1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 /* Structure holding parameters for get_partial() call chain */ 222 struct partial_context { 223 gfp_t flags; 224 unsigned int orig_size; 225 void *object; 226 }; 227 228 static inline bool kmem_cache_debug(struct kmem_cache *s) 229 { 230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 231 } 232 233 static inline bool slub_debug_orig_size(struct kmem_cache *s) 234 { 235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 236 (s->flags & SLAB_KMALLOC)); 237 } 238 239 void *fixup_red_left(struct kmem_cache *s, void *p) 240 { 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 242 p += s->red_left_pad; 243 244 return p; 245 } 246 247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 248 { 249 #ifdef CONFIG_SLUB_CPU_PARTIAL 250 return !kmem_cache_debug(s); 251 #else 252 return false; 253 #endif 254 } 255 256 /* 257 * Issues still to be resolved: 258 * 259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 260 * 261 * - Variable sizing of the per node arrays 262 */ 263 264 /* Enable to log cmpxchg failures */ 265 #undef SLUB_DEBUG_CMPXCHG 266 267 #ifndef CONFIG_SLUB_TINY 268 /* 269 * Minimum number of partial slabs. These will be left on the partial 270 * lists even if they are empty. kmem_cache_shrink may reclaim them. 271 */ 272 #define MIN_PARTIAL 5 273 274 /* 275 * Maximum number of desirable partial slabs. 276 * The existence of more partial slabs makes kmem_cache_shrink 277 * sort the partial list by the number of objects in use. 278 */ 279 #define MAX_PARTIAL 10 280 #else 281 #define MIN_PARTIAL 0 282 #define MAX_PARTIAL 0 283 #endif 284 285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 286 SLAB_POISON | SLAB_STORE_USER) 287 288 /* 289 * These debug flags cannot use CMPXCHG because there might be consistency 290 * issues when checking or reading debug information 291 */ 292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 293 SLAB_TRACE) 294 295 296 /* 297 * Debugging flags that require metadata to be stored in the slab. These get 298 * disabled when slab_debug=O is used and a cache's min order increases with 299 * metadata. 300 */ 301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 302 303 #define OO_SHIFT 16 304 #define OO_MASK ((1 << OO_SHIFT) - 1) 305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 306 307 /* Internal SLUB flags */ 308 /* Poison object */ 309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 310 /* Use cmpxchg_double */ 311 312 #ifdef system_has_freelist_aba 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 314 #else 315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 316 #endif 317 318 /* 319 * Tracking user of a slab. 320 */ 321 #define TRACK_ADDRS_COUNT 16 322 struct track { 323 unsigned long addr; /* Called from address */ 324 #ifdef CONFIG_STACKDEPOT 325 depot_stack_handle_t handle; 326 #endif 327 int cpu; /* Was running on cpu */ 328 int pid; /* Pid context */ 329 unsigned long when; /* When did the operation occur */ 330 }; 331 332 enum track_item { TRACK_ALLOC, TRACK_FREE }; 333 334 #ifdef SLAB_SUPPORTS_SYSFS 335 static int sysfs_slab_add(struct kmem_cache *); 336 static int sysfs_slab_alias(struct kmem_cache *, const char *); 337 #else 338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 340 { return 0; } 341 #endif 342 343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 344 static void debugfs_slab_add(struct kmem_cache *); 345 #else 346 static inline void debugfs_slab_add(struct kmem_cache *s) { } 347 #endif 348 349 enum stat_item { 350 ALLOC_FASTPATH, /* Allocation from cpu slab */ 351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 352 FREE_FASTPATH, /* Free to cpu slab */ 353 FREE_SLOWPATH, /* Freeing not to cpu slab */ 354 FREE_FROZEN, /* Freeing to frozen slab */ 355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 361 FREE_SLAB, /* Slab freed to the page allocator */ 362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 368 DEACTIVATE_BYPASS, /* Implicit deactivation */ 369 ORDER_FALLBACK, /* Number of times fallback was necessary */ 370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 376 NR_SLUB_STAT_ITEMS 377 }; 378 379 #ifndef CONFIG_SLUB_TINY 380 /* 381 * When changing the layout, make sure freelist and tid are still compatible 382 * with this_cpu_cmpxchg_double() alignment requirements. 383 */ 384 struct kmem_cache_cpu { 385 union { 386 struct { 387 void **freelist; /* Pointer to next available object */ 388 unsigned long tid; /* Globally unique transaction id */ 389 }; 390 freelist_aba_t freelist_tid; 391 }; 392 struct slab *slab; /* The slab from which we are allocating */ 393 #ifdef CONFIG_SLUB_CPU_PARTIAL 394 struct slab *partial; /* Partially allocated slabs */ 395 #endif 396 local_lock_t lock; /* Protects the fields above */ 397 #ifdef CONFIG_SLUB_STATS 398 unsigned int stat[NR_SLUB_STAT_ITEMS]; 399 #endif 400 }; 401 #endif /* CONFIG_SLUB_TINY */ 402 403 static inline void stat(const struct kmem_cache *s, enum stat_item si) 404 { 405 #ifdef CONFIG_SLUB_STATS 406 /* 407 * The rmw is racy on a preemptible kernel but this is acceptable, so 408 * avoid this_cpu_add()'s irq-disable overhead. 409 */ 410 raw_cpu_inc(s->cpu_slab->stat[si]); 411 #endif 412 } 413 414 static inline 415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 416 { 417 #ifdef CONFIG_SLUB_STATS 418 raw_cpu_add(s->cpu_slab->stat[si], v); 419 #endif 420 } 421 422 /* 423 * The slab lists for all objects. 424 */ 425 struct kmem_cache_node { 426 spinlock_t list_lock; 427 unsigned long nr_partial; 428 struct list_head partial; 429 #ifdef CONFIG_SLUB_DEBUG 430 atomic_long_t nr_slabs; 431 atomic_long_t total_objects; 432 struct list_head full; 433 #endif 434 }; 435 436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 437 { 438 return s->node[node]; 439 } 440 441 /* 442 * Iterator over all nodes. The body will be executed for each node that has 443 * a kmem_cache_node structure allocated (which is true for all online nodes) 444 */ 445 #define for_each_kmem_cache_node(__s, __node, __n) \ 446 for (__node = 0; __node < nr_node_ids; __node++) \ 447 if ((__n = get_node(__s, __node))) 448 449 /* 450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 452 * differ during memory hotplug/hotremove operations. 453 * Protected by slab_mutex. 454 */ 455 static nodemask_t slab_nodes; 456 457 #ifndef CONFIG_SLUB_TINY 458 /* 459 * Workqueue used for flush_cpu_slab(). 460 */ 461 static struct workqueue_struct *flushwq; 462 #endif 463 464 /******************************************************************** 465 * Core slab cache functions 466 *******************************************************************/ 467 468 /* 469 * freeptr_t represents a SLUB freelist pointer, which might be encoded 470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 471 */ 472 typedef struct { unsigned long v; } freeptr_t; 473 474 /* 475 * Returns freelist pointer (ptr). With hardening, this is obfuscated 476 * with an XOR of the address where the pointer is held and a per-cache 477 * random number. 478 */ 479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 480 void *ptr, unsigned long ptr_addr) 481 { 482 unsigned long encoded; 483 484 #ifdef CONFIG_SLAB_FREELIST_HARDENED 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 486 #else 487 encoded = (unsigned long)ptr; 488 #endif 489 return (freeptr_t){.v = encoded}; 490 } 491 492 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 493 freeptr_t ptr, unsigned long ptr_addr) 494 { 495 void *decoded; 496 497 #ifdef CONFIG_SLAB_FREELIST_HARDENED 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 499 #else 500 decoded = (void *)ptr.v; 501 #endif 502 return decoded; 503 } 504 505 static inline void *get_freepointer(struct kmem_cache *s, void *object) 506 { 507 unsigned long ptr_addr; 508 freeptr_t p; 509 510 object = kasan_reset_tag(object); 511 ptr_addr = (unsigned long)object + s->offset; 512 p = *(freeptr_t *)(ptr_addr); 513 return freelist_ptr_decode(s, p, ptr_addr); 514 } 515 516 #ifndef CONFIG_SLUB_TINY 517 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 518 { 519 prefetchw(object + s->offset); 520 } 521 #endif 522 523 /* 524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 525 * pointer value in the case the current thread loses the race for the next 526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 528 * KMSAN will still check all arguments of cmpxchg because of imperfect 529 * handling of inline assembly. 530 * To work around this problem, we apply __no_kmsan_checks to ensure that 531 * get_freepointer_safe() returns initialized memory. 532 */ 533 __no_kmsan_checks 534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 535 { 536 unsigned long freepointer_addr; 537 freeptr_t p; 538 539 if (!debug_pagealloc_enabled_static()) 540 return get_freepointer(s, object); 541 542 object = kasan_reset_tag(object); 543 freepointer_addr = (unsigned long)object + s->offset; 544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 545 return freelist_ptr_decode(s, p, freepointer_addr); 546 } 547 548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 549 { 550 unsigned long freeptr_addr = (unsigned long)object + s->offset; 551 552 #ifdef CONFIG_SLAB_FREELIST_HARDENED 553 BUG_ON(object == fp); /* naive detection of double free or corruption */ 554 #endif 555 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 558 } 559 560 /* 561 * See comment in calculate_sizes(). 562 */ 563 static inline bool freeptr_outside_object(struct kmem_cache *s) 564 { 565 return s->offset >= s->inuse; 566 } 567 568 /* 569 * Return offset of the end of info block which is inuse + free pointer if 570 * not overlapping with object. 571 */ 572 static inline unsigned int get_info_end(struct kmem_cache *s) 573 { 574 if (freeptr_outside_object(s)) 575 return s->inuse + sizeof(void *); 576 else 577 return s->inuse; 578 } 579 580 /* Loop over all objects in a slab */ 581 #define for_each_object(__p, __s, __addr, __objects) \ 582 for (__p = fixup_red_left(__s, __addr); \ 583 __p < (__addr) + (__objects) * (__s)->size; \ 584 __p += (__s)->size) 585 586 static inline unsigned int order_objects(unsigned int order, unsigned int size) 587 { 588 return ((unsigned int)PAGE_SIZE << order) / size; 589 } 590 591 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 592 unsigned int size) 593 { 594 struct kmem_cache_order_objects x = { 595 (order << OO_SHIFT) + order_objects(order, size) 596 }; 597 598 return x; 599 } 600 601 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 602 { 603 return x.x >> OO_SHIFT; 604 } 605 606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 607 { 608 return x.x & OO_MASK; 609 } 610 611 #ifdef CONFIG_SLUB_CPU_PARTIAL 612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 613 { 614 unsigned int nr_slabs; 615 616 s->cpu_partial = nr_objects; 617 618 /* 619 * We take the number of objects but actually limit the number of 620 * slabs on the per cpu partial list, in order to limit excessive 621 * growth of the list. For simplicity we assume that the slabs will 622 * be half-full. 623 */ 624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 625 s->cpu_partial_slabs = nr_slabs; 626 } 627 628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 629 { 630 return s->cpu_partial_slabs; 631 } 632 #else 633 static inline void 634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 635 { 636 } 637 638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 639 { 640 return 0; 641 } 642 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 643 644 /* 645 * Per slab locking using the pagelock 646 */ 647 static __always_inline void slab_lock(struct slab *slab) 648 { 649 bit_spin_lock(PG_locked, &slab->__page_flags); 650 } 651 652 static __always_inline void slab_unlock(struct slab *slab) 653 { 654 bit_spin_unlock(PG_locked, &slab->__page_flags); 655 } 656 657 static inline bool 658 __update_freelist_fast(struct slab *slab, 659 void *freelist_old, unsigned long counters_old, 660 void *freelist_new, unsigned long counters_new) 661 { 662 #ifdef system_has_freelist_aba 663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 665 666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 667 #else 668 return false; 669 #endif 670 } 671 672 static inline bool 673 __update_freelist_slow(struct slab *slab, 674 void *freelist_old, unsigned long counters_old, 675 void *freelist_new, unsigned long counters_new) 676 { 677 bool ret = false; 678 679 slab_lock(slab); 680 if (slab->freelist == freelist_old && 681 slab->counters == counters_old) { 682 slab->freelist = freelist_new; 683 slab->counters = counters_new; 684 ret = true; 685 } 686 slab_unlock(slab); 687 688 return ret; 689 } 690 691 /* 692 * Interrupts must be disabled (for the fallback code to work right), typically 693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 695 * allocation/ free operation in hardirq context. Therefore nothing can 696 * interrupt the operation. 697 */ 698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 699 void *freelist_old, unsigned long counters_old, 700 void *freelist_new, unsigned long counters_new, 701 const char *n) 702 { 703 bool ret; 704 705 if (USE_LOCKLESS_FAST_PATH()) 706 lockdep_assert_irqs_disabled(); 707 708 if (s->flags & __CMPXCHG_DOUBLE) { 709 ret = __update_freelist_fast(slab, freelist_old, counters_old, 710 freelist_new, counters_new); 711 } else { 712 ret = __update_freelist_slow(slab, freelist_old, counters_old, 713 freelist_new, counters_new); 714 } 715 if (likely(ret)) 716 return true; 717 718 cpu_relax(); 719 stat(s, CMPXCHG_DOUBLE_FAIL); 720 721 #ifdef SLUB_DEBUG_CMPXCHG 722 pr_info("%s %s: cmpxchg double redo ", n, s->name); 723 #endif 724 725 return false; 726 } 727 728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 729 void *freelist_old, unsigned long counters_old, 730 void *freelist_new, unsigned long counters_new, 731 const char *n) 732 { 733 bool ret; 734 735 if (s->flags & __CMPXCHG_DOUBLE) { 736 ret = __update_freelist_fast(slab, freelist_old, counters_old, 737 freelist_new, counters_new); 738 } else { 739 unsigned long flags; 740 741 local_irq_save(flags); 742 ret = __update_freelist_slow(slab, freelist_old, counters_old, 743 freelist_new, counters_new); 744 local_irq_restore(flags); 745 } 746 if (likely(ret)) 747 return true; 748 749 cpu_relax(); 750 stat(s, CMPXCHG_DOUBLE_FAIL); 751 752 #ifdef SLUB_DEBUG_CMPXCHG 753 pr_info("%s %s: cmpxchg double redo ", n, s->name); 754 #endif 755 756 return false; 757 } 758 759 #ifdef CONFIG_SLUB_DEBUG 760 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 761 static DEFINE_SPINLOCK(object_map_lock); 762 763 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 764 struct slab *slab) 765 { 766 void *addr = slab_address(slab); 767 void *p; 768 769 bitmap_zero(obj_map, slab->objects); 770 771 for (p = slab->freelist; p; p = get_freepointer(s, p)) 772 set_bit(__obj_to_index(s, addr, p), obj_map); 773 } 774 775 #if IS_ENABLED(CONFIG_KUNIT) 776 static bool slab_add_kunit_errors(void) 777 { 778 struct kunit_resource *resource; 779 780 if (!kunit_get_current_test()) 781 return false; 782 783 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 784 if (!resource) 785 return false; 786 787 (*(int *)resource->data)++; 788 kunit_put_resource(resource); 789 return true; 790 } 791 792 static bool slab_in_kunit_test(void) 793 { 794 struct kunit_resource *resource; 795 796 if (!kunit_get_current_test()) 797 return false; 798 799 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 800 if (!resource) 801 return false; 802 803 kunit_put_resource(resource); 804 return true; 805 } 806 #else 807 static inline bool slab_add_kunit_errors(void) { return false; } 808 static inline bool slab_in_kunit_test(void) { return false; } 809 #endif 810 811 static inline unsigned int size_from_object(struct kmem_cache *s) 812 { 813 if (s->flags & SLAB_RED_ZONE) 814 return s->size - s->red_left_pad; 815 816 return s->size; 817 } 818 819 static inline void *restore_red_left(struct kmem_cache *s, void *p) 820 { 821 if (s->flags & SLAB_RED_ZONE) 822 p -= s->red_left_pad; 823 824 return p; 825 } 826 827 /* 828 * Debug settings: 829 */ 830 #if defined(CONFIG_SLUB_DEBUG_ON) 831 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 832 #else 833 static slab_flags_t slub_debug; 834 #endif 835 836 static char *slub_debug_string; 837 static int disable_higher_order_debug; 838 839 /* 840 * slub is about to manipulate internal object metadata. This memory lies 841 * outside the range of the allocated object, so accessing it would normally 842 * be reported by kasan as a bounds error. metadata_access_enable() is used 843 * to tell kasan that these accesses are OK. 844 */ 845 static inline void metadata_access_enable(void) 846 { 847 kasan_disable_current(); 848 } 849 850 static inline void metadata_access_disable(void) 851 { 852 kasan_enable_current(); 853 } 854 855 /* 856 * Object debugging 857 */ 858 859 /* Verify that a pointer has an address that is valid within a slab page */ 860 static inline int check_valid_pointer(struct kmem_cache *s, 861 struct slab *slab, void *object) 862 { 863 void *base; 864 865 if (!object) 866 return 1; 867 868 base = slab_address(slab); 869 object = kasan_reset_tag(object); 870 object = restore_red_left(s, object); 871 if (object < base || object >= base + slab->objects * s->size || 872 (object - base) % s->size) { 873 return 0; 874 } 875 876 return 1; 877 } 878 879 static void print_section(char *level, char *text, u8 *addr, 880 unsigned int length) 881 { 882 metadata_access_enable(); 883 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 884 16, 1, kasan_reset_tag((void *)addr), length, 1); 885 metadata_access_disable(); 886 } 887 888 static struct track *get_track(struct kmem_cache *s, void *object, 889 enum track_item alloc) 890 { 891 struct track *p; 892 893 p = object + get_info_end(s); 894 895 return kasan_reset_tag(p + alloc); 896 } 897 898 #ifdef CONFIG_STACKDEPOT 899 static noinline depot_stack_handle_t set_track_prepare(void) 900 { 901 depot_stack_handle_t handle; 902 unsigned long entries[TRACK_ADDRS_COUNT]; 903 unsigned int nr_entries; 904 905 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 906 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 907 908 return handle; 909 } 910 #else 911 static inline depot_stack_handle_t set_track_prepare(void) 912 { 913 return 0; 914 } 915 #endif 916 917 static void set_track_update(struct kmem_cache *s, void *object, 918 enum track_item alloc, unsigned long addr, 919 depot_stack_handle_t handle) 920 { 921 struct track *p = get_track(s, object, alloc); 922 923 #ifdef CONFIG_STACKDEPOT 924 p->handle = handle; 925 #endif 926 p->addr = addr; 927 p->cpu = smp_processor_id(); 928 p->pid = current->pid; 929 p->when = jiffies; 930 } 931 932 static __always_inline void set_track(struct kmem_cache *s, void *object, 933 enum track_item alloc, unsigned long addr) 934 { 935 depot_stack_handle_t handle = set_track_prepare(); 936 937 set_track_update(s, object, alloc, addr, handle); 938 } 939 940 static void init_tracking(struct kmem_cache *s, void *object) 941 { 942 struct track *p; 943 944 if (!(s->flags & SLAB_STORE_USER)) 945 return; 946 947 p = get_track(s, object, TRACK_ALLOC); 948 memset(p, 0, 2*sizeof(struct track)); 949 } 950 951 static void print_track(const char *s, struct track *t, unsigned long pr_time) 952 { 953 depot_stack_handle_t handle __maybe_unused; 954 955 if (!t->addr) 956 return; 957 958 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 959 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 960 #ifdef CONFIG_STACKDEPOT 961 handle = READ_ONCE(t->handle); 962 if (handle) 963 stack_depot_print(handle); 964 else 965 pr_err("object allocation/free stack trace missing\n"); 966 #endif 967 } 968 969 void print_tracking(struct kmem_cache *s, void *object) 970 { 971 unsigned long pr_time = jiffies; 972 if (!(s->flags & SLAB_STORE_USER)) 973 return; 974 975 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 976 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 977 } 978 979 static void print_slab_info(const struct slab *slab) 980 { 981 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 982 slab, slab->objects, slab->inuse, slab->freelist, 983 &slab->__page_flags); 984 } 985 986 /* 987 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 988 * family will round up the real request size to these fixed ones, so 989 * there could be an extra area than what is requested. Save the original 990 * request size in the meta data area, for better debug and sanity check. 991 */ 992 static inline void set_orig_size(struct kmem_cache *s, 993 void *object, unsigned int orig_size) 994 { 995 void *p = kasan_reset_tag(object); 996 unsigned int kasan_meta_size; 997 998 if (!slub_debug_orig_size(s)) 999 return; 1000 1001 /* 1002 * KASAN can save its free meta data inside of the object at offset 0. 1003 * If this meta data size is larger than 'orig_size', it will overlap 1004 * the data redzone in [orig_size+1, object_size]. Thus, we adjust 1005 * 'orig_size' to be as at least as big as KASAN's meta data. 1006 */ 1007 kasan_meta_size = kasan_metadata_size(s, true); 1008 if (kasan_meta_size > orig_size) 1009 orig_size = kasan_meta_size; 1010 1011 p += get_info_end(s); 1012 p += sizeof(struct track) * 2; 1013 1014 *(unsigned int *)p = orig_size; 1015 } 1016 1017 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 1018 { 1019 void *p = kasan_reset_tag(object); 1020 1021 if (!slub_debug_orig_size(s)) 1022 return s->object_size; 1023 1024 p += get_info_end(s); 1025 p += sizeof(struct track) * 2; 1026 1027 return *(unsigned int *)p; 1028 } 1029 1030 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1031 { 1032 set_orig_size(s, (void *)object, s->object_size); 1033 } 1034 1035 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1036 { 1037 struct va_format vaf; 1038 va_list args; 1039 1040 va_start(args, fmt); 1041 vaf.fmt = fmt; 1042 vaf.va = &args; 1043 pr_err("=============================================================================\n"); 1044 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1045 pr_err("-----------------------------------------------------------------------------\n\n"); 1046 va_end(args); 1047 } 1048 1049 __printf(2, 3) 1050 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1051 { 1052 struct va_format vaf; 1053 va_list args; 1054 1055 if (slab_add_kunit_errors()) 1056 return; 1057 1058 va_start(args, fmt); 1059 vaf.fmt = fmt; 1060 vaf.va = &args; 1061 pr_err("FIX %s: %pV\n", s->name, &vaf); 1062 va_end(args); 1063 } 1064 1065 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1066 { 1067 unsigned int off; /* Offset of last byte */ 1068 u8 *addr = slab_address(slab); 1069 1070 print_tracking(s, p); 1071 1072 print_slab_info(slab); 1073 1074 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1075 p, p - addr, get_freepointer(s, p)); 1076 1077 if (s->flags & SLAB_RED_ZONE) 1078 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1079 s->red_left_pad); 1080 else if (p > addr + 16) 1081 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1082 1083 print_section(KERN_ERR, "Object ", p, 1084 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1085 if (s->flags & SLAB_RED_ZONE) 1086 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1087 s->inuse - s->object_size); 1088 1089 off = get_info_end(s); 1090 1091 if (s->flags & SLAB_STORE_USER) 1092 off += 2 * sizeof(struct track); 1093 1094 if (slub_debug_orig_size(s)) 1095 off += sizeof(unsigned int); 1096 1097 off += kasan_metadata_size(s, false); 1098 1099 if (off != size_from_object(s)) 1100 /* Beginning of the filler is the free pointer */ 1101 print_section(KERN_ERR, "Padding ", p + off, 1102 size_from_object(s) - off); 1103 1104 dump_stack(); 1105 } 1106 1107 static void object_err(struct kmem_cache *s, struct slab *slab, 1108 u8 *object, char *reason) 1109 { 1110 if (slab_add_kunit_errors()) 1111 return; 1112 1113 slab_bug(s, "%s", reason); 1114 print_trailer(s, slab, object); 1115 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1116 } 1117 1118 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1119 void **freelist, void *nextfree) 1120 { 1121 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1122 !check_valid_pointer(s, slab, nextfree) && freelist) { 1123 object_err(s, slab, *freelist, "Freechain corrupt"); 1124 *freelist = NULL; 1125 slab_fix(s, "Isolate corrupted freechain"); 1126 return true; 1127 } 1128 1129 return false; 1130 } 1131 1132 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1133 const char *fmt, ...) 