xref: /linux/mm/slub.c (revision 40d3057ac036f2501c1930728a6179be4fca577b)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
26 
27 /*
28  * Lock order:
29  *   1. slab_lock(page)
30  *   2. slab->list_lock
31  *
32  *   The slab_lock protects operations on the object of a particular
33  *   slab and its metadata in the page struct. If the slab lock
34  *   has been taken then no allocations nor frees can be performed
35  *   on the objects in the slab nor can the slab be added or removed
36  *   from the partial or full lists since this would mean modifying
37  *   the page_struct of the slab.
38  *
39  *   The list_lock protects the partial and full list on each node and
40  *   the partial slab counter. If taken then no new slabs may be added or
41  *   removed from the lists nor make the number of partial slabs be modified.
42  *   (Note that the total number of slabs is an atomic value that may be
43  *   modified without taking the list lock).
44  *
45  *   The list_lock is a centralized lock and thus we avoid taking it as
46  *   much as possible. As long as SLUB does not have to handle partial
47  *   slabs, operations can continue without any centralized lock. F.e.
48  *   allocating a long series of objects that fill up slabs does not require
49  *   the list lock.
50  *
51  *   The lock order is sometimes inverted when we are trying to get a slab
52  *   off a list. We take the list_lock and then look for a page on the list
53  *   to use. While we do that objects in the slabs may be freed. We can
54  *   only operate on the slab if we have also taken the slab_lock. So we use
55  *   a slab_trylock() on the slab. If trylock was successful then no frees
56  *   can occur anymore and we can use the slab for allocations etc. If the
57  *   slab_trylock() does not succeed then frees are in progress in the slab and
58  *   we must stay away from it for a while since we may cause a bouncing
59  *   cacheline if we try to acquire the lock. So go onto the next slab.
60  *   If all pages are busy then we may allocate a new slab instead of reusing
61  *   a partial slab. A new slab has noone operating on it and thus there is
62  *   no danger of cacheline contention.
63  *
64  *   Interrupts are disabled during allocation and deallocation in order to
65  *   make the slab allocator safe to use in the context of an irq. In addition
66  *   interrupts are disabled to ensure that the processor does not change
67  *   while handling per_cpu slabs, due to kernel preemption.
68  *
69  * SLUB assigns one slab for allocation to each processor.
70  * Allocations only occur from these slabs called cpu slabs.
71  *
72  * Slabs with free elements are kept on a partial list and during regular
73  * operations no list for full slabs is used. If an object in a full slab is
74  * freed then the slab will show up again on the partial lists.
75  * We track full slabs for debugging purposes though because otherwise we
76  * cannot scan all objects.
77  *
78  * Slabs are freed when they become empty. Teardown and setup is
79  * minimal so we rely on the page allocators per cpu caches for
80  * fast frees and allocs.
81  *
82  * Overloading of page flags that are otherwise used for LRU management.
83  *
84  * PageActive 		The slab is frozen and exempt from list processing.
85  * 			This means that the slab is dedicated to a purpose
86  * 			such as satisfying allocations for a specific
87  * 			processor. Objects may be freed in the slab while
88  * 			it is frozen but slab_free will then skip the usual
89  * 			list operations. It is up to the processor holding
90  * 			the slab to integrate the slab into the slab lists
91  * 			when the slab is no longer needed.
92  *
93  * 			One use of this flag is to mark slabs that are
94  * 			used for allocations. Then such a slab becomes a cpu
95  * 			slab. The cpu slab may be equipped with an additional
96  * 			freelist that allows lockless access to
97  * 			free objects in addition to the regular freelist
98  * 			that requires the slab lock.
99  *
100  * PageError		Slab requires special handling due to debug
101  * 			options set. This moves	slab handling out of
102  * 			the fast path and disables lockless freelists.
103  */
104 
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG 1
107 #else
108 #define SLABDEBUG 0
109 #endif
110 
111 /*
112  * Issues still to be resolved:
113  *
114  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
115  *
116  * - Variable sizing of the per node arrays
117  */
118 
119 /* Enable to test recovery from slab corruption on boot */
120 #undef SLUB_RESILIENCY_TEST
121 
122 /*
123  * Mininum number of partial slabs. These will be left on the partial
124  * lists even if they are empty. kmem_cache_shrink may reclaim them.
125  */
126 #define MIN_PARTIAL 5
127 
128 /*
129  * Maximum number of desirable partial slabs.
130  * The existence of more partial slabs makes kmem_cache_shrink
131  * sort the partial list by the number of objects in the.
132  */
133 #define MAX_PARTIAL 10
134 
135 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
136 				SLAB_POISON | SLAB_STORE_USER)
137 
138 /*
139  * Set of flags that will prevent slab merging
140  */
141 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
143 
144 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
145 		SLAB_CACHE_DMA)
146 
147 #ifndef ARCH_KMALLOC_MINALIGN
148 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
149 #endif
150 
151 #ifndef ARCH_SLAB_MINALIGN
152 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
153 #endif
154 
155 /* Internal SLUB flags */
156 #define __OBJECT_POISON		0x80000000 /* Poison object */
157 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
158 
159 static int kmem_size = sizeof(struct kmem_cache);
160 
161 #ifdef CONFIG_SMP
162 static struct notifier_block slab_notifier;
163 #endif
164 
165 static enum {
166 	DOWN,		/* No slab functionality available */
167 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
168 	UP,		/* Everything works but does not show up in sysfs */
169 	SYSFS		/* Sysfs up */
170 } slab_state = DOWN;
171 
172 /* A list of all slab caches on the system */
173 static DECLARE_RWSEM(slub_lock);
174 static LIST_HEAD(slab_caches);
175 
176 /*
177  * Tracking user of a slab.
178  */
179 struct track {
180 	void *addr;		/* Called from address */
181 	int cpu;		/* Was running on cpu */
182 	int pid;		/* Pid context */
183 	unsigned long when;	/* When did the operation occur */
184 };
185 
186 enum track_item { TRACK_ALLOC, TRACK_FREE };
187 
188 #ifdef CONFIG_SLUB_DEBUG
189 static int sysfs_slab_add(struct kmem_cache *);
190 static int sysfs_slab_alias(struct kmem_cache *, const char *);
191 static void sysfs_slab_remove(struct kmem_cache *);
192 
193 #else
194 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
195 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
196 							{ return 0; }
197 static inline void sysfs_slab_remove(struct kmem_cache *s)
198 {
199 	kfree(s);
200 }
201 
202 #endif
203 
204 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
205 {
206 #ifdef CONFIG_SLUB_STATS
207 	c->stat[si]++;
208 #endif
209 }
210 
211 /********************************************************************
212  * 			Core slab cache functions
213  *******************************************************************/
214 
215 int slab_is_available(void)
216 {
217 	return slab_state >= UP;
218 }
219 
220 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
221 {
222 #ifdef CONFIG_NUMA
223 	return s->node[node];
224 #else
225 	return &s->local_node;
226 #endif
227 }
228 
229 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
230 {
231 #ifdef CONFIG_SMP
232 	return s->cpu_slab[cpu];
233 #else
234 	return &s->cpu_slab;
235 #endif
236 }
237 
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache *s,
240 				struct page *page, const void *object)
241 {
242 	void *base;
243 
244 	if (!object)
245 		return 1;
246 
247 	base = page_address(page);
248 	if (object < base || object >= base + page->objects * s->size ||
249 		(object - base) % s->size) {
250 		return 0;
251 	}
252 
253 	return 1;
254 }
255 
256 /*
257  * Slow version of get and set free pointer.
258  *
259  * This version requires touching the cache lines of kmem_cache which
260  * we avoid to do in the fast alloc free paths. There we obtain the offset
261  * from the page struct.
262  */
263 static inline void *get_freepointer(struct kmem_cache *s, void *object)
264 {
265 	return *(void **)(object + s->offset);
266 }
267 
268 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269 {
270 	*(void **)(object + s->offset) = fp;
271 }
272 
273 /* Loop over all objects in a slab */
274 #define for_each_object(__p, __s, __addr, __objects) \
275 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276 			__p += (__s)->size)
277 
278 /* Scan freelist */
279 #define for_each_free_object(__p, __s, __free) \
280 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
281 
282 /* Determine object index from a given position */
283 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284 {
285 	return (p - addr) / s->size;
286 }
287 
288 static inline struct kmem_cache_order_objects oo_make(int order,
289 						unsigned long size)
290 {
291 	struct kmem_cache_order_objects x = {
292 		(order << 16) + (PAGE_SIZE << order) / size
293 	};
294 
295 	return x;
296 }
297 
298 static inline int oo_order(struct kmem_cache_order_objects x)
299 {
300 	return x.x >> 16;
301 }
302 
303 static inline int oo_objects(struct kmem_cache_order_objects x)
304 {
305 	return x.x & ((1 << 16) - 1);
306 }
307 
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310  * Debug settings:
311  */
312 #ifdef CONFIG_SLUB_DEBUG_ON
313 static int slub_debug = DEBUG_DEFAULT_FLAGS;
314 #else
315 static int slub_debug;
316 #endif
317 
318 static char *slub_debug_slabs;
319 
320 /*
321  * Object debugging
322  */
323 static void print_section(char *text, u8 *addr, unsigned int length)
324 {
325 	int i, offset;
326 	int newline = 1;
327 	char ascii[17];
328 
329 	ascii[16] = 0;
330 
331 	for (i = 0; i < length; i++) {
332 		if (newline) {
333 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
334 			newline = 0;
335 		}
336 		printk(KERN_CONT " %02x", addr[i]);
337 		offset = i % 16;
338 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
339 		if (offset == 15) {
340 			printk(KERN_CONT " %s\n", ascii);
341 			newline = 1;
342 		}
343 	}
344 	if (!newline) {
345 		i %= 16;
346 		while (i < 16) {
347 			printk(KERN_CONT "   ");
348 			ascii[i] = ' ';
349 			i++;
350 		}
351 		printk(KERN_CONT " %s\n", ascii);
352 	}
353 }
354 
355 static struct track *get_track(struct kmem_cache *s, void *object,
356 	enum track_item alloc)
357 {
358 	struct track *p;
359 
360 	if (s->offset)
361 		p = object + s->offset + sizeof(void *);
362 	else
363 		p = object + s->inuse;
364 
365 	return p + alloc;
366 }
367 
368 static void set_track(struct kmem_cache *s, void *object,
369 				enum track_item alloc, void *addr)
370 {
371 	struct track *p;
372 
373 	if (s->offset)
374 		p = object + s->offset + sizeof(void *);
375 	else
376 		p = object + s->inuse;
377 
378 	p += alloc;
379 	if (addr) {
380 		p->addr = addr;
381 		p->cpu = smp_processor_id();
382 		p->pid = current->pid;
383 		p->when = jiffies;
384 	} else
385 		memset(p, 0, sizeof(struct track));
386 }
387 
388 static void init_tracking(struct kmem_cache *s, void *object)
389 {
390 	if (!(s->flags & SLAB_STORE_USER))
391 		return;
392 
393 	set_track(s, object, TRACK_FREE, NULL);
394 	set_track(s, object, TRACK_ALLOC, NULL);
395 }
396 
397 static void print_track(const char *s, struct track *t)
398 {
399 	if (!t->addr)
400 		return;
401 
402 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403 		s, t->addr, jiffies - t->when, t->cpu, t->pid);
404 }
405 
406 static void print_tracking(struct kmem_cache *s, void *object)
407 {
408 	if (!(s->flags & SLAB_STORE_USER))
409 		return;
410 
411 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412 	print_track("Freed", get_track(s, object, TRACK_FREE));
413 }
414 
415 static void print_page_info(struct page *page)
416 {
417 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418 		page, page->objects, page->inuse, page->freelist, page->flags);
419 
420 }
421 
422 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
423 {
424 	va_list args;
425 	char buf[100];
426 
427 	va_start(args, fmt);
428 	vsnprintf(buf, sizeof(buf), fmt, args);
429 	va_end(args);
430 	printk(KERN_ERR "========================================"
431 			"=====================================\n");
432 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433 	printk(KERN_ERR "----------------------------------------"
434 			"-------------------------------------\n\n");
435 }
436 
437 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
438 {
439 	va_list args;
440 	char buf[100];
441 
442 	va_start(args, fmt);
443 	vsnprintf(buf, sizeof(buf), fmt, args);
444 	va_end(args);
445 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
446 }
447 
448 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
449 {
450 	unsigned int off;	/* Offset of last byte */
451 	u8 *addr = page_address(page);
452 
453 	print_tracking(s, p);
454 
455 	print_page_info(page);
456 
457 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458 			p, p - addr, get_freepointer(s, p));
459 
460 	if (p > addr + 16)
461 		print_section("Bytes b4", p - 16, 16);
462 
463 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
464 
465 	if (s->flags & SLAB_RED_ZONE)
466 		print_section("Redzone", p + s->objsize,
467 			s->inuse - s->objsize);
468 
469 	if (s->offset)
470 		off = s->offset + sizeof(void *);
471 	else
472 		off = s->inuse;
473 
474 	if (s->flags & SLAB_STORE_USER)
475 		off += 2 * sizeof(struct track);
476 
477 	if (off != s->size)
478 		/* Beginning of the filler is the free pointer */
479 		print_section("Padding", p + off, s->size - off);
480 
481 	dump_stack();
482 }
483 
484 static void object_err(struct kmem_cache *s, struct page *page,
485 			u8 *object, char *reason)
486 {
487 	slab_bug(s, "%s", reason);
488 	print_trailer(s, page, object);
489 }
490 
491 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
492 {
493 	va_list args;
494 	char buf[100];
495 
496 	va_start(args, fmt);
497 	vsnprintf(buf, sizeof(buf), fmt, args);
498 	va_end(args);
499 	slab_bug(s, "%s", buf);
500 	print_page_info(page);
501 	dump_stack();
502 }
503 
504 static void init_object(struct kmem_cache *s, void *object, int active)
505 {
506 	u8 *p = object;
507 
508 	if (s->flags & __OBJECT_POISON) {
509 		memset(p, POISON_FREE, s->objsize - 1);
510 		p[s->objsize - 1] = POISON_END;
511 	}
512 
513 	if (s->flags & SLAB_RED_ZONE)
514 		memset(p + s->objsize,
515 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516 			s->inuse - s->objsize);
517 }
518 
519 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
520 {
521 	while (bytes) {
522 		if (*start != (u8)value)
523 			return start;
524 		start++;
525 		bytes--;
526 	}
527 	return NULL;
528 }
529 
530 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531 						void *from, void *to)
532 {
533 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534 	memset(from, data, to - from);
535 }
536 
537 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538 			u8 *object, char *what,
539 			u8 *start, unsigned int value, unsigned int bytes)
540 {
541 	u8 *fault;
542 	u8 *end;
543 
544 	fault = check_bytes(start, value, bytes);
545 	if (!fault)
546 		return 1;
547 
548 	end = start + bytes;
549 	while (end > fault && end[-1] == value)
550 		end--;
551 
552 	slab_bug(s, "%s overwritten", what);
553 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554 					fault, end - 1, fault[0], value);
555 	print_trailer(s, page, object);
556 
557 	restore_bytes(s, what, value, fault, end);
558 	return 0;
559 }
560 
561 /*
562  * Object layout:
563  *
564  * object address
565  * 	Bytes of the object to be managed.
566  * 	If the freepointer may overlay the object then the free
567  * 	pointer is the first word of the object.
568  *
569  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
570  * 	0xa5 (POISON_END)
571  *
572  * object + s->objsize
573  * 	Padding to reach word boundary. This is also used for Redzoning.
574  * 	Padding is extended by another word if Redzoning is enabled and
575  * 	objsize == inuse.
576  *
577  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578  * 	0xcc (RED_ACTIVE) for objects in use.
579  *
580  * object + s->inuse
581  * 	Meta data starts here.
582  *
583  * 	A. Free pointer (if we cannot overwrite object on free)
584  * 	B. Tracking data for SLAB_STORE_USER
585  * 	C. Padding to reach required alignment boundary or at mininum
586  * 		one word if debugging is on to be able to detect writes
587  * 		before the word boundary.
588  *
589  *	Padding is done using 0x5a (POISON_INUSE)
590  *
591  * object + s->size
592  * 	Nothing is used beyond s->size.
593  *
594  * If slabcaches are merged then the objsize and inuse boundaries are mostly
595  * ignored. And therefore no slab options that rely on these boundaries
596  * may be used with merged slabcaches.
