xref: /linux/mm/slub.c (revision 434498a6bee3db729dbdb7f131f3506f4dca85e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 
48 #include "internal.h"
49 
50 /*
51  * Lock order:
52  *   1. slab_mutex (Global Mutex)
53  *   2. node->list_lock (Spinlock)
54  *   3. kmem_cache->cpu_slab->lock (Local lock)
55  *   4. slab_lock(slab) (Only on some arches)
56  *   5. object_map_lock (Only for debugging)
57  *
58  *   slab_mutex
59  *
60  *   The role of the slab_mutex is to protect the list of all the slabs
61  *   and to synchronize major metadata changes to slab cache structures.
62  *   Also synchronizes memory hotplug callbacks.
63  *
64  *   slab_lock
65  *
66  *   The slab_lock is a wrapper around the page lock, thus it is a bit
67  *   spinlock.
68  *
69  *   The slab_lock is only used on arches that do not have the ability
70  *   to do a cmpxchg_double. It only protects:
71  *
72  *	A. slab->freelist	-> List of free objects in a slab
73  *	B. slab->inuse		-> Number of objects in use
74  *	C. slab->objects	-> Number of objects in slab
75  *	D. slab->frozen		-> frozen state
76  *
77  *   Frozen slabs
78  *
79  *   If a slab is frozen then it is exempt from list management. It is not
80  *   on any list except per cpu partial list. The processor that froze the
81  *   slab is the one who can perform list operations on the slab. Other
82  *   processors may put objects onto the freelist but the processor that
83  *   froze the slab is the only one that can retrieve the objects from the
84  *   slab's freelist.
85  *
86  *   list_lock
87  *
88  *   The list_lock protects the partial and full list on each node and
89  *   the partial slab counter. If taken then no new slabs may be added or
90  *   removed from the lists nor make the number of partial slabs be modified.
91  *   (Note that the total number of slabs is an atomic value that may be
92  *   modified without taking the list lock).
93  *
94  *   The list_lock is a centralized lock and thus we avoid taking it as
95  *   much as possible. As long as SLUB does not have to handle partial
96  *   slabs, operations can continue without any centralized lock. F.e.
97  *   allocating a long series of objects that fill up slabs does not require
98  *   the list lock.
99  *
100  *   For debug caches, all allocations are forced to go through a list_lock
101  *   protected region to serialize against concurrent validation.
102  *
103  *   cpu_slab->lock local lock
104  *
105  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
106  *   except the stat counters. This is a percpu structure manipulated only by
107  *   the local cpu, so the lock protects against being preempted or interrupted
108  *   by an irq. Fast path operations rely on lockless operations instead.
109  *
110  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111  *   which means the lockless fastpath cannot be used as it might interfere with
112  *   an in-progress slow path operations. In this case the local lock is always
113  *   taken but it still utilizes the freelist for the common operations.
114  *
115  *   lockless fastpaths
116  *
117  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118  *   are fully lockless when satisfied from the percpu slab (and when
119  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
120  *   They also don't disable preemption or migration or irqs. They rely on
121  *   the transaction id (tid) field to detect being preempted or moved to
122  *   another cpu.
123  *
124  *   irq, preemption, migration considerations
125  *
126  *   Interrupts are disabled as part of list_lock or local_lock operations, or
127  *   around the slab_lock operation, in order to make the slab allocator safe
128  *   to use in the context of an irq.
129  *
130  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133  *   doesn't have to be revalidated in each section protected by the local lock.
134  *
135  * SLUB assigns one slab for allocation to each processor.
136  * Allocations only occur from these slabs called cpu slabs.
137  *
138  * Slabs with free elements are kept on a partial list and during regular
139  * operations no list for full slabs is used. If an object in a full slab is
140  * freed then the slab will show up again on the partial lists.
141  * We track full slabs for debugging purposes though because otherwise we
142  * cannot scan all objects.
143  *
144  * Slabs are freed when they become empty. Teardown and setup is
145  * minimal so we rely on the page allocators per cpu caches for
146  * fast frees and allocs.
147  *
148  * slab->frozen		The slab is frozen and exempt from list processing.
149  * 			This means that the slab is dedicated to a purpose
150  * 			such as satisfying allocations for a specific
151  * 			processor. Objects may be freed in the slab while
152  * 			it is frozen but slab_free will then skip the usual
153  * 			list operations. It is up to the processor holding
154  * 			the slab to integrate the slab into the slab lists
155  * 			when the slab is no longer needed.
156  *
157  * 			One use of this flag is to mark slabs that are
158  * 			used for allocations. Then such a slab becomes a cpu
159  * 			slab. The cpu slab may be equipped with an additional
160  * 			freelist that allows lockless access to
161  * 			free objects in addition to the regular freelist
162  * 			that requires the slab lock.
163  *
164  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
165  * 			options set. This moves	slab handling out of
166  * 			the fast path and disables lockless freelists.
167  */
168 
169 /*
170  * We could simply use migrate_disable()/enable() but as long as it's a
171  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172  */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH()	(true)
177 #else
178 #define slub_get_cpu_ptr(var)		\
179 ({					\
180 	migrate_disable();		\
181 	this_cpu_ptr(var);		\
182 })
183 #define slub_put_cpu_ptr(var)		\
184 do {					\
185 	(void)(var);			\
186 	migrate_enable();		\
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH()	(false)
189 #endif
190 
191 #ifdef CONFIG_SLUB_DEBUG
192 #ifdef CONFIG_SLUB_DEBUG_ON
193 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
194 #else
195 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
196 #endif
197 #endif		/* CONFIG_SLUB_DEBUG */
198 
199 /* Structure holding parameters for get_partial() call chain */
200 struct partial_context {
201 	struct slab **slab;
202 	gfp_t flags;
203 	unsigned int orig_size;
204 };
205 
206 static inline bool kmem_cache_debug(struct kmem_cache *s)
207 {
208 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
209 }
210 
211 static inline bool slub_debug_orig_size(struct kmem_cache *s)
212 {
213 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
214 			(s->flags & SLAB_KMALLOC));
215 }
216 
217 void *fixup_red_left(struct kmem_cache *s, void *p)
218 {
219 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
220 		p += s->red_left_pad;
221 
222 	return p;
223 }
224 
225 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
226 {
227 #ifdef CONFIG_SLUB_CPU_PARTIAL
228 	return !kmem_cache_debug(s);
229 #else
230 	return false;
231 #endif
232 }
233 
234 /*
235  * Issues still to be resolved:
236  *
237  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
238  *
239  * - Variable sizing of the per node arrays
240  */
241 
242 /* Enable to log cmpxchg failures */
243 #undef SLUB_DEBUG_CMPXCHG
244 
245 /*
246  * Minimum number of partial slabs. These will be left on the partial
247  * lists even if they are empty. kmem_cache_shrink may reclaim them.
248  */
249 #define MIN_PARTIAL 5
250 
251 /*
252  * Maximum number of desirable partial slabs.
253  * The existence of more partial slabs makes kmem_cache_shrink
254  * sort the partial list by the number of objects in use.
255  */
256 #define MAX_PARTIAL 10
257 
258 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
259 				SLAB_POISON | SLAB_STORE_USER)
260 
261 /*
262  * These debug flags cannot use CMPXCHG because there might be consistency
263  * issues when checking or reading debug information
264  */
265 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
266 				SLAB_TRACE)
267 
268 
269 /*
270  * Debugging flags that require metadata to be stored in the slab.  These get
271  * disabled when slub_debug=O is used and a cache's min order increases with
272  * metadata.
273  */
274 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
275 
276 #define OO_SHIFT	16
277 #define OO_MASK		((1 << OO_SHIFT) - 1)
278 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
279 
280 /* Internal SLUB flags */
281 /* Poison object */
282 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
283 /* Use cmpxchg_double */
284 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
285 
286 /*
287  * Tracking user of a slab.
288  */
289 #define TRACK_ADDRS_COUNT 16
290 struct track {
291 	unsigned long addr;	/* Called from address */
292 #ifdef CONFIG_STACKDEPOT
293 	depot_stack_handle_t handle;
294 #endif
295 	int cpu;		/* Was running on cpu */
296 	int pid;		/* Pid context */
297 	unsigned long when;	/* When did the operation occur */
298 };
299 
300 enum track_item { TRACK_ALLOC, TRACK_FREE };
301 
302 #ifdef CONFIG_SYSFS
303 static int sysfs_slab_add(struct kmem_cache *);
304 static int sysfs_slab_alias(struct kmem_cache *, const char *);
305 #else
306 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
307 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
308 							{ return 0; }
309 #endif
310 
311 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
312 static void debugfs_slab_add(struct kmem_cache *);
313 #else
314 static inline void debugfs_slab_add(struct kmem_cache *s) { }
315 #endif
316 
317 static inline void stat(const struct kmem_cache *s, enum stat_item si)
318 {
319 #ifdef CONFIG_SLUB_STATS
320 	/*
321 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
322 	 * avoid this_cpu_add()'s irq-disable overhead.
323 	 */
324 	raw_cpu_inc(s->cpu_slab->stat[si]);
325 #endif
326 }
327 
328 /*
329  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
330  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
331  * differ during memory hotplug/hotremove operations.
332  * Protected by slab_mutex.
333  */
334 static nodemask_t slab_nodes;
335 
336 /*
337  * Workqueue used for flush_cpu_slab().
338  */
339 static struct workqueue_struct *flushwq;
340 
341 /********************************************************************
342  * 			Core slab cache functions
343  *******************************************************************/
344 
345 /*
346  * Returns freelist pointer (ptr). With hardening, this is obfuscated
347  * with an XOR of the address where the pointer is held and a per-cache
348  * random number.
349  */
350 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
351 				 unsigned long ptr_addr)
352 {
353 #ifdef CONFIG_SLAB_FREELIST_HARDENED
354 	/*
355 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
356 	 * Normally, this doesn't cause any issues, as both set_freepointer()
357 	 * and get_freepointer() are called with a pointer with the same tag.
358 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
359 	 * example, when __free_slub() iterates over objects in a cache, it
360 	 * passes untagged pointers to check_object(). check_object() in turns
361 	 * calls get_freepointer() with an untagged pointer, which causes the
362 	 * freepointer to be restored incorrectly.
363 	 */
364 	return (void *)((unsigned long)ptr ^ s->random ^
365 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
366 #else
367 	return ptr;
368 #endif
369 }
370 
371 /* Returns the freelist pointer recorded at location ptr_addr. */
372 static inline void *freelist_dereference(const struct kmem_cache *s,
373 					 void *ptr_addr)
374 {
375 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
376 			    (unsigned long)ptr_addr);
377 }
378 
379 static inline void *get_freepointer(struct kmem_cache *s, void *object)
380 {
381 	object = kasan_reset_tag(object);
382 	return freelist_dereference(s, object + s->offset);
383 }
384 
385 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
386 {
387 	prefetchw(object + s->offset);
388 }
389 
390 /*
391  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
392  * pointer value in the case the current thread loses the race for the next
393  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
394  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
395  * KMSAN will still check all arguments of cmpxchg because of imperfect
396  * handling of inline assembly.
397  * To work around this problem, we apply __no_kmsan_checks to ensure that
398  * get_freepointer_safe() returns initialized memory.
399  */
400 __no_kmsan_checks
401 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
402 {
403 	unsigned long freepointer_addr;
404 	void *p;
405 
406 	if (!debug_pagealloc_enabled_static())
407 		return get_freepointer(s, object);
408 
409 	object = kasan_reset_tag(object);
410 	freepointer_addr = (unsigned long)object + s->offset;
411 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
412 	return freelist_ptr(s, p, freepointer_addr);
413 }
414 
415 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
416 {
417 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
418 
419 #ifdef CONFIG_SLAB_FREELIST_HARDENED
420 	BUG_ON(object == fp); /* naive detection of double free or corruption */
421 #endif
422 
423 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
424 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
425 }
426 
427 /* Loop over all objects in a slab */
428 #define for_each_object(__p, __s, __addr, __objects) \
429 	for (__p = fixup_red_left(__s, __addr); \
430 		__p < (__addr) + (__objects) * (__s)->size; \
431 		__p += (__s)->size)
432 
433 static inline unsigned int order_objects(unsigned int order, unsigned int size)
434 {
435 	return ((unsigned int)PAGE_SIZE << order) / size;
436 }
437 
438 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
439 		unsigned int size)
440 {
441 	struct kmem_cache_order_objects x = {
442 		(order << OO_SHIFT) + order_objects(order, size)
443 	};
444 
445 	return x;
446 }
447 
448 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
449 {
450 	return x.x >> OO_SHIFT;
451 }
452 
453 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
454 {
455 	return x.x & OO_MASK;
456 }
457 
458 #ifdef CONFIG_SLUB_CPU_PARTIAL
459 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
460 {
461 	unsigned int nr_slabs;
462 
463 	s->cpu_partial = nr_objects;
464 
465 	/*
466 	 * We take the number of objects but actually limit the number of
467 	 * slabs on the per cpu partial list, in order to limit excessive
468 	 * growth of the list. For simplicity we assume that the slabs will
469 	 * be half-full.
470 	 */
471 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
472 	s->cpu_partial_slabs = nr_slabs;
473 }
474 #else
475 static inline void
476 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
477 {
478 }
479 #endif /* CONFIG_SLUB_CPU_PARTIAL */
480 
481 /*
482  * Per slab locking using the pagelock
483  */
484 static __always_inline void slab_lock(struct slab *slab)
485 {
486 	struct page *page = slab_page(slab);
487 
488 	VM_BUG_ON_PAGE(PageTail(page), page);
489 	bit_spin_lock(PG_locked, &page->flags);
490 }
491 
492 static __always_inline void slab_unlock(struct slab *slab)
493 {
494 	struct page *page = slab_page(slab);
495 
496 	VM_BUG_ON_PAGE(PageTail(page), page);
497 	__bit_spin_unlock(PG_locked, &page->flags);
498 }
499 
500 /*
501  * Interrupts must be disabled (for the fallback code to work right), typically
502  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
503  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
504  * allocation/ free operation in hardirq context. Therefore nothing can
505  * interrupt the operation.
506  */
507 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
508 		void *freelist_old, unsigned long counters_old,
509 		void *freelist_new, unsigned long counters_new,
510 		const char *n)
511 {
512 	if (USE_LOCKLESS_FAST_PATH())
513 		lockdep_assert_irqs_disabled();
514 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
515     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
516 	if (s->flags & __CMPXCHG_DOUBLE) {
517 		if (cmpxchg_double(&slab->freelist, &slab->counters,
518 				   freelist_old, counters_old,
519 				   freelist_new, counters_new))
520 			return true;
521 	} else
522 #endif
523 	{
524 		slab_lock(slab);
525 		if (slab->freelist == freelist_old &&
526 					slab->counters == counters_old) {
527 			slab->freelist = freelist_new;
528 			slab->counters = counters_new;
529 			slab_unlock(slab);
530 			return true;
531 		}
532 		slab_unlock(slab);
533 	}
534 
535 	cpu_relax();
536 	stat(s, CMPXCHG_DOUBLE_FAIL);
537 
538 #ifdef SLUB_DEBUG_CMPXCHG
539 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
540 #endif
541 
542 	return false;
543 }
544 
545 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
546 		void *freelist_old, unsigned long counters_old,
547 		void *freelist_new, unsigned long counters_new,
548 		const char *n)
549 {
550 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
551     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
552 	if (s->flags & __CMPXCHG_DOUBLE) {
553 		if (cmpxchg_double(&slab->freelist, &slab->counters,
554 				   freelist_old, counters_old,
555 				   freelist_new, counters_new))
556 			return true;
557 	} else
558 #endif
559 	{
560 		unsigned long flags;
561 
562 		local_irq_save(flags);
563 		slab_lock(slab);
564 		if (slab->freelist == freelist_old &&
565 					slab->counters == counters_old) {
566 			slab->freelist = freelist_new;
567 			slab->counters = counters_new;
568 			slab_unlock(slab);
569 			local_irq_restore(flags);
570 			return true;
571 		}
572 		slab_unlock(slab);
573 		local_irq_restore(flags);
574 	}
575 
576 	cpu_relax();
577 	stat(s, CMPXCHG_DOUBLE_FAIL);
578 
579 #ifdef SLUB_DEBUG_CMPXCHG
580 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
581 #endif
582 
583 	return false;
584 }
585 
586 #ifdef CONFIG_SLUB_DEBUG
587 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
588 static DEFINE_SPINLOCK(object_map_lock);
589 
590 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
591 		       struct slab *slab)
592 {
593 	void *addr = slab_address(slab);
594 	void *p;
595 
596 	bitmap_zero(obj_map, slab->objects);
597 
598 	for (p = slab->freelist; p; p = get_freepointer(s, p))
599 		set_bit(__obj_to_index(s, addr, p), obj_map);
600 }
601 
602 #if IS_ENABLED(CONFIG_KUNIT)
603 static bool slab_add_kunit_errors(void)
604 {
605 	struct kunit_resource *resource;
606 
607 	if (!kunit_get_current_test())
608 		return false;
609 
610 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
611 	if (!resource)
612 		return false;
613 
614 	(*(int *)resource->data)++;
615 	kunit_put_resource(resource);
616 	return true;
617 }
618 #else
619 static inline bool slab_add_kunit_errors(void) { return false; }
620 #endif
621 
622 static inline unsigned int size_from_object(struct kmem_cache *s)
623 {
624 	if (s->flags & SLAB_RED_ZONE)
625 		return s->size - s->red_left_pad;
626 
627 	return s->size;
628 }
629 
630 static inline void *restore_red_left(struct kmem_cache *s, void *p)
631 {
632 	if (s->flags & SLAB_RED_ZONE)
633 		p -= s->red_left_pad;
634 
635 	return p;
636 }
637 
638 /*
639  * Debug settings:
640  */
641 #if defined(CONFIG_SLUB_DEBUG_ON)
642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
643 #else
644 static slab_flags_t slub_debug;
645 #endif
646 
647 static char *slub_debug_string;
648 static int disable_higher_order_debug;
649 
650 /*
651  * slub is about to manipulate internal object metadata.  This memory lies
652  * outside the range of the allocated object, so accessing it would normally
653  * be reported by kasan as a bounds error.  metadata_access_enable() is used
654  * to tell kasan that these accesses are OK.
655  */
656 static inline void metadata_access_enable(void)
657 {
658 	kasan_disable_current();
659 }
660 
661 static inline void metadata_access_disable(void)
662 {
663 	kasan_enable_current();
664 }
665 
666 /*
667  * Object debugging
668  */
669 
670 /* Verify that a pointer has an address that is valid within a slab page */
671 static inline int check_valid_pointer(struct kmem_cache *s,
672 				struct slab *slab, void *object)
673 {
674 	void *base;
675 
676 	if (!object)
677 		return 1;
678 
679 	base = slab_address(slab);
680 	object = kasan_reset_tag(object);
681 	object = restore_red_left(s, object);
682 	if (object < base || object >= base + slab->objects * s->size ||
683 		(object - base) % s->size) {
684 		return 0;
685 	}
686 
687 	return 1;
688 }
689 
690 static void print_section(char *level, char *text, u8 *addr,
691 			  unsigned int length)
692 {
693 	metadata_access_enable();
694 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
695 			16, 1, kasan_reset_tag((void *)addr), length, 1);
696 	metadata_access_disable();
697 }
698 
699 /*
700  * See comment in calculate_sizes().
701  */
702 static inline bool freeptr_outside_object(struct kmem_cache *s)
703 {
704 	return s->offset >= s->inuse;
705 }
706 
707 /*
708  * Return offset of the end of info block which is inuse + free pointer if
709  * not overlapping with object.
710  */
711 static inline unsigned int get_info_end(struct kmem_cache *s)
712 {
713 	if (freeptr_outside_object(s))
714 		return s->inuse + sizeof(void *);
715 	else
716 		return s->inuse;
717 }
718 
719 static struct track *get_track(struct kmem_cache *s, void *object,
720 	enum track_item alloc)
721 {
722 	struct track *p;
723 
724 	p = object + get_info_end(s);
725 
726 	return kasan_reset_tag(p + alloc);
727 }
728 
729 #ifdef CONFIG_STACKDEPOT
730 static noinline depot_stack_handle_t set_track_prepare(void)
731 {
732 	depot_stack_handle_t handle;
733 	unsigned long entries[TRACK_ADDRS_COUNT];
734 	unsigned int nr_entries;
735 
736 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
737 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
738 
739 	return handle;
740 }
741 #else
742 static inline depot_stack_handle_t set_track_prepare(void)
743 {
744 	return 0;
745 }
746 #endif
747 
748 static void set_track_update(struct kmem_cache *s, void *object,
749 			     enum track_item alloc, unsigned long addr,
750 			     depot_stack_handle_t handle)
751 {
752 	struct track *p = get_track(s, object, alloc);
753 
754 #ifdef CONFIG_STACKDEPOT
755 	p->handle = handle;
756 #endif
757 	p->addr = addr;
758 	p->cpu = smp_processor_id();
759 	p->pid = current->pid;
760 	p->when = jiffies;
761 }
762 
763 static __always_inline void set_track(struct kmem_cache *s, void *object,
764 				      enum track_item alloc, unsigned long addr)
765 {
766 	depot_stack_handle_t handle = set_track_prepare();
767 
768 	set_track_update(s, object, alloc, addr, handle);
769 }
770 
771 static void init_tracking(struct kmem_cache *s, void *object)
772 {
773 	struct track *p;
774 
775 	if (!(s->flags & SLAB_STORE_USER))
776 		return;
777 
778 	p = get_track(s, object, TRACK_ALLOC);
779 	memset(p, 0, 2*sizeof(struct track));
780 }
781 
782 static void print_track(const char *s, struct track *t, unsigned long pr_time)
783 {
784 	depot_stack_handle_t handle __maybe_unused;
785 
786 	if (!t->addr)
787 		return;
788 
789 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
790 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
791 #ifdef CONFIG_STACKDEPOT
792 	handle = READ_ONCE(t->handle);
793 	if (handle)
794 		stack_depot_print(handle);
795 	else
796 		pr_err("object allocation/free stack trace missing\n");
797 #endif
798 }
799 
800 void print_tracking(struct kmem_cache *s, void *object)
801 {
802 	unsigned long pr_time = jiffies;
803 	if (!(s->flags & SLAB_STORE_USER))
804 		return;
805 
806 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
807 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
808 }
809 
810 static void print_slab_info(const struct slab *slab)
811 {
812 	struct folio *folio = (struct folio *)slab_folio(slab);
813 
814 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
815 	       slab, slab->objects, slab->inuse, slab->freelist,
816 	       folio_flags(folio, 0));
817 }
818 
819 /*
820  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
821  * family will round up the real request size to these fixed ones, so
822  * there could be an extra area than what is requested. Save the original
823  * request size in the meta data area, for better debug and sanity check.
