xref: /linux/mm/slub.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 
35 #include <trace/events/kmem.h>
36 
37 #include "internal.h"
38 
39 /*
40  * Lock order:
41  *   1. slab_mutex (Global Mutex)
42  *   2. node->list_lock
43  *   3. slab_lock(page) (Only on some arches and for debugging)
44  *
45  *   slab_mutex
46  *
47  *   The role of the slab_mutex is to protect the list of all the slabs
48  *   and to synchronize major metadata changes to slab cache structures.
49  *
50  *   The slab_lock is only used for debugging and on arches that do not
51  *   have the ability to do a cmpxchg_double. It only protects the second
52  *   double word in the page struct. Meaning
53  *	A. page->freelist	-> List of object free in a page
54  *	B. page->counters	-> Counters of objects
55  *	C. page->frozen		-> frozen state
56  *
57  *   If a slab is frozen then it is exempt from list management. It is not
58  *   on any list. The processor that froze the slab is the one who can
59  *   perform list operations on the page. Other processors may put objects
60  *   onto the freelist but the processor that froze the slab is the only
61  *   one that can retrieve the objects from the page's freelist.
62  *
63  *   The list_lock protects the partial and full list on each node and
64  *   the partial slab counter. If taken then no new slabs may be added or
65  *   removed from the lists nor make the number of partial slabs be modified.
66  *   (Note that the total number of slabs is an atomic value that may be
67  *   modified without taking the list lock).
68  *
69  *   The list_lock is a centralized lock and thus we avoid taking it as
70  *   much as possible. As long as SLUB does not have to handle partial
71  *   slabs, operations can continue without any centralized lock. F.e.
72  *   allocating a long series of objects that fill up slabs does not require
73  *   the list lock.
74  *   Interrupts are disabled during allocation and deallocation in order to
75  *   make the slab allocator safe to use in the context of an irq. In addition
76  *   interrupts are disabled to ensure that the processor does not change
77  *   while handling per_cpu slabs, due to kernel preemption.
78  *
79  * SLUB assigns one slab for allocation to each processor.
80  * Allocations only occur from these slabs called cpu slabs.
81  *
82  * Slabs with free elements are kept on a partial list and during regular
83  * operations no list for full slabs is used. If an object in a full slab is
84  * freed then the slab will show up again on the partial lists.
85  * We track full slabs for debugging purposes though because otherwise we
86  * cannot scan all objects.
87  *
88  * Slabs are freed when they become empty. Teardown and setup is
89  * minimal so we rely on the page allocators per cpu caches for
90  * fast frees and allocs.
91  *
92  * Overloading of page flags that are otherwise used for LRU management.
93  *
94  * PageActive 		The slab is frozen and exempt from list processing.
95  * 			This means that the slab is dedicated to a purpose
96  * 			such as satisfying allocations for a specific
97  * 			processor. Objects may be freed in the slab while
98  * 			it is frozen but slab_free will then skip the usual
99  * 			list operations. It is up to the processor holding
100  * 			the slab to integrate the slab into the slab lists
101  * 			when the slab is no longer needed.
102  *
103  * 			One use of this flag is to mark slabs that are
104  * 			used for allocations. Then such a slab becomes a cpu
105  * 			slab. The cpu slab may be equipped with an additional
106  * 			freelist that allows lockless access to
107  * 			free objects in addition to the regular freelist
108  * 			that requires the slab lock.
109  *
110  * PageError		Slab requires special handling due to debug
111  * 			options set. This moves	slab handling out of
112  * 			the fast path and disables lockless freelists.
113  */
114 
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 		SLAB_TRACE | SLAB_DEBUG_FREE)
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 /*
128  * Issues still to be resolved:
129  *
130  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131  *
132  * - Variable sizing of the per node arrays
133  */
134 
135 /* Enable to test recovery from slab corruption on boot */
136 #undef SLUB_RESILIENCY_TEST
137 
138 /* Enable to log cmpxchg failures */
139 #undef SLUB_DEBUG_CMPXCHG
140 
141 /*
142  * Mininum number of partial slabs. These will be left on the partial
143  * lists even if they are empty. kmem_cache_shrink may reclaim them.
144  */
145 #define MIN_PARTIAL 5
146 
147 /*
148  * Maximum number of desirable partial slabs.
149  * The existence of more partial slabs makes kmem_cache_shrink
150  * sort the partial list by the number of objects in the.
151  */
152 #define MAX_PARTIAL 10
153 
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 				SLAB_POISON | SLAB_STORE_USER)
156 
157 /*
158  * Debugging flags that require metadata to be stored in the slab.  These get
159  * disabled when slub_debug=O is used and a cache's min order increases with
160  * metadata.
161  */
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
163 
164 /*
165  * Set of flags that will prevent slab merging
166  */
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 		SLAB_FAILSLAB)
170 
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 		SLAB_CACHE_DMA | SLAB_NOTRACK)
173 
174 #define OO_SHIFT	16
175 #define OO_MASK		((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
177 
178 /* Internal SLUB flags */
179 #define __OBJECT_POISON		0x80000000UL /* Poison object */
180 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
181 
182 static int kmem_size = sizeof(struct kmem_cache);
183 
184 #ifdef CONFIG_SMP
185 static struct notifier_block slab_notifier;
186 #endif
187 
188 /*
189  * Tracking user of a slab.
190  */
191 #define TRACK_ADDRS_COUNT 16
192 struct track {
193 	unsigned long addr;	/* Called from address */
194 #ifdef CONFIG_STACKTRACE
195 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
196 #endif
197 	int cpu;		/* Was running on cpu */
198 	int pid;		/* Pid context */
199 	unsigned long when;	/* When did the operation occur */
200 };
201 
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203 
204 #ifdef CONFIG_SYSFS
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208 
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 							{ return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 	kfree(s->name);
216 	kfree(s);
217 }
218 
219 #endif
220 
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 	__this_cpu_inc(s->cpu_slab->stat[si]);
225 #endif
226 }
227 
228 /********************************************************************
229  * 			Core slab cache functions
230  *******************************************************************/
231 
232 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
233 {
234 	return s->node[node];
235 }
236 
237 /* Verify that a pointer has an address that is valid within a slab page */
238 static inline int check_valid_pointer(struct kmem_cache *s,
239 				struct page *page, const void *object)
240 {
241 	void *base;
242 
243 	if (!object)
244 		return 1;
245 
246 	base = page_address(page);
247 	if (object < base || object >= base + page->objects * s->size ||
248 		(object - base) % s->size) {
249 		return 0;
250 	}
251 
252 	return 1;
253 }
254 
255 static inline void *get_freepointer(struct kmem_cache *s, void *object)
256 {
257 	return *(void **)(object + s->offset);
258 }
259 
260 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
261 {
262 	prefetch(object + s->offset);
263 }
264 
265 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
266 {
267 	void *p;
268 
269 #ifdef CONFIG_DEBUG_PAGEALLOC
270 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
271 #else
272 	p = get_freepointer(s, object);
273 #endif
274 	return p;
275 }
276 
277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278 {
279 	*(void **)(object + s->offset) = fp;
280 }
281 
282 /* Loop over all objects in a slab */
283 #define for_each_object(__p, __s, __addr, __objects) \
284 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
285 			__p += (__s)->size)
286 
287 /* Determine object index from a given position */
288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289 {
290 	return (p - addr) / s->size;
291 }
292 
293 static inline size_t slab_ksize(const struct kmem_cache *s)
294 {
295 #ifdef CONFIG_SLUB_DEBUG
296 	/*
297 	 * Debugging requires use of the padding between object
298 	 * and whatever may come after it.
299 	 */
300 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
301 		return s->object_size;
302 
303 #endif
304 	/*
305 	 * If we have the need to store the freelist pointer
306 	 * back there or track user information then we can
307 	 * only use the space before that information.
308 	 */
309 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
310 		return s->inuse;
311 	/*
312 	 * Else we can use all the padding etc for the allocation
313 	 */
314 	return s->size;
315 }
316 
317 static inline int order_objects(int order, unsigned long size, int reserved)
318 {
319 	return ((PAGE_SIZE << order) - reserved) / size;
320 }
321 
322 static inline struct kmem_cache_order_objects oo_make(int order,
323 		unsigned long size, int reserved)
324 {
325 	struct kmem_cache_order_objects x = {
326 		(order << OO_SHIFT) + order_objects(order, size, reserved)
327 	};
328 
329 	return x;
330 }
331 
332 static inline int oo_order(struct kmem_cache_order_objects x)
333 {
334 	return x.x >> OO_SHIFT;
335 }
336 
337 static inline int oo_objects(struct kmem_cache_order_objects x)
338 {
339 	return x.x & OO_MASK;
340 }
341 
342 /*
343  * Per slab locking using the pagelock
344  */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 	bit_spin_lock(PG_locked, &page->flags);
348 }
349 
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 	__bit_spin_unlock(PG_locked, &page->flags);
353 }
354 
355 /* Interrupts must be disabled (for the fallback code to work right) */
356 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
357 		void *freelist_old, unsigned long counters_old,
358 		void *freelist_new, unsigned long counters_new,
359 		const char *n)
360 {
361 	VM_BUG_ON(!irqs_disabled());
362 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
364 	if (s->flags & __CMPXCHG_DOUBLE) {
365 		if (cmpxchg_double(&page->freelist, &page->counters,
366 			freelist_old, counters_old,
367 			freelist_new, counters_new))
368 		return 1;
369 	} else
370 #endif
371 	{
372 		slab_lock(page);
373 		if (page->freelist == freelist_old && page->counters == counters_old) {
374 			page->freelist = freelist_new;
375 			page->counters = counters_new;
376 			slab_unlock(page);
377 			return 1;
378 		}
379 		slab_unlock(page);
380 	}
381 
382 	cpu_relax();
383 	stat(s, CMPXCHG_DOUBLE_FAIL);
384 
385 #ifdef SLUB_DEBUG_CMPXCHG
386 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
387 #endif
388 
389 	return 0;
390 }
391 
392 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
393 		void *freelist_old, unsigned long counters_old,
394 		void *freelist_new, unsigned long counters_new,
395 		const char *n)
396 {
397 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
398     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
399 	if (s->flags & __CMPXCHG_DOUBLE) {
400 		if (cmpxchg_double(&page->freelist, &page->counters,
401 			freelist_old, counters_old,
402 			freelist_new, counters_new))
403 		return 1;
404 	} else
405 #endif
406 	{
407 		unsigned long flags;
408 
409 		local_irq_save(flags);
410 		slab_lock(page);
411 		if (page->freelist == freelist_old && page->counters == counters_old) {
412 			page->freelist = freelist_new;
413 			page->counters = counters_new;
414 			slab_unlock(page);
415 			local_irq_restore(flags);
416 			return 1;
417 		}
418 		slab_unlock(page);
419 		local_irq_restore(flags);
420 	}
421 
422 	cpu_relax();
423 	stat(s, CMPXCHG_DOUBLE_FAIL);
424 
425 #ifdef SLUB_DEBUG_CMPXCHG
426 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
427 #endif
428 
429 	return 0;
430 }
431 
432 #ifdef CONFIG_SLUB_DEBUG
433 /*
434  * Determine a map of object in use on a page.
435  *
436  * Node listlock must be held to guarantee that the page does
437  * not vanish from under us.
438  */
439 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
440 {
441 	void *p;
442 	void *addr = page_address(page);
443 
444 	for (p = page->freelist; p; p = get_freepointer(s, p))
445 		set_bit(slab_index(p, s, addr), map);
446 }
447 
448 /*
449  * Debug settings:
450  */
451 #ifdef CONFIG_SLUB_DEBUG_ON
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
453 #else
454 static int slub_debug;
455 #endif
456 
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
459 
460 /*
461  * Object debugging
462  */
463 static void print_section(char *text, u8 *addr, unsigned int length)
464 {
465 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
466 			length, 1);
467 }
468 
469 static struct track *get_track(struct kmem_cache *s, void *object,
470 	enum track_item alloc)
471 {
472 	struct track *p;
473 
474 	if (s->offset)
475 		p = object + s->offset + sizeof(void *);
476 	else
477 		p = object + s->inuse;
478 
479 	return p + alloc;
480 }
481 
482 static void set_track(struct kmem_cache *s, void *object,
483 			enum track_item alloc, unsigned long addr)
484 {
485 	struct track *p = get_track(s, object, alloc);
486 
487 	if (addr) {
488 #ifdef CONFIG_STACKTRACE
489 		struct stack_trace trace;
490 		int i;
491 
492 		trace.nr_entries = 0;
493 		trace.max_entries = TRACK_ADDRS_COUNT;
494 		trace.entries = p->addrs;
495 		trace.skip = 3;
496 		save_stack_trace(&trace);
497 
498 		/* See rant in lockdep.c */
499 		if (trace.nr_entries != 0 &&
500 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
501 			trace.nr_entries--;
502 
503 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
504 			p->addrs[i] = 0;
505 #endif
506 		p->addr = addr;
507 		p->cpu = smp_processor_id();
508 		p->pid = current->pid;
509 		p->when = jiffies;
510 	} else
511 		memset(p, 0, sizeof(struct track));
512 }
513 
514 static void init_tracking(struct kmem_cache *s, void *object)
515 {
516 	if (!(s->flags & SLAB_STORE_USER))
517 		return;
518 
519 	set_track(s, object, TRACK_FREE, 0UL);
520 	set_track(s, object, TRACK_ALLOC, 0UL);
521 }
522 
523 static void print_track(const char *s, struct track *t)
524 {
525 	if (!t->addr)
526 		return;
527 
528 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
529 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
530 #ifdef CONFIG_STACKTRACE
531 	{
532 		int i;
533 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
534 			if (t->addrs[i])
535 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
536 			else
537 				break;
538 	}
539 #endif
540 }
541 
542 static void print_tracking(struct kmem_cache *s, void *object)
543 {
544 	if (!(s->flags & SLAB_STORE_USER))
545 		return;
546 
547 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
548 	print_track("Freed", get_track(s, object, TRACK_FREE));
549 }
550 
551 static void print_page_info(struct page *page)
552 {
553 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
554 		page, page->objects, page->inuse, page->freelist, page->flags);
555 
556 }
557 
558 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
559 {
560 	va_list args;
561 	char buf[100];
562 
563 	va_start(args, fmt);
564 	vsnprintf(buf, sizeof(buf), fmt, args);
565 	va_end(args);
566 	printk(KERN_ERR "========================================"
567 			"=====================================\n");
568 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
569 	printk(KERN_ERR "----------------------------------------"
570 			"-------------------------------------\n\n");
571 }
572 
573 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
574 {
575 	va_list args;
576 	char buf[100];
577 
578 	va_start(args, fmt);
579 	vsnprintf(buf, sizeof(buf), fmt, args);
580 	va_end(args);
581 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
582 }
583 
584 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
585 {
586 	unsigned int off;	/* Offset of last byte */
587 	u8 *addr = page_address(page);
588 
589 	print_tracking(s, p);
590 
591 	print_page_info(page);
592 
593 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
594 			p, p - addr, get_freepointer(s, p));
595 
596 	if (p > addr + 16)
597 		print_section("Bytes b4 ", p - 16, 16);
598 
599 	print_section("Object ", p, min_t(unsigned long, s->object_size,
600 				PAGE_SIZE));
601 	if (s->flags & SLAB_RED_ZONE)
602 		print_section("Redzone ", p + s->object_size,
603 			s->inuse - s->object_size);
604 
605 	if (s->offset)
606 		off = s->offset + sizeof(void *);
607 	else
608 		off = s->inuse;
609 
610 	if (s->flags & SLAB_STORE_USER)
611 		off += 2 * sizeof(struct track);
612 
613 	if (off != s->size)
614 		/* Beginning of the filler is the free pointer */
615 		print_section("Padding ", p + off, s->size - off);
616 
617 	dump_stack();
618 }
619 
620 static void object_err(struct kmem_cache *s, struct page *page,
621 			u8 *object, char *reason)
622 {
623 	slab_bug(s, "%s", reason);
624 	print_trailer(s, page, object);
625 }
626 
627 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
628 {
629 	va_list args;
630 	char buf[100];
631 
632 	va_start(args, fmt);
633 	vsnprintf(buf, sizeof(buf), fmt, args);
634 	va_end(args);
635 	slab_bug(s, "%s", buf);
636 	print_page_info(page);
637 	dump_stack();
638 }
639 
640 static void init_object(struct kmem_cache *s, void *object, u8 val)
641 {
642 	u8 *p = object;
643 
644 	if (s->flags & __OBJECT_POISON) {
645 		memset(p, POISON_FREE, s->object_size - 1);
646 		p[s->object_size - 1] = POISON_END;
647 	}
648 
649 	if (s->flags & SLAB_RED_ZONE)
650 		memset(p + s->object_size, val, s->inuse - s->object_size);
651 }
652 
653 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
654 						void *from, void *to)
655 {
656 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
657 	memset(from, data, to - from);
658 }
659 
660 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
661 			u8 *object, char *what,
662 			u8 *start, unsigned int value, unsigned int bytes)
663 {
664 	u8 *fault;
665 	u8 *end;
666 
667 	fault = memchr_inv(start, value, bytes);
668 	if (!fault)
669 		return 1;
670 
671 	end = start + bytes;
672 	while (end > fault && end[-1] == value)
673 		end--;
674 
675 	slab_bug(s, "%s overwritten", what);
676 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
677 					fault, end - 1, fault[0], value);
678 	print_trailer(s, page, object);
679 
680 	restore_bytes(s, what, value, fault, end);
681 	return 0;
682 }
683 
684 /*
685  * Object layout:
686  *
687  * object address
688  * 	Bytes of the object to be managed.
689  * 	If the freepointer may overlay the object then the free
690  * 	pointer is the first word of the object.
691  *
692  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
693  * 	0xa5 (POISON_END)
694  *
695  * object + s->object_size
696  * 	Padding to reach word boundary. This is also used for Redzoning.
697  * 	Padding is extended by another word if Redzoning is enabled and
698  * 	object_size == inuse.
699  *
700  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
701  * 	0xcc (RED_ACTIVE) for objects in use.
702  *
703  * object + s->inuse
704  * 	Meta data starts here.
705  *
706  * 	A. Free pointer (if we cannot overwrite object on free)
707  * 	B. Tracking data for SLAB_STORE_USER
708  * 	C. Padding to reach required alignment boundary or at mininum
709  * 		one word if debugging is on to be able to detect writes
710  * 		before the word boundary.
711  *
712  *	Padding is done using 0x5a (POISON_INUSE)
713  *
714  * object + s->size
715  * 	Nothing is used beyond s->size.
716  *
717  * If slabcaches are merged then the object_size and inuse boundaries are mostly
718  * ignored. And therefore no slab options that rely on these boundaries
719  * may be used with merged slabcaches.
720  */
721 
722 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
723 {
724 	unsigned long off = s->inuse;	/* The end of info */
725 
726 	if (s->offset)
727 		/* Freepointer is placed after the object. */
728 		off += sizeof(void *);
729 
730 	if (s->flags & SLAB_STORE_USER)
731 		/* We also have user information there */
732 		off += 2 * sizeof(struct track);
733 
734 	if (s->size == off)
735 		return 1;
736 
737 	return check_bytes_and_report(s, page, p, "Object padding",
738 				p + off, POISON_INUSE, s->size - off);
739 }
740 
741 /* Check the pad bytes at the end of a slab page */
742 static int slab_pad_check(struct kmem_cache *s, struct page *page)
743 {
744 	u8 *start;
745 	u8 *fault;
746 	u8 *end;
747 	int length;
748 	int remainder;
749 
750 	if (!(s->flags & SLAB_POISON))
751 		return 1;
752 
753 	start = page_address(page);
754 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
755 	end = start + length;
756 	remainder = length % s->size;
757 	if (!remainder)
758 		return 1;
759 
760 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
761 	if (!fault)
762 		return 1;
763 	while (end > fault && end[-1] == POISON_INUSE)
764 		end--;
765 
766 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
767 	print_section("Padding ", end - remainder, remainder);
768 
769 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
770 	return 0;
771 }
772 
773 static int check_object(struct kmem_cache *s, struct page *page,
774 					void *object, u8 val)
775 {
776 	u8 *p = object;
777 	u8 *endobject = object + s->object_size;
778 
779 	if (s->flags & SLAB_RED_ZONE) {
780 		if (!check_bytes_and_report(s, page, object, "Redzone",
781 			endobject, val, s->inuse - s->object_size))
782 			return 0;
783 	} else {
784 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
785 			check_bytes_and_report(s, page, p, "Alignment padding",
786 				endobject, POISON_INUSE, s->inuse - s->object_size);
787 		}
788 	}
789 
790 	if (s->flags & SLAB_POISON) {
791 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
792 			(!check_bytes_and_report(s, page, p, "Poison", p,
793 					POISON_FREE, s->object_size - 1) ||
794 			 !check_bytes_and_report(s, page, p, "Poison",
795 				p + s->object_size - 1, POISON_END, 1)))
796 			return 0;
797 		/*
798 		 * check_pad_bytes cleans up on its own.
