1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * page->frozen The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 void *fixup_red_left(struct kmem_cache *s, void *p) 127 { 128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 129 p += s->red_left_pad; 130 131 return p; 132 } 133 134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 135 { 136 #ifdef CONFIG_SLUB_CPU_PARTIAL 137 return !kmem_cache_debug(s); 138 #else 139 return false; 140 #endif 141 } 142 143 /* 144 * Issues still to be resolved: 145 * 146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 147 * 148 * - Variable sizing of the per node arrays 149 */ 150 151 /* Enable to test recovery from slab corruption on boot */ 152 #undef SLUB_RESILIENCY_TEST 153 154 /* Enable to log cmpxchg failures */ 155 #undef SLUB_DEBUG_CMPXCHG 156 157 /* 158 * Mininum number of partial slabs. These will be left on the partial 159 * lists even if they are empty. kmem_cache_shrink may reclaim them. 160 */ 161 #define MIN_PARTIAL 5 162 163 /* 164 * Maximum number of desirable partial slabs. 165 * The existence of more partial slabs makes kmem_cache_shrink 166 * sort the partial list by the number of objects in use. 167 */ 168 #define MAX_PARTIAL 10 169 170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 171 SLAB_POISON | SLAB_STORE_USER) 172 173 /* 174 * These debug flags cannot use CMPXCHG because there might be consistency 175 * issues when checking or reading debug information 176 */ 177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 178 SLAB_TRACE) 179 180 181 /* 182 * Debugging flags that require metadata to be stored in the slab. These get 183 * disabled when slub_debug=O is used and a cache's min order increases with 184 * metadata. 185 */ 186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 187 188 #define OO_SHIFT 16 189 #define OO_MASK ((1 << OO_SHIFT) - 1) 190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 191 192 /* Internal SLUB flags */ 193 /* Poison object */ 194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 195 /* Use cmpxchg_double */ 196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 197 198 /* 199 * Tracking user of a slab. 200 */ 201 #define TRACK_ADDRS_COUNT 16 202 struct track { 203 unsigned long addr; /* Called from address */ 204 #ifdef CONFIG_STACKTRACE 205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 206 #endif 207 int cpu; /* Was running on cpu */ 208 int pid; /* Pid context */ 209 unsigned long when; /* When did the operation occur */ 210 }; 211 212 enum track_item { TRACK_ALLOC, TRACK_FREE }; 213 214 #ifdef CONFIG_SYSFS 215 static int sysfs_slab_add(struct kmem_cache *); 216 static int sysfs_slab_alias(struct kmem_cache *, const char *); 217 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 218 static void sysfs_slab_remove(struct kmem_cache *s); 219 #else 220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 222 { return 0; } 223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 224 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 /* 252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 253 * Normally, this doesn't cause any issues, as both set_freepointer() 254 * and get_freepointer() are called with a pointer with the same tag. 255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 256 * example, when __free_slub() iterates over objects in a cache, it 257 * passes untagged pointers to check_object(). check_object() in turns 258 * calls get_freepointer() with an untagged pointer, which causes the 259 * freepointer to be restored incorrectly. 260 */ 261 return (void *)((unsigned long)ptr ^ s->random ^ 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 263 #else 264 return ptr; 265 #endif 266 } 267 268 /* Returns the freelist pointer recorded at location ptr_addr. */ 269 static inline void *freelist_dereference(const struct kmem_cache *s, 270 void *ptr_addr) 271 { 272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 273 (unsigned long)ptr_addr); 274 } 275 276 static inline void *get_freepointer(struct kmem_cache *s, void *object) 277 { 278 return freelist_dereference(s, object + s->offset); 279 } 280 281 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 282 { 283 prefetch(object + s->offset); 284 } 285 286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 287 { 288 unsigned long freepointer_addr; 289 void *p; 290 291 if (!debug_pagealloc_enabled_static()) 292 return get_freepointer(s, object); 293 294 freepointer_addr = (unsigned long)object + s->offset; 295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 296 return freelist_ptr(s, p, freepointer_addr); 297 } 298 299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 300 { 301 unsigned long freeptr_addr = (unsigned long)object + s->offset; 302 303 #ifdef CONFIG_SLAB_FREELIST_HARDENED 304 BUG_ON(object == fp); /* naive detection of double free or corruption */ 305 #endif 306 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 308 } 309 310 /* Loop over all objects in a slab */ 311 #define for_each_object(__p, __s, __addr, __objects) \ 312 for (__p = fixup_red_left(__s, __addr); \ 313 __p < (__addr) + (__objects) * (__s)->size; \ 314 __p += (__s)->size) 315 316 /* Determine object index from a given position */ 317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 318 { 319 return (kasan_reset_tag(p) - addr) / s->size; 320 } 321 322 static inline unsigned int order_objects(unsigned int order, unsigned int size) 323 { 324 return ((unsigned int)PAGE_SIZE << order) / size; 325 } 326 327 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 328 unsigned int size) 329 { 330 struct kmem_cache_order_objects x = { 331 (order << OO_SHIFT) + order_objects(order, size) 332 }; 333 334 return x; 335 } 336 337 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 338 { 339 return x.x >> OO_SHIFT; 340 } 341 342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 343 { 344 return x.x & OO_MASK; 345 } 346 347 /* 348 * Per slab locking using the pagelock 349 */ 350 static __always_inline void slab_lock(struct page *page) 351 { 352 VM_BUG_ON_PAGE(PageTail(page), page); 353 bit_spin_lock(PG_locked, &page->flags); 354 } 355 356 static __always_inline void slab_unlock(struct page *page) 357 { 358 VM_BUG_ON_PAGE(PageTail(page), page); 359 __bit_spin_unlock(PG_locked, &page->flags); 360 } 361 362 /* Interrupts must be disabled (for the fallback code to work right) */ 363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 364 void *freelist_old, unsigned long counters_old, 365 void *freelist_new, unsigned long counters_new, 366 const char *n) 367 { 368 VM_BUG_ON(!irqs_disabled()); 369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 371 if (s->flags & __CMPXCHG_DOUBLE) { 372 if (cmpxchg_double(&page->freelist, &page->counters, 373 freelist_old, counters_old, 374 freelist_new, counters_new)) 375 return true; 376 } else 377 #endif 378 { 379 slab_lock(page); 380 if (page->freelist == freelist_old && 381 page->counters == counters_old) { 382 page->freelist = freelist_new; 383 page->counters = counters_new; 384 slab_unlock(page); 385 return true; 386 } 387 slab_unlock(page); 388 } 389 390 cpu_relax(); 391 stat(s, CMPXCHG_DOUBLE_FAIL); 392 393 #ifdef SLUB_DEBUG_CMPXCHG 394 pr_info("%s %s: cmpxchg double redo ", n, s->name); 395 #endif 396 397 return false; 398 } 399 400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 401 void *freelist_old, unsigned long counters_old, 402 void *freelist_new, unsigned long counters_new, 403 const char *n) 404 { 405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 407 if (s->flags & __CMPXCHG_DOUBLE) { 408 if (cmpxchg_double(&page->freelist, &page->counters, 409 freelist_old, counters_old, 410 freelist_new, counters_new)) 411 return true; 412 } else 413 #endif 414 { 415 unsigned long flags; 416 417 local_irq_save(flags); 418 slab_lock(page); 419 if (page->freelist == freelist_old && 420 page->counters == counters_old) { 421 page->freelist = freelist_new; 422 page->counters = counters_new; 423 slab_unlock(page); 424 local_irq_restore(flags); 425 return true; 426 } 427 slab_unlock(page); 428 local_irq_restore(flags); 429 } 430 431 cpu_relax(); 432 stat(s, CMPXCHG_DOUBLE_FAIL); 433 434 #ifdef SLUB_DEBUG_CMPXCHG 435 pr_info("%s %s: cmpxchg double redo ", n, s->name); 436 #endif 437 438 return false; 439 } 440 441 #ifdef CONFIG_SLUB_DEBUG 442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 443 static DEFINE_SPINLOCK(object_map_lock); 444 445 /* 446 * Determine a map of object in use on a page. 447 * 448 * Node listlock must be held to guarantee that the page does 449 * not vanish from under us. 450 */ 451 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 452 __acquires(&object_map_lock) 453 { 454 void *p; 455 void *addr = page_address(page); 456 457 VM_BUG_ON(!irqs_disabled()); 458 459 spin_lock(&object_map_lock); 460 461 bitmap_zero(object_map, page->objects); 462 463 for (p = page->freelist; p; p = get_freepointer(s, p)) 464 set_bit(slab_index(p, s, addr), object_map); 465 466 return object_map; 467 } 468 469 static void put_map(unsigned long *map) __releases(&object_map_lock) 470 { 471 VM_BUG_ON(map != object_map); 472 lockdep_assert_held(&object_map_lock); 473 474 spin_unlock(&object_map_lock); 475 } 476 477 static inline unsigned int size_from_object(struct kmem_cache *s) 478 { 479 if (s->flags & SLAB_RED_ZONE) 480 return s->size - s->red_left_pad; 481 482 return s->size; 483 } 484 485 static inline void *restore_red_left(struct kmem_cache *s, void *p) 486 { 487 if (s->flags & SLAB_RED_ZONE) 488 p -= s->red_left_pad; 489 490 return p; 491 } 492 493 /* 494 * Debug settings: 495 */ 496 #if defined(CONFIG_SLUB_DEBUG_ON) 497 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 498 #else 499 static slab_flags_t slub_debug; 500 #endif 501 502 static char *slub_debug_slabs; 503 static int disable_higher_order_debug; 504 505 /* 506 * slub is about to manipulate internal object metadata. This memory lies 507 * outside the range of the allocated object, so accessing it would normally 508 * be reported by kasan as a bounds error. metadata_access_enable() is used 509 * to tell kasan that these accesses are OK. 510 */ 511 static inline void metadata_access_enable(void) 512 { 513 kasan_disable_current(); 514 } 515 516 static inline void metadata_access_disable(void) 517 { 518 kasan_enable_current(); 519 } 520 521 /* 522 * Object debugging 523 */ 524 525 /* Verify that a pointer has an address that is valid within a slab page */ 526 static inline int check_valid_pointer(struct kmem_cache *s, 527 struct page *page, void *object) 528 { 529 void *base; 530 531 if (!object) 532 return 1; 533 534 base = page_address(page); 535 object = kasan_reset_tag(object); 536 object = restore_red_left(s, object); 537 if (object < base || object >= base + page->objects * s->size || 538 (object - base) % s->size) { 539 return 0; 540 } 541 542 return 1; 543 } 544 545 static void print_section(char *level, char *text, u8 *addr, 546 unsigned int length) 547 { 548 metadata_access_enable(); 549 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 550 length, 1); 551 metadata_access_disable(); 552 } 553 554 /* 555 * See comment in calculate_sizes(). 556 */ 557 static inline bool freeptr_outside_object(struct kmem_cache *s) 558 { 559 return s->offset >= s->inuse; 560 } 561 562 /* 563 * Return offset of the end of info block which is inuse + free pointer if 564 * not overlapping with object. 565 */ 566 static inline unsigned int get_info_end(struct kmem_cache *s) 567 { 568 if (freeptr_outside_object(s)) 569 return s->inuse + sizeof(void *); 570 else 571 return s->inuse; 572 } 573 574 static struct track *get_track(struct kmem_cache *s, void *object, 575 enum track_item alloc) 576 { 577 struct track *p; 578 579 p = object + get_info_end(s); 580 581 return p + alloc; 582 } 583 584 static void set_track(struct kmem_cache *s, void *object, 585 enum track_item alloc, unsigned long addr) 586 { 587 struct track *p = get_track(s, object, alloc); 588 589 if (addr) { 590 #ifdef CONFIG_STACKTRACE 591 unsigned int nr_entries; 592 593 metadata_access_enable(); 594 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 595 metadata_access_disable(); 596 597 if (nr_entries < TRACK_ADDRS_COUNT) 598 p->addrs[nr_entries] = 0; 599 #endif 600 p->addr = addr; 601 p->cpu = smp_processor_id(); 602 p->pid = current->pid; 603 p->when = jiffies; 604 } else { 605 memset(p, 0, sizeof(struct track)); 606 } 607 } 608 609 static void init_tracking(struct kmem_cache *s, void *object) 610 { 611 if (!(s->flags & SLAB_STORE_USER)) 612 return; 613 614 set_track(s, object, TRACK_FREE, 0UL); 615 set_track(s, object, TRACK_ALLOC, 0UL); 616 } 617 618 static void print_track(const char *s, struct track *t, unsigned long pr_time) 619 { 620 if (!t->addr) 621 return; 622 623 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 624 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 625 #ifdef CONFIG_STACKTRACE 626 { 627 int i; 628 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 629 if (t->addrs[i]) 630 pr_err("\t%pS\n", (void *)t->addrs[i]); 631 else 632 break; 633 } 634 #endif 635 } 636 637 static void print_tracking(struct kmem_cache *s, void *object) 638 { 639 unsigned long pr_time = jiffies; 640 if (!(s->flags & SLAB_STORE_USER)) 641 return; 642 643 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 644 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 645 } 646 647 static void print_page_info(struct page *page) 648 { 649 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 650 page, page->objects, page->inuse, page->freelist, page->flags); 651 652 } 653 654 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 655 { 656 struct va_format vaf; 657 va_list args; 658 659 va_start(args, fmt); 660 vaf.fmt = fmt; 661 vaf.va = &args; 662 pr_err("=============================================================================\n"); 663 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 664 pr_err("-----------------------------------------------------------------------------\n\n"); 665 666 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 667 va_end(args); 668 } 669 670 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 671 { 672 struct va_format vaf; 673 va_list args; 674 675 va_start(args, fmt); 676 vaf.fmt = fmt; 677 vaf.va = &args; 678 pr_err("FIX %s: %pV\n", s->name, &vaf); 679 va_end(args); 680 } 681 682 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 683 { 684 unsigned int off; /* Offset of last byte */ 685 u8 *addr = page_address(page); 686 687 print_tracking(s, p); 688 689 print_page_info(page); 690 691 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 692 p, p - addr, get_freepointer(s, p)); 693 694 if (s->flags & SLAB_RED_ZONE) 695 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 696 s->red_left_pad); 697 else if (p > addr + 16) 698 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 699 700 print_section(KERN_ERR, "Object ", p, 701 min_t(unsigned int, s->object_size, PAGE_SIZE)); 702 if (s->flags & SLAB_RED_ZONE) 703 print_section(KERN_ERR, "Redzone ", p + s->object_size, 704 s->inuse - s->object_size); 705 706 off = get_info_end(s); 707 708 if (s->flags & SLAB_STORE_USER) 709 off += 2 * sizeof(struct track); 710 711 off += kasan_metadata_size(s); 712 713 if (off != size_from_object(s)) 714 /* Beginning of the filler is the free pointer */ 715 print_section(KERN_ERR, "Padding ", p + off, 716 size_from_object(s) - off); 717 718 dump_stack(); 719 } 720 721 void object_err(struct kmem_cache *s, struct page *page, 722 u8 *object, char *reason) 723 { 724 slab_bug(s, "%s", reason); 725 print_trailer(s, page, object); 726 } 727 728 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 729 const char *fmt, ...) 730 { 731 va_list args; 732 char buf[100]; 733 734 va_start(args, fmt); 735 vsnprintf(buf, sizeof(buf), fmt, args); 736 va_end(args); 737 slab_bug(s, "%s", buf); 738 print_page_info(page); 739 dump_stack(); 740 } 741 742 static void init_object(struct kmem_cache *s, void *object, u8 val) 743 { 744 u8 *p = object; 745 746 if (s->flags & SLAB_RED_ZONE) 747 memset(p - s->red_left_pad, val, s->red_left_pad); 748 749 if (s->flags & __OBJECT_POISON) { 750 memset(p, POISON_FREE, s->object_size - 1); 751 p[s->object_size - 1] = POISON_END; 752 } 753 754 if (s->flags & SLAB_RED_ZONE) 755 memset(p + s->object_size, val, s->inuse - s->object_size); 756 } 757 758 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 759 void *from, void *to) 760 { 761 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 762 memset(from, data, to - from); 763 } 764 765 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 766 u8 *object, char *what, 767 u8 *start, unsigned int value, unsigned int bytes) 768 { 769 u8 *fault; 770 u8 *end; 771 u8 *addr = page_address(page); 772 773 metadata_access_enable(); 774 fault = memchr_inv(start, value, bytes); 775 metadata_access_disable(); 776 if (!fault) 777 return 1; 778 779 end = start + bytes; 780 while (end > fault && end[-1] == value) 781 end--; 782 783 slab_bug(s, "%s overwritten", what); 784 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 785 fault, end - 1, fault - addr, 786 fault[0], value); 787 print_trailer(s, page, object); 788 789 restore_bytes(s, what, value, fault, end); 790 return 0; 791 } 792 793 /* 794 * Object layout: 795 * 796 * object address 797 * Bytes of the object to be managed. 798 * If the freepointer may overlay the object then the free 799 * pointer is at the middle of the object. 800 * 801 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 802 * 0xa5 (POISON_END) 803 * 804 * object + s->object_size 805 * Padding to reach word boundary. This is also used for Redzoning. 806 * Padding is extended by another word if Redzoning is enabled and 807 * object_size == inuse. 808 * 809 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 810 * 0xcc (RED_ACTIVE) for objects in use. 811 * 812 * object + s->inuse 813 * Meta data starts here. 814 * 815 * A. Free pointer (if we cannot overwrite object on free) 816 * B. Tracking data for SLAB_STORE_USER 817 * C. Padding to reach required alignment boundary or at mininum 818 * one word if debugging is on to be able to detect writes 819 * before the word boundary. 820 * 821 * Padding is done using 0x5a (POISON_INUSE) 822 * 823 * object + s->size 824 * Nothing is used beyond s->size. 825 * 826 * If slabcaches are merged then the object_size and inuse boundaries are mostly 827 * ignored. And therefore no slab options that rely on these boundaries 828 * may be used with merged slabcaches. 829 */ 830 831 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 832 { 833 unsigned long off = get_info_end(s); /* The end of info */ 834 835 if (s->flags & SLAB_STORE_USER) 836 /* We also have user information there */ 837 off += 2 * sizeof(struct track); 838 839 off += kasan_metadata_size(s); 840 841 if (size_from_object(s) == off) 842 return 1; 843 844 return check_bytes_and_report(s, page, p, "Object padding", 845 p + off, POISON_INUSE, size_from_object(s) - off); 846 } 847 848 /* Check the pad bytes at the end of a slab page */ 849 static int slab_pad_check(struct kmem_cache *s, struct page *page) 850 { 851 u8 *start; 852 u8 *fault; 853 u8 *end; 854 u8 *pad; 855 int length; 856 int remainder; 857 858 if (!