824  */
825 static inline void set_orig_size(struct kmem_cache *s,
826 				void *object, unsigned int orig_size)
827 {
828 	void *p = kasan_reset_tag(object);
829 
830 	if (!slub_debug_orig_size(s))
831 		return;
832 
833 	p += get_info_end(s);
834 	p += sizeof(struct track) * 2;
835 
836 	*(unsigned int *)p = orig_size;
837 }
838 
839 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
840 {
841 	void *p = kasan_reset_tag(object);
842 
843 	if (!slub_debug_orig_size(s))
844 		return s->object_size;
845 
846 	p += get_info_end(s);
847 	p += sizeof(struct track) * 2;
848 
849 	return *(unsigned int *)p;
850 }
851 
852 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
853 {
854 	struct va_format vaf;
855 	va_list args;
856 
857 	va_start(args, fmt);
858 	vaf.fmt = fmt;
859 	vaf.va = &args;
860 	pr_err("=============================================================================\n");
861 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
862 	pr_err("-----------------------------------------------------------------------------\n\n");
863 	va_end(args);
864 }
865 
866 __printf(2, 3)
867 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
868 {
869 	struct va_format vaf;
870 	va_list args;
871 
872 	if (slab_add_kunit_errors())
873 		return;
874 
875 	va_start(args, fmt);
876 	vaf.fmt = fmt;
877 	vaf.va = &args;
878 	pr_err("FIX %s: %pV\n", s->name, &vaf);
879 	va_end(args);
880 }
881 
882 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
883 {
884 	unsigned int off;	/* Offset of last byte */
885 	u8 *addr = slab_address(slab);
886 
887 	print_tracking(s, p);
888 
889 	print_slab_info(slab);
890 
891 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
892 	       p, p - addr, get_freepointer(s, p));
893 
894 	if (s->flags & SLAB_RED_ZONE)
895 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
896 			      s->red_left_pad);
897 	else if (p > addr + 16)
898 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
899 
900 	print_section(KERN_ERR,         "Object   ", p,
901 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
902 	if (s->flags & SLAB_RED_ZONE)
903 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
904 			s->inuse - s->object_size);
905 
906 	off = get_info_end(s);
907 
908 	if (s->flags & SLAB_STORE_USER)
909 		off += 2 * sizeof(struct track);
910 
911 	if (slub_debug_orig_size(s))
912 		off += sizeof(unsigned int);
913 
914 	off += kasan_metadata_size(s);
915 
916 	if (off != size_from_object(s))
917 		/* Beginning of the filler is the free pointer */
918 		print_section(KERN_ERR, "Padding  ", p + off,
919 			      size_from_object(s) - off);
920 
921 	dump_stack();
922 }
923 
924 static void object_err(struct kmem_cache *s, struct slab *slab,
925 			u8 *object, char *reason)
926 {
927 	if (slab_add_kunit_errors())
928 		return;
929 
930 	slab_bug(s, "%s", reason);
931 	print_trailer(s, slab, object);
932 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
933 }
934 
935 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
936 			       void **freelist, void *nextfree)
937 {
938 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
939 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
940 		object_err(s, slab, *freelist, "Freechain corrupt");
941 		*freelist = NULL;
942 		slab_fix(s, "Isolate corrupted freechain");
943 		return true;
944 	}
945 
946 	return false;
947 }
948 
949 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
950 			const char *fmt, ...)
951 {
952 	va_list args;
953 	char buf[100];
954 
955 	if (slab_add_kunit_errors())
956 		return;
957 
958 	va_start(args, fmt);
959 	vsnprintf(buf, sizeof(buf), fmt, args);
960 	va_end(args);
961 	slab_bug(s, "%s", buf);
962 	print_slab_info(slab);
963 	dump_stack();
964 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
965 }
966 
967 static void init_object(struct kmem_cache *s, void *object, u8 val)
968 {
969 	u8 *p = kasan_reset_tag(object);
970 
971 	if (s->flags & SLAB_RED_ZONE)
972 		memset(p - s->red_left_pad, val, s->red_left_pad);
973 
974 	if (s->flags & __OBJECT_POISON) {
975 		memset(p, POISON_FREE, s->object_size - 1);
976 		p[s->object_size - 1] = POISON_END;
977 	}
978 
979 	if (s->flags & SLAB_RED_ZONE)
980 		memset(p + s->object_size, val, s->inuse - s->object_size);
981 }
982 
983 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
984 						void *from, void *to)
985 {
986 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
987 	memset(from, data, to - from);
988 }
989 
990 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
991 			u8 *object, char *what,
992 			u8 *start, unsigned int value, unsigned int bytes)
993 {
994 	u8 *fault;
995 	u8 *end;
996 	u8 *addr = slab_address(slab);
997 
998 	metadata_access_enable();
999 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1000 	metadata_access_disable();
1001 	if (!fault)
1002 		return 1;
1003 
1004 	end = start + bytes;
1005 	while (end > fault && end[-1] == value)
1006 		end--;
1007 
1008 	if (slab_add_kunit_errors())
1009 		goto skip_bug_print;
1010 
1011 	slab_bug(s, "%s overwritten", what);
1012 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1013 					fault, end - 1, fault - addr,
1014 					fault[0], value);
1015 	print_trailer(s, slab, object);
1016 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1017 
1018 skip_bug_print:
1019 	restore_bytes(s, what, value, fault, end);
1020 	return 0;
1021 }
1022 
1023 /*
1024  * Object layout:
1025  *
1026  * object address
1027  * 	Bytes of the object to be managed.
1028  * 	If the freepointer may overlay the object then the free
1029  *	pointer is at the middle of the object.
1030  *
1031  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1032  * 	0xa5 (POISON_END)
1033  *
1034  * object + s->object_size
1035  * 	Padding to reach word boundary. This is also used for Redzoning.
1036  * 	Padding is extended by another word if Redzoning is enabled and
1037  * 	object_size == inuse.
1038  *
1039  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1040  * 	0xcc (RED_ACTIVE) for objects in use.
1041  *
1042  * object + s->inuse
1043  * 	Meta data starts here.
1044  *
1045  * 	A. Free pointer (if we cannot overwrite object on free)
1046  * 	B. Tracking data for SLAB_STORE_USER
1047  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1048  *	D. Padding to reach required alignment boundary or at minimum
1049  * 		one word if debugging is on to be able to detect writes
1050  * 		before the word boundary.
1051  *
1052  *	Padding is done using 0x5a (POISON_INUSE)
1053  *
1054  * object + s->size
1055  * 	Nothing is used beyond s->size.
1056  *
1057  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1058  * ignored. And therefore no slab options that rely on these boundaries
1059  * may be used with merged slabcaches.
1060  */
1061 
1062 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1063 {
1064 	unsigned long off = get_info_end(s);	/* The end of info */
1065 
1066 	if (s->flags & SLAB_STORE_USER) {
1067 		/* We also have user information there */
1068 		off += 2 * sizeof(struct track);
1069 
1070 		if (s->flags & SLAB_KMALLOC)
1071 			off += sizeof(unsigned int);
1072 	}
1073 
1074 	off += kasan_metadata_size(s);
1075 
1076 	if (size_from_object(s) == off)
1077 		return 1;
1078 
1079 	return check_bytes_and_report(s, slab, p, "Object padding",
1080 			p + off, POISON_INUSE, size_from_object(s) - off);
1081 }
1082 
1083 /* Check the pad bytes at the end of a slab page */
1084 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1085 {
1086 	u8 *start;
1087 	u8 *fault;
1088 	u8 *end;
1089 	u8 *pad;
1090 	int length;
1091 	int remainder;
1092 
1093 	if (!(s->flags & SLAB_POISON))
1094 		return;
1095 
1096 	start = slab_address(slab);
1097 	length = slab_size(slab);
1098 	end = start + length;
1099 	remainder = length % s->size;
1100 	if (!remainder)
1101 		return;
1102 
1103 	pad = end - remainder;
1104 	metadata_access_enable();
1105 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1106 	metadata_access_disable();
1107 	if (!fault)
1108 		return;
1109 	while (end > fault && end[-1] == POISON_INUSE)
1110 		end--;
1111 
1112 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1113 			fault, end - 1, fault - start);
1114 	print_section(KERN_ERR, "Padding ", pad, remainder);
1115 
1116 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1117 }
1118 
1119 static int check_object(struct kmem_cache *s, struct slab *slab,
1120 					void *object, u8 val)
1121 {
1122 	u8 *p = object;
1123 	u8 *endobject = object + s->object_size;
1124 
1125 	if (s->flags & SLAB_RED_ZONE) {
1126 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1127 			object - s->red_left_pad, val, s->red_left_pad))
1128 			return 0;
1129 
1130 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1131 			endobject, val, s->inuse - s->object_size))
1132 			return 0;
1133 	} else {
1134 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1135 			check_bytes_and_report(s, slab, p, "Alignment padding",
1136 				endobject, POISON_INUSE,
1137 				s->inuse - s->object_size);
1138 		}
1139 	}
1140 
1141 	if (s->flags & SLAB_POISON) {
1142 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1143 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1144 					POISON_FREE, s->object_size - 1) ||
1145 			 !check_bytes_and_report(s, slab, p, "End Poison",
1146 				p + s->object_size - 1, POISON_END, 1)))
1147 			return 0;
1148 		/*
1149 		 * check_pad_bytes cleans up on its own.
1150 		 */
1151 		check_pad_bytes(s, slab, p);
1152 	}
1153 
1154 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1155 		/*
1156 		 * Object and freepointer overlap. Cannot check
1157 		 * freepointer while object is allocated.
1158 		 */
1159 		return 1;
1160 
1161 	/* Check free pointer validity */
1162 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1163 		object_err(s, slab, p, "Freepointer corrupt");
1164 		/*
1165 		 * No choice but to zap it and thus lose the remainder
1166 		 * of the free objects in this slab. May cause
1167 		 * another error because the object count is now wrong.
1168 		 */
1169 		set_freepointer(s, p, NULL);
1170 		return 0;
1171 	}
1172 	return 1;
1173 }
1174 
1175 static int check_slab(struct kmem_cache *s, struct slab *slab)
1176 {
1177 	int maxobj;
1178 
1179 	if (!folio_test_slab(slab_folio(slab))) {
1180 		slab_err(s, slab, "Not a valid slab page");
1181 		return 0;
1182 	}
1183 
1184 	maxobj = order_objects(slab_order(slab), s->size);
1185 	if (slab->objects > maxobj) {
1186 		slab_err(s, slab, "objects %u > max %u",
1187 			slab->objects, maxobj);
1188 		return 0;
1189 	}
1190 	if (slab->inuse > slab->objects) {
1191 		slab_err(s, slab, "inuse %u > max %u",
1192 			slab->inuse, slab->objects);
1193 		return 0;
1194 	}
1195 	/* Slab_pad_check fixes things up after itself */
1196 	slab_pad_check(s, slab);
1197 	return 1;
1198 }
1199 
1200 /*
1201  * Determine if a certain object in a slab is on the freelist. Must hold the
1202  * slab lock to guarantee that the chains are in a consistent state.
1203  */
1204 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1205 {
1206 	int nr = 0;
1207 	void *fp;
1208 	void *object = NULL;
1209 	int max_objects;
1210 
1211 	fp = slab->freelist;
1212 	while (fp && nr <= slab->objects) {
1213 		if (fp == search)
1214 			return 1;
1215 		if (!check_valid_pointer(s, slab, fp)) {
1216 			if (object) {
1217 				object_err(s, slab, object,
1218 					"Freechain corrupt");
1219 				set_freepointer(s, object, NULL);
1220 			} else {
1221 				slab_err(s, slab, "Freepointer corrupt");
1222 				slab->freelist = NULL;
1223 				slab->inuse = slab->objects;
1224 				slab_fix(s, "Freelist cleared");
1225 				return 0;
1226 			}
1227 			break;
1228 		}
1229 		object = fp;
1230 		fp = get_freepointer(s, object);
1231 		nr++;
1232 	}
1233 
1234 	max_objects = order_objects(slab_order(slab), s->size);
1235 	if (max_objects > MAX_OBJS_PER_PAGE)
1236 		max_objects = MAX_OBJS_PER_PAGE;
1237 
1238 	if (slab->objects != max_objects) {
1239 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1240 			 slab->objects, max_objects);
1241 		slab->objects = max_objects;
1242 		slab_fix(s, "Number of objects adjusted");
1243 	}
1244 	if (slab->inuse != slab->objects - nr) {
1245 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1246 			 slab->inuse, slab->objects - nr);
1247 		slab->inuse = slab->objects - nr;
1248 		slab_fix(s, "Object count adjusted");
1249 	}
1250 	return search == NULL;
1251 }
1252 
1253 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1254 								int alloc)
1255 {
1256 	if (s->flags & SLAB_TRACE) {
1257 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1258 			s->name,
1259 			alloc ? "alloc" : "free",
1260 			object, slab->inuse,
1261 			slab->freelist);
1262 
1263 		if (!alloc)
1264 			print_section(KERN_INFO, "Object ", (void *)object,
1265 					s->object_size);
1266 
1267 		dump_stack();
1268 	}
1269 }
1270 
1271 /*
1272  * Tracking of fully allocated slabs for debugging purposes.
1273  */
1274 static void add_full(struct kmem_cache *s,
1275 	struct kmem_cache_node *n, struct slab *slab)
1276 {
1277 	if (!(s->flags & SLAB_STORE_USER))
1278 		return;
1279 
1280 	lockdep_assert_held(&n->list_lock);
1281 	list_add(&slab->slab_list, &n->full);
1282 }
1283 
1284 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1285 {
1286 	if (!(s->flags & SLAB_STORE_USER))
1287 		return;
1288 
1289 	lockdep_assert_held(&n->list_lock);
1290 	list_del(&slab->slab_list);
1291 }
1292 
1293 /* Tracking of the number of slabs for debugging purposes */
1294 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1295 {
1296 	struct kmem_cache_node *n = get_node(s, node);
1297 
1298 	return atomic_long_read(&n->nr_slabs);
1299 }
1300 
1301 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1302 {
1303 	return atomic_long_read(&n->nr_slabs);
1304 }
1305 
1306 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1307 {
1308 	struct kmem_cache_node *n = get_node(s, node);
1309 
1310 	/*
1311 	 * May be called early in order to allocate a slab for the
1312 	 * kmem_cache_node structure. Solve the chicken-egg
1313 	 * dilemma by deferring the increment of the count during
1314 	 * bootstrap (see early_kmem_cache_node_alloc).
1315 	 */
1316 	if (likely(n)) {
1317 		atomic_long_inc(&n->nr_slabs);
1318 		atomic_long_add(objects, &n->total_objects);
1319 	}
1320 }
1321 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1322 {
1323 	struct kmem_cache_node *n = get_node(s, node);
1324 
1325 	atomic_long_dec(&n->nr_slabs);
1326 	atomic_long_sub(objects, &n->total_objects);
1327 }
1328 
1329 /* Object debug checks for alloc/free paths */
1330 static void setup_object_debug(struct kmem_cache *s, void *object)
1331 {
1332 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1333 		return;
1334 
1335 	init_object(s, object, SLUB_RED_INACTIVE);
1336 	init_tracking(s, object);
1337 }
1338 
1339 static
1340 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1341 {
1342 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1343 		return;
1344 
1345 	metadata_access_enable();
1346 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1347 	metadata_access_disable();
1348 }
1349 
1350 static inline int alloc_consistency_checks(struct kmem_cache *s,
1351 					struct slab *slab, void *object)
1352 {
1353 	if (!check_slab(s, slab))
1354 		return 0;
1355 
1356 	if (!check_valid_pointer(s, slab, object)) {
1357 		object_err(s, slab, object, "Freelist Pointer check fails");
1358 		return 0;
1359 	}
1360 
1361 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1362 		return 0;
1363 
1364 	return 1;
1365 }
1366 
1367 static noinline int alloc_debug_processing(struct kmem_cache *s,
1368 			struct slab *slab, void *object, int orig_size)
1369 {
1370 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1371 		if (!alloc_consistency_checks(s, slab, object))
1372 			goto bad;
1373 	}
1374 
1375 	/* Success. Perform special debug activities for allocs */
1376 	trace(s, slab, object, 1);
1377 	set_orig_size(s, object, orig_size);
1378 	init_object(s, object, SLUB_RED_ACTIVE);
1379 	return 1;
1380 
1381 bad:
1382 	if (folio_test_slab(slab_folio(slab))) {
1383 		/*
1384 		 * If this is a slab page then lets do the best we can
1385 		 * to avoid issues in the future. Marking all objects
1386 		 * as used avoids touching the remaining objects.
1387 		 */
1388 		slab_fix(s, "Marking all objects used");
1389 		slab->inuse = slab->objects;
1390 		slab->freelist = NULL;
1391 	}
1392 	return 0;
1393 }
1394 
1395 static inline int free_consistency_checks(struct kmem_cache *s,
1396 		struct slab *slab, void *object, unsigned long addr)
1397 {
1398 	if (!check_valid_pointer(s, slab, object)) {
1399 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1400 		return 0;
1401 	}
1402 
1403 	if (on_freelist(s, slab, object)) {
1404 		object_err(s, slab, object, "Object already free");
1405 		return 0;
1406 	}
1407 
1408 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1409 		return 0;
1410 
1411 	if (unlikely(s != slab->slab_cache)) {
1412 		if (!folio_test_slab(slab_folio(slab))) {
1413 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1414 				 object);
1415 		} else if (!slab->slab_cache) {
1416 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1417 			       object);
1418 			dump_stack();
1419 		} else
1420 			object_err(s, slab, object,
1421 					"page slab pointer corrupt.");
1422 		return 0;
1423 	}
1424 	return 1;
1425 }
1426 
1427 /*
1428  * Parse a block of slub_debug options. Blocks are delimited by ';'
1429  *
1430  * @str:    start of block
1431  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1432  * @slabs:  return start of list of slabs, or NULL when there's no list
1433  * @init:   assume this is initial parsing and not per-kmem-create parsing
1434  *
1435  * returns the start of next block if there's any, or NULL
1436  */
1437 static char *
1438 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1439 {
1440 	bool higher_order_disable = false;
1441 
1442 	/* Skip any completely empty blocks */
1443 	while (*str && *str == ';')
1444 		str++;
1445 
1446 	if (*str == ',') {
1447 		/*
1448 		 * No options but restriction on slabs. This means full
1449 		 * debugging for slabs matching a pattern.
1450 		 */
1451 		*flags = DEBUG_DEFAULT_FLAGS;
1452 		goto check_slabs;
1453 	}
1454 	*flags = 0;
1455 
1456 	/* Determine which debug features should be switched on */
1457 	for (; *str && *str != ',' && *str != ';'; str++) {
1458 		switch (tolower(*str)) {
1459 		case '-':
1460 			*flags = 0;
1461 			break;
1462 		case 'f':
1463 			*flags |= SLAB_CONSISTENCY_CHECKS;
1464 			break;
1465 		case 'z':
1466 			*flags |= SLAB_RED_ZONE;
1467 			break;
1468 		case 'p':
1469 			*flags |= SLAB_POISON;
1470 			break;
1471 		case 'u':
1472 			*flags |= SLAB_STORE_USER;
1473 			break;
1474 		case 't':
1475 			*flags |= SLAB_TRACE;
1476 			break;
1477 		case 'a':
1478 			*flags |= SLAB_FAILSLAB;
1479 			break;
1480 		case 'o':
1481 			/*
1482 			 * Avoid enabling debugging on caches if its minimum
1483 			 * order would increase as a result.
1484 			 */
1485 			higher_order_disable = true;
1486 			break;
1487 		default:
1488 			if (init)
1489 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1490 		}
1491 	}
1492 check_slabs:
1493 	if (*str == ',')
1494 		*slabs = ++str;
1495 	else
1496 		*slabs = NULL;
1497 
1498 	/* Skip over the slab list */
1499 	while (*str && *str != ';')
1500 		str++;
1501 
1502 	/* Skip any completely empty blocks */
1503 	while (*str && *str == ';')
1504 		str++;
1505 
1506 	if (init && higher_order_disable)
1507 		disable_higher_order_debug = 1;
1508 
1509 	if (*str)
1510 		return str;
1511 	else
1512 		return NULL;
1513 }
1514 
1515 static int __init setup_slub_debug(char *str)
1516 {
1517 	slab_flags_t flags;
1518 	slab_flags_t global_flags;
1519 	char *saved_str;
1520 	char *slab_list;
1521 	bool global_slub_debug_changed = false;
1522 	bool slab_list_specified = false;
1523 
1524 	global_flags = DEBUG_DEFAULT_FLAGS;
1525 	if (*str++ != '=' || !*str)
1526 		/*
1527 		 * No options specified. Switch on full debugging.
1528 		 */
1529 		goto out;
1530 
1531 	saved_str = str;
1532 	while (str) {
1533 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1534 
1535 		if (!slab_list) {
1536 			global_flags = flags;
1537 			global_slub_debug_changed = true;
1538 		} else {
1539 			slab_list_specified = true;
1540 			if (flags & SLAB_STORE_USER)
1541 				stack_depot_want_early_init();
1542 		}
1543 	}
1544 
1545 	/*
1546 	 * For backwards compatibility, a single list of flags with list of
1547 	 * slabs means debugging is only changed for those slabs, so the global
1548 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1549 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1550 	 * long as there is no option specifying flags without a slab list.
1551 	 */
1552 	if (slab_list_specified) {
1553 		if (!global_slub_debug_changed)
1554 			global_flags = slub_debug;
1555 		slub_debug_string = saved_str;
1556 	}
1557 out:
1558 	slub_debug = global_flags;
1559 	if (slub_debug & SLAB_STORE_USER)
1560 		stack_depot_want_early_init();
1561 	if (slub_debug != 0 || slub_debug_string)
1562 		static_branch_enable(&slub_debug_enabled);
1563 	else
1564 		static_branch_disable(&slub_debug_enabled);
1565 	if ((static_branch_unlikely(&init_on_alloc) ||
1566 	     static_branch_unlikely(&init_on_free)) &&
1567 	    (slub_debug & SLAB_POISON))
1568 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1569 	return 1;
1570 }
1571 
1572 __setup("slub_debug", setup_slub_debug);
1573 
1574 /*
1575  * kmem_cache_flags - apply debugging options to the cache
1576  * @object_size:	the size of an object without meta data
1577  * @flags:		flags to set
1578  * @name:		name of the cache
1579  *
1580  * Debug option(s) are applied to @flags. In addition to the debug
1581  * option(s), if a slab name (or multiple) is specified i.e.
1582  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1583  * then only the select slabs will receive the debug option(s).
1584  */
1585 slab_flags_t kmem_cache_flags(unsigned int object_size,
1586 	slab_flags_t flags, const char *name)
1587 {
1588 	char *iter;
1589 	size_t len;
1590 	char *next_block;
1591 	slab_flags_t block_flags;
1592 	slab_flags_t slub_debug_local = slub_debug;
1593 
1594 	if (flags & SLAB_NO_USER_FLAGS)
1595 		return flags;
1596 
1597 	/*
1598 	 * If the slab cache is for debugging (e.g. kmemleak) then
1599 	 * don't store user (stack trace) information by default,
1600 	 * but let the user enable it via the command line below.
