freelist */
1205 static noinline int free_debug_processing(
1206 	struct kmem_cache *s, struct page *page,
1207 	void *head, void *tail, int bulk_cnt,
1208 	unsigned long addr)
1209 {
1210 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1211 	void *object = head;
1212 	int cnt = 0;
1213 	unsigned long flags;
1214 	int ret = 0;
1215 
1216 	spin_lock_irqsave(&n->list_lock, flags);
1217 	slab_lock(page);
1218 
1219 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1220 		if (!check_slab(s, page))
1221 			goto out;
1222 	}
1223 
1224 next_object:
1225 	cnt++;
1226 
1227 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 		if (!free_consistency_checks(s, page, object, addr))
1229 			goto out;
1230 	}
1231 
1232 	if (s->flags & SLAB_STORE_USER)
1233 		set_track(s, object, TRACK_FREE, addr);
1234 	trace(s, page, object, 0);
1235 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1236 	init_object(s, object, SLUB_RED_INACTIVE);
1237 
1238 	/* Reached end of constructed freelist yet? */
1239 	if (object != tail) {
1240 		object = get_freepointer(s, object);
1241 		goto next_object;
1242 	}
1243 	ret = 1;
1244 
1245 out:
1246 	if (cnt != bulk_cnt)
1247 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1248 			 bulk_cnt, cnt);
1249 
1250 	slab_unlock(page);
1251 	spin_unlock_irqrestore(&n->list_lock, flags);
1252 	if (!ret)
1253 		slab_fix(s, "Object at 0x%p not freed", object);
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Parse a block of slub_debug options. Blocks are delimited by ';'
1259  *
1260  * @str:    start of block
1261  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1262  * @slabs:  return start of list of slabs, or NULL when there's no list
1263  * @init:   assume this is initial parsing and not per-kmem-create parsing
1264  *
1265  * returns the start of next block if there's any, or NULL
1266  */
1267 static char *
1268 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1269 {
1270 	bool higher_order_disable = false;
1271 
1272 	/* Skip any completely empty blocks */
1273 	while (*str && *str == ';')
1274 		str++;
1275 
1276 	if (*str == ',') {
1277 		/*
1278 		 * No options but restriction on slabs. This means full
1279 		 * debugging for slabs matching a pattern.
1280 		 */
1281 		*flags = DEBUG_DEFAULT_FLAGS;
1282 		goto check_slabs;
1283 	}
1284 	*flags = 0;
1285 
1286 	/* Determine which debug features should be switched on */
1287 	for (; *str && *str != ',' && *str != ';'; str++) {
1288 		switch (tolower(*str)) {
1289 		case '-':
1290 			*flags = 0;
1291 			break;
1292 		case 'f':
1293 			*flags |= SLAB_CONSISTENCY_CHECKS;
1294 			break;
1295 		case 'z':
1296 			*flags |= SLAB_RED_ZONE;
1297 			break;
1298 		case 'p':
1299 			*flags |= SLAB_POISON;
1300 			break;
1301 		case 'u':
1302 			*flags |= SLAB_STORE_USER;
1303 			break;
1304 		case 't':
1305 			*flags |= SLAB_TRACE;
1306 			break;
1307 		case 'a':
1308 			*flags |= SLAB_FAILSLAB;
1309 			break;
1310 		case 'o':
1311 			/*
1312 			 * Avoid enabling debugging on caches if its minimum
1313 			 * order would increase as a result.
1314 			 */
1315 			higher_order_disable = true;
1316 			break;
1317 		default:
1318 			if (init)
1319 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1320 		}
1321 	}
1322 check_slabs:
1323 	if (*str == ',')
1324 		*slabs = ++str;
1325 	else
1326 		*slabs = NULL;
1327 
1328 	/* Skip over the slab list */
1329 	while (*str && *str != ';')
1330 		str++;
1331 
1332 	/* Skip any completely empty blocks */
1333 	while (*str && *str == ';')
1334 		str++;
1335 
1336 	if (init && higher_order_disable)
1337 		disable_higher_order_debug = 1;
1338 
1339 	if (*str)
1340 		return str;
1341 	else
1342 		return NULL;
1343 }
1344 
1345 static int __init setup_slub_debug(char *str)
1346 {
1347 	slab_flags_t flags;
1348 	char *saved_str;
1349 	char *slab_list;
1350 	bool global_slub_debug_changed = false;
1351 	bool slab_list_specified = false;
1352 
1353 	slub_debug = DEBUG_DEFAULT_FLAGS;
1354 	if (*str++ != '=' || !*str)
1355 		/*
1356 		 * No options specified. Switch on full debugging.
1357 		 */
1358 		goto out;
1359 
1360 	saved_str = str;
1361 	while (str) {
1362 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1363 
1364 		if (!slab_list) {
1365 			slub_debug = flags;
1366 			global_slub_debug_changed = true;
1367 		} else {
1368 			slab_list_specified = true;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * For backwards compatibility, a single list of flags with list of
1374 	 * slabs means debugging is only enabled for those slabs, so the global
1375 	 * slub_debug should be 0. We can extended that to multiple lists as
1376 	 * long as there is no option specifying flags without a slab list.
1377 	 */
1378 	if (slab_list_specified) {
1379 		if (!global_slub_debug_changed)
1380 			slub_debug = 0;
1381 		slub_debug_string = saved_str;
1382 	}
1383 out:
1384 	if (slub_debug != 0 || slub_debug_string)
1385 		static_branch_enable(&slub_debug_enabled);
1386 	if ((static_branch_unlikely(&init_on_alloc) ||
1387 	     static_branch_unlikely(&init_on_free)) &&
1388 	    (slub_debug & SLAB_POISON))
1389 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1390 	return 1;
1391 }
1392 
1393 __setup("slub_debug", setup_slub_debug);
1394 
1395 /*
1396  * kmem_cache_flags - apply debugging options to the cache
1397  * @object_size:	the size of an object without meta data
1398  * @flags:		flags to set
1399  * @name:		name of the cache
1400  * @ctor:		constructor function
1401  *
1402  * Debug option(s) are applied to @flags. In addition to the debug
1403  * option(s), if a slab name (or multiple) is specified i.e.
1404  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1405  * then only the select slabs will receive the debug option(s).
1406  */
1407 slab_flags_t kmem_cache_flags(unsigned int object_size,
1408 	slab_flags_t flags, const char *name,
1409 	void (*ctor)(void *))
1410 {
1411 	char *iter;
1412 	size_t len;
1413 	char *next_block;
1414 	slab_flags_t block_flags;
1415 
1416 	/* If slub_debug = 0, it folds into the if conditional. */
1417 	if (!slub_debug_string)
1418 		return flags | slub_debug;
1419 
1420 	len = strlen(name);
1421 	next_block = slub_debug_string;
1422 	/* Go through all blocks of debug options, see if any matches our slab's name */
1423 	while (next_block) {
1424 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1425 		if (!iter)
1426 			continue;
1427 		/* Found a block that has a slab list, search it */
1428 		while (*iter) {
1429 			char *end, *glob;
1430 			size_t cmplen;
1431 
1432 			end = strchrnul(iter, ',');
1433 			if (next_block && next_block < end)
1434 				end = next_block - 1;
1435 
1436 			glob = strnchr(iter, end - iter, '*');
1437 			if (glob)
1438 				cmplen = glob - iter;
1439 			else
1440 				cmplen = max_t(size_t, len, (end - iter));
1441 
1442 			if (!strncmp(name, iter, cmplen)) {
1443 				flags |= block_flags;
1444 				return flags;
1445 			}
1446 
1447 			if (!*end || *end == ';')
1448 				break;
1449 			iter = end + 1;
1450 		}
1451 	}
1452 
1453 	return slub_debug;
1454 }
1455 #else /* !CONFIG_SLUB_DEBUG */
1456 static inline void setup_object_debug(struct kmem_cache *s,
1457 			struct page *page, void *object) {}
1458 static inline
1459 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1460 
1461 static inline int alloc_debug_processing(struct kmem_cache *s,
1462 	struct page *page, void *object, unsigned long addr) { return 0; }
1463 
1464 static inline int free_debug_processing(
1465 	struct kmem_cache *s, struct page *page,
1466 	void *head, void *tail, int bulk_cnt,
1467 	unsigned long addr) { return 0; }
1468 
1469 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1470 			{ return 1; }
1471 static inline int check_object(struct kmem_cache *s, struct page *page,
1472 			void *object, u8 val) { return 1; }
1473 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1474 					struct page *page) {}
1475 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1476 					struct page *page) {}
1477 slab_flags_t kmem_cache_flags(unsigned int object_size,
1478 	slab_flags_t flags, const char *name,
1479 	void (*ctor)(void *))
1480 {
1481 	return flags;
1482 }
1483 #define slub_debug 0
1484 
1485 #define disable_higher_order_debug 0
1486 
1487 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1488 							{ return 0; }
1489 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1490 							{ return 0; }
1491 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1492 							int objects) {}
1493 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1494 							int objects) {}
1495 
1496 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1497 			       void *freelist, void *nextfree)
1498 {
1499 	return false;
1500 }
1501 #endif /* CONFIG_SLUB_DEBUG */
1502 
1503 /*
1504  * Hooks for other subsystems that check memory allocations. In a typical
1505  * production configuration these hooks all should produce no code at all.
1506  */
1507 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1508 {
1509 	ptr = kasan_kmalloc_large(ptr, size, flags);
1510 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1511 	kmemleak_alloc(ptr, size, 1, flags);
1512 	return ptr;
1513 }
1514 
1515 static __always_inline void kfree_hook(void *x)
1516 {
1517 	kmemleak_free(x);
1518 	kasan_kfree_large(x, _RET_IP_);
1519 }
1520 
1521 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1522 {
1523 	kmemleak_free_recursive(x, s->flags);
1524 
1525 	/*
1526 	 * Trouble is that we may no longer disable interrupts in the fast path
1527 	 * So in order to make the debug calls that expect irqs to be
1528 	 * disabled we need to disable interrupts temporarily.
1529 	 */
1530 #ifdef CONFIG_LOCKDEP
1531 	{
1532 		unsigned long flags;
1533 
1534 		local_irq_save(flags);
1535 		debug_check_no_locks_freed(x, s->object_size);
1536 		local_irq_restore(flags);
1537 	}
1538 #endif
1539 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1540 		debug_check_no_obj_freed(x, s->object_size);
1541 
1542 	/* Use KCSAN to help debug racy use-after-free. */
1543 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1544 		__kcsan_check_access(x, s->object_size,
1545 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1546 
1547 	/* KASAN might put x into memory quarantine, delaying its reuse */
1548 	return kasan_slab_free(s, x, _RET_IP_);
1549 }
1550 
1551 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1552 					   void **head, void **tail)
1553 {
1554 
1555 	void *object;
1556 	void *next = *head;
1557 	void *old_tail = *tail ? *tail : *head;
1558 	int rsize;
1559 
1560 	/* Head and tail of the reconstructed freelist */
1561 	*head = NULL;
1562 	*tail = NULL;
1563 
1564 	do {
1565 		object = next;
1566 		next = get_freepointer(s, object);
1567 
1568 		if (slab_want_init_on_free(s)) {
1569 			/*
1570 			 * Clear the object and the metadata, but don't touch
1571 			 * the redzone.
1572 			 */
1573 			memset(object, 0, s->object_size);
1574 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1575 							   : 0;
1576 			memset((char *)object + s->inuse, 0,
1577 			       s->size - s->inuse - rsize);
1578 
1579 		}
1580 		/* If object's reuse doesn't have to be delayed */
1581 		if (!slab_free_hook(s, object)) {
1582 			/* Move object to the new freelist */
1583 			set_freepointer(s, object, *head);
1584 			*head = object;
1585 			if (!*tail)
1586 				*tail = object;
1587 		}
1588 	} while (object != old_tail);
1589 
1590 	if (*head == *tail)
1591 		*tail = NULL;
1592 
1593 	return *head != NULL;
1594 }
1595 
1596 static void *setup_object(struct kmem_cache *s, struct page *page,
1597 				void *object)
1598 {
1599 	setup_object_debug(s, page, object);
1600 	object = kasan_init_slab_obj(s, object);
1601 	if (unlikely(s->ctor)) {
1602 		kasan_unpoison_object_data(s, object);
1603 		s->ctor(object);
1604 		kasan_poison_object_data(s, object);
1605 	}
1606 	return object;
1607 }
1608 
1609 /*
1610  * Slab allocation and freeing
1611  */
1612 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1613 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1614 {
1615 	struct page *page;
1616 	unsigned int order = oo_order(oo);
1617 
1618 	if (node == NUMA_NO_NODE)
1619 		page = alloc_pages(flags, order);
1620 	else
1621 		page = __alloc_pages_node(node, flags, order);
1622 
1623 	if (page)
1624 		account_slab_page(page, order, s);
1625 
1626 	return page;
1627 }
1628 
1629 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1630 /* Pre-initialize the random sequence cache */
1631 static int init_cache_random_seq(struct kmem_cache *s)
1632 {
1633 	unsigned int count = oo_objects(s->oo);
1634 	int err;
1635 
1636 	/* Bailout if already initialised */
1637 	if (s->random_seq)
1638 		return 0;
1639 
1640 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1641 	if (err) {
1642 		pr_err("SLUB: Unable to initialize free list for %s\n",
1643 			s->name);
1644 		return err;
1645 	}
1646 
1647 	/* Transform to an offset on the set of pages */
1648 	if (s->random_seq) {
1649 		unsigned int i;
1650 
1651 		for (i = 0; i < count; i++)
1652 			s->random_seq[i] *= s->size;
1653 	}
1654 	return 0;
1655 }
1656 
1657 /* Initialize each random sequence freelist per cache */
1658 static void __init init_freelist_randomization(void)
1659 {
1660 	struct kmem_cache *s;
1661 
1662 	mutex_lock(&slab_mutex);
1663 
1664 	list_for_each_entry(s, &slab_caches, list)
1665 		init_cache_random_seq(s);
1666 
1667 	mutex_unlock(&slab_mutex);
1668 }
1669 
1670 /* Get the next entry on the pre-computed freelist randomized */
1671 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1672 				unsigned long *pos, void *start,
1673 				unsigned long page_limit,
1674 				unsigned long freelist_count)
1675 {
1676 	unsigned int idx;
1677 
1678 	/*
1679 	 * If the target page allocation failed, the number of objects on the
1680 	 * page might be smaller than the usual size defined by the cache.
1681 	 */
1682 	do {
1683 		idx = s->random_seq[*pos];
1684 		*pos += 1;
1685 		if (*pos >= freelist_count)
1686 			*pos = 0;
1687 	} while (unlikely(idx >= page_limit));
1688 
1689 	return (char *)start + idx;
1690 }
1691 
1692 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1693 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1694 {
1695 	void *start;
1696 	void *cur;
1697 	void *next;
1698 	unsigned long idx, pos, page_limit, freelist_count;
1699 
1700 	if (page->objects < 2 || !s->random_seq)
1701 		return false;
1702 
1703 	freelist_count = oo_objects(s->oo);
1704 	pos = get_random_int() % freelist_count;
1705 
1706 	page_limit = page->objects * s->size;
1707 	start = fixup_red_left(s, page_address(page));
1708 
1709 	/* First entry is used as the base of the freelist */
1710 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1711 				freelist_count);
1712 	cur = setup_object(s, page, cur);
1713 	page->freelist = cur;
1714 
1715 	for (idx = 1; idx < page->objects; idx++) {
1716 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1717 			freelist_count);
1718 		next = setup_object(s, page, next);
1719 		set_freepointer(s, cur, next);
1720 		cur = next;
1721 	}
1722 	set_freepointer(s, cur, NULL);
1723 
1724 	return true;
1725 }
1726 #else
1727 static inline int init_cache_random_seq(struct kmem_cache *s)
1728 {
1729 	return 0;
1730 }
1731 static inline void init_freelist_randomization(void) { }
1732 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1733 {
1734 	return false;
1735 }
1736 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1737 
1738 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1739 {
1740 	struct page *page;
1741 	struct kmem_cache_order_objects oo = s->oo;
1742 	gfp_t alloc_gfp;
1743 	void *start, *p, *next;
1744 	int idx;
1745 	bool shuffle;
1746 
1747 	flags &= gfp_allowed_mask;
1748 
1749 	if (gfpflags_allow_blocking(flags))
1750 		local_irq_enable();
1751 
1752 	flags |= s->allocflags;
1753 
1754 	/*
1755 	 * Let the initial higher-order allocation fail under memory pressure
1756 	 * so we fall-back to the minimum order allocation.
1757 	 */
1758 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1759 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1760 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1761 
1762 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1763 	if (unlikely(!page)) {
1764 		oo = s->min;
1765 		alloc_gfp = flags;
1766 		/*
1767 		 * Allocation may have failed due to fragmentation.