1134 { 1135 va_list args; 1136 char buf[100]; 1137 1138 if (slab_add_kunit_errors()) 1139 return; 1140 1141 va_start(args, fmt); 1142 vsnprintf(buf, sizeof(buf), fmt, args); 1143 va_end(args); 1144 slab_bug(s, "%s", buf); 1145 print_slab_info(slab); 1146 dump_stack(); 1147 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1148 } 1149 1150 static void init_object(struct kmem_cache *s, void *object, u8 val) 1151 { 1152 u8 *p = kasan_reset_tag(object); 1153 unsigned int poison_size = s->object_size; 1154 1155 if (s->flags & SLAB_RED_ZONE) { 1156 memset(p - s->red_left_pad, val, s->red_left_pad); 1157 1158 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1159 /* 1160 * Redzone the extra allocated space by kmalloc than 1161 * requested, and the poison size will be limited to 1162 * the original request size accordingly. 1163 */ 1164 poison_size = get_orig_size(s, object); 1165 } 1166 } 1167 1168 if (s->flags & __OBJECT_POISON) { 1169 memset(p, POISON_FREE, poison_size - 1); 1170 p[poison_size - 1] = POISON_END; 1171 } 1172 1173 if (s->flags & SLAB_RED_ZONE) 1174 memset(p + poison_size, val, s->inuse - poison_size); 1175 } 1176 1177 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1178 void *from, void *to) 1179 { 1180 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1181 memset(from, data, to - from); 1182 } 1183 1184 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1185 u8 *object, char *what, 1186 u8 *start, unsigned int value, unsigned int bytes) 1187 { 1188 u8 *fault; 1189 u8 *end; 1190 u8 *addr = slab_address(slab); 1191 1192 metadata_access_enable(); 1193 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1194 metadata_access_disable(); 1195 if (!fault) 1196 return 1; 1197 1198 end = start + bytes; 1199 while (end > fault && end[-1] == value) 1200 end--; 1201 1202 if (slab_add_kunit_errors()) 1203 goto skip_bug_print; 1204 1205 slab_bug(s, "%s overwritten", what); 1206 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1207 fault, end - 1, fault - addr, 1208 fault[0], value); 1209 1210 skip_bug_print: 1211 restore_bytes(s, what, value, fault, end); 1212 return 0; 1213 } 1214 1215 /* 1216 * Object layout: 1217 * 1218 * object address 1219 * Bytes of the object to be managed. 1220 * If the freepointer may overlay the object then the free 1221 * pointer is at the middle of the object. 1222 * 1223 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1224 * 0xa5 (POISON_END) 1225 * 1226 * object + s->object_size 1227 * Padding to reach word boundary. This is also used for Redzoning. 1228 * Padding is extended by another word if Redzoning is enabled and 1229 * object_size == inuse. 1230 * 1231 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1232 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1233 * 1234 * object + s->inuse 1235 * Meta data starts here. 1236 * 1237 * A. Free pointer (if we cannot overwrite object on free) 1238 * B. Tracking data for SLAB_STORE_USER 1239 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1240 * D. Padding to reach required alignment boundary or at minimum 1241 * one word if debugging is on to be able to detect writes 1242 * before the word boundary. 1243 * 1244 * Padding is done using 0x5a (POISON_INUSE) 1245 * 1246 * object + s->size 1247 * Nothing is used beyond s->size. 1248 * 1249 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1250 * ignored. And therefore no slab options that rely on these boundaries 1251 * may be used with merged slabcaches. 1252 */ 1253 1254 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1255 { 1256 unsigned long off = get_info_end(s); /* The end of info */ 1257 1258 if (s->flags & SLAB_STORE_USER) { 1259 /* We also have user information there */ 1260 off += 2 * sizeof(struct track); 1261 1262 if (s->flags & SLAB_KMALLOC) 1263 off += sizeof(unsigned int); 1264 } 1265 1266 off += kasan_metadata_size(s, false); 1267 1268 if (size_from_object(s) == off) 1269 return 1; 1270 1271 return check_bytes_and_report(s, slab, p, "Object padding", 1272 p + off, POISON_INUSE, size_from_object(s) - off); 1273 } 1274 1275 /* Check the pad bytes at the end of a slab page */ 1276 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1277 { 1278 u8 *start; 1279 u8 *fault; 1280 u8 *end; 1281 u8 *pad; 1282 int length; 1283 int remainder; 1284 1285 if (!(s->flags & SLAB_POISON)) 1286 return; 1287 1288 start = slab_address(slab); 1289 length = slab_size(slab); 1290 end = start + length; 1291 remainder = length % s->size; 1292 if (!remainder) 1293 return; 1294 1295 pad = end - remainder; 1296 metadata_access_enable(); 1297 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1298 metadata_access_disable(); 1299 if (!fault) 1300 return; 1301 while (end > fault && end[-1] == POISON_INUSE) 1302 end--; 1303 1304 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1305 fault, end - 1, fault - start); 1306 print_section(KERN_ERR, "Padding ", pad, remainder); 1307 1308 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1309 } 1310 1311 static int check_object(struct kmem_cache *s, struct slab *slab, 1312 void *object, u8 val) 1313 { 1314 u8 *p = object; 1315 u8 *endobject = object + s->object_size; 1316 unsigned int orig_size, kasan_meta_size; 1317 int ret = 1; 1318 1319 if (s->flags & SLAB_RED_ZONE) { 1320 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1321 object - s->red_left_pad, val, s->red_left_pad)) 1322 ret = 0; 1323 1324 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1325 endobject, val, s->inuse - s->object_size)) 1326 ret = 0; 1327 1328 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1329 orig_size = get_orig_size(s, object); 1330 1331 if (s->object_size > orig_size && 1332 !check_bytes_and_report(s, slab, object, 1333 "kmalloc Redzone", p + orig_size, 1334 val, s->object_size - orig_size)) { 1335 ret = 0; 1336 } 1337 } 1338 } else { 1339 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1340 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1341 endobject, POISON_INUSE, 1342 s->inuse - s->object_size)) 1343 ret = 0; 1344 } 1345 } 1346 1347 if (s->flags & SLAB_POISON) { 1348 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1349 /* 1350 * KASAN can save its free meta data inside of the 1351 * object at offset 0. Thus, skip checking the part of 1352 * the redzone that overlaps with the meta data. 1353 */ 1354 kasan_meta_size = kasan_metadata_size(s, true); 1355 if (kasan_meta_size < s->object_size - 1 && 1356 !check_bytes_and_report(s, slab, p, "Poison", 1357 p + kasan_meta_size, POISON_FREE, 1358 s->object_size - kasan_meta_size - 1)) 1359 ret = 0; 1360 if (kasan_meta_size < s->object_size && 1361 !check_bytes_and_report(s, slab, p, "End Poison", 1362 p + s->object_size - 1, POISON_END, 1)) 1363 ret = 0; 1364 } 1365 /* 1366 * check_pad_bytes cleans up on its own. 1367 */ 1368 if (!check_pad_bytes(s, slab, p)) 1369 ret = 0; 1370 } 1371 1372 /* 1373 * Cannot check freepointer while object is allocated if 1374 * object and freepointer overlap. 1375 */ 1376 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1377 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1378 object_err(s, slab, p, "Freepointer corrupt"); 1379 /* 1380 * No choice but to zap it and thus lose the remainder 1381 * of the free objects in this slab. May cause 1382 * another error because the object count is now wrong. 1383 */ 1384 set_freepointer(s, p, NULL); 1385 ret = 0; 1386 } 1387 1388 if (!ret && !slab_in_kunit_test()) { 1389 print_trailer(s, slab, object); 1390 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1391 } 1392 1393 return ret; 1394 } 1395 1396 static int check_slab(struct kmem_cache *s, struct slab *slab) 1397 { 1398 int maxobj; 1399 1400 if (!folio_test_slab(slab_folio(slab))) { 1401 slab_err(s, slab, "Not a valid slab page"); 1402 return 0; 1403 } 1404 1405 maxobj = order_objects(slab_order(slab), s->size); 1406 if (slab->objects > maxobj) { 1407 slab_err(s, slab, "objects %u > max %u", 1408 slab->objects, maxobj); 1409 return 0; 1410 } 1411 if (slab->inuse > slab->objects) { 1412 slab_err(s, slab, "inuse %u > max %u", 1413 slab->inuse, slab->objects); 1414 return 0; 1415 } 1416 /* Slab_pad_check fixes things up after itself */ 1417 slab_pad_check(s, slab); 1418 return 1; 1419 } 1420 1421 /* 1422 * Determine if a certain object in a slab is on the freelist. Must hold the 1423 * slab lock to guarantee that the chains are in a consistent state. 1424 */ 1425 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1426 { 1427 int nr = 0; 1428 void *fp; 1429 void *object = NULL; 1430 int max_objects; 1431 1432 fp = slab->freelist; 1433 while (fp && nr <= slab->objects) { 1434 if (fp == search) 1435 return 1; 1436 if (!check_valid_pointer(s, slab, fp)) { 1437 if (object) { 1438 object_err(s, slab, object, 1439 "Freechain corrupt"); 1440 set_freepointer(s, object, NULL); 1441 } else { 1442 slab_err(s, slab, "Freepointer corrupt"); 1443 slab->freelist = NULL; 1444 slab->inuse = slab->objects; 1445 slab_fix(s, "Freelist cleared"); 1446 return 0; 1447 } 1448 break; 1449 } 1450 object = fp; 1451 fp = get_freepointer(s, object); 1452 nr++; 1453 } 1454 1455 max_objects = order_objects(slab_order(slab), s->size); 1456 if (max_objects > MAX_OBJS_PER_PAGE) 1457 max_objects = MAX_OBJS_PER_PAGE; 1458 1459 if (slab->objects != max_objects) { 1460 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1461 slab->objects, max_objects); 1462 slab->objects = max_objects; 1463 slab_fix(s, "Number of objects adjusted"); 1464 } 1465 if (slab->inuse != slab->objects - nr) { 1466 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1467 slab->inuse, slab->objects - nr); 1468 slab->inuse = slab->objects - nr; 1469 slab_fix(s, "Object count adjusted"); 1470 } 1471 return search == NULL; 1472 } 1473 1474 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1475 int alloc) 1476 { 1477 if (s->flags & SLAB_TRACE) { 1478 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1479 s->name, 1480 alloc ? "alloc" : "free", 1481 object, slab->inuse, 1482 slab->freelist); 1483 1484 if (!alloc) 1485 print_section(KERN_INFO, "Object ", (void *)object, 1486 s->object_size); 1487 1488 dump_stack(); 1489 } 1490 } 1491 1492 /* 1493 * Tracking of fully allocated slabs for debugging purposes. 1494 */ 1495 static void add_full(struct kmem_cache *s, 1496 struct kmem_cache_node *n, struct slab *slab) 1497 { 1498 if (!(s->flags & SLAB_STORE_USER)) 1499 return; 1500 1501 lockdep_assert_held(&n->list_lock); 1502 list_add(&slab->slab_list, &n->full); 1503 } 1504 1505 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1506 { 1507 if (!(s->flags & SLAB_STORE_USER)) 1508 return; 1509 1510 lockdep_assert_held(&n->list_lock); 1511 list_del(&slab->slab_list); 1512 } 1513 1514 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1515 { 1516 return atomic_long_read(&n->nr_slabs); 1517 } 1518 1519 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1520 { 1521 struct kmem_cache_node *n = get_node(s, node); 1522 1523 atomic_long_inc(&n->nr_slabs); 1524 atomic_long_add(objects, &n->total_objects); 1525 } 1526 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1527 { 1528 struct kmem_cache_node *n = get_node(s, node); 1529 1530 atomic_long_dec(&n->nr_slabs); 1531 atomic_long_sub(objects, &n->total_objects); 1532 } 1533 1534 /* Object debug checks for alloc/free paths */ 1535 static void setup_object_debug(struct kmem_cache *s, void *object) 1536 { 1537 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1538 return; 1539 1540 init_object(s, object, SLUB_RED_INACTIVE); 1541 init_tracking(s, object); 1542 } 1543 1544 static 1545 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1546 { 1547 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1548 return; 1549 1550 metadata_access_enable(); 1551 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1552 metadata_access_disable(); 1553 } 1554 1555 static inline int alloc_consistency_checks(struct kmem_cache *s, 1556 struct slab *slab, void *object) 1557 { 1558 if (!check_slab(s, slab)) 1559 return 0; 1560 1561 if (!check_valid_pointer(s, slab, object)) { 1562 object_err(s, slab, object, "Freelist Pointer check fails"); 1563 return 0; 1564 } 1565 1566 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1567 return 0; 1568 1569 return 1; 1570 } 1571 1572 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1573 struct slab *slab, void *object, int orig_size) 1574 { 1575 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1576 if (!alloc_consistency_checks(s, slab, object)) 1577 goto bad; 1578 } 1579 1580 /* Success. Perform special debug activities for allocs */ 1581 trace(s, slab, object, 1); 1582 set_orig_size(s, object, orig_size); 1583 init_object(s, object, SLUB_RED_ACTIVE); 1584 return true; 1585 1586 bad: 1587 if (folio_test_slab(slab_folio(slab))) { 1588 /* 1589 * If this is a slab page then lets do the best we can 1590 * to avoid issues in the future. Marking all objects 1591 * as used avoids touching the remaining objects. 1592 */ 1593 slab_fix(s, "Marking all objects used"); 1594 slab->inuse = slab->objects; 1595 slab->freelist = NULL; 1596 } 1597 return false; 1598 } 1599 1600 static inline int free_consistency_checks(struct kmem_cache *s, 1601 struct slab *slab, void *object, unsigned long addr) 1602 { 1603 if (!check_valid_pointer(s, slab, object)) { 1604 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1605 return 0; 1606 } 1607 1608 if (on_freelist(s, slab, object)) { 1609 object_err(s, slab, object, "Object already free"); 1610 return 0; 1611 } 1612 1613 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1614 return 0; 1615 1616 if (unlikely(s != slab->slab_cache)) { 1617 if (!folio_test_slab(slab_folio(slab))) { 1618 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1619 object); 1620 } else if (!slab->slab_cache) { 1621 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1622 object); 1623 dump_stack(); 1624 } else 1625 object_err(s, slab, object, 1626 "page slab pointer corrupt."); 1627 return 0; 1628 } 1629 return 1; 1630 } 1631 1632 /* 1633 * Parse a block of slab_debug options. Blocks are delimited by ';' 1634 * 1635 * @str: start of block 1636 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1637 * @slabs: return start of list of slabs, or NULL when there's no list 1638 * @init: assume this is initial parsing and not per-kmem-create parsing 1639 * 1640 * returns the start of next block if there's any, or NULL 1641 */ 1642 static char * 1643 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1644 { 1645 bool higher_order_disable = false; 1646 1647 /* Skip any completely empty blocks */ 1648 while (*str && *str == ';') 1649 str++; 1650 1651 if (*str == ',') { 1652 /* 1653 * No options but restriction on slabs. This means full 1654 * debugging for slabs matching a pattern. 1655 */ 1656 *flags = DEBUG_DEFAULT_FLAGS; 1657 goto check_slabs; 1658 } 1659 *flags = 0; 1660 1661 /* Determine which debug features should be switched on */ 1662 for (; *str && *str != ',' && *str != ';'; str++) { 1663 switch (tolower(*str)) { 1664 case '-': 1665 *flags = 0; 1666 break; 1667 case 'f': 1668 *flags |= SLAB_CONSISTENCY_CHECKS; 1669 break; 1670 case 'z': 1671 *flags |= SLAB_RED_ZONE; 1672 break; 1673 case 'p': 1674 *flags |= SLAB_POISON; 1675 break; 1676 case 'u': 1677 *flags |= SLAB_STORE_USER; 1678 break; 1679 case 't': 1680 *flags |= SLAB_TRACE; 1681 break; 1682 case 'a': 1683 *flags |= SLAB_FAILSLAB; 1684 break; 1685 case 'o': 1686 /* 1687 * Avoid enabling debugging on caches if its minimum 1688 * order would increase as a result. 1689 */ 1690 higher_order_disable = true; 1691 break; 1692 default: 1693 if (init) 1694 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1695 } 1696 } 1697 check_slabs: 1698 if (*str == ',') 1699 *slabs = ++str; 1700 else 1701 *slabs = NULL; 1702 1703 /* Skip over the slab list */ 1704 while (*str && *str != ';') 1705 str++; 1706 1707 /* Skip any completely empty blocks */ 1708 while (*str && *str == ';') 1709 str++; 1710 1711 if (init && higher_order_disable) 1712 disable_higher_order_debug = 1; 1713 1714 if (*str) 1715 return str; 1716 else 1717 return NULL; 1718 } 1719 1720 static int __init setup_slub_debug(char *str) 1721 { 1722 slab_flags_t flags; 1723 slab_flags_t global_flags; 1724 char *saved_str; 1725 char *slab_list; 1726 bool global_slub_debug_changed = false; 1727 bool slab_list_specified = false; 1728 1729 global_flags = DEBUG_DEFAULT_FLAGS; 1730 if (*str++ != '=' || !*str) 1731 /* 1732 * No options specified. Switch on full debugging. 1733 */ 1734 goto out; 1735 1736 saved_str = str; 1737 while (str) { 1738 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1739 1740 if (!slab_list) { 1741 global_flags = flags; 1742 global_slub_debug_changed = true; 1743 } else { 1744 slab_list_specified = true; 1745 if (flags & SLAB_STORE_USER) 1746 stack_depot_request_early_init(); 1747 } 1748 } 1749 1750 /* 1751 * For backwards compatibility, a single list of flags with list of 1752 * slabs means debugging is only changed for those slabs, so the global 1753 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1754 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1755 * long as there is no option specifying flags without a slab list. 1756 */ 1757 if (slab_list_specified) { 1758 if (!global_slub_debug_changed) 1759 global_flags = slub_debug; 1760 slub_debug_string = saved_str; 1761 } 1762 out: 1763 slub_debug = global_flags; 1764 if (slub_debug & SLAB_STORE_USER) 1765 stack_depot_request_early_init(); 1766 if (slub_debug != 0 || slub_debug_string) 1767 static_branch_enable(&slub_debug_enabled); 1768 else 1769 static_branch_disable(&slub_debug_enabled); 1770 if ((static_branch_unlikely(&init_on_alloc) || 1771 static_branch_unlikely(&init_on_free)) && 1772 (slub_debug & SLAB_POISON)) 1773 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1774 return 1; 1775 } 1776 1777 __setup("slab_debug", setup_slub_debug); 1778 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1779 1780 /* 1781 * kmem_cache_flags - apply debugging options to the cache 1782 * @flags: flags to set 1783 * @name: name of the cache 1784 * 1785 * Debug option(s) are applied to @flags. In addition to the debug 1786 * option(s), if a slab name (or multiple) is specified i.e. 1787 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1788 * then only the select slabs will receive the debug option(s). 1789 */ 1790 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1791 { 1792 char *iter; 1793 size_t len; 1794 char *next_block; 1795 slab_flags_t block_flags; 1796 slab_flags_t slub_debug_local = slub_debug; 1797 1798 if (flags & SLAB_NO_USER_FLAGS) 1799 return flags; 1800 1801 /* 1802 * If the slab cache is for debugging (e.g. kmemleak) then 1803 * don't store user (stack trace) information by default, 1804 * but let the user enable it via the command line below. 1805 */ 1806 if (flags & SLAB_NOLEAKTRACE) 1807 slub_debug_local &= ~SLAB_STORE_USER; 1808 1809 len = strlen(name); 1810 next_block = slub_debug_string; 1811 /* Go through all blocks of debug options, see if any matches our slab's name */ 1812 while (next_block) { 1813 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1814 if (!iter) 1815 continue; 1816 /* Found a block that has a slab list, search it */ 1817 while (*iter) { 1818 char *end, *glob; 1819 size_t cmplen; 1820 1821 end = strchrnul(iter, ','); 1822 if (next_block && next_block < end) 1823 end = next_block - 1; 1824 1825 glob = strnchr(iter, end - iter, '*'); 1826 if (glob) 1827 cmplen = glob - iter; 1828 else 1829 cmplen = max_t(size_t, len, (end - iter)); 1830 1831 if (!strncmp(name, iter, cmplen)) { 1832 flags |= block_flags; 1833 return flags; 1834 } 1835 1836 if (!*end || *end == ';') 1837 break; 1838 iter = end + 1; 1839 } 1840 } 1841 1842 return flags | slub_debug_local; 1843 } 1844 #else /* !CONFIG_SLUB_DEBUG */ 1845 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1846 static inline 1847 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1848 1849 static inline bool alloc_debug_processing(struct kmem_cache *s, 1850 struct slab *slab, void *object, int orig_size) { return true; } 1851 1852 static inline bool free_debug_processing(struct kmem_cache *s, 1853 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1854 unsigned long addr, depot_stack_handle_t handle) { return true; } 1855 1856 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1857 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1858 void *object, u8 val) { return 1; } 1859 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1860 static inline void set_track(struct kmem_cache *s, void *object, 1861 enum track_item alloc, unsigned long addr) {} 1862 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1863 struct slab *slab) {} 1864 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1865 struct slab *slab) {} 1866 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1867 { 1868 return flags; 1869 } 1870 #define slub_debug 0 1871 1872 #define disable_higher_order_debug 0 1873 1874 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1875 { return 0; } 1876 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1877 int objects) {} 1878 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1879 int objects) {} 1880 1881 #ifndef CONFIG_SLUB_TINY 1882 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1883 void **freelist, void *nextfree) 1884 { 1885 return false; 1886 } 1887 #endif 1888 #endif /* CONFIG_SLUB_DEBUG */ 1889 1890 #ifdef CONFIG_SLAB_OBJ_EXT 1891 1892 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1893 1894 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1895 { 1896 struct slabobj_ext *slab_exts; 1897 struct slab *obj_exts_slab; 1898 1899 obj_exts_slab = virt_to_slab(obj_exts); 1900 slab_exts = slab_obj_exts(obj_exts_slab); 1901 if (slab_exts) { 1902 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1903 obj_exts_slab, obj_exts); 1904 /* codetag should be NULL */ 1905 WARN_ON(slab_exts[offs].ref.ct); 1906 set_codetag_empty(&slab_exts[offs].ref); 1907 } 1908 } 1909 1910 static inline void mark_failed_objexts_alloc(struct slab *slab) 1911 { 1912 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1913 } 1914 1915 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1916 struct slabobj_ext *vec, unsigned int objects) 1917 { 1918 /* 1919 * If vector previously failed to allocate then we have live 1920 * objects with no tag reference. Mark all references in this 1921 * vector as empty to avoid warnings later on. 1922 */ 1923 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1924 unsigned int i; 1925 1926 for (i = 0; i < objects; i++) 1927 set_codetag_empty(&vec[i].ref); 1928 } 1929 } 1930 1931 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1932 1933 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1934 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1935 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1936 struct slabobj_ext *vec, unsigned int objects) {} 1937 1938 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1939 1940 /* 1941 * The allocated objcg pointers array is not accounted directly. 1942 * Moreover, it should not come from DMA buffer and is not readily 1943 * reclaimable. So those GFP bits should be masked off. 1944 */ 1945 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1946 __GFP_ACCOUNT | __GFP_NOFAIL) 1947 1948 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1949 gfp_t gfp, bool new_slab) 1950 { 1951 unsigned int objects = objs_per_slab(s, slab); 1952 unsigned long new_exts; 1953 unsigned long old_exts; 1954 struct slabobj_ext *vec; 1955 1956 gfp &= ~OBJCGS_CLEAR_MASK; 1957 /* Prevent recursive extension vector allocation */ 1958 gfp |= __GFP_NO_OBJ_EXT; 1959 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1960 slab_nid(slab)); 1961 if (!vec) { 1962 /* Mark vectors which failed to allocate */ 1963 if (new_slab) 1964 mark_failed_objexts_alloc(slab); 1965 1966 return -ENOMEM; 1967 } 1968 1969 new_exts = (unsigned long)vec; 1970 #ifdef CONFIG_MEMCG 1971 new_exts |= MEMCG_DATA_OBJEXTS; 1972 #endif 1973 old_exts = READ_ONCE(slab->obj_exts); 1974 handle_failed_objexts_alloc(old_exts, vec, objects); 1975 if (new_slab) { 1976 /* 1977 * If the slab is brand new and nobody can yet access its 1978 * obj_exts, no synchronization is required and obj_exts can 1979 * be simply assigned. 1980 */ 1981 slab->obj_exts = new_exts; 1982 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 1983 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 1984 /* 1985 * If the slab is already in use, somebody can allocate and 1986 * assign slabobj_exts in parallel. In this case the existing 1987 * objcg vector should be reused. 