1601 	 */
1602 	if (flags & SLAB_NOLEAKTRACE)
1603 		slub_debug_local &= ~SLAB_STORE_USER;
1604 
1605 	len = strlen(name);
1606 	next_block = slub_debug_string;
1607 	/* Go through all blocks of debug options, see if any matches our slab's name */
1608 	while (next_block) {
1609 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1610 		if (!iter)
1611 			continue;
1612 		/* Found a block that has a slab list, search it */
1613 		while (*iter) {
1614 			char *end, *glob;
1615 			size_t cmplen;
1616 
1617 			end = strchrnul(iter, ',');
1618 			if (next_block && next_block < end)
1619 				end = next_block - 1;
1620 
1621 			glob = strnchr(iter, end - iter, '*');
1622 			if (glob)
1623 				cmplen = glob - iter;
1624 			else
1625 				cmplen = max_t(size_t, len, (end - iter));
1626 
1627 			if (!strncmp(name, iter, cmplen)) {
1628 				flags |= block_flags;
1629 				return flags;
1630 			}
1631 
1632 			if (!*end || *end == ';')
1633 				break;
1634 			iter = end + 1;
1635 		}
1636 	}
1637 
1638 	return flags | slub_debug_local;
1639 }
1640 #else /* !CONFIG_SLUB_DEBUG */
1641 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1642 static inline
1643 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1644 
1645 static inline int alloc_debug_processing(struct kmem_cache *s,
1646 	struct slab *slab, void *object, int orig_size) { return 0; }
1647 
1648 static inline void free_debug_processing(
1649 	struct kmem_cache *s, struct slab *slab,
1650 	void *head, void *tail, int bulk_cnt,
1651 	unsigned long addr) {}
1652 
1653 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1654 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1655 			void *object, u8 val) { return 1; }
1656 static inline void set_track(struct kmem_cache *s, void *object,
1657 			     enum track_item alloc, unsigned long addr) {}
1658 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1659 					struct slab *slab) {}
1660 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1661 					struct slab *slab) {}
1662 slab_flags_t kmem_cache_flags(unsigned int object_size,
1663 	slab_flags_t flags, const char *name)
1664 {
1665 	return flags;
1666 }
1667 #define slub_debug 0
1668 
1669 #define disable_higher_order_debug 0
1670 
1671 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1672 							{ return 0; }
1673 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1674 							{ return 0; }
1675 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1676 							int objects) {}
1677 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1678 							int objects) {}
1679 
1680 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1681 			       void **freelist, void *nextfree)
1682 {
1683 	return false;
1684 }
1685 #endif /* CONFIG_SLUB_DEBUG */
1686 
1687 /*
1688  * Hooks for other subsystems that check memory allocations. In a typical
1689  * production configuration these hooks all should produce no code at all.
1690  */
1691 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1692 						void *x, bool init)
1693 {
1694 	kmemleak_free_recursive(x, s->flags);
1695 	kmsan_slab_free(s, x);
1696 
1697 	debug_check_no_locks_freed(x, s->object_size);
1698 
1699 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1700 		debug_check_no_obj_freed(x, s->object_size);
1701 
1702 	/* Use KCSAN to help debug racy use-after-free. */
1703 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1704 		__kcsan_check_access(x, s->object_size,
1705 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1706 
1707 	/*
1708 	 * As memory initialization might be integrated into KASAN,
1709 	 * kasan_slab_free and initialization memset's must be
1710 	 * kept together to avoid discrepancies in behavior.
1711 	 *
1712 	 * The initialization memset's clear the object and the metadata,
1713 	 * but don't touch the SLAB redzone.
1714 	 */
1715 	if (init) {
1716 		int rsize;
1717 
1718 		if (!kasan_has_integrated_init())
1719 			memset(kasan_reset_tag(x), 0, s->object_size);
1720 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1721 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1722 		       s->size - s->inuse - rsize);
1723 	}
1724 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1725 	return kasan_slab_free(s, x, init);
1726 }
1727 
1728 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1729 					   void **head, void **tail,
1730 					   int *cnt)
1731 {
1732 
1733 	void *object;
1734 	void *next = *head;
1735 	void *old_tail = *tail ? *tail : *head;
1736 
1737 	if (is_kfence_address(next)) {
1738 		slab_free_hook(s, next, false);
1739 		return true;
1740 	}
1741 
1742 	/* Head and tail of the reconstructed freelist */
1743 	*head = NULL;
1744 	*tail = NULL;
1745 
1746 	do {
1747 		object = next;
1748 		next = get_freepointer(s, object);
1749 
1750 		/* If object's reuse doesn't have to be delayed */
1751 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1752 			/* Move object to the new freelist */
1753 			set_freepointer(s, object, *head);
1754 			*head = object;
1755 			if (!*tail)
1756 				*tail = object;
1757 		} else {
1758 			/*
1759 			 * Adjust the reconstructed freelist depth
1760 			 * accordingly if object's reuse is delayed.
1761 			 */
1762 			--(*cnt);
1763 		}
1764 	} while (object != old_tail);
1765 
1766 	if (*head == *tail)
1767 		*tail = NULL;
1768 
1769 	return *head != NULL;
1770 }
1771 
1772 static void *setup_object(struct kmem_cache *s, void *object)
1773 {
1774 	setup_object_debug(s, object);
1775 	object = kasan_init_slab_obj(s, object);
1776 	if (unlikely(s->ctor)) {
1777 		kasan_unpoison_object_data(s, object);
1778 		s->ctor(object);
1779 		kasan_poison_object_data(s, object);
1780 	}
1781 	return object;
1782 }
1783 
1784 /*
1785  * Slab allocation and freeing
1786  */
1787 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1788 		struct kmem_cache_order_objects oo)
1789 {
1790 	struct folio *folio;
1791 	struct slab *slab;
1792 	unsigned int order = oo_order(oo);
1793 
1794 	if (node == NUMA_NO_NODE)
1795 		folio = (struct folio *)alloc_pages(flags, order);
1796 	else
1797 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1798 
1799 	if (!folio)
1800 		return NULL;
1801 
1802 	slab = folio_slab(folio);
1803 	__folio_set_slab(folio);
1804 	if (page_is_pfmemalloc(folio_page(folio, 0)))
1805 		slab_set_pfmemalloc(slab);
1806 
1807 	return slab;
1808 }
1809 
1810 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1811 /* Pre-initialize the random sequence cache */
1812 static int init_cache_random_seq(struct kmem_cache *s)
1813 {
1814 	unsigned int count = oo_objects(s->oo);
1815 	int err;
1816 
1817 	/* Bailout if already initialised */
1818 	if (s->random_seq)
1819 		return 0;
1820 
1821 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1822 	if (err) {
1823 		pr_err("SLUB: Unable to initialize free list for %s\n",
1824 			s->name);
1825 		return err;
1826 	}
1827 
1828 	/* Transform to an offset on the set of pages */
1829 	if (s->random_seq) {
1830 		unsigned int i;
1831 
1832 		for (i = 0; i < count; i++)
1833 			s->random_seq[i] *= s->size;
1834 	}
1835 	return 0;
1836 }
1837 
1838 /* Initialize each random sequence freelist per cache */
1839 static void __init init_freelist_randomization(void)
1840 {
1841 	struct kmem_cache *s;
1842 
1843 	mutex_lock(&slab_mutex);
1844 
1845 	list_for_each_entry(s, &slab_caches, list)
1846 		init_cache_random_seq(s);
1847 
1848 	mutex_unlock(&slab_mutex);
1849 }
1850 
1851 /* Get the next entry on the pre-computed freelist randomized */
1852 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1853 				unsigned long *pos, void *start,
1854 				unsigned long page_limit,
1855 				unsigned long freelist_count)
1856 {
1857 	unsigned int idx;
1858 
1859 	/*
1860 	 * If the target page allocation failed, the number of objects on the
1861 	 * page might be smaller than the usual size defined by the cache.
1862 	 */
1863 	do {
1864 		idx = s->random_seq[*pos];
1865 		*pos += 1;
1866 		if (*pos >= freelist_count)
1867 			*pos = 0;
1868 	} while (unlikely(idx >= page_limit));
1869 
1870 	return (char *)start + idx;
1871 }
1872 
1873 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1874 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1875 {
1876 	void *start;
1877 	void *cur;
1878 	void *next;
1879 	unsigned long idx, pos, page_limit, freelist_count;
1880 
1881 	if (slab->objects < 2 || !s->random_seq)
1882 		return false;
1883 
1884 	freelist_count = oo_objects(s->oo);
1885 	pos = prandom_u32_max(freelist_count);
1886 
1887 	page_limit = slab->objects * s->size;
1888 	start = fixup_red_left(s, slab_address(slab));
1889 
1890 	/* First entry is used as the base of the freelist */
1891 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1892 				freelist_count);
1893 	cur = setup_object(s, cur);
1894 	slab->freelist = cur;
1895 
1896 	for (idx = 1; idx < slab->objects; idx++) {
1897 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1898 			freelist_count);
1899 		next = setup_object(s, next);
1900 		set_freepointer(s, cur, next);
1901 		cur = next;
1902 	}
1903 	set_freepointer(s, cur, NULL);
1904 
1905 	return true;
1906 }
1907 #else
1908 static inline int init_cache_random_seq(struct kmem_cache *s)
1909 {
1910 	return 0;
1911 }
1912 static inline void init_freelist_randomization(void) { }
1913 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1914 {
1915 	return false;
1916 }
1917 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1918 
1919 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1920 {
1921 	struct slab *slab;
1922 	struct kmem_cache_order_objects oo = s->oo;
1923 	gfp_t alloc_gfp;
1924 	void *start, *p, *next;
1925 	int idx;
1926 	bool shuffle;
1927 
1928 	flags &= gfp_allowed_mask;
1929 
1930 	flags |= s->allocflags;
1931 
1932 	/*
1933 	 * Let the initial higher-order allocation fail under memory pressure
1934 	 * so we fall-back to the minimum order allocation.
1935 	 */
1936 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1937 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1938 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1939 
1940 	slab = alloc_slab_page(alloc_gfp, node, oo);
1941 	if (unlikely(!slab)) {
1942 		oo = s->min;
1943 		alloc_gfp = flags;
1944 		/*
1945 		 * Allocation may have failed due to fragmentation.
1946 		 * Try a lower order alloc if possible
1947 		 */
1948 		slab = alloc_slab_page(alloc_gfp, node, oo);
1949 		if (unlikely(!slab))
1950 			return NULL;
1951 		stat(s, ORDER_FALLBACK);
1952 	}
1953 
1954 	slab->objects = oo_objects(oo);
1955 	slab->inuse = 0;
1956 	slab->frozen = 0;
1957 
1958 	account_slab(slab, oo_order(oo), s, flags);
1959 
1960 	slab->slab_cache = s;
1961 
1962 	kasan_poison_slab(slab);
1963 
1964 	start = slab_address(slab);
1965 
1966 	setup_slab_debug(s, slab, start);
1967 
1968 	shuffle = shuffle_freelist(s, slab);
1969 
1970 	if (!shuffle) {
1971 		start = fixup_red_left(s, start);
1972 		start = setup_object(s, start);
1973 		slab->freelist = start;
1974 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
1975 			next = p + s->size;
1976 			next = setup_object(s, next);
1977 			set_freepointer(s, p, next);
1978 			p = next;
1979 		}
1980 		set_freepointer(s, p, NULL);
1981 	}
1982 
1983 	return slab;
1984 }
1985 
1986 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1987 {
1988 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1989 		flags = kmalloc_fix_flags(flags);
1990 
1991 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1992 
1993 	return allocate_slab(s,
1994 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1995 }
1996 
1997 static void __free_slab(struct kmem_cache *s, struct slab *slab)
1998 {
1999 	struct folio *folio = slab_folio(slab);
2000 	int order = folio_order(folio);
2001 	int pages = 1 << order;
2002 
2003 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2004 		void *p;
2005 
2006 		slab_pad_check(s, slab);
2007 		for_each_object(p, s, slab_address(slab), slab->objects)
2008 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2009 	}
2010 
2011 	__slab_clear_pfmemalloc(slab);
2012 	__folio_clear_slab(folio);
2013 	folio->mapping = NULL;
2014 	if (current->reclaim_state)
2015 		current->reclaim_state->reclaimed_slab += pages;
2016 	unaccount_slab(slab, order, s);
2017 	__free_pages(folio_page(folio, 0), order);
2018 }
2019 
2020 static void rcu_free_slab(struct rcu_head *h)
2021 {
2022 	struct slab *slab = container_of(h, struct slab, rcu_head);
2023 
2024 	__free_slab(slab->slab_cache, slab);
2025 }
2026 
2027 static void free_slab(struct kmem_cache *s, struct slab *slab)
2028 {
2029 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2030 		call_rcu(&slab->rcu_head, rcu_free_slab);
2031 	} else
2032 		__free_slab(s, slab);
2033 }
2034 
2035 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2036 {
2037 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2038 	free_slab(s, slab);
2039 }
2040 
2041 /*
2042  * Management of partially allocated slabs.
2043  */
2044 static inline void
2045 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2046 {
2047 	n->nr_partial++;
2048 	if (tail == DEACTIVATE_TO_TAIL)
2049 		list_add_tail(&slab->slab_list, &n->partial);
2050 	else
2051 		list_add(&slab->slab_list, &n->partial);
2052 }
2053 
2054 static inline void add_partial(struct kmem_cache_node *n,
2055 				struct slab *slab, int tail)
2056 {
2057 	lockdep_assert_held(&n->list_lock);
2058 	__add_partial(n, slab, tail);
2059 }
2060 
2061 static inline void remove_partial(struct kmem_cache_node *n,
2062 					struct slab *slab)
2063 {
2064 	lockdep_assert_held(&n->list_lock);
2065 	list_del(&slab->slab_list);
2066 	n->nr_partial--;
2067 }
2068 
2069 /*
2070  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2071  * slab from the n->partial list. Remove only a single object from the slab, do
2072  * the alloc_debug_processing() checks and leave the slab on the list, or move
2073  * it to full list if it was the last free object.
2074  */
2075 static void *alloc_single_from_partial(struct kmem_cache *s,
2076 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2077 {
2078 	void *object;
2079 
2080 	lockdep_assert_held(&n->list_lock);
2081 
2082 	object = slab->freelist;
2083 	slab->freelist = get_freepointer(s, object);
2084 	slab->inuse++;
2085 
2086 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2087 		remove_partial(n, slab);
2088 		return NULL;
2089 	}
2090 
2091 	if (slab->inuse == slab->objects) {
2092 		remove_partial(n, slab);
2093 		add_full(s, n, slab);
2094 	}
2095 
2096 	return object;
2097 }
2098 
2099 /*
2100  * Called only for kmem_cache_debug() caches to allocate from a freshly
2101  * allocated slab. Allocate a single object instead of whole freelist
2102  * and put the slab to the partial (or full) list.
2103  */
2104 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2105 					struct slab *slab, int orig_size)
2106 {
2107 	int nid = slab_nid(slab);
2108 	struct kmem_cache_node *n = get_node(s, nid);
2109 	unsigned long flags;
2110 	void *object;
2111 
2112 
2113 	object = slab->freelist;
2114 	slab->freelist = get_freepointer(s, object);
2115 	slab->inuse = 1;
2116 
2117 	if (!alloc_debug_processing(s, slab, object, orig_size))
2118 		/*
2119 		 * It's not really expected that this would fail on a
2120 		 * freshly allocated slab, but a concurrent memory
2121 		 * corruption in theory could cause that.
2122 		 */
2123 		return NULL;
2124 
2125 	spin_lock_irqsave(&n->list_lock, flags);
2126 
2127 	if (slab->inuse == slab->objects)
2128 		add_full(s, n, slab);
2129 	else
2130 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2131 
2132 	inc_slabs_node(s, nid, slab->objects);
2133 	spin_unlock_irqrestore(&n->list_lock, flags);
2134 
2135 	return object;
2136 }
2137 
2138 /*
2139  * Remove slab from the partial list, freeze it and
2140  * return the pointer to the freelist.
2141  *
2142  * Returns a list of objects or NULL if it fails.
2143  */
2144 static inline void *acquire_slab(struct kmem_cache *s,
2145 		struct kmem_cache_node *n, struct slab *slab,
2146 		int mode)
2147 {
2148 	void *freelist;
2149 	unsigned long counters;
2150 	struct slab new;
2151 
2152 	lockdep_assert_held(&n->list_lock);
2153 
2154 	/*
2155 	 * Zap the freelist and set the frozen bit.
2156 	 * The old freelist is the list of objects for the
2157 	 * per cpu allocation list.
2158 	 */
2159 	freelist = slab->freelist;
2160 	counters = slab->counters;
2161 	new.counters = counters;
2162 	if (mode) {
2163 		new.inuse = slab->objects;
2164 		new.freelist = NULL;
2165 	} else {
2166 		new.freelist = freelist;
2167 	}
2168 
2169 	VM_BUG_ON(new.frozen);
2170 	new.frozen = 1;
2171 
2172 	if (!__cmpxchg_double_slab(s, slab,
2173 			freelist, counters,
2174 			new.freelist, new.counters,
2175 			"acquire_slab"))
2176 		return NULL;
2177 
2178 	remove_partial(n, slab);
2179 	WARN_ON(!freelist);
2180 	return freelist;
2181 }
2182 
2183 #ifdef CONFIG_SLUB_CPU_PARTIAL
2184 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2185 #else
2186 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2187 				   int drain) { }
2188 #endif
2189 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2190 
2191 /*
2192  * Try to allocate a partial slab from a specific node.
2193  */
2194 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2195 			      struct partial_context *pc)
2196 {
2197 	struct slab *slab, *slab2;
2198 	void *object = NULL;
2199 	unsigned long flags;
2200 	unsigned int partial_slabs = 0;
2201 
2202 	/*
2203 	 * Racy check. If we mistakenly see no partial slabs then we
2204 	 * just allocate an empty slab. If we mistakenly try to get a
2205 	 * partial slab and there is none available then get_partial()
2206 	 * will return NULL.
2207 	 */
2208 	if (!n || !n->nr_partial)
2209 		return NULL;
2210 
2211 	spin_lock_irqsave(&n->list_lock, flags);
2212 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2213 		void *t;
2214 
2215 		if (!pfmemalloc_match(slab, pc->flags))
2216 			continue;
2217 
2218 		if (kmem_cache_debug(s)) {
2219 			object = alloc_single_from_partial(s, n, slab,
2220 							pc->orig_size);
2221 			if (object)
2222 				break;
2223 			continue;
2224 		}
2225 
2226 		t = acquire_slab(s, n, slab, object == NULL);
2227 		if (!t)
2228 			break;
2229 
2230 		if (!object) {
2231 			*pc->slab = slab;
2232 			stat(s, ALLOC_FROM_PARTIAL);
2233 			object = t;
2234 		} else {
2235 			put_cpu_partial(s, slab, 0);
2236 			stat(s, CPU_PARTIAL_NODE);
2237 			partial_slabs++;
2238 		}
2239 #ifdef CONFIG_SLUB_CPU_PARTIAL
2240 		if (!kmem_cache_has_cpu_partial(s)
2241 			|| partial_slabs > s->cpu_partial_slabs / 2)
2242 			break;
2243 #else
2244 		break;
2245 #endif
2246 
2247 	}
2248 	spin_unlock_irqrestore(&n->list_lock, flags);
2249 	return object;
2250 }
2251 
2252 /*
2253  * Get a slab from somewhere. Search in increasing NUMA distances.
2254  */
2255 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2256 {
2257 #ifdef CONFIG_NUMA
2258 	struct zonelist *zonelist;
2259 	struct zoneref *z;
2260 	struct zone *zone;
2261 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2262 	void *object;
2263 	unsigned int cpuset_mems_cookie;
2264 
2265 	/*
2266 	 * The defrag ratio allows a configuration of the tradeoffs between
2267 	 * inter node defragmentation and node local allocations. A lower
2268 	 * defrag_ratio increases the tendency to do local allocations
2269 	 * instead of attempting to obtain partial slabs from other nodes.
2270 	 *
2271 	 * If the defrag_ratio is set to 0 then kmalloc() always
2272 	 * returns node local objects. If the ratio is higher then kmalloc()
2273 	 * may return off node objects because partial slabs are obtained
2274 	 * from other nodes and filled up.
2275 	 *
2276 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2277 	 * (which makes defrag_ratio = 1000) then every (well almost)
2278 	 * allocation will first attempt to defrag slab caches on other nodes.
2279 	 * This means scanning over all nodes to look for partial slabs which
2280 	 * may be expensive if we do it every time we are trying to find a slab
2281 	 * with available objects.
2282 	 */
2283 	if (!s->remote_node_defrag_ratio ||
2284 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2285 		return NULL;
2286 
2287 	do {
2288 		cpuset_mems_cookie = read_mems_allowed_begin();
2289 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2290 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2291 			struct kmem_cache_node *n;
2292 
2293 			n = get_node(s, zone_to_nid(zone));
2294 
2295 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2296 					n->nr_partial > s->min_partial) {
2297 				object = get_partial_node(s, n, pc);
2298 				if (object) {
2299 					/*
2300 					 * Don't check read_mems_allowed_retry()
2301 					 * here - if mems_allowed was updated in
2302 					 * parallel, that was a harmless race
2303 					 * between allocation and the cpuset
2304 					 * update
2305 					 */
2306 					return object;
2307 				}
2308 			}
2309 		}
2310 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2311 #endif	/* CONFIG_NUMA */
2312 	return NULL;
2313 }
2314 
2315 /*
2316  * Get a partial slab, lock it and return it.
2317  */
2318 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2319 {
2320 	void *object;
2321 	int searchnode = node;
2322 
2323 	if (node == NUMA_NO_NODE)
2324 		searchnode = numa_mem_id();
2325 
2326 	object = get_partial_node(s, get_node(s, searchnode), pc);
2327 	if (object || node != NUMA_NO_NODE)
2328 		return object;
2329 
2330 	return get_any_partial(s, pc);
2331 }
2332 
2333 #ifdef CONFIG_PREEMPTION
2334 /*
2335  * Calculate the next globally unique transaction for disambiguation
2336  * during cmpxchg. The transactions start with the cpu number and are then
2337  * incremented by CONFIG_NR_CPUS.
2338  */
2339 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2340 #else
2341 /*
2342  * No preemption supported therefore also no need to check for
2343  * different cpus.
2344  */
2345 #define TID_STEP 1
2346 #endif
2347 
2348 static inline unsigned long next_tid(unsigned long tid)
2349 {
2350 	return tid + TID_STEP;
2351 }
2352 
2353 #ifdef SLUB_DEBUG_CMPXCHG
2354 static inline unsigned int tid_to_cpu(unsigned long tid)
2355 {
2356 	return tid % TID_STEP;
2357 }
2358 
2359 static inline unsigned long tid_to_event(unsigned long tid)
2360 {
2361 	return tid / TID_STEP;
2362 }
2363 #endif
2364 
2365 static inline unsigned int init_tid(int cpu)
2366 {
2367 	return cpu;
2368 }
2369 
2370 static inline void note_cmpxchg_failure(const char *n,
2371 		const struct kmem_cache *s, unsigned long tid)
2372 {
2373 #ifdef SLUB_DEBUG_CMPXCHG
2374 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2375 
2376 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2377 
2378 #ifdef CONFIG_PREEMPTION
2379 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2380 		pr_warn("due to cpu change %d -> %d\n",
2381 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2382 	else
2383 #endif
2384 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2385 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2386 			tid_to_event(tid), tid_to_event(actual_tid));
2387 	else
2388 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2389 			actual_tid, tid, next_tid(tid));
2390 #endif
2391 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2392 }
2393 
2394 static void init_kmem_cache_cpus(struct kmem_cache *s)
2395 {
2396 	int cpu;
2397 	struct kmem_cache_cpu *c;
2398 
2399 	for_each_possible_cpu(cpu) {
2400 		c = per_cpu_ptr(s->cpu_slab, cpu);
2401 		local_lock_init(&c->lock);
2402 		c->tid = init_tid(cpu);
2403 	}
2404 }
2405 
2406 /*
2407  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2408  * unfreezes the slabs and puts it on the proper list.
2409  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2410  * by the caller.
2411  */
2412 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2413 			    void *freelist)
2414 {
2415 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2416 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2417 	int free_delta = 0;
2418 	enum slab_modes mode = M_NONE;
2419 	void *nextfree, *freelist_iter, *freelist_tail;
2420 	int tail = DEACTIVATE_TO_HEAD;
2421 	unsigned long flags = 0;
2422 	struct slab new;
2423 	struct slab old;
2424 
2425 	if (slab->freelist) {
2426 		stat(s, DEACTIVATE_REMOTE_FREES);
2427 		tail = DEACTIVATE_TO_TAIL;
2428 	}
2429 
2430 	/*
2431 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2432 	 * remember the last object in freelist_tail for later splicing.