(s->flags & SLAB_POISON)) 859 return 1; 860 861 start = page_address(page); 862 length = page_size(page); 863 end = start + length; 864 remainder = length % s->size; 865 if (!remainder) 866 return 1; 867 868 pad = end - remainder; 869 metadata_access_enable(); 870 fault = memchr_inv(pad, POISON_INUSE, remainder); 871 metadata_access_disable(); 872 if (!fault) 873 return 1; 874 while (end > fault && end[-1] == POISON_INUSE) 875 end--; 876 877 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 878 fault, end - 1, fault - start); 879 print_section(KERN_ERR, "Padding ", pad, remainder); 880 881 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 882 return 0; 883 } 884 885 static int check_object(struct kmem_cache *s, struct page *page, 886 void *object, u8 val) 887 { 888 u8 *p = object; 889 u8 *endobject = object + s->object_size; 890 891 if (s->flags & SLAB_RED_ZONE) { 892 if (!check_bytes_and_report(s, page, object, "Redzone", 893 object - s->red_left_pad, val, s->red_left_pad)) 894 return 0; 895 896 if (!check_bytes_and_report(s, page, object, "Redzone", 897 endobject, val, s->inuse - s->object_size)) 898 return 0; 899 } else { 900 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 901 check_bytes_and_report(s, page, p, "Alignment padding", 902 endobject, POISON_INUSE, 903 s->inuse - s->object_size); 904 } 905 } 906 907 if (s->flags & SLAB_POISON) { 908 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 909 (!check_bytes_and_report(s, page, p, "Poison", p, 910 POISON_FREE, s->object_size - 1) || 911 !check_bytes_and_report(s, page, p, "Poison", 912 p + s->object_size - 1, POISON_END, 1))) 913 return 0; 914 /* 915 * check_pad_bytes cleans up on its own. 916 */ 917 check_pad_bytes(s, page, p); 918 } 919 920 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 921 /* 922 * Object and freepointer overlap. Cannot check 923 * freepointer while object is allocated. 924 */ 925 return 1; 926 927 /* Check free pointer validity */ 928 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 929 object_err(s, page, p, "Freepointer corrupt"); 930 /* 931 * No choice but to zap it and thus lose the remainder 932 * of the free objects in this slab. May cause 933 * another error because the object count is now wrong. 934 */ 935 set_freepointer(s, p, NULL); 936 return 0; 937 } 938 return 1; 939 } 940 941 static int check_slab(struct kmem_cache *s, struct page *page) 942 { 943 int maxobj; 944 945 VM_BUG_ON(!irqs_disabled()); 946 947 if (!PageSlab(page)) { 948 slab_err(s, page, "Not a valid slab page"); 949 return 0; 950 } 951 952 maxobj = order_objects(compound_order(page), s->size); 953 if (page->objects > maxobj) { 954 slab_err(s, page, "objects %u > max %u", 955 page->objects, maxobj); 956 return 0; 957 } 958 if (page->inuse > page->objects) { 959 slab_err(s, page, "inuse %u > max %u", 960 page->inuse, page->objects); 961 return 0; 962 } 963 /* Slab_pad_check fixes things up after itself */ 964 slab_pad_check(s, page); 965 return 1; 966 } 967 968 /* 969 * Determine if a certain object on a page is on the freelist. Must hold the 970 * slab lock to guarantee that the chains are in a consistent state. 971 */ 972 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 973 { 974 int nr = 0; 975 void *fp; 976 void *object = NULL; 977 int max_objects; 978 979 fp = page->freelist; 980 while (fp && nr <= page->objects) { 981 if (fp == search) 982 return 1; 983 if (!check_valid_pointer(s, page, fp)) { 984 if (object) { 985 object_err(s, page, object, 986 "Freechain corrupt"); 987 set_freepointer(s, object, NULL); 988 } else { 989 slab_err(s, page, "Freepointer corrupt"); 990 page->freelist = NULL; 991 page->inuse = page->objects; 992 slab_fix(s, "Freelist cleared"); 993 return 0; 994 } 995 break; 996 } 997 object = fp; 998 fp = get_freepointer(s, object); 999 nr++; 1000 } 1001 1002 max_objects = order_objects(compound_order(page), s->size); 1003 if (max_objects > MAX_OBJS_PER_PAGE) 1004 max_objects = MAX_OBJS_PER_PAGE; 1005 1006 if (page->objects != max_objects) { 1007 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 1008 page->objects, max_objects); 1009 page->objects = max_objects; 1010 slab_fix(s, "Number of objects adjusted."); 1011 } 1012 if (page->inuse != page->objects - nr) { 1013 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1014 page->inuse, page->objects - nr); 1015 page->inuse = page->objects - nr; 1016 slab_fix(s, "Object count adjusted."); 1017 } 1018 return search == NULL; 1019 } 1020 1021 static void trace(struct kmem_cache *s, struct page *page, void *object, 1022 int alloc) 1023 { 1024 if (s->flags & SLAB_TRACE) { 1025 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1026 s->name, 1027 alloc ? "alloc" : "free", 1028 object, page->inuse, 1029 page->freelist); 1030 1031 if (!alloc) 1032 print_section(KERN_INFO, "Object ", (void *)object, 1033 s->object_size); 1034 1035 dump_stack(); 1036 } 1037 } 1038 1039 /* 1040 * Tracking of fully allocated slabs for debugging purposes. 1041 */ 1042 static void add_full(struct kmem_cache *s, 1043 struct kmem_cache_node *n, struct page *page) 1044 { 1045 if (!(s->flags & SLAB_STORE_USER)) 1046 return; 1047 1048 lockdep_assert_held(&n->list_lock); 1049 list_add(&page->slab_list, &n->full); 1050 } 1051 1052 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1053 { 1054 if (!(s->flags & SLAB_STORE_USER)) 1055 return; 1056 1057 lockdep_assert_held(&n->list_lock); 1058 list_del(&page->slab_list); 1059 } 1060 1061 /* Tracking of the number of slabs for debugging purposes */ 1062 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1063 { 1064 struct kmem_cache_node *n = get_node(s, node); 1065 1066 return atomic_long_read(&n->nr_slabs); 1067 } 1068 1069 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1070 { 1071 return atomic_long_read(&n->nr_slabs); 1072 } 1073 1074 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1075 { 1076 struct kmem_cache_node *n = get_node(s, node); 1077 1078 /* 1079 * May be called early in order to allocate a slab for the 1080 * kmem_cache_node structure. Solve the chicken-egg 1081 * dilemma by deferring the increment of the count during 1082 * bootstrap (see early_kmem_cache_node_alloc). 1083 */ 1084 if (likely(n)) { 1085 atomic_long_inc(&n->nr_slabs); 1086 atomic_long_add(objects, &n->total_objects); 1087 } 1088 } 1089 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1090 { 1091 struct kmem_cache_node *n = get_node(s, node); 1092 1093 atomic_long_dec(&n->nr_slabs); 1094 atomic_long_sub(objects, &n->total_objects); 1095 } 1096 1097 /* Object debug checks for alloc/free paths */ 1098 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1099 void *object) 1100 { 1101 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1102 return; 1103 1104 init_object(s, object, SLUB_RED_INACTIVE); 1105 init_tracking(s, object); 1106 } 1107 1108 static 1109 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1110 { 1111 if (!(s->flags & SLAB_POISON)) 1112 return; 1113 1114 metadata_access_enable(); 1115 memset(addr, POISON_INUSE, page_size(page)); 1116 metadata_access_disable(); 1117 } 1118 1119 static inline int alloc_consistency_checks(struct kmem_cache *s, 1120 struct page *page, void *object) 1121 { 1122 if (!check_slab(s, page)) 1123 return 0; 1124 1125 if (!check_valid_pointer(s, page, object)) { 1126 object_err(s, page, object, "Freelist Pointer check fails"); 1127 return 0; 1128 } 1129 1130 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1131 return 0; 1132 1133 return 1; 1134 } 1135 1136 static noinline int alloc_debug_processing(struct kmem_cache *s, 1137 struct page *page, 1138 void *object, unsigned long addr) 1139 { 1140 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1141 if (!alloc_consistency_checks(s, page, object)) 1142 goto bad; 1143 } 1144 1145 /* Success perform special debug activities for allocs */ 1146 if (s->flags & SLAB_STORE_USER) 1147 set_track(s, object, TRACK_ALLOC, addr); 1148 trace(s, page, object, 1); 1149 init_object(s, object, SLUB_RED_ACTIVE); 1150 return 1; 1151 1152 bad: 1153 if (PageSlab(page)) { 1154 /* 1155 * If this is a slab page then lets do the best we can 1156 * to avoid issues in the future. Marking all objects 1157 * as used avoids touching the remaining objects. 1158 */ 1159 slab_fix(s, "Marking all objects used"); 1160 page->inuse = page->objects; 1161 page->freelist = NULL; 1162 } 1163 return 0; 1164 } 1165 1166 static inline int free_consistency_checks(struct kmem_cache *s, 1167 struct page *page, void *object, unsigned long addr) 1168 { 1169 if (!check_valid_pointer(s, page, object)) { 1170 slab_err(s, page, "Invalid object pointer 0x%p", object); 1171 return 0; 1172 } 1173 1174 if (on_freelist(s, page, object)) { 1175 object_err(s, page, object, "Object already free"); 1176 return 0; 1177 } 1178 1179 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1180 return 0; 1181 1182 if (unlikely(s != page->slab_cache)) { 1183 if (!PageSlab(page)) { 1184 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1185 object); 1186 } else if (!page->slab_cache) { 1187 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1188 object); 1189 dump_stack(); 1190 } else 1191 object_err(s, page, object, 1192 "page slab pointer corrupt."); 1193 return 0; 1194 } 1195 return 1; 1196 } 1197 1198 /* Supports checking bulk free of a constructed freelist */ 1199 static noinline int free_debug_processing( 1200 struct kmem_cache *s, struct page *page, 1201 void *head, void *tail, int bulk_cnt, 1202 unsigned long addr) 1203 { 1204 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1205 void *object = head; 1206 int cnt = 0; 1207 unsigned long uninitialized_var(flags); 1208 int ret = 0; 1209 1210 spin_lock_irqsave(&n->list_lock, flags); 1211 slab_lock(page); 1212 1213 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1214 if (!check_slab(s, page)) 1215 goto out; 1216 } 1217 1218 next_object: 1219 cnt++; 1220 1221 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1222 if (!free_consistency_checks(s, page, object, addr)) 1223 goto out; 1224 } 1225 1226 if (s->flags & SLAB_STORE_USER) 1227 set_track(s, object, TRACK_FREE, addr); 1228 trace(s, page, object, 0); 1229 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1230 init_object(s, object, SLUB_RED_INACTIVE); 1231 1232 /* Reached end of constructed freelist yet? */ 1233 if (object != tail) { 1234 object = get_freepointer(s, object); 1235 goto next_object; 1236 } 1237 ret = 1; 1238 1239 out: 1240 if (cnt != bulk_cnt) 1241 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1242 bulk_cnt, cnt); 1243 1244 slab_unlock(page); 1245 spin_unlock_irqrestore(&n->list_lock, flags); 1246 if (!ret) 1247 slab_fix(s, "Object at 0x%p not freed", object); 1248 return ret; 1249 } 1250 1251 static int __init setup_slub_debug(char *str) 1252 { 1253 slub_debug = DEBUG_DEFAULT_FLAGS; 1254 if (*str++ != '=' || !*str) 1255 /* 1256 * No options specified. Switch on full debugging. 1257 */ 1258 goto out; 1259 1260 if (*str == ',') 1261 /* 1262 * No options but restriction on slabs. This means full 1263 * debugging for slabs matching a pattern. 1264 */ 1265 goto check_slabs; 1266 1267 slub_debug = 0; 1268 if (*str == '-') 1269 /* 1270 * Switch off all debugging measures. 1271 */ 1272 goto out; 1273 1274 /* 1275 * Determine which debug features should be switched on 1276 */ 1277 for (; *str && *str != ','; str++) { 1278 switch (tolower(*str)) { 1279 case 'f': 1280 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1281 break; 1282 case 'z': 1283 slub_debug |= SLAB_RED_ZONE; 1284 break; 1285 case 'p': 1286 slub_debug |= SLAB_POISON; 1287 break; 1288 case 'u': 1289 slub_debug |= SLAB_STORE_USER; 1290 break; 1291 case 't': 1292 slub_debug |= SLAB_TRACE; 1293 break; 1294 case 'a': 1295 slub_debug |= SLAB_FAILSLAB; 1296 break; 1297 case 'o': 1298 /* 1299 * Avoid enabling debugging on caches if its minimum 1300 * order would increase as a result. 1301 */ 1302 disable_higher_order_debug = 1; 1303 break; 1304 default: 1305 pr_err("slub_debug option '%c' unknown. skipped\n", 1306 *str); 1307 } 1308 } 1309 1310 check_slabs: 1311 if (*str == ',') 1312 slub_debug_slabs = str + 1; 1313 out: 1314 if ((static_branch_unlikely(&init_on_alloc) || 1315 static_branch_unlikely(&init_on_free)) && 1316 (slub_debug & SLAB_POISON)) 1317 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1318 return 1; 1319 } 1320 1321 __setup("slub_debug", setup_slub_debug); 1322 1323 /* 1324 * kmem_cache_flags - apply debugging options to the cache 1325 * @object_size: the size of an object without meta data 1326 * @flags: flags to set 1327 * @name: name of the cache 1328 * @ctor: constructor function 1329 * 1330 * Debug option(s) are applied to @flags. In addition to the debug 1331 * option(s), if a slab name (or multiple) is specified i.e. 1332 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1333 * then only the select slabs will receive the debug option(s). 1334 */ 1335 slab_flags_t kmem_cache_flags(unsigned int object_size, 1336 slab_flags_t flags, const char *name, 1337 void (*ctor)(void *)) 1338 { 1339 char *iter; 1340 size_t len; 1341 1342 /* If slub_debug = 0, it folds into the if conditional. */ 1343 if (!slub_debug_slabs) 1344 return flags | slub_debug; 1345 1346 len = strlen(name); 1347 iter = slub_debug_slabs; 1348 while (*iter) { 1349 char *end, *glob; 1350 size_t cmplen; 1351 1352 end = strchrnul(iter, ','); 1353 1354 glob = strnchr(iter, end - iter, '*'); 1355 if (glob) 1356 cmplen = glob - iter; 1357 else 1358 cmplen = max_t(size_t, len, (end - iter)); 1359 1360 if (!strncmp(name, iter, cmplen)) { 1361 flags |= slub_debug; 1362 break; 1363 } 1364 1365 if (!*end) 1366 break; 1367 iter = end + 1; 1368 } 1369 1370 return flags; 1371 } 1372 #else /* !CONFIG_SLUB_DEBUG */ 1373 static inline void setup_object_debug(struct kmem_cache *s, 1374 struct page *page, void *object) {} 1375 static inline 1376 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1377 1378 static inline int alloc_debug_processing(struct kmem_cache *s, 1379 struct page *page, void *object, unsigned long addr) { return 0; } 1380 1381 static inline int free_debug_processing( 1382 struct kmem_cache *s, struct page *page, 1383 void *head, void *tail, int bulk_cnt, 1384 unsigned long addr) { return 0; } 1385 1386 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1387 { return 1; } 1388 static inline int check_object(struct kmem_cache *s, struct page *page, 1389 void *object, u8 val) { return 1; } 1390 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1391 struct page *page) {} 1392 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1393 struct page *page) {} 1394 slab_flags_t kmem_cache_flags(unsigned int object_size, 1395 slab_flags_t flags, const char *name, 1396 void (*ctor)(void *)) 1397 { 1398 return flags; 1399 } 1400 #define slub_debug 0 1401 1402 #define disable_higher_order_debug 0 1403 1404 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1405 { return 0; } 1406 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1407 { return 0; } 1408 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1409 int objects) {} 1410 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1411 int objects) {} 1412 1413 #endif /* CONFIG_SLUB_DEBUG */ 1414 1415 /* 1416 * Hooks for other subsystems that check memory allocations. In a typical 1417 * production configuration these hooks all should produce no code at all. 1418 */ 1419 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1420 { 1421 ptr = kasan_kmalloc_large(ptr, size, flags); 1422 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1423 kmemleak_alloc(ptr, size, 1, flags); 1424 return ptr; 1425 } 1426 1427 static __always_inline void kfree_hook(void *x) 1428 { 1429 kmemleak_free(x); 1430 kasan_kfree_large(x, _RET_IP_); 1431 } 1432 1433 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1434 { 1435 kmemleak_free_recursive(x, s->flags); 1436 1437 /* 1438 * Trouble is that we may no longer disable interrupts in the fast path 1439 * So in order to make the debug calls that expect irqs to be 1440 * disabled we need to disable interrupts temporarily. 1441 */ 1442 #ifdef CONFIG_LOCKDEP 1443 { 1444 unsigned long flags; 1445 1446 local_irq_save(flags); 1447 debug_check_no_locks_freed(x, s->object_size); 1448 local_irq_restore(flags); 1449 } 1450 #endif 1451 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1452 debug_check_no_obj_freed(x, s->object_size); 1453 1454 /* KASAN might put x into memory quarantine, delaying its reuse */ 1455 return kasan_slab_free(s, x, _RET_IP_); 1456 } 1457 1458 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1459 void **head, void **tail) 1460 { 1461 1462 void *object; 1463 void *next = *head; 1464 void *old_tail = *tail ? *tail : *head; 1465 int rsize; 1466 1467 /* Head and tail of the reconstructed freelist */ 1468 *head = NULL; 1469 *tail = NULL; 1470 1471 do { 1472 object = next; 1473 next = get_freepointer(s, object); 1474 1475 if (slab_want_init_on_free(s)) { 1476 /* 1477 * Clear the object and the metadata, but don't touch 1478 * the redzone. 1479 */ 1480 memset(object, 0, s->object_size); 1481 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1482 : 0; 1483 memset((char *)object + s->inuse, 0, 1484 s->size - s->inuse - rsize); 1485 1486 } 1487 /* If object's reuse doesn't have to be delayed */ 1488 if (!slab_free_hook(s, object)) { 1489 /* Move object to the new freelist */ 1490 set_freepointer(s, object, *head); 1491 *head = object; 1492 if (!*tail) 1493 *tail = object; 1494 } 1495 } while (object != old_tail); 1496 1497 if (*head == *tail) 1498 *tail = NULL; 1499 1500 return *head != NULL; 1501 } 1502 1503 static void *setup_object(struct kmem_cache *s, struct page *page, 1504 void *object) 1505 { 1506 setup_object_debug(s, page, object); 1507 object = kasan_init_slab_obj(s, object); 1508 if (unlikely(s->ctor)) { 1509 kasan_unpoison_object_data(s, object); 1510 s->ctor(object); 1511 kasan_poison_object_data(s, object); 1512 } 1513 return object; 1514 } 1515 1516 /* 1517 * Slab allocation and freeing 1518 */ 1519 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1520 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1521 { 1522 struct page *page; 1523 unsigned int order = oo_order(oo); 1524 1525 if (node == NUMA_NO_NODE) 1526 page = alloc_pages(flags, order); 1527 else 1528 page = __alloc_pages_node(node, flags, order); 1529 1530 if (page && charge_slab_page(page, flags, order, s)) { 1531 __free_pages(page, order); 1532 page = NULL; 1533 } 1534 1535 return page; 1536 } 1537 1538 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1539 /* Pre-initialize the random sequence cache */ 1540 static int init_cache_random_seq(struct kmem_cache *s) 1541 { 1542 unsigned int count = oo_objects(s->oo); 1543 int err; 1544 1545 /* Bailout if already initialised */ 1546 if (s->random_seq) 1547 return 0; 1548 1549 err = cache_random_seq_create(s, count, GFP_KERNEL); 1550 if (err) { 1551 pr_err("SLUB: Unable to initialize free list for %s\n", 1552 s->name); 1553 return err; 1554 } 1555 1556 /* Transform to an offset on the set of pages */ 1557 if (s->random_seq) { 1558 unsigned int i; 1559 1560 for (i = 0; i < count; i++) 1561 s->random_seq[i] *= s->size; 1562 } 1563 return 0; 1564 } 1565 1566 /* Initialize each random sequence freelist per cache */ 1567 static void __init init_freelist_randomization(void) 1568 { 1569 struct kmem_cache *s; 1570 1571 mutex_lock(&slab_mutex); 1572 1573 list_for_each_entry(s, &slab_caches, list) 1574 init_cache_random_seq(s); 1575 1576 mutex_unlock(&slab_mutex); 1577 } 1578 1579 /* Get the next entry on the pre-computed freelist randomized */ 1580 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1581 unsigned long *pos, void *start, 1582 unsigned long page_limit, 1583 unsigned long freelist_count) 1584 { 1585 unsigned int idx; 1586 1587 /* 1588 * If the target page allocation failed, the number of objects on the 1589 * page might be smaller than the usual size defined by the cache. 