799 		 */
800 		check_pad_bytes(s, page, p);
801 	}
802 
803 	if (!s->offset && val == SLUB_RED_ACTIVE)
804 		/*
805 		 * Object and freepointer overlap. Cannot check
806 		 * freepointer while object is allocated.
807 		 */
808 		return 1;
809 
810 	/* Check free pointer validity */
811 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
812 		object_err(s, page, p, "Freepointer corrupt");
813 		/*
814 		 * No choice but to zap it and thus lose the remainder
815 		 * of the free objects in this slab. May cause
816 		 * another error because the object count is now wrong.
817 		 */
818 		set_freepointer(s, p, NULL);
819 		return 0;
820 	}
821 	return 1;
822 }
823 
824 static int check_slab(struct kmem_cache *s, struct page *page)
825 {
826 	int maxobj;
827 
828 	VM_BUG_ON(!irqs_disabled());
829 
830 	if (!PageSlab(page)) {
831 		slab_err(s, page, "Not a valid slab page");
832 		return 0;
833 	}
834 
835 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
836 	if (page->objects > maxobj) {
837 		slab_err(s, page, "objects %u > max %u",
838 			s->name, page->objects, maxobj);
839 		return 0;
840 	}
841 	if (page->inuse > page->objects) {
842 		slab_err(s, page, "inuse %u > max %u",
843 			s->name, page->inuse, page->objects);
844 		return 0;
845 	}
846 	/* Slab_pad_check fixes things up after itself */
847 	slab_pad_check(s, page);
848 	return 1;
849 }
850 
851 /*
852  * Determine if a certain object on a page is on the freelist. Must hold the
853  * slab lock to guarantee that the chains are in a consistent state.
854  */
855 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
856 {
857 	int nr = 0;
858 	void *fp;
859 	void *object = NULL;
860 	unsigned long max_objects;
861 
862 	fp = page->freelist;
863 	while (fp && nr <= page->objects) {
864 		if (fp == search)
865 			return 1;
866 		if (!check_valid_pointer(s, page, fp)) {
867 			if (object) {
868 				object_err(s, page, object,
869 					"Freechain corrupt");
870 				set_freepointer(s, object, NULL);
871 				break;
872 			} else {
873 				slab_err(s, page, "Freepointer corrupt");
874 				page->freelist = NULL;
875 				page->inuse = page->objects;
876 				slab_fix(s, "Freelist cleared");
877 				return 0;
878 			}
879 			break;
880 		}
881 		object = fp;
882 		fp = get_freepointer(s, object);
883 		nr++;
884 	}
885 
886 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
887 	if (max_objects > MAX_OBJS_PER_PAGE)
888 		max_objects = MAX_OBJS_PER_PAGE;
889 
890 	if (page->objects != max_objects) {
891 		slab_err(s, page, "Wrong number of objects. Found %d but "
892 			"should be %d", page->objects, max_objects);
893 		page->objects = max_objects;
894 		slab_fix(s, "Number of objects adjusted.");
895 	}
896 	if (page->inuse != page->objects - nr) {
897 		slab_err(s, page, "Wrong object count. Counter is %d but "
898 			"counted were %d", page->inuse, page->objects - nr);
899 		page->inuse = page->objects - nr;
900 		slab_fix(s, "Object count adjusted.");
901 	}
902 	return search == NULL;
903 }
904 
905 static void trace(struct kmem_cache *s, struct page *page, void *object,
906 								int alloc)
907 {
908 	if (s->flags & SLAB_TRACE) {
909 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
910 			s->name,
911 			alloc ? "alloc" : "free",
912 			object, page->inuse,
913 			page->freelist);
914 
915 		if (!alloc)
916 			print_section("Object ", (void *)object, s->object_size);
917 
918 		dump_stack();
919 	}
920 }
921 
922 /*
923  * Hooks for other subsystems that check memory allocations. In a typical
924  * production configuration these hooks all should produce no code at all.
925  */
926 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
927 {
928 	flags &= gfp_allowed_mask;
929 	lockdep_trace_alloc(flags);
930 	might_sleep_if(flags & __GFP_WAIT);
931 
932 	return should_failslab(s->object_size, flags, s->flags);
933 }
934 
935 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
936 {
937 	flags &= gfp_allowed_mask;
938 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
939 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
940 }
941 
942 static inline void slab_free_hook(struct kmem_cache *s, void *x)
943 {
944 	kmemleak_free_recursive(x, s->flags);
945 
946 	/*
947 	 * Trouble is that we may no longer disable interupts in the fast path
948 	 * So in order to make the debug calls that expect irqs to be
949 	 * disabled we need to disable interrupts temporarily.
950 	 */
951 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
952 	{
953 		unsigned long flags;
954 
955 		local_irq_save(flags);
956 		kmemcheck_slab_free(s, x, s->object_size);
957 		debug_check_no_locks_freed(x, s->object_size);
958 		local_irq_restore(flags);
959 	}
960 #endif
961 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
962 		debug_check_no_obj_freed(x, s->object_size);
963 }
964 
965 /*
966  * Tracking of fully allocated slabs for debugging purposes.
967  *
968  * list_lock must be held.
969  */
970 static void add_full(struct kmem_cache *s,
971 	struct kmem_cache_node *n, struct page *page)
972 {
973 	if (!(s->flags & SLAB_STORE_USER))
974 		return;
975 
976 	list_add(&page->lru, &n->full);
977 }
978 
979 /*
980  * list_lock must be held.
981  */
982 static void remove_full(struct kmem_cache *s, struct page *page)
983 {
984 	if (!(s->flags & SLAB_STORE_USER))
985 		return;
986 
987 	list_del(&page->lru);
988 }
989 
990 /* Tracking of the number of slabs for debugging purposes */
991 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
992 {
993 	struct kmem_cache_node *n = get_node(s, node);
994 
995 	return atomic_long_read(&n->nr_slabs);
996 }
997 
998 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
999 {
1000 	return atomic_long_read(&n->nr_slabs);
1001 }
1002 
1003 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1004 {
1005 	struct kmem_cache_node *n = get_node(s, node);
1006 
1007 	/*
1008 	 * May be called early in order to allocate a slab for the
1009 	 * kmem_cache_node structure. Solve the chicken-egg
1010 	 * dilemma by deferring the increment of the count during
1011 	 * bootstrap (see early_kmem_cache_node_alloc).
1012 	 */
1013 	if (n) {
1014 		atomic_long_inc(&n->nr_slabs);
1015 		atomic_long_add(objects, &n->total_objects);
1016 	}
1017 }
1018 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1019 {
1020 	struct kmem_cache_node *n = get_node(s, node);
1021 
1022 	atomic_long_dec(&n->nr_slabs);
1023 	atomic_long_sub(objects, &n->total_objects);
1024 }
1025 
1026 /* Object debug checks for alloc/free paths */
1027 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1028 								void *object)
1029 {
1030 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1031 		return;
1032 
1033 	init_object(s, object, SLUB_RED_INACTIVE);
1034 	init_tracking(s, object);
1035 }
1036 
1037 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1038 					void *object, unsigned long addr)
1039 {
1040 	if (!check_slab(s, page))
1041 		goto bad;
1042 
1043 	if (!check_valid_pointer(s, page, object)) {
1044 		object_err(s, page, object, "Freelist Pointer check fails");
1045 		goto bad;
1046 	}
1047 
1048 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1049 		goto bad;
1050 
1051 	/* Success perform special debug activities for allocs */
1052 	if (s->flags & SLAB_STORE_USER)
1053 		set_track(s, object, TRACK_ALLOC, addr);
1054 	trace(s, page, object, 1);
1055 	init_object(s, object, SLUB_RED_ACTIVE);
1056 	return 1;
1057 
1058 bad:
1059 	if (PageSlab(page)) {
1060 		/*
1061 		 * If this is a slab page then lets do the best we can
1062 		 * to avoid issues in the future. Marking all objects
1063 		 * as used avoids touching the remaining objects.
1064 		 */
1065 		slab_fix(s, "Marking all objects used");
1066 		page->inuse = page->objects;
1067 		page->freelist = NULL;
1068 	}
1069 	return 0;
1070 }
1071 
1072 static noinline int free_debug_processing(struct kmem_cache *s,
1073 		 struct page *page, void *object, unsigned long addr)
1074 {
1075 	unsigned long flags;
1076 	int rc = 0;
1077 
1078 	local_irq_save(flags);
1079 	slab_lock(page);
1080 
1081 	if (!check_slab(s, page))
1082 		goto fail;
1083 
1084 	if (!check_valid_pointer(s, page, object)) {
1085 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1086 		goto fail;
1087 	}
1088 
1089 	if (on_freelist(s, page, object)) {
1090 		object_err(s, page, object, "Object already free");
1091 		goto fail;
1092 	}
1093 
1094 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1095 		goto out;
1096 
1097 	if (unlikely(s != page->slab)) {
1098 		if (!PageSlab(page)) {
1099 			slab_err(s, page, "Attempt to free object(0x%p) "
1100 				"outside of slab", object);
1101 		} else if (!page->slab) {
1102 			printk(KERN_ERR
1103 				"SLUB <none>: no slab for object 0x%p.\n",
1104 						object);
1105 			dump_stack();
1106 		} else
1107 			object_err(s, page, object,
1108 					"page slab pointer corrupt.");
1109 		goto fail;
1110 	}
1111 
1112 	if (s->flags & SLAB_STORE_USER)
1113 		set_track(s, object, TRACK_FREE, addr);
1114 	trace(s, page, object, 0);
1115 	init_object(s, object, SLUB_RED_INACTIVE);
1116 	rc = 1;
1117 out:
1118 	slab_unlock(page);
1119 	local_irq_restore(flags);
1120 	return rc;
1121 
1122 fail:
1123 	slab_fix(s, "Object at 0x%p not freed", object);
1124 	goto out;
1125 }
1126 
1127 static int __init setup_slub_debug(char *str)
1128 {
1129 	slub_debug = DEBUG_DEFAULT_FLAGS;
1130 	if (*str++ != '=' || !*str)
1131 		/*
1132 		 * No options specified. Switch on full debugging.
1133 		 */
1134 		goto out;
1135 
1136 	if (*str == ',')
1137 		/*
1138 		 * No options but restriction on slabs. This means full
1139 		 * debugging for slabs matching a pattern.
1140 		 */
1141 		goto check_slabs;
1142 
1143 	if (tolower(*str) == 'o') {
1144 		/*
1145 		 * Avoid enabling debugging on caches if its minimum order
1146 		 * would increase as a result.
1147 		 */
1148 		disable_higher_order_debug = 1;
1149 		goto out;
1150 	}
1151 
1152 	slub_debug = 0;
1153 	if (*str == '-')
1154 		/*
1155 		 * Switch off all debugging measures.
1156 		 */
1157 		goto out;
1158 
1159 	/*
1160 	 * Determine which debug features should be switched on
1161 	 */
1162 	for (; *str && *str != ','; str++) {
1163 		switch (tolower(*str)) {
1164 		case 'f':
1165 			slub_debug |= SLAB_DEBUG_FREE;
1166 			break;
1167 		case 'z':
1168 			slub_debug |= SLAB_RED_ZONE;
1169 			break;
1170 		case 'p':
1171 			slub_debug |= SLAB_POISON;
1172 			break;
1173 		case 'u':
1174 			slub_debug |= SLAB_STORE_USER;
1175 			break;
1176 		case 't':
1177 			slub_debug |= SLAB_TRACE;
1178 			break;
1179 		case 'a':
1180 			slub_debug |= SLAB_FAILSLAB;
1181 			break;
1182 		default:
1183 			printk(KERN_ERR "slub_debug option '%c' "
1184 				"unknown. skipped\n", *str);
1185 		}
1186 	}
1187 
1188 check_slabs:
1189 	if (*str == ',')
1190 		slub_debug_slabs = str + 1;
1191 out:
1192 	return 1;
1193 }
1194 
1195 __setup("slub_debug", setup_slub_debug);
1196 
1197 static unsigned long kmem_cache_flags(unsigned long object_size,
1198 	unsigned long flags, const char *name,
1199 	void (*ctor)(void *))
1200 {
1201 	/*
1202 	 * Enable debugging if selected on the kernel commandline.
1203 	 */
1204 	if (slub_debug && (!slub_debug_slabs ||
1205 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1206 		flags |= slub_debug;
1207 
1208 	return flags;
1209 }
1210 #else
1211 static inline void setup_object_debug(struct kmem_cache *s,
1212 			struct page *page, void *object) {}
1213 
1214 static inline int alloc_debug_processing(struct kmem_cache *s,
1215 	struct page *page, void *object, unsigned long addr) { return 0; }
1216 
1217 static inline int free_debug_processing(struct kmem_cache *s,
1218 	struct page *page, void *object, unsigned long addr) { return 0; }
1219 
1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 			{ return 1; }
1222 static inline int check_object(struct kmem_cache *s, struct page *page,
1223 			void *object, u8 val) { return 1; }
1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 					struct page *page) {}
1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228 	unsigned long flags, const char *name,
1229 	void (*ctor)(void *))
1230 {
1231 	return flags;
1232 }
1233 #define slub_debug 0
1234 
1235 #define disable_higher_order_debug 0
1236 
1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 							{ return 0; }
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 							{ return 0; }
1241 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 							int objects) {}
1243 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 							int objects) {}
1245 
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 							{ return 0; }
1248 
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 		void *object) {}
1251 
1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253 
1254 #endif /* CONFIG_SLUB_DEBUG */
1255 
1256 /*
1257  * Slab allocation and freeing
1258  */
1259 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 					struct kmem_cache_order_objects oo)
1261 {
1262 	int order = oo_order(oo);
1263 
1264 	flags |= __GFP_NOTRACK;
1265 
1266 	if (node == NUMA_NO_NODE)
1267 		return alloc_pages(flags, order);
1268 	else
1269 		return alloc_pages_exact_node(node, flags, order);
1270 }
1271 
1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273 {
1274 	struct page *page;
1275 	struct kmem_cache_order_objects oo = s->oo;
1276 	gfp_t alloc_gfp;
1277 
1278 	flags &= gfp_allowed_mask;
1279 
1280 	if (flags & __GFP_WAIT)
1281 		local_irq_enable();
1282 
1283 	flags |= s->allocflags;
1284 
1285 	/*
1286 	 * Let the initial higher-order allocation fail under memory pressure
1287 	 * so we fall-back to the minimum order allocation.
1288 	 */
1289 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290 
1291 	page = alloc_slab_page(alloc_gfp, node, oo);
1292 	if (unlikely(!page)) {
1293 		oo = s->min;
1294 		/*
1295 		 * Allocation may have failed due to fragmentation.
1296 		 * Try a lower order alloc if possible
1297 		 */
1298 		page = alloc_slab_page(flags, node, oo);
1299 
1300 		if (page)
1301 			stat(s, ORDER_FALLBACK);
1302 	}
1303 
1304 	if (kmemcheck_enabled && page
1305 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 		int pages = 1 << oo_order(oo);
1307 
1308 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309 
1310 		/*
1311 		 * Objects from caches that have a constructor don't get
1312 		 * cleared when they're allocated, so we need to do it here.
1313 		 */
1314 		if (s->ctor)
1315 			kmemcheck_mark_uninitialized_pages(page, pages);
1316 		else
1317 			kmemcheck_mark_unallocated_pages(page, pages);
1318 	}
1319 
1320 	if (flags & __GFP_WAIT)
1321 		local_irq_disable();
1322 	if (!page)
1323 		return NULL;
1324 
1325 	page->objects = oo_objects(oo);
1326 	mod_zone_page_state(page_zone(page),
1327 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329 		1 << oo_order(oo));
1330 
1331 	return page;
1332 }
1333 
1334 static void setup_object(struct kmem_cache *s, struct page *page,
1335 				void *object)
1336 {
1337 	setup_object_debug(s, page, object);
1338 	if (unlikely(s->ctor))
1339 		s->ctor(object);
1340 }
1341 
1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343 {
1344 	struct page *page;
1345 	void *start;
1346 	void *last;
1347 	void *p;
1348 
1349 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1350 
1351 	page = allocate_slab(s,
1352 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1353 	if (!page)
1354 		goto out;
1355 
1356 	inc_slabs_node(s, page_to_nid(page), page->objects);
1357 	page->slab = s;
1358 	__SetPageSlab(page);
1359 	if (page->pfmemalloc)
1360 		SetPageSlabPfmemalloc(page);
1361 
1362 	start = page_address(page);
1363 
1364 	if (unlikely(s->flags & SLAB_POISON))
1365 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1366 
1367 	last = start;
1368 	for_each_object(p, s, start, page->objects) {
1369 		setup_object(s, page, last);
1370 		set_freepointer(s, last, p);
1371 		last = p;
1372 	}
1373 	setup_object(s, page, last);
1374 	set_freepointer(s, last, NULL);
1375 
1376 	page->freelist = start;
1377 	page->inuse = page->objects;
1378 	page->frozen = 1;
1379 out:
1380 	return page;
1381 }
1382 
1383 static void __free_slab(struct kmem_cache *s, struct page *page)
1384 {
1385 	int order = compound_order(page);
1386 	int pages = 1 << order;
1387 
1388 	if (kmem_cache_debug(s)) {
1389 		void *p;
1390 
1391 		slab_pad_check(s, page);
1392 		for_each_object(p, s, page_address(page),
1393 						page->objects)
1394 			check_object(s, page, p, SLUB_RED_INACTIVE);
1395 	}
1396 
1397 	kmemcheck_free_shadow(page, compound_order(page));
1398 
1399 	mod_zone_page_state(page_zone(page),
1400 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1401 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1402 		-pages);
1403 
1404 	__ClearPageSlabPfmemalloc(page);
1405 	__ClearPageSlab(page);
1406 	reset_page_mapcount(page);
1407 	if (current->reclaim_state)
1408 		current->reclaim_state->reclaimed_slab += pages;
1409 	__free_pages(page, order);
1410 }
1411 
1412 #define need_reserve_slab_rcu						\
1413 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1414 
1415 static void rcu_free_slab(struct rcu_head *h)
1416 {
1417 	struct page *page;
1418 
1419 	if (need_reserve_slab_rcu)
1420 		page = virt_to_head_page(h);
1421 	else
1422 		page = container_of((struct list_head *)h, struct page, lru);
1423 
1424 	__free_slab(page->slab, page);
1425 }
1426 
1427 static void free_slab(struct kmem_cache *s, struct page *page)
1428 {
1429 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1430 		struct rcu_head *head;
1431 
1432 		if (need_reserve_slab_rcu) {
1433 			int order = compound_order(page);
1434 			int offset = (PAGE_SIZE << order) - s->reserved;
1435 
1436 			VM_BUG_ON(s->reserved != sizeof(*head));
1437 			head = page_address(page) + offset;
1438 		} else {
1439 			/*
1440 			 * RCU free overloads the RCU head over the LRU
1441 			 */
1442 			head = (void *)&page->lru;
1443 		}
1444 
1445 		call_rcu(head, rcu_free_slab);
1446 	} else
1447 		__free_slab(s, page);
1448 }
1449 
1450 static void discard_slab(struct kmem_cache *s, struct page *page)
1451 {
1452 	dec_slabs_node(s, page_to_nid(page), page->objects);
1453 	free_slab(s, page);
1454 }
1455 
1456 /*
1457  * Management of partially allocated slabs.
1458  *
1459  * list_lock must be held.
1460  */
1461 static inline void add_partial(struct kmem_cache_node *n,
1462 				struct page *page, int tail)
1463 {
1464 	n->nr_partial++;
1465 	if (tail == DEACTIVATE_TO_TAIL)
1466 		list_add_tail(&page->lru, &n->partial);
1467 	else
1468 		list_add(&page->lru, &n->partial);
1469 }
1470 
1471 /*
1472  * list_lock must be held.