2433 	 */
2434 	freelist_tail = NULL;
2435 	freelist_iter = freelist;
2436 	while (freelist_iter) {
2437 		nextfree = get_freepointer(s, freelist_iter);
2438 
2439 		/*
2440 		 * If 'nextfree' is invalid, it is possible that the object at
2441 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2442 		 * starting at 'freelist_iter' by skipping them.
2443 		 */
2444 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2445 			break;
2446 
2447 		freelist_tail = freelist_iter;
2448 		free_delta++;
2449 
2450 		freelist_iter = nextfree;
2451 	}
2452 
2453 	/*
2454 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2455 	 * freelist to the head of slab's freelist.
2456 	 *
2457 	 * Ensure that the slab is unfrozen while the list presence
2458 	 * reflects the actual number of objects during unfreeze.
2459 	 *
2460 	 * We first perform cmpxchg holding lock and insert to list
2461 	 * when it succeed. If there is mismatch then the slab is not
2462 	 * unfrozen and number of objects in the slab may have changed.
2463 	 * Then release lock and retry cmpxchg again.
2464 	 */
2465 redo:
2466 
2467 	old.freelist = READ_ONCE(slab->freelist);
2468 	old.counters = READ_ONCE(slab->counters);
2469 	VM_BUG_ON(!old.frozen);
2470 
2471 	/* Determine target state of the slab */
2472 	new.counters = old.counters;
2473 	if (freelist_tail) {
2474 		new.inuse -= free_delta;
2475 		set_freepointer(s, freelist_tail, old.freelist);
2476 		new.freelist = freelist;
2477 	} else
2478 		new.freelist = old.freelist;
2479 
2480 	new.frozen = 0;
2481 
2482 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2483 		mode = M_FREE;
2484 	} else if (new.freelist) {
2485 		mode = M_PARTIAL;
2486 		/*
2487 		 * Taking the spinlock removes the possibility that
2488 		 * acquire_slab() will see a slab that is frozen
2489 		 */
2490 		spin_lock_irqsave(&n->list_lock, flags);
2491 	} else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2492 		mode = M_FULL;
2493 		/*
2494 		 * This also ensures that the scanning of full
2495 		 * slabs from diagnostic functions will not see
2496 		 * any frozen slabs.
2497 		 */
2498 		spin_lock_irqsave(&n->list_lock, flags);
2499 	} else {
2500 		mode = M_FULL_NOLIST;
2501 	}
2502 
2503 
2504 	if (!cmpxchg_double_slab(s, slab,
2505 				old.freelist, old.counters,
2506 				new.freelist, new.counters,
2507 				"unfreezing slab")) {
2508 		if (mode == M_PARTIAL || mode == M_FULL)
2509 			spin_unlock_irqrestore(&n->list_lock, flags);
2510 		goto redo;
2511 	}
2512 
2513 
2514 	if (mode == M_PARTIAL) {
2515 		add_partial(n, slab, tail);
2516 		spin_unlock_irqrestore(&n->list_lock, flags);
2517 		stat(s, tail);
2518 	} else if (mode == M_FREE) {
2519 		stat(s, DEACTIVATE_EMPTY);
2520 		discard_slab(s, slab);
2521 		stat(s, FREE_SLAB);
2522 	} else if (mode == M_FULL) {
2523 		add_full(s, n, slab);
2524 		spin_unlock_irqrestore(&n->list_lock, flags);
2525 		stat(s, DEACTIVATE_FULL);
2526 	} else if (mode == M_FULL_NOLIST) {
2527 		stat(s, DEACTIVATE_FULL);
2528 	}
2529 }
2530 
2531 #ifdef CONFIG_SLUB_CPU_PARTIAL
2532 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2533 {
2534 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2535 	struct slab *slab, *slab_to_discard = NULL;
2536 	unsigned long flags = 0;
2537 
2538 	while (partial_slab) {
2539 		struct slab new;
2540 		struct slab old;
2541 
2542 		slab = partial_slab;
2543 		partial_slab = slab->next;
2544 
2545 		n2 = get_node(s, slab_nid(slab));
2546 		if (n != n2) {
2547 			if (n)
2548 				spin_unlock_irqrestore(&n->list_lock, flags);
2549 
2550 			n = n2;
2551 			spin_lock_irqsave(&n->list_lock, flags);
2552 		}
2553 
2554 		do {
2555 
2556 			old.freelist = slab->freelist;
2557 			old.counters = slab->counters;
2558 			VM_BUG_ON(!old.frozen);
2559 
2560 			new.counters = old.counters;
2561 			new.freelist = old.freelist;
2562 
2563 			new.frozen = 0;
2564 
2565 		} while (!__cmpxchg_double_slab(s, slab,
2566 				old.freelist, old.counters,
2567 				new.freelist, new.counters,
2568 				"unfreezing slab"));
2569 
2570 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2571 			slab->next = slab_to_discard;
2572 			slab_to_discard = slab;
2573 		} else {
2574 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2575 			stat(s, FREE_ADD_PARTIAL);
2576 		}
2577 	}
2578 
2579 	if (n)
2580 		spin_unlock_irqrestore(&n->list_lock, flags);
2581 
2582 	while (slab_to_discard) {
2583 		slab = slab_to_discard;
2584 		slab_to_discard = slab_to_discard->next;
2585 
2586 		stat(s, DEACTIVATE_EMPTY);
2587 		discard_slab(s, slab);
2588 		stat(s, FREE_SLAB);
2589 	}
2590 }
2591 
2592 /*
2593  * Unfreeze all the cpu partial slabs.
2594  */
2595 static void unfreeze_partials(struct kmem_cache *s)
2596 {
2597 	struct slab *partial_slab;
2598 	unsigned long flags;
2599 
2600 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2601 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2602 	this_cpu_write(s->cpu_slab->partial, NULL);
2603 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2604 
2605 	if (partial_slab)
2606 		__unfreeze_partials(s, partial_slab);
2607 }
2608 
2609 static void unfreeze_partials_cpu(struct kmem_cache *s,
2610 				  struct kmem_cache_cpu *c)
2611 {
2612 	struct slab *partial_slab;
2613 
2614 	partial_slab = slub_percpu_partial(c);
2615 	c->partial = NULL;
2616 
2617 	if (partial_slab)
2618 		__unfreeze_partials(s, partial_slab);
2619 }
2620 
2621 /*
2622  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2623  * partial slab slot if available.
2624  *
2625  * If we did not find a slot then simply move all the partials to the
2626  * per node partial list.
2627  */
2628 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2629 {
2630 	struct slab *oldslab;
2631 	struct slab *slab_to_unfreeze = NULL;
2632 	unsigned long flags;
2633 	int slabs = 0;
2634 
2635 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2636 
2637 	oldslab = this_cpu_read(s->cpu_slab->partial);
2638 
2639 	if (oldslab) {
2640 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2641 			/*
2642 			 * Partial array is full. Move the existing set to the
2643 			 * per node partial list. Postpone the actual unfreezing
2644 			 * outside of the critical section.
2645 			 */
2646 			slab_to_unfreeze = oldslab;
2647 			oldslab = NULL;
2648 		} else {
2649 			slabs = oldslab->slabs;
2650 		}
2651 	}
2652 
2653 	slabs++;
2654 
2655 	slab->slabs = slabs;
2656 	slab->next = oldslab;
2657 
2658 	this_cpu_write(s->cpu_slab->partial, slab);
2659 
2660 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2661 
2662 	if (slab_to_unfreeze) {
2663 		__unfreeze_partials(s, slab_to_unfreeze);
2664 		stat(s, CPU_PARTIAL_DRAIN);
2665 	}
2666 }
2667 
2668 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2669 
2670 static inline void unfreeze_partials(struct kmem_cache *s) { }
2671 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2672 				  struct kmem_cache_cpu *c) { }
2673 
2674 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2675 
2676 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2677 {
2678 	unsigned long flags;
2679 	struct slab *slab;
2680 	void *freelist;
2681 
2682 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2683 
2684 	slab = c->slab;
2685 	freelist = c->freelist;
2686 
2687 	c->slab = NULL;
2688 	c->freelist = NULL;
2689 	c->tid = next_tid(c->tid);
2690 
2691 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2692 
2693 	if (slab) {
2694 		deactivate_slab(s, slab, freelist);
2695 		stat(s, CPUSLAB_FLUSH);
2696 	}
2697 }
2698 
2699 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2700 {
2701 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2702 	void *freelist = c->freelist;
2703 	struct slab *slab = c->slab;
2704 
2705 	c->slab = NULL;
2706 	c->freelist = NULL;
2707 	c->tid = next_tid(c->tid);
2708 
2709 	if (slab) {
2710 		deactivate_slab(s, slab, freelist);
2711 		stat(s, CPUSLAB_FLUSH);
2712 	}
2713 
2714 	unfreeze_partials_cpu(s, c);
2715 }
2716 
2717 struct slub_flush_work {
2718 	struct work_struct work;
2719 	struct kmem_cache *s;
2720 	bool skip;
2721 };
2722 
2723 /*
2724  * Flush cpu slab.
2725  *
2726  * Called from CPU work handler with migration disabled.
2727  */
2728 static void flush_cpu_slab(struct work_struct *w)
2729 {
2730 	struct kmem_cache *s;
2731 	struct kmem_cache_cpu *c;
2732 	struct slub_flush_work *sfw;
2733 
2734 	sfw = container_of(w, struct slub_flush_work, work);
2735 
2736 	s = sfw->s;
2737 	c = this_cpu_ptr(s->cpu_slab);
2738 
2739 	if (c->slab)
2740 		flush_slab(s, c);
2741 
2742 	unfreeze_partials(s);
2743 }
2744 
2745 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2746 {
2747 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2748 
2749 	return c->slab || slub_percpu_partial(c);
2750 }
2751 
2752 static DEFINE_MUTEX(flush_lock);
2753 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2754 
2755 static void flush_all_cpus_locked(struct kmem_cache *s)
2756 {
2757 	struct slub_flush_work *sfw;
2758 	unsigned int cpu;
2759 
2760 	lockdep_assert_cpus_held();
2761 	mutex_lock(&flush_lock);
2762 
2763 	for_each_online_cpu(cpu) {
2764 		sfw = &per_cpu(slub_flush, cpu);
2765 		if (!has_cpu_slab(cpu, s)) {
2766 			sfw->skip = true;
2767 			continue;
2768 		}
2769 		INIT_WORK(&sfw->work, flush_cpu_slab);
2770 		sfw->skip = false;
2771 		sfw->s = s;
2772 		queue_work_on(cpu, flushwq, &sfw->work);
2773 	}
2774 
2775 	for_each_online_cpu(cpu) {
2776 		sfw = &per_cpu(slub_flush, cpu);
2777 		if (sfw->skip)
2778 			continue;
2779 		flush_work(&sfw->work);
2780 	}
2781 
2782 	mutex_unlock(&flush_lock);
2783 }
2784 
2785 static void flush_all(struct kmem_cache *s)
2786 {
2787 	cpus_read_lock();
2788 	flush_all_cpus_locked(s);
2789 	cpus_read_unlock();
2790 }
2791 
2792 /*
2793  * Use the cpu notifier to insure that the cpu slabs are flushed when
2794  * necessary.
2795  */
2796 static int slub_cpu_dead(unsigned int cpu)
2797 {
2798 	struct kmem_cache *s;
2799 
2800 	mutex_lock(&slab_mutex);
2801 	list_for_each_entry(s, &slab_caches, list)
2802 		__flush_cpu_slab(s, cpu);
2803 	mutex_unlock(&slab_mutex);
2804 	return 0;
2805 }
2806 
2807 /*
2808  * Check if the objects in a per cpu structure fit numa
2809  * locality expectations.
2810  */
2811 static inline int node_match(struct slab *slab, int node)
2812 {
2813 #ifdef CONFIG_NUMA
2814 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2815 		return 0;
2816 #endif
2817 	return 1;
2818 }
2819 
2820 #ifdef CONFIG_SLUB_DEBUG
2821 static int count_free(struct slab *slab)
2822 {
2823 	return slab->objects - slab->inuse;
2824 }
2825 
2826 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2827 {
2828 	return atomic_long_read(&n->total_objects);
2829 }
2830 
2831 /* Supports checking bulk free of a constructed freelist */
2832 static noinline void free_debug_processing(
2833 	struct kmem_cache *s, struct slab *slab,
2834 	void *head, void *tail, int bulk_cnt,
2835 	unsigned long addr)
2836 {
2837 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2838 	struct slab *slab_free = NULL;
2839 	void *object = head;
2840 	int cnt = 0;
2841 	unsigned long flags;
2842 	bool checks_ok = false;
2843 	depot_stack_handle_t handle = 0;
2844 
2845 	if (s->flags & SLAB_STORE_USER)
2846 		handle = set_track_prepare();
2847 
2848 	spin_lock_irqsave(&n->list_lock, flags);
2849 
2850 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2851 		if (!check_slab(s, slab))
2852 			goto out;
2853 	}
2854 
2855 	if (slab->inuse < bulk_cnt) {
2856 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2857 			 slab->inuse, bulk_cnt);
2858 		goto out;
2859 	}
2860 
2861 next_object:
2862 
2863 	if (++cnt > bulk_cnt)
2864 		goto out_cnt;
2865 
2866 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2867 		if (!free_consistency_checks(s, slab, object, addr))
2868 			goto out;
2869 	}
2870 
2871 	if (s->flags & SLAB_STORE_USER)
2872 		set_track_update(s, object, TRACK_FREE, addr, handle);
2873 	trace(s, slab, object, 0);
2874 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2875 	init_object(s, object, SLUB_RED_INACTIVE);
2876 
2877 	/* Reached end of constructed freelist yet? */
2878 	if (object != tail) {
2879 		object = get_freepointer(s, object);
2880 		goto next_object;
2881 	}
2882 	checks_ok = true;
2883 
2884 out_cnt:
2885 	if (cnt != bulk_cnt)
2886 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2887 			 bulk_cnt, cnt);
2888 
2889 out:
2890 	if (checks_ok) {
2891 		void *prior = slab->freelist;
2892 
2893 		/* Perform the actual freeing while we still hold the locks */
2894 		slab->inuse -= cnt;
2895 		set_freepointer(s, tail, prior);
2896 		slab->freelist = head;
2897 
2898 		/*
2899 		 * If the slab is empty, and node's partial list is full,
2900 		 * it should be discarded anyway no matter it's on full or
2901 		 * partial list.
2902 		 */
2903 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
2904 			slab_free = slab;
2905 
2906 		if (!prior) {
2907 			/* was on full list */
2908 			remove_full(s, n, slab);
2909 			if (!slab_free) {
2910 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
2911 				stat(s, FREE_ADD_PARTIAL);
2912 			}
2913 		} else if (slab_free) {
2914 			remove_partial(n, slab);
2915 			stat(s, FREE_REMOVE_PARTIAL);
2916 		}
2917 	}
2918 
2919 	if (slab_free) {
2920 		/*
2921 		 * Update the counters while still holding n->list_lock to
2922 		 * prevent spurious validation warnings
2923 		 */
2924 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
2925 	}
2926 
2927 	spin_unlock_irqrestore(&n->list_lock, flags);
2928 
2929 	if (!checks_ok)
2930 		slab_fix(s, "Object at 0x%p not freed", object);
2931 
2932 	if (slab_free) {
2933 		stat(s, FREE_SLAB);
2934 		free_slab(s, slab_free);
2935 	}
2936 }
2937 #endif /* CONFIG_SLUB_DEBUG */
2938 
2939 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2940 static unsigned long count_partial(struct kmem_cache_node *n,
2941 					int (*get_count)(struct slab *))
2942 {
2943 	unsigned long flags;
2944 	unsigned long x = 0;
2945 	struct slab *slab;
2946 
2947 	spin_lock_irqsave(&n->list_lock, flags);
2948 	list_for_each_entry(slab, &n->partial, slab_list)
2949 		x += get_count(slab);
2950 	spin_unlock_irqrestore(&n->list_lock, flags);
2951 	return x;
2952 }
2953 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2954 
2955 static noinline void
2956 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2957 {
2958 #ifdef CONFIG_SLUB_DEBUG
2959 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2960 				      DEFAULT_RATELIMIT_BURST);
2961 	int node;
2962 	struct kmem_cache_node *n;
2963 
2964 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2965 		return;
2966 
2967 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2968 		nid, gfpflags, &gfpflags);
2969 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2970 		s->name, s->object_size, s->size, oo_order(s->oo),
2971 		oo_order(s->min));
2972 
2973 	if (oo_order(s->min) > get_order(s->object_size))
2974 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2975 			s->name);
2976 
2977 	for_each_kmem_cache_node(s, node, n) {
2978 		unsigned long nr_slabs;
2979 		unsigned long nr_objs;
2980 		unsigned long nr_free;
2981 
2982 		nr_free  = count_partial(n, count_free);
2983 		nr_slabs = node_nr_slabs(n);
2984 		nr_objs  = node_nr_objs(n);
2985 
2986 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2987 			node, nr_slabs, nr_objs, nr_free);
2988 	}
2989 #endif
2990 }
2991 
2992 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2993 {
2994 	if (unlikely(slab_test_pfmemalloc(slab)))
2995 		return gfp_pfmemalloc_allowed(gfpflags);
2996 
2997 	return true;
2998 }
2999 
3000 /*
3001  * Check the slab->freelist and either transfer the freelist to the
3002  * per cpu freelist or deactivate the slab.
3003  *
3004  * The slab is still frozen if the return value is not NULL.
3005  *
3006  * If this function returns NULL then the slab has been unfrozen.
3007  */
3008 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3009 {
3010 	struct slab new;
3011 	unsigned long counters;
3012 	void *freelist;
3013 
3014 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3015 
3016 	do {
3017 		freelist = slab->freelist;
3018 		counters = slab->counters;
3019 
3020 		new.counters = counters;
3021 		VM_BUG_ON(!new.frozen);
3022 
3023 		new.inuse = slab->objects;
3024 		new.frozen = freelist != NULL;
3025 
3026 	} while (!__cmpxchg_double_slab(s, slab,
3027 		freelist, counters,
3028 		NULL, new.counters,
3029 		"get_freelist"));
3030 
3031 	return freelist;
3032 }
3033 
3034 /*
3035  * Slow path. The lockless freelist is empty or we need to perform
3036  * debugging duties.
3037  *
3038  * Processing is still very fast if new objects have been freed to the
3039  * regular freelist. In that case we simply take over the regular freelist
3040  * as the lockless freelist and zap the regular freelist.
3041  *
3042  * If that is not working then we fall back to the partial lists. We take the
3043  * first element of the freelist as the object to allocate now and move the
3044  * rest of the freelist to the lockless freelist.
3045  *
3046  * And if we were unable to get a new slab from the partial slab lists then
3047  * we need to allocate a new slab. This is the slowest path since it involves
3048  * a call to the page allocator and the setup of a new slab.
3049  *
3050  * Version of __slab_alloc to use when we know that preemption is
3051  * already disabled (which is the case for bulk allocation).
3052  */
3053 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3054 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3055 {
3056 	void *freelist;
3057 	struct slab *slab;
3058 	unsigned long flags;
3059 	struct partial_context pc;
3060 
3061 	stat(s, ALLOC_SLOWPATH);
3062 
3063 reread_slab:
3064 
3065 	slab = READ_ONCE(c->slab);
3066 	if (!slab) {
3067 		/*
3068 		 * if the node is not online or has no normal memory, just
3069 		 * ignore the node constraint
3070 		 */
3071 		if (unlikely(node != NUMA_NO_NODE &&
3072 			     !node_isset(node, slab_nodes)))
3073 			node = NUMA_NO_NODE;
3074 		goto new_slab;
3075 	}
3076 redo:
3077 
3078 	if (unlikely(!node_match(slab, node))) {
3079 		/*
3080 		 * same as above but node_match() being false already
3081 		 * implies node != NUMA_NO_NODE
3082 		 */
3083 		if (!node_isset(node, slab_nodes)) {
3084 			node = NUMA_NO_NODE;
3085 		} else {
3086 			stat(s, ALLOC_NODE_MISMATCH);
3087 			goto deactivate_slab;
3088 		}
3089 	}
3090 
3091 	/*
3092 	 * By rights, we should be searching for a slab page that was
3093 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3094 	 * information when the page leaves the per-cpu allocator
3095 	 */
3096 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3097 		goto deactivate_slab;
3098 
3099 	/* must check again c->slab in case we got preempted and it changed */
3100 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3101 	if (unlikely(slab != c->slab)) {
3102 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3103 		goto reread_slab;
3104 	}
3105 	freelist = c->freelist;
3106 	if (freelist)
3107 		goto load_freelist;
3108 
3109 	freelist = get_freelist(s, slab);
3110 
3111 	if (!freelist) {
3112 		c->slab = NULL;
3113 		c->tid = next_tid(c->tid);
3114 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3115 		stat(s, DEACTIVATE_BYPASS);
3116 		goto new_slab;
3117 	}
3118 
3119 	stat(s, ALLOC_REFILL);
3120 
3121 load_freelist:
3122 
3123 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3124 
3125 	/*
3126 	 * freelist is pointing to the list of objects to be used.
3127 	 * slab is pointing to the slab from which the objects are obtained.
3128 	 * That slab must be frozen for per cpu allocations to work.
3129 	 */
3130 	VM_BUG_ON(!c->slab->frozen);
3131 	c->freelist = get_freepointer(s, freelist);
3132 	c->tid = next_tid(c->tid);
3133 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3134 	return freelist;
3135 
3136 deactivate_slab:
3137 
3138 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3139 	if (slab != c->slab) {
3140 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3141 		goto reread_slab;
3142 	}
3143 	freelist = c->freelist;
3144 	c->slab = NULL;
3145 	c->freelist = NULL;
3146 	c->tid = next_tid(c->tid);
3147 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3148 	deactivate_slab(s, slab, freelist);
3149 
3150 new_slab:
3151 
3152 	if (slub_percpu_partial(c)) {
3153 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3154 		if (unlikely(c->slab)) {
3155 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3156 			goto reread_slab;
3157 		}
3158 		if (unlikely(!slub_percpu_partial(c))) {
3159 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3160 			/* we were preempted and partial list got empty */
3161 			goto new_objects;
3162 		}
3163 
3164 		slab = c->slab = slub_percpu_partial(c);
3165 		slub_set_percpu_partial(c, slab);
3166 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3167 		stat(s, CPU_PARTIAL_ALLOC);
3168 		goto redo;
3169 	}
3170 
3171 new_objects:
3172 
3173 	pc.flags = gfpflags;
3174 	pc.slab = &slab;
3175 	pc.orig_size = orig_size;
3176 	freelist = get_partial(s, node, &pc);
3177 	if (freelist)
3178 		goto check_new_slab;
3179 
3180 	slub_put_cpu_ptr(s->cpu_slab);
3181 	slab = new_slab(s, gfpflags, node);
3182 	c = slub_get_cpu_ptr(s->cpu_slab);
3183 
3184 	if (unlikely(!slab)) {
3185 		slab_out_of_memory(s, gfpflags, node);
3186 		return NULL;
3187 	}
3188 
3189 	stat(s, ALLOC_SLAB);
3190 
3191 	if (kmem_cache_debug(s)) {
3192 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3193 
3194 		if (unlikely(!freelist))
3195 			goto new_objects;
3196 
3197 		if (s->flags & SLAB_STORE_USER)
3198 			set_track(s, freelist, TRACK_ALLOC, addr);
3199 
3200 		return freelist;
3201 	}
3202 
3203 	/*
3204 	 * No other reference to the slab yet so we can
3205 	 * muck around with it freely without cmpxchg
3206 	 */
3207 	freelist = slab->freelist;
3208 	slab->freelist = NULL;
3209 	slab->inuse = slab->objects;
3210 	slab->frozen = 1;
3211 
3212 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3213 
3214 check_new_slab:
3215 
3216 	if (kmem_cache_debug(s)) {
3217 		/*
3218 		 * For debug caches here we had to go through
3219 		 * alloc_single_from_partial() so just store the tracking info
3220 		 * and return the object
3221 		 */
3222 		if (s->flags & SLAB_STORE_USER)
3223 			set_track(s, freelist, TRACK_ALLOC, addr);
3224 
3225 		return freelist;
3226 	}
3227 
3228 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3229 		/*
3230 		 * For !pfmemalloc_match() case we don't load freelist so that
3231 		 * we don't make further mismatched allocations easier.