1988 */ 1989 mark_objexts_empty(vec); 1990 kfree(vec); 1991 return 0; 1992 } 1993 1994 kmemleak_not_leak(vec); 1995 return 0; 1996 } 1997 1998 static inline void free_slab_obj_exts(struct slab *slab) 1999 { 2000 struct slabobj_ext *obj_exts; 2001 2002 obj_exts = slab_obj_exts(slab); 2003 if (!obj_exts) 2004 return; 2005 2006 /* 2007 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2008 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2009 * warning if slab has extensions but the extension of an object is 2010 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2011 * the extension for obj_exts is expected to be NULL. 2012 */ 2013 mark_objexts_empty(obj_exts); 2014 kfree(obj_exts); 2015 slab->obj_exts = 0; 2016 } 2017 2018 static inline bool need_slab_obj_ext(void) 2019 { 2020 if (mem_alloc_profiling_enabled()) 2021 return true; 2022 2023 /* 2024 * CONFIG_MEMCG_KMEM creates vector of obj_cgroup objects conditionally 2025 * inside memcg_slab_post_alloc_hook. No other users for now. 2026 */ 2027 return false; 2028 } 2029 2030 #else /* CONFIG_SLAB_OBJ_EXT */ 2031 2032 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2033 gfp_t gfp, bool new_slab) 2034 { 2035 return 0; 2036 } 2037 2038 static inline void free_slab_obj_exts(struct slab *slab) 2039 { 2040 } 2041 2042 static inline bool need_slab_obj_ext(void) 2043 { 2044 return false; 2045 } 2046 2047 #endif /* CONFIG_SLAB_OBJ_EXT */ 2048 2049 #ifdef CONFIG_MEM_ALLOC_PROFILING 2050 2051 static inline struct slabobj_ext * 2052 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2053 { 2054 struct slab *slab; 2055 2056 if (!p) 2057 return NULL; 2058 2059 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2060 return NULL; 2061 2062 if (flags & __GFP_NO_OBJ_EXT) 2063 return NULL; 2064 2065 slab = virt_to_slab(p); 2066 if (!slab_obj_exts(slab) && 2067 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2068 "%s, %s: Failed to create slab extension vector!\n", 2069 __func__, s->name)) 2070 return NULL; 2071 2072 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2073 } 2074 2075 static inline void 2076 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2077 { 2078 if (need_slab_obj_ext()) { 2079 struct slabobj_ext *obj_exts; 2080 2081 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2082 /* 2083 * Currently obj_exts is used only for allocation profiling. 2084 * If other users appear then mem_alloc_profiling_enabled() 2085 * check should be added before alloc_tag_add(). 2086 */ 2087 if (likely(obj_exts)) 2088 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2089 } 2090 } 2091 2092 static inline void 2093 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2094 int objects) 2095 { 2096 struct slabobj_ext *obj_exts; 2097 int i; 2098 2099 if (!mem_alloc_profiling_enabled()) 2100 return; 2101 2102 obj_exts = slab_obj_exts(slab); 2103 if (!obj_exts) 2104 return; 2105 2106 for (i = 0; i < objects; i++) { 2107 unsigned int off = obj_to_index(s, slab, p[i]); 2108 2109 alloc_tag_sub(&obj_exts[off].ref, s->size); 2110 } 2111 } 2112 2113 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2114 2115 static inline void 2116 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2117 { 2118 } 2119 2120 static inline void 2121 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2122 int objects) 2123 { 2124 } 2125 2126 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2127 2128 2129 #ifdef CONFIG_MEMCG_KMEM 2130 2131 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2132 2133 static __fastpath_inline 2134 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2135 gfp_t flags, size_t size, void **p) 2136 { 2137 if (likely(!memcg_kmem_online())) 2138 return true; 2139 2140 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2141 return true; 2142 2143 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2144 return true; 2145 2146 if (likely(size == 1)) { 2147 memcg_alloc_abort_single(s, *p); 2148 *p = NULL; 2149 } else { 2150 kmem_cache_free_bulk(s, size, p); 2151 } 2152 2153 return false; 2154 } 2155 2156 static __fastpath_inline 2157 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2158 int objects) 2159 { 2160 struct slabobj_ext *obj_exts; 2161 2162 if (!memcg_kmem_online()) 2163 return; 2164 2165 obj_exts = slab_obj_exts(slab); 2166 if (likely(!obj_exts)) 2167 return; 2168 2169 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2170 } 2171 #else /* CONFIG_MEMCG_KMEM */ 2172 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2173 struct list_lru *lru, 2174 gfp_t flags, size_t size, 2175 void **p) 2176 { 2177 return true; 2178 } 2179 2180 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2181 void **p, int objects) 2182 { 2183 } 2184 #endif /* CONFIG_MEMCG_KMEM */ 2185 2186 /* 2187 * Hooks for other subsystems that check memory allocations. In a typical 2188 * production configuration these hooks all should produce no code at all. 2189 * 2190 * Returns true if freeing of the object can proceed, false if its reuse 2191 * was delayed by KASAN quarantine, or it was returned to KFENCE. 2192 */ 2193 static __always_inline 2194 bool slab_free_hook(struct kmem_cache *s, void *x, bool init) 2195 { 2196 kmemleak_free_recursive(x, s->flags); 2197 kmsan_slab_free(s, x); 2198 2199 debug_check_no_locks_freed(x, s->object_size); 2200 2201 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2202 debug_check_no_obj_freed(x, s->object_size); 2203 2204 /* Use KCSAN to help debug racy use-after-free. */ 2205 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 2206 __kcsan_check_access(x, s->object_size, 2207 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2208 2209 if (kfence_free(x)) 2210 return false; 2211 2212 /* 2213 * As memory initialization might be integrated into KASAN, 2214 * kasan_slab_free and initialization memset's must be 2215 * kept together to avoid discrepancies in behavior. 2216 * 2217 * The initialization memset's clear the object and the metadata, 2218 * but don't touch the SLAB redzone. 2219 * 2220 * The object's freepointer is also avoided if stored outside the 2221 * object. 2222 */ 2223 if (unlikely(init)) { 2224 int rsize; 2225 unsigned int inuse; 2226 2227 inuse = get_info_end(s); 2228 if (!kasan_has_integrated_init()) 2229 memset(kasan_reset_tag(x), 0, s->object_size); 2230 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2231 memset((char *)kasan_reset_tag(x) + inuse, 0, 2232 s->size - inuse - rsize); 2233 } 2234 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2235 return !kasan_slab_free(s, x, init); 2236 } 2237 2238 static __fastpath_inline 2239 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2240 int *cnt) 2241 { 2242 2243 void *object; 2244 void *next = *head; 2245 void *old_tail = *tail; 2246 bool init; 2247 2248 if (is_kfence_address(next)) { 2249 slab_free_hook(s, next, false); 2250 return false; 2251 } 2252 2253 /* Head and tail of the reconstructed freelist */ 2254 *head = NULL; 2255 *tail = NULL; 2256 2257 init = slab_want_init_on_free(s); 2258 2259 do { 2260 object = next; 2261 next = get_freepointer(s, object); 2262 2263 /* If object's reuse doesn't have to be delayed */ 2264 if (likely(slab_free_hook(s, object, init))) { 2265 /* Move object to the new freelist */ 2266 set_freepointer(s, object, *head); 2267 *head = object; 2268 if (!*tail) 2269 *tail = object; 2270 } else { 2271 /* 2272 * Adjust the reconstructed freelist depth 2273 * accordingly if object's reuse is delayed. 2274 */ 2275 --(*cnt); 2276 } 2277 } while (object != old_tail); 2278 2279 return *head != NULL; 2280 } 2281 2282 static void *setup_object(struct kmem_cache *s, void *object) 2283 { 2284 setup_object_debug(s, object); 2285 object = kasan_init_slab_obj(s, object); 2286 if (unlikely(s->ctor)) { 2287 kasan_unpoison_new_object(s, object); 2288 s->ctor(object); 2289 kasan_poison_new_object(s, object); 2290 } 2291 return object; 2292 } 2293 2294 /* 2295 * Slab allocation and freeing 2296 */ 2297 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2298 struct kmem_cache_order_objects oo) 2299 { 2300 struct folio *folio; 2301 struct slab *slab; 2302 unsigned int order = oo_order(oo); 2303 2304 folio = (struct folio *)alloc_pages_node(node, flags, order); 2305 if (!folio) 2306 return NULL; 2307 2308 slab = folio_slab(folio); 2309 __folio_set_slab(folio); 2310 /* Make the flag visible before any changes to folio->mapping */ 2311 smp_wmb(); 2312 if (folio_is_pfmemalloc(folio)) 2313 slab_set_pfmemalloc(slab); 2314 2315 return slab; 2316 } 2317 2318 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2319 /* Pre-initialize the random sequence cache */ 2320 static int init_cache_random_seq(struct kmem_cache *s) 2321 { 2322 unsigned int count = oo_objects(s->oo); 2323 int err; 2324 2325 /* Bailout if already initialised */ 2326 if (s->random_seq) 2327 return 0; 2328 2329 err = cache_random_seq_create(s, count, GFP_KERNEL); 2330 if (err) { 2331 pr_err("SLUB: Unable to initialize free list for %s\n", 2332 s->name); 2333 return err; 2334 } 2335 2336 /* Transform to an offset on the set of pages */ 2337 if (s->random_seq) { 2338 unsigned int i; 2339 2340 for (i = 0; i < count; i++) 2341 s->random_seq[i] *= s->size; 2342 } 2343 return 0; 2344 } 2345 2346 /* Initialize each random sequence freelist per cache */ 2347 static void __init init_freelist_randomization(void) 2348 { 2349 struct kmem_cache *s; 2350 2351 mutex_lock(&slab_mutex); 2352 2353 list_for_each_entry(s, &slab_caches, list) 2354 init_cache_random_seq(s); 2355 2356 mutex_unlock(&slab_mutex); 2357 } 2358 2359 /* Get the next entry on the pre-computed freelist randomized */ 2360 static void *next_freelist_entry(struct kmem_cache *s, 2361 unsigned long *pos, void *start, 2362 unsigned long page_limit, 2363 unsigned long freelist_count) 2364 { 2365 unsigned int idx; 2366 2367 /* 2368 * If the target page allocation failed, the number of objects on the 2369 * page might be smaller than the usual size defined by the cache. 2370 */ 2371 do { 2372 idx = s->random_seq[*pos]; 2373 *pos += 1; 2374 if (*pos >= freelist_count) 2375 *pos = 0; 2376 } while (unlikely(idx >= page_limit)); 2377 2378 return (char *)start + idx; 2379 } 2380 2381 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2382 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2383 { 2384 void *start; 2385 void *cur; 2386 void *next; 2387 unsigned long idx, pos, page_limit, freelist_count; 2388 2389 if (slab->objects < 2 || !s->random_seq) 2390 return false; 2391 2392 freelist_count = oo_objects(s->oo); 2393 pos = get_random_u32_below(freelist_count); 2394 2395 page_limit = slab->objects * s->size; 2396 start = fixup_red_left(s, slab_address(slab)); 2397 2398 /* First entry is used as the base of the freelist */ 2399 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2400 cur = setup_object(s, cur); 2401 slab->freelist = cur; 2402 2403 for (idx = 1; idx < slab->objects; idx++) { 2404 next = next_freelist_entry(s, &pos, start, page_limit, 2405 freelist_count); 2406 next = setup_object(s, next); 2407 set_freepointer(s, cur, next); 2408 cur = next; 2409 } 2410 set_freepointer(s, cur, NULL); 2411 2412 return true; 2413 } 2414 #else 2415 static inline int init_cache_random_seq(struct kmem_cache *s) 2416 { 2417 return 0; 2418 } 2419 static inline void init_freelist_randomization(void) { } 2420 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2421 { 2422 return false; 2423 } 2424 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2425 2426 static __always_inline void account_slab(struct slab *slab, int order, 2427 struct kmem_cache *s, gfp_t gfp) 2428 { 2429 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2430 alloc_slab_obj_exts(slab, s, gfp, true); 2431 2432 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2433 PAGE_SIZE << order); 2434 } 2435 2436 static __always_inline void unaccount_slab(struct slab *slab, int order, 2437 struct kmem_cache *s) 2438 { 2439 if (memcg_kmem_online() || need_slab_obj_ext()) 2440 free_slab_obj_exts(slab); 2441 2442 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2443 -(PAGE_SIZE << order)); 2444 } 2445 2446 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2447 { 2448 struct slab *slab; 2449 struct kmem_cache_order_objects oo = s->oo; 2450 gfp_t alloc_gfp; 2451 void *start, *p, *next; 2452 int idx; 2453 bool shuffle; 2454 2455 flags &= gfp_allowed_mask; 2456 2457 flags |= s->allocflags; 2458 2459 /* 2460 * Let the initial higher-order allocation fail under memory pressure 2461 * so we fall-back to the minimum order allocation. 2462 */ 2463 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2464 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2465 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2466 2467 slab = alloc_slab_page(alloc_gfp, node, oo); 2468 if (unlikely(!slab)) { 2469 oo = s->min; 2470 alloc_gfp = flags; 2471 /* 2472 * Allocation may have failed due to fragmentation. 2473 * Try a lower order alloc if possible 2474 */ 2475 slab = alloc_slab_page(alloc_gfp, node, oo); 2476 if (unlikely(!slab)) 2477 return NULL; 2478 stat(s, ORDER_FALLBACK); 2479 } 2480 2481 slab->objects = oo_objects(oo); 2482 slab->inuse = 0; 2483 slab->frozen = 0; 2484 2485 account_slab(slab, oo_order(oo), s, flags); 2486 2487 slab->slab_cache = s; 2488 2489 kasan_poison_slab(slab); 2490 2491 start = slab_address(slab); 2492 2493 setup_slab_debug(s, slab, start); 2494 2495 shuffle = shuffle_freelist(s, slab); 2496 2497 if (!shuffle) { 2498 start = fixup_red_left(s, start); 2499 start = setup_object(s, start); 2500 slab->freelist = start; 2501 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2502 next = p + s->size; 2503 next = setup_object(s, next); 2504 set_freepointer(s, p, next); 2505 p = next; 2506 } 2507 set_freepointer(s, p, NULL); 2508 } 2509 2510 return slab; 2511 } 2512 2513 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2514 { 2515 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2516 flags = kmalloc_fix_flags(flags); 2517 2518 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2519 2520 return allocate_slab(s, 2521 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2522 } 2523 2524 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2525 { 2526 struct folio *folio = slab_folio(slab); 2527 int order = folio_order(folio); 2528 int pages = 1 << order; 2529 2530 __slab_clear_pfmemalloc(slab); 2531 folio->mapping = NULL; 2532 /* Make the mapping reset visible before clearing the flag */ 2533 smp_wmb(); 2534 __folio_clear_slab(folio); 2535 mm_account_reclaimed_pages(pages); 2536 unaccount_slab(slab, order, s); 2537 __free_pages(&folio->page, order); 2538 } 2539 2540 static void rcu_free_slab(struct rcu_head *h) 2541 { 2542 struct slab *slab = container_of(h, struct slab, rcu_head); 2543 2544 __free_slab(slab->slab_cache, slab); 2545 } 2546 2547 static void free_slab(struct kmem_cache *s, struct slab *slab) 2548 { 2549 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2550 void *p; 2551 2552 slab_pad_check(s, slab); 2553 for_each_object(p, s, slab_address(slab), slab->objects) 2554 check_object(s, slab, p, SLUB_RED_INACTIVE); 2555 } 2556 2557 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2558 call_rcu(&slab->rcu_head, rcu_free_slab); 2559 else 2560 __free_slab(s, slab); 2561 } 2562 2563 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2564 { 2565 dec_slabs_node(s, slab_nid(slab), slab->objects); 2566 free_slab(s, slab); 2567 } 2568 2569 /* 2570 * SLUB reuses PG_workingset bit to keep track of whether it's on 2571 * the per-node partial list. 2572 */ 2573 static inline bool slab_test_node_partial(const struct slab *slab) 2574 { 2575 return folio_test_workingset(slab_folio(slab)); 2576 } 2577 2578 static inline void slab_set_node_partial(struct slab *slab) 2579 { 2580 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2581 } 2582 2583 static inline void slab_clear_node_partial(struct slab *slab) 2584 { 2585 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2586 } 2587 2588 /* 2589 * Management of partially allocated slabs. 2590 */ 2591 static inline void 2592 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2593 { 2594 n->nr_partial++; 2595 if (tail == DEACTIVATE_TO_TAIL) 2596 list_add_tail(&slab->slab_list, &n->partial); 2597 else 2598 list_add(&slab->slab_list, &n->partial); 2599 slab_set_node_partial(slab); 2600 } 2601 2602 static inline void add_partial(struct kmem_cache_node *n, 2603 struct slab *slab, int tail) 2604 { 2605 lockdep_assert_held(&n->list_lock); 2606 __add_partial(n, slab, tail); 2607 } 2608 2609 static inline void remove_partial(struct kmem_cache_node *n, 2610 struct slab *slab) 2611 { 2612 lockdep_assert_held(&n->list_lock); 2613 list_del(&slab->slab_list); 2614 slab_clear_node_partial(slab); 2615 n->nr_partial--; 2616 } 2617 2618 /* 2619 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2620 * slab from the n->partial list. Remove only a single object from the slab, do 2621 * the alloc_debug_processing() checks and leave the slab on the list, or move 2622 * it to full list if it was the last free object. 2623 */ 2624 static void *alloc_single_from_partial(struct kmem_cache *s, 2625 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2626 { 2627 void *object; 2628 2629 lockdep_assert_held(&n->list_lock); 2630 2631 object = slab->freelist; 2632 slab->freelist = get_freepointer(s, object); 2633 slab->inuse++; 2634 2635 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2636 remove_partial(n, slab); 2637 return NULL; 2638 } 2639 2640 if (slab->inuse == slab->objects) { 2641 remove_partial(n, slab); 2642 add_full(s, n, slab); 2643 } 2644 2645 return object; 2646 } 2647 2648 /* 2649 * Called only for kmem_cache_debug() caches to allocate from a freshly 2650 * allocated slab. Allocate a single object instead of whole freelist 2651 * and put the slab to the partial (or full) list. 2652 */ 2653 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2654 struct slab *slab, int orig_size) 2655 { 2656 int nid = slab_nid(slab); 2657 struct kmem_cache_node *n = get_node(s, nid); 2658 unsigned long flags; 2659 void *object; 2660 2661 2662 object = slab->freelist; 2663 slab->freelist = get_freepointer(s, object); 2664 slab->inuse = 1; 2665 2666 if (!alloc_debug_processing(s, slab, object, orig_size)) 2667 /* 2668 * It's not really expected that this would fail on a 2669 * freshly allocated slab, but a concurrent memory 2670 * corruption in theory could cause that. 2671 */ 2672 return NULL; 2673 2674 spin_lock_irqsave(&n->list_lock, flags); 2675 2676 if (slab->inuse == slab->objects) 2677 add_full(s, n, slab); 2678 else 2679 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2680 2681 inc_slabs_node(s, nid, slab->objects); 2682 spin_unlock_irqrestore(&n->list_lock, flags); 2683 2684 return object; 2685 } 2686 2687 #ifdef CONFIG_SLUB_CPU_PARTIAL 2688 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2689 #else 2690 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2691 int drain) { } 2692 #endif 2693 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2694 2695 /* 2696 * Try to allocate a partial slab from a specific node. 2697 */ 2698 static struct slab *get_partial_node(struct kmem_cache *s, 2699 struct kmem_cache_node *n, 2700 struct partial_context *pc) 2701 { 2702 struct slab *slab, *slab2, *partial = NULL; 2703 unsigned long flags; 2704 unsigned int partial_slabs = 0; 2705 2706 /* 2707 * Racy check. If we mistakenly see no partial slabs then we 2708 * just allocate an empty slab. If we mistakenly try to get a 2709 * partial slab and there is none available then get_partial() 2710 * will return NULL. 2711 */ 2712 if (!n || !n->nr_partial) 2713 return NULL; 2714 2715 spin_lock_irqsave(&n->list_lock, flags); 2716 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2717 if (!pfmemalloc_match(slab, pc->flags)) 2718 continue; 2719 2720 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2721 void *object = alloc_single_from_partial(s, n, slab, 2722 pc->orig_size); 2723 if (object) { 2724 partial = slab; 2725 pc->object = object; 2726 break; 2727 } 2728 continue; 2729 } 2730 2731 remove_partial(n, slab); 2732 2733 if (!partial) { 2734 partial = slab; 2735 stat(s, ALLOC_FROM_PARTIAL); 2736 2737 if ((slub_get_cpu_partial(s) == 0)) { 2738 break; 2739 } 2740 } else { 2741 put_cpu_partial(s, slab, 0); 2742 stat(s, CPU_PARTIAL_NODE); 2743 2744 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2745 break; 2746 } 2747 } 2748 } 2749 spin_unlock_irqrestore(&n->list_lock, flags); 2750 return partial; 2751 } 2752 2753 /* 2754 * Get a slab from somewhere. Search in increasing NUMA distances. 2755 */ 2756 static struct slab *get_any_partial(struct kmem_cache *s, 2757 struct partial_context *pc) 2758 { 2759 #ifdef CONFIG_NUMA 2760 struct zonelist *zonelist; 2761 struct zoneref *z; 2762 struct zone *zone; 2763 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2764 struct slab *slab; 2765 unsigned int cpuset_mems_cookie; 2766 2767 /* 2768 * The defrag ratio allows a configuration of the tradeoffs between 2769 * inter node defragmentation and node local allocations. A lower 2770 * defrag_ratio increases the tendency to do local allocations 2771 * instead of attempting to obtain partial slabs from other nodes. 2772 * 2773 * If the defrag_ratio is set to 0 then kmalloc() always 2774 * returns node local objects. If the ratio is higher then kmalloc() 2775 * may return off node objects because partial slabs are obtained 2776 * from other nodes and filled up. 2777 * 2778 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2779 * (which makes defrag_ratio = 1000) then every (well almost) 2780 * allocation will first attempt to defrag slab caches on other nodes. 2781 * This means scanning over all nodes to look for partial slabs which 2782 * may be expensive if we do it every time we are trying to find a slab 2783 * with available objects. 2784 */ 2785 if (!s->remote_node_defrag_ratio || 2786 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2787 return NULL; 2788 2789 do { 2790 cpuset_mems_cookie = read_mems_allowed_begin(); 2791 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2792 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2793 struct kmem_cache_node *n; 2794 2795 n = get_node(s, zone_to_nid(zone)); 2796 2797 if (n && cpuset_zone_allowed(zone, pc->flags) && 2798 n->nr_partial > s->min_partial) { 2799 slab = get_partial_node(s, n, pc); 2800 if (slab) { 2801 /* 2802 * Don't check read_mems_allowed_retry() 2803 * here - if mems_allowed was updated in 2804 * parallel, that was a harmless race 2805 * between allocation and the cpuset 2806 * update 2807 */ 2808 return slab; 2809 } 2810 } 2811 } 2812 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2813 #endif /* CONFIG_NUMA */ 2814 return NULL; 2815 } 2816 2817 /* 2818 * Get a partial slab, lock it and return it. 2819 */ 2820 static struct slab *get_partial(struct kmem_cache *s, int node, 2821 struct partial_context *pc) 2822 { 2823 struct slab *slab; 2824 int searchnode = node; 2825 2826 if (node == NUMA_NO_NODE) 2827 searchnode = numa_mem_id(); 2828 2829 slab = get_partial_node(s, get_node(s, searchnode), pc); 2830 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2831 return slab; 2832 2833 return get_any_partial(s, pc); 2834 } 2835 2836 #ifndef CONFIG_SLUB_TINY 2837 2838 #ifdef CONFIG_PREEMPTION 2839 /* 2840 * Calculate the next globally unique transaction for disambiguation 2841 * during cmpxchg. The transactions start with the cpu number and are then 2842 * incremented by CONFIG_NR_CPUS. 2843 */ 2844 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2845 #else 2846 /* 2847 * No preemption supported therefore also no need to check for 2848 * different cpus. 2849 */ 2850 #define TID_STEP 1 2851 #endif /* CONFIG_PREEMPTION */ 2852 2853 static inline unsigned long next_tid(unsigned long tid) 2854 { 2855 return tid + TID_STEP; 2856 } 2857 2858 #ifdef SLUB_DEBUG_CMPXCHG 2859 static inline unsigned int tid_to_cpu(unsigned long tid) 2860 { 2861 return tid % TID_STEP; 2862 } 2863 2864 static inline unsigned long tid_to_event(unsigned long tid) 2865 { 2866 return tid / TID_STEP; 2867 } 2868 #endif 2869 2870 static inline unsigned int init_tid(int cpu) 2871 { 2872 return cpu; 2873 } 2874 2875 static inline void note_cmpxchg_failure(const char *n, 2876 const struct kmem_cache *s, unsigned long tid) 2877 { 2878 #ifdef SLUB_DEBUG_CMPXCHG 2879 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2880 2881 pr_info("%s %s: cmpxchg redo ", n, s->name); 2882 2883 #ifdef CONFIG_PREEMPTION 2884 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2885 pr_warn("due to cpu change %d -> %d\n", 2886 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2887 else 2888 #endif 2889 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2890 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2891 tid_to_event(tid), tid_to_event(actual_tid)); 2892 else 2893 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2894 actual_tid, tid, next_tid(tid)); 2895 #endif 2896 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2897 } 2898 2899 static void init_kmem_cache_cpus(struct kmem_cache *s) 2900 { 2901 int cpu; 2902 struct kmem_cache_cpu *c; 2903 2904 for_each_possible_cpu(cpu) { 2905 c = per_cpu_ptr(s->cpu_slab, cpu); 2906 local_lock_init(&c->lock); 2907 c->tid = init_tid(cpu); 2908 } 2909 } 2910 2911 /* 2912 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2913 * unfreezes the slabs and puts it on the proper list. 2914 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2915 * by the caller. 