1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/kmemcheck.h> 23 #include <linux/cpu.h> 24 #include <linux/cpuset.h> 25 #include <linux/mempolicy.h> 26 #include <linux/ctype.h> 27 #include <linux/debugobjects.h> 28 #include <linux/kallsyms.h> 29 #include <linux/memory.h> 30 #include <linux/math64.h> 31 #include <linux/fault-inject.h> 32 #include <linux/stacktrace.h> 33 #include <linux/prefetch.h> 34 35 #include <trace/events/kmem.h> 36 37 #include "internal.h" 38 39 /* 40 * Lock order: 41 * 1. slab_mutex (Global Mutex) 42 * 2. node->list_lock 43 * 3. slab_lock(page) (Only on some arches and for debugging) 44 * 45 * slab_mutex 46 * 47 * The role of the slab_mutex is to protect the list of all the slabs 48 * and to synchronize major metadata changes to slab cache structures. 49 * 50 * The slab_lock is only used for debugging and on arches that do not 51 * have the ability to do a cmpxchg_double. It only protects the second 52 * double word in the page struct. Meaning 53 * A. page->freelist -> List of object free in a page 54 * B. page->counters -> Counters of objects 55 * C. page->frozen -> frozen state 56 * 57 * If a slab is frozen then it is exempt from list management. It is not 58 * on any list. The processor that froze the slab is the one who can 59 * perform list operations on the page. Other processors may put objects 60 * onto the freelist but the processor that froze the slab is the only 61 * one that can retrieve the objects from the page's freelist. 62 * 63 * The list_lock protects the partial and full list on each node and 64 * the partial slab counter. If taken then no new slabs may be added or 65 * removed from the lists nor make the number of partial slabs be modified. 66 * (Note that the total number of slabs is an atomic value that may be 67 * modified without taking the list lock). 68 * 69 * The list_lock is a centralized lock and thus we avoid taking it as 70 * much as possible. As long as SLUB does not have to handle partial 71 * slabs, operations can continue without any centralized lock. F.e. 72 * allocating a long series of objects that fill up slabs does not require 73 * the list lock. 74 * Interrupts are disabled during allocation and deallocation in order to 75 * make the slab allocator safe to use in the context of an irq. In addition 76 * interrupts are disabled to ensure that the processor does not change 77 * while handling per_cpu slabs, due to kernel preemption. 78 * 79 * SLUB assigns one slab for allocation to each processor. 80 * Allocations only occur from these slabs called cpu slabs. 81 * 82 * Slabs with free elements are kept on a partial list and during regular 83 * operations no list for full slabs is used. If an object in a full slab is 84 * freed then the slab will show up again on the partial lists. 85 * We track full slabs for debugging purposes though because otherwise we 86 * cannot scan all objects. 87 * 88 * Slabs are freed when they become empty. Teardown and setup is 89 * minimal so we rely on the page allocators per cpu caches for 90 * fast frees and allocs. 91 * 92 * Overloading of page flags that are otherwise used for LRU management. 93 * 94 * PageActive The slab is frozen and exempt from list processing. 95 * This means that the slab is dedicated to a purpose 96 * such as satisfying allocations for a specific 97 * processor. Objects may be freed in the slab while 98 * it is frozen but slab_free will then skip the usual 99 * list operations. It is up to the processor holding 100 * the slab to integrate the slab into the slab lists 101 * when the slab is no longer needed. 102 * 103 * One use of this flag is to mark slabs that are 104 * used for allocations. Then such a slab becomes a cpu 105 * slab. The cpu slab may be equipped with an additional 106 * freelist that allows lockless access to 107 * free objects in addition to the regular freelist 108 * that requires the slab lock. 109 * 110 * PageError Slab requires special handling due to debug 111 * options set. This moves slab handling out of 112 * the fast path and disables lockless freelists. 113 */ 114 115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 116 SLAB_TRACE | SLAB_DEBUG_FREE) 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 /* 128 * Issues still to be resolved: 129 * 130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 131 * 132 * - Variable sizing of the per node arrays 133 */ 134 135 /* Enable to test recovery from slab corruption on boot */ 136 #undef SLUB_RESILIENCY_TEST 137 138 /* Enable to log cmpxchg failures */ 139 #undef SLUB_DEBUG_CMPXCHG 140 141 /* 142 * Mininum number of partial slabs. These will be left on the partial 143 * lists even if they are empty. kmem_cache_shrink may reclaim them. 144 */ 145 #define MIN_PARTIAL 5 146 147 /* 148 * Maximum number of desirable partial slabs. 149 * The existence of more partial slabs makes kmem_cache_shrink 150 * sort the partial list by the number of objects in the. 151 */ 152 #define MAX_PARTIAL 10 153 154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 155 SLAB_POISON | SLAB_STORE_USER) 156 157 /* 158 * Debugging flags that require metadata to be stored in the slab. These get 159 * disabled when slub_debug=O is used and a cache's min order increases with 160 * metadata. 161 */ 162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 163 164 /* 165 * Set of flags that will prevent slab merging 166 */ 167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 169 SLAB_FAILSLAB) 170 171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 172 SLAB_CACHE_DMA | SLAB_NOTRACK) 173 174 #define OO_SHIFT 16 175 #define OO_MASK ((1 << OO_SHIFT) - 1) 176 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 177 178 /* Internal SLUB flags */ 179 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 180 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 181 182 static int kmem_size = sizeof(struct kmem_cache); 183 184 #ifdef CONFIG_SMP 185 static struct notifier_block slab_notifier; 186 #endif 187 188 /* 189 * Tracking user of a slab. 190 */ 191 #define TRACK_ADDRS_COUNT 16 192 struct track { 193 unsigned long addr; /* Called from address */ 194 #ifdef CONFIG_STACKTRACE 195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 196 #endif 197 int cpu; /* Was running on cpu */ 198 int pid; /* Pid context */ 199 unsigned long when; /* When did the operation occur */ 200 }; 201 202 enum track_item { TRACK_ALLOC, TRACK_FREE }; 203 204 #ifdef CONFIG_SYSFS 205 static int sysfs_slab_add(struct kmem_cache *); 206 static int sysfs_slab_alias(struct kmem_cache *, const char *); 207 static void sysfs_slab_remove(struct kmem_cache *); 208 209 #else 210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 212 { return 0; } 213 static inline void sysfs_slab_remove(struct kmem_cache *s) 214 { 215 kfree(s->name); 216 kfree(s); 217 } 218 219 #endif 220 221 static inline void stat(const struct kmem_cache *s, enum stat_item si) 222 { 223 #ifdef CONFIG_SLUB_STATS 224 __this_cpu_inc(s->cpu_slab->stat[si]); 225 #endif 226 } 227 228 /******************************************************************** 229 * Core slab cache functions 230 *******************************************************************/ 231 232 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 233 { 234 return s->node[node]; 235 } 236 237 /* Verify that a pointer has an address that is valid within a slab page */ 238 static inline int check_valid_pointer(struct kmem_cache *s, 239 struct page *page, const void *object) 240 { 241 void *base; 242 243 if (!object) 244 return 1; 245 246 base = page_address(page); 247 if (object < base || object >= base + page->objects * s->size || 248 (object - base) % s->size) { 249 return 0; 250 } 251 252 return 1; 253 } 254 255 static inline void *get_freepointer(struct kmem_cache *s, void *object) 256 { 257 return *(void **)(object + s->offset); 258 } 259 260 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 261 { 262 prefetch(object + s->offset); 263 } 264 265 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 266 { 267 void *p; 268 269 #ifdef CONFIG_DEBUG_PAGEALLOC 270 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 271 #else 272 p = get_freepointer(s, object); 273 #endif 274 return p; 275 } 276 277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 278 { 279 *(void **)(object + s->offset) = fp; 280 } 281 282 /* Loop over all objects in a slab */ 283 #define for_each_object(__p, __s, __addr, __objects) \ 284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 285 __p += (__s)->size) 286 287 /* Determine object index from a given position */ 288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 289 { 290 return (p - addr) / s->size; 291 } 292 293 static inline size_t slab_ksize(const struct kmem_cache *s) 294 { 295 #ifdef CONFIG_SLUB_DEBUG 296 /* 297 * Debugging requires use of the padding between object 298 * and whatever may come after it. 299 */ 300 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 301 return s->object_size; 302 303 #endif 304 /* 305 * If we have the need to store the freelist pointer 306 * back there or track user information then we can 307 * only use the space before that information. 308 */ 309 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 310 return s->inuse; 311 /* 312 * Else we can use all the padding etc for the allocation 313 */ 314 return s->size; 315 } 316 317 static inline int order_objects(int order, unsigned long size, int reserved) 318 { 319 return ((PAGE_SIZE << order) - reserved) / size; 320 } 321 322 static inline struct kmem_cache_order_objects oo_make(int order, 323 unsigned long size, int reserved) 324 { 325 struct kmem_cache_order_objects x = { 326 (order << OO_SHIFT) + order_objects(order, size, reserved) 327 }; 328 329 return x; 330 } 331 332 static inline int oo_order(struct kmem_cache_order_objects x) 333 { 334 return x.x >> OO_SHIFT; 335 } 336 337 static inline int oo_objects(struct kmem_cache_order_objects x) 338 { 339 return x.x & OO_MASK; 340 } 341 342 /* 343 * Per slab locking using the pagelock 344 */ 345 static __always_inline void slab_lock(struct page *page) 346 { 347 bit_spin_lock(PG_locked, &page->flags); 348 } 349 350 static __always_inline void slab_unlock(struct page *page) 351 { 352 __bit_spin_unlock(PG_locked, &page->flags); 353 } 354 355 /* Interrupts must be disabled (for the fallback code to work right) */ 356 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 357 void *freelist_old, unsigned long counters_old, 358 void *freelist_new, unsigned long counters_new, 359 const char *n) 360 { 361 VM_BUG_ON(!irqs_disabled()); 362 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 363 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 364 if (s->flags & __CMPXCHG_DOUBLE) { 365 if (cmpxchg_double(&page->freelist, &page->counters, 366 freelist_old, counters_old, 367 freelist_new, counters_new)) 368 return 1; 369 } else 370 #endif 371 { 372 slab_lock(page); 373 if (page->freelist == freelist_old && page->counters == counters_old) { 374 page->freelist = freelist_new; 375 page->counters = counters_new; 376 slab_unlock(page); 377 return 1; 378 } 379 slab_unlock(page); 380 } 381 382 cpu_relax(); 383 stat(s, CMPXCHG_DOUBLE_FAIL); 384 385 #ifdef SLUB_DEBUG_CMPXCHG 386 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 387 #endif 388 389 return 0; 390 } 391 392 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 393 void *freelist_old, unsigned long counters_old, 394 void *freelist_new, unsigned long counters_new, 395 const char *n) 396 { 397 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 398 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 399 if (s->flags & __CMPXCHG_DOUBLE) { 400 if (cmpxchg_double(&page->freelist, &page->counters, 401 freelist_old, counters_old, 402 freelist_new, counters_new)) 403 return 1; 404 } else 405 #endif 406 { 407 unsigned long flags; 408 409 local_irq_save(flags); 410 slab_lock(page); 411 if (page->freelist == freelist_old && page->counters == counters_old) { 412 page->freelist = freelist_new; 413 page->counters = counters_new; 414 slab_unlock(page); 415 local_irq_restore(flags); 416 return 1; 417 } 418 slab_unlock(page); 419 local_irq_restore(flags); 420 } 421 422 cpu_relax(); 423 stat(s, CMPXCHG_DOUBLE_FAIL); 424 425 #ifdef SLUB_DEBUG_CMPXCHG 426 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 427 #endif 428 429 return 0; 430 } 431 432 #ifdef CONFIG_SLUB_DEBUG 433 /* 434 * Determine a map of object in use on a page. 435 * 436 * Node listlock must be held to guarantee that the page does 437 * not vanish from under us. 438 */ 439 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 440 { 441 void *p; 442 void *addr = page_address(page); 443 444 for (p = page->freelist; p; p = get_freepointer(s, p)) 445 set_bit(slab_index(p, s, addr), map); 446 } 447 448 /* 449 * Debug settings: 450 */ 451 #ifdef CONFIG_SLUB_DEBUG_ON 452 static int slub_debug = DEBUG_DEFAULT_FLAGS; 453 #else 454 static int slub_debug; 455 #endif 456 457 static char *slub_debug_slabs; 458 static int disable_higher_order_debug; 459 460 /* 461 * Object debugging 462 */ 463 static void print_section(char *text, u8 *addr, unsigned int length) 464 { 465 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 466 length, 1); 467 } 468 469 static struct track *get_track(struct kmem_cache *s, void *object, 470 enum track_item alloc) 471 { 472 struct track *p; 473 474 if (s->offset) 475 p = object + s->offset + sizeof(void *); 476 else 477 p = object + s->inuse; 478 479 return p + alloc; 480 } 481 482 static void set_track(struct kmem_cache *s, void *object, 483 enum track_item alloc, unsigned long addr) 484 { 485 struct track *p = get_track(s, object, alloc); 486 487 if (addr) { 488 #ifdef CONFIG_STACKTRACE 489 struct stack_trace trace; 490 int i; 491 492 trace.nr_entries = 0; 493 trace.max_entries = TRACK_ADDRS_COUNT; 494 trace.entries = p->addrs; 495 trace.skip = 3; 496 save_stack_trace(&trace); 497 498 /* See rant in lockdep.c */ 499 if (trace.nr_entries != 0 && 500 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 501 trace.nr_entries--; 502 503 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 504 p->addrs[i] = 0; 505 #endif 506 p->addr = addr; 507 p->cpu = smp_processor_id(); 508 p->pid = current->pid; 509 p->when = jiffies; 510 } else 511 memset(p, 0, sizeof(struct track)); 512 } 513 514 static void init_tracking(struct kmem_cache *s, void *object) 515 { 516 if (!(s->flags & SLAB_STORE_USER)) 517 return; 518 519 set_track(s, object, TRACK_FREE, 0UL); 520 set_track(s, object, TRACK_ALLOC, 0UL); 521 } 522 523 static void print_track(const char *s, struct track *t) 524 { 525 if (!t->addr) 526 return; 527 528 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 529 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 530 #ifdef CONFIG_STACKTRACE 531 { 532 int i; 533 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 534 if (t->addrs[i]) 535 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 536 else 537 break; 538 } 539 #endif 540 } 541 542 static void print_tracking(struct kmem_cache *s, void *object) 543 { 544 if (!(s->flags & SLAB_STORE_USER)) 545 return; 546 547 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 548 print_track("Freed", get_track(s, object, TRACK_FREE)); 549 } 550 551 static void print_page_info(struct page *page) 552 { 553 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 554 page, page->objects, page->inuse, page->freelist, page->flags); 555 556 } 557 558 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 559 { 560 va_list args; 561 char buf[100]; 562 563 va_start(args, fmt); 564 vsnprintf(buf, sizeof(buf), fmt, args); 565 va_end(args); 566 printk(KERN_ERR "========================================" 567 "=====================================\n"); 568 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 569 printk(KERN_ERR "----------------------------------------" 570 "-------------------------------------\n\n"); 571 } 572 573 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 574 { 575 va_list args; 576 char buf[100]; 577 578 va_start(args, fmt); 579 vsnprintf(buf, sizeof(buf), fmt, args); 580 va_end(args); 581 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 582 } 583 584 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 585 { 586 unsigned int off; /* Offset of last byte */ 587 u8 *addr = page_address(page); 588 589 print_tracking(s, p); 590 591 print_page_info(page); 592 593 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 594 p, p - addr, get_freepointer(s, p)); 595 596 if (p > addr + 16) 597 print_section("Bytes b4 ", p - 16, 16); 598 599 print_section("Object ", p, min_t(unsigned long, s->object_size, 600 PAGE_SIZE)); 601 if (s->flags & SLAB_RED_ZONE) 602 print_section("Redzone ", p + s->object_size, 603 s->inuse - s->object_size); 604 605 if (s->offset) 606 off = s->offset + sizeof(void *); 607 else 608 off = s->inuse; 609 610 if (s->flags & SLAB_STORE_USER) 611 off += 2 * sizeof(struct track); 612 613 if (off != s->size) 614 /* Beginning of the filler is the free pointer */ 615 print_section("Padding ", p + off, s->size - off); 616 617 dump_stack(); 618 } 619 620 static void object_err(struct kmem_cache *s, struct page *page, 621 u8 *object, char *reason) 622 { 623 slab_bug(s, "%s", reason); 624 print_trailer(s, page, object); 625 } 626 627 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 628 { 629 va_list args; 630 char buf[100]; 631 632 va_start(args, fmt); 633 vsnprintf(buf, sizeof(buf), fmt, args); 634 va_end(args); 635 slab_bug(s, "%s", buf); 636 print_page_info(page); 637 dump_stack(); 638 } 639 640 static void init_object(struct kmem_cache *s, void *object, u8 val) 641 { 642 u8 *p = object; 643 644 if (s->flags & __OBJECT_POISON) { 645 memset(p, POISON_FREE, s->object_size - 1); 646 p[s->object_size - 1] = POISON_END; 647 } 648 649 if (s->flags & SLAB_RED_ZONE) 650 memset(p + s->object_size, val, s->inuse - s->object_size); 651 } 652 653 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 654 void *from, void *to) 655 { 656 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 657 memset(from, data, to - from); 658 } 659 660 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 661 u8 *object, char *what, 662 u8 *start, unsigned int value, unsigned int bytes) 663 { 664 u8 *fault; 665 u8 *end; 666 667 fault = memchr_inv(start, value, bytes); 668 if (!fault) 669 return 1; 670 671 end = start + bytes; 672 while (end > fault && end[-1] == value) 673 end--; 674 675 slab_bug(s, "%s overwritten", what); 676 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 677 fault, end - 1, fault[0], value); 678 print_trailer(s, page, object); 679 680 restore_bytes(s, what, value, fault, end); 681 return 0; 682 } 683 684 /* 685 * Object layout: 686 * 687 * object address 688 * Bytes of the object to be managed. 