1590 */ 1591 do { 1592 idx = s->random_seq[*pos]; 1593 *pos += 1; 1594 if (*pos >= freelist_count) 1595 *pos = 0; 1596 } while (unlikely(idx >= page_limit)); 1597 1598 return (char *)start + idx; 1599 } 1600 1601 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1602 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1603 { 1604 void *start; 1605 void *cur; 1606 void *next; 1607 unsigned long idx, pos, page_limit, freelist_count; 1608 1609 if (page->objects < 2 || !s->random_seq) 1610 return false; 1611 1612 freelist_count = oo_objects(s->oo); 1613 pos = get_random_int() % freelist_count; 1614 1615 page_limit = page->objects * s->size; 1616 start = fixup_red_left(s, page_address(page)); 1617 1618 /* First entry is used as the base of the freelist */ 1619 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1620 freelist_count); 1621 cur = setup_object(s, page, cur); 1622 page->freelist = cur; 1623 1624 for (idx = 1; idx < page->objects; idx++) { 1625 next = next_freelist_entry(s, page, &pos, start, page_limit, 1626 freelist_count); 1627 next = setup_object(s, page, next); 1628 set_freepointer(s, cur, next); 1629 cur = next; 1630 } 1631 set_freepointer(s, cur, NULL); 1632 1633 return true; 1634 } 1635 #else 1636 static inline int init_cache_random_seq(struct kmem_cache *s) 1637 { 1638 return 0; 1639 } 1640 static inline void init_freelist_randomization(void) { } 1641 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1642 { 1643 return false; 1644 } 1645 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1646 1647 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1648 { 1649 struct page *page; 1650 struct kmem_cache_order_objects oo = s->oo; 1651 gfp_t alloc_gfp; 1652 void *start, *p, *next; 1653 int idx; 1654 bool shuffle; 1655 1656 flags &= gfp_allowed_mask; 1657 1658 if (gfpflags_allow_blocking(flags)) 1659 local_irq_enable(); 1660 1661 flags |= s->allocflags; 1662 1663 /* 1664 * Let the initial higher-order allocation fail under memory pressure 1665 * so we fall-back to the minimum order allocation. 1666 */ 1667 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1668 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1669 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1670 1671 page = alloc_slab_page(s, alloc_gfp, node, oo); 1672 if (unlikely(!page)) { 1673 oo = s->min; 1674 alloc_gfp = flags; 1675 /* 1676 * Allocation may have failed due to fragmentation. 1677 * Try a lower order alloc if possible 1678 */ 1679 page = alloc_slab_page(s, alloc_gfp, node, oo); 1680 if (unlikely(!page)) 1681 goto out; 1682 stat(s, ORDER_FALLBACK); 1683 } 1684 1685 page->objects = oo_objects(oo); 1686 1687 page->slab_cache = s; 1688 __SetPageSlab(page); 1689 if (page_is_pfmemalloc(page)) 1690 SetPageSlabPfmemalloc(page); 1691 1692 kasan_poison_slab(page); 1693 1694 start = page_address(page); 1695 1696 setup_page_debug(s, page, start); 1697 1698 shuffle = shuffle_freelist(s, page); 1699 1700 if (!shuffle) { 1701 start = fixup_red_left(s, start); 1702 start = setup_object(s, page, start); 1703 page->freelist = start; 1704 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1705 next = p + s->size; 1706 next = setup_object(s, page, next); 1707 set_freepointer(s, p, next); 1708 p = next; 1709 } 1710 set_freepointer(s, p, NULL); 1711 } 1712 1713 page->inuse = page->objects; 1714 page->frozen = 1; 1715 1716 out: 1717 if (gfpflags_allow_blocking(flags)) 1718 local_irq_disable(); 1719 if (!page) 1720 return NULL; 1721 1722 inc_slabs_node(s, page_to_nid(page), page->objects); 1723 1724 return page; 1725 } 1726 1727 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1728 { 1729 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1730 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1731 flags &= ~GFP_SLAB_BUG_MASK; 1732 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1733 invalid_mask, &invalid_mask, flags, &flags); 1734 dump_stack(); 1735 } 1736 1737 return allocate_slab(s, 1738 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1739 } 1740 1741 static void __free_slab(struct kmem_cache *s, struct page *page) 1742 { 1743 int order = compound_order(page); 1744 int pages = 1 << order; 1745 1746 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1747 void *p; 1748 1749 slab_pad_check(s, page); 1750 for_each_object(p, s, page_address(page), 1751 page->objects) 1752 check_object(s, page, p, SLUB_RED_INACTIVE); 1753 } 1754 1755 __ClearPageSlabPfmemalloc(page); 1756 __ClearPageSlab(page); 1757 1758 page->mapping = NULL; 1759 if (current->reclaim_state) 1760 current->reclaim_state->reclaimed_slab += pages; 1761 uncharge_slab_page(page, order, s); 1762 __free_pages(page, order); 1763 } 1764 1765 static void rcu_free_slab(struct rcu_head *h) 1766 { 1767 struct page *page = container_of(h, struct page, rcu_head); 1768 1769 __free_slab(page->slab_cache, page); 1770 } 1771 1772 static void free_slab(struct kmem_cache *s, struct page *page) 1773 { 1774 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1775 call_rcu(&page->rcu_head, rcu_free_slab); 1776 } else 1777 __free_slab(s, page); 1778 } 1779 1780 static void discard_slab(struct kmem_cache *s, struct page *page) 1781 { 1782 dec_slabs_node(s, page_to_nid(page), page->objects); 1783 free_slab(s, page); 1784 } 1785 1786 /* 1787 * Management of partially allocated slabs. 1788 */ 1789 static inline void 1790 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1791 { 1792 n->nr_partial++; 1793 if (tail == DEACTIVATE_TO_TAIL) 1794 list_add_tail(&page->slab_list, &n->partial); 1795 else 1796 list_add(&page->slab_list, &n->partial); 1797 } 1798 1799 static inline void add_partial(struct kmem_cache_node *n, 1800 struct page *page, int tail) 1801 { 1802 lockdep_assert_held(&n->list_lock); 1803 __add_partial(n, page, tail); 1804 } 1805 1806 static inline void remove_partial(struct kmem_cache_node *n, 1807 struct page *page) 1808 { 1809 lockdep_assert_held(&n->list_lock); 1810 list_del(&page->slab_list); 1811 n->nr_partial--; 1812 } 1813 1814 /* 1815 * Remove slab from the partial list, freeze it and 1816 * return the pointer to the freelist. 1817 * 1818 * Returns a list of objects or NULL if it fails. 1819 */ 1820 static inline void *acquire_slab(struct kmem_cache *s, 1821 struct kmem_cache_node *n, struct page *page, 1822 int mode, int *objects) 1823 { 1824 void *freelist; 1825 unsigned long counters; 1826 struct page new; 1827 1828 lockdep_assert_held(&n->list_lock); 1829 1830 /* 1831 * Zap the freelist and set the frozen bit. 1832 * The old freelist is the list of objects for the 1833 * per cpu allocation list. 1834 */ 1835 freelist = page->freelist; 1836 counters = page->counters; 1837 new.counters = counters; 1838 *objects = new.objects - new.inuse; 1839 if (mode) { 1840 new.inuse = page->objects; 1841 new.freelist = NULL; 1842 } else { 1843 new.freelist = freelist; 1844 } 1845 1846 VM_BUG_ON(new.frozen); 1847 new.frozen = 1; 1848 1849 if (!__cmpxchg_double_slab(s, page, 1850 freelist, counters, 1851 new.freelist, new.counters, 1852 "acquire_slab")) 1853 return NULL; 1854 1855 remove_partial(n, page); 1856 WARN_ON(!freelist); 1857 return freelist; 1858 } 1859 1860 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1861 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1862 1863 /* 1864 * Try to allocate a partial slab from a specific node. 1865 */ 1866 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1867 struct kmem_cache_cpu *c, gfp_t flags) 1868 { 1869 struct page *page, *page2; 1870 void *object = NULL; 1871 unsigned int available = 0; 1872 int objects; 1873 1874 /* 1875 * Racy check. If we mistakenly see no partial slabs then we 1876 * just allocate an empty slab. If we mistakenly try to get a 1877 * partial slab and there is none available then get_partials() 1878 * will return NULL. 1879 */ 1880 if (!n || !n->nr_partial) 1881 return NULL; 1882 1883 spin_lock(&n->list_lock); 1884 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1885 void *t; 1886 1887 if (!pfmemalloc_match(page, flags)) 1888 continue; 1889 1890 t = acquire_slab(s, n, page, object == NULL, &objects); 1891 if (!t) 1892 break; 1893 1894 available += objects; 1895 if (!object) { 1896 c->page = page; 1897 stat(s, ALLOC_FROM_PARTIAL); 1898 object = t; 1899 } else { 1900 put_cpu_partial(s, page, 0); 1901 stat(s, CPU_PARTIAL_NODE); 1902 } 1903 if (!kmem_cache_has_cpu_partial(s) 1904 || available > slub_cpu_partial(s) / 2) 1905 break; 1906 1907 } 1908 spin_unlock(&n->list_lock); 1909 return object; 1910 } 1911 1912 /* 1913 * Get a page from somewhere. Search in increasing NUMA distances. 1914 */ 1915 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1916 struct kmem_cache_cpu *c) 1917 { 1918 #ifdef CONFIG_NUMA 1919 struct zonelist *zonelist; 1920 struct zoneref *z; 1921 struct zone *zone; 1922 enum zone_type high_zoneidx = gfp_zone(flags); 1923 void *object; 1924 unsigned int cpuset_mems_cookie; 1925 1926 /* 1927 * The defrag ratio allows a configuration of the tradeoffs between 1928 * inter node defragmentation and node local allocations. A lower 1929 * defrag_ratio increases the tendency to do local allocations 1930 * instead of attempting to obtain partial slabs from other nodes. 1931 * 1932 * If the defrag_ratio is set to 0 then kmalloc() always 1933 * returns node local objects. If the ratio is higher then kmalloc() 1934 * may return off node objects because partial slabs are obtained 1935 * from other nodes and filled up. 1936 * 1937 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1938 * (which makes defrag_ratio = 1000) then every (well almost) 1939 * allocation will first attempt to defrag slab caches on other nodes. 1940 * This means scanning over all nodes to look for partial slabs which 1941 * may be expensive if we do it every time we are trying to find a slab 1942 * with available objects. 1943 */ 1944 if (!s->remote_node_defrag_ratio || 1945 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1946 return NULL; 1947 1948 do { 1949 cpuset_mems_cookie = read_mems_allowed_begin(); 1950 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1951 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1952 struct kmem_cache_node *n; 1953 1954 n = get_node(s, zone_to_nid(zone)); 1955 1956 if (n && cpuset_zone_allowed(zone, flags) && 1957 n->nr_partial > s->min_partial) { 1958 object = get_partial_node(s, n, c, flags); 1959 if (object) { 1960 /* 1961 * Don't check read_mems_allowed_retry() 1962 * here - if mems_allowed was updated in 1963 * parallel, that was a harmless race 1964 * between allocation and the cpuset 1965 * update 1966 */ 1967 return object; 1968 } 1969 } 1970 } 1971 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1972 #endif /* CONFIG_NUMA */ 1973 return NULL; 1974 } 1975 1976 /* 1977 * Get a partial page, lock it and return it. 1978 */ 1979 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1980 struct kmem_cache_cpu *c) 1981 { 1982 void *object; 1983 int searchnode = node; 1984 1985 if (node == NUMA_NO_NODE) 1986 searchnode = numa_mem_id(); 1987 1988 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1989 if (object || node != NUMA_NO_NODE) 1990 return object; 1991 1992 return get_any_partial(s, flags, c); 1993 } 1994 1995 #ifdef CONFIG_PREEMPTION 1996 /* 1997 * Calculate the next globally unique transaction for disambiguiation 1998 * during cmpxchg. The transactions start with the cpu number and are then 1999 * incremented by CONFIG_NR_CPUS. 2000 */ 2001 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2002 #else 2003 /* 2004 * No preemption supported therefore also no need to check for 2005 * different cpus. 2006 */ 2007 #define TID_STEP 1 2008 #endif 2009 2010 static inline unsigned long next_tid(unsigned long tid) 2011 { 2012 return tid + TID_STEP; 2013 } 2014 2015 #ifdef SLUB_DEBUG_CMPXCHG 2016 static inline unsigned int tid_to_cpu(unsigned long tid) 2017 { 2018 return tid % TID_STEP; 2019 } 2020 2021 static inline unsigned long tid_to_event(unsigned long tid) 2022 { 2023 return tid / TID_STEP; 2024 } 2025 #endif 2026 2027 static inline unsigned int init_tid(int cpu) 2028 { 2029 return cpu; 2030 } 2031 2032 static inline void note_cmpxchg_failure(const char *n, 2033 const struct kmem_cache *s, unsigned long tid) 2034 { 2035 #ifdef SLUB_DEBUG_CMPXCHG 2036 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2037 2038 pr_info("%s %s: cmpxchg redo ", n, s->name); 2039 2040 #ifdef CONFIG_PREEMPTION 2041 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2042 pr_warn("due to cpu change %d -> %d\n", 2043 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2044 else 2045 #endif 2046 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2047 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2048 tid_to_event(tid), tid_to_event(actual_tid)); 2049 else 2050 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2051 actual_tid, tid, next_tid(tid)); 2052 #endif 2053 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2054 } 2055 2056 static void init_kmem_cache_cpus(struct kmem_cache *s) 2057 { 2058 int cpu; 2059 2060 for_each_possible_cpu(cpu) 2061 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2062 } 2063 2064 /* 2065 * Remove the cpu slab 2066 */ 2067 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2068 void *freelist, struct kmem_cache_cpu *c) 2069 { 2070 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2071 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2072 int lock = 0; 2073 enum slab_modes l = M_NONE, m = M_NONE; 2074 void *nextfree; 2075 int tail = DEACTIVATE_TO_HEAD; 2076 struct page new; 2077 struct page old; 2078 2079 if (page->freelist) { 2080 stat(s, DEACTIVATE_REMOTE_FREES); 2081 tail = DEACTIVATE_TO_TAIL; 2082 } 2083 2084 /* 2085 * Stage one: Free all available per cpu objects back 2086 * to the page freelist while it is still frozen. Leave the 2087 * last one. 2088 * 2089 * There is no need to take the list->lock because the page 2090 * is still frozen. 2091 */ 2092 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2093 void *prior; 2094 unsigned long counters; 2095 2096 do { 2097 prior = page->freelist; 2098 counters = page->counters; 2099 set_freepointer(s, freelist, prior); 2100 new.counters = counters; 2101 new.inuse--; 2102 VM_BUG_ON(!new.frozen); 2103 2104 } while (!__cmpxchg_double_slab(s, page, 2105 prior, counters, 2106 freelist, new.counters, 2107 "drain percpu freelist")); 2108 2109 freelist = nextfree; 2110 } 2111 2112 /* 2113 * Stage two: Ensure that the page is unfrozen while the 2114 * list presence reflects the actual number of objects 2115 * during unfreeze. 2116 * 2117 * We setup the list membership and then perform a cmpxchg 2118 * with the count. If there is a mismatch then the page 2119 * is not unfrozen but the page is on the wrong list. 2120 * 2121 * Then we restart the process which may have to remove 2122 * the page from the list that we just put it on again 2123 * because the number of objects in the slab may have 2124 * changed. 2125 */ 2126 redo: 2127 2128 old.freelist = page->freelist; 2129 old.counters = page->counters; 2130 VM_BUG_ON(!old.frozen); 2131 2132 /* Determine target state of the slab */ 2133 new.counters = old.counters; 2134 if (freelist) { 2135 new.inuse--; 2136 set_freepointer(s, freelist, old.freelist); 2137 new.freelist = freelist; 2138 } else 2139 new.freelist = old.freelist; 2140 2141 new.frozen = 0; 2142 2143 if (!new.inuse && n->nr_partial >= s->min_partial) 2144 m = M_FREE; 2145 else if (new.freelist) { 2146 m = M_PARTIAL; 2147 if (!lock) { 2148 lock = 1; 2149 /* 2150 * Taking the spinlock removes the possibility 2151 * that acquire_slab() will see a slab page that 2152 * is frozen 2153 */ 2154 spin_lock(&n->list_lock); 2155 } 2156 } else { 2157 m = M_FULL; 2158 if (kmem_cache_debug(s) && !lock) { 2159 lock = 1; 2160 /* 2161 * This also ensures that the scanning of full 2162 * slabs from diagnostic functions will not see 2163 * any frozen slabs. 2164 */ 2165 spin_lock(&n->list_lock); 2166 } 2167 } 2168 2169 if (l != m) { 2170 if (l == M_PARTIAL) 2171 remove_partial(n, page); 2172 else if (l == M_FULL) 2173 remove_full(s, n, page); 2174 2175 if (m == M_PARTIAL) 2176 add_partial(n, page, tail); 2177 else if (m == M_FULL) 2178 add_full(s, n, page); 2179 } 2180 2181 l = m; 2182 if (!__cmpxchg_double_slab(s, page, 2183 old.freelist, old.counters, 2184 new.freelist, new.counters, 2185 "unfreezing slab")) 2186 goto redo; 2187 2188 if (lock) 2189 spin_unlock(&n->list_lock); 2190 2191 if (m == M_PARTIAL) 2192 stat(s, tail); 2193 else if (m == M_FULL) 2194 stat(s, DEACTIVATE_FULL); 2195 else if (m == M_FREE) { 2196 stat(s, DEACTIVATE_EMPTY); 2197 discard_slab(s, page); 2198 stat(s, FREE_SLAB); 2199 } 2200 2201 c->page = NULL; 2202 c->freelist = NULL; 2203 } 2204 2205 /* 2206 * Unfreeze all the cpu partial slabs. 2207 * 2208 * This function must be called with interrupts disabled 2209 * for the cpu using c (or some other guarantee must be there 2210 * to guarantee no concurrent accesses). 2211 */ 2212 static void unfreeze_partials(struct kmem_cache *s, 2213 struct kmem_cache_cpu *c) 2214 { 2215 #ifdef CONFIG_SLUB_CPU_PARTIAL 2216 struct kmem_cache_node *n = NULL, *n2 = NULL; 2217 struct page *page, *discard_page = NULL; 2218 2219 while ((page = slub_percpu_partial(c))) { 2220 struct page new; 2221 struct page old; 2222 2223 slub_set_percpu_partial(c, page); 2224 2225 n2 = get_node(s, page_to_nid(page)); 2226 if (n != n2) { 2227 if (n) 2228 spin_unlock(&n->list_lock); 2229 2230 n = n2; 2231 spin_lock(&n->list_lock); 2232 } 2233 2234 do { 2235 2236 old.freelist = page->freelist; 2237 old.counters = page->counters; 2238 VM_BUG_ON(!old.frozen); 2239 2240 new.counters = old.counters; 2241 new.freelist = old.freelist; 2242 2243 new.frozen = 0; 2244 2245 } while (!__cmpxchg_double_slab(s, page, 2246 old.freelist, old.counters, 2247 new.freelist, new.counters, 2248 "unfreezing slab")); 2249 2250 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2251 page->next = discard_page; 2252 discard_page = page; 2253 } else { 2254 add_partial(n, page, DEACTIVATE_TO_TAIL); 2255 stat(s, FREE_ADD_PARTIAL); 2256 } 2257 } 2258 2259 if (n) 2260 spin_unlock(&n->list_lock); 2261 2262 while (discard_page) { 2263 page = discard_page; 2264 discard_page = discard_page->next; 2265 2266 stat(s, DEACTIVATE_EMPTY); 2267 discard_slab(s, page); 2268 stat(s, FREE_SLAB); 2269 } 2270 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2271 } 2272 2273 /* 2274 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2275 * partial page slot if available. 2276 * 2277 * If we did not find a slot then simply move all the partials to the 2278 * per node partial list. 2279 */ 2280 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2281 { 2282 #ifdef CONFIG_SLUB_CPU_PARTIAL 2283 struct page *oldpage; 2284 int pages; 2285 int pobjects; 2286 2287 preempt_disable(); 2288 do { 2289 pages = 0; 2290 pobjects = 0; 2291 oldpage = this_cpu_read(s->cpu_slab->partial); 2292 2293 if (oldpage) { 2294 pobjects = oldpage->pobjects; 2295 pages = oldpage->pages; 2296 if (drain && pobjects > slub_cpu_partial(s)) { 2297 unsigned long flags; 2298 /* 2299 * partial array is full. Move the existing 2300 * set to the per node partial list. 2301 */ 2302 local_irq_save(flags); 2303 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2304 local_irq_restore(flags); 2305 oldpage = NULL; 2306 pobjects = 0; 2307 pages = 0; 2308 stat(s, CPU_PARTIAL_DRAIN); 2309 } 2310 } 2311 2312 pages++; 2313 pobjects += page->objects - page->inuse; 2314 2315 page->pages = pages; 2316 page->pobjects = pobjects; 2317 page->next = oldpage; 2318 2319 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2320 != oldpage); 2321 if (unlikely(!slub_cpu_partial(s))) { 2322 unsigned long flags; 2323 2324 local_irq_save(flags); 2325 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2326 local_irq_restore(flags); 2327 } 2328 preempt_enable(); 2329 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2330 } 2331 2332 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2333 { 2334 stat(s, CPUSLAB_FLUSH); 2335 deactivate_slab(s, c->page, c->freelist, c); 2336 2337 c->tid = next_tid(c->tid); 2338 } 2339 2340 /* 2341 * Flush cpu slab. 2342 * 2343 * Called from IPI handler with interrupts disabled. 2344 */ 2345 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2346 { 2347 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2348 2349 if (c->page) 2350 flush_slab(s, c); 2351 2352 unfreeze_partials(s, c); 2353 } 2354 2355 static void flush_cpu_slab(void *d) 2356 { 2357 struct kmem_cache *s = d; 2358 2359 __flush_cpu_slab(s, smp_processor_id()); 2360 } 2361 2362 static bool has_cpu_slab(int cpu, void *info) 2363 { 2364 struct kmem_cache *s = info; 2365 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2366 2367 return c->page || slub_percpu_partial(c); 2368 } 2369 2370 static void flush_all(struct kmem_cache *s) 2371 { 2372 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2373 } 2374 2375 /* 2376 * Use the cpu notifier to insure that the cpu slabs are flushed when 2377 * necessary. 