3232 		 */
3233 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3234 		return freelist;
3235 	}
3236 
3237 retry_load_slab:
3238 
3239 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3240 	if (unlikely(c->slab)) {
3241 		void *flush_freelist = c->freelist;
3242 		struct slab *flush_slab = c->slab;
3243 
3244 		c->slab = NULL;
3245 		c->freelist = NULL;
3246 		c->tid = next_tid(c->tid);
3247 
3248 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3249 
3250 		deactivate_slab(s, flush_slab, flush_freelist);
3251 
3252 		stat(s, CPUSLAB_FLUSH);
3253 
3254 		goto retry_load_slab;
3255 	}
3256 	c->slab = slab;
3257 
3258 	goto load_freelist;
3259 }
3260 
3261 /*
3262  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3263  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3264  * pointer.
3265  */
3266 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3267 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3268 {
3269 	void *p;
3270 
3271 #ifdef CONFIG_PREEMPT_COUNT
3272 	/*
3273 	 * We may have been preempted and rescheduled on a different
3274 	 * cpu before disabling preemption. Need to reload cpu area
3275 	 * pointer.
3276 	 */
3277 	c = slub_get_cpu_ptr(s->cpu_slab);
3278 #endif
3279 
3280 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3281 #ifdef CONFIG_PREEMPT_COUNT
3282 	slub_put_cpu_ptr(s->cpu_slab);
3283 #endif
3284 	return p;
3285 }
3286 
3287 /*
3288  * If the object has been wiped upon free, make sure it's fully initialized by
3289  * zeroing out freelist pointer.
3290  */
3291 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3292 						   void *obj)
3293 {
3294 	if (unlikely(slab_want_init_on_free(s)) && obj)
3295 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3296 			0, sizeof(void *));
3297 }
3298 
3299 /*
3300  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3301  * have the fastpath folded into their functions. So no function call
3302  * overhead for requests that can be satisfied on the fastpath.
3303  *
3304  * The fastpath works by first checking if the lockless freelist can be used.
3305  * If not then __slab_alloc is called for slow processing.
3306  *
3307  * Otherwise we can simply pick the next object from the lockless free list.
3308  */
3309 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3310 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3311 {
3312 	void *object;
3313 	struct kmem_cache_cpu *c;
3314 	struct slab *slab;
3315 	unsigned long tid;
3316 	struct obj_cgroup *objcg = NULL;
3317 	bool init = false;
3318 
3319 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3320 	if (!s)
3321 		return NULL;
3322 
3323 	object = kfence_alloc(s, orig_size, gfpflags);
3324 	if (unlikely(object))
3325 		goto out;
3326 
3327 redo:
3328 	/*
3329 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3330 	 * enabled. We may switch back and forth between cpus while
3331 	 * reading from one cpu area. That does not matter as long
3332 	 * as we end up on the original cpu again when doing the cmpxchg.
3333 	 *
3334 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3335 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3336 	 * the tid. If we are preempted and switched to another cpu between the
3337 	 * two reads, it's OK as the two are still associated with the same cpu
3338 	 * and cmpxchg later will validate the cpu.
3339 	 */
3340 	c = raw_cpu_ptr(s->cpu_slab);
3341 	tid = READ_ONCE(c->tid);
3342 
3343 	/*
3344 	 * Irqless object alloc/free algorithm used here depends on sequence
3345 	 * of fetching cpu_slab's data. tid should be fetched before anything
3346 	 * on c to guarantee that object and slab associated with previous tid
3347 	 * won't be used with current tid. If we fetch tid first, object and
3348 	 * slab could be one associated with next tid and our alloc/free
3349 	 * request will be failed. In this case, we will retry. So, no problem.
3350 	 */
3351 	barrier();
3352 
3353 	/*
3354 	 * The transaction ids are globally unique per cpu and per operation on
3355 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3356 	 * occurs on the right processor and that there was no operation on the
3357 	 * linked list in between.
3358 	 */
3359 
3360 	object = c->freelist;
3361 	slab = c->slab;
3362 
3363 	if (!USE_LOCKLESS_FAST_PATH() ||
3364 	    unlikely(!object || !slab || !node_match(slab, node))) {
3365 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3366 	} else {
3367 		void *next_object = get_freepointer_safe(s, object);
3368 
3369 		/*
3370 		 * The cmpxchg will only match if there was no additional
3371 		 * operation and if we are on the right processor.
3372 		 *
3373 		 * The cmpxchg does the following atomically (without lock
3374 		 * semantics!)
3375 		 * 1. Relocate first pointer to the current per cpu area.
3376 		 * 2. Verify that tid and freelist have not been changed
3377 		 * 3. If they were not changed replace tid and freelist
3378 		 *
3379 		 * Since this is without lock semantics the protection is only
3380 		 * against code executing on this cpu *not* from access by
3381 		 * other cpus.
3382 		 */
3383 		if (unlikely(!this_cpu_cmpxchg_double(
3384 				s->cpu_slab->freelist, s->cpu_slab->tid,
3385 				object, tid,
3386 				next_object, next_tid(tid)))) {
3387 
3388 			note_cmpxchg_failure("slab_alloc", s, tid);
3389 			goto redo;
3390 		}
3391 		prefetch_freepointer(s, next_object);
3392 		stat(s, ALLOC_FASTPATH);
3393 	}
3394 
3395 	maybe_wipe_obj_freeptr(s, object);
3396 	init = slab_want_init_on_alloc(gfpflags, s);
3397 
3398 out:
3399 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3400 
3401 	return object;
3402 }
3403 
3404 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3405 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3406 {
3407 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3408 }
3409 
3410 static __always_inline
3411 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3412 			     gfp_t gfpflags)
3413 {
3414 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3415 
3416 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3417 
3418 	return ret;
3419 }
3420 
3421 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3422 {
3423 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3424 }
3425 EXPORT_SYMBOL(kmem_cache_alloc);
3426 
3427 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3428 			   gfp_t gfpflags)
3429 {
3430 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3431 }
3432 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3433 
3434 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3435 			      int node, size_t orig_size,
3436 			      unsigned long caller)
3437 {
3438 	return slab_alloc_node(s, NULL, gfpflags, node,
3439 			       caller, orig_size);
3440 }
3441 
3442 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3443 {
3444 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3445 
3446 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3447 
3448 	return ret;
3449 }
3450 EXPORT_SYMBOL(kmem_cache_alloc_node);
3451 
3452 /*
3453  * Slow path handling. This may still be called frequently since objects
3454  * have a longer lifetime than the cpu slabs in most processing loads.
3455  *
3456  * So we still attempt to reduce cache line usage. Just take the slab
3457  * lock and free the item. If there is no additional partial slab
3458  * handling required then we can return immediately.
3459  */
3460 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3461 			void *head, void *tail, int cnt,
3462 			unsigned long addr)
3463 
3464 {
3465 	void *prior;
3466 	int was_frozen;
3467 	struct slab new;
3468 	unsigned long counters;
3469 	struct kmem_cache_node *n = NULL;
3470 	unsigned long flags;
3471 
3472 	stat(s, FREE_SLOWPATH);
3473 
3474 	if (kfence_free(head))
3475 		return;
3476 
3477 	if (kmem_cache_debug(s)) {
3478 		free_debug_processing(s, slab, head, tail, cnt, addr);
3479 		return;
3480 	}
3481 
3482 	do {
3483 		if (unlikely(n)) {
3484 			spin_unlock_irqrestore(&n->list_lock, flags);
3485 			n = NULL;
3486 		}
3487 		prior = slab->freelist;
3488 		counters = slab->counters;
3489 		set_freepointer(s, tail, prior);
3490 		new.counters = counters;
3491 		was_frozen = new.frozen;
3492 		new.inuse -= cnt;
3493 		if ((!new.inuse || !prior) && !was_frozen) {
3494 
3495 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3496 
3497 				/*
3498 				 * Slab was on no list before and will be
3499 				 * partially empty
3500 				 * We can defer the list move and instead
3501 				 * freeze it.
3502 				 */
3503 				new.frozen = 1;
3504 
3505 			} else { /* Needs to be taken off a list */
3506 
3507 				n = get_node(s, slab_nid(slab));
3508 				/*
3509 				 * Speculatively acquire the list_lock.
3510 				 * If the cmpxchg does not succeed then we may
3511 				 * drop the list_lock without any processing.
3512 				 *
3513 				 * Otherwise the list_lock will synchronize with
3514 				 * other processors updating the list of slabs.
3515 				 */
3516 				spin_lock_irqsave(&n->list_lock, flags);
3517 
3518 			}
3519 		}
3520 
3521 	} while (!cmpxchg_double_slab(s, slab,
3522 		prior, counters,
3523 		head, new.counters,
3524 		"__slab_free"));
3525 
3526 	if (likely(!n)) {
3527 
3528 		if (likely(was_frozen)) {
3529 			/*
3530 			 * The list lock was not taken therefore no list
3531 			 * activity can be necessary.
3532 			 */
3533 			stat(s, FREE_FROZEN);
3534 		} else if (new.frozen) {
3535 			/*
3536 			 * If we just froze the slab then put it onto the
3537 			 * per cpu partial list.
3538 			 */
3539 			put_cpu_partial(s, slab, 1);
3540 			stat(s, CPU_PARTIAL_FREE);
3541 		}
3542 
3543 		return;
3544 	}
3545 
3546 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3547 		goto slab_empty;
3548 
3549 	/*
3550 	 * Objects left in the slab. If it was not on the partial list before
3551 	 * then add it.
3552 	 */
3553 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3554 		remove_full(s, n, slab);
3555 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3556 		stat(s, FREE_ADD_PARTIAL);
3557 	}
3558 	spin_unlock_irqrestore(&n->list_lock, flags);
3559 	return;
3560 
3561 slab_empty:
3562 	if (prior) {
3563 		/*
3564 		 * Slab on the partial list.
3565 		 */
3566 		remove_partial(n, slab);
3567 		stat(s, FREE_REMOVE_PARTIAL);
3568 	} else {
3569 		/* Slab must be on the full list */
3570 		remove_full(s, n, slab);
3571 	}
3572 
3573 	spin_unlock_irqrestore(&n->list_lock, flags);
3574 	stat(s, FREE_SLAB);
3575 	discard_slab(s, slab);
3576 }
3577 
3578 /*
3579  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3580  * can perform fastpath freeing without additional function calls.
3581  *
3582  * The fastpath is only possible if we are freeing to the current cpu slab
3583  * of this processor. This typically the case if we have just allocated
3584  * the item before.
3585  *
3586  * If fastpath is not possible then fall back to __slab_free where we deal
3587  * with all sorts of special processing.
3588  *
3589  * Bulk free of a freelist with several objects (all pointing to the
3590  * same slab) possible by specifying head and tail ptr, plus objects
3591  * count (cnt). Bulk free indicated by tail pointer being set.
3592  */
3593 static __always_inline void do_slab_free(struct kmem_cache *s,
3594 				struct slab *slab, void *head, void *tail,
3595 				int cnt, unsigned long addr)
3596 {
3597 	void *tail_obj = tail ? : head;
3598 	struct kmem_cache_cpu *c;
3599 	unsigned long tid;
3600 	void **freelist;
3601 
3602 redo:
3603 	/*
3604 	 * Determine the currently cpus per cpu slab.
3605 	 * The cpu may change afterward. However that does not matter since
3606 	 * data is retrieved via this pointer. If we are on the same cpu
3607 	 * during the cmpxchg then the free will succeed.
3608 	 */
3609 	c = raw_cpu_ptr(s->cpu_slab);
3610 	tid = READ_ONCE(c->tid);
3611 
3612 	/* Same with comment on barrier() in slab_alloc_node() */
3613 	barrier();
3614 
3615 	if (unlikely(slab != c->slab)) {
3616 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3617 		return;
3618 	}
3619 
3620 	if (USE_LOCKLESS_FAST_PATH()) {
3621 		freelist = READ_ONCE(c->freelist);
3622 
3623 		set_freepointer(s, tail_obj, freelist);
3624 
3625 		if (unlikely(!this_cpu_cmpxchg_double(
3626 				s->cpu_slab->freelist, s->cpu_slab->tid,
3627 				freelist, tid,
3628 				head, next_tid(tid)))) {
3629 
3630 			note_cmpxchg_failure("slab_free", s, tid);
3631 			goto redo;
3632 		}
3633 	} else {
3634 		/* Update the free list under the local lock */
3635 		local_lock(&s->cpu_slab->lock);
3636 		c = this_cpu_ptr(s->cpu_slab);
3637 		if (unlikely(slab != c->slab)) {
3638 			local_unlock(&s->cpu_slab->lock);
3639 			goto redo;
3640 		}
3641 		tid = c->tid;
3642 		freelist = c->freelist;
3643 
3644 		set_freepointer(s, tail_obj, freelist);
3645 		c->freelist = head;
3646 		c->tid = next_tid(tid);
3647 
3648 		local_unlock(&s->cpu_slab->lock);
3649 	}
3650 	stat(s, FREE_FASTPATH);
3651 }
3652 
3653 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3654 				      void *head, void *tail, void **p, int cnt,
3655 				      unsigned long addr)
3656 {
3657 	memcg_slab_free_hook(s, slab, p, cnt);
3658 	/*
3659 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3660 	 * to remove objects, whose reuse must be delayed.
3661 	 */
3662 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3663 		do_slab_free(s, slab, head, tail, cnt, addr);
3664 }
3665 
3666 #ifdef CONFIG_KASAN_GENERIC
3667 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3668 {
3669 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3670 }
3671 #endif
3672 
3673 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3674 {
3675 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3676 }
3677 
3678 void kmem_cache_free(struct kmem_cache *s, void *x)
3679 {
3680 	s = cache_from_obj(s, x);
3681 	if (!s)
3682 		return;
3683 	trace_kmem_cache_free(_RET_IP_, x, s);
3684 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3685 }
3686 EXPORT_SYMBOL(kmem_cache_free);
3687 
3688 struct detached_freelist {
3689 	struct slab *slab;
3690 	void *tail;
3691 	void *freelist;
3692 	int cnt;
3693 	struct kmem_cache *s;
3694 };
3695 
3696 /*
3697  * This function progressively scans the array with free objects (with
3698  * a limited look ahead) and extract objects belonging to the same
3699  * slab.  It builds a detached freelist directly within the given
3700  * slab/objects.  This can happen without any need for
3701  * synchronization, because the objects are owned by running process.
3702  * The freelist is build up as a single linked list in the objects.
3703  * The idea is, that this detached freelist can then be bulk
3704  * transferred to the real freelist(s), but only requiring a single
3705  * synchronization primitive.  Look ahead in the array is limited due
3706  * to performance reasons.
3707  */
3708 static inline
3709 int build_detached_freelist(struct kmem_cache *s, size_t size,
3710 			    void **p, struct detached_freelist *df)
3711 {
3712 	int lookahead = 3;
3713 	void *object;
3714 	struct folio *folio;
3715 	size_t same;
3716 
3717 	object = p[--size];
3718 	folio = virt_to_folio(object);
3719 	if (!s) {
3720 		/* Handle kalloc'ed objects */
3721 		if (unlikely(!folio_test_slab(folio))) {
3722 			free_large_kmalloc(folio, object);
3723 			df->slab = NULL;
3724 			return size;
3725 		}
3726 		/* Derive kmem_cache from object */
3727 		df->slab = folio_slab(folio);
3728 		df->s = df->slab->slab_cache;
3729 	} else {
3730 		df->slab = folio_slab(folio);
3731 		df->s = cache_from_obj(s, object); /* Support for memcg */
3732 	}
3733 
3734 	/* Start new detached freelist */
3735 	df->tail = object;
3736 	df->freelist = object;
3737 	df->cnt = 1;
3738 
3739 	if (is_kfence_address(object))
3740 		return size;
3741 
3742 	set_freepointer(df->s, object, NULL);
3743 
3744 	same = size;
3745 	while (size) {
3746 		object = p[--size];
3747 		/* df->slab is always set at this point */
3748 		if (df->slab == virt_to_slab(object)) {
3749 			/* Opportunity build freelist */
3750 			set_freepointer(df->s, object, df->freelist);
3751 			df->freelist = object;
3752 			df->cnt++;
3753 			same--;
3754 			if (size != same)
3755 				swap(p[size], p[same]);
3756 			continue;
3757 		}
3758 
3759 		/* Limit look ahead search */
3760 		if (!--lookahead)
3761 			break;
3762 	}
3763 
3764 	return same;
3765 }
3766 
3767 /* Note that interrupts must be enabled when calling this function. */
3768 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3769 {
3770 	if (!size)
3771 		return;
3772 
3773 	do {
3774 		struct detached_freelist df;
3775 
3776 		size = build_detached_freelist(s, size, p, &df);
3777 		if (!df.slab)
3778 			continue;
3779 
3780 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3781 			  _RET_IP_);
3782 	} while (likely(size));
3783 }
3784 EXPORT_SYMBOL(kmem_cache_free_bulk);
3785 
3786 /* Note that interrupts must be enabled when calling this function. */
3787 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3788 			  void **p)
3789 {
3790 	struct kmem_cache_cpu *c;
3791 	int i;
3792 	struct obj_cgroup *objcg = NULL;
3793 
3794 	/* memcg and kmem_cache debug support */
3795 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3796 	if (unlikely(!s))
3797 		return false;
3798 	/*
3799 	 * Drain objects in the per cpu slab, while disabling local
3800 	 * IRQs, which protects against PREEMPT and interrupts
3801 	 * handlers invoking normal fastpath.
3802 	 */
3803 	c = slub_get_cpu_ptr(s->cpu_slab);
3804 	local_lock_irq(&s->cpu_slab->lock);
3805 
3806 	for (i = 0; i < size; i++) {
3807 		void *object = kfence_alloc(s, s->object_size, flags);
3808 
3809 		if (unlikely(object)) {
3810 			p[i] = object;
3811 			continue;
3812 		}
3813 
3814 		object = c->freelist;
3815 		if (unlikely(!object)) {
3816 			/*
3817 			 * We may have removed an object from c->freelist using
3818 			 * the fastpath in the previous iteration; in that case,
3819 			 * c->tid has not been bumped yet.
3820 			 * Since ___slab_alloc() may reenable interrupts while
3821 			 * allocating memory, we should bump c->tid now.
3822 			 */
3823 			c->tid = next_tid(c->tid);
3824 
3825 			local_unlock_irq(&s->cpu_slab->lock);
3826 
3827 			/*
3828 			 * Invoking slow path likely have side-effect
3829 			 * of re-populating per CPU c->freelist
3830 			 */
3831 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3832 					    _RET_IP_, c, s->object_size);
3833 			if (unlikely(!p[i]))
3834 				goto error;
3835 
3836 			c = this_cpu_ptr(s->cpu_slab);
3837 			maybe_wipe_obj_freeptr(s, p[i]);
3838 
3839 			local_lock_irq(&s->cpu_slab->lock);
3840 
3841 			continue; /* goto for-loop */
3842 		}
3843 		c->freelist = get_freepointer(s, object);
3844 		p[i] = object;
3845 		maybe_wipe_obj_freeptr(s, p[i]);
3846 	}
3847 	c->tid = next_tid(c->tid);
3848 	local_unlock_irq(&s->cpu_slab->lock);
3849 	slub_put_cpu_ptr(s->cpu_slab);
3850 
3851 	/*
3852 	 * memcg and kmem_cache debug support and memory initialization.
3853 	 * Done outside of the IRQ disabled fastpath loop.
3854 	 */
3855 	slab_post_alloc_hook(s, objcg, flags, size, p,
3856 				slab_want_init_on_alloc(flags, s));
3857 	return i;
3858 error:
3859 	slub_put_cpu_ptr(s->cpu_slab);
3860 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3861 	kmem_cache_free_bulk(s, i, p);
3862 	return 0;
3863 }
3864 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3865 
3866 
3867 /*
3868  * Object placement in a slab is made very easy because we always start at
3869  * offset 0. If we tune the size of the object to the alignment then we can
3870  * get the required alignment by putting one properly sized object after
3871  * another.
3872  *
3873  * Notice that the allocation order determines the sizes of the per cpu
3874  * caches. Each processor has always one slab available for allocations.
3875  * Increasing the allocation order reduces the number of times that slabs
3876  * must be moved on and off the partial lists and is therefore a factor in
3877  * locking overhead.
3878  */
3879 
3880 /*
3881  * Minimum / Maximum order of slab pages. This influences locking overhead
3882  * and slab fragmentation. A higher order reduces the number of partial slabs
3883  * and increases the number of allocations possible without having to
3884  * take the list_lock.
3885  */
3886 static unsigned int slub_min_order;
3887 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3888 static unsigned int slub_min_objects;
3889 
3890 /*
3891  * Calculate the order of allocation given an slab object size.
3892  *
3893  * The order of allocation has significant impact on performance and other
3894  * system components. Generally order 0 allocations should be preferred since
3895  * order 0 does not cause fragmentation in the page allocator. Larger objects
3896  * be problematic to put into order 0 slabs because there may be too much
3897  * unused space left. We go to a higher order if more than 1/16th of the slab
3898  * would be wasted.
3899  *
3900  * In order to reach satisfactory performance we must ensure that a minimum
3901  * number of objects is in one slab. Otherwise we may generate too much
3902  * activity on the partial lists which requires taking the list_lock. This is
3903  * less a concern for large slabs though which are rarely used.
3904  *
3905  * slub_max_order specifies the order where we begin to stop considering the
3906  * number of objects in a slab as critical. If we reach slub_max_order then
3907  * we try to keep the page order as low as possible. So we accept more waste
3908  * of space in favor of a small page order.
3909  *
3910  * Higher order allocations also allow the placement of more objects in a
3911  * slab and thereby reduce object handling overhead. If the user has
3912  * requested a higher minimum order then we start with that one instead of
3913  * the smallest order which will fit the object.
3914  */
3915 static inline unsigned int calc_slab_order(unsigned int size,
3916 		unsigned int min_objects, unsigned int max_order,
3917 		unsigned int fract_leftover)
3918 {
3919 	unsigned int min_order = slub_min_order;
3920 	unsigned int order;
3921 
3922 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3923 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3924 
3925 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3926 			order <= max_order; order++) {
3927 
3928 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3929 		unsigned int rem;
3930 
3931 		rem = slab_size % size;
3932 
3933 		if (rem <= slab_size / fract_leftover)
3934 			break;
3935 	}
3936 
3937 	return order;
3938 }
3939 
3940 static inline int calculate_order(unsigned int size)
3941 {
3942 	unsigned int order;
3943 	unsigned int min_objects;
3944 	unsigned int max_objects;
3945 	unsigned int nr_cpus;
3946 
3947 	/*
3948 	 * Attempt to find best configuration for a slab. This
3949 	 * works by first attempting to generate a layout with
3950 	 * the best configuration and backing off gradually.
3951 	 *
3952 	 * First we increase the acceptable waste in a slab. Then
3953 	 * we reduce the minimum objects required in a slab.