597  */
598 
599 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
600 {
601 	unsigned long off = s->inuse;	/* The end of info */
602 
603 	if (s->offset)
604 		/* Freepointer is placed after the object. */
605 		off += sizeof(void *);
606 
607 	if (s->flags & SLAB_STORE_USER)
608 		/* We also have user information there */
609 		off += 2 * sizeof(struct track);
610 
611 	if (s->size == off)
612 		return 1;
613 
614 	return check_bytes_and_report(s, page, p, "Object padding",
615 				p + off, POISON_INUSE, s->size - off);
616 }
617 
618 /* Check the pad bytes at the end of a slab page */
619 static int slab_pad_check(struct kmem_cache *s, struct page *page)
620 {
621 	u8 *start;
622 	u8 *fault;
623 	u8 *end;
624 	int length;
625 	int remainder;
626 
627 	if (!(s->flags & SLAB_POISON))
628 		return 1;
629 
630 	start = page_address(page);
631 	length = (PAGE_SIZE << compound_order(page));
632 	end = start + length;
633 	remainder = length % s->size;
634 	if (!remainder)
635 		return 1;
636 
637 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
638 	if (!fault)
639 		return 1;
640 	while (end > fault && end[-1] == POISON_INUSE)
641 		end--;
642 
643 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644 	print_section("Padding", end - remainder, remainder);
645 
646 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
647 	return 0;
648 }
649 
650 static int check_object(struct kmem_cache *s, struct page *page,
651 					void *object, int active)
652 {
653 	u8 *p = object;
654 	u8 *endobject = object + s->objsize;
655 
656 	if (s->flags & SLAB_RED_ZONE) {
657 		unsigned int red =
658 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
659 
660 		if (!check_bytes_and_report(s, page, object, "Redzone",
661 			endobject, red, s->inuse - s->objsize))
662 			return 0;
663 	} else {
664 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665 			check_bytes_and_report(s, page, p, "Alignment padding",
666 				endobject, POISON_INUSE, s->inuse - s->objsize);
667 		}
668 	}
669 
670 	if (s->flags & SLAB_POISON) {
671 		if (!active && (s->flags & __OBJECT_POISON) &&
672 			(!check_bytes_and_report(s, page, p, "Poison", p,
673 					POISON_FREE, s->objsize - 1) ||
674 			 !check_bytes_and_report(s, page, p, "Poison",
675 				p + s->objsize - 1, POISON_END, 1)))
676 			return 0;
677 		/*
678 		 * check_pad_bytes cleans up on its own.
679 		 */
680 		check_pad_bytes(s, page, p);
681 	}
682 
683 	if (!s->offset && active)
684 		/*
685 		 * Object and freepointer overlap. Cannot check
686 		 * freepointer while object is allocated.
687 		 */
688 		return 1;
689 
690 	/* Check free pointer validity */
691 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692 		object_err(s, page, p, "Freepointer corrupt");
693 		/*
694 		 * No choice but to zap it and thus loose the remainder
695 		 * of the free objects in this slab. May cause
696 		 * another error because the object count is now wrong.
697 		 */
698 		set_freepointer(s, p, NULL);
699 		return 0;
700 	}
701 	return 1;
702 }
703 
704 static int check_slab(struct kmem_cache *s, struct page *page)
705 {
706 	int maxobj;
707 
708 	VM_BUG_ON(!irqs_disabled());
709 
710 	if (!PageSlab(page)) {
711 		slab_err(s, page, "Not a valid slab page");
712 		return 0;
713 	}
714 
715 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716 	if (page->objects > maxobj) {
717 		slab_err(s, page, "objects %u > max %u",
718 			s->name, page->objects, maxobj);
719 		return 0;
720 	}
721 	if (page->inuse > page->objects) {
722 		slab_err(s, page, "inuse %u > max %u",
723 			s->name, page->inuse, page->objects);
724 		return 0;
725 	}
726 	/* Slab_pad_check fixes things up after itself */
727 	slab_pad_check(s, page);
728 	return 1;
729 }
730 
731 /*
732  * Determine if a certain object on a page is on the freelist. Must hold the
733  * slab lock to guarantee that the chains are in a consistent state.
734  */
735 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
736 {
737 	int nr = 0;
738 	void *fp = page->freelist;
739 	void *object = NULL;
740 	unsigned long max_objects;
741 
742 	while (fp && nr <= page->objects) {
743 		if (fp == search)
744 			return 1;
745 		if (!check_valid_pointer(s, page, fp)) {
746 			if (object) {
747 				object_err(s, page, object,
748 					"Freechain corrupt");
749 				set_freepointer(s, object, NULL);
750 				break;
751 			} else {
752 				slab_err(s, page, "Freepointer corrupt");
753 				page->freelist = NULL;
754 				page->inuse = page->objects;
755 				slab_fix(s, "Freelist cleared");
756 				return 0;
757 			}
758 			break;
759 		}
760 		object = fp;
761 		fp = get_freepointer(s, object);
762 		nr++;
763 	}
764 
765 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
766 	if (max_objects > 65535)
767 		max_objects = 65535;
768 
769 	if (page->objects != max_objects) {
770 		slab_err(s, page, "Wrong number of objects. Found %d but "
771 			"should be %d", page->objects, max_objects);
772 		page->objects = max_objects;
773 		slab_fix(s, "Number of objects adjusted.");
774 	}
775 	if (page->inuse != page->objects - nr) {
776 		slab_err(s, page, "Wrong object count. Counter is %d but "
777 			"counted were %d", page->inuse, page->objects - nr);
778 		page->inuse = page->objects - nr;
779 		slab_fix(s, "Object count adjusted.");
780 	}
781 	return search == NULL;
782 }
783 
784 static void trace(struct kmem_cache *s, struct page *page, void *object,
785 								int alloc)
786 {
787 	if (s->flags & SLAB_TRACE) {
788 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789 			s->name,
790 			alloc ? "alloc" : "free",
791 			object, page->inuse,
792 			page->freelist);
793 
794 		if (!alloc)
795 			print_section("Object", (void *)object, s->objsize);
796 
797 		dump_stack();
798 	}
799 }
800 
801 /*
802  * Tracking of fully allocated slabs for debugging purposes.
803  */
804 static void add_full(struct kmem_cache_node *n, struct page *page)
805 {
806 	spin_lock(&n->list_lock);
807 	list_add(&page->lru, &n->full);
808 	spin_unlock(&n->list_lock);
809 }
810 
811 static void remove_full(struct kmem_cache *s, struct page *page)
812 {
813 	struct kmem_cache_node *n;
814 
815 	if (!(s->flags & SLAB_STORE_USER))
816 		return;
817 
818 	n = get_node(s, page_to_nid(page));
819 
820 	spin_lock(&n->list_lock);
821 	list_del(&page->lru);
822 	spin_unlock(&n->list_lock);
823 }
824 
825 /* Tracking of the number of slabs for debugging purposes */
826 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
827 {
828 	struct kmem_cache_node *n = get_node(s, node);
829 
830 	return atomic_long_read(&n->nr_slabs);
831 }
832 
833 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
834 {
835 	struct kmem_cache_node *n = get_node(s, node);
836 
837 	/*
838 	 * May be called early in order to allocate a slab for the
839 	 * kmem_cache_node structure. Solve the chicken-egg
840 	 * dilemma by deferring the increment of the count during
841 	 * bootstrap (see early_kmem_cache_node_alloc).
842 	 */
843 	if (!NUMA_BUILD || n) {
844 		atomic_long_inc(&n->nr_slabs);
845 		atomic_long_add(objects, &n->total_objects);
846 	}
847 }
848 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
849 {
850 	struct kmem_cache_node *n = get_node(s, node);
851 
852 	atomic_long_dec(&n->nr_slabs);
853 	atomic_long_sub(objects, &n->total_objects);
854 }
855 
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 								void *object)
859 {
860 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 		return;
862 
863 	init_object(s, object, 0);
864 	init_tracking(s, object);
865 }
866 
867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868 						void *object, void *addr)
869 {
870 	if (!check_slab(s, page))
871 		goto bad;
872 
873 	if (!on_freelist(s, page, object)) {
874 		object_err(s, page, object, "Object already allocated");
875 		goto bad;
876 	}
877 
878 	if (!check_valid_pointer(s, page, object)) {
879 		object_err(s, page, object, "Freelist Pointer check fails");
880 		goto bad;
881 	}
882 
883 	if (!check_object(s, page, object, 0))
884 		goto bad;
885 
886 	/* Success perform special debug activities for allocs */
887 	if (s->flags & SLAB_STORE_USER)
888 		set_track(s, object, TRACK_ALLOC, addr);
889 	trace(s, page, object, 1);
890 	init_object(s, object, 1);
891 	return 1;
892 
893 bad:
894 	if (PageSlab(page)) {
895 		/*
896 		 * If this is a slab page then lets do the best we can
897 		 * to avoid issues in the future. Marking all objects
898 		 * as used avoids touching the remaining objects.
899 		 */
900 		slab_fix(s, "Marking all objects used");
901 		page->inuse = page->objects;
902 		page->freelist = NULL;
903 	}
904 	return 0;
905 }
906 
907 static int free_debug_processing(struct kmem_cache *s, struct page *page,
908 						void *object, void *addr)
909 {
910 	if (!check_slab(s, page))
911 		goto fail;
912 
913 	if (!check_valid_pointer(s, page, object)) {
914 		slab_err(s, page, "Invalid object pointer 0x%p", object);
915 		goto fail;
916 	}
917 
918 	if (on_freelist(s, page, object)) {
919 		object_err(s, page, object, "Object already free");
920 		goto fail;
921 	}
922 
923 	if (!check_object(s, page, object, 1))
924 		return 0;
925 
926 	if (unlikely(s != page->slab)) {
927 		if (!PageSlab(page)) {
928 			slab_err(s, page, "Attempt to free object(0x%p) "
929 				"outside of slab", object);
930 		} else if (!page->slab) {
931 			printk(KERN_ERR
932 				"SLUB <none>: no slab for object 0x%p.\n",
933 						object);
934 			dump_stack();
935 		} else
936 			object_err(s, page, object,
937 					"page slab pointer corrupt.");
938 		goto fail;
939 	}
940 
941 	/* Special debug activities for freeing objects */
942 	if (!PageSlubFrozen(page) && !page->freelist)
943 		remove_full(s, page);
944 	if (s->flags & SLAB_STORE_USER)
945 		set_track(s, object, TRACK_FREE, addr);
946 	trace(s, page, object, 0);
947 	init_object(s, object, 0);
948 	return 1;
949 
950 fail:
951 	slab_fix(s, "Object at 0x%p not freed", object);
952 	return 0;
953 }
954 
955 static int __init setup_slub_debug(char *str)
956 {
957 	slub_debug = DEBUG_DEFAULT_FLAGS;
958 	if (*str++ != '=' || !*str)
959 		/*
960 		 * No options specified. Switch on full debugging.
961 		 */
962 		goto out;
963 
964 	if (*str == ',')
965 		/*
966 		 * No options but restriction on slabs. This means full
967 		 * debugging for slabs matching a pattern.
968 		 */
969 		goto check_slabs;
970 
971 	slub_debug = 0;
972 	if (*str == '-')
973 		/*
974 		 * Switch off all debugging measures.
975 		 */
976 		goto out;
977 
978 	/*
979 	 * Determine which debug features should be switched on
980 	 */
981 	for (; *str && *str != ','; str++) {
982 		switch (tolower(*str)) {
983 		case 'f':
984 			slub_debug |= SLAB_DEBUG_FREE;
985 			break;
986 		case 'z':
987 			slub_debug |= SLAB_RED_ZONE;
988 			break;
989 		case 'p':
990 			slub_debug |= SLAB_POISON;
991 			break;
992 		case 'u':
993 			slub_debug |= SLAB_STORE_USER;
994 			break;
995 		case 't':
996 			slub_debug |= SLAB_TRACE;
997 			break;
998 		default:
999 			printk(KERN_ERR "slub_debug option '%c' "
1000 				"unknown. skipped\n", *str);
1001 		}
1002 	}
1003 
1004 check_slabs:
1005 	if (*str == ',')
1006 		slub_debug_slabs = str + 1;
1007 out:
1008 	return 1;
1009 }
1010 
1011 __setup("slub_debug", setup_slub_debug);
1012 
1013 static unsigned long kmem_cache_flags(unsigned long objsize,
1014 	unsigned long flags, const char *name,
1015 	void (*ctor)(void *))
1016 {
1017 	/*
1018 	 * Enable debugging if selected on the kernel commandline.
1019 	 */
1020 	if (slub_debug && (!slub_debug_slabs ||
1021 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022 			flags |= slub_debug;
1023 
1024 	return flags;
1025 }
1026 #else
1027 static inline void setup_object_debug(struct kmem_cache *s,
1028 			struct page *page, void *object) {}
1029 
1030 static inline int alloc_debug_processing(struct kmem_cache *s,
1031 	struct page *page, void *object, void *addr) { return 0; }
1032 
1033 static inline int free_debug_processing(struct kmem_cache *s,
1034 	struct page *page, void *object, void *addr) { return 0; }
1035 
1036 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1037 			{ return 1; }
1038 static inline int check_object(struct kmem_cache *s, struct page *page,
1039 			void *object, int active) { return 1; }
1040 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042 	unsigned long flags, const char *name,
1043 	void (*ctor)(void *))
1044 {
1045 	return flags;
1046 }
1047 #define slub_debug 0
1048 
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050 							{ return 0; }
1051 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1052 							int objects) {}
1053 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1054 							int objects) {}
1055 #endif
1056 
1057 /*
1058  * Slab allocation and freeing
1059  */
1060 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061 					struct kmem_cache_order_objects oo)
1062 {
1063 	int order = oo_order(oo);
1064 
1065 	if (node == -1)
1066 		return alloc_pages(flags, order);
1067 	else
1068 		return alloc_pages_node(node, flags, order);
1069 }
1070 
1071 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1072 {
1073 	struct page *page;
1074 	struct kmem_cache_order_objects oo = s->oo;
1075 
1076 	flags |= s->allocflags;
1077 
1078 	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1079 									oo);
1080 	if (unlikely(!page)) {
1081 		oo = s->min;
1082 		/*
1083 		 * Allocation may have failed due to fragmentation.
1084 		 * Try a lower order alloc if possible
1085 		 */
1086 		page = alloc_slab_page(flags, node, oo);
1087 		if (!page)
1088 			return NULL;
1089 
1090 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1091 	}
1092 	page->objects = oo_objects(oo);
1093 	mod_zone_page_state(page_zone(page),
1094 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1096 		1 << oo_order(oo));
1097 
1098 	return page;
1099 }
1100 
1101 static void setup_object(struct kmem_cache *s, struct page *page,
1102 				void *object)
1103 {
1104 	setup_object_debug(s, page, object);
1105 	if (unlikely(s->ctor))
1106 		s->ctor(object);
1107 }
1108 
1109 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1110 {
1111 	struct page *page;
1112 	void *start;
1113 	void *last;
1114 	void *p;
1115 
1116 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1117 
1118 	page = allocate_slab(s,
1119 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1120 	if (!page)
1121 		goto out;
1122 
1123 	inc_slabs_node(s, page_to_nid(page), page->objects);
1124 	page->slab = s;
1125 	page->flags |= 1 << PG_slab;
1126 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127 			SLAB_STORE_USER | SLAB_TRACE))
1128 		__SetPageSlubDebug(page);
1129 
1130 	start = page_address(page);
1131 
1132 	if (unlikely(s->flags & SLAB_POISON))
1133 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1134 
1135 	last = start;
1136 	for_each_object(p, s, start, page->objects) {
1137 		setup_object(s, page, last);
1138 		set_freepointer(s, last, p);
1139 		last = p;
1140 	}
1141 	setup_object(s, page, last);
1142 	set_freepointer(s, last, NULL);
1143 
1144 	page->freelist = start;
1145 	page->inuse = 0;
1146 out:
1147 	return page;
1148 }
1149 
1150 static void __free_slab(struct kmem_cache *s, struct page *page)
1151 {
1152 	int order = compound_order(page);
1153 	int pages = 1 << order;
1154 
1155 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1156 		void *p;
1157 
1158 		slab_pad_check(s, page);
1159 		for_each_object(p, s, page_address(page),
1160 						page->objects)
1161 			check_object(s, page, p, 0);
1162 		__ClearPageSlubDebug(page);
1163 	}
1164 
1165 	mod_zone_page_state(page_zone(page),
1166 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1168 		-pages);
1169 
1170 	__ClearPageSlab(page);
1171 	reset_page_mapcount(page);
1172 	__free_pages(page, order);
1173 }
1174 
1175 static void rcu_free_slab(struct rcu_head *h)
1176 {
1177 	struct page *page;
1178 
1179 	page = container_of((struct list_head *)h, struct page, lru);
1180 	__free_slab(page->slab, page);
1181 }
1182 
1183 static void free_slab(struct kmem_cache *s, struct page *page)
1184 {
1185 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1186 		/*
1187 		 * RCU free overloads the RCU head over the LRU
1188 		 */
1189 		struct rcu_head *head = (void *)&page->lru;
1190 
1191 		call_rcu(head, rcu_free_slab);
1192 	} else
1193 		__free_slab(s, page);
1194 }
1195 
1196 static void discard_slab(struct kmem_cache *s, struct page *page)
1197 {
1198 	dec_slabs_node(s, page_to_nid(page), page->objects);
1199 	free_slab(s, page);
1200 }
1201 
1202 /*
1203  * Per slab locking using the pagelock
1204  */
1205 static __always_inline void slab_lock(struct page *page)
1206 {
1207 	bit_spin_lock(PG_locked, &page->flags);
1208 }
1209 
1210 static __always_inline void slab_unlock(struct page *page)
1211 {
1212 	__bit_spin_unlock(PG_locked, &page->flags);
1213 }
1214 
1215 static __always_inline int slab_trylock(struct page *page)
1216 {
1217 	int rc = 1;
1218 
1219 	rc = bit_spin_trylock(PG_locked, &page->flags);
1220 	return rc;
1221 }
1222 
1223 /*
1224  * Management of partially allocated slabs
1225  */
1226 static void add_partial(struct kmem_cache_node *n,
1227 				struct page *page, int tail)
1228 {
1229 	spin_lock(&n->list_lock);
1230 	n->nr_partial++;
1231 	if (tail)
1232 		list_add_tail(&page->lru, &n->partial);
1233 	else
1234 		list_add(&page->lru, &n->partial);
1235 	spin_unlock(&n->list_lock);
1236 }
1237 
1238 static void remove_partial(struct kmem_cache *s, struct page *page)
1239 {
1240 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1241 
1242 	spin_lock(&n->list_lock);
1243 	list_del(&page->lru);
1244 	n->nr_partial--;
1245 	spin_unlock(&n->list_lock);
1246 }
1247 
1248 /*
1249  * Lock slab and remove from the partial list.
