1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 /* Structure holding parameters for get_partial() call chain */ 222 struct partial_context { 223 gfp_t flags; 224 unsigned int orig_size; 225 void *object; 226 }; 227 228 static inline bool kmem_cache_debug(struct kmem_cache *s) 229 { 230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 231 } 232 233 static inline bool slub_debug_orig_size(struct kmem_cache *s) 234 { 235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 236 (s->flags & SLAB_KMALLOC)); 237 } 238 239 void *fixup_red_left(struct kmem_cache *s, void *p) 240 { 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 242 p += s->red_left_pad; 243 244 return p; 245 } 246 247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 248 { 249 #ifdef CONFIG_SLUB_CPU_PARTIAL 250 return !kmem_cache_debug(s); 251 #else 252 return false; 253 #endif 254 } 255 256 /* 257 * Issues still to be resolved: 258 * 259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 260 * 261 * - Variable sizing of the per node arrays 262 */ 263 264 /* Enable to log cmpxchg failures */ 265 #undef SLUB_DEBUG_CMPXCHG 266 267 #ifndef CONFIG_SLUB_TINY 268 /* 269 * Minimum number of partial slabs. These will be left on the partial 270 * lists even if they are empty. kmem_cache_shrink may reclaim them. 271 */ 272 #define MIN_PARTIAL 5 273 274 /* 275 * Maximum number of desirable partial slabs. 276 * The existence of more partial slabs makes kmem_cache_shrink 277 * sort the partial list by the number of objects in use. 278 */ 279 #define MAX_PARTIAL 10 280 #else 281 #define MIN_PARTIAL 0 282 #define MAX_PARTIAL 0 283 #endif 284 285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 286 SLAB_POISON | SLAB_STORE_USER) 287 288 /* 289 * These debug flags cannot use CMPXCHG because there might be consistency 290 * issues when checking or reading debug information 291 */ 292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 293 SLAB_TRACE) 294 295 296 /* 297 * Debugging flags that require metadata to be stored in the slab. These get 298 * disabled when slab_debug=O is used and a cache's min order increases with 299 * metadata. 300 */ 301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 302 303 #define OO_SHIFT 16 304 #define OO_MASK ((1 << OO_SHIFT) - 1) 305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 306 307 /* Internal SLUB flags */ 308 /* Poison object */ 309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 310 /* Use cmpxchg_double */ 311 312 #ifdef system_has_freelist_aba 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 314 #else 315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 316 #endif 317 318 /* 319 * Tracking user of a slab. 320 */ 321 #define TRACK_ADDRS_COUNT 16 322 struct track { 323 unsigned long addr; /* Called from address */ 324 #ifdef CONFIG_STACKDEPOT 325 depot_stack_handle_t handle; 326 #endif 327 int cpu; /* Was running on cpu */ 328 int pid; /* Pid context */ 329 unsigned long when; /* When did the operation occur */ 330 }; 331 332 enum track_item { TRACK_ALLOC, TRACK_FREE }; 333 334 #ifdef SLAB_SUPPORTS_SYSFS 335 static int sysfs_slab_add(struct kmem_cache *); 336 static int sysfs_slab_alias(struct kmem_cache *, const char *); 337 #else 338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 340 { return 0; } 341 #endif 342 343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 344 static void debugfs_slab_add(struct kmem_cache *); 345 #else 346 static inline void debugfs_slab_add(struct kmem_cache *s) { } 347 #endif 348 349 enum stat_item { 350 ALLOC_FASTPATH, /* Allocation from cpu slab */ 351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 352 FREE_FASTPATH, /* Free to cpu slab */ 353 FREE_SLOWPATH, /* Freeing not to cpu slab */ 354 FREE_FROZEN, /* Freeing to frozen slab */ 355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 361 FREE_SLAB, /* Slab freed to the page allocator */ 362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 368 DEACTIVATE_BYPASS, /* Implicit deactivation */ 369 ORDER_FALLBACK, /* Number of times fallback was necessary */ 370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 376 NR_SLUB_STAT_ITEMS 377 }; 378 379 #ifndef CONFIG_SLUB_TINY 380 /* 381 * When changing the layout, make sure freelist and tid are still compatible 382 * with this_cpu_cmpxchg_double() alignment requirements. 383 */ 384 struct kmem_cache_cpu { 385 union { 386 struct { 387 void **freelist; /* Pointer to next available object */ 388 unsigned long tid; /* Globally unique transaction id */ 389 }; 390 freelist_aba_t freelist_tid; 391 }; 392 struct slab *slab; /* The slab from which we are allocating */ 393 #ifdef CONFIG_SLUB_CPU_PARTIAL 394 struct slab *partial; /* Partially allocated slabs */ 395 #endif 396 local_lock_t lock; /* Protects the fields above */ 397 #ifdef CONFIG_SLUB_STATS 398 unsigned int stat[NR_SLUB_STAT_ITEMS]; 399 #endif 400 }; 401 #endif /* CONFIG_SLUB_TINY */ 402 403 static inline void stat(const struct kmem_cache *s, enum stat_item si) 404 { 405 #ifdef CONFIG_SLUB_STATS 406 /* 407 * The rmw is racy on a preemptible kernel but this is acceptable, so 408 * avoid this_cpu_add()'s irq-disable overhead. 409 */ 410 raw_cpu_inc(s->cpu_slab->stat[si]); 411 #endif 412 } 413 414 static inline 415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 416 { 417 #ifdef CONFIG_SLUB_STATS 418 raw_cpu_add(s->cpu_slab->stat[si], v); 419 #endif 420 } 421 422 /* 423 * The slab lists for all objects. 424 */ 425 struct kmem_cache_node { 426 spinlock_t list_lock; 427 unsigned long nr_partial; 428 struct list_head partial; 429 #ifdef CONFIG_SLUB_DEBUG 430 atomic_long_t nr_slabs; 431 atomic_long_t total_objects; 432 struct list_head full; 433 #endif 434 }; 435 436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 437 { 438 return s->node[node]; 439 } 440 441 /* 442 * Iterator over all nodes. The body will be executed for each node that has 443 * a kmem_cache_node structure allocated (which is true for all online nodes) 444 */ 445 #define for_each_kmem_cache_node(__s, __node, __n) \ 446 for (__node = 0; __node < nr_node_ids; __node++) \ 447 if ((__n = get_node(__s, __node))) 448 449 /* 450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 452 * differ during memory hotplug/hotremove operations. 453 * Protected by slab_mutex. 454 */ 455 static nodemask_t slab_nodes; 456 457 #ifndef CONFIG_SLUB_TINY 458 /* 459 * Workqueue used for flush_cpu_slab(). 460 */ 461 static struct workqueue_struct *flushwq; 462 #endif 463 464 /******************************************************************** 465 * Core slab cache functions 466 *******************************************************************/ 467 468 /* 469 * freeptr_t represents a SLUB freelist pointer, which might be encoded 470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 471 */ 472 typedef struct { unsigned long v; } freeptr_t; 473 474 /* 475 * Returns freelist pointer (ptr). With hardening, this is obfuscated 476 * with an XOR of the address where the pointer is held and a per-cache 477 * random number. 478 */ 479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 480 void *ptr, unsigned long ptr_addr) 481 { 482 unsigned long encoded; 483 484 #ifdef CONFIG_SLAB_FREELIST_HARDENED 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 486 #else 487 encoded = (unsigned long)ptr; 488 #endif 489 return (freeptr_t){.v = encoded}; 490 } 491 492 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 493 freeptr_t ptr, unsigned long ptr_addr) 494 { 495 void *decoded; 496 497 #ifdef CONFIG_SLAB_FREELIST_HARDENED 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 499 #else 500 decoded = (void *)ptr.v; 501 #endif 502 return decoded; 503 } 504 505 static inline void *get_freepointer(struct kmem_cache *s, void *object) 506 { 507 unsigned long ptr_addr; 508 freeptr_t p; 509 510 object = kasan_reset_tag(object); 511 ptr_addr = (unsigned long)object + s->offset; 512 p = *(freeptr_t *)(ptr_addr); 513 return freelist_ptr_decode(s, p, ptr_addr); 514 } 515 516 #ifndef CONFIG_SLUB_TINY 517 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 518 { 519 prefetchw(object + s->offset); 520 } 521 #endif 522 523 /* 524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 525 * pointer value in the case the current thread loses the race for the next 526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 528 * KMSAN will still check all arguments of cmpxchg because of imperfect 529 * handling of inline assembly. 530 * To work around this problem, we apply __no_kmsan_checks to ensure that 531 * get_freepointer_safe() returns initialized memory. 532 */ 533 __no_kmsan_checks 534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 535 { 536 unsigned long freepointer_addr; 537 freeptr_t p; 538 539 if (!debug_pagealloc_enabled_static()) 540 return get_freepointer(s, object); 541 542 object = kasan_reset_tag(object); 543 freepointer_addr = (unsigned long)object + s->offset; 544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 545 return freelist_ptr_decode(s, p, freepointer_addr); 546 } 547 548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 549 { 550 unsigned long freeptr_addr = (unsigned long)object + s->offset; 551 552 #ifdef CONFIG_SLAB_FREELIST_HARDENED 553 BUG_ON(object == fp); /* naive detection of double free or corruption */ 554 #endif 555 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 558 } 559 560 /* 561 * See comment in calculate_sizes(). 562 */ 563 static inline bool freeptr_outside_object(struct kmem_cache *s) 564 { 565 return s->offset >= s->inuse; 566 } 567 568 /* 569 * Return offset of the end of info block which is inuse + free pointer if 570 * not overlapping with object. 571 */ 572 static inline unsigned int get_info_end(struct kmem_cache *s) 573 { 574 if (freeptr_outside_object(s)) 575 return s->inuse + sizeof(void *); 576 else 577 return s->inuse; 578 } 579 580 /* Loop over all objects in a slab */ 581 #define for_each_object(__p, __s, __addr, __objects) \ 582 for (__p = fixup_red_left(__s, __addr); \ 583 __p < (__addr) + (__objects) * (__s)->size; \ 584 __p += (__s)->size) 585 586 static inline unsigned int order_objects(unsigned int order, unsigned int size) 587 { 588 return ((unsigned int)PAGE_SIZE << order) / size; 589 } 590 591 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 592 unsigned int size) 593 { 594 struct kmem_cache_order_objects x = { 595 (order << OO_SHIFT) + order_objects(order, size) 596 }; 597 598 return x; 599 } 600 601 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 602 { 603 return x.x >> OO_SHIFT; 604 } 605 606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 607 { 608 return x.x & OO_MASK; 609 } 610 611 #ifdef CONFIG_SLUB_CPU_PARTIAL 612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 613 { 614 unsigned int nr_slabs; 615 616 s->cpu_partial = nr_objects; 617 618 /* 619 * We take the number of objects but actually limit the number of 620 * slabs on the per cpu partial list, in order to limit excessive 621 * growth of the list. For simplicity we assume that the slabs will 622 * be half-full. 623 */ 624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 625 s->cpu_partial_slabs = nr_slabs; 626 } 627 628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 629 { 630 return s->cpu_partial_slabs; 631 } 632 #else 633 static inline void 634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 635 { 636 } 637 638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 639 { 640 return 0; 641 } 642 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 643 644 /* 645 * Per slab locking using the pagelock 646 */ 647 static __always_inline void slab_lock(struct slab *slab) 648 { 649 bit_spin_lock(PG_locked, &slab->__page_flags); 650 } 651 652 static __always_inline void slab_unlock(struct slab *slab) 653 { 654 bit_spin_unlock(PG_locked, &slab->__page_flags); 655 } 656 657 static inline bool 658 __update_freelist_fast(struct slab *slab, 659 void *freelist_old, unsigned long counters_old, 660 void *freelist_new, unsigned long counters_new) 661 { 662 #ifdef system_has_freelist_aba 663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 665 666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 667 #else 668 return false; 669 #endif 670 } 671 672 static inline bool 673 __update_freelist_slow(struct slab *slab, 674 void *freelist_old, unsigned long counters_old, 675 void *freelist_new, unsigned long counters_new) 676 { 677 bool ret = false; 678 679 slab_lock(slab); 680 if (slab->freelist == freelist_old && 681 slab->counters == counters_old) { 682 slab->freelist = freelist_new; 683 slab->counters = counters_new; 684 ret = true; 685 } 686 slab_unlock(slab); 687 688 return ret; 689 } 690 691 /* 692 * Interrupts must be disabled (for the fallback code to work right), typically 693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 695 * allocation/ free operation in hardirq context. Therefore nothing can 696 * interrupt the operation. 697 */ 698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 699 void *freelist_old, unsigned long counters_old, 700 void *freelist_new, unsigned long counters_new, 701 const char *n) 702 { 703 bool ret; 704 705 if (USE_LOCKLESS_FAST_PATH()) 706 lockdep_assert_irqs_disabled(); 707 708 if (s->flags & __CMPXCHG_DOUBLE) { 709 ret = __update_freelist_fast(slab, freelist_old, counters_old, 710 freelist_new, counters_new); 711 } else { 712 ret = __update_freelist_slow(slab, freelist_old, counters_old, 713 freelist_new, counters_new); 714 } 715 if (likely(ret)) 716 return true; 717 718 cpu_relax(); 719 stat(s, CMPXCHG_DOUBLE_FAIL); 720 721 #ifdef SLUB_DEBUG_CMPXCHG 722 pr_info("%s %s: cmpxchg double redo ", n, s->name); 723 #endif 724 725 return false; 726 } 727 728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 729 void *freelist_old, unsigned long counters_old, 730 void *freelist_new, unsigned long counters_new, 731 const char *n) 732 { 733 bool ret; 734 735 if (s->flags & __CMPXCHG_DOUBLE) { 736 ret = __update_freelist_fast(slab, freelist_old, counters_old, 737 freelist_new, counters_new); 738 } else { 739 unsigned long flags; 740 741 local_irq_save(flags); 742 ret = __update_freelist_slow(slab, freelist_old, counters_old, 743 freelist_new, counters_new); 744 local_irq_restore(flags); 745 } 746 if (likely(ret)) 747 return true; 748 749 cpu_relax(); 750 stat(s, CMPXCHG_DOUBLE_FAIL); 751 752 #ifdef SLUB_DEBUG_CMPXCHG 753 pr_info("%s %s: cmpxchg double redo ", n, s->name); 754 #endif 755 756 return false; 757 } 758 759 #ifdef CONFIG_SLUB_DEBUG 760 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 761 static DEFINE_SPINLOCK(object_map_lock); 762 763 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 764 struct slab *slab) 765 { 766 void *addr = slab_address(slab); 767 void *p; 768 769 bitmap_zero(obj_map, slab->objects); 770 771 for (p = slab->freelist; p; p = get_freepointer(s, p)) 772 set_bit(__obj_to_index(s, addr, p), obj_map); 773 } 774 775 #if IS_ENABLED(CONFIG_KUNIT) 776 static bool slab_add_kunit_errors(void) 777 { 778 struct kunit_resource *resource; 779 780 if (!kunit_get_current_test()) 781 return false; 782 783 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 784 if (!resource) 785 return false; 786 787 (*(int *)resource->data)++; 788 kunit_put_resource(resource); 789 return true; 790 } 791 #else 792 static inline bool slab_add_kunit_errors(void) { return false; } 793 #endif 794 795 static inline unsigned int size_from_object(struct kmem_cache *s) 796 { 797 if (s->flags & SLAB_RED_ZONE) 798 return s->size - s->red_left_pad; 799 800 return s->size; 801 } 802 803 static inline void *restore_red_left(struct kmem_cache *s, void *p) 804 { 805 if (s->flags & SLAB_RED_ZONE) 806 p -= s->red_left_pad; 807 808 return p; 809 } 810 811 /* 812 * Debug settings: 813 */ 814 #if defined(CONFIG_SLUB_DEBUG_ON) 815 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 816 #else 817 static slab_flags_t slub_debug; 818 #endif 819 820 static char *slub_debug_string; 821 static int disable_higher_order_debug; 822 823 /* 824 * slub is about to manipulate internal object metadata. This memory lies 825 * outside the range of the allocated object, so accessing it would normally 826 * be reported by kasan as a bounds error. metadata_access_enable() is used 827 * to tell kasan that these accesses are OK. 828 */ 829 static inline void metadata_access_enable(void) 830 { 831 kasan_disable_current(); 832 } 833 834 static inline void metadata_access_disable(void) 835 { 836 kasan_enable_current(); 837 } 838 839 /* 840 * Object debugging 841 */ 842 843 /* Verify that a pointer has an address that is valid within a slab page */ 844 static inline int check_valid_pointer(struct kmem_cache *s, 845 struct slab *slab, void *object) 846 { 847 void *base; 848 849 if (!object) 850 return 1; 851 852 base = slab_address(slab); 853 object = kasan_reset_tag(object); 854 object = restore_red_left(s, object); 855 if (object < base || object >= base + slab->objects * s->size || 856 (object - base) % s->size) { 857 return 0; 858 } 859 860 return 1; 861 } 862 863 static void print_section(char *level, char *text, u8 *addr, 864 unsigned int length) 865 { 866 metadata_access_enable(); 867 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 868 16, 1, kasan_reset_tag((void *)addr), length, 1); 869 metadata_access_disable(); 870 } 871 872 static struct track *get_track(struct kmem_cache *s, void *object, 873 enum track_item alloc) 874 { 875 struct track *p; 876 877 p = object + get_info_end(s); 878 879 return kasan_reset_tag(p + alloc); 880 } 881 882 #ifdef CONFIG_STACKDEPOT 883 static noinline depot_stack_handle_t set_track_prepare(void) 884 { 885 depot_stack_handle_t handle; 886 unsigned long entries[TRACK_ADDRS_COUNT]; 887 unsigned int nr_entries; 888 889 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 890 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 891 892 return handle; 893 } 894 #else 895 static inline depot_stack_handle_t set_track_prepare(void) 896 { 897 return 0; 898 } 899 #endif 900 901 static void set_track_update(struct kmem_cache *s, void *object, 902 enum track_item alloc, unsigned long addr, 903 depot_stack_handle_t handle) 904 { 905 struct track *p = get_track(s, object, alloc); 906 907 #ifdef CONFIG_STACKDEPOT 908 p->handle = handle; 909 #endif 910 p->addr = addr; 911 p->cpu = smp_processor_id(); 912 p->pid = current->pid; 913 p->when = jiffies; 914 } 915 916 static __always_inline void set_track(struct kmem_cache *s, void *object, 917 enum track_item alloc, unsigned long addr) 918 { 919 depot_stack_handle_t handle = set_track_prepare(); 920 921 set_track_update(s, object, alloc, addr, handle); 922 } 923 924 static void init_tracking(struct kmem_cache *s, void *object) 925 { 926 struct track *p; 927 928 if (!(s->flags & SLAB_STORE_USER)) 929 return; 930 931 p = get_track(s, object, TRACK_ALLOC); 932 memset(p, 0, 2*sizeof(struct track)); 933 } 934 935 static void print_track(const char *s, struct track *t, unsigned long pr_time) 936 { 937 depot_stack_handle_t handle __maybe_unused; 938 939 if (!t->addr) 940 return; 941 942 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 943 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 944 #ifdef CONFIG_STACKDEPOT 945 handle = READ_ONCE(t->handle); 946 if (handle) 947 stack_depot_print(handle); 948 else 949 pr_err("object allocation/free stack trace missing\n"); 950 #endif 951 } 952 953 void print_tracking(struct kmem_cache *s, void *object) 954 { 955 unsigned long pr_time = jiffies; 956 if (!(s->flags & SLAB_STORE_USER)) 957 return; 958 959 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 960 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 961 } 962 963 static void print_slab_info(const struct slab *slab) 964 { 965 struct folio *folio = (struct folio *)slab_folio(slab); 966 967 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 968 slab, slab->objects, slab->inuse, slab->freelist, 969 folio_flags(folio, 0)); 970 } 971 972 /* 973 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 974 * family will round up the real request size to these fixed ones, so 975 * there could be an extra area than what is requested. Save the original 976 * request size in the meta data area, for better debug and sanity check. 977 */ 978 static inline void set_orig_size(struct kmem_cache *s, 979 void *object, unsigned int orig_size) 980 { 981 void *p = kasan_reset_tag(object); 982 unsigned int kasan_meta_size; 983 984 if (!slub_debug_orig_size(s)) 985 return; 986 987 /* 988 * KASAN can save its free meta data inside of the object at offset 0. 989 * If this meta data size is larger than 'orig_size', it will overlap 990 * the data redzone in [orig_size+1, object_size]. Thus, we adjust 991 * 'orig_size' to be as at least as big as KASAN's meta data. 992 */ 993 kasan_meta_size = kasan_metadata_size(s, true); 994 if (kasan_meta_size > orig_size) 995 orig_size = kasan_meta_size; 996 997 p += get_info_end(s); 998 p += sizeof(struct track) * 2; 999 1000 *(unsigned int *)p = orig_size; 1001 } 1002 1003 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 1004 { 1005 void *p = kasan_reset_tag(object); 1006 1007 if (!slub_debug_orig_size(s)) 1008 return s->object_size; 1009 1010 p += get_info_end(s); 1011 p += sizeof(struct track) * 2; 1012 1013 return *(unsigned int *)p; 1014 } 1015 1016 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1017 { 1018 set_orig_size(s, (void *)object, s->object_size); 1019 } 1020 1021 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1022 { 1023 struct va_format vaf; 1024 va_list args; 1025 1026 va_start(args, fmt); 1027 vaf.fmt = fmt; 1028 vaf.va = &args; 1029 pr_err("=============================================================================\n"); 1030 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1031 pr_err("-----------------------------------------------------------------------------\n\n"); 1032 va_end(args); 1033 } 1034 1035 __printf(2, 3) 1036 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1037 { 1038 struct va_format vaf; 1039 va_list args; 1040 1041 if (slab_add_kunit_errors()) 1042 return; 1043 1044 va_start(args, fmt); 1045 vaf.fmt = fmt; 1046 vaf.va = &args; 1047 pr_err("FIX %s: %pV\n", s->name, &vaf); 1048 va_end(args); 1049 } 1050 1051 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1052 { 1053 unsigned int off; /* Offset of last byte */ 1054 u8 *addr = slab_address(slab); 1055 1056 print_tracking(s, p); 1057 1058 print_slab_info(slab); 1059 1060 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1061 p, p - addr, get_freepointer(s, p)); 1062 1063 if (s->flags & SLAB_RED_ZONE) 1064 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1065 s->red_left_pad); 1066 else if (p > addr + 16) 1067 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1068 1069 print_section(KERN_ERR, "Object ", p, 1070 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1071 if (s->flags & SLAB_RED_ZONE) 1072 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1073 s->inuse - s->object_size); 1074 1075 off = get_info_end(s); 1076 1077 if (s->flags & SLAB_STORE_USER) 1078 off += 2 * sizeof(struct track); 1079 1080 if (slub_debug_orig_size(s)) 1081 off += sizeof(unsigned int); 1082 1083 off += kasan_metadata_size(s, false); 1084 1085 if (off != size_from_object(s)) 1086 /* Beginning of the filler is the free pointer */ 1087 print_section(KERN_ERR, "Padding ", p + off, 1088 size_from_object(s) - off); 1089 1090 dump_stack(); 1091 } 1092 1093 static void object_err(struct kmem_cache *s, struct slab *slab, 1094 u8 *object, char *reason) 1095 { 1096 if (slab_add_kunit_errors()) 1097 return; 1098 1099 slab_bug(s, "%s", reason); 1100 print_trailer(s, slab, object); 1101 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1102 } 1103 1104 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1105 void **freelist, void *nextfree) 1106 { 1107 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1108 !check_valid_pointer(s, slab, nextfree) && freelist) { 1109 object_err(s, slab, *freelist, "Freechain corrupt"); 1110 *freelist = NULL; 1111 slab_fix(s, "Isolate corrupted freechain"); 1112 return true; 1113 } 1114 1115 return false; 1116 } 1117 1118 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1119 const char *fmt, ...) 