3954 	 */
3955 	min_objects = slub_min_objects;
3956 	if (!min_objects) {
3957 		/*
3958 		 * Some architectures will only update present cpus when
3959 		 * onlining them, so don't trust the number if it's just 1. But
3960 		 * we also don't want to use nr_cpu_ids always, as on some other
3961 		 * architectures, there can be many possible cpus, but never
3962 		 * onlined. Here we compromise between trying to avoid too high
3963 		 * order on systems that appear larger than they are, and too
3964 		 * low order on systems that appear smaller than they are.
3965 		 */
3966 		nr_cpus = num_present_cpus();
3967 		if (nr_cpus <= 1)
3968 			nr_cpus = nr_cpu_ids;
3969 		min_objects = 4 * (fls(nr_cpus) + 1);
3970 	}
3971 	max_objects = order_objects(slub_max_order, size);
3972 	min_objects = min(min_objects, max_objects);
3973 
3974 	while (min_objects > 1) {
3975 		unsigned int fraction;
3976 
3977 		fraction = 16;
3978 		while (fraction >= 4) {
3979 			order = calc_slab_order(size, min_objects,
3980 					slub_max_order, fraction);
3981 			if (order <= slub_max_order)
3982 				return order;
3983 			fraction /= 2;
3984 		}
3985 		min_objects--;
3986 	}
3987 
3988 	/*
3989 	 * We were unable to place multiple objects in a slab. Now
3990 	 * lets see if we can place a single object there.
3991 	 */
3992 	order = calc_slab_order(size, 1, slub_max_order, 1);
3993 	if (order <= slub_max_order)
3994 		return order;
3995 
3996 	/*
3997 	 * Doh this slab cannot be placed using slub_max_order.
3998 	 */
3999 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4000 	if (order < MAX_ORDER)
4001 		return order;
4002 	return -ENOSYS;
4003 }
4004 
4005 static void
4006 init_kmem_cache_node(struct kmem_cache_node *n)
4007 {
4008 	n->nr_partial = 0;
4009 	spin_lock_init(&n->list_lock);
4010 	INIT_LIST_HEAD(&n->partial);
4011 #ifdef CONFIG_SLUB_DEBUG
4012 	atomic_long_set(&n->nr_slabs, 0);
4013 	atomic_long_set(&n->total_objects, 0);
4014 	INIT_LIST_HEAD(&n->full);
4015 #endif
4016 }
4017 
4018 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4019 {
4020 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4021 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4022 
4023 	/*
4024 	 * Must align to double word boundary for the double cmpxchg
4025 	 * instructions to work; see __pcpu_double_call_return_bool().
4026 	 */
4027 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4028 				     2 * sizeof(void *));
4029 
4030 	if (!s->cpu_slab)
4031 		return 0;
4032 
4033 	init_kmem_cache_cpus(s);
4034 
4035 	return 1;
4036 }
4037 
4038 static struct kmem_cache *kmem_cache_node;
4039 
4040 /*
4041  * No kmalloc_node yet so do it by hand. We know that this is the first
4042  * slab on the node for this slabcache. There are no concurrent accesses
4043  * possible.
4044  *
4045  * Note that this function only works on the kmem_cache_node
4046  * when allocating for the kmem_cache_node. This is used for bootstrapping
4047  * memory on a fresh node that has no slab structures yet.
4048  */
4049 static void early_kmem_cache_node_alloc(int node)
4050 {
4051 	struct slab *slab;
4052 	struct kmem_cache_node *n;
4053 
4054 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4055 
4056 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4057 
4058 	BUG_ON(!slab);
4059 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4060 	if (slab_nid(slab) != node) {
4061 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4062 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4063 	}
4064 
4065 	n = slab->freelist;
4066 	BUG_ON(!n);
4067 #ifdef CONFIG_SLUB_DEBUG
4068 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4069 	init_tracking(kmem_cache_node, n);
4070 #endif
4071 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4072 	slab->freelist = get_freepointer(kmem_cache_node, n);
4073 	slab->inuse = 1;
4074 	kmem_cache_node->node[node] = n;
4075 	init_kmem_cache_node(n);
4076 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4077 
4078 	/*
4079 	 * No locks need to be taken here as it has just been
4080 	 * initialized and there is no concurrent access.
4081 	 */
4082 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4083 }
4084 
4085 static void free_kmem_cache_nodes(struct kmem_cache *s)
4086 {
4087 	int node;
4088 	struct kmem_cache_node *n;
4089 
4090 	for_each_kmem_cache_node(s, node, n) {
4091 		s->node[node] = NULL;
4092 		kmem_cache_free(kmem_cache_node, n);
4093 	}
4094 }
4095 
4096 void __kmem_cache_release(struct kmem_cache *s)
4097 {
4098 	cache_random_seq_destroy(s);
4099 	free_percpu(s->cpu_slab);
4100 	free_kmem_cache_nodes(s);
4101 }
4102 
4103 static int init_kmem_cache_nodes(struct kmem_cache *s)
4104 {
4105 	int node;
4106 
4107 	for_each_node_mask(node, slab_nodes) {
4108 		struct kmem_cache_node *n;
4109 
4110 		if (slab_state == DOWN) {
4111 			early_kmem_cache_node_alloc(node);
4112 			continue;
4113 		}
4114 		n = kmem_cache_alloc_node(kmem_cache_node,
4115 						GFP_KERNEL, node);
4116 
4117 		if (!n) {
4118 			free_kmem_cache_nodes(s);
4119 			return 0;
4120 		}
4121 
4122 		init_kmem_cache_node(n);
4123 		s->node[node] = n;
4124 	}
4125 	return 1;
4126 }
4127 
4128 static void set_cpu_partial(struct kmem_cache *s)
4129 {
4130 #ifdef CONFIG_SLUB_CPU_PARTIAL
4131 	unsigned int nr_objects;
4132 
4133 	/*
4134 	 * cpu_partial determined the maximum number of objects kept in the
4135 	 * per cpu partial lists of a processor.
4136 	 *
4137 	 * Per cpu partial lists mainly contain slabs that just have one
4138 	 * object freed. If they are used for allocation then they can be
4139 	 * filled up again with minimal effort. The slab will never hit the
4140 	 * per node partial lists and therefore no locking will be required.
4141 	 *
4142 	 * For backwards compatibility reasons, this is determined as number
4143 	 * of objects, even though we now limit maximum number of pages, see
4144 	 * slub_set_cpu_partial()
4145 	 */
4146 	if (!kmem_cache_has_cpu_partial(s))
4147 		nr_objects = 0;
4148 	else if (s->size >= PAGE_SIZE)
4149 		nr_objects = 6;
4150 	else if (s->size >= 1024)
4151 		nr_objects = 24;
4152 	else if (s->size >= 256)
4153 		nr_objects = 52;
4154 	else
4155 		nr_objects = 120;
4156 
4157 	slub_set_cpu_partial(s, nr_objects);
4158 #endif
4159 }
4160 
4161 /*
4162  * calculate_sizes() determines the order and the distribution of data within
4163  * a slab object.
4164  */
4165 static int calculate_sizes(struct kmem_cache *s)
4166 {
4167 	slab_flags_t flags = s->flags;
4168 	unsigned int size = s->object_size;
4169 	unsigned int order;
4170 
4171 	/*
4172 	 * Round up object size to the next word boundary. We can only
4173 	 * place the free pointer at word boundaries and this determines
4174 	 * the possible location of the free pointer.
4175 	 */
4176 	size = ALIGN(size, sizeof(void *));
4177 
4178 #ifdef CONFIG_SLUB_DEBUG
4179 	/*
4180 	 * Determine if we can poison the object itself. If the user of
4181 	 * the slab may touch the object after free or before allocation
4182 	 * then we should never poison the object itself.
4183 	 */
4184 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4185 			!s->ctor)
4186 		s->flags |= __OBJECT_POISON;
4187 	else
4188 		s->flags &= ~__OBJECT_POISON;
4189 
4190 
4191 	/*
4192 	 * If we are Redzoning then check if there is some space between the
4193 	 * end of the object and the free pointer. If not then add an
4194 	 * additional word to have some bytes to store Redzone information.
4195 	 */
4196 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4197 		size += sizeof(void *);
4198 #endif
4199 
4200 	/*
4201 	 * With that we have determined the number of bytes in actual use
4202 	 * by the object and redzoning.
4203 	 */
4204 	s->inuse = size;
4205 
4206 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4207 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4208 	    s->ctor) {
4209 		/*
4210 		 * Relocate free pointer after the object if it is not
4211 		 * permitted to overwrite the first word of the object on
4212 		 * kmem_cache_free.
4213 		 *
4214 		 * This is the case if we do RCU, have a constructor or
4215 		 * destructor, are poisoning the objects, or are
4216 		 * redzoning an object smaller than sizeof(void *).
4217 		 *
4218 		 * The assumption that s->offset >= s->inuse means free
4219 		 * pointer is outside of the object is used in the
4220 		 * freeptr_outside_object() function. If that is no
4221 		 * longer true, the function needs to be modified.
4222 		 */
4223 		s->offset = size;
4224 		size += sizeof(void *);
4225 	} else {
4226 		/*
4227 		 * Store freelist pointer near middle of object to keep
4228 		 * it away from the edges of the object to avoid small
4229 		 * sized over/underflows from neighboring allocations.
4230 		 */
4231 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4232 	}
4233 
4234 #ifdef CONFIG_SLUB_DEBUG
4235 	if (flags & SLAB_STORE_USER) {
4236 		/*
4237 		 * Need to store information about allocs and frees after
4238 		 * the object.
4239 		 */
4240 		size += 2 * sizeof(struct track);
4241 
4242 		/* Save the original kmalloc request size */
4243 		if (flags & SLAB_KMALLOC)
4244 			size += sizeof(unsigned int);
4245 	}
4246 #endif
4247 
4248 	kasan_cache_create(s, &size, &s->flags);
4249 #ifdef CONFIG_SLUB_DEBUG
4250 	if (flags & SLAB_RED_ZONE) {
4251 		/*
4252 		 * Add some empty padding so that we can catch
4253 		 * overwrites from earlier objects rather than let
4254 		 * tracking information or the free pointer be
4255 		 * corrupted if a user writes before the start
4256 		 * of the object.
4257 		 */
4258 		size += sizeof(void *);
4259 
4260 		s->red_left_pad = sizeof(void *);
4261 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4262 		size += s->red_left_pad;
4263 	}
4264 #endif
4265 
4266 	/*
4267 	 * SLUB stores one object immediately after another beginning from
4268 	 * offset 0. In order to align the objects we have to simply size
4269 	 * each object to conform to the alignment.
4270 	 */
4271 	size = ALIGN(size, s->align);
4272 	s->size = size;
4273 	s->reciprocal_size = reciprocal_value(size);
4274 	order = calculate_order(size);
4275 
4276 	if ((int)order < 0)
4277 		return 0;
4278 
4279 	s->allocflags = 0;
4280 	if (order)
4281 		s->allocflags |= __GFP_COMP;
4282 
4283 	if (s->flags & SLAB_CACHE_DMA)
4284 		s->allocflags |= GFP_DMA;
4285 
4286 	if (s->flags & SLAB_CACHE_DMA32)
4287 		s->allocflags |= GFP_DMA32;
4288 
4289 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4290 		s->allocflags |= __GFP_RECLAIMABLE;
4291 
4292 	/*
4293 	 * Determine the number of objects per slab
4294 	 */
4295 	s->oo = oo_make(order, size);
4296 	s->min = oo_make(get_order(size), size);
4297 
4298 	return !!oo_objects(s->oo);
4299 }
4300 
4301 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4302 {
4303 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4305 	s->random = get_random_long();
4306 #endif
4307 
4308 	if (!calculate_sizes(s))
4309 		goto error;
4310 	if (disable_higher_order_debug) {
4311 		/*
4312 		 * Disable debugging flags that store metadata if the min slab
4313 		 * order increased.
4314 		 */
4315 		if (get_order(s->size) > get_order(s->object_size)) {
4316 			s->flags &= ~DEBUG_METADATA_FLAGS;
4317 			s->offset = 0;
4318 			if (!calculate_sizes(s))
4319 				goto error;
4320 		}
4321 	}
4322 
4323 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4324     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4325 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4326 		/* Enable fast mode */
4327 		s->flags |= __CMPXCHG_DOUBLE;
4328 #endif
4329 
4330 	/*
4331 	 * The larger the object size is, the more slabs we want on the partial
4332 	 * list to avoid pounding the page allocator excessively.
4333 	 */
4334 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4335 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4336 
4337 	set_cpu_partial(s);
4338 
4339 #ifdef CONFIG_NUMA
4340 	s->remote_node_defrag_ratio = 1000;
4341 #endif
4342 
4343 	/* Initialize the pre-computed randomized freelist if slab is up */
4344 	if (slab_state >= UP) {
4345 		if (init_cache_random_seq(s))
4346 			goto error;
4347 	}
4348 
4349 	if (!init_kmem_cache_nodes(s))
4350 		goto error;
4351 
4352 	if (alloc_kmem_cache_cpus(s))
4353 		return 0;
4354 
4355 error:
4356 	__kmem_cache_release(s);
4357 	return -EINVAL;
4358 }
4359 
4360 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4361 			      const char *text)
4362 {
4363 #ifdef CONFIG_SLUB_DEBUG
4364 	void *addr = slab_address(slab);
4365 	void *p;
4366 
4367 	slab_err(s, slab, text, s->name);
4368 
4369 	spin_lock(&object_map_lock);
4370 	__fill_map(object_map, s, slab);
4371 
4372 	for_each_object(p, s, addr, slab->objects) {
4373 
4374 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4375 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4376 			print_tracking(s, p);
4377 		}
4378 	}
4379 	spin_unlock(&object_map_lock);
4380 #endif
4381 }
4382 
4383 /*
4384  * Attempt to free all partial slabs on a node.
4385  * This is called from __kmem_cache_shutdown(). We must take list_lock
4386  * because sysfs file might still access partial list after the shutdowning.
4387  */
4388 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4389 {
4390 	LIST_HEAD(discard);
4391 	struct slab *slab, *h;
4392 
4393 	BUG_ON(irqs_disabled());
4394 	spin_lock_irq(&n->list_lock);
4395 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4396 		if (!slab->inuse) {
4397 			remove_partial(n, slab);
4398 			list_add(&slab->slab_list, &discard);
4399 		} else {
4400 			list_slab_objects(s, slab,
4401 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4402 		}
4403 	}
4404 	spin_unlock_irq(&n->list_lock);
4405 
4406 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4407 		discard_slab(s, slab);
4408 }
4409 
4410 bool __kmem_cache_empty(struct kmem_cache *s)
4411 {
4412 	int node;
4413 	struct kmem_cache_node *n;
4414 
4415 	for_each_kmem_cache_node(s, node, n)
4416 		if (n->nr_partial || slabs_node(s, node))
4417 			return false;
4418 	return true;
4419 }
4420 
4421 /*
4422  * Release all resources used by a slab cache.
4423  */
4424 int __kmem_cache_shutdown(struct kmem_cache *s)
4425 {
4426 	int node;
4427 	struct kmem_cache_node *n;
4428 
4429 	flush_all_cpus_locked(s);
4430 	/* Attempt to free all objects */
4431 	for_each_kmem_cache_node(s, node, n) {
4432 		free_partial(s, n);
4433 		if (n->nr_partial || slabs_node(s, node))
4434 			return 1;
4435 	}
4436 	return 0;
4437 }
4438 
4439 #ifdef CONFIG_PRINTK
4440 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4441 {
4442 	void *base;
4443 	int __maybe_unused i;
4444 	unsigned int objnr;
4445 	void *objp;
4446 	void *objp0;
4447 	struct kmem_cache *s = slab->slab_cache;
4448 	struct track __maybe_unused *trackp;
4449 
4450 	kpp->kp_ptr = object;
4451 	kpp->kp_slab = slab;
4452 	kpp->kp_slab_cache = s;
4453 	base = slab_address(slab);
4454 	objp0 = kasan_reset_tag(object);
4455 #ifdef CONFIG_SLUB_DEBUG
4456 	objp = restore_red_left(s, objp0);
4457 #else
4458 	objp = objp0;
4459 #endif
4460 	objnr = obj_to_index(s, slab, objp);
4461 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4462 	objp = base + s->size * objnr;
4463 	kpp->kp_objp = objp;
4464 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4465 			 || (objp - base) % s->size) ||
4466 	    !(s->flags & SLAB_STORE_USER))
4467 		return;
4468 #ifdef CONFIG_SLUB_DEBUG
4469 	objp = fixup_red_left(s, objp);
4470 	trackp = get_track(s, objp, TRACK_ALLOC);
4471 	kpp->kp_ret = (void *)trackp->addr;
4472 #ifdef CONFIG_STACKDEPOT
4473 	{
4474 		depot_stack_handle_t handle;
4475 		unsigned long *entries;
4476 		unsigned int nr_entries;
4477 
4478 		handle = READ_ONCE(trackp->handle);
4479 		if (handle) {
4480 			nr_entries = stack_depot_fetch(handle, &entries);
4481 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4482 				kpp->kp_stack[i] = (void *)entries[i];
4483 		}
4484 
4485 		trackp = get_track(s, objp, TRACK_FREE);
4486 		handle = READ_ONCE(trackp->handle);
4487 		if (handle) {
4488 			nr_entries = stack_depot_fetch(handle, &entries);
4489 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4490 				kpp->kp_free_stack[i] = (void *)entries[i];
4491 		}
4492 	}
4493 #endif
4494 #endif
4495 }
4496 #endif
4497 
4498 /********************************************************************
4499  *		Kmalloc subsystem
4500  *******************************************************************/
4501 
4502 static int __init setup_slub_min_order(char *str)
4503 {
4504 	get_option(&str, (int *)&slub_min_order);
4505 
4506 	return 1;
4507 }
4508 
4509 __setup("slub_min_order=", setup_slub_min_order);
4510 
4511 static int __init setup_slub_max_order(char *str)
4512 {
4513 	get_option(&str, (int *)&slub_max_order);
4514 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4515 
4516 	return 1;
4517 }
4518 
4519 __setup("slub_max_order=", setup_slub_max_order);
4520 
4521 static int __init setup_slub_min_objects(char *str)
4522 {
4523 	get_option(&str, (int *)&slub_min_objects);
4524 
4525 	return 1;
4526 }
4527 
4528 __setup("slub_min_objects=", setup_slub_min_objects);
4529 
4530 #ifdef CONFIG_HARDENED_USERCOPY
4531 /*
4532  * Rejects incorrectly sized objects and objects that are to be copied
4533  * to/from userspace but do not fall entirely within the containing slab
4534  * cache's usercopy region.
4535  *
4536  * Returns NULL if check passes, otherwise const char * to name of cache
4537  * to indicate an error.
4538  */
4539 void __check_heap_object(const void *ptr, unsigned long n,
4540 			 const struct slab *slab, bool to_user)
4541 {
4542 	struct kmem_cache *s;
4543 	unsigned int offset;
4544 	bool is_kfence = is_kfence_address(ptr);
4545 
4546 	ptr = kasan_reset_tag(ptr);
4547 
4548 	/* Find object and usable object size. */
4549 	s = slab->slab_cache;
4550 
4551 	/* Reject impossible pointers. */
4552 	if (ptr < slab_address(slab))
4553 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4554 			       to_user, 0, n);
4555 
4556 	/* Find offset within object. */
4557 	if (is_kfence)
4558 		offset = ptr - kfence_object_start(ptr);
4559 	else
4560 		offset = (ptr - slab_address(slab)) % s->size;
4561 
4562 	/* Adjust for redzone and reject if within the redzone. */
4563 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4564 		if (offset < s->red_left_pad)
4565 			usercopy_abort("SLUB object in left red zone",
4566 				       s->name, to_user, offset, n);
4567 		offset -= s->red_left_pad;
4568 	}
4569 
4570 	/* Allow address range falling entirely within usercopy region. */
4571 	if (offset >= s->useroffset &&
4572 	    offset - s->useroffset <= s->usersize &&
4573 	    n <= s->useroffset - offset + s->usersize)
4574 		return;
4575 
4576 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4577 }
4578 #endif /* CONFIG_HARDENED_USERCOPY */
4579 
4580 #define SHRINK_PROMOTE_MAX 32
4581 
4582 /*
4583  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4584  * up most to the head of the partial lists. New allocations will then
4585  * fill those up and thus they can be removed from the partial lists.
4586  *
4587  * The slabs with the least items are placed last. This results in them
4588  * being allocated from last increasing the chance that the last objects
4589  * are freed in them.
4590  */
4591 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4592 {
4593 	int node;
4594 	int i;
4595 	struct kmem_cache_node *n;
4596 	struct slab *slab;
4597 	struct slab *t;
4598 	struct list_head discard;
4599 	struct list_head promote[SHRINK_PROMOTE_MAX];
4600 	unsigned long flags;
4601 	int ret = 0;
4602 
4603 	for_each_kmem_cache_node(s, node, n) {
4604 		INIT_LIST_HEAD(&discard);
4605 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4606 			INIT_LIST_HEAD(promote + i);
4607 
4608 		spin_lock_irqsave(&n->list_lock, flags);
4609 
4610 		/*
4611 		 * Build lists of slabs to discard or promote.
4612 		 *
4613 		 * Note that concurrent frees may occur while we hold the
4614 		 * list_lock. slab->inuse here is the upper limit.
4615 		 */
4616 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4617 			int free = slab->objects - slab->inuse;
4618 
4619 			/* Do not reread slab->inuse */
4620 			barrier();
4621 
4622 			/* We do not keep full slabs on the list */
4623 			BUG_ON(free <= 0);
4624 
4625 			if (free == slab->objects) {
4626 				list_move(&slab->slab_list, &discard);
4627 				n->nr_partial--;
4628 				dec_slabs_node(s, node, slab->objects);
4629 			} else if (free <= SHRINK_PROMOTE_MAX)
4630 				list_move(&slab->slab_list, promote + free - 1);
4631 		}
4632 
4633 		/*
4634 		 * Promote the slabs filled up most to the head of the
4635 		 * partial list.
4636 		 */
4637 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4638 			list_splice(promote + i, &n->partial);
4639 
4640 		spin_unlock_irqrestore(&n->list_lock, flags);
4641 
4642 		/* Release empty slabs */
4643 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4644 			free_slab(s, slab);
4645 
4646 		if (slabs_node(s, node))
4647 			ret = 1;
4648 	}
4649 
4650 	return ret;
4651 }
4652 
4653 int __kmem_cache_shrink(struct kmem_cache *s)
4654 {
4655 	flush_all(s);
4656 	return __kmem_cache_do_shrink(s);
4657 }
4658 
4659 static int slab_mem_going_offline_callback(void *arg)
4660 {
4661 	struct kmem_cache *s;
4662 
4663 	mutex_lock(&slab_mutex);
4664 	list_for_each_entry(s, &slab_caches, list) {
4665 		flush_all_cpus_locked(s);
4666 		__kmem_cache_do_shrink(s);
4667 	}
4668 	mutex_unlock(&slab_mutex);
4669 
4670 	return 0;
4671 }
4672 
4673 static void slab_mem_offline_callback(void *arg)
4674 {
4675 	struct memory_notify *marg = arg;
4676 	int offline_node;
4677 
4678 	offline_node = marg->status_change_nid_normal;
4679 
4680 	/*
4681 	 * If the node still has available memory. we need kmem_cache_node
4682 	 * for it yet.
4683 	 */
4684 	if (offline_node < 0)
4685 		return;
4686 
4687 	mutex_lock(&slab_mutex);
4688 	node_clear(offline_node, slab_nodes);
4689 	/*
4690 	 * We no longer free kmem_cache_node structures here, as it would be
4691 	 * racy with all get_node() users, and infeasible to protect them with
4692 	 * slab_mutex.