1250  *
1251  * Must hold list_lock.
1252  */
1253 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1254 							struct page *page)
1255 {
1256 	if (slab_trylock(page)) {
1257 		list_del(&page->lru);
1258 		n->nr_partial--;
1259 		__SetPageSlubFrozen(page);
1260 		return 1;
1261 	}
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Try to allocate a partial slab from a specific node.
1267  */
1268 static struct page *get_partial_node(struct kmem_cache_node *n)
1269 {
1270 	struct page *page;
1271 
1272 	/*
1273 	 * Racy check. If we mistakenly see no partial slabs then we
1274 	 * just allocate an empty slab. If we mistakenly try to get a
1275 	 * partial slab and there is none available then get_partials()
1276 	 * will return NULL.
1277 	 */
1278 	if (!n || !n->nr_partial)
1279 		return NULL;
1280 
1281 	spin_lock(&n->list_lock);
1282 	list_for_each_entry(page, &n->partial, lru)
1283 		if (lock_and_freeze_slab(n, page))
1284 			goto out;
1285 	page = NULL;
1286 out:
1287 	spin_unlock(&n->list_lock);
1288 	return page;
1289 }
1290 
1291 /*
1292  * Get a page from somewhere. Search in increasing NUMA distances.
1293  */
1294 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1295 {
1296 #ifdef CONFIG_NUMA
1297 	struct zonelist *zonelist;
1298 	struct zoneref *z;
1299 	struct zone *zone;
1300 	enum zone_type high_zoneidx = gfp_zone(flags);
1301 	struct page *page;
1302 
1303 	/*
1304 	 * The defrag ratio allows a configuration of the tradeoffs between
1305 	 * inter node defragmentation and node local allocations. A lower
1306 	 * defrag_ratio increases the tendency to do local allocations
1307 	 * instead of attempting to obtain partial slabs from other nodes.
1308 	 *
1309 	 * If the defrag_ratio is set to 0 then kmalloc() always
1310 	 * returns node local objects. If the ratio is higher then kmalloc()
1311 	 * may return off node objects because partial slabs are obtained
1312 	 * from other nodes and filled up.
1313 	 *
1314 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315 	 * defrag_ratio = 1000) then every (well almost) allocation will
1316 	 * first attempt to defrag slab caches on other nodes. This means
1317 	 * scanning over all nodes to look for partial slabs which may be
1318 	 * expensive if we do it every time we are trying to find a slab
1319 	 * with available objects.
1320 	 */
1321 	if (!s->remote_node_defrag_ratio ||
1322 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1323 		return NULL;
1324 
1325 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1327 		struct kmem_cache_node *n;
1328 
1329 		n = get_node(s, zone_to_nid(zone));
1330 
1331 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1332 				n->nr_partial > n->min_partial) {
1333 			page = get_partial_node(n);
1334 			if (page)
1335 				return page;
1336 		}
1337 	}
1338 #endif
1339 	return NULL;
1340 }
1341 
1342 /*
1343  * Get a partial page, lock it and return it.
1344  */
1345 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1346 {
1347 	struct page *page;
1348 	int searchnode = (node == -1) ? numa_node_id() : node;
1349 
1350 	page = get_partial_node(get_node(s, searchnode));
1351 	if (page || (flags & __GFP_THISNODE))
1352 		return page;
1353 
1354 	return get_any_partial(s, flags);
1355 }
1356 
1357 /*
1358  * Move a page back to the lists.
1359  *
1360  * Must be called with the slab lock held.
1361  *
1362  * On exit the slab lock will have been dropped.
1363  */
1364 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1365 {
1366 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1368 
1369 	__ClearPageSlubFrozen(page);
1370 	if (page->inuse) {
1371 
1372 		if (page->freelist) {
1373 			add_partial(n, page, tail);
1374 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1375 		} else {
1376 			stat(c, DEACTIVATE_FULL);
1377 			if (SLABDEBUG && PageSlubDebug(page) &&
1378 						(s->flags & SLAB_STORE_USER))
1379 				add_full(n, page);
1380 		}
1381 		slab_unlock(page);
1382 	} else {
1383 		stat(c, DEACTIVATE_EMPTY);
1384 		if (n->nr_partial < n->min_partial) {
1385 			/*
1386 			 * Adding an empty slab to the partial slabs in order
1387 			 * to avoid page allocator overhead. This slab needs
1388 			 * to come after the other slabs with objects in
1389 			 * so that the others get filled first. That way the
1390 			 * size of the partial list stays small.
1391 			 *
1392 			 * kmem_cache_shrink can reclaim any empty slabs from
1393 			 * the partial list.
1394 			 */
1395 			add_partial(n, page, 1);
1396 			slab_unlock(page);
1397 		} else {
1398 			slab_unlock(page);
1399 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1400 			discard_slab(s, page);
1401 		}
1402 	}
1403 }
1404 
1405 /*
1406  * Remove the cpu slab
1407  */
1408 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1409 {
1410 	struct page *page = c->page;
1411 	int tail = 1;
1412 
1413 	if (page->freelist)
1414 		stat(c, DEACTIVATE_REMOTE_FREES);
1415 	/*
1416 	 * Merge cpu freelist into slab freelist. Typically we get here
1417 	 * because both freelists are empty. So this is unlikely
1418 	 * to occur.
1419 	 */
1420 	while (unlikely(c->freelist)) {
1421 		void **object;
1422 
1423 		tail = 0;	/* Hot objects. Put the slab first */
1424 
1425 		/* Retrieve object from cpu_freelist */
1426 		object = c->freelist;
1427 		c->freelist = c->freelist[c->offset];
1428 
1429 		/* And put onto the regular freelist */
1430 		object[c->offset] = page->freelist;
1431 		page->freelist = object;
1432 		page->inuse--;
1433 	}
1434 	c->page = NULL;
1435 	unfreeze_slab(s, page, tail);
1436 }
1437 
1438 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1439 {
1440 	stat(c, CPUSLAB_FLUSH);
1441 	slab_lock(c->page);
1442 	deactivate_slab(s, c);
1443 }
1444 
1445 /*
1446  * Flush cpu slab.
1447  *
1448  * Called from IPI handler with interrupts disabled.
1449  */
1450 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1451 {
1452 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1453 
1454 	if (likely(c && c->page))
1455 		flush_slab(s, c);
1456 }
1457 
1458 static void flush_cpu_slab(void *d)
1459 {
1460 	struct kmem_cache *s = d;
1461 
1462 	__flush_cpu_slab(s, smp_processor_id());
1463 }
1464 
1465 static void flush_all(struct kmem_cache *s)
1466 {
1467 	on_each_cpu(flush_cpu_slab, s, 1);
1468 }
1469 
1470 /*
1471  * Check if the objects in a per cpu structure fit numa
1472  * locality expectations.
1473  */
1474 static inline int node_match(struct kmem_cache_cpu *c, int node)
1475 {
1476 #ifdef CONFIG_NUMA
1477 	if (node != -1 && c->node != node)
1478 		return 0;
1479 #endif
1480 	return 1;
1481 }
1482 
1483 /*
1484  * Slow path. The lockless freelist is empty or we need to perform
1485  * debugging duties.
1486  *
1487  * Interrupts are disabled.
1488  *
1489  * Processing is still very fast if new objects have been freed to the
1490  * regular freelist. In that case we simply take over the regular freelist
1491  * as the lockless freelist and zap the regular freelist.
1492  *
1493  * If that is not working then we fall back to the partial lists. We take the
1494  * first element of the freelist as the object to allocate now and move the
1495  * rest of the freelist to the lockless freelist.
1496  *
1497  * And if we were unable to get a new slab from the partial slab lists then
1498  * we need to allocate a new slab. This is the slowest path since it involves
1499  * a call to the page allocator and the setup of a new slab.
1500  */
1501 static void *__slab_alloc(struct kmem_cache *s,
1502 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1503 {
1504 	void **object;
1505 	struct page *new;
1506 
1507 	/* We handle __GFP_ZERO in the caller */
1508 	gfpflags &= ~__GFP_ZERO;
1509 
1510 	if (!c->page)
1511 		goto new_slab;
1512 
1513 	slab_lock(c->page);
1514 	if (unlikely(!node_match(c, node)))
1515 		goto another_slab;
1516 
1517 	stat(c, ALLOC_REFILL);
1518 
1519 load_freelist:
1520 	object = c->page->freelist;
1521 	if (unlikely(!object))
1522 		goto another_slab;
1523 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1524 		goto debug;
1525 
1526 	c->freelist = object[c->offset];
1527 	c->page->inuse = c->page->objects;
1528 	c->page->freelist = NULL;
1529 	c->node = page_to_nid(c->page);
1530 unlock_out:
1531 	slab_unlock(c->page);
1532 	stat(c, ALLOC_SLOWPATH);
1533 	return object;
1534 
1535 another_slab:
1536 	deactivate_slab(s, c);
1537 
1538 new_slab:
1539 	new = get_partial(s, gfpflags, node);
1540 	if (new) {
1541 		c->page = new;
1542 		stat(c, ALLOC_FROM_PARTIAL);
1543 		goto load_freelist;
1544 	}
1545 
1546 	if (gfpflags & __GFP_WAIT)
1547 		local_irq_enable();
1548 
1549 	new = new_slab(s, gfpflags, node);
1550 
1551 	if (gfpflags & __GFP_WAIT)
1552 		local_irq_disable();
1553 
1554 	if (new) {
1555 		c = get_cpu_slab(s, smp_processor_id());
1556 		stat(c, ALLOC_SLAB);
1557 		if (c->page)
1558 			flush_slab(s, c);
1559 		slab_lock(new);
1560 		__SetPageSlubFrozen(new);
1561 		c->page = new;
1562 		goto load_freelist;
1563 	}
1564 	return NULL;
1565 debug:
1566 	if (!alloc_debug_processing(s, c->page, object, addr))
1567 		goto another_slab;
1568 
1569 	c->page->inuse++;
1570 	c->page->freelist = object[c->offset];
1571 	c->node = -1;
1572 	goto unlock_out;
1573 }
1574 
1575 /*
1576  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577  * have the fastpath folded into their functions. So no function call
1578  * overhead for requests that can be satisfied on the fastpath.
1579  *
1580  * The fastpath works by first checking if the lockless freelist can be used.
1581  * If not then __slab_alloc is called for slow processing.
1582  *
1583  * Otherwise we can simply pick the next object from the lockless free list.
1584  */
1585 static __always_inline void *slab_alloc(struct kmem_cache *s,
1586 		gfp_t gfpflags, int node, void *addr)
1587 {
1588 	void **object;
1589 	struct kmem_cache_cpu *c;
1590 	unsigned long flags;
1591 	unsigned int objsize;
1592 
1593 	local_irq_save(flags);
1594 	c = get_cpu_slab(s, smp_processor_id());
1595 	objsize = c->objsize;
1596 	if (unlikely(!c->freelist || !node_match(c, node)))
1597 
1598 		object = __slab_alloc(s, gfpflags, node, addr, c);
1599 
1600 	else {
1601 		object = c->freelist;
1602 		c->freelist = object[c->offset];
1603 		stat(c, ALLOC_FASTPATH);
1604 	}
1605 	local_irq_restore(flags);
1606 
1607 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1608 		memset(object, 0, objsize);
1609 
1610 	return object;
1611 }
1612 
1613 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1614 {
1615 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1616 }
1617 EXPORT_SYMBOL(kmem_cache_alloc);
1618 
1619 #ifdef CONFIG_NUMA
1620 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1621 {
1622 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1623 }
1624 EXPORT_SYMBOL(kmem_cache_alloc_node);
1625 #endif
1626 
1627 /*
1628  * Slow patch handling. This may still be called frequently since objects
1629  * have a longer lifetime than the cpu slabs in most processing loads.
1630  *
1631  * So we still attempt to reduce cache line usage. Just take the slab
1632  * lock and free the item. If there is no additional partial page
1633  * handling required then we can return immediately.
1634  */
1635 static void __slab_free(struct kmem_cache *s, struct page *page,
1636 				void *x, void *addr, unsigned int offset)
1637 {
1638 	void *prior;
1639 	void **object = (void *)x;
1640 	struct kmem_cache_cpu *c;
1641 
1642 	c = get_cpu_slab(s, raw_smp_processor_id());
1643 	stat(c, FREE_SLOWPATH);
1644 	slab_lock(page);
1645 
1646 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1647 		goto debug;
1648 
1649 checks_ok:
1650 	prior = object[offset] = page->freelist;
1651 	page->freelist = object;
1652 	page->inuse--;
1653 
1654 	if (unlikely(PageSlubFrozen(page))) {
1655 		stat(c, FREE_FROZEN);
1656 		goto out_unlock;
1657 	}
1658 
1659 	if (unlikely(!page->inuse))
1660 		goto slab_empty;
1661 
1662 	/*
1663 	 * Objects left in the slab. If it was not on the partial list before
1664 	 * then add it.
1665 	 */
1666 	if (unlikely(!prior)) {
1667 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1668 		stat(c, FREE_ADD_PARTIAL);
1669 	}
1670 
1671 out_unlock:
1672 	slab_unlock(page);
1673 	return;
1674 
1675 slab_empty:
1676 	if (prior) {
1677 		/*
1678 		 * Slab still on the partial list.
1679 		 */
1680 		remove_partial(s, page);
1681 		stat(c, FREE_REMOVE_PARTIAL);
1682 	}
1683 	slab_unlock(page);
1684 	stat(c, FREE_SLAB);
1685 	discard_slab(s, page);
1686 	return;
1687 
1688 debug:
1689 	if (!free_debug_processing(s, page, x, addr))
1690 		goto out_unlock;
1691 	goto checks_ok;
1692 }
1693 
1694 /*
1695  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1696  * can perform fastpath freeing without additional function calls.
1697  *
1698  * The fastpath is only possible if we are freeing to the current cpu slab
1699  * of this processor. This typically the case if we have just allocated
1700  * the item before.
1701  *
1702  * If fastpath is not possible then fall back to __slab_free where we deal
1703  * with all sorts of special processing.