1473  */
1474 static inline void remove_partial(struct kmem_cache_node *n,
1475 					struct page *page)
1476 {
1477 	list_del(&page->lru);
1478 	n->nr_partial--;
1479 }
1480 
1481 /*
1482  * Remove slab from the partial list, freeze it and
1483  * return the pointer to the freelist.
1484  *
1485  * Returns a list of objects or NULL if it fails.
1486  *
1487  * Must hold list_lock since we modify the partial list.
1488  */
1489 static inline void *acquire_slab(struct kmem_cache *s,
1490 		struct kmem_cache_node *n, struct page *page,
1491 		int mode)
1492 {
1493 	void *freelist;
1494 	unsigned long counters;
1495 	struct page new;
1496 
1497 	/*
1498 	 * Zap the freelist and set the frozen bit.
1499 	 * The old freelist is the list of objects for the
1500 	 * per cpu allocation list.
1501 	 */
1502 	freelist = page->freelist;
1503 	counters = page->counters;
1504 	new.counters = counters;
1505 	if (mode) {
1506 		new.inuse = page->objects;
1507 		new.freelist = NULL;
1508 	} else {
1509 		new.freelist = freelist;
1510 	}
1511 
1512 	VM_BUG_ON(new.frozen);
1513 	new.frozen = 1;
1514 
1515 	if (!__cmpxchg_double_slab(s, page,
1516 			freelist, counters,
1517 			new.freelist, new.counters,
1518 			"acquire_slab"))
1519 		return NULL;
1520 
1521 	remove_partial(n, page);
1522 	WARN_ON(!freelist);
1523 	return freelist;
1524 }
1525 
1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1528 
1529 /*
1530  * Try to allocate a partial slab from a specific node.
1531  */
1532 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1533 				struct kmem_cache_cpu *c, gfp_t flags)
1534 {
1535 	struct page *page, *page2;
1536 	void *object = NULL;
1537 
1538 	/*
1539 	 * Racy check. If we mistakenly see no partial slabs then we
1540 	 * just allocate an empty slab. If we mistakenly try to get a
1541 	 * partial slab and there is none available then get_partials()
1542 	 * will return NULL.
1543 	 */
1544 	if (!n || !n->nr_partial)
1545 		return NULL;
1546 
1547 	spin_lock(&n->list_lock);
1548 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1549 		void *t;
1550 		int available;
1551 
1552 		if (!pfmemalloc_match(page, flags))
1553 			continue;
1554 
1555 		t = acquire_slab(s, n, page, object == NULL);
1556 		if (!t)
1557 			break;
1558 
1559 		if (!object) {
1560 			c->page = page;
1561 			stat(s, ALLOC_FROM_PARTIAL);
1562 			object = t;
1563 			available =  page->objects - page->inuse;
1564 		} else {
1565 			available = put_cpu_partial(s, page, 0);
1566 			stat(s, CPU_PARTIAL_NODE);
1567 		}
1568 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1569 			break;
1570 
1571 	}
1572 	spin_unlock(&n->list_lock);
1573 	return object;
1574 }
1575 
1576 /*
1577  * Get a page from somewhere. Search in increasing NUMA distances.
1578  */
1579 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1580 		struct kmem_cache_cpu *c)
1581 {
1582 #ifdef CONFIG_NUMA
1583 	struct zonelist *zonelist;
1584 	struct zoneref *z;
1585 	struct zone *zone;
1586 	enum zone_type high_zoneidx = gfp_zone(flags);
1587 	void *object;
1588 	unsigned int cpuset_mems_cookie;
1589 
1590 	/*
1591 	 * The defrag ratio allows a configuration of the tradeoffs between
1592 	 * inter node defragmentation and node local allocations. A lower
1593 	 * defrag_ratio increases the tendency to do local allocations
1594 	 * instead of attempting to obtain partial slabs from other nodes.
1595 	 *
1596 	 * If the defrag_ratio is set to 0 then kmalloc() always
1597 	 * returns node local objects. If the ratio is higher then kmalloc()
1598 	 * may return off node objects because partial slabs are obtained
1599 	 * from other nodes and filled up.
1600 	 *
1601 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1602 	 * defrag_ratio = 1000) then every (well almost) allocation will
1603 	 * first attempt to defrag slab caches on other nodes. This means
1604 	 * scanning over all nodes to look for partial slabs which may be
1605 	 * expensive if we do it every time we are trying to find a slab
1606 	 * with available objects.
1607 	 */
1608 	if (!s->remote_node_defrag_ratio ||
1609 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1610 		return NULL;
1611 
1612 	do {
1613 		cpuset_mems_cookie = get_mems_allowed();
1614 		zonelist = node_zonelist(slab_node(), flags);
1615 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1616 			struct kmem_cache_node *n;
1617 
1618 			n = get_node(s, zone_to_nid(zone));
1619 
1620 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1621 					n->nr_partial > s->min_partial) {
1622 				object = get_partial_node(s, n, c, flags);
1623 				if (object) {
1624 					/*
1625 					 * Return the object even if
1626 					 * put_mems_allowed indicated that
1627 					 * the cpuset mems_allowed was
1628 					 * updated in parallel. It's a
1629 					 * harmless race between the alloc
1630 					 * and the cpuset update.
1631 					 */
1632 					put_mems_allowed(cpuset_mems_cookie);
1633 					return object;
1634 				}
1635 			}
1636 		}
1637 	} while (!put_mems_allowed(cpuset_mems_cookie));
1638 #endif
1639 	return NULL;
1640 }
1641 
1642 /*
1643  * Get a partial page, lock it and return it.
1644  */
1645 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1646 		struct kmem_cache_cpu *c)
1647 {
1648 	void *object;
1649 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1650 
1651 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1652 	if (object || node != NUMA_NO_NODE)
1653 		return object;
1654 
1655 	return get_any_partial(s, flags, c);
1656 }
1657 
1658 #ifdef CONFIG_PREEMPT
1659 /*
1660  * Calculate the next globally unique transaction for disambiguiation
1661  * during cmpxchg. The transactions start with the cpu number and are then
1662  * incremented by CONFIG_NR_CPUS.
1663  */
1664 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1665 #else
1666 /*
1667  * No preemption supported therefore also no need to check for
1668  * different cpus.
1669  */
1670 #define TID_STEP 1
1671 #endif
1672 
1673 static inline unsigned long next_tid(unsigned long tid)
1674 {
1675 	return tid + TID_STEP;
1676 }
1677 
1678 static inline unsigned int tid_to_cpu(unsigned long tid)
1679 {
1680 	return tid % TID_STEP;
1681 }
1682 
1683 static inline unsigned long tid_to_event(unsigned long tid)
1684 {
1685 	return tid / TID_STEP;
1686 }
1687 
1688 static inline unsigned int init_tid(int cpu)
1689 {
1690 	return cpu;
1691 }
1692 
1693 static inline void note_cmpxchg_failure(const char *n,
1694 		const struct kmem_cache *s, unsigned long tid)
1695 {
1696 #ifdef SLUB_DEBUG_CMPXCHG
1697 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1698 
1699 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1700 
1701 #ifdef CONFIG_PREEMPT
1702 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1703 		printk("due to cpu change %d -> %d\n",
1704 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1705 	else
1706 #endif
1707 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1708 		printk("due to cpu running other code. Event %ld->%ld\n",
1709 			tid_to_event(tid), tid_to_event(actual_tid));
1710 	else
1711 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1712 			actual_tid, tid, next_tid(tid));
1713 #endif
1714 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1715 }
1716 
1717 void init_kmem_cache_cpus(struct kmem_cache *s)
1718 {
1719 	int cpu;
1720 
1721 	for_each_possible_cpu(cpu)
1722 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1723 }
1724 
1725 /*
1726  * Remove the cpu slab
1727  */
1728 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1729 {
1730 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1731 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1732 	int lock = 0;
1733 	enum slab_modes l = M_NONE, m = M_NONE;
1734 	void *nextfree;
1735 	int tail = DEACTIVATE_TO_HEAD;
1736 	struct page new;
1737 	struct page old;
1738 
1739 	if (page->freelist) {
1740 		stat(s, DEACTIVATE_REMOTE_FREES);
1741 		tail = DEACTIVATE_TO_TAIL;
1742 	}
1743 
1744 	/*
1745 	 * Stage one: Free all available per cpu objects back
1746 	 * to the page freelist while it is still frozen. Leave the
1747 	 * last one.
1748 	 *
1749 	 * There is no need to take the list->lock because the page
1750 	 * is still frozen.
1751 	 */
1752 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1753 		void *prior;
1754 		unsigned long counters;
1755 
1756 		do {
1757 			prior = page->freelist;
1758 			counters = page->counters;
1759 			set_freepointer(s, freelist, prior);
1760 			new.counters = counters;
1761 			new.inuse--;
1762 			VM_BUG_ON(!new.frozen);
1763 
1764 		} while (!__cmpxchg_double_slab(s, page,
1765 			prior, counters,
1766 			freelist, new.counters,
1767 			"drain percpu freelist"));
1768 
1769 		freelist = nextfree;
1770 	}
1771 
1772 	/*
1773 	 * Stage two: Ensure that the page is unfrozen while the
1774 	 * list presence reflects the actual number of objects
1775 	 * during unfreeze.
1776 	 *
1777 	 * We setup the list membership and then perform a cmpxchg
1778 	 * with the count. If there is a mismatch then the page
1779 	 * is not unfrozen but the page is on the wrong list.
1780 	 *
1781 	 * Then we restart the process which may have to remove
1782 	 * the page from the list that we just put it on again
1783 	 * because the number of objects in the slab may have
1784 	 * changed.
1785 	 */
1786 redo:
1787 
1788 	old.freelist = page->freelist;
1789 	old.counters = page->counters;
1790 	VM_BUG_ON(!old.frozen);
1791 
1792 	/* Determine target state of the slab */
1793 	new.counters = old.counters;
1794 	if (freelist) {
1795 		new.inuse--;
1796 		set_freepointer(s, freelist, old.freelist);
1797 		new.freelist = freelist;
1798 	} else
1799 		new.freelist = old.freelist;
1800 
1801 	new.frozen = 0;
1802 
1803 	if (!new.inuse && n->nr_partial > s->min_partial)
1804 		m = M_FREE;
1805 	else if (new.freelist) {
1806 		m = M_PARTIAL;
1807 		if (!lock) {
1808 			lock = 1;
1809 			/*
1810 			 * Taking the spinlock removes the possiblity
1811 			 * that acquire_slab() will see a slab page that
1812 			 * is frozen
1813 			 */
1814 			spin_lock(&n->list_lock);
1815 		}
1816 	} else {
1817 		m = M_FULL;
1818 		if (kmem_cache_debug(s) && !lock) {
1819 			lock = 1;
1820 			/*
1821 			 * This also ensures that the scanning of full
1822 			 * slabs from diagnostic functions will not see
1823 			 * any frozen slabs.
1824 			 */
1825 			spin_lock(&n->list_lock);
1826 		}
1827 	}
1828 
1829 	if (l != m) {
1830 
1831 		if (l == M_PARTIAL)
1832 
1833 			remove_partial(n, page);
1834 
1835 		else if (l == M_FULL)
1836 
1837 			remove_full(s, page);
1838 
1839 		if (m == M_PARTIAL) {
1840 
1841 			add_partial(n, page, tail);
1842 			stat(s, tail);
1843 
1844 		} else if (m == M_FULL) {
1845 
1846 			stat(s, DEACTIVATE_FULL);
1847 			add_full(s, n, page);
1848 
1849 		}
1850 	}
1851 
1852 	l = m;
1853 	if (!__cmpxchg_double_slab(s, page,
1854 				old.freelist, old.counters,
1855 				new.freelist, new.counters,
1856 				"unfreezing slab"))
1857 		goto redo;
1858 
1859 	if (lock)
1860 		spin_unlock(&n->list_lock);
1861 
1862 	if (m == M_FREE) {
1863 		stat(s, DEACTIVATE_EMPTY);
1864 		discard_slab(s, page);
1865 		stat(s, FREE_SLAB);
1866 	}
1867 }
1868 
1869 /*
1870  * Unfreeze all the cpu partial slabs.
1871  *
1872  * This function must be called with interrupt disabled.
1873  */
1874 static void unfreeze_partials(struct kmem_cache *s)
1875 {
1876 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1877 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1878 	struct page *page, *discard_page = NULL;
1879 
1880 	while ((page = c->partial)) {
1881 		struct page new;
1882 		struct page old;
1883 
1884 		c->partial = page->next;
1885 
1886 		n2 = get_node(s, page_to_nid(page));
1887 		if (n != n2) {
1888 			if (n)
1889 				spin_unlock(&n->list_lock);
1890 
1891 			n = n2;
1892 			spin_lock(&n->list_lock);
1893 		}
1894 
1895 		do {
1896 
1897 			old.freelist = page->freelist;
1898 			old.counters = page->counters;
1899 			VM_BUG_ON(!old.frozen);
1900 
1901 			new.counters = old.counters;
1902 			new.freelist = old.freelist;
1903 
1904 			new.frozen = 0;
1905 
1906 		} while (!__cmpxchg_double_slab(s, page,
1907 				old.freelist, old.counters,
1908 				new.freelist, new.counters,
1909 				"unfreezing slab"));
1910 
1911 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1912 			page->next = discard_page;
1913 			discard_page = page;
1914 		} else {
1915 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1916 			stat(s, FREE_ADD_PARTIAL);
1917 		}
1918 	}
1919 
1920 	if (n)
1921 		spin_unlock(&n->list_lock);
1922 
1923 	while (discard_page) {
1924 		page = discard_page;
1925 		discard_page = discard_page->next;
1926 
1927 		stat(s, DEACTIVATE_EMPTY);
1928 		discard_slab(s, page);
1929 		stat(s, FREE_SLAB);
1930 	}
1931 }
1932 
1933 /*
1934  * Put a page that was just frozen (in __slab_free) into a partial page
1935  * slot if available. This is done without interrupts disabled and without
1936  * preemption disabled. The cmpxchg is racy and may put the partial page
1937  * onto a random cpus partial slot.
1938  *
1939  * If we did not find a slot then simply move all the partials to the
1940  * per node partial list.
1941  */
1942 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1943 {
1944 	struct page *oldpage;
1945 	int pages;
1946 	int pobjects;
1947 
1948 	do {
1949 		pages = 0;
1950 		pobjects = 0;
1951 		oldpage = this_cpu_read(s->cpu_slab->partial);
1952 
1953 		if (oldpage) {
1954 			pobjects = oldpage->pobjects;
1955 			pages = oldpage->pages;
1956 			if (drain && pobjects > s->cpu_partial) {
1957 				unsigned long flags;
1958 				/*
1959 				 * partial array is full. Move the existing
1960 				 * set to the per node partial list.
1961 				 */
1962 				local_irq_save(flags);
1963 				unfreeze_partials(s);
1964 				local_irq_restore(flags);
1965 				pobjects = 0;
1966 				pages = 0;
1967 				stat(s, CPU_PARTIAL_DRAIN);
1968 			}
1969 		}
1970 
1971 		pages++;
1972 		pobjects += page->objects - page->inuse;
1973 
1974 		page->pages = pages;
1975 		page->pobjects = pobjects;
1976 		page->next = oldpage;
1977 
1978 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1979 	return pobjects;
1980 }
1981 
1982 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1983 {
1984 	stat(s, CPUSLAB_FLUSH);
1985 	deactivate_slab(s, c->page, c->freelist);
1986 
1987 	c->tid = next_tid(c->tid);
1988 	c->page = NULL;
1989 	c->freelist = NULL;
1990 }
1991 
1992 /*
1993  * Flush cpu slab.
1994  *
1995  * Called from IPI handler with interrupts disabled.
1996  */
1997 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1998 {
1999 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2000 
2001 	if (likely(c)) {
2002 		if (c->page)
2003 			flush_slab(s, c);
2004 
2005 		unfreeze_partials(s);
2006 	}
2007 }
2008 
2009 static void flush_cpu_slab(void *d)
2010 {
2011 	struct kmem_cache *s = d;
2012 
2013 	__flush_cpu_slab(s, smp_processor_id());
2014 }
2015 
2016 static bool has_cpu_slab(int cpu, void *info)
2017 {
2018 	struct kmem_cache *s = info;
2019 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2020 
2021 	return c->page || c->partial;
2022 }
2023 
2024 static void flush_all(struct kmem_cache *s)
2025 {
2026 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2027 }
2028 
2029 /*
2030  * Check if the objects in a per cpu structure fit numa
2031  * locality expectations.
2032  */
2033 static inline int node_match(struct page *page, int node)
2034 {
2035 #ifdef CONFIG_NUMA
2036 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2037 		return 0;
2038 #endif
2039 	return 1;
2040 }
2041 
2042 static int count_free(struct page *page)
2043 {
2044 	return page->objects - page->inuse;
2045 }
2046 
2047 static unsigned long count_partial(struct kmem_cache_node *n,
2048 					int (*get_count)(struct page *))
2049 {
2050 	unsigned long flags;
2051 	unsigned long x = 0;
2052 	struct page *page;
2053 
2054 	spin_lock_irqsave(&n->list_lock, flags);
2055 	list_for_each_entry(page, &n->partial, lru)
2056 		x += get_count(page);
2057 	spin_unlock_irqrestore(&n->list_lock, flags);
2058 	return x;
2059 }
2060 
2061 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2062 {
2063 #ifdef CONFIG_SLUB_DEBUG
2064 	return atomic_long_read(&n->total_objects);
2065 #else
2066 	return 0;
2067 #endif
2068 }
2069 
2070 static noinline void
2071 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2072 {
2073 	int node;
2074 
2075 	printk(KERN_WARNING
2076 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2077 		nid, gfpflags);
2078 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2079 		"default order: %d, min order: %d\n", s->name, s->object_size,
2080 		s->size, oo_order(s->oo), oo_order(s->min));
2081 
2082 	if (oo_order(s->min) > get_order(s->object_size))
2083 		printk(KERN_WARNING "  %s debugging increased min order, use "
2084 		       "slub_debug=O to disable.\n", s->name);
2085 
2086 	for_each_online_node(node) {
2087 		struct kmem_cache_node *n = get_node(s, node);
2088 		unsigned long nr_slabs;
2089 		unsigned long nr_objs;
2090 		unsigned long nr_free;
2091 
2092 		if (!n)
2093 			continue;
2094 
2095 		nr_free  = count_partial(n, count_free);
2096 		nr_slabs = node_nr_slabs(n);
2097 		nr_objs  = node_nr_objs(n);
2098 
2099 		printk(KERN_WARNING
2100 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2101 			node, nr_slabs, nr_objs, nr_free);
2102 	}
2103 }
2104 
2105 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2106 			int node, struct kmem_cache_cpu **pc)
2107 {
2108 	void *freelist;
2109 	struct kmem_cache_cpu *c = *pc;
2110 	struct page *page;
2111 
2112 	freelist = get_partial(s, flags, node, c);
2113 
2114 	if (freelist)
2115 		return freelist;
2116 
2117 	page = new_slab(s, flags, node);
2118 	if (page) {
2119 		c = __this_cpu_ptr(s->cpu_slab);
2120 		if (c->page)
2121 			flush_slab(s, c);
2122 
2123 		/*
2124 		 * No other reference to the page yet so we can
2125 		 * muck around with it freely without cmpxchg
2126 		 */
2127 		freelist = page->freelist;
2128 		page->freelist = NULL;
2129 
2130 		stat(s, ALLOC_SLAB);
2131 		c->page = page;
2132 		*pc = c;
2133 	} else
2134 		freelist = NULL;
2135 
2136 	return freelist;
2137 }
2138 
2139 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2140 {
2141 	if (unlikely(PageSlabPfmemalloc(page)))
2142 		return gfp_pfmemalloc_allowed(gfpflags);
2143 
2144 	return true;
2145 }
2146 
2147 /*
2148  * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2149  * or deactivate the page.
2150  *
2151  * The page is still frozen if the return value is not NULL.
2152  *
2153  * If this function returns NULL then the page has been unfrozen.
2154  *
2155  * This function must be called with interrupt disabled.