1120 { 1121 va_list args; 1122 char buf[100]; 1123 1124 if (slab_add_kunit_errors()) 1125 return; 1126 1127 va_start(args, fmt); 1128 vsnprintf(buf, sizeof(buf), fmt, args); 1129 va_end(args); 1130 slab_bug(s, "%s", buf); 1131 print_slab_info(slab); 1132 dump_stack(); 1133 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1134 } 1135 1136 static void init_object(struct kmem_cache *s, void *object, u8 val) 1137 { 1138 u8 *p = kasan_reset_tag(object); 1139 unsigned int poison_size = s->object_size; 1140 1141 if (s->flags & SLAB_RED_ZONE) { 1142 memset(p - s->red_left_pad, val, s->red_left_pad); 1143 1144 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1145 /* 1146 * Redzone the extra allocated space by kmalloc than 1147 * requested, and the poison size will be limited to 1148 * the original request size accordingly. 1149 */ 1150 poison_size = get_orig_size(s, object); 1151 } 1152 } 1153 1154 if (s->flags & __OBJECT_POISON) { 1155 memset(p, POISON_FREE, poison_size - 1); 1156 p[poison_size - 1] = POISON_END; 1157 } 1158 1159 if (s->flags & SLAB_RED_ZONE) 1160 memset(p + poison_size, val, s->inuse - poison_size); 1161 } 1162 1163 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1164 void *from, void *to) 1165 { 1166 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1167 memset(from, data, to - from); 1168 } 1169 1170 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1171 u8 *object, char *what, 1172 u8 *start, unsigned int value, unsigned int bytes) 1173 { 1174 u8 *fault; 1175 u8 *end; 1176 u8 *addr = slab_address(slab); 1177 1178 metadata_access_enable(); 1179 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1180 metadata_access_disable(); 1181 if (!fault) 1182 return 1; 1183 1184 end = start + bytes; 1185 while (end > fault && end[-1] == value) 1186 end--; 1187 1188 if (slab_add_kunit_errors()) 1189 goto skip_bug_print; 1190 1191 slab_bug(s, "%s overwritten", what); 1192 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1193 fault, end - 1, fault - addr, 1194 fault[0], value); 1195 print_trailer(s, slab, object); 1196 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1197 1198 skip_bug_print: 1199 restore_bytes(s, what, value, fault, end); 1200 return 0; 1201 } 1202 1203 /* 1204 * Object layout: 1205 * 1206 * object address 1207 * Bytes of the object to be managed. 1208 * If the freepointer may overlay the object then the free 1209 * pointer is at the middle of the object. 1210 * 1211 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1212 * 0xa5 (POISON_END) 1213 * 1214 * object + s->object_size 1215 * Padding to reach word boundary. This is also used for Redzoning. 1216 * Padding is extended by another word if Redzoning is enabled and 1217 * object_size == inuse. 1218 * 1219 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1220 * 0xcc (RED_ACTIVE) for objects in use. 1221 * 1222 * object + s->inuse 1223 * Meta data starts here. 1224 * 1225 * A. Free pointer (if we cannot overwrite object on free) 1226 * B. Tracking data for SLAB_STORE_USER 1227 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1228 * D. Padding to reach required alignment boundary or at minimum 1229 * one word if debugging is on to be able to detect writes 1230 * before the word boundary. 1231 * 1232 * Padding is done using 0x5a (POISON_INUSE) 1233 * 1234 * object + s->size 1235 * Nothing is used beyond s->size. 1236 * 1237 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1238 * ignored. And therefore no slab options that rely on these boundaries 1239 * may be used with merged slabcaches. 1240 */ 1241 1242 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1243 { 1244 unsigned long off = get_info_end(s); /* The end of info */ 1245 1246 if (s->flags & SLAB_STORE_USER) { 1247 /* We also have user information there */ 1248 off += 2 * sizeof(struct track); 1249 1250 if (s->flags & SLAB_KMALLOC) 1251 off += sizeof(unsigned int); 1252 } 1253 1254 off += kasan_metadata_size(s, false); 1255 1256 if (size_from_object(s) == off) 1257 return 1; 1258 1259 return check_bytes_and_report(s, slab, p, "Object padding", 1260 p + off, POISON_INUSE, size_from_object(s) - off); 1261 } 1262 1263 /* Check the pad bytes at the end of a slab page */ 1264 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1265 { 1266 u8 *start; 1267 u8 *fault; 1268 u8 *end; 1269 u8 *pad; 1270 int length; 1271 int remainder; 1272 1273 if (!(s->flags & SLAB_POISON)) 1274 return; 1275 1276 start = slab_address(slab); 1277 length = slab_size(slab); 1278 end = start + length; 1279 remainder = length % s->size; 1280 if (!remainder) 1281 return; 1282 1283 pad = end - remainder; 1284 metadata_access_enable(); 1285 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1286 metadata_access_disable(); 1287 if (!fault) 1288 return; 1289 while (end > fault && end[-1] == POISON_INUSE) 1290 end--; 1291 1292 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1293 fault, end - 1, fault - start); 1294 print_section(KERN_ERR, "Padding ", pad, remainder); 1295 1296 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1297 } 1298 1299 static int check_object(struct kmem_cache *s, struct slab *slab, 1300 void *object, u8 val) 1301 { 1302 u8 *p = object; 1303 u8 *endobject = object + s->object_size; 1304 unsigned int orig_size, kasan_meta_size; 1305 1306 if (s->flags & SLAB_RED_ZONE) { 1307 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1308 object - s->red_left_pad, val, s->red_left_pad)) 1309 return 0; 1310 1311 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1312 endobject, val, s->inuse - s->object_size)) 1313 return 0; 1314 1315 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1316 orig_size = get_orig_size(s, object); 1317 1318 if (s->object_size > orig_size && 1319 !check_bytes_and_report(s, slab, object, 1320 "kmalloc Redzone", p + orig_size, 1321 val, s->object_size - orig_size)) { 1322 return 0; 1323 } 1324 } 1325 } else { 1326 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1327 check_bytes_and_report(s, slab, p, "Alignment padding", 1328 endobject, POISON_INUSE, 1329 s->inuse - s->object_size); 1330 } 1331 } 1332 1333 if (s->flags & SLAB_POISON) { 1334 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1335 /* 1336 * KASAN can save its free meta data inside of the 1337 * object at offset 0. Thus, skip checking the part of 1338 * the redzone that overlaps with the meta data. 1339 */ 1340 kasan_meta_size = kasan_metadata_size(s, true); 1341 if (kasan_meta_size < s->object_size - 1 && 1342 !check_bytes_and_report(s, slab, p, "Poison", 1343 p + kasan_meta_size, POISON_FREE, 1344 s->object_size - kasan_meta_size - 1)) 1345 return 0; 1346 if (kasan_meta_size < s->object_size && 1347 !check_bytes_and_report(s, slab, p, "End Poison", 1348 p + s->object_size - 1, POISON_END, 1)) 1349 return 0; 1350 } 1351 /* 1352 * check_pad_bytes cleans up on its own. 1353 */ 1354 check_pad_bytes(s, slab, p); 1355 } 1356 1357 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1358 /* 1359 * Object and freepointer overlap. Cannot check 1360 * freepointer while object is allocated. 1361 */ 1362 return 1; 1363 1364 /* Check free pointer validity */ 1365 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1366 object_err(s, slab, p, "Freepointer corrupt"); 1367 /* 1368 * No choice but to zap it and thus lose the remainder 1369 * of the free objects in this slab. May cause 1370 * another error because the object count is now wrong. 1371 */ 1372 set_freepointer(s, p, NULL); 1373 return 0; 1374 } 1375 return 1; 1376 } 1377 1378 static int check_slab(struct kmem_cache *s, struct slab *slab) 1379 { 1380 int maxobj; 1381 1382 if (!folio_test_slab(slab_folio(slab))) { 1383 slab_err(s, slab, "Not a valid slab page"); 1384 return 0; 1385 } 1386 1387 maxobj = order_objects(slab_order(slab), s->size); 1388 if (slab->objects > maxobj) { 1389 slab_err(s, slab, "objects %u > max %u", 1390 slab->objects, maxobj); 1391 return 0; 1392 } 1393 if (slab->inuse > slab->objects) { 1394 slab_err(s, slab, "inuse %u > max %u", 1395 slab->inuse, slab->objects); 1396 return 0; 1397 } 1398 /* Slab_pad_check fixes things up after itself */ 1399 slab_pad_check(s, slab); 1400 return 1; 1401 } 1402 1403 /* 1404 * Determine if a certain object in a slab is on the freelist. Must hold the 1405 * slab lock to guarantee that the chains are in a consistent state. 1406 */ 1407 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1408 { 1409 int nr = 0; 1410 void *fp; 1411 void *object = NULL; 1412 int max_objects; 1413 1414 fp = slab->freelist; 1415 while (fp && nr <= slab->objects) { 1416 if (fp == search) 1417 return 1; 1418 if (!check_valid_pointer(s, slab, fp)) { 1419 if (object) { 1420 object_err(s, slab, object, 1421 "Freechain corrupt"); 1422 set_freepointer(s, object, NULL); 1423 } else { 1424 slab_err(s, slab, "Freepointer corrupt"); 1425 slab->freelist = NULL; 1426 slab->inuse = slab->objects; 1427 slab_fix(s, "Freelist cleared"); 1428 return 0; 1429 } 1430 break; 1431 } 1432 object = fp; 1433 fp = get_freepointer(s, object); 1434 nr++; 1435 } 1436 1437 max_objects = order_objects(slab_order(slab), s->size); 1438 if (max_objects > MAX_OBJS_PER_PAGE) 1439 max_objects = MAX_OBJS_PER_PAGE; 1440 1441 if (slab->objects != max_objects) { 1442 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1443 slab->objects, max_objects); 1444 slab->objects = max_objects; 1445 slab_fix(s, "Number of objects adjusted"); 1446 } 1447 if (slab->inuse != slab->objects - nr) { 1448 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1449 slab->inuse, slab->objects - nr); 1450 slab->inuse = slab->objects - nr; 1451 slab_fix(s, "Object count adjusted"); 1452 } 1453 return search == NULL; 1454 } 1455 1456 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1457 int alloc) 1458 { 1459 if (s->flags & SLAB_TRACE) { 1460 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1461 s->name, 1462 alloc ? "alloc" : "free", 1463 object, slab->inuse, 1464 slab->freelist); 1465 1466 if (!alloc) 1467 print_section(KERN_INFO, "Object ", (void *)object, 1468 s->object_size); 1469 1470 dump_stack(); 1471 } 1472 } 1473 1474 /* 1475 * Tracking of fully allocated slabs for debugging purposes. 1476 */ 1477 static void add_full(struct kmem_cache *s, 1478 struct kmem_cache_node *n, struct slab *slab) 1479 { 1480 if (!(s->flags & SLAB_STORE_USER)) 1481 return; 1482 1483 lockdep_assert_held(&n->list_lock); 1484 list_add(&slab->slab_list, &n->full); 1485 } 1486 1487 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1488 { 1489 if (!(s->flags & SLAB_STORE_USER)) 1490 return; 1491 1492 lockdep_assert_held(&n->list_lock); 1493 list_del(&slab->slab_list); 1494 } 1495 1496 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1497 { 1498 return atomic_long_read(&n->nr_slabs); 1499 } 1500 1501 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1502 { 1503 struct kmem_cache_node *n = get_node(s, node); 1504 1505 atomic_long_inc(&n->nr_slabs); 1506 atomic_long_add(objects, &n->total_objects); 1507 } 1508 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1509 { 1510 struct kmem_cache_node *n = get_node(s, node); 1511 1512 atomic_long_dec(&n->nr_slabs); 1513 atomic_long_sub(objects, &n->total_objects); 1514 } 1515 1516 /* Object debug checks for alloc/free paths */ 1517 static void setup_object_debug(struct kmem_cache *s, void *object) 1518 { 1519 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1520 return; 1521 1522 init_object(s, object, SLUB_RED_INACTIVE); 1523 init_tracking(s, object); 1524 } 1525 1526 static 1527 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1528 { 1529 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1530 return; 1531 1532 metadata_access_enable(); 1533 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1534 metadata_access_disable(); 1535 } 1536 1537 static inline int alloc_consistency_checks(struct kmem_cache *s, 1538 struct slab *slab, void *object) 1539 { 1540 if (!check_slab(s, slab)) 1541 return 0; 1542 1543 if (!check_valid_pointer(s, slab, object)) { 1544 object_err(s, slab, object, "Freelist Pointer check fails"); 1545 return 0; 1546 } 1547 1548 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1549 return 0; 1550 1551 return 1; 1552 } 1553 1554 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1555 struct slab *slab, void *object, int orig_size) 1556 { 1557 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1558 if (!alloc_consistency_checks(s, slab, object)) 1559 goto bad; 1560 } 1561 1562 /* Success. Perform special debug activities for allocs */ 1563 trace(s, slab, object, 1); 1564 set_orig_size(s, object, orig_size); 1565 init_object(s, object, SLUB_RED_ACTIVE); 1566 return true; 1567 1568 bad: 1569 if (folio_test_slab(slab_folio(slab))) { 1570 /* 1571 * If this is a slab page then lets do the best we can 1572 * to avoid issues in the future. Marking all objects 1573 * as used avoids touching the remaining objects. 1574 */ 1575 slab_fix(s, "Marking all objects used"); 1576 slab->inuse = slab->objects; 1577 slab->freelist = NULL; 1578 } 1579 return false; 1580 } 1581 1582 static inline int free_consistency_checks(struct kmem_cache *s, 1583 struct slab *slab, void *object, unsigned long addr) 1584 { 1585 if (!check_valid_pointer(s, slab, object)) { 1586 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1587 return 0; 1588 } 1589 1590 if (on_freelist(s, slab, object)) { 1591 object_err(s, slab, object, "Object already free"); 1592 return 0; 1593 } 1594 1595 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1596 return 0; 1597 1598 if (unlikely(s != slab->slab_cache)) { 1599 if (!folio_test_slab(slab_folio(slab))) { 1600 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1601 object); 1602 } else if (!slab->slab_cache) { 1603 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1604 object); 1605 dump_stack(); 1606 } else 1607 object_err(s, slab, object, 1608 "page slab pointer corrupt."); 1609 return 0; 1610 } 1611 return 1; 1612 } 1613 1614 /* 1615 * Parse a block of slab_debug options. Blocks are delimited by ';' 1616 * 1617 * @str: start of block 1618 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1619 * @slabs: return start of list of slabs, or NULL when there's no list 1620 * @init: assume this is initial parsing and not per-kmem-create parsing 1621 * 1622 * returns the start of next block if there's any, or NULL 1623 */ 1624 static char * 1625 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1626 { 1627 bool higher_order_disable = false; 1628 1629 /* Skip any completely empty blocks */ 1630 while (*str && *str == ';') 1631 str++; 1632 1633 if (*str == ',') { 1634 /* 1635 * No options but restriction on slabs. This means full 1636 * debugging for slabs matching a pattern. 1637 */ 1638 *flags = DEBUG_DEFAULT_FLAGS; 1639 goto check_slabs; 1640 } 1641 *flags = 0; 1642 1643 /* Determine which debug features should be switched on */ 1644 for (; *str && *str != ',' && *str != ';'; str++) { 1645 switch (tolower(*str)) { 1646 case '-': 1647 *flags = 0; 1648 break; 1649 case 'f': 1650 *flags |= SLAB_CONSISTENCY_CHECKS; 1651 break; 1652 case 'z': 1653 *flags |= SLAB_RED_ZONE; 1654 break; 1655 case 'p': 1656 *flags |= SLAB_POISON; 1657 break; 1658 case 'u': 1659 *flags |= SLAB_STORE_USER; 1660 break; 1661 case 't': 1662 *flags |= SLAB_TRACE; 1663 break; 1664 case 'a': 1665 *flags |= SLAB_FAILSLAB; 1666 break; 1667 case 'o': 1668 /* 1669 * Avoid enabling debugging on caches if its minimum 1670 * order would increase as a result. 1671 */ 1672 higher_order_disable = true; 1673 break; 1674 default: 1675 if (init) 1676 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1677 } 1678 } 1679 check_slabs: 1680 if (*str == ',') 1681 *slabs = ++str; 1682 else 1683 *slabs = NULL; 1684 1685 /* Skip over the slab list */ 1686 while (*str && *str != ';') 1687 str++; 1688 1689 /* Skip any completely empty blocks */ 1690 while (*str && *str == ';') 1691 str++; 1692 1693 if (init && higher_order_disable) 1694 disable_higher_order_debug = 1; 1695 1696 if (*str) 1697 return str; 1698 else 1699 return NULL; 1700 } 1701 1702 static int __init setup_slub_debug(char *str) 1703 { 1704 slab_flags_t flags; 1705 slab_flags_t global_flags; 1706 char *saved_str; 1707 char *slab_list; 1708 bool global_slub_debug_changed = false; 1709 bool slab_list_specified = false; 1710 1711 global_flags = DEBUG_DEFAULT_FLAGS; 1712 if (*str++ != '=' || !*str) 1713 /* 1714 * No options specified. Switch on full debugging. 1715 */ 1716 goto out; 1717 1718 saved_str = str; 1719 while (str) { 1720 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1721 1722 if (!slab_list) { 1723 global_flags = flags; 1724 global_slub_debug_changed = true; 1725 } else { 1726 slab_list_specified = true; 1727 if (flags & SLAB_STORE_USER) 1728 stack_depot_request_early_init(); 1729 } 1730 } 1731 1732 /* 1733 * For backwards compatibility, a single list of flags with list of 1734 * slabs means debugging is only changed for those slabs, so the global 1735 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1736 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1737 * long as there is no option specifying flags without a slab list. 1738 */ 1739 if (slab_list_specified) { 1740 if (!global_slub_debug_changed) 1741 global_flags = slub_debug; 1742 slub_debug_string = saved_str; 1743 } 1744 out: 1745 slub_debug = global_flags; 1746 if (slub_debug & SLAB_STORE_USER) 1747 stack_depot_request_early_init(); 1748 if (slub_debug != 0 || slub_debug_string) 1749 static_branch_enable(&slub_debug_enabled); 1750 else 1751 static_branch_disable(&slub_debug_enabled); 1752 if ((static_branch_unlikely(&init_on_alloc) || 1753 static_branch_unlikely(&init_on_free)) && 1754 (slub_debug & SLAB_POISON)) 1755 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1756 return 1; 1757 } 1758 1759 __setup("slab_debug", setup_slub_debug); 1760 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1761 1762 /* 1763 * kmem_cache_flags - apply debugging options to the cache 1764 * @flags: flags to set 1765 * @name: name of the cache 1766 * 1767 * Debug option(s) are applied to @flags. In addition to the debug 1768 * option(s), if a slab name (or multiple) is specified i.e. 1769 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1770 * then only the select slabs will receive the debug option(s). 1771 */ 1772 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1773 { 1774 char *iter; 1775 size_t len; 1776 char *next_block; 1777 slab_flags_t block_flags; 1778 slab_flags_t slub_debug_local = slub_debug; 1779 1780 if (flags & SLAB_NO_USER_FLAGS) 1781 return flags; 1782 1783 /* 1784 * If the slab cache is for debugging (e.g. kmemleak) then 1785 * don't store user (stack trace) information by default, 1786 * but let the user enable it via the command line below. 1787 */ 1788 if (flags & SLAB_NOLEAKTRACE) 1789 slub_debug_local &= ~SLAB_STORE_USER; 1790 1791 len = strlen(name); 1792 next_block = slub_debug_string; 1793 /* Go through all blocks of debug options, see if any matches our slab's name */ 1794 while (next_block) { 1795 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1796 if (!iter) 1797 continue; 1798 /* Found a block that has a slab list, search it */ 1799 while (*iter) { 1800 char *end, *glob; 1801 size_t cmplen; 1802 1803 end = strchrnul(iter, ','); 1804 if (next_block && next_block < end) 1805 end = next_block - 1; 1806 1807 glob = strnchr(iter, end - iter, '*'); 1808 if (glob) 1809 cmplen = glob - iter; 1810 else 1811 cmplen = max_t(size_t, len, (end - iter)); 1812 1813 if (!strncmp(name, iter, cmplen)) { 1814 flags |= block_flags; 1815 return flags; 1816 } 1817 1818 if (!*end || *end == ';') 1819 break; 1820 iter = end + 1; 1821 } 1822 } 1823 1824 return flags | slub_debug_local; 1825 } 1826 #else /* !CONFIG_SLUB_DEBUG */ 1827 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1828 static inline 1829 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1830 1831 static inline bool alloc_debug_processing(struct kmem_cache *s, 1832 struct slab *slab, void *object, int orig_size) { return true; } 1833 1834 static inline bool free_debug_processing(struct kmem_cache *s, 1835 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1836 unsigned long addr, depot_stack_handle_t handle) { return true; } 1837 1838 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1839 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1840 void *object, u8 val) { return 1; } 1841 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1842 static inline void set_track(struct kmem_cache *s, void *object, 1843 enum track_item alloc, unsigned long addr) {} 1844 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1845 struct slab *slab) {} 1846 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1847 struct slab *slab) {} 1848 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1849 { 1850 return flags; 1851 } 1852 #define slub_debug 0 1853 1854 #define disable_higher_order_debug 0 1855 1856 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1857 { return 0; } 1858 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1859 int objects) {} 1860 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1861 int objects) {} 1862 1863 #ifndef CONFIG_SLUB_TINY 1864 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1865 void **freelist, void *nextfree) 1866 { 1867 return false; 1868 } 1869 #endif 1870 #endif /* CONFIG_SLUB_DEBUG */ 1871 1872 #ifdef CONFIG_SLAB_OBJ_EXT 1873 1874 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1875 1876 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1877 { 1878 struct slabobj_ext *slab_exts; 1879 struct slab *obj_exts_slab; 1880 1881 obj_exts_slab = virt_to_slab(obj_exts); 1882 slab_exts = slab_obj_exts(obj_exts_slab); 1883 if (slab_exts) { 1884 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1885 obj_exts_slab, obj_exts); 1886 /* codetag should be NULL */ 1887 WARN_ON(slab_exts[offs].ref.ct); 1888 set_codetag_empty(&slab_exts[offs].ref); 1889 } 1890 } 1891 1892 static inline void mark_failed_objexts_alloc(struct slab *slab) 1893 { 1894 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1895 } 1896 1897 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1898 struct slabobj_ext *vec, unsigned int objects) 1899 { 1900 /* 1901 * If vector previously failed to allocate then we have live 1902 * objects with no tag reference. Mark all references in this 1903 * vector as empty to avoid warnings later on. 1904 */ 1905 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1906 unsigned int i; 1907 1908 for (i = 0; i < objects; i++) 1909 set_codetag_empty(&vec[i].ref); 1910 } 1911 } 1912 1913 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1914 1915 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1916 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1917 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1918 struct slabobj_ext *vec, unsigned int objects) {} 1919 1920 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1921 1922 /* 1923 * The allocated objcg pointers array is not accounted directly. 1924 * Moreover, it should not come from DMA buffer and is not readily 1925 * reclaimable. So those GFP bits should be masked off. 1926 */ 1927 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1928 __GFP_ACCOUNT | __GFP_NOFAIL) 1929 1930 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1931 gfp_t gfp, bool new_slab) 1932 { 1933 unsigned int objects = objs_per_slab(s, slab); 1934 unsigned long new_exts; 1935 unsigned long old_exts; 1936 struct slabobj_ext *vec; 1937 1938 gfp &= ~OBJCGS_CLEAR_MASK; 1939 /* Prevent recursive extension vector allocation */ 1940 gfp |= __GFP_NO_OBJ_EXT; 1941 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1942 slab_nid(slab)); 1943 if (!vec) { 1944 /* Mark vectors which failed to allocate */ 1945 if (new_slab) 1946 mark_failed_objexts_alloc(slab); 1947 1948 return -ENOMEM; 1949 } 1950 1951 new_exts = (unsigned long)vec; 1952 #ifdef CONFIG_MEMCG 1953 new_exts |= MEMCG_DATA_OBJEXTS; 1954 #endif 1955 old_exts = slab->obj_exts; 1956 handle_failed_objexts_alloc(old_exts, vec, objects); 1957 if (new_slab) { 1958 /* 1959 * If the slab is brand new and nobody can yet access its 1960 * obj_exts, no synchronization is required and obj_exts can 1961 * be simply assigned. 1962 */ 1963 slab->obj_exts = new_exts; 1964 } else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 1965 /* 1966 * If the slab is already in use, somebody can allocate and 1967 * assign slabobj_exts in parallel. In this case the existing 1968 * objcg vector should be reused. 