1768 		 * Try a lower order alloc if possible
1769 		 */
1770 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1771 		if (unlikely(!page))
1772 			goto out;
1773 		stat(s, ORDER_FALLBACK);
1774 	}
1775 
1776 	page->objects = oo_objects(oo);
1777 
1778 	page->slab_cache = s;
1779 	__SetPageSlab(page);
1780 	if (page_is_pfmemalloc(page))
1781 		SetPageSlabPfmemalloc(page);
1782 
1783 	kasan_poison_slab(page);
1784 
1785 	start = page_address(page);
1786 
1787 	setup_page_debug(s, page, start);
1788 
1789 	shuffle = shuffle_freelist(s, page);
1790 
1791 	if (!shuffle) {
1792 		start = fixup_red_left(s, start);
1793 		start = setup_object(s, page, start);
1794 		page->freelist = start;
1795 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1796 			next = p + s->size;
1797 			next = setup_object(s, page, next);
1798 			set_freepointer(s, p, next);
1799 			p = next;
1800 		}
1801 		set_freepointer(s, p, NULL);
1802 	}
1803 
1804 	page->inuse = page->objects;
1805 	page->frozen = 1;
1806 
1807 out:
1808 	if (gfpflags_allow_blocking(flags))
1809 		local_irq_disable();
1810 	if (!page)
1811 		return NULL;
1812 
1813 	inc_slabs_node(s, page_to_nid(page), page->objects);
1814 
1815 	return page;
1816 }
1817 
1818 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1819 {
1820 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1821 		flags = kmalloc_fix_flags(flags);
1822 
1823 	return allocate_slab(s,
1824 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1825 }
1826 
1827 static void __free_slab(struct kmem_cache *s, struct page *page)
1828 {
1829 	int order = compound_order(page);
1830 	int pages = 1 << order;
1831 
1832 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1833 		void *p;
1834 
1835 		slab_pad_check(s, page);
1836 		for_each_object(p, s, page_address(page),
1837 						page->objects)
1838 			check_object(s, page, p, SLUB_RED_INACTIVE);
1839 	}
1840 
1841 	__ClearPageSlabPfmemalloc(page);
1842 	__ClearPageSlab(page);
1843 
1844 	page->mapping = NULL;
1845 	if (current->reclaim_state)
1846 		current->reclaim_state->reclaimed_slab += pages;
1847 	unaccount_slab_page(page, order, s);
1848 	__free_pages(page, order);
1849 }
1850 
1851 static void rcu_free_slab(struct rcu_head *h)
1852 {
1853 	struct page *page = container_of(h, struct page, rcu_head);
1854 
1855 	__free_slab(page->slab_cache, page);
1856 }
1857 
1858 static void free_slab(struct kmem_cache *s, struct page *page)
1859 {
1860 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1861 		call_rcu(&page->rcu_head, rcu_free_slab);
1862 	} else
1863 		__free_slab(s, page);
1864 }
1865 
1866 static void discard_slab(struct kmem_cache *s, struct page *page)
1867 {
1868 	dec_slabs_node(s, page_to_nid(page), page->objects);
1869 	free_slab(s, page);
1870 }
1871 
1872 /*
1873  * Management of partially allocated slabs.
1874  */
1875 static inline void
1876 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1877 {
1878 	n->nr_partial++;
1879 	if (tail == DEACTIVATE_TO_TAIL)
1880 		list_add_tail(&page->slab_list, &n->partial);
1881 	else
1882 		list_add(&page->slab_list, &n->partial);
1883 }
1884 
1885 static inline void add_partial(struct kmem_cache_node *n,
1886 				struct page *page, int tail)
1887 {
1888 	lockdep_assert_held(&n->list_lock);
1889 	__add_partial(n, page, tail);
1890 }
1891 
1892 static inline void remove_partial(struct kmem_cache_node *n,
1893 					struct page *page)
1894 {
1895 	lockdep_assert_held(&n->list_lock);
1896 	list_del(&page->slab_list);
1897 	n->nr_partial--;
1898 }
1899 
1900 /*
1901  * Remove slab from the partial list, freeze it and
1902  * return the pointer to the freelist.
1903  *
1904  * Returns a list of objects or NULL if it fails.
1905  */
1906 static inline void *acquire_slab(struct kmem_cache *s,
1907 		struct kmem_cache_node *n, struct page *page,
1908 		int mode, int *objects)
1909 {
1910 	void *freelist;
1911 	unsigned long counters;
1912 	struct page new;
1913 
1914 	lockdep_assert_held(&n->list_lock);
1915 
1916 	/*
1917 	 * Zap the freelist and set the frozen bit.
1918 	 * The old freelist is the list of objects for the
1919 	 * per cpu allocation list.
1920 	 */
1921 	freelist = page->freelist;
1922 	counters = page->counters;
1923 	new.counters = counters;
1924 	*objects = new.objects - new.inuse;
1925 	if (mode) {
1926 		new.inuse = page->objects;
1927 		new.freelist = NULL;
1928 	} else {
1929 		new.freelist = freelist;
1930 	}
1931 
1932 	VM_BUG_ON(new.frozen);
1933 	new.frozen = 1;
1934 
1935 	if (!__cmpxchg_double_slab(s, page,
1936 			freelist, counters,
1937 			new.freelist, new.counters,
1938 			"acquire_slab"))
1939 		return NULL;
1940 
1941 	remove_partial(n, page);
1942 	WARN_ON(!freelist);
1943 	return freelist;
1944 }
1945 
1946 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1947 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1948 
1949 /*
1950  * Try to allocate a partial slab from a specific node.
1951  */
1952 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1953 				struct kmem_cache_cpu *c, gfp_t flags)
1954 {
1955 	struct page *page, *page2;
1956 	void *object = NULL;
1957 	unsigned int available = 0;
1958 	int objects;
1959 
1960 	/*
1961 	 * Racy check. If we mistakenly see no partial slabs then we
1962 	 * just allocate an empty slab. If we mistakenly try to get a
1963 	 * partial slab and there is none available then get_partials()
1964 	 * will return NULL.
1965 	 */
1966 	if (!n || !n->nr_partial)
1967 		return NULL;
1968 
1969 	spin_lock(&n->list_lock);
1970 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1971 		void *t;
1972 
1973 		if (!pfmemalloc_match(page, flags))
1974 			continue;
1975 
1976 		t = acquire_slab(s, n, page, object == NULL, &objects);
1977 		if (!t)
1978 			break;
1979 
1980 		available += objects;
1981 		if (!object) {
1982 			c->page = page;
1983 			stat(s, ALLOC_FROM_PARTIAL);
1984 			object = t;
1985 		} else {
1986 			put_cpu_partial(s, page, 0);
1987 			stat(s, CPU_PARTIAL_NODE);
1988 		}
1989 		if (!kmem_cache_has_cpu_partial(s)
1990 			|| available > slub_cpu_partial(s) / 2)
1991 			break;
1992 
1993 	}
1994 	spin_unlock(&n->list_lock);
1995 	return object;
1996 }
1997 
1998 /*
1999  * Get a page from somewhere. Search in increasing NUMA distances.
2000  */
2001 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2002 		struct kmem_cache_cpu *c)
2003 {
2004 #ifdef CONFIG_NUMA
2005 	struct zonelist *zonelist;
2006 	struct zoneref *z;
2007 	struct zone *zone;
2008 	enum zone_type highest_zoneidx = gfp_zone(flags);
2009 	void *object;
2010 	unsigned int cpuset_mems_cookie;
2011 
2012 	/*
2013 	 * The defrag ratio allows a configuration of the tradeoffs between
2014 	 * inter node defragmentation and node local allocations. A lower
2015 	 * defrag_ratio increases the tendency to do local allocations
2016 	 * instead of attempting to obtain partial slabs from other nodes.
2017 	 *
2018 	 * If the defrag_ratio is set to 0 then kmalloc() always
2019 	 * returns node local objects. If the ratio is higher then kmalloc()
2020 	 * may return off node objects because partial slabs are obtained
2021 	 * from other nodes and filled up.
2022 	 *
2023 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2024 	 * (which makes defrag_ratio = 1000) then every (well almost)
2025 	 * allocation will first attempt to defrag slab caches on other nodes.
2026 	 * This means scanning over all nodes to look for partial slabs which
2027 	 * may be expensive if we do it every time we are trying to find a slab
2028 	 * with available objects.
2029 	 */
2030 	if (!s->remote_node_defrag_ratio ||
2031 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2032 		return NULL;
2033 
2034 	do {
2035 		cpuset_mems_cookie = read_mems_allowed_begin();
2036 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2037 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2038 			struct kmem_cache_node *n;
2039 
2040 			n = get_node(s, zone_to_nid(zone));
2041 
2042 			if (n && cpuset_zone_allowed(zone, flags) &&
2043 					n->nr_partial > s->min_partial) {
2044 				object = get_partial_node(s, n, c, flags);
2045 				if (object) {
2046 					/*
2047 					 * Don't check read_mems_allowed_retry()
2048 					 * here - if mems_allowed was updated in
2049 					 * parallel, that was a harmless race
2050 					 * between allocation and the cpuset
2051 					 * update
2052 					 */
2053 					return object;
2054 				}
2055 			}
2056 		}
2057 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2058 #endif	/* CONFIG_NUMA */
2059 	return NULL;
2060 }
2061 
2062 /*
2063  * Get a partial page, lock it and return it.
2064  */
2065 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2066 		struct kmem_cache_cpu *c)
2067 {
2068 	void *object;
2069 	int searchnode = node;
2070 
2071 	if (node == NUMA_NO_NODE)
2072 		searchnode = numa_mem_id();
2073 
2074 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2075 	if (object || node != NUMA_NO_NODE)
2076 		return object;
2077 
2078 	return get_any_partial(s, flags, c);
2079 }
2080 
2081 #ifdef CONFIG_PREEMPTION
2082 /*
2083  * Calculate the next globally unique transaction for disambiguation
2084  * during cmpxchg. The transactions start with the cpu number and are then
2085  * incremented by CONFIG_NR_CPUS.
2086  */
2087 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2088 #else
2089 /*
2090  * No preemption supported therefore also no need to check for
2091  * different cpus.
2092  */
2093 #define TID_STEP 1
2094 #endif
2095 
2096 static inline unsigned long next_tid(unsigned long tid)
2097 {
2098 	return tid + TID_STEP;
2099 }
2100 
2101 #ifdef SLUB_DEBUG_CMPXCHG
2102 static inline unsigned int tid_to_cpu(unsigned long tid)
2103 {
2104 	return tid % TID_STEP;
2105 }
2106 
2107 static inline unsigned long tid_to_event(unsigned long tid)
2108 {
2109 	return tid / TID_STEP;
2110 }
2111 #endif
2112 
2113 static inline unsigned int init_tid(int cpu)
2114 {
2115 	return cpu;
2116 }
2117 
2118 static inline void note_cmpxchg_failure(const char *n,
2119 		const struct kmem_cache *s, unsigned long tid)
2120 {
2121 #ifdef SLUB_DEBUG_CMPXCHG
2122 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2123 
2124 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2125 
2126 #ifdef CONFIG_PREEMPTION
2127 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2128 		pr_warn("due to cpu change %d -> %d\n",
2129 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2130 	else
2131 #endif
2132 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2133 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2134 			tid_to_event(tid), tid_to_event(actual_tid));
2135 	else
2136 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2137 			actual_tid, tid, next_tid(tid));
2138 #endif
2139 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2140 }
2141 
2142 static void init_kmem_cache_cpus(struct kmem_cache *s)
2143 {
2144 	int cpu;
2145 
2146 	for_each_possible_cpu(cpu)
2147 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2148 }
2149 
2150 /*
2151  * Remove the cpu slab
2152  */
2153 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2154 				void *freelist, struct kmem_cache_cpu *c)
2155 {
2156 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2157 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2158 	int lock = 0;
2159 	enum slab_modes l = M_NONE, m = M_NONE;
2160 	void *nextfree;
2161 	int tail = DEACTIVATE_TO_HEAD;
2162 	struct page new;
2163 	struct page old;
2164 
2165 	if (page->freelist) {
2166 		stat(s, DEACTIVATE_REMOTE_FREES);
2167 		tail = DEACTIVATE_TO_TAIL;
2168 	}
2169 
2170 	/*
2171 	 * Stage one: Free all available per cpu objects back
2172 	 * to the page freelist while it is still frozen. Leave the
2173 	 * last one.
2174 	 *
2175 	 * There is no need to take the list->lock because the page
2176 	 * is still frozen.
2177 	 */
2178 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2179 		void *prior;
2180 		unsigned long counters;
2181 
2182 		/*
2183 		 * If 'nextfree' is invalid, it is possible that the object at
2184 		 * 'freelist' is already corrupted.  So isolate all objects
2185 		 * starting at 'freelist'.
2186 		 */
2187 		if (freelist_corrupted(s, page, freelist, nextfree))
2188 			break;
2189 
2190 		do {
2191 			prior = page->freelist;
2192 			counters = page->counters;
2193 			set_freepointer(s, freelist, prior);
2194 			new.counters = counters;
2195 			new.inuse--;
2196 			VM_BUG_ON(!new.frozen);
2197 
2198 		} while (!__cmpxchg_double_slab(s, page,
2199 			prior, counters,
2200 			freelist, new.counters,
2201 			"drain percpu freelist"));
2202 
2203 		freelist = nextfree;
2204 	}
2205 
2206 	/*
2207 	 * Stage two: Ensure that the page is unfrozen while the
2208 	 * list presence reflects the actual number of objects
2209 	 * during unfreeze.
2210 	 *
2211 	 * We setup the list membership and then perform a cmpxchg
2212 	 * with the count. If there is a mismatch then the page
2213 	 * is not unfrozen but the page is on the wrong list.
2214 	 *
2215 	 * Then we restart the process which may have to remove
2216 	 * the page from the list that we just put it on again
2217 	 * because the number of objects in the slab may have
2218 	 * changed.
2219 	 */
2220 redo:
2221 
2222 	old.freelist = page->freelist;
2223 	old.counters = page->counters;
2224 	VM_BUG_ON(!old.frozen);
2225 
2226 	/* Determine target state of the slab */
2227 	new.counters = old.counters;
2228 	if (freelist) {
2229 		new.inuse--;
2230 		set_freepointer(s, freelist, old.freelist);
2231 		new.freelist = freelist;
2232 	} else
2233 		new.freelist = old.freelist;
2234 
2235 	new.frozen = 0;
2236 
2237 	if (!new.inuse && n->nr_partial >= s->min_partial)
2238 		m = M_FREE;
2239 	else if (new.freelist) {
2240 		m = M_PARTIAL;
2241 		if (!lock) {
2242 			lock = 1;
2243 			/*
2244 			 * Taking the spinlock removes the possibility
2245 			 * that acquire_slab() will see a slab page that
2246 			 * is frozen
2247 			 */
2248 			spin_lock(&n->list_lock);
2249 		}
2250 	} else {
2251 		m = M_FULL;
2252 		if (kmem_cache_debug(s) && !lock) {
2253 			lock = 1;
2254 			/*
2255 			 * This also ensures that the scanning of full
2256 			 * slabs from diagnostic functions will not see
2257 			 * any frozen slabs.
2258 			 */
2259 			spin_lock(&n->list_lock);
2260 		}
2261 	}
2262 
2263 	if (l != m) {
2264 		if (l == M_PARTIAL)
2265 			remove_partial(n, page);
2266 		else if (l == M_FULL)
2267 			remove_full(s, n, page);
2268 
2269 		if (m == M_PARTIAL)
2270 			add_partial(n, page, tail);
2271 		else if (m == M_FULL)
2272 			add_full(s, n, page);
2273 	}
2274 
2275 	l = m;
2276 	if (!__cmpxchg_double_slab(s, page,
2277 				old.freelist, old.counters,
2278 				new.freelist, new.counters,
2279 				"unfreezing slab"))
2280 		goto redo;
2281 
2282 	if (lock)
2283 		spin_unlock(&n->list_lock);
2284 
2285 	if (m == M_PARTIAL)
2286 		stat(s, tail);
2287 	else if (m == M_FULL)
2288 		stat(s, DEACTIVATE_FULL);
2289 	else if (m == M_FREE) {
2290 		stat(s, DEACTIVATE_EMPTY);
2291 		discard_slab(s, page);
2292 		stat(s, FREE_SLAB);
2293 	}
2294 
2295 	c->page = NULL;
2296 	c->freelist = NULL;
2297 }
2298 
2299 /*
2300  * Unfreeze all the cpu partial slabs.
2301  *
2302  * This function must be called with interrupts disabled
2303  * for the cpu using c (or some other guarantee must be there
2304  * to guarantee no concurrent accesses).
2305  */
2306 static void unfreeze_partials(struct kmem_cache *s,
2307 		struct kmem_cache_cpu *c)
2308 {
2309 #ifdef CONFIG_SLUB_CPU_PARTIAL
2310 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2311 	struct page *page, *discard_page = NULL;
2312 
2313 	while ((page = slub_percpu_partial(c))) {
2314 		struct page new;
2315 		struct page old;
2316 
2317 		slub_set_percpu_partial(c, page);
2318 
2319 		n2 = get_node(s, page_to_nid(page));
2320 		if (n != n2) {
2321 			if (n)
2322 				spin_unlock(&n->list_lock);
2323 
2324 			n = n2;
2325 			spin_lock(&n->list_lock);
2326 		}
2327 
2328 		do {
2329 
2330 			old.freelist = page->freelist;
2331 			old.counters = page->counters;
2332 			VM_BUG_ON(!old.frozen);
2333 
2334 			new.counters = old.counters;
2335 			new.freelist = old.freelist;
2336 
2337 			new.frozen = 0;
2338 
2339 		} while (!__cmpxchg_double_slab(s, page,
2340 				old.freelist, old.counters,
2341 				new.freelist, new.counters,
2342 				"unfreezing slab"));
2343 
2344 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2345 			page->next = discard_page;
2346 			discard_page = page;
2347 		} else {
2348 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2349 			stat(s, FREE_ADD_PARTIAL);
2350 		}
2351 	}
2352 
2353 	if (n)
2354 		spin_unlock(&n->list_lock);
2355 
2356 	while (discard_page) {
2357 		page = discard_page;
2358 		discard_page = discard_page->next;
2359 
2360 		stat(s, DEACTIVATE_EMPTY);
2361 		discard_slab(s, page);
2362 		stat(s, FREE_SLAB);
2363 	}
2364 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2365 }
2366 
2367 /*
2368  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2369  * partial page slot if available.