2378 */ 2379 static int slub_cpu_dead(unsigned int cpu) 2380 { 2381 struct kmem_cache *s; 2382 unsigned long flags; 2383 2384 mutex_lock(&slab_mutex); 2385 list_for_each_entry(s, &slab_caches, list) { 2386 local_irq_save(flags); 2387 __flush_cpu_slab(s, cpu); 2388 local_irq_restore(flags); 2389 } 2390 mutex_unlock(&slab_mutex); 2391 return 0; 2392 } 2393 2394 /* 2395 * Check if the objects in a per cpu structure fit numa 2396 * locality expectations. 2397 */ 2398 static inline int node_match(struct page *page, int node) 2399 { 2400 #ifdef CONFIG_NUMA 2401 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2402 return 0; 2403 #endif 2404 return 1; 2405 } 2406 2407 #ifdef CONFIG_SLUB_DEBUG 2408 static int count_free(struct page *page) 2409 { 2410 return page->objects - page->inuse; 2411 } 2412 2413 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2414 { 2415 return atomic_long_read(&n->total_objects); 2416 } 2417 #endif /* CONFIG_SLUB_DEBUG */ 2418 2419 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2420 static unsigned long count_partial(struct kmem_cache_node *n, 2421 int (*get_count)(struct page *)) 2422 { 2423 unsigned long flags; 2424 unsigned long x = 0; 2425 struct page *page; 2426 2427 spin_lock_irqsave(&n->list_lock, flags); 2428 list_for_each_entry(page, &n->partial, slab_list) 2429 x += get_count(page); 2430 spin_unlock_irqrestore(&n->list_lock, flags); 2431 return x; 2432 } 2433 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2434 2435 static noinline void 2436 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2437 { 2438 #ifdef CONFIG_SLUB_DEBUG 2439 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2440 DEFAULT_RATELIMIT_BURST); 2441 int node; 2442 struct kmem_cache_node *n; 2443 2444 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2445 return; 2446 2447 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2448 nid, gfpflags, &gfpflags); 2449 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2450 s->name, s->object_size, s->size, oo_order(s->oo), 2451 oo_order(s->min)); 2452 2453 if (oo_order(s->min) > get_order(s->object_size)) 2454 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2455 s->name); 2456 2457 for_each_kmem_cache_node(s, node, n) { 2458 unsigned long nr_slabs; 2459 unsigned long nr_objs; 2460 unsigned long nr_free; 2461 2462 nr_free = count_partial(n, count_free); 2463 nr_slabs = node_nr_slabs(n); 2464 nr_objs = node_nr_objs(n); 2465 2466 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2467 node, nr_slabs, nr_objs, nr_free); 2468 } 2469 #endif 2470 } 2471 2472 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2473 int node, struct kmem_cache_cpu **pc) 2474 { 2475 void *freelist; 2476 struct kmem_cache_cpu *c = *pc; 2477 struct page *page; 2478 2479 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2480 2481 freelist = get_partial(s, flags, node, c); 2482 2483 if (freelist) 2484 return freelist; 2485 2486 page = new_slab(s, flags, node); 2487 if (page) { 2488 c = raw_cpu_ptr(s->cpu_slab); 2489 if (c->page) 2490 flush_slab(s, c); 2491 2492 /* 2493 * No other reference to the page yet so we can 2494 * muck around with it freely without cmpxchg 2495 */ 2496 freelist = page->freelist; 2497 page->freelist = NULL; 2498 2499 stat(s, ALLOC_SLAB); 2500 c->page = page; 2501 *pc = c; 2502 } 2503 2504 return freelist; 2505 } 2506 2507 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2508 { 2509 if (unlikely(PageSlabPfmemalloc(page))) 2510 return gfp_pfmemalloc_allowed(gfpflags); 2511 2512 return true; 2513 } 2514 2515 /* 2516 * Check the page->freelist of a page and either transfer the freelist to the 2517 * per cpu freelist or deactivate the page. 2518 * 2519 * The page is still frozen if the return value is not NULL. 2520 * 2521 * If this function returns NULL then the page has been unfrozen. 2522 * 2523 * This function must be called with interrupt disabled. 2524 */ 2525 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2526 { 2527 struct page new; 2528 unsigned long counters; 2529 void *freelist; 2530 2531 do { 2532 freelist = page->freelist; 2533 counters = page->counters; 2534 2535 new.counters = counters; 2536 VM_BUG_ON(!new.frozen); 2537 2538 new.inuse = page->objects; 2539 new.frozen = freelist != NULL; 2540 2541 } while (!__cmpxchg_double_slab(s, page, 2542 freelist, counters, 2543 NULL, new.counters, 2544 "get_freelist")); 2545 2546 return freelist; 2547 } 2548 2549 /* 2550 * Slow path. The lockless freelist is empty or we need to perform 2551 * debugging duties. 2552 * 2553 * Processing is still very fast if new objects have been freed to the 2554 * regular freelist. In that case we simply take over the regular freelist 2555 * as the lockless freelist and zap the regular freelist. 2556 * 2557 * If that is not working then we fall back to the partial lists. We take the 2558 * first element of the freelist as the object to allocate now and move the 2559 * rest of the freelist to the lockless freelist. 2560 * 2561 * And if we were unable to get a new slab from the partial slab lists then 2562 * we need to allocate a new slab. This is the slowest path since it involves 2563 * a call to the page allocator and the setup of a new slab. 2564 * 2565 * Version of __slab_alloc to use when we know that interrupts are 2566 * already disabled (which is the case for bulk allocation). 2567 */ 2568 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2569 unsigned long addr, struct kmem_cache_cpu *c) 2570 { 2571 void *freelist; 2572 struct page *page; 2573 2574 page = c->page; 2575 if (!page) { 2576 /* 2577 * if the node is not online or has no normal memory, just 2578 * ignore the node constraint 2579 */ 2580 if (unlikely(node != NUMA_NO_NODE && 2581 !node_state(node, N_NORMAL_MEMORY))) 2582 node = NUMA_NO_NODE; 2583 goto new_slab; 2584 } 2585 redo: 2586 2587 if (unlikely(!node_match(page, node))) { 2588 /* 2589 * same as above but node_match() being false already 2590 * implies node != NUMA_NO_NODE 2591 */ 2592 if (!node_state(node, N_NORMAL_MEMORY)) { 2593 node = NUMA_NO_NODE; 2594 goto redo; 2595 } else { 2596 stat(s, ALLOC_NODE_MISMATCH); 2597 deactivate_slab(s, page, c->freelist, c); 2598 goto new_slab; 2599 } 2600 } 2601 2602 /* 2603 * By rights, we should be searching for a slab page that was 2604 * PFMEMALLOC but right now, we are losing the pfmemalloc 2605 * information when the page leaves the per-cpu allocator 2606 */ 2607 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2608 deactivate_slab(s, page, c->freelist, c); 2609 goto new_slab; 2610 } 2611 2612 /* must check again c->freelist in case of cpu migration or IRQ */ 2613 freelist = c->freelist; 2614 if (freelist) 2615 goto load_freelist; 2616 2617 freelist = get_freelist(s, page); 2618 2619 if (!freelist) { 2620 c->page = NULL; 2621 stat(s, DEACTIVATE_BYPASS); 2622 goto new_slab; 2623 } 2624 2625 stat(s, ALLOC_REFILL); 2626 2627 load_freelist: 2628 /* 2629 * freelist is pointing to the list of objects to be used. 2630 * page is pointing to the page from which the objects are obtained. 2631 * That page must be frozen for per cpu allocations to work. 2632 */ 2633 VM_BUG_ON(!c->page->frozen); 2634 c->freelist = get_freepointer(s, freelist); 2635 c->tid = next_tid(c->tid); 2636 return freelist; 2637 2638 new_slab: 2639 2640 if (slub_percpu_partial(c)) { 2641 page = c->page = slub_percpu_partial(c); 2642 slub_set_percpu_partial(c, page); 2643 stat(s, CPU_PARTIAL_ALLOC); 2644 goto redo; 2645 } 2646 2647 freelist = new_slab_objects(s, gfpflags, node, &c); 2648 2649 if (unlikely(!freelist)) { 2650 slab_out_of_memory(s, gfpflags, node); 2651 return NULL; 2652 } 2653 2654 page = c->page; 2655 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2656 goto load_freelist; 2657 2658 /* Only entered in the debug case */ 2659 if (kmem_cache_debug(s) && 2660 !alloc_debug_processing(s, page, freelist, addr)) 2661 goto new_slab; /* Slab failed checks. Next slab needed */ 2662 2663 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2664 return freelist; 2665 } 2666 2667 /* 2668 * Another one that disabled interrupt and compensates for possible 2669 * cpu changes by refetching the per cpu area pointer. 2670 */ 2671 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2672 unsigned long addr, struct kmem_cache_cpu *c) 2673 { 2674 void *p; 2675 unsigned long flags; 2676 2677 local_irq_save(flags); 2678 #ifdef CONFIG_PREEMPTION 2679 /* 2680 * We may have been preempted and rescheduled on a different 2681 * cpu before disabling interrupts. Need to reload cpu area 2682 * pointer. 2683 */ 2684 c = this_cpu_ptr(s->cpu_slab); 2685 #endif 2686 2687 p = ___slab_alloc(s, gfpflags, node, addr, c); 2688 local_irq_restore(flags); 2689 return p; 2690 } 2691 2692 /* 2693 * If the object has been wiped upon free, make sure it's fully initialized by 2694 * zeroing out freelist pointer. 2695 */ 2696 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2697 void *obj) 2698 { 2699 if (unlikely(slab_want_init_on_free(s)) && obj) 2700 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2701 } 2702 2703 /* 2704 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2705 * have the fastpath folded into their functions. So no function call 2706 * overhead for requests that can be satisfied on the fastpath. 2707 * 2708 * The fastpath works by first checking if the lockless freelist can be used. 2709 * If not then __slab_alloc is called for slow processing. 2710 * 2711 * Otherwise we can simply pick the next object from the lockless free list. 2712 */ 2713 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2714 gfp_t gfpflags, int node, unsigned long addr) 2715 { 2716 void *object; 2717 struct kmem_cache_cpu *c; 2718 struct page *page; 2719 unsigned long tid; 2720 2721 s = slab_pre_alloc_hook(s, gfpflags); 2722 if (!s) 2723 return NULL; 2724 redo: 2725 /* 2726 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2727 * enabled. We may switch back and forth between cpus while 2728 * reading from one cpu area. That does not matter as long 2729 * as we end up on the original cpu again when doing the cmpxchg. 2730 * 2731 * We should guarantee that tid and kmem_cache are retrieved on 2732 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2733 * to check if it is matched or not. 2734 */ 2735 do { 2736 tid = this_cpu_read(s->cpu_slab->tid); 2737 c = raw_cpu_ptr(s->cpu_slab); 2738 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2739 unlikely(tid != READ_ONCE(c->tid))); 2740 2741 /* 2742 * Irqless object alloc/free algorithm used here depends on sequence 2743 * of fetching cpu_slab's data. tid should be fetched before anything 2744 * on c to guarantee that object and page associated with previous tid 2745 * won't be used with current tid. If we fetch tid first, object and 2746 * page could be one associated with next tid and our alloc/free 2747 * request will be failed. In this case, we will retry. So, no problem. 2748 */ 2749 barrier(); 2750 2751 /* 2752 * The transaction ids are globally unique per cpu and per operation on 2753 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2754 * occurs on the right processor and that there was no operation on the 2755 * linked list in between. 2756 */ 2757 2758 object = c->freelist; 2759 page = c->page; 2760 if (unlikely(!object || !node_match(page, node))) { 2761 object = __slab_alloc(s, gfpflags, node, addr, c); 2762 stat(s, ALLOC_SLOWPATH); 2763 } else { 2764 void *next_object = get_freepointer_safe(s, object); 2765 2766 /* 2767 * The cmpxchg will only match if there was no additional 2768 * operation and if we are on the right processor. 2769 * 2770 * The cmpxchg does the following atomically (without lock 2771 * semantics!) 2772 * 1. Relocate first pointer to the current per cpu area. 2773 * 2. Verify that tid and freelist have not been changed 2774 * 3. If they were not changed replace tid and freelist 2775 * 2776 * Since this is without lock semantics the protection is only 2777 * against code executing on this cpu *not* from access by 2778 * other cpus. 2779 */ 2780 if (unlikely(!this_cpu_cmpxchg_double( 2781 s->cpu_slab->freelist, s->cpu_slab->tid, 2782 object, tid, 2783 next_object, next_tid(tid)))) { 2784 2785 note_cmpxchg_failure("slab_alloc", s, tid); 2786 goto redo; 2787 } 2788 prefetch_freepointer(s, next_object); 2789 stat(s, ALLOC_FASTPATH); 2790 } 2791 2792 maybe_wipe_obj_freeptr(s, object); 2793 2794 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2795 memset(object, 0, s->object_size); 2796 2797 slab_post_alloc_hook(s, gfpflags, 1, &object); 2798 2799 return object; 2800 } 2801 2802 static __always_inline void *slab_alloc(struct kmem_cache *s, 2803 gfp_t gfpflags, unsigned long addr) 2804 { 2805 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2806 } 2807 2808 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2809 { 2810 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2811 2812 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2813 s->size, gfpflags); 2814 2815 return ret; 2816 } 2817 EXPORT_SYMBOL(kmem_cache_alloc); 2818 2819 #ifdef CONFIG_TRACING 2820 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2821 { 2822 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2823 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2824 ret = kasan_kmalloc(s, ret, size, gfpflags); 2825 return ret; 2826 } 2827 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2828 #endif 2829 2830 #ifdef CONFIG_NUMA 2831 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2832 { 2833 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2834 2835 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2836 s->object_size, s->size, gfpflags, node); 2837 2838 return ret; 2839 } 2840 EXPORT_SYMBOL(kmem_cache_alloc_node); 2841 2842 #ifdef CONFIG_TRACING 2843 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2844 gfp_t gfpflags, 2845 int node, size_t size) 2846 { 2847 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2848 2849 trace_kmalloc_node(_RET_IP_, ret, 2850 size, s->size, gfpflags, node); 2851 2852 ret = kasan_kmalloc(s, ret, size, gfpflags); 2853 return ret; 2854 } 2855 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2856 #endif 2857 #endif /* CONFIG_NUMA */ 2858 2859 /* 2860 * Slow path handling. This may still be called frequently since objects 2861 * have a longer lifetime than the cpu slabs in most processing loads. 2862 * 2863 * So we still attempt to reduce cache line usage. Just take the slab 2864 * lock and free the item. If there is no additional partial page 2865 * handling required then we can return immediately. 2866 */ 2867 static void __slab_free(struct kmem_cache *s, struct page *page, 2868 void *head, void *tail, int cnt, 2869 unsigned long addr) 2870 2871 { 2872 void *prior; 2873 int was_frozen; 2874 struct page new; 2875 unsigned long counters; 2876 struct kmem_cache_node *n = NULL; 2877 unsigned long uninitialized_var(flags); 2878 2879 stat(s, FREE_SLOWPATH); 2880 2881 if (kmem_cache_debug(s) && 2882 !free_debug_processing(s, page, head, tail, cnt, addr)) 2883 return; 2884 2885 do { 2886 if (unlikely(n)) { 2887 spin_unlock_irqrestore(&n->list_lock, flags); 2888 n = NULL; 2889 } 2890 prior = page->freelist; 2891 counters = page->counters; 2892 set_freepointer(s, tail, prior); 2893 new.counters = counters; 2894 was_frozen = new.frozen; 2895 new.inuse -= cnt; 2896 if ((!new.inuse || !prior) && !was_frozen) { 2897 2898 if (kmem_cache_has_cpu_partial(s) && !prior) { 2899 2900 /* 2901 * Slab was on no list before and will be 2902 * partially empty 2903 * We can defer the list move and instead 2904 * freeze it. 2905 */ 2906 new.frozen = 1; 2907 2908 } else { /* Needs to be taken off a list */ 2909 2910 n = get_node(s, page_to_nid(page)); 2911 /* 2912 * Speculatively acquire the list_lock. 2913 * If the cmpxchg does not succeed then we may 2914 * drop the list_lock without any processing. 2915 * 2916 * Otherwise the list_lock will synchronize with 2917 * other processors updating the list of slabs. 2918 */ 2919 spin_lock_irqsave(&n->list_lock, flags); 2920 2921 } 2922 } 2923 2924 } while (!cmpxchg_double_slab(s, page, 2925 prior, counters, 2926 head, new.counters, 2927 "__slab_free")); 2928 2929 if (likely(!n)) { 2930 2931 /* 2932 * If we just froze the page then put it onto the 2933 * per cpu partial list. 2934 */ 2935 if (new.frozen && !was_frozen) { 2936 put_cpu_partial(s, page, 1); 2937 stat(s, CPU_PARTIAL_FREE); 2938 } 2939 /* 2940 * The list lock was not taken therefore no list 2941 * activity can be necessary. 2942 */ 2943 if (was_frozen) 2944 stat(s, FREE_FROZEN); 2945 return; 2946 } 2947 2948 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2949 goto slab_empty; 2950 2951 /* 2952 * Objects left in the slab. If it was not on the partial list before 2953 * then add it. 2954 */ 2955 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2956 remove_full(s, n, page); 2957 add_partial(n, page, DEACTIVATE_TO_TAIL); 2958 stat(s, FREE_ADD_PARTIAL); 2959 } 2960 spin_unlock_irqrestore(&n->list_lock, flags); 2961 return; 2962 2963 slab_empty: 2964 if (prior) { 2965 /* 2966 * Slab on the partial list. 2967 */ 2968 remove_partial(n, page); 2969 stat(s, FREE_REMOVE_PARTIAL); 2970 } else { 2971 /* Slab must be on the full list */ 2972 remove_full(s, n, page); 2973 } 2974 2975 spin_unlock_irqrestore(&n->list_lock, flags); 2976 stat(s, FREE_SLAB); 2977 discard_slab(s, page); 2978 } 2979 2980 /* 2981 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2982 * can perform fastpath freeing without additional function calls. 2983 * 2984 * The fastpath is only possible if we are freeing to the current cpu slab 2985 * of this processor. This typically the case if we have just allocated 2986 * the item before. 2987 * 2988 * If fastpath is not possible then fall back to __slab_free where we deal 2989 * with all sorts of special processing. 2990 * 2991 * Bulk free of a freelist with several objects (all pointing to the 2992 * same page) possible by specifying head and tail ptr, plus objects 2993 * count (cnt). Bulk free indicated by tail pointer being set. 2994 */ 2995 static __always_inline void do_slab_free(struct kmem_cache *s, 2996 struct page *page, void *head, void *tail, 2997 int cnt, unsigned long addr) 2998 { 2999 void *tail_obj = tail ? : head; 3000 struct kmem_cache_cpu *c; 3001 unsigned long tid; 3002 redo: 3003 /* 3004 * Determine the currently cpus per cpu slab. 3005 * The cpu may change afterward. However that does not matter since 3006 * data is retrieved via this pointer. If we are on the same cpu 3007 * during the cmpxchg then the free will succeed. 3008 */ 3009 do { 3010 tid = this_cpu_read(s->cpu_slab->tid); 3011 c = raw_cpu_ptr(s->cpu_slab); 3012 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3013 unlikely(tid != READ_ONCE(c->tid))); 3014 3015 /* Same with comment on barrier() in slab_alloc_node() */ 3016 barrier(); 3017 3018 if (likely(page == c->page)) { 3019 void **freelist = READ_ONCE(c->freelist); 3020 3021 set_freepointer(s, tail_obj, freelist); 3022 3023 if (unlikely(!this_cpu_cmpxchg_double( 3024 s->cpu_slab->freelist, s->cpu_slab->tid, 3025 freelist, tid, 3026 head, next_tid(tid)))) { 3027 3028 note_cmpxchg_failure("slab_free", s, tid); 3029 goto redo; 3030 } 3031 stat(s, FREE_FASTPATH); 3032 } else 3033 __slab_free(s, page, head, tail_obj, cnt, addr); 3034 3035 } 3036 3037 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3038 void *head, void *tail, int cnt, 3039 unsigned long addr) 3040 { 3041 /* 3042 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3043 * to remove objects, whose reuse must be delayed. 