689 * If the freepointer may overlay the object then the free 690 * pointer is the first word of the object. 691 * 692 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 693 * 0xa5 (POISON_END) 694 * 695 * object + s->object_size 696 * Padding to reach word boundary. This is also used for Redzoning. 697 * Padding is extended by another word if Redzoning is enabled and 698 * object_size == inuse. 699 * 700 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 701 * 0xcc (RED_ACTIVE) for objects in use. 702 * 703 * object + s->inuse 704 * Meta data starts here. 705 * 706 * A. Free pointer (if we cannot overwrite object on free) 707 * B. Tracking data for SLAB_STORE_USER 708 * C. Padding to reach required alignment boundary or at mininum 709 * one word if debugging is on to be able to detect writes 710 * before the word boundary. 711 * 712 * Padding is done using 0x5a (POISON_INUSE) 713 * 714 * object + s->size 715 * Nothing is used beyond s->size. 716 * 717 * If slabcaches are merged then the object_size and inuse boundaries are mostly 718 * ignored. And therefore no slab options that rely on these boundaries 719 * may be used with merged slabcaches. 720 */ 721 722 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 723 { 724 unsigned long off = s->inuse; /* The end of info */ 725 726 if (s->offset) 727 /* Freepointer is placed after the object. */ 728 off += sizeof(void *); 729 730 if (s->flags & SLAB_STORE_USER) 731 /* We also have user information there */ 732 off += 2 * sizeof(struct track); 733 734 if (s->size == off) 735 return 1; 736 737 return check_bytes_and_report(s, page, p, "Object padding", 738 p + off, POISON_INUSE, s->size - off); 739 } 740 741 /* Check the pad bytes at the end of a slab page */ 742 static int slab_pad_check(struct kmem_cache *s, struct page *page) 743 { 744 u8 *start; 745 u8 *fault; 746 u8 *end; 747 int length; 748 int remainder; 749 750 if (!(s->flags & SLAB_POISON)) 751 return 1; 752 753 start = page_address(page); 754 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 755 end = start + length; 756 remainder = length % s->size; 757 if (!remainder) 758 return 1; 759 760 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 761 if (!fault) 762 return 1; 763 while (end > fault && end[-1] == POISON_INUSE) 764 end--; 765 766 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 767 print_section("Padding ", end - remainder, remainder); 768 769 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 770 return 0; 771 } 772 773 static int check_object(struct kmem_cache *s, struct page *page, 774 void *object, u8 val) 775 { 776 u8 *p = object; 777 u8 *endobject = object + s->object_size; 778 779 if (s->flags & SLAB_RED_ZONE) { 780 if (!check_bytes_and_report(s, page, object, "Redzone", 781 endobject, val, s->inuse - s->object_size)) 782 return 0; 783 } else { 784 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 785 check_bytes_and_report(s, page, p, "Alignment padding", 786 endobject, POISON_INUSE, s->inuse - s->object_size); 787 } 788 } 789 790 if (s->flags & SLAB_POISON) { 791 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 792 (!check_bytes_and_report(s, page, p, "Poison", p, 793 POISON_FREE, s->object_size - 1) || 794 !check_bytes_and_report(s, page, p, "Poison", 795 p + s->object_size - 1, POISON_END, 1))) 796 return 0; 797 /* 798 * check_pad_bytes cleans up on its own. 799 */ 800 check_pad_bytes(s, page, p); 801 } 802 803 if (!s->offset && val == SLUB_RED_ACTIVE) 804 /* 805 * Object and freepointer overlap. Cannot check 806 * freepointer while object is allocated. 807 */ 808 return 1; 809 810 /* Check free pointer validity */ 811 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 812 object_err(s, page, p, "Freepointer corrupt"); 813 /* 814 * No choice but to zap it and thus lose the remainder 815 * of the free objects in this slab. May cause 816 * another error because the object count is now wrong. 817 */ 818 set_freepointer(s, p, NULL); 819 return 0; 820 } 821 return 1; 822 } 823 824 static int check_slab(struct kmem_cache *s, struct page *page) 825 { 826 int maxobj; 827 828 VM_BUG_ON(!irqs_disabled()); 829 830 if (!PageSlab(page)) { 831 slab_err(s, page, "Not a valid slab page"); 832 return 0; 833 } 834 835 maxobj = order_objects(compound_order(page), s->size, s->reserved); 836 if (page->objects > maxobj) { 837 slab_err(s, page, "objects %u > max %u", 838 s->name, page->objects, maxobj); 839 return 0; 840 } 841 if (page->inuse > page->objects) { 842 slab_err(s, page, "inuse %u > max %u", 843 s->name, page->inuse, page->objects); 844 return 0; 845 } 846 /* Slab_pad_check fixes things up after itself */ 847 slab_pad_check(s, page); 848 return 1; 849 } 850 851 /* 852 * Determine if a certain object on a page is on the freelist. Must hold the 853 * slab lock to guarantee that the chains are in a consistent state. 854 */ 855 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 856 { 857 int nr = 0; 858 void *fp; 859 void *object = NULL; 860 unsigned long max_objects; 861 862 fp = page->freelist; 863 while (fp && nr <= page->objects) { 864 if (fp == search) 865 return 1; 866 if (!check_valid_pointer(s, page, fp)) { 867 if (object) { 868 object_err(s, page, object, 869 "Freechain corrupt"); 870 set_freepointer(s, object, NULL); 871 break; 872 } else { 873 slab_err(s, page, "Freepointer corrupt"); 874 page->freelist = NULL; 875 page->inuse = page->objects; 876 slab_fix(s, "Freelist cleared"); 877 return 0; 878 } 879 break; 880 } 881 object = fp; 882 fp = get_freepointer(s, object); 883 nr++; 884 } 885 886 max_objects = order_objects(compound_order(page), s->size, s->reserved); 887 if (max_objects > MAX_OBJS_PER_PAGE) 888 max_objects = MAX_OBJS_PER_PAGE; 889 890 if (page->objects != max_objects) { 891 slab_err(s, page, "Wrong number of objects. Found %d but " 892 "should be %d", page->objects, max_objects); 893 page->objects = max_objects; 894 slab_fix(s, "Number of objects adjusted."); 895 } 896 if (page->inuse != page->objects - nr) { 897 slab_err(s, page, "Wrong object count. Counter is %d but " 898 "counted were %d", page->inuse, page->objects - nr); 899 page->inuse = page->objects - nr; 900 slab_fix(s, "Object count adjusted."); 901 } 902 return search == NULL; 903 } 904 905 static void trace(struct kmem_cache *s, struct page *page, void *object, 906 int alloc) 907 { 908 if (s->flags & SLAB_TRACE) { 909 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 910 s->name, 911 alloc ? "alloc" : "free", 912 object, page->inuse, 913 page->freelist); 914 915 if (!alloc) 916 print_section("Object ", (void *)object, s->object_size); 917 918 dump_stack(); 919 } 920 } 921 922 /* 923 * Hooks for other subsystems that check memory allocations. In a typical 924 * production configuration these hooks all should produce no code at all. 925 */ 926 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 927 { 928 flags &= gfp_allowed_mask; 929 lockdep_trace_alloc(flags); 930 might_sleep_if(flags & __GFP_WAIT); 931 932 return should_failslab(s->object_size, flags, s->flags); 933 } 934 935 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 936 { 937 flags &= gfp_allowed_mask; 938 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 939 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 940 } 941 942 static inline void slab_free_hook(struct kmem_cache *s, void *x) 943 { 944 kmemleak_free_recursive(x, s->flags); 945 946 /* 947 * Trouble is that we may no longer disable interupts in the fast path 948 * So in order to make the debug calls that expect irqs to be 949 * disabled we need to disable interrupts temporarily. 950 */ 951 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 952 { 953 unsigned long flags; 954 955 local_irq_save(flags); 956 kmemcheck_slab_free(s, x, s->object_size); 957 debug_check_no_locks_freed(x, s->object_size); 958 local_irq_restore(flags); 959 } 960 #endif 961 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 962 debug_check_no_obj_freed(x, s->object_size); 963 } 964 965 /* 966 * Tracking of fully allocated slabs for debugging purposes. 967 * 968 * list_lock must be held. 969 */ 970 static void add_full(struct kmem_cache *s, 971 struct kmem_cache_node *n, struct page *page) 972 { 973 if (!(s->flags & SLAB_STORE_USER)) 974 return; 975 976 list_add(&page->lru, &n->full); 977 } 978 979 /* 980 * list_lock must be held. 981 */ 982 static void remove_full(struct kmem_cache *s, struct page *page) 983 { 984 if (!(s->flags & SLAB_STORE_USER)) 985 return; 986 987 list_del(&page->lru); 988 } 989 990 /* Tracking of the number of slabs for debugging purposes */ 991 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 992 { 993 struct kmem_cache_node *n = get_node(s, node); 994 995 return atomic_long_read(&n->nr_slabs); 996 } 997 998 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 999 { 1000 return atomic_long_read(&n->nr_slabs); 1001 } 1002 1003 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1004 { 1005 struct kmem_cache_node *n = get_node(s, node); 1006 1007 /* 1008 * May be called early in order to allocate a slab for the 1009 * kmem_cache_node structure. Solve the chicken-egg 1010 * dilemma by deferring the increment of the count during 1011 * bootstrap (see early_kmem_cache_node_alloc). 1012 */ 1013 if (n) { 1014 atomic_long_inc(&n->nr_slabs); 1015 atomic_long_add(objects, &n->total_objects); 1016 } 1017 } 1018 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1019 { 1020 struct kmem_cache_node *n = get_node(s, node); 1021 1022 atomic_long_dec(&n->nr_slabs); 1023 atomic_long_sub(objects, &n->total_objects); 1024 } 1025 1026 /* Object debug checks for alloc/free paths */ 1027 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1028 void *object) 1029 { 1030 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1031 return; 1032 1033 init_object(s, object, SLUB_RED_INACTIVE); 1034 init_tracking(s, object); 1035 } 1036 1037 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1038 void *object, unsigned long addr) 1039 { 1040 if (!check_slab(s, page)) 1041 goto bad; 1042 1043 if (!check_valid_pointer(s, page, object)) { 1044 object_err(s, page, object, "Freelist Pointer check fails"); 1045 goto bad; 1046 } 1047 1048 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1049 goto bad; 1050 1051 /* Success perform special debug activities for allocs */ 1052 if (s->flags & SLAB_STORE_USER) 1053 set_track(s, object, TRACK_ALLOC, addr); 1054 trace(s, page, object, 1); 1055 init_object(s, object, SLUB_RED_ACTIVE); 1056 return 1; 1057 1058 bad: 1059 if (PageSlab(page)) { 1060 /* 1061 * If this is a slab page then lets do the best we can 1062 * to avoid issues in the future. Marking all objects 1063 * as used avoids touching the remaining objects. 1064 */ 1065 slab_fix(s, "Marking all objects used"); 1066 page->inuse = page->objects; 1067 page->freelist = NULL; 1068 } 1069 return 0; 1070 } 1071 1072 static noinline int free_debug_processing(struct kmem_cache *s, 1073 struct page *page, void *object, unsigned long addr) 1074 { 1075 unsigned long flags; 1076 int rc = 0; 1077 1078 local_irq_save(flags); 1079 slab_lock(page); 1080 1081 if (!check_slab(s, page)) 1082 goto fail; 1083 1084 if (!check_valid_pointer(s, page, object)) { 1085 slab_err(s, page, "Invalid object pointer 0x%p", object); 1086 goto fail; 1087 } 1088 1089 if (on_freelist(s, page, object)) { 1090 object_err(s, page, object, "Object already free"); 1091 goto fail; 1092 } 1093 1094 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1095 goto out; 1096 1097 if (unlikely(s != page->slab)) { 1098 if (!PageSlab(page)) { 1099 slab_err(s, page, "Attempt to free object(0x%p) " 1100 "outside of slab", object); 1101 } else if (!page->slab) { 1102 printk(KERN_ERR 1103 "SLUB <none>: no slab for object 0x%p.\n", 1104 object); 1105 dump_stack(); 1106 } else 1107 object_err(s, page, object, 1108 "page slab pointer corrupt."); 1109 goto fail; 1110 } 1111 1112 if (s->flags & SLAB_STORE_USER) 1113 set_track(s, object, TRACK_FREE, addr); 1114 trace(s, page, object, 0); 1115 init_object(s, object, SLUB_RED_INACTIVE); 1116 rc = 1; 1117 out: 1118 slab_unlock(page); 1119 local_irq_restore(flags); 1120 return rc; 1121 1122 fail: 1123 slab_fix(s, "Object at 0x%p not freed", object); 1124 goto out; 1125 } 1126 1127 static int __init setup_slub_debug(char *str) 1128 { 1129 slub_debug = DEBUG_DEFAULT_FLAGS; 1130 if (*str++ != '=' || !*str) 1131 /* 1132 * No options specified. Switch on full debugging. 1133 */ 1134 goto out; 1135 1136 if (*str == ',') 1137 /* 1138 * No options but restriction on slabs. This means full 1139 * debugging for slabs matching a pattern. 1140 */ 1141 goto check_slabs; 1142 1143 if (tolower(*str) == 'o') { 1144 /* 1145 * Avoid enabling debugging on caches if its minimum order 1146 * would increase as a result. 1147 */ 1148 disable_higher_order_debug = 1; 1149 goto out; 1150 } 1151 1152 slub_debug = 0; 1153 if (*str == '-') 1154 /* 1155 * Switch off all debugging measures. 1156 */ 1157 goto out; 1158 1159 /* 1160 * Determine which debug features should be switched on 1161 */ 1162 for (; *str && *str != ','; str++) { 1163 switch (tolower(*str)) { 1164 case 'f': 1165 slub_debug |= SLAB_DEBUG_FREE; 1166 break; 1167 case 'z': 1168 slub_debug |= SLAB_RED_ZONE; 1169 break; 1170 case 'p': 1171 slub_debug |= SLAB_POISON; 1172 break; 1173 case 'u': 1174 slub_debug |= SLAB_STORE_USER; 1175 break; 1176 case 't': 1177 slub_debug |= SLAB_TRACE; 1178 break; 1179 case 'a': 1180 slub_debug |= SLAB_FAILSLAB; 1181 break; 1182 default: 1183 printk(KERN_ERR "slub_debug option '%c' " 1184 "unknown. skipped\n", *str); 1185 } 1186 } 1187 1188 check_slabs: 1189 if (*str == ',') 1190 slub_debug_slabs = str + 1; 1191 out: 1192 return 1; 1193 } 1194 1195 __setup("slub_debug", setup_slub_debug); 1196 1197 static unsigned long kmem_cache_flags(unsigned long object_size, 1198 unsigned long flags, const char *name, 1199 void (*ctor)(void *)) 1200 { 1201 /* 1202 * Enable debugging if selected on the kernel commandline. 1203 */ 1204 if (slub_debug && (!slub_debug_slabs || 1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1206 flags |= slub_debug; 1207 1208 return flags; 1209 } 1210 #else 1211 static inline void setup_object_debug(struct kmem_cache *s, 1212 struct page *page, void *object) {} 1213 1214 static inline int alloc_debug_processing(struct kmem_cache *s, 1215 struct page *page, void *object, unsigned long addr) { return 0; } 1216 1217 static inline int free_debug_processing(struct kmem_cache *s, 1218 struct page *page, void *object, unsigned long addr) { return 0; } 1219 1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1221 { return 1; } 1222 static inline int check_object(struct kmem_cache *s, struct page *page, 1223 void *object, u8 val) { return 1; } 1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1225 struct page *page) {} 1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1227 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1228 unsigned long flags, const char *name, 1229 void (*ctor)(void *)) 1230 { 1231 return flags; 1232 } 1233 #define slub_debug 0 1234 1235 #define disable_higher_order_debug 0 1236 1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1238 { return 0; } 1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1240 { return 0; } 1241 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1242 int objects) {} 1243 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1244 int objects) {} 1245 1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1247 { return 0; } 1248 1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1250 void *object) {} 1251 1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1253 1254 #endif /* CONFIG_SLUB_DEBUG */ 1255 1256 /* 1257 * Slab allocation and freeing 1258 */ 1259 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1260 struct kmem_cache_order_objects oo) 1261 { 1262 int order = oo_order(oo); 1263 1264 flags |= __GFP_NOTRACK; 1265 1266 if (node == NUMA_NO_NODE) 1267 return alloc_pages(flags, order); 1268 else 1269 return alloc_pages_exact_node(node, flags, order); 1270 } 1271 1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1273 { 1274 struct page *page; 1275 struct kmem_cache_order_objects oo = s->oo; 1276 gfp_t alloc_gfp; 1277 1278 flags &= gfp_allowed_mask; 1279 1280 if (flags & __GFP_WAIT) 1281 local_irq_enable(); 1282 1283 flags |= s->allocflags; 1284 1285 /* 1286 * Let the initial higher-order allocation fail under memory pressure 1287 * so we fall-back to the minimum order allocation. 1288 */ 1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1290 1291 page = alloc_slab_page(alloc_gfp, node, oo); 1292 if (unlikely(!page)) { 1293 oo = s->min; 1294 /* 1295 * Allocation may have failed due to fragmentation. 