2370  *
2371  * If we did not find a slot then simply move all the partials to the
2372  * per node partial list.
2373  */
2374 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2375 {
2376 #ifdef CONFIG_SLUB_CPU_PARTIAL
2377 	struct page *oldpage;
2378 	int pages;
2379 	int pobjects;
2380 
2381 	preempt_disable();
2382 	do {
2383 		pages = 0;
2384 		pobjects = 0;
2385 		oldpage = this_cpu_read(s->cpu_slab->partial);
2386 
2387 		if (oldpage) {
2388 			pobjects = oldpage->pobjects;
2389 			pages = oldpage->pages;
2390 			if (drain && pobjects > slub_cpu_partial(s)) {
2391 				unsigned long flags;
2392 				/*
2393 				 * partial array is full. Move the existing
2394 				 * set to the per node partial list.
2395 				 */
2396 				local_irq_save(flags);
2397 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2398 				local_irq_restore(flags);
2399 				oldpage = NULL;
2400 				pobjects = 0;
2401 				pages = 0;
2402 				stat(s, CPU_PARTIAL_DRAIN);
2403 			}
2404 		}
2405 
2406 		pages++;
2407 		pobjects += page->objects - page->inuse;
2408 
2409 		page->pages = pages;
2410 		page->pobjects = pobjects;
2411 		page->next = oldpage;
2412 
2413 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2414 								!= oldpage);
2415 	if (unlikely(!slub_cpu_partial(s))) {
2416 		unsigned long flags;
2417 
2418 		local_irq_save(flags);
2419 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2420 		local_irq_restore(flags);
2421 	}
2422 	preempt_enable();
2423 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2424 }
2425 
2426 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2427 {
2428 	stat(s, CPUSLAB_FLUSH);
2429 	deactivate_slab(s, c->page, c->freelist, c);
2430 
2431 	c->tid = next_tid(c->tid);
2432 }
2433 
2434 /*
2435  * Flush cpu slab.
2436  *
2437  * Called from IPI handler with interrupts disabled.
2438  */
2439 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2440 {
2441 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2442 
2443 	if (c->page)
2444 		flush_slab(s, c);
2445 
2446 	unfreeze_partials(s, c);
2447 }
2448 
2449 static void flush_cpu_slab(void *d)
2450 {
2451 	struct kmem_cache *s = d;
2452 
2453 	__flush_cpu_slab(s, smp_processor_id());
2454 }
2455 
2456 static bool has_cpu_slab(int cpu, void *info)
2457 {
2458 	struct kmem_cache *s = info;
2459 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2460 
2461 	return c->page || slub_percpu_partial(c);
2462 }
2463 
2464 static void flush_all(struct kmem_cache *s)
2465 {
2466 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2467 }
2468 
2469 /*
2470  * Use the cpu notifier to insure that the cpu slabs are flushed when
2471  * necessary.
2472  */
2473 static int slub_cpu_dead(unsigned int cpu)
2474 {
2475 	struct kmem_cache *s;
2476 	unsigned long flags;
2477 
2478 	mutex_lock(&slab_mutex);
2479 	list_for_each_entry(s, &slab_caches, list) {
2480 		local_irq_save(flags);
2481 		__flush_cpu_slab(s, cpu);
2482 		local_irq_restore(flags);
2483 	}
2484 	mutex_unlock(&slab_mutex);
2485 	return 0;
2486 }
2487 
2488 /*
2489  * Check if the objects in a per cpu structure fit numa
2490  * locality expectations.
2491  */
2492 static inline int node_match(struct page *page, int node)
2493 {
2494 #ifdef CONFIG_NUMA
2495 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2496 		return 0;
2497 #endif
2498 	return 1;
2499 }
2500 
2501 #ifdef CONFIG_SLUB_DEBUG
2502 static int count_free(struct page *page)
2503 {
2504 	return page->objects - page->inuse;
2505 }
2506 
2507 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2508 {
2509 	return atomic_long_read(&n->total_objects);
2510 }
2511 #endif /* CONFIG_SLUB_DEBUG */
2512 
2513 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2514 static unsigned long count_partial(struct kmem_cache_node *n,
2515 					int (*get_count)(struct page *))
2516 {
2517 	unsigned long flags;
2518 	unsigned long x = 0;
2519 	struct page *page;
2520 
2521 	spin_lock_irqsave(&n->list_lock, flags);
2522 	list_for_each_entry(page, &n->partial, slab_list)
2523 		x += get_count(page);
2524 	spin_unlock_irqrestore(&n->list_lock, flags);
2525 	return x;
2526 }
2527 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2528 
2529 static noinline void
2530 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2531 {
2532 #ifdef CONFIG_SLUB_DEBUG
2533 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2534 				      DEFAULT_RATELIMIT_BURST);
2535 	int node;
2536 	struct kmem_cache_node *n;
2537 
2538 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2539 		return;
2540 
2541 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2542 		nid, gfpflags, &gfpflags);
2543 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2544 		s->name, s->object_size, s->size, oo_order(s->oo),
2545 		oo_order(s->min));
2546 
2547 	if (oo_order(s->min) > get_order(s->object_size))
2548 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2549 			s->name);
2550 
2551 	for_each_kmem_cache_node(s, node, n) {
2552 		unsigned long nr_slabs;
2553 		unsigned long nr_objs;
2554 		unsigned long nr_free;
2555 
2556 		nr_free  = count_partial(n, count_free);
2557 		nr_slabs = node_nr_slabs(n);
2558 		nr_objs  = node_nr_objs(n);
2559 
2560 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2561 			node, nr_slabs, nr_objs, nr_free);
2562 	}
2563 #endif
2564 }
2565 
2566 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2567 			int node, struct kmem_cache_cpu **pc)
2568 {
2569 	void *freelist;
2570 	struct kmem_cache_cpu *c = *pc;
2571 	struct page *page;
2572 
2573 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2574 
2575 	freelist = get_partial(s, flags, node, c);
2576 
2577 	if (freelist)
2578 		return freelist;
2579 
2580 	page = new_slab(s, flags, node);
2581 	if (page) {
2582 		c = raw_cpu_ptr(s->cpu_slab);
2583 		if (c->page)
2584 			flush_slab(s, c);
2585 
2586 		/*
2587 		 * No other reference to the page yet so we can
2588 		 * muck around with it freely without cmpxchg
2589 		 */
2590 		freelist = page->freelist;
2591 		page->freelist = NULL;
2592 
2593 		stat(s, ALLOC_SLAB);
2594 		c->page = page;
2595 		*pc = c;
2596 	}
2597 
2598 	return freelist;
2599 }
2600 
2601 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2602 {
2603 	if (unlikely(PageSlabPfmemalloc(page)))
2604 		return gfp_pfmemalloc_allowed(gfpflags);
2605 
2606 	return true;
2607 }
2608 
2609 /*
2610  * Check the page->freelist of a page and either transfer the freelist to the
2611  * per cpu freelist or deactivate the page.
2612  *
2613  * The page is still frozen if the return value is not NULL.
2614  *
2615  * If this function returns NULL then the page has been unfrozen.
2616  *
2617  * This function must be called with interrupt disabled.
2618  */
2619 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2620 {
2621 	struct page new;
2622 	unsigned long counters;
2623 	void *freelist;
2624 
2625 	do {
2626 		freelist = page->freelist;
2627 		counters = page->counters;
2628 
2629 		new.counters = counters;
2630 		VM_BUG_ON(!new.frozen);
2631 
2632 		new.inuse = page->objects;
2633 		new.frozen = freelist != NULL;
2634 
2635 	} while (!__cmpxchg_double_slab(s, page,
2636 		freelist, counters,
2637 		NULL, new.counters,
2638 		"get_freelist"));
2639 
2640 	return freelist;
2641 }
2642 
2643 /*
2644  * Slow path. The lockless freelist is empty or we need to perform
2645  * debugging duties.
2646  *
2647  * Processing is still very fast if new objects have been freed to the
2648  * regular freelist. In that case we simply take over the regular freelist
2649  * as the lockless freelist and zap the regular freelist.
2650  *
2651  * If that is not working then we fall back to the partial lists. We take the
2652  * first element of the freelist as the object to allocate now and move the
2653  * rest of the freelist to the lockless freelist.
2654  *
2655  * And if we were unable to get a new slab from the partial slab lists then
2656  * we need to allocate a new slab. This is the slowest path since it involves
2657  * a call to the page allocator and the setup of a new slab.
2658  *
2659  * Version of __slab_alloc to use when we know that interrupts are
2660  * already disabled (which is the case for bulk allocation).
2661  */
2662 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2663 			  unsigned long addr, struct kmem_cache_cpu *c)
2664 {
2665 	void *freelist;
2666 	struct page *page;
2667 
2668 	page = c->page;
2669 	if (!page) {
2670 		/*
2671 		 * if the node is not online or has no normal memory, just
2672 		 * ignore the node constraint
2673 		 */
2674 		if (unlikely(node != NUMA_NO_NODE &&
2675 			     !node_state(node, N_NORMAL_MEMORY)))
2676 			node = NUMA_NO_NODE;
2677 		goto new_slab;
2678 	}
2679 redo:
2680 
2681 	if (unlikely(!node_match(page, node))) {
2682 		/*
2683 		 * same as above but node_match() being false already
2684 		 * implies node != NUMA_NO_NODE
2685 		 */
2686 		if (!node_state(node, N_NORMAL_MEMORY)) {
2687 			node = NUMA_NO_NODE;
2688 			goto redo;
2689 		} else {
2690 			stat(s, ALLOC_NODE_MISMATCH);
2691 			deactivate_slab(s, page, c->freelist, c);
2692 			goto new_slab;
2693 		}
2694 	}
2695 
2696 	/*
2697 	 * By rights, we should be searching for a slab page that was
2698 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2699 	 * information when the page leaves the per-cpu allocator
2700 	 */
2701 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2702 		deactivate_slab(s, page, c->freelist, c);
2703 		goto new_slab;
2704 	}
2705 
2706 	/* must check again c->freelist in case of cpu migration or IRQ */
2707 	freelist = c->freelist;
2708 	if (freelist)
2709 		goto load_freelist;
2710 
2711 	freelist = get_freelist(s, page);
2712 
2713 	if (!freelist) {
2714 		c->page = NULL;
2715 		stat(s, DEACTIVATE_BYPASS);
2716 		goto new_slab;
2717 	}
2718 
2719 	stat(s, ALLOC_REFILL);
2720 
2721 load_freelist:
2722 	/*
2723 	 * freelist is pointing to the list of objects to be used.
2724 	 * page is pointing to the page from which the objects are obtained.
2725 	 * That page must be frozen for per cpu allocations to work.
2726 	 */
2727 	VM_BUG_ON(!c->page->frozen);
2728 	c->freelist = get_freepointer(s, freelist);
2729 	c->tid = next_tid(c->tid);
2730 	return freelist;
2731 
2732 new_slab:
2733 
2734 	if (slub_percpu_partial(c)) {
2735 		page = c->page = slub_percpu_partial(c);
2736 		slub_set_percpu_partial(c, page);
2737 		stat(s, CPU_PARTIAL_ALLOC);
2738 		goto redo;
2739 	}
2740 
2741 	freelist = new_slab_objects(s, gfpflags, node, &c);
2742 
2743 	if (unlikely(!freelist)) {
2744 		slab_out_of_memory(s, gfpflags, node);
2745 		return NULL;
2746 	}
2747 
2748 	page = c->page;
2749 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2750 		goto load_freelist;
2751 
2752 	/* Only entered in the debug case */
2753 	if (kmem_cache_debug(s) &&
2754 			!alloc_debug_processing(s, page, freelist, addr))
2755 		goto new_slab;	/* Slab failed checks. Next slab needed */
2756 
2757 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2758 	return freelist;
2759 }
2760 
2761 /*
2762  * Another one that disabled interrupt and compensates for possible
2763  * cpu changes by refetching the per cpu area pointer.
2764  */
2765 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2766 			  unsigned long addr, struct kmem_cache_cpu *c)
2767 {
2768 	void *p;
2769 	unsigned long flags;
2770 
2771 	local_irq_save(flags);
2772 #ifdef CONFIG_PREEMPTION
2773 	/*
2774 	 * We may have been preempted and rescheduled on a different
2775 	 * cpu before disabling interrupts. Need to reload cpu area
2776 	 * pointer.
2777 	 */
2778 	c = this_cpu_ptr(s->cpu_slab);
2779 #endif
2780 
2781 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2782 	local_irq_restore(flags);
2783 	return p;
2784 }
2785 
2786 /*
2787  * If the object has been wiped upon free, make sure it's fully initialized by
2788  * zeroing out freelist pointer.
2789  */
2790 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2791 						   void *obj)
2792 {
2793 	if (unlikely(slab_want_init_on_free(s)) && obj)
2794 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2795 }
2796 
2797 /*
2798  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2799  * have the fastpath folded into their functions. So no function call
2800  * overhead for requests that can be satisfied on the fastpath.
2801  *
2802  * The fastpath works by first checking if the lockless freelist can be used.
2803  * If not then __slab_alloc is called for slow processing.
2804  *
2805  * Otherwise we can simply pick the next object from the lockless free list.
2806  */
2807 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2808 		gfp_t gfpflags, int node, unsigned long addr)
2809 {
2810 	void *object;
2811 	struct kmem_cache_cpu *c;
2812 	struct page *page;
2813 	unsigned long tid;
2814 	struct obj_cgroup *objcg = NULL;
2815 
2816 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2817 	if (!s)
2818 		return NULL;
2819 redo:
2820 	/*
2821 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2822 	 * enabled. We may switch back and forth between cpus while
2823 	 * reading from one cpu area. That does not matter as long
2824 	 * as we end up on the original cpu again when doing the cmpxchg.
2825 	 *
2826 	 * We should guarantee that tid and kmem_cache are retrieved on
2827 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2828 	 * to check if it is matched or not.
2829 	 */
2830 	do {
2831 		tid = this_cpu_read(s->cpu_slab->tid);
2832 		c = raw_cpu_ptr(s->cpu_slab);
2833 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2834 		 unlikely(tid != READ_ONCE(c->tid)));
2835 
2836 	/*
2837 	 * Irqless object alloc/free algorithm used here depends on sequence
2838 	 * of fetching cpu_slab's data. tid should be fetched before anything
2839 	 * on c to guarantee that object and page associated with previous tid
2840 	 * won't be used with current tid. If we fetch tid first, object and
2841 	 * page could be one associated with next tid and our alloc/free
2842 	 * request will be failed. In this case, we will retry. So, no problem.
2843 	 */
2844 	barrier();
2845 
2846 	/*
2847 	 * The transaction ids are globally unique per cpu and per operation on
2848 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2849 	 * occurs on the right processor and that there was no operation on the
2850 	 * linked list in between.
2851 	 */
2852 
2853 	object = c->freelist;
2854 	page = c->page;
2855 	if (unlikely(!object || !node_match(page, node))) {
2856 		object = __slab_alloc(s, gfpflags, node, addr, c);
2857 		stat(s, ALLOC_SLOWPATH);
2858 	} else {
2859 		void *next_object = get_freepointer_safe(s, object);
2860 
2861 		/*
2862 		 * The cmpxchg will only match if there was no additional
2863 		 * operation and if we are on the right processor.
2864 		 *
2865 		 * The cmpxchg does the following atomically (without lock
2866 		 * semantics!)
2867 		 * 1. Relocate first pointer to the current per cpu area.
2868 		 * 2. Verify that tid and freelist have not been changed
2869 		 * 3. If they were not changed replace tid and freelist
2870 		 *
2871 		 * Since this is without lock semantics the protection is only
2872 		 * against code executing on this cpu *not* from access by
2873 		 * other cpus.
2874 		 */
2875 		if (unlikely(!this_cpu_cmpxchg_double(
2876 				s->cpu_slab->freelist, s->cpu_slab->tid,
2877 				object, tid,
2878 				next_object, next_tid(tid)))) {
2879 
2880 			note_cmpxchg_failure("slab_alloc", s, tid);
2881 			goto redo;
2882 		}
2883 		prefetch_freepointer(s, next_object);
2884 		stat(s, ALLOC_FASTPATH);
2885 	}
2886 
2887 	maybe_wipe_obj_freeptr(s, object);
2888 
2889 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2890 		memset(object, 0, s->object_size);
2891 
2892 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2893 
2894 	return object;
2895 }
2896 
2897 static __always_inline void *slab_alloc(struct kmem_cache *s,
2898 		gfp_t gfpflags, unsigned long addr)
2899 {
2900 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2901 }
2902 
2903 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2904 {
2905 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2906 
2907 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2908 				s->size, gfpflags);
2909 
2910 	return ret;
2911 }
2912 EXPORT_SYMBOL(kmem_cache_alloc);
2913 
2914 #ifdef CONFIG_TRACING
2915 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2916 {
2917 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2918 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2919 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2920 	return ret;
2921 }
2922 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2923 #endif
2924 
2925 #ifdef CONFIG_NUMA
2926 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2927 {
2928 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2929 
2930 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2931 				    s->object_size, s->size, gfpflags, node);
2932 
2933 	return ret;
2934 }
2935 EXPORT_SYMBOL(kmem_cache_alloc_node);
2936 
2937 #ifdef CONFIG_TRACING
2938 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2939 				    gfp_t gfpflags,
2940 				    int node, size_t size)
2941 {
2942 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2943 
2944 	trace_kmalloc_node(_RET_IP_, ret,
2945 			   size, s->size, gfpflags, node);
2946 
2947 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2948 	return ret;
2949 }
2950 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2951 #endif
2952 #endif	/* CONFIG_NUMA */
2953 
2954 /*
2955  * Slow path handling. This may still be called frequently since objects
2956  * have a longer lifetime than the cpu slabs in most processing loads.
