xref: /linux/mm/slub.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 #include <linux/sort.h>
42 
43 #include <linux/debugfs.h>
44 #include <trace/events/kmem.h>
45 
46 #include "internal.h"
47 
48 /*
49  * Lock order:
50  *   1. slab_mutex (Global Mutex)
51  *   2. node->list_lock (Spinlock)
52  *   3. kmem_cache->cpu_slab->lock (Local lock)
53  *   4. slab_lock(slab) (Only on some arches or for debugging)
54  *   5. object_map_lock (Only for debugging)
55  *
56  *   slab_mutex
57  *
58  *   The role of the slab_mutex is to protect the list of all the slabs
59  *   and to synchronize major metadata changes to slab cache structures.
60  *   Also synchronizes memory hotplug callbacks.
61  *
62  *   slab_lock
63  *
64  *   The slab_lock is a wrapper around the page lock, thus it is a bit
65  *   spinlock.
66  *
67  *   The slab_lock is only used for debugging and on arches that do not
68  *   have the ability to do a cmpxchg_double. It only protects:
69  *	A. slab->freelist	-> List of free objects in a slab
70  *	B. slab->inuse		-> Number of objects in use
71  *	C. slab->objects	-> Number of objects in slab
72  *	D. slab->frozen		-> frozen state
73  *
74  *   Frozen slabs
75  *
76  *   If a slab is frozen then it is exempt from list management. It is not
77  *   on any list except per cpu partial list. The processor that froze the
78  *   slab is the one who can perform list operations on the slab. Other
79  *   processors may put objects onto the freelist but the processor that
80  *   froze the slab is the only one that can retrieve the objects from the
81  *   slab's freelist.
82  *
83  *   list_lock
84  *
85  *   The list_lock protects the partial and full list on each node and
86  *   the partial slab counter. If taken then no new slabs may be added or
87  *   removed from the lists nor make the number of partial slabs be modified.
88  *   (Note that the total number of slabs is an atomic value that may be
89  *   modified without taking the list lock).
90  *
91  *   The list_lock is a centralized lock and thus we avoid taking it as
92  *   much as possible. As long as SLUB does not have to handle partial
93  *   slabs, operations can continue without any centralized lock. F.e.
94  *   allocating a long series of objects that fill up slabs does not require
95  *   the list lock.
96  *
97  *   cpu_slab->lock local lock
98  *
99  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
100  *   except the stat counters. This is a percpu structure manipulated only by
101  *   the local cpu, so the lock protects against being preempted or interrupted
102  *   by an irq. Fast path operations rely on lockless operations instead.
103  *   On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104  *   prevent the lockless operations), so fastpath operations also need to take
105  *   the lock and are no longer lockless.
106  *
107  *   lockless fastpaths
108  *
109  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110  *   are fully lockless when satisfied from the percpu slab (and when
111  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
112  *   They also don't disable preemption or migration or irqs. They rely on
113  *   the transaction id (tid) field to detect being preempted or moved to
114  *   another cpu.
115  *
116  *   irq, preemption, migration considerations
117  *
118  *   Interrupts are disabled as part of list_lock or local_lock operations, or
119  *   around the slab_lock operation, in order to make the slab allocator safe
120  *   to use in the context of an irq.
121  *
122  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125  *   doesn't have to be revalidated in each section protected by the local lock.
126  *
127  * SLUB assigns one slab for allocation to each processor.
128  * Allocations only occur from these slabs called cpu slabs.
129  *
130  * Slabs with free elements are kept on a partial list and during regular
131  * operations no list for full slabs is used. If an object in a full slab is
132  * freed then the slab will show up again on the partial lists.
133  * We track full slabs for debugging purposes though because otherwise we
134  * cannot scan all objects.
135  *
136  * Slabs are freed when they become empty. Teardown and setup is
137  * minimal so we rely on the page allocators per cpu caches for
138  * fast frees and allocs.
139  *
140  * slab->frozen		The slab is frozen and exempt from list processing.
141  * 			This means that the slab is dedicated to a purpose
142  * 			such as satisfying allocations for a specific
143  * 			processor. Objects may be freed in the slab while
144  * 			it is frozen but slab_free will then skip the usual
145  * 			list operations. It is up to the processor holding
146  * 			the slab to integrate the slab into the slab lists
147  * 			when the slab is no longer needed.
148  *
149  * 			One use of this flag is to mark slabs that are
150  * 			used for allocations. Then such a slab becomes a cpu
151  * 			slab. The cpu slab may be equipped with an additional
152  * 			freelist that allows lockless access to
153  * 			free objects in addition to the regular freelist
154  * 			that requires the slab lock.
155  *
156  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
157  * 			options set. This moves	slab handling out of
158  * 			the fast path and disables lockless freelists.
159  */
160 
161 /*
162  * We could simply use migrate_disable()/enable() but as long as it's a
163  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
164  */
165 #ifndef CONFIG_PREEMPT_RT
166 #define slub_get_cpu_ptr(var)	get_cpu_ptr(var)
167 #define slub_put_cpu_ptr(var)	put_cpu_ptr(var)
168 #else
169 #define slub_get_cpu_ptr(var)		\
170 ({					\
171 	migrate_disable();		\
172 	this_cpu_ptr(var);		\
173 })
174 #define slub_put_cpu_ptr(var)		\
175 do {					\
176 	(void)(var);			\
177 	migrate_enable();		\
178 } while (0)
179 #endif
180 
181 #ifdef CONFIG_SLUB_DEBUG
182 #ifdef CONFIG_SLUB_DEBUG_ON
183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
184 #else
185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
186 #endif
187 #endif		/* CONFIG_SLUB_DEBUG */
188 
189 static inline bool kmem_cache_debug(struct kmem_cache *s)
190 {
191 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
192 }
193 
194 void *fixup_red_left(struct kmem_cache *s, void *p)
195 {
196 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
197 		p += s->red_left_pad;
198 
199 	return p;
200 }
201 
202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
203 {
204 #ifdef CONFIG_SLUB_CPU_PARTIAL
205 	return !kmem_cache_debug(s);
206 #else
207 	return false;
208 #endif
209 }
210 
211 /*
212  * Issues still to be resolved:
213  *
214  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
215  *
216  * - Variable sizing of the per node arrays
217  */
218 
219 /* Enable to log cmpxchg failures */
220 #undef SLUB_DEBUG_CMPXCHG
221 
222 /*
223  * Minimum number of partial slabs. These will be left on the partial
224  * lists even if they are empty. kmem_cache_shrink may reclaim them.
225  */
226 #define MIN_PARTIAL 5
227 
228 /*
229  * Maximum number of desirable partial slabs.
230  * The existence of more partial slabs makes kmem_cache_shrink
231  * sort the partial list by the number of objects in use.
232  */
233 #define MAX_PARTIAL 10
234 
235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
236 				SLAB_POISON | SLAB_STORE_USER)
237 
238 /*
239  * These debug flags cannot use CMPXCHG because there might be consistency
240  * issues when checking or reading debug information
241  */
242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
243 				SLAB_TRACE)
244 
245 
246 /*
247  * Debugging flags that require metadata to be stored in the slab.  These get
248  * disabled when slub_debug=O is used and a cache's min order increases with
249  * metadata.
250  */
251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
252 
253 #define OO_SHIFT	16
254 #define OO_MASK		((1 << OO_SHIFT) - 1)
255 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
256 
257 /* Internal SLUB flags */
258 /* Poison object */
259 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
260 /* Use cmpxchg_double */
261 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
262 
263 /*
264  * Tracking user of a slab.
265  */
266 #define TRACK_ADDRS_COUNT 16
267 struct track {
268 	unsigned long addr;	/* Called from address */
269 #ifdef CONFIG_STACKDEPOT
270 	depot_stack_handle_t handle;
271 #endif
272 	int cpu;		/* Was running on cpu */
273 	int pid;		/* Pid context */
274 	unsigned long when;	/* When did the operation occur */
275 };
276 
277 enum track_item { TRACK_ALLOC, TRACK_FREE };
278 
279 #ifdef CONFIG_SYSFS
280 static int sysfs_slab_add(struct kmem_cache *);
281 static int sysfs_slab_alias(struct kmem_cache *, const char *);
282 #else
283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
285 							{ return 0; }
286 #endif
287 
288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289 static void debugfs_slab_add(struct kmem_cache *);
290 #else
291 static inline void debugfs_slab_add(struct kmem_cache *s) { }
292 #endif
293 
294 static inline void stat(const struct kmem_cache *s, enum stat_item si)
295 {
296 #ifdef CONFIG_SLUB_STATS
297 	/*
298 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 	 * avoid this_cpu_add()'s irq-disable overhead.
300 	 */
301 	raw_cpu_inc(s->cpu_slab->stat[si]);
302 #endif
303 }
304 
305 /*
306  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308  * differ during memory hotplug/hotremove operations.
309  * Protected by slab_mutex.
310  */
311 static nodemask_t slab_nodes;
312 
313 /*
314  * Workqueue used for flush_cpu_slab().
315  */
316 static struct workqueue_struct *flushwq;
317 
318 /********************************************************************
319  * 			Core slab cache functions
320  *******************************************************************/
321 
322 /*
323  * Returns freelist pointer (ptr). With hardening, this is obfuscated
324  * with an XOR of the address where the pointer is held and a per-cache
325  * random number.
326  */
327 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
328 				 unsigned long ptr_addr)
329 {
330 #ifdef CONFIG_SLAB_FREELIST_HARDENED
331 	/*
332 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
333 	 * Normally, this doesn't cause any issues, as both set_freepointer()
334 	 * and get_freepointer() are called with a pointer with the same tag.
335 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
336 	 * example, when __free_slub() iterates over objects in a cache, it
337 	 * passes untagged pointers to check_object(). check_object() in turns
338 	 * calls get_freepointer() with an untagged pointer, which causes the
339 	 * freepointer to be restored incorrectly.
340 	 */
341 	return (void *)((unsigned long)ptr ^ s->random ^
342 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
343 #else
344 	return ptr;
345 #endif
346 }
347 
348 /* Returns the freelist pointer recorded at location ptr_addr. */
349 static inline void *freelist_dereference(const struct kmem_cache *s,
350 					 void *ptr_addr)
351 {
352 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
353 			    (unsigned long)ptr_addr);
354 }
355 
356 static inline void *get_freepointer(struct kmem_cache *s, void *object)
357 {
358 	object = kasan_reset_tag(object);
359 	return freelist_dereference(s, object + s->offset);
360 }
361 
362 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
363 {
364 	prefetchw(object + s->offset);
365 }
366 
367 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
368 {
369 	unsigned long freepointer_addr;
370 	void *p;
371 
372 	if (!debug_pagealloc_enabled_static())
373 		return get_freepointer(s, object);
374 
375 	object = kasan_reset_tag(object);
376 	freepointer_addr = (unsigned long)object + s->offset;
377 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
378 	return freelist_ptr(s, p, freepointer_addr);
379 }
380 
381 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
382 {
383 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
384 
385 #ifdef CONFIG_SLAB_FREELIST_HARDENED
386 	BUG_ON(object == fp); /* naive detection of double free or corruption */
387 #endif
388 
389 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
390 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
391 }
392 
393 /* Loop over all objects in a slab */
394 #define for_each_object(__p, __s, __addr, __objects) \
395 	for (__p = fixup_red_left(__s, __addr); \
396 		__p < (__addr) + (__objects) * (__s)->size; \
397 		__p += (__s)->size)
398 
399 static inline unsigned int order_objects(unsigned int order, unsigned int size)
400 {
401 	return ((unsigned int)PAGE_SIZE << order) / size;
402 }
403 
404 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
405 		unsigned int size)
406 {
407 	struct kmem_cache_order_objects x = {
408 		(order << OO_SHIFT) + order_objects(order, size)
409 	};
410 
411 	return x;
412 }
413 
414 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
415 {
416 	return x.x >> OO_SHIFT;
417 }
418 
419 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
420 {
421 	return x.x & OO_MASK;
422 }
423 
424 #ifdef CONFIG_SLUB_CPU_PARTIAL
425 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
426 {
427 	unsigned int nr_slabs;
428 
429 	s->cpu_partial = nr_objects;
430 
431 	/*
432 	 * We take the number of objects but actually limit the number of
433 	 * slabs on the per cpu partial list, in order to limit excessive
434 	 * growth of the list. For simplicity we assume that the slabs will
435 	 * be half-full.
436 	 */
437 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
438 	s->cpu_partial_slabs = nr_slabs;
439 }
440 #else
441 static inline void
442 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
443 {
444 }
445 #endif /* CONFIG_SLUB_CPU_PARTIAL */
446 
447 /*
448  * Per slab locking using the pagelock
449  */
450 static __always_inline void __slab_lock(struct slab *slab)
451 {
452 	struct page *page = slab_page(slab);
453 
454 	VM_BUG_ON_PAGE(PageTail(page), page);
455 	bit_spin_lock(PG_locked, &page->flags);
456 }
457 
458 static __always_inline void __slab_unlock(struct slab *slab)
459 {
460 	struct page *page = slab_page(slab);
461 
462 	VM_BUG_ON_PAGE(PageTail(page), page);
463 	__bit_spin_unlock(PG_locked, &page->flags);
464 }
465 
466 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
467 {
468 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
469 		local_irq_save(*flags);
470 	__slab_lock(slab);
471 }
472 
473 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
474 {
475 	__slab_unlock(slab);
476 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
477 		local_irq_restore(*flags);
478 }
479 
480 /*
481  * Interrupts must be disabled (for the fallback code to work right), typically
482  * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
483  * so we disable interrupts as part of slab_[un]lock().
484  */
485 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
486 		void *freelist_old, unsigned long counters_old,
487 		void *freelist_new, unsigned long counters_new,
488 		const char *n)
489 {
490 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
491 		lockdep_assert_irqs_disabled();
492 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
493     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
494 	if (s->flags & __CMPXCHG_DOUBLE) {
495 		if (cmpxchg_double(&slab->freelist, &slab->counters,
496 				   freelist_old, counters_old,
497 				   freelist_new, counters_new))
498 			return true;
499 	} else
500 #endif
501 	{
502 		/* init to 0 to prevent spurious warnings */
503 		unsigned long flags = 0;
504 
505 		slab_lock(slab, &flags);
506 		if (slab->freelist == freelist_old &&
507 					slab->counters == counters_old) {
508 			slab->freelist = freelist_new;
509 			slab->counters = counters_new;
510 			slab_unlock(slab, &flags);
511 			return true;
512 		}
513 		slab_unlock(slab, &flags);
514 	}
515 
516 	cpu_relax();
517 	stat(s, CMPXCHG_DOUBLE_FAIL);
518 
519 #ifdef SLUB_DEBUG_CMPXCHG
520 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
521 #endif
522 
523 	return false;
524 }
525 
526 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
527 		void *freelist_old, unsigned long counters_old,
528 		void *freelist_new, unsigned long counters_new,
529 		const char *n)
530 {
531 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
532     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
533 	if (s->flags & __CMPXCHG_DOUBLE) {
534 		if (cmpxchg_double(&slab->freelist, &slab->counters,
535 				   freelist_old, counters_old,
536 				   freelist_new, counters_new))
537 			return true;
538 	} else
539 #endif
540 	{
541 		unsigned long flags;
542 
543 		local_irq_save(flags);
544 		__slab_lock(slab);
545 		if (slab->freelist == freelist_old &&
546 					slab->counters == counters_old) {
547 			slab->freelist = freelist_new;
548 			slab->counters = counters_new;
549 			__slab_unlock(slab);
550 			local_irq_restore(flags);
551 			return true;
552 		}
553 		__slab_unlock(slab);
554 		local_irq_restore(flags);
555 	}
556 
557 	cpu_relax();
558 	stat(s, CMPXCHG_DOUBLE_FAIL);
559 
560 #ifdef SLUB_DEBUG_CMPXCHG
561 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
562 #endif
563 
564 	return false;
565 }
566 
567 #ifdef CONFIG_SLUB_DEBUG
568 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
569 static DEFINE_RAW_SPINLOCK(object_map_lock);
570 
571 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
572 		       struct slab *slab)
573 {
574 	void *addr = slab_address(slab);
575 	void *p;
576 
577 	bitmap_zero(obj_map, slab->objects);
578 
579 	for (p = slab->freelist; p; p = get_freepointer(s, p))
580 		set_bit(__obj_to_index(s, addr, p), obj_map);
581 }
582 
583 #if IS_ENABLED(CONFIG_KUNIT)
584 static bool slab_add_kunit_errors(void)
585 {
586 	struct kunit_resource *resource;
587 
588 	if (likely(!current->kunit_test))
589 		return false;
590 
591 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
592 	if (!resource)
593 		return false;
594 
595 	(*(int *)resource->data)++;
596 	kunit_put_resource(resource);
597 	return true;
598 }
599 #else
600 static inline bool slab_add_kunit_errors(void) { return false; }
601 #endif
602 
603 /*
604  * Determine a map of objects in use in a slab.
605  *
606  * Node listlock must be held to guarantee that the slab does
607  * not vanish from under us.
608  */
609 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
610 	__acquires(&object_map_lock)
611 {
612 	VM_BUG_ON(!irqs_disabled());
613 
614 	raw_spin_lock(&object_map_lock);
615 
616 	__fill_map(object_map, s, slab);
617 
618 	return object_map;
619 }
620 
621 static void put_map(unsigned long *map) __releases(&object_map_lock)
622 {
623 	VM_BUG_ON(map != object_map);
624 	raw_spin_unlock(&object_map_lock);
625 }
626 
627 static inline unsigned int size_from_object(struct kmem_cache *s)
628 {
629 	if (s->flags & SLAB_RED_ZONE)
630 		return s->size - s->red_left_pad;
631 
632 	return s->size;
633 }
634 
635 static inline void *restore_red_left(struct kmem_cache *s, void *p)
636 {
637 	if (s->flags & SLAB_RED_ZONE)
638 		p -= s->red_left_pad;
639 
640 	return p;
641 }
642 
643 /*
644  * Debug settings:
645  */
646 #if defined(CONFIG_SLUB_DEBUG_ON)
647 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
648 #else
649 static slab_flags_t slub_debug;
650 #endif
651 
652 static char *slub_debug_string;
653 static int disable_higher_order_debug;
654 
655 /*
656  * slub is about to manipulate internal object metadata.  This memory lies
657  * outside the range of the allocated object, so accessing it would normally
658  * be reported by kasan as a bounds error.  metadata_access_enable() is used
659  * to tell kasan that these accesses are OK.
660  */
661 static inline void metadata_access_enable(void)
662 {
663 	kasan_disable_current();
664 }
665 
666 static inline void metadata_access_disable(void)
667 {
668 	kasan_enable_current();
669 }
670 
671 /*
672  * Object debugging
673  */
674 
675 /* Verify that a pointer has an address that is valid within a slab page */
676 static inline int check_valid_pointer(struct kmem_cache *s,
677 				struct slab *slab, void *object)
678 {
679 	void *base;
680 
681 	if (!object)
682 		return 1;
683 
684 	base = slab_address(slab);
685 	object = kasan_reset_tag(object);
686 	object = restore_red_left(s, object);
687 	if (object < base || object >= base + slab->objects * s->size ||
688 		(object - base) % s->size) {
689 		return 0;
690 	}
691 
692 	return 1;
693 }
694 
695 static void print_section(char *level, char *text, u8 *addr,
696 			  unsigned int length)
697 {
698 	metadata_access_enable();
699 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
700 			16, 1, kasan_reset_tag((void *)addr), length, 1);
701 	metadata_access_disable();
702 }
703 
704 /*
705  * See comment in calculate_sizes().
706  */
707 static inline bool freeptr_outside_object(struct kmem_cache *s)
708 {
709 	return s->offset >= s->inuse;
710 }
711 
712 /*
713  * Return offset of the end of info block which is inuse + free pointer if
714  * not overlapping with object.
715  */
716 static inline unsigned int get_info_end(struct kmem_cache *s)
717 {
718 	if (freeptr_outside_object(s))
719 		return s->inuse + sizeof(void *);
720 	else
721 		return s->inuse;
722 }
723 
724 static struct track *get_track(struct kmem_cache *s, void *object,
725 	enum track_item alloc)
726 {
727 	struct track *p;
728 
729 	p = object + get_info_end(s);
730 
731 	return kasan_reset_tag(p + alloc);
732 }
733 
734 #ifdef CONFIG_STACKDEPOT
735 static noinline depot_stack_handle_t set_track_prepare(void)
736 {
737 	depot_stack_handle_t handle;
738 	unsigned long entries[TRACK_ADDRS_COUNT];
739 	unsigned int nr_entries;
740 
741 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
742 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
743 
744 	return handle;
745 }
746 #else
747 static inline depot_stack_handle_t set_track_prepare(void)
748 {
749 	return 0;
750 }
751 #endif
752 
753 static void set_track_update(struct kmem_cache *s, void *object,
754 			     enum track_item alloc, unsigned long addr,
755 			     depot_stack_handle_t handle)
756 {
757 	struct track *p = get_track(s, object, alloc);
758 
759 #ifdef CONFIG_STACKDEPOT
760 	p->handle = handle;
761 #endif
762 	p->addr = addr;
763 	p->cpu = smp_processor_id();
764 	p->pid = current->pid;
765 	p->when = jiffies;
766 }
767 
768 static __always_inline void set_track(struct kmem_cache *s, void *object,
769 				      enum track_item alloc, unsigned long addr)
770 {
771 	depot_stack_handle_t handle = set_track_prepare();
772 
773 	set_track_update(s, object, alloc, addr, handle);
774 }
775 
776 static void init_tracking(struct kmem_cache *s, void *object)
777 {
778 	struct track *p;
779 
780 	if (!(s->flags & SLAB_STORE_USER))
781 		return;
782 
783 	p = get_track(s, object, TRACK_ALLOC);
784 	memset(p, 0, 2*sizeof(struct track));
785 }
786 
787 static void print_track(const char *s, struct track *t, unsigned long pr_time)
788 {
789 	depot_stack_handle_t handle __maybe_unused;
790 
791 	if (!t->addr)
792 		return;
793 
794 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
795 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
796 #ifdef CONFIG_STACKDEPOT
797 	handle = READ_ONCE(t->handle);
798 	if (handle)
799 		stack_depot_print(handle);
800 	else
801 		pr_err("object allocation/free stack trace missing\n");
802 #endif
803 }
804 
805 void print_tracking(struct kmem_cache *s, void *object)
806 {
807 	unsigned long pr_time = jiffies;
808 	if (!(s->flags & SLAB_STORE_USER))
809 		return;
810 
811 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
812 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
813 }
814 
815 static void print_slab_info(const struct slab *slab)
816 {
817 	struct folio *folio = (struct folio *)slab_folio(slab);
818 
819 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
820 	       slab, slab->objects, slab->inuse, slab->freelist,
821 	       folio_flags(folio, 0));
822 }
823 
824 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
825 {
826 	struct va_format vaf;
827 	va_list args;
828 
829 	va_start(args, fmt);
830 	vaf.fmt = fmt;
831 	vaf.va = &args;
832 	pr_err("=============================================================================\n");
833 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
834 	pr_err("-----------------------------------------------------------------------------\n\n");
835 	va_end(args);
836 }
837 
838 __printf(2, 3)
839 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
840 {
841 	struct va_format vaf;
842 	va_list args;
843 
844 	if (slab_add_kunit_errors())
845 		return;
846 
847 	va_start(args, fmt);
848 	vaf.fmt = fmt;
849 	vaf.va = &args;
850 	pr_err("FIX %s: %pV\n", s->name, &vaf);
851 	va_end(args);
852 }
853 
854 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
855 {
856 	unsigned int off;	/* Offset of last byte */
857 	u8 *addr = slab_address(slab);
858 
859 	print_tracking(s, p);
860 
861 	print_slab_info(slab);
862 
863 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
864 	       p, p - addr, get_freepointer(s, p));
865 
866 	if (s->flags & SLAB_RED_ZONE)
867 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
868 			      s->red_left_pad);
869 	else if (p > addr + 16)
870 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
871 
872 	print_section(KERN_ERR,         "Object   ", p,
873 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
874 	if (s->flags & SLAB_RED_ZONE)
875 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
876 			s->inuse - s->object_size);
877 
878 	off = get_info_end(s);
879 
880 	if (s->flags & SLAB_STORE_USER)
881 		off += 2 * sizeof(struct track);
882 
883 	off += kasan_metadata_size(s);
884 
885 	if (off != size_from_object(s))
886 		/* Beginning of the filler is the free pointer */
887 		print_section(KERN_ERR, "Padding  ", p + off,
888 			      size_from_object(s) - off);
889 
890 	dump_stack();
891 }
892 
893 static void object_err(struct kmem_cache *s, struct slab *slab,
894 			u8 *object, char *reason)
895 {
896 	if (slab_add_kunit_errors())
897 		return;
898 
899 	slab_bug(s, "%s", reason);
900 	print_trailer(s, slab, object);
901 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
902 }
903 
904 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
905 			       void **freelist, void *nextfree)
906 {
907 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
908 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
909 		object_err(s, slab, *freelist, "Freechain corrupt");
910 		*freelist = NULL;
911 		slab_fix(s, "Isolate corrupted freechain");
912 		return true;
913 	}
914 
915 	return false;
916 }
917 
918 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
919 			const char *fmt, ...)