2916 */ 2917 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2918 void *freelist) 2919 { 2920 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2921 int free_delta = 0; 2922 void *nextfree, *freelist_iter, *freelist_tail; 2923 int tail = DEACTIVATE_TO_HEAD; 2924 unsigned long flags = 0; 2925 struct slab new; 2926 struct slab old; 2927 2928 if (READ_ONCE(slab->freelist)) { 2929 stat(s, DEACTIVATE_REMOTE_FREES); 2930 tail = DEACTIVATE_TO_TAIL; 2931 } 2932 2933 /* 2934 * Stage one: Count the objects on cpu's freelist as free_delta and 2935 * remember the last object in freelist_tail for later splicing. 2936 */ 2937 freelist_tail = NULL; 2938 freelist_iter = freelist; 2939 while (freelist_iter) { 2940 nextfree = get_freepointer(s, freelist_iter); 2941 2942 /* 2943 * If 'nextfree' is invalid, it is possible that the object at 2944 * 'freelist_iter' is already corrupted. So isolate all objects 2945 * starting at 'freelist_iter' by skipping them. 2946 */ 2947 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2948 break; 2949 2950 freelist_tail = freelist_iter; 2951 free_delta++; 2952 2953 freelist_iter = nextfree; 2954 } 2955 2956 /* 2957 * Stage two: Unfreeze the slab while splicing the per-cpu 2958 * freelist to the head of slab's freelist. 2959 */ 2960 do { 2961 old.freelist = READ_ONCE(slab->freelist); 2962 old.counters = READ_ONCE(slab->counters); 2963 VM_BUG_ON(!old.frozen); 2964 2965 /* Determine target state of the slab */ 2966 new.counters = old.counters; 2967 new.frozen = 0; 2968 if (freelist_tail) { 2969 new.inuse -= free_delta; 2970 set_freepointer(s, freelist_tail, old.freelist); 2971 new.freelist = freelist; 2972 } else { 2973 new.freelist = old.freelist; 2974 } 2975 } while (!slab_update_freelist(s, slab, 2976 old.freelist, old.counters, 2977 new.freelist, new.counters, 2978 "unfreezing slab")); 2979 2980 /* 2981 * Stage three: Manipulate the slab list based on the updated state. 2982 */ 2983 if (!new.inuse && n->nr_partial >= s->min_partial) { 2984 stat(s, DEACTIVATE_EMPTY); 2985 discard_slab(s, slab); 2986 stat(s, FREE_SLAB); 2987 } else if (new.freelist) { 2988 spin_lock_irqsave(&n->list_lock, flags); 2989 add_partial(n, slab, tail); 2990 spin_unlock_irqrestore(&n->list_lock, flags); 2991 stat(s, tail); 2992 } else { 2993 stat(s, DEACTIVATE_FULL); 2994 } 2995 } 2996 2997 #ifdef CONFIG_SLUB_CPU_PARTIAL 2998 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 2999 { 3000 struct kmem_cache_node *n = NULL, *n2 = NULL; 3001 struct slab *slab, *slab_to_discard = NULL; 3002 unsigned long flags = 0; 3003 3004 while (partial_slab) { 3005 slab = partial_slab; 3006 partial_slab = slab->next; 3007 3008 n2 = get_node(s, slab_nid(slab)); 3009 if (n != n2) { 3010 if (n) 3011 spin_unlock_irqrestore(&n->list_lock, flags); 3012 3013 n = n2; 3014 spin_lock_irqsave(&n->list_lock, flags); 3015 } 3016 3017 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3018 slab->next = slab_to_discard; 3019 slab_to_discard = slab; 3020 } else { 3021 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3022 stat(s, FREE_ADD_PARTIAL); 3023 } 3024 } 3025 3026 if (n) 3027 spin_unlock_irqrestore(&n->list_lock, flags); 3028 3029 while (slab_to_discard) { 3030 slab = slab_to_discard; 3031 slab_to_discard = slab_to_discard->next; 3032 3033 stat(s, DEACTIVATE_EMPTY); 3034 discard_slab(s, slab); 3035 stat(s, FREE_SLAB); 3036 } 3037 } 3038 3039 /* 3040 * Put all the cpu partial slabs to the node partial list. 3041 */ 3042 static void put_partials(struct kmem_cache *s) 3043 { 3044 struct slab *partial_slab; 3045 unsigned long flags; 3046 3047 local_lock_irqsave(&s->cpu_slab->lock, flags); 3048 partial_slab = this_cpu_read(s->cpu_slab->partial); 3049 this_cpu_write(s->cpu_slab->partial, NULL); 3050 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3051 3052 if (partial_slab) 3053 __put_partials(s, partial_slab); 3054 } 3055 3056 static void put_partials_cpu(struct kmem_cache *s, 3057 struct kmem_cache_cpu *c) 3058 { 3059 struct slab *partial_slab; 3060 3061 partial_slab = slub_percpu_partial(c); 3062 c->partial = NULL; 3063 3064 if (partial_slab) 3065 __put_partials(s, partial_slab); 3066 } 3067 3068 /* 3069 * Put a slab into a partial slab slot if available. 3070 * 3071 * If we did not find a slot then simply move all the partials to the 3072 * per node partial list. 3073 */ 3074 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3075 { 3076 struct slab *oldslab; 3077 struct slab *slab_to_put = NULL; 3078 unsigned long flags; 3079 int slabs = 0; 3080 3081 local_lock_irqsave(&s->cpu_slab->lock, flags); 3082 3083 oldslab = this_cpu_read(s->cpu_slab->partial); 3084 3085 if (oldslab) { 3086 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3087 /* 3088 * Partial array is full. Move the existing set to the 3089 * per node partial list. Postpone the actual unfreezing 3090 * outside of the critical section. 3091 */ 3092 slab_to_put = oldslab; 3093 oldslab = NULL; 3094 } else { 3095 slabs = oldslab->slabs; 3096 } 3097 } 3098 3099 slabs++; 3100 3101 slab->slabs = slabs; 3102 slab->next = oldslab; 3103 3104 this_cpu_write(s->cpu_slab->partial, slab); 3105 3106 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3107 3108 if (slab_to_put) { 3109 __put_partials(s, slab_to_put); 3110 stat(s, CPU_PARTIAL_DRAIN); 3111 } 3112 } 3113 3114 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3115 3116 static inline void put_partials(struct kmem_cache *s) { } 3117 static inline void put_partials_cpu(struct kmem_cache *s, 3118 struct kmem_cache_cpu *c) { } 3119 3120 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3121 3122 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3123 { 3124 unsigned long flags; 3125 struct slab *slab; 3126 void *freelist; 3127 3128 local_lock_irqsave(&s->cpu_slab->lock, flags); 3129 3130 slab = c->slab; 3131 freelist = c->freelist; 3132 3133 c->slab = NULL; 3134 c->freelist = NULL; 3135 c->tid = next_tid(c->tid); 3136 3137 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3138 3139 if (slab) { 3140 deactivate_slab(s, slab, freelist); 3141 stat(s, CPUSLAB_FLUSH); 3142 } 3143 } 3144 3145 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3146 { 3147 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3148 void *freelist = c->freelist; 3149 struct slab *slab = c->slab; 3150 3151 c->slab = NULL; 3152 c->freelist = NULL; 3153 c->tid = next_tid(c->tid); 3154 3155 if (slab) { 3156 deactivate_slab(s, slab, freelist); 3157 stat(s, CPUSLAB_FLUSH); 3158 } 3159 3160 put_partials_cpu(s, c); 3161 } 3162 3163 struct slub_flush_work { 3164 struct work_struct work; 3165 struct kmem_cache *s; 3166 bool skip; 3167 }; 3168 3169 /* 3170 * Flush cpu slab. 3171 * 3172 * Called from CPU work handler with migration disabled. 3173 */ 3174 static void flush_cpu_slab(struct work_struct *w) 3175 { 3176 struct kmem_cache *s; 3177 struct kmem_cache_cpu *c; 3178 struct slub_flush_work *sfw; 3179 3180 sfw = container_of(w, struct slub_flush_work, work); 3181 3182 s = sfw->s; 3183 c = this_cpu_ptr(s->cpu_slab); 3184 3185 if (c->slab) 3186 flush_slab(s, c); 3187 3188 put_partials(s); 3189 } 3190 3191 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3192 { 3193 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3194 3195 return c->slab || slub_percpu_partial(c); 3196 } 3197 3198 static DEFINE_MUTEX(flush_lock); 3199 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3200 3201 static void flush_all_cpus_locked(struct kmem_cache *s) 3202 { 3203 struct slub_flush_work *sfw; 3204 unsigned int cpu; 3205 3206 lockdep_assert_cpus_held(); 3207 mutex_lock(&flush_lock); 3208 3209 for_each_online_cpu(cpu) { 3210 sfw = &per_cpu(slub_flush, cpu); 3211 if (!has_cpu_slab(cpu, s)) { 3212 sfw->skip = true; 3213 continue; 3214 } 3215 INIT_WORK(&sfw->work, flush_cpu_slab); 3216 sfw->skip = false; 3217 sfw->s = s; 3218 queue_work_on(cpu, flushwq, &sfw->work); 3219 } 3220 3221 for_each_online_cpu(cpu) { 3222 sfw = &per_cpu(slub_flush, cpu); 3223 if (sfw->skip) 3224 continue; 3225 flush_work(&sfw->work); 3226 } 3227 3228 mutex_unlock(&flush_lock); 3229 } 3230 3231 static void flush_all(struct kmem_cache *s) 3232 { 3233 cpus_read_lock(); 3234 flush_all_cpus_locked(s); 3235 cpus_read_unlock(); 3236 } 3237 3238 /* 3239 * Use the cpu notifier to insure that the cpu slabs are flushed when 3240 * necessary. 3241 */ 3242 static int slub_cpu_dead(unsigned int cpu) 3243 { 3244 struct kmem_cache *s; 3245 3246 mutex_lock(&slab_mutex); 3247 list_for_each_entry(s, &slab_caches, list) 3248 __flush_cpu_slab(s, cpu); 3249 mutex_unlock(&slab_mutex); 3250 return 0; 3251 } 3252 3253 #else /* CONFIG_SLUB_TINY */ 3254 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3255 static inline void flush_all(struct kmem_cache *s) { } 3256 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3257 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3258 #endif /* CONFIG_SLUB_TINY */ 3259 3260 /* 3261 * Check if the objects in a per cpu structure fit numa 3262 * locality expectations. 3263 */ 3264 static inline int node_match(struct slab *slab, int node) 3265 { 3266 #ifdef CONFIG_NUMA 3267 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3268 return 0; 3269 #endif 3270 return 1; 3271 } 3272 3273 #ifdef CONFIG_SLUB_DEBUG 3274 static int count_free(struct slab *slab) 3275 { 3276 return slab->objects - slab->inuse; 3277 } 3278 3279 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3280 { 3281 return atomic_long_read(&n->total_objects); 3282 } 3283 3284 /* Supports checking bulk free of a constructed freelist */ 3285 static inline bool free_debug_processing(struct kmem_cache *s, 3286 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3287 unsigned long addr, depot_stack_handle_t handle) 3288 { 3289 bool checks_ok = false; 3290 void *object = head; 3291 int cnt = 0; 3292 3293 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3294 if (!check_slab(s, slab)) 3295 goto out; 3296 } 3297 3298 if (slab->inuse < *bulk_cnt) { 3299 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3300 slab->inuse, *bulk_cnt); 3301 goto out; 3302 } 3303 3304 next_object: 3305 3306 if (++cnt > *bulk_cnt) 3307 goto out_cnt; 3308 3309 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3310 if (!free_consistency_checks(s, slab, object, addr)) 3311 goto out; 3312 } 3313 3314 if (s->flags & SLAB_STORE_USER) 3315 set_track_update(s, object, TRACK_FREE, addr, handle); 3316 trace(s, slab, object, 0); 3317 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3318 init_object(s, object, SLUB_RED_INACTIVE); 3319 3320 /* Reached end of constructed freelist yet? */ 3321 if (object != tail) { 3322 object = get_freepointer(s, object); 3323 goto next_object; 3324 } 3325 checks_ok = true; 3326 3327 out_cnt: 3328 if (cnt != *bulk_cnt) { 3329 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3330 *bulk_cnt, cnt); 3331 *bulk_cnt = cnt; 3332 } 3333 3334 out: 3335 3336 if (!checks_ok) 3337 slab_fix(s, "Object at 0x%p not freed", object); 3338 3339 return checks_ok; 3340 } 3341 #endif /* CONFIG_SLUB_DEBUG */ 3342 3343 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3344 static unsigned long count_partial(struct kmem_cache_node *n, 3345 int (*get_count)(struct slab *)) 3346 { 3347 unsigned long flags; 3348 unsigned long x = 0; 3349 struct slab *slab; 3350 3351 spin_lock_irqsave(&n->list_lock, flags); 3352 list_for_each_entry(slab, &n->partial, slab_list) 3353 x += get_count(slab); 3354 spin_unlock_irqrestore(&n->list_lock, flags); 3355 return x; 3356 } 3357 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3358 3359 #ifdef CONFIG_SLUB_DEBUG 3360 #define MAX_PARTIAL_TO_SCAN 10000 3361 3362 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3363 { 3364 unsigned long flags; 3365 unsigned long x = 0; 3366 struct slab *slab; 3367 3368 spin_lock_irqsave(&n->list_lock, flags); 3369 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3370 list_for_each_entry(slab, &n->partial, slab_list) 3371 x += slab->objects - slab->inuse; 3372 } else { 3373 /* 3374 * For a long list, approximate the total count of objects in 3375 * it to meet the limit on the number of slabs to scan. 3376 * Scan from both the list's head and tail for better accuracy. 3377 */ 3378 unsigned long scanned = 0; 3379 3380 list_for_each_entry(slab, &n->partial, slab_list) { 3381 x += slab->objects - slab->inuse; 3382 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3383 break; 3384 } 3385 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3386 x += slab->objects - slab->inuse; 3387 if (++scanned == MAX_PARTIAL_TO_SCAN) 3388 break; 3389 } 3390 x = mult_frac(x, n->nr_partial, scanned); 3391 x = min(x, node_nr_objs(n)); 3392 } 3393 spin_unlock_irqrestore(&n->list_lock, flags); 3394 return x; 3395 } 3396 3397 static noinline void 3398 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3399 { 3400 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3401 DEFAULT_RATELIMIT_BURST); 3402 int node; 3403 struct kmem_cache_node *n; 3404 3405 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3406 return; 3407 3408 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 3409 nid, gfpflags, &gfpflags); 3410 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3411 s->name, s->object_size, s->size, oo_order(s->oo), 3412 oo_order(s->min)); 3413 3414 if (oo_order(s->min) > get_order(s->object_size)) 3415 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3416 s->name); 3417 3418 for_each_kmem_cache_node(s, node, n) { 3419 unsigned long nr_slabs; 3420 unsigned long nr_objs; 3421 unsigned long nr_free; 3422 3423 nr_free = count_partial_free_approx(n); 3424 nr_slabs = node_nr_slabs(n); 3425 nr_objs = node_nr_objs(n); 3426 3427 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3428 node, nr_slabs, nr_objs, nr_free); 3429 } 3430 } 3431 #else /* CONFIG_SLUB_DEBUG */ 3432 static inline void 3433 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3434 #endif 3435 3436 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3437 { 3438 if (unlikely(slab_test_pfmemalloc(slab))) 3439 return gfp_pfmemalloc_allowed(gfpflags); 3440 3441 return true; 3442 } 3443 3444 #ifndef CONFIG_SLUB_TINY 3445 static inline bool 3446 __update_cpu_freelist_fast(struct kmem_cache *s, 3447 void *freelist_old, void *freelist_new, 3448 unsigned long tid) 3449 { 3450 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3451 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3452 3453 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3454 &old.full, new.full); 3455 } 3456 3457 /* 3458 * Check the slab->freelist and either transfer the freelist to the 3459 * per cpu freelist or deactivate the slab. 3460 * 3461 * The slab is still frozen if the return value is not NULL. 3462 * 3463 * If this function returns NULL then the slab has been unfrozen. 3464 */ 3465 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3466 { 3467 struct slab new; 3468 unsigned long counters; 3469 void *freelist; 3470 3471 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3472 3473 do { 3474 freelist = slab->freelist; 3475 counters = slab->counters; 3476 3477 new.counters = counters; 3478 3479 new.inuse = slab->objects; 3480 new.frozen = freelist != NULL; 3481 3482 } while (!__slab_update_freelist(s, slab, 3483 freelist, counters, 3484 NULL, new.counters, 3485 "get_freelist")); 3486 3487 return freelist; 3488 } 3489 3490 /* 3491 * Freeze the partial slab and return the pointer to the freelist. 3492 */ 3493 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3494 { 3495 struct slab new; 3496 unsigned long counters; 3497 void *freelist; 3498 3499 do { 3500 freelist = slab->freelist; 3501 counters = slab->counters; 3502 3503 new.counters = counters; 3504 VM_BUG_ON(new.frozen); 3505 3506 new.inuse = slab->objects; 3507 new.frozen = 1; 3508 3509 } while (!slab_update_freelist(s, slab, 3510 freelist, counters, 3511 NULL, new.counters, 3512 "freeze_slab")); 3513 3514 return freelist; 3515 } 3516 3517 /* 3518 * Slow path. The lockless freelist is empty or we need to perform 3519 * debugging duties. 3520 * 3521 * Processing is still very fast if new objects have been freed to the 3522 * regular freelist. In that case we simply take over the regular freelist 3523 * as the lockless freelist and zap the regular freelist. 3524 * 3525 * If that is not working then we fall back to the partial lists. We take the 3526 * first element of the freelist as the object to allocate now and move the 3527 * rest of the freelist to the lockless freelist. 3528 * 3529 * And if we were unable to get a new slab from the partial slab lists then 3530 * we need to allocate a new slab. This is the slowest path since it involves 3531 * a call to the page allocator and the setup of a new slab. 3532 * 3533 * Version of __slab_alloc to use when we know that preemption is 3534 * already disabled (which is the case for bulk allocation). 3535 */ 3536 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3537 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3538 { 3539 void *freelist; 3540 struct slab *slab; 3541 unsigned long flags; 3542 struct partial_context pc; 3543 bool try_thisnode = true; 3544 3545 stat(s, ALLOC_SLOWPATH); 3546 3547 reread_slab: 3548 3549 slab = READ_ONCE(c->slab); 3550 if (!slab) { 3551 /* 3552 * if the node is not online or has no normal memory, just 3553 * ignore the node constraint 3554 */ 3555 if (unlikely(node != NUMA_NO_NODE && 3556 !node_isset(node, slab_nodes))) 3557 node = NUMA_NO_NODE; 3558 goto new_slab; 3559 } 3560 3561 if (unlikely(!node_match(slab, node))) { 3562 /* 3563 * same as above but node_match() being false already 3564 * implies node != NUMA_NO_NODE 3565 */ 3566 if (!node_isset(node, slab_nodes)) { 3567 node = NUMA_NO_NODE; 3568 } else { 3569 stat(s, ALLOC_NODE_MISMATCH); 3570 goto deactivate_slab; 3571 } 3572 } 3573 3574 /* 3575 * By rights, we should be searching for a slab page that was 3576 * PFMEMALLOC but right now, we are losing the pfmemalloc 3577 * information when the page leaves the per-cpu allocator 3578 */ 3579 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3580 goto deactivate_slab; 3581 3582 /* must check again c->slab in case we got preempted and it changed */ 3583 local_lock_irqsave(&s->cpu_slab->lock, flags); 3584 if (unlikely(slab != c->slab)) { 3585 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3586 goto reread_slab; 3587 } 3588 freelist = c->freelist; 3589 if (freelist) 3590 goto load_freelist; 3591 3592 freelist = get_freelist(s, slab); 3593 3594 if (!freelist) { 3595 c->slab = NULL; 3596 c->tid = next_tid(c->tid); 3597 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3598 stat(s, DEACTIVATE_BYPASS); 3599 goto new_slab; 3600 } 3601 3602 stat(s, ALLOC_REFILL); 3603 3604 load_freelist: 3605 3606 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3607 3608 /* 3609 * freelist is pointing to the list of objects to be used. 3610 * slab is pointing to the slab from which the objects are obtained. 3611 * That slab must be frozen for per cpu allocations to work. 3612 */ 3613 VM_BUG_ON(!c->slab->frozen); 3614 c->freelist = get_freepointer(s, freelist); 3615 c->tid = next_tid(c->tid); 3616 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3617 return freelist; 3618 3619 deactivate_slab: 3620 3621 local_lock_irqsave(&s->cpu_slab->lock, flags); 3622 if (slab != c->slab) { 3623 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3624 goto reread_slab; 3625 } 3626 freelist = c->freelist; 3627 c->slab = NULL; 3628 c->freelist = NULL; 3629 c->tid = next_tid(c->tid); 3630 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3631 deactivate_slab(s, slab, freelist); 3632 3633 new_slab: 3634 3635 #ifdef CONFIG_SLUB_CPU_PARTIAL 3636 while (slub_percpu_partial(c)) { 3637 local_lock_irqsave(&s->cpu_slab->lock, flags); 3638 if (unlikely(c->slab)) { 3639 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3640 goto reread_slab; 3641 } 3642 if (unlikely(!slub_percpu_partial(c))) { 3643 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3644 /* we were preempted and partial list got empty */ 3645 goto new_objects; 3646 } 3647 3648 slab = slub_percpu_partial(c); 3649 slub_set_percpu_partial(c, slab); 3650 3651 if (likely(node_match(slab, node) && 3652 pfmemalloc_match(slab, gfpflags))) { 3653 c->slab = slab; 3654 freelist = get_freelist(s, slab); 3655 VM_BUG_ON(!freelist); 3656 stat(s, CPU_PARTIAL_ALLOC); 3657 goto load_freelist; 3658 } 3659 3660 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3661 3662 slab->next = NULL; 3663 __put_partials(s, slab); 3664 } 3665 #endif 3666 3667 new_objects: 3668 3669 pc.flags = gfpflags; 3670 /* 3671 * When a preferred node is indicated but no __GFP_THISNODE 3672 * 3673 * 1) try to get a partial slab from target node only by having 3674 * __GFP_THISNODE in pc.flags for get_partial() 3675 * 2) if 1) failed, try to allocate a new slab from target node with 3676 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3677 * 3) if 2) failed, retry with original gfpflags which will allow 3678 * get_partial() try partial lists of other nodes before potentially 3679 * allocating new page from other nodes 3680 */ 3681 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3682 && try_thisnode)) 3683 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3684 3685 pc.orig_size = orig_size; 3686 slab = get_partial(s, node, &pc); 3687 if (slab) { 3688 if (kmem_cache_debug(s)) { 3689 freelist = pc.object; 3690 /* 3691 * For debug caches here we had to go through 3692 * alloc_single_from_partial() so just store the 3693 * tracking info and return the object. 3694 */ 3695 if (s->flags & SLAB_STORE_USER) 3696 set_track(s, freelist, TRACK_ALLOC, addr); 3697 3698 return freelist; 3699 } 3700 3701 freelist = freeze_slab(s, slab); 3702 goto retry_load_slab; 3703 } 3704 3705 slub_put_cpu_ptr(s->cpu_slab); 3706 slab = new_slab(s, pc.flags, node); 3707 c = slub_get_cpu_ptr(s->cpu_slab); 3708 3709 if (unlikely(!slab)) { 3710 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3711 && try_thisnode) { 3712 try_thisnode = false; 3713 goto new_objects; 3714 } 3715 slab_out_of_memory(s, gfpflags, node); 3716 return NULL; 3717 } 3718 3719 stat(s, ALLOC_SLAB); 3720 3721 if (kmem_cache_debug(s)) { 3722 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3723 3724 if (unlikely(!freelist)) 3725 goto new_objects; 3726 3727 if (s->flags & SLAB_STORE_USER) 3728 set_track(s, freelist, TRACK_ALLOC, addr); 3729 3730 return freelist; 3731 } 3732 3733 /* 3734 * No other reference to the slab yet so we can 3735 * muck around with it freely without cmpxchg 3736 */ 3737 freelist = slab->freelist; 3738 slab->freelist = NULL; 3739 slab->inuse = slab->objects; 3740 slab->frozen = 1; 3741 3742 inc_slabs_node(s, slab_nid(slab), slab->objects); 3743 3744 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3745 /* 3746 * For !pfmemalloc_match() case we don't load freelist so that 3747 * we don't make further mismatched allocations easier. 3748 */ 3749 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3750 return freelist; 3751 } 3752 3753 retry_load_slab: 3754 3755 local_lock_irqsave(&s->cpu_slab->lock, flags); 3756 if (unlikely(c->slab)) { 3757 void *flush_freelist = c->freelist; 3758 struct slab *flush_slab = c->slab; 3759 3760 c->slab = NULL; 3761 c->freelist = NULL; 3762 c->tid = next_tid(c->tid); 3763 3764 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3765 3766 deactivate_slab(s, flush_slab, flush_freelist); 3767 3768 stat(s, CPUSLAB_FLUSH); 3769 3770 goto retry_load_slab; 3771 } 3772 c->slab = slab; 3773 3774 goto load_freelist; 3775 } 3776 3777 /* 3778 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3779 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3780 * pointer. 