1969 */ 1970 mark_objexts_empty(vec); 1971 kfree(vec); 1972 return 0; 1973 } 1974 1975 kmemleak_not_leak(vec); 1976 return 0; 1977 } 1978 1979 static inline void free_slab_obj_exts(struct slab *slab) 1980 { 1981 struct slabobj_ext *obj_exts; 1982 1983 obj_exts = slab_obj_exts(slab); 1984 if (!obj_exts) 1985 return; 1986 1987 /* 1988 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 1989 * corresponding extension will be NULL. alloc_tag_sub() will throw a 1990 * warning if slab has extensions but the extension of an object is 1991 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 1992 * the extension for obj_exts is expected to be NULL. 1993 */ 1994 mark_objexts_empty(obj_exts); 1995 kfree(obj_exts); 1996 slab->obj_exts = 0; 1997 } 1998 1999 static inline bool need_slab_obj_ext(void) 2000 { 2001 if (mem_alloc_profiling_enabled()) 2002 return true; 2003 2004 /* 2005 * CONFIG_MEMCG_KMEM creates vector of obj_cgroup objects conditionally 2006 * inside memcg_slab_post_alloc_hook. No other users for now. 2007 */ 2008 return false; 2009 } 2010 2011 static inline struct slabobj_ext * 2012 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2013 { 2014 struct slab *slab; 2015 2016 if (!p) 2017 return NULL; 2018 2019 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2020 return NULL; 2021 2022 if (flags & __GFP_NO_OBJ_EXT) 2023 return NULL; 2024 2025 slab = virt_to_slab(p); 2026 if (!slab_obj_exts(slab) && 2027 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2028 "%s, %s: Failed to create slab extension vector!\n", 2029 __func__, s->name)) 2030 return NULL; 2031 2032 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2033 } 2034 2035 static inline void 2036 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2037 int objects) 2038 { 2039 #ifdef CONFIG_MEM_ALLOC_PROFILING 2040 struct slabobj_ext *obj_exts; 2041 int i; 2042 2043 if (!mem_alloc_profiling_enabled()) 2044 return; 2045 2046 obj_exts = slab_obj_exts(slab); 2047 if (!obj_exts) 2048 return; 2049 2050 for (i = 0; i < objects; i++) { 2051 unsigned int off = obj_to_index(s, slab, p[i]); 2052 2053 alloc_tag_sub(&obj_exts[off].ref, s->size); 2054 } 2055 #endif 2056 } 2057 2058 #else /* CONFIG_SLAB_OBJ_EXT */ 2059 2060 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2061 gfp_t gfp, bool new_slab) 2062 { 2063 return 0; 2064 } 2065 2066 static inline void free_slab_obj_exts(struct slab *slab) 2067 { 2068 } 2069 2070 static inline bool need_slab_obj_ext(void) 2071 { 2072 return false; 2073 } 2074 2075 static inline struct slabobj_ext * 2076 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2077 { 2078 return NULL; 2079 } 2080 2081 static inline void 2082 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2083 int objects) 2084 { 2085 } 2086 2087 #endif /* CONFIG_SLAB_OBJ_EXT */ 2088 2089 #ifdef CONFIG_MEMCG_KMEM 2090 2091 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2092 2093 static __fastpath_inline 2094 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2095 gfp_t flags, size_t size, void **p) 2096 { 2097 if (likely(!memcg_kmem_online())) 2098 return true; 2099 2100 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2101 return true; 2102 2103 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2104 return true; 2105 2106 if (likely(size == 1)) { 2107 memcg_alloc_abort_single(s, *p); 2108 *p = NULL; 2109 } else { 2110 kmem_cache_free_bulk(s, size, p); 2111 } 2112 2113 return false; 2114 } 2115 2116 static __fastpath_inline 2117 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2118 int objects) 2119 { 2120 struct slabobj_ext *obj_exts; 2121 2122 if (!memcg_kmem_online()) 2123 return; 2124 2125 obj_exts = slab_obj_exts(slab); 2126 if (likely(!obj_exts)) 2127 return; 2128 2129 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2130 } 2131 #else /* CONFIG_MEMCG_KMEM */ 2132 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2133 struct list_lru *lru, 2134 gfp_t flags, size_t size, 2135 void **p) 2136 { 2137 return true; 2138 } 2139 2140 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2141 void **p, int objects) 2142 { 2143 } 2144 #endif /* CONFIG_MEMCG_KMEM */ 2145 2146 /* 2147 * Hooks for other subsystems that check memory allocations. In a typical 2148 * production configuration these hooks all should produce no code at all. 2149 * 2150 * Returns true if freeing of the object can proceed, false if its reuse 2151 * was delayed by KASAN quarantine, or it was returned to KFENCE. 2152 */ 2153 static __always_inline 2154 bool slab_free_hook(struct kmem_cache *s, void *x, bool init) 2155 { 2156 kmemleak_free_recursive(x, s->flags); 2157 kmsan_slab_free(s, x); 2158 2159 debug_check_no_locks_freed(x, s->object_size); 2160 2161 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2162 debug_check_no_obj_freed(x, s->object_size); 2163 2164 /* Use KCSAN to help debug racy use-after-free. */ 2165 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 2166 __kcsan_check_access(x, s->object_size, 2167 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2168 2169 if (kfence_free(x)) 2170 return false; 2171 2172 /* 2173 * As memory initialization might be integrated into KASAN, 2174 * kasan_slab_free and initialization memset's must be 2175 * kept together to avoid discrepancies in behavior. 2176 * 2177 * The initialization memset's clear the object and the metadata, 2178 * but don't touch the SLAB redzone. 2179 * 2180 * The object's freepointer is also avoided if stored outside the 2181 * object. 2182 */ 2183 if (unlikely(init)) { 2184 int rsize; 2185 unsigned int inuse; 2186 2187 inuse = get_info_end(s); 2188 if (!kasan_has_integrated_init()) 2189 memset(kasan_reset_tag(x), 0, s->object_size); 2190 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2191 memset((char *)kasan_reset_tag(x) + inuse, 0, 2192 s->size - inuse - rsize); 2193 } 2194 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2195 return !kasan_slab_free(s, x, init); 2196 } 2197 2198 static __fastpath_inline 2199 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2200 int *cnt) 2201 { 2202 2203 void *object; 2204 void *next = *head; 2205 void *old_tail = *tail; 2206 bool init; 2207 2208 if (is_kfence_address(next)) { 2209 slab_free_hook(s, next, false); 2210 return false; 2211 } 2212 2213 /* Head and tail of the reconstructed freelist */ 2214 *head = NULL; 2215 *tail = NULL; 2216 2217 init = slab_want_init_on_free(s); 2218 2219 do { 2220 object = next; 2221 next = get_freepointer(s, object); 2222 2223 /* If object's reuse doesn't have to be delayed */ 2224 if (likely(slab_free_hook(s, object, init))) { 2225 /* Move object to the new freelist */ 2226 set_freepointer(s, object, *head); 2227 *head = object; 2228 if (!*tail) 2229 *tail = object; 2230 } else { 2231 /* 2232 * Adjust the reconstructed freelist depth 2233 * accordingly if object's reuse is delayed. 2234 */ 2235 --(*cnt); 2236 } 2237 } while (object != old_tail); 2238 2239 return *head != NULL; 2240 } 2241 2242 static void *setup_object(struct kmem_cache *s, void *object) 2243 { 2244 setup_object_debug(s, object); 2245 object = kasan_init_slab_obj(s, object); 2246 if (unlikely(s->ctor)) { 2247 kasan_unpoison_new_object(s, object); 2248 s->ctor(object); 2249 kasan_poison_new_object(s, object); 2250 } 2251 return object; 2252 } 2253 2254 /* 2255 * Slab allocation and freeing 2256 */ 2257 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2258 struct kmem_cache_order_objects oo) 2259 { 2260 struct folio *folio; 2261 struct slab *slab; 2262 unsigned int order = oo_order(oo); 2263 2264 folio = (struct folio *)alloc_pages_node(node, flags, order); 2265 if (!folio) 2266 return NULL; 2267 2268 slab = folio_slab(folio); 2269 __folio_set_slab(folio); 2270 /* Make the flag visible before any changes to folio->mapping */ 2271 smp_wmb(); 2272 if (folio_is_pfmemalloc(folio)) 2273 slab_set_pfmemalloc(slab); 2274 2275 return slab; 2276 } 2277 2278 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2279 /* Pre-initialize the random sequence cache */ 2280 static int init_cache_random_seq(struct kmem_cache *s) 2281 { 2282 unsigned int count = oo_objects(s->oo); 2283 int err; 2284 2285 /* Bailout if already initialised */ 2286 if (s->random_seq) 2287 return 0; 2288 2289 err = cache_random_seq_create(s, count, GFP_KERNEL); 2290 if (err) { 2291 pr_err("SLUB: Unable to initialize free list for %s\n", 2292 s->name); 2293 return err; 2294 } 2295 2296 /* Transform to an offset on the set of pages */ 2297 if (s->random_seq) { 2298 unsigned int i; 2299 2300 for (i = 0; i < count; i++) 2301 s->random_seq[i] *= s->size; 2302 } 2303 return 0; 2304 } 2305 2306 /* Initialize each random sequence freelist per cache */ 2307 static void __init init_freelist_randomization(void) 2308 { 2309 struct kmem_cache *s; 2310 2311 mutex_lock(&slab_mutex); 2312 2313 list_for_each_entry(s, &slab_caches, list) 2314 init_cache_random_seq(s); 2315 2316 mutex_unlock(&slab_mutex); 2317 } 2318 2319 /* Get the next entry on the pre-computed freelist randomized */ 2320 static void *next_freelist_entry(struct kmem_cache *s, 2321 unsigned long *pos, void *start, 2322 unsigned long page_limit, 2323 unsigned long freelist_count) 2324 { 2325 unsigned int idx; 2326 2327 /* 2328 * If the target page allocation failed, the number of objects on the 2329 * page might be smaller than the usual size defined by the cache. 2330 */ 2331 do { 2332 idx = s->random_seq[*pos]; 2333 *pos += 1; 2334 if (*pos >= freelist_count) 2335 *pos = 0; 2336 } while (unlikely(idx >= page_limit)); 2337 2338 return (char *)start + idx; 2339 } 2340 2341 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2342 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2343 { 2344 void *start; 2345 void *cur; 2346 void *next; 2347 unsigned long idx, pos, page_limit, freelist_count; 2348 2349 if (slab->objects < 2 || !s->random_seq) 2350 return false; 2351 2352 freelist_count = oo_objects(s->oo); 2353 pos = get_random_u32_below(freelist_count); 2354 2355 page_limit = slab->objects * s->size; 2356 start = fixup_red_left(s, slab_address(slab)); 2357 2358 /* First entry is used as the base of the freelist */ 2359 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2360 cur = setup_object(s, cur); 2361 slab->freelist = cur; 2362 2363 for (idx = 1; idx < slab->objects; idx++) { 2364 next = next_freelist_entry(s, &pos, start, page_limit, 2365 freelist_count); 2366 next = setup_object(s, next); 2367 set_freepointer(s, cur, next); 2368 cur = next; 2369 } 2370 set_freepointer(s, cur, NULL); 2371 2372 return true; 2373 } 2374 #else 2375 static inline int init_cache_random_seq(struct kmem_cache *s) 2376 { 2377 return 0; 2378 } 2379 static inline void init_freelist_randomization(void) { } 2380 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2381 { 2382 return false; 2383 } 2384 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2385 2386 static __always_inline void account_slab(struct slab *slab, int order, 2387 struct kmem_cache *s, gfp_t gfp) 2388 { 2389 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2390 alloc_slab_obj_exts(slab, s, gfp, true); 2391 2392 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2393 PAGE_SIZE << order); 2394 } 2395 2396 static __always_inline void unaccount_slab(struct slab *slab, int order, 2397 struct kmem_cache *s) 2398 { 2399 if (memcg_kmem_online() || need_slab_obj_ext()) 2400 free_slab_obj_exts(slab); 2401 2402 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2403 -(PAGE_SIZE << order)); 2404 } 2405 2406 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2407 { 2408 struct slab *slab; 2409 struct kmem_cache_order_objects oo = s->oo; 2410 gfp_t alloc_gfp; 2411 void *start, *p, *next; 2412 int idx; 2413 bool shuffle; 2414 2415 flags &= gfp_allowed_mask; 2416 2417 flags |= s->allocflags; 2418 2419 /* 2420 * Let the initial higher-order allocation fail under memory pressure 2421 * so we fall-back to the minimum order allocation. 2422 */ 2423 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2424 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2425 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2426 2427 slab = alloc_slab_page(alloc_gfp, node, oo); 2428 if (unlikely(!slab)) { 2429 oo = s->min; 2430 alloc_gfp = flags; 2431 /* 2432 * Allocation may have failed due to fragmentation. 2433 * Try a lower order alloc if possible 2434 */ 2435 slab = alloc_slab_page(alloc_gfp, node, oo); 2436 if (unlikely(!slab)) 2437 return NULL; 2438 stat(s, ORDER_FALLBACK); 2439 } 2440 2441 slab->objects = oo_objects(oo); 2442 slab->inuse = 0; 2443 slab->frozen = 0; 2444 2445 account_slab(slab, oo_order(oo), s, flags); 2446 2447 slab->slab_cache = s; 2448 2449 kasan_poison_slab(slab); 2450 2451 start = slab_address(slab); 2452 2453 setup_slab_debug(s, slab, start); 2454 2455 shuffle = shuffle_freelist(s, slab); 2456 2457 if (!shuffle) { 2458 start = fixup_red_left(s, start); 2459 start = setup_object(s, start); 2460 slab->freelist = start; 2461 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2462 next = p + s->size; 2463 next = setup_object(s, next); 2464 set_freepointer(s, p, next); 2465 p = next; 2466 } 2467 set_freepointer(s, p, NULL); 2468 } 2469 2470 return slab; 2471 } 2472 2473 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2474 { 2475 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2476 flags = kmalloc_fix_flags(flags); 2477 2478 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2479 2480 return allocate_slab(s, 2481 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2482 } 2483 2484 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2485 { 2486 struct folio *folio = slab_folio(slab); 2487 int order = folio_order(folio); 2488 int pages = 1 << order; 2489 2490 __slab_clear_pfmemalloc(slab); 2491 folio->mapping = NULL; 2492 /* Make the mapping reset visible before clearing the flag */ 2493 smp_wmb(); 2494 __folio_clear_slab(folio); 2495 mm_account_reclaimed_pages(pages); 2496 unaccount_slab(slab, order, s); 2497 __free_pages(&folio->page, order); 2498 } 2499 2500 static void rcu_free_slab(struct rcu_head *h) 2501 { 2502 struct slab *slab = container_of(h, struct slab, rcu_head); 2503 2504 __free_slab(slab->slab_cache, slab); 2505 } 2506 2507 static void free_slab(struct kmem_cache *s, struct slab *slab) 2508 { 2509 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2510 void *p; 2511 2512 slab_pad_check(s, slab); 2513 for_each_object(p, s, slab_address(slab), slab->objects) 2514 check_object(s, slab, p, SLUB_RED_INACTIVE); 2515 } 2516 2517 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2518 call_rcu(&slab->rcu_head, rcu_free_slab); 2519 else 2520 __free_slab(s, slab); 2521 } 2522 2523 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2524 { 2525 dec_slabs_node(s, slab_nid(slab), slab->objects); 2526 free_slab(s, slab); 2527 } 2528 2529 /* 2530 * SLUB reuses PG_workingset bit to keep track of whether it's on 2531 * the per-node partial list. 2532 */ 2533 static inline bool slab_test_node_partial(const struct slab *slab) 2534 { 2535 return folio_test_workingset((struct folio *)slab_folio(slab)); 2536 } 2537 2538 static inline void slab_set_node_partial(struct slab *slab) 2539 { 2540 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2541 } 2542 2543 static inline void slab_clear_node_partial(struct slab *slab) 2544 { 2545 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2546 } 2547 2548 /* 2549 * Management of partially allocated slabs. 2550 */ 2551 static inline void 2552 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2553 { 2554 n->nr_partial++; 2555 if (tail == DEACTIVATE_TO_TAIL) 2556 list_add_tail(&slab->slab_list, &n->partial); 2557 else 2558 list_add(&slab->slab_list, &n->partial); 2559 slab_set_node_partial(slab); 2560 } 2561 2562 static inline void add_partial(struct kmem_cache_node *n, 2563 struct slab *slab, int tail) 2564 { 2565 lockdep_assert_held(&n->list_lock); 2566 __add_partial(n, slab, tail); 2567 } 2568 2569 static inline void remove_partial(struct kmem_cache_node *n, 2570 struct slab *slab) 2571 { 2572 lockdep_assert_held(&n->list_lock); 2573 list_del(&slab->slab_list); 2574 slab_clear_node_partial(slab); 2575 n->nr_partial--; 2576 } 2577 2578 /* 2579 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2580 * slab from the n->partial list. Remove only a single object from the slab, do 2581 * the alloc_debug_processing() checks and leave the slab on the list, or move 2582 * it to full list if it was the last free object. 2583 */ 2584 static void *alloc_single_from_partial(struct kmem_cache *s, 2585 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2586 { 2587 void *object; 2588 2589 lockdep_assert_held(&n->list_lock); 2590 2591 object = slab->freelist; 2592 slab->freelist = get_freepointer(s, object); 2593 slab->inuse++; 2594 2595 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2596 remove_partial(n, slab); 2597 return NULL; 2598 } 2599 2600 if (slab->inuse == slab->objects) { 2601 remove_partial(n, slab); 2602 add_full(s, n, slab); 2603 } 2604 2605 return object; 2606 } 2607 2608 /* 2609 * Called only for kmem_cache_debug() caches to allocate from a freshly 2610 * allocated slab. Allocate a single object instead of whole freelist 2611 * and put the slab to the partial (or full) list. 2612 */ 2613 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2614 struct slab *slab, int orig_size) 2615 { 2616 int nid = slab_nid(slab); 2617 struct kmem_cache_node *n = get_node(s, nid); 2618 unsigned long flags; 2619 void *object; 2620 2621 2622 object = slab->freelist; 2623 slab->freelist = get_freepointer(s, object); 2624 slab->inuse = 1; 2625 2626 if (!alloc_debug_processing(s, slab, object, orig_size)) 2627 /* 2628 * It's not really expected that this would fail on a 2629 * freshly allocated slab, but a concurrent memory 2630 * corruption in theory could cause that. 2631 */ 2632 return NULL; 2633 2634 spin_lock_irqsave(&n->list_lock, flags); 2635 2636 if (slab->inuse == slab->objects) 2637 add_full(s, n, slab); 2638 else 2639 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2640 2641 inc_slabs_node(s, nid, slab->objects); 2642 spin_unlock_irqrestore(&n->list_lock, flags); 2643 2644 return object; 2645 } 2646 2647 #ifdef CONFIG_SLUB_CPU_PARTIAL 2648 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2649 #else 2650 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2651 int drain) { } 2652 #endif 2653 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2654 2655 /* 2656 * Try to allocate a partial slab from a specific node. 2657 */ 2658 static struct slab *get_partial_node(struct kmem_cache *s, 2659 struct kmem_cache_node *n, 2660 struct partial_context *pc) 2661 { 2662 struct slab *slab, *slab2, *partial = NULL; 2663 unsigned long flags; 2664 unsigned int partial_slabs = 0; 2665 2666 /* 2667 * Racy check. If we mistakenly see no partial slabs then we 2668 * just allocate an empty slab. If we mistakenly try to get a 2669 * partial slab and there is none available then get_partial() 2670 * will return NULL. 2671 */ 2672 if (!n || !n->nr_partial) 2673 return NULL; 2674 2675 spin_lock_irqsave(&n->list_lock, flags); 2676 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2677 if (!pfmemalloc_match(slab, pc->flags)) 2678 continue; 2679 2680 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2681 void *object = alloc_single_from_partial(s, n, slab, 2682 pc->orig_size); 2683 if (object) { 2684 partial = slab; 2685 pc->object = object; 2686 break; 2687 } 2688 continue; 2689 } 2690 2691 remove_partial(n, slab); 2692 2693 if (!partial) { 2694 partial = slab; 2695 stat(s, ALLOC_FROM_PARTIAL); 2696 2697 if ((slub_get_cpu_partial(s) == 0)) { 2698 break; 2699 } 2700 } else { 2701 put_cpu_partial(s, slab, 0); 2702 stat(s, CPU_PARTIAL_NODE); 2703 2704 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2705 break; 2706 } 2707 } 2708 } 2709 spin_unlock_irqrestore(&n->list_lock, flags); 2710 return partial; 2711 } 2712 2713 /* 2714 * Get a slab from somewhere. Search in increasing NUMA distances. 2715 */ 2716 static struct slab *get_any_partial(struct kmem_cache *s, 2717 struct partial_context *pc) 2718 { 2719 #ifdef CONFIG_NUMA 2720 struct zonelist *zonelist; 2721 struct zoneref *z; 2722 struct zone *zone; 2723 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2724 struct slab *slab; 2725 unsigned int cpuset_mems_cookie; 2726 2727 /* 2728 * The defrag ratio allows a configuration of the tradeoffs between 2729 * inter node defragmentation and node local allocations. A lower 2730 * defrag_ratio increases the tendency to do local allocations 2731 * instead of attempting to obtain partial slabs from other nodes. 2732 * 2733 * If the defrag_ratio is set to 0 then kmalloc() always 2734 * returns node local objects. If the ratio is higher then kmalloc() 2735 * may return off node objects because partial slabs are obtained 2736 * from other nodes and filled up. 2737 * 2738 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2739 * (which makes defrag_ratio = 1000) then every (well almost) 2740 * allocation will first attempt to defrag slab caches on other nodes. 2741 * This means scanning over all nodes to look for partial slabs which 2742 * may be expensive if we do it every time we are trying to find a slab 2743 * with available objects. 2744 */ 2745 if (!s->remote_node_defrag_ratio || 2746 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2747 return NULL; 2748 2749 do { 2750 cpuset_mems_cookie = read_mems_allowed_begin(); 2751 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2752 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2753 struct kmem_cache_node *n; 2754 2755 n = get_node(s, zone_to_nid(zone)); 2756 2757 if (n && cpuset_zone_allowed(zone, pc->flags) && 2758 n->nr_partial > s->min_partial) { 2759 slab = get_partial_node(s, n, pc); 2760 if (slab) { 2761 /* 2762 * Don't check read_mems_allowed_retry() 2763 * here - if mems_allowed was updated in 2764 * parallel, that was a harmless race 2765 * between allocation and the cpuset 2766 * update 2767 */ 2768 return slab; 2769 } 2770 } 2771 } 2772 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2773 #endif /* CONFIG_NUMA */ 2774 return NULL; 2775 } 2776 2777 /* 2778 * Get a partial slab, lock it and return it. 2779 */ 2780 static struct slab *get_partial(struct kmem_cache *s, int node, 2781 struct partial_context *pc) 2782 { 2783 struct slab *slab; 2784 int searchnode = node; 2785 2786 if (node == NUMA_NO_NODE) 2787 searchnode = numa_mem_id(); 2788 2789 slab = get_partial_node(s, get_node(s, searchnode), pc); 2790 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2791 return slab; 2792 2793 return get_any_partial(s, pc); 2794 } 2795 2796 #ifndef CONFIG_SLUB_TINY 2797 2798 #ifdef CONFIG_PREEMPTION 2799 /* 2800 * Calculate the next globally unique transaction for disambiguation 2801 * during cmpxchg. The transactions start with the cpu number and are then 2802 * incremented by CONFIG_NR_CPUS. 2803 */ 2804 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2805 #else 2806 /* 2807 * No preemption supported therefore also no need to check for 2808 * different cpus. 2809 */ 2810 #define TID_STEP 1 2811 #endif /* CONFIG_PREEMPTION */ 2812 2813 static inline unsigned long next_tid(unsigned long tid) 2814 { 2815 return tid + TID_STEP; 2816 } 2817 2818 #ifdef SLUB_DEBUG_CMPXCHG 2819 static inline unsigned int tid_to_cpu(unsigned long tid) 2820 { 2821 return tid % TID_STEP; 2822 } 2823 2824 static inline unsigned long tid_to_event(unsigned long tid) 2825 { 2826 return tid / TID_STEP; 2827 } 2828 #endif 2829 2830 static inline unsigned int init_tid(int cpu) 2831 { 2832 return cpu; 2833 } 2834 2835 static inline void note_cmpxchg_failure(const char *n, 2836 const struct kmem_cache *s, unsigned long tid) 2837 { 2838 #ifdef SLUB_DEBUG_CMPXCHG 2839 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2840 2841 pr_info("%s %s: cmpxchg redo ", n, s->name); 2842 2843 #ifdef CONFIG_PREEMPTION 2844 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2845 pr_warn("due to cpu change %d -> %d\n", 2846 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2847 else 2848 #endif 2849 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2850 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2851 tid_to_event(tid), tid_to_event(actual_tid)); 2852 else 2853 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2854 actual_tid, tid, next_tid(tid)); 2855 #endif 2856 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2857 } 2858 2859 static void init_kmem_cache_cpus(struct kmem_cache *s) 2860 { 2861 int cpu; 2862 struct kmem_cache_cpu *c; 2863 2864 for_each_possible_cpu(cpu) { 2865 c = per_cpu_ptr(s->cpu_slab, cpu); 2866 local_lock_init(&c->lock); 2867 c->tid = init_tid(cpu); 2868 } 2869 } 2870 2871 /* 2872 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2873 * unfreezes the slabs and puts it on the proper list. 2874 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2875 * by the caller. 