1296 * Try a lower order alloc if possible 1297 */ 1298 page = alloc_slab_page(flags, node, oo); 1299 1300 if (page) 1301 stat(s, ORDER_FALLBACK); 1302 } 1303 1304 if (kmemcheck_enabled && page 1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1306 int pages = 1 << oo_order(oo); 1307 1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1309 1310 /* 1311 * Objects from caches that have a constructor don't get 1312 * cleared when they're allocated, so we need to do it here. 1313 */ 1314 if (s->ctor) 1315 kmemcheck_mark_uninitialized_pages(page, pages); 1316 else 1317 kmemcheck_mark_unallocated_pages(page, pages); 1318 } 1319 1320 if (flags & __GFP_WAIT) 1321 local_irq_disable(); 1322 if (!page) 1323 return NULL; 1324 1325 page->objects = oo_objects(oo); 1326 mod_zone_page_state(page_zone(page), 1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1329 1 << oo_order(oo)); 1330 1331 return page; 1332 } 1333 1334 static void setup_object(struct kmem_cache *s, struct page *page, 1335 void *object) 1336 { 1337 setup_object_debug(s, page, object); 1338 if (unlikely(s->ctor)) 1339 s->ctor(object); 1340 } 1341 1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1343 { 1344 struct page *page; 1345 void *start; 1346 void *last; 1347 void *p; 1348 1349 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1350 1351 page = allocate_slab(s, 1352 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1353 if (!page) 1354 goto out; 1355 1356 inc_slabs_node(s, page_to_nid(page), page->objects); 1357 page->slab = s; 1358 __SetPageSlab(page); 1359 if (page->pfmemalloc) 1360 SetPageSlabPfmemalloc(page); 1361 1362 start = page_address(page); 1363 1364 if (unlikely(s->flags & SLAB_POISON)) 1365 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1366 1367 last = start; 1368 for_each_object(p, s, start, page->objects) { 1369 setup_object(s, page, last); 1370 set_freepointer(s, last, p); 1371 last = p; 1372 } 1373 setup_object(s, page, last); 1374 set_freepointer(s, last, NULL); 1375 1376 page->freelist = start; 1377 page->inuse = page->objects; 1378 page->frozen = 1; 1379 out: 1380 return page; 1381 } 1382 1383 static void __free_slab(struct kmem_cache *s, struct page *page) 1384 { 1385 int order = compound_order(page); 1386 int pages = 1 << order; 1387 1388 if (kmem_cache_debug(s)) { 1389 void *p; 1390 1391 slab_pad_check(s, page); 1392 for_each_object(p, s, page_address(page), 1393 page->objects) 1394 check_object(s, page, p, SLUB_RED_INACTIVE); 1395 } 1396 1397 kmemcheck_free_shadow(page, compound_order(page)); 1398 1399 mod_zone_page_state(page_zone(page), 1400 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1401 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1402 -pages); 1403 1404 __ClearPageSlabPfmemalloc(page); 1405 __ClearPageSlab(page); 1406 reset_page_mapcount(page); 1407 if (current->reclaim_state) 1408 current->reclaim_state->reclaimed_slab += pages; 1409 __free_pages(page, order); 1410 } 1411 1412 #define need_reserve_slab_rcu \ 1413 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1414 1415 static void rcu_free_slab(struct rcu_head *h) 1416 { 1417 struct page *page; 1418 1419 if (need_reserve_slab_rcu) 1420 page = virt_to_head_page(h); 1421 else 1422 page = container_of((struct list_head *)h, struct page, lru); 1423 1424 __free_slab(page->slab, page); 1425 } 1426 1427 static void free_slab(struct kmem_cache *s, struct page *page) 1428 { 1429 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1430 struct rcu_head *head; 1431 1432 if (need_reserve_slab_rcu) { 1433 int order = compound_order(page); 1434 int offset = (PAGE_SIZE << order) - s->reserved; 1435 1436 VM_BUG_ON(s->reserved != sizeof(*head)); 1437 head = page_address(page) + offset; 1438 } else { 1439 /* 1440 * RCU free overloads the RCU head over the LRU 1441 */ 1442 head = (void *)&page->lru; 1443 } 1444 1445 call_rcu(head, rcu_free_slab); 1446 } else 1447 __free_slab(s, page); 1448 } 1449 1450 static void discard_slab(struct kmem_cache *s, struct page *page) 1451 { 1452 dec_slabs_node(s, page_to_nid(page), page->objects); 1453 free_slab(s, page); 1454 } 1455 1456 /* 1457 * Management of partially allocated slabs. 1458 * 1459 * list_lock must be held. 1460 */ 1461 static inline void add_partial(struct kmem_cache_node *n, 1462 struct page *page, int tail) 1463 { 1464 n->nr_partial++; 1465 if (tail == DEACTIVATE_TO_TAIL) 1466 list_add_tail(&page->lru, &n->partial); 1467 else 1468 list_add(&page->lru, &n->partial); 1469 } 1470 1471 /* 1472 * list_lock must be held. 1473 */ 1474 static inline void remove_partial(struct kmem_cache_node *n, 1475 struct page *page) 1476 { 1477 list_del(&page->lru); 1478 n->nr_partial--; 1479 } 1480 1481 /* 1482 * Remove slab from the partial list, freeze it and 1483 * return the pointer to the freelist. 1484 * 1485 * Returns a list of objects or NULL if it fails. 1486 * 1487 * Must hold list_lock since we modify the partial list. 1488 */ 1489 static inline void *acquire_slab(struct kmem_cache *s, 1490 struct kmem_cache_node *n, struct page *page, 1491 int mode) 1492 { 1493 void *freelist; 1494 unsigned long counters; 1495 struct page new; 1496 1497 /* 1498 * Zap the freelist and set the frozen bit. 1499 * The old freelist is the list of objects for the 1500 * per cpu allocation list. 1501 */ 1502 freelist = page->freelist; 1503 counters = page->counters; 1504 new.counters = counters; 1505 if (mode) { 1506 new.inuse = page->objects; 1507 new.freelist = NULL; 1508 } else { 1509 new.freelist = freelist; 1510 } 1511 1512 VM_BUG_ON(new.frozen); 1513 new.frozen = 1; 1514 1515 if (!__cmpxchg_double_slab(s, page, 1516 freelist, counters, 1517 new.freelist, new.counters, 1518 "acquire_slab")) 1519 return NULL; 1520 1521 remove_partial(n, page); 1522 WARN_ON(!freelist); 1523 return freelist; 1524 } 1525 1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1527 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1528 1529 /* 1530 * Try to allocate a partial slab from a specific node. 1531 */ 1532 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1533 struct kmem_cache_cpu *c, gfp_t flags) 1534 { 1535 struct page *page, *page2; 1536 void *object = NULL; 1537 1538 /* 1539 * Racy check. If we mistakenly see no partial slabs then we 1540 * just allocate an empty slab. If we mistakenly try to get a 1541 * partial slab and there is none available then get_partials() 1542 * will return NULL. 1543 */ 1544 if (!n || !n->nr_partial) 1545 return NULL; 1546 1547 spin_lock(&n->list_lock); 1548 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1549 void *t; 1550 int available; 1551 1552 if (!pfmemalloc_match(page, flags)) 1553 continue; 1554 1555 t = acquire_slab(s, n, page, object == NULL); 1556 if (!t) 1557 break; 1558 1559 if (!object) { 1560 c->page = page; 1561 stat(s, ALLOC_FROM_PARTIAL); 1562 object = t; 1563 available = page->objects - page->inuse; 1564 } else { 1565 available = put_cpu_partial(s, page, 0); 1566 stat(s, CPU_PARTIAL_NODE); 1567 } 1568 if (kmem_cache_debug(s) || available > s->cpu_partial / 2) 1569 break; 1570 1571 } 1572 spin_unlock(&n->list_lock); 1573 return object; 1574 } 1575 1576 /* 1577 * Get a page from somewhere. Search in increasing NUMA distances. 1578 */ 1579 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1580 struct kmem_cache_cpu *c) 1581 { 1582 #ifdef CONFIG_NUMA 1583 struct zonelist *zonelist; 1584 struct zoneref *z; 1585 struct zone *zone; 1586 enum zone_type high_zoneidx = gfp_zone(flags); 1587 void *object; 1588 unsigned int cpuset_mems_cookie; 1589 1590 /* 1591 * The defrag ratio allows a configuration of the tradeoffs between 1592 * inter node defragmentation and node local allocations. A lower 1593 * defrag_ratio increases the tendency to do local allocations 1594 * instead of attempting to obtain partial slabs from other nodes. 1595 * 1596 * If the defrag_ratio is set to 0 then kmalloc() always 1597 * returns node local objects. If the ratio is higher then kmalloc() 1598 * may return off node objects because partial slabs are obtained 1599 * from other nodes and filled up. 1600 * 1601 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1602 * defrag_ratio = 1000) then every (well almost) allocation will 1603 * first attempt to defrag slab caches on other nodes. This means 1604 * scanning over all nodes to look for partial slabs which may be 1605 * expensive if we do it every time we are trying to find a slab 1606 * with available objects. 1607 */ 1608 if (!s->remote_node_defrag_ratio || 1609 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1610 return NULL; 1611 1612 do { 1613 cpuset_mems_cookie = get_mems_allowed(); 1614 zonelist = node_zonelist(slab_node(), flags); 1615 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1616 struct kmem_cache_node *n; 1617 1618 n = get_node(s, zone_to_nid(zone)); 1619 1620 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1621 n->nr_partial > s->min_partial) { 1622 object = get_partial_node(s, n, c, flags); 1623 if (object) { 1624 /* 1625 * Return the object even if 1626 * put_mems_allowed indicated that 1627 * the cpuset mems_allowed was 1628 * updated in parallel. It's a 1629 * harmless race between the alloc 1630 * and the cpuset update. 1631 */ 1632 put_mems_allowed(cpuset_mems_cookie); 1633 return object; 1634 } 1635 } 1636 } 1637 } while (!put_mems_allowed(cpuset_mems_cookie)); 1638 #endif 1639 return NULL; 1640 } 1641 1642 /* 1643 * Get a partial page, lock it and return it. 1644 */ 1645 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1646 struct kmem_cache_cpu *c) 1647 { 1648 void *object; 1649 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1650 1651 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1652 if (object || node != NUMA_NO_NODE) 1653 return object; 1654 1655 return get_any_partial(s, flags, c); 1656 } 1657 1658 #ifdef CONFIG_PREEMPT 1659 /* 1660 * Calculate the next globally unique transaction for disambiguiation 1661 * during cmpxchg. The transactions start with the cpu number and are then 1662 * incremented by CONFIG_NR_CPUS. 1663 */ 1664 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1665 #else 1666 /* 1667 * No preemption supported therefore also no need to check for 1668 * different cpus. 1669 */ 1670 #define TID_STEP 1 1671 #endif 1672 1673 static inline unsigned long next_tid(unsigned long tid) 1674 { 1675 return tid + TID_STEP; 1676 } 1677 1678 static inline unsigned int tid_to_cpu(unsigned long tid) 1679 { 1680 return tid % TID_STEP; 1681 } 1682 1683 static inline unsigned long tid_to_event(unsigned long tid) 1684 { 1685 return tid / TID_STEP; 1686 } 1687 1688 static inline unsigned int init_tid(int cpu) 1689 { 1690 return cpu; 1691 } 1692 1693 static inline void note_cmpxchg_failure(const char *n, 1694 const struct kmem_cache *s, unsigned long tid) 1695 { 1696 #ifdef SLUB_DEBUG_CMPXCHG 1697 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1698 1699 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1700 1701 #ifdef CONFIG_PREEMPT 1702 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1703 printk("due to cpu change %d -> %d\n", 1704 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1705 else 1706 #endif 1707 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1708 printk("due to cpu running other code. Event %ld->%ld\n", 1709 tid_to_event(tid), tid_to_event(actual_tid)); 1710 else 1711 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1712 actual_tid, tid, next_tid(tid)); 1713 #endif 1714 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1715 } 1716 1717 void init_kmem_cache_cpus(struct kmem_cache *s) 1718 { 1719 int cpu; 1720 1721 for_each_possible_cpu(cpu) 1722 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1723 } 1724 1725 /* 1726 * Remove the cpu slab 1727 */ 1728 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist) 1729 { 1730 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1731 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1732 int lock = 0; 1733 enum slab_modes l = M_NONE, m = M_NONE; 1734 void *nextfree; 1735 int tail = DEACTIVATE_TO_HEAD; 1736 struct page new; 1737 struct page old; 1738 1739 if (page->freelist) { 1740 stat(s, DEACTIVATE_REMOTE_FREES); 1741 tail = DEACTIVATE_TO_TAIL; 1742 } 1743 1744 /* 1745 * Stage one: Free all available per cpu objects back 1746 * to the page freelist while it is still frozen. Leave the 1747 * last one. 1748 * 1749 * There is no need to take the list->lock because the page 1750 * is still frozen. 1751 */ 1752 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1753 void *prior; 1754 unsigned long counters; 1755 1756 do { 1757 prior = page->freelist; 1758 counters = page->counters; 1759 set_freepointer(s, freelist, prior); 1760 new.counters = counters; 1761 new.inuse--; 1762 VM_BUG_ON(!new.frozen); 1763 1764 } while (!__cmpxchg_double_slab(s, page, 1765 prior, counters, 1766 freelist, new.counters, 1767 "drain percpu freelist")); 1768 1769 freelist = nextfree; 1770 } 1771 1772 /* 1773 * Stage two: Ensure that the page is unfrozen while the 1774 * list presence reflects the actual number of objects 1775 * during unfreeze. 1776 * 1777 * We setup the list membership and then perform a cmpxchg 1778 * with the count. If there is a mismatch then the page 1779 * is not unfrozen but the page is on the wrong list. 1780 * 1781 * Then we restart the process which may have to remove 1782 * the page from the list that we just put it on again 1783 * because the number of objects in the slab may have 1784 * changed. 1785 */ 1786 redo: 1787 1788 old.freelist = page->freelist; 1789 old.counters = page->counters; 1790 VM_BUG_ON(!old.frozen); 1791 1792 /* Determine target state of the slab */ 1793 new.counters = old.counters; 1794 if (freelist) { 1795 new.inuse--; 1796 set_freepointer(s, freelist, old.freelist); 1797 new.freelist = freelist; 1798 } else 1799 new.freelist = old.freelist; 1800 1801 new.frozen = 0; 1802 1803 if (!new.inuse && n->nr_partial > s->min_partial) 1804 m = M_FREE; 1805 else if (new.freelist) { 1806 m = M_PARTIAL; 1807 if (!lock) { 1808 lock = 1; 1809 /* 1810 * Taking the spinlock removes the possiblity 1811 * that acquire_slab() will see a slab page that 1812 * is frozen 1813 */ 1814 spin_lock(&n->list_lock); 1815 } 1816 } else { 1817 m = M_FULL; 1818 if (kmem_cache_debug(s) && !lock) { 1819 lock = 1; 1820 /* 1821 * This also ensures that the scanning of full 1822 * slabs from diagnostic functions will not see 1823 * any frozen slabs. 1824 */ 1825 spin_lock(&n->list_lock); 1826 } 1827 } 1828 1829 if (l != m) { 1830 1831 if (l == M_PARTIAL) 1832 1833 remove_partial(n, page); 1834 1835 else if (l == M_FULL) 1836 1837 remove_full(s, page); 1838 1839 if (m == M_PARTIAL) { 1840 1841 add_partial(n, page, tail); 1842 stat(s, tail); 1843 1844 } else if (m == M_FULL) { 1845 1846 stat(s, DEACTIVATE_FULL); 1847 add_full(s, n, page); 1848 1849 } 1850 } 1851 1852 l = m; 1853 if (!__cmpxchg_double_slab(s, page, 1854 old.freelist, old.counters, 1855 new.freelist, new.counters, 1856 "unfreezing slab")) 1857 goto redo; 1858 1859 if (lock) 1860 spin_unlock(&n->list_lock); 1861 1862 if (m == M_FREE) { 1863 stat(s, DEACTIVATE_EMPTY); 1864 discard_slab(s, page); 1865 stat(s, FREE_SLAB); 1866 } 1867 } 1868 1869 /* 1870 * Unfreeze all the cpu partial slabs. 1871 * 1872 * This function must be called with interrupt disabled. 1873 */ 1874 static void unfreeze_partials(struct kmem_cache *s) 1875 { 1876 struct kmem_cache_node *n = NULL, *n2 = NULL; 1877 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); 1878 struct page *page, *discard_page = NULL; 1879 1880 while ((page = c->partial)) { 1881 struct page new; 1882 struct page old; 1883 1884 c->partial = page->next; 1885 1886 n2 = get_node(s, page_to_nid(page)); 1887 if (n != n2) { 1888 if (n) 1889 spin_unlock(&n->list_lock); 1890 1891 n = n2; 1892 spin_lock(&n->list_lock); 1893 } 1894 1895 do { 1896 1897 old.freelist = page->freelist; 1898 old.counters = page->counters; 1899 VM_BUG_ON(!old.frozen); 1900 1901 new.counters = old.counters; 1902 new.freelist = old.freelist; 1903 1904 new.frozen = 0; 1905 1906 } while (!__cmpxchg_double_slab(s, page, 1907 old.freelist, old.counters, 1908 new.freelist, new.counters, 1909 "unfreezing slab")); 1910 1911 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1912 page->next = discard_page; 1913 discard_page = page; 1914 } else { 1915 add_partial(n, page, DEACTIVATE_TO_TAIL); 1916 stat(s, FREE_ADD_PARTIAL); 1917 } 1918 } 1919 1920 if (n) 1921 spin_unlock(&n->list_lock); 1922 1923 while (discard_page) { 1924 page = discard_page; 1925 discard_page = discard_page->next; 1926 1927 stat(s, DEACTIVATE_EMPTY); 1928 discard_slab(s, page); 1929 stat(s, FREE_SLAB); 1930 } 1931 } 1932 1933 /* 1934 * Put a page that was just frozen (in __slab_free) into a partial page 1935 * slot if available. This is done without interrupts disabled and without 1936 * preemption disabled. The cmpxchg is racy and may put the partial page 1937 * onto a random cpus partial slot. 1938 * 1939 * If we did not find a slot then simply move all the partials to the 1940 * per node partial list. 1941 */ 1942 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1943 { 1944 struct page *oldpage; 1945 int pages; 1946 int pobjects; 1947 1948 do { 1949 pages = 0; 1950 pobjects = 0; 1951 oldpage = this_cpu_read(s->cpu_slab->partial); 1952 1953 if (oldpage) { 1954 pobjects = oldpage->pobjects; 1955 pages = oldpage->pages; 1956 if (drain && pobjects > s->cpu_partial) { 1957 unsigned long flags; 1958 /* 1959 * partial array is full. Move the existing 1960 * set to the per node partial list. 1961 */ 1962 local_irq_save(flags); 1963 unfreeze_partials(s); 1964 local_irq_restore(flags); 1965 pobjects = 0; 1966 pages = 0; 1967 stat(s, CPU_PARTIAL_DRAIN); 1968 } 1969 } 1970 1971 pages++; 1972 pobjects += page->objects - page->inuse; 1973 1974 page->pages = pages; 1975 page->pobjects = pobjects; 1976 page->next = oldpage; 1977 1978 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 1979 return pobjects; 1980 } 1981 1982 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1983 { 1984 stat(s, CPUSLAB_FLUSH); 1985 deactivate_slab(s, c->page, c->freelist); 1986 1987 c->tid = next_tid(c->tid); 1988 c->page = NULL; 1989 c->freelist = NULL; 1990 } 1991 1992 /* 1993 * Flush cpu slab. 1994 * 1995 * Called from IPI handler with interrupts disabled. 1996 */ 1997 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1998 { 1999 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2000 2001 if (likely(c)) { 2002 if (c->page) 2003 flush_slab(s, c); 2004 2005 unfreeze_partials(s); 2006 } 2007 } 2008 2009 static void flush_cpu_slab(void *d) 2010 { 2011 struct kmem_cache *s = d; 2012 2013 __flush_cpu_slab(s, smp_processor_id()); 2014 } 2015 2016 static bool has_cpu_slab(int cpu, void *info) 2017 { 2018 struct kmem_cache *s = info; 2019 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2020 2021 return c->page || c->partial; 2022 } 2023 2024 static void flush_all(struct kmem_cache *s) 2025 { 2026 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2027 } 2028 2029 /* 2030 * Check if the objects in a per cpu structure fit numa 2031 * locality expectations. 2032 */ 2033 static inline int node_match(struct page *page, int node) 2034 { 2035 #ifdef CONFIG_NUMA 2036 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2037 return 0; 2038 #endif 2039 return 1; 2040 } 2041 2042 static int count_free(struct page *page) 2043 { 2044 return page->objects - page->inuse; 2045 } 2046 2047 static unsigned long count_partial(struct kmem_cache_node *n, 2048 int (*get_count)(struct page *)) 2049 { 2050 unsigned long flags; 2051 unsigned long x = 0; 2052 struct page *page; 2053 2054 spin_lock_irqsave(&n->list_lock, flags); 2055 list_for_each_entry(page, &n->partial, lru) 2056 x += get_count(page); 2057 spin_unlock_irqrestore(&n->list_lock, flags); 2058 return x; 2059 } 2060 2061 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2062 { 2063 #ifdef CONFIG_SLUB_DEBUG 2064 return atomic_long_read(&n->total_objects); 2065 #else 2066 return 0; 2067 #endif 2068 } 2069 2070 static noinline void 2071 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2072 { 2073 int node; 2074 2075 printk(KERN_WARNING 2076 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2077 nid, gfpflags); 2078 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2079 "default order: %d, min order: %d\n", s->name, s->object_size, 2080 s->size, oo_order(s->oo), oo_order(s->min)); 2081 2082 if (oo_order(s->min) > get_order(s->object_size)) 2083 printk(KERN_WARNING " %s debugging increased min order, use " 2084 "slub_debug=O to disable.