3781 */ 3782 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3783 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3784 { 3785 void *p; 3786 3787 #ifdef CONFIG_PREEMPT_COUNT 3788 /* 3789 * We may have been preempted and rescheduled on a different 3790 * cpu before disabling preemption. Need to reload cpu area 3791 * pointer. 3792 */ 3793 c = slub_get_cpu_ptr(s->cpu_slab); 3794 #endif 3795 3796 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3797 #ifdef CONFIG_PREEMPT_COUNT 3798 slub_put_cpu_ptr(s->cpu_slab); 3799 #endif 3800 return p; 3801 } 3802 3803 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3804 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3805 { 3806 struct kmem_cache_cpu *c; 3807 struct slab *slab; 3808 unsigned long tid; 3809 void *object; 3810 3811 redo: 3812 /* 3813 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3814 * enabled. We may switch back and forth between cpus while 3815 * reading from one cpu area. That does not matter as long 3816 * as we end up on the original cpu again when doing the cmpxchg. 3817 * 3818 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3819 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3820 * the tid. If we are preempted and switched to another cpu between the 3821 * two reads, it's OK as the two are still associated with the same cpu 3822 * and cmpxchg later will validate the cpu. 3823 */ 3824 c = raw_cpu_ptr(s->cpu_slab); 3825 tid = READ_ONCE(c->tid); 3826 3827 /* 3828 * Irqless object alloc/free algorithm used here depends on sequence 3829 * of fetching cpu_slab's data. tid should be fetched before anything 3830 * on c to guarantee that object and slab associated with previous tid 3831 * won't be used with current tid. If we fetch tid first, object and 3832 * slab could be one associated with next tid and our alloc/free 3833 * request will be failed. In this case, we will retry. So, no problem. 3834 */ 3835 barrier(); 3836 3837 /* 3838 * The transaction ids are globally unique per cpu and per operation on 3839 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3840 * occurs on the right processor and that there was no operation on the 3841 * linked list in between. 3842 */ 3843 3844 object = c->freelist; 3845 slab = c->slab; 3846 3847 if (!USE_LOCKLESS_FAST_PATH() || 3848 unlikely(!object || !slab || !node_match(slab, node))) { 3849 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3850 } else { 3851 void *next_object = get_freepointer_safe(s, object); 3852 3853 /* 3854 * The cmpxchg will only match if there was no additional 3855 * operation and if we are on the right processor. 3856 * 3857 * The cmpxchg does the following atomically (without lock 3858 * semantics!) 3859 * 1. Relocate first pointer to the current per cpu area. 3860 * 2. Verify that tid and freelist have not been changed 3861 * 3. If they were not changed replace tid and freelist 3862 * 3863 * Since this is without lock semantics the protection is only 3864 * against code executing on this cpu *not* from access by 3865 * other cpus. 3866 */ 3867 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3868 note_cmpxchg_failure("slab_alloc", s, tid); 3869 goto redo; 3870 } 3871 prefetch_freepointer(s, next_object); 3872 stat(s, ALLOC_FASTPATH); 3873 } 3874 3875 return object; 3876 } 3877 #else /* CONFIG_SLUB_TINY */ 3878 static void *__slab_alloc_node(struct kmem_cache *s, 3879 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3880 { 3881 struct partial_context pc; 3882 struct slab *slab; 3883 void *object; 3884 3885 pc.flags = gfpflags; 3886 pc.orig_size = orig_size; 3887 slab = get_partial(s, node, &pc); 3888 3889 if (slab) 3890 return pc.object; 3891 3892 slab = new_slab(s, gfpflags, node); 3893 if (unlikely(!slab)) { 3894 slab_out_of_memory(s, gfpflags, node); 3895 return NULL; 3896 } 3897 3898 object = alloc_single_from_new_slab(s, slab, orig_size); 3899 3900 return object; 3901 } 3902 #endif /* CONFIG_SLUB_TINY */ 3903 3904 /* 3905 * If the object has been wiped upon free, make sure it's fully initialized by 3906 * zeroing out freelist pointer. 3907 */ 3908 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3909 void *obj) 3910 { 3911 if (unlikely(slab_want_init_on_free(s)) && obj && 3912 !freeptr_outside_object(s)) 3913 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3914 0, sizeof(void *)); 3915 } 3916 3917 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 3918 { 3919 if (__should_failslab(s, gfpflags)) 3920 return -ENOMEM; 3921 return 0; 3922 } 3923 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 3924 3925 static __fastpath_inline 3926 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 3927 { 3928 flags &= gfp_allowed_mask; 3929 3930 might_alloc(flags); 3931 3932 if (unlikely(should_failslab(s, flags))) 3933 return NULL; 3934 3935 return s; 3936 } 3937 3938 static __fastpath_inline 3939 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3940 gfp_t flags, size_t size, void **p, bool init, 3941 unsigned int orig_size) 3942 { 3943 unsigned int zero_size = s->object_size; 3944 bool kasan_init = init; 3945 size_t i; 3946 gfp_t init_flags = flags & gfp_allowed_mask; 3947 3948 /* 3949 * For kmalloc object, the allocated memory size(object_size) is likely 3950 * larger than the requested size(orig_size). If redzone check is 3951 * enabled for the extra space, don't zero it, as it will be redzoned 3952 * soon. The redzone operation for this extra space could be seen as a 3953 * replacement of current poisoning under certain debug option, and 3954 * won't break other sanity checks. 3955 */ 3956 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 3957 (s->flags & SLAB_KMALLOC)) 3958 zero_size = orig_size; 3959 3960 /* 3961 * When slab_debug is enabled, avoid memory initialization integrated 3962 * into KASAN and instead zero out the memory via the memset below with 3963 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 3964 * cause false-positive reports. This does not lead to a performance 3965 * penalty on production builds, as slab_debug is not intended to be 3966 * enabled there. 3967 */ 3968 if (__slub_debug_enabled()) 3969 kasan_init = false; 3970 3971 /* 3972 * As memory initialization might be integrated into KASAN, 3973 * kasan_slab_alloc and initialization memset must be 3974 * kept together to avoid discrepancies in behavior. 3975 * 3976 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 3977 */ 3978 for (i = 0; i < size; i++) { 3979 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 3980 if (p[i] && init && (!kasan_init || 3981 !kasan_has_integrated_init())) 3982 memset(p[i], 0, zero_size); 3983 kmemleak_alloc_recursive(p[i], s->object_size, 1, 3984 s->flags, init_flags); 3985 kmsan_slab_alloc(s, p[i], init_flags); 3986 alloc_tagging_slab_alloc_hook(s, p[i], flags); 3987 } 3988 3989 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 3990 } 3991 3992 /* 3993 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3994 * have the fastpath folded into their functions. So no function call 3995 * overhead for requests that can be satisfied on the fastpath. 3996 * 3997 * The fastpath works by first checking if the lockless freelist can be used. 3998 * If not then __slab_alloc is called for slow processing. 3999 * 4000 * Otherwise we can simply pick the next object from the lockless free list. 4001 */ 4002 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4003 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4004 { 4005 void *object; 4006 bool init = false; 4007 4008 s = slab_pre_alloc_hook(s, gfpflags); 4009 if (unlikely(!s)) 4010 return NULL; 4011 4012 object = kfence_alloc(s, orig_size, gfpflags); 4013 if (unlikely(object)) 4014 goto out; 4015 4016 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4017 4018 maybe_wipe_obj_freeptr(s, object); 4019 init = slab_want_init_on_alloc(gfpflags, s); 4020 4021 out: 4022 /* 4023 * When init equals 'true', like for kzalloc() family, only 4024 * @orig_size bytes might be zeroed instead of s->object_size 4025 * In case this fails due to memcg_slab_post_alloc_hook(), 4026 * object is set to NULL 4027 */ 4028 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4029 4030 return object; 4031 } 4032 4033 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4034 { 4035 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4036 s->object_size); 4037 4038 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4039 4040 return ret; 4041 } 4042 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4043 4044 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4045 gfp_t gfpflags) 4046 { 4047 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4048 s->object_size); 4049 4050 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4051 4052 return ret; 4053 } 4054 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4055 4056 /** 4057 * kmem_cache_alloc_node - Allocate an object on the specified node 4058 * @s: The cache to allocate from. 4059 * @gfpflags: See kmalloc(). 4060 * @node: node number of the target node. 4061 * 4062 * Identical to kmem_cache_alloc but it will allocate memory on the given 4063 * node, which can improve the performance for cpu bound structures. 4064 * 4065 * Fallback to other node is possible if __GFP_THISNODE is not set. 4066 * 4067 * Return: pointer to the new object or %NULL in case of error 4068 */ 4069 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4070 { 4071 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4072 4073 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4074 4075 return ret; 4076 } 4077 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4078 4079 /* 4080 * To avoid unnecessary overhead, we pass through large allocation requests 4081 * directly to the page allocator. We use __GFP_COMP, because we will need to 4082 * know the allocation order to free the pages properly in kfree. 4083 */ 4084 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4085 { 4086 struct folio *folio; 4087 void *ptr = NULL; 4088 unsigned int order = get_order(size); 4089 4090 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4091 flags = kmalloc_fix_flags(flags); 4092 4093 flags |= __GFP_COMP; 4094 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4095 if (folio) { 4096 ptr = folio_address(folio); 4097 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4098 PAGE_SIZE << order); 4099 } 4100 4101 ptr = kasan_kmalloc_large(ptr, size, flags); 4102 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4103 kmemleak_alloc(ptr, size, 1, flags); 4104 kmsan_kmalloc_large(ptr, size, flags); 4105 4106 return ptr; 4107 } 4108 4109 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4110 { 4111 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4112 4113 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4114 flags, NUMA_NO_NODE); 4115 return ret; 4116 } 4117 EXPORT_SYMBOL(__kmalloc_large_noprof); 4118 4119 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4120 { 4121 void *ret = ___kmalloc_large_node(size, flags, node); 4122 4123 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4124 flags, node); 4125 return ret; 4126 } 4127 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4128 4129 static __always_inline 4130 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4131 unsigned long caller) 4132 { 4133 struct kmem_cache *s; 4134 void *ret; 4135 4136 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4137 ret = __kmalloc_large_node_noprof(size, flags, node); 4138 trace_kmalloc(caller, ret, size, 4139 PAGE_SIZE << get_order(size), flags, node); 4140 return ret; 4141 } 4142 4143 if (unlikely(!size)) 4144 return ZERO_SIZE_PTR; 4145 4146 s = kmalloc_slab(size, b, flags, caller); 4147 4148 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4149 ret = kasan_kmalloc(s, ret, size, flags); 4150 trace_kmalloc(caller, ret, size, s->size, flags, node); 4151 return ret; 4152 } 4153 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4154 { 4155 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4156 } 4157 EXPORT_SYMBOL(__kmalloc_node_noprof); 4158 4159 void *__kmalloc_noprof(size_t size, gfp_t flags) 4160 { 4161 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4162 } 4163 EXPORT_SYMBOL(__kmalloc_noprof); 4164 4165 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4166 int node, unsigned long caller) 4167 { 4168 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4169 4170 } 4171 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4172 4173 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4174 { 4175 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4176 _RET_IP_, size); 4177 4178 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4179 4180 ret = kasan_kmalloc(s, ret, size, gfpflags); 4181 return ret; 4182 } 4183 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4184 4185 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4186 int node, size_t size) 4187 { 4188 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4189 4190 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4191 4192 ret = kasan_kmalloc(s, ret, size, gfpflags); 4193 return ret; 4194 } 4195 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4196 4197 static noinline void free_to_partial_list( 4198 struct kmem_cache *s, struct slab *slab, 4199 void *head, void *tail, int bulk_cnt, 4200 unsigned long addr) 4201 { 4202 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4203 struct slab *slab_free = NULL; 4204 int cnt = bulk_cnt; 4205 unsigned long flags; 4206 depot_stack_handle_t handle = 0; 4207 4208 if (s->flags & SLAB_STORE_USER) 4209 handle = set_track_prepare(); 4210 4211 spin_lock_irqsave(&n->list_lock, flags); 4212 4213 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4214 void *prior = slab->freelist; 4215 4216 /* Perform the actual freeing while we still hold the locks */ 4217 slab->inuse -= cnt; 4218 set_freepointer(s, tail, prior); 4219 slab->freelist = head; 4220 4221 /* 4222 * If the slab is empty, and node's partial list is full, 4223 * it should be discarded anyway no matter it's on full or 4224 * partial list. 4225 */ 4226 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4227 slab_free = slab; 4228 4229 if (!prior) { 4230 /* was on full list */ 4231 remove_full(s, n, slab); 4232 if (!slab_free) { 4233 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4234 stat(s, FREE_ADD_PARTIAL); 4235 } 4236 } else if (slab_free) { 4237 remove_partial(n, slab); 4238 stat(s, FREE_REMOVE_PARTIAL); 4239 } 4240 } 4241 4242 if (slab_free) { 4243 /* 4244 * Update the counters while still holding n->list_lock to 4245 * prevent spurious validation warnings 4246 */ 4247 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4248 } 4249 4250 spin_unlock_irqrestore(&n->list_lock, flags); 4251 4252 if (slab_free) { 4253 stat(s, FREE_SLAB); 4254 free_slab(s, slab_free); 4255 } 4256 } 4257 4258 /* 4259 * Slow path handling. This may still be called frequently since objects 4260 * have a longer lifetime than the cpu slabs in most processing loads. 4261 * 4262 * So we still attempt to reduce cache line usage. Just take the slab 4263 * lock and free the item. If there is no additional partial slab 4264 * handling required then we can return immediately. 4265 */ 4266 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4267 void *head, void *tail, int cnt, 4268 unsigned long addr) 4269 4270 { 4271 void *prior; 4272 int was_frozen; 4273 struct slab new; 4274 unsigned long counters; 4275 struct kmem_cache_node *n = NULL; 4276 unsigned long flags; 4277 bool on_node_partial; 4278 4279 stat(s, FREE_SLOWPATH); 4280 4281 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4282 free_to_partial_list(s, slab, head, tail, cnt, addr); 4283 return; 4284 } 4285 4286 do { 4287 if (unlikely(n)) { 4288 spin_unlock_irqrestore(&n->list_lock, flags); 4289 n = NULL; 4290 } 4291 prior = slab->freelist; 4292 counters = slab->counters; 4293 set_freepointer(s, tail, prior); 4294 new.counters = counters; 4295 was_frozen = new.frozen; 4296 new.inuse -= cnt; 4297 if ((!new.inuse || !prior) && !was_frozen) { 4298 /* Needs to be taken off a list */ 4299 if (!kmem_cache_has_cpu_partial(s) || prior) { 4300 4301 n = get_node(s, slab_nid(slab)); 4302 /* 4303 * Speculatively acquire the list_lock. 4304 * If the cmpxchg does not succeed then we may 4305 * drop the list_lock without any processing. 4306 * 4307 * Otherwise the list_lock will synchronize with 4308 * other processors updating the list of slabs. 4309 */ 4310 spin_lock_irqsave(&n->list_lock, flags); 4311 4312 on_node_partial = slab_test_node_partial(slab); 4313 } 4314 } 4315 4316 } while (!slab_update_freelist(s, slab, 4317 prior, counters, 4318 head, new.counters, 4319 "__slab_free")); 4320 4321 if (likely(!n)) { 4322 4323 if (likely(was_frozen)) { 4324 /* 4325 * The list lock was not taken therefore no list 4326 * activity can be necessary. 4327 */ 4328 stat(s, FREE_FROZEN); 4329 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4330 /* 4331 * If we started with a full slab then put it onto the 4332 * per cpu partial list. 4333 */ 4334 put_cpu_partial(s, slab, 1); 4335 stat(s, CPU_PARTIAL_FREE); 4336 } 4337 4338 return; 4339 } 4340 4341 /* 4342 * This slab was partially empty but not on the per-node partial list, 4343 * in which case we shouldn't manipulate its list, just return. 4344 */ 4345 if (prior && !on_node_partial) { 4346 spin_unlock_irqrestore(&n->list_lock, flags); 4347 return; 4348 } 4349 4350 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4351 goto slab_empty; 4352 4353 /* 4354 * Objects left in the slab. If it was not on the partial list before 4355 * then add it. 4356 */ 4357 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4358 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4359 stat(s, FREE_ADD_PARTIAL); 4360 } 4361 spin_unlock_irqrestore(&n->list_lock, flags); 4362 return; 4363 4364 slab_empty: 4365 if (prior) { 4366 /* 4367 * Slab on the partial list. 4368 */ 4369 remove_partial(n, slab); 4370 stat(s, FREE_REMOVE_PARTIAL); 4371 } 4372 4373 spin_unlock_irqrestore(&n->list_lock, flags); 4374 stat(s, FREE_SLAB); 4375 discard_slab(s, slab); 4376 } 4377 4378 #ifndef CONFIG_SLUB_TINY 4379 /* 4380 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4381 * can perform fastpath freeing without additional function calls. 4382 * 4383 * The fastpath is only possible if we are freeing to the current cpu slab 4384 * of this processor. This typically the case if we have just allocated 4385 * the item before. 4386 * 4387 * If fastpath is not possible then fall back to __slab_free where we deal 4388 * with all sorts of special processing. 4389 * 4390 * Bulk free of a freelist with several objects (all pointing to the 4391 * same slab) possible by specifying head and tail ptr, plus objects 4392 * count (cnt). Bulk free indicated by tail pointer being set. 4393 */ 4394 static __always_inline void do_slab_free(struct kmem_cache *s, 4395 struct slab *slab, void *head, void *tail, 4396 int cnt, unsigned long addr) 4397 { 4398 struct kmem_cache_cpu *c; 4399 unsigned long tid; 4400 void **freelist; 4401 4402 redo: 4403 /* 4404 * Determine the currently cpus per cpu slab. 4405 * The cpu may change afterward. However that does not matter since 4406 * data is retrieved via this pointer. If we are on the same cpu 4407 * during the cmpxchg then the free will succeed. 4408 */ 4409 c = raw_cpu_ptr(s->cpu_slab); 4410 tid = READ_ONCE(c->tid); 4411 4412 /* Same with comment on barrier() in __slab_alloc_node() */ 4413 barrier(); 4414 4415 if (unlikely(slab != c->slab)) { 4416 __slab_free(s, slab, head, tail, cnt, addr); 4417 return; 4418 } 4419 4420 if (USE_LOCKLESS_FAST_PATH()) { 4421 freelist = READ_ONCE(c->freelist); 4422 4423 set_freepointer(s, tail, freelist); 4424 4425 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4426 note_cmpxchg_failure("slab_free", s, tid); 4427 goto redo; 4428 } 4429 } else { 4430 /* Update the free list under the local lock */ 4431 local_lock(&s->cpu_slab->lock); 4432 c = this_cpu_ptr(s->cpu_slab); 4433 if (unlikely(slab != c->slab)) { 4434 local_unlock(&s->cpu_slab->lock); 4435 goto redo; 4436 } 4437 tid = c->tid; 4438 freelist = c->freelist; 4439 4440 set_freepointer(s, tail, freelist); 4441 c->freelist = head; 4442 c->tid = next_tid(tid); 4443 4444 local_unlock(&s->cpu_slab->lock); 4445 } 4446 stat_add(s, FREE_FASTPATH, cnt); 4447 } 4448 #else /* CONFIG_SLUB_TINY */ 4449 static void do_slab_free(struct kmem_cache *s, 4450 struct slab *slab, void *head, void *tail, 4451 int cnt, unsigned long addr) 4452 { 4453 __slab_free(s, slab, head, tail, cnt, addr); 4454 } 4455 #endif /* CONFIG_SLUB_TINY */ 4456 4457 static __fastpath_inline 4458 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4459 unsigned long addr) 4460 { 4461 memcg_slab_free_hook(s, slab, &object, 1); 4462 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4463 4464 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4465 do_slab_free(s, slab, object, object, 1, addr); 4466 } 4467 4468 #ifdef CONFIG_MEMCG_KMEM 4469 /* Do not inline the rare memcg charging failed path into the allocation path */ 4470 static noinline 4471 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4472 { 4473 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4474 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4475 } 4476 #endif 4477 4478 static __fastpath_inline 4479 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4480 void *tail, void **p, int cnt, unsigned long addr) 4481 { 4482 memcg_slab_free_hook(s, slab, p, cnt); 4483 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4484 /* 4485 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4486 * to remove objects, whose reuse must be delayed. 4487 */ 4488 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4489 do_slab_free(s, slab, head, tail, cnt, addr); 4490 } 4491 4492 #ifdef CONFIG_KASAN_GENERIC 4493 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4494 { 4495 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4496 } 4497 #endif 4498 4499 static inline struct kmem_cache *virt_to_cache(const void *obj) 4500 { 4501 struct slab *slab; 4502 4503 slab = virt_to_slab(obj); 4504 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4505 return NULL; 4506 return slab->slab_cache; 4507 } 4508 4509 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4510 { 4511 struct kmem_cache *cachep; 4512 4513 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4514 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4515 return s; 4516 4517 cachep = virt_to_cache(x); 4518 if (WARN(cachep && cachep != s, 4519 "%s: Wrong slab cache. %s but object is from %s\n", 4520 __func__, s->name, cachep->name)) 4521 print_tracking(cachep, x); 4522 return cachep; 4523 } 4524 4525 /** 4526 * kmem_cache_free - Deallocate an object 4527 * @s: The cache the allocation was from. 4528 * @x: The previously allocated object. 4529 * 4530 * Free an object which was previously allocated from this 4531 * cache. 4532 */ 4533 void kmem_cache_free(struct kmem_cache *s, void *x) 4534 { 4535 s = cache_from_obj(s, x); 4536 if (!s) 4537 return; 4538 trace_kmem_cache_free(_RET_IP_, x, s); 4539 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4540 } 4541 EXPORT_SYMBOL(kmem_cache_free); 4542 4543 static void free_large_kmalloc(struct folio *folio, void *object) 4544 { 4545 unsigned int order = folio_order(folio); 4546 4547 if (WARN_ON_ONCE(order == 0)) 4548 pr_warn_once("object pointer: 0x%p\n", object); 4549 4550 kmemleak_free(object); 4551 kasan_kfree_large(object); 4552 kmsan_kfree_large(object); 4553 4554 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4555 -(PAGE_SIZE << order)); 4556 folio_put(folio); 4557 } 4558 4559 /** 4560 * kfree - free previously allocated memory 4561 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4562 * 4563 * If @object is NULL, no operation is performed. 4564 */ 4565 void kfree(const void *object) 4566 { 4567 struct folio *folio; 4568 struct slab *slab; 4569 struct kmem_cache *s; 4570 void *x = (void *)object; 4571 4572 trace_kfree(_RET_IP_, object); 4573 4574 if (unlikely(ZERO_OR_NULL_PTR(object))) 4575 return; 4576 4577 folio = virt_to_folio(object); 4578 if (unlikely(!folio_test_slab(folio))) { 4579 free_large_kmalloc(folio, (void *)object); 4580 return; 4581 } 4582 4583 slab = folio_slab(folio); 4584 s = slab->slab_cache; 4585 slab_free(s, slab, x, _RET_IP_); 4586 } 4587 EXPORT_SYMBOL(kfree); 4588 4589 struct detached_freelist { 4590 struct slab *slab; 4591 void *tail; 4592 void *freelist; 4593 int cnt; 4594 struct kmem_cache *s; 4595 }; 4596 4597 /* 4598 * This function progressively scans the array with free objects (with 4599 * a limited look ahead) and extract objects belonging to the same 4600 * slab. It builds a detached freelist directly within the given 4601 * slab/objects. This can happen without any need for 4602 * synchronization, because the objects are owned by running process. 