920 {
921 	va_list args;
922 	char buf[100];
923 
924 	if (slab_add_kunit_errors())
925 		return;
926 
927 	va_start(args, fmt);
928 	vsnprintf(buf, sizeof(buf), fmt, args);
929 	va_end(args);
930 	slab_bug(s, "%s", buf);
931 	print_slab_info(slab);
932 	dump_stack();
933 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
934 }
935 
936 static void init_object(struct kmem_cache *s, void *object, u8 val)
937 {
938 	u8 *p = kasan_reset_tag(object);
939 
940 	if (s->flags & SLAB_RED_ZONE)
941 		memset(p - s->red_left_pad, val, s->red_left_pad);
942 
943 	if (s->flags & __OBJECT_POISON) {
944 		memset(p, POISON_FREE, s->object_size - 1);
945 		p[s->object_size - 1] = POISON_END;
946 	}
947 
948 	if (s->flags & SLAB_RED_ZONE)
949 		memset(p + s->object_size, val, s->inuse - s->object_size);
950 }
951 
952 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
953 						void *from, void *to)
954 {
955 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
956 	memset(from, data, to - from);
957 }
958 
959 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
960 			u8 *object, char *what,
961 			u8 *start, unsigned int value, unsigned int bytes)
962 {
963 	u8 *fault;
964 	u8 *end;
965 	u8 *addr = slab_address(slab);
966 
967 	metadata_access_enable();
968 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
969 	metadata_access_disable();
970 	if (!fault)
971 		return 1;
972 
973 	end = start + bytes;
974 	while (end > fault && end[-1] == value)
975 		end--;
976 
977 	if (slab_add_kunit_errors())
978 		goto skip_bug_print;
979 
980 	slab_bug(s, "%s overwritten", what);
981 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
982 					fault, end - 1, fault - addr,
983 					fault[0], value);
984 	print_trailer(s, slab, object);
985 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
986 
987 skip_bug_print:
988 	restore_bytes(s, what, value, fault, end);
989 	return 0;
990 }
991 
992 /*
993  * Object layout:
994  *
995  * object address
996  * 	Bytes of the object to be managed.
997  * 	If the freepointer may overlay the object then the free
998  *	pointer is at the middle of the object.
999  *
1000  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1001  * 	0xa5 (POISON_END)
1002  *
1003  * object + s->object_size
1004  * 	Padding to reach word boundary. This is also used for Redzoning.
1005  * 	Padding is extended by another word if Redzoning is enabled and
1006  * 	object_size == inuse.
1007  *
1008  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1009  * 	0xcc (RED_ACTIVE) for objects in use.
1010  *
1011  * object + s->inuse
1012  * 	Meta data starts here.
1013  *
1014  * 	A. Free pointer (if we cannot overwrite object on free)
1015  * 	B. Tracking data for SLAB_STORE_USER
1016  *	C. Padding to reach required alignment boundary or at minimum
1017  * 		one word if debugging is on to be able to detect writes
1018  * 		before the word boundary.
1019  *
1020  *	Padding is done using 0x5a (POISON_INUSE)
1021  *
1022  * object + s->size
1023  * 	Nothing is used beyond s->size.
1024  *
1025  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1026  * ignored. And therefore no slab options that rely on these boundaries
1027  * may be used with merged slabcaches.
1028  */
1029 
1030 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1031 {
1032 	unsigned long off = get_info_end(s);	/* The end of info */
1033 
1034 	if (s->flags & SLAB_STORE_USER)
1035 		/* We also have user information there */
1036 		off += 2 * sizeof(struct track);
1037 
1038 	off += kasan_metadata_size(s);
1039 
1040 	if (size_from_object(s) == off)
1041 		return 1;
1042 
1043 	return check_bytes_and_report(s, slab, p, "Object padding",
1044 			p + off, POISON_INUSE, size_from_object(s) - off);
1045 }
1046 
1047 /* Check the pad bytes at the end of a slab page */
1048 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1049 {
1050 	u8 *start;
1051 	u8 *fault;
1052 	u8 *end;
1053 	u8 *pad;
1054 	int length;
1055 	int remainder;
1056 
1057 	if (!(s->flags & SLAB_POISON))
1058 		return;
1059 
1060 	start = slab_address(slab);
1061 	length = slab_size(slab);
1062 	end = start + length;
1063 	remainder = length % s->size;
1064 	if (!remainder)
1065 		return;
1066 
1067 	pad = end - remainder;
1068 	metadata_access_enable();
1069 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1070 	metadata_access_disable();
1071 	if (!fault)
1072 		return;
1073 	while (end > fault && end[-1] == POISON_INUSE)
1074 		end--;
1075 
1076 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1077 			fault, end - 1, fault - start);
1078 	print_section(KERN_ERR, "Padding ", pad, remainder);
1079 
1080 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1081 }
1082 
1083 static int check_object(struct kmem_cache *s, struct slab *slab,
1084 					void *object, u8 val)
1085 {
1086 	u8 *p = object;
1087 	u8 *endobject = object + s->object_size;
1088 
1089 	if (s->flags & SLAB_RED_ZONE) {
1090 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1091 			object - s->red_left_pad, val, s->red_left_pad))
1092 			return 0;
1093 
1094 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1095 			endobject, val, s->inuse - s->object_size))
1096 			return 0;
1097 	} else {
1098 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1099 			check_bytes_and_report(s, slab, p, "Alignment padding",
1100 				endobject, POISON_INUSE,
1101 				s->inuse - s->object_size);
1102 		}
1103 	}
1104 
1105 	if (s->flags & SLAB_POISON) {
1106 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1107 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1108 					POISON_FREE, s->object_size - 1) ||
1109 			 !check_bytes_and_report(s, slab, p, "End Poison",
1110 				p + s->object_size - 1, POISON_END, 1)))
1111 			return 0;
1112 		/*
1113 		 * check_pad_bytes cleans up on its own.
1114 		 */
1115 		check_pad_bytes(s, slab, p);
1116 	}
1117 
1118 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1119 		/*
1120 		 * Object and freepointer overlap. Cannot check
1121 		 * freepointer while object is allocated.
1122 		 */
1123 		return 1;
1124 
1125 	/* Check free pointer validity */
1126 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1127 		object_err(s, slab, p, "Freepointer corrupt");
1128 		/*
1129 		 * No choice but to zap it and thus lose the remainder
1130 		 * of the free objects in this slab. May cause
1131 		 * another error because the object count is now wrong.
1132 		 */
1133 		set_freepointer(s, p, NULL);
1134 		return 0;
1135 	}
1136 	return 1;
1137 }
1138 
1139 static int check_slab(struct kmem_cache *s, struct slab *slab)
1140 {
1141 	int maxobj;
1142 
1143 	if (!folio_test_slab(slab_folio(slab))) {
1144 		slab_err(s, slab, "Not a valid slab page");
1145 		return 0;
1146 	}
1147 
1148 	maxobj = order_objects(slab_order(slab), s->size);
1149 	if (slab->objects > maxobj) {
1150 		slab_err(s, slab, "objects %u > max %u",
1151 			slab->objects, maxobj);
1152 		return 0;
1153 	}
1154 	if (slab->inuse > slab->objects) {
1155 		slab_err(s, slab, "inuse %u > max %u",
1156 			slab->inuse, slab->objects);
1157 		return 0;
1158 	}
1159 	/* Slab_pad_check fixes things up after itself */
1160 	slab_pad_check(s, slab);
1161 	return 1;
1162 }
1163 
1164 /*
1165  * Determine if a certain object in a slab is on the freelist. Must hold the
1166  * slab lock to guarantee that the chains are in a consistent state.
1167  */
1168 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1169 {
1170 	int nr = 0;
1171 	void *fp;
1172 	void *object = NULL;
1173 	int max_objects;
1174 
1175 	fp = slab->freelist;
1176 	while (fp && nr <= slab->objects) {
1177 		if (fp == search)
1178 			return 1;
1179 		if (!check_valid_pointer(s, slab, fp)) {
1180 			if (object) {
1181 				object_err(s, slab, object,
1182 					"Freechain corrupt");
1183 				set_freepointer(s, object, NULL);
1184 			} else {
1185 				slab_err(s, slab, "Freepointer corrupt");
1186 				slab->freelist = NULL;
1187 				slab->inuse = slab->objects;
1188 				slab_fix(s, "Freelist cleared");
1189 				return 0;
1190 			}
1191 			break;
1192 		}
1193 		object = fp;
1194 		fp = get_freepointer(s, object);
1195 		nr++;
1196 	}
1197 
1198 	max_objects = order_objects(slab_order(slab), s->size);
1199 	if (max_objects > MAX_OBJS_PER_PAGE)
1200 		max_objects = MAX_OBJS_PER_PAGE;
1201 
1202 	if (slab->objects != max_objects) {
1203 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1204 			 slab->objects, max_objects);
1205 		slab->objects = max_objects;
1206 		slab_fix(s, "Number of objects adjusted");
1207 	}
1208 	if (slab->inuse != slab->objects - nr) {
1209 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1210 			 slab->inuse, slab->objects - nr);
1211 		slab->inuse = slab->objects - nr;
1212 		slab_fix(s, "Object count adjusted");
1213 	}
1214 	return search == NULL;
1215 }
1216 
1217 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1218 								int alloc)
1219 {
1220 	if (s->flags & SLAB_TRACE) {
1221 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1222 			s->name,
1223 			alloc ? "alloc" : "free",
1224 			object, slab->inuse,
1225 			slab->freelist);
1226 
1227 		if (!alloc)
1228 			print_section(KERN_INFO, "Object ", (void *)object,
1229 					s->object_size);
1230 
1231 		dump_stack();
1232 	}
1233 }
1234 
1235 /*
1236  * Tracking of fully allocated slabs for debugging purposes.
1237  */
1238 static void add_full(struct kmem_cache *s,
1239 	struct kmem_cache_node *n, struct slab *slab)
1240 {
1241 	if (!(s->flags & SLAB_STORE_USER))
1242 		return;
1243 
1244 	lockdep_assert_held(&n->list_lock);
1245 	list_add(&slab->slab_list, &n->full);
1246 }
1247 
1248 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1249 {
1250 	if (!(s->flags & SLAB_STORE_USER))
1251 		return;
1252 
1253 	lockdep_assert_held(&n->list_lock);
1254 	list_del(&slab->slab_list);
1255 }
1256 
1257 /* Tracking of the number of slabs for debugging purposes */
1258 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1259 {
1260 	struct kmem_cache_node *n = get_node(s, node);
1261 
1262 	return atomic_long_read(&n->nr_slabs);
1263 }
1264 
1265 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1266 {
1267 	return atomic_long_read(&n->nr_slabs);
1268 }
1269 
1270 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1271 {
1272 	struct kmem_cache_node *n = get_node(s, node);
1273 
1274 	/*
1275 	 * May be called early in order to allocate a slab for the
1276 	 * kmem_cache_node structure. Solve the chicken-egg
1277 	 * dilemma by deferring the increment of the count during
1278 	 * bootstrap (see early_kmem_cache_node_alloc).
1279 	 */
1280 	if (likely(n)) {
1281 		atomic_long_inc(&n->nr_slabs);
1282 		atomic_long_add(objects, &n->total_objects);
1283 	}
1284 }
1285 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1286 {
1287 	struct kmem_cache_node *n = get_node(s, node);
1288 
1289 	atomic_long_dec(&n->nr_slabs);
1290 	atomic_long_sub(objects, &n->total_objects);
1291 }
1292 
1293 /* Object debug checks for alloc/free paths */
1294 static void setup_object_debug(struct kmem_cache *s, void *object)
1295 {
1296 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1297 		return;
1298 
1299 	init_object(s, object, SLUB_RED_INACTIVE);
1300 	init_tracking(s, object);
1301 }
1302 
1303 static
1304 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1305 {
1306 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1307 		return;
1308 
1309 	metadata_access_enable();
1310 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1311 	metadata_access_disable();
1312 }
1313 
1314 static inline int alloc_consistency_checks(struct kmem_cache *s,
1315 					struct slab *slab, void *object)
1316 {
1317 	if (!check_slab(s, slab))
1318 		return 0;
1319 
1320 	if (!check_valid_pointer(s, slab, object)) {
1321 		object_err(s, slab, object, "Freelist Pointer check fails");
1322 		return 0;
1323 	}
1324 
1325 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1326 		return 0;
1327 
1328 	return 1;
1329 }
1330 
1331 static noinline int alloc_debug_processing(struct kmem_cache *s,
1332 					struct slab *slab,
1333 					void *object, unsigned long addr)
1334 {
1335 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1336 		if (!alloc_consistency_checks(s, slab, object))
1337 			goto bad;
1338 	}
1339 
1340 	/* Success perform special debug activities for allocs */
1341 	if (s->flags & SLAB_STORE_USER)
1342 		set_track(s, object, TRACK_ALLOC, addr);
1343 	trace(s, slab, object, 1);
1344 	init_object(s, object, SLUB_RED_ACTIVE);
1345 	return 1;
1346 
1347 bad:
1348 	if (folio_test_slab(slab_folio(slab))) {
1349 		/*
1350 		 * If this is a slab page then lets do the best we can
1351 		 * to avoid issues in the future. Marking all objects
1352 		 * as used avoids touching the remaining objects.
1353 		 */
1354 		slab_fix(s, "Marking all objects used");
1355 		slab->inuse = slab->objects;
1356 		slab->freelist = NULL;
1357 	}
1358 	return 0;
1359 }
1360 
1361 static inline int free_consistency_checks(struct kmem_cache *s,
1362 		struct slab *slab, void *object, unsigned long addr)
1363 {
1364 	if (!check_valid_pointer(s, slab, object)) {
1365 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1366 		return 0;
1367 	}
1368 
1369 	if (on_freelist(s, slab, object)) {
1370 		object_err(s, slab, object, "Object already free");
1371 		return 0;
1372 	}
1373 
1374 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1375 		return 0;
1376 
1377 	if (unlikely(s != slab->slab_cache)) {
1378 		if (!folio_test_slab(slab_folio(slab))) {
1379 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1380 				 object);
1381 		} else if (!slab->slab_cache) {
1382 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1383 			       object);
1384 			dump_stack();
1385 		} else
1386 			object_err(s, slab, object,
1387 					"page slab pointer corrupt.");
1388 		return 0;
1389 	}
1390 	return 1;
1391 }
1392 
1393 /* Supports checking bulk free of a constructed freelist */
1394 static noinline int free_debug_processing(
1395 	struct kmem_cache *s, struct slab *slab,
1396 	void *head, void *tail, int bulk_cnt,
1397 	unsigned long addr)
1398 {
1399 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
1400 	void *object = head;
1401 	int cnt = 0;
1402 	unsigned long flags, flags2;
1403 	int ret = 0;
1404 	depot_stack_handle_t handle = 0;
1405 
1406 	if (s->flags & SLAB_STORE_USER)
1407 		handle = set_track_prepare();
1408 
1409 	spin_lock_irqsave(&n->list_lock, flags);
1410 	slab_lock(slab, &flags2);
1411 
1412 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1413 		if (!check_slab(s, slab))
1414 			goto out;
1415 	}
1416 
1417 next_object:
1418 	cnt++;
1419 
1420 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1421 		if (!free_consistency_checks(s, slab, object, addr))
1422 			goto out;
1423 	}
1424 
1425 	if (s->flags & SLAB_STORE_USER)
1426 		set_track_update(s, object, TRACK_FREE, addr, handle);
1427 	trace(s, slab, object, 0);
1428 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1429 	init_object(s, object, SLUB_RED_INACTIVE);
1430 
1431 	/* Reached end of constructed freelist yet? */
1432 	if (object != tail) {
1433 		object = get_freepointer(s, object);
1434 		goto next_object;
1435 	}
1436 	ret = 1;
1437 
1438 out:
1439 	if (cnt != bulk_cnt)
1440 		slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
1441 			 bulk_cnt, cnt);
1442 
1443 	slab_unlock(slab, &flags2);
1444 	spin_unlock_irqrestore(&n->list_lock, flags);
1445 	if (!ret)
1446 		slab_fix(s, "Object at 0x%p not freed", object);
1447 	return ret;
1448 }
1449 
1450 /*
1451  * Parse a block of slub_debug options. Blocks are delimited by ';'
1452  *
1453  * @str:    start of block
1454  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1455  * @slabs:  return start of list of slabs, or NULL when there's no list
1456  * @init:   assume this is initial parsing and not per-kmem-create parsing
1457  *
1458  * returns the start of next block if there's any, or NULL
1459  */
1460 static char *
1461 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1462 {
1463 	bool higher_order_disable = false;
1464 
1465 	/* Skip any completely empty blocks */
1466 	while (*str && *str == ';')
1467 		str++;
1468 
1469 	if (*str == ',') {
1470 		/*
1471 		 * No options but restriction on slabs. This means full
1472 		 * debugging for slabs matching a pattern.
1473 		 */
1474 		*flags = DEBUG_DEFAULT_FLAGS;
1475 		goto check_slabs;
1476 	}
1477 	*flags = 0;
1478 
1479 	/* Determine which debug features should be switched on */
1480 	for (; *str && *str != ',' && *str != ';'; str++) {
1481 		switch (tolower(*str)) {
1482 		case '-':
1483 			*flags = 0;
1484 			break;
1485 		case 'f':
1486 			*flags |= SLAB_CONSISTENCY_CHECKS;
1487 			break;
1488 		case 'z':
1489 			*flags |= SLAB_RED_ZONE;
1490 			break;
1491 		case 'p':
1492 			*flags |= SLAB_POISON;
1493 			break;
1494 		case 'u':
1495 			*flags |= SLAB_STORE_USER;
1496 			break;
1497 		case 't':
1498 			*flags |= SLAB_TRACE;
1499 			break;
1500 		case 'a':
1501 			*flags |= SLAB_FAILSLAB;
1502 			break;
1503 		case 'o':
1504 			/*
1505 			 * Avoid enabling debugging on caches if its minimum
1506 			 * order would increase as a result.
1507 			 */
1508 			higher_order_disable = true;
1509 			break;
1510 		default:
1511 			if (init)
1512 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1513 		}
1514 	}
1515 check_slabs:
1516 	if (*str == ',')
1517 		*slabs = ++str;
1518 	else
1519 		*slabs = NULL;
1520 
1521 	/* Skip over the slab list */
1522 	while (*str && *str != ';')
1523 		str++;
1524 
1525 	/* Skip any completely empty blocks */
1526 	while (*str && *str == ';')
1527 		str++;
1528 
1529 	if (init && higher_order_disable)
1530 		disable_higher_order_debug = 1;
1531 
1532 	if (*str)
1533 		return str;
1534 	else
1535 		return NULL;
1536 }
1537 
1538 static int __init setup_slub_debug(char *str)
1539 {
1540 	slab_flags_t flags;
1541 	slab_flags_t global_flags;
1542 	char *saved_str;
1543 	char *slab_list;
1544 	bool global_slub_debug_changed = false;
1545 	bool slab_list_specified = false;
1546 
1547 	global_flags = DEBUG_DEFAULT_FLAGS;
1548 	if (*str++ != '=' || !*str)
1549 		/*
1550 		 * No options specified. Switch on full debugging.
1551 		 */
1552 		goto out;
1553 
1554 	saved_str = str;
1555 	while (str) {
1556 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1557 
1558 		if (!slab_list) {
1559 			global_flags = flags;
1560 			global_slub_debug_changed = true;
1561 		} else {
1562 			slab_list_specified = true;
1563 			if (flags & SLAB_STORE_USER)
1564 				stack_depot_want_early_init();
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * For backwards compatibility, a single list of flags with list of
1570 	 * slabs means debugging is only changed for those slabs, so the global
1571 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1572 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1573 	 * long as there is no option specifying flags without a slab list.
1574 	 */
1575 	if (slab_list_specified) {
1576 		if (!global_slub_debug_changed)
1577 			global_flags = slub_debug;
1578 		slub_debug_string = saved_str;
1579 	}
1580 out:
1581 	slub_debug = global_flags;
1582 	if (slub_debug & SLAB_STORE_USER)
1583 		stack_depot_want_early_init();
1584 	if (slub_debug != 0 || slub_debug_string)
1585 		static_branch_enable(&slub_debug_enabled);
1586 	else
1587 		static_branch_disable(&slub_debug_enabled);
1588 	if ((static_branch_unlikely(&init_on_alloc) ||
1589 	     static_branch_unlikely(&init_on_free)) &&
1590 	    (slub_debug & SLAB_POISON))
1591 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1592 	return 1;
1593 }
1594 
1595 __setup("slub_debug", setup_slub_debug);
1596 
1597 /*
1598  * kmem_cache_flags - apply debugging options to the cache
1599  * @object_size:	the size of an object without meta data
1600  * @flags:		flags to set
1601  * @name:		name of the cache
1602  *
1603  * Debug option(s) are applied to @flags. In addition to the debug
1604  * option(s), if a slab name (or multiple) is specified i.e.
1605  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1606  * then only the select slabs will receive the debug option(s).
1607  */
1608 slab_flags_t kmem_cache_flags(unsigned int object_size,
1609 	slab_flags_t flags, const char *name)
1610 {
1611 	char *iter;
1612 	size_t len;
1613 	char *next_block;
1614 	slab_flags_t block_flags;
1615 	slab_flags_t slub_debug_local = slub_debug;
1616 
1617 	if (flags & SLAB_NO_USER_FLAGS)
1618 		return flags;
1619 
1620 	/*
1621 	 * If the slab cache is for debugging (e.g. kmemleak) then
1622 	 * don't store user (stack trace) information by default,
1623 	 * but let the user enable it via the command line below.