1704  */
1705 static __always_inline void slab_free(struct kmem_cache *s,
1706 			struct page *page, void *x, void *addr)
1707 {
1708 	void **object = (void *)x;
1709 	struct kmem_cache_cpu *c;
1710 	unsigned long flags;
1711 
1712 	local_irq_save(flags);
1713 	c = get_cpu_slab(s, smp_processor_id());
1714 	debug_check_no_locks_freed(object, c->objsize);
1715 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1716 		debug_check_no_obj_freed(object, s->objsize);
1717 	if (likely(page == c->page && c->node >= 0)) {
1718 		object[c->offset] = c->freelist;
1719 		c->freelist = object;
1720 		stat(c, FREE_FASTPATH);
1721 	} else
1722 		__slab_free(s, page, x, addr, c->offset);
1723 
1724 	local_irq_restore(flags);
1725 }
1726 
1727 void kmem_cache_free(struct kmem_cache *s, void *x)
1728 {
1729 	struct page *page;
1730 
1731 	page = virt_to_head_page(x);
1732 
1733 	slab_free(s, page, x, __builtin_return_address(0));
1734 }
1735 EXPORT_SYMBOL(kmem_cache_free);
1736 
1737 /* Figure out on which slab object the object resides */
1738 static struct page *get_object_page(const void *x)
1739 {
1740 	struct page *page = virt_to_head_page(x);
1741 
1742 	if (!PageSlab(page))
1743 		return NULL;
1744 
1745 	return page;
1746 }
1747 
1748 /*
1749  * Object placement in a slab is made very easy because we always start at
1750  * offset 0. If we tune the size of the object to the alignment then we can
1751  * get the required alignment by putting one properly sized object after
1752  * another.
1753  *
1754  * Notice that the allocation order determines the sizes of the per cpu
1755  * caches. Each processor has always one slab available for allocations.
1756  * Increasing the allocation order reduces the number of times that slabs
1757  * must be moved on and off the partial lists and is therefore a factor in
1758  * locking overhead.
1759  */
1760 
1761 /*
1762  * Mininum / Maximum order of slab pages. This influences locking overhead
1763  * and slab fragmentation. A higher order reduces the number of partial slabs
1764  * and increases the number of allocations possible without having to
1765  * take the list_lock.
1766  */
1767 static int slub_min_order;
1768 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1769 static int slub_min_objects;
1770 
1771 /*
1772  * Merge control. If this is set then no merging of slab caches will occur.
1773  * (Could be removed. This was introduced to pacify the merge skeptics.)
1774  */
1775 static int slub_nomerge;
1776 
1777 /*
1778  * Calculate the order of allocation given an slab object size.
1779  *
1780  * The order of allocation has significant impact on performance and other
1781  * system components. Generally order 0 allocations should be preferred since
1782  * order 0 does not cause fragmentation in the page allocator. Larger objects
1783  * be problematic to put into order 0 slabs because there may be too much
1784  * unused space left. We go to a higher order if more than 1/16th of the slab
1785  * would be wasted.
1786  *
1787  * In order to reach satisfactory performance we must ensure that a minimum
1788  * number of objects is in one slab. Otherwise we may generate too much
1789  * activity on the partial lists which requires taking the list_lock. This is
1790  * less a concern for large slabs though which are rarely used.
1791  *
1792  * slub_max_order specifies the order where we begin to stop considering the
1793  * number of objects in a slab as critical. If we reach slub_max_order then
1794  * we try to keep the page order as low as possible. So we accept more waste
1795  * of space in favor of a small page order.
1796  *
1797  * Higher order allocations also allow the placement of more objects in a
1798  * slab and thereby reduce object handling overhead. If the user has
1799  * requested a higher mininum order then we start with that one instead of
1800  * the smallest order which will fit the object.
1801  */
1802 static inline int slab_order(int size, int min_objects,
1803 				int max_order, int fract_leftover)
1804 {
1805 	int order;
1806 	int rem;
1807 	int min_order = slub_min_order;
1808 
1809 	if ((PAGE_SIZE << min_order) / size > 65535)
1810 		return get_order(size * 65535) - 1;
1811 
1812 	for (order = max(min_order,
1813 				fls(min_objects * size - 1) - PAGE_SHIFT);
1814 			order <= max_order; order++) {
1815 
1816 		unsigned long slab_size = PAGE_SIZE << order;
1817 
1818 		if (slab_size < min_objects * size)
1819 			continue;
1820 
1821 		rem = slab_size % size;
1822 
1823 		if (rem <= slab_size / fract_leftover)
1824 			break;
1825 
1826 	}
1827 
1828 	return order;
1829 }
1830 
1831 static inline int calculate_order(int size)
1832 {
1833 	int order;
1834 	int min_objects;
1835 	int fraction;
1836 
1837 	/*
1838 	 * Attempt to find best configuration for a slab. This
1839 	 * works by first attempting to generate a layout with
1840 	 * the best configuration and backing off gradually.
1841 	 *
1842 	 * First we reduce the acceptable waste in a slab. Then
1843 	 * we reduce the minimum objects required in a slab.
1844 	 */
1845 	min_objects = slub_min_objects;
1846 	if (!min_objects)
1847 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1848 	while (min_objects > 1) {
1849 		fraction = 16;
1850 		while (fraction >= 4) {
1851 			order = slab_order(size, min_objects,
1852 						slub_max_order, fraction);
1853 			if (order <= slub_max_order)
1854 				return order;
1855 			fraction /= 2;
1856 		}
1857 		min_objects /= 2;
1858 	}
1859 
1860 	/*
1861 	 * We were unable to place multiple objects in a slab. Now
1862 	 * lets see if we can place a single object there.
1863 	 */
1864 	order = slab_order(size, 1, slub_max_order, 1);
1865 	if (order <= slub_max_order)
1866 		return order;
1867 
1868 	/*
1869 	 * Doh this slab cannot be placed using slub_max_order.
1870 	 */
1871 	order = slab_order(size, 1, MAX_ORDER, 1);
1872 	if (order <= MAX_ORDER)
1873 		return order;
1874 	return -ENOSYS;
1875 }
1876 
1877 /*
1878  * Figure out what the alignment of the objects will be.
1879  */
1880 static unsigned long calculate_alignment(unsigned long flags,
1881 		unsigned long align, unsigned long size)
1882 {
1883 	/*
1884 	 * If the user wants hardware cache aligned objects then follow that
1885 	 * suggestion if the object is sufficiently large.
1886 	 *
1887 	 * The hardware cache alignment cannot override the specified
1888 	 * alignment though. If that is greater then use it.
1889 	 */
1890 	if (flags & SLAB_HWCACHE_ALIGN) {
1891 		unsigned long ralign = cache_line_size();
1892 		while (size <= ralign / 2)
1893 			ralign /= 2;
1894 		align = max(align, ralign);
1895 	}
1896 
1897 	if (align < ARCH_SLAB_MINALIGN)
1898 		align = ARCH_SLAB_MINALIGN;
1899 
1900 	return ALIGN(align, sizeof(void *));
1901 }
1902 
1903 static void init_kmem_cache_cpu(struct kmem_cache *s,
1904 			struct kmem_cache_cpu *c)
1905 {
1906 	c->page = NULL;
1907 	c->freelist = NULL;
1908 	c->node = 0;
1909 	c->offset = s->offset / sizeof(void *);
1910 	c->objsize = s->objsize;
1911 #ifdef CONFIG_SLUB_STATS
1912 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1913 #endif
1914 }
1915 
1916 static void
1917 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1918 {
1919 	n->nr_partial = 0;
1920 
1921 	/*
1922 	 * The larger the object size is, the more pages we want on the partial
1923 	 * list to avoid pounding the page allocator excessively.
1924 	 */
1925 	n->min_partial = ilog2(s->size);
1926 	if (n->min_partial < MIN_PARTIAL)
1927 		n->min_partial = MIN_PARTIAL;
1928 	else if (n->min_partial > MAX_PARTIAL)
1929 		n->min_partial = MAX_PARTIAL;
1930 
1931 	spin_lock_init(&n->list_lock);
1932 	INIT_LIST_HEAD(&n->partial);
1933 #ifdef CONFIG_SLUB_DEBUG
1934 	atomic_long_set(&n->nr_slabs, 0);
1935 	INIT_LIST_HEAD(&n->full);
1936 #endif
1937 }
1938 
1939 #ifdef CONFIG_SMP
1940 /*
1941  * Per cpu array for per cpu structures.
1942  *
1943  * The per cpu array places all kmem_cache_cpu structures from one processor
1944  * close together meaning that it becomes possible that multiple per cpu
1945  * structures are contained in one cacheline. This may be particularly
1946  * beneficial for the kmalloc caches.
1947  *
1948  * A desktop system typically has around 60-80 slabs. With 100 here we are
1949  * likely able to get per cpu structures for all caches from the array defined
1950  * here. We must be able to cover all kmalloc caches during bootstrap.
1951  *
1952  * If the per cpu array is exhausted then fall back to kmalloc
1953  * of individual cachelines. No sharing is possible then.
1954  */
1955 #define NR_KMEM_CACHE_CPU 100
1956 
1957 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1958 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1959 
1960 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1961 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1962 
1963 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1964 							int cpu, gfp_t flags)
1965 {
1966 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1967 
1968 	if (c)
1969 		per_cpu(kmem_cache_cpu_free, cpu) =
1970 				(void *)c->freelist;
1971 	else {
1972 		/* Table overflow: So allocate ourselves */
1973 		c = kmalloc_node(
1974 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1975 			flags, cpu_to_node(cpu));
1976 		if (!c)
1977 			return NULL;
1978 	}
1979 
1980 	init_kmem_cache_cpu(s, c);
1981 	return c;
1982 }
1983 
1984 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1985 {
1986 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1987 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1988 		kfree(c);
1989 		return;
1990 	}
1991 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1992 	per_cpu(kmem_cache_cpu_free, cpu) = c;
1993 }
1994 
1995 static void free_kmem_cache_cpus(struct kmem_cache *s)
1996 {
1997 	int cpu;
1998 
1999 	for_each_online_cpu(cpu) {
2000 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2001 
2002 		if (c) {
2003 			s->cpu_slab[cpu] = NULL;
2004 			free_kmem_cache_cpu(c, cpu);
2005 		}
2006 	}
2007 }
2008 
2009 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2010 {
2011 	int cpu;
2012 
2013 	for_each_online_cpu(cpu) {
2014 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2015 
2016 		if (c)
2017 			continue;
2018 
2019 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2020 		if (!c) {
2021 			free_kmem_cache_cpus(s);
2022 			return 0;
2023 		}
2024 		s->cpu_slab[cpu] = c;
2025 	}
2026 	return 1;
2027 }
2028 
2029 /*
2030  * Initialize the per cpu array.
2031  */
2032 static void init_alloc_cpu_cpu(int cpu)
2033 {
2034 	int i;
2035 
2036 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2037 		return;
2038 
2039 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2040 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2041 
2042 	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2043 }
2044 
2045 static void __init init_alloc_cpu(void)
2046 {
2047 	int cpu;
2048 
2049 	for_each_online_cpu(cpu)
2050 		init_alloc_cpu_cpu(cpu);
2051   }
2052 
2053 #else
2054 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2055 static inline void init_alloc_cpu(void) {}
2056 
2057 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2058 {
2059 	init_kmem_cache_cpu(s, &s->cpu_slab);
2060 	return 1;
2061 }
2062 #endif
2063 
2064 #ifdef CONFIG_NUMA
2065 /*
2066  * No kmalloc_node yet so do it by hand. We know that this is the first
2067  * slab on the node for this slabcache. There are no concurrent accesses
2068  * possible.
2069  *
2070  * Note that this function only works on the kmalloc_node_cache
2071  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2072  * memory on a fresh node that has no slab structures yet.
2073  */
2074 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2075 							   int node)
2076 {
2077 	struct page *page;
2078 	struct kmem_cache_node *n;
2079 	unsigned long flags;
2080 
2081 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2082 
2083 	page = new_slab(kmalloc_caches, gfpflags, node);
2084 
2085 	BUG_ON(!page);
2086 	if (page_to_nid(page) != node) {
2087 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2088 				"node %d\n", node);
2089 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2090 				"in order to be able to continue\n");
2091 	}
2092 
2093 	n = page->freelist;
2094 	BUG_ON(!n);
2095 	page->freelist = get_freepointer(kmalloc_caches, n);
2096 	page->inuse++;
2097 	kmalloc_caches->node[node] = n;
2098 #ifdef CONFIG_SLUB_DEBUG
2099 	init_object(kmalloc_caches, n, 1);
2100 	init_tracking(kmalloc_caches, n);
2101 #endif
2102 	init_kmem_cache_node(n, kmalloc_caches);
2103 	inc_slabs_node(kmalloc_caches, node, page->objects);
2104 
2105 	/*
2106 	 * lockdep requires consistent irq usage for each lock
2107 	 * so even though there cannot be a race this early in
2108 	 * the boot sequence, we still disable irqs.
2109 	 */
2110 	local_irq_save(flags);
2111 	add_partial(n, page, 0);
2112 	local_irq_restore(flags);
2113 	return n;
2114 }
2115 
2116 static void free_kmem_cache_nodes(struct kmem_cache *s)
2117 {
2118 	int node;
2119 
2120 	for_each_node_state(node, N_NORMAL_MEMORY) {
2121 		struct kmem_cache_node *n = s->node[node];
2122 		if (n && n != &s->local_node)
2123 			kmem_cache_free(kmalloc_caches, n);
2124 		s->node[node] = NULL;
2125 	}
2126 }
2127 
2128 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2129 {
2130 	int node;
2131 	int local_node;
2132 
2133 	if (slab_state >= UP)
2134 		local_node = page_to_nid(virt_to_page(s));
2135 	else
2136 		local_node = 0;
2137 
2138 	for_each_node_state(node, N_NORMAL_MEMORY) {
2139 		struct kmem_cache_node *n;
2140 
2141 		if (local_node == node)
2142 			n = &s->local_node;
2143 		else {
2144 			if (slab_state == DOWN) {
2145 				n = early_kmem_cache_node_alloc(gfpflags,
2146 								node);
2147 				continue;
2148 			}
2149 			n = kmem_cache_alloc_node(kmalloc_caches,
2150 							gfpflags, node);
2151 
2152 			if (!n) {
2153 				free_kmem_cache_nodes(s);
2154 				return 0;
2155 			}
2156 
2157 		}
2158 		s->node[node] = n;
2159 		init_kmem_cache_node(n, s);
2160 	}
2161 	return 1;
2162 }
2163 #else
2164 static void free_kmem_cache_nodes(struct kmem_cache *s)
2165 {
2166 }
2167 
2168 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2169 {
2170 	init_kmem_cache_node(&s->local_node, s);
2171 	return 1;
2172 }
2173 #endif
2174 
2175 /*
2176  * calculate_sizes() determines the order and the distribution of data within
2177  * a slab object.
2178  */
2179 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2180 {
2181 	unsigned long flags = s->flags;
2182 	unsigned long size = s->objsize;
2183 	unsigned long align = s->align;
2184 	int order;
2185 
2186 	/*
2187 	 * Round up object size to the next word boundary. We can only
2188 	 * place the free pointer at word boundaries and this determines
2189 	 * the possible location of the free pointer.
2190 	 */
2191 	size = ALIGN(size, sizeof(void *));
2192 
2193 #ifdef CONFIG_SLUB_DEBUG
2194 	/*
2195 	 * Determine if we can poison the object itself. If the user of
2196 	 * the slab may touch the object after free or before allocation
2197 	 * then we should never poison the object itself.
2198 	 */
2199 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2200 			!s->ctor)
2201 		s->flags |= __OBJECT_POISON;
2202 	else
2203 		s->flags &= ~__OBJECT_POISON;
2204 
2205 
2206 	/*
2207 	 * If we are Redzoning then check if there is some space between the
2208 	 * end of the object and the free pointer. If not then add an
2209 	 * additional word to have some bytes to store Redzone information.
2210 	 */
2211 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2212 		size += sizeof(void *);
2213 #endif
2214 
2215 	/*
2216 	 * With that we have determined the number of bytes in actual use
2217 	 * by the object. This is the potential offset to the free pointer.
2218 	 */
2219 	s->inuse = size;
2220 
2221 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2222 		s->ctor)) {
2223 		/*
2224 		 * Relocate free pointer after the object if it is not
2225 		 * permitted to overwrite the first word of the object on
2226 		 * kmem_cache_free.
2227 		 *
2228 		 * This is the case if we do RCU, have a constructor or
2229 		 * destructor or are poisoning the objects.
2230 		 */
2231 		s->offset = size;
2232 		size += sizeof(void *);
2233 	}
2234 
2235 #ifdef CONFIG_SLUB_DEBUG
2236 	if (flags & SLAB_STORE_USER)
2237 		/*
2238 		 * Need to store information about allocs and frees after
2239 		 * the object.
2240 		 */
2241 		size += 2 * sizeof(struct track);
2242 
2243 	if (flags & SLAB_RED_ZONE)
2244 		/*
2245 		 * Add some empty padding so that we can catch
2246 		 * overwrites from earlier objects rather than let
2247 		 * tracking information or the free pointer be
2248 		 * corrupted if an user writes before the start
2249 		 * of the object.