2876 */ 2877 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2878 void *freelist) 2879 { 2880 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2881 int free_delta = 0; 2882 void *nextfree, *freelist_iter, *freelist_tail; 2883 int tail = DEACTIVATE_TO_HEAD; 2884 unsigned long flags = 0; 2885 struct slab new; 2886 struct slab old; 2887 2888 if (READ_ONCE(slab->freelist)) { 2889 stat(s, DEACTIVATE_REMOTE_FREES); 2890 tail = DEACTIVATE_TO_TAIL; 2891 } 2892 2893 /* 2894 * Stage one: Count the objects on cpu's freelist as free_delta and 2895 * remember the last object in freelist_tail for later splicing. 2896 */ 2897 freelist_tail = NULL; 2898 freelist_iter = freelist; 2899 while (freelist_iter) { 2900 nextfree = get_freepointer(s, freelist_iter); 2901 2902 /* 2903 * If 'nextfree' is invalid, it is possible that the object at 2904 * 'freelist_iter' is already corrupted. So isolate all objects 2905 * starting at 'freelist_iter' by skipping them. 2906 */ 2907 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2908 break; 2909 2910 freelist_tail = freelist_iter; 2911 free_delta++; 2912 2913 freelist_iter = nextfree; 2914 } 2915 2916 /* 2917 * Stage two: Unfreeze the slab while splicing the per-cpu 2918 * freelist to the head of slab's freelist. 2919 */ 2920 do { 2921 old.freelist = READ_ONCE(slab->freelist); 2922 old.counters = READ_ONCE(slab->counters); 2923 VM_BUG_ON(!old.frozen); 2924 2925 /* Determine target state of the slab */ 2926 new.counters = old.counters; 2927 new.frozen = 0; 2928 if (freelist_tail) { 2929 new.inuse -= free_delta; 2930 set_freepointer(s, freelist_tail, old.freelist); 2931 new.freelist = freelist; 2932 } else { 2933 new.freelist = old.freelist; 2934 } 2935 } while (!slab_update_freelist(s, slab, 2936 old.freelist, old.counters, 2937 new.freelist, new.counters, 2938 "unfreezing slab")); 2939 2940 /* 2941 * Stage three: Manipulate the slab list based on the updated state. 2942 */ 2943 if (!new.inuse && n->nr_partial >= s->min_partial) { 2944 stat(s, DEACTIVATE_EMPTY); 2945 discard_slab(s, slab); 2946 stat(s, FREE_SLAB); 2947 } else if (new.freelist) { 2948 spin_lock_irqsave(&n->list_lock, flags); 2949 add_partial(n, slab, tail); 2950 spin_unlock_irqrestore(&n->list_lock, flags); 2951 stat(s, tail); 2952 } else { 2953 stat(s, DEACTIVATE_FULL); 2954 } 2955 } 2956 2957 #ifdef CONFIG_SLUB_CPU_PARTIAL 2958 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 2959 { 2960 struct kmem_cache_node *n = NULL, *n2 = NULL; 2961 struct slab *slab, *slab_to_discard = NULL; 2962 unsigned long flags = 0; 2963 2964 while (partial_slab) { 2965 slab = partial_slab; 2966 partial_slab = slab->next; 2967 2968 n2 = get_node(s, slab_nid(slab)); 2969 if (n != n2) { 2970 if (n) 2971 spin_unlock_irqrestore(&n->list_lock, flags); 2972 2973 n = n2; 2974 spin_lock_irqsave(&n->list_lock, flags); 2975 } 2976 2977 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 2978 slab->next = slab_to_discard; 2979 slab_to_discard = slab; 2980 } else { 2981 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2982 stat(s, FREE_ADD_PARTIAL); 2983 } 2984 } 2985 2986 if (n) 2987 spin_unlock_irqrestore(&n->list_lock, flags); 2988 2989 while (slab_to_discard) { 2990 slab = slab_to_discard; 2991 slab_to_discard = slab_to_discard->next; 2992 2993 stat(s, DEACTIVATE_EMPTY); 2994 discard_slab(s, slab); 2995 stat(s, FREE_SLAB); 2996 } 2997 } 2998 2999 /* 3000 * Put all the cpu partial slabs to the node partial list. 3001 */ 3002 static void put_partials(struct kmem_cache *s) 3003 { 3004 struct slab *partial_slab; 3005 unsigned long flags; 3006 3007 local_lock_irqsave(&s->cpu_slab->lock, flags); 3008 partial_slab = this_cpu_read(s->cpu_slab->partial); 3009 this_cpu_write(s->cpu_slab->partial, NULL); 3010 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3011 3012 if (partial_slab) 3013 __put_partials(s, partial_slab); 3014 } 3015 3016 static void put_partials_cpu(struct kmem_cache *s, 3017 struct kmem_cache_cpu *c) 3018 { 3019 struct slab *partial_slab; 3020 3021 partial_slab = slub_percpu_partial(c); 3022 c->partial = NULL; 3023 3024 if (partial_slab) 3025 __put_partials(s, partial_slab); 3026 } 3027 3028 /* 3029 * Put a slab into a partial slab slot if available. 3030 * 3031 * If we did not find a slot then simply move all the partials to the 3032 * per node partial list. 3033 */ 3034 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3035 { 3036 struct slab *oldslab; 3037 struct slab *slab_to_put = NULL; 3038 unsigned long flags; 3039 int slabs = 0; 3040 3041 local_lock_irqsave(&s->cpu_slab->lock, flags); 3042 3043 oldslab = this_cpu_read(s->cpu_slab->partial); 3044 3045 if (oldslab) { 3046 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3047 /* 3048 * Partial array is full. Move the existing set to the 3049 * per node partial list. Postpone the actual unfreezing 3050 * outside of the critical section. 3051 */ 3052 slab_to_put = oldslab; 3053 oldslab = NULL; 3054 } else { 3055 slabs = oldslab->slabs; 3056 } 3057 } 3058 3059 slabs++; 3060 3061 slab->slabs = slabs; 3062 slab->next = oldslab; 3063 3064 this_cpu_write(s->cpu_slab->partial, slab); 3065 3066 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3067 3068 if (slab_to_put) { 3069 __put_partials(s, slab_to_put); 3070 stat(s, CPU_PARTIAL_DRAIN); 3071 } 3072 } 3073 3074 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3075 3076 static inline void put_partials(struct kmem_cache *s) { } 3077 static inline void put_partials_cpu(struct kmem_cache *s, 3078 struct kmem_cache_cpu *c) { } 3079 3080 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3081 3082 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3083 { 3084 unsigned long flags; 3085 struct slab *slab; 3086 void *freelist; 3087 3088 local_lock_irqsave(&s->cpu_slab->lock, flags); 3089 3090 slab = c->slab; 3091 freelist = c->freelist; 3092 3093 c->slab = NULL; 3094 c->freelist = NULL; 3095 c->tid = next_tid(c->tid); 3096 3097 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3098 3099 if (slab) { 3100 deactivate_slab(s, slab, freelist); 3101 stat(s, CPUSLAB_FLUSH); 3102 } 3103 } 3104 3105 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3106 { 3107 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3108 void *freelist = c->freelist; 3109 struct slab *slab = c->slab; 3110 3111 c->slab = NULL; 3112 c->freelist = NULL; 3113 c->tid = next_tid(c->tid); 3114 3115 if (slab) { 3116 deactivate_slab(s, slab, freelist); 3117 stat(s, CPUSLAB_FLUSH); 3118 } 3119 3120 put_partials_cpu(s, c); 3121 } 3122 3123 struct slub_flush_work { 3124 struct work_struct work; 3125 struct kmem_cache *s; 3126 bool skip; 3127 }; 3128 3129 /* 3130 * Flush cpu slab. 3131 * 3132 * Called from CPU work handler with migration disabled. 3133 */ 3134 static void flush_cpu_slab(struct work_struct *w) 3135 { 3136 struct kmem_cache *s; 3137 struct kmem_cache_cpu *c; 3138 struct slub_flush_work *sfw; 3139 3140 sfw = container_of(w, struct slub_flush_work, work); 3141 3142 s = sfw->s; 3143 c = this_cpu_ptr(s->cpu_slab); 3144 3145 if (c->slab) 3146 flush_slab(s, c); 3147 3148 put_partials(s); 3149 } 3150 3151 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3152 { 3153 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3154 3155 return c->slab || slub_percpu_partial(c); 3156 } 3157 3158 static DEFINE_MUTEX(flush_lock); 3159 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3160 3161 static void flush_all_cpus_locked(struct kmem_cache *s) 3162 { 3163 struct slub_flush_work *sfw; 3164 unsigned int cpu; 3165 3166 lockdep_assert_cpus_held(); 3167 mutex_lock(&flush_lock); 3168 3169 for_each_online_cpu(cpu) { 3170 sfw = &per_cpu(slub_flush, cpu); 3171 if (!has_cpu_slab(cpu, s)) { 3172 sfw->skip = true; 3173 continue; 3174 } 3175 INIT_WORK(&sfw->work, flush_cpu_slab); 3176 sfw->skip = false; 3177 sfw->s = s; 3178 queue_work_on(cpu, flushwq, &sfw->work); 3179 } 3180 3181 for_each_online_cpu(cpu) { 3182 sfw = &per_cpu(slub_flush, cpu); 3183 if (sfw->skip) 3184 continue; 3185 flush_work(&sfw->work); 3186 } 3187 3188 mutex_unlock(&flush_lock); 3189 } 3190 3191 static void flush_all(struct kmem_cache *s) 3192 { 3193 cpus_read_lock(); 3194 flush_all_cpus_locked(s); 3195 cpus_read_unlock(); 3196 } 3197 3198 /* 3199 * Use the cpu notifier to insure that the cpu slabs are flushed when 3200 * necessary. 3201 */ 3202 static int slub_cpu_dead(unsigned int cpu) 3203 { 3204 struct kmem_cache *s; 3205 3206 mutex_lock(&slab_mutex); 3207 list_for_each_entry(s, &slab_caches, list) 3208 __flush_cpu_slab(s, cpu); 3209 mutex_unlock(&slab_mutex); 3210 return 0; 3211 } 3212 3213 #else /* CONFIG_SLUB_TINY */ 3214 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3215 static inline void flush_all(struct kmem_cache *s) { } 3216 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3217 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3218 #endif /* CONFIG_SLUB_TINY */ 3219 3220 /* 3221 * Check if the objects in a per cpu structure fit numa 3222 * locality expectations. 3223 */ 3224 static inline int node_match(struct slab *slab, int node) 3225 { 3226 #ifdef CONFIG_NUMA 3227 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3228 return 0; 3229 #endif 3230 return 1; 3231 } 3232 3233 #ifdef CONFIG_SLUB_DEBUG 3234 static int count_free(struct slab *slab) 3235 { 3236 return slab->objects - slab->inuse; 3237 } 3238 3239 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3240 { 3241 return atomic_long_read(&n->total_objects); 3242 } 3243 3244 /* Supports checking bulk free of a constructed freelist */ 3245 static inline bool free_debug_processing(struct kmem_cache *s, 3246 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3247 unsigned long addr, depot_stack_handle_t handle) 3248 { 3249 bool checks_ok = false; 3250 void *object = head; 3251 int cnt = 0; 3252 3253 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3254 if (!check_slab(s, slab)) 3255 goto out; 3256 } 3257 3258 if (slab->inuse < *bulk_cnt) { 3259 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3260 slab->inuse, *bulk_cnt); 3261 goto out; 3262 } 3263 3264 next_object: 3265 3266 if (++cnt > *bulk_cnt) 3267 goto out_cnt; 3268 3269 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3270 if (!free_consistency_checks(s, slab, object, addr)) 3271 goto out; 3272 } 3273 3274 if (s->flags & SLAB_STORE_USER) 3275 set_track_update(s, object, TRACK_FREE, addr, handle); 3276 trace(s, slab, object, 0); 3277 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3278 init_object(s, object, SLUB_RED_INACTIVE); 3279 3280 /* Reached end of constructed freelist yet? */ 3281 if (object != tail) { 3282 object = get_freepointer(s, object); 3283 goto next_object; 3284 } 3285 checks_ok = true; 3286 3287 out_cnt: 3288 if (cnt != *bulk_cnt) { 3289 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3290 *bulk_cnt, cnt); 3291 *bulk_cnt = cnt; 3292 } 3293 3294 out: 3295 3296 if (!checks_ok) 3297 slab_fix(s, "Object at 0x%p not freed", object); 3298 3299 return checks_ok; 3300 } 3301 #endif /* CONFIG_SLUB_DEBUG */ 3302 3303 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3304 static unsigned long count_partial(struct kmem_cache_node *n, 3305 int (*get_count)(struct slab *)) 3306 { 3307 unsigned long flags; 3308 unsigned long x = 0; 3309 struct slab *slab; 3310 3311 spin_lock_irqsave(&n->list_lock, flags); 3312 list_for_each_entry(slab, &n->partial, slab_list) 3313 x += get_count(slab); 3314 spin_unlock_irqrestore(&n->list_lock, flags); 3315 return x; 3316 } 3317 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3318 3319 #ifdef CONFIG_SLUB_DEBUG 3320 #define MAX_PARTIAL_TO_SCAN 10000 3321 3322 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3323 { 3324 unsigned long flags; 3325 unsigned long x = 0; 3326 struct slab *slab; 3327 3328 spin_lock_irqsave(&n->list_lock, flags); 3329 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3330 list_for_each_entry(slab, &n->partial, slab_list) 3331 x += slab->objects - slab->inuse; 3332 } else { 3333 /* 3334 * For a long list, approximate the total count of objects in 3335 * it to meet the limit on the number of slabs to scan. 3336 * Scan from both the list's head and tail for better accuracy. 3337 */ 3338 unsigned long scanned = 0; 3339 3340 list_for_each_entry(slab, &n->partial, slab_list) { 3341 x += slab->objects - slab->inuse; 3342 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3343 break; 3344 } 3345 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3346 x += slab->objects - slab->inuse; 3347 if (++scanned == MAX_PARTIAL_TO_SCAN) 3348 break; 3349 } 3350 x = mult_frac(x, n->nr_partial, scanned); 3351 x = min(x, node_nr_objs(n)); 3352 } 3353 spin_unlock_irqrestore(&n->list_lock, flags); 3354 return x; 3355 } 3356 3357 static noinline void 3358 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3359 { 3360 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3361 DEFAULT_RATELIMIT_BURST); 3362 int node; 3363 struct kmem_cache_node *n; 3364 3365 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3366 return; 3367 3368 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 3369 nid, gfpflags, &gfpflags); 3370 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3371 s->name, s->object_size, s->size, oo_order(s->oo), 3372 oo_order(s->min)); 3373 3374 if (oo_order(s->min) > get_order(s->object_size)) 3375 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3376 s->name); 3377 3378 for_each_kmem_cache_node(s, node, n) { 3379 unsigned long nr_slabs; 3380 unsigned long nr_objs; 3381 unsigned long nr_free; 3382 3383 nr_free = count_partial_free_approx(n); 3384 nr_slabs = node_nr_slabs(n); 3385 nr_objs = node_nr_objs(n); 3386 3387 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3388 node, nr_slabs, nr_objs, nr_free); 3389 } 3390 } 3391 #else /* CONFIG_SLUB_DEBUG */ 3392 static inline void 3393 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3394 #endif 3395 3396 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3397 { 3398 if (unlikely(slab_test_pfmemalloc(slab))) 3399 return gfp_pfmemalloc_allowed(gfpflags); 3400 3401 return true; 3402 } 3403 3404 #ifndef CONFIG_SLUB_TINY 3405 static inline bool 3406 __update_cpu_freelist_fast(struct kmem_cache *s, 3407 void *freelist_old, void *freelist_new, 3408 unsigned long tid) 3409 { 3410 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3411 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3412 3413 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3414 &old.full, new.full); 3415 } 3416 3417 /* 3418 * Check the slab->freelist and either transfer the freelist to the 3419 * per cpu freelist or deactivate the slab. 3420 * 3421 * The slab is still frozen if the return value is not NULL. 3422 * 3423 * If this function returns NULL then the slab has been unfrozen. 3424 */ 3425 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3426 { 3427 struct slab new; 3428 unsigned long counters; 3429 void *freelist; 3430 3431 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3432 3433 do { 3434 freelist = slab->freelist; 3435 counters = slab->counters; 3436 3437 new.counters = counters; 3438 3439 new.inuse = slab->objects; 3440 new.frozen = freelist != NULL; 3441 3442 } while (!__slab_update_freelist(s, slab, 3443 freelist, counters, 3444 NULL, new.counters, 3445 "get_freelist")); 3446 3447 return freelist; 3448 } 3449 3450 /* 3451 * Freeze the partial slab and return the pointer to the freelist. 3452 */ 3453 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3454 { 3455 struct slab new; 3456 unsigned long counters; 3457 void *freelist; 3458 3459 do { 3460 freelist = slab->freelist; 3461 counters = slab->counters; 3462 3463 new.counters = counters; 3464 VM_BUG_ON(new.frozen); 3465 3466 new.inuse = slab->objects; 3467 new.frozen = 1; 3468 3469 } while (!slab_update_freelist(s, slab, 3470 freelist, counters, 3471 NULL, new.counters, 3472 "freeze_slab")); 3473 3474 return freelist; 3475 } 3476 3477 /* 3478 * Slow path. The lockless freelist is empty or we need to perform 3479 * debugging duties. 3480 * 3481 * Processing is still very fast if new objects have been freed to the 3482 * regular freelist. In that case we simply take over the regular freelist 3483 * as the lockless freelist and zap the regular freelist. 3484 * 3485 * If that is not working then we fall back to the partial lists. We take the 3486 * first element of the freelist as the object to allocate now and move the 3487 * rest of the freelist to the lockless freelist. 3488 * 3489 * And if we were unable to get a new slab from the partial slab lists then 3490 * we need to allocate a new slab. This is the slowest path since it involves 3491 * a call to the page allocator and the setup of a new slab. 3492 * 3493 * Version of __slab_alloc to use when we know that preemption is 3494 * already disabled (which is the case for bulk allocation). 3495 */ 3496 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3497 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3498 { 3499 void *freelist; 3500 struct slab *slab; 3501 unsigned long flags; 3502 struct partial_context pc; 3503 bool try_thisnode = true; 3504 3505 stat(s, ALLOC_SLOWPATH); 3506 3507 reread_slab: 3508 3509 slab = READ_ONCE(c->slab); 3510 if (!slab) { 3511 /* 3512 * if the node is not online or has no normal memory, just 3513 * ignore the node constraint 3514 */ 3515 if (unlikely(node != NUMA_NO_NODE && 3516 !node_isset(node, slab_nodes))) 3517 node = NUMA_NO_NODE; 3518 goto new_slab; 3519 } 3520 3521 if (unlikely(!node_match(slab, node))) { 3522 /* 3523 * same as above but node_match() being false already 3524 * implies node != NUMA_NO_NODE 3525 */ 3526 if (!node_isset(node, slab_nodes)) { 3527 node = NUMA_NO_NODE; 3528 } else { 3529 stat(s, ALLOC_NODE_MISMATCH); 3530 goto deactivate_slab; 3531 } 3532 } 3533 3534 /* 3535 * By rights, we should be searching for a slab page that was 3536 * PFMEMALLOC but right now, we are losing the pfmemalloc 3537 * information when the page leaves the per-cpu allocator 3538 */ 3539 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3540 goto deactivate_slab; 3541 3542 /* must check again c->slab in case we got preempted and it changed */ 3543 local_lock_irqsave(&s->cpu_slab->lock, flags); 3544 if (unlikely(slab != c->slab)) { 3545 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3546 goto reread_slab; 3547 } 3548 freelist = c->freelist; 3549 if (freelist) 3550 goto load_freelist; 3551 3552 freelist = get_freelist(s, slab); 3553 3554 if (!freelist) { 3555 c->slab = NULL; 3556 c->tid = next_tid(c->tid); 3557 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3558 stat(s, DEACTIVATE_BYPASS); 3559 goto new_slab; 3560 } 3561 3562 stat(s, ALLOC_REFILL); 3563 3564 load_freelist: 3565 3566 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3567 3568 /* 3569 * freelist is pointing to the list of objects to be used. 3570 * slab is pointing to the slab from which the objects are obtained. 3571 * That slab must be frozen for per cpu allocations to work. 3572 */ 3573 VM_BUG_ON(!c->slab->frozen); 3574 c->freelist = get_freepointer(s, freelist); 3575 c->tid = next_tid(c->tid); 3576 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3577 return freelist; 3578 3579 deactivate_slab: 3580 3581 local_lock_irqsave(&s->cpu_slab->lock, flags); 3582 if (slab != c->slab) { 3583 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3584 goto reread_slab; 3585 } 3586 freelist = c->freelist; 3587 c->slab = NULL; 3588 c->freelist = NULL; 3589 c->tid = next_tid(c->tid); 3590 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3591 deactivate_slab(s, slab, freelist); 3592 3593 new_slab: 3594 3595 #ifdef CONFIG_SLUB_CPU_PARTIAL 3596 while (slub_percpu_partial(c)) { 3597 local_lock_irqsave(&s->cpu_slab->lock, flags); 3598 if (unlikely(c->slab)) { 3599 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3600 goto reread_slab; 3601 } 3602 if (unlikely(!slub_percpu_partial(c))) { 3603 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3604 /* we were preempted and partial list got empty */ 3605 goto new_objects; 3606 } 3607 3608 slab = slub_percpu_partial(c); 3609 slub_set_percpu_partial(c, slab); 3610 3611 if (likely(node_match(slab, node) && 3612 pfmemalloc_match(slab, gfpflags))) { 3613 c->slab = slab; 3614 freelist = get_freelist(s, slab); 3615 VM_BUG_ON(!freelist); 3616 stat(s, CPU_PARTIAL_ALLOC); 3617 goto load_freelist; 3618 } 3619 3620 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3621 3622 slab->next = NULL; 3623 __put_partials(s, slab); 3624 } 3625 #endif 3626 3627 new_objects: 3628 3629 pc.flags = gfpflags; 3630 /* 3631 * When a preferred node is indicated but no __GFP_THISNODE 3632 * 3633 * 1) try to get a partial slab from target node only by having 3634 * __GFP_THISNODE in pc.flags for get_partial() 3635 * 2) if 1) failed, try to allocate a new slab from target node with 3636 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3637 * 3) if 2) failed, retry with original gfpflags which will allow 3638 * get_partial() try partial lists of other nodes before potentially 3639 * allocating new page from other nodes 3640 */ 3641 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3642 && try_thisnode)) 3643 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3644 3645 pc.orig_size = orig_size; 3646 slab = get_partial(s, node, &pc); 3647 if (slab) { 3648 if (kmem_cache_debug(s)) { 3649 freelist = pc.object; 3650 /* 3651 * For debug caches here we had to go through 3652 * alloc_single_from_partial() so just store the 3653 * tracking info and return the object. 3654 */ 3655 if (s->flags & SLAB_STORE_USER) 3656 set_track(s, freelist, TRACK_ALLOC, addr); 3657 3658 return freelist; 3659 } 3660 3661 freelist = freeze_slab(s, slab); 3662 goto retry_load_slab; 3663 } 3664 3665 slub_put_cpu_ptr(s->cpu_slab); 3666 slab = new_slab(s, pc.flags, node); 3667 c = slub_get_cpu_ptr(s->cpu_slab); 3668 3669 if (unlikely(!slab)) { 3670 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3671 && try_thisnode) { 3672 try_thisnode = false; 3673 goto new_objects; 3674 } 3675 slab_out_of_memory(s, gfpflags, node); 3676 return NULL; 3677 } 3678 3679 stat(s, ALLOC_SLAB); 3680 3681 if (kmem_cache_debug(s)) { 3682 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3683 3684 if (unlikely(!freelist)) 3685 goto new_objects; 3686 3687 if (s->flags & SLAB_STORE_USER) 3688 set_track(s, freelist, TRACK_ALLOC, addr); 3689 3690 return freelist; 3691 } 3692 3693 /* 3694 * No other reference to the slab yet so we can 3695 * muck around with it freely without cmpxchg 3696 */ 3697 freelist = slab->freelist; 3698 slab->freelist = NULL; 3699 slab->inuse = slab->objects; 3700 slab->frozen = 1; 3701 3702 inc_slabs_node(s, slab_nid(slab), slab->objects); 3703 3704 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3705 /* 3706 * For !pfmemalloc_match() case we don't load freelist so that 3707 * we don't make further mismatched allocations easier. 3708 */ 3709 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3710 return freelist; 3711 } 3712 3713 retry_load_slab: 3714 3715 local_lock_irqsave(&s->cpu_slab->lock, flags); 3716 if (unlikely(c->slab)) { 3717 void *flush_freelist = c->freelist; 3718 struct slab *flush_slab = c->slab; 3719 3720 c->slab = NULL; 3721 c->freelist = NULL; 3722 c->tid = next_tid(c->tid); 3723 3724 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3725 3726 deactivate_slab(s, flush_slab, flush_freelist); 3727 3728 stat(s, CPUSLAB_FLUSH); 3729 3730 goto retry_load_slab; 3731 } 3732 c->slab = slab; 3733 3734 goto load_freelist; 3735 } 3736 3737 /* 3738 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3739 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3740 * pointer. 3741 */ 3742 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3743 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3744 { 3745 void *p; 3746 3747 #ifdef CONFIG_PREEMPT_COUNT 3748 /* 3749 * We may have been preempted and rescheduled on a different 3750 * cpu before disabling preemption. Need to reload cpu area 3751 * pointer. 