2156  */
2157 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2158 {
2159 	struct page new;
2160 	unsigned long counters;
2161 	void *freelist;
2162 
2163 	do {
2164 		freelist = page->freelist;
2165 		counters = page->counters;
2166 
2167 		new.counters = counters;
2168 		VM_BUG_ON(!new.frozen);
2169 
2170 		new.inuse = page->objects;
2171 		new.frozen = freelist != NULL;
2172 
2173 	} while (!__cmpxchg_double_slab(s, page,
2174 		freelist, counters,
2175 		NULL, new.counters,
2176 		"get_freelist"));
2177 
2178 	return freelist;
2179 }
2180 
2181 /*
2182  * Slow path. The lockless freelist is empty or we need to perform
2183  * debugging duties.
2184  *
2185  * Processing is still very fast if new objects have been freed to the
2186  * regular freelist. In that case we simply take over the regular freelist
2187  * as the lockless freelist and zap the regular freelist.
2188  *
2189  * If that is not working then we fall back to the partial lists. We take the
2190  * first element of the freelist as the object to allocate now and move the
2191  * rest of the freelist to the lockless freelist.
2192  *
2193  * And if we were unable to get a new slab from the partial slab lists then
2194  * we need to allocate a new slab. This is the slowest path since it involves
2195  * a call to the page allocator and the setup of a new slab.
2196  */
2197 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2198 			  unsigned long addr, struct kmem_cache_cpu *c)
2199 {
2200 	void *freelist;
2201 	struct page *page;
2202 	unsigned long flags;
2203 
2204 	local_irq_save(flags);
2205 #ifdef CONFIG_PREEMPT
2206 	/*
2207 	 * We may have been preempted and rescheduled on a different
2208 	 * cpu before disabling interrupts. Need to reload cpu area
2209 	 * pointer.
2210 	 */
2211 	c = this_cpu_ptr(s->cpu_slab);
2212 #endif
2213 
2214 	page = c->page;
2215 	if (!page)
2216 		goto new_slab;
2217 redo:
2218 
2219 	if (unlikely(!node_match(page, node))) {
2220 		stat(s, ALLOC_NODE_MISMATCH);
2221 		deactivate_slab(s, page, c->freelist);
2222 		c->page = NULL;
2223 		c->freelist = NULL;
2224 		goto new_slab;
2225 	}
2226 
2227 	/*
2228 	 * By rights, we should be searching for a slab page that was
2229 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2230 	 * information when the page leaves the per-cpu allocator
2231 	 */
2232 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2233 		deactivate_slab(s, page, c->freelist);
2234 		c->page = NULL;
2235 		c->freelist = NULL;
2236 		goto new_slab;
2237 	}
2238 
2239 	/* must check again c->freelist in case of cpu migration or IRQ */
2240 	freelist = c->freelist;
2241 	if (freelist)
2242 		goto load_freelist;
2243 
2244 	stat(s, ALLOC_SLOWPATH);
2245 
2246 	freelist = get_freelist(s, page);
2247 
2248 	if (!freelist) {
2249 		c->page = NULL;
2250 		stat(s, DEACTIVATE_BYPASS);
2251 		goto new_slab;
2252 	}
2253 
2254 	stat(s, ALLOC_REFILL);
2255 
2256 load_freelist:
2257 	/*
2258 	 * freelist is pointing to the list of objects to be used.
2259 	 * page is pointing to the page from which the objects are obtained.
2260 	 * That page must be frozen for per cpu allocations to work.
2261 	 */
2262 	VM_BUG_ON(!c->page->frozen);
2263 	c->freelist = get_freepointer(s, freelist);
2264 	c->tid = next_tid(c->tid);
2265 	local_irq_restore(flags);
2266 	return freelist;
2267 
2268 new_slab:
2269 
2270 	if (c->partial) {
2271 		page = c->page = c->partial;
2272 		c->partial = page->next;
2273 		stat(s, CPU_PARTIAL_ALLOC);
2274 		c->freelist = NULL;
2275 		goto redo;
2276 	}
2277 
2278 	freelist = new_slab_objects(s, gfpflags, node, &c);
2279 
2280 	if (unlikely(!freelist)) {
2281 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2282 			slab_out_of_memory(s, gfpflags, node);
2283 
2284 		local_irq_restore(flags);
2285 		return NULL;
2286 	}
2287 
2288 	page = c->page;
2289 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2290 		goto load_freelist;
2291 
2292 	/* Only entered in the debug case */
2293 	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2294 		goto new_slab;	/* Slab failed checks. Next slab needed */
2295 
2296 	deactivate_slab(s, page, get_freepointer(s, freelist));
2297 	c->page = NULL;
2298 	c->freelist = NULL;
2299 	local_irq_restore(flags);
2300 	return freelist;
2301 }
2302 
2303 /*
2304  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2305  * have the fastpath folded into their functions. So no function call
2306  * overhead for requests that can be satisfied on the fastpath.
2307  *
2308  * The fastpath works by first checking if the lockless freelist can be used.
2309  * If not then __slab_alloc is called for slow processing.
2310  *
2311  * Otherwise we can simply pick the next object from the lockless free list.
2312  */
2313 static __always_inline void *slab_alloc(struct kmem_cache *s,
2314 		gfp_t gfpflags, int node, unsigned long addr)
2315 {
2316 	void **object;
2317 	struct kmem_cache_cpu *c;
2318 	struct page *page;
2319 	unsigned long tid;
2320 
2321 	if (slab_pre_alloc_hook(s, gfpflags))
2322 		return NULL;
2323 
2324 redo:
2325 
2326 	/*
2327 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2328 	 * enabled. We may switch back and forth between cpus while
2329 	 * reading from one cpu area. That does not matter as long
2330 	 * as we end up on the original cpu again when doing the cmpxchg.
2331 	 */
2332 	c = __this_cpu_ptr(s->cpu_slab);
2333 
2334 	/*
2335 	 * The transaction ids are globally unique per cpu and per operation on
2336 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2337 	 * occurs on the right processor and that there was no operation on the
2338 	 * linked list in between.
2339 	 */
2340 	tid = c->tid;
2341 	barrier();
2342 
2343 	object = c->freelist;
2344 	page = c->page;
2345 	if (unlikely(!object || !node_match(page, node)))
2346 		object = __slab_alloc(s, gfpflags, node, addr, c);
2347 
2348 	else {
2349 		void *next_object = get_freepointer_safe(s, object);
2350 
2351 		/*
2352 		 * The cmpxchg will only match if there was no additional
2353 		 * operation and if we are on the right processor.
2354 		 *
2355 		 * The cmpxchg does the following atomically (without lock semantics!)
2356 		 * 1. Relocate first pointer to the current per cpu area.
2357 		 * 2. Verify that tid and freelist have not been changed
2358 		 * 3. If they were not changed replace tid and freelist
2359 		 *
2360 		 * Since this is without lock semantics the protection is only against
2361 		 * code executing on this cpu *not* from access by other cpus.
2362 		 */
2363 		if (unlikely(!this_cpu_cmpxchg_double(
2364 				s->cpu_slab->freelist, s->cpu_slab->tid,
2365 				object, tid,
2366 				next_object, next_tid(tid)))) {
2367 
2368 			note_cmpxchg_failure("slab_alloc", s, tid);
2369 			goto redo;
2370 		}
2371 		prefetch_freepointer(s, next_object);
2372 		stat(s, ALLOC_FASTPATH);
2373 	}
2374 
2375 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2376 		memset(object, 0, s->object_size);
2377 
2378 	slab_post_alloc_hook(s, gfpflags, object);
2379 
2380 	return object;
2381 }
2382 
2383 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2384 {
2385 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2386 
2387 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2388 
2389 	return ret;
2390 }
2391 EXPORT_SYMBOL(kmem_cache_alloc);
2392 
2393 #ifdef CONFIG_TRACING
2394 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2395 {
2396 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2397 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2398 	return ret;
2399 }
2400 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2401 
2402 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2403 {
2404 	void *ret = kmalloc_order(size, flags, order);
2405 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2406 	return ret;
2407 }
2408 EXPORT_SYMBOL(kmalloc_order_trace);
2409 #endif
2410 
2411 #ifdef CONFIG_NUMA
2412 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2413 {
2414 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2415 
2416 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2417 				    s->object_size, s->size, gfpflags, node);
2418 
2419 	return ret;
2420 }
2421 EXPORT_SYMBOL(kmem_cache_alloc_node);
2422 
2423 #ifdef CONFIG_TRACING
2424 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2425 				    gfp_t gfpflags,
2426 				    int node, size_t size)
2427 {
2428 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2429 
2430 	trace_kmalloc_node(_RET_IP_, ret,
2431 			   size, s->size, gfpflags, node);
2432 	return ret;
2433 }
2434 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2435 #endif
2436 #endif
2437 
2438 /*
2439  * Slow patch handling. This may still be called frequently since objects
2440  * have a longer lifetime than the cpu slabs in most processing loads.
2441  *
2442  * So we still attempt to reduce cache line usage. Just take the slab
2443  * lock and free the item. If there is no additional partial page
2444  * handling required then we can return immediately.
2445  */
2446 static void __slab_free(struct kmem_cache *s, struct page *page,
2447 			void *x, unsigned long addr)
2448 {
2449 	void *prior;
2450 	void **object = (void *)x;
2451 	int was_frozen;
2452 	int inuse;
2453 	struct page new;
2454 	unsigned long counters;
2455 	struct kmem_cache_node *n = NULL;
2456 	unsigned long uninitialized_var(flags);
2457 
2458 	stat(s, FREE_SLOWPATH);
2459 
2460 	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2461 		return;
2462 
2463 	do {
2464 		prior = page->freelist;
2465 		counters = page->counters;
2466 		set_freepointer(s, object, prior);
2467 		new.counters = counters;
2468 		was_frozen = new.frozen;
2469 		new.inuse--;
2470 		if ((!new.inuse || !prior) && !was_frozen && !n) {
2471 
2472 			if (!kmem_cache_debug(s) && !prior)
2473 
2474 				/*
2475 				 * Slab was on no list before and will be partially empty
2476 				 * We can defer the list move and instead freeze it.
2477 				 */
2478 				new.frozen = 1;
2479 
2480 			else { /* Needs to be taken off a list */
2481 
2482 	                        n = get_node(s, page_to_nid(page));
2483 				/*
2484 				 * Speculatively acquire the list_lock.
2485 				 * If the cmpxchg does not succeed then we may
2486 				 * drop the list_lock without any processing.
2487 				 *
2488 				 * Otherwise the list_lock will synchronize with
2489 				 * other processors updating the list of slabs.
2490 				 */
2491 				spin_lock_irqsave(&n->list_lock, flags);
2492 
2493 			}
2494 		}
2495 		inuse = new.inuse;
2496 
2497 	} while (!cmpxchg_double_slab(s, page,
2498 		prior, counters,
2499 		object, new.counters,
2500 		"__slab_free"));
2501 
2502 	if (likely(!n)) {
2503 
2504 		/*
2505 		 * If we just froze the page then put it onto the
2506 		 * per cpu partial list.
2507 		 */
2508 		if (new.frozen && !was_frozen) {
2509 			put_cpu_partial(s, page, 1);
2510 			stat(s, CPU_PARTIAL_FREE);
2511 		}
2512 		/*
2513 		 * The list lock was not taken therefore no list
2514 		 * activity can be necessary.
2515 		 */
2516                 if (was_frozen)
2517                         stat(s, FREE_FROZEN);
2518                 return;
2519         }
2520 
2521 	/*
2522 	 * was_frozen may have been set after we acquired the list_lock in
2523 	 * an earlier loop. So we need to check it here again.
2524 	 */
2525 	if (was_frozen)
2526 		stat(s, FREE_FROZEN);
2527 	else {
2528 		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2529                         goto slab_empty;
2530 
2531 		/*
2532 		 * Objects left in the slab. If it was not on the partial list before
2533 		 * then add it.
2534 		 */
2535 		if (unlikely(!prior)) {
2536 			remove_full(s, page);
2537 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2538 			stat(s, FREE_ADD_PARTIAL);
2539 		}
2540 	}
2541 	spin_unlock_irqrestore(&n->list_lock, flags);
2542 	return;
2543 
2544 slab_empty:
2545 	if (prior) {
2546 		/*
2547 		 * Slab on the partial list.
2548 		 */
2549 		remove_partial(n, page);
2550 		stat(s, FREE_REMOVE_PARTIAL);
2551 	} else
2552 		/* Slab must be on the full list */
2553 		remove_full(s, page);
2554 
2555 	spin_unlock_irqrestore(&n->list_lock, flags);
2556 	stat(s, FREE_SLAB);
2557 	discard_slab(s, page);
2558 }
2559 
2560 /*
2561  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2562  * can perform fastpath freeing without additional function calls.
2563  *
2564  * The fastpath is only possible if we are freeing to the current cpu slab
2565  * of this processor. This typically the case if we have just allocated
2566  * the item before.
2567  *
2568  * If fastpath is not possible then fall back to __slab_free where we deal
2569  * with all sorts of special processing.
2570  */
2571 static __always_inline void slab_free(struct kmem_cache *s,
2572 			struct page *page, void *x, unsigned long addr)
2573 {
2574 	void **object = (void *)x;
2575 	struct kmem_cache_cpu *c;
2576 	unsigned long tid;
2577 
2578 	slab_free_hook(s, x);
2579 
2580 redo:
2581 	/*
2582 	 * Determine the currently cpus per cpu slab.
2583 	 * The cpu may change afterward. However that does not matter since
2584 	 * data is retrieved via this pointer. If we are on the same cpu
2585 	 * during the cmpxchg then the free will succedd.
2586 	 */
2587 	c = __this_cpu_ptr(s->cpu_slab);
2588 
2589 	tid = c->tid;
2590 	barrier();
2591 
2592 	if (likely(page == c->page)) {
2593 		set_freepointer(s, object, c->freelist);
2594 
2595 		if (unlikely(!this_cpu_cmpxchg_double(
2596 				s->cpu_slab->freelist, s->cpu_slab->tid,
2597 				c->freelist, tid,
2598 				object, next_tid(tid)))) {
2599 
2600 			note_cmpxchg_failure("slab_free", s, tid);
2601 			goto redo;
2602 		}
2603 		stat(s, FREE_FASTPATH);
2604 	} else
2605 		__slab_free(s, page, x, addr);
2606 
2607 }
2608 
2609 void kmem_cache_free(struct kmem_cache *s, void *x)
2610 {
2611 	struct page *page;
2612 
2613 	page = virt_to_head_page(x);
2614 
2615 	slab_free(s, page, x, _RET_IP_);
2616 
2617 	trace_kmem_cache_free(_RET_IP_, x);
2618 }
2619 EXPORT_SYMBOL(kmem_cache_free);
2620 
2621 /*
2622  * Object placement in a slab is made very easy because we always start at
2623  * offset 0. If we tune the size of the object to the alignment then we can
2624  * get the required alignment by putting one properly sized object after
2625  * another.
2626  *
2627  * Notice that the allocation order determines the sizes of the per cpu
2628  * caches. Each processor has always one slab available for allocations.
2629  * Increasing the allocation order reduces the number of times that slabs
2630  * must be moved on and off the partial lists and is therefore a factor in
2631  * locking overhead.
2632  */
2633 
2634 /*
2635  * Mininum / Maximum order of slab pages. This influences locking overhead
2636  * and slab fragmentation. A higher order reduces the number of partial slabs
2637  * and increases the number of allocations possible without having to
2638  * take the list_lock.
2639  */
2640 static int slub_min_order;
2641 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2642 static int slub_min_objects;
2643 
2644 /*
2645  * Merge control. If this is set then no merging of slab caches will occur.
2646  * (Could be removed. This was introduced to pacify the merge skeptics.)
2647  */
2648 static int slub_nomerge;
2649 
2650 /*
2651  * Calculate the order of allocation given an slab object size.
2652  *
2653  * The order of allocation has significant impact on performance and other
2654  * system components. Generally order 0 allocations should be preferred since
2655  * order 0 does not cause fragmentation in the page allocator. Larger objects
2656  * be problematic to put into order 0 slabs because there may be too much
2657  * unused space left. We go to a higher order if more than 1/16th of the slab
2658  * would be wasted.
2659  *
2660  * In order to reach satisfactory performance we must ensure that a minimum
2661  * number of objects is in one slab. Otherwise we may generate too much
2662  * activity on the partial lists which requires taking the list_lock. This is
2663  * less a concern for large slabs though which are rarely used.
2664  *
2665  * slub_max_order specifies the order where we begin to stop considering the
2666  * number of objects in a slab as critical. If we reach slub_max_order then
2667  * we try to keep the page order as low as possible. So we accept more waste
2668  * of space in favor of a small page order.
2669  *
2670  * Higher order allocations also allow the placement of more objects in a
2671  * slab and thereby reduce object handling overhead. If the user has
2672  * requested a higher mininum order then we start with that one instead of
2673  * the smallest order which will fit the object.
2674  */
2675 static inline int slab_order(int size, int min_objects,
2676 				int max_order, int fract_leftover, int reserved)
2677 {
2678 	int order;
2679 	int rem;
2680 	int min_order = slub_min_order;
2681 
2682 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2683 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2684 
2685 	for (order = max(min_order,
2686 				fls(min_objects * size - 1) - PAGE_SHIFT);
2687 			order <= max_order; order++) {
2688 
2689 		unsigned long slab_size = PAGE_SIZE << order;
2690 
2691 		if (slab_size < min_objects * size + reserved)
2692 			continue;
2693 
2694 		rem = (slab_size - reserved) % size;
2695 
2696 		if (rem <= slab_size / fract_leftover)
2697 			break;
2698 
2699 	}
2700 
2701 	return order;
2702 }
2703 
2704 static inline int calculate_order(int size, int reserved)
2705 {
2706 	int order;
2707 	int min_objects;
2708 	int fraction;
2709 	int max_objects;
2710 
2711 	/*
2712 	 * Attempt to find best configuration for a slab. This
2713 	 * works by first attempting to generate a layout with
2714 	 * the best configuration and backing off gradually.
2715 	 *
2716 	 * First we reduce the acceptable waste in a slab. Then
2717 	 * we reduce the minimum objects required in a slab.
2718 	 */
2719 	min_objects = slub_min_objects;
2720 	if (!min_objects)
2721 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2722 	max_objects = order_objects(slub_max_order, size, reserved);
2723 	min_objects = min(min_objects, max_objects);
2724 
2725 	while (min_objects > 1) {
2726 		fraction = 16;
2727 		while (fraction >= 4) {
2728 			order = slab_order(size, min_objects,
2729 					slub_max_order, fraction, reserved);
2730 			if (order <= slub_max_order)
2731 				return order;
2732 			fraction /= 2;
2733 		}
2734 		min_objects--;
2735 	}
2736 
2737 	/*
2738 	 * We were unable to place multiple objects in a slab. Now
2739 	 * lets see if we can place a single object there.
2740 	 */
2741 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2742 	if (order <= slub_max_order)
2743 		return order;
2744 
2745 	/*
2746 	 * Doh this slab cannot be placed using slub_max_order.
2747 	 */
2748 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2749 	if (order < MAX_ORDER)
2750 		return order;
2751 	return -ENOSYS;
2752 }
2753 
2754 /*
2755  * Figure out what the alignment of the objects will be.
2756  */
2757 static unsigned long calculate_alignment(unsigned long flags,
2758 		unsigned long align, unsigned long size)
2759 {
2760 	/*
2761 	 * If the user wants hardware cache aligned objects then follow that
2762 	 * suggestion if the object is sufficiently large.
2763 	 *
2764 	 * The hardware cache alignment cannot override the specified
2765 	 * alignment though. If that is greater then use it.
2766 	 */
2767 	if (flags & SLAB_HWCACHE_ALIGN) {
2768 		unsigned long ralign = cache_line_size();
2769 		while (size <= ralign / 2)
2770 			ralign /= 2;
2771 		align = max(align, ralign);
2772 	}
2773 
2774 	if (align < ARCH_SLAB_MINALIGN)
2775 		align = ARCH_SLAB_MINALIGN;
2776 
2777 	return ALIGN(align, sizeof(void *));
2778 }
2779 
2780 static void
2781 init_kmem_cache_node(struct kmem_cache_node *n)
2782 {
2783 	n->nr_partial = 0;
2784 	spin_lock_init(&n->list_lock);
2785 	INIT_LIST_HEAD(&n->partial);
2786 #ifdef CONFIG_SLUB_DEBUG
2787 	atomic_long_set(&n->nr_slabs, 0);
2788 	atomic_long_set(&n->total_objects, 0);
2789 	INIT_LIST_HEAD(&n->full);
2790 #endif
2791 }
2792 
2793 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2794 {
2795 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2796 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2797 
2798 	/*
2799 	 * Must align to double word boundary for the double cmpxchg
2800 	 * instructions to work; see __pcpu_double_call_return_bool().