1624 	 */
1625 	if (flags & SLAB_NOLEAKTRACE)
1626 		slub_debug_local &= ~SLAB_STORE_USER;
1627 
1628 	len = strlen(name);
1629 	next_block = slub_debug_string;
1630 	/* Go through all blocks of debug options, see if any matches our slab's name */
1631 	while (next_block) {
1632 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1633 		if (!iter)
1634 			continue;
1635 		/* Found a block that has a slab list, search it */
1636 		while (*iter) {
1637 			char *end, *glob;
1638 			size_t cmplen;
1639 
1640 			end = strchrnul(iter, ',');
1641 			if (next_block && next_block < end)
1642 				end = next_block - 1;
1643 
1644 			glob = strnchr(iter, end - iter, '*');
1645 			if (glob)
1646 				cmplen = glob - iter;
1647 			else
1648 				cmplen = max_t(size_t, len, (end - iter));
1649 
1650 			if (!strncmp(name, iter, cmplen)) {
1651 				flags |= block_flags;
1652 				return flags;
1653 			}
1654 
1655 			if (!*end || *end == ';')
1656 				break;
1657 			iter = end + 1;
1658 		}
1659 	}
1660 
1661 	return flags | slub_debug_local;
1662 }
1663 #else /* !CONFIG_SLUB_DEBUG */
1664 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1665 static inline
1666 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1667 
1668 static inline int alloc_debug_processing(struct kmem_cache *s,
1669 	struct slab *slab, void *object, unsigned long addr) { return 0; }
1670 
1671 static inline int free_debug_processing(
1672 	struct kmem_cache *s, struct slab *slab,
1673 	void *head, void *tail, int bulk_cnt,
1674 	unsigned long addr) { return 0; }
1675 
1676 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1677 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1678 			void *object, u8 val) { return 1; }
1679 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1680 					struct slab *slab) {}
1681 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1682 					struct slab *slab) {}
1683 slab_flags_t kmem_cache_flags(unsigned int object_size,
1684 	slab_flags_t flags, const char *name)
1685 {
1686 	return flags;
1687 }
1688 #define slub_debug 0
1689 
1690 #define disable_higher_order_debug 0
1691 
1692 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1693 							{ return 0; }
1694 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1695 							{ return 0; }
1696 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1697 							int objects) {}
1698 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1699 							int objects) {}
1700 
1701 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1702 			       void **freelist, void *nextfree)
1703 {
1704 	return false;
1705 }
1706 #endif /* CONFIG_SLUB_DEBUG */
1707 
1708 /*
1709  * Hooks for other subsystems that check memory allocations. In a typical
1710  * production configuration these hooks all should produce no code at all.
1711  */
1712 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1713 {
1714 	ptr = kasan_kmalloc_large(ptr, size, flags);
1715 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1716 	kmemleak_alloc(ptr, size, 1, flags);
1717 	return ptr;
1718 }
1719 
1720 static __always_inline void kfree_hook(void *x)
1721 {
1722 	kmemleak_free(x);
1723 	kasan_kfree_large(x);
1724 }
1725 
1726 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1727 						void *x, bool init)
1728 {
1729 	kmemleak_free_recursive(x, s->flags);
1730 
1731 	debug_check_no_locks_freed(x, s->object_size);
1732 
1733 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1734 		debug_check_no_obj_freed(x, s->object_size);
1735 
1736 	/* Use KCSAN to help debug racy use-after-free. */
1737 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1738 		__kcsan_check_access(x, s->object_size,
1739 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1740 
1741 	/*
1742 	 * As memory initialization might be integrated into KASAN,
1743 	 * kasan_slab_free and initialization memset's must be
1744 	 * kept together to avoid discrepancies in behavior.
1745 	 *
1746 	 * The initialization memset's clear the object and the metadata,
1747 	 * but don't touch the SLAB redzone.
1748 	 */
1749 	if (init) {
1750 		int rsize;
1751 
1752 		if (!kasan_has_integrated_init())
1753 			memset(kasan_reset_tag(x), 0, s->object_size);
1754 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1755 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1756 		       s->size - s->inuse - rsize);
1757 	}
1758 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1759 	return kasan_slab_free(s, x, init);
1760 }
1761 
1762 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1763 					   void **head, void **tail,
1764 					   int *cnt)
1765 {
1766 
1767 	void *object;
1768 	void *next = *head;
1769 	void *old_tail = *tail ? *tail : *head;
1770 
1771 	if (is_kfence_address(next)) {
1772 		slab_free_hook(s, next, false);
1773 		return true;
1774 	}
1775 
1776 	/* Head and tail of the reconstructed freelist */
1777 	*head = NULL;
1778 	*tail = NULL;
1779 
1780 	do {
1781 		object = next;
1782 		next = get_freepointer(s, object);
1783 
1784 		/* If object's reuse doesn't have to be delayed */
1785 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1786 			/* Move object to the new freelist */
1787 			set_freepointer(s, object, *head);
1788 			*head = object;
1789 			if (!*tail)
1790 				*tail = object;
1791 		} else {
1792 			/*
1793 			 * Adjust the reconstructed freelist depth
1794 			 * accordingly if object's reuse is delayed.
1795 			 */
1796 			--(*cnt);
1797 		}
1798 	} while (object != old_tail);
1799 
1800 	if (*head == *tail)
1801 		*tail = NULL;
1802 
1803 	return *head != NULL;
1804 }
1805 
1806 static void *setup_object(struct kmem_cache *s, void *object)
1807 {
1808 	setup_object_debug(s, object);
1809 	object = kasan_init_slab_obj(s, object);
1810 	if (unlikely(s->ctor)) {
1811 		kasan_unpoison_object_data(s, object);
1812 		s->ctor(object);
1813 		kasan_poison_object_data(s, object);
1814 	}
1815 	return object;
1816 }
1817 
1818 /*
1819  * Slab allocation and freeing
1820  */
1821 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1822 		struct kmem_cache_order_objects oo)
1823 {
1824 	struct folio *folio;
1825 	struct slab *slab;
1826 	unsigned int order = oo_order(oo);
1827 
1828 	if (node == NUMA_NO_NODE)
1829 		folio = (struct folio *)alloc_pages(flags, order);
1830 	else
1831 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1832 
1833 	if (!folio)
1834 		return NULL;
1835 
1836 	slab = folio_slab(folio);
1837 	__folio_set_slab(folio);
1838 	if (page_is_pfmemalloc(folio_page(folio, 0)))
1839 		slab_set_pfmemalloc(slab);
1840 
1841 	return slab;
1842 }
1843 
1844 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1845 /* Pre-initialize the random sequence cache */
1846 static int init_cache_random_seq(struct kmem_cache *s)
1847 {
1848 	unsigned int count = oo_objects(s->oo);
1849 	int err;
1850 
1851 	/* Bailout if already initialised */
1852 	if (s->random_seq)
1853 		return 0;
1854 
1855 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1856 	if (err) {
1857 		pr_err("SLUB: Unable to initialize free list for %s\n",
1858 			s->name);
1859 		return err;
1860 	}
1861 
1862 	/* Transform to an offset on the set of pages */
1863 	if (s->random_seq) {
1864 		unsigned int i;
1865 
1866 		for (i = 0; i < count; i++)
1867 			s->random_seq[i] *= s->size;
1868 	}
1869 	return 0;
1870 }
1871 
1872 /* Initialize each random sequence freelist per cache */
1873 static void __init init_freelist_randomization(void)
1874 {
1875 	struct kmem_cache *s;
1876 
1877 	mutex_lock(&slab_mutex);
1878 
1879 	list_for_each_entry(s, &slab_caches, list)
1880 		init_cache_random_seq(s);
1881 
1882 	mutex_unlock(&slab_mutex);
1883 }
1884 
1885 /* Get the next entry on the pre-computed freelist randomized */
1886 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1887 				unsigned long *pos, void *start,
1888 				unsigned long page_limit,
1889 				unsigned long freelist_count)
1890 {
1891 	unsigned int idx;
1892 
1893 	/*
1894 	 * If the target page allocation failed, the number of objects on the
1895 	 * page might be smaller than the usual size defined by the cache.
1896 	 */
1897 	do {
1898 		idx = s->random_seq[*pos];
1899 		*pos += 1;
1900 		if (*pos >= freelist_count)
1901 			*pos = 0;
1902 	} while (unlikely(idx >= page_limit));
1903 
1904 	return (char *)start + idx;
1905 }
1906 
1907 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1908 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1909 {
1910 	void *start;
1911 	void *cur;
1912 	void *next;
1913 	unsigned long idx, pos, page_limit, freelist_count;
1914 
1915 	if (slab->objects < 2 || !s->random_seq)
1916 		return false;
1917 
1918 	freelist_count = oo_objects(s->oo);
1919 	pos = get_random_int() % freelist_count;
1920 
1921 	page_limit = slab->objects * s->size;
1922 	start = fixup_red_left(s, slab_address(slab));
1923 
1924 	/* First entry is used as the base of the freelist */
1925 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1926 				freelist_count);
1927 	cur = setup_object(s, cur);
1928 	slab->freelist = cur;
1929 
1930 	for (idx = 1; idx < slab->objects; idx++) {
1931 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1932 			freelist_count);
1933 		next = setup_object(s, next);
1934 		set_freepointer(s, cur, next);
1935 		cur = next;
1936 	}
1937 	set_freepointer(s, cur, NULL);
1938 
1939 	return true;
1940 }
1941 #else
1942 static inline int init_cache_random_seq(struct kmem_cache *s)
1943 {
1944 	return 0;
1945 }
1946 static inline void init_freelist_randomization(void) { }
1947 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1948 {
1949 	return false;
1950 }
1951 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1952 
1953 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1954 {
1955 	struct slab *slab;
1956 	struct kmem_cache_order_objects oo = s->oo;
1957 	gfp_t alloc_gfp;
1958 	void *start, *p, *next;
1959 	int idx;
1960 	bool shuffle;
1961 
1962 	flags &= gfp_allowed_mask;
1963 
1964 	flags |= s->allocflags;
1965 
1966 	/*
1967 	 * Let the initial higher-order allocation fail under memory pressure
1968 	 * so we fall-back to the minimum order allocation.
1969 	 */
1970 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1971 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1972 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1973 
1974 	slab = alloc_slab_page(alloc_gfp, node, oo);
1975 	if (unlikely(!slab)) {
1976 		oo = s->min;
1977 		alloc_gfp = flags;
1978 		/*
1979 		 * Allocation may have failed due to fragmentation.
1980 		 * Try a lower order alloc if possible
1981 		 */
1982 		slab = alloc_slab_page(alloc_gfp, node, oo);
1983 		if (unlikely(!slab))
1984 			goto out;
1985 		stat(s, ORDER_FALLBACK);
1986 	}
1987 
1988 	slab->objects = oo_objects(oo);
1989 
1990 	account_slab(slab, oo_order(oo), s, flags);
1991 
1992 	slab->slab_cache = s;
1993 
1994 	kasan_poison_slab(slab);
1995 
1996 	start = slab_address(slab);
1997 
1998 	setup_slab_debug(s, slab, start);
1999 
2000 	shuffle = shuffle_freelist(s, slab);
2001 
2002 	if (!shuffle) {
2003 		start = fixup_red_left(s, start);
2004 		start = setup_object(s, start);
2005 		slab->freelist = start;
2006 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2007 			next = p + s->size;
2008 			next = setup_object(s, next);
2009 			set_freepointer(s, p, next);
2010 			p = next;
2011 		}
2012 		set_freepointer(s, p, NULL);
2013 	}
2014 
2015 	slab->inuse = slab->objects;
2016 	slab->frozen = 1;
2017 
2018 out:
2019 	if (!slab)
2020 		return NULL;
2021 
2022 	inc_slabs_node(s, slab_nid(slab), slab->objects);
2023 
2024 	return slab;
2025 }
2026 
2027 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2028 {
2029 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2030 		flags = kmalloc_fix_flags(flags);
2031 
2032 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2033 
2034 	return allocate_slab(s,
2035 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2036 }
2037 
2038 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2039 {
2040 	struct folio *folio = slab_folio(slab);
2041 	int order = folio_order(folio);
2042 	int pages = 1 << order;
2043 
2044 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2045 		void *p;
2046 
2047 		slab_pad_check(s, slab);
2048 		for_each_object(p, s, slab_address(slab), slab->objects)
2049 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2050 	}
2051 
2052 	__slab_clear_pfmemalloc(slab);
2053 	__folio_clear_slab(folio);
2054 	folio->mapping = NULL;
2055 	if (current->reclaim_state)
2056 		current->reclaim_state->reclaimed_slab += pages;
2057 	unaccount_slab(slab, order, s);
2058 	__free_pages(folio_page(folio, 0), order);
2059 }
2060 
2061 static void rcu_free_slab(struct rcu_head *h)
2062 {
2063 	struct slab *slab = container_of(h, struct slab, rcu_head);
2064 
2065 	__free_slab(slab->slab_cache, slab);
2066 }
2067 
2068 static void free_slab(struct kmem_cache *s, struct slab *slab)
2069 {
2070 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2071 		call_rcu(&slab->rcu_head, rcu_free_slab);
2072 	} else
2073 		__free_slab(s, slab);
2074 }
2075 
2076 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2077 {
2078 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2079 	free_slab(s, slab);
2080 }
2081 
2082 /*
2083  * Management of partially allocated slabs.
2084  */
2085 static inline void
2086 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2087 {
2088 	n->nr_partial++;
2089 	if (tail == DEACTIVATE_TO_TAIL)
2090 		list_add_tail(&slab->slab_list, &n->partial);
2091 	else
2092 		list_add(&slab->slab_list, &n->partial);
2093 }
2094 
2095 static inline void add_partial(struct kmem_cache_node *n,
2096 				struct slab *slab, int tail)
2097 {
2098 	lockdep_assert_held(&n->list_lock);
2099 	__add_partial(n, slab, tail);
2100 }
2101 
2102 static inline void remove_partial(struct kmem_cache_node *n,
2103 					struct slab *slab)
2104 {
2105 	lockdep_assert_held(&n->list_lock);
2106 	list_del(&slab->slab_list);
2107 	n->nr_partial--;
2108 }
2109 
2110 /*
2111  * Remove slab from the partial list, freeze it and
2112  * return the pointer to the freelist.
2113  *
2114  * Returns a list of objects or NULL if it fails.
2115  */
2116 static inline void *acquire_slab(struct kmem_cache *s,
2117 		struct kmem_cache_node *n, struct slab *slab,
2118 		int mode)
2119 {
2120 	void *freelist;
2121 	unsigned long counters;
2122 	struct slab new;
2123 
2124 	lockdep_assert_held(&n->list_lock);
2125 
2126 	/*
2127 	 * Zap the freelist and set the frozen bit.
2128 	 * The old freelist is the list of objects for the
2129 	 * per cpu allocation list.
2130 	 */
2131 	freelist = slab->freelist;
2132 	counters = slab->counters;
2133 	new.counters = counters;
2134 	if (mode) {
2135 		new.inuse = slab->objects;
2136 		new.freelist = NULL;
2137 	} else {
2138 		new.freelist = freelist;
2139 	}
2140 
2141 	VM_BUG_ON(new.frozen);
2142 	new.frozen = 1;
2143 
2144 	if (!__cmpxchg_double_slab(s, slab,
2145 			freelist, counters,
2146 			new.freelist, new.counters,
2147 			"acquire_slab"))
2148 		return NULL;
2149 
2150 	remove_partial(n, slab);
2151 	WARN_ON(!freelist);
2152 	return freelist;
2153 }
2154 
2155 #ifdef CONFIG_SLUB_CPU_PARTIAL
2156 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2157 #else
2158 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2159 				   int drain) { }
2160 #endif
2161 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2162 
2163 /*
2164  * Try to allocate a partial slab from a specific node.
2165  */
2166 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2167 			      struct slab **ret_slab, gfp_t gfpflags)
2168 {
2169 	struct slab *slab, *slab2;
2170 	void *object = NULL;
2171 	unsigned long flags;
2172 	unsigned int partial_slabs = 0;
2173 
2174 	/*
2175 	 * Racy check. If we mistakenly see no partial slabs then we
2176 	 * just allocate an empty slab. If we mistakenly try to get a
2177 	 * partial slab and there is none available then get_partial()
2178 	 * will return NULL.
2179 	 */
2180 	if (!n || !n->nr_partial)
2181 		return NULL;
2182 
2183 	spin_lock_irqsave(&n->list_lock, flags);
2184 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2185 		void *t;
2186 
2187 		if (!pfmemalloc_match(slab, gfpflags))
2188 			continue;
2189 
2190 		t = acquire_slab(s, n, slab, object == NULL);
2191 		if (!t)
2192 			break;
2193 
2194 		if (!object) {
2195 			*ret_slab = slab;
2196 			stat(s, ALLOC_FROM_PARTIAL);
2197 			object = t;
2198 		} else {
2199 			put_cpu_partial(s, slab, 0);
2200 			stat(s, CPU_PARTIAL_NODE);
2201 			partial_slabs++;
2202 		}
2203 #ifdef CONFIG_SLUB_CPU_PARTIAL
2204 		if (!kmem_cache_has_cpu_partial(s)
2205 			|| partial_slabs > s->cpu_partial_slabs / 2)
2206 			break;
2207 #else
2208 		break;
2209 #endif
2210 
2211 	}
2212 	spin_unlock_irqrestore(&n->list_lock, flags);
2213 	return object;
2214 }
2215 
2216 /*
2217  * Get a slab from somewhere. Search in increasing NUMA distances.
2218  */
2219 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2220 			     struct slab **ret_slab)
2221 {
2222 #ifdef CONFIG_NUMA
2223 	struct zonelist *zonelist;
2224 	struct zoneref *z;
2225 	struct zone *zone;
2226 	enum zone_type highest_zoneidx = gfp_zone(flags);
2227 	void *object;
2228 	unsigned int cpuset_mems_cookie;
2229 
2230 	/*
2231 	 * The defrag ratio allows a configuration of the tradeoffs between
2232 	 * inter node defragmentation and node local allocations. A lower
2233 	 * defrag_ratio increases the tendency to do local allocations
2234 	 * instead of attempting to obtain partial slabs from other nodes.
2235 	 *
2236 	 * If the defrag_ratio is set to 0 then kmalloc() always
2237 	 * returns node local objects. If the ratio is higher then kmalloc()
2238 	 * may return off node objects because partial slabs are obtained
2239 	 * from other nodes and filled up.
2240 	 *
2241 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2242 	 * (which makes defrag_ratio = 1000) then every (well almost)
2243 	 * allocation will first attempt to defrag slab caches on other nodes.
2244 	 * This means scanning over all nodes to look for partial slabs which
2245 	 * may be expensive if we do it every time we are trying to find a slab
2246 	 * with available objects.
2247 	 */
2248 	if (!s->remote_node_defrag_ratio ||
2249 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2250 		return NULL;
2251 
2252 	do {
2253 		cpuset_mems_cookie = read_mems_allowed_begin();
2254 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2255 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2256 			struct kmem_cache_node *n;
2257 
2258 			n = get_node(s, zone_to_nid(zone));
2259 
2260 			if (n && cpuset_zone_allowed(zone, flags) &&
2261 					n->nr_partial > s->min_partial) {
2262 				object = get_partial_node(s, n, ret_slab, flags);
2263 				if (object) {
2264 					/*
2265 					 * Don't check read_mems_allowed_retry()
2266 					 * here - if mems_allowed was updated in
2267 					 * parallel, that was a harmless race
2268 					 * between allocation and the cpuset
2269 					 * update
2270 					 */
2271 					return object;
2272 				}
2273 			}
2274 		}
2275 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2276 #endif	/* CONFIG_NUMA */
2277 	return NULL;
2278 }
2279 
2280 /*
2281  * Get a partial slab, lock it and return it.
2282  */
2283 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2284 			 struct slab **ret_slab)
2285 {
2286 	void *object;
2287 	int searchnode = node;
2288 
2289 	if (node == NUMA_NO_NODE)
2290 		searchnode = numa_mem_id();
2291 
2292 	object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
2293 	if (object || node != NUMA_NO_NODE)
2294 		return object;
2295 
2296 	return get_any_partial(s, flags, ret_slab);
2297 }
2298 
2299 #ifdef CONFIG_PREEMPTION
2300 /*
2301  * Calculate the next globally unique transaction for disambiguation
2302  * during cmpxchg. The transactions start with the cpu number and are then
2303  * incremented by CONFIG_NR_CPUS.
2304  */
2305 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2306 #else
2307 /*
2308  * No preemption supported therefore also no need to check for
2309  * different cpus.
2310  */
2311 #define TID_STEP 1
2312 #endif
2313 
2314 static inline unsigned long next_tid(unsigned long tid)
2315 {
2316 	return tid + TID_STEP;
2317 }
2318 
2319 #ifdef SLUB_DEBUG_CMPXCHG
2320 static inline unsigned int tid_to_cpu(unsigned long tid)
2321 {
2322 	return tid % TID_STEP;
2323 }
2324 
2325 static inline unsigned long tid_to_event(unsigned long tid)
2326 {
2327 	return tid / TID_STEP;
2328 }
2329 #endif
2330 
2331 static inline unsigned int init_tid(int cpu)
2332 {
2333 	return cpu;
2334 }
2335 
2336 static inline void note_cmpxchg_failure(const char *n,
2337 		const struct kmem_cache *s, unsigned long tid)
2338 {
2339 #ifdef SLUB_DEBUG_CMPXCHG
2340 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2341 
2342 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2343 
2344 #ifdef CONFIG_PREEMPTION
2345 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2346 		pr_warn("due to cpu change %d -> %d\n",
2347 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2348 	else
2349 #endif
2350 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2351 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2352 			tid_to_event(tid), tid_to_event(actual_tid));
2353 	else
2354 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2355 			actual_tid, tid, next_tid(tid));
2356 #endif
2357 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2358 }
2359 
2360 static void init_kmem_cache_cpus(struct kmem_cache *s)
2361 {
2362 	int cpu;
2363 	struct kmem_cache_cpu *c;
2364 
2365 	for_each_possible_cpu(cpu) {
2366 		c = per_cpu_ptr(s->cpu_slab, cpu);
2367 		local_lock_init(&c->lock);
2368 		c->tid = init_tid(cpu);
2369 	}
2370 }
2371 
2372 /*
2373  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2374  * unfreezes the slabs and puts it on the proper list.
2375  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2376  * by the caller.
2377  */
2378 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2379 			    void *freelist)
2380 {
2381 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2382 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2383 	int free_delta = 0;
2384 	enum slab_modes mode = M_NONE;
2385 	void *nextfree, *freelist_iter, *freelist_tail;
2386 	int tail = DEACTIVATE_TO_HEAD;
2387 	unsigned long flags = 0;
2388 	struct slab new;
2389 	struct slab old;
2390 
2391 	if (slab->freelist) {
2392 		stat(s, DEACTIVATE_REMOTE_FREES);
2393 		tail = DEACTIVATE_TO_TAIL;
2394 	}
2395 
2396 	/*
2397 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2398 	 * remember the last object in freelist_tail for later splicing.
2399 	 */
2400 	freelist_tail = NULL;
2401 	freelist_iter = freelist;
2402 	while (freelist_iter) {
2403 		nextfree = get_freepointer(s, freelist_iter);
2404 
2405 		/*
2406 		 * If 'nextfree' is invalid, it is possible that the object at
2407 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2408 		 * starting at 'freelist_iter' by skipping them.
2409 		 */
2410 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2411 			break;
2412 
2413 		freelist_tail = freelist_iter;
2414 		free_delta++;
2415 
2416 		freelist_iter = nextfree;
2417 	}
2418 
2419 	/*
2420 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2421 	 * freelist to the head of slab's freelist.
2422 	 *
2423 	 * Ensure that the slab is unfrozen while the list presence
2424 	 * reflects the actual number of objects during unfreeze.
2425 	 *
2426 	 * We first perform cmpxchg holding lock and insert to list
2427 	 * when it succeed. If there is mismatch then the slab is not
2428 	 * unfrozen and number of objects in the slab may have changed.
2429 	 * Then release lock and retry cmpxchg again.