3752 */ 3753 c = slub_get_cpu_ptr(s->cpu_slab); 3754 #endif 3755 3756 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3757 #ifdef CONFIG_PREEMPT_COUNT 3758 slub_put_cpu_ptr(s->cpu_slab); 3759 #endif 3760 return p; 3761 } 3762 3763 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3764 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3765 { 3766 struct kmem_cache_cpu *c; 3767 struct slab *slab; 3768 unsigned long tid; 3769 void *object; 3770 3771 redo: 3772 /* 3773 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3774 * enabled. We may switch back and forth between cpus while 3775 * reading from one cpu area. That does not matter as long 3776 * as we end up on the original cpu again when doing the cmpxchg. 3777 * 3778 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3779 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3780 * the tid. If we are preempted and switched to another cpu between the 3781 * two reads, it's OK as the two are still associated with the same cpu 3782 * and cmpxchg later will validate the cpu. 3783 */ 3784 c = raw_cpu_ptr(s->cpu_slab); 3785 tid = READ_ONCE(c->tid); 3786 3787 /* 3788 * Irqless object alloc/free algorithm used here depends on sequence 3789 * of fetching cpu_slab's data. tid should be fetched before anything 3790 * on c to guarantee that object and slab associated with previous tid 3791 * won't be used with current tid. If we fetch tid first, object and 3792 * slab could be one associated with next tid and our alloc/free 3793 * request will be failed. In this case, we will retry. So, no problem. 3794 */ 3795 barrier(); 3796 3797 /* 3798 * The transaction ids are globally unique per cpu and per operation on 3799 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3800 * occurs on the right processor and that there was no operation on the 3801 * linked list in between. 3802 */ 3803 3804 object = c->freelist; 3805 slab = c->slab; 3806 3807 if (!USE_LOCKLESS_FAST_PATH() || 3808 unlikely(!object || !slab || !node_match(slab, node))) { 3809 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3810 } else { 3811 void *next_object = get_freepointer_safe(s, object); 3812 3813 /* 3814 * The cmpxchg will only match if there was no additional 3815 * operation and if we are on the right processor. 3816 * 3817 * The cmpxchg does the following atomically (without lock 3818 * semantics!) 3819 * 1. Relocate first pointer to the current per cpu area. 3820 * 2. Verify that tid and freelist have not been changed 3821 * 3. If they were not changed replace tid and freelist 3822 * 3823 * Since this is without lock semantics the protection is only 3824 * against code executing on this cpu *not* from access by 3825 * other cpus. 3826 */ 3827 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3828 note_cmpxchg_failure("slab_alloc", s, tid); 3829 goto redo; 3830 } 3831 prefetch_freepointer(s, next_object); 3832 stat(s, ALLOC_FASTPATH); 3833 } 3834 3835 return object; 3836 } 3837 #else /* CONFIG_SLUB_TINY */ 3838 static void *__slab_alloc_node(struct kmem_cache *s, 3839 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3840 { 3841 struct partial_context pc; 3842 struct slab *slab; 3843 void *object; 3844 3845 pc.flags = gfpflags; 3846 pc.orig_size = orig_size; 3847 slab = get_partial(s, node, &pc); 3848 3849 if (slab) 3850 return pc.object; 3851 3852 slab = new_slab(s, gfpflags, node); 3853 if (unlikely(!slab)) { 3854 slab_out_of_memory(s, gfpflags, node); 3855 return NULL; 3856 } 3857 3858 object = alloc_single_from_new_slab(s, slab, orig_size); 3859 3860 return object; 3861 } 3862 #endif /* CONFIG_SLUB_TINY */ 3863 3864 /* 3865 * If the object has been wiped upon free, make sure it's fully initialized by 3866 * zeroing out freelist pointer. 3867 */ 3868 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3869 void *obj) 3870 { 3871 if (unlikely(slab_want_init_on_free(s)) && obj && 3872 !freeptr_outside_object(s)) 3873 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3874 0, sizeof(void *)); 3875 } 3876 3877 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 3878 { 3879 if (__should_failslab(s, gfpflags)) 3880 return -ENOMEM; 3881 return 0; 3882 } 3883 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 3884 3885 static __fastpath_inline 3886 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 3887 { 3888 flags &= gfp_allowed_mask; 3889 3890 might_alloc(flags); 3891 3892 if (unlikely(should_failslab(s, flags))) 3893 return NULL; 3894 3895 return s; 3896 } 3897 3898 static __fastpath_inline 3899 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3900 gfp_t flags, size_t size, void **p, bool init, 3901 unsigned int orig_size) 3902 { 3903 unsigned int zero_size = s->object_size; 3904 struct slabobj_ext *obj_exts; 3905 bool kasan_init = init; 3906 size_t i; 3907 gfp_t init_flags = flags & gfp_allowed_mask; 3908 3909 /* 3910 * For kmalloc object, the allocated memory size(object_size) is likely 3911 * larger than the requested size(orig_size). If redzone check is 3912 * enabled for the extra space, don't zero it, as it will be redzoned 3913 * soon. The redzone operation for this extra space could be seen as a 3914 * replacement of current poisoning under certain debug option, and 3915 * won't break other sanity checks. 3916 */ 3917 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 3918 (s->flags & SLAB_KMALLOC)) 3919 zero_size = orig_size; 3920 3921 /* 3922 * When slab_debug is enabled, avoid memory initialization integrated 3923 * into KASAN and instead zero out the memory via the memset below with 3924 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 3925 * cause false-positive reports. This does not lead to a performance 3926 * penalty on production builds, as slab_debug is not intended to be 3927 * enabled there. 3928 */ 3929 if (__slub_debug_enabled()) 3930 kasan_init = false; 3931 3932 /* 3933 * As memory initialization might be integrated into KASAN, 3934 * kasan_slab_alloc and initialization memset must be 3935 * kept together to avoid discrepancies in behavior. 3936 * 3937 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 3938 */ 3939 for (i = 0; i < size; i++) { 3940 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 3941 if (p[i] && init && (!kasan_init || 3942 !kasan_has_integrated_init())) 3943 memset(p[i], 0, zero_size); 3944 kmemleak_alloc_recursive(p[i], s->object_size, 1, 3945 s->flags, init_flags); 3946 kmsan_slab_alloc(s, p[i], init_flags); 3947 if (need_slab_obj_ext()) { 3948 obj_exts = prepare_slab_obj_exts_hook(s, flags, p[i]); 3949 #ifdef CONFIG_MEM_ALLOC_PROFILING 3950 /* 3951 * Currently obj_exts is used only for allocation profiling. 3952 * If other users appear then mem_alloc_profiling_enabled() 3953 * check should be added before alloc_tag_add(). 3954 */ 3955 if (likely(obj_exts)) 3956 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 3957 #endif 3958 } 3959 } 3960 3961 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 3962 } 3963 3964 /* 3965 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3966 * have the fastpath folded into their functions. So no function call 3967 * overhead for requests that can be satisfied on the fastpath. 3968 * 3969 * The fastpath works by first checking if the lockless freelist can be used. 3970 * If not then __slab_alloc is called for slow processing. 3971 * 3972 * Otherwise we can simply pick the next object from the lockless free list. 3973 */ 3974 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3975 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3976 { 3977 void *object; 3978 bool init = false; 3979 3980 s = slab_pre_alloc_hook(s, gfpflags); 3981 if (unlikely(!s)) 3982 return NULL; 3983 3984 object = kfence_alloc(s, orig_size, gfpflags); 3985 if (unlikely(object)) 3986 goto out; 3987 3988 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 3989 3990 maybe_wipe_obj_freeptr(s, object); 3991 init = slab_want_init_on_alloc(gfpflags, s); 3992 3993 out: 3994 /* 3995 * When init equals 'true', like for kzalloc() family, only 3996 * @orig_size bytes might be zeroed instead of s->object_size 3997 * In case this fails due to memcg_slab_post_alloc_hook(), 3998 * object is set to NULL 3999 */ 4000 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4001 4002 return object; 4003 } 4004 4005 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4006 { 4007 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4008 s->object_size); 4009 4010 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4011 4012 return ret; 4013 } 4014 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4015 4016 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4017 gfp_t gfpflags) 4018 { 4019 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4020 s->object_size); 4021 4022 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4023 4024 return ret; 4025 } 4026 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4027 4028 /** 4029 * kmem_cache_alloc_node - Allocate an object on the specified node 4030 * @s: The cache to allocate from. 4031 * @gfpflags: See kmalloc(). 4032 * @node: node number of the target node. 4033 * 4034 * Identical to kmem_cache_alloc but it will allocate memory on the given 4035 * node, which can improve the performance for cpu bound structures. 4036 * 4037 * Fallback to other node is possible if __GFP_THISNODE is not set. 4038 * 4039 * Return: pointer to the new object or %NULL in case of error 4040 */ 4041 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4042 { 4043 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4044 4045 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4046 4047 return ret; 4048 } 4049 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4050 4051 /* 4052 * To avoid unnecessary overhead, we pass through large allocation requests 4053 * directly to the page allocator. We use __GFP_COMP, because we will need to 4054 * know the allocation order to free the pages properly in kfree. 4055 */ 4056 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node) 4057 { 4058 struct folio *folio; 4059 void *ptr = NULL; 4060 unsigned int order = get_order(size); 4061 4062 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4063 flags = kmalloc_fix_flags(flags); 4064 4065 flags |= __GFP_COMP; 4066 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4067 if (folio) { 4068 ptr = folio_address(folio); 4069 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4070 PAGE_SIZE << order); 4071 } 4072 4073 ptr = kasan_kmalloc_large(ptr, size, flags); 4074 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4075 kmemleak_alloc(ptr, size, 1, flags); 4076 kmsan_kmalloc_large(ptr, size, flags); 4077 4078 return ptr; 4079 } 4080 4081 void *kmalloc_large_noprof(size_t size, gfp_t flags) 4082 { 4083 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE); 4084 4085 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4086 flags, NUMA_NO_NODE); 4087 return ret; 4088 } 4089 EXPORT_SYMBOL(kmalloc_large_noprof); 4090 4091 void *kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4092 { 4093 void *ret = __kmalloc_large_node(size, flags, node); 4094 4095 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4096 flags, node); 4097 return ret; 4098 } 4099 EXPORT_SYMBOL(kmalloc_large_node_noprof); 4100 4101 static __always_inline 4102 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, 4103 unsigned long caller) 4104 { 4105 struct kmem_cache *s; 4106 void *ret; 4107 4108 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4109 ret = __kmalloc_large_node(size, flags, node); 4110 trace_kmalloc(caller, ret, size, 4111 PAGE_SIZE << get_order(size), flags, node); 4112 return ret; 4113 } 4114 4115 if (unlikely(!size)) 4116 return ZERO_SIZE_PTR; 4117 4118 s = kmalloc_slab(size, flags, caller); 4119 4120 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4121 ret = kasan_kmalloc(s, ret, size, flags); 4122 trace_kmalloc(caller, ret, size, s->size, flags, node); 4123 return ret; 4124 } 4125 4126 void *__kmalloc_node_noprof(size_t size, gfp_t flags, int node) 4127 { 4128 return __do_kmalloc_node(size, flags, node, _RET_IP_); 4129 } 4130 EXPORT_SYMBOL(__kmalloc_node_noprof); 4131 4132 void *__kmalloc_noprof(size_t size, gfp_t flags) 4133 { 4134 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_); 4135 } 4136 EXPORT_SYMBOL(__kmalloc_noprof); 4137 4138 void *kmalloc_node_track_caller_noprof(size_t size, gfp_t flags, 4139 int node, unsigned long caller) 4140 { 4141 return __do_kmalloc_node(size, flags, node, caller); 4142 } 4143 EXPORT_SYMBOL(kmalloc_node_track_caller_noprof); 4144 4145 void *kmalloc_trace_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4146 { 4147 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4148 _RET_IP_, size); 4149 4150 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4151 4152 ret = kasan_kmalloc(s, ret, size, gfpflags); 4153 return ret; 4154 } 4155 EXPORT_SYMBOL(kmalloc_trace_noprof); 4156 4157 void *kmalloc_node_trace_noprof(struct kmem_cache *s, gfp_t gfpflags, 4158 int node, size_t size) 4159 { 4160 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4161 4162 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4163 4164 ret = kasan_kmalloc(s, ret, size, gfpflags); 4165 return ret; 4166 } 4167 EXPORT_SYMBOL(kmalloc_node_trace_noprof); 4168 4169 static noinline void free_to_partial_list( 4170 struct kmem_cache *s, struct slab *slab, 4171 void *head, void *tail, int bulk_cnt, 4172 unsigned long addr) 4173 { 4174 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4175 struct slab *slab_free = NULL; 4176 int cnt = bulk_cnt; 4177 unsigned long flags; 4178 depot_stack_handle_t handle = 0; 4179 4180 if (s->flags & SLAB_STORE_USER) 4181 handle = set_track_prepare(); 4182 4183 spin_lock_irqsave(&n->list_lock, flags); 4184 4185 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4186 void *prior = slab->freelist; 4187 4188 /* Perform the actual freeing while we still hold the locks */ 4189 slab->inuse -= cnt; 4190 set_freepointer(s, tail, prior); 4191 slab->freelist = head; 4192 4193 /* 4194 * If the slab is empty, and node's partial list is full, 4195 * it should be discarded anyway no matter it's on full or 4196 * partial list. 4197 */ 4198 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4199 slab_free = slab; 4200 4201 if (!prior) { 4202 /* was on full list */ 4203 remove_full(s, n, slab); 4204 if (!slab_free) { 4205 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4206 stat(s, FREE_ADD_PARTIAL); 4207 } 4208 } else if (slab_free) { 4209 remove_partial(n, slab); 4210 stat(s, FREE_REMOVE_PARTIAL); 4211 } 4212 } 4213 4214 if (slab_free) { 4215 /* 4216 * Update the counters while still holding n->list_lock to 4217 * prevent spurious validation warnings 4218 */ 4219 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4220 } 4221 4222 spin_unlock_irqrestore(&n->list_lock, flags); 4223 4224 if (slab_free) { 4225 stat(s, FREE_SLAB); 4226 free_slab(s, slab_free); 4227 } 4228 } 4229 4230 /* 4231 * Slow path handling. This may still be called frequently since objects 4232 * have a longer lifetime than the cpu slabs in most processing loads. 4233 * 4234 * So we still attempt to reduce cache line usage. Just take the slab 4235 * lock and free the item. If there is no additional partial slab 4236 * handling required then we can return immediately. 4237 */ 4238 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4239 void *head, void *tail, int cnt, 4240 unsigned long addr) 4241 4242 { 4243 void *prior; 4244 int was_frozen; 4245 struct slab new; 4246 unsigned long counters; 4247 struct kmem_cache_node *n = NULL; 4248 unsigned long flags; 4249 bool on_node_partial; 4250 4251 stat(s, FREE_SLOWPATH); 4252 4253 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4254 free_to_partial_list(s, slab, head, tail, cnt, addr); 4255 return; 4256 } 4257 4258 do { 4259 if (unlikely(n)) { 4260 spin_unlock_irqrestore(&n->list_lock, flags); 4261 n = NULL; 4262 } 4263 prior = slab->freelist; 4264 counters = slab->counters; 4265 set_freepointer(s, tail, prior); 4266 new.counters = counters; 4267 was_frozen = new.frozen; 4268 new.inuse -= cnt; 4269 if ((!new.inuse || !prior) && !was_frozen) { 4270 /* Needs to be taken off a list */ 4271 if (!kmem_cache_has_cpu_partial(s) || prior) { 4272 4273 n = get_node(s, slab_nid(slab)); 4274 /* 4275 * Speculatively acquire the list_lock. 4276 * If the cmpxchg does not succeed then we may 4277 * drop the list_lock without any processing. 4278 * 4279 * Otherwise the list_lock will synchronize with 4280 * other processors updating the list of slabs. 4281 */ 4282 spin_lock_irqsave(&n->list_lock, flags); 4283 4284 on_node_partial = slab_test_node_partial(slab); 4285 } 4286 } 4287 4288 } while (!slab_update_freelist(s, slab, 4289 prior, counters, 4290 head, new.counters, 4291 "__slab_free")); 4292 4293 if (likely(!n)) { 4294 4295 if (likely(was_frozen)) { 4296 /* 4297 * The list lock was not taken therefore no list 4298 * activity can be necessary. 4299 */ 4300 stat(s, FREE_FROZEN); 4301 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4302 /* 4303 * If we started with a full slab then put it onto the 4304 * per cpu partial list. 4305 */ 4306 put_cpu_partial(s, slab, 1); 4307 stat(s, CPU_PARTIAL_FREE); 4308 } 4309 4310 return; 4311 } 4312 4313 /* 4314 * This slab was partially empty but not on the per-node partial list, 4315 * in which case we shouldn't manipulate its list, just return. 4316 */ 4317 if (prior && !on_node_partial) { 4318 spin_unlock_irqrestore(&n->list_lock, flags); 4319 return; 4320 } 4321 4322 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4323 goto slab_empty; 4324 4325 /* 4326 * Objects left in the slab. If it was not on the partial list before 4327 * then add it. 4328 */ 4329 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4330 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4331 stat(s, FREE_ADD_PARTIAL); 4332 } 4333 spin_unlock_irqrestore(&n->list_lock, flags); 4334 return; 4335 4336 slab_empty: 4337 if (prior) { 4338 /* 4339 * Slab on the partial list. 4340 */ 4341 remove_partial(n, slab); 4342 stat(s, FREE_REMOVE_PARTIAL); 4343 } 4344 4345 spin_unlock_irqrestore(&n->list_lock, flags); 4346 stat(s, FREE_SLAB); 4347 discard_slab(s, slab); 4348 } 4349 4350 #ifndef CONFIG_SLUB_TINY 4351 /* 4352 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4353 * can perform fastpath freeing without additional function calls. 4354 * 4355 * The fastpath is only possible if we are freeing to the current cpu slab 4356 * of this processor. This typically the case if we have just allocated 4357 * the item before. 4358 * 4359 * If fastpath is not possible then fall back to __slab_free where we deal 4360 * with all sorts of special processing. 4361 * 4362 * Bulk free of a freelist with several objects (all pointing to the 4363 * same slab) possible by specifying head and tail ptr, plus objects 4364 * count (cnt). Bulk free indicated by tail pointer being set. 4365 */ 4366 static __always_inline void do_slab_free(struct kmem_cache *s, 4367 struct slab *slab, void *head, void *tail, 4368 int cnt, unsigned long addr) 4369 { 4370 struct kmem_cache_cpu *c; 4371 unsigned long tid; 4372 void **freelist; 4373 4374 redo: 4375 /* 4376 * Determine the currently cpus per cpu slab. 4377 * The cpu may change afterward. However that does not matter since 4378 * data is retrieved via this pointer. If we are on the same cpu 4379 * during the cmpxchg then the free will succeed. 4380 */ 4381 c = raw_cpu_ptr(s->cpu_slab); 4382 tid = READ_ONCE(c->tid); 4383 4384 /* Same with comment on barrier() in __slab_alloc_node() */ 4385 barrier(); 4386 4387 if (unlikely(slab != c->slab)) { 4388 __slab_free(s, slab, head, tail, cnt, addr); 4389 return; 4390 } 4391 4392 if (USE_LOCKLESS_FAST_PATH()) { 4393 freelist = READ_ONCE(c->freelist); 4394 4395 set_freepointer(s, tail, freelist); 4396 4397 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4398 note_cmpxchg_failure("slab_free", s, tid); 4399 goto redo; 4400 } 4401 } else { 4402 /* Update the free list under the local lock */ 4403 local_lock(&s->cpu_slab->lock); 4404 c = this_cpu_ptr(s->cpu_slab); 4405 if (unlikely(slab != c->slab)) { 4406 local_unlock(&s->cpu_slab->lock); 4407 goto redo; 4408 } 4409 tid = c->tid; 4410 freelist = c->freelist; 4411 4412 set_freepointer(s, tail, freelist); 4413 c->freelist = head; 4414 c->tid = next_tid(tid); 4415 4416 local_unlock(&s->cpu_slab->lock); 4417 } 4418 stat_add(s, FREE_FASTPATH, cnt); 4419 } 4420 #else /* CONFIG_SLUB_TINY */ 4421 static void do_slab_free(struct kmem_cache *s, 4422 struct slab *slab, void *head, void *tail, 4423 int cnt, unsigned long addr) 4424 { 4425 __slab_free(s, slab, head, tail, cnt, addr); 4426 } 4427 #endif /* CONFIG_SLUB_TINY */ 4428 4429 static __fastpath_inline 4430 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4431 unsigned long addr) 4432 { 4433 memcg_slab_free_hook(s, slab, &object, 1); 4434 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4435 4436 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4437 do_slab_free(s, slab, object, object, 1, addr); 4438 } 4439 4440 #ifdef CONFIG_MEMCG_KMEM 4441 /* Do not inline the rare memcg charging failed path into the allocation path */ 4442 static noinline 4443 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4444 { 4445 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4446 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4447 } 4448 #endif 4449 4450 static __fastpath_inline 4451 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4452 void *tail, void **p, int cnt, unsigned long addr) 4453 { 4454 memcg_slab_free_hook(s, slab, p, cnt); 4455 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4456 /* 4457 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4458 * to remove objects, whose reuse must be delayed. 4459 */ 4460 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4461 do_slab_free(s, slab, head, tail, cnt, addr); 4462 } 4463 4464 #ifdef CONFIG_KASAN_GENERIC 4465 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4466 { 4467 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4468 } 4469 #endif 4470 4471 static inline struct kmem_cache *virt_to_cache(const void *obj) 4472 { 4473 struct slab *slab; 4474 4475 slab = virt_to_slab(obj); 4476 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4477 return NULL; 4478 return slab->slab_cache; 4479 } 4480 4481 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4482 { 4483 struct kmem_cache *cachep; 4484 4485 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4486 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4487 return s; 4488 4489 cachep = virt_to_cache(x); 4490 if (WARN(cachep && cachep != s, 4491 "%s: Wrong slab cache. %s but object is from %s\n", 4492 __func__, s->name, cachep->name)) 4493 print_tracking(cachep, x); 4494 return cachep; 4495 } 4496 4497 /** 4498 * kmem_cache_free - Deallocate an object 4499 * @s: The cache the allocation was from. 4500 * @x: The previously allocated object. 4501 * 4502 * Free an object which was previously allocated from this 4503 * cache. 4504 */ 4505 void kmem_cache_free(struct kmem_cache *s, void *x) 4506 { 4507 s = cache_from_obj(s, x); 4508 if (!s) 4509 return; 4510 trace_kmem_cache_free(_RET_IP_, x, s); 4511 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4512 } 4513 EXPORT_SYMBOL(kmem_cache_free); 4514 4515 static void free_large_kmalloc(struct folio *folio, void *object) 4516 { 4517 unsigned int order = folio_order(folio); 4518 4519 if (WARN_ON_ONCE(order == 0)) 4520 pr_warn_once("object pointer: 0x%p\n", object); 4521 4522 kmemleak_free(object); 4523 kasan_kfree_large(object); 4524 kmsan_kfree_large(object); 4525 4526 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4527 -(PAGE_SIZE << order)); 4528 folio_put(folio); 4529 } 4530 4531 /** 4532 * kfree - free previously allocated memory 4533 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4534 * 4535 * If @object is NULL, no operation is performed. 4536 */ 4537 void kfree(const void *object) 4538 { 4539 struct folio *folio; 4540 struct slab *slab; 4541 struct kmem_cache *s; 4542 void *x = (void *)object; 4543 4544 trace_kfree(_RET_IP_, object); 4545 4546 if (unlikely(ZERO_OR_NULL_PTR(object))) 4547 return; 4548 4549 folio = virt_to_folio(object); 4550 if (unlikely(!folio_test_slab(folio))) { 4551 free_large_kmalloc(folio, (void *)object); 4552 return; 4553 } 4554 4555 slab = folio_slab(folio); 4556 s = slab->slab_cache; 4557 slab_free(s, slab, x, _RET_IP_); 4558 } 4559 EXPORT_SYMBOL(kfree); 4560 4561 struct detached_freelist { 4562 struct slab *slab; 4563 void *tail; 4564 void *freelist; 4565 int cnt; 4566 struct kmem_cache *s; 4567 }; 4568 4569 /* 4570 * This function progressively scans the array with free objects (with 4571 * a limited look ahead) and extract objects belonging to the same 4572 * slab. It builds a detached freelist directly within the given 4573 * slab/objects. This can happen without any need for 4574 * synchronization, because the objects are owned by running process. 