2957  *
2958  * So we still attempt to reduce cache line usage. Just take the slab
2959  * lock and free the item. If there is no additional partial page
2960  * handling required then we can return immediately.
2961  */
2962 static void __slab_free(struct kmem_cache *s, struct page *page,
2963 			void *head, void *tail, int cnt,
2964 			unsigned long addr)
2965 
2966 {
2967 	void *prior;
2968 	int was_frozen;
2969 	struct page new;
2970 	unsigned long counters;
2971 	struct kmem_cache_node *n = NULL;
2972 	unsigned long flags;
2973 
2974 	stat(s, FREE_SLOWPATH);
2975 
2976 	if (kmem_cache_debug(s) &&
2977 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2978 		return;
2979 
2980 	do {
2981 		if (unlikely(n)) {
2982 			spin_unlock_irqrestore(&n->list_lock, flags);
2983 			n = NULL;
2984 		}
2985 		prior = page->freelist;
2986 		counters = page->counters;
2987 		set_freepointer(s, tail, prior);
2988 		new.counters = counters;
2989 		was_frozen = new.frozen;
2990 		new.inuse -= cnt;
2991 		if ((!new.inuse || !prior) && !was_frozen) {
2992 
2993 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2994 
2995 				/*
2996 				 * Slab was on no list before and will be
2997 				 * partially empty
2998 				 * We can defer the list move and instead
2999 				 * freeze it.
3000 				 */
3001 				new.frozen = 1;
3002 
3003 			} else { /* Needs to be taken off a list */
3004 
3005 				n = get_node(s, page_to_nid(page));
3006 				/*
3007 				 * Speculatively acquire the list_lock.
3008 				 * If the cmpxchg does not succeed then we may
3009 				 * drop the list_lock without any processing.
3010 				 *
3011 				 * Otherwise the list_lock will synchronize with
3012 				 * other processors updating the list of slabs.
3013 				 */
3014 				spin_lock_irqsave(&n->list_lock, flags);
3015 
3016 			}
3017 		}
3018 
3019 	} while (!cmpxchg_double_slab(s, page,
3020 		prior, counters,
3021 		head, new.counters,
3022 		"__slab_free"));
3023 
3024 	if (likely(!n)) {
3025 
3026 		/*
3027 		 * If we just froze the page then put it onto the
3028 		 * per cpu partial list.
3029 		 */
3030 		if (new.frozen && !was_frozen) {
3031 			put_cpu_partial(s, page, 1);
3032 			stat(s, CPU_PARTIAL_FREE);
3033 		}
3034 		/*
3035 		 * The list lock was not taken therefore no list
3036 		 * activity can be necessary.
3037 		 */
3038 		if (was_frozen)
3039 			stat(s, FREE_FROZEN);
3040 		return;
3041 	}
3042 
3043 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3044 		goto slab_empty;
3045 
3046 	/*
3047 	 * Objects left in the slab. If it was not on the partial list before
3048 	 * then add it.
3049 	 */
3050 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3051 		remove_full(s, n, page);
3052 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3053 		stat(s, FREE_ADD_PARTIAL);
3054 	}
3055 	spin_unlock_irqrestore(&n->list_lock, flags);
3056 	return;
3057 
3058 slab_empty:
3059 	if (prior) {
3060 		/*
3061 		 * Slab on the partial list.
3062 		 */
3063 		remove_partial(n, page);
3064 		stat(s, FREE_REMOVE_PARTIAL);
3065 	} else {
3066 		/* Slab must be on the full list */
3067 		remove_full(s, n, page);
3068 	}
3069 
3070 	spin_unlock_irqrestore(&n->list_lock, flags);
3071 	stat(s, FREE_SLAB);
3072 	discard_slab(s, page);
3073 }
3074 
3075 /*
3076  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3077  * can perform fastpath freeing without additional function calls.
3078  *
3079  * The fastpath is only possible if we are freeing to the current cpu slab
3080  * of this processor. This typically the case if we have just allocated
3081  * the item before.
3082  *
3083  * If fastpath is not possible then fall back to __slab_free where we deal
3084  * with all sorts of special processing.
3085  *
3086  * Bulk free of a freelist with several objects (all pointing to the
3087  * same page) possible by specifying head and tail ptr, plus objects
3088  * count (cnt). Bulk free indicated by tail pointer being set.
3089  */
3090 static __always_inline void do_slab_free(struct kmem_cache *s,
3091 				struct page *page, void *head, void *tail,
3092 				int cnt, unsigned long addr)
3093 {
3094 	void *tail_obj = tail ? : head;
3095 	struct kmem_cache_cpu *c;
3096 	unsigned long tid;
3097 
3098 	memcg_slab_free_hook(s, page, head);
3099 redo:
3100 	/*
3101 	 * Determine the currently cpus per cpu slab.
3102 	 * The cpu may change afterward. However that does not matter since
3103 	 * data is retrieved via this pointer. If we are on the same cpu
3104 	 * during the cmpxchg then the free will succeed.
3105 	 */
3106 	do {
3107 		tid = this_cpu_read(s->cpu_slab->tid);
3108 		c = raw_cpu_ptr(s->cpu_slab);
3109 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3110 		 unlikely(tid != READ_ONCE(c->tid)));
3111 
3112 	/* Same with comment on barrier() in slab_alloc_node() */
3113 	barrier();
3114 
3115 	if (likely(page == c->page)) {
3116 		void **freelist = READ_ONCE(c->freelist);
3117 
3118 		set_freepointer(s, tail_obj, freelist);
3119 
3120 		if (unlikely(!this_cpu_cmpxchg_double(
3121 				s->cpu_slab->freelist, s->cpu_slab->tid,
3122 				freelist, tid,
3123 				head, next_tid(tid)))) {
3124 
3125 			note_cmpxchg_failure("slab_free", s, tid);
3126 			goto redo;
3127 		}
3128 		stat(s, FREE_FASTPATH);
3129 	} else
3130 		__slab_free(s, page, head, tail_obj, cnt, addr);
3131 
3132 }
3133 
3134 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3135 				      void *head, void *tail, int cnt,
3136 				      unsigned long addr)
3137 {
3138 	/*
3139 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3140 	 * to remove objects, whose reuse must be delayed.
3141 	 */
3142 	if (slab_free_freelist_hook(s, &head, &tail))
3143 		do_slab_free(s, page, head, tail, cnt, addr);
3144 }
3145 
3146 #ifdef CONFIG_KASAN_GENERIC
3147 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3148 {
3149 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3150 }
3151 #endif
3152 
3153 void kmem_cache_free(struct kmem_cache *s, void *x)
3154 {
3155 	s = cache_from_obj(s, x);
3156 	if (!s)
3157 		return;
3158 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3159 	trace_kmem_cache_free(_RET_IP_, x);
3160 }
3161 EXPORT_SYMBOL(kmem_cache_free);
3162 
3163 struct detached_freelist {
3164 	struct page *page;
3165 	void *tail;
3166 	void *freelist;
3167 	int cnt;
3168 	struct kmem_cache *s;
3169 };
3170 
3171 /*
3172  * This function progressively scans the array with free objects (with
3173  * a limited look ahead) and extract objects belonging to the same
3174  * page.  It builds a detached freelist directly within the given
3175  * page/objects.  This can happen without any need for
3176  * synchronization, because the objects are owned by running process.
3177  * The freelist is build up as a single linked list in the objects.
3178  * The idea is, that this detached freelist can then be bulk
3179  * transferred to the real freelist(s), but only requiring a single
3180  * synchronization primitive.  Look ahead in the array is limited due
3181  * to performance reasons.
3182  */
3183 static inline
3184 int build_detached_freelist(struct kmem_cache *s, size_t size,
3185 			    void **p, struct detached_freelist *df)
3186 {
3187 	size_t first_skipped_index = 0;
3188 	int lookahead = 3;
3189 	void *object;
3190 	struct page *page;
3191 
3192 	/* Always re-init detached_freelist */
3193 	df->page = NULL;
3194 
3195 	do {
3196 		object = p[--size];
3197 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3198 	} while (!object && size);
3199 
3200 	if (!object)
3201 		return 0;
3202 
3203 	page = virt_to_head_page(object);
3204 	if (!s) {
3205 		/* Handle kalloc'ed objects */
3206 		if (unlikely(!PageSlab(page))) {
3207 			BUG_ON(!PageCompound(page));
3208 			kfree_hook(object);
3209 			__free_pages(page, compound_order(page));
3210 			p[size] = NULL; /* mark object processed */
3211 			return size;
3212 		}
3213 		/* Derive kmem_cache from object */
3214 		df->s = page->slab_cache;
3215 	} else {
3216 		df->s = cache_from_obj(s, object); /* Support for memcg */
3217 	}
3218 
3219 	/* Start new detached freelist */
3220 	df->page = page;
3221 	set_freepointer(df->s, object, NULL);
3222 	df->tail = object;
3223 	df->freelist = object;
3224 	p[size] = NULL; /* mark object processed */
3225 	df->cnt = 1;
3226 
3227 	while (size) {
3228 		object = p[--size];
3229 		if (!object)
3230 			continue; /* Skip processed objects */
3231 
3232 		/* df->page is always set at this point */
3233 		if (df->page == virt_to_head_page(object)) {
3234 			/* Opportunity build freelist */
3235 			set_freepointer(df->s, object, df->freelist);
3236 			df->freelist = object;
3237 			df->cnt++;
3238 			p[size] = NULL; /* mark object processed */
3239 
3240 			continue;
3241 		}
3242 
3243 		/* Limit look ahead search */
3244 		if (!--lookahead)
3245 			break;
3246 
3247 		if (!first_skipped_index)
3248 			first_skipped_index = size + 1;
3249 	}
3250 
3251 	return first_skipped_index;
3252 }
3253 
3254 /* Note that interrupts must be enabled when calling this function. */
3255 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3256 {
3257 	if (WARN_ON(!size))
3258 		return;
3259 
3260 	do {
3261 		struct detached_freelist df;
3262 
3263 		size = build_detached_freelist(s, size, p, &df);
3264 		if (!df.page)
3265 			continue;
3266 
3267 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3268 	} while (likely(size));
3269 }
3270 EXPORT_SYMBOL(kmem_cache_free_bulk);
3271 
3272 /* Note that interrupts must be enabled when calling this function. */
3273 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3274 			  void **p)
3275 {
3276 	struct kmem_cache_cpu *c;
3277 	int i;
3278 	struct obj_cgroup *objcg = NULL;
3279 
3280 	/* memcg and kmem_cache debug support */
3281 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3282 	if (unlikely(!s))
3283 		return false;
3284 	/*
3285 	 * Drain objects in the per cpu slab, while disabling local
3286 	 * IRQs, which protects against PREEMPT and interrupts
3287 	 * handlers invoking normal fastpath.
3288 	 */
3289 	local_irq_disable();
3290 	c = this_cpu_ptr(s->cpu_slab);
3291 
3292 	for (i = 0; i < size; i++) {
3293 		void *object = c->freelist;
3294 
3295 		if (unlikely(!object)) {
3296 			/*
3297 			 * We may have removed an object from c->freelist using
3298 			 * the fastpath in the previous iteration; in that case,
3299 			 * c->tid has not been bumped yet.
3300 			 * Since ___slab_alloc() may reenable interrupts while
3301 			 * allocating memory, we should bump c->tid now.
3302 			 */
3303 			c->tid = next_tid(c->tid);
3304 
3305 			/*
3306 			 * Invoking slow path likely have side-effect
3307 			 * of re-populating per CPU c->freelist
3308 			 */
3309 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3310 					    _RET_IP_, c);
3311 			if (unlikely(!p[i]))
3312 				goto error;
3313 
3314 			c = this_cpu_ptr(s->cpu_slab);
3315 			maybe_wipe_obj_freeptr(s, p[i]);
3316 
3317 			continue; /* goto for-loop */
3318 		}
3319 		c->freelist = get_freepointer(s, object);
3320 		p[i] = object;
3321 		maybe_wipe_obj_freeptr(s, p[i]);
3322 	}
3323 	c->tid = next_tid(c->tid);
3324 	local_irq_enable();
3325 
3326 	/* Clear memory outside IRQ disabled fastpath loop */
3327 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3328 		int j;
3329 
3330 		for (j = 0; j < i; j++)
3331 			memset(p[j], 0, s->object_size);
3332 	}
3333 
3334 	/* memcg and kmem_cache debug support */
3335 	slab_post_alloc_hook(s, objcg, flags, size, p);
3336 	return i;
3337 error:
3338 	local_irq_enable();
3339 	slab_post_alloc_hook(s, objcg, flags, i, p);
3340 	__kmem_cache_free_bulk(s, i, p);
3341 	return 0;
3342 }
3343 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3344 
3345 
3346 /*
3347  * Object placement in a slab is made very easy because we always start at
3348  * offset 0. If we tune the size of the object to the alignment then we can
3349  * get the required alignment by putting one properly sized object after
3350  * another.
3351  *
3352  * Notice that the allocation order determines the sizes of the per cpu
3353  * caches. Each processor has always one slab available for allocations.
3354  * Increasing the allocation order reduces the number of times that slabs
3355  * must be moved on and off the partial lists and is therefore a factor in
3356  * locking overhead.
3357  */
3358 
3359 /*
3360  * Mininum / Maximum order of slab pages. This influences locking overhead
3361  * and slab fragmentation. A higher order reduces the number of partial slabs
3362  * and increases the number of allocations possible without having to
3363  * take the list_lock.
3364  */
3365 static unsigned int slub_min_order;
3366 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3367 static unsigned int slub_min_objects;
3368 
3369 /*
3370  * Calculate the order of allocation given an slab object size.
3371  *
3372  * The order of allocation has significant impact on performance and other
3373  * system components. Generally order 0 allocations should be preferred since
3374  * order 0 does not cause fragmentation in the page allocator. Larger objects
3375  * be problematic to put into order 0 slabs because there may be too much
3376  * unused space left. We go to a higher order if more than 1/16th of the slab
3377  * would be wasted.
3378  *
3379  * In order to reach satisfactory performance we must ensure that a minimum
3380  * number of objects is in one slab. Otherwise we may generate too much
3381  * activity on the partial lists which requires taking the list_lock. This is
3382  * less a concern for large slabs though which are rarely used.
3383  *
3384  * slub_max_order specifies the order where we begin to stop considering the
3385  * number of objects in a slab as critical. If we reach slub_max_order then
3386  * we try to keep the page order as low as possible. So we accept more waste
3387  * of space in favor of a small page order.
3388  *
3389  * Higher order allocations also allow the placement of more objects in a
3390  * slab and thereby reduce object handling overhead. If the user has
3391  * requested a higher mininum order then we start with that one instead of
3392  * the smallest order which will fit the object.
3393  */
3394 static inline unsigned int slab_order(unsigned int size,
3395 		unsigned int min_objects, unsigned int max_order,
3396 		unsigned int fract_leftover)
3397 {
3398 	unsigned int min_order = slub_min_order;
3399 	unsigned int order;
3400 
3401 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3402 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3403 
3404 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3405 			order <= max_order; order++) {
3406 
3407 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3408 		unsigned int rem;
3409 
3410 		rem = slab_size % size;
3411 
3412 		if (rem <= slab_size / fract_leftover)
3413 			break;
3414 	}
3415 
3416 	return order;
3417 }
3418 
3419 static inline int calculate_order(unsigned int size)
3420 {
3421 	unsigned int order;
3422 	unsigned int min_objects;
3423 	unsigned int max_objects;
3424 
3425 	/*
3426 	 * Attempt to find best configuration for a slab. This
3427 	 * works by first attempting to generate a layout with
3428 	 * the best configuration and backing off gradually.
3429 	 *
3430 	 * First we increase the acceptable waste in a slab. Then
3431 	 * we reduce the minimum objects required in a slab.
3432 	 */
3433 	min_objects = slub_min_objects;
3434 	if (!min_objects)
3435 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3436 	max_objects = order_objects(slub_max_order, size);
3437 	min_objects = min(min_objects, max_objects);
3438 
3439 	while (min_objects > 1) {
3440 		unsigned int fraction;
3441 
3442 		fraction = 16;
3443 		while (fraction >= 4) {
3444 			order = slab_order(size, min_objects,
3445 					slub_max_order, fraction);
3446 			if (order <= slub_max_order)
3447 				return order;
3448 			fraction /= 2;
3449 		}
3450 		min_objects--;
3451 	}
3452 
3453 	/*
3454 	 * We were unable to place multiple objects in a slab. Now
3455 	 * lets see if we can place a single object there.