4693 	 */
4694 	mutex_unlock(&slab_mutex);
4695 }
4696 
4697 static int slab_mem_going_online_callback(void *arg)
4698 {
4699 	struct kmem_cache_node *n;
4700 	struct kmem_cache *s;
4701 	struct memory_notify *marg = arg;
4702 	int nid = marg->status_change_nid_normal;
4703 	int ret = 0;
4704 
4705 	/*
4706 	 * If the node's memory is already available, then kmem_cache_node is
4707 	 * already created. Nothing to do.
4708 	 */
4709 	if (nid < 0)
4710 		return 0;
4711 
4712 	/*
4713 	 * We are bringing a node online. No memory is available yet. We must
4714 	 * allocate a kmem_cache_node structure in order to bring the node
4715 	 * online.
4716 	 */
4717 	mutex_lock(&slab_mutex);
4718 	list_for_each_entry(s, &slab_caches, list) {
4719 		/*
4720 		 * The structure may already exist if the node was previously
4721 		 * onlined and offlined.
4722 		 */
4723 		if (get_node(s, nid))
4724 			continue;
4725 		/*
4726 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4727 		 *      since memory is not yet available from the node that
4728 		 *      is brought up.
4729 		 */
4730 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4731 		if (!n) {
4732 			ret = -ENOMEM;
4733 			goto out;
4734 		}
4735 		init_kmem_cache_node(n);
4736 		s->node[nid] = n;
4737 	}
4738 	/*
4739 	 * Any cache created after this point will also have kmem_cache_node
4740 	 * initialized for the new node.
4741 	 */
4742 	node_set(nid, slab_nodes);
4743 out:
4744 	mutex_unlock(&slab_mutex);
4745 	return ret;
4746 }
4747 
4748 static int slab_memory_callback(struct notifier_block *self,
4749 				unsigned long action, void *arg)
4750 {
4751 	int ret = 0;
4752 
4753 	switch (action) {
4754 	case MEM_GOING_ONLINE:
4755 		ret = slab_mem_going_online_callback(arg);
4756 		break;
4757 	case MEM_GOING_OFFLINE:
4758 		ret = slab_mem_going_offline_callback(arg);
4759 		break;
4760 	case MEM_OFFLINE:
4761 	case MEM_CANCEL_ONLINE:
4762 		slab_mem_offline_callback(arg);
4763 		break;
4764 	case MEM_ONLINE:
4765 	case MEM_CANCEL_OFFLINE:
4766 		break;
4767 	}
4768 	if (ret)
4769 		ret = notifier_from_errno(ret);
4770 	else
4771 		ret = NOTIFY_OK;
4772 	return ret;
4773 }
4774 
4775 static struct notifier_block slab_memory_callback_nb = {
4776 	.notifier_call = slab_memory_callback,
4777 	.priority = SLAB_CALLBACK_PRI,
4778 };
4779 
4780 /********************************************************************
4781  *			Basic setup of slabs
4782  *******************************************************************/
4783 
4784 /*
4785  * Used for early kmem_cache structures that were allocated using
4786  * the page allocator. Allocate them properly then fix up the pointers
4787  * that may be pointing to the wrong kmem_cache structure.
4788  */
4789 
4790 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4791 {
4792 	int node;
4793 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4794 	struct kmem_cache_node *n;
4795 
4796 	memcpy(s, static_cache, kmem_cache->object_size);
4797 
4798 	/*
4799 	 * This runs very early, and only the boot processor is supposed to be
4800 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4801 	 * IPIs around.
4802 	 */
4803 	__flush_cpu_slab(s, smp_processor_id());
4804 	for_each_kmem_cache_node(s, node, n) {
4805 		struct slab *p;
4806 
4807 		list_for_each_entry(p, &n->partial, slab_list)
4808 			p->slab_cache = s;
4809 
4810 #ifdef CONFIG_SLUB_DEBUG
4811 		list_for_each_entry(p, &n->full, slab_list)
4812 			p->slab_cache = s;
4813 #endif
4814 	}
4815 	list_add(&s->list, &slab_caches);
4816 	return s;
4817 }
4818 
4819 void __init kmem_cache_init(void)
4820 {
4821 	static __initdata struct kmem_cache boot_kmem_cache,
4822 		boot_kmem_cache_node;
4823 	int node;
4824 
4825 	if (debug_guardpage_minorder())
4826 		slub_max_order = 0;
4827 
4828 	/* Print slub debugging pointers without hashing */
4829 	if (__slub_debug_enabled())
4830 		no_hash_pointers_enable(NULL);
4831 
4832 	kmem_cache_node = &boot_kmem_cache_node;
4833 	kmem_cache = &boot_kmem_cache;
4834 
4835 	/*
4836 	 * Initialize the nodemask for which we will allocate per node
4837 	 * structures. Here we don't need taking slab_mutex yet.
4838 	 */
4839 	for_each_node_state(node, N_NORMAL_MEMORY)
4840 		node_set(node, slab_nodes);
4841 
4842 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4843 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4844 
4845 	register_hotmemory_notifier(&slab_memory_callback_nb);
4846 
4847 	/* Able to allocate the per node structures */
4848 	slab_state = PARTIAL;
4849 
4850 	create_boot_cache(kmem_cache, "kmem_cache",
4851 			offsetof(struct kmem_cache, node) +
4852 				nr_node_ids * sizeof(struct kmem_cache_node *),
4853 		       SLAB_HWCACHE_ALIGN, 0, 0);
4854 
4855 	kmem_cache = bootstrap(&boot_kmem_cache);
4856 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4857 
4858 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4859 	setup_kmalloc_cache_index_table();
4860 	create_kmalloc_caches(0);
4861 
4862 	/* Setup random freelists for each cache */
4863 	init_freelist_randomization();
4864 
4865 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4866 				  slub_cpu_dead);
4867 
4868 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4869 		cache_line_size(),
4870 		slub_min_order, slub_max_order, slub_min_objects,
4871 		nr_cpu_ids, nr_node_ids);
4872 }
4873 
4874 void __init kmem_cache_init_late(void)
4875 {
4876 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
4877 	WARN_ON(!flushwq);
4878 }
4879 
4880 struct kmem_cache *
4881 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4882 		   slab_flags_t flags, void (*ctor)(void *))
4883 {
4884 	struct kmem_cache *s;
4885 
4886 	s = find_mergeable(size, align, flags, name, ctor);
4887 	if (s) {
4888 		if (sysfs_slab_alias(s, name))
4889 			return NULL;
4890 
4891 		s->refcount++;
4892 
4893 		/*
4894 		 * Adjust the object sizes so that we clear
4895 		 * the complete object on kzalloc.
4896 		 */
4897 		s->object_size = max(s->object_size, size);
4898 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4899 	}
4900 
4901 	return s;
4902 }
4903 
4904 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4905 {
4906 	int err;
4907 
4908 	err = kmem_cache_open(s, flags);
4909 	if (err)
4910 		return err;
4911 
4912 	/* Mutex is not taken during early boot */
4913 	if (slab_state <= UP)
4914 		return 0;
4915 
4916 	err = sysfs_slab_add(s);
4917 	if (err) {
4918 		__kmem_cache_release(s);
4919 		return err;
4920 	}
4921 
4922 	if (s->flags & SLAB_STORE_USER)
4923 		debugfs_slab_add(s);
4924 
4925 	return 0;
4926 }
4927 
4928 #ifdef CONFIG_SYSFS
4929 static int count_inuse(struct slab *slab)
4930 {
4931 	return slab->inuse;
4932 }
4933 
4934 static int count_total(struct slab *slab)
4935 {
4936 	return slab->objects;
4937 }
4938 #endif
4939 
4940 #ifdef CONFIG_SLUB_DEBUG
4941 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4942 			  unsigned long *obj_map)
4943 {
4944 	void *p;
4945 	void *addr = slab_address(slab);
4946 
4947 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
4948 		return;
4949 
4950 	/* Now we know that a valid freelist exists */
4951 	__fill_map(obj_map, s, slab);
4952 	for_each_object(p, s, addr, slab->objects) {
4953 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4954 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4955 
4956 		if (!check_object(s, slab, p, val))
4957 			break;
4958 	}
4959 }
4960 
4961 static int validate_slab_node(struct kmem_cache *s,
4962 		struct kmem_cache_node *n, unsigned long *obj_map)
4963 {
4964 	unsigned long count = 0;
4965 	struct slab *slab;
4966 	unsigned long flags;
4967 
4968 	spin_lock_irqsave(&n->list_lock, flags);
4969 
4970 	list_for_each_entry(slab, &n->partial, slab_list) {
4971 		validate_slab(s, slab, obj_map);
4972 		count++;
4973 	}
4974 	if (count != n->nr_partial) {
4975 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4976 		       s->name, count, n->nr_partial);
4977 		slab_add_kunit_errors();
4978 	}
4979 
4980 	if (!(s->flags & SLAB_STORE_USER))
4981 		goto out;
4982 
4983 	list_for_each_entry(slab, &n->full, slab_list) {
4984 		validate_slab(s, slab, obj_map);
4985 		count++;
4986 	}
4987 	if (count != atomic_long_read(&n->nr_slabs)) {
4988 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4989 		       s->name, count, atomic_long_read(&n->nr_slabs));
4990 		slab_add_kunit_errors();
4991 	}
4992 
4993 out:
4994 	spin_unlock_irqrestore(&n->list_lock, flags);
4995 	return count;
4996 }
4997 
4998 long validate_slab_cache(struct kmem_cache *s)
4999 {
5000 	int node;
5001 	unsigned long count = 0;
5002 	struct kmem_cache_node *n;
5003 	unsigned long *obj_map;
5004 
5005 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5006 	if (!obj_map)
5007 		return -ENOMEM;
5008 
5009 	flush_all(s);
5010 	for_each_kmem_cache_node(s, node, n)
5011 		count += validate_slab_node(s, n, obj_map);
5012 
5013 	bitmap_free(obj_map);
5014 
5015 	return count;
5016 }
5017 EXPORT_SYMBOL(validate_slab_cache);
5018 
5019 #ifdef CONFIG_DEBUG_FS
5020 /*
5021  * Generate lists of code addresses where slabcache objects are allocated
5022  * and freed.
5023  */
5024 
5025 struct location {
5026 	depot_stack_handle_t handle;
5027 	unsigned long count;
5028 	unsigned long addr;
5029 	unsigned long waste;
5030 	long long sum_time;
5031 	long min_time;
5032 	long max_time;
5033 	long min_pid;
5034 	long max_pid;
5035 	DECLARE_BITMAP(cpus, NR_CPUS);
5036 	nodemask_t nodes;
5037 };
5038 
5039 struct loc_track {
5040 	unsigned long max;
5041 	unsigned long count;
5042 	struct location *loc;
5043 	loff_t idx;
5044 };
5045 
5046 static struct dentry *slab_debugfs_root;
5047 
5048 static void free_loc_track(struct loc_track *t)
5049 {
5050 	if (t->max)
5051 		free_pages((unsigned long)t->loc,
5052 			get_order(sizeof(struct location) * t->max));
5053 }
5054 
5055 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5056 {
5057 	struct location *l;
5058 	int order;
5059 
5060 	order = get_order(sizeof(struct location) * max);
5061 
5062 	l = (void *)__get_free_pages(flags, order);
5063 	if (!l)
5064 		return 0;
5065 
5066 	if (t->count) {
5067 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5068 		free_loc_track(t);
5069 	}
5070 	t->max = max;
5071 	t->loc = l;
5072 	return 1;
5073 }
5074 
5075 static int add_location(struct loc_track *t, struct kmem_cache *s,
5076 				const struct track *track,
5077 				unsigned int orig_size)
5078 {
5079 	long start, end, pos;
5080 	struct location *l;
5081 	unsigned long caddr, chandle, cwaste;
5082 	unsigned long age = jiffies - track->when;
5083 	depot_stack_handle_t handle = 0;
5084 	unsigned int waste = s->object_size - orig_size;
5085 
5086 #ifdef CONFIG_STACKDEPOT
5087 	handle = READ_ONCE(track->handle);
5088 #endif
5089 	start = -1;
5090 	end = t->count;
5091 
5092 	for ( ; ; ) {
5093 		pos = start + (end - start + 1) / 2;
5094 
5095 		/*
5096 		 * There is nothing at "end". If we end up there
5097 		 * we need to add something to before end.
5098 		 */
5099 		if (pos == end)
5100 			break;
5101 
5102 		l = &t->loc[pos];
5103 		caddr = l->addr;
5104 		chandle = l->handle;
5105 		cwaste = l->waste;
5106 		if ((track->addr == caddr) && (handle == chandle) &&
5107 			(waste == cwaste)) {
5108 
5109 			l->count++;
5110 			if (track->when) {
5111 				l->sum_time += age;
5112 				if (age < l->min_time)
5113 					l->min_time = age;
5114 				if (age > l->max_time)
5115 					l->max_time = age;
5116 
5117 				if (track->pid < l->min_pid)
5118 					l->min_pid = track->pid;
5119 				if (track->pid > l->max_pid)
5120 					l->max_pid = track->pid;
5121 
5122 				cpumask_set_cpu(track->cpu,
5123 						to_cpumask(l->cpus));
5124 			}
5125 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5126 			return 1;
5127 		}
5128 
5129 		if (track->addr < caddr)
5130 			end = pos;
5131 		else if (track->addr == caddr && handle < chandle)
5132 			end = pos;
5133 		else if (track->addr == caddr && handle == chandle &&
5134 				waste < cwaste)
5135 			end = pos;
5136 		else
5137 			start = pos;
5138 	}
5139 
5140 	/*
5141 	 * Not found. Insert new tracking element.
5142 	 */
5143 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5144 		return 0;
5145 
5146 	l = t->loc + pos;
5147 	if (pos < t->count)
5148 		memmove(l + 1, l,
5149 			(t->count - pos) * sizeof(struct location));
5150 	t->count++;
5151 	l->count = 1;
5152 	l->addr = track->addr;
5153 	l->sum_time = age;
5154 	l->min_time = age;
5155 	l->max_time = age;
5156 	l->min_pid = track->pid;
5157 	l->max_pid = track->pid;
5158 	l->handle = handle;
5159 	l->waste = waste;
5160 	cpumask_clear(to_cpumask(l->cpus));
5161 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5162 	nodes_clear(l->nodes);
5163 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5164 	return 1;
5165 }
5166 
5167 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5168 		struct slab *slab, enum track_item alloc,
5169 		unsigned long *obj_map)
5170 {
5171 	void *addr = slab_address(slab);
5172 	bool is_alloc = (alloc == TRACK_ALLOC);
5173 	void *p;
5174 
5175 	__fill_map(obj_map, s, slab);
5176 
5177 	for_each_object(p, s, addr, slab->objects)
5178 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5179 			add_location(t, s, get_track(s, p, alloc),
5180 				     is_alloc ? get_orig_size(s, p) :
5181 						s->object_size);
5182 }
5183 #endif  /* CONFIG_DEBUG_FS   */
5184 #endif	/* CONFIG_SLUB_DEBUG */
5185 
5186 #ifdef CONFIG_SYSFS
5187 enum slab_stat_type {
5188 	SL_ALL,			/* All slabs */
5189 	SL_PARTIAL,		/* Only partially allocated slabs */
5190 	SL_CPU,			/* Only slabs used for cpu caches */
5191 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5192 	SL_TOTAL		/* Determine object capacity not slabs */
5193 };
5194 
5195 #define SO_ALL		(1 << SL_ALL)
5196 #define SO_PARTIAL	(1 << SL_PARTIAL)
5197 #define SO_CPU		(1 << SL_CPU)
5198 #define SO_OBJECTS	(1 << SL_OBJECTS)
5199 #define SO_TOTAL	(1 << SL_TOTAL)
5200 
5201 static ssize_t show_slab_objects(struct kmem_cache *s,
5202 				 char *buf, unsigned long flags)
5203 {
5204 	unsigned long total = 0;
5205 	int node;
5206 	int x;
5207 	unsigned long *nodes;
5208 	int len = 0;
5209 
5210 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5211 	if (!nodes)
5212 		return -ENOMEM;
5213 
5214 	if (flags & SO_CPU) {
5215 		int cpu;
5216 
5217 		for_each_possible_cpu(cpu) {
5218 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5219 							       cpu);
5220 			int node;
5221 			struct slab *slab;
5222 
5223 			slab = READ_ONCE(c->slab);
5224 			if (!slab)
5225 				continue;
5226 
5227 			node = slab_nid(slab);
5228 			if (flags & SO_TOTAL)
5229 				x = slab->objects;
5230 			else if (flags & SO_OBJECTS)
5231 				x = slab->inuse;
5232 			else
5233 				x = 1;
5234 
5235 			total += x;
5236 			nodes[node] += x;
5237 
5238 #ifdef CONFIG_SLUB_CPU_PARTIAL
5239 			slab = slub_percpu_partial_read_once(c);
5240 			if (slab) {
5241 				node = slab_nid(slab);
5242 				if (flags & SO_TOTAL)
5243 					WARN_ON_ONCE(1);
5244 				else if (flags & SO_OBJECTS)
5245 					WARN_ON_ONCE(1);
5246 				else
5247 					x = slab->slabs;
5248 				total += x;
5249 				nodes[node] += x;
5250 			}
5251 #endif
5252 		}
5253 	}
5254 
5255 	/*
5256 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5257 	 * already held which will conflict with an existing lock order:
5258 	 *
5259 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5260 	 *
5261 	 * We don't really need mem_hotplug_lock (to hold off
5262 	 * slab_mem_going_offline_callback) here because slab's memory hot
5263 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5264 	 */
5265 
5266 #ifdef CONFIG_SLUB_DEBUG
5267 	if (flags & SO_ALL) {
5268 		struct kmem_cache_node *n;
5269 
5270 		for_each_kmem_cache_node(s, node, n) {
5271 
5272 			if (flags & SO_TOTAL)
5273 				x = atomic_long_read(&n->total_objects);
5274 			else if (flags & SO_OBJECTS)
5275 				x = atomic_long_read(&n->total_objects) -
5276 					count_partial(n, count_free);
5277 			else
5278 				x = atomic_long_read(&n->nr_slabs);
5279 			total += x;
5280 			nodes[node] += x;
5281 		}
5282 
5283 	} else
5284 #endif
5285 	if (flags & SO_PARTIAL) {
5286 		struct kmem_cache_node *n;
5287 
5288 		for_each_kmem_cache_node(s, node, n) {
5289 			if (flags & SO_TOTAL)
5290 				x = count_partial(n, count_total);
5291 			else if (flags & SO_OBJECTS)
5292 				x = count_partial(n, count_inuse);
5293 			else
5294 				x = n->nr_partial;
5295 			total += x;
5296 			nodes[node] += x;
5297 		}
5298 	}
5299 
5300 	len += sysfs_emit_at(buf, len, "%lu", total);
5301 #ifdef CONFIG_NUMA
5302 	for (node = 0; node < nr_node_ids; node++) {
5303 		if (nodes[node])
5304 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5305 					     node, nodes[node]);
5306 	}
5307 #endif
5308 	len += sysfs_emit_at(buf, len, "\n");
5309 	kfree(nodes);
5310 
5311 	return len;
5312 }
5313 
5314 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5315 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5316 
5317 struct slab_attribute {
5318 	struct attribute attr;
5319 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5320 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5321 };
5322 
5323 #define SLAB_ATTR_RO(_name) \
5324 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5325 
5326 #define SLAB_ATTR(_name) \
5327 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5328 
5329 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5330 {
5331 	return sysfs_emit(buf, "%u\n", s->size);
5332 }
5333 SLAB_ATTR_RO(slab_size);
5334 
5335 static ssize_t align_show(struct kmem_cache *s, char *buf)
5336 {
5337 	return sysfs_emit(buf, "%u\n", s->align);
5338 }
5339 SLAB_ATTR_RO(align);
5340 
5341 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5342 {
5343 	return sysfs_emit(buf, "%u\n", s->object_size);
5344 }
5345 SLAB_ATTR_RO(object_size);
5346 
5347 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5348 {
5349 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5350 }
5351 SLAB_ATTR_RO(objs_per_slab);
5352 
5353 static ssize_t order_show(struct kmem_cache *s, char *buf)
5354 {
5355 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5356 }
5357 SLAB_ATTR_RO(order);
5358 
5359 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5360 {
5361 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5362 }
5363 
5364 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5365 				 size_t length)
5366 {
5367 	unsigned long min;
5368 	int err;
5369 
5370 	err = kstrtoul(buf, 10, &min);
5371 	if (err)
5372 		return err;
5373 
5374 	s->min_partial = min;
5375 	return length;
5376 }
5377 SLAB_ATTR(min_partial);
5378 
5379 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5380 {
5381 	unsigned int nr_partial = 0;
5382 #ifdef CONFIG_SLUB_CPU_PARTIAL
5383 	nr_partial = s->cpu_partial;
5384 #endif
5385 
5386 	return sysfs_emit(buf, "%u\n", nr_partial);
5387 }
5388 
5389 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5390 				 size_t length)
5391 {
5392 	unsigned int objects;
5393 	int err;
5394 
5395 	err = kstrtouint(buf, 10, &objects);
5396 	if (err)
5397 		return err;
5398 	if (objects && !kmem_cache_has_cpu_partial(s))
5399 		return -EINVAL;
5400 
5401 	slub_set_cpu_partial(s, objects);
5402 	flush_all(s);
5403 	return length;
5404 }
5405 SLAB_ATTR(cpu_partial);
5406 
5407 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5408 {
5409 	if (!s->ctor)
5410 		return 0;
5411 	return sysfs_emit(buf, "%pS\n", s->ctor);
5412 }
5413 SLAB_ATTR_RO(ctor);
5414 
5415 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5416 {
5417 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5418 }
5419 SLAB_ATTR_RO(aliases);
5420 
5421 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5422 {
5423 	return show_slab_objects(s, buf, SO_PARTIAL);
5424 }
5425 SLAB_ATTR_RO(partial);
5426 
5427 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5428 {
5429 	return show_slab_objects(s, buf, SO_CPU);
5430 }
5431 SLAB_ATTR_RO(cpu_slabs);
5432 
5433 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5434 {
5435 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5436 }
5437 SLAB_ATTR_RO(objects);
5438 
5439 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5440 {
5441 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5442 }
5443 SLAB_ATTR_RO(objects_partial);
5444 
5445 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5446 {
5447 	int objects = 0;
5448 	int slabs = 0;
5449 	int cpu __maybe_unused;
5450 	int len = 0;
5451 
5452 #ifdef CONFIG_SLUB_CPU_PARTIAL
5453 	for_each_online_cpu(cpu) {
5454 		struct slab *slab;
5455 
5456 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5457 
5458 		if (slab)
5459 			slabs += slab->slabs;
5460 	}
5461 #endif
5462 
5463 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5464 	objects = (slabs * oo_objects(s->oo)) / 2;
5465 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5466 
5467 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5468 	for_each_online_cpu(cpu) {
5469 		struct slab *slab;
5470 
5471 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5472 		if (slab) {
5473 			slabs = READ_ONCE(slab->slabs);
5474 			objects = (slabs * oo_objects(s->oo)) / 2;
5475 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5476 					     cpu, objects, slabs);
5477 		}
5478 	}
5479 #endif
5480 	len += sysfs_emit_at(buf, len, "\n");
5481 
5482 	return len;
5483 }
5484 SLAB_ATTR_RO(slabs_cpu_partial);
5485 
5486 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5487 {
5488 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5489 }
5490 SLAB_ATTR_RO(reclaim_account);
5491 
5492 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5493 {
5494 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5495 }
5496 SLAB_ATTR_RO(hwcache_align);
5497 
5498 #ifdef CONFIG_ZONE_DMA
5499 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5500 {