\n", s->name); 2085 2086 for_each_online_node(node) { 2087 struct kmem_cache_node *n = get_node(s, node); 2088 unsigned long nr_slabs; 2089 unsigned long nr_objs; 2090 unsigned long nr_free; 2091 2092 if (!n) 2093 continue; 2094 2095 nr_free = count_partial(n, count_free); 2096 nr_slabs = node_nr_slabs(n); 2097 nr_objs = node_nr_objs(n); 2098 2099 printk(KERN_WARNING 2100 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2101 node, nr_slabs, nr_objs, nr_free); 2102 } 2103 } 2104 2105 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2106 int node, struct kmem_cache_cpu **pc) 2107 { 2108 void *freelist; 2109 struct kmem_cache_cpu *c = *pc; 2110 struct page *page; 2111 2112 freelist = get_partial(s, flags, node, c); 2113 2114 if (freelist) 2115 return freelist; 2116 2117 page = new_slab(s, flags, node); 2118 if (page) { 2119 c = __this_cpu_ptr(s->cpu_slab); 2120 if (c->page) 2121 flush_slab(s, c); 2122 2123 /* 2124 * No other reference to the page yet so we can 2125 * muck around with it freely without cmpxchg 2126 */ 2127 freelist = page->freelist; 2128 page->freelist = NULL; 2129 2130 stat(s, ALLOC_SLAB); 2131 c->page = page; 2132 *pc = c; 2133 } else 2134 freelist = NULL; 2135 2136 return freelist; 2137 } 2138 2139 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2140 { 2141 if (unlikely(PageSlabPfmemalloc(page))) 2142 return gfp_pfmemalloc_allowed(gfpflags); 2143 2144 return true; 2145 } 2146 2147 /* 2148 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist 2149 * or deactivate the page. 2150 * 2151 * The page is still frozen if the return value is not NULL. 2152 * 2153 * If this function returns NULL then the page has been unfrozen. 2154 * 2155 * This function must be called with interrupt disabled. 2156 */ 2157 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2158 { 2159 struct page new; 2160 unsigned long counters; 2161 void *freelist; 2162 2163 do { 2164 freelist = page->freelist; 2165 counters = page->counters; 2166 2167 new.counters = counters; 2168 VM_BUG_ON(!new.frozen); 2169 2170 new.inuse = page->objects; 2171 new.frozen = freelist != NULL; 2172 2173 } while (!__cmpxchg_double_slab(s, page, 2174 freelist, counters, 2175 NULL, new.counters, 2176 "get_freelist")); 2177 2178 return freelist; 2179 } 2180 2181 /* 2182 * Slow path. The lockless freelist is empty or we need to perform 2183 * debugging duties. 2184 * 2185 * Processing is still very fast if new objects have been freed to the 2186 * regular freelist. In that case we simply take over the regular freelist 2187 * as the lockless freelist and zap the regular freelist. 2188 * 2189 * If that is not working then we fall back to the partial lists. We take the 2190 * first element of the freelist as the object to allocate now and move the 2191 * rest of the freelist to the lockless freelist. 2192 * 2193 * And if we were unable to get a new slab from the partial slab lists then 2194 * we need to allocate a new slab. This is the slowest path since it involves 2195 * a call to the page allocator and the setup of a new slab. 2196 */ 2197 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2198 unsigned long addr, struct kmem_cache_cpu *c) 2199 { 2200 void *freelist; 2201 struct page *page; 2202 unsigned long flags; 2203 2204 local_irq_save(flags); 2205 #ifdef CONFIG_PREEMPT 2206 /* 2207 * We may have been preempted and rescheduled on a different 2208 * cpu before disabling interrupts. Need to reload cpu area 2209 * pointer. 2210 */ 2211 c = this_cpu_ptr(s->cpu_slab); 2212 #endif 2213 2214 page = c->page; 2215 if (!page) 2216 goto new_slab; 2217 redo: 2218 2219 if (unlikely(!node_match(page, node))) { 2220 stat(s, ALLOC_NODE_MISMATCH); 2221 deactivate_slab(s, page, c->freelist); 2222 c->page = NULL; 2223 c->freelist = NULL; 2224 goto new_slab; 2225 } 2226 2227 /* 2228 * By rights, we should be searching for a slab page that was 2229 * PFMEMALLOC but right now, we are losing the pfmemalloc 2230 * information when the page leaves the per-cpu allocator 2231 */ 2232 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2233 deactivate_slab(s, page, c->freelist); 2234 c->page = NULL; 2235 c->freelist = NULL; 2236 goto new_slab; 2237 } 2238 2239 /* must check again c->freelist in case of cpu migration or IRQ */ 2240 freelist = c->freelist; 2241 if (freelist) 2242 goto load_freelist; 2243 2244 stat(s, ALLOC_SLOWPATH); 2245 2246 freelist = get_freelist(s, page); 2247 2248 if (!freelist) { 2249 c->page = NULL; 2250 stat(s, DEACTIVATE_BYPASS); 2251 goto new_slab; 2252 } 2253 2254 stat(s, ALLOC_REFILL); 2255 2256 load_freelist: 2257 /* 2258 * freelist is pointing to the list of objects to be used. 2259 * page is pointing to the page from which the objects are obtained. 2260 * That page must be frozen for per cpu allocations to work. 2261 */ 2262 VM_BUG_ON(!c->page->frozen); 2263 c->freelist = get_freepointer(s, freelist); 2264 c->tid = next_tid(c->tid); 2265 local_irq_restore(flags); 2266 return freelist; 2267 2268 new_slab: 2269 2270 if (c->partial) { 2271 page = c->page = c->partial; 2272 c->partial = page->next; 2273 stat(s, CPU_PARTIAL_ALLOC); 2274 c->freelist = NULL; 2275 goto redo; 2276 } 2277 2278 freelist = new_slab_objects(s, gfpflags, node, &c); 2279 2280 if (unlikely(!freelist)) { 2281 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2282 slab_out_of_memory(s, gfpflags, node); 2283 2284 local_irq_restore(flags); 2285 return NULL; 2286 } 2287 2288 page = c->page; 2289 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2290 goto load_freelist; 2291 2292 /* Only entered in the debug case */ 2293 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr)) 2294 goto new_slab; /* Slab failed checks. Next slab needed */ 2295 2296 deactivate_slab(s, page, get_freepointer(s, freelist)); 2297 c->page = NULL; 2298 c->freelist = NULL; 2299 local_irq_restore(flags); 2300 return freelist; 2301 } 2302 2303 /* 2304 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2305 * have the fastpath folded into their functions. So no function call 2306 * overhead for requests that can be satisfied on the fastpath. 2307 * 2308 * The fastpath works by first checking if the lockless freelist can be used. 2309 * If not then __slab_alloc is called for slow processing. 2310 * 2311 * Otherwise we can simply pick the next object from the lockless free list. 2312 */ 2313 static __always_inline void *slab_alloc(struct kmem_cache *s, 2314 gfp_t gfpflags, int node, unsigned long addr) 2315 { 2316 void **object; 2317 struct kmem_cache_cpu *c; 2318 struct page *page; 2319 unsigned long tid; 2320 2321 if (slab_pre_alloc_hook(s, gfpflags)) 2322 return NULL; 2323 2324 redo: 2325 2326 /* 2327 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2328 * enabled. We may switch back and forth between cpus while 2329 * reading from one cpu area. That does not matter as long 2330 * as we end up on the original cpu again when doing the cmpxchg. 2331 */ 2332 c = __this_cpu_ptr(s->cpu_slab); 2333 2334 /* 2335 * The transaction ids are globally unique per cpu and per operation on 2336 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2337 * occurs on the right processor and that there was no operation on the 2338 * linked list in between. 2339 */ 2340 tid = c->tid; 2341 barrier(); 2342 2343 object = c->freelist; 2344 page = c->page; 2345 if (unlikely(!object || !node_match(page, node))) 2346 object = __slab_alloc(s, gfpflags, node, addr, c); 2347 2348 else { 2349 void *next_object = get_freepointer_safe(s, object); 2350 2351 /* 2352 * The cmpxchg will only match if there was no additional 2353 * operation and if we are on the right processor. 2354 * 2355 * The cmpxchg does the following atomically (without lock semantics!) 2356 * 1. Relocate first pointer to the current per cpu area. 2357 * 2. Verify that tid and freelist have not been changed 2358 * 3. If they were not changed replace tid and freelist 2359 * 2360 * Since this is without lock semantics the protection is only against 2361 * code executing on this cpu *not* from access by other cpus. 2362 */ 2363 if (unlikely(!this_cpu_cmpxchg_double( 2364 s->cpu_slab->freelist, s->cpu_slab->tid, 2365 object, tid, 2366 next_object, next_tid(tid)))) { 2367 2368 note_cmpxchg_failure("slab_alloc", s, tid); 2369 goto redo; 2370 } 2371 prefetch_freepointer(s, next_object); 2372 stat(s, ALLOC_FASTPATH); 2373 } 2374 2375 if (unlikely(gfpflags & __GFP_ZERO) && object) 2376 memset(object, 0, s->object_size); 2377 2378 slab_post_alloc_hook(s, gfpflags, object); 2379 2380 return object; 2381 } 2382 2383 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2384 { 2385 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2386 2387 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags); 2388 2389 return ret; 2390 } 2391 EXPORT_SYMBOL(kmem_cache_alloc); 2392 2393 #ifdef CONFIG_TRACING 2394 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2395 { 2396 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2397 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2398 return ret; 2399 } 2400 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2401 2402 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2403 { 2404 void *ret = kmalloc_order(size, flags, order); 2405 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2406 return ret; 2407 } 2408 EXPORT_SYMBOL(kmalloc_order_trace); 2409 #endif 2410 2411 #ifdef CONFIG_NUMA 2412 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2413 { 2414 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2415 2416 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2417 s->object_size, s->size, gfpflags, node); 2418 2419 return ret; 2420 } 2421 EXPORT_SYMBOL(kmem_cache_alloc_node); 2422 2423 #ifdef CONFIG_TRACING 2424 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2425 gfp_t gfpflags, 2426 int node, size_t size) 2427 { 2428 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2429 2430 trace_kmalloc_node(_RET_IP_, ret, 2431 size, s->size, gfpflags, node); 2432 return ret; 2433 } 2434 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2435 #endif 2436 #endif 2437 2438 /* 2439 * Slow patch handling. This may still be called frequently since objects 2440 * have a longer lifetime than the cpu slabs in most processing loads. 2441 * 2442 * So we still attempt to reduce cache line usage. Just take the slab 2443 * lock and free the item. If there is no additional partial page 2444 * handling required then we can return immediately. 2445 */ 2446 static void __slab_free(struct kmem_cache *s, struct page *page, 2447 void *x, unsigned long addr) 2448 { 2449 void *prior; 2450 void **object = (void *)x; 2451 int was_frozen; 2452 int inuse; 2453 struct page new; 2454 unsigned long counters; 2455 struct kmem_cache_node *n = NULL; 2456 unsigned long uninitialized_var(flags); 2457 2458 stat(s, FREE_SLOWPATH); 2459 2460 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr)) 2461 return; 2462 2463 do { 2464 prior = page->freelist; 2465 counters = page->counters; 2466 set_freepointer(s, object, prior); 2467 new.counters = counters; 2468 was_frozen = new.frozen; 2469 new.inuse--; 2470 if ((!new.inuse || !prior) && !was_frozen && !n) { 2471 2472 if (!kmem_cache_debug(s) && !prior) 2473 2474 /* 2475 * Slab was on no list before and will be partially empty 2476 * We can defer the list move and instead freeze it. 2477 */ 2478 new.frozen = 1; 2479 2480 else { /* Needs to be taken off a list */ 2481 2482 n = get_node(s, page_to_nid(page)); 2483 /* 2484 * Speculatively acquire the list_lock. 2485 * If the cmpxchg does not succeed then we may 2486 * drop the list_lock without any processing. 2487 * 2488 * Otherwise the list_lock will synchronize with 2489 * other processors updating the list of slabs. 2490 */ 2491 spin_lock_irqsave(&n->list_lock, flags); 2492 2493 } 2494 } 2495 inuse = new.inuse; 2496 2497 } while (!cmpxchg_double_slab(s, page, 2498 prior, counters, 2499 object, new.counters, 2500 "__slab_free")); 2501 2502 if (likely(!n)) { 2503 2504 /* 2505 * If we just froze the page then put it onto the 2506 * per cpu partial list. 2507 */ 2508 if (new.frozen && !was_frozen) { 2509 put_cpu_partial(s, page, 1); 2510 stat(s, CPU_PARTIAL_FREE); 2511 } 2512 /* 2513 * The list lock was not taken therefore no list 2514 * activity can be necessary. 2515 */ 2516 if (was_frozen) 2517 stat(s, FREE_FROZEN); 2518 return; 2519 } 2520 2521 /* 2522 * was_frozen may have been set after we acquired the list_lock in 2523 * an earlier loop. So we need to check it here again. 2524 */ 2525 if (was_frozen) 2526 stat(s, FREE_FROZEN); 2527 else { 2528 if (unlikely(!inuse && n->nr_partial > s->min_partial)) 2529 goto slab_empty; 2530 2531 /* 2532 * Objects left in the slab. If it was not on the partial list before 2533 * then add it. 2534 */ 2535 if (unlikely(!prior)) { 2536 remove_full(s, page); 2537 add_partial(n, page, DEACTIVATE_TO_TAIL); 2538 stat(s, FREE_ADD_PARTIAL); 2539 } 2540 } 2541 spin_unlock_irqrestore(&n->list_lock, flags); 2542 return; 2543 2544 slab_empty: 2545 if (prior) { 2546 /* 2547 * Slab on the partial list. 2548 */ 2549 remove_partial(n, page); 2550 stat(s, FREE_REMOVE_PARTIAL); 2551 } else 2552 /* Slab must be on the full list */ 2553 remove_full(s, page); 2554 2555 spin_unlock_irqrestore(&n->list_lock, flags); 2556 stat(s, FREE_SLAB); 2557 discard_slab(s, page); 2558 } 2559 2560 /* 2561 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2562 * can perform fastpath freeing without additional function calls. 2563 * 2564 * The fastpath is only possible if we are freeing to the current cpu slab 2565 * of this processor. This typically the case if we have just allocated 2566 * the item before. 2567 * 2568 * If fastpath is not possible then fall back to __slab_free where we deal 2569 * with all sorts of special processing. 2570 */ 2571 static __always_inline void slab_free(struct kmem_cache *s, 2572 struct page *page, void *x, unsigned long addr) 2573 { 2574 void **object = (void *)x; 2575 struct kmem_cache_cpu *c; 2576 unsigned long tid; 2577 2578 slab_free_hook(s, x); 2579 2580 redo: 2581 /* 2582 * Determine the currently cpus per cpu slab. 2583 * The cpu may change afterward. However that does not matter since 2584 * data is retrieved via this pointer. If we are on the same cpu 2585 * during the cmpxchg then the free will succedd. 2586 */ 2587 c = __this_cpu_ptr(s->cpu_slab); 2588 2589 tid = c->tid; 2590 barrier(); 2591 2592 if (likely(page == c->page)) { 2593 set_freepointer(s, object, c->freelist); 2594 2595 if (unlikely(!this_cpu_cmpxchg_double( 2596 s->cpu_slab->freelist, s->cpu_slab->tid, 2597 c->freelist, tid, 2598 object, next_tid(tid)))) { 2599 2600 note_cmpxchg_failure("slab_free", s, tid); 2601 goto redo; 2602 } 2603 stat(s, FREE_FASTPATH); 2604 } else 2605 __slab_free(s, page, x, addr); 2606 2607 } 2608 2609 void kmem_cache_free(struct kmem_cache *s, void *x) 2610 { 2611 struct page *page; 2612 2613 page = virt_to_head_page(x); 2614 2615 slab_free(s, page, x, _RET_IP_); 2616 2617 trace_kmem_cache_free(_RET_IP_, x); 2618 } 2619 EXPORT_SYMBOL(kmem_cache_free); 2620 2621 /* 2622 * Object placement in a slab is made very easy because we always start at 2623 * offset 0. If we tune the size of the object to the alignment then we can 2624 * get the required alignment by putting one properly sized object after 2625 * another. 2626 * 2627 * Notice that the allocation order determines the sizes of the per cpu 2628 * caches. Each processor has always one slab available for allocations. 2629 * Increasing the allocation order reduces the number of times that slabs 2630 * must be moved on and off the partial lists and is therefore a factor in 2631 * locking overhead. 2632 */ 2633 2634 /* 2635 * Mininum / Maximum order of slab pages. This influences locking overhead 2636 * and slab fragmentation. A higher order reduces the number of partial slabs 2637 * and increases the number of allocations possible without having to 2638 * take the list_lock. 2639 */ 2640 static int slub_min_order; 2641 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2642 static int slub_min_objects; 2643 2644 /* 2645 * Merge control. If this is set then no merging of slab caches will occur. 2646 * (Could be removed. This was introduced to pacify the merge skeptics.) 2647 */ 2648 static int slub_nomerge; 2649 2650 /* 2651 * Calculate the order of allocation given an slab object size. 2652 * 2653 * The order of allocation has significant impact on performance and other 2654 * system components. Generally order 0 allocations should be preferred since 2655 * order 0 does not cause fragmentation in the page allocator. Larger objects 2656 * be problematic to put into order 0 slabs because there may be too much 2657 * unused space left. We go to a higher order if more than 1/16th of the slab 2658 * would be wasted. 2659 * 2660 * In order to reach satisfactory performance we must ensure that a minimum 2661 * number of objects is in one slab. Otherwise we may generate too much 2662 * activity on the partial lists which requires taking the list_lock. This is 2663 * less a concern for large slabs though which are rarely used. 2664 * 2665 * slub_max_order specifies the order where we begin to stop considering the 2666 * number of objects in a slab as critical. If we reach slub_max_order then 2667 * we try to keep the page order as low as possible. So we accept more waste 2668 * of space in favor of a small page order. 2669 * 2670 * Higher order allocations also allow the placement of more objects in a 2671 * slab and thereby reduce object handling overhead. If the user has 2672 * requested a higher mininum order then we start with that one instead of 2673 * the smallest order which will fit the object. 