3456 	 */
3457 	order = slab_order(size, 1, slub_max_order, 1);
3458 	if (order <= slub_max_order)
3459 		return order;
3460 
3461 	/*
3462 	 * Doh this slab cannot be placed using slub_max_order.
3463 	 */
3464 	order = slab_order(size, 1, MAX_ORDER, 1);
3465 	if (order < MAX_ORDER)
3466 		return order;
3467 	return -ENOSYS;
3468 }
3469 
3470 static void
3471 init_kmem_cache_node(struct kmem_cache_node *n)
3472 {
3473 	n->nr_partial = 0;
3474 	spin_lock_init(&n->list_lock);
3475 	INIT_LIST_HEAD(&n->partial);
3476 #ifdef CONFIG_SLUB_DEBUG
3477 	atomic_long_set(&n->nr_slabs, 0);
3478 	atomic_long_set(&n->total_objects, 0);
3479 	INIT_LIST_HEAD(&n->full);
3480 #endif
3481 }
3482 
3483 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3484 {
3485 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3486 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3487 
3488 	/*
3489 	 * Must align to double word boundary for the double cmpxchg
3490 	 * instructions to work; see __pcpu_double_call_return_bool().
3491 	 */
3492 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3493 				     2 * sizeof(void *));
3494 
3495 	if (!s->cpu_slab)
3496 		return 0;
3497 
3498 	init_kmem_cache_cpus(s);
3499 
3500 	return 1;
3501 }
3502 
3503 static struct kmem_cache *kmem_cache_node;
3504 
3505 /*
3506  * No kmalloc_node yet so do it by hand. We know that this is the first
3507  * slab on the node for this slabcache. There are no concurrent accesses
3508  * possible.
3509  *
3510  * Note that this function only works on the kmem_cache_node
3511  * when allocating for the kmem_cache_node. This is used for bootstrapping
3512  * memory on a fresh node that has no slab structures yet.
3513  */
3514 static void early_kmem_cache_node_alloc(int node)
3515 {
3516 	struct page *page;
3517 	struct kmem_cache_node *n;
3518 
3519 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3520 
3521 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3522 
3523 	BUG_ON(!page);
3524 	if (page_to_nid(page) != node) {
3525 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3526 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3527 	}
3528 
3529 	n = page->freelist;
3530 	BUG_ON(!n);
3531 #ifdef CONFIG_SLUB_DEBUG
3532 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3533 	init_tracking(kmem_cache_node, n);
3534 #endif
3535 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3536 		      GFP_KERNEL);
3537 	page->freelist = get_freepointer(kmem_cache_node, n);
3538 	page->inuse = 1;
3539 	page->frozen = 0;
3540 	kmem_cache_node->node[node] = n;
3541 	init_kmem_cache_node(n);
3542 	inc_slabs_node(kmem_cache_node, node, page->objects);
3543 
3544 	/*
3545 	 * No locks need to be taken here as it has just been
3546 	 * initialized and there is no concurrent access.
3547 	 */
3548 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3549 }
3550 
3551 static void free_kmem_cache_nodes(struct kmem_cache *s)
3552 {
3553 	int node;
3554 	struct kmem_cache_node *n;
3555 
3556 	for_each_kmem_cache_node(s, node, n) {
3557 		s->node[node] = NULL;
3558 		kmem_cache_free(kmem_cache_node, n);
3559 	}
3560 }
3561 
3562 void __kmem_cache_release(struct kmem_cache *s)
3563 {
3564 	cache_random_seq_destroy(s);
3565 	free_percpu(s->cpu_slab);
3566 	free_kmem_cache_nodes(s);
3567 }
3568 
3569 static int init_kmem_cache_nodes(struct kmem_cache *s)
3570 {
3571 	int node;
3572 
3573 	for_each_node_state(node, N_NORMAL_MEMORY) {
3574 		struct kmem_cache_node *n;
3575 
3576 		if (slab_state == DOWN) {
3577 			early_kmem_cache_node_alloc(node);
3578 			continue;
3579 		}
3580 		n = kmem_cache_alloc_node(kmem_cache_node,
3581 						GFP_KERNEL, node);
3582 
3583 		if (!n) {
3584 			free_kmem_cache_nodes(s);
3585 			return 0;
3586 		}
3587 
3588 		init_kmem_cache_node(n);
3589 		s->node[node] = n;
3590 	}
3591 	return 1;
3592 }
3593 
3594 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3595 {
3596 	if (min < MIN_PARTIAL)
3597 		min = MIN_PARTIAL;
3598 	else if (min > MAX_PARTIAL)
3599 		min = MAX_PARTIAL;
3600 	s->min_partial = min;
3601 }
3602 
3603 static void set_cpu_partial(struct kmem_cache *s)
3604 {
3605 #ifdef CONFIG_SLUB_CPU_PARTIAL
3606 	/*
3607 	 * cpu_partial determined the maximum number of objects kept in the
3608 	 * per cpu partial lists of a processor.
3609 	 *
3610 	 * Per cpu partial lists mainly contain slabs that just have one
3611 	 * object freed. If they are used for allocation then they can be
3612 	 * filled up again with minimal effort. The slab will never hit the
3613 	 * per node partial lists and therefore no locking will be required.
3614 	 *
3615 	 * This setting also determines
3616 	 *
3617 	 * A) The number of objects from per cpu partial slabs dumped to the
3618 	 *    per node list when we reach the limit.
3619 	 * B) The number of objects in cpu partial slabs to extract from the
3620 	 *    per node list when we run out of per cpu objects. We only fetch
3621 	 *    50% to keep some capacity around for frees.
3622 	 */
3623 	if (!kmem_cache_has_cpu_partial(s))
3624 		slub_set_cpu_partial(s, 0);
3625 	else if (s->size >= PAGE_SIZE)
3626 		slub_set_cpu_partial(s, 2);
3627 	else if (s->size >= 1024)
3628 		slub_set_cpu_partial(s, 6);
3629 	else if (s->size >= 256)
3630 		slub_set_cpu_partial(s, 13);
3631 	else
3632 		slub_set_cpu_partial(s, 30);
3633 #endif
3634 }
3635 
3636 /*
3637  * calculate_sizes() determines the order and the distribution of data within
3638  * a slab object.
3639  */
3640 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3641 {
3642 	slab_flags_t flags = s->flags;
3643 	unsigned int size = s->object_size;
3644 	unsigned int freepointer_area;
3645 	unsigned int order;
3646 
3647 	/*
3648 	 * Round up object size to the next word boundary. We can only
3649 	 * place the free pointer at word boundaries and this determines
3650 	 * the possible location of the free pointer.
3651 	 */
3652 	size = ALIGN(size, sizeof(void *));
3653 	/*
3654 	 * This is the area of the object where a freepointer can be
3655 	 * safely written. If redzoning adds more to the inuse size, we
3656 	 * can't use that portion for writing the freepointer, so
3657 	 * s->offset must be limited within this for the general case.
3658 	 */
3659 	freepointer_area = size;
3660 
3661 #ifdef CONFIG_SLUB_DEBUG
3662 	/*
3663 	 * Determine if we can poison the object itself. If the user of
3664 	 * the slab may touch the object after free or before allocation
3665 	 * then we should never poison the object itself.
3666 	 */
3667 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3668 			!s->ctor)
3669 		s->flags |= __OBJECT_POISON;
3670 	else
3671 		s->flags &= ~__OBJECT_POISON;
3672 
3673 
3674 	/*
3675 	 * If we are Redzoning then check if there is some space between the
3676 	 * end of the object and the free pointer. If not then add an
3677 	 * additional word to have some bytes to store Redzone information.
3678 	 */
3679 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3680 		size += sizeof(void *);
3681 #endif
3682 
3683 	/*
3684 	 * With that we have determined the number of bytes in actual use
3685 	 * by the object. This is the potential offset to the free pointer.
3686 	 */
3687 	s->inuse = size;
3688 
3689 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3690 		s->ctor)) {
3691 		/*
3692 		 * Relocate free pointer after the object if it is not
3693 		 * permitted to overwrite the first word of the object on
3694 		 * kmem_cache_free.
3695 		 *
3696 		 * This is the case if we do RCU, have a constructor or
3697 		 * destructor or are poisoning the objects.
3698 		 *
3699 		 * The assumption that s->offset >= s->inuse means free
3700 		 * pointer is outside of the object is used in the
3701 		 * freeptr_outside_object() function. If that is no
3702 		 * longer true, the function needs to be modified.
3703 		 */
3704 		s->offset = size;
3705 		size += sizeof(void *);
3706 	} else if (freepointer_area > sizeof(void *)) {
3707 		/*
3708 		 * Store freelist pointer near middle of object to keep
3709 		 * it away from the edges of the object to avoid small
3710 		 * sized over/underflows from neighboring allocations.
3711 		 */
3712 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3713 	}
3714 
3715 #ifdef CONFIG_SLUB_DEBUG
3716 	if (flags & SLAB_STORE_USER)
3717 		/*
3718 		 * Need to store information about allocs and frees after
3719 		 * the object.
3720 		 */
3721 		size += 2 * sizeof(struct track);
3722 #endif
3723 
3724 	kasan_cache_create(s, &size, &s->flags);
3725 #ifdef CONFIG_SLUB_DEBUG
3726 	if (flags & SLAB_RED_ZONE) {
3727 		/*
3728 		 * Add some empty padding so that we can catch
3729 		 * overwrites from earlier objects rather than let
3730 		 * tracking information or the free pointer be
3731 		 * corrupted if a user writes before the start
3732 		 * of the object.
3733 		 */
3734 		size += sizeof(void *);
3735 
3736 		s->red_left_pad = sizeof(void *);
3737 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3738 		size += s->red_left_pad;
3739 	}
3740 #endif
3741 
3742 	/*
3743 	 * SLUB stores one object immediately after another beginning from
3744 	 * offset 0. In order to align the objects we have to simply size
3745 	 * each object to conform to the alignment.
3746 	 */
3747 	size = ALIGN(size, s->align);
3748 	s->size = size;
3749 	s->reciprocal_size = reciprocal_value(size);
3750 	if (forced_order >= 0)
3751 		order = forced_order;
3752 	else
3753 		order = calculate_order(size);
3754 
3755 	if ((int)order < 0)
3756 		return 0;
3757 
3758 	s->allocflags = 0;
3759 	if (order)
3760 		s->allocflags |= __GFP_COMP;
3761 
3762 	if (s->flags & SLAB_CACHE_DMA)
3763 		s->allocflags |= GFP_DMA;
3764 
3765 	if (s->flags & SLAB_CACHE_DMA32)
3766 		s->allocflags |= GFP_DMA32;
3767 
3768 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3769 		s->allocflags |= __GFP_RECLAIMABLE;
3770 
3771 	/*
3772 	 * Determine the number of objects per slab
3773 	 */
3774 	s->oo = oo_make(order, size);
3775 	s->min = oo_make(get_order(size), size);
3776 	if (oo_objects(s->oo) > oo_objects(s->max))
3777 		s->max = s->oo;
3778 
3779 	return !!oo_objects(s->oo);
3780 }
3781 
3782 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3783 {
3784 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3785 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3786 	s->random = get_random_long();
3787 #endif
3788 
3789 	if (!calculate_sizes(s, -1))
3790 		goto error;
3791 	if (disable_higher_order_debug) {
3792 		/*
3793 		 * Disable debugging flags that store metadata if the min slab
3794 		 * order increased.
3795 		 */
3796 		if (get_order(s->size) > get_order(s->object_size)) {
3797 			s->flags &= ~DEBUG_METADATA_FLAGS;
3798 			s->offset = 0;
3799 			if (!calculate_sizes(s, -1))
3800 				goto error;
3801 		}
3802 	}
3803 
3804 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3805     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3806 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3807 		/* Enable fast mode */
3808 		s->flags |= __CMPXCHG_DOUBLE;
3809 #endif
3810 
3811 	/*
3812 	 * The larger the object size is, the more pages we want on the partial
3813 	 * list to avoid pounding the page allocator excessively.
3814 	 */
3815 	set_min_partial(s, ilog2(s->size) / 2);
3816 
3817 	set_cpu_partial(s);
3818 
3819 #ifdef CONFIG_NUMA
3820 	s->remote_node_defrag_ratio = 1000;
3821 #endif
3822 
3823 	/* Initialize the pre-computed randomized freelist if slab is up */
3824 	if (slab_state >= UP) {
3825 		if (init_cache_random_seq(s))
3826 			goto error;
3827 	}
3828 
3829 	if (!init_kmem_cache_nodes(s))
3830 		goto error;
3831 
3832 	if (alloc_kmem_cache_cpus(s))
3833 		return 0;
3834 
3835 	free_kmem_cache_nodes(s);
3836 error:
3837 	return -EINVAL;
3838 }
3839 
3840 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3841 			      const char *text)
3842 {
3843 #ifdef CONFIG_SLUB_DEBUG
3844 	void *addr = page_address(page);
3845 	unsigned long *map;
3846 	void *p;
3847 
3848 	slab_err(s, page, text, s->name);
3849 	slab_lock(page);
3850 
3851 	map = get_map(s, page);
3852 	for_each_object(p, s, addr, page->objects) {
3853 
3854 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3855 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3856 			print_tracking(s, p);
3857 		}
3858 	}
3859 	put_map(map);
3860 	slab_unlock(page);
3861 #endif
3862 }
3863 
3864 /*
3865  * Attempt to free all partial slabs on a node.
3866  * This is called from __kmem_cache_shutdown(). We must take list_lock
3867  * because sysfs file might still access partial list after the shutdowning.
3868  */
3869 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3870 {
3871 	LIST_HEAD(discard);
3872 	struct page *page, *h;
3873 
3874 	BUG_ON(irqs_disabled());
3875 	spin_lock_irq(&n->list_lock);
3876 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3877 		if (!page->inuse) {
3878 			remove_partial(n, page);
3879 			list_add(&page->slab_list, &discard);
3880 		} else {
3881 			list_slab_objects(s, page,
3882 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3883 		}
3884 	}
3885 	spin_unlock_irq(&n->list_lock);
3886 
3887 	list_for_each_entry_safe(page, h, &discard, slab_list)
3888 		discard_slab(s, page);
3889 }
3890 
3891 bool __kmem_cache_empty(struct kmem_cache *s)
3892 {
3893 	int node;
3894 	struct kmem_cache_node *n;
3895 
3896 	for_each_kmem_cache_node(s, node, n)
3897 		if (n->nr_partial || slabs_node(s, node))
3898 			return false;
3899 	return true;
3900 }
3901 
3902 /*
3903  * Release all resources used by a slab cache.
3904  */
3905 int __kmem_cache_shutdown(struct kmem_cache *s)
3906 {
3907 	int node;
3908 	struct kmem_cache_node *n;
3909 
3910 	flush_all(s);
3911 	/* Attempt to free all objects */
3912 	for_each_kmem_cache_node(s, node, n) {
3913 		free_partial(s, n);
3914 		if (n->nr_partial || slabs_node(s, node))
3915 			return 1;
3916 	}
3917 	return 0;
3918 }
3919 
3920 /********************************************************************
3921  *		Kmalloc subsystem
3922  *******************************************************************/
3923 
3924 static int __init setup_slub_min_order(char *str)
3925 {
3926 	get_option(&str, (int *)&slub_min_order);
3927 
3928 	return 1;
3929 }
3930 
3931 __setup("slub_min_order=", setup_slub_min_order);
3932 
3933 static int __init setup_slub_max_order(char *str)
3934 {
3935 	get_option(&str, (int *)&slub_max_order);
3936 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3937 
3938 	return 1;
3939 }
3940 
3941 __setup("slub_max_order=", setup_slub_max_order);
3942 
3943 static int __init setup_slub_min_objects(char *str)
3944 {
3945 	get_option(&str, (int *)&slub_min_objects);
3946 
3947 	return 1;
3948 }
3949 
3950 __setup("slub_min_objects=", setup_slub_min_objects);
3951 
3952 void *__kmalloc(size_t size, gfp_t flags)
3953 {
3954 	struct kmem_cache *s;
3955 	void *ret;
3956 
3957 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3958 		return kmalloc_large(size, flags);
3959 
3960 	s = kmalloc_slab(size, flags);
3961 
3962 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3963 		return s;
3964 
3965 	ret = slab_alloc(s, flags, _RET_IP_);
3966 
3967 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3968 
3969 	ret = kasan_kmalloc(s, ret, size, flags);
3970 
3971 	return ret;
3972 }
3973 EXPORT_SYMBOL(__kmalloc);
3974 
3975 #ifdef CONFIG_NUMA
3976 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3977 {
3978 	struct page *page;
3979 	void *ptr = NULL;
3980 	unsigned int order = get_order(size);
3981 
3982 	flags |= __GFP_COMP;
3983 	page = alloc_pages_node(node, flags, order);
3984 	if (page) {
3985 		ptr = page_address(page);
3986 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3987 				    PAGE_SIZE << order);
3988 	}
3989 
3990 	return kmalloc_large_node_hook(ptr, size, flags);
3991 }
3992 
3993 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3994 {
3995 	struct kmem_cache *s;
3996 	void *ret;
3997 
3998 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3999 		ret = kmalloc_large_node(size, flags, node);
4000 
4001 		trace_kmalloc_node(_RET_IP_, ret,
4002 				   size, PAGE_SIZE << get_order(size),
4003 				   flags, node);
4004 
4005 		return ret;
4006 	}
4007 
4008 	s = kmalloc_slab(size, flags);
4009 
4010 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4011 		return s;
4012 
4013 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
4014 
4015 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4016 
4017 	ret = kasan_kmalloc(s, ret, size, flags);
4018 
4019 	return ret;
4020 }
4021 EXPORT_SYMBOL(__kmalloc_node);
4022 #endif	/* CONFIG_NUMA */
4023 
4024 #ifdef CONFIG_HARDENED_USERCOPY
4025 /*
4026  * Rejects incorrectly sized objects and objects that are to be copied
4027  * to/from userspace but do not fall entirely within the containing slab
4028  * cache's usercopy region.