2801 	 */
2802 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2803 				     2 * sizeof(void *));
2804 
2805 	if (!s->cpu_slab)
2806 		return 0;
2807 
2808 	init_kmem_cache_cpus(s);
2809 
2810 	return 1;
2811 }
2812 
2813 static struct kmem_cache *kmem_cache_node;
2814 
2815 /*
2816  * No kmalloc_node yet so do it by hand. We know that this is the first
2817  * slab on the node for this slabcache. There are no concurrent accesses
2818  * possible.
2819  *
2820  * Note that this function only works on the kmalloc_node_cache
2821  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2822  * memory on a fresh node that has no slab structures yet.
2823  */
2824 static void early_kmem_cache_node_alloc(int node)
2825 {
2826 	struct page *page;
2827 	struct kmem_cache_node *n;
2828 
2829 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2830 
2831 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2832 
2833 	BUG_ON(!page);
2834 	if (page_to_nid(page) != node) {
2835 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2836 				"node %d\n", node);
2837 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2838 				"in order to be able to continue\n");
2839 	}
2840 
2841 	n = page->freelist;
2842 	BUG_ON(!n);
2843 	page->freelist = get_freepointer(kmem_cache_node, n);
2844 	page->inuse = 1;
2845 	page->frozen = 0;
2846 	kmem_cache_node->node[node] = n;
2847 #ifdef CONFIG_SLUB_DEBUG
2848 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2849 	init_tracking(kmem_cache_node, n);
2850 #endif
2851 	init_kmem_cache_node(n);
2852 	inc_slabs_node(kmem_cache_node, node, page->objects);
2853 
2854 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2855 }
2856 
2857 static void free_kmem_cache_nodes(struct kmem_cache *s)
2858 {
2859 	int node;
2860 
2861 	for_each_node_state(node, N_NORMAL_MEMORY) {
2862 		struct kmem_cache_node *n = s->node[node];
2863 
2864 		if (n)
2865 			kmem_cache_free(kmem_cache_node, n);
2866 
2867 		s->node[node] = NULL;
2868 	}
2869 }
2870 
2871 static int init_kmem_cache_nodes(struct kmem_cache *s)
2872 {
2873 	int node;
2874 
2875 	for_each_node_state(node, N_NORMAL_MEMORY) {
2876 		struct kmem_cache_node *n;
2877 
2878 		if (slab_state == DOWN) {
2879 			early_kmem_cache_node_alloc(node);
2880 			continue;
2881 		}
2882 		n = kmem_cache_alloc_node(kmem_cache_node,
2883 						GFP_KERNEL, node);
2884 
2885 		if (!n) {
2886 			free_kmem_cache_nodes(s);
2887 			return 0;
2888 		}
2889 
2890 		s->node[node] = n;
2891 		init_kmem_cache_node(n);
2892 	}
2893 	return 1;
2894 }
2895 
2896 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2897 {
2898 	if (min < MIN_PARTIAL)
2899 		min = MIN_PARTIAL;
2900 	else if (min > MAX_PARTIAL)
2901 		min = MAX_PARTIAL;
2902 	s->min_partial = min;
2903 }
2904 
2905 /*
2906  * calculate_sizes() determines the order and the distribution of data within
2907  * a slab object.
2908  */
2909 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2910 {
2911 	unsigned long flags = s->flags;
2912 	unsigned long size = s->object_size;
2913 	unsigned long align = s->align;
2914 	int order;
2915 
2916 	/*
2917 	 * Round up object size to the next word boundary. We can only
2918 	 * place the free pointer at word boundaries and this determines
2919 	 * the possible location of the free pointer.
2920 	 */
2921 	size = ALIGN(size, sizeof(void *));
2922 
2923 #ifdef CONFIG_SLUB_DEBUG
2924 	/*
2925 	 * Determine if we can poison the object itself. If the user of
2926 	 * the slab may touch the object after free or before allocation
2927 	 * then we should never poison the object itself.
2928 	 */
2929 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2930 			!s->ctor)
2931 		s->flags |= __OBJECT_POISON;
2932 	else
2933 		s->flags &= ~__OBJECT_POISON;
2934 
2935 
2936 	/*
2937 	 * If we are Redzoning then check if there is some space between the
2938 	 * end of the object and the free pointer. If not then add an
2939 	 * additional word to have some bytes to store Redzone information.
2940 	 */
2941 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2942 		size += sizeof(void *);
2943 #endif
2944 
2945 	/*
2946 	 * With that we have determined the number of bytes in actual use
2947 	 * by the object. This is the potential offset to the free pointer.
2948 	 */
2949 	s->inuse = size;
2950 
2951 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2952 		s->ctor)) {
2953 		/*
2954 		 * Relocate free pointer after the object if it is not
2955 		 * permitted to overwrite the first word of the object on
2956 		 * kmem_cache_free.
2957 		 *
2958 		 * This is the case if we do RCU, have a constructor or
2959 		 * destructor or are poisoning the objects.
2960 		 */
2961 		s->offset = size;
2962 		size += sizeof(void *);
2963 	}
2964 
2965 #ifdef CONFIG_SLUB_DEBUG
2966 	if (flags & SLAB_STORE_USER)
2967 		/*
2968 		 * Need to store information about allocs and frees after
2969 		 * the object.
2970 		 */
2971 		size += 2 * sizeof(struct track);
2972 
2973 	if (flags & SLAB_RED_ZONE)
2974 		/*
2975 		 * Add some empty padding so that we can catch
2976 		 * overwrites from earlier objects rather than let
2977 		 * tracking information or the free pointer be
2978 		 * corrupted if a user writes before the start
2979 		 * of the object.
2980 		 */
2981 		size += sizeof(void *);
2982 #endif
2983 
2984 	/*
2985 	 * Determine the alignment based on various parameters that the
2986 	 * user specified and the dynamic determination of cache line size
2987 	 * on bootup.
2988 	 */
2989 	align = calculate_alignment(flags, align, s->object_size);
2990 	s->align = align;
2991 
2992 	/*
2993 	 * SLUB stores one object immediately after another beginning from
2994 	 * offset 0. In order to align the objects we have to simply size
2995 	 * each object to conform to the alignment.
2996 	 */
2997 	size = ALIGN(size, align);
2998 	s->size = size;
2999 	if (forced_order >= 0)
3000 		order = forced_order;
3001 	else
3002 		order = calculate_order(size, s->reserved);
3003 
3004 	if (order < 0)
3005 		return 0;
3006 
3007 	s->allocflags = 0;
3008 	if (order)
3009 		s->allocflags |= __GFP_COMP;
3010 
3011 	if (s->flags & SLAB_CACHE_DMA)
3012 		s->allocflags |= SLUB_DMA;
3013 
3014 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3015 		s->allocflags |= __GFP_RECLAIMABLE;
3016 
3017 	/*
3018 	 * Determine the number of objects per slab
3019 	 */
3020 	s->oo = oo_make(order, size, s->reserved);
3021 	s->min = oo_make(get_order(size), size, s->reserved);
3022 	if (oo_objects(s->oo) > oo_objects(s->max))
3023 		s->max = s->oo;
3024 
3025 	return !!oo_objects(s->oo);
3026 
3027 }
3028 
3029 static int kmem_cache_open(struct kmem_cache *s,
3030 		const char *name, size_t size,
3031 		size_t align, unsigned long flags,
3032 		void (*ctor)(void *))
3033 {
3034 	memset(s, 0, kmem_size);
3035 	s->name = name;
3036 	s->ctor = ctor;
3037 	s->object_size = size;
3038 	s->align = align;
3039 	s->flags = kmem_cache_flags(size, flags, name, ctor);
3040 	s->reserved = 0;
3041 
3042 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3043 		s->reserved = sizeof(struct rcu_head);
3044 
3045 	if (!calculate_sizes(s, -1))
3046 		goto error;
3047 	if (disable_higher_order_debug) {
3048 		/*
3049 		 * Disable debugging flags that store metadata if the min slab
3050 		 * order increased.
3051 		 */
3052 		if (get_order(s->size) > get_order(s->object_size)) {
3053 			s->flags &= ~DEBUG_METADATA_FLAGS;
3054 			s->offset = 0;
3055 			if (!calculate_sizes(s, -1))
3056 				goto error;
3057 		}
3058 	}
3059 
3060 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3061     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3062 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3063 		/* Enable fast mode */
3064 		s->flags |= __CMPXCHG_DOUBLE;
3065 #endif
3066 
3067 	/*
3068 	 * The larger the object size is, the more pages we want on the partial
3069 	 * list to avoid pounding the page allocator excessively.
3070 	 */
3071 	set_min_partial(s, ilog2(s->size) / 2);
3072 
3073 	/*
3074 	 * cpu_partial determined the maximum number of objects kept in the
3075 	 * per cpu partial lists of a processor.
3076 	 *
3077 	 * Per cpu partial lists mainly contain slabs that just have one
3078 	 * object freed. If they are used for allocation then they can be
3079 	 * filled up again with minimal effort. The slab will never hit the
3080 	 * per node partial lists and therefore no locking will be required.
3081 	 *
3082 	 * This setting also determines
3083 	 *
3084 	 * A) The number of objects from per cpu partial slabs dumped to the
3085 	 *    per node list when we reach the limit.
3086 	 * B) The number of objects in cpu partial slabs to extract from the
3087 	 *    per node list when we run out of per cpu objects. We only fetch 50%
3088 	 *    to keep some capacity around for frees.
3089 	 */
3090 	if (kmem_cache_debug(s))
3091 		s->cpu_partial = 0;
3092 	else if (s->size >= PAGE_SIZE)
3093 		s->cpu_partial = 2;
3094 	else if (s->size >= 1024)
3095 		s->cpu_partial = 6;
3096 	else if (s->size >= 256)
3097 		s->cpu_partial = 13;
3098 	else
3099 		s->cpu_partial = 30;
3100 
3101 	s->refcount = 1;
3102 #ifdef CONFIG_NUMA
3103 	s->remote_node_defrag_ratio = 1000;
3104 #endif
3105 	if (!init_kmem_cache_nodes(s))
3106 		goto error;
3107 
3108 	if (alloc_kmem_cache_cpus(s))
3109 		return 1;
3110 
3111 	free_kmem_cache_nodes(s);
3112 error:
3113 	if (flags & SLAB_PANIC)
3114 		panic("Cannot create slab %s size=%lu realsize=%u "
3115 			"order=%u offset=%u flags=%lx\n",
3116 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
3117 			s->offset, flags);
3118 	return 0;
3119 }
3120 
3121 /*
3122  * Determine the size of a slab object
3123  */
3124 unsigned int kmem_cache_size(struct kmem_cache *s)
3125 {
3126 	return s->object_size;
3127 }
3128 EXPORT_SYMBOL(kmem_cache_size);
3129 
3130 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3131 							const char *text)
3132 {
3133 #ifdef CONFIG_SLUB_DEBUG
3134 	void *addr = page_address(page);
3135 	void *p;
3136 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3137 				     sizeof(long), GFP_ATOMIC);
3138 	if (!map)
3139 		return;
3140 	slab_err(s, page, "%s", text);
3141 	slab_lock(page);
3142 
3143 	get_map(s, page, map);
3144 	for_each_object(p, s, addr, page->objects) {
3145 
3146 		if (!test_bit(slab_index(p, s, addr), map)) {
3147 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3148 							p, p - addr);
3149 			print_tracking(s, p);
3150 		}
3151 	}
3152 	slab_unlock(page);
3153 	kfree(map);
3154 #endif
3155 }
3156 
3157 /*
3158  * Attempt to free all partial slabs on a node.
3159  * This is called from kmem_cache_close(). We must be the last thread
3160  * using the cache and therefore we do not need to lock anymore.
3161  */
3162 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3163 {
3164 	struct page *page, *h;
3165 
3166 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3167 		if (!page->inuse) {
3168 			remove_partial(n, page);
3169 			discard_slab(s, page);
3170 		} else {
3171 			list_slab_objects(s, page,
3172 				"Objects remaining on kmem_cache_close()");
3173 		}
3174 	}
3175 }
3176 
3177 /*
3178  * Release all resources used by a slab cache.
3179  */
3180 static inline int kmem_cache_close(struct kmem_cache *s)
3181 {
3182 	int node;
3183 
3184 	flush_all(s);
3185 	free_percpu(s->cpu_slab);
3186 	/* Attempt to free all objects */
3187 	for_each_node_state(node, N_NORMAL_MEMORY) {
3188 		struct kmem_cache_node *n = get_node(s, node);
3189 
3190 		free_partial(s, n);
3191 		if (n->nr_partial || slabs_node(s, node))
3192 			return 1;
3193 	}
3194 	free_kmem_cache_nodes(s);
3195 	return 0;
3196 }
3197 
3198 /*
3199  * Close a cache and release the kmem_cache structure
3200  * (must be used for caches created using kmem_cache_create)
3201  */
3202 void kmem_cache_destroy(struct kmem_cache *s)
3203 {
3204 	mutex_lock(&slab_mutex);
3205 	s->refcount--;
3206 	if (!s->refcount) {
3207 		list_del(&s->list);
3208 		mutex_unlock(&slab_mutex);
3209 		if (kmem_cache_close(s)) {
3210 			printk(KERN_ERR "SLUB %s: %s called for cache that "
3211 				"still has objects.\n", s->name, __func__);
3212 			dump_stack();
3213 		}
3214 		if (s->flags & SLAB_DESTROY_BY_RCU)
3215 			rcu_barrier();
3216 		sysfs_slab_remove(s);
3217 	} else
3218 		mutex_unlock(&slab_mutex);
3219 }
3220 EXPORT_SYMBOL(kmem_cache_destroy);
3221 
3222 /********************************************************************
3223  *		Kmalloc subsystem
3224  *******************************************************************/
3225 
3226 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3227 EXPORT_SYMBOL(kmalloc_caches);
3228 
3229 static struct kmem_cache *kmem_cache;
3230 
3231 #ifdef CONFIG_ZONE_DMA
3232 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3233 #endif
3234 
3235 static int __init setup_slub_min_order(char *str)
3236 {
3237 	get_option(&str, &slub_min_order);
3238 
3239 	return 1;
3240 }
3241 
3242 __setup("slub_min_order=", setup_slub_min_order);
3243 
3244 static int __init setup_slub_max_order(char *str)
3245 {
3246 	get_option(&str, &slub_max_order);
3247 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3248 
3249 	return 1;
3250 }
3251 
3252 __setup("slub_max_order=", setup_slub_max_order);
3253 
3254 static int __init setup_slub_min_objects(char *str)
3255 {
3256 	get_option(&str, &slub_min_objects);
3257 
3258 	return 1;
3259 }
3260 
3261 __setup("slub_min_objects=", setup_slub_min_objects);
3262 
3263 static int __init setup_slub_nomerge(char *str)
3264 {
3265 	slub_nomerge = 1;
3266 	return 1;
3267 }
3268 
3269 __setup("slub_nomerge", setup_slub_nomerge);
3270 
3271 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3272 						int size, unsigned int flags)
3273 {
3274 	struct kmem_cache *s;
3275 
3276 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3277 
3278 	/*
3279 	 * This function is called with IRQs disabled during early-boot on
3280 	 * single CPU so there's no need to take slab_mutex here.
3281 	 */
3282 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3283 								flags, NULL))
3284 		goto panic;
3285 
3286 	list_add(&s->list, &slab_caches);
3287 	return s;
3288 
3289 panic:
3290 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3291 	return NULL;
3292 }
3293 
3294 /*
3295  * Conversion table for small slabs sizes / 8 to the index in the
3296  * kmalloc array. This is necessary for slabs < 192 since we have non power
3297  * of two cache sizes there. The size of larger slabs can be determined using
3298  * fls.
3299  */
3300 static s8 size_index[24] = {
3301 	3,	/* 8 */
3302 	4,	/* 16 */
3303 	5,	/* 24 */
3304 	5,	/* 32 */
3305 	6,	/* 40 */
3306 	6,	/* 48 */
3307 	6,	/* 56 */
3308 	6,	/* 64 */
3309 	1,	/* 72 */
3310 	1,	/* 80 */
3311 	1,	/* 88 */
3312 	1,	/* 96 */
3313 	7,	/* 104 */
3314 	7,	/* 112 */
3315 	7,	/* 120 */
3316 	7,	/* 128 */
3317 	2,	/* 136 */
3318 	2,	/* 144 */
3319 	2,	/* 152 */
3320 	2,	/* 160 */
3321 	2,	/* 168 */
3322 	2,	/* 176 */
3323 	2,	/* 184 */
3324 	2	/* 192 */
3325 };
3326 
3327 static inline int size_index_elem(size_t bytes)
3328 {
3329 	return (bytes - 1) / 8;
3330 }
3331 
3332 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3333 {
3334 	int index;
3335 
3336 	if (size <= 192) {
3337 		if (!size)
3338 			return ZERO_SIZE_PTR;
3339 
3340 		index = size_index[size_index_elem(size)];
3341 	} else
3342 		index = fls(size - 1);
3343 
3344 #ifdef CONFIG_ZONE_DMA
3345 	if (unlikely((flags & SLUB_DMA)))
3346 		return kmalloc_dma_caches[index];
3347 
3348 #endif
3349 	return kmalloc_caches[index];
3350 }
3351 
3352 void *__kmalloc(size_t size, gfp_t flags)
3353 {
3354 	struct kmem_cache *s;
3355 	void *ret;
3356 
3357 	if (unlikely(size > SLUB_MAX_SIZE))
3358 		return kmalloc_large(size, flags);
3359 
3360 	s = get_slab(size, flags);
3361 
3362 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3363 		return s;
3364 
3365 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3366 
3367 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3368 
3369 	return ret;
3370 }
3371 EXPORT_SYMBOL(__kmalloc);
3372 
3373 #ifdef CONFIG_NUMA
3374 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3375 {
3376 	struct page *page;
3377 	void *ptr = NULL;
3378 
3379 	flags |= __GFP_COMP | __GFP_NOTRACK;
3380 	page = alloc_pages_node(node, flags, get_order(size));
3381 	if (page)
3382 		ptr = page_address(page);
3383 
3384 	kmemleak_alloc(ptr, size, 1, flags);
3385 	return ptr;
3386 }
3387 
3388 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3389 {
3390 	struct kmem_cache *s;
3391 	void *ret;
3392 
3393 	if (unlikely(size > SLUB_MAX_SIZE)) {
3394 		ret = kmalloc_large_node(size, flags, node);
3395 
3396 		trace_kmalloc_node(_RET_IP_, ret,
3397 				   size, PAGE_SIZE << get_order(size),
3398 				   flags, node);
3399 
3400 		return ret;
3401 	}
3402 
3403 	s = get_slab(size, flags);
3404 
3405 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3406 		return s;
3407 
3408 	ret = slab_alloc(s, flags, node, _RET_IP_);
3409 
3410 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3411 
3412 	return ret;
3413 }
3414 EXPORT_SYMBOL(__kmalloc_node);
3415 #endif
3416 
3417 size_t ksize(const void *object)
3418 {
3419 	struct page *page;
3420 
3421 	if (unlikely(object == ZERO_SIZE_PTR))
3422 		return 0;
3423 
3424 	page = virt_to_head_page(object);
3425 
3426 	if (unlikely(!PageSlab(page))) {
3427 		WARN_ON(!PageCompound(page));
3428 		return PAGE_SIZE << compound_order(page);
3429 	}
3430 
3431 	return slab_ksize(page->slab);
3432 }
3433 EXPORT_SYMBOL(ksize);
3434 
3435 #ifdef CONFIG_SLUB_DEBUG
3436 bool verify_mem_not_deleted(const void *x)
3437 {
3438 	struct page *page;
3439 	void *object = (void *)x;
3440 	unsigned long flags;
3441 	bool rv;
3442 
3443 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3444 		return false;
3445 
3446 	local_irq_save(flags);
3447 
3448 	page = virt_to_head_page(x);
3449 	if (unlikely(!PageSlab(page))) {
3450 		/* maybe it was from stack? */
3451 		rv = true;
3452 		goto out_unlock;
3453 	}
3454 
3455 	slab_lock(page);
3456 	if (on_freelist(page->slab, page, object)) {
3457 		object_err(page->slab, page, object, "Object is on free-list");
3458 		rv = false;
3459 	} else {
3460 		rv = true;
3461 	}
3462 	slab_unlock(page);
3463 
3464 out_unlock:
3465 	local_irq_restore(flags);
3466 	return rv;
3467 }
3468 EXPORT_SYMBOL(verify_mem_not_deleted);
3469 #endif
3470 
3471 void kfree(const void *x)
3472 {
3473 	struct page *page;
3474 	void *object = (void *)x;
3475 
3476 	trace_kfree(_RET_IP_, x);
3477 
3478 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3479 		return;
3480 
3481 	page = virt_to_head_page(x);
3482 	if (unlikely(!PageSlab(page))) {
3483 		BUG_ON(!PageCompound(page));
3484 		kmemleak_free(x);
3485 		put_page(page);
3486 		return;
3487 	}
3488 	slab_free(page->slab, page, object, _RET_IP_);
3489 }
3490 EXPORT_SYMBOL(kfree);
3491 
3492 /*
3493  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3494  * the remaining slabs by the number of items in use. The slabs with the
3495  * most items in use come first. New allocations will then fill those up
3496  * and thus they can be removed from the partial lists.