2430 	 */
2431 redo:
2432 
2433 	old.freelist = READ_ONCE(slab->freelist);
2434 	old.counters = READ_ONCE(slab->counters);
2435 	VM_BUG_ON(!old.frozen);
2436 
2437 	/* Determine target state of the slab */
2438 	new.counters = old.counters;
2439 	if (freelist_tail) {
2440 		new.inuse -= free_delta;
2441 		set_freepointer(s, freelist_tail, old.freelist);
2442 		new.freelist = freelist;
2443 	} else
2444 		new.freelist = old.freelist;
2445 
2446 	new.frozen = 0;
2447 
2448 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2449 		mode = M_FREE;
2450 	} else if (new.freelist) {
2451 		mode = M_PARTIAL;
2452 		/*
2453 		 * Taking the spinlock removes the possibility that
2454 		 * acquire_slab() will see a slab that is frozen
2455 		 */
2456 		spin_lock_irqsave(&n->list_lock, flags);
2457 	} else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2458 		mode = M_FULL;
2459 		/*
2460 		 * This also ensures that the scanning of full
2461 		 * slabs from diagnostic functions will not see
2462 		 * any frozen slabs.
2463 		 */
2464 		spin_lock_irqsave(&n->list_lock, flags);
2465 	} else {
2466 		mode = M_FULL_NOLIST;
2467 	}
2468 
2469 
2470 	if (!cmpxchg_double_slab(s, slab,
2471 				old.freelist, old.counters,
2472 				new.freelist, new.counters,
2473 				"unfreezing slab")) {
2474 		if (mode == M_PARTIAL || mode == M_FULL)
2475 			spin_unlock_irqrestore(&n->list_lock, flags);
2476 		goto redo;
2477 	}
2478 
2479 
2480 	if (mode == M_PARTIAL) {
2481 		add_partial(n, slab, tail);
2482 		spin_unlock_irqrestore(&n->list_lock, flags);
2483 		stat(s, tail);
2484 	} else if (mode == M_FREE) {
2485 		stat(s, DEACTIVATE_EMPTY);
2486 		discard_slab(s, slab);
2487 		stat(s, FREE_SLAB);
2488 	} else if (mode == M_FULL) {
2489 		add_full(s, n, slab);
2490 		spin_unlock_irqrestore(&n->list_lock, flags);
2491 		stat(s, DEACTIVATE_FULL);
2492 	} else if (mode == M_FULL_NOLIST) {
2493 		stat(s, DEACTIVATE_FULL);
2494 	}
2495 }
2496 
2497 #ifdef CONFIG_SLUB_CPU_PARTIAL
2498 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2499 {
2500 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2501 	struct slab *slab, *slab_to_discard = NULL;
2502 	unsigned long flags = 0;
2503 
2504 	while (partial_slab) {
2505 		struct slab new;
2506 		struct slab old;
2507 
2508 		slab = partial_slab;
2509 		partial_slab = slab->next;
2510 
2511 		n2 = get_node(s, slab_nid(slab));
2512 		if (n != n2) {
2513 			if (n)
2514 				spin_unlock_irqrestore(&n->list_lock, flags);
2515 
2516 			n = n2;
2517 			spin_lock_irqsave(&n->list_lock, flags);
2518 		}
2519 
2520 		do {
2521 
2522 			old.freelist = slab->freelist;
2523 			old.counters = slab->counters;
2524 			VM_BUG_ON(!old.frozen);
2525 
2526 			new.counters = old.counters;
2527 			new.freelist = old.freelist;
2528 
2529 			new.frozen = 0;
2530 
2531 		} while (!__cmpxchg_double_slab(s, slab,
2532 				old.freelist, old.counters,
2533 				new.freelist, new.counters,
2534 				"unfreezing slab"));
2535 
2536 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2537 			slab->next = slab_to_discard;
2538 			slab_to_discard = slab;
2539 		} else {
2540 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2541 			stat(s, FREE_ADD_PARTIAL);
2542 		}
2543 	}
2544 
2545 	if (n)
2546 		spin_unlock_irqrestore(&n->list_lock, flags);
2547 
2548 	while (slab_to_discard) {
2549 		slab = slab_to_discard;
2550 		slab_to_discard = slab_to_discard->next;
2551 
2552 		stat(s, DEACTIVATE_EMPTY);
2553 		discard_slab(s, slab);
2554 		stat(s, FREE_SLAB);
2555 	}
2556 }
2557 
2558 /*
2559  * Unfreeze all the cpu partial slabs.
2560  */
2561 static void unfreeze_partials(struct kmem_cache *s)
2562 {
2563 	struct slab *partial_slab;
2564 	unsigned long flags;
2565 
2566 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2567 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2568 	this_cpu_write(s->cpu_slab->partial, NULL);
2569 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2570 
2571 	if (partial_slab)
2572 		__unfreeze_partials(s, partial_slab);
2573 }
2574 
2575 static void unfreeze_partials_cpu(struct kmem_cache *s,
2576 				  struct kmem_cache_cpu *c)
2577 {
2578 	struct slab *partial_slab;
2579 
2580 	partial_slab = slub_percpu_partial(c);
2581 	c->partial = NULL;
2582 
2583 	if (partial_slab)
2584 		__unfreeze_partials(s, partial_slab);
2585 }
2586 
2587 /*
2588  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2589  * partial slab slot if available.
2590  *
2591  * If we did not find a slot then simply move all the partials to the
2592  * per node partial list.
2593  */
2594 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2595 {
2596 	struct slab *oldslab;
2597 	struct slab *slab_to_unfreeze = NULL;
2598 	unsigned long flags;
2599 	int slabs = 0;
2600 
2601 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2602 
2603 	oldslab = this_cpu_read(s->cpu_slab->partial);
2604 
2605 	if (oldslab) {
2606 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2607 			/*
2608 			 * Partial array is full. Move the existing set to the
2609 			 * per node partial list. Postpone the actual unfreezing
2610 			 * outside of the critical section.
2611 			 */
2612 			slab_to_unfreeze = oldslab;
2613 			oldslab = NULL;
2614 		} else {
2615 			slabs = oldslab->slabs;
2616 		}
2617 	}
2618 
2619 	slabs++;
2620 
2621 	slab->slabs = slabs;
2622 	slab->next = oldslab;
2623 
2624 	this_cpu_write(s->cpu_slab->partial, slab);
2625 
2626 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2627 
2628 	if (slab_to_unfreeze) {
2629 		__unfreeze_partials(s, slab_to_unfreeze);
2630 		stat(s, CPU_PARTIAL_DRAIN);
2631 	}
2632 }
2633 
2634 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2635 
2636 static inline void unfreeze_partials(struct kmem_cache *s) { }
2637 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2638 				  struct kmem_cache_cpu *c) { }
2639 
2640 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2641 
2642 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2643 {
2644 	unsigned long flags;
2645 	struct slab *slab;
2646 	void *freelist;
2647 
2648 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2649 
2650 	slab = c->slab;
2651 	freelist = c->freelist;
2652 
2653 	c->slab = NULL;
2654 	c->freelist = NULL;
2655 	c->tid = next_tid(c->tid);
2656 
2657 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2658 
2659 	if (slab) {
2660 		deactivate_slab(s, slab, freelist);
2661 		stat(s, CPUSLAB_FLUSH);
2662 	}
2663 }
2664 
2665 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2666 {
2667 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2668 	void *freelist = c->freelist;
2669 	struct slab *slab = c->slab;
2670 
2671 	c->slab = NULL;
2672 	c->freelist = NULL;
2673 	c->tid = next_tid(c->tid);
2674 
2675 	if (slab) {
2676 		deactivate_slab(s, slab, freelist);
2677 		stat(s, CPUSLAB_FLUSH);
2678 	}
2679 
2680 	unfreeze_partials_cpu(s, c);
2681 }
2682 
2683 struct slub_flush_work {
2684 	struct work_struct work;
2685 	struct kmem_cache *s;
2686 	bool skip;
2687 };
2688 
2689 /*
2690  * Flush cpu slab.
2691  *
2692  * Called from CPU work handler with migration disabled.
2693  */
2694 static void flush_cpu_slab(struct work_struct *w)
2695 {
2696 	struct kmem_cache *s;
2697 	struct kmem_cache_cpu *c;
2698 	struct slub_flush_work *sfw;
2699 
2700 	sfw = container_of(w, struct slub_flush_work, work);
2701 
2702 	s = sfw->s;
2703 	c = this_cpu_ptr(s->cpu_slab);
2704 
2705 	if (c->slab)
2706 		flush_slab(s, c);
2707 
2708 	unfreeze_partials(s);
2709 }
2710 
2711 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2712 {
2713 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2714 
2715 	return c->slab || slub_percpu_partial(c);
2716 }
2717 
2718 static DEFINE_MUTEX(flush_lock);
2719 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2720 
2721 static void flush_all_cpus_locked(struct kmem_cache *s)
2722 {
2723 	struct slub_flush_work *sfw;
2724 	unsigned int cpu;
2725 
2726 	lockdep_assert_cpus_held();
2727 	mutex_lock(&flush_lock);
2728 
2729 	for_each_online_cpu(cpu) {
2730 		sfw = &per_cpu(slub_flush, cpu);
2731 		if (!has_cpu_slab(cpu, s)) {
2732 			sfw->skip = true;
2733 			continue;
2734 		}
2735 		INIT_WORK(&sfw->work, flush_cpu_slab);
2736 		sfw->skip = false;
2737 		sfw->s = s;
2738 		queue_work_on(cpu, flushwq, &sfw->work);
2739 	}
2740 
2741 	for_each_online_cpu(cpu) {
2742 		sfw = &per_cpu(slub_flush, cpu);
2743 		if (sfw->skip)
2744 			continue;
2745 		flush_work(&sfw->work);
2746 	}
2747 
2748 	mutex_unlock(&flush_lock);
2749 }
2750 
2751 static void flush_all(struct kmem_cache *s)
2752 {
2753 	cpus_read_lock();
2754 	flush_all_cpus_locked(s);
2755 	cpus_read_unlock();
2756 }
2757 
2758 /*
2759  * Use the cpu notifier to insure that the cpu slabs are flushed when
2760  * necessary.
2761  */
2762 static int slub_cpu_dead(unsigned int cpu)
2763 {
2764 	struct kmem_cache *s;
2765 
2766 	mutex_lock(&slab_mutex);
2767 	list_for_each_entry(s, &slab_caches, list)
2768 		__flush_cpu_slab(s, cpu);
2769 	mutex_unlock(&slab_mutex);
2770 	return 0;
2771 }
2772 
2773 /*
2774  * Check if the objects in a per cpu structure fit numa
2775  * locality expectations.
2776  */
2777 static inline int node_match(struct slab *slab, int node)
2778 {
2779 #ifdef CONFIG_NUMA
2780 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2781 		return 0;
2782 #endif
2783 	return 1;
2784 }
2785 
2786 #ifdef CONFIG_SLUB_DEBUG
2787 static int count_free(struct slab *slab)
2788 {
2789 	return slab->objects - slab->inuse;
2790 }
2791 
2792 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2793 {
2794 	return atomic_long_read(&n->total_objects);
2795 }
2796 #endif /* CONFIG_SLUB_DEBUG */
2797 
2798 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2799 static unsigned long count_partial(struct kmem_cache_node *n,
2800 					int (*get_count)(struct slab *))
2801 {
2802 	unsigned long flags;
2803 	unsigned long x = 0;
2804 	struct slab *slab;
2805 
2806 	spin_lock_irqsave(&n->list_lock, flags);
2807 	list_for_each_entry(slab, &n->partial, slab_list)
2808 		x += get_count(slab);
2809 	spin_unlock_irqrestore(&n->list_lock, flags);
2810 	return x;
2811 }
2812 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2813 
2814 static noinline void
2815 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2816 {
2817 #ifdef CONFIG_SLUB_DEBUG
2818 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2819 				      DEFAULT_RATELIMIT_BURST);
2820 	int node;
2821 	struct kmem_cache_node *n;
2822 
2823 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2824 		return;
2825 
2826 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2827 		nid, gfpflags, &gfpflags);
2828 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2829 		s->name, s->object_size, s->size, oo_order(s->oo),
2830 		oo_order(s->min));
2831 
2832 	if (oo_order(s->min) > get_order(s->object_size))
2833 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2834 			s->name);
2835 
2836 	for_each_kmem_cache_node(s, node, n) {
2837 		unsigned long nr_slabs;
2838 		unsigned long nr_objs;
2839 		unsigned long nr_free;
2840 
2841 		nr_free  = count_partial(n, count_free);
2842 		nr_slabs = node_nr_slabs(n);
2843 		nr_objs  = node_nr_objs(n);
2844 
2845 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2846 			node, nr_slabs, nr_objs, nr_free);
2847 	}
2848 #endif
2849 }
2850 
2851 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2852 {
2853 	if (unlikely(slab_test_pfmemalloc(slab)))
2854 		return gfp_pfmemalloc_allowed(gfpflags);
2855 
2856 	return true;
2857 }
2858 
2859 /*
2860  * Check the slab->freelist and either transfer the freelist to the
2861  * per cpu freelist or deactivate the slab.
2862  *
2863  * The slab is still frozen if the return value is not NULL.
2864  *
2865  * If this function returns NULL then the slab has been unfrozen.
2866  */
2867 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2868 {
2869 	struct slab new;
2870 	unsigned long counters;
2871 	void *freelist;
2872 
2873 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2874 
2875 	do {
2876 		freelist = slab->freelist;
2877 		counters = slab->counters;
2878 
2879 		new.counters = counters;
2880 		VM_BUG_ON(!new.frozen);
2881 
2882 		new.inuse = slab->objects;
2883 		new.frozen = freelist != NULL;
2884 
2885 	} while (!__cmpxchg_double_slab(s, slab,
2886 		freelist, counters,
2887 		NULL, new.counters,
2888 		"get_freelist"));
2889 
2890 	return freelist;
2891 }
2892 
2893 /*
2894  * Slow path. The lockless freelist is empty or we need to perform
2895  * debugging duties.
2896  *
2897  * Processing is still very fast if new objects have been freed to the
2898  * regular freelist. In that case we simply take over the regular freelist
2899  * as the lockless freelist and zap the regular freelist.
2900  *
2901  * If that is not working then we fall back to the partial lists. We take the
2902  * first element of the freelist as the object to allocate now and move the
2903  * rest of the freelist to the lockless freelist.
2904  *
2905  * And if we were unable to get a new slab from the partial slab lists then
2906  * we need to allocate a new slab. This is the slowest path since it involves
2907  * a call to the page allocator and the setup of a new slab.
2908  *
2909  * Version of __slab_alloc to use when we know that preemption is
2910  * already disabled (which is the case for bulk allocation).
2911  */
2912 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2913 			  unsigned long addr, struct kmem_cache_cpu *c)
2914 {
2915 	void *freelist;
2916 	struct slab *slab;
2917 	unsigned long flags;
2918 
2919 	stat(s, ALLOC_SLOWPATH);
2920 
2921 reread_slab:
2922 
2923 	slab = READ_ONCE(c->slab);
2924 	if (!slab) {
2925 		/*
2926 		 * if the node is not online or has no normal memory, just
2927 		 * ignore the node constraint
2928 		 */
2929 		if (unlikely(node != NUMA_NO_NODE &&
2930 			     !node_isset(node, slab_nodes)))
2931 			node = NUMA_NO_NODE;
2932 		goto new_slab;
2933 	}
2934 redo:
2935 
2936 	if (unlikely(!node_match(slab, node))) {
2937 		/*
2938 		 * same as above but node_match() being false already
2939 		 * implies node != NUMA_NO_NODE
2940 		 */
2941 		if (!node_isset(node, slab_nodes)) {
2942 			node = NUMA_NO_NODE;
2943 		} else {
2944 			stat(s, ALLOC_NODE_MISMATCH);
2945 			goto deactivate_slab;
2946 		}
2947 	}
2948 
2949 	/*
2950 	 * By rights, we should be searching for a slab page that was
2951 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2952 	 * information when the page leaves the per-cpu allocator
2953 	 */
2954 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
2955 		goto deactivate_slab;
2956 
2957 	/* must check again c->slab in case we got preempted and it changed */
2958 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2959 	if (unlikely(slab != c->slab)) {
2960 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2961 		goto reread_slab;
2962 	}
2963 	freelist = c->freelist;
2964 	if (freelist)
2965 		goto load_freelist;
2966 
2967 	freelist = get_freelist(s, slab);
2968 
2969 	if (!freelist) {
2970 		c->slab = NULL;
2971 		c->tid = next_tid(c->tid);
2972 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2973 		stat(s, DEACTIVATE_BYPASS);
2974 		goto new_slab;
2975 	}
2976 
2977 	stat(s, ALLOC_REFILL);
2978 
2979 load_freelist:
2980 
2981 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2982 
2983 	/*
2984 	 * freelist is pointing to the list of objects to be used.
2985 	 * slab is pointing to the slab from which the objects are obtained.
2986 	 * That slab must be frozen for per cpu allocations to work.
2987 	 */
2988 	VM_BUG_ON(!c->slab->frozen);
2989 	c->freelist = get_freepointer(s, freelist);
2990 	c->tid = next_tid(c->tid);
2991 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2992 	return freelist;
2993 
2994 deactivate_slab:
2995 
2996 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2997 	if (slab != c->slab) {
2998 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2999 		goto reread_slab;
3000 	}
3001 	freelist = c->freelist;
3002 	c->slab = NULL;
3003 	c->freelist = NULL;
3004 	c->tid = next_tid(c->tid);
3005 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3006 	deactivate_slab(s, slab, freelist);
3007 
3008 new_slab:
3009 
3010 	if (slub_percpu_partial(c)) {
3011 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3012 		if (unlikely(c->slab)) {
3013 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3014 			goto reread_slab;
3015 		}
3016 		if (unlikely(!slub_percpu_partial(c))) {
3017 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3018 			/* we were preempted and partial list got empty */
3019 			goto new_objects;
3020 		}
3021 
3022 		slab = c->slab = slub_percpu_partial(c);
3023 		slub_set_percpu_partial(c, slab);
3024 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3025 		stat(s, CPU_PARTIAL_ALLOC);
3026 		goto redo;
3027 	}
3028 
3029 new_objects:
3030 
3031 	freelist = get_partial(s, gfpflags, node, &slab);
3032 	if (freelist)
3033 		goto check_new_slab;
3034 
3035 	slub_put_cpu_ptr(s->cpu_slab);
3036 	slab = new_slab(s, gfpflags, node);
3037 	c = slub_get_cpu_ptr(s->cpu_slab);
3038 
3039 	if (unlikely(!slab)) {
3040 		slab_out_of_memory(s, gfpflags, node);
3041 		return NULL;
3042 	}
3043 
3044 	/*
3045 	 * No other reference to the slab yet so we can
3046 	 * muck around with it freely without cmpxchg
3047 	 */
3048 	freelist = slab->freelist;
3049 	slab->freelist = NULL;
3050 
3051 	stat(s, ALLOC_SLAB);
3052 
3053 check_new_slab:
3054 
3055 	if (kmem_cache_debug(s)) {
3056 		if (!alloc_debug_processing(s, slab, freelist, addr)) {
3057 			/* Slab failed checks. Next slab needed */
3058 			goto new_slab;
3059 		} else {
3060 			/*
3061 			 * For debug case, we don't load freelist so that all
3062 			 * allocations go through alloc_debug_processing()
3063 			 */
3064 			goto return_single;
3065 		}
3066 	}
3067 
3068 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3069 		/*
3070 		 * For !pfmemalloc_match() case we don't load freelist so that
3071 		 * we don't make further mismatched allocations easier.
3072 		 */
3073 		goto return_single;
3074 
3075 retry_load_slab:
3076 
3077 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3078 	if (unlikely(c->slab)) {
3079 		void *flush_freelist = c->freelist;
3080 		struct slab *flush_slab = c->slab;
3081 
3082 		c->slab = NULL;
3083 		c->freelist = NULL;
3084 		c->tid = next_tid(c->tid);
3085 
3086 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3087 
3088 		deactivate_slab(s, flush_slab, flush_freelist);
3089 
3090 		stat(s, CPUSLAB_FLUSH);
3091 
3092 		goto retry_load_slab;
3093 	}
3094 	c->slab = slab;
3095 
3096 	goto load_freelist;
3097 
3098 return_single:
3099 
3100 	deactivate_slab(s, slab, get_freepointer(s, freelist));
3101 	return freelist;
3102 }
3103 
3104 /*
3105  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3106  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3107  * pointer.
3108  */
3109 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3110 			  unsigned long addr, struct kmem_cache_cpu *c)
3111 {
3112 	void *p;
3113 
3114 #ifdef CONFIG_PREEMPT_COUNT
3115 	/*
3116 	 * We may have been preempted and rescheduled on a different
3117 	 * cpu before disabling preemption. Need to reload cpu area
3118 	 * pointer.
3119 	 */
3120 	c = slub_get_cpu_ptr(s->cpu_slab);
3121 #endif
3122 
3123 	p = ___slab_alloc(s, gfpflags, node, addr, c);
3124 #ifdef CONFIG_PREEMPT_COUNT
3125 	slub_put_cpu_ptr(s->cpu_slab);
3126 #endif
3127 	return p;
3128 }
3129 
3130 /*
3131  * If the object has been wiped upon free, make sure it's fully initialized by
3132  * zeroing out freelist pointer.
3133  */
3134 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3135 						   void *obj)
3136 {
3137 	if (unlikely(slab_want_init_on_free(s)) && obj)
3138 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3139 			0, sizeof(void *));
3140 }
3141 
3142 /*
3143  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3144  * have the fastpath folded into their functions. So no function call
3145  * overhead for requests that can be satisfied on the fastpath.
3146  *
3147  * The fastpath works by first checking if the lockless freelist can be used.
3148  * If not then __slab_alloc is called for slow processing.
3149  *
3150  * Otherwise we can simply pick the next object from the lockless free list.
3151  */
3152 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3153 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3154 {
3155 	void *object;
3156 	struct kmem_cache_cpu *c;
3157 	struct slab *slab;
3158 	unsigned long tid;
3159 	struct obj_cgroup *objcg = NULL;
3160 	bool init = false;
3161 
3162 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3163 	if (!s)
3164 		return NULL;
3165 
3166 	object = kfence_alloc(s, orig_size, gfpflags);
3167 	if (unlikely(object))
3168 		goto out;
3169 
3170 redo:
3171 	/*
3172 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3173 	 * enabled. We may switch back and forth between cpus while
3174 	 * reading from one cpu area. That does not matter as long
3175 	 * as we end up on the original cpu again when doing the cmpxchg.
3176 	 *
3177 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3178 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3179 	 * the tid. If we are preempted and switched to another cpu between the
3180 	 * two reads, it's OK as the two are still associated with the same cpu
3181 	 * and cmpxchg later will validate the cpu.
3182 	 */
3183 	c = raw_cpu_ptr(s->cpu_slab);
3184 	tid = READ_ONCE(c->tid);
3185 
3186 	/*
3187 	 * Irqless object alloc/free algorithm used here depends on sequence
3188 	 * of fetching cpu_slab's data. tid should be fetched before anything
3189 	 * on c to guarantee that object and slab associated with previous tid
3190 	 * won't be used with current tid. If we fetch tid first, object and
3191 	 * slab could be one associated with next tid and our alloc/free
3192 	 * request will be failed. In this case, we will retry. So, no problem.
3193 	 */
3194 	barrier();
3195 
3196 	/*
3197 	 * The transaction ids are globally unique per cpu and per operation on
3198 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3199 	 * occurs on the right processor and that there was no operation on the
3200 	 * linked list in between.
3201 	 */
3202 
3203 	object = c->freelist;
3204 	slab = c->slab;
3205 	/*
3206 	 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3207 	 * slowpath has taken the local_lock_irqsave(), it is not protected
3208 	 * against a fast path operation in an irq handler. So we need to take
3209 	 * the slow path which uses local_lock. It is still relatively fast if
3210 	 * there is a suitable cpu freelist.