4029  *
4030  * Returns NULL if check passes, otherwise const char * to name of cache
4031  * to indicate an error.
4032  */
4033 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4034 			 bool to_user)
4035 {
4036 	struct kmem_cache *s;
4037 	unsigned int offset;
4038 	size_t object_size;
4039 
4040 	ptr = kasan_reset_tag(ptr);
4041 
4042 	/* Find object and usable object size. */
4043 	s = page->slab_cache;
4044 
4045 	/* Reject impossible pointers. */
4046 	if (ptr < page_address(page))
4047 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4048 			       to_user, 0, n);
4049 
4050 	/* Find offset within object. */
4051 	offset = (ptr - page_address(page)) % s->size;
4052 
4053 	/* Adjust for redzone and reject if within the redzone. */
4054 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4055 		if (offset < s->red_left_pad)
4056 			usercopy_abort("SLUB object in left red zone",
4057 				       s->name, to_user, offset, n);
4058 		offset -= s->red_left_pad;
4059 	}
4060 
4061 	/* Allow address range falling entirely within usercopy region. */
4062 	if (offset >= s->useroffset &&
4063 	    offset - s->useroffset <= s->usersize &&
4064 	    n <= s->useroffset - offset + s->usersize)
4065 		return;
4066 
4067 	/*
4068 	 * If the copy is still within the allocated object, produce
4069 	 * a warning instead of rejecting the copy. This is intended
4070 	 * to be a temporary method to find any missing usercopy
4071 	 * whitelists.
4072 	 */
4073 	object_size = slab_ksize(s);
4074 	if (usercopy_fallback &&
4075 	    offset <= object_size && n <= object_size - offset) {
4076 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4077 		return;
4078 	}
4079 
4080 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4081 }
4082 #endif /* CONFIG_HARDENED_USERCOPY */
4083 
4084 size_t __ksize(const void *object)
4085 {
4086 	struct page *page;
4087 
4088 	if (unlikely(object == ZERO_SIZE_PTR))
4089 		return 0;
4090 
4091 	page = virt_to_head_page(object);
4092 
4093 	if (unlikely(!PageSlab(page))) {
4094 		WARN_ON(!PageCompound(page));
4095 		return page_size(page);
4096 	}
4097 
4098 	return slab_ksize(page->slab_cache);
4099 }
4100 EXPORT_SYMBOL(__ksize);
4101 
4102 void kfree(const void *x)
4103 {
4104 	struct page *page;
4105 	void *object = (void *)x;
4106 
4107 	trace_kfree(_RET_IP_, x);
4108 
4109 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4110 		return;
4111 
4112 	page = virt_to_head_page(x);
4113 	if (unlikely(!PageSlab(page))) {
4114 		unsigned int order = compound_order(page);
4115 
4116 		BUG_ON(!PageCompound(page));
4117 		kfree_hook(object);
4118 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4119 				    -(PAGE_SIZE << order));
4120 		__free_pages(page, order);
4121 		return;
4122 	}
4123 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4124 }
4125 EXPORT_SYMBOL(kfree);
4126 
4127 #define SHRINK_PROMOTE_MAX 32
4128 
4129 /*
4130  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4131  * up most to the head of the partial lists. New allocations will then
4132  * fill those up and thus they can be removed from the partial lists.
4133  *
4134  * The slabs with the least items are placed last. This results in them
4135  * being allocated from last increasing the chance that the last objects
4136  * are freed in them.
4137  */
4138 int __kmem_cache_shrink(struct kmem_cache *s)
4139 {
4140 	int node;
4141 	int i;
4142 	struct kmem_cache_node *n;
4143 	struct page *page;
4144 	struct page *t;
4145 	struct list_head discard;
4146 	struct list_head promote[SHRINK_PROMOTE_MAX];
4147 	unsigned long flags;
4148 	int ret = 0;
4149 
4150 	flush_all(s);
4151 	for_each_kmem_cache_node(s, node, n) {
4152 		INIT_LIST_HEAD(&discard);
4153 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4154 			INIT_LIST_HEAD(promote + i);
4155 
4156 		spin_lock_irqsave(&n->list_lock, flags);
4157 
4158 		/*
4159 		 * Build lists of slabs to discard or promote.
4160 		 *
4161 		 * Note that concurrent frees may occur while we hold the
4162 		 * list_lock. page->inuse here is the upper limit.
4163 		 */
4164 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4165 			int free = page->objects - page->inuse;
4166 
4167 			/* Do not reread page->inuse */
4168 			barrier();
4169 
4170 			/* We do not keep full slabs on the list */
4171 			BUG_ON(free <= 0);
4172 
4173 			if (free == page->objects) {
4174 				list_move(&page->slab_list, &discard);
4175 				n->nr_partial--;
4176 			} else if (free <= SHRINK_PROMOTE_MAX)
4177 				list_move(&page->slab_list, promote + free - 1);
4178 		}
4179 
4180 		/*
4181 		 * Promote the slabs filled up most to the head of the
4182 		 * partial list.
4183 		 */
4184 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4185 			list_splice(promote + i, &n->partial);
4186 
4187 		spin_unlock_irqrestore(&n->list_lock, flags);
4188 
4189 		/* Release empty slabs */
4190 		list_for_each_entry_safe(page, t, &discard, slab_list)
4191 			discard_slab(s, page);
4192 
4193 		if (slabs_node(s, node))
4194 			ret = 1;
4195 	}
4196 
4197 	return ret;
4198 }
4199 
4200 static int slab_mem_going_offline_callback(void *arg)
4201 {
4202 	struct kmem_cache *s;
4203 
4204 	mutex_lock(&slab_mutex);
4205 	list_for_each_entry(s, &slab_caches, list)
4206 		__kmem_cache_shrink(s);
4207 	mutex_unlock(&slab_mutex);
4208 
4209 	return 0;
4210 }
4211 
4212 static void slab_mem_offline_callback(void *arg)
4213 {
4214 	struct kmem_cache_node *n;
4215 	struct kmem_cache *s;
4216 	struct memory_notify *marg = arg;
4217 	int offline_node;
4218 
4219 	offline_node = marg->status_change_nid_normal;
4220 
4221 	/*
4222 	 * If the node still has available memory. we need kmem_cache_node
4223 	 * for it yet.
4224 	 */
4225 	if (offline_node < 0)
4226 		return;
4227 
4228 	mutex_lock(&slab_mutex);
4229 	list_for_each_entry(s, &slab_caches, list) {
4230 		n = get_node(s, offline_node);
4231 		if (n) {
4232 			/*
4233 			 * if n->nr_slabs > 0, slabs still exist on the node
4234 			 * that is going down. We were unable to free them,
4235 			 * and offline_pages() function shouldn't call this
4236 			 * callback. So, we must fail.
4237 			 */
4238 			BUG_ON(slabs_node(s, offline_node));
4239 
4240 			s->node[offline_node] = NULL;
4241 			kmem_cache_free(kmem_cache_node, n);
4242 		}
4243 	}
4244 	mutex_unlock(&slab_mutex);
4245 }
4246 
4247 static int slab_mem_going_online_callback(void *arg)
4248 {
4249 	struct kmem_cache_node *n;
4250 	struct kmem_cache *s;
4251 	struct memory_notify *marg = arg;
4252 	int nid = marg->status_change_nid_normal;
4253 	int ret = 0;
4254 
4255 	/*
4256 	 * If the node's memory is already available, then kmem_cache_node is
4257 	 * already created. Nothing to do.
4258 	 */
4259 	if (nid < 0)
4260 		return 0;
4261 
4262 	/*
4263 	 * We are bringing a node online. No memory is available yet. We must
4264 	 * allocate a kmem_cache_node structure in order to bring the node
4265 	 * online.
4266 	 */
4267 	mutex_lock(&slab_mutex);
4268 	list_for_each_entry(s, &slab_caches, list) {
4269 		/*
4270 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4271 		 *      since memory is not yet available from the node that
4272 		 *      is brought up.
4273 		 */
4274 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4275 		if (!n) {
4276 			ret = -ENOMEM;
4277 			goto out;
4278 		}
4279 		init_kmem_cache_node(n);
4280 		s->node[nid] = n;
4281 	}
4282 out:
4283 	mutex_unlock(&slab_mutex);
4284 	return ret;
4285 }
4286 
4287 static int slab_memory_callback(struct notifier_block *self,
4288 				unsigned long action, void *arg)
4289 {
4290 	int ret = 0;
4291 
4292 	switch (action) {
4293 	case MEM_GOING_ONLINE:
4294 		ret = slab_mem_going_online_callback(arg);
4295 		break;
4296 	case MEM_GOING_OFFLINE:
4297 		ret = slab_mem_going_offline_callback(arg);
4298 		break;
4299 	case MEM_OFFLINE:
4300 	case MEM_CANCEL_ONLINE:
4301 		slab_mem_offline_callback(arg);
4302 		break;
4303 	case MEM_ONLINE:
4304 	case MEM_CANCEL_OFFLINE:
4305 		break;
4306 	}
4307 	if (ret)
4308 		ret = notifier_from_errno(ret);
4309 	else
4310 		ret = NOTIFY_OK;
4311 	return ret;
4312 }
4313 
4314 static struct notifier_block slab_memory_callback_nb = {
4315 	.notifier_call = slab_memory_callback,
4316 	.priority = SLAB_CALLBACK_PRI,
4317 };
4318 
4319 /********************************************************************
4320  *			Basic setup of slabs
4321  *******************************************************************/
4322 
4323 /*
4324  * Used for early kmem_cache structures that were allocated using
4325  * the page allocator. Allocate them properly then fix up the pointers
4326  * that may be pointing to the wrong kmem_cache structure.
4327  */
4328 
4329 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4330 {
4331 	int node;
4332 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4333 	struct kmem_cache_node *n;
4334 
4335 	memcpy(s, static_cache, kmem_cache->object_size);
4336 
4337 	/*
4338 	 * This runs very early, and only the boot processor is supposed to be
4339 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4340 	 * IPIs around.
4341 	 */
4342 	__flush_cpu_slab(s, smp_processor_id());
4343 	for_each_kmem_cache_node(s, node, n) {
4344 		struct page *p;
4345 
4346 		list_for_each_entry(p, &n->partial, slab_list)
4347 			p->slab_cache = s;
4348 
4349 #ifdef CONFIG_SLUB_DEBUG
4350 		list_for_each_entry(p, &n->full, slab_list)
4351 			p->slab_cache = s;
4352 #endif
4353 	}
4354 	list_add(&s->list, &slab_caches);
4355 	return s;
4356 }
4357 
4358 void __init kmem_cache_init(void)
4359 {
4360 	static __initdata struct kmem_cache boot_kmem_cache,
4361 		boot_kmem_cache_node;
4362 
4363 	if (debug_guardpage_minorder())
4364 		slub_max_order = 0;
4365 
4366 	kmem_cache_node = &boot_kmem_cache_node;
4367 	kmem_cache = &boot_kmem_cache;
4368 
4369 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4370 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4371 
4372 	register_hotmemory_notifier(&slab_memory_callback_nb);
4373 
4374 	/* Able to allocate the per node structures */
4375 	slab_state = PARTIAL;
4376 
4377 	create_boot_cache(kmem_cache, "kmem_cache",
4378 			offsetof(struct kmem_cache, node) +
4379 				nr_node_ids * sizeof(struct kmem_cache_node *),
4380 		       SLAB_HWCACHE_ALIGN, 0, 0);
4381 
4382 	kmem_cache = bootstrap(&boot_kmem_cache);
4383 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4384 
4385 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4386 	setup_kmalloc_cache_index_table();
4387 	create_kmalloc_caches(0);
4388 
4389 	/* Setup random freelists for each cache */
4390 	init_freelist_randomization();
4391 
4392 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4393 				  slub_cpu_dead);
4394 
4395 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4396 		cache_line_size(),
4397 		slub_min_order, slub_max_order, slub_min_objects,
4398 		nr_cpu_ids, nr_node_ids);
4399 }
4400 
4401 void __init kmem_cache_init_late(void)
4402 {
4403 }
4404 
4405 struct kmem_cache *
4406 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4407 		   slab_flags_t flags, void (*ctor)(void *))
4408 {
4409 	struct kmem_cache *s;
4410 
4411 	s = find_mergeable(size, align, flags, name, ctor);
4412 	if (s) {
4413 		s->refcount++;
4414 
4415 		/*
4416 		 * Adjust the object sizes so that we clear
4417 		 * the complete object on kzalloc.
4418 		 */
4419 		s->object_size = max(s->object_size, size);
4420 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4421 
4422 		if (sysfs_slab_alias(s, name)) {
4423 			s->refcount--;
4424 			s = NULL;
4425 		}
4426 	}
4427 
4428 	return s;
4429 }
4430 
4431 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4432 {
4433 	int err;
4434 
4435 	err = kmem_cache_open(s, flags);
4436 	if (err)
4437 		return err;
4438 
4439 	/* Mutex is not taken during early boot */
4440 	if (slab_state <= UP)
4441 		return 0;
4442 
4443 	err = sysfs_slab_add(s);
4444 	if (err)
4445 		__kmem_cache_release(s);
4446 
4447 	return err;
4448 }
4449 
4450 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4451 {
4452 	struct kmem_cache *s;
4453 	void *ret;
4454 
4455 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4456 		return kmalloc_large(size, gfpflags);
4457 
4458 	s = kmalloc_slab(size, gfpflags);
4459 
4460 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4461 		return s;
4462 
4463 	ret = slab_alloc(s, gfpflags, caller);
4464 
4465 	/* Honor the call site pointer we received. */
4466 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4467 
4468 	return ret;
4469 }
4470 EXPORT_SYMBOL(__kmalloc_track_caller);
4471 
4472 #ifdef CONFIG_NUMA
4473 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4474 					int node, unsigned long caller)
4475 {
4476 	struct kmem_cache *s;
4477 	void *ret;
4478 
4479 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4480 		ret = kmalloc_large_node(size, gfpflags, node);
4481 
4482 		trace_kmalloc_node(caller, ret,
4483 				   size, PAGE_SIZE << get_order(size),
4484 				   gfpflags, node);
4485 
4486 		return ret;
4487 	}
4488 
4489 	s = kmalloc_slab(size, gfpflags);
4490 
4491 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4492 		return s;
4493 
4494 	ret = slab_alloc_node(s, gfpflags, node, caller);
4495 
4496 	/* Honor the call site pointer we received. */
4497 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4498 
4499 	return ret;
4500 }
4501 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4502 #endif
4503 
4504 #ifdef CONFIG_SYSFS
4505 static int count_inuse(struct page *page)
4506 {
4507 	return page->inuse;
4508 }
4509 
4510 static int count_total(struct page *page)
4511 {
4512 	return page->objects;
4513 }
4514 #endif
4515 
4516 #ifdef CONFIG_SLUB_DEBUG
4517 static void validate_slab(struct kmem_cache *s, struct page *page)
4518 {
4519 	void *p;
4520 	void *addr = page_address(page);
4521 	unsigned long *map;
4522 
4523 	slab_lock(page);
4524 
4525 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4526 		goto unlock;
4527 
4528 	/* Now we know that a valid freelist exists */
4529 	map = get_map(s, page);
4530 	for_each_object(p, s, addr, page->objects) {
4531 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4532 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4533 
4534 		if (!check_object(s, page, p, val))
4535 			break;
4536 	}
4537 	put_map(map);
4538 unlock:
4539 	slab_unlock(page);
4540 }
4541 
4542 static int validate_slab_node(struct kmem_cache *s,
4543 		struct kmem_cache_node *n)
4544 {
4545 	unsigned long count = 0;
4546 	struct page *page;
4547 	unsigned long flags;
4548 
4549 	spin_lock_irqsave(&n->list_lock, flags);
4550 
4551 	list_for_each_entry(page, &n->partial, slab_list) {
4552 		validate_slab(s, page);
4553 		count++;
4554 	}
4555 	if (count != n->nr_partial)
4556 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4557 		       s->name, count, n->nr_partial);
4558 
4559 	if (!(s->flags & SLAB_STORE_USER))
4560 		goto out;
4561 
4562 	list_for_each_entry(page, &n->full, slab_list) {
4563 		validate_slab(s, page);
4564 		count++;
4565 	}
4566 	if (count != atomic_long_read(&n->nr_slabs))
4567 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4568 		       s->name, count, atomic_long_read(&n->nr_slabs));
4569 
4570 out:
4571 	spin_unlock_irqrestore(&n->list_lock, flags);
4572 	return count;
4573 }
4574 
4575 static long validate_slab_cache(struct kmem_cache *s)
4576 {
4577 	int node;
4578 	unsigned long count = 0;
4579 	struct kmem_cache_node *n;
4580 
4581 	flush_all(s);
4582 	for_each_kmem_cache_node(s, node, n)
4583 		count += validate_slab_node(s, n);
4584 
4585 	return count;
4586 }
4587 /*
4588  * Generate lists of code addresses where slabcache objects are allocated
4589  * and freed.