5501 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5502 }
5503 SLAB_ATTR_RO(cache_dma);
5504 #endif
5505 
5506 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5507 {
5508 	return sysfs_emit(buf, "%u\n", s->usersize);
5509 }
5510 SLAB_ATTR_RO(usersize);
5511 
5512 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5513 {
5514 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5515 }
5516 SLAB_ATTR_RO(destroy_by_rcu);
5517 
5518 #ifdef CONFIG_SLUB_DEBUG
5519 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5520 {
5521 	return show_slab_objects(s, buf, SO_ALL);
5522 }
5523 SLAB_ATTR_RO(slabs);
5524 
5525 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5526 {
5527 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5528 }
5529 SLAB_ATTR_RO(total_objects);
5530 
5531 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5532 {
5533 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5534 }
5535 SLAB_ATTR_RO(sanity_checks);
5536 
5537 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5538 {
5539 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5540 }
5541 SLAB_ATTR_RO(trace);
5542 
5543 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5544 {
5545 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5546 }
5547 
5548 SLAB_ATTR_RO(red_zone);
5549 
5550 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5551 {
5552 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5553 }
5554 
5555 SLAB_ATTR_RO(poison);
5556 
5557 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5558 {
5559 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5560 }
5561 
5562 SLAB_ATTR_RO(store_user);
5563 
5564 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5565 {
5566 	return 0;
5567 }
5568 
5569 static ssize_t validate_store(struct kmem_cache *s,
5570 			const char *buf, size_t length)
5571 {
5572 	int ret = -EINVAL;
5573 
5574 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5575 		ret = validate_slab_cache(s);
5576 		if (ret >= 0)
5577 			ret = length;
5578 	}
5579 	return ret;
5580 }
5581 SLAB_ATTR(validate);
5582 
5583 #endif /* CONFIG_SLUB_DEBUG */
5584 
5585 #ifdef CONFIG_FAILSLAB
5586 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5587 {
5588 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5589 }
5590 SLAB_ATTR_RO(failslab);
5591 #endif
5592 
5593 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5594 {
5595 	return 0;
5596 }
5597 
5598 static ssize_t shrink_store(struct kmem_cache *s,
5599 			const char *buf, size_t length)
5600 {
5601 	if (buf[0] == '1')
5602 		kmem_cache_shrink(s);
5603 	else
5604 		return -EINVAL;
5605 	return length;
5606 }
5607 SLAB_ATTR(shrink);
5608 
5609 #ifdef CONFIG_NUMA
5610 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5611 {
5612 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5613 }
5614 
5615 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5616 				const char *buf, size_t length)
5617 {
5618 	unsigned int ratio;
5619 	int err;
5620 
5621 	err = kstrtouint(buf, 10, &ratio);
5622 	if (err)
5623 		return err;
5624 	if (ratio > 100)
5625 		return -ERANGE;
5626 
5627 	s->remote_node_defrag_ratio = ratio * 10;
5628 
5629 	return length;
5630 }
5631 SLAB_ATTR(remote_node_defrag_ratio);
5632 #endif
5633 
5634 #ifdef CONFIG_SLUB_STATS
5635 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5636 {
5637 	unsigned long sum  = 0;
5638 	int cpu;
5639 	int len = 0;
5640 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5641 
5642 	if (!data)
5643 		return -ENOMEM;
5644 
5645 	for_each_online_cpu(cpu) {
5646 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5647 
5648 		data[cpu] = x;
5649 		sum += x;
5650 	}
5651 
5652 	len += sysfs_emit_at(buf, len, "%lu", sum);
5653 
5654 #ifdef CONFIG_SMP
5655 	for_each_online_cpu(cpu) {
5656 		if (data[cpu])
5657 			len += sysfs_emit_at(buf, len, " C%d=%u",
5658 					     cpu, data[cpu]);
5659 	}
5660 #endif
5661 	kfree(data);
5662 	len += sysfs_emit_at(buf, len, "\n");
5663 
5664 	return len;
5665 }
5666 
5667 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5668 {
5669 	int cpu;
5670 
5671 	for_each_online_cpu(cpu)
5672 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5673 }
5674 
5675 #define STAT_ATTR(si, text) 					\
5676 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5677 {								\
5678 	return show_stat(s, buf, si);				\
5679 }								\
5680 static ssize_t text##_store(struct kmem_cache *s,		\
5681 				const char *buf, size_t length)	\
5682 {								\
5683 	if (buf[0] != '0')					\
5684 		return -EINVAL;					\
5685 	clear_stat(s, si);					\
5686 	return length;						\
5687 }								\
5688 SLAB_ATTR(text);						\
5689 
5690 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5691 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5692 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5693 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5694 STAT_ATTR(FREE_FROZEN, free_frozen);
5695 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5696 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5697 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5698 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5699 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5700 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5701 STAT_ATTR(FREE_SLAB, free_slab);
5702 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5703 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5704 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5705 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5706 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5707 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5708 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5709 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5710 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5711 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5712 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5713 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5714 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5715 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5716 #endif	/* CONFIG_SLUB_STATS */
5717 
5718 #ifdef CONFIG_KFENCE
5719 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5720 {
5721 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5722 }
5723 
5724 static ssize_t skip_kfence_store(struct kmem_cache *s,
5725 			const char *buf, size_t length)
5726 {
5727 	int ret = length;
5728 
5729 	if (buf[0] == '0')
5730 		s->flags &= ~SLAB_SKIP_KFENCE;
5731 	else if (buf[0] == '1')
5732 		s->flags |= SLAB_SKIP_KFENCE;
5733 	else
5734 		ret = -EINVAL;
5735 
5736 	return ret;
5737 }
5738 SLAB_ATTR(skip_kfence);
5739 #endif
5740 
5741 static struct attribute *slab_attrs[] = {
5742 	&slab_size_attr.attr,
5743 	&object_size_attr.attr,
5744 	&objs_per_slab_attr.attr,
5745 	&order_attr.attr,
5746 	&min_partial_attr.attr,
5747 	&cpu_partial_attr.attr,
5748 	&objects_attr.attr,
5749 	&objects_partial_attr.attr,
5750 	&partial_attr.attr,
5751 	&cpu_slabs_attr.attr,
5752 	&ctor_attr.attr,
5753 	&aliases_attr.attr,
5754 	&align_attr.attr,
5755 	&hwcache_align_attr.attr,
5756 	&reclaim_account_attr.attr,
5757 	&destroy_by_rcu_attr.attr,
5758 	&shrink_attr.attr,
5759 	&slabs_cpu_partial_attr.attr,
5760 #ifdef CONFIG_SLUB_DEBUG
5761 	&total_objects_attr.attr,
5762 	&slabs_attr.attr,
5763 	&sanity_checks_attr.attr,
5764 	&trace_attr.attr,
5765 	&red_zone_attr.attr,
5766 	&poison_attr.attr,
5767 	&store_user_attr.attr,
5768 	&validate_attr.attr,
5769 #endif
5770 #ifdef CONFIG_ZONE_DMA
5771 	&cache_dma_attr.attr,
5772 #endif
5773 #ifdef CONFIG_NUMA
5774 	&remote_node_defrag_ratio_attr.attr,
5775 #endif
5776 #ifdef CONFIG_SLUB_STATS
5777 	&alloc_fastpath_attr.attr,
5778 	&alloc_slowpath_attr.attr,
5779 	&free_fastpath_attr.attr,
5780 	&free_slowpath_attr.attr,
5781 	&free_frozen_attr.attr,
5782 	&free_add_partial_attr.attr,
5783 	&free_remove_partial_attr.attr,
5784 	&alloc_from_partial_attr.attr,
5785 	&alloc_slab_attr.attr,
5786 	&alloc_refill_attr.attr,
5787 	&alloc_node_mismatch_attr.attr,
5788 	&free_slab_attr.attr,
5789 	&cpuslab_flush_attr.attr,
5790 	&deactivate_full_attr.attr,
5791 	&deactivate_empty_attr.attr,
5792 	&deactivate_to_head_attr.attr,
5793 	&deactivate_to_tail_attr.attr,
5794 	&deactivate_remote_frees_attr.attr,
5795 	&deactivate_bypass_attr.attr,
5796 	&order_fallback_attr.attr,
5797 	&cmpxchg_double_fail_attr.attr,
5798 	&cmpxchg_double_cpu_fail_attr.attr,
5799 	&cpu_partial_alloc_attr.attr,
5800 	&cpu_partial_free_attr.attr,
5801 	&cpu_partial_node_attr.attr,
5802 	&cpu_partial_drain_attr.attr,
5803 #endif
5804 #ifdef CONFIG_FAILSLAB
5805 	&failslab_attr.attr,
5806 #endif
5807 	&usersize_attr.attr,
5808 #ifdef CONFIG_KFENCE
5809 	&skip_kfence_attr.attr,
5810 #endif
5811 
5812 	NULL
5813 };
5814 
5815 static const struct attribute_group slab_attr_group = {
5816 	.attrs = slab_attrs,
5817 };
5818 
5819 static ssize_t slab_attr_show(struct kobject *kobj,
5820 				struct attribute *attr,
5821 				char *buf)
5822 {
5823 	struct slab_attribute *attribute;
5824 	struct kmem_cache *s;
5825 
5826 	attribute = to_slab_attr(attr);
5827 	s = to_slab(kobj);
5828 
5829 	if (!attribute->show)
5830 		return -EIO;
5831 
5832 	return attribute->show(s, buf);
5833 }
5834 
5835 static ssize_t slab_attr_store(struct kobject *kobj,
5836 				struct attribute *attr,
5837 				const char *buf, size_t len)
5838 {
5839 	struct slab_attribute *attribute;
5840 	struct kmem_cache *s;
5841 
5842 	attribute = to_slab_attr(attr);
5843 	s = to_slab(kobj);
5844 
5845 	if (!attribute->store)
5846 		return -EIO;
5847 
5848 	return attribute->store(s, buf, len);
5849 }
5850 
5851 static void kmem_cache_release(struct kobject *k)
5852 {
5853 	slab_kmem_cache_release(to_slab(k));
5854 }
5855 
5856 static const struct sysfs_ops slab_sysfs_ops = {
5857 	.show = slab_attr_show,
5858 	.store = slab_attr_store,
5859 };
5860 
5861 static struct kobj_type slab_ktype = {
5862 	.sysfs_ops = &slab_sysfs_ops,
5863 	.release = kmem_cache_release,
5864 };
5865 
5866 static struct kset *slab_kset;
5867 
5868 static inline struct kset *cache_kset(struct kmem_cache *s)
5869 {
5870 	return slab_kset;
5871 }
5872 
5873 #define ID_STR_LENGTH 32
5874 
5875 /* Create a unique string id for a slab cache:
5876  *
5877  * Format	:[flags-]size
5878  */
5879 static char *create_unique_id(struct kmem_cache *s)
5880 {
5881 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5882 	char *p = name;
5883 
5884 	if (!name)
5885 		return ERR_PTR(-ENOMEM);
5886 
5887 	*p++ = ':';
5888 	/*
5889 	 * First flags affecting slabcache operations. We will only
5890 	 * get here for aliasable slabs so we do not need to support
5891 	 * too many flags. The flags here must cover all flags that
5892 	 * are matched during merging to guarantee that the id is
5893 	 * unique.
5894 	 */
5895 	if (s->flags & SLAB_CACHE_DMA)
5896 		*p++ = 'd';
5897 	if (s->flags & SLAB_CACHE_DMA32)
5898 		*p++ = 'D';
5899 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5900 		*p++ = 'a';
5901 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5902 		*p++ = 'F';
5903 	if (s->flags & SLAB_ACCOUNT)
5904 		*p++ = 'A';
5905 	if (p != name + 1)
5906 		*p++ = '-';
5907 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
5908 
5909 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
5910 		kfree(name);
5911 		return ERR_PTR(-EINVAL);
5912 	}
5913 	kmsan_unpoison_memory(name, p - name);
5914 	return name;
5915 }
5916 
5917 static int sysfs_slab_add(struct kmem_cache *s)
5918 {
5919 	int err;
5920 	const char *name;
5921 	struct kset *kset = cache_kset(s);
5922 	int unmergeable = slab_unmergeable(s);
5923 
5924 	if (!kset) {
5925 		kobject_init(&s->kobj, &slab_ktype);
5926 		return 0;
5927 	}
5928 
5929 	if (!unmergeable && disable_higher_order_debug &&
5930 			(slub_debug & DEBUG_METADATA_FLAGS))
5931 		unmergeable = 1;
5932 
5933 	if (unmergeable) {
5934 		/*
5935 		 * Slabcache can never be merged so we can use the name proper.
5936 		 * This is typically the case for debug situations. In that
5937 		 * case we can catch duplicate names easily.
5938 		 */
5939 		sysfs_remove_link(&slab_kset->kobj, s->name);
5940 		name = s->name;
5941 	} else {
5942 		/*
5943 		 * Create a unique name for the slab as a target
5944 		 * for the symlinks.
5945 		 */
5946 		name = create_unique_id(s);
5947 		if (IS_ERR(name))
5948 			return PTR_ERR(name);
5949 	}
5950 
5951 	s->kobj.kset = kset;
5952 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5953 	if (err)
5954 		goto out;
5955 
5956 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5957 	if (err)
5958 		goto out_del_kobj;
5959 
5960 	if (!unmergeable) {
5961 		/* Setup first alias */
5962 		sysfs_slab_alias(s, s->name);
5963 	}
5964 out:
5965 	if (!unmergeable)
5966 		kfree(name);
5967 	return err;
5968 out_del_kobj:
5969 	kobject_del(&s->kobj);
5970 	goto out;
5971 }
5972 
5973 void sysfs_slab_unlink(struct kmem_cache *s)
5974 {
5975 	if (slab_state >= FULL)
5976 		kobject_del(&s->kobj);
5977 }
5978 
5979 void sysfs_slab_release(struct kmem_cache *s)
5980 {
5981 	if (slab_state >= FULL)
5982 		kobject_put(&s->kobj);
5983 }
5984 
5985 /*
5986  * Need to buffer aliases during bootup until sysfs becomes
5987  * available lest we lose that information.
5988  */
5989 struct saved_alias {
5990 	struct kmem_cache *s;
5991 	const char *name;
5992 	struct saved_alias *next;
5993 };
5994 
5995 static struct saved_alias *alias_list;
5996 
5997 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5998 {
5999 	struct saved_alias *al;
6000 
6001 	if (slab_state == FULL) {
6002 		/*
6003 		 * If we have a leftover link then remove it.
6004 		 */
6005 		sysfs_remove_link(&slab_kset->kobj, name);
6006 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6007 	}
6008 
6009 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6010 	if (!al)
6011 		return -ENOMEM;
6012 
6013 	al->s = s;
6014 	al->name = name;
6015 	al->next = alias_list;
6016 	alias_list = al;
6017 	kmsan_unpoison_memory(al, sizeof(*al));
6018 	return 0;
6019 }
6020 
6021 static int __init slab_sysfs_init(void)
6022 {
6023 	struct kmem_cache *s;
6024 	int err;
6025 
6026 	mutex_lock(&slab_mutex);
6027 
6028 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6029 	if (!slab_kset) {
6030 		mutex_unlock(&slab_mutex);
6031 		pr_err("Cannot register slab subsystem.\n");
6032 		return -ENOSYS;
6033 	}
6034 
6035 	slab_state = FULL;
6036 
6037 	list_for_each_entry(s, &slab_caches, list) {
6038 		err = sysfs_slab_add(s);
6039 		if (err)
6040 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6041 			       s->name);
6042 	}
6043 
6044 	while (alias_list) {
6045 		struct saved_alias *al = alias_list;
6046 
6047 		alias_list = alias_list->next;
6048 		err = sysfs_slab_alias(al->s, al->name);
6049 		if (err)
6050 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6051 			       al->name);
6052 		kfree(al);
6053 	}
6054 
6055 	mutex_unlock(&slab_mutex);
6056 	return 0;
6057 }
6058 
6059 __initcall(slab_sysfs_init);
6060 #endif /* CONFIG_SYSFS */
6061 
6062 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6063 static int slab_debugfs_show(struct seq_file *seq, void *v)
6064 {
6065 	struct loc_track *t = seq->private;
6066 	struct location *l;
6067 	unsigned long idx;
6068 
6069 	idx = (unsigned long) t->idx;
6070 	if (idx < t->count) {
6071 		l = &t->loc[idx];
6072 
6073 		seq_printf(seq, "%7ld ", l->count);
6074 
6075 		if (l->addr)
6076 			seq_printf(seq, "%pS", (void *)l->addr);
6077 		else
6078 			seq_puts(seq, "<not-available>");
6079 
6080 		if (l->waste)
6081 			seq_printf(seq, " waste=%lu/%lu",
6082 				l->count * l->waste, l->waste);
6083 
6084 		if (l->sum_time != l->min_time) {
6085 			seq_printf(seq, " age=%ld/%llu/%ld",
6086 				l->min_time, div_u64(l->sum_time, l->count),
6087 				l->max_time);
6088 		} else
6089 			seq_printf(seq, " age=%ld", l->min_time);
6090 
6091 		if (l->min_pid != l->max_pid)
6092 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6093 		else
6094 			seq_printf(seq, " pid=%ld",
6095 				l->min_pid);
6096 
6097 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6098 			seq_printf(seq, " cpus=%*pbl",
6099 				 cpumask_pr_args(to_cpumask(l->cpus)));
6100 
6101 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6102 			seq_printf(seq, " nodes=%*pbl",
6103 				 nodemask_pr_args(&l->nodes));
6104 
6105 #ifdef CONFIG_STACKDEPOT
6106 		{
6107 			depot_stack_handle_t handle;
6108 			unsigned long *entries;
6109 			unsigned int nr_entries, j;
6110 
6111 			handle = READ_ONCE(l->handle);
6112 			if (handle) {
6113 				nr_entries = stack_depot_fetch(handle, &entries);
6114 				seq_puts(seq, "\n");
6115 				for (j = 0; j < nr_entries; j++)
6116 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6117 			}
6118 		}
6119 #endif
6120 		seq_puts(seq, "\n");
6121 	}
6122 
6123 	if (!idx && !t->count)
6124 		seq_puts(seq, "No data\n");
6125 
6126 	return 0;
6127 }
6128 
6129 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6130 {
6131 }
6132 
6133 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6134 {
6135 	struct loc_track *t = seq->private;
6136 
6137 	t->idx = ++(*ppos);
6138 	if (*ppos <= t->count)
6139 		return ppos;
6140 
6141 	return NULL;
6142 }
6143 
6144 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6145 {
6146 	struct location *loc1 = (struct location *)a;
6147 	struct location *loc2 = (struct location *)b;
6148 
6149 	if (loc1->count > loc2->count)
6150 		return -1;
6151 	else
6152 		return 1;
6153 }
6154 
6155 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6156 {
6157 	struct loc_track *t = seq->private;
6158 
6159 	t->idx = *ppos;
6160 	return ppos;
6161 }
6162 
6163 static const struct seq_operations slab_debugfs_sops = {
6164 	.start  = slab_debugfs_start,
6165 	.next   = slab_debugfs_next,
6166 	.stop   = slab_debugfs_stop,
6167 	.show   = slab_debugfs_show,
6168 };
6169 
6170 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6171 {
6172 
6173 	struct kmem_cache_node *n;
6174 	enum track_item alloc;
6175 	int node;
6176 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6177 						sizeof(struct loc_track));
6178 	struct kmem_cache *s = file_inode(filep)->i_private;
6179 	unsigned long *obj_map;
6180 
6181 	if (!t)
6182 		return -ENOMEM;
6183 
6184 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6185 	if (!obj_map) {
6186 		seq_release_private(inode, filep);
6187 		return -ENOMEM;
6188 	}
6189 
6190 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6191 		alloc = TRACK_ALLOC;
6192 	else
6193 		alloc = TRACK_FREE;
6194 
6195 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6196 		bitmap_free(obj_map);
6197 		seq_release_private(inode, filep);
6198 		return -ENOMEM;
6199 	}
6200 
6201 	for_each_kmem_cache_node(s, node, n) {
6202 		unsigned long flags;
6203 		struct slab *slab;
6204 
6205 		if (!atomic_long_read(&n->nr_slabs))
6206 			continue;
6207 
6208 		spin_lock_irqsave(&n->list_lock, flags);
6209 		list_for_each_entry(slab, &n->partial, slab_list)
6210 			process_slab(t, s, slab, alloc, obj_map);
6211 		list_for_each_entry(slab, &n->full, slab_list)
6212 			process_slab(t, s, slab, alloc, obj_map);
6213 		spin_unlock_irqrestore(&n->list_lock, flags);
6214 	}
6215 
6216 	/* Sort locations by count */
6217 	sort_r(t->loc, t->count, sizeof(struct location),
6218 		cmp_loc_by_count, NULL, NULL);
6219 
6220 	bitmap_free(obj_map);
6221 	return 0;
6222 }
6223 
6224 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6225 {
6226 	struct seq_file *seq = file->private_data;
6227 	struct loc_track *t = seq->private;
6228 
6229 	free_loc_track(t);
6230 	return seq_release_private(inode, file);
6231 }
6232 
6233 static const struct file_operations slab_debugfs_fops = {
6234 	.open    = slab_debug_trace_open,
6235 	.read    = seq_read,
6236 	.llseek  = seq_lseek,
6237 	.release = slab_debug_trace_release,
6238 };
6239 
6240 static void debugfs_slab_add(struct kmem_cache *s)
6241 {
6242 	struct dentry *slab_cache_dir;
6243 
6244 	if (unlikely(!slab_debugfs_root))
6245 		return;
6246 
6247 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6248 
6249 	debugfs_create_file("alloc_traces", 0400,
6250 		slab_cache_dir, s, &slab_debugfs_fops);
6251 
6252 	debugfs_create_file("free_traces", 0400,
6253 		slab_cache_dir, s, &slab_debugfs_fops);
6254 }
6255 
6256 void debugfs_slab_release(struct kmem_cache *s)
6257 {
6258 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6259 }
6260 
6261 static int __init slab_debugfs_init(void)
6262 {
6263 	struct kmem_cache *s;
6264 
6265 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6266 
6267 	list_for_each_entry(s, &slab_caches, list)
6268 		if (s->flags & SLAB_STORE_USER)
6269 			debugfs_slab_add(s);
6270 
6271 	return 0;
6272 
6273 }
6274 __initcall(slab_debugfs_init);
6275 #endif
6276 /*
6277  * The /proc/slabinfo ABI
6278  */
6279 #ifdef CONFIG_SLUB_DEBUG
6280 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6281 {
6282 	unsigned long nr_slabs = 0;
6283 	unsigned long nr_objs = 0;
6284 	unsigned long nr_free = 0;
6285 	int node;
6286 	struct kmem_cache_node *n;
6287 
6288 	for_each_kmem_cache_node(s, node, n) {
6289 		nr_slabs += node_nr_slabs(n);
6290 		nr_objs += node_nr_objs(n);
6291 		nr_free += count_partial(n, count_free);
6292 	}
6293 
6294 	sinfo->active_objs = nr_objs - nr_free;
6295 	sinfo->num_objs = nr_objs;
6296 	sinfo->active_slabs = nr_slabs;
6297 	sinfo->num_slabs = nr_slabs;
6298 	sinfo->objects_per_slab = oo_objects(s->oo);
6299 	sinfo->cache_order = oo_order(s->oo);
6300 }
6301 
6302 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6303 {
6304 }
6305 
6306 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6307 		       size_t count, loff_t *ppos)
6308 {
6309 	return -EIO;
6310 }
6311 #endif /* CONFIG_SLUB_DEBUG */
6312