2250 		 */
2251 		size += sizeof(void *);
2252 #endif
2253 
2254 	/*
2255 	 * Determine the alignment based on various parameters that the
2256 	 * user specified and the dynamic determination of cache line size
2257 	 * on bootup.
2258 	 */
2259 	align = calculate_alignment(flags, align, s->objsize);
2260 
2261 	/*
2262 	 * SLUB stores one object immediately after another beginning from
2263 	 * offset 0. In order to align the objects we have to simply size
2264 	 * each object to conform to the alignment.
2265 	 */
2266 	size = ALIGN(size, align);
2267 	s->size = size;
2268 	if (forced_order >= 0)
2269 		order = forced_order;
2270 	else
2271 		order = calculate_order(size);
2272 
2273 	if (order < 0)
2274 		return 0;
2275 
2276 	s->allocflags = 0;
2277 	if (order)
2278 		s->allocflags |= __GFP_COMP;
2279 
2280 	if (s->flags & SLAB_CACHE_DMA)
2281 		s->allocflags |= SLUB_DMA;
2282 
2283 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2284 		s->allocflags |= __GFP_RECLAIMABLE;
2285 
2286 	/*
2287 	 * Determine the number of objects per slab
2288 	 */
2289 	s->oo = oo_make(order, size);
2290 	s->min = oo_make(get_order(size), size);
2291 	if (oo_objects(s->oo) > oo_objects(s->max))
2292 		s->max = s->oo;
2293 
2294 	return !!oo_objects(s->oo);
2295 
2296 }
2297 
2298 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2299 		const char *name, size_t size,
2300 		size_t align, unsigned long flags,
2301 		void (*ctor)(void *))
2302 {
2303 	memset(s, 0, kmem_size);
2304 	s->name = name;
2305 	s->ctor = ctor;
2306 	s->objsize = size;
2307 	s->align = align;
2308 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2309 
2310 	if (!calculate_sizes(s, -1))
2311 		goto error;
2312 
2313 	s->refcount = 1;
2314 #ifdef CONFIG_NUMA
2315 	s->remote_node_defrag_ratio = 1000;
2316 #endif
2317 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2318 		goto error;
2319 
2320 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2321 		return 1;
2322 	free_kmem_cache_nodes(s);
2323 error:
2324 	if (flags & SLAB_PANIC)
2325 		panic("Cannot create slab %s size=%lu realsize=%u "
2326 			"order=%u offset=%u flags=%lx\n",
2327 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2328 			s->offset, flags);
2329 	return 0;
2330 }
2331 
2332 /*
2333  * Check if a given pointer is valid
2334  */
2335 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2336 {
2337 	struct page *page;
2338 
2339 	page = get_object_page(object);
2340 
2341 	if (!page || s != page->slab)
2342 		/* No slab or wrong slab */
2343 		return 0;
2344 
2345 	if (!check_valid_pointer(s, page, object))
2346 		return 0;
2347 
2348 	/*
2349 	 * We could also check if the object is on the slabs freelist.
2350 	 * But this would be too expensive and it seems that the main
2351 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2352 	 * to a certain slab.
2353 	 */
2354 	return 1;
2355 }
2356 EXPORT_SYMBOL(kmem_ptr_validate);
2357 
2358 /*
2359  * Determine the size of a slab object
2360  */
2361 unsigned int kmem_cache_size(struct kmem_cache *s)
2362 {
2363 	return s->objsize;
2364 }
2365 EXPORT_SYMBOL(kmem_cache_size);
2366 
2367 const char *kmem_cache_name(struct kmem_cache *s)
2368 {
2369 	return s->name;
2370 }
2371 EXPORT_SYMBOL(kmem_cache_name);
2372 
2373 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2374 							const char *text)
2375 {
2376 #ifdef CONFIG_SLUB_DEBUG
2377 	void *addr = page_address(page);
2378 	void *p;
2379 	DECLARE_BITMAP(map, page->objects);
2380 
2381 	bitmap_zero(map, page->objects);
2382 	slab_err(s, page, "%s", text);
2383 	slab_lock(page);
2384 	for_each_free_object(p, s, page->freelist)
2385 		set_bit(slab_index(p, s, addr), map);
2386 
2387 	for_each_object(p, s, addr, page->objects) {
2388 
2389 		if (!test_bit(slab_index(p, s, addr), map)) {
2390 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2391 							p, p - addr);
2392 			print_tracking(s, p);
2393 		}
2394 	}
2395 	slab_unlock(page);
2396 #endif
2397 }
2398 
2399 /*
2400  * Attempt to free all partial slabs on a node.
2401  */
2402 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2403 {
2404 	unsigned long flags;
2405 	struct page *page, *h;
2406 
2407 	spin_lock_irqsave(&n->list_lock, flags);
2408 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2409 		if (!page->inuse) {
2410 			list_del(&page->lru);
2411 			discard_slab(s, page);
2412 			n->nr_partial--;
2413 		} else {
2414 			list_slab_objects(s, page,
2415 				"Objects remaining on kmem_cache_close()");
2416 		}
2417 	}
2418 	spin_unlock_irqrestore(&n->list_lock, flags);
2419 }
2420 
2421 /*
2422  * Release all resources used by a slab cache.
2423  */
2424 static inline int kmem_cache_close(struct kmem_cache *s)
2425 {
2426 	int node;
2427 
2428 	flush_all(s);
2429 
2430 	/* Attempt to free all objects */
2431 	free_kmem_cache_cpus(s);
2432 	for_each_node_state(node, N_NORMAL_MEMORY) {
2433 		struct kmem_cache_node *n = get_node(s, node);
2434 
2435 		free_partial(s, n);
2436 		if (n->nr_partial || slabs_node(s, node))
2437 			return 1;
2438 	}
2439 	free_kmem_cache_nodes(s);
2440 	return 0;
2441 }
2442 
2443 /*
2444  * Close a cache and release the kmem_cache structure
2445  * (must be used for caches created using kmem_cache_create)
2446  */
2447 void kmem_cache_destroy(struct kmem_cache *s)
2448 {
2449 	down_write(&slub_lock);
2450 	s->refcount--;
2451 	if (!s->refcount) {
2452 		list_del(&s->list);
2453 		up_write(&slub_lock);
2454 		if (kmem_cache_close(s)) {
2455 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2456 				"still has objects.\n", s->name, __func__);
2457 			dump_stack();
2458 		}
2459 		sysfs_slab_remove(s);
2460 	} else
2461 		up_write(&slub_lock);
2462 }
2463 EXPORT_SYMBOL(kmem_cache_destroy);
2464 
2465 /********************************************************************
2466  *		Kmalloc subsystem
2467  *******************************************************************/
2468 
2469 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2470 EXPORT_SYMBOL(kmalloc_caches);
2471 
2472 static int __init setup_slub_min_order(char *str)
2473 {
2474 	get_option(&str, &slub_min_order);
2475 
2476 	return 1;
2477 }
2478 
2479 __setup("slub_min_order=", setup_slub_min_order);
2480 
2481 static int __init setup_slub_max_order(char *str)
2482 {
2483 	get_option(&str, &slub_max_order);
2484 
2485 	return 1;
2486 }
2487 
2488 __setup("slub_max_order=", setup_slub_max_order);
2489 
2490 static int __init setup_slub_min_objects(char *str)
2491 {
2492 	get_option(&str, &slub_min_objects);
2493 
2494 	return 1;
2495 }
2496 
2497 __setup("slub_min_objects=", setup_slub_min_objects);
2498 
2499 static int __init setup_slub_nomerge(char *str)
2500 {
2501 	slub_nomerge = 1;
2502 	return 1;
2503 }
2504 
2505 __setup("slub_nomerge", setup_slub_nomerge);
2506 
2507 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2508 		const char *name, int size, gfp_t gfp_flags)
2509 {
2510 	unsigned int flags = 0;
2511 
2512 	if (gfp_flags & SLUB_DMA)
2513 		flags = SLAB_CACHE_DMA;
2514 
2515 	down_write(&slub_lock);
2516 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2517 								flags, NULL))
2518 		goto panic;
2519 
2520 	list_add(&s->list, &slab_caches);
2521 	up_write(&slub_lock);
2522 	if (sysfs_slab_add(s))
2523 		goto panic;
2524 	return s;
2525 
2526 panic:
2527 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2528 }
2529 
2530 #ifdef CONFIG_ZONE_DMA
2531 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2532 
2533 static void sysfs_add_func(struct work_struct *w)
2534 {
2535 	struct kmem_cache *s;
2536 
2537 	down_write(&slub_lock);
2538 	list_for_each_entry(s, &slab_caches, list) {
2539 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2540 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2541 			sysfs_slab_add(s);
2542 		}
2543 	}
2544 	up_write(&slub_lock);
2545 }
2546 
2547 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2548 
2549 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2550 {
2551 	struct kmem_cache *s;
2552 	char *text;
2553 	size_t realsize;
2554 
2555 	s = kmalloc_caches_dma[index];
2556 	if (s)
2557 		return s;
2558 
2559 	/* Dynamically create dma cache */
2560 	if (flags & __GFP_WAIT)
2561 		down_write(&slub_lock);
2562 	else {
2563 		if (!down_write_trylock(&slub_lock))
2564 			goto out;
2565 	}
2566 
2567 	if (kmalloc_caches_dma[index])
2568 		goto unlock_out;
2569 
2570 	realsize = kmalloc_caches[index].objsize;
2571 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2572 			 (unsigned int)realsize);
2573 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2574 
2575 	if (!s || !text || !kmem_cache_open(s, flags, text,
2576 			realsize, ARCH_KMALLOC_MINALIGN,
2577 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2578 		kfree(s);
2579 		kfree(text);
2580 		goto unlock_out;
2581 	}
2582 
2583 	list_add(&s->list, &slab_caches);
2584 	kmalloc_caches_dma[index] = s;
2585 
2586 	schedule_work(&sysfs_add_work);
2587 
2588 unlock_out:
2589 	up_write(&slub_lock);
2590 out:
2591 	return kmalloc_caches_dma[index];
2592 }
2593 #endif
2594 
2595 /*
2596  * Conversion table for small slabs sizes / 8 to the index in the
2597  * kmalloc array. This is necessary for slabs < 192 since we have non power
2598  * of two cache sizes there. The size of larger slabs can be determined using
2599  * fls.
2600  */
2601 static s8 size_index[24] = {
2602 	3,	/* 8 */
2603 	4,	/* 16 */
2604 	5,	/* 24 */
2605 	5,	/* 32 */
2606 	6,	/* 40 */
2607 	6,	/* 48 */
2608 	6,	/* 56 */
2609 	6,	/* 64 */
2610 	1,	/* 72 */
2611 	1,	/* 80 */
2612 	1,	/* 88 */
2613 	1,	/* 96 */
2614 	7,	/* 104 */
2615 	7,	/* 112 */
2616 	7,	/* 120 */
2617 	7,	/* 128 */
2618 	2,	/* 136 */
2619 	2,	/* 144 */
2620 	2,	/* 152 */
2621 	2,	/* 160 */
2622 	2,	/* 168 */
2623 	2,	/* 176 */
2624 	2,	/* 184 */
2625 	2	/* 192 */
2626 };
2627 
2628 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2629 {
2630 	int index;
2631 
2632 	if (size <= 192) {
2633 		if (!size)
2634 			return ZERO_SIZE_PTR;
2635 
2636 		index = size_index[(size - 1) / 8];
2637 	} else
2638 		index = fls(size - 1);
2639 
2640 #ifdef CONFIG_ZONE_DMA
2641 	if (unlikely((flags & SLUB_DMA)))
2642 		return dma_kmalloc_cache(index, flags);
2643 
2644 #endif
2645 	return &kmalloc_caches[index];
2646 }
2647 
2648 void *__kmalloc(size_t size, gfp_t flags)
2649 {
2650 	struct kmem_cache *s;
2651 
2652 	if (unlikely(size > PAGE_SIZE))
2653 		return kmalloc_large(size, flags);
2654 
2655 	s = get_slab(size, flags);
2656 
2657 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2658 		return s;
2659 
2660 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2661 }
2662 EXPORT_SYMBOL(__kmalloc);
2663 
2664 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2665 {
2666 	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2667 						get_order(size));
2668 
2669 	if (page)
2670 		return page_address(page);
2671 	else
2672 		return NULL;
2673 }
2674 
2675 #ifdef CONFIG_NUMA
2676 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2677 {
2678 	struct kmem_cache *s;
2679 
2680 	if (unlikely(size > PAGE_SIZE))
2681 		return kmalloc_large_node(size, flags, node);
2682 
2683 	s = get_slab(size, flags);
2684 
2685 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2686 		return s;
2687 
2688 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2689 }
2690 EXPORT_SYMBOL(__kmalloc_node);
2691 #endif
2692 
2693 size_t ksize(const void *object)
2694 {
2695 	struct page *page;
2696 	struct kmem_cache *s;
2697 
2698 	if (unlikely(object == ZERO_SIZE_PTR))
2699 		return 0;
2700 
2701 	page = virt_to_head_page(object);
2702 
2703 	if (unlikely(!PageSlab(page))) {
2704 		WARN_ON(!PageCompound(page));
2705 		return PAGE_SIZE << compound_order(page);
2706 	}
2707 	s = page->slab;
2708 
2709 #ifdef CONFIG_SLUB_DEBUG
2710 	/*
2711 	 * Debugging requires use of the padding between object
2712 	 * and whatever may come after it.
2713 	 */
2714 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2715 		return s->objsize;
2716 
2717 #endif
2718 	/*
2719 	 * If we have the need to store the freelist pointer
2720 	 * back there or track user information then we can
2721 	 * only use the space before that information.
2722 	 */
2723 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2724 		return s->inuse;
2725 	/*
2726 	 * Else we can use all the padding etc for the allocation
2727 	 */
2728 	return s->size;
2729 }
2730 
2731 void kfree(const void *x)
2732 {
2733 	struct page *page;
2734 	void *object = (void *)x;
2735 
2736 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2737 		return;
2738 
2739 	page = virt_to_head_page(x);
2740 	if (unlikely(!PageSlab(page))) {
2741 		BUG_ON(!PageCompound(page));
2742 		put_page(page);
2743 		return;
2744 	}
2745 	slab_free(page->slab, page, object, __builtin_return_address(0));
2746 }
2747 EXPORT_SYMBOL(kfree);
2748 
2749 /*
2750  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2751  * the remaining slabs by the number of items in use. The slabs with the
2752  * most items in use come first. New allocations will then fill those up
2753  * and thus they can be removed from the partial lists.
2754  *
2755  * The slabs with the least items are placed last. This results in them
2756  * being allocated from last increasing the chance that the last objects
2757  * are freed in them.
2758  */
2759 int kmem_cache_shrink(struct kmem_cache *s)
2760 {
2761 	int node;
2762 	int i;
2763 	struct kmem_cache_node *n;
2764 	struct page *page;
2765 	struct page *t;
2766 	int objects = oo_objects(s->max);
2767 	struct list_head *slabs_by_inuse =
2768 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2769 	unsigned long flags;
2770 
2771 	if (!slabs_by_inuse)
2772 		return -ENOMEM;
2773 
2774 	flush_all(s);
2775 	for_each_node_state(node, N_NORMAL_MEMORY) {
2776 		n = get_node(s, node);
2777 
2778 		if (!n->nr_partial)
2779 			continue;
2780 
2781 		for (i = 0; i < objects; i++)
2782 			INIT_LIST_HEAD(slabs_by_inuse + i);
2783 
2784 		spin_lock_irqsave(&n->list_lock, flags);
2785 
2786 		/*
2787 		 * Build lists indexed by the items in use in each slab.
2788 		 *
2789 		 * Note that concurrent frees may occur while we hold the
2790 		 * list_lock. page->inuse here is the upper limit.
2791 		 */
2792 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2793 			if (!page->inuse && slab_trylock(page)) {
2794 				/*
2795 				 * Must hold slab lock here because slab_free
2796 				 * may have freed the last object and be
2797 				 * waiting to release the slab.
2798 				 */
2799 				list_del(&page->lru);
2800 				n->nr_partial--;
2801 				slab_unlock(page);
2802 				discard_slab(s, page);
2803 			} else {
2804 				list_move(&page->lru,
2805 				slabs_by_inuse + page->inuse);
2806 			}
2807 		}
2808 
2809 		/*
2810 		 * Rebuild the partial list with the slabs filled up most
2811 		 * first and the least used slabs at the end.