3497  *
3498  * The slabs with the least items are placed last. This results in them
3499  * being allocated from last increasing the chance that the last objects
3500  * are freed in them.
3501  */
3502 int kmem_cache_shrink(struct kmem_cache *s)
3503 {
3504 	int node;
3505 	int i;
3506 	struct kmem_cache_node *n;
3507 	struct page *page;
3508 	struct page *t;
3509 	int objects = oo_objects(s->max);
3510 	struct list_head *slabs_by_inuse =
3511 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3512 	unsigned long flags;
3513 
3514 	if (!slabs_by_inuse)
3515 		return -ENOMEM;
3516 
3517 	flush_all(s);
3518 	for_each_node_state(node, N_NORMAL_MEMORY) {
3519 		n = get_node(s, node);
3520 
3521 		if (!n->nr_partial)
3522 			continue;
3523 
3524 		for (i = 0; i < objects; i++)
3525 			INIT_LIST_HEAD(slabs_by_inuse + i);
3526 
3527 		spin_lock_irqsave(&n->list_lock, flags);
3528 
3529 		/*
3530 		 * Build lists indexed by the items in use in each slab.
3531 		 *
3532 		 * Note that concurrent frees may occur while we hold the
3533 		 * list_lock. page->inuse here is the upper limit.
3534 		 */
3535 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3536 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3537 			if (!page->inuse)
3538 				n->nr_partial--;
3539 		}
3540 
3541 		/*
3542 		 * Rebuild the partial list with the slabs filled up most
3543 		 * first and the least used slabs at the end.
3544 		 */
3545 		for (i = objects - 1; i > 0; i--)
3546 			list_splice(slabs_by_inuse + i, n->partial.prev);
3547 
3548 		spin_unlock_irqrestore(&n->list_lock, flags);
3549 
3550 		/* Release empty slabs */
3551 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3552 			discard_slab(s, page);
3553 	}
3554 
3555 	kfree(slabs_by_inuse);
3556 	return 0;
3557 }
3558 EXPORT_SYMBOL(kmem_cache_shrink);
3559 
3560 #if defined(CONFIG_MEMORY_HOTPLUG)
3561 static int slab_mem_going_offline_callback(void *arg)
3562 {
3563 	struct kmem_cache *s;
3564 
3565 	mutex_lock(&slab_mutex);
3566 	list_for_each_entry(s, &slab_caches, list)
3567 		kmem_cache_shrink(s);
3568 	mutex_unlock(&slab_mutex);
3569 
3570 	return 0;
3571 }
3572 
3573 static void slab_mem_offline_callback(void *arg)
3574 {
3575 	struct kmem_cache_node *n;
3576 	struct kmem_cache *s;
3577 	struct memory_notify *marg = arg;
3578 	int offline_node;
3579 
3580 	offline_node = marg->status_change_nid;
3581 
3582 	/*
3583 	 * If the node still has available memory. we need kmem_cache_node
3584 	 * for it yet.
3585 	 */
3586 	if (offline_node < 0)
3587 		return;
3588 
3589 	mutex_lock(&slab_mutex);
3590 	list_for_each_entry(s, &slab_caches, list) {
3591 		n = get_node(s, offline_node);
3592 		if (n) {
3593 			/*
3594 			 * if n->nr_slabs > 0, slabs still exist on the node
3595 			 * that is going down. We were unable to free them,
3596 			 * and offline_pages() function shouldn't call this
3597 			 * callback. So, we must fail.
3598 			 */
3599 			BUG_ON(slabs_node(s, offline_node));
3600 
3601 			s->node[offline_node] = NULL;
3602 			kmem_cache_free(kmem_cache_node, n);
3603 		}
3604 	}
3605 	mutex_unlock(&slab_mutex);
3606 }
3607 
3608 static int slab_mem_going_online_callback(void *arg)
3609 {
3610 	struct kmem_cache_node *n;
3611 	struct kmem_cache *s;
3612 	struct memory_notify *marg = arg;
3613 	int nid = marg->status_change_nid;
3614 	int ret = 0;
3615 
3616 	/*
3617 	 * If the node's memory is already available, then kmem_cache_node is
3618 	 * already created. Nothing to do.
3619 	 */
3620 	if (nid < 0)
3621 		return 0;
3622 
3623 	/*
3624 	 * We are bringing a node online. No memory is available yet. We must
3625 	 * allocate a kmem_cache_node structure in order to bring the node
3626 	 * online.
3627 	 */
3628 	mutex_lock(&slab_mutex);
3629 	list_for_each_entry(s, &slab_caches, list) {
3630 		/*
3631 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3632 		 *      since memory is not yet available from the node that
3633 		 *      is brought up.
3634 		 */
3635 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3636 		if (!n) {
3637 			ret = -ENOMEM;
3638 			goto out;
3639 		}
3640 		init_kmem_cache_node(n);
3641 		s->node[nid] = n;
3642 	}
3643 out:
3644 	mutex_unlock(&slab_mutex);
3645 	return ret;
3646 }
3647 
3648 static int slab_memory_callback(struct notifier_block *self,
3649 				unsigned long action, void *arg)
3650 {
3651 	int ret = 0;
3652 
3653 	switch (action) {
3654 	case MEM_GOING_ONLINE:
3655 		ret = slab_mem_going_online_callback(arg);
3656 		break;
3657 	case MEM_GOING_OFFLINE:
3658 		ret = slab_mem_going_offline_callback(arg);
3659 		break;
3660 	case MEM_OFFLINE:
3661 	case MEM_CANCEL_ONLINE:
3662 		slab_mem_offline_callback(arg);
3663 		break;
3664 	case MEM_ONLINE:
3665 	case MEM_CANCEL_OFFLINE:
3666 		break;
3667 	}
3668 	if (ret)
3669 		ret = notifier_from_errno(ret);
3670 	else
3671 		ret = NOTIFY_OK;
3672 	return ret;
3673 }
3674 
3675 #endif /* CONFIG_MEMORY_HOTPLUG */
3676 
3677 /********************************************************************
3678  *			Basic setup of slabs
3679  *******************************************************************/
3680 
3681 /*
3682  * Used for early kmem_cache structures that were allocated using
3683  * the page allocator
3684  */
3685 
3686 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3687 {
3688 	int node;
3689 
3690 	list_add(&s->list, &slab_caches);
3691 	s->refcount = -1;
3692 
3693 	for_each_node_state(node, N_NORMAL_MEMORY) {
3694 		struct kmem_cache_node *n = get_node(s, node);
3695 		struct page *p;
3696 
3697 		if (n) {
3698 			list_for_each_entry(p, &n->partial, lru)
3699 				p->slab = s;
3700 
3701 #ifdef CONFIG_SLUB_DEBUG
3702 			list_for_each_entry(p, &n->full, lru)
3703 				p->slab = s;
3704 #endif
3705 		}
3706 	}
3707 }
3708 
3709 void __init kmem_cache_init(void)
3710 {
3711 	int i;
3712 	int caches = 0;
3713 	struct kmem_cache *temp_kmem_cache;
3714 	int order;
3715 	struct kmem_cache *temp_kmem_cache_node;
3716 	unsigned long kmalloc_size;
3717 
3718 	if (debug_guardpage_minorder())
3719 		slub_max_order = 0;
3720 
3721 	kmem_size = offsetof(struct kmem_cache, node) +
3722 				nr_node_ids * sizeof(struct kmem_cache_node *);
3723 
3724 	/* Allocate two kmem_caches from the page allocator */
3725 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3726 	order = get_order(2 * kmalloc_size);
3727 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3728 
3729 	/*
3730 	 * Must first have the slab cache available for the allocations of the
3731 	 * struct kmem_cache_node's. There is special bootstrap code in
3732 	 * kmem_cache_open for slab_state == DOWN.
3733 	 */
3734 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3735 
3736 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3737 		sizeof(struct kmem_cache_node),
3738 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3739 
3740 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3741 
3742 	/* Able to allocate the per node structures */
3743 	slab_state = PARTIAL;
3744 
3745 	temp_kmem_cache = kmem_cache;
3746 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3747 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3748 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3749 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3750 
3751 	/*
3752 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3753 	 * kmem_cache_node is separately allocated so no need to
3754 	 * update any list pointers.
3755 	 */
3756 	temp_kmem_cache_node = kmem_cache_node;
3757 
3758 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3759 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3760 
3761 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3762 
3763 	caches++;
3764 	kmem_cache_bootstrap_fixup(kmem_cache);
3765 	caches++;
3766 	/* Free temporary boot structure */
3767 	free_pages((unsigned long)temp_kmem_cache, order);
3768 
3769 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3770 
3771 	/*
3772 	 * Patch up the size_index table if we have strange large alignment
3773 	 * requirements for the kmalloc array. This is only the case for
3774 	 * MIPS it seems. The standard arches will not generate any code here.
3775 	 *
3776 	 * Largest permitted alignment is 256 bytes due to the way we
3777 	 * handle the index determination for the smaller caches.
3778 	 *
3779 	 * Make sure that nothing crazy happens if someone starts tinkering
3780 	 * around with ARCH_KMALLOC_MINALIGN
3781 	 */
3782 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3783 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3784 
3785 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3786 		int elem = size_index_elem(i);
3787 		if (elem >= ARRAY_SIZE(size_index))
3788 			break;
3789 		size_index[elem] = KMALLOC_SHIFT_LOW;
3790 	}
3791 
3792 	if (KMALLOC_MIN_SIZE == 64) {
3793 		/*
3794 		 * The 96 byte size cache is not used if the alignment
3795 		 * is 64 byte.
3796 		 */
3797 		for (i = 64 + 8; i <= 96; i += 8)
3798 			size_index[size_index_elem(i)] = 7;
3799 	} else if (KMALLOC_MIN_SIZE == 128) {
3800 		/*
3801 		 * The 192 byte sized cache is not used if the alignment
3802 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3803 		 * instead.
3804 		 */
3805 		for (i = 128 + 8; i <= 192; i += 8)
3806 			size_index[size_index_elem(i)] = 8;
3807 	}
3808 
3809 	/* Caches that are not of the two-to-the-power-of size */
3810 	if (KMALLOC_MIN_SIZE <= 32) {
3811 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3812 		caches++;
3813 	}
3814 
3815 	if (KMALLOC_MIN_SIZE <= 64) {
3816 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3817 		caches++;
3818 	}
3819 
3820 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3821 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3822 		caches++;
3823 	}
3824 
3825 	slab_state = UP;
3826 
3827 	/* Provide the correct kmalloc names now that the caches are up */
3828 	if (KMALLOC_MIN_SIZE <= 32) {
3829 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3830 		BUG_ON(!kmalloc_caches[1]->name);
3831 	}
3832 
3833 	if (KMALLOC_MIN_SIZE <= 64) {
3834 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3835 		BUG_ON(!kmalloc_caches[2]->name);
3836 	}
3837 
3838 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3839 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3840 
3841 		BUG_ON(!s);
3842 		kmalloc_caches[i]->name = s;
3843 	}
3844 
3845 #ifdef CONFIG_SMP
3846 	register_cpu_notifier(&slab_notifier);
3847 #endif
3848 
3849 #ifdef CONFIG_ZONE_DMA
3850 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3851 		struct kmem_cache *s = kmalloc_caches[i];
3852 
3853 		if (s && s->size) {
3854 			char *name = kasprintf(GFP_NOWAIT,
3855 				 "dma-kmalloc-%d", s->object_size);
3856 
3857 			BUG_ON(!name);
3858 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3859 				s->object_size, SLAB_CACHE_DMA);
3860 		}
3861 	}
3862 #endif
3863 	printk(KERN_INFO
3864 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3865 		" CPUs=%d, Nodes=%d\n",
3866 		caches, cache_line_size(),
3867 		slub_min_order, slub_max_order, slub_min_objects,
3868 		nr_cpu_ids, nr_node_ids);
3869 }
3870 
3871 void __init kmem_cache_init_late(void)
3872 {
3873 }
3874 
3875 /*
3876  * Find a mergeable slab cache
3877  */
3878 static int slab_unmergeable(struct kmem_cache *s)
3879 {
3880 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3881 		return 1;
3882 
3883 	if (s->ctor)
3884 		return 1;
3885 
3886 	/*
3887 	 * We may have set a slab to be unmergeable during bootstrap.
3888 	 */
3889 	if (s->refcount < 0)
3890 		return 1;
3891 
3892 	return 0;
3893 }
3894 
3895 static struct kmem_cache *find_mergeable(size_t size,
3896 		size_t align, unsigned long flags, const char *name,
3897 		void (*ctor)(void *))
3898 {
3899 	struct kmem_cache *s;
3900 
3901 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3902 		return NULL;
3903 
3904 	if (ctor)
3905 		return NULL;
3906 
3907 	size = ALIGN(size, sizeof(void *));
3908 	align = calculate_alignment(flags, align, size);
3909 	size = ALIGN(size, align);
3910 	flags = kmem_cache_flags(size, flags, name, NULL);
3911 
3912 	list_for_each_entry(s, &slab_caches, list) {
3913 		if (slab_unmergeable(s))
3914 			continue;
3915 
3916 		if (size > s->size)
3917 			continue;
3918 
3919 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3920 				continue;
3921 		/*
3922 		 * Check if alignment is compatible.
3923 		 * Courtesy of Adrian Drzewiecki
3924 		 */
3925 		if ((s->size & ~(align - 1)) != s->size)
3926 			continue;
3927 
3928 		if (s->size - size >= sizeof(void *))
3929 			continue;
3930 
3931 		return s;
3932 	}
3933 	return NULL;
3934 }
3935 
3936 struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
3937 		size_t align, unsigned long flags, void (*ctor)(void *))
3938 {
3939 	struct kmem_cache *s;
3940 	char *n;
3941 
3942 	s = find_mergeable(size, align, flags, name, ctor);
3943 	if (s) {
3944 		s->refcount++;
3945 		/*
3946 		 * Adjust the object sizes so that we clear
3947 		 * the complete object on kzalloc.
3948 		 */
3949 		s->object_size = max(s->object_size, (int)size);
3950 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3951 
3952 		if (sysfs_slab_alias(s, name)) {
3953 			s->refcount--;
3954 			return NULL;
3955 		}
3956 		return s;
3957 	}
3958 
3959 	n = kstrdup(name, GFP_KERNEL);
3960 	if (!n)
3961 		return NULL;
3962 
3963 	s = kmalloc(kmem_size, GFP_KERNEL);
3964 	if (s) {
3965 		if (kmem_cache_open(s, n,
3966 				size, align, flags, ctor)) {
3967 			int r;
3968 
3969 			list_add(&s->list, &slab_caches);
3970 			mutex_unlock(&slab_mutex);
3971 			r = sysfs_slab_add(s);
3972 			mutex_lock(&slab_mutex);
3973 
3974 			if (!r)
3975 				return s;
3976 
3977 			list_del(&s->list);
3978 			kmem_cache_close(s);
3979 		}
3980 		kfree(s);
3981 	}
3982 	kfree(n);
3983 	return NULL;
3984 }
3985 
3986 #ifdef CONFIG_SMP
3987 /*
3988  * Use the cpu notifier to insure that the cpu slabs are flushed when
3989  * necessary.
3990  */
3991 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3992 		unsigned long action, void *hcpu)
3993 {
3994 	long cpu = (long)hcpu;
3995 	struct kmem_cache *s;
3996 	unsigned long flags;
3997 
3998 	switch (action) {
3999 	case CPU_UP_CANCELED:
4000 	case CPU_UP_CANCELED_FROZEN:
4001 	case CPU_DEAD:
4002 	case CPU_DEAD_FROZEN:
4003 		mutex_lock(&slab_mutex);
4004 		list_for_each_entry(s, &slab_caches, list) {
4005 			local_irq_save(flags);
4006 			__flush_cpu_slab(s, cpu);
4007 			local_irq_restore(flags);
4008 		}
4009 		mutex_unlock(&slab_mutex);
4010 		break;
4011 	default:
4012 		break;
4013 	}
4014 	return NOTIFY_OK;
4015 }
4016 
4017 static struct notifier_block __cpuinitdata slab_notifier = {
4018 	.notifier_call = slab_cpuup_callback
4019 };
4020 
4021 #endif
4022 
4023 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4024 {
4025 	struct kmem_cache *s;
4026 	void *ret;
4027 
4028 	if (unlikely(size > SLUB_MAX_SIZE))
4029 		return kmalloc_large(size, gfpflags);
4030 
4031 	s = get_slab(size, gfpflags);
4032 
4033 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4034 		return s;
4035 
4036 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4037 
4038 	/* Honor the call site pointer we received. */
4039 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4040 
4041 	return ret;
4042 }
4043 
4044 #ifdef CONFIG_NUMA
4045 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4046 					int node, unsigned long caller)
4047 {
4048 	struct kmem_cache *s;
4049 	void *ret;
4050 
4051 	if (unlikely(size > SLUB_MAX_SIZE)) {
4052 		ret = kmalloc_large_node(size, gfpflags, node);
4053 
4054 		trace_kmalloc_node(caller, ret,
4055 				   size, PAGE_SIZE << get_order(size),
4056 				   gfpflags, node);
4057 
4058 		return ret;
4059 	}
4060 
4061 	s = get_slab(size, gfpflags);
4062 
4063 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4064 		return s;
4065 
4066 	ret = slab_alloc(s, gfpflags, node, caller);
4067 
4068 	/* Honor the call site pointer we received. */
4069 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4070 
4071 	return ret;
4072 }
4073 #endif
4074 
4075 #ifdef CONFIG_SYSFS
4076 static int count_inuse(struct page *page)
4077 {
4078 	return page->inuse;
4079 }
4080 
4081 static int count_total(struct page *page)
4082 {
4083 	return page->objects;
4084 }
4085 #endif
4086 
4087 #ifdef CONFIG_SLUB_DEBUG
4088 static int validate_slab(struct kmem_cache *s, struct page *page,
4089 						unsigned long *map)
4090 {
4091 	void *p;
4092 	void *addr = page_address(page);
4093 
4094 	if (!check_slab(s, page) ||
4095 			!on_freelist(s, page, NULL))
4096 		return 0;
4097 
4098 	/* Now we know that a valid freelist exists */
4099 	bitmap_zero(map, page->objects);
4100 
4101 	get_map(s, page, map);
4102 	for_each_object(p, s, addr, page->objects) {
4103 		if (test_bit(slab_index(p, s, addr), map))
4104 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4105 				return 0;
4106 	}
4107 
4108 	for_each_object(p, s, addr, page->objects)
4109 		if (!test_bit(slab_index(p, s, addr), map))
4110 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4111 				return 0;
4112 	return 1;
4113 }
4114 
4115 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4116 						unsigned long *map)
4117 {
4118 	slab_lock(page);
4119 	validate_slab(s, page, map);
4120 	slab_unlock(page);
4121 }
4122 
4123 static int validate_slab_node(struct kmem_cache *s,
4124 		struct kmem_cache_node *n, unsigned long *map)
4125 {
4126 	unsigned long count = 0;
4127 	struct page *page;
4128 	unsigned long flags;
4129 
4130 	spin_lock_irqsave(&n->list_lock, flags);
4131 
4132 	list_for_each_entry(page, &n->partial, lru) {
4133 		validate_slab_slab(s, page, map);
4134 		count++;
4135 	}
4136 	if (count != n->nr_partial)
4137 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4138 			"counter=%ld\n", s->name, count, n->nr_partial);
4139 
4140 	if (!(s->flags & SLAB_STORE_USER))
4141 		goto out;
4142 
4143 	list_for_each_entry(page, &n->full, lru) {
4144 		validate_slab_slab(s, page, map);
4145 		count++;
4146 	}
4147 	if (count != atomic_long_read(&n->nr_slabs))
4148 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4149 			"counter=%ld\n", s->name, count,
4150 			atomic_long_read(&n->nr_slabs));
4151 
4152 out:
4153 	spin_unlock_irqrestore(&n->list_lock, flags);
4154 	return count;
4155 }
4156 
4157 static long validate_slab_cache(struct kmem_cache *s)
4158 {
4159 	int node;
4160 	unsigned long count = 0;
4161 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4162 				sizeof(unsigned long), GFP_KERNEL);
4163 
4164 	if (!map)
4165 		return -ENOMEM;
4166 
4167 	flush_all(s);
4168 	for_each_node_state(node, N_NORMAL_MEMORY) {
4169 		struct kmem_cache_node *n = get_node(s, node);
4170 
4171 		count += validate_slab_node(s, n, map);
4172 	}
4173 	kfree(map);
4174 	return count;
4175 }
4176 /*
4177  * Generate lists of code addresses where slabcache objects are allocated
4178  * and freed.