3211 	 */
3212 	if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3213 	    unlikely(!object || !slab || !node_match(slab, node))) {
3214 		object = __slab_alloc(s, gfpflags, node, addr, c);
3215 	} else {
3216 		void *next_object = get_freepointer_safe(s, object);
3217 
3218 		/*
3219 		 * The cmpxchg will only match if there was no additional
3220 		 * operation and if we are on the right processor.
3221 		 *
3222 		 * The cmpxchg does the following atomically (without lock
3223 		 * semantics!)
3224 		 * 1. Relocate first pointer to the current per cpu area.
3225 		 * 2. Verify that tid and freelist have not been changed
3226 		 * 3. If they were not changed replace tid and freelist
3227 		 *
3228 		 * Since this is without lock semantics the protection is only
3229 		 * against code executing on this cpu *not* from access by
3230 		 * other cpus.
3231 		 */
3232 		if (unlikely(!this_cpu_cmpxchg_double(
3233 				s->cpu_slab->freelist, s->cpu_slab->tid,
3234 				object, tid,
3235 				next_object, next_tid(tid)))) {
3236 
3237 			note_cmpxchg_failure("slab_alloc", s, tid);
3238 			goto redo;
3239 		}
3240 		prefetch_freepointer(s, next_object);
3241 		stat(s, ALLOC_FASTPATH);
3242 	}
3243 
3244 	maybe_wipe_obj_freeptr(s, object);
3245 	init = slab_want_init_on_alloc(gfpflags, s);
3246 
3247 out:
3248 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3249 
3250 	return object;
3251 }
3252 
3253 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3254 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3255 {
3256 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3257 }
3258 
3259 static __always_inline
3260 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3261 			     gfp_t gfpflags)
3262 {
3263 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3264 
3265 	trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size,
3266 				s->size, gfpflags);
3267 
3268 	return ret;
3269 }
3270 
3271 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3272 {
3273 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3274 }
3275 EXPORT_SYMBOL(kmem_cache_alloc);
3276 
3277 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3278 			   gfp_t gfpflags)
3279 {
3280 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3281 }
3282 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3283 
3284 #ifdef CONFIG_TRACING
3285 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3286 {
3287 	void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
3288 	trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags);
3289 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3290 	return ret;
3291 }
3292 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3293 #endif
3294 
3295 #ifdef CONFIG_NUMA
3296 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3297 {
3298 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3299 
3300 	trace_kmem_cache_alloc_node(_RET_IP_, ret, s,
3301 				    s->object_size, s->size, gfpflags, node);
3302 
3303 	return ret;
3304 }
3305 EXPORT_SYMBOL(kmem_cache_alloc_node);
3306 
3307 #ifdef CONFIG_TRACING
3308 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3309 				    gfp_t gfpflags,
3310 				    int node, size_t size)
3311 {
3312 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
3313 
3314 	trace_kmalloc_node(_RET_IP_, ret, s,
3315 			   size, s->size, gfpflags, node);
3316 
3317 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3318 	return ret;
3319 }
3320 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3321 #endif
3322 #endif	/* CONFIG_NUMA */
3323 
3324 /*
3325  * Slow path handling. This may still be called frequently since objects
3326  * have a longer lifetime than the cpu slabs in most processing loads.
3327  *
3328  * So we still attempt to reduce cache line usage. Just take the slab
3329  * lock and free the item. If there is no additional partial slab
3330  * handling required then we can return immediately.
3331  */
3332 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3333 			void *head, void *tail, int cnt,
3334 			unsigned long addr)
3335 
3336 {
3337 	void *prior;
3338 	int was_frozen;
3339 	struct slab new;
3340 	unsigned long counters;
3341 	struct kmem_cache_node *n = NULL;
3342 	unsigned long flags;
3343 
3344 	stat(s, FREE_SLOWPATH);
3345 
3346 	if (kfence_free(head))
3347 		return;
3348 
3349 	if (kmem_cache_debug(s) &&
3350 	    !free_debug_processing(s, slab, head, tail, cnt, addr))
3351 		return;
3352 
3353 	do {
3354 		if (unlikely(n)) {
3355 			spin_unlock_irqrestore(&n->list_lock, flags);
3356 			n = NULL;
3357 		}
3358 		prior = slab->freelist;
3359 		counters = slab->counters;
3360 		set_freepointer(s, tail, prior);
3361 		new.counters = counters;
3362 		was_frozen = new.frozen;
3363 		new.inuse -= cnt;
3364 		if ((!new.inuse || !prior) && !was_frozen) {
3365 
3366 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3367 
3368 				/*
3369 				 * Slab was on no list before and will be
3370 				 * partially empty
3371 				 * We can defer the list move and instead
3372 				 * freeze it.
3373 				 */
3374 				new.frozen = 1;
3375 
3376 			} else { /* Needs to be taken off a list */
3377 
3378 				n = get_node(s, slab_nid(slab));
3379 				/*
3380 				 * Speculatively acquire the list_lock.
3381 				 * If the cmpxchg does not succeed then we may
3382 				 * drop the list_lock without any processing.
3383 				 *
3384 				 * Otherwise the list_lock will synchronize with
3385 				 * other processors updating the list of slabs.
3386 				 */
3387 				spin_lock_irqsave(&n->list_lock, flags);
3388 
3389 			}
3390 		}
3391 
3392 	} while (!cmpxchg_double_slab(s, slab,
3393 		prior, counters,
3394 		head, new.counters,
3395 		"__slab_free"));
3396 
3397 	if (likely(!n)) {
3398 
3399 		if (likely(was_frozen)) {
3400 			/*
3401 			 * The list lock was not taken therefore no list
3402 			 * activity can be necessary.
3403 			 */
3404 			stat(s, FREE_FROZEN);
3405 		} else if (new.frozen) {
3406 			/*
3407 			 * If we just froze the slab then put it onto the
3408 			 * per cpu partial list.
3409 			 */
3410 			put_cpu_partial(s, slab, 1);
3411 			stat(s, CPU_PARTIAL_FREE);
3412 		}
3413 
3414 		return;
3415 	}
3416 
3417 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3418 		goto slab_empty;
3419 
3420 	/*
3421 	 * Objects left in the slab. If it was not on the partial list before
3422 	 * then add it.
3423 	 */
3424 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3425 		remove_full(s, n, slab);
3426 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3427 		stat(s, FREE_ADD_PARTIAL);
3428 	}
3429 	spin_unlock_irqrestore(&n->list_lock, flags);
3430 	return;
3431 
3432 slab_empty:
3433 	if (prior) {
3434 		/*
3435 		 * Slab on the partial list.
3436 		 */
3437 		remove_partial(n, slab);
3438 		stat(s, FREE_REMOVE_PARTIAL);
3439 	} else {
3440 		/* Slab must be on the full list */
3441 		remove_full(s, n, slab);
3442 	}
3443 
3444 	spin_unlock_irqrestore(&n->list_lock, flags);
3445 	stat(s, FREE_SLAB);
3446 	discard_slab(s, slab);
3447 }
3448 
3449 /*
3450  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3451  * can perform fastpath freeing without additional function calls.
3452  *
3453  * The fastpath is only possible if we are freeing to the current cpu slab
3454  * of this processor. This typically the case if we have just allocated
3455  * the item before.
3456  *
3457  * If fastpath is not possible then fall back to __slab_free where we deal
3458  * with all sorts of special processing.
3459  *
3460  * Bulk free of a freelist with several objects (all pointing to the
3461  * same slab) possible by specifying head and tail ptr, plus objects
3462  * count (cnt). Bulk free indicated by tail pointer being set.
3463  */
3464 static __always_inline void do_slab_free(struct kmem_cache *s,
3465 				struct slab *slab, void *head, void *tail,
3466 				int cnt, unsigned long addr)
3467 {
3468 	void *tail_obj = tail ? : head;
3469 	struct kmem_cache_cpu *c;
3470 	unsigned long tid;
3471 
3472 redo:
3473 	/*
3474 	 * Determine the currently cpus per cpu slab.
3475 	 * The cpu may change afterward. However that does not matter since
3476 	 * data is retrieved via this pointer. If we are on the same cpu
3477 	 * during the cmpxchg then the free will succeed.
3478 	 */
3479 	c = raw_cpu_ptr(s->cpu_slab);
3480 	tid = READ_ONCE(c->tid);
3481 
3482 	/* Same with comment on barrier() in slab_alloc_node() */
3483 	barrier();
3484 
3485 	if (likely(slab == c->slab)) {
3486 #ifndef CONFIG_PREEMPT_RT
3487 		void **freelist = READ_ONCE(c->freelist);
3488 
3489 		set_freepointer(s, tail_obj, freelist);
3490 
3491 		if (unlikely(!this_cpu_cmpxchg_double(
3492 				s->cpu_slab->freelist, s->cpu_slab->tid,
3493 				freelist, tid,
3494 				head, next_tid(tid)))) {
3495 
3496 			note_cmpxchg_failure("slab_free", s, tid);
3497 			goto redo;
3498 		}
3499 #else /* CONFIG_PREEMPT_RT */
3500 		/*
3501 		 * We cannot use the lockless fastpath on PREEMPT_RT because if
3502 		 * a slowpath has taken the local_lock_irqsave(), it is not
3503 		 * protected against a fast path operation in an irq handler. So
3504 		 * we need to take the local_lock. We shouldn't simply defer to
3505 		 * __slab_free() as that wouldn't use the cpu freelist at all.
3506 		 */
3507 		void **freelist;
3508 
3509 		local_lock(&s->cpu_slab->lock);
3510 		c = this_cpu_ptr(s->cpu_slab);
3511 		if (unlikely(slab != c->slab)) {
3512 			local_unlock(&s->cpu_slab->lock);
3513 			goto redo;
3514 		}
3515 		tid = c->tid;
3516 		freelist = c->freelist;
3517 
3518 		set_freepointer(s, tail_obj, freelist);
3519 		c->freelist = head;
3520 		c->tid = next_tid(tid);
3521 
3522 		local_unlock(&s->cpu_slab->lock);
3523 #endif
3524 		stat(s, FREE_FASTPATH);
3525 	} else
3526 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3527 
3528 }
3529 
3530 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3531 				      void *head, void *tail, void **p, int cnt,
3532 				      unsigned long addr)
3533 {
3534 	memcg_slab_free_hook(s, slab, p, cnt);
3535 	/*
3536 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3537 	 * to remove objects, whose reuse must be delayed.
3538 	 */
3539 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3540 		do_slab_free(s, slab, head, tail, cnt, addr);
3541 }
3542 
3543 #ifdef CONFIG_KASAN_GENERIC
3544 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3545 {
3546 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3547 }
3548 #endif
3549 
3550 void kmem_cache_free(struct kmem_cache *s, void *x)
3551 {
3552 	s = cache_from_obj(s, x);
3553 	if (!s)
3554 		return;
3555 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3556 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3557 }
3558 EXPORT_SYMBOL(kmem_cache_free);
3559 
3560 struct detached_freelist {
3561 	struct slab *slab;
3562 	void *tail;
3563 	void *freelist;
3564 	int cnt;
3565 	struct kmem_cache *s;
3566 };
3567 
3568 static inline void free_large_kmalloc(struct folio *folio, void *object)
3569 {
3570 	unsigned int order = folio_order(folio);
3571 
3572 	if (WARN_ON_ONCE(order == 0))
3573 		pr_warn_once("object pointer: 0x%p\n", object);
3574 
3575 	kfree_hook(object);
3576 	mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3577 			      -(PAGE_SIZE << order));
3578 	__free_pages(folio_page(folio, 0), order);
3579 }
3580 
3581 /*
3582  * This function progressively scans the array with free objects (with
3583  * a limited look ahead) and extract objects belonging to the same
3584  * slab.  It builds a detached freelist directly within the given
3585  * slab/objects.  This can happen without any need for
3586  * synchronization, because the objects are owned by running process.
3587  * The freelist is build up as a single linked list in the objects.
3588  * The idea is, that this detached freelist can then be bulk
3589  * transferred to the real freelist(s), but only requiring a single
3590  * synchronization primitive.  Look ahead in the array is limited due
3591  * to performance reasons.
3592  */
3593 static inline
3594 int build_detached_freelist(struct kmem_cache *s, size_t size,
3595 			    void **p, struct detached_freelist *df)
3596 {
3597 	int lookahead = 3;
3598 	void *object;
3599 	struct folio *folio;
3600 	size_t same;
3601 
3602 	object = p[--size];
3603 	folio = virt_to_folio(object);
3604 	if (!s) {
3605 		/* Handle kalloc'ed objects */
3606 		if (unlikely(!folio_test_slab(folio))) {
3607 			free_large_kmalloc(folio, object);
3608 			df->slab = NULL;
3609 			return size;
3610 		}
3611 		/* Derive kmem_cache from object */
3612 		df->slab = folio_slab(folio);
3613 		df->s = df->slab->slab_cache;
3614 	} else {
3615 		df->slab = folio_slab(folio);
3616 		df->s = cache_from_obj(s, object); /* Support for memcg */
3617 	}
3618 
3619 	/* Start new detached freelist */
3620 	df->tail = object;
3621 	df->freelist = object;
3622 	df->cnt = 1;
3623 
3624 	if (is_kfence_address(object))
3625 		return size;
3626 
3627 	set_freepointer(df->s, object, NULL);
3628 
3629 	same = size;
3630 	while (size) {
3631 		object = p[--size];
3632 		/* df->slab is always set at this point */
3633 		if (df->slab == virt_to_slab(object)) {
3634 			/* Opportunity build freelist */
3635 			set_freepointer(df->s, object, df->freelist);
3636 			df->freelist = object;
3637 			df->cnt++;
3638 			same--;
3639 			if (size != same)
3640 				swap(p[size], p[same]);
3641 			continue;
3642 		}
3643 
3644 		/* Limit look ahead search */
3645 		if (!--lookahead)
3646 			break;
3647 	}
3648 
3649 	return same;
3650 }
3651 
3652 /* Note that interrupts must be enabled when calling this function. */
3653 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3654 {
3655 	if (!size)
3656 		return;
3657 
3658 	do {
3659 		struct detached_freelist df;
3660 
3661 		size = build_detached_freelist(s, size, p, &df);
3662 		if (!df.slab)
3663 			continue;
3664 
3665 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3666 			  _RET_IP_);
3667 	} while (likely(size));
3668 }
3669 EXPORT_SYMBOL(kmem_cache_free_bulk);
3670 
3671 /* Note that interrupts must be enabled when calling this function. */
3672 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3673 			  void **p)
3674 {
3675 	struct kmem_cache_cpu *c;
3676 	int i;
3677 	struct obj_cgroup *objcg = NULL;
3678 
3679 	/* memcg and kmem_cache debug support */
3680 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3681 	if (unlikely(!s))
3682 		return false;
3683 	/*
3684 	 * Drain objects in the per cpu slab, while disabling local
3685 	 * IRQs, which protects against PREEMPT and interrupts
3686 	 * handlers invoking normal fastpath.
3687 	 */
3688 	c = slub_get_cpu_ptr(s->cpu_slab);
3689 	local_lock_irq(&s->cpu_slab->lock);
3690 
3691 	for (i = 0; i < size; i++) {
3692 		void *object = kfence_alloc(s, s->object_size, flags);
3693 
3694 		if (unlikely(object)) {
3695 			p[i] = object;
3696 			continue;
3697 		}
3698 
3699 		object = c->freelist;
3700 		if (unlikely(!object)) {
3701 			/*
3702 			 * We may have removed an object from c->freelist using
3703 			 * the fastpath in the previous iteration; in that case,
3704 			 * c->tid has not been bumped yet.
3705 			 * Since ___slab_alloc() may reenable interrupts while
3706 			 * allocating memory, we should bump c->tid now.
3707 			 */
3708 			c->tid = next_tid(c->tid);
3709 
3710 			local_unlock_irq(&s->cpu_slab->lock);
3711 
3712 			/*
3713 			 * Invoking slow path likely have side-effect
3714 			 * of re-populating per CPU c->freelist
3715 			 */
3716 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3717 					    _RET_IP_, c);
3718 			if (unlikely(!p[i]))
3719 				goto error;
3720 
3721 			c = this_cpu_ptr(s->cpu_slab);
3722 			maybe_wipe_obj_freeptr(s, p[i]);
3723 
3724 			local_lock_irq(&s->cpu_slab->lock);
3725 
3726 			continue; /* goto for-loop */
3727 		}
3728 		c->freelist = get_freepointer(s, object);
3729 		p[i] = object;
3730 		maybe_wipe_obj_freeptr(s, p[i]);
3731 	}
3732 	c->tid = next_tid(c->tid);
3733 	local_unlock_irq(&s->cpu_slab->lock);
3734 	slub_put_cpu_ptr(s->cpu_slab);
3735 
3736 	/*
3737 	 * memcg and kmem_cache debug support and memory initialization.
3738 	 * Done outside of the IRQ disabled fastpath loop.
3739 	 */
3740 	slab_post_alloc_hook(s, objcg, flags, size, p,
3741 				slab_want_init_on_alloc(flags, s));
3742 	return i;
3743 error:
3744 	slub_put_cpu_ptr(s->cpu_slab);
3745 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3746 	kmem_cache_free_bulk(s, i, p);
3747 	return 0;
3748 }
3749 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3750 
3751 
3752 /*
3753  * Object placement in a slab is made very easy because we always start at
3754  * offset 0. If we tune the size of the object to the alignment then we can
3755  * get the required alignment by putting one properly sized object after
3756  * another.
3757  *
3758  * Notice that the allocation order determines the sizes of the per cpu
3759  * caches. Each processor has always one slab available for allocations.
3760  * Increasing the allocation order reduces the number of times that slabs
3761  * must be moved on and off the partial lists and is therefore a factor in
3762  * locking overhead.
3763  */
3764 
3765 /*
3766  * Minimum / Maximum order of slab pages. This influences locking overhead
3767  * and slab fragmentation. A higher order reduces the number of partial slabs
3768  * and increases the number of allocations possible without having to
3769  * take the list_lock.
3770  */
3771 static unsigned int slub_min_order;
3772 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3773 static unsigned int slub_min_objects;
3774 
3775 /*
3776  * Calculate the order of allocation given an slab object size.
3777  *
3778  * The order of allocation has significant impact on performance and other
3779  * system components. Generally order 0 allocations should be preferred since
3780  * order 0 does not cause fragmentation in the page allocator. Larger objects
3781  * be problematic to put into order 0 slabs because there may be too much
3782  * unused space left. We go to a higher order if more than 1/16th of the slab
3783  * would be wasted.
3784  *
3785  * In order to reach satisfactory performance we must ensure that a minimum
3786  * number of objects is in one slab. Otherwise we may generate too much
3787  * activity on the partial lists which requires taking the list_lock. This is
3788  * less a concern for large slabs though which are rarely used.
3789  *
3790  * slub_max_order specifies the order where we begin to stop considering the
3791  * number of objects in a slab as critical. If we reach slub_max_order then
3792  * we try to keep the page order as low as possible. So we accept more waste
3793  * of space in favor of a small page order.
3794  *
3795  * Higher order allocations also allow the placement of more objects in a
3796  * slab and thereby reduce object handling overhead. If the user has
3797  * requested a higher minimum order then we start with that one instead of
3798  * the smallest order which will fit the object.
3799  */
3800 static inline unsigned int calc_slab_order(unsigned int size,
3801 		unsigned int min_objects, unsigned int max_order,
3802 		unsigned int fract_leftover)
3803 {
3804 	unsigned int min_order = slub_min_order;
3805 	unsigned int order;
3806 
3807 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3808 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3809 
3810 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3811 			order <= max_order; order++) {
3812 
3813 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3814 		unsigned int rem;
3815 
3816 		rem = slab_size % size;
3817 
3818 		if (rem <= slab_size / fract_leftover)
3819 			break;
3820 	}
3821 
3822 	return order;
3823 }
3824 
3825 static inline int calculate_order(unsigned int size)
3826 {
3827 	unsigned int order;
3828 	unsigned int min_objects;
3829 	unsigned int max_objects;
3830 	unsigned int nr_cpus;
3831 
3832 	/*
3833 	 * Attempt to find best configuration for a slab. This
3834 	 * works by first attempting to generate a layout with
3835 	 * the best configuration and backing off gradually.
3836 	 *
3837 	 * First we increase the acceptable waste in a slab. Then
3838 	 * we reduce the minimum objects required in a slab.
3839 	 */
3840 	min_objects = slub_min_objects;
3841 	if (!min_objects) {
3842 		/*
3843 		 * Some architectures will only update present cpus when
3844 		 * onlining them, so don't trust the number if it's just 1. But
3845 		 * we also don't want to use nr_cpu_ids always, as on some other
3846 		 * architectures, there can be many possible cpus, but never
3847 		 * onlined. Here we compromise between trying to avoid too high
3848 		 * order on systems that appear larger than they are, and too
3849 		 * low order on systems that appear smaller than they are.
3850 		 */
3851 		nr_cpus = num_present_cpus();
3852 		if (nr_cpus <= 1)
3853 			nr_cpus = nr_cpu_ids;
3854 		min_objects = 4 * (fls(nr_cpus) + 1);
3855 	}
3856 	max_objects = order_objects(slub_max_order, size);
3857 	min_objects = min(min_objects, max_objects);
3858 
3859 	while (min_objects > 1) {
3860 		unsigned int fraction;
3861 
3862 		fraction = 16;
3863 		while (fraction >= 4) {
3864 			order = calc_slab_order(size, min_objects,
3865 					slub_max_order, fraction);
3866 			if (order <= slub_max_order)
3867 				return order;
3868 			fraction /= 2;
3869 		}
3870 		min_objects--;
3871 	}
3872 
3873 	/*
3874 	 * We were unable to place multiple objects in a slab. Now
3875 	 * lets see if we can place a single object there.
3876 	 */
3877 	order = calc_slab_order(size, 1, slub_max_order, 1);
3878 	if (order <= slub_max_order)
3879 		return order;
3880 
3881 	/*
3882 	 * Doh this slab cannot be placed using slub_max_order.
3883 	 */
3884 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
3885 	if (order < MAX_ORDER)
3886 		return order;
3887 	return -ENOSYS;
3888 }
3889 
3890 static void
3891 init_kmem_cache_node(struct kmem_cache_node *n)
3892 {
3893 	n->nr_partial = 0;
3894 	spin_lock_init(&n->list_lock);
3895 	INIT_LIST_HEAD(&n->partial);
3896 #ifdef CONFIG_SLUB_DEBUG
3897 	atomic_long_set(&n->nr_slabs, 0);
3898 	atomic_long_set(&n->total_objects, 0);
3899 	INIT_LIST_HEAD(&n->full);
3900 #endif
3901 }
3902 
3903 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3904 {
3905 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3906 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3907 
3908 	/*
3909 	 * Must align to double word boundary for the double cmpxchg
3910 	 * instructions to work; see __pcpu_double_call_return_bool().
3911 	 */
3912 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3913 				     2 * sizeof(void *));
3914 
3915 	if (!s->cpu_slab)
3916 		return 0;
3917 
3918 	init_kmem_cache_cpus(s);
3919 
3920 	return 1;
3921 }
3922 
3923 static struct kmem_cache *kmem_cache_node;
3924 
3925 /*
3926  * No kmalloc_node yet so do it by hand. We know that this is the first
3927  * slab on the node for this slabcache. There are no concurrent accesses
3928  * possible.
3929  *
3930  * Note that this function only works on the kmem_cache_node
3931  * when allocating for the kmem_cache_node. This is used for bootstrapping
3932  * memory on a fresh node that has no slab structures yet.