3044 */ 3045 if (slab_free_freelist_hook(s, &head, &tail)) 3046 do_slab_free(s, page, head, tail, cnt, addr); 3047 } 3048 3049 #ifdef CONFIG_KASAN_GENERIC 3050 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3051 { 3052 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3053 } 3054 #endif 3055 3056 void kmem_cache_free(struct kmem_cache *s, void *x) 3057 { 3058 s = cache_from_obj(s, x); 3059 if (!s) 3060 return; 3061 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3062 trace_kmem_cache_free(_RET_IP_, x); 3063 } 3064 EXPORT_SYMBOL(kmem_cache_free); 3065 3066 struct detached_freelist { 3067 struct page *page; 3068 void *tail; 3069 void *freelist; 3070 int cnt; 3071 struct kmem_cache *s; 3072 }; 3073 3074 /* 3075 * This function progressively scans the array with free objects (with 3076 * a limited look ahead) and extract objects belonging to the same 3077 * page. It builds a detached freelist directly within the given 3078 * page/objects. This can happen without any need for 3079 * synchronization, because the objects are owned by running process. 3080 * The freelist is build up as a single linked list in the objects. 3081 * The idea is, that this detached freelist can then be bulk 3082 * transferred to the real freelist(s), but only requiring a single 3083 * synchronization primitive. Look ahead in the array is limited due 3084 * to performance reasons. 3085 */ 3086 static inline 3087 int build_detached_freelist(struct kmem_cache *s, size_t size, 3088 void **p, struct detached_freelist *df) 3089 { 3090 size_t first_skipped_index = 0; 3091 int lookahead = 3; 3092 void *object; 3093 struct page *page; 3094 3095 /* Always re-init detached_freelist */ 3096 df->page = NULL; 3097 3098 do { 3099 object = p[--size]; 3100 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3101 } while (!object && size); 3102 3103 if (!object) 3104 return 0; 3105 3106 page = virt_to_head_page(object); 3107 if (!s) { 3108 /* Handle kalloc'ed objects */ 3109 if (unlikely(!PageSlab(page))) { 3110 BUG_ON(!PageCompound(page)); 3111 kfree_hook(object); 3112 __free_pages(page, compound_order(page)); 3113 p[size] = NULL; /* mark object processed */ 3114 return size; 3115 } 3116 /* Derive kmem_cache from object */ 3117 df->s = page->slab_cache; 3118 } else { 3119 df->s = cache_from_obj(s, object); /* Support for memcg */ 3120 } 3121 3122 /* Start new detached freelist */ 3123 df->page = page; 3124 set_freepointer(df->s, object, NULL); 3125 df->tail = object; 3126 df->freelist = object; 3127 p[size] = NULL; /* mark object processed */ 3128 df->cnt = 1; 3129 3130 while (size) { 3131 object = p[--size]; 3132 if (!object) 3133 continue; /* Skip processed objects */ 3134 3135 /* df->page is always set at this point */ 3136 if (df->page == virt_to_head_page(object)) { 3137 /* Opportunity build freelist */ 3138 set_freepointer(df->s, object, df->freelist); 3139 df->freelist = object; 3140 df->cnt++; 3141 p[size] = NULL; /* mark object processed */ 3142 3143 continue; 3144 } 3145 3146 /* Limit look ahead search */ 3147 if (!--lookahead) 3148 break; 3149 3150 if (!first_skipped_index) 3151 first_skipped_index = size + 1; 3152 } 3153 3154 return first_skipped_index; 3155 } 3156 3157 /* Note that interrupts must be enabled when calling this function. */ 3158 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3159 { 3160 if (WARN_ON(!size)) 3161 return; 3162 3163 do { 3164 struct detached_freelist df; 3165 3166 size = build_detached_freelist(s, size, p, &df); 3167 if (!df.page) 3168 continue; 3169 3170 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3171 } while (likely(size)); 3172 } 3173 EXPORT_SYMBOL(kmem_cache_free_bulk); 3174 3175 /* Note that interrupts must be enabled when calling this function. */ 3176 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3177 void **p) 3178 { 3179 struct kmem_cache_cpu *c; 3180 int i; 3181 3182 /* memcg and kmem_cache debug support */ 3183 s = slab_pre_alloc_hook(s, flags); 3184 if (unlikely(!s)) 3185 return false; 3186 /* 3187 * Drain objects in the per cpu slab, while disabling local 3188 * IRQs, which protects against PREEMPT and interrupts 3189 * handlers invoking normal fastpath. 3190 */ 3191 local_irq_disable(); 3192 c = this_cpu_ptr(s->cpu_slab); 3193 3194 for (i = 0; i < size; i++) { 3195 void *object = c->freelist; 3196 3197 if (unlikely(!object)) { 3198 /* 3199 * We may have removed an object from c->freelist using 3200 * the fastpath in the previous iteration; in that case, 3201 * c->tid has not been bumped yet. 3202 * Since ___slab_alloc() may reenable interrupts while 3203 * allocating memory, we should bump c->tid now. 3204 */ 3205 c->tid = next_tid(c->tid); 3206 3207 /* 3208 * Invoking slow path likely have side-effect 3209 * of re-populating per CPU c->freelist 3210 */ 3211 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3212 _RET_IP_, c); 3213 if (unlikely(!p[i])) 3214 goto error; 3215 3216 c = this_cpu_ptr(s->cpu_slab); 3217 maybe_wipe_obj_freeptr(s, p[i]); 3218 3219 continue; /* goto for-loop */ 3220 } 3221 c->freelist = get_freepointer(s, object); 3222 p[i] = object; 3223 maybe_wipe_obj_freeptr(s, p[i]); 3224 } 3225 c->tid = next_tid(c->tid); 3226 local_irq_enable(); 3227 3228 /* Clear memory outside IRQ disabled fastpath loop */ 3229 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3230 int j; 3231 3232 for (j = 0; j < i; j++) 3233 memset(p[j], 0, s->object_size); 3234 } 3235 3236 /* memcg and kmem_cache debug support */ 3237 slab_post_alloc_hook(s, flags, size, p); 3238 return i; 3239 error: 3240 local_irq_enable(); 3241 slab_post_alloc_hook(s, flags, i, p); 3242 __kmem_cache_free_bulk(s, i, p); 3243 return 0; 3244 } 3245 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3246 3247 3248 /* 3249 * Object placement in a slab is made very easy because we always start at 3250 * offset 0. If we tune the size of the object to the alignment then we can 3251 * get the required alignment by putting one properly sized object after 3252 * another. 3253 * 3254 * Notice that the allocation order determines the sizes of the per cpu 3255 * caches. Each processor has always one slab available for allocations. 3256 * Increasing the allocation order reduces the number of times that slabs 3257 * must be moved on and off the partial lists and is therefore a factor in 3258 * locking overhead. 3259 */ 3260 3261 /* 3262 * Mininum / Maximum order of slab pages. This influences locking overhead 3263 * and slab fragmentation. A higher order reduces the number of partial slabs 3264 * and increases the number of allocations possible without having to 3265 * take the list_lock. 3266 */ 3267 static unsigned int slub_min_order; 3268 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3269 static unsigned int slub_min_objects; 3270 3271 /* 3272 * Calculate the order of allocation given an slab object size. 3273 * 3274 * The order of allocation has significant impact on performance and other 3275 * system components. Generally order 0 allocations should be preferred since 3276 * order 0 does not cause fragmentation in the page allocator. Larger objects 3277 * be problematic to put into order 0 slabs because there may be too much 3278 * unused space left. We go to a higher order if more than 1/16th of the slab 3279 * would be wasted. 3280 * 3281 * In order to reach satisfactory performance we must ensure that a minimum 3282 * number of objects is in one slab. Otherwise we may generate too much 3283 * activity on the partial lists which requires taking the list_lock. This is 3284 * less a concern for large slabs though which are rarely used. 3285 * 3286 * slub_max_order specifies the order where we begin to stop considering the 3287 * number of objects in a slab as critical. If we reach slub_max_order then 3288 * we try to keep the page order as low as possible. So we accept more waste 3289 * of space in favor of a small page order. 3290 * 3291 * Higher order allocations also allow the placement of more objects in a 3292 * slab and thereby reduce object handling overhead. If the user has 3293 * requested a higher mininum order then we start with that one instead of 3294 * the smallest order which will fit the object. 3295 */ 3296 static inline unsigned int slab_order(unsigned int size, 3297 unsigned int min_objects, unsigned int max_order, 3298 unsigned int fract_leftover) 3299 { 3300 unsigned int min_order = slub_min_order; 3301 unsigned int order; 3302 3303 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3304 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3305 3306 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3307 order <= max_order; order++) { 3308 3309 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3310 unsigned int rem; 3311 3312 rem = slab_size % size; 3313 3314 if (rem <= slab_size / fract_leftover) 3315 break; 3316 } 3317 3318 return order; 3319 } 3320 3321 static inline int calculate_order(unsigned int size) 3322 { 3323 unsigned int order; 3324 unsigned int min_objects; 3325 unsigned int max_objects; 3326 3327 /* 3328 * Attempt to find best configuration for a slab. This 3329 * works by first attempting to generate a layout with 3330 * the best configuration and backing off gradually. 3331 * 3332 * First we increase the acceptable waste in a slab. Then 3333 * we reduce the minimum objects required in a slab. 3334 */ 3335 min_objects = slub_min_objects; 3336 if (!min_objects) 3337 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3338 max_objects = order_objects(slub_max_order, size); 3339 min_objects = min(min_objects, max_objects); 3340 3341 while (min_objects > 1) { 3342 unsigned int fraction; 3343 3344 fraction = 16; 3345 while (fraction >= 4) { 3346 order = slab_order(size, min_objects, 3347 slub_max_order, fraction); 3348 if (order <= slub_max_order) 3349 return order; 3350 fraction /= 2; 3351 } 3352 min_objects--; 3353 } 3354 3355 /* 3356 * We were unable to place multiple objects in a slab. Now 3357 * lets see if we can place a single object there. 3358 */ 3359 order = slab_order(size, 1, slub_max_order, 1); 3360 if (order <= slub_max_order) 3361 return order; 3362 3363 /* 3364 * Doh this slab cannot be placed using slub_max_order. 3365 */ 3366 order = slab_order(size, 1, MAX_ORDER, 1); 3367 if (order < MAX_ORDER) 3368 return order; 3369 return -ENOSYS; 3370 } 3371 3372 static void 3373 init_kmem_cache_node(struct kmem_cache_node *n) 3374 { 3375 n->nr_partial = 0; 3376 spin_lock_init(&n->list_lock); 3377 INIT_LIST_HEAD(&n->partial); 3378 #ifdef CONFIG_SLUB_DEBUG 3379 atomic_long_set(&n->nr_slabs, 0); 3380 atomic_long_set(&n->total_objects, 0); 3381 INIT_LIST_HEAD(&n->full); 3382 #endif 3383 } 3384 3385 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3386 { 3387 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3388 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3389 3390 /* 3391 * Must align to double word boundary for the double cmpxchg 3392 * instructions to work; see __pcpu_double_call_return_bool(). 3393 */ 3394 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3395 2 * sizeof(void *)); 3396 3397 if (!s->cpu_slab) 3398 return 0; 3399 3400 init_kmem_cache_cpus(s); 3401 3402 return 1; 3403 } 3404 3405 static struct kmem_cache *kmem_cache_node; 3406 3407 /* 3408 * No kmalloc_node yet so do it by hand. We know that this is the first 3409 * slab on the node for this slabcache. There are no concurrent accesses 3410 * possible. 3411 * 3412 * Note that this function only works on the kmem_cache_node 3413 * when allocating for the kmem_cache_node. This is used for bootstrapping 3414 * memory on a fresh node that has no slab structures yet. 3415 */ 3416 static void early_kmem_cache_node_alloc(int node) 3417 { 3418 struct page *page; 3419 struct kmem_cache_node *n; 3420 3421 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3422 3423 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3424 3425 BUG_ON(!page); 3426 if (page_to_nid(page) != node) { 3427 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3428 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3429 } 3430 3431 n = page->freelist; 3432 BUG_ON(!n); 3433 #ifdef CONFIG_SLUB_DEBUG 3434 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3435 init_tracking(kmem_cache_node, n); 3436 #endif 3437 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3438 GFP_KERNEL); 3439 page->freelist = get_freepointer(kmem_cache_node, n); 3440 page->inuse = 1; 3441 page->frozen = 0; 3442 kmem_cache_node->node[node] = n; 3443 init_kmem_cache_node(n); 3444 inc_slabs_node(kmem_cache_node, node, page->objects); 3445 3446 /* 3447 * No locks need to be taken here as it has just been 3448 * initialized and there is no concurrent access. 3449 */ 3450 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3451 } 3452 3453 static void free_kmem_cache_nodes(struct kmem_cache *s) 3454 { 3455 int node; 3456 struct kmem_cache_node *n; 3457 3458 for_each_kmem_cache_node(s, node, n) { 3459 s->node[node] = NULL; 3460 kmem_cache_free(kmem_cache_node, n); 3461 } 3462 } 3463 3464 void __kmem_cache_release(struct kmem_cache *s) 3465 { 3466 cache_random_seq_destroy(s); 3467 free_percpu(s->cpu_slab); 3468 free_kmem_cache_nodes(s); 3469 } 3470 3471 static int init_kmem_cache_nodes(struct kmem_cache *s) 3472 { 3473 int node; 3474 3475 for_each_node_state(node, N_NORMAL_MEMORY) { 3476 struct kmem_cache_node *n; 3477 3478 if (slab_state == DOWN) { 3479 early_kmem_cache_node_alloc(node); 3480 continue; 3481 } 3482 n = kmem_cache_alloc_node(kmem_cache_node, 3483 GFP_KERNEL, node); 3484 3485 if (!n) { 3486 free_kmem_cache_nodes(s); 3487 return 0; 3488 } 3489 3490 init_kmem_cache_node(n); 3491 s->node[node] = n; 3492 } 3493 return 1; 3494 } 3495 3496 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3497 { 3498 if (min < MIN_PARTIAL) 3499 min = MIN_PARTIAL; 3500 else if (min > MAX_PARTIAL) 3501 min = MAX_PARTIAL; 3502 s->min_partial = min; 3503 } 3504 3505 static void set_cpu_partial(struct kmem_cache *s) 3506 { 3507 #ifdef CONFIG_SLUB_CPU_PARTIAL 3508 /* 3509 * cpu_partial determined the maximum number of objects kept in the 3510 * per cpu partial lists of a processor. 3511 * 3512 * Per cpu partial lists mainly contain slabs that just have one 3513 * object freed. If they are used for allocation then they can be 3514 * filled up again with minimal effort. The slab will never hit the 3515 * per node partial lists and therefore no locking will be required. 3516 * 3517 * This setting also determines 3518 * 3519 * A) The number of objects from per cpu partial slabs dumped to the 3520 * per node list when we reach the limit. 3521 * B) The number of objects in cpu partial slabs to extract from the 3522 * per node list when we run out of per cpu objects. We only fetch 3523 * 50% to keep some capacity around for frees. 3524 */ 3525 if (!kmem_cache_has_cpu_partial(s)) 3526 slub_set_cpu_partial(s, 0); 3527 else if (s->size >= PAGE_SIZE) 3528 slub_set_cpu_partial(s, 2); 3529 else if (s->size >= 1024) 3530 slub_set_cpu_partial(s, 6); 3531 else if (s->size >= 256) 3532 slub_set_cpu_partial(s, 13); 3533 else 3534 slub_set_cpu_partial(s, 30); 3535 #endif 3536 } 3537 3538 /* 3539 * calculate_sizes() determines the order and the distribution of data within 3540 * a slab object. 3541 */ 3542 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3543 { 3544 slab_flags_t flags = s->flags; 3545 unsigned int size = s->object_size; 3546 unsigned int freepointer_area; 3547 unsigned int order; 3548 3549 /* 3550 * Round up object size to the next word boundary. We can only 3551 * place the free pointer at word boundaries and this determines 3552 * the possible location of the free pointer. 3553 */ 3554 size = ALIGN(size, sizeof(void *)); 3555 /* 3556 * This is the area of the object where a freepointer can be 3557 * safely written. If redzoning adds more to the inuse size, we 3558 * can't use that portion for writing the freepointer, so 3559 * s->offset must be limited within this for the general case. 3560 */ 3561 freepointer_area = size; 3562 3563 #ifdef CONFIG_SLUB_DEBUG 3564 /* 3565 * Determine if we can poison the object itself. If the user of 3566 * the slab may touch the object after free or before allocation 3567 * then we should never poison the object itself. 3568 */ 3569 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3570 !s->ctor) 3571 s->flags |= __OBJECT_POISON; 3572 else 3573 s->flags &= ~__OBJECT_POISON; 3574 3575 3576 /* 3577 * If we are Redzoning then check if there is some space between the 3578 * end of the object and the free pointer. If not then add an 3579 * additional word to have some bytes to store Redzone information. 3580 */ 3581 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3582 size += sizeof(void *); 3583 #endif 3584 3585 /* 3586 * With that we have determined the number of bytes in actual use 3587 * by the object. This is the potential offset to the free pointer. 3588 */ 3589 s->inuse = size; 3590 3591 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3592 s->ctor)) { 3593 /* 3594 * Relocate free pointer after the object if it is not 3595 * permitted to overwrite the first word of the object on 3596 * kmem_cache_free. 3597 * 3598 * This is the case if we do RCU, have a constructor or 3599 * destructor or are poisoning the objects. 3600 * 3601 * The assumption that s->offset >= s->inuse means free 3602 * pointer is outside of the object is used in the 3603 * freeptr_outside_object() function. If that is no 3604 * longer true, the function needs to be modified. 3605 */ 3606 s->offset = size; 3607 size += sizeof(void *); 3608 } else if (freepointer_area > sizeof(void *)) { 3609 /* 3610 * Store freelist pointer near middle of object to keep 3611 * it away from the edges of the object to avoid small 3612 * sized over/underflows from neighboring allocations. 3613 */ 3614 s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); 3615 } 3616 3617 #ifdef CONFIG_SLUB_DEBUG 3618 if (flags & SLAB_STORE_USER) 3619 /* 3620 * Need to store information about allocs and frees after 3621 * the object. 3622 */ 3623 size += 2 * sizeof(struct track); 3624 #endif 3625 3626 kasan_cache_create(s, &size, &s->flags); 3627 #ifdef CONFIG_SLUB_DEBUG 3628 if (flags & SLAB_RED_ZONE) { 3629 /* 3630 * Add some empty padding so that we can catch 3631 * overwrites from earlier objects rather than let 3632 * tracking information or the free pointer be 3633 * corrupted if a user writes before the start 3634 * of the object. 3635 */ 3636 size += sizeof(void *); 3637 3638 s->red_left_pad = sizeof(void *); 3639 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3640 size += s->red_left_pad; 3641 } 3642 #endif 3643 3644 /* 3645 * SLUB stores one object immediately after another beginning from 3646 * offset 0. In order to align the objects we have to simply size 3647 * each object to conform to the alignment. 3648 */ 3649 size = ALIGN(size, s->align); 3650 s->size = size; 3651 if (forced_order >= 0) 3652 order = forced_order; 3653 else 3654 order = calculate_order(size); 3655 3656 if ((int)order < 0) 3657 return 0; 3658 3659 s->allocflags = 0; 3660 if (order) 3661 s->allocflags |= __GFP_COMP; 3662 3663 if (s->flags & SLAB_CACHE_DMA) 3664 s->allocflags |= GFP_DMA; 3665 3666 if (s->flags & SLAB_CACHE_DMA32) 3667 s->allocflags |= GFP_DMA32; 3668 3669 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3670 s->allocflags |= __GFP_RECLAIMABLE; 3671 3672 /* 3673 * Determine the number of objects per slab 3674 */ 3675 s->oo = oo_make(order, size); 3676 s->min = oo_make(get_order(size), size); 3677 if (oo_objects(s->oo) > oo_objects(s->max)) 3678 s->max = s->oo; 3679 3680 return !!oo_objects(s->oo); 3681 } 3682 3683 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3684 { 3685 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3686 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3687 s->random = get_random_long(); 3688 #endif 3689 3690 if (!calculate_sizes(s, -1)) 3691 goto error; 3692 if (disable_higher_order_debug) { 3693 /* 3694 * Disable debugging flags that store metadata if the min slab 3695 * order increased. 