4575 * The freelist is build up as a single linked list in the objects. 4576 * The idea is, that this detached freelist can then be bulk 4577 * transferred to the real freelist(s), but only requiring a single 4578 * synchronization primitive. Look ahead in the array is limited due 4579 * to performance reasons. 4580 */ 4581 static inline 4582 int build_detached_freelist(struct kmem_cache *s, size_t size, 4583 void **p, struct detached_freelist *df) 4584 { 4585 int lookahead = 3; 4586 void *object; 4587 struct folio *folio; 4588 size_t same; 4589 4590 object = p[--size]; 4591 folio = virt_to_folio(object); 4592 if (!s) { 4593 /* Handle kalloc'ed objects */ 4594 if (unlikely(!folio_test_slab(folio))) { 4595 free_large_kmalloc(folio, object); 4596 df->slab = NULL; 4597 return size; 4598 } 4599 /* Derive kmem_cache from object */ 4600 df->slab = folio_slab(folio); 4601 df->s = df->slab->slab_cache; 4602 } else { 4603 df->slab = folio_slab(folio); 4604 df->s = cache_from_obj(s, object); /* Support for memcg */ 4605 } 4606 4607 /* Start new detached freelist */ 4608 df->tail = object; 4609 df->freelist = object; 4610 df->cnt = 1; 4611 4612 if (is_kfence_address(object)) 4613 return size; 4614 4615 set_freepointer(df->s, object, NULL); 4616 4617 same = size; 4618 while (size) { 4619 object = p[--size]; 4620 /* df->slab is always set at this point */ 4621 if (df->slab == virt_to_slab(object)) { 4622 /* Opportunity build freelist */ 4623 set_freepointer(df->s, object, df->freelist); 4624 df->freelist = object; 4625 df->cnt++; 4626 same--; 4627 if (size != same) 4628 swap(p[size], p[same]); 4629 continue; 4630 } 4631 4632 /* Limit look ahead search */ 4633 if (!--lookahead) 4634 break; 4635 } 4636 4637 return same; 4638 } 4639 4640 /* 4641 * Internal bulk free of objects that were not initialised by the post alloc 4642 * hooks and thus should not be processed by the free hooks 4643 */ 4644 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4645 { 4646 if (!size) 4647 return; 4648 4649 do { 4650 struct detached_freelist df; 4651 4652 size = build_detached_freelist(s, size, p, &df); 4653 if (!df.slab) 4654 continue; 4655 4656 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4657 _RET_IP_); 4658 } while (likely(size)); 4659 } 4660 4661 /* Note that interrupts must be enabled when calling this function. */ 4662 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4663 { 4664 if (!size) 4665 return; 4666 4667 do { 4668 struct detached_freelist df; 4669 4670 size = build_detached_freelist(s, size, p, &df); 4671 if (!df.slab) 4672 continue; 4673 4674 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4675 df.cnt, _RET_IP_); 4676 } while (likely(size)); 4677 } 4678 EXPORT_SYMBOL(kmem_cache_free_bulk); 4679 4680 #ifndef CONFIG_SLUB_TINY 4681 static inline 4682 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4683 void **p) 4684 { 4685 struct kmem_cache_cpu *c; 4686 unsigned long irqflags; 4687 int i; 4688 4689 /* 4690 * Drain objects in the per cpu slab, while disabling local 4691 * IRQs, which protects against PREEMPT and interrupts 4692 * handlers invoking normal fastpath. 4693 */ 4694 c = slub_get_cpu_ptr(s->cpu_slab); 4695 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4696 4697 for (i = 0; i < size; i++) { 4698 void *object = kfence_alloc(s, s->object_size, flags); 4699 4700 if (unlikely(object)) { 4701 p[i] = object; 4702 continue; 4703 } 4704 4705 object = c->freelist; 4706 if (unlikely(!object)) { 4707 /* 4708 * We may have removed an object from c->freelist using 4709 * the fastpath in the previous iteration; in that case, 4710 * c->tid has not been bumped yet. 4711 * Since ___slab_alloc() may reenable interrupts while 4712 * allocating memory, we should bump c->tid now. 4713 */ 4714 c->tid = next_tid(c->tid); 4715 4716 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4717 4718 /* 4719 * Invoking slow path likely have side-effect 4720 * of re-populating per CPU c->freelist 4721 */ 4722 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 4723 _RET_IP_, c, s->object_size); 4724 if (unlikely(!p[i])) 4725 goto error; 4726 4727 c = this_cpu_ptr(s->cpu_slab); 4728 maybe_wipe_obj_freeptr(s, p[i]); 4729 4730 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4731 4732 continue; /* goto for-loop */ 4733 } 4734 c->freelist = get_freepointer(s, object); 4735 p[i] = object; 4736 maybe_wipe_obj_freeptr(s, p[i]); 4737 stat(s, ALLOC_FASTPATH); 4738 } 4739 c->tid = next_tid(c->tid); 4740 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4741 slub_put_cpu_ptr(s->cpu_slab); 4742 4743 return i; 4744 4745 error: 4746 slub_put_cpu_ptr(s->cpu_slab); 4747 __kmem_cache_free_bulk(s, i, p); 4748 return 0; 4749 4750 } 4751 #else /* CONFIG_SLUB_TINY */ 4752 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4753 size_t size, void **p) 4754 { 4755 int i; 4756 4757 for (i = 0; i < size; i++) { 4758 void *object = kfence_alloc(s, s->object_size, flags); 4759 4760 if (unlikely(object)) { 4761 p[i] = object; 4762 continue; 4763 } 4764 4765 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4766 _RET_IP_, s->object_size); 4767 if (unlikely(!p[i])) 4768 goto error; 4769 4770 maybe_wipe_obj_freeptr(s, p[i]); 4771 } 4772 4773 return i; 4774 4775 error: 4776 __kmem_cache_free_bulk(s, i, p); 4777 return 0; 4778 } 4779 #endif /* CONFIG_SLUB_TINY */ 4780 4781 /* Note that interrupts must be enabled when calling this function. */ 4782 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 4783 void **p) 4784 { 4785 int i; 4786 4787 if (!size) 4788 return 0; 4789 4790 s = slab_pre_alloc_hook(s, flags); 4791 if (unlikely(!s)) 4792 return 0; 4793 4794 i = __kmem_cache_alloc_bulk(s, flags, size, p); 4795 if (unlikely(i == 0)) 4796 return 0; 4797 4798 /* 4799 * memcg and kmem_cache debug support and memory initialization. 4800 * Done outside of the IRQ disabled fastpath loop. 4801 */ 4802 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 4803 slab_want_init_on_alloc(flags, s), s->object_size))) { 4804 return 0; 4805 } 4806 return i; 4807 } 4808 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 4809 4810 4811 /* 4812 * Object placement in a slab is made very easy because we always start at 4813 * offset 0. If we tune the size of the object to the alignment then we can 4814 * get the required alignment by putting one properly sized object after 4815 * another. 4816 * 4817 * Notice that the allocation order determines the sizes of the per cpu 4818 * caches. Each processor has always one slab available for allocations. 4819 * Increasing the allocation order reduces the number of times that slabs 4820 * must be moved on and off the partial lists and is therefore a factor in 4821 * locking overhead. 4822 */ 4823 4824 /* 4825 * Minimum / Maximum order of slab pages. This influences locking overhead 4826 * and slab fragmentation. A higher order reduces the number of partial slabs 4827 * and increases the number of allocations possible without having to 4828 * take the list_lock. 4829 */ 4830 static unsigned int slub_min_order; 4831 static unsigned int slub_max_order = 4832 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4833 static unsigned int slub_min_objects; 4834 4835 /* 4836 * Calculate the order of allocation given an slab object size. 4837 * 4838 * The order of allocation has significant impact on performance and other 4839 * system components. Generally order 0 allocations should be preferred since 4840 * order 0 does not cause fragmentation in the page allocator. Larger objects 4841 * be problematic to put into order 0 slabs because there may be too much 4842 * unused space left. We go to a higher order if more than 1/16th of the slab 4843 * would be wasted. 4844 * 4845 * In order to reach satisfactory performance we must ensure that a minimum 4846 * number of objects is in one slab. Otherwise we may generate too much 4847 * activity on the partial lists which requires taking the list_lock. This is 4848 * less a concern for large slabs though which are rarely used. 4849 * 4850 * slab_max_order specifies the order where we begin to stop considering the 4851 * number of objects in a slab as critical. If we reach slab_max_order then 4852 * we try to keep the page order as low as possible. So we accept more waste 4853 * of space in favor of a small page order. 4854 * 4855 * Higher order allocations also allow the placement of more objects in a 4856 * slab and thereby reduce object handling overhead. If the user has 4857 * requested a higher minimum order then we start with that one instead of 4858 * the smallest order which will fit the object. 4859 */ 4860 static inline unsigned int calc_slab_order(unsigned int size, 4861 unsigned int min_order, unsigned int max_order, 4862 unsigned int fract_leftover) 4863 { 4864 unsigned int order; 4865 4866 for (order = min_order; order <= max_order; order++) { 4867 4868 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4869 unsigned int rem; 4870 4871 rem = slab_size % size; 4872 4873 if (rem <= slab_size / fract_leftover) 4874 break; 4875 } 4876 4877 return order; 4878 } 4879 4880 static inline int calculate_order(unsigned int size) 4881 { 4882 unsigned int order; 4883 unsigned int min_objects; 4884 unsigned int max_objects; 4885 unsigned int min_order; 4886 4887 min_objects = slub_min_objects; 4888 if (!min_objects) { 4889 /* 4890 * Some architectures will only update present cpus when 4891 * onlining them, so don't trust the number if it's just 1. But 4892 * we also don't want to use nr_cpu_ids always, as on some other 4893 * architectures, there can be many possible cpus, but never 4894 * onlined. Here we compromise between trying to avoid too high 4895 * order on systems that appear larger than they are, and too 4896 * low order on systems that appear smaller than they are. 4897 */ 4898 unsigned int nr_cpus = num_present_cpus(); 4899 if (nr_cpus <= 1) 4900 nr_cpus = nr_cpu_ids; 4901 min_objects = 4 * (fls(nr_cpus) + 1); 4902 } 4903 /* min_objects can't be 0 because get_order(0) is undefined */ 4904 max_objects = max(order_objects(slub_max_order, size), 1U); 4905 min_objects = min(min_objects, max_objects); 4906 4907 min_order = max_t(unsigned int, slub_min_order, 4908 get_order(min_objects * size)); 4909 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4910 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4911 4912 /* 4913 * Attempt to find best configuration for a slab. This works by first 4914 * attempting to generate a layout with the best possible configuration 4915 * and backing off gradually. 4916 * 4917 * We start with accepting at most 1/16 waste and try to find the 4918 * smallest order from min_objects-derived/slab_min_order up to 4919 * slab_max_order that will satisfy the constraint. Note that increasing 4920 * the order can only result in same or less fractional waste, not more. 4921 * 4922 * If that fails, we increase the acceptable fraction of waste and try 4923 * again. The last iteration with fraction of 1/2 would effectively 4924 * accept any waste and give us the order determined by min_objects, as 4925 * long as at least single object fits within slab_max_order. 4926 */ 4927 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 4928 order = calc_slab_order(size, min_order, slub_max_order, 4929 fraction); 4930 if (order <= slub_max_order) 4931 return order; 4932 } 4933 4934 /* 4935 * Doh this slab cannot be placed using slab_max_order. 4936 */ 4937 order = get_order(size); 4938 if (order <= MAX_PAGE_ORDER) 4939 return order; 4940 return -ENOSYS; 4941 } 4942 4943 static void 4944 init_kmem_cache_node(struct kmem_cache_node *n) 4945 { 4946 n->nr_partial = 0; 4947 spin_lock_init(&n->list_lock); 4948 INIT_LIST_HEAD(&n->partial); 4949 #ifdef CONFIG_SLUB_DEBUG 4950 atomic_long_set(&n->nr_slabs, 0); 4951 atomic_long_set(&n->total_objects, 0); 4952 INIT_LIST_HEAD(&n->full); 4953 #endif 4954 } 4955 4956 #ifndef CONFIG_SLUB_TINY 4957 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4958 { 4959 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4960 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4961 sizeof(struct kmem_cache_cpu)); 4962 4963 /* 4964 * Must align to double word boundary for the double cmpxchg 4965 * instructions to work; see __pcpu_double_call_return_bool(). 4966 */ 4967 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4968 2 * sizeof(void *)); 4969 4970 if (!s->cpu_slab) 4971 return 0; 4972 4973 init_kmem_cache_cpus(s); 4974 4975 return 1; 4976 } 4977 #else 4978 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4979 { 4980 return 1; 4981 } 4982 #endif /* CONFIG_SLUB_TINY */ 4983 4984 static struct kmem_cache *kmem_cache_node; 4985 4986 /* 4987 * No kmalloc_node yet so do it by hand. We know that this is the first 4988 * slab on the node for this slabcache. There are no concurrent accesses 4989 * possible. 4990 * 4991 * Note that this function only works on the kmem_cache_node 4992 * when allocating for the kmem_cache_node. This is used for bootstrapping 4993 * memory on a fresh node that has no slab structures yet. 4994 */ 4995 static void early_kmem_cache_node_alloc(int node) 4996 { 4997 struct slab *slab; 4998 struct kmem_cache_node *n; 4999 5000 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5001 5002 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5003 5004 BUG_ON(!slab); 5005 if (slab_nid(slab) != node) { 5006 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5007 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5008 } 5009 5010 n = slab->freelist; 5011 BUG_ON(!n); 5012 #ifdef CONFIG_SLUB_DEBUG 5013 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5014 #endif 5015 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5016 slab->freelist = get_freepointer(kmem_cache_node, n); 5017 slab->inuse = 1; 5018 kmem_cache_node->node[node] = n; 5019 init_kmem_cache_node(n); 5020 inc_slabs_node(kmem_cache_node, node, slab->objects); 5021 5022 /* 5023 * No locks need to be taken here as it has just been 5024 * initialized and there is no concurrent access. 5025 */ 5026 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5027 } 5028 5029 static void free_kmem_cache_nodes(struct kmem_cache *s) 5030 { 5031 int node; 5032 struct kmem_cache_node *n; 5033 5034 for_each_kmem_cache_node(s, node, n) { 5035 s->node[node] = NULL; 5036 kmem_cache_free(kmem_cache_node, n); 5037 } 5038 } 5039 5040 void __kmem_cache_release(struct kmem_cache *s) 5041 { 5042 cache_random_seq_destroy(s); 5043 #ifndef CONFIG_SLUB_TINY 5044 free_percpu(s->cpu_slab); 5045 #endif 5046 free_kmem_cache_nodes(s); 5047 } 5048 5049 static int init_kmem_cache_nodes(struct kmem_cache *s) 5050 { 5051 int node; 5052 5053 for_each_node_mask(node, slab_nodes) { 5054 struct kmem_cache_node *n; 5055 5056 if (slab_state == DOWN) { 5057 early_kmem_cache_node_alloc(node); 5058 continue; 5059 } 5060 n = kmem_cache_alloc_node(kmem_cache_node, 5061 GFP_KERNEL, node); 5062 5063 if (!n) { 5064 free_kmem_cache_nodes(s); 5065 return 0; 5066 } 5067 5068 init_kmem_cache_node(n); 5069 s->node[node] = n; 5070 } 5071 return 1; 5072 } 5073 5074 static void set_cpu_partial(struct kmem_cache *s) 5075 { 5076 #ifdef CONFIG_SLUB_CPU_PARTIAL 5077 unsigned int nr_objects; 5078 5079 /* 5080 * cpu_partial determined the maximum number of objects kept in the 5081 * per cpu partial lists of a processor. 5082 * 5083 * Per cpu partial lists mainly contain slabs that just have one 5084 * object freed. If they are used for allocation then they can be 5085 * filled up again with minimal effort. The slab will never hit the 5086 * per node partial lists and therefore no locking will be required. 5087 * 5088 * For backwards compatibility reasons, this is determined as number 5089 * of objects, even though we now limit maximum number of pages, see 5090 * slub_set_cpu_partial() 5091 */ 5092 if (!kmem_cache_has_cpu_partial(s)) 5093 nr_objects = 0; 5094 else if (s->size >= PAGE_SIZE) 5095 nr_objects = 6; 5096 else if (s->size >= 1024) 5097 nr_objects = 24; 5098 else if (s->size >= 256) 5099 nr_objects = 52; 5100 else 5101 nr_objects = 120; 5102 5103 slub_set_cpu_partial(s, nr_objects); 5104 #endif 5105 } 5106 5107 /* 5108 * calculate_sizes() determines the order and the distribution of data within 5109 * a slab object. 5110 */ 5111 static int calculate_sizes(struct kmem_cache *s) 5112 { 5113 slab_flags_t flags = s->flags; 5114 unsigned int size = s->object_size; 5115 unsigned int order; 5116 5117 /* 5118 * Round up object size to the next word boundary. We can only 5119 * place the free pointer at word boundaries and this determines 5120 * the possible location of the free pointer. 5121 */ 5122 size = ALIGN(size, sizeof(void *)); 5123 5124 #ifdef CONFIG_SLUB_DEBUG 5125 /* 5126 * Determine if we can poison the object itself. If the user of 5127 * the slab may touch the object after free or before allocation 5128 * then we should never poison the object itself. 5129 */ 5130 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5131 !s->ctor) 5132 s->flags |= __OBJECT_POISON; 5133 else 5134 s->flags &= ~__OBJECT_POISON; 5135 5136 5137 /* 5138 * If we are Redzoning then check if there is some space between the 5139 * end of the object and the free pointer. If not then add an 5140 * additional word to have some bytes to store Redzone information. 5141 */ 5142 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5143 size += sizeof(void *); 5144 #endif 5145 5146 /* 5147 * With that we have determined the number of bytes in actual use 5148 * by the object and redzoning. 5149 */ 5150 s->inuse = size; 5151 5152 if (slub_debug_orig_size(s) || 5153 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 5154 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 5155 s->ctor) { 5156 /* 5157 * Relocate free pointer after the object if it is not 5158 * permitted to overwrite the first word of the object on 5159 * kmem_cache_free. 5160 * 5161 * This is the case if we do RCU, have a constructor or 5162 * destructor, are poisoning the objects, or are 5163 * redzoning an object smaller than sizeof(void *). 5164 * 5165 * The assumption that s->offset >= s->inuse means free 5166 * pointer is outside of the object is used in the 5167 * freeptr_outside_object() function. If that is no 5168 * longer true, the function needs to be modified. 5169 */ 5170 s->offset = size; 5171 size += sizeof(void *); 5172 } else { 5173 /* 5174 * Store freelist pointer near middle of object to keep 5175 * it away from the edges of the object to avoid small 5176 * sized over/underflows from neighboring allocations. 5177 */ 5178 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5179 } 5180 5181 #ifdef CONFIG_SLUB_DEBUG 5182 if (flags & SLAB_STORE_USER) { 5183 /* 5184 * Need to store information about allocs and frees after 5185 * the object. 5186 */ 5187 size += 2 * sizeof(struct track); 5188 5189 /* Save the original kmalloc request size */ 5190 if (flags & SLAB_KMALLOC) 5191 size += sizeof(unsigned int); 5192 } 5193 #endif 5194 5195 kasan_cache_create(s, &size, &s->flags); 5196 #ifdef CONFIG_SLUB_DEBUG 5197 if (flags & SLAB_RED_ZONE) { 5198 /* 5199 * Add some empty padding so that we can catch 5200 * overwrites from earlier objects rather than let 5201 * tracking information or the free pointer be 5202 * corrupted if a user writes before the start 5203 * of the object. 5204 */ 5205 size += sizeof(void *); 5206 5207 s->red_left_pad = sizeof(void *); 5208 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5209 size += s->red_left_pad; 5210 } 5211 #endif 5212 5213 /* 5214 * SLUB stores one object immediately after another beginning from 5215 * offset 0. In order to align the objects we have to simply size 5216 * each object to conform to the alignment. 5217 */ 5218 size = ALIGN(size, s->align); 5219 s->size = size; 5220 s->reciprocal_size = reciprocal_value(size); 5221 order = calculate_order(size); 5222 5223 if ((int)order < 0) 5224 return 0; 5225 5226 s->allocflags = __GFP_COMP; 5227 5228 if (s->flags & SLAB_CACHE_DMA) 5229 s->allocflags |= GFP_DMA; 5230 5231 if (s->flags & SLAB_CACHE_DMA32) 5232 s->allocflags |= GFP_DMA32; 5233 5234 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5235 s->allocflags |= __GFP_RECLAIMABLE; 5236 5237 /* 5238 * Determine the number of objects per slab 5239 */ 5240 s->oo = oo_make(order, size); 5241 s->min = oo_make(get_order(size), size); 5242 5243 return !!oo_objects(s->oo); 5244 } 5245 5246 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 5247 { 5248 s->flags = kmem_cache_flags(flags, s->name); 5249 #ifdef CONFIG_SLAB_FREELIST_HARDENED 5250 s->random = get_random_long(); 5251 #endif 5252 5253 if (!calculate_sizes(s)) 5254 goto error; 5255 if (disable_higher_order_debug) { 5256 /* 5257 * Disable debugging flags that store metadata if the min slab 5258 * order increased. 5259 */ 5260 if (get_order(s->size) > get_order(s->object_size)) { 5261 s->flags &= ~DEBUG_METADATA_FLAGS; 5262 s->offset = 0; 5263 if (!calculate_sizes(s)) 5264 goto error; 5265 } 5266 } 5267 5268 #ifdef system_has_freelist_aba 5269 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 5270 /* Enable fast mode */ 5271 s->flags |= __CMPXCHG_DOUBLE; 5272 } 5273 #endif 5274 5275 /* 5276 * The larger the object size is, the more slabs we want on the partial 5277 * list to avoid pounding the page allocator excessively. 5278 */ 5279 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 5280 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 5281 5282 set_cpu_partial(s); 5283 5284 #ifdef CONFIG_NUMA 5285 s->remote_node_defrag_ratio = 1000; 5286 #endif 5287 5288 /* Initialize the pre-computed randomized freelist if slab is up */ 5289 if (slab_state >= UP) { 5290 if (init_cache_random_seq(s)) 5291 goto error; 5292 } 5293 5294 if (!init_kmem_cache_nodes(s)) 5295 goto error; 5296 5297 if (alloc_kmem_cache_cpus(s)) 5298 return 0; 5299 5300 error: 5301 __kmem_cache_release(s); 5302 return -EINVAL; 5303 } 5304 5305 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5306 const char *text) 5307 { 5308 #ifdef CONFIG_SLUB_DEBUG 5309 void *addr = slab_address(slab); 5310 void *p; 5311 5312 slab_err(s, slab, text, s->name); 5313 5314 spin_lock(&object_map_lock); 5315 __fill_map(object_map, s, slab); 5316 5317 for_each_object(p, s, addr, slab->objects) { 5318 5319 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5320 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5321 print_tracking(s, p); 5322 } 5323 } 5324 spin_unlock(&object_map_lock); 5325 #endif 5326 } 5327 5328 /* 5329 * Attempt to free all partial slabs on a node. 5330 * This is called from __kmem_cache_shutdown(). We must take list_lock 5331 * because sysfs file might still access partial list after the shutdowning. 5332 */ 5333 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5334 { 5335 LIST_HEAD(discard); 5336 struct slab *slab, *h; 5337 5338 BUG_ON(irqs_disabled()); 5339 spin_lock_irq(&n->list_lock); 5340 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5341 if (!slab->inuse) { 5342 remove_partial(n, slab); 5343 list_add(&slab->slab_list, &discard); 5344 } else { 5345 list_slab_objects(s, slab, 5346 "Objects remaining in %s on __kmem_cache_shutdown()"); 5347 } 5348 } 5349 spin_unlock_irq(&n->list_lock); 5350 5351 list_for_each_entry_safe(slab, h, &discard, slab_list) 5352 discard_slab(s, slab); 5353 } 5354 5355 bool __kmem_cache_empty(struct kmem_cache *s) 5356 { 5357 int node; 5358 struct kmem_cache_node *n; 5359 5360 for_each_kmem_cache_node(s, node, n) 5361 if (n->nr_partial || node_nr_slabs(n)) 5362 return false; 5363 return true; 5364 } 5365 5366 /* 5367 * Release all resources used by a slab cache. 5368 */ 5369 int __kmem_cache_shutdown(struct kmem_cache *s) 5370 { 5371 int node; 5372 struct kmem_cache_node *n; 5373 5374 flush_all_cpus_locked(s); 5375 /* Attempt to free all objects */ 5376 for_each_kmem_cache_node(s, node, n) { 5377 free_partial(s, n); 5378 if (n->nr_partial || node_nr_slabs(n)) 5379 return 1; 5380 } 5381 return 0; 5382 } 5383 5384 #ifdef CONFIG_PRINTK 5385 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5386 { 5387 void *base; 5388 int __maybe_unused i; 5389 unsigned int objnr; 5390 void *objp; 5391 void *objp0; 5392 struct kmem_cache *s = slab->slab_cache; 5393 struct track __maybe_unused *trackp; 5394 5395 kpp->kp_ptr = object; 5396 kpp->kp_slab = slab; 5397 kpp->kp_slab_cache = s; 5398 base = slab_address(slab); 5399 objp0 = kasan_reset_tag(object); 5400 #ifdef CONFIG_SLUB_DEBUG 5401 objp = restore_red_left(s, objp0); 5402 #else 5403 objp = objp0; 5404 #endif 5405 objnr = obj_to_index(s, slab, objp); 5406 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5407 objp = base + s->size * objnr; 5408 kpp->kp_objp = objp; 5409 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5410 || (objp - base) % s->size) || 5411 !