2674 */ 2675 static inline int slab_order(int size, int min_objects, 2676 int max_order, int fract_leftover, int reserved) 2677 { 2678 int order; 2679 int rem; 2680 int min_order = slub_min_order; 2681 2682 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2683 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2684 2685 for (order = max(min_order, 2686 fls(min_objects * size - 1) - PAGE_SHIFT); 2687 order <= max_order; order++) { 2688 2689 unsigned long slab_size = PAGE_SIZE << order; 2690 2691 if (slab_size < min_objects * size + reserved) 2692 continue; 2693 2694 rem = (slab_size - reserved) % size; 2695 2696 if (rem <= slab_size / fract_leftover) 2697 break; 2698 2699 } 2700 2701 return order; 2702 } 2703 2704 static inline int calculate_order(int size, int reserved) 2705 { 2706 int order; 2707 int min_objects; 2708 int fraction; 2709 int max_objects; 2710 2711 /* 2712 * Attempt to find best configuration for a slab. This 2713 * works by first attempting to generate a layout with 2714 * the best configuration and backing off gradually. 2715 * 2716 * First we reduce the acceptable waste in a slab. Then 2717 * we reduce the minimum objects required in a slab. 2718 */ 2719 min_objects = slub_min_objects; 2720 if (!min_objects) 2721 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2722 max_objects = order_objects(slub_max_order, size, reserved); 2723 min_objects = min(min_objects, max_objects); 2724 2725 while (min_objects > 1) { 2726 fraction = 16; 2727 while (fraction >= 4) { 2728 order = slab_order(size, min_objects, 2729 slub_max_order, fraction, reserved); 2730 if (order <= slub_max_order) 2731 return order; 2732 fraction /= 2; 2733 } 2734 min_objects--; 2735 } 2736 2737 /* 2738 * We were unable to place multiple objects in a slab. Now 2739 * lets see if we can place a single object there. 2740 */ 2741 order = slab_order(size, 1, slub_max_order, 1, reserved); 2742 if (order <= slub_max_order) 2743 return order; 2744 2745 /* 2746 * Doh this slab cannot be placed using slub_max_order. 2747 */ 2748 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2749 if (order < MAX_ORDER) 2750 return order; 2751 return -ENOSYS; 2752 } 2753 2754 /* 2755 * Figure out what the alignment of the objects will be. 2756 */ 2757 static unsigned long calculate_alignment(unsigned long flags, 2758 unsigned long align, unsigned long size) 2759 { 2760 /* 2761 * If the user wants hardware cache aligned objects then follow that 2762 * suggestion if the object is sufficiently large. 2763 * 2764 * The hardware cache alignment cannot override the specified 2765 * alignment though. If that is greater then use it. 2766 */ 2767 if (flags & SLAB_HWCACHE_ALIGN) { 2768 unsigned long ralign = cache_line_size(); 2769 while (size <= ralign / 2) 2770 ralign /= 2; 2771 align = max(align, ralign); 2772 } 2773 2774 if (align < ARCH_SLAB_MINALIGN) 2775 align = ARCH_SLAB_MINALIGN; 2776 2777 return ALIGN(align, sizeof(void *)); 2778 } 2779 2780 static void 2781 init_kmem_cache_node(struct kmem_cache_node *n) 2782 { 2783 n->nr_partial = 0; 2784 spin_lock_init(&n->list_lock); 2785 INIT_LIST_HEAD(&n->partial); 2786 #ifdef CONFIG_SLUB_DEBUG 2787 atomic_long_set(&n->nr_slabs, 0); 2788 atomic_long_set(&n->total_objects, 0); 2789 INIT_LIST_HEAD(&n->full); 2790 #endif 2791 } 2792 2793 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2794 { 2795 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2796 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); 2797 2798 /* 2799 * Must align to double word boundary for the double cmpxchg 2800 * instructions to work; see __pcpu_double_call_return_bool(). 2801 */ 2802 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2803 2 * sizeof(void *)); 2804 2805 if (!s->cpu_slab) 2806 return 0; 2807 2808 init_kmem_cache_cpus(s); 2809 2810 return 1; 2811 } 2812 2813 static struct kmem_cache *kmem_cache_node; 2814 2815 /* 2816 * No kmalloc_node yet so do it by hand. We know that this is the first 2817 * slab on the node for this slabcache. There are no concurrent accesses 2818 * possible. 2819 * 2820 * Note that this function only works on the kmalloc_node_cache 2821 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2822 * memory on a fresh node that has no slab structures yet. 2823 */ 2824 static void early_kmem_cache_node_alloc(int node) 2825 { 2826 struct page *page; 2827 struct kmem_cache_node *n; 2828 2829 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2830 2831 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2832 2833 BUG_ON(!page); 2834 if (page_to_nid(page) != node) { 2835 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2836 "node %d\n", node); 2837 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2838 "in order to be able to continue\n"); 2839 } 2840 2841 n = page->freelist; 2842 BUG_ON(!n); 2843 page->freelist = get_freepointer(kmem_cache_node, n); 2844 page->inuse = 1; 2845 page->frozen = 0; 2846 kmem_cache_node->node[node] = n; 2847 #ifdef CONFIG_SLUB_DEBUG 2848 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2849 init_tracking(kmem_cache_node, n); 2850 #endif 2851 init_kmem_cache_node(n); 2852 inc_slabs_node(kmem_cache_node, node, page->objects); 2853 2854 add_partial(n, page, DEACTIVATE_TO_HEAD); 2855 } 2856 2857 static void free_kmem_cache_nodes(struct kmem_cache *s) 2858 { 2859 int node; 2860 2861 for_each_node_state(node, N_NORMAL_MEMORY) { 2862 struct kmem_cache_node *n = s->node[node]; 2863 2864 if (n) 2865 kmem_cache_free(kmem_cache_node, n); 2866 2867 s->node[node] = NULL; 2868 } 2869 } 2870 2871 static int init_kmem_cache_nodes(struct kmem_cache *s) 2872 { 2873 int node; 2874 2875 for_each_node_state(node, N_NORMAL_MEMORY) { 2876 struct kmem_cache_node *n; 2877 2878 if (slab_state == DOWN) { 2879 early_kmem_cache_node_alloc(node); 2880 continue; 2881 } 2882 n = kmem_cache_alloc_node(kmem_cache_node, 2883 GFP_KERNEL, node); 2884 2885 if (!n) { 2886 free_kmem_cache_nodes(s); 2887 return 0; 2888 } 2889 2890 s->node[node] = n; 2891 init_kmem_cache_node(n); 2892 } 2893 return 1; 2894 } 2895 2896 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2897 { 2898 if (min < MIN_PARTIAL) 2899 min = MIN_PARTIAL; 2900 else if (min > MAX_PARTIAL) 2901 min = MAX_PARTIAL; 2902 s->min_partial = min; 2903 } 2904 2905 /* 2906 * calculate_sizes() determines the order and the distribution of data within 2907 * a slab object. 2908 */ 2909 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2910 { 2911 unsigned long flags = s->flags; 2912 unsigned long size = s->object_size; 2913 unsigned long align = s->align; 2914 int order; 2915 2916 /* 2917 * Round up object size to the next word boundary. We can only 2918 * place the free pointer at word boundaries and this determines 2919 * the possible location of the free pointer. 2920 */ 2921 size = ALIGN(size, sizeof(void *)); 2922 2923 #ifdef CONFIG_SLUB_DEBUG 2924 /* 2925 * Determine if we can poison the object itself. If the user of 2926 * the slab may touch the object after free or before allocation 2927 * then we should never poison the object itself. 2928 */ 2929 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2930 !s->ctor) 2931 s->flags |= __OBJECT_POISON; 2932 else 2933 s->flags &= ~__OBJECT_POISON; 2934 2935 2936 /* 2937 * If we are Redzoning then check if there is some space between the 2938 * end of the object and the free pointer. If not then add an 2939 * additional word to have some bytes to store Redzone information. 2940 */ 2941 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2942 size += sizeof(void *); 2943 #endif 2944 2945 /* 2946 * With that we have determined the number of bytes in actual use 2947 * by the object. This is the potential offset to the free pointer. 2948 */ 2949 s->inuse = size; 2950 2951 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2952 s->ctor)) { 2953 /* 2954 * Relocate free pointer after the object if it is not 2955 * permitted to overwrite the first word of the object on 2956 * kmem_cache_free. 2957 * 2958 * This is the case if we do RCU, have a constructor or 2959 * destructor or are poisoning the objects. 2960 */ 2961 s->offset = size; 2962 size += sizeof(void *); 2963 } 2964 2965 #ifdef CONFIG_SLUB_DEBUG 2966 if (flags & SLAB_STORE_USER) 2967 /* 2968 * Need to store information about allocs and frees after 2969 * the object. 2970 */ 2971 size += 2 * sizeof(struct track); 2972 2973 if (flags & SLAB_RED_ZONE) 2974 /* 2975 * Add some empty padding so that we can catch 2976 * overwrites from earlier objects rather than let 2977 * tracking information or the free pointer be 2978 * corrupted if a user writes before the start 2979 * of the object. 2980 */ 2981 size += sizeof(void *); 2982 #endif 2983 2984 /* 2985 * Determine the alignment based on various parameters that the 2986 * user specified and the dynamic determination of cache line size 2987 * on bootup. 2988 */ 2989 align = calculate_alignment(flags, align, s->object_size); 2990 s->align = align; 2991 2992 /* 2993 * SLUB stores one object immediately after another beginning from 2994 * offset 0. In order to align the objects we have to simply size 2995 * each object to conform to the alignment. 2996 */ 2997 size = ALIGN(size, align); 2998 s->size = size; 2999 if (forced_order >= 0) 3000 order = forced_order; 3001 else 3002 order = calculate_order(size, s->reserved); 3003 3004 if (order < 0) 3005 return 0; 3006 3007 s->allocflags = 0; 3008 if (order) 3009 s->allocflags |= __GFP_COMP; 3010 3011 if (s->flags & SLAB_CACHE_DMA) 3012 s->allocflags |= SLUB_DMA; 3013 3014 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3015 s->allocflags |= __GFP_RECLAIMABLE; 3016 3017 /* 3018 * Determine the number of objects per slab 3019 */ 3020 s->oo = oo_make(order, size, s->reserved); 3021 s->min = oo_make(get_order(size), size, s->reserved); 3022 if (oo_objects(s->oo) > oo_objects(s->max)) 3023 s->max = s->oo; 3024 3025 return !!oo_objects(s->oo); 3026 3027 } 3028 3029 static int kmem_cache_open(struct kmem_cache *s, 3030 const char *name, size_t size, 3031 size_t align, unsigned long flags, 3032 void (*ctor)(void *)) 3033 { 3034 memset(s, 0, kmem_size); 3035 s->name = name; 3036 s->ctor = ctor; 3037 s->object_size = size; 3038 s->align = align; 3039 s->flags = kmem_cache_flags(size, flags, name, ctor); 3040 s->reserved = 0; 3041 3042 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3043 s->reserved = sizeof(struct rcu_head); 3044 3045 if (!calculate_sizes(s, -1)) 3046 goto error; 3047 if (disable_higher_order_debug) { 3048 /* 3049 * Disable debugging flags that store metadata if the min slab 3050 * order increased. 3051 */ 3052 if (get_order(s->size) > get_order(s->object_size)) { 3053 s->flags &= ~DEBUG_METADATA_FLAGS; 3054 s->offset = 0; 3055 if (!calculate_sizes(s, -1)) 3056 goto error; 3057 } 3058 } 3059 3060 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3061 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3062 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3063 /* Enable fast mode */ 3064 s->flags |= __CMPXCHG_DOUBLE; 3065 #endif 3066 3067 /* 3068 * The larger the object size is, the more pages we want on the partial 3069 * list to avoid pounding the page allocator excessively. 3070 */ 3071 set_min_partial(s, ilog2(s->size) / 2); 3072 3073 /* 3074 * cpu_partial determined the maximum number of objects kept in the 3075 * per cpu partial lists of a processor. 3076 * 3077 * Per cpu partial lists mainly contain slabs that just have one 3078 * object freed. If they are used for allocation then they can be 3079 * filled up again with minimal effort. The slab will never hit the 3080 * per node partial lists and therefore no locking will be required. 3081 * 3082 * This setting also determines 3083 * 3084 * A) The number of objects from per cpu partial slabs dumped to the 3085 * per node list when we reach the limit. 3086 * B) The number of objects in cpu partial slabs to extract from the 3087 * per node list when we run out of per cpu objects. We only fetch 50% 3088 * to keep some capacity around for frees. 3089 */ 3090 if (kmem_cache_debug(s)) 3091 s->cpu_partial = 0; 3092 else if (s->size >= PAGE_SIZE) 3093 s->cpu_partial = 2; 3094 else if (s->size >= 1024) 3095 s->cpu_partial = 6; 3096 else if (s->size >= 256) 3097 s->cpu_partial = 13; 3098 else 3099 s->cpu_partial = 30; 3100 3101 s->refcount = 1; 3102 #ifdef CONFIG_NUMA 3103 s->remote_node_defrag_ratio = 1000; 3104 #endif 3105 if (!init_kmem_cache_nodes(s)) 3106 goto error; 3107 3108 if (alloc_kmem_cache_cpus(s)) 3109 return 1; 3110 3111 free_kmem_cache_nodes(s); 3112 error: 3113 if (flags & SLAB_PANIC) 3114 panic("Cannot create slab %s size=%lu realsize=%u " 3115 "order=%u offset=%u flags=%lx\n", 3116 s->name, (unsigned long)size, s->size, oo_order(s->oo), 3117 s->offset, flags); 3118 return 0; 3119 } 3120 3121 /* 3122 * Determine the size of a slab object 3123 */ 3124 unsigned int kmem_cache_size(struct kmem_cache *s) 3125 { 3126 return s->object_size; 3127 } 3128 EXPORT_SYMBOL(kmem_cache_size); 3129 3130 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3131 const char *text) 3132 { 3133 #ifdef CONFIG_SLUB_DEBUG 3134 void *addr = page_address(page); 3135 void *p; 3136 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3137 sizeof(long), GFP_ATOMIC); 3138 if (!map) 3139 return; 3140 slab_err(s, page, "%s", text); 3141 slab_lock(page); 3142 3143 get_map(s, page, map); 3144 for_each_object(p, s, addr, page->objects) { 3145 3146 if (!test_bit(slab_index(p, s, addr), map)) { 3147 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3148 p, p - addr); 3149 print_tracking(s, p); 3150 } 3151 } 3152 slab_unlock(page); 3153 kfree(map); 3154 #endif 3155 } 3156 3157 /* 3158 * Attempt to free all partial slabs on a node. 3159 * This is called from kmem_cache_close(). We must be the last thread 3160 * using the cache and therefore we do not need to lock anymore. 3161 */ 3162 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3163 { 3164 struct page *page, *h; 3165 3166 list_for_each_entry_safe(page, h, &n->partial, lru) { 3167 if (!page->inuse) { 3168 remove_partial(n, page); 3169 discard_slab(s, page); 3170 } else { 3171 list_slab_objects(s, page, 3172 "Objects remaining on kmem_cache_close()"); 3173 } 3174 } 3175 } 3176 3177 /* 3178 * Release all resources used by a slab cache. 3179 */ 3180 static inline int kmem_cache_close(struct kmem_cache *s) 3181 { 3182 int node; 3183 3184 flush_all(s); 3185 free_percpu(s->cpu_slab); 3186 /* Attempt to free all objects */ 3187 for_each_node_state(node, N_NORMAL_MEMORY) { 3188 struct kmem_cache_node *n = get_node(s, node); 3189 3190 free_partial(s, n); 3191 if (n->nr_partial || slabs_node(s, node)) 3192 return 1; 3193 } 3194 free_kmem_cache_nodes(s); 3195 return 0; 3196 } 3197 3198 /* 3199 * Close a cache and release the kmem_cache structure 3200 * (must be used for caches created using kmem_cache_create) 3201 */ 3202 void kmem_cache_destroy(struct kmem_cache *s) 3203 { 3204 mutex_lock(&slab_mutex); 3205 s->refcount--; 3206 if (!s->refcount) { 3207 list_del(&s->list); 3208 mutex_unlock(&slab_mutex); 3209 if (kmem_cache_close(s)) { 3210 printk(KERN_ERR "SLUB %s: %s called for cache that " 3211 "still has objects.\n", s->name, __func__); 3212 dump_stack(); 3213 } 3214 if (s->flags & SLAB_DESTROY_BY_RCU) 3215 rcu_barrier(); 3216 sysfs_slab_remove(s); 3217 } else 3218 mutex_unlock(&slab_mutex); 3219 } 3220 EXPORT_SYMBOL(kmem_cache_destroy); 3221 3222 /******************************************************************** 3223 * Kmalloc subsystem 3224 *******************************************************************/ 3225 3226 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 3227 EXPORT_SYMBOL(kmalloc_caches); 3228 3229 static struct kmem_cache *kmem_cache; 3230 3231 #ifdef CONFIG_ZONE_DMA 3232 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; 3233 #endif 3234 3235 static int __init setup_slub_min_order(char *str) 3236 { 3237 get_option(&str, &slub_min_order); 3238 3239 return 1; 3240 } 3241 3242 __setup("slub_min_order=", setup_slub_min_order); 3243 3244 static int __init setup_slub_max_order(char *str) 3245 { 3246 get_option(&str, &slub_max_order); 3247 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3248 3249 return 1; 3250 } 3251 3252 __setup("slub_max_order=", setup_slub_max_order); 3253 3254 static int __init setup_slub_min_objects(char *str) 3255 { 3256 get_option(&str, &slub_min_objects); 3257 3258 return 1; 3259 } 3260 3261 __setup("slub_min_objects=", setup_slub_min_objects); 3262 3263 static int __init setup_slub_nomerge(char *str) 3264 { 3265 slub_nomerge = 1; 3266 return 1; 3267 } 3268 3269 __setup("slub_nomerge", setup_slub_nomerge); 3270 3271 static struct kmem_cache *__init create_kmalloc_cache(const char *name, 3272 int size, unsigned int flags) 3273 { 3274 struct kmem_cache *s; 3275 3276 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3277 3278 /* 3279 * This function is called with IRQs disabled during early-boot on 3280 * single CPU so there's no need to take slab_mutex here. 3281 */ 3282 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, 3283 flags, NULL)) 3284 goto panic; 3285 3286 list_add(&s->list, &slab_caches); 3287 return s; 3288 3289 panic: 3290 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 3291 return NULL; 3292 } 3293 3294 /* 3295 * Conversion table for small slabs sizes / 8 to the index in the 3296 * kmalloc array. This is necessary for slabs < 192 since we have non power 3297 * of two cache sizes there. The size of larger slabs can be determined using 3298 * fls. 3299 */ 3300 static s8 size_index[24] = { 3301 3, /* 8 */ 3302 4, /* 16 */ 3303 5, /* 24 */ 3304 5, /* 32 */ 3305 6, /* 40 */ 3306 6, /* 48 */ 3307 6, /* 56 */ 3308 6, /* 64 */ 3309 1, /* 72 */ 3310 1, /* 80 */ 3311 1, /* 88 */ 3312 1, /* 96 */ 3313 7, /* 104 */ 3314 7, /* 112 */ 3315 7, /* 120 */ 3316 7, /* 128 */ 3317 2, /* 136 */ 3318 2, /* 144 */ 3319 2, /* 152 */ 3320 2, /* 160 */ 3321 2, /* 168 */ 3322 2, /* 176 */ 3323 2, /* 184 */ 3324 2 /* 192 */ 3325 }; 3326 3327 static inline int size_index_elem(size_t bytes) 3328 { 3329 return (bytes - 1) / 8; 3330 } 3331 3332 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 3333 { 3334 int index; 3335 3336 if (size <= 192) { 3337 if (!size) 3338 return ZERO_SIZE_PTR; 3339 3340 index = size_index[size_index_elem(size)]; 3341 } else 3342 index = fls(size - 1); 3343 3344 #ifdef CONFIG_ZONE_DMA 3345 if (unlikely((flags & SLUB_DMA))) 3346 return kmalloc_dma_caches[index]; 3347 3348 #endif 3349 return kmalloc_caches[index]; 3350 } 3351 3352 void *__kmalloc(size_t size, gfp_t flags) 3353 { 3354 struct kmem_cache *s; 3355 void *ret; 3356 3357 if (unlikely(size > SLUB_MAX_SIZE)) 3358 return kmalloc_large(size, flags); 3359 3360 s = get_slab(size, flags); 3361 3362 if (unlikely(ZERO_OR_NULL_PTR(s))) 3363 return s; 3364 3365 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); 3366 3367 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3368 3369 return ret; 3370 } 3371 EXPORT_SYMBOL(__kmalloc); 3372 3373 #ifdef CONFIG_NUMA 3374 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3375 { 3376 struct page *page; 3377 void *ptr = NULL; 3378 3379 flags |= __GFP_COMP | __GFP_NOTRACK; 3380 page = alloc_pages_node(node, flags, get_order(size)); 3381 if (page) 3382 ptr = page_address(page); 3383 3384 kmemleak_alloc(ptr, size, 1, flags); 3385 return ptr; 3386 } 3387 3388 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3389 { 3390 struct kmem_cache *s; 3391 void *ret; 3392 3393 if (unlikely(size > SLUB_MAX_SIZE)) { 3394 ret = kmalloc_large_node(size, flags, node); 3395 3396 trace_kmalloc_node(_RET_IP_, ret, 3397 size, PAGE_SIZE << get_order(size), 3398 flags, node); 3399 3400 return ret; 3401 } 3402 3403 s = get_slab(size, flags); 3404 3405 if (unlikely(ZERO_OR_NULL_PTR(s))) 3406 return s; 3407 3408 ret = slab_alloc(s, flags, node, _RET_IP_); 3409 3410 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3411 3412 return ret; 3413 } 3414 EXPORT_SYMBOL(__kmalloc_node); 3415 #endif 3416 3417 size_t ksize(const void *object) 3418 { 3419 struct page *page; 3420 3421 if (unlikely(object == ZERO_SIZE_PTR)) 3422 return 0; 3423 3424 page = virt_to_head_page(object); 3425 3426 if (unlikely(!PageSlab(page))) { 3427 WARN_ON(!PageCompound(page)); 3428 return PAGE_SIZE << compound_order(page); 3429 } 3430 3431 return slab_ksize(page->slab); 3432 } 3433 EXPORT_SYMBOL(ksize); 3434 3435 #ifdef CONFIG_SLUB_DEBUG 3436 bool verify_mem_not_deleted(const void *x) 3437 { 3438 struct page *page; 3439 void *object = (void *)x; 3440 unsigned long flags; 3441 bool rv; 3442 3443 if (unlikely(ZERO_OR_NULL_PTR(x))) 3444 return false; 3445 3446 local_irq_save(flags); 3447 3448 page = virt_to_head_page(x); 3449 if (unlikely(!PageSlab(page))) { 3450 /* maybe it was from stack? */ 3451 rv = true; 3452 goto out_unlock; 3453 } 3454 3455 slab_lock(page); 3456 if (on_freelist(page->slab, page, object)) { 3457 object_err(page->slab, page, object, "Object is on free-list"); 3458 rv = false; 3459 } else { 3460 rv = true; 3461 } 3462 slab_unlock(page); 3463 3464 out_unlock: 3465 local_irq_restore(flags); 3466 return rv; 3467 } 3468 EXPORT_SYMBOL(verify_mem_not_deleted); 3469 #endif 3470 3471 void kfree(const void *x) 3472 { 3473 struct page *page; 3474 void *object = (void *)x; 3475 3476 trace_kfree(_RET_IP_, x); 3477 3478 if (unlikely(ZERO_OR_NULL_PTR(x))) 3479 return; 3480 3481 page = virt_to_head_page(x); 3482 if (unlikely(!PageSlab(page))) { 3483 BUG_ON(!PageCompound(page)); 3484 kmemleak_free(x); 3485 put_page(page); 3486 return; 3487 } 3488 slab_free(page->slab, page, object, _RET_IP_); 3489 } 3490 EXPORT_SYMBOL(kfree); 3491 3492 /* 3493 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3494 * the remaining slabs by the number of items in use. The slabs with the 3495 * most items in use come first. New allocations will then fill those up 3496 * and thus they can be removed from the partial lists. 3497 * 3498 * The slabs with the least items are placed last. This results in them 3499 * being allocated from last increasing the chance that the last objects 3500 * are freed in them. 3501 */ 3502 int kmem_cache_shrink(struct kmem_cache *s) 3503 { 3504 int node; 3505 int i; 3506 struct kmem_cache_node *n; 3507 struct page *page; 3508 struct page *t; 3509 int objects = oo_objects(s->max); 3510 struct list_head *slabs_by_inuse = 3511 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3512 unsigned long flags; 3513 3514 if (!slabs_by_inuse) 3515 return -ENOMEM; 3516 3517 flush_all(s); 3518 for_each_node_state(node, N_NORMAL_MEMORY) { 3519 n = get_node(s, node); 3520 3521 if (!n->nr_partial) 3522 continue; 3523 3524 for (i = 0; i < objects; i++) 3525 INIT_LIST_HEAD(slabs_by_inuse + i); 3526 3527 spin_lock_irqsave(&n->list_lock, flags); 3528 3529 /* 3530 * Build lists indexed by the items in use in each slab. 3531 * 3532 * Note that concurrent frees may occur while we hold the 3533 * list_lock. page->inuse here is the upper limit. 3534 */ 3535 list_for_each_entry_safe(page, t, &n->partial, lru) { 3536 list_move(&page->lru, slabs_by_inuse + page->inuse); 3537 if (!page->inuse) 3538 n->nr_partial--; 3539 } 3540 3541 /* 3542 * Rebuild the partial list with the slabs filled up most 3543 * first and the least used slabs at the end. 3544 */ 3545 for (i = objects - 1; i > 0; i--) 3546 list_splice(slabs_by_inuse + i, n->partial.prev); 3547 3548 spin_unlock_irqrestore(&n->list_lock, flags); 3549 3550 /* Release empty slabs */ 3551 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3552 discard_slab(s, page); 3553 } 3554 3555 kfree(slabs_by_inuse); 3556 return 0; 3557 } 3558 EXPORT_SYMBOL(kmem_cache_shrink); 3559 3560 #if defined(CONFIG_MEMORY_HOTPLUG) 3561 static int slab_mem_going_offline_callback(void *arg) 3562 { 3563 struct kmem_cache *s; 3564 3565 mutex_lock(&slab_mutex); 3566 list_for_each_entry(s, &slab_caches, list) 3567 kmem_cache_shrink(s); 3568 mutex_unlock(&slab_mutex); 3569 3570 return 0; 3571 } 3572 3573 static void slab_mem_offline_callback(void *arg) 3574 { 3575 struct kmem_cache_node *n; 3576 struct kmem_cache *s; 3577 struct memory_notify *marg = arg; 3578 int offline_node; 3579 3580 offline_node = marg->status_change_nid; 3581 3582 /* 3583 * If the node still has available memory. we need kmem_cache_node 3584 * for it yet. 3585 */ 3586 if (offline_node < 0) 3587 return; 3588 3589 mutex_lock(&slab_mutex); 3590 list_for_each_entry(s, &slab_caches, list) { 3591 n = get_node(s, offline_node); 3592 if (n) { 3593 /* 3594 * if n->nr_slabs > 0, slabs still exist on the node 3595 * that is going down. We were unable to free them, 3596 * and offline_pages() function shouldn't call this 3597 * callback. So, we must fail. 3598 */ 3599 BUG_ON(slabs_node(s, offline_node)); 3600 3601 s->node[offline_node] = NULL; 3602 kmem_cache_free(kmem_cache_node, n); 3603 } 3604 } 3605 mutex_unlock(&slab_mutex); 3606 } 3607 3608 static int slab_mem_going_online_callback(void *arg) 3609 { 3610 struct kmem_cache_node *n; 3611 struct kmem_cache *s; 3612 struct memory_notify *marg = arg; 3613 int nid = marg->status_change_nid; 3614 int ret = 0; 3615 3616 /* 3617 * If the node's memory is already available, then kmem_cache_node is 3618 * already created. Nothing to do. 3619 */ 3620 if (nid < 0) 3621 return 0; 3622 3623 /* 3624 * We are bringing a node online. No memory is available yet. We must 3625 * allocate a kmem_cache_node structure in order to bring the node 3626 * online. 3627 */ 3628 mutex_lock(&slab_mutex); 3629 list_for_each_entry(s, &slab_caches, list) { 3630 /* 3631 * XXX: kmem_cache_alloc_node will fallback to other nodes 3632 * since memory is not yet available from the node that 3633 * is brought up. 3634 */ 3635 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3636 if (!n) { 3637 ret = -ENOMEM; 3638 goto out; 3639 } 3640 init_kmem_cache_node(n); 3641 s->node[nid] = n; 3642 } 3643 out: 3644 mutex_unlock(&slab_mutex); 3645 return ret; 3646 } 3647 3648 static int slab_memory_callback(struct notifier_block *self, 3649 unsigned long action, void *arg) 3650 { 3651 int ret = 0; 3652 3653 switch (action) { 3654 case MEM_GOING_ONLINE: 3655 ret = slab_mem_going_online_callback(arg); 3656 break; 3657 case MEM_GOING_OFFLINE: 3658 ret = slab_mem_going_offline_callback(arg); 3659 break; 3660 case MEM_OFFLINE: 3661 case MEM_CANCEL_ONLINE: 3662 slab_mem_offline_callback(arg); 3663 break; 3664 case MEM_ONLINE: 3665 case MEM_CANCEL_OFFLINE: 3666 break; 3667 } 3668 if (ret) 3669 ret = notifier_from_errno(ret); 3670 else 3671 ret = NOTIFY_OK; 3672 return ret; 3673 } 3674 3675 #endif /* CONFIG_MEMORY_HOTPLUG */ 3676 3677 /******************************************************************** 3678 * Basic setup of slabs 3679 *******************************************************************/ 3680 3681 /* 3682 * Used for early kmem_cache structures that were allocated using 3683 * the page allocator 3684 */ 3685 3686 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) 3687 { 3688 int node; 3689 3690 list_add(&s->list, &slab_caches); 3691 s->refcount = -1; 3692 3693 for_each_node_state(node, N_NORMAL_MEMORY) { 3694 struct kmem_cache_node *n = get_node(s, node); 3695 struct page *p; 3696 3697 if (n) { 3698 list_for_each_entry(p, &n->partial, lru) 3699 p->slab = s; 3700 3701 #ifdef CONFIG_SLUB_DEBUG 3702 list_for_each_entry(p, &n->full, lru) 3703 p->slab = s; 3704 #endif 3705 } 3706 } 3707 } 3708 3709 void __init kmem_cache_init(void) 3710 { 3711 int i; 3712 int caches = 0; 3713 struct kmem_cache *temp_kmem_cache; 3714 int order; 3715 struct kmem_cache *temp_kmem_cache_node; 3716 unsigned long kmalloc_size; 3717 3718 if (debug_guardpage_minorder()) 3719 slub_max_order = 0; 3720 3721 kmem_size = offsetof(struct kmem_cache, node) + 3722 nr_node_ids * sizeof(struct kmem_cache_node *); 3723 3724 /* Allocate two kmem_caches from the page allocator */ 3725 kmalloc_size = ALIGN(kmem_size, cache_line_size()); 3726 order = get_order(2 * kmalloc_size); 3727 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); 3728 3729 /* 3730 * Must first have the slab cache available for the allocations of the 3731 * struct kmem_cache_node's. There is special bootstrap code in 3732 * kmem_cache_open for slab_state == DOWN. 3733 */ 3734 kmem_cache_node = (void *)kmem_cache + kmalloc_size; 3735 3736 kmem_cache_open(kmem_cache_node, "kmem_cache_node", 3737 sizeof(struct kmem_cache_node), 3738 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3739 3740 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3741 3742 /* Able to allocate the per node structures */ 3743 slab_state = PARTIAL; 3744 3745 temp_kmem_cache = kmem_cache; 3746 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, 3747 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3748 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3749 memcpy(kmem_cache, temp_kmem_cache, kmem_size); 3750 3751 /* 3752 * Allocate kmem_cache_node properly from the kmem_cache slab. 3753 * kmem_cache_node is separately allocated so no need to 3754 * update any list pointers. 3755 */ 3756 temp_kmem_cache_node = kmem_cache_node; 3757 3758 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3759 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); 3760 3761 kmem_cache_bootstrap_fixup(kmem_cache_node); 3762 3763 caches++; 3764 kmem_cache_bootstrap_fixup(kmem_cache); 3765 caches++; 3766 /* Free temporary boot structure */ 3767 free_pages((unsigned long)temp_kmem_cache, order); 3768 3769 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3770 3771 /* 3772 * Patch up the size_index table if we have strange large alignment 3773 * requirements for the kmalloc array. This is only the case for 3774 * MIPS it seems. The standard arches will not generate any code here. 3775 * 3776 * Largest permitted alignment is 256 bytes due to the way we 3777 * handle the index determination for the smaller caches. 3778 * 3779 * Make sure that nothing crazy happens if someone starts tinkering 3780 * around with ARCH_KMALLOC_MINALIGN 3781 */ 3782 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3783 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3784 3785 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3786 int elem = size_index_elem(i); 3787 if (elem >= ARRAY_SIZE(size_index)) 3788 break; 3789 size_index[elem] = KMALLOC_SHIFT_LOW; 3790 } 3791 3792 if (KMALLOC_MIN_SIZE == 64) { 3793 /* 3794 * The 96 byte size cache is not used if the alignment 3795 * is 64 byte. 3796 */ 3797 for (i = 64 + 8; i <= 96; i += 8) 3798 size_index[size_index_elem(i)] = 7; 3799 } else if (KMALLOC_MIN_SIZE == 128) { 3800 /* 3801 * The 192 byte sized cache is not used if the alignment 3802 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3803 * instead. 3804 */ 3805 for (i = 128 + 8; i <= 192; i += 8) 3806 size_index[size_index_elem(i)] = 8; 3807 } 3808 3809 /* Caches that are not of the two-to-the-power-of size */ 3810 if (KMALLOC_MIN_SIZE <= 32) { 3811 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); 3812 caches++; 3813 } 3814 3815 if (KMALLOC_MIN_SIZE <= 64) { 3816 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); 3817 caches++; 3818 } 3819 3820 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3821 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); 3822 caches++; 3823 } 3824 3825 slab_state = UP; 3826 3827 /* Provide the correct kmalloc names now that the caches are up */ 3828 if (KMALLOC_MIN_SIZE <= 32) { 3829 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); 3830 BUG_ON(!kmalloc_caches[1]->name); 3831 } 3832 3833 if (KMALLOC_MIN_SIZE <= 64) { 3834 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); 3835 BUG_ON(!kmalloc_caches[2]->name); 3836 } 3837 3838 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3839 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3840 3841 BUG_ON(!s); 3842 kmalloc_caches[i]->name = s; 3843 } 3844 3845 #ifdef CONFIG_SMP 3846 register_cpu_notifier(&slab_notifier); 3847 #endif 3848 3849 #ifdef CONFIG_ZONE_DMA 3850 for (i = 0; i < SLUB_PAGE_SHIFT; i++) { 3851 struct kmem_cache *s = kmalloc_caches[i]; 3852 3853 if (s && s->size) { 3854 char *name = kasprintf(GFP_NOWAIT, 3855 "dma-kmalloc-%d", s->object_size); 3856 3857 BUG_ON(!name); 3858 kmalloc_dma_caches[i] = create_kmalloc_cache(name, 3859 s->object_size, SLAB_CACHE_DMA); 3860 } 3861 } 3862 #endif 3863 printk(KERN_INFO 3864 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3865 " CPUs=%d, Nodes=%d\n", 3866 caches, cache_line_size(), 3867 slub_min_order, slub_max_order, slub_min_objects, 3868 nr_cpu_ids, nr_node_ids); 3869 } 3870 3871 void __init kmem_cache_init_late(void) 3872 { 3873 } 3874 3875 /* 3876 * Find a mergeable slab cache 3877 */ 3878 static int slab_unmergeable(struct kmem_cache *s) 3879 { 3880 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3881 return 1; 3882 3883 if (s->ctor) 3884 return 1; 3885 3886 /* 3887 * We may have set a slab to be unmergeable during bootstrap. 3888 */ 3889 if (s->refcount < 0) 3890 return 1; 3891 3892 return 0; 3893 } 3894 3895 static struct kmem_cache *find_mergeable(size_t size, 3896 size_t align, unsigned long flags, const char *name, 3897 void (*ctor)(void *)) 3898 { 3899 struct kmem_cache *s; 3900 3901 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3902 return NULL; 3903 3904 if (ctor) 3905 return NULL; 3906 3907 size = ALIGN(size, sizeof(void *)); 3908 align = calculate_alignment(flags, align, size); 3909 size = ALIGN(size, align); 3910 flags = kmem_cache_flags(size, flags, name, NULL); 3911 3912 list_for_each_entry(s, &slab_caches, list) { 3913 if (slab_unmergeable(s)) 3914 continue; 3915 3916 if (size > s->size) 3917 continue; 3918 3919 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3920 continue; 3921 /* 3922 * Check if alignment is compatible. 3923 * Courtesy of Adrian Drzewiecki 3924 */ 3925 if ((s->size & ~(align - 1)) != s->size) 3926 continue; 3927 3928 if (s->size - size >= sizeof(void *)) 3929 continue; 3930 3931 return s; 3932 } 3933 return NULL; 3934 } 3935 3936 struct kmem_cache *__kmem_cache_create(const char *name, size_t size, 3937 size_t align, unsigned long flags, void (*ctor)(void *)) 3938 { 3939 struct kmem_cache *s; 3940 char *n; 3941 3942 s = find_mergeable(size, align, flags, name, ctor); 3943 if (s) { 3944 s->refcount++; 3945 /* 3946 * Adjust the object sizes so that we clear 3947 * the complete object on kzalloc. 3948 */ 3949 s->object_size = max(s->object_size, (int)size); 3950 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3951 3952 if (sysfs_slab_alias(s, name)) { 3953 s->refcount--; 3954 return NULL; 3955 } 3956 return s; 3957 } 3958 3959 n = kstrdup(name, GFP_KERNEL); 3960 if (!n) 3961 return NULL; 3962 3963 s = kmalloc(kmem_size, GFP_KERNEL); 3964 if (s) { 3965 if (kmem_cache_open(s, n, 3966 size, align, flags, ctor)) { 3967 int r; 3968 3969 list_add(&s->list, &slab_caches); 3970 mutex_unlock(&slab_mutex); 3971 r = sysfs_slab_add(s); 3972 mutex_lock(&slab_mutex); 3973 3974 if (!r) 3975 return s; 3976 3977 list_del(&s->list); 3978 kmem_cache_close(s); 3979 } 3980 kfree(s); 3981 } 3982 kfree(n); 3983 return NULL; 3984 } 3985 3986 #ifdef CONFIG_SMP 3987 /* 3988 * Use the cpu notifier to insure that the cpu slabs are flushed when 3989 * necessary. 3990 */ 3991 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3992 unsigned long action, void *hcpu) 3993 { 3994 long cpu = (long)hcpu; 3995 struct kmem_cache *s; 3996 unsigned long flags; 3997 3998 switch (action) { 3999 case CPU_UP_CANCELED: 4000 case CPU_UP_CANCELED_FROZEN: 4001 case CPU_DEAD: 4002 case CPU_DEAD_FROZEN: 4003 mutex_lock(&slab_mutex); 4004 list_for_each_entry(s, &slab_caches, list) { 4005 local_irq_save(flags); 4006 __flush_cpu_slab(s, cpu); 4007 local_irq_restore(flags); 4008 } 4009 mutex_unlock(&slab_mutex); 4010 break; 4011 default: 4012 break; 4013 } 4014 return NOTIFY_OK; 4015 } 4016 4017 static struct notifier_block __cpuinitdata slab_notifier = { 4018 .notifier_call = slab_cpuup_callback 4019 }; 4020 4021 #endif 4022 4023 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4024 { 4025 struct kmem_cache *s; 4026 void *ret; 4027 4028 if (unlikely(size > SLUB_MAX_SIZE)) 4029 return kmalloc_large(size, gfpflags); 4030 4031 s = get_slab(size, gfpflags); 4032 4033 if (unlikely(ZERO_OR_NULL_PTR(s))) 4034 return s; 4035 4036 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); 4037 4038 /* Honor the call site pointer we received. */ 4039 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4040 4041 return ret; 4042 } 4043 4044 #ifdef CONFIG_NUMA 4045 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4046 int node, unsigned long caller) 4047 { 4048 struct kmem_cache *s; 4049 void *ret; 4050 4051 if (unlikely(size > SLUB_MAX_SIZE)) { 4052 ret = kmalloc_large_node(size, gfpflags, node); 4053 4054 trace_kmalloc_node(caller, ret, 4055 size, PAGE_SIZE << get_order(size), 4056 gfpflags, node); 4057 4058 return ret; 4059 } 4060 4061 s = get_slab(size, gfpflags); 4062 4063 if (unlikely(ZERO_OR_NULL_PTR(s))) 4064 return s; 4065 4066 ret = slab_alloc(s, gfpflags, node, caller); 4067 4068 /* Honor the call site pointer we received. */ 4069 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4070 4071 return ret; 4072 } 4073 #endif 4074 4075 #ifdef CONFIG_SYSFS 4076 static int count_inuse(struct page *page) 4077 { 4078 return page->inuse; 4079 } 4080 4081 static int count_total(struct page *page) 4082 { 4083 return page->objects; 4084 } 4085 #endif 4086 4087 #ifdef CONFIG_SLUB_DEBUG 4088 static int validate_slab(struct kmem_cache *s, struct page *page, 4089 unsigned long *map) 4090 { 4091 void *p; 4092 void *addr = page_address(page); 4093 4094 if (!check_slab(s, page) || 4095 !on_freelist(s, page, NULL)) 4096 return 0; 4097 4098 /* Now we know that a valid freelist exists */ 4099 bitmap_zero(map, page->objects); 4100 4101 get_map(s, page, map); 4102 for_each_object(p, s, addr, page->objects) { 4103 if (test_bit(slab_index(p, s, addr), map)) 4104 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4105 return 0; 4106 } 4107 4108 for_each_object(p, s, addr, page->objects) 4109 if (!test_bit(slab_index(p, s, addr), map)) 4110 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4111 return 0; 4112 return 1; 4113 } 4114 4115 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4116 unsigned long *map) 4117 { 4118 slab_lock(page); 4119 validate_slab(s, page, map); 4120 slab_unlock(page); 4121 } 4122 4123 static int validate_slab_node(struct kmem_cache *s, 4124 struct kmem_cache_node *n, unsigned long *map) 4125 { 4126 unsigned long count = 0; 4127 struct page *page; 4128 unsigned long flags; 4129 4130 spin_lock_irqsave(&n->list_lock, flags); 4131 4132 list_for_each_entry(page, &n->partial, lru) { 4133 validate_slab_slab(s, page, map); 4134 count++; 4135 } 4136 if (count != n->nr_partial) 4137 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 4138 "counter=%ld\n", s->name, count, n->nr_partial); 4139 4140 if (!