3696 */ 3697 if (get_order(s->size) > get_order(s->object_size)) { 3698 s->flags &= ~DEBUG_METADATA_FLAGS; 3699 s->offset = 0; 3700 if (!calculate_sizes(s, -1)) 3701 goto error; 3702 } 3703 } 3704 3705 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3706 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3707 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3708 /* Enable fast mode */ 3709 s->flags |= __CMPXCHG_DOUBLE; 3710 #endif 3711 3712 /* 3713 * The larger the object size is, the more pages we want on the partial 3714 * list to avoid pounding the page allocator excessively. 3715 */ 3716 set_min_partial(s, ilog2(s->size) / 2); 3717 3718 set_cpu_partial(s); 3719 3720 #ifdef CONFIG_NUMA 3721 s->remote_node_defrag_ratio = 1000; 3722 #endif 3723 3724 /* Initialize the pre-computed randomized freelist if slab is up */ 3725 if (slab_state >= UP) { 3726 if (init_cache_random_seq(s)) 3727 goto error; 3728 } 3729 3730 if (!init_kmem_cache_nodes(s)) 3731 goto error; 3732 3733 if (alloc_kmem_cache_cpus(s)) 3734 return 0; 3735 3736 free_kmem_cache_nodes(s); 3737 error: 3738 return -EINVAL; 3739 } 3740 3741 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3742 const char *text) 3743 { 3744 #ifdef CONFIG_SLUB_DEBUG 3745 void *addr = page_address(page); 3746 void *p; 3747 unsigned long *map; 3748 3749 slab_err(s, page, text, s->name); 3750 slab_lock(page); 3751 3752 map = get_map(s, page); 3753 for_each_object(p, s, addr, page->objects) { 3754 3755 if (!test_bit(slab_index(p, s, addr), map)) { 3756 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3757 print_tracking(s, p); 3758 } 3759 } 3760 put_map(map); 3761 3762 slab_unlock(page); 3763 #endif 3764 } 3765 3766 /* 3767 * Attempt to free all partial slabs on a node. 3768 * This is called from __kmem_cache_shutdown(). We must take list_lock 3769 * because sysfs file might still access partial list after the shutdowning. 3770 */ 3771 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3772 { 3773 LIST_HEAD(discard); 3774 struct page *page, *h; 3775 3776 BUG_ON(irqs_disabled()); 3777 spin_lock_irq(&n->list_lock); 3778 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3779 if (!page->inuse) { 3780 remove_partial(n, page); 3781 list_add(&page->slab_list, &discard); 3782 } else { 3783 list_slab_objects(s, page, 3784 "Objects remaining in %s on __kmem_cache_shutdown()"); 3785 } 3786 } 3787 spin_unlock_irq(&n->list_lock); 3788 3789 list_for_each_entry_safe(page, h, &discard, slab_list) 3790 discard_slab(s, page); 3791 } 3792 3793 bool __kmem_cache_empty(struct kmem_cache *s) 3794 { 3795 int node; 3796 struct kmem_cache_node *n; 3797 3798 for_each_kmem_cache_node(s, node, n) 3799 if (n->nr_partial || slabs_node(s, node)) 3800 return false; 3801 return true; 3802 } 3803 3804 /* 3805 * Release all resources used by a slab cache. 3806 */ 3807 int __kmem_cache_shutdown(struct kmem_cache *s) 3808 { 3809 int node; 3810 struct kmem_cache_node *n; 3811 3812 flush_all(s); 3813 /* Attempt to free all objects */ 3814 for_each_kmem_cache_node(s, node, n) { 3815 free_partial(s, n); 3816 if (n->nr_partial || slabs_node(s, node)) 3817 return 1; 3818 } 3819 sysfs_slab_remove(s); 3820 return 0; 3821 } 3822 3823 /******************************************************************** 3824 * Kmalloc subsystem 3825 *******************************************************************/ 3826 3827 static int __init setup_slub_min_order(char *str) 3828 { 3829 get_option(&str, (int *)&slub_min_order); 3830 3831 return 1; 3832 } 3833 3834 __setup("slub_min_order=", setup_slub_min_order); 3835 3836 static int __init setup_slub_max_order(char *str) 3837 { 3838 get_option(&str, (int *)&slub_max_order); 3839 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3840 3841 return 1; 3842 } 3843 3844 __setup("slub_max_order=", setup_slub_max_order); 3845 3846 static int __init setup_slub_min_objects(char *str) 3847 { 3848 get_option(&str, (int *)&slub_min_objects); 3849 3850 return 1; 3851 } 3852 3853 __setup("slub_min_objects=", setup_slub_min_objects); 3854 3855 void *__kmalloc(size_t size, gfp_t flags) 3856 { 3857 struct kmem_cache *s; 3858 void *ret; 3859 3860 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3861 return kmalloc_large(size, flags); 3862 3863 s = kmalloc_slab(size, flags); 3864 3865 if (unlikely(ZERO_OR_NULL_PTR(s))) 3866 return s; 3867 3868 ret = slab_alloc(s, flags, _RET_IP_); 3869 3870 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3871 3872 ret = kasan_kmalloc(s, ret, size, flags); 3873 3874 return ret; 3875 } 3876 EXPORT_SYMBOL(__kmalloc); 3877 3878 #ifdef CONFIG_NUMA 3879 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3880 { 3881 struct page *page; 3882 void *ptr = NULL; 3883 unsigned int order = get_order(size); 3884 3885 flags |= __GFP_COMP; 3886 page = alloc_pages_node(node, flags, order); 3887 if (page) { 3888 ptr = page_address(page); 3889 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3890 1 << order); 3891 } 3892 3893 return kmalloc_large_node_hook(ptr, size, flags); 3894 } 3895 3896 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3897 { 3898 struct kmem_cache *s; 3899 void *ret; 3900 3901 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3902 ret = kmalloc_large_node(size, flags, node); 3903 3904 trace_kmalloc_node(_RET_IP_, ret, 3905 size, PAGE_SIZE << get_order(size), 3906 flags, node); 3907 3908 return ret; 3909 } 3910 3911 s = kmalloc_slab(size, flags); 3912 3913 if (unlikely(ZERO_OR_NULL_PTR(s))) 3914 return s; 3915 3916 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3917 3918 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3919 3920 ret = kasan_kmalloc(s, ret, size, flags); 3921 3922 return ret; 3923 } 3924 EXPORT_SYMBOL(__kmalloc_node); 3925 #endif /* CONFIG_NUMA */ 3926 3927 #ifdef CONFIG_HARDENED_USERCOPY 3928 /* 3929 * Rejects incorrectly sized objects and objects that are to be copied 3930 * to/from userspace but do not fall entirely within the containing slab 3931 * cache's usercopy region. 3932 * 3933 * Returns NULL if check passes, otherwise const char * to name of cache 3934 * to indicate an error. 3935 */ 3936 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3937 bool to_user) 3938 { 3939 struct kmem_cache *s; 3940 unsigned int offset; 3941 size_t object_size; 3942 3943 ptr = kasan_reset_tag(ptr); 3944 3945 /* Find object and usable object size. */ 3946 s = page->slab_cache; 3947 3948 /* Reject impossible pointers. */ 3949 if (ptr < page_address(page)) 3950 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3951 to_user, 0, n); 3952 3953 /* Find offset within object. */ 3954 offset = (ptr - page_address(page)) % s->size; 3955 3956 /* Adjust for redzone and reject if within the redzone. */ 3957 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3958 if (offset < s->red_left_pad) 3959 usercopy_abort("SLUB object in left red zone", 3960 s->name, to_user, offset, n); 3961 offset -= s->red_left_pad; 3962 } 3963 3964 /* Allow address range falling entirely within usercopy region. */ 3965 if (offset >= s->useroffset && 3966 offset - s->useroffset <= s->usersize && 3967 n <= s->useroffset - offset + s->usersize) 3968 return; 3969 3970 /* 3971 * If the copy is still within the allocated object, produce 3972 * a warning instead of rejecting the copy. This is intended 3973 * to be a temporary method to find any missing usercopy 3974 * whitelists. 3975 */ 3976 object_size = slab_ksize(s); 3977 if (usercopy_fallback && 3978 offset <= object_size && n <= object_size - offset) { 3979 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3980 return; 3981 } 3982 3983 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3984 } 3985 #endif /* CONFIG_HARDENED_USERCOPY */ 3986 3987 size_t __ksize(const void *object) 3988 { 3989 struct page *page; 3990 3991 if (unlikely(object == ZERO_SIZE_PTR)) 3992 return 0; 3993 3994 page = virt_to_head_page(object); 3995 3996 if (unlikely(!PageSlab(page))) { 3997 WARN_ON(!PageCompound(page)); 3998 return page_size(page); 3999 } 4000 4001 return slab_ksize(page->slab_cache); 4002 } 4003 EXPORT_SYMBOL(__ksize); 4004 4005 void kfree(const void *x) 4006 { 4007 struct page *page; 4008 void *object = (void *)x; 4009 4010 trace_kfree(_RET_IP_, x); 4011 4012 if (unlikely(ZERO_OR_NULL_PTR(x))) 4013 return; 4014 4015 page = virt_to_head_page(x); 4016 if (unlikely(!PageSlab(page))) { 4017 unsigned int order = compound_order(page); 4018 4019 BUG_ON(!PageCompound(page)); 4020 kfree_hook(object); 4021 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 4022 -(1 << order)); 4023 __free_pages(page, order); 4024 return; 4025 } 4026 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4027 } 4028 EXPORT_SYMBOL(kfree); 4029 4030 #define SHRINK_PROMOTE_MAX 32 4031 4032 /* 4033 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4034 * up most to the head of the partial lists. New allocations will then 4035 * fill those up and thus they can be removed from the partial lists. 4036 * 4037 * The slabs with the least items are placed last. This results in them 4038 * being allocated from last increasing the chance that the last objects 4039 * are freed in them. 4040 */ 4041 int __kmem_cache_shrink(struct kmem_cache *s) 4042 { 4043 int node; 4044 int i; 4045 struct kmem_cache_node *n; 4046 struct page *page; 4047 struct page *t; 4048 struct list_head discard; 4049 struct list_head promote[SHRINK_PROMOTE_MAX]; 4050 unsigned long flags; 4051 int ret = 0; 4052 4053 flush_all(s); 4054 for_each_kmem_cache_node(s, node, n) { 4055 INIT_LIST_HEAD(&discard); 4056 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4057 INIT_LIST_HEAD(promote + i); 4058 4059 spin_lock_irqsave(&n->list_lock, flags); 4060 4061 /* 4062 * Build lists of slabs to discard or promote. 4063 * 4064 * Note that concurrent frees may occur while we hold the 4065 * list_lock. page->inuse here is the upper limit. 4066 */ 4067 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4068 int free = page->objects - page->inuse; 4069 4070 /* Do not reread page->inuse */ 4071 barrier(); 4072 4073 /* We do not keep full slabs on the list */ 4074 BUG_ON(free <= 0); 4075 4076 if (free == page->objects) { 4077 list_move(&page->slab_list, &discard); 4078 n->nr_partial--; 4079 } else if (free <= SHRINK_PROMOTE_MAX) 4080 list_move(&page->slab_list, promote + free - 1); 4081 } 4082 4083 /* 4084 * Promote the slabs filled up most to the head of the 4085 * partial list. 4086 */ 4087 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4088 list_splice(promote + i, &n->partial); 4089 4090 spin_unlock_irqrestore(&n->list_lock, flags); 4091 4092 /* Release empty slabs */ 4093 list_for_each_entry_safe(page, t, &discard, slab_list) 4094 discard_slab(s, page); 4095 4096 if (slabs_node(s, node)) 4097 ret = 1; 4098 } 4099 4100 return ret; 4101 } 4102 4103 #ifdef CONFIG_MEMCG 4104 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4105 { 4106 /* 4107 * Called with all the locks held after a sched RCU grace period. 4108 * Even if @s becomes empty after shrinking, we can't know that @s 4109 * doesn't have allocations already in-flight and thus can't 4110 * destroy @s until the associated memcg is released. 4111 * 4112 * However, let's remove the sysfs files for empty caches here. 4113 * Each cache has a lot of interface files which aren't 4114 * particularly useful for empty draining caches; otherwise, we can 4115 * easily end up with millions of unnecessary sysfs files on 4116 * systems which have a lot of memory and transient cgroups. 4117 */ 4118 if (!__kmem_cache_shrink(s)) 4119 sysfs_slab_remove(s); 4120 } 4121 4122 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4123 { 4124 /* 4125 * Disable empty slabs caching. Used to avoid pinning offline 4126 * memory cgroups by kmem pages that can be freed. 4127 */ 4128 slub_set_cpu_partial(s, 0); 4129 s->min_partial = 0; 4130 } 4131 #endif /* CONFIG_MEMCG */ 4132 4133 static int slab_mem_going_offline_callback(void *arg) 4134 { 4135 struct kmem_cache *s; 4136 4137 mutex_lock(&slab_mutex); 4138 list_for_each_entry(s, &slab_caches, list) 4139 __kmem_cache_shrink(s); 4140 mutex_unlock(&slab_mutex); 4141 4142 return 0; 4143 } 4144 4145 static void slab_mem_offline_callback(void *arg) 4146 { 4147 struct kmem_cache_node *n; 4148 struct kmem_cache *s; 4149 struct memory_notify *marg = arg; 4150 int offline_node; 4151 4152 offline_node = marg->status_change_nid_normal; 4153 4154 /* 4155 * If the node still has available memory. we need kmem_cache_node 4156 * for it yet. 4157 */ 4158 if (offline_node < 0) 4159 return; 4160 4161 mutex_lock(&slab_mutex); 4162 list_for_each_entry(s, &slab_caches, list) { 4163 n = get_node(s, offline_node); 4164 if (n) { 4165 /* 4166 * if n->nr_slabs > 0, slabs still exist on the node 4167 * that is going down. We were unable to free them, 4168 * and offline_pages() function shouldn't call this 4169 * callback. So, we must fail. 4170 */ 4171 BUG_ON(slabs_node(s, offline_node)); 4172 4173 s->node[offline_node] = NULL; 4174 kmem_cache_free(kmem_cache_node, n); 4175 } 4176 } 4177 mutex_unlock(&slab_mutex); 4178 } 4179 4180 static int slab_mem_going_online_callback(void *arg) 4181 { 4182 struct kmem_cache_node *n; 4183 struct kmem_cache *s; 4184 struct memory_notify *marg = arg; 4185 int nid = marg->status_change_nid_normal; 4186 int ret = 0; 4187 4188 /* 4189 * If the node's memory is already available, then kmem_cache_node is 4190 * already created. Nothing to do. 4191 */ 4192 if (nid < 0) 4193 return 0; 4194 4195 /* 4196 * We are bringing a node online. No memory is available yet. We must 4197 * allocate a kmem_cache_node structure in order to bring the node 4198 * online. 4199 */ 4200 mutex_lock(&slab_mutex); 4201 list_for_each_entry(s, &slab_caches, list) { 4202 /* 4203 * XXX: kmem_cache_alloc_node will fallback to other nodes 4204 * since memory is not yet available from the node that 4205 * is brought up. 4206 */ 4207 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4208 if (!n) { 4209 ret = -ENOMEM; 4210 goto out; 4211 } 4212 init_kmem_cache_node(n); 4213 s->node[nid] = n; 4214 } 4215 out: 4216 mutex_unlock(&slab_mutex); 4217 return ret; 4218 } 4219 4220 static int slab_memory_callback(struct notifier_block *self, 4221 unsigned long action, void *arg) 4222 { 4223 int ret = 0; 4224 4225 switch (action) { 4226 case MEM_GOING_ONLINE: 4227 ret = slab_mem_going_online_callback(arg); 4228 break; 4229 case MEM_GOING_OFFLINE: 4230 ret = slab_mem_going_offline_callback(arg); 4231 break; 4232 case MEM_OFFLINE: 4233 case MEM_CANCEL_ONLINE: 4234 slab_mem_offline_callback(arg); 4235 break; 4236 case MEM_ONLINE: 4237 case MEM_CANCEL_OFFLINE: 4238 break; 4239 } 4240 if (ret) 4241 ret = notifier_from_errno(ret); 4242 else 4243 ret = NOTIFY_OK; 4244 return ret; 4245 } 4246 4247 static struct notifier_block slab_memory_callback_nb = { 4248 .notifier_call = slab_memory_callback, 4249 .priority = SLAB_CALLBACK_PRI, 4250 }; 4251 4252 /******************************************************************** 4253 * Basic setup of slabs 4254 *******************************************************************/ 4255 4256 /* 4257 * Used for early kmem_cache structures that were allocated using 4258 * the page allocator. Allocate them properly then fix up the pointers 4259 * that may be pointing to the wrong kmem_cache structure. 4260 */ 4261 4262 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4263 { 4264 int node; 4265 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4266 struct kmem_cache_node *n; 4267 4268 memcpy(s, static_cache, kmem_cache->object_size); 4269 4270 /* 4271 * This runs very early, and only the boot processor is supposed to be 4272 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4273 * IPIs around. 4274 */ 4275 __flush_cpu_slab(s, smp_processor_id()); 4276 for_each_kmem_cache_node(s, node, n) { 4277 struct page *p; 4278 4279 list_for_each_entry(p, &n->partial, slab_list) 4280 p->slab_cache = s; 4281 4282 #ifdef CONFIG_SLUB_DEBUG 4283 list_for_each_entry(p, &n->full, slab_list) 4284 p->slab_cache = s; 4285 #endif 4286 } 4287 slab_init_memcg_params(s); 4288 list_add(&s->list, &slab_caches); 4289 memcg_link_cache(s, NULL); 4290 return s; 4291 } 4292 4293 void __init kmem_cache_init(void) 4294 { 4295 static __initdata struct kmem_cache boot_kmem_cache, 4296 boot_kmem_cache_node; 4297 4298 if (debug_guardpage_minorder()) 4299 slub_max_order = 0; 4300 4301 kmem_cache_node = &boot_kmem_cache_node; 4302 kmem_cache = &boot_kmem_cache; 4303 4304 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4305 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4306 4307 register_hotmemory_notifier(&slab_memory_callback_nb); 4308 4309 /* Able to allocate the per node structures */ 4310 slab_state = PARTIAL; 4311 4312 create_boot_cache(kmem_cache, "kmem_cache", 4313 offsetof(struct kmem_cache, node) + 4314 nr_node_ids * sizeof(struct kmem_cache_node *), 4315 SLAB_HWCACHE_ALIGN, 0, 0); 4316 4317 kmem_cache = bootstrap(&boot_kmem_cache); 4318 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4319 4320 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4321 setup_kmalloc_cache_index_table(); 4322 create_kmalloc_caches(0); 4323 4324 /* Setup random freelists for each cache */ 4325 init_freelist_randomization(); 4326 4327 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4328 slub_cpu_dead); 4329 4330 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4331 cache_line_size(), 4332 slub_min_order, slub_max_order, slub_min_objects, 4333 nr_cpu_ids, nr_node_ids); 4334 } 4335 4336 void __init kmem_cache_init_late(void) 4337 { 4338 } 4339 4340 struct kmem_cache * 4341 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4342 slab_flags_t flags, void (*ctor)(void *)) 4343 { 4344 struct kmem_cache *s, *c; 4345 4346 s = find_mergeable(size, align, flags, name, ctor); 4347 if (s) { 4348 s->refcount++; 4349 4350 /* 4351 * Adjust the object sizes so that we clear 4352 * the complete object on kzalloc. 4353 */ 4354 s->object_size = max(s->object_size, size); 4355 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4356 4357 for_each_memcg_cache(c, s) { 4358 c->object_size = s->object_size; 4359 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4360 } 4361 4362 if (sysfs_slab_alias(s, name)) { 4363 s->refcount--; 4364 s = NULL; 4365 } 4366 } 4367 4368 return s; 4369 } 4370 4371 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4372 { 4373 int err; 4374 4375 err = kmem_cache_open(s, flags); 4376 if (err) 4377 return err; 4378 4379 /* Mutex is not taken during early boot */ 4380 if (slab_state <= UP) 4381 return 0; 4382 4383 memcg_propagate_slab_attrs(s); 4384 err = sysfs_slab_add(s); 4385 if (err) 4386 __kmem_cache_release(s); 4387 4388 return err; 4389 } 4390 4391 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4392 { 4393 struct kmem_cache *s; 4394 void *ret; 4395 4396 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4397 return kmalloc_large(size, gfpflags); 4398 4399 s = kmalloc_slab(size, gfpflags); 4400 4401 if (unlikely(ZERO_OR_NULL_PTR(s))) 4402 return s; 4403 4404 ret = slab_alloc(s, gfpflags, caller); 4405 4406 /* Honor the call site pointer we received. */ 4407 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4408 4409 return ret; 4410 } 4411 4412 #ifdef CONFIG_NUMA 4413 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4414 int node, unsigned long caller) 4415 { 4416 struct kmem_cache *s; 4417 void *ret; 4418 4419 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4420 ret = kmalloc_large_node(size, gfpflags, node); 4421 4422 trace_kmalloc_node(caller, ret, 4423 size, PAGE_SIZE << get_order(size), 4424 gfpflags, node); 4425 4426 return ret; 4427 } 4428 4429 s = kmalloc_slab(size, gfpflags); 4430 4431 if (unlikely(ZERO_OR_NULL_PTR(s))) 4432 return s; 4433 4434 ret = slab_alloc_node(s, gfpflags, node, caller); 4435 4436 /* Honor the call site pointer we received. */ 4437 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4438 4439 return ret; 4440 } 4441 #endif 4442 4443 #ifdef CONFIG_SYSFS 4444 static int count_inuse(struct page *page) 4445 { 4446 return page->inuse; 4447 } 4448 4449 static int count_total(struct page *page) 4450 { 4451 return page->objects; 4452 } 4453 #endif 4454 4455 #ifdef CONFIG_SLUB_DEBUG 4456 static void validate_slab(struct kmem_cache *s, struct page *page) 4457 { 4458 void *p; 4459 void *addr = page_address(page); 4460 unsigned long *map; 4461 4462 slab_lock(page); 4463 4464 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4465 goto unlock; 4466 4467 /* Now we know that a valid freelist exists */ 4468 map = get_map(s, page); 4469 for_each_object(p, s, addr, page->objects) { 4470 u8 val = test_bit(slab_index(p, s, addr), map) ? 