(s->flags & SLAB_STORE_USER)) 5412 return; 5413 #ifdef CONFIG_SLUB_DEBUG 5414 objp = fixup_red_left(s, objp); 5415 trackp = get_track(s, objp, TRACK_ALLOC); 5416 kpp->kp_ret = (void *)trackp->addr; 5417 #ifdef CONFIG_STACKDEPOT 5418 { 5419 depot_stack_handle_t handle; 5420 unsigned long *entries; 5421 unsigned int nr_entries; 5422 5423 handle = READ_ONCE(trackp->handle); 5424 if (handle) { 5425 nr_entries = stack_depot_fetch(handle, &entries); 5426 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5427 kpp->kp_stack[i] = (void *)entries[i]; 5428 } 5429 5430 trackp = get_track(s, objp, TRACK_FREE); 5431 handle = READ_ONCE(trackp->handle); 5432 if (handle) { 5433 nr_entries = stack_depot_fetch(handle, &entries); 5434 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5435 kpp->kp_free_stack[i] = (void *)entries[i]; 5436 } 5437 } 5438 #endif 5439 #endif 5440 } 5441 #endif 5442 5443 /******************************************************************** 5444 * Kmalloc subsystem 5445 *******************************************************************/ 5446 5447 static int __init setup_slub_min_order(char *str) 5448 { 5449 get_option(&str, (int *)&slub_min_order); 5450 5451 if (slub_min_order > slub_max_order) 5452 slub_max_order = slub_min_order; 5453 5454 return 1; 5455 } 5456 5457 __setup("slab_min_order=", setup_slub_min_order); 5458 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5459 5460 5461 static int __init setup_slub_max_order(char *str) 5462 { 5463 get_option(&str, (int *)&slub_max_order); 5464 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5465 5466 if (slub_min_order > slub_max_order) 5467 slub_min_order = slub_max_order; 5468 5469 return 1; 5470 } 5471 5472 __setup("slab_max_order=", setup_slub_max_order); 5473 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5474 5475 static int __init setup_slub_min_objects(char *str) 5476 { 5477 get_option(&str, (int *)&slub_min_objects); 5478 5479 return 1; 5480 } 5481 5482 __setup("slab_min_objects=", setup_slub_min_objects); 5483 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5484 5485 #ifdef CONFIG_HARDENED_USERCOPY 5486 /* 5487 * Rejects incorrectly sized objects and objects that are to be copied 5488 * to/from userspace but do not fall entirely within the containing slab 5489 * cache's usercopy region. 5490 * 5491 * Returns NULL if check passes, otherwise const char * to name of cache 5492 * to indicate an error. 5493 */ 5494 void __check_heap_object(const void *ptr, unsigned long n, 5495 const struct slab *slab, bool to_user) 5496 { 5497 struct kmem_cache *s; 5498 unsigned int offset; 5499 bool is_kfence = is_kfence_address(ptr); 5500 5501 ptr = kasan_reset_tag(ptr); 5502 5503 /* Find object and usable object size. */ 5504 s = slab->slab_cache; 5505 5506 /* Reject impossible pointers. */ 5507 if (ptr < slab_address(slab)) 5508 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5509 to_user, 0, n); 5510 5511 /* Find offset within object. */ 5512 if (is_kfence) 5513 offset = ptr - kfence_object_start(ptr); 5514 else 5515 offset = (ptr - slab_address(slab)) % s->size; 5516 5517 /* Adjust for redzone and reject if within the redzone. */ 5518 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5519 if (offset < s->red_left_pad) 5520 usercopy_abort("SLUB object in left red zone", 5521 s->name, to_user, offset, n); 5522 offset -= s->red_left_pad; 5523 } 5524 5525 /* Allow address range falling entirely within usercopy region. */ 5526 if (offset >= s->useroffset && 5527 offset - s->useroffset <= s->usersize && 5528 n <= s->useroffset - offset + s->usersize) 5529 return; 5530 5531 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5532 } 5533 #endif /* CONFIG_HARDENED_USERCOPY */ 5534 5535 #define SHRINK_PROMOTE_MAX 32 5536 5537 /* 5538 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5539 * up most to the head of the partial lists. New allocations will then 5540 * fill those up and thus they can be removed from the partial lists. 5541 * 5542 * The slabs with the least items are placed last. This results in them 5543 * being allocated from last increasing the chance that the last objects 5544 * are freed in them. 5545 */ 5546 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5547 { 5548 int node; 5549 int i; 5550 struct kmem_cache_node *n; 5551 struct slab *slab; 5552 struct slab *t; 5553 struct list_head discard; 5554 struct list_head promote[SHRINK_PROMOTE_MAX]; 5555 unsigned long flags; 5556 int ret = 0; 5557 5558 for_each_kmem_cache_node(s, node, n) { 5559 INIT_LIST_HEAD(&discard); 5560 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5561 INIT_LIST_HEAD(promote + i); 5562 5563 spin_lock_irqsave(&n->list_lock, flags); 5564 5565 /* 5566 * Build lists of slabs to discard or promote. 5567 * 5568 * Note that concurrent frees may occur while we hold the 5569 * list_lock. slab->inuse here is the upper limit. 5570 */ 5571 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5572 int free = slab->objects - slab->inuse; 5573 5574 /* Do not reread slab->inuse */ 5575 barrier(); 5576 5577 /* We do not keep full slabs on the list */ 5578 BUG_ON(free <= 0); 5579 5580 if (free == slab->objects) { 5581 list_move(&slab->slab_list, &discard); 5582 slab_clear_node_partial(slab); 5583 n->nr_partial--; 5584 dec_slabs_node(s, node, slab->objects); 5585 } else if (free <= SHRINK_PROMOTE_MAX) 5586 list_move(&slab->slab_list, promote + free - 1); 5587 } 5588 5589 /* 5590 * Promote the slabs filled up most to the head of the 5591 * partial list. 5592 */ 5593 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5594 list_splice(promote + i, &n->partial); 5595 5596 spin_unlock_irqrestore(&n->list_lock, flags); 5597 5598 /* Release empty slabs */ 5599 list_for_each_entry_safe(slab, t, &discard, slab_list) 5600 free_slab(s, slab); 5601 5602 if (node_nr_slabs(n)) 5603 ret = 1; 5604 } 5605 5606 return ret; 5607 } 5608 5609 int __kmem_cache_shrink(struct kmem_cache *s) 5610 { 5611 flush_all(s); 5612 return __kmem_cache_do_shrink(s); 5613 } 5614 5615 static int slab_mem_going_offline_callback(void *arg) 5616 { 5617 struct kmem_cache *s; 5618 5619 mutex_lock(&slab_mutex); 5620 list_for_each_entry(s, &slab_caches, list) { 5621 flush_all_cpus_locked(s); 5622 __kmem_cache_do_shrink(s); 5623 } 5624 mutex_unlock(&slab_mutex); 5625 5626 return 0; 5627 } 5628 5629 static void slab_mem_offline_callback(void *arg) 5630 { 5631 struct memory_notify *marg = arg; 5632 int offline_node; 5633 5634 offline_node = marg->status_change_nid_normal; 5635 5636 /* 5637 * If the node still has available memory. we need kmem_cache_node 5638 * for it yet. 5639 */ 5640 if (offline_node < 0) 5641 return; 5642 5643 mutex_lock(&slab_mutex); 5644 node_clear(offline_node, slab_nodes); 5645 /* 5646 * We no longer free kmem_cache_node structures here, as it would be 5647 * racy with all get_node() users, and infeasible to protect them with 5648 * slab_mutex. 5649 */ 5650 mutex_unlock(&slab_mutex); 5651 } 5652 5653 static int slab_mem_going_online_callback(void *arg) 5654 { 5655 struct kmem_cache_node *n; 5656 struct kmem_cache *s; 5657 struct memory_notify *marg = arg; 5658 int nid = marg->status_change_nid_normal; 5659 int ret = 0; 5660 5661 /* 5662 * If the node's memory is already available, then kmem_cache_node is 5663 * already created. Nothing to do. 5664 */ 5665 if (nid < 0) 5666 return 0; 5667 5668 /* 5669 * We are bringing a node online. No memory is available yet. We must 5670 * allocate a kmem_cache_node structure in order to bring the node 5671 * online. 5672 */ 5673 mutex_lock(&slab_mutex); 5674 list_for_each_entry(s, &slab_caches, list) { 5675 /* 5676 * The structure may already exist if the node was previously 5677 * onlined and offlined. 5678 */ 5679 if (get_node(s, nid)) 5680 continue; 5681 /* 5682 * XXX: kmem_cache_alloc_node will fallback to other nodes 5683 * since memory is not yet available from the node that 5684 * is brought up. 5685 */ 5686 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5687 if (!n) { 5688 ret = -ENOMEM; 5689 goto out; 5690 } 5691 init_kmem_cache_node(n); 5692 s->node[nid] = n; 5693 } 5694 /* 5695 * Any cache created after this point will also have kmem_cache_node 5696 * initialized for the new node. 5697 */ 5698 node_set(nid, slab_nodes); 5699 out: 5700 mutex_unlock(&slab_mutex); 5701 return ret; 5702 } 5703 5704 static int slab_memory_callback(struct notifier_block *self, 5705 unsigned long action, void *arg) 5706 { 5707 int ret = 0; 5708 5709 switch (action) { 5710 case MEM_GOING_ONLINE: 5711 ret = slab_mem_going_online_callback(arg); 5712 break; 5713 case MEM_GOING_OFFLINE: 5714 ret = slab_mem_going_offline_callback(arg); 5715 break; 5716 case MEM_OFFLINE: 5717 case MEM_CANCEL_ONLINE: 5718 slab_mem_offline_callback(arg); 5719 break; 5720 case MEM_ONLINE: 5721 case MEM_CANCEL_OFFLINE: 5722 break; 5723 } 5724 if (ret) 5725 ret = notifier_from_errno(ret); 5726 else 5727 ret = NOTIFY_OK; 5728 return ret; 5729 } 5730 5731 /******************************************************************** 5732 * Basic setup of slabs 5733 *******************************************************************/ 5734 5735 /* 5736 * Used for early kmem_cache structures that were allocated using 5737 * the page allocator. Allocate them properly then fix up the pointers 5738 * that may be pointing to the wrong kmem_cache structure. 5739 */ 5740 5741 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 5742 { 5743 int node; 5744 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5745 struct kmem_cache_node *n; 5746 5747 memcpy(s, static_cache, kmem_cache->object_size); 5748 5749 /* 5750 * This runs very early, and only the boot processor is supposed to be 5751 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5752 * IPIs around. 5753 */ 5754 __flush_cpu_slab(s, smp_processor_id()); 5755 for_each_kmem_cache_node(s, node, n) { 5756 struct slab *p; 5757 5758 list_for_each_entry(p, &n->partial, slab_list) 5759 p->slab_cache = s; 5760 5761 #ifdef CONFIG_SLUB_DEBUG 5762 list_for_each_entry(p, &n->full, slab_list) 5763 p->slab_cache = s; 5764 #endif 5765 } 5766 list_add(&s->list, &slab_caches); 5767 return s; 5768 } 5769 5770 void __init kmem_cache_init(void) 5771 { 5772 static __initdata struct kmem_cache boot_kmem_cache, 5773 boot_kmem_cache_node; 5774 int node; 5775 5776 if (debug_guardpage_minorder()) 5777 slub_max_order = 0; 5778 5779 /* Print slub debugging pointers without hashing */ 5780 if (__slub_debug_enabled()) 5781 no_hash_pointers_enable(NULL); 5782 5783 kmem_cache_node = &boot_kmem_cache_node; 5784 kmem_cache = &boot_kmem_cache; 5785 5786 /* 5787 * Initialize the nodemask for which we will allocate per node 5788 * structures. Here we don't need taking slab_mutex yet. 5789 */ 5790 for_each_node_state(node, N_NORMAL_MEMORY) 5791 node_set(node, slab_nodes); 5792 5793 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5794 sizeof(struct kmem_cache_node), 5795 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5796 5797 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5798 5799 /* Able to allocate the per node structures */ 5800 slab_state = PARTIAL; 5801 5802 create_boot_cache(kmem_cache, "kmem_cache", 5803 offsetof(struct kmem_cache, node) + 5804 nr_node_ids * sizeof(struct kmem_cache_node *), 5805 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5806 5807 kmem_cache = bootstrap(&boot_kmem_cache); 5808 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5809 5810 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5811 setup_kmalloc_cache_index_table(); 5812 create_kmalloc_caches(); 5813 5814 /* Setup random freelists for each cache */ 5815 init_freelist_randomization(); 5816 5817 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5818 slub_cpu_dead); 5819 5820 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5821 cache_line_size(), 5822 slub_min_order, slub_max_order, slub_min_objects, 5823 nr_cpu_ids, nr_node_ids); 5824 } 5825 5826 void __init kmem_cache_init_late(void) 5827 { 5828 #ifndef CONFIG_SLUB_TINY 5829 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5830 WARN_ON(!flushwq); 5831 #endif 5832 } 5833 5834 struct kmem_cache * 5835 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5836 slab_flags_t flags, void (*ctor)(void *)) 5837 { 5838 struct kmem_cache *s; 5839 5840 s = find_mergeable(size, align, flags, name, ctor); 5841 if (s) { 5842 if (sysfs_slab_alias(s, name)) 5843 return NULL; 5844 5845 s->refcount++; 5846 5847 /* 5848 * Adjust the object sizes so that we clear 5849 * the complete object on kzalloc. 5850 */ 5851 s->object_size = max(s->object_size, size); 5852 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5853 } 5854 5855 return s; 5856 } 5857 5858 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5859 { 5860 int err; 5861 5862 err = kmem_cache_open(s, flags); 5863 if (err) 5864 return err; 5865 5866 /* Mutex is not taken during early boot */ 5867 if (slab_state <= UP) 5868 return 0; 5869 5870 err = sysfs_slab_add(s); 5871 if (err) { 5872 __kmem_cache_release(s); 5873 return err; 5874 } 5875 5876 if (s->flags & SLAB_STORE_USER) 5877 debugfs_slab_add(s); 5878 5879 return 0; 5880 } 5881 5882 #ifdef SLAB_SUPPORTS_SYSFS 5883 static int count_inuse(struct slab *slab) 5884 { 5885 return slab->inuse; 5886 } 5887 5888 static int count_total(struct slab *slab) 5889 { 5890 return slab->objects; 5891 } 5892 #endif 5893 5894 #ifdef CONFIG_SLUB_DEBUG 5895 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5896 unsigned long *obj_map) 5897 { 5898 void *p; 5899 void *addr = slab_address(slab); 5900 5901 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5902 return; 5903 5904 /* Now we know that a valid freelist exists */ 5905 __fill_map(obj_map, s, slab); 5906 for_each_object(p, s, addr, slab->objects) { 5907 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5908 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5909 5910 if (!check_object(s, slab, p, val)) 5911 break; 5912 } 5913 } 5914 5915 static int validate_slab_node(struct kmem_cache *s, 5916 struct kmem_cache_node *n, unsigned long *obj_map) 5917 { 5918 unsigned long count = 0; 5919 struct slab *slab; 5920 unsigned long flags; 5921 5922 spin_lock_irqsave(&n->list_lock, flags); 5923 5924 list_for_each_entry(slab, &n->partial, slab_list) { 5925 validate_slab(s, slab, obj_map); 5926 count++; 5927 } 5928 if (count != n->nr_partial) { 5929 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5930 s->name, count, n->nr_partial); 5931 slab_add_kunit_errors(); 5932 } 5933 5934 if (!(s->flags & SLAB_STORE_USER)) 5935 goto out; 5936 5937 list_for_each_entry(slab, &n->full, slab_list) { 5938 validate_slab(s, slab, obj_map); 5939 count++; 5940 } 5941 if (count != node_nr_slabs(n)) { 5942 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5943 s->name, count, node_nr_slabs(n)); 5944 slab_add_kunit_errors(); 5945 } 5946 5947 out: 5948 spin_unlock_irqrestore(&n->list_lock, flags); 5949 return count; 5950 } 5951 5952 long validate_slab_cache(struct kmem_cache *s) 5953 { 5954 int node; 5955 unsigned long count = 0; 5956 struct kmem_cache_node *n; 5957 unsigned long *obj_map; 5958 5959 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5960 if (!obj_map) 5961 return -ENOMEM; 5962 5963 flush_all(s); 5964 for_each_kmem_cache_node(s, node, n) 5965 count += validate_slab_node(s, n, obj_map); 5966 5967 bitmap_free(obj_map); 5968 5969 return count; 5970 } 5971 EXPORT_SYMBOL(validate_slab_cache); 5972 5973 #ifdef CONFIG_DEBUG_FS 5974 /* 5975 * Generate lists of code addresses where slabcache objects are allocated 5976 * and freed. 5977 */ 5978 5979 struct location { 5980 depot_stack_handle_t handle; 5981 unsigned long count; 5982 unsigned long addr; 5983 unsigned long waste; 5984 long long sum_time; 5985 long min_time; 5986 long max_time; 5987 long min_pid; 5988 long max_pid; 5989 DECLARE_BITMAP(cpus, NR_CPUS); 5990 nodemask_t nodes; 5991 }; 5992 5993 struct loc_track { 5994 unsigned long max; 5995 unsigned long count; 5996 struct location *loc; 5997 loff_t idx; 5998 }; 5999 6000 static struct dentry *slab_debugfs_root; 6001 6002 static void free_loc_track(struct loc_track *t) 6003 { 6004 if (t->max) 6005 free_pages((unsigned long)t->loc, 6006 get_order(sizeof(struct location) * t->max)); 6007 } 6008 6009 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6010 { 6011 struct location *l; 6012 int order; 6013 6014 order = get_order(sizeof(struct location) * max); 6015 6016 l = (void *)__get_free_pages(flags, order); 6017 if (!l) 6018 return 0; 6019 6020 if (t->count) { 6021 memcpy(l, t->loc, sizeof(struct location) * t->count); 6022 free_loc_track(t); 6023 } 6024 t->max = max; 6025 t->loc = l; 6026 return 1; 6027 } 6028 6029 static int add_location(struct loc_track *t, struct kmem_cache *s, 6030 const struct track *track, 6031 unsigned int orig_size) 6032 { 6033 long start, end, pos; 6034 struct location *l; 6035 unsigned long caddr, chandle, cwaste; 6036 unsigned long age = jiffies - track->when; 6037 depot_stack_handle_t handle = 0; 6038 unsigned int waste = s->object_size - orig_size; 6039 6040 #ifdef CONFIG_STACKDEPOT 6041 handle = READ_ONCE(track->handle); 6042 #endif 6043 start = -1; 6044 end = t->count; 6045 6046 for ( ; ; ) { 6047 pos = start + (end - start + 1) / 2; 6048 6049 /* 6050 * There is nothing at "end". If we end up there 6051 * we need to add something to before end. 6052 */ 6053 if (pos == end) 6054 break; 6055 6056 l = &t->loc[pos]; 6057 caddr = l->addr; 6058 chandle = l->handle; 6059 cwaste = l->waste; 6060 if ((track->addr == caddr) && (handle == chandle) && 6061 (waste == cwaste)) { 6062 6063 l->count++; 6064 if (track->when) { 6065 l->sum_time += age; 6066 if (age < l->min_time) 6067 l->min_time = age; 6068 if (age > l->max_time) 6069 l->max_time = age; 6070 6071 if (track->pid < l->min_pid) 6072 l->min_pid = track->pid; 6073 if (track->pid > l->max_pid) 6074 l->max_pid = track->pid; 6075 6076 cpumask_set_cpu(track->cpu, 6077 to_cpumask(l->cpus)); 6078 } 6079 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6080 return 1; 6081 } 6082 6083 if (track->addr < caddr) 6084 end = pos; 6085 else if (track->addr == caddr && handle < chandle) 6086 end = pos; 6087 else if (track->addr == caddr && handle == chandle && 6088 waste < cwaste) 6089 end = pos; 6090 else 6091 start = pos; 6092 } 6093 6094 /* 6095 * Not found. Insert new tracking element. 6096 */ 6097 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6098 return 0; 6099 6100 l = t->loc + pos; 6101 if (pos < t->count) 6102 memmove(l + 1, l, 6103 (t->count - pos) * sizeof(struct location)); 6104 t->count++; 6105 l->count = 1; 6106 l->addr = track->addr; 6107 l->sum_time = age; 6108 l->min_time = age; 6109 l->max_time = age; 6110 l->min_pid = track->pid; 6111 l->max_pid = track->pid; 6112 l->handle = handle; 6113 l->waste = waste; 6114 cpumask_clear(to_cpumask(l->cpus)); 6115 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6116 nodes_clear(l->nodes); 6117 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6118 return 1; 6119 } 6120 6121 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6122 struct slab *slab, enum track_item alloc, 6123 unsigned long *obj_map) 6124 { 6125 void *addr = slab_address(slab); 6126 bool is_alloc = (alloc == TRACK_ALLOC); 6127 void *p; 6128 6129 __fill_map(obj_map, s, slab); 6130 6131 for_each_object(p, s, addr, slab->objects) 6132 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6133 add_location(t, s, get_track(s, p, alloc), 6134 is_alloc ? get_orig_size(s, p) : 6135 s->object_size); 6136 } 6137 #endif /* CONFIG_DEBUG_FS */ 6138 #endif /* CONFIG_SLUB_DEBUG */ 6139 6140 #ifdef SLAB_SUPPORTS_SYSFS 6141 enum slab_stat_type { 6142 SL_ALL, /* All slabs */ 6143 SL_PARTIAL, /* Only partially allocated slabs */ 6144 SL_CPU, /* Only slabs used for cpu caches */ 6145 SL_OBJECTS, /* Determine allocated objects not slabs */ 6146 SL_TOTAL /* Determine object capacity not slabs */ 6147 }; 6148 6149 #define SO_ALL (1 << SL_ALL) 6150 #define SO_PARTIAL (1 << SL_PARTIAL) 6151 #define SO_CPU (1 << SL_CPU) 6152 #define SO_OBJECTS (1 << SL_OBJECTS) 6153 #define SO_TOTAL (1 << SL_TOTAL) 6154 6155 static ssize_t show_slab_objects(struct kmem_cache *s, 6156 char *buf, unsigned long flags) 6157 { 6158 unsigned long total = 0; 6159 int node; 6160 int x; 6161 unsigned long *nodes; 6162 int len = 0; 6163 6164 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6165 if (!nodes) 6166 return -ENOMEM; 6167 6168 if (flags & SO_CPU) { 6169 int cpu; 6170 6171 for_each_possible_cpu(cpu) { 6172 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6173 cpu); 6174 int node; 6175 struct slab *slab; 6176 6177 slab = READ_ONCE(c->slab); 6178 if (!slab) 6179 continue; 6180 6181 node = slab_nid(slab); 6182 if (flags & SO_TOTAL) 6183 x = slab->objects; 6184 else if (flags & SO_OBJECTS) 6185 x = slab->inuse; 6186 else 6187 x = 1; 6188 6189 total += x; 6190 nodes[node] += x; 6191 6192 #ifdef CONFIG_SLUB_CPU_PARTIAL 6193 slab = slub_percpu_partial_read_once(c); 6194 if (slab) { 6195 node = slab_nid(slab); 6196 if (flags & SO_TOTAL) 6197 WARN_ON_ONCE(1); 6198 else if (flags & SO_OBJECTS) 6199 WARN_ON_ONCE(1); 6200 else 6201 x = data_race(slab->slabs); 6202 total += x; 6203 nodes[node] += x; 6204 } 6205 #endif 6206 } 6207 } 6208 6209 /* 6210 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6211 * already held which will conflict with an existing lock order: 6212 * 6213 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6214 * 6215 * We don't really need mem_hotplug_lock (to hold off 6216 * slab_mem_going_offline_callback) here because slab's memory hot 6217 * unplug code doesn't destroy the kmem_cache->node[] data. 6218 */ 6219 6220 #ifdef CONFIG_SLUB_DEBUG 6221 if (flags & SO_ALL) { 6222 struct kmem_cache_node *n; 6223 6224 for_each_kmem_cache_node(s, node, n) { 6225 6226 if (flags & SO_TOTAL) 6227 x = node_nr_objs(n); 6228 else if (flags & SO_OBJECTS) 6229 x = node_nr_objs(n) - count_partial(n, count_free); 6230 else 6231 x = node_nr_slabs(n); 6232 total += x; 6233 nodes[node] += x; 6234 } 6235 6236 } else 6237 #endif 6238 if (flags & SO_PARTIAL) { 6239 struct kmem_cache_node *n; 6240 6241 for_each_kmem_cache_node(s, node, n) { 6242 if (flags & SO_TOTAL) 6243 x = count_partial(n, count_total); 6244 else if (flags & SO_OBJECTS) 6245 x = count_partial(n, count_inuse); 6246 else 6247 x = n->nr_partial; 6248 total += x; 6249 nodes[node] += x; 6250 } 6251 } 6252 6253 len += sysfs_emit_at(buf, len, "%lu", total); 6254 #ifdef CONFIG_NUMA 6255 for (node = 0; node < nr_node_ids; node++) { 6256 if (nodes[node]) 6257 len += sysfs_emit_at(buf, len, " N%d=%lu", 6258 node, nodes[node]); 6259 } 6260 #endif 6261 len += sysfs_emit_at(buf, len, "\n"); 6262 kfree(nodes); 6263 6264 return len; 6265 } 6266 6267 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6268 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6269 6270 struct slab_attribute { 6271 struct attribute attr; 6272 ssize_t (*show)(struct kmem_cache *s, char *buf); 6273 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6274 }; 6275 6276 #define SLAB_ATTR_RO(_name) \ 6277 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6278 6279 #define SLAB_ATTR(_name) \ 6280 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6281 6282 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6283 { 6284 return sysfs_emit(buf, "%u\n", s->size); 6285 } 6286 SLAB_ATTR_RO(slab_size); 6287 6288 static ssize_t align_show(struct kmem_cache *s, char *buf) 6289 { 6290 return sysfs_emit(buf, "%u\n", s->align); 6291 } 6292 SLAB_ATTR_RO(align); 6293 6294 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6295 { 6296 return sysfs_emit(buf, "%u\n", s->object_size); 6297 } 6298 SLAB_ATTR_RO(object_size); 6299 6300 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6301 { 6302 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6303 } 6304 SLAB_ATTR_RO(objs_per_slab); 6305 6306 static ssize_t order_show(struct kmem_cache *s, char *buf) 6307 { 6308 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6309 } 6310 SLAB_ATTR_RO(order); 6311 6312 