4179  */
4180 
4181 struct location {
4182 	unsigned long count;
4183 	unsigned long addr;
4184 	long long sum_time;
4185 	long min_time;
4186 	long max_time;
4187 	long min_pid;
4188 	long max_pid;
4189 	DECLARE_BITMAP(cpus, NR_CPUS);
4190 	nodemask_t nodes;
4191 };
4192 
4193 struct loc_track {
4194 	unsigned long max;
4195 	unsigned long count;
4196 	struct location *loc;
4197 };
4198 
4199 static void free_loc_track(struct loc_track *t)
4200 {
4201 	if (t->max)
4202 		free_pages((unsigned long)t->loc,
4203 			get_order(sizeof(struct location) * t->max));
4204 }
4205 
4206 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4207 {
4208 	struct location *l;
4209 	int order;
4210 
4211 	order = get_order(sizeof(struct location) * max);
4212 
4213 	l = (void *)__get_free_pages(flags, order);
4214 	if (!l)
4215 		return 0;
4216 
4217 	if (t->count) {
4218 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4219 		free_loc_track(t);
4220 	}
4221 	t->max = max;
4222 	t->loc = l;
4223 	return 1;
4224 }
4225 
4226 static int add_location(struct loc_track *t, struct kmem_cache *s,
4227 				const struct track *track)
4228 {
4229 	long start, end, pos;
4230 	struct location *l;
4231 	unsigned long caddr;
4232 	unsigned long age = jiffies - track->when;
4233 
4234 	start = -1;
4235 	end = t->count;
4236 
4237 	for ( ; ; ) {
4238 		pos = start + (end - start + 1) / 2;
4239 
4240 		/*
4241 		 * There is nothing at "end". If we end up there
4242 		 * we need to add something to before end.
4243 		 */
4244 		if (pos == end)
4245 			break;
4246 
4247 		caddr = t->loc[pos].addr;
4248 		if (track->addr == caddr) {
4249 
4250 			l = &t->loc[pos];
4251 			l->count++;
4252 			if (track->when) {
4253 				l->sum_time += age;
4254 				if (age < l->min_time)
4255 					l->min_time = age;
4256 				if (age > l->max_time)
4257 					l->max_time = age;
4258 
4259 				if (track->pid < l->min_pid)
4260 					l->min_pid = track->pid;
4261 				if (track->pid > l->max_pid)
4262 					l->max_pid = track->pid;
4263 
4264 				cpumask_set_cpu(track->cpu,
4265 						to_cpumask(l->cpus));
4266 			}
4267 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4268 			return 1;
4269 		}
4270 
4271 		if (track->addr < caddr)
4272 			end = pos;
4273 		else
4274 			start = pos;
4275 	}
4276 
4277 	/*
4278 	 * Not found. Insert new tracking element.
4279 	 */
4280 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4281 		return 0;
4282 
4283 	l = t->loc + pos;
4284 	if (pos < t->count)
4285 		memmove(l + 1, l,
4286 			(t->count - pos) * sizeof(struct location));
4287 	t->count++;
4288 	l->count = 1;
4289 	l->addr = track->addr;
4290 	l->sum_time = age;
4291 	l->min_time = age;
4292 	l->max_time = age;
4293 	l->min_pid = track->pid;
4294 	l->max_pid = track->pid;
4295 	cpumask_clear(to_cpumask(l->cpus));
4296 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4297 	nodes_clear(l->nodes);
4298 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4299 	return 1;
4300 }
4301 
4302 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4303 		struct page *page, enum track_item alloc,
4304 		unsigned long *map)
4305 {
4306 	void *addr = page_address(page);
4307 	void *p;
4308 
4309 	bitmap_zero(map, page->objects);
4310 	get_map(s, page, map);
4311 
4312 	for_each_object(p, s, addr, page->objects)
4313 		if (!test_bit(slab_index(p, s, addr), map))
4314 			add_location(t, s, get_track(s, p, alloc));
4315 }
4316 
4317 static int list_locations(struct kmem_cache *s, char *buf,
4318 					enum track_item alloc)
4319 {
4320 	int len = 0;
4321 	unsigned long i;
4322 	struct loc_track t = { 0, 0, NULL };
4323 	int node;
4324 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4325 				     sizeof(unsigned long), GFP_KERNEL);
4326 
4327 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4328 				     GFP_TEMPORARY)) {
4329 		kfree(map);
4330 		return sprintf(buf, "Out of memory\n");
4331 	}
4332 	/* Push back cpu slabs */
4333 	flush_all(s);
4334 
4335 	for_each_node_state(node, N_NORMAL_MEMORY) {
4336 		struct kmem_cache_node *n = get_node(s, node);
4337 		unsigned long flags;
4338 		struct page *page;
4339 
4340 		if (!atomic_long_read(&n->nr_slabs))
4341 			continue;
4342 
4343 		spin_lock_irqsave(&n->list_lock, flags);
4344 		list_for_each_entry(page, &n->partial, lru)
4345 			process_slab(&t, s, page, alloc, map);
4346 		list_for_each_entry(page, &n->full, lru)
4347 			process_slab(&t, s, page, alloc, map);
4348 		spin_unlock_irqrestore(&n->list_lock, flags);
4349 	}
4350 
4351 	for (i = 0; i < t.count; i++) {
4352 		struct location *l = &t.loc[i];
4353 
4354 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4355 			break;
4356 		len += sprintf(buf + len, "%7ld ", l->count);
4357 
4358 		if (l->addr)
4359 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4360 		else
4361 			len += sprintf(buf + len, "<not-available>");
4362 
4363 		if (l->sum_time != l->min_time) {
4364 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4365 				l->min_time,
4366 				(long)div_u64(l->sum_time, l->count),
4367 				l->max_time);
4368 		} else
4369 			len += sprintf(buf + len, " age=%ld",
4370 				l->min_time);
4371 
4372 		if (l->min_pid != l->max_pid)
4373 			len += sprintf(buf + len, " pid=%ld-%ld",
4374 				l->min_pid, l->max_pid);
4375 		else
4376 			len += sprintf(buf + len, " pid=%ld",
4377 				l->min_pid);
4378 
4379 		if (num_online_cpus() > 1 &&
4380 				!cpumask_empty(to_cpumask(l->cpus)) &&
4381 				len < PAGE_SIZE - 60) {
4382 			len += sprintf(buf + len, " cpus=");
4383 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4384 						 to_cpumask(l->cpus));
4385 		}
4386 
4387 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4388 				len < PAGE_SIZE - 60) {
4389 			len += sprintf(buf + len, " nodes=");
4390 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4391 					l->nodes);
4392 		}
4393 
4394 		len += sprintf(buf + len, "\n");
4395 	}
4396 
4397 	free_loc_track(&t);
4398 	kfree(map);
4399 	if (!t.count)
4400 		len += sprintf(buf, "No data\n");
4401 	return len;
4402 }
4403 #endif
4404 
4405 #ifdef SLUB_RESILIENCY_TEST
4406 static void resiliency_test(void)
4407 {
4408 	u8 *p;
4409 
4410 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4411 
4412 	printk(KERN_ERR "SLUB resiliency testing\n");
4413 	printk(KERN_ERR "-----------------------\n");
4414 	printk(KERN_ERR "A. Corruption after allocation\n");
4415 
4416 	p = kzalloc(16, GFP_KERNEL);
4417 	p[16] = 0x12;
4418 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4419 			" 0x12->0x%p\n\n", p + 16);
4420 
4421 	validate_slab_cache(kmalloc_caches[4]);
4422 
4423 	/* Hmmm... The next two are dangerous */
4424 	p = kzalloc(32, GFP_KERNEL);
4425 	p[32 + sizeof(void *)] = 0x34;
4426 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4427 			" 0x34 -> -0x%p\n", p);
4428 	printk(KERN_ERR
4429 		"If allocated object is overwritten then not detectable\n\n");
4430 
4431 	validate_slab_cache(kmalloc_caches[5]);
4432 	p = kzalloc(64, GFP_KERNEL);
4433 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4434 	*p = 0x56;
4435 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4436 									p);
4437 	printk(KERN_ERR
4438 		"If allocated object is overwritten then not detectable\n\n");
4439 	validate_slab_cache(kmalloc_caches[6]);
4440 
4441 	printk(KERN_ERR "\nB. Corruption after free\n");
4442 	p = kzalloc(128, GFP_KERNEL);
4443 	kfree(p);
4444 	*p = 0x78;
4445 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4446 	validate_slab_cache(kmalloc_caches[7]);
4447 
4448 	p = kzalloc(256, GFP_KERNEL);
4449 	kfree(p);
4450 	p[50] = 0x9a;
4451 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4452 			p);
4453 	validate_slab_cache(kmalloc_caches[8]);
4454 
4455 	p = kzalloc(512, GFP_KERNEL);
4456 	kfree(p);
4457 	p[512] = 0xab;
4458 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4459 	validate_slab_cache(kmalloc_caches[9]);
4460 }
4461 #else
4462 #ifdef CONFIG_SYSFS
4463 static void resiliency_test(void) {};
4464 #endif
4465 #endif
4466 
4467 #ifdef CONFIG_SYSFS
4468 enum slab_stat_type {
4469 	SL_ALL,			/* All slabs */
4470 	SL_PARTIAL,		/* Only partially allocated slabs */
4471 	SL_CPU,			/* Only slabs used for cpu caches */
4472 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4473 	SL_TOTAL		/* Determine object capacity not slabs */
4474 };
4475 
4476 #define SO_ALL		(1 << SL_ALL)
4477 #define SO_PARTIAL	(1 << SL_PARTIAL)
4478 #define SO_CPU		(1 << SL_CPU)
4479 #define SO_OBJECTS	(1 << SL_OBJECTS)
4480 #define SO_TOTAL	(1 << SL_TOTAL)
4481 
4482 static ssize_t show_slab_objects(struct kmem_cache *s,
4483 			    char *buf, unsigned long flags)
4484 {
4485 	unsigned long total = 0;
4486 	int node;
4487 	int x;
4488 	unsigned long *nodes;
4489 	unsigned long *per_cpu;
4490 
4491 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4492 	if (!nodes)
4493 		return -ENOMEM;
4494 	per_cpu = nodes + nr_node_ids;
4495 
4496 	if (flags & SO_CPU) {
4497 		int cpu;
4498 
4499 		for_each_possible_cpu(cpu) {
4500 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4501 			int node;
4502 			struct page *page;
4503 
4504 			page = ACCESS_ONCE(c->page);
4505 			if (!page)
4506 				continue;
4507 
4508 			node = page_to_nid(page);
4509 			if (flags & SO_TOTAL)
4510 				x = page->objects;
4511 			else if (flags & SO_OBJECTS)
4512 				x = page->inuse;
4513 			else
4514 				x = 1;
4515 
4516 			total += x;
4517 			nodes[node] += x;
4518 
4519 			page = ACCESS_ONCE(c->partial);
4520 			if (page) {
4521 				x = page->pobjects;
4522 				total += x;
4523 				nodes[node] += x;
4524 			}
4525 
4526 			per_cpu[node]++;
4527 		}
4528 	}
4529 
4530 	lock_memory_hotplug();
4531 #ifdef CONFIG_SLUB_DEBUG
4532 	if (flags & SO_ALL) {
4533 		for_each_node_state(node, N_NORMAL_MEMORY) {
4534 			struct kmem_cache_node *n = get_node(s, node);
4535 
4536 		if (flags & SO_TOTAL)
4537 			x = atomic_long_read(&n->total_objects);
4538 		else if (flags & SO_OBJECTS)
4539 			x = atomic_long_read(&n->total_objects) -
4540 				count_partial(n, count_free);
4541 
4542 			else
4543 				x = atomic_long_read(&n->nr_slabs);
4544 			total += x;
4545 			nodes[node] += x;
4546 		}
4547 
4548 	} else
4549 #endif
4550 	if (flags & SO_PARTIAL) {
4551 		for_each_node_state(node, N_NORMAL_MEMORY) {
4552 			struct kmem_cache_node *n = get_node(s, node);
4553 
4554 			if (flags & SO_TOTAL)
4555 				x = count_partial(n, count_total);
4556 			else if (flags & SO_OBJECTS)
4557 				x = count_partial(n, count_inuse);
4558 			else
4559 				x = n->nr_partial;
4560 			total += x;
4561 			nodes[node] += x;
4562 		}
4563 	}
4564 	x = sprintf(buf, "%lu", total);
4565 #ifdef CONFIG_NUMA
4566 	for_each_node_state(node, N_NORMAL_MEMORY)
4567 		if (nodes[node])
4568 			x += sprintf(buf + x, " N%d=%lu",
4569 					node, nodes[node]);
4570 #endif
4571 	unlock_memory_hotplug();
4572 	kfree(nodes);
4573 	return x + sprintf(buf + x, "\n");
4574 }
4575 
4576 #ifdef CONFIG_SLUB_DEBUG
4577 static int any_slab_objects(struct kmem_cache *s)
4578 {
4579 	int node;
4580 
4581 	for_each_online_node(node) {
4582 		struct kmem_cache_node *n = get_node(s, node);
4583 
4584 		if (!n)
4585 			continue;
4586 
4587 		if (atomic_long_read(&n->total_objects))
4588 			return 1;
4589 	}
4590 	return 0;
4591 }
4592 #endif
4593 
4594 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4595 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4596 
4597 struct slab_attribute {
4598 	struct attribute attr;
4599 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4600 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4601 };
4602 
4603 #define SLAB_ATTR_RO(_name) \
4604 	static struct slab_attribute _name##_attr = \
4605 	__ATTR(_name, 0400, _name##_show, NULL)
4606 
4607 #define SLAB_ATTR(_name) \
4608 	static struct slab_attribute _name##_attr =  \
4609 	__ATTR(_name, 0600, _name##_show, _name##_store)
4610 
4611 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4612 {
4613 	return sprintf(buf, "%d\n", s->size);
4614 }
4615 SLAB_ATTR_RO(slab_size);
4616 
4617 static ssize_t align_show(struct kmem_cache *s, char *buf)
4618 {
4619 	return sprintf(buf, "%d\n", s->align);
4620 }
4621 SLAB_ATTR_RO(align);
4622 
4623 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4624 {
4625 	return sprintf(buf, "%d\n", s->object_size);
4626 }
4627 SLAB_ATTR_RO(object_size);
4628 
4629 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4630 {
4631 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4632 }
4633 SLAB_ATTR_RO(objs_per_slab);
4634 
4635 static ssize_t order_store(struct kmem_cache *s,
4636 				const char *buf, size_t length)
4637 {
4638 	unsigned long order;
4639 	int err;
4640 
4641 	err = strict_strtoul(buf, 10, &order);
4642 	if (err)
4643 		return err;
4644 
4645 	if (order > slub_max_order || order < slub_min_order)
4646 		return -EINVAL;
4647 
4648 	calculate_sizes(s, order);
4649 	return length;
4650 }
4651 
4652 static ssize_t order_show(struct kmem_cache *s, char *buf)
4653 {
4654 	return sprintf(buf, "%d\n", oo_order(s->oo));
4655 }
4656 SLAB_ATTR(order);
4657 
4658 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4659 {
4660 	return sprintf(buf, "%lu\n", s->min_partial);
4661 }
4662 
4663 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4664 				 size_t length)
4665 {
4666 	unsigned long min;
4667 	int err;
4668 
4669 	err = strict_strtoul(buf, 10, &min);
4670 	if (err)
4671 		return err;
4672 
4673 	set_min_partial(s, min);
4674 	return length;
4675 }
4676 SLAB_ATTR(min_partial);
4677 
4678 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4679 {
4680 	return sprintf(buf, "%u\n", s->cpu_partial);
4681 }
4682 
4683 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4684 				 size_t length)
4685 {
4686 	unsigned long objects;
4687 	int err;
4688 
4689 	err = strict_strtoul(buf, 10, &objects);
4690 	if (err)
4691 		return err;
4692 	if (objects && kmem_cache_debug(s))
4693 		return -EINVAL;
4694 
4695 	s->cpu_partial = objects;
4696 	flush_all(s);
4697 	return length;
4698 }
4699 SLAB_ATTR(cpu_partial);
4700 
4701 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4702 {
4703 	if (!s->ctor)
4704 		return 0;
4705 	return sprintf(buf, "%pS\n", s->ctor);
4706 }
4707 SLAB_ATTR_RO(ctor);
4708 
4709 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4710 {
4711 	return sprintf(buf, "%d\n", s->refcount - 1);
4712 }
4713 SLAB_ATTR_RO(aliases);
4714 
4715 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4716 {
4717 	return show_slab_objects(s, buf, SO_PARTIAL);
4718 }
4719 SLAB_ATTR_RO(partial);
4720 
4721 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4722 {
4723 	return show_slab_objects(s, buf, SO_CPU);
4724 }
4725 SLAB_ATTR_RO(cpu_slabs);
4726 
4727 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4728 {
4729 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4730 }
4731 SLAB_ATTR_RO(objects);
4732 
4733 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4734 {
4735 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4736 }
4737 SLAB_ATTR_RO(objects_partial);
4738 
4739 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4740 {
4741 	int objects = 0;
4742 	int pages = 0;
4743 	int cpu;
4744 	int len;
4745 
4746 	for_each_online_cpu(cpu) {
4747 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4748 
4749 		if (page) {
4750 			pages += page->pages;
4751 			objects += page->pobjects;
4752 		}
4753 	}
4754 
4755 	len = sprintf(buf, "%d(%d)", objects, pages);
4756 
4757 #ifdef CONFIG_SMP
4758 	for_each_online_cpu(cpu) {
4759 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4760 
4761 		if (page && len < PAGE_SIZE - 20)
4762 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4763 				page->pobjects, page->pages);
4764 	}
4765 #endif
4766 	return len + sprintf(buf + len, "\n");
4767 }
4768 SLAB_ATTR_RO(slabs_cpu_partial);
4769 
4770 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4771 {
4772 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4773 }
4774 
4775 static ssize_t reclaim_account_store(struct kmem_cache *s,
4776 				const char *buf, size_t length)
4777 {
4778 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4779 	if (buf[0] == '1')
4780 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4781 	return length;
4782 }
4783 SLAB_ATTR(reclaim_account);
4784 
4785 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4786 {
4787 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4788 }
4789 SLAB_ATTR_RO(hwcache_align);
4790 
4791 #ifdef CONFIG_ZONE_DMA
4792 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4793 {
4794 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4795 }
4796 SLAB_ATTR_RO(cache_dma);
4797 #endif
4798 
4799 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4800 {
4801 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4802 }
4803 SLAB_ATTR_RO(destroy_by_rcu);
4804 
4805 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4806 {
4807 	return sprintf(buf, "%d\n", s->reserved);
4808 }
4809 SLAB_ATTR_RO(reserved);
4810 
4811 #ifdef CONFIG_SLUB_DEBUG
4812 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4813 {
4814 	return show_slab_objects(s, buf, SO_ALL);
4815 }
4816 SLAB_ATTR_RO(slabs);
4817 
4818 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4819 {
4820 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4821 }
4822 SLAB_ATTR_RO(total_objects);
4823 
4824 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4825 {
4826 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4827 }
4828 
4829 static ssize_t sanity_checks_store(struct kmem_cache *s,
4830 				const char *buf, size_t length)
4831 {
4832 	s->flags &= ~SLAB_DEBUG_FREE;
4833 	if (buf[0] == '1') {
4834 		s->flags &= ~__CMPXCHG_DOUBLE;
4835 		s->flags |= SLAB_DEBUG_FREE;
4836 	}
4837 	return length;
4838 }
4839 SLAB_ATTR(sanity_checks);
4840 
4841 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4842 {
4843 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4844 }
4845 
4846 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4847 							size_t length)