3933  */
3934 static void early_kmem_cache_node_alloc(int node)
3935 {
3936 	struct slab *slab;
3937 	struct kmem_cache_node *n;
3938 
3939 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3940 
3941 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3942 
3943 	BUG_ON(!slab);
3944 	if (slab_nid(slab) != node) {
3945 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3946 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3947 	}
3948 
3949 	n = slab->freelist;
3950 	BUG_ON(!n);
3951 #ifdef CONFIG_SLUB_DEBUG
3952 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3953 	init_tracking(kmem_cache_node, n);
3954 #endif
3955 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3956 	slab->freelist = get_freepointer(kmem_cache_node, n);
3957 	slab->inuse = 1;
3958 	slab->frozen = 0;
3959 	kmem_cache_node->node[node] = n;
3960 	init_kmem_cache_node(n);
3961 	inc_slabs_node(kmem_cache_node, node, slab->objects);
3962 
3963 	/*
3964 	 * No locks need to be taken here as it has just been
3965 	 * initialized and there is no concurrent access.
3966 	 */
3967 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
3968 }
3969 
3970 static void free_kmem_cache_nodes(struct kmem_cache *s)
3971 {
3972 	int node;
3973 	struct kmem_cache_node *n;
3974 
3975 	for_each_kmem_cache_node(s, node, n) {
3976 		s->node[node] = NULL;
3977 		kmem_cache_free(kmem_cache_node, n);
3978 	}
3979 }
3980 
3981 void __kmem_cache_release(struct kmem_cache *s)
3982 {
3983 	cache_random_seq_destroy(s);
3984 	free_percpu(s->cpu_slab);
3985 	free_kmem_cache_nodes(s);
3986 }
3987 
3988 static int init_kmem_cache_nodes(struct kmem_cache *s)
3989 {
3990 	int node;
3991 
3992 	for_each_node_mask(node, slab_nodes) {
3993 		struct kmem_cache_node *n;
3994 
3995 		if (slab_state == DOWN) {
3996 			early_kmem_cache_node_alloc(node);
3997 			continue;
3998 		}
3999 		n = kmem_cache_alloc_node(kmem_cache_node,
4000 						GFP_KERNEL, node);
4001 
4002 		if (!n) {
4003 			free_kmem_cache_nodes(s);
4004 			return 0;
4005 		}
4006 
4007 		init_kmem_cache_node(n);
4008 		s->node[node] = n;
4009 	}
4010 	return 1;
4011 }
4012 
4013 static void set_cpu_partial(struct kmem_cache *s)
4014 {
4015 #ifdef CONFIG_SLUB_CPU_PARTIAL
4016 	unsigned int nr_objects;
4017 
4018 	/*
4019 	 * cpu_partial determined the maximum number of objects kept in the
4020 	 * per cpu partial lists of a processor.
4021 	 *
4022 	 * Per cpu partial lists mainly contain slabs that just have one
4023 	 * object freed. If they are used for allocation then they can be
4024 	 * filled up again with minimal effort. The slab will never hit the
4025 	 * per node partial lists and therefore no locking will be required.
4026 	 *
4027 	 * For backwards compatibility reasons, this is determined as number
4028 	 * of objects, even though we now limit maximum number of pages, see
4029 	 * slub_set_cpu_partial()
4030 	 */
4031 	if (!kmem_cache_has_cpu_partial(s))
4032 		nr_objects = 0;
4033 	else if (s->size >= PAGE_SIZE)
4034 		nr_objects = 6;
4035 	else if (s->size >= 1024)
4036 		nr_objects = 24;
4037 	else if (s->size >= 256)
4038 		nr_objects = 52;
4039 	else
4040 		nr_objects = 120;
4041 
4042 	slub_set_cpu_partial(s, nr_objects);
4043 #endif
4044 }
4045 
4046 /*
4047  * calculate_sizes() determines the order and the distribution of data within
4048  * a slab object.
4049  */
4050 static int calculate_sizes(struct kmem_cache *s)
4051 {
4052 	slab_flags_t flags = s->flags;
4053 	unsigned int size = s->object_size;
4054 	unsigned int order;
4055 
4056 	/*
4057 	 * Round up object size to the next word boundary. We can only
4058 	 * place the free pointer at word boundaries and this determines
4059 	 * the possible location of the free pointer.
4060 	 */
4061 	size = ALIGN(size, sizeof(void *));
4062 
4063 #ifdef CONFIG_SLUB_DEBUG
4064 	/*
4065 	 * Determine if we can poison the object itself. If the user of
4066 	 * the slab may touch the object after free or before allocation
4067 	 * then we should never poison the object itself.
4068 	 */
4069 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4070 			!s->ctor)
4071 		s->flags |= __OBJECT_POISON;
4072 	else
4073 		s->flags &= ~__OBJECT_POISON;
4074 
4075 
4076 	/*
4077 	 * If we are Redzoning then check if there is some space between the
4078 	 * end of the object and the free pointer. If not then add an
4079 	 * additional word to have some bytes to store Redzone information.
4080 	 */
4081 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4082 		size += sizeof(void *);
4083 #endif
4084 
4085 	/*
4086 	 * With that we have determined the number of bytes in actual use
4087 	 * by the object and redzoning.
4088 	 */
4089 	s->inuse = size;
4090 
4091 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4092 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4093 	    s->ctor) {
4094 		/*
4095 		 * Relocate free pointer after the object if it is not
4096 		 * permitted to overwrite the first word of the object on
4097 		 * kmem_cache_free.
4098 		 *
4099 		 * This is the case if we do RCU, have a constructor or
4100 		 * destructor, are poisoning the objects, or are
4101 		 * redzoning an object smaller than sizeof(void *).
4102 		 *
4103 		 * The assumption that s->offset >= s->inuse means free
4104 		 * pointer is outside of the object is used in the
4105 		 * freeptr_outside_object() function. If that is no
4106 		 * longer true, the function needs to be modified.
4107 		 */
4108 		s->offset = size;
4109 		size += sizeof(void *);
4110 	} else {
4111 		/*
4112 		 * Store freelist pointer near middle of object to keep
4113 		 * it away from the edges of the object to avoid small
4114 		 * sized over/underflows from neighboring allocations.
4115 		 */
4116 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4117 	}
4118 
4119 #ifdef CONFIG_SLUB_DEBUG
4120 	if (flags & SLAB_STORE_USER)
4121 		/*
4122 		 * Need to store information about allocs and frees after
4123 		 * the object.
4124 		 */
4125 		size += 2 * sizeof(struct track);
4126 #endif
4127 
4128 	kasan_cache_create(s, &size, &s->flags);
4129 #ifdef CONFIG_SLUB_DEBUG
4130 	if (flags & SLAB_RED_ZONE) {
4131 		/*
4132 		 * Add some empty padding so that we can catch
4133 		 * overwrites from earlier objects rather than let
4134 		 * tracking information or the free pointer be
4135 		 * corrupted if a user writes before the start
4136 		 * of the object.
4137 		 */
4138 		size += sizeof(void *);
4139 
4140 		s->red_left_pad = sizeof(void *);
4141 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4142 		size += s->red_left_pad;
4143 	}
4144 #endif
4145 
4146 	/*
4147 	 * SLUB stores one object immediately after another beginning from
4148 	 * offset 0. In order to align the objects we have to simply size
4149 	 * each object to conform to the alignment.
4150 	 */
4151 	size = ALIGN(size, s->align);
4152 	s->size = size;
4153 	s->reciprocal_size = reciprocal_value(size);
4154 	order = calculate_order(size);
4155 
4156 	if ((int)order < 0)
4157 		return 0;
4158 
4159 	s->allocflags = 0;
4160 	if (order)
4161 		s->allocflags |= __GFP_COMP;
4162 
4163 	if (s->flags & SLAB_CACHE_DMA)
4164 		s->allocflags |= GFP_DMA;
4165 
4166 	if (s->flags & SLAB_CACHE_DMA32)
4167 		s->allocflags |= GFP_DMA32;
4168 
4169 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4170 		s->allocflags |= __GFP_RECLAIMABLE;
4171 
4172 	/*
4173 	 * Determine the number of objects per slab
4174 	 */
4175 	s->oo = oo_make(order, size);
4176 	s->min = oo_make(get_order(size), size);
4177 
4178 	return !!oo_objects(s->oo);
4179 }
4180 
4181 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4182 {
4183 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4184 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4185 	s->random = get_random_long();
4186 #endif
4187 
4188 	if (!calculate_sizes(s))
4189 		goto error;
4190 	if (disable_higher_order_debug) {
4191 		/*
4192 		 * Disable debugging flags that store metadata if the min slab
4193 		 * order increased.
4194 		 */
4195 		if (get_order(s->size) > get_order(s->object_size)) {
4196 			s->flags &= ~DEBUG_METADATA_FLAGS;
4197 			s->offset = 0;
4198 			if (!calculate_sizes(s))
4199 				goto error;
4200 		}
4201 	}
4202 
4203 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4204     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4205 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4206 		/* Enable fast mode */
4207 		s->flags |= __CMPXCHG_DOUBLE;
4208 #endif
4209 
4210 	/*
4211 	 * The larger the object size is, the more slabs we want on the partial
4212 	 * list to avoid pounding the page allocator excessively.
4213 	 */
4214 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4215 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4216 
4217 	set_cpu_partial(s);
4218 
4219 #ifdef CONFIG_NUMA
4220 	s->remote_node_defrag_ratio = 1000;
4221 #endif
4222 
4223 	/* Initialize the pre-computed randomized freelist if slab is up */
4224 	if (slab_state >= UP) {
4225 		if (init_cache_random_seq(s))
4226 			goto error;
4227 	}
4228 
4229 	if (!init_kmem_cache_nodes(s))
4230 		goto error;
4231 
4232 	if (alloc_kmem_cache_cpus(s))
4233 		return 0;
4234 
4235 error:
4236 	__kmem_cache_release(s);
4237 	return -EINVAL;
4238 }
4239 
4240 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4241 			      const char *text)
4242 {
4243 #ifdef CONFIG_SLUB_DEBUG
4244 	void *addr = slab_address(slab);
4245 	unsigned long flags;
4246 	unsigned long *map;
4247 	void *p;
4248 
4249 	slab_err(s, slab, text, s->name);
4250 	slab_lock(slab, &flags);
4251 
4252 	map = get_map(s, slab);
4253 	for_each_object(p, s, addr, slab->objects) {
4254 
4255 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
4256 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4257 			print_tracking(s, p);
4258 		}
4259 	}
4260 	put_map(map);
4261 	slab_unlock(slab, &flags);
4262 #endif
4263 }
4264 
4265 /*
4266  * Attempt to free all partial slabs on a node.
4267  * This is called from __kmem_cache_shutdown(). We must take list_lock
4268  * because sysfs file might still access partial list after the shutdowning.
4269  */
4270 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4271 {
4272 	LIST_HEAD(discard);
4273 	struct slab *slab, *h;
4274 
4275 	BUG_ON(irqs_disabled());
4276 	spin_lock_irq(&n->list_lock);
4277 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4278 		if (!slab->inuse) {
4279 			remove_partial(n, slab);
4280 			list_add(&slab->slab_list, &discard);
4281 		} else {
4282 			list_slab_objects(s, slab,
4283 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4284 		}
4285 	}
4286 	spin_unlock_irq(&n->list_lock);
4287 
4288 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4289 		discard_slab(s, slab);
4290 }
4291 
4292 bool __kmem_cache_empty(struct kmem_cache *s)
4293 {
4294 	int node;
4295 	struct kmem_cache_node *n;
4296 
4297 	for_each_kmem_cache_node(s, node, n)
4298 		if (n->nr_partial || slabs_node(s, node))
4299 			return false;
4300 	return true;
4301 }
4302 
4303 /*
4304  * Release all resources used by a slab cache.
4305  */
4306 int __kmem_cache_shutdown(struct kmem_cache *s)
4307 {
4308 	int node;
4309 	struct kmem_cache_node *n;
4310 
4311 	flush_all_cpus_locked(s);
4312 	/* Attempt to free all objects */
4313 	for_each_kmem_cache_node(s, node, n) {
4314 		free_partial(s, n);
4315 		if (n->nr_partial || slabs_node(s, node))
4316 			return 1;
4317 	}
4318 	return 0;
4319 }
4320 
4321 #ifdef CONFIG_PRINTK
4322 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4323 {
4324 	void *base;
4325 	int __maybe_unused i;
4326 	unsigned int objnr;
4327 	void *objp;
4328 	void *objp0;
4329 	struct kmem_cache *s = slab->slab_cache;
4330 	struct track __maybe_unused *trackp;
4331 
4332 	kpp->kp_ptr = object;
4333 	kpp->kp_slab = slab;
4334 	kpp->kp_slab_cache = s;
4335 	base = slab_address(slab);
4336 	objp0 = kasan_reset_tag(object);
4337 #ifdef CONFIG_SLUB_DEBUG
4338 	objp = restore_red_left(s, objp0);
4339 #else
4340 	objp = objp0;
4341 #endif
4342 	objnr = obj_to_index(s, slab, objp);
4343 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4344 	objp = base + s->size * objnr;
4345 	kpp->kp_objp = objp;
4346 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4347 			 || (objp - base) % s->size) ||
4348 	    !(s->flags & SLAB_STORE_USER))
4349 		return;
4350 #ifdef CONFIG_SLUB_DEBUG
4351 	objp = fixup_red_left(s, objp);
4352 	trackp = get_track(s, objp, TRACK_ALLOC);
4353 	kpp->kp_ret = (void *)trackp->addr;
4354 #ifdef CONFIG_STACKDEPOT
4355 	{
4356 		depot_stack_handle_t handle;
4357 		unsigned long *entries;
4358 		unsigned int nr_entries;
4359 
4360 		handle = READ_ONCE(trackp->handle);
4361 		if (handle) {
4362 			nr_entries = stack_depot_fetch(handle, &entries);
4363 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4364 				kpp->kp_stack[i] = (void *)entries[i];
4365 		}
4366 
4367 		trackp = get_track(s, objp, TRACK_FREE);
4368 		handle = READ_ONCE(trackp->handle);
4369 		if (handle) {
4370 			nr_entries = stack_depot_fetch(handle, &entries);
4371 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4372 				kpp->kp_free_stack[i] = (void *)entries[i];
4373 		}
4374 	}
4375 #endif
4376 #endif
4377 }
4378 #endif
4379 
4380 /********************************************************************
4381  *		Kmalloc subsystem
4382  *******************************************************************/
4383 
4384 static int __init setup_slub_min_order(char *str)
4385 {
4386 	get_option(&str, (int *)&slub_min_order);
4387 
4388 	return 1;
4389 }
4390 
4391 __setup("slub_min_order=", setup_slub_min_order);
4392 
4393 static int __init setup_slub_max_order(char *str)
4394 {
4395 	get_option(&str, (int *)&slub_max_order);
4396 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4397 
4398 	return 1;
4399 }
4400 
4401 __setup("slub_max_order=", setup_slub_max_order);
4402 
4403 static int __init setup_slub_min_objects(char *str)
4404 {
4405 	get_option(&str, (int *)&slub_min_objects);
4406 
4407 	return 1;
4408 }
4409 
4410 __setup("slub_min_objects=", setup_slub_min_objects);
4411 
4412 void *__kmalloc(size_t size, gfp_t flags)
4413 {
4414 	struct kmem_cache *s;
4415 	void *ret;
4416 
4417 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4418 		return kmalloc_large(size, flags);
4419 
4420 	s = kmalloc_slab(size, flags);
4421 
4422 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4423 		return s;
4424 
4425 	ret = slab_alloc(s, NULL, flags, _RET_IP_, size);
4426 
4427 	trace_kmalloc(_RET_IP_, ret, s, size, s->size, flags);
4428 
4429 	ret = kasan_kmalloc(s, ret, size, flags);
4430 
4431 	return ret;
4432 }
4433 EXPORT_SYMBOL(__kmalloc);
4434 
4435 #ifdef CONFIG_NUMA
4436 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4437 {
4438 	struct page *page;
4439 	void *ptr = NULL;
4440 	unsigned int order = get_order(size);
4441 
4442 	flags |= __GFP_COMP;
4443 	page = alloc_pages_node(node, flags, order);
4444 	if (page) {
4445 		ptr = page_address(page);
4446 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4447 				      PAGE_SIZE << order);
4448 	}
4449 
4450 	return kmalloc_large_node_hook(ptr, size, flags);
4451 }
4452 
4453 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4454 {
4455 	struct kmem_cache *s;
4456 	void *ret;
4457 
4458 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4459 		ret = kmalloc_large_node(size, flags, node);
4460 
4461 		trace_kmalloc_node(_RET_IP_, ret, NULL,
4462 				   size, PAGE_SIZE << get_order(size),
4463 				   flags, node);
4464 
4465 		return ret;
4466 	}
4467 
4468 	s = kmalloc_slab(size, flags);
4469 
4470 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4471 		return s;
4472 
4473 	ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size);
4474 
4475 	trace_kmalloc_node(_RET_IP_, ret, s, size, s->size, flags, node);
4476 
4477 	ret = kasan_kmalloc(s, ret, size, flags);
4478 
4479 	return ret;
4480 }
4481 EXPORT_SYMBOL(__kmalloc_node);
4482 #endif	/* CONFIG_NUMA */
4483 
4484 #ifdef CONFIG_HARDENED_USERCOPY
4485 /*
4486  * Rejects incorrectly sized objects and objects that are to be copied
4487  * to/from userspace but do not fall entirely within the containing slab
4488  * cache's usercopy region.
4489  *
4490  * Returns NULL if check passes, otherwise const char * to name of cache
4491  * to indicate an error.
4492  */
4493 void __check_heap_object(const void *ptr, unsigned long n,
4494 			 const struct slab *slab, bool to_user)
4495 {
4496 	struct kmem_cache *s;
4497 	unsigned int offset;
4498 	bool is_kfence = is_kfence_address(ptr);
4499 
4500 	ptr = kasan_reset_tag(ptr);
4501 
4502 	/* Find object and usable object size. */
4503 	s = slab->slab_cache;
4504 
4505 	/* Reject impossible pointers. */
4506 	if (ptr < slab_address(slab))
4507 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4508 			       to_user, 0, n);
4509 
4510 	/* Find offset within object. */
4511 	if (is_kfence)
4512 		offset = ptr - kfence_object_start(ptr);
4513 	else
4514 		offset = (ptr - slab_address(slab)) % s->size;
4515 
4516 	/* Adjust for redzone and reject if within the redzone. */
4517 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4518 		if (offset < s->red_left_pad)
4519 			usercopy_abort("SLUB object in left red zone",
4520 				       s->name, to_user, offset, n);
4521 		offset -= s->red_left_pad;
4522 	}
4523 
4524 	/* Allow address range falling entirely within usercopy region. */
4525 	if (offset >= s->useroffset &&
4526 	    offset - s->useroffset <= s->usersize &&
4527 	    n <= s->useroffset - offset + s->usersize)
4528 		return;
4529 
4530 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4531 }
4532 #endif /* CONFIG_HARDENED_USERCOPY */
4533 
4534 size_t __ksize(const void *object)
4535 {
4536 	struct folio *folio;
4537 
4538 	if (unlikely(object == ZERO_SIZE_PTR))
4539 		return 0;
4540 
4541 	folio = virt_to_folio(object);
4542 
4543 	if (unlikely(!folio_test_slab(folio)))
4544 		return folio_size(folio);
4545 
4546 	return slab_ksize(folio_slab(folio)->slab_cache);
4547 }
4548 EXPORT_SYMBOL(__ksize);
4549 
4550 void kfree(const void *x)
4551 {
4552 	struct folio *folio;
4553 	struct slab *slab;
4554 	void *object = (void *)x;
4555 
4556 	trace_kfree(_RET_IP_, x);
4557 
4558 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4559 		return;
4560 
4561 	folio = virt_to_folio(x);
4562 	if (unlikely(!folio_test_slab(folio))) {
4563 		free_large_kmalloc(folio, object);
4564 		return;
4565 	}
4566 	slab = folio_slab(folio);
4567 	slab_free(slab->slab_cache, slab, object, NULL, &object, 1, _RET_IP_);
4568 }
4569 EXPORT_SYMBOL(kfree);
4570 
4571 #define SHRINK_PROMOTE_MAX 32
4572 
4573 /*
4574  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4575  * up most to the head of the partial lists. New allocations will then
4576  * fill those up and thus they can be removed from the partial lists.
4577  *
4578  * The slabs with the least items are placed last. This results in them
4579  * being allocated from last increasing the chance that the last objects
4580  * are freed in them.
4581  */
4582 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4583 {
4584 	int node;
4585 	int i;
4586 	struct kmem_cache_node *n;
4587 	struct slab *slab;
4588 	struct slab *t;
4589 	struct list_head discard;
4590 	struct list_head promote[SHRINK_PROMOTE_MAX];
4591 	unsigned long flags;
4592 	int ret = 0;
4593 
4594 	for_each_kmem_cache_node(s, node, n) {
4595 		INIT_LIST_HEAD(&discard);
4596 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4597 			INIT_LIST_HEAD(promote + i);
4598 
4599 		spin_lock_irqsave(&n->list_lock, flags);
4600 
4601 		/*
4602 		 * Build lists of slabs to discard or promote.
4603 		 *
4604 		 * Note that concurrent frees may occur while we hold the
4605 		 * list_lock. slab->inuse here is the upper limit.
4606 		 */
4607 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4608 			int free = slab->objects - slab->inuse;
4609 
4610 			/* Do not reread slab->inuse */
4611 			barrier();
4612 
4613 			/* We do not keep full slabs on the list */
4614 			BUG_ON(free <= 0);
4615 
4616 			if (free == slab->objects) {
4617 				list_move(&slab->slab_list, &discard);
4618 				n->nr_partial--;
4619 			} else if (free <= SHRINK_PROMOTE_MAX)
4620 				list_move(&slab->slab_list, promote + free - 1);
4621 		}
4622 
4623 		/*
4624 		 * Promote the slabs filled up most to the head of the
4625 		 * partial list.
4626 		 */
4627 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4628 			list_splice(promote + i, &n->partial);
4629 
4630 		spin_unlock_irqrestore(&n->list_lock, flags);
4631 
4632 		/* Release empty slabs */
4633 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4634 			discard_slab(s, slab);
4635 
4636 		if (slabs_node(s, node))
4637 			ret = 1;
4638 	}
4639 
4640 	return ret;
4641 }
4642 
4643 int __kmem_cache_shrink(struct kmem_cache *s)
4644 {
4645 	flush_all(s);
4646 	return __kmem_cache_do_shrink(s);
4647 }
4648 
4649 static int slab_mem_going_offline_callback(void *arg)
4650 {
4651 	struct kmem_cache *s;
4652 
4653 	mutex_lock(&slab_mutex);
4654 	list_for_each_entry(s, &slab_caches, list) {
4655 		flush_all_cpus_locked(s);
4656 		__kmem_cache_do_shrink(s);
4657 	}
4658 	mutex_unlock(&slab_mutex);
4659 
4660 	return 0;
4661 }
4662 
4663 static void slab_mem_offline_callback(void *arg)
4664 {
4665 	struct memory_notify *marg = arg;
4666 	int offline_node;
4667 
4668 	offline_node = marg->status_change_nid_normal;
4669 
4670 	/*
4671 	 * If the node still has available memory. we need kmem_cache_node
4672 	 * for it yet.
4673 	 */
4674 	if (offline_node < 0)
4675 		return;
4676 
4677 	mutex_lock(&slab_mutex);
4678 	node_clear(offline_node, slab_nodes);
4679 	/*
4680 	 * We no longer free kmem_cache_node structures here, as it would be
4681 	 * racy with all get_node() users, and infeasible to protect them with
4682 	 * slab_mutex.