2812 		 */
2813 		for (i = objects - 1; i >= 0; i--)
2814 			list_splice(slabs_by_inuse + i, n->partial.prev);
2815 
2816 		spin_unlock_irqrestore(&n->list_lock, flags);
2817 	}
2818 
2819 	kfree(slabs_by_inuse);
2820 	return 0;
2821 }
2822 EXPORT_SYMBOL(kmem_cache_shrink);
2823 
2824 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2825 static int slab_mem_going_offline_callback(void *arg)
2826 {
2827 	struct kmem_cache *s;
2828 
2829 	down_read(&slub_lock);
2830 	list_for_each_entry(s, &slab_caches, list)
2831 		kmem_cache_shrink(s);
2832 	up_read(&slub_lock);
2833 
2834 	return 0;
2835 }
2836 
2837 static void slab_mem_offline_callback(void *arg)
2838 {
2839 	struct kmem_cache_node *n;
2840 	struct kmem_cache *s;
2841 	struct memory_notify *marg = arg;
2842 	int offline_node;
2843 
2844 	offline_node = marg->status_change_nid;
2845 
2846 	/*
2847 	 * If the node still has available memory. we need kmem_cache_node
2848 	 * for it yet.
2849 	 */
2850 	if (offline_node < 0)
2851 		return;
2852 
2853 	down_read(&slub_lock);
2854 	list_for_each_entry(s, &slab_caches, list) {
2855 		n = get_node(s, offline_node);
2856 		if (n) {
2857 			/*
2858 			 * if n->nr_slabs > 0, slabs still exist on the node
2859 			 * that is going down. We were unable to free them,
2860 			 * and offline_pages() function shoudn't call this
2861 			 * callback. So, we must fail.
2862 			 */
2863 			BUG_ON(slabs_node(s, offline_node));
2864 
2865 			s->node[offline_node] = NULL;
2866 			kmem_cache_free(kmalloc_caches, n);
2867 		}
2868 	}
2869 	up_read(&slub_lock);
2870 }
2871 
2872 static int slab_mem_going_online_callback(void *arg)
2873 {
2874 	struct kmem_cache_node *n;
2875 	struct kmem_cache *s;
2876 	struct memory_notify *marg = arg;
2877 	int nid = marg->status_change_nid;
2878 	int ret = 0;
2879 
2880 	/*
2881 	 * If the node's memory is already available, then kmem_cache_node is
2882 	 * already created. Nothing to do.
2883 	 */
2884 	if (nid < 0)
2885 		return 0;
2886 
2887 	/*
2888 	 * We are bringing a node online. No memory is available yet. We must
2889 	 * allocate a kmem_cache_node structure in order to bring the node
2890 	 * online.
2891 	 */
2892 	down_read(&slub_lock);
2893 	list_for_each_entry(s, &slab_caches, list) {
2894 		/*
2895 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2896 		 *      since memory is not yet available from the node that
2897 		 *      is brought up.
2898 		 */
2899 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2900 		if (!n) {
2901 			ret = -ENOMEM;
2902 			goto out;
2903 		}
2904 		init_kmem_cache_node(n, s);
2905 		s->node[nid] = n;
2906 	}
2907 out:
2908 	up_read(&slub_lock);
2909 	return ret;
2910 }
2911 
2912 static int slab_memory_callback(struct notifier_block *self,
2913 				unsigned long action, void *arg)
2914 {
2915 	int ret = 0;
2916 
2917 	switch (action) {
2918 	case MEM_GOING_ONLINE:
2919 		ret = slab_mem_going_online_callback(arg);
2920 		break;
2921 	case MEM_GOING_OFFLINE:
2922 		ret = slab_mem_going_offline_callback(arg);
2923 		break;
2924 	case MEM_OFFLINE:
2925 	case MEM_CANCEL_ONLINE:
2926 		slab_mem_offline_callback(arg);
2927 		break;
2928 	case MEM_ONLINE:
2929 	case MEM_CANCEL_OFFLINE:
2930 		break;
2931 	}
2932 
2933 	ret = notifier_from_errno(ret);
2934 	return ret;
2935 }
2936 
2937 #endif /* CONFIG_MEMORY_HOTPLUG */
2938 
2939 /********************************************************************
2940  *			Basic setup of slabs
2941  *******************************************************************/
2942 
2943 void __init kmem_cache_init(void)
2944 {
2945 	int i;
2946 	int caches = 0;
2947 
2948 	init_alloc_cpu();
2949 
2950 #ifdef CONFIG_NUMA
2951 	/*
2952 	 * Must first have the slab cache available for the allocations of the
2953 	 * struct kmem_cache_node's. There is special bootstrap code in
2954 	 * kmem_cache_open for slab_state == DOWN.
2955 	 */
2956 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2957 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2958 	kmalloc_caches[0].refcount = -1;
2959 	caches++;
2960 
2961 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2962 #endif
2963 
2964 	/* Able to allocate the per node structures */
2965 	slab_state = PARTIAL;
2966 
2967 	/* Caches that are not of the two-to-the-power-of size */
2968 	if (KMALLOC_MIN_SIZE <= 64) {
2969 		create_kmalloc_cache(&kmalloc_caches[1],
2970 				"kmalloc-96", 96, GFP_KERNEL);
2971 		caches++;
2972 		create_kmalloc_cache(&kmalloc_caches[2],
2973 				"kmalloc-192", 192, GFP_KERNEL);
2974 		caches++;
2975 	}
2976 
2977 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2978 		create_kmalloc_cache(&kmalloc_caches[i],
2979 			"kmalloc", 1 << i, GFP_KERNEL);
2980 		caches++;
2981 	}
2982 
2983 
2984 	/*
2985 	 * Patch up the size_index table if we have strange large alignment
2986 	 * requirements for the kmalloc array. This is only the case for
2987 	 * MIPS it seems. The standard arches will not generate any code here.
2988 	 *
2989 	 * Largest permitted alignment is 256 bytes due to the way we
2990 	 * handle the index determination for the smaller caches.
2991 	 *
2992 	 * Make sure that nothing crazy happens if someone starts tinkering
2993 	 * around with ARCH_KMALLOC_MINALIGN
2994 	 */
2995 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2996 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2997 
2998 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2999 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3000 
3001 	if (KMALLOC_MIN_SIZE == 128) {
3002 		/*
3003 		 * The 192 byte sized cache is not used if the alignment
3004 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3005 		 * instead.
3006 		 */
3007 		for (i = 128 + 8; i <= 192; i += 8)
3008 			size_index[(i - 1) / 8] = 8;
3009 	}
3010 
3011 	slab_state = UP;
3012 
3013 	/* Provide the correct kmalloc names now that the caches are up */
3014 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3015 		kmalloc_caches[i]. name =
3016 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3017 
3018 #ifdef CONFIG_SMP
3019 	register_cpu_notifier(&slab_notifier);
3020 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3021 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3022 #else
3023 	kmem_size = sizeof(struct kmem_cache);
3024 #endif
3025 
3026 	printk(KERN_INFO
3027 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3028 		" CPUs=%d, Nodes=%d\n",
3029 		caches, cache_line_size(),
3030 		slub_min_order, slub_max_order, slub_min_objects,
3031 		nr_cpu_ids, nr_node_ids);
3032 }
3033 
3034 /*
3035  * Find a mergeable slab cache
3036  */
3037 static int slab_unmergeable(struct kmem_cache *s)
3038 {
3039 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3040 		return 1;
3041 
3042 	if (s->ctor)
3043 		return 1;
3044 
3045 	/*
3046 	 * We may have set a slab to be unmergeable during bootstrap.
3047 	 */
3048 	if (s->refcount < 0)
3049 		return 1;
3050 
3051 	return 0;
3052 }
3053 
3054 static struct kmem_cache *find_mergeable(size_t size,
3055 		size_t align, unsigned long flags, const char *name,
3056 		void (*ctor)(void *))
3057 {
3058 	struct kmem_cache *s;
3059 
3060 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3061 		return NULL;
3062 
3063 	if (ctor)
3064 		return NULL;
3065 
3066 	size = ALIGN(size, sizeof(void *));
3067 	align = calculate_alignment(flags, align, size);
3068 	size = ALIGN(size, align);
3069 	flags = kmem_cache_flags(size, flags, name, NULL);
3070 
3071 	list_for_each_entry(s, &slab_caches, list) {
3072 		if (slab_unmergeable(s))
3073 			continue;
3074 
3075 		if (size > s->size)
3076 			continue;
3077 
3078 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3079 				continue;
3080 		/*
3081 		 * Check if alignment is compatible.
3082 		 * Courtesy of Adrian Drzewiecki
3083 		 */
3084 		if ((s->size & ~(align - 1)) != s->size)
3085 			continue;
3086 
3087 		if (s->size - size >= sizeof(void *))
3088 			continue;
3089 
3090 		return s;
3091 	}
3092 	return NULL;
3093 }
3094 
3095 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3096 		size_t align, unsigned long flags, void (*ctor)(void *))
3097 {
3098 	struct kmem_cache *s;
3099 
3100 	down_write(&slub_lock);
3101 	s = find_mergeable(size, align, flags, name, ctor);
3102 	if (s) {
3103 		int cpu;
3104 
3105 		s->refcount++;
3106 		/*
3107 		 * Adjust the object sizes so that we clear
3108 		 * the complete object on kzalloc.
3109 		 */
3110 		s->objsize = max(s->objsize, (int)size);
3111 
3112 		/*
3113 		 * And then we need to update the object size in the
3114 		 * per cpu structures
3115 		 */
3116 		for_each_online_cpu(cpu)
3117 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3118 
3119 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3120 		up_write(&slub_lock);
3121 
3122 		if (sysfs_slab_alias(s, name))
3123 			goto err;
3124 		return s;
3125 	}
3126 
3127 	s = kmalloc(kmem_size, GFP_KERNEL);
3128 	if (s) {
3129 		if (kmem_cache_open(s, GFP_KERNEL, name,
3130 				size, align, flags, ctor)) {
3131 			list_add(&s->list, &slab_caches);
3132 			up_write(&slub_lock);
3133 			if (sysfs_slab_add(s))
3134 				goto err;
3135 			return s;
3136 		}
3137 		kfree(s);
3138 	}
3139 	up_write(&slub_lock);
3140 
3141 err:
3142 	if (flags & SLAB_PANIC)
3143 		panic("Cannot create slabcache %s\n", name);
3144 	else
3145 		s = NULL;
3146 	return s;
3147 }
3148 EXPORT_SYMBOL(kmem_cache_create);
3149 
3150 #ifdef CONFIG_SMP
3151 /*
3152  * Use the cpu notifier to insure that the cpu slabs are flushed when
3153  * necessary.
3154  */
3155 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3156 		unsigned long action, void *hcpu)
3157 {
3158 	long cpu = (long)hcpu;
3159 	struct kmem_cache *s;
3160 	unsigned long flags;
3161 
3162 	switch (action) {
3163 	case CPU_UP_PREPARE:
3164 	case CPU_UP_PREPARE_FROZEN:
3165 		init_alloc_cpu_cpu(cpu);
3166 		down_read(&slub_lock);
3167 		list_for_each_entry(s, &slab_caches, list)
3168 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3169 							GFP_KERNEL);
3170 		up_read(&slub_lock);
3171 		break;
3172 
3173 	case CPU_UP_CANCELED:
3174 	case CPU_UP_CANCELED_FROZEN:
3175 	case CPU_DEAD:
3176 	case CPU_DEAD_FROZEN:
3177 		down_read(&slub_lock);
3178 		list_for_each_entry(s, &slab_caches, list) {
3179 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3180 
3181 			local_irq_save(flags);
3182 			__flush_cpu_slab(s, cpu);
3183 			local_irq_restore(flags);
3184 			free_kmem_cache_cpu(c, cpu);
3185 			s->cpu_slab[cpu] = NULL;
3186 		}
3187 		up_read(&slub_lock);
3188 		break;
3189 	default:
3190 		break;
3191 	}
3192 	return NOTIFY_OK;
3193 }
3194 
3195 static struct notifier_block __cpuinitdata slab_notifier = {
3196 	.notifier_call = slab_cpuup_callback
3197 };
3198 
3199 #endif
3200 
3201 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3202 {
3203 	struct kmem_cache *s;
3204 
3205 	if (unlikely(size > PAGE_SIZE))
3206 		return kmalloc_large(size, gfpflags);
3207 
3208 	s = get_slab(size, gfpflags);
3209 
3210 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3211 		return s;
3212 
3213 	return slab_alloc(s, gfpflags, -1, caller);
3214 }
3215 
3216 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3217 					int node, void *caller)
3218 {
3219 	struct kmem_cache *s;
3220 
3221 	if (unlikely(size > PAGE_SIZE))
3222 		return kmalloc_large_node(size, gfpflags, node);
3223 
3224 	s = get_slab(size, gfpflags);
3225 
3226 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3227 		return s;
3228 
3229 	return slab_alloc(s, gfpflags, node, caller);
3230 }
3231 
3232 #ifdef CONFIG_SLUB_DEBUG
3233 static unsigned long count_partial(struct kmem_cache_node *n,
3234 					int (*get_count)(struct page *))
3235 {
3236 	unsigned long flags;
3237 	unsigned long x = 0;
3238 	struct page *page;
3239 
3240 	spin_lock_irqsave(&n->list_lock, flags);
3241 	list_for_each_entry(page, &n->partial, lru)
3242 		x += get_count(page);
3243 	spin_unlock_irqrestore(&n->list_lock, flags);
3244 	return x;
3245 }
3246 
3247 static int count_inuse(struct page *page)
3248 {
3249 	return page->inuse;
3250 }
3251 
3252 static int count_total(struct page *page)
3253 {
3254 	return page->objects;
3255 }
3256 
3257 static int count_free(struct page *page)
3258 {
3259 	return page->objects - page->inuse;
3260 }
3261 
3262 static int validate_slab(struct kmem_cache *s, struct page *page,
3263 						unsigned long *map)
3264 {
3265 	void *p;
3266 	void *addr = page_address(page);
3267 
3268 	if (!check_slab(s, page) ||
3269 			!on_freelist(s, page, NULL))
3270 		return 0;
3271 
3272 	/* Now we know that a valid freelist exists */
3273 	bitmap_zero(map, page->objects);
3274 
3275 	for_each_free_object(p, s, page->freelist) {
3276 		set_bit(slab_index(p, s, addr), map);
3277 		if (!check_object(s, page, p, 0))
3278 			return 0;
3279 	}
3280 
3281 	for_each_object(p, s, addr, page->objects)
3282 		if (!test_bit(slab_index(p, s, addr), map))
3283 			if (!check_object(s, page, p, 1))
3284 				return 0;
3285 	return 1;
3286 }
3287 
3288 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3289 						unsigned long *map)
3290 {
3291 	if (slab_trylock(page)) {
3292 		validate_slab(s, page, map);
3293 		slab_unlock(page);
3294 	} else
3295 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3296 			s->name, page);
3297 
3298 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3299 		if (!PageSlubDebug(page))
3300 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3301 				"on slab 0x%p\n", s->name, page);
3302 	} else {
3303 		if (PageSlubDebug(page))
3304 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3305 				"slab 0x%p\n", s->name, page);
3306 	}
3307 }
3308 
3309 static int validate_slab_node(struct kmem_cache *s,
3310 		struct kmem_cache_node *n, unsigned long *map)
3311 {
3312 	unsigned long count = 0;
3313 	struct page *page;
3314 	unsigned long flags;
3315 
3316 	spin_lock_irqsave(&n->list_lock, flags);
3317 
3318 	list_for_each_entry(page, &n->partial, lru) {
3319 		validate_slab_slab(s, page, map);
3320 		count++;
3321 	}
3322 	if (count != n->nr_partial)
3323 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3324 			"counter=%ld\n", s->name, count, n->nr_partial);
3325 
3326 	if (!(s->flags & SLAB_STORE_USER))
3327 		goto out;
3328 
3329 	list_for_each_entry(page, &n->full, lru) {
3330 		validate_slab_slab(s, page, map);
3331 		count++;
3332 	}
3333 	if (count != atomic_long_read(&n->nr_slabs))
3334 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3335 			"counter=%ld\n", s->name, count,
3336 			atomic_long_read(&n->nr_slabs));
3337 
3338 out:
3339 	spin_unlock_irqrestore(&n->list_lock, flags);
3340 	return count;
3341 }
3342 
3343 static long validate_slab_cache(struct kmem_cache *s)
3344 {
3345 	int node;
3346 	unsigned long count = 0;
3347 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3348 				sizeof(unsigned long), GFP_KERNEL);
3349 
3350 	if (!map)
3351 		return -ENOMEM;
3352 
3353 	flush_all(s);
3354 	for_each_node_state(node, N_NORMAL_MEMORY) {
3355 		struct kmem_cache_node *n = get_node(s, node);
3356 
3357 		count += validate_slab_node(s, n, map);
3358 	}
3359 	kfree(map);
3360 	return count;
3361 }
3362 
3363 #ifdef SLUB_RESILIENCY_TEST
3364 static void resiliency_test(void)
3365 {
3366 	u8 *p;
3367 
3368 	printk(KERN_ERR "SLUB resiliency testing\n");
3369 	printk(KERN_ERR "-----------------------\n");
3370 	printk(KERN_ERR "A. Corruption after allocation\n");
3371 
3372 	p = kzalloc(16, GFP_KERNEL);
3373 	p[16] = 0x12;
3374 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3375 			" 0x12->0x%p\n\n", p + 16);
3376 
3377 	validate_slab_cache(kmalloc_caches + 4);
3378 
3379 	/* Hmmm... The next two are dangerous */
3380 	p = kzalloc(32, GFP_KERNEL);
3381 	p[32 + sizeof(void *)] = 0x34;
3382 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3383 			" 0x34 -> -0x%p\n", p);
3384 	printk(KERN_ERR
3385 		"If allocated object is overwritten then not detectable\n\n");
3386 
3387 	validate_slab_cache(kmalloc_caches + 5);
3388 	p = kzalloc(64, GFP_KERNEL);
3389 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3390 	*p = 0x56;
3391 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3392 									p);
3393 	printk(KERN_ERR
3394 		"If allocated object is overwritten then not detectable\n\n");
3395 	validate_slab_cache(kmalloc_caches + 6);
3396 
3397 	printk(KERN_ERR "\nB. Corruption after free\n");
3398 	p = kzalloc(128, GFP_KERNEL);
3399 	kfree(p);
3400 	*p = 0x78;
3401 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3402 	validate_slab_cache(kmalloc_caches + 7);
3403 
3404 	p = kzalloc(256, GFP_KERNEL);
3405 	kfree(p);
3406 	p[50] = 0x9a;
3407 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3408 			p);
3409 	validate_slab_cache(kmalloc_caches + 8);
3410 
3411 	p = kzalloc(512, GFP_KERNEL);
3412 	kfree(p);
3413 	p[512] = 0xab;
3414 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3415 	validate_slab_cache(kmalloc_caches + 9);
3416 }
3417 #else
3418 static void resiliency_test(void) {};
3419 #endif
3420 
3421 /*
3422  * Generate lists of code addresses where slabcache objects are allocated
3423  * and freed.