(s->flags & SLAB_STORE_USER)) 4141 goto out; 4142 4143 list_for_each_entry(page, &n->full, lru) { 4144 validate_slab_slab(s, page, map); 4145 count++; 4146 } 4147 if (count != atomic_long_read(&n->nr_slabs)) 4148 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 4149 "counter=%ld\n", s->name, count, 4150 atomic_long_read(&n->nr_slabs)); 4151 4152 out: 4153 spin_unlock_irqrestore(&n->list_lock, flags); 4154 return count; 4155 } 4156 4157 static long validate_slab_cache(struct kmem_cache *s) 4158 { 4159 int node; 4160 unsigned long count = 0; 4161 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4162 sizeof(unsigned long), GFP_KERNEL); 4163 4164 if (!map) 4165 return -ENOMEM; 4166 4167 flush_all(s); 4168 for_each_node_state(node, N_NORMAL_MEMORY) { 4169 struct kmem_cache_node *n = get_node(s, node); 4170 4171 count += validate_slab_node(s, n, map); 4172 } 4173 kfree(map); 4174 return count; 4175 } 4176 /* 4177 * Generate lists of code addresses where slabcache objects are allocated 4178 * and freed. 4179 */ 4180 4181 struct location { 4182 unsigned long count; 4183 unsigned long addr; 4184 long long sum_time; 4185 long min_time; 4186 long max_time; 4187 long min_pid; 4188 long max_pid; 4189 DECLARE_BITMAP(cpus, NR_CPUS); 4190 nodemask_t nodes; 4191 }; 4192 4193 struct loc_track { 4194 unsigned long max; 4195 unsigned long count; 4196 struct location *loc; 4197 }; 4198 4199 static void free_loc_track(struct loc_track *t) 4200 { 4201 if (t->max) 4202 free_pages((unsigned long)t->loc, 4203 get_order(sizeof(struct location) * t->max)); 4204 } 4205 4206 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4207 { 4208 struct location *l; 4209 int order; 4210 4211 order = get_order(sizeof(struct location) * max); 4212 4213 l = (void *)__get_free_pages(flags, order); 4214 if (!l) 4215 return 0; 4216 4217 if (t->count) { 4218 memcpy(l, t->loc, sizeof(struct location) * t->count); 4219 free_loc_track(t); 4220 } 4221 t->max = max; 4222 t->loc = l; 4223 return 1; 4224 } 4225 4226 static int add_location(struct loc_track *t, struct kmem_cache *s, 4227 const struct track *track) 4228 { 4229 long start, end, pos; 4230 struct location *l; 4231 unsigned long caddr; 4232 unsigned long age = jiffies - track->when; 4233 4234 start = -1; 4235 end = t->count; 4236 4237 for ( ; ; ) { 4238 pos = start + (end - start + 1) / 2; 4239 4240 /* 4241 * There is nothing at "end". If we end up there 4242 * we need to add something to before end. 4243 */ 4244 if (pos == end) 4245 break; 4246 4247 caddr = t->loc[pos].addr; 4248 if (track->addr == caddr) { 4249 4250 l = &t->loc[pos]; 4251 l->count++; 4252 if (track->when) { 4253 l->sum_time += age; 4254 if (age < l->min_time) 4255 l->min_time = age; 4256 if (age > l->max_time) 4257 l->max_time = age; 4258 4259 if (track->pid < l->min_pid) 4260 l->min_pid = track->pid; 4261 if (track->pid > l->max_pid) 4262 l->max_pid = track->pid; 4263 4264 cpumask_set_cpu(track->cpu, 4265 to_cpumask(l->cpus)); 4266 } 4267 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4268 return 1; 4269 } 4270 4271 if (track->addr < caddr) 4272 end = pos; 4273 else 4274 start = pos; 4275 } 4276 4277 /* 4278 * Not found. Insert new tracking element. 4279 */ 4280 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4281 return 0; 4282 4283 l = t->loc + pos; 4284 if (pos < t->count) 4285 memmove(l + 1, l, 4286 (t->count - pos) * sizeof(struct location)); 4287 t->count++; 4288 l->count = 1; 4289 l->addr = track->addr; 4290 l->sum_time = age; 4291 l->min_time = age; 4292 l->max_time = age; 4293 l->min_pid = track->pid; 4294 l->max_pid = track->pid; 4295 cpumask_clear(to_cpumask(l->cpus)); 4296 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4297 nodes_clear(l->nodes); 4298 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4299 return 1; 4300 } 4301 4302 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4303 struct page *page, enum track_item alloc, 4304 unsigned long *map) 4305 { 4306 void *addr = page_address(page); 4307 void *p; 4308 4309 bitmap_zero(map, page->objects); 4310 get_map(s, page, map); 4311 4312 for_each_object(p, s, addr, page->objects) 4313 if (!test_bit(slab_index(p, s, addr), map)) 4314 add_location(t, s, get_track(s, p, alloc)); 4315 } 4316 4317 static int list_locations(struct kmem_cache *s, char *buf, 4318 enum track_item alloc) 4319 { 4320 int len = 0; 4321 unsigned long i; 4322 struct loc_track t = { 0, 0, NULL }; 4323 int node; 4324 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4325 sizeof(unsigned long), GFP_KERNEL); 4326 4327 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4328 GFP_TEMPORARY)) { 4329 kfree(map); 4330 return sprintf(buf, "Out of memory\n"); 4331 } 4332 /* Push back cpu slabs */ 4333 flush_all(s); 4334 4335 for_each_node_state(node, N_NORMAL_MEMORY) { 4336 struct kmem_cache_node *n = get_node(s, node); 4337 unsigned long flags; 4338 struct page *page; 4339 4340 if (!atomic_long_read(&n->nr_slabs)) 4341 continue; 4342 4343 spin_lock_irqsave(&n->list_lock, flags); 4344 list_for_each_entry(page, &n->partial, lru) 4345 process_slab(&t, s, page, alloc, map); 4346 list_for_each_entry(page, &n->full, lru) 4347 process_slab(&t, s, page, alloc, map); 4348 spin_unlock_irqrestore(&n->list_lock, flags); 4349 } 4350 4351 for (i = 0; i < t.count; i++) { 4352 struct location *l = &t.loc[i]; 4353 4354 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4355 break; 4356 len += sprintf(buf + len, "%7ld ", l->count); 4357 4358 if (l->addr) 4359 len += sprintf(buf + len, "%pS", (void *)l->addr); 4360 else 4361 len += sprintf(buf + len, "<not-available>"); 4362 4363 if (l->sum_time != l->min_time) { 4364 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4365 l->min_time, 4366 (long)div_u64(l->sum_time, l->count), 4367 l->max_time); 4368 } else 4369 len += sprintf(buf + len, " age=%ld", 4370 l->min_time); 4371 4372 if (l->min_pid != l->max_pid) 4373 len += sprintf(buf + len, " pid=%ld-%ld", 4374 l->min_pid, l->max_pid); 4375 else 4376 len += sprintf(buf + len, " pid=%ld", 4377 l->min_pid); 4378 4379 if (num_online_cpus() > 1 && 4380 !cpumask_empty(to_cpumask(l->cpus)) && 4381 len < PAGE_SIZE - 60) { 4382 len += sprintf(buf + len, " cpus="); 4383 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4384 to_cpumask(l->cpus)); 4385 } 4386 4387 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4388 len < PAGE_SIZE - 60) { 4389 len += sprintf(buf + len, " nodes="); 4390 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4391 l->nodes); 4392 } 4393 4394 len += sprintf(buf + len, "\n"); 4395 } 4396 4397 free_loc_track(&t); 4398 kfree(map); 4399 if (!t.count) 4400 len += sprintf(buf, "No data\n"); 4401 return len; 4402 } 4403 #endif 4404 4405 #ifdef SLUB_RESILIENCY_TEST 4406 static void resiliency_test(void) 4407 { 4408 u8 *p; 4409 4410 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); 4411 4412 printk(KERN_ERR "SLUB resiliency testing\n"); 4413 printk(KERN_ERR "-----------------------\n"); 4414 printk(KERN_ERR "A. Corruption after allocation\n"); 4415 4416 p = kzalloc(16, GFP_KERNEL); 4417 p[16] = 0x12; 4418 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4419 " 0x12->0x%p\n\n", p + 16); 4420 4421 validate_slab_cache(kmalloc_caches[4]); 4422 4423 /* Hmmm... The next two are dangerous */ 4424 p = kzalloc(32, GFP_KERNEL); 4425 p[32 + sizeof(void *)] = 0x34; 4426 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4427 " 0x34 -> -0x%p\n", p); 4428 printk(KERN_ERR 4429 "If allocated object is overwritten then not detectable\n\n"); 4430 4431 validate_slab_cache(kmalloc_caches[5]); 4432 p = kzalloc(64, GFP_KERNEL); 4433 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4434 *p = 0x56; 4435 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4436 p); 4437 printk(KERN_ERR 4438 "If allocated object is overwritten then not detectable\n\n"); 4439 validate_slab_cache(kmalloc_caches[6]); 4440 4441 printk(KERN_ERR "\nB. Corruption after free\n"); 4442 p = kzalloc(128, GFP_KERNEL); 4443 kfree(p); 4444 *p = 0x78; 4445 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4446 validate_slab_cache(kmalloc_caches[7]); 4447 4448 p = kzalloc(256, GFP_KERNEL); 4449 kfree(p); 4450 p[50] = 0x9a; 4451 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4452 p); 4453 validate_slab_cache(kmalloc_caches[8]); 4454 4455 p = kzalloc(512, GFP_KERNEL); 4456 kfree(p); 4457 p[512] = 0xab; 4458 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4459 validate_slab_cache(kmalloc_caches[9]); 4460 } 4461 #else 4462 #ifdef CONFIG_SYSFS 4463 static void resiliency_test(void) {}; 4464 #endif 4465 #endif 4466 4467 #ifdef CONFIG_SYSFS 4468 enum slab_stat_type { 4469 SL_ALL, /* All slabs */ 4470 SL_PARTIAL, /* Only partially allocated slabs */ 4471 SL_CPU, /* Only slabs used for cpu caches */ 4472 SL_OBJECTS, /* Determine allocated objects not slabs */ 4473 SL_TOTAL /* Determine object capacity not slabs */ 4474 }; 4475 4476 #define SO_ALL (1 << SL_ALL) 4477 #define SO_PARTIAL (1 << SL_PARTIAL) 4478 #define SO_CPU (1 << SL_CPU) 4479 #define SO_OBJECTS (1 << SL_OBJECTS) 4480 #define SO_TOTAL (1 << SL_TOTAL) 4481 4482 static ssize_t show_slab_objects(struct kmem_cache *s, 4483 char *buf, unsigned long flags) 4484 { 4485 unsigned long total = 0; 4486 int node; 4487 int x; 4488 unsigned long *nodes; 4489 unsigned long *per_cpu; 4490 4491 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4492 if (!nodes) 4493 return -ENOMEM; 4494 per_cpu = nodes + nr_node_ids; 4495 4496 if (flags & SO_CPU) { 4497 int cpu; 4498 4499 for_each_possible_cpu(cpu) { 4500 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4501 int node; 4502 struct page *page; 4503 4504 page = ACCESS_ONCE(c->page); 4505 if (!page) 4506 continue; 4507 4508 node = page_to_nid(page); 4509 if (flags & SO_TOTAL) 4510 x = page->objects; 4511 else if (flags & SO_OBJECTS) 4512 x = page->inuse; 4513 else 4514 x = 1; 4515 4516 total += x; 4517 nodes[node] += x; 4518 4519 page = ACCESS_ONCE(c->partial); 4520 if (page) { 4521 x = page->pobjects; 4522 total += x; 4523 nodes[node] += x; 4524 } 4525 4526 per_cpu[node]++; 4527 } 4528 } 4529 4530 lock_memory_hotplug(); 4531 #ifdef CONFIG_SLUB_DEBUG 4532 if (flags & SO_ALL) { 4533 for_each_node_state(node, N_NORMAL_MEMORY) { 4534 struct kmem_cache_node *n = get_node(s, node); 4535 4536 if (flags & SO_TOTAL) 4537 x = atomic_long_read(&n->total_objects); 4538 else if (flags & SO_OBJECTS) 4539 x = atomic_long_read(&n->total_objects) - 4540 count_partial(n, count_free); 4541 4542 else 4543 x = atomic_long_read(&n->nr_slabs); 4544 total += x; 4545 nodes[node] += x; 4546 } 4547 4548 } else 4549 #endif 4550 if (flags & SO_PARTIAL) { 4551 for_each_node_state(node, N_NORMAL_MEMORY) { 4552 struct kmem_cache_node *n = get_node(s, node); 4553 4554 if (flags & SO_TOTAL) 4555 x = count_partial(n, count_total); 4556 else if (flags & SO_OBJECTS) 4557 x = count_partial(n, count_inuse); 4558 else 4559 x = n->nr_partial; 4560 total += x; 4561 nodes[node] += x; 4562 } 4563 } 4564 x = sprintf(buf, "%lu", total); 4565 #ifdef CONFIG_NUMA 4566 for_each_node_state(node, N_NORMAL_MEMORY) 4567 if (nodes[node]) 4568 x += sprintf(buf + x, " N%d=%lu", 4569 node, nodes[node]); 4570 #endif 4571 unlock_memory_hotplug(); 4572 kfree(nodes); 4573 return x + sprintf(buf + x, "\n"); 4574 } 4575 4576 #ifdef CONFIG_SLUB_DEBUG 4577 static int any_slab_objects(struct kmem_cache *s) 4578 { 4579 int node; 4580 4581 for_each_online_node(node) { 4582 struct kmem_cache_node *n = get_node(s, node); 4583 4584 if (!n) 4585 continue; 4586 4587 if (atomic_long_read(&n->total_objects)) 4588 return 1; 4589 } 4590 return 0; 4591 } 4592 #endif 4593 4594 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4595 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4596 4597 struct slab_attribute { 4598 struct attribute attr; 4599 ssize_t (*show)(struct kmem_cache *s, char *buf); 4600 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4601 }; 4602 4603 #define SLAB_ATTR_RO(_name) \ 4604 static struct slab_attribute _name##_attr = \ 4605 __ATTR(_name, 0400, _name##_show, NULL) 4606 4607 #define SLAB_ATTR(_name) \ 4608 static struct slab_attribute _name##_attr = \ 4609 __ATTR(_name, 0600, _name##_show, _name##_store) 4610 4611 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4612 { 4613 return sprintf(buf, "%d\n", s->size); 4614 } 4615 SLAB_ATTR_RO(slab_size); 4616 4617 static ssize_t align_show(struct kmem_cache *s, char *buf) 4618 { 4619 return sprintf(buf, "%d\n", s->align); 4620 } 4621 SLAB_ATTR_RO(align); 4622 4623 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4624 { 4625 return sprintf(buf, "%d\n", s->object_size); 4626 } 4627 SLAB_ATTR_RO(object_size); 4628 4629 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4630 { 4631 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4632 } 4633 SLAB_ATTR_RO(objs_per_slab); 4634 4635 static ssize_t order_store(struct kmem_cache *s, 4636 const char *buf, size_t length) 4637 { 4638 unsigned long order; 4639 int err; 4640 4641 err = strict_strtoul(buf, 10, &order); 4642 if (err) 4643 return err; 4644 4645 if (order > slub_max_order || order < slub_min_order) 4646 return -EINVAL; 4647 4648 calculate_sizes(s, order); 4649 return length; 4650 } 4651 4652 static ssize_t order_show(struct kmem_cache *s, char *buf) 4653 { 4654 return sprintf(buf, "%d\n", oo_order(s->oo)); 4655 } 4656 SLAB_ATTR(order); 4657 4658 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4659 { 4660 return sprintf(buf, "%lu\n", s->min_partial); 4661 } 4662 4663 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4664 size_t length) 4665 { 4666 unsigned long min; 4667 int err; 4668 4669 err = strict_strtoul(buf, 10, &min); 4670 if (err) 4671 return err; 4672 4673 set_min_partial(s, min); 4674 return length; 4675 } 4676 SLAB_ATTR(min_partial); 4677 4678 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4679 { 4680 return sprintf(buf, "%u\n", s->cpu_partial); 4681 } 4682 4683 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4684 size_t length) 4685 { 4686 unsigned long objects; 4687 int err; 4688 4689 err = strict_strtoul(buf, 10, &objects); 4690 if (err) 4691 return err; 4692 if (objects && kmem_cache_debug(s)) 4693 return -EINVAL; 4694 4695 s->cpu_partial = objects; 4696 flush_all(s); 4697 return length; 4698 } 4699 SLAB_ATTR(cpu_partial); 4700 4701 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4702 { 4703 if (!s->ctor) 4704 return 0; 4705 return sprintf(buf, "%pS\n", s->ctor); 4706 } 4707 SLAB_ATTR_RO(ctor); 4708 4709 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4710 { 4711 return sprintf(buf, "%d\n", s->refcount - 1); 4712 } 4713 SLAB_ATTR_RO(aliases); 4714 4715 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4716 { 4717 return show_slab_objects(s, buf, SO_PARTIAL); 4718 } 4719 SLAB_ATTR_RO(partial); 4720 4721 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4722 { 4723 return show_slab_objects(s, buf, SO_CPU); 4724 } 4725 SLAB_ATTR_RO(cpu_slabs); 4726 4727 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4728 { 4729 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4730 } 4731 SLAB_ATTR_RO(objects); 4732 4733 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4734 { 4735 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4736 } 4737 SLAB_ATTR_RO(objects_partial); 4738 4739 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4740 { 4741 int objects = 0; 4742 int pages = 0; 4743 int cpu; 4744 int len; 4745 4746 for_each_online_cpu(cpu) { 4747 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4748 4749 if (page) { 4750 pages += page->pages; 4751 objects += page->pobjects; 4752 } 4753 } 4754 4755 len = sprintf(buf, "%d(%d)", objects, pages); 4756 4757 #ifdef CONFIG_SMP 4758 for_each_online_cpu(cpu) { 4759 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4760 4761 if (page && len < PAGE_SIZE - 20) 4762 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4763 page->pobjects, page->pages); 4764 } 4765 #endif 4766 return len + sprintf(buf + len, "\n"); 4767 } 4768 SLAB_ATTR_RO(slabs_cpu_partial); 4769 4770 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4771 { 4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4773 } 4774 4775 static ssize_t reclaim_account_store(struct kmem_cache *s, 4776 const char *buf, size_t length) 4777 { 4778 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4779 if (buf[0] == '1') 4780 s->flags |= SLAB_RECLAIM_ACCOUNT; 4781 return length; 4782 } 4783 SLAB_ATTR(reclaim_account); 4784 4785 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4786 { 4787 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4788 } 4789 SLAB_ATTR_RO(hwcache_align); 4790 4791 #ifdef CONFIG_ZONE_DMA 4792 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4793 { 4794 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4795 } 4796 SLAB_ATTR_RO(cache_dma); 4797 #endif 4798 4799 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4800 { 4801 