4848 {
4849 	s->flags &= ~SLAB_TRACE;
4850 	if (buf[0] == '1') {
4851 		s->flags &= ~__CMPXCHG_DOUBLE;
4852 		s->flags |= SLAB_TRACE;
4853 	}
4854 	return length;
4855 }
4856 SLAB_ATTR(trace);
4857 
4858 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4859 {
4860 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4861 }
4862 
4863 static ssize_t red_zone_store(struct kmem_cache *s,
4864 				const char *buf, size_t length)
4865 {
4866 	if (any_slab_objects(s))
4867 		return -EBUSY;
4868 
4869 	s->flags &= ~SLAB_RED_ZONE;
4870 	if (buf[0] == '1') {
4871 		s->flags &= ~__CMPXCHG_DOUBLE;
4872 		s->flags |= SLAB_RED_ZONE;
4873 	}
4874 	calculate_sizes(s, -1);
4875 	return length;
4876 }
4877 SLAB_ATTR(red_zone);
4878 
4879 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4880 {
4881 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4882 }
4883 
4884 static ssize_t poison_store(struct kmem_cache *s,
4885 				const char *buf, size_t length)
4886 {
4887 	if (any_slab_objects(s))
4888 		return -EBUSY;
4889 
4890 	s->flags &= ~SLAB_POISON;
4891 	if (buf[0] == '1') {
4892 		s->flags &= ~__CMPXCHG_DOUBLE;
4893 		s->flags |= SLAB_POISON;
4894 	}
4895 	calculate_sizes(s, -1);
4896 	return length;
4897 }
4898 SLAB_ATTR(poison);
4899 
4900 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4901 {
4902 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4903 }
4904 
4905 static ssize_t store_user_store(struct kmem_cache *s,
4906 				const char *buf, size_t length)
4907 {
4908 	if (any_slab_objects(s))
4909 		return -EBUSY;
4910 
4911 	s->flags &= ~SLAB_STORE_USER;
4912 	if (buf[0] == '1') {
4913 		s->flags &= ~__CMPXCHG_DOUBLE;
4914 		s->flags |= SLAB_STORE_USER;
4915 	}
4916 	calculate_sizes(s, -1);
4917 	return length;
4918 }
4919 SLAB_ATTR(store_user);
4920 
4921 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4922 {
4923 	return 0;
4924 }
4925 
4926 static ssize_t validate_store(struct kmem_cache *s,
4927 			const char *buf, size_t length)
4928 {
4929 	int ret = -EINVAL;
4930 
4931 	if (buf[0] == '1') {
4932 		ret = validate_slab_cache(s);
4933 		if (ret >= 0)
4934 			ret = length;
4935 	}
4936 	return ret;
4937 }
4938 SLAB_ATTR(validate);
4939 
4940 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4941 {
4942 	if (!(s->flags & SLAB_STORE_USER))
4943 		return -ENOSYS;
4944 	return list_locations(s, buf, TRACK_ALLOC);
4945 }
4946 SLAB_ATTR_RO(alloc_calls);
4947 
4948 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4949 {
4950 	if (!(s->flags & SLAB_STORE_USER))
4951 		return -ENOSYS;
4952 	return list_locations(s, buf, TRACK_FREE);
4953 }
4954 SLAB_ATTR_RO(free_calls);
4955 #endif /* CONFIG_SLUB_DEBUG */
4956 
4957 #ifdef CONFIG_FAILSLAB
4958 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4959 {
4960 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4961 }
4962 
4963 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4964 							size_t length)
4965 {
4966 	s->flags &= ~SLAB_FAILSLAB;
4967 	if (buf[0] == '1')
4968 		s->flags |= SLAB_FAILSLAB;
4969 	return length;
4970 }
4971 SLAB_ATTR(failslab);
4972 #endif
4973 
4974 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4975 {
4976 	return 0;
4977 }
4978 
4979 static ssize_t shrink_store(struct kmem_cache *s,
4980 			const char *buf, size_t length)
4981 {
4982 	if (buf[0] == '1') {
4983 		int rc = kmem_cache_shrink(s);
4984 
4985 		if (rc)
4986 			return rc;
4987 	} else
4988 		return -EINVAL;
4989 	return length;
4990 }
4991 SLAB_ATTR(shrink);
4992 
4993 #ifdef CONFIG_NUMA
4994 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4995 {
4996 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4997 }
4998 
4999 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5000 				const char *buf, size_t length)
5001 {
5002 	unsigned long ratio;
5003 	int err;
5004 
5005 	err = strict_strtoul(buf, 10, &ratio);
5006 	if (err)
5007 		return err;
5008 
5009 	if (ratio <= 100)
5010 		s->remote_node_defrag_ratio = ratio * 10;
5011 
5012 	return length;
5013 }
5014 SLAB_ATTR(remote_node_defrag_ratio);
5015 #endif
5016 
5017 #ifdef CONFIG_SLUB_STATS
5018 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5019 {
5020 	unsigned long sum  = 0;
5021 	int cpu;
5022 	int len;
5023 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5024 
5025 	if (!data)
5026 		return -ENOMEM;
5027 
5028 	for_each_online_cpu(cpu) {
5029 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5030 
5031 		data[cpu] = x;
5032 		sum += x;
5033 	}
5034 
5035 	len = sprintf(buf, "%lu", sum);
5036 
5037 #ifdef CONFIG_SMP
5038 	for_each_online_cpu(cpu) {
5039 		if (data[cpu] && len < PAGE_SIZE - 20)
5040 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5041 	}
5042 #endif
5043 	kfree(data);
5044 	return len + sprintf(buf + len, "\n");
5045 }
5046 
5047 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5048 {
5049 	int cpu;
5050 
5051 	for_each_online_cpu(cpu)
5052 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5053 }
5054 
5055 #define STAT_ATTR(si, text) 					\
5056 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5057 {								\
5058 	return show_stat(s, buf, si);				\
5059 }								\
5060 static ssize_t text##_store(struct kmem_cache *s,		\
5061 				const char *buf, size_t length)	\
5062 {								\
5063 	if (buf[0] != '0')					\
5064 		return -EINVAL;					\
5065 	clear_stat(s, si);					\
5066 	return length;						\
5067 }								\
5068 SLAB_ATTR(text);						\
5069 
5070 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5071 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5072 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5073 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5074 STAT_ATTR(FREE_FROZEN, free_frozen);
5075 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5076 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5077 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5078 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5079 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5080 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5081 STAT_ATTR(FREE_SLAB, free_slab);
5082 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5083 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5084 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5085 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5086 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5087 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5088 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5089 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5090 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5091 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5092 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5093 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5094 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5095 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5096 #endif
5097 
5098 static struct attribute *slab_attrs[] = {
5099 	&slab_size_attr.attr,
5100 	&object_size_attr.attr,
5101 	&objs_per_slab_attr.attr,
5102 	&order_attr.attr,
5103 	&min_partial_attr.attr,
5104 	&cpu_partial_attr.attr,
5105 	&objects_attr.attr,
5106 	&objects_partial_attr.attr,
5107 	&partial_attr.attr,
5108 	&cpu_slabs_attr.attr,
5109 	&ctor_attr.attr,
5110 	&aliases_attr.attr,
5111 	&align_attr.attr,
5112 	&hwcache_align_attr.attr,
5113 	&reclaim_account_attr.attr,
5114 	&destroy_by_rcu_attr.attr,
5115 	&shrink_attr.attr,
5116 	&reserved_attr.attr,
5117 	&slabs_cpu_partial_attr.attr,
5118 #ifdef CONFIG_SLUB_DEBUG
5119 	&total_objects_attr.attr,
5120 	&slabs_attr.attr,
5121 	&sanity_checks_attr.attr,
5122 	&trace_attr.attr,
5123 	&red_zone_attr.attr,
5124 	&poison_attr.attr,
5125 	&store_user_attr.attr,
5126 	&validate_attr.attr,
5127 	&alloc_calls_attr.attr,
5128 	&free_calls_attr.attr,
5129 #endif
5130 #ifdef CONFIG_ZONE_DMA
5131 	&cache_dma_attr.attr,
5132 #endif
5133 #ifdef CONFIG_NUMA
5134 	&remote_node_defrag_ratio_attr.attr,
5135 #endif
5136 #ifdef CONFIG_SLUB_STATS
5137 	&alloc_fastpath_attr.attr,
5138 	&alloc_slowpath_attr.attr,
5139 	&free_fastpath_attr.attr,
5140 	&free_slowpath_attr.attr,
5141 	&free_frozen_attr.attr,
5142 	&free_add_partial_attr.attr,
5143 	&free_remove_partial_attr.attr,
5144 	&alloc_from_partial_attr.attr,
5145 	&alloc_slab_attr.attr,
5146 	&alloc_refill_attr.attr,
5147 	&alloc_node_mismatch_attr.attr,
5148 	&free_slab_attr.attr,
5149 	&cpuslab_flush_attr.attr,
5150 	&deactivate_full_attr.attr,
5151 	&deactivate_empty_attr.attr,
5152 	&deactivate_to_head_attr.attr,
5153 	&deactivate_to_tail_attr.attr,
5154 	&deactivate_remote_frees_attr.attr,
5155 	&deactivate_bypass_attr.attr,
5156 	&order_fallback_attr.attr,
5157 	&cmpxchg_double_fail_attr.attr,
5158 	&cmpxchg_double_cpu_fail_attr.attr,
5159 	&cpu_partial_alloc_attr.attr,
5160 	&cpu_partial_free_attr.attr,
5161 	&cpu_partial_node_attr.attr,
5162 	&cpu_partial_drain_attr.attr,
5163 #endif
5164 #ifdef CONFIG_FAILSLAB
5165 	&failslab_attr.attr,
5166 #endif
5167 
5168 	NULL
5169 };
5170 
5171 static struct attribute_group slab_attr_group = {
5172 	.attrs = slab_attrs,
5173 };
5174 
5175 static ssize_t slab_attr_show(struct kobject *kobj,
5176 				struct attribute *attr,
5177 				char *buf)
5178 {
5179 	struct slab_attribute *attribute;
5180 	struct kmem_cache *s;
5181 	int err;
5182 
5183 	attribute = to_slab_attr(attr);
5184 	s = to_slab(kobj);
5185 
5186 	if (!attribute->show)
5187 		return -EIO;
5188 
5189 	err = attribute->show(s, buf);
5190 
5191 	return err;
5192 }
5193 
5194 static ssize_t slab_attr_store(struct kobject *kobj,
5195 				struct attribute *attr,
5196 				const char *buf, size_t len)
5197 {
5198 	struct slab_attribute *attribute;
5199 	struct kmem_cache *s;
5200 	int err;
5201 
5202 	attribute = to_slab_attr(attr);
5203 	s = to_slab(kobj);
5204 
5205 	if (!attribute->store)
5206 		return -EIO;
5207 
5208 	err = attribute->store(s, buf, len);
5209 
5210 	return err;
5211 }
5212 
5213 static void kmem_cache_release(struct kobject *kobj)
5214 {
5215 	struct kmem_cache *s = to_slab(kobj);
5216 
5217 	kfree(s->name);
5218 	kfree(s);
5219 }
5220 
5221 static const struct sysfs_ops slab_sysfs_ops = {
5222 	.show = slab_attr_show,
5223 	.store = slab_attr_store,
5224 };
5225 
5226 static struct kobj_type slab_ktype = {
5227 	.sysfs_ops = &slab_sysfs_ops,
5228 	.release = kmem_cache_release
5229 };
5230 
5231 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5232 {
5233 	struct kobj_type *ktype = get_ktype(kobj);
5234 
5235 	if (ktype == &slab_ktype)
5236 		return 1;
5237 	return 0;
5238 }
5239 
5240 static const struct kset_uevent_ops slab_uevent_ops = {
5241 	.filter = uevent_filter,
5242 };
5243 
5244 static struct kset *slab_kset;
5245 
5246 #define ID_STR_LENGTH 64
5247 
5248 /* Create a unique string id for a slab cache:
5249  *
5250  * Format	:[flags-]size
5251  */
5252 static char *create_unique_id(struct kmem_cache *s)
5253 {
5254 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5255 	char *p = name;
5256 
5257 	BUG_ON(!name);
5258 
5259 	*p++ = ':';
5260 	/*
5261 	 * First flags affecting slabcache operations. We will only
5262 	 * get here for aliasable slabs so we do not need to support
5263 	 * too many flags. The flags here must cover all flags that
5264 	 * are matched during merging to guarantee that the id is
5265 	 * unique.
5266 	 */
5267 	if (s->flags & SLAB_CACHE_DMA)
5268 		*p++ = 'd';
5269 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5270 		*p++ = 'a';
5271 	if (s->flags & SLAB_DEBUG_FREE)
5272 		*p++ = 'F';
5273 	if (!(s->flags & SLAB_NOTRACK))
5274 		*p++ = 't';
5275 	if (p != name + 1)
5276 		*p++ = '-';
5277 	p += sprintf(p, "%07d", s->size);
5278 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5279 	return name;
5280 }
5281 
5282 static int sysfs_slab_add(struct kmem_cache *s)
5283 {
5284 	int err;
5285 	const char *name;
5286 	int unmergeable;
5287 
5288 	if (slab_state < FULL)
5289 		/* Defer until later */
5290 		return 0;
5291 
5292 	unmergeable = slab_unmergeable(s);
5293 	if (unmergeable) {
5294 		/*
5295 		 * Slabcache can never be merged so we can use the name proper.
5296 		 * This is typically the case for debug situations. In that
5297 		 * case we can catch duplicate names easily.
5298 		 */
5299 		sysfs_remove_link(&slab_kset->kobj, s->name);
5300 		name = s->name;
5301 	} else {
5302 		/*
5303 		 * Create a unique name for the slab as a target
5304 		 * for the symlinks.
5305 		 */
5306 		name = create_unique_id(s);
5307 	}
5308 
5309 	s->kobj.kset = slab_kset;
5310 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5311 	if (err) {
5312 		kobject_put(&s->kobj);
5313 		return err;
5314 	}
5315 
5316 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5317 	if (err) {
5318 		kobject_del(&s->kobj);
5319 		kobject_put(&s->kobj);
5320 		return err;
5321 	}
5322 	kobject_uevent(&s->kobj, KOBJ_ADD);
5323 	if (!unmergeable) {
5324 		/* Setup first alias */
5325 		sysfs_slab_alias(s, s->name);
5326 		kfree(name);
5327 	}
5328 	return 0;
5329 }
5330 
5331 static void sysfs_slab_remove(struct kmem_cache *s)
5332 {
5333 	if (slab_state < FULL)
5334 		/*
5335 		 * Sysfs has not been setup yet so no need to remove the
5336 		 * cache from sysfs.
5337 		 */
5338 		return;
5339 
5340 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5341 	kobject_del(&s->kobj);
5342 	kobject_put(&s->kobj);
5343 }
5344 
5345 /*
5346  * Need to buffer aliases during bootup until sysfs becomes
5347  * available lest we lose that information.
5348  */
5349 struct saved_alias {
5350 	struct kmem_cache *s;
5351 	const char *name;
5352 	struct saved_alias *next;
5353 };
5354 
5355 static struct saved_alias *alias_list;
5356 
5357 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5358 {
5359 	struct saved_alias *al;
5360 
5361 	if (slab_state == FULL) {
5362 		/*
5363 		 * If we have a leftover link then remove it.
5364 		 */
5365 		sysfs_remove_link(&slab_kset->kobj, name);
5366 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5367 	}
5368 
5369 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5370 	if (!al)
5371 		return -ENOMEM;
5372 
5373 	al->s = s;
5374 	al->name = name;
5375 	al->next = alias_list;
5376 	alias_list = al;
5377 	return 0;
5378 }
5379 
5380 static int __init slab_sysfs_init(void)
5381 {
5382 	struct kmem_cache *s;
5383 	int err;
5384 
5385 	mutex_lock(&slab_mutex);
5386 
5387 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5388 	if (!slab_kset) {
5389 		mutex_unlock(&slab_mutex);
5390 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5391 		return -ENOSYS;
5392 	}
5393 
5394 	slab_state = FULL;
5395 
5396 	list_for_each_entry(s, &slab_caches, list) {
5397 		err = sysfs_slab_add(s);
5398 		if (err)
5399 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5400 						" to sysfs\n", s->name);
5401 	}
5402 
5403 	while (alias_list) {
5404 		struct saved_alias *al = alias_list;
5405 
5406 		alias_list = alias_list->next;
5407 		err = sysfs_slab_alias(al->s, al->name);
5408 		if (err)
5409 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5410 					" %s to sysfs\n", al->name);
5411 		kfree(al);
5412 	}
5413 
5414 	mutex_unlock(&slab_mutex);
5415 	resiliency_test();
5416 	return 0;
5417 }
5418 
5419 __initcall(slab_sysfs_init);
5420 #endif /* CONFIG_SYSFS */
5421 
5422 /*
5423  * The /proc/slabinfo ABI
5424  */
5425 #ifdef CONFIG_SLABINFO
5426 static void print_slabinfo_header(struct seq_file *m)
5427 {
5428 	seq_puts(m, "slabinfo - version: 2.1\n");
5429 	seq_puts(m, "# name            <active_objs> <num_objs> <object_size> "
5430 		 "<objperslab> <pagesperslab>");
5431 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5432 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5433 	seq_putc(m, '\n');
5434 }
5435 
5436 static void *s_start(struct seq_file *m, loff_t *pos)
5437 {
5438 	loff_t n = *pos;
5439 
5440 	mutex_lock(&slab_mutex);
5441 	if (!n)
5442 		print_slabinfo_header(m);
5443 
5444 	return seq_list_start(&slab_caches, *pos);
5445 }
5446 
5447 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5448 {
5449 	return seq_list_next(p, &slab_caches, pos);
5450 }
5451 
5452 static void s_stop(struct seq_file *m, void *p)
5453 {
5454 	mutex_unlock(&slab_mutex);
5455 }
5456 
5457 static int s_show(struct seq_file *m, void *p)
5458 {
5459 	unsigned long nr_partials = 0;
5460 	unsigned long nr_slabs = 0;
5461 	unsigned long nr_inuse = 0;
5462 	unsigned long nr_objs = 0;
5463 	unsigned long nr_free = 0;
5464 	struct kmem_cache *s;
5465 	int node;
5466 
5467 	s = list_entry(p, struct kmem_cache, list);
5468 
5469 	for_each_online_node(node) {
5470 		struct kmem_cache_node *n = get_node(s, node);
5471 
5472 		if (!n)
5473 			continue;
5474 
5475 		nr_partials += n->nr_partial;
5476 		nr_slabs += atomic_long_read(&n->nr_slabs);
5477 		nr_objs += atomic_long_read(&n->total_objects);
5478 		nr_free += count_partial(n, count_free);
5479 	}
5480 
5481 	nr_inuse = nr_objs - nr_free;
5482 
5483 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5484 		   nr_objs, s->size, oo_objects(s->oo),
5485 		   (1 << oo_order(s->oo)));
5486 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5487 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5488 		   0UL);
5489 	seq_putc(m, '\n');
5490 	return 0;
5491 }
5492 
5493 static const struct seq_operations slabinfo_op = {
5494 	.start = s_start,
5495 	.next = s_next,
5496 	.stop = s_stop,
5497 	.show = s_show,
5498 };
5499 
5500 static int slabinfo_open(struct inode *inode, struct file *file)
5501 {
5502 	return seq_open(file, &slabinfo_op);
5503 }
5504 
5505 static const struct file_operations proc_slabinfo_operations = {
5506 	.open		= slabinfo_open,
5507 	.read		= seq_read,
5508 	.llseek		= seq_lseek,
5509 	.release	= seq_release,
5510 };
5511 
5512 static int __init slab_proc_init(void)
5513 {
5514 	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5515 	return 0;
5516 }
5517 module_init(slab_proc_init);
5518 #endif /* CONFIG_SLABINFO */
5519