4590  */
4591 
4592 struct location {
4593 	unsigned long count;
4594 	unsigned long addr;
4595 	long long sum_time;
4596 	long min_time;
4597 	long max_time;
4598 	long min_pid;
4599 	long max_pid;
4600 	DECLARE_BITMAP(cpus, NR_CPUS);
4601 	nodemask_t nodes;
4602 };
4603 
4604 struct loc_track {
4605 	unsigned long max;
4606 	unsigned long count;
4607 	struct location *loc;
4608 };
4609 
4610 static void free_loc_track(struct loc_track *t)
4611 {
4612 	if (t->max)
4613 		free_pages((unsigned long)t->loc,
4614 			get_order(sizeof(struct location) * t->max));
4615 }
4616 
4617 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4618 {
4619 	struct location *l;
4620 	int order;
4621 
4622 	order = get_order(sizeof(struct location) * max);
4623 
4624 	l = (void *)__get_free_pages(flags, order);
4625 	if (!l)
4626 		return 0;
4627 
4628 	if (t->count) {
4629 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4630 		free_loc_track(t);
4631 	}
4632 	t->max = max;
4633 	t->loc = l;
4634 	return 1;
4635 }
4636 
4637 static int add_location(struct loc_track *t, struct kmem_cache *s,
4638 				const struct track *track)
4639 {
4640 	long start, end, pos;
4641 	struct location *l;
4642 	unsigned long caddr;
4643 	unsigned long age = jiffies - track->when;
4644 
4645 	start = -1;
4646 	end = t->count;
4647 
4648 	for ( ; ; ) {
4649 		pos = start + (end - start + 1) / 2;
4650 
4651 		/*
4652 		 * There is nothing at "end". If we end up there
4653 		 * we need to add something to before end.
4654 		 */
4655 		if (pos == end)
4656 			break;
4657 
4658 		caddr = t->loc[pos].addr;
4659 		if (track->addr == caddr) {
4660 
4661 			l = &t->loc[pos];
4662 			l->count++;
4663 			if (track->when) {
4664 				l->sum_time += age;
4665 				if (age < l->min_time)
4666 					l->min_time = age;
4667 				if (age > l->max_time)
4668 					l->max_time = age;
4669 
4670 				if (track->pid < l->min_pid)
4671 					l->min_pid = track->pid;
4672 				if (track->pid > l->max_pid)
4673 					l->max_pid = track->pid;
4674 
4675 				cpumask_set_cpu(track->cpu,
4676 						to_cpumask(l->cpus));
4677 			}
4678 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4679 			return 1;
4680 		}
4681 
4682 		if (track->addr < caddr)
4683 			end = pos;
4684 		else
4685 			start = pos;
4686 	}
4687 
4688 	/*
4689 	 * Not found. Insert new tracking element.
4690 	 */
4691 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4692 		return 0;
4693 
4694 	l = t->loc + pos;
4695 	if (pos < t->count)
4696 		memmove(l + 1, l,
4697 			(t->count - pos) * sizeof(struct location));
4698 	t->count++;
4699 	l->count = 1;
4700 	l->addr = track->addr;
4701 	l->sum_time = age;
4702 	l->min_time = age;
4703 	l->max_time = age;
4704 	l->min_pid = track->pid;
4705 	l->max_pid = track->pid;
4706 	cpumask_clear(to_cpumask(l->cpus));
4707 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4708 	nodes_clear(l->nodes);
4709 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4710 	return 1;
4711 }
4712 
4713 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4714 		struct page *page, enum track_item alloc)
4715 {
4716 	void *addr = page_address(page);
4717 	void *p;
4718 	unsigned long *map;
4719 
4720 	map = get_map(s, page);
4721 	for_each_object(p, s, addr, page->objects)
4722 		if (!test_bit(__obj_to_index(s, addr, p), map))
4723 			add_location(t, s, get_track(s, p, alloc));
4724 	put_map(map);
4725 }
4726 
4727 static int list_locations(struct kmem_cache *s, char *buf,
4728 					enum track_item alloc)
4729 {
4730 	int len = 0;
4731 	unsigned long i;
4732 	struct loc_track t = { 0, 0, NULL };
4733 	int node;
4734 	struct kmem_cache_node *n;
4735 
4736 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4737 			     GFP_KERNEL)) {
4738 		return sprintf(buf, "Out of memory\n");
4739 	}
4740 	/* Push back cpu slabs */
4741 	flush_all(s);
4742 
4743 	for_each_kmem_cache_node(s, node, n) {
4744 		unsigned long flags;
4745 		struct page *page;
4746 
4747 		if (!atomic_long_read(&n->nr_slabs))
4748 			continue;
4749 
4750 		spin_lock_irqsave(&n->list_lock, flags);
4751 		list_for_each_entry(page, &n->partial, slab_list)
4752 			process_slab(&t, s, page, alloc);
4753 		list_for_each_entry(page, &n->full, slab_list)
4754 			process_slab(&t, s, page, alloc);
4755 		spin_unlock_irqrestore(&n->list_lock, flags);
4756 	}
4757 
4758 	for (i = 0; i < t.count; i++) {
4759 		struct location *l = &t.loc[i];
4760 
4761 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4762 			break;
4763 		len += sprintf(buf + len, "%7ld ", l->count);
4764 
4765 		if (l->addr)
4766 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4767 		else
4768 			len += sprintf(buf + len, "<not-available>");
4769 
4770 		if (l->sum_time != l->min_time) {
4771 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4772 				l->min_time,
4773 				(long)div_u64(l->sum_time, l->count),
4774 				l->max_time);
4775 		} else
4776 			len += sprintf(buf + len, " age=%ld",
4777 				l->min_time);
4778 
4779 		if (l->min_pid != l->max_pid)
4780 			len += sprintf(buf + len, " pid=%ld-%ld",
4781 				l->min_pid, l->max_pid);
4782 		else
4783 			len += sprintf(buf + len, " pid=%ld",
4784 				l->min_pid);
4785 
4786 		if (num_online_cpus() > 1 &&
4787 				!cpumask_empty(to_cpumask(l->cpus)) &&
4788 				len < PAGE_SIZE - 60)
4789 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4790 					 " cpus=%*pbl",
4791 					 cpumask_pr_args(to_cpumask(l->cpus)));
4792 
4793 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4794 				len < PAGE_SIZE - 60)
4795 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4796 					 " nodes=%*pbl",
4797 					 nodemask_pr_args(&l->nodes));
4798 
4799 		len += sprintf(buf + len, "\n");
4800 	}
4801 
4802 	free_loc_track(&t);
4803 	if (!t.count)
4804 		len += sprintf(buf, "No data\n");
4805 	return len;
4806 }
4807 #endif	/* CONFIG_SLUB_DEBUG */
4808 
4809 #ifdef SLUB_RESILIENCY_TEST
4810 static void __init resiliency_test(void)
4811 {
4812 	u8 *p;
4813 	int type = KMALLOC_NORMAL;
4814 
4815 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4816 
4817 	pr_err("SLUB resiliency testing\n");
4818 	pr_err("-----------------------\n");
4819 	pr_err("A. Corruption after allocation\n");
4820 
4821 	p = kzalloc(16, GFP_KERNEL);
4822 	p[16] = 0x12;
4823 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4824 	       p + 16);
4825 
4826 	validate_slab_cache(kmalloc_caches[type][4]);
4827 
4828 	/* Hmmm... The next two are dangerous */
4829 	p = kzalloc(32, GFP_KERNEL);
4830 	p[32 + sizeof(void *)] = 0x34;
4831 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4832 	       p);
4833 	pr_err("If allocated object is overwritten then not detectable\n\n");
4834 
4835 	validate_slab_cache(kmalloc_caches[type][5]);
4836 	p = kzalloc(64, GFP_KERNEL);
4837 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4838 	*p = 0x56;
4839 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4840 	       p);
4841 	pr_err("If allocated object is overwritten then not detectable\n\n");
4842 	validate_slab_cache(kmalloc_caches[type][6]);
4843 
4844 	pr_err("\nB. Corruption after free\n");
4845 	p = kzalloc(128, GFP_KERNEL);
4846 	kfree(p);
4847 	*p = 0x78;
4848 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4849 	validate_slab_cache(kmalloc_caches[type][7]);
4850 
4851 	p = kzalloc(256, GFP_KERNEL);
4852 	kfree(p);
4853 	p[50] = 0x9a;
4854 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4855 	validate_slab_cache(kmalloc_caches[type][8]);
4856 
4857 	p = kzalloc(512, GFP_KERNEL);
4858 	kfree(p);
4859 	p[512] = 0xab;
4860 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4861 	validate_slab_cache(kmalloc_caches[type][9]);
4862 }
4863 #else
4864 #ifdef CONFIG_SYSFS
4865 static void resiliency_test(void) {};
4866 #endif
4867 #endif	/* SLUB_RESILIENCY_TEST */
4868 
4869 #ifdef CONFIG_SYSFS
4870 enum slab_stat_type {
4871 	SL_ALL,			/* All slabs */
4872 	SL_PARTIAL,		/* Only partially allocated slabs */
4873 	SL_CPU,			/* Only slabs used for cpu caches */
4874 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4875 	SL_TOTAL		/* Determine object capacity not slabs */
4876 };
4877 
4878 #define SO_ALL		(1 << SL_ALL)
4879 #define SO_PARTIAL	(1 << SL_PARTIAL)
4880 #define SO_CPU		(1 << SL_CPU)
4881 #define SO_OBJECTS	(1 << SL_OBJECTS)
4882 #define SO_TOTAL	(1 << SL_TOTAL)
4883 
4884 #ifdef CONFIG_MEMCG
4885 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4886 
4887 static int __init setup_slub_memcg_sysfs(char *str)
4888 {
4889 	int v;
4890 
4891 	if (get_option(&str, &v) > 0)
4892 		memcg_sysfs_enabled = v;
4893 
4894 	return 1;
4895 }
4896 
4897 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4898 #endif
4899 
4900 static ssize_t show_slab_objects(struct kmem_cache *s,
4901 			    char *buf, unsigned long flags)
4902 {
4903 	unsigned long total = 0;
4904 	int node;
4905 	int x;
4906 	unsigned long *nodes;
4907 
4908 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4909 	if (!nodes)
4910 		return -ENOMEM;
4911 
4912 	if (flags & SO_CPU) {
4913 		int cpu;
4914 
4915 		for_each_possible_cpu(cpu) {
4916 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4917 							       cpu);
4918 			int node;
4919 			struct page *page;
4920 
4921 			page = READ_ONCE(c->page);
4922 			if (!page)
4923 				continue;
4924 
4925 			node = page_to_nid(page);
4926 			if (flags & SO_TOTAL)
4927 				x = page->objects;
4928 			else if (flags & SO_OBJECTS)
4929 				x = page->inuse;
4930 			else
4931 				x = 1;
4932 
4933 			total += x;
4934 			nodes[node] += x;
4935 
4936 			page = slub_percpu_partial_read_once(c);
4937 			if (page) {
4938 				node = page_to_nid(page);
4939 				if (flags & SO_TOTAL)
4940 					WARN_ON_ONCE(1);
4941 				else if (flags & SO_OBJECTS)
4942 					WARN_ON_ONCE(1);
4943 				else
4944 					x = page->pages;
4945 				total += x;
4946 				nodes[node] += x;
4947 			}
4948 		}
4949 	}
4950 
4951 	/*
4952 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4953 	 * already held which will conflict with an existing lock order:
4954 	 *
4955 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4956 	 *
4957 	 * We don't really need mem_hotplug_lock (to hold off
4958 	 * slab_mem_going_offline_callback) here because slab's memory hot
4959 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4960 	 */
4961 
4962 #ifdef CONFIG_SLUB_DEBUG
4963 	if (flags & SO_ALL) {
4964 		struct kmem_cache_node *n;
4965 
4966 		for_each_kmem_cache_node(s, node, n) {
4967 
4968 			if (flags & SO_TOTAL)
4969 				x = atomic_long_read(&n->total_objects);
4970 			else if (flags & SO_OBJECTS)
4971 				x = atomic_long_read(&n->total_objects) -
4972 					count_partial(n, count_free);
4973 			else
4974 				x = atomic_long_read(&n->nr_slabs);
4975 			total += x;
4976 			nodes[node] += x;
4977 		}
4978 
4979 	} else
4980 #endif
4981 	if (flags & SO_PARTIAL) {
4982 		struct kmem_cache_node *n;
4983 
4984 		for_each_kmem_cache_node(s, node, n) {
4985 			if (flags & SO_TOTAL)
4986 				x = count_partial(n, count_total);
4987 			else if (flags & SO_OBJECTS)
4988 				x = count_partial(n, count_inuse);
4989 			else
4990 				x = n->nr_partial;
4991 			total += x;
4992 			nodes[node] += x;
4993 		}
4994 	}
4995 	x = sprintf(buf, "%lu", total);
4996 #ifdef CONFIG_NUMA
4997 	for (node = 0; node < nr_node_ids; node++)
4998 		if (nodes[node])
4999 			x += sprintf(buf + x, " N%d=%lu",
5000 					node, nodes[node]);
5001 #endif
5002 	kfree(nodes);
5003 	return x + sprintf(buf + x, "\n");
5004 }
5005 
5006 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5007 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5008 
5009 struct slab_attribute {
5010 	struct attribute attr;
5011 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5012 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5013 };
5014 
5015 #define SLAB_ATTR_RO(_name) \
5016 	static struct slab_attribute _name##_attr = \
5017 	__ATTR(_name, 0400, _name##_show, NULL)
5018 
5019 #define SLAB_ATTR(_name) \
5020 	static struct slab_attribute _name##_attr =  \
5021 	__ATTR(_name, 0600, _name##_show, _name##_store)
5022 
5023 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5024 {
5025 	return sprintf(buf, "%u\n", s->size);
5026 }
5027 SLAB_ATTR_RO(slab_size);
5028 
5029 static ssize_t align_show(struct kmem_cache *s, char *buf)
5030 {
5031 	return sprintf(buf, "%u\n", s->align);
5032 }
5033 SLAB_ATTR_RO(align);
5034 
5035 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5036 {
5037 	return sprintf(buf, "%u\n", s->object_size);
5038 }
5039 SLAB_ATTR_RO(object_size);
5040 
5041 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5042 {
5043 	return sprintf(buf, "%u\n", oo_objects(s->oo));
5044 }
5045 SLAB_ATTR_RO(objs_per_slab);
5046 
5047 static ssize_t order_show(struct kmem_cache *s, char *buf)
5048 {
5049 	return sprintf(buf, "%u\n", oo_order(s->oo));
5050 }
5051 SLAB_ATTR_RO(order);
5052 
5053 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5054 {
5055 	return sprintf(buf, "%lu\n", s->min_partial);
5056 }
5057 
5058 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5059 				 size_t length)
5060 {
5061 	unsigned long min;
5062 	int err;
5063 
5064 	err = kstrtoul(buf, 10, &min);
5065 	if (err)
5066 		return err;
5067 
5068 	set_min_partial(s, min);
5069 	return length;
5070 }
5071 SLAB_ATTR(min_partial);
5072 
5073 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5074 {
5075 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5076 }
5077 
5078 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5079 				 size_t length)
5080 {
5081 	unsigned int objects;
5082 	int err;
5083 
5084 	err = kstrtouint(buf, 10, &objects);
5085 	if (err)
5086 		return err;
5087 	if (objects && !kmem_cache_has_cpu_partial(s))
5088 		return -EINVAL;
5089 
5090 	slub_set_cpu_partial(s, objects);
5091 	flush_all(s);
5092 	return length;
5093 }
5094 SLAB_ATTR(cpu_partial);
5095 
5096 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5097 {
5098 	if (!s->ctor)
5099 		return 0;
5100 	return sprintf(buf, "%pS\n", s->ctor);
5101 }
5102 SLAB_ATTR_RO(ctor);
5103 
5104 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5105 {
5106 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5107 }
5108 SLAB_ATTR_RO(aliases);
5109 
5110 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5111 {
5112 	return show_slab_objects(s, buf, SO_PARTIAL);
5113 }
5114 SLAB_ATTR_RO(partial);
5115 
5116 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5117 {
5118 	return show_slab_objects(s, buf, SO_CPU);
5119 }
5120 SLAB_ATTR_RO(cpu_slabs);
5121 
5122 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5123 {
5124 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5125 }
5126 SLAB_ATTR_RO(objects);
5127 
5128 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5129 {
5130 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5131 }
5132 SLAB_ATTR_RO(objects_partial);
5133 
5134 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5135 {
5136 	int objects = 0;
5137 	int pages = 0;
5138 	int cpu;
5139 	int len;
5140 
5141 	for_each_online_cpu(cpu) {
5142 		struct page *page;
5143 
5144 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5145 
5146 		if (page) {
5147 			pages += page->pages;
5148 			objects += page->pobjects;
5149 		}
5150 	}
5151 
5152 	len = sprintf(buf, "%d(%d)", objects, pages);
5153 
5154 #ifdef CONFIG_SMP
5155 	for_each_online_cpu(cpu) {
5156 		struct page *page;
5157 
5158 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5159 
5160 		if (page && len < PAGE_SIZE - 20)
5161 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5162 				page->pobjects, page->pages);
5163 	}
5164 #endif
5165 	return len + sprintf(buf + len, "\n");
5166 }
5167 SLAB_ATTR_RO(slabs_cpu_partial);
5168 
5169 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5170 {
5171 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5172 }
5173 SLAB_ATTR_RO(reclaim_account);
5174 
5175 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5176 {