3424  */
3425 
3426 struct location {
3427 	unsigned long count;
3428 	void *addr;
3429 	long long sum_time;
3430 	long min_time;
3431 	long max_time;
3432 	long min_pid;
3433 	long max_pid;
3434 	cpumask_t cpus;
3435 	nodemask_t nodes;
3436 };
3437 
3438 struct loc_track {
3439 	unsigned long max;
3440 	unsigned long count;
3441 	struct location *loc;
3442 };
3443 
3444 static void free_loc_track(struct loc_track *t)
3445 {
3446 	if (t->max)
3447 		free_pages((unsigned long)t->loc,
3448 			get_order(sizeof(struct location) * t->max));
3449 }
3450 
3451 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3452 {
3453 	struct location *l;
3454 	int order;
3455 
3456 	order = get_order(sizeof(struct location) * max);
3457 
3458 	l = (void *)__get_free_pages(flags, order);
3459 	if (!l)
3460 		return 0;
3461 
3462 	if (t->count) {
3463 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3464 		free_loc_track(t);
3465 	}
3466 	t->max = max;
3467 	t->loc = l;
3468 	return 1;
3469 }
3470 
3471 static int add_location(struct loc_track *t, struct kmem_cache *s,
3472 				const struct track *track)
3473 {
3474 	long start, end, pos;
3475 	struct location *l;
3476 	void *caddr;
3477 	unsigned long age = jiffies - track->when;
3478 
3479 	start = -1;
3480 	end = t->count;
3481 
3482 	for ( ; ; ) {
3483 		pos = start + (end - start + 1) / 2;
3484 
3485 		/*
3486 		 * There is nothing at "end". If we end up there
3487 		 * we need to add something to before end.
3488 		 */
3489 		if (pos == end)
3490 			break;
3491 
3492 		caddr = t->loc[pos].addr;
3493 		if (track->addr == caddr) {
3494 
3495 			l = &t->loc[pos];
3496 			l->count++;
3497 			if (track->when) {
3498 				l->sum_time += age;
3499 				if (age < l->min_time)
3500 					l->min_time = age;
3501 				if (age > l->max_time)
3502 					l->max_time = age;
3503 
3504 				if (track->pid < l->min_pid)
3505 					l->min_pid = track->pid;
3506 				if (track->pid > l->max_pid)
3507 					l->max_pid = track->pid;
3508 
3509 				cpu_set(track->cpu, l->cpus);
3510 			}
3511 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3512 			return 1;
3513 		}
3514 
3515 		if (track->addr < caddr)
3516 			end = pos;
3517 		else
3518 			start = pos;
3519 	}
3520 
3521 	/*
3522 	 * Not found. Insert new tracking element.
3523 	 */
3524 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3525 		return 0;
3526 
3527 	l = t->loc + pos;
3528 	if (pos < t->count)
3529 		memmove(l + 1, l,
3530 			(t->count - pos) * sizeof(struct location));
3531 	t->count++;
3532 	l->count = 1;
3533 	l->addr = track->addr;
3534 	l->sum_time = age;
3535 	l->min_time = age;
3536 	l->max_time = age;
3537 	l->min_pid = track->pid;
3538 	l->max_pid = track->pid;
3539 	cpus_clear(l->cpus);
3540 	cpu_set(track->cpu, l->cpus);
3541 	nodes_clear(l->nodes);
3542 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3543 	return 1;
3544 }
3545 
3546 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3547 		struct page *page, enum track_item alloc)
3548 {
3549 	void *addr = page_address(page);
3550 	DECLARE_BITMAP(map, page->objects);
3551 	void *p;
3552 
3553 	bitmap_zero(map, page->objects);
3554 	for_each_free_object(p, s, page->freelist)
3555 		set_bit(slab_index(p, s, addr), map);
3556 
3557 	for_each_object(p, s, addr, page->objects)
3558 		if (!test_bit(slab_index(p, s, addr), map))
3559 			add_location(t, s, get_track(s, p, alloc));
3560 }
3561 
3562 static int list_locations(struct kmem_cache *s, char *buf,
3563 					enum track_item alloc)
3564 {
3565 	int len = 0;
3566 	unsigned long i;
3567 	struct loc_track t = { 0, 0, NULL };
3568 	int node;
3569 
3570 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3571 			GFP_TEMPORARY))
3572 		return sprintf(buf, "Out of memory\n");
3573 
3574 	/* Push back cpu slabs */
3575 	flush_all(s);
3576 
3577 	for_each_node_state(node, N_NORMAL_MEMORY) {
3578 		struct kmem_cache_node *n = get_node(s, node);
3579 		unsigned long flags;
3580 		struct page *page;
3581 
3582 		if (!atomic_long_read(&n->nr_slabs))
3583 			continue;
3584 
3585 		spin_lock_irqsave(&n->list_lock, flags);
3586 		list_for_each_entry(page, &n->partial, lru)
3587 			process_slab(&t, s, page, alloc);
3588 		list_for_each_entry(page, &n->full, lru)
3589 			process_slab(&t, s, page, alloc);
3590 		spin_unlock_irqrestore(&n->list_lock, flags);
3591 	}
3592 
3593 	for (i = 0; i < t.count; i++) {
3594 		struct location *l = &t.loc[i];
3595 
3596 		if (len > PAGE_SIZE - 100)
3597 			break;
3598 		len += sprintf(buf + len, "%7ld ", l->count);
3599 
3600 		if (l->addr)
3601 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3602 		else
3603 			len += sprintf(buf + len, "<not-available>");
3604 
3605 		if (l->sum_time != l->min_time) {
3606 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3607 				l->min_time,
3608 				(long)div_u64(l->sum_time, l->count),
3609 				l->max_time);
3610 		} else
3611 			len += sprintf(buf + len, " age=%ld",
3612 				l->min_time);
3613 
3614 		if (l->min_pid != l->max_pid)
3615 			len += sprintf(buf + len, " pid=%ld-%ld",
3616 				l->min_pid, l->max_pid);
3617 		else
3618 			len += sprintf(buf + len, " pid=%ld",
3619 				l->min_pid);
3620 
3621 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3622 				len < PAGE_SIZE - 60) {
3623 			len += sprintf(buf + len, " cpus=");
3624 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3625 					l->cpus);
3626 		}
3627 
3628 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3629 				len < PAGE_SIZE - 60) {
3630 			len += sprintf(buf + len, " nodes=");
3631 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3632 					l->nodes);
3633 		}
3634 
3635 		len += sprintf(buf + len, "\n");
3636 	}
3637 
3638 	free_loc_track(&t);
3639 	if (!t.count)
3640 		len += sprintf(buf, "No data\n");
3641 	return len;
3642 }
3643 
3644 enum slab_stat_type {
3645 	SL_ALL,			/* All slabs */
3646 	SL_PARTIAL,		/* Only partially allocated slabs */
3647 	SL_CPU,			/* Only slabs used for cpu caches */
3648 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3649 	SL_TOTAL		/* Determine object capacity not slabs */
3650 };
3651 
3652 #define SO_ALL		(1 << SL_ALL)
3653 #define SO_PARTIAL	(1 << SL_PARTIAL)
3654 #define SO_CPU		(1 << SL_CPU)
3655 #define SO_OBJECTS	(1 << SL_OBJECTS)
3656 #define SO_TOTAL	(1 << SL_TOTAL)
3657 
3658 static ssize_t show_slab_objects(struct kmem_cache *s,
3659 			    char *buf, unsigned long flags)
3660 {
3661 	unsigned long total = 0;
3662 	int node;
3663 	int x;
3664 	unsigned long *nodes;
3665 	unsigned long *per_cpu;
3666 
3667 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3668 	if (!nodes)
3669 		return -ENOMEM;
3670 	per_cpu = nodes + nr_node_ids;
3671 
3672 	if (flags & SO_CPU) {
3673 		int cpu;
3674 
3675 		for_each_possible_cpu(cpu) {
3676 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3677 
3678 			if (!c || c->node < 0)
3679 				continue;
3680 
3681 			if (c->page) {
3682 					if (flags & SO_TOTAL)
3683 						x = c->page->objects;
3684 				else if (flags & SO_OBJECTS)
3685 					x = c->page->inuse;
3686 				else
3687 					x = 1;
3688 
3689 				total += x;
3690 				nodes[c->node] += x;
3691 			}
3692 			per_cpu[c->node]++;
3693 		}
3694 	}
3695 
3696 	if (flags & SO_ALL) {
3697 		for_each_node_state(node, N_NORMAL_MEMORY) {
3698 			struct kmem_cache_node *n = get_node(s, node);
3699 
3700 		if (flags & SO_TOTAL)
3701 			x = atomic_long_read(&n->total_objects);
3702 		else if (flags & SO_OBJECTS)
3703 			x = atomic_long_read(&n->total_objects) -
3704 				count_partial(n, count_free);
3705 
3706 			else
3707 				x = atomic_long_read(&n->nr_slabs);
3708 			total += x;
3709 			nodes[node] += x;
3710 		}
3711 
3712 	} else if (flags & SO_PARTIAL) {
3713 		for_each_node_state(node, N_NORMAL_MEMORY) {
3714 			struct kmem_cache_node *n = get_node(s, node);
3715 
3716 			if (flags & SO_TOTAL)
3717 				x = count_partial(n, count_total);
3718 			else if (flags & SO_OBJECTS)
3719 				x = count_partial(n, count_inuse);
3720 			else
3721 				x = n->nr_partial;
3722 			total += x;
3723 			nodes[node] += x;
3724 		}
3725 	}
3726 	x = sprintf(buf, "%lu", total);
3727 #ifdef CONFIG_NUMA
3728 	for_each_node_state(node, N_NORMAL_MEMORY)
3729 		if (nodes[node])
3730 			x += sprintf(buf + x, " N%d=%lu",
3731 					node, nodes[node]);
3732 #endif
3733 	kfree(nodes);
3734 	return x + sprintf(buf + x, "\n");
3735 }
3736 
3737 static int any_slab_objects(struct kmem_cache *s)
3738 {
3739 	int node;
3740 
3741 	for_each_online_node(node) {
3742 		struct kmem_cache_node *n = get_node(s, node);
3743 
3744 		if (!n)
3745 			continue;
3746 
3747 		if (atomic_long_read(&n->total_objects))
3748 			return 1;
3749 	}
3750 	return 0;
3751 }
3752 
3753 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3754 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3755 
3756 struct slab_attribute {
3757 	struct attribute attr;
3758 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3759 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3760 };
3761 
3762 #define SLAB_ATTR_RO(_name) \
3763 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3764 
3765 #define SLAB_ATTR(_name) \
3766 	static struct slab_attribute _name##_attr =  \
3767 	__ATTR(_name, 0644, _name##_show, _name##_store)
3768 
3769 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3770 {
3771 	return sprintf(buf, "%d\n", s->size);
3772 }
3773 SLAB_ATTR_RO(slab_size);
3774 
3775 static ssize_t align_show(struct kmem_cache *s, char *buf)
3776 {
3777 	return sprintf(buf, "%d\n", s->align);
3778 }
3779 SLAB_ATTR_RO(align);
3780 
3781 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3782 {
3783 	return sprintf(buf, "%d\n", s->objsize);
3784 }
3785 SLAB_ATTR_RO(object_size);
3786 
3787 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3788 {
3789 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3790 }
3791 SLAB_ATTR_RO(objs_per_slab);
3792 
3793 static ssize_t order_store(struct kmem_cache *s,
3794 				const char *buf, size_t length)
3795 {
3796 	unsigned long order;
3797 	int err;
3798 
3799 	err = strict_strtoul(buf, 10, &order);
3800 	if (err)
3801 		return err;
3802 
3803 	if (order > slub_max_order || order < slub_min_order)
3804 		return -EINVAL;
3805 
3806 	calculate_sizes(s, order);
3807 	return length;
3808 }
3809 
3810 static ssize_t order_show(struct kmem_cache *s, char *buf)
3811 {
3812 	return sprintf(buf, "%d\n", oo_order(s->oo));
3813 }
3814 SLAB_ATTR(order);
3815 
3816 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3817 {
3818 	if (s->ctor) {
3819 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3820 
3821 		return n + sprintf(buf + n, "\n");
3822 	}
3823 	return 0;
3824 }
3825 SLAB_ATTR_RO(ctor);
3826 
3827 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3828 {
3829 	return sprintf(buf, "%d\n", s->refcount - 1);
3830 }
3831 SLAB_ATTR_RO(aliases);
3832 
3833 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3834 {
3835 	return show_slab_objects(s, buf, SO_ALL);
3836 }
3837 SLAB_ATTR_RO(slabs);
3838 
3839 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3840 {
3841 	return show_slab_objects(s, buf, SO_PARTIAL);
3842 }
3843 SLAB_ATTR_RO(partial);
3844 
3845 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3846 {
3847 	return show_slab_objects(s, buf, SO_CPU);
3848 }
3849 SLAB_ATTR_RO(cpu_slabs);
3850 
3851 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3852 {
3853 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3854 }
3855 SLAB_ATTR_RO(objects);
3856 
3857 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3858 {
3859 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3860 }
3861 SLAB_ATTR_RO(objects_partial);
3862 
3863 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3864 {
3865 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3866 }
3867 SLAB_ATTR_RO(total_objects);
3868 
3869 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3870 {
3871 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3872 }
3873 
3874 static ssize_t sanity_checks_store(struct kmem_cache *s,
3875 				const char *buf, size_t length)
3876 {
3877 	s->flags &= ~SLAB_DEBUG_FREE;
3878 	if (buf[0] == '1')
3879 		s->flags |= SLAB_DEBUG_FREE;
3880 	return length;
3881 }
3882 SLAB_ATTR(sanity_checks);
3883 
3884 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3885 {
3886 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3887 }
3888 
3889 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3890 							size_t length)
3891 {
3892 	s->flags &= ~SLAB_TRACE;
3893 	if (buf[0] == '1')
3894 		s->flags |= SLAB_TRACE;
3895 	return length;
3896 }
3897 SLAB_ATTR(trace);
3898 
3899 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3900 {
3901 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3902 }
3903 
3904 static ssize_t reclaim_account_store(struct kmem_cache *s,
3905 				const char *buf, size_t length)
3906 {
3907 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3908 	if (buf[0] == '1')
3909 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3910 	return length;
3911 }
3912 SLAB_ATTR(reclaim_account);
3913 
3914 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3915 {
3916 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3917 }
3918 SLAB_ATTR_RO(hwcache_align);
3919 
3920 #ifdef CONFIG_ZONE_DMA
3921 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3922 {
3923 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3924 }
3925 SLAB_ATTR_RO(cache_dma);
3926 #endif
3927 
3928 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3929 {
3930 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3931 }
3932 SLAB_ATTR_RO(destroy_by_rcu);
3933 
3934 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3935 {
3936 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3937 }
3938 
3939 static ssize_t red_zone_store(struct kmem_cache *s,
3940 				const char *buf, size_t length)
3941 {
3942 	if (any_slab_objects(s))
3943 		return -EBUSY;
3944 
3945 	s->flags &= ~SLAB_RED_ZONE;
3946 	if (buf[0] == '1')
3947 		s->flags |= SLAB_RED_ZONE;
3948 	calculate_sizes(s, -1);
3949 	return length;
3950 }
3951 SLAB_ATTR(red_zone);
3952 
3953 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3954 {
3955 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3956 }
3957 
3958 static ssize_t poison_store(struct kmem_cache *s,