4683 	 */
4684 	mutex_unlock(&slab_mutex);
4685 }
4686 
4687 static int slab_mem_going_online_callback(void *arg)
4688 {
4689 	struct kmem_cache_node *n;
4690 	struct kmem_cache *s;
4691 	struct memory_notify *marg = arg;
4692 	int nid = marg->status_change_nid_normal;
4693 	int ret = 0;
4694 
4695 	/*
4696 	 * If the node's memory is already available, then kmem_cache_node is
4697 	 * already created. Nothing to do.
4698 	 */
4699 	if (nid < 0)
4700 		return 0;
4701 
4702 	/*
4703 	 * We are bringing a node online. No memory is available yet. We must
4704 	 * allocate a kmem_cache_node structure in order to bring the node
4705 	 * online.
4706 	 */
4707 	mutex_lock(&slab_mutex);
4708 	list_for_each_entry(s, &slab_caches, list) {
4709 		/*
4710 		 * The structure may already exist if the node was previously
4711 		 * onlined and offlined.
4712 		 */
4713 		if (get_node(s, nid))
4714 			continue;
4715 		/*
4716 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4717 		 *      since memory is not yet available from the node that
4718 		 *      is brought up.
4719 		 */
4720 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4721 		if (!n) {
4722 			ret = -ENOMEM;
4723 			goto out;
4724 		}
4725 		init_kmem_cache_node(n);
4726 		s->node[nid] = n;
4727 	}
4728 	/*
4729 	 * Any cache created after this point will also have kmem_cache_node
4730 	 * initialized for the new node.
4731 	 */
4732 	node_set(nid, slab_nodes);
4733 out:
4734 	mutex_unlock(&slab_mutex);
4735 	return ret;
4736 }
4737 
4738 static int slab_memory_callback(struct notifier_block *self,
4739 				unsigned long action, void *arg)
4740 {
4741 	int ret = 0;
4742 
4743 	switch (action) {
4744 	case MEM_GOING_ONLINE:
4745 		ret = slab_mem_going_online_callback(arg);
4746 		break;
4747 	case MEM_GOING_OFFLINE:
4748 		ret = slab_mem_going_offline_callback(arg);
4749 		break;
4750 	case MEM_OFFLINE:
4751 	case MEM_CANCEL_ONLINE:
4752 		slab_mem_offline_callback(arg);
4753 		break;
4754 	case MEM_ONLINE:
4755 	case MEM_CANCEL_OFFLINE:
4756 		break;
4757 	}
4758 	if (ret)
4759 		ret = notifier_from_errno(ret);
4760 	else
4761 		ret = NOTIFY_OK;
4762 	return ret;
4763 }
4764 
4765 static struct notifier_block slab_memory_callback_nb = {
4766 	.notifier_call = slab_memory_callback,
4767 	.priority = SLAB_CALLBACK_PRI,
4768 };
4769 
4770 /********************************************************************
4771  *			Basic setup of slabs
4772  *******************************************************************/
4773 
4774 /*
4775  * Used for early kmem_cache structures that were allocated using
4776  * the page allocator. Allocate them properly then fix up the pointers
4777  * that may be pointing to the wrong kmem_cache structure.
4778  */
4779 
4780 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4781 {
4782 	int node;
4783 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4784 	struct kmem_cache_node *n;
4785 
4786 	memcpy(s, static_cache, kmem_cache->object_size);
4787 
4788 	/*
4789 	 * This runs very early, and only the boot processor is supposed to be
4790 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4791 	 * IPIs around.
4792 	 */
4793 	__flush_cpu_slab(s, smp_processor_id());
4794 	for_each_kmem_cache_node(s, node, n) {
4795 		struct slab *p;
4796 
4797 		list_for_each_entry(p, &n->partial, slab_list)
4798 			p->slab_cache = s;
4799 
4800 #ifdef CONFIG_SLUB_DEBUG
4801 		list_for_each_entry(p, &n->full, slab_list)
4802 			p->slab_cache = s;
4803 #endif
4804 	}
4805 	list_add(&s->list, &slab_caches);
4806 	return s;
4807 }
4808 
4809 void __init kmem_cache_init(void)
4810 {
4811 	static __initdata struct kmem_cache boot_kmem_cache,
4812 		boot_kmem_cache_node;
4813 	int node;
4814 
4815 	if (debug_guardpage_minorder())
4816 		slub_max_order = 0;
4817 
4818 	/* Print slub debugging pointers without hashing */
4819 	if (__slub_debug_enabled())
4820 		no_hash_pointers_enable(NULL);
4821 
4822 	kmem_cache_node = &boot_kmem_cache_node;
4823 	kmem_cache = &boot_kmem_cache;
4824 
4825 	/*
4826 	 * Initialize the nodemask for which we will allocate per node
4827 	 * structures. Here we don't need taking slab_mutex yet.
4828 	 */
4829 	for_each_node_state(node, N_NORMAL_MEMORY)
4830 		node_set(node, slab_nodes);
4831 
4832 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4833 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4834 
4835 	register_hotmemory_notifier(&slab_memory_callback_nb);
4836 
4837 	/* Able to allocate the per node structures */
4838 	slab_state = PARTIAL;
4839 
4840 	create_boot_cache(kmem_cache, "kmem_cache",
4841 			offsetof(struct kmem_cache, node) +
4842 				nr_node_ids * sizeof(struct kmem_cache_node *),
4843 		       SLAB_HWCACHE_ALIGN, 0, 0);
4844 
4845 	kmem_cache = bootstrap(&boot_kmem_cache);
4846 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4847 
4848 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4849 	setup_kmalloc_cache_index_table();
4850 	create_kmalloc_caches(0);
4851 
4852 	/* Setup random freelists for each cache */
4853 	init_freelist_randomization();
4854 
4855 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4856 				  slub_cpu_dead);
4857 
4858 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4859 		cache_line_size(),
4860 		slub_min_order, slub_max_order, slub_min_objects,
4861 		nr_cpu_ids, nr_node_ids);
4862 }
4863 
4864 void __init kmem_cache_init_late(void)
4865 {
4866 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
4867 	WARN_ON(!flushwq);
4868 }
4869 
4870 struct kmem_cache *
4871 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4872 		   slab_flags_t flags, void (*ctor)(void *))
4873 {
4874 	struct kmem_cache *s;
4875 
4876 	s = find_mergeable(size, align, flags, name, ctor);
4877 	if (s) {
4878 		if (sysfs_slab_alias(s, name))
4879 			return NULL;
4880 
4881 		s->refcount++;
4882 
4883 		/*
4884 		 * Adjust the object sizes so that we clear
4885 		 * the complete object on kzalloc.
4886 		 */
4887 		s->object_size = max(s->object_size, size);
4888 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4889 	}
4890 
4891 	return s;
4892 }
4893 
4894 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4895 {
4896 	int err;
4897 
4898 	err = kmem_cache_open(s, flags);
4899 	if (err)
4900 		return err;
4901 
4902 	/* Mutex is not taken during early boot */
4903 	if (slab_state <= UP)
4904 		return 0;
4905 
4906 	err = sysfs_slab_add(s);
4907 	if (err) {
4908 		__kmem_cache_release(s);
4909 		return err;
4910 	}
4911 
4912 	if (s->flags & SLAB_STORE_USER)
4913 		debugfs_slab_add(s);
4914 
4915 	return 0;
4916 }
4917 
4918 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4919 {
4920 	struct kmem_cache *s;
4921 	void *ret;
4922 
4923 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4924 		return kmalloc_large(size, gfpflags);
4925 
4926 	s = kmalloc_slab(size, gfpflags);
4927 
4928 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4929 		return s;
4930 
4931 	ret = slab_alloc(s, NULL, gfpflags, caller, size);
4932 
4933 	/* Honor the call site pointer we received. */
4934 	trace_kmalloc(caller, ret, s, size, s->size, gfpflags);
4935 
4936 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4937 
4938 	return ret;
4939 }
4940 EXPORT_SYMBOL(__kmalloc_track_caller);
4941 
4942 #ifdef CONFIG_NUMA
4943 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4944 					int node, unsigned long caller)
4945 {
4946 	struct kmem_cache *s;
4947 	void *ret;
4948 
4949 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4950 		ret = kmalloc_large_node(size, gfpflags, node);
4951 
4952 		trace_kmalloc_node(caller, ret, NULL,
4953 				   size, PAGE_SIZE << get_order(size),
4954 				   gfpflags, node);
4955 
4956 		return ret;
4957 	}
4958 
4959 	s = kmalloc_slab(size, gfpflags);
4960 
4961 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4962 		return s;
4963 
4964 	ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size);
4965 
4966 	/* Honor the call site pointer we received. */
4967 	trace_kmalloc_node(caller, ret, s, size, s->size, gfpflags, node);
4968 
4969 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4970 
4971 	return ret;
4972 }
4973 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4974 #endif
4975 
4976 #ifdef CONFIG_SYSFS
4977 static int count_inuse(struct slab *slab)
4978 {
4979 	return slab->inuse;
4980 }
4981 
4982 static int count_total(struct slab *slab)
4983 {
4984 	return slab->objects;
4985 }
4986 #endif
4987 
4988 #ifdef CONFIG_SLUB_DEBUG
4989 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4990 			  unsigned long *obj_map)
4991 {
4992 	void *p;
4993 	void *addr = slab_address(slab);
4994 	unsigned long flags;
4995 
4996 	slab_lock(slab, &flags);
4997 
4998 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
4999 		goto unlock;
5000 
5001 	/* Now we know that a valid freelist exists */
5002 	__fill_map(obj_map, s, slab);
5003 	for_each_object(p, s, addr, slab->objects) {
5004 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5005 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5006 
5007 		if (!check_object(s, slab, p, val))
5008 			break;
5009 	}
5010 unlock:
5011 	slab_unlock(slab, &flags);
5012 }
5013 
5014 static int validate_slab_node(struct kmem_cache *s,
5015 		struct kmem_cache_node *n, unsigned long *obj_map)
5016 {
5017 	unsigned long count = 0;
5018 	struct slab *slab;
5019 	unsigned long flags;
5020 
5021 	spin_lock_irqsave(&n->list_lock, flags);
5022 
5023 	list_for_each_entry(slab, &n->partial, slab_list) {
5024 		validate_slab(s, slab, obj_map);
5025 		count++;
5026 	}
5027 	if (count != n->nr_partial) {
5028 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5029 		       s->name, count, n->nr_partial);
5030 		slab_add_kunit_errors();
5031 	}
5032 
5033 	if (!(s->flags & SLAB_STORE_USER))
5034 		goto out;
5035 
5036 	list_for_each_entry(slab, &n->full, slab_list) {
5037 		validate_slab(s, slab, obj_map);
5038 		count++;
5039 	}
5040 	if (count != atomic_long_read(&n->nr_slabs)) {
5041 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5042 		       s->name, count, atomic_long_read(&n->nr_slabs));
5043 		slab_add_kunit_errors();
5044 	}
5045 
5046 out:
5047 	spin_unlock_irqrestore(&n->list_lock, flags);
5048 	return count;
5049 }
5050 
5051 long validate_slab_cache(struct kmem_cache *s)
5052 {
5053 	int node;
5054 	unsigned long count = 0;
5055 	struct kmem_cache_node *n;
5056 	unsigned long *obj_map;
5057 
5058 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5059 	if (!obj_map)
5060 		return -ENOMEM;
5061 
5062 	flush_all(s);
5063 	for_each_kmem_cache_node(s, node, n)
5064 		count += validate_slab_node(s, n, obj_map);
5065 
5066 	bitmap_free(obj_map);
5067 
5068 	return count;
5069 }
5070 EXPORT_SYMBOL(validate_slab_cache);
5071 
5072 #ifdef CONFIG_DEBUG_FS
5073 /*
5074  * Generate lists of code addresses where slabcache objects are allocated
5075  * and freed.
5076  */
5077 
5078 struct location {
5079 	depot_stack_handle_t handle;
5080 	unsigned long count;
5081 	unsigned long addr;
5082 	long long sum_time;
5083 	long min_time;
5084 	long max_time;
5085 	long min_pid;
5086 	long max_pid;
5087 	DECLARE_BITMAP(cpus, NR_CPUS);
5088 	nodemask_t nodes;
5089 };
5090 
5091 struct loc_track {
5092 	unsigned long max;
5093 	unsigned long count;
5094 	struct location *loc;
5095 	loff_t idx;
5096 };
5097 
5098 static struct dentry *slab_debugfs_root;
5099 
5100 static void free_loc_track(struct loc_track *t)
5101 {
5102 	if (t->max)
5103 		free_pages((unsigned long)t->loc,
5104 			get_order(sizeof(struct location) * t->max));
5105 }
5106 
5107 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5108 {
5109 	struct location *l;
5110 	int order;
5111 
5112 	order = get_order(sizeof(struct location) * max);
5113 
5114 	l = (void *)__get_free_pages(flags, order);
5115 	if (!l)
5116 		return 0;
5117 
5118 	if (t->count) {
5119 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5120 		free_loc_track(t);
5121 	}
5122 	t->max = max;
5123 	t->loc = l;
5124 	return 1;
5125 }
5126 
5127 static int add_location(struct loc_track *t, struct kmem_cache *s,
5128 				const struct track *track)
5129 {
5130 	long start, end, pos;
5131 	struct location *l;
5132 	unsigned long caddr, chandle;
5133 	unsigned long age = jiffies - track->when;
5134 	depot_stack_handle_t handle = 0;
5135 
5136 #ifdef CONFIG_STACKDEPOT
5137 	handle = READ_ONCE(track->handle);
5138 #endif
5139 	start = -1;
5140 	end = t->count;
5141 
5142 	for ( ; ; ) {
5143 		pos = start + (end - start + 1) / 2;
5144 
5145 		/*
5146 		 * There is nothing at "end". If we end up there
5147 		 * we need to add something to before end.
5148 		 */
5149 		if (pos == end)
5150 			break;
5151 
5152 		caddr = t->loc[pos].addr;
5153 		chandle = t->loc[pos].handle;
5154 		if ((track->addr == caddr) && (handle == chandle)) {
5155 
5156 			l = &t->loc[pos];
5157 			l->count++;
5158 			if (track->when) {
5159 				l->sum_time += age;
5160 				if (age < l->min_time)
5161 					l->min_time = age;
5162 				if (age > l->max_time)
5163 					l->max_time = age;
5164 
5165 				if (track->pid < l->min_pid)
5166 					l->min_pid = track->pid;
5167 				if (track->pid > l->max_pid)
5168 					l->max_pid = track->pid;
5169 
5170 				cpumask_set_cpu(track->cpu,
5171 						to_cpumask(l->cpus));
5172 			}
5173 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5174 			return 1;
5175 		}
5176 
5177 		if (track->addr < caddr)
5178 			end = pos;
5179 		else if (track->addr == caddr && handle < chandle)
5180 			end = pos;
5181 		else
5182 			start = pos;
5183 	}
5184 
5185 	/*
5186 	 * Not found. Insert new tracking element.
5187 	 */
5188 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5189 		return 0;
5190 
5191 	l = t->loc + pos;
5192 	if (pos < t->count)
5193 		memmove(l + 1, l,
5194 			(t->count - pos) * sizeof(struct location));
5195 	t->count++;
5196 	l->count = 1;
5197 	l->addr = track->addr;
5198 	l->sum_time = age;
5199 	l->min_time = age;
5200 	l->max_time = age;
5201 	l->min_pid = track->pid;
5202 	l->max_pid = track->pid;
5203 	l->handle = handle;
5204 	cpumask_clear(to_cpumask(l->cpus));
5205 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5206 	nodes_clear(l->nodes);
5207 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5208 	return 1;
5209 }
5210 
5211 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5212 		struct slab *slab, enum track_item alloc,
5213 		unsigned long *obj_map)
5214 {
5215 	void *addr = slab_address(slab);
5216 	void *p;
5217 
5218 	__fill_map(obj_map, s, slab);
5219 
5220 	for_each_object(p, s, addr, slab->objects)
5221 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5222 			add_location(t, s, get_track(s, p, alloc));
5223 }
5224 #endif  /* CONFIG_DEBUG_FS   */
5225 #endif	/* CONFIG_SLUB_DEBUG */
5226 
5227 #ifdef CONFIG_SYSFS
5228 enum slab_stat_type {
5229 	SL_ALL,			/* All slabs */
5230 	SL_PARTIAL,		/* Only partially allocated slabs */
5231 	SL_CPU,			/* Only slabs used for cpu caches */
5232 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5233 	SL_TOTAL		/* Determine object capacity not slabs */
5234 };
5235 
5236 #define SO_ALL		(1 << SL_ALL)
5237 #define SO_PARTIAL	(1 << SL_PARTIAL)
5238 #define SO_CPU		(1 << SL_CPU)
5239 #define SO_OBJECTS	(1 << SL_OBJECTS)
5240 #define SO_TOTAL	(1 << SL_TOTAL)
5241 
5242 static ssize_t show_slab_objects(struct kmem_cache *s,
5243 				 char *buf, unsigned long flags)
5244 {
5245 	unsigned long total = 0;
5246 	int node;
5247 	int x;
5248 	unsigned long *nodes;
5249 	int len = 0;
5250 
5251 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5252 	if (!nodes)
5253 		return -ENOMEM;
5254 
5255 	if (flags & SO_CPU) {
5256 		int cpu;
5257 
5258 		for_each_possible_cpu(cpu) {
5259 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5260 							       cpu);
5261 			int node;
5262 			struct slab *slab;
5263 
5264 			slab = READ_ONCE(c->slab);
5265 			if (!slab)
5266 				continue;
5267 
5268 			node = slab_nid(slab);
5269 			if (flags & SO_TOTAL)
5270 				x = slab->objects;
5271 			else if (flags & SO_OBJECTS)
5272 				x = slab->inuse;
5273 			else
5274 				x = 1;
5275 
5276 			total += x;
5277 			nodes[node] += x;
5278 
5279 #ifdef CONFIG_SLUB_CPU_PARTIAL
5280 			slab = slub_percpu_partial_read_once(c);
5281 			if (slab) {
5282 				node = slab_nid(slab);
5283 				if (flags & SO_TOTAL)
5284 					WARN_ON_ONCE(1);
5285 				else if (flags & SO_OBJECTS)
5286 					WARN_ON_ONCE(1);
5287 				else
5288 					x = slab->slabs;
5289 				total += x;
5290 				nodes[node] += x;
5291 			}
5292 #endif
5293 		}
5294 	}
5295 
5296 	/*
5297 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5298 	 * already held which will conflict with an existing lock order:
5299 	 *
5300 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5301 	 *
5302 	 * We don't really need mem_hotplug_lock (to hold off
5303 	 * slab_mem_going_offline_callback) here because slab's memory hot
5304 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5305 	 */
5306 
5307 #ifdef CONFIG_SLUB_DEBUG
5308 	if (flags & SO_ALL) {
5309 		struct kmem_cache_node *n;
5310 
5311 		for_each_kmem_cache_node(s, node, n) {
5312 
5313 			if (flags & SO_TOTAL)
5314 				x = atomic_long_read(&n->total_objects);
5315 			else if (flags & SO_OBJECTS)
5316 				x = atomic_long_read(&n->total_objects) -
5317 					count_partial(n, count_free);
5318 			else
5319 				x = atomic_long_read(&n->nr_slabs);
5320 			total += x;
5321 			nodes[node] += x;
5322 		}
5323 
5324 	} else
5325 #endif
5326 	if (flags & SO_PARTIAL) {
5327 		struct kmem_cache_node *n;
5328 
5329 		for_each_kmem_cache_node(s, node, n) {
5330 			if (flags & SO_TOTAL)
5331 				x = count_partial(n, count_total);
5332 			else if (flags & SO_OBJECTS)
5333 				x = count_partial(n, count_inuse);
5334 			else
5335 				x = n->nr_partial;
5336 			total += x;
5337 			nodes[node] += x;
5338 		}
5339 	}
5340 
5341 	len += sysfs_emit_at(buf, len, "%lu", total);
5342 #ifdef CONFIG_NUMA
5343 	for (node = 0; node < nr_node_ids; node++) {
5344 		if (nodes[node])
5345 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5346 					     node, nodes[node]);
5347 	}
5348 #endif
5349 	len += sysfs_emit_at(buf, len, "\n");
5350 	kfree(nodes);
5351 
5352 	return len;
5353 }
5354 
5355 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5356 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5357 
5358 struct slab_attribute {
5359 	struct attribute attr;
5360 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5361 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5362 };
5363 
5364 #define SLAB_ATTR_RO(_name) \
5365 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5366 
5367 #define SLAB_ATTR(_name) \
5368 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5369 
5370 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5371 {
5372 	return sysfs_emit(buf, "%u\n", s->size);
5373 }
5374 SLAB_ATTR_RO(slab_size);
5375 
5376 static ssize_t align_show(struct kmem_cache *s, char *buf)
5377 {
5378 	return sysfs_emit(buf, "%u\n", s->align);
5379 }
5380 SLAB_ATTR_RO(align);
5381 
5382 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5383 {
5384 	return sysfs_emit(buf, "%u\n", s->object_size);
5385 }
5386 SLAB_ATTR_RO(object_size);
5387 
5388 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5389 {
5390 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5391 }
5392 SLAB_ATTR_RO(objs_per_slab);
5393 
5394 static ssize_t order_show(struct kmem_cache *s, char *buf)
5395 {
5396 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5397 }
5398 SLAB_ATTR_RO(order);
5399 
5400 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5401 {
5402 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5403 }
5404 
5405 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5406 				 size_t length)
5407 {
5408 	unsigned long min;
5409 	int err;
5410 
5411 	err = kstrtoul(buf, 10, &min);
5412 	if (err)
5413 		return err;
5414 
5415 	s->min_partial = min;
5416 	return length;
5417 }
5418 SLAB_ATTR(min_partial);
5419 
5420 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5421 {
5422 	unsigned int nr_partial = 0;
5423 #ifdef CONFIG_SLUB_CPU_PARTIAL
5424 	nr_partial = s->cpu_partial;
5425 #endif
5426 
5427 	return sysfs_emit(buf, "%u\n", nr_partial);
5428 }
5429 
5430 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5431 				 size_t length)
5432 {
5433 	unsigned int objects;
5434 	int err;
5435 
5436 	err = kstrtouint(buf, 10, &objects);
5437 	if (err)
5438 		return err;
5439 	if (objects && !kmem_cache_has_cpu_partial(s))
5440 		return -EINVAL;
5441 
5442 	slub_set_cpu_partial(s, objects);
5443 	flush_all(s);
5444 	return length;
5445 }
5446 SLAB_ATTR(cpu_partial);
5447 
5448 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5449 {
5450 	if (!s->ctor)
5451 		return 0;
5452 	return sysfs_emit(buf, "%pS\n", s->ctor);
5453 }
5454 SLAB_ATTR_RO(ctor);
5455 
5456 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5457 {
5458 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5459 }
5460 SLAB_ATTR_RO(aliases);
5461 
5462 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5463 {
5464 	return show_slab_objects(s, buf, SO_PARTIAL);
5465 }
5466 SLAB_ATTR_RO(partial);
5467 
5468 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5469 {
5470 	return show_slab_objects(s, buf, SO_CPU);
5471 }
5472 SLAB_ATTR_RO(cpu_slabs);
5473 
5474 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5475 {
5476 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5477 }
5478 SLAB_ATTR_RO(objects);
5479 
5480 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5481 {
5482 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5483 }
5484 SLAB_ATTR_RO(objects_partial);
5485 
5486 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5487 {
5488 	int objects = 0;
5489 	int slabs = 0;
5490 	int cpu __maybe_unused;
5491 	int len = 0;
5492 
5493 #ifdef CONFIG_SLUB_CPU_PARTIAL
5494 	for_each_online_cpu(cpu) {
5495 		struct slab *slab;
5496 
5497 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5498 
5499 		if (slab)
5500 			slabs += slab->slabs;
5501 	}
5502 #endif
5503 