4471 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4472 4473 if (!check_object(s, page, p, val)) 4474 break; 4475 } 4476 put_map(map); 4477 unlock: 4478 slab_unlock(page); 4479 } 4480 4481 static int validate_slab_node(struct kmem_cache *s, 4482 struct kmem_cache_node *n) 4483 { 4484 unsigned long count = 0; 4485 struct page *page; 4486 unsigned long flags; 4487 4488 spin_lock_irqsave(&n->list_lock, flags); 4489 4490 list_for_each_entry(page, &n->partial, slab_list) { 4491 validate_slab(s, page); 4492 count++; 4493 } 4494 if (count != n->nr_partial) 4495 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4496 s->name, count, n->nr_partial); 4497 4498 if (!(s->flags & SLAB_STORE_USER)) 4499 goto out; 4500 4501 list_for_each_entry(page, &n->full, slab_list) { 4502 validate_slab(s, page); 4503 count++; 4504 } 4505 if (count != atomic_long_read(&n->nr_slabs)) 4506 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4507 s->name, count, atomic_long_read(&n->nr_slabs)); 4508 4509 out: 4510 spin_unlock_irqrestore(&n->list_lock, flags); 4511 return count; 4512 } 4513 4514 static long validate_slab_cache(struct kmem_cache *s) 4515 { 4516 int node; 4517 unsigned long count = 0; 4518 struct kmem_cache_node *n; 4519 4520 flush_all(s); 4521 for_each_kmem_cache_node(s, node, n) 4522 count += validate_slab_node(s, n); 4523 4524 return count; 4525 } 4526 /* 4527 * Generate lists of code addresses where slabcache objects are allocated 4528 * and freed. 4529 */ 4530 4531 struct location { 4532 unsigned long count; 4533 unsigned long addr; 4534 long long sum_time; 4535 long min_time; 4536 long max_time; 4537 long min_pid; 4538 long max_pid; 4539 DECLARE_BITMAP(cpus, NR_CPUS); 4540 nodemask_t nodes; 4541 }; 4542 4543 struct loc_track { 4544 unsigned long max; 4545 unsigned long count; 4546 struct location *loc; 4547 }; 4548 4549 static void free_loc_track(struct loc_track *t) 4550 { 4551 if (t->max) 4552 free_pages((unsigned long)t->loc, 4553 get_order(sizeof(struct location) * t->max)); 4554 } 4555 4556 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4557 { 4558 struct location *l; 4559 int order; 4560 4561 order = get_order(sizeof(struct location) * max); 4562 4563 l = (void *)__get_free_pages(flags, order); 4564 if (!l) 4565 return 0; 4566 4567 if (t->count) { 4568 memcpy(l, t->loc, sizeof(struct location) * t->count); 4569 free_loc_track(t); 4570 } 4571 t->max = max; 4572 t->loc = l; 4573 return 1; 4574 } 4575 4576 static int add_location(struct loc_track *t, struct kmem_cache *s, 4577 const struct track *track) 4578 { 4579 long start, end, pos; 4580 struct location *l; 4581 unsigned long caddr; 4582 unsigned long age = jiffies - track->when; 4583 4584 start = -1; 4585 end = t->count; 4586 4587 for ( ; ; ) { 4588 pos = start + (end - start + 1) / 2; 4589 4590 /* 4591 * There is nothing at "end". If we end up there 4592 * we need to add something to before end. 4593 */ 4594 if (pos == end) 4595 break; 4596 4597 caddr = t->loc[pos].addr; 4598 if (track->addr == caddr) { 4599 4600 l = &t->loc[pos]; 4601 l->count++; 4602 if (track->when) { 4603 l->sum_time += age; 4604 if (age < l->min_time) 4605 l->min_time = age; 4606 if (age > l->max_time) 4607 l->max_time = age; 4608 4609 if (track->pid < l->min_pid) 4610 l->min_pid = track->pid; 4611 if (track->pid > l->max_pid) 4612 l->max_pid = track->pid; 4613 4614 cpumask_set_cpu(track->cpu, 4615 to_cpumask(l->cpus)); 4616 } 4617 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4618 return 1; 4619 } 4620 4621 if (track->addr < caddr) 4622 end = pos; 4623 else 4624 start = pos; 4625 } 4626 4627 /* 4628 * Not found. Insert new tracking element. 4629 */ 4630 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4631 return 0; 4632 4633 l = t->loc + pos; 4634 if (pos < t->count) 4635 memmove(l + 1, l, 4636 (t->count - pos) * sizeof(struct location)); 4637 t->count++; 4638 l->count = 1; 4639 l->addr = track->addr; 4640 l->sum_time = age; 4641 l->min_time = age; 4642 l->max_time = age; 4643 l->min_pid = track->pid; 4644 l->max_pid = track->pid; 4645 cpumask_clear(to_cpumask(l->cpus)); 4646 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4647 nodes_clear(l->nodes); 4648 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4649 return 1; 4650 } 4651 4652 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4653 struct page *page, enum track_item alloc) 4654 { 4655 void *addr = page_address(page); 4656 void *p; 4657 unsigned long *map; 4658 4659 map = get_map(s, page); 4660 for_each_object(p, s, addr, page->objects) 4661 if (!test_bit(slab_index(p, s, addr), map)) 4662 add_location(t, s, get_track(s, p, alloc)); 4663 put_map(map); 4664 } 4665 4666 static int list_locations(struct kmem_cache *s, char *buf, 4667 enum track_item alloc) 4668 { 4669 int len = 0; 4670 unsigned long i; 4671 struct loc_track t = { 0, 0, NULL }; 4672 int node; 4673 struct kmem_cache_node *n; 4674 4675 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4676 GFP_KERNEL)) { 4677 return sprintf(buf, "Out of memory\n"); 4678 } 4679 /* Push back cpu slabs */ 4680 flush_all(s); 4681 4682 for_each_kmem_cache_node(s, node, n) { 4683 unsigned long flags; 4684 struct page *page; 4685 4686 if (!atomic_long_read(&n->nr_slabs)) 4687 continue; 4688 4689 spin_lock_irqsave(&n->list_lock, flags); 4690 list_for_each_entry(page, &n->partial, slab_list) 4691 process_slab(&t, s, page, alloc); 4692 list_for_each_entry(page, &n->full, slab_list) 4693 process_slab(&t, s, page, alloc); 4694 spin_unlock_irqrestore(&n->list_lock, flags); 4695 } 4696 4697 for (i = 0; i < t.count; i++) { 4698 struct location *l = &t.loc[i]; 4699 4700 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4701 break; 4702 len += sprintf(buf + len, "%7ld ", l->count); 4703 4704 if (l->addr) 4705 len += sprintf(buf + len, "%pS", (void *)l->addr); 4706 else 4707 len += sprintf(buf + len, "<not-available>"); 4708 4709 if (l->sum_time != l->min_time) { 4710 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4711 l->min_time, 4712 (long)div_u64(l->sum_time, l->count), 4713 l->max_time); 4714 } else 4715 len += sprintf(buf + len, " age=%ld", 4716 l->min_time); 4717 4718 if (l->min_pid != l->max_pid) 4719 len += sprintf(buf + len, " pid=%ld-%ld", 4720 l->min_pid, l->max_pid); 4721 else 4722 len += sprintf(buf + len, " pid=%ld", 4723 l->min_pid); 4724 4725 if (num_online_cpus() > 1 && 4726 !cpumask_empty(to_cpumask(l->cpus)) && 4727 len < PAGE_SIZE - 60) 4728 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4729 " cpus=%*pbl", 4730 cpumask_pr_args(to_cpumask(l->cpus))); 4731 4732 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4733 len < PAGE_SIZE - 60) 4734 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4735 " nodes=%*pbl", 4736 nodemask_pr_args(&l->nodes)); 4737 4738 len += sprintf(buf + len, "\n"); 4739 } 4740 4741 free_loc_track(&t); 4742 if (!t.count) 4743 len += sprintf(buf, "No data\n"); 4744 return len; 4745 } 4746 #endif /* CONFIG_SLUB_DEBUG */ 4747 4748 #ifdef SLUB_RESILIENCY_TEST 4749 static void __init resiliency_test(void) 4750 { 4751 u8 *p; 4752 int type = KMALLOC_NORMAL; 4753 4754 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4755 4756 pr_err("SLUB resiliency testing\n"); 4757 pr_err("-----------------------\n"); 4758 pr_err("A. Corruption after allocation\n"); 4759 4760 p = kzalloc(16, GFP_KERNEL); 4761 p[16] = 0x12; 4762 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4763 p + 16); 4764 4765 validate_slab_cache(kmalloc_caches[type][4]); 4766 4767 /* Hmmm... The next two are dangerous */ 4768 p = kzalloc(32, GFP_KERNEL); 4769 p[32 + sizeof(void *)] = 0x34; 4770 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4771 p); 4772 pr_err("If allocated object is overwritten then not detectable\n\n"); 4773 4774 validate_slab_cache(kmalloc_caches[type][5]); 4775 p = kzalloc(64, GFP_KERNEL); 4776 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4777 *p = 0x56; 4778 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4779 p); 4780 pr_err("If allocated object is overwritten then not detectable\n\n"); 4781 validate_slab_cache(kmalloc_caches[type][6]); 4782 4783 pr_err("\nB. Corruption after free\n"); 4784 p = kzalloc(128, GFP_KERNEL); 4785 kfree(p); 4786 *p = 0x78; 4787 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4788 validate_slab_cache(kmalloc_caches[type][7]); 4789 4790 p = kzalloc(256, GFP_KERNEL); 4791 kfree(p); 4792 p[50] = 0x9a; 4793 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4794 validate_slab_cache(kmalloc_caches[type][8]); 4795 4796 p = kzalloc(512, GFP_KERNEL); 4797 kfree(p); 4798 p[512] = 0xab; 4799 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4800 validate_slab_cache(kmalloc_caches[type][9]); 4801 } 4802 #else 4803 #ifdef CONFIG_SYSFS 4804 static void resiliency_test(void) {}; 4805 #endif 4806 #endif /* SLUB_RESILIENCY_TEST */ 4807 4808 #ifdef CONFIG_SYSFS 4809 enum slab_stat_type { 4810 SL_ALL, /* All slabs */ 4811 SL_PARTIAL, /* Only partially allocated slabs */ 4812 SL_CPU, /* Only slabs used for cpu caches */ 4813 SL_OBJECTS, /* Determine allocated objects not slabs */ 4814 SL_TOTAL /* Determine object capacity not slabs */ 4815 }; 4816 4817 #define SO_ALL (1 << SL_ALL) 4818 #define SO_PARTIAL (1 << SL_PARTIAL) 4819 #define SO_CPU (1 << SL_CPU) 4820 #define SO_OBJECTS (1 << SL_OBJECTS) 4821 #define SO_TOTAL (1 << SL_TOTAL) 4822 4823 #ifdef CONFIG_MEMCG 4824 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4825 4826 static int __init setup_slub_memcg_sysfs(char *str) 4827 { 4828 int v; 4829 4830 if (get_option(&str, &v) > 0) 4831 memcg_sysfs_enabled = v; 4832 4833 return 1; 4834 } 4835 4836 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4837 #endif 4838 4839 static ssize_t show_slab_objects(struct kmem_cache *s, 4840 char *buf, unsigned long flags) 4841 { 4842 unsigned long total = 0; 4843 int node; 4844 int x; 4845 unsigned long *nodes; 4846 4847 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4848 if (!nodes) 4849 return -ENOMEM; 4850 4851 if (flags & SO_CPU) { 4852 int cpu; 4853 4854 for_each_possible_cpu(cpu) { 4855 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4856 cpu); 4857 int node; 4858 struct page *page; 4859 4860 page = READ_ONCE(c->page); 4861 if (!page) 4862 continue; 4863 4864 node = page_to_nid(page); 4865 if (flags & SO_TOTAL) 4866 x = page->objects; 4867 else if (flags & SO_OBJECTS) 4868 x = page->inuse; 4869 else 4870 x = 1; 4871 4872 total += x; 4873 nodes[node] += x; 4874 4875 page = slub_percpu_partial_read_once(c); 4876 if (page) { 4877 node = page_to_nid(page); 4878 if (flags & SO_TOTAL) 4879 WARN_ON_ONCE(1); 4880 else if (flags & SO_OBJECTS) 4881 WARN_ON_ONCE(1); 4882 else 4883 x = page->pages; 4884 total += x; 4885 nodes[node] += x; 4886 } 4887 } 4888 } 4889 4890 /* 4891 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4892 * already held which will conflict with an existing lock order: 4893 * 4894 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4895 * 4896 * We don't really need mem_hotplug_lock (to hold off 4897 * slab_mem_going_offline_callback) here because slab's memory hot 4898 * unplug code doesn't destroy the kmem_cache->node[] data. 4899 */ 4900 4901 #ifdef CONFIG_SLUB_DEBUG 4902 if (flags & SO_ALL) { 4903 struct kmem_cache_node *n; 4904 4905 for_each_kmem_cache_node(s, node, n) { 4906 4907 if (flags & SO_TOTAL) 4908 x = atomic_long_read(&n->total_objects); 4909 else if (flags & SO_OBJECTS) 4910 x = atomic_long_read(&n->total_objects) - 4911 count_partial(n, count_free); 4912 else 4913 x = atomic_long_read(&n->nr_slabs); 4914 total += x; 4915 nodes[node] += x; 4916 } 4917 4918 } else 4919 #endif 4920 if (flags & SO_PARTIAL) { 4921 struct kmem_cache_node *n; 4922 4923 for_each_kmem_cache_node(s, node, n) { 4924 if (flags & SO_TOTAL) 4925 x = count_partial(n, count_total); 4926 else if (flags & SO_OBJECTS) 4927 x = count_partial(n, count_inuse); 4928 else 4929 x = n->nr_partial; 4930 total += x; 4931 nodes[node] += x; 4932 } 4933 } 4934 x = sprintf(buf, "%lu", total); 4935 #ifdef CONFIG_NUMA 4936 for (node = 0; node < nr_node_ids; node++) 4937 if (nodes[node]) 4938 x += sprintf(buf + x, " N%d=%lu", 4939 node, nodes[node]); 4940 #endif 4941 kfree(nodes); 4942 return x + sprintf(buf + x, "\n"); 4943 } 4944 4945 #ifdef CONFIG_SLUB_DEBUG 4946 static int any_slab_objects(struct kmem_cache *s) 4947 { 4948 int node; 4949 struct kmem_cache_node *n; 4950 4951 for_each_kmem_cache_node(s, node, n) 4952 if (atomic_long_read(&n->total_objects)) 4953 return 1; 4954 4955 return 0; 4956 } 4957 #endif 4958 4959 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4960 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4961 4962 struct slab_attribute { 4963 struct attribute attr; 4964 ssize_t (*show)(struct kmem_cache *s, char *buf); 4965 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4966 }; 4967 4968 #define SLAB_ATTR_RO(_name) \ 4969 static struct slab_attribute _name##_attr = \ 4970 __ATTR(_name, 0400, _name##_show, NULL) 4971 4972 #define SLAB_ATTR(_name) \ 4973 static struct slab_attribute _name##_attr = \ 4974 __ATTR(_name, 0600, _name##_show, _name##_store) 4975 4976 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4977 { 4978 return sprintf(buf, "%u\n", s->size); 4979 } 4980 SLAB_ATTR_RO(slab_size); 4981 4982 static ssize_t align_show(struct kmem_cache *s, char *buf) 4983 { 4984 return sprintf(buf, "%u\n", s->align); 4985 } 4986 SLAB_ATTR_RO(align); 4987 4988 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4989 { 4990 return sprintf(buf, "%u\n", s->object_size); 4991 } 4992 SLAB_ATTR_RO(object_size); 4993 4994 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4995 { 4996 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4997 } 4998 SLAB_ATTR_RO(objs_per_slab); 4999 5000 static ssize_t order_store(struct kmem_cache *s, 5001 const char *buf, size_t length) 5002 { 5003 unsigned int order; 5004 int err; 5005 5006 err = kstrtouint(buf, 10, &order); 5007 if (err) 5008 return err; 5009 5010 if (order > slub_max_order || order < slub_min_order) 5011 return -EINVAL; 5012 5013 calculate_sizes(s, order); 5014 return length; 5015 } 5016 5017 static ssize_t order_show(struct kmem_cache *s, char *buf) 5018 { 5019 return sprintf(buf, "%u\n", oo_order(s->oo)); 5020 } 5021 SLAB_ATTR(order); 5022 5023 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5024 { 5025 return sprintf(buf, "%lu\n", s->min_partial); 5026 } 5027 5028 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5029 size_t length) 5030 { 5031 unsigned long min; 5032 int err; 5033 5034 err = kstrtoul(buf, 10, &min); 5035 if (err) 5036 return err; 5037 5038 set_min_partial(s, min); 5039 return length; 5040 } 5041 SLAB_ATTR(min_partial); 5042 5043 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5044 { 5045 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 5046 } 5047 5048 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5049 size_t length) 5050 { 5051 unsigned int objects; 5052 int err; 5053 5054 err = kstrtouint(buf, 10, &objects); 5055 if (err) 5056 return err; 5057 if (objects && !kmem_cache_has_cpu_partial(s)) 5058 return -EINVAL; 5059 5060 slub_set_cpu_partial(s, objects); 5061 flush_all(s); 5062 return length; 5063 } 5064 SLAB_ATTR(cpu_partial); 5065 5066 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5067 { 5068 if (!s->ctor) 5069 return 0; 5070 return sprintf(buf, "%pS\n", s->ctor); 5071 } 5072 SLAB_ATTR_RO(ctor); 5073 5074 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5075 { 5076 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5077 } 5078 SLAB_ATTR_RO(aliases); 5079 5080 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5081 { 5082 return show_slab_objects(s, buf, SO_PARTIAL); 5083 } 5084 SLAB_ATTR_RO(partial); 5085 5086 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5087 { 5088 return show_slab_objects(s, buf, SO_CPU); 5089 } 5090 SLAB_ATTR_RO(cpu_slabs); 5091 5092 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5093 { 5094 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5095 } 5096 SLAB_ATTR_RO(objects); 5097 5098 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5099 { 5100 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5101 } 5102 SLAB_ATTR_RO(objects_partial); 5103 5104 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5105 { 5106 int objects = 0; 5107 int pages = 0; 5108 int cpu; 5109 int len; 5110 5111 for_each_online_cpu(cpu) { 5112 struct page *page; 5113 5114 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5115 5116 if (page) { 5117 pages += page->pages; 5118 objects += page->pobjects; 5119 } 5120 } 5121 5122 len = sprintf(buf, "%d(%d)", objects, pages); 5123 5124 #ifdef CONFIG_SMP 5125 for_each_online_cpu(cpu) { 5126 struct page *page; 5127 5128 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5129 5130 if (page && len < PAGE_SIZE - 20) 5131 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5132 page->pobjects, page->pages); 5133 } 5134 #endif 5135 return len + sprintf(buf + len, "\n"); 5136 } 5137 SLAB_ATTR_RO(slabs_cpu_partial); 5138 5139 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5140 { 5141 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5142 } 5143 5144 static ssize_t reclaim_account_store(struct kmem_cache *s, 5145 const char *buf, size_t length) 5146 { 5147 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5148 if (buf[0] == '1') 5149 s->flags |= SLAB_RECLAIM_ACCOUNT; 5150 return length; 5151 } 5152 SLAB_ATTR(reclaim_account); 5153 5154 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5155 { 5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5157 } 5158 SLAB_ATTR_RO(hwcache_align); 5159 5160 #ifdef CONFIG_ZONE_DMA 5161 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5162 { 5163 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5164 } 5165 SLAB_ATTR_RO(cache_dma); 5166 #endif 5167 5168 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5169 { 5170 return sprintf(buf, "%u\n", s->usersize); 5171 } 5172 SLAB_ATTR_RO(usersize); 5173 5174 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5175 { 5176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5177 } 5178 SLAB_ATTR_RO(destroy_by_rcu); 5179 5180 #ifdef CONFIG_SLUB_DEBUG 5181 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5182 { 5183 return show_slab_objects(s, buf, SO_ALL); 5184 } 5185 SLAB_ATTR_RO(slabs); 5186 5187 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5188 { 5189 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5190 } 5191 SLAB_ATTR_RO(total_objects); 5192 5193 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5194 { 5195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5196 } 5197 5198 static ssize_t sanity_checks_store(struct kmem_cache *s, 5199 const char *buf, size_t length) 5200 { 5201 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5202 if (buf[0] == '1') { 5203 s->flags &= ~__CMPXCHG_DOUBLE; 5204 s->flags |= SLAB_CONSISTENCY_CHECKS; 5205 } 5206 return length; 5207 } 5208 SLAB_ATTR(sanity_checks); 5209 5210 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5211 { 5212 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5213 } 5214 5215 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5216 size_t length) 5217 { 5218 /* 5219 * Tracing a merged cache is going to give confusing results 5220 * as well as cause other issues like converting a mergeable 5221 * cache into an umergeable one. 5222 */ 5223 if (s->refcount > 1) 5224 return -EINVAL; 5225 5226 s->flags &= ~SLAB_TRACE; 5227 if (buf[0] == '1') { 5228 s->flags &= ~__CMPXCHG_DOUBLE; 5229 s->flags |= SLAB_TRACE; 5230 } 5231 return length; 5232 } 5233 SLAB_ATTR(trace); 5234 5235 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5236 { 5237 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5238 } 5239 5240 static ssize_t red_zone_store(struct kmem_cache *s, 5241 const char *buf, size_t length) 5242 { 5243 if (any_slab_objects(s)) 5244 return -EBUSY; 5245 5246 s->flags &= ~SLAB_RED_ZONE; 5247 if (buf[0] == '1') { 5248 s->flags |= SLAB_RED_ZONE; 5249 } 5250 calculate_sizes(s, -1); 5251 return length; 5252 } 5253 SLAB_ATTR(red_zone); 5254 5255 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5256 { 5257 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5258 } 5259 5260 static ssize_t poison_store(struct kmem_cache *s, 5261 const char *buf, size_t length) 5262 { 5263 if (any_slab_objects(s)) 5264 return -EBUSY; 5265 5266 s->flags &= ~SLAB_POISON; 5267 if (buf[0] == '1') { 5268 s->flags |= SLAB_POISON; 5269 } 5270 calculate_sizes(s, -1); 5271 return length; 5272 } 5273 SLAB_ATTR(poison); 5274 5275 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5276 { 5277 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5278 } 5279 5280 static ssize_t store_user_store(struct kmem_cache *s, 5281 const char *buf, size_t length) 5282 { 5283 if (any_slab_objects(s)) 5284 return -EBUSY; 5285 5286 s->flags &= ~SLAB_STORE_USER; 5287 if (buf[0] == '1') { 5288 s->flags &= ~__CMPXCHG_DOUBLE; 5289 s->flags |= SLAB_STORE_USER; 5290 } 5291 calculate_sizes(s, -1); 5292 return length; 5293 } 5294 SLAB_ATTR(store_user); 5295 5296 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5297 { 5298 return 0; 5299 } 5300 5301 static ssize_t validate_store(struct kmem_cache *s, 5302 const char *buf, size_t length) 5303 { 5304 int ret = -EINVAL; 5305 5306 if (buf[0] == '1') { 5307 ret = validate_slab_cache(s); 5308 if (ret >= 0) 5309 ret = length; 5310 } 5311 return ret; 5312 } 5313 SLAB_ATTR(validate); 5314 5315 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5316 { 5317 if (!