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6313 { 6314 return sysfs_emit(buf, "%lu\n", s->min_partial); 6315 } 6316 6317 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6318 size_t length) 6319 { 6320 unsigned long min; 6321 int err; 6322 6323 err = kstrtoul(buf, 10, &min); 6324 if (err) 6325 return err; 6326 6327 s->min_partial = min; 6328 return length; 6329 } 6330 SLAB_ATTR(min_partial); 6331 6332 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6333 { 6334 unsigned int nr_partial = 0; 6335 #ifdef CONFIG_SLUB_CPU_PARTIAL 6336 nr_partial = s->cpu_partial; 6337 #endif 6338 6339 return sysfs_emit(buf, "%u\n", nr_partial); 6340 } 6341 6342 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6343 size_t length) 6344 { 6345 unsigned int objects; 6346 int err; 6347 6348 err = kstrtouint(buf, 10, &objects); 6349 if (err) 6350 return err; 6351 if (objects && !kmem_cache_has_cpu_partial(s)) 6352 return -EINVAL; 6353 6354 slub_set_cpu_partial(s, objects); 6355 flush_all(s); 6356 return length; 6357 } 6358 SLAB_ATTR(cpu_partial); 6359 6360 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6361 { 6362 if (!s->ctor) 6363 return 0; 6364 return sysfs_emit(buf, "%pS\n", s->ctor); 6365 } 6366 SLAB_ATTR_RO(ctor); 6367 6368 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6369 { 6370 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6371 } 6372 SLAB_ATTR_RO(aliases); 6373 6374 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6375 { 6376 return show_slab_objects(s, buf, SO_PARTIAL); 6377 } 6378 SLAB_ATTR_RO(partial); 6379 6380 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6381 { 6382 return show_slab_objects(s, buf, SO_CPU); 6383 } 6384 SLAB_ATTR_RO(cpu_slabs); 6385 6386 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6387 { 6388 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6389 } 6390 SLAB_ATTR_RO(objects_partial); 6391 6392 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6393 { 6394 int objects = 0; 6395 int slabs = 0; 6396 int cpu __maybe_unused; 6397 int len = 0; 6398 6399 #ifdef CONFIG_SLUB_CPU_PARTIAL 6400 for_each_online_cpu(cpu) { 6401 struct slab *slab; 6402 6403 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6404 6405 if (slab) 6406 slabs += data_race(slab->slabs); 6407 } 6408 #endif 6409 6410 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6411 objects = (slabs * oo_objects(s->oo)) / 2; 6412 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6413 6414 #ifdef CONFIG_SLUB_CPU_PARTIAL 6415 for_each_online_cpu(cpu) { 6416 struct slab *slab; 6417 6418 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6419 if (slab) { 6420 slabs = data_race(slab->slabs); 6421 objects = (slabs * oo_objects(s->oo)) / 2; 6422 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6423 cpu, objects, slabs); 6424 } 6425 } 6426 #endif 6427 len += sysfs_emit_at(buf, len, "\n"); 6428 6429 return len; 6430 } 6431 SLAB_ATTR_RO(slabs_cpu_partial); 6432 6433 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6434 { 6435 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6436 } 6437 SLAB_ATTR_RO(reclaim_account); 6438 6439 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6440 { 6441 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6442 } 6443 SLAB_ATTR_RO(hwcache_align); 6444 6445 #ifdef CONFIG_ZONE_DMA 6446 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6447 { 6448 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6449 } 6450 SLAB_ATTR_RO(cache_dma); 6451 #endif 6452 6453 #ifdef CONFIG_HARDENED_USERCOPY 6454 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6455 { 6456 return sysfs_emit(buf, "%u\n", s->usersize); 6457 } 6458 SLAB_ATTR_RO(usersize); 6459 #endif 6460 6461 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6462 { 6463 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6464 } 6465 SLAB_ATTR_RO(destroy_by_rcu); 6466 6467 #ifdef CONFIG_SLUB_DEBUG 6468 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6469 { 6470 return show_slab_objects(s, buf, SO_ALL); 6471 } 6472 SLAB_ATTR_RO(slabs); 6473 6474 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6475 { 6476 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6477 } 6478 SLAB_ATTR_RO(total_objects); 6479 6480 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6481 { 6482 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6483 } 6484 SLAB_ATTR_RO(objects); 6485 6486 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6487 { 6488 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6489 } 6490 SLAB_ATTR_RO(sanity_checks); 6491 6492 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6493 { 6494 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6495 } 6496 SLAB_ATTR_RO(trace); 6497 6498 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6499 { 6500 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6501 } 6502 6503 SLAB_ATTR_RO(red_zone); 6504 6505 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6506 { 6507 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6508 } 6509 6510 SLAB_ATTR_RO(poison); 6511 6512 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6513 { 6514 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6515 } 6516 6517 SLAB_ATTR_RO(store_user); 6518 6519 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6520 { 6521 return 0; 6522 } 6523 6524 static ssize_t validate_store(struct kmem_cache *s, 6525 const char *buf, size_t length) 6526 { 6527 int ret = -EINVAL; 6528 6529 if (buf[0] == '1' && kmem_cache_debug(s)) { 6530 ret = validate_slab_cache(s); 6531 if (ret >= 0) 6532 ret = length; 6533 } 6534 return ret; 6535 } 6536 SLAB_ATTR(validate); 6537 6538 #endif /* CONFIG_SLUB_DEBUG */ 6539 6540 #ifdef CONFIG_FAILSLAB 6541 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6542 { 6543 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6544 } 6545 6546 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6547 size_t length) 6548 { 6549 if (s->refcount > 1) 6550 return -EINVAL; 6551 6552 if (buf[0] == '1') 6553 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6554 else 6555 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6556 6557 return length; 6558 } 6559 SLAB_ATTR(failslab); 6560 #endif 6561 6562 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6563 { 6564 return 0; 6565 } 6566 6567 static ssize_t shrink_store(struct kmem_cache *s, 6568 const char *buf, size_t length) 6569 { 6570 if (buf[0] == '1') 6571 kmem_cache_shrink(s); 6572 else 6573 return -EINVAL; 6574 return length; 6575 } 6576 SLAB_ATTR(shrink); 6577 6578 #ifdef CONFIG_NUMA 6579 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6580 { 6581 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6582 } 6583 6584 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6585 const char *buf, size_t length) 6586 { 6587 unsigned int ratio; 6588 int err; 6589 6590 err = kstrtouint(buf, 10, &ratio); 6591 if (err) 6592 return err; 6593 if (ratio > 100) 6594 return -ERANGE; 6595 6596 s->remote_node_defrag_ratio = ratio * 10; 6597 6598 return length; 6599 } 6600 SLAB_ATTR(remote_node_defrag_ratio); 6601 #endif 6602 6603 #ifdef CONFIG_SLUB_STATS 6604 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6605 { 6606 unsigned long sum = 0; 6607 int cpu; 6608 int len = 0; 6609 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6610 6611 if (!data) 6612 return -ENOMEM; 6613 6614 for_each_online_cpu(cpu) { 6615 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6616 6617 data[cpu] = x; 6618 sum += x; 6619 } 6620 6621 len += sysfs_emit_at(buf, len, "%lu", sum); 6622 6623 #ifdef CONFIG_SMP 6624 for_each_online_cpu(cpu) { 6625 if (data[cpu]) 6626 len += sysfs_emit_at(buf, len, " C%d=%u", 6627 cpu, data[cpu]); 6628 } 6629 #endif 6630 kfree(data); 6631 len += sysfs_emit_at(buf, len, "\n"); 6632 6633 return len; 6634 } 6635 6636 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6637 { 6638 int cpu; 6639 6640 for_each_online_cpu(cpu) 6641 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6642 } 6643 6644 #define STAT_ATTR(si, text) \ 6645 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6646 { \ 6647 return show_stat(s, buf, si); \ 6648 } \ 6649 static ssize_t text##_store(struct kmem_cache *s, \ 6650 const char *buf, size_t length) \ 6651 { \ 6652 if (buf[0] != '0') \ 6653 return -EINVAL; \ 6654 clear_stat(s, si); \ 6655 return length; \ 6656 } \ 6657 SLAB_ATTR(text); \ 6658 6659 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 6660 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 6661 STAT_ATTR(FREE_FASTPATH, free_fastpath); 6662 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 6663 STAT_ATTR(FREE_FROZEN, free_frozen); 6664 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 6665 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 6666 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 6667 STAT_ATTR(ALLOC_SLAB, alloc_slab); 6668 STAT_ATTR(ALLOC_REFILL, alloc_refill); 6669 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 6670 STAT_ATTR(FREE_SLAB, free_slab); 6671 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 6672 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 6673 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 6674 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 6675 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 6676 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 6677 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 6678 STAT_ATTR(ORDER_FALLBACK, order_fallback); 6679 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 6680 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 6681 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 6682 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 6683 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 6684 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 6685 #endif /* CONFIG_SLUB_STATS */ 6686 6687 #ifdef CONFIG_KFENCE 6688 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 6689 { 6690 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 6691 } 6692 6693 static ssize_t skip_kfence_store(struct kmem_cache *s, 6694 const char *buf, size_t length) 6695 { 6696 int ret = length; 6697 6698 if (buf[0] == '0') 6699 s->flags &= ~SLAB_SKIP_KFENCE; 6700 else if (buf[0] == '1') 6701 s->flags |= SLAB_SKIP_KFENCE; 6702 else 6703 ret = -EINVAL; 6704 6705 return ret; 6706 } 6707 SLAB_ATTR(skip_kfence); 6708 #endif 6709 6710 static struct attribute *slab_attrs[] = { 6711 &slab_size_attr.attr, 6712 &object_size_attr.attr, 6713 &objs_per_slab_attr.attr, 6714 &order_attr.attr, 6715 &min_partial_attr.attr, 6716 &cpu_partial_attr.attr, 6717 &objects_partial_attr.attr, 6718 &partial_attr.attr, 6719 &cpu_slabs_attr.attr, 6720 &ctor_attr.attr, 6721 &aliases_attr.attr, 6722 &align_attr.attr, 6723 &hwcache_align_attr.attr, 6724 &reclaim_account_attr.attr, 6725 &destroy_by_rcu_attr.attr, 6726 &shrink_attr.attr, 6727 &slabs_cpu_partial_attr.attr, 6728 #ifdef CONFIG_SLUB_DEBUG 6729 &total_objects_attr.attr, 6730 &objects_attr.attr, 6731 &slabs_attr.attr, 6732 &sanity_checks_attr.attr, 6733 &trace_attr.attr, 6734 &red_zone_attr.attr, 6735 &poison_attr.attr, 6736 &store_user_attr.attr, 6737 &validate_attr.attr, 6738 #endif 6739 #ifdef CONFIG_ZONE_DMA 6740 &cache_dma_attr.attr, 6741 #endif 6742 #ifdef CONFIG_NUMA 6743 &remote_node_defrag_ratio_attr.attr, 6744 #endif 6745 #ifdef CONFIG_SLUB_STATS 6746 &alloc_fastpath_attr.attr, 6747 &alloc_slowpath_attr.attr, 6748 &free_fastpath_attr.attr, 6749 &free_slowpath_attr.attr, 6750 &free_frozen_attr.attr, 6751 &free_add_partial_attr.attr, 6752 &free_remove_partial_attr.attr, 6753 &alloc_from_partial_attr.attr, 6754 &alloc_slab_attr.attr, 6755 &alloc_refill_attr.attr, 6756 &alloc_node_mismatch_attr.attr, 6757 &free_slab_attr.attr, 6758 &cpuslab_flush_attr.attr, 6759 &deactivate_full_attr.attr, 6760 &deactivate_empty_attr.attr, 6761 &deactivate_to_head_attr.attr, 6762 &deactivate_to_tail_attr.attr, 6763 &deactivate_remote_frees_attr.attr, 6764 &deactivate_bypass_attr.attr, 6765 &order_fallback_attr.attr, 6766 &cmpxchg_double_fail_attr.attr, 6767 &cmpxchg_double_cpu_fail_attr.attr, 6768 &cpu_partial_alloc_attr.attr, 6769 &cpu_partial_free_attr.attr, 6770 &cpu_partial_node_attr.attr, 6771 &cpu_partial_drain_attr.attr, 6772 #endif 6773 #ifdef CONFIG_FAILSLAB 6774 &failslab_attr.attr, 6775 #endif 6776 #ifdef CONFIG_HARDENED_USERCOPY 6777 &usersize_attr.attr, 6778 #endif 6779 #ifdef CONFIG_KFENCE 6780 &skip_kfence_attr.attr, 6781 #endif 6782 6783 NULL 6784 }; 6785 6786 static const struct attribute_group slab_attr_group = { 6787 .attrs = slab_attrs, 6788 }; 6789 6790 static ssize_t slab_attr_show(struct kobject *kobj, 6791 struct attribute *attr, 6792 char *buf) 6793 { 6794 struct slab_attribute *attribute; 6795 struct kmem_cache *s; 6796 6797 attribute = to_slab_attr(attr); 6798 s = to_slab(kobj); 6799 6800 if (!attribute->show) 6801 return -EIO; 6802 6803 return attribute->show(s, buf); 6804 } 6805 6806 static ssize_t slab_attr_store(struct kobject *kobj, 6807 struct attribute *attr, 6808 const char *buf, size_t len) 6809 { 6810 struct slab_attribute *attribute; 6811 struct kmem_cache *s; 6812 6813 attribute = to_slab_attr(attr); 6814 s = to_slab(kobj); 6815 6816 if (!attribute->store) 6817 return -EIO; 6818 6819 return attribute->store(s, buf, len); 6820 } 6821 6822 static void kmem_cache_release(struct kobject *k) 6823 { 6824 slab_kmem_cache_release(to_slab(k)); 6825 } 6826 6827 static const struct sysfs_ops slab_sysfs_ops = { 6828 .show = slab_attr_show, 6829 .store = slab_attr_store, 6830 }; 6831 6832 static const struct kobj_type slab_ktype = { 6833 .sysfs_ops = &slab_sysfs_ops, 6834 .release = kmem_cache_release, 6835 }; 6836 6837 static struct kset *slab_kset; 6838 6839 static inline struct kset *cache_kset(struct kmem_cache *s) 6840 { 6841 return slab_kset; 6842 } 6843 6844 #define ID_STR_LENGTH 32 6845 6846 /* Create a unique string id for a slab cache: 6847 * 6848 * Format :[flags-]size 6849 */ 6850 static char *create_unique_id(struct kmem_cache *s) 6851 { 6852 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6853 char *p = name; 6854 6855 if (!name) 6856 return ERR_PTR(-ENOMEM); 6857 6858 *p++ = ':'; 6859 /* 6860 * First flags affecting slabcache operations. We will only 6861 * get here for aliasable slabs so we do not need to support 6862 * too many flags. The flags here must cover all flags that 6863 * are matched during merging to guarantee that the id is 6864 * unique. 6865 */ 6866 if (s->flags & SLAB_CACHE_DMA) 6867 *p++ = 'd'; 6868 if (s->flags & SLAB_CACHE_DMA32) 6869 *p++ = 'D'; 6870 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6871 *p++ = 'a'; 6872 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6873 *p++ = 'F'; 6874 if (s->flags & SLAB_ACCOUNT) 6875 *p++ = 'A'; 6876 if (p != name + 1) 6877 *p++ = '-'; 6878 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6879 6880 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6881 kfree(name); 6882 return ERR_PTR(-EINVAL); 6883 } 6884 kmsan_unpoison_memory(name, p - name); 6885 return name; 6886 } 6887 6888 static int sysfs_slab_add(struct kmem_cache *s) 6889 { 6890 int err; 6891 const char *name; 6892 struct kset *kset = cache_kset(s); 6893 int unmergeable = slab_unmergeable(s); 6894 6895 if (!unmergeable && disable_higher_order_debug && 6896 (slub_debug & DEBUG_METADATA_FLAGS)) 6897 unmergeable = 1; 6898 6899 if (unmergeable) { 6900 /* 6901 * Slabcache can never be merged so we can use the name proper. 6902 * This is typically the case for debug situations. In that 6903 * case we can catch duplicate names easily. 6904 */ 6905 sysfs_remove_link(&slab_kset->kobj, s->name); 6906 name = s->name; 6907 } else { 6908 /* 6909 * Create a unique name for the slab as a target 6910 * for the symlinks. 6911 */ 6912 name = create_unique_id(s); 6913 if (IS_ERR(name)) 6914 return PTR_ERR(name); 6915 } 6916 6917 s->kobj.kset = kset; 6918 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6919 if (err) 6920 goto out; 6921 6922 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6923 if (err) 6924 goto out_del_kobj; 6925 6926 if (!unmergeable) { 6927 /* Setup first alias */ 6928 sysfs_slab_alias(s, s->name); 6929 } 6930 out: 6931 if (!unmergeable) 6932 kfree(name); 6933 return err; 6934 out_del_kobj: 6935 kobject_del(&s->kobj); 6936 goto out; 6937 } 6938 6939 void sysfs_slab_unlink(struct kmem_cache *s) 6940 { 6941 kobject_del(&s->kobj); 6942 } 6943 6944 void sysfs_slab_release(struct kmem_cache *s) 6945 { 6946 kobject_put(&s->kobj); 6947 } 6948 6949 /* 6950 * Need to buffer aliases during bootup until sysfs becomes 6951 * available lest we lose that information. 6952 */ 6953 struct saved_alias { 6954 struct kmem_cache *s; 6955 const char *name; 6956 struct saved_alias *next; 6957 }; 6958 6959 static struct saved_alias *alias_list; 6960 6961 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6962 { 6963 struct saved_alias *al; 6964 6965 if (slab_state == FULL) { 6966 /* 6967 * If we have a leftover link then remove it. 6968 */ 6969 sysfs_remove_link(&slab_kset->kobj, name); 6970 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6971 } 6972 6973 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6974 if (!al) 6975 return -ENOMEM; 6976 6977 al->s = s; 6978 al->name = name; 6979 al->next = alias_list; 6980 alias_list = al; 6981 kmsan_unpoison_memory(al, sizeof(*al)); 6982 return 0; 6983 } 6984 6985 static int __init slab_sysfs_init(void) 6986 { 6987 struct kmem_cache *s; 6988 int err; 6989 6990 mutex_lock(&slab_mutex); 6991 6992 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6993 if (!slab_kset) { 6994 mutex_unlock(&slab_mutex); 6995 pr_err("Cannot register slab subsystem.\n"); 6996 return -ENOMEM; 6997 } 6998 6999 slab_state = FULL; 7000 7001 list_for_each_entry(s, &slab_caches, list) { 7002 err = sysfs_slab_add(s); 7003 if (err) 7004 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7005 s->name); 7006 } 7007 7008 while (alias_list) { 7009 struct saved_alias *al = alias_list; 7010 7011 alias_list = alias_list->next; 7012 err = sysfs_slab_alias(al->s, al->name); 7013 if (err) 7014 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7015 al->name); 7016 kfree(al); 7017 } 7018 7019 mutex_unlock(&slab_mutex); 7020 return 0; 7021 } 7022 late_initcall(slab_sysfs_init); 7023 #endif /* SLAB_SUPPORTS_SYSFS */ 7024 7025 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7026 static int slab_debugfs_show(struct seq_file *seq, void *v) 7027 { 7028 struct loc_track *t = seq->private; 7029 struct location *l; 7030 unsigned long idx; 7031 7032 idx = (unsigned long) t->idx; 7033 if (idx < t->count) { 7034 l = &t->loc[idx]; 7035 7036 seq_printf(seq, "%7ld ", l->count); 7037 7038 if (l->addr) 7039 seq_printf(seq, "%pS", (void *)l->addr); 7040 else 7041 seq_puts(seq, "<not-available>"); 7042 7043 if (l->waste) 7044 seq_printf(seq, " waste=%lu/%lu", 7045 l->count * l->waste, l->waste); 7046 7047 if (l->sum_time != l->min_time) { 7048 seq_printf(seq, " age=%ld/%llu/%ld", 7049 l->min_time, div_u64(l->sum_time, l->count), 7050 l->max_time); 7051 } else 7052 seq_printf(seq, " age=%ld", l->min_time); 7053 7054 if (l->min_pid != l->max_pid) 7055 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7056 else 7057 seq_printf(seq, " pid=%ld", 7058 l->min_pid); 7059 7060 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7061 seq_printf(seq, " cpus=%*pbl", 7062 cpumask_pr_args(to_cpumask(l->cpus))); 7063 7064 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7065 seq_printf(seq, " nodes=%*pbl", 7066 nodemask_pr_args(&l->nodes)); 7067 7068 #ifdef CONFIG_STACKDEPOT 7069 { 7070 depot_stack_handle_t handle; 7071 unsigned long *entries; 7072 unsigned int nr_entries, j; 7073 7074 handle = READ_ONCE(l->handle); 7075 if (handle) { 7076 nr_entries = stack_depot_fetch(handle, &entries); 7077 seq_puts(seq, "\n"); 7078 for (j = 0; j < nr_entries; j++) 7079 seq_printf(seq, " %pS\n", (void *)entries[j]); 7080 } 7081 } 7082 #endif 7083 seq_puts(seq, "\n"); 7084 } 7085 7086 if (!idx && !t->count) 7087 seq_puts(seq, "No data\n"); 7088 7089 return 0; 7090 } 7091 7092 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7093 { 7094 } 7095 7096 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7097 { 7098 struct loc_track *t = seq->private; 7099 7100 t->idx = ++(*ppos); 7101 if (*ppos <= t->count) 7102 return ppos; 7103 7104 return NULL; 7105 } 7106 7107 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7108 { 7109 struct location *loc1 = (struct location *)a; 7110 struct location *loc2 = (struct location *)b; 7111 7112 if (loc1->count > loc2->count) 7113 return -1; 7114 else 7115 return 1; 7116 } 7117 7118 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7119 { 7120 struct loc_track *t = seq->private; 7121 7122 t->idx = *ppos; 7123 return ppos; 7124 } 7125 7126 static const struct seq_operations slab_debugfs_sops = { 7127 .start = slab_debugfs_start, 7128 .next = slab_debugfs_next, 7129 .stop = slab_debugfs_stop, 7130 .show = slab_debugfs_show, 7131 }; 7132 7133 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7134 { 7135 7136 struct kmem_cache_node *n; 7137 enum track_item alloc; 7138 int node; 7139 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7140 sizeof(struct loc_track)); 7141 struct kmem_cache *s = file_inode(filep)->i_private; 7142 unsigned long *obj_map; 7143 7144 if (!t) 7145 return -ENOMEM; 7146 7147 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7148 if (!obj_map) { 7149 seq_release_private(inode, filep); 7150 return -ENOMEM; 7151 } 7152 7153 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 7154 alloc = TRACK_ALLOC; 7155 else 7156 alloc = TRACK_FREE; 7157 7158 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7159 bitmap_free(obj_map); 7160 seq_release_private(inode, filep); 7161 return -ENOMEM; 7162 } 7163 7164 for_each_kmem_cache_node(s, node, n) { 7165 unsigned long flags; 7166 struct slab *slab; 7167 7168 if (!node_nr_slabs(n)) 7169 continue; 7170 7171 spin_lock_irqsave(&n->list_lock, flags); 7172 list_for_each_entry(slab, &n->partial, slab_list) 7173 process_slab(t, s, slab, alloc, obj_map); 7174 list_for_each_entry(slab, &n->full, slab_list) 7175 process_slab(t, s, slab, alloc, obj_map); 7176 spin_unlock_irqrestore(&n->list_lock, flags); 7177 } 7178 7179 /* Sort locations by count */ 7180 sort_r(t->loc, t->count, sizeof(struct location), 7181 cmp_loc_by_count, NULL, NULL); 7182 7183 bitmap_free(obj_map); 7184 return 0; 7185 } 7186 7187 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7188 { 7189 struct seq_file *seq = file->private_data; 7190 struct loc_track *t = seq->private; 7191 7192 free_loc_track(t); 7193 return seq_release_private(inode, file); 7194 } 7195 7196 static const struct file_operations slab_debugfs_fops = { 7197 .open = slab_debug_trace_open, 7198 .read = seq_read, 7199 .llseek = seq_lseek, 7200 .release = slab_debug_trace_release, 7201 }; 7202 7203 static void debugfs_slab_add(struct kmem_cache *s) 7204 { 7205 struct dentry *slab_cache_dir; 7206 7207 if (unlikely(!slab_debugfs_root)) 7208 return; 7209 7210 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7211 7212 debugfs_create_file("alloc_traces", 0400, 7213 slab_cache_dir, s, &slab_debugfs_fops); 7214 7215 debugfs_create_file("free_traces", 0400, 7216 slab_cache_dir, s, &slab_debugfs_fops); 7217 } 7218 7219 void debugfs_slab_release(struct kmem_cache *s) 7220 { 7221 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7222 } 7223 7224 static int __init slab_debugfs_init(void) 7225 { 7226 struct kmem_cache *s; 7227 7228 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7229 7230 list_for_each_entry(s, &slab_caches, list) 7231 if (s->flags & SLAB_STORE_USER) 7232 debugfs_slab_add(s); 7233 7234 return 0; 7235 7236 } 7237 __initcall(slab_debugfs_init); 7238 #endif 7239 /* 7240 * The /proc/slabinfo ABI 7241 */ 7242 #ifdef CONFIG_SLUB_DEBUG 7243 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7244 { 7245 unsigned long nr_slabs = 0; 7246 unsigned long nr_objs = 0; 7247 unsigned long nr_free = 0; 7248 int node; 7249 struct kmem_cache_node *n; 7250 7251 for_each_kmem_cache_node(s, node, n) { 7252 nr_slabs += node_nr_slabs(n); 7253 nr_objs += node_nr_objs(n); 7254 nr_free += count_partial_free_approx(n); 7255 } 7256 7257 sinfo->active_objs = nr_objs - nr_free; 7258 sinfo->num_objs = nr_objs; 7259 sinfo->active_slabs = nr_slabs; 7260 sinfo->num_slabs = nr_slabs; 7261 sinfo->objects_per_slab = oo_objects(s->oo); 7262 sinfo->cache_order = oo_order(s->oo); 7263 } 7264 #endif /* CONFIG_SLUB_DEBUG */ 7265