5504 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5505 	objects = (slabs * oo_objects(s->oo)) / 2;
5506 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5507 
5508 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5509 	for_each_online_cpu(cpu) {
5510 		struct slab *slab;
5511 
5512 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5513 		if (slab) {
5514 			slabs = READ_ONCE(slab->slabs);
5515 			objects = (slabs * oo_objects(s->oo)) / 2;
5516 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5517 					     cpu, objects, slabs);
5518 		}
5519 	}
5520 #endif
5521 	len += sysfs_emit_at(buf, len, "\n");
5522 
5523 	return len;
5524 }
5525 SLAB_ATTR_RO(slabs_cpu_partial);
5526 
5527 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5528 {
5529 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5530 }
5531 SLAB_ATTR_RO(reclaim_account);
5532 
5533 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5534 {
5535 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5536 }
5537 SLAB_ATTR_RO(hwcache_align);
5538 
5539 #ifdef CONFIG_ZONE_DMA
5540 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5541 {
5542 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5543 }
5544 SLAB_ATTR_RO(cache_dma);
5545 #endif
5546 
5547 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5548 {
5549 	return sysfs_emit(buf, "%u\n", s->usersize);
5550 }
5551 SLAB_ATTR_RO(usersize);
5552 
5553 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5554 {
5555 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5556 }
5557 SLAB_ATTR_RO(destroy_by_rcu);
5558 
5559 #ifdef CONFIG_SLUB_DEBUG
5560 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5561 {
5562 	return show_slab_objects(s, buf, SO_ALL);
5563 }
5564 SLAB_ATTR_RO(slabs);
5565 
5566 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5567 {
5568 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5569 }
5570 SLAB_ATTR_RO(total_objects);
5571 
5572 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5573 {
5574 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5575 }
5576 SLAB_ATTR_RO(sanity_checks);
5577 
5578 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5579 {
5580 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5581 }
5582 SLAB_ATTR_RO(trace);
5583 
5584 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5585 {
5586 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5587 }
5588 
5589 SLAB_ATTR_RO(red_zone);
5590 
5591 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5592 {
5593 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5594 }
5595 
5596 SLAB_ATTR_RO(poison);
5597 
5598 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5599 {
5600 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5601 }
5602 
5603 SLAB_ATTR_RO(store_user);
5604 
5605 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5606 {
5607 	return 0;
5608 }
5609 
5610 static ssize_t validate_store(struct kmem_cache *s,
5611 			const char *buf, size_t length)
5612 {
5613 	int ret = -EINVAL;
5614 
5615 	if (buf[0] == '1') {
5616 		ret = validate_slab_cache(s);
5617 		if (ret >= 0)
5618 			ret = length;
5619 	}
5620 	return ret;
5621 }
5622 SLAB_ATTR(validate);
5623 
5624 #endif /* CONFIG_SLUB_DEBUG */
5625 
5626 #ifdef CONFIG_FAILSLAB
5627 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5628 {
5629 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5630 }
5631 SLAB_ATTR_RO(failslab);
5632 #endif
5633 
5634 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5635 {
5636 	return 0;
5637 }
5638 
5639 static ssize_t shrink_store(struct kmem_cache *s,
5640 			const char *buf, size_t length)
5641 {
5642 	if (buf[0] == '1')
5643 		kmem_cache_shrink(s);
5644 	else
5645 		return -EINVAL;
5646 	return length;
5647 }
5648 SLAB_ATTR(shrink);
5649 
5650 #ifdef CONFIG_NUMA
5651 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5652 {
5653 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5654 }
5655 
5656 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5657 				const char *buf, size_t length)
5658 {
5659 	unsigned int ratio;
5660 	int err;
5661 
5662 	err = kstrtouint(buf, 10, &ratio);
5663 	if (err)
5664 		return err;
5665 	if (ratio > 100)
5666 		return -ERANGE;
5667 
5668 	s->remote_node_defrag_ratio = ratio * 10;
5669 
5670 	return length;
5671 }
5672 SLAB_ATTR(remote_node_defrag_ratio);
5673 #endif
5674 
5675 #ifdef CONFIG_SLUB_STATS
5676 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5677 {
5678 	unsigned long sum  = 0;
5679 	int cpu;
5680 	int len = 0;
5681 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5682 
5683 	if (!data)
5684 		return -ENOMEM;
5685 
5686 	for_each_online_cpu(cpu) {
5687 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5688 
5689 		data[cpu] = x;
5690 		sum += x;
5691 	}
5692 
5693 	len += sysfs_emit_at(buf, len, "%lu", sum);
5694 
5695 #ifdef CONFIG_SMP
5696 	for_each_online_cpu(cpu) {
5697 		if (data[cpu])
5698 			len += sysfs_emit_at(buf, len, " C%d=%u",
5699 					     cpu, data[cpu]);
5700 	}
5701 #endif
5702 	kfree(data);
5703 	len += sysfs_emit_at(buf, len, "\n");
5704 
5705 	return len;
5706 }
5707 
5708 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5709 {
5710 	int cpu;
5711 
5712 	for_each_online_cpu(cpu)
5713 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5714 }
5715 
5716 #define STAT_ATTR(si, text) 					\
5717 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5718 {								\
5719 	return show_stat(s, buf, si);				\
5720 }								\
5721 static ssize_t text##_store(struct kmem_cache *s,		\
5722 				const char *buf, size_t length)	\
5723 {								\
5724 	if (buf[0] != '0')					\
5725 		return -EINVAL;					\
5726 	clear_stat(s, si);					\
5727 	return length;						\
5728 }								\
5729 SLAB_ATTR(text);						\
5730 
5731 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5732 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5733 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5734 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5735 STAT_ATTR(FREE_FROZEN, free_frozen);
5736 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5737 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5738 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5739 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5740 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5741 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5742 STAT_ATTR(FREE_SLAB, free_slab);
5743 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5744 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5745 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5746 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5747 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5748 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5749 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5750 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5751 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5752 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5753 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5754 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5755 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5756 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5757 #endif	/* CONFIG_SLUB_STATS */
5758 
5759 static struct attribute *slab_attrs[] = {
5760 	&slab_size_attr.attr,
5761 	&object_size_attr.attr,
5762 	&objs_per_slab_attr.attr,
5763 	&order_attr.attr,
5764 	&min_partial_attr.attr,
5765 	&cpu_partial_attr.attr,
5766 	&objects_attr.attr,
5767 	&objects_partial_attr.attr,
5768 	&partial_attr.attr,
5769 	&cpu_slabs_attr.attr,
5770 	&ctor_attr.attr,
5771 	&aliases_attr.attr,
5772 	&align_attr.attr,
5773 	&hwcache_align_attr.attr,
5774 	&reclaim_account_attr.attr,
5775 	&destroy_by_rcu_attr.attr,
5776 	&shrink_attr.attr,
5777 	&slabs_cpu_partial_attr.attr,
5778 #ifdef CONFIG_SLUB_DEBUG
5779 	&total_objects_attr.attr,
5780 	&slabs_attr.attr,
5781 	&sanity_checks_attr.attr,
5782 	&trace_attr.attr,
5783 	&red_zone_attr.attr,
5784 	&poison_attr.attr,
5785 	&store_user_attr.attr,
5786 	&validate_attr.attr,
5787 #endif
5788 #ifdef CONFIG_ZONE_DMA
5789 	&cache_dma_attr.attr,
5790 #endif
5791 #ifdef CONFIG_NUMA
5792 	&remote_node_defrag_ratio_attr.attr,
5793 #endif
5794 #ifdef CONFIG_SLUB_STATS
5795 	&alloc_fastpath_attr.attr,
5796 	&alloc_slowpath_attr.attr,
5797 	&free_fastpath_attr.attr,
5798 	&free_slowpath_attr.attr,
5799 	&free_frozen_attr.attr,
5800 	&free_add_partial_attr.attr,
5801 	&free_remove_partial_attr.attr,
5802 	&alloc_from_partial_attr.attr,
5803 	&alloc_slab_attr.attr,
5804 	&alloc_refill_attr.attr,
5805 	&alloc_node_mismatch_attr.attr,
5806 	&free_slab_attr.attr,
5807 	&cpuslab_flush_attr.attr,
5808 	&deactivate_full_attr.attr,
5809 	&deactivate_empty_attr.attr,
5810 	&deactivate_to_head_attr.attr,
5811 	&deactivate_to_tail_attr.attr,
5812 	&deactivate_remote_frees_attr.attr,
5813 	&deactivate_bypass_attr.attr,
5814 	&order_fallback_attr.attr,
5815 	&cmpxchg_double_fail_attr.attr,
5816 	&cmpxchg_double_cpu_fail_attr.attr,
5817 	&cpu_partial_alloc_attr.attr,
5818 	&cpu_partial_free_attr.attr,
5819 	&cpu_partial_node_attr.attr,
5820 	&cpu_partial_drain_attr.attr,
5821 #endif
5822 #ifdef CONFIG_FAILSLAB
5823 	&failslab_attr.attr,
5824 #endif
5825 	&usersize_attr.attr,
5826 
5827 	NULL
5828 };
5829 
5830 static const struct attribute_group slab_attr_group = {
5831 	.attrs = slab_attrs,
5832 };
5833 
5834 static ssize_t slab_attr_show(struct kobject *kobj,
5835 				struct attribute *attr,
5836 				char *buf)
5837 {
5838 	struct slab_attribute *attribute;
5839 	struct kmem_cache *s;
5840 	int err;
5841 
5842 	attribute = to_slab_attr(attr);
5843 	s = to_slab(kobj);
5844 
5845 	if (!attribute->show)
5846 		return -EIO;
5847 
5848 	err = attribute->show(s, buf);
5849 
5850 	return err;
5851 }
5852 
5853 static ssize_t slab_attr_store(struct kobject *kobj,
5854 				struct attribute *attr,
5855 				const char *buf, size_t len)
5856 {
5857 	struct slab_attribute *attribute;
5858 	struct kmem_cache *s;
5859 	int err;
5860 
5861 	attribute = to_slab_attr(attr);
5862 	s = to_slab(kobj);
5863 
5864 	if (!attribute->store)
5865 		return -EIO;
5866 
5867 	err = attribute->store(s, buf, len);
5868 	return err;
5869 }
5870 
5871 static void kmem_cache_release(struct kobject *k)
5872 {
5873 	slab_kmem_cache_release(to_slab(k));
5874 }
5875 
5876 static const struct sysfs_ops slab_sysfs_ops = {
5877 	.show = slab_attr_show,
5878 	.store = slab_attr_store,
5879 };
5880 
5881 static struct kobj_type slab_ktype = {
5882 	.sysfs_ops = &slab_sysfs_ops,
5883 	.release = kmem_cache_release,
5884 };
5885 
5886 static struct kset *slab_kset;
5887 
5888 static inline struct kset *cache_kset(struct kmem_cache *s)
5889 {
5890 	return slab_kset;
5891 }
5892 
5893 #define ID_STR_LENGTH 64
5894 
5895 /* Create a unique string id for a slab cache:
5896  *
5897  * Format	:[flags-]size
5898  */
5899 static char *create_unique_id(struct kmem_cache *s)
5900 {
5901 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5902 	char *p = name;
5903 
5904 	if (!name)
5905 		return ERR_PTR(-ENOMEM);
5906 
5907 	*p++ = ':';
5908 	/*
5909 	 * First flags affecting slabcache operations. We will only
5910 	 * get here for aliasable slabs so we do not need to support
5911 	 * too many flags. The flags here must cover all flags that
5912 	 * are matched during merging to guarantee that the id is
5913 	 * unique.
5914 	 */
5915 	if (s->flags & SLAB_CACHE_DMA)
5916 		*p++ = 'd';
5917 	if (s->flags & SLAB_CACHE_DMA32)
5918 		*p++ = 'D';
5919 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5920 		*p++ = 'a';
5921 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5922 		*p++ = 'F';
5923 	if (s->flags & SLAB_ACCOUNT)
5924 		*p++ = 'A';
5925 	if (p != name + 1)
5926 		*p++ = '-';
5927 	p += sprintf(p, "%07u", s->size);
5928 
5929 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5930 	return name;
5931 }
5932 
5933 static int sysfs_slab_add(struct kmem_cache *s)
5934 {
5935 	int err;
5936 	const char *name;
5937 	struct kset *kset = cache_kset(s);
5938 	int unmergeable = slab_unmergeable(s);
5939 
5940 	if (!kset) {
5941 		kobject_init(&s->kobj, &slab_ktype);
5942 		return 0;
5943 	}
5944 
5945 	if (!unmergeable && disable_higher_order_debug &&
5946 			(slub_debug & DEBUG_METADATA_FLAGS))
5947 		unmergeable = 1;
5948 
5949 	if (unmergeable) {
5950 		/*
5951 		 * Slabcache can never be merged so we can use the name proper.
5952 		 * This is typically the case for debug situations. In that
5953 		 * case we can catch duplicate names easily.
5954 		 */
5955 		sysfs_remove_link(&slab_kset->kobj, s->name);
5956 		name = s->name;
5957 	} else {
5958 		/*
5959 		 * Create a unique name for the slab as a target
5960 		 * for the symlinks.
5961 		 */
5962 		name = create_unique_id(s);
5963 		if (IS_ERR(name))
5964 			return PTR_ERR(name);
5965 	}
5966 
5967 	s->kobj.kset = kset;
5968 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5969 	if (err)
5970 		goto out;
5971 
5972 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5973 	if (err)
5974 		goto out_del_kobj;
5975 
5976 	if (!unmergeable) {
5977 		/* Setup first alias */
5978 		sysfs_slab_alias(s, s->name);
5979 	}
5980 out:
5981 	if (!unmergeable)
5982 		kfree(name);
5983 	return err;
5984 out_del_kobj:
5985 	kobject_del(&s->kobj);
5986 	goto out;
5987 }
5988 
5989 void sysfs_slab_unlink(struct kmem_cache *s)
5990 {
5991 	if (slab_state >= FULL)
5992 		kobject_del(&s->kobj);
5993 }
5994 
5995 void sysfs_slab_release(struct kmem_cache *s)
5996 {
5997 	if (slab_state >= FULL)
5998 		kobject_put(&s->kobj);
5999 }
6000 
6001 /*
6002  * Need to buffer aliases during bootup until sysfs becomes
6003  * available lest we lose that information.
6004  */
6005 struct saved_alias {
6006 	struct kmem_cache *s;
6007 	const char *name;
6008 	struct saved_alias *next;
6009 };
6010 
6011 static struct saved_alias *alias_list;
6012 
6013 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6014 {
6015 	struct saved_alias *al;
6016 
6017 	if (slab_state == FULL) {
6018 		/*
6019 		 * If we have a leftover link then remove it.
6020 		 */
6021 		sysfs_remove_link(&slab_kset->kobj, name);
6022 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6023 	}
6024 
6025 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6026 	if (!al)
6027 		return -ENOMEM;
6028 
6029 	al->s = s;
6030 	al->name = name;
6031 	al->next = alias_list;
6032 	alias_list = al;
6033 	return 0;
6034 }
6035 
6036 static int __init slab_sysfs_init(void)
6037 {
6038 	struct kmem_cache *s;
6039 	int err;
6040 
6041 	mutex_lock(&slab_mutex);
6042 
6043 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6044 	if (!slab_kset) {
6045 		mutex_unlock(&slab_mutex);
6046 		pr_err("Cannot register slab subsystem.\n");
6047 		return -ENOSYS;
6048 	}
6049 
6050 	slab_state = FULL;
6051 
6052 	list_for_each_entry(s, &slab_caches, list) {
6053 		err = sysfs_slab_add(s);
6054 		if (err)
6055 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6056 			       s->name);
6057 	}
6058 
6059 	while (alias_list) {
6060 		struct saved_alias *al = alias_list;
6061 
6062 		alias_list = alias_list->next;
6063 		err = sysfs_slab_alias(al->s, al->name);
6064 		if (err)
6065 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6066 			       al->name);
6067 		kfree(al);
6068 	}
6069 
6070 	mutex_unlock(&slab_mutex);
6071 	return 0;
6072 }
6073 
6074 __initcall(slab_sysfs_init);
6075 #endif /* CONFIG_SYSFS */
6076 
6077 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6078 static int slab_debugfs_show(struct seq_file *seq, void *v)
6079 {
6080 	struct loc_track *t = seq->private;
6081 	struct location *l;
6082 	unsigned long idx;
6083 
6084 	idx = (unsigned long) t->idx;
6085 	if (idx < t->count) {
6086 		l = &t->loc[idx];
6087 
6088 		seq_printf(seq, "%7ld ", l->count);
6089 
6090 		if (l->addr)
6091 			seq_printf(seq, "%pS", (void *)l->addr);
6092 		else
6093 			seq_puts(seq, "<not-available>");
6094 
6095 		if (l->sum_time != l->min_time) {
6096 			seq_printf(seq, " age=%ld/%llu/%ld",
6097 				l->min_time, div_u64(l->sum_time, l->count),
6098 				l->max_time);
6099 		} else
6100 			seq_printf(seq, " age=%ld", l->min_time);
6101 
6102 		if (l->min_pid != l->max_pid)
6103 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6104 		else
6105 			seq_printf(seq, " pid=%ld",
6106 				l->min_pid);
6107 
6108 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6109 			seq_printf(seq, " cpus=%*pbl",
6110 				 cpumask_pr_args(to_cpumask(l->cpus)));
6111 
6112 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6113 			seq_printf(seq, " nodes=%*pbl",
6114 				 nodemask_pr_args(&l->nodes));
6115 
6116 #ifdef CONFIG_STACKDEPOT
6117 		{
6118 			depot_stack_handle_t handle;
6119 			unsigned long *entries;
6120 			unsigned int nr_entries, j;
6121 
6122 			handle = READ_ONCE(l->handle);
6123 			if (handle) {
6124 				nr_entries = stack_depot_fetch(handle, &entries);
6125 				seq_puts(seq, "\n");
6126 				for (j = 0; j < nr_entries; j++)
6127 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6128 			}
6129 		}
6130 #endif
6131 		seq_puts(seq, "\n");
6132 	}
6133 
6134 	if (!idx && !t->count)
6135 		seq_puts(seq, "No data\n");
6136 
6137 	return 0;
6138 }
6139 
6140 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6141 {
6142 }
6143 
6144 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6145 {
6146 	struct loc_track *t = seq->private;
6147 
6148 	t->idx = ++(*ppos);
6149 	if (*ppos <= t->count)
6150 		return ppos;
6151 
6152 	return NULL;
6153 }
6154 
6155 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6156 {
6157 	struct location *loc1 = (struct location *)a;
6158 	struct location *loc2 = (struct location *)b;
6159 
6160 	if (loc1->count > loc2->count)
6161 		return -1;
6162 	else
6163 		return 1;
6164 }
6165 
6166 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6167 {
6168 	struct loc_track *t = seq->private;
6169 
6170 	t->idx = *ppos;
6171 	return ppos;
6172 }
6173 
6174 static const struct seq_operations slab_debugfs_sops = {
6175 	.start  = slab_debugfs_start,
6176 	.next   = slab_debugfs_next,
6177 	.stop   = slab_debugfs_stop,
6178 	.show   = slab_debugfs_show,
6179 };
6180 
6181 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6182 {
6183 
6184 	struct kmem_cache_node *n;
6185 	enum track_item alloc;
6186 	int node;
6187 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6188 						sizeof(struct loc_track));
6189 	struct kmem_cache *s = file_inode(filep)->i_private;
6190 	unsigned long *obj_map;
6191 
6192 	if (!t)
6193 		return -ENOMEM;
6194 
6195 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6196 	if (!obj_map) {
6197 		seq_release_private(inode, filep);
6198 		return -ENOMEM;
6199 	}
6200 
6201 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6202 		alloc = TRACK_ALLOC;
6203 	else
6204 		alloc = TRACK_FREE;
6205 
6206 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6207 		bitmap_free(obj_map);
6208 		seq_release_private(inode, filep);
6209 		return -ENOMEM;
6210 	}
6211 
6212 	for_each_kmem_cache_node(s, node, n) {
6213 		unsigned long flags;
6214 		struct slab *slab;
6215 
6216 		if (!atomic_long_read(&n->nr_slabs))
6217 			continue;
6218 
6219 		spin_lock_irqsave(&n->list_lock, flags);
6220 		list_for_each_entry(slab, &n->partial, slab_list)
6221 			process_slab(t, s, slab, alloc, obj_map);
6222 		list_for_each_entry(slab, &n->full, slab_list)
6223 			process_slab(t, s, slab, alloc, obj_map);
6224 		spin_unlock_irqrestore(&n->list_lock, flags);
6225 	}
6226 
6227 	/* Sort locations by count */
6228 	sort_r(t->loc, t->count, sizeof(struct location),
6229 		cmp_loc_by_count, NULL, NULL);
6230 
6231 	bitmap_free(obj_map);
6232 	return 0;
6233 }
6234 
6235 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6236 {
6237 	struct seq_file *seq = file->private_data;
6238 	struct loc_track *t = seq->private;
6239 
6240 	free_loc_track(t);
6241 	return seq_release_private(inode, file);
6242 }
6243 
6244 static const struct file_operations slab_debugfs_fops = {
6245 	.open    = slab_debug_trace_open,
6246 	.read    = seq_read,
6247 	.llseek  = seq_lseek,
6248 	.release = slab_debug_trace_release,
6249 };
6250 
6251 static void debugfs_slab_add(struct kmem_cache *s)
6252 {
6253 	struct dentry *slab_cache_dir;
6254 
6255 	if (unlikely(!slab_debugfs_root))
6256 		return;
6257 
6258 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6259 
6260 	debugfs_create_file("alloc_traces", 0400,
6261 		slab_cache_dir, s, &slab_debugfs_fops);
6262 
6263 	debugfs_create_file("free_traces", 0400,
6264 		slab_cache_dir, s, &slab_debugfs_fops);
6265 }
6266 
6267 void debugfs_slab_release(struct kmem_cache *s)
6268 {
6269 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6270 }
6271 
6272 static int __init slab_debugfs_init(void)
6273 {
6274 	struct kmem_cache *s;
6275 
6276 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6277 
6278 	list_for_each_entry(s, &slab_caches, list)
6279 		if (s->flags & SLAB_STORE_USER)
6280 			debugfs_slab_add(s);
6281 
6282 	return 0;
6283 
6284 }
6285 __initcall(slab_debugfs_init);
6286 #endif
6287 /*
6288  * The /proc/slabinfo ABI
6289  */
6290 #ifdef CONFIG_SLUB_DEBUG
6291 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6292 {
6293 	unsigned long nr_slabs = 0;
6294 	unsigned long nr_objs = 0;
6295 	unsigned long nr_free = 0;
6296 	int node;
6297 	struct kmem_cache_node *n;
6298 
6299 	for_each_kmem_cache_node(s, node, n) {
6300 		nr_slabs += node_nr_slabs(n);
6301 		nr_objs += node_nr_objs(n);
6302 		nr_free += count_partial(n, count_free);
6303 	}
6304 
6305 	sinfo->active_objs = nr_objs - nr_free;
6306 	sinfo->num_objs = nr_objs;
6307 	sinfo->active_slabs = nr_slabs;
6308 	sinfo->num_slabs = nr_slabs;
6309 	sinfo->objects_per_slab = oo_objects(s->oo);
6310 	sinfo->cache_order = oo_order(s->oo);
6311 }
6312 
6313 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6314 {
6315 }
6316 
6317 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6318 		       size_t count, loff_t *ppos)
6319 {
6320 	return -EIO;
6321 }
6322 #endif /* CONFIG_SLUB_DEBUG */
6323