(s->flags & SLAB_STORE_USER)) 5318 return -ENOSYS; 5319 return list_locations(s, buf, TRACK_ALLOC); 5320 } 5321 SLAB_ATTR_RO(alloc_calls); 5322 5323 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5324 { 5325 if (!(s->flags & SLAB_STORE_USER)) 5326 return -ENOSYS; 5327 return list_locations(s, buf, TRACK_FREE); 5328 } 5329 SLAB_ATTR_RO(free_calls); 5330 #endif /* CONFIG_SLUB_DEBUG */ 5331 5332 #ifdef CONFIG_FAILSLAB 5333 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5334 { 5335 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5336 } 5337 5338 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5339 size_t length) 5340 { 5341 if (s->refcount > 1) 5342 return -EINVAL; 5343 5344 s->flags &= ~SLAB_FAILSLAB; 5345 if (buf[0] == '1') 5346 s->flags |= SLAB_FAILSLAB; 5347 return length; 5348 } 5349 SLAB_ATTR(failslab); 5350 #endif 5351 5352 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5353 { 5354 return 0; 5355 } 5356 5357 static ssize_t shrink_store(struct kmem_cache *s, 5358 const char *buf, size_t length) 5359 { 5360 if (buf[0] == '1') 5361 kmem_cache_shrink_all(s); 5362 else 5363 return -EINVAL; 5364 return length; 5365 } 5366 SLAB_ATTR(shrink); 5367 5368 #ifdef CONFIG_NUMA 5369 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5370 { 5371 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5372 } 5373 5374 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5375 const char *buf, size_t length) 5376 { 5377 unsigned int ratio; 5378 int err; 5379 5380 err = kstrtouint(buf, 10, &ratio); 5381 if (err) 5382 return err; 5383 if (ratio > 100) 5384 return -ERANGE; 5385 5386 s->remote_node_defrag_ratio = ratio * 10; 5387 5388 return length; 5389 } 5390 SLAB_ATTR(remote_node_defrag_ratio); 5391 #endif 5392 5393 #ifdef CONFIG_SLUB_STATS 5394 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5395 { 5396 unsigned long sum = 0; 5397 int cpu; 5398 int len; 5399 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5400 5401 if (!data) 5402 return -ENOMEM; 5403 5404 for_each_online_cpu(cpu) { 5405 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5406 5407 data[cpu] = x; 5408 sum += x; 5409 } 5410 5411 len = sprintf(buf, "%lu", sum); 5412 5413 #ifdef CONFIG_SMP 5414 for_each_online_cpu(cpu) { 5415 if (data[cpu] && len < PAGE_SIZE - 20) 5416 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5417 } 5418 #endif 5419 kfree(data); 5420 return len + sprintf(buf + len, "\n"); 5421 } 5422 5423 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5424 { 5425 int cpu; 5426 5427 for_each_online_cpu(cpu) 5428 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5429 } 5430 5431 #define STAT_ATTR(si, text) \ 5432 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5433 { \ 5434 return show_stat(s, buf, si); \ 5435 } \ 5436 static ssize_t text##_store(struct kmem_cache *s, \ 5437 const char *buf, size_t length) \ 5438 { \ 5439 if (buf[0] != '0') \ 5440 return -EINVAL; \ 5441 clear_stat(s, si); \ 5442 return length; \ 5443 } \ 5444 SLAB_ATTR(text); \ 5445 5446 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5447 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5448 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5449 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5450 STAT_ATTR(FREE_FROZEN, free_frozen); 5451 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5452 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5453 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5454 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5455 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5456 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5457 STAT_ATTR(FREE_SLAB, free_slab); 5458 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5459 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5460 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5461 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5462 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5463 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5464 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5465 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5466 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5467 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5468 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5469 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5470 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5471 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5472 #endif /* CONFIG_SLUB_STATS */ 5473 5474 static struct attribute *slab_attrs[] = { 5475 &slab_size_attr.attr, 5476 &object_size_attr.attr, 5477 &objs_per_slab_attr.attr, 5478 &order_attr.attr, 5479 &min_partial_attr.attr, 5480 &cpu_partial_attr.attr, 5481 &objects_attr.attr, 5482 &objects_partial_attr.attr, 5483 &partial_attr.attr, 5484 &cpu_slabs_attr.attr, 5485 &ctor_attr.attr, 5486 &aliases_attr.attr, 5487 &align_attr.attr, 5488 &hwcache_align_attr.attr, 5489 &reclaim_account_attr.attr, 5490 &destroy_by_rcu_attr.attr, 5491 &shrink_attr.attr, 5492 &slabs_cpu_partial_attr.attr, 5493 #ifdef CONFIG_SLUB_DEBUG 5494 &total_objects_attr.attr, 5495 &slabs_attr.attr, 5496 &sanity_checks_attr.attr, 5497 &trace_attr.attr, 5498 &red_zone_attr.attr, 5499 &poison_attr.attr, 5500 &store_user_attr.attr, 5501 &validate_attr.attr, 5502 &alloc_calls_attr.attr, 5503 &free_calls_attr.attr, 5504 #endif 5505 #ifdef CONFIG_ZONE_DMA 5506 &cache_dma_attr.attr, 5507 #endif 5508 #ifdef CONFIG_NUMA 5509 &remote_node_defrag_ratio_attr.attr, 5510 #endif 5511 #ifdef CONFIG_SLUB_STATS 5512 &alloc_fastpath_attr.attr, 5513 &alloc_slowpath_attr.attr, 5514 &free_fastpath_attr.attr, 5515 &free_slowpath_attr.attr, 5516 &free_frozen_attr.attr, 5517 &free_add_partial_attr.attr, 5518 &free_remove_partial_attr.attr, 5519 &alloc_from_partial_attr.attr, 5520 &alloc_slab_attr.attr, 5521 &alloc_refill_attr.attr, 5522 &alloc_node_mismatch_attr.attr, 5523 &free_slab_attr.attr, 5524 &cpuslab_flush_attr.attr, 5525 &deactivate_full_attr.attr, 5526 &deactivate_empty_attr.attr, 5527 &deactivate_to_head_attr.attr, 5528 &deactivate_to_tail_attr.attr, 5529 &deactivate_remote_frees_attr.attr, 5530 &deactivate_bypass_attr.attr, 5531 &order_fallback_attr.attr, 5532 &cmpxchg_double_fail_attr.attr, 5533 &cmpxchg_double_cpu_fail_attr.attr, 5534 &cpu_partial_alloc_attr.attr, 5535 &cpu_partial_free_attr.attr, 5536 &cpu_partial_node_attr.attr, 5537 &cpu_partial_drain_attr.attr, 5538 #endif 5539 #ifdef CONFIG_FAILSLAB 5540 &failslab_attr.attr, 5541 #endif 5542 &usersize_attr.attr, 5543 5544 NULL 5545 }; 5546 5547 static const struct attribute_group slab_attr_group = { 5548 .attrs = slab_attrs, 5549 }; 5550 5551 static ssize_t slab_attr_show(struct kobject *kobj, 5552 struct attribute *attr, 5553 char *buf) 5554 { 5555 struct slab_attribute *attribute; 5556 struct kmem_cache *s; 5557 int err; 5558 5559 attribute = to_slab_attr(attr); 5560 s = to_slab(kobj); 5561 5562 if (!attribute->show) 5563 return -EIO; 5564 5565 err = attribute->show(s, buf); 5566 5567 return err; 5568 } 5569 5570 static ssize_t slab_attr_store(struct kobject *kobj, 5571 struct attribute *attr, 5572 const char *buf, size_t len) 5573 { 5574 struct slab_attribute *attribute; 5575 struct kmem_cache *s; 5576 int err; 5577 5578 attribute = to_slab_attr(attr); 5579 s = to_slab(kobj); 5580 5581 if (!attribute->store) 5582 return -EIO; 5583 5584 err = attribute->store(s, buf, len); 5585 #ifdef CONFIG_MEMCG 5586 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5587 struct kmem_cache *c; 5588 5589 mutex_lock(&slab_mutex); 5590 if (s->max_attr_size < len) 5591 s->max_attr_size = len; 5592 5593 /* 5594 * This is a best effort propagation, so this function's return 5595 * value will be determined by the parent cache only. This is 5596 * basically because not all attributes will have a well 5597 * defined semantics for rollbacks - most of the actions will 5598 * have permanent effects. 5599 * 5600 * Returning the error value of any of the children that fail 5601 * is not 100 % defined, in the sense that users seeing the 5602 * error code won't be able to know anything about the state of 5603 * the cache. 5604 * 5605 * Only returning the error code for the parent cache at least 5606 * has well defined semantics. The cache being written to 5607 * directly either failed or succeeded, in which case we loop 5608 * through the descendants with best-effort propagation. 5609 */ 5610 for_each_memcg_cache(c, s) 5611 attribute->store(c, buf, len); 5612 mutex_unlock(&slab_mutex); 5613 } 5614 #endif 5615 return err; 5616 } 5617 5618 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5619 { 5620 #ifdef CONFIG_MEMCG 5621 int i; 5622 char *buffer = NULL; 5623 struct kmem_cache *root_cache; 5624 5625 if (is_root_cache(s)) 5626 return; 5627 5628 root_cache = s->memcg_params.root_cache; 5629 5630 /* 5631 * This mean this cache had no attribute written. Therefore, no point 5632 * in copying default values around 5633 */ 5634 if (!root_cache->max_attr_size) 5635 return; 5636 5637 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5638 char mbuf[64]; 5639 char *buf; 5640 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5641 ssize_t len; 5642 5643 if (!attr || !attr->store || !attr->show) 5644 continue; 5645 5646 /* 5647 * It is really bad that we have to allocate here, so we will 5648 * do it only as a fallback. If we actually allocate, though, 5649 * we can just use the allocated buffer until the end. 5650 * 5651 * Most of the slub attributes will tend to be very small in 5652 * size, but sysfs allows buffers up to a page, so they can 5653 * theoretically happen. 5654 */ 5655 if (buffer) 5656 buf = buffer; 5657 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5658 buf = mbuf; 5659 else { 5660 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5661 if (WARN_ON(!buffer)) 5662 continue; 5663 buf = buffer; 5664 } 5665 5666 len = attr->show(root_cache, buf); 5667 if (len > 0) 5668 attr->store(s, buf, len); 5669 } 5670 5671 if (buffer) 5672 free_page((unsigned long)buffer); 5673 #endif /* CONFIG_MEMCG */ 5674 } 5675 5676 static void kmem_cache_release(struct kobject *k) 5677 { 5678 slab_kmem_cache_release(to_slab(k)); 5679 } 5680 5681 static const struct sysfs_ops slab_sysfs_ops = { 5682 .show = slab_attr_show, 5683 .store = slab_attr_store, 5684 }; 5685 5686 static struct kobj_type slab_ktype = { 5687 .sysfs_ops = &slab_sysfs_ops, 5688 .release = kmem_cache_release, 5689 }; 5690 5691 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5692 { 5693 struct kobj_type *ktype = get_ktype(kobj); 5694 5695 if (ktype == &slab_ktype) 5696 return 1; 5697 return 0; 5698 } 5699 5700 static const struct kset_uevent_ops slab_uevent_ops = { 5701 .filter = uevent_filter, 5702 }; 5703 5704 static struct kset *slab_kset; 5705 5706 static inline struct kset *cache_kset(struct kmem_cache *s) 5707 { 5708 #ifdef CONFIG_MEMCG 5709 if (!is_root_cache(s)) 5710 return s->memcg_params.root_cache->memcg_kset; 5711 #endif 5712 return slab_kset; 5713 } 5714 5715 #define ID_STR_LENGTH 64 5716 5717 /* Create a unique string id for a slab cache: 5718 * 5719 * Format :[flags-]size 5720 */ 5721 static char *create_unique_id(struct kmem_cache *s) 5722 { 5723 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5724 char *p = name; 5725 5726 BUG_ON(!name); 5727 5728 *p++ = ':'; 5729 /* 5730 * First flags affecting slabcache operations. We will only 5731 * get here for aliasable slabs so we do not need to support 5732 * too many flags. The flags here must cover all flags that 5733 * are matched during merging to guarantee that the id is 5734 * unique. 5735 */ 5736 if (s->flags & SLAB_CACHE_DMA) 5737 *p++ = 'd'; 5738 if (s->flags & SLAB_CACHE_DMA32) 5739 *p++ = 'D'; 5740 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5741 *p++ = 'a'; 5742 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5743 *p++ = 'F'; 5744 if (s->flags & SLAB_ACCOUNT) 5745 *p++ = 'A'; 5746 if (p != name + 1) 5747 *p++ = '-'; 5748 p += sprintf(p, "%07u", s->size); 5749 5750 BUG_ON(p > name + ID_STR_LENGTH - 1); 5751 return name; 5752 } 5753 5754 static void sysfs_slab_remove_workfn(struct work_struct *work) 5755 { 5756 struct kmem_cache *s = 5757 container_of(work, struct kmem_cache, kobj_remove_work); 5758 5759 if (!s->kobj.state_in_sysfs) 5760 /* 5761 * For a memcg cache, this may be called during 5762 * deactivation and again on shutdown. Remove only once. 5763 * A cache is never shut down before deactivation is 5764 * complete, so no need to worry about synchronization. 5765 */ 5766 goto out; 5767 5768 #ifdef CONFIG_MEMCG 5769 kset_unregister(s->memcg_kset); 5770 #endif 5771 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5772 out: 5773 kobject_put(&s->kobj); 5774 } 5775 5776 static int sysfs_slab_add(struct kmem_cache *s) 5777 { 5778 int err; 5779 const char *name; 5780 struct kset *kset = cache_kset(s); 5781 int unmergeable = slab_unmergeable(s); 5782 5783 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5784 5785 if (!kset) { 5786 kobject_init(&s->kobj, &slab_ktype); 5787 return 0; 5788 } 5789 5790 if (!unmergeable && disable_higher_order_debug && 5791 (slub_debug & DEBUG_METADATA_FLAGS)) 5792 unmergeable = 1; 5793 5794 if (unmergeable) { 5795 /* 5796 * Slabcache can never be merged so we can use the name proper. 5797 * This is typically the case for debug situations. In that 5798 * case we can catch duplicate names easily. 5799 */ 5800 sysfs_remove_link(&slab_kset->kobj, s->name); 5801 name = s->name; 5802 } else { 5803 /* 5804 * Create a unique name for the slab as a target 5805 * for the symlinks. 5806 */ 5807 name = create_unique_id(s); 5808 } 5809 5810 s->kobj.kset = kset; 5811 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5812 if (err) 5813 goto out; 5814 5815 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5816 if (err) 5817 goto out_del_kobj; 5818 5819 #ifdef CONFIG_MEMCG 5820 if (is_root_cache(s) && memcg_sysfs_enabled) { 5821 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5822 if (!s->memcg_kset) { 5823 err = -ENOMEM; 5824 goto out_del_kobj; 5825 } 5826 } 5827 #endif 5828 5829 kobject_uevent(&s->kobj, KOBJ_ADD); 5830 if (!unmergeable) { 5831 /* Setup first alias */ 5832 sysfs_slab_alias(s, s->name); 5833 } 5834 out: 5835 if (!unmergeable) 5836 kfree(name); 5837 return err; 5838 out_del_kobj: 5839 kobject_del(&s->kobj); 5840 goto out; 5841 } 5842 5843 static void sysfs_slab_remove(struct kmem_cache *s) 5844 { 5845 if (slab_state < FULL) 5846 /* 5847 * Sysfs has not been setup yet so no need to remove the 5848 * cache from sysfs. 5849 */ 5850 return; 5851 5852 kobject_get(&s->kobj); 5853 schedule_work(&s->kobj_remove_work); 5854 } 5855 5856 void sysfs_slab_unlink(struct kmem_cache *s) 5857 { 5858 if (slab_state >= FULL) 5859 kobject_del(&s->kobj); 5860 } 5861 5862 void sysfs_slab_release(struct kmem_cache *s) 5863 { 5864 if (slab_state >= FULL) 5865 kobject_put(&s->kobj); 5866 } 5867 5868 /* 5869 * Need to buffer aliases during bootup until sysfs becomes 5870 * available lest we lose that information. 5871 */ 5872 struct saved_alias { 5873 struct kmem_cache *s; 5874 const char *name; 5875 struct saved_alias *next; 5876 }; 5877 5878 static struct saved_alias *alias_list; 5879 5880 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5881 { 5882 struct saved_alias *al; 5883 5884 if (slab_state == FULL) { 5885 /* 5886 * If we have a leftover link then remove it. 5887 */ 5888 sysfs_remove_link(&slab_kset->kobj, name); 5889 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5890 } 5891 5892 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5893 if (!al) 5894 return -ENOMEM; 5895 5896 al->s = s; 5897 al->name = name; 5898 al->next = alias_list; 5899 alias_list = al; 5900 return 0; 5901 } 5902 5903 static int __init slab_sysfs_init(void) 5904 { 5905 struct kmem_cache *s; 5906 int err; 5907 5908 mutex_lock(&slab_mutex); 5909 5910 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5911 if (!slab_kset) { 5912 mutex_unlock(&slab_mutex); 5913 pr_err("Cannot register slab subsystem.\n"); 5914 return -ENOSYS; 5915 } 5916 5917 slab_state = FULL; 5918 5919 list_for_each_entry(s, &slab_caches, list) { 5920 err = sysfs_slab_add(s); 5921 if (err) 5922 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5923 s->name); 5924 } 5925 5926 while (alias_list) { 5927 struct saved_alias *al = alias_list; 5928 5929 alias_list = alias_list->next; 5930 err = sysfs_slab_alias(al->s, al->name); 5931 if (err) 5932 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5933 al->name); 5934 kfree(al); 5935 } 5936 5937 mutex_unlock(&slab_mutex); 5938 resiliency_test(); 5939 return 0; 5940 } 5941 5942 __initcall(slab_sysfs_init); 5943 #endif /* CONFIG_SYSFS */ 5944 5945 /* 5946 * The /proc/slabinfo ABI 5947 */ 5948 #ifdef CONFIG_SLUB_DEBUG 5949 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5950 { 5951 unsigned long nr_slabs = 0; 5952 unsigned long nr_objs = 0; 5953 unsigned long nr_free = 0; 5954 int node; 5955 struct kmem_cache_node *n; 5956 5957 for_each_kmem_cache_node(s, node, n) { 5958 nr_slabs += node_nr_slabs(n); 5959 nr_objs += node_nr_objs(n); 5960 nr_free += count_partial(n, count_free); 5961 } 5962 5963 sinfo->active_objs = nr_objs - nr_free; 5964 sinfo->num_objs = nr_objs; 5965 sinfo->active_slabs = nr_slabs; 5966 sinfo->num_slabs = nr_slabs; 5967 sinfo->objects_per_slab = oo_objects(s->oo); 5968 sinfo->cache_order = oo_order(s->oo); 5969 } 5970 5971 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5972 { 5973 } 5974 5975 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5976 size_t count, loff_t *ppos) 5977 { 5978 return -EIO; 5979 } 5980 #endif /* CONFIG_SLUB_DEBUG */ 5981