5177 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5178 }
5179 SLAB_ATTR_RO(hwcache_align);
5180 
5181 #ifdef CONFIG_ZONE_DMA
5182 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5183 {
5184 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5185 }
5186 SLAB_ATTR_RO(cache_dma);
5187 #endif
5188 
5189 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5190 {
5191 	return sprintf(buf, "%u\n", s->usersize);
5192 }
5193 SLAB_ATTR_RO(usersize);
5194 
5195 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5196 {
5197 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5198 }
5199 SLAB_ATTR_RO(destroy_by_rcu);
5200 
5201 #ifdef CONFIG_SLUB_DEBUG
5202 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5203 {
5204 	return show_slab_objects(s, buf, SO_ALL);
5205 }
5206 SLAB_ATTR_RO(slabs);
5207 
5208 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5209 {
5210 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5211 }
5212 SLAB_ATTR_RO(total_objects);
5213 
5214 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5215 {
5216 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5217 }
5218 SLAB_ATTR_RO(sanity_checks);
5219 
5220 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5221 {
5222 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5223 }
5224 SLAB_ATTR_RO(trace);
5225 
5226 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5227 {
5228 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5229 }
5230 
5231 SLAB_ATTR_RO(red_zone);
5232 
5233 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5234 {
5235 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5236 }
5237 
5238 SLAB_ATTR_RO(poison);
5239 
5240 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5241 {
5242 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5243 }
5244 
5245 SLAB_ATTR_RO(store_user);
5246 
5247 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5248 {
5249 	return 0;
5250 }
5251 
5252 static ssize_t validate_store(struct kmem_cache *s,
5253 			const char *buf, size_t length)
5254 {
5255 	int ret = -EINVAL;
5256 
5257 	if (buf[0] == '1') {
5258 		ret = validate_slab_cache(s);
5259 		if (ret >= 0)
5260 			ret = length;
5261 	}
5262 	return ret;
5263 }
5264 SLAB_ATTR(validate);
5265 
5266 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5267 {
5268 	if (!(s->flags & SLAB_STORE_USER))
5269 		return -ENOSYS;
5270 	return list_locations(s, buf, TRACK_ALLOC);
5271 }
5272 SLAB_ATTR_RO(alloc_calls);
5273 
5274 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5275 {
5276 	if (!(s->flags & SLAB_STORE_USER))
5277 		return -ENOSYS;
5278 	return list_locations(s, buf, TRACK_FREE);
5279 }
5280 SLAB_ATTR_RO(free_calls);
5281 #endif /* CONFIG_SLUB_DEBUG */
5282 
5283 #ifdef CONFIG_FAILSLAB
5284 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5285 {
5286 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5287 }
5288 SLAB_ATTR_RO(failslab);
5289 #endif
5290 
5291 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5292 {
5293 	return 0;
5294 }
5295 
5296 static ssize_t shrink_store(struct kmem_cache *s,
5297 			const char *buf, size_t length)
5298 {
5299 	if (buf[0] == '1')
5300 		kmem_cache_shrink(s);
5301 	else
5302 		return -EINVAL;
5303 	return length;
5304 }
5305 SLAB_ATTR(shrink);
5306 
5307 #ifdef CONFIG_NUMA
5308 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5309 {
5310 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5311 }
5312 
5313 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5314 				const char *buf, size_t length)
5315 {
5316 	unsigned int ratio;
5317 	int err;
5318 
5319 	err = kstrtouint(buf, 10, &ratio);
5320 	if (err)
5321 		return err;
5322 	if (ratio > 100)
5323 		return -ERANGE;
5324 
5325 	s->remote_node_defrag_ratio = ratio * 10;
5326 
5327 	return length;
5328 }
5329 SLAB_ATTR(remote_node_defrag_ratio);
5330 #endif
5331 
5332 #ifdef CONFIG_SLUB_STATS
5333 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5334 {
5335 	unsigned long sum  = 0;
5336 	int cpu;
5337 	int len;
5338 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5339 
5340 	if (!data)
5341 		return -ENOMEM;
5342 
5343 	for_each_online_cpu(cpu) {
5344 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5345 
5346 		data[cpu] = x;
5347 		sum += x;
5348 	}
5349 
5350 	len = sprintf(buf, "%lu", sum);
5351 
5352 #ifdef CONFIG_SMP
5353 	for_each_online_cpu(cpu) {
5354 		if (data[cpu] && len < PAGE_SIZE - 20)
5355 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5356 	}
5357 #endif
5358 	kfree(data);
5359 	return len + sprintf(buf + len, "\n");
5360 }
5361 
5362 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5363 {
5364 	int cpu;
5365 
5366 	for_each_online_cpu(cpu)
5367 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5368 }
5369 
5370 #define STAT_ATTR(si, text) 					\
5371 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5372 {								\
5373 	return show_stat(s, buf, si);				\
5374 }								\
5375 static ssize_t text##_store(struct kmem_cache *s,		\
5376 				const char *buf, size_t length)	\
5377 {								\
5378 	if (buf[0] != '0')					\
5379 		return -EINVAL;					\
5380 	clear_stat(s, si);					\
5381 	return length;						\
5382 }								\
5383 SLAB_ATTR(text);						\
5384 
5385 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5386 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5387 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5388 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5389 STAT_ATTR(FREE_FROZEN, free_frozen);
5390 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5391 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5392 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5393 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5394 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5395 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5396 STAT_ATTR(FREE_SLAB, free_slab);
5397 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5398 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5399 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5400 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5401 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5402 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5403 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5404 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5405 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5406 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5407 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5408 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5409 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5410 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5411 #endif	/* CONFIG_SLUB_STATS */
5412 
5413 static struct attribute *slab_attrs[] = {
5414 	&slab_size_attr.attr,
5415 	&object_size_attr.attr,
5416 	&objs_per_slab_attr.attr,
5417 	&order_attr.attr,
5418 	&min_partial_attr.attr,
5419 	&cpu_partial_attr.attr,
5420 	&objects_attr.attr,
5421 	&objects_partial_attr.attr,
5422 	&partial_attr.attr,
5423 	&cpu_slabs_attr.attr,
5424 	&ctor_attr.attr,
5425 	&aliases_attr.attr,
5426 	&align_attr.attr,
5427 	&hwcache_align_attr.attr,
5428 	&reclaim_account_attr.attr,
5429 	&destroy_by_rcu_attr.attr,
5430 	&shrink_attr.attr,
5431 	&slabs_cpu_partial_attr.attr,
5432 #ifdef CONFIG_SLUB_DEBUG
5433 	&total_objects_attr.attr,
5434 	&slabs_attr.attr,
5435 	&sanity_checks_attr.attr,
5436 	&trace_attr.attr,
5437 	&red_zone_attr.attr,
5438 	&poison_attr.attr,
5439 	&store_user_attr.attr,
5440 	&validate_attr.attr,
5441 	&alloc_calls_attr.attr,
5442 	&free_calls_attr.attr,
5443 #endif
5444 #ifdef CONFIG_ZONE_DMA
5445 	&cache_dma_attr.attr,
5446 #endif
5447 #ifdef CONFIG_NUMA
5448 	&remote_node_defrag_ratio_attr.attr,
5449 #endif
5450 #ifdef CONFIG_SLUB_STATS
5451 	&alloc_fastpath_attr.attr,
5452 	&alloc_slowpath_attr.attr,
5453 	&free_fastpath_attr.attr,
5454 	&free_slowpath_attr.attr,
5455 	&free_frozen_attr.attr,
5456 	&free_add_partial_attr.attr,
5457 	&free_remove_partial_attr.attr,
5458 	&alloc_from_partial_attr.attr,
5459 	&alloc_slab_attr.attr,
5460 	&alloc_refill_attr.attr,
5461 	&alloc_node_mismatch_attr.attr,
5462 	&free_slab_attr.attr,
5463 	&cpuslab_flush_attr.attr,
5464 	&deactivate_full_attr.attr,
5465 	&deactivate_empty_attr.attr,
5466 	&deactivate_to_head_attr.attr,
5467 	&deactivate_to_tail_attr.attr,
5468 	&deactivate_remote_frees_attr.attr,
5469 	&deactivate_bypass_attr.attr,
5470 	&order_fallback_attr.attr,
5471 	&cmpxchg_double_fail_attr.attr,
5472 	&cmpxchg_double_cpu_fail_attr.attr,
5473 	&cpu_partial_alloc_attr.attr,
5474 	&cpu_partial_free_attr.attr,
5475 	&cpu_partial_node_attr.attr,
5476 	&cpu_partial_drain_attr.attr,
5477 #endif
5478 #ifdef CONFIG_FAILSLAB
5479 	&failslab_attr.attr,
5480 #endif
5481 	&usersize_attr.attr,
5482 
5483 	NULL
5484 };
5485 
5486 static const struct attribute_group slab_attr_group = {
5487 	.attrs = slab_attrs,
5488 };
5489 
5490 static ssize_t slab_attr_show(struct kobject *kobj,
5491 				struct attribute *attr,
5492 				char *buf)
5493 {
5494 	struct slab_attribute *attribute;
5495 	struct kmem_cache *s;
5496 	int err;
5497 
5498 	attribute = to_slab_attr(attr);
5499 	s = to_slab(kobj);
5500 
5501 	if (!attribute->show)
5502 		return -EIO;
5503 
5504 	err = attribute->show(s, buf);
5505 
5506 	return err;
5507 }
5508 
5509 static ssize_t slab_attr_store(struct kobject *kobj,
5510 				struct attribute *attr,
5511 				const char *buf, size_t len)
5512 {
5513 	struct slab_attribute *attribute;
5514 	struct kmem_cache *s;
5515 	int err;
5516 
5517 	attribute = to_slab_attr(attr);
5518 	s = to_slab(kobj);
5519 
5520 	if (!attribute->store)
5521 		return -EIO;
5522 
5523 	err = attribute->store(s, buf, len);
5524 	return err;
5525 }
5526 
5527 static void kmem_cache_release(struct kobject *k)
5528 {
5529 	slab_kmem_cache_release(to_slab(k));
5530 }
5531 
5532 static const struct sysfs_ops slab_sysfs_ops = {
5533 	.show = slab_attr_show,
5534 	.store = slab_attr_store,
5535 };
5536 
5537 static struct kobj_type slab_ktype = {
5538 	.sysfs_ops = &slab_sysfs_ops,
5539 	.release = kmem_cache_release,
5540 };
5541 
5542 static struct kset *slab_kset;
5543 
5544 static inline struct kset *cache_kset(struct kmem_cache *s)
5545 {
5546 	return slab_kset;
5547 }
5548 
5549 #define ID_STR_LENGTH 64
5550 
5551 /* Create a unique string id for a slab cache:
5552  *
5553  * Format	:[flags-]size
5554  */
5555 static char *create_unique_id(struct kmem_cache *s)
5556 {
5557 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5558 	char *p = name;
5559 
5560 	BUG_ON(!name);
5561 
5562 	*p++ = ':';
5563 	/*
5564 	 * First flags affecting slabcache operations. We will only
5565 	 * get here for aliasable slabs so we do not need to support
5566 	 * too many flags. The flags here must cover all flags that
5567 	 * are matched during merging to guarantee that the id is
5568 	 * unique.
5569 	 */
5570 	if (s->flags & SLAB_CACHE_DMA)
5571 		*p++ = 'd';
5572 	if (s->flags & SLAB_CACHE_DMA32)
5573 		*p++ = 'D';
5574 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5575 		*p++ = 'a';
5576 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5577 		*p++ = 'F';
5578 	if (s->flags & SLAB_ACCOUNT)
5579 		*p++ = 'A';
5580 	if (p != name + 1)
5581 		*p++ = '-';
5582 	p += sprintf(p, "%07u", s->size);
5583 
5584 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5585 	return name;
5586 }
5587 
5588 static int sysfs_slab_add(struct kmem_cache *s)
5589 {
5590 	int err;
5591 	const char *name;
5592 	struct kset *kset = cache_kset(s);
5593 	int unmergeable = slab_unmergeable(s);
5594 
5595 	if (!kset) {
5596 		kobject_init(&s->kobj, &slab_ktype);
5597 		return 0;
5598 	}
5599 
5600 	if (!unmergeable && disable_higher_order_debug &&
5601 			(slub_debug & DEBUG_METADATA_FLAGS))
5602 		unmergeable = 1;
5603 
5604 	if (unmergeable) {
5605 		/*
5606 		 * Slabcache can never be merged so we can use the name proper.
5607 		 * This is typically the case for debug situations. In that
5608 		 * case we can catch duplicate names easily.
5609 		 */
5610 		sysfs_remove_link(&slab_kset->kobj, s->name);
5611 		name = s->name;
5612 	} else {
5613 		/*
5614 		 * Create a unique name for the slab as a target
5615 		 * for the symlinks.
5616 		 */
5617 		name = create_unique_id(s);
5618 	}
5619 
5620 	s->kobj.kset = kset;
5621 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5622 	if (err) {
5623 		kobject_put(&s->kobj);
5624 		goto out;
5625 	}
5626 
5627 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5628 	if (err)
5629 		goto out_del_kobj;
5630 
5631 	if (!unmergeable) {
5632 		/* Setup first alias */
5633 		sysfs_slab_alias(s, s->name);
5634 	}
5635 out:
5636 	if (!unmergeable)
5637 		kfree(name);
5638 	return err;
5639 out_del_kobj:
5640 	kobject_del(&s->kobj);
5641 	goto out;
5642 }
5643 
5644 void sysfs_slab_unlink(struct kmem_cache *s)
5645 {
5646 	if (slab_state >= FULL)
5647 		kobject_del(&s->kobj);
5648 }
5649 
5650 void sysfs_slab_release(struct kmem_cache *s)
5651 {
5652 	if (slab_state >= FULL)
5653 		kobject_put(&s->kobj);
5654 }
5655 
5656 /*
5657  * Need to buffer aliases during bootup until sysfs becomes
5658  * available lest we lose that information.
5659  */
5660 struct saved_alias {
5661 	struct kmem_cache *s;
5662 	const char *name;
5663 	struct saved_alias *next;
5664 };
5665 
5666 static struct saved_alias *alias_list;
5667 
5668 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5669 {
5670 	struct saved_alias *al;
5671 
5672 	if (slab_state == FULL) {
5673 		/*
5674 		 * If we have a leftover link then remove it.
5675 		 */
5676 		sysfs_remove_link(&slab_kset->kobj, name);
5677 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5678 	}
5679 
5680 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5681 	if (!al)
5682 		return -ENOMEM;
5683 
5684 	al->s = s;
5685 	al->name = name;
5686 	al->next = alias_list;
5687 	alias_list = al;
5688 	return 0;
5689 }
5690 
5691 static int __init slab_sysfs_init(void)
5692 {
5693 	struct kmem_cache *s;
5694 	int err;
5695 
5696 	mutex_lock(&slab_mutex);
5697 
5698 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5699 	if (!slab_kset) {
5700 		mutex_unlock(&slab_mutex);
5701 		pr_err("Cannot register slab subsystem.\n");
5702 		return -ENOSYS;
5703 	}
5704 
5705 	slab_state = FULL;
5706 
5707 	list_for_each_entry(s, &slab_caches, list) {
5708 		err = sysfs_slab_add(s);
5709 		if (err)
5710 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5711 			       s->name);
5712 	}
5713 
5714 	while (alias_list) {
5715 		struct saved_alias *al = alias_list;
5716 
5717 		alias_list = alias_list->next;
5718 		err = sysfs_slab_alias(al->s, al->name);
5719 		if (err)
5720 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5721 			       al->name);
5722 		kfree(al);
5723 	}
5724 
5725 	mutex_unlock(&slab_mutex);
5726 	resiliency_test();
5727 	return 0;
5728 }
5729 
5730 __initcall(slab_sysfs_init);
5731 #endif /* CONFIG_SYSFS */
5732 
5733 /*
5734  * The /proc/slabinfo ABI
5735  */
5736 #ifdef CONFIG_SLUB_DEBUG
5737 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5738 {
5739 	unsigned long nr_slabs = 0;
5740 	unsigned long nr_objs = 0;
5741 	unsigned long nr_free = 0;
5742 	int node;
5743 	struct kmem_cache_node *n;
5744 
5745 	for_each_kmem_cache_node(s, node, n) {
5746 		nr_slabs += node_nr_slabs(n);
5747 		nr_objs += node_nr_objs(n);
5748 		nr_free += count_partial(n, count_free);
5749 	}
5750 
5751 	sinfo->active_objs = nr_objs - nr_free;
5752 	sinfo->num_objs = nr_objs;
5753 	sinfo->active_slabs = nr_slabs;
5754 	sinfo->num_slabs = nr_slabs;
5755 	sinfo->objects_per_slab = oo_objects(s->oo);
5756 	sinfo->cache_order = oo_order(s->oo);
5757 }
5758 
5759 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5760 {
5761 }
5762 
5763 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5764 		       size_t count, loff_t *ppos)
5765 {
5766 	return -EIO;
5767 }
5768 #endif /* CONFIG_SLUB_DEBUG */
5769