4603 * The freelist is build up as a single linked list in the objects. 4604 * The idea is, that this detached freelist can then be bulk 4605 * transferred to the real freelist(s), but only requiring a single 4606 * synchronization primitive. Look ahead in the array is limited due 4607 * to performance reasons. 4608 */ 4609 static inline 4610 int build_detached_freelist(struct kmem_cache *s, size_t size, 4611 void **p, struct detached_freelist *df) 4612 { 4613 int lookahead = 3; 4614 void *object; 4615 struct folio *folio; 4616 size_t same; 4617 4618 object = p[--size]; 4619 folio = virt_to_folio(object); 4620 if (!s) { 4621 /* Handle kalloc'ed objects */ 4622 if (unlikely(!folio_test_slab(folio))) { 4623 free_large_kmalloc(folio, object); 4624 df->slab = NULL; 4625 return size; 4626 } 4627 /* Derive kmem_cache from object */ 4628 df->slab = folio_slab(folio); 4629 df->s = df->slab->slab_cache; 4630 } else { 4631 df->slab = folio_slab(folio); 4632 df->s = cache_from_obj(s, object); /* Support for memcg */ 4633 } 4634 4635 /* Start new detached freelist */ 4636 df->tail = object; 4637 df->freelist = object; 4638 df->cnt = 1; 4639 4640 if (is_kfence_address(object)) 4641 return size; 4642 4643 set_freepointer(df->s, object, NULL); 4644 4645 same = size; 4646 while (size) { 4647 object = p[--size]; 4648 /* df->slab is always set at this point */ 4649 if (df->slab == virt_to_slab(object)) { 4650 /* Opportunity build freelist */ 4651 set_freepointer(df->s, object, df->freelist); 4652 df->freelist = object; 4653 df->cnt++; 4654 same--; 4655 if (size != same) 4656 swap(p[size], p[same]); 4657 continue; 4658 } 4659 4660 /* Limit look ahead search */ 4661 if (!--lookahead) 4662 break; 4663 } 4664 4665 return same; 4666 } 4667 4668 /* 4669 * Internal bulk free of objects that were not initialised by the post alloc 4670 * hooks and thus should not be processed by the free hooks 4671 */ 4672 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4673 { 4674 if (!size) 4675 return; 4676 4677 do { 4678 struct detached_freelist df; 4679 4680 size = build_detached_freelist(s, size, p, &df); 4681 if (!df.slab) 4682 continue; 4683 4684 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4685 _RET_IP_); 4686 } while (likely(size)); 4687 } 4688 4689 /* Note that interrupts must be enabled when calling this function. */ 4690 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4691 { 4692 if (!size) 4693 return; 4694 4695 do { 4696 struct detached_freelist df; 4697 4698 size = build_detached_freelist(s, size, p, &df); 4699 if (!df.slab) 4700 continue; 4701 4702 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4703 df.cnt, _RET_IP_); 4704 } while (likely(size)); 4705 } 4706 EXPORT_SYMBOL(kmem_cache_free_bulk); 4707 4708 #ifndef CONFIG_SLUB_TINY 4709 static inline 4710 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4711 void **p) 4712 { 4713 struct kmem_cache_cpu *c; 4714 unsigned long irqflags; 4715 int i; 4716 4717 /* 4718 * Drain objects in the per cpu slab, while disabling local 4719 * IRQs, which protects against PREEMPT and interrupts 4720 * handlers invoking normal fastpath. 4721 */ 4722 c = slub_get_cpu_ptr(s->cpu_slab); 4723 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4724 4725 for (i = 0; i < size; i++) { 4726 void *object = kfence_alloc(s, s->object_size, flags); 4727 4728 if (unlikely(object)) { 4729 p[i] = object; 4730 continue; 4731 } 4732 4733 object = c->freelist; 4734 if (unlikely(!object)) { 4735 /* 4736 * We may have removed an object from c->freelist using 4737 * the fastpath in the previous iteration; in that case, 4738 * c->tid has not been bumped yet. 4739 * Since ___slab_alloc() may reenable interrupts while 4740 * allocating memory, we should bump c->tid now. 4741 */ 4742 c->tid = next_tid(c->tid); 4743 4744 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4745 4746 /* 4747 * Invoking slow path likely have side-effect 4748 * of re-populating per CPU c->freelist 4749 */ 4750 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 4751 _RET_IP_, c, s->object_size); 4752 if (unlikely(!p[i])) 4753 goto error; 4754 4755 c = this_cpu_ptr(s->cpu_slab); 4756 maybe_wipe_obj_freeptr(s, p[i]); 4757 4758 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4759 4760 continue; /* goto for-loop */ 4761 } 4762 c->freelist = get_freepointer(s, object); 4763 p[i] = object; 4764 maybe_wipe_obj_freeptr(s, p[i]); 4765 stat(s, ALLOC_FASTPATH); 4766 } 4767 c->tid = next_tid(c->tid); 4768 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4769 slub_put_cpu_ptr(s->cpu_slab); 4770 4771 return i; 4772 4773 error: 4774 slub_put_cpu_ptr(s->cpu_slab); 4775 __kmem_cache_free_bulk(s, i, p); 4776 return 0; 4777 4778 } 4779 #else /* CONFIG_SLUB_TINY */ 4780 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4781 size_t size, void **p) 4782 { 4783 int i; 4784 4785 for (i = 0; i < size; i++) { 4786 void *object = kfence_alloc(s, s->object_size, flags); 4787 4788 if (unlikely(object)) { 4789 p[i] = object; 4790 continue; 4791 } 4792 4793 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4794 _RET_IP_, s->object_size); 4795 if (unlikely(!p[i])) 4796 goto error; 4797 4798 maybe_wipe_obj_freeptr(s, p[i]); 4799 } 4800 4801 return i; 4802 4803 error: 4804 __kmem_cache_free_bulk(s, i, p); 4805 return 0; 4806 } 4807 #endif /* CONFIG_SLUB_TINY */ 4808 4809 /* Note that interrupts must be enabled when calling this function. */ 4810 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 4811 void **p) 4812 { 4813 int i; 4814 4815 if (!size) 4816 return 0; 4817 4818 s = slab_pre_alloc_hook(s, flags); 4819 if (unlikely(!s)) 4820 return 0; 4821 4822 i = __kmem_cache_alloc_bulk(s, flags, size, p); 4823 if (unlikely(i == 0)) 4824 return 0; 4825 4826 /* 4827 * memcg and kmem_cache debug support and memory initialization. 4828 * Done outside of the IRQ disabled fastpath loop. 4829 */ 4830 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 4831 slab_want_init_on_alloc(flags, s), s->object_size))) { 4832 return 0; 4833 } 4834 return i; 4835 } 4836 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 4837 4838 4839 /* 4840 * Object placement in a slab is made very easy because we always start at 4841 * offset 0. If we tune the size of the object to the alignment then we can 4842 * get the required alignment by putting one properly sized object after 4843 * another. 4844 * 4845 * Notice that the allocation order determines the sizes of the per cpu 4846 * caches. Each processor has always one slab available for allocations. 4847 * Increasing the allocation order reduces the number of times that slabs 4848 * must be moved on and off the partial lists and is therefore a factor in 4849 * locking overhead. 4850 */ 4851 4852 /* 4853 * Minimum / Maximum order of slab pages. This influences locking overhead 4854 * and slab fragmentation. A higher order reduces the number of partial slabs 4855 * and increases the number of allocations possible without having to 4856 * take the list_lock. 4857 */ 4858 static unsigned int slub_min_order; 4859 static unsigned int slub_max_order = 4860 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4861 static unsigned int slub_min_objects; 4862 4863 /* 4864 * Calculate the order of allocation given an slab object size. 4865 * 4866 * The order of allocation has significant impact on performance and other 4867 * system components. Generally order 0 allocations should be preferred since 4868 * order 0 does not cause fragmentation in the page allocator. Larger objects 4869 * be problematic to put into order 0 slabs because there may be too much 4870 * unused space left. We go to a higher order if more than 1/16th of the slab 4871 * would be wasted. 4872 * 4873 * In order to reach satisfactory performance we must ensure that a minimum 4874 * number of objects is in one slab. Otherwise we may generate too much 4875 * activity on the partial lists which requires taking the list_lock. This is 4876 * less a concern for large slabs though which are rarely used. 4877 * 4878 * slab_max_order specifies the order where we begin to stop considering the 4879 * number of objects in a slab as critical. If we reach slab_max_order then 4880 * we try to keep the page order as low as possible. So we accept more waste 4881 * of space in favor of a small page order. 4882 * 4883 * Higher order allocations also allow the placement of more objects in a 4884 * slab and thereby reduce object handling overhead. If the user has 4885 * requested a higher minimum order then we start with that one instead of 4886 * the smallest order which will fit the object. 4887 */ 4888 static inline unsigned int calc_slab_order(unsigned int size, 4889 unsigned int min_order, unsigned int max_order, 4890 unsigned int fract_leftover) 4891 { 4892 unsigned int order; 4893 4894 for (order = min_order; order <= max_order; order++) { 4895 4896 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4897 unsigned int rem; 4898 4899 rem = slab_size % size; 4900 4901 if (rem <= slab_size / fract_leftover) 4902 break; 4903 } 4904 4905 return order; 4906 } 4907 4908 static inline int calculate_order(unsigned int size) 4909 { 4910 unsigned int order; 4911 unsigned int min_objects; 4912 unsigned int max_objects; 4913 unsigned int min_order; 4914 4915 min_objects = slub_min_objects; 4916 if (!min_objects) { 4917 /* 4918 * Some architectures will only update present cpus when 4919 * onlining them, so don't trust the number if it's just 1. But 4920 * we also don't want to use nr_cpu_ids always, as on some other 4921 * architectures, there can be many possible cpus, but never 4922 * onlined. Here we compromise between trying to avoid too high 4923 * order on systems that appear larger than they are, and too 4924 * low order on systems that appear smaller than they are. 4925 */ 4926 unsigned int nr_cpus = num_present_cpus(); 4927 if (nr_cpus <= 1) 4928 nr_cpus = nr_cpu_ids; 4929 min_objects = 4 * (fls(nr_cpus) + 1); 4930 } 4931 /* min_objects can't be 0 because get_order(0) is undefined */ 4932 max_objects = max(order_objects(slub_max_order, size), 1U); 4933 min_objects = min(min_objects, max_objects); 4934 4935 min_order = max_t(unsigned int, slub_min_order, 4936 get_order(min_objects * size)); 4937 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4938 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4939 4940 /* 4941 * Attempt to find best configuration for a slab. This works by first 4942 * attempting to generate a layout with the best possible configuration 4943 * and backing off gradually. 4944 * 4945 * We start with accepting at most 1/16 waste and try to find the 4946 * smallest order from min_objects-derived/slab_min_order up to 4947 * slab_max_order that will satisfy the constraint. Note that increasing 4948 * the order can only result in same or less fractional waste, not more. 4949 * 4950 * If that fails, we increase the acceptable fraction of waste and try 4951 * again. The last iteration with fraction of 1/2 would effectively 4952 * accept any waste and give us the order determined by min_objects, as 4953 * long as at least single object fits within slab_max_order. 4954 */ 4955 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 4956 order = calc_slab_order(size, min_order, slub_max_order, 4957 fraction); 4958 if (order <= slub_max_order) 4959 return order; 4960 } 4961 4962 /* 4963 * Doh this slab cannot be placed using slab_max_order. 4964 */ 4965 order = get_order(size); 4966 if (order <= MAX_PAGE_ORDER) 4967 return order; 4968 return -ENOSYS; 4969 } 4970 4971 static void 4972 init_kmem_cache_node(struct kmem_cache_node *n) 4973 { 4974 n->nr_partial = 0; 4975 spin_lock_init(&n->list_lock); 4976 INIT_LIST_HEAD(&n->partial); 4977 #ifdef CONFIG_SLUB_DEBUG 4978 atomic_long_set(&n->nr_slabs, 0); 4979 atomic_long_set(&n->total_objects, 0); 4980 INIT_LIST_HEAD(&n->full); 4981 #endif 4982 } 4983 4984 #ifndef CONFIG_SLUB_TINY 4985 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4986 { 4987 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4988 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4989 sizeof(struct kmem_cache_cpu)); 4990 4991 /* 4992 * Must align to double word boundary for the double cmpxchg 4993 * instructions to work; see __pcpu_double_call_return_bool(). 4994 */ 4995 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4996 2 * sizeof(void *)); 4997 4998 if (!s->cpu_slab) 4999 return 0; 5000 5001 init_kmem_cache_cpus(s); 5002 5003 return 1; 5004 } 5005 #else 5006 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5007 { 5008 return 1; 5009 } 5010 #endif /* CONFIG_SLUB_TINY */ 5011 5012 static struct kmem_cache *kmem_cache_node; 5013 5014 /* 5015 * No kmalloc_node yet so do it by hand. We know that this is the first 5016 * slab on the node for this slabcache. There are no concurrent accesses 5017 * possible. 5018 * 5019 * Note that this function only works on the kmem_cache_node 5020 * when allocating for the kmem_cache_node. This is used for bootstrapping 5021 * memory on a fresh node that has no slab structures yet. 5022 */ 5023 static void early_kmem_cache_node_alloc(int node) 5024 { 5025 struct slab *slab; 5026 struct kmem_cache_node *n; 5027 5028 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5029 5030 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5031 5032 BUG_ON(!slab); 5033 if (slab_nid(slab) != node) { 5034 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5035 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5036 } 5037 5038 n = slab->freelist; 5039 BUG_ON(!n); 5040 #ifdef CONFIG_SLUB_DEBUG 5041 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5042 #endif 5043 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5044 slab->freelist = get_freepointer(kmem_cache_node, n); 5045 slab->inuse = 1; 5046 kmem_cache_node->node[node] = n; 5047 init_kmem_cache_node(n); 5048 inc_slabs_node(kmem_cache_node, node, slab->objects); 5049 5050 /* 5051 * No locks need to be taken here as it has just been 5052 * initialized and there is no concurrent access. 5053 */ 5054 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5055 } 5056 5057 static void free_kmem_cache_nodes(struct kmem_cache *s) 5058 { 5059 int node; 5060 struct kmem_cache_node *n; 5061 5062 for_each_kmem_cache_node(s, node, n) { 5063 s->node[node] = NULL; 5064 kmem_cache_free(kmem_cache_node, n); 5065 } 5066 } 5067 5068 void __kmem_cache_release(struct kmem_cache *s) 5069 { 5070 cache_random_seq_destroy(s); 5071 #ifndef CONFIG_SLUB_TINY 5072 free_percpu(s->cpu_slab); 5073 #endif 5074 free_kmem_cache_nodes(s); 5075 } 5076 5077 static int init_kmem_cache_nodes(struct kmem_cache *s) 5078 { 5079 int node; 5080 5081 for_each_node_mask(node, slab_nodes) { 5082 struct kmem_cache_node *n; 5083 5084 if (slab_state == DOWN) { 5085 early_kmem_cache_node_alloc(node); 5086 continue; 5087 } 5088 n = kmem_cache_alloc_node(kmem_cache_node, 5089 GFP_KERNEL, node); 5090 5091 if (!n) { 5092 free_kmem_cache_nodes(s); 5093 return 0; 5094 } 5095 5096 init_kmem_cache_node(n); 5097 s->node[node] = n; 5098 } 5099 return 1; 5100 } 5101 5102 static void set_cpu_partial(struct kmem_cache *s) 5103 { 5104 #ifdef CONFIG_SLUB_CPU_PARTIAL 5105 unsigned int nr_objects; 5106 5107 /* 5108 * cpu_partial determined the maximum number of objects kept in the 5109 * per cpu partial lists of a processor. 5110 * 5111 * Per cpu partial lists mainly contain slabs that just have one 5112 * object freed. If they are used for allocation then they can be 5113 * filled up again with minimal effort. The slab will never hit the 5114 * per node partial lists and therefore no locking will be required. 5115 * 5116 * For backwards compatibility reasons, this is determined as number 5117 * of objects, even though we now limit maximum number of pages, see 5118 * slub_set_cpu_partial() 5119 */ 5120 if (!kmem_cache_has_cpu_partial(s)) 5121 nr_objects = 0; 5122 else if (s->size >= PAGE_SIZE) 5123 nr_objects = 6; 5124 else if (s->size >= 1024) 5125 nr_objects = 24; 5126 else if (s->size >= 256) 5127 nr_objects = 52; 5128 else 5129 nr_objects = 120; 5130 5131 slub_set_cpu_partial(s, nr_objects); 5132 #endif 5133 } 5134 5135 /* 5136 * calculate_sizes() determines the order and the distribution of data within 5137 * a slab object. 5138 */ 5139 static int calculate_sizes(struct kmem_cache *s) 5140 { 5141 slab_flags_t flags = s->flags; 5142 unsigned int size = s->object_size; 5143 unsigned int order; 5144 5145 /* 5146 * Round up object size to the next word boundary. We can only 5147 * place the free pointer at word boundaries and this determines 5148 * the possible location of the free pointer. 5149 */ 5150 size = ALIGN(size, sizeof(void *)); 5151 5152 #ifdef CONFIG_SLUB_DEBUG 5153 /* 5154 * Determine if we can poison the object itself. If the user of 5155 * the slab may touch the object after free or before allocation 5156 * then we should never poison the object itself. 5157 */ 5158 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5159 !s->ctor) 5160 s->flags |= __OBJECT_POISON; 5161 else 5162 s->flags &= ~__OBJECT_POISON; 5163 5164 5165 /* 5166 * If we are Redzoning then check if there is some space between the 5167 * end of the object and the free pointer. If not then add an 5168 * additional word to have some bytes to store Redzone information. 5169 */ 5170 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5171 size += sizeof(void *); 5172 #endif 5173 5174 /* 5175 * With that we have determined the number of bytes in actual use 5176 * by the object and redzoning. 5177 */ 5178 s->inuse = size; 5179 5180 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor || 5181 ((flags & SLAB_RED_ZONE) && 5182 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5183 /* 5184 * Relocate free pointer after the object if it is not 5185 * permitted to overwrite the first word of the object on 5186 * kmem_cache_free. 5187 * 5188 * This is the case if we do RCU, have a constructor or 5189 * destructor, are poisoning the objects, or are 5190 * redzoning an object smaller than sizeof(void *) or are 5191 * redzoning an object with slub_debug_orig_size() enabled, 5192 * in which case the right redzone may be extended. 5193 * 5194 * The assumption that s->offset >= s->inuse means free 5195 * pointer is outside of the object is used in the 5196 * freeptr_outside_object() function. If that is no 5197 * longer true, the function needs to be modified. 5198 */ 5199 s->offset = size; 5200 size += sizeof(void *); 5201 } else { 5202 /* 5203 * Store freelist pointer near middle of object to keep 5204 * it away from the edges of the object to avoid small 5205 * sized over/underflows from neighboring allocations. 5206 */ 5207 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5208 } 5209 5210 #ifdef CONFIG_SLUB_DEBUG 5211 if (flags & SLAB_STORE_USER) { 5212 /* 5213 * Need to store information about allocs and frees after 5214 * the object. 5215 */ 5216 size += 2 * sizeof(struct track); 5217 5218 /* Save the original kmalloc request size */ 5219 if (flags & SLAB_KMALLOC) 5220 size += sizeof(unsigned int); 5221 } 5222 #endif 5223 5224 kasan_cache_create(s, &size, &s->flags); 5225 #ifdef CONFIG_SLUB_DEBUG 5226 if (flags & SLAB_RED_ZONE) { 5227 /* 5228 * Add some empty padding so that we can catch 5229 * overwrites from earlier objects rather than let 5230 * tracking information or the free pointer be 5231 * corrupted if a user writes before the start 5232 * of the object. 5233 */ 5234 size += sizeof(void *); 5235 5236 s->red_left_pad = sizeof(void *); 5237 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5238 size += s->red_left_pad; 5239 } 5240 #endif 5241 5242 /* 5243 * SLUB stores one object immediately after another beginning from 5244 * offset 0. In order to align the objects we have to simply size 5245 * each object to conform to the alignment. 5246 */ 5247 size = ALIGN(size, s->align); 5248 s->size = size; 5249 s->reciprocal_size = reciprocal_value(size); 5250 order = calculate_order(size); 5251 5252 if ((int)order < 0) 5253 return 0; 5254 5255 s->allocflags = __GFP_COMP; 5256 5257 if (s->flags & SLAB_CACHE_DMA) 5258 s->allocflags |= GFP_DMA; 5259 5260 if (s->flags & SLAB_CACHE_DMA32) 5261 s->allocflags |= GFP_DMA32; 5262 5263 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5264 s->allocflags |= __GFP_RECLAIMABLE; 5265 5266 /* 5267 * Determine the number of objects per slab 5268 */ 5269 s->oo = oo_make(order, size); 5270 s->min = oo_make(get_order(size), size); 5271 5272 return !!oo_objects(s->oo); 5273 } 5274 5275 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 5276 { 5277 s->flags = kmem_cache_flags(flags, s->name); 5278 #ifdef CONFIG_SLAB_FREELIST_HARDENED 5279 s->random = get_random_long(); 5280 #endif 5281 5282 if (!calculate_sizes(s)) 5283 goto error; 5284 if (disable_higher_order_debug) { 5285 /* 5286 * Disable debugging flags that store metadata if the min slab 5287 * order increased. 5288 */ 5289 if (get_order(s->size) > get_order(s->object_size)) { 5290 s->flags &= ~DEBUG_METADATA_FLAGS; 5291 s->offset = 0; 5292 if (!calculate_sizes(s)) 5293 goto error; 5294 } 5295 } 5296 5297 #ifdef system_has_freelist_aba 5298 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 5299 /* Enable fast mode */ 5300 s->flags |= __CMPXCHG_DOUBLE; 5301 } 5302 #endif 5303 5304 /* 5305 * The larger the object size is, the more slabs we want on the partial 5306 * list to avoid pounding the page allocator excessively. 5307 */ 5308 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 5309 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 5310 5311 set_cpu_partial(s); 5312 5313 #ifdef CONFIG_NUMA 5314 s->remote_node_defrag_ratio = 1000; 5315 #endif 5316 5317 /* Initialize the pre-computed randomized freelist if slab is up */ 5318 if (slab_state >= UP) { 5319 if (init_cache_random_seq(s)) 5320 goto error; 5321 } 5322 5323 if (!init_kmem_cache_nodes(s)) 5324 goto error; 5325 5326 if (alloc_kmem_cache_cpus(s)) 5327 return 0; 5328 5329 error: 5330 __kmem_cache_release(s); 5331 return -EINVAL; 5332 } 5333 5334 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5335 const char *text) 5336 { 5337 #ifdef CONFIG_SLUB_DEBUG 5338 void *addr = slab_address(slab); 5339 void *p; 5340 5341 slab_err(s, slab, text, s->name); 5342 5343 spin_lock(&object_map_lock); 5344 __fill_map(object_map, s, slab); 5345 5346 for_each_object(p, s, addr, slab->objects) { 5347 5348 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5349 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5350 print_tracking(s, p); 5351 } 5352 } 5353 spin_unlock(&object_map_lock); 5354 #endif 5355 } 5356 5357 /* 5358 * Attempt to free all partial slabs on a node. 5359 * This is called from __kmem_cache_shutdown(). We must take list_lock 5360 * because sysfs file might still access partial list after the shutdowning. 5361 */ 5362 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5363 { 5364 LIST_HEAD(discard); 5365 struct slab *slab, *h; 5366 5367 BUG_ON(irqs_disabled()); 5368 spin_lock_irq(&n->list_lock); 5369 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5370 if (!slab->inuse) { 5371 remove_partial(n, slab); 5372 list_add(&slab->slab_list, &discard); 5373 } else { 5374 list_slab_objects(s, slab, 5375 "Objects remaining in %s on __kmem_cache_shutdown()"); 5376 } 5377 } 5378 spin_unlock_irq(&n->list_lock); 5379 5380 list_for_each_entry_safe(slab, h, &discard, slab_list) 5381 discard_slab(s, slab); 5382 } 5383 5384 bool __kmem_cache_empty(struct kmem_cache *s) 5385 { 5386 int node; 5387 struct kmem_cache_node *n; 5388 5389 for_each_kmem_cache_node(s, node, n) 5390 if (n->nr_partial || node_nr_slabs(n)) 5391 return false; 5392 return true; 5393 } 5394 5395 /* 5396 * Release all resources used by a slab cache. 