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4802 } 4803 SLAB_ATTR_RO(destroy_by_rcu); 4804 4805 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4806 { 4807 return sprintf(buf, "%d\n", s->reserved); 4808 } 4809 SLAB_ATTR_RO(reserved); 4810 4811 #ifdef CONFIG_SLUB_DEBUG 4812 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4813 { 4814 return show_slab_objects(s, buf, SO_ALL); 4815 } 4816 SLAB_ATTR_RO(slabs); 4817 4818 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4819 { 4820 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4821 } 4822 SLAB_ATTR_RO(total_objects); 4823 4824 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4825 { 4826 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4827 } 4828 4829 static ssize_t sanity_checks_store(struct kmem_cache *s, 4830 const char *buf, size_t length) 4831 { 4832 s->flags &= ~SLAB_DEBUG_FREE; 4833 if (buf[0] == '1') { 4834 s->flags &= ~__CMPXCHG_DOUBLE; 4835 s->flags |= SLAB_DEBUG_FREE; 4836 } 4837 return length; 4838 } 4839 SLAB_ATTR(sanity_checks); 4840 4841 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4842 { 4843 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4844 } 4845 4846 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4847 size_t length) 4848 { 4849 s->flags &= ~SLAB_TRACE; 4850 if (buf[0] == '1') { 4851 s->flags &= ~__CMPXCHG_DOUBLE; 4852 s->flags |= SLAB_TRACE; 4853 } 4854 return length; 4855 } 4856 SLAB_ATTR(trace); 4857 4858 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4859 { 4860 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4861 } 4862 4863 static ssize_t red_zone_store(struct kmem_cache *s, 4864 const char *buf, size_t length) 4865 { 4866 if (any_slab_objects(s)) 4867 return -EBUSY; 4868 4869 s->flags &= ~SLAB_RED_ZONE; 4870 if (buf[0] == '1') { 4871 s->flags &= ~__CMPXCHG_DOUBLE; 4872 s->flags |= SLAB_RED_ZONE; 4873 } 4874 calculate_sizes(s, -1); 4875 return length; 4876 } 4877 SLAB_ATTR(red_zone); 4878 4879 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4880 { 4881 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4882 } 4883 4884 static ssize_t poison_store(struct kmem_cache *s, 4885 const char *buf, size_t length) 4886 { 4887 if (any_slab_objects(s)) 4888 return -EBUSY; 4889 4890 s->flags &= ~SLAB_POISON; 4891 if (buf[0] == '1') { 4892 s->flags &= ~__CMPXCHG_DOUBLE; 4893 s->flags |= SLAB_POISON; 4894 } 4895 calculate_sizes(s, -1); 4896 return length; 4897 } 4898 SLAB_ATTR(poison); 4899 4900 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4901 { 4902 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4903 } 4904 4905 static ssize_t store_user_store(struct kmem_cache *s, 4906 const char *buf, size_t length) 4907 { 4908 if (any_slab_objects(s)) 4909 return -EBUSY; 4910 4911 s->flags &= ~SLAB_STORE_USER; 4912 if (buf[0] == '1') { 4913 s->flags &= ~__CMPXCHG_DOUBLE; 4914 s->flags |= SLAB_STORE_USER; 4915 } 4916 calculate_sizes(s, -1); 4917 return length; 4918 } 4919 SLAB_ATTR(store_user); 4920 4921 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4922 { 4923 return 0; 4924 } 4925 4926 static ssize_t validate_store(struct kmem_cache *s, 4927 const char *buf, size_t length) 4928 { 4929 int ret = -EINVAL; 4930 4931 if (buf[0] == '1') { 4932 ret = validate_slab_cache(s); 4933 if (ret >= 0) 4934 ret = length; 4935 } 4936 return ret; 4937 } 4938 SLAB_ATTR(validate); 4939 4940 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4941 { 4942 if (!(s->flags & SLAB_STORE_USER)) 4943 return -ENOSYS; 4944 return list_locations(s, buf, TRACK_ALLOC); 4945 } 4946 SLAB_ATTR_RO(alloc_calls); 4947 4948 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4949 { 4950 if (!(s->flags & SLAB_STORE_USER)) 4951 return -ENOSYS; 4952 return list_locations(s, buf, TRACK_FREE); 4953 } 4954 SLAB_ATTR_RO(free_calls); 4955 #endif /* CONFIG_SLUB_DEBUG */ 4956 4957 #ifdef CONFIG_FAILSLAB 4958 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4959 { 4960 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4961 } 4962 4963 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4964 size_t length) 4965 { 4966 s->flags &= ~SLAB_FAILSLAB; 4967 if (buf[0] == '1') 4968 s->flags |= SLAB_FAILSLAB; 4969 return length; 4970 } 4971 SLAB_ATTR(failslab); 4972 #endif 4973 4974 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4975 { 4976 return 0; 4977 } 4978 4979 static ssize_t shrink_store(struct kmem_cache *s, 4980 const char *buf, size_t length) 4981 { 4982 if (buf[0] == '1') { 4983 int rc = kmem_cache_shrink(s); 4984 4985 if (rc) 4986 return rc; 4987 } else 4988 return -EINVAL; 4989 return length; 4990 } 4991 SLAB_ATTR(shrink); 4992 4993 #ifdef CONFIG_NUMA 4994 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4995 { 4996 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4997 } 4998 4999 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5000 const char *buf, size_t length) 5001 { 5002 unsigned long ratio; 5003 int err; 5004 5005 err = strict_strtoul(buf, 10, &ratio); 5006 if (err) 5007 return err; 5008 5009 if (ratio <= 100) 5010 s->remote_node_defrag_ratio = ratio * 10; 5011 5012 return length; 5013 } 5014 SLAB_ATTR(remote_node_defrag_ratio); 5015 #endif 5016 5017 #ifdef CONFIG_SLUB_STATS 5018 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5019 { 5020 unsigned long sum = 0; 5021 int cpu; 5022 int len; 5023 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5024 5025 if (!data) 5026 return -ENOMEM; 5027 5028 for_each_online_cpu(cpu) { 5029 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5030 5031 data[cpu] = x; 5032 sum += x; 5033 } 5034 5035 len = sprintf(buf, "%lu", sum); 5036 5037 #ifdef CONFIG_SMP 5038 for_each_online_cpu(cpu) { 5039 if (data[cpu] && len < PAGE_SIZE - 20) 5040 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5041 } 5042 #endif 5043 kfree(data); 5044 return len + sprintf(buf + len, "\n"); 5045 } 5046 5047 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5048 { 5049 int cpu; 5050 5051 for_each_online_cpu(cpu) 5052 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5053 } 5054 5055 #define STAT_ATTR(si, text) \ 5056 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5057 { \ 5058 return show_stat(s, buf, si); \ 5059 } \ 5060 static ssize_t text##_store(struct kmem_cache *s, \ 5061 const char *buf, size_t length) \ 5062 { \ 5063 if (buf[0] != '0') \ 5064 return -EINVAL; \ 5065 clear_stat(s, si); \ 5066 return length; \ 5067 } \ 5068 SLAB_ATTR(text); \ 5069 5070 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5071 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5072 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5073 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5074 STAT_ATTR(FREE_FROZEN, free_frozen); 5075 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5076 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5077 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5078 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5079 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5080 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5081 STAT_ATTR(FREE_SLAB, free_slab); 5082 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5083 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5084 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5085 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5086 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5087 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5088 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5089 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5090 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5091 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5092 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5093 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5094 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5095 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5096 #endif 5097 5098 static struct attribute *slab_attrs[] = { 5099 &slab_size_attr.attr, 5100 &object_size_attr.attr, 5101 &objs_per_slab_attr.attr, 5102 &order_attr.attr, 5103 &min_partial_attr.attr, 5104 &cpu_partial_attr.attr, 5105 &objects_attr.attr, 5106 &objects_partial_attr.attr, 5107 &partial_attr.attr, 5108 &cpu_slabs_attr.attr, 5109 &ctor_attr.attr, 5110 &aliases_attr.attr, 5111 &align_attr.attr, 5112 &hwcache_align_attr.attr, 5113 &reclaim_account_attr.attr, 5114 &destroy_by_rcu_attr.attr, 5115 &shrink_attr.attr, 5116 &reserved_attr.attr, 5117 &slabs_cpu_partial_attr.attr, 5118 #ifdef CONFIG_SLUB_DEBUG 5119 &total_objects_attr.attr, 5120 &slabs_attr.attr, 5121 &sanity_checks_attr.attr, 5122 &trace_attr.attr, 5123 &red_zone_attr.attr, 5124 &poison_attr.attr, 5125 &store_user_attr.attr, 5126 &validate_attr.attr, 5127 &alloc_calls_attr.attr, 5128 &free_calls_attr.attr, 5129 #endif 5130 #ifdef CONFIG_ZONE_DMA 5131 &cache_dma_attr.attr, 5132 #endif 5133 #ifdef CONFIG_NUMA 5134 &remote_node_defrag_ratio_attr.attr, 5135 #endif 5136 #ifdef CONFIG_SLUB_STATS 5137 &alloc_fastpath_attr.attr, 5138 &alloc_slowpath_attr.attr, 5139 &free_fastpath_attr.attr, 5140 &free_slowpath_attr.attr, 5141 &free_frozen_attr.attr, 5142 &free_add_partial_attr.attr, 5143 &free_remove_partial_attr.attr, 5144 &alloc_from_partial_attr.attr, 5145 &alloc_slab_attr.attr, 5146 &alloc_refill_attr.attr, 5147 &alloc_node_mismatch_attr.attr, 5148 &free_slab_attr.attr, 5149 &cpuslab_flush_attr.attr, 5150 &deactivate_full_attr.attr, 5151 &deactivate_empty_attr.attr, 5152 &deactivate_to_head_attr.attr, 5153 &deactivate_to_tail_attr.attr, 5154 &deactivate_remote_frees_attr.attr, 5155 &deactivate_bypass_attr.attr, 5156 &order_fallback_attr.attr, 5157 &cmpxchg_double_fail_attr.attr, 5158 &cmpxchg_double_cpu_fail_attr.attr, 5159 &cpu_partial_alloc_attr.attr, 5160 &cpu_partial_free_attr.attr, 5161 &cpu_partial_node_attr.attr, 5162 &cpu_partial_drain_attr.attr, 5163 #endif 5164 #ifdef CONFIG_FAILSLAB 5165 &failslab_attr.attr, 5166 #endif 5167 5168 NULL 5169 }; 5170 5171 static struct attribute_group slab_attr_group = { 5172 .attrs = slab_attrs, 5173 }; 5174 5175 static ssize_t slab_attr_show(struct kobject *kobj, 5176 struct attribute *attr, 5177 char *buf) 5178 { 5179 struct slab_attribute *attribute; 5180 struct kmem_cache *s; 5181 int err; 5182 5183 attribute = to_slab_attr(attr); 5184 s = to_slab(kobj); 5185 5186 if (!attribute->show) 5187 return -EIO; 5188 5189 err = attribute->show(s, buf); 5190 5191 return err; 5192 } 5193 5194 static ssize_t slab_attr_store(struct kobject *kobj, 5195 struct attribute *attr, 5196 const char *buf, size_t len) 5197 { 5198 struct slab_attribute *attribute; 5199 struct kmem_cache *s; 5200 int err; 5201 5202 attribute = to_slab_attr(attr); 5203 s = to_slab(kobj); 5204 5205 if (!attribute->store) 5206 return -EIO; 5207 5208 err = attribute->store(s, buf, len); 5209 5210 return err; 5211 } 5212 5213 static void kmem_cache_release(struct kobject *kobj) 5214 { 5215 struct kmem_cache *s = to_slab(kobj); 5216 5217 kfree(s->name); 5218 kfree(s); 5219 } 5220 5221 static const struct sysfs_ops slab_sysfs_ops = { 5222 .show = slab_attr_show, 5223 .store = slab_attr_store, 5224 }; 5225 5226 static struct kobj_type slab_ktype = { 5227 .sysfs_ops = &slab_sysfs_ops, 5228 .release = kmem_cache_release 5229 }; 5230 5231 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5232 { 5233 struct kobj_type *ktype = get_ktype(kobj); 5234 5235 if (ktype == &slab_ktype) 5236 return 1; 5237 return 0; 5238 } 5239 5240 static const struct kset_uevent_ops slab_uevent_ops = { 5241 .filter = uevent_filter, 5242 }; 5243 5244 static struct kset *slab_kset; 5245 5246 #define ID_STR_LENGTH 64 5247 5248 /* Create a unique string id for a slab cache: 5249 * 5250 * Format :[flags-]size 5251 */ 5252 static char *create_unique_id(struct kmem_cache *s) 5253 { 5254 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5255 char *p = name; 5256 5257 BUG_ON(!name); 5258 5259 *p++ = ':'; 5260 /* 5261 * First flags affecting slabcache operations. We will only 5262 * get here for aliasable slabs so we do not need to support 5263 * too many flags. The flags here must cover all flags that 5264 * are matched during merging to guarantee that the id is 5265 * unique. 5266 */ 5267 if (s->flags & SLAB_CACHE_DMA) 5268 *p++ = 'd'; 5269 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5270 *p++ = 'a'; 5271 if (s->flags & SLAB_DEBUG_FREE) 5272 *p++ = 'F'; 5273 if (!(s->flags & SLAB_NOTRACK)) 5274 *p++ = 't'; 5275 if (p != name + 1) 5276 *p++ = '-'; 5277 p += sprintf(p, "%07d", s->size); 5278 BUG_ON(p > name + ID_STR_LENGTH - 1); 5279 return name; 5280 } 5281 5282 static int sysfs_slab_add(struct kmem_cache *s) 5283 { 5284 int err; 5285 const char *name; 5286 int unmergeable; 5287 5288 if (slab_state < FULL) 5289 /* Defer until later */ 5290 return 0; 5291 5292 unmergeable = slab_unmergeable(s); 5293 if (unmergeable) { 5294 /* 5295 * Slabcache can never be merged so we can use the name proper. 5296 * This is typically the case for debug situations. In that 5297 * case we can catch duplicate names easily. 5298 */ 5299 sysfs_remove_link(&slab_kset->kobj, s->name); 5300 name = s->name; 5301 } else { 5302 /* 5303 * Create a unique name for the slab as a target 5304 * for the symlinks. 5305 */ 5306 name = create_unique_id(s); 5307 } 5308 5309 s->kobj.kset = slab_kset; 5310 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5311 if (err) { 5312 kobject_put(&s->kobj); 5313 return err; 5314 } 5315 5316 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5317 if (err) { 5318 kobject_del(&s->kobj); 5319 kobject_put(&s->kobj); 5320 return err; 5321 } 5322 kobject_uevent(&s->kobj, KOBJ_ADD); 5323 if (!unmergeable) { 5324 /* Setup first alias */ 5325 sysfs_slab_alias(s, s->name); 5326 kfree(name); 5327 } 5328 return 0; 5329 } 5330 5331 static void sysfs_slab_remove(struct kmem_cache *s) 5332 { 5333 if (slab_state < FULL) 5334 /* 5335 * Sysfs has not been setup yet so no need to remove the 5336 * cache from sysfs. 5337 */ 5338 return; 5339 5340 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5341 kobject_del(&s->kobj); 5342 kobject_put(&s->kobj); 5343 } 5344 5345 /* 5346 * Need to buffer aliases during bootup until sysfs becomes 5347 * available lest we lose that information. 5348 */ 5349 struct saved_alias { 5350 struct kmem_cache *s; 5351 const char *name; 5352 struct saved_alias *next; 5353 }; 5354 5355 static struct saved_alias *alias_list; 5356 5357 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5358 { 5359 struct saved_alias *al; 5360 5361 if (slab_state == FULL) { 5362 /* 5363 * If we have a leftover link then remove it. 5364 */ 5365 sysfs_remove_link(&slab_kset->kobj, name); 5366 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5367 } 5368 5369 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5370 if (!al) 5371 return -ENOMEM; 5372 5373 al->s = s; 5374 al->name = name; 5375 al->next = alias_list; 5376 alias_list = al; 5377 return 0; 5378 } 5379 5380 static int __init slab_sysfs_init(void) 5381 { 5382 struct kmem_cache *s; 5383 int err; 5384 5385 mutex_lock(&slab_mutex); 5386 5387 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5388 if (!slab_kset) { 5389 mutex_unlock(&slab_mutex); 5390 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5391 return -ENOSYS; 5392 } 5393 5394 slab_state = FULL; 5395 5396 list_for_each_entry(s, &slab_caches, list) { 5397 err = sysfs_slab_add(s); 5398 if (err) 5399 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5400 " to sysfs\n", s->name); 5401 } 5402 5403 while (alias_list) { 5404 struct saved_alias *al = alias_list; 5405 5406 alias_list = alias_list->next; 5407 err = sysfs_slab_alias(al->s, al->name); 5408 if (err) 5409 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5410 " %s to sysfs\n", al->name); 5411 kfree(al); 5412 } 5413 5414 mutex_unlock(&slab_mutex); 5415 resiliency_test(); 5416 return 0; 5417 } 5418 5419 __initcall(slab_sysfs_init); 5420 #endif /* CONFIG_SYSFS */ 5421 5422 /* 5423 * The /proc/slabinfo ABI 5424 */ 5425 #ifdef CONFIG_SLABINFO 5426 static void print_slabinfo_header(struct seq_file *m) 5427 { 5428 seq_puts(m, "slabinfo - version: 2.1\n"); 5429 seq_puts(m, "# name <active_objs> <num_objs> <object_size> " 5430 "<objperslab> <pagesperslab>"); 5431 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 5432 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 5433 seq_putc(m, '\n'); 5434 } 5435 5436 static void *s_start(struct seq_file *m, loff_t *pos) 5437 { 5438 loff_t n = *pos; 5439 5440 mutex_lock(&slab_mutex); 5441 if (!n) 5442 print_slabinfo_header(m); 5443 5444 return seq_list_start(&slab_caches, *pos); 5445 } 5446 5447 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 5448 { 5449 return seq_list_next(p, &slab_caches, pos); 5450 } 5451 5452 static void s_stop(struct seq_file *m, void *p) 5453 { 5454 mutex_unlock(&slab_mutex); 5455 } 5456 5457 static int s_show(struct seq_file *m, void *p) 5458 { 5459 unsigned long nr_partials = 0; 5460 unsigned long nr_slabs = 0; 5461 unsigned long nr_inuse = 0; 5462 unsigned long nr_objs = 0; 5463 unsigned long nr_free = 0; 5464 struct kmem_cache *s; 5465 int node; 5466 5467 s = list_entry(p, struct kmem_cache, list); 5468 5469 for_each_online_node(node) { 5470 struct kmem_cache_node *n = get_node(s, node); 5471 5472 if (!n) 5473 continue; 5474 5475 nr_partials += n->nr_partial; 5476 nr_slabs += atomic_long_read(&n->nr_slabs); 5477 nr_objs += atomic_long_read(&n->total_objects); 5478 nr_free += count_partial(n, count_free); 5479 } 5480 5481 nr_inuse = nr_objs - nr_free; 5482 5483 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 5484 nr_objs, s->size, oo_objects(s->oo), 5485 (1 << oo_order(s->oo))); 5486 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 5487 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 5488 0UL); 5489 seq_putc(m, '\n'); 5490 return 0; 5491 } 5492 5493 static const struct seq_operations slabinfo_op = { 5494 .start = s_start, 5495 .next = s_next, 5496 .stop = s_stop, 5497 .show = s_show, 5498 }; 5499 5500 static int slabinfo_open(struct inode *inode, struct file *file) 5501 { 5502 return seq_open(file, &slabinfo_op); 5503 } 5504 5505 static const struct file_operations proc_slabinfo_operations = { 5506 .open = slabinfo_open, 5507 .read = seq_read, 5508 .llseek = seq_lseek, 5509 .release = seq_release, 5510 }; 5511 5512 static int __init slab_proc_init(void) 5513 { 5514 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); 5515 return 0; 5516 } 5517 module_init(slab_proc_init); 5518 #endif /* CONFIG_SLABINFO */ 5519