3959 				const char *buf, size_t length)
3960 {
3961 	if (any_slab_objects(s))
3962 		return -EBUSY;
3963 
3964 	s->flags &= ~SLAB_POISON;
3965 	if (buf[0] == '1')
3966 		s->flags |= SLAB_POISON;
3967 	calculate_sizes(s, -1);
3968 	return length;
3969 }
3970 SLAB_ATTR(poison);
3971 
3972 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3973 {
3974 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3975 }
3976 
3977 static ssize_t store_user_store(struct kmem_cache *s,
3978 				const char *buf, size_t length)
3979 {
3980 	if (any_slab_objects(s))
3981 		return -EBUSY;
3982 
3983 	s->flags &= ~SLAB_STORE_USER;
3984 	if (buf[0] == '1')
3985 		s->flags |= SLAB_STORE_USER;
3986 	calculate_sizes(s, -1);
3987 	return length;
3988 }
3989 SLAB_ATTR(store_user);
3990 
3991 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3992 {
3993 	return 0;
3994 }
3995 
3996 static ssize_t validate_store(struct kmem_cache *s,
3997 			const char *buf, size_t length)
3998 {
3999 	int ret = -EINVAL;
4000 
4001 	if (buf[0] == '1') {
4002 		ret = validate_slab_cache(s);
4003 		if (ret >= 0)
4004 			ret = length;
4005 	}
4006 	return ret;
4007 }
4008 SLAB_ATTR(validate);
4009 
4010 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4011 {
4012 	return 0;
4013 }
4014 
4015 static ssize_t shrink_store(struct kmem_cache *s,
4016 			const char *buf, size_t length)
4017 {
4018 	if (buf[0] == '1') {
4019 		int rc = kmem_cache_shrink(s);
4020 
4021 		if (rc)
4022 			return rc;
4023 	} else
4024 		return -EINVAL;
4025 	return length;
4026 }
4027 SLAB_ATTR(shrink);
4028 
4029 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4030 {
4031 	if (!(s->flags & SLAB_STORE_USER))
4032 		return -ENOSYS;
4033 	return list_locations(s, buf, TRACK_ALLOC);
4034 }
4035 SLAB_ATTR_RO(alloc_calls);
4036 
4037 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4038 {
4039 	if (!(s->flags & SLAB_STORE_USER))
4040 		return -ENOSYS;
4041 	return list_locations(s, buf, TRACK_FREE);
4042 }
4043 SLAB_ATTR_RO(free_calls);
4044 
4045 #ifdef CONFIG_NUMA
4046 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4047 {
4048 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4049 }
4050 
4051 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4052 				const char *buf, size_t length)
4053 {
4054 	unsigned long ratio;
4055 	int err;
4056 
4057 	err = strict_strtoul(buf, 10, &ratio);
4058 	if (err)
4059 		return err;
4060 
4061 	if (ratio <= 100)
4062 		s->remote_node_defrag_ratio = ratio * 10;
4063 
4064 	return length;
4065 }
4066 SLAB_ATTR(remote_node_defrag_ratio);
4067 #endif
4068 
4069 #ifdef CONFIG_SLUB_STATS
4070 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4071 {
4072 	unsigned long sum  = 0;
4073 	int cpu;
4074 	int len;
4075 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4076 
4077 	if (!data)
4078 		return -ENOMEM;
4079 
4080 	for_each_online_cpu(cpu) {
4081 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4082 
4083 		data[cpu] = x;
4084 		sum += x;
4085 	}
4086 
4087 	len = sprintf(buf, "%lu", sum);
4088 
4089 #ifdef CONFIG_SMP
4090 	for_each_online_cpu(cpu) {
4091 		if (data[cpu] && len < PAGE_SIZE - 20)
4092 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4093 	}
4094 #endif
4095 	kfree(data);
4096 	return len + sprintf(buf + len, "\n");
4097 }
4098 
4099 #define STAT_ATTR(si, text) 					\
4100 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4101 {								\
4102 	return show_stat(s, buf, si);				\
4103 }								\
4104 SLAB_ATTR_RO(text);						\
4105 
4106 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4107 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4108 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4109 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4110 STAT_ATTR(FREE_FROZEN, free_frozen);
4111 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4112 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4113 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4114 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4115 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4116 STAT_ATTR(FREE_SLAB, free_slab);
4117 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4118 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4119 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4120 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4121 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4122 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4123 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4124 #endif
4125 
4126 static struct attribute *slab_attrs[] = {
4127 	&slab_size_attr.attr,
4128 	&object_size_attr.attr,
4129 	&objs_per_slab_attr.attr,
4130 	&order_attr.attr,
4131 	&objects_attr.attr,
4132 	&objects_partial_attr.attr,
4133 	&total_objects_attr.attr,
4134 	&slabs_attr.attr,
4135 	&partial_attr.attr,
4136 	&cpu_slabs_attr.attr,
4137 	&ctor_attr.attr,
4138 	&aliases_attr.attr,
4139 	&align_attr.attr,
4140 	&sanity_checks_attr.attr,
4141 	&trace_attr.attr,
4142 	&hwcache_align_attr.attr,
4143 	&reclaim_account_attr.attr,
4144 	&destroy_by_rcu_attr.attr,
4145 	&red_zone_attr.attr,
4146 	&poison_attr.attr,
4147 	&store_user_attr.attr,
4148 	&validate_attr.attr,
4149 	&shrink_attr.attr,
4150 	&alloc_calls_attr.attr,
4151 	&free_calls_attr.attr,
4152 #ifdef CONFIG_ZONE_DMA
4153 	&cache_dma_attr.attr,
4154 #endif
4155 #ifdef CONFIG_NUMA
4156 	&remote_node_defrag_ratio_attr.attr,
4157 #endif
4158 #ifdef CONFIG_SLUB_STATS
4159 	&alloc_fastpath_attr.attr,
4160 	&alloc_slowpath_attr.attr,
4161 	&free_fastpath_attr.attr,
4162 	&free_slowpath_attr.attr,
4163 	&free_frozen_attr.attr,
4164 	&free_add_partial_attr.attr,
4165 	&free_remove_partial_attr.attr,
4166 	&alloc_from_partial_attr.attr,
4167 	&alloc_slab_attr.attr,
4168 	&alloc_refill_attr.attr,
4169 	&free_slab_attr.attr,
4170 	&cpuslab_flush_attr.attr,
4171 	&deactivate_full_attr.attr,
4172 	&deactivate_empty_attr.attr,
4173 	&deactivate_to_head_attr.attr,
4174 	&deactivate_to_tail_attr.attr,
4175 	&deactivate_remote_frees_attr.attr,
4176 	&order_fallback_attr.attr,
4177 #endif
4178 	NULL
4179 };
4180 
4181 static struct attribute_group slab_attr_group = {
4182 	.attrs = slab_attrs,
4183 };
4184 
4185 static ssize_t slab_attr_show(struct kobject *kobj,
4186 				struct attribute *attr,
4187 				char *buf)
4188 {
4189 	struct slab_attribute *attribute;
4190 	struct kmem_cache *s;
4191 	int err;
4192 
4193 	attribute = to_slab_attr(attr);
4194 	s = to_slab(kobj);
4195 
4196 	if (!attribute->show)
4197 		return -EIO;
4198 
4199 	err = attribute->show(s, buf);
4200 
4201 	return err;
4202 }
4203 
4204 static ssize_t slab_attr_store(struct kobject *kobj,
4205 				struct attribute *attr,
4206 				const char *buf, size_t len)
4207 {
4208 	struct slab_attribute *attribute;
4209 	struct kmem_cache *s;
4210 	int err;
4211 
4212 	attribute = to_slab_attr(attr);
4213 	s = to_slab(kobj);
4214 
4215 	if (!attribute->store)
4216 		return -EIO;
4217 
4218 	err = attribute->store(s, buf, len);
4219 
4220 	return err;
4221 }
4222 
4223 static void kmem_cache_release(struct kobject *kobj)
4224 {
4225 	struct kmem_cache *s = to_slab(kobj);
4226 
4227 	kfree(s);
4228 }
4229 
4230 static struct sysfs_ops slab_sysfs_ops = {
4231 	.show = slab_attr_show,
4232 	.store = slab_attr_store,
4233 };
4234 
4235 static struct kobj_type slab_ktype = {
4236 	.sysfs_ops = &slab_sysfs_ops,
4237 	.release = kmem_cache_release
4238 };
4239 
4240 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4241 {
4242 	struct kobj_type *ktype = get_ktype(kobj);
4243 
4244 	if (ktype == &slab_ktype)
4245 		return 1;
4246 	return 0;
4247 }
4248 
4249 static struct kset_uevent_ops slab_uevent_ops = {
4250 	.filter = uevent_filter,
4251 };
4252 
4253 static struct kset *slab_kset;
4254 
4255 #define ID_STR_LENGTH 64
4256 
4257 /* Create a unique string id for a slab cache:
4258  *
4259  * Format	:[flags-]size
4260  */
4261 static char *create_unique_id(struct kmem_cache *s)
4262 {
4263 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4264 	char *p = name;
4265 
4266 	BUG_ON(!name);
4267 
4268 	*p++ = ':';
4269 	/*
4270 	 * First flags affecting slabcache operations. We will only
4271 	 * get here for aliasable slabs so we do not need to support
4272 	 * too many flags. The flags here must cover all flags that
4273 	 * are matched during merging to guarantee that the id is
4274 	 * unique.
4275 	 */
4276 	if (s->flags & SLAB_CACHE_DMA)
4277 		*p++ = 'd';
4278 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4279 		*p++ = 'a';
4280 	if (s->flags & SLAB_DEBUG_FREE)
4281 		*p++ = 'F';
4282 	if (p != name + 1)
4283 		*p++ = '-';
4284 	p += sprintf(p, "%07d", s->size);
4285 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4286 	return name;
4287 }
4288 
4289 static int sysfs_slab_add(struct kmem_cache *s)
4290 {
4291 	int err;
4292 	const char *name;
4293 	int unmergeable;
4294 
4295 	if (slab_state < SYSFS)
4296 		/* Defer until later */
4297 		return 0;
4298 
4299 	unmergeable = slab_unmergeable(s);
4300 	if (unmergeable) {
4301 		/*
4302 		 * Slabcache can never be merged so we can use the name proper.
4303 		 * This is typically the case for debug situations. In that
4304 		 * case we can catch duplicate names easily.
4305 		 */
4306 		sysfs_remove_link(&slab_kset->kobj, s->name);
4307 		name = s->name;
4308 	} else {
4309 		/*
4310 		 * Create a unique name for the slab as a target
4311 		 * for the symlinks.
4312 		 */
4313 		name = create_unique_id(s);
4314 	}
4315 
4316 	s->kobj.kset = slab_kset;
4317 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4318 	if (err) {
4319 		kobject_put(&s->kobj);
4320 		return err;
4321 	}
4322 
4323 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4324 	if (err)
4325 		return err;
4326 	kobject_uevent(&s->kobj, KOBJ_ADD);
4327 	if (!unmergeable) {
4328 		/* Setup first alias */
4329 		sysfs_slab_alias(s, s->name);
4330 		kfree(name);
4331 	}
4332 	return 0;
4333 }
4334 
4335 static void sysfs_slab_remove(struct kmem_cache *s)
4336 {
4337 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4338 	kobject_del(&s->kobj);
4339 	kobject_put(&s->kobj);
4340 }
4341 
4342 /*
4343  * Need to buffer aliases during bootup until sysfs becomes
4344  * available lest we loose that information.
4345  */
4346 struct saved_alias {
4347 	struct kmem_cache *s;
4348 	const char *name;
4349 	struct saved_alias *next;
4350 };
4351 
4352 static struct saved_alias *alias_list;
4353 
4354 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4355 {
4356 	struct saved_alias *al;
4357 
4358 	if (slab_state == SYSFS) {
4359 		/*
4360 		 * If we have a leftover link then remove it.
4361 		 */
4362 		sysfs_remove_link(&slab_kset->kobj, name);
4363 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4364 	}
4365 
4366 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4367 	if (!al)
4368 		return -ENOMEM;
4369 
4370 	al->s = s;
4371 	al->name = name;
4372 	al->next = alias_list;
4373 	alias_list = al;
4374 	return 0;
4375 }
4376 
4377 static int __init slab_sysfs_init(void)
4378 {
4379 	struct kmem_cache *s;
4380 	int err;
4381 
4382 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4383 	if (!slab_kset) {
4384 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4385 		return -ENOSYS;
4386 	}
4387 
4388 	slab_state = SYSFS;
4389 
4390 	list_for_each_entry(s, &slab_caches, list) {
4391 		err = sysfs_slab_add(s);
4392 		if (err)
4393 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4394 						" to sysfs\n", s->name);
4395 	}
4396 
4397 	while (alias_list) {
4398 		struct saved_alias *al = alias_list;
4399 
4400 		alias_list = alias_list->next;
4401 		err = sysfs_slab_alias(al->s, al->name);
4402 		if (err)
4403 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4404 					" %s to sysfs\n", s->name);
4405 		kfree(al);
4406 	}
4407 
4408 	resiliency_test();
4409 	return 0;
4410 }
4411 
4412 __initcall(slab_sysfs_init);
4413 #endif
4414 
4415 /*
4416  * The /proc/slabinfo ABI
4417  */
4418 #ifdef CONFIG_SLABINFO
4419 
4420 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4421 		       size_t count, loff_t *ppos)
4422 {
4423 	return -EINVAL;
4424 }
4425 
4426 
4427 static void print_slabinfo_header(struct seq_file *m)
4428 {
4429 	seq_puts(m, "slabinfo - version: 2.1\n");
4430 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4431 		 "<objperslab> <pagesperslab>");
4432 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4433 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4434 	seq_putc(m, '\n');
4435 }
4436 
4437 static void *s_start(struct seq_file *m, loff_t *pos)
4438 {
4439 	loff_t n = *pos;
4440 
4441 	down_read(&slub_lock);
4442 	if (!n)
4443 		print_slabinfo_header(m);
4444 
4445 	return seq_list_start(&slab_caches, *pos);
4446 }
4447 
4448 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4449 {
4450 	return seq_list_next(p, &slab_caches, pos);
4451 }
4452 
4453 static void s_stop(struct seq_file *m, void *p)
4454 {
4455 	up_read(&slub_lock);
4456 }
4457 
4458 static int s_show(struct seq_file *m, void *p)
4459 {
4460 	unsigned long nr_partials = 0;
4461 	unsigned long nr_slabs = 0;
4462 	unsigned long nr_inuse = 0;
4463 	unsigned long nr_objs = 0;
4464 	unsigned long nr_free = 0;
4465 	struct kmem_cache *s;
4466 	int node;
4467 
4468 	s = list_entry(p, struct kmem_cache, list);
4469 
4470 	for_each_online_node(node) {
4471 		struct kmem_cache_node *n = get_node(s, node);
4472 
4473 		if (!n)
4474 			continue;
4475 
4476 		nr_partials += n->nr_partial;
4477 		nr_slabs += atomic_long_read(&n->nr_slabs);
4478 		nr_objs += atomic_long_read(&n->total_objects);
4479 		nr_free += count_partial(n, count_free);
4480 	}
4481 
4482 	nr_inuse = nr_objs - nr_free;
4483 
4484 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4485 		   nr_objs, s->size, oo_objects(s->oo),
4486 		   (1 << oo_order(s->oo)));
4487 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4488 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4489 		   0UL);
4490 	seq_putc(m, '\n');
4491 	return 0;
4492 }
4493 
4494 const struct seq_operations slabinfo_op = {
4495 	.start = s_start,
4496 	.next = s_next,
4497 	.stop = s_stop,
4498 	.show = s_show,
4499 };
4500 
4501 #endif /* CONFIG_SLABINFO */
4502