5397 */ 5398 int __kmem_cache_shutdown(struct kmem_cache *s) 5399 { 5400 int node; 5401 struct kmem_cache_node *n; 5402 5403 flush_all_cpus_locked(s); 5404 /* Attempt to free all objects */ 5405 for_each_kmem_cache_node(s, node, n) { 5406 free_partial(s, n); 5407 if (n->nr_partial || node_nr_slabs(n)) 5408 return 1; 5409 } 5410 return 0; 5411 } 5412 5413 #ifdef CONFIG_PRINTK 5414 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5415 { 5416 void *base; 5417 int __maybe_unused i; 5418 unsigned int objnr; 5419 void *objp; 5420 void *objp0; 5421 struct kmem_cache *s = slab->slab_cache; 5422 struct track __maybe_unused *trackp; 5423 5424 kpp->kp_ptr = object; 5425 kpp->kp_slab = slab; 5426 kpp->kp_slab_cache = s; 5427 base = slab_address(slab); 5428 objp0 = kasan_reset_tag(object); 5429 #ifdef CONFIG_SLUB_DEBUG 5430 objp = restore_red_left(s, objp0); 5431 #else 5432 objp = objp0; 5433 #endif 5434 objnr = obj_to_index(s, slab, objp); 5435 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5436 objp = base + s->size * objnr; 5437 kpp->kp_objp = objp; 5438 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5439 || (objp - base) % s->size) || 5440 !(s->flags & SLAB_STORE_USER)) 5441 return; 5442 #ifdef CONFIG_SLUB_DEBUG 5443 objp = fixup_red_left(s, objp); 5444 trackp = get_track(s, objp, TRACK_ALLOC); 5445 kpp->kp_ret = (void *)trackp->addr; 5446 #ifdef CONFIG_STACKDEPOT 5447 { 5448 depot_stack_handle_t handle; 5449 unsigned long *entries; 5450 unsigned int nr_entries; 5451 5452 handle = READ_ONCE(trackp->handle); 5453 if (handle) { 5454 nr_entries = stack_depot_fetch(handle, &entries); 5455 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5456 kpp->kp_stack[i] = (void *)entries[i]; 5457 } 5458 5459 trackp = get_track(s, objp, TRACK_FREE); 5460 handle = READ_ONCE(trackp->handle); 5461 if (handle) { 5462 nr_entries = stack_depot_fetch(handle, &entries); 5463 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5464 kpp->kp_free_stack[i] = (void *)entries[i]; 5465 } 5466 } 5467 #endif 5468 #endif 5469 } 5470 #endif 5471 5472 /******************************************************************** 5473 * Kmalloc subsystem 5474 *******************************************************************/ 5475 5476 static int __init setup_slub_min_order(char *str) 5477 { 5478 get_option(&str, (int *)&slub_min_order); 5479 5480 if (slub_min_order > slub_max_order) 5481 slub_max_order = slub_min_order; 5482 5483 return 1; 5484 } 5485 5486 __setup("slab_min_order=", setup_slub_min_order); 5487 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5488 5489 5490 static int __init setup_slub_max_order(char *str) 5491 { 5492 get_option(&str, (int *)&slub_max_order); 5493 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5494 5495 if (slub_min_order > slub_max_order) 5496 slub_min_order = slub_max_order; 5497 5498 return 1; 5499 } 5500 5501 __setup("slab_max_order=", setup_slub_max_order); 5502 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5503 5504 static int __init setup_slub_min_objects(char *str) 5505 { 5506 get_option(&str, (int *)&slub_min_objects); 5507 5508 return 1; 5509 } 5510 5511 __setup("slab_min_objects=", setup_slub_min_objects); 5512 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5513 5514 #ifdef CONFIG_HARDENED_USERCOPY 5515 /* 5516 * Rejects incorrectly sized objects and objects that are to be copied 5517 * to/from userspace but do not fall entirely within the containing slab 5518 * cache's usercopy region. 5519 * 5520 * Returns NULL if check passes, otherwise const char * to name of cache 5521 * to indicate an error. 5522 */ 5523 void __check_heap_object(const void *ptr, unsigned long n, 5524 const struct slab *slab, bool to_user) 5525 { 5526 struct kmem_cache *s; 5527 unsigned int offset; 5528 bool is_kfence = is_kfence_address(ptr); 5529 5530 ptr = kasan_reset_tag(ptr); 5531 5532 /* Find object and usable object size. */ 5533 s = slab->slab_cache; 5534 5535 /* Reject impossible pointers. */ 5536 if (ptr < slab_address(slab)) 5537 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5538 to_user, 0, n); 5539 5540 /* Find offset within object. */ 5541 if (is_kfence) 5542 offset = ptr - kfence_object_start(ptr); 5543 else 5544 offset = (ptr - slab_address(slab)) % s->size; 5545 5546 /* Adjust for redzone and reject if within the redzone. */ 5547 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5548 if (offset < s->red_left_pad) 5549 usercopy_abort("SLUB object in left red zone", 5550 s->name, to_user, offset, n); 5551 offset -= s->red_left_pad; 5552 } 5553 5554 /* Allow address range falling entirely within usercopy region. */ 5555 if (offset >= s->useroffset && 5556 offset - s->useroffset <= s->usersize && 5557 n <= s->useroffset - offset + s->usersize) 5558 return; 5559 5560 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5561 } 5562 #endif /* CONFIG_HARDENED_USERCOPY */ 5563 5564 #define SHRINK_PROMOTE_MAX 32 5565 5566 /* 5567 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5568 * up most to the head of the partial lists. New allocations will then 5569 * fill those up and thus they can be removed from the partial lists. 5570 * 5571 * The slabs with the least items are placed last. This results in them 5572 * being allocated from last increasing the chance that the last objects 5573 * are freed in them. 5574 */ 5575 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5576 { 5577 int node; 5578 int i; 5579 struct kmem_cache_node *n; 5580 struct slab *slab; 5581 struct slab *t; 5582 struct list_head discard; 5583 struct list_head promote[SHRINK_PROMOTE_MAX]; 5584 unsigned long flags; 5585 int ret = 0; 5586 5587 for_each_kmem_cache_node(s, node, n) { 5588 INIT_LIST_HEAD(&discard); 5589 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5590 INIT_LIST_HEAD(promote + i); 5591 5592 spin_lock_irqsave(&n->list_lock, flags); 5593 5594 /* 5595 * Build lists of slabs to discard or promote. 5596 * 5597 * Note that concurrent frees may occur while we hold the 5598 * list_lock. slab->inuse here is the upper limit. 5599 */ 5600 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5601 int free = slab->objects - slab->inuse; 5602 5603 /* Do not reread slab->inuse */ 5604 barrier(); 5605 5606 /* We do not keep full slabs on the list */ 5607 BUG_ON(free <= 0); 5608 5609 if (free == slab->objects) { 5610 list_move(&slab->slab_list, &discard); 5611 slab_clear_node_partial(slab); 5612 n->nr_partial--; 5613 dec_slabs_node(s, node, slab->objects); 5614 } else if (free <= SHRINK_PROMOTE_MAX) 5615 list_move(&slab->slab_list, promote + free - 1); 5616 } 5617 5618 /* 5619 * Promote the slabs filled up most to the head of the 5620 * partial list. 5621 */ 5622 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5623 list_splice(promote + i, &n->partial); 5624 5625 spin_unlock_irqrestore(&n->list_lock, flags); 5626 5627 /* Release empty slabs */ 5628 list_for_each_entry_safe(slab, t, &discard, slab_list) 5629 free_slab(s, slab); 5630 5631 if (node_nr_slabs(n)) 5632 ret = 1; 5633 } 5634 5635 return ret; 5636 } 5637 5638 int __kmem_cache_shrink(struct kmem_cache *s) 5639 { 5640 flush_all(s); 5641 return __kmem_cache_do_shrink(s); 5642 } 5643 5644 static int slab_mem_going_offline_callback(void *arg) 5645 { 5646 struct kmem_cache *s; 5647 5648 mutex_lock(&slab_mutex); 5649 list_for_each_entry(s, &slab_caches, list) { 5650 flush_all_cpus_locked(s); 5651 __kmem_cache_do_shrink(s); 5652 } 5653 mutex_unlock(&slab_mutex); 5654 5655 return 0; 5656 } 5657 5658 static void slab_mem_offline_callback(void *arg) 5659 { 5660 struct memory_notify *marg = arg; 5661 int offline_node; 5662 5663 offline_node = marg->status_change_nid_normal; 5664 5665 /* 5666 * If the node still has available memory. we need kmem_cache_node 5667 * for it yet. 5668 */ 5669 if (offline_node < 0) 5670 return; 5671 5672 mutex_lock(&slab_mutex); 5673 node_clear(offline_node, slab_nodes); 5674 /* 5675 * We no longer free kmem_cache_node structures here, as it would be 5676 * racy with all get_node() users, and infeasible to protect them with 5677 * slab_mutex. 5678 */ 5679 mutex_unlock(&slab_mutex); 5680 } 5681 5682 static int slab_mem_going_online_callback(void *arg) 5683 { 5684 struct kmem_cache_node *n; 5685 struct kmem_cache *s; 5686 struct memory_notify *marg = arg; 5687 int nid = marg->status_change_nid_normal; 5688 int ret = 0; 5689 5690 /* 5691 * If the node's memory is already available, then kmem_cache_node is 5692 * already created. Nothing to do. 5693 */ 5694 if (nid < 0) 5695 return 0; 5696 5697 /* 5698 * We are bringing a node online. No memory is available yet. We must 5699 * allocate a kmem_cache_node structure in order to bring the node 5700 * online. 5701 */ 5702 mutex_lock(&slab_mutex); 5703 list_for_each_entry(s, &slab_caches, list) { 5704 /* 5705 * The structure may already exist if the node was previously 5706 * onlined and offlined. 5707 */ 5708 if (get_node(s, nid)) 5709 continue; 5710 /* 5711 * XXX: kmem_cache_alloc_node will fallback to other nodes 5712 * since memory is not yet available from the node that 5713 * is brought up. 5714 */ 5715 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5716 if (!n) { 5717 ret = -ENOMEM; 5718 goto out; 5719 } 5720 init_kmem_cache_node(n); 5721 s->node[nid] = n; 5722 } 5723 /* 5724 * Any cache created after this point will also have kmem_cache_node 5725 * initialized for the new node. 5726 */ 5727 node_set(nid, slab_nodes); 5728 out: 5729 mutex_unlock(&slab_mutex); 5730 return ret; 5731 } 5732 5733 static int slab_memory_callback(struct notifier_block *self, 5734 unsigned long action, void *arg) 5735 { 5736 int ret = 0; 5737 5738 switch (action) { 5739 case MEM_GOING_ONLINE: 5740 ret = slab_mem_going_online_callback(arg); 5741 break; 5742 case MEM_GOING_OFFLINE: 5743 ret = slab_mem_going_offline_callback(arg); 5744 break; 5745 case MEM_OFFLINE: 5746 case MEM_CANCEL_ONLINE: 5747 slab_mem_offline_callback(arg); 5748 break; 5749 case MEM_ONLINE: 5750 case MEM_CANCEL_OFFLINE: 5751 break; 5752 } 5753 if (ret) 5754 ret = notifier_from_errno(ret); 5755 else 5756 ret = NOTIFY_OK; 5757 return ret; 5758 } 5759 5760 /******************************************************************** 5761 * Basic setup of slabs 5762 *******************************************************************/ 5763 5764 /* 5765 * Used for early kmem_cache structures that were allocated using 5766 * the page allocator. Allocate them properly then fix up the pointers 5767 * that may be pointing to the wrong kmem_cache structure. 5768 */ 5769 5770 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 5771 { 5772 int node; 5773 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5774 struct kmem_cache_node *n; 5775 5776 memcpy(s, static_cache, kmem_cache->object_size); 5777 5778 /* 5779 * This runs very early, and only the boot processor is supposed to be 5780 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5781 * IPIs around. 5782 */ 5783 __flush_cpu_slab(s, smp_processor_id()); 5784 for_each_kmem_cache_node(s, node, n) { 5785 struct slab *p; 5786 5787 list_for_each_entry(p, &n->partial, slab_list) 5788 p->slab_cache = s; 5789 5790 #ifdef CONFIG_SLUB_DEBUG 5791 list_for_each_entry(p, &n->full, slab_list) 5792 p->slab_cache = s; 5793 #endif 5794 } 5795 list_add(&s->list, &slab_caches); 5796 return s; 5797 } 5798 5799 void __init kmem_cache_init(void) 5800 { 5801 static __initdata struct kmem_cache boot_kmem_cache, 5802 boot_kmem_cache_node; 5803 int node; 5804 5805 if (debug_guardpage_minorder()) 5806 slub_max_order = 0; 5807 5808 /* Print slub debugging pointers without hashing */ 5809 if (__slub_debug_enabled()) 5810 no_hash_pointers_enable(NULL); 5811 5812 kmem_cache_node = &boot_kmem_cache_node; 5813 kmem_cache = &boot_kmem_cache; 5814 5815 /* 5816 * Initialize the nodemask for which we will allocate per node 5817 * structures. Here we don't need taking slab_mutex yet. 5818 */ 5819 for_each_node_state(node, N_NORMAL_MEMORY) 5820 node_set(node, slab_nodes); 5821 5822 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5823 sizeof(struct kmem_cache_node), 5824 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5825 5826 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5827 5828 /* Able to allocate the per node structures */ 5829 slab_state = PARTIAL; 5830 5831 create_boot_cache(kmem_cache, "kmem_cache", 5832 offsetof(struct kmem_cache, node) + 5833 nr_node_ids * sizeof(struct kmem_cache_node *), 5834 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5835 5836 kmem_cache = bootstrap(&boot_kmem_cache); 5837 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5838 5839 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5840 setup_kmalloc_cache_index_table(); 5841 create_kmalloc_caches(); 5842 5843 /* Setup random freelists for each cache */ 5844 init_freelist_randomization(); 5845 5846 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5847 slub_cpu_dead); 5848 5849 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5850 cache_line_size(), 5851 slub_min_order, slub_max_order, slub_min_objects, 5852 nr_cpu_ids, nr_node_ids); 5853 } 5854 5855 void __init kmem_cache_init_late(void) 5856 { 5857 #ifndef CONFIG_SLUB_TINY 5858 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5859 WARN_ON(!flushwq); 5860 #endif 5861 } 5862 5863 struct kmem_cache * 5864 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5865 slab_flags_t flags, void (*ctor)(void *)) 5866 { 5867 struct kmem_cache *s; 5868 5869 s = find_mergeable(size, align, flags, name, ctor); 5870 if (s) { 5871 if (sysfs_slab_alias(s, name)) 5872 return NULL; 5873 5874 s->refcount++; 5875 5876 /* 5877 * Adjust the object sizes so that we clear 5878 * the complete object on kzalloc. 5879 */ 5880 s->object_size = max(s->object_size, size); 5881 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5882 } 5883 5884 return s; 5885 } 5886 5887 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5888 { 5889 int err; 5890 5891 err = kmem_cache_open(s, flags); 5892 if (err) 5893 return err; 5894 5895 /* Mutex is not taken during early boot */ 5896 if (slab_state <= UP) 5897 return 0; 5898 5899 err = sysfs_slab_add(s); 5900 if (err) { 5901 __kmem_cache_release(s); 5902 return err; 5903 } 5904 5905 if (s->flags & SLAB_STORE_USER) 5906 debugfs_slab_add(s); 5907 5908 return 0; 5909 } 5910 5911 #ifdef SLAB_SUPPORTS_SYSFS 5912 static int count_inuse(struct slab *slab) 5913 { 5914 return slab->inuse; 5915 } 5916 5917 static int count_total(struct slab *slab) 5918 { 5919 return slab->objects; 5920 } 5921 #endif 5922 5923 #ifdef CONFIG_SLUB_DEBUG 5924 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5925 unsigned long *obj_map) 5926 { 5927 void *p; 5928 void *addr = slab_address(slab); 5929 5930 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5931 return; 5932 5933 /* Now we know that a valid freelist exists */ 5934 __fill_map(obj_map, s, slab); 5935 for_each_object(p, s, addr, slab->objects) { 5936 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5937 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5938 5939 if (!check_object(s, slab, p, val)) 5940 break; 5941 } 5942 } 5943 5944 static int validate_slab_node(struct kmem_cache *s, 5945 struct kmem_cache_node *n, unsigned long *obj_map) 5946 { 5947 unsigned long count = 0; 5948 struct slab *slab; 5949 unsigned long flags; 5950 5951 spin_lock_irqsave(&n->list_lock, flags); 5952 5953 list_for_each_entry(slab, &n->partial, slab_list) { 5954 validate_slab(s, slab, obj_map); 5955 count++; 5956 } 5957 if (count != n->nr_partial) { 5958 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5959 s->name, count, n->nr_partial); 5960 slab_add_kunit_errors(); 5961 } 5962 5963 if (!(s->flags & SLAB_STORE_USER)) 5964 goto out; 5965 5966 list_for_each_entry(slab, &n->full, slab_list) { 5967 validate_slab(s, slab, obj_map); 5968 count++; 5969 } 5970 if (count != node_nr_slabs(n)) { 5971 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5972 s->name, count, node_nr_slabs(n)); 5973 slab_add_kunit_errors(); 5974 } 5975 5976 out: 5977 spin_unlock_irqrestore(&n->list_lock, flags); 5978 return count; 5979 } 5980 5981 long validate_slab_cache(struct kmem_cache *s) 5982 { 5983 int node; 5984 unsigned long count = 0; 5985 struct kmem_cache_node *n; 5986 unsigned long *obj_map; 5987 5988 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5989 if (!obj_map) 5990 return -ENOMEM; 5991 5992 flush_all(s); 5993 for_each_kmem_cache_node(s, node, n) 5994 count += validate_slab_node(s, n, obj_map); 5995 5996 bitmap_free(obj_map); 5997 5998 return count; 5999 } 6000 EXPORT_SYMBOL(validate_slab_cache); 6001 6002 #ifdef CONFIG_DEBUG_FS 6003 /* 6004 * Generate lists of code addresses where slabcache objects are allocated 6005 * and freed. 6006 */ 6007 6008 struct location { 6009 depot_stack_handle_t handle; 6010 unsigned long count; 6011 unsigned long addr; 6012 unsigned long waste; 6013 long long sum_time; 6014 long min_time; 6015 long max_time; 6016 long min_pid; 6017 long max_pid; 6018 DECLARE_BITMAP(cpus, NR_CPUS); 6019 nodemask_t nodes; 6020 }; 6021 6022 struct loc_track { 6023 unsigned long max; 6024 unsigned long count; 6025 struct location *loc; 6026 loff_t idx; 6027 }; 6028 6029 static struct dentry *slab_debugfs_root; 6030 6031 static void free_loc_track(struct loc_track *t) 6032 { 6033 if (t->max) 6034 free_pages((unsigned long)t->loc, 6035 get_order(sizeof(struct location) * t->max)); 6036 } 6037 6038 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6039 { 6040 struct location *l; 6041 int order; 6042 6043 order = get_order(sizeof(struct location) * max); 6044 6045 l = (void *)__get_free_pages(flags, order); 6046 if (!l) 6047 return 0; 6048 6049 if (t->count) { 6050 memcpy(l, t->loc, sizeof(struct location) * t->count); 6051 free_loc_track(t); 6052 } 6053 t->max = max; 6054 t->loc = l; 6055 return 1; 6056 } 6057 6058 static int add_location(struct loc_track *t, struct kmem_cache *s, 6059 const struct track *track, 6060 unsigned int orig_size) 6061 { 6062 long start, end, pos; 6063 struct location *l; 6064 unsigned long caddr, chandle, cwaste; 6065 unsigned long age = jiffies - track->when; 6066 depot_stack_handle_t handle = 0; 6067 unsigned int waste = s->object_size - orig_size; 6068 6069 #ifdef CONFIG_STACKDEPOT 6070 handle = READ_ONCE(track->handle); 6071 #endif 6072 start = -1; 6073 end = t->count; 6074 6075 for ( ; ; ) { 6076 pos = start + (end - start + 1) / 2; 6077 6078 /* 6079 * There is nothing at "end". If we end up there 6080 * we need to add something to before end. 6081 */ 6082 if (pos == end) 6083 break; 6084 6085 l = &t->loc[pos]; 6086 caddr = l->addr; 6087 chandle = l->handle; 6088 cwaste = l->waste; 6089 if ((track->addr == caddr) && (handle == chandle) && 6090 (waste == cwaste)) { 6091 6092 l->count++; 6093 if (track->when) { 6094 l->sum_time += age; 6095 if (age < l->min_time) 6096 l->min_time = age; 6097 if (age > l->max_time) 6098 l->max_time = age; 6099 6100 if (track->pid < l->min_pid) 6101 l->min_pid = track->pid; 6102 if (track->pid > l->max_pid) 6103 l->max_pid = track->pid; 6104 6105 cpumask_set_cpu(track->cpu, 6106 to_cpumask(l->cpus)); 6107 } 6108 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6109 return 1; 6110 } 6111 6112 if (track->addr < caddr) 6113 end = pos; 6114 else if (track->addr == caddr && handle < chandle) 6115 end = pos; 6116 else if (track->addr == caddr && handle == chandle && 6117 waste < cwaste) 6118 end = pos; 6119 else 6120 start = pos; 6121 } 6122 6123 /* 6124 * Not found. Insert new tracking element. 6125 */ 6126 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6127 return 0; 6128 6129 l = t->loc + pos; 6130 if (pos < t->count) 6131 memmove(l + 1, l, 6132 (t->count - pos) * sizeof(struct location)); 6133 t->count++; 6134 l->count = 1; 6135 l->addr = track->addr; 6136 l->sum_time = age; 6137 l->min_time = age; 6138 l->max_time = age; 6139 l->min_pid = track->pid; 6140 l->max_pid = track->pid; 6141 l->handle = handle; 6142 l->waste = waste; 6143 cpumask_clear(to_cpumask(l->cpus)); 6144 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6145 nodes_clear(l->nodes); 6146 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6147 return 1; 6148 } 6149 6150 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6151 struct slab *slab, enum track_item alloc, 6152 unsigned long *obj_map) 6153 { 6154 void *addr = slab_address(slab); 6155 bool is_alloc = (alloc == TRACK_ALLOC); 6156 void *p; 6157 6158 __fill_map(obj_map, s, slab); 6159 6160 for_each_object(p, s, addr, slab->objects) 6161 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6162 add_location(t, s, get_track(s, p, alloc), 6163 is_alloc ? get_orig_size(s, p) : 6164 s->object_size); 6165 } 6166 #endif /* CONFIG_DEBUG_FS */ 6167 #endif /* CONFIG_SLUB_DEBUG */ 6168 6169 #ifdef SLAB_SUPPORTS_SYSFS 6170 enum slab_stat_type { 6171 SL_ALL, /* All slabs */ 6172 SL_PARTIAL, /* Only partially allocated slabs */ 6173 SL_CPU, /* Only slabs used for cpu caches */ 6174 SL_OBJECTS, /* Determine allocated objects not slabs */ 6175 SL_TOTAL /* Determine object capacity not slabs */ 6176 }; 6177 6178 #define SO_ALL (1 << SL_ALL) 6179 #define SO_PARTIAL (1 << SL_PARTIAL) 6180 #define SO_CPU (1 << SL_CPU) 6181 #define SO_OBJECTS (1 << SL_OBJECTS) 6182 #define SO_TOTAL (1 << SL_TOTAL) 6183 6184 static ssize_t show_slab_objects(struct kmem_cache *s, 6185 char *buf, unsigned long flags) 6186 { 6187 unsigned long total = 0; 6188 int node; 6189 int x; 6190 unsigned long *nodes; 6191 int len = 0; 6192 6193 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6194 if (!nodes) 6195 return -ENOMEM; 6196 6197 if (flags & SO_CPU) { 6198 int cpu; 6199 6200 for_each_possible_cpu(cpu) { 6201 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6202 cpu); 6203 int node; 6204 struct slab *slab; 6205 6206 slab = READ_ONCE(c->slab); 6207 if (!slab) 6208 continue; 6209 6210 node = slab_nid(slab); 6211 if (flags & SO_TOTAL) 6212 x = slab->objects; 6213 else if (flags & SO_OBJECTS) 6214 x = slab->inuse; 6215 else 6216 x = 1; 6217 6218 total += x; 6219 nodes[node] += x; 6220 6221 #ifdef CONFIG_SLUB_CPU_PARTIAL 6222 slab = slub_percpu_partial_read_once(c); 6223 if (slab) { 6224 node = slab_nid(slab); 6225 if (flags & SO_TOTAL) 6226 WARN_ON_ONCE(1); 6227 else if (flags & SO_OBJECTS) 6228 WARN_ON_ONCE(1); 6229 else 6230 x = data_race(slab->slabs); 6231 total += x; 6232 nodes[node] += x; 6233 } 6234 #endif 6235 } 6236 } 6237 6238 /* 6239 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6240 * already held which will conflict with an existing lock order: 6241 * 6242 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6243 * 6244 * We don't really need mem_hotplug_lock (to hold off 6245 * slab_mem_going_offline_callback) here because slab's memory hot 6246 * unplug code doesn't destroy the kmem_cache->node[] data. 6247 */ 6248 6249 #ifdef CONFIG_SLUB_DEBUG 6250 if (flags & SO_ALL) { 6251 struct kmem_cache_node *n; 6252 6253 for_each_kmem_cache_node(s, node, n) { 6254 6255 if (flags & SO_TOTAL) 6256 x = node_nr_objs(n); 6257 else if (flags & SO_OBJECTS) 6258 x = node_nr_objs(n) - count_partial(n, count_free); 6259 else 6260 x = node_nr_slabs(n); 6261 total += x; 6262 nodes[node] += x; 6263 } 6264 6265 } else 6266 #endif 6267 if (flags & SO_PARTIAL) { 6268 struct kmem_cache_node *n; 6269 6270 for_each_kmem_cache_node(s, node, n) { 6271 if (flags & SO_TOTAL) 6272 x = count_partial(n, count_total); 6273 else if (flags & SO_OBJECTS) 6274 x = count_partial(n, count_inuse); 6275 else 6276 x = n->nr_partial; 6277 total += x; 6278 nodes[node] += x; 6279 } 6280 } 6281 6282 len += sysfs_emit_at(buf, len, "%lu", total); 6283 #ifdef CONFIG_NUMA 6284 for (node = 0; node < nr_node_ids; node++) { 6285 if (nodes[node]) 6286 len += sysfs_emit_at(buf, len, " N%d=%lu", 6287 node, nodes[node]); 6288 } 6289 #endif 6290 len += sysfs_emit_at(buf, len, "\n"); 6291 kfree(nodes); 6292 6293 return len; 6294 } 6295 6296 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6297 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6298 6299 struct slab_attribute { 6300 struct attribute attr; 6301 ssize_t (*show)(struct kmem_cache *s, char *buf); 6302 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6303 }; 6304 6305 #define SLAB_ATTR_RO(_name) \ 6306 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6307 6308 #define SLAB_ATTR(_name) \ 6309 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6310 6311 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6312 { 6313 return sysfs_emit(buf, "%u\n", s->size); 6314 } 6315 SLAB_ATTR_RO(slab_size); 6316 6317 static ssize_t align_show(struct kmem_cache *s, char *buf) 6318 { 6319 return sysfs_emit(buf, "%u\n", s->align); 6320 } 6321 SLAB_ATTR_RO(align); 6322 6323 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6324 { 6325 return sysfs_emit(buf, "%u\n", s->object_size); 6326 } 6327 SLAB_ATTR_RO(object_size); 6328 6329 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6330 { 6331 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6332 } 6333 SLAB_ATTR_RO(objs_per_slab); 6334 6335 static ssize_t order_show(struct kmem_cache *s, char *buf) 6336 { 6337 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6338 } 6339 SLAB_ATTR_RO(order); 6340 6341 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6342 { 6343 return sysfs_emit(buf, "%lu\n", s->min_partial); 6344 } 6345 6346 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6347 size_t length) 6348 { 6349 unsigned long min; 6350 int err; 6351 6352 err = kstrtoul(buf, 10, &min); 6353 if (err) 6354 return err; 6355 6356 s->min_partial = min; 6357 return length; 6358 } 6359 SLAB_ATTR(min_partial); 6360 6361 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6362 { 6363 unsigned int nr_partial = 0; 6364 #ifdef CONFIG_SLUB_CPU_PARTIAL 6365 nr_partial = s->cpu_partial; 6366 #endif 6367 6368 return sysfs_emit(buf, "%u\n", nr_partial); 6369 } 6370 6371 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6372 size_t length) 6373 { 6374 unsigned int objects; 6375 int err; 6376 6377 err = kstrtouint(buf, 10, &objects); 6378 if (err) 6379 return err; 6380 if (objects && !kmem_cache_has_cpu_partial(s)) 6381 return -EINVAL; 6382 6383 slub_set_cpu_partial(s, objects); 6384 flush_all(s); 6385 return length; 6386 } 6387 SLAB_ATTR(cpu_partial); 6388 6389 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6390 { 6391 if (!s->ctor) 6392 return 0; 6393 return sysfs_emit(buf, "%pS\n", s->ctor); 6394 } 6395 SLAB_ATTR_RO(ctor); 6396 6397 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6398 { 6399 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6400 } 6401 SLAB_ATTR_RO(aliases); 6402 6403 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6404 { 6405 return show_slab_objects(s, buf, SO_PARTIAL); 6406 } 6407 SLAB_ATTR_RO(partial); 6408 6409 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6410 { 6411 return show_slab_objects(s, buf, SO_CPU); 6412 } 6413 SLAB_ATTR_RO(cpu_slabs); 6414 6415 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6416 { 6417 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6418 } 6419 SLAB_ATTR_RO(objects_partial); 6420 6421 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6422 { 6423 int objects = 0; 6424 int slabs = 0; 6425 int cpu __maybe_unused; 6426 int len = 0; 6427 6428 #ifdef CONFIG_SLUB_CPU_PARTIAL 6429 for_each_online_cpu(cpu) { 6430 struct slab *slab; 6431 6432 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6433 6434 if (slab) 6435 slabs += data_race(slab->slabs); 6436 } 6437 #endif 6438 6439 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6440 objects = (slabs * oo_objects(s->oo)) / 2; 6441 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6442 6443 #ifdef CONFIG_SLUB_CPU_PARTIAL 6444 for_each_online_cpu(cpu) { 6445 struct slab *slab; 6446 6447 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6448 if (slab) { 6449 slabs = data_race(slab->slabs); 6450 objects = (slabs * oo_objects(s->oo)) / 2; 6451 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6452 cpu, objects, slabs); 6453 } 6454 } 6455 #endif 6456 len += sysfs_emit_at(buf, len, "\n"); 6457 6458 return len; 6459 } 6460 SLAB_ATTR_RO(slabs_cpu_partial); 6461 6462 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6463 { 6464 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6465 } 6466 SLAB_ATTR_RO(reclaim_account); 6467 6468 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6469 { 6470 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6471 } 6472 SLAB_ATTR_RO(hwcache_align); 6473 6474 #ifdef CONFIG_ZONE_DMA 6475 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6476 { 6477 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6478 } 6479 SLAB_ATTR_RO(cache_dma); 6480 #endif 6481 6482 #ifdef CONFIG_HARDENED_USERCOPY 6483 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6484 { 6485 return sysfs_emit(buf, "%u\n", s->usersize); 6486 } 6487 SLAB_ATTR_RO(usersize); 6488 #endif 6489 6490 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6491 { 6492 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6493 } 6494 SLAB_ATTR_RO(destroy_by_rcu); 6495 6496 #ifdef CONFIG_SLUB_DEBUG 6497 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6498 { 6499 return show_slab_objects(s, buf, SO_ALL); 6500 } 6501 SLAB_ATTR_RO(slabs); 6502 6503 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6504 { 6505 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6506 } 6507 SLAB_ATTR_RO(total_objects); 6508 6509 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6510 { 6511 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6512 } 6513 SLAB_ATTR_RO(objects); 6514 6515 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6516 { 6517 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6518 } 6519 SLAB_ATTR_RO(sanity_checks); 6520 6521 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6522 { 6523 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6524 } 6525 SLAB_ATTR_RO(trace); 6526 6527 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6528 { 6529 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6530 } 6531 6532 SLAB_ATTR_RO(red_zone); 6533 6534 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6535 { 6536 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6537 } 6538 6539 SLAB_ATTR_RO(poison); 6540 6541 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6542 { 6543 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6544 } 6545 6546 SLAB_ATTR_RO(store_user); 6547 6548 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6549 { 6550 return 0; 6551 } 6552 6553 static ssize_t validate_store(struct kmem_cache *s, 6554 const char *buf, size_t length) 6555 { 6556 int ret = -EINVAL; 6557 6558 if (buf[0] == '1' && kmem_cache_debug(s)) { 6559 ret = validate_slab_cache(s); 6560 if (ret >= 0) 6561 ret = length; 6562 } 6563 return ret; 6564 } 6565 SLAB_ATTR(validate); 6566 6567 #endif /* CONFIG_SLUB_DEBUG */ 6568 6569 #ifdef CONFIG_FAILSLAB 6570 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6571 { 6572 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6573 } 6574 6575 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6576 size_t length) 6577 { 6578 if (s->refcount > 1) 6579 return -EINVAL; 6580 6581 if (buf[0] == '1') 6582 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6583 else 6584 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6585 6586 return length; 6587 } 6588 SLAB_ATTR(failslab); 6589 #endif 6590 6591 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6592 { 6593 return 0; 6594 } 6595 6596 static ssize_t shrink_store(struct kmem_cache *s, 6597 const char *buf, size_t length) 6598 { 6599 if (buf[0] == '1') 6600 kmem_cache_shrink(s); 6601 else 6602 return -EINVAL; 6603 return length; 6604 } 6605 SLAB_ATTR(shrink); 6606 6607 #ifdef CONFIG_NUMA 6608 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6609 { 6610 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6611 } 6612 6613 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6614 const char *buf, size_t length) 6615 { 6616 unsigned int ratio; 6617 int err; 6618 6619 err = kstrtouint(buf, 10, &ratio); 6620 if (err) 6621 return err; 6622 if (ratio > 100) 6623 return -ERANGE; 6624 6625 s->remote_node_defrag_ratio = ratio * 10; 6626 6627 return length; 6628 } 6629 SLAB_ATTR(remote_node_defrag_ratio); 6630 #endif 6631 6632 #ifdef CONFIG_SLUB_STATS 6633 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6634 { 6635 unsigned long sum = 0; 6636 int cpu; 6637 int len = 0; 6638 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6639 6640 if (!data) 6641 return -ENOMEM; 6642 6643 for_each_online_cpu(cpu) { 6644 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6645 6646 data[cpu] = x; 6647 sum += x; 6648 } 6649 6650 len += sysfs_emit_at(buf, len, "%lu", sum); 6651 6652 #ifdef CONFIG_SMP 6653 for_each_online_cpu(cpu) { 6654 if (data[cpu]) 6655 len += sysfs_emit_at(buf, len, " C%d=%u", 6656 cpu, data[cpu]); 6657 } 6658 #endif 6659 kfree(data); 6660 len += sysfs_emit_at(buf, len, "\n"); 6661 6662 return len; 6663 } 6664 6665 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6666 { 6667 int cpu; 6668 6669 for_each_online_cpu(cpu) 6670 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6671 } 6672 6673 #define STAT_ATTR(si, text) \ 6674 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6675 { \ 6676 return show_stat(s, buf, si); \ 6677 } \ 6678 static ssize_t text##_store(struct kmem_cache *s, \ 6679 const char *buf, size_t length) \ 6680 { \ 6681 if (buf[0] != '0') \ 6682 return -EINVAL; \ 6683 clear_stat(s, si); \ 6684 return length; \ 6685 } \ 6686 SLAB_ATTR(text); \ 6687 6688 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 6689 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 6690 STAT_ATTR(FREE_FASTPATH, free_fastpath); 6691 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 6692 STAT_ATTR(FREE_FROZEN, free_frozen); 6693 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 6694 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 6695 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 6696 STAT_ATTR(ALLOC_SLAB, alloc_slab); 6697 STAT_ATTR(ALLOC_REFILL, alloc_refill); 6698 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 6699 STAT_ATTR(FREE_SLAB, free_slab); 6700 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 6701 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 6702 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 6703 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 6704 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 6705 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 6706 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 6707 STAT_ATTR(ORDER_FALLBACK, order_fallback); 6708 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 6709 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 6710 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 6711 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 6712 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 6713 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 6714 #endif /* CONFIG_SLUB_STATS */ 6715 6716 #ifdef CONFIG_KFENCE 6717 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 6718 { 6719 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 6720 } 6721 6722 static ssize_t skip_kfence_store(struct kmem_cache *s, 6723 const char *buf, size_t length) 6724 { 6725 int ret = length; 6726 6727 if (buf[0] == '0') 6728 s->flags &= ~SLAB_SKIP_KFENCE; 6729 else if (buf[0] == '1') 6730 s->flags |= SLAB_SKIP_KFENCE; 6731 else 6732 ret = -EINVAL; 6733 6734 return ret; 6735 } 6736 SLAB_ATTR(skip_kfence); 6737 #endif 6738 6739 static struct attribute *slab_attrs[] = { 6740 &slab_size_attr.attr, 6741 &object_size_attr.attr, 6742 &objs_per_slab_attr.attr, 6743 &order_attr.attr, 6744 &min_partial_attr.attr, 6745 &cpu_partial_attr.attr, 6746 &objects_partial_attr.attr, 6747 &partial_attr.attr, 6748 &cpu_slabs_attr.attr, 6749 &ctor_attr.attr, 6750 &aliases_attr.attr, 6751 &align_attr.attr, 6752 &hwcache_align_attr.attr, 6753 &reclaim_account_attr.attr, 6754 &destroy_by_rcu_attr.attr, 6755 &shrink_attr.attr, 6756 &slabs_cpu_partial_attr.attr, 6757 #ifdef CONFIG_SLUB_DEBUG 6758 &total_objects_attr.attr, 6759 &objects_attr.attr, 6760 &slabs_attr.attr, 6761 &sanity_checks_attr.attr, 6762 &trace_attr.attr, 6763 &red_zone_attr.attr, 6764 &poison_attr.attr, 6765 &store_user_attr.attr, 6766 &validate_attr.attr, 6767 #endif 6768 #ifdef CONFIG_ZONE_DMA 6769 &cache_dma_attr.attr, 6770 #endif 6771 #ifdef CONFIG_NUMA 6772 &remote_node_defrag_ratio_attr.attr, 6773 #endif 6774 #ifdef CONFIG_SLUB_STATS 6775 &alloc_fastpath_attr.attr, 6776 &alloc_slowpath_attr.attr, 6777 &free_fastpath_attr.attr, 6778 &free_slowpath_attr.attr, 6779 &free_frozen_attr.attr, 6780 &free_add_partial_attr.attr, 6781 &free_remove_partial_attr.attr, 6782 &alloc_from_partial_attr.attr, 6783 &alloc_slab_attr.attr, 6784 &alloc_refill_attr.attr, 6785 &alloc_node_mismatch_attr.attr, 6786 &free_slab_attr.attr, 6787 &cpuslab_flush_attr.attr, 6788 &deactivate_full_attr.attr, 6789 &deactivate_empty_attr.attr, 6790 &deactivate_to_head_attr.attr, 6791 &deactivate_to_tail_attr.attr, 6792 &deactivate_remote_frees_attr.attr, 6793 &deactivate_bypass_attr.attr, 6794 &order_fallback_attr.attr, 6795 &cmpxchg_double_fail_attr.attr, 6796 &cmpxchg_double_cpu_fail_attr.attr, 6797 &cpu_partial_alloc_attr.attr, 6798 &cpu_partial_free_attr.attr, 6799 &cpu_partial_node_attr.attr, 6800 &cpu_partial_drain_attr.attr, 6801 #endif 6802 #ifdef CONFIG_FAILSLAB 6803 &failslab_attr.attr, 6804 #endif 6805 #ifdef CONFIG_HARDENED_USERCOPY 6806 &usersize_attr.attr, 6807 #endif 6808 #ifdef CONFIG_KFENCE 6809 &skip_kfence_attr.attr, 6810 #endif 6811 6812 NULL 6813 }; 6814 6815 static const struct attribute_group slab_attr_group = { 6816 .attrs = slab_attrs, 6817 }; 6818 6819 static ssize_t slab_attr_show(struct kobject *kobj, 6820 struct attribute *attr, 6821 char *buf) 6822 { 6823 struct slab_attribute *attribute; 6824 struct kmem_cache *s; 6825 6826 attribute = to_slab_attr(attr); 6827 s = to_slab(kobj); 6828 6829 if (!attribute->show) 6830 return -EIO; 6831 6832 return attribute->show(s, buf); 6833 } 6834 6835 static ssize_t slab_attr_store(struct kobject *kobj, 6836 struct attribute *attr, 6837 const char *buf, size_t len) 6838 { 6839 struct slab_attribute *attribute; 6840 struct kmem_cache *s; 6841 6842 attribute = to_slab_attr(attr); 6843 s = to_slab(kobj); 6844 6845 if (!attribute->store) 6846 return -EIO; 6847 6848 return attribute->store(s, buf, len); 6849 } 6850 6851 static void kmem_cache_release(struct kobject *k) 6852 { 6853 slab_kmem_cache_release(to_slab(k)); 6854 } 6855 6856 static const struct sysfs_ops slab_sysfs_ops = { 6857 .show = slab_attr_show, 6858 .store = slab_attr_store, 6859 }; 6860 6861 static const struct kobj_type slab_ktype = { 6862 .sysfs_ops = &slab_sysfs_ops, 6863 .release = kmem_cache_release, 6864 }; 6865 6866 static struct kset *slab_kset; 6867 6868 static inline struct kset *cache_kset(struct kmem_cache *s) 6869 { 6870 return slab_kset; 6871 } 6872 6873 #define ID_STR_LENGTH 32 6874 6875 /* Create a unique string id for a slab cache: 6876 * 6877 * Format :[flags-]size 6878 */ 6879 static char *create_unique_id(struct kmem_cache *s) 6880 { 6881 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6882 char *p = name; 6883 6884 if (!name) 6885 return ERR_PTR(-ENOMEM); 6886 6887 *p++ = ':'; 6888 /* 6889 * First flags affecting slabcache operations. We will only 6890 * get here for aliasable slabs so we do not need to support 6891 * too many flags. The flags here must cover all flags that 6892 * are matched during merging to guarantee that the id is 6893 * unique. 6894 */ 6895 if (s->flags & SLAB_CACHE_DMA) 6896 *p++ = 'd'; 6897 if (s->flags & SLAB_CACHE_DMA32) 6898 *p++ = 'D'; 6899 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6900 *p++ = 'a'; 6901 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6902 *p++ = 'F'; 6903 if (s->flags & SLAB_ACCOUNT) 6904 *p++ = 'A'; 6905 if (p != name + 1) 6906 *p++ = '-'; 6907 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6908 6909 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6910 kfree(name); 6911 return ERR_PTR(-EINVAL); 6912 } 6913 kmsan_unpoison_memory(name, p - name); 6914 return name; 6915 } 6916 6917 static int sysfs_slab_add(struct kmem_cache *s) 6918 { 6919 int err; 6920 const char *name; 6921 struct kset *kset = cache_kset(s); 6922 int unmergeable = slab_unmergeable(s); 6923 6924 if (!unmergeable && disable_higher_order_debug && 6925 (slub_debug & DEBUG_METADATA_FLAGS)) 6926 unmergeable = 1; 6927 6928 if (unmergeable) { 6929 /* 6930 * Slabcache can never be merged so we can use the name proper. 6931 * This is typically the case for debug situations. In that 6932 * case we can catch duplicate names easily. 6933 */ 6934 sysfs_remove_link(&slab_kset->kobj, s->name); 6935 name = s->name; 6936 } else { 6937 /* 6938 * Create a unique name for the slab as a target 6939 * for the symlinks. 6940 */ 6941 name = create_unique_id(s); 6942 if (IS_ERR(name)) 6943 return PTR_ERR(name); 6944 } 6945 6946 s->kobj.kset = kset; 6947 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6948 if (err) 6949 goto out; 6950 6951 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6952 if (err) 6953 goto out_del_kobj; 6954 6955 if (!unmergeable) { 6956 /* Setup first alias */ 6957 sysfs_slab_alias(s, s->name); 6958 } 6959 out: 6960 if (!unmergeable) 6961 kfree(name); 6962 return err; 6963 out_del_kobj: 6964 kobject_del(&s->kobj); 6965 goto out; 6966 } 6967 6968 void sysfs_slab_unlink(struct kmem_cache *s) 6969 { 6970 kobject_del(&s->kobj); 6971 } 6972 6973 void sysfs_slab_release(struct kmem_cache *s) 6974 { 6975 kobject_put(&s->kobj); 6976 } 6977 6978 /* 6979 * Need to buffer aliases during bootup until sysfs becomes 6980 * available lest we lose that information. 6981 */ 6982 struct saved_alias { 6983 struct kmem_cache *s; 6984 const char *name; 6985 struct saved_alias *next; 6986 }; 6987 6988 static struct saved_alias *alias_list; 6989 6990 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6991 { 6992 struct saved_alias *al; 6993 6994 if (slab_state == FULL) { 6995 /* 6996 * If we have a leftover link then remove it. 6997 */ 6998 sysfs_remove_link(&slab_kset->kobj, name); 6999 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7000 } 7001 7002 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7003 if (!al) 7004 return -ENOMEM; 7005 7006 al->s = s; 7007 al->name = name; 7008 al->next = alias_list; 7009 alias_list = al; 7010 kmsan_unpoison_memory(al, sizeof(*al)); 7011 return 0; 7012 } 7013 7014 static int __init slab_sysfs_init(void) 7015 { 7016 struct kmem_cache *s; 7017 int err; 7018 7019 mutex_lock(&slab_mutex); 7020 7021 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7022 if (!slab_kset) { 7023 mutex_unlock(&slab_mutex); 7024 pr_err("Cannot register slab subsystem.\n"); 7025 return -ENOMEM; 7026 } 7027 7028 slab_state = FULL; 7029 7030 list_for_each_entry(s, &slab_caches, list) { 7031 err = sysfs_slab_add(s); 7032 if (err) 7033 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7034 s->name); 7035 } 7036 7037 while (alias_list) { 7038 struct saved_alias *al = alias_list; 7039 7040 alias_list = alias_list->next; 7041 err = sysfs_slab_alias(al->s, al->name); 7042 if (err) 7043 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7044 al->name); 7045 kfree(al); 7046 } 7047 7048 mutex_unlock(&slab_mutex); 7049 return 0; 7050 } 7051 late_initcall(slab_sysfs_init); 7052 #endif /* SLAB_SUPPORTS_SYSFS */ 7053 7054 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7055 static int slab_debugfs_show(struct seq_file *seq, void *v) 7056 { 7057 struct loc_track *t = seq->private; 7058 struct location *l; 7059 unsigned long idx; 7060 7061 idx = (unsigned long) t->idx; 7062 if (idx < t->count) { 7063 l = &t->loc[idx]; 7064 7065 seq_printf(seq, "%7ld ", l->count); 7066 7067 if (l->addr) 7068 seq_printf(seq, "%pS", (void *)l->addr); 7069 else 7070 seq_puts(seq, "<not-available>"); 7071 7072 if (l->waste) 7073 seq_printf(seq, " waste=%lu/%lu", 7074 l->count * l->waste, l->waste); 7075 7076 if (l->sum_time != l->min_time) { 7077 seq_printf(seq, " age=%ld/%llu/%ld", 7078 l->min_time, div_u64(l->sum_time, l->count), 7079 l->max_time); 7080 } else 7081 seq_printf(seq, " age=%ld", l->min_time); 7082 7083 if (l->min_pid != l->max_pid) 7084 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7085 else 7086 seq_printf(seq, " pid=%ld", 7087 l->min_pid); 7088 7089 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7090 seq_printf(seq, " cpus=%*pbl", 7091 cpumask_pr_args(to_cpumask(l->cpus))); 7092 7093 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7094 seq_printf(seq, " nodes=%*pbl", 7095 nodemask_pr_args(&l->nodes)); 7096 7097 #ifdef CONFIG_STACKDEPOT 7098 { 7099 depot_stack_handle_t handle; 7100 unsigned long *entries; 7101 unsigned int nr_entries, j; 7102 7103 handle = READ_ONCE(l->handle); 7104 if (handle) { 7105 nr_entries = stack_depot_fetch(handle, &entries); 7106 seq_puts(seq, "\n"); 7107 for (j = 0; j < nr_entries; j++) 7108 seq_printf(seq, " %pS\n", (void *)entries[j]); 7109 } 7110 } 7111 #endif 7112 seq_puts(seq, "\n"); 7113 } 7114 7115 if (!idx && !t->count) 7116 seq_puts(seq, "No data\n"); 7117 7118 return 0; 7119 } 7120 7121 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7122 { 7123 } 7124 7125 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7126 { 7127 struct loc_track *t = seq->private; 7128 7129 t->idx = ++(*ppos); 7130 if (*ppos <= t->count) 7131 return ppos; 7132 7133 return NULL; 7134 } 7135 7136 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7137 { 7138 struct location *loc1 = (struct location *)a; 7139 struct location *loc2 = (struct location *)b; 7140 7141 if (loc1->count > loc2->count) 7142 return -1; 7143 else 7144 return 1; 7145 } 7146 7147 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7148 { 7149 struct loc_track *t = seq->private; 7150 7151 t->idx = *ppos; 7152 return ppos; 7153 } 7154 7155 static const struct seq_operations slab_debugfs_sops = { 7156 .start = slab_debugfs_start, 7157 .next = slab_debugfs_next, 7158 .stop = slab_debugfs_stop, 7159 .show = slab_debugfs_show, 7160 }; 7161 7162 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7163 { 7164 7165 struct kmem_cache_node *n; 7166 enum track_item alloc; 7167 int node; 7168 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7169 sizeof(struct loc_track)); 7170 struct kmem_cache *s = file_inode(filep)->i_private; 7171 unsigned long *obj_map; 7172 7173 if (!t) 7174 return -ENOMEM; 7175 7176 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7177 if (!obj_map) { 7178 seq_release_private(inode, filep); 7179 return -ENOMEM; 7180 } 7181 7182 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 7183 alloc = TRACK_ALLOC; 7184 else 7185 alloc = TRACK_FREE; 7186 7187 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7188 bitmap_free(obj_map); 7189 seq_release_private(inode, filep); 7190 return -ENOMEM; 7191 } 7192 7193 for_each_kmem_cache_node(s, node, n) { 7194 unsigned long flags; 7195 struct slab *slab; 7196 7197 if (!node_nr_slabs(n)) 7198 continue; 7199 7200 spin_lock_irqsave(&n->list_lock, flags); 7201 list_for_each_entry(slab, &n->partial, slab_list) 7202 process_slab(t, s, slab, alloc, obj_map); 7203 list_for_each_entry(slab, &n->full, slab_list) 7204 process_slab(t, s, slab, alloc, obj_map); 7205 spin_unlock_irqrestore(&n->list_lock, flags); 7206 } 7207 7208 /* Sort locations by count */ 7209 sort_r(t->loc, t->count, sizeof(struct location), 7210 cmp_loc_by_count, NULL, NULL); 7211 7212 bitmap_free(obj_map); 7213 return 0; 7214 } 7215 7216 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7217 { 7218 struct seq_file *seq = file->private_data; 7219 struct loc_track *t = seq->private; 7220 7221 free_loc_track(t); 7222 return seq_release_private(inode, file); 7223 } 7224 7225 static const struct file_operations slab_debugfs_fops = { 7226 .open = slab_debug_trace_open, 7227 .read = seq_read, 7228 .llseek = seq_lseek, 7229 .release = slab_debug_trace_release, 7230 }; 7231 7232 static void debugfs_slab_add(struct kmem_cache *s) 7233 { 7234 struct dentry *slab_cache_dir; 7235 7236 if (unlikely(!slab_debugfs_root)) 7237 return; 7238 7239 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7240 7241 debugfs_create_file("alloc_traces", 0400, 7242 slab_cache_dir, s, &slab_debugfs_fops); 7243 7244 debugfs_create_file("free_traces", 0400, 7245 slab_cache_dir, s, &slab_debugfs_fops); 7246 } 7247 7248 void debugfs_slab_release(struct kmem_cache *s) 7249 { 7250 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7251 } 7252 7253 static int __init slab_debugfs_init(void) 7254 { 7255 struct kmem_cache *s; 7256 7257 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7258 7259 list_for_each_entry(s, &slab_caches, list) 7260 if (s->flags & SLAB_STORE_USER) 7261 debugfs_slab_add(s); 7262 7263 return 0; 7264 7265 } 7266 __initcall(slab_debugfs_init); 7267 #endif 7268 /* 7269 * The /proc/slabinfo ABI 7270 */ 7271 #ifdef CONFIG_SLUB_DEBUG 7272 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7273 { 7274 unsigned long nr_slabs = 0; 7275 unsigned long nr_objs = 0; 7276 unsigned long nr_free = 0; 7277 int node; 7278 struct kmem_cache_node *n; 7279 7280 for_each_kmem_cache_node(s, node, n) { 7281 nr_slabs += node_nr_slabs(n); 7282 nr_objs += node_nr_objs(n); 7283 nr_free += count_partial_free_approx(n); 7284 } 7285 7286 sinfo->active_objs = nr_objs - nr_free; 7287 sinfo->num_objs = nr_objs; 7288 sinfo->active_slabs = nr_slabs; 7289 sinfo->num_slabs = nr_slabs; 7290 sinfo->objects_per_slab = oo_objects(s->oo); 7291 sinfo->cache_order = oo_order(s->oo); 7292 } 7293 #endif /* CONFIG_SLUB_DEBUG */ 7294